diff --git a/docs/charts/accuracy_chart_from_labels_table.ipynb b/docs/charts/accuracy_chart_from_labels_table.ipynb index 383fc03d8d..855914dbb7 100644 --- a/docs/charts/accuracy_chart_from_labels_table.ipynb +++ b/docs/charts/accuracy_chart_from_labels_table.ipynb @@ -1,224 +1,224 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `accuracy_chart_from_labels_table`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n", - "\n", - " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n", - "\n", - " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `accuracy_chart_from_labels_table`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n", + "\n", + " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n", + "\n", + " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.LayerChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets, splink_dataset_labels\n", + "import logging, sys\n", + "\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "\n", + "df_labels = splink_dataset_labels.fake_1000_labels\n", + "labels_table = linker.table_management.register_labels_table(df_labels)\n", + "\n", + "linker.evaluation.accuracy_analysis_from_labels_table(\n", + " labels_table, output_type=\"accuracy\", add_metrics=[\"f1\"]\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. For all possible match weight thresholds, this chart shows various accuracy metrics comparing the Splink scores against clerical labels. \n", + "\n", + "**Precision** and **recall** are shown by default, but various additional metrics can be added: specificity, negative predictive value (NPV), accuracy, $F_1$, $F_2$, $F_{0.5}$, $P_4$ and $\\phi$ (Matthews correlation coefficient)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n", + "\n", + "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n", + "\n", + "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. \n", + "\n", + "!!! info \"Confusion matrix\"\n", + "\n", + " See [threshold_selection_tool_from_labels_table](threshold_selection_tool_from_labels_table.ipynb) for a more complete visualisation of the impact of match threshold on false positives and false negatives, with reference to the confusion matrix." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.linker.clustering.cluster_pairwise_predictions_at_thresholds)." ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets, splink_dataset_labels\n", - "import logging, sys\n", - "\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "\n", - "df_labels = splink_dataset_labels.fake_1000_labels\n", - "labels_table = linker.register_labels_table(df_labels)\n", - "\n", - "linker.accuracy_analysis_from_labels_table(\n", - " labels_table, output_type=\"accuracy\", add_metrics=[\"f1\"]\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. For all possible match weight thresholds, this chart shows various accuracy metrics comparing the Splink scores against clerical labels. \n", - "\n", - "**Precision** and **recall** are shown by default, but various additional metrics can be added: specificity, negative predictive value (NPV), accuracy, $F_1$, $F_2$, $F_{0.5}$, $P_4$ and $\\phi$ (Matthews correlation coefficient)." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n", - "\n", - "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n", - "\n", - "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. \n", - "\n", - "!!! info \"Confusion matrix\"\n", - "\n", - " See [threshold_selection_tool_from_labels_table](threshold_selection_tool_from_labels_table.ipynb) for a more complete visualisation of the impact of match threshold on false positives and false negatives, with reference to the confusion matrix." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.Linker.cluster_pairwise_predictions_at_thresholds)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/cluster_studio_dashboard.ipynb b/docs/charts/cluster_studio_dashboard.ipynb index 09e2acd4aa..c83dffba4a 100644 --- a/docs/charts/cluster_studio_dashboard.ipynb +++ b/docs/charts/cluster_studio_dashboard.ipynb @@ -1,132 +1,132 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "!!! warning \"Work in Progress\"\n", - " This page is currently under construction. \n", - "\n", - "# `cluster_studio_dashboard`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** \n", - "\n", - " **API Documentation:** [cluster_studio_dashboard()](../linker.md#splink.linker.Linker.cluster_studio_dashboard)\n", - "\n", - " **What is needed to generate the chart?** " - ] + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "!!! warning \"Work in Progress\"\n", + " This page is currently under construction. \n", + "\n", + "# `cluster_studio_dashboard`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** \n", + "\n", + " **API Documentation:** [cluster_studio_dashboard()](../linker.md#splink.linker.linker.visualisations.cluster_studio_dashboard)\n", + "\n", + " **What is needed to generate the chart?** " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + " \"retain_intermediate_calculation_columns\": True,\n", + " \"retain_matching_columns\":True,\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n", + "df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predictions, threshold_match_probability=0.5)\n", + "\n", + "linker.visualisations.cluster_studio_dashboard(df_predictions, df_clusters, \"img/cluster_studio.html\", sampling_method=\"by_cluster_size\", overwrite=True)\n", + "\n", + "# You can view the scv.html file in your browser, or inline in a notbook as follows\n", + "from IPython.display import IFrame\n", + "IFrame(\n", + " src=\"./img/cluster_studio.html\", width=\"100%\", height=1200\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - " \"retain_intermediate_calculation_columns\": True,\n", - " \"retain_matching_columns\":True,\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "df_predictions = linker.predict(threshold_match_probability=0.2)\n", - "df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predictions, threshold_match_probability=0.5)\n", - "\n", - "linker.cluster_studio_dashboard(df_predictions, df_clusters, \"img/cluster_studio.html\", sampling_method=\"by_cluster_size\", overwrite=True)\n", - "\n", - "# You can view the scv.html file in your browser, or inline in a notbook as follows\n", - "from IPython.display import IFrame\n", - "IFrame(\n", - " src=\"./img/cluster_studio.html\", width=\"100%\", height=1200\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/comparison_viewer_dashboard.ipynb b/docs/charts/comparison_viewer_dashboard.ipynb index 4b70fb52df..1f7381b794 100644 --- a/docs/charts/comparison_viewer_dashboard.ipynb +++ b/docs/charts/comparison_viewer_dashboard.ipynb @@ -1,168 +1,168 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "!!! warning \"Work in Progress\"\n", - " This page is currently under construction. \n", - "\n", - "# `comparison_viewer_dashboard`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** \n", - "\n", - " **API Documentation:** [comparison_viewer_dashboard()](../linker.md#splink.linker.Linker.comparison_viewer_dashboard)\n", - "\n", - " **What is needed to generate the chart?** " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4007ece5fbbb449f92d734eb3e7e7bba", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "!!! warning \"Work in Progress\"\n", + " This page is currently under construction. \n", + "\n", + "# `comparison_viewer_dashboard`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** \n", + "\n", + " **API Documentation:** [comparison_viewer_dashboard()](../linker.md#splink.linker.linker.visualisations.comparison_viewer_dashboard)\n", + "\n", + " **What is needed to generate the chart?** " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - " \n", - " " + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4007ece5fbbb449f92d734eb3e7e7bba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + " \"retain_intermediate_calculation_columns\": True,\n", + " \"retain_matching_columns\":True,\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n", + "\n", + "linker.visualisations.comparison_viewer_dashboard(df_predictions, \"img/scv.html\", overwrite=True)\n", + "\n", + "# You can view the scv.html file in your browser, or inline in a notbook as follows\n", + "from IPython.display import IFrame\n", + "IFrame(\n", + " src=\"./img/scv.html\", width=\"100%\", height=1200\n", + ") \n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - " \"retain_intermediate_calculation_columns\": True,\n", - " \"retain_matching_columns\":True,\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "df_predictions = linker.predict(threshold_match_probability=0.2)\n", - "\n", - "linker.comparison_viewer_dashboard(df_predictions, \"img/scv.html\", overwrite=True)\n", - "\n", - "# You can view the scv.html file in your browser, or inline in a notbook as follows\n", - "from IPython.display import IFrame\n", - "IFrame(\n", - " src=\"./img/scv.html\", width=\"100%\", height=1200\n", - ") \n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/m_u_parameters_chart.ipynb b/docs/charts/m_u_parameters_chart.ipynb index f40e677db5..22a194894b 100644 --- a/docs/charts/m_u_parameters_chart.ipynb +++ b/docs/charts/m_u_parameters_chart.ipynb @@ -1,280 +1,280 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `m_u_parameters_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at the m and u values generated by a Splink model.\n", - "\n", - " **API Documentation:** [m_u_parameters_chart()](../linker.md#splink.linker.Linker.m_u_parameters_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained Splink model." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "db5b87e6c45e482bbbf40d69cbe58b93", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `m_u_parameters_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at the m and u values generated by a Splink model.\n", + "\n", + " **API Documentation:** [m_u_parameters_chart()](../linker.md#splink.linker.Linker.m_u_parameters_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained Splink model." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "db5b87e6c45e482bbbf40d69cbe58b93", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.HConcatChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "linker.visualisations.m_u_parameters_chart()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The `m_u_parameters_chart` shows the results of a trained Splink model:\n", + "\n", + "- The left chart shows the estimated m probabilities from the Splink model \n", + "- The right chart shows the estimated u probabilities from the Splink model.\n", + "\n", + "Each comparison within a model is represented in trained m and u values that have been estimated during the Splink model training for each comparison level.\n", + "\n", + "??? note \"What the chart tooltip shows\"\n", + "\n", + " #### Estimated m probability tooltip\n", + "\n", + " ![](./img/m_u_parameters_chart_tooltip_1.png)\n", + "\n", + " The tooltip of the left chart shows information based on the comparison level bar that the user is hovering over, including:\n", + "\n", + " - An explanation of the m probability for the comparison level.\n", + " - The name of the comparison and comparison level.\n", + " - The comparison level condition as an SQL statement.\n", + " - The m and u proability for the comparison level.\n", + " - The resulting bayes factor and match weight for the comparison level.\n", + "\n", + " #### Estimated u probability tooltip\n", + "\n", + " ![](./img/m_u_parameters_chart_tooltip_2.png)\n", + "\n", + " The tooltip of the right chart shows information based on the comparison level bar that the user is hovering over, including:\n", + "\n", + " - An explanation of the u probability from the comparison level.\n", + " - The name of the comparison and comparison level.\n", + " - The comparison level condition as an SQL statement.\n", + " - The m and u proability for the comparison level.\n", + " - The resulting bayes factor and match weight for the comparison level." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "Each bar of the left chart shows the probability of a given comparison level when two records are a match. This can also be interpreted as the proportion of matching records which are allocated to the comparison level (as stated in the x axis label).\n", + "\n", + "Similarly, each bar of the right chart shows the probability of a given comparison level when two records are not a match. This can also be interpreted as the proportion of non-matching records which are allocated to the comparison level (as stated in the x axis label).\n", + "\n", + "!!! note \"Further Reading\"\n", + "\n", + " For a more comprehensive introduction to m and u probabilities, check out the [Fellegi Sunter model topic guide.](../topic_guides/theory/fellegi_sunter.md#parameters-of-the-fellegi-sunter-model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "As with the `match_weights_chart`, one of the most effective methods to assess a Splink model is to walk through each of the comparison levels of the `m_u_parameters_chart` and sense check the m and u probabilities that have been allocated by the model.\n", + "\n", + "For example, for all non-matching pairwise comparisons (which form the vast majority of all pairwise comparisons), it makes sense that the exact match and fuzzy levels occur very rarely. Furthermore, `dob` and `city` are lower cardinality features (i.e. have fewer possible values) than names so \"All other comparisons\" is less likely.\n", + "\n", + "If there are any m or u values that appear unusual, check out the values generated for each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Related Charts\n", + "\n", + "::cards::\n", + "[\n", + " {\n", + " \"title\": \"`match weights chart`\",\n", + " \"image\": \"./img/match_weights_chart.png\",\n", + " \"url\": \"./match_weights_chart.ipynb\"\n", + " },\n", + " {\n", + " \"title\": \"`parameter estimate comparisons chart`\",\n", + " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n", + " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n", + " },\n", + "]\n", + "::/cards::" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "linker.m_u_parameters_chart()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The `m_u_parameters_chart` shows the results of a trained Splink model:\n", - "\n", - "- The left chart shows the estimated m probabilities from the Splink model \n", - "- The right chart shows the estimated u probabilities from the Splink model.\n", - "\n", - "Each comparison within a model is represented in trained m and u values that have been estimated during the Splink model training for each comparison level.\n", - "\n", - "??? note \"What the chart tooltip shows\"\n", - "\n", - " #### Estimated m probability tooltip\n", - "\n", - " ![](./img/m_u_parameters_chart_tooltip_1.png)\n", - "\n", - " The tooltip of the left chart shows information based on the comparison level bar that the user is hovering over, including:\n", - "\n", - " - An explanation of the m probability for the comparison level.\n", - " - The name of the comparison and comparison level.\n", - " - The comparison level condition as an SQL statement.\n", - " - The m and u proability for the comparison level.\n", - " - The resulting bayes factor and match weight for the comparison level.\n", - "\n", - " #### Estimated u probability tooltip\n", - "\n", - " ![](./img/m_u_parameters_chart_tooltip_2.png)\n", - "\n", - " The tooltip of the right chart shows information based on the comparison level bar that the user is hovering over, including:\n", - "\n", - " - An explanation of the u probability from the comparison level.\n", - " - The name of the comparison and comparison level.\n", - " - The comparison level condition as an SQL statement.\n", - " - The m and u proability for the comparison level.\n", - " - The resulting bayes factor and match weight for the comparison level." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "Each bar of the left chart shows the probability of a given comparison level when two records are a match. This can also be interpreted as the proportion of matching records which are allocated to the comparison level (as stated in the x axis label).\n", - "\n", - "Similarly, each bar of the right chart shows the probability of a given comparison level when two records are not a match. This can also be interpreted as the proportion of non-matching records which are allocated to the comparison level (as stated in the x axis label).\n", - "\n", - "!!! note \"Further Reading\"\n", - "\n", - " For a more comprehensive introduction to m and u probabilities, check out the [Fellegi Sunter model topic guide.](../topic_guides/theory/fellegi_sunter.md#parameters-of-the-fellegi-sunter-model)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "As with the `match_weights_chart`, one of the most effective methods to assess a Splink model is to walk through each of the comparison levels of the `m_u_parameters_chart` and sense check the m and u probabilities that have been allocated by the model.\n", - "\n", - "For example, for all non-matching pairwise comparisons (which form the vast majority of all pairwise comparisons), it makes sense that the exact match and fuzzy levels occur very rarely. Furthermore, `dob` and `city` are lower cardinality features (i.e. have fewer possible values) than names so \"All other comparisons\" is less likely.\n", - "\n", - "If there are any m or u values that appear unusual, check out the values generated for each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Related Charts\n", - "\n", - "::cards::\n", - "[\n", - " {\n", - " \"title\": \"`match weights chart`\",\n", - " \"image\": \"./img/match_weights_chart.png\",\n", - " \"url\": \"./match_weights_chart.ipynb\"\n", - " },\n", - " {\n", - " \"title\": \"`parameter estimate comparisons chart`\",\n", - " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n", - " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n", - " },\n", - "]\n", - "::/cards::" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/match_weights_chart.ipynb b/docs/charts/match_weights_chart.ipynb index 01434b4a12..ca4ccbb82b 100644 --- a/docs/charts/match_weights_chart.ipynb +++ b/docs/charts/match_weights_chart.ipynb @@ -1,285 +1,285 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `match_weights_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at the whole Splink model definition.\n", - "\n", - " **API Documentation:** [match_weights_chart()](../linker.md#splink.linker.Linker.match_weights_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained Splink model." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "44f1c3ab2d0e4991a710c9946a80afae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `match_weights_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at the whole Splink model definition.\n", + "\n", + " **API Documentation:** [match_weights_chart()](../linker.md#splink.linker.linker.visualisations.match_weights_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained Splink model." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44f1c3ab2d0e4991a710c9946a80afae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.VConcatChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "linker.visualisations.match_weights_chart()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The `match_weights_chart` show the results of a trained Splink model. Each comparison within a model is represented in a bar chart, with a bar showing the evidence for two records being a match (i.e. match weight) for each comparison level.\n", + "\n", + "??? note \"What the chart tooltip shows\"\n", + "\n", + " ![](./img/match_weights_chart_tooltip.png)\n", + "\n", + " The tooltip shows information based on the comparison level bar that the user is hovering over, including:\n", + "\n", + " - The name of the comparison and comaprison level.\n", + " - The comparison level condition as an SQL statement.\n", + " - The m and u proability for the comparison level.\n", + " - The resulting bayes factor and match weight for the comparison level." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "Each bar in the `match_weights_chart` shows the evidence of a match provided by each level in a Splink model (i.e. match weight). As such, the match weight chart provides a summary for the entire Splink model, as it shows the match weights for every type of comparison defined within the model.\n", + "\n", + "Any Splink score generated to compare two records will add up the evidence (i.e. match weights) for each comparison to come up with a final match weight score, which can then be converted into a probability of a match.\n", + "\n", + "The first bar chart is the Prior Match Weight, which is the . This can be thought of in the same way as the y-intercept of a simple regression model\n", + "\n", + "This chart is an aggregation of the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb). The match weight for a comparison level is simply $log_2(\\frac{m}{u})$." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "Some heuristics to help assess Splink models with the `match_weights_chart`:\n", + "\n", + "#### Match weights gradually reducing within a comparison\n", + "\n", + "Comparison levels are order dependent, therefore they are constructed that the most \"similar\" levels come first and get gradually less \"similar\". As a result, we would generally expect that match weight will reduce as we go down the levels in a comparison. \n", + "\n", + "#### Very similar comparison levels\n", + "\n", + "Comparisons are broken up into comparison levels to show different levels of similarity between records. As these levels are associated with different levels of similarity, we expect the amount of evidence (i.e. match weight) to vary between comparison levels. Two levels with the same match weight does not provide the model with any additional information which could make it perform better. \n", + "\n", + "Therefore, if two levels of a comparison return the same match weight, these should be combined into a single level.\n", + "\n", + "#### Very different comparison levels\n", + "\n", + "Levels that have a large variation between comparison levels have a significant impact on the model results. For example, looking at the `email` comparison in the chart above, the difference in match weight between an exact/fuzzy match and \"All other comparisons\" is > 13, which is quite extreme. This generally happens with highly predictive features (e.g. email, national insurance number, social security number).\n", + "\n", + "If there are a number of highly predictive features, it is worth looking at simplifying your model using these more predictive features. In some cases, similar results may be obtained with a [deterministic](../topic_guides/theory/probabilistic_vs_deterministic.md) rather than a probabilistic linkage model.\n", + "\n", + "#### Logical Walk-through\n", + "\n", + "One of the most effective methods to assess a splink model is to walk through each of the comparison levels of the `match_weights_chart` and sense check the amount of evidence (i.e. match weight) that has been allocated by the model.\n", + "\n", + "For example, in the chart above, we would expect records with the same `dob` to provide more evidence of a match that `first_name` or `surname`. Conversely, given how people can move location, we would expect that `city` would be less predictive than people's fixed, personally identifying characteristics like `surname`, `dob` etc.\n", + "\n", + "#### Anything look strange?\n", + "\n", + "If anything still looks unusual, check out:\n", + "\n", + "- the underlying m and u values in the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb)\n", + "- the values from each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Related Charts\n", + "\n", + "::cards::\n", + "[\n", + " {\n", + " \"title\": \"`m u parameters chart`\",\n", + " \"image\": \"./img/m_u_parameters_chart.png\",\n", + " \"url\": \"./m_u_parameters_chart.ipynb\"\n", + " },\n", + " {\n", + " \"title\": \"`parameter estimate comparisons chart`\",\n", + " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n", + " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n", + " },\n", + "]\n", + "::/cards::" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "linker.match_weights_chart()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The `match_weights_chart` show the results of a trained Splink model. Each comparison within a model is represented in a bar chart, with a bar showing the evidence for two records being a match (i.e. match weight) for each comparison level.\n", - "\n", - "??? note \"What the chart tooltip shows\"\n", - "\n", - " ![](./img/match_weights_chart_tooltip.png)\n", - "\n", - " The tooltip shows information based on the comparison level bar that the user is hovering over, including:\n", - "\n", - " - The name of the comparison and comaprison level.\n", - " - The comparison level condition as an SQL statement.\n", - " - The m and u proability for the comparison level.\n", - " - The resulting bayes factor and match weight for the comparison level." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "Each bar in the `match_weights_chart` shows the evidence of a match provided by each level in a Splink model (i.e. match weight). As such, the match weight chart provides a summary for the entire Splink model, as it shows the match weights for every type of comparison defined within the model.\n", - "\n", - "Any Splink score generated to compare two records will add up the evidence (i.e. match weights) for each comparison to come up with a final match weight score, which can then be converted into a probability of a match.\n", - "\n", - "The first bar chart is the Prior Match Weight, which is the . This can be thought of in the same way as the y-intercept of a simple regression model\n", - "\n", - "This chart is an aggregation of the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb). The match weight for a comparison level is simply $log_2(\\frac{m}{u})$." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "Some heuristics to help assess Splink models with the `match_weights_chart`:\n", - "\n", - "#### Match weights gradually reducing within a comparison\n", - "\n", - "Comparison levels are order dependent, therefore they are constructed that the most \"similar\" levels come first and get gradually less \"similar\". As a result, we would generally expect that match weight will reduce as we go down the levels in a comparison. \n", - "\n", - "#### Very similar comparison levels\n", - "\n", - "Comparisons are broken up into comparison levels to show different levels of similarity between records. As these levels are associated with different levels of similarity, we expect the amount of evidence (i.e. match weight) to vary between comparison levels. Two levels with the same match weight does not provide the model with any additional information which could make it perform better. \n", - "\n", - "Therefore, if two levels of a comparison return the same match weight, these should be combined into a single level.\n", - "\n", - "#### Very different comparison levels\n", - "\n", - "Levels that have a large variation between comparison levels have a significant impact on the model results. For example, looking at the `email` comparison in the chart above, the difference in match weight between an exact/fuzzy match and \"All other comparisons\" is > 13, which is quite extreme. This generally happens with highly predictive features (e.g. email, national insurance number, social security number).\n", - "\n", - "If there are a number of highly predictive features, it is worth looking at simplifying your model using these more predictive features. In some cases, similar results may be obtained with a [deterministic](../topic_guides/theory/probabilistic_vs_deterministic.md) rather than a probabilistic linkage model.\n", - "\n", - "#### Logical Walk-through\n", - "\n", - "One of the most effective methods to assess a splink model is to walk through each of the comparison levels of the `match_weights_chart` and sense check the amount of evidence (i.e. match weight) that has been allocated by the model.\n", - "\n", - "For example, in the chart above, we would expect records with the same `dob` to provide more evidence of a match that `first_name` or `surname`. Conversely, given how people can move location, we would expect that `city` would be less predictive than people's fixed, personally identifying characteristics like `surname`, `dob` etc.\n", - "\n", - "#### Anything look strange?\n", - "\n", - "If anything still looks unusual, check out:\n", - "\n", - "- the underlying m and u values in the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb)\n", - "- the values from each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Related Charts\n", - "\n", - "::cards::\n", - "[\n", - " {\n", - " \"title\": \"`m u parameters chart`\",\n", - " \"image\": \"./img/m_u_parameters_chart.png\",\n", - " \"url\": \"./m_u_parameters_chart.ipynb\"\n", - " },\n", - " {\n", - " \"title\": \"`parameter estimate comparisons chart`\",\n", - " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n", - " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n", - " },\n", - "]\n", - "::/cards::" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/parameter_estimate_comparisons_chart.ipynb b/docs/charts/parameter_estimate_comparisons_chart.ipynb index 4f75178e8b..ca5581d0b0 100644 --- a/docs/charts/parameter_estimate_comparisons_chart.ipynb +++ b/docs/charts/parameter_estimate_comparisons_chart.ipynb @@ -1,241 +1,241 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "!!! warning \"Work in Progress\"\n", - " This page is currently under construction. \n", - "\n", - "# `parameter_estimate_comparisons_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at the m and u value estimates across multiple Splink model training sessions.\n", - "\n", - " **API Documentation:** [parameter_estimate_comparisons_chart()](../linker.md#splink.linker.Linker.parameter_estimate_comparisons_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained Splink model." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4ecdcdd3060d4d37b6c9bc3ffe0eff3d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "!!! warning \"Work in Progress\"\n", + " This page is currently under construction. \n", + "\n", + "# `parameter_estimate_comparisons_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at the m and u value estimates across multiple Splink model training sessions.\n", + "\n", + " **API Documentation:** [parameter_estimate_comparisons_chart()](../linker.md#splink.linker.Linker.parameter_estimate_comparisons_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained Splink model." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ecdcdd3060d4d37b6c9bc3ffe0eff3d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"email\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "\n", + "linker.parameter_estimate_comparisons_chart()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Related Charts\n", + "\n", + "::cards::\n", + "[\n", + " {\n", + " \"title\": \"`m u parameters chart`\",\n", + " \"image\": \"./img/m_u_parameters_chart.png\",\n", + " \"url\": \"./m_u_parameters_chart.ipynb\"\n", + " },\n", + " {\n", + " \"title\": \"`match weights chart`\",\n", + " \"image\": \"./img/match_weights_chart.png\",\n", + " \"url\": \"./match_weights_chart.ipynb\"\n", + " },\n", + "]\n", + "::/cards::" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"email\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "\n", - "linker.parameter_estimate_comparisons_chart()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Related Charts\n", - "\n", - "::cards::\n", - "[\n", - " {\n", - " \"title\": \"`m u parameters chart`\",\n", - " \"image\": \"./img/m_u_parameters_chart.png\",\n", - " \"url\": \"./m_u_parameters_chart.ipynb\"\n", - " },\n", - " {\n", - " \"title\": \"`match weights chart`\",\n", - " \"image\": \"./img/match_weights_chart.png\",\n", - " \"url\": \"./match_weights_chart.ipynb\"\n", - " },\n", - "]\n", - "::/cards::" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/precision_recall_chart_from_labels_table.ipynb b/docs/charts/precision_recall_chart_from_labels_table.ipynb index 080f71a599..cbea00e984 100644 --- a/docs/charts/precision_recall_chart_from_labels_table.ipynb +++ b/docs/charts/precision_recall_chart_from_labels_table.ipynb @@ -1,218 +1,218 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "!!! warning \"Work in Progress\"\n", - " This page is currently under construction. \n", - "\n", - "# `precision_recall_chart_from_labels_table`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** \n", - "\n", - " **API Documentation:** [precision_recall_chart_from_labels_table()](../linker.md#splink.linker.Linker.precision_recall_chart_from_labels_table)\n", - "\n", - " **What is needed to generate the chart?** " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c2fee12e933d46ed84aebe7b4bce1e33", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "!!! warning \"Work in Progress\"\n", + " This page is currently under construction. \n", + "\n", + "# `precision_recall_chart_from_labels_table`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** \n", + "\n", + " **API Documentation:** [precision_recall_chart_from_labels_table()](../linker.md#splink.linker.Linker.precision_recall_chart_from_labels_table)\n", + "\n", + " **What is needed to generate the chart?** " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c2fee12e933d46ed84aebe7b4bce1e33", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets, splink_dataset_labels\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "\n", + "df_labels = splink_dataset_labels.fake_1000_labels\n", + "labels_table = linker.table_management.register_labels_table(df_labels)\n", + "\n", + "linker.precision_recall_chart_from_labels_table(labels_table)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets, splink_dataset_labels\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "\n", - "df_labels = splink_dataset_labels.fake_1000_labels\n", - "labels_table = linker.register_labels_table(df_labels)\n", - "\n", - "linker.precision_recall_chart_from_labels_table(labels_table)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/roc_chart_from_labels_table.ipynb b/docs/charts/roc_chart_from_labels_table.ipynb index c5e4d48821..9bbbeedbf7 100644 --- a/docs/charts/roc_chart_from_labels_table.ipynb +++ b/docs/charts/roc_chart_from_labels_table.ipynb @@ -1,242 +1,242 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `roc_chart_from_labels_table_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Assessing the relationship between True and False Positive Rates.\n", - "\n", - " **API Documentation:** [roc_chart_from_labels_table_chart()](../linker.md#splink.linker.Linker.roc_chart_from_labels_table_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained `linker` and a corresponding labelled dataset." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3c1c24580878443eac6e491fa20dc47b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `roc_chart_from_labels_table_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Assessing the relationship between True and False Positive Rates.\n", + "\n", + " **API Documentation:** [roc_chart_from_labels_table_chart()](../linker.md#splink.linker.Linker.roc_chart_from_labels_table_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained `linker` and a corresponding labelled dataset." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3c1c24580878443eac6e491fa20dc47b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets, splink_dataset_labels\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "\n", + "df_labels = splink_dataset_labels.fake_1000_labels\n", + "labels_table = linker.table_management.register_labels_table(df_labels)\n", + "\n", + "linker.roc_chart_from_labels_table(labels_table)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The chart plots the True Positive Rate against False Positive Rate for clerically reviewed records. Each point on the curve reflects the choice of a match weight threshold for a match and the subsequent True/False Positive Rates.\n", + "\n", + "??? note \"What the chart tooltip shows\"\n", + " ![](./img/roc_chart_from_labels_table_tooltip.png)\n", + "\n", + " The tooltip shows information based on the point on the curve that the user is hoverng over, including:\n", + "\n", + " - The match weight and match probability threshold\n", + " - The False and True Positive Rate\n", + " - The count of True Positives, True Negatives, False Positives and False Negatives\n", + " - Precision, Recall and F1 score\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "A ROC chart shows how the number of False Positives and False Negatives varies depending on the match threshold chosen. The match threshold is the match weight chosen as a cutoff for which pairwise comparisons to accept as matches.\n", + "\n", + "\n", + "For a perfect classifier, we should be able to get 100% of True Positives without gaining any False Positives (see \"ideal class descriminator\" in the chart below).\n", + "\n", + "On the other hand, for a random classifier we would expect False Positives and False Negatives to be roughly equal (see \"no predictive value\" in the chart below).\n", + "\n", + "In reality, most models sit somethere between these two extremes.\n", + "\n", + "![](./img/roc_curve_explainer.png)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "If the ROC curve resembles the \"No predictive value\" example above, your model is not performing very well. In this case, it is worth reassessing your modesl (comparisons, comparison levels, blocking rules etc.) to see if there is a better solution.\n", + "\n", + "It is also worth considering the impact of your labelled data on this chart. For labels, it is important to consider a variety of pairwise comparisons (which includes True/False Positives and True/False Negatives). For example, it you only label pairwise comparisons that are true matches, this chart will not give any insights (as there will be no False Positives). " ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets, splink_dataset_labels\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "\n", - "df_labels = splink_dataset_labels.fake_1000_labels\n", - "labels_table = linker.register_labels_table(df_labels)\n", - "\n", - "linker.roc_chart_from_labels_table(labels_table)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The chart plots the True Positive Rate against False Positive Rate for clerically reviewed records. Each point on the curve reflects the choice of a match weight threshold for a match and the subsequent True/False Positive Rates.\n", - "\n", - "??? note \"What the chart tooltip shows\"\n", - " ![](./img/roc_chart_from_labels_table_tooltip.png)\n", - "\n", - " The tooltip shows information based on the point on the curve that the user is hoverng over, including:\n", - "\n", - " - The match weight and match probability threshold\n", - " - The False and True Positive Rate\n", - " - The count of True Positives, True Negatives, False Positives and False Negatives\n", - " - Precision, Recall and F1 score\n", - "\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "A ROC chart shows how the number of False Positives and False Negatives varies depending on the match threshold chosen. The match threshold is the match weight chosen as a cutoff for which pairwise comparisons to accept as matches.\n", - "\n", - "\n", - "For a perfect classifier, we should be able to get 100% of True Positives without gaining any False Positives (see \"ideal class descriminator\" in the chart below).\n", - "\n", - "On the other hand, for a random classifier we would expect False Positives and False Negatives to be roughly equal (see \"no predictive value\" in the chart below).\n", - "\n", - "In reality, most models sit somethere between these two extremes.\n", - "\n", - "![](./img/roc_curve_explainer.png)\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "If the ROC curve resembles the \"No predictive value\" example above, your model is not performing very well. In this case, it is worth reassessing your modesl (comparisons, comparison levels, blocking rules etc.) to see if there is a better solution.\n", - "\n", - "It is also worth considering the impact of your labelled data on this chart. For labels, it is important to consider a variety of pairwise comparisons (which includes True/False Positives and True/False Negatives). For example, it you only label pairwise comparisons that are true matches, this chart will not give any insights (as there will be no False Positives). " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/template.ipynb b/docs/charts/template.ipynb index ce74c180bf..b360eb96fc 100644 --- a/docs/charts/template.ipynb +++ b/docs/charts/template.ipynb @@ -1,127 +1,127 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `XXXXX_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** \n", - "\n", - " **API Documentation:** [XXXXXX_chart()](../linker.md#splink.linker.Linker.XXXXX_chart)\n", - "\n", - " **What is needed to generate the chart?** " - ] + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `XXXXX_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** \n", + "\n", + " **API Documentation:** [XXXXXX_chart()](../linker.md#splink.linker.Linker.XXXXX_chart)\n", + "\n", + " **What is needed to generate the chart?** " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "??? note \"What the chart tooltip shows\"\n", + "\n", + " ![]()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "??? note \"What the chart tooltip shows\"\n", - "\n", - " ![]()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/tf_adjustment_chart.ipynb b/docs/charts/tf_adjustment_chart.ipynb index ecca7b1ced..a52fb48a23 100644 --- a/docs/charts/tf_adjustment_chart.ipynb +++ b/docs/charts/tf_adjustment_chart.ipynb @@ -1,273 +1,273 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `tf_adjustment_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at the impact of Term Frequency Adjustments on Match Weights.\n", - "\n", - " **API Documentation:** [tf_adjustment_chart()](../linker.md#splink.linker.Linker.tf_adjustment_chart)\n", - "\n", - " **What is needed to generate the chart?:** A trained Splink model, including comparisons with term frequency adjustments." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "68e5fef12fa147d1b229c1d97de97638", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `tf_adjustment_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at the impact of Term Frequency Adjustments on Match Weights.\n", + "\n", + " **API Documentation:** [tf_adjustment_chart()](../linker.md#splink.linker.Linker.tf_adjustment_chart)\n", + "\n", + " **What is needed to generate the chart?:** A trained Splink model, including comparisons with term frequency adjustments." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/rosskennedy/splink/splink/linker.py:3126: UserWarning: Values ['Robert', 'Grace'] from `vals_to_include` were not found in the dataset so are not included in the chart.\n", - " return tf_adjustment_chart(\n" - ] + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "68e5fef12fa147d1b229c1d97de97638", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/rosskennedy/splink/splink/linker.py:3126: UserWarning: Values ['Robert', 'Grace'] from `vals_to_include` were not found in the dataset so are not included in the chart.\n", + " return tf_adjustment_chart(\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.HConcatChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\", term_frequency_adjustments = True),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "linker.tf_adjustment_chart(\"first_name\", vals_to_include = [\"Robert\", \"Grace\"])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The `tf_adjustment_chart` shows the impact of Term Frequency Adjustments on the Match Weight of a comparison. It is made up of two charts for each selected comparison:\n", + "\n", + "- The left chart shows the match weight for two records with a matching `first_name` including a term frequency adjustment. The black horizontal line represents the base match weight (i.e. with no term frequency adjustment applied). By default this chart contains the 10 most frequent and 10 least frequent values in a comparison as well as any values assigned in the `vals_to_include` parameter.\n", + "- The right chart shows the distribution of match weights across all of the values of `first_name`." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "??? note \"What the tooltip shows\"\n", + "\n", + " #### Left chart\n", + "\n", + " ![](./img/tf_adjustment_chart_tooltip_1.png)\n", + "\n", + " The tooltip shows a number of statistics based on the column value of the point theat the user is hovering over, including:\n", + "\n", + " - The column value\n", + " - The base match weight (i.e. with no term frequency adjustment) for a match on the column.\n", + " - The term frequency adjustment for the column value.\n", + " - The final match weight (i.e. the combined base match weight and term frequency adjustment)\n", + "\n", + " #### Right chart\n", + "\n", + " ![](./img/tf_adjustment_chart_tooltip_2.png)\n", + "\n", + " The tooltip shows a number of statistics based on the bar that the user is hovering over, including:\n", + "\n", + " - The final match weight bucket (in steps of 0.5).\n", + " - The number of records with a final match weight in the final match weight bucket." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "The most common terms (on the left of the first chart) will have a negative term frequency adjustment and the values on the chart and represent the lowest match weight for a match for the selected comparison. Conversely, the least common terms (on the right of the first chart) will have a positive term frequency adjustment and the values on the chart represent the highest match weight for a match for the selected comparison.\n", + "\n", + "Given that the first chart only shows the most and least frequently occuring values, the second chart is provided to show the distribution of final match weights (including term frequency adjustments) across all values in the dataset." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "There are no direct actions that need to be taken as a result of this chart. It is intended to give the user an indication of the size of the impact of Term Frequency Adjustments on comparisons, as seen in the Waterfall Chart." ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\", term_frequency_adjustments = True),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "linker.tf_adjustment_chart(\"first_name\", vals_to_include = [\"Robert\", \"Grace\"])\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The `tf_adjustment_chart` shows the impact of Term Frequency Adjustments on the Match Weight of a comparison. It is made up of two charts for each selected comparison:\n", - "\n", - "- The left chart shows the match weight for two records with a matching `first_name` including a term frequency adjustment. The black horizontal line represents the base match weight (i.e. with no term frequency adjustment applied). By default this chart contains the 10 most frequent and 10 least frequent values in a comparison as well as any values assigned in the `vals_to_include` parameter.\n", - "- The right chart shows the distribution of match weights across all of the values of `first_name`." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "??? note \"What the tooltip shows\"\n", - "\n", - " #### Left chart\n", - "\n", - " ![](./img/tf_adjustment_chart_tooltip_1.png)\n", - "\n", - " The tooltip shows a number of statistics based on the column value of the point theat the user is hovering over, including:\n", - "\n", - " - The column value\n", - " - The base match weight (i.e. with no term frequency adjustment) for a match on the column.\n", - " - The term frequency adjustment for the column value.\n", - " - The final match weight (i.e. the combined base match weight and term frequency adjustment)\n", - "\n", - " #### Right chart\n", - "\n", - " ![](./img/tf_adjustment_chart_tooltip_2.png)\n", - "\n", - " The tooltip shows a number of statistics based on the bar that the user is hovering over, including:\n", - "\n", - " - The final match weight bucket (in steps of 0.5).\n", - " - The number of records with a final match weight in the final match weight bucket." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "The most common terms (on the left of the first chart) will have a negative term frequency adjustment and the values on the chart and represent the lowest match weight for a match for the selected comparison. Conversely, the least common terms (on the right of the first chart) will have a positive term frequency adjustment and the values on the chart represent the highest match weight for a match for the selected comparison.\n", - "\n", - "Given that the first chart only shows the most and least frequently occuring values, the second chart is provided to show the distribution of final match weights (including term frequency adjustments) across all values in the dataset." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "There are no direct actions that need to be taken as a result of this chart. It is intended to give the user an indication of the size of the impact of Term Frequency Adjustments on comparisons, as seen in the Waterfall Chart." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/threshold_selection_tool_from_labels_table.ipynb b/docs/charts/threshold_selection_tool_from_labels_table.ipynb index b4bedeb42b..d002c7df5f 100644 --- a/docs/charts/threshold_selection_tool_from_labels_table.ipynb +++ b/docs/charts/threshold_selection_tool_from_labels_table.ipynb @@ -1,225 +1,225 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `threshold_selection_tool_from_labels_table`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n", - "\n", - " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n", - "\n", - " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `threshold_selection_tool_from_labels_table`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n", + "\n", + " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n", + "\n", + " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.HConcatChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets, splink_dataset_labels\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "\n", + "df_labels = splink_dataset_labels.fake_1000_labels\n", + "labels_table = linker.table_management.register_labels_table(df_labels)\n", + "\n", + "linker.evaluation.accuracy_analysis_from_labels_table(labels_table, add_metrics=['f1'])" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. Lowering the threshold to the extreme ensures many more matches are generated - this maximises the True Positives (high recall) but at the expense of some False Positives (low precision).\n", + "\n", + "You can then see the effect on the confusion matrix of raising the match threshold. As more predicted matches become non-matches at the higher threshold, True Positives become False Negatives, but False Positives become True Negatives.\n", + "\n", + "This demonstrates the trade-off between Type 1 (FP) and Type 2 (FN) errors when selecting a match threshold, or precision vs recall.\n", + "\n", + "This chart adds further context to [accuracy_chart_from_labels_table](accuracy_chart_from_labels_table.ipynb) showing:\n", + "\n", + "- the relationship between match weight and match probability\n", + "- various accuracy metrics comparing the Splink scores against clerical labels\n", + "- the confusion matrix of the predictions and the labels" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n", + "\n", + "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n", + "\n", + "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.linker.clustering.cluster_pairwise_predictions_at_thresholds)." ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets, splink_dataset_labels\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "\n", - "df_labels = splink_dataset_labels.fake_1000_labels\n", - "labels_table = linker.register_labels_table(df_labels)\n", - "\n", - "linker.accuracy_analysis_from_labels_table(labels_table, add_metrics=['f1'])" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. Lowering the threshold to the extreme ensures many more matches are generated - this maximises the True Positives (high recall) but at the expense of some False Positives (low precision).\n", - "\n", - "You can then see the effect on the confusion matrix of raising the match threshold. As more predicted matches become non-matches at the higher threshold, True Positives become False Negatives, but False Positives become True Negatives.\n", - "\n", - "This demonstrates the trade-off between Type 1 (FP) and Type 2 (FN) errors when selecting a match threshold, or precision vs recall.\n", - "\n", - "This chart adds further context to [accuracy_chart_from_labels_table](accuracy_chart_from_labels_table.ipynb) showing:\n", - "\n", - "- the relationship between match weight and match probability\n", - "- various accuracy metrics comparing the Splink scores against clerical labels\n", - "- the confusion matrix of the predictions and the labels" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n", - "\n", - "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n", - "\n", - "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.Linker.cluster_pairwise_predictions_at_thresholds)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/unlinkables_chart.ipynb b/docs/charts/unlinkables_chart.ipynb index 048fe7b366..2ff9453c1b 100644 --- a/docs/charts/unlinkables_chart.ipynb +++ b/docs/charts/unlinkables_chart.ipynb @@ -1,251 +1,251 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `unlinkables_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at how many records have insufficient information to be linked to themselves.\n", - "\n", - " **API Documentation:** [unlinkables_chart()](../linker.md#splink.linker.Linker.unlinkables_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained Splink model" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "256d9c064596491c952798167c08db35", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `unlinkables_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at how many records have insufficient information to be linked to themselves.\n", + "\n", + " **API Documentation:** [unlinkables_chart()](../linker.md#splink.linker.Linker.unlinkables_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained Splink model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "256d9c064596491c952798167c08db35", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.LayerChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\"),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "linker.evaluation.unlinkables_chart()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The `unlinkables_chart` shows the proportion of records with insufficient information to be matched to themselves at differing match thresholds.\n", + "\n", + "??? note \"What the chart tooltip shows\"\n", + "\n", + " ![](./img/unlinkables_chart_tooltip.png)\n", + "\n", + " This tooltip shows a number of statistics based on the match weight of the selected point of the line, including:\n", + "\n", + " - The chosen match weight and corresponding match probability.\n", + " - The proportion of records of records that cannot be linked to themselves given the chosen match weight threshold for a match." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "This chart gives an indication of both data quality and/or model predictiveness within a Splink model. If a high proportion of records are not linkable to themselves at a low match threshold (e.g. 0 match weight/50% probability) we can conclude that either/or:\n", + "\n", + "- the data quality is low enough such that a significant proportion of records are unable to be linked to themselves\n", + "- the parameters of the Splink model are such that features have not been assigned enough weight, and therefore will not perform well\n", + "\n", + "This chart also gives an indication of the number of False Negatives (i.e. missed links) at a given threshold, assuming sufficient data quality. For example:\n", + "\n", + "- we know that a record should be linked to itself, so seeing that a match weight $\\approx$ 10 gives 16% of records unable to link to themselves\n", + "- exact matches generally provide the strongest matches, therefore, we can expect that any \"fuzzy\" matches to have lower match scores. As a result, we can deduce that the propoertion of False Negatives will be higher than 16%.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "If the level of unlinkable records is extremely high at low match weight thresholds, you have a poorly performing model. This may be an issue that can be resolved by tweaking the models comparisons, but if the poor performance is primarily down to poor data quality, there is very little that can be done to improve the model.\n", + "\n", + "When interpretted as an indicator of False Negatives, this chart can be used to establish an upper bound for match weight, depending on the propensity for False Negatives in the particular use case." ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\"),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "linker.unlinkables_chart()\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The `unlinkables_chart` shows the proportion of records with insufficient information to be matched to themselves at differing match thresholds.\n", - "\n", - "??? note \"What the chart tooltip shows\"\n", - "\n", - " ![](./img/unlinkables_chart_tooltip.png)\n", - "\n", - " This tooltip shows a number of statistics based on the match weight of the selected point of the line, including:\n", - "\n", - " - The chosen match weight and corresponding match probability.\n", - " - The proportion of records of records that cannot be linked to themselves given the chosen match weight threshold for a match." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "This chart gives an indication of both data quality and/or model predictiveness within a Splink model. If a high proportion of records are not linkable to themselves at a low match threshold (e.g. 0 match weight/50% probability) we can conclude that either/or:\n", - "\n", - "- the data quality is low enough such that a significant proportion of records are unable to be linked to themselves\n", - "- the parameters of the Splink model are such that features have not been assigned enough weight, and therefore will not perform well\n", - "\n", - "This chart also gives an indication of the number of False Negatives (i.e. missed links) at a given threshold, assuming sufficient data quality. For example:\n", - "\n", - "- we know that a record should be linked to itself, so seeing that a match weight $\\approx$ 10 gives 16% of records unable to link to themselves\n", - "- exact matches generally provide the strongest matches, therefore, we can expect that any \"fuzzy\" matches to have lower match scores. As a result, we can deduce that the propoertion of False Negatives will be higher than 16%.\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "If the level of unlinkable records is extremely high at low match weight thresholds, you have a poorly performing model. This may be an issue that can be resolved by tweaking the models comparisons, but if the poor performance is primarily down to poor data quality, there is very little that can be done to improve the model.\n", - "\n", - "When interpretted as an indicator of False Negatives, this chart can be used to establish an upper bound for match weight, depending on the propensity for False Negatives in the particular use case." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/charts/waterfall_chart.ipynb b/docs/charts/waterfall_chart.ipynb index 75d8ea07e6..b5497c0fd3 100644 --- a/docs/charts/waterfall_chart.ipynb +++ b/docs/charts/waterfall_chart.ipynb @@ -1,268 +1,268 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `waterfall_chart`\n", - "\n", - "!!! info \"At a glance\"\n", - " **Useful for:** Looking at the breakdown of the match weight for a pair of records.\n", - "\n", - " **API Documentation:** [waterfall_chart()](../linker.md#splink.linker.Linker.waterfall_chart)\n", - "\n", - " **What is needed to generate the chart?** A trained Splink model" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Worked Example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c61587e20b704f6791a7c55073340e6d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `waterfall_chart`\n", + "\n", + "!!! info \"At a glance\"\n", + " **Useful for:** Looking at the breakdown of the match weight for a pair of records.\n", + "\n", + " **API Documentation:** [waterfall_chart()](../linker.md#splink.linker.linker.visualisations.waterfall_chart)\n", + "\n", + " **What is needed to generate the chart?** A trained Splink model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Worked Example" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c61587e20b704f6791a7c55073340e6d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.LayerChart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.datasets import splink_datasets\n", + "import logging, sys\n", + "logging.disable(sys.maxsize)\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\"),\n", + " block_on(\"surname\"),\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\", term_frequency_adjustments=True),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\"),\n", + " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + " \"retain_intermediate_calculation_columns\": True,\n", + " \"retain_matching_columns\":True,\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "\n", + "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "blocking_rule_for_training = block_on(\"dob\")\n", + "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", + "\n", + "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n", + "records_to_view = df_predictions.as_record_dict(limit=5)\n", + "\n", + "linker.visualisations.waterfall_chart(records_to_view, filter_nulls=False)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What the chart shows\n", + "\n", + "The `waterfall_chart` shows the amount of evidence of a match that is provided by each comparison for a pair of records. Each bar represents a comparison and the corresponding amount of evidence (i.e. match weight) of a match for the pair of values displayed above the bar.\n", + "\n", + "??? note \"What the chart tooltip shows\"\n", + "\n", + " ![](./img/waterfall_chart_tooltip.png)\n", + "\n", + " The tooltip contains information based on the bar that the user is hovering over, including:\n", + "\n", + " - The comparison column (or columns)\n", + " - The column values from the pair of records being compared\n", + " - The comparison level as a label, SQL statement and the corresponding comparison vector value\n", + " - The bayes factor (i.e. how many times more likely is a match based on this evidence)\n", + " - The match weight for the comparison level\n", + " - The cumulative match probability from the chosen comparison and all of the previous comparisons." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to interpret the chart\n", + "\n", + "The first bar (labelled \"Prior\") is the match weight if no additional knowledge of features is taken into account, and can be thought of as similar to the y-intercept in a simple regression.\n", + "\n", + "Each subsequent bar shows the match weight for a comparison. These bars can be positive or negative depending on whether the given comparison gives positive or negative evidence for the two records being a match.\n", + "\n", + "Additional bars are added for comparisons with term frequency adjustments. For example, the chart above has term frequency adjustments for `first_name` so there is an extra `tf_first_name` bar showing how the frequency of a given name impacts the amount of evidence for the two records being a match.\n", + "\n", + "The final bar represents total match weight for the pair of records. This match weight can also be translated into a final match probablility, and the corresponding match probability is shown on the right axis (note the logarithmic scale)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Actions to take as a result of the chart\n", + "\n", + "This chart is useful for spot checking pairs of records to see if the Splink model is behaving as expected.\n", + "\n", + "If a pair of records look like they are incorrectly being assigned as a match/non-match, it is a sign that the Splink model is not working optimally. If this is the case, it is worth revisiting the model training step. \n", + "\n", + "Some common scenarios include:\n", + "\n", + "- If a comparison isn't capturing a specific edge case (e.g. fuzzy match), add a comparison level to capture this case and retrain the model.\n", + "\n", + "- If the match weight for a comparison is looking unusual, refer to the [`match_weights_chart`](./match_weights_chart.ipynb) to see the match weight in context with the rest of the comparison levels within that comparison. If it is still looking unusual, you can dig deeper with the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb) to see if the model training runs are consistent. If there is a lot of variation between model training sessions, this can suggest some instability in the model. In this case, try some different model training rules and/or comparison levels.\n", + "\n", + "- If the \"Prior\" match weight is too small or large compared to the match weight provided by the comparisons, try some different determininstic rules and recall inputs to the [`estimate_probability_two_records_match` function](../linker.md#splink.linker.linker.training.estimate_probability_two_random_records_match).\n", + "\n", + "- If you are working with a model with term frequency adjustments and want to dig deeper into the impact of term frequency on the model as a whole (i.e. not just for a single pairwise comparison), check out the [`tf_adjustment_chart`](./tf_adjustment_chart.ipynb).\n" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "from splink.duckdb.linker import DuckDBLinker\n", - "import splink.duckdb.comparison_library as cl\n", - "import splink.duckdb.comparison_template_library as ctl\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.datasets import splink_datasets\n", - "import logging, sys\n", - "logging.disable(sys.maxsize)\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\"),\n", - " block_on(\"surname\"),\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.name_comparison(\"first_name\", term_frequency_adjustments=True),\n", - " ctl.name_comparison(\"surname\"),\n", - " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " cl.exact_match(\"city\"),\n", - " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - " \"retain_intermediate_calculation_columns\": True,\n", - " \"retain_matching_columns\":True,\n", - "}\n", - "\n", - "linker = DuckDBLinker(df, settings)\n", - "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n", - "\n", - "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "blocking_rule_for_training = block_on(\"dob\")\n", - "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n", - "\n", - "df_predictions = linker.predict(threshold_match_probability=0.2)\n", - "records_to_view = df_predictions.as_record_dict(limit=5)\n", - "\n", - "linker.waterfall_chart(records_to_view, filter_nulls=False)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What the chart shows\n", - "\n", - "The `waterfall_chart` shows the amount of evidence of a match that is provided by each comparison for a pair of records. Each bar represents a comparison and the corresponding amount of evidence (i.e. match weight) of a match for the pair of values displayed above the bar.\n", - "\n", - "??? note \"What the chart tooltip shows\"\n", - "\n", - " ![](./img/waterfall_chart_tooltip.png)\n", - "\n", - " The tooltip contains information based on the bar that the user is hovering over, including:\n", - "\n", - " - The comparison column (or columns)\n", - " - The column values from the pair of records being compared\n", - " - The comparison level as a label, SQL statement and the corresponding comparison vector value\n", - " - The bayes factor (i.e. how many times more likely is a match based on this evidence)\n", - " - The match weight for the comparison level\n", - " - The cumulative match probability from the chosen comparison and all of the previous comparisons." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### How to interpret the chart\n", - "\n", - "The first bar (labelled \"Prior\") is the match weight if no additional knowledge of features is taken into account, and can be thought of as similar to the y-intercept in a simple regression.\n", - "\n", - "Each subsequent bar shows the match weight for a comparison. These bars can be positive or negative depending on whether the given comparison gives positive or negative evidence for the two records being a match.\n", - "\n", - "Additional bars are added for comparisons with term frequency adjustments. For example, the chart above has term frequency adjustments for `first_name` so there is an extra `tf_first_name` bar showing how the frequency of a given name impacts the amount of evidence for the two records being a match.\n", - "\n", - "The final bar represents total match weight for the pair of records. This match weight can also be translated into a final match probablility, and the corresponding match probability is shown on the right axis (note the logarithmic scale)." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Actions to take as a result of the chart\n", - "\n", - "This chart is useful for spot checking pairs of records to see if the Splink model is behaving as expected.\n", - "\n", - "If a pair of records look like they are incorrectly being assigned as a match/non-match, it is a sign that the Splink model is not working optimally. If this is the case, it is worth revisiting the model training step. \n", - "\n", - "Some common scenarios include:\n", - "\n", - "- If a comparison isn't capturing a specific edge case (e.g. fuzzy match), add a comparison level to capture this case and retrain the model.\n", - "\n", - "- If the match weight for a comparison is looking unusual, refer to the [`match_weights_chart`](./match_weights_chart.ipynb) to see the match weight in context with the rest of the comparison levels within that comparison. If it is still looking unusual, you can dig deeper with the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb) to see if the model training runs are consistent. If there is a lot of variation between model training sessions, this can suggest some instability in the model. In this case, try some different model training rules and/or comparison levels.\n", - "\n", - "- If the \"Prior\" match weight is too small or large compared to the match weight provided by the comparisons, try some different determininstic rules and recall inputs to the [`estimate_probability_two_records_match` function](../linker.md#splink.linker.Linker.estimate_probability_two_random_records_match).\n", - "\n", - "- If you are working with a model with term frequency adjustments and want to dig deeper into the impact of term frequency on the model as a whole (i.e. not just for a single pairwise comparison), check out the [`tf_adjustment_chart`](./tf_adjustment_chart.ipynb).\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb index c3a953df26..3dd987d4a0 100644 --- a/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb +++ b/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb @@ -1,109096 +1,109096 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "id": "8f18ba38-4271-490e-a3f1-7c05bcba65e7", - "metadata": {}, - "source": [ - "## Linking a dataset of real historical persons\n", - "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "04cc1e16-42ed-4104-8445-93980b46e42c", - "metadata": {}, - "outputs": [], - "source": [ - "from splink.athena.athena_linker import AthenaLinker\n", - "import altair as alt\n", - "alt.renderers.enable('mimetype')\n", - "\n", - "import pandas as pd\n", - "pd.options.display.max_rows = 1000\n", - "df = pd.read_parquet(\"./data/historical_figures_with_errors_50k.parquet\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "8b53cd2f-c007-4997-9ecd-c27930bbcc3a", - "metadata": {}, - "source": [ - "Create a boto3 session to be used within the linker" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "b77a3a3c-5c7f-4e18-8482-95c090b18b79", - "metadata": {}, - "outputs": [], - "source": [ - "import boto3\n", - "my_session = boto3.Session(region_name=\"eu-west-1\")" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "bb51efc3-a538-488a-a525-64b7e7155f0f", - "metadata": {}, - "outputs": [], - "source": [ - "# Simple settings dictionary will be used for exploratory analysis\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " \"l.first_name = r.first_name and l.surname = r.surname\",\n", - " \"l.surname = r.surname and l.dob = r.dob\",\n", - " \"l.first_name = r.first_name and l.dob = r.dob\",\n", - " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n", - " ],\n", - "}" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "d1aa6941-e7f4-4ac3-a166-ae7357c79198", - "metadata": {}, - "source": [ - "## AthenaLinker Setup\n", - "\n", - "To work nicely with Athena, you need to outline various filepaths, buckets and the database(s) you wish to interact with.\n", - "
\n", - "\n", - "**The AthenaLinker has three required inputs:**\n", - "* input_table_or_tables - the input table to use for linking. This can either be a table in a database or a pandas dataframe\n", - "* output_database - the database to output all of your splink tables to.\n", - "* output_bucket - the s3 bucket you wish any parquet files produced by splink to be output to.\n", - "\n", - "**and two optional inputs:**\n", - "* output_filepath - the s3 filepath to output files to. This is an extension of output_bucket and dictate the full filepath your files will be output to.\n", - "* input_table_aliases - the name of your table within your database, should you choose to use a pandas df as an input." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "023f3947-9cb9-44db-a7f9-f7dab41def34", - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", - "config": { - "view": { - "continuousHeight": 300, - "continuousWidth": 400 - } - }, - "vconcat": [ + "attachments": {}, + "cell_type": "markdown", + "id": "8f18ba38-4271-490e-a3f1-7c05bcba65e7", + "metadata": {}, + "source": [ + "## Linking a dataset of real historical persons\n", + "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "04cc1e16-42ed-4104-8445-93980b46e42c", + "metadata": {}, + "outputs": [], + "source": [ + "from splink.athena.athena_linker import AthenaLinker\n", + "import altair as alt\n", + "alt.renderers.enable('mimetype')\n", + "\n", + "import pandas as pd\n", + "pd.options.display.max_rows = 1000\n", + "df = pd.read_parquet(\"./data/historical_figures_with_errors_50k.parquet\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "8b53cd2f-c007-4997-9ecd-c27930bbcc3a", + "metadata": {}, + "source": [ + "Create a boto3 session to be used within the linker" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b77a3a3c-5c7f-4e18-8482-95c090b18b79", + "metadata": {}, + "outputs": [], + "source": [ + "import boto3\n", + "my_session = boto3.Session(region_name=\"eu-west-1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bb51efc3-a538-488a-a525-64b7e7155f0f", + "metadata": {}, + "outputs": [], + "source": [ + "# Simple settings dictionary will be used for exploratory analysis\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " \"l.first_name = r.first_name and l.surname = r.surname\",\n", + " \"l.surname = r.surname and l.dob = r.dob\",\n", + " \"l.first_name = r.first_name and l.dob = r.dob\",\n", + " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n", + " ],\n", + "}" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d1aa6941-e7f4-4ac3-a166-ae7357c79198", + "metadata": {}, + "source": [ + "## AthenaLinker Setup\n", + "\n", + "To work nicely with Athena, you need to outline various filepaths, buckets and the database(s) you wish to interact with.\n", + "
\n", + "\n", + "**The AthenaLinker has three required inputs:**\n", + "* input_table_or_tables - the input table to use for linking. This can either be a table in a database or a pandas dataframe\n", + "* output_database - the database to output all of your splink tables to.\n", + "* output_bucket - the s3 bucket you wish any parquet files produced by splink to be output to.\n", + "\n", + "**and two optional inputs:**\n", + "* output_filepath - the s3 filepath to output files to. This is an extension of output_bucket and dictate the full filepath your files will be output to.\n", + "* input_table_aliases - the name of your table within your database, should you choose to use a pandas df as an input." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "023f3947-9cb9-44db-a7f9-f7dab41def34", + "metadata": {}, + "outputs": [ { - "hconcat": [ - { - "data": { - "values": [ - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.9449624834194532, - "percentile_inc_nulls": 0.9450353908814109, - "sum_tokens_in_value_count_group": 2780, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 2780 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.8907960642236344, - "percentile_inc_nulls": 0.8909407252164973, - "sum_tokens_in_value_count_group": 2736, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 2736 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.8621290411989467, - "percentile_inc_nulls": 0.8623116770137214, - "sum_tokens_in_value_count_group": 1448, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1448 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.8341153412128052, - "percentile_inc_nulls": 0.8343350864012021, - "sum_tokens_in_value_count_group": 1415, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1415 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.8082595870206489, - "percentile_inc_nulls": 0.8085135829807426, - "sum_tokens_in_value_count_group": 1306, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1306 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.7832155372097167, - "percentile_inc_nulls": 0.7835027086875717, - "sum_tokens_in_value_count_group": 1265, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1265 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.7582308804022886, - "percentile_inc_nulls": 0.7585511487207877, - "sum_tokens_in_value_count_group": 1262, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1262 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.7341569163152581, - "percentile_inc_nulls": 0.7345090750919372, - "sum_tokens_in_value_count_group": 1216, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1216 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.7161212409178199, - "percentile_inc_nulls": 0.7164972913124283, - "sum_tokens_in_value_count_group": 911, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 911 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6986201025519194, - "percentile_inc_nulls": 0.6990193364704022, - "sum_tokens_in_value_count_group": 884, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 884 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6826631822771277, - "percentile_inc_nulls": 0.6830835541144371, - "sum_tokens_in_value_count_group": 806, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 806 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.669715507513215, - "percentile_inc_nulls": 0.6701530309620785, - "sum_tokens_in_value_count_group": 654, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 654 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6573221674486746, - "percentile_inc_nulls": 0.6577761081893314, - "sum_tokens_in_value_count_group": 626, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 626 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6471857615172933, - "percentile_inc_nulls": 0.647653129819289, - "sum_tokens_in_value_count_group": 512, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 512 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6370691532537467, - "percentile_inc_nulls": 0.6375499228913757, - "sum_tokens_in_value_count_group": 511, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 511 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6269921403258696, - "percentile_inc_nulls": 0.6274862588477204, - "sum_tokens_in_value_count_group": 509, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 509 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6171329017441745, - "percentile_inc_nulls": 0.6176400806674839, - "sum_tokens_in_value_count_group": 498, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 498 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.6079269862010255, - "percentile_inc_nulls": 0.6084463600775041, - "sum_tokens_in_value_count_group": 465, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 465 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5987408683257112, - "percentile_inc_nulls": 0.5992724109296532, - "sum_tokens_in_value_count_group": 464, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 464 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5904456455029597, - "percentile_inc_nulls": 0.5909881766776068, - "sum_tokens_in_value_count_group": 419, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 419 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5831403060719447, - "percentile_inc_nulls": 0.58369251453201, - "sum_tokens_in_value_count_group": 369, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 369 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5762309199976243, - "percentile_inc_nulls": 0.5767922812289928, - "sum_tokens_in_value_count_group": 349, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 349 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.569816475619172, - "percentile_inc_nulls": 0.5703863339792005, - "sum_tokens_in_value_count_group": 324, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 324 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5634812219120587, - "percentile_inc_nulls": 0.564059472497924, - "sum_tokens_in_value_count_group": 320, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 320 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5573043495476233, - "percentile_inc_nulls": 0.5578907825536794, - "sum_tokens_in_value_count_group": 312, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 312 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5513848468650393, - "percentile_inc_nulls": 0.5519791213571118, - "sum_tokens_in_value_count_group": 299, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 299 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.545702916196472, - "percentile_inc_nulls": 0.546304717466092, - "sum_tokens_in_value_count_group": 287, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 287 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5401991645384174, - "percentile_inc_nulls": 0.5408082565542331, - "sum_tokens_in_value_count_group": 278, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 278 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5348537942230405, - "percentile_inc_nulls": 0.5354699671794061, - "sum_tokens_in_value_count_group": 270, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 270 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5298251865930194, - "percentile_inc_nulls": 0.5304480208786428, - "sum_tokens_in_value_count_group": 254, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 254 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5250935439805191, - "percentile_inc_nulls": 0.5257226462098146, - "sum_tokens_in_value_count_group": 239, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 239 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5204806873750272, - "percentile_inc_nulls": 0.5211159001937602, - "sum_tokens_in_value_count_group": 233, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 233 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.516481558472412, - "percentile_inc_nulls": 0.5171220688837044, - "sum_tokens_in_value_count_group": 202, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 202 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5128783829264912, - "percentile_inc_nulls": 0.5135236664162284, - "sum_tokens_in_value_count_group": 182, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 182 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5092950050484053, - "percentile_inc_nulls": 0.5099450353908814, - "sum_tokens_in_value_count_group": 181, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 181 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.5058304131773277, - "percentile_inc_nulls": 0.5064850330183084, - "sum_tokens_in_value_count_group": 175, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 175 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.49898042010651145, - "percentile_inc_nulls": 0.4996441140416782, - "sum_tokens_in_value_count_group": 346, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 173 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.49563461424244226, - "percentile_inc_nulls": 0.49630274032187904, - "sum_tokens_in_value_count_group": 169, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 169 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.49230860604620774, - "percentile_inc_nulls": 0.49298113804420896, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 168 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4890221931856428, - "percentile_inc_nulls": 0.48969907865079676, - "sum_tokens_in_value_count_group": 166, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 166 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4858743639999208, - "percentile_inc_nulls": 0.4865554193522875, - "sum_tokens_in_value_count_group": 159, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 159 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.482785927817703, - "percentile_inc_nulls": 0.48347107438016534, - "sum_tokens_in_value_count_group": 156, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 156 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.47664865078893703, - "percentile_inc_nulls": 0.47734192732017877, - "sum_tokens_in_value_count_group": 310, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 155 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4705509690958405, - "percentile_inc_nulls": 0.4712523231444502, - "sum_tokens_in_value_count_group": 308, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 154 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.46758131892063115, - "percentile_inc_nulls": 0.4682866068251018, - "sum_tokens_in_value_count_group": 150, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 150 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.46471065708459547, - "percentile_inc_nulls": 0.4654197477163984, - "sum_tokens_in_value_count_group": 145, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 145 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4619587812555681, - "percentile_inc_nulls": 0.46267151726046896, - "sum_tokens_in_value_count_group": 139, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 139 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4592860960978796, - "percentile_inc_nulls": 0.46000237257305543, - "sum_tokens_in_value_count_group": 135, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 135 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4540595117895112, - "percentile_inc_nulls": 0.4547827118510024, - "sum_tokens_in_value_count_group": 264, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 132 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4514858149709964, - "percentile_inc_nulls": 0.4522124243742338, - "sum_tokens_in_value_count_group": 130, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 130 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.44645720734097527, - "percentile_inc_nulls": 0.4471904780734707, - "sum_tokens_in_value_count_group": 254, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 127 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.44402209419730354, - "percentile_inc_nulls": 0.44475859069160506, - "sum_tokens_in_value_count_group": 123, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 123 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.441646374057136, - "percentile_inc_nulls": 0.4423860176361264, - "sum_tokens_in_value_count_group": 120, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 120 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.43931024925263806, - "percentile_inc_nulls": 0.44005298746490573, - "sum_tokens_in_value_count_group": 118, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 118 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4370335174516442, - "percentile_inc_nulls": 0.437779271620072, - "sum_tokens_in_value_count_group": 115, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 115 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4347765833184851, - "percentile_inc_nulls": 0.43552532721736725, - "sum_tokens_in_value_count_group": 114, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 114 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4325592445209955, - "percentile_inc_nulls": 0.4333109256989205, - "sum_tokens_in_value_count_group": 112, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 112 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.43040129872700994, - "percentile_inc_nulls": 0.4311558385068607, - "sum_tokens_in_value_count_group": 109, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 109 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.42836213894003283, - "percentile_inc_nulls": 0.4291193799675749, - "sum_tokens_in_value_count_group": 103, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 103 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4263427768208905, - "percentile_inc_nulls": 0.427102692870418, - "sum_tokens_in_value_count_group": 102, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 102 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4223436479182753, - "percentile_inc_nulls": 0.4231088615603622, - "sum_tokens_in_value_count_group": 202, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 101 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4203638811348023, - "percentile_inc_nulls": 0.42113171734746335, - "sum_tokens_in_value_count_group": 100, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 100 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4184435073548336, - "percentile_inc_nulls": 0.41921388746095145, - "sum_tokens_in_value_count_group": 97, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 97 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4165429312426996, - "percentile_inc_nulls": 0.4173158290165685, - "sum_tokens_in_value_count_group": 96, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 96 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.41466215279840035, - "percentile_inc_nulls": 0.4154375420143145, - "sum_tokens_in_value_count_group": 95, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 95 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4128011720219358, - "percentile_inc_nulls": 0.41357902645418954, - "sum_tokens_in_value_count_group": 94, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 94 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4055156302587555, - "percentile_inc_nulls": 0.40630313575072163, - "sum_tokens_in_value_count_group": 368, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 92 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.4001108669398745, - "percentile_inc_nulls": 0.40090553204950774, - "sum_tokens_in_value_count_group": 273, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 91 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.39832907683474883, - "percentile_inc_nulls": 0.3991261022578987, - "sum_tokens_in_value_count_group": 90, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 90 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.39484468729583655, - "percentile_inc_nulls": 0.3956463284431967, - "sum_tokens_in_value_count_group": 176, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 88 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3913998930925937, - "percentile_inc_nulls": 0.3922060975127526, - "sum_tokens_in_value_count_group": 174, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 87 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3897170913266417, - "percentile_inc_nulls": 0.3905255249317885, - "sum_tokens_in_value_count_group": 85, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 85 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.38647027380174614, - "percentile_inc_nulls": 0.3872830084226343, - "sum_tokens_in_value_count_group": 164, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 82 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3848666627071331, - "percentile_inc_nulls": 0.3856815216101862, - "sum_tokens_in_value_count_group": 81, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 81 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.38169903585357645, - "percentile_inc_nulls": 0.382518090869548, - "sum_tokens_in_value_count_group": 160, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 80 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.38013502009463285, - "percentile_inc_nulls": 0.38095614694135793, - "sum_tokens_in_value_count_group": 79, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 79 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.378590802003524, - "percentile_inc_nulls": 0.3794139744552968, - "sum_tokens_in_value_count_group": 78, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 78 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.37706638158024985, - "percentile_inc_nulls": 0.3778915734113646, - "sum_tokens_in_value_count_group": 77, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 77 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.37556175882481047, - "percentile_inc_nulls": 0.37638894380956145, - "sum_tokens_in_value_count_group": 76, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 76 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.37407693373720574, - "percentile_inc_nulls": 0.37490608564988726, - "sum_tokens_in_value_count_group": 75, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 75 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3726119063174358, - "percentile_inc_nulls": 0.3734429989323421, - "sum_tokens_in_value_count_group": 74, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 74 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.36972144681356534, - "percentile_inc_nulls": 0.37055636838150974, - "sum_tokens_in_value_count_group": 146, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 73 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.36687058264536443, - "percentile_inc_nulls": 0.36770928071493536, - "sum_tokens_in_value_count_group": 144, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 72 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3654649482290986, - "percentile_inc_nulls": 0.3663055083237772, - "sum_tokens_in_value_count_group": 71, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 71 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3640791114806676, - "percentile_inc_nulls": 0.36492150737474793, - "sum_tokens_in_value_count_group": 70, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 70 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3627130724000712, - "percentile_inc_nulls": 0.36355727786784764, - "sum_tokens_in_value_count_group": 69, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 69 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.35867434816178656, - "percentile_inc_nulls": 0.35952390367353393, - "sum_tokens_in_value_count_group": 204, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 68 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3573479044168597, - "percentile_inc_nulls": 0.35819921705089164, - "sum_tokens_in_value_count_group": 67, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 67 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3560610560076023, - "percentile_inc_nulls": 0.35691407331250746, - "sum_tokens_in_value_count_group": 65, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 65 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.35479400526617966, - "percentile_inc_nulls": 0.3556487010162521, - "sum_tokens_in_value_count_group": 64, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 64 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3522994991190038, - "percentile_inc_nulls": 0.35315749930799956, - "sum_tokens_in_value_count_group": 126, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 63 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3510720437132506, - "percentile_inc_nulls": 0.3519316698960022, - "sum_tokens_in_value_count_group": 62, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 62 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.34744907049949514, - "percentile_inc_nulls": 0.34831349598639727, - "sum_tokens_in_value_count_group": 183, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 61 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3427768208904991, - "percentile_inc_nulls": 0.34364743564395583, - "sum_tokens_in_value_count_group": 236, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 59 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.33933202668725626, - "percentile_inc_nulls": 0.34020720471351185, - "sum_tokens_in_value_count_group": 174, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 58 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3382035596206767, - "percentile_inc_nulls": 0.33908023251215946, - "sum_tokens_in_value_count_group": 57, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 57 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.33709489022193184, - "percentile_inc_nulls": 0.337973031752936, - "sum_tokens_in_value_count_group": 56, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 56 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3360258161588565, - "percentile_inc_nulls": 0.3369053738779707, - "sum_tokens_in_value_count_group": 54, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 54 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.33287798697313453, - "percentile_inc_nulls": 0.33376171457946147, - "sum_tokens_in_value_count_group": 159, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 53 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3287600720635109, - "percentile_inc_nulls": 0.32964925461663175, - "sum_tokens_in_value_count_group": 208, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 52 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.32674070994436855, - "percentile_inc_nulls": 0.3276325675194749, - "sum_tokens_in_value_count_group": 102, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 51 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3257508265526321, - "percentile_inc_nulls": 0.32664399541302547, - "sum_tokens_in_value_count_group": 50, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 50 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.32381065510482865, - "percentile_inc_nulls": 0.3247063940843845, - "sum_tokens_in_value_count_group": 98, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 49 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.32095979093662763, - "percentile_inc_nulls": 0.32185930641781013, - "sum_tokens_in_value_count_group": 144, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 48 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3200293005483954, - "percentile_inc_nulls": 0.32093004863774766, - "sum_tokens_in_value_count_group": 47, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 47 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3172972223872028, - "percentile_inc_nulls": 0.3182015896239472, - "sum_tokens_in_value_count_group": 138, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 46 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.31373364217695154, - "percentile_inc_nulls": 0.3146427300407292, - "sum_tokens_in_value_count_group": 180, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 45 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.30937815525331114, - "percentile_inc_nulls": 0.31029301277235166, - "sum_tokens_in_value_count_group": 220, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 44 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.30767555581952444, - "percentile_inc_nulls": 0.3085926687492586, - "sum_tokens_in_value_count_group": 86, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 43 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.30434954762329003, - "percentile_inc_nulls": 0.3052710664715884, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 42 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.3035378432420661, - "percentile_inc_nulls": 0.30446043734429984, - "sum_tokens_in_value_count_group": 41, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 41 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2987864029617311, - "percentile_inc_nulls": 0.2997152912333425, - "sum_tokens_in_value_count_group": 240, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 40 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2956979667795133, - "percentile_inc_nulls": 0.29663094626122033, - "sum_tokens_in_value_count_group": 156, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 39 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.29344103264635424, - "percentile_inc_nulls": 0.29437700185851556, - "sum_tokens_in_value_count_group": 114, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 38 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.29124349151669937, - "percentile_inc_nulls": 0.29218237178219775, - "sum_tokens_in_value_count_group": 111, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 37 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2891647363940528, - "percentile_inc_nulls": 0.29010637035865394, - "sum_tokens_in_value_count_group": 105, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 35 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.28579913286214886, - "percentile_inc_nulls": 0.28674522519672585, - "sum_tokens_in_value_count_group": 170, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 34 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2818791946308725, - "percentile_inc_nulls": 0.28283047965518604, - "sum_tokens_in_value_count_group": 198, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 33 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2799786185187385, - "percentile_inc_nulls": 0.2809324212108031, - "sum_tokens_in_value_count_group": 96, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 32 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2775237077072321, - "percentile_inc_nulls": 0.2784807623868085, - "sum_tokens_in_value_count_group": 124, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 31 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.273366197461939, - "percentile_inc_nulls": 0.2743287595397208, - "sum_tokens_in_value_count_group": 210, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 30 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2704955356259032, - "percentile_inc_nulls": 0.2714619004310175, - "sum_tokens_in_value_count_group": 145, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 29 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2677238621290412, - "percentile_inc_nulls": 0.268693898532959, - "sum_tokens_in_value_count_group": 140, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 28 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2639821029082774, - "percentile_inc_nulls": 0.26495709597058015, - "sum_tokens_in_value_count_group": 189, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 27 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2603789273623567, - "percentile_inc_nulls": 0.26135869350310414, - "sum_tokens_in_value_count_group": 182, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 26 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2579042188830156, - "percentile_inc_nulls": 0.2588872632369805, - "sum_tokens_in_value_count_group": 125, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 25 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2541030666587476, - "percentile_inc_nulls": 0.2550911463482146, - "sum_tokens_in_value_count_group": 192, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 24 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2509156421373562, - "percentile_inc_nulls": 0.2519079441654474, - "sum_tokens_in_value_count_group": 161, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 23 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.24612460652135182, - "percentile_inc_nulls": 0.24712325517023215, - "sum_tokens_in_value_count_group": 242, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 22 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.24113559422700004, - "percentile_inc_nulls": 0.2421408517537269, - "sum_tokens_in_value_count_group": 252, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 21 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.23638415394666512, - "percentile_inc_nulls": 0.23739570564276957, - "sum_tokens_in_value_count_group": 240, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 20 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2299895072360476, - "percentile_inc_nulls": 0.23100952983510614, - "sum_tokens_in_value_count_group": 323, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 19 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.22286234681554518, - "percentile_inc_nulls": 0.22389181066867014, - "sum_tokens_in_value_count_group": 360, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 18 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2188236225772604, - "percentile_inc_nulls": 0.21985843647435643, - "sum_tokens_in_value_count_group": 204, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 17 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.20995426738730183, - "percentile_inc_nulls": 0.21100083040056938, - "sum_tokens_in_value_count_group": 448, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 16 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.2019362119142365, - "percentile_inc_nulls": 0.2029933963383289, - "sum_tokens_in_value_count_group": 405, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 15 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.19445269347270888, - "percentile_inc_nulls": 0.1955197912135711, - "sum_tokens_in_value_count_group": 378, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 14 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.18158420938013498, - "percentile_inc_nulls": 0.18266835382972835, - "sum_tokens_in_value_count_group": 650, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 13 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.17279404486151528, - "percentile_inc_nulls": 0.1738898335244573, - "sum_tokens_in_value_count_group": 444, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 12 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.16538971709132666, - "percentile_inc_nulls": 0.1664953141682154, - "sum_tokens_in_value_count_group": 374, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 11 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.1558868365306567, - "percentile_inc_nulls": 0.15700502194630073, - "sum_tokens_in_value_count_group": 480, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 10 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.14394884282631504, - "percentile_inc_nulls": 0.14508284234252045, - "sum_tokens_in_value_count_group": 603, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 9 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.13143671675476631, - "percentile_inc_nulls": 0.1325872909169995, - "sum_tokens_in_value_count_group": 632, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 8 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.12145869216606286, - "percentile_inc_nulls": 0.12262248408398913, - "sum_tokens_in_value_count_group": 504, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 7 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.11076795153530916, - "percentile_inc_nulls": 0.11194590533433513, - "sum_tokens_in_value_count_group": 540, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 6 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.10017619924372911, - "percentile_inc_nulls": 0.10136818379532608, - "sum_tokens_in_value_count_group": 535, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 5 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.08655540377343551, - "percentile_inc_nulls": 0.0877654316105817, - "sum_tokens_in_value_count_group": 688, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 4 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.0702817208132882, - "percentile_inc_nulls": 0.07151330618055285, - "sum_tokens_in_value_count_group": 822, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 3 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0.04727683078933298, - "percentile_inc_nulls": 0.0485388904266677, - "sum_tokens_in_value_count_group": 1162, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 2 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 0, - "percentile_inc_nulls": 0.0013246866226422904, - "sum_tokens_in_value_count_group": 2388, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 1 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "percentile_ex_nulls": 1, - "percentile_inc_nulls": 1, - "sum_tokens_in_value_count_group": 2780, - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value_count": 2780 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "percentile_ex_nulls", - "type": "quantitative" - }, - { - "field": "percentile_inc_nulls", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "percentile_ex_nulls", - "sort": "descending", - "title": "Percentile", - "type": "quantitative" - }, - "y": { - "field": "value_count", - "title": "Count of values", - "type": "quantitative" - } - }, - "mark": { - "interpolate": "step-after", - "type": "line" - }, - "title": { - "subtitle": "In this col, 67 values (0.1%) are null and there are 4413 distinct values", - "text": "Distribution of counts of values in column first_name" - } - }, - { - "data": { - "values": [ - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "william", - "value_count": 2780 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "john", - "value_count": 2736 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "thomas", - "value_count": 1448 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "george", - "value_count": 1415 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "henry", - "value_count": 1306 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "james", - "value_count": 1265 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "sir", - "value_count": 1262 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "charles", - "value_count": 1216 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "edward", - "value_count": 911 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "robert", - "value_count": 884 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Top 10 values by value count" - }, - { - "data": { - "values": [ - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "janette", - "value_count": 1 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "abnayne", - "value_count": 1 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "basier", - "value_count": 1 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "vabe", - "value_count": 1 - }, - { - "distinct_value_count": 4413, - "group_name": "first_name", - "total_non_null_rows": 50511, - "total_rows_inc_nulls": 50578, - "value": "dering", - "value_count": 1 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "scale": { - "domain": [ - 0, - 2780 + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", + "config": { + "view": { + "continuousHeight": 300, + "continuousWidth": 400 + } + }, + "vconcat": [ + { + "hconcat": [ + { + "data": { + "values": [ + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.9449624834194532, + "percentile_inc_nulls": 0.9450353908814109, + "sum_tokens_in_value_count_group": 2780, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 2780 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.8907960642236344, + "percentile_inc_nulls": 0.8909407252164973, + "sum_tokens_in_value_count_group": 2736, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 2736 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.8621290411989467, + "percentile_inc_nulls": 0.8623116770137214, + "sum_tokens_in_value_count_group": 1448, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1448 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.8341153412128052, + "percentile_inc_nulls": 0.8343350864012021, + "sum_tokens_in_value_count_group": 1415, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1415 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.8082595870206489, + "percentile_inc_nulls": 0.8085135829807426, + "sum_tokens_in_value_count_group": 1306, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1306 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.7832155372097167, + "percentile_inc_nulls": 0.7835027086875717, + "sum_tokens_in_value_count_group": 1265, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1265 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.7582308804022886, + "percentile_inc_nulls": 0.7585511487207877, + "sum_tokens_in_value_count_group": 1262, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1262 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.7341569163152581, + "percentile_inc_nulls": 0.7345090750919372, + "sum_tokens_in_value_count_group": 1216, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1216 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.7161212409178199, + "percentile_inc_nulls": 0.7164972913124283, + "sum_tokens_in_value_count_group": 911, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 911 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6986201025519194, + "percentile_inc_nulls": 0.6990193364704022, + "sum_tokens_in_value_count_group": 884, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 884 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6826631822771277, + "percentile_inc_nulls": 0.6830835541144371, + "sum_tokens_in_value_count_group": 806, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 806 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.669715507513215, + "percentile_inc_nulls": 0.6701530309620785, + "sum_tokens_in_value_count_group": 654, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 654 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6573221674486746, + "percentile_inc_nulls": 0.6577761081893314, + "sum_tokens_in_value_count_group": 626, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 626 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6471857615172933, + "percentile_inc_nulls": 0.647653129819289, + "sum_tokens_in_value_count_group": 512, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 512 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6370691532537467, + "percentile_inc_nulls": 0.6375499228913757, + "sum_tokens_in_value_count_group": 511, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 511 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6269921403258696, + "percentile_inc_nulls": 0.6274862588477204, + "sum_tokens_in_value_count_group": 509, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 509 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6171329017441745, + "percentile_inc_nulls": 0.6176400806674839, + "sum_tokens_in_value_count_group": 498, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 498 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.6079269862010255, + "percentile_inc_nulls": 0.6084463600775041, + "sum_tokens_in_value_count_group": 465, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 465 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5987408683257112, + "percentile_inc_nulls": 0.5992724109296532, + "sum_tokens_in_value_count_group": 464, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 464 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5904456455029597, + "percentile_inc_nulls": 0.5909881766776068, + "sum_tokens_in_value_count_group": 419, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 419 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5831403060719447, + "percentile_inc_nulls": 0.58369251453201, + "sum_tokens_in_value_count_group": 369, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 369 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5762309199976243, + "percentile_inc_nulls": 0.5767922812289928, + "sum_tokens_in_value_count_group": 349, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 349 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.569816475619172, + "percentile_inc_nulls": 0.5703863339792005, + "sum_tokens_in_value_count_group": 324, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 324 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5634812219120587, + "percentile_inc_nulls": 0.564059472497924, + "sum_tokens_in_value_count_group": 320, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 320 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5573043495476233, + "percentile_inc_nulls": 0.5578907825536794, + "sum_tokens_in_value_count_group": 312, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 312 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5513848468650393, + "percentile_inc_nulls": 0.5519791213571118, + "sum_tokens_in_value_count_group": 299, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 299 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.545702916196472, + "percentile_inc_nulls": 0.546304717466092, + "sum_tokens_in_value_count_group": 287, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 287 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5401991645384174, + "percentile_inc_nulls": 0.5408082565542331, + "sum_tokens_in_value_count_group": 278, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 278 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5348537942230405, + "percentile_inc_nulls": 0.5354699671794061, + "sum_tokens_in_value_count_group": 270, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 270 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5298251865930194, + "percentile_inc_nulls": 0.5304480208786428, + "sum_tokens_in_value_count_group": 254, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 254 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5250935439805191, + "percentile_inc_nulls": 0.5257226462098146, + "sum_tokens_in_value_count_group": 239, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 239 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5204806873750272, + "percentile_inc_nulls": 0.5211159001937602, + "sum_tokens_in_value_count_group": 233, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 233 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.516481558472412, + "percentile_inc_nulls": 0.5171220688837044, + "sum_tokens_in_value_count_group": 202, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 202 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5128783829264912, + "percentile_inc_nulls": 0.5135236664162284, + "sum_tokens_in_value_count_group": 182, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 182 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5092950050484053, + "percentile_inc_nulls": 0.5099450353908814, + "sum_tokens_in_value_count_group": 181, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 181 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.5058304131773277, + "percentile_inc_nulls": 0.5064850330183084, + "sum_tokens_in_value_count_group": 175, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 175 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.49898042010651145, + "percentile_inc_nulls": 0.4996441140416782, + "sum_tokens_in_value_count_group": 346, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 173 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.49563461424244226, + "percentile_inc_nulls": 0.49630274032187904, + "sum_tokens_in_value_count_group": 169, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 169 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.49230860604620774, + "percentile_inc_nulls": 0.49298113804420896, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 168 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4890221931856428, + "percentile_inc_nulls": 0.48969907865079676, + "sum_tokens_in_value_count_group": 166, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 166 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4858743639999208, + "percentile_inc_nulls": 0.4865554193522875, + "sum_tokens_in_value_count_group": 159, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 159 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.482785927817703, + "percentile_inc_nulls": 0.48347107438016534, + "sum_tokens_in_value_count_group": 156, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 156 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.47664865078893703, + "percentile_inc_nulls": 0.47734192732017877, + "sum_tokens_in_value_count_group": 310, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 155 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4705509690958405, + "percentile_inc_nulls": 0.4712523231444502, + "sum_tokens_in_value_count_group": 308, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 154 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.46758131892063115, + "percentile_inc_nulls": 0.4682866068251018, + "sum_tokens_in_value_count_group": 150, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 150 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.46471065708459547, + "percentile_inc_nulls": 0.4654197477163984, + "sum_tokens_in_value_count_group": 145, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 145 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4619587812555681, + "percentile_inc_nulls": 0.46267151726046896, + "sum_tokens_in_value_count_group": 139, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 139 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4592860960978796, + "percentile_inc_nulls": 0.46000237257305543, + "sum_tokens_in_value_count_group": 135, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 135 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4540595117895112, + "percentile_inc_nulls": 0.4547827118510024, + "sum_tokens_in_value_count_group": 264, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 132 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4514858149709964, + "percentile_inc_nulls": 0.4522124243742338, + "sum_tokens_in_value_count_group": 130, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 130 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.44645720734097527, + "percentile_inc_nulls": 0.4471904780734707, + "sum_tokens_in_value_count_group": 254, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 127 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.44402209419730354, + "percentile_inc_nulls": 0.44475859069160506, + "sum_tokens_in_value_count_group": 123, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 123 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.441646374057136, + "percentile_inc_nulls": 0.4423860176361264, + "sum_tokens_in_value_count_group": 120, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 120 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.43931024925263806, + "percentile_inc_nulls": 0.44005298746490573, + "sum_tokens_in_value_count_group": 118, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 118 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4370335174516442, + "percentile_inc_nulls": 0.437779271620072, + "sum_tokens_in_value_count_group": 115, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 115 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4347765833184851, + "percentile_inc_nulls": 0.43552532721736725, + "sum_tokens_in_value_count_group": 114, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 114 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4325592445209955, + "percentile_inc_nulls": 0.4333109256989205, + "sum_tokens_in_value_count_group": 112, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 112 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.43040129872700994, + "percentile_inc_nulls": 0.4311558385068607, + "sum_tokens_in_value_count_group": 109, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 109 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.42836213894003283, + "percentile_inc_nulls": 0.4291193799675749, + "sum_tokens_in_value_count_group": 103, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 103 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4263427768208905, + "percentile_inc_nulls": 0.427102692870418, + "sum_tokens_in_value_count_group": 102, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 102 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4223436479182753, + "percentile_inc_nulls": 0.4231088615603622, + "sum_tokens_in_value_count_group": 202, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 101 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4203638811348023, + "percentile_inc_nulls": 0.42113171734746335, + "sum_tokens_in_value_count_group": 100, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 100 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4184435073548336, + "percentile_inc_nulls": 0.41921388746095145, + "sum_tokens_in_value_count_group": 97, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 97 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4165429312426996, + "percentile_inc_nulls": 0.4173158290165685, + "sum_tokens_in_value_count_group": 96, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 96 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.41466215279840035, + "percentile_inc_nulls": 0.4154375420143145, + "sum_tokens_in_value_count_group": 95, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 95 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4128011720219358, + "percentile_inc_nulls": 0.41357902645418954, + "sum_tokens_in_value_count_group": 94, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 94 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4055156302587555, + "percentile_inc_nulls": 0.40630313575072163, + "sum_tokens_in_value_count_group": 368, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 92 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.4001108669398745, + "percentile_inc_nulls": 0.40090553204950774, + "sum_tokens_in_value_count_group": 273, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 91 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.39832907683474883, + "percentile_inc_nulls": 0.3991261022578987, + "sum_tokens_in_value_count_group": 90, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 90 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.39484468729583655, + "percentile_inc_nulls": 0.3956463284431967, + "sum_tokens_in_value_count_group": 176, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 88 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3913998930925937, + "percentile_inc_nulls": 0.3922060975127526, + "sum_tokens_in_value_count_group": 174, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 87 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3897170913266417, + "percentile_inc_nulls": 0.3905255249317885, + "sum_tokens_in_value_count_group": 85, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 85 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.38647027380174614, + "percentile_inc_nulls": 0.3872830084226343, + "sum_tokens_in_value_count_group": 164, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 82 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3848666627071331, + "percentile_inc_nulls": 0.3856815216101862, + "sum_tokens_in_value_count_group": 81, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 81 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.38169903585357645, + "percentile_inc_nulls": 0.382518090869548, + "sum_tokens_in_value_count_group": 160, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 80 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.38013502009463285, + "percentile_inc_nulls": 0.38095614694135793, + "sum_tokens_in_value_count_group": 79, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 79 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.378590802003524, + "percentile_inc_nulls": 0.3794139744552968, + "sum_tokens_in_value_count_group": 78, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 78 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.37706638158024985, + "percentile_inc_nulls": 0.3778915734113646, + "sum_tokens_in_value_count_group": 77, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 77 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.37556175882481047, + "percentile_inc_nulls": 0.37638894380956145, + "sum_tokens_in_value_count_group": 76, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 76 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.37407693373720574, + "percentile_inc_nulls": 0.37490608564988726, + "sum_tokens_in_value_count_group": 75, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 75 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3726119063174358, + "percentile_inc_nulls": 0.3734429989323421, + "sum_tokens_in_value_count_group": 74, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 74 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.36972144681356534, + "percentile_inc_nulls": 0.37055636838150974, + "sum_tokens_in_value_count_group": 146, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 73 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.36687058264536443, + "percentile_inc_nulls": 0.36770928071493536, + "sum_tokens_in_value_count_group": 144, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 72 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3654649482290986, + "percentile_inc_nulls": 0.3663055083237772, + "sum_tokens_in_value_count_group": 71, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 71 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3640791114806676, + "percentile_inc_nulls": 0.36492150737474793, + "sum_tokens_in_value_count_group": 70, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 70 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3627130724000712, + "percentile_inc_nulls": 0.36355727786784764, + "sum_tokens_in_value_count_group": 69, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 69 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.35867434816178656, + "percentile_inc_nulls": 0.35952390367353393, + "sum_tokens_in_value_count_group": 204, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 68 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3573479044168597, + "percentile_inc_nulls": 0.35819921705089164, + "sum_tokens_in_value_count_group": 67, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 67 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3560610560076023, + "percentile_inc_nulls": 0.35691407331250746, + "sum_tokens_in_value_count_group": 65, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 65 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.35479400526617966, + "percentile_inc_nulls": 0.3556487010162521, + "sum_tokens_in_value_count_group": 64, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 64 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3522994991190038, + "percentile_inc_nulls": 0.35315749930799956, + "sum_tokens_in_value_count_group": 126, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 63 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3510720437132506, + "percentile_inc_nulls": 0.3519316698960022, + "sum_tokens_in_value_count_group": 62, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 62 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.34744907049949514, + "percentile_inc_nulls": 0.34831349598639727, + "sum_tokens_in_value_count_group": 183, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 61 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3427768208904991, + "percentile_inc_nulls": 0.34364743564395583, + "sum_tokens_in_value_count_group": 236, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 59 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.33933202668725626, + "percentile_inc_nulls": 0.34020720471351185, + "sum_tokens_in_value_count_group": 174, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 58 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3382035596206767, + "percentile_inc_nulls": 0.33908023251215946, + "sum_tokens_in_value_count_group": 57, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 57 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.33709489022193184, + "percentile_inc_nulls": 0.337973031752936, + "sum_tokens_in_value_count_group": 56, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 56 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3360258161588565, + "percentile_inc_nulls": 0.3369053738779707, + "sum_tokens_in_value_count_group": 54, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 54 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.33287798697313453, + "percentile_inc_nulls": 0.33376171457946147, + "sum_tokens_in_value_count_group": 159, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 53 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3287600720635109, + "percentile_inc_nulls": 0.32964925461663175, + "sum_tokens_in_value_count_group": 208, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 52 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.32674070994436855, + "percentile_inc_nulls": 0.3276325675194749, + "sum_tokens_in_value_count_group": 102, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 51 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3257508265526321, + "percentile_inc_nulls": 0.32664399541302547, + "sum_tokens_in_value_count_group": 50, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 50 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.32381065510482865, + "percentile_inc_nulls": 0.3247063940843845, + "sum_tokens_in_value_count_group": 98, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 49 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.32095979093662763, + "percentile_inc_nulls": 0.32185930641781013, + "sum_tokens_in_value_count_group": 144, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 48 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3200293005483954, + "percentile_inc_nulls": 0.32093004863774766, + "sum_tokens_in_value_count_group": 47, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 47 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3172972223872028, + "percentile_inc_nulls": 0.3182015896239472, + "sum_tokens_in_value_count_group": 138, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 46 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.31373364217695154, + "percentile_inc_nulls": 0.3146427300407292, + "sum_tokens_in_value_count_group": 180, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 45 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.30937815525331114, + "percentile_inc_nulls": 0.31029301277235166, + "sum_tokens_in_value_count_group": 220, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 44 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.30767555581952444, + "percentile_inc_nulls": 0.3085926687492586, + "sum_tokens_in_value_count_group": 86, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 43 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.30434954762329003, + "percentile_inc_nulls": 0.3052710664715884, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 42 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.3035378432420661, + "percentile_inc_nulls": 0.30446043734429984, + "sum_tokens_in_value_count_group": 41, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 41 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2987864029617311, + "percentile_inc_nulls": 0.2997152912333425, + "sum_tokens_in_value_count_group": 240, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 40 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2956979667795133, + "percentile_inc_nulls": 0.29663094626122033, + "sum_tokens_in_value_count_group": 156, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 39 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.29344103264635424, + "percentile_inc_nulls": 0.29437700185851556, + "sum_tokens_in_value_count_group": 114, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 38 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.29124349151669937, + "percentile_inc_nulls": 0.29218237178219775, + "sum_tokens_in_value_count_group": 111, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 37 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2891647363940528, + "percentile_inc_nulls": 0.29010637035865394, + "sum_tokens_in_value_count_group": 105, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 35 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.28579913286214886, + "percentile_inc_nulls": 0.28674522519672585, + "sum_tokens_in_value_count_group": 170, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 34 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2818791946308725, + "percentile_inc_nulls": 0.28283047965518604, + "sum_tokens_in_value_count_group": 198, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 33 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2799786185187385, + "percentile_inc_nulls": 0.2809324212108031, + "sum_tokens_in_value_count_group": 96, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 32 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2775237077072321, + "percentile_inc_nulls": 0.2784807623868085, + "sum_tokens_in_value_count_group": 124, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 31 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.273366197461939, + "percentile_inc_nulls": 0.2743287595397208, + "sum_tokens_in_value_count_group": 210, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 30 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2704955356259032, + "percentile_inc_nulls": 0.2714619004310175, + "sum_tokens_in_value_count_group": 145, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 29 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2677238621290412, + "percentile_inc_nulls": 0.268693898532959, + "sum_tokens_in_value_count_group": 140, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 28 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2639821029082774, + "percentile_inc_nulls": 0.26495709597058015, + "sum_tokens_in_value_count_group": 189, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 27 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2603789273623567, + "percentile_inc_nulls": 0.26135869350310414, + "sum_tokens_in_value_count_group": 182, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 26 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2579042188830156, + "percentile_inc_nulls": 0.2588872632369805, + "sum_tokens_in_value_count_group": 125, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 25 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2541030666587476, + "percentile_inc_nulls": 0.2550911463482146, + "sum_tokens_in_value_count_group": 192, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 24 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2509156421373562, + "percentile_inc_nulls": 0.2519079441654474, + "sum_tokens_in_value_count_group": 161, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 23 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.24612460652135182, + "percentile_inc_nulls": 0.24712325517023215, + "sum_tokens_in_value_count_group": 242, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 22 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.24113559422700004, + "percentile_inc_nulls": 0.2421408517537269, + "sum_tokens_in_value_count_group": 252, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 21 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.23638415394666512, + "percentile_inc_nulls": 0.23739570564276957, + "sum_tokens_in_value_count_group": 240, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 20 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2299895072360476, + "percentile_inc_nulls": 0.23100952983510614, + "sum_tokens_in_value_count_group": 323, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 19 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.22286234681554518, + "percentile_inc_nulls": 0.22389181066867014, + "sum_tokens_in_value_count_group": 360, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 18 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2188236225772604, + "percentile_inc_nulls": 0.21985843647435643, + "sum_tokens_in_value_count_group": 204, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 17 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.20995426738730183, + "percentile_inc_nulls": 0.21100083040056938, + "sum_tokens_in_value_count_group": 448, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 16 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.2019362119142365, + "percentile_inc_nulls": 0.2029933963383289, + "sum_tokens_in_value_count_group": 405, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 15 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.19445269347270888, + "percentile_inc_nulls": 0.1955197912135711, + "sum_tokens_in_value_count_group": 378, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 14 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.18158420938013498, + "percentile_inc_nulls": 0.18266835382972835, + "sum_tokens_in_value_count_group": 650, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 13 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.17279404486151528, + "percentile_inc_nulls": 0.1738898335244573, + "sum_tokens_in_value_count_group": 444, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 12 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.16538971709132666, + "percentile_inc_nulls": 0.1664953141682154, + "sum_tokens_in_value_count_group": 374, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 11 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.1558868365306567, + "percentile_inc_nulls": 0.15700502194630073, + "sum_tokens_in_value_count_group": 480, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 10 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.14394884282631504, + "percentile_inc_nulls": 0.14508284234252045, + "sum_tokens_in_value_count_group": 603, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 9 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.13143671675476631, + "percentile_inc_nulls": 0.1325872909169995, + "sum_tokens_in_value_count_group": 632, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 8 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.12145869216606286, + "percentile_inc_nulls": 0.12262248408398913, + "sum_tokens_in_value_count_group": 504, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 7 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.11076795153530916, + "percentile_inc_nulls": 0.11194590533433513, + "sum_tokens_in_value_count_group": 540, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 6 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.10017619924372911, + "percentile_inc_nulls": 0.10136818379532608, + "sum_tokens_in_value_count_group": 535, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 5 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.08655540377343551, + "percentile_inc_nulls": 0.0877654316105817, + "sum_tokens_in_value_count_group": 688, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 4 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.0702817208132882, + "percentile_inc_nulls": 0.07151330618055285, + "sum_tokens_in_value_count_group": 822, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 3 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0.04727683078933298, + "percentile_inc_nulls": 0.0485388904266677, + "sum_tokens_in_value_count_group": 1162, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 2 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 0, + "percentile_inc_nulls": 0.0013246866226422904, + "sum_tokens_in_value_count_group": 2388, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 1 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "percentile_ex_nulls": 1, + "percentile_inc_nulls": 1, + "sum_tokens_in_value_count_group": 2780, + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value_count": 2780 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "percentile_ex_nulls", + "type": "quantitative" + }, + { + "field": "percentile_inc_nulls", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "percentile_ex_nulls", + "sort": "descending", + "title": "Percentile", + "type": "quantitative" + }, + "y": { + "field": "value_count", + "title": "Count of values", + "type": "quantitative" + } + }, + "mark": { + "interpolate": "step-after", + "type": "line" + }, + "title": { + "subtitle": "In this col, 67 values (0.1%) are null and there are 4413 distinct values", + "text": "Distribution of counts of values in column first_name" + } + }, + { + "data": { + "values": [ + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "william", + "value_count": 2780 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "john", + "value_count": 2736 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "thomas", + "value_count": 1448 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "george", + "value_count": 1415 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "henry", + "value_count": 1306 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "james", + "value_count": 1265 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "sir", + "value_count": 1262 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "charles", + "value_count": 1216 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "edward", + "value_count": 911 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "robert", + "value_count": 884 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Top 10 values by value count" + }, + { + "data": { + "values": [ + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "janette", + "value_count": 1 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "abnayne", + "value_count": 1 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "basier", + "value_count": 1 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "vabe", + "value_count": 1 + }, + { + "distinct_value_count": 4413, + "group_name": "first_name", + "total_non_null_rows": 50511, + "total_rows_inc_nulls": 50578, + "value": "dering", + "value_count": 1 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "scale": { + "domain": [ + 0, + 2780 + ] + }, + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Bottom 5 values by value count" + } + ] + }, + { + "hconcat": [ + { + "data": { + "values": [ + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9991315897016755, + "percentile_inc_nulls": 0.9993277709676144, + "sum_tokens_in_value_count_group": 34, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 34 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9955557825909277, + "percentile_inc_nulls": 0.9965597690695559, + "sum_tokens_in_value_count_group": 140, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9941765427053535, + "percentile_inc_nulls": 0.9954921111945906, + "sum_tokens_in_value_count_group": 54, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 27 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9935380057212914, + "percentile_inc_nulls": 0.9949978251413658, + "sum_tokens_in_value_count_group": 25, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 25 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9929250102165917, + "percentile_inc_nulls": 0.9945233105302701, + "sum_tokens_in_value_count_group": 24, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 24 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.992363097670617, + "percentile_inc_nulls": 0.9940883388034323, + "sum_tokens_in_value_count_group": 22, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 22 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9912903555373928, + "percentile_inc_nulls": 0.9932579382340148, + "sum_tokens_in_value_count_group": 42, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 21 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9902686963628934, + "percentile_inc_nulls": 0.9924670805488552, + "sum_tokens_in_value_count_group": 40, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 20 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9892981201471189, + "percentile_inc_nulls": 0.9917157657479536, + "sum_tokens_in_value_count_group": 38, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 19 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9856201471189211, + "percentile_inc_nulls": 0.9888686780813792, + "sum_tokens_in_value_count_group": 144, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 18 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9830149162239477, + "percentile_inc_nulls": 0.9868519909842224, + "sum_tokens_in_value_count_group": 102, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 17 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9772936248467511, + "percentile_inc_nulls": 0.9824231879473289, + "sum_tokens_in_value_count_group": 224, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 16 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.964267470371884, + "percentile_inc_nulls": 0.9723397524615446, + "sum_tokens_in_value_count_group": 510, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 15 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9413823048630977, + "percentile_inc_nulls": 0.9546245403139705, + "sum_tokens_in_value_count_group": 896, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 14 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.9061861463015938, + "percentile_inc_nulls": 0.9273794930602238, + "sum_tokens_in_value_count_group": 1378, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 13 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.8565335104209235, + "percentile_inc_nulls": 0.8889438095614695, + "sum_tokens_in_value_count_group": 1944, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 12 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.7893849611769513, + "percentile_inc_nulls": 0.8369646882043577, + "sum_tokens_in_value_count_group": 2629, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 11 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.711738863914998, + "percentile_inc_nulls": 0.7768595041322314, + "sum_tokens_in_value_count_group": 3040, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 10 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.6372599100939926, + "percentile_inc_nulls": 0.7192059788840999, + "sum_tokens_in_value_count_group": 2916, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 9 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.5657437678790356, + "percentile_inc_nulls": 0.6638459409229309, + "sum_tokens_in_value_count_group": 2800, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 8 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.499948917041275, + "percentile_inc_nulls": 0.6129147059986555, + "sum_tokens_in_value_count_group": 2576, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 7 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.434971393543114, + "percentile_inc_nulls": 0.5626161572225078, + "sum_tokens_in_value_count_group": 2544, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 6 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.37316101348590114, + "percentile_inc_nulls": 0.5147692672703548, + "sum_tokens_in_value_count_group": 2420, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 5 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.31461994278708627, + "percentile_inc_nulls": 0.4694531219107122, + "sum_tokens_in_value_count_group": 2292, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 4 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.24496832856559048, + "percentile_inc_nulls": 0.41553639922495944, + "sum_tokens_in_value_count_group": 2727, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 3 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0.16252043318348997, + "percentile_inc_nulls": 0.35171418403258337, + "sum_tokens_in_value_count_group": 3228, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 2 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 0, + "percentile_inc_nulls": 0.225908497765827, + "sum_tokens_in_value_count_group": 6363, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 1 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "percentile_ex_nulls": 1, + "percentile_inc_nulls": 1, + "sum_tokens_in_value_count_group": 34, + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value_count": 34 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "percentile_ex_nulls", + "type": "quantitative" + }, + { + "field": "percentile_inc_nulls", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "percentile_ex_nulls", + "sort": "descending", + "title": "Percentile", + "type": "quantitative" + }, + "y": { + "field": "value_count", + "title": "Count of values", + "type": "quantitative" + } + }, + "mark": { + "interpolate": "step-after", + "type": "line" + }, + "title": { + "subtitle": "In this col, 11,426 values (22.6%) are null and there are 12363 distinct values", + "text": "Distribution of counts of values in column postcode_fake" + } + }, + { + "data": { + "values": [ + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "se1 7sg", + "value_count": 34 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "sw1a 2jh", + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "sw1p 3pl", + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "l3 0ah", + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "sw1h 9aa", + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "se1 8xz", + "value_count": 28 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "pl1 3dq", + "value_count": 27 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "sw1a 2bj", + "value_count": 27 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "se1 7eh", + "value_count": 25 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "s8 8ly", + "value_count": 24 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Top 10 values by value count" + }, + { + "data": { + "values": [ + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "dyr 8rp", + "value_count": 1 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "wf1 5er", + "value_count": 1 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "ba3 2xu", + "value_count": 1 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "rg9 0tb", + "value_count": 1 + }, + { + "distinct_value_count": 12363, + "group_name": "postcode_fake", + "total_non_null_rows": 39152, + "total_rows_inc_nulls": 50578, + "value": "bn14 7as", + "value_count": 1 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "scale": { + "domain": [ + 0, + 34 + ] + }, + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Bottom 5 values by value count" + } + ] + }, + { + "hconcat": [ + { + "data": { + "values": [ + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.9430504148053606, + "percentile_inc_nulls": 0.9558899126102258, + "sum_tokens_in_value_count_group": 2231, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 2231 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.8983024888321633, + "percentile_inc_nulls": 0.9212305745581083, + "sum_tokens_in_value_count_group": 1753, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1753 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.8536056158264199, + "percentile_inc_nulls": 0.8866107793902487, + "sum_tokens_in_value_count_group": 1751, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1751 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.8123548181238034, + "percentile_inc_nulls": 0.8546601289098027, + "sum_tokens_in_value_count_group": 1616, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1616 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.7715379706445438, + "percentile_inc_nulls": 0.8230455929455495, + "sum_tokens_in_value_count_group": 1599, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1599 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.7308487555839183, + "percentile_inc_nulls": 0.7915299141919412, + "sum_tokens_in_value_count_group": 1594, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1594 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.696081684747926, + "percentile_inc_nulls": 0.7646012100122583, + "sum_tokens_in_value_count_group": 1362, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1362 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.6629227823867263, + "percentile_inc_nulls": 0.7389181066867017, + "sum_tokens_in_value_count_group": 1299, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1299 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.6321888959795788, + "percentile_inc_nulls": 0.7151132903633991, + "sum_tokens_in_value_count_group": 1204, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1204 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.6024760689215061, + "percentile_inc_nulls": 0.6920993317252561, + "sum_tokens_in_value_count_group": 1164, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1164 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.5732482450542438, + "percentile_inc_nulls": 0.6694610304875638, + "sum_tokens_in_value_count_group": 1145, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1145 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.5462412252712189, + "percentile_inc_nulls": 0.6485428447150935, + "sum_tokens_in_value_count_group": 1058, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1058 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.5202552648372687, + "percentile_inc_nulls": 0.6284155166277828, + "sum_tokens_in_value_count_group": 1018, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1018 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.5009061901723038, + "percentile_inc_nulls": 0.6134287634940092, + "sum_tokens_in_value_count_group": 758, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 758 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4846713465220166, + "percentile_inc_nulls": 0.6008541262999723, + "sum_tokens_in_value_count_group": 636, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 636 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4693554562858966, + "percentile_inc_nulls": 0.5889912610225789, + "sum_tokens_in_value_count_group": 600, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 600 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4556732610082961, + "percentile_inc_nulls": 0.5783937680414409, + "sum_tokens_in_value_count_group": 536, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 536 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.44410976388002554, + "percentile_inc_nulls": 0.5694373047570089, + "sum_tokens_in_value_count_group": 453, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 453 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.43280153158902357, + "percentile_inc_nulls": 0.560678555893867, + "sum_tokens_in_value_count_group": 443, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 443 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4226930440331844, + "percentile_inc_nulls": 0.5528490648107873, + "sum_tokens_in_value_count_group": 396, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 396 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4129674537332483, + "percentile_inc_nulls": 0.5453161453596425, + "sum_tokens_in_value_count_group": 381, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 381 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.4039566049776643, + "percentile_inc_nulls": 0.5383368262881094, + "sum_tokens_in_value_count_group": 353, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 353 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3951499680918953, + "percentile_inc_nulls": 0.5315156787536083, + "sum_tokens_in_value_count_group": 345, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 345 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.38723675813656666, + "percentile_inc_nulls": 0.5253865316936217, + "sum_tokens_in_value_count_group": 310, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 310 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.38008934269304406, + "percentile_inc_nulls": 0.5198505278975049, + "sum_tokens_in_value_count_group": 280, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 280 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.37419272495213785, + "percentile_inc_nulls": 0.5152833247657085, + "sum_tokens_in_value_count_group": 231, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 231 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3685768985322272, + "percentile_inc_nulls": 0.5109336074973309, + "sum_tokens_in_value_count_group": 220, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 220 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3631908104658583, + "percentile_inc_nulls": 0.5067618332081142, + "sum_tokens_in_value_count_group": 211, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 211 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3581876196553925, + "percentile_inc_nulls": 0.5028866305508324, + "sum_tokens_in_value_count_group": 196, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 196 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.35328653477983407, + "percentile_inc_nulls": 0.49909051366206647, + "sum_tokens_in_value_count_group": 192, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 192 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3487428206764518, + "percentile_inc_nulls": 0.4955711969631065, + "sum_tokens_in_value_count_group": 178, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 178 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3442246330567964, + "percentile_inc_nulls": 0.4920716517062754, + "sum_tokens_in_value_count_group": 177, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 177 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3397574984045948, + "percentile_inc_nulls": 0.4886116493337024, + "sum_tokens_in_value_count_group": 175, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 175 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3309763880025527, + "percentile_inc_nulls": 0.4818102732413302, + "sum_tokens_in_value_count_group": 344, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 172 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3266113592852584, + "percentile_inc_nulls": 0.47842935663727315, + "sum_tokens_in_value_count_group": 171, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 171 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3182386726228462, + "percentile_inc_nulls": 0.47194432361896477, + "sum_tokens_in_value_count_group": 328, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 164 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.31410338225909384, + "percentile_inc_nulls": 0.4687413499940686, + "sum_tokens_in_value_count_group": 162, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 162 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.310044671346522, + "percentile_inc_nulls": 0.46559769069555934, + "sum_tokens_in_value_count_group": 159, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 159 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.306037013401404, + "percentile_inc_nulls": 0.4624935742813081, + "sum_tokens_in_value_count_group": 157, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 157 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.3020804084237396, + "percentile_inc_nulls": 0.45942900075131476, + "sum_tokens_in_value_count_group": 155, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 155 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2982769623484365, + "percentile_inc_nulls": 0.45648305587409543, + "sum_tokens_in_value_count_group": 149, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 149 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.29449904275686023, + "percentile_inc_nulls": 0.45355688243900505, + "sum_tokens_in_value_count_group": 148, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 148 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.29074664964901087, + "percentile_inc_nulls": 0.4506504804460437, + "sum_tokens_in_value_count_group": 147, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 147 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2870453095086152, + "percentile_inc_nulls": 0.4477836213373404, + "sum_tokens_in_value_count_group": 145, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 145 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.28344607530312704, + "percentile_inc_nulls": 0.44499584799715286, + "sum_tokens_in_value_count_group": 141, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 141 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.27994894703254625, + "percentile_inc_nulls": 0.44228716042548144, + "sum_tokens_in_value_count_group": 137, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 137 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.27647734524569245, + "percentile_inc_nulls": 0.43959824429593897, + "sum_tokens_in_value_count_group": 136, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 136 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.273107849393746, + "percentile_inc_nulls": 0.4369884139349124, + "sum_tokens_in_value_count_group": 132, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 132 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.26647096362476064, + "percentile_inc_nulls": 0.43184783898137535, + "sum_tokens_in_value_count_group": 260, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 130 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.26317804722399485, + "percentile_inc_nulls": 0.4292973229467357, + "sum_tokens_in_value_count_group": 129, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 129 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.25993618379068284, + "percentile_inc_nulls": 0.4267863497963541, + "sum_tokens_in_value_count_group": 127, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 127 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2569240587109126, + "percentile_inc_nulls": 0.42445331962513344, + "sum_tokens_in_value_count_group": 118, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 118 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.25398851308232295, + "percentile_inc_nulls": 0.42217960378029973, + "sum_tokens_in_value_count_group": 115, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 115 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2512827058072751, + "percentile_inc_nulls": 0.42008383091462687, + "sum_tokens_in_value_count_group": 106, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 106 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.24862795149968087, + "percentile_inc_nulls": 0.4180276009332121, + "sum_tokens_in_value_count_group": 104, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 104 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.24599872367581366, + "percentile_inc_nulls": 0.4159911423939262, + "sum_tokens_in_value_count_group": 103, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 103 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.24339502233567323, + "percentile_inc_nulls": 0.41397445529676935, + "sum_tokens_in_value_count_group": 102, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 102 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.23308232291001918, + "percentile_inc_nulls": 0.4059867926766578, + "sum_tokens_in_value_count_group": 404, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 101 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2305807275047862, + "percentile_inc_nulls": 0.404049191348017, + "sum_tokens_in_value_count_group": 98, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 98 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2281046585832801, + "percentile_inc_nulls": 0.40213136146150497, + "sum_tokens_in_value_count_group": 97, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 97 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2256796426292278, + "percentile_inc_nulls": 0.40025307445925107, + "sum_tokens_in_value_count_group": 95, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 95 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.22088066368857695, + "percentile_inc_nulls": 0.39653604333900117, + "sum_tokens_in_value_count_group": 188, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 94 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2185067007019783, + "percentile_inc_nulls": 0.39469729922100516, + "sum_tokens_in_value_count_group": 93, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 93 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.21618379068283344, + "percentile_inc_nulls": 0.39289809798726716, + "sum_tokens_in_value_count_group": 91, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 91 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.21393746011486914, + "percentile_inc_nulls": 0.3911582110799162, + "sum_tokens_in_value_count_group": 88, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 88 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.21171665603063183, + "percentile_inc_nulls": 0.3894380956146941, + "sum_tokens_in_value_count_group": 87, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 87 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2095213784301212, + "percentile_inc_nulls": 0.38773775159160107, + "sum_tokens_in_value_count_group": 86, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 86 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.2052329291640077, + "percentile_inc_nulls": 0.384416149313931, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 84 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.20321633694958519, + "percentile_inc_nulls": 0.3828542053857409, + "sum_tokens_in_value_count_group": 79, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 79 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.20122527121888956, + "percentile_inc_nulls": 0.38131203289967974, + "sum_tokens_in_value_count_group": 78, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 78 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1993363114231015, + "percentile_inc_nulls": 0.3798489461821345, + "sum_tokens_in_value_count_group": 74, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 74 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.19749840459476709, + "percentile_inc_nulls": 0.37842540234884736, + "sum_tokens_in_value_count_group": 72, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 72 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.19568602425015957, + "percentile_inc_nulls": 0.37702162995768906, + "sum_tokens_in_value_count_group": 71, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 71 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.19211231652839822, + "percentile_inc_nulls": 0.3742536280596307, + "sum_tokens_in_value_count_group": 140, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 70 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.18858966177409064, + "percentile_inc_nulls": 0.3715251690458302, + "sum_tokens_in_value_count_group": 138, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 69 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1868538608806637, + "percentile_inc_nulls": 0.370180710981059, + "sum_tokens_in_value_count_group": 68, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 68 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.18343331206126356, + "percentile_inc_nulls": 0.3675313377357744, + "sum_tokens_in_value_count_group": 134, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 67 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1817485641352904, + "percentile_inc_nulls": 0.36622642255526117, + "sum_tokens_in_value_count_group": 66, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 66 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1754179961710275, + "percentile_inc_nulls": 0.36132310490727193, + "sum_tokens_in_value_count_group": 248, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 62 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.17386088066368854, + "percentile_inc_nulls": 0.36011704693740365, + "sum_tokens_in_value_count_group": 61, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 61 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1723292916400766, + "percentile_inc_nulls": 0.3589307604096643, + "sum_tokens_in_value_count_group": 60, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 60 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.16788768347160177, + "percentile_inc_nulls": 0.3554905294792202, + "sum_tokens_in_value_count_group": 174, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 58 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.164977664326739, + "percentile_inc_nulls": 0.35323658507651545, + "sum_tokens_in_value_count_group": 114, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 57 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.16216975111678367, + "percentile_inc_nulls": 0.3510617264423267, + "sum_tokens_in_value_count_group": 110, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 55 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.16079132099553284, + "percentile_inc_nulls": 0.34999406856736126, + "sum_tokens_in_value_count_group": 54, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 54 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.15808551372048496, + "percentile_inc_nulls": 0.3478982957016885, + "sum_tokens_in_value_count_group": 106, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 53 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1567581365666879, + "percentile_inc_nulls": 0.3468701807109811, + "sum_tokens_in_value_count_group": 52, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 52 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.15545628589661775, + "percentile_inc_nulls": 0.3458618371624026, + "sum_tokens_in_value_count_group": 51, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 51 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.15162731333758772, + "percentile_inc_nulls": 0.3428961208430543, + "sum_tokens_in_value_count_group": 150, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 50 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.14912571793235485, + "percentile_inc_nulls": 0.34095851951441336, + "sum_tokens_in_value_count_group": 98, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 49 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.14667517549457565, + "percentile_inc_nulls": 0.3390604610700304, + "sum_tokens_in_value_count_group": 96, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 48 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.14427568602425012, + "percentile_inc_nulls": 0.33720194550990545, + "sum_tokens_in_value_count_group": 94, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 47 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1431014677728143, + "percentile_inc_nulls": 0.33629245917197204, + "sum_tokens_in_value_count_group": 46, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 46 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.14195277600510525, + "percentile_inc_nulls": 0.33540274427616745, + "sum_tokens_in_value_count_group": 45, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 45 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1385832801531589, + "percentile_inc_nulls": 0.332792913915141, + "sum_tokens_in_value_count_group": 132, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 44 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.13638800255264838, + "percentile_inc_nulls": 0.33109256989204794, + "sum_tokens_in_value_count_group": 86, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 43 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.13317166560306315, + "percentile_inc_nulls": 0.3286013681837954, + "sum_tokens_in_value_count_group": 126, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 42 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.13107849393746007, + "percentile_inc_nulls": 0.3269801099292182, + "sum_tokens_in_value_count_group": 82, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 41 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.12903637523931077, + "percentile_inc_nulls": 0.3253983945588991, + "sum_tokens_in_value_count_group": 80, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 40 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.12704530950861515, + "percentile_inc_nulls": 0.32385622207283804, + "sum_tokens_in_value_count_group": 78, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 39 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.1251052967453733, + "percentile_inc_nulls": 0.3223535924710348, + "sum_tokens_in_value_count_group": 76, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 38 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.12038289725590301, + "percentile_inc_nulls": 0.31869587567717195, + "sum_tokens_in_value_count_group": 185, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 37 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.11946394384173575, + "percentile_inc_nulls": 0.3179841037605283, + "sum_tokens_in_value_count_group": 36, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 36 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.11499680918953414, + "percentile_inc_nulls": 0.3145241013879553, + "sum_tokens_in_value_count_group": 175, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 35 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.11152520740268024, + "percentile_inc_nulls": 0.3118351852584127, + "sum_tokens_in_value_count_group": 136, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 34 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.10899808551372048, + "percentile_inc_nulls": 0.3098778124876429, + "sum_tokens_in_value_count_group": 99, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 33 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.10409700063816207, + "percentile_inc_nulls": 0.306081695598877, + "sum_tokens_in_value_count_group": 192, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 32 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.10093171665603062, + "percentile_inc_nulls": 0.3036300367748823, + "sum_tokens_in_value_count_group": 124, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 31 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.09786853860880662, + "percentile_inc_nulls": 0.30125746371940365, + "sum_tokens_in_value_count_group": 120, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 30 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.09268666241225276, + "percentile_inc_nulls": 0.297243860967219, + "sum_tokens_in_value_count_group": 203, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 29 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.08982769623484366, + "percentile_inc_nulls": 0.29502945944877224, + "sum_tokens_in_value_count_group": 112, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 28 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.08638162093171664, + "percentile_inc_nulls": 0.2923603147613587, + "sum_tokens_in_value_count_group": 135, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 27 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.08306317804722396, + "percentile_inc_nulls": 0.28979002728459013, + "sum_tokens_in_value_count_group": 130, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 26 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.08051052967453731, + "percentile_inc_nulls": 0.2878128830716913, + "sum_tokens_in_value_count_group": 100, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 25 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.07622208040842371, + "percentile_inc_nulls": 0.2844912807940211, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 24 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.07328653477983404, + "percentile_inc_nulls": 0.28221756494918737, + "sum_tokens_in_value_count_group": 115, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 23 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.06935545628589657, + "percentile_inc_nulls": 0.2791727628613231, + "sum_tokens_in_value_count_group": 154, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 22 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.06506700701978307, + "percentile_inc_nulls": 0.275851160583653, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 21 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.060472239948947015, + "percentile_inc_nulls": 0.272292301000435, + "sum_tokens_in_value_count_group": 180, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 20 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.05465220165922147, + "percentile_inc_nulls": 0.26778441219502547, + "sum_tokens_in_value_count_group": 228, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 19 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.050976388002552664, + "percentile_inc_nulls": 0.2649373245284511, + "sum_tokens_in_value_count_group": 144, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 18 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.04533503509891512, + "percentile_inc_nulls": 0.2605678358179445, + "sum_tokens_in_value_count_group": 221, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 17 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.043292916400765824, + "percentile_inc_nulls": 0.2589861204476255, + "sum_tokens_in_value_count_group": 80, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 16 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.03793235481812385, + "percentile_inc_nulls": 0.25483411760053776, + "sum_tokens_in_value_count_group": 210, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 15 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.033643905552010245, + "percentile_inc_nulls": 0.25151251532286767, + "sum_tokens_in_value_count_group": 168, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 14 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.029329929802169752, + "percentile_inc_nulls": 0.24817114160306852, + "sum_tokens_in_value_count_group": 169, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 13 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.024735162731333804, + "percentile_inc_nulls": 0.24461228201985052, + "sum_tokens_in_value_count_group": 180, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 12 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.020804084237396325, + "percentile_inc_nulls": 0.24156747993198624, + "sum_tokens_in_value_count_group": 154, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 11 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.01850670070197835, + "percentile_inc_nulls": 0.23978805014037718, + "sum_tokens_in_value_count_group": 90, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 10 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.015749840459476694, + "percentile_inc_nulls": 0.23765273439044643, + "sum_tokens_in_value_count_group": 108, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 9 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.013707721761327396, + "percentile_inc_nulls": 0.23607101902012728, + "sum_tokens_in_value_count_group": 80, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 8 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.01084875558391829, + "percentile_inc_nulls": 0.23385661750168052, + "sum_tokens_in_value_count_group": 112, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 7 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.007938736439055516, + "percentile_inc_nulls": 0.23160267309897586, + "sum_tokens_in_value_count_group": 114, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 6 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.006024250159540556, + "percentile_inc_nulls": 0.23011981493930167, + "sum_tokens_in_value_count_group": 75, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 5 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.004084237396298707, + "percentile_inc_nulls": 0.22861718533749853, + "sum_tokens_in_value_count_group": 76, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 4 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.00255264837268665, + "percentile_inc_nulls": 0.2274308988097592, + "sum_tokens_in_value_count_group": 60, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 3 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0.001735800893426953, + "percentile_inc_nulls": 0.22679821266163158, + "sum_tokens_in_value_count_group": 32, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 2 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 0, + "percentile_inc_nulls": 0.22545375459686035, + "sum_tokens_in_value_count_group": 68, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 1 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "percentile_ex_nulls": 1, + "percentile_inc_nulls": 1, + "sum_tokens_in_value_count_group": 2231, + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value_count": 2231 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "percentile_ex_nulls", + "type": "quantitative" + }, + { + "field": "percentile_inc_nulls", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "percentile_ex_nulls", + "sort": "descending", + "title": "Percentile", + "type": "quantitative" + }, + "y": { + "field": "value_count", + "title": "Count of values", + "type": "quantitative" + } + }, + "mark": { + "interpolate": "step-after", + "type": "line" + }, + "title": { + "subtitle": "In this col, 11,403 values (22.5%) are null and there are 537 distinct values", + "text": "Distribution of counts of values in column substr(dob, 1,4)" + } + }, + { + "data": { + "values": [ + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1862", + "value_count": 2231 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1860", + "value_count": 1753 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1861", + "value_count": 1751 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1859", + "value_count": 1616 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1857", + "value_count": 1599 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1858", + "value_count": 1594 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1856", + "value_count": 1362 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1855", + "value_count": 1299 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1851", + "value_count": 1204 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1850", + "value_count": 1164 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Top 10 values by value count" + }, + { + "data": { + "values": [ + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1417", + "value_count": 1 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1111", + "value_count": 1 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1325", + "value_count": 1 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1302", + "value_count": 1 + }, + { + "distinct_value_count": 537, + "group_name": "substr_dob_1_4_", + "total_non_null_rows": 39175, + "total_rows_inc_nulls": 50578, + "value": "1525", + "value_count": 1 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "value", + "type": "nominal" + }, + { + "field": "value_count", + "type": "quantitative" + }, + { + "field": "total_non_null_rows", + "type": "quantitative" + }, + { + "field": "total_rows_inc_nulls", + "type": "quantitative" + } + ], + "x": { + "field": "value", + "sort": "-y", + "title": null, + "type": "nominal" + }, + "y": { + "field": "value_count", + "scale": { + "domain": [ + 0, + 2231 + ] + }, + "title": "Value count", + "type": "quantitative" + } + }, + "mark": "bar", + "title": "Bottom 5 values by value count" + } + ] + } ] - }, - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Bottom 5 values by value count" - } - ] - }, - { - "hconcat": [ - { - "data": { - "values": [ - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9991315897016755, - "percentile_inc_nulls": 0.9993277709676144, - "sum_tokens_in_value_count_group": 34, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 34 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9955557825909277, - "percentile_inc_nulls": 0.9965597690695559, - "sum_tokens_in_value_count_group": 140, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9941765427053535, - "percentile_inc_nulls": 0.9954921111945906, - "sum_tokens_in_value_count_group": 54, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 27 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9935380057212914, - "percentile_inc_nulls": 0.9949978251413658, - "sum_tokens_in_value_count_group": 25, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 25 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9929250102165917, - "percentile_inc_nulls": 0.9945233105302701, - "sum_tokens_in_value_count_group": 24, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 24 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.992363097670617, - "percentile_inc_nulls": 0.9940883388034323, - "sum_tokens_in_value_count_group": 22, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 22 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9912903555373928, - "percentile_inc_nulls": 0.9932579382340148, - "sum_tokens_in_value_count_group": 42, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 21 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9902686963628934, - "percentile_inc_nulls": 0.9924670805488552, - "sum_tokens_in_value_count_group": 40, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 20 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9892981201471189, - "percentile_inc_nulls": 0.9917157657479536, - "sum_tokens_in_value_count_group": 38, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 19 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9856201471189211, - "percentile_inc_nulls": 0.9888686780813792, - "sum_tokens_in_value_count_group": 144, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 18 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9830149162239477, - "percentile_inc_nulls": 0.9868519909842224, - "sum_tokens_in_value_count_group": 102, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 17 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9772936248467511, - "percentile_inc_nulls": 0.9824231879473289, - "sum_tokens_in_value_count_group": 224, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 16 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.964267470371884, - "percentile_inc_nulls": 0.9723397524615446, - "sum_tokens_in_value_count_group": 510, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 15 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9413823048630977, - "percentile_inc_nulls": 0.9546245403139705, - "sum_tokens_in_value_count_group": 896, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 14 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.9061861463015938, - "percentile_inc_nulls": 0.9273794930602238, - "sum_tokens_in_value_count_group": 1378, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 13 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.8565335104209235, - "percentile_inc_nulls": 0.8889438095614695, - "sum_tokens_in_value_count_group": 1944, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 12 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.7893849611769513, - "percentile_inc_nulls": 0.8369646882043577, - "sum_tokens_in_value_count_group": 2629, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 11 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.711738863914998, - "percentile_inc_nulls": 0.7768595041322314, - "sum_tokens_in_value_count_group": 3040, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 10 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.6372599100939926, - "percentile_inc_nulls": 0.7192059788840999, - "sum_tokens_in_value_count_group": 2916, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 9 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.5657437678790356, - "percentile_inc_nulls": 0.6638459409229309, - "sum_tokens_in_value_count_group": 2800, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 8 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.499948917041275, - "percentile_inc_nulls": 0.6129147059986555, - "sum_tokens_in_value_count_group": 2576, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 7 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.434971393543114, - "percentile_inc_nulls": 0.5626161572225078, - "sum_tokens_in_value_count_group": 2544, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 6 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.37316101348590114, - "percentile_inc_nulls": 0.5147692672703548, - "sum_tokens_in_value_count_group": 2420, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 5 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.31461994278708627, - "percentile_inc_nulls": 0.4694531219107122, - "sum_tokens_in_value_count_group": 2292, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 4 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.24496832856559048, - "percentile_inc_nulls": 0.41553639922495944, - "sum_tokens_in_value_count_group": 2727, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 3 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0.16252043318348997, - "percentile_inc_nulls": 0.35171418403258337, - "sum_tokens_in_value_count_group": 3228, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 2 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 0, - "percentile_inc_nulls": 0.225908497765827, - "sum_tokens_in_value_count_group": 6363, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 1 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "percentile_ex_nulls": 1, - "percentile_inc_nulls": 1, - "sum_tokens_in_value_count_group": 34, - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value_count": 34 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "percentile_ex_nulls", - "type": "quantitative" - }, - { - "field": "percentile_inc_nulls", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "percentile_ex_nulls", - "sort": "descending", - "title": "Percentile", - "type": "quantitative" }, - "y": { - "field": "value_count", - "title": "Count of values", - "type": "quantitative" - } - }, - "mark": { - "interpolate": "step-after", - "type": "line" - }, - "title": { - "subtitle": "In this col, 11,426 values (22.6%) are null and there are 12363 distinct values", - "text": "Distribution of counts of values in column postcode_fake" - } - }, - { - "data": { - "values": [ - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "se1 7sg", - "value_count": 34 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "sw1a 2jh", - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "sw1p 3pl", - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "l3 0ah", - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "sw1h 9aa", - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "se1 8xz", - "value_count": 28 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "pl1 3dq", - "value_count": 27 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "sw1a 2bj", - "value_count": 27 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "se1 7eh", - "value_count": 25 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "s8 8ly", - "value_count": 24 - } + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAASjCAYAAABKRqY+AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQfYXUW1/lco0iGUAKFoiCAqIFeqf+TiJSAdVARCvZQrXgslXiFcsNKvqBAMRQTEKwIGRBTEQhXpUkWkSDDhIhBQIRBKaMn/+Q1M3N/JKfvsdc7ec3beeZ48Sb5vr9lr3rVmzbyzZs8Mmz179mxTEQJCQAgIASEgBISAEBACQkAICAEhMKAIDBOxHVDLSW0hIASEgBAQAkJACAgBISAEhIAQCAiI2MoRhIAQEAJCQAgIASEgBISAEBACQmCgERCxHWjzSXkhIASEgBAQAkJACAgBISAEhIAQELGVDwgBISAEhIAQEAJCQAgIASEgBITAQCMgYjvQ5pPyQkAICAEhIASEgBAQAkJACAgBISBiW5IPNB4+PWzYsLne/Nprr9krr7xiCy+8sC200EJuzWbNmmUzZsywBRZYwBZbbDF3fY0V9FrfIgrOnDnTXnrpJVt22WWLiA+szBtvvGHPPfecLbPMMjb//PP3pB3RR5v5Zk9e0KSSfvtoO72raG87faJNl156aXv11VeN/y+11FL9gl71CgEhIASEgBAQAkKgVgiI2JZkznXXXdfuu+++IW97//vfb6eeeqptueWW4eenn366HXTQQXb00UfbV7/61baaUdfvf/9723jjjW2dddZp+izP8N5//dd/td/97ne26aab2s0332yTJ0+2d7/73V23vPGd3ejb9ctyCOy///72gx/8wJZffnl7+umnc0iU88jf/vY3+/nPf27vfOc7bauttur5S88991z71Kc+Fep95JFHbPXVV+/JO5ZccsmwEPL666+HxZAySqOPlvHO+I4q2tuqfT/96U/tk5/8ZPj1vffeawcccIDdfffd9swzz9iIESO6huXXv/61/fWvf7VPfOIT89yiT9dgSUAICAEhIASEgBCoBQIitiWZMRLbHXfcMUxUn3rqKfvVr34V3n7OOefYf/zHf9h1111nP/7xj41n+NOunHLKKfZf//VfNnHixECGm5XHH3/cjj32WFtjjTXs8MMPn0Nsi5Khxnd2o2+vYWbCv8IKK9gSSyxh3/rWt+zTn/50r19RuL4777zTNtxww0AqICy9LmuttZY98MAD9vWvf90OPfRQGz58eE9eUQXRa/TRnjQkZyVVtLeVaptttpndeOONoU//93//t5199tmBmJ500km2+OKL52zRPx/baaed7Iorrgjk+IMf/GDX8hIQAkJACAgBISAEhMCgISBiW5LFIrHNTjQvueQS22233QI5+/vf/26/+MUvbMKECSFbs99++9kf//jHMMG97LLLbOTIkbb55puHbO71119v48aNsz//+c/2nve8x8aPHx8yt5/73OdChhDSd9ttt9mFF14Y6vqXf/kX+853vjOH2B5zzDFh0vv888+HLBEE6R3veIcdfPDB9oc//CG8c8011wxEm99B0N773vfO9U62TGb1ZWvsUUcdFdpB3bz3+OOPDxljynbbbRfewyT+f//3f0O7aWfMPjaa4sorr7TjjjvO/vSnP4XFAPRAdzKi++yzTyAC1LHtttvapEmT5rIkWdNvfvObIav5b//2b/bxj3/c9thjj/DcQw89ZIcddljIZC+yyCL2kY98JBBksqzYCHw//OEP24knnhie32uvvQwShi3An2w17bnjjjvsrrvusi222MKOPPJIm2+++cKzZMbRjawyWflWtmTbeWNppxt1Y1cKix/Uvdpqq4X/syV7hx12sDfffNMuvvhiW3HFFe2mm24KNok+cNFFFwXdwQSfHDNmTMCBDG2W6JFJbYcBtj/rrLPCogwEbP311w+2Wm+99YIuLNr86Ec/smuuuSYQK7D/zGc+M1db2T2Q9dGvfOUrQeddd93V6B/48sc+9rGwg6EZVvfff39o3+233x7a89GPfjT4Mc928sdu2kt7yJTja7fcckuwZ/SnI444IvRFdP6f//mf4OPdtAP/p27K1ltvbSwgnXbaacFG2HratGlz9W12a7TCGDKMLci+48Pf/va3Q3xoVX7yk5+09Gd8i23RtItFmmeffTbUNXbs2NBe/ITFlQ996EP2j3/8w6699tpgbxbU6KvYEt8444wzbKWVVgo6EVN+9rOfBXWIDfS75ZZbrqRIrNcIASEgBISAEBACdUVAxLYkyzYjtjHriApM8Nk+GLciM1knM8eE+Ytf/GIgqpAliOQHPvCBQEYgYGQGyfJAyJjExrLKKqsYxLDZVmSeQQ5SRoHoQIpj1giiBkGJxBuddt5557neyUQ26stEHnII2WRrMFli9KVAltE5++0m9aM/5YknngiT3myBVEMWKZAvdGVSzGQaDA455BC79NJLw7uYZEPcs4UJdtziDan97W9/G34N6WZiPnr06FAfer344ov2l7/8JdQ1ZcqUQJJ4J4QqTsDZus0z6Mp7eT+FeiDa1AWhguT853/+Z8Ce+j772c/al7/85Za2hBRkCwsc7XSjLogPhSz/1772NVt11VXnVAGx5d0//OEPA/mnfrCBWNAmFigg3LTtqquuCsSRRYZ///d/H0JssWM7DMDl85//fKiLLe5x9wFkjO+5sSftYOEEMg35JZMNycmWxq3IkEUWJChZH4F8xa26UR7csQvYQ5DYwsu/sQELEp38MUtsO7WXLe9f+tKXwqtZTKJfxkI78Q3K+eefb3vvvXcgvXnbQYb2G9/4RpDfd999g7/g0/QPFlP+7//+b66+DbFthTG/gzxiWxY/WAxrl7Vl10crf8Z34tZ32kmMoY0UYhY7T+LCFTEHO8eC/6ND9FUWQVjII66AId+HE9f4NzsQevWt+BAH03+EgBAQAkJACAiBeQYBEduSTN2M2HJ4DRk+ChNliEYkipAWJooUso4QMCbyZC7JyjZuCyaLFIkt2Tqym0wWmxHb8847L2RKyaaR4YLAQATbEVsmv43vzH5jS/YSsgzRYTJLxoxMMrofeOCB9r3vfW8OsYXwbrLJJoFMMUn+/ve/HzKb2RK3UkJiIWcQvvit4dSpU+3ll182vlGGtJJBbSy77LJLIKC8l/dDjCB7EDqyySwWROJKhnOjjTYKRIIsI4QhD7GFNFDvY489Fibn8Vvfxq3IkOF2tszqfvLJJ7fVjYxtuy206AP55w9ZbLK22APfQY/f/OY3gWTTRhYjIMGQY4hQN0SP3QP4LFk8ssFk5yB/1LP22msb+EOEWKDBbmT9wAh/zJZWxJYMIQQVXyWjC0nHftkS/W/PPfe0Cy64IGTh8blRo0YF3+rkj920NxLbL3zhC4aN0I3MKP0I/yVDCY6QUv4diW2edtAmFicghfgmerEA0IzYxr4NaW6HcTdbkSOxbeXP7O548MEHw0IBB1rtvvvuQVfiB4fcQWxZhIBQszjH4gq2J5vOIhG+QkaX/rjyyisHE1Ifsiw+sShA/KHPqQgBISAEhIAQEAJCoCgCIrZFketSrhmxjYQHMsiElqxa9vAoMrExO8frIEff/e53bfvtt29JbONBUTzf6vAoCABbjSGH8bRkDgxiYknmKmZsIUZMYtGpE7GFtLDNN5vlhDQxyY06xYwtRBJCz9ZdJv60iSxntsQMaXbrdpzsQ2T5vrYdsY14x7Zk6yaLyjvJRpFlpUSiQnYLffMQW7JsEKkXXnghnF6LHfl3s29s29myG93YktuO2HKqNtiQubz11lvt//2//xdILoSIrbkQ45hdje+lTtqdl+iRRcxmibP6Q0DPPPPMsEgSM/L8nkUXMn/4XR5ii+6QIXRl0YRMX+N2cxYnIJlx8SNbL9+qd/LHvO2ln0ZiG9/FFnC2akfiSt8lg032lWxxJLZ52pGX2Gb7NtvO22FchNi28md2XIB/NkuNzldffXVYwEKv2O+xOf2ULdWQ3BiDWGSgv+GPzUpcbOsyrOpxISAEhIAQEAJCQAjMQUDEtiRnaCS2ZGshjEyIY8YpmwHlMCS+LeU5tiKyhZbvO8kKPvnkk2GSmD08KmZss8SyFbElc8LWYkjfBhtsEEgH38JBICASbNslO3PCCSeE7Zd5iC2ZU2Qg3xAfChNlJvqxfZHYxmtW2hFbsjzoEbd2cq0P38JSyERT2hFbMt5k0n75y1+G7yL5lhaiDRm45557QraSZ9geSdlmm21CNpMML6dMMwGP2WDI4qKLLhqey25F5ttAyFUnYss3ku1smd2CybeR7XQj+9zp0CPIOt9oQgzZ6onvsBjC9nW+tyTLyHtoOxnWZsQWct4OA7a2kgmmbjK0EGkWZyDVLJLgA9iM7apkUyE8zbKurTK2ZPrIorcjtvgGmVkWJSCYZBFZgMEH6W+d/DGLY6f25iW2+DT9JhLbPO3IS2yzfZuMZzuMixDbVv4cYxfYYkN8iV0X3RJbtqRzgjcLQMQevkVmJwZ+woKHvrMtaTDSa4SAEBACQkAI1BQBEduSDBsnh5BITrHlm9H4/Rmki6xHltiy/ZKsGESWLY4c7kNWky1+ZE7IikFgyIyQbSMLSt15iC0TS0gd21YhA2wXhvTErcO8g63CbMulRGILWcq+EzIQM8yQC4gm2wohknzLGbPNkVx2Q2whEmxPRle+/4V4M5km8wNZe/jhh9sSWwgXWyvJJFMPB2KhGxlptsaiHwUcIK7xQCYWDchC8f0fhYk8743fUOYhthBntmaCI9hC0NrZMktsaVc73ThErBOxhUxBaingx7fQCy64YFhkYLGBQ5z4LpbMNYQ0bp/N1svP22FAVhJ/wOfICLNAg1+yRZb7jfkZOpDFxNdZiGGxhgOnssVDbGlXJEMcUgbRYjGEf7Pg0Mkfu2lvXmLL1mve329iG7ect8KYhSsWwsgqs32ab/BblbgVuRWxjTslsDHfoxMnKCwEseCTN2NL9ppPKliYYnGFvgleccGo8Tv7kkKzXiMEhIAQEAJCQAjUBAER25IM2XiPLYSDjCATcDJLlEhs+V6RrF3MmEYVkWGyyqFKZADZLgs5JnMLkSDD1ozYxsxjvMcWMsyklMLv+E6SU24hb3xzG0kc3+nyvkhsG98JceN3UV9OiuW7v+yWRTKE6EdpJLZMaiFIzbYiQ9Qh7HyvGEs80Ir3krGCuMTvgxvNSBYI0hoJK78HTzJqFLLWEF4IHCWLLf9nMYF2USBvfEfLIgDEF1LBYTuxbdQBSYpbkSF2EHBIGxN5tnK2s2Wj7p1060RsyYhDjrFDzGbyDrKn2D7al0w6+MSMfWO97TCgrSy0ZPGN2V9sx8JMPGSId2MrviGP31jGNkdiG300EkK+1wRDtrOyUNJsKzJ1xO++Y30cMMVhWGyx7+SP3bQXYou/xq3IkQzGrcgsNLEA0/iNbd52xG9syf6DbfYbW/yusW/zrWs7jMmOYl8Kiw1kcFuV2JZW/sxBYWTG8XOy4exoIJOOvflGlrgS405c1IlbkbEBfQACDrFl4YbFonhwHW3FT5BXEQJCQAgIASEgBISABwERWw96JciyvZOtyGzb41AcDlyJhcnt9OnTQ9YkbpXNqxITaL7TIwPYWDjplKxy3Pqb/X2nd0KqmIhTP9/JNruiJa+OPMd3wI8++qgtu+yyc52cnKcetjpCRtElfk+cxY+6yZhyrUnjqaxkcuP22uyJznneCw580xqv0UGmnS0b6wTndrrl0aHZM+hFve9617tCFrdT6YQBWVP8hcWGRh+k/ZBosqoQt3hQWqd3dvt7/Jj34MuN21m79cdO7e1Wt34/3w5j2gI2LLTwd7NC/2z1vXT2eeogDtGPuu0Lje+NNqFvUx99REUICAEhIASEgBAQAl4ERGy9CEpeCAgBIZAwAuwA4NThZoUFDrL6KkJACAgBISAEhIAQGHQERGwH3YLSXwgIASEgBISAEBACQkAICAEhMI8jIGI7jzuAmi8EhIAQEAJCQAgIASEgBISAEBh0BERsB92C0l8ICAEhIASEQKIIxOvdmqnn/V47tSbHttatXXlwnpfbngefXj7T2KfmRX/Lg+e87JO0fV71CxHbPL2ji2dwJk6F1YEoXYDW40exwdNPP20rrrhij2tuXx2HKDU7jKtUJRJ6GQdgdeoH3Hmb5xCrhJqVpCpgzeFc/TqgK8lGS6nkEYh3ardSlIP9eh0zuZKKmwa4Zo3TymPhhG5OeueUeu5N5rR+TvXuZel0Yn0v3xXr4vYATijnNHhOL6+icGMC95m3uqWgCp168U5O7edk+4033jicBp9C4cYM7qHPFk6XB3tOuM9zGODf/va3cFo+18BttdVWoSpuIODgT27D4LDOfpZbbrkl3D2fLRxY+sMf/rBnr63KJ+PtI9xCweGIVRSuVeRaR64ejFfqVaFHr9+Z10dFbBuQ565NrorppoNxr2q8R/aaa64J18g8/vjjc9kUh//Upz4V7nDsR2FyC0l46KGHwsDdrlx++eU2adKkcHLvgQceGO7d5P7Tc845Zy4xBv/dd9/dpTL30HIVC4Sz3wXbcZ0IQZ72cZ0QV41w5Qz39TaenJvVBxlO9+WqoFiYEHH/7XbbbRdOpqaANfeDcj9rXBXD7gwK7a5W6XfbO9WftQNXEHFtUvZank7yeX9///33h4lA48ryq6++ahdccMEcf+Kkak405lTqQS/cE4xv4WPZwhU39Pkrr7xyzt3A/J6ruvg510fFE6W5UocrsO6++27jijD8Kd5J3A6fsWPH2mabbRb6/V577dW2n3F1FZM1rggjXnV6vt17s7HPa79++qNXN8kXQ4BrsuLBZUyk8W/uPebQMgrxk6vmelE47f26664LBI+7x7kmjDvUKYwDvJP3c/0UhIUCyeX/vSpVENt4Ldt5553Xt7lFJ3xivK8bsY3XyTEv4GrDFEoktlyHxxjL4jBzN67347pGrtXrVO68885wnR7jC9c9Upi3XHHFFWHs+eAHP9ipCtfv4xVz9L049kGmf/GLX7jqzQpX5ZOR2D7yyCO2+uqr96w93VTEnPezn/1sWAD50pe+1I1o0s/m9VER2wYzQjyZfHcz2Wciy9Ua3EPbjthyxyNZxF6vUMcmRGILWeEe01YFHXfeeeewkrP88svbuHHjwuodesX7bZEFB05MBYu9997b5fAQw+233z5cA9TPEicwYLDSSisFMs3khVVt7t4k2BG4G6/24We0HUyyd78yKePOWggIk7Df/va3YRUO8swk6fOf//yc5jCx2mSTTcJ1Oosvvng/m1m47qwdWM174IEHAtHsdWlFbJ999tmwGvzEE0+EK6XqQmy575k+RYYKP4kle6cxGX36P9fcMJnAh66++upwZddSSy0VRLivFyLMogl+xMAEZp0m/5HYcnct8u3IMJMX+jz10186Pd/ON7Kxz+tD/fRHr26S9yPAXcwshEA2IZ0U/I+Yy4SW69D+5V/+JWQZIL/EZPx08803N65tY7We2MsCyAYbbDCXQj/+8Y/t0EMPDWMxsTlLbFmwZQE33sl+2mmnhb5K1pb7m2PhWqwddtghLFRffPHFob+yGIiO6Ebf5o5oxnomriw+QeboB/FqN94N2WDchGzyHhaRaAMxgowaMXfWrFlGZgXdyJRxdzX9nfvaKYxXP/rRj8KcAqLB4jNZmMYSiS1to0+zEMsiF+3iOq+40MpiNjGXMeyrX/1qGKuyWTPI0eGHHx7aTNsptJMFcO7M3mOPPcLzxC5iEllM4g5tayQRtLtd28GILDN3ZFOw97e+9a2mi87Ma2gLd6aTjSfDyF3Y6E9hwRDcyNCNGDEikDXuoIcwgT3j/9lnnx0W/Vj44L08Q4yFJGJf2nDJJZeExUbu1Aaf66+/PvgfhPE973mPjR8/fsiCt79HFKshEtss2Y7ZSTK3cY7VCheytSxmsvjD8yzIc788GGIX7rUHb/wRYs/iFPME/JK76+lHLOZ/8YtfDH10l112CX0CWTClHyCHrZhL4TuNhX5KX6K/tbuqspc+2ckX2vkkfRWyiL/iT//2b/8WcGi24yMSW3yQsZa4xjwUv6M9EE2uRwRXyoQJE0Kf+tznPjckgfS9730v9H/mzfHmAmxFHz/11FPDfP3II4+03/3udwFz+gMxALtliS1+u8UWW4RYEBc9Tj755NAW5sXEV+qkrhtuuCH0f2INftZsxx1XPH75y18OdRFPuLOeuET2v108JyZ20oPkEVebEr9YoMQ/mXvDy0466aS5fJQY1KyI2DagkiW2/JsBhYwKHZtJJ06YJUVMaPfdd99QCw6LUxE0yPgxsEEcGbwYiCFBGA5HRY6OfddddwUnYqBltTdbcBKcnQDF6hrOTVBnIgzZwjEJ5GSK6GR5iS1OQyCno1MI9jgQ78gWnH7q1KlhgMoWOiw60DkoBFU6HI5O9o2JBwQq6syglSVUOCoDYpzcsH2KPwSJadOmhckJgy+Thm984xtzVg/59/e///1ADAiw4N34DQEDMWSUQIEuTIRoA6v1dEgyauhC8MkW8OfnvJe2xAEfnNEDe9LxIcsxoDHhaLynl47LBADfaSwsHjBgQCSwI+9gQAHfKVOmBLJHIMFfCHpxcGBRoVmQ4TlkkAV7fI9gwEBBsMI/0JcBhskXfkQ2Py4wtCMSZA0JqvgUz3/zm98MkzV8B+yxPTsbwCS2lX6CHP2D92GvxowteoExK7UEfexCwGciRX20M+5oIKvIhBG8CJ7gASkuihf2aNYufs6kmxVOJlfgRn9o5YeNdsUGEElWz1mhzRJbJsRsSWLSFIkt2y+ZANC/s8Q29l9W07EleHCXNDgx2c4W+h/9ly1dDGhMjJlgEOjpf/g/9YMtE378Hn9juyD9jL7BYEvsiM+38idiTLNYxKQkG/uy1wahL7s84oIYvsREnQl9q36Q9cd2MaKVXzRr74477lhs9iipniPQSGyJDWwZJu4yTq6xxhphsk1h8ki8Jo5QVllllTBBZPJJ34RstPrUhDqI71lii28yMcIPGZ8h2OhDbGvMEuG7xEoWniBQcRJ+xhlnBH1YNEYHCBBxFzIUtwFnM7b0K0gncwbqoN8T7yFJxDTqY05AXehL/6BAmFnwI3YzAaafQhzo4zE2ZI0TiS0/I64yHoATYzxxNcZc/s3PeCfvZixlrIuFBYEVVlghyDLR5d2QQbCOW3KJ9fwc8hMX/4lvyBL/YsaWOUK7tjOXIiaCxTLLLBPswb+ZZzUuOhPDmIvgI4wX7MaiEE95njGXwrv5XbbtjFf4F/MsiBnv5N1xgYO5F/GIwu8hahTGMvRi/OFnzGVYBPHuXOtFp4rElnkV80rGDQgJNoqL8szpWuHCOMoYjo+DKeMedgdnfJmYCd4shPAzCuNvTHrgO8hQP++h4BOMKbFk/99sSy7zYPwdXLEj/Yx5VePOrV76ZCdfaOeTLMaxQATmzAeZL4JdsyRGJLZgQfuivzI3pZ1xnk9/Jh4wRwW7xp2WyPE5BbGPO+TZ7QiZJV4QG1kwIJ7RF/FV5gnoxHNZYosPx3lqnI/FGEBMwBbENPSBsPMu9MHG2DpbkAcDYiw7IFlEQY6+Q2xqF8+JJe30IDZl5/PZ/sgci37a6KOtdhaI2DZEmiyxjQ5KAGe1lckoq3gYPxY6Jat6ZDeZFEOi2A7CiiCORxBhtQc56oMgETiYLOJUZGJY+WKCSODMFsgfgxRkiCDAyimDDCQQJ4JsMLkkS0PQIbCzFblTxpaOhYMQlHA0dIokM74/dqpm30DF7FRcbTv22GPDBJ2VI5w3rmYxoY5ZUlZFI6Fi0g6WcdLL/5lgx4k5q0CsMkFQmYzHrBKBBecGY7aMQyzp+NmC/QgWBGbksUM2S0zbIR6ttoMT3AjKkdgycUFX6uVntIPMAXZrlsVmAsM29Li9J+pG5o6VelaCIR8QnrXWWiv4BxN6VsAYPBiYIDQEG/R83/veFyYfBH1km01oaCtBhmDFH3QAw7jFFxKEvgQHAnEnYsuKP+SHFUPkCDgESvRjwsUEhNVi/Pfcc88NkxqCKdu0WQjAnqz8M0g2ElvwpB7wYcJF/dQH4aSPMGDQfnRm4gp5wy+YlGJHfKwoXq3aRX+k3zBgMAjQBhYemvkhP8sWMjv0nZi1oL2R2ELg6Vu0GcIbiW2URx8motmMbfwuGfJGf2cBgUGMgStbGHTov0xyeA92ALvsVmTiEX0EvPBZfIxMC7Zksk3f5P9xK3KcIDf6E37XLBYxmSJ2xdiX3XZFn2HBK64QY2v+0M/b9YO4g6BVjGBy0sovmrUXX1pooYV6MZ9UHU4EGolt3A5JvyNWMBYR9xnXiHcsEDKmEY/pKxTGFsYm/L1ZJohnmhFb+iFEDsISd/GQgWXiSV/LFp6hP/OHPoi/oR+ZLmIoYy2xG+JJ/4Mg0HcYU7shtpE0EgvRBTLIgib1sABF3KPtjBXMF+hnxEom1s3GAeYQyKMnk2UIHmM0cZoxhHkCE+HYnmY7QeI30Uxomcew2MAEE2LIxJm5BZNX4hQkj0ktMQZilJfYEucZoynUR/+Mi22M2XExI7YxYkpsYDwEH8gmuLB4gF5x8YB5GlhRmCdAJPIQW8Z2xl4WTfEr5FjYSHkrcrPuGL+pjFs2W+GCj7Tbisy4FLN1cVGABSDGSogWc5xIbFkI5ufUh13ilvi4oEJ/id/xRp0jmWMuwByXeS2+zpjRmCzolU+2I7Ys0LfzSdrInAd940I+Yz2kkjiQLZE3RBzoH/SluOhDX6SfMr8CI/oYC+N8LtdYsgtL2AHZuHgBUSZpEeMZ8YJC4oeFtrgVuROxRYZ5L4QVOeYbMcnFnIv4HAuLJ8QffIAFOBahmD8wzvIeYkOreA5+eYktMZwFe7gO/CsuwmkrcsFBuJHY0iEjoYBEQagas3GNW5FxYhwOEsDkkUkhDhKJLQGBlUcMDcFigIEcZL+L5Xm2JzJ5xfkZSJiY8jzBPRsscCy2vuLonYgtekVHZesJQYVJQgxeETaIFZNLSGtjoePQtriljEEeUs7kATKLLCsvkFAGCNqR+wIrAAAgAElEQVTGZKQTsSWwsQKJTpAkAgeDMIMsiwN0PgY+AhSDHANY47ZubESWG5wILAxYrI7HQpsYuLJbiLPtayS2vJd2MnkBZwI+K/rYhUGZwRNiEwcBbAAZgUBmCzaGgLAVjUGFSQxb0yHKDEaQIYgPh//QeVl5i98706nJfmbbQd1MppgkQPYoDPR8PwleHmJLu1hMgIAzcWGCh+0gq9g9+iQTJyYdPE9QZhAl00KJW/0aiW2zrcgsijCxISOD3tQHEWNBh9VDfIm2s6oIRvhrEbxatYvMP/0mDkT0hVZ+yCCSLdgaXemPLHBFYgt+6HvppZeGgQs/zkNsY91MFJlMM3DSj7KHecR+wfY6fIXYAPFlcSBLbPFxMiEMVvRRBgsmqfShuBU5+41tK3/iAJ5msYgJBxO/+BlGFhcyyeiOvVnUof2sSNNn2/WDTsQWYtHKL4hVzdrbbqtbwWFCYgUQaCS2jBWQVzKfcUsqcZb4yiSLBRYmg5FkxBiHn/O7xoW+qFIzYsv4hK+yqEO2Kk42majSf7MlmyUirqF3zH7SrxkHYnY1yqELOrUjtvguE0LIKbGoMTMZ66K99DnGuZhB5Hf0J2Jf4/kZcUEqS/Yj1owv9P34KQP9g0k04xykvbHEg5IY04j5ZDZjho7YjhwkJFuI3/TvdsQ223biEfo1K43fCcddVjzb7HTtSJCy34UyxvN/xkbskiW2tBlC3pixxc7ggl2Zv0R8Uia2xEHaweIq+scMLfMn/s3CditcmC+2I7bE6XgIFXMgxmB8Py6wssiCjzAXiHPHmP2OpCRmQLOfHkSbk8WFDLGAE8cv5hPNvu/tlU82EtusL9Cn2/kkmUG4AGNytp8STxrHl0hsYwY2zpeRY9cb4x8cIdvHYlxq7BPYGH7Bwj42JqkEuaSvsUjFwnJWJ+RZzGJRph2xZY5MjGHRC3/J7rbK6tD4nTBZfOJ1NmbH5zvFc+JEI7HN6pHN2OLTzIVZcGAOH/ERsS0w8CLSSGyzhz1ts802YWWqkRQ1EtvsYSwMLAzSBOVIbFl1iQ7LOxlACKBMgGOJ30wwIGRXhOLPWZmMk10GNkgSK7+diG3M3mVPS4N4E8TIeFCYXDIYxq0SzaCkDTgpEwYG6phVYhBkgKezxe0onYgt74pbXgiGjYUOyAo+xDnuu+f9THAagwoBOJJ+OhoLEdmMLZMCyAiYNyuNxLbxGQgpQQ6SwkSathPksTMlkvnGb4l5hoUEvo0ggDPBYXEjEtvst65xlS777uy3M/Hn2B3iF7eKQ375hoP/Z4ltXMXOm7FlNRayx0pZXAQhgEZimw124H3vvfcG3+GdLNZQ0IOJQh5iG+uLp4lTH6QectxYyNyAcRG8WrUrEtuYEYjb1Zr5YfYbNxYvyFIyoWQLFbalsMCA/tSHj0DuWE2lXlY0Y0ahWcY2+04Gf4goWSwWtWLJkvy4HTN+4pAltvRfJnFMNOiLZFGZCGW/sW0kts38iTYwAWmMRejT6htbJkP4N9k3+j+2ZAKUtx80ZmxjjGARp5Vf4H/N2ltwKJBYjxFoJLbYkv4QM0C8jhhGVp/sImMvxJZFvviZRpzYsKjT7HMP6mhGbFl0w/+ZKJHlI2PCGML4wBb8xhKzRMQwyCDZKsYM/J2xm4VT4jn9nLGrGbFlTKfvMmbEbzmZC8StyHHxirrpX4wLLO7xcybAxCsm/8QBtvAz6c+S/Ow4wDvYaUIMyhKFmHFhTsI3qo3taWbiOP7ErYAsxPIpA5kaJtXEePQAD7BuRmzp963aDtEhbjK2EBP4po4xirby7uzhjowffLtHLINY0ccZ3yAN2ICJMUQhngMSP9+I8xjGLcgqz+Br2J5430hsGa9YFB8kYpv9xjYuHMSxF6LSDhfITztiyw6wSELizq+4WBnnIjFj24nYgilz51iwI7pjZ+xHYf6JjVsd5tYLn4zbn5v5Agu97XySxRzGcQpJGogWc9zG7fz8PhJbFrVJZMSFchammO/RP8kOIx+3Ksc+1tgf4+cL8cC7uHsiuzOBBRzsRdygNBJb4mlMvMQdTJB0+i3ElvGZ3R7EWtpDwZ/oe/SJ7K0V8fO+qAfjPPNQFq8h6/xpFc8h2+30yBLbOG8Use3RINxIbJnIxi2neYlt9lTkZsSWwZnOTWcmWOAY8UCJ2IyYWY1BAweCNDKYMEnNBgDIGBNBgngnYkv9kBEGOVbLKWxdZQCMBIkBCXLR7nQ9VrnpDLyTgR9SHSf6kM+4sstg2IzYMnFgYMKBWZmhg5EVYgWd72wjoYIcMEFm1YstS/xhMs7AxMQCwpstrJjHbxki9nHLVVw5a3cMeztiSyDCFyDObB1jxYyVMybdkBaCC4GBSVfjtpK4fZvtd8gymcIGzYgtE0AG4ZiRwFfABBtnC35DAIqZ3UZiGwkjix4EorzElgkgNmVhAOzBhDZGYps9xTgSWzIuvCdmXpiIgVUeYhvryxJbtgOCM4MQhYkeB5QwEDBpyhLbvHi1alcktnELf9wu3cwPIylFpzjRjDaJJ6GTfWZlO/oAA1ncasX2o7iy3khs8Uv6N30+Hj7GohPf2caDJnhXzJRnd1kQPxjAssQWvCDcLDqxGMDEF9x4T6uMbTN/YkCKk1D8KMYiyDoLGs0ytugZdxAwWSd20mfz9gN8vVmMYGLdyi/AuFl72eGiUj0CjcSWRQ5iJv2f7AU7HCCDFMgPE+u4LRWiSwwgzlLiN6DNWtWM2MYJGX7MwisTU/ylcdId64sLc/w/ftPG2EofI84yL2ACS1aE/sjCEwtA2YwtYyQL4cgz1tL3KZHYRvLMhJdJHeM7OtFXmSjyM4goC+lMptml0oyIZ7+xZUwFG7KU2W+MI2GL7WFiDKFsVujTxHpKzFTz75gJRU/mJ8wTKPRHFt+zGdu4bbVZ24lBTNT5G33BI15J0mzxLG5Ppz1MtLFfjIOME8y3eA8kifEU+zNOMIZhL8YL5kxsbWTMpuQltnHnEfMS3tvqsJoye1f8xhbcSIYwvjD2Mj+Ji0C0sx0uzB+J5eACPhAw/hCfGRsYK5l/MJejj5KNZRyAfMatsHmJbbOtyJH8YXc+Y2JxGF1YsGh2/V8vfDL6UTNfYOGrnU+SRMEXWNChTzPHgxhm59HRB2Lb8EmSMfgouIFzvDEhEjZksidTN/OjSMj5Xdw9EXcy8A5sjd3iHIG+yUJP9lTkuCgF8YxZY+pj3k1fid82M6dm3kNb8Q/iTuMVgrEu4hdzamxHnCZmt4vn9N92euQhto0+yqJXs6JvbBtQKUJsCZ6k89na0HgqcjNii3H5VgjySCdjYGKS2niIBQSYiTQZRhyXgMZ7mFCy2sXKMYMqzsSqDfVGYoujkumkDt6RLXROtqxCXCBNOCWdIn5nC4lhkGi1XZe66BxkjHl//G4pbhlhcOJ3OD4BgBUk2he3IkOUCMaQQFa1wDweckF7CQBMwgkcbEtjgg6uDM4cogEBBr/sAVixfaxEMYFiEIo6EqQJKKysEwRYBYNw0Xkb8WlHbMlOE+DZ0sJEhQkJ28TBjywaq8nYiAGmMQuADQkADCgQbbBmYgH5aTzEiTrAg0BB4GIyA7mh7dnSitiCKRgxaGADFi54d15iC+b4D6uqkDewZrDDzxtPMY7EFqzBgUkZExwmotivkdjGHQORdGXryxJbBjsmE3zHGcksCxa0gYllltjmxatVuxjAswtCcTW0mR/SN1oVfIwJafbwKJ6N2687bUWO2Qm+K2HywASVBQ7iSuM38Pgt5BkiAEYMjo3f2OKrDNbgQz+lT2JP/J/t+GDJwkH2G9tmxJZFq1axiAl9jH2NuMQFFX4eJ6x5+0GrGBEXv5r5BXGxWXv7fXVFmZPaQX5XJLZZMsniDnbLbm9lXCPWMqYRU7KHlND+Tqf0x8xSltghF+92jBiyKEsfbzyAkN/TFyHa6JU9JZ9FIeJSPCiHOMfkNmZjssSWmMinC3HbMuMuukdiywSUbdHIxxKzv8RC+mj2dgZwYNEtfguYlWG8I07HhUAIDvE3XmWUHa+J5XEBoZk/ZbN/MVPNcyxaEpvijiPiPG1DZ2yYvceWxa52bWe8BI94sA7jHG1li2NjYa5C/IlXNPEscw7GenCi7dlPpuIhUXHHGJP5aC/iJHOpRmLL3IVxhsUI/CZuRWaHHD7ImN54gnZVfbHVPbYQKgggftIJl+xp/fgI8xLmF/gzhXGc3QUkL9jhE0vcJs+4HbN+nTK2zYgtC0f0v3hYHLZinGn8fjy+txc+iQ+084V2PsknZywUxP6FXvg3Y3PjJwWR2GYP3KJv0r74SUBc1KYefo5ftirZHWTZnZosyLMDgUL9jOvEKz41IqmRvcc2fuLBs8QGfIS2UDd9l98Tb+K2Zn4fkzWNerH9nLkFcYBCPGOuymcB7eI5z3bSI8biOG9kDsuiQtyK3Oijra7WFLFtsBokgqBMkMVB82Rso7EIlgTmdhnbuLU5fn+Ak8XtNfH4+qgSnZ+OGAcSVpXoTPGOvuhYrAoxaOMM8R5btiXQiZp938B2Q1ad4kCBzhApiFZcCYqBvl3wjivO8RAp3k+94EFhAGXQJoPF6hErT2SGY0aMZ1iRZuLPSlE8rCN78iAdl9UtiA7fPbLyxcBGMGa/f+OhOpBE2hW/H4qTI96FHHhgV2zMNuZGfMiQEWTpTNlCYKM9MSPJgEdg5m8G1XgYVfwIP544Hesg6DBQsOWEwqIB3w5gN4JV9j5ZyB92jicOMuAykDeuTjUjtkwUeDaeSsm74oSKwYHgHu3Q6t5Q7BMPImChgechTfH7rMaMLYMikxraDqmm4FMMjs2+i8peYM72n8aMbdyNAL7x5G36CUGNSUaj3nnxatUuBmayEdlTCeP3N9F+0Q/b9YduiW28IoOMZjwpMW6RjP7KxIJJaOOx+yyYYRdiANjgs2TIsxnb6Ptx9wP2IbuPL0L2iDssFrQjttGfWsWibOyL29CzGKEPiyTxO8a8/aBdjGjlF63a285m+l31CBAjiOuMDUyO4hbIaE9iK4ugLKBA6jyHgbEVjwUjYmn2UJRuUEBf6mA3S7PsUmNdLB5TWl3ZxZjLohd9uPHTGmSJjyxksyujMXvS+C4ILH2s2bNxYaHxPI1u2g4hYv6AnZotCHTT9mh3sj7U1+xqkVgfz7IjhrkGWcrGZ6kDm7B413iYD3WAL/GOBeJuC4vwjDHYZtC+12+HC5jiX/GaKnBhXgTGLCBG38Y/mTvQZxoPT+wWy8bn8VXeyZkqrb457/SObn2ynS908kniFHM4fCxu/W2nHzENPBvPgonniWQPWurUzma/x37g18znG59nsYN5NPOFZn0NP6cP0UeIH+36N3GGuEQsJg5mn20Vz6M+nfTohEMzH22UEbHthGLO3+PAcatsTpGQNaVTZr+tbZTF2eJAlXWeOEDzjV32YJmsPJlKiHqzrXhsJ2SiQKDu9b26DEAQTlb10JM/jQGRbWgMFs2CA4EgTmKykwFk6Ez8rNVVD2DKSjLyERcwRg4S1W7wbGc3gjsdNvv9T7NBnE4OQWoWaOKEiCCOHgQ3FhOaDbY8S1viSZh5JhGN+lA/Jd6RmtcveY734nfoyrsJ5ti00+DDAgAT01b2iToQkDvdzcqzvJdgjO0aT0vMticvXt20q5UfdoNjkWchq/QhVkLb+SuTljjJbDXBJi5hEyaO9MdYiCsMEN1M7lvFom5jX95+0C5GtPKLVu0tYgfJVItAltg2XjlXrWaD9fb4iQPZnGanQA9Wa6StEBhsBMiEkgQjO8ouuMYkymC3Lg3tRWzTsEPPtWDSy1Zkts8UIUU9V6jECtm+wDeK8budsl5NgGIyHg/CKuu9eo8QEAJCoG4IsPOGre7s0mC3jEoxBCC2ZL3ZHcWZFI2nKherVVJCQAgUQYBdbXwrG3cy9joLXkSnusmI2NbNompP+KCdLZJsbS6z8M0ye/4HbbtSmRjpXUJACAgBISAEhIAQEAJCoB8IiNj2A1XVKQSEgBAQAkJACAgBISAEhIAQEAKlISBiWxrUepEQEAJCQAgIASEgBISAEBACQkAI9AMBEdt+oKo6hYAQEAJCQAgIASEgBISAEBACQqA0BGpLbLl/jbuYVISAEBACQkAIdItA4/3f3crX+XmNr3W2rtrWCwQUP+ZGUXGjF57V2zrq6Ke1JbZ7f+V/57r3s1fucMKBm7ur4vqZlB1K+vlMLPyEnw8Bn7T8r974+Vrnl/7GN75hRxxxhL8i1SAEaohA6vG3KsgVN6pCvvl76+qntSW2Ox45qW8edMWJY911p+5Q0s9nYuEn/HwI+KTlf/XGz9c6vzQT1L8ssM4/K5pdvM6zDtuuuLAkhUCCCKQef6uCTMS2KuRFbNNCvqA2Rx1/qu2xxx4FpZuLHXX29eEXIrY9hbVQZakPHNKvkFnnCAk/4edDwCeduv/5WueXZoJ60/RR7oqGDTO7/AT/QrFbEVUgBHqIgOJHczBFbHvoZD2oqq5+WtuMbT86UMwCi9j2oEc5q0i9Q0o/n4GFn/DzIeCTTt3/fK3zS4vY+jFUDfVFQPFDxHYQvLuufipi24X3RWJ74qfHdCHV/NEnn3zSVlpppTm/XHThBW30yOHuentVQeoOL/18lhZ+ws+HgE9a/ufDr2ppEduqLaD3p4xA6vGtKuz6kXCqqi11eG9d/VTEtgvv7Od3u2uvNsJ6QZi7aE7bR1N3eOnns7TwE34+BHzS8j8fflVL95rYzp5tNu3ZF3vSrJHLLt6TelSJECiKQOrxrWi7vHIitl4EeytfVz8Vse3CT4783nVdPN3+0ZkzZ9rCCy9sL8183aY8Nd1EbLuDNvUOKf26s2fj08JP+PkQ8Emn7n++1vml+0FsdzrKf+Cjvtn121Y1+BFQ/GiOoYit37d6WUNd/VTEtpde0kVd0aH++JdnjEOpRGy7AM/MUu+Q0q87e4rY+vASfvMWfr1tbfe1idh2j5kk5h0EUh//q7KEiG1VyDd/b139VMS2Ij8TsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl7ENi3kC2qTegcSsS1o2LfFUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfK2FbkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjSsMrY+4ISf8OsJAr5KUp/4pa6fD32/tIitH0PVUF8EFD+a2zb1eXl9PVLEtha2Tb0Didj63Cz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qq3IFXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDfu2WOoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UGduKPErE1gd86h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpAXsa0KeWVs00K+oDapdyAR24KGVcbWB5zwE349QcBXSeoTv9T186Hvlxax9WOoGuqLgOJHc9umPi+vr0eK2NbCtql3IBFbn5ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT7UVuSKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGHfFkt94JB+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5FOfl1eFS1XvraufKmNbkUeJ2PqAT71DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyIrZVIa+MbVrIF9Qm9Q4kYlvQsMrY+oATfsKvJwj4Kkl94pe6fj70/dIitn4MVUN9EVD8aG7b1Ofl9fVIEdta2Db1DiRi63Oz1AcO6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+qm2IlfkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjTs22KpDxzST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhXzq8/KqcKnqvXX1U2VsK/IoEVsf8Kl3SOkn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCXsS2KuSVsU0L+YLapN6BRGwLGlYZWx9wwk/49QQBXyWpT/xS18+Hvl9axNaPoWqoLwKKH81tm/q8vL4eKWLbU9u+8cYb9uKLL9rw4cO7qnfWrFn2yiuv2GKLLTZE7qWXXrJFFlnE5ptvvrb1pd6BRGy7coe5Hk594JB+sq8PAZ+0/K/e+MXWVTm+3jR9lA9kMxs2zOzyE8ba7NlmOx01qWf1uStSBULAgUDq8bfKuHHEEUc4kJVoLxFI3U+LtrWvW5FPPvlkO+uss2zjjTe2F154wSCba6655hxdf/e739mBBx5o6667bvjZzjvvbLvvvrudd955NmHCBFt55ZWNDnjBBRfYsGHDbM8997QFFljAHnvsMTv88MNtv/32a9luEduiLvGWXOoOL/1kXx8CPmn5n/DzIeCXrnp8FbH121A11BOBlMeHquOGiG06Pp+yn3pQ6huxfe2112yhhRYK2Vqyrscdd5w9/fTTNnHixDn6nnPOOfb6668HcgthpUBkF1xwQZs+fbottdRSdsghh9jIkSMDsZ0xY4Ydf/zxNm3atPAzsreLLrpo0/aL2HrcQsTWh57wE35eBHzyqQ9Y0s9n3xTGVxFbnw0lXV8EUo1vKcQNEdt0/D5VP/Ui1Ddii2LPPfecLb300vbyyy/bFltsYYceemjIyMYyfvx4++53vxsI66677hoyupQtt9zSHn300fBviPC9994biC0/R3727NlhKzLPjB49WsTW6wVN5FN3eOnnM7rwE34+BHzS8j8ffimMryK2fhuqhnoikHJ807y8nj5XpFUp+2mR9kSZvhJbXnL33Xfb/vvvb2uvvbade+65tvDCC8/R9/TTT7eVVlrJPvrRjxokd/755w/ZW0juww8/HJ47//zz7YYbbghbmXfbbTfbZZddws9XWGEFu/32223UqFF200032c033zwXDtSTepn81Ayb+IuHbPWRS9jBO7w3dXWlnxAQAkJgnkCg1aJpSo2vcnztCbE1swkHbmizzWzc2Xe4oR32dn3uilSBEHAikHL8qDJuDMK83Gn6gRJP2U+LAtlXYnvttdeG72K/853v2NixY+fSkcOhOAiKcuedd4Zn7r///rC9mMOjyNKecsop4fdkdZdcckkbN26cvfnmmyETzHblVodIaStyUZd4Sy71lRzpJ/v6EPBJy/+Enw8Bv3TV42tPiK0Oj/I7gmpIDoGUx4eq44a2Iqfjrin7qQelvhFbtgvzjew111xjG2200Rwd+eb2wQcftA033NA23XRTO/jggwOhPemkk2zq1Kl2xhlnhMOk+Hudddaxrbfe2o4++mibOXOmnXbaaXbVVVfZJZdcYnwAf+utt7Zsu4itxy1EbH3oCT/h50XAJ5/6gCX9fPZNYXwVsfXZUNL1RSDV+JZC3BCxTcfvU/VTL0J9I7aTJ0+2NdZYY4h+++67rx100EE2ZsyYsLUY0ss2ZTK0PAu5ff/732+XX3657b333kF2++23twsvvDAQ2+22284eeOCBcA3Q1VdfHU5bblVEbH2ukbrDSz/Z14eAT1r+J/x8CPikUxhfRWx9NpR0fRFIdXxIIW6I2Kbj96n6qRehvhHbVopxkBQnHXMiMoVtxc8++6yNGDFiiAjPPf/88+H042x5/PHHbcUVVwwnJ7crIrY+10jd4aWf7OtDwCct/xN+PgT6I13m+Cpi2x8bqtbBRyD18aER4TLjhohtOv49aH6aF7nSiS1X9UBYs/fZ5lW2m+dEbLtBa+5nU3d46Sf7+hDwScv/hJ8Pgf5Ilzm+itj2x4aqdfARSH18aES4zLghYpuOfw+an+ZFrnRim1cx73Mitj4EU3d46Sf7+hDwScv/hJ8PgcGWZnwVsR1sG0r7/iGQ+vjQv5a3rzn1eXlVuFT13rr6qYhtRR4VHeqPf3nGjjr7elt7tRF24qfHVKSNMra9Bj71gCH9fBYXfsLPh8BgS4vYDrb9pH1/EUh9fOhv61vXLmJbFfLN31tXPxWxrcjPRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpAXsU0L+YLapN6BRGwLGvZtsdQHDukn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCPvV5eVW4VPXeuvqpMrYVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUNq4ytDzjhJ/x6goCvktQnfqnr50PfLy1i68dQNdQXAcWP5rZNfV5eX48Usa2FbVPvQCK2PjdLfeCQfrKvDwGftPyv3vj5WueXFrH1Y6ga6otA6vG3KuRTn5dXhUtV762rn2orckUeJWLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8MrZpIV9Qm9Q7kIhtQcO+LZb6wCH9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/Vca2Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYZWx9QEn/IRfTxDwVZL6xC91/Xzo+6VFbP0Yqob6IqD40dy2qc/L6+uRIra1sG3qHUjE1udmqQ8c0k/29SHgk5b/1Rs/X2SQGRgAACAASURBVOv80iK2fgxVQ30RSD3+VoV86vPyqnCp6r119VNtRa7Io0RsfcCn3iGln+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCnkR26qQV8Y2LeQLapN6BxKxLWjYt8VSHzikn+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCvnU5+VV4VLVe+vqp8rYVuRRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNKwytj7ghJ/w6wkCvkpSn/ilrp8Pfb+0iK0fQ9VQXwQUP5rbNvV5eX09UsS2FrZNvQOJ2PrcLPWBQ/rJvj4EfNLyv3rj52udX1rE1o+haqgvAqnH36qQT31eXhUuVb23rn6qrcgVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUN+7ZY6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VQZ24o8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZVxtYHnPATfj1BwFdJ6hO/1PXzoe+XFrH1Y6ga6ouA4kdz26Y+L6+vR4rY1sK2qXcgEVufm6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPtRW5Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYd8WS33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq58qY1uRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwytj6gBN+wq8nCPgqSX3il7p+PvT90iK2fgxVQ30RUPxobtvU5+X19UgR21rYNvUOJGLrc7PUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qbYiV+RRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNOzbYqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTZWwr8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWxTQv5gtqk3oFEbAsaVhlbH3DCT/j1BAFfJalP/FLXz4e+X1rE1o+haqgvAoofzW2b+ry8vh4pYlsL26begURsfW6W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP9VW5Io8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZ9Wyz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qoxtRR4lYusDPvUOKf1kXx8CPmn5X73x87XOLy1i68dQNdQXgdTjb1XIi9hWhbwytmkhX1Cb1DuQiG1Bwypj6wNO+Am/niDgqyT1iV/q+vnQ90uL2PoxVA31RUDxo7ltU5+X19cjRWxrYdvUO5CIrc/NUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfailyRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwb4ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT5WxrcijRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpBXxjYt5Atqk3oHErEtaFhlbH3ACT/h1xMEfJWkPvFLXT8f+n5pEVs/hqqhvggofjS3berz8vp6pIhtLWybegcSsfW5WeoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UW5Er8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWx7Snyb7zxhr344os2fPjwlvXOmDHDllhiiSG/nzVrlr3yyiu22GKLDfn5Sy+9ZIsssojNN998bfVMvQOJ2PrcLPWBQ/rJvj4EfNLyv3rjF1tX5fh60/RRPpDNbNgws8tPGGuzZ5vtdNSkntXnrkgVCAEHAqnH3yrjxhFHHOFAVqK9RCB1Py3a1r5mbE8++WQ766yzbOONN7YXXnjBIJtrrrnmHF3vuusuO+CAA+xd73qXPfbYY3buuefaBhtsYOedd55NmDDBVl55ZaMDXnDBBTZs2DDbc889bYEFFgjPHn744bbffvu1bLeIbVGXeEsudYeXfrKvDwGftPxP+PkQ8EtXPb6K2PptqBrqiUDK40PVcUPENh2fT9lPPSj1jdi+9tprttBCC4VsLVnX4447zp5++mmbOHHiHH232morO+yww4y/L7300kCCf/nLX9qCCy5o06dPt6WWWsoOOeQQGzlyZCC2ZHaPP/54mzZtWvgZ2dtFF120aftFbD1uIWLrQ0/4CT8vAj751Acs6eezbwrjq4itz4aSri8Cqca3FOKGiG06fp+qn3oR6huxRbHnnnvOll56aXv55Zdtiy22sEMPPdR23333OTqvuuqqdssttxh/33PPPbbNNtvYbbfdZltuuaU9+uij4TmI8L333huILT9Hfvbs2WErMs+MHj1axNbrBU3kU3d46eczuvATfj4EfNLyPx9+KYyvIrZ+G6qGeiKQcnzTvLyePlekVSn7aZH2RJm+Eltecvfdd9v+++9va6+9dthqvPDCC8/Rd8kll7SHH344ZF8B+CMf+YhdeeWVtuuuu4afU84//3y74YYbwlbm3XbbzXbZZZfw8xVWWMFuv/12GzWq+Xc+yth63EIZRx96wk/4eRHwyac+YEk/n32jdJXjq4htb2yoWuqHQOrxrcq4oYxtOv6eup8WRaqvxPbaa68N38V+5zvfsbFjx86l42abbWannHKKrb/++nbnnXfaMcccY5MmTQrbizk8iiwtv6ewDRkiPG7cOHvzzTdDJpjtymRub7rpJrv55pvnqh+CnHqZ/NQMm/iLh2z1kUvYwTu8N3V1pZ8QEAJCYJ5AoNVuoFQaX/X42hNia2YTDtzQZpvZuLPvcEM77O363BWpAiHgRCDV+FF13BiEebnT9AMlnqqfekDsG7FluzDfyF5zzTW20UYbzdGRb24ffPBB23DDDe2LX/yiLbfccjZ+/Pjwre3iiy9uxx57rK277rp2xhln2DrrrGNbb721HX300TZz5kw77bTT7KqrrrJLLrnE+AD+1ltvbdl2ZWw9bqGMow894Sf8vAj45FNfiZV+PvumML72hNjqVGSfI0g6SQRSjW8pxA1lbNNx2VT91ItQ34jt5MmTbY011hii37777msHHXSQjRkzJmwt5hvZTTbZJDzDdUAQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDsd1uu+3sgQceCNcAXX311eG05VZFxNbnGqk7vPSTfX0I+KTlf8LPh4BPOoXxVcTWZ0NJ1xeBVMeHFOKGiG06fp+qn3oR6huxbaUYB0lx0vE555wTHuE6nyeffDIcIMXW41h47vnnnw/f32bL448/biuuuGI4ObldEbH1uUbqDi/9ZF8fAj5p+Z/w8yHQH+kyx1cR2/7YULUOPgKpjw+NCJcZN0Rs0/HvQfPTvMiVTmy5qgfCmr3PNq+y3TwnYtsNWnM/m7rDSz/Z14eAT1r+J/x8CPRHuszxVcS2PzZUrYOPQOrjQyPCZcYNEdt0/HvQ/DQvcqUT27yKeZ8TsfUhmLrDSz/Z14eAT1r+J/x8CAy2NOOriO1g21Da9w+B1MeH/rW8fc2pz8urwqWq99bVT0VsK/Ko6FB//MszdtTZ19vaq42wEz89piJtlLHtNfCpBwzp57O48BN+PgQGW1rEdrDtJ+37i0Dq40N/W9+6dhHbqpBv/t66+qmIbUV+JmLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8iG1ayBfUJvUOJGJb0LBvi6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPlbGtyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGNi3kC2qTegcSsS1oWGVsfcAJP+HXEwR8laQ+8UtdPx/6fmkRWz+GqqG+CCh+NLdt6vPy+nqkiG0tbJt6BxKx9blZ6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VRbkSvyKBFbH/Cpd0jpJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQl7EtirklbFNC/mC2qTegURsCxr2bbHUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qTK2FXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDauMrQ844Sf8eoKAr5LUJ36p6+dD3y8tYuvHUDXUFwHFj+a2TX1eXl+PFLGthW1T70Aitj43S33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq59qK3JFHiVi6wM+9Q4p/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVciL2FaFvDK2aSFfUJvUO5CIbUHDvi2W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP1XGtiKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGGVsfUBJ/yEX08Q8FWS+sQvdf186PulRWz9GKqG+iKg+NHctqnPy+vrkSK2tbBt6h1IxNbnZqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTbUWuyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGtiXy119/vW2++eZ21VVX2SOPPGJ77bWXDR8+PC1Lva1N6h1IxNbnNqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfXT3Bnb8ePH2ze/+U27/fbbbeONNw52WG+99eyuu+6qyiZt35t6BxKx9blN6h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpBPfV5eFS5VvbeufpqL2M6ePdtWXHFF22233eyVV16xc8891y688ELbc8897amnngq/S62k3oFEbH0ek3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq5/mIravvvqqLbzwwvbTn/7UPvOZz9gaa6xhZ5xxhq277rr20EMP2ZprrlmVXVq+N/UOJGLrc5nUO6T0k319CPik5X/1xs/XOr+0iK0fQ9VQXwRSj79VIZ/6vLwqXKp6b139NBexBfSxY8faxRdfHPA/++yz7cQTT7TXXnvNHn/88aps0va9qXcgEVuf26TeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0K+dTn5VXhUtV76+qnuYntM888Y2eeeaYNGzbMDjvsMNt///3t85//vG222WZV2UTEto/Ip+7w0s9nfOEn/HwI+KTlfz78qpYWsa3aAnp/ygikHt+qwk7Etirkm7+3rn6am9gCy9SpU+3WW2+10aNH27LLLmurr756WlbKaJN6B1LG1uc6qXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+mluYnvFFVfYTjvtFPA/8sgj7aabbrIPfvCDduqpp1Zlk7bvTb0Didj63Cb1Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/zU1sV111VVt++eXDvbVc97PAAgvYsccea0888YSttNJKVdml5XtT70Aitj6XSb1DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyqc/Lq8KlqvfW1U9zEdt4KvLpp59ujz32mM0///y26667hnts77//fltrrbWqsouIbZ+QT93hpZ/P8MJP+PkQ8EnL/3z4VS0tYlu1BfT+lBFIPb5VhZ2IbVXIN39vXf00F7EFEsjr3//+93BnLdlaDpNadNFF7eGHH07LUm9rk3oHUsbW5zapd0jpJ/v6EPBJy/8GC7877rjDRo0aZSNGjAiKz5w5037/+9+H3VELLbSQrzF9kBax7QOoqrI2CJQVfwcxbhxxxBG1sfOgN6QsPy0bp9zE9p577rGvfe1rxre2sfz85z+f891t2Yp3ep+IbSeE2v8+dYeXfrKvDwGftPxP+PkQeEt68uTJYXH4gAMOCH823XTT8PNHHnnEvvCFL4QDG9/1rnf14lU9rUPEtqdwqrKaIdDv8WGQ44aIbTrO3m8/raqluYltVPC5556zv/71r/bud787ZGxTLSK2Psuk7vDST/b1IeCTlv8JPx8Cb0mfdNJJ1mqit8QSSxjjLZ/+pFZEbFOziPRJCYF+jw+DHDdEbNPx1H77aVUtzU1st9hii7AVubHccssttthii1Wlf8v3itj6TJK6w0s/2deHgE9a/if8fAi8Jd0q88Lv+PyH7ckpFhHbFK0inVJBoN/jwyDHDRHbVLzUrN9+WlVLcxPbzTffPHxXS3nhhRdC1pZTkqdMmZJk5lbE1udSqTu89JN9fQj4pOV/ws+HwFDpJ5980hZZZJGQoc0WiO18883Xy1f1pC4R257AqEpqikBZ48Mgxg0R23Scviw/LbvFuYlto2LHHHOMxVOSF1544bL17vg+EduOELV9IHWHl36yrw8Bn7T8T/j5EBgqfeaZZ4YtyTNmzBjyi+eff96WXHLJXr6qJ3WJ2PYERlVSUwTKGh8GMW6I2Kbj9GX5adktzk1sp02bZrNmzQr6vfnmm/bd737XTjjhhHDIxeqrr1623h3fJ2LbESIRWx9Ewk/49REBX9WpD1jS75/2nT17drhtgLL//vvbO97xjjm//NKXvqRTkbvoCsOGmV1+wtguJPSoEOg9AmXEt0GNGyK2vfe3ojWW4adFdfPI5Sa2K6ywwpytyPGFHG7xj3/8wxZccEGPDn2RFbH1wZq6w0s/2deHgE9a/if8fAjMTWwPOugg+8pXvtKravtajzK2fYVXlQ84AmWMD5HYDlrcELFNx7nL8NMqWpub2LL1+MUXXww68s3PO9/5Ttt2221ttdVWq0Lvju8Use0IUdsHUnd46Sf7+hDwScv/hJ8PgaHSe+21V7hKj3Fr6aWXnvPLXXbZJdwbn1oRsU3NItInJQTKGh8GMW6I2KbjqWX5adkt7khsaTgrQ60KxDbVwy1S7kDRof74l2fsqLOvt7VXG2EnfnpM2fZv+b7UHV76+VxF+Ak/HwI+afnfUPya7YjiCX1j252faStyd3jp6f4gUFZ8G8S4kfK8vD/ekG6tZflp2Qh0JLbDGCnalJQH3pQ7kIitz9VT75DST/b1IeCTlv8NFn633Xabvfrqq3Mp/eEPf1gZ2y5MKWLbBVh6tG8IlBV/BzFupDwv75tDJFpxWX5advM7Ettvfetb4bCoVuULX/jCkMMuym5Aq/dpK7LPEqk7vPSTfX0I+KTlf8LPh8BQ6auuuqopseVzH21Fzo+0iG1+rPRk/xAoa3wYxLghYts/v+u25rL8tFu9vM93JLbZF7CiTIaWwvZkLoneaKONdHhUASsoY1sAtIxI6h1S+sm+PgR80vK/wcJvELcU3jR9lA9kM4tElK+ddjpqUs/qc1ekCoSAA4Gy4u8gxg0RW4dj9Vi0LD/tsdodq8tNbCdNmmSHHHLIXCcjaytyR4ybPiBiWwy3KJV6h5R+sq8PAZ+0/G+w8PvVr341J2P70ksv2UknnRQytbfffrsytl2YUhnbLsDSo31DoKz4O4hxQ8S2b27XdcVl+WnXijkFchPbd7/73TZ8+PBwb+2HPvQhe/DBB2355Zc39vjrup/urSBi2z1mWYnUO6T0k319CPik5X+DjR8Lybvvvrs98cQTttJKK/ka0wdpnYrcB1BVZW0QqCr+DkLcELFNx82r8tN+I5CL2L7++uvhO9of/ehH9rvf/c6WW245+8xnPhOu/HnuuecC4U2t6Btbn0VSd3jpJ/v6EPBJy/+Enw+BodJHHnmkvfDCC+GHs2bNMr6dw8eefvrpsICcWhGxTc0i0iclBMoaHwYxbojYpuOpZflp2S3ORWxRatVVVw3k9rOf/axxp+0nP/lJ+8EPfmB//vOfbY011mirN/ffLrbYYtbphOVsJQzur7zySpDLFrZpLbLIIh2vGBKx9blS6g4v/WRfHwI+afmf8PMhMFS68Vu5JZZYwj73uc/Z//zP/3R8TVXjq76x7WgaPTCPIlDW+DCIcUPENp1OUZaflt3i3MT2uuuuM05APv/882377be3v/71r7bjjjva5Zdf3lLnZ555xu677z7beeedw0FTjSvPZH8PPPBAW3fddUMdPMf2q/POO88mTJhgK6+8sr3xxht2wQUXBFK85557hu+NHnvsMTv88MNtv/32a/luEVufK6Xu8NJP9vUh4JOW/wk/HwJDpadPnz7nvnjGujy7oKoeX0Vse+kBqqtOCJQ1Pgxi3BCxTcfTy/LTslucm9ieffbZtvXWW4ftx5BNBtVO3/5ceumldvPNN9spp5zSdEvVOeecY2xzhtzGKw2om2926bBLLbVUOLBq5MiRgdjOmDHDjj/+eJs2bVr4GdnbRRddtClmIrY+V0rd4aWf7OtDwCct/xN+PgSGSjO2sWh84YUXhnGOBd5999237Rhb9fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzENm55GDNmjO2zzz728Y9/PNeqMg2ClDb7Vmj8+PH23e9+Nwzku+66q0FGKVtuuaU9+uij4d8TJ060e++9N9TBzxnwuWpovvnmC8+MHj1axLYPXpO6w0s/n9GFn/DzIeCTlv8NxY9v5dh2zBZkFnTZEfX+97/f/vCHP3Q8Fbmq8VXE1tcHJF1fBMqKb4MYN0Rs0/H7svy07BbnJrbXX3+9XXnllXbZZZeFQy0okEy+s11ooYXa6t1q4D399NPDivRHP/pRg+TOP//8IXsLyX344YdDnaxi33DDDeFgjd1228122WWX8HOINlchjBo1ym666aaQGW4s1JN6mfzUDJv4i4ds9ZFL2ME7vDd1daWfEBACQmCeQKDVommvG8/Oo8UXXzyMfSz0smjLpzh8+sPtA+99b/txoarxtSfE1swmHLihzTazcWff4YZ22Nv1uStSBULAiUC/48egxo1BmJc7TT9Q4v320yrAyE1so3IQztNOOy38oeS5x7bVwMvhUBwERbnzzjtt7Nixdv/994ftxRwehRzbmClkdZdcckkbN26cvfnmm7b00kuH7cpMApoVbUX2uVPqKznST/b1IeCTlv8JPx8C/5R++eWXwyGJX//61+1rX/ta+MUll1wSFnIZF9dff/22r6pqfO0JsR1mdvkJY232bLOdjprkhlT32LohVAU9QKCM8WFQ44Yytj1wsB5VUYaf9kjVrqrJTWzZ8sB1P2yRoqy33nq2//77h2t/4vexrd6cHXg5wZFV6A033NA23XRTO/jggwOh5UL6qVOn2hlnnBEOk+LvddZZJ3zXe/TRR9vMmTMDmeYaBAb9k08+2W699daWjRWx7coP5no4dYeXfrKvDwGftPxP+PkQGCrNWMiuo2233TYs7PL9LGMku5I63SZQ1fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzElq2/XPfzqU99Kqwkv+9978utKwMvh02NGDEirEDznS5bi6+55ppAjhnIuTIIcst3RZy0vPfee4f6OYGZAzUgttttt5098MAD4Rqgq6++2jbeeGMR29xW6O7B1B1e+nVnz8anhZ/w8yHgk5b/DcWPk/5POOEEu+iii8LuJMbYL33pS/aBD3ygI9BVja8ith1NowfmUQTKim+DGDdEbNPpFGX5adktzk1s77nnnpBJbbX1N6/ibJ/gpGNORKawrfjZZ58NpDdbeI5tzpx+nC2PP/64rbjiiuHk5HZl0DK2o0cOtwN3XC8vjLbayOG22MLtMchdWZMHU3d46eexroXv5FP+tkL6yb4+BHzSVfgfi7ZsSebMCj6z6fRtbbMWljm+itj6fEzS9UWgzPgxaHFDxDYdvy/TT8tsdW5i2yuluKoHwrrmmmv2qsqm9Qwase0WjBMO3NzWGb18t2K5n0/d4aVfblM2fVD4CT8fAj5p+d9Q/PjMhs9yfvWrX4Ur9dZaa61woGK8KSAv2mWOrykTW77Znfbsi3lha/vcyGUX70k9qmTeQaCs+DaIcUPENp1+UJaflt3i0oltWQ0cFGL7l6em29lX3J0blilPTbeXZr5uIrbKOOZ2miYPph7QpJ/HusrI+9ArHz8Wetm19JOf/CRkbT//+c+HGwGeeOKJjvfFe9taRJ7xNXViq8OoilhWMr1AoKzxaxDjhohtLzysN3WU5ae90TZ/LW2JLduEueKHQyzuvvvusBV5lVVWyV97hU8O1YkUXQAAIABJREFUCrHtFqIjv3ed3T/lbyK22krbresMeT71gCb9XObVVnMffKXi98Ybb4RPaziI8cwzzwyaX3DBBeGcCQ5I/NCHPuRsTe/FRWx7j6lqrA8CZYxfgxo3RGzT8fMy/LSK1rYltq+++qotvPDC9ulPf9p+9rOfhYG2cZD9xCc+0fFU5CoaVndiu8X6q9kKSy+WC9ot1htly+d8NlaYusNLv1ymb/mQ8BN+PgR80vK/ofhtttlmduONN9rHPvYxW2KJJeznP/+5LbXUUjZ58uSO98T7LFFMWsS2GG6SmjcQKCu+DWLcELFNpw+U5adlt7jjVmTu0CNb26rkuce27EbxvroT224wLbJtOXWHl37deMDczwo/4edDwCct/xuK35QpU8Kd7ZMmTQo3CHAbwOGHH24f+chHfED3SXpeI7Z8s3v6ZXf0BM2Ddt6wJ/WoknQRKCu+DWLcELFNx2/L8tOyW9yR2HLvLMR21113Dd/9/Ou//usQHfl/p3tsy25UnYnttXdNsaefeykXpNfeNdWemf5SoW3LqTu89MvlAi0fEn7Cz4eAT1r+1xy/WbNmhevs+M425TIvElt9s5uyR6alW9nxbZDihohtOr5atp+W1fKOxDYq8uSTT9riiy9ud9xxh7300ku25ZZbhvtnUy11zdh2g7fne9zUHV76deMJcz8r/ISfDwGftPzPh1/V0iK2xSwwbJjZ5SeMLSYsqYFBIPX4VhWQqc/Lq8KlqvfW1U9zE9sbbrjBdtxxx3B5fCwTJkywQw89tCqbtH1v6h2oDIcSsa3ONcuwr6d10s+DXvmn5narrezbLWJDn08dP1/r/NIitsUwFLEthtugSSl+NLdY6vPyQfMzr7519dNcxJZtDpyMzLc/X/7yl0OmduLEiSF7+/e//92WXXZZL749l0+9A5XhUCK2PXer3BWWYd/cyjR5UPp50BOx9aEn/JrhN3v2bHv88cfDgY3LLLNMkp/4RL1FbIv1ABHbYrgNmlSZ4+ugxQ1tRU7Hm8v00zJbnYvY/uMf/7DlllvOvvOd74RL5CnXXHONffSjH7XbbrvNNt544zJ1zvUuEVszEdtcrtKXh1IPGNLPZ3bhJ/x8CAyVfuSRR2ybbbYJ1wwdeeSRdv/999uee+5pu+++ey9f07O6RGyLQSliWwy3QZMqa3wYxLghYpuON5flp2W3OBexZUWIqwfWWmutcHIjGdvjjz/eLr74Yps2bZqtsMIKZevd8X0itiK2HZ2kjw+kHjCkn8/4wk/4+RAYKs3tA0xSR4wYYWPHjrW//vWvdv7559v06dPD2JtaEbEtZhER22K4DZpUWePDIMYNEdt0vLksPy27xbmILUqdeuqpNm7cuCH6sS352GOPLVvnXO8TsRWxzeUofXoo9YAh/XyGF37Cz4fAP6XjffGnnXaa/d///Z/NP//84RaC9dZbL9xI8MEPfrBXr+pZPSK2xaAUsS2G26BJlTE+DGrcELFNx5vL8NMqWpub2KIcg+5ll11mL7zwgu28884hg5tqEbEVsa3SN1MPGNLP5x3CT/j5EBgqveSSS9oHPvABGz58uL3jHe+w+eabz6666irjM6AFF1ywl6/qSV0itsVgFLEthtugSZU1Pgxi3BCxTceby/LTslvcFbEtWznP+0RsRWw9/uOVTT1gSD+fhYWf8PMhMFT6oosusv/8z/8ccusAu6HYFZViEbEtZhUR22K4DZpUWePDIMYNEdt0vLksPy27xSK2ZSP+9vvKcCgdHlWRcU2nvnqRL6N/eHSUfh701D+aocfWwuuvv96mTJli6667rm2yySY+kPsoLWJbDFwR22K4DZpUmePDoMUNEdt0vLlMPy2z1SK2ZaKdeVcZDhWJbd4mrr3aCDvx02PC42Xol1evZs9JPw96sq8PPeEn/LwIDJU/5phjwic+jeW4444L1/+kVkRsi1lExLYYboMmVdb8ZBDjhohtOt5clp+W3eLcxPbf//3f7VOf+pRtttlmQUdObdxnn33sxz/+sU5FLmC1MhxKxLaAYXokUoZ9PapKPw96IrY+9IRfI37cLMA98Y3l+eefN76jS62I2BazSCS2s2eb7XXcz96uZHaxyt6WuvArn3DJS7j3CJQ1vg5i3BCx7b2/Fa2xLD8tql9RuY7E9gc/+IFNnDgxnM64yiqr2PLLLx/exSAMueVwCy6TT63oG9v8FvnjX56xo86+3pSxzY9ZpydTDxjSr5MF2/9e+Ak/HwJDpRlHZ82aFX748ssv2+GHH25Tp061W2+9NZySnFoRsS1mkSyx3emoScUqyUgpA+yGsC8VlDU+DGLcELHti8sVqrQsPy2knEOoI7H94Q9/GK76aSS2vHPLLbc0BrgUi4htfquI2ObHKu+TqQcM6ZfXks2fE37Cz4dAe2nusGWX1OTJk+3d7353P19VqG4R20KwmYhtMdwGTaqq8WEQ4oaIbTreXJWf9huBjsQ2KvDVr37VPvaxjxkXQg9CEbHNb6VIbFdYejHbYv3VguBzzz1nSy+9dNNKFlt4QRu9UvPfZQUW5bmRw/Mr0sWTqXdI6deFMZs8KvyEnw8Bn3TZ/rfpppvaU089NUdp3k+ZMWOGLb744r7G9EFaxLYYqCK2xXAbNKmy4scgxg0R23S8uSw/LbvFuYntjTfeaN/+9rfD1qhsefTRR5MdeFPuQCk5VCS2vXa+7NbmXtedEn7N2ib9fBYXfsLPh4BPumz/22qrrezpp58OSi+wwAIhS0vGdocddvA1pE/SIrbFgO0XseWb3f/9zX05lOr8Pe9+26xr1PfIE8/mqK/zI+9ZJb1P1Tpr7XuirPgxiHEj5Xm5z+qDJ12Wn5aNTG5iu9Zaa9kDDzxg6623XrhAPpZrr73WFl100bL17vg+ZWw7QjTngWeee8muuWvKEIFmGduXZr5uf3nyuY4V89yUp6YP+Wa3o1CXD6TeIaVflwZteFz4CT8fAj7p1P3P1zq/tIhtMQz7SWx7+c0uxLaX9RVDa3ClFD+a2y71efngelwxzevqp7mI7ZtvvhlWkb/2ta/Z17/+9WIIliyVegdK3aE8+jX7ZrfX5vfo12tdmtUn/XwoCz/h50PAJ12W/6266qr22muvtVQ25R1RN00f5QPZrG/fnPaamKm+YqaeVw+36nf8GOS4oYxtsb7UD6l++2k/dM5TZy5iS0X777+//f73vw/X+2S/vVx55ZVtGNErsSJi6zOIx+FFbHWdic/7hJ/w8yLgk/fEv27ezFbjN954o6XIT3/602R3RInYdmPpt55VxrZ7zAZRot/xY5DjhohtOh7dbz+tqqW5ia3uy+qtiVJ3KI9+kdhycNSBO67XEbjVRg43DqTqpnj06+Y9RZ+VfkWRe0tO+Ak/HwI+6RT874UXXgjnV8w333y+xvRBWluRi4EqYlsMt0GTqjJ+pB43RGzT8eYq/bSfKOQmthMmTAgnNDaW8ePH20ILLdRPHQvVrYxtIdjmCHkcvtvDqE44cHNbZ/Rb9yPnLR798r7D85z086AnYutDT/gNGn5/+tOf7Oijjzb+ppDF5ZRk7opfcsklvc3pubyIbTFI51Viy1buux/556nfudFrctbV+muOzC1e1YNljf+DGDdEbKvyyrnfW5aflt3i3MSWw4RmE50ayjLLpHninYitz5U8Dv+Xp6bb2Vfc3VEBDpjioCkR245Q9fwBj317rkyTCqWfD2XhN1j4bbTRRnbHHXcEpZdffnl75plnbPTo0Xb//ffbIoss4mtMH6RFbIuBOi8T23npMKqy4u8gxg0R22Kxox9SZflpP3RvV2duYqutyL01TeoOVYZ+R37vOrt/yt9EbHvrWrlqK8O+uRRp8ZD086CnjK0PvXLxe/3118NNAxdddJFddtlltsEGG9gmm2xi2267rf39738fcguBt129khexLYakiG0x3KLUoBxGVcb4NahxQ8TW1wd6KV2Gn/ZS37x15Sa2nIgctyK/+OKL4RApTma7++67tRU5L9qZ51J3qDL0E7Et4Dg9EinDvh5VpZ8HvXKJWRFNZd+hqLHdGDLLn0mTJtlhhx1mBxxwQMjYctVeakXEtphFRGyL4SZi2xy3QYwbIra+PtBL6dTH4aJtzU1sG19w3nnnhYH32WefHXJKclFFei2nrcg+RMtweBFbn4080mXYV/p5EPDJyr6DgR9X6c0///x2yimn2H/913/ZddddZ2PGjAnKsyX5iSeeCFftpVZEbItZRMS2GG4itkNxG+S4IWLr6wO9lE59nlC0rbmJ7RVXXGEzZ84M76FT/ehHP7Irr7zSpkyZYqNG+e+zK9qAVnIitj5Ey3B4EVufjTzSZdhX+nkQ8MnKvoOBH5/4jB071nbddVdbY401bLnllrM///nP4RCprbbaypZaailfQ/okLWJbDFgR22K4idgOxW2Q44aIra8P9FI69XlC0bbmJrbNvrH98Ic/bDfeeKPusS2AfuoOVYZ+IrYFHKdHImXY16Oq9POgp63IPvTKw4/PeTj5mEKGdp999rFddtnFOBQmxWt+Iq4itsU8TMS2GG4itkNxG+S4IWLr6wO9lE59nlW0rbmJ7TXXXDMnYzts2LDwfe173/veJA+2AAxlbIu6xFtyZTi8iK3PRh7pMuwr/TwI+GRl38HAj5sG/vjHP9pvfvMbY1cUC8WUVVZZJZBcrgBacMHu7vj2tTyftIhtPpwanxKxLYabiO1Q3AY5bojY+vpAL6VTnycUbWtuYssL7rvvPvvpT39qXAD9yU9+0j70oQ+F74NSLCK2PquU4fAitj4beaTLsK/08yDgk5V9BxO/m2++2Q455JBwKCPl+eef1z22XZhSxLELsJo8Oij4+VrZf+my4+8gxQ0R2/77X943lO2nefXyPpeb2J5zzjl24IEHDnkf3wVdfPHFXh36Ii9i64O1DIcXsfXZyCNdhn2lnwcBn6zsOxj4ccPADTfcEDK2XPUTtyW///3vt7322svGjx+vw6O6MOWgELPZs816ea/rvFZfFy5RyaP9jr+DHDdEbCtxyaYv7befVtXSXMT2tddeC1uPGWxPO+20cGH8scceaz/4wQ/sscces3e+851V6d/yvSK2PpOU4fAitj4beaTLsK/08yDgk5V9BwM/PuuJ5T3veU8gs+yGSvGKnyyi2opczL9EvIvhFqV0j+1bSAxy3BCx9fWBXkqnPk8o2tZcxHb69OnhSh+uJBg3blx411VXXWVbb721sQWCu/dSKyK2PouU4fAitj4beaTLsK/08yDgk5V9BwO/Nddc0/bYYw/beeed7QMf+IBP6RKlRWyLgS1iWww3EduhuA1y3BCx9fWBXkqnPk8o2tZcxJbKydiSueXi+EUXXdS+973v2bRp02zq1Kkhg5taEbH1WaQMhxex9dnII12GfaWfBwGfrOxbb/x8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZemR+jyhKA65ie1vf/tb+4//+I9wWi5liSWWsO9///vhaoIUS+odKHWHKkM/Edvqek4Z9vW0Tvp50CvnVHOPhrKvB73qZUVsi9lAxLYYbiK2PtxSkU59Xp4KTmXpkfo4XBSH3MSWF3DE+D333GN8uM724wUWWKDoe/sul3oHSt2hytBPxLbv3aDlC8qwr6d10s+DnoitD7308fO2zysvYlsMQRHbYriJ2PpwS0U69Xl5KjiVpUfq86yiOOQithMnTrQHHnjAzjzzzPCe//7v/7YxY8bYVlttVfS9fZdLvQOl7lBl6Cdi2/duIGLbJ4jL6B8e1aWfBz0R207oidh2Qqj570Vsi+EmYuvDLRXp1OflqeBUlh6pzxOK4tCR2F500UW25557BiJ77bXXhvdst9129qtf/co+85nPzCG7RRXol1zqHSh1hypDPxHbfnl/53rLsG9nLVo/If086KVPzGRfn32rlhaxLWYBEdtiuInY+nBLRTr1eXkqOJWlR+rjcFEc2hLb119/3ZZddtlwcNStt94656L4l156yXbYYQfju9snnnjCVlpppaLv75tc6h0odYcqQz8R2765f8eKy7BvRyXaPCD9POiJ2PrQSx8/b/u88iK2xRAUsS2Gm4itD7dUpFOfl6eCU1l6pD7PKopDW2LLqccjR460r3zlK3bMMccMecd5551nBxxwgN1444226aabFn1/3+RS70CpO1QZ+onY9s39O1Zchn07KiFi64Gorazs64M2dfx8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZelR13GuLbF98803wwFRq6yyij388MPhmh/KG2+8EbYjX3311fbYY4/ZO9/5zrZ24LCpxRZbbMil0lmBGTNmhFOWs2XWrFn2yiuvBLlsIVvM9ULzzTdf23em3oFSd6gy9BOxLSt8zf2eMuzraZ3086CXfsZR9vXZNytd1fh60/RR7kaI6PkgnFfx86HWf+nU4xsIVBU3dI9t//0v7xsGwU/ztiX7XMdvbLm39tvf/naQ2XbbbQMB5ftayOjWW29tv/71r1u+95lnnrH77rsvXD4/efJkW3755Yc8e9ddd4Ws77ve9a5AkM8991zbYIMNjGzwhAkTbOWVVw4k+oILLgikmG99Ido8e/jhh9t+++3X8t0itkXc4Z8yZTi8iK3PRh7pMuwr/TwI+GRl33rjR+uqHl9FbLv3sXmViM6ebbbTUZO6B6xBIuLnrqjPFaQcf6uOGyK2fXa+LqpP2U+7aMZcj3YktjNnzrQTTzxxrq3I++yzj5188sm23HLLtXz/pZdeajfffLOdcsop9vTTT89FbDlVGeLM3zx71lln2S9/+UtbcMEFbfr06bbUUkvZIYccErZDQ2wh08cff7zFLdJkb2MWuVEJEVuPW5ST8RGx9dnII516QJN+HuuW0389Gsq+HvTekq16fBWx7d6GIrbdY5aVELH14ZdC3BCx9duwVzWkPg4XbWdHYhsrfvXVV23q1KnG36NGjZpzkFSeF0NKmxFbDqW65ZZbwuFU3I+7zTbb2G233WZbbrmlPfroo6Fqrhq69957A7Hl57vvvnu4T5etyDwzevTopiqI2OaxTOtnynB4EVufjTzSZdhX+nkQ8MnKvvXGb+hkv5rxVcS2ex8Tse0eMxFbH2atpDUv7w+ug1Rr6vOEoljmJrZFX4Bcqw605JJLhm93ycgC8Ec+8hG78sorbddddw0/p5x//vl2ww032AsvvGC77bab7bLLLuHnK6ywgt1+++2BZDcrIrYei5WT8RGx9dnII516QJN+HuuW0389Gsq+HvSGylY1vorYdm9DEdvuMROx9WHWLbGdl+fl/UE63VpTH4eLIlcpsd1ss83CNuX111/f7rzzzrDdedKkSWF7MYdHMWDzewrbkOlw48aNMw61WnrppcN2ZTK3N910U9jy3FggyCrpIjDxFw/Z5Kdm2ME7vNdWHzn08LB0tZZmQkAIzAsItNoNlFrbWxHbfo+vPSG2ZjbhwA1ttpmNO/sON7TDVJ8Lw0HBz9XIkoRTjx9VxQ3Ny0tywJyvSd1PczZjyGOlE1tOYnvwwQdtww03tC9+8YvhG93x48eHb20XX3xxO/bYY23ddde1M844w9ZZZ51wQNXRRx9tfOt72mmn2VVXXWWXXHJJ+L6Xu3VbFWVsi7jDP2XKWMlRxtZnI490GfaVfh4EfLKyb73xy7YuO0Etc3ztCbEdZnb5CWOt14cLqb5i/j8oGeVirStPKvX4CxJVxQ19Y1ueH3Z60yD4aac2NPt9acSWk9hGjBgRMrNjxowJW4v5RnaTTTYJeg0fPjwQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDseWKoQceeCBcA8RVQxtvvLGIbRGr55Apw+FFbHMYok+PlGFfj+rSz4OetiL70Esfv0ZiW8X4KmLbvZcNCnFMfWGge+TLlUh9/IrEtoq4IWJbri+2e9sg+GkRtEohtlnFXn755XDS8TnnnBN+zHU+Tz75ZDhAihWkWHju+eefD9/fZsvjjz9uK664Yjg5uV1RxraIO/xTpgyHF7H12cgjXYZ9pZ8HAZ+s7Ftv/Fq1rszxVcS2ex8Tse0es6GLOG9l+FMvqcffRvzKjBsitul476D5aV7kSie2XNUDYV1zzTXz6ljoORHbQrDNESrD4UVsfTbySJdhX+nnQcAnK/vWG79WrStzfBWx7d7HRGy7x0zE1odZHuky44aIbR6LlPNM6vOEoiiUTmyLKtqtnIhtt4gNfb4Mhxex9dnII12GfaWfBwGfrOxbb/x8rfNLM76K2HaPo4ht95iJ2PowS0k69Xl5SliVoUvq84SiGIjYFkXOKZe6Q5Whn4it04kc4mXY16FeuP4r5dP6pJ/Huul/w5q6fX3o+6VFbIthKGJbDLcoFfHz1dJ/acWP5hiL2Pbf97p5Q139VMS2Gy/o4bOpO1QZ+onY9tChuqyqDPt2qdKQx6WfBz0RRx966ePnbZ9XXsS2GIIitsVwE7H14ZaKtIhtKpZ4S4/U51lF0RKxLYqcUy51hypDv0hst1h/NVth6cWaIrr2aiNsndHLz/W7MvTzmFj6edBLP+DKvrKvD4HBlhaxLWY/EdtiuInY+nBLRVrENhVLiNimZYmc2qTegTQxNovEtp1J99hiLdtzy7VFbHP6fd7H5H95kWr+nPATfj4EBltaxLaY/URsi+HWSGy5juj0y+7wVfa29EE7b/j/2TsT+M+m8o8fW1kqprKrzCRZiyQlJRmRJZKQEDGVQkqIUJJsJYRkSQuKikIla8patmpIixmSfRliUJb5v95n/s9057rf7733nHu/3/O9v895veY1M7/fPfc+53Oec87zeZ7nnNPIe7IvSX19aLzBFV+Yul1esRmdeayreqqI7ZBUNHWFGoR8l94w1d0/bXphD/x5ygNu8tQHnYhtOwo6iP6NkVzyxaCniHcceunjF9u+2PoitmEIitiG4VZEbN+331lxL3POtbVnN/X1Kxq4wBeI2AYC11K1ruqpiG1LClP22tQVatjynXnJZPfDS2/xKcqLFKQpP/XUU27jty/vSGNOsQwbvzJMJF8ZQv1/L/yEXxwCo11bxDas/0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKNWz5jNj2g7lXNDeyaxqpPmz8yhoh+coQErGNQ0j4tYnfsN8tYhvWAyK2Ybi1TWxJbf7y934bJ9z/1/7iDu/sLGGIBUjENhbBZuunbgeGtlbENhS5yHqpK9Sw5Xtg2vSeacqkMF964x0905Qju6aR6sPGr6wRkq8MIRGzOISEX5v4DfvdIrZhPSBiG4bbIIhtk6nNqa+vcb0QXlvENhy7Nmp2VU9FbNvQlgrvTF2hUpbPormK2FZQtB6PpNy/iCz5wvtW+MVhNwr4xbcw7g0itmH4idiG4SZiG4dbKrVFbFPpiZlypG5nhaIlYhuKXGS91BUqZflEbCOVbwQmtJT1bxQWBOEXN0ZSxy+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AqRtOKcsnYltxEPR5LOX+FXFU/8YjEPeG1MdHXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJ0dV1ThHbQWlQ7jupK1TK8onYxittyv0rYqv+jUcg7g2pj4+41sXXFrENw1DENgw3Eds43FKpLWKbSk/MlKOr65yI7ZD0LHWFSlk+Edt4pU25f0dhwhV+cToo/OLwG3ZtEduwHhCxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AMuwqdmTBY0ZsucN2Yo97bFcav3D4Bxqoqf6NA1H4Cb84BOJqp65/ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR1fXOUVsB6VBue+krlApy1fljtvzD91qSD07Gp6wlPsXBCVfnPoKv27jF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpidGwU0PRErENRS6yngzPcAC5x/aCq/7i5p133he8ZPLUB/3PRGz74yv9C9c/Ee847IRfPH7DfoOIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyARi4od2eOxXvhtsu9ZIrYVoJX+VQCpzyPCT/jFITDatUVsw/pPxDYMNxHbONxSqZ26XZ4KToOSI3U7JhQHRWxDkYusl7pCjap8IrbVFHNU+7da69p/SvjFYSz84vAbdm0R27AeELENw03ENg63VGqL2KbSEzPlSH0dDkVLxDYUuch6qSvUqMonYltNMUe1f6u1rv2nhF8cxsIvDr9h1xaxDesBEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1ASTDrmJH9nhMqcjt4Bf31uZqa3zEYSn8uo1fXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJkbqdEIqDIrahyEXWS12hRlU+RWyrKeao9m+11rX/lPCLw1j4xeE37NoitmE9IGIbhpuIbRxuqdQWsU2lJ2bKkfo6HIqWiG0ocpH1UleoUZVPxLaaYo5q/1ZrXftPCb84jIVfHH7Dri1iG9YDIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qA0iGXcWO7PGYUpHbwS/urc3V1viIw1L4dRu/uNbF1xaxDcNQxDYMNxHbONxSqZ26XZ4KToOSI3U7IRQHRWxDkYusl7pCjap8ithWU8xR7d9qrWv/KeEXh7Hwi8Nv2LVFbMN6QMQ2DDcR2zjcUqktYptKT8yUI/V1OBQtEdtQ5CLrpa5QoyqfiG01xRzV/q3WuvafEn5xGAu/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMu4od2eMxpSK3g1/cW5urrfERh6Xw6zZ+ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR+p2QigOitiGIhdZL3WFGlX5FLGtppij2r/VWtf+U8IvDmPhF4ffsGuL2Ib1gIhtGG5w2CnDAAAgAElEQVQitnG4pVJbxDaVnpgpR+rrcChaIrahyEXWS12hRlU+Edtqijmq/Vutde0/JfziMBZ+cfgNu7aIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyAZdhU7ssdjSkVuB7+4tzZXW+MjDkvh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKNaryKWJbTTFHtX+rta79p4RfHMbCLw6/YdcWsQ3rARHbMNxEbONwS6W2iG0qPTFTjtTX4VC0RGxDkYusl7pCjap8RmyLuuf8Q7eK7LXq1UcVv+otbPdJ4ReHr/DrNn5xrYuvLWIbhqGIbRhuIrZxuKVSW8Q2lZ4QsU2rJypKk/oAkuFZsSN7PFaWiixi2x9f6V87+hf31uZqq3/jsEwdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleoLsk3jPTkLuE3jCEi/OJQF37dxi+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMz5UjdTghFS8Q2FLnIeqkrVJfkG0Z6cpfwi1T1oOrCLwi2WZWEX7fxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMz4od2eOxOviJ2L4QxDr4xfVUWG3JF4ab1RJ+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaqdul6eC06DkSN1OCMVBEdtQ5CLrpa5QXZev7fTkruMXqf6l1YVfKUR9HxB+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaovYptITM+VI3U4IRUvENhS5yHqpK1TX5ROxneImTJgQqcXtVe+6/rWH3GgsWOrftjWg3feL2IbhK2IbhpuIbRxuqdQWsU2lJ0bDTghFS8Q2FLnIejLs4gCMxU/EVsQ2RgNj9S/m21XqSr4qKPV+JnX84loXX1vENgxDEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1AZS64dR1+URsRWwrTiWFj3V9fMRgU6Wu8KuCUrrPiNiG9Y2IbRhuIrZxuKVSO3W7PBWcBiVH6utwKA6K2IYiF1kvdYXqunwitiK2MUO46+MjBpsqdYVfFZTSfUbENqxvRGzDcBOxjcMtldoitqn0hCK2afVERWlSH0Ay7Cp2ZI/HYvETsRWxjdHAWP2L+XaVupKvCkq9n0kdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleorssnYitiGzP0uz4+YrCpUlf4VUEp3WdEbMP6RsQ2DDcR2zjcUqktYptKTyhim1ZPVJQm9QEkw65iRypiGwdUS/i1IlTmpRofcQgLv27jF9e6+NoitmEYitiG4SZiG4dbKrVTt8tTwWlQcqRuJ4TikGzE9vnnn3dPPfWUW2CBBWZr2/Tp0918883n5pxzzr5tTn0Apa5QXZdPEVtFbEMnTep1fXzEYFOlrvCrglJ7zzSxvl756NLRAoroxUEo/NLEL/X5LRS1JuaNffbZJ/TzqtcwAl3V06ES29/+9rdu0qRJ7o1vfKPvrs0339xtvfXW7rTTTnNHH320W3LJJd2zzz7rzjjjDDfHHHO4bbbZxs0999zuzjvvdHvttZfbYYcdenaziG3cCEhd4WPlE7EVsY0ZIbH6F/PtKnUlXxWUej+TOn5VWtf2+ipiW6UXZn9GRLQ+Ztkao4LfKM8fbc8bIrZxY6DJ2qOsp/1wGCqxPeWUU9wzzzzjyS2ElQKRnWeeedyjjz7qFlxwQbf77ru7xRdf3BPbxx9/3B1yyCHuvvvu8z8jejv//PMXtk/ENk79U1f4WPmM2K48YZG+QE1YfCG3wHwvmvXMum9a2i0ybvYsgqIXxMoX13vltSVfOUb9nhB+wi8OgfZrt72+itjW78NRIWYzZjj3vv3Oqt/AXI2x2t7U14d+Hdv2vCFiGz2sGnvBKOtpssR27733dieeeKInrB/84AcdZJQyceJEd/vtt/t/f/Ob33Q333yzJ7b8nIjujBkzfCoyz0yYMEHEtjE1/9+LUlf4WPmM2NaFbtLGq7oJS4ybVW08xHfeeV7wmlj56spV93nJVxex2Z8XfsIvDoH2a7e9vorY1u/DsUr0xhpRTn196Ke5bc8bIrb15422aoyyniZLbI8//ni3xBJLuPXWW88xmOaaay4fvYXk/vWvf/Vy/+AHP3BXXHGF+/e//+223HJLt8UWW/ifL7roou66665zSy+9tLvyyivdVVdd9YJ28h4VIVCEwD/ufbwvMP96+En31H+enfXM7//2kHvkif++oM5uGy/nlln8pQJZCAiBjiHQy2k6Ks1se31thNg6546etLqb4Zzb4+Q/REM7h94XhaHwi4LPGX68ZVTnj7bnDdnlcTrWdO1R1dNkiS2HQ3EQFOX66693W221lZs8ebJPL2aTOlHab3zjG/73RHVf9rKXuT322MM999xzbty4cT5dudchUkpFjlP/1D05g5bv5AtuclPumTYL1Kn3PuqmP/2M++qkdVxROvOg5avb25KvLmKzPy/8hF8cAu3Xbnt9bYTYzuHceV/dyo21iJ7aG6b/oxLxTn196Id+2/OGIrZhut9GrVHW02SJ7VprreV22203T2iPOOIId8cdd7gTTjjBHybF3yuvvLJbf/313UEHHeSefvppd9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3q2TcQ2bhikrvDDlm/fky5zk6c+KGIbp2Y9aw+7f8uaJfnKEOr/e+EXh1+V2m2vryK2VXph9mdGhZiJeNfvW2pY/6Y+v/VrXdvzhohtmG61UWuU9TRZYnvJJZe4HXfc0UdoX/e613lyu8IKK7jzzjvPbbvttl7ujTbayJ155pme2G644Ybu1ltv9dcAXXzxxW6NNdYQsW1D23WdSSmqRmzzh0tZRXR047cv79ZdbXzpu4bxQOoTmuSL0wrh1238qrSu7fVVxLZKL4jYjsWIfOrzbz/NbXveELGtP2+0VWOU9TRZYotgpBU/8sgjbuGFF55NzieffNI99thj/vTjbLnrrrvcYost5k9O7lcUsY0bCqkr/LDlM2LbD+UPrbui22biSnEd0VLtYeNX1izJV4ZQ/98Lv27jV7V1ba6vIrZVe+F/zyliWx+zbI1RwS/1+besF9qcN0Rsy9Af3O9HXU97ITXU637a7D4R2zh0U1f4Ycs3hT22T73wMClQv/SGqe7SG+9wIrbhOjjs/i2TXPKVISTiHYdQ2rVZX0Vs6/fRqBAzpSLX71tqdCEVOazl1WqlbpdXa0V3nkrdjglFWsQ2FLnIeqkrlOQL7+AzL5nsfnjpLSK24RA66V8EeNpKEAfeCOAX3cDIF4jYhgEoYhuGm9UaFfxSX7/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmfmHjVim/3xSuMXdod+7N3hL224pvo3DlDhJ/ziEBjt2iK2Yf0nYhuGm9UaFfxSXx/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmcWPGr4/XnKA26/ky93itjWw1P6Vw+v/NPCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eEbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1wKgQM0Vs4/o39fktrHXxtURs4zFs8g1d1VMR2ya1pMa7UlcoyVejMwseFbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1gIhtGG5Wa1TwS31+i+uF8NoituHYtVGzq3oqYtuGtlR4Z+oKJfkqdGKfR/LEdtFxC7h1Vxvvayyy0Pyz/h33lfDa6t9w7Kgp/IRfHAKjXVvENqz/RoWYKWIb17+prw9hrYuvJWIbj2GTb+iqnorYNqklNd6VukJJvhqdWfBonthmH0lhv636t5n+jXtLe7XVv3HYpo5fXOvia4vYhmEoYhuGm9UaFfw0fxT3s4htnP43Xbureipi27SmVHxf6gol+Sp2ZI/HDL8Hpk13l9ww1T/Fvy+98Q6Xjd5CcleesEjcxwJqq38DQMtUEX7CLw6B0a4tYhvWf6NCzBSxjevf1NeHsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4tAg/OyE5+/iH1l3RbTNxpbiPBdRW/waAJmIbB5rwawy/Yb9IxDasB0Rsw3CzWqOCX+rra1wvhNcWsQ3Hro2aXdVTEds2tKXCO1NXKMlXoRP7PFKEXzZ6C8mdPPVBJ2JbDKL0r3n9i3tjs7XVv83iOei3idiGIT4qxEwR27j+TX1+C2tdfC0R23gMm3xDV/VUxLZJLanxrtQVSvLV6MyCR8vwO/OSye6Hl97i05IXGbeAf4NFbjlcyn4WJ0Xv2mXytfXdqu+VfFWRkmMgDqnRxK+NNtd5p4htHbT+96yIbRhuVmtU8Et9/YrrhfDaIrbh2LVRs6t6KmLbhrZUeGfqCiX5KnRin0fK8DNiW/QK9tzavlsium2UMvna+Gadd0q+Omi98Fnh12384loXX1vENgzDUSFmitjG9W/q829Y6+JridjGY9jkG7qqpyK2TWpJjXelrlCSr0ZnFjxahh9pyfdPm+5rQnIpD0x70j3w6MyfWTn/0K3iBOlRu0y+Vj5a46WSrwZYAfoX9/b42urfeAyH+QYR2zD0RWzDcLNao4Jf6vNbXC+E1xaxDceujZpd1VMR2za0pcI7U1coyVehE/s8EoIf+275QyFNOVua3osbIl8cIvVqS756eOWfFn7dxi+udfG1RWzDMBwVYqaIbVz/pj7/hrUuvpaIbTyGTb6hq3oqYtukltR4V+oKJflqdGbBo7H4bbLvWbO91fbijl98ITdp41XjhHPOxcoXLUDJCyRfHMLCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eaQq//F7cBeadx01YYpz/8lcnrRMsZFPyBQsgYtsWdP696t84eFPHL6518bVFbMMwHBVipohtXP9q/ijGT8Q2TK/aqtVVPRWxbUtjZLi3imzqA7Ip+Wwv7pR7H3WnXHBTIaYh+3Cbkq+tTpZ8ccgKv27jF9e6+NoitmEYitiG4Wa1RgW/1OffuF4Iry1iG45dGzW7qqcitm1oS4V3pq5Qkq9CJ/Z5pGn8pj/9jJtyzzT/xf1Ovny2Lx/6sXf7/680fuHKQjctX+UPV3xQ8lUEqsdjwq/b+MW1Lr62iG0YhqNCzBSxjevf1OffsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4dBD45ffh1oncDkK+GAQlXwx6SkWOQy99/GLbF1tfxDYMQRHbMNys1qjgl/r6FdcL4bVFbMOxa6NmV/VUxLYNbanwztQVSvJV6MQ+jwwCv31PusxLMHnqg/7vbSau5P+ucvftIOSLQVDyxaCXPjFT/8b177Bri9iG9cCoEDNFbOP6N/X5Lax18bVEbOMxbPINXdVTEdsmtaTGu1JXKMlXozMLHh0kfvnILeKQlmwpykUtGaR8IUhKvhDU/ldH+HUbv7jWxdcWsQ3DUMQ2DDerNSr4pT7/xvVCeG0R23Ds2qjZVT0VsW1DWyq8M3WFknwVOrHPI4PEj5OTKdm7b0Vs4/qvrPYg+7dMFjkuQhDqXyf1/m2+xfXeKGJbD69RI2aK2Mb1r+aPYvxEbMP0qq1aXdVTEdu2NKbkvakrlOSLU4xh4ffnKQ/4w6VEbOP6r6z2sPq3TC77veSrilTxc6njF9e6+NoitmEYjkrEUcQ2rn81f4jYhmnQYGt1VU9FbAerR7O+lrpCSb44xRgWfkZs7b7bdd+0tFt3tfEvaMyw5KuKquSritRoEjP1b1z/Dru2iG1YD4jYhuE2ahHv1Oe3uF4Ir62IbTh2bdTsqp6K2LahLRXembpCSb4KndjnkWHhZ8TWROMgKTtUKivusOSriqrkq4qUiG0cUqOJXxttrvNOEds6aP3vWRHbMNxEbONwS6W2iG0qPTFTjtTtrFC0RGxDkYusl7pCSb64Dh4Wfnbf7aU3THWX3niHW3nCIv4PhejtIuMWGIkJbVj4Ve11yVcVqdEkjqn3bxz68bVFbMMwFLENw03ENg63VGqL2KbSEyK2afVERWlSH0CpG06Sr6Ki9Xhs2PhxoFT2MCnEnLD4Qp7YTlhinJs2bZp7x5uWnUV641rbfO1h41fWIslXhlD/3wu/OPyGXVvENqwHRGzDcBOxjcMtldqp2+Wp4DQoOVJfh0NxUMQ2FLnIeqkrlOSL6+Bh40dKMn8ol95wh3vg0el9G0RUt9d+3DgkwmoPG78yqSVfGUIitnEIpV1bxDasf0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKJfniOjgl/Kbc+6h7YNp0N+Weab5REN7JUx8sbKAdOmXpy/bQIgvNX3gIVRxKvWunhF+RlJIvrueFXxx+w64tYhvWAyK2YbiJ2MbhlkptEdtUekLENq2eqChN6gNIhl3FjuzxmPBrBj9Iru3HrfJGDqLiQKq2i/o3DmHh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKJfniOnjU8LNDpyx92VpPpJdDqPKFK4TetsKSboH5XuSI5tqhVHGo/a/2qOHXVLubeo/wi0MydfziWhdfW8Q2DEMR2zDcRGzjcEultohtKj0xU46urnMitkPSs9QVSvLFKUbX8Cs6jCqLkJ2+DMFdefzC0US3a/jFaVP92sKvPmbZGqnjF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpCRHbtHqiojSpD6DUDSfJV1HRejzWVfxIW7721rvdE0/91z0w7cnCQ6kWHbeAJ7ZEdfn3SuMXrg1mV/GrDURgBeEXCNz/V0sdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UlcoyRenGGMFPzt9mZTlP095sOfpy+97+7Ju0sarVgZ1rOBXGZCaDwq/moCN2Pwc17r42iK2YRiK2IbhJmIbh1sqtUVsU+mJmXKkbieEoiViG4pcZL3UFUryxXXwWMQPcns/e3JvmOr/Ljp52aK5nL781hWX8hHd8Ysv5Ph/toxF/OI0bvbawi8OzdTxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB1DqhpPkq6hoPR4TfjOB+flVf3OnXHBTKZj564Weeuop98pxL3MTlhjn+F0bB1SVCtXnAfVvDHrpe4pT79849ONri9iGYShiG4abiG0cbqnUTt0uTwWnQcnR1XVOEdtBaVDuO6krlOSLUwzhNzt+Fs3l9OVrb/mXj+hOvfdRx/+rFiO/2b/nn3ceN2Hxhaq+orHn1L9xUAq/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0xEw5Ul+HQ9ESsQ1FLrJe6gol+eI6WPhVwy9/vRC1ILs33DLF/WvaMz0PqMq/3cguJJcriOz/IQdXVZFc/VsFpd7PCL84/IZdW8Q2rAdEbMNwE7GNwy2V2iK2qfSEiG1aPVFRmtQHkAy7ih3Z4zHhN3bwM/Kb/RvyS8S3rNieXk5p5t/ZlOeivb1l77PfS/+qIlX8nPCLw2/YtUVsw3pAxDYMNxHbONxSqZ26XZ4KToOSI/V1OBQHRWxDkYusl7pCSb64DhZ+g8HPyO4U0pqf+q+z/xcdXFUkERFeSC97eSkW8S3b06v+HUz/xn0lvHbq/RvesmZqitiG4ShiG4abiG0cbqnUFrFNpSdmytHVdU7Edkh6lrpCSb44xRB+w8XP9vTa39mU5zp7e7MR3lmkd9wC7rmnHnNLLLGEG9Ye3zJ0pX9lCPX/fer4xbUuvraIbRiGIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qAyh1w0nyVVS0Ho8Jv7TxI8IL6Z1yzzQvKGT3iaf+W3lPb7512WuMLPprpHgY5Ff6l7b+xUk3/NoitmF9IGIbhpuIbRxuqdRO3S5PBadByZG6nRCKw8hFbKdPn+7mm28+N+ecc/Ztc+oDKHWFknyhQ2o0PGHq3/79m43wWpqzRX+pOe3f093dDz8ZpCRFJJh7fI0QZ19alhLdSwD1b1DXzKqUOn5xretdu876euWjS0eLIaIXB6HwSxO/sTZ/1Jk39tlnn7hOU+3GEOiqno4MsX3ooYfcNtts4+aee2535513ur322svtsMMOPTtYxDZO91NXeMmn/o1DIK626V/2GiOL/hoprnrAVV1JepHgbNr0tGnT3LhxM/cNFxVLq87/blDRZY3fur3e7vMh66uIbf0+ERGtj1m2xqjgl/r8FtcL/6sdMm+I2DaFfvx7uqqnI0NsDzvsMPf444+7Qw45xN13331u8cUXd3iJ5p9//sLeFbGNU/rUFV7yqX/jEIirHaJ/RSQY8muEOCvRA9OedA88Oj1OyJZqW8S5zuvzZLwX8bbTq+u8O/tsU9c7hfRvqMwp1AtZX0Vs6/fcqBCzGTOce99+Z9VvYK7GWG3vWJk/QuYNEdvoYdXYC7qqpyNDbHfeeWc3ceJEt/XWW7sZM2b4VOTbb7/dTZgwQcS2MTX/34tSV3jJF9fpwm/08OtFgovuAu5FHG0vcb71bUWX41AeXu1jJq3ec20ZnlTtfTlkfRWxrd8fY5XojTWinPr6Wl9zi2uEzBu7ffqzjXye7CLKk08/o/cFIAB+XdXTkSG2W265pePPFlts4btw0UUXddddd51beuml3ZVXXumuuuqq2bp2nnnmcc8804zCB+iMqggBISAEOoXA08/P7f7z/Ny12vTsjDnd9OdeVFon5N3Zlz727Lyl36jzwObLPul23HHHOlVG+tm66yuZUk8+GbbHfKSBkvBCoAICK664ott4440rPDnaj4TMG49Pf7qRRs81x/P+Pc/N6H/eTtWPjcX3dVVPR4bYfvnLX3Yve9nL3B577OGee+45v3/s0Ucf7XmIVOqpyJKv6nRT/JzwE35xCMTVlv4JvzgE0qpdd32tKn3T40Tvq4r8YNZN9Udcf4x6bc0bzfRg6uOomVYO7i0jQ2zPO+88d9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3oi1bSiNN0lki8OUeEn/OIQiKst/RN+cQikVbvu+lpV+qbHid5XFXkRWxBIXV/ienP4tTVvNNMH0tNmcLS3jAyxfeqpp9yGG27obr31Vse/L774YrfGGmuI2DarD7Pe1vRAa1pMyReHqPATfnEIxNWW/sXh13Ttuutr1e833c96X1XkRWxFbON0pUptzRtVUCp/JvV5rbwFaT0xMsTWYLvrrrvcYost5thD2680rShNd5vki0NU+Am/OATiakv/hF8cAmnWrrq+VpW+6XGi91VFXsRWxDZOV+rU1rxRB60XPpv6vBbXusHXHjliWxUiDpRaa621qj4+8OckXxzkqePHYWZvf/vb4xrZYu3U8ZN8cZ0v/LqNX1zrBle7aT3U++L6TvilhV+cNN2tLT2N69um8YuTZvC1O0tsBw+lvigEhIAQEAJCQAgIASEgBISAEBACw0BAxHYYqOubQkAICAEhIAQ6jMB///tf9+yzz85qIVcExZTnn3/e8cfK3HPXu3oq/21k4x1///vf3ete97oY0Xzdf/7zn442s1XqJS95SfD7eM+//vUv99a3vrXnrQ8hL2+qvTfccIO77bbb3Ic//OEQMXrWiZVvxowZ/saMXiVUX+655x537733utVWW23WqznE9B3veIebb775GsVAL2tuHBmWTY3LtvS+KfmkO/9DYEwQ2yeeeMItsMACbg5uRy8ojz/+uHvpS1/aml6wGLPJHhl6FWRgMewlY2vCOeeNhVGXr018yt5dBb/p06d7nNvUs15yVpGvrI1t/r6qfI888ogfQy9+8YvbFOcF764i37Rp0/wVZMMoVeXjurS55ppr4CJWkQ+jFlIQS35ixgBjFEN1zjmbuRdx4EAn8kH6e4MNNvAHPGaLrXEhYm6++ebu3HPPbeR96Nq73vUut//++7uzzjrL/fKXv3Srrrqqu/DCC0NE82Rqm222cb/61a/8exdaaCE3fvx4d9BBBwW97y9/+YvbYost3L///W+38847u6233tq9/vWvD3oXlZpuL4Y422yuvfZat+SSSwbLZRWbku/3v/+9mzhxon8tupYtrLv33Xdf7fnllFNO8Tdx3HHHHW6dddbxr4RAn3jiie5vf/ubd2KoNINA0+Oo6fc1rfdNy3fTTTe5N73pTS/ojKWWWsodcsghbvvtt2+mo0bgLZ0mtg888ID705/+5FgU//GPf7hFFllkti7BA/PRj37UveY1r3F33nmnO/XUU92b3/zmRrvttNNOc0cffbRfAJjAzzjjDLfwwgvP+sZf//pXx11gGFPI8LGPfcxtu+22jcrQ72Vl8mGwT5o0yROyBx980C+4O+ywQzLyHXnkkY79rBQMqvPPP9/deOON3lAZRCnD7+mnn3Y77bSTe+yxx3wfI1eowRPSnjL5/vOf/3h9xBClYEAdfPDBIZ8KqlMmn72UsbHyyit743PNNdcM+lZIpTL5LHLx2te+1j355JN+7GKIDqqUycdivNVWW/k+JmLBwodBP6hSJh+L++TJk/3cC+n+xje+0bhoZTI89NBDnpiAD3q21157DXSOa7zBQ34hRID+PP3000sPeawi6hVXXOG+9KUvuV/84he1iUnR+yHIXFOCrr361a/269oHP/hBd8/0zjMAACAASURBVMIJJziMwLrld7/7nfvEJz7hLr30Ur9+Q5aXXnpph30R8j77PgQXWb/3ve+5l7/85e6Tn/ykl3PeeeetJWLT7YXQvu1tb/MyZG2qKVOm9HXe9xK6afkgoRtttJH72c9+5iZMmODtAeZlDP+6jjOcFThomOexI60ss8wy3omh0hwCTY+jpt/XtN43Ld/dd9/t3v3ud/s5Azvuuuuuc3vssYf7/ve/75Zffnk/z73yla9srsMSflOnie1Pf/pTT3pYwO6///4XENv3vOc97nOf+5zjb5799re/7b1zTRWILKc3P/roo27BBRd0u+++u1t88cXdvvvuO+sTLITLLrusl4OUKP4N2XjRi17UlBg931NFvu9+97veo3322We7q6++2u24444OMj6IUkW+rBz77LOP96B+5jOfGYR43lFR1r/ghycZowlPL5POpptuOpDIWRX5WLAPPPBAd+aZZ3rDfpClinzIQyRvyy23dFOnTnXf+ta3BkZsq8jHfdqM6Q996EPukksucXvuuaf74x//OBAYq8j3la98xT3zzDPemYKThYgkC+ASSyzRuoxV5CObBv27/vrrfapf08S2igyHHXaYj/Dg1SaqQ38Sva1rBLcO6Ih8gCv5cH5y3zxO49jyhz/8wX3ta1/zhLGJcvnll7tzzjnHvfGNb/Rk9Ic//KH/N2v/oosuWvsTrIsnnXSSlxFHOaT5LW95i59TIUAhhTnvN7/5jV8vcIZjsGKUggUErU5WQdPtZUzlI6K0MTRjpWn5LrjgAt+n4GaFuYX/L7fccrW7A/sHp8rxxx9fu64qVEeg6XHU9Pua1vum5cP+YF7D1rTCvPbb3/7WB6c+//nPF0Z0q/fQ6DzZaWJr3UB6bxGxfdWrXuXJGn+zWBC14rmmCoY4qTG33367f+U3v/lNd/PNN3tvthWitZAjyK55hAZleFaRj70lq6yyil9YOWkNDxDG+yBKFflMDiLz73//+x1e7kE4BfhuFfnMaDfvPUTjve997yDgqyQfRgDRKgyV1Vdf3V9obylXbQtZBT9k+OxnP+vWXXddP37Ac1AR26ryISOLCY6x7bbbzjupBlGqyMcWA+Y/ojw///nPPZZkrwxiy0MV+QwnjEbkaprYVpGBdE/maSLtOJ8gDczZRHtU6iNAlg8EgoypbAlNRcaRytwEOSEzwkjdscceWzt6iTw4etgfes0113hD8Dvf+Y53ZBDZCC1EMIn+sr6TFUGGDoQopBBhJBq44ooregfBBz7wgVmRFhxoZNTUIcxNtZeILHMc5B1nUL7gdKwbTW6jP7BZiFgxrrFdCG7ccsst3n4JKUS6VlppJXfcccf599ncyfxQx8EQ8u2xVqfJcQR2Tb8PB+zJJ5/sOQPjHVukzljM92eT8kG8mTPITuDMAPSeYBnzxcYbb+zPABj0Nq5h6e+YJrbsOWPRxEPPpL322ms77uNqqkC2SB2yCOcPfvADR1oV+zas4N3mkAjSXFho2bcRagDUlbuKfHixMdaJLJPaAGmEDA2iVJHP5GARY5Ig7XdQpYp8RLjxmGHk4DwhzZEJZhDEoop8RCwwpHbddVcfETn00EN92lUq8pFJASHD6MTxNEhiWwU/0zUIGbIS5Wsy66OfLleVj+gP/fr1r3/dp+fhpBpEqSofsrRFbKvIQDYAf9hmQSFqx1xHOqlKfQQYrzhvGbNZQyr0oB0IchEped/73tdIlglEnP5m32joGQhsQyBiwlyPYxBHSagRyfxBej5OqCaLHVID+QxJkTac2K5FO/Mltj9i5cvKgx3HtiSCBfQHsr3iFa8IgpOMKyJe+YK9pqyOIEh7VmpyHPGRJt/HIWI47NjKw3z0kY98xO29995RwZQm5aO9BObILkDv3/nOd/qUfFLz0dOYffrN9nL7bxvTxJaOxyDFE4wnhugpaURNFaIlKBR7PyEKFo3Ip8ri3YUs4o2GCDdJrvu1pYp8EDMGM2m+EG6cAUXR76Ywy76ninw8//DDD3uPNgsvB3cMqlSRD+MEAwdiYUYznrQYL1/V9lWRD9LD3kb+sN+RdGT0L8TwqSqXPVdFPpwVGLYYJaThkapPSlnTe+GLZK8iH0SRtENSe9lyQDreoDIuqshH+jGkDYcUEW+ceIMqVeQzWdoitlVkYN5nXiMbhTFAH9KXisaEaQpRcpyhbF9pKuWd/WiQT/TZCkZlSHYOW32om3XQEpUrOoejCgIYvOwnzhbWe9pOpIRtSHVK6ofU0BbIN2sEay5RXKJEbOkKKU0fooODAUcy20RURgMBtqQwxlnjd9ttt1lCM48QCAo9pIuMTOwtxnzsvIHDDn5AVpttOYBDHHPMMcFnuuA0IWuEANf666/vsw5j5swm2zsamlMs5ZgjtnhISEshtYmUWggRixzpg5xK3PTBOeS4k6bIwTcoLnvd1lprrVkyYNARLSaagpebiG5MSlRdZSyTj31DyIecHKyyxhpreMN9UPsxy+SjvUTKOGCjSadEVRzL5CNKT+oKiy1XOEDUMIQGdTptmXxf/OIX/aEC6CiTIguJpc5XxSDmuTL5INlmzBKN5wAVvO+D8pSXyce+FRwX4MjiRMp0Sv3L3j8M+GGMDfSiDL+2iW0vGTDCIUrMy4xN0gwx1tkXikFMNEYlDAHmEaKfFA4XMvJJ5lLIuMXYZVzhEM7eLIAjIoTYIt8RRxzhU88vu+wy7yTDuAw9FZn1kMNZiI6QqsqeUcg9ayX77dmGUme9TP2QGvqROZiDlchyO+CAA7xxT0ZSSH80fYhOG6nDkHe2EdGnpCBjw4GBSjMIcMAh+pS/oYSgEz8PSXEn4LHCCiu4XXbZZbZMDM66Yftf3YITh0wMTsSGJ5COj00fOq9xngOOeogyqcPY/pzJgoMtJNuj6fbWxSel58cMsSXqw8mgpKYxKXGUPga87dcj0ocxw+mDTRYMSjvlmIWPAyX+/Oc/z5IBsrjhhhv6iAHEB2MrxmNTV/Yy+YjObrLJJv4eNwqpoEVpOXW/W/X5Mvl4D1FR0geJKg+6lMmHp5CJFA8yRh2OjUGemlsmH/3KZI3hxR/kI8owqFImX1YO5Npvv/0GtseWb5fJB5klTZ+9LBh1X/3qV71zYFClTD4yLlgss4XtDk3c21mljWXy2TtwnDEftxFlKZKBiBpzrqUcMwfTl0R4OQUVA1YlDAGyQDAC8wWSG7LFAdKJ8yF7KEqYZDNrkWXBWg9RZq8t2zE222wz71wma6puIS2RbAg73Ip92hBcvsFdpzhd2aNZtaR+SA0HM2HMs32KuQ7yTho/awd7/OqWpg/RaTp1mLRw7EQchDj6ISLsgQaDQWaI1cV11J7HMQLW2fUTJzG2XUgggHEOWWzy3AYCFRBa1gq7YYAoa0hhHJHSz950K2R/EdgKOeSsjfaGtCuFOmOC2PYDmkWEwcNm8JBFt0onEiUm3bhfGqClf7YlQz85q8gHRjgGQjxdVTCKlS/2GzH1q+CHoTese0SryIf3MDTdJwY76laRL/YbMfWryIeDgAV4GOmrVeSLaX9s3RTkqyIDczBjYBhzXCzGqdXHSZvdF0tEnHTdOvuWcQoyLxGBI6JDxAzDz6KfHN4Ssl5yvROOC7IZOLSRMy4gpURKQvbY4pBhv92vf/1rH1FmrYTQQvjWW289n5KNfVGnNJ1S2OQhNfQtEXTsARxCkD7ICHv5QggIuDQpXxHOROND91ATMcQ5RpTOUlDZt0uU+g1veEOdbtWzPRDAwYhDkcATY4mCg+jTn/60J6chW6MIynCeBMQxO1fUnTeYh3gX+s7YpmDP2xYDIvh15iG2JpKFRlALhxoZfTjCIPYEacCiToaHQdpUe7ugpGOe2HahE9UGISAEhIAQEAIpIICDgPReDivhtGGypThTAMO1jsGGodcvuyXkXlLDB8PykUce8Qbmj370I28AQ3BDC6nNpKtSiFiTucHeUaK29vOq724jpbDpQ2ogIBB3TmnmnmgIXkyWQ5PyNb2HmlOlIR7cVYwDZPvtt/eklsy7YTgyq+rRKD1HFBTHEMQxe36GHdZUhzhau0npN5KcxaLuvEE/c+gn18Fxg0S+1H2fba3o1T8480K2bDTV3lHSm16yith2oRfVBiEgBISAEBACCSBA6jDGIKSUKCvEjtRN9p5m98iGiEoUJ8TIzX8Lss3VcJAWK8hYh3hbPYg8UWD2k/NviwgRmQkhPm2kFDbZ3pB+K6pDJJ4TXHsVtnCF9EfTe6iRDxJPiigp8VzXxzVMIemiTWHXxfeQ9YSeMo6aKBzCRnYBDquQcdhLBrI80Uu2HzW9pYesB6LTIXrfBGZdeYeIbVd6Uu0QAkJACAgBITBkBDgsif2rREJJ2WQfGaf9czhiqCHIuyDIvJuzKjhEjnTfkEJ0kGgyB7dkryDi4LCQK4m4UYG9uk1dk9Z0SmHT7Q3BvKgOTgD2JvcqpP6GHKLT9B5q5ANDHDOQGXSaCHUTDpamsOzKe5o8pAvHFXu/OU+H6yBxtMVceQOhxfnFdT9E7jk3ZdVVVw0+dA4n3bnnnuszWaywj5stHK95zWsqdylOl0996lP+fArOw8kXDn+NdShWFiaRB0VsE+kIiSEEhIAQEAJCYNQRIAWXk0MxzojccuAbB6wQyQ0pdnoo13YsueSSfs8dBxexz41zC+oWru3gBGwOLGuiQGjZ+8sZGqTjWnQIDEJOc206pbDp9jaBWfYdTV/P0/Qeag6UY284J0ATpeUkbVJF2bfbZCSwaVxH7X1tHdIFwYVAcogbh8PiFMPRVnds8g72WnMYFVkZZBzwHg61C9kDTHtxiLEPnwMdIZ+cxVL3dHYIN9fT4ZRDprxzLvTQvlHTn6y8Iraj3HuSXQgIASEgBIRAAggUHbKCWPycyFvdQ1asSRBiomXZ6B43Gxx77LH+ZNK6BaLMNR1c88c1PVbYRxlCVCBSkNF82WCDDaJSCkmlZL8uB5pxFWFoabq9oXL0qtfG9TxN7qEmko8OcootBSJB5A8CEpqB0DSGXXhfG4d0MX5+85vfeGJ7xhln+L30XPHJPlf2xtYZ78xB6AGp0pykjj7wb5xkHBxZt6BXnK5MWjuHZJFpwDV0HLIHGa1b0EdO7EbOsV5EbMe6Bqj9QqAmAniwKSFpezU/pceFgBAYEQSaPmTFmv3EE094AsopxtxLyXUunB4aet8j+9hIJYWUZOcwDNSQQ1uQkxRV0qVJC8Q45Y7T0FPmiXhzSA2GPqmPXCkzfvx4f51OSGmjvSFy9KrT9PU87LHlWh7SMomGhUTTsrLeeOONPtUTMoN+EFVj3yY/H2spnk32e/5dTR/SRf8wfriCCvL4gQ98wJNaCoeekerOoXZVC/IRYeVAOAjud77zHX84HnuvQwrzFw42CC0p0xw4R3YLxDTkyk+7T5sTyjmAy1LlQ/eqh7QplToitqn0hOQQAv+PAOl1XFRuhQV611139QbTMAopf1zXwSLBlQl4KfGIc48fKXhEZDDoVISAEBACbSBA1IX7mCF7XDHDCbWhp/CSmosxyWm+TRT2X0JiiZZAojBM+QYpkNxtXbf87ne/8+2DSHFHNvv5SIVlf3EISWu6vXXbE/J8zCE6rE3sUyRlmJN2ibByrcoBBxxQK4LOyc+krVJIg6esvvrqfi81DhFklHM3pHd712nykC4yFXCKZclrjF7lpcbBgW0Uc9gTOoZ+sq8eZwx6uttuuwWBinONq4PyJXSvepAQiVQSsU2kIySGEDAEbN/YLrvs4jgpkEvBKaF7ymKRJSWO/XKHHnqo+/znP+9TApmMOSBmtdVW8yT3lltuif2M6gsBITDCCFi0slcT6h5iQhohaaqveMUrvOFXVLhbsm6UlStFOACIE5uZv+zu1br3W5o8EMfzzz/fnXLKKbNE5L0Q8ZVXXrl2jxJxJDqNoWv3puJAPPPMM2tFmOzDTbe3doNKKjR1iE72M3aPMvuxia4RnWcvb519lWQmsfZlS/ZUbt5ZJ5W1ady6+D72iuI4YOxbwZkecj9y03rV9PuYL3HUkZ3B3NNEAT/eyZzIeQQrrbRSLZ1vQoYU3iFim0IvSAYhkEEAYkvqmUVBd9xxR28kkVrz0pe+1B9WwH4R9vkcffTRfp8Z0QKMK6IZRCNI7+JiciKtEE9+TqoLEx57QzjYhAvCSVPBo0dKDWlbREHY94FhwHchskSKObkPzyT72jAUWHiIJGSJLR5MjDv+YEBw9xvvVxECQqD7CODsymaa5Fs8bty4WiCQ2rzHHns47ogtuj/Srt2oexpx04czkQLI3j3eSxv5P3My8yikPKS87W1v88buzTff7N+FU5NTWENK0+0NkaFfnaYO0bFvEN3HccGp1zgvWL8WXHDBKLGbPJU7SpAOV8amYMsBh7CRfm8l9LTypvWq6fcRUT7yyCP9nlpOV8beIjuvrqPOcGLutfvD+Rn/xklW9zCqLqiYiG0XelFt6BQCEFsiEWeffbaPWLC/h2gHUYutttrKG0xES0k74fdEdSGgkFgKZPJLX/qS9+5DRtnvBRlmEiWVipRi9pyQRgX55XJ0jsO3/SekX2Ec8B3IL0SW73GyKSSYC+pJ8SEVOUts+d2BBx7ov03qFmSYv9dcc81O9Y8aIwSEwAsRYI768pe/3BOa0FOC+2HNvlPSdkMOb2EOQ2aiGrGRN6KrxxxzzCxRv/jFL/o5NbSQ3kyEkauSIGkTJ04Muvqm1/cxdomE4Sgddmn6EB0MfNoHdqQjcxAP+O2zzz61UpENl6ZP5R423ql+H8c8uhC6ZzXfrqb1qun3mbw46LCTvvCFLzhSk9G3EHLLndDYcwRBLNODbWMEMjibYCwVEdux1Ntq60ggkN9ji/HB3WkQVtJLOLiC6Crkk/1YpJ4wqUFsjUhyJD0HrHCMPClTPMNBF0zOPMciT3oPUVzILr+H2E6aNMmnwTEZEiXheHsmx2wqMmS2iNgSQSYV5uMf/7jff0QK9b777uu/oSIEhEC3ESBjw/YiFrU09pTgJtFjHxuZLVz/gSGJYxDnXUxhzps6daqPlMQSRub16667zmfbWOEU55A9u5yBQF3uyLSCQ5TDa0JOX43BqKhu04fo8A36lGgVe23JIOKaHtKSQ/bENn0qd9P4deV9OJl22mknr6dNHMrVtF41/T76jawU5iGitnPPPbe3vzhPhX/XLchHXRwDONXQW2wyxkGI46/u91N6XsQ2pd6QLELAOX83IxFbSCgpvUxOkFCMRq65wNOOF98KUVwuNoewchk5RhWkFnLL/ipSezjIZJ555vGHYRBJhdjyfwqEFtLM3xh47KX9yU9+4u9oq0psSZnD6MJQ4sATK5BmIsYqQkAIdBsBrr0hSsb8xKE9+YKjLMRgaxo1zgPgHlz+Rh4yXjiFlL9DTjJu+hRjriJZd911PdHOGvikZYcQWwxb0rm33nprH8GEeGP0ppSi2OQhOhBYUjr58973vtdHa0P61fSu6VO5m9bnrrwPRw5Oe0r2kDQyw0IimLynSb1q+n0cMrfpppv6jBNOaSYdObaQ3Yftxv5wnDgEGfpl0cR+L9X6Irap9ozkGrMI5PfYGhCPPPKI37PF3iGOmmffD4sBh5cQFYXYsghjDHGiJgs65BQjjokTw4j7ENl3hKEDYebfnMTHBFhGbElfJuWOPUtFEVv2hbGfi+gvaczIx6RKpEZFCAiBbiPAtoXvfe97PtMje+estZo5h/tsh10gdJwPkD0VmcOZiOxxDVDd0vQpxpBO0pDZPtJEISLEFSUQZa4rYW1gzv/617/uXvva1zbxieh3sIeYvdJEl63UPTSId3AuBe/AYZE/cKju+7KNavJU7miwOvoC9tiS9ZEtd911l88YMyd83aY3eRgV32aLAISUE4gJLjBf2LU6dWXjXbQrtG29vvfAAw/4M1awx0L3+NdtS2rPi9im1iOSZ8wj0IvYAgz7UNjDykFSFIwTorOk1mWJLYsEhJYUZQoTMISTaO6ee+4561h4fs47IcMQW0sd/ulPf+rvViNii9ebxQWyyjcg1XYScva6H35Pypt9c8stt/TpyCFRhjGvBAJACIwoAmSHEBnEAcY2iNQKEVacgzj9OLWYiCbzKeQvpDR1ijGEjBRa0oTJwsHpyPxqUe7QU5uJpHMoIFtMmN+JikHsSV2MTZkOwStfh/Rt1hfWIhyvVs4999xaqcNE9lgbn3/+eX8+BdlDbJshHZkMKCL0dU5FNjlwMnBw11FHHdVEc/WOHgg0fepw04dREQXl2q21117bp7YzxxFJxlEWu0c/RilIZ9599917vgJ7LDTiHSPXMOuK2A4TfX1bCAQiwDUEENGyCQtDCYMpbxThLSQCzJ7dKh5HjAXSnPleGVHFMMNbzv41FSEgBMYWAqT0cogJBt/DDz/so4M4xzg5eJgGYLYXiGpAVoi2vuMd7/DbJWLmqyZOMb7pppt8unCvwu/L5vtedXFEMt/zN5k09IWlfQ5bO9lyQ180da8w9/1+7nOf88SDtY02r7jiio4U75A+Zj3jgDGcuqusssqs9XLChAnJ6POw+7CJ7zd96nAbh1GRTcH5IxQOfSLrjXlumA48bDn29zPXEozgMFAOi2Lr2qmnnuqzGFLYAtKEjlR9h4htVaT0nBAQAkJACAgBIVAJAa4MY5sEUUJOqrVtEpUqt/xQk4czIWrbpxiHwIGha3ueOVehqBB5Iqo5zELkeLvttvNR5Cbu84RocAMAKdcUInekXGPoh7yftE4O9ckXIvyhjoZh4p3qt5s+dbjpw6jI6mAPK3pFv5M2jXOInzdx2FVsvxCZhXhDZq3gcCPDjmuUxlIRsR1Lva22CgEhIASEgBBoEQEObOFqMArpvkQHufIrm2ba4udLX9304UwQdqJN+cKhfZwmP6zCnmeMWkhj0Z7nZ555xm9D4eT8kNOCY9tFZJVoPgUnCIX0YcsICj00iDvZ2f/I36RykypO+iip2CrpItD0qcNNHUbFfMahmxQ79Z1DMdkTzrghWjqM8ZPvSbaCQbQ5FZktFjhk2BoGwW96H2+6WjRTMhHb1HtI8gkBISAEhIAQGBEEOPCFdDgO3IGocMIvxILDe1JIRW76cCYMclIR2a8KgYdIYehC5LkzPBtBSa0LIbbvfOc73YILLjhw0SDWpEdbgYgS+eLnGOLoTpVtMkWCs1+TvYeQZ24SGGaq6MCBHeEPNnmKcfYwKvbV22FidfWKvbVs/epV0K0U5jXkI2rLAX6cDL7++ut7Qp7KloNBqqWI7SDR1reEgBAQAkJACIwBBO6//35/9UQqqchtHc4Egdpll1182i8GrqUoXn/99W6ZZZbxJ9dz6IxKMQLsgeWgQ647OeSQQ3xqNKm/XIMSWrj+jsO3ODSLvbCQW107F4pmu/UgoOxj5gRf5oyiwuFfIWnf7Itm7zbpwmSRkEqMo02l2wiI2Ha7f9U6ISAEhIAQEAIDQ4CoCynIXLXBXaIbbrihTw0dN27cwGQo+lBbhzNxxRl3hrNHlMKhMhxWhDHN9TqQNf6vUowApw6TJsyhVlnHQOhhWaSFEzm/4IIL/PV0hx9+uI+ck9q80EILqRsSQwDHEFcRch0YV4XlC+OJw49I/a0TwWce2mijjfzBZOyx5nRsopg4nqQHiSlBw+KI2DYMqF4nBISAEBACQmCsIsCpyJzGzhUuqaToZfvinnvucciYPTTpoosu8qcjh+6Vg7yTsshhTERuueqIvcX777+/u/nmm2sZ5GNNb3AMnHjiie673/2ubzqpyOAI4R0/fnxtOLjWjmvqDj74YPfRj37U/xvHyjHHHBN0T3FtAVShcQQOOuggH8FfdNFFK7+bbBEOeuKEdiuk3RPBTeX+5sqN0YO1EBCxrQWXHhYCQkAICAEhIARGEYFTTjnFQWI58AWyQ2E/JsSKQ5QWW2yx4GYREST9mL3EpB5DnokMhZLlYEFGsCKOAe7bJbLNHmUirKQThxSIMdfyQISIom+//fae1BIZTNHREtJG1emNABFZ9lY/9thjbscdd/QHKOHEYmziPGGc235b4dhNBERsu9mvapUQEAJCQAgIASGQQYBoHlffkNbIvk4r7IWFTKkMDwEO4eIKHQ67iT3sibs7OR2WqC93KO+www4+CqzSfQRwMLG/ulc5+eST3bzzztt9IMZwC0Vsx3Dnq+lCQAgIASEgBMYSAhxWxB/tsxtLva62jkUEOA2ZrQdWuP6qbkrzWMRt1NssYjvqPSj5hYAQEAJCQAgIASEgBISAEPAIcHgd2wK4fozy+OOPu2WXXdanKadyp7a6qh0ERGzbwVVvFQJCQAgIASEgBISAEBACQmDACFx44YV+Pz0nk7O3njtdd9ppJ7+Hm1OWVbqLgIhtd/tWLRMCQkAICAEhIASEgBAQAmMKAfZXn3HGGe7oo4/2J5QTqeUuY64V0n7rbquCiG23+1etEwJCQAgIASEgBISAEBACYwaBJ5980p+Ivdlmm7lzzjnH3XLLLY6fTZ06VRHbjmuBiG3HO1jNEwJCQAgIASEgBISAEBACYw0BDpDiSi/uS+YaKO2v7b4GiNh2v4/VQiEgBISAEBACQkAICAEhIASEQKcRELHtdPeqcUJACAgBISAEhIAQEAJCQAgIge4jIGLb/T5WC4WAEBACQkAICAEhIASEgBAQAp1GQMS2092rxgkBISAEhIAQEAJCQAgIASEgBLqPgIht9/tYLRQCQkAICAEhIASEgBAQAkJACHQaARHbTnevGicEhIAQEAJCQAgIASEgBISAEOg+AiK23e9jtVAICAEhIASEgBAQAkJACAgBIdBpBERsO929apwQEAJCQAgIASEgBISAEBACQqD7CIjYdr+P1UIhIASEgBAQAkJACAgBISAEhECnERCx7XT3qnFCQAgIASEgBISAEBACQkAICIHuIyBi2/0+9X88swAAIABJREFUVguFgBAQAkJACAgBISAEhIAQEAKdRkDEttPdq8YJASEgBISAEBACQkAICAEhIAS6j4CIbff7WC0UAkJACAgBISAEhIAQEAJCQAh0GgER2053rxonBISAEBACQkAICAEhIASEgBDoPgIitt3vY7VQCAgBISAEhIAQEAJCQAgIASHQaQREbDvdvWqcEBACQkAICAEhIASEgBAQAkKg+wiI2Ha/j9VCISAEhIAQEAJCQAgIASEgBIRApxEQse1096pxQkAICAEhIASEgBAQAkJACAiB7iMgYtv9PlYLhYAQEAJCQAgIASEgBISAEBACnUZAxLbT3avGCQEhIASEgBAQAkJACAgBISAEuo+AiG33+1gtFAJCQAgIASEgBISAEBACQkAIdBoBEdtOd68aJwSEgBAQAkJACAgBISAEhIAQ6D4CIraBfTxjxozZas4xxxyz/f/55593jz/+uJt77rndAgssEPiV2av9+9//dnx3wQUXbOR92Ze0IW9dIWnbtGnT3Pzzz+/mnXfeutVH9vm22s1783rZNkht6miZ7MNob5lMY/n3ben1WMZUbRcCQkAICAEhIAR6IyBiG6Ad559/vnvf+943W82XvvSl7sMf/rA7/PDD3cte9jL3pz/9yb3xjW9073jHO9xvf/vb0q+cdtppnoTssMMOPZ81kvKf//zH/e53v3MTJ050H/3oR92pp55a+v78Aw8++KD7+c9/7l796le797znPbXlrf3Bkgo33HCDW2eddbwzACz64dD0t8ved+GFF7p//etf7v3vf797xSteUfZ4rd+31e5vf/vb7hOf+IQ75JBD3H777VdLppiHszr6ohe9KOZVteoOq721hGzgYeaV3//+926NNdZwK6+8cgNvnP0VzAUXX3yxu/HGG92qq64a/P46en3UUUe5PffcM7lxH9x4VRQCQkAICAEhIASGgoCIbQDsRmwXWWQRt/HGG7unn37aXXvttW7KlCluwoQJ7s9//rN7+OGH3cEHH+xe97rXub322qv0K0YI8pHgbMXdd9/df+uEE05wv/nNb9x6663nCSBEsG65/vrr3eqrr+7J2jnnnOPuuuuuWvLW/V7Z85/97GfdN77xDbfddtu5ffbZx6244oplVQb2e5wY9HmssV8kcFvtPvHEE90uu+zivvKVr7gvfOELA8Mqq6NkKwyqDKu9g2qffYcxgs5885vfdLvuumvjn1933XXdZZddFq3rdfQaZ+DnP/95d/LJJ7udd9658TbphUJACAgBISAEhMDYQEDENqCfjdgaKeQV//3vf32E49Zbb3XHH3+8j4ISTV1llVXcscce60j1xfj+2c9+5v74xz+6d73rXW7SpEk+6kqk98wzz/SSbLLJJu6MM85wG220kVtyySXdWmut5Yks0VUM2SeffNIbnkZsee6Vr3ylu/TSS92yyy7rDj30UPeWt7zFk13+7Lbbbu6DH/yge+ihh9zmm2/uXvWqV7mvfvWr/ptXXXWVI9K84447+uey8iLLL37xC0+MbrnlFrfwwgt7EvzlL3/Zpwr/5Cc/8e3ccMMN3R/+8AdHhAajeN9993Xjx49/AaqkGBM5vOCCC9xjjz3mcSGaSET7iCOOcF//+tfdAw884N761rd6IobDIFsmT57s61933XU+Eg6pR2ZSlvu9+5lnnvFy8dxFF13kX0mEiH446KCDfJSYNhBdfOc73+m+973veUxwGGBkIxsYEEl++9vf7uXEefGtb33L/fSnP/WOhrXXXtuT8de+9rWNtvukk05yp59+utcF3k+hr26//XZ3zDHHuMUXX9zjTUYAJHLNNdf0OrLaaqt5XTNiu/fee5diwDt51xVXXOEWW2wxt9lmm7kDDjjAv5foftX2brDBBrN0dOrUqe5jH/uYjy5Onz7d/fKXv/R9B/lF//Pl2Wef9fgyFp544gk/hnB00K4yfazTXvoLncAxhTyMN/5NP6Pz9Cvp/oxb9LGOrpu+veY1r3ErrbSSbwsYfuYzn3Hbbrutb0c/feX3OMYgeeeee67vY3QUXb388svdHnvs4f72t7/5sU6/7rTTTn5uOPLII93f//53jyt996EPfch/67bbbnOf+9znvI7MN998Xle/9rWv+UwNCnPA/vvv7/7xj3+49ddf3910002e1PIHbIiEn3LKKT5jAb0Coze96U19Z82i8cx4Peyww7wT7ZFHHvE6sdVWW/m5KUts0W/kZc6hLYx55juchMytOAo/9alPzWpfwPStKkJACAgBISAEhEBHERCxDejYImLLazBejz76aE+K+Hc2FdnqQOT4+XHHHeeNaQgFxhsRGArkEoP6JS95yWySYbRi1FFIRcZQxVikLLXUUp5sYvBCyjAcIa9f/OIXvTyf/vSn3T333OOJMgYxhuLHP/5xb8QjAwQI0puVl2cw/invfve7PXmF3GGInn322V5eCAoFogf54feQTeTPFqLQGNSkT/M92oFBTYHkX3PNNd5gxniGxBHt4ZtWeDekkfeD38033+z/DdmDyPd79+tf//pZ+3UtGo5hjLOAdtCe7D5UjHaMesrdd9/tScOXvvQlT7pxOkAwIB0QPUgXROZHP/qR23TTTT1ZbrLdYI6Tgv795z//6e6//35PdOhjMgLQFYgvhPvlL3+5jyqDL89liR5EwfYsF2EAsV9uueU8/pAJvkX2AXoBTp/85CcrtZe2Z1ORISdGgpAZ5wjvRQf/+te/vmDkgTP40gaIIe2n3HvvvZ7U9NPHOu1F1y2ajFwQPvrXCt/n/4Y7Y7WqrjM2Detsm3n3r3/9az9m++nrCius4LMVGMuk55IJwlhhHL/hDW/wpA/9JNuCcQKmOMco9B0OLwoOJMgjY5OxQl2cBeBP+3A64OwCZ5tDcDjxLIVvMC4ZK7QDB9uvfvUr/zvmomWWWeYF/Wc/gAznxzPfw1GEPOjrD37wA/84hBrHARFbHDmQeuYWHAo4opAXJxiFuYF5DxkZcxBjFSEgBISAEBACQkAIGAIitgG60IvYEkUjogLhwQDNEkUMYww2oiKWbgfJwMhbYoklZhECIx5GEDD0IaZEkLKkwYgthiLRTCKOGMwYwfyO6E4vYgupyKci5/cEW/qtEWOMYIxoyh133OHOO+88b+xD9jBM77zzTk9YjFhlYbVvYSBDGDD8iTYRZSJqjUFrUWsihkROs4XIMJHIbbbZxkfXiEJRf+mll3bbb7+9N/J7vRvM+5G6LLEFO6KDvBPD+zvf+Y6PkOZTkSHZGNzIRPtp04tf/GIfKZtnnnlmiR7bbl4EMYfk0D9ExZEHQk/0C1wgKx/4wAe8g2CLLbbw3yaqT+TZIrZlxJY6W265pXcaUA/SDKYUDoOCWFRpL88XEVt0ApK70EILeecKeNEmc9QYYOxNh7RAYpdffnnvUIBg4fjBUcO466WPkK6q7c0SW5wmc801l3cMUCBtjEc78A180YOqup4ltugpbYSgIjfzAu/pp6+MWQg1hfEBIUVGxh4R7HwqMn1OhJkxxFhiLH7/+9/3jhaIKt82p8tzzz3nHSVgikMEBwbYoj8QRfrEtgDwzNZbb+1/RpQVHSBb47vf/a7vF+TsV/Ljmb77y1/+4ucoIvO8G0fKJZdc4uciiC1zGXoGub/yyivduHHjvKMMxwI6jzMO5wD9zLzJMypCQAgIASEgBISAEBCxjdCBXsTWIltE9DAgs8QW4oFhmo0MYegSaSLamt9ja/9/6qmnZhGzImLLOzBkKaSOEimBBBBJzBJboo8YzBYtKyO2Rt6y+0pJReT/kGYiKxjppBFCMiFAkG8IJv/OFoxmUiOzUU2ixaQb2+Fa/Ygtxjnpw0Zq6rybg3DyxNb6KR+xxfCfc845fUouxJG+wZjOE1tIL+TXCm2GIGCc15ENB0S/dvMuUnMhpqR3EkEjPRWSy8FBkBOwyeoUdUj7RSf6Eb0sBkTTLNU5Pywgeny3Snt7EVucORzARWFcEInFGZPdRw2ZJqWeUrTPvEwfIZFV25sltnlHkv3fSDbkELJfVdeN2GYdPLT9ve99r9d1cC8bC7Y/1fqCcYsuErHME1vmGHN65FOEwYN6ZFBAECn0M7qEwwxiy8FzRor5PX2CY4H54c1vfnPhLJmdc3pNo3m9Zv7DeQJRzhbGJw6b7NihvZBgslZIbYfM5kuRAy1iSldVISAEhIAQEAJCoAMIKGIb0IlFxJYoKOmcFIwy9txmie3VV1/tU4QpGPYYnBASiwr2IrZZI7+I2GbTOo2Asd8WYxHCSZQFwkt0A8O6KrFlXx9pjZA49gayl5SUTQqGL5EWjH3260Gu+hFbCByRGgxWDqmi2L46i8L2I3hGJC1SSaSHSCzvA+N+74bgWdopbSCyaie/5omtYd2P2BJJJLJLZBEiDEZElCiQKyKsVmLbzXsshZzIHQQG8kLfZiPoOBqIci266KL+03liC2nohwHOk4985CM+/Rt9pOAIAQ++yym8VdpLvaKILYSM1FhKL2LLt9j3Sd+yB5XoLnvEwZTUfghhP30k0m/Etqy9dYgtek2UsqquZyO2zAPMCUZG0XUcJf30FUcG0W3wgHiCG84MiBy6AEnNHh7FHlv6jP3LkGd0DqcRWQ/sl2Xs8wz7ZClGFCGzbINgHDJ+GcdEUolc09c4sHiWOQoZ2C/MzyH66Fm/VGS+kx/PRsAZtxBjdIJxlCW2pFIzptiyYGOdDAXwt3bgsCPVHmcVjjYVISAEhIAQEAJCQAgYAiK2AbpgxJZIHQbko48+OmvPKAYbvyeimSW2llKHUUf6KlFdjDoOlyGCY4QAkkSqcj7KmCcN2T227NvD2CSCR4HA8W6+g4y8H0OWYsQWoxeSRPofKY8Yqll5MSYxKqkPqYAYY4iSRsm+P9Jg6xj7EC/SDDG+zdhHHjPI+xHbbDSPA6doGySHf2OUl73bjGpwwjC2fYhViS1ECHJBmjlp4fQx5B6nAW0hJRkCAFEATyuQnDLZyiK2vIs9sLa/kT2vEDjDhP6h35GPPqOQPoszIHsqcj8M6FM78IuI/3333efJOvphh3VVaW8MsaWupaejIxBgoooUCBUptv30Ef2u2t46xNaun6qj6zZ22SdK1NMcHz/84Q/9AWz9dIJIPAe8QWTJuMAhARlGr4h2srebuYQoOPiQpsw4Z1yDD/MK4wxySPqyOdsgtzgw7JA6SDL7Wy3tn0O+cJwwtikQWwgzspP2S8o+uocM7DvPX3eWn0bzem3ZHrwD/aSvKURjmYvsVGQws2uMkAeHId8GD7IiGAfUgdzjBFARAkJACAgBISAEhICIbYQOFN1ji7FKai1kh6ig7VklCkFEjX2pGJ5Gqvg8e9vOOussv8fPiC8/JxpXlJZp6ZHZe2whH0S5LB3ViDJGLO83QgShhuwYsSWiDKFBTqJy/A7yY/ISOcFw5jRSK3zrxz/+sTey7fAojEuMTAgA8hWlIlMfos9+wGwqotXl92YIQ9iJLOeLRb3s57SNFFH2Qpa929KeqYuBTF/RD7QFmfLRcgxoDqWyVGQICdE2CkY9xIX+yrYF5wApw/lSJltZu3kfcpLGabphd+lyejRp5xT6DbKCTETsSSHO3mNbhgG/5zAq0yMw4rv8zSE+Vdub1VE7PKpKxJY2sE8bwoROUtAlCC0R9jJ9zN9j26+9kEuLYJelImf32FbR9WzEFj2GYFIgxugwqe5lOkGfZq9oAgccFxyeBaZE1uknxh3OHUirEVa+RX2yDijsv2XesUOhsu/i95Y5wb8Z1+gWGSUQW/YHQ6qz72Z/7YEHHjjbgWtFU2lerzlYjXR25CDTAvLK3MT7yAQhQktUmbbYeQS2jzaPB/0H6SaqryIEhIAQEAJCQAgIAUNAEdsB6wIklCgLB9RY6qiJQNoj6YAcmpI9qbdMREtb5MRcDpHKFtI6KbwzX6jH7zHyISRFhYOIiERi8CJzTOF7tJ92smfSIltV30mKLdEo2mnE3+qWvRtiRAojxDbkflUcBXyffcR2QBSppvQXJ8v2wg/5ymSr2v6i5+g/ZKvSN2UY0Bb6GqJB1DCvg1XbG9MesCJdHawhVvm+qqOPZe2NkbNX3fweW5wNOF/Qm2wp0wlSfklFZjxzSBrOMiv0E1ki7M3nDwVnGN9iXNnBV9nn6VccaETm+Ttb+BZzEsQW4p0vZAdwMjW/53tcXcb7ehUOCDO5ss/gTKNNyFhnfuMd6AN7wRn75thpo//0TiEgBISAEBACQmB0ERCxHd2+k+RCQAgkhkDR4VGJiRgtDs6FouwEezFXBGUPBov+oF4gBISAEBACQkAICIEKCIjYVgBJjwgBISAEqiBANJX0djIkOPxKRQgIASEgBISAEBACQmAwCIjYDgZnfUUICAEhIASEgBAQAkJACAgBISAEWkJAxLYlYPVaISAEhIAQEAJdRKDormlrZ93906njkz9gLnV5m5RvLLe9SRyrvCs/pro2jqpgUOWZsayTtF16Ua4lIrb/jxEKw2EzIQcLlcOsJ4aNAIftcBBP0aE2w5CNw3g4CEdlJgKk8JaNPZ7hcKOiA46EYzMIVOmHZr6kt4wqAtkT/IvawCFmTc9tnE7O/c9cA8aVV1Y4YZxrsf74xz/6O8Q5KXzixImNQmsnvXNVXNkc1dSHuZGAE8M5+Z/TxIdROIGd+6s5hZ2T9rtSOHWfu9nXWGONWVeLDbtt3NPNVXvZwgn2YM8NFBzmWFY4AJBbG7gPnpsEKBdeeKE/sJOT5Ns+dO/qq692hx122GxicnL997///TLRK/9+WDq51lpr+esuuSKPww+HUfI3PwxDhja+2YaOdobYcg8j97fWGURcL8IExz2Jl1xyib8WgxNZ84UFhut67J7QpjsXY5KTdm+77Ta/OJcVrvrYYYcd/FUoWaLGFTZc78FEWFa4N5KThe0QGCZFrrjBQOBuy6233nqWLNwzyfUakydP9lcE7b///n1PAS77tv2e60u4RocrPtosnBrMfaJcL8KkzzU2YIcjgzt+uSeWk4Dph6OOOspfBcRJtPyOCa3IQ3beeef5q5o4lXjSpElus802889BWFlcuBoJI8wKV5Z85CMfcZwYS0HXWGzK7gNtE5eyd2f1Ev3giiVOlm6jYDxyNQ5XTmUL19xwHRWLCX3BFUbbbrttGyIM7J1F47Tf+OO6JQxcDqbaYIMN/NVPdgp3r7HJ/a9HH320P0mYq6AYz+h0WbF+QB6u7OnX3/n5s+z5ft/O9nOZjGW/Z6xxgjdXmKk0jwDroBEd5jqucOJqK06Hpxx77LGFp/CHSMLp25dddpnXfwxL7rjm7nMKcy/f5PvMEXZNGGsY/2+qDIPYQta5OpB9+qz1wyis91zL1TVia1cHYidxB30KxYgt9hWY40ThDnmu71tvvfX8lXtl5frrr/f2GXbFOeec4x/HvuB6Sq5vW3XVVcteEfV7uwKSsWd2KWT6ggsuiHpvtvKwdNKILdcoLrPMMo21p86LuH5yl1128Q6Q7HWAdd6R4rNt6GhniO3OO+/sDb86xgwDfo899vBXV/QjthiHvHu55ZZrRS+MQGCM9fsGp5EyYUHeL774Yn/lB9eI4JGDaHHPJh6yG264oa+cGJGbb765v5sUI4Sy2mqreWK31157+UmQyZ9rPmg3ZBuSt/766/u7bSE43GUZWyC2vJe+a7Ng6N53332+rXa/KZ59yCftwOjnPlDIPoYE99jimWfR+/Wvfz3L+2kyoivgx3NcH4QOYeCtssoqvv8+85nP+MmcO0C5P5jJkIno7LPPntVMdG7NNdf0uveSl7ykzeYHvzurlxAd7qPlqqY2Si9iC9HFkYLzadSJbb9x2mv8QR7RU+52pf042bbaaiuvtzhRisYmd9hiUGCQQja5h5nrgLgjuqxYP+AAghy/9a1v7VklO39CMsqe7/ftbD+XyVj2e8byrbfe6s4444yyR/X7SATe9ra3uWuvvdaTTUgnBV1gbmQO5Cop5kX6BPLL2sJ8uc4663idxFuP04o5GudjvvzoRz9yn/70p/2VZhDYLLHl3mOciszTGNXHHXecX9OY21kLrXBVFHfM48hkDl5sscXclVde6WVENtYFxsjxxx/v52p0kbGD09euwuPbkA3sC9YIvsOcRBtYC4iooW9chUVkBdkY74xrDFHGMAXn6umnn+7tDYgGDlGcdflixJa2sUYQmcbhTLu4Js8coqz7rPk4y5gTWFOyUTPIEWs6bbb1h3bilOXectZfnseueOSRR3wUk/mFtuVJBO3u13YwYn7izmoK/f21r33tBVfz8TvWFtrCHdlE44kwslYiP4V1GtyI0C288MKerEH0IUxgj/Pi5JNP9vMfjg++yzOsvZBE+pc24MQmELDpppt6fC6//HKvfxDGZZdd1u29996tO9arDDEjtlmybdFJIre27vbCxRyROH94Hsc5TnQwpF+4Exy80UdsO5xTzJHoJXYK4wjH/J577unHKAcgMiaoC6aMA+rRV9w5ju7kC+OUscR465cZ16ROlulCP51krEIW0Vf0CQcwOBRlfBixRQdZ95jXsIPRO9qDfcd1eBb8wqnMmPrkJz/p7UsrJ510kh//2FLgSKGvGOPHHHOMz3Rh/WatBnPGA3MA/ZYltugt9jNzgTk9CMrQFmx05lfeybuuuOIKP/6Za9CzoqwTbH3sLN7FfIKtz7yEHdBvPmdOLJODwBHZksxfOCjRT5x12P1HHHHEC3SUOSi2dJLYsrDcfffdPlpBR6EUAMoEaYXfocDci4qC0okYgUQPWbwgLLyHxfbUU0/1xAjlhRQyeCGPKAqLaf4OUyZtJhRSpoiK4mVBOVlYiYryXu505Hss+ERr+VNGbEnxYpJB0bLEFu85A4aIL0rbj9iCC8YqXkE8T7SFiZ87dfkd96EiJ6e68jvunWSis8UKGVn8s5FGFnAWdxY9u+YD44LFHnlpM4MZXBjQRx55pL9L04gtiysDkW/wfSZPDAsmcfqMycImVaJ1NjiZjDCIMBZs4Ocj3kxeDFQGN4YE8oA9izuFv5msiEwhOxMVCyKFyR3SmY/UM0B5hkmVwsLKYAUr2oD+IBP9zP/pZ3RnhRVWmG289iP2YE7biGLihWUSxFAAY3SXvqKv+UYvfLIfIzOBhY02YhCg37QdXWCSwZgxw5TUN/4w0Zte9iO2kHreDbHBQMFQYlFl4gJzouMsokQamfDpe4wmFkJ0h4mfPrj55ptni9jaYr/UUkv5dtM3GJ28iz9E+zGceB/jk/dh4PHM4Ycf7r9NRJMxxmSJDqIzYIHRirxM4OhWUZpWr3ZxnQ0ODPqWKDzyYzRhRKFrGJLZxcz6odc47Tf+GOsYYxiwFMYSxj7tALOisckYQmcsdRJjh4WZxevlL3/5bDrYqx+oi/6xOCMD2PNd5jP6lxTF7PyJU8ie7zf/YqAzHxJdYy44+OCD/dzMfGn9nDUsICRgaVF6+pCxBYno1T9GbJkT+80rvfSgqL2bbLJJ7Frbyfp5YsuWHlKGmbeYY7iLGv2joLPoIHM7hf7GQMT4ZP6EbGCAFRXT4SyxZU7EMEInmGMh2MiDXuWjROgR6wlOYQiUGeEnnHCCl4fxjAwQIGwGxqSlAWcjtug4pJN5jHewJjPXQZKYT3gf8wPvYsyhqxTWTO6XZmxiAGNzQByY/4i0sX5lixFbfkYEjDkfnFh3IKjoNXMd/+ZnfJNvk1mFoWwFhwBrO3UxdPk2ayRYW0ou8zQ/h/xYYICUS+pmI7bMN/3azvzOHAgWzDP0B/9mrs7fnc18ggGOjhB1/8Mf/uBFxlnH86yNFPqG32XbzvqLfmHnQMz4Jt82Bwd2GXMDhd8zR1JYh5CLuZ+fMUdipxTN1YMerLbWscZjc2IrYbPQR+g5cy52Ri9cWMMgqOg4mDLH0u/gjC4zf4E36wg/o7D24binoDvU4f18h4JOYB9byf6/KCUXAoO+gyv9yDiDKHJ3erY0qZNlutBPJ3HGYceCOTYDtjzYFQUbjNjSDtpn+ooNRTuNAzCemQ9w1oFdPguTemTyMfdhL2J3QmaZL5gbcRgwnzEW0VVINDLxXJbYosOQWortObY5gDmBvmBOQx7sOL6FPPQxfZ0t1AcD5lhsVJwo1GPsMDf1m8+ZS/rJwdyUzXjMjkdsWMZpXkebyCzoJLG1RYGBTEfR4fzJRhmJfuIhYYFiMOKtJOUDrx/KxUQBKcKo5H0sLHhEIFooDsQP7xaGLZNjtmDYYdyycGEkofgoFV5a6mCcsmCwGEMqeH8VYmvfwDhksbOIrf0cIo2nuBexhbBiGJg3FoWGvEIkmUDNW8pgXH755b0hAgllYEFsUEQMTEhQ3iMHYeJ3eIjw2EEIwQ7CgKGKkQlmfJsBCs5G7PgZhACMmARpF8/yPWRgkCInMrFoM1nSlxgxDDreRT+y+OUNGlLIead5EVk0mYSYWCj0DVFp+pSFGH3h95BfJifag9ctW/g9g5EFgEGNMwRcLTUO2UgJJz2eCZOJhH7JFwwjUt8tbSj7eyYM8yBCKNBRSAiGFZ41FiUWPNLve+GTfR+6Z/pNe5Cfvap4BjGqIPxGHvg/RAVcy4gtOOHAoM2QR6Ig6ALjxxYDjCUiG3wDnaBdYIvRC3aMQybVPLHFUKRtjDFkxmDhOcYXCz9jmsWfSZlvo0N4MiGQGAL0h0U6MLAYkyzwGM84JXBcYBgzkeejmf3aZYs//csCg+ML4woyzbyCvNbOIgMpP077jT8IJOOU8ccYRV8xYDAy+XfR2CStnrGOXmPAQR4ZG9dcc80LxOnVD9lUZJwH6A+EkQgb+sd8yTjOzp+Witxr/qVvMGIhGcx7NrfQL9l+hjxbQWeIXJhXGoOeP+hnL70zYsu46zWvYGj30oOi9jLOXvziFw/a3k3+e3lia+mQGGoY1MyP9Dt9zbyNExOygpHM2KSifwbIAAAgAElEQVQwH2DwMY6KIkE8U0RsmTsgchAWiCJrBRFYDE+cFtnCM6wz/CFaSd8jn61rGPjMWxBPSAYEAT1mnqxDbI00MqcjC+MUxyPvYSwz59B25klsCcYoc1N+C4aNIeYS6iMnY5VxzFrGesVaiHMPQ9jaw7hk7cwW2xPNeGANYN7FwMROwHDGWc06ypwKycOoZbxDjKoSW+Y722bD+xgr5vhiPjZnhsllmLIes66DD3MVuLDGIZc5D1g7LCjBes68V4XYsgawRuIURa+oh2Mj5VTkogHPfAYulrLZCxd0pF8qMjajRevMKYC9xJqIPYQtYmsbTlt+zvvoF0uJN4dKUSabkTlsE+xlnCfoOvO3kR9rX1M62Y/YYrv100naSIQceS1rkLUWUsk8kC1myxgOZk9Zmj5jkXFqzlTGGEGDojU361iiH6hrzguIMvaAzWfMFxTsChxtlopcRmypA6nHNqIepJm+pGDvMD9bwa5g/kEHcMCxNrKWs+bxHeaGXvM5+FUltszhcAyCJtiE5oRTKnKfZT6bisyiwERrxiqTAil9+dS0fCoykz5KhWcVIgGBQwmM2BJVwDCjMzHMWETwPuWjhHhkMN6MSGMAQphQEgYRhiYFsgP5ZhIYBLGFmGOYMimRjmPENk+AUGoGAZMebcHowBsKSeUdyA8pyxYWEYx7BioTBsY33mwmNwgGxIMFE8MCjzqYViG2RNIx3o0YMhggEJAeJlImNhZCiDY/y+5rRT4MYha0/F5B+hWHBMaUDThrD95Ic0awSGejXOiHTQroA33HO2yhsD2PTI5MSkSy0RcWejzsEGDSxylMYuCJhzBfILMY+3i78GohD7pGZBSSj0cUYsqk0AuffL+i3xhGOB3QAyY+cIghtowB2kU7WVgx5MCAVDAWAyK4Ng7oG8ggEyXGHM9DYngeQytPbJE/n4qMzjBmKMjNRI+HDy83fcE+UvQaQw9DDmzQEdsbg1EAhngwwRadwbMJntloUb92IQMpOixyOL9YCJiozTHAxA2hsjT/fN/2c0CxYGbHn9VlwWRMUXCYYYCWjU3DlTqMXwy6bBoSmPTqhyyxxYGA04cFEuOf8UJ/YbBmt3JkiW3R/As+6LQ5megv2oWjr1cqMgeSMJboD5wN9BGONwzdXnpXhdhCDHrpAfNbUXtTOXiuzzI48F/liS3zFuSVyKdl+dj2D4wsxi7GoJEMBGZ9Rgf4Xa8tLkXElvkbnWZ9ZWyYsckay/yWLdkoEcYmclv0k/UJ3bXoqtVDFmTqR2xxvmIQMo5YK/KRSXsX7WXcMxdZBJHfodusH3kbwohtluwb1sytjEMjsOgqRjTzOaQ9X+ygJNYe1l7mAovQ4QygHut0tpARxljrR2yzbWduQL6ikt8njJFtzqui07WNIGX3hTLX83/mFfolS2xpM/NhPmJLP4ML/cq8Y/ikTGyZkyy7D/ktQstcyb9x/vfChXW9H7FlzrRDqFi3WP/QfbNvcLKgIzjszZ6x6LfZSBYBzW49yNpNkCEcODhJeC/2RtH+3qZ0Mk9ss7rAmO6nk9gN2Cc4uLLjlPkkP9cbsbUILEQTnkAhu4m1CPsqO8ZsXsqPCfoYLoBTnT4mCxRyyVjDSUXwKysT9Vkzccr0I7Y4/5ljWNvQF0t1zn8/v0+YKD7zdXbOtjpl8znzRJ7YZuXIRmxxtmOz4nCALxg+IrZ9lu08scVwZUKlQITIg89HxvLENnv4CYsHCzETrxFbFMuUkveySDBJ4p3JFhZCFiRLabXf8XMMYBSIgmGIV5OB0TaxhTyReoxcRDCJkplRgYHMRARZZcGDKBJFwQhmQcFIt8NCUEYGDwtitkAGwQGvH4YKHi+Ul/+Thku7jRAycPsRW/PQsnDiIcwvurbnBJnwWDMJMKHzTvokWyCPLLpZDz4GP4fwYJDg7Mjua8brhgcNI7zoEBSLJpsXlW/hAGHBINKTLUx2OAcgOkyMGHQsGkw6OAmMsBbtW6UfMKpom6UAGbHN7h8071/2u9k9OfZzI0xG8I0woN95Ymsp2VUitiyGEHz0iUUMTHH+GLFlXNrhJ2COF5iJkEkdUkmx08irENvs+1joIdSQVxbcfEFPaUt2b3CvE12JHrEgW+nXLr6LIUUEylIR89/uZWTyXBGx7TX+su9lMUXvGJ8sdMxPZWOT92KEMOcQ3cYQsMJc0KsfssTW0sUxbtBFoqgYX73mT8Zh0fwL4cCRY/2ebVsvYosBhj4R8UP/SRfD6OrXP72IbXZegUjxrnxBD8CU/s239wUP6wfecMzuscWZjOPKIkBAxPpLhJ25mvHLPMiYte0UZtiwRaLXeQtFxBYnFbqIocSYsLkb5xlZHfliYx+yg8zMzcwNGJms68xTzGU4UYkgFhFb1nsi0DjwbC8n49BSkYlyMmfzbuYT5kTSrfk56zzrIcY/6yVrD0Z/luSbzEZs2VvP3JolChZxwV5hj2q+PUVqaeuEpQKaU5Fxh1GN8xU5wAOsi4gtY7BX25ljsC9Yexif7KljvNFWvp3NwmDNwTHIvAKxYrxhq0Ea6AMMY9ZOcxbyDrJQKKx92A+QVZ5B1+h7bIw8scXmw7YZJWKb3WNrjgPaTVsgKv1wYU3oR2wJrhgJsew4swPMZrCIbRmxBVPWcyv0I7LTz5bhhk1EH/c6zK0JnbT05yJdwOnaTyexK3GYUgjeYNsydvPp/PzeiC2ZeNgc4IMzHccUtg7jk+iw2aK8z8ZYfjyazWAH3ln2RDYzAQcO/cW8QckTW+ZTc1JbNhEknXELsWWtJNuDuZb2UNAnxh5jAr5hBV3AmWRysOYy/+BIhqzzp9d8DifqJ0eW2JoTS8S2huGQJ7Z0okX5qhLb7KnIRcSWRY0BzIBlQqDz7dCIrKgYj6QSWFQTQs1EDlkkikcEhIKBC7lhEWyb2NoCanLa6c8Qa+RjkSTVlUGR9R4ziPH0maHAs3iN2NOYPy2YAcPiyGJsXjoMD4wIPD8YqBj8kI0iYmueJIs00YfgyOJlnnzw59sYDSxyLMzIDYElQsBEmh20RIQwQIzQkRaDMcbP8PhnPewYViyaeP1sv2mRCtJuDAoiExT6GWPDHCn8jEEMtrQb/WPiADe+CZHG+GLC4Zv5dBVzQkDIzZtOO4uIraVj5/HJ79nKH46WJ7YYfRgVyI1XDT2oQmztIDJSEEm9Q0/Axoht9hRjI7aknrGA2h5QsimItFYhttn3GbHFoQJpQi/MeYJuoG8YS1liS7+TscBCSEEGO+0bY8xKv3Zl90Zb2j1eT/OuM7bQq16nJxYR217jD31hwUQvKXagCM4Rflc0NjGEGad2WAx9SpYAjprsCau2Z6uoH7LEFnxwhhFpYb5ifIMvxnmviG3R/IuOsdDa91jgMRT4eb/DoyzjBoKADmHA9uufPLEtmlfog156gMFT1F70VmV2BPLEFocDBhnGEnMocx3rJgXyg2FtaakQXXSBTB+K7QEtwriI2JpBxpjHCYhhSt/ljW57H+TADkOzPW2sFRiJzNHMLRiwzNMQUlLuid5nI7ZEgnHOUZ/5n/WFYsTWyDMGL0YdDkpkYtxgKPIzZMAGwPhlTBYR8eweW8Ys2BClzO4xNsLG95EHwzg7h2VxxOmK/UGxSDX/tkgocpKNBHGlMDZwTmcjtpa2WtR25gMMdf5GXvBg3FLs7I6sPJaeTnuwGywLB9xJG8cW4zuQJNYS+h/Shi1Bf0GycbKR2kiUi1KV2NohY3YYZhOH1cTOC7bHFtxYzyBK2EEQJXMC0c5+uEAgISfgAj7YbvxhrmSexhbDTsCuYIwSjYWYYDNZKmxVYluUimzkj37H3sJxiiyswVmbzLBqQidNj4p0AcdXP5005yY2K2MaWwximLXtTFZrGzrJFgh0FNzA2W4WMcJGnezJ1EW6YYSc31n2hGUy8A36mn6z810Ymzh6sqcim1MK4mlRY97Hus9Ysb3NOOuwjdB79IN5J39lor2L+QsHOn3HPM2c3W8+Z/z2k6MKsc3rKFwptnR2j20VYkuKFHsveBZDt4zYMjmwHwgDnIHE4oPnJr+vk4UcxcRow/CFhLG4oSR4aSE7eEAgPnQqE7IRW5QRowsvNt8oKnX22PI9FAWvcrYwGFloWViNWCCvHf7Es0yoGMhMiER7kBkvEIrMpJAvtmDYIs/vScmmTXjzILvgB454vI0gMFFgeDMhMrAgigws+sVSK8COAY8RgPeWAY9RT1omxMVOKmYAZ9NIjMBZ+iP1mWiZxKwYCcFJAcHIHr7BN1ngIbv8DY5MhGBGP0K0mQCQJ0uGMWToJ4wjjB+MEowkordG6lnMWLjy0QVL06H9RHbBBHlpA7qVjdjyDiayPD7gki39iC3kmYUUoo0O4CSqSmyJwNFXLKp4P8EA4wqynj/F2IgtkU48u3jaGX/oAoZlEbHF8KLPSDXMv8+ILRFzdIFFBtLF4oTeQciQKUtsSU3HoEGfmfypg1PEokeGWb925Q/9wrhnjNGPkDXeT78gd1HJE9t+44+5hegR45gFhveiH+AL7kVjE3xxpNCHLNgswuhs3oPM+O/VD1liiwGEgcC3MTzRScYybc3On9lU5KL51w6foq+ZRyDrOGsYO9l+zmOWTak2I7lf/xixZQ7uNa+gG730AOdjUXubONQidsFOrb4R2yyZZN4Dw2ymDRFRHDFEIpgvs4eU0KZsKn9RG20ezxI7nrO7Ha0OOsWYLrqiDQcPRBu5zJCnHg4adMEOyoFwY9xaNCZLbDEgcbZa2jLjCtltzcMAZa6ivhWL/pKZwnjJ3twADsxJthcwWweyx3ppTjjWY+Y2u8oIWRiLjEnWVHMgFOGXjf5ZpJrncAazJlm2DUSWtiEzfZi9x5ax2q/tZGKAhx2sw9qZzVDLysWch41jVzTxLPMUUSdwou22ZYt6dkiUZS9hzFt/QSIgAXliyzzJHI8zAr2xLBqcg+gga2/+BO1hja9e99iy5kEA0ZMyXJjPaS+YoiOsydgB6DMFmwT7hbmXbBsrliZPaq1F/coitkXEFscR488Oi6OvsB/z+8ftu03oJDrQTxf66ST7tbH1bHwhF/qNrZffUmDENnvgFmOT9tmWALPLeQ8/Ry97FTvwjN/jkLLDK8k8wC6i8H7bzkd2Ig5anG+WLWhbPHiWuQEdoS28m7Fr/MbSmvk9v8sfYkp9nNys88wDFOYzbErsiH7zOc+WyWFzsUVsbeuJpSLndbSJKzA7Q2wxIpl4mUghDnnDismWiTNbUBqMFVJhMG77EVsmYgww22OAIlkKjR26ZO9GkZhIMf6YsCFqTNKQLgaGTea2j5W9CHaPLakHDJSiPQz2fjuGnwhG9kRmFAVykk27xWBk4Ocvzs4SW8iMbVLP4gMmkBwmQoxSU3gWYruzMI8nC7Qd2sDveNbeDfnAUwUBhsSwqNg9tnbiInXMWKAPIalMNnZSH5jRjxAJS0WjL+h70irzVyfwc95hqaa9UncxdjidLl/Mu83Exh/aRpolhMH6kTRPSIR5yyGJdqoz/U8/MeHzDPLhFGDitM39drqyfZsJgPczYVAwWjCUcITgeMje0UlqdC98sm3pR2yN7PE80QTIIF4+i9jiCIDo0Hf5tGnGEIslv6cQiQAjDE68wUURW56xO++ogwEJlnjm8/dP2iQIdkQiiyK2vM/21libWRzwoPLOvNz0BcTIFgQm1vzhJv3axbey9y/bCb94cCngxjNFXmp+nx+n/cafXbNlxiJY0TcsehgyvcYm86E5bzAwiNYUXSvSqx+Yw4yoGhmxaDh6SzZMfv7sR2xt/kUmI/yMZeZUFtpsP+e3cIAZ4xYHme2d7Nc/GAo2RnrNKzipeulBr/a+YHLQD3oiwBzGeGC+wDiyFEjDlqgeaxWZB6wZMQdzkYpHRJM1IXsoSp3uQV7ewbrWa9xm34dDk5I/qMmeIfrCvn3GXn6/HnUxyHEq4UzNR0/yckNg0feiZ82xYESkTpvtWeYR1jT6qcghkH9nv7ZbvxP14X1FV4tk1zmyW3DYEqXMP8s76BOM/vxhPrwDfLHBLE25TttZo1k76ZtR2zvfDxfwp3/smiowwQYCY5x8ptvoJ/YVYwYMmyzoKt8kC6vXnvOy79XVyX66UKaTzFPYL+iYpf72k485DTzz9iJ2HlhmD1oqa2fR7+k/8CvS+fzzODuIjmMDF4019JwxxBhh/ug3vplnmJeYi5kHs8/2ms9NnjI5ynAo0tGyOv1+3xliGwoCHQ+odRZESC4DL7+3Ni8DAwaFy6YHoQAs5vysl6IRhcH4ayL1DU8mhh5RnJjCxMGEinFZthDnv0N6GpMdEx2DhUkEMp+f9JgYKHa4UnYBBHM7QTI74CBh4Ixx3GsRJZ2JxTHrAY7BgrrsQ6AfWRTzExxysmj0irhT305QhjT2msBY9MEJTyrGG3+KFiEmnV74VG0nMrPQV5nY8+80o5D+pQ/oR/S7zOBAL3kWnPpNuPQxOlG2SLLYmKHcy+A02dFBFgTShfMnNmb1jkWhSruYR4j8cICHnbhdFfuy59A1DE8w7WXgFY1NyCmLcNmF8lX6gffg4cZYtUMzkDtk/kRW+j0/bqr2c93+6TWv8J5eetCrvWV9pd/3RyBLbLNbN4RbPQSYa8hEwSFbdAp0vbfpaSEgBGIQIBJKxgBrLqnyRRmNMe9X3XoIjHliWw+u9p/G6CNVkWhmFe9pmUSk9JCeWWbol71nlH8PKWcfDylI+TuHh9UuJj7IpN0pNyw59F0hIASEwKAQILuB7RlkSJCJohKGAMSWqDcZNjit86cqh71VtYSAEAhBgKwr9sqSVcc+2Kaj4CEyjeU6IrZjuffHUNs5rZMIef6y8GFBQGo3ewlGLQ1qWHjpu0JACAgBISAEhIAQEAJCoB8CIrbSDyEgBISAEBACQkAICAEhIASEgBAYaQREbEe6+yS8EBACQkAICAEhIASEgBAQAkJACIjYSgeEgBAQAkJACAgBISAEhIAQEAJCYKQRELEd6e6T8EJACAgBISAEhIAQEAJCQAgIASGQLLHlOh2uktDhOlJSISAEhIAQEAL9EdCaKQ0RAkKgLgKaN+oipudTRyBJYss9UJdddpm/m5S7Nc844wx/P+bCCy/sNthgA48px9s3eS9p6h0l+YSAEBACQkAIFCGgNVN6IQSEQF0ENG/URUzPjwICyRHb6dOnu3XWWcf9/ve/9/ittdZabu+993bLLrusO/DAA92ZZ57pSa6KEBACQkAICIGxjoDWzLGuAWq/EKiPgOaN+pipxmggkByxNdgmT57sTjvtNHf66ae72267zV111VVum222cY8//rhbffXV3eGHH+4JsIoQEAJCQAgIgbGOgNbMsa4Bar8QqI+A5o36mKlG2ggkS2z/9Kc/uW9961s+DflnP/uZmzFjhrvxxhvdrrvu6s466yx36KGHesI7xxxzuCuvvNIT32whbfld73pX2uhLOiEgBISAEEgSgQkTJiQpVy+htGaOVHdJ2BFEYNTmhCoQa96ogtJoPdNFPa3TA8kR27vvvttdf/31btNNN/XtOOCAA9xDDz3kjjnmGDfXXHP5P88995xPR77rrrvcUkstVdheIrr77LNPHSwG+uyUKVNcyson+eLUQfgJvzgE4mpL/7qNX7Z1Y2XNjOtR1RYCcQikPqfWbZ3mjbqIjcbzXdPTENSTI7bTpk1zyy23nLvpppvcYost5rbbbju39tprOwbhgw8+6E444QR39dVX+5/ffvvtPdssYhuiDv+rk/rgkHzq3/9j71zAraqq9j9ASC7eSEEwNTxqmqJ+aqil2YeSt0BLBQyjxMQsr/VPDcorAj5l3lOTTL80DE0ttc9S0EqQ1NIvJfKGSKigWKCIoILn/7xLF27O2fvstcaYc+2x937X8/B0OWvMPeZvjHl515xrLhsBmzXzj/xsBMJZN8uYGY4YSyKB/AS89/l5a8R+Iy+x+ri/0fJUQ92dsEUlzj//fLnoootkww03lF122UVuvPFGWblypQwePDhZqcW/8847T4YMGUJhq4l6BhvvjYP+ZQhiB7eQH/nZCNismX82fm2tm2HMDEuMpZFAPgLe+6x8tXn/bvYbGmq+bRoxT/MSdylsUYkVK1YkYrZXr15r1WnRokXJSm61iyu21Qh1/HfvjYP+Mb42AjZr5h/52QiEt270MTM8MZZIAtkJeO/zs9dk7TvZb2jJ+bRr1DzNQ9utsM1TiXL3UtjaCHpvHPSP8bURsFkz/8jPRsCftfcx0x8xetRMBLz3+bWKBfuNWpEv/7vMUxEK2xrlpPfko3+2xCA/8rMRsFkz/xqbn6125a05QY1BlWU2CgHvfWqtOLPfqBV5CttK5BtW2J543k/lnFO+In169fSVdR94472TpH+2tCE/8rMRsFkz/xqbn612FLYx+LHMxibgvU+tFX0K21qRp7BtKmE7/W/z5NJfPyITxwySnVr6+Mo6Ctsg8fA+yNA/W5jJj/xsBGzW3vPPVrvKwnbHfQ8PUvSQT28bpBwWQgJeCDRjn5CFPYVtFkrF3cM8bdCtyGOvvV9mz1tMYWtoS94bB/0zBFdEyI/8bARs1sw/G78Y1pigzlja31x0p04id04cYS6HBZCAJwLe+6xasaKwrRX58r/LPKWwrVlGek8++mdLDfIjPxsBmzXzr7H52WpXecWWwjYGWZbZCAS896m1YkxhWyvyFLaVyDfkO7ZcsbU3NO+dOP2zxZj8yM9GwGbN/LPxi2HNFdsYVFlmoxDw3mfVijOFba3IU9hS2PrKPW4FNcbD+yBD/2wBJj/ysxGwWXvPP1vtuGIbgx/LbGwCzdgnZIkohW0WSsXdwzzlVuTisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2Ebgx/LbGwC3vvUWtGnsK0Vea7YcsXWV+5xxdYYD++DDP2zBZj8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGecsW2uGzjim1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5qljYfvOO+/IqlWrpEePHmtlxPLly6V79+7SuXPnipky9tr7Zfa8xTJxzCDZqaVPcRmV45e8Jx/9yxHMMreSH/nZCNismX+Nza9c7SxjJsrDBHXG0v42cCLSqZPInRNHmMthASTgiYD3PlXLKkS/ceaZZ2p/nnaBCTRqnubB1Km1tbU1j0ER937ve9+T+++/X3bYYQdZunSp/PKXv5QVK1bIyJEjpUuXLjJ//nw5/fTT5ZhjjinrDoWtPUreGwf9s8WY/MjPRsBmzfyz8WtrbR0zKWzDxoOlNR4B732WhniofoPCVkM/jk0j5mleUu6ELVZkBw0aJI888khSl3322UfOOOMMmTNnjixbtkwmTJggixYtkn79+gnubbuiCxsK27xp0P5+742D/tliTH7kZyNgs2b+2ac31TkAACAASURBVPiVWocYMylsw8WDJTUmAe99Vl7qIfsNCtu89OPd32h5qiHlTtimlZg9e7Zcf/31ctNNN8lTTz2VrNAOHjxYjjrqKMEiM7Yiz507V1paWtrVm8JWkwpr23hvHPTPFmPyIz8bAZs188/Gr5y1ZcyksA0fD5bYWAS891la2iH6DQpbLf3wdo2ap3lIuRW2TzzxhFx99dXJNuTf/OY3cs0118jw4cPlyCOPTOq36aabysMPPyz9+7d/J4jCNk8KlL/Xe+Ogf7YYkx/52QjYrJl/Nn7lrC1jJoVt+HiwxMYi4L3P0tIO0W9Q2Grph7dr1DzNQ8qdsH3ppZfkr3/9qxx22GFJPc466yx57bXXkq3HG2ywgZx22mmyevVq6dWrV/L+LVZuZ8yYITNnzlxT7yff7Cuvr+omJw/ZXrbpt34eHryXBEiABEiABMruBvKIJcSYmdYryOFRInLpmIEeUdEnEjARKLdD0FRgDY1D9hvDhg2rYU34020JNFKeaqLrTtguWbJEtt9+e3n88celb9++MmrUKPnc5z6X/Pcrr7xS7r33Xrn11lvl4osvllmzZpWtM1dsNamwto33pz70zxZj8iM/GwGbNfPPxq/UOsSYifJ4KnK4mLCkxiPgvc/KSzxkv8EV27z0493faHmqIeVO2KIS559/vlx00UWy4YYbyi677CI33nijdOvWTQ455JDkECmckHzffffJnnvuSWGriXoGG++Ng/5lCGIHt5Af+dkI2KyZfzZ+ba2tYyaFbdh4sLTGI+C9z9IQD9VvUNhq6MexacQ8zUvKpbBFJSBeV65cmWw5Lr0WLFiQrN527dq1Yl25Yps3Ddrf771x0D9bjMmP/GwEbNbMPxu/ctaWMZPCNnw8WGJjEfDeZ2lph+g3KGy19MPbNWqe5iHlVtjmqUTbeylsLfTet/XeOOifLcbkR342AjZr5p+NXwxrbkWOQZVlNgoB731WrTij36CwrRX9+luUKoIUhW0RlMv8hvdOkv7ZEoP8yM9GwGbN/GtsfrbalbemsI1BlWU2CgHvfWqtOFPY1op8+d9lnopQ2NYoJ70nH/2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIVtJfIUtjXKSe+dJP2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIUtha2v3OM7rMZ4eB9k6J8twORHfjYCNmvv+WerHYVtDH4ss7EJNGOfkCWiFLZZKBV3D/OUW5GLy7Y2v+Q9+eifLTXIj/xsBGzWzL/G5merHYVtDH4ss7EJeO9Ta0WfwrZW5LliyxVbX7nHFVtjPLwPMvTPFmDyIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5yhXb4rKNK7ZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5SmFbXLZR2AZl7b3x0j9buMmP/GwEbNbe889WOwrbGPxYZmMTaMY+IUtEKWyzUCruHuYphW1x2UZhG5S198ZL/2zhJj/ysxGwWXvPP1vtKGxj8GOZjU2gGfuELBGlsM1Cqbh7mKcUtsVlG4VtUNbeGy/9s4Wb/MjPRsBm7T3/bLWjsI3Bj2U2NoFm7BOyRJTCNgul4u5hnlLYFpdtFLZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d52uDCFqk0YKveMun4/YrLqoy/5D356F/GQFa4jfzIz0bAZs38a2x+ttpR2MbgxzIbm4D3PrVW9Clsa0W+/O8yTylsa5aR3pOP/tlSg/zIz0bAZs38a2x+ttoVJ2yHjp0axNW7Jo1IymF5OpwpP501rUDAe59aqyhR2NaKPIVtJfKdWltbW32FJYw34yZcJk++2Zcrtkqc3jtx+qcM7Adm5Ed+NgI2a+afjV8Ma0xQZyztby66UyeROydSiFpAxhLyFp+a3dZ7n1Wr+FDY1oo8hS2Fra/cc//0z3snTv9sCU1+5GcjYLNm/tn4xbCmsNVTjSVEQ69Q62tIS+99Vq0iRGFbK/IUthS2vnKPwtYYD++DDP2zBZj8yM9GwGbtPf9stStvTWGrp0phq2dXL5bN2CdkiQ2FbRZKxd3DPG3Qd2yRQtyKbGtI3hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnl29WHrv82vFkcK2VuS5YssVW1+5xxVbYzy8DzL0zxZg8iM/GwGbtff8s9WOK7b1IkS5FTlGpuvKbMY+IQspCtsslIq7h3nKFdvisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2FLYRsjgxq7TO99aq3oU9jWijxXbJt2xXbTXj1l4phB0qdXT1fZ572TpH+2dCE/8rMRsFkz/xqbn612FLYUtjEyqLHL9N6n1oo+hW2tyFPYNq2wRcUhbHdq6eMq+7x3kvTPli7kR342AjZr5l9j87PVjsK2GYUtPuz4u788GyR1hnx6WwldXhDHIhbivU+NWPUOi6awrRV5CtumE7bnTfqx/KvzdvLq0uUUtop2570Tp3+KoJaYkB/52QjYrJl/Nn4xrHl4lJ5qPQhlCNFDx03VV/IDy/Q7xaHLMzsWuQDvfVbk6lcsnsK2VuQpbJtO2KKxLe01UGbPW0xhq2h33jtx+qcIKoWtDRr5kV8wAv4KorDVx4TCVs8uFcr6Eoqx9D7nKIZC+1+hsK0VeQpbCltuRc7V+rx34vQvVzjb3Ux+5GcjYLNm/tn4xbCmsNVTpbDVs6Ow1bPzYElh6yEKH/rgfWwtglan1lZsKGm8iyu2tph6bxz0j/G1EbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwrY0ChS2NcpJToxt4MmP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYUtg6yENOjG1BID/ysxGwWTP/yM9GwJ81ha0+JhS2enYUtnp2HiwpbD1EgcKWwtZBHnJibAsC+ZGfjYDNmvlHfjYC/qwpbPUxobDVs6Ow1bPzYElh6yEKFLZ1IWxXrVolb775pmy00UaqrEFjW9proMyet1gmjhkkO7X0UZUTy4gTYxtZ8iM/GwGbNfOP/GwEwluHGDNnLO1vdqxUqAwdO9VcHgqoB+EIPz3Xt7VV5NBx9nik8Q1dXpBEiViI9z5fW/UQ/caZZ56p/XnaBSbQqHmaB1On1lZ0T76uiy++WH7605/KnnvuKW+88YZApPbv31969+4tBx10UOLsdtttJ+PHj6/oOIWtLabeGwf9Y3xtBGzWzD/ysxEIax1qzKSw1cWlHoR3aCEaujwd+eKsvPf5GhKh+g0KWw39ODaNmKd5SbkTtu+8846su+66yWptz5495YILLpBXXnlFTjzxRDn77LNlypQp0qVLl6r1pLCtiqjDG7w3DvrH+NoI2KyZf+RnIxDOOuSYSWGriwuFrY4brLgVWc/OYhmy36CwtUQirK33uUnY2pYvzZ2whZtLliyRXr16yVtvvSX777+/nHrqqbLeeuvJyJEjZdmyZTJw4MBkFXfQoEEVGZUK2++P2kf22uFjRfDM/Bvek4/+ZQ5l2RvJj/xsBGzWzL/G5te2dqHGTApbXd5Q2Oq4UdjquYWwDNVvUNiGiEaYMryP/WFq2XEpLoUtXH7sscdk9OjRMmDAALnuuutk5syZyf930kknydSpU2XSpEny1FNPSSc87itzlQrbL++/o4wcPKAInpl/w3vy0b/MoaSwtaEiP/KLQMBWpPf+r1ztQoyZFLa6vKGw1XErFbbY2vzYswvzF1TmZbrdt+uXv5wqFvXYJ2SBEKLfoLDNQrqYexo1T/PQcylsp0+fnqzOXn755TJixIikPtg2sc466yT/Vq9enWxHXrBggWy++eYyY8aMRPi2vV7f8L/kyflL5aDdNpODd/e1YpsnSLyXBEiABEigWAItLS3F/qDh10KNmUGErYhcOmZgUptTJz9qqNWHppexPBNH8IP+Oy1APLCUgPh6L88ErIJxPfUJWeofqt8YNmxYlp/jPQURaLQ8zYvNnbDFWVYbbrihTJs2TfbYY4819TnnnHNk8eLFctVVV8lDDz0ko0aNkrlz51asL1Zst9j9C3Lz9H8IV2zzpoWI96c+9C9/TEstyI/8bARs1sw/G79S65BjZhBh20nkzonvP5D2fEpws/kX+rAn7+WFa2Hvl+S9z8pb35D9Blds89KPd3+j5amGlDth+9xzz8m22267Vl2+9rWvJVuPBw8enKzU4t95550nQ4YMobDVRD2DjffGQf8yBLGDW8iP/GwEbNbMPxu/UuuQYyaFrS4u3Iqs4warevl8kPc+K28EQvYbFLZ56ce7v9HyVEPKnbCtVolFixZJ3759q92WHC7FFduqmCre4L1x0D99bOvh6TPjy/jaCNisvedfntrlGTMpbPOQ/fBeClsdNwpbPbfYlnn6DQrb2NHIXn4jjV3Za732nXUnbLNWlMI2K6ny93lvHPSP8bURsFkz/8jPRsCfNcZMCltdXChsddwobPXcvFii36Cw9RKNxtsyryFLYauhFsCGE2MbRPIjPxsBmzXzj/xsBPxZU9jqY0Jhq2fHrch6dh4sKWw9ROFDH7zPTYqgRWFbBOUyv+E9+eifLTHIj/xsBGzWzL/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFbGoWmELZ77fAx+f6ofVxlHyeetnCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYdt0wnbAVr1l0vH7uco+Toxt4SA/8rMRsFkz/8jPRsCfNYWtPiYUtnp2sYQtPkd0/v/8We9YieU5x+zbcJ/7CQJGJDmole/YhqJpL8f73MRew+olNPSK7eeGfkUm3DhDKGyrJ0LbO7w3DvqXP6alFuRHfjYCNmvmn41fDGsKWz1VCls9u5jC9tBxU/WOfWCZ+ue9zzJXVFkAha0SXCQz5qlIQwvbQ4aNlnGTH6CwVTQg742D/imCWmJCfuRnI2CzZv7Z+MWwprDVU6Ww1bOjsNWz82BJYeshCh/64H1sLYIWhW0RlMv8hvfko3+2xCA/8rMRsFkz/xqbn6125a0pbPVUKWz17Chs9ew8WFLYeogChW1pFChsa5STnHjawJMf+dkI2KyZf+RnI+DPmsJWHxMKWz07Cls9Ow+WFLYeokBhS2HrIA85MbYFgfzIz0bAZs38Iz8bAX/WFLb6mFDY6tlR2OrZebCksPUQBQpbClsHeciJsS0I5Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIQ06MbUEgP/KzEbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwpbC1kEecmJsCwL5kZ+NgM2a+Ud+NgL+rCls9TGhsNWzo7DVs/NgSWHrIQoUthS2DvKQE2NbEMiP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYFi5sH3jgARk0aJDce++98uyzz8rRRx8tG220UdRsQGM7ZNhoGTf5ARmwVW+ZdPx+UX8vb+GcGOcltvb95Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNgWKmzPOOMM+dGPfiQPP/yw7Lnnnslv77bbbvK3v/0tajaUCttNe/WUn50xJOrv5S2cE+O8xChsbcTIj/xCErCVxf7Pxi+GNYWtniqFrZ4dha2enQdLClsPUaCwLUzYtra2St++fWX48OGyYsUKue6662TKlCkycuRIWbhwYfK3WFepsMVvpANPrN/LWy4ndnmJUZjZiJEf+YUkYCuL/Z+NXwxrCls9VQpbPTsKWz07D5YUth6iQGFbmLB9++23pVu3bnL77bfLCSecINtuu61cddVVsssuu8hTTz0l2223XbSMQGMbffxJ8vUf3p38BoVtPtSceObj1fZu8iM/GwGbNfOvsfnZalfemsJWT5XCVs+OwlbPzoMlha2HKFDYFiZs8UMjRoyQW265JfnNyZMny6RJk+Sdd96RBQsWRM2GtLENHTuVwlZBmhNjBbQSE/IjPxsBmzXzr7H52WpHYVsPQhRRSucv1nijvq2tIoeOe38+ZLnqRYiGrq/3PtUSU4stha2FXnhb5qlIp1bsF454vfrqq3L11VdLp06d5Lvf/a6MHj1aTjzxRNl3330j/qoIha0Nr/fGQf8YXxsBmzXzj/xsBPxZc8VWH5N6EMqhhV6zlee9z9dnr82SwtbGL7Q187QAYYugvfDCCzJr1ixpaWmRjTfeWLbZZpvQsWxXHoWtDbH3xkH/GF8bAZs184/8bAT8WVPY6mNCYatnVy8rwN77fH0EbJYUtjZ+oa2ZpwUI27vuuksOPfTQJHZjx46VGTNmyK677iqXXXZZ6HiuVR6FrQ2v98ZB/xhfGwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUPvTB+9ykCFrRtyJvscUW0qdPn+S7tfjcT5cuXWT8+PHy0ksvyWabbRatjhS2NrTeGwf9Y3xtBGzWzD/ysxHwZ01hq48Jha2eHYWtnp0HSwpbD1GgsC2NQlRhm56K/JOf/ETmz58v66yzjgwbNiz5ju3s2bNlxx13jJYRFLY2tJy4k5+NgM2a+Ud+NgI2a+/5Z6tdeWsKWz1VCls9OwpbPTsPlhS2HqJAYVuYsMUPQby+9tpryTdrsVqLw6R69OghTz/9dNRsaCtsv7z/jjJy8ICov5mncO8TJ/qXJ5rt7yU/8rMRsFkz/+qX36OPPir9+/eX3r17J5VYuXKlPPLII8mOp3XXXddWsQ6sKWz1aCls9ewobPXsSi1r2W+ceeaZYSrBUswEvI/95gpmKCDqii1+//HHH5dzzjlH8K5tev32t79d895tBh9Vt1DYqrCtMfLeOOgf42sjYLNm/pGfjUB76+eeey554Hvssccm//bZZ5/kpmeffVa+/e1vJ4cwfvzjHw/9s2vKo7DVo6Ww1bOjsNWzg6WHfoPC1hbDkNbe5yYh61qprOjCNv3hJUuWyIsvvihbb711smIb+0qF7ZRps+Xm6f8QrtjmI+69cdC/fPFsezf5kZ+NgM2a+dee3w9/+EOpNEFcf/31BWMoXueJdVHY6slS2OrZUdjq2cHSQ79BYWuLYUhr72NryLrWTNjuv//+yVbkttdDDz0kPXv2jFZHClsbWu+Ng/4xvjYCNmvmH/nZCLS3rrTygjvxSg+2J8e8KGz1dCls9ewobPXsYOmh36CwtcUwpLX3uUnIutZM2A4aNCh5rxbXG2+8kaza4pTkefPmRV25pbC1pY/3xkH/GF8bAZs184/8bAQqW7/88svSvXv3ZIW29IKw7dy5c6yfFQpbPVoKWz07Cls9u1LLWvYbFLZhYhiiFO9zkxB1rFZGYVuRU0fOP/98SU9J7tatW0X/Vq1aJW+++WbymaDSa/ny5cmgX22Ap7CtFvqO/+69cdA/xtdGwGbN/CM/G4HK1ldffXWyJXnZsmVr3fT666/LBhtsEHXMnLHUviqcChU4OnTs1CCY6kE4eq9va6vIoePs8agXIRq6vt77/Fr2GxS2Qbq5IIV4z9MglaxSSHRhu2jRInnvvfcSN1avXi3XXHONTJw4MTkQY5tttinr3sUXXyw//elPk1MgscoLkbrxxhvLyJEjk5OV8emg008/XY455piK1aOwtaWP98ZB/xhfGwGbNfOP/GwEylu3trYmXxDANXr0aPnIRz6y5sbvf//7FU9FDjVmUtjqoloPwju00Gu28jz3+bXuNyhsdf1GDCvPeRqjvuXKjC5sN9100zVbkVMHcBDGv//9b+natWs7n955551k8MZqLd7BveCCC+SVV16Rj33sY8kT7AkTJgjEcr9+/QSrt5UOoqKwtaWQ98ZB/xhfGwGbNfOP/GwEOha2J510kpx11lmZfiLkmElhmwl5u5sobHXcYFUvK8Ce+/xU2Naq36Cw1ed/aEvPeRq6rpXKiy5ssfUYIhUXtg9vueWWcvDBB8tWW21VsY54t6hXr17y1ltvCQ6fOvXUU2XatGkyePBgOeqoowSNGGXNnTtXWlpaypbTVtju1NJHJo4ZVBTXqr/jPfnoX9UQdngD+ZGfjYDNmvlXv/yOPvro5PN4GMMwDqbXkUcemexYKneFGjMpbHV5Q2Gr40Zhq+fW1rKW/QaFbbg4WkvyPvZb65fFPpqwBVwI0EoXhG1H78k+9thjyVasAQMGyHXXXSdf/epXZfjw4YLBHRdWgh9++OGKJ0W2FbawSQefLGBi3+M9+eifLQPIj/xsBGzWzL/65VdulxNqU+0d2xBjJoWtLm8obHXcKGz13Npa1rLfoLANF0drSd7Hfmv9sthHE7adsL+kg6ujQXr69OnJ+7SXX365jBgxIikFK784OOO0005L3tXFk+ylS5cm4njGjBkyc+bMdr82bNgweW7hMrni7qeSv102ZmAWJryHBEiABEigyQlU2g0UG8tf/vIXefvtt9v9zN57711xxTbUmBlE2IrIpR+MtadOfjQIrnTsZnk6nOCHZYbTAsQDMzvEt9nKA/la9QlZol7LfgNzbV5+CHjO0yIoRRO2F110USJAK13f/va31zoYI70Pq7wbbrhhsvV4jz32WGN+5513ypVXXin33nuv3HrrrYLDMmbNmlWx/HTFFjekJzNyxTZ7Snl/6kP/ssey3J3kR342AjZr5l9lfhjjyglbvMJTbityyDEziLDtJHLnxPcfSPNUZF07ibEC3GyHPYWur/c+q5b9Bldsde08hpX3PI1R57ZlRhO2pT+EQRortLgwCOOD0hCt5Q6Pwt+23Xbbtfz82te+JjjK/JBDDpE5c+bIihUr5L777ktOTa50Udja0sd746B/jK+NgM2a+Ud+NgKVrfNuKQw5ZlLY6qIaQ4iGfjAQWug1W3ne+/xa9hsUtrp+I4aV9zyNUefChe3UqVPllFNOaXcycrX3hSpVfsGCBcnnEMqJ4lIbCltb+nhvHPSP8bURsFkz/8jPRqCy9T333LNmxRYn///whz9MVmpxpkSlw6M68iXPmElhq4sqha2OG6x4KrKeXallLfsNCtswMQxRive5SYg6Visj+ort1ltvLRtttFHy3dq99tpL/vnPf0qfPn0E7wNUE6fVnO/o7xS2Fnoi3hsH/WN8bQRs1sw/8rMRyG6Nh8P4GsBLL70km222WXbDnHdizKSwzQntg9spbHXcKGz13KpZFtlvUNhWi0Zxf/c+NymCRFRh++677ybv0d50003y5z//WTbZZBM54YQTkk/+4PMEELyxLgpbG1nvjYP+Mb42AjZr5h/52QhUth47dqy88cYbyQ3vvfdecq4E8g3fc8dD4VgXha2eLIWtnh1XbPXsSi1r2W9Q2IaJYYhSvM9NQtSxWhlRhS1+fIsttkjE7Te/+c3kZOMjjjhCbrjhBnnmmWfavUtbzdk8f6ewzUOr/b3eGwf9Y3xtBGzWzD/ysxGobN32Xbn1119fvvWtb8mFF14Y6yeTcils9XgpbPXsKGz17Eota9lvUNiGiWGIUrzPTULUsVoZ0YXt/fffLzgB+cYbb5QvfOEL8uKLL8rQoUMFpxzHvMoJ28tOOVBa+sVbJc5TH+/JR//yRJMPBmy0yI/8QhOwlVfL/g+fsUu/AY/P5sXc2VRKicJWnzMUtnp2FLZ6dqWWtew3KGzDxDBEKbUcu0L4H6KM6MJ28uTJcuCBBybbj1etWpUcIhXzPaEUSjlhO3HMINmpJd5WrjwB8Z589C9PNCnMbLTIj/xCE7CVV8v+b9myZcmD4ClTpgj+O96vxZcBYo+bFLb6nKGw1bOjsNWzK7WsZb9BYRsmhiFKqeXYFcL/EGVEF7bp9oj99ttPRo0aJV/84hcLeQJdKmxPufwPMm/hUqGwzZ4y3hsH/csey3J3kh/52QjYrJl/lfnhXTlsO8YWZHzTHbucdthhB/n73/+uOhU5a6QobLOSan8fha2eHYWtnl2pZS37DQrbMDEMUYr3sTVEHauVEV3YPvDAA/K73/1O7rjjjuQADFx4Ao33bNddd91q/qn/Xipsx157v8yet5jCNgdN742D/uUIZplbyY/8bARs1sy/8vzweZ/11ltPxowZI9dcc4107txZLr300uR1HnxRYPvtt7eB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROdGFbfrjTz/9tFx55ZXJP1za79hmhUJhm5VU+fu8Nw76x/jaCNismX/kZyNQ3vqtt96Snj17yrnnnivnnHNOctOtt94qw4cPl7/+9a+y++67x/jZpEwKCYzrmQAAIABJREFUWz1aCls9OwpbPbvUstb9BoWtPYahSvA+NwlVz5oKW2yPwOd+sJ0K12677SajR49OPvuj+dh8VigUtllJUdjaSJEf+cUgYCvT++BG/yrHd5999pGZM2fKwQcfLD169JDbbrtNBg4cKA8//LDgMKlYF4WtniyFrZ4dha2eXallLfsNCtswMQxRivexNUQdq5URfcUW79jicz/HHXdc8tT5k5/8ZDWfgvydwtaG0XvjoH+Mr42AzZr5R342ApWt58+fLxMnTpSbb745OTwK4+b3v/992XnnnWP9ZFIuha0eL4Wtnh2FrZ5dqWUt+w0K2zAxDFGK97lJiDpWKyO6sH388cdll112Sd4VKvKisLXR9t446B/jayNgs2b+kZ+NQMfWc+bMSbYk4xwKfMYj5ru1qScUtvqIUtjq2VHY6tm1taxVv0FhGy6G1pK8z02s9ctiH13YZnEixj3lhO2YIbvKgJY+Lr5l6z356J8tK8mP/GwEbNbMv/rlh3MoTj75ZLnnnnuSz+TtuOOOcsYZZyQrqjEvCls9XQpbPTsKWz27Usta9hsUtmFiGKIU72N/iDpWK6OphC1gDNiqt0w6fr9qXKL/3Xvy0T9bCpAf+dkI2KyZf/XLb7vttpPevXvLr3/962TV9sQTT0y+a/vSSy9F/ZYtha0+Zyhs9ewobPXsSi1r2W9Q2IaJYYhSvI/9IepYrYwownb16tXJJ35w4MVjjz2WbEXefPPNq/kS9O+lK7aT735cnnz+1eRbthS22TB7bxz0L1scK91FfuRnI2CzZv6V57dq1Srp2rVrcrji1Vdfndz0y1/+Ur7yla/IrFmzZK+99rKB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROVGE7dtvvy3dunWT448/Xn7zm98kg3LbAflLX/pSYaciAwCE7bjJD1DYZswq742D/mUMZIXbyI/8bARs1sy/yvz23XdfefDBB+Wwww6T9ddfX37729/KhhtuKM8991z0b7/PWNrfFlgRSYUKCho6dqq5PBRQD8LRe31bW0UOHWePR70I0dD19d5n1bLfoLAN0s0FKcR7ngapZJVCoghb/Ca+t4fV2kpXkd+xpbDNn0reGwf9yx/TUgvyIz8bAZs1868yv3nz5skll1wiU6dOlVdffVW+8IUvyOmnny6f+9znbNCrWHPFVo+3HoR3aKHXbOV577Nq2W9Q2Or7jtCW3vM0dH3LlRdN2L755puJsB02bFjyjtBnP/vZtX4f/7uo79hS2OZPJe+Ng/7ljymFrY0Z+ZFfOALVS3rvvfdkxYoVyXu2RVwUtnrKFLZ6dvWyAux9zpFGoBb9BoWtPv9DW9ZLnoaud2l50YRt+iMvv/yyrLfeevLoo4/K8uXLZfDgwclH52Nfpe/YUtjmp+29cdC//DGlMLMxIz/yC0fAX0kUtvqYUNjq2VHY6tl5sGw71/bgUzP74H1uXERsogvbP/3pTzJ06NDkQ/Ppdemll8qpp54atX4Utja83hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnh2FrZ6dB0sKWw9R+NAH73OTImhFFbbYEoGTkfGe0A9+8INkpfaKK65IVm9fe+012XjjjaPVkcLWhtZ746B/jK+NgM2a+Ud+NgIdW7e2tsqCBQuSQxg/+tGPRn1tJ/WEwlYfUQpbPTsKWz27tpa16je4FTlcDK0leZ+bWOuXxT6qsP33v/8tm2yyiVx++eXJB+dxTZs2TT7/+c/LX/7yF9lzzz2z+Ki6p5Kw7dmtq+y/+1YyZsiuqnJDGXlPPvpnizT5kZ+NgM2a+Ve//J599lk56KCDBDEcO3aszJ49W0aOHClHHXWUrVJVrCls9XgpbPXsKGz17Eota9lvUNiGiWGIUryP/SHqWK2MqMIWT4/wmYIdd9wxOeURK7YTJkyQW265RRYtWiSbbrppNf/Uf68kbFGgh2/Zek8++qdOvcSQ/MjPRsBmzfyrX374ogAmqb1795YRI0bIiy++KDfeeKMsXbo0GU9jXRS2erIUtnp2FLZ6dqWWtew3KGzDxDBEKd7H/hB1rFZGVGGLH7/sssvktNNOW8sPbEseP358Nd9Mf28rbJevfFem/W2e/OzuxylsM5D13jjoX4YgdnAL+ZGfjYDNmvlXnl/6Dfgrr7xS/vWvf8k666yTfFlgt912S74ysOuu8XYaUdjqc5rCVs+OwlbPLrWsdb9BYWuPYagSvI+toerZUTnRhS1+HAP0HXfcIW+88YYcfvjhyQpu7KvcC+1PPv+qjJv8AIVtBvjeGwf9yxBEClsbJPIjv2gEKhe8wQYbyM477ywbbbSRfOQjH5HOnTvLvffeK3i1p2vXrtE8orDVo6Ww1bOjsNWzK7WsZb9BYRsmhiFK8T43DlHHamUUImyrORHj7xS2NqreGwf9Y3xtBGzWzD/ysxGobH3zzTfLN77xjbW+JIAdTtjpFPOisNXTpbDVs6Ow1bMrtaxlv0FhGyaGIUrxPjcJUcdqZVDYViMU6e/ek4/+2QJPfuRnI2CzZv7VNz9sLXzggQdk3rx5sssuu8hnPvMZW4UyWFPYZoBU4RYKWz07Cls9u7aWteo3KGzDxdBakvex31q/LPYUtlkoRbjHe/LRP1vQyY/8bARs1sy/+uV3/vnnJ6/ttL0uuOCC5PM/sS4KWz1ZCls9OwpbPbtSy1r2GxS2YWIYohTvY3+IOlYrI7qw/epXvyrHHXec7LvvvokvOOFx1KhR8qtf/arQU5Hx23zHtlo6fPh3742D/mWPZbk7yY/8bARs1sy/yvzwtQB8+73t9frrrwveo4t1UdjqyVLY6tlR2OrZlVrWst+gsA0TwxCleB9bQ9SxWhnRhO0NN9wgV1xxRXKS4+abby59+vRJfMGADXGLgzDw4flYV0fv2Lb020jGDN0t+Wl8+qcWl/fko3+2rCA/8rMRsFkz/+qXH8bG9957L6nAW2+9Jaeffrq88MILMmvWrOSU5FgXha2eLIWtnh2FrZ5dqWUt+w0K2zAxDFGK97E/RB2rlRFN2P7iF79IPvXTVtjCocGDBwsG0ZhXR8K29HfTASmmL+XK9p589M+WEeRHfjYCNmvmX+PwwzdssfPpueeek6233tpWsQ6sKWz1aCls9ewobPXsOrIsst+gsI0TQ02p3sd+TZ3y2kQTtqkjZ599thx22GGCj0cXeZUTts8vXCqT73oscWP2vMXJf1LYlo+K98ZB/2ytifzIz0bAZs38q8xvn332kYULF665AaxwLVu2TNZbbz0beArbtcb9oWOnBuFJYavHSGGrZ1dqWct+g8I2TAxDlOJ9bA1Rx2plRBe2Dz74oPz4xz9OtlGVXnPnzo0+SHfU2NIBjcKWwrZaI9H83XvnQv80Uf3QhvzIz0agsvUBBxwgr7zySnJDly5dklVarNgOGTIk1k8m5XLFVo+XwlbPjsJWz67Uspb9BoVtmBiGKMX73CREHauVEV3Y7rjjjjJnzhzZbbfdko/Np9f06dOlR48e1fxT/73cim1pYRS2HaP13jjon7ppJIbkR342AjZr5p+NXwxrCls9VQpbPTsKWz07D5bV5toefGwmH7yPrUXEIqqwXb16dfLE+ZxzzpFzzz23iPqs+Y1qjY3ClsI2ZkJ671zony365Ed+NgLtrbfYYgt55513KhZbxC6nGUv7m6uVChUU1Exbfb3Xt7VV5NBx9q3X9SJEQ9fXa5/vod/giq252wxWgNc8DVbBDAVFFbb4/dGjR8sjjzySfN6nV69ea1z62Mc+Jp3QQ3Zwvfnmm9KzZ8+q95UrgsI2Q/Q7uMV746B/jK+NgM2a+Ud+NgLtrbHVeNWqVRWLvf3226vucrKOmRS2uqhyxVbHDVb1IpS99vke+g0KW33+h7b0mqeh69lRedGFrebbWvgk0BNPPCGHH354chIkPhX09ttvS+/eveWggw5K6rPddtvJ+PHjK9aNwtaWRt4bB/1jfG0EbNbMP/KzEchn/cYbbyRnUnTu3LmsYagxk8I2X1zSuylsddwobPXcslgW1W9Q2GaJRjH3eJ+bFEEhurC99NJLk9Mc215nnHGGrLvuumXreNttt8nMmTPlkksuSQ7RgLB96qmnBCcsT5kyJdneXO2isK1GqOO/e28c9I/xtRGwWTP/yM9GoLL1P/7xDznvvPME/4kLq7g4JRnff99ggw2ijpkUtrqoUtjquFHY6rm1taxlv0FhGy6O1pK8z02s9ctiH13YLlmyRFrxskOb66Mf/WhV/7BVORW2d999t4wcOTIRyQMHDkxOcBw0aFDFMrIK25GDB7QrY//d+kufXj2r+me5wXvy0T9LdHk4k40e+ZGflYDNvpb93x577CGPPvpoUgE81MVqbEtLi8yePVu6d+/eYcWsYyaFrS5vKGx13Chs9dzaWtay36CwDRdHa0m1HLusvoeyjy5sNVuR08qVDtI4Rfmxxx6Tk046SaZOnSqTJk1KVnFxz4wZM5IV3rbXsGHDKnI6dfL7E4dy18lDtpdt+q0fijHLIQESIAESqDMCEJNFX++++27y9YCbb75Z7rjjDvnUpz4ln/nMZ+Tggw+W1157ba0vC5TzzTpmBhG2InLpmIGJex2Ns3nYXsby8uBqdy/4YXnhtA7mPVl/ACejIL7NVh741KJPyBKXWvcbHc21s/jPe8IS8JqnYWtZubTowhYnIqdbkXGwBQ6RwiluEKmVtiKn7pYO0jgtcp111kn+pactL1iwQDbffPOytau2Yjtl2ux2dtP/9oK8unS5TBwzSHZq6RM1Bt6fqtA/W/jJj/xsBGzWzL/65YftxhCz+IeHuN/97nfl2GOPTVZs8fm8ji7rmBlE2HYSuXPiiMRNnoqsy8MYK8ChTwlutvK896m17De4Yqtr5zGsvOdpjDq3LTO6sG37g9dff30ySP/nP/9Z65TkcpUtHaQhkBcvXixXXXWVPPTQQzJq1CjB5w8qXdWEbTm7sdfeL7PnLaaw5XdOzW3Pe+dC/2whJj/ysxFob40Htnhwi7MlvvOd78j9998v++23X3IjtiS/9NJLVc+XsI6ZFLa6qMYQoqEfDDSbEA1dX699vod+g8JW12/EsPKapzHqWqnM6ML2rrvukpUrVya/jwZ40003ye9+9zuZN2+e9O/f8TfzMEjj/SKchozDMwYPHpwM7PiHwzVwzDmFbZx08d446J8t7uRHfjYCNmvmX3t+eG1nxIgRgm192267rWyyySbyzDPPJIdIHXDAAbLhhhtWhW4dMylsqyIuewOFrY4brPi5Hz07WHroNyhsbTEMae19bA1Z15oJ23Lv2O69997y4IMPqr5Pu2jRIunbt29VNlyxrYqowxu8Nw76x/jaCNismX/kZyPQ3hqv6ODkY1xYocWupCOPPFJwKEylz/xk8SHPmElhm4Vo+3sobHXcKGz13FJLD/0Gha09jqFK8D43CVXPjsqJvmI7bdq0NSu2eJqMRrj99ttXPQTDWnkKWxtB742D/jG+NgI2a+Yf+dkItLfG1wOefPJJ+cMf/iDY6YSHv7hwjgRELnYpde3aNfTPrikPYyaFrQ4vha2OG4Wtnltq6aHfoLC1xzFUCd7nJqHqWVNhix9/4okn5Pbbbxd8LPqII46QvfbaK3mXKOZFYWuj671x0D/G10bAZs38Iz8bgerWOOn/lFNOSQ5axPX6669X/I5t9dKq30FhW51RpTsobPXsuBVZz66cZS36DQrbsDG0lOZ9bmKpW1bb6Cu2P/vZz2TMmDFr+YN3iG655ZasPqruo7BVYVtj5L1x0D/G10bAZs38Iz8bgfbW+GrAn/70p2TFFp/6Sbcl77DDDnL00UfLGWecUfXwKItPFLZ6ehS2enYUtnp2sPTQb1DY2mIY0tr73CRkXSuVFVXY4hM92HqMgfnKK69MPi4/fvx4ueGGG2T+/Pmy5ZZbRqujRdhmcerL++8oIwcPyHJr2Xu8Jx/9U4c2MSQ/8rMRsFkz/+qPH17VSa9PfOITiZjFDqdqn/ix1fRDawpbPUkKWz07Cls9O1h66DcobG0xDGntfewPWdeaCNulS5cmn/TB5wtOO+20xId7771XDjzwQMF2CXynL9ZFYWsj671x0D/G10bAZs38Iz8bgfbW2223nXz5y1+Www8/XHbeeefQxVctj8K2KqKKN1DY6tlR2OrZwdJDv0Fha4thSGvvc5OQda2JsMWPYsUWK7f4yHyPHj3k2muvFZzS+MILLyQruLEujbDN4suUabPl5un/EK7YZqEV7x7vjZf+2WJPfuRnI2Cz9p5/ttqVt6aw1VOlsNWzo7DVs/NgGWuu7aFu9ehDM45dbeMUdSsyfuyPf/yjfP3rX0+2ZuJaf/315ec//3nyGYOYV6zGRmEbM2rZy/beeOlf9liWu5P8yM9GwGbtPf9staOwrQchiigNHTs1SKhR39ZWkUPH2curFyEaur7N2CdkSb5Yc+0sv8172hNgnopEF7bAjuPIH3/88eQld2w/7tKlS/R8jNXYKGyjhy7TD3hvvPQvUxgr3kR+5GcjYLP2nn+22lHYUtjqM4jCVs+uES1jzbUbkVURdWrGsast16jC9oorrpA5c+bI1Vdfnfzu9773Pdlvv/3kgAMOiB7fWI2NwjZ66DL9gPfGS/8yhZHC1oaJ/JqUX4xqcyuynmo9COXQK5jNVp73MV2fvTbLWHNtm1fNa808jbhie/PNN8vIkSMTITt9+vQkyw455BC555575IQTTlgjdmOlX6zGRmEbK2L5yvXeeOlfvni2vZv8yM9GwGbtPf9stStvTWGrp0phq2dXLyvAzdgnZIlqrLl2lt/mPe0JME8jCdt3331XNt544+TgqFmzZq35qPzy5ctlyJAhyXu3L730kmy22WbR8jJWY6OwjRayXAV7b7z0L1c4291MfuRnI2Cz9p5/ttpR2NaDEEWU+I5t/kyPJZSbsU/IQj/WXDvLb/MeCttyORBlKzJOPe7Xr5+cddZZcv7556/1u9dff70ce+yx8uCDD8o+++wTLS9jNbZU2O7U0kfwL+81YKveiZ33TpL+5Y3s2veTH/nZCNismX+Nzc9WOwpbClt9BsUSjt63NnvvU/URtVnGmmvbvGpea+ZppBXb1atXJwdEbb755vL0008nn/nBtWrVqmQ78n333Sfz58+XLbfcMlr2xWpsqbDVOp5+Jsh78tE/bYTftyM/8rMRsFkz/xqbn612FLYUtvoMorDVs2tEy1hz7UZkVUSdvI/9RTCIsmILx/Hd2h//+MdJHQ4++ODkMz94v3bZsmVy4IEHyu9///uo9YvV2J58/lXBv7wXbGbPW7zm+7fek4/+5Y3w2veTH/nZCNismX+Nzc9WOwpbClt9BlHY6tk1omWsuXYjsiqiTt7H/iIYRBO2K1eulEmTJrXbijxq1Ci5+OKLZZNNNolaP2+Nre27ud6Tj/7Z0pP8yM9GwGbN/GtsfrbaUdhS2OoziMJWz64RLb3NtRuRcZ46eR/789RFe280YZs69Pbbb8sLL7wg+M/+/fuvOUhK63BWO2+NjcI2a+Sy3ee98dK/bHGsdBf5kZ+NgM3ae/7ZakdhS2GrzyAKWz27RrT0NtduRMZ56tSMY1dbPtGFbZ6AhLzXW2OjsA0ZXb7DaqXpvfOjf7YIk19j87PVjsKWwlafQRS2enaNaOltrt2IjPPUyfvYn6cu2nspbLXkctpR2OYEVuV2742X/tniTX7kZyNgs/aef7baUdhS2OoziMJWz64RLSlsfUW1GccurtjWKAcpbMOC99546Z8t3uRHfjYCNmvv+WerHYUtha0+gyhs9ewa0ZLC1ldUm3HsorCtUQ5S2IYF773x0j9bvMmP/GwEbNbe889WOwpbClt9BlHY6tk1oiWFra+oNuPYRWFboxxMhe2mvXpKn149ZcWKFdK9e3ezN/vv1l/2330rczltC/DeOOifLeTkR342AjZr5p+NXwxrTFBnLO1vLjoVPiho6Nip5vJQQDMK0dD8WltFDh1njweFbZCUbphCKGx9hdL72FoELb5jWwRlEUmFbeif+/L+O8rIwQNCFyveGwf9s4Wc/MjPRsBmzfyz8YthTWGrp1oPwpvCVhffVMh777N0tbNbUdjaGYYsgXkqQmEbMqM6KOvVJcvllSXL19yxcOFC6devn/rXp/9tnkx/7AWhsFUjjGrovXOhf7bwkx/52Qj4s6aw1ceEwlbPrl5WgL33+foI2CwpbG38QlszTylsQ+dU5vKsydf2nd3MP5zxRqt/GX9GfRv9U6NLDMmP/GwEbNbMPxu/GNYUtnqqFLZ6dhS2enYeLClsPUThQx+8j61F0OKKbRGUy/yGNfkobJ+XlpaWGkWv+s9a41v9F2x30D/ysxGwWTP/bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUK29IoUNjWKCetEzsKWwpbS+pa88/y21ls6V8WSpXvIb/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFLYesgD60TTwpbCltLGlvzz/LbWWzpXxZKFLY2SvXLL0a9KWz1VCls9ewobPXsPFhS2HqIAoUtha2DPLRO3ClsKWwtaWzNP8tvZ7Glf1ko1a8wY3xt8Y1hTWGrp0phq2dHYatn58GSwtZDFChsKWwd5KF1YpcKW3zDdnCE79i+/PLLstlmm61Faqt+G0nPbl0d0OPhR9YgWPPP+vvV7OlfNUId/538GpufrXblrSls9VQpbPXsKGz17DxYUth6iAKFLYWtgzy0TjxjfRe3IzQTxwySnVr6OKBHYWsNgjX/rL9fzZ7+VSNEYWsjVN/8YtSdwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+vEHd+xnfa3edFqsnLlSunWrVtS/ryFS2X5yneFwjY7bmt8s/+S7k76p+OWWpEf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIw3qaGI+99n6ZPW8xhW2OvKmn+OaoVmG3kp8NNfk1Nj9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeVhPE08K2/wJU0/xzV+7+BbkZ2NMfo3Nz1Y7Ctt6EKKI0tCxU4OEGvVtbRU5dJy9vHoRoqHr671PDZIoikIobBXQIpowT0X4HduICdZR0d6Tr9Q/Ctv8SVJP8c1fu/gW5GdjTH6Nzc9WOwpbClt9BlHY6tk1oiWFra+oeh/7i6DlWti++eab0rNnT+mEnvSDa/ny5dK9e3fp3Llzh3y8NzbvyUdha2t+9RRfW03jWJOfjSv5NTa/SrWzjpkzlva3gRORVPiEXnFkefrQcMVWzy7NZ+99qr6GItZ+48wzz7T8PG0DEmjkPM2KyaWwffXVV+WJJ56Qww8/XJ577jnp06ePvPbaazJy5Ejp0qWLzJ8/X04//XQ55phjKtaTwjZrCpS/j8I2HD9bSXGsvXd+9M8Wd/JrbH5taxdqzKSw1eVNPawAh96a22zlee9TNZkbqt+gsNXQj2PTiHmal5RLYXvbbbfJzJkz5ZJLLpFXXnklEbYXXnihLFu2TCZMmCCLFi2Sfv36CVZve/ToUbbOFLZ5U2Ht+ylsw/GzlRTH2nvnR/9scSe/xubXtnahxkwKW13eUNjquMGqXrY2e+9TNREI1W9Q2Grox7FpxDzNS8qlsE0rgS3IqbA97rjjZPDgwXLUUUdJa2trshV57ty50tLSQmGbN+oZ7i8nbFv6bSQ9u38kg3X4W44bsqvg99PLe+Olf7YcID/ysxGwWXvPv0q1s46ZFLa6vKGw1XGjsNVzC2lp7TcobENGw1ZWvY5dtlqvbV03wnb48OGCf0ceeWRSg0033VQefvhh6d+/v8yYMSNZ4W17DRs2LCSrpi3rirufkucWLqtp/U8esr1s02/9mvrAHycBEmgeApUemnomUDpB1YyZQYStiFw6ZmCC6dTJjwbBdRnLM3EEv1YROS1APHDiCeLbbOUhAPXYJ2RJHGu/wbl2FsrF3dOoeZqVYN0I2/PPP1822GADOe2002T16tXSq1cvWbp0acVDpLgVOWsKlL+v9KnP8wuXyvIV79gKVFpPvvtxmbdwabtv6Hp/KkX/lAH/wIz8yM9GwGbtPf8q1a50gqoZM4MI204id04ckbgY8nM1LE+f0zw8Ss+uGQ6PsvYbXLHV51doy3odu0JyqBthe+edd8qVV14p9957r9x6661y8cUXy6xZsyqyoLC1pYmXxlHpU0Ne/KtEmf41Rv4xvrY4kl8cflmErWbMpLDVxYtbkXXcYMV3bPXsQlmWCltNv0FhGyoS9nK8zz3tNaxegnthi1PbevfuLStWrJBDDjlE5syZk/z3++67T/bcc08K2+oxVt3hpXFQ2KrCV9XIS3wpfKqGSnUD46vCtsbIO7+OhK1lzKSw1eUNha2OG4WtnltISwhbS79BYRsyGray6nXsstV6bWvXwrZcRRcsWCB9+/aVrl27dsiBK7a2NPHSOChsbXGkcCS/OARspXrpX+q1feShn2fMpLDNQ/bDeylsddwobPXcYlvm6TcobGNHI3v53sfW7DXR31l3wjZrVSlss5Iqf5+XxkFha4tjvU7cveQf+TH/4hDwVyrGTApbXVwobHXcKGz13LxYep9re+FUlB/e505FcKCwLYJymd/wnnxe/KOwjZOgXuJL4cj4xiFgK9V7+7DVrrw1ha2eKoWtnh3fsdWz82BJYeshCh/60IxjV9sIUNjWKCe9J58X/1JhOwbfsd2s15povfzyy7LZZptFj96ArXqrfsMLPwpHVfiqGjG+VRF1eAP52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYpcNfCpss90d/q50wpK3ZMY3L7G17yc/8rMRsFl7zz9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeeh94uRfHf+7AAAgAElEQVTFP3zH9vmXl7SL2MqVK6Vbt27RIjl73uKkbArbaIg7LNhL/lVykv7Z8oL8bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCLH5DR07lcLWFiKTdez4mpwTEfpnI0h+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PwobG3xsVrHji/9sxKw2TO+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PxSYTty8ACVo0uWLJFevXrltu2zUQ/Zf/etctvlNYjNL68/be+nfzaC5NfY/Gy1K29NYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISeetiDE5pcKW5uX+a0HbNVbJh2/X37DnBax+eV0p93t9M9GkPwam5+tdhS29SBEEaVQ4xDq29oqcui49z9jZ7nqRYiGrq/3PtUSU4stha2FXnhb5qlIp9ZWNP/Gu7w3Nu/J1+z+TZk229Qo8q7YvrpkuUx/7AWhsH0fe7Pnnyn5yM+Kz33+mStYpgCu2Oqp1oNQDi30mq0872OSPnttlt7n2rba1Z8185TCtmZZ6z356J8tNfLye/L5V2Xc5AcobD/AnpefLVr5relffmalFuRn4xfDmsJWT5XCVs+uXlaAvfdZ+gjYLClsbfxCWzNPKWxD51Tm8rwnH/3LHMqyN+blR2G7Nsa8/GzRym9N//Izo7C1MYttTWGrJ0xhq2dHYatn58GSwtZDFD70wfvcpAha3IpcBOUyv+E9+eifLTHy8qOwpbC1ZRz5NRO/kHVNy6Kw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU7mFT5Fu0n/bMTz8qOwpTCzZRz5NRO/kHWlsLXTpLDVM6Sw1bPzYElh6yEKFLYUtg7yMK/wKdpl+mcjnpcfhS2FmS3jyK+Z+IWsK4WtnSaFrZ4hha2enQdLClsPUaCwpbB1kId5hU/RLtM/G/G8/ChsKcxsGUd+zcQvZF0pbO00KWz1DCls9ew8WFLYeogChS2FrYM8zCt8inaZ/tmI5+WXClvbr+azTidj+ayKuTsvv2K8qp/Bg/xsGeGdn6125a35jq2eKoWtnh2FrZ6dB0sKWw9RqJ+5SRG0+I5tEZTL/Ib3iRP9syVGXn4UtmvzzsvPFq381vQvP7NSC/Kz8YthTWGrp0phq2dHYatn58GSwtZDFChsS6NAYVujnOTEzgae/PT8ho6dmhhzxVbPkPmnZwdL8rPxi2FNYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQn54fha2eXWrJ/LMxJD8bvxjWFLZ6qhS2enYUtnp2HiwpbD1EgcKWwtZBHnJiZwsC+en5Udjq2VHY2tlxxTYMw9ClUNjqiVLY6tlR2OrZebCksPUQBQpbClsHeUhhZgsC+en5Udjq2VHY2tlR2IZhGLoUCls9UQpbPTsKWz07D5YUth6iQGFLYesgDynMbEEgPz0/Cls9OwpbOzsK2zAMQ5dCYasnSmGrZ0dhq2fnwZLC1kMUKGwpbB3kIYWZLQjkp+dHYatnR2FrZ0dhG4Zh6FIobPVEKWz17Chs9ew8WFLYeogChS2FrYM8pDCzBYH89PxSYTty8AB9ITksv7z/jjnufv9Wxjc3srUMyK+x+dlqV96awlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ048bUEgPz2/VNjqS8hnqfmsEOObj3Hbu8mvsfnZakdhWw9CFFEK1Vejvq2tIoeOe/9Tb5arXoRo6Pp671MtMbXYUtha6IW3ZZ6K8Du24fMqU4nek4/+ZQpjxZs885sybbYsWbJEevXqZatkFeubp/8juYPCNirmsoV7zj84TP+Kz4lqv8gV22qEKv+9HoRyaKHXbOV577P02WuzpLC18QttzTylsA2dU5nL85589C9zKCksKqCyvMvL/GP+2QjYrL3nn6125a0pbPVUKWz17OplBbgZ+4QsUaWwzUKpuHuYpxS2xWVbm1/ynnz0z5Ya5PfhNjqu2NpySWPN/NNQ+9DGOz9b7Shs60GIIkrcipw/02MJ5WbsE7LQp7DNQqm4e5inFLbFZRuFbVDW3hsv/aOwDZrwOQtj/uUEVmf9s612FLYUtvoMiiUcvW9t9t6n6iNqs6SwtfELbc08pbANnVOZy/OefPQvcyjL3kh+FLa2DLJZM/8am5+tdhS2FLb6DKKw1bNrREsKW19R9T72F0Grbg6Pevvtt6V3795y0EEHJVy22247GT9+fEVG3hub9+Sjf7bmR34UtrYMslkz/xqbX5baacbMGUv7Zym6w3tS4YObQm6lZXn60PBUZD27NJ+996n6Gq5tqek3zjzzzFA/z3KMBJolTzvCVDfC9qmnnpKzzz5bpkyZIl26dKkaegrbqog6vMF746B//uPLw6NsMbJYs31Y6Pk/tTlL7TRjJoVtFrLt76mHFWDvW329++e9T9VlbnsrTb9BYRuKvr2cZsnThhC2d999t4wcOVKWLVsmAwcOFAjXQYMGVawbha2tgXhvHPTPf3xTYbtTS5/czq5YsUK6d++eyW6rfhvJmCG7Zro31E3MPxtJ8rPxy2KtGTMpbLOQpbC9c2LzfRfXe5+ly9z2Vpp+g8I2FH17Oc2Spw0hbKdPny6PPfaYnHTSSTJ16lSZNGmS4MlSp06dZMaMGTJz5sx29Rw2bJg9S1gCCZCAisCpkx9V2eU12qbf+nLykO3zmvF+EuiQQEtLS10T0oyZQYStiFw6ZmDCLlQfcBnLM+Ui+LWKyGkB+uROH8S32cpDAOq9T8iSRJp+g3PtLGSLu6cZ8rQhhO0777wj66yzTvJv9erVyXbkBQsWyOabb162flyxtTUi70996J//+D75/KtqJxcuXCj9+vXr0P75hUvlZ3c/LgO26i2Tjt9P/VsaQ+afhtqHNuRn45fFWjNmBhG2nUSwooeL79hmiVT7e2Jsbfa+1de7f977LF2mtbfS9BtcsQ1F315Os+RpQwjbc845RxYvXixXXXWVPPTQQzJq1CiZO3duxbpR2NoaiPfGQf8YXwjncZMfoLAtkwpsH43dPrLUTjNmUthmIVuMEA39YMC7cPTun/c+VZe57a00/QaFbSj69nKaJU8bQthiBWfw4MHJSi3+nXfeeTJkyBAKW3s7KFuC98ZB/2yBbwR+FLaVc6AR4mvLcJu1d35ZaqcZMylss5ClsOU7tro8qQcrTb9BYesnso0wdllp1s2pyGlFFy1aJH379q1ab67YVkXU4Q3eGwf9Y3wpbClsba2gfvnlqXeeMZPCNg/ZD++NsXWYK7a6WMT6zq73OYeOVmWrPP0GhW1o+vrymi1Py5GqO2GbNdwUtllJlb/Pe+Ogf4wvhW39CjO2X1v7jWGNMZPCVkeWwlbHDVaxhGjorc3e+yx9BGyW3ufattrVnzXzVITCtkZ56z356J8tMcgvPj8KWwpbW5bVL78Y9aaw1VOlsNWzo7DVs/NgSWHrIQof+uB97lkELQrbIiiX+Q3vyUf/bIlBfvH5pcK2Bd+xHbqb7Qc7sMZ3cnt267rWHYyvDTf52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYmcDT37klwpbG4nq1hPHDJKdWvpQ2FZHlfkOtt/MqAq7kcJWj5rCVs+OwlbPzoMlha2HKFDYUtg6yENO7GxBID/yw3dsJ9/1mA1EB9bzFi6V5SvfFQrb8IjZfsMztZZIYasnSGGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQH/nZCFS3Hnvt/TJ73mIK2+qoct/B9psbWXQDCls9YgpbPTsKWz07D5YUth6iQGFLYesgDzmxswWB/MjPRqC6NYVtdUbaO9h+teTi2VHY6tlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCORHfjYC1a0pbKsz0t7B9qslF8+OwlbPlsJWz47CVs/OgyWFrYcoUNhS2DrIQ07sbEEgP/KzEahuTWFbnZH2DrZfLbl4dhS2erYUtnp2FLZ6dh4sKWw9RIHClsLWQR5yYmcLAvmRn41AdWsK2+qMtHew/WrJxbOjsNWzpbDVs6Ow1bPzYElh6yEKFLYUtg7ykBM7WxDIj/xsBKpbU9hWZ6S9g+1XSy6eHYWtni2FrZ4dha2enQdLClsPUaCwpbB1kIec2NmCQH7kZyNQ3ToVti39NpKe3T+ylsGKFSuke/fu1QtR3IHPC1kvtg8bQe/8bLUrb01hq6dKYatnR2GrZ+fBksLWQxQobClsHeSh94kT/bMlCfnVP79U2Npqkt86nSTnt6yfwY3twxLdOLYUtnquFLZ6dhS2enYeLClsPUShfsb+Imh1am1tbS3ih4r+De+NjRM7W0aQH/nZCFS3fn7hUlm+4p2yNy5cuFD69etXvZAcd4yb/EByN4VtDmiRbvXev8SoNoWtniqFrZ4dha2enQdL73NtD4yK9KEZx662fClsi8y4kt/ynnz0z5YY5Ed+eQkMHTuVwjYvtEj3e2+/MapNYaunSmGrZ0dhq2fnwZLC1kMUPvShGccuClsnOeg9+eifLVHIj/zyEqCwzUss3v3e22+MmlPY6qlS2OrZUdjq2XmwpLD1EAUK29IocMW2RjnpfeJE/2yJQX7kl5cAhW1eYvHu995+Y9ScwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+8TJ/pnSxLyI7+8BChs8xKLd7/39huj5hS2eqoUtnp2FLZ6dh4sKWw9RIHClsLWQR56nzjRP1uSkB/55SVAYZuXWLz7vbffGDWnsNVTpbDVs6Ow1bPzYElh6yEKFLYUtg7y0PvEif7ZkoT8yC8vgVTYTjp+v7ym7e5/+eWXZbPNNlOXM2Cr3mrbLIZsH1koFXsPha2eN4Wtnh2FrZ6dB0sKWw9RoLClsHWQh5zY2YJAfuRnI2CzjpF/qbC1eRbGOsQnhzryJAa/MDV/vxTv/oWsa1oWha2eKoWtnh2FrZ6dB0sKWw9RoLClsHWQh94nTvTPliTkR355CYy99v68JhXvX7lypXTr1i13ebPnLU5sKGyfl5aWltz86tmAwlYfPQpbPTsKWz07D5YUth6iQGFLYesgDyl8bEEgP/KzEbBZN2r+hXzPtyPCjcrPllW1taaw1fOnsNWzo7DVs/NgSWHrIQoUthS2DvKQEztbEMiP/GwEbNaNmn8Utu/nhff42rK3vDWFrZ4qha2eHYWtnp0HSwpbD1GgsKWwdZCH3idO9M+WJORHfjYCNmtt/lHYUtjaMk8kFSooJ9R74/UgHL3Xt7VV5NBxU63hXRPfZitP26eagTsvgMLWV4CYpyKdWlvRPTXe5b2xeU8++mdrE+RHfjYCNmtt/lHYUtjaMo/C1soP9jGEfLMJ0dD11fapIfLBcxne59qe2cXwjXlKYRsjrzKV6T356F+mMFa8ifzIz0bAZq3NPwpbCltb5lHYWvlR2NoIxtrarO1TbbXxb01h6ytGzFMK25plpPfko3+21CA/8rMRsFlr84/ClsLWlnkUtlZ+FLY2ghS2Nn55rSls8xKLe7927I/rVbGlcytysbzX/Jr35KN/tsQgP/KzEbBZa/MvFbYjBw+wOVDFesmSJdKrV6+ov2EpfM+tuvNzP0qAfMdWCa7EjFuR9QwpbPXsNJYUthpq8Wy0Y388j4ovmcK2eObJL3pPPvpnSwzyIz8bAZu1Nv9CHfZj87721peNGUhhqwwDha0SHIWt68OttH2qPRt8lwBh22uHA6o4me0on+OH7iZ4N3ry3Y+zvLUIZOfHPOVW5Jr1GN6Tj/7ZUoP8yM9GwGatzb8p02bbfjijtfcV271aelDYZoxl29sobJXgKGwpbO2pU3gJoT8TFvrQr2YrTzv2F544EX+QK7YR4XZUtPfko3+2xCA/8rMRsFkz/xqbn6125a1DT1DxK6F2AMTYmtts/jXbBD90fb33qTH6hCxlhu43Qset2cpjnnLFNku7jXKP9+Sjf7awkx/52QjYrJl/jc3PVjsK22YUys02wQ9dX+99aow+IUuZFLZZKLW/h++C67hlseKKbRZKEe7x3knSP1vQyY/8bARs1sy/xuZnqx2FLYWtPoNiTchDC9HQ5XnvU/URtVlS2Or4xWpHzNM6XLFdvny5dO/eXTp37txhNnk/qc178tE/XWeVWpEf+dkI2KyZf43NL0/t8oyZM5b2z1N02Xv5jq0ZocQQ3qGFXrOV571PtWfd2iXUqt9otrwKXd9my9NyeV83K7avvfaajBw5Urp06SLz58+X008/XY455piKbZnC1tbNeW8c9I/xtRGwWTP/yM9GIL61ZsyksNXFJYYQhSch31EOPYFutvK89/m6zG1vVet+o9nyKnR9myVPO8r3uhG2F154oSxbtkwmTJggixYtkn79+gmeKPXo0aNs/Shsbd2c98ZB/xhfGwGbNfOP/GwE4ltrxkwKW11cKGx13GAVa0smBYMuJrXuN0LHrdnK8z430WVlPqu6EbbHHXecDB48WI466ihpbW1NtiLPnTu34icZKGzzJULbu703DvrH+NoI2KyZf+RnIxDfWjNmUtjq4kJhq+MWRdiKyJ2TRiTfQz103FS9Yx9YpsLbe59vrugHBdS63wgdt2Yrr1nytCFWbIcPHy74d+SRRyb12XTTTeXhhx+W/v37y4wZM2TmzJlr1bNr167y7rvvhmrrLIcESIAESKBJCPTp00dGjx5d17XNO2b27Nkz2QXFiwRIoD2BHXfcUYYMGdLwaNhv1HeImyVPG0LYnn/++bLBBhvIaaedJqtXr5ZevXrJ0qVLKx4i5X3Flv7ZOg/yIz8bAZs184/8bATiW+cdM7N6FDr3WV5W8uXvIz9f/Gze1N6a/UaYGHhvl2Fq6bOUutmKfOedd8qVV14p9957r9x6661y8cUXy6xZsypSDZ1UocNH/2xEyY/8bARs1sw/8rMRiG+dd8zM6lHo3Gd5WclT2IKA93yxRbP21uw3wsSAeRqGo6aUuhG2K1askEMOOUTmzJkj+O/33Xef7LnnnhS2mqhnsAndKDP8ZK5b6F8uXO1uJj/ysxGwWTP/bPyyWOcdM7OUWQ/CInRusbysmUHhbSPlw5r9Rpg4eO83wtTSZyl1I2xTfAsWLJC+ffsK3qHt6AqdVKHDR/9sRMmP/GwEbNbMP/KzESjOOuuYmdWj0LnP8rKSp3Cshwcrtmj6sWa/YYuF937NVjvf1nUnbLPixIFS++yzT9bbC7+P/tmQe+eHw8z23ntvWyUjWnvnR/9swSe/xuZnq53NOnRusTzGIw8B7/mSpy7NdK/3uDWbf42cew0rbBs5aKwbCZAACZAACZAACZAACZAACZDAhwQobJkNJEACJEACJEAChRN47733BP/Sq0uXLoX70NEPxvTv97//fbKrZ/31189dZ7wH+eabb0rv3r3X2D7xxBOCT32ss846uctrbW1NvjZR6fISl1Dx+Ne//iUvvvii7LXXXhW/rJEbIg0qEvjPf/4js2fPlm233Vb69eunJvW3v/1NnnrqKTn66KPVZRRhiPrOmzdPdtllFwnRdlatWpWU8+yzzyYMeXVMoCmELQYAfKOvE760XeZatmyZanDJmlzojDEQwYdKF3xYb731KvqY9bc09zWCf5p6h7LJwg/fh8R9mkmM1c8s/ll/w2Kf1T8MFmhD6667ruXncttm8W/JkiXJJ8hqcWX1D59L00x6rXXK4h8G7nfeeUd69Ohh/bmy9ll8QBvt3r07J7plCD7++OOy2267tfvL5ptvLhMmTJCvfvWrueKGT/UdccQRcv/9969ll46DWQv7+9//LgcccEDF259//vkOx91KhqH8S8t/++235YwzzpC77757zU8uXrxYnnvuOcE3k/Ne4Lb//vvLLbfcIsOGDUvMIWoffvjhZB6R98I2zM9+9rMVzV544QX5+Mc/XrVYiOtvfOMbcvnll8vhhx9e9n74fcMNN1Qtq/SG0PH45z//KUceeaS88cYbctxxx8lRRx0l2223XS6feHN1AnhgArZ//etfkzz/y1/+Ij/4wQ9k/Pjx1Y3L3IEHEngYhHI+9rGPqcooNfrzn//c7tvE6INSzZD3B1Bf9GvTpk1L2iP6n1NPPVXGjRuXt6jkfoyL//3f/50wmzp1qvzv//6v7LrrroKHYrwqE2hoYfvqq68KOlp0sOUGEDz9OfbYY5MOe/78+XLdddfJpz71qaD5cv3118ull16aNEIk6S9/+cu1nrI+/fTTgu+Gde7cOfHh+OOPl6985StBfeiosGr+YcI+ZsyYRJBhIMZgcMwxx7jx70c/+pHgfVZcmLzedddd8thjjyWNv4irGr+VK1fK17/+dXn99deTGMOv8847rwjXkt+o5h8mXHjqf9BBByX3Y3DXDjqaSlXzLy0TbWOnnXZKOvTPfOYzmp9S2VTzL316vPXWW8tbb72VtF0M5EVd1fzDRGDEiBFJjPHEF+IEg2RRVzX/sEqEJ/noeyG6L7nkkuCuVfPhtddek5EjRyZ8kGenn356oX1c8ApHKPCll16S/fbbT+64446kj4CAwjflf/GLX8gnP/nJZGzYZJNNMv/ybbfdJj/96U/lN7/5jelhBsZUTERLr3fffXfN4ZLah02h/Ev9euihh+SHP/xh0jdAlGKecfvtt6snqCjj3HPPFcQFDxXOOuuspH/UClv0EwMHDhT4udVWW8mTTz6ZzI0gePGwJ+uFeECEbrjhhoIHkbjQxtMHavj7l7/85WSSnmflLnQ80vpA4CKn/+d//kc++tGPyre+9a3kQUG3bt2yVpn3dUAAAg+f6UT8kAOYT26//fZJfmke6EDQfvrTn05+sdRe+wALc0bM0XDhPx955JHkc1IPPPCAKq6oL9rln/70pzX1hb5AnmmEOHITn1/CuLjlllsm/Szy86qrrhI8VORVnkBDC1s0JogeJMUrr7zSriHhSe93v/vd5Ilv2nHiO7mhLnTiOL057ehPOeWUpDMfO3bsmp+AkP3EJz6R+IFtBvjvEBsf+chHQrlRsZws/uHJKp4S4ckwBr3Ro0cLxHgRVxb/Sv0488wzkxOzv/3tbxfhXvKgolp8wQ+dJToiPM1DR3XYYYcVsnKWxT8Is7PPPlumTJkSZMtMHvBZ/EN5WMkbPnx4srXn6quvLkzYZvEP39NGm8ZkDYPa//t//0+wilTElcW/Cy64QDDRx8MUDNyYpGIyvNlmm0V3MYt/eDKO/MMT/d133z24sM3iw4UXXpiII6w8Llq0KIknVm9jrR5HBx/hB5DbEGLox9IL2+yw4oEHn9/73vfKruhWcgUTVAg9lBnquuaaa2Ty5MnJg02Mo3joeeihh6qKD+0fBPysWbOSsQnbKKdPny5f/OIX5cc//rHgoVjeC8IWY8k555yTTHTx4ArlYwKtWbFFWfiHBxXphc8rYuV1m222yetecj8EDR4qIR5f+tKX5MQTT0xWmTVX6Hik48of//jHpN5YcMCDGzycefTRRwU7FPAgmpeNAObfeGhw7bXXJgVhDoQH02j3eR5spF6Ue5CFv2kfYJWrHfq13/72t9K/f//clceDd+Q8Htyk9cVnSSFOMTfNe0FggxV8Qp9x8803J/8dOmXTTTfNW1zT3N/QwjaNIrYglxO2W2yxRSLW8J/oyLBqhftCXZiIDx48WObOnZsUecUVV8j//d//JasT6YXVWogjiN30aVRRE88s/i1cuFD+67/+K+n08fQWT+kxeS/iyuJf6gdW5jF4YmAv4qEAfjeLf+mkHbsD8IQNQuPggw8uAl8m/7A1DqtVmNjjiT2eVg4aNMiNf3DkO9/5TjIhQvsBz6JWbLPENwWFCT9WoEaNGpU8pCriyuIfXoFA/4cVCAzWYIndK5Veywjpdxb/0t/7yU9+kvgVesU2iw/Yioh+GqtpmHhhQos+u6WlJSSOui4LE0psrcOOBLzjhQkrHsRid8eQIUMEK35ZXhFAjCFosVKCcRCMsdUuXdGDkNKslmEFCDuJ8AAWE2YIbjwMw4OKPA8oYvmHXQGY4GKCj7Ee73Zi8ovf07yekgpb9Il48IftjhD2ebdyp0n58ssvJ7uJILqxqwM8wRBiWXNhPP7CF76QPBSHcMfc4cADD0xW7DbaaKPMRcaKB8Q28g45jbzB9tF0xwEeUiKvtYI+c+Wa4EaspCL+mPNgZwe4z5kzJ1kgwYXFiLyiFA9B8QAL83asYmI+oI0V5oulYw76C+x6wLiRp9/ATp+f//znyWLHxIkTk9xCG8ecHjmM8UQzL8VDabRJtEMIXPwGHrqWPoBqgjTKXcWmFrZ45wyrjxgI0QA/97nPCb7dFepC546nqekK54033phsUfjZz3625ifQyNEAsF0ayfvMM8+oB6e8fmfxD0+GMFnHyjIaPBpn6XtCeX8zz/1Z/EvLw+QUW1Sw7beoK4t/6MAxQcAAj4cn2OaISWARwiKLf3gKiMHmpJNOSiZakyZNSg5n8OIfdlJAkKEjx4OnIoVtFn5prmFwhK8YDEPu+ugol7P6h4kv4orVIawc4SFVEVdW/+BLLGGbxQcIIPzDaxa48CQcfZ3miX0RXGv1G3jo+7vf/S6ZrO27776JcMG7l8j5rO8n/vvf/07GwEoXVlg1h63ArwcffF2t9GUAACAASURBVFCw+p5e2ImFB055Jr2x/INP2DGB7bn4z1/96ldJO8TYr7nwmhUeAGAOk16//vWvk4cMmgcDKAMPse+5557kYT/ii7KwPVdzwReMLdhhk14oE6tZeVaoY8UDAga7RfLkhoZDs9sgpzD3qXSh383zYAcPYLCVGa/T4GHJ1772teTdde2CBvKgtD/CjiY8gMq7Gopy0AdVuuCnpl9rWx4eDGFs0h461yz52NTCFh0tJqTYAoenQFg9xZaBUBdWSzDo4+k0hEL6ZKjtVlm8fwmxiA4fQjikuO6oLln8gzBDR4Ina3gajIG03Op3KGal5WTxD/dj8MPT1rxPg60+Z/EPK2RYyYCwwIUOE6sdRQyoWfyD6MFqCf7hXSh0vsi/It7fyOIfHlZgErfxxhsnW8SwxRDbxkK/C18uF7L4B6G4xx57JFt78coBnj4XteMii3+YRGPygAdSWN3RbP/StpMs/qVlxxK2WXxAv49+DbtR0AYQQ8SSWxHXjjwe2KBfQD+L3QlYve3o4KZyeYO+Gg/6MDG77777yqYWxhuMyXkutDmsNGK3BEQ2XgfAVliscODCLpQ8KzCwwam5mDynF8q76aab1A88QpYH8YkHzugLsdMm3c2Sd4UafT22ila6IBryrDQhN7A7CXMazB1gn86v8FoOHtxrD7ALsVIX67CxPLnaTPfiFQYIW7yyE+LCQ27M0bGzDO+A479jHn/ZZZepzlXBa2LYRYnXKTBHR7+P+TnaekeHvZarCx6U4OEa5iknn3zymlvQTrGYpdmKHPrQuRAxqIcymk7Y4oCXf/zjH8lggC21EETofDEg4t2U0AfnYD88nhrjYAdsxcG7bvvss88aHzChw2oxVlOwNQtPj4rcZlDNv4suuijxD35iuwWeZmESEeLpU5YGUs0/lIGVMgzOIR9KZPEN91TzD6v02DaDDh4TGwg1PHXUDu5Z/Urvq+Yf3tHCgQTI0XSylG6dz/tbmvur+YeJV3q4A1bjcbgHVnXyTlI1vmWJL94txIMLcMTuC2yZ9hRfbH3EQ7NatI0s/GIL20o+QJDhyTf65fSAEwi3W2+9NZmEabdgavPMux12HaHdYUUPO5twWBEmk9iFkkf4pFv2MNmDGGt7YesdDgCEAMpzaBH8w2selS7EtPTTONV4o9/BwzOIZGz9w8M1PIyEGNeMfaHLg/+IBbbRYg6DhzGYP2RdOU/rjxU18MYEGmeAIC4777xz8vAB4wCEYJ76VosDxkLNinKolbpK72imPPJui62WR83+d8wtBgwYkAhFvNKW7gTDKwiaB4d4cILXRrDtHnN17NDAvBp5p5kTIP+xWxIPztGW8B740KFDk/Lz5D3ijEMa0SbbfmUFD3bw/2vyPvShc82Sj00jbDEwYWDD1jQISxzzjo47fV8P731gMqPdelMpYTChTE85xtYtHNKD91dSHzDQ45AGrBhA+GCyVcTBLqm/1fzD6iwaOjoAXNgKiqdbRV3V/IMfWBXFSihWlYu+qvmXThjw1BIdLx5sFHlqbjX/EFcMFOjE8Q/+YQtaUVc1/0r9gF84Nr+od2zx29X8g5jFNn28b4gJPt6vweSwqKuaf1g1aftpDYiGor6FV82/UmGL/jjUk/1S/uV8wAQLfW665Rh9MGKJFV6IFzzA4/UhARxagskjJoHIbwgebN1Gf4H3FPNcEBdgjIfMGFtSYQxhhhN+cQALVmFwsm7WC+MUVlgwWUa8cWIq3nPTTJ7xm3ifDeM0+moIZqxQozwc5pJ3JSdGeXgXHO0a79biFGOwAj9tu0a9sKqEFeD00h6iUy2+OFMk7xVypQ55jH4Gp9RigSN9OIm5TZFjX14G9Xg/VkTLzRcx19YIUTDAYgEELfrr9JR/nK+ivSBE8RAL4yLmkKWvM+QtE1uikV84GC7EFfrQuRA+1UMZTSFsOwoEOmE8DcSL6LHeK8QAjq05HW0DTLd/xvKhIwZZ/AMjPBjQDErWhpDFP+tvWOyz+IcnjbX6jmgW/7CFTbNVxsIttc3iX4jf0ZaRxT88IMDDFe1EWusb7LL4ZynfauvBvyw+oA9GG6hFH2dlHNseD12xGwFjAB4C4OESBC7esc27++Sb3/xmsjsED5HxgBmTXIhbjMGaU30xEcUDJUxQIT7xHive28MDYhwmpbmwnRZbEvEuLLYxYwUTrwlpxWPo8nCaL74XiwcOWAnDu6w4lCrvVuSUTfq+ImKBhwJ44I5XLHDeQt5VzNDxhY8hV+qQx3i/GQ9nsEMDohkrdtjait18eVfqNPnVjDZYvcX4CNYhLrQpPFTTrISmv4/+C/mAg9PQn+GsEawAa1ZssdsEQhR+4RN26M/wgBQruXl2n5SyCX3oXAju9VBG0wvbeggSfSQBEiABEiCBWhLAbieIAZwai0OAsGU178o2VsTxACgVYDj0D9sSsRNDI2yxcoktwlgZwgoOVnpxbgAeTmBbrnYXFt61xuQW36DEyi38w6qQ9vNEocvDu8pY8cKEORUMmASDpebBDDhCGOOVlHQSjocFeQ9jDB3f0nwPsVKHhQw8UMFCAwQIREf66g0eYGDLbN4dCLVsk55/G1vc8eoQdhTgQRjei8UDJ7z2h9XxvBde48IDJghIHCSJd2Nx4eyavHma/jbeh8UKa7qrEg/asAMQr1nk3ZmB3VHYuYWdLDh4EK8wYKceXuXDgzztolXIQ+fyMq/X+yls6zVy9JsESIAESIAEIhPAazMQoHgHzXrhIEW89oMTc7ENFCtxOCwK7zljJTjvim0qVCC4sbUUk1xsJ8T/D2GLw1xCvNqDyaVlZagtN0t5oQVDqW/ghk+d4CBLze6T0PGFbxDxpat8yJm8q8ildcS74jvssEOyqoaTbHHAGHLyhBNOKPR8BGtb8m6PBwTYSYA2iFOMsasJwhbbh3EQWJ7TkFFX7HjDQxysiuJ1Azxcw+4MvPOvWWnH1yngHwQoBDj6IVzo6/D+f55V1vTgTTywKz1RGf8/cg0+43NHea6Q/W6e322EeylsGyGKrAMJkAAJkAAJRCCACSVWSLAS+qMf/Uj9HmfqGiaN3//+9wUHE+L99PSbothKrPkOK96RxJZSvB+Kz+fgtRmUi0vzaTpMwPFeLT5rBN+wCvrZz342mZxrTrOHMIMtVpWxpRvbHnGgDD79luebrim/0IIB39nEBB/v6cIvHCKF16awqpb31Gv4GDq+yD+8243VVBzwab2QHzjECvWFeMBp6CgXq/JY8edlJ4AHJHjQhNc7IGKxMp5+7QNb3NFW874Pngpb9BvIT2wdx4UHYvj+dd62CTusJqMs5Cx2pECUanaOwA+0S/iEB4B4EAMG2BWAByl4iJLn8LpUyIfsd+1RrZ8SKGzrJ1b0lARIgARIgAQKJYAJJSalWGXFYUXYfoxDniAKtIctYisoRGz6WTFso4WQxPttmq20EGfYOohJKg6KhCDFe5R5TmxOoWLLI1aT8e3JLbfcMnmHHQdaQYjCz7xlQixBGGM7Jibl2PKK9zhxkj9WqPOsjMYQDHjHELGEL3hAgPeSsSKKd3jBVbOFMmR8kX8TJkyQSy+9NDl9Hgd65Y1BoQ2GP5YQwAnD2EmB97URL7QB5BW252L7b94LgjM9pwb5hTLwqTa0o7x5ijaN/gLbmtEWkVvY2owD2bTCFqvG2I6M7c1YjUb/hn4EJ8jjkLy8V4x+N68P9Xo/hW29Ro5+kwAJkAAJkEBkAukECytcWLWF8MH3XP/whz+oVlgju2sqPt1SiC2Obbe7YqUJJwfj3eKsV7pVGuVhAo1PSuHLCJhAYzUGn/nL+05nSMFQ6h/eL8RJyOnKGsSu5hNCWdlkvS/NPzDEyje2reOgHxwUdvDBB+c+vCzr7/I+GwFsS8fnKxE/vKuOFXe8F45VTXyiSnNhKzK2yiNHjzjiiORBER50pA/I8pQJAYsHJXiAhYc3ePCE7ej4//K+ElH6uxDN+CQmyre8vtBM/W6euGW5l8I2CyXeQwIksIYADgjBlecdFOIjARKoTwKlE6y2Ezj0AZoVPc8ksEURKy5HH310sr0Rgg+nBuNAGZwSnPdQGZSD9+uwrRcTcQhaTMRPPvnkZEUr7+Q3tGDAu8jYPonTjHGIFB5gYPUc20chImp9SnDb/MNhT7/+9a+ThwR431j72RjPOUjf4hNAm8ZBUfjEE7bd45WBww47TGbOnOnigV2z9bshI05hG5ImyyKBAATQoWEbS3phGwuOode87xTAneQESTxtxRPyvffeO3mqj8NPsBUIqxj4Vi8maLxIgAQajwBWH3AAU2wBi09vQPBZhRS2F2q2M6eRw2EyeMcWh97glFMc/oLtyVhpyvseH8qEOMRWR0ykscqEdzqxUotvZ2LFsdYXxDpOrMXJsNiWjHcNcYAOTkm2fB+0bb208cV7v1j5C/F+LXzC2HXHHXckn/bC+9N4vxL5gjrj0CxezU0AOwPw7nueVwRiECuq343he63LpLCtdQT4+yTQhgCELS48QcdBJvjMAS4IzPRvRULD6YHYSjRp0qTkY/aYCGALG77ziEkHJgp4v4QXCZAACWQhgJVBiIv77rtvze046AniD32N5sLneXAoEN6v/cQnPpEcdIWDW3gVTyBGfEPVAivoOFkZK78YX8eMGZNsjcUqMA774RWOALYM4710HJjWDBfeJ8ZBUdgyjT4ID8U0B8Q1A6uYdaSwjUmXZZOAggDEK07rS1dBcSAB3snChA1b5PCtQZwqiC1kWAnA8fl44o5tWdhGh6PlcQInTrrESiuEJ/5/fJcQ27Zuvvnm5BuN6ITxlH78+PHJkfef//znk4Nh8D1InN6J34WQxUoxJqBYTcHpg/iWI961mzp16lrCFpMFvIOGf9heh8NW0u/DKTDQhARIoEEJYPIHgYE+55lnnkm296L/wCFNmgvfmsV2Wrz/iwNm8L3L4cOHr/lerqZM2ugJhI6v3pO1LdN3irHtFIf8lJ7Wi0O9MC5iXOUVhgBOREY7x66A2Ds+wnisL+Xaa69NvtGL057Tw+uQY9idgYcnvIojQGFbHGv+EglkIgBhi6PhMUnDkz8cFoKPfL/yyivJQAzhidVSrE7g73jqDAEKEYsLYvLcc89Nts1BjGLVAmIYKxg4pQ9bijEJxPtxEL8XXnhhsg0rPdAB33T74x//mPwOxC+ELH4P29IggnEi6ptvvplsRS5dscXf8K4KfhvvqUAM4z9xKAMvEiABEkgJ4PRd9C/oh3DSMh7G4QEaDqXq06dPblD4Him2DqMvSy+Uh35Ps304twM0WItA6PiGxPv/2TsX8C2Ksv8PKimgIpUimoWoYX/l9ZBIWWkiRYKar3ESMaXSzANiiqR2wmMeXkAhylfMzKCUrETLEg9RKJHHtFBf8UgmkiaKIprK//pMDi3rc9hnZ/fZ2f1957q81Oe3MzvznXvuub/3fe8Mn89MmjTJ3HHHHTblHNLFnrvrrrvatHF9s5sd2mAL3jibcJq79F4cCK18W04GgMtcq9W70aNHe3/CQHQZOeAb81YL370zRoIRpLhzNzL2Een8OErQddG7mFttn+c50Iq+ZXEvd5r3l6mOiG2ZZkt97RAIxL+xJUrLaZAQVu6G465GIh2QT4y5G2+80V40D7F1RHLKlCn2YASiIXgQeYaoCAYHz02cONGeJkkUF7LL3yG2eBbxPBLVZbPgInS+qY2mIkNmaxFbFPiKFSvsNRF8T8VGhGLnHSpCQAgIAYcA13NwtQ+EdtiwYVZHcI/obbfdlspw43s0MleImKCHMDDRcxiYFKJxSQkLUT2uJEEPc90PDkGMVb6x5aTTtAVdvWjRIptB48qpp57a8tU1pNDWK3wzGkJkLOv5TYt5rXqku+MI5qoqZJDzK9hjIbs4cFWyQ8Bd4xVvkQPUWvmWHuJ46KGHWmc/pyDHD3BjrbdClOkPNhM6B7KI852sN2drsS5bKfSPA+LIFOEuXDLqWOtk1HE4Ff1jbSYt6KDoZxrUw+nXu3dvezUX9l8r+CV9b1WeE7GtykxqHJVBwEVsIaEoaww1SCikFaXGAU4Yaq4Qxb300kut8uQET5QzpBZyy2X0eBLx9nFABtFYFCbE1h2wAqGFNPNvNny+peV7o+HDhycmttwBx111RFuOPvrotX2DNOs7t8qIpgbSwRDg+huyOeoVMj5aNShdWxxShAFHJgqnBR988MH2pOA0hegI0bd6ZfLkyTYLJkkhdRK9CTnjXAOiylz9g/OPTzzSFFISOZgJ4hQ1yjlIqpU7WZkPjFs+FUHXxuuCQ1IC78aRF1HOan7z6h/jR/445Z9IbSvXOKWRgY5YB+c7TiuyvDgEM000NIobh3thB+Fo8i047EkTxgmGQ4yzRDigjEPdiLBuuOGGLb2CDDoCENg8rHfsLPTasmXL7AnerRRkkm900T/ugDlsLHQYQQau4Uqrd1vpR1mfFbEt68yp35VFIP6NrRsop/WRzoLCIxLx05/+1HoFr7vuOrt5QGyJpGI43XLLLWbQoEGWnB5yyCHW24kRheLGALzgggssYea/MSiJsjYjthh4KGpS/GpFbDk5lGsiMADZGOgfF6jjnVURAkKgnAjgNON+Rw6Nix+EQvSkSpEDiA5ZMUSA+cSDO2YxLomCklKJszHN4VZ8zsH9q6RG+xaMXqJCZOP4Gvh5EGXf8UXr59U/5plPciAinBVBhJ4DjtJ+453lmKvUFrIKpjjKOQOE63S4NxbHPM76VgsklMhoK86gWu9g/nHsk2GG/sI+IjuNQkYatguZbq0WdAYEdO+997Z2GJ+QcV5KmiwK9A7ZBPSPq8aI/vbr1y/Tk8pbHV9ZnhexLctMqZ8dBoF6xBYA2Bz4hpXDCSh4HInOEumIElsOd4LQkm5DwRsN4SSae/LJJ9vvc93vtIkShti61OFrr73Wpgii7PEY4t2ErLr0PncScvS6H/5OCo97J4e3kI7suwl1mInXQIVAoAiwztEFvkQq0OGt0y30L2MlO4bUwoEDB9rr1/hWlyguOjRp4So0IjachUBmDY5EsHTOAFKd0xi9P/rRj6x+z+IKnCyJclJcWnkuj/5xIjdzTFYTc8D84ATG8cC5FCrZI0DWGOn8OL/BGGf84YcfnuhFHEK1cOFCuxbvvffeTA6lJEUY2wQnP2ubNc78z549O/X1hXxTTAAhWviumPFCUtNkBZCCTBYdDjU+FcvyCq5E4JfwIRHbEk6auiwESJuBiDZLO8OowriKG1CrVq0yRICJTiQxrPiGhDRn3teMqGIk4I3lGyYVISAEyo8AjrJm6z7JKF1EtN6zRDji3881ajfr9ngX0SUO7OOsASJM3GVLFIc0Yr7DbKVghBPVrlf4ezMd3uh97APMDQ4HH5KbFVHOYz4Yf1b9c1jyLTdRdBy2ZDdxpgT/Tcoo0XCVbBDgpPMrr7zSRsVZ20RrWQ/YBqwtshiSfCJAO9RxTqX4t+6k/ra6jiCyOPD5Nh/CSco7Kb6kTe+4446pAOCzCtriIM2dd97ZOsZw7qM7CEBgj7XaTzqCQ43vgTloj0/RVBojIGIrCRECQkAICAEhIAQaIkDUhEwPjEocZRy4kubEYa6CIaWOyE38BGS+H03iaIt2NOv2XNuQNCKrOAFxDvKdbSiFFF0O9yMLh5RaUsRJeWyVeOcxnrzmg75mReT/9a9/2WtoiAJCcPm0hyvvINAq2SHAGudTBrBGTqOfLSC7fL6U9J5XUnM5+Iu7hvksKlrQSa3qDVef79Vp1xWy0txBTa0igWOEbADOHnAFpxiOFNYrn2ZBpFXyRUDENl981boQEAJCQAgIgVIjwGFKRDH4JhEjkMgLnx2QXpgmksunE5CwrLI6smqPb/g4Q6BeaTWinNekc8Iy3z0TbeSwPiJiOAUw+ltJpc1rvFnNh8MvbyJPRDAkx0VectOudrk6h0htvZLmNHDa4oomzvngICpOBm5F1mv1hX5yWBTnjeDYWL58uXXWcfBTmrMDkCM+YSClmVOQIfZ8fnDDDTdYYs/6TErk8zw0rV1yUNR7RGyLQl7vFQJCQAgIASFQAgQ4oI5vErkSg+/k+G8OSOFQEw7dabXwjT6GYxrjsda7smqPKC0pivVKq+Qnr1OlMfBJlcbId/PBt7t8H9hKFL3WeIlmuhPzWx2vwy2r+XDtZUXkW5VTPZ8OAQ5R4uwOMh3GjRtnv6UlRZfUXAgbDpU0ax+5wrF26623mt/+9rf2VGsOv/zGN76Rqj2i9Q888IBNj4aAEl2GgBJhbeWTiChK9O2HP/yhbYPrpHBA8XnW888/n/jb4LwOTUs3m+WrJWJbvjlTj4WAEBACQkAItA0BIhGcsv7973/ffj/2ne98xxptaa6XodMQM05LxygdMmSIbZszA9KWrNtL249a9fI6VZo0TlLCOYWV9EZSNTndN21hbkk152BCTt7n/t60V7VlPR9ZEfm02KheOgQgdzNnzrT3urrCt8w4ysgwSFNc6vD8+fNtGjmnF/Otbprrb4ig8v0rpyBzUjPEm0PE+NY2zanItMcBUqRe+5Y8Dk3z7VNZ6ovYlmWm1E8hIASEgBAQAgUhwCEoEFpOP4dIkZbsc0InkVHupOSuyyuuuMLLQAWSrNvLEuY8TpXm218MeoxxjHKcA63evenGSNSK7xavueYae+85bXKqfdrDbvKYj6yJfJbzq7ZqI+A+W+BbZr6nf/LJJ+2p4JC/NNkA6ApkHccLEVY+G/C5G5fIKA4dThxmDXBAEzoNwpym8A04hzuRgszBnL4l60PTfPtTlvoitmWZKfVTCAgBISAEhECBCLjU1eeeey5VRMN1HRLKtWBEXThwhfu5idyeccYZa9NgWxlm1u218u4kz2Z1qnT0XeDGN4ZE04kKjxkzpuH3wY36yVyQ7ovjwhVIA98KtpLanNf80m6WRD7JnOkZfwTWrFljrxBEjrp06WIb5JqfL37xi6kaZ51zLy6OF1J+Ics4dCZOnJgqFdl1ghsiHn/8cfutrc/p4hBaHDCU6MF4vt/mcysF/7iSJo07FeAlrSRiW9KJU7eFgBAQAkJACLQDAQgt354RpeWgIlJe+bYWIzNNgdDSHpEX7mgkLTnNNRju3Vm3l2ZMjepkfegNKeCkCXOy7D777GO/MeR7Z64PSnOY19NPP22j8Keccoo17vkG0t1ZzriIkrUyP3nMR5ZEPuv5VXuNEUB/QBy32247w72uPoUsAtYT0WDSnDnUDnlzxLmVtiHen/vc52zmw0477WSvJOJKHSK3aUq9b/TTRKfd+7mvmpOWowWC70PA04ytTHVEbMs0W+qrEBACQkAICIE2I4BhxYFRU6ZMsd91chgK36IRiUl7MiknLZOKTPSFFFjufSRymOZbOeDIur0sIc760BvuXYXcYvRyMA9EdNiwYfakaQz0VgttkdpZr0yePDnRfaPR+lnOR9ZEvlV89HwYCEBgORGZf/bff38breUO57QFQvvtb3/bEuP111/fZj+Qlsxp71mkEqftl6tHv+gferEVx5Lve8teX8S27DOo/gsBISAEhIAQyBEBDoHhuzMOfuGKGYgV/00UrWfPni2/+eWXX7anmkJqMS4pRCC559GdyNtKo1m318q7kz6b5aE3tLXffvtZskkKN3cKQ3CfeOIJa6AXXbKej6yJfNH46P3pEOBAJfRDVqm4ZJzwfT9ZKBQiuAMGDLBOPB/CnG5076x155132pPPXf+yarfq7YjYVn2GNT4hIASEgBAQAh4IcAUMJ31yCAwE9wc/+IG995HDTdIUUgkvuOACM3ToUHsfZdoTUt27s24vzZga1cn60Bvedf/999tI7aGHHmqNc65TwSgPoWQ9H6ET+RAwVx+SI8AhVugwUof55pfPIj7ykY/YQ5+WLFliryRKk9KfvAfJniRToX///ubDH/7wOmncl1xySerMlmRvLvdTIrblnj/1XggIASEgBIRAWxEgZc/nuzE6m/U3k1m3lyWgeR16k2Ufs24r6/kImchnjZ3ayxcBvtMlvbdeOeKIIzKLCvuMZPny5fZb4nghuyWrqLVP/0KtK2Ib6syoX0JACAgBISAEKohA1t9MZt1eHpBneehNHv3Lss0yzEeW41VbQiAvBDgNnE9BHnnkEXuIG5kZnTp1yut1lWhXxLYS06hBCAEhIASEgBAoBwJZfzOZdXtZo5j1oTdZ9y/r9kKfj6zHq/aEQB4I8E0xn2lw8jmnP3PFEYdI8W2w7+nSefQ3lDZFbEOZCfVDCAgBISAEhEAHQCDrbyazbi/rKcBAJX2bg5345/rrr7enuoZwQE3WY6W90OcjjzGrTSGQNQJz5syxZxrgKKLwTTDXcUFsd9hhh6xfV5n2RGwrM5UaiBAQAkJACAiBciCQ9TeTWbeXJYqQWlIIuTbphBNOMH369DF33XWXeeihhyqbVhjyfGQ5t2pLCOSFwD333GOOO+44exI9kVr0CIdc8Xu3bt3yem3p2xWxLf0UagBCQAgIASEgBIRAqAj8+Mc/tqcYjxs3znz0ox81Tz31lBk1apS9d5YUQxUhIASEgEMAXXHsscfa/+WubwqnI+MI69Kli73Wi3+r1EZAxFaSIQSEgBAQAkJACAiBnBDAUP3a175mv5fjHs7TTz/d7LHHHoZDlojEqAgBISAEHAJ8uoDzq14hDVnf2NaXFxFbrSUhIASEgBAQAkJACOSIwIwZM8zdd99tzjrrLHP++eebD33oQ+aYY47J8Y1qWggIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYNVrRPwAAIABJREFUVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtoU5X7NmzTpPd+rUaZ3/f/31182rr75qNtpoI7Phhhu20HLtR9966y2zcuVKs8EGG5hu3bp5txdvIO/2k3T4jTfeMC+88IJ597vfbdZff/0kVSrxTB7jdvIZl8s8AStShooYb55Y5t32s88+a/XJ9ttvn/ercm9/2bJl5uWXX67EWHIHSy8QAkJACAgBIdBBEBCxTTjRp5xyivmf//mfdZ7u06ePOeGEE8y4cePMeuutZ7773e+a448/3kyaNMl885vfbNjyP/7xD3PdddeZ97///ebTn/50zWfvv/9+s8suu5hPfOIT5ve//71t99vf/ra58sorzec///mEPf/PY7T3pz/9yQwYMMD069fPxNtvuUHPCpdffrn50pe+ZFt55JFHgjJSr7jiCgNBPPLIIz1H+c7qeY175MiR5pprrjF/+MMfzMc//vHM+12rwSJlqIjxZg0qjrCuXbuaLbbYwkA8Wy3xNV2v/osvvmg++MEPmn322cfKSLygg+bNm2fuueces9tuuzXsxi233GIGDRpkvvCFLxhkOW1BX86YMcP85Cc/Mf/1X//VsJkpU6aYa6+91uywww6GtfnjH//YHH744ebWW281++67b9ouqJ4QEAJCQAgIASFQIQREbBNOpiO2/fv3t6QQQ/Gmm26yEZAxY8aYq666yhpZP/3pT82BBx5o/2lU7rrrLkNb//3f/21+/vOf13x06dKl5qyzzrLG3IQJE8y3vvUtc+aZZ1rDLg3hwjj86le/aqZNm2YJeLz9hFBk9thOO+1kFi9ebMn6iSeeaDbbbLPM2vZtyEU941F633apn9e4HdHDCYIzpB2lSBkqYrxZY7pq1SqbjZGW2MbXdL3+4YCbPn16XafHfvvtZ/VXEmJ78803m0996lNWB6GLWi0Q1Lvvvtucd955turChQvNRz7ykbrNOOcJD0CA//znP5vXXnvNbL755vafv/zlL6ZLly6tdkPPCwEhIASEgBAQAhVDQMQ24YQ6YutIIdWefvpp8773vc+2gLG1ZMkSM3XqVBvJwOgjKvu9733PRhpWr15toyUTJ060qcWHHXaYuf32280mm2xixo4da4466ihz7LHH2ujt8uXLzR//+Ecze/Zs29auu+5qLrnkkrXEFlL66KOPmgceeMDsvffeNpK85ZZb2ugx/bjssstM3759raEKaYQ877jjjmb8+PHm//7v/2zk5tRTT7X9ibZPeiyG8g9/+ENLOHfffXfz5S9/2fYNoveNb3zDLFiwwAwfPtzMmTPH9vOzn/2sjU6Tfh0vDz30kAE3iBaGJ++76KKLbJSa8TM+Ck6Aiy++2Gy77bbrNEFE+8ILL7TR3E9+8pPm4IMPNoceeqh9plHbGOeM9WMf+9ha45n3QcJ+8YtfmH/+85/m6KOPtpHrV155xfz617+2kXEi77wn3rdZs2aZJ554wuJK/V69etkoERH0rMf9la98xfz1r381X//6160s4EABn86dO9t+YsQzDxCDD3zgAzYy+7Wvfc0SoyjRgyw1wuA973mPlQ8cJ8w1zpPjjjtuLb7IVpLxIvNRGfrZz35mMxeGDBli7rzzTttPSNNpp532jvllHp9//nk7VpxEODYGDx5sjjnmGCsjzeSxlfGyVnGeQKB4J1FHIpOMH2cRcv3hD3/YRhC32mqrlmX9xhtvtFFESB/tIquM41//+pcdP3LCGCmTJ082v/zlL638IIOO2II/sta9e3freHJZGfXm4rbbbnvHmuY9l156qXW20ZeePXvasfBv1j3rhrWM7gF35g/M7733XktqHbFttL4csR06dKh573vfa7GkbYjqnnvu2VSjstZIJUZ/NCO2yAAY8ZkC8uSILfVOP/10+06cioxXRQgIASEgBISAEOjYCIjYJpz/WsSWqi76Rnow0dtoKjJEFWJLyhwGLtFciCCGP4TxV7/6lSUkkBlIDETMFQgzf4+mIruILc9g4D3++OP2nRBN0gshuaShQiYgpZDPESNG2D4dcsghlmRiuBIpJnL7//7f/6uZ6kz7GLu//e1vbXcw9ukjxjpkk0L7tEWBzHzuc59bB8nnnnvOkKpN/+gr38M99thjdrz0G6MaEk354he/aEn7Nttss7YNl+7ID5DN3/3ud/ZvN9xwgzV0G7W9aNEiM3DgQIs1BIKy3Xbb2fdDcEj5pP8UHAtEffgbxvnDDz9sCS4ODAqkDSKCwY5T4OSTT7ZOB4gBTgzIUrT4jpt38Q6X5kk0H2yZY1I2IV0QApwVf/vb36yx7yJnUaIHIWiEAU4XHCYUCArOB+YKGeV9yHWS8cZTkcEN/CjMEe+hXZwuOGeihWg4kWWwRBZfeuklOybmBhl2qff15LGV8TK/LorN2uI9riCTjmQhizNnzmxJ1p955hk7L4wX7Jgn2icrY+edd17r/HDRfwgsa4o1C/bu+3lkEQeDW1c4qcCl3lywruJr+sknn7SODlcYD7JywAEHWBLI35566inrFKGABc4T5ojCu1mHjdbXHXfcYSO2rj6p1MgK/cdphOMuSXHpz40itjjtGCOfULAGo8TWyR4OBPSsihAQAkJACAgBIdCxERCxTTj/9YitI3s/+MEPDGmFUWLryBS/EXXDeOZQKepgtEZTkTEWHbHF4MUYJZJWi9geccQRNqoKaeAdGKVEHj/zmc/UJbYQjnjaYpSUEP1xBqkjxpBI+o3xS7TTjfU73/mOjTyThggBg7j/6Ec/WgdJR9AcuXzzzTetYYrhTGSLqOimm25q+w7pjxvDw4YNs5Hu//3f/7URY8gz76A9DHHIX722IRlJiC2EhugokcKtt97azg8GOuQimoocjcwTQca4BnsIcfz7aN9x//3vf7d9gSRwqBbfIDPXzAXRRr5pJEqGrIDj2Wefbf+biGMrRA+SQ2oq84iTBScGzgvauvrqq9dmIjQbbz1ii9wwZxAtHAa1Um1dXeSLqDxROeSC7AbmukePHlam6sljK+N1xBbSDEn6zW9+Y8keBI4oOM4QovBgDNFqRdaRU+SVtogiIhekyjJuMiVcVL8ZsXWyRwYEkWTmFqeFywqpNRfxNX3++edb8gohJuK+11572YwK2sNpAWbMPf2EhPMb74U8O2KLLmi0voj+Qmwddu9617tsNgYOilbS4JsRW6LJrEX0DesAuY8SW/QAa9c5pBKqcj0mBISAEBACQkAIVBQBEduEE1uP2Dry+uCDD9qUvCixJUUuesgTZAWDEsMz/o2tI7buoCi6FScNLmILuYFQUj760Y/aCCLEhnTPaMQWgjJq1Cjbp2bElrRgFzHlpFuInTutmPdgqBP9JWLrIiykX5Jyyu+8K1ogSd///vdtlI5oHQUSdcEFF6w9XKsRsYXQM35HalppGwyTEFui0hAcCqSb6CckByM//o0tEW4XYeZ5yAbjI+LWSt8gGY3GTVsQLqL1zCX4UkifhfjxrTXkOVrSEFvkx0Xko205App0vPWILQSLdHeisKTWIvv8d7TMnTvXOieikXX3dyKezeQRhwpOIMhUswi1I7buXThYSD12MuDGgbMJ4uuIbRJZx6lEtoSLtDIG5oR12rt373cQW5fJEY3YRok/Kcv0C/LIfzeai3rENnqA3UEHHWSuv/56O9+QSUgifXNOI/rrMk8YA783WruQZfoWdWiR7gwRP/fcc60eSlKaEVv3SQAOGE6cBwdw4v/JYMBRwKF9FJwhWZxEn6TfekYICAEhIASEgBAIEwER24TzUovYEu3gm0+MdqIHpBc6YotRTwSDiCTRSlJpMcgofL/G77UitlEjvx6xJdWTb1Ix5rkmh7YgDURjIJu8iwgKRuYZZ5yRiNhyIqqLLEEC+N7VkW1HSpyxT3QLItiI2GLkYuy61E7GTUQZ49oZ1I0IHvWIgvNd6f7772/JC2QPAsH3gI3a5nAvCD8pzESf3Mmz9CGaigwpJRJKaURs+R6QyC6GNGmc1OFbW4xsIqzRa4p8x01fiHRiuBM9xGmBQ4CoFeQEkkLUinRX3g3BqEVs+Sa3EQbIBZFghyNRc1K0kQEixknHW4/Y8i01Ub9GxBY5wzHkUo9xqOC8gcTgAHKHidWTx2jEttl40xLbJLKOU4uMBsgVUUa+k4UgQvzIanDZCI58OUIXT0VGzoiGkuJ+0kkn2e/jiaY3mgscR9ED4VzENpom79aSc4jhWOM55od5iuoR+s06a7S+0A3IXTRS6sgzzj2cSklKM2LrHDzxtogUc8aAy27g73kc8pZkDHpGCAgBISAEhIAQCAcBEduEc+GILcYc6XF8J0qqMIUUQf4eve6Hb0ghWDzD4TSkJEJ6SXfFKIMIY9BjpFGfw58gKEmILe8kRZF2iOpB/CCAkGnaok2iKqSqUlzEFmJN9JRoEBEdDnSKpjrTJt8Kk8YIiSUdlMiZI1atEFu+VWXMFAxryKU7LAqDlAOYGhFblwYN3hyuRVol5ITxkurZqG3IGYSfArnAwUDdNMQWzMAXAgaRhXhBVCAc4EwaZ5TY+o6bPoIVBMd99wh5RJacIwHCCzmB7EJ8XfpslOjxbWcjDHBaQJ4ZEySStnE6QJIgVURLk4zXh9gyVheZRy5J5Yd8QYwgSM3ksZXx5klso44Ivp8l8g/h5IAyDnJyY4QM4kBw34vHiS2yztrE4cDcM7c4GRrNBd+WRtc0bSMbUWKLTkA3OCLLGsJBRKGPzCHvokBs+Wa20fqCaLtvbPk3sup0DeSdw6UgpW4e66nYWsTWOZgYB44/8KLw7Tr376Kb6CvONp6Jpo8nVOV6TAgIASEgBISAEKgoAiK2CSe21j22EFFSjTEOKY7YQmSJeJBGiNEJ+XHFkWCiUhhuGJVE4DCAibDVIrYu8kgEB0IaPUwJ8kG0lTYw3jE0HYnjO10ii47YYpBibEKuITB8q4vR7don9ZjfiAy6AjHEeOaAG0dsSdWk76TxQvpqpSJTn28PIaWOoGGM0h9OiaU0IrYYyBBiR4Z5Pprm2Kzt6EFbzBPfekLSIdVExnAqNIrYuutRnFHN/BDldCU+lqgYNetbs1Rk2nLvd9FMfiOyxvw6YgTxgwTRF05tJv07eo9tIwxwLLiIvus78kKUnEhp/G/1xuuIrZMhd3gUh/4gY8w9462Visx7OZkZuXIyArnDSYMjoZk8xu+xbTRe1gQnSLv1RdQfbF0qMicPs4bi39gmkXXmhdRuPj1wBQLG+oeYEgGF6FFYr/yNOeRwN2QQIgk+pAM7gsmJ1mBIqm2juYivaUgmjqgosXXOlmjqvYvs0iccNJySDSF3pyI3kmF3sBv4sabcwVusVTJY3HidTNRTsbWILenh9MFlnbi6pOLHv7ElXRqZr3WIW0K1rseEgBAQAkJACAiBCiEgYtuGySRVEeOXk0gx8l0hfQ7jnQhg9PckXSKSAUkjmuO+M3P1OKUVclLrbkf6sWLFCmtM80+tghFJyi5XrvjeLcv7iCwT1SSFMRrdTDJOIjWME6LjTo919Zq1TeSTyDjGvvtmNsk73TOk0fIODjGiPm2RisxhOXw72eibvmZ9a6Uf8WchE8hLEplphgHfh5J9ANGF3ERLK+P1GQ+yDPEET9ZIfK5akcdm4/XpZ7O6rGXGAQGLr0s+RyDVG2Lb6NRgnC6sy/jcNpqLJGvanZgOCSXjgUKbHIIGsY3rEP6eRIZdej7yw7pwhc8N+D651XtukQW+XyfLgghto+Lu3nUZIM3mR38XAkJACAgBISAEqo2AiG2151ejEwJCQAjYaCxpvmR9ENnOsxB1Js2d1Hai060UvtXlUw+i1Y0KkXSu/YoektXKe/SsEBACQkAICAEhUD0ERGyrN6cakRAQAkLgHQjwSQGHXJHanGfhzmqi0u4wulbeRYYGEe9mhVPYOdiLw9rqZZ40a0N/FwJCQAgIASEgBKqFgIhtteZToxECQkAICAEhIASEgBAQAkJACHQ4BERsO9yUa8BCQAgIASEgBNqDQKOrmNKcfdCeXqd7ixtr1caVBI2OPPYk+GT5THxNdUR5S4JnR5ZJxt5R5ULENsHq4OAXSqsHHyVoWo8EgACH+nCgTq0DdNrdPXcQUJJ0zHb3raj3gUmjA5foF4cOcZetSnMEuC+Yf5ph2rwlPSEEGiMQPV2+1pN5HPxFKjz3uPNNOen3rnDyOd+X//nPfzZ9+/a1p7YPGjQo0ylMcuJ9pi80xn5nzrfzXNXHLQ1FFE5n54q5Zld8FdE3n3dy6r/7np8r90Io3LjBJxjRwqn6YM+tBBxc2KxwaOB1111nDwjldHoKt1xwMCW3I8QPkmzWXqt/57pBriuMFg4q5YrJrEpRMsntCxx+yJ32HHpaROEWj2OOOcacc8459jrHqpSkMtohiC0LHeXPlRxJC9fScP0HgslmyCnBM2fOXKc6925yUu8jjzzS9ATPpO+NP7dgwQLzuc99zp6omqSg2PjmjKtyoqXe7/E2OVWWg1/Y9FGUFO6lnDVrluGKomHDhlnFR+GKlvPOO89ez8G1QfzOdSm+BSIDSXnooYesAZJn4SqU0aNH280LD9fkyZPtVSOceszVJSgpvF5sBIwVo4gTZkeNGlWzb7/85S8Nd/BGC3fwQiRuu+02u3FwvY07bZprerj2ZcKECbaKuwaKK1M4HTbUEpVLTqcFw7jMZdH3v/zlL/YO37iH+rXXXrMyyTxQWIecSMzJ22Us9eQG2ePaIIxWxvyZz3zGXq+FAX3aaadZuYyXKVOm2OuD6hWuyaFN7p5tpr9q4ZxW33HlFusM/eJbWtWLvu9T/XQIcB0Z10NRMKTZMz7xiU/Y088p3PfMqfNZFE7f5/ow1gqGpbvfnbY5sZx38n72dQgLBX3O/2dViiC27pozTiDnCrgiitPTVSO26FJsIewnrk0MoThiy5WL7I04dTlvgGsluQ4Q3d6s3HXXXfbKRmy2n//85/ZxDu7jqkd35VuzNnz+7q4FZO25MxIg03HbyecdRcmkI7Zp90mfMbu67io8HCDRayqzaLvINpLKaIchtng0WzG8IWpf//rXrRFWj9hCVjCw9thjj9wOMPnDH/5g77rk6plGBWXEKaR4Z7jH0nnD6v1er62TTjrJ3gv5s5/9zBJqd5oqSh3Syr2RbKD8DQMbYkgdjAoW0T//+U9vQ8URW65J2nHHHXNdR5CyY4891o7na1/7mh0bGBLNYsxgikeT+zXpFwQUTNnwuIbm3e9+9zr9Q8aI8O+1115rf+eeY+Tvvvvus3enYniBG+/ged6z2267rX0ewgH+kJ1QS1QuwRAnwJe+9KXMu1uP2CJnbIQ4nHASlJ3Y1pMbd9/uuHHjrJMFOeL+3m9+85v2DmOu7HHlxhtvtFc3Yaw3OrjJEVtkrJn+iuK85ZZbNn2+kQBgNHE/L7rCtyTVi77vUf3sEOCedk7M5p5qSCcFwom+xaBFlnfddVcbZYD8omeRl3333ddwqBjeehzNHH7GnhsvP/3pT82JJ55ocM5CYKPEFqf0UUcdtfZO9+nTp9u7wiEt0RO4uf6MO6fR4dwJ7mSePtI3iPhPfvITe2c9hit2AmSOe+7dtX28G7LBvdbsJ7wHO4IxHHLIITaihlMO+4HICn3D4ckewx7KHkFhPbMX4Fhmf8AhShQmXhyxZR9hbRGZxvnKuNADGIOUuXPnWl2J4xb9wR4VjZpBjtjfGDNjpzBODmojKICO53mIEHqBU8nRRYwtTiIYd6OxgxG6zO1xzPdFF11U8+A49l3Gwj3ZROPZjw8//PC1eyxOYHAjQkfmFWTtzDPPtDYZ2KMPcS7jJMfxwXt5BrsFkogOZAw4mLkOjbvOwQdHNPIHYeR+9VNPPbUlGzK7lbNuS47YRsm2i05G74uvhwvO0MMOO8w6f3h+7Nix9r51MGRePvaxj1m8kUfsHPaZxYsXW7n88pe/bNcRDteTTz7ZrlGCHawJ6oIp64B6zBW2aK2AEuuUtcR6a3T4X5Yy2UwWGskka5V9E3lFnrijHRxqZXw4YosMsueh17AvkTvGA9Hkij1wpWBvs6awQ52jnt+5Mo/1j/0PjhTmijV+8cUX2ysacW7//ve/t5izntEBzFuU2CK32GjoAuf0IIDDWAj4oV9pk7bmz59v1z+6BjmrldWF3Qs3oi30yeDBg61eIvrfSJ+jE5v1Y8iQIfbaQPQXdjLyibMO2/KCCy54h4yig2qVDkVsWcwAxuJkYlevXm0nM26QO8VBxAzljBF19913W+OZTQHBYdPaeOONrYcMhcuz559/vvnBD35giOTyDgQ4nuPOpgM5xGOMwJ511lk22guJQ7B5D2QOxYCCSWrAsVHzLP1D+N2GVe/3WsLARorAcs8tQsRixOAmBZtFRkGZQdAgfERV8fyBB1hyby4LGcPAFQwW2mJDYZGwSYEZi5zUJQwGFhhXfDgBjhJbvP0sFvpFYTwoQxY60U02IDYkFhibslMMRNxRnODJIqVe/G5QFBQbKps0fdtpp51sv1xECYXNHNN/7sKFRG211VbW6CHKQPtxDzlKjQ0CxRctbKoYFvybFDkMGvBDZpClaHFYspl86EMfesdUETlG4YETMnThhRfaOTruuOOs7IDnEUccYbGoh0+0UeQfwwmiwztxWKBs6QdKj/YYNxsVRhwbJtF053CpR2xRgLXml3YbrUP6wRgZE+8Do3jEln4h63h8kTmiMcwdBhnts4bd3BAlxPDEmYASZm1BitPiVW9cyAXGO+sbIw3cUMxs4vQVI5ixRJ0Ybh7qyQ19xcBCdijgggGP7EYL99/SPhtT3BnEpoyeQU+BE0YMmy3GSDP9Bf4OZwgJxi3tkEKK8cOawWjkfl6MYJxfyCVrgDRQUurBA1nBCCCqjl5hjl3BAEDnoJMpGGnoMDZOnofIoNuIMLDuWbNRvch76+kIcKmHfxJ9nZdx2hHbjRNb1jQpw8wl8sMegLFNQb5ZZy5riP0VmcX4ZE1BNjDAahXaYD1FiS1ygx5Hb2IHQLDpD3IZjxKxf6HjSIuEQDkjfMaMGbY/rC/6AAFCRiFDLg04GrFFbiGd6FLaYM2w9iBJ6CLaQwfRFv1l/6VAmLE10LkYwKwX1irk1+230XE7Ystv6EOcW+DEPoY+dLqS/+Y33sm7sVVYZ67gEGCfoy6GLu9mvwJrl5LLXsHv2CZu3yLlkrpED13EljXdaOzsMezbYIFzmPngv9l/4p98odcxwJER9BfOdsozzzxjn2f/ofBu/hYdu7u/GzsAYsY7eTcEAGKIbUAmAYW/Q9Qo6Cf6xb7Bb+genCBR4lHUGnb2KXoQBw/6Fr3PHLmgBvZWPVzYU7BPkXEwRT8z7+CMLB944IEWb/YcfqOwb2LzUZAd6rh7xPkNmUBXuxL9/1opuRAY5B1cmUfWGUQxnnGVpUw2k4VGMsneh4MIzNlnsSfBjnWCjRgtjtjyG+Nz8so+xTidHcp6Rh/grAO7eIaiCyqh+5566imbtQmZRV+gG3EYoM9Yi8gqdhB94rkosUWGnaPb2VFOB6ATmAt0Gv3BbuVd9Ic5Zq6jhfpggI7lKj8CbtRj7aCbGulzdEmjfqCbonwpuh6xvVmncRmtZUvR3w5FbDHK2DBQoCg1JvXyyy+3Sjka4WDTYbIhB5BNnkVRY6QDJF4pFAOKjvZQ/JAjBB/wSS8lSoenFRLjCgY3ipmNE6MbQuIMQsgtGwPvQIHgkUEh0JckEVv3DhYnSiX+/UK93109FBrvp88QOjZlNlQWqSOcPMuCYcNi8bhvHyEOeHUxTONRTJQWGzReURYgCpjFw4KA+LNp0FcwY9EjwGAC6YPs49XC0+3SwImqsnGhJPhvNioMVJwJzBckAMKM55b5hYBCxvkb8xUtKAXGQ98obK4sVhQPpBmFg+OD75bYNFwUFgUE4ayVxkZdnsO4YJ6RAxY0Y8WpgaLDScB4kUdwZu7jhTpE6VBA0UIbEATaYGwoA8aAB9ptNLwTZYZs18InTrqdIsZQAWvkGxyRdRwGLsUX8sE7mSMUejNiS/9rza+LsNZah8gVaeDUxWGCswLZjBNbDEo2WzydGG70i/YgfvSdjYf1Rp8xgPHWItcYt8geXs60eNUbl5NbNh7w5zmiC4wXrylOGmQdEuZS0d3c1pMbSCljx8uODLJG0D3oo2hB97A5Mb54gQgjExgryDXrBnlxqciN9Bf4xXHmedKKIcW0g45kw+EbdXDFacO8YYwzVvoMWUU3YuRj0LioFH3FCUUky3nvIeHz5s2zbbEOnHeccVCX6BBr1skf46mlI5ABPLq18EevNtPX7wBSP3ghECe2Lh2S9cIaZw9mnbAvYuSiHyFb59hnAAAgAElEQVQr7GfoPQqygMGHbqv3aVEtYouDFiLnMpHQ3URg0cfsX9HCM+hV/mFfQ3/QP9Yguo/9GYcO+xokA4LAnsgaaIXYOtKIDqMvrGn2O+f0RV8xdmwC9jM+C0DHYVhHiyO27HHUp5/sXeyTrCn2QQgsn4uw5t14amVXuW+iMWhZ3zgbWKsQQwxn9mSMV/Z+SB5GLTYDxCgpsUU/Y9BTaG/DDTdc6/RCRzpnRlQ3Mhbn6AUf9hVwYf+kX855gB4AK4qzKVxgohGxRS9DCglkIFfoLBwbIaci11qM7ptKl7JZDxdkpFEqMg4SF61zTgEcQJBeiBbXxrn9Ewcuv9Me8+JS4p1DxWW9RfvryBx7C7YSewqyzj4RzzbKSiYbEVvsvEYyyRjhAfTXBcLYl7Fp0QPR4uwphwPrg7XknD6sRdYpNhwYscZwCC9cuLCmHegcS8wDdZ3zAhuYYAN2OvoMfUHBFsbRBjHFwdyM2FIHfgBhpR42PHNJwVaKftaEDYL+QQZwwOGEwlGIrcV70A319Dn4JSW26HDsaGxv7FLnhFMqckRESP1BGTpiizcLgUJZshHVSnmNpyKjcB0BwpBiYROpcMSWKCbCwXMsIJQwChYPiysYZRBmZ8CxoBFuhAHvclSI6BcGIgKUN7FlgeJ9xvBggbPhOmLLhoWB6KKYbOIQtijR4Bk2fhY5xmv84AGMezYVNg/IJUoVYWUeSF9gflyqi8OvGbFlkbCoaGfMmDEWYhYBRiwLDAcCz0DK2cBxXsS/14VsYqi4lBA3TzgU2NggdMhGNN0YJcVCZuHHPf2O+JGWgRLD+EKps/lDvOgrhBBiAgako+HAAAe8ftHvkzH0wTV6+IkzBCALGOy0y7wgHxg3bDTgiUKFENXDh0hzXBEzR0R3KThjIEK07UNs680v42Td1FqHKHc2YxeRdCmDcWJbKxUZMgTpJ7JDv5k70heJLOKFxBsIoYEA4nBhHtPg1Uxu3YbGRoRHnXUOWWcMGJUYjWxGrjSSG7fZoieQGwqEMRo5cNEnZKrWoWOsC3SRS7lEtihRYltPf2F0xlO+o8QWHYrsgjP6Dx2G/KAjnDzheMFhxLzUSkV2ZxW4FFVIA3oCMgKZRWcyd+gW1iVrGXLTjNhioNbDn/XRTF/XMhz1W3oE4sSWuWVPZu9xKaluf8HIwhGDHnUkgzdDZnBe8TcnX/Ee1SK2yBMkBVlkHTljE0MV2Y2WaJQIfUS/XfQT3YvecNFVV4++0KdGxJa9hv0ccopuqncYJeNF72NHuAgi72F/ZU+J72OO2EbJvsMam4X15L5jRlegf5F9SHu8uIOSsEdYX0Q2XYQOnUw91n+0oHfRa42IbXTsGM/0r1aJfyeMke10Wq3TtR1Bin4XikOU/4dAMy9RYsuY0Z3xiC3zDC7ORnP4hExs0eeMg0wh+u8itOw3/Df2Sz1c0NmNiC37hTuECl2J/kX2nS2EkwUZYS90xNdFvx0pcRHQ6KcHURsLMkQQAicJ7bKX1Pq+NyuZjBPbqCywphvJJE5+bCTsXFdYp+iTeCq1I7YuAuv2N+qRjksGFEQ3usacXoqvCeYYexaHNXOMExhyyVpj/yZoE+0T9eEXOGUaEVuc0egYnF7Ii0t1jr8//p0wUXz0dVRnuzrN9Dl6Ik5so/2IRmyRaRzl8BF4g8NHxDYyQ3FiG50sFixGXdwLGie2RCgcAYL04W2OGoZ4mzDEXF44nhU24KjQQ1SJamJcRwu/QzbwVrnC4sADg5LOm9hCsFgEeKohlBjCjIXFzmE1LCz+TiECiKChzKIFMgh5xePu0obd38GNKAy4Q/T5fxY1C5wULRYqGz5ErRmxxUBBqUJKndEf7YfbkJxC4G/gxwaFZyxawBcjAS9ntK/MHWQ5erAJype+sskz/0Sk4t8fsPE6wkV7biOodagHxjpRaBQTnmXqYeS51B/GSfSSuYkWHCqMHZLsPGm04YgtmzbRDpf2FldUtQwaZA0vpEvdZc7xwIJBlNg6b3jSiG29+XXEttY6JIWXd+KUoPBNCs8nIbauPZQic8O6BmPIcbwQAWI+0+DVTG5dZMGlvcXfzYYS/VYuqdywQSKryF/02yTWKZjhwa1VMLbxeDqPLhhzKmUS/YXxUY/Y8l53qB3tYXgzFt6HkR0/JKrRN7asOTY95B7D32V+sN4gDGzeLr2tGbF1OoLoHvJeC3/WSDN9XRNM/ZgagTixJSKPU9dFgGiY7Bscx0QX0UkQWzIh0DmsaWfY4FSu901/LWKLs4xMFAwl1g97EDKHA4/9N15clAjdAxnEick+wl7I3oKuJBqCfkFn1yK27Dnsh0Ri3becEHaXiuwcwrSNgY9hj/OH3zGA0fWsP/ZW9gGM/ijJd312xJYMERylUaLgnOWsVT4hiI+n1mS6SLJLBXQOM2wi9mp0M/0AD7CuRWyJutcbO0SHLCX2L+wIvqljb2GsvDvqnEOf4HzENnCZLuynkAbmAMMYfewc3O4zHsaFHmZvhKzyDLLG3LN/xokt+wwOuTIR2+g3ts5x4PZMiEojXNg/GhFbHJGOhLiMLafj3Xe8LmLbjNiCKTaFK8wjfWeemT8KNjpzXO8wtyxk0qU/15IFHK6NZNJlNdFXnKoQLfakeDo/f3fE9tprr7WZSM7Bzf6Io4n1ie1KfZeqXM8p7ew4d+Cdy56IZibgwGG+0BuUOLFFnzpblfWBsxqSzrqF2LKfku2BrmU8FOSJtceaiN42gSzgTHL9wOmB/iETDLLOP/X0OWS7UT+ixNbZeyK2DbbbOLGNnp6alNhGT0WuRWxRzggM/+ANRnGy8WFAuYIAIjxsWkwwQovws2EQ4WDB48VlUrt37249yRjpeRNbokFsiK6wIWBMYCCS8knUA4ODwtghEGwO9ItF674x4CAJvrONR0AdwcPYRYGwKBknUSy8fGz8GOaMGc89nrVoxBbjmc2MwvMoBTxYvBcPkvNUYgjQLt5p3sm8o4xZeO7AjqiYQCRxPNAvCsYSGyGePHe4iXsew4AUSBRBvZOanYfUEQj3LS4Ewh3gQXvMKwYBhggGDbJFf1EYRO/wVOFcIOqMQyBaMM4wtPCO8XcMdzzyjti6Q5xQbvXwiac+o4ghWi7yHSe2jjC6g4ySEFvGXm9+HbGttQ6Zf97jIjgYdPQrCbF17UWJLc4aouZsZhTWHvPIhsIct4pXo3FF5ZaosEuX5jtP54RgbTFvLl2OPjWSG/qNvCOXFHdIiIsCuw3OeclrqUHml00DIk/BmKdelNjW019ElusRW4gBa44SJbbgQD33PlItMU6Jktc7PIo1webKOJFv6pDdgKziLHSRInRlLWJbS0fgVSYiVwt/nATN9HWDLUV/SoFAnNjioMQgQ/5Zi+5sCZqG/GBYu7RUiC5rF2cRxX0DWqsbtYitM8hYhzhKMEwxVuNGt2vPOdT4f/dNG3sSRiJ7IfqSdYXDF0KKMxddHY3YItM4CKmPnnHnVDhi68gzBi/rEycOfSIzAUOR39CVfI6CMY2jtRYRj35jC9kDG6KU0W+MHWFz42H9s+ZrFRxf7pR+F6nmORcJpZ+kQEJcKehX0jGjEVuXtlpr7OhADHX+TX/Bw11J4s6xiPbLpaczHgxt5o8C7uh39BDvgSRBHJh/9Dt6hPmCZOMUI7URnUdJSmxdxhB6hPfWO6wmxXJIXcV9YwtuOOshSuyZECXnBGKcjXCBQEJOwAV8IGD8Q0QQHY2dgbMG3csaxe6CmEA+XSpsUmJbKxXZkT/mHd2NDUZfcFjUurYvC5l0clRLFnB8NZJJglTIAg4d1jS2IsQQZxFrO1rc2JBJnKfIKLiBM44xiiNs/Hf0ZOpaQuEIOX9z2RMuk4F3MNfMm7O7WZs4elzEFlvdOaUgni5qTHvYs6wV920znIX9krEiH+id+DWYri30F/soc4eeRmc30ues30b9SEJs4zKKXVGrdMhvbJMQW5Q4mwhpS/FTkWsRWyaVzYM0QQga0QImisl3hc0KLxUbozPiMNJYJBiPCD4LgQUDSSSKR/qBI7b0GyKHAq+3KSX9xrZRWwgfSg3jlCgQi5BNyKW+ggf9RKggYCg6NlM8orVIIeN3AgkebNB4jlDCLAreg9JEETN2sHPEllQXPOQ4CyB/zAvjp18YSvQBjztOAjYflD5EnDaI2KHE6C8EPJ46TOSZ31yKOeQXAhs9UAPFgSKApOGEgES6Qv/xiKNU6BPzRUQa0omywpBhvNHoGh4uNgQMd9qGtGDIQBBwLri+MDaIb1xp4gBBCeHxxIPPONmIcA7ED3Gqhw9yHVfEtYgtY0KW2XwYB0SF+UpCbBvNLwZG/BRj52ACa5QkmGAoYdAiE3Fi69J3IangEW0vSmzZNJELvu1GgbPGkB3GwO/R05yT4JVUbjHSHenkncwl42D+6HNUjthI6skNMkdECILPpoF8k5rlvsdx6bnOIVJLyRM5YvNjbUImwBdjOkps6+kvNnIcRVGcXSpyPWLr3kffkX2cN9ThH9KDXfQt2lfmHR3ojFV0gktB43n+hgyiK2mT9ez0Ipt9LR2BIYoDoRb+6JNm+jq15amKNRFwxDZKJsmcwBEYTW9lLnGqOkdw9JASGo5+flLrRc7JEiV2POfudnR1cKIgG/EDHvk7+oY1TL+itwwQPUVvuINy0E8Yty4aEyW2yDRy7NKWWUv03RFbDFDsC+q74qK/6DDWSvRgQXDAWRbPVHKHK7EXOAceexP6xl1lFF1f7Bes0XolGv1zkWqexdnIfs8aJSqDfmZsvJ85jN5ji13TaOxkrYGHO1iHvZCx4oyKF7LlcAy7K5p4FrJA1AmcWOdRB7D7ltZleGDMu/liX2a/jhNbdA37A84I5MZlNuFIRF9CGuMnaBe1zOvdYwuhggAiJ81wcdcKgikyAtHFdkWeKewrZBdgp5Jp44pLk2e/dVG/ZhHbWsQWxxHrzx0Wx1xhE8UzJ917s5BJZKCRLDSSSbLq2O/c+qJfyDd7avyTAkdsowdusTYZn/skAL3n1ia/uys0a8lUNPMLm8J96gdhhYtQaB8bGH1F1iPBiOg9tu4TD55FNyAjjIW2Wbv8HX3j0pr5O3/j3/GCTY6jAz1AQZ9hPxCYaaTPebZZP5wudvae+/TEpSLHZTQaMIr2U8S2U6ea6Q8OUDwaGHXxiC2kAjLm7oFE2UKoIH/8N0ILCY1fB4Nh5ogFihQvC8KDsY2ypS4C476XgejgsYFAOaHAiIVw1CoQYpQEHqZoif/eqK0osWVDhKC7kwP5b4SLxezSuXgP/UYJsmHWOiLcLc5oZIk+gjN1ITt4hhgvBNHdY0sEGKMBXNlMITFsqODlTpbmbxSUA4qGuu77DhYx0WAivtEreHjenaxK+pc7cS6OKeMFOxeFjf6dPhC95btONydsLJBMt+gxpqJEkv5BYp3nDhnBO44BTl089JBf+gwZi5/6hmHj+kIdZAPvGiSejTd6n2wjfKLjqBexJVLgTrfkeWeYsRbYJJxc1rvHtt78QuRqEVs2V4wj5g5SRMHQQfZqfV8VvQidyF48YuvSmthA3Ym7yAPyi7ES73dSvJLIrYvqu+94HN5sRDiK4qWe3ODMYYN0BiBrIXrqNmNjQ250/x+RUmQU5xQFQkg0LKn+iuPMpuk2+loRWzZHjEN0pDsVGsOTjdcdSBb/HIN+uQiWcwQx53jH0VUUDHJIAGPBG+3kj++n6+mIeviz3pPo65pKVj9migDzjA5nj8M4cimQjtgS1SNFjiwFSB2R9rQFxxROWByi0UNRWmmP/tIGmRe1okvxtljDlHr39RJ9YY2yb8e/16Mueg2HOI7XePQk/i72a9ZZrWedY8ERkVbG7J6FELHemKdaDoFWxu7mnagP7dWyG1x7PIuuQTcQpYw/SxvMCUZ//DAf2gBf9lTsiVYLEVH2d+am0dU0rbbbjucb4QKmyJe7por+4JAAY+xLJ9vIJ3s+ayZ+6KHvGJBV3kngoN43583e0apMNpKFZjKJniJtGBlzqb+N+odOA8/oWTs8784BiR601Gyctf7O/IFfLZmPP4+zg30PG6jWWkPOWUOsEfRHo/WNnkEvoYvRg9Fn6+lz159m/WiGQy0ZjdfpEMS2GVD1/g7BYoEnXXBEQ5hsNrB6VxHwLpQNgh0XdpQnC6fWBkc9FjAeCrykSTaVRuNutS0UGzjExwWBY8PBa9NoY2qEMYsEJcGCwCiOKwyInjtdOT5uFiNedNJuIb7RgqeXcca/rY0uMJwKRD/xPmZV3KJnwcdP+MM4Y94b3TNKNAnCQnpRLUMGOWNDYDMADxQtDpRactoIn6TjdXel1nOmNGqHNdRsfmvVhziBUaN1RD0Uez2DMdouGKHUIcCNsE+KVyvjYmNzRnmjvtaTG+QfY5IsjSQbWC083aZF/XoGfSP9lRTn6LvRZWyi0ewS+sHG1AqpQL8g3zhDICb8EzewGumIevgn1ddJ14meyxaBKLF1n6Jk+4aO0Rr7I84sojm1ToHuGCholEIgDAQI8hDEwtYlVT4ehAqjl+XuhYhtieaPqA2pCPHvP9MMIcu20rw/lDqkHpGORvpGKAWSTfqb+3Y4lH6pH0JACAiBdiFABgXfrpJdQbReJR0CEFui3mQDceZHvTMi0rWuWkJACLSCANlofD7jMo+yjoK30peqPitiW9WZ1bgSI0BqKt8A+6S4JX5ZkweJZvEtU/zb2qzaVztCQAgIASEgBISAEBACQqCKCIjYVnFWNSYhIASEgBAQAkJACAgBISAEhEAHQkDEtgNNtoYqBISAEBACQkAICAEhIASEgBCoIgIitlWcVY1JCAgBISAEhIAQEAJCQAgIASHQgRAQse1Ak62hCgEhIASEgBAQAkJACAgBISAEqohA7sSW6x24iLzZyV9cXxK9yoLrGzhIhyseooWrG7hnqdl9blWcLI1JCAgBISAEhIBDQPurZEEICIFWEZDeaBUxPV8mBHIltpMnTzaXXnqpGTBggL18/fzzz6951PwNN9xgDjzwQAOZ5V5O7qybOnWqvYydBThr1iz7++jRo+1dqdxPOmHCBHuEvYoQEAJCQAgIgY6GgPbXjjbjGq8Q8EdAesMfQ7UQNgK5EdvXX3/dXp9CtJao69lnn22effZZM23atHUQeeKJJ8wZZ5xhZs+ebYntm2++aTp37mxWrFhhunfvbsaNG2d69eplie3KlSvNOeecY5YtW2Z/I3rbtWvXsBFW74SAEBACQkAIZIiA9tcMwVRTQqCDICC90UEmuoMPMzdiC64vvPCC6dGjh1m1apXZb7/9zIknnmhGjRq1FvLXXnvNDBkyxFx55ZVmm222scQWosvFxY8++qh9DiJ83333WWLL79Rfs2aNTUXmmT59+nTwKdTwhYAQEAJCoKMhoP21o824xisE/BGQ3vDHUC2EjUCuxJah33PPPWbs2LFm5513NpdffrnZaKON1iIC0d11113t3yGuENsHHnjADB8+3Dz88MP2uauuusrMnz/fpjKPGDHCDBs2zP7es2dPs2jRItO7d2+zYMECc/vtt6+D9Oabb24++clPho2+eicEhIAQEAJBIlAGp6n21yBFR50SAkEHXaQ3JKAOgTLsc63OVq7E9pZbbrHfxV5yySVm5MiR6/SNNOKNN97Y9O/f3/5+55132v+eN2+ePWjKfW87ZcoU+3fSkDfddFMzfvx4m65MJJh05XqHSPE978SJE1vFo23PP/bYY0ErPvXPTxSEn/DzQ8CvtuSv2vgxOu2vfnOs2kIgLwRC1r/SG3nNevnaDVlOfdDMjdiSLsw3sjfffLPZc8891/aRb24ffPBBs8cee5glS5as/f2DH/ygeeihhwz/Joo7Y8YM069fPzN48GAzadIks3r1ajN9+nRz0003mTlz5hg+gF+4cGHdsYvY+oiFMaELvPqn+fVDwK+25E/4+SHgV1v7qx9+qi0E8kQg1P1BeiPPWS9f26HKqS+SuRFbSOsOO+ywTv+OOOIIc/zxx5uBAwfa1OJocanI/Hvu3LlmzJgx9s9Dhw61B0tBbPked/HixfYaICK7nLZcr4jY+olG6AKv/ml+/RDwqy35E35+CPjV1v7qh59qC4E8EQh1f5DeyHPWy9d2qHLqi2RuxLZexzhIipOOZ86c2bDvPPfiiy/a04+jZenSpWbLLbe0Jyc3KiK2fqIRusCrf5pfPwT8akv+hJ8fAvnU1v6aD65qVQi0gkDo+0N8LNIbrcxudZ4tm5wmRb7txJareiCsffv2TdrHVM+J2KaCbW2l0AVe/dP8+iHgV1vyJ/z8EMintvbXfHBVq0KgFQRC3x/iY5HeaGV2q/Ns2eQ0KfJtJ7ZJO+b7nIitH4KhC7z6p/n1Q8CvtuRP+PkhUO7aoe+v5UZXvS87AqHvD0XhK71RFPK131tVORWxLUjOQhco9c9PMISf8PNDwK+25K/a+PmNzr+2DFR/DNVCdREIXf8Whbz0RlHIi9iGhXzK3oS+gEJXfOpfSsF7u5rwE35+CPjVlvxVGz+/0fnXDn1/9R+hWhAC6REIXf+mH5lfTekNP/yyrl1VOVXENmtJSdhe6AKl/iWcyDqPCT/h54eAX23JX7Xx8xudf20ZqP4YqoXqIhC6/i0KeemNopCv/d6qyqmIbUFyFrpAqX9+giH8hJ8fAn61JX/Vxs9vdP61ZaD6Y6gWqotA6Pq3KOSlN4pCXsQ2LORT9ib0BRS64lP/Ugre29WEn/DzQ8CvtuSv2vj5jc6/duj7q/8I1YIQSI9A6Po3/cj8akpv+OGXde2qyqkitllLSsL2Qhco9S/hRNZ5TPgJPz8E/GpL/qqNn9/o/GvLQPXHUC1UF4HQ9W9RyEtvFIV87fdWVU5FbAuSs9AFSv3zEwzhJ/z8EPCrLfmrNn5+o/OvLQPVH0O1UF0EQte/RSEvvVEU8iK2YSGfsjehL6DQFZ/6l1Lw3q4m/ISfHwJ+tSV/1cbPb3T+tUPfX/1HqBaEQHoEQte/6UfmV1N6ww+/rGtXVU4Vsc1aUhK2F7pAqX8JJ7LOY8JP+Pkh4Fdb8ldt/PxG519bBqo/hmqhugiErn+LQl56oyjka7+3qnIqYluQnIUuUOqfn2AIP+Hnh4BfbclftfHzG51/bRmo/hiqheoiELr+LQp56Y2ikBexDQv5lL0JfQGFrvjUv5SC93Y14Sf8/BDwqy35qzZ+fqPzrx36/uo/QrUgBNIjELr+TT8yv5rSG374ZV27qnKqiG3WkpKwvdAFSv1LOJF1HhN+ws8PAb/akr9q4+c3Ov/aMlD9MVQL1UUgdP1bFPLSG0UhX/u9VZVTEduC5Cx0gVL//ARD+Ak/PwT8akv+qo2f3+j8a8tA9cdQLVQXgdD1b1HIS28UhbyIbVjIp+zNmG9cad7//venrN242ra9NjNHHbCbV9uhKz71z2t6jfATfn4I+NWW/FUbP7/R+deWgeqPoVqoLgKh69+ikJfeKAp5EdtMkX/jjTfMyy+/bDbbbLO67T7//PPmPe95zzp/f+utt8yrr75qunXrts7vr7zyiunSpYtZb731GvbzwNOuznQc0cZ23nZzc97RA73aD13xqX9e0yti6wef8BN+ngj4VQ9d/7nRFbW/YqD+X6ed/EB+u/blpx6QSTtqRAiEgkDo+qNIvTFx4sRQpqnD9yN0OU07QbmmIk+ePNlceumlZsCAAeall14ybIZ9+/Zd29dbb73VfOUrXzG77767gbB+6UtfMgcddJC54oorzNSpU83WW29tWICzZs0ynTp1MqNHjzYbbLCBefLJJ82ECRPMkUceWXfcp59zsTn00EPT4lKz3mPPrDAzb7jXiNhmCmuqxkJfkOpfqmldW0n4CT8/BPxqhy5/jK7I/ZW9fMGK3n4gG2M6dTJm7rkjvdtRA0IgJARC1h9F6w0R23AkNWQ59UEpN2L7+uuvmw033NBGa4m6nn322ebZZ58106ZNW9vffffd15xxxhlm0KBB5ve//7056qijzF//+lfTuXNns2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xtkuGvXrjXHn0fKwwOPLTenX3abiK2PxGVUN/QFqf75TbTwE35+CPjVDl3+QthfRWz9ZEy1q4tAqPojBL0hYhuO3Icqp74I5UZs6dgLL7xgevToYVatWmX2228/c+KJJ5pRo0at7TNEFWK6/vrrm69+9as29fjUU0+1RPfRRx+1z0GE77vvPkts+Z36a9assanIPNOnTx8RW18pqFE/dIFX//wmXfgJPz8E/GpL/vzwC2F/FbH1n0O1UE0EQtZvVbPLqylB7RlVyHLqg0CuxJaO3XPPPWbs2LFm5513NpdffrnZaKON1ukvUdzjjjvOPPLII2bu3LnmxRdfNMOHDzcPP/ywfe6qq64y8+fPt6nMI0aMMMOGDbO/9+zZ0yxatMj07t3bLFiwwNx+++3vwIF2sixLnllppt3wkNm+1ybmhAN2zLJptSUEhIAQEAIBIVDPaRpQFwvdXzMhtsaYqUf1DwlS9UUIZIJAyPqjSnZ5JpPVgRsJWU7TTkuuxPaWW26x38VecsklZuTId35H89RTTxnSkT//+c8b0hMgvURtieJyeBRR2ilTptixEd3ddNNNzfjx482bb75pI8GkK9c7REqpyGlF4t/1QvfkqH+aXz8E/GpL/oSfHwL+tYveXzMhtvrG1l8Q1EJwCIS8PxStN5SKHI64hiynPijlRmxJF+Yb2Ztvvtnsueeea/vIN7cPPvig6d+/vz3ciX+Thhwtu+yyi5kxY4bp16+fGTx4sJk0aZJZvXq1mT59urnpppvMnDlz7MEZCxcurDt2EVsfsRCx9UNP+Ak/XwT86oe+Yal/fvMbwv4qYus3h6pdXQRC1W8h6A0R23DkPlQ59UUoN2K7ZMkSs8MOO6zTvyOOOMIcfz/2/AcAACAASURBVPzxZuDAgTa1mHTi5cuXr31miy22sAdMkZI8ZswY+/vQoUPN7NmzLbEdMmSIWbx4sY3qzps3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fObNh3nuN7W04/jpalS5eaLbfc0p6c3KiI2PqJRugCr/5pfv0Q8Kst+RN+fgjkU7ud+6uIbT5zqFbLj0Do+0Mc4XbqDRHbcOS7bHKaFLm2E1uu6oGwRu+zTdrZVp4TsW0FrXc+G7rAq3+aXz8E/GpL/oSfHwL51G7n/ipim88cqtXyIxD6/hBHuJ16Q8Q2HPkum5wmRa7txDZpx3yfE7H1QzB0gVf/NL9+CPjVlvwJPz8Eyl2b/VXEttxzqN7nh0Do+0N+I2/cch52eVFjqcJ7qyqnIrYtSOcDjy03p192m9l5283NeUcPbKGmIqJeYNWoHPqCVP/8Zlz4CT8/BPxqhy5/fqPzry1i64+hWqguAtIftedWxDYsma+qnIrYtiBnIrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpzmTmzfeOMN8/LLL5vNNtus7jyvXLnSbLLJJuv8/a233jKvvvqq6dat2zq/v/LKK6ZLly5mvfXWayg3bLwTJ07MVLZEbDOF06ux0Bek+uc1vUb4CT8/BPxqhy5/bnRF7q8LVvT2A9kY06mTMXPPHendjhoQAiEhELr+KFJvZG2XhzTvZetL6HKaFs9cie3kyZPNpZdeagYMGGBeeuklA9ns27fv2r7efffd5gtf+IL5wAc+YJ588klz+eWXmz322MNcccUVZurUqWbrrbc2LMBZs2aZTp06mdGjR5sNNtjAPjthwgRz5JFH1h23iG1akfh3vdAFXv3T/Poh4Fdb8if8/BDwr130/ipi6z+HaqGaCIS8PxStN0Rsw5H5kOXUB6XciO3rr79uNtxwQxutJep69tlnm2effdZMmzZtbX8//elPm1NOOcXw72uvvdaS4F//+temc+fOZsWKFaZ79+5m3LhxplevXpbYEtk955xzzLJly+xvRG+7du1ac/witj5iIWLrh57wE36+CPjVD33DUv/85jeE/VXE1m8OVbu6CISq30LQGyK24ch9qHLqi1BuxJaOvfDCC6ZHjx5m1apVZr/99jMnnniiGTVq1No+b7PNNuaOO+4w/Pvee+81n/nMZ8wf//hHM2jQIPPoo4/a5yDC9913nyW2/E79NWvW2FRknunTp4+Ira8U1KgfusCrf36TLvyEnx8CfrUlf374hbC/itj6z6FaqCYCIeu3qtnl1ZSg9owqZDn1QSBXYkvH7rnnHjN27Fiz884721TjjTbaaG1/N910U/Pwww/b6CsA77PPPuZXv/qVGT58uP2dctVVV5n58+fbVOYRI0aYYcOG2d979uxpFi1aZHr37m0WLFhgbr/99nfgQDtZliXPrDTTbnjIbN9rE3PCATtm2bTaEgJCQAgIgYAQqOc0DaiLhe6vmRBbY8zUo/qHBKn6IgQyQSBk/VEluzyTyerAjYQsp2mnJVdie8stt9jvYi+55BIzcuQ7D4jYe++9zZQpU8yHP/xhc9ddd5kzzzzTXH311Ta9mMOjiNLydwppyBDh8ePHmzfffNNGgklXrneIlFKR04rEv+uF7slR/zS/fgj41Zb8CT8/BPxrF72/ZkJsdXiUvyCoheAQCHl/KFpvKBU5HHENWU59UMqN2JIuzDeyN998s9lzzz3X9pFvbh988EHTv39/c/LJJ5v3vve95tRTT7Xf2m688cbmrLPOMrvssouZMWOG6devnxk8eLCZNGmSWb16tZk+fbq56aabzJw5cwwfwC9cuLDu2EVsfcRCxNYPPeEn/HwR8Ksf+oal/vnNbwj7q4it3xyqdnURCFW/haA3RGzDkftQ5dQXodyI7ZIlS8wOO+ywTv+OOOIIc/zxx5uBAwfa1GK+kd1rr73sM1wHBFF997vfbebOnWvGjBljfx86dKiZPXu2JbZDhgwxixcvttcAzZs3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fOtI9wnc/f//53e4AUqceu8NyLL75ov7+NlqVLl5ott9zSnpzcqIjY+olG6AKv/ml+/RDwqy35E35+CORTu537q4htPnOoVsuPQOj7QxzhduoNEdtw5LtscpoUubYTW67qgbBG77NN2tlWnhOxbQWtdz4busCrf5pfPwT8akv+hJ8fAvnUbuf+KmKbzxyq1fIjEPr+EEe4nXpDxDYc+S6bnCZFru3ENmnHfJ8TsfVDMHSBV/80v34I+NWW/Ak/PwTKXZv9VcS23HOo3ueHQOj7Q34jb9xyHnZ5UWOpwnurKqciti1I5wOPLTenX3ab2Xnbzc15Rw9soaYiol5g1agc+oJU//xmXPgJPz8E/GqHLn9+o/OvLWLrj6FaqC4C0h+151bENiyZr6qciti2IGciti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnLaF2L788sumW7duplOnTjXn+sUXXzTdu3df529vvfWWefXVV229aHnllVdMly5dzHrrrddQbth4J06cmKlsidhmCqdXY6EvSPXPa3qN8BN+fgj41Q5d/qKjK2p/XbCitx/IxhhMgrnnjvRuRw0IgZAQKIP+KEpvZG2XhzTvZetLGeQ0Daa5Etvly5eb+++/3xxyyCFmyZIlZosttlinj3/605/MueeeazbbbDPDs5MmTTL9+/c3V1xxhZk6darZeuutzRtvvGFmzZplSfHo0aPNBhtsYJ588kkzYcIEc+SRR9Yds4htGnH4T53QBV790/z6IeBXW/In/PwQ8K9d9P4qYus/h2qhmgiEvD8UrTdEbMOR+ZDl1AelXInttddea26//XYzZcoU8+yzz76D2I4dO9bsueee5itf+YqBiP7tb3+zz3bu3NmsWLHCRnHHjRtnevXqZYntypUrzTnnnGOWLVtmfyN627Vr15rjF7H1EQujiJkffMJP+Hki4Fc99A1L/fObX2oXvb+K2PrPoVqoJgIh67ei9YaIbTgyH7Kc+qCUK7F1HYOU1iK2t956qzn44IPNZz/7WXPdddeZm266yfTs2dMMGjTIPProo7b6tGnTzH333WeJLb+PGjXKrFmzxqYi80yfPn1EbH0koE7d0AVe/fObdOEn/PwQ8Kst+fPDL1q7qP1VxDa7OVRL1UIgdP0G2kXpDRHbcGS9DHKaBq1Cie23v/1tM2fOHDNy5Eibbnz00UebT33qU2b48OHm4YcftuO56qqrzPz5881LL71kRowYYYYNG2Z/hwAvWrTI9O7d2yxYsMBGhuOFdrIsS55Zaabd8JDZvtcm5oQDdsyyabUlBISAEBACASFQz2kaUBdtV+oZqHnvr5kQW2PM1KP6hwap+iMEvBEIXX8UpTeytsu9J6qDNxC6nKaZnkKJLeT0F7/4hdlrr70M0dsTTjjB3HXXXTa9mMOjWHikJlNIQ950003N+PHjzZtvvml69Ohh05XrHSKlVOQ04vCfOqF7ctQ/za8fAn61JX/Czw+B7GrXM1Dz3l8zIbY6PCo7QVBLwSAQ+v7QyCGWt95QxDYYMQ3+k7m0SLWd2HIS24MPPmgPiRoyZIj5/Oc/b9OLidiSjnzNNdeYXXbZxcyYMcP069fPDB482B4qtXr1ajN9+nSbrkyUd/LkyWbhwoV1xy1im1Yk/l0vdMWs/ml+/RDwqy35E35+CGRXO0ps27m/ithmN4dqqVoIhL4/xIltO/WGiG04sl4GOU2DVtuILSexbb755jYiO3DgQJta/Lvf/c4cfvjhNkLLaceXXXaZjd7OnTvXjBkzxo5n6NChZvbs2ZbYQoQXL15srwGaN2+eGTBggIhtmllPUCd0gVf/Ekxig0eEn/DzQ8CvtuTPD79obYhtEfuriG12c6iWqoVA6PrNEdsi9IaIbTiyXgY5TYNWW4httGOrVq2yJx3PnDnT/sxBUJyGvM0226zTf57jfltOP46WpUuXmi233NKenNyoKGKbRhz+Uyd0gVf/NL9+CPjVlvwJPz8E8qndzv1VxDafOVSr5Ucg9P0hjnA79YaIbTjyXTY5TYpc24ktV/VAWPv27Zu0j6mey5PYpupQjUrdNups+mzVw7u5/Xbvbfb78Lbe7UQbCF3g1T+/6RZ+ws8PAb/akj8//OrVbuf+miWxXbPGmH+seCUTULbo0S2TdtSIEEiLQOj6LT6uduoNEdu0UpV9vbLJaVIE2k5sk3bM97kyEFvfMbr6h+63kxk9aOesmrPthC7w6p/fdAs/4eeHgF9tyZ8ffkXXZn/NmtgedPrV3sPq9PZhVBDlL114g3d7NHD5qQdk0o4a6TgIhK7fipqJPOzyosZShfdWVU5FbAuQzldW/8vcfvfid6RZt9qVW+5+3NxyzxNGxLZV5PJ/PnSFof75yYDwE35+CJS7dhmIbZZEudyzpd63G4HQ94d24+HeJ2JbFPK131tVORWxLUjOshCo2Tf/xfzklr+K2BY0h41em8X85jks9c8PXeEn/PwQKHdtEdtyz596ny8Coe8P+Y6+fusitkUhL2IbFvIpexP6AspC8YnY9kkpHflXy2J+8+yl+ueHrvATfn4IlLu2iG2550+9zxeB0PeHfEcvYlsUvq2+t6pyqohtq5KQ0fNZCJSIrYhtWnHMQv7SvjtJPfUvCUr1nxF+1cbPb3T+tUVs/TFUC9VFIHT9WxTyoQecisKlqPdWVU5FbAuSqCwESsRWxDat+GYhf2nfnaSe+pcEJRFbP5TKi19e407arohtUqT0XEdEIPT9q6g5EbEtCvna762qnIrYFiRnWQiUiK2IbVrxzUL+0r47ST31LwlK5SVmml+/+S26toht0TOg94eMQOj6rSjsRGyLQl7ENizkU/Ym9AWUheITsRWxTbk8dJ1TWuDerpfF+vXsQsPq6p8fuqHj5zc6/9oitv4YqoXqIiD9UXtuQ7fLqyuRIraVmNvQF1AWik/EVsQ27WLNQv7SvjtJPfUvCUqK2PqhVF788hp30nZFbJMipec6IgKh719FzUnodnlRuBT13qrKqVKRC5KoLARKxFbENq34ZiF/ad+dpJ76lwSl8hIzza/f/BZdW8S26BnQ+0NGIHT9VhR2IrZFIa+IbVjIp+xN6AsoC8UnYitim3J5KBU5LXBv18ti/Xp2oWF19c8P3dDx8xudf20RW38M1UJ1EZD+qD23odvl1ZVIEdtKzG3oCygLxSdiK2KbdrFmIX9p352knvqXBCVFbP1QKi9+eY07absitkmR0nMdEYHQ96+i5iR0u7woXIp6b1XlVKnIBUlUFgIlYitim1Z8s5C/tO9OUk/9S4JSeYmZ5tdvfouuLWJb9Azo/SEjELp+Kwo7EduikFfENizkU/Ym9AWUheITsRWxTbk8lIqcFri362Wxfj270LC6+ueHbuj4+Y3Ov7aIrT+GaqG6CEh/1J7b0O3y6kqkiG0l5jb0BZSF4hOxFbFNu1izkL+0705ST/1LgpIitn4olRe/vMadtF0R26RI6bmOiEDo+1dRcxK6XV4ULkW9t6py2pZU5Jdfftl069bNdOrUqeb8Pf/882bTTTc1nTt3Xvv3t956y7z66qu2XrS88sorpkuXLma99dZrKAuhL6AsBErEVsQ2rULMQv7SvjtJPfUvCUrlJWaaX7/5jdYuan9dsKK39yAwCeaeO9KsWWPMQadfHWx73h1TAx0KgdD1G5NRlN6YOHFih5KFkAdbBjlNg1+uxHb58uXm/vvvN4cccohZsmSJ2WKLLdbp45NPPmkOO+wws8022xiePeGEE8zBBx9srrjiCjN16lSz9dZbmzfeeMPMmjXLkuLRo0ebDTbYwFBvwoQJ5sgjj6w75o5EbNNMfLzO9eeNXOen0AVe/fObdeEn/PwQ8Kst+fPDj9pF768itv5zqBaqiUDI+q1ovSFiG47MhyynPijlSmyvvfZac/vtt5spU6aYZ5999h3EFmK6//77m5EjRxqitpDgT3ziEzZyu2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xvR265du9Ycv4hta2IhYtsaXs2eDl1hqH/NZrDx34Wf8PNDwL920ftrRyO2B57mH1Fm1uN7rb8kqIXQEAh5fyhab4jYhiOtIcupD0q5ElvXMUhpLWL70Y9+1EZrf/Ob35hPfvKT5oILLjAbbrihGTRokHn00Udt9WnTppn77rvPElt+HzVqlFmzZo1NReaZPn1qp6N2BGLrM/Gurtus+/VZN5pOGjgp30kL9eNtJK3Lc1036mz69NoscZXQF6T6l3gqaz4o/ISfHwJ+tUOXv+joitpfRWzTyZiIbTrcylSrDPqjKL0hYhuOJJdBTtOgVSix7dmzp9lnn33MhRdeaAksUVoitMOHDzcPP/ywHc9VV11l5s+fb1566SUzYsQIM2zYMPs7dRctWmR69+5tFixYYCPD8UI7Ko0ROPGyO4OAaPtem5gTDtgxiL6oE0JACAiBek7T0JCpZ6Dmvb9mQmyNMVOP6m/WGGPGZ7AXcYpHHu0x51ntlRe/Pd4zf3p/JqL0rVH/ZfF79JmVmbTHXqzij0Do+qMovSG73F+2smwhdDlNM9ZCie1OO+1kLrroIpuOTPR1r732Mk888YRNL+bwKBYeacwU0pA5YGr8+PHmzTffND169LBEuN4hUorYJhOHBx5bXvPBZ555xqZ7NyvUr9dGs7r8/ZXV/zKPP7PC7Lzt5ua8owcmqWKfCd3TpP4lnsqaDwo/4eeHgF/t0OUvOrp6Bmre+2smxLZEh0dlmYqsw7L81mfotcugP4rSG4rYhiO9ZZDTNGi1ndhyEtuDDz5o+vfvb774xS/ayOu5555rfvzjH5vf/va3NkK7yy67mBkzZph+/fqZwYMHm0mTJpnVq1eb6dOnm5tuusnMmTPHTJ482SxcuLDumEVs04jDf+q0S+AhxadfdpuIrd90tVy7XfPbcsferqD+pUXu3/WEX7Xxq0ds27m/itimkzFSkUVs02FXllqh619wjBLbduoNEdtwpLgMcpoGrbYRW05i23zzzc1dd91lBg4caFOLAfXYY481f/3rX8373vc+S2Z32203M3fuXDNmzBg7nqFDh5rZs2dbYjtkyBCzePFiew3QvHnzzIABA0Rs08x6gjrtEngR2wSTkcMj7ZrftF1X/9IiJ2Lrh1w58IsT2yL2VxHbdJImYpsOtzLVCn3/csS2CL0hYhuOJJdBTtOg1RZiG+3YqlWr7He0M2fOXPvzc889Z9773veu03+ee/HFF9+RDrt06VKz5ZZbrnPnba2BK2KbRhz+U6ddAi9i6zdPaWu3a37Vv7QI+NXT/FYbv3qja+f+KmKbTsZEbNPhVqZaoevfOJbt1BsituFIctnkNClybSe2XNUDYe3bt2/SPqZ6TsQ2FWxrK7VL4EVs/eYpbe12za/6lxYBv3qa32rjV2907dxfRWzTyZiIbTrcylQrdP0bx7KdekPENhxJLpucJkWu7cQ2acd8nxOx9UOwXQIvYus3T2lrt2t+1b+0CPjV0/xWGz+/0fnXZn8VsU2Ho4htOtzKVCt0/VsUlqHb5UXhUtR7qyqnIrYFSVToAtWu/onYFiOA7ZrftKNT/9Ii9+96wq/a+PmNzr+2iG16DEVs02NXlpqh69+icBSxLQr52u+tqpyK2BYkZ6ELVLv6J2JbjAC2a37Tjk79S4uciK0fcuXAL4sx+rQhYpsePRHb9NiVpWbo+1dROIrYFoW8iG1d5G+77Taz77772it3HnnkEXPYYYeZzTbbLKyZers3oS+g0BVfu/onYlvM8mnX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pymjhie+qpp5oLL7zQLFq0aO01O7vvvru5++67i5qThu8NfQGFLlDt6p+IbTHLp13zm3Z06l9a5ERs/ZArB35ZjNGnDRHb9OiJ2KbHriw1Q9+/isIxdLu8KFyKem9V5TQRsV2zZo29YmfEiBH2DtnLL7/c3i07evRo88wzz9i/hVZCX0ChC1S7+idiW8zKadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi+9tprZqONNjI///nPzTHHHGN22GEHM2PGDLPLLruYhx56KPere9JMeugLKHSBalf/RGzTSLd/nXbNb9qeqn9pkROx9UOuHPhlMUafNkRs06MnYpseu7LUDH3/KgrH0O3yonAp6r1VldNExBbQR44caa655hqL/2WXXWbOO+888/rrr5ulS5cWNScN3xv6AgpdoNrVPxHbYpZPu+Y37ejUv7TIlYOYaX795rfo2iK26WdAxDY9dmWpGbp+KwrH0O3yonAp6r1VldPExHb58uXme9/7nunUqZM55ZRTzNixY81xxx1n9t5776LmRMQ2R+TbJfAitjlOYoOm2zW/aUen/qVFTsTWD7ly4JfFGH3aELFNj56IbXrsylIz9P2rKBxFbItCvvZ7qyqniYktsDzxxBNm4cKFpk+fPuY973mP2X777cOapUhvQl9AoQtUu/onYlvMEmrX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pympjYXn/99eaggw6y+J922mlmwYIFZrfddjMXX3xxUXPS8L2hL6DQBapd/ROxLWb5tGt+045O/UuLnIitH3LlwC+LMfq0IWKbHj0R2/TYlaVm6PtXUTiGbpcXhUtR762qnCYmtttss43ZYost7L21AwYMMBtssIE566yzzNNPP2222mqroual7ntDX0ChC1S7+idiW8zSadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi6U5G/+93vmieffNKsv/76Zvjw4YZ7bP/yl7+YnXbaqah5EbHNCfl2CbyIbU4T2KTZds1v2tGpf2mRE7H1Q64c+GUxRp82RGzToydimx67stQMff8qCkcR26KQr/3eqsppImILJJDX5557zt5ZS7SWw6S6du1qHn744bBm6u3ehL6AQheodvVPIg7ufgAAIABJREFUxLaY5dOu+U07OvUvLXLlIGaa33Xn98477zS9e/c2m2++uf3D6tWrzZ/+9CebHbXhhhv6CUMOtUVs04MqYpseu7LUbJd+K6PemDhxYlmmsfL9bJecthvIxMT23nvvNd/61rcM39q6ct1116397rbdHW/2PhHbZgg1/nu7BF7E1m+e0tZu1/yqf2kR8Kun+S0HfkuWLLHO4S984Qv2n49//OO244888og56aST7IGNH/jAB/wGk0NtEdv0oIrYpseuLDXz1r9l1hsituFIcd5yWtRIExNb18EXXnjB/O1vfzPbbbedjdgmKS+//LLp1q2bvSqoXvn73/++zre6b731lnn11VdtvWh55ZVXTJcuXcx6663X8NUitklmpv4z7RJ4EVu/eUpbu13zq/6lRcCvnua3HPhdcMEFpp6ht8kmmxj2Wz79aVSK2l8XrOjtB7IxBpNg7rkjzZo1xhx0+tXBtkfHDjzNv3+0I2LrPc3BN5C3/i2z3hCxDUd885bTokaamNjut99+NhU5Xu644453kE/3DOnK999/vznkkEMMHiYOn6pVbrjhBnPggQcayCzk94orrjBTp041W2+9tXnjjTfMrFmz7O+jR4+2adB85zthwgRz5JFH1sVNxNZPpNol8CK2fvOUtna75lf9S4uAXz3Nbznwqxd5ofd8/kN6cr1S9P4qYptOxkRs0+FWplp5698y6w0R23AkOW85LWqkiYntvvvua7+rpbz00ks2agtRffzxx+tGbq+99lpz++23mylTpphnn322JrEl1eqMM84ws2fPtsT2zTffNJ07dzYrVqww3bt3N+PGjTO9evWyxHblypXmnHPOMcuWLbO/Eb2tFzUWsfUTqXYJvIit3zylrd2u+VX/0iLgV0/zWy78yFgiE4kIbbRAbOtlJxW9v4rYppMxEdt0uJWpVrv0bxn1hohtOJLcLjlt94gTE9t4x84880zjTkneaKONGvYbUlqL2HLa8pAhQ8yVV15puE4IYgvRHTRokHn00Udtm9OmTTP33XefJbb8PmrUKLNmzRq72fNMnz59ar5bxNZPlNol8CK2fvOUtna75lf9S4uAXz3Nb7nw+973vmdTknHeRsuLL75oNt100yD3VxHbdDImYpsOtzLVapf+LaPeELENR5LbJaftHnFiYkuUFOJJIar6/e9/35x77rn2kIvtt98+1cZ74oknml133dWMHTvWElfaf+CBB+xVQu605auuusrMnz/fRolHjBhhhg0bZt/Vs2dPs2jRIpuqtWDBAhsZjhfaUQkbgSXPrDTTbnjIbN9rE3PCATuG3Vn1TggIgQ6DQD2nadYA4KjltgEKe+G73vWuta8gm6nZqcj1HMd576+ZEFtjzNSj+ps1xpjxl93pDS2neOTRHh07MYP+0c7FJRmv92R08Aby1h9l1Ruyy8NaGHnLaRGjTUxsIZIuFdl1lMMtnn/+eZs63KjU2nhJI954441N//79bVWOLee/582bZzbbbLO139uSxkzBk43nevz48ZZY9+jRw6Yr10vTUsTWT5za5clRxNZvntLWbtf8qn9pEfCrp/ktD37OQD3++OPNN77xjZY7XtT+mgmx1eFRLc93tEJeh295dUqVTTv0b1n1hiK24SyQdshpEaNNTGxJPeb0RQpk8v3vf7/Zf//9zbbbbtu039GNlzYefPBBs8cee9gDpVz54Ac/aB566CHDv4nizpgxw/Tr188MHjzYTJo0yd7rN336dHPTTTeZOXPmmMmTJ5uFCxfWfbeIbdNpafhAuwRexNZvntLWbtf8qn9pEfCrp/ktF36HHXaYvUqPfQunrStkKHFgYqNS1P4qYptOxpSKnA63MtVql/4to94QsQ1Hktslp+0ecVNiy8DxDNUrENtmV++w8RLt5fL5u+66ywwcONCmFq/refx3KjLPzp0714wZM8b+eejQofZgKYgt3+MuXrzYXgNEZJfL6+sVEVs/UWqXwDti26fXZuaoA3dP3Gl3PdQWm3U1W/RY90qoxI3k+GC78Es7BPUvLXL/rif8hJ8fAuvWrpURxRNJv7EtYn8VsU0nASK26XArU6127Q9l1BsituFIcrvktN0jbkpsG909m3TjjQ5q1apV9qTjmTNnNhwrz7Gpc/pxtCxdutR+j9Qs/VnE1k+U2iXwjtim7e2h++1kRg/aOW313Oq1C7+0A1D/0iInYuuHnPCrhd8f//hHw2GK8fKxj32sacS2qP1VxDbdSigDsSWW8ZfH/30Lhm/p16f2NY++7YZcv137axn1hohtOJLbLjlt94ibEtuLLrrIftNar5x00knrHHbRbAAcQgVh7du3b7NHvf4uYusFX9siUo89s8Jcdv09LXf27/940fzz5deNiG3L0NkKoSs09S/dvLpawq9c+PGJTS1iy+c+zVKRoyNt5/4qYptOxspCbA86/ep0A4zUct8AezdUsgbapX/LqDdEbMMR5nbJabtH3JTYRjvExgsppZCezDeye+65Z9PoabsHxftEbP1QD13gvzvnD+Y39/xdxDblNIc+v+pfyol9u5rwKxd+PimFfiNNV5v9VcQ2HXYitulwK1OtdunfMuoNEdtwJLldctruEScmtldffbVNIY6fjJzkG6B2D0rE1h/x0AVexNZvjkOfX/VP8+uHgF/tdsvfjTfeuDZiy40BF1xwgY3UcqVdKxFbv1Enry1imxyr+JMitumxK0vNdumPMuoNEdtwpLhdctruEScmttttt529hod7az/ykY/Yk4232GILQ45/s+9d2z0oEVt/xEMXeBFbvzkOfX7VP82vHwJ+tYuWPxzJo0aNMk8//bTZaqut/AaTQ20R2/Sgitimx+7/t/cl4FpV1fsLhBRQBmUUNLjmkIgmRpiaI4qCOMUkoqGJpSaShYQ2iAX6qwQM/lRiYREgkpmoaSAqCiGOpEJiIiAOiBpX8AIqcP/Pu/HAHb7hnLXPOd/6vvvu5+EB7t1rn7Xftfbw7rWHYpEsVP9RDP0Gia0dLy6UnyaNQChi+9lnn7lztH/5y1/kySeflJYtW8p3v/td9+TPhg0bHOG1lrgV2c8i1h2exLa07Wvd/6gf/c8PgerSo0aN2vVSAF4HwNk5+Nh7773nFpCtJRJbvUVIbPXYFYtkWuNDMfYbJLZ2vDgtP027xqGILZQ64IADHLm98sorBW/afvOb35S77rpLXnvtNTn44IPT1jvv90hs80KUM4N1hyexLW37Wvc/6kf/80OgunTNs3L77LOPXHXVVXLrrbfG+ZnYyiKx1UNJYqvHrlgk0xofirHfILG148Vp+WnaNQ5NbB977DHBDcjTpk1zb8u+9dZb0qdPH/fmrMVEYutnFesOHxDb047pJD2O6RSpso33aih4NzfJZB0/6udnfeJH/PwQqC5dXl6+6714PLFncRdUVY1JbPXWJ7HVY1cskmmND8XYb5DY2vHitPw07RqHJrZTpkyRnj17uu3H27Ztc5dIWTz7EwBIYuvnStYdPiC2mloe0amV3HLFqRrR0DLW8aN+oU2ZMSPxI35+CFSX3rRpk1s0njFjhuDfOF/7rW99y+wYS2Krt35dJLZ4F/exF1bpQasiicVs6ymt8aEY+w0SWzvem5afpl3j0MQ22PJw6qmnysUXXyznnXee6VVlEls/V7Lu8DMfeUZeevPjSJWs2PqZrHq3XEhs+Y5tJMfJkNl6+6B+fhZOGz+clcO2Y2xBbtasmdsRdfjhh8u///1v3oocwZTBu6kgUnG/w9pnlP+7rqhKXSW2cdsjgluknjWt/qMY+w0S29TdMesH0/LTtGscmtg+/vjj8tBDD8l9993nLrVAwqoyztnuueeeaeud93sktnkhypnBusNr9Hv5jfVyw5THSWyFxNavdRA/4ueLwG55PO+z9957y9ChQ+V3v/ud1K9fXyZMmOCO/uD1gcMOOyy+j8VUEiO2eiBJbPXYBQsX+hLSkdTMT6JqVqz9BoltVEsnlz8NP01O++wlhya2QRErVqyQSZMmuT9IfMdWZzbrDlWK+pHY7vbVUrSvriXqpIifDrdAivjtxm/z5s3SpEkTuemmm+RnP/uZ+8Xs2bOlf//+8txzz8kxxxzjB3YC0iS2elBJbPXYkdgWf79BYqv3/7glrY/D2vqGJrbY8oDnfrBFCqlr165y6aWXumd/rD4gb7kBWXeoUtSPxJbEVttR1pQrxfYRFzZhyiF+1VE64YQTZNGiRXLWWWdJ48aN5d5775Vu3brJkiVLBJdJWUsktnqLkNjqsSOxLf5+w/K8XO+ZxSlpfRzWohqa2OKMLZ77ufzyy91K8pe//GXtN1OR41ZkP5itO7xGPxJbElu/VkH8iF9cCFQvZ82aNTJ27FiZOXOmuzwKY+yNN94oRx55ZDIf9CyVxFYPIImtHjsS2+LvN0hs9f4ft6RmHh23DkmUF5rYvvjii3LUUUe58z/FkEhs/axk3eE1+pHYkpj5tQriR/ziQqB2OcuXL3dbknFnBZ7xsHi2NtCaxFbvByS2euxIbIu/3yCx1ft/3JKaeXTcOiRRXmhim8THkyyTxNYPXesOr9GPxJbEzK9VED/iFxcC1cvBnRXXXHONPPzww+5Jvc6dO8v1118vGMcsJhJbvVVIbPXYkdgWf79BYqv3/7glNfPouHVIojwS2yRQDVGmdYcqRf1IbEnMQjTNUFlKsX2EqnhMmYhfdSAPPfRQadWqlfz1r391Udurr77avWv79ttvm3zLlsRW3xBIbPXYkdgWf79BYqv3/7glrY/D2vrmJLbbt293T/zgEosXXnjBbUXu0KFD5G99/PHHbrDOdgnGhx9+KPvtt1+1cnfs2CFbtmxxclUTrjhv1KhR3i3RjNhGNlM1AesOr9GPxJbE1q9VED/iFxcCu8vZtm2bNGzY0F3E+Nvf/tb9Yvr06TJ48GBZvHixHHvssTk/WqjxdWF5R28wknp3lu/Y6kxTTPbQ1TAdKc38JKpmxdpvkNhGtXRy+dPw0+S0z15yTmL7ySefyF577SVXXHGF/P3vf3cDbc1B9vzzz896K/L69evlpZdekgsuuEBef/11ad26dTVNHnvsMbnyyivdDcsgrLiY6pxzzpGpU6e6d/zat28vaLwY5EGKBw0a5L6FizZGjBghQ4YMyVozEls/d7Lu8Br9SGxJzPxaBfEjfnEhUL2cE088UZ566ik599xzZZ999pH7779fmjVr5sbNbO/EF3p8JbHV+QIjtjrcIMWIbfH3GyS2ev+PW1Izj45bhyTKy7sVGW/oIVqbLeV6xxZPFuAJg/Hjx8t7771Xi9iecsop7ubHHj16yJNPPukeqF+2bJlbvcblGRjYhw0bJu3atXPEFrdFjhkzRtatW+d+BjKMpxEyJRJbP3ex7vAa/QJi26ZFEzntmE6RALrwtM6R8mv0i/QBz8zUzw9A4kf8/BCoLr1q1So3Ts6aNUtAWHv37u0Wb0866aSsnyn0+Epiq/MAElsdbiS2tXErxn6DxFbv/3FLWp/HaOubl9himxOIbb9+/dy5n2984xvVvoX/53vHFqQ0E7EFUQUx3WOPPeS6665zW49xYQaI7sqVK913Jk6cKEuXLnXEFj8fOHCgVFZWuq3IyFNWVkZiq7V+DjnrDq/RLyC2GrgwGYmSNPpFKd83L/XzQ5D4ET8/BDJLZzuCk+tbhRpfSWx1HkBiq8OtKrHFVvO7H1uWtyDMFfOlQT2OyJcl8u/THh+Kqd8gsY3sTokJpO2niVWkRsF5iW2Q/5133pG9995bnn32WRcpBcnMFi2tqXy2gRf5QHhBmP/73//KnDlzBBFgkOgVK1a4YnCBxoIFC2Tjxo3ubb++ffu6n+NdXTxe37FjR1m4cKGLDNdMKIeJCAQI/G/TJ7LktQ8iAfLIC++4/LcP7RZJjpmJABEobgSyLZpaq1WhxtdYiK2ITBjaTUA/hk951hvaegmVB8WujUG/YCyxXt+6pp+342UowHr/Uah+g/PyJLxNX6Z1P9XULDSxBbns06eP2w4cJJyDvfbaa/N+N1sDevPNNwXbkS+55BLBKg7O8yJqC8KMFSjIYXsWEr7btGlTGT58uOBSqxYtWrjtytne1eVW5LxmyZnB+kpOWvr1GTXL4cSIrZ8/RZVOy75R9QryUz8tcjvliJ8fflWlCzW+xkJs64nMGTtA4r7sKe7ygHcwFvhajhFbPYJJXW6l1yizpPX+DVoXqt9gxDZub9OXVwx+qqldKGILkombkXH258c//rEjntgijOjtBx98UOtG45qKVG1A2Nr8n//8x5V34YUXur+xDblqwu3LkydPli5dukjPnj1l9OjRsnXrVsFbf3PnzpXZs2fLuHHj3I2R2RKJrcYddstYd/i09COx9fMjrXRa9qV+WgT85Gjf2vhh2+TatWvdAu++++6b94hPUEKhxlcSW10bILHV4baTjCWzEKLXqPDEttj6DRLbuL1NX571cVhbs1DEFs/xtGzZUn7zm9+4R+SRHn30UTn99NPl6aeflu7du+f8PgZekGK80/fcc8/Jqaee6rYWYzsxfh4k3JqMrcnYkowbmJFwicaMGTMcse3Vq5csX77cRXXnzZuX87sktlqX2Cln3eHT0i8gtlHP4XTv1Cjr+W8/y8QjnRZ+Wm2pnxY5tl8/5AqDH47inHnmma7fHTVqlLzyyivuFQDcKZEvFWp8JbHNZ5nMvyex1eFGYlsbt2LsN0hs9f4ft6T1eZa2vqGILVaEcENx586d3dZgRGxxO/E999zjbigGQQ2bNm/e7G46vvPOO3OKIB/O2+L246oJK9pt27Z1NyfnSiS2YS2SOZ91h09LP+32M5zJtXx2IS38tF5I/bTIFYaYRdWW9q2OGF4fwCQVi78DBgyQt956y90vEbwOEBbfNMdXEtuwVqmej8RWh1uSxDbuy6jS6t+Ksd8gsdX7f9ySaflp3HrnKy8UsUUht99+uzvfWjVhW/LPf/7zfN+o9nsQYRDWQw89NJJc1MwktlERq57fusOnpd+MR1+JBOTM+TtvaiSxjQRbrcxp2VerJfXTIkfiXRO54L14HLXBvRN4JQAXrOB9d7xIcPTRR4cGO83xlcQ2tFmqZSSx1eGWNLE954ad92n4pGCrdBrjQ7H2GyS2Ph4Wr2wafhqvxuFKC01sURwG3fvuu89tI77gggtcBNdqIrH1s4x1h7eqnybCe0SnVnLLFaf6GSyitFX8gmpQv4gGrZGd+BUXfrgY8cgjj5TmzZvLF77wBXcpIu6TwDGgfLuT/Gqqk8b4SmKrw47EVocbiW1t3Iqx3yCx1ft/3JLW5wna+kYittqPFEKOxNYPdesOb1U/Els/vyOxJX7xIOBXStr9y8yZM+U73/lOtVcHsBsKu6IsJhJbvVVIbPXYJXV5VNy3aKfVfxRjv0Fiq/f/uCXT8tO49c5XHoltPoQS+r11h6J+foYPg9/Lb6yXG6Y8LozY1sY6DH5+FvKTpn7Ezw+B2tLYWvj444/LqlWrBC8DHHfccXF/IrbySGz1UJLY6rEjsS3+foPEVu//cUtan8do60tiq0XOU866Q1E/PwOHwY/ENjvGYfDzs5CfNPUjfn4IVJe++eab3RGfmukXv/iFe/7HWiKx1VuExFaPHYlt8fcbJLZ6/49b0vo8Rlvf0MT2kksukcsvv1xOPPFE9y3c2njxxRfL3XffHelWZK2iUeW4FTkqYtXzW3f4UtCPxJbE1q+VEr9Swa/m03dBvXDRIs7RWUsktnqLkNjqsSOxrY5dMfYbJLZ6/49b0vo8WlvfvMT2rrvukokTJ7rbGTt06CB4axYJ78+C3OJyCzwmby2R2PpZxLrDl4J+JLYkZn6tlPiVCn4YR3fs2OGqgyd7RowYIatXr5bFixe7W5KtJRJbvUVIbPXYkdhWx64Y+w0SW73/xy1pfR6trW9eYvvnP//ZPfVTk9jigz169BAMcBYTia2fVaw7fCnoR2JLYubXSolfqeKHN2yxS+r111+Xgw46KKlqqsslsVVDJyS2euxIbHNjVwz9Bomt3v/jlrQ+j9bWNy+xDQr+6U9/Kueee67gQehiSCS2flay7vCloB+JLYmZXyslfqWC3wknnCDvvvvuruqgf0PatGmT7L333klVU10uia0aOhJbPXRCYlsdvGLsN0hsPRpAzKLW59Ha6oYmtk899ZTcdtttbmtU1bRy5UqzA6/lBmTdoaiftkntlAuDH4ktiZmflxG/UsHvjDPOkPfee89Vp0GDBi5Ki4jt2WefnVQVvcolsdXDx4itHjsS2+rYFWO/YXlervfM4pQMM08txpqFJradO3eW5cuXS9euXd0D8kGaP3++NG7c2FzdGbH1M4l1hy8F/UhsScz8Winxq6v4JVXvsOWS2IZFqnY+Els9diS2euwsSFqfl1vAKE0drM+jtViEIrbbt293q8g/+9nP5KabbtJ+K1U56w3IukNRPz93DYNfQGzL2jWXoX26hvpg6+aNpXWLJqHy5soURj/vj3gUQP08wAu5Y8DvC37StO9O/A444AD59NNPs4JpeUfUwvKOfk4gUjRbS1HRPqNmedcXBZDY6mEksS3+foMRW73/xy1pfRzW1jcUsUXhl156qTzzzDPueZ8WLVrs+l779u2lHnobY4nE1s8g1h2+FPQLiG0US114WmcZ1OOIKCIZ85YCft4geBRA/DzAI/HeBR62Gm/bti0rmH/729/M7ogisdW1ARJbHW6QIrHdiV0x9xsktnr/j1vS+jxGW9/QxJbvZWkhzixn3aGon5+9w+D3xrvlMuWBF0J9aP2GzbK+vEJIbEPBlXimMPZNXIkcH6B+fuhbwG/jxo3u/or69ev7VSYBaW5F1oNKYqvHjsQ2P3bW+w0S2/w2TCuHhXEuibqGJrYTJkxwNzTWTNdff73sueeeSejmVSYjtl7whbr8yO8LftLWG2Tc+s149BWZOX8Zia2f28QmHbd9Y1Ps84Konx+iaeO3bNkyGT16tOBvJERxcUsy3opv2rSpX2USkCax1YNKYqvHjsS2OnbF2G+Q2Or9P27JtMe5uPXPVl5oYrthwwaprKysVc6+++6blq6RvkNiGwmuWpmtO3xd04/E1s+f45aua/5H/OJGoHp5X/va1+TZZ591P2zdurWsX79eysrK5JVXXpFGjRol+3FF6SS2CtA+FyGx1WNHYlv8/QaJrd7/45a0Po/R1jc0sfXZivzxxx9LkyZNsp7FRSR4n332qVaHHTt2yJYtW5xc1VRRUeEG+nzbs0hstS6xU866w9c1/QJie9oxnaTHMZ1CGfeITq2y5qtr+IUCLEIm4hcBrAxZid9uUD777DP30sDMmTPlvvvuk69+9aty3HHHyVlnnSUffPBBtVcIMqFeqPGVZ2x1bYDEVocbpEhsi7/fILHV+3/cktbHYW19QxNb3IgcbEXGQIpLpHCj4wsvvJB1KzJWnV966SW54IIL5PXXX3cr0VXT888/L5dddpl88YtflDVr1sgf/vAHN6hPnTpVsPUZF1NhS9b06dMdKR40aJC7nRl5R4wYIUOGDMlabxJbrUuQ2Pohlwx+AbGNohsmUNmS9Q6N+kWxdO28xK+48MN2Y5BZ/Jk1a5b88Ic/dGMjIrZ4ai9TKvT4SmKr8zESWx1uJLa1cSvGfoPEVu//cUtanydo6xua2Nb8AMgnBt7//e9/1W5Jrprv3nvvlUWLFsn48ePd4/M1iS0el8YAjr+R9/e//7384x//kIYNG0p5ebk0a9ZMhg0bJu3atXPEFsR6zJgxsm7dOvczRG+zvaFLYqt1iWSImZ82nLjPf36VPPr8qlAwvrLqfZePxDYUXKpM1gcE6qcy6y6htPDDU3p77LGHGyOvu+46eeyxx+TUU091emC8fPvtt91ibqZU6PGVxFbnYyS2OtxIbHfjVsz9Bomt3v/jlkxrnItb73zlhSa2DzzwgGzdutWVh0b1l7/8RR566CFZtWqVdOyY+z07kNJMxBYR33/9618u8vviiy/KmWeeKU8//bT06NFD8H4f0sSJE2Xp0qWO2OLnAwcOdGd9sRUZeXAOKVMisc1n+ty/t+7w1C+7/YL3Fkls/dpALmn6nx+2xG8nfjjiM2DAAOnXr58cfPDB0rJlS3nttdfcJVJY8MXibr5UqPGVxDafZTL/nsRWhxuJ7W7cirnfILHV+3/cktbHYW19QxPbTGdsjz/+eHnqqafyvmObbeDFNooVK1a46CsAPumkkxxZxiCPnyNNmzZNFixYILjCvH///tK3b99dE4IlS5Y4Ur1w4UIXGa6ZUA4TEahrCFw7ZeclNLcP7VbXqs76EoHYEMi2aBrbB0Tcoi5uPkZChPbiiy92Yxwuk8p3j0SgR6HG11iIrYhMGNpNcC3l8M/7LR986yVUHnQK+lUf/YJ+2Xp9qZ/OyoH/QTrJ/qOY+w3Oy3W+lZRUkn6alM75yg1NbB999NFdEVsMpGhYhx12WN6LLaBAtoH3xBNPdFuwjjnmGHnuuefk5ptvdueLsL0Yl0dBDr9HwjZkEOHhw4e7iHGLFi3cduVsgz8jtvlMn/v31ldyqF92+zFi6+f7YaTpf2FQyp6H+O3EBruPXn75ZfnnP/8p2BWFhWKkDh06OJKLJ4BwNCdXKtT4GguxrScyZ+wAwYML59wwy8+pErxcCIoF/aqvkozY6hHk5VHF328wYqv3/7glrY/D2vqGJrb4AC6C+tvf/uaip9/85jfl2GOPdeeD8qWqAy8unvrPf/4j3bp1kx/84Adu6xXewsVZWzxG//Of/1yOOuoomTx5snTp0kV69uzpBndsg540aZLMnTtXZs+eLePGjZPFixdn/TSJbT6rkNj6IWQXPxLbJC27s2zrAwL18/OBQuGHnUe4VwKXMiJ99NFHed+xLdT4SmKr8zESWx1ukCKxzYxdMfUbJLZ6/4+QpsMxAAAgAElEQVRbslDjXNz1qFleaGJ75513ytChQ6vJY0vBPffck1dHDLy4wbFVq1YuMovLMUCOcUYWt0AiNW/e3BFVvIs7Z84cGTx4sPt57969ZcaMGY7Y9urVS5YvX+6eAZo3b550796dxDYv+roM1h2e+mW3K4mtzuejSNH/oqBVOy/x24kJFnpx1AYRWzz1E2xLPvzww+Wiiy5yi77ZLo8KUC3U+Epiq2sDJLY63Ehsd+NWzP0Gia3e/+OWtD4Oa+sbith++umnbusxBltETfGOLCKrd911l3t658ADDwz9/c2bN7sVaRBlJDzn884777jyMUAHCfmwWo3zt1XT2rVrpW3btnm3ZzFiG9okGTNad3jqR2Lr5+F+0vQ/4ueHwE7pqmPeIYcc4sgsdkNle+In3zfTHF9JbPNZI/PvSWx1uJHY7satmPsNElu9/8ctaX0eo61vKGKLs6w404rzrjjjioQtwdgmjC0QQdQ1jBJ4qgeE9dBDDw2TXZ2HxFYNnRO07vDUj8TWz8P9pOl/xM8PgZ3SGAcvvPBC99b7kUce6V1kmuMria3OXCS2OtxIbHfjVsz9Bomt3v/jlrQ+j9HWNxSxReGIqCJyi7OwuNzpjjvucO/Jrl692kVwrSUSWz+LWHd46kdi6+fhftL0P+Lnh0BxS2N8JbHV2ZDEVocbia0eNyuS1uflVnBKSw/r8xgtDqGJ7RNPPCHf/va3XSQPaZ999pE//vGPu57f0SqQlJz1BmTdoaifn2cWEj+esfWzXRjpQtqX+oVBwC+Pdfv61c5fmsRWjyGJrR47Xh6lx86CpPV5uQWM0tShVMe50MQWYONpghdffNFdeIHtx/kutUjTQDW/Zb0BWXco6ufnvYXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4F4rYTpw40d1G/Nvf/tZh/qMf/cjdbHzGGWekaYNI37LegKw7FPWL5G61MhcSPxJbP9uFkS6kfalfGAT88li3r1/t/KVJbPUYktjqsSOx1WNnQdL6vNwCRmnqUKrjXF5iO3PmTBk0aJAjsvPnz3eY49mdhx9+WL773e/uIrtpGiPMt6w3IOsORf3CeFn2PIXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4l5PYfvbZZ7Lffvu5i6PwxmzTpk0d5hUVFXL22WcLzt2+/fbbsv/++6dpi1Dfst6ArDsU9QvlZlkzFRI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dB0vq83AJGaepQquNcTmKLW4/xjuxPfvITufnmm6vhPXXqVLnsssvkqaeekhNOOCFNW4T6lvUGZN2hqF8oNyOx9YPJJH5hqsT2EQal7HmInx9+hZYmsdVbgMRWjx2JrR47C5LW5+UWMEpTB+vjsBaLnMR2+/bt7oKoDh06yIoVK9wzP0jbtm1z25HnzZsna9askQMPPFD7/cTkrDcg6w5F/fxcs5D4MWLrZ7sw0oW0L/ULg4BfHuv29audvzSJrR5DEls9diS2euwsSFqfl1vAKE0dSnWcy3vGFu/W3nbbbQ7rs846yz3zg/O1mzZtkp49e8ojjzySph1Cf8t6A7LuUNQvtKtlzFhI/Ehs/WwXRrqQ9qV+YRDwy2Pdvn6185cmsdVjSGKrx47EVo+dBUnr83ILGKWpQ6mOc3mJ7datW+WWW26ptRX54osvlnHjxknLli3TtEPob1lvQNYdivqFdjUSWz+ozOEXpjpsH2FQyp6H+PnhV2hpElu9BUhs9diR2OqxsyBpfV5uAaM0dbA+DmuxyEtsg4I/+eQTWb16teDvjh077rpISvvhpOWsNyDrDkX9/Dy0kPgxYutnuzDShbQv9QuDgF8e6/b1q52/NImtHkMSWz12JLZ67CxIWp+XW8AoTR1KdZwLTWzTBDuOb1lvQNYdivr5eWEh8SOx9bNdGOlC2pf6hUHAL491+/rVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpHYpulFVb5l3aGon59jFBI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dBksTWghV261Cq4xyJbYH8zLpDUT8/xygkfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgiSJrQUrkNjaskIEbaw3IOsTJ+oXwdkyZC0kfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgqT1ebkFjNLUoVTHORMR248++kiaNWtWzZ47duyQLVu2SJMmTar9vKKiQho1aiT169fPaX/rDci6Q1E/v+6lkPiR2PrZLox0Ie1L/cIg4JfHun2j1C6p8XVheccoamTMWyxEBcoH/apvpUls9QgWi7+UQv+RVL8xcuRIvQNQMlYESsFPMwFSUGL7zDPPyNixY6V58+ayfv16GT16tHTr1k2mTp0qEyZMkPbt28u2bdtk+vTpUq9ePRk0aJA0aNBA1qxZIyNGjJAhQ4ZkNTKJrZ//W3d46pfdviS2fr4fRpr+Fwal7HmInx9+YaSTHl9JbMNYoXYeElsdbpAisdVjF1Yy6X6DxDasJZLPZ30c1iJQUGJ76aWXyte+9jW58sorBUT0rbfekvHjx0vDhg2lvLzcRXGHDRsm7dq1c8R206ZNMmbMGFm3bp37GaK3jRs3zlh3ElutS+yUs+7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTYksdXhRmKrxy2KZNL9BoltFGskm9f6PEZb+4IS28cee0zOO+88Offcc+X++++XuXPnSps2baRHjx6ycuVKV6eJEyfK0qVLHbHFzwcOHCiVlZVuKzLylJWVkdhqrZ9DzrrDUz8S2wTcPnSR9L/QUGXMSPz88AsjnfT4SmIbxgq185DY6nAjsdXjFkUy6X6DxDaKNZLNa30c1ta+oMT2pptuktmzZ8uAAQPcduMrrrhCTj/9dOnXr5+sWLHC1WnatGmyYMEC2bhxo/Tv31/69u3rfg4CvGTJEunYsaMsXLhQFi1aVAsDlMNEBOoaAtdOedZV+fah3epa1VlfIhAbAtkWTWP7QMIFJT2+xkJsRWTC0G5SKSLDP++3fGCpl1B50CnoV330C/pl6/WlfjorB/4H6WLtP5LuNzgv1/lWUlLF6qe58CgosQU5ve++++S4444TrBJdc8018txzz7ntxbg8ClFabE1Gwjbkpk2byvDhw2X79u3SokULt1052yVS3Irs1wysr+RQv+z25RlbP98PI03/C4NS9jzEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1BhMf5eVR0c2TlD2s+4v1/i2XJZPuNxixjd6OkpIoZj81S2x79eoll1xyidtejIgttiPfc889ctRRR8nkyZOlS5cu0rNnT3ep1NatW2XSpEluuzKivOPGjZPFixdnrRuJrV9TsO7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTbkVmQdbpAqFqJsfXzIZYGk+w0SW73/xy1ZzH5qltg+8cQTcvHFF7sILW47njJliovezpkzRwYPHuz07t27t8yYMcMRWzS45cuXu2eA5s2bJ927dyexjdvTPy/PusNTPxLbhFw/VLH0v1AwZc1E/PzwCyOd9PhKYhvGCrXzkNjqcCOx1eMWRTLpfoPENoo1ks1rfRzW1r6gW5GhNC6Cwm3IBxxwQLU6bN68WfCOFm4/rprWrl0rbdu2dTcn50qM2GpdYqecdYenfvmJbZey1lkz7du4nvzwopP9nCRBadrXD1ziV9r4ha1dkuMriW1YK1TPR2Krw43EVo9bVMkk+w0S26jWSC6/9XmCtuYFJ7ZaxfPJkdjmQyj37607PPXLT2xzWfhL7faR8cN6+TlJgtK0rx+4xK+08fOrnb80xlcSWx2OJLY63Ehs9bhZkbQ+L7eCU1p6WJ8naHEgsdUi5yln3aGon5+BC4nfy2+sz6r8G++Wy50PvigktsVr3zCaF9L/qF8YBIo7D4mt3n4ktnrseMZWj50FSRJbC1bYrYP1eYIWLRJbLXKectYdivr5GdgqfiC9N0x5nMTWz7zcqk/8PBEobnESW739SGz12JHY6rGzIElia8EKJLa2rBBBG+sNyCrxCSCmfhGcLUNWq/iR2PrZle2D+MWDQHGXQmKrtx+JrR47Els9dhYkrc/LLWCUpg5W56m+GDBi64ugUt66Q1E/pWE/F7OKH4mtn11JbIlfPAgUdykktnr7kdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQFaJDyfuEZwsR1ar9iWxLW37sv3WDfvGU0t9KSS2euxIbPXYkdjqsbMgaX1ebgGjNHWwOk/1xYARW18ElfLWHYr6KQ3LiK0fcMbxI3GMxbw8oxwPjAUrhcRWDz2JrR47Els9dhYkSWwtWGG3Dtbn+Vq0SGy1yHnKWXco6udnYKv4MWLrZ1cSW+IXDwLFXQqJrd5+JLZ67Ehs9dhZkCSxtWAFEltbVoigjfUGZJX4cOIewclyZLVqXxLb0rYv22/dsG88tdSXQmKrx47EVo8dia0eOwuS1uflFjBKUwer81RfDBix9UVQKW/doaif0rCfi1nFj8TWz64kjsQvHgSKuxQSW739SGz12JHY6rGzIElia8EKjNjaskIEbaw3IKvEhxP3CE7GiG08YGUohe3DD1riV9r4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYO1ucJWiwYsdUi5yln3aGon5+BreLHiK2fXbnwQ/ziQaC4SyGx1duPxFaPHYmtHjsLkiS2FqzAiK0tK0TQxnoDskp8OHGP4GSM2MYDFiO2sePI/sUPUuv4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYOpTrOMWKbphdV+ZZ1h6J+fo5hFT9GbP3syoUf4hcPAsVdComt3n4ktnrsSGz12FmQJLG1YAVGbG1ZIYI21huQVeLDiXsEJyviiO2+++wpZ3Y/OGMNTuvaUVq3aBIPEMpS2D6UwH0uRvxKGz+/2vlLk9jqMSSx1WNHYqvHzoKk9Xm5BYzS1MH6PEGLBSO2WuQ85aw7FPXzM7BV/IKIba7ajR16inQpa+0HgKe0Vfy48ONpWBLveAAscCkktnoDkNjqsSOx1WNnQZLE1oIVdutgfZ6lRcsEsf3www+ladOm0rBhw1312LFjh2zZskWaNKkeOaqoqJBGjRpJ/fr1c9bZegOy7lDUT9ukdspZxW/9hgp59PlVsmHDBmnRokW1Ss5/frWsL68QEtv8trdqXxLv/LYLk8O6fcPUIciT1Pi6sLxjFDUy5i0WogLl+4ya5V1fFEBiq4exWPylFPqPpPqNkSNH6h2AkrEiUAp+mgmQghLbNWvWyEUXXSQHHHCArF+/Xq655ho577zzZOrUqTJhwgRp3769bNu2TaZPny716tWTQYMGSYMGDQRyI0aMkCFDhmQ1Momtn/9bd3jqF799R93xmLyy6n0S2xDQ0v9CgJQjC/Hzwy+MdNLjK4ltGCvUzkNiq8MNUiS2euzCSibdb5DYhrVE8vmsj8NaBApKbEFMzzrrLBkwYIBgdeill16Sb3zjGy5yW15eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM9adxFbrEjvlrDs89YvfviS24TGl/4XHKlNO4ueHXxjppMdXEtswViCxnTN2gFRWipxzg3/Em8RW53NRpJLuN0hso1gj2bzWx2Ft7QtKbL/+9a+7aO0jjzwiJ598svzyl7+UPffcU3r06CErV650dZo4caIsXbrUEVv8fODAgVJZWem2IiNPWVkZia3W+jnkrDs89fMzeib8AmKbreQ0tyjTvvHb16/EeKVp33jxzFRa0uMria3OhozY6nCDFImtHruwkkn3GyS2YS2RfD7r47AWgYIS2zZt2shJJ50kv/rVrxyBRZQWEdp+/frJihUrXJ2mTZsmCxYskI0bN0r//v2lb9++7ueQXbJkiXTs2FEWLlwoixYtqoUBymEiAkQgHAITH3xVXn93U9bM15x9mHyp3T7hCmMuIlDkCGRbNC2WaiU9vsZCbEVkwtBuUikiw6c86w1tvYTKg2LXxqAfyrm9COpr3R7W9YOdi7X/SLrf4Lzcu5uLtYBi9dNcIBSU2Hbu3Fl+/etfu+3IiL4ed9xxsnr1are9GJdHIUo7fvx4pz+2IeOCqeHDh8v27dvdxTcgwtkukeJWZD/ft76SQ/3Ss28htijTvunZ1+9LOmnaV4dbFKmkx9dYiG09kWLYqgrceXlUFO/bmbdYIqxxb5W23r/lsmTS/QYjttHbUVISxeynZontt7/9bRd5HTt2rPzlL3+Rf/7zny5Ce9RRR8nkyZOlS5cu0rNnTxk9erRs3bpVJk2aJHPnzpXZs2fLuHHjZPHixVnrRmLr1xSsOzz1S8++JLa1sab/ped/fl/SSVu3b5haJT2+ktiGsULtPNyKrMOtmIhyMfcfSfcbJLZ6/49bspj91CyxBahXXXWVLFu2TDp06ODI7NFHHy1z5syRwYMHO7179+4tM2bMcMS2V69esnz5cvcM0Lx586R79+4ktnF7+uflWXd46udn+Cj4kdiS2Pp5G/GLG78w5SU9vpLYhrECiW0xROQZsd3tp0n3GyS2un4jCako88Akvp9UmQXdihxU6oMPPpCWLVtWq+PmzZvlo48+crcfV01r166Vtm3bVnvzNhM4jNj6uYx1h6d+6dmXxJbEzM/biF/c+EUpL6nxlcQ2ihV252XEVocbpIpla7P1+UkYCyTVb5DYhkE/nTyl4KeZkDJBbJMwIYmtH6rWHZ76pWdfElsSMz9vI35x41fo8jC+ktjqrEBiq8ONxFaPmxVJ6/NyKzilpYf1ebQWBxJbLXKectYdivr5GbiU8COxJTHzaw3EL278Cl0eia3eAiS2euwYsdVjZ0GSxNaCFXbrYH2eqkWLxFaLnKecdYeifn4GLiX8cr1ve0SnVnLLFaf6gZVBupTwix2cEAUSvxAg5chiHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZSpyYkdgy4ujXGohf3PgVujwSW70FSGz12JHY6rGzIGl9Xm4BozR1sD7P12LBiK0WOU856w5F/fwMXOr4vfzGerlhyuPCiK2fnyQlXer+lxRuQbnW8Uu6/vnKJ7HNh1D235PY6rEjsdVjZ0GSxNaCFRixtWWFCNpYb0DWJ07UL4KzlXjENhMSJLZvSFlZmZ+TJCjN9usHrnX8/GrnL01iq8eQxFaPHYmtHjsLktbn5RYwSlOHUh3nGLFN04uqfMu6Q1E/P8codfxIbElsfVpIqbcPH2yKQZbEVm8lEls9diS2euwsSJLYWrACI7a2rBBBG+sNiBO7CMasgxFRP3TyS/v6H4ktiW1+L8uew9f/fL4dRta6fmHqkGQeEls9uiS2euxIbPXYWZC0Pi+3gFGaOpTqOMeIbZpexIhtbGhbb5Clrh+JLYmtT2Mu9fbhg00xyJLY6q1EYqvHjsRWj50FSRJbC1ZgxNaWFSJoY70BcWIXwZiM2PqBlQB+JLYktj5Oyf7PB73Cy5LY6m1AYqvHjsRWj50FSevzcgsYpamD9XFYiwUjtlrkPOWsOxT18zNwqeNHYkti69NCSr19+GBTDLIktnorkdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQJzYRTBmAhFHv6/nly51+5LYktjmbwXZc5R6+/DBphhkSWz1ViKx1WNHYqvHzoKk9Xm5BYzS1MH6OKzFghFbLXKectYdivr5GbjU8QuIbZsWTeS0YzpVA+u0rh2ldYsmXgCWOn5e4IQQJn4hQMqRxTp+frXzlyax1WNIYqvHjsRWj50FSRJbC1bYrUOpjnMktgXyM+sORf38HKPU8QuIbSaUhp59tJTt36Lar47o1CoSoKWOXyQwFJmJnwK0KiLW8fOrnb80ia0eQxJbPXYktnrsLEiS2FqwAomtLStE0MZ6A7I+caJ+EZwtQ9ZSx2/9hgp59PlV1Wo+//nVsr68IiNwmMxFSaWOXxQsNHmJnwa10h/w/VDZLU1iq0eSxFaPHYmtHjsLktbn5RYwSlMH6/MELRaM2GqR85Sz7lDUz8/AdRG/KQ++KG+8s6EacK+set/9n8TWz5+iStdF/4uKUa781vGLs66askhsNajtlCGx1WNHYqvHzoIkia0FK5T+Aq4ZYvvOO+/I/vvvvwvxHTt2yJYtW6RJk+pn9SoqKqRRo0ZSv379nB5ivQFZnzhRP78OiPjtxK/PqFkktn6upJKm/6lg2yVkHb+otUtifF1Y3jGqGrXyFwtRqdqX+VaaxFaPYLH4S6n0H0n0GyNHjtQ7ACVjRaBU/LQmKCaI7YMPPih9+vQRkNl69erJ1KlTZcKECdK+fXvZtm2bTJ8+3f180KBB0qBBA1mzZo2MGDFChgwZktXIJLZ+/m/d4alfcdiXxNbPTlpptg8tcjvlrOMXpXZJja8ktlGssDsvia0ON0iR2OqxiyqZVL9BYhvVEsnlL6VxripKBSe2q1evlhtvvFFmzJjhiO327dulYcOGUl5eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM1qdxNavMVh3eOpXHPYlsfWzk1aa7UOLXGkR2yTHVxJbnY+R2OpwI7HV4xZVMsl+g8Q2qjWSy299nqCteUGJ7SeffCK9evWSP/3pT3LAAQc4YosG1aNHD1m5cqWr08SJE2Xp0qWO2OLnAwcOlMrKSrcVGXnKyspIbLXWzyFn3eGpn5/R08IvILaDehxRTeELT+ucswJp6adFkfppkSsO4mjdvmHQT3p8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmLYVxLhNCBSW21157rXzlK1+RSy+91BFXENuXX35Z+vXrJytWrHD6Tps2TRYsWCAbN26U/v37S9++fd3P27RpI0uWLJGOHTvKwoULZdGiRbXqh3KYiAARKBwC1055NuPHbx/arXBK8ctEIAQC2RZNQ4iayJL0+BoLsRWRCUO7SaWIDM/SV0QBs15C5UGHbH1ZFP2QF32f9fpSv6hW3Zk/8D/8u1j7j6T7Dc7Ldb6VlFSx+mkuPApGbLGNeO+995Zu3XZOcJ999ln373nz5knz5s13nbcdP368+z22ITdt2lSGDx/utiu3aNHCbVfOdokUtyL7NQPrKznUrzjsO+PRV6opOnP+Mvf/qhHc1s0by2nHdKqWj/YtDvtqtaR9tciFk0tjfI2F2NYTmTN2gFRWipxzw86L5nxSUmcwoVOw+8RHP8gyYqtHMCn7xu1/1vu3bBZIo99gxFbv/3FLFquf5sOhYMQW24lff/31Xfodcsgh8uqrrwr+RhR38uTJ0qVLF+nZs6eMHj1atm7dKpMmTZK5c+fK7NmzZdy4cbJ48eKs9SOxzWf63L+37vDUrzjtm2lyeESnVnLLFaeS2PqZlPjVIfzyVTWN8ZXENp8VMv+exFaHG6RIbPXYhZFMo98gsQ1jiXTyWJ9Ha1EoGLGtqXCwFRl/z5kzRwYPHuyy9O7d210sBWKL87jLly93zwAhstu9e3cSW63l88hZd3jq52f4QuFXNYK7fkOFzH9htZDY+tkyk3Sh7Bu2JtQvLFLx5EtifCWx1dmGxFaHG4mtHjetZBL9Bomt1hrxy1kfh7U1NkNsa1Zg8+bN8tFHH7nbj6umtWvXStu2bd3NybkSI7Zal9gpZ93hqV/x2/flN9bLDVMeJ7H1M2VGabYPP1Ct4+dXO5E4xlcSW50VSGx1uJHY6nGLSzKOfoPENi5r+JdTquOcWWLrazISWz8ErTs89St++wbEtmZNcGPysWWNTV++Qf8rfv/LVQPr9vVD318a4yuJrQ5HElsdbiS2etysSFqfl1vBKS09SnWcI7FNy4NqfMe6Q1E/P8cgfvnxy0Zsa0piImgt0b5+FiF+fvgVWprEVm8BEls9djxjq8fOgiSJrQUr7NbB+jisRYvEVoucp5x1h6J+fgYmftHxw/nb4NbkqtIkttGxpP9Fx6yqhHX8/GrnL01iq8eQxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6ArE+cqF8EZ8uQlfj54xe8G0liGx1L+l90zEhsw2NGYhseq5o5SWz12JHY6rGzIGl9Xm4BozR1sD5P0GLBiK0WOU856w5F/fwMTPz88SOx1WNI/9NjB0nr+PnVzl+axFaPIYmtHjsSWz12FiRJbC1YgRFbW1aIoI31BmR94kT9IjgbI7Z+YGXBLyC2Xcpa78oxdugpsX9LUyDbhwa14hlQrdvXD31/aRJbPYYktnrsSGz12FmQtD4vt4BRmjqU6jjHiG2aXlTlW9Ydivr5OQbx88cvILZVS7KyLZn29bdvWVmZXyEJSlu3b4JVD1U0iW0omDJmIrHVY0diq8fOgiSJrQUrFM8CsxYtElstcp5y1idO1M/PwMTPH78K2XtXIXjvFonENhyu9L9wOGXLZR0/v9r5S5PY6jEksdVjR2Krx86CJImtBSuQ2NqyQgRtrDcg6xMn6hfB2TJkJX7x4tdn1CwS2wiQ0v8igFWE7devdv7SJLZ6DEls9diR2OqxsyBpfV5uAaM0dbA+T9BiwYitFjlPOesORf38DEz84sUvILZVSy1k9Jb2jde+fqXFL23dvvHXOFqJJLbR8KrZb1VWipxzw87FOp9ULESvrtWX/Udmryax9Wnt8cuWqp+S2MbvK6FKtO5Q1C+UGbNmIn7x4kdiGw1P+l80vGrmto6fX+38pUls9RgyYqvHrliIPPsPElu9l6cnWap+SmKbng9V+5J1h6J+fo5B/JLDz8K2ZNo3OfvT7+oAACAASURBVPv6lRyPtHX7xlNLfSkktnrsSGz12JHY6rGzIMmIrQUr7NahVMc5EtsC+Zl1h6J+fo5B/JLDj8Q2P7b0v/wY5cphHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZMmQlfsnhR2KbH1v6X36MSGz1GJHY6rEjsdVjR2Krx86CpPV5uQWM0tTB+jxBiwUjtlrkPOWsOxT18zMw8UsOPxLb/NjS//JjRGKrx4jEVo8dia0eOxJbPXYWJElsLViBEVtbVoigjfUGxIlnBGMyIuoHVonhFxDbLmWtXc0uP/toKWvXPHaMipn4sH/xcwfr+PnVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpmI2H744Yey3377VbPnjh07ZMuWLdKkSZNqP6+oqJBGjRpJ/fr1c9rfegOy7lDUz697IX7J4VfzhuTTjukkbVo0kSM6tZKA7Pp9Pb807ZsfIy4M+GEUl3RS4+vC8o7eKhYLUUFFM93MrgGAxFaD2k6ZYvEX6+NDGAsk1W+MHDkyzOeZJwUESsFPM8FUUGL72GOPyZVXXildu3YVENbLL79czjnnHJk6dapMmDBB2rdvL9u2bZPp06dLvXr1ZNCgQdKgQQNZs2aNjBgxQoYMGZLV9CS2fq3CusNTv7pr35ffWO8qP+XBF2XVu+W7gADB7XFMJ2m8V8PEI7j0v7rrf341T0866fGVxFZnSxJbHW4ktnrcokgm3W+Q2EaxRrJ5rc9jtLUvKLE95ZRT5MYbb5QePXrIk08+KUOHDpVly5ZJw4YNpby8XJo1aybDhg2Tdu3aOWK7adMmGTNmjKxbt879DGS4cePGGetOYqt1iZ1y1h2e+tG+859fJe9tqBAQ3VdWvb8LEERub7niVD+A8kjT//zgJX5++IWRTnp8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmtT4Oa2tfUGILogpiuscee8h1113nth5ff/31juiuXLnS1WnixImydOlSR2zx84EDB0plZaXbiow8ZWVlJLZa6+eQs+7w1M/P6KWEHwjuo8+vkoqtn7kILrYlI3rbunlj93cSqZTwSwKffGUSv3wI+f8+6fGVxFZnIxJbHW4ktnrcokgm3W+Q2EaxRrJ5rY/D2toXlNhC6ffee0+uvvpq+e9//ytz5syRjz76SPr16ycrVqxwdZo2bZosWLBANm7cKP3795e+ffu6n7dp00aWLFkiHTt2lIULF8qiRYtqYYBymIgAEagbCLz+7iaZ+OCrtSr7pXb7yDVnH1Y3QGAtY0Mg26JpbB9IoaAkx9dYiK2ITBjaTSpFZPiUZ70RqZdQeVDs2hj0Qzm3F0F9rdvDun6wczH3H0n2G5yXe3dzsRZQzH6aDYiCEts333xTsO3hkksuEazi7LXXXi5qiyguLo9ClHb8+PFOd6wiNW3aVIYPHy7bt2+XFi1auO3K2S6R4lZkP9+3vpJD/Wjfmgis31DhIrf4e/4Lq3f9GjcmD+3T1UVwW7eofhmdFkX6nxa5nXLEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1uRA+ysujopsnKXtY9xfr/VsuSybdbzBiG70dJSVRzH6aC5OCEtsLL7xQunXr5rYhV01HHXWUTJ48Wbp06SI9e/aU0aNHy9atW2XSpEkyd+5cmT17towbN04WL16ctW4ktn5NwbrDUz/aNx8COHt7w5THa2UD0W3S6AvVblAG4cUW5k743V4N8xVNYpYXodwZ2H49AQwhnvT4SmIbwggZsnArsg43SBULUbbev+WyQNL9Bomt3v/jlixmPzVLbLGdeP36nTecIrVu3dptTcaW5MGDB7uf9e7dW2bMmOGIba9evWT58uUuqjtv3jzp3r07iW3cnv55edYdnvr5Gb4u4PfGu+Uy5YEXZP2GzbK+vCIUYMHTQcgMglu2f4uMZLcu4BcKMGUm4qcELoJY0uMriW0EY1TJSmKrw43EVo9bFMmk+w0S2yjWSDav9XFYW/uCRmxzKb1582Z33ha3H1dNa9eulbZt27qbk3MlRmy1LrFTzrrDUz/aNyoCILoVWz51tygHCduWcbMyLp3C5VOZUtUIbxDZrfdJuXQ+7OCoKqSWn+3DD2rr+PnVTiSO8ZXEVmcFElsdbiS2etzikoyj3yCxjcsa/uWU6jhnltj6mozE1g9B6w5P/WhfPwSqSwdPB+GnILhvvLMhJ9ntfkhLOejAtq4QEN9WLZok/nZulPqyfURBq3Ze6/j51c5fGuMria0ORxJbHW4ktnrcrEhan5dbwSktPUp1nCOxTcuDanzHukNRPz/HIH7Fj1/VCG+YyC5qjK3Mp3XtWO38rh8SOmn6nw63QMo6fn6185cmsdVjSGKrx45nbPXYWZAksbVghd06lOo4R2JbID+z7lDUz88xiF9p4hdEdjds2CDlW+vt2sacrbZdylrLsYe3d2d1keK8mTkXwvS/0vQ/v1rFJ01iq8eSxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6AOPGMYMwMWYkf8fNDwE+6pv+B8OKpoVdWvZ+34OBSqrFDT8mbV5uB7UOL3E456/j51c5fmsRWjyGJrR47Els9dhYkrc/LLWCUpg6lOs4xYpumF1X5lnWHon5+jkH86jZ+uKDq6eVvu7O6SJluZkY0F1uXu3RqFdv7ugHq9L/S9j+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK+zWwfo8QYsWia0WOU856w5F/fwMTPyIX00Egkupar6tC3I76LTOsZJb+l9p+59f7fylSWz1GJLY6rEjsdVjZ0GSxNaCFUhsbVkhgjbWGxAnnhGMmSEr8SN+fgj4Sfv4H6K52Lr88hvvV3tft02LJo7cBluVAw3x/yPKWke6ddlHPz9kwklTv3A4Wc1FYqu3DImtHjsSWz12FiStz8stYJSmDtbHYS0WjNhqkfOUs+5Q1M/PwMSP+OVDAOR2xqPLqpHbXDJVCS/+fWznDlm3MdP/8qGf+/fW8fOrnb80ia0eQxJbPXYktnrsLEiS2Fqwwm4dSnWcI7EtkJ9Zdyjq5+cYxI/4hUUgeEoo2KocyOH/iO6uerc8Z1FBpBfv6TZp9AW58LTO5i8/YvsI6x0285HY6u1CYqvHjsRWj50FSRJbC1YgsbVlhQjaWG9AnNhFMGaGrMSP+Pkh4Cedpv9VJbz499PL3qq1jblqbXApVYcWDeVbZ3d325otpjTx09Tfun6aOsUpQ2KrR5PEVo8dia0eOwuS1uflFjBKU4dSHecYsU3Ti6p8y7pDUT8/xyB+xM8PgfzSQaT3jXfLpWLLpzJz/rJaQiC5SEE0N/i7E6K7BSS9bB/57Ws5B4mt3joktnrsSGz12FmQJLG1YIXdOlgfh7VokdhqkfOUs+5Q1M/PwMSP+PkhEF0a25bxZ86i1wSR3VwpILjBuV0Q4MZ7NYx0QVV0DYtnQLXefn2wj0OWxFaPIomtHjsSWz12FiRJbC1YoXjGYS1aJLZa5DzlrE+cqJ+fgYkf8fNDwE967qJ/S7t27SSI5uKc7sdbPnXndfORXpDcgPAmFeFl+/Czb6GlSWz1FiCx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyBO7CIYM0NW4kf8/BDwky5W/wuIbnBuFxFe/DvfBVUBWiC6eJKobP8W7m9cXKWJ9BYrfn5eUzrSJLZ6W5LY6rEjsdVjZ0HS+rzcAkZp6mB9HNZiwYitFjlPOesORf38DEz8iJ8fAn7SGv8LSO4b72xwRDdshDfQNLiduea5Xvy+dfPGjggHSaOfHyLRpK3rF6028ecmsdVjSmKrx47EVo+dBUkSWwtW2K1DqY5zJLYF8jPrDkX9/ByD+BE/PwT8pOP2P0R6cVkVSG/V54nCRnqr1gZR3/qyXVq2aOoiv0EKCLEmAuyHVm3puPGLW79Cl0diq7cAia0eOxJbPXYWJElsLViBxNaWFUSkoqJCGjVqJPXr18+pm/UGZH3iRP38XJ/4ET8/BPyk0/S/gOgi4osURHvx7/UbNsv68gp1ZYIoMAoIzvvi38EZ4KDgmhFh9Qc/F0wTP19d45SPMr4uLO/o/eliISqoaJ9Rs7zriwJIbPUwFou/1LX+I0q/MXLkSL0DUDJWBErVT4smYvvBBx/IoEGDpEGDBrJmzRoZMWKEDBkyJKuRSWz9/N+6w1M/2tcPAT9p+l90/Kqe731+2RvSosXOaG1AiKOc9c319Vqk9/OzwIFMEBnORYat2zc6+rklNOMria3OCiS2OtwgRWKrxy4JSU2/QWKbhCV0ZZbqOFc0xPbWW2+VTZs2yZgxY2TdunXuxk+sEjVu3DijRUlsdY4eSFl3eOpH+/oh4CdN/0sWvyAKjK8EhBj/Di69Cr7uGxFGOUFUuOpN0HvX3yydDzvYr5JFJK0ZX0lsdQYmsdXhRmKrxy0pSU2/QWKblDWil2t9HhO9RjsliobYXn755dKjRw8ZOHCgVFZWuq3IK1eulLKyMhJbrfVzyFl3eOrnZ3TiR/z8EPCTTsL/apPeCnlvw+5t0EFkOAwZvubsw+SM44/yq2QRSWvGVxJbnYFJbHW4kdjqcUtKUtNvXH3N92NRZ+/GX3DlfLz5U5anQAD4JTEOK1SJXaRoiG3//v0Ff/r27etAaNOmjSxZskQ6duwoCxculEWLFlUDp2HDhvLZZ5/FDhgLJAJEgAgQgeJHYOuOBvLJjgayrbK+VGz/gvvz0ba93P/PP7hCLrvssuKvZMgaRB1fsVNq8+bNIUtnNiJQtxDo3LmznH322SVfaU2/saliayy47FFvhytne2Xu+3bCfqwulleqflo0xPbmm2+Wpk2byvDhw2X79u3ufFZ5eXnWS6Ssb0WmfmG7m8z5iB/x80PAT5r+R/z8ELAlHXV8Dat93O2E5YVFPp1xk/bws0exS7PfiMeC1ttRPLVMr5SiIbZz5syRSZMmydy5c2X27Nkybtw4Wbx4cVak4naUuE1C/fwQJX7Ezw8BP2n6H/HzQ8CWdNTxNaz2cbcTlhcWeRJbIGDdX/ysWXhp9hvx2IB+Gg+OQSlFQ2y3bNkivXr1kuXLlwv+PW/ePOnevTuJbbz+sKu0uBta3GpSPz9EiR/x80PAT5r+54df3NJRx9ew34/bziwvLPIktiS2fr4SRpr9RhiU8uex3q/lr4GtHEVDbAPY1q5dK23bthWcoc2V4naUuM1G/fwQJX7Ezw8BP2n6H/HzQ8CmdNjxNaz2cbcTlhcWeRJbEls/X4kizX4jClq181rv1/xql7500RHbsBDhQqkTTjghbPbU81E/P8it44fLzI4//ni/SiYobR0/6udnfOJX2vj51S496bj9kOX52Y742cLPT5vSlaaf+tk2bvz8tElfumSJbfpQ8otEgAgQASJABIgAESACRIAIEAEiUAgESGwLgTq/SQSIABEgAkSgBBH43//+J1u3bpX9999/V+1eeuklwdMSe+yxh6rGH330kbz22mvSrl076dChg6qMJIU2bNggH374oXt+sEGDBupPPfzww26n2T777KMuI5fg+++/716S2G+//dTlw7Z77bWXk8edJ7AHXqyII73++uuuvKD8OMqMowzr/hdHHQtZRtJ+H3fd4vDTJPrJoJ5x6Bc3ZmmWVyeI7ccffyxNmjSRevXqZcR206ZNiQ0k+OCOHTvchVfQIVuCDnvvvXdWHZN0ilLQL0l88pUdBr+KigrnB0lNWHLpGEa/fHVM8vdh9cNAgDa05557JqlOrbLD6IeJLZ4gK0QKqx8mn1pi4VOvMPpt27ZNPv30U8H7qEmkMDqgjTZq1CjrE3JJ6FVqZf72t7+Vq666yvVzQ4YMkd/85jeuigcccID85z//cWNclIQjHZdccom88cYbcvjhh8vGjRudn+A7F1xwQZSiEsn79NNPy0UXXeT0Q0K9DzvsMPn9738vRx99dORvoo0Cq2nTpknXrl0jy9cUeOCBB5w9OnXqJMcdd5y7JRg6/vCHP5Sf/vSnkcufMGGCTJ06VWCXk046SdavXy8gfXj2BU8xRk1f//rX5cknn5TPPvtMzjzzTFm6dKkrYvz48fLtb387anGx57fuf7FXuEAFxu33cVcjbj+Nu5+MW7+48Uu7vJImtuh0sVKMARArGK1bt66G7/PPPy+XXXaZfPGLX5Q1a9bIH/7wB/nqV78aqw0wCGAwaN++vWDyNn36dGnVqtWub6xYscINClhFhQ5XXHGFDB48OFYdchWWTz9M2IcOHeoGQ6z29u3b101Y0kr59PvVr37lBlkkTF4xkL/wwguqSYWmTvn0w+o2BmgM/rAxJjujR4/WfEolk0+/Tz75xPkjJhVIhx56qPz85z9XfUsjlE+/oEy0jS5dusgjjzziJmhppXz6vfrqq25ie9BBB8nmzZtd2x04cGBa6rlJZq7+5c0335QBAwY4GyOShMnyj3/8YzP64U3yV155xfW9IN2Y0Mad8mH0wQcfyKBBgxw+8LMRI0ak2sfFXd9ClQdygmgbyF7Lli3ljDPOkB/84AduzNAS2zZt2jj/RpsKFqbhL+gL8I59s2bNQlcXvnb55ZdnzY/JZtRIIfpL6Hfssce6cfzAAw+Ubt26uRcc3nvvPbdQEiVhgo8nDa+++mo58sgj5fvf/777W5sQJUe9nnrqKdfu3333XTeWox947rnnIi20YizDHOq///2vPProo/KPf/zDzWfQ72Fce/HFFyMvTKG+mFf8/e9/Fzwdg7aKBUyQ5mXLlkWKfidh3zj9T2vDuiAXp98n4Qdx+mkS/WSc+pWCv5U0sb333nsd6cFkCYNMTWKLgRcrl/gbebHKikElrgQii9ubgwF42LBhbivVqFGjdn0CRPaQQw5xemDAwL9BNr7whS/EpUbWcsLod9ddd7kB7J577pF//etfcumllwrIeBopjH5V9Rg5cqS7MRuTgTRSGP2A3zPPPCOTJ0+WyspKue++++Tcc89NJXIWRj8QM6zcz5gxI9IkIg58w+iH7yBC079/f1m1apWbpKVFbMPoh/e00aYvvPBCN9nDRP7f//53HPDkLSOMfr/4xS9cNASLKZiYYqL99ttvV9smmvdDygxh9MNuGvgfJtnHHHNM7MQ2jA633nqrYMfMmDFjZN26dc6eiN4mFT1WwmleDH6GLa6IzGIhF33L6aef7hYujjjiiMgRW0xQsQvi5ZdfdovPVdPXvvY1+eMf/+jKjZIwxn/3u9+ViRMnSvPmzauJgjxH2UYM30I9V69e7drVQw89JH/9618dOQOZR5sDsYySMEHFDbMo789//rPccsstLsrds2dP55/5XoOo+q1AP5SH9oUFLvwbCfiBlB588MGh1YM9sL0c84D58+e7srAIinENdsDPMP5GScGE/Ne//rVrdwg0IGFhANH+L33pS1GKc3O4uOybhP9Fqkwdyhyn3wO2OP0A5cXpp3H3k3HrVwpuV9LENjAQVnozEVusIqOTxt9YbUTUCvniSpiI9+jRQ1auXOmKxGCKrTaITgQJq7wYrEB2sdKNLQVpTTzD6IcV3q985Sty6qmnCm5aw3YjTN7TSGH0C/RAZP788893k6c0FgXw3TD6BZN27A5ANANE46yzzkoDvlD6Pfjggy5ahYk9Ig3YqnbKKaeY0Q+KXHfddXLaaae59gM80yK2YewbAIWFCwymF198sVukSiOF0Q9HIND/IRJ1//33OyyxeyXbsYw49Q6jX/C9//f//p/TK+6IbRgdEMVDPw1ig0k6dlagzy4rK4sTjjpRFhY+EWkbO3aswxQLe9hVg7OYwXGbKEBgsRLRvLPPPtvtJsEi8RNPPLHrLfsoRDT4LkgdooNRSVgmvaEf6os+E0T7tttuc0QeC3BYqIYvRUnBBD+IRIOcYmH08ccfd/1K1GMYiPxioQ07ETAufuMb33CLBVis1ixQT5o0yY0ROAd89913ux0qb731lptDgYhHTZADoUXCrqZgB9uf/vQndT8Vt33j9r+oGNWF/HH7PTCL0w/i9tO4+8m49St2n6vTxBaNCR0pOlackcH2l2BFMw7Dgmz169dv1wCCczMLFiyQO++8c1fxGPCxjQnbpRcvXuwuyNBMADT6htEPEWxM1hFZXrJkiRscQYbSSGH0C/TA5BSLAmmeywmjHzownCHCRAKLJ9jmiO2haRCLMPphlR1bt7/3ve/JrFmzXIQAkRYr+mEnBQgZJk1YeEqT2IbBL/A/EDLoiihfnLs+crWzsPoh4g27YtKNSRoWqdJIYfWDLkkR2zA6YDcA/iDKhoTth+jrcBEQUzQEEI3AzgVsdw2e28P/0SawiBt1qy++jotlQO6wSIEIHo4LnXjiieqIOtpDXIufWDgK9AP5xhNvOA6D3QeI5kZNWDTG4mfULczZvoPjOZhzYK6DqDeIKfooREaxXVyTQJSxyI25CspCVBrtR4sptiLDtph7ffOb3xREb7HIpL0kLE77JuF/GsxLXSZuvwdecftBnH6aRD8Zp37F7m91mthicMSEFIMQtupg4MVKblwJgx46fgwuIApBNKLmVlmsVIIs4pweiHCc5DpXXcLoB2KGyzCwMg3CjQEyU/Q7LsyqlhNGP+THbZQYpHEeuOb2siT0CsoMox8iZFhlB7EIJs3YHh91i5WmHmH0Q+ePs434g61XiIDA/7STiih6htEPixU4K48tjs8++6zbqo8tdHGfhc+kdxj9QBSxMowteogmIRqS1o6LMPph+3Ew6UTEO4iORLGTNm8Y/YKykyK2YXRAv49+DbtRgu2HsGXUaJsWp1KSQ9+BMRSRQhA+LEhh/MC9DDW3E4ept/XyMG5j2yx8BZFkRBpx/hdHEzRtjeWVNn5hfJ557CGAYAR2YeCICi5jQ5+GhIAKxtWoC1Egtpg7YCcfdngg4tq9e3d3XCBqWdAjbv3sWSCaRnWO2OKiA2wdwrZLrBKBEF1//fVumw/OssR9cc5RRx3lzldisMM5GZy7wUp2oAMmdIgWI5qCLcpYXdVs6Ylm9t258+mH1VPoBz2xnQmNDxN3zRYwjY759EOZiJRhQhHnokRYXfPphyj9lClTXBQDW7ZA1N55551UztiiDvn0+9nPfuYu74CPYls+ovPB1vmwGPjky6cfJrYgZ0iIxmNQOeecc9TRmqi65tPvRz/6kVu4AI7YfYEt05bse8cdd7hFs0K0jTD+lzSxzaYD7lVAVBb9MtomIlmIKs6ePVtwbhq7Z5iiIYBt3BgfcIdAnz593PlaXKyENgwfxM6VKMl6eahLcPYOY+TJJ5/sLmhC9BHb6jVtjuWVNn5R/L8u5c0158CRkCg7yJK4PAqLV7hZHItVILLYCYSdPdpL8RAwwlEF7BLCziAQZuzqQz+CeViU+sJP4tav2H2vzhBbRH1wMygcEsQSzwagMQXn9RDpw2Rm3333jdWmGNyCW4579+7tLunBZRiBDiCLcEoMaCA+mGxVff8vVmUyFJZPP0RnMUnBWVskbAXFLclppXz6QQ9ERdHJIKqcdsqnHy4Cw6Vh6LQQvcfCRpq35ubTD3bFWTgsVOAP9MOWurRSPv2q6gG9brjhhtTO2OLb+fQDmcU2fQxS2IqHs4VYHEgr5dMPAyjOOVZN2EIY5dIYn7rk068qsUV/DFIZd8qkAyYO6HODLcfog2FLRHjnzZvnCBpTNASwaIxzq7jVFhf/AMsbb7zRFYIFvZkzZ0ba3m29vKrEFgvT2H59zTXXuPpiFwciMlHH8oDYsrzSxC9ai6obuUFEQe4w/8UFrzW3tOO4YNSL/OK8PAr9EJ4ZRJQVcyQs1uGuHIyrGmIb7IzDRYWYtwYJP8eTZug3vvzlL4c2ftz6hf6w4Yx1gtjmwh+XMyDCAgeNukoS1q5wPGw3zrU1Kdj+mZQOuXQNox8wwsJAlFsZw+KTL18Y/fKVkeTvw+iHbdKFekc0jH7oZOO4TEWDcxj9NOXGJRNGPywQYJAqxPbVMPrFhYWmHAv6hdEBfTDaQCH6OA2uFmVAYLEzCVv1sAsEu1XQNr7zne+4hYOo7yhbLw99Oo5G4CgTjupgYQYTdOzcwKJJ1KMxLK+08bPYZi3ohEUwjJ9YdI1rHhL35VHYlfWtb33L8QQExHD7Nn6meZ8b59Jxzh1HNHDMCjwE25KxGw1bk6s+CRrGPuAvceoX5puW89R5YmvZONSNCBABIkAEiECxIIAdPoha4r1pED0knNfHMRts/46arJeHiyBB2DEhxxZkHDHChBq7S7C7KWpieaWNX1R/qEv5cQQPl6jiSGAcKc7Lo3BZGnYGBu0a97rgyAXuS9Fc9op+ArupcG8IdnoEr1L85Cc/cTsko6a49Yv6fWv5SWytWYT6EAEiQASIABEoYgRwPhbHf3ARCqKQvsl6eVXrh905uEQursTy/JC0jp9f7UpTGjtssLsj6vNWaaOBYxfYlaHdqYV64s4aRFw1N8bnq6+vfvnKt/p7ElurlqFeRIAIEAEiQASKCAGch8N2XDx1gwsag8vVEL3UnN1neTsvpyN+4RqBdX8JV4u6lwt33lRNeEUC23WxNTfqwhi29eZ6agsXNOHMbJSEy+BwKzLel8YrKrg3BUcL0S41O1HiLm/UqFHu4lsQbDwXhste0f+mfSdJFEyTzEtimyS6LJsIEAEiQASIQB1BAGdL8U4y3jrFDdN4gxpnyHCeDNvvot6mz/KIX5SmY91fotSlruT9+OOP3XZcpODv4BgD/o8z+lGJKM6p4sb7p59+2l1IVTXhoqqod9nAr3DhK87Tol+755573K4M3B0Aklro8oJL51DfESNGCC7PwhNAY8aMcW+A17VEYlvXLM76EgEiQASIABGIGQFESvCqAC5KxEUoeJMxeMbjlFNOcU8qIQoTNrE84ldK/hLW7+tivhdeeMG9tnHttdfKJZdcWpg96AAABs5JREFUInhbHMT0/PPPV8OBs/545cH3pZOgH8K2XkSW8QQgLhpEAtnF/QGHHnpoaD3jLg8fDojt//3f/7loNZ5GREI0GZHmgw46KLR+pZCRxLYUrMg6EIEUEcANhkiah8RTVJOfIgJEIGUEsHUQT1YgYvLQQw/JH//4R3cGDTeIat53ZnnEL4oLW/eXKHWpa3kRuR0+fLi7SAlRVuz88CG2ceIH4oobjK+88krBeX9sSUZ0FIt3uDQu6k6UuMsDsYVuiG6DgOPdcPS/6HexuFjzCaU4sbFYFomtRatQpzqNADqpYCsOgMAted/73vdUZzniABIRGERbTj75ZDn++OPdiuXWrVsF55lwAyje6sXWQyYiQATqNgIgr3jiBxM/RDMwUcUtpzjrdeKJJ0YGh+URvyhOY91fotSlrubFVt/+/fvLfffdJ+edd54KhmCnSCbhsrKyyFuHX331VUE0dPDgwe4pr5deekkuv/xywdlWDfmOuzwsJGJLNOqNLci33367wxA3L5911lkqDItZiMS2mK1H3UsSgeCyhGAFbtq0aa6eIJhRL1KIAyB0lF/84hcFFzrgMpiJEye6d9e+//3vu4sUQHJxfo6JCBABIkAEiAARIAKFQmD79u2Cc7R4TxqR35rRSizIN27cuFDq8bspIEBimwLI/AQRiIIAyGunTp12RUGx6nbXXXcJzqHgMoXJkyfL9OnT3bmOCRMmSNeuXd1q4gMPPCC9evWSv//97+7CAJytQKQVxBM/Hzt2rOvQZ86cKb/73e9kzZo1bgUSt+lVVFTI6aefLt27d3fvMmJQwHdBZHFOY968ee49yt/85jfyt7/9TfBG3KxZs6oRWzyrgHcY8QdX1+MSA5TPRASIABEgAkSACBCBNBDAcak2bdq496Xbtm2bxif5DUMIkNgaMgZVIQJAAMS2VatW7ua9999/X66++mrBFfXvvfeeO9MB4oloKbb84fc4VwECChKLBDJ50003yZe+9CVHRnHuCGT4V7/6lbsCHluKcV4EZ2RBfm+99Va3raZly5ZO/qqrrpInnnjCfQfkF0QW38OWG5BgXO6A8zBY+awascXvcP09vo2Hy0GG8fdxxx1HwxIBIlDiCMT9zAbLq+4wUZ8pIX628Cvx5q+uXtx+Gijy5z//WS644AJ3FMInxa2f9fJ8sLIiS2JrxRLUgwh8jkDNM7aI0v74xz92hBU33h177LEuugry+dRTT8nDDz/sLgoAsQ2I5Pjx4+W6665zK5YHH3ywy4Mr83F+BflGjhzpHkBHFBdkF78HscXNhHfccYeL6g4aNEjmzJnjztRW3YoMMpuJ2CKCXF5e7q7AX716tWALNc6g4BtMRIAIlD4CcT+zwfJ2+4zmmRLiZwu/0u8BdDWM2091WmSXils/6+XFjV/a5ZHYpo04v0cE8iAQRGxBQrGlF4QRJBSkFRey4AInPJ8RJERx8W4ZCCuuowcRBqkFucVlGnhIHO+vNWzY0EVjEUkFscX/kUBoQZrxNyK/OEv717/+Vfr16xea2C5dutSdZcGZliuuuGKXbiDNiBgzEQEiUDcQiOuZjQAtlufnN8TPFn5+2pSudNx+GjdScetnvby48UuzPBLbNNHmt4hACARqnrENRHCN+3777SeHHHKIe0bj7rvvliVLlsj999/voqIgtoikIjI7f/586dGjhyOn2I5z4YUX7rqh9Be/+IX88pe/dIQZ/8bNg4iy5iO22L7861//2p25zRSx/frXv+6uwEf0F9uYoR/eozvzzDND1JpZiAARIAJEgAgQASJABIiAHgESWz12lCQCiSCQjdjiY7ggCmdYcZEU0m233eais1j9q0pscbkTCC22KCMdeeSRjnAimvuDH/zAnc8Nfo4yQYZBbIOtw/fee6/07dvXRWxxXTy2I4Os4hsg1cFNyFWf+8Hvr7/++l3fxHXz2I5c195QS8QpWCgRIAJEgAgQASJABIhATgRIbOkgRKAIEcATPCCi+a6tX7dunXtn9sADD6z2dtvmzZvdQ944s1uvXr28COzYscNtc8b38hFVXGiFrdP77rtv3nKZgQgQASJABIgAESACRIAIxIEAiW0cKLIMIkAEiAARIAJEgAgQASJABIgAESgYAiS2BYOeHyYCRIAIEAEiQASIABEgAkSACBCBOBAgsY0DRZZBBIgAESACRIAIEAEiQASIABEgAgVDgMS2YNDzw0SACBABIkAEiAARIAJEgAgQASIQBwIktnGgyDKIABEgAkSACBABIkAEiAARIAJEoGAIkNgWDHp+mAgQASJABIgAESACRIAIEAEiQATiQOD/A/1mTZxCChSWAAAAAElFTkSuQmCC", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Top 10 values by value count" }, - { - "data": { - "values": [ - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "dyr 8rp", - "value_count": 1 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "wf1 5er", - "value_count": 1 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "ba3 2xu", - "value_count": 1 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "rg9 0tb", - "value_count": 1 - }, - { - "distinct_value_count": 12363, - "group_name": "postcode_fake", - "total_non_null_rows": 39152, - "total_rows_inc_nulls": 50578, - "value": "bn14 7as", - "value_count": 1 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "scale": { - "domain": [ - 0, - 34 - ] - }, - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Bottom 5 values by value count" - } - ] - }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the output bucket and the additional filepath to write outputs to\n", + "############################################\n", + "# EDIT THESE BEFORE ATTEMPTING TO RUN THIS #\n", + "############################################\n", + "\n", + "bucket = \"my_s3_bucket\"\n", + "database = \"my_athena_database\"\n", + "filepath = \"athena_testing\" # file path inside of your bucket\n", + "aws_filepath = f\"s3://{bucket}/{filepath}\"\n", + "\n", + "# Sessions are generated with a unique ID...\n", + "linker = AthenaLinker(\n", + " input_table_or_tables=df,\n", + " boto3_session=my_session,\n", + " # the bucket to store splink's parquet files\n", + " output_bucket=bucket,\n", + " # the database to store splink's outputs\n", + " output_database=database,\n", + " # folder to output data to\n", + " output_filepath=filepath, \n", + " # table name within your database\n", + " # if blank, it will default to __splink__input_table_randomid\n", + " input_table_aliases=\"__splink__testings\",\n", + " settings_dict=settings,\n", + ")\n", + "\n", + "linker.profile_columns(\n", + " [\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"], top_n=10, bottom_n=5\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3f8b54a9-5f4a-423b-90ec-d7e93f54f3d9", + "metadata": {}, + "outputs": [ { - "hconcat": [ - { - "data": { - "values": [ - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.9430504148053606, - "percentile_inc_nulls": 0.9558899126102258, - "sum_tokens_in_value_count_group": 2231, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 2231 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.8983024888321633, - "percentile_inc_nulls": 0.9212305745581083, - "sum_tokens_in_value_count_group": 1753, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1753 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.8536056158264199, - "percentile_inc_nulls": 0.8866107793902487, - "sum_tokens_in_value_count_group": 1751, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1751 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.8123548181238034, - "percentile_inc_nulls": 0.8546601289098027, - "sum_tokens_in_value_count_group": 1616, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1616 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.7715379706445438, - "percentile_inc_nulls": 0.8230455929455495, - "sum_tokens_in_value_count_group": 1599, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1599 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.7308487555839183, - "percentile_inc_nulls": 0.7915299141919412, - "sum_tokens_in_value_count_group": 1594, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1594 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.696081684747926, - "percentile_inc_nulls": 0.7646012100122583, - "sum_tokens_in_value_count_group": 1362, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1362 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.6629227823867263, - "percentile_inc_nulls": 0.7389181066867017, - "sum_tokens_in_value_count_group": 1299, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1299 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.6321888959795788, - "percentile_inc_nulls": 0.7151132903633991, - "sum_tokens_in_value_count_group": 1204, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1204 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.6024760689215061, - "percentile_inc_nulls": 0.6920993317252561, - "sum_tokens_in_value_count_group": 1164, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1164 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.5732482450542438, - "percentile_inc_nulls": 0.6694610304875638, - "sum_tokens_in_value_count_group": 1145, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1145 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.5462412252712189, - "percentile_inc_nulls": 0.6485428447150935, - "sum_tokens_in_value_count_group": 1058, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1058 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.5202552648372687, - "percentile_inc_nulls": 0.6284155166277828, - "sum_tokens_in_value_count_group": 1018, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1018 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.5009061901723038, - "percentile_inc_nulls": 0.6134287634940092, - "sum_tokens_in_value_count_group": 758, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 758 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4846713465220166, - "percentile_inc_nulls": 0.6008541262999723, - "sum_tokens_in_value_count_group": 636, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 636 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4693554562858966, - "percentile_inc_nulls": 0.5889912610225789, - "sum_tokens_in_value_count_group": 600, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 600 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4556732610082961, - "percentile_inc_nulls": 0.5783937680414409, - "sum_tokens_in_value_count_group": 536, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 536 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.44410976388002554, - "percentile_inc_nulls": 0.5694373047570089, - "sum_tokens_in_value_count_group": 453, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 453 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.43280153158902357, - "percentile_inc_nulls": 0.560678555893867, - "sum_tokens_in_value_count_group": 443, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 443 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4226930440331844, - "percentile_inc_nulls": 0.5528490648107873, - "sum_tokens_in_value_count_group": 396, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 396 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4129674537332483, - "percentile_inc_nulls": 0.5453161453596425, - "sum_tokens_in_value_count_group": 381, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 381 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.4039566049776643, - "percentile_inc_nulls": 0.5383368262881094, - "sum_tokens_in_value_count_group": 353, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 353 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3951499680918953, - "percentile_inc_nulls": 0.5315156787536083, - "sum_tokens_in_value_count_group": 345, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 345 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.38723675813656666, - "percentile_inc_nulls": 0.5253865316936217, - "sum_tokens_in_value_count_group": 310, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 310 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.38008934269304406, - "percentile_inc_nulls": 0.5198505278975049, - "sum_tokens_in_value_count_group": 280, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 280 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.37419272495213785, - "percentile_inc_nulls": 0.5152833247657085, - "sum_tokens_in_value_count_group": 231, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 231 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3685768985322272, - "percentile_inc_nulls": 0.5109336074973309, - "sum_tokens_in_value_count_group": 220, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 220 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3631908104658583, - "percentile_inc_nulls": 0.5067618332081142, - "sum_tokens_in_value_count_group": 211, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 211 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3581876196553925, - "percentile_inc_nulls": 0.5028866305508324, - "sum_tokens_in_value_count_group": 196, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 196 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.35328653477983407, - "percentile_inc_nulls": 0.49909051366206647, - "sum_tokens_in_value_count_group": 192, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 192 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3487428206764518, - "percentile_inc_nulls": 0.4955711969631065, - "sum_tokens_in_value_count_group": 178, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 178 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3442246330567964, - "percentile_inc_nulls": 0.4920716517062754, - "sum_tokens_in_value_count_group": 177, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 177 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3397574984045948, - "percentile_inc_nulls": 0.4886116493337024, - "sum_tokens_in_value_count_group": 175, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 175 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3309763880025527, - "percentile_inc_nulls": 0.4818102732413302, - "sum_tokens_in_value_count_group": 344, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 172 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3266113592852584, - "percentile_inc_nulls": 0.47842935663727315, - "sum_tokens_in_value_count_group": 171, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 171 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3182386726228462, - "percentile_inc_nulls": 0.47194432361896477, - "sum_tokens_in_value_count_group": 328, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 164 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.31410338225909384, - "percentile_inc_nulls": 0.4687413499940686, - "sum_tokens_in_value_count_group": 162, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 162 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.310044671346522, - "percentile_inc_nulls": 0.46559769069555934, - "sum_tokens_in_value_count_group": 159, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 159 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.306037013401404, - "percentile_inc_nulls": 0.4624935742813081, - "sum_tokens_in_value_count_group": 157, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 157 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.3020804084237396, - "percentile_inc_nulls": 0.45942900075131476, - "sum_tokens_in_value_count_group": 155, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 155 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2982769623484365, - "percentile_inc_nulls": 0.45648305587409543, - "sum_tokens_in_value_count_group": 149, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 149 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.29449904275686023, - "percentile_inc_nulls": 0.45355688243900505, - "sum_tokens_in_value_count_group": 148, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 148 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.29074664964901087, - "percentile_inc_nulls": 0.4506504804460437, - "sum_tokens_in_value_count_group": 147, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 147 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2870453095086152, - "percentile_inc_nulls": 0.4477836213373404, - "sum_tokens_in_value_count_group": 145, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 145 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.28344607530312704, - "percentile_inc_nulls": 0.44499584799715286, - "sum_tokens_in_value_count_group": 141, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 141 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.27994894703254625, - "percentile_inc_nulls": 0.44228716042548144, - "sum_tokens_in_value_count_group": 137, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 137 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.27647734524569245, - "percentile_inc_nulls": 0.43959824429593897, - "sum_tokens_in_value_count_group": 136, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 136 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.273107849393746, - "percentile_inc_nulls": 0.4369884139349124, - "sum_tokens_in_value_count_group": 132, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 132 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.26647096362476064, - "percentile_inc_nulls": 0.43184783898137535, - "sum_tokens_in_value_count_group": 260, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 130 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.26317804722399485, - "percentile_inc_nulls": 0.4292973229467357, - "sum_tokens_in_value_count_group": 129, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 129 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.25993618379068284, - "percentile_inc_nulls": 0.4267863497963541, - "sum_tokens_in_value_count_group": 127, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 127 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2569240587109126, - "percentile_inc_nulls": 0.42445331962513344, - "sum_tokens_in_value_count_group": 118, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 118 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.25398851308232295, - "percentile_inc_nulls": 0.42217960378029973, - "sum_tokens_in_value_count_group": 115, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 115 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2512827058072751, - "percentile_inc_nulls": 0.42008383091462687, - "sum_tokens_in_value_count_group": 106, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 106 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.24862795149968087, - "percentile_inc_nulls": 0.4180276009332121, - "sum_tokens_in_value_count_group": 104, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 104 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.24599872367581366, - "percentile_inc_nulls": 0.4159911423939262, - "sum_tokens_in_value_count_group": 103, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 103 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.24339502233567323, - "percentile_inc_nulls": 0.41397445529676935, - "sum_tokens_in_value_count_group": 102, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 102 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.23308232291001918, - "percentile_inc_nulls": 0.4059867926766578, - "sum_tokens_in_value_count_group": 404, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 101 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2305807275047862, - "percentile_inc_nulls": 0.404049191348017, - "sum_tokens_in_value_count_group": 98, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 98 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2281046585832801, - "percentile_inc_nulls": 0.40213136146150497, - "sum_tokens_in_value_count_group": 97, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 97 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2256796426292278, - "percentile_inc_nulls": 0.40025307445925107, - "sum_tokens_in_value_count_group": 95, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 95 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.22088066368857695, - "percentile_inc_nulls": 0.39653604333900117, - "sum_tokens_in_value_count_group": 188, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 94 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2185067007019783, - "percentile_inc_nulls": 0.39469729922100516, - "sum_tokens_in_value_count_group": 93, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 93 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.21618379068283344, - "percentile_inc_nulls": 0.39289809798726716, - "sum_tokens_in_value_count_group": 91, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 91 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.21393746011486914, - "percentile_inc_nulls": 0.3911582110799162, - "sum_tokens_in_value_count_group": 88, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 88 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.21171665603063183, - "percentile_inc_nulls": 0.3894380956146941, - "sum_tokens_in_value_count_group": 87, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 87 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2095213784301212, - "percentile_inc_nulls": 0.38773775159160107, - "sum_tokens_in_value_count_group": 86, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 86 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.2052329291640077, - "percentile_inc_nulls": 0.384416149313931, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 84 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.20321633694958519, - "percentile_inc_nulls": 0.3828542053857409, - "sum_tokens_in_value_count_group": 79, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 79 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.20122527121888956, - "percentile_inc_nulls": 0.38131203289967974, - "sum_tokens_in_value_count_group": 78, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 78 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1993363114231015, - "percentile_inc_nulls": 0.3798489461821345, - "sum_tokens_in_value_count_group": 74, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 74 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.19749840459476709, - "percentile_inc_nulls": 0.37842540234884736, - "sum_tokens_in_value_count_group": 72, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 72 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.19568602425015957, - "percentile_inc_nulls": 0.37702162995768906, - "sum_tokens_in_value_count_group": 71, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 71 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.19211231652839822, - "percentile_inc_nulls": 0.3742536280596307, - "sum_tokens_in_value_count_group": 140, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 70 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.18858966177409064, - "percentile_inc_nulls": 0.3715251690458302, - "sum_tokens_in_value_count_group": 138, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 69 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1868538608806637, - "percentile_inc_nulls": 0.370180710981059, - "sum_tokens_in_value_count_group": 68, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 68 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.18343331206126356, - "percentile_inc_nulls": 0.3675313377357744, - "sum_tokens_in_value_count_group": 134, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 67 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1817485641352904, - "percentile_inc_nulls": 0.36622642255526117, - "sum_tokens_in_value_count_group": 66, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 66 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1754179961710275, - "percentile_inc_nulls": 0.36132310490727193, - "sum_tokens_in_value_count_group": 248, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 62 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.17386088066368854, - "percentile_inc_nulls": 0.36011704693740365, - "sum_tokens_in_value_count_group": 61, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 61 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1723292916400766, - "percentile_inc_nulls": 0.3589307604096643, - "sum_tokens_in_value_count_group": 60, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 60 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.16788768347160177, - "percentile_inc_nulls": 0.3554905294792202, - "sum_tokens_in_value_count_group": 174, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 58 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.164977664326739, - "percentile_inc_nulls": 0.35323658507651545, - "sum_tokens_in_value_count_group": 114, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 57 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.16216975111678367, - "percentile_inc_nulls": 0.3510617264423267, - "sum_tokens_in_value_count_group": 110, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 55 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.16079132099553284, - "percentile_inc_nulls": 0.34999406856736126, - "sum_tokens_in_value_count_group": 54, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 54 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.15808551372048496, - "percentile_inc_nulls": 0.3478982957016885, - "sum_tokens_in_value_count_group": 106, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 53 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1567581365666879, - "percentile_inc_nulls": 0.3468701807109811, - "sum_tokens_in_value_count_group": 52, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 52 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.15545628589661775, - "percentile_inc_nulls": 0.3458618371624026, - "sum_tokens_in_value_count_group": 51, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 51 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.15162731333758772, - "percentile_inc_nulls": 0.3428961208430543, - "sum_tokens_in_value_count_group": 150, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 50 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.14912571793235485, - "percentile_inc_nulls": 0.34095851951441336, - "sum_tokens_in_value_count_group": 98, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 49 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.14667517549457565, - "percentile_inc_nulls": 0.3390604610700304, - "sum_tokens_in_value_count_group": 96, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 48 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.14427568602425012, - "percentile_inc_nulls": 0.33720194550990545, - "sum_tokens_in_value_count_group": 94, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 47 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1431014677728143, - "percentile_inc_nulls": 0.33629245917197204, - "sum_tokens_in_value_count_group": 46, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 46 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.14195277600510525, - "percentile_inc_nulls": 0.33540274427616745, - "sum_tokens_in_value_count_group": 45, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 45 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1385832801531589, - "percentile_inc_nulls": 0.332792913915141, - "sum_tokens_in_value_count_group": 132, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 44 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.13638800255264838, - "percentile_inc_nulls": 0.33109256989204794, - "sum_tokens_in_value_count_group": 86, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 43 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.13317166560306315, - "percentile_inc_nulls": 0.3286013681837954, - "sum_tokens_in_value_count_group": 126, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 42 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.13107849393746007, - "percentile_inc_nulls": 0.3269801099292182, - "sum_tokens_in_value_count_group": 82, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 41 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.12903637523931077, - "percentile_inc_nulls": 0.3253983945588991, - "sum_tokens_in_value_count_group": 80, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 40 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.12704530950861515, - "percentile_inc_nulls": 0.32385622207283804, - "sum_tokens_in_value_count_group": 78, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 39 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.1251052967453733, - "percentile_inc_nulls": 0.3223535924710348, - "sum_tokens_in_value_count_group": 76, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 38 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.12038289725590301, - "percentile_inc_nulls": 0.31869587567717195, - "sum_tokens_in_value_count_group": 185, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 37 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.11946394384173575, - "percentile_inc_nulls": 0.3179841037605283, - "sum_tokens_in_value_count_group": 36, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 36 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.11499680918953414, - "percentile_inc_nulls": 0.3145241013879553, - "sum_tokens_in_value_count_group": 175, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 35 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.11152520740268024, - "percentile_inc_nulls": 0.3118351852584127, - "sum_tokens_in_value_count_group": 136, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 34 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.10899808551372048, - "percentile_inc_nulls": 0.3098778124876429, - "sum_tokens_in_value_count_group": 99, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 33 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.10409700063816207, - "percentile_inc_nulls": 0.306081695598877, - "sum_tokens_in_value_count_group": 192, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 32 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.10093171665603062, - "percentile_inc_nulls": 0.3036300367748823, - "sum_tokens_in_value_count_group": 124, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 31 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.09786853860880662, - "percentile_inc_nulls": 0.30125746371940365, - "sum_tokens_in_value_count_group": 120, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 30 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.09268666241225276, - "percentile_inc_nulls": 0.297243860967219, - "sum_tokens_in_value_count_group": 203, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 29 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.08982769623484366, - "percentile_inc_nulls": 0.29502945944877224, - "sum_tokens_in_value_count_group": 112, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 28 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.08638162093171664, - "percentile_inc_nulls": 0.2923603147613587, - "sum_tokens_in_value_count_group": 135, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 27 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.08306317804722396, - "percentile_inc_nulls": 0.28979002728459013, - "sum_tokens_in_value_count_group": 130, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 26 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.08051052967453731, - "percentile_inc_nulls": 0.2878128830716913, - "sum_tokens_in_value_count_group": 100, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 25 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.07622208040842371, - "percentile_inc_nulls": 0.2844912807940211, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 24 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.07328653477983404, - "percentile_inc_nulls": 0.28221756494918737, - "sum_tokens_in_value_count_group": 115, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 23 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.06935545628589657, - "percentile_inc_nulls": 0.2791727628613231, - "sum_tokens_in_value_count_group": 154, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 22 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.06506700701978307, - "percentile_inc_nulls": 0.275851160583653, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 21 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.060472239948947015, - "percentile_inc_nulls": 0.272292301000435, - "sum_tokens_in_value_count_group": 180, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 20 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.05465220165922147, - "percentile_inc_nulls": 0.26778441219502547, - "sum_tokens_in_value_count_group": 228, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 19 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.050976388002552664, - "percentile_inc_nulls": 0.2649373245284511, - "sum_tokens_in_value_count_group": 144, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 18 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.04533503509891512, - "percentile_inc_nulls": 0.2605678358179445, - "sum_tokens_in_value_count_group": 221, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 17 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.043292916400765824, - "percentile_inc_nulls": 0.2589861204476255, - "sum_tokens_in_value_count_group": 80, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 16 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.03793235481812385, - "percentile_inc_nulls": 0.25483411760053776, - "sum_tokens_in_value_count_group": 210, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 15 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.033643905552010245, - "percentile_inc_nulls": 0.25151251532286767, - "sum_tokens_in_value_count_group": 168, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 14 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.029329929802169752, - "percentile_inc_nulls": 0.24817114160306852, - "sum_tokens_in_value_count_group": 169, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 13 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.024735162731333804, - "percentile_inc_nulls": 0.24461228201985052, - "sum_tokens_in_value_count_group": 180, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 12 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.020804084237396325, - "percentile_inc_nulls": 0.24156747993198624, - "sum_tokens_in_value_count_group": 154, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 11 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.01850670070197835, - "percentile_inc_nulls": 0.23978805014037718, - "sum_tokens_in_value_count_group": 90, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 10 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.015749840459476694, - "percentile_inc_nulls": 0.23765273439044643, - "sum_tokens_in_value_count_group": 108, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 9 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.013707721761327396, - "percentile_inc_nulls": 0.23607101902012728, - "sum_tokens_in_value_count_group": 80, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 8 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.01084875558391829, - "percentile_inc_nulls": 0.23385661750168052, - "sum_tokens_in_value_count_group": 112, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 7 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.007938736439055516, - "percentile_inc_nulls": 0.23160267309897586, - "sum_tokens_in_value_count_group": 114, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 6 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.006024250159540556, - "percentile_inc_nulls": 0.23011981493930167, - "sum_tokens_in_value_count_group": 75, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 5 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.004084237396298707, - "percentile_inc_nulls": 0.22861718533749853, - "sum_tokens_in_value_count_group": 76, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 4 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.00255264837268665, - "percentile_inc_nulls": 0.2274308988097592, - "sum_tokens_in_value_count_group": 60, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 3 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0.001735800893426953, - "percentile_inc_nulls": 0.22679821266163158, - "sum_tokens_in_value_count_group": 32, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 2 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 0, - "percentile_inc_nulls": 0.22545375459686035, - "sum_tokens_in_value_count_group": 68, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 1 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "percentile_ex_nulls": 1, - "percentile_inc_nulls": 1, - "sum_tokens_in_value_count_group": 2231, - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value_count": 2231 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "percentile_ex_nulls", - "type": "quantitative" - }, - { - "field": "percentile_inc_nulls", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "percentile_ex_nulls", - "sort": "descending", - "title": "Percentile", - "type": "quantitative" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v5.json", + "data": { + "values": [ + { + "cartesian": 1279041753, + "cumulative_rows": 243656, + "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99981. This represents the reduction in the total number of comparisons due to your rule(s).", + "row_count": 243656, + "rule": "l.first_name = r.first_name and l.surname = r.surname", + "start": 0 + }, + { + "cartesian": 1279041753, + "cumulative_rows": 268697, + "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99979. This represents the reduction in the total number of comparisons due to your rule(s).", + "row_count": 25041, + "rule": "l.surname = r.surname and l.dob = r.dob", + "start": 243656 + }, + { + "cartesian": 1279041753, + "cumulative_rows": 298602, + "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.999767. This represents the reduction in the total number of comparisons due to your rule(s).", + "row_count": 29905, + "rule": "l.first_name = r.first_name and l.dob = r.dob", + "start": 268697 + }, + { + "cartesian": 1279041753, + "cumulative_rows": 307023, + "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99976. This represents the reduction in the total number of comparisons due to your rule(s).", + "row_count": 8421, + "rule": "l.postcode_fake = r.postcode_fake and l.first_name = r.first_name", + "start": 298602 + } + ] + }, + "encoding": { + "color": { + "field": "rule", + "legend": null, + "scale": { + "scheme": "category20c" + } + }, + "order": { + "field": "cumulative_rows" + }, + "tooltip": [ + { + "field": "rule", + "title": "SQL Condition", + "type": "nominal" + }, + { + "field": "row_count", + "format": ",", + "title": "Comparisons Generated", + "type": "quantitative" + }, + { + "field": "cumulative_rows", + "format": ",", + "title": "Cumulative Comparisons", + "type": "quantitative" + }, + { + "field": "cartesian", + "format": ",", + "title": "Cartesian Product of Input Data", + "type": "quantitative" + }, + { + "field": "reduction_ratio", + "title": "Reduction Ratio (cumulative rows/cartesian product)", + "type": "nominal" + } + ], + "x": { + "field": "start", + "title": "Comparisons Generated by Rule(s)", + "type": "quantitative" + }, + "x2": { + "field": "cumulative_rows" + }, + "y": { + "field": "rule", + "sort": [ + "-x2" + ], + "title": "SQL Blocking Rule" + } + }, + "height": { + "step": 20 + }, + "mark": "bar", + "title": { + "subtitle": "(Counts exclude comparisons already generated by previous rules)", + "text": "Count of Additional Comparisons Generated by Each Blocking Rule" + }, + "width": 450 }, - "y": { - "field": "value_count", - "title": "Count of values", - "type": "quantitative" - } - }, - "mark": { - "interpolate": "step-after", - "type": "line" - }, - "title": { - "subtitle": "In this col, 11,403 values (22.5%) are null and there are 537 distinct values", - "text": "Distribution of counts of values in column substr(dob, 1,4)" - } - }, - { - "data": { - "values": [ - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1862", - "value_count": 2231 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1860", - "value_count": 1753 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1861", - "value_count": 1751 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1859", - "value_count": 1616 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1857", - "value_count": 1599 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1858", - "value_count": 1594 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1856", - "value_count": 1362 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1855", - "value_count": 1299 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1851", - "value_count": 1204 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1850", - "value_count": 1164 - } + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAACjCAYAAAA0L44AAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QX8ZUX9//EBJAQUCQUEEQQMuktSurtEurtEOqV+KCCd0kh3SKM0SHdKCAhSiiil+H88x/98PXv3nHvvud/du3fvzjwe+9jd7/eciffMmXnN5zMx2n/+85//hByyAlmBrEBWICuQFcgKZAWyAh0qMFoGyg6Vy69lBbICWYGsQFYgK5AVyApEBTJQ5oaQFcgKZAWyAlmBrEBWICswKAUyUA5KvvxyViArkBXICmQFsgJZgaxABsrcBrICWYGsQFYgK5AVyApkBQalQAbKQcmXX84KDE6Bv/3tb+Gdd94JU089dfjSl740uMhGwNuffPJJ+Mc//hEmnnjiytTTvr/RRhttmObws88+Cx9//HEYZ5xxwthjjz1U3K1+Pywz024ZP/300/Daa6+FKaaYIow77rjDMgvDNa5uatlpQT744IPwwgsvhK9//ethqqmmCmOMMUanUeX3QgjN9usO62+5leCNeSlLv91vsFVarX7/4YcfRm0mmGCCVo/W/n2Z5nW17pYOZYXLQFm7yvMLWYHBK/Dcc8+FzTffPNx5550Dka211lrh5JNPDhNOOOHgE2gRA4i96qqr4sC71FJLdZTexhtvHM4666zwjW98I7z99tulcbz11lth8sknj7/bdNNNw+mnn940LXm5+eabw8MPPxxmn332oZ4t/v6ee+4J2223XTjwwAPDfvvtFx5//PHwwAMPhHnnnTfMPPPM4YQTThji9x0Vss2X1l577XDxxRfH+lxwwQWHeuuvf/1r+OlPfxp+/etfD/xu7rnnDmeeeWaYccYZ20xlxD3WTS3rlvLVV18Nm2yySbjtttsGXv3Od74Tjj/++LDsssvWjW64P3/DDTeE119/Pay66qpNJ2JlGfnXv/4VxhxzzPirRvgwuTJJafY9tlu4zz//PIw11liVjw/2cJivfvWr4e9//3tTaE2J33TTTWHppZceKi/zzTdf+L//+7+w8MILx9+lOOV9MJPz+++/P4h7o402it9nY0iAZ3LYTKN2tS4+p++4++67h3hVfSr/0Ucf3VZ7adUXdZKvdt/JQNmuUvm5rMAwUgBkffe7340d6le+8pWw2mqrhd/+9rfhL3/5S/z5U089NagOsZ1sPvjggwHQGNQuv/zydl4Z4hl5nXTSSWP+f/nLX4YtttiiNI5f/epXYeeddx74nTKPP/74lektvvjiEQyqgLL4exapCy+8MKy44orxjw53l112Cccdd1wESfEUf1+7kDVeSJ34HXfcERZaaKEh3vz3v/8dllhiifC73/0u/vzHP/5xePTRR8PTTz8d/8+qNt1009VIrfuPdlPLOqUrfktTTjllMMlhAT777LNjNLfffntYdNFF60Q53J9daaWVwjXXXFPZxptloBlQ/vOf/wzjjTfeMAFKFulk9V9nnXWG6I9Yfk0kBxMSlLUDpgkogdUKK6wQvvjii/DSSy8NTMZ5SID0sAJKE9Uf/vCH8Ts9//zzhyrmDjvsEHhmTjzxxGHeTyegBJC8GOpB+fW3fmYy0io064tavTvY32egHKyC+f2sQE0FwNdpp50WllxyyXD11VdHl62BgqXq+eefD9dee21Yfvnlw7PPPhutWiDly1/+clhkkUUivLEqmjn7s/3224c111wzvPvuuxFMv/Wtb8VO8NJLL40WuuWWWy784Q9/CA899FAAY3vuuWcYffTRw3rrrRdnwoDQIHzMMccMVYrrrrsuHHzwwRFwuRHB50EHHRRd9Ouvv37s0L3PCnTRRReVqqBMwGmGGWaIf5977rnhJz/5ycCz8rDPPvuEF198MXaYjzzySBxoE1A2+/3LL78cACvrFLjdaaedon6g/Gc/+1m09KbfszbQGHQaDOVljjnmCFtuuWW0FBvgaMXiwOIBSJTNe5tttlnMLw333Xff+Pe3v/3taIncY4894gDerBNXH8osPgMhLQVpn3rqqWH33XcPhx9+eNP6Zn3dcccdo+XkvffeC7feemu04P785z+PdXLXXXeFOeecMw5y3/zmN2O7eOyxx8KGG24YzjvvvPDmm28GYLDXXntFUABi2oK2xZqzwAILRAgXh/yecsopMc+33HJL1HaxxRYbQktt4KSTTgqXXXZZHFy1TeWYdtppY9mq2o6Bv1nbnGaaaWL7ahZ3saGxep9xxhmxPapXbVs44IADIrSpUxqZyPjZlVdeGX8P+n1Lk0wyScv8ABh6sK6zLNLId6H9PPnkk2GbbbaJVn6D/n333Ret5BdccEH8/kwWZp111vCjH/0ofstHHXVUfFd+QMuRRx4Zv42qvMmrvoLn4qOPPortUR0KjTBWBMptt9021iO3rHrdYIMNosWWFV1/oX0IdGPhVb4f/OAHA9IWgVL9li0pYaHTbk1I33///egZ8B2IX6CNvLL40UB/J139XQLKX/ziF7GutUE6auONIQFlcfJrkub7pqP+iYaNQNmsDUqDh0b66sikY5VVVgnrrrtuaARKXgX922STTRbrYuWVVw60NsnSnqr6WW1ZUHfKqP58c6leUlssljcB5e9///sBy2vRQqstaufN+v7GvkifI11xKoNy6scGY8WtGvIyUNaEgfx4VmCwCiTI0hHpRFMorn0BiNx2OsxZZpkldkZ//OMfI7wAKYPh/vvvHwd5nTBgMKMFU9zprHRm0oJ4DNLi0qEb+MGMDld8W2+9dRzQikFnCUAFgyEo9b7BQpriBhMJpo499tihZElWUJ39IYccEoFUXGBIYEkCZgLrkvWk0hAApXWZzX5fdHkDBAO291heWSqBV9ElzjWeygleb7zxxpgWCKNBca0SWBCX8MYbb0SoAmqgQTmABU2SW6wZUMoLkKWdAb0YUp3La7P6lpdk+aSV9FNQB/IlpGUFoDgtp0gw7/cGeHUBJIAmqJloookifCVXKTciUE5BnOC1qKV2a5AUDxcjS7CB1iDZrO0of7O2qR01i7uxkQFY3wWgVpaqYDnJJZdcEr8P5QV+/m1iof6rvhX58XuAZkJgwOdNEIAI3YvpqhsQ/v3vfz8+T5NkYTJJYU3TBr3Hqq5NHnbYYZV5u+KKKwYATX5NmFKoAkq/l/b0008/0IZNLlj0gZN2BjJSn6He/bu45rQIlOq/+DvWdm0ZaJlsiY8GJouCySG4Uze+Z+2WRd6/0+Sp+K15N7l5y+oxARVtE6yqN9+v79QETygCpYlSVf+lDeqDlEOgSfIemMwD1WShBF/aDj2BMeguuryBeLO2A+KShbzYp4jPWszGkICSliaPYN44AUpT32kC2azvL/ZF0tQW9Rfyoc/1vejvtOthHTJQDmtFc3xZgRYKpA7p3nvvjZ1GWWDJ2HXXXQcGaTPyeeaZJw4QQMCA0A5QGrRYhFghDEgJGlq5vJNbLgErwE2WtVdeeSXO0IGKTopbsSzoaMEDQAEj3HECILYJyUAKcFZfffUIJAbLtJ5QObl3mv2+cQ1lo8u7uO5v7733HpiRG4B0tAYP+hio/vSnPw0MFAY3FjtWHR07Cxg9DKAsWgYbdcDS5N8GwWZAyXIMDFhzDKid1DewNjDLNwsYbbj/DOYsQQY7VkTtSbtKQCnPLLjagME41T9tTFJoDzbWWGONmC31CqIApfplkaFF4xrKBHLqlYYAiRXLACxOgFrVdljltY2qttks7rR+UF59E8nKkpYNpHadNFY/AMJkS3jmmWdiPsGEgRVYsHA1y8/3vve92DZZ4mabbbZoEWYlAoasbgkopWOyIT6woy2bhLAGmbz5Xr1TdHmbqDTLmzZjTbG2zQLPom0yKDQDSvkFlNYWs9Bqq+rUdwcuAJk2wzvBQ+CZYigCZWN73W233cIRRxwR65ierNOs/yzg4gbUvCvaRnIb+z+vgfS1r8Y+kMfkN7/5TTjnnHPiJKUYqtZQegaw+xYtoykCpW+uWRvUt5oQ05OHwvchbfGBRnVanLj5RkzshTKgrGrLJrms0PoQWpvUJEBtBpSNmgNQfaKlMXWAkidCevoOExoTVxNuQfriHZYhA+WwVDPHlRVoQ4E0QKW1fukVAxwrApe2gcCsVOeb3FNgREfOqiEUgZIVTQfYaKEEczpynQf3V5oZtwLKNKgX1zJy9fk/gDQQNgNKGwQ8wyphUDGQcBkCDxYyoMi6AXhSp65MyXorHRDT7Pd1gBJUWQ4gcBsZFGjNWiVw3yW3HlDhOuUmMqCrB4OOgRToF0M7QMmCrB4b16uyGrMYfO1rX4sW52b1zTphUEhWQPqoj7SuikucW9FgATgTUBrItTeWsbR2VVnBj0E1WTZTmTynXYKPtNnJ7xqBEmgD7hS0K3XqvVZt54knnogAV9U2m8Xd+HmpUxCTNkOZaIGnP//5zxHq6EH7+eefv/TL5DrURqvyYzNV1W5x4LPVVltF+FA3rGKCdgWQkiUzJeybpmkRKNVFs7yB0QSAQEebMSkQmrm80ya5BGPA17/1GYCEq5eVFlSZkDRuDCsCpTSLLm/LQvwfZIGVotVUvgCwsvtW0qSiUfwEZWkDTerb9BEsosWQypCgze/0dyZP2m9aRlMESm1ef1rVf/kmfTNpcllML7m8iz8rxlMGlFVtOfVnwJulsLj2vBlQ6vOVQT1qo9pAmpA2AmVj31+c3JpcVk1ih8fa7QyUbQBAfiQrMCwVSCBlINJZWldmEGKFMrj50FnsDCbFndHLLLNMHCQBmIEOKOpcPMdKZlBrBEqgAhzqAiVrFzdQ6qy5XqzjFNJmkmZAmSxiZbqxqnGLATYdsfzJJysHwKOBDty6pWa/rwOUOlVrtwQDjfVNaeBIkN24UaAIlCxNQICVwvo4LsJknWploWRBSVYXnb+4lJU1j+WKxqy+zeobTHQClGmAThMIZVX+ZG02OVCP4F8oAmURBopAqd2x4qon8K2dWJ8nAFiQ1aztsGABuLK2acBtFrdBthiSFRlo+2ZSHRuQ5QlQqi+WHWUHEICIxV2bFp/fV+XHd0Mb+WLRnmmmmWK5Lc9IP/cdJ9CXt2SVshwC3KoDlskyoARBzfJmwuBbYNUFVGki0Qwo/Y5lSv7Spjjpg0n1oy1px4Cq6DIu6trOGkoTGHGYgGjf1n2rO0AJ6NVNcnEDIs+Z9Kqbxm+tHaBsXEMp79JP7agIlL7NZm3QO6yG119/fVwDbjLgWzQRSy5v4K5eWem1I3BmclEGlFX9bFonndau8ixIr5XLu7iG0vp21unUxkwGmvX9RaDkDbKO2oRUeROMm4zweBUt/sNijMtAOSxUzHFkBWooAB7Sgu20qSWtrdNxcG9ZB2lGK4BKFj8uIQHMGBgNMN63kBxkCu0Cpc0vOmRwp4PiIioGLj0uGvFb0waaDBY6VpYN+WsGlNyxOmjWSB2awBphIDMgsyjp1NKRHzYqGRzELRg4uWSb/b4RKAGEwcogzBIEoorr/gzw3D7yDea4uAx0jeu6kuWnCJSsxjZ4sIqwwrEWyGtyMTdzeYNHg28Cca5nAwZIoYeyAuxm9c3y1glQGhSVW31KD+yBHK57dQt2uePTrl2a01EZq4CSi9SxTMpjQiPfdBa/fBqcm7UdcFoFcCZKzeLWXouhuA5XeWirXpLWCQTo7Ge08I2kjS0An5WuGVAmOAWO4rf2jFXOpo60BKIIlLQzEaK1NXHWq2nzybWclkD41qXrW6nKG+uU95TNRJTLNK2fbebyVkbfgXqVNk1smhGAhPW/QqOXJGlbBEptvNFKK19c3NouPbQbkCOY9LKe00bQB4BMgJe8E50AJQ1Sf2DSnSyjtAPJRaDUrpu1QSCp/6ST50CjiZZ+iXciraH0c5MOmlsvqZ+qA5TJuirvoE6bEeoApXXJYDpZwdNSnaq+v9gXseCnscZ3b6Lh+9b3awNpE1uN4avpoxkoh5WSOZ6sQA0FACFXcNFdZLDi9kxuWAOdzi5tVNGBGPwtNgeY1qoltxoLAUtXI1Bav2NTiDh0uKkjM2AYbEGcwZb7qhhYnkBZcW2VTsiAZlDnwgFmxU026X3WCVY4wdpEVokUkkXJYGtTR3EDiHhtxNHRJRdTs98noExWWmvX5AfYKLP4gE76PSswuLW2KgW6yYf1nY2DHOiwzlOdgPpk9fBugjR6miCAhmbnUOrIDUbFtOmuztLarGb1DebBSQKXNCFILm9uZPE0rqGUZ4O5YL2r+jPQW1N66KGHDvzcJEVbtKYQiIPsMqBMWhoogVax/ZqYsM61ajtpU05V22wWd9knpg2rR3+nYDLAlUt3SwBMgDyTQEq90Z6erfIDllia0oROGsniaB0il3URKNOJBQBF8J17Ny2PYBH1MwFgAJaqvFnTqq2pN0E6CUqqzqFUNq7WNDkDrrRO8KC9p82AvlU7fxtDq3MobbJh/fI961t84yYC+qNkDU1rmlPc+isTurJvLUF4WvNbzE/VGkr9F9jmORCKQOlbbtZ/sU77pot16nvQbuimTp1yoI34Lq0xTtb9tHnOcoW0KaeqLZtM+mZ8S4I46V91VmjalFM8fizlx/vWQPIUNev7G8+hNLG35Cctb9Fva0/+HtYhA+WwVjTHlxWooYAO3WDOApbckMXXdUisPiwEZpqNlgKQJHRyGLoByfs2NuiMy4IBTfpAL0FijeK19Wi6LUhHXTZjbvX7Rr1YuSwjqLqJRqfMMkVz6xfrBJYKWlXp1SouZQEaJg2sB43lbVXfreJPv09rKFlyAKR6bKw/dW9iMph6NbGQZ8s1GjUZbNtpFneZDuDRej/WqrIjUbR39Sdf1nnWPTZFu/G9aqetbjmSlu+GLmVuRbpbXmBds9+3yps+wjNpA0877YAe6XzGMkArQnA78ZU9Y2LKSkzPshtdlFF7d7lBslh2mlYn77Vqg5Y+0Fb+06bBTtKpegcY0sdmLpDPMsoibXkAS+NgQp2+P/UrYFS/U/f2nXbzmYGyXaXyc1mBrEBWYCRRoAiUvX5o+kgiaV9kM1kCFSatH+yLgvVoIawX5iUQiscGpaPKejTbHWcrA2XH0uUXswJZgaxAbyrAdWcJAJdcuvqyN3Oac9VNBWz8sjzC+sHG3dTdzMeolJYNipaS0J2XiXXS+tN+DBko+7FWc5myAlmBrEBWICuQFcgKdFGBDJRdFDsnlRXICmQFsgJZgaxAVqAfFchA2Y+1msuUFWihgF2ONgYUN/NYwO5GHZuDRsQC+l6uNIva627i6OXyjMp5G5XrUtltBCvbDFY8Y3FUbh/Ds+zuPHfBgLNQ+zFkoOzHWs1lygq0UMBxRNbyOA7DbkHH+BTvmXYcjYNwB7MDuCoLjsFwtEyzu5eHVwU6T9ORG+kmkXbTsYPZGXXOk+yHYLOA21zq6jC8y95p/bSbL0cJOd6m8ciddt/vleccH+aYKLuT6wRHytiw5W7yYhCPMxcdu9VrwTFEjuZKZ6WO6Pw5XsgJBOnu8jr5UQZrKR0z1I8hA2U/1mouU1agiQIGbefq6dgcH+EuXtcROujbkSjO7LNgH/S5HWJYB2cVso464LrbARQC6bJrz5rlpd+A0iRCPVfdJd/teknpdVo/7ea3X4DSxMYZjM6urRNGRqB03qUzH9PB/3XKOzyedTi7w9TPP//82tGzEDt31OTd4e/9FjJQ9luN5vJkBVoo4KYOlgiHfruxxYHX6c7n9GraIexgb4ccu9HDjQ3c4Y4ecbe1M+Zc0ejnLJkOgBavg3QNAmbhzl5j+XCQL4B0jl+6Ocfh2g7Qdng5ayiXO9D188Zz0pyp5/5dt20YTL0z++yzx9s5HJ6uc2d1cmvQXHPNFX9ud6W4nEtpIHUPuoOtE1A6MNrPXYUmOKTZnyWWWCIeii095xbakelwYoc5S9tB2aAYkLHkOsDZOZ2NoSx9VwO6Rs8ubPmml5srHAxtR7aDwp2l6EpE9yQ7YFkZBHcjyzvLonyIxzmT8ik+mjkQngUFmDn4mb5u2HAQuoHQbSluEXGAtOcuv/zyaKFmBXJ1oaUObgGyC9iEQv3Ll/MGpSsO6bByqSt5snxC+m5yEdqpz6p8FoHSbSzakTNDLTeQDxYeemtrDom2a9nvquKTH/WgHFy69JY/rkd1J07tSHBQuyOW6FkMNFJuZ/j5dhxm7lpQoSw/oKGZPlXtp6y88q2+xKnuHR6vrtx6os14R3ut0kXbVy6XACywwAKxPfNKlFkoxe+WG+84+BywOoDdla88Gqm8diw3Wueq2qRvptjuXKBQVn4TTNoqT7pX3OUEzkw0mfP9p2+5rC9SPu3WNyG4CEA7UfdV7btYx43fh8PHq+IrAqXvwpWaDgp3pu1uu+02sIO76jsYDJD2+uCWgbLXayjnLyswjBXQSaeByC0w7vht5vo0WLg9xWAGIg0yBh5wohNNd2MbiKzJBABm8M5fc2WYwckgaN2WgdjNHSwO7r91WLSbLtz+wa3lNhnuWNfDpQAUU1pA0YCmszdQyDfLhfKIU4cO9MTLtXnssceG6aefPkIC+HDQdAJKFoKdd945gong/2CZ1YcL0Hsste7SNUAZHN0q4o9B2sAMUlk7HWBcDMkS1pi+s+gMmDQAqm4iohuQohFwNUCBBVoAcemnq+scli1voNONK96VfzcviZv1wwQB8ANEN5fIC6s0yHGTEo2mnnrqAZe3eqC5gc5dw0ACJLJYu2cd1NBSOwDh4NEh0OJyywxrC0AFBYChVX3SqVk+U/3Ij7wAP2AsT66/pKnDy0GOctKrKj6HSisrCFG/yu7GEG0KrIub7gDVTSjaVtHt6+Brkyj1DLa1D+VU57Qty4/JRpU+Dravaj+N5ZUeWHStqu8q3aTlhhPpmpj5tkySqnRxg9Ntt90W277JmHoygSkDSm2KtuBNHWtfJpYmN9qPoA25qUufUQxVbVJ/UWx3JipV5fddaMvS9p61htL2x8RCe6zqi0x+fC8maYJJrTr3vVS177HHHnugCL6/Yj4dIF8VXxEItQcwCR5NiNWJ/Jp8VH0HJii+I/1X40UVw7ir73p0GSi7LnlOMCsw4hRIVzCybLHGgAXWDRBWFgycbvMAkEsttVR8RKeuszfItgJK6XkWqLC4ia/o8tYZ+7mBXIcORA3gxbMTwRKro0EFHIABg5LDga2HBJfpGkFWUNfYGZRAYAI9wAQuQGIroHSrBVgywBrU0zWHgNJgwfIqLpa6dOd64xV2Vem7lk8caSkByzA4shnKYE+HNHhPOumkERgM3kkDFhEAzTqY7k4GDQZA8AUiwYW8gXRaACDQQd9U78U1lODCulbX4hnU6QZOgSngStdvnn766fE6O2UGTECFhTq1KevKLKNoVZ/aULN8FoES4NDWZMQADbDlQ2DVNpDLT1V8oMi1d+lq0XTfuzbk3yxRoImVnXWa5bK4+Uq8LITpVhN1TwPtuCo/2kuVPr6Dqvaj/ovlpSfoMJliWQSUtNEeii7vqnxoW74THgLPsHK6ock3XwaUvmsTGkEdAi5WQm0BZGpT2iQt03Whqc8AlGVt0nKaYrtTF1Xl1w/pD7R19SE+t9jIk29ffVX1RausskolAFa17+JtRwko0/dhstAKKFlpAaG/06RUG9In8gpUfQf008c0Xks74kaFYZdyBsphp2WOKSvQ8wq479hglEDPgMlNzKKX7hBXCAMmywg3mc0zLDXJrWtAM2jqSItAmaw5yUJZ3PTBJSUeA3kRKFkWWAHBDAsRq5MBr9jZJ+hsFBcM2EzEMmAAZ9VLoMeVDT5Y0Iqh6FJttFCCKdYqZQfLCbLlEWQASjBjYGsMQGqmmWYa+HFV+n4O/riKBbCnrCzA3HXAMm0+YHUDy6y86a5uz8snd166w5jlmAXTnccgG/CwwlkPy3qcgLK4drQIlMmtDyS9w2prOQRXY7rvWl7BLosZ6xG90+Drd2CDPjRoVZ+ebyefja5BehTvDhdPupu+Kj4WTG00tQPuautG01WHrPXKIS0Tn8b2oiwmFcBVKLafqvyAryp9mrUfE4Di2jzAwc2rDpRTYDFuBMqqfJhEmHwUJzsmG9pBGVD6ntKk0TdoOQwABossnKCeTmWTT8+UtUnvFdsdy37V92M5iAmfcu+1115xGY32r7yAkpVa+yrri0yqigBISzDMQlnVvqv6BT9vBMpifKld+u7KrsIEku4Ir/oOUj+prk0m+ylkoOyn2sxlyQq0UEAnBkh0tOAhzZa5YYBLCtxLwMTvDWZFq4QOE4yBOYN1AotkyUtACQ6TC6oKKAEUS4g/IAfIWB8GBFIASixlBuo0sCoH9zVrJqsHtydItmaK1ZJVw7o6lg7B4GpgAQdFC6UBjvsJYBgwuW+BM7eetaNAUh5ZRgGT+FlruQ8Fz3ApW69YPAqkKn3WsBSP9xMocueystIuWeCAApBhfWkESnWTrCLAnfXJ+6zO4FwdgS+Th1ZAKf9u8DCpMHByFdKXdbS43g5w+L22ApjSUociUGoPrepT22snn41AyUXN4qWuBdY7bUKaVfHRT7tM7cBaW7qlXd4LLrhg1Fd9sUKyphUDDQBAOgFB/W+yySZx0lGVH5BQpU+z9gNQikAJ7FmOTfq0dXXq220Eyqp8sLKbFKTlEMoFoLlpy4CS3ukGF9+uNkFrbY2Gvg/WSpbwxgAoy9qk77kIlACz2fdjqQurujbo+7W+NQGl5Tl0LeuLWEx9x2npjomBfkFbq2rfRZhr3AwGKKviS+3ShNskxERQfyHo71gt3c9e9R0kr0aa1PfToJWBsp9qM5clK9BCAesMWQJYtFibBAOVQYd7UMecNq5wdVp7aMAFYlxVOkFruLhtDS5cUKwJwMyz3HatgNKAxuJgPaX1gTpvaYuLm5VrT3wppBm9AddAI+8rrLBCHCiUBUywCHDxGXS4CsGOtXDiZqVheRGngS8NcMoNxLhOL7vssripBDisvPLKsbwADTyADWACBA1Y4Jb1BkTKEzd72jiS8sziWJY+fZXRPcodhmx3AAAgAElEQVRgJl2RaFAycLYLlCwjBmZlBlnWiXGjcY+KAxQrL3cni6L6rbJQql/5MtirX+8azC0XAGCAhvVXe7FxgiWoCpiAdqv6tCmjnXw2AqX8qR/amVjIh7VqwKsqPoCmHoCwdaDW/2o/CShBMmhkzeZebVzTxjoIvljqTMBoaAIFKKvy4xuo0qdZ+9HGikCpjYM6cKQ+tBtrb7VHEzrl5xauyodvihWb54H1UJs1aaxaQ2mZibozebERR5l5KNJkRtuusqr5rsraJGgrtrs0Oaz6ftKSBDCcLKEJKE1yq/oiAGfyJF79k2/CJA1QVrXvtBlLuRqBMnlyyuIrtkswP9VUU8XNXdqPvkF9mMRVfQc0YL1Mk+1+GrQyUPZTbeayZAXaUMBsGrSxMAoGORbBa665ZuBt4MbdZMDmCrUTGmwIOkMdqMHX4JYW6LMsGIBbAaUF8wZL1gvWDusjWQ9BArABV0X3uzTBZ/H+W7AHxoAiK6H1fAYQLjHr+lgP5DO5j20GACNAj9sPEKTBTfzcoNbPsY7SxiBOA4Gr3gBjbaP8cTsmlzUQMXA3nt/nGKay9FktQA1IU1760p1lpgwoud4BbtGSacBkGZEngS4GW9ZU5aSvAD6ANhDkEkzl9ruiy9vkQP6T9Rdos5Ky/hkgUzoAmhVP2mXAxHJkjV2r+gRz7eSz8bw/G5BYn9W1ID8sfqxuVfFpj8pjwiDQElwmoAQBQMgkh5u3MSTLr0mDZQT0YK3zzVTlx2SkSp9m7aexvNonC7HAEq/+AJeJje9BfrVpm9/KdAE62qz3fLvaKihmoS2zUNIBWAnaKEt3Wk/KWm7CZzJQFgBlWZu0xKDY7rzb7PtJ9aHv4eIWfBdpKUhVX6Q+pWOyoB1rz74ZQFnVvovlSDql48TUe1V8xXrybQBm/ZcA2NWNvqTqOzCJMRlMVvNSQUfSH2agHEkrLmc7K9CpAjo87qDGMya5PEEEq0hxDaN00mzfIv/GI3LsXBUMOO0GHXdyCbGasijaySr+qsDSxrJp4Cve8NMsTWUCvtyiZUHawAAINQaWUWUzCDceY2TDDqhgHWUlrQpV6Rs4DfIG4ro38HgHWIBQA2njrUYsH4Ac1Kg3f6rKn/KtPuyyF7f3UrB+lObc+cCtUYcqTdupz07yqbzgQr2xYhXz0yw+ZVNPje1L/dDP8gDr9xoDK5k1iKzJ0gKoyUrq2Wb5adYu220/yqmtWHIhfe+pW20atPjm/LtZPqwxtrZY3bLkNQviNEFr/B5YRE0A0/FBjXG0apONz7db/rK8NuuL9F/0abyJpqp9t+qvquIrvgc+bbYD1Cz5KVT1a9qSdeQsp/0WMlD2W43m8mQFWijAesbqxl2rc8th5FIgDd7p/MyRK/e9k1trQVliwUeVtQhMm1CwpKdlEJYXsMaPCoGrnUYsvLRonGgmDXKbbK81sLCyvLIEtzM5ay/W3nkqA2Xv1EXOSVagawqYUbOwjYjrD7tWyD5NyHIDyxZYR3PoXAGub1ZoLvHk7i+LzZpi6+FY+rhS007ozlMeed7k0rWWkgu8aH1rLEFuk+3VKdc6K3m/frsZKNtrB/mprEBWICuQFcgKZAWyAlmBCgUyUOamkRXICmQFsgJZgaxAViArMCgFMlAOSr78clYgK5AVyApkBbICWYGsQAbK3AayAlmBrEBWICuQFcgKZAUGpUBbQOl4C9vcHSjrIFXb4Z3V1nif56Bykl/OCmQFsgJZgaxAViArkBUYKRVoCyjtgnOfruAwYYeVuqXC2VbOksshK5AVyApkBbICWYGsQFZg1FWgJVA6tNNhqO7pdLCwQ1Sdf+bO0+KdmqOuhLnkWYGsQFYgK5AVyApkBUZtBVoCpZsS3OTgGrF0s4VroNzf+8EHH7S8gWHUljeXPiuQFcgKZAWyAlmBrED/K9ASKElQvHszSeI+UNdQ5ZAVyApkBbICWYGsQFYgKzBqK9AWULon9KGHHgquqnLZ+uyzzx522GGHymuYRm1Jc+mzAlmBrEBWICuQFcgKjFoKNAXKP/7xj/HS+aowzTTThNFHH33UUiyXNiuQFcgKZAWyAlmBrEBWYAgFmgJlq8vL//a3v4WvfvWrWdKsQFYgK5AVyApkBbICWYFRWIGmQPnLX/4y2JRTFXbeeecw1lhjjcLy5aJnBbICWYGsQFYgK5AVyAq0tYbSbu4y1/dEE02UFcwKjHIKXHvttWGGGWYY5cqdC5wVyApkBbICWYGkwHe+850hxGgLKCeddNLwl7/8ZSgVs8s7N6xRUYHtrnhmVCx2LnNWICswiiiw3Q+nCt//xnjDtLT2ZDQCyDBN4P9H1k/p9HJZyvLWFlDuv//+wfWLwkcffRQuvPDC8K1vfSs8/PDD+aac4fFF5Dh7WoEMlD1dPTlzWYGswCAVyEDZWsBuwF430lDSTtLpGCgbpT3zzDPDJptsEt5///0w4YQTtlY+P5EV6CMFMlD2UWXmomQFsgJDKZCBsnWj6ATCWsc65BPdSKPrQHnNNdeETz75JJbUJp3zzjsvXHfddeHll18OU089dV2N8vNZgZFagQyUI3X15cxnBbICLRTIQNm6iXQD9rqRRteBsmwN5Q9/+MNw5513hrKjhf785z+HDz/8MHzve98bolZeffXV8MYbb4SJJ544Hjc0+eSTt661Pnni888/D7fffnuYY445wvPPPx8WWGCBPilZe8X4wx/+ENtD8Zipe+65J8w111wj3UkBGSjbq/P8VFYgKzByKpCBsnW9dQP2upFG14HylltuGbBQAkjrJ7///e9XgsD5558f7r///nDssccO1Mrrr78ed8ZefPHFcT3mVFNNFeadd96WtbbggguG3//+92GMMcZo+WwvP7DNNtvEch9yyCHh9NNPDwcddFDL7D711FPh5JNPDscdd1zLZ3v9geWWWy6W3S1LKWhHQHOyySbr9ewPkb8MlCNVdeXMZgWyAjUVyEDZWrBuwF430ugaUNrF7SxKhVpjjTUCq6QjU958883w6KOPhrPPPjuMN97QO8HKgBIY3n333cEGn6985SsRLr/44otw4403xs09RxxxRPjtb38bzjrrrPCNb3wjxu3fRx55ZFh55ZXDlVdeWVrDiy++eJhvvvkipM0555xxwxArmP8fffTR4Utf+lJwXuZGG20U9t5772g5vemmm8K0004bll9++XD44YeH6aabLlx22WVxPehhhx0WTjrppDDllFOGE044IVoU6wRLAYplYom86qqrwvrrrx++/vWvh0svvTRqcPXVVweQJe+PP/54OO2008KOO+4Y351//vlj2RdZZJH4O3ncfffdh8rGa6+9Fq/A/PKXvxxuu+224H51erEQb7vttlFvcZ1xxhlxM9VWW20VJphggvDAAw/E926++eYIdEBvs802i8C7/fbbx3pYaKGFwimnnBKtySlY7rDLLrvEKzjdkvSLX/wiTgqq6sD76pVlknXaUolWQKn+1IH8Kveaa64ZFl544WDZhbz72cwzzxyzVNR53333HaodaJtl+a1Tn2XPZqAcrIL5/axAVqCXFchA2bp2ugF73Uija0C5wQYbhHPPPXdAWVv+FTCFqmODyoCSe3OnnXaKbt999tknwh9rJwgCjyyWIOjee+8N3n/iiScisIw//vjhvffeC1VnXnLHr7feehGEQK+4F1100fDtb387wpKrIaX1zjvvhC233DI8/fTTwaYiAPXZZ5+F3/zmN/HdDTfcMILKuuuuG62oYAucAaF0veQ//vGPcPzxxw/V0rw/7rjjxp/LeyrT6quvHoH7008/DWuvvXZMA0DOM8884U9/+lO09M4666wRoO66665YZnAHHsGksh1wwAERgFP8xcRffPHFMP3008f8Wssq3rfffjuCNPijxZ577hmPagDlnlX2ccYZJ5bz1FNPjeC8xRZbxPwAaPUkTflQP55PAWgCROmBOfBnglFWByYQoB18vvvuuzE9E4dmQPnxxx/HuOigHBtvvHFgpTVBUA+AH3TPPffcQ7QdOitjYztQzrL8tu4qmj+RgXKwCub3swJZgV5WIANl69rpBux1I42uAaXBHYRwuf70pz+NVjCwAXYAHgArW0NZBpRPPvlktJABJxbDBJQsdRdddFE855KlkCUR/EiDdVH81h/6d1mQx4ceeiiC0V577RW++c1vRjAFWyx04OSoo44KDmcHtNbsbbfddhFMQCcLljIBV+l4Z7XVVotJbbrppoEVEPgJrGbiagy77rrrgKVW2VOZis8BSuBGM2VPQAnSZppppnDDDTeEtdZaK/zsZz8LK620UphlllmiJREQ3nrrraVlV8all146vPTSS/H3gJJV8Ac/+EEE92eeeSYC7pJLLhkBmrXVznyAzs2svP6AVQfXL7XUUjF/M844Y7BEAeinuMX/r3/9K2oNDMXvd/5fVgfWxwJPdSuAS9bZZkApDyye8saiu8wyy0RrdhVQFnUuy4P2Vpbf1l1FBsrBapTfzwpkBUZeBTJQtq67bsBeN9LoGlCCuQMPPDDst99+0fW92267NYW7VAV1gLK41pL1EISwinIHA9l2gPLZZ5+N1iuu5EkmmSRaw7iXWfoAJLdpAkpWzBVWWCGCJGgDsAkoVR53PphNwe/T0UiASlqNwXrSBLxlZfd8FVAW1xACR659IMdNzWrbCihZ5x577LGYJVZBmrEcAj4WUfllJQWU6VnWWhDLCsgqmIAS9IH5BNB+zqqbAmskyAbmIE8eE1A21gGrrp+l9Z8g2jKEVi5vEwsQeskll8T8geKvfe1rAxZKoAmitYti2wGUjXngli/Lb+uu4n9PmACZZBTDn767Up0o8rNZgaxAVmCkUiADZevq6gbsdSONrgLlz3/+8+g65UYFYWVXMDZKX4Qqgz6rF2HKLJQJCqw9NHAfeuihcd3gqquuGi1gwAH0cF+WhTKQYHmUX1DFigWSWOZYRpsBJTA855xzwgUXXBB3oy+77LLhkUceGdh8xHVrHWlj4KZPLvli2Yu73VsBJRgGXayTXM/gGhDSHNSUBRbKMqBcZ511ojsbYLJaLrHEEmHzzTdvCZSsoyCWBZduLIr0SIFVF7Bbr8gq+7vf/a4SKFk7lYWV1bpV8Va5vLUpzwBHwHj99dfHegfyINF6TksTtCPrMS0RaAco6VOWX6CqLlliTRLuu+++uBTBpIAl3WREu6oK2eXdurPNT2QFsgIjrwIZKFvXXTdgrxtpdBUouRwNsKxaNm0Ur04CflWbcoDEMcccEy1ZoNGavjKgTM+JmzUROBrkuditoQNF3NFcwq2AkqURQIAS7l0bSsYaa6wIpKAybS5qtFCywkpj6623jhZLVjfPWi/JfV4nAMpUphNPPDFCsp9VAeWDDz4Y4cU7wI/VlDWVlRYYs7Jx5e+xxx5DZaMKKO+4445oUaY9HazBvOKKK2L5WDOrLJSsgSDW2lgw7D2glYL1lUA/5Yu7HnTSO1kHUx2AUjvbbcSxaQgsspw2WiiV34aopJO4pCsNz3Lh26DE2iwO7YOlHFAmneWvOLFIeVD2svwCShZQ0Kys4k3rgbUNQG4dbAbKOi0/P5sVyAr0iwIZKFvXZDdgrxtpdA0oWYPAXVWoAsrWVVH+hF3fL7zwQoQoIChI/5///GeEjMYAbqt2YYvrrbfeimsqxeFgdtDYTvDe2GOP3fVbgJSTy53rOa1NlXc/A0+NwXrD5J5u/B2LLPjitk6wVLbetUyPV155Ja5jLLMKyyMtWWT9m1Uv1VVZXFzYwLbKwlz2jg04dnQDvRSkJZ2qtbRV9Vo3v+20j2yhbEel/ExWICswsiqQgbJ1zXUD9rqRRteAsrWk3XmCddNaw8bAcgq++j2wWD733HNDFdMmJhbZHLqrQAbK7uqdU8sKZAW6q0AGytZ6dwP2upHGKAeUras2P5EV6J4CGSi7p3VOKSuQFei+AhkoW2veDdjrRhoZKFvXdX4iKzDcFMhAOdykzRFnBbICPaBABsrWldAN2OtGGhkoW9d1fiIrMNwUyEA53KTNEWcFsgI9oEAGytaV0A3Y60YaXQdKx8nYhd0YXJHozEfH7eSQFRhVFMhAOarUdC5nVmDUVCADZet67wbsdSONrgOlI1ns1i0LjhVyfA24zCErMCoo8H//93+ld6sP67J3ozPpRhqddlid6NlP5emnsnSrDWTNOvlqQjwmr3gkYGexNH+rG2l0q511K51e1qwsb6P9p42TylkhXRXoPEDHtuywww7BvdbOA3T491VXXRUPsc4hKzAqKJCBsn4t93LHWL80eQDOmg1/AOsWtHQrndwH1P9qelmzjoDSOYhjjjlmPLw63Zri0PEjjzwyusGd83jsscfGA8FzyAqMCgpkoKxfy73cMdYvTQbKrFl/A+XTb34U/vbP6jOoO6n/Ou9MNfGXwxQTjl3nlYFn+6mv6eWydASUaskB588//3xYa6214q0n7pp2g4rbUNwo8sQTT8S7oXPICowKCmSgrF/Lvdwx1i9NBsqsWQbKTtpAu+9koPyvUr3cb3YMlO43dqf3xRdfHAu54oorBtcVPvrooxEmXfM3+uijt9tW8nNZgZFagQyU9auvlzvG+qXpTkefNatfM1mz+pqVgUu2ULbWsRttrRtpdAquHQNlkvbTTz8Nn3/+edtXGLaukvxEVmDkUyADZf066+WOsX5pMlBmzbKFspM20O472ULZxxbKO++8M66ZvPfee4doDy+99FIpXLrrmfWSWzyH/lDA9Y+gYM455xwoUDv17MpMSybc590Y/vrXv8YTAuaaa67hKlJZ3osJKpfQ7i7HDJT1qysDZdasG22gG2l0atGp3wK6M3HJFspOaqY7ddPL7bljC+WMM84Ynn766TDHHHOEscYaa0D9W2+9NYw77rhD1carr74allpqqdL7pzuruvzWiFbgvvvuC4cffni48sorB7LSTj0vt9xy4ZBDDgmzzz77UEUAm/vvv3+4/vrrh2vxyvJeTPCoo44KX3zxRbDZrJ2QgbIdlYZ8ppc7xvqlyYNJ1ixbKDtpA+2+ky2U/1Wql/vNjoDy3//+dzwqyMB/wAEHtNUeqkBj3333jUcPObPSxh4wusceewyszVxttdXC8ccfH04//fToWv/Nb34TjjjiiPC73/0uPPjgg+H111+P/3eM0d133x323HPP8PLLL4c111wzgILXXnstbLXVVmGCCSYIDzzwQDze6Oabbw7ABdRsttlm4YUXXghbbLFFtIytt9564eCDD47lqxNAEuvr448/Hi699NL4KivYjjvuGG688cYw//zzx3LecsstgRa77rpreP/998OPf/zjcMMNN4Ti+zY1AfN2ygfmrrnmmgjqdtgrnx32LIXnnXdemHvuucN1110XHERvdz69xV8Mf/7zn8O2224b9ZPPM844I3z00UcxLhuubrvttvgOi/Rbb70VNtlkk5ie8joqqh2gPOWUU2I9sUwqv7w5DWDTTTcNd9xxR1hwwQVjuo6icjrAxBNPHNPYfvvtwz777FOnKsKbb74Z864tzTzzzPEoK6Eq79rF5ptvHtvNhhtuGI4++uioobqSB8H/l19++cp8ZKCsVUU93zHWL013OvpeHkyyZhkoO2kD7b6TgbJPgVKxNt544whoF154YZhwwgkH2sQUU0wRRhtttKHaSBlQ3n///RFOuM3PP//8uJkHQKyzzjrhsccei3EAEEB26KGHRsg66aSTBoCB2x10AcennnoqzDPPPBGcllhiibDIIouE0047LUw00URh+umnD2eeeWYYZ5xxInieeuqpYcopp4wQCWDWWGONCFLeAxZ2qm+wwQYDZQCz77333hBlWmWVVWLeUvjWt74VZp111nDYYYdFiBHkVZmA6+677x7z9M9//jMCLLh6++23o2tXHorvP/TQQxGI2ikfK3GqC5AGfNQLiARWJ554YlAn6glkrr322uHhhx8O00033UDeQbhJAnDzb27elVdeOepm09XUU08dtZVfFkmgvMsuu4SddtopOMS+FVC+8847Ydpppw2XX355ePfdd2MdyMPVV18dy77XXnvFyckPfvCDsOSSS8a0QPnkk08elllmmWAZxde//vW260Nbk2cTEzqKR5DnsryDWcC8wAILRC2POeaYqCFI/O1vfxvbok1m2lhVyEDZ7rDwv+cyHGXNutEGupGGmuz3dPKmnNbfazfaQDfS6LQ9d2ShlFjVTTl/+9vfStfGlQGlm3aADYsUgAFcYKsKKLnXWRtZ+sAoYGOVsxbPWexg5fbbb49WJcB2wQUXROjzHmsgKJxsssmipdMfFiyA529xcd2DVvH5fwonnHDCUEAJQmeYYYYhgBJ8FI9KYnl0rBLIdcj7LLPMEiG3CijT+3XKB9aAGVjzh5Xv2muvjeVgUdx7770jHPtbUBYWOxqnADTp9swzz0SwB3Ust0svvXSEOQHksTJ677LLLovlBKn+tAJKzwPTiy66KMYFLgGjNFic1ZE6oxV4B3fJMijvThBgcW63PrQ1UA8exxhjjIH3pNOYd3oBWbAs+D9IZz1lsTzuuOPiz7X3Rx55JP68LGSgbN3ZNj7Ryx1j/dJ0ByiyZvVrJmtWX7MyoMhA2VrHbrS1bqTRdaD81a9+VXqXN3gae+yhDx+tcnkbvMHGueeeG92+22yzzRBACe64kVkoAc7qq68egdJ7oBEQjjfeeHG9G2sfQHVTDzBgFQQR3mFlAl9ACDx8/PHHESS5zFkrWTlTcA+5OFIAgHazF8NUU001BDizMHKjA9ZiAHaAiztfnkBOAkrQxCqaLJTp/TrlU6akhXT88X4CSi7c/fbbL4J4CosvvniE2xToBCg9++yzz0Y9wV7SzXOseCx3iy22WDx/VDlZQQFyK6AEseJNcGYTj/cWXXTRAeuj36e6ZVmUf4EVWX5ZVtutj7K2pn187WtfGyrvljeIO1kfAa1/q0+gzXoq+L91l6y9d911V1we0BjoOLxDNzqTbqTRaYfVib79VJ5+Kku32kDWrJOvZugJUgbK1jp2o611I41Ov82OLZStpR3yieIgDx4M7ly7BmawCBpXXXXVuJ6OxeiNN96Ia+1YmliKWgGl9XEgB2CyRoJElrpWQMmyyVUNwmabbbYIX6xQW2+99UABVlhhhQiBxQCSwGAKRaBkPZVvVivwxDrpeeC38MILRyvgFVdcEaGKO7wdoKwqXyugBOrKxfrIWgfanB9a3JlNI8sAQCNLZHL9NwIlIATeQNBSBUsD1FMVUKZ6ZrWmATfyhx9+GMA4l7e1itJihbRUAGyzRAJIllHrWE0StJEiqLeqj2Jb0x4AorWkbnZqzLt6ELc0tBlWUhALmpXLWl3LFvw8WU3L2n62UNbtEbpj0eu0Y6xfmu6Up5cHk6xZXkPZSRto9528hvK/SvVyH1ALKLmJDbrW2rHkgJzGUHVsUHGQNzhzq3KfAgZrG20YsaPWGjbr3rhHpcWCCNAApfV0NumUWfCAITc0cBKs/wOWrILNLJTec++49XWCvIBam0LqBEBpPSfXKKuqPHPHAybWQLAE7sAq6x9rJJCV3wSU6f065QN2VRZKwAaqDzrooAivwI772FrL4jpXlkdrBOXb8oCbbropAi+oTmtZwSagZKllyQRq6sf6RK72FMrq2bpUlmfp2uRjMsFVrj35nXr67LPP4uYf8apjQX6TG7xOXRTzYKIi70CWhbEs764PtSRAHqwftWmLXieffHJslz4SFubiutrG/GSgrFNDvd8x1i9Ndzr6Xh5MsmYZKDtpA+2+k4Gy9/vNWkBpcOV2BjEgrHGjiuLacVx2bFBVo+GKZP2bZppphjh+CACUnVPYqvHZsWzHOGsciCtuGGr2rrLZEW4zx7C84Qcg2Rxj3WAR4sCSned1Q6flo6ed21VrAEEdmFZ3aR1s2eYq+aWV9a9VcVWVyTvqVDrFAAC5kos764GrPBc349TVquz5qryDSUshQHJjPWlL448/ftPkM1DWr50MR1mzbrSBbqShJvs9nezybv29dqMNdCONTttzLaAsyulIlaLL10DNbcrCyAqVQ1ZgVFIgA2X92u7ljrF+aboDFFmz+jWTNauvWRlQZKBsrWM32lo30ug6UHLxchPvvPPO8Xgbmz64Xqt2ebeuivxEVmDkVSADZf266+WOsX5pMlBmzbLLu5M20O472eX9X6V6ud/s2ELpAHBHvtjsYD2gYIe3TSZ1DwVvt0Hl57ICvapABsr6NdPLHWP90nSno8+a1a+ZrFl9zbKFctho1lkszd/q5fbcMVA6CNt5hjZ+WLNol2zxsOzhIWSOMyvQqwpkoKxfM73cMdYvTQbKrFm2UHbSBtp9J1so+9BCaces3csp2EUrfPe7342bLe655554jmEOWYFRSYEMlPVrOwNl1qwbbaAbaZRZ9OrXbntvjKjy5DWUreunG3XTjTQ6bc+1LZTOCLRzuSo4kLrOLu/WVZSfyAr0vgIZKOvXUS93jPVLky2UWbP+tlB2Ur+t3sl9QCuFhv59L2tWGyiLxbMJx5mCLJKOs3HDTA5ZgVFRgQyU9Wu9lzvG+qXJQJk1y0BZtw3kPqCuYt3pZ7pmoUzFP/7448P2228f3D/t5pMZZ5wxbsoxsOaQFRjVFMhAWb/G82CSNetGG+hGGp0OwPVbQG8DRd3y1KmbY299KZx1z6t1kxjuz0803ljhll0WjOnUKU+nGetGGp2WpWMLpev6HDp96aWXRgvltttuG2+CcRVf3QOvOxU2v5cV6BUFMlDWr4le7hjrlyYPJlmzbKGs2wbq9AEZKP+rbh3N6tZH8flO0ukIKB1iPuaYY8azJ0866aSYB/dT/+QnPwn33ntvmG+++QZTjvxuVmCkUyADZf0q66TDqp9Kb3fAdcuTNaurWH/Vf68DRd3aqdOeM1D2KVAq1sILLxwPNJDuilsAACAASURBVF955ZXDV77ylXgVo6sEX3zxxTD22GPXbVf5+azASK1ABsr61VdnMKkf+//e6Kd0+qks3YKjrFlnX083dKuTRgbKPgbKl19+OZ5BedFFF8V7nZdffvl4LuUiiyxS2nqfeeaZMPHEE8czK4vhwQcfjBt73n333TDrrLOOUtc2ulXorrvuiofDK/8MM8zQ2Zc/Er7lnnWdyZxzzjmQ+08++SQ8+uijTS3cDtG33KLsnve//vWvcUIz11xzdV2RDJT1Ja8zmNSPPQNl1qz3B+BO6qifvps6ZclA2fvtuSOXd/EjMIgDo29/+9tNv40tttgiLL300mH11VcfeA6MHnnkkeGss84Kl19+edh6660jdDYLTz31VDj55JPDcccd18m32FPvTDvttGHLLbcMSy65ZFAuSwZaBdddrr/++mH22Wdv9WhP//6+++4Lhx9+eLjyyisH8vnqq6+GpZZaKjz33HOVeV9uueXibUxl5Qeb+++/f7j++uu7XvYMlPUlrzOY1I89A2XWrPcH4E7qqJ++mzplyUDZ++25Y6D04h577BEuueSSWEpQtM8++0RXeFloBErw4JB0MHreeefFNZgsnqeffnr4/PPP47WOoGPXXXcNN954Y5h//vkjeLKAOkwdjOy+++5DJfXaa6+FHXbYIVo6b7vttghpoNWxRjYOudFHXGeccUaYaKKJgnM1Z5tttnDxxReHNdZYI4w22mgxL6uttlo48cQTw0cffTSwm32hhRYKp5xySkvobczUQQcdNFAmsORqSuDj5z/60Y+ibvK1ySabxLw7x3PmmWcO7ks/7LDDYh6U94svvgjrrLNOmHLKKcNjjz0W898YAJqzQFl+X3/99XDEEUeEddddN8a/5557BpblNddcMxx11FER5q655poIcA6rl/axxx4bWArVCcvpCy+8ENQdy5/rNg8++OAhrtYs01V+y+rgrbfeimWUnnW2//jHP9oCSporB8ukdiNvNn5tuumm4Y477ojtSH3+6U9/ChtttFGsH2k4hYC23QgZKOurXGcwqR97BsqsWe8PwJ3UUT99N3XKkoGy99tzx0C51lprRZj09/jjjz8AlqCh7GDzRqB0dSOA5C7/+c9/HuaYY45w3XXXhUMPPTQCkc0+L730UnjiiSeiRQo8gslJJ500HHDAAeGmm24qTQf4TD/99BEQp5566jDPPPOEt99+O6YlTYABrL7zne9EWBUfqylLIbDcfPPNo+ueK1ba1157bbz9R5ryATjPPPPMgX5APh555JEh+gXvLrHEEgM/U/ZUJhY4AUxNPvnkEXyAs7Lvu+++Mc9A3TuWAMiD/G+88cbh4YcfDiuuuGLYcccdA0udvDQG0A3mrG8FlcCR9ZMOjnWSLzqedtppwTmi4n3ggQcipIFJ/5aXN998M5x66qkRsgG492iz3XbbhQ022GAgWVo26mpdbVkdgGKublbWnXbaKa69bWWhfOeddwJLLgu2ZQHgmA5XX311BMi99torwvkPfvCDOKlRTicP0HaZZZaJbchpBCmYsLz33ntDyLbKKqtEWB1MyEBZX706g0n92DNQZs16fwDupI766bupU5YMlL3fnjsCSlDAOsZatffee8dSXnHFFdGqZ7Avc0eWuby5rgEoWHOOZQJKcGkH+Q033BCBFQittNJKYZZZZonAA2IAWlkAlFzrQEIAGCxcgOP2228P1nKyQIIPgAMopSPPoCJZ5li9WDZBHmuh/LH4nX322QNxi1+eH3rooSGywrK37LLLDgGUqUzFB60DBIvST0ApLfqOPvroYd555w2TTTZZdHGDIwC2wgorRLhmLS0LgPL++++PQM7qKI3//Oc/EcaUH8Cy9l1wwQUBrAEzsOYPKx+Apq2yX3bZZRHaxTXWWGPFn4sv7eyXPmtmo66bbbZZaR2wropzpplmChdeeGH80wooPW9yYHmEAC4BozRYsdWZMmknYJFFOrnMgS8AZ5FN4YQTThgKKEHzYNevZqCsPzTWGUzqx56BMmvW+wNwJ3XUT99NnbJkoOz99twRUKZjg4COQXyMMcaIcMb69/zzz0frVGOoA5TFtZYgBnQAOcDjEPVWQMniyCUsAEPrLcEL8Nlwww3Ds88+G8/OTEDp/xNOOGGERrvVp5tuuvgeqPrxj38cd7JzPwsAizUzBZa8999/f4jigu3iWZxlZfdCGVAW1xCy3gIplmDgCYaBdSugZHkEja7IVE6uchtVlAvo0lEcgDI9S2N/AGkCSlZM7nVWzhTchlSEZfE06gr2GuvgmGOOCYsttlhsHyAZQIu/FVACQPWT1syy/npv0UUXHbA++r305J11N0026G5Jw9prrz2Qfy78Tz/9dIj60qbKNvlUdfaWD9hM1RjKlmB0MmA0e6dOB9xp2t1IQ95yOvVrKGuWNeunNlCnLBko+xQoFcv6NWAisJyxhrESJUtSFVAusMAC4cMPP4yWpSoLZQJKrkwAAaKABfgBhFymZQO6NFkoy4CSdYwLFyiyWnLhsiqxUDYDShYywMHVy5rHOnbOOecMFI8bvPh/v7COD/SmUARKadnVDqqaASWABOw2mHBtA17vikv5rb0sC6CqEShZgaUHMMEvSGSJbAWU0uZ2F6flAPvtt18EZZunUlCPjbpyjZfVATAFgtZR0tMh+FVAmXSyxlb9s0xrN+qCFdwSBnXICmmdKasuSySAZJ22ThVEgz9lT4GFF1QWg7bFMsyKa1JhwmQZgnWe4nnyySej21xbqQrZQpkH+jqDY321en8w6aRMWbP6qnVDs25N+OqUJQNl7/cBHVkoFevjjz+OMAAgDfqADVACn7IAhLhtwY1Bntu5Cig9x30OIkADVzdgcBOP3eTTTDNNXDvHGtUYqoDS5o1f/vKXEeK4n9PaR67uKqAEQGAZxCqjDSjeq3tweyq7MtGIux10tbJQAkrpKbN8ct0feOCBcbMQa2XZppwyoOTy5tb1jsCCDCyBXZWFErCBThZbACuMM844cRNMcSc+y2OjrpY/gM5GKzHLIC2BLai1zpGrPYXiLu+iTttss01cimCjFRhnbbZxi4bK8dlnn8UNWOKlsaC+khu8nS5b22IJNmnwrnT8rY5AqPbdbBd+Bsp2VB7ymTqDSf3Y//dGP6XTT2XpRWjJ7ay7302d9pyBso+BcjAfXp13QQK3srVzaRMKC5KfAc7GYN1hck83/g58gCJu6wQLZRtbyvL3yiuvREuX97sZQJYD4wFOCix18sN93BicBwq8ygIgdg6oJQoAvQr+G9+lt93zNgxZ2zkYXcXFlV/3ek7vgLtG/ekzxRRTDLHzHLjSqLgZZ3jXWQbK+grXGUzqx97dgTHDUWc11I020I00ulX//ZZOnbrJQNmHQAnWWISqAnejXd/DOwCisvMKrROcZJJJhnfyIzx+IAUQGwPrqw00OXRXgQyU9fWuM5jUjz0DZdas9wfgTuqon76bOmXJQNn77bm2y5v7j5WpKnBhlh0b1MmHk9/JCowsCmSgrF9TdQaT+rFnoMya9f4A3Ekd9dN3U6csGSh7vz3XBsrGD4C10qYF6/KsN8whKzAqKpCBsn6t1xlM6seegTJr1vsDcCd11E/fTZ2yZKDs/fZcGyhttHCUjh2xDgC3KcP5jILzAotn/nXyseR3sgIjowIZKOvXWp3BpH7sGSizZr0/AHdSR/303dQpSwbK3m/PtYHSsSx21H73u98d2BTiiBjH69jw4bibHLICo5oCGSjr13idwaR+7Bkos2a9PwB3Ukf99N3UKUsGyt5vz7WB0q5odyT/6le/ijuP0/mODgl39qJd2VW7jDv5ePI7WYGRQYEMlPVrqc5gUj/2DJRZs94fgDupo376bvqpLOqyG+XpRhqdlqUjoHT3tltxHGrtHmSDqTMSXZeYjuPp5EPJ72QFRlYFMlDWr7le7hjrlyYPJlmzP4bvfOc7nchQ651++m76qSydQlityu8StHZalo6A0hpKfxyMPf/888cDpl2l547nDJR1m0d+vh8UyEBZvxbzYJI160Yb6EYanQ7A9VtAdyYu3SpPP9TNJ5//O1zw6BttVeXkXx0nLPO9b7T1bNVDvaxZR0DZTI0MlINqK/nlkVSBDJT1K66XO8b6penOQJ81q18zWbP6mmWgbF+zDJT/06o2ULr2zlV+VcEub/cf55AVGJUUyEBZv7bzQJ8160Yb6EYa3QKwfkunH+omA+UggLJ+F5jfyAr0vwIZKOvXcT8MJsVSd6M83UgjQ0v9ttxvmnWrPP3QnjNQjkCgvOeee8Jcc83Vc9cD3nLLLWGJJZao3ZM8+OCDcbe7Kx8bwxtvvBHcK92Nhdq1Mz6cXhhVdcxAWb9B9cNgkoGyfr1nzXpfswyU7ddRBsoRCJTuAv/DH/4QJptssvZrrMWT5513Xvj888/Dxhtv3HGcjkNq5sovi/iiiy4KRx55ZDjrrLPCDDPMMNQjp512Wrxve7/99us4X918MevYudoZKOtrl4Eya9aNNtCNNLoFYP2WTj/UTQbK4QCUd999d7j55pvjWZRjjz12ZU9ZBpR2ivtz/vnnh6WWWiqceuqpYcwxx4w38fz6178O00wzTTyWaL755gtu6vFzfwPIzTbbLPzwhz8MH3/8cXCP+Pjjjx823XTT8Mknn8TzMnfaaafwwAMPxJ3oL7/8cthwww3D0UcfHeFxl112CVdeeWVYaaWVwoknnhh/9sILL4QtttgivPjii2G99dYLBx98cOma0FdffTUsuOCCcVc7EJt44olj2aVhHelRRx0VElDuu+++Yddddw0TTTRR2HvvvcNhhx0Wd8RPOeWU4YQTTghzzDFHrZHFjvobb7wxPPzww+GII44ICyywQHw/6zikjtpkY52o71tvvTWwLLvhiX7rrrtuLf3LHs5AWV/CfhhMsrWtfr1nzXpfs26Baz/0ARkohwNQstT99Kc/bXlsUBlQsg4eeOCBYcsttwzrr79+2GGHHcK4444b9thjj3DOOefEI4muv/76CAJrrbVWWHXVVSPMuaEHhF5wwQXRtXzAAQeExRZbLMLbLLPMEhZddNHw0EMPhdVWWy385Cc/ieAFQl0X+d5774WDDjoonH766REIASCgXGONNSKYcX+D0O222y5ssMEGQ/UA//73vyOY/uUvfwnO5VxooYXCz372s/jeIossEmES9LJQOuz90UcfDVdddVV47rnnIsC4phKA0w2cjj766DGNZ599Nj5XDJNMMkmE5BSUWXnOPvvsqMF4440Xf5V1/J+O9JhnnnmGqpOnn346tq8777wzQqV6f+qppwbXw4cQz2LdfffdBx1Pqwi60QF3I41uDVj9lk6um1ZfyNC/z5rV16xb300/1E0Gyh4ESmD29a9/PXAj33HHHdHS6HrHBFKTTjppHPgBAMDceuutw4orrhimmGKKCGUskttss034/ve/P3D940svvRTGGGOMMO+88w787Iwzzgig4rPPPotuaoex/+lPfwpTTTVVBD8gy3o41lhjRYD96le/Gv9fFk4++eTw1ltvRZB1t/ntt98egZHVC+S++eab8QB4ZQON0mCdZDkDuYLyvfbaawFoC8roGstGoFS2IlBeffXVUatiAJRZx//qKJTVyTvvvBPuv//+WKd///vfY/3WXepQ1hYyUNYftPphMCmWuhvl6UYa3YKJbqWTNav/bea6aV+zDJQ9CJSAkKuctZA7F/Cx5LmJRzDwc0NPMMEE4dJLLw2AipUPDAIr73NdszCCOuGDDz6ILmhWz2SFYpH0b++5NtLznuOO5gLlhgatKQDUZZddtrR1JaDcf//940YjG3M8C1pZqwDl8ccfH28Usmb02GOPjdDr56yYKWy00UZhwgknjP/lQpe3YhhnnHGG2PTDQgmKxNcIlFnH/+oIEsvqBFCaUIB+EwjW3bpAedddd8VJQWPIFsr2O+FuDVj9lk6Go3ptrN/qv9/K0w/tOQPlIICSu5C7tzHYaONPq4PNk8vbIP7hhx9G2GJZYw0EWW7gmX322QOLpEHb2sn77rsvghgX8uKLLx7OPffc8M1vfjPC4Nprrx0tfB999FGwVnHyyScPBnzWQBbI3//+92HOOeeMcYFFLnNrJN9+++34HNc0iyC4lKdZZ501brKZbbbZ4mYa6bCGloUElH4PGAHK+++/H9O59tprIzhyeVvnyZIq//LKjc+CaRc4AH3kkUcGdr3fdNNNce1nMdAIQKdQBErxZx2H1lH9ltVJFVB6nkVzxhlnDP/6179im7Nm15mqTz75ZLSea5NVIVso80DfjcGxG2lkaKnflvtNs26Vpx/acwbKQQAl+GsW2gFKa9dAHMgDR+K05hGMfeMb3wi33XZbtFByB4MtlkMHqoNHgGlTDuBjjeNmvvfee6ML+YorrgiAwcYX77P8Wd8I4NLPHOFj7SL4sw4R5AFAm3GAmfWLNusILIPc7zbcNANKLm9w+8wzz8THpp9++lgWllEucaB7+OGHx3WgN9xwQ8yXtZ0+JhbMbbfdtlYPRjMbjawFtZko61iuY1mduC60zEJpknLJJZdEcNeGHQWV2vIKK6wQJxzaSwbKWk216cP9MJgUC9iN8nQjjW7BRLfSyZp19s12Q7dupDG821kGykEAJbdzswDY0gaTdpsxoHTsj/V/LILFwMpncLe2MQUbamzCKT5rl7d1j9ZMgklWpuI7fsYKBR6LUMxKyKpZzLN3WRKnnnrq+HPWU27xYrDGc5lllhniZ6yFgFgePJ/c2GU6AE0u/mbPtKtfei7rOLRideqkrt7F57OFsr56/TCYZKCsX+9Zs97XbHhDWFKgH/qADJSDAEqvAi7uYjuSgd3MM88c3dWsb3ZZF0GunU8HCIkTiPViePzxx6NFsxjAINd8L4Ws44irjQyU9bXvh8Ekw1H9es+a9b5mGSjbr6MMlIMAShtGrEO0xqwY7Mh+/vnng3WFjv+pE1pZ8+rENSo/m3UccbWfgbK+9hkos2bdaAPdSKNbANZv6fRD3WSgHARQOnjcGkSHdy+55JJxo4Ids9bxfeUrX4lrB21kyCErMCopkIGyfm33w2CSrW316z1r1vuadQtc+6EPyEDZIVDaBWu3q/Mf065jax8drWOXtTWQ3OB2JeeQFRiVFMhAWb+2+2EwyXBUv96zZr2vWQbK9usoA2WHQGl3rGNVGncm2/hgTSVXOEtlugqw/SrJT2YFRm4FMlDWr78MlFmzbrSBbqTRLQDrt3T6oW4yUHYIlOkgaOc7Ovrny1/+cozJDmpHtFxzzTXxmJxm5/XV70LzG1mB3lcgA2X9OuqHwSRb2+rXe9as9zXrFrjmPqB+W+hlzcryNtp/mlwd4r7qX/ziF1GF5ZdfPh4e7SxIETlf8cwzz6yvUH4jKzCSK3DccccNdRLASF6knP2sQFYgK5AVyAq0rQAPtnObi6EpUDreB1DutddeQ7y05557xptlHAaeQ1ZgVFOgWxbKbqTTjTS0j5xO/a8ka5Y166c20E9l6VafNrJp1hQo0+fMiOkGG9cwslJmkKzf0eU3+keBke0jb6Z8P5WlW518t9LJdVO/z8ia1dcst+es2bD6bpoC5V//+tdw4IEHxvuxbcJhmTzqqKPiDTGuU1xwwQU7q4n8VlZgJFZgWH18rSToRjrdSKNbA1a/pZPrptUXMvTvs2b1NevWd5Prpn7djGyaNQXKDTbYILj3WKGmmWaaCJWuW7SGcqGFFop3X+eQFRjVFBjZPvJsoRz2LbQbbaAbaXQLJrqVTtass7beDd26kUa32lm30hnZNKsESru5J5lkknio+YknnhjA5cUXXxzvyL7tttvCuuuuG9555534TA5ZgVFJAcdmdcM63410upGGtpHTqf+FZM2yZv3UBvqpLN3q00Y2zSqB8pVXXolWSRC56qqrhokmmiieS3nvvffGg85XXnnl8Mwzz8SDznPICmQFsgJZgaxAViArkBUYdRVo6vJ2C863v/3taI3Zf//947WL66yzTjwyyF3e7vrOISuQFcgKZAWyAlmBrEBWYNRWoClQnnTSSWGbbbaJCrm7+8knnwy/+c1v4uacfffdNxx00EGjtnq59KO0Al988UX4+OOPw3jjjddTOrz55pvhm9/85kCePv300zDaaKOFscYaqzSfVeX4xz/+ES80GH300Yd47+9//3vsD4Z3kM74448f814MrdIvy3fdMg6rsn3yySdhjDHGCGOOOeZAlC6NEMYdd9xa5aqqxzI9WtV5p+X78MMPw1e/+tUhXn/vvffiz4plbJV+VX3UKWOnZfCeI/FcIfy1r31tiGg6Tb9Om2ulTSfl+uCDD2IdaGvFoJx+5xrlFKq+6/T7Ot/K8OgDq+qmrD9oJ/06ddNKm7p1I3/yPcEEEwxVL2Xtr1X6VW2nThnrlqHO8y2PDbJmkh9/3nnnDVNOOWW455574j3eXN6NHX2dhPOzWYGRWQGH+v/qV78KU0wxRRyczj///CE67RFVtmuvvTasuOKKQUfmmK+dd945PPLII/Hfc8wxR3AoexEQy8rhu/7xj38cvvSlL4VXX3017LbbbtEr8dBDD4VNNtkkei38/Ne//nWYa665hnlRDYCbb755hFbrtN3M1U767777bmm+65RxWBVGB//EE08El0OoA8uGPv/881gO2tncqE5o+NRTTzXVVfsqq0f12lgfs802W8s676SML774Yvj9738fT/mQX0E51ltvvfCtb30rjgnbb799POi4kzY34YQTtl3GwbY5ZTjllFPimAaQbXyYdtppO0q/TpurKmPjhK1O/bz22mth7bXXjn2P79U3vs8++wxEseuuu8Z2eNNNN4WqvBbTq/OtDI8+sKxunCpT1h+0Sr9O3VT1eXXqovHZyy+/PBre1IlJl3Y288wzx2+osf1NPPHEpX1XirOqD3j//ffb7vOKk4rBlKvZuy2BcnglnOPNCoysCvi4WWMcq2XmucMOO4TJJ588Wu5HZLDuee+9945eBEBpvfNOO+0UHnjggZgtS1jOOOOM8MMf/jD+v6ocOlez6kMOOSRer6psAGmVVVYJP/3pT8NSSy0Vjw3TKRqohnU466yzwvXXXx/Xb5vAbrzxxuG5556L6TZL//DDDx8q33/7299iHTXWVVUZG62GnZbtscceC2effXa46qqrwi9/+csIlE7FcEmECbqw2GKLRQ/Qaaed1rRcNCirR0e6NepxwAEHNK3zTstDW2Dy6KOPDgAlOF522WUj0BgwH3/88TD22GN31OYWWWSRtss4mDZns6k8sg7xLBx88MFxo6lNpu1qXEy/TpurKmP6HjupG/k3UdEWWMN5FN54443oobDX4eSTT47fuTyX5dV3ndp8nf6g6rsaTB9YVTeOLWzsD0xqWvXBdepmePQHTsX5+c9/HvtdSwa1ucMOO6y0/TFMlPW5qW6q+oA777yz7T5vMHXTbtvMQNmuUvm5rMD/V+Dll18OSyyxRHjppZfiT1j9DLSsTSMqcIUst9xyEWJYjAAlq+ndd98dLF0RAOHqq68e1l9//fj/qnLoXJXPemmXGrCgKKsBUccmftaxZZZZJg7Gwzr8+c9/DixtP/rRjyJ8GehZWqTbLP3NNttsqHz/7ne/i1a8xrqqKiPL4bAMrKuseIDSgG3Q58Zn3WOtsIwIUDQr13nnnVdaj+C08b0jjzyyaZ0PpmyAEXglC+X8888f6+SGG24Iiy66aFxj/+CDD3bU5sB1WVstK+Ng2xwLOGuhpQeLL7542HHHHWPddJJ+nTZXVcb0PXZSN5bcaMsuGzF52WWXXQJrsm97q622itZK0Akoy/Lqu0htvk5/UPVdDbYPLKsb/U5jf7Daaqu17IPr1M3w6g+U54QTTojfhu9kgQUWiEsQGtvfLbfcUtrnprqp6gN4DRr76uFVN+20zwyU7aiUn8kKFBQwsDpOi9VMcFarD/v0008fYToZFHW6rHk6R0AJJJ3EAHiFTTfdNFrFfvKTn8T/V5WDG9DsGgwJk046abj//vvDLLPMEsvMYuksWh398NiYZ/AzyG6xxRYxXWs/ufKtEWuWvjw35htg06axrqrKOPXUUw/TOiwCZYr4oosuii481kQA0Kpcjm0rq0fWzUY9WCGa1flgCtcIlNqFNuB6Xm2MFZh7r5M2V/VeWRmHRZt7+OGH47cy00wzxYkgy327GhfTr9PmWmnTad2w7LF8mUxceeWVEVp858qlTrQz31RZXn1fqc3X6Q+qvqth0Qc21g3LfmN/cOihh7bsg+vUzfDqD8AjmORtAbjJSthYRscylvW5qW6q+gBW6Hb7vGFRN63aaAbKVgrl32cFGhRgFeCKAG3g7eijj45PWDs2IgK3FavX3HPPHZP/wx/+EP+t0z322GOj60tYaaWVwn777Tew7rGqHFwvIIdl0Do/s2kDEyuUsnJBsUTZlJfiHpblNtA7jmz33XeP7hx5YZUCZ83Sl5/GfLN20qaxrqrKOJj1bGUaNAKlOmE5NgkBGMLCCy/ctFwsDtZdNdYjGG3Uw8/Knh3susM0ASlaKB0jx53P7c3SBWTAcrP0q9rc7LPP3nYZB9vmbr311rjuzLfBXS/U0biYfp02V1XGwdQNizegMOkC9SZ74HHppZeOfQDXtBNZTM64Vcu+69Tm6/QHVd/VYPvAsrop6w9Y+K3lbtYH16mbYd0f6DctZaE7fdXJ1ltvHb+TsjKW5VWfm+qmqn1aCtBunzfYummnj89A2Y5K+ZmsQIMCs846azzwn9tS520NkzV+IyJwS3NzpfDd7343PPvss8FCby4Tna/F2wY01hUAqgO1tqesHAap448/PnaCl1xySRzorcfkdnaRgY0m1u4BNWuEhnUAKSygXEXybvOEdWEAsyz9++67L1pPuY3K8l2njMO6LEWgfPrpp6PlyABf3PVZpSuLGZi3VsyZTqbLhwAADXVJREFUwI31aBBq1MMkoOzZxl2mnZSz0ULJ4s1KCZK55G688ca4Ua0s/VZtziSl3TIOps35VmihrcwzzzwDMlgDWif9TtpcVRkHUzennnpqtN4XIZcr3/ciWIrj+/Uds4qVfR9OheikPxjWfWBV3VT1B/Rs7INNanw3YJomI7I/kD+WY+OCtayWp7DslrW/qry26gN4xtotYzfGpwyUnfSs+Z1RXgEdQHIdL7/88nEjTK+cepBc3v7eY489YqdrwNDxbLvttnHQZ8VkKSsrB6C0HhMAsVrcfPPNEeqSFUrlO24FZLrwYFgH1kg71VlBBFZVLuKq9JVTXrmHyvJdp4zDuiyAUjuxftVmI9aWYuBqZaE0EDbqyqJMB2Uvq8cqPcqeHRblagRK0M8lbU2lE0C0M5OWTtpcVVsd1m3OxGv66acfQo4NN9ww1k0djTtpc1VlHEzdaE/yXgwmLKmMNuRZR2ly6Fsu+z467Q+GdR9YVTd2R5f1B2XpO4nC2msu7Krydqs/uOKKK+LE25IEO9XBP5gsa3+WJ5XVTas+oE4ZuzE+ZaAczNec3x2lFWAJ4FLiZurl4PgMLrF0fqCOG0zaeShUlYM1c7LJJhvifEGbF1g0bMYY3h2UdBx1UTzfsCx9biXrx9LZmGX5rlPGEVGXZeVi9aO/RfdCYz36WVV9lD07vMolrcYreDttc3XKODzK0276g2lz3aybMo0av4/B9Afd7APL+oPG9P3fqRvF9YIjsj/gkndSRvFc4GbttjGv7fQB4qtTxuHx3aQ4M1AOT3Vz3FmBHlTAkTaseYNxtfVSsbh9bA7pt+BIEDvAh/W6zhGhU25zI0L19tLsp7oBbyb5lvP0QxjZ+oAMlP3Q6nIZsgJZgaxAViArkBXICoxABTJQjkDxc9JZgaxAViArkBXICmQF+kGBDJT9UIu5DFmBrEBWICuQFcgKZAVGoAIZKEeg+DnprEBWICuQFcgKZAWyAv2gQAbKfqjFXIasQFagZxRIOzsdFfKlL32pZ/IlIw5cdk2nXf8jOm927drBbyd/Dt1X4C9/+Uu8V7psc57TAxzb5QSLEd1Ouq9MTrFTBTJQdqpcfi8rkBXICjQo4OYat9WksNFGG8UD2t2s1AvhuuuuCyussEK47LLLgvuQR0RwwLOr9JxjKbiByYHsK6+88ojITkzziSeeiGeyugLPkVjtBDeZOHhe3tNtWd5TrmmnnTZeubfbbru1E9VQzzjiy9mxxeC8TGd9NmtLv/3tb+N5hu71doZhVXDWqyOpHEZfduC1sxOVwdmczq7NISvQjgIZKNtRKT+TFcgKZAVaKOAgY5DmkG8gefnll8cD190o0417dNupIDdvnHPOOfHqQbc8dTu8/vrrA8Dmhh0H5KcrNp3P6HanEREuuOCCqMndd989cMh8q3wkoNx+++3jNY4pOIx9uummCw7kdqtUJwFQfvnLX47t6PPPPw8mAg4sd+tNsyv0ElC607sZoMuz+6VZiccYY4zSLLqJyS01r732WqynHLICrRTIQNlKofz7rEBWICvQhgKu8nMDkXvOXbvGvcz6Azzuv//+eMCxm2XcywsWNtlkk3gf+gcffBCthm4jciYg69G+++4brUduOAEGLFNuLHIYvas+WdPcuOEmjvnmmy8O+g50dnuRO44322yzeI8wqLnmmmui1QpkOADeVY+HH354tAwefPDB8ZB7Lk4WLb937iWwAi7K4ypP+XHjzx133BHTdIXkDTfcEK1le+21V7zJRL6V59JLL415cMOPP8UAsH7xi18MAUbKCLhZLcXjoG3llS/nCbrJxb3nfm85gSAftHV/tTz4P0swbZXLvwXlptddd90VNVlooYWG0snB8e4jB2zScR+5UJYHV5q6k9lEwe1Hbj+pAkpleeeddwLXsrT33HPP4C50h1Dffvvt0d0vDkHdFAOgdJ+9m26E2267LSy++OJhq622inXhPbCpPalf11G63k8dpLrWpoCyn7u2U/15zpIH16YCee2gqt5MPmaYYYZYxsZ6bONzyI+MggpkoBwFKz0XOSuQFRi2CgAdlh639QDIssPI11tvvXhFp4EcmHBLshLNP//80WrnXdAEZAQgyYIE6q6//vrgvmm/F7g/3Qtsnaa1btySwIEF69Zbb40WLZDJ7erKTQFQrLPOOgMub+vnQAcIlP8DDjggAsiaa645cLPHdtttFwHRtYusi662ky95BTfStAYSBHKPSk8crLPuj3755ZfjIfopgCJwBFYAk3iTa9e94Cx7YBWwAdrTTjstQpkyup7S80BNAFLSUgb5cQj8MsssE4ELRLrWcooppojPutMetNK7USfubtD661//OtYN6F199dVL86AO1RurM3iXzyqglK54ALMyyrt35Y8G7g73h27ufG4ESmsb1YmJCT1NMNRFuhPclYoAMV3p6YB/d6YnoGRVBNfA0wTG9X4Akk7A2n3m6kOZq+pNuwTcZ5555rD9YHJsfalABsq+rNZcqKxAVqCbCnBL2ugCXLg8G8NHH30UoWettdaKFjB38LKsgTPAZ+C23s7ADpAAoThZJQECN7WrLgElqAAqrImshcDG1YegA3T6vXV8wJIbXvzJlVtcQ5mAB5Sy0MmLtK1xBCLAa8stt4zvLrjggtGty/LoOVfCgSu/Z8GS7oEHHhifYdUCKvIKfopwnay41uix0IlX/EKyvoFAVtcll1wyWhzdFsKVC3zef//9aOEDy/LC2sqyS1d/WDTBD/h97rnn4v+XX375aAG0uQT4lunESpdc3gC4LA+0XHXVVSOgSQOQyWMVUAJigG9CoNxc/GCdZdk6W0DNiswqPcssswwFlI1rKFmKWSxZtIFoK6CUP3VPN5Md6c8999xh7bXXju3GHezqascdd6ysN/UD5svadDe/r5zWyKFABsqRo55yLrMCWYEeV8AmBiDnjwFfYMkCBkDLjtm0npKLeaKJJorAde6550agTICwxhprxE0z//nPf6J1i7XNMwJIS+vjWDJZJrlzuZFZv0AM4GC1KgLlhx9+GIG2CJRc3Cx8ANfPBfGAML+TJqvmI488El3BrGHAB1CymIJQMAVaACVoYQW79tprByDxvvvui8CXgvKzHHJRs5KBFfkHg4BSeiCGFY2lMgUQBGBZVUGV99yPDCitu+R2B4SAPgUbbEAYVzOYEriKy3QqAiXdy/Kw8MILRzd72oST1kpWAWVyKT/55JNxvSpLMOskizTgnX322SOoAbvGUHR5g29WTBt/TBZAIZhO8XPvsyQ3Wij93ITEc+BdMPHQ9gBlAllXFVbVGxBWtxkoe7zz6ZHsZaDskYrI2cgKZAVGbgXSwA5iDPDWybFqAQEQwtIInoAgVyk35ymnnBJ/XgcowRarEgAFVqx24BTEAlFWQy5VFirwCfhYSMcbb7whgJLbWRzyyEopXlDGNcz9zJK23377RWscCAM+LHxVQMmdbq0eELVm1JrOxvV3IGa22WaLcAt+5Rtsg3BAecghh0RApCHwvPDCC2Nc0ufOLgNKkAe65V3ZbSRhjVRulsYE6loXUCvTyTpH73vHxiqwWpYHZVdG1mEudy70KqCkqbzQ1x+WyrnmmitqIp8J4MFdM6D0O+UHw/LHqskaLn9gkWb0awRKa3mtkWX1Nknwb3GwPqtrSxJMXuhXVm/g3yShlzaVjdw9RP/nPgNl/9dxLmFWICvQBQVYfljxWKJS4OLkrh5nnHHiZh3uV/AicJca1MGeneEJfFjr/LzKQsla+PDDD8c4QKyNGaABXKR4WaZsWOH2LQNKbl+WQ+sRU1zitS5zpplmGliXl8qR3PE2A4EqLmiABxqlw4r16KOPxrWdrG+CsgKuxmNuxMESmVy68kA7VjeWMqBm7WDKF3jjIp511lkHgNIGJxZfFkrQZvMR9zJtwSqQ5lJuBMoqndQFy588KQeXelke0i5q5fvRj34UwZ0GxxxzzECdp2ODWHOtmxTAqnYA0OxmT2dvArmpppqqFChnnHHGuJxBsAwBBCZ3e1r36HcsvZYFsPpqS+nYIBZe+liHKsgPbaWtTpLFVBnK6k2dyhuw33jjjbvwBeUkRnYFMlCO7DWY858VyAr0lAKffPJJ3IzCvdh4aLcNFiCCtZAVsE6wbpHLG2SwTrHWiScFrm6WOUBVJ6T8yG8xKIffsda1G6fysWKyuDY7L9EmoFdeeSVaI8sO1pYPUCdP7Z7hKW3vSLvZYdxVOlmzCshYMdNROmV5+Oc//xmtwiYBrQINPc8Sm4LlB961TtSShk6DvFpXW2wDZXGl/IJrzwussNzY4NnPyuotLakwQUibmzrNa35v1FAgA+WoUc+5lFmBrMBIrkARKMFIDiOfAmntp5xba8qKOyICyzULbloL25gHcG09qqOtbLbKISvQjgIZKNtRKT+TFcgKZAVGsAKOELLBw0aJfND0CK6MDpO3u5/b3FrKMld3h9F29BpLsuOEyqyPLKvW2HK7W6+ZQ1agHQUyULajUn4mK5AVyApkBbICWYGsQFagUoEMlLlxZAWyAlmBrEBWICuQFcgKDEqBDJSDki+/nBXICmQFsgJZgaxAViAr8P8AWylwx8gBGAIAAAAASUVORK5CYII=", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Top 10 values by value count" }, - { - "data": { - "values": [ - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1417", - "value_count": 1 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1111", - "value_count": 1 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1325", - "value_count": 1 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1302", - "value_count": 1 - }, - { - "distinct_value_count": 537, - "group_name": "substr_dob_1_4_", - "total_non_null_rows": 39175, - "total_rows_inc_nulls": 50578, - "value": "1525", - "value_count": 1 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "value", - "type": "nominal" - }, - { - "field": "value_count", - "type": "quantitative" - }, - { - "field": "total_non_null_rows", - "type": "quantitative" - }, - { - "field": "total_rows_inc_nulls", - "type": "quantitative" - } - ], - "x": { - "field": "value", - "sort": "-y", - "title": null, - "type": "nominal" - }, - "y": { - "field": "value_count", - "scale": { - "domain": [ - 0, - 2231 - ] - }, - "title": "Value count", - "type": "quantitative" - } - }, - "mark": "bar", - "title": "Bottom 5 values by value count" - } - ] + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" } - ] - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAASjCAYAAABKRqY+AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQfYXUW1/lco0iGUAKFoiCAqIFeqf+TiJSAdVARCvZQrXgslXiFcsNKvqBAMRQTEKwIGRBTEQhXpUkWkSDDhIhBQIRBKaMn/+Q1M3N/JKfvsdc7ec3beeZ48Sb5vr9lr3rVmzbyzZs8Mmz179mxTEQJCQAgIASEgBISAEBACQkAICAEhMKAIDBOxHVDLSW0hIASEgBAQAkJACAgBISAEhIAQCAiI2MoRhIAQEAJCQAgIASEgBISAEBACQmCgERCxHWjzSXkhIASEgBAQAkJACAgBISAEhIAQELGVDwgBISAEhIAQEAJCQAgIASEgBITAQCMgYjvQ5pPyQkAICAEhIASEgBAQAkJACAgBISBiW5IPNB4+PWzYsLne/Nprr9krr7xiCy+8sC200EJuzWbNmmUzZsywBRZYwBZbbDF3fY0V9FrfIgrOnDnTXnrpJVt22WWLiA+szBtvvGHPPfecLbPMMjb//PP3pB3RR5v5Zk9e0KSSfvtoO72raG87faJNl156aXv11VeN/y+11FL9gl71CgEhIASEgBAQAkKgVgiI2JZkznXXXdfuu+++IW97//vfb6eeeqptueWW4eenn366HXTQQXb00UfbV7/61baaUdfvf/9723jjjW2dddZp+izP8N5//dd/td/97ne26aab2s0332yTJ0+2d7/73V23vPGd3ejb9ctyCOy///72gx/8wJZffnl7+umnc0iU88jf/vY3+/nPf27vfOc7bauttur5S88991z71Kc+Fep95JFHbPXVV+/JO5ZccsmwEPL666+HxZAySqOPlvHO+I4q2tuqfT/96U/tk5/8ZPj1vffeawcccIDdfffd9swzz9iIESO6huXXv/61/fWvf7VPfOIT89yiT9dgSUAICAEhIASEgBCoBQIitiWZMRLbHXfcMUxUn3rqKfvVr34V3n7OOefYf/zHf9h1111nP/7xj41n+NOunHLKKfZf//VfNnHixECGm5XHH3/cjj32WFtjjTXs8MMPn0Nsi5Khxnd2o2+vYWbCv8IKK9gSSyxh3/rWt+zTn/50r19RuL4777zTNtxww0AqICy9LmuttZY98MAD9vWvf90OPfRQGz58eE9eUQXRa/TRnjQkZyVVtLeVaptttpndeOONoU//93//t5199tmBmJ500km2+OKL52zRPx/baaed7Iorrgjk+IMf/GDX8hIQAkJACAgBISAEhMCgISBiW5LFIrHNTjQvueQS22233QI5+/vf/26/+MUvbMKECSFbs99++9kf//jHMMG97LLLbOTIkbb55puHbO71119v48aNsz//+c/2nve8x8aPHx8yt5/73OdChhDSd9ttt9mFF14Y6vqXf/kX+853vjOH2B5zzDFh0vv888+HLBEE6R3veIcdfPDB9oc//CG8c8011wxEm99B0N773vfO9U62TGb1ZWvsUUcdFdpB3bz3+OOPDxljynbbbRfewyT+f//3f0O7aWfMPjaa4sorr7TjjjvO/vSnP4XFAPRAdzKi++yzTyAC1LHtttvapEmT5rIkWdNvfvObIav5b//2b/bxj3/c9thjj/DcQw89ZIcddljIZC+yyCL2kY98JBBksqzYCHw//OEP24knnhie32uvvQwShi3An2w17bnjjjvsrrvusi222MKOPPJIm2+++cKzZMbRjawyWflWtmTbeWNppxt1Y1cKix/Uvdpqq4X/syV7hx12sDfffNMuvvhiW3HFFe2mm24KNok+cNFFFwXdwQSfHDNmTMCBDG2W6JFJbYcBtj/rrLPCogwEbP311w+2Wm+99YIuLNr86Ec/smuuuSYQK7D/zGc+M1db2T2Q9dGvfOUrQeddd93V6B/48sc+9rGwg6EZVvfff39o3+233x7a89GPfjT4Mc928sdu2kt7yJTja7fcckuwZ/SnI444IvRFdP6f//mf4OPdtAP/p27K1ltvbSwgnXbaacFG2HratGlz9W12a7TCGDKMLci+48Pf/va3Q3xoVX7yk5+09Gd8i23RtItFmmeffTbUNXbs2NBe/ITFlQ996EP2j3/8w6699tpgbxbU6KvYEt8444wzbKWVVgo6EVN+9rOfBXWIDfS75ZZbrqRIrNcIASEgBISAEBACdUVAxLYkyzYjtjHriApM8Nk+GLciM1knM8eE+Ytf/GIgqpAliOQHPvCBQEYgYGQGyfJAyJjExrLKKqsYxLDZVmSeQQ5SRoHoQIpj1giiBkGJxBuddt5557neyUQ26stEHnII2WRrMFli9KVAltE5++0m9aM/5YknngiT3myBVEMWKZAvdGVSzGQaDA455BC79NJLw7uYZEPcs4UJdtziDan97W9/G34N6WZiPnr06FAfer344ov2l7/8JdQ1ZcqUQJJ4J4QqTsDZus0z6Mp7eT+FeiDa1AWhguT853/+Z8Ce+j772c/al7/85Za2hBRkCwsc7XSjLogPhSz/1772NVt11VXnVAGx5d0//OEPA/mnfrCBWNAmFigg3LTtqquuCsSRRYZ///d/H0JssWM7DMDl85//fKiLLe5x9wFkjO+5sSftYOEEMg35JZMNycmWxq3IkEUWJChZH4F8xa26UR7csQvYQ5DYwsu/sQELEp38MUtsO7WXLe9f+tKXwqtZTKJfxkI78Q3K+eefb3vvvXcgvXnbQYb2G9/4RpDfd999g7/g0/QPFlP+7//+b66+DbFthTG/gzxiWxY/WAxrl7Vl10crf8Z34tZ32kmMoY0UYhY7T+LCFTEHO8eC/6ND9FUWQVjII66AId+HE9f4NzsQevWt+BAH03+EgBAQAkJACAiBeQYBEduSTN2M2HJ4DRk+ChNliEYkipAWJooUso4QMCbyZC7JyjZuCyaLFIkt2Tqym0wWmxHb8847L2RKyaaR4YLAQATbEVsmv43vzH5jS/YSsgzRYTJLxoxMMrofeOCB9r3vfW8OsYXwbrLJJoFMMUn+/ve/HzKb2RK3UkJiIWcQvvit4dSpU+3ll182vlGGtJJBbSy77LJLIKC8l/dDjCB7EDqyySwWROJKhnOjjTYKRIIsI4QhD7GFNFDvY489Fibn8Vvfxq3IkOF2tszqfvLJJ7fVjYxtuy206AP55w9ZbLK22APfQY/f/OY3gWTTRhYjIMGQY4hQN0SP3QP4LFk8ssFk5yB/1LP22msb+EOEWKDBbmT9wAh/zJZWxJYMIQQVXyWjC0nHftkS/W/PPfe0Cy64IGTh8blRo0YF3+rkj920NxLbL3zhC4aN0I3MKP0I/yVDCY6QUv4diW2edtAmFicghfgmerEA0IzYxr4NaW6HcTdbkSOxbeXP7O548MEHw0IBB1rtvvvuQVfiB4fcQWxZhIBQszjH4gq2J5vOIhG+QkaX/rjyyisHE1Ifsiw+sShA/KHPqQgBISAEhIAQEAJCoCgCIrZFketSrhmxjYQHMsiElqxa9vAoMrExO8frIEff/e53bfvtt29JbONBUTzf6vAoCABbjSGH8bRkDgxiYknmKmZsIUZMYtGpE7GFtLDNN5vlhDQxyY06xYwtRBJCz9ZdJv60iSxntsQMaXbrdpzsQ2T5vrYdsY14x7Zk6yaLyjvJRpFlpUSiQnYLffMQW7JsEKkXXnghnF6LHfl3s29s29myG93YktuO2HKqNtiQubz11lvt//2//xdILoSIrbkQ45hdje+lTtqdl+iRRcxmibP6Q0DPPPPMsEgSM/L8nkUXMn/4XR5ii+6QIXRl0YRMX+N2cxYnIJlx8SNbL9+qd/LHvO2ln0ZiG9/FFnC2akfiSt8lg032lWxxJLZ52pGX2Gb7NtvO22FchNi28md2XIB/NkuNzldffXVYwEKv2O+xOf2ULdWQ3BiDWGSgv+GPzUpcbOsyrOpxISAEhIAQEAJCQAjMQUDEtiRnaCS2ZGshjEyIY8YpmwHlMCS+LeU5tiKyhZbvO8kKPvnkk2GSmD08KmZss8SyFbElc8LWYkjfBhtsEEgH38JBICASbNslO3PCCSeE7Zd5iC2ZU2Qg3xAfChNlJvqxfZHYxmtW2hFbsjzoEbd2cq0P38JSyERT2hFbMt5k0n75y1+G7yL5lhaiDRm45557QraSZ9geSdlmm21CNpMML6dMMwGP2WDI4qKLLhqey25F5ttAyFUnYss3ku1smd2CybeR7XQj+9zp0CPIOt9oQgzZ6onvsBjC9nW+tyTLyHtoOxnWZsQWct4OA7a2kgmmbjK0EGkWZyDVLJLgA9iM7apkUyE8zbKurTK2ZPrIorcjtvgGmVkWJSCYZBFZgMEH6W+d/DGLY6f25iW2+DT9JhLbPO3IS2yzfZuMZzuMixDbVv4cYxfYYkN8iV0X3RJbtqRzgjcLQMQevkVmJwZ+woKHvrMtaTDSa4SAEBACQkAI1BQBEduSDBsnh5BITrHlm9H4/Rmki6xHltiy/ZKsGESWLY4c7kNWky1+ZE7IikFgyIyQbSMLSt15iC0TS0gd21YhA2wXhvTErcO8g63CbMulRGILWcq+EzIQM8yQC4gm2wohknzLGbPNkVx2Q2whEmxPRle+/4V4M5km8wNZe/jhh9sSWwgXWyvJJFMPB2KhGxlptsaiHwUcIK7xQCYWDchC8f0fhYk8743fUOYhthBntmaCI9hC0NrZMktsaVc73ThErBOxhUxBaingx7fQCy64YFhkYLGBQ5z4LpbMNYQ0bp/N1svP22FAVhJ/wOfICLNAg1+yRZb7jfkZOpDFxNdZiGGxhgOnssVDbGlXJEMcUgbRYjGEf7Pg0Mkfu2lvXmLL1mve329iG7ect8KYhSsWwsgqs32ab/BblbgVuRWxjTslsDHfoxMnKCwEseCTN2NL9ppPKliYYnGFvgleccGo8Tv7kkKzXiMEhIAQEAJCQAjUBAER25IM2XiPLYSDjCATcDJLlEhs+V6RrF3MmEYVkWGyyqFKZADZLgs5JnMLkSDD1ozYxsxjvMcWMsyklMLv+E6SU24hb3xzG0kc3+nyvkhsG98JceN3UV9OiuW7v+yWRTKE6EdpJLZMaiFIzbYiQ9Qh7HyvGEs80Ir3krGCuMTvgxvNSBYI0hoJK78HTzJqFLLWEF4IHCWLLf9nMYF2USBvfEfLIgDEF1LBYTuxbdQBSYpbkSF2EHBIGxN5tnK2s2Wj7p1060RsyYhDjrFDzGbyDrKn2D7al0w6+MSMfWO97TCgrSy0ZPGN2V9sx8JMPGSId2MrviGP31jGNkdiG300EkK+1wRDtrOyUNJsKzJ1xO++Y30cMMVhWGyx7+SP3bQXYou/xq3IkQzGrcgsNLEA0/iNbd52xG9syf6DbfYbW/yusW/zrWs7jMmOYl8Kiw1kcFuV2JZW/sxBYWTG8XOy4exoIJOOvflGlrgS405c1IlbkbEBfQACDrFl4YbFonhwHW3FT5BXEQJCQAgIASEgBISABwERWw96JciyvZOtyGzb41AcDlyJhcnt9OnTQ9YkbpXNqxITaL7TIwPYWDjplKxy3Pqb/X2nd0KqmIhTP9/JNruiJa+OPMd3wI8++qgtu+yyc52cnKcetjpCRtElfk+cxY+6yZhyrUnjqaxkcuP22uyJznneCw580xqv0UGmnS0b6wTndrrl0aHZM+hFve9617tCFrdT6YQBWVP8hcWGRh+k/ZBosqoQt3hQWqd3dvt7/Jj34MuN21m79cdO7e1Wt34/3w5j2gI2LLTwd7NC/2z1vXT2eeogDtGPuu0Lje+NNqFvUx99REUICAEhIASEgBAQAl4ERGy9CEpeCAgBIZAwAuwA4NThZoUFDrL6KkJACAgBISAEhIAQGHQERGwH3YLSXwgIASEgBISAEBACQkAICAEhMI8jIGI7jzuAmi8EhIAQEAJCQAgIASEgBISAEBh0BERsB92C0l8ICAEhIASEQKIIxOvdmqnn/V47tSbHttatXXlwnpfbngefXj7T2KfmRX/Lg+e87JO0fV71CxHbPL2ji2dwJk6F1YEoXYDW40exwdNPP20rrrhij2tuXx2HKDU7jKtUJRJ6GQdgdeoH3Hmb5xCrhJqVpCpgzeFc/TqgK8lGS6nkEYh3ardSlIP9eh0zuZKKmwa4Zo3TymPhhG5OeueUeu5N5rR+TvXuZel0Yn0v3xXr4vYATijnNHhOL6+icGMC95m3uqWgCp168U5O7edk+4033jicBp9C4cYM7qHPFk6XB3tOuM9zGODf/va3cFo+18BttdVWoSpuIODgT27D4LDOfpZbbrkl3D2fLRxY+sMf/rBnr63KJ+PtI9xCweGIVRSuVeRaR64ejFfqVaFHr9+Z10dFbBuQ565NrorppoNxr2q8R/aaa64J18g8/vjjc9kUh//Upz4V7nDsR2FyC0l46KGHwsDdrlx++eU2adKkcHLvgQceGO7d5P7Tc845Zy4xBv/dd9/dpTL30HIVC4Sz3wXbcZ0IQZ72cZ0QV41w5Qz39TaenJvVBxlO9+WqoFiYEHH/7XbbbRdOpqaANfeDcj9rXBXD7gwK7a5W6XfbO9WftQNXEHFtUvZank7yeX9///33h4lA48ryq6++ahdccMEcf+Kkak405lTqQS/cE4xv4WPZwhU39Pkrr7xyzt3A/J6ruvg510fFE6W5UocrsO6++27jijD8Kd5J3A6fsWPH2mabbRb6/V577dW2n3F1FZM1rggjXnV6vt17s7HPa79++qNXN8kXQ4BrsuLBZUyk8W/uPebQMgrxk6vmelE47f26664LBI+7x7kmjDvUKYwDvJP3c/0UhIUCyeX/vSpVENt4Ldt5553Xt7lFJ3xivK8bsY3XyTEv4GrDFEoktlyHxxjL4jBzN67347pGrtXrVO68885wnR7jC9c9Upi3XHHFFWHs+eAHP9ipCtfv4xVz9L049kGmf/GLX7jqzQpX5ZOR2D7yyCO2+uqr96w93VTEnPezn/1sWAD50pe+1I1o0s/m9VER2wYzQjyZfHcz2Wciy9Ua3EPbjthyxyNZxF6vUMcmRGILWeEe01YFHXfeeeewkrP88svbuHHjwuodesX7bZEFB05MBYu9997b5fAQw+233z5cA9TPEicwYLDSSisFMs3khVVt7t4k2BG4G6/24We0HUyyd78yKePOWggIk7Df/va3YRUO8swk6fOf//yc5jCx2mSTTcJ1Oosvvng/m1m47qwdWM174IEHAtHsdWlFbJ999tmwGvzEE0+EK6XqQmy575k+RYYKP4kle6cxGX36P9fcMJnAh66++upwZddSSy0VRLivFyLMogl+xMAEZp0m/5HYcnct8u3IMJMX+jz10186Pd/ON7Kxz+tD/fRHr26S9yPAXcwshEA2IZ0U/I+Yy4SW69D+5V/+JWQZIL/EZPx08803N65tY7We2MsCyAYbbDCXQj/+8Y/t0EMPDWMxsTlLbFmwZQE33sl+2mmnhb5K1pb7m2PhWqwddtghLFRffPHFob+yGIiO6Ebf5o5oxnomriw+QeboB/FqN94N2WDchGzyHhaRaAMxgowaMXfWrFlGZgXdyJRxdzX9nfvaKYxXP/rRj8KcAqLB4jNZmMYSiS1to0+zEMsiF+3iOq+40MpiNjGXMeyrX/1qGKuyWTPI0eGHHx7aTNsptJMFcO7M3mOPPcLzxC5iEllM4g5tayQRtLtd28GILDN3ZFOw97e+9a2mi87Ma2gLd6aTjSfDyF3Y6E9hwRDcyNCNGDEikDXuoIcwgT3j/9lnnx0W/Vj44L08Q4yFJGJf2nDJJZeExUbu1Aaf66+/PvgfhPE973mPjR8/fsiCt79HFKshEtss2Y7ZSTK3cY7VCheytSxmsvjD8yzIc788GGIX7rUHb/wRYs/iFPME/JK76+lHLOZ/8YtfDH10l112CX0CWTClHyCHrZhL4TuNhX5KX6K/tbuqspc+2ckX2vkkfRWyiL/iT//2b/8WcGi24yMSW3yQsZa4xjwUv6M9EE2uRwRXyoQJE0Kf+tznPjckgfS9730v9H/mzfHmAmxFHz/11FPDfP3II4+03/3udwFz+gMxALtliS1+u8UWW4RYEBc9Tj755NAW5sXEV+qkrhtuuCH0f2INftZsxx1XPH75y18OdRFPuLOeuET2v108JyZ20oPkEVebEr9YoMQ/mXvDy0466aS5fJQY1KyI2DagkiW2/JsBhYwKHZtJJ06YJUVMaPfdd99QCw6LUxE0yPgxsEEcGbwYiCFBGA5HRY6OfddddwUnYqBltTdbcBKcnQDF6hrOTVBnIgzZwjEJ5GSK6GR5iS1OQyCno1MI9jgQ78gWnH7q1KlhgMoWOiw60DkoBFU6HI5O9o2JBwQq6syglSVUOCoDYpzcsH2KPwSJadOmhckJgy+Thm984xtzVg/59/e///1ADAiw4N34DQEDMWSUQIEuTIRoA6v1dEgyauhC8MkW8OfnvJe2xAEfnNEDe9LxIcsxoDHhaLynl47LBADfaSwsHjBgQCSwI+9gQAHfKVOmBLJHIMFfCHpxcGBRoVmQ4TlkkAV7fI9gwEBBsMI/0JcBhskXfkQ2Py4wtCMSZA0JqvgUz3/zm98MkzV8B+yxPTsbwCS2lX6CHP2D92GvxowteoExK7UEfexCwGciRX20M+5oIKvIhBG8CJ7gASkuihf2aNYufs6kmxVOJlfgRn9o5YeNdsUGEElWz1mhzRJbJsRsSWLSFIkt2y+ZANC/s8Q29l9W07EleHCXNDgx2c4W+h/9ly1dDGhMjJlgEOjpf/g/9YMtE378Hn9juyD9jL7BYEvsiM+38idiTLNYxKQkG/uy1wahL7s84oIYvsREnQl9q36Q9cd2MaKVXzRr74477lhs9iipniPQSGyJDWwZJu4yTq6xxhphsk1h8ki8Jo5QVllllTBBZPJJ34RstPrUhDqI71lii28yMcIPGZ8h2OhDbGvMEuG7xEoWniBQcRJ+xhlnBH1YNEYHCBBxFzIUtwFnM7b0K0gncwbqoN8T7yFJxDTqY05AXehL/6BAmFnwI3YzAaafQhzo4zE2ZI0TiS0/I64yHoATYzxxNcZc/s3PeCfvZixlrIuFBYEVVlghyDLR5d2QQbCOW3KJ9fwc8hMX/4lvyBL/YsaWOUK7tjOXIiaCxTLLLBPswb+ZZzUuOhPDmIvgI4wX7MaiEE95njGXwrv5XbbtjFf4F/MsiBnv5N1xgYO5F/GIwu8hahTGMvRi/OFnzGVYBPHuXOtFp4rElnkV80rGDQgJNoqL8szpWuHCOMoYjo+DKeMedgdnfJmYCd4shPAzCuNvTHrgO8hQP++h4BOMKbFk/99sSy7zYPwdXLEj/Yx5VePOrV76ZCdfaOeTLMaxQATmzAeZL4JdsyRGJLZgQfuivzI3pZ1xnk9/Jh4wRwW7xp2WyPE5BbGPO+TZ7QiZJV4QG1kwIJ7RF/FV5gnoxHNZYosPx3lqnI/FGEBMwBbENPSBsPMu9MHG2DpbkAcDYiw7IFlEQY6+Q2xqF8+JJe30IDZl5/PZ/sgci37a6KOtdhaI2DZEmiyxjQ5KAGe1lckoq3gYPxY6Jat6ZDeZFEOi2A7CiiCORxBhtQc56oMgETiYLOJUZGJY+WKCSODMFsgfgxRkiCDAyimDDCQQJ4JsMLkkS0PQIbCzFblTxpaOhYMQlHA0dIokM74/dqpm30DF7FRcbTv22GPDBJ2VI5w3rmYxoY5ZUlZFI6Fi0g6WcdLL/5lgx4k5q0CsMkFQmYzHrBKBBecGY7aMQyzp+NmC/QgWBGbksUM2S0zbIR6ttoMT3AjKkdgycUFX6uVntIPMAXZrlsVmAsM29Li9J+pG5o6VelaCIR8QnrXWWiv4BxN6VsAYPBiYIDQEG/R83/veFyYfBH1km01oaCtBhmDFH3QAw7jFFxKEvgQHAnEnYsuKP+SHFUPkCDgESvRjwsUEhNVi/Pfcc88NkxqCKdu0WQjAnqz8M0g2ElvwpB7wYcJF/dQH4aSPMGDQfnRm4gp5wy+YlGJHfKwoXq3aRX+k3zBgMAjQBhYemvkhP8sWMjv0nZi1oL2R2ELg6Vu0GcIbiW2URx8motmMbfwuGfJGf2cBgUGMgStbGHTov0xyeA92ALvsVmTiEX0EvPBZfIxMC7Zksk3f5P9xK3KcIDf6E37XLBYxmSJ2xdiX3XZFn2HBK64QY2v+0M/b9YO4g6BVjGBy0sovmrUXX1pooYV6MZ9UHU4EGolt3A5JvyNWMBYR9xnXiHcsEDKmEY/pKxTGFsYm/L1ZJohnmhFb+iFEDsISd/GQgWXiSV/LFp6hP/OHPoi/oR+ZLmIoYy2xG+JJ/4Mg0HcYU7shtpE0EgvRBTLIgib1sABF3KPtjBXMF+hnxEom1s3GAeYQyKMnk2UIHmM0cZoxhHkCE+HYnmY7QeI30Uxomcew2MAEE2LIxJm5BZNX4hQkj0ktMQZilJfYEucZoynUR/+Mi22M2XExI7YxYkpsYDwEH8gmuLB4gF5x8YB5GlhRmCdAJPIQW8Z2xl4WTfEr5FjYSHkrcrPuGL+pjFs2W+GCj7Tbisy4FLN1cVGABSDGSogWc5xIbFkI5ufUh13ilvi4oEJ/id/xRp0jmWMuwByXeS2+zpjRmCzolU+2I7Ys0LfzSdrInAd940I+Yz2kkjiQLZE3RBzoH/SluOhDX6SfMr8CI/oYC+N8LtdYsgtL2AHZuHgBUSZpEeMZ8YJC4oeFtrgVuROxRYZ5L4QVOeYbMcnFnIv4HAuLJ8QffIAFOBahmD8wzvIeYkOreA5+eYktMZwFe7gO/CsuwmkrcsFBuJHY0iEjoYBEQagas3GNW5FxYhwOEsDkkUkhDhKJLQGBlUcMDcFigIEcZL+L5Xm2JzJ5xfkZSJiY8jzBPRsscCy2vuLonYgtekVHZesJQYVJQgxeETaIFZNLSGtjoePQtriljEEeUs7kATKLLCsvkFAGCNqR+wIrAAAgAElEQVTGZKQTsSWwsQKJTpAkAgeDMIMsiwN0PgY+AhSDHANY47ZubESWG5wILAxYrI7HQpsYuLJbiLPtayS2vJd2MnkBZwI+K/rYhUGZwRNiEwcBbAAZgUBmCzaGgLAVjUGFSQxb0yHKDEaQIYgPh//QeVl5i98706nJfmbbQd1MppgkQPYoDPR8PwleHmJLu1hMgIAzcWGCh+0gq9g9+iQTJyYdPE9QZhAl00KJW/0aiW2zrcgsijCxISOD3tQHEWNBh9VDfIm2s6oIRvhrEbxatYvMP/0mDkT0hVZ+yCCSLdgaXemPLHBFYgt+6HvppZeGgQs/zkNsY91MFJlMM3DSj7KHecR+wfY6fIXYAPFlcSBLbPFxMiEMVvRRBgsmqfShuBU5+41tK3/iAJ5msYgJBxO/+BlGFhcyyeiOvVnUof2sSNNn2/WDTsQWYtHKL4hVzdrbbqtbwWFCYgUQaCS2jBWQVzKfcUsqcZb4yiSLBRYmg5FkxBiHn/O7xoW+qFIzYsv4hK+yqEO2Kk42majSf7MlmyUirqF3zH7SrxkHYnY1yqELOrUjtvguE0LIKbGoMTMZ66K99DnGuZhB5Hf0J2Jf4/kZcUEqS/Yj1owv9P34KQP9g0k04xykvbHEg5IY04j5ZDZjho7YjhwkJFuI3/TvdsQ223biEfo1K43fCcddVjzb7HTtSJCy34UyxvN/xkbskiW2tBlC3pixxc7ggl2Zv0R8Uia2xEHaweIq+scMLfMn/s3CditcmC+2I7bE6XgIFXMgxmB8Py6wssiCjzAXiHPHmP2OpCRmQLOfHkSbk8WFDLGAE8cv5hPNvu/tlU82EtusL9Cn2/kkmUG4AGNytp8STxrHl0hsYwY2zpeRY9cb4x8cIdvHYlxq7BPYGH7Bwj42JqkEuaSvsUjFwnJWJ+RZzGJRph2xZY5MjGHRC3/J7rbK6tD4nTBZfOJ1NmbH5zvFc+JEI7HN6pHN2OLTzIVZcGAOH/ERsS0w8CLSSGyzhz1ts802YWWqkRQ1EtvsYSwMLAzSBOVIbFl1iQ7LOxlACKBMgGOJ30wwIGRXhOLPWZmMk10GNkgSK7+diG3M3mVPS4N4E8TIeFCYXDIYxq0SzaCkDTgpEwYG6phVYhBkgKezxe0onYgt74pbXgiGjYUOyAo+xDnuu+f9THAagwoBOJJ+OhoLEdmMLZMCyAiYNyuNxLbxGQgpQQ6SwkSathPksTMlkvnGb4l5hoUEvo0ggDPBYXEjEtvst65xlS777uy3M/Hn2B3iF7eKQ375hoP/Z4ltXMXOm7FlNRayx0pZXAQhgEZimw124H3vvfcG3+GdLNZQ0IOJQh5iG+uLp4lTH6QectxYyNyAcRG8WrUrEtuYEYjb1Zr5YfYbNxYvyFIyoWQLFbalsMCA/tSHj0DuWE2lXlY0Y0ahWcY2+04Gf4goWSwWtWLJkvy4HTN+4pAltvRfJnFMNOiLZFGZCGW/sW0kts38iTYwAWmMRejT6htbJkP4N9k3+j+2ZAKUtx80ZmxjjGARp5Vf4H/N2ltwKJBYjxFoJLbYkv4QM0C8jhhGVp/sImMvxJZFvviZRpzYsKjT7HMP6mhGbFl0w/+ZKJHlI2PCGML4wBb8xhKzRMQwyCDZKsYM/J2xm4VT4jn9nLGrGbFlTKfvMmbEbzmZC8StyHHxirrpX4wLLO7xcybAxCsm/8QBtvAz6c+S/Ow4wDvYaUIMyhKFmHFhTsI3qo3taWbiOP7ErYAsxPIpA5kaJtXEePQAD7BuRmzp963aDtEhbjK2EBP4po4xirby7uzhjowffLtHLINY0ccZ3yAN2ICJMUQhngMSP9+I8xjGLcgqz+Br2J5430hsGa9YFB8kYpv9xjYuHMSxF6LSDhfITztiyw6wSELizq+4WBnnIjFj24nYgilz51iwI7pjZ+xHYf6JjVsd5tYLn4zbn5v5Agu97XySxRzGcQpJGogWc9zG7fz8PhJbFrVJZMSFchammO/RP8kOIx+3Ksc+1tgf4+cL8cC7uHsiuzOBBRzsRdygNBJb4mlMvMQdTJB0+i3ElvGZ3R7EWtpDwZ/oe/SJ7K0V8fO+qAfjPPNQFq8h6/xpFc8h2+30yBLbOG8Use3RINxIbJnIxi2neYlt9lTkZsSWwZnOTWcmWOAY8UCJ2IyYWY1BAweCNDKYMEnNBgDIGBNBgngnYkv9kBEGOVbLKWxdZQCMBIkBCXLR7nQ9VrnpDLyTgR9SHSf6kM+4sstg2IzYMnFgYMKBWZmhg5EVYgWd72wjoYIcMEFm1YstS/xhMs7AxMQCwpstrJjHbxki9nHLVVw5a3cMeztiSyDCFyDObB1jxYyVMybdkBaCC4GBSVfjtpK4fZvtd8gymcIGzYgtE0AG4ZiRwFfABBtnC35DAIqZ3UZiGwkjix4EorzElgkgNmVhAOzBhDZGYps9xTgSWzIuvCdmXpiIgVUeYhvryxJbtgOCM4MQhYkeB5QwEDBpyhLbvHi1alcktnELf9wu3cwPIylFpzjRjDaJJ6GTfWZlO/oAA1ncasX2o7iy3khs8Uv6N30+Hj7GohPf2caDJnhXzJRnd1kQPxjAssQWvCDcLDqxGMDEF9x4T6uMbTN/YkCKk1D8KMYiyDoLGs0ytugZdxAwWSd20mfz9gN8vVmMYGLdyi/AuFl72eGiUj0CjcSWRQ5iJv2f7AU7HCCDFMgPE+u4LRWiSwwgzlLiN6DNWtWM2MYJGX7MwisTU/ylcdId64sLc/w/ftPG2EofI84yL2ACS1aE/sjCEwtA2YwtYyQL4cgz1tL3KZHYRvLMhJdJHeM7OtFXmSjyM4goC+lMptml0oyIZ7+xZUwFG7KU2W+MI2GL7WFiDKFsVujTxHpKzFTz75gJRU/mJ8wTKPRHFt+zGdu4bbVZ24lBTNT5G33BI15J0mzxLG5Ppz1MtLFfjIOME8y3eA8kifEU+zNOMIZhL8YL5kxsbWTMpuQltnHnEfMS3tvqsJoye1f8xhbcSIYwvjD2Mj+Ji0C0sx0uzB+J5eACPhAw/hCfGRsYK5l/MJejj5KNZRyAfMatsHmJbbOtyJH8YXc+Y2JxGF1YsGh2/V8vfDL6UTNfYOGrnU+SRMEXWNChTzPHgxhm59HRB2Lb8EmSMfgouIFzvDEhEjZksidTN/OjSMj5Xdw9EXcy8A5sjd3iHIG+yUJP9lTkuCgF8YxZY+pj3k1fid82M6dm3kNb8Q/iTuMVgrEu4hdzamxHnCZmt4vn9N92euQhto0+yqJXs6JvbBtQKUJsCZ6k89na0HgqcjNii3H5VgjySCdjYGKS2niIBQSYiTQZRhyXgMZ7mFCy2sXKMYMqzsSqDfVGYoujkumkDt6RLXROtqxCXCBNOCWdIn5nC4lhkGi1XZe66BxkjHl//G4pbhlhcOJ3OD4BgBUk2he3IkOUCMaQQFa1wDweckF7CQBMwgkcbEtjgg6uDM4cogEBBr/sAVixfaxEMYFiEIo6EqQJKKysEwRYBYNw0Xkb8WlHbMlOE+DZ0sJEhQkJ28TBjywaq8nYiAGmMQuADQkADCgQbbBmYgH5aTzEiTrAg0BB4GIyA7mh7dnSitiCKRgxaGADFi54d15iC+b4D6uqkDewZrDDzxtPMY7EFqzBgUkZExwmotivkdjGHQORdGXryxJbBjsmE3zHGcksCxa0gYllltjmxatVuxjAswtCcTW0mR/SN1oVfIwJafbwKJ6N2687bUWO2Qm+K2HywASVBQ7iSuM38Pgt5BkiAEYMjo3f2OKrDNbgQz+lT2JP/J/t+GDJwkH2G9tmxJZFq1axiAl9jH2NuMQFFX4eJ6x5+0GrGBEXv5r5BXGxWXv7fXVFmZPaQX5XJLZZMsniDnbLbm9lXCPWMqYRU7KHlND+Tqf0x8xSltghF+92jBiyKEsfbzyAkN/TFyHa6JU9JZ9FIeJSPCiHOMfkNmZjssSWmMinC3HbMuMuukdiywSUbdHIxxKzv8RC+mj2dgZwYNEtfguYlWG8I07HhUAIDvE3XmWUHa+J5XEBoZk/ZbN/MVPNcyxaEpvijiPiPG1DZ2yYvceWxa52bWe8BI94sA7jHG1li2NjYa5C/IlXNPEscw7GenCi7dlPpuIhUXHHGJP5aC/iJHOpRmLL3IVxhsUI/CZuRWaHHD7ImN54gnZVfbHVPbYQKgggftIJl+xp/fgI8xLmF/gzhXGc3QUkL9jhE0vcJs+4HbN+nTK2zYgtC0f0v3hYHLZinGn8fjy+txc+iQ+084V2PsknZywUxP6FXvg3Y3PjJwWR2GYP3KJv0r74SUBc1KYefo5ftirZHWTZnZosyLMDgUL9jOvEKz41IqmRvcc2fuLBs8QGfIS2UDd9l98Tb+K2Zn4fkzWNerH9nLkFcYBCPGOuymcB7eI5z3bSI8biOG9kDsuiQtyK3Oijra7WFLFtsBokgqBMkMVB82Rso7EIlgTmdhnbuLU5fn+Ak8XtNfH4+qgSnZ+OGAcSVpXoTPGOvuhYrAoxaOMM8R5btiXQiZp938B2Q1ad4kCBzhApiFZcCYqBvl3wjivO8RAp3k+94EFhAGXQJoPF6hErT2SGY0aMZ1iRZuLPSlE8rCN78iAdl9UtiA7fPbLyxcBGMGa/f+OhOpBE2hW/H4qTI96FHHhgV2zMNuZGfMiQEWTpTNlCYKM9MSPJgEdg5m8G1XgYVfwIP544Hesg6DBQsOWEwqIB3w5gN4JV9j5ZyB92jicOMuAykDeuTjUjtkwUeDaeSsm74oSKwYHgHu3Q6t5Q7BMPImChgechTfH7rMaMLYMikxraDqmm4FMMjs2+i8peYM72n8aMbdyNAL7x5G36CUGNSUaj3nnxatUuBmayEdlTCeP3N9F+0Q/b9YduiW28IoOMZjwpMW6RjP7KxIJJaOOx+yyYYRdiANjgs2TIsxnb6Ptx9wP2IbuPL0L2iDssFrQjttGfWsWibOyL29CzGKEPiyTxO8a8/aBdjGjlF63a285m+l31CBAjiOuMDUyO4hbIaE9iK4ugLKBA6jyHgbEVjwUjYmn2UJRuUEBf6mA3S7PsUmNdLB5TWl3ZxZjLohd9uPHTGmSJjyxksyujMXvS+C4ILH2s2bNxYaHxPI1u2g4hYv6AnZotCHTT9mh3sj7U1+xqkVgfz7IjhrkGWcrGZ6kDm7B413iYD3WAL/GOBeJuC4vwjDHYZtC+12+HC5jiX/GaKnBhXgTGLCBG38Y/mTvQZxoPT+wWy8bn8VXeyZkqrb457/SObn2ynS908kniFHM4fCxu/W2nHzENPBvPgonniWQPWurUzma/x37g18znG59nsYN5NPOFZn0NP6cP0UeIH+36N3GGuEQsJg5mn20Vz6M+nfTohEMzH22UEbHthGLO3+PAcatsTpGQNaVTZr+tbZTF2eJAlXWeOEDzjV32YJmsPJlKiHqzrXhsJ2SiQKDu9b26DEAQTlb10JM/jQGRbWgMFs2CA4EgTmKykwFk6Ez8rNVVD2DKSjLyERcwRg4S1W7wbGc3gjsdNvv9T7NBnE4OQWoWaOKEiCCOHgQ3FhOaDbY8S1viSZh5JhGN+lA/Jd6RmtcveY734nfoyrsJ5ti00+DDAgAT01b2iToQkDvdzcqzvJdgjO0aT0vMticvXt20q5UfdoNjkWchq/QhVkLb+SuTljjJbDXBJi5hEyaO9MdYiCsMEN1M7lvFom5jX95+0C5GtPKLVu0tYgfJVItAltg2XjlXrWaD9fb4iQPZnGanQA9Wa6StEBhsBMiEkgQjO8ouuMYkymC3Lg3tRWzTsEPPtWDSy1Zkts8UIUU9V6jECtm+wDeK8budsl5NgGIyHg/CKuu9eo8QEAJCoG4IsPOGre7s0mC3jEoxBCC2ZL3ZHcWZFI2nKherVVJCQAgUQYBdbXwrG3cy9joLXkSnusmI2NbNompP+KCdLZJsbS6z8M0ye/4HbbtSmRjpXUJACAgBISAEhIAQEAJCoB8IiNj2A1XVKQSEgBAQAkJACAgBISAEhIAQEAKlISBiWxrUepEQEAJCQAgIASEgBISAEBACQkAI9AMBEdt+oKo6hYAQEAJCQAgIASEgBISAEBACQqA0BGpLbLl/jbuYVISAEBACQkAIdItA4/3f3crX+XmNr3W2rtrWCwQUP+ZGUXGjF57V2zrq6Ke1JbZ7f+V/57r3s1fucMKBm7ur4vqZlB1K+vlMLPyEnw8Bn7T8r974+Vrnl/7GN75hRxxxhL8i1SAEaohA6vG3KsgVN6pCvvl76+qntSW2Ox45qW8edMWJY911p+5Q0s9nYuEn/HwI+KTlf/XGz9c6vzQT1L8ssM4/K5pdvM6zDtuuuLAkhUCCCKQef6uCTMS2KuRFbNNCvqA2Rx1/qu2xxx4FpZuLHXX29eEXIrY9hbVQZakPHNKvkFnnCAk/4edDwCeduv/5WueXZoJ60/RR7oqGDTO7/AT/QrFbEVUgBHqIgOJHczBFbHvoZD2oqq5+WtuMbT86UMwCi9j2oEc5q0i9Q0o/n4GFn/DzIeCTTt3/fK3zS4vY+jFUDfVFQPFDxHYQvLuufipi24X3RWJ74qfHdCHV/NEnn3zSVlpppTm/XHThBW30yOHuentVQeoOL/18lhZ+ws+HgE9a/ufDr2ppEduqLaD3p4xA6vGtKuz6kXCqqi11eG9d/VTEtgvv7Od3u2uvNsJ6QZi7aE7bR1N3eOnns7TwE34+BHzS8j8fflVL95rYzp5tNu3ZF3vSrJHLLt6TelSJECiKQOrxrWi7vHIitl4EeytfVz8Vse3CT4783nVdPN3+0ZkzZ9rCCy9sL8183aY8Nd1EbLuDNvUOKf26s2fj08JP+PkQ8Emn7n++1vml+0FsdzrKf+Cjvtn121Y1+BFQ/GiOoYit37d6WUNd/VTEtpde0kVd0aH++JdnjEOpRGy7AM/MUu+Q0q87e4rY+vASfvMWfr1tbfe1idh2j5kk5h0EUh//q7KEiG1VyDd/b139VMS2Ij8TsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl7ENi3kC2qTegcSsS1o2LfFUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfK2FbkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjSsMrY+4ISf8OsJAr5KUp/4pa6fD32/tIitH0PVUF8EFD+a2zb1eXl9PVLEtha2Tb0Didj63Cz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qq3IFXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDfu2WOoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UGduKPErE1gd86h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpAXsa0KeWVs00K+oDapdyAR24KGVcbWB5zwE349QcBXSeoTv9T186Hvlxax9WOoGuqLgOJHc9umPi+vr0eK2NbCtql3IBFbn5ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT7UVuSKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGHfFkt94JB+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5FOfl1eFS1XvraufKmNbkUeJ2PqAT71DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyIrZVIa+MbVrIF9Qm9Q4kYlvQsMrY+oATfsKvJwj4Kkl94pe6fj70/dIitn4MVUN9EVD8aG7b1Ofl9fVIEdta2Db1DiRi63Oz1AcO6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+qm2IlfkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjTs22KpDxzST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhXzq8/KqcKnqvXX1U2VsK/IoEVsf8Kl3SOkn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCXsS2KuSVsU0L+YLapN6BRGwLGlYZWx9wwk/49QQBXyWpT/xS18+Hvl9axNaPoWqoLwKKH81tm/q8vL4eKWLbU9u+8cYb9uKLL9rw4cO7qnfWrFn2yiuv2GKLLTZE7qWXXrJFFlnE5ptvvrb1pd6BRGy7coe5Hk594JB+sq8PAZ+0/K/e+MXWVTm+3jR9lA9kMxs2zOzyE8ba7NlmOx01qWf1uStSBULAgUDq8bfKuHHEEUc4kJVoLxFI3U+LtrWvW5FPPvlkO+uss2zjjTe2F154wSCba6655hxdf/e739mBBx5o6667bvjZzjvvbLvvvrudd955NmHCBFt55ZWNDnjBBRfYsGHDbM8997QFFljAHnvsMTv88MNtv/32a9luEduiLvGWXOoOL/1kXx8CPmn5n/DzIeCXrnp8FbH121A11BOBlMeHquOGiG06Pp+yn3pQ6huxfe2112yhhRYK2Vqyrscdd5w9/fTTNnHixDn6nnPOOfb6668HcgthpUBkF1xwQZs+fbottdRSdsghh9jIkSMDsZ0xY4Ydf/zxNm3atPAzsreLLrpo0/aL2HrcQsTWh57wE35eBHzyqQ9Y0s9n3xTGVxFbnw0lXV8EUo1vKcQNEdt0/D5VP/Ui1Ddii2LPPfecLb300vbyyy/bFltsYYceemjIyMYyfvx4++53vxsI66677hoyupQtt9zSHn300fBviPC9994biC0/R3727NlhKzLPjB49WsTW6wVN5FN3eOnnM7rwE34+BHzS8j8ffimMryK2fhuqhnoikHJ807y8nj5XpFUp+2mR9kSZvhJbXnL33Xfb/vvvb2uvvbade+65tvDCC8/R9/TTT7eVVlrJPvrRjxokd/755w/ZW0juww8/HJ47//zz7YYbbghbmXfbbTfbZZddws9XWGEFu/32223UqFF200032c033zwXDtSTepn81Ayb+IuHbPWRS9jBO7w3dXWlnxAQAkJgnkCg1aJpSo2vcnztCbE1swkHbmizzWzc2Xe4oR32dn3uilSBEHAikHL8qDJuDMK83Gn6gRJP2U+LAtlXYnvttdeG72K/853v2NixY+fSkcOhOAiKcuedd4Zn7r///rC9mMOjyNKecsop4fdkdZdcckkbN26cvfnmmyETzHblVodIaStyUZd4Sy71lRzpJ/v6EPBJy/+Enw8Bv3TV42tPiK0Oj/I7gmpIDoGUx4eq44a2Iqfjrin7qQelvhFbtgvzjew111xjG2200Rwd+eb2wQcftA033NA23XRTO/jggwOhPemkk2zq1Kl2xhlnhMOk+Hudddaxrbfe2o4++mibOXOmnXbaaXbVVVfZJZdcYnwAf+utt7Zsu4itxy1EbH3oCT/h50XAJ5/6gCX9fPZNYXwVsfXZUNL1RSDV+JZC3BCxTcfvU/VTL0J9I7aTJ0+2NdZYY4h+++67rx100EE2ZsyYsLUY0ss2ZTK0PAu5ff/732+XX3657b333kF2++23twsvvDAQ2+22284eeOCBcA3Q1VdfHU5bblVEbH2ukbrDSz/Z14eAT1r+J/x8CPikUxhfRWx9NpR0fRFIdXxIIW6I2Kbj96n6qRehvhHbVopxkBQnHXMiMoVtxc8++6yNGDFiiAjPPf/88+H042x5/PHHbcUVVwwnJ7crIrY+10jd4aWf7OtDwCct/xN+PgT6I13m+Cpi2x8bqtbBRyD18aER4TLjhohtOv49aH6aF7nSiS1X9UBYs/fZ5lW2m+dEbLtBa+5nU3d46Sf7+hDwScv/hJ8Pgf5Ilzm+itj2x4aqdfARSH18aES4zLghYpuOfw+an+ZFrnRim1cx73Mitj4EU3d46Sf7+hDwScv/hJ8PgcGWZnwVsR1sG0r7/iGQ+vjQv5a3rzn1eXlVuFT13rr6qYhtRR4VHeqPf3nGjjr7elt7tRF24qfHVKSNMra9Bj71gCH9fBYXfsLPh8BgS4vYDrb9pH1/EUh9fOhv61vXLmJbFfLN31tXPxWxrcjPRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpAXsU0L+YLapN6BRGwLGvZtsdQHDukn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCPvV5eVW4VPXeuvqpMrYVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUNq4ytDzjhJ/x6goCvktQnfqnr50PfLy1i68dQNdQXAcWP5rZNfV5eX48Usa2FbVPvQCK2PjdLfeCQfrKvDwGftPyv3vj5WueXFrH1Y6ga6otA6vG3KuRTn5dXhUtV762rn2orckUeJWLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8MrZpIV9Qm9Q7kIhtQcO+LZb6wCH9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/Vca2Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYZWx9QEn/IRfTxDwVZL6xC91/Xzo+6VFbP0Yqob6IqD40dy2qc/L6+uRIra1sG3qHUjE1udmqQ8c0k/29SHgk5b/1Rs/X2SQGRgAACAASURBVOv80iK2fgxVQ30RSD3+VoV86vPyqnCp6r119VNtRa7Io0RsfcCn3iGln+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCnkR26qQV8Y2LeQLapN6BxKxLWjYt8VSHzikn+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCvnU5+VV4VLVe+vqp8rYVuRRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNKwytj7ghJ/w6wkCvkpSn/ilrp8Pfb+0iK0fQ9VQXwQUP5rbNvV5eX09UsS2FrZNvQOJ2PrcLPWBQ/rJvj4EfNLyv3rj52udX1rE1o+haqgvAqnH36qQT31eXhUuVb23rn6qrcgVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUN+7ZY6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VQZ24o8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZVxtYHnPATfj1BwFdJ6hO/1PXzoe+XFrH1Y6ga6ouA4kdz26Y+L6+vR4rY1sK2qXcgEVufm6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPtRW5Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYd8WS33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq58qY1uRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwytj6gBN+wq8nCPgqSX3il7p+PvT90iK2fgxVQ30RUPxobtvU5+X19UgR21rYNvUOJGLrc7PUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qbYiV+RRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNOzbYqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTZWwr8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWxTQv5gtqk3oFEbAsaVhlbH3DCT/j1BAFfJalP/FLXz4e+X1rE1o+haqgvAoofzW2b+ry8vh4pYlsL26begURsfW6W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP9VW5Io8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZ9Wyz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qoxtRR4lYusDPvUOKf1kXx8CPmn5X73x87XOLy1i68dQNdQXgdTjb1XIi9hWhbwytmkhX1Cb1DuQiG1Bwypj6wNO+Am/niDgqyT1iV/q+vnQ90uL2PoxVA31RUDxo7ltU5+X19cjRWxrYdvUO5CIrc/NUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfailyRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwb4ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT5WxrcijRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpBXxjYt5Atqk3oHErEtaFhlbH3ACT/h1xMEfJWkPvFLXT8f+n5pEVs/hqqhvggofjS3berz8vp6pIhtLWybegcSsfW5WeoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UW5Er8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWx7Snyb7zxhr344os2fPjwlvXOmDHDllhiiSG/nzVrlr3yyiu22GKLDfn5Sy+9ZIsssojNN998bfVMvQOJ2PrcLPWBQ/rJvj4EfNLyv3rjF1tX5fh60/RRPpDNbNgws8tPGGuzZ5vtdNSkntXnrkgVCAEHAqnH3yrjxhFHHOFAVqK9RCB1Py3a1r5mbE8++WQ766yzbOONN7YXXnjBIJtrrrnmHF3vuusuO+CAA+xd73qXPfbYY3buuefaBhtsYOedd55NmDDBVl55ZaMDXnDBBTZs2DDbc889bYEFFgjPHn744bbffvu1bLeIbVGXeEsudYeXfrKvDwGftPxP+PkQ8EtXPb6K2PptqBrqiUDK40PVcUPENh2fT9lPPSj1jdi+9tprttBCC4VsLVnX4447zp5++mmbOHHiHH232morO+yww4y/L7300kCCf/nLX9qCCy5o06dPt6WWWsoOOeQQGzlyZCC2ZHaPP/54mzZtWvgZ2dtFF120aftFbD1uIWLrQ0/4CT8vAj751Acs6eezbwrjq4itz4aSri8Cqca3FOKGiG06fp+qn3oR6huxRbHnnnvOll56aXv55Zdtiy22sEMPPdR23333OTqvuuqqdssttxh/33PPPbbNNtvYbbfdZltuuaU9+uij4TmI8L333huILT9Hfvbs2WErMs+MHj1axNbrBU3kU3d46eczuvATfj4EfNLyPx9+KYyvIrZ+G6qGeiKQcnzTvLyePlekVSn7aZH2RJm+Eltecvfdd9v+++9va6+9dthqvPDCC8/Rd8kll7SHH344ZF8B+CMf+YhdeeWVtuuuu4afU84//3y74YYbwlbm3XbbzXbZZZfw8xVWWMFuv/12GzWq+Xc+yth63EIZRx96wk/4eRHwyac+YEk/n32jdJXjq4htb2yoWuqHQOrxrcq4oYxtOv6eup8WRaqvxPbaa68N38V+5zvfsbFjx86l42abbWannHKKrb/++nbnnXfaMcccY5MmTQrbizk8iiwtv6ewDRkiPG7cOHvzzTdDJpjtymRub7rpJrv55pvnqh+CnHqZ/NQMm/iLh2z1kUvYwTu8N3V1pZ8QEAJCYJ5AoNVuoFQaX/X42hNia2YTDtzQZpvZuLPvcEM77O363BWpAiHgRCDV+FF13BiEebnT9AMlnqqfekDsG7FluzDfyF5zzTW20UYbzdGRb24ffPBB23DDDe2LX/yiLbfccjZ+/Pjwre3iiy9uxx57rK277rp2xhln2DrrrGNbb721HX300TZz5kw77bTT7KqrrrJLLrnE+AD+1ltvbdl2ZWw9bqGMow894Sf8vAj45FNfiZV+PvumML72hNjqVGSfI0g6SQRSjW8pxA1lbNNx2VT91ItQ34jt5MmTbY011hii37777msHHXSQjRkzJmwt5hvZTTbZJDzDdUAQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDsd1uu+3sgQceCNcAXX311eG05VZFxNbnGqk7vPSTfX0I+KTlf8LPh4BPOoXxVcTWZ0NJ1xeBVMeHFOKGiG06fp+qn3oR6huxbaUYB0lx0vE555wTHuE6nyeffDIcIMXW41h47vnnnw/f32bL448/biuuuGI4ObldEbH1uUbqDi/9ZF8fAj5p+Z/w8yHQH+kyx1cR2/7YULUOPgKpjw+NCJcZN0Rs0/HvQfPTvMiVTmy5qgfCmr3PNq+y3TwnYtsNWnM/m7rDSz/Z14eAT1r+J/x8CPRHuszxVcS2PzZUrYOPQOrjQyPCZcYNEdt0/HvQ/DQvcqUT27yKeZ8TsfUhmLrDSz/Z14eAT1r+J/x8CAy2NOOriO1g21Da9w+B1MeH/rW8fc2pz8urwqWq99bVT0VsK/Ko6FB//MszdtTZ19vaq42wEz89piJtlLHtNfCpBwzp57O48BN+PgQGW1rEdrDtJ+37i0Dq40N/W9+6dhHbqpBv/t66+qmIbUV+JmLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8iG1ayBfUJvUOJGJb0LBvi6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPlbGtyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGNi3kC2qTegcSsS1oWGVsfcAJP+HXEwR8laQ+8UtdPx/6fmkRWz+GqqG+CCh+NLdt6vPy+nqkiG0tbJt6BxKx9blZ6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VRbkSvyKBFbH/Cpd0jpJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQl7EtirklbFNC/mC2qTegURsCxr2bbHUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qTK2FXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDauMrQ844Sf8eoKAr5LUJ36p6+dD3y8tYuvHUDXUFwHFj+a2TX1eXl+PFLGthW1T70Aitj43S33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq59qK3JFHiVi6wM+9Q4p/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVciL2FaFvDK2aSFfUJvUO5CIbUHDvi2W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP1XGtiKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGGVsfUBJ/yEX08Q8FWS+sQvdf186PulRWz9GKqG+iKg+NHctqnPy+vrkSK2tbBt6h1IxNbnZqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTbUWuyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGtiXy119/vW2++eZ21VVX2SOPPGJ77bWXDR8+PC1Lva1N6h1IxNbnNqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfXT3Bnb8ePH2ze/+U27/fbbbeONNw52WG+99eyuu+6qyiZt35t6BxKx9blN6h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpBPfV5eFS5VvbeufpqL2M6ePdtWXHFF22233eyVV16xc8891y688ELbc8897amnngq/S62k3oFEbH0ek3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq5/mIravvvqqLbzwwvbTn/7UPvOZz9gaa6xhZ5xxhq277rr20EMP2ZprrlmVXVq+N/UOJGLrc5nUO6T0k319CPik5X/1xs/XOr+0iK0fQ9VQXwRSj79VIZ/6vLwqXKp6b139NBexBfSxY8faxRdfHPA/++yz7cQTT7TXXnvNHn/88aps0va9qXcgEVuf26TeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0K+dTn5VXhUtV76+qnuYntM888Y2eeeaYNGzbMDjvsMNt///3t85//vG222WZV2UTEto/Ip+7w0s9nfOEn/HwI+KTlfz78qpYWsa3aAnp/ygikHt+qwk7Etirkm7+3rn6am9gCy9SpU+3WW2+10aNH27LLLmurr756WlbKaJN6B1LG1uc6qXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+mluYnvFFVfYTjvtFPA/8sgj7aabbrIPfvCDduqpp1Zlk7bvTb0Didj63Cb1Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/zU1sV111VVt++eXDvbVc97PAAgvYsccea0888YSttNJKVdml5XtT70Aitj6XSb1DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyqc/Lq8KlqvfW1U9zEdt4KvLpp59ujz32mM0///y26667hnts77//fltrrbWqsouIbZ+QT93hpZ/P8MJP+PkQ8EnL/3z4VS0tYlu1BfT+lBFIPb5VhZ2IbVXIN39vXf00F7EFEsjr3//+93BnLdlaDpNadNFF7eGHH07LUm9rk3oHUsbW5zapd0jpJ/v6EPBJy/8GC7877rjDRo0aZSNGjAiKz5w5037/+9+H3VELLbSQrzF9kBax7QOoqrI2CJQVfwcxbhxxxBG1sfOgN6QsPy0bp9zE9p577rGvfe1rxre2sfz85z+f891t2Yp3ep+IbSeE2v8+dYeXfrKvDwGftPxP+PkQeEt68uTJYXH4gAMOCH823XTT8PNHHnnEvvCFL4QDG9/1rnf14lU9rUPEtqdwqrKaIdDv8WGQ44aIbTrO3m8/raqluYltVPC5556zv/71r/bud787ZGxTLSK2Psuk7vDST/b1IeCTlv8JPx8Cb0mfdNJJ1mqit8QSSxjjLZ/+pFZEbFOziPRJCYF+jw+DHDdEbNPx1H77aVUtzU1st9hii7AVubHccssttthii1Wlf8v3itj6TJK6w0s/2deHgE9a/if8fAi8Jd0q88Lv+PyH7ckpFhHbFK0inVJBoN/jwyDHDRHbVLzUrN9+WlVLcxPbzTffPHxXS3nhhRdC1pZTkqdMmZJk5lbE1udSqTu89JN9fQj4pOV/ws+HwFDpJ5980hZZZJGQoc0WiO18883Xy1f1pC4R257AqEpqikBZ48Mgxg0R23Scviw/LbvFuYlto2LHHHOMxVOSF1544bL17vg+EduOELV9IHWHl36yrw8Bn7T8T/j5EBgqfeaZZ4YtyTNmzBjyi+eff96WXHLJXr6qJ3WJ2PYERlVSUwTKGh8GMW6I2Kbj9GX5adktzk1sp02bZrNmzQr6vfnmm/bd737XTjjhhHDIxeqrr1623h3fJ2LbESIRWx9Ewk/49REBX9WpD1jS75/2nT17drhtgLL//vvbO97xjjm//NKXvqRTkbvoCsOGmV1+wtguJPSoEOg9AmXEt0GNGyK2vfe3ojWW4adFdfPI5Sa2K6ywwpytyPGFHG7xj3/8wxZccEGPDn2RFbH1wZq6w0s/2deHgE9a/if8fAjMTWwPOugg+8pXvtKravtajzK2fYVXlQ84AmWMD5HYDlrcELFNx7nL8NMqWpub2LL1+MUXXww68s3PO9/5Ttt2221ttdVWq0Lvju8Use0IUdsHUnd46Sf7+hDwScv/hJ8PgaHSe+21V7hKj3Fr6aWXnvPLXXbZJdwbn1oRsU3NItInJQTKGh8GMW6I2KbjqWX5adkt7khsaTgrQ60KxDbVwy1S7kDRof74l2fsqLOvt7VXG2EnfnpM2fZv+b7UHV76+VxF+Ak/HwI+afnfUPya7YjiCX1j252faStyd3jp6f4gUFZ8G8S4kfK8vD/ekG6tZflp2Qh0JLbDGCnalJQH3pQ7kIitz9VT75DST/b1IeCTlv8NFn633Xabvfrqq3Mp/eEPf1gZ2y5MKWLbBVh6tG8IlBV/BzFupDwv75tDJFpxWX5advM7Ettvfetb4bCoVuULX/jCkMMuym5Aq/dpK7LPEqk7vPSTfX0I+KTlf8LPh8BQ6auuuqopseVzH21Fzo+0iG1+rPRk/xAoa3wYxLghYts/v+u25rL8tFu9vM93JLbZF7CiTIaWwvZkLoneaKONdHhUASsoY1sAtIxI6h1S+sm+PgR80vK/wcJvELcU3jR9lA9kM4tElK+ddjpqUs/qc1ekCoSAA4Gy4u8gxg0RW4dj9Vi0LD/tsdodq8tNbCdNmmSHHHLIXCcjaytyR4ybPiBiWwy3KJV6h5R+sq8PAZ+0/G+w8PvVr341J2P70ksv2UknnRQytbfffrsytl2YUhnbLsDSo31DoKz4O4hxQ8S2b27XdcVl+WnXijkFchPbd7/73TZ8+PBwb+2HPvQhe/DBB2355Zc39vjrup/urSBi2z1mWYnUO6T0k319CPik5X+DjR8Lybvvvrs98cQTttJKK/ka0wdpnYrcB1BVZW0QqCr+DkLcELFNx82r8tN+I5CL2L7++uvhO9of/ehH9rvf/c6WW245+8xnPhOu/HnuuecC4U2t6Btbn0VSd3jpJ/v6EPBJy/+Enw+BodJHHnmkvfDCC+GHs2bNMr6dw8eefvrpsICcWhGxTc0i0iclBMoaHwYxbojYpuOpZflp2S3ORWxRatVVVw3k9rOf/axxp+0nP/lJ+8EPfmB//vOfbY011mirN/ffLrbYYtbphOVsJQzur7zySpDLFrZpLbLIIh2vGBKx9blS6g4v/WRfHwI+afmf8PMhMFS68Vu5JZZYwj73uc/Z//zP/3R8TVXjq76x7WgaPTCPIlDW+DCIcUPENp1OUZaflt3i3MT2uuuuM05APv/882377be3v/71r7bjjjva5Zdf3lLnZ555xu677z7beeedw0FTjSvPZH8PPPBAW3fddUMdPMf2q/POO88mTJhgK6+8sr3xxht2wQUXBFK85557hu+NHnvsMTv88MNtv/32a/luEVufK6Xu8NJP9vUh4JOW/wk/HwJDpadPnz7nvnjGujy7oKoeX0Vse+kBqqtOCJQ1Pgxi3BCxTcfTy/LTslucm9ieffbZtvXWW4ftx5BNBtVO3/5ceumldvPNN9spp5zSdEvVOeecY2xzhtzGKw2om2926bBLLbVUOLBq5MiRgdjOmDHDjj/+eJs2bVr4GdnbRRddtClmIrY+V0rd4aWf7OtDwCct/xN+PgSGSjO2sWh84YUXhnGOBd5999237Rhb9fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzENm55GDNmjO2zzz728Y9/PNeqMg2ClDb7Vmj8+PH23e9+Nwzku+66q0FGKVtuuaU9+uij4d8TJ060e++9N9TBzxnwuWpovvnmC8+MHj1axLYPXpO6w0s/n9GFn/DzIeCTlv8NxY9v5dh2zBZkFnTZEfX+97/f/vCHP3Q8Fbmq8VXE1tcHJF1fBMqKb4MYN0Rs0/H7svy07BbnJrbXX3+9XXnllXbZZZeFQy0okEy+s11ooYXa6t1q4D399NPDivRHP/pRg+TOP//8IXsLyX344YdDnaxi33DDDeFgjd1228122WWX8HOINlchjBo1ym666aaQGW4s1JN6mfzUDJv4i4ds9ZFL2ME7vDd1daWfEBACQmCeQKDVommvG8/Oo8UXXzyMfSz0smjLpzh8+sPtA+99b/txoarxtSfE1swmHLihzTazcWff4YZ22Nv1uStSBULAiUC/48egxo1BmJc7TT9Q4v320yrAyE1so3IQztNOOy38oeS5x7bVwMvhUBwERbnzzjtt7Nixdv/994ftxRwehRzbmClkdZdcckkbN26cvfnmm7b00kuH7cpMApoVbUX2uVPqKznST/b1IeCTlv8JPx8C/5R++eWXwyGJX//61+1rX/ta+MUll1wSFnIZF9dff/22r6pqfO0JsR1mdvkJY232bLOdjprkhlT32LohVAU9QKCM8WFQ44Yytj1wsB5VUYaf9kjVrqrJTWzZ8sB1P2yRoqy33nq2//77h2t/4vexrd6cHXg5wZFV6A033NA23XRTO/jggwOh5UL6qVOn2hlnnBEOk+LvddZZJ3zXe/TRR9vMmTMDmeYaBAb9k08+2W699daWjRWx7coP5no4dYeXfrKvDwGftPxP+PkQGCrNWMiuo2233TYs7PL9LGMku5I63SZQ1fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzElq2/XPfzqU99Kqwkv+9978utKwMvh02NGDEirEDznS5bi6+55ppAjhnIuTIIcst3RZy0vPfee4f6OYGZAzUgttttt5098MAD4Rqgq6++2jbeeGMR29xW6O7B1B1e+nVnz8anhZ/w8yHgk5b/DcWPk/5POOEEu+iii8LuJMbYL33pS/aBD3ygI9BVja8ith1NowfmUQTKim+DGDdEbNPpFGX5adktzk1s77nnnpBJbbX1N6/ibJ/gpGNORKawrfjZZ58NpDdbeI5tzpx+nC2PP/64rbjiiuHk5HZl0DK2o0cOtwN3XC8vjLbayOG22MLtMchdWZMHU3d46eexroXv5FP+tkL6yb4+BHzSVfgfi7ZsSebMCj6z6fRtbbMWljm+itj6fEzS9UWgzPgxaHFDxDYdvy/TT8tsdW5i2yuluKoHwrrmmmv2qsqm9Qwase0WjBMO3NzWGb18t2K5n0/d4aVfblM2fVD4CT8fAj5p+d9Q/PjMhs9yfvWrX4Ur9dZaa61woGK8KSAv2mWOrykTW77Znfbsi3lha/vcyGUX70k9qmTeQaCs+DaIcUPENp1+UJaflt3i0oltWQ0cFGL7l6em29lX3J0blilPTbeXZr5uIrbKOOZ2miYPph7QpJ/HusrI+9ArHz8Wetm19JOf/CRkbT//+c+HGwGeeOKJjvfFe9taRJ7xNXViq8OoilhWMr1AoKzxaxDjhohtLzysN3WU5ae90TZ/LW2JLduEueKHQyzuvvvusBV5lVVWyV97hU8O1YkUXQAAIABJREFUCrHtFqIjv3ed3T/lbyK22krbresMeT71gCb9XObVVnMffKXi98Ybb4RPaziI8cwzzwyaX3DBBeGcCQ5I/NCHPuRsTe/FRWx7j6lqrA8CZYxfgxo3RGzT8fMy/LSK1rYltq+++qotvPDC9ulPf9p+9rOfhYG2cZD9xCc+0fFU5CoaVndiu8X6q9kKSy+WC9ot1htly+d8NlaYusNLv1ymb/mQ8BN+PgR80vK/ofhtttlmduONN9rHPvYxW2KJJeznP/+5LbXUUjZ58uSO98T7LFFMWsS2GG6SmjcQKCu+DWLcELFNpw+U5adlt7jjVmTu0CNb26rkuce27EbxvroT224wLbJtOXWHl37deMDczwo/4edDwCct/xuK35QpU8Kd7ZMmTQo3CHAbwOGHH24f+chHfED3SXpeI7Z8s3v6ZXf0BM2Ddt6wJ/WoknQRKCu+DWLcELFNx2/L8tOyW9yR2HLvLMR21113Dd/9/Ou//usQHfl/p3tsy25UnYnttXdNsaefeykXpNfeNdWemf5SoW3LqTu89MvlAi0fEn7Cz4eAT1r+1xy/WbNmhevs+M425TIvElt9s5uyR6alW9nxbZDihohtOr5atp+W1fKOxDYq8uSTT9riiy9ud9xxh7300ku25ZZbhvtnUy11zdh2g7fne9zUHV76deMJcz8r/ISfDwGftPzPh1/V0iK2xSwwbJjZ5SeMLSYsqYFBIPX4VhWQqc/Lq8KlqvfW1U9zE9sbbrjBdtxxx3B5fCwTJkywQw89tCqbtH1v6h2oDIcSsa3ONcuwr6d10s+DXvmn5narrezbLWJDn08dP1/r/NIitsUwFLEthtugSSl+NLdY6vPyQfMzr7519dNcxJZtDpyMzLc/X/7yl0OmduLEiSF7+/e//92WXXZZL749l0+9A5XhUCK2PXer3BWWYd/cyjR5UPp50BOx9aEn/JrhN3v2bHv88cfDgY3LLLNMkp/4RL1FbIv1ABHbYrgNmlSZ4+ugxQ1tRU7Hm8v00zJbnYvY/uMf/7DlllvOvvOd74RL5CnXXHONffSjH7XbbrvNNt544zJ1zvUuEVszEdtcrtKXh1IPGNLPZ3bhJ/x8CAyVfuSRR2ybbbYJ1wwdeeSRdv/999uee+5pu+++ey9f07O6RGyLQSliWwy3QZMqa3wYxLghYpuON5flp2W3OBexZUWIqwfWWmutcHIjGdvjjz/eLr74Yps2bZqtsMIKZevd8X0itiK2HZ2kjw+kHjCkn8/4wk/4+RAYKs3tA0xSR4wYYWPHjrW//vWvdv7559v06dPD2JtaEbEtZhER22K4DZpUWePDIMYNEdt0vLksPy27xbmILUqdeuqpNm7cuCH6sS352GOPLVvnXO8TsRWxzeUofXoo9YAh/XyGF37Cz4fAP6XjffGnnXaa/d///Z/NP//84RaC9dZbL9xI8MEPfrBXr+pZPSK2xaAUsS2G26BJlTE+DGrcELFNx5vL8NMqWpub2KIcg+5ll11mL7zwgu28884hg5tqEbEVsa3SN1MPGNLP5x3CT/j5EBgqveSSS9oHPvABGz58uL3jHe+w+eabz6666irjM6AFF1ywl6/qSV0itsVgFLEthtugSZU1Pgxi3BCxTceby/LTslvcFbEtWznP+0RsRWw9/uOVTT1gSD+fhYWf8PMhMFT6oosusv/8z/8ccusAu6HYFZViEbEtZhUR22K4DZpUWePDIMYNEdt0vLksPy27xSK2ZSP+9vvKcCgdHlWRcU2nvnqRL6N/eHSUfh701D+aocfWwuuvv96mTJli6667rm2yySY+kPsoLWJbDFwR22K4DZpUmePDoMUNEdt0vLlMPy2z1SK2ZaKdeVcZDhWJbd4mrr3aCDvx02PC42Xol1evZs9JPw96sq8PPeEn/LwIDJU/5phjwic+jeW4444L1/+kVkRsi1lExLYYboMmVdb8ZBDjhohtOt5clp+W3eLcxPbf//3f7VOf+pRtttlmQUdObdxnn33sxz/+sU5FLmC1MhxKxLaAYXokUoZ9PapKPw96IrY+9IRfI37cLMA98Y3l+eefN76jS62I2BazSCS2s2eb7XXcz96uZHaxyt6WuvArn3DJS7j3CJQ1vg5i3BCx7b2/Fa2xLD8tql9RuY7E9gc/+IFNnDgxnM64yiqr2PLLLx/exSAMueVwCy6TT63oG9v8FvnjX56xo86+3pSxzY9ZpydTDxjSr5MF2/9e+Ak/HwJDpRlHZ82aFX748ssv2+GHH25Tp061W2+9NZySnFoRsS1mkSyx3emoScUqyUgpA+yGsC8VlDU+DGLcELHti8sVqrQsPy2knEOoI7H94Q9/GK76aSS2vHPLLbc0BrgUi4htfquI2ObHKu+TqQcM6ZfXks2fE37Cz4dAe2nusGWX1OTJk+3d7353P19VqG4R20KwmYhtMdwGTaqq8WEQ4oaIbTreXJWf9huBjsQ2KvDVr37VPvaxjxkXQg9CEbHNb6VIbFdYejHbYv3VguBzzz1nSy+9dNNKFlt4QRu9UvPfZQUW5bmRw/Mr0sWTqXdI6deFMZs8KvyEnw8Bn3TZ/rfpppvaU089NUdp3k+ZMWOGLb744r7G9EFaxLYYqCK2xXAbNKmy4scgxg0R23S8uSw/LbvFuYntjTfeaN/+9rfD1qhsefTRR5MdeFPuQCk5VCS2vXa+7NbmXtedEn7N2ib9fBYXfsLPh4BPumz/22qrrezpp58OSi+wwAIhS0vGdocddvA1pE/SIrbFgO0XseWb3f/9zX05lOr8Pe9+26xr1PfIE8/mqK/zI+9ZJb1P1Tpr7XuirPgxiHEj5Xm5z+qDJ12Wn5aNTG5iu9Zaa9kDDzxg6623XrhAPpZrr73WFl100bL17vg+ZWw7QjTngWeee8muuWvKEIFmGduXZr5uf3nyuY4V89yUp6YP+Wa3o1CXD6TeIaVflwZteFz4CT8fAj7p1P3P1zq/tIhtMQz7SWx7+c0uxLaX9RVDa3ClFD+a2y71efngelwxzevqp7mI7ZtvvhlWkb/2ta/Z17/+9WIIliyVegdK3aE8+jX7ZrfX5vfo12tdmtUn/XwoCz/h50PAJ12W/6266qr22muvtVQ25R1RN00f5QPZrG/fnPaamKm+YqaeVw+36nf8GOS4oYxtsb7UD6l++2k/dM5TZy5iS0X777+//f73vw/X+2S/vVx55ZVtGNErsSJi6zOIx+FFbHWdic/7hJ/w8yLgk/fEv27ezFbjN954o6XIT3/602R3RInYdmPpt55VxrZ7zAZRot/xY5DjhohtOh7dbz+tqqW5ia3uy+qtiVJ3KI9+kdhycNSBO67XEbjVRg43DqTqpnj06+Y9RZ+VfkWRe0tO+Ak/HwI+6RT874UXXgjnV8w333y+xvRBWluRi4EqYlsMt0GTqjJ+pB43RGzT8eYq/bSfKOQmthMmTAgnNDaW8ePH20ILLdRPHQvVrYxtIdjmCHkcvtvDqE44cHNbZ/Rb9yPnLR798r7D85z086AnYutDT/gNGn5/+tOf7Oijjzb+ppDF5ZRk7opfcsklvc3pubyIbTFI51Viy1buux/556nfudFrctbV+muOzC1e1YNljf+DGDdEbKvyyrnfW5aflt3i3MSWw4RmE50ayjLLpHninYitz5U8Dv+Xp6bb2Vfc3VEBDpjioCkR245Q9fwBj317rkyTCqWfD2XhN1j4bbTRRnbHHXcEpZdffnl75plnbPTo0Xb//ffbIoss4mtMH6RFbIuBOi8T23npMKqy4u8gxg0R22Kxox9SZflpP3RvV2duYqutyL01TeoOVYZ+R37vOrt/yt9EbHvrWrlqK8O+uRRp8ZD086CnjK0PvXLxe/3118NNAxdddJFddtlltsEGG9gmm2xi2267rf39738fcguBt129khexLYakiG0x3KLUoBxGVcb4NahxQ8TW1wd6KV2Gn/ZS37x15Sa2nIgctyK/+OKL4RApTma7++67tRU5L9qZ51J3qDL0E7Et4Dg9EinDvh5VpZ8HvXKJWRFNZd+hqLHdGDLLn0mTJtlhhx1mBxxwQMjYctVeakXEtphFRGyL4SZi2xy3QYwbIra+PtBL6dTH4aJtzU1sG19w3nnnhYH32WefHXJKclFFei2nrcg+RMtweBFbn4080mXYV/p5EPDJyr6DgR9X6c0///x2yimn2H/913/ZddddZ2PGjAnKsyX5iSeeCFftpVZEbItZRMS2GG4itkNxG+S4IWLr6wO9lE59nlC0rbmJ7RVXXGEzZ84M76FT/ehHP7Irr7zSpkyZYqNG+e+zK9qAVnIitj5Ey3B4EVufjTzSZdhX+nkQ8MnKvoOBH5/4jB071nbddVdbY401bLnllrM///nP4RCprbbaypZaailfQ/okLWJbDFgR22K4idgOxW2Q44aIra8P9FI69XlC0bbmJrbNvrH98Ic/bDfeeKPusS2AfuoOVYZ+IrYFHKdHImXY16Oq9POgp63IPvTKw4/PeTj5mEKGdp999rFddtnFOBQmxWt+Iq4itsU8TMS2GG4itkNxG+S4IWLr6wO9lE59nlW0rbmJ7TXXXDMnYzts2LDwfe173/veJA+2AAxlbIu6xFtyZTi8iK3PRh7pMuwr/TwI+GRl38HAj5sG/vjHP9pvfvMbY1cUC8WUVVZZJZBcrgBacMHu7vj2tTyftIhtPpwanxKxLYabiO1Q3AY5bojY+vpAL6VTnycUbWtuYssL7rvvPvvpT39qXAD9yU9+0j70oQ+F74NSLCK2PquU4fAitj4beaTLsK/08yDgk5V9BxO/m2++2Q455JBwKCPl+eef1z22XZhSxLELsJo8Oij4+VrZf+my4+8gxQ0R2/77X943lO2nefXyPpeb2J5zzjl24IEHDnkf3wVdfPHFXh36Ii9i64O1DIcXsfXZyCNdhn2lnwcBn6zsOxj4ccPADTfcEDK2XPUTtyW///3vt7322svGjx+vw6O6MOWgELPZs816ea/rvFZfFy5RyaP9jr+DHDdEbCtxyaYv7befVtXSXMT2tddeC1uPGWxPO+20cGH8scceaz/4wQ/sscces3e+851V6d/yvSK2PpOU4fAitj4beaTLsK/08yDgk5V9BwM/PuuJ5T3veU8gs+yGSvGKnyyi2opczL9EvIvhFqV0j+1bSAxy3BCx9fWBXkqnPk8o2tZcxHb69OnhSh+uJBg3blx411VXXWVbb721sQWCu/dSKyK2PouU4fAitj4beaTLsK/08yDgk5V9BwO/Nddc0/bYYw/beeed7QMf+IBP6RKlRWyLgS1iWww3EduhuA1y3BCx9fWBXkqnPk8o2tZcxJbKydiSueXi+EUXXdS+973v2bRp02zq1Kkhg5taEbH1WaQMhxex9dnII12GfaWfBwGfrOxbb/x8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZemR+jyhKA65ie1vf/tb+4//+I9wWi5liSWWsO9///vhaoIUS+odKHWHKkM/Edvqek4Z9vW0Tvp50CvnVHOPhrKvB73qZUVsi9lAxLYYbiK2PtxSkU59Xp4KTmXpkfo4XBSH3MSWF3DE+D333GN8uM724wUWWKDoe/sul3oHSt2hytBPxLbv3aDlC8qwr6d10s+DnoitD7308fO2zysvYlsMQRHbYriJ2PpwS0U69Xl5KjiVpUfq86yiOOQithMnTrQHHnjAzjzzzPCe//7v/7YxY8bYVlttVfS9fZdLvQOl7lBl6Cdi2/duIGLbJ4jL6B8e1aWfBz0R207oidh2Qqj570Vsi+EmYuvDLRXp1OflqeBUlh6pzxOK4tCR2F500UW25557BiJ77bXXhvdst9129qtf/co+85nPzCG7RRXol1zqHSh1hypDPxHbfnl/53rLsG9nLVo/If086KVPzGRfn32rlhaxLWYBEdtiuInY+nBLRTr1eXkqOJWlR+rjcFEc2hLb119/3ZZddtlwcNStt94656L4l156yXbYYQfju9snnnjCVlpppaLv75tc6h0odYcqQz8R2765f8eKy7BvRyXaPCD9POiJ2PrQSx8/b/u88iK2xRAUsS2Gm4itD7dUpFOfl6eCU1l6pD7PKopDW2LLqccjR460r3zlK3bMMccMecd5551nBxxwgN1444226aabFn1/3+RS70CpO1QZ+onY9s39O1Zchn07KiFi64Gorazs64M2dfx8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZelR13GuLbF98803wwFRq6yyij388MPhmh/KG2+8EbYjX3311fbYY4/ZO9/5zrZ24LCpxRZbbMil0lmBGTNmhFOWs2XWrFn2yiuvBLlsIVvM9ULzzTdf23em3oFSd6gy9BOxLSt8zf2eMuzraZ3086CXfsZR9vXZNytd1fh60/RR7kaI6PkgnFfx86HWf+nU4xsIVBU3dI9t//0v7xsGwU/ztiX7XMdvbLm39tvf/naQ2XbbbQMB5ftayOjWW29tv/71r1u+95lnnrH77rsvXD4/efJkW3755Yc8e9ddd4Ws77ve9a5AkM8991zbYIMNjGzwhAkTbOWVVw4k+oILLgikmG99Ido8e/jhh9t+++3X8t0itkXc4Z8yZTi8iK3PRh7pMuwr/TwI+GRl33rjR+uqHl9FbLv3sXmViM6ebbbTUZO6B6xBIuLnrqjPFaQcf6uOGyK2fXa+LqpP2U+7aMZcj3YktjNnzrQTTzxxrq3I++yzj5188sm23HLLtXz/pZdeajfffLOdcsop9vTTT89FbDlVGeLM3zx71lln2S9/+UtbcMEFbfr06bbUUkvZIYccErZDQ2wh08cff7zFLdJkb2MWuVEJEVuPW5ST8RGx9dnII516QJN+HuuW0389Gsq+HvTekq16fBWx7d6GIrbdY5aVELH14ZdC3BCx9duwVzWkPg4XbWdHYhsrfvXVV23q1KnG36NGjZpzkFSeF0NKmxFbDqW65ZZbwuFU3I+7zTbb2G233WZbbrmlPfroo6Fqrhq69957A7Hl57vvvnu4T5etyDwzevTopiqI2OaxTOtnynB4EVufjTzSZdhX+nkQ8MnKvvXGb+hkv5rxVcS2ex8Tse0eMxFbH2atpDUv7w+ug1Rr6vOEoljmJrZFX4Bcqw605JJLhm93ycgC8Ec+8hG78sorbddddw0/p5x//vl2ww032AsvvGC77bab7bLLLuHnK6ywgt1+++2BZDcrIrYei5WT8RGx9dnII516QJN+HuuW0389Gsq+HvSGylY1vorYdm9DEdvuMROx9WHWLbGdl+fl/UE63VpTH4eLIlcpsd1ss83CNuX111/f7rzzzrDdedKkSWF7MYdHMWDzewrbkOlw48aNMw61WnrppcN2ZTK3N910U9jy3FggyCrpIjDxFw/Z5Kdm2ME7vNdWHzn08LB0tZZmQkAIzAsItNoNlFrbWxHbfo+vPSG2ZjbhwA1ttpmNO/sON7TDVJ8Lw0HBz9XIkoRTjx9VxQ3Ny0tywJyvSd1PczZjyGOlE1tOYnvwwQdtww03tC9+8YvhG93x48eHb20XX3xxO/bYY23ddde1M844w9ZZZ51wQNXRRx9tfOt72mmn2VVXXWWXXHJJ+L6Xu3VbFWVsi7jDP2XKWMlRxtZnI490GfaVfh4EfLKyb73xy7YuO0Etc3ztCbEdZnb5CWOt14cLqb5i/j8oGeVirStPKvX4CxJVxQ19Y1ueH3Z60yD4aac2NPt9acSWk9hGjBgRMrNjxowJW4v5RnaTTTYJeg0fPjwQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDseWKoQceeCBcA8RVQxtvvLGIbRGr55Apw+FFbHMYok+PlGFfj+rSz4OetiL70Esfv0ZiW8X4KmLbvZcNCnFMfWGge+TLlUh9/IrEtoq4IWJbri+2e9sg+GkRtEohtlnFXn755XDS8TnnnBN+zHU+Tz75ZDhAihWkWHju+eefD9/fZsvjjz9uK664Yjg5uV1RxraIO/xTpgyHF7H12cgjXYZ9pZ8HAZ+s7Ftv/Fq1rszxVcS2ex8Tse0es6GLOG9l+FMvqcffRvzKjBsitul476D5aV7kSie2XNUDYV1zzTXz6ljoORHbQrDNESrD4UVsfTbySJdhX+nnQcAnK/vWG79WrStzfBWx7d7HRGy7x0zE1odZHuky44aIbR6LlPNM6vOEoiiUTmyLKtqtnIhtt4gNfb4Mhxex9dnII12GfaWfBwGfrOxbb/x8rfNLM76K2HaPo4ht95iJ2PowS0k69Xl5SliVoUvq84SiGIjYFkXOKZe6Q5Whn4it04kc4mXY16FeuP4r5dP6pJ/Huul/w5q6fX3o+6VFbIthKGJbDLcoFfHz1dJ/acWP5hiL2Pbf97p5Q139VMS2Gy/o4bOpO1QZ+onY9tChuqyqDPt2qdKQx6WfBz0RRx966ePnbZ9XXsS2GIIitsVwE7H14ZaKtIhtKpZ4S4/U51lF0RKxLYqcUy51hypDv0hst1h/NVth6cWaIrr2aiNsndHLz/W7MvTzmFj6edBLP+DKvrKvD4HBlhaxLWY/EdtiuInY+nBLRVrENhVLiNimZYmc2qTegTQxNovEtp1J99hiLdtzy7VFbHP6fd7H5H95kWr+nPATfj4EBltaxLaY/URsi+HWSGy5juj0y+7wVfa29EE7b/j/2TsT+M+m8o8fW1kqprKrzCRZiyQlJRmRJZKQEDGVQkqIUJJsJYRkSQuKikIla8patmpIixmSfRliUJb5v95n/s9057rf7733nHu/3/O9v895veY1M7/fPfc+53Oec87zeZ7nnNPIe7IvSX19aLzBFV+Yul1esRmdeayreqqI7ZBUNHWFGoR8l94w1d0/bXphD/x5ygNu8tQHnYhtOwo6iP6NkVzyxaCniHcceunjF9u+2PoitmEIitiG4VZEbN+331lxL3POtbVnN/X1Kxq4wBeI2AYC11K1ruqpiG1LClP22tQVatjynXnJZPfDS2/xKcqLFKQpP/XUU27jty/vSGNOsQwbvzJMJF8ZQv1/L/yEXxwCo11bxDas/0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKNWz5jNj2g7lXNDeyaxqpPmz8yhoh+coQErGNQ0j4tYnfsN8tYhvWAyK2Ybi1TWxJbf7y934bJ9z/1/7iDu/sLGGIBUjENhbBZuunbgeGtlbENhS5yHqpK9Sw5Xtg2vSeacqkMF964x0905Qju6aR6sPGr6wRkq8MIRGzOISEX5v4DfvdIrZhPSBiG4bbIIhtk6nNqa+vcb0QXlvENhy7Nmp2VU9FbNvQlgrvTF2hUpbPormK2FZQtB6PpNy/iCz5wvtW+MVhNwr4xbcw7g0itmH4idiG4SZiG4dbKrVFbFPpiZlypG5nhaIlYhuKXGS91BUqZflEbCOVbwQmtJT1bxQWBOEXN0ZSxy+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AqRtOKcsnYltxEPR5LOX+FXFU/8YjEPeG1MdHXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJ0dV1ThHbQWlQ7jupK1TK8onYxittyv0rYqv+jUcg7g2pj4+41sXXFrENw1DENgw3Eds43FKpLWKbSk/MlKOr65yI7ZD0LHWFSlk+Edt4pU25f0dhwhV+cToo/OLwG3ZtEduwHhCxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AMuwqdmTBY0ZsucN2Yo97bFcav3D4Bxqoqf6NA1H4Cb84BOJqp65/ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR1fXOUVsB6VBue+krlApy1fljtvzD91qSD07Gp6wlPsXBCVfnPoKv27jF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpidGwU0PRErENRS6yngzPcAC5x/aCq/7i5p133he8ZPLUB/3PRGz74yv9C9c/Ee847IRfPH7DfoOIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyARi4od2eOxXvhtsu9ZIrYVoJX+VQCpzyPCT/jFITDatUVsw/pPxDYMNxHbONxSqZ26XZ4KToOSI3U7JhQHRWxDkYusl7pCjap8IrbVFHNU+7da69p/SvjFYSz84vAbdm0R27AeELENw03ENg63VGqL2KbSEzPlSH0dDkVLxDYUuch6qSvUqMonYltNMUe1f6u1rv2nhF8cxsIvDr9h1xaxDesBEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1ASTDrmJH9nhMqcjt4Bf31uZqa3zEYSn8uo1fXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJkbqdEIqDIrahyEXWS12hRlU+RWyrKeao9m+11rX/lPCLw1j4xeE37NoitmE9IGIbhpuIbRxuqdQWsU2lJ2bKkfo6HIqWiG0ocpH1UleoUZVPxLaaYo5q/1ZrXftPCb84jIVfHH7Dri1iG9YDIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qA0iGXcWO7PGYUpHbwS/urc3V1viIw1L4dRu/uNbF1xaxDcNQxDYMNxHbONxSqZ26XZ4KToOSI3U7IRQHRWxDkYusl7pCjap8ithWU8xR7d9qrWv/KeEXh7Hwi8Nv2LVFbMN6QMQ2DDcR2zjcUqktYptKT8yUI/V1OBQtEdtQ5CLrpa5QoyqfiG01xRzV/q3WuvafEn5xGAu/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMu4od2eMxpSK3g1/cW5urrfERh6Xw6zZ+ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR+p2QigOitiGIhdZL3WFGlX5FLGtppij2r/VWtf+U8IvDmPhF4ffsGuL2Ib1gIhtGG5w2CnDAAAgAElEQVQitnG4pVJbxDaVnpgpR+rrcChaIrahyEXWS12hRlU+Edtqijmq/Vutde0/JfziMBZ+cfgNu7aIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyAZdhU7ssdjSkVuB7+4tzZXW+MjDkvh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKNaryKWJbTTFHtX+rta79p4RfHMbCLw6/YdcWsQ3rARHbMNxEbONwS6W2iG0qPTFTjtTX4VC0RGxDkYusl7pCjap8RmyLuuf8Q7eK7LXq1UcVv+otbPdJ4ReHr/DrNn5xrYuvLWIbhqGIbRhuIrZxuKVSW8Q2lZ4QsU2rJypKk/oAkuFZsSN7PFaWiixi2x9f6V87+hf31uZqq3/jsEwdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleoLsk3jPTkLuE3jCEi/OJQF37dxi+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMz5UjdTghFS8Q2FLnIeqkrVJfkG0Z6cpfwi1T1oOrCLwi2WZWEX7fxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMz4od2eOxOviJ2L4QxDr4xfVUWG3JF4ab1RJ+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaqdul6eC06DkSN1OCMVBEdtQ5CLrpa5QXZev7fTkruMXqf6l1YVfKUR9HxB+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaovYptITM+VI3U4IRUvENhS5yHqpK1TX5ROxneImTJgQqcXtVe+6/rWH3GgsWOrftjWg3feL2IbhK2IbhpuIbRxuqdQWsU2lJ0bDTghFS8Q2FLnIejLs4gCMxU/EVsQ2RgNj9S/m21XqSr4qKPV+JnX84loXX1vENgxDEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1AZS64dR1+URsRWwrTiWFj3V9fMRgU6Wu8KuCUrrPiNiG9Y2IbRhuIrZxuKVSO3W7PBWcBiVH6utwKA6K2IYiF1kvdYXqunwitiK2MUO46+MjBpsqdYVfFZTSfUbENqxvRGzDcBOxjcMtldoitqn0hCK2afVERWlSH0Ay7Cp2ZI/HYvETsRWxjdHAWP2L+XaVupKvCkq9n0kdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleorssnYitiGzP0uz4+YrCpUlf4VUEp3WdEbMP6RsQ2DDcR2zjcUqktYptKTyhim1ZPVJQm9QEkw65iRypiGwdUS/i1IlTmpRofcQgLv27jF9e6+NoitmEYitiG4SZiG4dbKrVTt8tTwWlQcqRuJ4TikGzE9vnnn3dPPfWUW2CBBWZr2/Tp0918883n5pxzzr5tTn0Apa5QXZdPEVtFbEMnTep1fXzEYFOlrvCrglJ7zzSxvl756NLRAoroxUEo/NLEL/X5LRS1JuaNffbZJ/TzqtcwAl3V06ES29/+9rdu0qRJ7o1vfKPvrs0339xtvfXW7rTTTnNHH320W3LJJd2zzz7rzjjjDDfHHHO4bbbZxs0999zuzjvvdHvttZfbYYcdenaziG3cCEhd4WPlE7EVsY0ZIbH6F/PtKnUlXxWUej+TOn5VWtf2+ipiW6UXZn9GRLQ+Ztkao4LfKM8fbc8bIrZxY6DJ2qOsp/1wGCqxPeWUU9wzzzzjyS2ElQKRnWeeedyjjz7qFlxwQbf77ru7xRdf3BPbxx9/3B1yyCHuvvvu8z8jejv//PMXtk/ENk79U1f4WPmM2K48YZG+QE1YfCG3wHwvmvXMum9a2i0ybvYsgqIXxMoX13vltSVfOUb9nhB+wi8OgfZrt72+itjW78NRIWYzZjj3vv3Oqt/AXI2x2t7U14d+Hdv2vCFiGz2sGnvBKOtpssR27733dieeeKInrB/84AcdZJQyceJEd/vtt/t/f/Ob33Q333yzJ7b8nIjujBkzfCoyz0yYMEHEtjE1/9+LUlf4WPmM2NaFbtLGq7oJS4ybVW08xHfeeV7wmlj56spV93nJVxex2Z8XfsIvDoH2a7e9vorY1u/DsUr0xhpRTn196Ke5bc8bIrb15422aoyyniZLbI8//ni3xBJLuPXWW88xmOaaay4fvYXk/vWvf/Vy/+AHP3BXXHGF+/e//+223HJLt8UWW/ifL7roou66665zSy+9tLvyyivdVVdd9YJ28h4VIVCEwD/ufbwvMP96+En31H+enfXM7//2kHvkif++oM5uGy/nlln8pQJZCAiBjiHQy2k6Ks1se31thNg6546etLqb4Zzb4+Q/REM7h94XhaHwi4LPGX68ZVTnj7bnDdnlcTrWdO1R1dNkiS2HQ3EQFOX66693W221lZs8ebJPL2aTOlHab3zjG/73RHVf9rKXuT322MM999xzbty4cT5dudchUkpFjlP/1D05g5bv5AtuclPumTYL1Kn3PuqmP/2M++qkdVxROvOg5avb25KvLmKzPy/8hF8cAu3Xbnt9bYTYzuHceV/dyo21iJ7aG6b/oxLxTn196Id+2/OGIrZhut9GrVHW02SJ7VprreV22203T2iPOOIId8cdd7gTTjjBHybF3yuvvLJbf/313UEHHeSefvppd9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3q2TcQ2bhikrvDDlm/fky5zk6c+KGIbp2Y9aw+7f8uaJfnKEOr/e+EXh1+V2m2vryK2VXph9mdGhZiJeNfvW2pY/6Y+v/VrXdvzhohtmG61UWuU9TRZYnvJJZe4HXfc0UdoX/e613lyu8IKK7jzzjvPbbvttl7ujTbayJ155pme2G644Ybu1ltv9dcAXXzxxW6NNdYQsW1D23WdSSmqRmzzh0tZRXR047cv79ZdbXzpu4bxQOoTmuSL0wrh1238qrSu7fVVxLZKL4jYjsWIfOrzbz/NbXveELGtP2+0VWOU9TRZYotgpBU/8sgjbuGFF55NzieffNI99thj/vTjbLnrrrvcYost5k9O7lcUsY0bCqkr/LDlM2LbD+UPrbui22biSnEd0VLtYeNX1izJV4ZQ/98Lv27jV7V1ba6vIrZVe+F/zyliWx+zbI1RwS/1+besF9qcN0Rsy9Af3O9HXU97ITXU637a7D4R2zh0U1f4Ycs3hT22T73wMClQv/SGqe7SG+9wIrbhOjjs/i2TXPKVISTiHYdQ2rVZX0Vs6/fRqBAzpSLX71tqdCEVOazl1WqlbpdXa0V3nkrdjglFWsQ2FLnIeqkrlOQL7+AzL5nsfnjpLSK24RA66V8EeNpKEAfeCOAX3cDIF4jYhgEoYhuGm9UaFfxSX7/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmfmHjVim/3xSuMXdod+7N3hL224pvo3DlDhJ/ziEBjt2iK2Yf0nYhuGm9UaFfxSXx/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmcWPGr4/XnKA26/ky93itjWw1P6Vw+v/NPCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eEbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1wKgQM0Vs4/o39fktrHXxtURs4zFs8g1d1VMR2ya1pMa7UlcoyVejMwseFbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1gIhtGG5Wa1TwS31+i+uF8NoituHYtVGzq3oqYtuGtlR4Z+oKJfkqdGKfR/LEdtFxC7h1Vxvvayyy0Pyz/h33lfDa6t9w7Kgp/IRfHAKjXVvENqz/RoWYKWIb17+prw9hrYuvJWIbj2GTb+iqnorYNqklNd6VukJJvhqdWfBonthmH0lhv636t5n+jXtLe7XVv3HYpo5fXOvia4vYhmEoYhuGm9UaFfw0fxT3s4htnP43Xbureipi27SmVHxf6gol+Sp2ZI/HDL8Hpk13l9ww1T/Fvy+98Q6Xjd5CcleesEjcxwJqq38DQMtUEX7CLw6B0a4tYhvWf6NCzBSxjevf1NeHsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4tAg/OyE5+/iH1l3RbTNxpbiPBdRW/waAJmIbB5rwawy/Yb9IxDasB0Rsw3CzWqOCX+rra1wvhNcWsQ3Hro2aXdVTEds2tKXCO1NXKMlXoRP7PFKEXzZ6C8mdPPVBJ2JbDKL0r3n9i3tjs7XVv83iOei3idiGIT4qxEwR27j+TX1+C2tdfC0R23gMm3xDV/VUxLZJLanxrtQVSvLV6MyCR8vwO/OSye6Hl97i05IXGbeAf4NFbjlcyn4WJ0Xv2mXytfXdqu+VfFWRkmMgDqnRxK+NNtd5p4htHbT+96yIbRhuVmtU8Et9/YrrhfDaIrbh2LVRs6t6KmLbhrZUeGfqCiX5KnRin0fK8DNiW/QK9tzavlsium2UMvna+Gadd0q+Omi98Fnh12384loXX1vENgzDUSFmitjG9W/q829Y6+JridjGY9jkG7qqpyK2TWpJjXelrlCSr0ZnFjxahh9pyfdPm+5rQnIpD0x70j3w6MyfWTn/0K3iBOlRu0y+Vj5a46WSrwZYAfoX9/b42urfeAyH+QYR2zD0RWzDcLNao4Jf6vNbXC+E1xaxDceujZpd1VMR2za0pcI7U1coyVehE/s8EoIf+275QyFNOVua3osbIl8cIvVqS756eOWfFn7dxi+udfG1RWzDMBwVYqaIbVz/pj7/hrUuvpaIbTyGTb6hq3oqYtukltR4V+oKJflqdGbBo7H4bbLvWbO91fbijl98ITdp41XjhHPOxcoXLUDJCyRfHMLCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eaQq//F7cBeadx01YYpz/8lcnrRMsZFPyBQsgYtsWdP696t84eFPHL6518bVFbMMwHBVipohtXP9q/ijGT8Q2TK/aqtVVPRWxbUtjZLi3imzqA7Ip+Wwv7pR7H3WnXHBTIaYh+3Cbkq+tTpZ8ccgKv27jF9e6+NoitmEYitiG4Wa1RgW/1OffuF4Iry1iG45dGzW7qqcitm1oS4V3pq5Qkq9CJ/Z5pGn8pj/9jJtyzzT/xf1Ovny2Lx/6sXf7/680fuHKQjctX+UPV3xQ8lUEqsdjwq/b+MW1Lr62iG0YhqNCzBSxjevf1OffsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4dBD45ffh1oncDkK+GAQlXwx6SkWOQy99/GLbF1tfxDYMQRHbMNys1qjgl/r6FdcL4bVFbMOxa6NmV/VUxLYNbanwztQVSvJV6MQ+jwwCv31PusxLMHnqg/7vbSau5P+ucvftIOSLQVDyxaCXPjFT/8b177Bri9iG9cCoEDNFbOP6N/X5Lax18bVEbOMxbPINXdVTEdsmtaTGu1JXKMlXozMLHh0kfvnILeKQlmwpykUtGaR8IUhKvhDU/ldH+HUbv7jWxdcWsQ3DUMQ2DDerNSr4pT7/xvVCeG0R23Ds2qjZVT0VsW1DWyq8M3WFknwVOrHPI4PEj5OTKdm7b0Vs4/qvrPYg+7dMFjkuQhDqXyf1/m2+xfXeKGJbD69RI2aK2Mb1r+aPYvxEbMP0qq1aXdVTEdu2NKbkvakrlOSLU4xh4ffnKQ/4w6VEbOP6r6z2sPq3TC77veSrilTxc6njF9e6+NoitmEYjkrEUcQ2rn81f4jYhmnQYGt1VU9FbAerR7O+lrpCSb44xRgWfkZs7b7bdd+0tFt3tfEvaMyw5KuKquSritRoEjP1b1z/Dru2iG1YD4jYhuE2ahHv1Oe3uF4Ir62IbTh2bdTsqp6K2LahLRXembpCSb4KndjnkWHhZ8TWROMgKTtUKivusOSriqrkq4qUiG0cUqOJXxttrvNOEds6aP3vWRHbMNxEbONwS6W2iG0qPTFTjtTtrFC0RGxDkYusl7pCSb64Dh4Wfnbf7aU3THWX3niHW3nCIv4PhejtIuMWGIkJbVj4Ve11yVcVqdEkjqn3bxz68bVFbMMwFLENw03ENg63VGqL2KbSEyK2afVERWlSH0CpG06Sr6Ki9Xhs2PhxoFT2MCnEnLD4Qp7YTlhinJs2bZp7x5uWnUV641rbfO1h41fWIslXhlD/3wu/OPyGXVvENqwHRGzDcBOxjcMtldqp2+Wp4DQoOVJfh0NxUMQ2FLnIeqkrlOSL6+Bh40dKMn8ol95wh3vg0el9G0RUt9d+3DgkwmoPG78yqSVfGUIitnEIpV1bxDasf0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKJfniOjgl/Kbc+6h7YNp0N+Weab5REN7JUx8sbKAdOmXpy/bQIgvNX3gIVRxKvWunhF+RlJIvrueFXxx+w64tYhvWAyK2YbiJ2MbhlkptEdtUekLENq2eqChN6gNIhl3FjuzxmPBrBj9Iru3HrfJGDqLiQKq2i/o3DmHh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKJfniOnjU8LNDpyx92VpPpJdDqPKFK4TetsKSboH5XuSI5tqhVHGo/a/2qOHXVLubeo/wi0MydfziWhdfW8Q2DEMR2zDcRGzjcEultohtKj0xU46urnMitkPSs9QVSvLFKUbX8Cs6jCqLkJ2+DMFdefzC0US3a/jFaVP92sKvPmbZGqnjF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpCRHbtHqiojSpD6DUDSfJV1HRejzWVfxIW7721rvdE0/91z0w7cnCQ6kWHbeAJ7ZEdfn3SuMXrg1mV/GrDURgBeEXCNz/V0sdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UlcoyRenGGMFPzt9mZTlP095sOfpy+97+7Ju0sarVgZ1rOBXGZCaDwq/moCN2Pwc17r42iK2YRiK2IbhJmIbh1sqtUVsU+mJmXKkbieEoiViG4pcZL3UFUryxXXwWMQPcns/e3JvmOr/Ljp52aK5nL781hWX8hHd8Ysv5Ph/toxF/OI0bvbawi8OzdTxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB1DqhpPkq6hoPR4TfjOB+flVf3OnXHBTKZj564Weeuop98pxL3MTlhjn+F0bB1SVCtXnAfVvDHrpe4pT79849ONri9iGYShiG4abiG0cbqnUTt0uTwWnQcnR1XVOEdtBaVDuO6krlOSLUwzhNzt+Fs3l9OVrb/mXj+hOvfdRx/+rFiO/2b/nn3ceN2Hxhaq+orHn1L9xUAq/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0xEw5Ul+HQ9ESsQ1FLrJe6gol+eI6WPhVwy9/vRC1ILs33DLF/WvaMz0PqMq/3cguJJcriOz/IQdXVZFc/VsFpd7PCL84/IZdW8Q2rAdEbMNwE7GNwy2V2iK2qfSEiG1aPVFRmtQHkAy7ih3Z4zHhN3bwM/Kb/RvyS8S3rNieXk5p5t/ZlOeivb1l77PfS/+qIlX8nPCLw2/YtUVsw3pAxDYMNxHbONxSqZ26XZ4KToOSI/V1OBQHRWxDkYusl7pCSb64DhZ+g8HPyO4U0pqf+q+z/xcdXFUkERFeSC97eSkW8S3b06v+HUz/xn0lvHbq/RvesmZqitiG4ShiG4abiG0cbqnUFrFNpSdmytHVdU7Edkh6lrpCSb44xRB+w8XP9vTa39mU5zp7e7MR3lmkd9wC7rmnHnNLLLGEG9Ye3zJ0pX9lCPX/fer4xbUuvraIbRiGIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qAyh1w0nyVVS0Ho8Jv7TxI8IL6Z1yzzQvKGT3iaf+W3lPb7512WuMLPprpHgY5Ff6l7b+xUk3/NoitmF9IGIbhpuIbRxuqdRO3S5PBadByZG6nRCKw8hFbKdPn+7mm28+N+ecc/Ztc+oDKHWFknyhQ2o0PGHq3/79m43wWpqzRX+pOe3f093dDz8ZpCRFJJh7fI0QZ19alhLdSwD1b1DXzKqUOn5xretdu876euWjS0eLIaIXB6HwSxO/sTZ/1Jk39tlnn7hOU+3GEOiqno4MsX3ooYfcNtts4+aee2535513ur322svtsMMOPTtYxDZO91NXeMmn/o1DIK626V/2GiOL/hoprnrAVV1JepHgbNr0tGnT3LhxM/cNFxVLq87/blDRZY3fur3e7vMh66uIbf0+ERGtj1m2xqjgl/r8FtcL/6sdMm+I2DaFfvx7uqqnI0NsDzvsMPf444+7Qw45xN13331u8cUXd3iJ5p9//sLeFbGNU/rUFV7yqX/jEIirHaJ/RSQY8muEOCvRA9OedA88Oj1OyJZqW8S5zuvzZLwX8bbTq+u8O/tsU9c7hfRvqMwp1AtZX0Vs6/fcqBCzGTOce99+Z9VvYK7GWG3vWJk/QuYNEdvoYdXYC7qqpyNDbHfeeWc3ceJEt/XWW7sZM2b4VOTbb7/dTZgwQcS2MTX/34tSV3jJF9fpwm/08OtFgovuAu5FHG0vcb71bUWX41AeXu1jJq3ec20ZnlTtfTlkfRWxrd8fY5XojTWinPr6Wl9zi2uEzBu7ffqzjXye7CLKk08/o/cFIAB+XdXTkSG2W265pePPFlts4btw0UUXddddd51beuml3ZVXXumuuuqq2bp2nnnmcc8804zCB+iMqggBISAEOoXA08/P7f7z/Ny12vTsjDnd9OdeVFon5N3Zlz727Lyl36jzwObLPul23HHHOlVG+tm66yuZUk8+GbbHfKSBkvBCoAICK664ott4440rPDnaj4TMG49Pf7qRRs81x/P+Pc/N6H/eTtWPjcX3dVVPR4bYfvnLX3Yve9nL3B577OGee+45v3/s0Ucf7XmIVOqpyJKv6nRT/JzwE35xCMTVlv4JvzgE0qpdd32tKn3T40Tvq4r8YNZN9Udcf4x6bc0bzfRg6uOomVYO7i0jQ2zPO+88d9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3oi1bSiNN0lki8OUeEn/OIQiKst/RN+cQikVbvu+lpV+qbHid5XFXkRWxBIXV/ienP4tTVvNNMH0tNmcLS3jAyxfeqpp9yGG27obr31Vse/L774YrfGGmuI2DarD7Pe1vRAa1pMyReHqPATfnEIxNWW/sXh13Ttuutr1e833c96X1XkRWxFbON0pUptzRtVUCp/JvV5rbwFaT0xMsTWYLvrrrvcYost5thD2680rShNd5vki0NU+Am/OATiakv/hF8cAmnWrrq+VpW+6XGi91VFXsRWxDZOV+rU1rxRB60XPpv6vBbXusHXHjliWxUiDpRaa621qj4+8OckXxzkqePHYWZvf/vb4xrZYu3U8ZN8cZ0v/LqNX1zrBle7aT3U++L6TvilhV+cNN2tLT2N69um8YuTZvC1O0tsBw+lvigEhIAQEAJCQAgIASEgBISAEBACw0BAxHYYqOubQkAICAEhIAQ6jMB///tf9+yzz85qIVcExZTnn3/e8cfK3HPXu3oq/21k4x1///vf3ete97oY0Xzdf/7zn442s1XqJS95SfD7eM+//vUv99a3vrXnrQ8hL2+qvTfccIO77bbb3Ic//OEQMXrWiZVvxowZ/saMXiVUX+655x537733utVWW23WqznE9B3veIebb775GsVAL2tuHBmWTY3LtvS+KfmkO/9DYEwQ2yeeeMItsMACbg5uRy8ojz/+uHvpS1/aml6wGLPJHhl6FWRgMewlY2vCOeeNhVGXr018yt5dBb/p06d7nNvUs15yVpGvrI1t/r6qfI888ogfQy9+8YvbFOcF764i37Rp0/wVZMMoVeXjurS55ppr4CJWkQ+jFlIQS35ixgBjFEN1zjmbuRdx4EAn8kH6e4MNNvAHPGaLrXEhYm6++ebu3HPPbeR96Nq73vUut//++7uzzjrL/fKXv3Srrrqqu/DCC0NE82Rqm222cb/61a/8exdaaCE3fvx4d9BBBwW97y9/+YvbYost3L///W+38847u6233tq9/vWvD3oXlZpuL4Y422yuvfZat+SSSwbLZRWbku/3v/+9mzhxon8tupYtrLv33Xdf7fnllFNO8Tdx3HHHHW6dddbxr4RAn3jiie5vf/ubd2KoNINA0+Oo6fc1rfdNy3fTTTe5N73pTS/ojKWWWsodcsghbvvtt2+mo0bgLZ0mtg888ID705/+5FgU//GPf7hFFllkti7BA/PRj37UveY1r3F33nmnO/XUU92b3/zmRrvttNNOc0cffbRfAJjAzzjjDLfwwgvP+sZf//pXx11gGFPI8LGPfcxtu+22jcrQ72Vl8mGwT5o0yROyBx980C+4O+ywQzLyHXnkkY79rBQMqvPPP9/deOON3lAZRCnD7+mnn3Y77bSTe+yxx3wfI1eowRPSnjL5/vOf/3h9xBClYEAdfPDBIZ8KqlMmn72UsbHyyit743PNNdcM+lZIpTL5LHLx2te+1j355JN+7GKIDqqUycdivNVWW/k+JmLBwodBP6hSJh+L++TJk/3cC+n+xje+0bhoZTI89NBDnpiAD3q21157DXSOa7zBQ34hRID+PP3000sPeawi6hVXXOG+9KUvuV/84he1iUnR+yHIXFOCrr361a/269oHP/hBd8/0zjMAACAASURBVMIJJziMwLrld7/7nfvEJz7hLr30Ur9+Q5aXXnpph30R8j77PgQXWb/3ve+5l7/85e6Tn/ykl3PeeeetJWLT7YXQvu1tb/MyZG2qKVOm9HXe9xK6afkgoRtttJH72c9+5iZMmODtAeZlDP+6jjOcFThomOexI60ss8wy3omh0hwCTY+jpt/XtN43Ld/dd9/t3v3ud/s5Azvuuuuuc3vssYf7/ve/75Zffnk/z73yla9srsMSflOnie1Pf/pTT3pYwO6///4XENv3vOc97nOf+5zjb5799re/7b1zTRWILKc3P/roo27BBRd0u+++u1t88cXdvvvuO+sTLITLLrusl4OUKP4N2XjRi17UlBg931NFvu9+97veo3322We7q6++2u24444OMj6IUkW+rBz77LOP96B+5jOfGYR43lFR1r/ghycZowlPL5POpptuOpDIWRX5WLAPPPBAd+aZZ3rDfpClinzIQyRvyy23dFOnTnXf+ta3BkZsq8jHfdqM6Q996EPukksucXvuuaf74x//OBAYq8j3la98xT3zzDPemYKThYgkC+ASSyzRuoxV5CObBv27/vrrfapf08S2igyHHXaYj/Dg1SaqQ38Sva1rBLcO6Ih8gCv5cH5y3zxO49jyhz/8wX3ta1/zhLGJcvnll7tzzjnHvfGNb/Rk9Ic//KH/N2v/oosuWvsTrIsnnXSSlxFHOaT5LW95i59TIUAhhTnvN7/5jV8vcIZjsGKUggUErU5WQdPtZUzlI6K0MTRjpWn5LrjgAt+n4GaFuYX/L7fccrW7A/sHp8rxxx9fu64qVEeg6XHU9Pua1vum5cP+YF7D1rTCvPbb3/7WB6c+//nPF0Z0q/fQ6DzZaWJr3UB6bxGxfdWrXuXJGn+zWBC14rmmCoY4qTG33367f+U3v/lNd/PNN3tvthWitZAjyK55hAZleFaRj70lq6yyil9YOWkNDxDG+yBKFflMDiLz73//+x1e7kE4BfhuFfnMaDfvPUTjve997yDgqyQfRgDRKgyV1Vdf3V9obylXbQtZBT9k+OxnP+vWXXddP37Ac1AR26ryISOLCY6x7bbbzjupBlGqyMcWA+Y/ojw///nPPZZkrwxiy0MV+QwnjEbkaprYVpGBdE/maSLtOJ8gDczZRHtU6iNAlg8EgoypbAlNRcaRytwEOSEzwkjdscceWzt6iTw4etgfes0113hD8Dvf+Y53ZBDZCC1EMIn+sr6TFUGGDoQopBBhJBq44ooregfBBz7wgVmRFhxoZNTUIcxNtZeILHMc5B1nUL7gdKwbTW6jP7BZiFgxrrFdCG7ccsst3n4JKUS6VlppJXfcccf599ncyfxQx8EQ8u2xVqfJcQR2Tb8PB+zJJ5/sOQPjHVukzljM92eT8kG8mTPITuDMAPSeYBnzxcYbb+zPABj0Nq5h6e+YJrbsOWPRxEPPpL322ms77uNqqkC2SB2yCOcPfvADR1oV+zas4N3mkAjSXFho2bcRagDUlbuKfHixMdaJLJPaAGmEDA2iVJHP5GARY5Ig7XdQpYp8RLjxmGHk4DwhzZEJZhDEoop8RCwwpHbddVcfETn00EN92lUq8pFJASHD6MTxNEhiWwU/0zUIGbIS5Wsy66OfLleVj+gP/fr1r3/dp+fhpBpEqSofsrRFbKvIQDYAf9hmQSFqx1xHOqlKfQQYrzhvGbNZQyr0oB0IchEped/73tdIlglEnP5m32joGQhsQyBiwlyPYxBHSagRyfxBej5OqCaLHVID+QxJkTac2K5FO/Mltj9i5cvKgx3HtiSCBfQHsr3iFa8IgpOMKyJe+YK9pqyOIEh7VmpyHPGRJt/HIWI47NjKw3z0kY98xO29995RwZQm5aO9BObILkDv3/nOd/qUfFLz0dOYffrN9nL7bxvTxJaOxyDFE4wnhugpaURNFaIlKBR7PyEKFo3Ip8ri3YUs4o2GCDdJrvu1pYp8EDMGM2m+EG6cAUXR76Ywy76ninw8//DDD3uPNgsvB3cMqlSRD+MEAwdiYUYznrQYL1/V9lWRD9LD3kb+sN+RdGT0L8TwqSqXPVdFPpwVGLYYJaThkapPSlnTe+GLZK8iH0SRtENSe9lyQDreoDIuqshH+jGkDYcUEW+ceIMqVeQzWdoitlVkYN5nXiMbhTFAH9KXisaEaQpRcpyhbF9pKuWd/WiQT/TZCkZlSHYOW32om3XQEpUrOoejCgIYvOwnzhbWe9pOpIRtSHVK6ofU0BbIN2sEay5RXKJEbOkKKU0fooODAUcy20RURgMBtqQwxlnjd9ttt1lCM48QCAo9pIuMTOwtxnzsvIHDDn5AVpttOYBDHHPMMcFnuuA0IWuEANf666/vsw5j5swm2zsamlMs5ZgjtnhISEshtYmUWggRixzpg5xK3PTBOeS4k6bIwTcoLnvd1lprrVkyYNARLSaagpebiG5MSlRdZSyTj31DyIecHKyyxhpreMN9UPsxy+SjvUTKOGCjSadEVRzL5CNKT+oKiy1XOEDUMIQGdTptmXxf/OIX/aEC6CiTIguJpc5XxSDmuTL5INlmzBKN5wAVvO+D8pSXyce+FRwX4MjiRMp0Sv3L3j8M+GGMDfSiDL+2iW0vGTDCIUrMy4xN0gwx1tkXikFMNEYlDAHmEaKfFA4XMvJJ5lLIuMXYZVzhEM7eLIAjIoTYIt8RRxzhU88vu+wy7yTDuAw9FZn1kMNZiI6QqsqeUcg9ayX77dmGUme9TP2QGvqROZiDlchyO+CAA7xxT0ZSSH80fYhOG6nDkHe2EdGnpCBjw4GBSjMIcMAh+pS/oYSgEz8PSXEn4LHCCiu4XXbZZbZMDM66Yftf3YITh0wMTsSGJ5COj00fOq9xngOOeogyqcPY/pzJgoMtJNuj6fbWxSel58cMsSXqw8mgpKYxKXGUPga87dcj0ocxw+mDTRYMSjvlmIWPAyX+/Oc/z5IBsrjhhhv6iAHEB2MrxmNTV/Yy+YjObrLJJv4eNwqpoEVpOXW/W/X5Mvl4D1FR0geJKg+6lMmHp5CJFA8yRh2OjUGemlsmH/3KZI3hxR/kI8owqFImX1YO5Npvv/0GtseWb5fJB5klTZ+9LBh1X/3qV71zYFClTD4yLlgss4XtDk3c21mljWXy2TtwnDEftxFlKZKBiBpzrqUcMwfTl0R4OQUVA1YlDAGyQDAC8wWSG7LFAdKJ8yF7KEqYZDNrkWXBWg9RZq8t2zE222wz71wma6puIS2RbAg73Ip92hBcvsFdpzhd2aNZtaR+SA0HM2HMs32KuQ7yTho/awd7/OqWpg/RaTp1mLRw7EQchDj6ISLsgQaDQWaI1cV11J7HMQLW2fUTJzG2XUgggHEOWWzy3AYCFRBa1gq7YYAoa0hhHJHSz950K2R/EdgKOeSsjfaGtCuFOmOC2PYDmkWEwcNm8JBFt0onEiUm3bhfGqClf7YlQz85q8gHRjgGQjxdVTCKlS/2GzH1q+CHoTese0SryIf3MDTdJwY76laRL/YbMfWryIeDgAV4GOmrVeSLaX9s3RTkqyIDczBjYBhzXCzGqdXHSZvdF0tEnHTdOvuWcQoyLxGBI6JDxAzDz6KfHN4Ssl5yvROOC7IZOLSRMy4gpURKQvbY4pBhv92vf/1rH1FmrYTQQvjWW289n5KNfVGnNJ1S2OQhNfQtEXTsARxCkD7ICHv5QggIuDQpXxHOROND91ATMcQ5RpTOUlDZt0uU+g1veEOdbtWzPRDAwYhDkcATY4mCg+jTn/60J6chW6MIynCeBMQxO1fUnTeYh3gX+s7YpmDP2xYDIvh15iG2JpKFRlALhxoZfTjCIPYEacCiToaHQdpUe7ugpGOe2HahE9UGISAEhIAQEAIpIICDgPReDivhtGGypThTAMO1jsGGodcvuyXkXlLDB8PykUce8Qbmj370I28AQ3BDC6nNpKtSiFiTucHeUaK29vOq724jpbDpQ2ogIBB3TmnmnmgIXkyWQ5PyNb2HmlOlIR7cVYwDZPvtt/eklsy7YTgyq+rRKD1HFBTHEMQxe36GHdZUhzhau0npN5KcxaLuvEE/c+gn18Fxg0S+1H2fba3o1T8480K2bDTV3lHSm16yith2oRfVBiEgBISAEBACCSBA6jDGIKSUKCvEjtRN9p5m98iGiEoUJ8TIzX8Lss3VcJAWK8hYh3hbPYg8UWD2k/NviwgRmQkhPm2kFDbZ3pB+K6pDJJ4TXHsVtnCF9EfTe6iRDxJPiigp8VzXxzVMIemiTWHXxfeQ9YSeMo6aKBzCRnYBDquQcdhLBrI80Uu2HzW9pYesB6LTIXrfBGZdeYeIbVd6Uu0QAkJACAgBITBkBDgsif2rREJJ2WQfGaf9czhiqCHIuyDIvJuzKjhEjnTfkEJ0kGgyB7dkryDi4LCQK4m4UYG9uk1dk9Z0SmHT7Q3BvKgOTgD2JvcqpP6GHKLT9B5q5ANDHDOQGXSaCHUTDpamsOzKe5o8pAvHFXu/OU+H6yBxtMVceQOhxfnFdT9E7jk3ZdVVVw0+dA4n3bnnnuszWaywj5stHK95zWsqdylOl0996lP+fArOw8kXDn+NdShWFiaRB0VsE+kIiSEEhIAQEAJCYNQRIAWXk0MxzojccuAbB6wQyQ0pdnoo13YsueSSfs8dBxexz41zC+oWru3gBGwOLGuiQGjZ+8sZGqTjWnQIDEJOc206pbDp9jaBWfYdTV/P0/Qeag6UY284J0ATpeUkbVJF2bfbZCSwaVxH7X1tHdIFwYVAcogbh8PiFMPRVnds8g72WnMYFVkZZBzwHg61C9kDTHtxiLEPnwMdIZ+cxVL3dHYIN9fT4ZRDprxzLvTQvlHTn6y8Iraj3HuSXQgIASEgBIRAAggUHbKCWPycyFvdQ1asSRBiomXZ6B43Gxx77LH+ZNK6BaLMNR1c88c1PVbYRxlCVCBSkNF82WCDDaJSCkmlZL8uB5pxFWFoabq9oXL0qtfG9TxN7qEmko8OcootBSJB5A8CEpqB0DSGXXhfG4d0MX5+85vfeGJ7xhln+L30XPHJPlf2xtYZ78xB6AGp0pykjj7wb5xkHBxZt6BXnK5MWjuHZJFpwDV0HLIHGa1b0EdO7EbOsV5EbMe6Bqj9QqAmAniwKSFpezU/pceFgBAYEQSaPmTFmv3EE094AsopxtxLyXUunB4aet8j+9hIJYWUZOcwDNSQQ1uQkxRV0qVJC8Q45Y7T0FPmiXhzSA2GPqmPXCkzfvx4f51OSGmjvSFy9KrT9PU87LHlWh7SMomGhUTTsrLeeOONPtUTMoN+EFVj3yY/H2spnk32e/5dTR/SRf8wfriCCvL4gQ98wJNaCoeekerOoXZVC/IRYeVAOAjud77zHX84HnuvQwrzFw42CC0p0xw4R3YLxDTkyk+7T5sTyjmAy1LlQ/eqh7QplToitqn0hOQQAv+PAOl1XFRuhQV611139QbTMAopf1zXwSLBlQl4KfGIc48fKXhEZDDoVISAEBACbSBA1IX7mCF7XDHDCbWhp/CSmosxyWm+TRT2X0JiiZZAojBM+QYpkNxtXbf87ne/8+2DSHFHNvv5SIVlf3EISWu6vXXbE/J8zCE6rE3sUyRlmJN2ibByrcoBBxxQK4LOyc+krVJIg6esvvrqfi81DhFklHM3pHd712nykC4yFXCKZclrjF7lpcbBgW0Uc9gTOoZ+sq8eZwx6uttuuwWBinONq4PyJXSvepAQiVQSsU2kIySGEDAEbN/YLrvs4jgpkEvBKaF7ymKRJSWO/XKHHnqo+/znP+9TApmMOSBmtdVW8yT3lltuif2M6gsBITDCCFi0slcT6h5iQhohaaqveMUrvOFXVLhbsm6UlStFOACIE5uZv+zu1br3W5o8EMfzzz/fnXLKKbNE5L0Q8ZVXXrl2jxJxJDqNoWv3puJAPPPMM2tFmOzDTbe3doNKKjR1iE72M3aPMvuxia4RnWcvb519lWQmsfZlS/ZUbt5ZJ5W1ady6+D72iuI4YOxbwZkecj9y03rV9PuYL3HUkZ3B3NNEAT/eyZzIeQQrrbRSLZ1vQoYU3iFim0IvSAYhkEEAYkvqmUVBd9xxR28kkVrz0pe+1B9WwH4R9vkcffTRfp8Z0QKMK6IZRCNI7+JiciKtEE9+TqoLEx57QzjYhAvCSVPBo0dKDWlbREHY94FhwHchskSKObkPzyT72jAUWHiIJGSJLR5MjDv+YEBw9xvvVxECQqD7CODsymaa5Fs8bty4WiCQ2rzHHns47ogtuj/Srt2oexpx04czkQLI3j3eSxv5P3My8yikPKS87W1v88buzTff7N+FU5NTWENK0+0NkaFfnaYO0bFvEN3HccGp1zgvWL8WXHDBKLGbPJU7SpAOV8amYMsBh7CRfm8l9LTypvWq6fcRUT7yyCP9nlpOV8beIjuvrqPOcGLutfvD+Rn/xklW9zCqLqiYiG0XelFt6BQCEFsiEWeffbaPWLC/h2gHUYutttrKG0xES0k74fdEdSGgkFgKZPJLX/qS9+5DRtnvBRlmEiWVipRi9pyQRgX55XJ0jsO3/SekX2Ec8B3IL0SW73GyKSSYC+pJ8SEVOUts+d2BBx7ov03qFmSYv9dcc81O9Y8aIwSEwAsRYI768pe/3BOa0FOC+2HNvlPSdkMOb2EOQ2aiGrGRN6KrxxxzzCxRv/jFL/o5NbSQ3kyEkauSIGkTJ04Muvqm1/cxdomE4Sgddmn6EB0MfNoHdqQjcxAP+O2zzz61UpENl6ZP5R423ql+H8c8uhC6ZzXfrqb1qun3mbw46LCTvvCFLzhSk9G3EHLLndDYcwRBLNODbWMEMjibYCwVEdux1Ntq60ggkN9ji/HB3WkQVtJLOLiC6Crkk/1YpJ4wqUFsjUhyJD0HrHCMPClTPMNBF0zOPMciT3oPUVzILr+H2E6aNMmnwTEZEiXheHsmx2wqMmS2iNgSQSYV5uMf/7jff0QK9b777uu/oSIEhEC3ESBjw/YiFrU09pTgJtFjHxuZLVz/gSGJYxDnXUxhzps6daqPlMQSRub16667zmfbWOEU55A9u5yBQF3uyLSCQ5TDa0JOX43BqKhu04fo8A36lGgVe23JIOKaHtKSQ/bENn0qd9P4deV9OJl22mknr6dNHMrVtF41/T76jawU5iGitnPPPbe3vzhPhX/XLchHXRwDONXQW2wyxkGI46/u91N6XsQ2pd6QLELAOX83IxFbSCgpvUxOkFCMRq65wNOOF98KUVwuNoewchk5RhWkFnLL/ipSezjIZJ555vGHYRBJhdjyfwqEFtLM3xh47KX9yU9+4u9oq0psSZnD6MJQ4sATK5BmIsYqQkAIdBsBrr0hSsb8xKE9+YKjLMRgaxo1zgPgHlz+Rh4yXjiFlL9DTjJu+hRjriJZd911PdHOGvikZYcQWwxb0rm33nprH8GEeGP0ppSi2OQhOhBYUjr58973vtdHa0P61fSu6VO5m9bnrrwPRw5Oe0r2kDQyw0IimLynSb1q+n0cMrfpppv6jBNOaSYdObaQ3Yftxv5wnDgEGfpl0cR+L9X6Irap9ozkGrMI5PfYGhCPPPKI37PF3iGOmmffD4sBh5cQFYXYsghjDHGiJgs65BQjjokTw4j7ENl3hKEDYebfnMTHBFhGbElfJuWOPUtFEVv2hbGfi+gvaczIx6RKpEZFCAiBbiPAtoXvfe97PtMje+estZo5h/tsh10gdJwPkD0VmcOZiOxxDVDd0vQpxpBO0pDZPtJEISLEFSUQZa4rYW1gzv/617/uXvva1zbxieh3sIeYvdJEl63UPTSId3AuBe/AYZE/cKju+7KNavJU7miwOvoC9tiS9ZEtd911l88YMyd83aY3eRgV32aLAISUE4gJLjBf2LU6dWXjXbQrtG29vvfAAw/4M1awx0L3+NdtS2rPi9im1iOSZ8wj0IvYAgz7UNjDykFSFIwTorOk1mWJLYsEhJYUZQoTMISTaO6ee+4561h4fs47IcMQW0sd/ulPf+rvViNii9ebxQWyyjcg1XYScva6H35Pypt9c8stt/TpyCFRhjGvBAJACIwoAmSHEBnEAcY2iNQKEVacgzj9OLWYiCbzKeQvpDR1ijGEjBRa0oTJwsHpyPxqUe7QU5uJpHMoIFtMmN+JikHsSV2MTZkOwStfh/Rt1hfWIhyvVs4999xaqcNE9lgbn3/+eX8+BdlDbJshHZkMKCL0dU5FNjlwMnBw11FHHdVEc/WOHgg0fepw04dREQXl2q21117bp7YzxxFJxlEWu0c/RilIZ9599917vgJ7LDTiHSPXMOuK2A4TfX1bCAQiwDUEENGyCQtDCYMpbxThLSQCzJ7dKh5HjAXSnPleGVHFMMNbzv41FSEgBMYWAqT0cogJBt/DDz/so4M4xzg5eJgGYLYXiGpAVoi2vuMd7/DbJWLmqyZOMb7pppt8unCvwu/L5vtedXFEMt/zN5k09IWlfQ5bO9lyQ180da8w9/1+7nOf88SDtY02r7jiio4U75A+Zj3jgDGcuqusssqs9XLChAnJ6POw+7CJ7zd96nAbh1GRTcH5IxQOfSLrjXlumA48bDn29zPXEozgMFAOi2Lr2qmnnuqzGFLYAtKEjlR9h4htVaT0nBAQAkJACAgBIVAJAa4MY5sEUUJOqrVtEpUqt/xQk4czIWrbpxiHwIGha3ueOVehqBB5Iqo5zELkeLvttvNR5Cbu84RocAMAKdcUInekXGPoh7yftE4O9ckXIvyhjoZh4p3qt5s+dbjpw6jI6mAPK3pFv5M2jXOInzdx2FVsvxCZhXhDZq3gcCPDjmuUxlIRsR1Lva22CgEhIASEgBBoEQEObOFqMArpvkQHufIrm2ba4udLX9304UwQdqJN+cKhfZwmP6zCnmeMWkhj0Z7nZ555xm9D4eT8kNOCY9tFZJVoPgUnCIX0YcsICj00iDvZ2f/I36RykypO+iip2CrpItD0qcNNHUbFfMahmxQ79Z1DMdkTzrghWjqM8ZPvSbaCQbQ5FZktFjhk2BoGwW96H2+6WjRTMhHb1HtI8gkBISAEhIAQGBEEOPCFdDgO3IGocMIvxILDe1JIRW76cCYMclIR2a8KgYdIYehC5LkzPBtBSa0LIbbvfOc73YILLjhw0SDWpEdbgYgS+eLnGOLoTpVtMkWCs1+TvYeQZ24SGGaq6MCBHeEPNnmKcfYwKvbV22FidfWKvbVs/epV0K0U5jXkI2rLAX6cDL7++ut7Qp7KloNBqqWI7SDR1reEgBAQAkJACIwBBO6//35/9UQqqchtHc4Egdpll1182i8GrqUoXn/99W6ZZZbxJ9dz6IxKMQLsgeWgQ647OeSQQ3xqNKm/XIMSWrj+jsO3ODSLvbCQW107F4pmu/UgoOxj5gRf5oyiwuFfIWnf7Itm7zbpwmSRkEqMo02l2wiI2Ha7f9U6ISAEhIAQEAIDQ4CoCynIXLXBXaIbbrihTw0dN27cwGQo+lBbhzNxxRl3hrNHlMKhMhxWhDHN9TqQNf6vUowApw6TJsyhVlnHQOhhWaSFEzm/4IIL/PV0hx9+uI+ck9q80EILqRsSQwDHEFcRch0YV4XlC+OJw49I/a0TwWce2mijjfzBZOyx5nRsopg4nqQHiSlBw+KI2DYMqF4nBISAEBACQmCsIsCpyJzGzhUuqaToZfvinnvucciYPTTpoosu8qcjh+6Vg7yTsshhTERuueqIvcX777+/u/nmm2sZ5GNNb3AMnHjiie673/2ubzqpyOAI4R0/fnxtOLjWjmvqDj74YPfRj37U/xvHyjHHHBN0T3FtAVShcQQOOuggH8FfdNFFK7+bbBEOeuKEdiuk3RPBTeX+5sqN0YO1EBCxrQWXHhYCQkAICAEhIARGEYFTTjnFQWI58AWyQ2E/JsSKQ5QWW2yx4GYREST9mL3EpB5DnokMhZLlYEFGsCKOAe7bJbLNHmUirKQThxSIMdfyQISIom+//fae1BIZTNHREtJG1emNABFZ9lY/9thjbscdd/QHKOHEYmziPGGc235b4dhNBERsu9mvapUQEAJCQAgIASGQQYBoHlffkNbIvk4r7IWFTKkMDwEO4eIKHQ67iT3sibs7OR2WqC93KO+www4+CqzSfQRwMLG/ulc5+eST3bzzztt9IMZwC0Vsx3Dnq+lCQAgIASEgBMYSAhxWxB/tsxtLva62jkUEOA2ZrQdWuP6qbkrzWMRt1NssYjvqPSj5hYAQEAJCQAgIASEgBISAEPAIcHgd2wK4fozy+OOPu2WXXdanKadyp7a6qh0ERGzbwVVvFQJCQAgIASEgBISAEBACQmDACFx44YV+Pz0nk7O3njtdd9ppJ7+Hm1OWVbqLgIhtd/tWLRMCQkAICAEhIASEgBAQAmMKAfZXn3HGGe7oo4/2J5QTqeUuY64V0n7rbquCiG23+1etEwJCQAgIASEgBISAEBACYwaBJ5980p+Ivdlmm7lzzjnH3XLLLY6fTZ06VRHbjmuBiG3HO1jNEwJCQAgIASEgBISAEBACYw0BDpDiSi/uS+YaKO2v7b4GiNh2v4/VQiEgBISAEBACQkAICAEhIASEQKcRELHtdPeqcUJACAgBISAEhIAQEAJCQAgIge4jIGLb/T5WC4WAEBACQkAICAEhIASEgBAQAp1GQMS2092rxgkBISAEhIAQEAJCQAgIASEgBLqPgIht9/tYLRQCQkAICAEhIASEgBAQAkJACHQaARHbTnevGicEhIAQEAJCQAgIASEgBISAEOg+AiK23e9jtVAICAEhIASEgBAQAkJACAgBIdBpBERsO929apwQEAJCQAgIASEgBISAEBACQqD7CIjYdr+P1UIhIASEgBAQAkJACAgBISAEhECnERCx7XT3qnFCQAgIASEgBISAEBACQkAICIHuIyBi2/0+9X88swAAIABJREFUVguFgBAQAkJACAgBISAEhIAQEAKdRkDEttPdq8YJASEgBISAEBACQkAICAEhIAS6j4CIbff7WC0UAkJACAgBISAEhIAQEAJCQAh0GgER2053rxonBISAEBACQkAICAEhIASEgBDoPgIitt3vY7VQCAgBISAEhIAQEAJCQAgIASHQaQREbDvdvWqcEBACQkAICAEhIASEgBAQAkKg+wiI2Ha/j9VCISAEhIAQEAJCQAgIASEgBIRApxEQse1096pxQkAICAEhIASEgBAQAkJACAiB7iMgYtv9PlYLhYAQEAJCQAgIASEgBISAEBACnUZAxLbT3avGCQEhIASEgBAQAkJACAgBISAEuo+AiG33+1gtFAJCQAgIASEgBISAEBACQkAIdBoBEdtOd68aJwSEgBAQAkJACAgBISAEhIAQ6D4CIraBfTxjxozZas4xxxyz/f/55593jz/+uJt77rndAgssEPiV2av9+9//dnx3wQUXbOR92Ze0IW9dIWnbtGnT3Pzzz+/mnXfeutVH9vm22s1783rZNkht6miZ7MNob5lMY/n3ben1WMZUbRcCQkAICAEhIAR6IyBiG6Ad559/vnvf+943W82XvvSl7sMf/rA7/PDD3cte9jL3pz/9yb3xjW9073jHO9xvf/vb0q+cdtppnoTssMMOPZ81kvKf//zH/e53v3MTJ050H/3oR92pp55a+v78Aw8++KD7+c9/7l796le797znPbXlrf3Bkgo33HCDW2eddbwzACz64dD0t8ved+GFF7p//etf7v3vf797xSteUfZ4rd+31e5vf/vb7hOf+IQ75JBD3H777VdLppiHszr6ohe9KOZVteoOq721hGzgYeaV3//+926NNdZwK6+8cgNvnP0VzAUXX3yxu/HGG92qq64a/P46en3UUUe5PffcM7lxH9x4VRQCQkAICAEhIASGgoCIbQDsRmwXWWQRt/HGG7unn37aXXvttW7KlCluwoQJ7s9//rN7+OGH3cEHH+xe97rXub322qv0K0YI8pHgbMXdd9/df+uEE05wv/nNb9x6663nCSBEsG65/vrr3eqrr+7J2jnnnOPuuuuuWvLW/V7Z85/97GfdN77xDbfddtu5ffbZx6244oplVQb2e5wY9HmssV8kcFvtPvHEE90uu+zivvKVr7gvfOELA8Mqq6NkKwyqDKu9g2qffYcxgs5885vfdLvuumvjn1933XXdZZddFq3rdfQaZ+DnP/95d/LJJ7udd9658TbphUJACAgBISAEhMDYQEDENqCfjdgaKeQV//3vf32E49Zbb3XHH3+8j4ISTV1llVXcscce60j1xfj+2c9+5v74xz+6d73rXW7SpEk+6kqk98wzz/SSbLLJJu6MM85wG220kVtyySXdWmut5Yks0VUM2SeffNIbnkZsee6Vr3ylu/TSS92yyy7rDj30UPeWt7zFk13+7Lbbbu6DH/yge+ihh9zmm2/uXvWqV7mvfvWr/ptXXXWVI9K84447+uey8iLLL37xC0+MbrnlFrfwwgt7EvzlL3/Zpwr/5Cc/8e3ccMMN3R/+8AdHhAajeN9993Xjx49/AaqkGBM5vOCCC9xjjz3mcSGaSET7iCOOcF//+tfdAw884N761rd6IobDIFsmT57s61933XU+Eg6pR2ZSlvu9+5lnnvFy8dxFF13kX0mEiH446KCDfJSYNhBdfOc73+m+973veUxwGGBkIxsYEEl++9vf7uXEefGtb33L/fSnP/WOhrXXXtuT8de+9rWNtvukk05yp59+utcF3k+hr26//XZ3zDHHuMUXX9zjTUYAJHLNNdf0OrLaaqt5XTNiu/fee5diwDt51xVXXOEWW2wxt9lmm7kDDjjAv5foftX2brDBBrN0dOrUqe5jH/uYjy5Onz7d/fKXv/R9B/lF//Pl2Wef9fgyFp544gk/hnB00K4yfazTXvoLncAxhTyMN/5NP6Pz9Cvp/oxb9LGOrpu+veY1r3ErrbSSbwsYfuYzn3Hbbrutb0c/feX3OMYgeeeee67vY3QUXb388svdHnvs4f72t7/5sU6/7rTTTn5uOPLII93f//53jyt996EPfch/67bbbnOf+9znvI7MN998Xle/9rWv+UwNCnPA/vvv7/7xj3+49ddf3910002e1PIHbIiEn3LKKT5jAb0Coze96U19Z82i8cx4Peyww7wT7ZFHHvE6sdVWW/m5KUts0W/kZc6hLYx55juchMytOAo/9alPzWpfwPStKkJACAgBISAEhEBHERCxDejYImLLazBejz76aE+K+Hc2FdnqQOT4+XHHHeeNaQgFxhsRGArkEoP6JS95yWySYbRi1FFIRcZQxVikLLXUUp5sYvBCyjAcIa9f/OIXvTyf/vSn3T333OOJMgYxhuLHP/5xb8QjAwQI0puVl2cw/invfve7PXmF3GGInn322V5eCAoFogf54feQTeTPFqLQGNSkT/M92oFBTYHkX3PNNd5gxniGxBHt4ZtWeDekkfeD38033+z/DdmDyPd79+tf//pZ+3UtGo5hjLOAdtCe7D5UjHaMesrdd9/tScOXvvQlT7pxOkAwIB0QPUgXROZHP/qR23TTTT1ZbrLdYI6Tgv795z//6e6//35PdOhjMgLQFYgvhPvlL3+5jyqDL89liR5EwfYsF2EAsV9uueU8/pAJvkX2AXoBTp/85CcrtZe2Z1ORISdGgpAZ5wjvRQf/+te/vmDkgTP40gaIIe2n3HvvvZ7U9NPHOu1F1y2ajFwQPvrXCt/n/4Y7Y7WqrjM2Detsm3n3r3/9az9m++nrCius4LMVGMuk55IJwlhhHL/hDW/wpA/9JNuCcQKmOMco9B0OLwoOJMgjY5OxQl2cBeBP+3A64OwCZ5tDcDjxLIVvMC4ZK7QDB9uvfvUr/zvmomWWWeYF/Wc/gAznxzPfw1GEPOjrD37wA/84hBrHARFbHDmQeuYWHAo4opAXJxiFuYF5DxkZcxBjFSEgBISAEBACQkAIGAIitgG60IvYEkUjogLhwQDNEkUMYww2oiKWbgfJwMhbYoklZhECIx5GEDD0IaZEkLKkwYgthiLRTCKOGMwYwfyO6E4vYgupyKci5/cEW/qtEWOMYIxoyh133OHOO+88b+xD9jBM77zzTk9YjFhlYbVvYSBDGDD8iTYRZSJqjUFrUWsihkROs4XIMJHIbbbZxkfXiEJRf+mll3bbb7+9N/J7vRvM+5G6LLEFO6KDvBPD+zvf+Y6PkOZTkSHZGNzIRPtp04tf/GIfKZtnnnlmiR7bbl4EMYfk0D9ExZEHQk/0C1wgKx/4wAe8g2CLLbbw3yaqT+TZIrZlxJY6W265pXcaUA/SDKYUDoOCWFRpL88XEVt0ApK70EILeecKeNEmc9QYYOxNh7RAYpdffnnvUIBg4fjBUcO466WPkK6q7c0SW5wmc801l3cMUCBtjEc78A180YOqup4ltugpbYSgIjfzAu/pp6+MWQg1hfEBIUVGxh4R7HwqMn1OhJkxxFhiLH7/+9/3jhaIKt82p8tzzz3nHSVgikMEBwbYoj8QRfrEtgDwzNZbb+1/RpQVHSBb47vf/a7vF+TsV/Ljmb77y1/+4ucoIvO8G0fKJZdc4uciiC1zGXoGub/yyivduHHjvKMMxwI6jzMO5wD9zLzJMypCQAgIASEgBISAEBCxjdCBXsTWIltE9DAgs8QW4oFhmo0MYegSaSLamt9ja/9/6qmnZhGzImLLOzBkKaSOEimBBBBJzBJboo8YzBYtKyO2Rt6y+0pJReT/kGYiKxjppBFCMiFAkG8IJv/OFoxmUiOzUU2ixaQb2+Fa/Ygtxjnpw0Zq6rybg3DyxNb6KR+xxfCfc845fUouxJG+wZjOE1tIL+TXCm2GIGCc15ENB0S/dvMuUnMhpqR3EkEjPRWSy8FBkBOwyeoUdUj7RSf6Eb0sBkTTLNU5Pywgeny3Snt7EVucORzARWFcEInFGZPdRw2ZJqWeUrTPvEwfIZFV25sltnlHkv3fSDbkELJfVdeN2GYdPLT9ve99r9d1cC8bC7Y/1fqCcYsuErHME1vmGHN65FOEwYN6ZFBAECn0M7qEwwxiy8FzRor5PX2CY4H54c1vfnPhLJmdc3pNo3m9Zv7DeQJRzhbGJw6b7NihvZBgslZIbYfM5kuRAy1iSldVISAEhIAQEAJCoAMIKGIb0IlFxJYoKOmcFIwy9txmie3VV1/tU4QpGPYYnBASiwr2IrZZI7+I2GbTOo2Asd8WYxHCSZQFwkt0A8O6KrFlXx9pjZA49gayl5SUTQqGL5EWjH3260Gu+hFbCByRGgxWDqmi2L46i8L2I3hGJC1SSaSHSCzvA+N+74bgWdopbSCyaie/5omtYd2P2BJJJLJLZBEiDEZElCiQKyKsVmLbzXsshZzIHQQG8kLfZiPoOBqIci266KL+03liC2nohwHOk4985CM+/Rt9pOAIAQ++yym8VdpLvaKILYSM1FhKL2LLt9j3Sd+yB5XoLnvEwZTUfghhP30k0m/Etqy9dYgtek2UsqquZyO2zAPMCUZG0XUcJf30FUcG0W3wgHiCG84MiBy6AEnNHh7FHlv6jP3LkGd0DqcRWQ/sl2Xs8wz7ZClGFCGzbINgHDJ+GcdEUolc09c4sHiWOQoZ2C/MzyH66Fm/VGS+kx/PRsAZtxBjdIJxlCW2pFIzptiyYGOdDAXwt3bgsCPVHmcVjjYVISAEhIAQEAJCQAgYAiK2AbpgxJZIHQbko48+OmvPKAYbvyeimSW2llKHUUf6KlFdjDoOlyGCY4QAkkSqcj7KmCcN2T227NvD2CSCR4HA8W6+g4y8H0OWYsQWoxeSRPofKY8Yqll5MSYxKqkPqYAYY4iSRsm+P9Jg6xj7EC/SDDG+zdhHHjPI+xHbbDSPA6doGySHf2OUl73bjGpwwjC2fYhViS1ECHJBmjlp4fQx5B6nAW0hJRkCAFEATyuQnDLZyiK2vIs9sLa/kT2vEDjDhP6h35GPPqOQPoszIHsqcj8M6FM78IuI/3333efJOvphh3VVaW8MsaWupaejIxBgoooUCBUptv30Ef2u2t46xNaun6qj6zZ22SdK1NMcHz/84Q/9AWz9dIJIPAe8QWTJuMAhARlGr4h2srebuYQoOPiQpsw4Z1yDD/MK4wxySPqyOdsgtzgw7JA6SDL7Wy3tn0O+cJwwtikQWwgzspP2S8o+uocM7DvPX3eWn0bzem3ZHrwD/aSvKURjmYvsVGQws2uMkAeHId8GD7IiGAfUgdzjBFARAkJACAgBISAEhICIbYQOFN1ji7FKai1kh6ig7VklCkFEjX2pGJ5Gqvg8e9vOOussv8fPiC8/JxpXlJZp6ZHZe2whH0S5LB3ViDJGLO83QgShhuwYsSWiDKFBTqJy/A7yY/ISOcFw5jRSK3zrxz/+sTey7fAojEuMTAgA8hWlIlMfos9+wGwqotXl92YIQ9iJLOeLRb3s57SNFFH2Qpa929KeqYuBTF/RD7QFmfLRcgxoDqWyVGQICdE2CkY9xIX+yrYF5wApw/lSJltZu3kfcpLGabphd+lyejRp5xT6DbKCTETsSSHO3mNbhgG/5zAq0yMw4rv8zSE+Vdub1VE7PKpKxJY2sE8bwoROUtAlCC0R9jJ9zN9j26+9kEuLYJelImf32FbR9WzEFj2GYFIgxugwqe5lOkGfZq9oAgccFxyeBaZE1uknxh3OHUirEVa+RX2yDijsv2XesUOhsu/i95Y5wb8Z1+gWGSUQW/YHQ6qz72Z/7YEHHjjbgWtFU2lerzlYjXR25CDTAvLK3MT7yAQhQktUmbbYeQS2jzaPB/0H6SaqryIEhIAQEAJCQAgIAUNAEdsB6wIklCgLB9RY6qiJQNoj6YAcmpI9qbdMREtb5MRcDpHKFtI6KbwzX6jH7zHyISRFhYOIiERi8CJzTOF7tJ92smfSIltV30mKLdEo2mnE3+qWvRtiRAojxDbkflUcBXyffcR2QBSppvQXJ8v2wg/5ymSr2v6i5+g/ZKvSN2UY0Bb6GqJB1DCvg1XbG9MesCJdHawhVvm+qqOPZe2NkbNX3fweW5wNOF/Qm2wp0wlSfklFZjxzSBrOMiv0E1ki7M3nDwVnGN9iXNnBV9nn6VccaETm+Ttb+BZzEsQW4p0vZAdwMjW/53tcXcb7ehUOCDO5ss/gTKNNyFhnfuMd6AN7wRn75thpo//0TiEgBISAEBACQmB0ERCxHd2+k+RCQAgkhkDR4VGJiRgtDs6FouwEezFXBGUPBov+oF4gBISAEBACQkAICIEKCIjYVgBJjwgBISAEqiBANJX0djIkOPxKRQgIASEgBISAEBACQmAwCIjYDgZnfUUICAEhIASEgBAQAkJACAgBISAEWkJAxLYlYPVaISAEhIAQEAJdRKDormlrZ93906njkz9gLnV5m5RvLLe9SRyrvCs/pro2jqpgUOWZsayTtF16Ua4lIrb/jxEKw2EzIQcLlcOsJ4aNAIftcBBP0aE2w5CNw3g4CEdlJgKk8JaNPZ7hcKOiA46EYzMIVOmHZr6kt4wqAtkT/IvawCFmTc9tnE7O/c9cA8aVV1Y4YZxrsf74xz/6O8Q5KXzixImNQmsnvXNVXNkc1dSHuZGAE8M5+Z/TxIdROIGd+6s5hZ2T9rtSOHWfu9nXWGONWVeLDbtt3NPNVXvZwgn2YM8NFBzmWFY4AJBbG7gPnpsEKBdeeKE/sJOT5Ns+dO/qq692hx122GxicnL997///TLRK/9+WDq51lpr+esuuSKPww+HUfI3PwxDhja+2YaOdobYcg8j97fWGURcL8IExz2Jl1xyib8WgxNZ84UFhut67J7QpjsXY5KTdm+77Ta/OJcVrvrYYYcd/FUoWaLGFTZc78FEWFa4N5KThe0QGCZFrrjBQOBuy6233nqWLNwzyfUakydP9lcE7b///n1PAS77tv2e60u4RocrPtosnBrMfaJcL8KkzzU2YIcjgzt+uSeWk4Dph6OOOspfBcRJtPyOCa3IQ3beeef5q5o4lXjSpElus802889BWFlcuBoJI8wKV5Z85CMfcZwYS0HXWGzK7gNtE5eyd2f1Ev3giiVOlm6jYDxyNQ5XTmUL19xwHRWLCX3BFUbbbrttGyIM7J1F47Tf+OO6JQxcDqbaYIMN/NVPdgp3r7HJ/a9HH320P0mYq6AYz+h0WbF+QB6u7OnX3/n5s+z5ft/O9nOZjGW/Z6xxgjdXmKk0jwDroBEd5jqucOJqK06Hpxx77LGFp/CHSMLp25dddpnXfwxL7rjm7nMKcy/f5PvMEXZNGGsY/2+qDIPYQta5OpB9+qz1wyis91zL1TVia1cHYidxB30KxYgt9hWY40ThDnmu71tvvfX8lXtl5frrr/f2GXbFOeec4x/HvuB6Sq5vW3XVVcteEfV7uwKSsWd2KWT6ggsuiHpvtvKwdNKILdcoLrPMMo21p86LuH5yl1128Q6Q7HWAdd6R4rNt6GhniO3OO+/sDb86xgwDfo899vBXV/QjthiHvHu55ZZrRS+MQGCM9fsGp5EyYUHeL774Yn/lB9eI4JGDaHHPJh6yG264oa+cGJGbb765v5sUI4Sy2mqreWK31157+UmQyZ9rPmg3ZBuSt/766/u7bSE43GUZWyC2vJe+a7Ng6N53332+rXa/KZ59yCftwOjnPlDIPoYE99jimWfR+/Wvfz3L+2kyoivgx3NcH4QOYeCtssoqvv8+85nP+MmcO0C5P5jJkIno7LPPntVMdG7NNdf0uveSl7ykzeYHvzurlxAd7qPlqqY2Si9iC9HFkYLzadSJbb9x2mv8QR7RU+52pf042bbaaiuvtzhRisYmd9hiUGCQQja5h5nrgLgjuqxYP+AAghy/9a1v7VklO39CMsqe7/ftbD+XyVj2e8byrbfe6s4444yyR/X7SATe9ra3uWuvvdaTTUgnBV1gbmQO5Cop5kX6BPLL2sJ8uc4663idxFuP04o5GudjvvzoRz9yn/70p/2VZhDYLLHl3mOciszTGNXHHXecX9OY21kLrXBVFHfM48hkDl5sscXclVde6WVENtYFxsjxxx/v52p0kbGD09euwuPbkA3sC9YIvsOcRBtYC4iooW9chUVkBdkY74xrDFHGMAXn6umnn+7tDYgGDlGcdflixJa2sUYQmcbhTLu4Js8coqz7rPk4y5gTWFOyUTPIEWs6bbb1h3bilOXectZfnseueOSRR3wUk/mFtuVJBO3u13YwYn7izmoK/f21r33tBVfz8TvWFtrCHdlE44kwslYiP4V1GtyI0C288MKerEH0IUxgj/Pi5JNP9vMfjg++yzOsvZBE+pc24MQmELDpppt6fC6//HKvfxDGZZdd1u29996tO9arDDEjtlmybdFJIre27vbCxRyROH94Hsc5TnQwpF+4Exy80UdsO5xTzJHoJXYK4wjH/J577unHKAcgMiaoC6aMA+rRV9w5ju7kC+OUscR465cZ16ROlulCP51krEIW0Vf0CQcwOBRlfBixRQdZ95jXsIPRO9qDfcd1eBb8wqnMmPrkJz/p7UsrJ510kh//2FLgSKGvGOPHHHOMz3Rh/WatBnPGA3MA/ZYltugt9jNzgTk9CMrQFmx05lfeybuuuOIKP/6Za9CzoqwTbH3sLN7FfIKtz7yEHdBvPmdOLJODwBHZksxfOCjRT5x12P1HHHHEC3SUOSi2dJLYsrDcfffdPlpBR6EUAMoEaYXfocDci4qC0okYgUQPWbwgLLyHxfbUU0/1xAjlhRQyeCGPKAqLaf4OUyZtJhRSpoiK4mVBOVlYiYryXu505Hss+ERr+VNGbEnxYpJB0bLEFu85A4aIL0rbj9iCC8YqXkE8T7SFiZ87dfkd96EiJ6e68jvunWSis8UKGVn8s5FGFnAWdxY9u+YD44LFHnlpM4MZXBjQRx55pL9L04gtiysDkW/wfSZPDAsmcfqMycImVaJ1NjiZjDCIMBZs4Ocj3kxeDFQGN4YE8oA9izuFv5msiEwhOxMVCyKFyR3SmY/UM0B5hkmVwsLKYAUr2oD+IBP9zP/pZ3RnhRVWmG289iP2YE7biGLihWUSxFAAY3SXvqKv+UYvfLIfIzOBhY02YhCg37QdXWCSwZgxw5TUN/4w0Zte9iO2kHreDbHBQMFQYlFl4gJzouMsokQamfDpe4wmFkJ0h4mfPrj55ptni9jaYr/UUkv5dtM3GJ28iz9E+zGceB/jk/dh4PHM4Ycf7r9NRJMxxmSJDqIzYIHRirxM4OhWUZpWr3ZxnQ0ODPqWKDzyYzRhRKFrGJLZxcz6odc47Tf+GOsYYxiwFMYSxj7tALOisckYQmcsdRJjh4WZxevlL3/5bDrYqx+oi/6xOCMD2PNd5jP6lxTF7PyJU8ie7zf/YqAzHxJdYy44+OCD/dzMfGn9nDUsICRgaVF6+pCxBYno1T9GbJkT+80rvfSgqL2bbLJJ7Frbyfp5YsuWHlKGmbeYY7iLGv2joLPoIHM7hf7GQMT4ZP6EbGCAFRXT4SyxZU7EMEInmGMh2MiDXuWjROgR6wlOYQiUGeEnnHCCl4fxjAwQIGwGxqSlAWcjtug4pJN5jHewJjPXQZKYT3gf8wPvYsyhqxTWTO6XZmxiAGNzQByY/4i0sX5lixFbfkYEjDkfnFh3IKjoNXMd/+ZnfJNvk1mFoWwFhwBrO3UxdPk2ayRYW0ou8zQ/h/xYYICUS+pmI7bMN/3azvzOHAgWzDP0B/9mrs7fnc18ggGOjhB1/8Mf/uBFxlnH86yNFPqG32XbzvqLfmHnQMz4Jt82Bwd2GXMDhd8zR1JYh5CLuZ+fMUdipxTN1YMerLbWscZjc2IrYbPQR+g5cy52Ri9cWMMgqOg4mDLH0u/gjC4zf4E36wg/o7D24binoDvU4f18h4JOYB9byf6/KCUXAoO+gyv9yDiDKHJ3erY0qZNlutBPJ3HGYceCOTYDtjzYFQUbjNjSDtpn+ooNRTuNAzCemQ9w1oFdPguTemTyMfdhL2J3QmaZL5gbcRgwnzEW0VVINDLxXJbYosOQWortObY5gDmBvmBOQx7sOL6FPPQxfZ0t1AcD5lhsVJwo1GPsMDf1m8+ZS/rJwdyUzXjMjkdsWMZpXkebyCzoJLG1RYGBTEfR4fzJRhmJfuIhYYFiMOKtJOUDrx/KxUQBKcKo5H0sLHhEIFooDsQP7xaGLZNjtmDYYdyycGEkofgoFV5a6mCcsmCwGEMqeH8VYmvfwDhksbOIrf0cIo2nuBexhbBiGJg3FoWGvEIkmUDNW8pgXH755b0hAgllYEFsUEQMTEhQ3iMHYeJ3eIjw2EEIwQ7CgKGKkQlmfJsBCs5G7PgZhACMmARpF8/yPWRgkCInMrFoM1nSlxgxDDreRT+y+OUNGlLIead5EVk0mYSYWCj0DVFp+pSFGH3h95BfJifag9ctW/g9g5EFgEGNMwRcLTUO2UgJJz2eCZOJhH7JFwwjUt8tbSj7eyYM8yBCKNBRSAiGFZ41FiUWPNLve+GTfR+6Z/pNe5Cfvap4BjGqIPxGHvg/RAVcy4gtOOHAoM2QR6Ig6ALjxxYDjCUiG3wDnaBdYIvRC3aMQybVPLHFUKRtjDFkxmDhOcYXCz9jmsWfSZlvo0N4MiGQGAL0h0U6MLAYkyzwGM84JXBcYBgzkeejmf3aZYs//csCg+ML4woyzbyCvNbOIgMpP077jT8IJOOU8ccYRV8xYDAy+XfR2CStnrGOXmPAQR4ZG9dcc80LxOnVD9lUZJwH6A+EkQgb+sd8yTjOzp+Witxr/qVvMGIhGcx7NrfQL9l+hjxbQWeIXJhXGoOeP+hnL70zYsu46zWvYGj30oOi9jLOXvziFw/a3k3+e3lia+mQGGoY1MyP9Dt9zbyNExOygpHM2KSifwbIAAAgAElEQVQwH2DwMY6KIkE8U0RsmTsgchAWiCJrBRFYDE+cFtnCM6wz/CFaSd8jn61rGPjMWxBPSAYEAT1mnqxDbI00MqcjC+MUxyPvYSwz59B25klsCcYoc1N+C4aNIeYS6iMnY5VxzFrGesVaiHMPQ9jaw7hk7cwW2xPNeGANYN7FwMROwHDGWc06ypwKycOoZbxDjKoSW+Y722bD+xgr5vhiPjZnhsllmLIes66DD3MVuLDGIZc5D1g7LCjBes68V4XYsgawRuIURa+oh2Mj5VTkogHPfAYulrLZCxd0pF8qMjajRevMKYC9xJqIPYQtYmsbTlt+zvvoF0uJN4dKUSabkTlsE+xlnCfoOvO3kR9rX1M62Y/YYrv100naSIQceS1rkLUWUsk8kC1myxgOZk9Zmj5jkXFqzlTGGEGDojU361iiH6hrzguIMvaAzWfMFxTsChxtlopcRmypA6nHNqIepJm+pGDvMD9bwa5g/kEHcMCxNrKWs+bxHeaGXvM5+FUltszhcAyCJtiE5oRTKnKfZT6bisyiwERrxiqTAil9+dS0fCoykz5KhWcVIgGBQwmM2BJVwDCjMzHMWETwPuWjhHhkMN6MSGMAQphQEgYRhiYFsgP5ZhIYBLGFmGOYMimRjmPENk+AUGoGAZMebcHowBsKSeUdyA8pyxYWEYx7BioTBsY33mwmNwgGxIMFE8MCjzqYViG2RNIx3o0YMhggEJAeJlImNhZCiDY/y+5rRT4MYha0/F5B+hWHBMaUDThrD95Ic0awSGejXOiHTQroA33HO2yhsD2PTI5MSkSy0RcWejzsEGDSxylMYuCJhzBfILMY+3i78GohD7pGZBSSj0cUYsqk0AuffL+i3xhGOB3QAyY+cIghtowB2kU7WVgx5MCAVDAWAyK4Ng7oG8ggEyXGHM9DYngeQytPbJE/n4qMzjBmKMjNRI+HDy83fcE+UvQaQw9DDmzQEdsbg1EAhngwwRadwbMJntloUb92IQMpOixyOL9YCJiozTHAxA2hsjT/fN/2c0CxYGbHn9VlwWRMUXCYYYCWjU3DlTqMXwy6bBoSmPTqhyyxxYGA04cFEuOf8UJ/YbBmt3JkiW3R/As+6LQ5megv2oWjr1cqMgeSMJboD5wN9BGONwzdXnpXhdhCDHrpAfNbUXtTOXiuzzI48F/liS3zFuSVyKdl+dj2D4wsxi7GoJEMBGZ9Rgf4Xa8tLkXElvkbnWZ9ZWyYsckay/yWLdkoEcYmclv0k/UJ3bXoqtVDFmTqR2xxvmIQMo5YK/KRSXsX7WXcMxdZBJHfodusH3kbwohtluwb1sytjEMjsOgqRjTzOaQ9X+ygJNYe1l7mAovQ4QygHut0tpARxljrR2yzbWduQL6ikt8njJFtzqui07WNIGX3hTLX83/mFfolS2xpM/NhPmJLP4ML/cq8Y/ikTGyZkyy7D/ktQstcyb9x/vfChXW9H7FlzrRDqFi3WP/QfbNvcLKgIzjszZ6x6LfZSBYBzW49yNpNkCEcODhJeC/2RtH+3qZ0Mk9ss7rAmO6nk9gN2Cc4uLLjlPkkP9cbsbUILEQTnkAhu4m1CPsqO8ZsXsqPCfoYLoBTnT4mCxRyyVjDSUXwKysT9Vkzccr0I7Y4/5ljWNvQF0t1zn8/v0+YKD7zdXbOtjpl8znzRJ7YZuXIRmxxtmOz4nCALxg+IrZ9lu08scVwZUKlQITIg89HxvLENnv4CYsHCzETrxFbFMuUkveySDBJ4p3JFhZCFiRLabXf8XMMYBSIgmGIV5OB0TaxhTyReoxcRDCJkplRgYHMRARZZcGDKBJFwQhmQcFIt8NCUEYGDwtitkAGwQGvH4YKHi+Ul/+Thku7jRAycPsRW/PQsnDiIcwvurbnBJnwWDMJMKHzTvokWyCPLLpZDz4GP4fwYJDg7Mjua8brhgcNI7zoEBSLJpsXlW/hAGHBINKTLUx2OAcgOkyMGHQsGkw6OAmMsBbtW6UfMKpom6UAGbHN7h8071/2u9k9OfZzI0xG8I0woN95Ymsp2VUitiyGEHz0iUUMTHH+GLFlXNrhJ2COF5iJkEkdUkmx08irENvs+1joIdSQVxbcfEFPaUt2b3CvE12JHrEgW+nXLr6LIUUEylIR89/uZWTyXBGx7TX+su9lMUXvGJ8sdMxPZWOT92KEMOcQ3cYQsMJc0KsfssTW0sUxbtBFoqgYX73mT8Zh0fwL4cCRY/2ebVsvYosBhj4R8UP/SRfD6OrXP72IbXZegUjxrnxBD8CU/s239wUP6wfecMzuscWZjOPKIkBAxPpLhJ25mvHLPMiYte0UZtiwRaLXeQtFxBYnFbqIocSYsLkb5xlZHfliYx+yg8zMzcwNGJms68xTzGU4UYkgFhFb1nsi0DjwbC8n49BSkYlyMmfzbuYT5kTSrfk56zzrIcY/6yVrD0Z/luSbzEZs2VvP3JolChZxwV5hj2q+PUVqaeuEpQKaU5Fxh1GN8xU5wAOsi4gtY7BX25ljsC9Yexif7KljvNFWvp3NwmDNwTHIvAKxYrxhq0Ea6AMMY9ZOcxbyDrJQKKx92A+QVZ5B1+h7bIw8scXmw7YZJWKb3WNrjgPaTVsgKv1wYU3oR2wJrhgJsew4swPMZrCIbRmxBVPWcyv0I7LTz5bhhk1EH/c6zK0JnbT05yJdwOnaTyexK3GYUgjeYNsydvPp/PzeiC2ZeNgc4IMzHccUtg7jk+iw2aK8z8ZYfjyazWAH3ln2RDYzAQcO/cW8QckTW+ZTc1JbNhEknXELsWWtJNuDuZb2UNAnxh5jAr5hBV3AmWRysOYy/+BIhqzzp9d8DifqJ0eW2JoTS8S2huGQJ7Z0okX5qhLb7KnIRcSWRY0BzIBlQqDz7dCIrKgYj6QSWFQTQs1EDlkkikcEhIKBC7lhEWyb2NoCanLa6c8Qa+RjkSTVlUGR9R4ziPH0maHAs3iN2NOYPy2YAcPiyGJsXjoMD4wIPD8YqBj8kI0iYmueJIs00YfgyOJlnnzw59sYDSxyLMzIDYElQsBEmh20RIQwQIzQkRaDMcbP8PhnPewYViyaeP1sv2mRCtJuDAoiExT6GWPDHCn8jEEMtrQb/WPiADe+CZHG+GLC4Zv5dBVzQkDIzZtOO4uIraVj5/HJ79nKH46WJ7YYfRgVyI1XDT2oQmztIDJSEEm9Q0/Axoht9hRjI7aknrGA2h5QsimItFYhttn3GbHFoQJpQi/MeYJuoG8YS1liS7+TscBCSEEGO+0bY8xKv3Zl90Zb2j1eT/OuM7bQq16nJxYR217jD31hwUQvKXagCM4Rflc0NjGEGad2WAx9SpYAjprsCau2Z6uoH7LEFnxwhhFpYb5ifIMvxnmviG3R/IuOsdDa91jgMRT4eb/DoyzjBoKADmHA9uufPLEtmlfog156gMFT1F70VmV2BPLEFocDBhnGEnMocx3rJgXyg2FtaakQXXSBTB+K7QEtwriI2JpBxpjHCYhhSt/ljW57H+TADkOzPW2sFRiJzNHMLRiwzNMQUlLuid5nI7ZEgnHOUZ/5n/WFYsTWyDMGL0YdDkpkYtxgKPIzZMAGwPhlTBYR8eweW8Ys2BClzO4xNsLG95EHwzg7h2VxxOmK/UGxSDX/tkgocpKNBHGlMDZwTmcjtpa2WtR25gMMdf5GXvBg3FLs7I6sPJaeTnuwGywLB9xJG8cW4zuQJNYS+h/Shi1Bf0GycbKR2kiUi1KV2NohY3YYZhOH1cTOC7bHFtxYzyBK2EEQJXMC0c5+uEAgISfgAj7YbvxhrmSexhbDTsCuYIwSjYWYYDNZKmxVYluUimzkj37H3sJxiiyswVmbzLBqQidNj4p0AcdXP5005yY2K2MaWwximLXtTFZrGzrJFgh0FNzA2W4WMcJGnezJ1EW6YYSc31n2hGUy8A36mn6z810Ymzh6sqcim1MK4mlRY97Hus9Ysb3NOOuwjdB79IN5J39lor2L+QsHOn3HPM2c3W8+Z/z2k6MKsc3rKFwptnR2j20VYkuKFHsveBZDt4zYMjmwHwgDnIHE4oPnJr+vk4UcxcRow/CFhLG4oSR4aSE7eEAgPnQqE7IRW5QRowsvNt8oKnX22PI9FAWvcrYwGFloWViNWCCvHf7Es0yoGMhMiER7kBkvEIrMpJAvtmDYIs/vScmmTXjzILvgB454vI0gMFFgeDMhMrAgigws+sVSK8COAY8RgPeWAY9RT1omxMVOKmYAZ9NIjMBZ+iP1mWiZxKwYCcFJAcHIHr7BN1ngIbv8DY5MhGBGP0K0mQCQJ0uGMWToJ4wjjB+MEowkordG6lnMWLjy0QVL06H9RHbBBHlpA7qVjdjyDiayPD7gki39iC3kmYUUoo0O4CSqSmyJwNFXLKp4P8EA4wqynj/F2IgtkU48u3jaGX/oAoZlEbHF8KLPSDXMv8+ILRFzdIFFBtLF4oTeQciQKUtsSU3HoEGfmfypg1PEokeGWb925Q/9wrhnjNGPkDXeT78gd1HJE9t+44+5hegR45gFhveiH+AL7kVjE3xxpNCHLNgswuhs3oPM+O/VD1liiwGEgcC3MTzRScYybc3On9lU5KL51w6foq+ZRyDrOGsYO9l+zmOWTak2I7lf/xixZQ7uNa+gG730AOdjUXubONQidsFOrb4R2yyZZN4Dw2ymDRFRHDFEIpgvs4eU0KZsKn9RG20ezxI7nrO7Ha0OOsWYLrqiDQcPRBu5zJCnHg4adMEOyoFwY9xaNCZLbDEgcbZa2jLjCtltzcMAZa6ivhWL/pKZwnjJ3twADsxJthcwWweyx3ppTjjWY+Y2u8oIWRiLjEnWVHMgFOGXjf5ZpJrncAazJlm2DUSWtiEzfZi9x5ax2q/tZGKAhx2sw9qZzVDLysWch41jVzTxLPMUUSdwou22ZYt6dkiUZS9hzFt/QSIgAXliyzzJHI8zAr2xLBqcg+gga2/+BO1hja9e99iy5kEA0ZMyXJjPaS+YoiOsydgB6DMFmwT7hbmXbBsrliZPaq1F/coitkXEFscR488Oi6OvsB/z+8ftu03oJDrQTxf66ST7tbH1bHwhF/qNrZffUmDENnvgFmOT9tmWALPLeQ8/Ry97FTvwjN/jkLLDK8k8wC6i8H7bzkd2Ig5anG+WLWhbPHiWuQEdoS28m7Fr/MbSmvk9v8sfYkp9nNys88wDFOYzbErsiH7zOc+WyWFzsUVsbeuJpSLndbSJKzA7Q2wxIpl4mUghDnnDismWiTNbUBqMFVJhMG77EVsmYgww22OAIlkKjR26ZO9GkZhIMf6YsCFqTNKQLgaGTea2j5W9CHaPLakHDJSiPQz2fjuGnwhG9kRmFAVykk27xWBk4Ocvzs4SW8iMbVLP4gMmkBwmQoxSU3gWYruzMI8nC7Qd2sDveNbeDfnAUwUBhsSwqNg9tnbiInXMWKAPIalMNnZSH5jRjxAJS0WjL+h70irzVyfwc95hqaa9UncxdjidLl/Mu83Exh/aRpolhMH6kTRPSIR5yyGJdqoz/U8/MeHzDPLhFGDitM39drqyfZsJgPczYVAwWjCUcITgeMje0UlqdC98sm3pR2yN7PE80QTIIF4+i9jiCIDo0Hf5tGnGEIslv6cQiQAjDE68wUURW56xO++ogwEJlnjm8/dP2iQIdkQiiyK2vM/21libWRzwoPLOvNz0BcTIFgQm1vzhJv3axbey9y/bCb94cCngxjNFXmp+nx+n/cafXbNlxiJY0TcsehgyvcYm86E5bzAwiNYUXSvSqx+Yw4yoGhmxaDh6SzZMfv7sR2xt/kUmI/yMZeZUFtpsP+e3cIAZ4xYHme2d7Nc/GAo2RnrNKzipeulBr/a+YHLQD3oiwBzGeGC+wDiyFEjDlqgeaxWZB6wZMQdzkYpHRJM1IXsoSp3uQV7ewbrWa9xm34dDk5I/qMmeIfrCvn3GXn6/HnUxyHEq4UzNR0/yckNg0feiZ82xYESkTpvtWeYR1jT6qcghkH9nv7ZbvxP14X1FV4tk1zmyW3DYEqXMP8s76BOM/vxhPrwDfLHBLE25TttZo1k76ZtR2zvfDxfwp3/smiowwQYCY5x8ptvoJ/YVYwYMmyzoKt8kC6vXnvOy79XVyX66UKaTzFPYL+iYpf72k485DTzz9iJ2HlhmD1oqa2fR7+k/8CvS+fzzODuIjmMDF4019JwxxBhh/ug3vplnmJeYi5kHs8/2ms9NnjI5ynAo0tGyOv1+3xliGwoCHQ+odRZESC4DL7+3Ni8DAwaFy6YHoQAs5vysl6IRhcH4ayL1DU8mhh5RnJjCxMGEinFZthDnv0N6GpMdEx2DhUkEMp+f9JgYKHa4UnYBBHM7QTI74CBh4Ixx3GsRJZ2JxTHrAY7BgrrsQ6AfWRTzExxysmj0irhT305QhjT2msBY9MEJTyrGG3+KFiEmnV74VG0nMrPQV5nY8+80o5D+pQ/oR/S7zOBAL3kWnPpNuPQxOlG2SLLYmKHcy+A02dFBFgTShfMnNmb1jkWhSruYR4j8cICHnbhdFfuy59A1DE8w7WXgFY1NyCmLcNmF8lX6gffg4cZYtUMzkDtk/kRW+j0/bqr2c93+6TWv8J5eetCrvWV9pd/3RyBLbLNbN4RbPQSYa8hEwSFbdAp0vbfpaSEgBGIQIBJKxgBrLqnyRRmNMe9X3XoIjHliWw+u9p/G6CNVkWhmFe9pmUSk9JCeWWbol71nlH8PKWcfDylI+TuHh9UuJj7IpN0pNyw59F0hIASEwKAQILuB7RlkSJCJohKGAMSWqDcZNjit86cqh71VtYSAEAhBgKwr9sqSVcc+2Kaj4CEyjeU6IrZjuffHUNs5rZMIef6y8GFBQGo3ewlGLQ1qWHjpu0JACAgBISAEhIAQEAJCoB8CIrbSDyEgBISAEBACQkAICAEhIASEgBAYaQREbEe6+yS8EBACQkAICAEhIASEgBAQAkJACIjYSgeEgBAQAkJACAgBISAEhIAQEAJCYKQRELEd6e6T8EJACAgBISAEhIAQEAJCQAgIASGQLLHlOh2uktDhOlJSISAEhIAQEAL9EdCaKQ0RAkKgLgKaN+oipudTRyBJYss9UJdddpm/m5S7Nc844wx/P+bCCy/sNthgA48px9s3eS9p6h0l+YSAEBACQkAIFCGgNVN6IQSEQF0ENG/URUzPjwICyRHb6dOnu3XWWcf9/ve/9/ittdZabu+993bLLrusO/DAA92ZZ57pSa6KEBACQkAICIGxjoDWzLGuAWq/EKiPgOaN+pipxmggkByxNdgmT57sTjvtNHf66ae72267zV111VVum222cY8//rhbffXV3eGHH+4JsIoQEAJCQAgIgbGOgNbMsa4Bar8QqI+A5o36mKlG2ggkS2z/9Kc/uW9961s+DflnP/uZmzFjhrvxxhvdrrvu6s466yx36KGHesI7xxxzuCuvvNIT32whbfld73pX2uhLOiEgBISAEEgSgQkTJiQpVy+htGaOVHdJ2BFEYNTmhCoQa96ogtJoPdNFPa3TA8kR27vvvttdf/31btNNN/XtOOCAA9xDDz3kjjnmGDfXXHP5P88995xPR77rrrvcUkstVdheIrr77LNPHSwG+uyUKVNcyson+eLUQfgJvzgE4mpL/7qNX7Z1Y2XNjOtR1RYCcQikPqfWbZ3mjbqIjcbzXdPTENSTI7bTpk1zyy23nLvpppvcYost5rbbbju39tprOwbhgw8+6E444QR39dVX+5/ffvvtPdssYhuiDv+rk/rgkHzq3/9j71zAraqq9j9ASC7eSEEwNTxqmqJ+aqil2YeSt0BLBQyjxMQsr/VPDcorAj5l3lOTTL80DE0ttc9S0EqQ1NIvJfKGSKigWKCIoILn/7xLF27O2fvstcaYc+2x937X8/B0OWvMPeZvjHl515xrLhsBmzXzj/xsBMJZN8uYGY4YSyKB/AS89/l5a8R+Iy+x+ri/0fJUQ92dsEUlzj//fLnoootkww03lF122UVuvPFGWblypQwePDhZqcW/8847T4YMGUJhq4l6BhvvjYP+ZQhiB7eQH/nZCNismX82fm2tm2HMDEuMpZFAPgLe+6x8tXn/bvYbGmq+bRoxT/MSdylsUYkVK1YkYrZXr15r1WnRokXJSm61iyu21Qh1/HfvjYP+Mb42AjZr5h/52QiEt270MTM8MZZIAtkJeO/zs9dk7TvZb2jJ+bRr1DzNQ9utsM1TiXL3UtjaCHpvHPSP8bURsFkz/8jPRsCftfcx0x8xetRMBLz3+bWKBfuNWpEv/7vMUxEK2xrlpPfko3+2xCA/8rMRsFkz/xqbn6125a05QY1BlWU2CgHvfWqtOLPfqBV5CttK5BtW2J543k/lnFO+In169fSVdR94472TpH+2tCE/8rMRsFkz/xqbn612FLYx+LHMxibgvU+tFX0K21qRp7BtKmE7/W/z5NJfPyITxwySnVr6+Mo6Ctsg8fA+yNA/W5jJj/xsBGzW3vPPVrvKwnbHfQ8PUvSQT28bpBwWQgJeCDRjn5CFPYVtFkrF3cM8bdCtyGOvvV9mz1tMYWtoS94bB/0zBFdEyI/8bARs1sw/G78Y1pigzlja31x0p04id04cYS6HBZCAJwLe+6xasaKwrRX58r/LPKWwrVlGek8++mdLDfIjPxsBmzXzr7H52WpXecWWwjYGWZbZCAS896m1YkxhWyvyFLaVyDfkO7ZcsbU3NO+dOP2zxZj8yM9GwGbN/LPxi2HNFdsYVFlmoxDw3mfVijOFba3IU9hS2PrKPW4FNcbD+yBD/2wBJj/ysxGwWXvPP1vtuGIbgx/LbGwCzdgnZIkohW0WSsXdwzzlVuTisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2Ebgx/LbGwC3vvUWtGnsK0Vea7YcsXWV+5xxdYYD++DDP2zBZj8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGecsW2uGzjim1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5qljYfvOO+/IqlWrpEePHmtlxPLly6V79+7SuXPnipky9tr7Zfa8xTJxzCDZqaVPcRmV45e8Jx/9yxHMMreSH/nZCNismX+Nza9c7SxjJsrDBHXG0v42cCLSqZPInRNHmMthASTgiYD3PlXLKkS/ceaZZ2p/nnaBCTRqnubB1Km1tbU1j0ER937ve9+T+++/X3bYYQdZunSp/PKXv5QVK1bIyJEjpUuXLjJ//nw5/fTT5ZhjjinrDoWtPUreGwf9s8WY/MjPRsBmzfyz8WtrbR0zKWzDxoOlNR4B732WhniofoPCVkM/jk0j5mleUu6ELVZkBw0aJI888khSl3322UfOOOMMmTNnjixbtkwmTJggixYtkn79+gnubbuiCxsK27xp0P5+742D/tliTH7kZyNgs2b+2ac31TkAACAASURBVPiVWocYMylsw8WDJTUmAe99Vl7qIfsNCtu89OPd32h5qiHlTtimlZg9e7Zcf/31ctNNN8lTTz2VrNAOHjxYjjrqKMEiM7Yiz507V1paWtrVm8JWkwpr23hvHPTPFmPyIz8bAZs188/Gr5y1ZcyksA0fD5bYWAS891la2iH6DQpbLf3wdo2ap3lIuRW2TzzxhFx99dXJNuTf/OY3cs0118jw4cPlyCOPTOq36aabysMPPyz9+7d/J4jCNk8KlL/Xe+Ogf7YYkx/52QjYrJl/Nn7lrC1jJoVt+HiwxMYi4L3P0tIO0W9Q2Grph7dr1DzNQ8qdsH3ppZfkr3/9qxx22GFJPc466yx57bXXkq3HG2ywgZx22mmyevVq6dWrV/L+LVZuZ8yYITNnzlxT7yff7Cuvr+omJw/ZXrbpt34eHryXBEiABEiABMruBvKIJcSYmdYryOFRInLpmIEeUdEnEjARKLdD0FRgDY1D9hvDhg2rYU34020JNFKeaqLrTtguWbJEtt9+e3n88celb9++MmrUKPnc5z6X/Pcrr7xS7r33Xrn11lvl4osvllmzZpWtM1dsNamwto33pz70zxZj8iM/GwGbNfPPxq/UOsSYifJ4KnK4mLCkxiPgvc/KSzxkv8EV27z0493faHmqIeVO2KIS559/vlx00UWy4YYbyi677CI33nijdOvWTQ455JDkECmckHzffffJnnvuSWGriXoGG++Ng/5lCGIHt5Af+dkI2KyZfzZ+ba2tYyaFbdh4sLTGI+C9z9IQD9VvUNhq6MexacQ8zUvKpbBFJSBeV65cmWw5Lr0WLFiQrN527dq1Yl25Yps3Ddrf771x0D9bjMmP/GwEbNbMPxu/ctaWMZPCNnw8WGJjEfDeZ2lph+g3KGy19MPbNWqe5iHlVtjmqUTbeylsLfTet/XeOOifLcbkR342AjZr5p+NXwxrbkWOQZVlNgoB731WrTij36CwrRX9+luUKoIUhW0RlMv8hvdOkv7ZEoP8yM9GwGbN/GtsfrbalbemsI1BlWU2CgHvfWqtOFPY1op8+d9lnopQ2NYoJ70nH/2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIVtJfIUtjXKSe+dJP2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIUtha2v3OM7rMZ4eB9k6J8twORHfjYCNmvv+WerHYVtDH4ss7EJNGOfkCWiFLZZKBV3D/OUW5GLy7Y2v+Q9+eifLTXIj/xsBGzWzL/G5merHYVtDH4ss7EJeO9Ta0WfwrZW5LliyxVbX7nHFVtjPLwPMvTPFmDyIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5yhXb4rKNK7ZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5SmFbXLZR2AZl7b3x0j9buMmP/GwEbNbe889WOwrbGPxYZmMTaMY+IUtEKWyzUCruHuYphW1x2UZhG5S198ZL/2zhJj/ysxGwWXvPP1vtKGxj8GOZjU2gGfuELBGlsM1Cqbh7mKcUtsVlG4VtUNbeGy/9s4Wb/MjPRsBm7T3/bLWjsI3Bj2U2NoFm7BOyRJTCNgul4u5hnlLYFpdtFLZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d52uDCFqk0YKveMun4/YrLqoy/5D356F/GQFa4jfzIz0bAZs38a2x+ttpR2MbgxzIbm4D3PrVW9Clsa0W+/O8yTylsa5aR3pOP/tlSg/zIz0bAZs38a2x+ttoVJ2yHjp0axNW7Jo1IymF5OpwpP501rUDAe59aqyhR2NaKPIVtJfKdWltbW32FJYw34yZcJk++2Zcrtkqc3jtx+qcM7Adm5Ed+NgI2a+afjV8Ma0xQZyztby66UyeROydSiFpAxhLyFp+a3dZ7n1Wr+FDY1oo8hS2Fra/cc//0z3snTv9sCU1+5GcjYLNm/tn4xbCmsNVTjSVEQ69Q62tIS+99Vq0iRGFbK/IUthS2vnKPwtYYD++DDP2zBZj8yM9GwGbtPf9stStvTWGrp0phq2dXL5bN2CdkiQ2FbRZKxd3DPG3Qd2yRQtyKbGtI3hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnl29WHrv82vFkcK2VuS5YssVW1+5xxVbYzy8DzL0zxZg8iM/GwGbtff8s9WOK7b1IkS5FTlGpuvKbMY+IQspCtsslIq7h3nKFdvisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2FLYRsjgxq7TO99aq3oU9jWijxXbJt2xXbTXj1l4phB0qdXT1fZ572TpH+2dCE/8rMRsFkz/xqbn612FLYUtjEyqLHL9N6n1oo+hW2tyFPYNq2wRcUhbHdq6eMq+7x3kvTPli7kR342AjZr5l9j87PVjsK2GYUtPuz4u788GyR1hnx6WwldXhDHIhbivU+NWPUOi6awrRV5CtumE7bnTfqx/KvzdvLq0uUUtop2570Tp3+KoJaYkB/52QjYrJl/Nn4xrHl4lJ5qPQhlCNFDx03VV/IDy/Q7xaHLMzsWuQDvfVbk6lcsnsK2VuQpbJtO2KKxLe01UGbPW0xhq2h33jtx+qcIKoWtDRr5kV8wAv4KorDVx4TCVs8uFcr6Eoqx9D7nKIZC+1+hsK0VeQpbCltuRc7V+rx34vQvVzjb3Ux+5GcjYLNm/tn4xbCmsNVTpbDVs6Ow1bPzYElh6yEKH/rgfWwtglan1lZsKGm8iyu2tph6bxz0j/G1EbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwrY0ChS2NcpJToxt4MmP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYUtg6yENOjG1BID/ysxGwWTP/yM9GwJ81ha0+JhS2enYUtnp2HiwpbD1EgcKWwtZBHnJibAsC+ZGfjYDNmvlHfjYC/qwpbPUxobDVs6Ow1bPzYElh6yEKFLZ1IWxXrVolb775pmy00UaqrEFjW9proMyet1gmjhkkO7X0UZUTy4gTYxtZ8iM/GwGbNfOP/GwEwluHGDNnLO1vdqxUqAwdO9VcHgqoB+EIPz3Xt7VV5NBx9nik8Q1dXpBEiViI9z5fW/UQ/caZZ56p/XnaBSbQqHmaB1On1lZ0T76uiy++WH7605/KnnvuKW+88YZApPbv31969+4tBx10UOLsdtttJ+PHj6/oOIWtLabeGwf9Y3xtBGzWzD/ysxEIax1qzKSw1cWlHoR3aCEaujwd+eKsvPf5GhKh+g0KWw39ODaNmKd5SbkTtu+8846su+66yWptz5495YILLpBXXnlFTjzxRDn77LNlypQp0qVLl6r1pLCtiqjDG7w3DvrH+NoI2KyZf+RnIxDOOuSYSWGriwuFrY4brLgVWc/OYhmy36CwtUQirK33uUnY2pYvzZ2whZtLliyRXr16yVtvvSX777+/nHrqqbLeeuvJyJEjZdmyZTJw4MBkFXfQoEEVGZUK2++P2kf22uFjRfDM/Bvek4/+ZQ5l2RvJj/xsBGzWzL/G5te2dqHGTApbXd5Q2Oq4UdjquYWwDNVvUNiGiEaYMryP/WFq2XEpLoUtXH7sscdk9OjRMmDAALnuuutk5syZyf930kknydSpU2XSpEny1FNPSSc87itzlQrbL++/o4wcPKAInpl/w3vy0b/MoaSwtaEiP/KLQMBWpPf+r1ztQoyZFLa6vKGw1XErFbbY2vzYswvzF1TmZbrdt+uXv5wqFvXYJ2SBEKLfoLDNQrqYexo1T/PQcylsp0+fnqzOXn755TJixIikPtg2sc466yT/Vq9enWxHXrBggWy++eYyY8aMRPi2vV7f8L/kyflL5aDdNpODd/e1YpsnSLyXBEiABEigWAItLS3F/qDh10KNmUGErYhcOmZgUptTJz9qqNWHppexPBNH8IP+Oy1APLCUgPh6L88ErIJxPfUJWeofqt8YNmxYlp/jPQURaLQ8zYvNnbDFWVYbbrihTJs2TfbYY4819TnnnHNk8eLFctVVV8lDDz0ko0aNkrlz51asL1Zst9j9C3Lz9H8IV2zzpoWI96c+9C9/TEstyI/8bARs1sw/G79S65BjZhBh20nkzonvP5D2fEpws/kX+rAn7+WFa2Hvl+S9z8pb35D9Blds89KPd3+j5amGlDth+9xzz8m22267Vl2+9rWvJVuPBw8enKzU4t95550nQ4YMobDVRD2DjffGQf8yBLGDW8iP/GwEbNbMPxu/UuuQYyaFrS4u3Iqs4warevl8kPc+K28EQvYbFLZ56ce7v9HyVEPKnbCtVolFixZJ3759q92WHC7FFduqmCre4L1x0D99bOvh6TPjy/jaCNisvedfntrlGTMpbPOQ/fBeClsdNwpbPbfYlnn6DQrb2NHIXn4jjV3Za732nXUnbLNWlMI2K6ny93lvHPSP8bURsFkz/8jPRsCfNcZMCltdXChsddwobPXcvFii36Cw9RKNxtsyryFLYauhFsCGE2MbRPIjPxsBmzXzj/xsBPxZU9jqY0Jhq2fHrch6dh4sKWw9ROFDH7zPTYqgRWFbBOUyv+E9+eifLTHIj/xsBGzWzL/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFbGoWmELZ77fAx+f6ofVxlHyeetnCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYdt0wnbAVr1l0vH7uco+Toxt4SA/8rMRsFkz/8jPRsCfNYWtPiYUtnp2sYQtPkd0/v/8We9YieU5x+zbcJ/7CQJGJDmole/YhqJpL8f73MRew+olNPSK7eeGfkUm3DhDKGyrJ0LbO7w3DvqXP6alFuRHfjYCNmvmn41fDGsKWz1VCls9u5jC9tBxU/WOfWCZ+ue9zzJXVFkAha0SXCQz5qlIQwvbQ4aNlnGTH6CwVTQg742D/imCWmJCfuRnI2CzZv7Z+MWwprDVU6Ww1bOjsNWz82BJYeshCh/64H1sLYIWhW0RlMv8hvfko3+2xCA/8rMRsFkz/xqbn6125a0pbPVUKWz17Chs9ew8WFLYeogChW1pFChsa5STnHjawJMf+dkI2KyZf+RnI+DPmsJWHxMKWz07Cls9Ow+WFLYeokBhS2HrIA85MbYFgfzIz0bAZs38Iz8bAX/WFLb6mFDY6tlR2OrZebCksPUQBQpbClsHeciJsS0I5Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIQ06MbUEgP/KzEbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwpbC1kEecmJsCwL5kZ+NgM2a+Ud+NgL+rCls9TGhsNWzo7DVs/NgSWHrIQoUthS2DvKQE2NbEMiP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYFi5sH3jgARk0aJDce++98uyzz8rRRx8tG220UdRsQGM7ZNhoGTf5ARmwVW+ZdPx+UX8vb+GcGOcltvb95Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNgWKmzPOOMM+dGPfiQPP/yw7Lnnnslv77bbbvK3v/0tajaUCttNe/WUn50xJOrv5S2cE+O8xChsbcTIj/xCErCVxf7Pxi+GNYWtniqFrZ4dha2enQdLClsPUaCwLUzYtra2St++fWX48OGyYsUKue6662TKlCkycuRIWbhwYfK3WFepsMVvpANPrN/LWy4ndnmJUZjZiJEf+YUkYCuL/Z+NXwxrCls9VQpbPTsKWz07D5YUth6iQGFbmLB9++23pVu3bnL77bfLCSecINtuu61cddVVsssuu8hTTz0l2223XbSMQGMbffxJ8vUf3p38BoVtPtSceObj1fZu8iM/GwGbNfOvsfnZalfemsJWT5XCVs+OwlbPzoMlha2HKFDYFiZs8UMjRoyQW265JfnNyZMny6RJk+Sdd96RBQsWRM2GtLENHTuVwlZBmhNjBbQSE/IjPxsBmzXzr7H52WpHYVsPQhRRSucv1nijvq2tIoeOe38+ZLnqRYiGrq/3PtUSU4stha2FXnhb5qlIp1bsF454vfrqq3L11VdLp06d5Lvf/a6MHj1aTjzxRNl3330j/qoIha0Nr/fGQf8YXxsBmzXzj/xsBPxZc8VWH5N6EMqhhV6zlee9z9dnr82SwtbGL7Q187QAYYugvfDCCzJr1ixpaWmRjTfeWLbZZpvQsWxXHoWtDbH3xkH/GF8bAZs184/8bAT8WVPY6mNCYatnVy8rwN77fH0EbJYUtjZ+oa2ZpwUI27vuuksOPfTQJHZjx46VGTNmyK677iqXXXZZ6HiuVR6FrQ2v98ZB/xhfGwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUPvTB+9ykCFrRtyJvscUW0qdPn+S7tfjcT5cuXWT8+PHy0ksvyWabbRatjhS2NrTeGwf9Y3xtBGzWzD/ysxHwZ01hq48Jha2eHYWtnp0HSwpbD1GgsC2NQlRhm56K/JOf/ETmz58v66yzjgwbNiz5ju3s2bNlxx13jJYRFLY2tJy4k5+NgM2a+Ud+NgI2a+/5Z6tdeWsKWz1VCls9OwpbPTsPlhS2HqJAYVuYsMUPQby+9tpryTdrsVqLw6R69OghTz/9dNRsaCtsv7z/jjJy8ICov5mncO8TJ/qXJ5rt7yU/8rMRsFkz/+qX36OPPir9+/eX3r17J5VYuXKlPPLII8mOp3XXXddWsQ6sKWz1aCls9ewobPXsSi1r2W+ceeaZYSrBUswEvI/95gpmKCDqii1+//HHH5dzzjlH8K5tev32t79d895tBh9Vt1DYqrCtMfLeOOgf42sjYLNm/pGfjUB76+eeey554Hvssccm//bZZ5/kpmeffVa+/e1vJ4cwfvzjHw/9s2vKo7DVo6Ww1bOjsNWzg6WHfoPC1hbDkNbe5yYh61qprOjCNv3hJUuWyIsvvihbb711smIb+0qF7ZRps+Xm6f8QrtjmI+69cdC/fPFsezf5kZ+NgM2a+dee3w9/+EOpNEFcf/31BWMoXueJdVHY6slS2OrZUdjq2cHSQ79BYWuLYUhr72NryLrWTNjuv//+yVbkttdDDz0kPXv2jFZHClsbWu+Ng/4xvjYCNmvmH/nZCLS3rrTygjvxSg+2J8e8KGz1dCls9ewobPXsYOmh36CwtcUwpLX3uUnIutZM2A4aNCh5rxbXG2+8kaza4pTkefPmRV25pbC1pY/3xkH/GF8bAZs184/8bAQqW7/88svSvXv3ZIW29IKw7dy5c6yfFQpbPVoKWz07Cls9u1LLWvYbFLZhYhiiFO9zkxB1rFZGYVuRU0fOP/98SU9J7tatW0X/Vq1aJW+++WbymaDSa/ny5cmgX22Ap7CtFvqO/+69cdA/xtdGwGbN/CM/G4HK1ldffXWyJXnZsmVr3fT666/LBhtsEHXMnLHUviqcChU4OnTs1CCY6kE4eq9va6vIoePs8agXIRq6vt77/Fr2GxS2Qbq5IIV4z9MglaxSSHRhu2jRInnvvfcSN1avXi3XXHONTJw4MTkQY5tttinr3sUXXyw//elPk1MgscoLkbrxxhvLyJEjk5OV8emg008/XY455piK1aOwtaWP98ZB/xhfGwGbNfOP/GwEylu3trYmXxDANXr0aPnIRz6y5sbvf//7FU9FDjVmUtjqoloPwju00Gu28jz3+bXuNyhsdf1GDCvPeRqjvuXKjC5sN9100zVbkVMHcBDGv//9b+natWs7n955551k8MZqLd7BveCCC+SVV16Rj33sY8kT7AkTJgjEcr9+/QSrt5UOoqKwtaWQ98ZB/xhfGwGbNfOP/GwEOha2J510kpx11lmZfiLkmElhmwl5u5sobHXcYFUvK8Ce+/xU2Naq36Cw1ed/aEvPeRq6rpXKiy5ssfUYIhUXtg9vueWWcvDBB8tWW21VsY54t6hXr17y1ltvCQ6fOvXUU2XatGkyePBgOeqoowSNGGXNnTtXWlpaypbTVtju1NJHJo4ZVBTXqr/jPfnoX9UQdngD+ZGfjYDNmvlXv/yOPvro5PN4GMMwDqbXkUcemexYKneFGjMpbHV5Q2Gr40Zhq+fW1rKW/QaFbbg4WkvyPvZb65fFPpqwBVwI0EoXhG1H78k+9thjyVasAQMGyHXXXSdf/epXZfjw4YLBHRdWgh9++OGKJ0W2FbawSQefLGBi3+M9+eifLQPIj/xsBGzWzL/65VdulxNqU+0d2xBjJoWtLm8obHXcKGz13Npa1rLfoLANF0drSd7Hfmv9sthHE7adsL+kg6ujQXr69OnJ+7SXX365jBgxIikFK784OOO0005L3tXFk+ylS5cm4njGjBkyc+bMdr82bNgweW7hMrni7qeSv102ZmAWJryHBEiABEigyQlU2g0UG8tf/vIXefvtt9v9zN57711xxTbUmBlE2IrIpR+MtadOfjQIrnTsZnk6nOCHZYbTAsQDMzvEt9nKA/la9QlZol7LfgNzbV5+CHjO0yIoRRO2F110USJAK13f/va31zoYI70Pq7wbbrhhsvV4jz32WGN+5513ypVXXin33nuv3HrrrYLDMmbNmlWx/HTFFjekJzNyxTZ7Snl/6kP/ssey3J3kR342AjZr5l9lfhjjyglbvMJTbityyDEziLDtJHLnxPcfSPNUZF07ibEC3GyHPYWur/c+q5b9Bldsde08hpX3PI1R57ZlRhO2pT+EQRortLgwCOOD0hCt5Q6Pwt+23Xbbtfz82te+JjjK/JBDDpE5c+bIihUr5L777ktOTa50Udja0sd746B/jK+NgM2a+Ud+NgKVrfNuKQw5ZlLY6qIaQ4iGfjAQWug1W3ne+/xa9hsUtrp+I4aV9zyNUefChe3UqVPllFNOaXcycrX3hSpVfsGCBcnnEMqJ4lIbCltb+nhvHPSP8bURsFkz/8jPRqCy9T333LNmxRYn///whz9MVmpxpkSlw6M68iXPmElhq4sqha2OG6x4KrKeXallLfsNCtswMQxRive5SYg6Visj+ort1ltvLRtttFHy3dq99tpL/vnPf0qfPn0E7wNUE6fVnO/o7xS2Fnoi3hsH/WN8bQRs1sw/8rMRyG6Nh8P4GsBLL70km222WXbDnHdizKSwzQntg9spbHXcKGz13KpZFtlvUNhWi0Zxf/c+NymCRFRh++677ybv0d50003y5z//WTbZZBM54YQTkk/+4PMEELyxLgpbG1nvjYP+Mb42AjZr5h/52QhUth47dqy88cYbyQ3vvfdecq4E8g3fc8dD4VgXha2eLIWtnh1XbPXsSi1r2W9Q2IaJYYhSvM9NQtSxWhlRhS1+fIsttkjE7Te/+c3kZOMjjjhCbrjhBnnmmWfavUtbzdk8f6ewzUOr/b3eGwf9Y3xtBGzWzD/ysxGobN32Xbn1119fvvWtb8mFF14Y6yeTcils9XgpbPXsKGz17Eota9lvUNiGiWGIUrzPTULUsVoZ0YXt/fffLzgB+cYbb5QvfOEL8uKLL8rQoUMFpxzHvMoJ28tOOVBa+sVbJc5TH+/JR//yRJMPBmy0yI/8QhOwlVfL/g+fsUu/AY/P5sXc2VRKicJWnzMUtnp2FLZ6dqWWtew3KGzDxDBEKbUcu0L4H6KM6MJ28uTJcuCBBybbj1etWpUcIhXzPaEUSjlhO3HMINmpJd5WrjwB8Z589C9PNCnMbLTIj/xCE7CVV8v+b9myZcmD4ClTpgj+O96vxZcBYo+bFLb6nKGw1bOjsNWzK7WsZb9BYRsmhiFKqeXYFcL/EGVEF7bp9oj99ttPRo0aJV/84hcLeQJdKmxPufwPMm/hUqGwzZ4y3hsH/csey3J3kh/52QjYrJl/lfnhXTlsO8YWZHzTHbucdthhB/n73/+uOhU5a6QobLOSan8fha2eHYWtnl2pZS37DQrbMDEMUYr3sTVEHauVEV3YPvDAA/K73/1O7rjjjuQADFx4Ao33bNddd91q/qn/Xipsx157v8yet5jCNgdN742D/uUIZplbyY/8bARs1sy/8vzweZ/11ltPxowZI9dcc4107txZLr300uR1HnxRYPvtt7eB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROdGFbfrjTz/9tFx55ZXJP1za79hmhUJhm5VU+fu8Nw76x/jaCNismX/kZyNQ3vqtt96Snj17yrnnnivnnHNOctOtt94qw4cPl7/+9a+y++67x/jZpEwKCYzrmQAAIABJREFUWz1aCls9OwpbPbvUstb9BoWtPYahSvA+NwlVz5oKW2yPwOd+sJ0K12677SajR49OPvuj+dh8VigUtllJUdjaSJEf+cUgYCvT++BG/yrHd5999pGZM2fKwQcfLD169JDbbrtNBg4cKA8//LDgMKlYF4WtniyFrZ4dha2eXallLfsNCtswMQxRivexNUQdq5URfcUW79jicz/HHXdc8tT5k5/8ZDWfgvydwtaG0XvjoH+Mr42AzZr5R342ApWt58+fLxMnTpSbb745OTwK4+b3v/992XnnnWP9ZFIuha0eL4Wtnh2FrZ5dqWUt+w0K2zAxDFGK97lJiDpWKyO6sH388cdll112Sd4VKvKisLXR9t446B/jayNgs2b+kZ+NQMfWc+bMSbYk4xwKfMYj5ru1qScUtvqIUtjq2VHY6tm1taxVv0FhGy6G1pK8z02s9ctiH13YZnEixj3lhO2YIbvKgJY+Lr5l6z356J8tK8mP/GwEbNbMv/rlh3MoTj75ZLnnnnuSz+TtuOOOcsYZZyQrqjEvCls9XQpbPTsKWz27Usta9hsUtmFiGKIU72N/iDpWK6OphC1gDNiqt0w6fr9qXKL/3Xvy0T9bCpAf+dkI2KyZf/XLb7vttpPevXvLr3/962TV9sQTT0y+a/vSSy9F/ZYtha0+Zyhs9ewobPXsSi1r2W9Q2IaJYYhSvI/9IepYrYwownb16tXJJ35w4MVjjz2WbEXefPPNq/kS9O+lK7aT735cnnz+1eRbthS22TB7bxz0L1scK91FfuRnI2CzZv6V57dq1Srp2rVrcrji1Vdfndz0y1/+Ur7yla/IrFmzZK+99rKB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROVGE7dtvvy3dunWT448/Xn7zm98kg3LbAflLX/pSYaciAwCE7bjJD1DYZswq742D/mUMZIXbyI/8bARs1sy/yvz23XdfefDBB+Wwww6T9ddfX37729/KhhtuKM8991z0b7/PWNrfFlgRSYUKCho6dqq5PBRQD8LRe31bW0UOHWePR70I0dD19d5n1bLfoLAN0s0FKcR7ngapZJVCoghb/Ca+t4fV2kpXkd+xpbDNn0reGwf9yx/TUgvyIz8bAZs1868yv3nz5skll1wiU6dOlVdffVW+8IUvyOmnny6f+9znbNCrWHPFVo+3HoR3aKHXbOV577Nq2W9Q2Or7jtCW3vM0dH3LlRdN2L755puJsB02bFjyjtBnP/vZtX4f/7uo79hS2OZPJe+Ng/7ljymFrY0Z+ZFfOALVS3rvvfdkxYoVyXu2RVwUtnrKFLZ6dvWyAux9zpFGoBb9BoWtPv9DW9ZLnoaud2l50YRt+iMvv/yyrLfeevLoo4/K8uXLZfDgwclH52Nfpe/YUtjmp+29cdC//DGlMLMxIz/yC0fAX0kUtvqYUNjq2VHY6tl5sGw71/bgUzP74H1uXERsogvbP/3pTzJ06NDkQ/Ppdemll8qpp54atX4Utja83hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnh2FrZ6dB0sKWw9R+NAH73OTImhFFbbYEoGTkfGe0A9+8INkpfaKK65IVm9fe+012XjjjaPVkcLWhtZ746B/jK+NgM2a+Ud+NgIdW7e2tsqCBQuSQxg/+tGPRn1tJ/WEwlYfUQpbPTsKWz27tpa16je4FTlcDK0leZ+bWOuXxT6qsP33v/8tm2yyiVx++eXJB+dxTZs2TT7/+c/LX/7yF9lzzz2z+Ki6p5Kw7dmtq+y/+1YyZsiuqnJDGXlPPvpnizT5kZ+NgM2a+Ve//J599lk56KCDBDEcO3aszJ49W0aOHClHHXWUrVJVrCls9XgpbPXsKGz17Eota9lvUNiGiWGIUryP/SHqWK2MqMIWT4/wmYIdd9wxOeURK7YTJkyQW265RRYtWiSbbrppNf/Uf68kbFGgh2/Zek8++qdOvcSQ/MjPRsBmzfyrX374ogAmqb1795YRI0bIiy++KDfeeKMsXbo0GU9jXRS2erIUtnp2FLZ6dqWWtew3KGzDxDBEKd7H/hB1rFZGVGGLH7/sssvktNNOW8sPbEseP358Nd9Mf28rbJevfFem/W2e/OzuxylsM5D13jjoX4YgdnAL+ZGfjYDNmvlXnl/6Dfgrr7xS/vWvf8k666yTfFlgt912S74ysOuu8XYaUdjqc5rCVs+OwlbPLrWsdb9BYWuPYagSvI+toerZUTnRhS1+HAP0HXfcIW+88YYcfvjhyQpu7KvcC+1PPv+qjJv8AIVtBvjeGwf9yxBEClsbJPIjv2gEKhe8wQYbyM477ywbbbSRfOQjH5HOnTvLvffeK3i1p2vXrtE8orDVo6Ww1bOjsNWzK7WsZb9BYRsmhiFK8T43DlHHamUUImyrORHj7xS2NqreGwf9Y3xtBGzWzD/ysxGobH3zzTfLN77xjbW+JIAdTtjpFPOisNXTpbDVs6Ow1bMrtaxlv0FhGyaGIUrxPjcJUcdqZVDYViMU6e/ek4/+2QJPfuRnI2CzZv7VNz9sLXzggQdk3rx5sssuu8hnPvMZW4UyWFPYZoBU4RYKWz07Cls9u7aWteo3KGzDxdBakvex31q/LPYUtlkoRbjHe/LRP1vQyY/8bARs1sy/+uV3/vnnJ6/ttL0uuOCC5PM/sS4KWz1ZCls9OwpbPbtSy1r2GxS2YWIYohTvY3+IOlYrI7qw/epXvyrHHXec7LvvvokvOOFx1KhR8qtf/arQU5Hx23zHtlo6fPh3742D/mWPZbk7yY/8bARs1sy/yvzwtQB8+73t9frrrwveo4t1UdjqyVLY6tlR2OrZlVrWst+gsA0TwxCleB9bQ9SxWhnRhO0NN9wgV1xxRXKS4+abby59+vRJfMGADXGLgzDw4flYV0fv2Lb020jGDN0t+Wl8+qcWl/fko3+2rCA/8rMRsFkz/+qXH8bG9957L6nAW2+9Jaeffrq88MILMmvWrOSU5FgXha2eLIWtnh2FrZ5dqWUt+w0K2zAxDFGK97E/RB2rlRFN2P7iF79IPvXTVtjCocGDBwsG0ZhXR8K29HfTASmmL+XK9p589M+WEeRHfjYCNmvmX+PwwzdssfPpueeek6233tpWsQ6sKWz1aCls9ewobPXsOrIsst+gsI0TQ02p3sd+TZ3y2kQTtqkjZ599thx22GGCj0cXeZUTts8vXCqT73oscWP2vMXJf1LYlo+K98ZB/2ytifzIz0bAZs38q8xvn332kYULF665AaxwLVu2TNZbbz0beArbtcb9oWOnBuFJYavHSGGrZ1dqWct+g8I2TAxDlOJ9bA1Rx2plRBe2Dz74oPz4xz9OtlGVXnPnzo0+SHfU2NIBjcKWwrZaI9H83XvnQv80Uf3QhvzIz0agsvUBBxwgr7zySnJDly5dklVarNgOGTIk1k8m5XLFVo+XwlbPjsJWz67Uspb9BoVtmBiGKMX73CREHauVEV3Y7rjjjjJnzhzZbbfdko/Np9f06dOlR48e1fxT/73cim1pYRS2HaP13jjon7ppJIbkR342AjZr5p+NXwxrCls9VQpbPTsKWz07D5bV5toefGwmH7yPrUXEIqqwXb16dfLE+ZxzzpFzzz23iPqs+Y1qjY3ClsI2ZkJ671zony365Ed+NgLtrbfYYgt55513KhZbxC6nGUv7m6uVChUU1Exbfb3Xt7VV5NBx9q3X9SJEQ9fXa5/vod/giq252wxWgNc8DVbBDAVFFbb4/dGjR8sjjzySfN6nV69ea1z62Mc+Jp3QQ3Zwvfnmm9KzZ8+q95UrgsI2Q/Q7uMV746B/jK+NgM2a+Ud+NgLtrbHVeNWqVRWLvf3226vucrKOmRS2uqhyxVbHDVb1IpS99vke+g0KW33+h7b0mqeh69lRedGFrebbWvgk0BNPPCGHH354chIkPhX09ttvS+/eveWggw5K6rPddtvJ+PHjK9aNwtaWRt4bB/1jfG0EbNbMP/KzEchn/cYbbyRnUnTu3LmsYagxk8I2X1zSuylsddwobPXcslgW1W9Q2GaJRjH3eJ+bFEEhurC99NJLk9Mc215nnHGGrLvuumXreNttt8nMmTPlkksuSQ7RgLB96qmnBCcsT5kyJdneXO2isK1GqOO/e28c9I/xtRGwWTP/yM9GoLL1P/7xDznvvPME/4kLq7g4JRnff99ggw2ijpkUtrqoUtjquFHY6rm1taxlv0FhGy6O1pK8z02s9ctiH13YLlmyRFrxskOb66Mf/WhV/7BVORW2d999t4wcOTIRyQMHDkxOcBw0aFDFMrIK25GDB7QrY//d+kufXj2r+me5wXvy0T9LdHk4k40e+ZGflYDNvpb93x577CGPPvpoUgE81MVqbEtLi8yePVu6d+/eYcWsYyaFrS5vKGx13Chs9dzaWtay36CwDRdHa0m1HLusvoeyjy5sNVuR08qVDtI4Rfmxxx6Tk046SaZOnSqTJk1KVnFxz4wZM5IV3rbXsGHDKnI6dfL7E4dy18lDtpdt+q0fijHLIQESIAESqDMCEJNFX++++27y9YCbb75Z7rjjDvnUpz4ln/nMZ+Tggw+W1157ba0vC5TzzTpmBhG2InLpmIGJex2Ns3nYXsby8uBqdy/4YXnhtA7mPVl/ACejIL7NVh741KJPyBKXWvcbHc21s/jPe8IS8JqnYWtZubTowhYnIqdbkXGwBQ6RwiluEKmVtiKn7pYO0jgtcp111kn+pactL1iwQDbffPOytau2Yjtl2ux2dtP/9oK8unS5TBwzSHZq6RM1Bt6fqtA/W/jJj/xsBGzWzL/65YftxhCz+IeHuN/97nfl2GOPTVZs8fm8ji7rmBlE2HYSuXPiiMRNnoqsy8MYK8ChTwlutvK896m17De4Yqtr5zGsvOdpjDq3LTO6sG37g9dff30ySP/nP/9Z65TkcpUtHaQhkBcvXixXXXWVPPTQQzJq1CjB5w8qXdWEbTm7sdfeL7PnLaaw5XdOzW3Pe+dC/2whJj/ysxFob40Htnhwi7MlvvOd78j9998v++23X3IjtiS/9NJLVc+XsI6ZFLa6qMYQoqEfDDSbEA1dX699vod+g8JW12/EsPKapzHqWqnM6ML2rrvukpUrVya/jwZ40003ye9+9zuZN2+e9O/f8TfzMEjj/SKchozDMwYPHpwM7PiHwzVwzDmFbZx08d446J8t7uRHfjYCNmvmX3t+eG1nxIgRgm192267rWyyySbyzDPPJIdIHXDAAbLhhhtWhW4dMylsqyIuewOFrY4brPi5Hz07WHroNyhsbTEMae19bA1Z15oJ23Lv2O69997y4IMPqr5Pu2jRIunbt29VNlyxrYqowxu8Nw76x/jaCNismX/kZyPQ3hqv6ODkY1xYocWupCOPPFJwKEylz/xk8SHPmElhm4Vo+3sobHXcKGz13FJLD/0Gha09jqFK8D43CVXPjsqJvmI7bdq0NSu2eJqMRrj99ttXPQTDWnkKWxtB742D/jG+NgI2a+Yf+dkItLfG1wOefPJJ+cMf/iDY6YSHv7hwjgRELnYpde3aNfTPrikPYyaFrQ4vha2OG4Wtnltq6aHfoLC1xzFUCd7nJqHqWVNhix9/4okn5Pbbbxd8LPqII46QvfbaK3mXKOZFYWuj671x0D/G10bAZs38Iz8bgerWOOn/lFNOSQ5axPX6669X/I5t9dKq30FhW51RpTsobPXsuBVZz66cZS36DQrbsDG0lOZ9bmKpW1bb6Cu2P/vZz2TMmDFr+YN3iG655ZasPqruo7BVYVtj5L1x0D/G10bAZs38Iz8bgfbW+GrAn/70p2TFFp/6Sbcl77DDDnL00UfLGWecUfXwKItPFLZ6ehS2enYUtnp2sPTQb1DY2mIY0tr73CRkXSuVFVXY4hM92HqMgfnKK69MPi4/fvx4ueGGG2T+/Pmy5ZZbRqujRdhmcerL++8oIwcPyHJr2Xu8Jx/9U4c2MSQ/8rMRsFkz/+qPH17VSa9PfOITiZjFDqdqn/ix1fRDawpbPUkKWz07Cls9O1h66DcobG0xDGntfewPWdeaCNulS5cmn/TB5wtOO+20xId7771XDjzwQMF2CXynL9ZFYWsj671x0D/G10bAZs38Iz8bgfbW2223nXz5y1+Www8/XHbeeefQxVctj8K2KqKKN1DY6tlR2OrZwdJDv0Fha4thSGvvc5OQda2JsMWPYsUWK7f4yHyPHj3k2muvFZzS+MILLyQruLEujbDN4suUabPl5un/EK7YZqEV7x7vjZf+2WJPfuRnI2Cz9p5/ttqVt6aw1VOlsNWzo7DVs/NgGWuu7aFu9ehDM45dbeMUdSsyfuyPf/yjfP3rX0+2ZuJaf/315ec//3nyGYOYV6zGRmEbM2rZy/beeOlf9liWu5P8yM9GwGbtPf9staOwrQchiigNHTs1SKhR39ZWkUPH2curFyEaur7N2CdkSb5Yc+0sv8172hNgnopEF7bAjuPIH3/88eQld2w/7tKlS/R8jNXYKGyjhy7TD3hvvPQvUxgr3kR+5GcjYLP2nn+22lHYUtjqM4jCVs+uES1jzbUbkVURdWrGsast16jC9oorrpA5c+bI1Vdfnfzu9773Pdlvv/3kgAMOiB7fWI2NwjZ66DL9gPfGS/8yhZHC1oaJ/JqUX4xqcyuynmo9COXQK5jNVp73MV2fvTbLWHNtm1fNa808jbhie/PNN8vIkSMTITt9+vQkyw455BC555575IQTTlgjdmOlX6zGRmEbK2L5yvXeeOlfvni2vZv8yM9GwGbtPf9stStvTWGrp0phq2dXLyvAzdgnZIlqrLl2lt/mPe0JME8jCdt3331XNt544+TgqFmzZq35qPzy5ctlyJAhyXu3L730kmy22WbR8jJWY6OwjRayXAV7b7z0L1c4291MfuRnI2Cz9p5/ttpR2NaDEEWU+I5t/kyPJZSbsU/IQj/WXDvLb/MeCttyORBlKzJOPe7Xr5+cddZZcv7556/1u9dff70ce+yx8uCDD8o+++wTLS9jNbZU2O7U0kfwL+81YKveiZ33TpL+5Y3s2veTH/nZCNismX+Nzc9WOwpbClt9BsUSjt63NnvvU/URtVnGmmvbvGpea+ZppBXb1atXJwdEbb755vL0008nn/nBtWrVqmQ78n333Sfz58+XLbfcMlr2xWpsqbDVOp5+Jsh78tE/bYTftyM/8rMRsFkz/xqbn612FLYUtvoMorDVs2tEy1hz7UZkVUSdvI/9RTCIsmILx/Hd2h//+MdJHQ4++ODkMz94v3bZsmVy4IEHyu9///uo9YvV2J58/lXBv7wXbGbPW7zm+7fek4/+5Y3w2veTH/nZCNismX+Nzc9WOwpbClt9BlHY6tk1omWsuXYjsiqiTt7H/iIYRBO2K1eulEmTJrXbijxq1Ci5+OKLZZNNNolaP2+Nre27ud6Tj/7Z0pP8yM9GwGbN/GtsfrbaUdhS2OoziMJWz64RLb3NtRuRcZ46eR/789RFe280YZs69Pbbb8sLL7wg+M/+/fuvOUhK63BWO2+NjcI2a+Sy3ee98dK/bHGsdBf5kZ+NgM3ae/7ZakdhS2GrzyAKWz27RrT0NtduRMZ56tSMY1dbPtGFbZ6AhLzXW2OjsA0ZXb7DaqXpvfOjf7YIk19j87PVjsKWwlafQRS2enaNaOltrt2IjPPUyfvYn6cu2nspbLXkctpR2OYEVuV2742X/tniTX7kZyNgs/aef7baUdhS2OoziMJWz64RLSlsfUW1GccurtjWKAcpbMOC99546Z8t3uRHfjYCNmvv+WerHYUtha0+gyhs9ewa0ZLC1ldUm3HsorCtUQ5S2IYF773x0j9bvMmP/GwEbNbe889WOwpbClt9BlHY6tk1oiWFra+oNuPYRWFboxxMhe2mvXpKn149ZcWKFdK9e3ezN/vv1l/2330rczltC/DeOOifLeTkR342AjZr5p+NXwxrTFBnLO1vLjoVPiho6Nip5vJQQDMK0dD8WltFDh1njweFbZCUbphCKGx9hdL72FoELb5jWwRlEUmFbeif+/L+O8rIwQNCFyveGwf9s4Wc/MjPRsBmzfyz8YthTWGrp1oPwpvCVhffVMh777N0tbNbUdjaGYYsgXkqQmEbMqM6KOvVJcvllSXL19yxcOFC6devn/rXp/9tnkx/7AWhsFUjjGrovXOhf7bwkx/52Qj4s6aw1ceEwlbPrl5WgL33+foI2CwpbG38QlszTylsQ+dU5vKsydf2nd3MP5zxRqt/GX9GfRv9U6NLDMmP/GwEbNbMPxu/GNYUtnqqFLZ6dhS2enYeLClsPUThQx+8j61F0OKKbRGUy/yGNfkobJ+XlpaWGkWv+s9a41v9F2x30D/ysxGwWTP/bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUK29IoUNjWKCetEzsKWwpbS+pa88/y21ls6V8WSpXvIb/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFLYesgD60TTwpbCltLGlvzz/LbWWzpXxZKFLY2SvXLL0a9KWz1VCls9ewobPXsPFhS2HqIAoUtha2DPLRO3ClsKWwtaWzNP8tvZ7Glf1ko1a8wY3xt8Y1hTWGrp0phq2dHYatn58GSwtZDFChsKWwd5KF1YpcKW3zDdnCE79i+/PLLstlmm61Faqt+G0nPbl0d0OPhR9YgWPPP+vvV7OlfNUId/538GpufrXblrSls9VQpbPXsKGz17DxYUth6iAKFLYWtgzy0TjxjfRe3IzQTxwySnVr6OKBHYWsNgjX/rL9fzZ7+VSNEYWsjVN/8YtSdwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+vEHd+xnfa3edFqsnLlSunWrVtS/ryFS2X5yneFwjY7bmt8s/+S7k76p+OWWpEf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIw3qaGI+99n6ZPW8xhW2OvKmn+OaoVmG3kp8NNfk1Nj9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeVhPE08K2/wJU0/xzV+7+BbkZ2NMfo3Nz1Y7Ctt6EKKI0tCxU4OEGvVtbRU5dJy9vHoRoqHr671PDZIoikIobBXQIpowT0X4HduICdZR0d6Tr9Q/Ctv8SVJP8c1fu/gW5GdjTH6Nzc9WOwpbClt9BlHY6tk1oiWFra+oeh/7i6DlWti++eab0rNnT+mEnvSDa/ny5dK9e3fp3Llzh3y8NzbvyUdha2t+9RRfW03jWJOfjSv5NTa/SrWzjpkzlva3gRORVPiEXnFkefrQcMVWzy7NZ+99qr6GItZ+48wzz7T8PG0DEmjkPM2KyaWwffXVV+WJJ56Qww8/XJ577jnp06ePvPbaazJy5Ejp0qWLzJ8/X04//XQ55phjKtaTwjZrCpS/j8I2HD9bSXGsvXd+9M8Wd/JrbH5taxdqzKSw1eVNPawAh96a22zlee9TNZkbqt+gsNXQj2PTiHmal5RLYXvbbbfJzJkz5ZJLLpFXXnklEbYXXnihLFu2TCZMmCCLFi2Sfv36CVZve/ToUbbOFLZ5U2Ht+ylsw/GzlRTH2nvnR/9scSe/xubXtnahxkwKW13eUNjquMGqXrY2e+9TNREI1W9Q2Grox7FpxDzNS8qlsE0rgS3IqbA97rjjZPDgwXLUUUdJa2trshV57ty50tLSQmGbN+oZ7i8nbFv6bSQ9u38kg3X4W44bsqvg99PLe+Olf7YcID/ysxGwWXvPv0q1s46ZFLa6vKGw1XGjsNVzC2lp7TcobENGw1ZWvY5dtlqvbV03wnb48OGCf0ceeWRSg0033VQefvhh6d+/v8yYMSNZ4W17DRs2LCSrpi3rirufkucWLqtp/U8esr1s02/9mvrAHycBEmgeApUemnomUDpB1YyZQYStiFw6ZmCC6dTJjwbBdRnLM3EEv1YROS1APHDiCeLbbOUhAPXYJ2RJHGu/wbl2FsrF3dOoeZqVYN0I2/PPP1822GADOe2002T16tXSq1cvWbp0acVDpLgVOWsKlL+v9KnP8wuXyvIV79gKVFpPvvtxmbdwabtv6Hp/KkX/lAH/wIz8yM9GwGbtPf8q1a50gqoZM4MI204id04ckbgY8nM1LE+f0zw8Ss+uGQ6PsvYbXLHV51doy3odu0JyqBthe+edd8qVV14p9957r9x6661y8cUXy6xZsyqyoLC1pYmXxlHpU0Ne/KtEmf41Rv4xvrY4kl8cflmErWbMpLDVxYtbkXXcYMV3bPXsQlmWCltNv0FhGyoS9nK8zz3tNaxegnthi1PbevfuLStWrJBDDjlE5syZk/z3++67T/bcc08K2+oxVt3hpXFQ2KrCV9XIS3wpfKqGSnUD46vCtsbIO7+OhK1lzKSw1eUNha2OG4WtnltISwhbS79BYRsyGray6nXsstV6bWvXwrZcRRcsWCB9+/aVrl27dsiBK7a2NPHSOChsbXGkcCS/OARspXrpX+q1feShn2fMpLDNQ/bDeylsddwobPXcYlvm6TcobGNHI3v53sfW7DXR31l3wjZrVSlss5Iqf5+XxkFha4tjvU7cveQf+TH/4hDwVyrGTApbXVwobHXcKGz13LxYep9re+FUlB/e505FcKCwLYJymd/wnnxe/KOwjZOgXuJL4cj4xiFgK9V7+7DVrrw1ha2eKoWtnh3fsdWz82BJYeshCh/60IxjV9sIUNjWKCe9J58X/1JhOwbfsd2s15povfzyy7LZZptFj96ArXqrfsMLPwpHVfiqGjG+VRF1eAP52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYpcNfCpss90d/q50wpK3ZMY3L7G17yc/8rMRsFl7zz9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeeh94uRfHf+7AAAgAElEQVTFP3zH9vmXl7SL2MqVK6Vbt27RIjl73uKkbArbaIg7LNhL/lVykv7Z8oL8bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCLH5DR07lcLWFiKTdez4mpwTEfpnI0h+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PwobG3xsVrHji/9sxKw2TO+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PxSYTty8ACVo0uWLJFevXrltu2zUQ/Zf/etctvlNYjNL68/be+nfzaC5NfY/Gy1K29NYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISeetiDE5pcKW5uX+a0HbNVbJh2/X37DnBax+eV0p93t9M9GkPwam5+tdhS29SBEEaVQ4xDq29oqcui49z9jZ7nqRYiGrq/3PtUSU4stha2FXnhb5qlIp9ZWNP/Gu7w3Nu/J1+z+TZk229Qo8q7YvrpkuUx/7AWhsH0fe7Pnnyn5yM+Kz33+mStYpgCu2Oqp1oNQDi30mq0872OSPnttlt7n2rba1Z8185TCtmZZ6z356J8tNfLye/L5V2Xc5AcobD/AnpefLVr5relffmalFuRn4xfDmsJWT5XCVs+uXlaAvfdZ+gjYLClsbfxCWzNPKWxD51Tm8rwnH/3LHMqyN+blR2G7Nsa8/GzRym9N//Izo7C1MYttTWGrJ0xhq2dHYatn58GSwtZDFD70wfvcpAha3IpcBOUyv+E9+eifLTHy8qOwpbC1ZRz5NRO/kHVNy6Kw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU7mFT5Fu0n/bMTz8qOwpTCzZRz5NRO/kHWlsLXTpLDVM6Sw1bPzYElh6yEKFLYUtg7yMK/wKdpl+mcjnpcfhS2FmS3jyK+Z+IWsK4WtnSaFrZ4hha2enQdLClsPUaCwpbB1kId5hU/RLtM/G/G8/ChsKcxsGUd+zcQvZF0pbO00KWz1DCls9ew8WFLYeogChS2FrYM8zCt8inaZ/tmI5+WXClvbr+azTidj+ayKuTsvv2K8qp/Bg/xsGeGdn6125a35jq2eKoWtnh2FrZ6dB0sKWw9RqJ+5SRG0+I5tEZTL/Ib3iRP9syVGXn4UtmvzzsvPFq381vQvP7NSC/Kz8YthTWGrp0phq2dHYatn58GSwtZDFChsS6NAYVujnOTEzgae/PT8ho6dmhhzxVbPkPmnZwdL8rPxi2FNYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQn54fha2eXWrJ/LMxJD8bvxjWFLZ6qhS2enYUtnp2HiwpbD1EgcKWwtZBHnJiZwsC+en5Udjq2VHY2tlxxTYMw9ClUNjqiVLY6tlR2OrZebCksPUQBQpbClsHeUhhZgsC+en5Udjq2VHY2tlR2IZhGLoUCls9UQpbPTsKWz07D5YUth6iQGFLYesgDynMbEEgPz0/Cls9OwpbOzsK2zAMQ5dCYasnSmGrZ0dhq2fnwZLC1kMUKGwpbB3kIYWZLQjkp+dHYatnR2FrZ0dhG4Zh6FIobPVEKWz17Chs9ew8WFLYeogChS2FrYM8pDCzBYH89PxSYTty8AB9ITksv7z/jjnufv9Wxjc3srUMyK+x+dlqV96awlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ048bUEgPz2/VNjqS8hnqfmsEOObj3Hbu8mvsfnZakdhWw9CFFEK1Vejvq2tIoeOe/9Tb5arXoRo6Pp671MtMbXYUtha6IW3ZZ6K8Du24fMqU4nek4/+ZQpjxZs885sybbYsWbJEevXqZatkFeubp/8juYPCNirmsoV7zj84TP+Kz4lqv8gV22qEKv+9HoRyaKHXbOV577P02WuzpLC18QttzTylsA2dU5nL85589C9zKCksKqCyvMvL/GP+2QjYrL3nn6125a0pbPVUKWz17OplBbgZ+4QsUaWwzUKpuHuYpxS2xWVbm1/ynnz0z5Ya5PfhNjqu2NpySWPN/NNQ+9DGOz9b7Shs60GIIkrcipw/02MJ5WbsE7LQp7DNQqm4e5inFLbFZRuFbVDW3hsv/aOwDZrwOQtj/uUEVmf9s612FLYUtvoMiiUcvW9t9t6n6iNqs6SwtfELbc08pbANnVOZy/OefPQvcyjL3kh+FLa2DLJZM/8am5+tdhS2FLb6DKKw1bNrREsKW19R9T72F0Grbg6Pevvtt6V3795y0EEHJVy22247GT9+fEVG3hub9+Sjf7bmR34UtrYMslkz/xqbX5baacbMGUv7Zym6w3tS4YObQm6lZXn60PBUZD27NJ+996n6Gq5tqek3zjzzzFA/z3KMBJolTzvCVDfC9qmnnpKzzz5bpkyZIl26dKkaegrbqog6vMF746B//uPLw6NsMbJYs31Y6Pk/tTlL7TRjJoVtFrLt76mHFWDvW329++e9T9VlbnsrTb9BYRuKvr2cZsnThhC2d999t4wcOVKWLVsmAwcOFAjXQYMGVawbha2tgXhvHPTPf3xTYbtTS5/czq5YsUK6d++eyW6rfhvJmCG7Zro31E3MPxtJ8rPxy2KtGTMpbLOQpbC9c2LzfRfXe5+ly9z2Vpp+g8I2FH17Oc2Spw0hbKdPny6PPfaYnHTSSTJ16lSZNGmS4MlSp06dZMaMGTJz5sx29Rw2bJg9S1gCCZCAisCpkx9V2eU12qbf+nLykO3zmvF+EuiQQEtLS10T0oyZQYStiFw6ZmDCLlQfcBnLM+Ui+LWKyGkB+uROH8S32cpDAOq9T8iSRJp+g3PtLGSLu6cZ8rQhhO0777wj66yzTvJv9erVyXbkBQsWyOabb162flyxtTUi70996J//+D75/KtqJxcuXCj9+vXr0P75hUvlZ3c/LgO26i2Tjt9P/VsaQ+afhtqHNuRn45fFWjNmBhG2nUSwooeL79hmiVT7e2Jsbfa+1de7f977LF2mtbfS9BtcsQ1F315Os+RpQwjbc845RxYvXixXXXWVPPTQQzJq1CiZO3duxbpR2NoaiPfGQf8YXwjncZMfoLAtkwpsH43dPrLUTjNmUthmIVuMEA39YMC7cPTun/c+VZe57a00/QaFbSj69nKaJU8bQthiBWfw4MHJSi3+nXfeeTJkyBAKW3s7KFuC98ZB/2yBbwR+FLaVc6AR4mvLcJu1d35ZaqcZMylss5ClsOU7tro8qQcrTb9BYesnso0wdllp1s2pyGlFFy1aJH379q1ab67YVkXU4Q3eGwf9Y3wpbClsba2gfvnlqXeeMZPCNg/ZD++NsXWYK7a6WMT6zq73OYeOVmWrPP0GhW1o+vrymi1Py5GqO2GbNdwUtllJlb/Pe+Ogf4wvhW39CjO2X1v7jWGNMZPCVkeWwlbHDVaxhGjorc3e+yx9BGyW3ufattrVnzXzVITCtkZ56z356J8tMcgvPj8KWwpbW5bVL78Y9aaw1VOlsNWzo7DVs/NgSWHrIQof+uB97lkELQrbIiiX+Q3vyUf/bIlBfvH5pcK2Bd+xHbqb7Qc7sMZ3cnt267rWHYyvDTf52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYmcDT37klwpbG4nq1hPHDJKdWvpQ2FZHlfkOtt/MqAq7kcJWj5rCVs+OwlbPzoMlha2HKFDYUtg6yENO7GxBID/yw3dsJ9/1mA1EB9bzFi6V5SvfFQrb8IjZfsMztZZIYasnSGGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQH/nZCFS3Hnvt/TJ73mIK2+qoct/B9psbWXQDCls9YgpbPTsKWz07D5YUth6iQGFLYesgDzmxswWB/MjPRqC6NYVtdUbaO9h+teTi2VHY6tlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCORHfjYC1a0pbKsz0t7B9qslF8+OwlbPlsJWz47CVs/OgyWFrYcoUNhS2DrIQ07sbEEgP/KzEahuTWFbnZH2DrZfLbl4dhS2erYUtnp2FLZ6dh4sKWw9RIHClsLWQR5yYmcLAvmRn41AdWsK2+qMtHew/WrJxbOjsNWzpbDVs6Ow1bPzYElh6yEKFLYUtg7ykBM7WxDIj/xsBKpbU9hWZ6S9g+1XSy6eHYWtni2FrZ4dha2enQdLClsPUaCwpbB1kIec2NmCQH7kZyNQ3ToVti39NpKe3T+ylsGKFSuke/fu1QtR3IHPC1kvtg8bQe/8bLUrb01hq6dKYatnR2GrZ+fBksLWQxQobClsHeSh94kT/bMlCfnVP79U2Npqkt86nSTnt6yfwY3twxLdOLYUtnquFLZ6dhS2enYeLClsPUShfsb+Imh1am1tbS3ih4r+De+NjRM7W0aQH/nZCFS3fn7hUlm+4p2yNy5cuFD69etXvZAcd4yb/EByN4VtDmiRbvXev8SoNoWtniqFrZ4dha2enQdL73NtD4yK9KEZx662fClsi8y4kt/ynnz0z5YY5Ed+eQkMHTuVwjYvtEj3e2+/MapNYaunSmGrZ0dhq2fnwZLC1kMUPvShGccuClsnOeg9+eifLVHIj/zyEqCwzUss3v3e22+MmlPY6qlS2OrZUdjq2XmwpLD1EAUK29IocMW2RjnpfeJE/2yJQX7kl5cAhW1eYvHu995+Y9ScwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+8TJ/pnSxLyI7+8BChs8xKLd7/39huj5hS2eqoUtnp2FLZ6dh4sKWw9RIHClsLWQR56nzjRP1uSkB/55SVAYZuXWLz7vbffGDWnsNVTpbDVs6Ow1bPzYElh6yEKFLYUtg7y0PvEif7ZkoT8yC8vgVTYTjp+v7ym7e5/+eWXZbPNNlOXM2Cr3mrbLIZsH1koFXsPha2eN4Wtnh2FrZ6dB0sKWw9RoLClsHWQh5zY2YJAfuRnI2CzjpF/qbC1eRbGOsQnhzryJAa/MDV/vxTv/oWsa1oWha2eKoWtnh2FrZ6dB0sKWw9RoLClsHWQh94nTvTPliTkR355CYy99v68JhXvX7lypXTr1i13ebPnLU5sKGyfl5aWltz86tmAwlYfPQpbPTsKWz07D5YUth6iQGFLYesgDyl8bEEgP/KzEbBZN2r+hXzPtyPCjcrPllW1taaw1fOnsNWzo7DVs/NgSWHrIQoUthS2DvKQEztbEMiP/GwEbNaNmn8Utu/nhff42rK3vDWFrZ4qha2eHYWtnp0HSwpbD1GgsKWwdZCH3idO9M+WJORHfjYCNmtt/lHYUtjaMk8kFSooJ9R74/UgHL3Xt7VV5NBxU63hXRPfZitP26eagTsvgMLWV4CYpyKdWlvRPTXe5b2xeU8++mdrE+RHfjYCNmtt/lHYUtjaMo/C1soP9jGEfLMJ0dD11fapIfLBcxne59qe2cXwjXlKYRsjrzKV6T356F+mMFa8ifzIz0bAZq3NPwpbCltb5lHYWvlR2NoIxtrarO1TbbXxb01h6ytGzFMK25plpPfko3+21CA/8rMRsFlr84/ClsLWlnkUtlZ+FLY2ghS2Nn55rSls8xKLe7927I/rVbGlcytysbzX/Jr35KN/tsQgP/KzEbBZa/MvFbYjBw+wOVDFesmSJdKrV6+ov2EpfM+tuvNzP0qAfMdWCa7EjFuR9QwpbPXsNJYUthpq8Wy0Y388j4ovmcK2eObJL3pPPvpnSwzyIz8bAZu1Nv9CHfZj87721peNGUhhqwwDha0SHIWt68OttH2qPRt8lwBh22uHA6o4me0on+OH7iZ4N3ry3Y+zvLUIZOfHPOVW5Jr1GN6Tj/7ZUoP8yM9GwGatzb8p02bbfjijtfcV271aelDYZoxl29sobJXgKGwpbO2pU3gJoT8TFvrQr2YrTzv2F544EX+QK7YR4XZUtPfko3+2xCA/8rMRsFkz/xqbn6125a1DT1DxK6F2AMTYmtts/jXbBD90fb33qTH6hCxlhu43Qset2cpjnnLFNku7jXKP9+Sjf7awkx/52QjYrJl/jc3PVjsK22YUys02wQ9dX+99aow+IUuZFLZZKLW/h++C67hlseKKbRZKEe7x3knSP1vQyY/8bARs1sy/xuZnqx2FLYWtPoNiTchDC9HQ5XnvU/URtVlS2Or4xWpHzNM6XLFdvny5dO/eXTp37txhNnk/qc178tE/XWeVWpEf+dkI2KyZf43NL0/t8oyZM5b2z1N02Xv5jq0ZocQQ3qGFXrOV571PtWfd2iXUqt9otrwKXd9my9NyeV83K7avvfaajBw5Urp06SLz58+X008/XY455piKbZnC1tbNeW8c9I/xtRGwWTP/yM9GIL61ZsyksNXFJYYQhSch31EOPYFutvK89/m6zG1vVet+o9nyKnR9myVPO8r3uhG2F154oSxbtkwmTJggixYtkn79+gmeKPXo0aNs/Shsbd2c98ZB/xhfGwGbNfOP/GwE4ltrxkwKW11cKGx13GAVa0smBYMuJrXuN0LHrdnK8z430WVlPqu6EbbHHXecDB48WI466ihpbW1NtiLPnTu34icZKGzzJULbu703DvrH+NoI2KyZf+RnIxDfWjNmUtjq4kJhq+MWRdiKyJ2TRiTfQz103FS9Yx9YpsLbe59vrugHBdS63wgdt2Yrr1nytCFWbIcPHy74d+SRRyb12XTTTeXhhx+W/v37y4wZM2TmzJlr1bNr167y7rvvhmrrLIcESIAESKBJCPTp00dGjx5d17XNO2b27Nkz2QXFiwRIoD2BHXfcUYYMGdLwaNhv1HeImyVPG0LYnn/++bLBBhvIaaedJqtXr5ZevXrJ0qVLKx4i5X3Flv7ZOg/yIz8bAZs184/8bATiW+cdM7N6FDr3WV5W8uXvIz9f/Gze1N6a/UaYGHhvl2Fq6bOUutmKfOedd8qVV14p9957r9x6661y8cUXy6xZsypSDZ1UocNH/2xEyY/8bARs1sw/8rMRiG+dd8zM6lHo3Gd5WclT2IKA93yxRbP21uw3wsSAeRqGo6aUuhG2K1askEMOOUTmzJkj+O/33Xef7LnnnhS2mqhnsAndKDP8ZK5b6F8uXO1uJj/ysxGwWTP/bPyyWOcdM7OUWQ/CInRusbysmUHhbSPlw5r9Rpg4eO83wtTSZyl1I2xTfAsWLJC+ffsK3qHt6AqdVKHDR/9sRMmP/GwEbNbMP/KzESjOOuuYmdWj0LnP8rKSp3Cshwcrtmj6sWa/YYuF937NVjvf1nUnbLPixIFS++yzT9bbC7+P/tmQe+eHw8z23ntvWyUjWnvnR/9swSe/xuZnq53NOnRusTzGIw8B7/mSpy7NdK/3uDWbf42cew0rbBs5aKwbCZAACZAACZAACZAACZAACZDAhwQobJkNJEACJEACJEAChRN47733BP/Sq0uXLoX70NEPxvTv97//fbKrZ/31189dZ7wH+eabb0rv3r3X2D7xxBOCT32ss846uctrbW1NvjZR6fISl1Dx+Ne//iUvvvii7LXXXhW/rJEbIg0qEvjPf/4js2fPlm233Vb69eunJvW3v/1NnnrqKTn66KPVZRRhiPrOmzdPdtllFwnRdlatWpWU8+yzzyYMeXVMoCmELQYAfKOvE760XeZatmyZanDJmlzojDEQwYdKF3xYb731KvqY9bc09zWCf5p6h7LJwg/fh8R9mkmM1c8s/ll/w2Kf1T8MFmhD6667ruXncttm8W/JkiXJJ8hqcWX1D59L00x6rXXK4h8G7nfeeUd69Ohh/bmy9ll8QBvt3r07J7plCD7++OOy2267tfvL5ptvLhMmTJCvfvWrueKGT/UdccQRcv/9969ll46DWQv7+9//LgcccEDF259//vkOx91KhqH8S8t/++235YwzzpC77757zU8uXrxYnnvuOcE3k/Ne4Lb//vvLLbfcIsOGDUvMIWoffvjhZB6R98I2zM9+9rMVzV544QX5+Mc/XrVYiOtvfOMbcvnll8vhhx9e9n74fcMNN1Qtq/SG0PH45z//KUceeaS88cYbctxxx8lRRx0l2223XS6feHN1AnhgArZ//etfkzz/y1/+Ij/4wQ9k/Pjx1Y3L3IEHEngYhHI+9rGPqcooNfrzn//c7tvE6INSzZD3B1Bf9GvTpk1L2iP6n1NPPVXGjRuXt6jkfoyL//3f/50wmzp1qvzv//6v7LrrroKHYrwqE2hoYfvqq68KOlp0sOUGEDz9OfbYY5MOe/78+XLdddfJpz71qaD5cv3118ull16aNEIk6S9/+cu1nrI+/fTTgu+Gde7cOfHh+OOPl6985StBfeiosGr+YcI+ZsyYRJBhIMZgcMwxx7jx70c/+pHgfVZcmLzedddd8thjjyWNv4irGr+VK1fK17/+dXn99deTGMOv8847rwjXkt+o5h8mXHjqf9BBByX3Y3DXDjqaSlXzLy0TbWOnnXZKOvTPfOYzmp9S2VTzL316vPXWW8tbb72VtF0M5EVd1fzDRGDEiBFJjPHEF+IEg2RRVzX/sEqEJ/noeyG6L7nkkuCuVfPhtddek5EjRyZ8kGenn356oX1c8ApHKPCll16S/fbbT+64446kj4CAwjflf/GLX8gnP/nJZGzYZJNNMv/ybbfdJj/96U/lN7/5jelhBsZUTERLr3fffXfN4ZLah02h/Ev9euihh+SHP/xh0jdAlGKecfvtt6snqCjj3HPPFcQFDxXOOuuspH/UClv0EwMHDhT4udVWW8mTTz6ZzI0gePGwJ+uFeECEbrjhhoIHkbjQxtMHavj7l7/85WSSnmflLnQ80vpA4CKn/+d//kc++tGPyre+9a3kQUG3bt2yVpn3dUAAAg+f6UT8kAOYT26//fZJfmke6EDQfvrTn05+sdRe+wALc0bM0XDhPx955JHkc1IPPPCAKq6oL9rln/70pzX1hb5AnmmEOHITn1/CuLjlllsm/Szy86qrrhI8VORVnkBDC1s0JogeJMUrr7zSriHhSe93v/vd5Ilv2nHiO7mhLnTiOL057ehPOeWUpDMfO3bsmp+AkP3EJz6R+IFtBvjvEBsf+chHQrlRsZws/uHJKp4S4ckwBr3Ro0cLxHgRVxb/Sv0488wzkxOzv/3tbxfhXvKgolp8wQ+dJToiPM1DR3XYYYcVsnKWxT8Is7PPPlumTJkSZMtMHvBZ/EN5WMkbPnx4srXn6quvLkzYZvEP39NGm8ZkDYPa//t//0+wilTElcW/Cy64QDDRx8MUDNyYpGIyvNlmm0V3MYt/eDKO/MMT/d133z24sM3iw4UXXpiII6w8Llq0KIknVm9jrR5HBx/hB5DbEGLox9IL2+yw4oEHn9/73vfKruhWcgUTVAg9lBnquuaaa2Ty5MnJg02Mo3joeeihh6qKD+0fBPysWbOSsQnbKKdPny5f/OIX5cc//rHgoVjeC8IWY8k555yTTHTx4ArlYwKtWbFFWfiHBxXphc8rYuV1m222yetecj8EDR4qIR5f+tKX5MQTT0xWmTVX6Hik48of//jHpN5YcMCDGzycefTRRwU7FPAgmpeNAObfeGhw7bXXJgVhDoQH02j3eR5spF6Ue5CFv2kfYJWrHfq13/72t9K/f//clceDd+Q8Htyk9cVnSSFOMTfNe0FggxV8Qp9x8803J/8dOmXTTTfNW1zT3N/QwjaNIrYglxO2W2yxRSLW8J/oyLBqhftCXZiIDx48WObOnZsUecUVV8j//d//JasT6YXVWogjiN30aVRRE88s/i1cuFD+67/+K+n08fQWT+kxeS/iyuJf6gdW5jF4YmAv4qEAfjeLf+mkHbsD8IQNQuPggw8uAl8m/7A1DqtVmNjjiT2eVg4aNMiNf3DkO9/5TjIhQvsBz6JWbLPENwWFCT9WoEaNGpU8pCriyuIfXoFA/4cVCAzWYIndK5Veywjpdxb/0t/7yU9+kvgVesU2iw/Yioh+GqtpmHhhQos+u6WlJSSOui4LE0psrcOOBLzjhQkrHsRid8eQIUMEK35ZXhFAjCFosVKCcRCMsdUuXdGDkNKslmEFCDuJ8AAWE2YIbjwMw4OKPA8oYvmHXQGY4GKCj7Ee73Zi8ovf07yekgpb9Il48IftjhD2ebdyp0n58ssvJ7uJILqxqwM8wRBiWXNhPP7CF76QPBSHcMfc4cADD0xW7DbaaKPMRcaKB8Q28g45jbzB9tF0xwEeUiKvtYI+c+Wa4EaspCL+mPNgZwe4z5kzJ1kgwYXFiLyiFA9B8QAL83asYmI+oI0V5oulYw76C+x6wLiRp9/ATp+f//znyWLHxIkTk9xCG8ecHjmM8UQzL8VDabRJtEMIXPwGHrqWPoBqgjTKXcWmFrZ45wyrjxgI0QA/97nPCb7dFepC546nqekK54033phsUfjZz3625ifQyNEAsF0ayfvMM8+oB6e8fmfxD0+GMFnHyjIaPBpn6XtCeX8zz/1Z/EvLw+QUW1Sw7beoK4t/6MAxQcAAj4cn2OaISWARwiKLf3gKiMHmpJNOSiZakyZNSg5n8OIfdlJAkKEjx4OnIoVtFn5prmFwhK8YDEPu+ugol7P6h4kv4orVIawc4SFVEVdW/+BLLGGbxQcIIPzDaxa48CQcfZ3miX0RXGv1G3jo+7vf/S6ZrO27776JcMG7l8j5rO8n/vvf/07GwEoXVlg1h63ArwcffF2t9GUAACAASURBVFCw+p5e2ImFB055Jr2x/INP2DGB7bn4z1/96ldJO8TYr7nwmhUeAGAOk16//vWvk4cMmgcDKAMPse+5557kYT/ii7KwPVdzwReMLdhhk14oE6tZeVaoY8UDAga7RfLkhoZDs9sgpzD3qXSh383zYAcPYLCVGa/T4GHJ1772teTdde2CBvKgtD/CjiY8gMq7Gopy0AdVuuCnpl9rWx4eDGFs0h461yz52NTCFh0tJqTYAoenQFg9xZaBUBdWSzDo4+k0hEL6ZKjtVlm8fwmxiA4fQjikuO6oLln8gzBDR4Ina3gajIG03Op3KGal5WTxD/dj8MPT1rxPg60+Z/EPK2RYyYCwwIUOE6sdRQyoWfyD6MFqCf7hXSh0vsi/It7fyOIfHlZgErfxxhsnW8SwxRDbxkK/C18uF7L4B6G4xx57JFt78coBnj4XteMii3+YRGPygAdSWN3RbP/StpMs/qVlxxK2WXxAv49+DbtR0AYQQ8SSWxHXjjwe2KBfQD+L3QlYve3o4KZyeYO+Gg/6MDG77777yqYWxhuMyXkutDmsNGK3BEQ2XgfAVliscODCLpQ8KzCwwam5mDynF8q76aab1A88QpYH8YkHzugLsdMm3c2Sd4UafT22ila6IBryrDQhN7A7CXMazB1gn86v8FoOHtxrD7ALsVIX67CxPLnaTPfiFQYIW7yyE+LCQ27M0bGzDO+A479jHn/ZZZepzlXBa2LYRYnXKTBHR7+P+TnaekeHvZarCx6U4OEa5iknn3zymlvQTrGYpdmKHPrQuRAxqIcymk7Y4oCXf/zjH8lggC21EETofDEg4t2U0AfnYD88nhrjYAdsxcG7bvvss88aHzChw2oxVlOwNQtPj4rcZlDNv4suuijxD35iuwWeZmESEeLpU5YGUs0/lIGVMgzOIR9KZPEN91TzD6v02DaDDh4TGwg1PHXUDu5Z/Urvq+Yf3tHCgQTI0XSylG6dz/tbmvur+YeJV3q4A1bjcbgHVnXyTlI1vmWJL94txIMLcMTuC2yZ9hRfbH3EQ7NatI0s/GIL20o+QJDhyTf65fSAEwi3W2+9NZmEabdgavPMux12HaHdYUUPO5twWBEmk9iFkkf4pFv2MNmDGGt7YesdDgCEAMpzaBH8w2selS7EtPTTONV4o9/BwzOIZGz9w8M1PIyEGNeMfaHLg/+IBbbRYg6DhzGYP2RdOU/rjxU18MYEGmeAIC4777xz8vAB4wCEYJ76VosDxkLNinKolbpK72imPPJui62WR83+d8wtBgwYkAhFvNKW7gTDKwiaB4d4cILXRrDtHnN17NDAvBp5p5kTIP+xWxIPztGW8B740KFDk/Lz5D3ijEMa0SbbfmUFD3bw/2vyPvShc82Sj00jbDEwYWDD1jQISxzzjo47fV8P731gMqPdelMpYTChTE85xtYtHNKD91dSHzDQ45AGrBhA+GCyVcTBLqm/1fzD6iwaOjoAXNgKiqdbRV3V/IMfWBXFSihWlYu+qvmXThjw1BIdLx5sFHlqbjX/EFcMFOjE8Q/+YQtaUVc1/0r9gF84Nr+od2zx29X8g5jFNn28b4gJPt6vweSwqKuaf1g1aftpDYiGor6FV82/UmGL/jjUk/1S/uV8wAQLfW665Rh9MGKJFV6IFzzA4/UhARxagskjJoHIbwgebN1Gf4H3FPNcEBdgjIfMGFtSYQxhhhN+cQALVmFwsm7WC+MUVlgwWUa8cWIq3nPTTJ7xm3ifDeM0+moIZqxQozwc5pJ3JSdGeXgXHO0a79biFGOwAj9tu0a9sKqEFeD00h6iUy2+OFMk7xVypQ55jH4Gp9RigSN9OIm5TZFjX14G9Xg/VkTLzRcx19YIUTDAYgEELfrr9JR/nK+ivSBE8RAL4yLmkKWvM+QtE1uikV84GC7EFfrQuRA+1UMZTSFsOwoEOmE8DcSL6LHeK8QAjq05HW0DTLd/xvKhIwZZ/AMjPBjQDErWhpDFP+tvWOyz+IcnjbX6jmgW/7CFTbNVxsIttc3iX4jf0ZaRxT88IMDDFe1EWusb7LL4ZynfauvBvyw+oA9GG6hFH2dlHNseD12xGwFjAB4C4OESBC7esc27++Sb3/xmsjsED5HxgBmTXIhbjMGaU30xEcUDJUxQIT7xHive28MDYhwmpbmwnRZbEvEuLLYxYwUTrwlpxWPo8nCaL74XiwcOWAnDu6w4lCrvVuSUTfq+ImKBhwJ44I5XLHDeQt5VzNDxhY8hV+qQx3i/GQ9nsEMDohkrdtjait18eVfqNPnVjDZYvcX4CNYhLrQpPFTTrISmv4/+C/mAg9PQn+GsEawAa1ZssdsEQhR+4RN26M/wgBQruXl2n5SyCX3oXAju9VBG0wvbeggSfSQBEiABEiCBWhLAbieIAZwai0OAsGU178o2VsTxACgVYDj0D9sSsRNDI2yxcoktwlgZwgoOVnpxbgAeTmBbrnYXFt61xuQW36DEyi38w6qQ9vNEocvDu8pY8cKEORUMmASDpebBDDhCGOOVlHQSjocFeQ9jDB3f0nwPsVKHhQw8UMFCAwQIREf66g0eYGDLbN4dCLVsk55/G1vc8eoQdhTgQRjei8UDJ7z2h9XxvBde48IDJghIHCSJd2Nx4eyavHma/jbeh8UKa7qrEg/asAMQr1nk3ZmB3VHYuYWdLDh4EK8wYKceXuXDgzztolXIQ+fyMq/X+yls6zVy9JsESIAESIAEIhPAazMQoHgHzXrhIEW89oMTc7ENFCtxOCwK7zljJTjvim0qVCC4sbUUk1xsJ8T/D2GLw1xCvNqDyaVlZagtN0t5oQVDqW/ghk+d4CBLze6T0PGFbxDxpat8yJm8q8ildcS74jvssEOyqoaTbHHAGHLyhBNOKPR8BGtb8m6PBwTYSYA2iFOMsasJwhbbh3EQWJ7TkFFX7HjDQxysiuJ1Azxcw+4MvPOvWWnH1yngHwQoBDj6IVzo6/D+f55V1vTgTTywKz1RGf8/cg0+43NHea6Q/W6e322EeylsGyGKrAMJkAAJkAAJRCCACSVWSLAS+qMf/Uj9HmfqGiaN3//+9wUHE+L99PSbothKrPkOK96RxJZSvB+Kz+fgtRmUi0vzaTpMwPFeLT5rBN+wCvrZz342mZxrTrOHMIMtVpWxpRvbHnGgDD79luebrim/0IIB39nEBB/v6cIvHCKF16awqpb31Gv4GDq+yD+8243VVBzwab2QHzjECvWFeMBp6CgXq/JY8edlJ4AHJHjQhNc7IGKxMp5+7QNb3NFW874Pngpb9BvIT2wdx4UHYvj+dd62CTusJqMs5Cx2pECUanaOwA+0S/iEB4B4EAMG2BWAByl4iJLn8LpUyIfsd+1RrZ8SKGzrJ1b0lARIgARIgAQKJYAJJSalWGXFYUXYfoxDniAKtIctYisoRGz6WTFso4WQxPttmq20EGfYOohJKg6KhCDFe5R5TmxOoWLLI1aT8e3JLbfcMnmHHQdaQYjCz7xlQixBGGM7Jibl2PKK9zhxkj9WqPOsjMYQDHjHELGEL3hAgPeSsSKKd3jBVbOFMmR8kX8TJkyQSy+9NDl9Hgd65Y1BoQ2GP5YQwAnD2EmB97URL7QB5BW252L7b94LgjM9pwb5hTLwqTa0o7x5ijaN/gLbmtEWkVvY2owD2bTCFqvG2I6M7c1YjUb/hn4EJ8jjkLy8V4x+N68P9Xo/hW29Ro5+kwAJkAAJkEBkAukECytcWLWF8MH3XP/whz+oVlgju2sqPt1SiC2Obbe7YqUJJwfj3eKsV7pVGuVhAo1PSuHLCJhAYzUGn/nL+05nSMFQ6h/eL8RJyOnKGsSu5hNCWdlkvS/NPzDEyje2reOgHxwUdvDBB+c+vCzr7/I+GwFsS8fnKxE/vKuOFXe8F45VTXyiSnNhKzK2yiNHjzjiiORBER50pA/I8pQJAYsHJXiAhYc3ePCE7ej4//K+ElH6uxDN+CQmyre8vtBM/W6euGW5l8I2CyXeQwIksIYADgjBlecdFOIjARKoTwKlE6y2Ezj0AZoVPc8ksEURKy5HH310sr0Rgg+nBuNAGZwSnPdQGZSD9+uwrRcTcQhaTMRPPvnkZEUr7+Q3tGDAu8jYPonTjHGIFB5gYPUc20chImp9SnDb/MNhT7/+9a+ThwR431j72RjPOUjf4hNAm8ZBUfjEE7bd45WBww47TGbOnOnigV2z9bshI05hG5ImyyKBAATQoWEbS3phGwuOode87xTAneQESTxtxRPyvffeO3mqj8NPsBUIqxj4Vi8maLxIgAQajwBWH3AAU2wBi09vQPBZhRS2F2q2M6eRw2EyeMcWh97glFMc/oLtyVhpyvseH8qEOMRWR0ykscqEdzqxUotvZ2LFsdYXxDpOrMXJsNiWjHcNcYAOTkm2fB+0bb208cV7v1j5C/F+LXzC2HXHHXckn/bC+9N4vxL5gjrj0CxezU0AOwPw7nueVwRiECuq343he63LpLCtdQT4+yTQhgCELS48QcdBJvjMAS4IzPRvRULD6YHYSjRp0qTkY/aYCGALG77ziEkHJgp4v4QXCZAACWQhgJVBiIv77rtvze046AniD32N5sLneXAoEN6v/cQnPpEcdIWDW3gVTyBGfEPVAivoOFkZK78YX8eMGZNsjcUqMA774RWOALYM4710HJjWDBfeJ8ZBUdgyjT4ID8U0B8Q1A6uYdaSwjUmXZZOAggDEK07rS1dBcSAB3snChA1b5PCtQZwqiC1kWAnA8fl44o5tWdhGh6PlcQInTrrESiuEJ/5/fJcQ27Zuvvnm5BuN6ITxlH78+PHJkfef//znk4Nh8D1InN6J34WQxUoxJqBYTcHpg/iWI961mzp16lrCFpMFvIOGf9heh8NW0u/DKTDQhARIoEEJYPIHgYE+55lnnkm296L/wCFNmgvfmsV2Wrz/iwNm8L3L4cOHr/lerqZM2ugJhI6v3pO1LdN3irHtFIf8lJ7Wi0O9MC5iXOUVhgBOREY7x66A2Ds+wnisL+Xaa69NvtGL057Tw+uQY9idgYcnvIojQGFbHGv+EglkIgBhi6PhMUnDkz8cFoKPfL/yyivJQAzhidVSrE7g73jqDAEKEYsLYvLcc89Nts1BjGLVAmIYKxg4pQ9bijEJxPtxEL8XXnhhsg0rPdAB33T74x//mPwOxC+ELH4P29IggnEi6ptvvplsRS5dscXf8K4KfhvvqUAM4z9xKAMvEiABEkgJ4PRd9C/oh3DSMh7G4QEaDqXq06dPblD4Him2DqMvSy+Uh35Ps304twM0WItA6PiGxPv/2TsX8C2Ksv8PKimgIpUimoWoYX/l9ZBIWWkiRYKar3ESMaXSzANiiqR2wmMeXkAhylfMzKCUrETLEg9RKJHHtFBf8UgmkiaKIprK//pMDi3rc9hnZ/fZ2f1957q81Oe3MzvznXvuub/3fe8Mn89MmjTJ3HHHHTblHNLFnrvrrrvatHF9s5sd2mAL3jibcJq79F4cCK18W04GgMtcq9W70aNHe3/CQHQZOeAb81YL370zRoIRpLhzNzL2Een8OErQddG7mFttn+c50Iq+ZXEvd5r3l6mOiG2ZZkt97RAIxL+xJUrLaZAQVu6G465GIh2QT4y5G2+80V40D7F1RHLKlCn2YASiIXgQeYaoCAYHz02cONGeJkkUF7LL3yG2eBbxPBLVZbPgInS+qY2mIkNmaxFbFPiKFSvsNRF8T8VGhGLnHSpCQAgIAYcA13NwtQ+EdtiwYVZHcI/obbfdlspw43s0MleImKCHMDDRcxiYFKJxSQkLUT2uJEEPc90PDkGMVb6x5aTTtAVdvWjRIptB48qpp57a8tU1pNDWK3wzGkJkLOv5TYt5rXqku+MI5qoqZJDzK9hjIbs4cFWyQ8Bd4xVvkQPUWvmWHuJ46KGHWmc/pyDHD3BjrbdClOkPNhM6B7KI852sN2drsS5bKfSPA+LIFOEuXDLqWOtk1HE4Ff1jbSYt6KDoZxrUw+nXu3dvezUX9l8r+CV9b1WeE7GtykxqHJVBwEVsIaEoaww1SCikFaXGAU4Yaq4Qxb300kut8uQET5QzpBZyy2X0eBLx9nFABtFYFCbE1h2wAqGFNPNvNny+peV7o+HDhycmttwBx111RFuOPvrotX2DNOs7t8qIpgbSwRDg+huyOeoVMj5aNShdWxxShAFHJgqnBR988MH2pOA0hegI0bd6ZfLkyTYLJkkhdRK9CTnjXAOiylz9g/OPTzzSFFISOZgJ4hQ1yjlIqpU7WZkPjFs+FUHXxuuCQ1IC78aRF1HOan7z6h/jR/445Z9IbSvXOKWRgY5YB+c7TiuyvDgEM000NIobh3thB+Fo8i047EkTxgmGQ4yzRDigjEPdiLBuuOGGLb2CDDoCENg8rHfsLPTasmXL7AnerRRkkm900T/ugDlsLHQYQQau4Uqrd1vpR1mfFbEt68yp35VFIP6NrRsop/WRzoLCIxLx05/+1HoFr7vuOrt5QGyJpGI43XLLLWbQoEGWnB5yyCHW24kRheLGALzgggssYea/MSiJsjYjthh4KGpS/GpFbDk5lGsiMADZGOgfF6jjnVURAkKgnAjgNON+Rw6Nix+EQvSkSpEDiA5ZMUSA+cSDO2YxLomCklKJszHN4VZ8zsH9q6RG+xaMXqJCZOP4Gvh5EGXf8UXr59U/5plPciAinBVBhJ4DjtJ+453lmKvUFrIKpjjKOQOE63S4NxbHPM76VgsklMhoK86gWu9g/nHsk2GG/sI+IjuNQkYatguZbq0WdAYEdO+997Z2GJ+QcV5KmiwK9A7ZBPSPq8aI/vbr1y/Tk8pbHV9ZnhexLctMqZ8dBoF6xBYA2Bz4hpXDCSh4HInOEumIElsOd4LQkm5DwRsN4SSae/LJJ9vvc93vtIkShti61OFrr73Wpgii7PEY4t2ErLr0PncScvS6H/5OCo97J4e3kI7suwl1mInXQIVAoAiwztEFvkQq0OGt0y30L2MlO4bUwoEDB9rr1/hWlyguOjRp4So0IjachUBmDY5EsHTOAFKd0xi9P/rRj6x+z+IKnCyJclJcWnkuj/5xIjdzTFYTc8D84ATG8cC5FCrZI0DWGOn8OL/BGGf84YcfnuhFHEK1cOFCuxbvvffeTA6lJEUY2wQnP2ubNc78z549O/X1hXxTTAAhWviumPFCUtNkBZCCTBYdDjU+FcvyCq5E4JfwIRHbEk6auiwESJuBiDZLO8OowriKG1CrVq0yRICJTiQxrPiGhDRn3teMqGIk4I3lGyYVISAEyo8AjrJm6z7JKF1EtN6zRDji3881ajfr9ngX0SUO7OOsASJM3GVLFIc0Yr7DbKVghBPVrlf4ezMd3uh97APMDQ4HH5KbFVHOYz4Yf1b9c1jyLTdRdBy2ZDdxpgT/Tcoo0XCVbBDgpPMrr7zSRsVZ20RrWQ/YBqwtshiSfCJAO9RxTqX4t+6k/ra6jiCyOPD5Nh/CSco7Kb6kTe+4446pAOCzCtriIM2dd97ZOsZw7qM7CEBgj7XaTzqCQ43vgTloj0/RVBojIGIrCRECQkAICAEhIAQaIkDUhEwPjEocZRy4kubEYa6CIaWOyE38BGS+H03iaIt2NOv2XNuQNCKrOAFxDvKdbSiFFF0O9yMLh5RaUsRJeWyVeOcxnrzmg75mReT/9a9/2WtoiAJCcPm0hyvvINAq2SHAGudTBrBGTqOfLSC7fL6U9J5XUnM5+Iu7hvksKlrQSa3qDVef79Vp1xWy0txBTa0igWOEbADOHnAFpxiOFNYrn2ZBpFXyRUDENl981boQEAJCQAgIgVIjwGFKRDH4JhEjkMgLnx2QXpgmksunE5CwrLI6smqPb/g4Q6BeaTWinNekc8Iy3z0TbeSwPiJiOAUw+ltJpc1rvFnNh8MvbyJPRDAkx0VectOudrk6h0htvZLmNHDa4oomzvngICpOBm5F1mv1hX5yWBTnjeDYWL58uXXWcfBTmrMDkCM+YSClmVOQIfZ8fnDDDTdYYs/6TErk8zw0rV1yUNR7RGyLQl7vFQJCQAgIASFQAgQ4oI5vErkSg+/k+G8OSOFQEw7dabXwjT6GYxrjsda7smqPKC0pivVKq+Qnr1OlMfBJlcbId/PBt7t8H9hKFL3WeIlmuhPzWx2vwy2r+XDtZUXkW5VTPZ8OAQ5R4uwOMh3GjRtnv6UlRZfUXAgbDpU0ax+5wrF26623mt/+9rf2VGsOv/zGN76Rqj2i9Q888IBNj4aAEl2GgBJhbeWTiChK9O2HP/yhbYPrpHBA8XnW888/n/jb4LwOTUs3m+WrJWJbvjlTj4WAEBACQkAItA0BIhGcsv7973/ffj/2ne98xxptaa6XodMQM05LxygdMmSIbZszA9KWrNtL249a9fI6VZo0TlLCOYWV9EZSNTndN21hbkk152BCTt7n/t60V7VlPR9ZEfm02KheOgQgdzNnzrT3urrCt8w4ysgwSFNc6vD8+fNtGjmnF/Otbprrb4ig8v0rpyBzUjPEm0PE+NY2zanItMcBUqRe+5Y8Dk3z7VNZ6ovYlmWm1E8hIASEgBAQAgUhwCEoEFpOP4dIkZbsc0InkVHupOSuyyuuuMLLQAWSrNvLEuY8TpXm218MeoxxjHKcA63evenGSNSK7xavueYae+85bXKqfdrDbvKYj6yJfJbzq7ZqI+A+W+BbZr6nf/LJJ+2p4JC/NNkA6ApkHccLEVY+G/C5G5fIKA4dThxmDXBAEzoNwpym8A04hzuRgszBnL4l60PTfPtTlvoitmWZKfVTCAgBISAEhECBCLjU1eeeey5VRMN1HRLKtWBEXThwhfu5idyeccYZa9NgWxlm1u218u4kz2Z1qnT0XeDGN4ZE04kKjxkzpuH3wY36yVyQ7ovjwhVIA98KtpLanNf80m6WRD7JnOkZfwTWrFljrxBEjrp06WIb5JqfL37xi6kaZ51zLy6OF1J+Ics4dCZOnJgqFdl1ghsiHn/8cfutrc/p4hBaHDCU6MF4vt/mcysF/7iSJo07FeAlrSRiW9KJU7eFgBAQAkJACLQDAQgt354RpeWgIlJe+bYWIzNNgdDSHpEX7mgkLTnNNRju3Vm3l2ZMjepkfegNKeCkCXOy7D777GO/MeR7Z64PSnOY19NPP22j8Keccoo17vkG0t1ZzriIkrUyP3nMR5ZEPuv5VXuNEUB/QBy32247w72uPoUsAtYT0WDSnDnUDnlzxLmVtiHen/vc52zmw0477WSvJOJKHSK3aUq9b/TTRKfd+7mvmpOWowWC70PA04ytTHVEbMs0W+qrEBACQkAICIE2I4BhxYFRU6ZMsd91chgK36IRiUl7MiknLZOKTPSFFFjufSRymOZbOeDIur0sIc760BvuXYXcYvRyMA9EdNiwYfakaQz0VgttkdpZr0yePDnRfaPR+lnOR9ZEvlV89HwYCEBgORGZf/bff38breUO57QFQvvtb3/bEuP111/fZj+Qlsxp71mkEqftl6tHv+gferEVx5Lve8teX8S27DOo/gsBISAEhIAQyBEBDoHhuzMOfuGKGYgV/00UrWfPni2/+eWXX7anmkJqMS4pRCC559GdyNtKo1m318q7kz6b5aE3tLXffvtZskkKN3cKQ3CfeOIJa6AXXbKej6yJfNH46P3pEOBAJfRDVqm4ZJzwfT9ZKBQiuAMGDLBOPB/CnG5076x155132pPPXf+yarfq7YjYVn2GNT4hIASEgBAQAh4IcAUMJ31yCAwE9wc/+IG995HDTdIUUgkvuOACM3ToUHsfZdoTUt27s24vzZga1cn60Bvedf/999tI7aGHHmqNc65TwSgPoWQ9H6ET+RAwVx+SI8AhVugwUof55pfPIj7ykY/YQ5+WLFliryRKk9KfvAfJniRToX///ubDH/7wOmncl1xySerMlmRvLvdTIrblnj/1XggIASEgBIRAWxEgZc/nuzE6m/U3k1m3lyWgeR16k2Ufs24r6/kImchnjZ3ayxcBvtMlvbdeOeKIIzKLCvuMZPny5fZb4nghuyWrqLVP/0KtK2Ib6syoX0JACAgBISAEKohA1t9MZt1eHpBneehNHv3Lss0yzEeW41VbQiAvBDgNnE9BHnnkEXuIG5kZnTp1yut1lWhXxLYS06hBCAEhIASEgBAoBwJZfzOZdXtZo5j1oTdZ9y/r9kKfj6zHq/aEQB4I8E0xn2lw8jmnP3PFEYdI8W2w7+nSefQ3lDZFbEOZCfVDCAgBISAEhEAHQCDrbyazbi/rKcBAJX2bg5345/rrr7enuoZwQE3WY6W90OcjjzGrTSGQNQJz5syxZxrgKKLwTTDXcUFsd9hhh6xfV5n2RGwrM5UaiBAQAkJACAiBciCQ9TeTWbeXJYqQWlIIuTbphBNOMH369DF33XWXeeihhyqbVhjyfGQ5t2pLCOSFwD333GOOO+44exI9kVr0CIdc8Xu3bt3yem3p2xWxLf0UagBCQAgIASEgBIRAqAj8+Mc/tqcYjxs3znz0ox81Tz31lBk1apS9d5YUQxUhIASEgEMAXXHsscfa/+WubwqnI+MI69Kli73Wi3+r1EZAxFaSIQSEgBAQAkJACAiBnBDAUP3a175mv5fjHs7TTz/d7LHHHoZDlojEqAgBISAEHAJ8uoDzq14hDVnf2NaXFxFbrSUhIASEgBAQAkJACOSIwIwZM8zdd99tzjrrLHP++eebD33oQ+aYY47J8Y1qWggIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYNVrRPwAAIABJREFUVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtoU5X7NmzTpPd+rUaZ3/f/31182rr75qNtpoI7Phhhu20HLtR9966y2zcuVKs8EGG5hu3bp5txdvIO/2k3T4jTfeMC+88IJ597vfbdZff/0kVSrxTB7jdvIZl8s8AStShooYb55Y5t32s88+a/XJ9ttvn/ercm9/2bJl5uWXX67EWHIHSy8QAkJACAgBIdBBEBCxTTjRp5xyivmf//mfdZ7u06ePOeGEE8y4cePMeuutZ7773e+a448/3kyaNMl885vfbNjyP/7xD3PdddeZ97///ebTn/50zWfvv/9+s8suu5hPfOIT5ve//71t99vf/ra58sorzec///mEPf/PY7T3pz/9yQwYMMD069fPxNtvuUHPCpdffrn50pe+ZFt55JFHgjJSr7jiCgNBPPLIIz1H+c7qeY175MiR5pprrjF/+MMfzMc//vHM+12rwSJlqIjxZg0qjrCuXbuaLbbYwkA8Wy3xNV2v/osvvmg++MEPmn322cfKSLygg+bNm2fuueces9tuuzXsxi233GIGDRpkvvCFLxhkOW1BX86YMcP85Cc/Mf/1X//VsJkpU6aYa6+91uywww6GtfnjH//YHH744ebWW281++67b9ouqJ4QEAJCQAgIASFQIQREbBNOpiO2/fv3t6QQQ/Gmm26yEZAxY8aYq666yhpZP/3pT82BBx5o/2lU7rrrLkNb//3f/21+/vOf13x06dKl5qyzzrLG3IQJE8y3vvUtc+aZZ1rDLg3hwjj86le/aqZNm2YJeLz9hFBk9thOO+1kFi9ebMn6iSeeaDbbbLPM2vZtyEU941F633apn9e4HdHDCYIzpB2lSBkqYrxZY7pq1SqbjZGW2MbXdL3+4YCbPn16XafHfvvtZ/VXEmJ78803m0996lNWB6GLWi0Q1Lvvvtucd955turChQvNRz7ykbrNOOcJD0CA//znP5vXXnvNbL755vafv/zlL6ZLly6tdkPPCwEhIASEgBAQAhVDQMQ24YQ6YutIIdWefvpp8773vc+2gLG1ZMkSM3XqVBvJwOgjKvu9733PRhpWr15toyUTJ060qcWHHXaYuf32280mm2xixo4da4466ihz7LHH2ujt8uXLzR//+Ecze/Zs29auu+5qLrnkkrXEFlL66KOPmgceeMDsvffeNpK85ZZb2ugx/bjssstM3759raEKaYQ877jjjmb8+PHm//7v/2zk5tRTT7X9ibZPeiyG8g9/+ENLOHfffXfz5S9/2fYNoveNb3zDLFiwwAwfPtzMmTPH9vOzn/2sjU6Tfh0vDz30kAE3iBaGJ++76KKLbJSa8TM+Ck6Aiy++2Gy77bbrNEFE+8ILL7TR3E9+8pPm4IMPNoceeqh9plHbGOeM9WMf+9ha45n3QcJ+8YtfmH/+85/m6KOPtpHrV155xfz617+2kXEi77wn3rdZs2aZJ554wuJK/V69etkoERH0rMf9la98xfz1r381X//6160s4EABn86dO9t+YsQzDxCDD3zgAzYy+7Wvfc0SoyjRgyw1wuA973mPlQ8cJ8w1zpPjjjtuLb7IVpLxIvNRGfrZz35mMxeGDBli7rzzTttPSNNpp532jvllHp9//nk7VpxEODYGDx5sjjnmGCsjzeSxlfGyVnGeQKB4J1FHIpOMH2cRcv3hD3/YRhC32mqrlmX9xhtvtFFESB/tIquM41//+pcdP3LCGCmTJ082v/zlL638IIOO2II/sta9e3freHJZGfXm4rbbbnvHmuY9l156qXW20ZeePXvasfBv1j3rhrWM7gF35g/M7733XktqHbFttL4csR06dKh573vfa7GkbYjqnnvu2VSjstZIJUZ/NCO2yAAY8ZkC8uSILfVOP/10+06cioxXRQgIASEgBISAEOjYCIjYJpz/WsSWqi76Rnow0dtoKjJEFWJLyhwGLtFciCCGP4TxV7/6lSUkkBlIDETMFQgzf4+mIruILc9g4D3++OP2nRBN0gshuaShQiYgpZDPESNG2D4dcsghlmRiuBIpJnL7//7f/6uZ6kz7GLu//e1vbXcw9ukjxjpkk0L7tEWBzHzuc59bB8nnnnvOkKpN/+gr38M99thjdrz0G6MaEk354he/aEn7Nttss7YNl+7ID5DN3/3ud/ZvN9xwgzV0G7W9aNEiM3DgQIs1BIKy3Xbb2fdDcEj5pP8UHAtEffgbxvnDDz9sCS4ODAqkDSKCwY5T4OSTT7ZOB4gBTgzIUrT4jpt38Q6X5kk0H2yZY1I2IV0QApwVf/vb36yx7yJnUaIHIWiEAU4XHCYUCArOB+YKGeV9yHWS8cZTkcEN/CjMEe+hXZwuOGeihWg4kWWwRBZfeuklOybmBhl2qff15LGV8TK/LorN2uI9riCTjmQhizNnzmxJ1p955hk7L4wX7Jgn2icrY+edd17r/HDRfwgsa4o1C/bu+3lkEQeDW1c4qcCl3lywruJr+sknn7SODlcYD7JywAEHWBLI35566inrFKGABc4T5ojCu1mHjdbXHXfcYSO2rj6p1MgK/cdphOMuSXHpz40itjjtGCOfULAGo8TWyR4OBPSsihAQAkJACAgBIdCxERCxTTj/9YitI3s/+MEPDGmFUWLryBS/EXXDeOZQKepgtEZTkTEWHbHF4MUYJZJWi9geccQRNqoKaeAdGKVEHj/zmc/UJbYQjnjaYpSUEP1xBqkjxpBI+o3xS7TTjfU73/mOjTyThggBg7j/6Ec/WgdJR9AcuXzzzTetYYrhTGSLqOimm25q+w7pjxvDw4YNs5Hu//3f/7URY8gz76A9DHHIX722IRlJiC2EhugokcKtt97azg8GOuQimoocjcwTQca4BnsIcfz7aN9x//3vf7d9gSRwqBbfIDPXzAXRRr5pJEqGrIDj2Wefbf+biGMrRA+SQ2oq84iTBScGzgvauvrqq9dmIjQbbz1ii9wwZxAtHAa1Um1dXeSLqDxROeSC7AbmukePHlam6sljK+N1xBbSDEn6zW9+Y8keBI4oOM4QovBgDNFqRdaRU+SVtogiIhekyjJuMiVcVL8ZsXWyRwYEkWTmFqeFywqpNRfxNX3++edb8gohJuK+11572YwK2sNpAWbMPf2EhPMb74U8O2KLLmi0voj+Qmwddu9617tsNgYOilbS4JsRW6LJrEX0DesAuY8SW/QAa9c5pBKqcj0mBISAEBACQkAIVBQBEduEE1uP2Dry+uCDD9qUvCixJUUuesgTZAWDEsMz/o2tI7buoCi6FScNLmILuYFQUj760Y/aCCLEhnTPaMQWgjJq1Cjbp2bElrRgFzHlpFuInTutmPdgqBP9JWLrIiykX5Jyyu+8K1ogSd///vdtlI5oHQUSdcEFF6w9XKsRsYXQM35HalppGwyTEFui0hAcCqSb6CckByM//o0tEW4XYeZ5yAbjI+LWSt8gGY3GTVsQLqL1zCX4UkifhfjxrTXkOVrSEFvkx0Xko205App0vPWILQSLdHeisKTWIvv8d7TMnTvXOieikXX3dyKezeQRhwpOIMhUswi1I7buXThYSD12MuDGgbMJ4uuIbRJZx6lEtoSLtDIG5oR12rt373cQW5fJEY3YRok/Kcv0C/LIfzeai3rENnqA3UEHHWSuv/56O9+QSUgifXNOI/rrMk8YA783WruQZfoWdWiR7gwRP/fcc60eSlKaEVv3SQAOGE6cBwdw4v/JYMBRwKF9FJwhWZxEn6TfekYICAEhIASEgBAIEwER24TzUovYEu3gm0+MdqIHpBc6YotRTwSDiCTRSlJpMcgofL/G77UitlEjvx6xJdWTb1Ix5rkmh7YgDURjIJu8iwgKRuYZZ5yRiNhyIqqLLEEC+N7VkW1HSpyxT3QLItiI2GLkYuy61E7GTUQZ49oZ1I0IHvWIgvNd6f7772/JC2QPAsH3gI3a5nAvCD8pzESf3Mmz9CGaigwpJRJKaURs+R6QyC6GNGmc1OFbW4xsIqzRa4p8x01fiHRiuBM9xGmBQ4CoFeQEkkLUinRX3g3BqEVs+Sa3EQbIBZFghyNRc1K0kQEixknHW4/Y8i01Ub9GxBY5wzHkUo9xqOC8gcTgAHKHidWTx2jEttl40xLbJLKOU4uMBsgVUUa+k4UgQvzIanDZCI58OUIXT0VGzoiGkuJ+0kkn2e/jiaY3mgscR9ED4VzENpom79aSc4jhWOM55od5iuoR+s06a7S+0A3IXTRS6sgzzj2cSklKM2LrHDzxtogUc8aAy27g73kc8pZkDHpGCAgBISAEhIAQCAcBEduEc+GILcYc6XF8J0qqMIUUQf4eve6Hb0ghWDzD4TSkJEJ6SXfFKIMIY9BjpFGfw58gKEmILe8kRZF2iOpB/CCAkGnaok2iKqSqUlzEFmJN9JRoEBEdDnSKpjrTJt8Kk8YIiSUdlMiZI1atEFu+VWXMFAxryKU7LAqDlAOYGhFblwYN3hyuRVol5ITxkurZqG3IGYSfArnAwUDdNMQWzMAXAgaRhXhBVCAc4EwaZ5TY+o6bPoIVBMd99wh5RJacIwHCCzmB7EJ8XfpslOjxbWcjDHBaQJ4ZEySStnE6QJIgVURLk4zXh9gyVheZRy5J5Yd8QYwgSM3ksZXx5klso44Ivp8l8g/h5IAyDnJyY4QM4kBw34vHiS2yztrE4cDcM7c4GRrNBd+WRtc0bSMbUWKLTkA3OCLLGsJBRKGPzCHvokBs+Wa20fqCaLtvbPk3sup0DeSdw6UgpW4e66nYWsTWOZgYB44/8KLw7Tr376Kb6CvONp6Jpo8nVOV6TAgIASEgBISAEKgoAiK2CSe21j22EFFSjTEOKY7YQmSJeJBGiNEJ+XHFkWCiUhhuGJVE4DCAibDVIrYu8kgEB0IaPUwJ8kG0lTYw3jE0HYnjO10ii47YYpBibEKuITB8q4vR7don9ZjfiAy6AjHEeOaAG0dsSdWk76TxQvpqpSJTn28PIaWOoGGM0h9OiaU0IrYYyBBiR4Z5Pprm2Kzt6EFbzBPfekLSIdVExnAqNIrYuutRnFHN/BDldCU+lqgYNetbs1Rk2nLvd9FMfiOyxvw6YgTxgwTRF05tJv07eo9tIwxwLLiIvus78kKUnEhp/G/1xuuIrZMhd3gUh/4gY8w9462Visx7OZkZuXIyArnDSYMjoZk8xu+xbTRe1gQnSLv1RdQfbF0qMicPs4bi39gmkXXmhdRuPj1wBQLG+oeYEgGF6FFYr/yNOeRwN2QQIgk+pAM7gsmJ1mBIqm2juYivaUgmjqgosXXOlmjqvYvs0iccNJySDSF3pyI3kmF3sBv4sabcwVusVTJY3HidTNRTsbWILenh9MFlnbi6pOLHv7ElXRqZr3WIW0K1rseEgBAQAkJACAiBCiEgYtuGySRVEeOXk0gx8l0hfQ7jnQhg9PckXSKSAUkjmuO+M3P1OKUVclLrbkf6sWLFCmtM80+tghFJyi5XrvjeLcv7iCwT1SSFMRrdTDJOIjWME6LjTo919Zq1TeSTyDjGvvtmNsk73TOk0fIODjGiPm2RisxhOXw72eibvmZ9a6Uf8WchE8hLEplphgHfh5J9ANGF3ERLK+P1GQ+yDPEET9ZIfK5akcdm4/XpZ7O6rGXGAQGLr0s+RyDVG2Lb6NRgnC6sy/jcNpqLJGvanZgOCSXjgUKbHIIGsY3rEP6eRIZdej7yw7pwhc8N+D651XtukQW+XyfLgghto+Lu3nUZIM3mR38XAkJACAgBISAEqo2AiG2151ejEwJCQAjYaCxpvmR9ENnOsxB1Js2d1Hai060UvtXlUw+i1Y0KkXSu/YoektXKe/SsEBACQkAICAEhUD0ERGyrN6cakRAQAkLgHQjwSQGHXJHanGfhzmqi0u4wulbeRYYGEe9mhVPYOdiLw9rqZZ40a0N/FwJCQAgIASEgBKqFgIhtteZToxECQkAICAEhIASEgBAQAkJACHQ4BERsO9yUa8BCQAgIASEgBNqDQKOrmNKcfdCeXqd7ixtr1caVBI2OPPYk+GT5THxNdUR5S4JnR5ZJxt5R5ULENsHq4OAXSqsHHyVoWo8EgACH+nCgTq0DdNrdPXcQUJJ0zHb3raj3gUmjA5foF4cOcZetSnMEuC+Yf5ph2rwlPSEEGiMQPV2+1pN5HPxFKjz3uPNNOen3rnDyOd+X//nPfzZ9+/a1p7YPGjQo0ylMcuJ9pi80xn5nzrfzXNXHLQ1FFE5n54q5Zld8FdE3n3dy6r/7np8r90Io3LjBJxjRwqn6YM+tBBxc2KxwaOB1111nDwjldHoKt1xwMCW3I8QPkmzWXqt/57pBriuMFg4q5YrJrEpRMsntCxx+yJ32HHpaROEWj2OOOcacc8459jrHqpSkMtohiC0LHeXPlRxJC9fScP0HgslmyCnBM2fOXKc6925yUu8jjzzS9ATPpO+NP7dgwQLzuc99zp6omqSg2PjmjKtyoqXe7/E2OVWWg1/Y9FGUFO6lnDVrluGKomHDhlnFR+GKlvPOO89ez8G1QfzOdSm+BSIDSXnooYesAZJn4SqU0aNH280LD9fkyZPtVSOceszVJSgpvF5sBIwVo4gTZkeNGlWzb7/85S8Nd/BGC3fwQiRuu+02u3FwvY07bZprerj2ZcKECbaKuwaKK1M4HTbUEpVLTqcFw7jMZdH3v/zlL/YO37iH+rXXXrMyyTxQWIecSMzJ22Us9eQG2ePaIIxWxvyZz3zGXq+FAX3aaadZuYyXKVOm2OuD6hWuyaFN7p5tpr9q4ZxW33HlFusM/eJbWtWLvu9T/XQIcB0Z10NRMKTZMz7xiU/Y088p3PfMqfNZFE7f5/ow1gqGpbvfnbY5sZx38n72dQgLBX3O/2dViiC27pozTiDnCrgiitPTVSO26FJsIewnrk0MoThiy5WL7I04dTlvgGsluQ4Q3d6s3HXXXfbKRmy2n//85/ZxDu7jqkd35VuzNnz+7q4FZO25MxIg03HbyecdRcmkI7Zp90mfMbu67io8HCDRayqzaLvINpLKaIchtng0WzG8IWpf//rXrRFWj9hCVjCw9thjj9wOMPnDH/5g77rk6plGBWXEKaR4Z7jH0nnD6v1er62TTjrJ3gv5s5/9zBJqd5oqSh3Syr2RbKD8DQMbYkgdjAoW0T//+U9vQ8URW65J2nHHHXNdR5CyY4891o7na1/7mh0bGBLNYsxgikeT+zXpFwQUTNnwuIbm3e9+9zr9Q8aI8O+1115rf+eeY+Tvvvvus3enYniBG+/ged6z2267rX0ewgH+kJ1QS1QuwRAnwJe+9KXMu1uP2CJnbIQ4nHASlJ3Y1pMbd9/uuHHjrJMFOeL+3m9+85v2DmOu7HHlxhtvtFc3Yaw3OrjJEVtkrJn+iuK85ZZbNn2+kQBgNHE/L7rCtyTVi77vUf3sEOCedk7M5p5qSCcFwom+xaBFlnfddVcbZYD8omeRl3333ddwqBjeehzNHH7GnhsvP/3pT82JJ55ocM5CYKPEFqf0UUcdtfZO9+nTp9u7wiEt0RO4uf6MO6fR4dwJ7mSePtI3iPhPfvITe2c9hit2AmSOe+7dtX28G7LBvdbsJ7wHO4IxHHLIITaihlMO+4HICn3D4ckewx7KHkFhPbMX4Fhmf8AhShQmXhyxZR9hbRGZxvnKuNADGIOUuXPnWl2J4xb9wR4VjZpBjtjfGDNjpzBODmojKICO53mIEHqBU8nRRYwtTiIYd6OxgxG6zO1xzPdFF11U8+A49l3Gwj3ZROPZjw8//PC1eyxOYHAjQkfmFWTtzDPPtDYZ2KMPcS7jJMfxwXt5BrsFkogOZAw4mLkOjbvOwQdHNPIHYeR+9VNPPbUlGzK7lbNuS47YRsm2i05G74uvhwvO0MMOO8w6f3h+7Nix9r51MGRePvaxj1m8kUfsHPaZxYsXW7n88pe/bNcRDteTTz7ZrlGCHawJ6oIp64B6zBW2aK2AEuuUtcR6a3T4X5Yy2UwWGskka5V9E3lFnrijHRxqZXw4YosMsueh17AvkTvGA9Hkij1wpWBvs6awQ52jnt+5Mo/1j/0PjhTmijV+8cUX2ysacW7//ve/t5izntEBzFuU2CK32GjoAuf0IIDDWAj4oV9pk7bmz59v1z+6BjmrldWF3Qs3oi30yeDBg61eIvrfSJ+jE5v1Y8iQIfbaQPQXdjLyibMO2/KCCy54h4yig2qVDkVsWcwAxuJkYlevXm0nM26QO8VBxAzljBF19913W+OZTQHBYdPaeOONrYcMhcuz559/vvnBD35giOTyDgQ4nuPOpgM5xGOMwJ511lk22guJQ7B5D2QOxYCCSWrAsVHzLP1D+N2GVe/3WsLARorAcs8tQsRixOAmBZtFRkGZQdAgfERV8fyBB1hyby4LGcPAFQwW2mJDYZGwSYEZi5zUJQwGFhhXfDgBjhJbvP0sFvpFYTwoQxY60U02IDYkFhibslMMRNxRnODJIqVe/G5QFBQbKps0fdtpp51sv1xECYXNHNN/7sKFRG211VbW6CHKQPtxDzlKjQ0CxRctbKoYFvybFDkMGvBDZpClaHFYspl86EMfesdUETlG4YETMnThhRfaOTruuOOs7IDnEUccYbGoh0+0UeQfwwmiwztxWKBs6QdKj/YYNxsVRhwbJtF053CpR2xRgLXml3YbrUP6wRgZE+8Do3jEln4h63h8kTmiMcwdBhnts4bd3BAlxPDEmYASZm1BitPiVW9cyAXGO+sbIw3cUMxs4vQVI5ixRJ0Ybh7qyQ19xcBCdijgggGP7EYL99/SPhtT3BnEpoyeQU+BE0YMmy3GSDP9Bf4OZwgJxi3tkEKK8cOawWjkfl6MYJxfyCVrgDRQUurBA1nBCCCqjl5hjl3BAEDnoJMpGGnoMDZOnofIoNuIMLDuWbNRvch76+kIcKmHfxJ9nZdx2hHbjRNb1jQpw8wl8sMegLFNQb5ZZy5riP0VmcX4ZE1BNjDAahXaYD1FiS1ygx5Hb2IHQLDpD3IZjxKxf6HjSIuEQDkjfMaMGbY/rC/6AAFCRiFDLg04GrFFbiGd6FLaYM2w9iBJ6CLaQwfRFv1l/6VAmLE10LkYwKwX1irk1+230XE7Ystv6EOcW+DEPoY+dLqS/+Y33sm7sVVYZ67gEGCfoy6GLu9mvwJrl5LLXsHv2CZu3yLlkrpED13EljXdaOzsMezbYIFzmPngv9l/4p98odcxwJER9BfOdsozzzxjn2f/ofBu/hYdu7u/GzsAYsY7eTcEAGKIbUAmAYW/Q9Qo6Cf6xb7Bb+genCBR4lHUGnb2KXoQBw/6Fr3PHLmgBvZWPVzYU7BPkXEwRT8z7+CMLB944IEWb/YcfqOwb2LzUZAd6rh7xPkNmUBXuxL9/1opuRAY5B1cmUfWGUQxnnGVpUw2k4VGMsneh4MIzNlnsSfBjnWCjRgtjtjyG+Nz8so+xTidHcp6Rh/grAO7eIaiCyqh+5566imbtQmZRV+gG3EYoM9Yi8gqdhB94rkosUWGnaPb2VFOB6ATmAt0Gv3BbuVd9Ic5Zq6jhfpggI7lKj8CbtRj7aCbGulzdEmjfqCbonwpuh6xvVmncRmtZUvR3w5FbDHK2DBQoCg1JvXyyy+3Sjka4WDTYbIhB5BNnkVRY6QDJF4pFAOKjvZQ/JAjBB/wSS8lSoenFRLjCgY3ipmNE6MbQuIMQsgtGwPvQIHgkUEh0JckEVv3DhYnSiX+/UK93109FBrvp88QOjZlNlQWqSOcPMuCYcNi8bhvHyEOeHUxTONRTJQWGzReURYgCpjFw4KA+LNp0FcwY9EjwGAC6YPs49XC0+3SwImqsnGhJPhvNioMVJwJzBckAMKM55b5hYBCxvkb8xUtKAXGQ98obK4sVhQPpBmFg+OD75bYNFwUFgUE4ayVxkZdnsO4YJ6RAxY0Y8WpgaLDScB4kUdwZu7jhTpE6VBA0UIbEATaYGwoA8aAB9ptNLwTZYZs18InTrqdIsZQAWvkGxyRdRwGLsUX8sE7mSMUejNiS/9rza+LsNZah8gVaeDUxWGCswLZjBNbDEo2WzydGG70i/YgfvSdjYf1Rp8xgPHWItcYt8geXs60eNUbl5NbNh7w5zmiC4wXrylOGmQdEuZS0d3c1pMbSCljx8uODLJG0D3oo2hB97A5Mb54gQgjExgryDXrBnlxqciN9Bf4xXHmedKKIcW0g45kw+EbdXDFacO8YYwzVvoMWUU3YuRj0LioFH3FCUUky3nvIeHz5s2zbbEOnHeccVCX6BBr1skf46mlI5ABPLq18EevNtPX7wBSP3ghECe2Lh2S9cIaZw9mnbAvYuSiHyFb59hnAAAgAElEQVQr7GfoPQqygMGHbqv3aVEtYouDFiLnMpHQ3URg0cfsX9HCM+hV/mFfQ3/QP9Yguo/9GYcO+xokA4LAnsgaaIXYOtKIDqMvrGn2O+f0RV8xdmwC9jM+C0DHYVhHiyO27HHUp5/sXeyTrCn2QQgsn4uw5t14amVXuW+iMWhZ3zgbWKsQQwxn9mSMV/Z+SB5GLTYDxCgpsUU/Y9BTaG/DDTdc6/RCRzpnRlQ3Mhbn6AUf9hVwYf+kX855gB4AK4qzKVxgohGxRS9DCglkIFfoLBwbIaci11qM7ptKl7JZDxdkpFEqMg4SF61zTgEcQJBeiBbXxrn9Ewcuv9Me8+JS4p1DxWW9RfvryBx7C7YSewqyzj4RzzbKSiYbEVvsvEYyyRjhAfTXBcLYl7Fp0QPR4uwphwPrg7XknD6sRdYpNhwYscZwCC9cuLCmHegcS8wDdZ3zAhuYYAN2OvoMfUHBFsbRBjHFwdyM2FIHfgBhpR42PHNJwVaKftaEDYL+QQZwwOGEwlGIrcV70A319Dn4JSW26HDsaGxv7FLnhFMqckRESP1BGTpiizcLgUJZshHVSnmNpyKjcB0BwpBiYROpcMSWKCbCwXMsIJQwChYPiysYZRBmZ8CxoBFuhAHvclSI6BcGIgKUN7FlgeJ9xvBggbPhOmLLhoWB6KKYbOIQtijR4Bk2fhY5xmv84AGMezYVNg/IJUoVYWUeSF9gflyqi8OvGbFlkbCoaGfMmDEWYhYBRiwLDAcCz0DK2cBxXsS/14VsYqi4lBA3TzgU2NggdMhGNN0YJcVCZuHHPf2O+JGWgRLD+EKps/lDvOgrhBBiAgako+HAAAe8ftHvkzH0wTV6+IkzBCALGOy0y7wgHxg3bDTgiUKFENXDh0hzXBEzR0R3KThjIEK07UNs680v42Td1FqHKHc2YxeRdCmDcWJbKxUZMgTpJ7JDv5k70heJLOKFxBsIoYEA4nBhHtPg1Uxu3YbGRoRHnXUOWWcMGJUYjWxGrjSSG7fZoieQGwqEMRo5cNEnZKrWoWOsC3SRS7lEtihRYltPf2F0xlO+o8QWHYrsgjP6Dx2G/KAjnDzheMFhxLzUSkV2ZxW4FFVIA3oCMgKZRWcyd+gW1iVrGXLTjNhioNbDn/XRTF/XMhz1W3oE4sSWuWVPZu9xKaluf8HIwhGDHnUkgzdDZnBe8TcnX/Ee1SK2yBMkBVlkHTljE0MV2Y2WaJQIfUS/XfQT3YvecNFVV4++0KdGxJa9hv0ccopuqncYJeNF72NHuAgi72F/ZU+J72OO2EbJvsMam4X15L5jRlegf5F9SHu8uIOSsEdYX0Q2XYQOnUw91n+0oHfRa42IbXTsGM/0r1aJfyeMke10Wq3TtR1Bin4XikOU/4dAMy9RYsuY0Z3xiC3zDC7ORnP4hExs0eeMg0wh+u8itOw3/Df2Sz1c0NmNiC37hTuECl2J/kX2nS2EkwUZYS90xNdFvx0pcRHQ6KcHURsLMkQQAicJ7bKX1Pq+NyuZjBPbqCywphvJJE5+bCTsXFdYp+iTeCq1I7YuAuv2N+qRjksGFEQ3usacXoqvCeYYexaHNXOMExhyyVpj/yZoE+0T9eEXOGUaEVuc0egYnF7Ii0t1jr8//p0wUXz0dVRnuzrN9Dl6Ik5so/2IRmyRaRzl8BF4g8NHxDYyQ3FiG50sFixGXdwLGie2RCgcAYL04W2OGoZ4mzDEXF44nhU24KjQQ1SJamJcRwu/QzbwVrnC4sADg5LOm9hCsFgEeKohlBjCjIXFzmE1LCz+TiECiKChzKIFMgh5xePu0obd38GNKAy4Q/T5fxY1C5wULRYqGz5ErRmxxUBBqUJKndEf7YfbkJxC4G/gxwaFZyxawBcjAS9ntK/MHWQ5erAJype+sskz/0Sk4t8fsPE6wkV7biOodagHxjpRaBQTnmXqYeS51B/GSfSSuYkWHCqMHZLsPGm04YgtmzbRDpf2FldUtQwaZA0vpEvdZc7xwIJBlNg6b3jSiG29+XXEttY6JIWXd+KUoPBNCs8nIbauPZQic8O6BmPIcbwQAWI+0+DVTG5dZMGlvcXfzYYS/VYuqdywQSKryF/02yTWKZjhwa1VMLbxeDqPLhhzKmUS/YXxUY/Y8l53qB3tYXgzFt6HkR0/JKrRN7asOTY95B7D32V+sN4gDGzeLr2tGbF1OoLoHvJeC3/WSDN9XRNM/ZgagTixJSKPU9dFgGiY7Bscx0QX0UkQWzIh0DmsaWfY4FSu901/LWKLs4xMFAwl1g97EDKHA4/9N15clAjdAxnEick+wl7I3oKuJBqCfkFn1yK27Dnsh0Ri3becEHaXiuwcwrSNgY9hj/OH3zGA0fWsP/ZW9gGM/ijJd312xJYMERylUaLgnOWsVT4hiI+n1mS6SLJLBXQOM2wi9mp0M/0AD7CuRWyJutcbO0SHLCX2L+wIvqljb2GsvDvqnEOf4HzENnCZLuynkAbmAMMYfewc3O4zHsaFHmZvhKzyDLLG3LN/xokt+wwOuTIR2+g3ts5x4PZMiEojXNg/GhFbHJGOhLiMLafj3Xe8LmLbjNiCKTaFK8wjfWeemT8KNjpzXO8wtyxk0qU/15IFHK6NZNJlNdFXnKoQLfakeDo/f3fE9tprr7WZSM7Bzf6Io4n1ie1KfZeqXM8p7ew4d+Cdy56IZibgwGG+0BuUOLFFnzpblfWBsxqSzrqF2LKfku2BrmU8FOSJtceaiN42gSzgTHL9wOmB/iETDLLOP/X0OWS7UT+ixNbZeyK2DbbbOLGNnp6alNhGT0WuRWxRzggM/+ANRnGy8WFAuYIAIjxsWkwwQovws2EQ4WDB48VlUrt37249yRjpeRNbokFsiK6wIWBMYCCS8knUA4ODwtghEGwO9ItF674x4CAJvrONR0AdwcPYRYGwKBknUSy8fGz8GOaMGc89nrVoxBbjmc2MwvMoBTxYvBcPkvNUYgjQLt5p3sm8o4xZeO7AjqiYQCRxPNAvCsYSGyGePHe4iXsew4AUSBRBvZOanYfUEQj3LS4Ewh3gQXvMKwYBhggGDbJFf1EYRO/wVOFcIOqMQyBaMM4wtPCO8XcMdzzyjti6Q5xQbvXwiac+o4ghWi7yHSe2jjC6g4ySEFvGXm9+HbGttQ6Zf97jIjgYdPQrCbF17UWJLc4aouZsZhTWHvPIhsIct4pXo3FF5ZaosEuX5jtP54RgbTFvLl2OPjWSG/qNvCOXFHdIiIsCuw3OeclrqUHml00DIk/BmKdelNjW019ElusRW4gBa44SJbbgQD33PlItMU6Jktc7PIo1webKOJFv6pDdgKziLHSRInRlLWJbS0fgVSYiVwt/nATN9HWDLUV/SoFAnNjioMQgQ/5Zi+5sCZqG/GBYu7RUiC5rF2cRxX0DWqsbtYitM8hYhzhKMEwxVuNGt2vPOdT4f/dNG3sSRiJ7IfqSdYXDF0KKMxddHY3YItM4CKmPnnHnVDhi68gzBi/rEycOfSIzAUOR39CVfI6CMY2jtRYRj35jC9kDG6KU0W+MHWFz42H9s+ZrFRxf7pR+F6nmORcJpZ+kQEJcKehX0jGjEVuXtlpr7OhADHX+TX/Bw11J4s6xiPbLpaczHgxt5o8C7uh39BDvgSRBHJh/9Dt6hPmCZOMUI7URnUdJSmxdxhB6hPfWO6wmxXJIXcV9YwtuOOshSuyZECXnBGKcjXCBQEJOwAV8IGD8Q0QQHY2dgbMG3csaxe6CmEA+XSpsUmJbKxXZkT/mHd2NDUZfcFjUurYvC5l0clRLFnB8NZJJglTIAg4d1jS2IsQQZxFrO1rc2JBJnKfIKLiBM44xiiNs/Hf0ZOpaQuEIOX9z2RMuk4F3MNfMm7O7WZs4elzEFlvdOaUgni5qTHvYs6wV920znIX9krEiH+id+DWYri30F/soc4eeRmc30ues30b9SEJs4zKKXVGrdMhvbJMQW5Q4mwhpS/FTkWsRWyaVzYM0QQga0QImisl3hc0KLxUbozPiMNJYJBiPCD4LgQUDSSSKR/qBI7b0GyKHAq+3KSX9xrZRWwgfSg3jlCgQi5BNyKW+ggf9RKggYCg6NlM8orVIIeN3AgkebNB4jlDCLAreg9JEETN2sHPEllQXPOQ4CyB/zAvjp18YSvQBjztOAjYflD5EnDaI2KHE6C8EPJ46TOSZ31yKOeQXAhs9UAPFgSKApOGEgES6Qv/xiKNU6BPzRUQa0omywpBhvNHoGh4uNgQMd9qGtGDIQBBwLri+MDaIb1xp4gBBCeHxxIPPONmIcA7ED3Gqhw9yHVfEtYgtY0KW2XwYB0SF+UpCbBvNLwZG/BRj52ACa5QkmGAoYdAiE3Fi69J3IangEW0vSmzZNJELvu1GgbPGkB3GwO/R05yT4JVUbjHSHenkncwl42D+6HNUjthI6skNMkdECILPpoF8k5rlvsdx6bnOIVJLyRM5YvNjbUImwBdjOkps6+kvNnIcRVGcXSpyPWLr3kffkX2cN9ThH9KDXfQt2lfmHR3ojFV0gktB43n+hgyiK2mT9ez0Ipt9LR2BIYoDoRb+6JNm+jq15amKNRFwxDZKJsmcwBEYTW9lLnGqOkdw9JASGo5+flLrRc7JEiV2POfudnR1cKIgG/EDHvk7+oY1TL+itwwQPUVvuINy0E8Yty4aEyW2yDRy7NKWWUv03RFbDFDsC+q74qK/6DDWSvRgQXDAWRbPVHKHK7EXOAceexP6xl1lFF1f7Bes0XolGv1zkWqexdnIfs8aJSqDfmZsvJ85jN5ji13TaOxkrYGHO1iHvZCx4oyKF7LlcAy7K5p4FrJA1AmcWOdRB7D7ltZleGDMu/liX2a/jhNbdA37A84I5MZlNuFIRF9CGuMnaBe1zOvdYwuhggAiJ81wcdcKgikyAtHFdkWeKewrZBdgp5Jp44pLk2e/dVG/ZhHbWsQWxxHrzx0Wx1xhE8UzJ917s5BJZKCRLDSSSbLq2O/c+qJfyDd7avyTAkdsowdusTYZn/skAL3n1ia/uys0a8lUNPMLm8J96gdhhYtQaB8bGH1F1iPBiOg9tu4TD55FNyAjjIW2Wbv8HX3j0pr5O3/j3/GCTY6jAz1AQZ9hPxCYaaTPebZZP5wudvae+/TEpSLHZTQaMIr2U8S2U6ea6Q8OUDwaGHXxiC2kAjLm7oFE2UKoIH/8N0ILCY1fB4Nh5ogFihQvC8KDsY2ypS4C476XgejgsYFAOaHAiIVw1CoQYpQEHqZoif/eqK0osWVDhKC7kwP5b4SLxezSuXgP/UYJsmHWOiLcLc5oZIk+gjN1ITt4hhgvBNHdY0sEGKMBXNlMITFsqODlTpbmbxSUA4qGuu77DhYx0WAivtEreHjenaxK+pc7cS6OKeMFOxeFjf6dPhC95btONydsLJBMt+gxpqJEkv5BYp3nDhnBO44BTl089JBf+gwZi5/6hmHj+kIdZAPvGiSejTd6n2wjfKLjqBexJVLgTrfkeWeYsRbYJJxc1rvHtt78QuRqEVs2V4wj5g5SRMHQQfZqfV8VvQidyF48YuvSmthA3Ym7yAPyi7ES73dSvJLIrYvqu+94HN5sRDiK4qWe3ODMYYN0BiBrIXrqNmNjQ250/x+RUmQU5xQFQkg0LKn+iuPMpuk2+loRWzZHjEN0pDsVGsOTjdcdSBb/HIN+uQiWcwQx53jH0VUUDHJIAGPBG+3kj++n6+mIeviz3pPo65pKVj9migDzjA5nj8M4cimQjtgS1SNFjiwFSB2R9rQFxxROWByi0UNRWmmP/tIGmRe1okvxtljDlHr39RJ9YY2yb8e/16Mueg2HOI7XePQk/i72a9ZZrWedY8ERkVbG7J6FELHemKdaDoFWxu7mnagP7dWyG1x7PIuuQTcQpYw/SxvMCUZ//DAf2gBf9lTsiVYLEVH2d+am0dU0rbbbjucb4QKmyJe7por+4JAAY+xLJ9vIJ3s+ayZ+6KHvGJBV3kngoN43583e0apMNpKFZjKJniJtGBlzqb+N+odOA8/oWTs8784BiR601Gyctf7O/IFfLZmPP4+zg30PG6jWWkPOWUOsEfRHo/WNnkEvoYvRg9Fn6+lz159m/WiGQy0ZjdfpEMS2GVD1/g7BYoEnXXBEQ5hsNrB6VxHwLpQNgh0XdpQnC6fWBkc9FjAeCrykSTaVRuNutS0UGzjExwWBY8PBa9NoY2qEMYsEJcGCwCiOKwyInjtdOT5uFiNedNJuIb7RgqeXcca/rY0uMJwKRD/xPmZV3KJnwcdP+MM4Y94b3TNKNAnCQnpRLUMGOWNDYDMADxQtDpRactoIn6TjdXel1nOmNGqHNdRsfmvVhziBUaN1RD0Uez2DMdouGKHUIcCNsE+KVyvjYmNzRnmjvtaTG+QfY5IsjSQbWC083aZF/XoGfSP9lRTn6LvRZWyi0ewS+sHG1AqpQL8g3zhDICb8EzewGumIevgn1ddJ14meyxaBKLF1n6Jk+4aO0Rr7I84sojm1ToHuGCholEIgDAQI8hDEwtYlVT4ehAqjl+XuhYhtieaPqA2pCPHvP9MMIcu20rw/lDqkHpGORvpGKAWSTfqb+3Y4lH6pH0JACAiBdiFABgXfrpJdQbReJR0CEFui3mQDceZHvTMi0rWuWkJACLSCANlofD7jMo+yjoK30peqPitiW9WZ1bgSI0BqKt8A+6S4JX5ZkweJZvEtU/zb2qzaVztCQAgIASEgBISAEBACQqCKCIjYVnFWNSYhIASEgBAQAkJACAgBISAEhEAHQkDEtgNNtoYqBISAEBACQkAICAEhIASEgBCoIgIitlWcVY1JCAgBISAEhIAQEAJCQAgIASHQgRAQse1Ak62hCgEhIASEgBAQAkJACAgBISAEqohA7sSW6x24iLzZyV9cXxK9yoLrGzhIhyseooWrG7hnqdl9blWcLI1JCAgBISAEhIBDQPurZEEICIFWEZDeaBUxPV8mBHIltpMnTzaXXnqpGTBggL18/fzzz6951PwNN9xgDjzwQAOZ5V5O7qybOnWqvYydBThr1iz7++jRo+1dqdxPOmHCBHuEvYoQEAJCQAgIgY6GgPbXjjbjGq8Q8EdAesMfQ7UQNgK5EdvXX3/dXp9CtJao69lnn22effZZM23atHUQeeKJJ8wZZ5xhZs+ebYntm2++aTp37mxWrFhhunfvbsaNG2d69eplie3KlSvNOeecY5YtW2Z/I3rbtWvXsBFW74SAEBACQkAIZIiA9tcMwVRTQqCDICC90UEmuoMPMzdiC64vvPCC6dGjh1m1apXZb7/9zIknnmhGjRq1FvLXXnvNDBkyxFx55ZVmm222scQWosvFxY8++qh9DiJ83333WWLL79Rfs2aNTUXmmT59+nTwKdTwhYAQEAJCoKMhoP21o824xisE/BGQ3vDHUC2EjUCuxJah33PPPWbs2LFm5513NpdffrnZaKON1iIC0d11113t3yGuENsHHnjADB8+3Dz88MP2uauuusrMnz/fpjKPGDHCDBs2zP7es2dPs2jRItO7d2+zYMECc/vtt6+D9Oabb24++clPho2+eicEhIAQEAJBIlAGp6n21yBFR50SAkEHXaQ3JKAOgTLsc63OVq7E9pZbbrHfxV5yySVm5MiR6/SNNOKNN97Y9O/f3/5+55132v+eN2+ePWjKfW87ZcoU+3fSkDfddFMzfvx4m65MJJh05XqHSPE978SJE1vFo23PP/bYY0ErPvXPTxSEn/DzQ8CvtuSv2vgxOu2vfnOs2kIgLwRC1r/SG3nNevnaDVlOfdDMjdiSLsw3sjfffLPZc8891/aRb24ffPBBs8cee5glS5as/f2DH/ygeeihhwz/Joo7Y8YM069fPzN48GAzadIks3r1ajN9+nRz0003mTlz5hg+gF+4cGHdsYvY+oiFMaELvPqn+fVDwK+25E/4+SHgV1v7qx9+qi0E8kQg1P1BeiPPWS9f26HKqS+SuRFbSOsOO+ywTv+OOOIIc/zxx5uBAwfa1OJocanI/Hvu3LlmzJgx9s9Dhw61B0tBbPked/HixfYaICK7nLZcr4jY+olG6AKv/ml+/RDwqy35E35+CPjV1v7qh59qC4E8EQh1f5DeyHPWy9d2qHLqi2RuxLZexzhIipOOZ86c2bDvPPfiiy/a04+jZenSpWbLLbe0Jyc3KiK2fqIRusCrf5pfPwT8akv+hJ8fAvnU1v6aD65qVQi0gkDo+0N8LNIbrcxudZ4tm5wmRb7txJareiCsffv2TdrHVM+J2KaCbW2l0AVe/dP8+iHgV1vyJ/z8EMintvbXfHBVq0KgFQRC3x/iY5HeaGV2q/Ns2eQ0KfJtJ7ZJO+b7nIitH4KhC7z6p/n1Q8CvtuRP+PkhUO7aoe+v5UZXvS87AqHvD0XhK71RFPK131tVORWxLUjOQhco9c9PMISf8PNDwK+25K/a+PmNzr+2DFR/DNVCdREIXf8Whbz0RlHIi9iGhXzK3oS+gEJXfOpfSsF7u5rwE35+CPjVlvxVGz+/0fnXDn1/9R+hWhAC6REIXf+mH5lfTekNP/yyrl1VOVXENmtJSdhe6AKl/iWcyDqPCT/h54eAX23JX7Xx8xudf20ZqP4YqoXqIhC6/i0KeemNopCv/d6qyqmIbUFyFrpAqX9+giH8hJ8fAn61JX/Vxs9vdP61ZaD6Y6gWqotA6Pq3KOSlN4pCXsQ2LORT9ib0BRS64lP/Ugre29WEn/DzQ8CvtuSv2vj5jc6/duj7q/8I1YIQSI9A6Po3/cj8akpv+OGXde2qyqkitllLSsL2Qhco9S/hRNZ5TPgJPz8E/GpL/qqNn9/o/GvLQPXHUC1UF4HQ9W9RyEtvFIV87fdWVU5FbAuSs9AFSv3zEwzhJ/z8EPCrLfmrNn5+o/OvLQPVH0O1UF0EQte/RSEvvVEU8iK2YSGfsjehL6DQFZ/6l1Lw3q4m/ISfHwJ+tSV/1cbPb3T+tUPfX/1HqBaEQHoEQte/6UfmV1N6ww+/rGtXVU4Vsc1aUhK2F7pAqX8JJ7LOY8JP+Pkh4Fdb8ldt/PxG519bBqo/hmqhugiErn+LQl56oyjka7+3qnIqYluQnIUuUOqfn2AIP+Hnh4BfbclftfHzG51/bRmo/hiqheoiELr+LQp56Y2ikBexDQv5lL0JfQGFrvjUv5SC93Y14Sf8/BDwqy35qzZ+fqPzrx36/uo/QrUgBNIjELr+TT8yv5rSG374ZV27qnKqiG3WkpKwvdAFSv1LOJF1HhN+ws8PAb/akr9q4+c3Ov/aMlD9MVQL1UUgdP1bFPLSG0UhX/u9VZVTEduC5Cx0gVL//ARD+Ak/PwT8akv+qo2f3+j8a8tA9cdQLVQXgdD1b1HIS28UhbyIbVjIp+zNmG9cad7//venrN242ra9NjNHHbCbV9uhKz71z2t6jfATfn4I+NWW/FUbP7/R+deWgeqPoVqoLgKh69+ikJfeKAp5EdtMkX/jjTfMyy+/bDbbbLO67T7//PPmPe95zzp/f+utt8yrr75qunXrts7vr7zyiunSpYtZb731GvbzwNOuznQc0cZ23nZzc97RA73aD13xqX9e0yti6wef8BN+ngj4VQ9d/7nRFbW/YqD+X6ed/EB+u/blpx6QSTtqRAiEgkDo+qNIvTFx4sRQpqnD9yN0OU07QbmmIk+ePNlceumlZsCAAeall14ybIZ9+/Zd29dbb73VfOUrXzG77767gbB+6UtfMgcddJC54oorzNSpU83WW29tWICzZs0ynTp1MqNHjzYbbLCBefLJJ82ECRPMkUceWXfcp59zsTn00EPT4lKz3mPPrDAzb7jXiNhmCmuqxkJfkOpfqmldW0n4CT8/BPxqhy5/jK7I/ZW9fMGK3n4gG2M6dTJm7rkjvdtRA0IgJARC1h9F6w0R23AkNWQ59UEpN2L7+uuvmw033NBGa4m6nn322ebZZ58106ZNW9vffffd15xxxhlm0KBB5ve//7056qijzF//+lfTuXNns2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xtkuGvXrjXHn0fKwwOPLTenX3abiK2PxGVUN/QFqf75TbTwE35+CPjVDl3+QthfRWz9ZEy1q4tAqPojBL0hYhuO3Icqp74I5UZs6dgLL7xgevToYVatWmX2228/c+KJJ5pRo0at7TNEFWK6/vrrm69+9as29fjUU0+1RPfRRx+1z0GE77vvPkts+Z36a9assanIPNOnTx8RW18pqFE/dIFX//wmXfgJPz8E/GpL/vzwC2F/FbH1n0O1UE0EQtZvVbPLqylB7RlVyHLqg0CuxJaO3XPPPWbs2LFm5513NpdffrnZaKON1ukvUdzjjjvOPPLII2bu3LnmxRdfNMOHDzcPP/ywfe6qq64y8+fPt6nMI0aMMMOGDbO/9+zZ0yxatMj07t3bLFiwwNx+++3vwIF2sixLnllppt3wkNm+1ybmhAN2zLJptSUEhIAQEAIBIVDPaRpQFwvdXzMhtsaYqUf1DwlS9UUIZIJAyPqjSnZ5JpPVgRsJWU7TTkuuxPaWW26x38VecsklZuTId35H89RTTxnSkT//+c8b0hMgvURtieJyeBRR2ilTptixEd3ddNNNzfjx482bb75pI8GkK9c7REqpyGlF4t/1QvfkqH+aXz8E/GpL/oSfHwL+tYveXzMhtvrG1l8Q1EJwCIS8PxStN5SKHI64hiynPijlRmxJF+Yb2Ztvvtnsueeea/vIN7cPPvig6d+/vz3ciX+Thhwtu+yyi5kxY4bp16+fGTx4sJk0aZJZvXq1mT59urnpppvMnDlz7MEZCxcurDt2EVsfsRCx9UNP+Ak/XwT86oe+Yal/fvMbwv4qYus3h6pdXQRC1W8h6A0R23DkPlQ59UUoN2K7ZMkSs8MOO6zTvyOOOMIcfz/2/AcAACAASURBVPzxZuDAgTa1mHTi5cuXr31miy22sAdMkZI8ZswY+/vQoUPN7NmzLbEdMmSIWbx4sY3qzps3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fObNh3nuN7W04/jpalS5eaLbfc0p6c3KiI2PqJRugCr/5pfv0Q8Kst+RN+fgjkU7ud+6uIbT5zqFbLj0Do+0Mc4XbqDRHbcOS7bHKaFLm2E1uu6oGwRu+zTdrZVp4TsW0FrXc+G7rAq3+aXz8E/GpL/oSfHwL51G7n/ipim88cqtXyIxD6/hBHuJ16Q8Q2HPkum5wmRa7txDZpx3yfE7H1QzB0gVf/NL9+CPjVlvwJPz8Eyl2b/VXEttxzqN7nh0Do+0N+I2/cch52eVFjqcJ7qyqnIrYtSOcDjy03p192m9l5283NeUcPbKGmIqJeYNWoHPqCVP/8Zlz4CT8/BPxqhy5/fqPzry1i64+hWqguAtIftedWxDYsma+qnIrYtiBnIrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpzmTmzfeOMN8/LLL5vNNtus7jyvXLnSbLLJJuv8/a233jKvvvqq6dat2zq/v/LKK6ZLly5mvfXWayg3bLwTJ07MVLZEbDOF06ux0Bek+uc1vUb4CT8/BPxqhy5/bnRF7q8LVvT2A9kY06mTMXPPHendjhoQAiEhELr+KFJvZG2XhzTvZetL6HKaFs9cie3kyZPNpZdeagYMGGBeeuklA9ns27fv2r7efffd5gtf+IL5wAc+YJ588klz+eWXmz322MNcccUVZurUqWbrrbc2LMBZs2aZTp06mdGjR5sNNtjAPjthwgRz5JFH1h23iG1akfh3vdAFXv3T/Poh4Fdb8if8/BDwr130/ipi6z+HaqGaCIS8PxStN0Rsw5H5kOXUB6XciO3rr79uNtxwQxutJep69tlnm2effdZMmzZtbX8//elPm1NOOcXw72uvvdaS4F//+temc+fOZsWKFaZ79+5m3LhxplevXpbYEtk955xzzLJly+xvRG+7du1ac/witj5iIWLrh57wE36+CPjVD33DUv/85jeE/VXE1m8OVbu6CISq30LQGyK24ch9qHLqi1BuxJaOvfDCC6ZHjx5m1apVZr/99jMnnniiGTVq1No+b7PNNuaOO+4w/Pvee+81n/nMZ8wf//hHM2jQIPPoo4/a5yDC9913nyW2/E79NWvW2FRknunTp4+Ira8U1KgfusCrf36TLvyEnx8CfrUlf374hbC/itj6z6FaqCYCIeu3qtnl1ZSg9owqZDn1QSBXYkvH7rnnHjN27Fiz884721TjjTbaaG1/N910U/Pwww/b6CsA77PPPuZXv/qVGT58uP2dctVVV5n58+fbVOYRI0aYYcOG2d979uxpFi1aZHr37m0WLFhgbr/99nfgQDtZliXPrDTTbnjIbN9rE3PCATtm2bTaEgJCQAgIgYAQqOc0DaiLhe6vmRBbY8zUo/qHBKn6IgQyQSBk/VEluzyTyerAjYQsp2mnJVdie8stt9jvYi+55BIzcuQ7D4jYe++9zZQpU8yHP/xhc9ddd5kzzzzTXH311Ta9mMOjiNLydwppyBDh8ePHmzfffNNGgklXrneIlFKR04rEv+uF7slR/zS/fgj41Zb8CT8/BPxrF72/ZkJsdXiUvyCoheAQCHl/KFpvKBU5HHENWU59UMqN2JIuzDeyN998s9lzzz3X9pFvbh988EHTv39/c/LJJ5v3vve95tRTT7Xf2m688cbmrLPOMrvssouZMWOG6devnxk8eLCZNGmSWb16tZk+fbq56aabzJw5cwwfwC9cuLDu2EVsfcRCxNYPPeEn/HwR8Ksf+oal/vnNbwj7q4it3xyqdnURCFW/haA3RGzDkftQ5dQXodyI7ZIlS8wOO+ywTv+OOOIIc/zxx5uBAwfa1GK+kd1rr73sM1wHBFF997vfbebOnWvGjBljfx86dKiZPXu2JbZDhgwxixcvttcAzZs3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fOtI9wnc/f//53e4AUqceu8NyLL75ov7+NlqVLl5ott9zSnpzcqIjY+olG6AKv/ml+/RDwqy35E35+CORTu537q4htPnOoVsuPQOj7QxzhduoNEdtw5LtscpoUubYTW67qgbBG77NN2tlWnhOxbQWtdz4busCrf5pfPwT8akv+hJ8fAvnUbuf+KmKbzxyq1fIjEPr+EEe4nXpDxDYc+S6bnCZFru3ENmnHfJ8TsfVDMHSBV/80v34I+NWW/Ak/PwTKXZv9VcS23HOo3ueHQOj7Q34jb9xyHnZ5UWOpwnurKqciti1I5wOPLTenX3ab2Xnbzc15Rw9soaYiol5g1agc+oJU//xmXPgJPz8E/GqHLn9+o/OvLWLrj6FaqC4C0h+151bENiyZr6qciti2IGciti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnLaF2L788sumW7duplOnTjXn+sUXXzTdu3df529vvfWWefXVV229aHnllVdMly5dzHrrrddQbth4J06cmKlsidhmCqdXY6EvSPXPa3qN8BN+fgj41Q5d/qKjK2p/XbCitx/IxhhMgrnnjvRuRw0IgZAQKIP+KEpvZG2XhzTvZetLGeQ0Daa5Etvly5eb+++/3xxyyCFmyZIlZosttlinj3/605/MueeeazbbbDPDs5MmTTL9+/c3V1xxhZk6darZeuutzRtvvGFmzZplSfHo0aPNBhtsYJ588kkzYcIEc+SRR9Yds4htGnH4T53QBV790/z6IeBXW/In/PwQ8K9d9P4qYus/h2qhmgiEvD8UrTdEbMOR+ZDl1AelXInttddea26//XYzZcoU8+yzz76D2I4dO9bsueee5itf+YqBiP7tb3+zz3bu3NmsWLHCRnHHjRtnevXqZYntypUrzTnnnGOWLVtmfyN627Vr15rjF7H1EQujiJkffMJP+Hki4Fc99A1L/fObX2oXvb+K2PrPoVqoJgIh67ei9YaIbTgyH7Kc+qCUK7F1HYOU1iK2t956qzn44IPNZz/7WXPdddeZm266yfTs2dMMGjTIPProo7b6tGnTzH333WeJLb+PGjXKrFmzxqYi80yfPn1EbH0koE7d0AVe/fObdOEn/PwQ8Kst+fPDL1q7qP1VxDa7OVRL1UIgdP0G2kXpDRHbcGS9DHKaBq1Cie23v/1tM2fOHDNy5Eibbnz00UebT33qU2b48OHm4YcftuO56qqrzPz5881LL71kRowYYYYNG2Z/hwAvWrTI9O7d2yxYsMBGhuOFdrIsS55Zaabd8JDZvtcm5oQDdsyyabUlBISAEBACASFQz2kaUBdtV+oZqHnvr5kQW2PM1KP6hwap+iMEvBEIXX8UpTeytsu9J6qDNxC6nKaZnkKJLeT0F7/4hdlrr70M0dsTTjjB3HXXXTa9mMOjWHikJlNIQ950003N+PHjzZtvvml69Ohh05XrHSKlVOQ04vCfOqF7ctQ/za8fAn61JX/Czw+B7GrXM1Dz3l8zIbY6PCo7QVBLwSAQ+v7QyCGWt95QxDYYMQ3+k7m0SLWd2HIS24MPPmgPiRoyZIj5/Oc/b9OLidiSjnzNNdeYXXbZxcyYMcP069fPDB482B4qtXr1ajN9+nSbrkyUd/LkyWbhwoV1xy1im1Yk/l0vdMWs/ml+/RDwqy35E35+CGRXO0ps27m/ithmN4dqqVoIhL4/xIltO/WGiG04sl4GOU2DVtuILSexbb755jYiO3DgQJta/Lvf/c4cfvjhNkLLaceXXXaZjd7OnTvXjBkzxo5n6NChZvbs2ZbYQoQXL15srwGaN2+eGTBggIhtmllPUCd0gVf/Ekxig0eEn/DzQ8CvtuTPD79obYhtEfuriG12c6iWqoVA6PrNEdsi9IaIbTiyXgY5TYNWW4httGOrVq2yJx3PnDnT/sxBUJyGvM0226zTf57jfltOP46WpUuXmi233NKenNyoKGKbRhz+Uyd0gVf/NL9+CPjVlvwJPz8E8qndzv1VxDafOVSr5Ucg9P0hjnA79YaIbTjyXTY5TYpc24ktV/VAWPv27Zu0j6mey5PYpupQjUrdNups+mzVw7u5/Xbvbfb78Lbe7UQbCF3g1T+/6RZ+ws8PAb/akj8//OrVbuf+miWxXbPGmH+seCUTULbo0S2TdtSIEEiLQOj6LT6uduoNEdu0UpV9vbLJaVIE2k5sk3bM97kyEFvfMbr6h+63kxk9aOesmrPthC7w6p/fdAs/4eeHgF9tyZ8ffkXXZn/NmtgedPrV3sPq9PZhVBDlL114g3d7NHD5qQdk0o4a6TgIhK7fipqJPOzyosZShfdWVU5FbAuQzldW/8vcfvfid6RZt9qVW+5+3NxyzxNGxLZV5PJ/PnSFof75yYDwE35+CJS7dhmIbZZEudyzpd63G4HQ94d24+HeJ2JbFPK131tVORWxLUjOshCo2Tf/xfzklr+K2BY0h41em8X85jks9c8PXeEn/PwQKHdtEdtyz596ny8Coe8P+Y6+fusitkUhL2IbFvIpexP6AspC8YnY9kkpHflXy2J+8+yl+ueHrvATfn4IlLu2iG2550+9zxeB0PeHfEcvYlsUvq2+t6pyqohtq5KQ0fNZCJSIrYhtWnHMQv7SvjtJPfUvCUr1nxF+1cbPb3T+tUVs/TFUC9VFIHT9WxTyoQecisKlqPdWVU5FbAuSqCwESsRWxDat+GYhf2nfnaSe+pcEJRFbP5TKi19e407arohtUqT0XEdEIPT9q6g5EbEtCvna762qnIrYFiRnWQiUiK2IbVrxzUL+0r47ST31LwlK5SVmml+/+S26toht0TOg94eMQOj6rSjsRGyLQl7ENizkU/Ym9AWUheITsRWxTbk8dJ1TWuDerpfF+vXsQsPq6p8fuqHj5zc6/9oitv4YqoXqIiD9UXtuQ7fLqyuRIraVmNvQF1AWik/EVsQ27WLNQv7SvjtJPfUvCUqK2PqhVF788hp30nZFbJMipec6IgKh719FzUnodnlRuBT13qrKqVKRC5KoLARKxFbENq34ZiF/ad+dpJ76lwSl8hIzza/f/BZdW8S26BnQ+0NGIHT9VhR2IrZFIa+IbVjIp+xN6AsoC8UnYitim3J5KBU5LXBv18ti/Xp2oWF19c8P3dDx8xudf20RW38M1UJ1EZD+qD23odvl1ZVIEdtKzG3oCygLxSdiK2KbdrFmIX9p352knvqXBCVFbP1QKi9+eY07absitkmR0nMdEYHQ96+i5iR0u7woXIp6b1XlVKnIBUlUFgIlYitim1Z8s5C/tO9OUk/9S4JSeYmZ5tdvfouuLWJb9Azo/SEjELp+Kwo7EduikFfENizkU/Ym9AWUheITsRWxTbk8lIqcFri362Wxfj270LC6+ueHbuj4+Y3Ov7aIrT+GaqG6CEh/1J7b0O3y6kqkiG0l5jb0BZSF4hOxFbFNu1izkL+0705ST/1LgpIitn4olRe/vMadtF0R26RI6bmOiEDo+1dRcxK6XV4ULkW9t6py2pZU5Jdfftl069bNdOrUqeb8Pf/882bTTTc1nTt3Xvv3t956y7z66qu2XrS88sorpkuXLma99dZrKAuhL6AsBErEVsQ2rULMQv7SvjtJPfUvCUrlJWaaX7/5jdYuan9dsKK39yAwCeaeO9KsWWPMQadfHWx73h1TAx0KgdD1G5NRlN6YOHFih5KFkAdbBjlNg1+uxHb58uXm/vvvN4cccohZsmSJ2WKLLdbp45NPPmkOO+wws8022xiePeGEE8zBBx9srrjiCjN16lSz9dZbmzfeeMPMmjXLkuLRo0ebDTbYwFBvwoQJ5sgjj6w75o5EbNNMfLzO9eeNXOen0AVe/fObdeEn/PwQ8Kst+fPDj9pF768itv5zqBaqiUDI+q1ovSFiG47MhyynPijlSmyvvfZac/vtt5spU6aYZ5999h3EFmK6//77m5EjRxqitpDgT3ziEzZyu2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xvR265du9Ycv4hta2IhYtsaXs2eDl1hqH/NZrDx34Wf8PNDwL920ftrRyO2B57mH1Fm1uN7rb8kqIXQEAh5fyhab4jYhiOtIcupD0q5ElvXMUhpLWL70Y9+1EZrf/Ob35hPfvKT5oILLjAbbrihGTRokHn00Udt9WnTppn77rvPElt+HzVqlFmzZo1NReaZPn1qp6N2BGLrM/Gurtus+/VZN5pOGjgp30kL9eNtJK3Lc1036mz69NoscZXQF6T6l3gqaz4o/ISfHwJ+tUOXv+joitpfRWzTyZiIbTrcylSrDPqjKL0hYhuOJJdBTtOgVSix7dmzp9lnn33MhRdeaAksUVoitMOHDzcPP/ywHc9VV11l5s+fb1566SUzYsQIM2zYMPs7dRctWmR69+5tFixYYCPD8UI7Ko0ROPGyO4OAaPtem5gTDtgxiL6oE0JACAiBek7T0JCpZ6Dmvb9mQmyNMVOP6m/WGGPGZ7AXcYpHHu0x51ntlRe/Pd4zf3p/JqL0rVH/ZfF79JmVmbTHXqzij0Do+qMovSG73F+2smwhdDlNM9ZCie1OO+1kLrroIpuOTPR1r732Mk888YRNL+bwKBYeacwU0pA5YGr8+PHmzTffND169LBEuN4hUorYJhOHBx5bXvPBZ555xqZ7NyvUr9dGs7r8/ZXV/zKPP7PC7Lzt5ua8owcmqWKfCd3TpP4lnsqaDwo/4eeHgF/t0OUvOrp6Bmre+2smxLZEh0dlmYqsw7L81mfotcugP4rSG4rYhiO9ZZDTNGi1ndhyEtuDDz5o+vfvb774xS/ayOu5555rfvzjH5vf/va3NkK7yy67mBkzZph+/fqZwYMHm0mTJpnVq1eb6dOnm5tuusnMmTPHTJ482SxcuLDumEVs04jDf+q0S+AhxadfdpuIrd90tVy7XfPbcsferqD+pUXu3/WEX7Xxq0ds27m/itimkzFSkUVs02FXllqh619wjBLbduoNEdtwpLgMcpoGrbYRW05i23zzzc1dd91lBg4caFOLAfXYY481f/3rX8373vc+S2Z32203M3fuXDNmzBg7nqFDh5rZs2dbYjtkyBCzePFiew3QvHnzzIABA0Rs08x6gjrtEngR2wSTkcMj7ZrftF1X/9IiJ2Lrh1w58IsT2yL2VxHbdJImYpsOtzLVCn3/csS2CL0hYhuOJJdBTtOg1RZiG+3YqlWr7He0M2fOXPvzc889Z9773veu03+ee/HFF9+RDrt06VKz5ZZbrnPnba2BK2KbRhz+U6ddAi9i6zdPaWu3a37Vv7QI+NXT/FYbv3qja+f+KmKbTsZEbNPhVqZaoevfOJbt1BsituFIctnkNClybSe2XNUDYe3bt2/SPqZ6TsQ2FWxrK7VL4EVs/eYpbe12za/6lxYBv3qa32rjV2907dxfRWzTyZiIbTrcylQrdP0bx7KdekPENhxJLpucJkWu7cQ2acd8nxOx9UOwXQIvYus3T2lrt2t+1b+0CPjV0/xWGz+/0fnXZn8VsU2Ho4htOtzKVCt0/VsUlqHb5UXhUtR7qyqnIrYFSVToAtWu/onYFiOA7ZrftKNT/9Ii9+96wq/a+PmNzr+2iG16DEVs02NXlpqh69+icBSxLQr52u+tqpyK2BYkZ6ELVLv6J2JbjAC2a37Tjk79S4uciK0fcuXAL4sx+rQhYpsePRHb9NiVpWbo+1dROIrYFoW8iG1d5G+77Taz77772it3HnnkEXPYYYeZzTbbLKyZers3oS+g0BVfu/onYlvM8mnX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pymjhie+qpp5oLL7zQLFq0aO01O7vvvru5++67i5qThu8NfQGFLlDt6p+IbTHLp13zm3Z06l9a5ERs/ZArB35ZjNGnDRHb9OiJ2KbHriw1Q9+/isIxdLu8KFyKem9V5TQRsV2zZo29YmfEiBH2DtnLL7/c3i07evRo88wzz9i/hVZCX0ChC1S7+idiW8zKadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi+9tprZqONNjI///nPzTHHHGN22GEHM2PGDLPLLruYhx56KPere9JMeugLKHSBalf/RGzTSLd/nXbNb9qeqn9pkROx9UOuHPhlMUafNkRs06MnYpseu7LUDH3/KgrH0O3yonAp6r1VldNExBbQR44caa655hqL/2WXXWbOO+888/rrr5ulS5cWNScN3xv6AgpdoNrVPxHbYpZPu+Y37ejUv7TIlYOYaX795rfo2iK26WdAxDY9dmWpGbp+KwrH0O3yonAp6r1VldPExHb58uXme9/7nunUqZM55ZRTzNixY81xxx1n9t5776LmRMQ2R+TbJfAitjlOYoOm2zW/aUen/qVFTsTWD7ly4JfFGH3aELFNj56IbXrsylIz9P2rKBxFbItCvvZ7qyqniYktsDzxxBNm4cKFpk+fPuY973mP2X777cOapUhvQl9AoQtUu/onYlvMEmrX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pympjYXn/99eaggw6y+J922mlmwYIFZrfddjMXX3xxUXPS8L2hL6DQBapd/ROxLWb5tGt+045O/UuLnIitH3LlwC+LMfq0IWKbHj0R2/TYlaVm6PtXUTiGbpcXhUtR762qnCYmtttss43ZYost7L21AwYMMBtssIE566yzzNNPP2222mqroual7ntDX0ChC1S7+idiW8zSadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi6U5G/+93vmieffNKsv/76Zvjw4YZ7bP/yl7+YnXbaqah5EbHNCfl2CbyIbU4T2KTZds1v2tGpf2mRE7H1Q64c+GUxRp82RGzToydimx67stQMff8qCkcR26KQr/3eqsppImILJJDX5557zt5ZS7SWw6S6du1qHn744bBm6u3ehL6AQheodvVPIg7ufgAAIABJREFUxLaY5dOu+U07OvUvLXLlIGaa33Xn98477zS9e/c2m2++uf3D6tWrzZ/+9CebHbXhhhv6CUMOtUVs04MqYpseu7LUbJd+K6PemDhxYlmmsfL9bJecthvIxMT23nvvNd/61rcM39q6ct1116397rbdHW/2PhHbZgg1/nu7BF7E1m+e0tZu1/yqf2kR8Kun+S0HfkuWLLHO4S984Qv2n49//OO244888og56aST7IGNH/jAB/wGk0NtEdv0oIrYpseuLDXz1r9l1hsituFIcd5yWtRIExNb18EXXnjB/O1vfzPbbbedjdgmKS+//LLp1q2bvSqoXvn73/++zre6b731lnn11VdtvWh55ZVXTJcuXcx6663X8NUitklmpv4z7RJ4EVu/eUpbu13zq/6lRcCvnua3HPhdcMEFpp6ht8kmmxj2Wz79aVSK2l8XrOjtB7IxBpNg7rkjzZo1xhx0+tXBtkfHDjzNv3+0I2LrPc3BN5C3/i2z3hCxDUd885bTokaamNjut99+NhU5Xu644453kE/3DOnK999/vznkkEMMHiYOn6pVbrjhBnPggQcayCzk94orrjBTp041W2+9tXnjjTfMrFmz7O+jR4+2adB85zthwgRz5JFH1sVNxNZPpNol8CK2fvOUtna75lf9S4uAXz3Nbznwqxd5ofd8/kN6cr1S9P4qYptOxkRs0+FWplp5698y6w0R23AkOW85LWqkiYntvvvua7+rpbz00ks2agtRffzxx+tGbq+99lpz++23mylTpphnn322JrEl1eqMM84ws2fPtsT2zTffNJ07dzYrVqww3bt3N+PGjTO9evWyxHblypXmnHPOMcuWLbO/Eb2tFzUWsfUTqXYJvIit3zylrd2u+VX/0iLgV0/zWy78yFgiE4kIbbRAbOtlJxW9v4rYppMxEdt0uJWpVrv0bxn1hohtOJLcLjlt94gTE9t4x84880zjTkneaKONGvYbUlqL2HLa8pAhQ8yVV15puE4IYgvRHTRokHn00Udtm9OmTTP33XefJbb8PmrUKLNmzRq72fNMnz59ar5bxNZPlNol8CK2fvOUtna75lf9S4uAXz3Nb7nw+973vmdTknHeRsuLL75oNt100yD3VxHbdDImYpsOtzLVapf+LaPeELENR5LbJaftHnFiYkuUFOJJIar6/e9/35x77rn2kIvtt98+1cZ74oknml133dWMHTvWElfaf+CBB+xVQu605auuusrMnz/fRolHjBhhhg0bZt/Vs2dPs2jRIpuqtWDBAhsZjhfaUQkbgSXPrDTTbnjIbN9rE3PCATuG3Vn1TggIgQ6DQD2nadYA4KjltgEKe+G73vWuta8gm6nZqcj1HMd576+ZEFtjzNSj+ps1xpjxl93pDS2neOTRHh07MYP+0c7FJRmv92R08Aby1h9l1Ruyy8NaGHnLaRGjTUxsIZIuFdl1lMMtnn/+eZs63KjU2nhJI954441N//79bVWOLee/582bZzbbbLO139uSxkzBk43nevz48ZZY9+jRw6Yr10vTUsTWT5za5clRxNZvntLWbtf8qn9pEfCrp/ktD37OQD3++OPNN77xjZY7XtT+mgmx1eFRLc93tEJeh295dUqVTTv0b1n1hiK24SyQdshpEaNNTGxJPeb0RQpk8v3vf7/Zf//9zbbbbtu039GNlzYefPBBs8cee9gDpVz54Ac/aB566CHDv4nizpgxw/Tr188MHjzYTJo0yd7rN336dHPTTTeZOXPmmMmTJ5uFCxfWfbeIbdNpafhAuwRexNZvntLWbtf8qn9pEfCrp/ktF36HHXaYvUqPfQunrStkKHFgYqNS1P4qYptOxpSKnA63MtVql/4to94QsQ1Hktslp+0ecVNiy8DxDNUrENtmV++w8RLt5fL5u+66ywwcONCmFq/refx3KjLPzp0714wZM8b+eejQofZgKYgt3+MuXrzYXgNEZJfL6+sVEVs/UWqXwDti26fXZuaoA3dP3Gl3PdQWm3U1W/RY90qoxI3k+GC78Es7BPUvLXL/rif8hJ8fAuvWrpURxRNJv7EtYn8VsU0nASK26XArU6127Q9l1BsituFIcrvktN0jbkpsG909m3TjjQ5q1apV9qTjmTNnNhwrz7Gpc/pxtCxdutR+j9Qs/VnE1k+U2iXwjtim7e2h++1kRg/aOW313Oq1C7+0A1D/0iInYuuHnPCrhd8f//hHw2GK8fKxj32sacS2qP1VxDbdSigDsSWW8ZfH/30Lhm/p16f2NY++7YZcv137axn1hohtOJLbLjlt94ibEtuLLrrIftNar5x00knrHHbRbAAcQgVh7du3b7NHvf4uYusFX9siUo89s8Jcdv09LXf27/940fzz5deNiG3L0NkKoSs09S/dvLpawq9c+PGJTS1iy+c+zVKRoyNt5/4qYptOxspCbA86/ep0A4zUct8AezdUsgbapX/LqDdEbMMR5nbJabtH3JTYRjvExgsppZCezDeye+65Z9PoabsHxftEbP1QD13gvzvnD+Y39/xdxDblNIc+v+pfyol9u5rwKxd+PimFfiNNV5v9VcQ2HXYitulwK1OtdunfMuoNEdtwJLldctruEScmtldffbVNIY6fjJzkG6B2D0rE1h/x0AVexNZvjkOfX/VP8+uHgF/tdsvfjTfeuDZiy40BF1xwgY3UcqVdKxFbv1Enry1imxyr+JMitumxK0vNdumPMuoNEdtwpLhdctruEScmttttt529hod7az/ykY/Yk4232GILQ45/s+9d2z0oEVt/xEMXeBFbvzkOfX7VP82vHwJ+tYuWPxzJo0aNMk8//bTZaqut/AaTQ20R2/Sgitimx+7/t/cl4FpV1fsLhBRQBmUUNLjmkIgmRpiaI4qCOMUkoqGJpSaShYQ2iAX6qwQM/lRiYREgkpmoaSAqCiGOpEJiIiAOiBpX8AIqcP/Pu/HAHb7hnLXPOd/6vvvu5+EB7t1rn7Xftfbw7rWHYpEsVP9RDP0Gia0dLy6UnyaNQChi+9lnn7lztH/5y1/kySeflJYtW8p3v/td9+TPhg0bHOG1lrgV2c8i1h2exLa07Wvd/6gf/c8PgerSo0aN2vVSAF4HwNk5+Nh7773nFpCtJRJbvUVIbPXYFYtkWuNDMfYbJLZ2vDgtP027xqGILZQ64IADHLm98sorBW/afvOb35S77rpLXnvtNTn44IPT1jvv90hs80KUM4N1hyexLW37Wvc/6kf/80OgunTNs3L77LOPXHXVVXLrrbfG+ZnYyiKx1UNJYqvHrlgk0xofirHfILG148Vp+WnaNQ5NbB977DHBDcjTpk1zb8u+9dZb0qdPH/fmrMVEYutnFesOHxDb047pJD2O6RSpso33aih4NzfJZB0/6udnfeJH/PwQqC5dXl6+6714PLFncRdUVY1JbPXWJ7HVY1cskmmND8XYb5DY2vHitPw07RqHJrZTpkyRnj17uu3H27Ztc5dIWTz7EwBIYuvnStYdPiC2mloe0amV3HLFqRrR0DLW8aN+oU2ZMSPxI35+CFSX3rRpk1s0njFjhuDfOF/7rW99y+wYS2Krt35dJLZ4F/exF1bpQasiicVs6ymt8aEY+w0SWzvem5afpl3j0MQ22PJw6qmnysUXXyznnXee6VVlEls/V7Lu8DMfeUZeevPjSJWs2PqZrHq3XEhs+Y5tJMfJkNl6+6B+fhZOGz+clcO2Y2xBbtasmdsRdfjhh8u///1v3oocwZTBu6kgUnG/w9pnlP+7rqhKXSW2cdsjgluknjWt/qMY+w0S29TdMesH0/LTtGscmtg+/vjj8tBDD8l9993nLrVAwqoyztnuueeeaeud93sktnkhypnBusNr9Hv5jfVyw5THSWyFxNavdRA/4ueLwG55PO+z9957y9ChQ+V3v/ud1K9fXyZMmOCO/uD1gcMOOyy+j8VUEiO2eiBJbPXYBQsX+hLSkdTMT6JqVqz9BoltVEsnlz8NP01O++wlhya2QRErVqyQSZMmuT9IfMdWZzbrDlWK+pHY7vbVUrSvriXqpIifDrdAivjtxm/z5s3SpEkTuemmm+RnP/uZ+8Xs2bOlf//+8txzz8kxxxzjB3YC0iS2elBJbPXYkdgWf79BYqv3/7glrY/D2vqGJrbY8oDnfrBFCqlr165y6aWXumd/rD4gb7kBWXeoUtSPxJbEVttR1pQrxfYRFzZhyiF+1VE64YQTZNGiRXLWWWdJ48aN5d5775Vu3brJkiVLBJdJWUsktnqLkNjqsSOxLf5+w/K8XO+ZxSlpfRzWohqa2OKMLZ77ufzyy91K8pe//GXtN1OR41ZkP5itO7xGPxJbElu/VkH8iF9cCFQvZ82aNTJ27FiZOXOmuzwKY+yNN94oRx55ZDIf9CyVxFYPIImtHjsS2+LvN0hs9f4ft6RmHh23DkmUF5rYvvjii3LUUUe58z/FkEhs/axk3eE1+pHYkpj5tQriR/ziQqB2OcuXL3dbknFnBZ7xsHi2NtCaxFbvByS2euxIbIu/3yCx1ft/3JKaeXTcOiRRXmhim8THkyyTxNYPXesOr9GPxJbEzK9VED/iFxcC1cvBnRXXXHONPPzww+5Jvc6dO8v1118vGMcsJhJbvVVIbPXYkdgWf79BYqv3/7glNfPouHVIojwS2yRQDVGmdYcqRf1IbEnMQjTNUFlKsX2EqnhMmYhfdSAPPfRQadWqlfz1r391Udurr77avWv79ttvm3zLlsRW3xBIbPXYkdgWf79BYqv3/7glrY/D2vrmJLbbt293T/zgEosXXnjBbUXu0KFD5G99/PHHbrDOdgnGhx9+KPvtt1+1cnfs2CFbtmxxclUTrjhv1KhR3i3RjNhGNlM1AesOr9GPxJbE1q9VED/iFxcCu8vZtm2bNGzY0F3E+Nvf/tb9Yvr06TJ48GBZvHixHHvssTk/WqjxdWF5R28wknp3lu/Y6kxTTPbQ1TAdKc38JKpmxdpvkNhGtXRy+dPw0+S0z15yTmL7ySefyF577SVXXHGF/P3vf3cDbc1B9vzzz896K/L69evlpZdekgsuuEBef/11ad26dTVNHnvsMbnyyivdDcsgrLiY6pxzzpGpU6e6d/zat28vaLwY5EGKBw0a5L6FizZGjBghQ4YMyVozEls/d7Lu8Br9SGxJzPxaBfEjfnEhUL2cE088UZ566ik599xzZZ999pH7779fmjVr5sbNbO/EF3p8JbHV+QIjtjrcIMWIbfH3GyS2ev+PW1Izj45bhyTKy7sVGW/oIVqbLeV6xxZPFuAJg/Hjx8t7771Xi9iecsop7ubHHj16yJNPPukeqF+2bJlbvcblGRjYhw0bJu3atXPEFrdFjhkzRtatW+d+BjKMpxEyJRJbP3ex7vAa/QJi26ZFEzntmE6RALrwtM6R8mv0i/QBz8zUzw9A4kf8/BCoLr1q1So3Ts6aNUtAWHv37u0Wb0866aSsnyn0+Epiq/MAElsdbiS2tXErxn6DxFbv/3FLWp/HaOubl9himxOIbb9+/dy5n2984xvVvoX/53vHFqQ0E7EFUQUx3WOPPeS6665zW49xYQaI7sqVK913Jk6cKEuXLnXEFj8fOHCgVFZWuq3IyFNWVkZiq7V+DjnrDq/RLyC2GrgwGYmSNPpFKd83L/XzQ5D4ET8/BDJLZzuCk+tbhRpfSWx1HkBiq8OtKrHFVvO7H1uWtyDMFfOlQT2OyJcl8u/THh+Kqd8gsY3sTokJpO2niVWkRsF5iW2Q/5133pG9995bnn32WRcpBcnMFi2tqXy2gRf5QHhBmP/73//KnDlzBBFgkOgVK1a4YnCBxoIFC2Tjxo3ubb++ffu6n+NdXTxe37FjR1m4cKGLDNdMKIeJCAQI/G/TJ7LktQ8iAfLIC++4/LcP7RZJjpmJABEobgSyLZpaq1WhxtdYiK2ITBjaTUA/hk951hvaegmVB8WujUG/YCyxXt+6pp+342UowHr/Uah+g/PyJLxNX6Z1P9XULDSxBbns06eP2w4cJJyDvfbaa/N+N1sDevPNNwXbkS+55BLBKg7O8yJqC8KMFSjIYXsWEr7btGlTGT58uOBSqxYtWrjtytne1eVW5LxmyZnB+kpOWvr1GTXL4cSIrZ8/RZVOy75R9QryUz8tcjvliJ8fflWlCzW+xkJs64nMGTtA4r7sKe7ygHcwFvhajhFbPYJJXW6l1yizpPX+DVoXqt9gxDZub9OXVwx+qqldKGILkombkXH258c//rEjntgijOjtBx98UOtG45qKVG1A2Nr8n//8x5V34YUXur+xDblqwu3LkydPli5dukjPnj1l9OjRsnXrVsFbf3PnzpXZs2fLuHHj3I2R2RKJrcYddstYd/i09COx9fMjrXRa9qV+WgT85Gjf2vhh2+TatWvdAu++++6b94hPUEKhxlcSW10bILHV4baTjCWzEKLXqPDEttj6DRLbuL1NX571cVhbs1DEFs/xtGzZUn7zm9+4R+SRHn30UTn99NPl6aeflu7du+f8PgZekGK80/fcc8/Jqaee6rYWYzsxfh4k3JqMrcnYkowbmJFwicaMGTMcse3Vq5csX77cRXXnzZuX87sktlqX2Cln3eHT0i8gtlHP4XTv1Cjr+W8/y8QjnRZ+Wm2pnxY5tl8/5AqDH47inHnmma7fHTVqlLzyyivuFQDcKZEvFWp8JbHNZ5nMvyex1eFGYlsbt2LsN0hs9f4ft6T1eZa2vqGILVaEcENx586d3dZgRGxxO/E999zjbigGQQ2bNm/e7G46vvPOO3OKIB/O2+L246oJK9pt27Z1NyfnSiS2YS2SOZ91h09LP+32M5zJtXx2IS38tF5I/bTIFYaYRdWW9q2OGF4fwCQVi78DBgyQt956y90vEbwOEBbfNMdXEtuwVqmej8RWh1uSxDbuy6jS6t+Ksd8gsdX7f9ySaflp3HrnKy8UsUUht99+uzvfWjVhW/LPf/7zfN+o9nsQYRDWQw89NJJc1MwktlERq57fusOnpd+MR1+JBOTM+TtvaiSxjQRbrcxp2VerJfXTIkfiXRO54L14HLXBvRN4JQAXrOB9d7xIcPTRR4cGO83xlcQ2tFmqZSSx1eGWNLE954ad92n4pGCrdBrjQ7H2GyS2Ph4Wr2wafhqvxuFKC01sURwG3fvuu89tI77gggtcBNdqIrH1s4x1h7eqnybCe0SnVnLLFaf6GSyitFX8gmpQv4gGrZGd+BUXfrgY8cgjj5TmzZvLF77wBXcpIu6TwDGgfLuT/Gqqk8b4SmKrw47EVocbiW1t3Iqx3yCx1ft/3JLW5wna+kYittqPFEKOxNYPdesOb1U/Els/vyOxJX7xIOBXStr9y8yZM+U73/lOtVcHsBsKu6IsJhJbvVVIbPXYJXV5VNy3aKfVfxRjv0Fiq/f/uCXT8tO49c5XHoltPoQS+r11h6J+foYPg9/Lb6yXG6Y8LozY1sY6DH5+FvKTpn7Ezw+B2tLYWvj444/LqlWrBC8DHHfccXF/IrbySGz1UJLY6rEjsS3+foPEVu//cUtan8do60tiq0XOU866Q1E/PwOHwY/ENjvGYfDzs5CfNPUjfn4IVJe++eab3RGfmukXv/iFe/7HWiKx1VuExFaPHYlt8fcbJLZ6/49b0vo8Rlvf0MT2kksukcsvv1xOPPFE9y3c2njxxRfL3XffHelWZK2iUeW4FTkqYtXzW3f4UtCPxJbE1q+VEr9Swa/m03dBvXDRIs7RWUsktnqLkNjqsSOxrY5dMfYbJLZ6/49b0vo8WlvfvMT2rrvukokTJ7rbGTt06CB4axYJ78+C3OJyCzwmby2R2PpZxLrDl4J+JLYkZn6tlPiVCn4YR3fs2OGqgyd7RowYIatXr5bFixe7W5KtJRJbvUVIbPXYkdhWx64Y+w0SW73/xy1pfR6trW9eYvvnP//ZPfVTk9jigz169BAMcBYTia2fVaw7fCnoR2JLYubXSolfqeKHN2yxS+r111+Xgw46KKlqqsslsVVDJyS2euxIbHNjVwz9Bomt3v/jlrQ+j9bWNy+xDQr+6U9/Kueee67gQehiSCS2flay7vCloB+JLYmZXyslfqWC3wknnCDvvvvuruqgf0PatGmT7L333klVU10uia0aOhJbPXRCYlsdvGLsN0hsPRpAzKLW59Ha6oYmtk899ZTcdtttbmtU1bRy5UqzA6/lBmTdoaiftkntlAuDH4ktiZmflxG/UsHvjDPOkPfee89Vp0GDBi5Ki4jt2WefnVQVvcolsdXDx4itHjsS2+rYFWO/YXlervfM4pQMM08txpqFJradO3eW5cuXS9euXd0D8kGaP3++NG7c2FzdGbH1M4l1hy8F/UhsScz8Winxq6v4JVXvsOWS2IZFqnY+Els9diS2euwsSFqfl1vAKE0drM+jtViEIrbbt293q8g/+9nP5KabbtJ+K1U56w3IukNRPz93DYNfQGzL2jWXoX26hvpg6+aNpXWLJqHy5soURj/vj3gUQP08wAu5Y8DvC37StO9O/A444AD59NNPs4JpeUfUwvKOfk4gUjRbS1HRPqNmedcXBZDY6mEksS3+foMRW73/xy1pfRzW1jcUsUXhl156qTzzzDPueZ8WLVrs+l779u2lHnobY4nE1s8g1h2+FPQLiG0US114WmcZ1OOIKCIZ85YCft4geBRA/DzAI/HeBR62Gm/bti0rmH/729/M7ogisdW1ARJbHW6QIrHdiV0x9xsktnr/j1vS+jxGW9/QxJbvZWkhzixn3aGon5+9w+D3xrvlMuWBF0J9aP2GzbK+vEJIbEPBlXimMPZNXIkcH6B+fuhbwG/jxo3u/or69ev7VSYBaW5F1oNKYqvHjsQ2P3bW+w0S2/w2TCuHhXEuibqGJrYTJkxwNzTWTNdff73sueeeSejmVSYjtl7whbr8yO8LftLWG2Tc+s149BWZOX8Zia2f28QmHbd9Y1Ps84Konx+iaeO3bNkyGT16tOBvJERxcUsy3opv2rSpX2USkCax1YNKYqvHjsS2OnbF2G+Q2Or9P27JtMe5uPXPVl5oYrthwwaprKysVc6+++6blq6RvkNiGwmuWpmtO3xd04/E1s+f45aua/5H/OJGoHp5X/va1+TZZ591P2zdurWsX79eysrK5JVXXpFGjRol+3FF6SS2CtA+FyGx1WNHYlv8/QaJrd7/45a0Po/R1jc0sfXZivzxxx9LkyZNsp7FRSR4n332qVaHHTt2yJYtW5xc1VRRUeEG+nzbs0hstS6xU866w9c1/QJie9oxnaTHMZ1CGfeITq2y5qtr+IUCLEIm4hcBrAxZid9uUD777DP30sDMmTPlvvvuk69+9aty3HHHyVlnnSUffPBBtVcIMqFeqPGVZ2x1bYDEVocbpEhsi7/fILHV+3/cktbHYW19QxNb3IgcbEXGQIpLpHCj4wsvvJB1KzJWnV966SW54IIL5PXXX3cr0VXT888/L5dddpl88YtflDVr1sgf/vAHN6hPnTpVsPUZF1NhS9b06dMdKR40aJC7nRl5R4wYIUOGDMlabxJbrUuQ2Pohlwx+AbGNohsmUNmS9Q6N+kWxdO28xK+48MN2Y5BZ/Jk1a5b88Ic/dGMjIrZ4ai9TKvT4SmKr8zESWx1uJLa1cSvGfoPEVu//cUtanydo6xua2Nb8AMgnBt7//e9/1W5Jrprv3nvvlUWLFsn48ePd4/M1iS0el8YAjr+R9/e//7384x//kIYNG0p5ebk0a9ZMhg0bJu3atXPEFsR6zJgxsm7dOvczRG+zvaFLYqt1iWSImZ82nLjPf36VPPr8qlAwvrLqfZePxDYUXKpM1gcE6qcy6y6htPDDU3p77LGHGyOvu+46eeyxx+TUU091emC8fPvtt91ibqZU6PGVxFbnYyS2OtxIbHfjVsz9Bomt3v/jlkxrnItb73zlhSa2DzzwgGzdutWVh0b1l7/8RR566CFZtWqVdOyY+z07kNJMxBYR33/9618u8vviiy/KmWeeKU8//bT06NFD8H4f0sSJE2Xp0qWO2OLnAwcOdGd9sRUZeXAOKVMisc1n+ty/t+7w1C+7/YL3Fkls/dpALmn6nx+2xG8nfjjiM2DAAOnXr58cfPDB0rJlS3nttdfcJVJY8MXibr5UqPGVxDafZTL/nsRWhxuJ7W7cirnfILHV+3/cktbHYW19QxPbTGdsjz/+eHnqqafyvmObbeDFNooVK1a46CsAPumkkxxZxiCPnyNNmzZNFixYILjCvH///tK3b99dE4IlS5Y4Ur1w4UIXGa6ZUA4TEahrCFw7ZeclNLcP7VbXqs76EoHYEMi2aBrbB0Tcoi5uPkZChPbiiy92Yxwuk8p3j0SgR6HG11iIrYhMGNpNcC3l8M/7LR986yVUHnQK+lUf/YJ+2Xp9qZ/OyoH/QTrJ/qOY+w3Oy3W+lZRUkn6alM75yg1NbB999NFdEVsMpGhYhx12WN6LLaBAtoH3xBNPdFuwjjnmGHnuuefk5ptvdueLsL0Yl0dBDr9HwjZkEOHhw4e7iHGLFi3cduVsgz8jtvlMn/v31ldyqF92+zFi6+f7YaTpf2FQyp6H+O3EBruPXn75ZfnnP/8p2BWFhWKkDh06OJKLJ4BwNCdXKtT4GguxrScyZ+wAwYML59wwy8+pErxcCIoF/aqvkozY6hHk5VHF328wYqv3/7glrY/D2vqGJrb4AC6C+tvf/uaip9/85jfl2GOPdeeD8qWqAy8unvrPf/4j3bp1kx/84Adu6xXewsVZWzxG//Of/1yOOuoomTx5snTp0kV69uzpBndsg540aZLMnTtXZs+eLePGjZPFixdn/TSJbT6rkNj6IWQXPxLbJC27s2zrAwL18/OBQuGHnUe4VwKXMiJ99NFHed+xLdT4SmKr8zESWx1ukCKxzYxdMfUbJLZ6/4+QpsMxAAAgAElEQVRbslDjXNz1qFleaGJ75513ytChQ6vJY0vBPffck1dHDLy4wbFVq1YuMovLMUCOcUYWt0AiNW/e3BFVvIs7Z84cGTx4sPt57969ZcaMGY7Y9urVS5YvX+6eAZo3b550796dxDYv+roM1h2e+mW3K4mtzuejSNH/oqBVOy/x24kJFnpx1AYRWzz1E2xLPvzww+Wiiy5yi77ZLo8KUC3U+Epiq2sDJLY63Ehsd+NWzP0Gia3e/+OWtD4Oa+sbith++umnbusxBltETfGOLCKrd911l3t658ADDwz9/c2bN7sVaRBlJDzn884777jyMUAHCfmwWo3zt1XT2rVrpW3btnm3ZzFiG9okGTNad3jqR2Lr5+F+0vQ/4ueHwE7pqmPeIYcc4sgsdkNle+In3zfTHF9JbPNZI/PvSWx1uJHY7satmPsNElu9/8ctaX0eo61vKGKLs6w404rzrjjjioQtwdgmjC0QQdQ1jBJ4qgeE9dBDDw2TXZ2HxFYNnRO07vDUj8TWz8P9pOl/xM8PgZ3SGAcvvPBC99b7kUce6V1kmuMria3OXCS2OtxIbHfjVsz9Bomt3v/jlrQ+j9HWNxSxReGIqCJyi7OwuNzpjjvucO/Jrl692kVwrSUSWz+LWHd46kdi6+fhftL0P+Lnh0BxS2N8JbHV2ZDEVocbia0eNyuS1uflVnBKSw/r8xgtDqGJ7RNPPCHf/va3XSQPaZ999pE//vGPu57f0SqQlJz1BmTdoaifn2cWEj+esfWzXRjpQtqX+oVBwC+Pdfv61c5fmsRWjyGJrR47Xh6lx86CpPV5uQWM0tShVMe50MQWYONpghdffNFdeIHtx/kutUjTQDW/Zb0BWXco6ufnvYXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4F4rYTpw40d1G/Nvf/tZh/qMf/cjdbHzGGWekaYNI37LegKw7FPWL5G61MhcSPxJbP9uFkS6kfalfGAT88li3r1/t/KVJbPUYktjqsSOx1WNnQdL6vNwCRmnqUKrjXF5iO3PmTBk0aJAjsvPnz3eY49mdhx9+WL773e/uIrtpGiPMt6w3IOsORf3CeFn2PIXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4l5PYfvbZZ7Lffvu5i6PwxmzTpk0d5hUVFXL22WcLzt2+/fbbsv/++6dpi1Dfst6ArDsU9QvlZlkzFRI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dB0vq83AJGaepQquNcTmKLW4/xjuxPfvITufnmm6vhPXXqVLnsssvkqaeekhNOOCFNW4T6lvUGZN2hqF8oNyOx9YPJJH5hqsT2EQal7HmInx9+hZYmsdVbgMRWjx2JrR47C5LW5+UWMEpTB+vjsBaLnMR2+/bt7oKoDh06yIoVK9wzP0jbtm1z25HnzZsna9askQMPPFD7/cTkrDcg6w5F/fxcs5D4MWLrZ7sw0oW0L/ULg4BfHuv29audvzSJrR5DEls9diS2euwsSFqfl1vAKE0dSnWcy3vGFu/W3nbbbQ7rs846yz3zg/O1mzZtkp49e8ojjzySph1Cf8t6A7LuUNQvtKtlzFhI/Ehs/WwXRrqQ9qV+YRDwy2Pdvn6185cmsdVjSGKrx47EVo+dBUnr83ILGKWpQ6mOc3mJ7datW+WWW26ptRX54osvlnHjxknLli3TtEPob1lvQNYdivqFdjUSWz+ozOEXpjpsH2FQyp6H+PnhV2hpElu9BUhs9diR2OqxsyBpfV5uAaM0dbA+DmuxyEtsg4I/+eQTWb16teDvjh077rpISvvhpOWsNyDrDkX9/Dy0kPgxYutnuzDShbQv9QuDgF8e6/b1q52/NImtHkMSWz12JLZ67CxIWp+XW8AoTR1KdZwLTWzTBDuOb1lvQNYdivr5eWEh8SOx9bNdGOlC2pf6hUHAL491+/rVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpHYpulFVb5l3aGon59jFBI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dBksTWghV261Cq4xyJbYH8zLpDUT8/xygkfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgiSJrQUrkNjaskIEbaw3IOsTJ+oXwdkyZC0kfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgqT1ebkFjNLUoVTHORMR248++kiaNWtWzZ47duyQLVu2SJMmTar9vKKiQho1aiT169fPaX/rDci6Q1E/v+6lkPiR2PrZLox0Ie1L/cIg4JfHun2j1C6p8XVheccoamTMWyxEBcoH/apvpUls9QgWi7+UQv+RVL8xcuRIvQNQMlYESsFPMwFSUGL7zDPPyNixY6V58+ayfv16GT16tHTr1k2mTp0qEyZMkPbt28u2bdtk+vTpUq9ePRk0aJA0aNBA1qxZIyNGjJAhQ4ZkNTKJrZ//W3d46pfdviS2fr4fRpr+Fwal7HmInx9+YaSTHl9JbMNYoXYeElsdbpAisdVjF1Yy6X6DxDasJZLPZ30c1iJQUGJ76aWXyte+9jW58sorBUT0rbfekvHjx0vDhg2lvLzcRXGHDRsm7dq1c8R206ZNMmbMGFm3bp37GaK3jRs3zlh3ElutS+yUs+7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTYksdXhRmKrxy2KZNL9BoltFGskm9f6PEZb+4IS28cee0zOO+88Offcc+X++++XuXPnSps2baRHjx6ycuVKV6eJEyfK0qVLHbHFzwcOHCiVlZVuKzLylJWVkdhqrZ9DzrrDUz8S2wTcPnSR9L/QUGXMSPz88AsjnfT4SmIbxgq185DY6nAjsdXjFkUy6X6DxDaKNZLNa30c1ta+oMT2pptuktmzZ8uAAQPcduMrrrhCTj/9dOnXr5+sWLHC1WnatGmyYMEC2bhxo/Tv31/69u3rfg4CvGTJEunYsaMsXLhQFi1aVAsDlMNEBOoaAtdOedZV+fah3epa1VlfIhAbAtkWTWP7QMIFJT2+xkJsRWTC0G5SKSLDP++3fGCpl1B50CnoV330C/pl6/WlfjorB/4H6WLtP5LuNzgv1/lWUlLF6qe58CgosQU5ve++++S4444TrBJdc8018txzz7ntxbg8ClFabE1Gwjbkpk2byvDhw2X79u3SokULt1052yVS3Irs1wysr+RQv+z25RlbP98PI03/C4NS9jzEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1BhMf5eVR0c2TlD2s+4v1/i2XJZPuNxixjd6OkpIoZj81S2x79eoll1xyidtejIgttiPfc889ctRRR8nkyZOlS5cu0rNnT3ep1NatW2XSpEluuzKivOPGjZPFixdnrRuJrV9TsO7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTbkVmQdbpAqFqJsfXzIZYGk+w0SW73/xy1ZzH5qltg+8cQTcvHFF7sILW47njJliovezpkzRwYPHuz07t27t8yYMcMRWzS45cuXu2eA5s2bJ927dyexjdvTPy/PusNTPxLbhFw/VLH0v1AwZc1E/PzwCyOd9PhKYhvGCrXzkNjqcCOx1eMWRTLpfoPENoo1ks1rfRzW1r6gW5GhNC6Cwm3IBxxwQLU6bN68WfCOFm4/rprWrl0rbdu2dTcn50qM2GpdYqecdYenfvmJbZey1lkz7du4nvzwopP9nCRBadrXD1ziV9r4ha1dkuMriW1YK1TPR2Krw43EVo9bVMkk+w0S26jWSC6/9XmCtuYFJ7ZaxfPJkdjmQyj37607PPXLT2xzWfhL7faR8cN6+TlJgtK0rx+4xK+08fOrnb80xlcSWx2OJLY63Ehs9bhZkbQ+L7eCU1p6WJ8naHEgsdUi5yln3aGon5+BC4nfy2+sz6r8G++Wy50PvigktsVr3zCaF9L/qF8YBIo7D4mt3n4ktnrseMZWj50FSRJbC1bYrYP1eYIWLRJbLXKectYdivr5GdgqfiC9N0x5nMTWz7zcqk/8PBEobnESW739SGz12JHY6rGzIElia8EKJLa2rBBBG+sNyCrxCSCmfhGcLUNWq/iR2PrZle2D+MWDQHGXQmKrtx+JrR47Els9dhYkrc/LLWCUpg5W56m+GDBi64ugUt66Q1E/pWE/F7OKH4mtn11JbIlfPAgUdykktnr7kdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQFaJDyfuEZwsR1ar9iWxLW37sv3WDfvGU0t9KSS2euxIbPXYkdjqsbMgaX1ebgGjNHWwOk/1xYARW18ElfLWHYr6KQ3LiK0fcMbxI3GMxbw8oxwPjAUrhcRWDz2JrR47Els9dhYkSWwtWGG3Dtbn+Vq0SGy1yHnKWXco6udnYKv4MWLrZ1cSW+IXDwLFXQqJrd5+JLZ67Ehs9dhZkCSxtWAFEltbVoigjfUGZJX4cOIewclyZLVqXxLb0rYv22/dsG88tdSXQmKrx47EVo8dia0eOwuS1uflFjBKUwer81RfDBix9UVQKW/doaif0rCfi1nFj8TWz64kjsQvHgSKuxQSW739SGz12JHY6rGzIElia8EKjNjaskIEbaw3IKvEhxP3CE7GiG08YGUohe3DD1riV9r4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYO1ucJWiwYsdUi5yln3aGon5+BreLHiK2fXbnwQ/ziQaC4SyGx1duPxFaPHYmtHjsLkiS2FqzAiK0tK0TQxnoDskp8OHGP4GSM2MYDFiO2sePI/sUPUuv4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYOpTrOMWKbphdV+ZZ1h6J+fo5hFT9GbP3syoUf4hcPAsVdComt3n4ktnrsSGz12FmQJLG1YAVGbG1ZIYI21huQVeLDiXsEJyviiO2+++wpZ3Y/OGMNTuvaUVq3aBIPEMpS2D6UwH0uRvxKGz+/2vlLk9jqMSSx1WNHYqvHzoKk9Xm5BYzS1MH6PEGLBSO2WuQ85aw7FPXzM7BV/IKIba7ajR16inQpa+0HgKe0Vfy48ONpWBLveAAscCkktnoDkNjqsSOx1WNnQZLE1oIVdutgfZ6lRcsEsf3www+ladOm0rBhw1312LFjh2zZskWaNKkeOaqoqJBGjRpJ/fr1c9bZegOy7lDUT9ukdspZxW/9hgp59PlVsmHDBmnRokW1Ss5/frWsL68QEtv8trdqXxLv/LYLk8O6fcPUIciT1Pi6sLxjFDUy5i0WogLl+4ya5V1fFEBiq4exWPylFPqPpPqNkSNH6h2AkrEiUAp+mgmQghLbNWvWyEUXXSQHHHCArF+/Xq655ho577zzZOrUqTJhwgRp3769bNu2TaZPny716tWTQYMGSYMGDQRyI0aMkCFDhmQ1Momtn/9bd3jqF799R93xmLyy6n0S2xDQ0v9CgJQjC/Hzwy+MdNLjK4ltGCvUzkNiq8MNUiS2euzCSibdb5DYhrVE8vmsj8NaBApKbEFMzzrrLBkwYIBgdeill16Sb3zjGy5yW15eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM9adxFbrEjvlrDs89YvfviS24TGl/4XHKlNO4ueHXxjppMdXEtswViCxnTN2gFRWipxzg3/Em8RW53NRpJLuN0hso1gj2bzWx2Ft7QtKbL/+9a+7aO0jjzwiJ598svzyl7+UPffcU3r06CErV650dZo4caIsXbrUEVv8fODAgVJZWem2IiNPWVkZia3W+jnkrDs89fMzeib8AmKbreQ0tyjTvvHb16/EeKVp33jxzFRa0uMria3OhozY6nCDFImtHruwkkn3GyS2YS2RfD7r47AWgYIS2zZt2shJJ50kv/rVrxyBRZQWEdp+/frJihUrXJ2mTZsmCxYskI0bN0r//v2lb9++7ueQXbJkiXTs2FEWLlwoixYtqoUBymEiAkQgHAITH3xVXn93U9bM15x9mHyp3T7hCmMuIlDkCGRbNC2WaiU9vsZCbEVkwtBuUikiw6c86w1tvYTKg2LXxqAfyrm9COpr3R7W9YOdi7X/SLrf4Lzcu5uLtYBi9dNcIBSU2Hbu3Fl+/etfu+3IiL4ed9xxsnr1are9GJdHIUo7fvx4pz+2IeOCqeHDh8v27dvdxTcgwtkukeJWZD/ft76SQ/3Ss28htijTvunZ1+9LOmnaV4dbFKmkx9dYiG09kWLYqgrceXlUFO/bmbdYIqxxb5W23r/lsmTS/QYjttHbUVISxeynZontt7/9bRd5HTt2rPzlL3+Rf/7zny5Ce9RRR8nkyZOlS5cu0rNnTxk9erRs3bpVJk2aJHPnzpXZs2fLuHHjZPHixVnrRmLr1xSsOzz1S8++JLa1sab/ped/fl/SSVu3b5haJT2+ktiGsULtPNyKrMOtmIhyMfcfSfcbJLZ6/49bspj91CyxBahXXXWVLFu2TDp06ODI7NFHHy1z5syRwYMHO7179+4tM2bMcMS2V69esnz5cvcM0Lx586R79+4ktnF7+uflWXd46udn+Cj4kdiS2Pp5G/GLG78w5SU9vpLYhrECiW0xROQZsd3tp0n3GyS2un4jCako88Akvp9UmQXdihxU6oMPPpCWLVtWq+PmzZvlo48+crcfV01r166Vtm3bVnvzNhM4jNj6uYx1h6d+6dmXxJbEzM/biF/c+EUpL6nxlcQ2ihV252XEVocbpIpla7P1+UkYCyTVb5DYhkE/nTyl4KeZkDJBbJMwIYmtH6rWHZ76pWdfElsSMz9vI35x41fo8jC+ktjqrEBiq8ONxFaPmxVJ6/NyKzilpYf1ebQWBxJbLXKectYdivr5GbiU8COxJTHzaw3EL278Cl0eia3eAiS2euwYsdVjZ0GSxNaCFXbrYH2eqkWLxFaLnKecdYeifn4GLiX8cr1ve0SnVnLLFaf6gZVBupTwix2cEAUSvxAg5chiHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZSpyYkdgy4ujXGohf3PgVujwSW70FSGz12JHY6rGzIGl9Xm4BozR1sD7P12LBiK0WOU856w5F/fwMXOr4vfzGerlhyuPCiK2fnyQlXer+lxRuQbnW8Uu6/vnKJ7HNh1D235PY6rEjsdVjZ0GSxNaCFRixtWWFCNpYb0DWJ07UL4KzlXjENhMSJLZvSFlZmZ+TJCjN9usHrnX8/GrnL01iq8eQxFaPHYmtHjsLktbn5RYwSlOHUh3nGLFN04uqfMu6Q1E/P8codfxIbElsfVpIqbcPH2yKQZbEVm8lEls9diS2euwsSJLYWrACI7a2rBBBG+sNiBO7CMasgxFRP3TyS/v6H4ktiW1+L8uew9f/fL4dRta6fmHqkGQeEls9uiS2euxIbPXYWZC0Pi+3gFGaOpTqOMeIbZpexIhtbGhbb5Clrh+JLYmtT2Mu9fbhg00xyJLY6q1EYqvHjsRWj50FSRJbC1ZgxNaWFSJoY70BcWIXwZiM2PqBlQB+JLYktj5Oyf7PB73Cy5LY6m1AYqvHjsRWj50FSevzcgsYpamD9XFYiwUjtlrkPOWsOxT18zNwqeNHYkti69NCSr19+GBTDLIktnorkdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQJzYRTBmAhFHv6/nly51+5LYktjmbwXZc5R6+/DBphhkSWz1ViKx1WNHYqvHzoKk9Xm5BYzS1MH6OKzFghFbLXKectYdivr5GbjU8QuIbZsWTeS0YzpVA+u0rh2ldYsmXgCWOn5e4IQQJn4hQMqRxTp+frXzlyax1WNIYqvHjsRWj50FSRJbC1bYrUOpjnMktgXyM+sORf38HKPU8QuIbSaUhp59tJTt36Lar47o1CoSoKWOXyQwFJmJnwK0KiLW8fOrnb80ia0eQxJbPXYktnrsLEiS2FqwAomtLStE0MZ6A7I+caJ+EZwtQ9ZSx2/9hgp59PlV1Wo+//nVsr68IiNwmMxFSaWOXxQsNHmJnwa10h/w/VDZLU1iq0eSxFaPHYmtHjsLktbn5RYwSlMH6/MELRaM2GqR85Sz7lDUz8/AdRG/KQ++KG+8s6EacK+set/9n8TWz5+iStdF/4uKUa781vGLs66askhsNajtlCGx1WNHYqvHzoIkia0FK5T+Aq4ZYvvOO+/I/vvvvwvxHTt2yJYtW6RJk+pn9SoqKqRRo0ZSv379nB5ivQFZnzhRP78OiPjtxK/PqFkktn6upJKm/6lg2yVkHb+otUtifF1Y3jGqGrXyFwtRqdqX+VaaxFaPYLH4S6n0H0n0GyNHjtQ7ACVjRaBU/LQmKCaI7YMPPih9+vQRkNl69erJ1KlTZcKECdK+fXvZtm2bTJ8+3f180KBB0qBBA1mzZo2MGDFChgwZktXIJLZ+/m/d4alfcdiXxNbPTlpptg8tcjvlrOMXpXZJja8ktlGssDsvia0ON0iR2OqxiyqZVL9BYhvVEsnlL6VxripKBSe2q1evlhtvvFFmzJjhiO327dulYcOGUl5eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM1qdxNavMVh3eOpXHPYlsfWzk1aa7UOLXGkR2yTHVxJbnY+R2OpwI7HV4xZVMsl+g8Q2qjWSy299nqCteUGJ7SeffCK9evWSP/3pT3LAAQc4YosG1aNHD1m5cqWr08SJE2Xp0qWO2OLnAwcOlMrKSrcVGXnKyspIbLXWzyFn3eGpn5/R08IvILaDehxRTeELT+ucswJp6adFkfppkSsO4mjdvmHQT3p8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmLYVxLhNCBSW21157rXzlK1+RSy+91BFXENuXX35Z+vXrJytWrHD6Tps2TRYsWCAbN26U/v37S9++fd3P27RpI0uWLJGOHTvKwoULZdGiRbXqh3KYiAARKBwC1055NuPHbx/arXBK8ctEIAQC2RZNQ4iayJL0+BoLsRWRCUO7SaWIDM/SV0QBs15C5UGHbH1ZFP2QF32f9fpSv6hW3Zk/8D/8u1j7j6T7Dc7Ldb6VlFSx+mkuPApGbLGNeO+995Zu3XZOcJ999ln373nz5knz5s13nbcdP368+z22ITdt2lSGDx/utiu3aNHCbVfOdokUtyL7NQPrKznUrzjsO+PRV6opOnP+Mvf/qhHc1s0by2nHdKqWj/YtDvtqtaR9tciFk0tjfI2F2NYTmTN2gFRWipxzw86L5nxSUmcwoVOw+8RHP8gyYqtHMCn7xu1/1vu3bBZIo99gxFbv/3FLFquf5sOhYMQW24lff/31Xfodcsgh8uqrrwr+RhR38uTJ0qVLF+nZs6eMHj1atm7dKpMmTZK5c+fK7NmzZdy4cbJ48eKs9SOxzWf63L+37vDUrzjtm2lyeESnVnLLFaeS2PqZlPjVIfzyVTWN8ZXENp8VMv+exFaHG6RIbPXYhZFMo98gsQ1jiXTyWJ9Ha1EoGLGtqXCwFRl/z5kzRwYPHuyy9O7d210sBWKL87jLly93zwAhstu9e3cSW63l88hZd3jq52f4QuFXNYK7fkOFzH9htZDY+tkyk3Sh7Bu2JtQvLFLx5EtifCWx1dmGxFaHG4mtHjetZBL9Bomt1hrxy1kfh7U1NkNsa1Zg8+bN8tFHH7nbj6umtWvXStu2bd3NybkSI7Zal9gpZ93hqV/x2/flN9bLDVMeJ7H1M2VGabYPP1Ct4+dXO5E4xlcSW50VSGx1uJHY6nGLSzKOfoPENi5r+JdTquOcWWLrazISWz8ErTs89St++wbEtmZNcGPysWWNTV++Qf8rfv/LVQPr9vVD318a4yuJrQ5HElsdbiS2etysSFqfl1vBKS09SnWcI7FNy4NqfMe6Q1E/P8cgfvnxy0Zsa0piImgt0b5+FiF+fvgVWprEVm8BEls9djxjq8fOgiSJrQUr7NbB+jisRYvEVoucp5x1h6J+fgYmftHxw/nb4NbkqtIkttGxpP9Fx6yqhHX8/GrnL01iq8eQxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6ArE+cqF8EZ8uQlfj54xe8G0liGx1L+l90zEhsw2NGYhseq5o5SWz12JHY6rGzIGl9Xm4BozR1sD5P0GLBiK0WOU856w5F/fwMTPz88SOx1WNI/9NjB0nr+PnVzl+axFaPIYmtHjsSWz12FiRJbC1YgRFbW1aIoI31BmR94kT9IjgbI7Z+YGXBLyC2Xcpa78oxdugpsX9LUyDbhwa14hlQrdvXD31/aRJbPYYktnrsSGz12FmQtD4vt4BRmjqU6jjHiG2aXlTlW9Ydivr5OQbx88cvILZVS7KyLZn29bdvWVmZXyEJSlu3b4JVD1U0iW0omDJmIrHVY0diq8fOgiSJrQUrFM8CsxYtElstcp5y1idO1M/PwMTPH78K2XtXIXjvFonENhyu9L9wOGXLZR0/v9r5S5PY6jEksdVjR2Krx86CJImtBSuQ2NqyQgRtrDcg6xMn6hfB2TJkJX7x4tdn1CwS2wiQ0v8igFWE7devdv7SJLZ6DEls9diR2OqxsyBpfV5uAaM0dbA+T9BiwYitFjlPOesORf38DEz84sUvILZVSy1k9Jb2jde+fqXFL23dvvHXOFqJJLbR8KrZb1VWipxzw87FOp9ULESvrtWX/Udmryax9Wnt8cuWqp+S2MbvK6FKtO5Q1C+UGbNmIn7x4kdiGw1P+l80vGrmto6fX+38pUls9RgyYqvHrliIPPsPElu9l6cnWap+SmKbng9V+5J1h6J+fo5B/JLDz8K2ZNo3OfvT7+oAACAASURBVPv6lRyPtHX7xlNLfSkktnrsSGz12JHY6rGzIMmIrQUr7NahVMc5EtsC+Zl1h6J+fo5B/JLDj8Q2P7b0v/wY5cphHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZMmQlfsnhR2KbH1v6X36MSGz1GJHY6rEjsdVjR2Krx86CpPV5uQWM0tTB+jxBiwUjtlrkPOWsOxT18zMw8UsOPxLb/NjS//JjRGKrx4jEVo8dia0eOxJbPXYWJElsLViBEVtbVoigjfUGxIlnBGMyIuoHVonhFxDbLmWtXc0uP/toKWvXPHaMipn4sH/xcwfr+PnVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpmI2H744Yey3377VbPnjh07ZMuWLdKkSZNqP6+oqJBGjRpJ/fr1c9rfegOy7lDUz697IX7J4VfzhuTTjukkbVo0kSM6tZKA7Pp9Pb807ZsfIy4M+GEUl3RS4+vC8o7eKhYLUUFFM93MrgGAxFaD2k6ZYvEX6+NDGAsk1W+MHDkyzOeZJwUESsFPM8FUUGL72GOPyZVXXildu3YVENbLL79czjnnHJk6dapMmDBB2rdvL9u2bZPp06dLvXr1ZNCgQdKgQQNZs2aNjBgxQoYMGZLV9CS2fq3CusNTv7pr35ffWO8qP+XBF2XVu+W7gADB7XFMJ2m8V8PEI7j0v7rrf341T0866fGVxFZnSxJbHW4ktnrcokgm3W+Q2EaxRrJ5rc9jtLUvKLE95ZRT5MYbb5QePXrIk08+KUOHDpVly5ZJw4YNpby8XJo1aybDhg2Tdu3aOWK7adMmGTNmjKxbt879DGS4cePGGetOYqt1iZ1y1h2e+tG+859fJe9tqBAQ3VdWvb8LEERub7niVD+A8kjT//zgJX5++IWRTnp8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmtT4Oa2tfUGILogpiuscee8h1113nth5ff/31juiuXLnS1WnixImydOlSR2zx84EDB0plZaXbiow8ZWVlJLZa6+eQs+7w1M/P6KWEHwjuo8+vkoqtn7kILrYlI3rbunlj93cSqZTwSwKffGUSv3wI+f8+6fGVxFZnIxJbHW4ktnrcokgm3W+Q2EaxRrJ5rY/D2toXlNhC6ffee0+uvvpq+e9//ytz5syRjz76SPr16ycrVqxwdZo2bZosWLBANm7cKP3795e+ffu6n7dp00aWLFkiHTt2lIULF8qiRYtqYYBymIgAEagbCLz+7iaZ+OCrtSr7pXb7yDVnH1Y3QGAtY0Mg26JpbB9IoaAkx9dYiK2ITBjaTSpFZPiUZ70RqZdQeVDs2hj0Qzm3F0F9rdvDun6wczH3H0n2G5yXe3dzsRZQzH6aDYiCEts333xTsO3hkksuEazi7LXXXi5qiyguLo9ClHb8+PFOd6wiNW3aVIYPHy7bt2+XFi1auO3K2S6R4lZkP9+3vpJD/Wjfmgis31DhIrf4e/4Lq3f9GjcmD+3T1UVwW7eofhmdFkX6nxa5nXLEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1uRA+ysujopsnKXtY9xfr/VsuSybdbzBiG70dJSVRzH6aC5OCEtsLL7xQunXr5rYhV01HHXWUTJ48Wbp06SI9e/aU0aNHy9atW2XSpEkyd+5cmT17towbN04WL16ctW4ktn5NwbrDUz/aNx8COHt7w5THa2UD0W3S6AvVblAG4cUW5k743V4N8xVNYpYXodwZ2H49AQwhnvT4SmIbwggZsnArsg43SBULUbbev+WyQNL9Bomt3v/jlixmPzVLbLGdeP36nTecIrVu3dptTcaW5MGDB7uf9e7dW2bMmOGIba9evWT58uUuqjtv3jzp3r07iW3cnv55edYdnvr5Gb4u4PfGu+Uy5YEXZP2GzbK+vCIUYMHTQcgMglu2f4uMZLcu4BcKMGUm4qcELoJY0uMriW0EY1TJSmKrw43EVo9bFMmk+w0S2yjWSDav9XFYW/uCRmxzKb1582Z33ha3H1dNa9eulbZt27qbk3MlRmy1LrFTzrrDUz/aNyoCILoVWz51tygHCduWcbMyLp3C5VOZUtUIbxDZrfdJuXQ+7OCoKqSWn+3DD2rr+PnVTiSO8ZXEVmcFElsdbiS2etzikoyj3yCxjcsa/uWU6jhnltj6mozE1g9B6w5P/WhfPwSqSwdPB+GnILhvvLMhJ9ntfkhLOejAtq4QEN9WLZok/nZulPqyfURBq3Ze6/j51c5fGuMria0ORxJbHW4ktnrcrEhan5dbwSktPUp1nCOxTcuDanzHukNRPz/HIH7Fj1/VCG+YyC5qjK3Mp3XtWO38rh8SOmn6nw63QMo6fn6185cmsdVjSGKrx45nbPXYWZAksbVghd06lOo4R2JbID+z7lDUz88xiF9p4hdEdjds2CDlW+vt2sacrbZdylrLsYe3d2d1keK8mTkXwvS/0vQ/v1rFJ01iq8eSxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6AOPGMYMwMWYkf8fNDwE+6pv+B8OKpoVdWvZ+34OBSqrFDT8mbV5uB7UOL3E456/j51c5fmsRWjyGJrR47Els9dhYkrc/LLWCUpg6lOs4xYpumF1X5lnWHon5+jkH86jZ+uKDq6eVvu7O6SJluZkY0F1uXu3RqFdv7ugHq9L/S9j+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK+zWwfo8QYsWia0WOU856w5F/fwMTPyIX00Egkupar6tC3I76LTOsZJb+l9p+59f7fylSWz1GJLY6rEjsdVjZ0GSxNaCFUhsbVkhgjbWGxAnnhGMmSEr8SN+fgj4Sfv4H6K52Lr88hvvV3tft02LJo7cBluVAw3x/yPKWke6ddlHPz9kwklTv3A4Wc1FYqu3DImtHjsSWz12FiStz8stYJSmDtbHYS0WjNhqkfOUs+5Q1M/PwMSP+OVDAOR2xqPLqpHbXDJVCS/+fWznDlm3MdP/8qGf+/fW8fOrnb80ia0eQxJbPXYktnrsLEiS2Fqwwm4dSnWcI7EtkJ9Zdyjq5+cYxI/4hUUgeEoo2KocyOH/iO6uerc8Z1FBpBfv6TZp9AW58LTO5i8/YvsI6x0285HY6u1CYqvHjsRWj50FSRJbC1YgsbVlhQjaWG9AnNhFMGaGrMSP+Pkh4Cedpv9VJbz499PL3qq1jblqbXApVYcWDeVbZ3d325otpjTx09Tfun6aOsUpQ2KrR5PEVo8dia0eOwuS1uflFjBKU4dSHecYsU3Ti6p8y7pDUT8/xyB+xM8PgfzSQaT3jXfLpWLLpzJz/rJaQiC5SEE0N/i7E6K7BSS9bB/57Ws5B4mt3joktnrsSGz12FmQJLG1YIXdOlgfh7VokdhqkfOUs+5Q1M/PwMSP+PkhEF0a25bxZ86i1wSR3VwpILjBuV0Q4MZ7NYx0QVV0DYtnQLXefn2wj0OWxFaPIomtHjsSWz12FiRJbC1YoXjGYS1aJLZa5DzlrE+cqJ+fgYkf8fNDwE967qJ/S7t27SSI5uKc7sdbPnXndfORXpDcgPAmFeFl+/Czb6GlSWz1FiCx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyBO7CIYM0NW4kf8/BDwky5W/wuIbnBuFxFe/DvfBVUBWiC6eJKobP8W7m9cXKWJ9BYrfn5eUzrSJLZ6W5LY6rEjsdVjZ0HS+rzcAkZp6mB9HNZiwYitFjlPOesORf38DEz8iJ8fAn7SGv8LSO4b72xwRDdshDfQNLiduea5Xvy+dfPGjggHSaOfHyLRpK3rF6028ecmsdVjSmKrx47EVo+dBUkSWwtW2K1DqY5zJLYF8jPrDkX9/ByD+BE/PwT8pOP2P0R6cVkVSG/V54nCRnqr1gZR3/qyXVq2aOoiv0EKCLEmAuyHVm3puPGLW79Cl0diq7cAia0eOxJbPXYWJElsLViBxNaWFUSkoqJCGjVqJPXr18+pm/UGZH3iRP38XJ/4ET8/BPyk0/S/gOgi4osURHvx7/UbNsv68gp1ZYIoMAoIzvvi38EZ4KDgmhFh9Qc/F0wTP19d45SPMr4uLO/o/eliISqoaJ9Rs7zriwJIbPUwFou/1LX+I0q/MXLkSL0DUDJWBErVT4smYvvBBx/IoEGDpEGDBrJmzRoZMWKEDBkyJKuRSWz9/N+6w1M/2tcPAT9p+l90/Kqe731+2RvSosXOaG1AiKOc9c319Vqk9/OzwIFMEBnORYat2zc6+rklNOMria3OCiS2OtwgRWKrxy4JSU2/QWKbhCV0ZZbqOFc0xPbWW2+VTZs2yZgxY2TdunXuxk+sEjVu3DijRUlsdY4eSFl3eOpH+/oh4CdN/0sWvyAKjK8EhBj/Di69Cr7uGxFGOUFUuOpN0HvX3yydDzvYr5JFJK0ZX0lsdQYmsdXhRmKrxy0pSU2/QWKblDWil2t9HhO9RjsliobYXn755dKjRw8ZOHCgVFZWuq3IK1eulLKyMhJbrfVzyFl3eOrnZ3TiR/z8EPCTTsL/apPeCnlvw+5t0EFkOAwZvubsw+SM44/yq2QRSWvGVxJbnYFJbHW4kdjqcUtKUtNvXH3N92NRZ+/GX3DlfLz5U5anQAD4JTEOK1SJXaRoiG3//v0Ff/r27etAaNOmjSxZskQ6duwoCxculEWLFlUDp2HDhvLZZ5/FDhgLJAJEgAgQgeJHYOuOBvLJjgayrbK+VGz/gvvz0ba93P/PP7hCLrvssuKvZMgaRB1fsVNq8+bNIUtnNiJQtxDo3LmznH322SVfaU2/saliayy47FFvhytne2Xu+3bCfqwulleqflo0xPbmm2+Wpk2byvDhw2X79u3ufFZ5eXnWS6Ssb0WmfmG7m8z5iB/x80PAT5r+R/z8ELAlHXV8Dat93O2E5YVFPp1xk/bws0exS7PfiMeC1ttRPLVMr5SiIbZz5syRSZMmydy5c2X27Nkybtw4Wbx4cVak4naUuE1C/fwQJX7Ezw8BP2n6H/HzQ8CWdNTxNaz2cbcTlhcWeRJbIGDdX/ysWXhp9hvx2IB+Gg+OQSlFQ2y3bNkivXr1kuXLlwv+PW/ePOnevTuJbbz+sKu0uBta3GpSPz9EiR/x80PAT5r+54df3NJRx9ew34/bziwvLPIktiS2fr4SRpr9RhiU8uex3q/lr4GtHEVDbAPY1q5dK23bthWcoc2V4naUuM1G/fwQJX7Ezw8BP2n6H/HzQ8CmdNjxNaz2cbcTlhcWeRJbEls/X4kizX4jClq181rv1/xql7500RHbsBDhQqkTTjghbPbU81E/P8it44fLzI4//ni/SiYobR0/6udnfOJX2vj51S496bj9kOX52Y742cLPT5vSlaaf+tk2bvz8tElfumSJbfpQ8otEgAgQASJABIgAESACRIAIEAEiUAgESGwLgTq/SQSIABEgAkSgBBH43//+J1u3bpX9999/V+1eeuklwdMSe+yxh6rGH330kbz22mvSrl076dChg6qMJIU2bNggH374oXt+sEGDBupPPfzww26n2T777KMuI5fg+++/716S2G+//dTlw7Z77bWXk8edJ7AHXqyII73++uuuvKD8OMqMowzr/hdHHQtZRtJ+H3fd4vDTJPrJoJ5x6Bc3ZmmWVyeI7ccffyxNmjSRevXqZcR206ZNiQ0k+OCOHTvchVfQIVuCDnvvvXdWHZN0ilLQL0l88pUdBr+KigrnB0lNWHLpGEa/fHVM8vdh9cNAgDa05557JqlOrbLD6IeJLZ4gK0QKqx8mn1pi4VOvMPpt27ZNPv30U8H7qEmkMDqgjTZq1CjrE3JJ6FVqZf72t7+Vq666yvVzQ4YMkd/85jeuigcccID85z//cWNclIQjHZdccom88cYbcvjhh8vGjRudn+A7F1xwQZSiEsn79NNPy0UXXeT0Q0K9DzvsMPn9738vRx99dORvoo0Cq2nTpknXrl0jy9cUeOCBB5w9OnXqJMcdd5y7JRg6/vCHP5Sf/vSnkcufMGGCTJ06VWCXk046SdavXy8gfXj2BU8xRk1f//rX5cknn5TPPvtMzjzzTFm6dKkrYvz48fLtb387anGx57fuf7FXuEAFxu33cVcjbj+Nu5+MW7+48Uu7vJImtuh0sVKMARArGK1bt66G7/PPPy+XXXaZfPGLX5Q1a9bIH/7wB/nqV78aqw0wCGAwaN++vWDyNn36dGnVqtWub6xYscINClhFhQ5XXHGFDB48OFYdchWWTz9M2IcOHeoGQ6z29u3b101Y0kr59PvVr37lBlkkTF4xkL/wwguqSYWmTvn0w+o2BmgM/rAxJjujR4/WfEolk0+/Tz75xPkjJhVIhx56qPz85z9XfUsjlE+/oEy0jS5dusgjjzziJmhppXz6vfrqq25ie9BBB8nmzZtd2x04cGBa6rlJZq7+5c0335QBAwY4GyOShMnyj3/8YzP64U3yV155xfW9IN2Y0Mad8mH0wQcfyKBBgxw+8LMRI0ak2sfFXd9ClQdygmgbyF7Lli3ljDPOkB/84AduzNAS2zZt2jj/RpsKFqbhL+gL8I59s2bNQlcXvnb55ZdnzY/JZtRIIfpL6Hfssce6cfzAAw+Ubt26uRcc3nvvPbdQEiVhgo8nDa+++mo58sgj5fvf/777W5sQJUe9nnrqKdfu3333XTeWox947rnnIi20YizDHOq///2vPProo/KPf/zDzWfQ72Fce/HFFyMvTKG+mFf8/e9/Fzwdg7aKBUyQ5mXLlkWKfidh3zj9T2vDuiAXp98n4Qdx+mkS/WSc+pWCv5U0sb333nsd6cFkCYNMTWKLgRcrl/gbebHKikElrgQii9ubgwF42LBhbivVqFGjdn0CRPaQQw5xemDAwL9BNr7whS/EpUbWcsLod9ddd7kB7J577pF//etfcumllwrIeBopjH5V9Rg5cqS7MRuTgTRSGP2A3zPPPCOTJ0+WyspKue++++Tcc89NJXIWRj8QM6zcz5gxI9IkIg58w+iH7yBC079/f1m1apWbpKVFbMPoh/e00aYvvPBCN9nDRP7f//53HPDkLSOMfr/4xS9cNASLKZiYYqL99ttvV9smmvdDygxh9MNuGvgfJtnHHHNM7MQ2jA633nqrYMfMmDFjZN26dc6eiN4mFT1WwmleDH6GLa6IzGIhF33L6aef7hYujjjiiMgRW0xQsQvi5ZdfdovPVdPXvvY1+eMf/+jKjZIwxn/3u9+ViRMnSvPmzauJgjxH2UYM30I9V69e7drVQw89JH/9618dOQOZR5sDsYySMEHFDbMo789//rPccsstLsrds2dP55/5XoOo+q1AP5SH9oUFLvwbCfiBlB588MGh1YM9sL0c84D58+e7srAIinENdsDPMP5GScGE/Ne//rVrdwg0IGFhANH+L33pS1GKc3O4uOybhP9Fqkwdyhyn3wO2OP0A5cXpp3H3k3HrVwpuV9LENjAQVnozEVusIqOTxt9YbUTUCvniSpiI9+jRQ1auXOmKxGCKrTaITgQJq7wYrEB2sdKNLQVpTTzD6IcV3q985Sty6qmnCm5aw3YjTN7TSGH0C/RAZP788893k6c0FgXw3TD6BZN27A5ANANE46yzzkoDvlD6Pfjggy5ahYk9Ig3YqnbKKaeY0Q+KXHfddXLaaae59gM80yK2YewbAIWFCwymF198sVukSiOF0Q9HIND/IRJ1//33OyyxeyXbsYw49Q6jX/C9//f//p/TK+6IbRgdEMVDPw1ig0k6dlagzy4rK4sTjjpRFhY+EWkbO3aswxQLe9hVg7OYwXGbKEBgsRLRvLPPPtvtJsEi8RNPPLHrLfsoRDT4LkgdooNRSVgmvaEf6os+E0T7tttuc0QeC3BYqIYvRUnBBD+IRIOcYmH08ccfd/1K1GMYiPxioQ07ETAufuMb33CLBVis1ixQT5o0yY0ROAd89913ux0qb731lptDgYhHTZADoUXCrqZgB9uf/vQndT8Vt33j9r+oGNWF/HH7PTCL0w/i9tO4+8m49St2n6vTxBaNCR0pOlackcH2l2BFMw7Dgmz169dv1wCCczMLFiyQO++8c1fxGPCxjQnbpRcvXuwuyNBMADT6htEPEWxM1hFZXrJkiRscQYbSSGH0C/TA5BSLAmmeywmjHzownCHCRAKLJ9jmiO2haRCLMPphlR1bt7/3ve/JrFmzXIQAkRYr+mEnBQgZJk1YeEqT2IbBL/A/EDLoiihfnLs+crWzsPoh4g27YtKNSRoWqdJIYfWDLkkR2zA6YDcA/iDKhoTth+jrcBEQUzQEEI3AzgVsdw2e28P/0SawiBt1qy++jotlQO6wSIEIHo4LnXjiieqIOtpDXIufWDgK9AP5xhNvOA6D3QeI5kZNWDTG4mfULczZvoPjOZhzYK6DqDeIKfooREaxXVyTQJSxyI25CspCVBrtR4sptiLDtph7ffOb3xREb7HIpL0kLE77JuF/GsxLXSZuvwdecftBnH6aRD8Zp37F7m91mthicMSEFIMQtupg4MVKblwJgx46fgwuIApBNKLmVlmsVIIs4pweiHCc5DpXXcLoB2KGyzCwMg3CjQEyU/Q7LsyqlhNGP+THbZQYpHEeuOb2siT0CsoMox8iZFhlB7EIJs3YHh91i5WmHmH0Q+ePs434g61XiIDA/7STiih6htEPixU4K48tjs8++6zbqo8tdHGfhc+kdxj9QBSxMowteogmIRqS1o6LMPph+3Ew6UTEO4iORLGTNm8Y/YKykyK2YXRAv49+DbtRgu2HsGXUaJsWp1KSQ9+BMRSRQhA+LEhh/MC9DDW3E4ept/XyMG5j2yx8BZFkRBpx/hdHEzRtjeWVNn5hfJ557CGAYAR2YeCICi5jQ5+GhIAKxtWoC1Egtpg7YCcfdngg4tq9e3d3XCBqWdAjbv3sWSCaRnWO2OKiA2wdwrZLrBKBEF1//fVumw/OssR9cc5RRx3lzldisMM5GZy7wUp2oAMmdIgWI5qCLcpYXdVs6Ylm9t258+mH1VPoBz2xnQmNDxN3zRYwjY759EOZiJRhQhHnokRYXfPphyj9lClTXBQDW7ZA1N55551UztiiDvn0+9nPfuYu74CPYls+ovPB1vmwGPjky6cfJrYgZ0iIxmNQOeecc9TRmqi65tPvRz/6kVu4AI7YfYEt05bse8cdd7hFs0K0jTD+lzSxzaYD7lVAVBb9MtomIlmIKs6ePVtwbhq7Z5iiIYBt3BgfcIdAnz593PlaXKyENgwfxM6VKMl6eahLcPYOY+TJJ5/sLmhC9BHb6jVtjuWVNn5R/L8u5c0158CRkCg7yJK4PAqLV7hZHItVILLYCYSdPdpL8RAwwlEF7BLCziAQZuzqQz+CeViU+sJP4tav2H2vzhBbRH1wMygcEsQSzwagMQXn9RDpw2Rm3333jdWmGNyCW4579+7tLunBZRiBDiCLcEoMaCA+mGxVff8vVmUyFJZPP0RnMUnBWVskbAXFLclppXz6QQ9ERdHJIKqcdsqnHy4Cw6Vh6LQQvcfCRpq35ubTD3bFWTgsVOAP9MOWurRSPv2q6gG9brjhhtTO2OLb+fQDmcU2fQxS2IqHs4VYHEgr5dMPAyjOOVZN2EIY5dIYn7rk068qsUV/DFIZd8qkAyYO6HODLcfog2FLRHjnzZvnCBpTNASwaIxzq7jVFhf/AMsbb7zRFYIFvZkzZ0ba3m29vKrEFgvT2H59zTXXuPpiFwciMlHH8oDYsrzSxC9ai6obuUFEQe4w/8UFrzW3tOO4YNSL/OK8PAr9EJ4ZRJQVcyQs1uGuHIyrGmIb7IzDRYWYtwYJP8eTZug3vvzlL4c2ftz6hf6w4Yx1gtjmwh+XMyDCAgeNukoS1q5wPGw3zrU1Kdj+mZQOuXQNox8wwsJAlFsZw+KTL18Y/fKVkeTvw+iHbdKFekc0jH7oZOO4TEWDcxj9NOXGJRNGPywQYJAqxPbVMPrFhYWmHAv6hdEBfTDaQCH6OA2uFmVAYLEzCVv1sAsEu1XQNr7zne+4hYOo7yhbLw99Oo5G4CgTjupgYQYTdOzcwKJJ1KMxLK+08bPYZi3ohEUwjJ9YdI1rHhL35VHYlfWtb33L8QQExHD7Nn6meZ8b59Jxzh1HNHDMCjwE25KxGw1bk6s+CRrGPuAvceoX5puW89R5YmvZONSNCBABIkAEiECxIIAdPoha4r1pED0knNfHMRts/46arJeHiyBB2DEhxxZkHDHChBq7S7C7KWpieaWNX1R/qEv5cQQPl6jiSGAcKc7Lo3BZGnYGBu0a97rgyAXuS9Fc9op+ArupcG8IdnoEr1L85Cc/cTsko6a49Yv6fWv5SWytWYT6EAEiQASIABEoYgRwPhbHf3ARCqKQvsl6eVXrh905uEQursTy/JC0jp9f7UpTGjtssLsj6vNWaaOBYxfYlaHdqYV64s4aRFw1N8bnq6+vfvnKt/p7ElurlqFeRIAIEAEiQASKCAGch8N2XDx1gwsag8vVEL3UnN1neTsvpyN+4RqBdX8JV4u6lwt33lRNeEUC23WxNTfqwhi29eZ6agsXNOHMbJSEy+BwKzLel8YrKrg3BUcL0S41O1HiLm/UqFHu4lsQbDwXhste0f+mfSdJFEyTzEtimyS6LJsIEAEiQASIQB1BAGdL8U4y3jrFDdN4gxpnyHCeDNvvot6mz/KIX5SmY91fotSlruT9+OOP3XZcpODv4BgD/o8z+lGJKM6p4sb7p59+2l1IVTXhoqqod9nAr3DhK87Tol+755573K4M3B0Aklro8oJL51DfESNGCC7PwhNAY8aMcW+A17VEYlvXLM76EgEiQASIABGIGQFESvCqAC5KxEUoeJMxeMbjlFNOcU8qIQoTNrE84ldK/hLW7+tivhdeeMG9tnHttdfKJZdcWpg96AAABs5JREFUInhbHMT0/PPPV8OBs/545cH3pZOgH8K2XkSW8QQgLhpEAtnF/QGHHnpoaD3jLg8fDojt//3f/7loNZ5GREI0GZHmgw46KLR+pZCRxLYUrMg6EIEUEcANhkiah8RTVJOfIgJEIGUEsHUQT1YgYvLQQw/JH//4R3cGDTeIat53ZnnEL4oLW/eXKHWpa3kRuR0+fLi7SAlRVuz88CG2ceIH4oobjK+88krBeX9sSUZ0FIt3uDQu6k6UuMsDsYVuiG6DgOPdcPS/6HexuFjzCaU4sbFYFomtRatQpzqNADqpYCsOgMAted/73vdUZzniABIRGERbTj75ZDn++OPdiuXWrVsF55lwAyje6sXWQyYiQATqNgIgr3jiBxM/RDMwUcUtpzjrdeKJJ0YGh+URvyhOY91fotSlrubFVt/+/fvLfffdJ+edd54KhmCnSCbhsrKyyFuHX331VUE0dPDgwe4pr5deekkuv/xywdlWDfmOuzwsJGJLNOqNLci33367wxA3L5911lkqDItZiMS2mK1H3UsSgeCyhGAFbtq0aa6eIJhRL1KIAyB0lF/84hcFFzrgMpiJEye6d9e+//3vu4sUQHJxfo6JCBABIkAEiAARIAKFQmD79u2Cc7R4TxqR35rRSizIN27cuFDq8bspIEBimwLI/AQRiIIAyGunTp12RUGx6nbXXXcJzqHgMoXJkyfL9OnT3bmOCRMmSNeuXd1q4gMPPCC9evWSv//97+7CAJytQKQVxBM/Hzt2rOvQZ86cKb/73e9kzZo1bgUSt+lVVFTI6aefLt27d3fvMmJQwHdBZHFOY968ee49yt/85jfyt7/9TfBG3KxZs6oRWzyrgHcY8QdX1+MSA5TPRASIABEgAkSACBCBNBDAcak2bdq496Xbtm2bxif5DUMIkNgaMgZVIQJAAMS2VatW7ua9999/X66++mrBFfXvvfeeO9MB4oloKbb84fc4VwECChKLBDJ50003yZe+9CVHRnHuCGT4V7/6lbsCHluKcV4EZ2RBfm+99Va3raZly5ZO/qqrrpInnnjCfQfkF0QW38OWG5BgXO6A8zBY+awascXvcP09vo2Hy0GG8fdxxx1HwxIBIlDiCMT9zAbLq+4wUZ8pIX628Cvx5q+uXtx+Gijy5z//WS644AJ3FMInxa2f9fJ8sLIiS2JrxRLUgwh8jkDNM7aI0v74xz92hBU33h177LEuugry+dRTT8nDDz/sLgoAsQ2I5Pjx4+W6665zK5YHH3ywy4Mr83F+BflGjhzpHkBHFBdkF78HscXNhHfccYeL6g4aNEjmzJnjztRW3YoMMpuJ2CKCXF5e7q7AX716tWALNc6g4BtMRIAIlD4CcT+zwfJ2+4zmmRLiZwu/0u8BdDWM2091WmSXils/6+XFjV/a5ZHYpo04v0cE8iAQRGxBQrGlF4QRJBSkFRey4AInPJ8RJERx8W4ZCCuuowcRBqkFucVlGnhIHO+vNWzY0EVjEUkFscX/kUBoQZrxNyK/OEv717/+Vfr16xea2C5dutSdZcGZliuuuGKXbiDNiBgzEQEiUDcQiOuZjQAtlufnN8TPFn5+2pSudNx+GjdScetnvby48UuzPBLbNNHmt4hACARqnrENRHCN+3777SeHHHKIe0bj7rvvliVLlsj999/voqIgtoikIjI7f/586dGjhyOn2I5z4YUX7rqh9Be/+IX88pe/dIQZ/8bNg4iy5iO22L7861//2p25zRSx/frXv+6uwEf0F9uYoR/eozvzzDND1JpZiAARIAJEgAgQASJABIiAHgESWz12lCQCiSCQjdjiY7ggCmdYcZEU0m233eais1j9q0pscbkTCC22KCMdeeSRjnAimvuDH/zAnc8Nfo4yQYZBbIOtw/fee6/07dvXRWxxXTy2I4Os4hsg1cFNyFWf+8Hvr7/++l3fxHXz2I5c195QS8QpWCgRIAJEgAgQASJABIhATgRIbOkgRKAIEcATPCCi+a6tX7dunXtn9sADD6z2dtvmzZvdQ944s1uvXr28COzYscNtc8b38hFVXGiFrdP77rtv3nKZgQgQASJABIgAESACRIAIxIEAiW0cKLIMIkAEiAARIAJEgAgQASJABIgAESgYAiS2BYOeHyYCRIAIEAEiQASIABEgAkSACBCBOBAgsY0DRZZBBIgAESACRIAIEAEiQASIABEgAgVDgMS2YNDzw0SACBABIkAEiAARIAJEgAgQASIQBwIktnGgyDKIABEgAkSACBABIkAEiAARIAJEoGAIkNgWDHp+mAgQASJABIgAESACRIAIEAEiQATiQOD/A/1mTZxCChSWAAAAAElFTkSuQmCC", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "linker.cumulative_num_comparisons_from_blocking_rules_chart()" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Set the output bucket and the additional filepath to write outputs to\n", - "############################################\n", - "# EDIT THESE BEFORE ATTEMPTING TO RUN THIS #\n", - "############################################\n", - "\n", - "bucket = \"my_s3_bucket\"\n", - "database = \"my_athena_database\"\n", - "filepath = \"athena_testing\" # file path inside of your bucket\n", - "aws_filepath = f\"s3://{bucket}/{filepath}\"\n", - "\n", - "# Sessions are generated with a unique ID...\n", - "linker = AthenaLinker(\n", - " input_table_or_tables=df,\n", - " boto3_session=my_session,\n", - " # the bucket to store splink's parquet files\n", - " output_bucket=bucket,\n", - " # the database to store splink's outputs\n", - " output_database=database,\n", - " # folder to output data to\n", - " output_filepath=filepath, \n", - " # table name within your database\n", - " # if blank, it will default to __splink__input_table_randomid\n", - " input_table_aliases=\"__splink__testings\",\n", - " settings_dict=settings,\n", - ")\n", - "\n", - "linker.profile_columns(\n", - " [\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"], top_n=10, bottom_n=5\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "3f8b54a9-5f4a-423b-90ec-d7e93f54f3d9", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v5.json", - "data": { - "values": [ - { - "cartesian": 1279041753, - "cumulative_rows": 243656, - "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99981. This represents the reduction in the total number of comparisons due to your rule(s).", - "row_count": 243656, - "rule": "l.first_name = r.first_name and l.surname = r.surname", - "start": 0 - }, - { - "cartesian": 1279041753, - "cumulative_rows": 268697, - "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99979. This represents the reduction in the total number of comparisons due to your rule(s).", - "row_count": 25041, - "rule": "l.surname = r.surname and l.dob = r.dob", - "start": 243656 - }, - { - "cartesian": 1279041753, - "cumulative_rows": 298602, - "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.999767. This represents the reduction in the total number of comparisons due to your rule(s).", - "row_count": 29905, - "rule": "l.first_name = r.first_name and l.dob = r.dob", - "start": 268697 - }, - { - "cartesian": 1279041753, - "cumulative_rows": 307023, - "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99976. This represents the reduction in the total number of comparisons due to your rule(s).", - "row_count": 8421, - "rule": "l.postcode_fake = r.postcode_fake and l.first_name = r.first_name", - "start": 298602 - } - ] - }, - "encoding": { - "color": { - "field": "rule", - "legend": null, - "scale": { - "scheme": "category20c" - } - }, - "order": { - "field": "cumulative_rows" - }, - "tooltip": [ - { - "field": "rule", - "title": "SQL Condition", - "type": "nominal" - }, - { - "field": "row_count", - "format": ",", - "title": "Comparisons Generated", - "type": "quantitative" - }, - { - "field": "cumulative_rows", - "format": ",", - "title": "Cumulative Comparisons", - "type": "quantitative" - }, - { - "field": "cartesian", - "format": ",", - "title": "Cartesian Product of Input Data", - "type": "quantitative" - }, - { - "field": "reduction_ratio", - "title": "Reduction Ratio (cumulative rows/cartesian product)", - "type": "nominal" - } - ], - "x": { - "field": "start", - "title": "Comparisons Generated by Rule(s)", - "type": "quantitative" - }, - "x2": { - "field": "cumulative_rows" - }, - "y": { - "field": "rule", - "sort": [ - "-x2" - ], - "title": "SQL Blocking Rule" - } - }, - "height": { - "step": 20 - }, - "mark": "bar", - "title": { - "subtitle": "(Counts exclude comparisons already generated by previous rules)", - "text": "Count of Additional Comparisons Generated by Each Blocking Rule" - }, - "width": 450 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAACjCAYAAAA0L44AAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QX8ZUX9//EBJAQUCQUEEQQMuktSurtEurtEOqV+KCCd0kh3SKM0SHdKCAhSiiil+H88x/98PXv3nHvvud/du3fvzjwe+9jd7/eciffMmXnN5zMx2n/+85//hByyAlmBrEBWICuQFcgKZAWyAh0qMFoGyg6Vy69lBbICWYGsQFYgK5AVyApEBTJQ5oaQFcgKZAWyAlmBrEBWICswKAUyUA5KvvxyViArkBXICmQFsgJZgaxABsrcBrICWYGsQFYgK5AVyApkBQalQAbKQcmXX84KDE6Bv/3tb+Gdd94JU089dfjSl740uMhGwNuffPJJ+Mc//hEmnnjiytTTvr/RRhttmObws88+Cx9//HEYZ5xxwthjjz1U3K1+Pywz024ZP/300/Daa6+FKaaYIow77rjDMgvDNa5uatlpQT744IPwwgsvhK9//ethqqmmCmOMMUanUeX3QgjN9usO62+5leCNeSlLv91vsFVarX7/4YcfRm0mmGCCVo/W/n2Z5nW17pYOZYXLQFm7yvMLWYHBK/Dcc8+FzTffPNx5550Dka211lrh5JNPDhNOOOHgE2gRA4i96qqr4sC71FJLdZTexhtvHM4666zwjW98I7z99tulcbz11lth8sknj7/bdNNNw+mnn940LXm5+eabw8MPPxxmn332oZ4t/v6ee+4J2223XTjwwAPDfvvtFx5//PHwwAMPhHnnnTfMPPPM4YQTThji9x0Vss2X1l577XDxxRfH+lxwwQWHeuuvf/1r+OlPfxp+/etfD/xu7rnnDmeeeWaYccYZ20xlxD3WTS3rlvLVV18Nm2yySbjtttsGXv3Od74Tjj/++LDsssvWjW64P3/DDTeE119/Pay66qpNJ2JlGfnXv/4VxhxzzPirRvgwuTJJafY9tlu4zz//PIw11liVjw/2cJivfvWr4e9//3tTaE2J33TTTWHppZceKi/zzTdf+L//+7+w8MILx9+lOOV9MJPz+++/P4h7o402it9nY0iAZ3LYTKN2tS4+p++4++67h3hVfSr/0Ucf3VZ7adUXdZKvdt/JQNmuUvm5rMAwUgBkffe7340d6le+8pWw2mqrhd/+9rfhL3/5S/z5U089NagOsZ1sPvjggwHQGNQuv/zydl4Z4hl5nXTSSWP+f/nLX4YtttiiNI5f/epXYeeddx74nTKPP/74lektvvjiEQyqgLL4exapCy+8MKy44orxjw53l112Cccdd1wESfEUf1+7kDVeSJ34HXfcERZaaKEh3vz3v/8dllhiifC73/0u/vzHP/5xePTRR8PTTz8d/8+qNt1009VIrfuPdlPLOqUrfktTTjllMMlhAT777LNjNLfffntYdNFF60Q53J9daaWVwjXXXFPZxptloBlQ/vOf/wzjjTfeMAFKFulk9V9nnXWG6I9Yfk0kBxMSlLUDpgkogdUKK6wQvvjii/DSSy8NTMZ5SID0sAJKE9Uf/vCH8Ts9//zzhyrmDjvsEHhmTjzxxGHeTyegBJC8GOpB+fW3fmYy0io064tavTvY32egHKyC+f2sQE0FwNdpp50WllxyyXD11VdHl62BgqXq+eefD9dee21Yfvnlw7PPPhutWiDly1/+clhkkUUivLEqmjn7s/3224c111wzvPvuuxFMv/Wtb8VO8NJLL40WuuWWWy784Q9/CA899FAAY3vuuWcYffTRw3rrrRdnwoDQIHzMMccMVYrrrrsuHHzwwRFwuRHB50EHHRRd9Ouvv37s0L3PCnTRRReVqqBMwGmGGWaIf5977rnhJz/5ycCz8rDPPvuEF198MXaYjzzySBxoE1A2+/3LL78cACvrFLjdaaedon6g/Gc/+1m09KbfszbQGHQaDOVljjnmCFtuuWW0FBvgaMXiwOIBSJTNe5tttlnMLw333Xff+Pe3v/3taIncY4894gDerBNXH8osPgMhLQVpn3rqqWH33XcPhx9+eNP6Zn3dcccdo+XkvffeC7feemu04P785z+PdXLXXXeFOeecMw5y3/zmN2O7eOyxx8KGG24YzjvvvPDmm28GYLDXXntFUABi2oK2xZqzwAILRAgXh/yecsopMc+33HJL1HaxxRYbQktt4KSTTgqXXXZZHFy1TeWYdtppY9mq2o6Bv1nbnGaaaWL7ahZ3saGxep9xxhmxPapXbVs44IADIrSpUxqZyPjZlVdeGX8P+n1Lk0wyScv8ABh6sK6zLNLId6H9PPnkk2GbbbaJVn6D/n333Ret5BdccEH8/kwWZp111vCjH/0ofstHHXVUfFd+QMuRRx4Zv42qvMmrvoLn4qOPPortUR0KjTBWBMptt9021iO3rHrdYIMNosWWFV1/oX0IdGPhVb4f/OAHA9IWgVL9li0pYaHTbk1I33///egZ8B2IX6CNvLL40UB/J139XQLKX/ziF7GutUE6auONIQFlcfJrkub7pqP+iYaNQNmsDUqDh0b66sikY5VVVgnrrrtuaARKXgX922STTRbrYuWVVw60NsnSnqr6WW1ZUHfKqP58c6leUlssljcB5e9///sBy2vRQqstaufN+v7GvkifI11xKoNy6scGY8WtGvIyUNaEgfx4VmCwCiTI0hHpRFMorn0BiNx2OsxZZpkldkZ//OMfI7wAKYPh/vvvHwd5nTBgMKMFU9zprHRm0oJ4DNLi0qEb+MGMDld8W2+9dRzQikFnCUAFgyEo9b7BQpriBhMJpo499tihZElWUJ39IYccEoFUXGBIYEkCZgLrkvWk0hAApXWZzX5fdHkDBAO291heWSqBV9ElzjWeygleb7zxxpgWCKNBca0SWBCX8MYbb0SoAmqgQTmABU2SW6wZUMoLkKWdAb0YUp3La7P6lpdk+aSV9FNQB/IlpGUFoDgtp0gw7/cGeHUBJIAmqJloookifCVXKTciUE5BnOC1qKV2a5AUDxcjS7CB1iDZrO0of7O2qR01i7uxkQFY3wWgVpaqYDnJJZdcEr8P5QV+/m1iof6rvhX58XuAZkJgwOdNEIAI3YvpqhsQ/v3vfz8+T5NkYTJJYU3TBr3Hqq5NHnbYYZV5u+KKKwYATX5NmFKoAkq/l/b0008/0IZNLlj0gZN2BjJSn6He/bu45rQIlOq/+DvWdm0ZaJlsiY8GJouCySG4Uze+Z+2WRd6/0+Sp+K15N7l5y+oxARVtE6yqN9+v79QETygCpYlSVf+lDeqDlEOgSfIemMwD1WShBF/aDj2BMeguuryBeLO2A+KShbzYp4jPWszGkICSliaPYN44AUpT32kC2azvL/ZF0tQW9Rfyoc/1vejvtOthHTJQDmtFc3xZgRYKpA7p3nvvjZ1GWWDJ2HXXXQcGaTPyeeaZJw4QQMCA0A5QGrRYhFghDEgJGlq5vJNbLgErwE2WtVdeeSXO0IGKTopbsSzoaMEDQAEj3HECILYJyUAKcFZfffUIJAbLtJ5QObl3mv2+cQ1lo8u7uO5v7733HpiRG4B0tAYP+hio/vSnPw0MFAY3FjtWHR07Cxg9DKAsWgYbdcDS5N8GwWZAyXIMDFhzDKid1DewNjDLNwsYbbj/DOYsQQY7VkTtSbtKQCnPLLjagME41T9tTFJoDzbWWGONmC31CqIApfplkaFF4xrKBHLqlYYAiRXLACxOgFrVdljltY2qttks7rR+UF59E8nKkpYNpHadNFY/AMJkS3jmmWdiPsGEgRVYsHA1y8/3vve92DZZ4mabbbZoEWYlAoasbgkopWOyIT6woy2bhLAGmbz5Xr1TdHmbqDTLmzZjTbG2zQLPom0yKDQDSvkFlNYWs9Bqq+rUdwcuAJk2wzvBQ+CZYigCZWN73W233cIRRxwR65ierNOs/yzg4gbUvCvaRnIb+z+vgfS1r8Y+kMfkN7/5TTjnnHPiJKUYqtZQegaw+xYtoykCpW+uWRvUt5oQ05OHwvchbfGBRnVanLj5RkzshTKgrGrLJrms0PoQWpvUJEBtBpSNmgNQfaKlMXWAkidCevoOExoTVxNuQfriHZYhA+WwVDPHlRVoQ4E0QKW1fukVAxwrApe2gcCsVOeb3FNgREfOqiEUgZIVTQfYaKEEczpynQf3V5oZtwLKNKgX1zJy9fk/gDQQNgNKGwQ8wyphUDGQcBkCDxYyoMi6AXhSp65MyXorHRDT7Pd1gBJUWQ4gcBsZFGjNWiVw3yW3HlDhOuUmMqCrB4OOgRToF0M7QMmCrB4b16uyGrMYfO1rX4sW52b1zTphUEhWQPqoj7SuikucW9FgATgTUBrItTeWsbR2VVnBj0E1WTZTmTynXYKPtNnJ7xqBEmgD7hS0K3XqvVZt54knnogAV9U2m8Xd+HmpUxCTNkOZaIGnP//5zxHq6EH7+eefv/TL5DrURqvyYzNV1W5x4LPVVltF+FA3rGKCdgWQkiUzJeybpmkRKNVFs7yB0QSAQEebMSkQmrm80ya5BGPA17/1GYCEq5eVFlSZkDRuDCsCpTSLLm/LQvwfZIGVotVUvgCwsvtW0qSiUfwEZWkDTerb9BEsosWQypCgze/0dyZP2m9aRlMESm1ef1rVf/kmfTNpcllML7m8iz8rxlMGlFVtOfVnwJulsLj2vBlQ6vOVQT1qo9pAmpA2AmVj31+c3JpcVk1ih8fa7QyUbQBAfiQrMCwVSCBlINJZWldmEGKFMrj50FnsDCbFndHLLLNMHCQBmIEOKOpcPMdKZlBrBEqgAhzqAiVrFzdQ6qy5XqzjFNJmkmZAmSxiZbqxqnGLATYdsfzJJysHwKOBDty6pWa/rwOUOlVrtwQDjfVNaeBIkN24UaAIlCxNQICVwvo4LsJknWploWRBSVYXnb+4lJU1j+WKxqy+zeobTHQClGmAThMIZVX+ZG02OVCP4F8oAmURBopAqd2x4qon8K2dWJ8nAFiQ1aztsGABuLK2acBtFrdBthiSFRlo+2ZSHRuQ5QlQqi+WHWUHEICIxV2bFp/fV+XHd0Mb+WLRnmmmmWK5Lc9IP/cdJ9CXt2SVshwC3KoDlskyoARBzfJmwuBbYNUFVGki0Qwo/Y5lSv7Spjjpg0n1oy1px4Cq6DIu6trOGkoTGHGYgGjf1n2rO0AJ6NVNcnEDIs+Z9Kqbxm+tHaBsXEMp79JP7agIlL7NZm3QO6yG119/fVwDbjLgWzQRSy5v4K5eWem1I3BmclEGlFX9bFonndau8ixIr5XLu7iG0vp21unUxkwGmvX9RaDkDbKO2oRUeROMm4zweBUt/sNijMtAOSxUzHFkBWooAB7Sgu20qSWtrdNxcG9ZB2lGK4BKFj8uIQHMGBgNMN63kBxkCu0Cpc0vOmRwp4PiIioGLj0uGvFb0waaDBY6VpYN+WsGlNyxOmjWSB2awBphIDMgsyjp1NKRHzYqGRzELRg4uWSb/b4RKAGEwcogzBIEoorr/gzw3D7yDea4uAx0jeu6kuWnCJSsxjZ4sIqwwrEWyGtyMTdzeYNHg28Cca5nAwZIoYeyAuxm9c3y1glQGhSVW31KD+yBHK57dQt2uePTrl2a01EZq4CSi9SxTMpjQiPfdBa/fBqcm7UdcFoFcCZKzeLWXouhuA5XeWirXpLWCQTo7Ge08I2kjS0An5WuGVAmOAWO4rf2jFXOpo60BKIIlLQzEaK1NXHWq2nzybWclkD41qXrW6nKG+uU95TNRJTLNK2fbebyVkbfgXqVNk1smhGAhPW/QqOXJGlbBEptvNFKK19c3NouPbQbkCOY9LKe00bQB4BMgJe8E50AJQ1Sf2DSnSyjtAPJRaDUrpu1QSCp/6ST50CjiZZ+iXciraH0c5MOmlsvqZ+qA5TJuirvoE6bEeoApXXJYDpZwdNSnaq+v9gXseCnscZ3b6Lh+9b3awNpE1uN4avpoxkoh5WSOZ6sQA0FACFXcNFdZLDi9kxuWAOdzi5tVNGBGPwtNgeY1qoltxoLAUtXI1Bav2NTiDh0uKkjM2AYbEGcwZb7qhhYnkBZcW2VTsiAZlDnwgFmxU026X3WCVY4wdpEVokUkkXJYGtTR3EDiHhtxNHRJRdTs98noExWWmvX5AfYKLP4gE76PSswuLW2KgW6yYf1nY2DHOiwzlOdgPpk9fBugjR6miCAhmbnUOrIDUbFtOmuztLarGb1DebBSQKXNCFILm9uZPE0rqGUZ4O5YL2r+jPQW1N66KGHDvzcJEVbtKYQiIPsMqBMWhoogVax/ZqYsM61ajtpU05V22wWd9knpg2rR3+nYDLAlUt3SwBMgDyTQEq90Z6erfIDllia0oROGsniaB0il3URKNOJBQBF8J17Ny2PYBH1MwFgAJaqvFnTqq2pN0E6CUqqzqFUNq7WNDkDrrRO8KC9p82AvlU7fxtDq3MobbJh/fI961t84yYC+qNkDU1rmlPc+isTurJvLUF4WvNbzE/VGkr9F9jmORCKQOlbbtZ/sU77pot16nvQbuimTp1yoI34Lq0xTtb9tHnOcoW0KaeqLZtM+mZ8S4I46V91VmjalFM8fizlx/vWQPIUNev7G8+hNLG35Cctb9Fva0/+HtYhA+WwVjTHlxWooYAO3WDOApbckMXXdUisPiwEZpqNlgKQJHRyGLoByfs2NuiMy4IBTfpAL0FijeK19Wi6LUhHXTZjbvX7Rr1YuSwjqLqJRqfMMkVz6xfrBJYKWlXp1SouZQEaJg2sB43lbVXfreJPv09rKFlyAKR6bKw/dW9iMph6NbGQZ8s1GjUZbNtpFneZDuDRej/WqrIjUbR39Sdf1nnWPTZFu/G9aqetbjmSlu+GLmVuRbpbXmBds9+3yps+wjNpA0877YAe6XzGMkArQnA78ZU9Y2LKSkzPshtdlFF7d7lBslh2mlYn77Vqg5Y+0Fb+06bBTtKpegcY0sdmLpDPMsoibXkAS+NgQp2+P/UrYFS/U/f2nXbzmYGyXaXyc1mBrEBWYCRRoAiUvX5o+kgiaV9kM1kCFSatH+yLgvVoIawX5iUQiscGpaPKejTbHWcrA2XH0uUXswJZgaxAbyrAdWcJAJdcuvqyN3Oac9VNBWz8sjzC+sHG3dTdzMeolJYNipaS0J2XiXXS+tN+DBko+7FWc5myAlmBrEBWICuQFcgKdFGBDJRdFDsnlRXICmQFsgJZgaxAVqAfFchA2Y+1msuUFWihgF2ONgYUN/NYwO5GHZuDRsQC+l6uNIva627i6OXyjMp5G5XrUtltBCvbDFY8Y3FUbh/Ds+zuPHfBgLNQ+zFkoOzHWs1lygq0UMBxRNbyOA7DbkHH+BTvmXYcjYNwB7MDuCoLjsFwtEyzu5eHVwU6T9ORG+kmkXbTsYPZGXXOk+yHYLOA21zq6jC8y95p/bSbL0cJOd6m8ciddt/vleccH+aYKLuT6wRHytiw5W7yYhCPMxcdu9VrwTFEjuZKZ6WO6Pw5XsgJBOnu8jr5UQZrKR0z1I8hA2U/1mouU1agiQIGbefq6dgcH+EuXtcROujbkSjO7LNgH/S5HWJYB2cVso464LrbARQC6bJrz5rlpd+A0iRCPVfdJd/teknpdVo/7ea3X4DSxMYZjM6urRNGRqB03qUzH9PB/3XKOzyedTi7w9TPP//82tGzEDt31OTd4e/9FjJQ9luN5vJkBVoo4KYOlgiHfruxxYHX6c7n9GraIexgb4ccu9HDjQ3c4Y4ecbe1M+Zc0ejnLJkOgBavg3QNAmbhzl5j+XCQL4B0jl+6Ocfh2g7Qdng5ayiXO9D188Zz0pyp5/5dt20YTL0z++yzx9s5HJ6uc2d1cmvQXHPNFX9ud6W4nEtpIHUPuoOtE1A6MNrPXYUmOKTZnyWWWCIeii095xbakelwYoc5S9tB2aAYkLHkOsDZOZ2NoSx9VwO6Rs8ubPmml5srHAxtR7aDwp2l6EpE9yQ7YFkZBHcjyzvLonyIxzmT8ik+mjkQngUFmDn4mb5u2HAQuoHQbSluEXGAtOcuv/zyaKFmBXJ1oaUObgGyC9iEQv3Ll/MGpSsO6bByqSt5snxC+m5yEdqpz6p8FoHSbSzakTNDLTeQDxYeemtrDom2a9nvquKTH/WgHFy69JY/rkd1J07tSHBQuyOW6FkMNFJuZ/j5dhxm7lpQoSw/oKGZPlXtp6y88q2+xKnuHR6vrtx6os14R3ut0kXbVy6XACywwAKxPfNKlFkoxe+WG+84+BywOoDdla88Gqm8diw3Wueq2qRvptjuXKBQVn4TTNoqT7pX3OUEzkw0mfP9p2+5rC9SPu3WNyG4CEA7UfdV7btYx43fh8PHq+IrAqXvwpWaDgp3pu1uu+02sIO76jsYDJD2+uCWgbLXayjnLyswjBXQSaeByC0w7vht5vo0WLg9xWAGIg0yBh5wohNNd2MbiKzJBABm8M5fc2WYwckgaN2WgdjNHSwO7r91WLSbLtz+wa3lNhnuWNfDpQAUU1pA0YCmszdQyDfLhfKIU4cO9MTLtXnssceG6aefPkIC+HDQdAJKFoKdd945gong/2CZ1YcL0Hsste7SNUAZHN0q4o9B2sAMUlk7HWBcDMkS1pi+s+gMmDQAqm4iohuQohFwNUCBBVoAcemnq+scli1voNONK96VfzcviZv1wwQB8ANEN5fIC6s0yHGTEo2mnnrqAZe3eqC5gc5dw0ACJLJYu2cd1NBSOwDh4NEh0OJyywxrC0AFBYChVX3SqVk+U/3Ij7wAP2AsT66/pKnDy0GOctKrKj6HSisrCFG/yu7GEG0KrIub7gDVTSjaVtHt6+Brkyj1DLa1D+VU57Qty4/JRpU+Dravaj+N5ZUeWHStqu8q3aTlhhPpmpj5tkySqnRxg9Ntt90W277JmHoygSkDSm2KtuBNHWtfJpYmN9qPoA25qUufUQxVbVJ/UWx3JipV5fddaMvS9p61htL2x8RCe6zqi0x+fC8maYJJrTr3vVS177HHHnugCL6/Yj4dIF8VXxEItQcwCR5NiNWJ/Jp8VH0HJii+I/1X40UVw7ir73p0GSi7LnlOMCsw4hRIVzCybLHGgAXWDRBWFgycbvMAkEsttVR8RKeuszfItgJK6XkWqLC4ia/o8tYZ+7mBXIcORA3gxbMTwRKro0EFHIABg5LDga2HBJfpGkFWUNfYGZRAYAI9wAQuQGIroHSrBVgywBrU0zWHgNJgwfIqLpa6dOd64xV2Vem7lk8caSkByzA4shnKYE+HNHhPOumkERgM3kkDFhEAzTqY7k4GDQZA8AUiwYW8gXRaACDQQd9U78U1lODCulbX4hnU6QZOgSngStdvnn766fE6O2UGTECFhTq1KevKLKNoVZ/aULN8FoES4NDWZMQADbDlQ2DVNpDLT1V8oMi1d+lq0XTfuzbk3yxRoImVnXWa5bK4+Uq8LITpVhN1TwPtuCo/2kuVPr6Dqvaj/ovlpSfoMJliWQSUtNEeii7vqnxoW74THgLPsHK6ock3XwaUvmsTGkEdAi5WQm0BZGpT2iQt03Whqc8AlGVt0nKaYrtTF1Xl1w/pD7R19SE+t9jIk29ffVX1RausskolAFa17+JtRwko0/dhstAKKFlpAaG/06RUG9In8gpUfQf008c0Xks74kaFYZdyBsphp2WOKSvQ8wq479hglEDPgMlNzKKX7hBXCAMmywg3mc0zLDXJrWtAM2jqSItAmaw5yUJZ3PTBJSUeA3kRKFkWWAHBDAsRq5MBr9jZJ+hsFBcM2EzEMmAAZ9VLoMeVDT5Y0Iqh6FJttFCCKdYqZQfLCbLlEWQASjBjYGsMQGqmmWYa+HFV+n4O/riKBbCnrCzA3HXAMm0+YHUDy6y86a5uz8snd166w5jlmAXTnccgG/CwwlkPy3qcgLK4drQIlMmtDyS9w2prOQRXY7rvWl7BLosZ6xG90+Drd2CDPjRoVZ+ebyefja5BehTvDhdPupu+Kj4WTG00tQPuautG01WHrPXKIS0Tn8b2oiwmFcBVKLafqvyAryp9mrUfE4Di2jzAwc2rDpRTYDFuBMqqfJhEmHwUJzsmG9pBGVD6ntKk0TdoOQwABossnKCeTmWTT8+UtUnvFdsdy37V92M5iAmfcu+1115xGY32r7yAkpVa+yrri0yqigBISzDMQlnVvqv6BT9vBMpifKld+u7KrsIEku4Ir/oOUj+prk0m+ylkoOyn2sxlyQq0UEAnBkh0tOAhzZa5YYBLCtxLwMTvDWZFq4QOE4yBOYN1AotkyUtACQ6TC6oKKAEUS4g/IAfIWB8GBFIASixlBuo0sCoH9zVrJqsHtydItmaK1ZJVw7o6lg7B4GpgAQdFC6UBjvsJYBgwuW+BM7eetaNAUh5ZRgGT+FlruQ8Fz3ApW69YPAqkKn3WsBSP9xMocueystIuWeCAApBhfWkESnWTrCLAnfXJ+6zO4FwdgS+Th1ZAKf9u8DCpMHByFdKXdbS43g5w+L22ApjSUociUGoPrepT22snn41AyUXN4qWuBdY7bUKaVfHRT7tM7cBaW7qlXd4LLrhg1Fd9sUKyphUDDQBAOgFB/W+yySZx0lGVH5BQpU+z9gNQikAJ7FmOTfq0dXXq220Eyqp8sLKbFKTlEMoFoLlpy4CS3ukGF9+uNkFrbY2Gvg/WSpbwxgAoy9qk77kIlACz2fdjqQurujbo+7W+NQGl5Tl0LeuLWEx9x2npjomBfkFbq2rfRZhr3AwGKKviS+3ShNskxERQfyHo71gt3c9e9R0kr0aa1PfToJWBsp9qM5clK9BCAesMWQJYtFibBAOVQYd7UMecNq5wdVp7aMAFYlxVOkFruLhtDS5cUKwJwMyz3HatgNKAxuJgPaX1gTpvaYuLm5VrT3wppBm9AddAI+8rrLBCHCiUBUywCHDxGXS4CsGOtXDiZqVheRGngS8NcMoNxLhOL7vssripBDisvPLKsbwADTyADWACBA1Y4Jb1BkTKEzd72jiS8sziWJY+fZXRPcodhmx3AAAgAElEQVRgJl2RaFAycLYLlCwjBmZlBlnWiXGjcY+KAxQrL3cni6L6rbJQql/5MtirX+8azC0XAGCAhvVXe7FxgiWoCpiAdqv6tCmjnXw2AqX8qR/amVjIh7VqwKsqPoCmHoCwdaDW/2o/CShBMmhkzeZebVzTxjoIvljqTMBoaAIFKKvy4xuo0qdZ+9HGikCpjYM6cKQ+tBtrb7VHEzrl5xauyodvihWb54H1UJs1aaxaQ2mZibozebERR5l5KNJkRtuusqr5rsraJGgrtrs0Oaz6ftKSBDCcLKEJKE1yq/oiAGfyJF79k2/CJA1QVrXvtBlLuRqBMnlyyuIrtkswP9VUU8XNXdqPvkF9mMRVfQc0YL1Mk+1+GrQyUPZTbeayZAXaUMBsGrSxMAoGORbBa665ZuBt4MbdZMDmCrUTGmwIOkMdqMHX4JYW6LMsGIBbAaUF8wZL1gvWDusjWQ9BArABV0X3uzTBZ/H+W7AHxoAiK6H1fAYQLjHr+lgP5DO5j20GACNAj9sPEKTBTfzcoNbPsY7SxiBOA4Gr3gBjbaP8cTsmlzUQMXA3nt/nGKay9FktQA1IU1760p1lpgwoud4BbtGSacBkGZEngS4GW9ZU5aSvAD6ANhDkEkzl9ruiy9vkQP6T9Rdos5Ky/hkgUzoAmhVP2mXAxHJkjV2r+gRz7eSz8bw/G5BYn9W1ID8sfqxuVfFpj8pjwiDQElwmoAQBQMgkh5u3MSTLr0mDZQT0YK3zzVTlx2SkSp9m7aexvNonC7HAEq/+AJeJje9BfrVpm9/KdAE62qz3fLvaKihmoS2zUNIBWAnaKEt3Wk/KWm7CZzJQFgBlWZu0xKDY7rzb7PtJ9aHv4eIWfBdpKUhVX6Q+pWOyoB1rz74ZQFnVvovlSDql48TUe1V8xXrybQBm/ZcA2NWNvqTqOzCJMRlMVvNSQUfSH2agHEkrLmc7K9CpAjo87qDGMya5PEEEq0hxDaN00mzfIv/GI3LsXBUMOO0GHXdyCbGasijaySr+qsDSxrJp4Cve8NMsTWUCvtyiZUHawAAINQaWUWUzCDceY2TDDqhgHWUlrQpV6Rs4DfIG4ro38HgHWIBQA2njrUYsH4Ac1Kg3f6rKn/KtPuyyF7f3UrB+lObc+cCtUYcqTdupz07yqbzgQr2xYhXz0yw+ZVNPje1L/dDP8gDr9xoDK5k1iKzJ0gKoyUrq2Wb5adYu220/yqmtWHIhfe+pW20atPjm/LtZPqwxtrZY3bLkNQviNEFr/B5YRE0A0/FBjXG0apONz7db/rK8NuuL9F/0abyJpqp9t+qvquIrvgc+bbYD1Cz5KVT1a9qSdeQsp/0WMlD2W43m8mQFWijAesbqxl2rc8th5FIgDd7p/MyRK/e9k1trQVliwUeVtQhMm1CwpKdlEJYXsMaPCoGrnUYsvLRonGgmDXKbbK81sLCyvLIEtzM5ay/W3nkqA2Xv1EXOSVagawqYUbOwjYjrD7tWyD5NyHIDyxZYR3PoXAGub1ZoLvHk7i+LzZpi6+FY+rhS007ozlMeed7k0rWWkgu8aH1rLEFuk+3VKdc6K3m/frsZKNtrB/mprEBWICuQFcgKZAWyAlmBCgUyUOamkRXICmQFsgJZgaxAViArMCgFMlAOSr78clYgK5AVyApkBbICWYGsQAbK3AayAlmBrEBWICuQFcgKZAUGpUBbQOl4C9vcHSjrIFXb4Z3V1nif56Bykl/OCmQFsgJZgaxAViArkBUYKRVoCyjtgnOfruAwYYeVuqXC2VbOksshK5AVyApkBbICWYGsQFZg1FWgJVA6tNNhqO7pdLCwQ1Sdf+bO0+KdmqOuhLnkWYGsQFYgK5AVyApkBUZtBVoCpZsS3OTgGrF0s4VroNzf+8EHH7S8gWHUljeXPiuQFcgKZAWyAlmBrED/K9ASKElQvHszSeI+UNdQ5ZAVyApkBbICWYGsQFYgKzBqK9AWULon9KGHHgquqnLZ+uyzzx522GGHymuYRm1Jc+mzAlmBrEBWICuQFcgKjFoKNAXKP/7xj/HS+aowzTTThNFHH33UUiyXNiuQFcgKZAWyAlmBrEBWYAgFmgJlq8vL//a3v4WvfvWrWdKsQFYgK5AVyApkBbICWYFRWIGmQPnLX/4y2JRTFXbeeecw1lhjjcLy5aJnBbICWYGsQFYgK5AVyAq0tYbSbu4y1/dEE02UFcwKjHIKXHvttWGGGWYY5cqdC5wVyApkBbICWYGkwHe+850hxGgLKCeddNLwl7/8ZSgVs8s7N6xRUYHtrnhmVCx2LnNWICswiiiw3Q+nCt//xnjDtLT2ZDQCyDBN4P9H1k/p9HJZyvLWFlDuv//+wfWLwkcffRQuvPDC8K1vfSs8/PDD+aac4fFF5Dh7WoEMlD1dPTlzWYGswCAVyEDZWsBuwF430lDSTtLpGCgbpT3zzDPDJptsEt5///0w4YQTtlY+P5EV6CMFMlD2UWXmomQFsgJDKZCBsnWj6ATCWsc65BPdSKPrQHnNNdeETz75JJbUJp3zzjsvXHfddeHll18OU089dV2N8vNZgZFagQyUI3X15cxnBbICLRTIQNm6iXQD9rqRRteBsmwN5Q9/+MNw5513hrKjhf785z+HDz/8MHzve98bolZeffXV8MYbb4SJJ544Hjc0+eSTt661Pnni888/D7fffnuYY445wvPPPx8WWGCBPilZe8X4wx/+ENtD8Zipe+65J8w111wj3UkBGSjbq/P8VFYgKzByKpCBsnW9dQP2upFG14HylltuGbBQAkjrJ7///e9XgsD5558f7r///nDssccO1Mrrr78ed8ZefPHFcT3mVFNNFeadd96WtbbggguG3//+92GMMcZo+WwvP7DNNtvEch9yyCHh9NNPDwcddFDL7D711FPh5JNPDscdd1zLZ3v9geWWWy6W3S1LKWhHQHOyySbr9ewPkb8MlCNVdeXMZgWyAjUVyEDZWrBuwF430ugaUNrF7SxKhVpjjTUCq6QjU958883w6KOPhrPPPjuMN97QO8HKgBIY3n333cEGn6985SsRLr/44otw4403xs09RxxxRPjtb38bzjrrrPCNb3wjxu3fRx55ZFh55ZXDlVdeWVrDiy++eJhvvvkipM0555xxwxArmP8fffTR4Utf+lJwXuZGG20U9t5772g5vemmm8K0004bll9++XD44YeH6aabLlx22WVxPehhhx0WTjrppDDllFOGE044IVoU6wRLAYplYom86qqrwvrrrx++/vWvh0svvTRqcPXVVweQJe+PP/54OO2008KOO+4Y351//vlj2RdZZJH4O3ncfffdh8rGa6+9Fq/A/PKXvxxuu+224H51erEQb7vttlFvcZ1xxhlxM9VWW20VJphggvDAAw/E926++eYIdEBvs802i8C7/fbbx3pYaKGFwimnnBKtySlY7rDLLrvEKzjdkvSLX/wiTgqq6sD76pVlknXaUolWQKn+1IH8Kveaa64ZFl544WDZhbz72cwzzxyzVNR53333HaodaJtl+a1Tn2XPZqAcrIL5/axAVqCXFchA2bp2ugF73Uija0C5wQYbhHPPPXdAWVv+FTCFqmODyoCSe3OnnXaKbt999tknwh9rJwgCjyyWIOjee+8N3n/iiScisIw//vjhvffeC1VnXnLHr7feehGEQK+4F1100fDtb387wpKrIaX1zjvvhC233DI8/fTTwaYiAPXZZ5+F3/zmN/HdDTfcMILKuuuuG62oYAucAaF0veQ//vGPcPzxxw/V0rw/7rjjxp/LeyrT6quvHoH7008/DWuvvXZMA0DOM8884U9/+lO09M4666wRoO66665YZnAHHsGksh1wwAERgFP8xcRffPHFMP3008f8Wssq3rfffjuCNPijxZ577hmPagDlnlX2ccYZJ5bz1FNPjeC8xRZbxPwAaPUkTflQP55PAWgCROmBOfBnglFWByYQoB18vvvuuzE9E4dmQPnxxx/HuOigHBtvvHFgpTVBUA+AH3TPPffcQ7QdOitjYztQzrL8tu4qmj+RgXKwCub3swJZgV5WIANl69rpBux1I42uAaXBHYRwuf70pz+NVjCwAXYAHgArW0NZBpRPPvlktJABJxbDBJQsdRdddFE855KlkCUR/EiDdVH81h/6d1mQx4ceeiiC0V577RW++c1vRjAFWyx04OSoo44KDmcHtNbsbbfddhFMQCcLljIBV+l4Z7XVVotJbbrppoEVEPgJrGbiagy77rrrgKVW2VOZis8BSuBGM2VPQAnSZppppnDDDTeEtdZaK/zsZz8LK620UphlllmiJREQ3nrrraVlV8all146vPTSS/H3gJJV8Ac/+EEE92eeeSYC7pJLLhkBmrXVznyAzs2svP6AVQfXL7XUUjF/M844Y7BEAeinuMX/r3/9K2oNDMXvd/5fVgfWxwJPdSuAS9bZZkApDyye8saiu8wyy0RrdhVQFnUuy4P2Vpbf1l1FBsrBapTfzwpkBUZeBTJQtq67bsBeN9LoGlCCuQMPPDDst99+0fW92267NYW7VAV1gLK41pL1EISwinIHA9l2gPLZZ5+N1iuu5EkmmSRaw7iXWfoAJLdpAkpWzBVWWCGCJGgDsAkoVR53PphNwe/T0UiASlqNwXrSBLxlZfd8FVAW1xACR659IMdNzWrbCihZ5x577LGYJVZBmrEcAj4WUfllJQWU6VnWWhDLCsgqmIAS9IH5BNB+zqqbAmskyAbmIE8eE1A21gGrrp+l9Z8g2jKEVi5vEwsQeskll8T8geKvfe1rAxZKoAmitYti2wGUjXngli/Lb+uu4n9PmACZZBTDn767Up0o8rNZgaxAVmCkUiADZevq6gbsdSONrgLlz3/+8+g65UYFYWVXMDZKX4Qqgz6rF2HKLJQJCqw9NHAfeuihcd3gqquuGi1gwAH0cF+WhTKQYHmUX1DFigWSWOZYRpsBJTA855xzwgUXXBB3oy+77LLhkUceGdh8xHVrHWlj4KZPLvli2Yu73VsBJRgGXayTXM/gGhDSHNSUBRbKMqBcZ511ojsbYLJaLrHEEmHzzTdvCZSsoyCWBZduLIr0SIFVF7Bbr8gq+7vf/a4SKFk7lYWV1bpV8Va5vLUpzwBHwHj99dfHegfyINF6TksTtCPrMS0RaAco6VOWX6CqLlliTRLuu+++uBTBpIAl3WREu6oK2eXdurPNT2QFsgIjrwIZKFvXXTdgrxtpdBUouRwNsKxaNm0Ur04CflWbcoDEMcccEy1ZoNGavjKgTM+JmzUROBrkuditoQNF3NFcwq2AkqURQIAS7l0bSsYaa6wIpKAybS5qtFCywkpj6623jhZLVjfPWi/JfV4nAMpUphNPPDFCsp9VAeWDDz4Y4cU7wI/VlDWVlRYYs7Jx5e+xxx5DZaMKKO+4445oUaY9HazBvOKKK2L5WDOrLJSsgSDW2lgw7D2glYL1lUA/5Yu7HnTSO1kHUx2AUjvbbcSxaQgsspw2WiiV34aopJO4pCsNz3Lh26DE2iwO7YOlHFAmneWvOLFIeVD2svwCShZQ0Kys4k3rgbUNQG4dbAbKOi0/P5sVyAr0iwIZKFvXZDdgrxtpdA0oWYPAXVWoAsrWVVH+hF3fL7zwQoQoIChI/5///GeEjMYAbqt2YYvrrbfeimsqxeFgdtDYTvDe2GOP3fVbgJSTy53rOa1NlXc/A0+NwXrD5J5u/B2LLPjitk6wVLbetUyPV155Ja5jLLMKyyMtWWT9m1Uv1VVZXFzYwLbKwlz2jg04dnQDvRSkJZ2qtbRV9Vo3v+20j2yhbEel/ExWICswsiqQgbJ1zXUD9rqRRteAsrWk3XmCddNaw8bAcgq++j2wWD733HNDFdMmJhbZHLqrQAbK7uqdU8sKZAW6q0AGytZ6dwP2upHGKAeUras2P5EV6J4CGSi7p3VOKSuQFei+AhkoW2veDdjrRhoZKFvXdX4iKzDcFMhAOdykzRFnBbICPaBABsrWldAN2OtGGhkoW9d1fiIrMNwUyEA53KTNEWcFsgI9oEAGytaV0A3Y60YaXQdKx8nYhd0YXJHozEfH7eSQFRhVFMhAOarUdC5nVmDUVCADZet67wbsdSONrgOlI1ns1i0LjhVyfA24zCErMCoo8H//93+ld6sP67J3ozPpRhqddlid6NlP5emnsnSrDWTNOvlqQjwmr3gkYGexNH+rG2l0q511K51e1qwsb6P9p42TylkhXRXoPEDHtuywww7BvdbOA3T491VXXRUPsc4hKzAqKJCBsn4t93LHWL80eQDOmg1/AOsWtHQrndwH1P9qelmzjoDSOYhjjjlmPLw63Zri0PEjjzwyusGd83jsscfGA8FzyAqMCgpkoKxfy73cMdYvTQbKrFl/A+XTb34U/vbP6jOoO6n/Ou9MNfGXwxQTjl3nlYFn+6mv6eWydASUaskB588//3xYa6214q0n7pp2g4rbUNwo8sQTT8S7oXPICowKCmSgrF/Lvdwx1i9NBsqsWQbKTtpAu+9koPyvUr3cb3YMlO43dqf3xRdfHAu54oorBtcVPvrooxEmXfM3+uijt9tW8nNZgZFagQyU9auvlzvG+qXpTkefNatfM1mz+pqVgUu2ULbWsRttrRtpdAquHQNlkvbTTz8Nn3/+edtXGLaukvxEVmDkUyADZf066+WOsX5pMlBmzbKFspM20O472ULZxxbKO++8M66ZvPfee4doDy+99FIpXLrrmfWSWzyH/lDA9Y+gYM455xwoUDv17MpMSybc590Y/vrXv8YTAuaaa67hKlJZ3osJKpfQ7i7HDJT1qysDZdasG22gG2l0atGp3wK6M3HJFspOaqY7ddPL7bljC+WMM84Ynn766TDHHHOEscYaa0D9W2+9NYw77rhD1carr74allpqqdL7pzuruvzWiFbgvvvuC4cffni48sorB7LSTj0vt9xy4ZBDDgmzzz77UEUAm/vvv3+4/vrrh2vxyvJeTPCoo44KX3zxRbDZrJ2QgbIdlYZ8ppc7xvqlyYNJ1ixbKDtpA+2+ky2U/1Wql/vNjoDy3//+dzwqyMB/wAEHtNUeqkBj3333jUcPObPSxh4wusceewyszVxttdXC8ccfH04//fToWv/Nb34TjjjiiPC73/0uPPjgg+H111+P/3eM0d133x323HPP8PLLL4c111wzgILXXnstbLXVVmGCCSYIDzzwQDze6Oabbw7ABdRsttlm4YUXXghbbLFFtIytt9564eCDD47lqxNAEuvr448/Hi699NL4KivYjjvuGG688cYw//zzx3LecsstgRa77rpreP/998OPf/zjcMMNN4Ti+zY1AfN2ygfmrrnmmgjqdtgrnx32LIXnnXdemHvuucN1110XHERvdz69xV8Mf/7zn8O2224b9ZPPM844I3z00UcxLhuubrvttvgOi/Rbb70VNtlkk5ie8joqqh2gPOWUU2I9sUwqv7w5DWDTTTcNd9xxR1hwwQVjuo6icjrAxBNPHNPYfvvtwz777FOnKsKbb74Z864tzTzzzPEoK6Eq79rF5ptvHtvNhhtuGI4++uioobqSB8H/l19++cp8ZKCsVUU93zHWL013OvpeHkyyZhkoO2kD7b6TgbJPgVKxNt544whoF154YZhwwgkH2sQUU0wRRhtttKHaSBlQ3n///RFOuM3PP//8uJkHQKyzzjrhsccei3EAEEB26KGHRsg66aSTBoCB2x10AcennnoqzDPPPBGcllhiibDIIouE0047LUw00URh+umnD2eeeWYYZ5xxInieeuqpYcopp4wQCWDWWGONCFLeAxZ2qm+wwQYDZQCz77333hBlWmWVVWLeUvjWt74VZp111nDYYYdFiBHkVZmA6+677x7z9M9//jMCLLh6++23o2tXHorvP/TQQxGI2ikfK3GqC5AGfNQLiARWJ554YlAn6glkrr322uHhhx8O00033UDeQbhJAnDzb27elVdeOepm09XUU08dtZVfFkmgvMsuu4SddtopOMS+FVC+8847Ydpppw2XX355ePfdd2MdyMPVV18dy77XXnvFyckPfvCDsOSSS8a0QPnkk08elllmmWAZxde//vW260Nbk2cTEzqKR5DnsryDWcC8wAILRC2POeaYqCFI/O1vfxvbok1m2lhVyEDZ7rDwv+cyHGXNutEGupGGmuz3dPKmnNbfazfaQDfS6LQ9d2ShlFjVTTl/+9vfStfGlQGlm3aADYsUgAFcYKsKKLnXWRtZ+sAoYGOVsxbPWexg5fbbb49WJcB2wQUXROjzHmsgKJxsssmipdMfFiyA529xcd2DVvH5fwonnHDCUEAJQmeYYYYhgBJ8FI9KYnl0rBLIdcj7LLPMEiG3CijT+3XKB9aAGVjzh5Xv2muvjeVgUdx7770jHPtbUBYWOxqnADTp9swzz0SwB3Ust0svvXSEOQHksTJ677LLLovlBKn+tAJKzwPTiy66KMYFLgGjNFic1ZE6oxV4B3fJMijvThBgcW63PrQ1UA8exxhjjIH3pNOYd3oBWbAs+D9IZz1lsTzuuOPiz7X3Rx55JP68LGSgbN3ZNj7Ryx1j/dJ0ByiyZvVrJmtWX7MyoMhA2VrHbrS1bqTRdaD81a9+VXqXN3gae+yhDx+tcnkbvMHGueeeG92+22yzzRBACe64kVkoAc7qq68egdJ7oBEQjjfeeHG9G2sfQHVTDzBgFQQR3mFlAl9ACDx8/PHHESS5zFkrWTlTcA+5OFIAgHazF8NUU001BDizMHKjA9ZiAHaAiztfnkBOAkrQxCqaLJTp/TrlU6akhXT88X4CSi7c/fbbL4J4CosvvniE2xToBCg9++yzz0Y9wV7SzXOseCx3iy22WDx/VDlZQQFyK6AEseJNcGYTj/cWXXTRAeuj36e6ZVmUf4EVWX5ZVtutj7K2pn187WtfGyrvljeIO1kfAa1/q0+gzXoq+L91l6y9d911V1we0BjoOLxDNzqTbqTRaYfVib79VJ5+Kku32kDWrJOvZugJUgbK1jp2o611I41Ov82OLZStpR3yieIgDx4M7ly7BmawCBpXXXXVuJ6OxeiNN96Ia+1YmliKWgGl9XEgB2CyRoJElrpWQMmyyVUNwmabbbYIX6xQW2+99UABVlhhhQiBxQCSwGAKRaBkPZVvVivwxDrpeeC38MILRyvgFVdcEaGKO7wdoKwqXyugBOrKxfrIWgfanB9a3JlNI8sAQCNLZHL9NwIlIATeQNBSBUsD1FMVUKZ6ZrWmATfyhx9+GMA4l7e1itJihbRUAGyzRAJIllHrWE0StJEiqLeqj2Jb0x4AorWkbnZqzLt6ELc0tBlWUhALmpXLWl3LFvw8WU3L2n62UNbtEbpj0eu0Y6xfmu6Up5cHk6xZXkPZSRto9528hvK/SvVyH1ALKLmJDbrW2rHkgJzGUHVsUHGQNzhzq3KfAgZrG20YsaPWGjbr3rhHpcWCCNAApfV0NumUWfCAITc0cBKs/wOWrILNLJTec++49XWCvIBam0LqBEBpPSfXKKuqPHPHAybWQLAE7sAq6x9rJJCV3wSU6f065QN2VRZKwAaqDzrooAivwI772FrL4jpXlkdrBOXb8oCbbropAi+oTmtZwSagZKllyQRq6sf6RK72FMrq2bpUlmfp2uRjMsFVrj35nXr67LPP4uYf8apjQX6TG7xOXRTzYKIi70CWhbEs764PtSRAHqwftWmLXieffHJslz4SFubiutrG/GSgrFNDvd8x1i9Ndzr6Xh5MsmYZKDtpA+2+k4Gy9/vNWkBpcOV2BjEgrHGjiuLacVx2bFBVo+GKZP2bZppphjh+CACUnVPYqvHZsWzHOGsciCtuGGr2rrLZEW4zx7C84Qcg2Rxj3WAR4sCSned1Q6flo6ed21VrAEEdmFZ3aR1s2eYq+aWV9a9VcVWVyTvqVDrFAAC5kos764GrPBc349TVquz5qryDSUshQHJjPWlL448/ftPkM1DWr50MR1mzbrSBbqShJvs9nezybv29dqMNdCONTttzLaAsyulIlaLL10DNbcrCyAqVQ1ZgVFIgA2X92u7ljrF+aboDFFmz+jWTNauvWRlQZKBsrWM32lo30ug6UHLxchPvvPPO8Xgbmz64Xqt2ebeuivxEVmDkVSADZf266+WOsX5pMlBmzbLLu5M20O472eX9X6V6ud/s2ELpAHBHvtjsYD2gYIe3TSZ1DwVvt0Hl57ICvapABsr6NdPLHWP90nSno8+a1a+ZrFl9zbKFctho1lkszd/q5fbcMVA6CNt5hjZ+WLNol2zxsOzhIWSOMyvQqwpkoKxfM73cMdYvTQbKrFm2UHbSBtp9J1so+9BCaces3csp2EUrfPe7342bLe655554jmEOWYFRSYEMlPVrOwNl1qwbbaAbaZRZ9OrXbntvjKjy5DWUreunG3XTjTQ6bc+1LZTOCLRzuSo4kLrOLu/WVZSfyAr0vgIZKOvXUS93jPVLky2UWbP+tlB2Ur+t3sl9QCuFhv59L2tWGyiLxbMJx5mCLJKOs3HDTA5ZgVFRgQyU9Wu9lzvG+qXJQJk1y0BZtw3kPqCuYt3pZ7pmoUzFP/7448P2228f3D/t5pMZZ5wxbsoxsOaQFRjVFMhAWb/G82CSNetGG+hGGp0OwPVbQG8DRd3y1KmbY299KZx1z6t1kxjuz0803ljhll0WjOnUKU+nGetGGp2WpWMLpev6HDp96aWXRgvltttuG2+CcRVf3QOvOxU2v5cV6BUFMlDWr4le7hjrlyYPJlmzbKGs2wbq9AEZKP+rbh3N6tZH8flO0ukIKB1iPuaYY8azJ0866aSYB/dT/+QnPwn33ntvmG+++QZTjvxuVmCkUyADZf0q66TDqp9Kb3fAdcuTNaurWH/Vf68DRd3aqdOeM1D2KVAq1sILLxwPNJDuilsAACAASURBVF955ZXDV77ylXgVo6sEX3zxxTD22GPXbVf5+azASK1ABsr61VdnMKkf+//e6Kd0+qks3YKjrFlnX083dKuTRgbKPgbKl19+OZ5BedFFF8V7nZdffvl4LuUiiyxS2nqfeeaZMPHEE8czK4vhwQcfjBt73n333TDrrLOOUtc2ulXorrvuiofDK/8MM8zQ2Zc/Er7lnnWdyZxzzjmQ+08++SQ8+uijTS3cDtG33KLsnve//vWvcUIz11xzdV2RDJT1Ja8zmNSPPQNl1qz3B+BO6qifvps6ZclA2fvtuSOXd/EjMIgDo29/+9tNv40tttgiLL300mH11VcfeA6MHnnkkeGss84Kl19+edh6660jdDYLTz31VDj55JPDcccd18m32FPvTDvttGHLLbcMSy65ZFAuSwZaBdddrr/++mH22Wdv9WhP//6+++4Lhx9+eLjyyisH8vnqq6+GpZZaKjz33HOVeV9uueXibUxl5Qeb+++/f7j++uu7XvYMlPUlrzOY1I89A2XWrPcH4E7qqJ++mzplyUDZ++25Y6D04h577BEuueSSWEpQtM8++0RXeFloBErw4JB0MHreeefFNZgsnqeffnr4/PPP47WOoGPXXXcNN954Y5h//vkjeLKAOkwdjOy+++5DJfXaa6+FHXbYIVo6b7vttghpoNWxRjYOudFHXGeccUaYaKKJgnM1Z5tttnDxxReHNdZYI4w22mgxL6uttlo48cQTw0cffTSwm32hhRYKp5xySkvobczUQQcdNFAmsORqSuDj5z/60Y+ibvK1ySabxLw7x3PmmWcO7ks/7LDDYh6U94svvgjrrLNOmHLKKcNjjz0W898YAJqzQFl+X3/99XDEEUeEddddN8a/5557BpblNddcMxx11FER5q655poIcA6rl/axxx4bWArVCcvpCy+8ENQdy5/rNg8++OAhrtYs01V+y+rgrbfeimWUnnW2//jHP9oCSporB8ukdiNvNn5tuumm4Y477ojtSH3+6U9/ChtttFGsH2k4hYC23QgZKOurXGcwqR97BsqsWe8PwJ3UUT99N3XKkoGy99tzx0C51lprRZj09/jjjz8AlqCh7GDzRqB0dSOA5C7/+c9/HuaYY45w3XXXhUMPPTQCkc0+L730UnjiiSeiRQo8gslJJ500HHDAAeGmm24qTQf4TD/99BEQp5566jDPPPOEt99+O6YlTYABrL7zne9EWBUfqylLIbDcfPPNo+ueK1ba1157bbz9R5ryATjPPPPMgX5APh555JEh+gXvLrHEEgM/U/ZUJhY4AUxNPvnkEXyAs7Lvu+++Mc9A3TuWAMiD/G+88cbh4YcfDiuuuGLYcccdA0udvDQG0A3mrG8FlcCR9ZMOjnWSLzqedtppwTmi4n3ggQcipIFJ/5aXN998M5x66qkRsgG492iz3XbbhQ022GAgWVo26mpdbVkdgGKublbWnXbaKa69bWWhfOeddwJLLgu2ZQHgmA5XX311BMi99torwvkPfvCDOKlRTicP0HaZZZaJbchpBCmYsLz33ntDyLbKKqtEWB1MyEBZX706g0n92DNQZs16fwDupI766bupU5YMlL3fnjsCSlDAOsZatffee8dSXnHFFdGqZ7Avc0eWuby5rgEoWHOOZQJKcGkH+Q033BCBFQittNJKYZZZZonAA2IAWlkAlFzrQEIAGCxcgOP2228P1nKyQIIPgAMopSPPoCJZ5li9WDZBHmuh/LH4nX322QNxi1+eH3rooSGywrK37LLLDgGUqUzFB60DBIvST0ApLfqOPvroYd555w2TTTZZdHGDIwC2wgorRLhmLS0LgPL++++PQM7qKI3//Oc/EcaUH8Cy9l1wwQUBrAEzsOYPKx+Apq2yX3bZZRHaxTXWWGPFn4sv7eyXPmtmo66bbbZZaR2wropzpplmChdeeGH80wooPW9yYHmEAC4BozRYsdWZMmknYJFFOrnMgS8AZ5FN4YQTThgKKEHzYNevZqCsPzTWGUzqx56BMmvW+wNwJ3XUT99NnbJkoOz99twRUKZjg4COQXyMMcaIcMb69/zzz0frVGOoA5TFtZYgBnQAOcDjEPVWQMniyCUsAEPrLcEL8Nlwww3Ds88+G8/OTEDp/xNOOGGERrvVp5tuuvgeqPrxj38cd7JzPwsAizUzBZa8999/f4jigu3iWZxlZfdCGVAW1xCy3gIplmDgCYaBdSugZHkEja7IVE6uchtVlAvo0lEcgDI9S2N/AGkCSlZM7nVWzhTchlSEZfE06gr2GuvgmGOOCYsttlhsHyAZQIu/FVACQPWT1syy/npv0UUXHbA++r305J11N0026G5Jw9prrz2Qfy78Tz/9dIj60qbKNvlUdfaWD9hM1RjKlmB0MmA0e6dOB9xp2t1IQ95yOvVrKGuWNeunNlCnLBko+xQoFcv6NWAisJyxhrESJUtSFVAusMAC4cMPP4yWpSoLZQJKrkwAAaKABfgBhFymZQO6NFkoy4CSdYwLFyiyWnLhsiqxUDYDShYywMHVy5rHOnbOOecMFI8bvPh/v7COD/SmUARKadnVDqqaASWABOw2mHBtA17vikv5rb0sC6CqEShZgaUHMMEvSGSJbAWU0uZ2F6flAPvtt18EZZunUlCPjbpyjZfVATAFgtZR0tMh+FVAmXSyxlb9s0xrN+qCFdwSBnXICmmdKasuSySAZJ22ThVEgz9lT4GFF1QWg7bFMsyKa1JhwmQZgnWe4nnyySej21xbqQrZQpkH+jqDY321en8w6aRMWbP6qnVDs25N+OqUJQNl7/cBHVkoFevjjz+OMAAgDfqADVACn7IAhLhtwY1Bntu5Cig9x30OIkADVzdgcBOP3eTTTDNNXDvHGtUYqoDS5o1f/vKXEeK4n9PaR67uKqAEQGAZxCqjDSjeq3tweyq7MtGIux10tbJQAkrpKbN8ct0feOCBcbMQa2XZppwyoOTy5tb1jsCCDCyBXZWFErCBThZbACuMM844cRNMcSc+y2OjrpY/gM5GKzHLIC2BLai1zpGrPYXiLu+iTttss01cimCjFRhnbbZxi4bK8dlnn8UNWOKlsaC+khu8nS5b22IJNmnwrnT8rY5AqPbdbBd+Bsp2VB7ymTqDSf3Y//dGP6XTT2XpRWjJ7ay7302d9pyBso+BcjAfXp13QQK3srVzaRMKC5KfAc7GYN1hck83/g58gCJu6wQLZRtbyvL3yiuvREuX97sZQJYD4wFOCix18sN93BicBwq8ygIgdg6oJQoAvQr+G9+lt93zNgxZ2zkYXcXFlV/3ek7vgLtG/ekzxRRTDLHzHLjSqLgZZ3jXWQbK+grXGUzqx97dgTHDUWc11I020I00ulX//ZZOnbrJQNmHQAnWWISqAnejXd/DOwCisvMKrROcZJJJhnfyIzx+IAUQGwPrqw00OXRXgQyU9fWuM5jUjz0DZdas9wfgTuqon76bOmXJQNn77bm2y5v7j5WpKnBhlh0b1MmHk9/JCowsCmSgrF9TdQaT+rFnoMya9f4A3Ekd9dN3U6csGSh7vz3XBsrGD4C10qYF6/KsN8whKzAqKpCBsn6t1xlM6seegTJr1vsDcCd11E/fTZ2yZKDs/fZcGyhttHCUjh2xDgC3KcP5jILzAotn/nXyseR3sgIjowIZKOvXWp3BpH7sGSizZr0/AHdSR/303dQpSwbK3m/PtYHSsSx21H73u98d2BTiiBjH69jw4bibHLICo5oCGSjr13idwaR+7Bkos2a9PwB3Ukf99N3UKUsGyt5vz7WB0q5odyT/6le/ijuP0/mODgl39qJd2VW7jDv5ePI7WYGRQYEMlPVrqc5gUj/2DJRZs94fgDupo376bvqpLOqyG+XpRhqdlqUjoHT3tltxHGrtHmSDqTMSXZeYjuPp5EPJ72QFRlYFMlDWr7le7hjrlyYPJlmzP4bvfOc7nchQ651++m76qSydQlityu8StHZalo6A0hpKfxyMPf/888cDpl2l547nDJR1m0d+vh8UyEBZvxbzYJI160Yb6EYanQ7A9VtAdyYu3SpPP9TNJ5//O1zw6BttVeXkXx0nLPO9b7T1bNVDvaxZR0DZTI0MlINqK/nlkVSBDJT1K66XO8b6penOQJ81q18zWbP6mmWgbF+zDJT/06o2ULr2zlV+VcEub/cf55AVGJUUyEBZv7bzQJ8160Yb6EYa3QKwfkunH+omA+UggLJ+F5jfyAr0vwIZKOvXcT8MJsVSd6M83UgjQ0v9ttxvmnWrPP3QnjNQjkCgvOeee8Jcc83Vc9cD3nLLLWGJJZao3ZM8+OCDcbe7Kx8bwxtvvBHcK92Nhdq1Mz6cXhhVdcxAWb9B9cNgkoGyfr1nzXpfswyU7ddRBsoRCJTuAv/DH/4QJptssvZrrMWT5513Xvj888/Dxhtv3HGcjkNq5sovi/iiiy4KRx55ZDjrrLPCDDPMMNQjp512Wrxve7/99us4X918MevYudoZKOtrl4Eya9aNNtCNNLoFYP2WTj/UTQbK4QCUd999d7j55pvjWZRjjz12ZU9ZBpR2ivtz/vnnh6WWWiqceuqpYcwxx4w38fz6178O00wzTTyWaL755gtu6vFzfwPIzTbbLPzwhz8MH3/8cXCP+Pjjjx823XTT8Mknn8TzMnfaaafwwAMPxJ3oL7/8cthwww3D0UcfHeFxl112CVdeeWVYaaWVwoknnhh/9sILL4QtttgivPjii2G99dYLBx98cOma0FdffTUsuOCCcVc7EJt44olj2aVhHelRRx0VElDuu+++Yddddw0TTTRR2HvvvcNhhx0Wd8RPOeWU4YQTTghzzDFHrZHFjvobb7wxPPzww+GII44ICyywQHw/6zikjtpkY52o71tvvTWwLLvhiX7rrrtuLf3LHs5AWV/CfhhMsrWtfr1nzXpfs26Baz/0ARkohwNQstT99Kc/bXlsUBlQsg4eeOCBYcsttwzrr79+2GGHHcK4444b9thjj3DOOefEI4muv/76CAJrrbVWWHXVVSPMuaEHhF5wwQXRtXzAAQeExRZbLMLbLLPMEhZddNHw0EMPhdVWWy385Cc/ieAFQl0X+d5774WDDjoonH766REIASCgXGONNSKYcX+D0O222y5ssMEGQ/UA//73vyOY/uUvfwnO5VxooYXCz372s/jeIossEmES9LJQOuz90UcfDVdddVV47rnnIsC4phKA0w2cjj766DGNZ599Nj5XDJNMMkmE5BSUWXnOPvvsqMF4440Xf5V1/J+O9JhnnnmGqpOnn346tq8777wzQqV6f+qppwbXw4cQz2LdfffdBx1Pqwi60QF3I41uDVj9lk6um1ZfyNC/z5rV16xb300/1E0Gyh4ESmD29a9/PXAj33HHHdHS6HrHBFKTTjppHPgBAMDceuutw4orrhimmGKKCGUskttss034/ve/P3D940svvRTGGGOMMO+88w787Iwzzgig4rPPPotuaoex/+lPfwpTTTVVBD8gy3o41lhjRYD96le/Gv9fFk4++eTw1ltvRZB1t/ntt98egZHVC+S++eab8QB4ZQON0mCdZDkDuYLyvfbaawFoC8roGstGoFS2IlBeffXVUatiAJRZx//qKJTVyTvvvBPuv//+WKd///vfY/3WXepQ1hYyUNYftPphMCmWuhvl6UYa3YKJbqWTNav/bea6aV+zDJQ9CJSAkKuctZA7F/Cx5LmJRzDwc0NPMMEE4dJLLw2AipUPDAIr73NdszCCOuGDDz6ILmhWz2SFYpH0b++5NtLznuOO5gLlhgatKQDUZZddtrR1JaDcf//940YjG3M8C1pZqwDl8ccfH28Usmb02GOPjdDr56yYKWy00UZhwgknjP/lQpe3YhhnnHGG2PTDQgmKxNcIlFnH/+oIEsvqBFCaUIB+EwjW3bpAedddd8VJQWPIFsr2O+FuDVj9lk6Go3ptrN/qv9/K0w/tOQPlIICSu5C7tzHYaONPq4PNk8vbIP7hhx9G2GJZYw0EWW7gmX322QOLpEHb2sn77rsvghgX8uKLLx7OPffc8M1vfjPC4Nprrx0tfB999FGwVnHyyScPBnzWQBbI3//+92HOOeeMcYFFLnNrJN9+++34HNc0iyC4lKdZZ501brKZbbbZ4mYa6bCGloUElH4PGAHK+++/H9O59tprIzhyeVvnyZIq//LKjc+CaRc4AH3kkUcGdr3fdNNNce1nMdAIQKdQBErxZx2H1lH9ltVJFVB6nkVzxhlnDP/6179im7Nm15mqTz75ZLSea5NVIVso80DfjcGxG2lkaKnflvtNs26Vpx/acwbKQQAl+GsW2gFKa9dAHMgDR+K05hGMfeMb3wi33XZbtFByB4MtlkMHqoNHgGlTDuBjjeNmvvfee6ML+YorrgiAwcYX77P8Wd8I4NLPHOFj7SL4sw4R5AFAm3GAmfWLNusILIPc7zbcNANKLm9w+8wzz8THpp9++lgWllEucaB7+OGHx3WgN9xwQ8yXtZ0+JhbMbbfdtlYPRjMbjawFtZko61iuY1mduC60zEJpknLJJZdEcNeGHQWV2vIKK6wQJxzaSwbKWk216cP9MJgUC9iN8nQjjW7BRLfSyZp19s12Q7dupDG821kGykEAJbdzswDY0gaTdpsxoHTsj/V/LILFwMpncLe2MQUbamzCKT5rl7d1j9ZMgklWpuI7fsYKBR6LUMxKyKpZzLN3WRKnnnrq+HPWU27xYrDGc5lllhniZ6yFgFgePJ/c2GU6AE0u/mbPtKtfei7rOLRideqkrt7F57OFsr56/TCYZKCsX+9Zs97XbHhDWFKgH/qADJSDAEqvAi7uYjuSgd3MM88c3dWsb3ZZF0GunU8HCIkTiPViePzxx6NFsxjAINd8L4Ws44irjQyU9bXvh8Ekw1H9es+a9b5mGSjbr6MMlIMAShtGrEO0xqwY7Mh+/vnng3WFjv+pE1pZ8+rENSo/m3UccbWfgbK+9hkos2bdaAPdSKNbANZv6fRD3WSgHARQOnjcGkSHdy+55JJxo4Ids9bxfeUrX4lrB21kyCErMCopkIGyfm33w2CSrW316z1r1vuadQtc+6EPyEDZIVDaBWu3q/Mf065jax8drWOXtTWQ3OB2JeeQFRiVFMhAWb+2+2EwyXBUv96zZr2vWQbK9usoA2WHQGl3rGNVGncm2/hgTSVXOEtlugqw/SrJT2YFRm4FMlDWr78MlFmzbrSBbqTRLQDrt3T6oW4yUHYIlOkgaOc7Ovrny1/+cozJDmpHtFxzzTXxmJxm5/XV70LzG1mB3lcgA2X9OuqHwSRb2+rXe9as9zXrFrjmPqB+W+hlzcryNtp/mlwd4r7qX/ziF1GF5ZdfPh4e7SxIETlf8cwzz6yvUH4jKzCSK3DccccNdRLASF6knP2sQFYgK5AVyAq0rQAPtnObi6EpUDreB1DutddeQ7y05557xptlHAaeQ1ZgVFOgWxbKbqTTjTS0j5xO/a8ka5Y166c20E9l6VafNrJp1hQo0+fMiOkGG9cwslJmkKzf0eU3+keBke0jb6Z8P5WlW518t9LJdVO/z8ia1dcst+es2bD6bpoC5V//+tdw4IEHxvuxbcJhmTzqqKPiDTGuU1xwwQU7q4n8VlZgJFZgWH18rSToRjrdSKNbA1a/pZPrptUXMvTvs2b1NevWd5Prpn7djGyaNQXKDTbYILj3WKGmmWaaCJWuW7SGcqGFFop3X+eQFRjVFBjZPvJsoRz2LbQbbaAbaXQLJrqVTtass7beDd26kUa32lm30hnZNKsESru5J5lkknio+YknnhjA5cUXXxzvyL7tttvCuuuuG9555534TA5ZgVFJAcdmdcM63410upGGtpHTqf+FZM2yZv3UBvqpLN3q00Y2zSqB8pVXXolWSRC56qqrhokmmiieS3nvvffGg85XXnnl8Mwzz8SDznPICmQFsgJZgaxAViArkBUYdRVo6vJ2C863v/3taI3Zf//947WL66yzTjwyyF3e7vrOISuQFcgKZAWyAlmBrEBWYNRWoClQnnTSSWGbbbaJCrm7+8knnwy/+c1v4uacfffdNxx00EGjtnq59KO0Al988UX4+OOPw3jjjddTOrz55pvhm9/85kCePv300zDaaKOFscYaqzSfVeX4xz/+ES80GH300Yd47+9//3vsD4Z3kM74448f814MrdIvy3fdMg6rsn3yySdhjDHGCGOOOeZAlC6NEMYdd9xa5aqqxzI9WtV5p+X78MMPw1e/+tUhXn/vvffiz4plbJV+VX3UKWOnZfCeI/FcIfy1r31tiGg6Tb9Om2ulTSfl+uCDD2IdaGvFoJx+5xrlFKq+6/T7Ot/K8OgDq+qmrD9oJ/06ddNKm7p1I3/yPcEEEwxVL2Xtr1X6VW2nThnrlqHO8y2PDbJmkh9/3nnnDVNOOWW455574j3eXN6NHX2dhPOzWYGRWQGH+v/qV78KU0wxRRyczj///CE67RFVtmuvvTasuOKKQUfmmK+dd945PPLII/Hfc8wxR3AoexEQy8rhu/7xj38cvvSlL4VXX3017LbbbtEr8dBDD4VNNtkkei38/Ne//nWYa665hnlRDYCbb755hFbrtN3M1U767777bmm+65RxWBVGB//EE08El0OoA8uGPv/881gO2tncqE5o+NRTTzXVVfsqq0f12lgfs802W8s676SML774Yvj9738fT/mQX0E51ltvvfCtb30rjgnbb799POi4kzY34YQTtl3GwbY5ZTjllFPimAaQbXyYdtppO0q/TpurKmPjhK1O/bz22mth7bXXjn2P79U3vs8++wxEseuuu8Z2eNNNN4WqvBbTq/OtDI8+sKxunCpT1h+0Sr9O3VT1eXXqovHZyy+/PBre1IlJl3Y288wzx2+osf1NPPHEpX1XirOqD3j//ffb7vOKk4rBlKvZuy2BcnglnOPNCoysCvi4WWMcq2XmucMOO4TJJ588Wu5HZLDuee+9945eBEBpvfNOO+0UHnjggZgtS1jOOOOM8MMf/jD+v6ocOlez6kMOOSRer6psAGmVVVYJP/3pT8NSSy0Vjw3TKRqohnU466yzwvXXXx/Xb5vAbrzxxuG5556L6TZL//DDDx8q33/7299iHTXWVVUZG62GnZbtscceC2effXa46qqrwi9/+csIlE7FcEmECbqw2GKLRQ/Qaaed1rRcNCirR0e6NepxwAEHNK3zTstDW2Dy6KOPDgAlOF522WUj0BgwH3/88TD22GN31OYWWWSRtss4mDZns6k8sg7xLBx88MFxo6lNpu1qXEy/TpurKmP6HjupG/k3UdEWWMN5FN54443oobDX4eSTT47fuTyX5dV3ndp8nf6g6rsaTB9YVTeOLWzsD0xqWvXBdepmePQHTsX5+c9/HvtdSwa1ucMOO6y0/TFMlPW5qW6q+oA777yz7T5vMHXTbtvMQNmuUvm5rMD/V+Dll18OSyyxRHjppZfiT1j9DLSsTSMqcIUst9xyEWJYjAAlq+ndd98dLF0RAOHqq68e1l9//fj/qnLoXJXPemmXGrCgKKsBUccmftaxZZZZJg7Gwzr8+c9/DixtP/rRjyJ8GehZWqTbLP3NNttsqHz/7ne/i1a8xrqqKiPL4bAMrKuseIDSgG3Q58Zn3WOtsIwIUDQr13nnnVdaj+C08b0jjzyyaZ0PpmyAEXglC+X8888f6+SGG24Iiy66aFxj/+CDD3bU5sB1WVstK+Ng2xwLOGuhpQeLL7542HHHHWPddJJ+nTZXVcb0PXZSN5bcaMsuGzF52WWXXQJrsm97q622itZK0Akoy/Lqu0htvk5/UPVdDbYPLKsb/U5jf7Daaqu17IPr1M3w6g+U54QTTojfhu9kgQUWiEsQGtvfLbfcUtrnprqp6gN4DRr76uFVN+20zwyU7aiUn8kKFBQwsDpOi9VMcFarD/v0008fYToZFHW6rHk6R0AJJJ3EAHiFTTfdNFrFfvKTn8T/V5WDG9DsGgwJk046abj//vvDLLPMEsvMYuksWh398NiYZ/AzyG6xxRYxXWs/ufKtEWuWvjw35htg06axrqrKOPXUUw/TOiwCZYr4oosuii481kQA0Kpcjm0rq0fWzUY9WCGa1flgCtcIlNqFNuB6Xm2MFZh7r5M2V/VeWRmHRZt7+OGH47cy00wzxYkgy327GhfTr9PmWmnTad2w7LF8mUxceeWVEVp858qlTrQz31RZXn1fqc3X6Q+qvqth0Qc21g3LfmN/cOihh7bsg+vUzfDqD8AjmORtAbjJSthYRscylvW5qW6q+gBW6Hb7vGFRN63aaAbKVgrl32cFGhRgFeCKAG3g7eijj45PWDs2IgK3FavX3HPPHZP/wx/+EP+t0z322GOj60tYaaWVwn777Tew7rGqHFwvIIdl0Do/s2kDEyuUsnJBsUTZlJfiHpblNtA7jmz33XeP7hx5YZUCZ83Sl5/GfLN20qaxrqrKOJj1bGUaNAKlOmE5NgkBGMLCCy/ctFwsDtZdNdYjGG3Uw8/Knh3susM0ASlaKB0jx53P7c3SBWTAcrP0q9rc7LPP3nYZB9vmbr311rjuzLfBXS/U0biYfp02V1XGwdQNizegMOkC9SZ74HHppZeOfQDXtBNZTM64Vcu+69Tm6/QHVd/VYPvAsrop6w9Y+K3lbtYH16mbYd0f6DctZaE7fdXJ1ltvHb+TsjKW5VWfm+qmqn1aCtBunzfYummnj89A2Y5K+ZmsQIMCs846azzwn9tS520NkzV+IyJwS3NzpfDd7343PPvss8FCby4Tna/F2wY01hUAqgO1tqesHAap448/PnaCl1xySRzorcfkdnaRgY0m1u4BNWuEhnUAKSygXEXybvOEdWEAsyz9++67L1pPuY3K8l2njMO6LEWgfPrpp6PlyABf3PVZpSuLGZi3VsyZTqbLhwAADXVJREFUwI31aBBq1MMkoOzZxl2mnZSz0ULJ4s1KCZK55G688ca4Ua0s/VZtziSl3TIOps35VmihrcwzzzwDMlgDWif9TtpcVRkHUzennnpqtN4XIZcr3/ciWIrj+/Uds4qVfR9OheikPxjWfWBV3VT1B/Rs7INNanw3YJomI7I/kD+WY+OCtayWp7DslrW/qry26gN4xtotYzfGpwyUnfSs+Z1RXgEdQHIdL7/88nEjTK+cepBc3v7eY489YqdrwNDxbLvttnHQZ8VkKSsrB6C0HhMAsVrcfPPNEeqSFUrlO24FZLrwYFgH1kg71VlBBFZVLuKq9JVTXrmHyvJdp4zDuiyAUjuxftVmI9aWYuBqZaE0EDbqyqJMB2Uvq8cqPcqeHRblagRK0M8lbU2lE0C0M5OWTtpcVVsd1m3OxGv66acfQo4NN9ww1k0djTtpc1VlHEzdaE/yXgwmLKmMNuRZR2ly6Fsu+z467Q+GdR9YVTd2R5f1B2XpO4nC2msu7Krydqs/uOKKK+LE25IEO9XBP5gsa3+WJ5XVTas+oE4ZuzE+ZaAczNec3x2lFWAJ4FLiZurl4PgMLrF0fqCOG0zaeShUlYM1c7LJJhvifEGbF1g0bMYY3h2UdBx1UTzfsCx9biXrx9LZmGX5rlPGEVGXZeVi9aO/RfdCYz36WVV9lD07vMolrcYreDttc3XKODzK0276g2lz3aybMo0av4/B9Afd7APL+oPG9P3fqRvF9YIjsj/gkndSRvFc4GbttjGv7fQB4qtTxuHx3aQ4M1AOT3Vz3FmBHlTAkTaseYNxtfVSsbh9bA7pt+BIEDvAh/W6zhGhU25zI0L19tLsp7oBbyb5lvP0QxjZ+oAMlP3Q6nIZsgJZgaxAViArkBXICoxABTJQjkDxc9JZgaxAViArkBXICmQF+kGBDJT9UIu5DFmBrEBWICuQFcgKZAVGoAIZKEeg+DnprEBWICuQFcgKZAWyAv2gQAbKfqjFXIasQFagZxRIOzsdFfKlL32pZ/IlIw5cdk2nXf8jOm927drBbyd/Dt1X4C9/+Uu8V7psc57TAxzb5QSLEd1Ouq9MTrFTBTJQdqpcfi8rkBXICjQo4OYat9WksNFGG8UD2t2s1AvhuuuuCyussEK47LLLgvuQR0RwwLOr9JxjKbiByYHsK6+88ojITkzziSeeiGeyugLPkVjtBDeZOHhe3tNtWd5TrmmnnTZeubfbbru1E9VQzzjiy9mxxeC8TGd9NmtLv/3tb+N5hu71doZhVXDWqyOpHEZfduC1sxOVwdmczq7NISvQjgIZKNtRKT+TFcgKZAVaKOAgY5DmkG8gefnll8cD190o0417dNupIDdvnHPOOfHqQbc8dTu8/vrrA8Dmhh0H5KcrNp3P6HanEREuuOCCqMndd989cMh8q3wkoNx+++3jNY4pOIx9uummCw7kdqtUJwFQfvnLX47t6PPPPw8mAg4sd+tNsyv0ElC607sZoMuz+6VZiccYY4zSLLqJyS01r732WqynHLICrRTIQNlKofz7rEBWICvQhgKu8nMDkXvOXbvGvcz6Azzuv//+eMCxm2XcywsWNtlkk3gf+gcffBCthm4jciYg69G+++4brUduOAEGLFNuLHIYvas+WdPcuOEmjvnmmy8O+g50dnuRO44322yzeI8wqLnmmmui1QpkOADeVY+HH354tAwefPDB8ZB7Lk4WLb937iWwAi7K4ypP+XHjzx133BHTdIXkDTfcEK1le+21V7zJRL6V59JLL415cMOPP8UAsH7xi18MAUbKCLhZLcXjoG3llS/nCbrJxb3nfm85gSAftHV/tTz4P0swbZXLvwXlptddd90VNVlooYWG0snB8e4jB2zScR+5UJYHV5q6k9lEwe1Hbj+pAkpleeeddwLXsrT33HPP4C50h1Dffvvt0d0vDkHdFAOgdJ+9m26E2267LSy++OJhq622inXhPbCpPalf11G63k8dpLrWpoCyn7u2U/15zpIH16YCee2gqt5MPmaYYYZYxsZ6bONzyI+MggpkoBwFKz0XOSuQFRi2CgAdlh639QDIssPI11tvvXhFp4EcmHBLshLNP//80WrnXdAEZAQgyYIE6q6//vrgvmm/F7g/3Qtsnaa1btySwIEF69Zbb40WLZDJ7erKTQFQrLPOOgMub+vnQAcIlP8DDjggAsiaa645cLPHdtttFwHRtYusi662ky95BTfStAYSBHKPSk8crLPuj3755ZfjIfopgCJwBFYAk3iTa9e94Cx7YBWwAdrTTjstQpkyup7S80BNAFLSUgb5cQj8MsssE4ELRLrWcooppojPutMetNK7USfubtD661//OtYN6F199dVL86AO1RurM3iXzyqglK54ALMyyrt35Y8G7g73h27ufG4ESmsb1YmJCT1NMNRFuhPclYoAMV3p6YB/d6YnoGRVBNfA0wTG9X4Akk7A2n3m6kOZq+pNuwTcZ5555rD9YHJsfalABsq+rNZcqKxAVqCbCnBL2ugCXLg8G8NHH30UoWettdaKFjB38LKsgTPAZ+C23s7ADpAAoThZJQECN7WrLgElqAAqrImshcDG1YegA3T6vXV8wJIbXvzJlVtcQ5mAB5Sy0MmLtK1xBCLAa8stt4zvLrjggtGty/LoOVfCgSu/Z8GS7oEHHhifYdUCKvIKfopwnay41uix0IlX/EKyvoFAVtcll1wyWhzdFsKVC3zef//9aOEDy/LC2sqyS1d/WDTBD/h97rnn4v+XX375aAG0uQT4lunESpdc3gC4LA+0XHXVVSOgSQOQyWMVUAJigG9CoNxc/GCdZdk6W0DNiswqPcssswwFlI1rKFmKWSxZtIFoK6CUP3VPN5Md6c8999xh7bXXju3GHezqascdd6ysN/UD5svadDe/r5zWyKFABsqRo55yLrMCWYEeV8AmBiDnjwFfYMkCBkDLjtm0npKLeaKJJorAde6550agTICwxhprxE0z//nPf6J1i7XNMwJIS+vjWDJZJrlzuZFZv0AM4GC1KgLlhx9+GIG2CJRc3Cx8ANfPBfGAML+TJqvmI488El3BrGHAB1CymIJQMAVaACVoYQW79tprByDxvvvui8CXgvKzHHJRs5KBFfkHg4BSeiCGFY2lMgUQBGBZVUGV99yPDCitu+R2B4SAPgUbbEAYVzOYEriKy3QqAiXdy/Kw8MILRzd72oST1kpWAWVyKT/55JNxvSpLMOskizTgnX322SOoAbvGUHR5g29WTBt/TBZAIZhO8XPvsyQ3Wij93ITEc+BdMPHQ9gBlAllXFVbVGxBWtxkoe7zz6ZHsZaDskYrI2cgKZAVGbgXSwA5iDPDWybFqAQEQwtIInoAgVyk35ymnnBJ/XgcowRarEgAFVqx24BTEAlFWQy5VFirwCfhYSMcbb7whgJLbWRzyyEopXlDGNcz9zJK23377RWscCAM+LHxVQMmdbq0eELVm1JrOxvV3IGa22WaLcAt+5Rtsg3BAecghh0RApCHwvPDCC2Nc0ufOLgNKkAe65V3ZbSRhjVRulsYE6loXUCvTyTpH73vHxiqwWpYHZVdG1mEudy70KqCkqbzQ1x+WyrnmmitqIp8J4MFdM6D0O+UHw/LHqskaLn9gkWb0awRKa3mtkWX1Nknwb3GwPqtrSxJMXuhXVm/g3yShlzaVjdw9RP/nPgNl/9dxLmFWICvQBQVYfljxWKJS4OLkrh5nnHHiZh3uV/AicJca1MGeneEJfFjr/LzKQsla+PDDD8c4QKyNGaABXKR4WaZsWOH2LQNKbl+WQ+sRU1zitS5zpplmGliXl8qR3PE2A4EqLmiABxqlw4r16KOPxrWdrG+CsgKuxmNuxMESmVy68kA7VjeWMqBm7WDKF3jjIp511lkHgNIGJxZfFkrQZvMR9zJtwSqQ5lJuBMoqndQFy588KQeXelke0i5q5fvRj34UwZ0GxxxzzECdp2ODWHOtmxTAqnYA0OxmT2dvArmpppqqFChnnHHGuJxBsAwBBCZ3e1r36HcsvZYFsPpqS+nYIBZe+liHKsgPbaWtTpLFVBnK6k2dyhuw33jjjbvwBeUkRnYFMlCO7DWY858VyAr0lAKffPJJ3IzCvdh4aLcNFiCCtZAVsE6wbpHLG2SwTrHWiScFrm6WOUBVJ6T8yG8xKIffsda1G6fysWKyuDY7L9EmoFdeeSVaI8sO1pYPUCdP7Z7hKW3vSLvZYdxVOlmzCshYMdNROmV5+Oc//xmtwiYBrQINPc8Sm4LlB961TtSShk6DvFpXW2wDZXGl/IJrzwussNzY4NnPyuotLakwQUibmzrNa35v1FAgA+WoUc+5lFmBrMBIrkARKMFIDiOfAmntp5xba8qKOyICyzULbloL25gHcG09qqOtbLbKISvQjgIZKNtRKT+TFcgKZAVGsAKOELLBw0aJfND0CK6MDpO3u5/b3FrKMld3h9F29BpLsuOEyqyPLKvW2HK7W6+ZQ1agHQUyULajUn4mK5AVyApkBbICWYGsQFagUoEMlLlxZAWyAlmBrEBWICuQFcgKDEqBDJSDki+/nBXICmQFsgJZgaxAViAr8P8AWylwx8gBGAIAAAAASUVORK5CYII=", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + "attachments": {}, + "cell_type": "markdown", + "id": "cd74d358-af07-450e-bdec-70471b6c462b", + "metadata": {}, + "source": [ + "### Perform garbage collection\n", + "\n", + "To clean up your selected database and its backing data on AWS, you can use `drop_all_tables_created_by_splink`. This allows splink to automatically search for any tables prefixed with `__splink__df...` in your given database and delete them.\n", + "\n", + "Alternatively, if you want to delete splink tables from another database that you didn't select in the initialisation step, you can run `drop_splink_tables_from_database(database_name)`." ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "linker.cumulative_num_comparisons_from_blocking_rules_chart()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "cd74d358-af07-450e-bdec-70471b6c462b", - "metadata": {}, - "source": [ - "### Perform garbage collection\n", - "\n", - "To clean up your selected database and its backing data on AWS, you can use `drop_all_tables_created_by_splink`. This allows splink to automatically search for any tables prefixed with `__splink__df...` in your given database and delete them.\n", - "\n", - "Alternatively, if you want to delete splink tables from another database that you didn't select in the initialisation step, you can run `drop_splink_tables_from_database(database_name)`." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "f61d8215-be1f-431c-ab49-8329e3f37377", - "metadata": {}, - "outputs": [], - "source": [ - "linker.drop_all_tables_created_by_splink(delete_s3_folders=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "29cec53c-54f0-45ea-9b40-af2f1d66c788", - "metadata": {}, - "outputs": [], - "source": [ - "import splink.athena.athena_comparison_library as cl\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " \"l.first_name = r.first_name and l.surname = r.surname\",\n", - " \"l.surname = r.surname and l.dob = r.dob\",\n", - " \"l.first_name = r.first_name and l.dob = r.dob\",\n", - " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n", - " ],\n", - " \"comparisons\": [\n", - " cl.levenshtein_at_thresholds(\"first_name\", [1,2], term_frequency_adjustments=True),\n", - " cl.levenshtein_at_thresholds(\"surname\", [1,2], term_frequency_adjustments=True),\n", - " cl.levenshtein_at_thresholds(\"dob\", [1,2], term_frequency_adjustments=True),\n", - " cl.levenshtein_at_thresholds(\"postcode_fake\", 2,term_frequency_adjustments=True),\n", - " cl.exact_match(\"birth_place\", term_frequency_adjustments=True),\n", - " cl.exact_match(\"occupation\", term_frequency_adjustments=True),\n", - " ],\n", - " \"retain_matching_columns\": True,\n", - " \"retain_intermediate_calculation_columns\": True,\n", - " \"max_iterations\": 10,\n", - " \"em_convergence\": 0.01\n", - "}" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "78dd96d8-12d8-4dfb-be31-eeba2ac9a88e", - "metadata": {}, - "source": [ - "### You can also read data directly from a database\n", - "\n", - "Simply add your data to your database and enter the name of the resulting table into the linker object.\n", - "\n", - "This can be done with either:\n", - "> wr.catalog.create_parquet_table(...)\n", - "\n", - "or\n", - "\n", - "> wr.s3.to_parquet(...)\n", - "\n", - "See the [awswrangler API](https://aws-sdk-pandas.readthedocs.io/en/stable/api.html) for more info." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "19bb053c-b22a-42c6-95b0-706182354961", - "metadata": {}, - "outputs": [], - "source": [ - "# Write our dataframe to s3/our backing database\n", - "import awswrangler as wr\n", - "wr.s3.to_parquet(\n", - " df, # pandas dataframe\n", - " path=f\"{aws_filepath}/historical_figures_with_errors_50k\",\n", - " dataset=True,\n", - " database=database,\n", - " table=\"historical_figures_with_errors_50k\",\n", - " mode=\"overwrite\",\n", - " compression=\"snappy\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "1778b697-24a8-422d-a3af-73dad873cc3f", - "metadata": {}, - "outputs": [], - "source": [ - "# Initialise our linker with historical_figures_with_errors_50k from our database\n", - "linker = AthenaLinker(\n", - " input_table_or_tables=\"historical_figures_with_errors_50k\", \n", - " settings_dict=settings,\n", - " boto3_session=my_session,\n", - " output_bucket=bucket, # the bucket to store splink's parquet files \n", - " output_database=database, # the database to store splink's outputs\n", - " output_filepath=filepath # folder to output data to\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "ca798b76-cd39-4890-b842-ba5a0e583050", - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "Probability two random records match is estimated to be 0.000136.\n", - "This means that amongst all possible pairwise record comparisons, one in 7,362.31 are expected to match. With 1,279,041,753 total possible comparisons, we expect a total of around 173,728.33 matching pairs\n" - ] - } - ], - "source": [ - "linker.estimate_probability_two_random_records_match(\n", - " [\n", - " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n", - " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n", - " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n", - " ],\n", - " recall=0.6,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "3ba5c515-629c-490c-b8e4-a63ea242ea0a", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 6, + "id": "f61d8215-be1f-431c-ab49-8329e3f37377", + "metadata": {}, + "outputs": [], + "source": [ + "linker.drop_all_tables_created_by_splink(delete_s3_folders=True)" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "----- Estimating u probabilities using random sampling -----\n", - "\n", - "Estimated u probabilities using random sampling\n", - "\n", - "Your model is not yet fully trained. Missing estimates for:\n", - " - first_name (no m values are trained).\n", - " - surname (no m values are trained).\n", - " - dob (no m values are trained).\n", - " - postcode_fake (no m values are trained).\n", - " - birth_place (no m values are trained).\n", - " - occupation (no m values are trained).\n" - ] - } - ], - "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=5e6)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "ad8c0de1-769a-4861-849d-8b7e6655a681", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 7, + "id": "29cec53c-54f0-45ea-9b40-af2f1d66c788", + "metadata": {}, + "outputs": [], + "source": [ + "import splink.athena.athena_comparison_library as cl\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " \"l.first_name = r.first_name and l.surname = r.surname\",\n", + " \"l.surname = r.surname and l.dob = r.dob\",\n", + " \"l.first_name = r.first_name and l.dob = r.dob\",\n", + " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n", + " ],\n", + " \"comparisons\": [\n", + " cl.levenshtein_at_thresholds(\"first_name\", [1,2], term_frequency_adjustments=True),\n", + " cl.levenshtein_at_thresholds(\"surname\", [1,2], term_frequency_adjustments=True),\n", + " cl.levenshtein_at_thresholds(\"dob\", [1,2], term_frequency_adjustments=True),\n", + " cl.levenshtein_at_thresholds(\"postcode_fake\", 2,term_frequency_adjustments=True),\n", + " cl.exact_match(\"birth_place\", term_frequency_adjustments=True),\n", + " cl.exact_match(\"occupation\", term_frequency_adjustments=True),\n", + " ],\n", + " \"retain_matching_columns\": True,\n", + " \"retain_intermediate_calculation_columns\": True,\n", + " \"max_iterations\": 10,\n", + " \"em_convergence\": 0.01\n", + "}" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "----- Starting EM training session -----\n", - "\n", - "Estimating the m probabilities of the model by blocking on:\n", - "l.first_name = r.first_name and l.surname = r.surname\n", - "\n", - "Parameter estimates will be made for the following comparison(s):\n", - " - dob\n", - " - postcode_fake\n", - " - birth_place\n", - " - occupation\n", - "\n", - "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", - " - first_name\n", - " - surname\n", - "\n", - "Iteration 1: Largest change in params was -0.533 in probability_two_random_records_match\n", - "Iteration 2: Largest change in params was -0.0419 in the m_probability of birth_place, level `All other comparisons`\n", - "Iteration 3: Largest change in params was -0.0154 in the m_probability of birth_place, level `All other comparisons`\n", - "Iteration 4: Largest change in params was 0.00489 in the m_probability of birth_place, level `Exact match`\n", - "\n", - "EM converged after 4 iterations\n", - "\n", - "Your model is not yet fully trained. Missing estimates for:\n", - " - first_name (no m values are trained).\n", - " - surname (no m values are trained).\n" - ] - } - ], - "source": [ - "blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", - "training_session_names = linker.estimate_parameters_using_expectation_maximisation(blocking_rule)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "c44fc676-e57e-4e8c-b9c6-8989e720b03a", - "metadata": {}, - "outputs": [ + "attachments": {}, + "cell_type": "markdown", + "id": "78dd96d8-12d8-4dfb-be31-eeba2ac9a88e", + "metadata": {}, + "source": [ + "### You can also read data directly from a database\n", + "\n", + "Simply add your data to your database and enter the name of the resulting table into the linker object.\n", + "\n", + "This can be done with either:\n", + "> wr.catalog.create_parquet_table(...)\n", + "\n", + "or\n", + "\n", + "> wr.s3.to_parquet(...)\n", + "\n", + "See the [awswrangler API](https://aws-sdk-pandas.readthedocs.io/en/stable/api.html) for more info." + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "----- Starting EM training session -----\n", - "\n", - "Estimating the m probabilities of the model by blocking on:\n", - "l.dob = r.dob\n", - "\n", - "Parameter estimates will be made for the following comparison(s):\n", - " - first_name\n", - " - surname\n", - " - postcode_fake\n", - " - birth_place\n", - " - occupation\n", - "\n", - "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", - " - dob\n", - "\n", - "Iteration 1: Largest change in params was -0.356 in the m_probability of first_name, level `Exact match`\n", - "Iteration 2: Largest change in params was 0.0401 in the m_probability of first_name, level `All other comparisons`\n", - "Iteration 3: Largest change in params was 0.00536 in the m_probability of first_name, level `All other comparisons`\n", - "\n", - "EM converged after 3 iterations\n", - "\n", - "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" - ] - } - ], - "source": [ - "blocking_rule = \"l.dob = r.dob\"\n", - "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(blocking_rule)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "31b6440a-4353-45af-a986-ba59c0d784d3", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": null, + "id": "19bb053c-b22a-42c6-95b0-706182354961", + "metadata": {}, + "outputs": [], + "source": [ + "# Write our dataframe to s3/our backing database\n", + "import awswrangler as wr\n", + "wr.s3.to_parquet(\n", + " df, # pandas dataframe\n", + " path=f\"{aws_filepath}/historical_figures_with_errors_50k\",\n", + " dataset=True,\n", + " database=database,\n", + " table=\"historical_figures_with_errors_50k\",\n", + " mode=\"overwrite\",\n", + " compression=\"snappy\",\n", + ")" + ] + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v5.2.json", - "config": { - "header": { - "title": null - }, - "mark": { - "tooltip": null - }, - "title": { - "anchor": "middle" - }, - "view": { - "height": 60, - "width": 400 - } - }, - "data": { - "values": [ - { - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": "The probability that two random records drawn at random match is 0.000 or one in 7,362.3 records.This is equivalent to a starting match weight of -12.846.", - "comparison_name": "probability_two_random_records_match", - "comparison_sort_order": -1, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "m_probability_description": null, - "max_comparison_vector_value": 0, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": null, - "tf_adjustment_column": null, - "tf_adjustment_weight": null, - "u_probability": null, - "u_probability_description": null - }, - { - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "comparison_name": "first_name", - "comparison_sort_order": 0, - "comparison_vector_value": 3, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "m_probability_description": "Amongst matching record comparisons, 55.25% of records are in the exact match comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "tf_adjustment_column": "first_name", - "tf_adjustment_weight": 1, - "u_probability": 0.011339110875462712, - "u_probability_description": "Amongst non-matching record comparisons, 1.13% of records are in the exact match comparison level" - }, - { - "bayes_factor": 26.589733743152838, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 26.59 times more likely to be a match", - "comparison_name": "first_name", - "comparison_sort_order": 0, - "comparison_vector_value": 2, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 4.732797425698729, - "m_probability": 0.0867239389400622, - "m_probability_description": "Amongst matching record comparisons, 8.67% of records are in the levenshtein_distance <= 1 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 1", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.0032615572528023004, - "u_probability_description": "Amongst non-matching record comparisons, 0.33% of records are in the levenshtein_distance <= 1 comparison level" - }, - { - "bayes_factor": 7.778809222513577, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", - "comparison_name": "first_name", - "comparison_sort_order": 0, - "comparison_vector_value": 1, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 2.9595493248441493, - "m_probability": 0.07354167451568606, - "m_probability_description": "Amongst matching record comparisons, 7.35% of records are in the levenshtein_distance <= 2 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.009454104402360242, - "u_probability_description": "Amongst non-matching record comparisons, 0.95% of records are in the levenshtein_distance <= 2 comparison level" - }, - { - "bayes_factor": 0.2943290699918006, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", - "comparison_name": "first_name", - "comparison_sort_order": 0, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -1.7644980549473468, - "m_probability": 0.28724905116399735, - "m_probability_description": "Amongst matching record comparisons, 28.72% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.9759452274693747, - "u_probability_description": "Amongst non-matching record comparisons, 97.59% of records are in the all other comparisons comparison level" - }, - { - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "comparison_name": "surname", - "comparison_sort_order": 1, - "comparison_vector_value": 3, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "m_probability_description": "Amongst matching record comparisons, 78.16% of records are in the exact match comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "tf_adjustment_column": "surname", - "tf_adjustment_weight": 1, - "u_probability": 0.0006304723913592461, - "u_probability_description": "Amongst non-matching record comparisons, 0.06% of records are in the exact match comparison level" - }, - { - "bayes_factor": 333.4770408553619, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", - "comparison_name": "surname", - "comparison_sort_order": 1, - "comparison_vector_value": 2, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 8.381443628293102, - "m_probability": 0.1284849300847964, - "m_probability_description": "Amongst matching record comparisons, 12.85% of records are in the levenshtein_distance <= 1 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.0003852886836084281, - "u_probability_description": "Amongst non-matching record comparisons, 0.04% of records are in the levenshtein_distance <= 1 comparison level" - }, - { - "bayes_factor": 9.930908563690332, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", - "comparison_name": "surname", - "comparison_sort_order": 1, - "comparison_vector_value": 1, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 3.311925713762501, - "m_probability": 0.020267294367821084, - "m_probability_description": "Amongst matching record comparisons, 2.03% of records are in the levenshtein_distance <= 2 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.0020408298231566584, - "u_probability_description": "Amongst non-matching record comparisons, 0.20% of records are in the levenshtein_distance <= 2 comparison level" - }, - { - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "comparison_name": "surname", - "comparison_sort_order": 1, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "m_probability_description": "Amongst matching record comparisons, 6.96% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.9969434091018756, - "u_probability_description": "Amongst non-matching record comparisons, 99.69% of records are in the all other comparisons comparison level" - }, - { - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "comparison_name": "dob", - "comparison_sort_order": 2, - "comparison_vector_value": 3, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "m_probability_description": "Amongst matching record comparisons, 61.84% of records are in the exact match comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "tf_adjustment_column": "dob", - "tf_adjustment_weight": 1, - "u_probability": 0.002091550682362922, - "u_probability_description": "Amongst non-matching record comparisons, 0.21% of records are in the exact match comparison level" - }, - { - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "comparison_name": "dob", - "comparison_sort_order": 2, - "comparison_vector_value": 2, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "m_probability_description": "Amongst matching record comparisons, 34.12% of records are in the levenshtein_distance <= 1 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.02148930701890366, - "u_probability_description": "Amongst non-matching record comparisons, 2.15% of records are in the levenshtein_distance <= 1 comparison level" - }, - { - "bayes_factor": 0.4683030453214949, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", - "comparison_name": "dob", - "comparison_sort_order": 2, - "comparison_vector_value": 1, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": -1.094485675137949, - "m_probability": 0.03711726145166532, - "m_probability_description": "Amongst matching record comparisons, 3.71% of records are in the levenshtein_distance <= 2 comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.07925906487792309, - "u_probability_description": "Amongst non-matching record comparisons, 7.93% of records are in the levenshtein_distance <= 2 comparison level" - }, - { - "bayes_factor": 0.0037043486234159474, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", - "comparison_name": "dob", - "comparison_sort_order": 2, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -8.076564404852965, - "m_probability": 0.0033233936977775237, - "m_probability_description": "Amongst matching record comparisons, 0.33% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 3, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.8971600774208104, - "u_probability_description": "Amongst non-matching record comparisons, 89.72% of records are in the all other comparisons comparison level" - }, - { - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "comparison_name": "postcode_fake", - "comparison_sort_order": 3, - "comparison_vector_value": 2, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "m_probability_description": "Amongst matching record comparisons, 68.78% of records are in the exact match comparison level", - "max_comparison_vector_value": 2, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "tf_adjustment_column": "postcode_fake", - "tf_adjustment_weight": 1, - "u_probability": 0.00015514157328739382, - "u_probability_description": "Amongst non-matching record comparisons, 0.02% of records are in the exact match comparison level" - }, - { - "bayes_factor": 259.82892721059164, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 259.83 times more likely to be a match", - "comparison_name": "postcode_fake", - "comparison_sort_order": 3, - "comparison_vector_value": 1, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 8.02141824727364, - "m_probability": 0.14271550398348254, - "m_probability_description": "Amongst matching record comparisons, 14.27% of records are in the levenshtein_distance <= 2 comparison level", - "max_comparison_vector_value": 2, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "levenshtein_distance(\"postcode_fake_l\", \"postcode_fake_r\") <= 2", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.0005492671871281347, - "u_probability_description": "Amongst non-matching record comparisons, 0.05% of records are in the levenshtein_distance <= 2 comparison level" - }, - { - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "comparison_name": "postcode_fake", - "comparison_sort_order": 3, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "m_probability_description": "Amongst matching record comparisons, 16.95% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 2, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.9992955912395844, - "u_probability_description": "Amongst non-matching record comparisons, 99.93% of records are in the all other comparisons comparison level" - }, - { - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "comparison_name": "birth_place", - "comparison_sort_order": 4, - "comparison_vector_value": 1, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "m_probability_description": "Amongst matching record comparisons, 84.58% of records are in the exact match comparison level", - "max_comparison_vector_value": 1, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "tf_adjustment_column": "birth_place", - "tf_adjustment_weight": 1, - "u_probability": 0.005197616804158735, - "u_probability_description": "Amongst non-matching record comparisons, 0.52% of records are in the exact match comparison level" - }, - { - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "comparison_name": "birth_place", - "comparison_sort_order": 4, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "m_probability_description": "Amongst matching record comparisons, 15.42% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 1, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.9948023831958412, - "u_probability_description": "Amongst non-matching record comparisons, 99.48% of records are in the all other comparisons comparison level" - }, - { - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "comparison_name": "occupation", - "comparison_sort_order": 5, - "comparison_vector_value": 1, - "has_tf_adjustments": true, - "is_null_level": false, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "m_probability_description": "Amongst matching record comparisons, 89.93% of records are in the exact match comparison level", - "max_comparison_vector_value": 1, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "tf_adjustment_column": "occupation", - "tf_adjustment_weight": 1, - "u_probability": 0.040906446283799566, - "u_probability_description": "Amongst non-matching record comparisons, 4.09% of records are in the exact match comparison level" - }, - { - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "comparison_name": "occupation", - "comparison_sort_order": 5, - "comparison_vector_value": 0, - "has_tf_adjustments": false, - "is_null_level": false, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "m_probability_description": "Amongst matching record comparisons, 10.07% of records are in the all other comparisons comparison level", - "max_comparison_vector_value": 1, - "probability_two_random_records_match": 0.00013582694460587586, - "sql_condition": "ELSE", - "tf_adjustment_column": null, - "tf_adjustment_weight": 1, - "u_probability": 0.9590935537162004, - "u_probability_description": "Amongst non-matching record comparisons, 95.91% of records are in the all other comparisons comparison level" - } - ] - }, - "resolve": { - "axis": { - "y": "independent" - }, - "scale": { - "y": "independent" - } - }, - "selection": { - "zoom_selector": { - "bind": "scales", - "encodings": [ - "x" - ], - "type": "interval" - } - }, - "title": { - "subtitle": "Use mousewheel to zoom", - "text": "Model parameters (components of final match weight)" - }, - "vconcat": [ - { - "encoding": { - "color": { - "field": "log2_bayes_factor", - "scale": { - "domain": [ - -10, - 0, - 10 - ], - "range": [ - "red", - "orange", - "green" - ] - }, - "title": "Match weight", - "type": "quantitative" - }, - "tooltip": [ - { - "field": "comparison_name", - "title": "Comparison name", - "type": "nominal" - }, - { - "field": "probability_two_random_records_match", - "format": ".4f", - "title": "Probability two random records match", - "type": "nominal" - }, - { - "field": "log2_bayes_factor", - "format": ",.4f", - "title": "Equivalent match weight", - "type": "quantitative" - }, - { - "field": "bayes_factor_description", - "title": "Match weight description", - "type": "nominal" - } - ], - "x": { - "axis": { - "domain": false, - "labels": false, - "ticks": false, - "title": "" - }, - "field": "log2_bayes_factor", - "scale": { - "domain": [ - -10, - 10 - ] - }, - "type": "quantitative" - }, - "y": { - "axis": { - "title": "Prior (starting) match weight", - "titleAlign": "right", - "titleAngle": 0, - "titleFontWeight": "normal" - }, - "field": "label_for_charts", - "sort": { - "field": "comparison_vector_value", - "order": "descending" - }, - "type": "nominal" - } - }, - "height": 20, - "mark": { - "clip": true, - "height": 15, - "type": "bar" - }, - "selection": { - "zoom_selector": { - "bind": "scales", - "encodings": [ - "x" - ], - "type": "interval" - } - }, - "transform": [ - { - "filter": "(datum.comparison_name == 'probability_two_random_records_match')" - } - ] - }, + "cell_type": "code", + "execution_count": 9, + "id": "1778b697-24a8-422d-a3af-73dad873cc3f", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialise our linker with historical_figures_with_errors_50k from our database\n", + "linker = AthenaLinker(\n", + " input_table_or_tables=\"historical_figures_with_errors_50k\", \n", + " settings_dict=settings,\n", + " boto3_session=my_session,\n", + " output_bucket=bucket, # the bucket to store splink's parquet files \n", + " output_database=database, # the database to store splink's outputs\n", + " output_filepath=filepath # folder to output data to\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ca798b76-cd39-4890-b842-ba5a0e583050", + "metadata": {}, + "outputs": [ { - "encoding": { - "color": { - "field": "log2_bayes_factor", - "scale": { - "domain": [ - -10, - 0, - 10 - ], - "range": [ - "red", - "orange", - "green" - ] - }, - "title": "Match weight", - "type": "quantitative" - }, - "row": { - "field": "comparison_name", - "header": { - "labelAlign": "left", - "labelAnchor": "middle", - "labelAngle": 0 - }, - "sort": { - "field": "comparison_sort_order" - }, - "type": "nominal" - }, - "tooltip": [ - { - "field": "comparison_name", - "title": "Comparison name", - "type": "nominal" - }, - { - "field": "label_for_charts", - "title": "Label", - "type": "ordinal" - }, - { - "field": "sql_condition", - "title": "SQL condition", - "type": "nominal" - }, - { - "field": "m_probability", - "format": ".4f", - "title": "M probability", - "type": "quantitative" - }, - { - "field": "u_probability", - "format": ".4f", - "title": "U probability", - "type": "quantitative" - }, - { - "field": "bayes_factor", - "format": ",.4f", - "title": "Bayes factor = m/u", - "type": "quantitative" - }, - { - "field": "log2_bayes_factor", - "format": ",.4f", - "title": "Match weight = log2(m/u)", - "type": "quantitative" - }, - { - "field": "bayes_factor_description", - "title": "Match weight description", - "type": "nominal" - } - ], - "x": { - "axis": { - "title": "Comparison level match weight = log2(m/u)" - }, - "field": "log2_bayes_factor", - "scale": { - "domain": [ - -10, - 10 - ] - }, - "type": "quantitative" - }, - "y": { - "axis": { - "title": null - }, - "field": "label_for_charts", - "sort": { - "field": "comparison_vector_value", - "order": "descending" - }, - "type": "nominal" - } - }, - "height": { - "step": 12 - }, - "mark": { - "clip": true, - "type": "bar" - }, - "resolve": { - "axis": { - "y": "independent" - }, - "scale": { - "y": "independent" - } - }, - "selection": { - "zoom_selector": { - "bind": "scales", - "encodings": [ - "x" - ], - "type": "interval" - } - }, - "transform": [ - { - "filter": "(datum.comparison_name != 'probability_two_random_records_match')" - } - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.000136.\n", + "This means that amongst all possible pairwise record comparisons, one in 7,362.31 are expected to match. With 1,279,041,753 total possible comparisons, we expect a total of around 173,728.33 matching pairs\n" + ] } - ] - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAHICAYAAABH1oIKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8VdP7/1fmIUoZMnzNohIZyhD1j4zJTMpckam+olBmKSH5fkuJUImSkoQMEZGpQhMyZshUKUXI1P/1fnzX/e1O55x7zl3n3LvPuZ/1et1X3Xv2Wnutz1r77Pd+9rOep8rKlStXOhUpIAWkgBSQAlJACkgBKVAJFKgi+K0Es6whSgEpIAWkgBSQAlJACpgCgl8tBCkgBaSAFJACUkAKSIFKo4Dgt9JMtQYqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVFfugUb3dVapUqVEjFR/z5da/nzRPuTrXMXc7k8//eS++eYbt8MOO7h11lmnmIcam7GxdpcsWeI22GADt956663Wrz///NM+32STTdyKFSscv1erVi24/7pm/pHw999/d7/++qtpv+666wbrGm1g2bJl7ttvv9X1lFNV1VicFRD8xnl21LecKAAkbb311iVt/fbbb3bz4AYdvYkvXrzYbtzZlsMPP9xNnDjRvfPOO26vvfZKWf29995zu+++uzvkkEPciy++mO1pYnv8rFmz3NSpU91+++3n6tevXy79PPbYY91bb73lPv/8c7f++uuXyznjfpIhQ4Y4HqrOOeecnHf17bffds2aNXM8dHCexHOMHTvWnXTSSXbeGTNmuLZt29r1sGDBArfZZpsF9WfjjTe28/7xxx9urbXWCmorXeVnn33WzZ8/351wwgmuZs2aac8zcOBAd/HFF7v//Oc/7t///nfe+hRteMCAAe6SSy5xN954o7vuuutKPafXLVVAp+h4f/zxR7fzzjtn3HapJ9cBUiDmCgh+Yz5B6l64Aonw+8Ybb7j999/fvf76665x48YlJygr/B566KFu0qRJpcLvnDlzDA6LDX7vvPNOd9lll7n+/fvbzTnfZcyYMe6UU05xPXv2dN27d8/36Qqmff82IR/RK5lf5vnMM890V155patXr94qujRp0sS9+uqrtg6uuuoqN3jwYAPJ2267zVWtWjVIw/KCXx6onnzyyVKvYwbDWu/UqZPr06ePu/zyy4PGl2llvmMeeeQR17JlS/sprZS2HhLHe+KJJ7rHH3/cvf/++65OnTqlNa/PpUBBKyD4LejpU+czUcDD70YbbWQWJG7IXbt2dbfffru74oornP+7h9+5c+e6Ll26uFdeecWsik2bNrWb3Lbbbmune+2119w111zjPvnkE3fEEUe4d999126Y/Oy5557unnvucffdd5/d/PfZZx938803u7333tulg1+sWkD0dtttZ9bhESNGmJWrc+fO7owzzrDzYn279tpr7V+OO+iggww0Nt98c7sBT5s2zV144YXu7rvvdh06dLD2unXrZuOgrQMPPNDglD499NBD7v7773dHHXWUPQTMnj3bHX/88a5169YGNx999JEBZu/evc2t4NNPP7W2Jk+e7GrVqmXH0hcs3pdeeqkdX7t2bdPz3HPPTavBRRdd5LCWYxV88803zWrM+QEmbr5bbrmlWRmxcCV7vQ54cYNGXyz6P/zwg83H888/76pXr25zcsEFF9h88eodaBs6dKjVYR7Q5rzzzjMrKboxbyeffLIbOXKkrQ80Ry/q/fzzz6aHt2QyVvq2aNEih+Vsp512cr169XL77ruvzVG6tfPxxx+7888/3yzky5cvdxMmTLD1AkT9v//3/6w+gNOjRw/r6y677GLWReaktLqnn366rRkKYPTwww873nCwFh577DH7P+uYsdDnxIK7Ag8STz31lFu6dKlr0KCBPVwcfPDBdr3ccccdNl88NF599dXumGOOKWmiffv2tpYoaI9ud911l/WZPtF2aeNGeyyb1EETHhC5BpmHdPCbzfzRv1Tn6du3r12nzD8PxIyX64R/GQPrgDUL/HMdefhlXPPmzXMzZ850DRs2tL/jihMtrA/WCusKqzLXKG+BbrrpJpt3rheurwceeMBtscUW7oYbbnDjxo2zJtCf755NN93UYV3H0sxaxPLO+mc98gaEa4L+UY9rkPnx8Mv3HOsALbn2sFQzp4njZZ74PmjXrp19f6lIgWJWQPBbzLOrsZkCHn6BM24AgCPgcfTRRxvE4OvGjQT4/euvv9yOO+5oN8E99tjDbnqfffaZASY3OY6nPmWbbbYxUOBYChCFVRlgAaiB02eeecY+46YOgKSy/EZdMKjLq2LOS3nuuecMZLfaaisDEG6g9BfY5SbIa+gjjzzSjvNl2LBhBqZALjfzGjVqmFWLcXz//fcGbEAMBV2AV18Yvz/38OHD7Xy77babnZOb9ZdffmmfcxMHkIEUxs7NH8sfOqbSgP5Hre1oiK7cvOkDMAMQ84CR7JUyN2jGcthhhxnsYuUEEDi+bt26Dt9F+gnk8pAAQAMTHsy8Rry2pv/eas/n0XEn/s6DDuMGyhLnnvmi76ytdGvnww8/tH5RonOM/nwGQAGdlBYtWthDC2sLax/HpKsLQANeFOCoX79+9oAH9ABsPFzRznHHHVcCVn6+0RAwxnLL+gC60ZNCn1jTgBK60i/m2OvAMTyA3XrrrXb82WefbQ8irVq1sjXx1VdfuYULF6btO2NnfaEJ/WNeWSes4bPOOist/GYzfzwIpToPDyOsE87LwwPr5oknnrB/0YRrnuuNwvfF6NGj7aGFwrxwfTNXfl2WXEzOuQcffNB0YV54MF577bXtY3TiYYRx88Pa5kGHtplv1jnXAv/nYWjQoEGruD3wEPbyyy/b9xD+wPSdArgCsNF9BVxzfk6nTJnicFVKHC/fTZyT7x5gXEUKFLMCgt9inl2NzRSIwi/WEaxS3Ow23HBDu/lgJfPwC0gCYB4SgOFGjRrZjRyQBICwkOHfCEwAPf4VMMecdtpp9jesNIAM1h2sjtxoqJMJ/GI9BEDoBwAIvGBNw7qGBYgbGX0BSPg/NzMPv8AoIIL1CUsa8M55gRism5RffvnF2gN+sUZh9UIHrEHANBYorI/XX3+93aB5CDj11FMNMgESLK2ALgXY5GYbdXvYddddU2oAHHj4ffTRRw2sgXFu4BSsVJwPYOImzHxFywsvvGCAAbgCsNzEsRRSHwBZc801HVZQHjSADu/DDQgDKVg2gRuOB8w8PGEx4++Mi3n0fq0eMIBmoAXoA3CxVFN4GACKmBv8JtOtHeCcPgBTWP6wUmO5BlpYMwAra5O5wDrNORknegG26eqyXhJfc2Ph5SEFaz9j4zz4umO19wDGGKZPn27jBsA4Bms71kPmAgv5vffea5piAcXyj4tDYvnXv/5l1xAPg1hqsZomwm+qcbMeGSvXEQ94vFF4+umnbf1x3aSz/GYzf1hV050n0Q3An9e7AdAXxsT1z5wDv1hKeZD+4IMP7OHLP1xG9QGWGRfrhjcbrFe/doBrHjzQmfb93gTaY66aN29uc8geAf7mfX5ZF5yLNnmjxLpnDrkeEuHXu3n5OeS64DslmZuHn7fvvvvOrNAqUqBYFRD8FuvMalwlCkThl5sN1hUggxsJ1lBuJB5+ubFhYQFEOnbsaG14MKQu8AvoAATcsCj+NTwQ4V9/J8rPzQagKA1+ozdPXpVycwU6sfBgyQNUoyURfl966aWSV+gAMjDmLUK+HuAPVAO/3rr63//+116h4ubAeP2GHqx6ACR/S1YATjT08MtrVW7EyQoa4I5AnxkTlk1fvE+p/x04ZR6wNEaL9y8GygH08ePH24NKMosmcwqUUf7++2+DQ2855m9Y29EXVwMPx4AhFj+sZLzeBvqxxAE4QCHwyzgACArr5ZZbbjELIZCTbu0AoAAsrgHMLYUHK0AKgGGuotZ7P27WBMenq8saTIRfrPZYTn0BbukvcxotPMRxTUQ1BD55de7nKRfwm2rcgCHt+7ckvm9s6kLXTOA3k/nDZSPdeaIwiMsMD5qUZD7U3u2BuUdPv67QmAfCxOKhElcSrjtciKjLGgb2WXPM8wEHHJD02uFhjOvWwy8PiDw4tmnTxh7eKTzIcj0nwq/fKOi/x/znyeDXP0RzTfDgpyIFilUBwW+xzqzGVaJAFH55pbr99tuX+PkChkCFh1+spdyMon5v/oYA8PI6EMsqoIIvHq9SeVXIK0+sQhxLm1gY8d3l71jDsKJk6vaAhYfXsx70uMFhUeZmxU0Pv0XG5K2oUcuvhwDcM/wue4AYq5S35GQDv9yk6QuvbQE/rMKUr7/+2qAAeONBImr55TypNPBuD1HQwsqEJZT2eLhAOyxkwADjjMK0BzoPoFjFsHB6NwcgF4shr4EBPayrFI7DGu43OXpI8ZbD0uAJMMMShwb0i/Hj5uABAn9lxpFu7fBgRD8BesaYCL+sJ94S+DaAFqziQPcaa6yRtm4i/LLWAHjWH28veHhinii8WcA67wsPIVgfvTWcv7PGgToPV7mA31TjBuzwreWtA28zgDOsoLmEX+aPtwbpzhOFQd7aAMB8LwC2rCP6iXb0k7aiG95Kg18gl/Gw7pgrxolV1+83YJ6YayIu8DfWI772XMfMJfM1atSoEvjleuR7jOuatzqsRf8glQi/Ht4zgV//1oY2+a5RkQLFqoDgt1hnVuNKCr/4F3o4876W/pUtvqrAGbBHAYCJq+k3EgFi+H76175sduE1I355FOAXOAQysG7igoAFlVfaWHZ4RVma5Zd2sFABSh5WgF3ipeKjzGdACRZazsvvvNb0gO4hDtcELFfcSLEAA5OAFQVXCCy9mVh+AUgs3H4TDzdtII++AXJYLRkjVnIse1jqOF8qDbzbRhR+vYUWqARcuZHz2h+90C4Kv4wZ6xg3Zm7QFF4jMw/0gVfoWOZ9RA1ABVcNIAGrLhZbzgcIoGGm8Bt1e+CcQCFwilWYwkMRv6dbO+iWDn556GHNoAO6A2yclwcLNj2mqxuFX7THv5Q1xCt7XG/oF1ZD1jd9RVtfsICjDw8IWML9gxefY/Hmb/mEXx5ogG3eCuAnz5sYYNBb93Nh+UVHrJnpzuOjHfAGBCsqOuL6wfgBS9Y2xYd7ywZ+uU5og8IbIB4qvUuOfyjgIYV1zZyxbvl+8tFMeNjiGo6GOvOwy3cAD3t8/1Ayhd/E8bLufNhA776i24gUKFYFBL/FOrMaV0r45VUwN1xe0WPpjcIvNyR2x7MD229kAyC58QBKFG8V4/9ABDFBublx88H3EnDzwMwx3orFTS1VnN/ohjdeNbP5iMINFgswFk0svVjwKNwcgVn6RqxbYIwbvIdfjgFu2dhGwTcVeAcm8R9khzg3Vu/24F/jercHNkqhjwcQXoMDVN6FAlgC/PgXqy2wyWeAGpCQSgPOC7wmuilEN+DR30TN/WQCCH7jn3+dC9QAtn6+gAagDYswFjmsZLhm+ILVmPHh8+1jNJdm+Y3Cb3RjHW2ylnxEjnRrh6ggpQFsog682uaBik2BpdUF/v0DExZDxsTfopsZgTk2KCYWfJjxCY8ei5WU+aR4+MVKzPpMLP4a4pU/c5fM5zeV5ReLOg9OfpMla5nrx7v0pIPfbOaPazXdeXjI5NwUHlZ5qMIazIOVX5OE2eOc/nrxGuHvzXdHMp9f6rJu+Zw1yn4A5tW7S0VdqHg4Z336zXVoyfrievFxfnmY4e0A/eI644EQrfDj5vvB+6snusH4jYk8HHItJ47XP5wncyHS7UQKFJsCgt9im1GNJycK4M6AhQyrI1bPRD9WLCNsyuKGwSvpxILlFR9QPicjVmnFw6+/eQKqwFlihiyslsAAP5kU4A/rNcAYWrwmWIeAnehucj4DABirH2+2GqApbg+87uWVbqosVtz8sRB7qyTjAoSBJ+qwMz8xgx59wXrGq2zvCpGtHriPAPl+UyBAygalxH6WtnZKOy9uKbRNyLfSki0ktgV8cn5Ay2uARZm/oUu6dcPrcdYXbfDgkCzMXGl9L+vnnJvrjT5GN+OVtb1U9Uo7D9cK+nPd0Q+OZ2Mkf+PBNp9JNnyf/TzwFoN5SHZOrjVcZ/iMhxYsvzxcAL+EDvQbUkvTLzpeHox4YOZBMRrKrrQ29LkUKEQFBL+FOGvqc9EpkAi/RTfAHA4I6xm+kcAI/s7lVaLwi3VNRQpUlAK8CcL9yof4A9C5Lnh45gEy2/THwD0PW/g6RzeiVtT4dF4pkG8FBL/5VljtS4EMFMAyhwUHi53AqnTB2HDE62NcLELT55Z+tn+O4DUzbiBYf/ELVZECFanAF198Ya4LwCowjEsVG3GB2GwLLjls2iQBRnQzZLbt6HgpUCgKCH4LZabUTykgBaSAFJACUkAKSIFgBQS/wRKqASkgBaSAFJACUkAKSIFCUUDwWygzpX5KASlQlAqwWS+fm7yKUjQNSgpIASkQoIDgN0A8VZUCUiBzBXw4KJ9u1dck3Br+hoRMq2yFHf1E9fBJOELHj+84IJ2YyIJ2CddHHFkiCKhIASkgBSqzAoLfyjz7GrsUKEcFUsEvcYwJzC/43SF4Njz8+iyB0QaJW8uGPRJpqEgBKSAFKrMCgt/KPPsauxQoRwUygV+ytpHogexmJEoYNGiQ7T4njinpYUmsQZzerl27WsrnxNK+fXuLrUwiD2LWkkmLXfHANTFkyfaG5ZO+kEBk3LhxFi2CBABksiPkU7NmzezvxEYmGx7RHUjywXEkOCHpBBZbEgwQF5V4usRWJXkESQpIpADQ485AkgT6zLnZiU84KpIaENqOxCMkHCDZAYlQHn30UUtlSwIDYglTkrXrY/+S5ITz0EeSbFCPguU3EX75jOx8pDAmmghjvOWWW9w999xj2pLEomfPniUZvryuJLlIDCdHHSzIqepzbhKkkGTDZ4sjCQNjoQ/MK/NBLFqiZpBs5eOPP7b5QE8VKSAFpEC+FRD85lthtS8FpIApkAn8kv2tadOmlgELdwhgkWD+wCkQCXwCnmRtI+4uABktpMcl9ilwNWPGDMt4RkYywNSDF9ndgL3p06db+lqA12fI22+//QyuvRuC7zMJMoilCsyS/YuseqS3JuQaYFurVi3Lpka4uttuu80SRRCCimQgnKNVq1aWOIHxAL6cm5TUtEviCbLSAZOMiT4DwZw7Vbs8HJDuul+/fq5OnTqWkRB4BySTwS9QzvHoBpjiAgGMc05SbqMHwN2jR49V9Hz99ddLsvr16dPHwr3RFnOSrD6WZWIw0yZ9ITMeqbRJC05dshSedNJJpodPt8w8UwBhNAbQVaSAFJAC+VRA8JtPddW2FJACJQpkAr9YZQnej/WXTHGA1r777msZ9qJphElRDaQCf4nw27x5c7OkArC0hxUY6y2QBbjyA4gCZqSqpQB/VatWNXBNBb9A9amnnmrt0UfSVWMNHjVqlCPNLckFsALTZyyeZPgjDjEwChgD5hQyaJGJa86cOWbZxud34sSJjn6T5Y7zYz199tlnU7YLeJPQAMinYI3mwQDXkWTwyzFRt4dGjRqZhdrDLu3QV+AzWaEvRx11VIlmqerju81xPs0xbQH3WIvRCvjlYYO5bdeunWmFZZk4tczx5MmTTVsVKSAFpEA+FRD85lNdtS0FpECJAt4fFWvpoYceWvJ3QBeg9D9YYRcsWGCvxUljvNdee1ka4cQCiAKeifCL6wNWTFJEU+/77783UMTi+/DDDxuIkRBg0aJFJemDOQ+B/gHsKPxyDNCGhXaLLbYwYMN1YqONNjJrK5bTK6+80qy1iWX27Nnuo48+MqjETeP555+3VNiMB/BmnCeeeKLBL6/9sZj+9ddflrIWqzVAmqpdrKe0HS30afHixRnBL0DKWI877jhrAu2Bb1LrJhbcRrDkMgbvWpGqPjDPA0nUfxvoxyKO5jxkMB8UHggYK64bHpJxN+FBRUUKSAEpkE8FBL/5VFdtSwEpsIoCWB+x2vLK3BeACDjt3bu3WVM5BqvogAEDzPcW6yCZ78aPH18CzVgosRQCjInwe8EFF5gPrIdfQBqA9fALhAKc+Bfju0oBpPFFpS7w62EUIN57770NfvHhJW0sPwA8r+1xpcDiC8xizaVwHP0H3nFz2HTTTW2TGVZPYA+XA6y/+CQzrmi0hyj8jhkzJmW7uIbwgx80ZcmSJe67774z7TKx/OLzC5BefPHFVh9tsIhj4Y0W3C+wxDIG+ozmlFT1cXU45phjrD8cC0xjZadd3FV4YPDWZeCXvvbt21fwq+8JKSAFylUBwW+5yq2TSYHKrQDAA9BOmDDBwBXfVayYpGnFzxdI5f8tWrQwwMQyCtRhKd52223NagvU8soeKySv/7OFX16zH3/88QZ0uCsAqHXr1jV/W0AXWAPi6CvpXtmUBvzic0x/6R/H4G8M1LIhj/7wyh7gxccXcKcOsIuLwLRp0xyWYMAZ/17Oh3U0MdRZFH6xkKZqF2syG+TQEYsvOqy//vpmzU0Fv8A9x7FRDz9crOCPPPKI+dhi9UXrxLTNF154oR2HZuhFAdjZtJesPjDNhjw0wEqOOwf+vVikeTgQ/Fbu61+jlwJxUUDwG5eZUD+kQCVQANjDykr0BF/YzIb7AAW/3M6dO5sl+NdffzUfXKyxbJYCiLGWUgBlXB4Sk0Pwij3R8rtw4UIDN6ybgCsb0fDfxTcV8KUAaoA11sqbbrrJ3C0oZ555pgElIMtn+B/TB4ATqzHW6Bo1apgl21sw6Tvn8a/v8T/mM3ye8QlmExtuGX7zXjLLr7dKp2qXtnhomDRpkvUT6MZSTISKVHF+AXp0BprZBAhYo6uvzyY2+u6LB/HEZQkwY3VOVR/wxyqORujLw0Pbtm3tYaY0+MX6jFVZRQpIASmQTwUEv/lUV21LASmQVAGgiNffWH/XWWedVY7BSghgYh3FcuoLPsNEDWBjWi4iAvBK/9NPPzUY9eHD/LnYeEbBwhstRGpgIx3WT+pFC5CNtZYxrbfeejmb+VTt4lKAPy59wpoMWJdW0JYxAfLA7bx580x/olJkUj/afrr6wDlzSNg5NrepSAEpIAXipIDgN06zob5IASkgBaSAFJACUkAK5FUBwW9e5VXjUkAKSAEpIAWkgBSQAnFSQPAbp9lQX6SAFJACUkAKSAEpIAXyqoDgN6/yqnEpIAWkgBSQAlJACkiBOCkg+I3TbKgvUkAKSAEpIAWkgBSQAnlVQPCbV3nVuBSQAlJACkgBKSAFpECcFBD8xmk21BcpIAWkgBSQAlJACkiBvCog+M2rvP80ThxOYoomxgwth1OnPcUPP/xgfYrGUi2vPhGzlVij2cYWzVX/SEGbmCChrG2THICYtCpSQApIASkgBbJVgHjYKv+nAAmOKGStzFeplPBLtqbEIPlkciJl6A477LCK1mPHjrVUnok577OZkE6dOlk2JDJUJSvPP/+8BcwnY1SmhaxJpGgFIqn7999/Zw2SpDhdY401LI1rLgsB7sm+RRrVVIWUsA8++KDbb7/9cnlqa4uUtFtuuaUjc1iyQiICNCNJQGIpy1yQqevKK6/M+Thy1SBJGeL85ar+hc209JN+YQqE1db6i49+r7/+umvcuLF1iMyUZ5xxhiNJjs/cSPZK0sKnKmRnrF69ujv99NNTHkN2zmOOOcY999xz7vDDDw8bfIrae+65pxkMP/zww5Ttk7CH5ESMh3FFC0mK7rrrLktB7/VIbKhSwy8ZpsjUhIikXD3ggANKUpR6oZYsWWJZm3bbbbcyTfIHH3zgTj75ZDdnzpyUcEqq0/3339/SsmZatthiC/fiiy9av959911Lb5ptWbZsmdtll12sb5tttlm21VMeTxauvffe29F+qpJP+CXrFVZdUr1mC79lmYtXDzvekVY3rmXxkiWuxiabxLV7Tv0Lm5q46zfvzBP18BUwxYLLAPGcs4yMleXhPwq/8AQp3T2soiIGvuuuuy6loGR6rFOnjsMIlKqQ0v24445zEyZMsBTx+Sj9+/c3wx6p7lMV3lyTth4jF2nbo+XLL7902223nf09lRGsUsMvYMtTDgWxhw4d6l566SXXvHlz17JlSzdx4kRbLI8//rjr16+fmzt3rjv//PPdjBkzDJYvv/xyWyitWrVy9evXd0OGDHFvvfWWTYgvXbp0MSsj/+L+cOmllzqsyZyDiSW9aLt27cy8//DDD9uxTNYrr7ziDjzwQHfbbbeZRTh6DizI9JcLGos0T2mcl2NZEK+++qpd8Cx++s9TENZdxoYFGstsnz593Pbbb+8uvPBCA+DLLrtslcWDNZMFNHPmTHtyZKws+mnTpllfsBr//PPPDqs2FwELrWvXru6UU05xjRo1suO4QNCOp7I77rjDUqiiw7nnnuuAX8bHOCn/+c9/THNfeODgqXLKlCnmlgFc0g5jv/766w36TzzxRHvqGzlypD3Z8n+s4ZyLJ0JA9oknnnDdu3d3G264obXBfGORRmf0R3P6PmLECHuIiM4Fc5RJ+avKFpkcpmOkQKVU4ItP36g08JGPCa5M8Cb9whTw8Mv9kHsdllPui7AN6cY9/ALFWEYXLVrkmjZtavff++67z+6tG220kfHADTfcYPDMcVhhjz76aNerVy/jCO7tvC1/7bXXrMO9e/e2e78vvF0/4YQT7Kdbt27uyCOPtLfTQDXsglUaNsC9YeDAgXYfhgnoB4Yz2v7999/tDTIGRO7ZjAX+gjdgiNatWxtrAeCMA6NX27ZtrY9wDvzGG37YjX4klkoNvwBP1apVHRN1++23u/POO89ErlGjhsEt0PTpp5+6QYMG2aQBVjvvvLO9Vgf+3n//fZuIffbZxxbHnXfe6Q455JBVfGibNWtmwAe0PfTQQwbIQCT1aGPSpEk20QAjIAkANmnSxM7BpAGRwHL0HFiJAVYWDwDMK34Wlgdr2mahs1iB4WHDhtkiZYz0gSe/9957z/xUec1B+1iRo4XzP/LII+6ZZ56xn2uuucbcP7COA/pYdx977DH35ptvusGDB7vZs2e7Y4891s7H/3ndQB84jgsFyGWBHnroobZIGQOWWeo++uhf3kB3AAAgAElEQVSjtsgB7WjhYqB/6623njv44IPdRRddZL8D0TzNoj8aoik6nXXWWTZf/A1NuIC5OGiff3lI4MLiAvPwy0MBYM+83nzzzavMRaY+wYLfsC9s1S5uBQS/YfMr+JV+mSrg4Rd3B+71GK4wEmHoAjiBX8Bx2223NUCENy655BL7gW+ARO6dACl1uC8CkNzb+RsMUbt2bbun83eMRX379nU//fSTYx9NdP8Q92kgnD0x/i0sb9vhHbiA/8NH3McxRMEC9Pfbb781BsK4BvDCMTAITIbh8aOPPjI3Q4xt3tAIq40bN87amjp1qvEObTKeHj16uHr16gl+UcD7/CIMgAMAs0BYDEwi8PvNN9/YIgAMgd8xY8bY5jCspvzLU8m6665rEwXY8nSDe0O04FPKsVhlsRAzKfi4stCwagKCG2ywgVkovdsD5+eJhcXBogGqqQf8Rs/h3R5wV/A+v8AvfefpjcIxQPvFF19sVmEsrTxpcU4Pv3zOAmYhJsIvY+TJj/NjBcVSzia1nXbayYCaPk+ePNkWHPDJxUX/v/vuuxK3B6y1WLx79uxpzbOYuRD23Xdfg3CAlL9hyU30wWWBA77ozA2AJ076yzg4B/OHxRzQpgCvvOagL8wd52Dc/hUOn82aNasEfj///HOz+uI/DUwz12VxexD8ZvrVrOMqowKC37BZF/xKv0wV8PCLdRXDDtwCl3Af5y0v8As0ck985513jDMwAuIXy1vWqNsDxjwMSMAmxjYAlDeoMBDwizEMgyEwjWUZN0esxr5gzKMfvJnFmAZ7ALinnXaatYvRaeuttzaOOOyww9zLL79sb605z9VXX23wy70choJRsEx7horCb5s2bcxyzB6is88+2+pj2JPbQ5JV4+E36vbgD+NvAKR/ivHwy1MPC8D/3UMkEMaTCdZErJPR4gEZdwmsmBRerWOZpV1AksmMApd3IOcVAr7IWFc9/EbPkQp+vWuBh1/cInitgWXX+wVvvPHGZrFlgQCvvEpIdCxnsfq2WIAsWKyqFA+/WK1ZdLhXYIHmyTERfhkbYOv9bniowM+6QYMGJRveuADRNhF+gV1e2QC/PHHyeoMLGOsyFxVO8Vhyo/7OzAEXCfDLax8eIPih3HPPPXaBecuvPx8XLtZ4wW+mX7E6TgpkroDgN3Otkh0p+JV+mSrg4feBBx4wOKVwrwd0uVcCv7ggYITz7gUYoXCtTIRfABUA9oZA3A8wFmLsivr88kYWuPaGQd9XIBQ2Am7hA5hpwYIFZpV94YUXzLCFKyLgjQXYF9wqgVjgFxiGdTDs0RfeDsMOUfj1Pr+8PYZT4CssvYLfHMEvT0oIiiXzpJNOciwunmLeeOMNs8omg19ODUBiOcY6jGVynXXWcVdccYVZLgE0QI4nICa0ffv2ZoVmkQGMACjtp4JfFhdPTlHLbzL4xe1ir732Mr8cdmiyU9NbfnEZYCECsdGSCfxycfDkxw/giC4efoFZHNbxuQVcOS++x2iInzPWWx/tIRX8YjH2G/F4KMElBSstMIueWHV5KkVfdMTlhDb5QVsuLGAYCy8XENZr9EkHvzzFMheMP9Miy2+mSum4yqiA4Dds1gW/0i9TBaLwi9GNeyRGLoAQNwbglzev3LN5UwuAYmiLWn4xjnGPZd1xz+Rz3ozjYwuEAqqZwO/y5cuNZyj4DQO/WJ0pvNHmc/bm4EYBT+FmyVtymAFG8W4PnA+jFW4M06dPNyDOFH4xvrG/ifMklkrt85vO8uvj0EZDnfEKgYWAHwtPMMAnT1HAL36myXb8A2xYfQFFrKssJtwOaB/fF5zKgWjvyM0ixUeVRcOxvDLAMonbQPQcuAs8+eST9lQHUHqfX3x5gGkP3ixigJvFwgLiCY8nL/8qg6cmLN0AeSL8+rZYcDyNRS2/ACZQiSUWoGSMADU+RDic4+YBmGN5BlTffvttc1HgKRM3DI7n4sPXORX80h/8fChowsXBBchFwesXnkh56uQBgfnwT4eAKxc4Ywa88Z3GCo+PElrxt2ios6jlNzoXme5kFfxm+tWs4yqjAoLfsFkX/Eq/TBWIwi9vPoFW3CwxgAG/GO94U4vVlz05gCcswj0VoxQ8wv0Rl0Lut9THJZACO8A88ADw6/mH+zlvxhMtv9Tx/rpALcYsfHm5p2OlpcAwnBPLNIXN6rCS3+MEU7CHCMMh58PFkTq4gMI5+Pzyf5hj9OjR1jYMhRsFb4axUgPe9FHwm+kqSnEciwS3CRYSr+NLK0y6jxBBQgcWGpZdHMmjAZyxigK8uEJgFebpC0jm6Qgn8sRz8cqexYYLQWkFAMVVgT7jSgH4AYP0BxjEfQFQLUvB0suiZhHiEsLTHX0Hxn/55ZeSJz98o7Hi5iOhBhBMuz6WoR8HESMAfu+LzRcAFuBUoU98vehcZKKJ4DcTlXRMZVVA8Bs284Jf6RemwOq14Qc4hvt+YqIprLLcv+EPCjzCPR5jWL6SUhFZCobw5/Q9ph+4OOJLzIZ2DFVYrdnMly4WMfWpix8ybWIAFPzmehVl0B6md3ZfZho6K4MmszqEJzheN/AqAfcGnMfxn+HvWIDTxf3L6kQxO5gHDeAeNwYsw1if8V/2/tdl6S5Wc3yjoqXLVX3L0pTqSIFKoYDgN2yaBb/SL0yBwq7Nvh8sv77gP8x9GCNeSKmUbg8hgpWlLpZEfnhyqqiC/w+b7chgh6sBmd1wN8A9IPFpq6L6mI/zYqkHVnmaJUwblt9cF1l+c62o2ismBQS/YbMp+JV+YQoUfm1cLOEX3h6zfwm3x9Ai+A1VUPUrvQKC30q/BCRAGgUEv2HLQ/Ar/cIUUO1kCgh+tS6kQKACgt9AAVW9qBUQ/IZNr+BX+oUpoNqCX60BKZAHBQS/eRBVTRaNAoLfsKkU/Eq/MAVUW/CrNSAF8qCA4DcPoqrJolFA8Bs2lYJf6RemgGoLfrUGpEAeFBD85kFUNVk0Cgh+w6ZS8Cv9MlVgvZuqZHpo0uN+u27lKn8nYhJhUaOb4gkhRkjTXGw6C+psYGX5/AYKqOpS4NXDjncHNW68ihCrfoU4l/iVVNrnvjF/XGn1/fHJjvtxyRJX/X/xoEtrJ/TzdP2IChQ9jyWbSYhXnawf/A09wr7es1+v9C+TeNrZt5ybGnHv37yzTrL0pnEtgsuwmZF+8dGv1s1h347fXfPPHeevv/5yc+bMsYyq5B4gNCqFjLBkSCU+MGBM6FSfhTVMhfKvLfgtf811xiJT4NZbb7VscnEtujmFzYz0k35hCoTV1vqTfpkqULtnGPx+dPU/8EuIUOL/k82NbGvAL7C79tprl2Ry69Spk9tyyy0tw1ohFsFvIc6a+hwrBQS/YdOhm7v0C1MgrLbWn/QLUyCsdi7X3z63VHFVIq/IVq50Wf0+/apV30kOGDDA8gEAv6Q/JlHXp59+agMm89qMGTPMOlyIRfBbiLOmPsdKAXKNk0lORQpIASkgBaRAtgrkyi3ooFvDLL9TrkwNv7NmzXKnnHKK+/DDD214w4cPd5MnT3b33XdftsONxfGC31hMgzohBaSAFJACUkAKSIGyK9C8Txj8vtAlNfyyyY2Nb2x4q1KlSokfcOfOncve4QqsKfitQPF1aikgBaSAFJACUkAK5EKBlsBvlH8TdwiX8vuTl6eGX/q35557uoEDB7r69eu7I444wt14443u8MMPz0XXy70NwW+5S64TSgEpIAWkgBSQAlIgtwqcfGeY5XdM59XhFx/fvn37WkfHjx/vzjjjDPt/ixYt3IgRI8wKXIhF8FuIs6Y+SwEpIAWkgBSQAlIgosDp/wkD0YcvTQzCubq8v/zyi1u6dKlFeijkIvgt5NlT36WAFJACUkAKSAEp4Jxr2y8Mfh/oVDr8FovQgt9imUmNQwpIASkgBaSAFKi0ClzYPwx+7+4o+K20i0cDlwJSQApIASkgBaRAoSnQeUAY/N55seC30OZc/ZUCUkAKSAEpIAWkQKVV4KqBYfDb+yLBb6VdPBq4FJACUkAKSAEpIAUKTYHrB4XB740XCH4Lbc7VXykgBaSAFJACUkAKVFoFet5TJWmYXx/eN1WYX//37h0Ev5V28WjgUkAKSAEpIAWkgBQoNAX6DE4Ov34cpeW8uPw8wW+hzbn6KwWkgBSQAlJACkiBSqtA/8Fhbg8dBb+Vdu1o4FJACkgBKSAFpIAUKDgF7r0/DH7PbyfLb8FNujosBaSAFJACUkAKSIHKqsDQB/5xeyjx8V3pHNmHE31+U31+dlvBb2VdOxq3FJACUkAKSAEpIAUKToFHhoRZfk87V/BbcJOuDksBKSAFpIAUkAJSoLIq8PjQMPg94RzBb2VdOxq3FJACUkAKSAEpIAUKToEJw8Lg9+izBb8FN+nqsBSQAlJACkgBKSAFKqsCLwK/qzj9uqx+P/QswW9lXTsatxSQAlJACkgBKSAFCk6BKcPDLL8HnSn4LbhJV4elgBSQAlJACkgBKVBZFZgWCL8NBb+Vdelo3FJACkgBKSAFpIAUKDwFZj0UZvnd4wxZfgtv1tVjKVBBCjz11FOubt26FXR2nVYKxFuBj79+JN4dLO/eFRhfbFnzIFd1/W3KW6VKdb4dd9wxJ+OdO7yKxfX1gX1X/i/Ob6a/7yr4zck8qJFKqMCsWbPcokWLVhl5rVq1CgoO58+f73766SdXp06djGbw1ltvdVdeeWVGx1bEQZ999pnL1ZdrPvqv/oWpGnf9bronzBoVpo5qhyrQqc1nrvpGO6RsJu7rrzL17/OHw6617U9f9cls+fLlbv3113drrLFG6DKKXf0qK1fybKAiBXKjwMknn+z+/vtvV79+/ZIGGzRo4E444YSgEzz00EPujz/+cOeee25QO77yQQcd5CZPnuzWXHPN1dobOnSoe//9991tt92W0bkEvxnJpJtnmEwFq5/gN08TX07NCn7zK3Qu4fzbQPjd8n/wiwGrTZs2bq211nJffPGF69q1qzvnnHPyK0Q5ty74LWfBi/10wO9pp53m+DdagNfx48e7UaNGuYkTJ7q77rrLPf74427IkCHuzjvvtIusc+fOdoF9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauUUyf4DVvVufzyD+tJ8trqX5iqgt8w/Sq6tuA3vzOQy++XxYHwW+N/8Nu7d297+8l99LvvvnNbbrmlwwq8wQYb5FeMcmxd8FuOYleGUwG9y5Ytc7vuumvJcDt06OB23nlnV69ePde9e3fXq1cv169fP3fggQe67bbbzmCV1yr77LOPW7hwoePCAzyB0nbt2rnzzz/fzZgxw61YscLdcMMNbu2117a2P/nkE7fLLrsYQK+33nqudevW7t5773XbbLON1fnqq69co0aNDJ4B5qZNm7rBgwdbP6pWrep++OEHa5c2x4wZ4+6++267wPHfBb7feust9+GHH1p/3nvvPcFvnhZwLr/889FF9S9MVcFvmH4VXVvwm98ZyOX3y/IE+OW1fjpHiMTPN/wf/GI44p6JIQvnAO7Pn376aazd57KdJcFvtorp+LQKAL81a9Z0DRs2LDnu8MMPd9tuu62bNGmSO/TQQ92pp55qFmAuKgAW6+zs2bPNKrtkyRI7ZsSIEQbQCxYsMHeHRx55xP3222/u6quvLmmXunvvvbdbvHixgSy+xRzLD0+otM/rm5deeskgFjeGkSNHuhYtWrgqVarYcddcc42rXbu2a9u2rQE3r3iA3nHjxtnP0qVLXfXq1a2tVEWW37CLIpdf/mE9keU3H/oJfvOhavm1KfjNr9a5/P77a0SYz++abf65z3GP5se/wd1iiy3svrj99tvnV4xybF3wW45iV4ZTpXJ7YOyvv/66a9y4sbk2YK0FTDfbbDPbLLbvvvuaWwIgizV47ty5bquttjIg/fPPP81imwx+TzrpJDdz5kyzGO++++7u+++/N/cI4BffY9rF6nzUUUe5Bx54wM4VhV/8mjgvP5znxx9/dERv8D6/WIKxEnv4nTJlisF6YtGGt7Kv7lx++Ze9F6lrqn9hqgp+w/Sr6NqC3/zOQE6/XwJDnbn/RXu46aab3MYbb+wuvfRS99dff7lNNtnE7o3FtPFN8JvfdV3pWgd+AUmg1BesrFxAe+21l7vkkksMQJ944gnzKcLfF8ss/sD44AK/+O5i/QWSTz/9dHfiiSe6zz//3P3888/u+uuvX8Xymw5+8VXCGgxA0y7uEICth18g+eGHHzYox10COMYCjTU5Ffwmm1BZfsOWeU6//MO6krS2+hcmquA3TL+Kri34ze8M5PT75cEwy6/7X3pj7sfsy3n++edtXwxvZd944438ClHOrQt+y1nwYj8dr0q4WKKFSA/43rIZ7YUXXjCXhuuuu84upgMOOMDcJNZZZx2z2ALAbHJjIxsb3wg3NmHCBPfyyy8bBLNJDjCm4PaQDn6x1gLjH3zwgR2PfzAQ/MorrziiPWDRZSPeRRddZH3BWvz00087rLuC3/JbqTn98s9Dt9W/MFEFv2H6VXRtwW9+ZyCn3y8PBMJv23/cHrgXH3300XYf5P/cu/fbb7/8ClHOrQt+y1lwnW5VBXBNwEKLiwNuB7g2AKUUXrPgb+sLFyGQnCw8WTpdgejNN9/c6uFTzCsczvX777+X7F5NPFc28yTLbzZqrX5sTr/8w7qStLb6Fyaq4DdMv4quLfjN7wzk9PtlcCD8nrfq3hY2jfP21G8yz68S5du64Ld89dbZilABwW/YpOb0yz+sK4LfPOgn+M2DqOXYpOA3v2Ln9PtvUCD8XlB50j4IfvO7rtV6JVBA8Bs2yTn98g/riuA3D/o990pPt+lmm+ah5dw0uWjhIvUvjZQ7bXO4MrzlZqnl//tlQCD8Xiz4zeNUq2kpUFwKCH7D5lPwW9z6TZ7Sy222aXzhdyFRZ4q0f3V3Oz9scWVQW9dvBiKlOSSn+v03EH7/LfgNm81KWpvNVCxkwmtVRCGqAVnRCCeWTfnmm28s8kI0MUU29TmWANj41OKTG9pWtufO1/GJfsGpziP4DZuBnH75h3Ul/5aZSti/gfcF3pDzoFllaHKXnVq7w5qNyPtQdf2GSZxT/fpWWTWrRWIWi9J+7yz4DZvNSlqbSAZkCyNaQEWUaPSD6PmJaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rk9Mv/7CuCH7zoJ/gNw+iZtCk4PcfkSrV98ttgQ+aVwh+M7i0dEiiAqng9+OPP7Z0u8ApcWtvvvlmC+d1yy23WOxbrLXk0CZEGH8jzS4xaQcMGGAxZ8lqBpDxOYBJtrP69eu7a6+91g0dOtQiGQwbNsw+a9asmYUPAzCJk3veeeeZJZhICWPHjrUEEol9eeaZZxx9JCwYMXbXX399y8Z2xhlnuDvuuCPlRAPNF154oVtrrbUsWQXxc8kAQ1ukJk7sH32lPcKZPfbYY3YMfdphhx0c8EwoFcKY7b///u6+++4zkGasBNsmDi/t0X/0I2scYclIXYyFls/ob6pCNAceAsjmRt10hXjChGKbPn269UHwm99rvVLdnPIgZdz1E/zmYdIzaFLwWwnht3cg/F4l+M3g0tIhmcIvUAmQkisbGCXRw4wZMyyMF5BF4gYsjMcff7xr3bq1e/TRRy2uHqBIul1S7wLOxMcl88pGG21kObf5O/FpSdRAcgZgkli2gCLQxg9hvvh9xYoVZpWm/cS+EG5s1qxZFu+W+pwfiCU2LxnTgOtkpV69ega/uHkAtKQKpm+01apVq9X6B+ASxoxUxKRKJN0w53ruuecMcklAQRpFHhA6duxoME6bhx12mNtpp50sPu+8efMsScbbb7/ttt5665K0x5zvnXfesWxu0UJa40GDBpkVF33PPPNMOy5aNt10U9euXbvVhsjDB7oLfvN7rccd3tS/sPkX/IbpV9bagt9KCL89AuH3WsFvWa+3Sl0vmeXXp9rFmos/7IsvvmiWTCAMcCQ1L762JG8g6xmpc0nmQAHIvvzyS7NqHnnkkQa8zz77rMEsQAfoYd0FPJs2bWpZ0LAU43uMNRb4xYKKFZf4ucAxiRwS+4LF1cPvEUccYf67FOD3nnvuMet0YgGq6bdPechY6tatWwK/V1111Wr9o09ke8MFgwLAAqJkeOOc/A788i+W7+7du1v8XyzDo0aNcg8++KDVw1KOdZaxYxWnAKpdu3Y1jSgktuB39OVhg2Np+7333jOrcyL8Av6JRfBbPpez4DJM57jrJ/gNm9+y1hb8VkL4vTEQfq8X/Jb1eqvU9ZLBL/6vgBzpAX3Zbbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc5B2cNy4cZZ9Bcvp8OHDLRsL7fiMZ9THwjtw4MAS+KWtZH3BuuvhN1of/9z+/fsnhV+Ox0cYyyoF2MUS6y2/jDexf7Tl4ReIB+7JHc7DAKmFPfzOnTvXElFgEccqCzTTFvUpJMUg4xufkwnOF1wm9thjD/sVlwj0Qjt09RbhpUuXOgJ3RwvuIokWYw/UiZZf/Ll5QEksWKPjWuIOR+pf2MqJu36C37D5LWttwW8lhN9rA+G3h+C3rNdb0noAB9DQsGFDt2jRIrMQFmMBTLHSvvrqqyXDW2ONNQwe8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8Awnr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy92zAfAHS1YsMllnlhk+S2fqzTu8Kb+ha0DwW+YfmWtLfithPDbPRB+ewl+y3q9Ja2HvyaAh+8mFs50G5N8A6VFKMhpB3PUGPDLGKMFtwMgD5cDClZGfFdr1qzp3nzzTbPOAoU77rijI1QZ1lkgjxsuFl6Ajb9F4RdrLhvc8LWlPTZ8AdIHH3xwUvjFxxZXCkAbCE7sy5NPPpk1/DKWIUOGmLUZeAaAzzrrLPPpBaRvvPHG1fpHtAmsyRzDQwDATj3cGth0N2bMGHMH8ZZffJTRDrcFLMtYySlYgPHfxf958ODBjoerli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPEVwWt36C37D5LWttwW8lhN+ugfB7u+C3rNfbavWwNgIphxxyiG1ewhrIRi2iCuB/ikUOy573zwSQsCBGIxSwUSyx8Nof/1l25M+fP982T7GZi/a7detmG6N4LQ+4cCyAxyt6YtBybqyB+MECTFikk0Vk4HV7rgoAhv8uG8mwPqYrvNZfd9117dV/uoL1lX4Dj/gTpytYWzkGK2k2feFY9EsswDr+xejJMcn6mqx/0di5wD5zUKNGDQN/9E43Ds4FaEfnZdmyZQb0WNMzKZw/l/PKOQW/mSgv+A1TqXD1E/zma+bTtyv4rYTw2zkwzm9fwW/Ortbly5fb63HAE0snvpi86gYCseYBolgPsQJiFeT1NRY+Xv37CAVrr732av3hdTZ1cTEAgIFcrMps0sKFAGDGdxbLIP6iQPXUqVMNdgFf/k9f8LFlA1myiAxYMit7IcTatGnTVpOB0GZY9FUEv6FrQJbfMAXjrp/gN2x+y1pb8FsJ4bdjoOW3v+C3rNdb0npsaGJTFZucPPxi8V2yZIlZItnVz9/xg+X1NRunCPOFVdDv5k9sGPglXBaRC7AIco6VK1eaTzHRA4BtrMFANL6f+HQSU5YfNlfhX4vlmPOw+z9ZFATaVpECpSkgy29pCqX/PO7wpv6Fze/kV3u6TTeLb3rjRQsXFW3/6u3WIWzyMqit6yMDkdIcklP9LgqE34GC37DZTKidDH5xdfCRArDw4u8JoBK9gE1NhLYqDX6x6AK4vDLfcMMNHa/Z8YNl5z6bxYBcNlYBv/5YXuHzAzx7+MU6nCwKAm2oSIHSFBD8lqaQ4DdMocLWb+brvYoWLhNnZuOajdxGNRrkdLpzCkc57VkltKzGXb/zAuF3sOA3p1NcGvwSGYBwXfht4n5AwgL8Y32EgmSdAV4T4Rdf2Vq1ahkME+sWoMXCWxr8shkqWRQELNHZFM7JFxUAXhGFcRMdAn/pbAquH1jPiXpQ1sLGMKz4+OyGtlXWPuS6Hm8mWLulpWIW/IYpr5t7cev34oOBN+Qwecq1dqNj3hX8lqvipZ+sUn2/nBvo8/uA4Lf0FZXFEaXBL4kU2PBGKDCsvbgtkLnMRygAjhNLMvjF7QF4JvwVhWxlACkb7FJZfsneBSCTYCJZRIYshmkxeIlQQFi3iijEpI2GOvN9KC1yBmmKCa3GBsGyFrK3EXmCUGPp2sKvmzBlpQFlWfuRi3o8ePEAhl8zm+PY2MdmzVRF8BumeqW6OYVJlbR23PUT/IZNetznV/2L0fyeGfigOVzwGzabZahNOC7cH6K79olQgGsEUJdYWrRoYTv/kxWyj5GSF8DCelda1ATfRjZREJKdNxX8JoskQQKGW265xWLVYq3t2bOnGz16tP0NX2Os1oTaArzwe2bjGZ8DmKQCxmeajYM8BDBWQp/xWbNmzSx8GoBJiDTiAUcjZxBajLjBaEoa4ZtvvtnCjNFHHhzYRIiuZIUjJB0+0akK0Ix1HEAEFJkTNjLSFg8Sif2jr7RHRjr8rDkGH2yiVQDPZJrjQYeYwYSIA6QZKw9PbJnhk9gAACAASURBVEqkPfpPn3GbwU+czY3MG5+lC6FHJjoeAmrXrm110xXaJwsd4dp4GEMPgD5VRAnBbxku+EgV3TyLWz/Bb3HPr67fGM1v60D4HSn4DZvNHNb+4osvHDCbWIDC0sJ75bAbGTWVCn6TRZKYMWOGq169usW7JRwcoE7sWsK14fc8ceJEA0XGj+UaWB0xYoSFjSOLGml8+TsWcqJjzJ4922ASazegCDjyg3b87iNn0D5wTDQMwJgYuvhK+yQX1Of8QCyRM9ioCFwnK/Xq1TP4xc0DoMU66jO8YTlN7B+AS4xfHnTYrIi/NuciOQeQiwWeFMRAeceOHQ3GaZPYyUSWID4yIezw4yYWMhsjqQegcj5SJSdmauPhiVTQ999/v+lLjF+OixZiCZNtzhceuogXzMOEfyOA/sliCFNH8JvR5ZHyIN08i1s/wW9xz6+u3xjN78mB8DsmM/jlnguzRCNxwRHcO9l/VQilykp8BVRyokAy+GUxJIskAYQBjjNnzjRfWxJQAFrEKcbdgwKQ8Qoeq+aRRx5pwEvEDGAWoAP0sO4CnoR1+/zzz81SjKsH1ljgFwsqVlwWK3CcrC9YXD38HnHEEZbYgQL84pKCdTqxANX0G4sqcYsZC5n7PPwSxi6xf/TJpzemPQAWEMXNhXP6DG/8i+WbKCBYW7EMswGS7HcULOX4gzN2Hw0EKzmuM2hEwfXFx44G8DkWsCYcHlbnRPglBXK0/P7772aF5wGEDZLEqU5VBL9hl49unsWtn+C3uOdX12+M5vf4QPgdlx4HCV2LoY03rp07d7YQtRQSXv3nP/8xgxRvYjHI8TY4zkXwm8PZSQa/vC5PFkmCV++AHYuEOMdAGQDG5jNA1hegjUWWmN4YIMOPGcspmwWPPvpoaydVemPgl7aS9QXrbrbpjTkeH2EfsQPYZeF7+CXucmL/yMzm4ReIB+5JNYxbA5E5UqU3Bpppi/oUNjaSDhmL+QUXXFCiFS4Te+yxh/2OSwSuJWiHrt4iTDY4oolECxbeqMUYrU499VR7s8A5iVPtC/7cPKAkFqzRcS26OYXNjPQL00/wG6af1p/0y1iBowPhd0J6+MVYh4slhro+ffoY/AK7WIAxhFWrVs1cJ7lnkmwszkXwm8PZAX6x0pJ4wxesolhO8XdlQx9uDkAvllJSEmPxJfUzT1K89se6SWxioJlQa1g58dFNhF9cFoCwXr16GbiyCHEfSAW/PnJGsqgW+LRmC7+84mCB41uMHy5+umTm8/ALiCb2D+su8Is1HFjE3QC9Lr/8coPZVPDLg8Kxxx5rnwOuaMF50RULL69fGHePHj3M2u0LUT7QnaQm+EiTKpr5ALijBQs2YfZ8wbLOXET/lm6ZyPIbdhHp5l7c+gl+i3t+df3GaH4PD4Tf5zNzBOAejHsi3IErIm6U/o0xBiPcOnE1jHMR/OZwdoBf/FOjBbcDIC9ZJAky3uF/y6IhXTChyrDOAnl8odx1110GbPwtCr8DBw60py98bbFa8uQFSB988MFJ4RcfWx85AwhO7Aupn7OFX8bIqw6szcAzAExGPHx6aYvNYon9I8se0R44hocALhzq4dbApjtiPeMOMnfuXNukSOQMtMNtAcsyVnIKFxf+u/g/E6MZay7JUdjQlswvF30IZ4eetM9PukI/geZo+eijj8yfOlkR/IZdRLp5Frd+gt/inl9dvzGa36aB8Dv5H/jlHo4bZbSwD8i/WY3Cb+JbYN5EY5yCfeJcBL/lNDvZRJLgtf66665bapQKrK9EVgAeS9v8h7WVY7CSZtMXjsXFIrEA6/gXE9OXY5JF1EjWP47FnxbfY2AfF4MaNWrY/3FvSDcOzgVoc5wvy5YtM//fVJEYEvvN+aP1czH9gt8wFXXzLG79BL/FPb+6fmM0v/sHwu+b/8Avboi8SY4W3kRjiKNE4dfva+J+j/GJ8LEUXA7jXAS/cZ6dGPSNEGvTpk1brSc4sxOBQUXRHkLXgG6eYQrGXT/Bb3HPb9zXX6Xq316B8Ptu9m4PrG7cKXkjjXshm+Z581taSNGwqyK8tuA3XEO1UMkVkOU3bAFUqptTmFRJa8ddv5mv9zT3pbiWRYsW5ax/G2+6nzK8xWyi43595LR/uwTC78eZwy9x9XE/pLA/xsfZJ94/YVlThQaNy/IQ/MZlJtSPglVA8Bs2dTn98g/rSkHC5Wr6ff60c8u/zoMSZWvys/Wb256GuBatv7CZkX4x0m/zQPhdkBn8Jhsxrovsv4lGRwpTJr+1Bb/51TfnrROWmbi4vGaoWbOmtU/MXXxf2TzGLksiL2RTaI+NaNGA1dnUj8uxXHw432c7/tD+C37DFNTNM8f6Ab9PHRPWaA5rf3b0Pxt641q0/sJmRvrFSL/1AuH3t7LDb5gK5V9b8Fv+mgedkfBhgCoxbomGQCEKAhnTCBmGn42PvZvuRERGIIUvkQ1I/uAjLAR1roIrL1iwwKI/+MQX5dUdwW+Y0rp55lg/wW9Wgmr9ZSXXagdLv+LWL2x08a0t+I3v3CTtGTGBsfDefffdlvqYuLWlwS8hyQgtRgGYSaLRuHFji7c7duxYi9dHKDT+37BhQ4szTLxeEkUQf5gICcTjxaeH8GJAMz49QLaPnID1GZAmLjHJJcgMR4g1ElmQlhhgZwcpkR5ITEEw7KlTp1pAbFI5s6muZ8+eFiuYUGxstCPWLq9QCJ1CRAtCp7CTlHOyk5Sdp9H+EGqOrHD0n7THZGgjEkTv3r0tIQfnIz4ycQnPPvtsa4tzvPjii2769Olu/vz5lnKZFNDJ6qdaKoLfsItIN88c6yf4zUpQrb+s5BL8hslVcPrleLixaU7wG5upKL0jpBbk9SHx94DJ//73v/ZvOvgF/ojKQHpg6rdt29Z98sknBn4rVqwwGCbrG47rxAomVi8JKABYMrYBgYQja9WqlaUiBg6BReA7upuT3Z24HQCuAC+A65NSAKRYquvUqWOZ04iXC5AToxjQJKkEfSCZB0ksODeFINnE5qWfZIsB+oFkgJ9kFiSx6NixY0l/0IZUz4As1mzSMJK9Digngx5aAfAHHnig/Q390AIAJzEJ9chMl6q+4Lf0NVqWIwQfZVHt/+ok9fmV20PGomr9ZSxV0gOlX3HrFza6+NYW/MZ3blbrGZALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEK0ysjyVc8Jufi0U3zzBdBb851i+suZzX1vURJqn0C9OvWGsLfgtoZkkZTJIHXAYANMAWmMNdIZXP76BBgwx0gUUKLg4EqOYLIQq/3ucX94bNN9/cfnCViEIu58cSSxw/0gn7ArDSJ9og2QQWYGDzX//6l2WvIyYwn1GHnOA+BTOWW+CTMfhA2R5+8V9u1qyZuSiwuY/+0g5WaTLHAfAefn1/PPxi5QXAsXaPHj3a2udfrMx8RsGFgv/TNhCMRZt+b7jhhgbgifVJo4zFGfieMmXKaquGfsW16Ms/bGYKTj+5PWQ14QU3v1mNLv8HS78wjeOuX9jo4ltb8BvfuVmlZ7g6kFoQi6n3s+U1Pm4GgGMq+CUDHBZUPsey2ahRI4sIQfpeXCJwR4huePPw26ZNG9egQQMH9JEVDmDt0aOH+fImwi8dxcIKHOOH632IAV1yfmNBxv8WWMW1IRP4xfeYvmFxBpxJG42rBpEpiCmIhRctgM5E+MU6TX9IaUysQbLPMQ4sxMArlm2s0PSFGJ+J8EuGvcT6HuyTLRf5/IZdRHH/8i+4/gl+s1qQBTe/WY0u/wdLvzCN465f2OjiW1vwG9+5WaVnwCMbsoBBX7DmYoUEJtnMBQgni/bA5jDcD4Bk4LRfv36OzWFscnv88ccdoBu1/ALDl1xyiW0mI3oCsftatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj5YnnI1vwCvh3UiBzFgAYDTx/YlafoHX559/3vyEceEA2nEVwY2DvuAfzEa7MWPGJLX8JqufaqkIfsMuorh/+Rdc/wS/WS3IgpvfrEaX/4OlX5jGcdcvbHTxrS34je/c5LRnWF1xlfCxgWkcgAQkseymKsQPxkKMO0MmBVjFFzlaiErB5jlvsS6tHXx+8T1mox7uF75/9B+rLH0hAgVuG1WrVk3ZHOfFHSPaH8AXNwisv6VloElWP9nJBL+lzWj6z+P+5V9w/RP8ZrUgC25+sxpd/g+WfmEax12/sNHFt7bgN75zU2l75uEXt45CKILfsFmK+5d/wfVP8JvVgiy4+c1qdPk/WPqFaRx3/cJGF9/agt/4zk2l7Rm+yWzsy9RSXNFCCX7DZiDuX/4F1z9Lbzw/bFJyWPuz9Q9ThrcAPQtu/QWMNR9VpV8+VC38NgW/hT+HGkEFK/Dkk0+6evXqVXAvdHopIAWkgBQoRAXinP67EPXMpM+C30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUIKSAFJACUkAKSAEpIAUyUUDwm4lKOkYKSAEpIAWkgBSQAlKgKBQQ/BbFNGoQUkAKSAEpIAWkgBSQApkoIPjNRCUdIwWkgBSQAlJACkgBKVAUCgh+i2IaNQgpIAWkgBSQAlJACkiBTBQQ/Gaiko6RAlJACkgBKSAFpIAUKAoFBL9FMY0ahBSQAlJACkgBKSAFpEAmCgh+M1FJx0gBKSAFpIAUkAJSQAoUhQKC36KYRg1CCkgBKSAFpIAUkAJSIBMFBL+ZqKRjpIAUkAJSQApIASkgBYpCAcFvUUyjBiEFpIAUkAJSQApIASmQiQKC30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUICpSgSeffNLVq1evIrugc0uB2CrwyEePxrZv6pgUqGgFTqt9qttxxx0ruhuV7vyC30o35fkd8KxZs9yiRYtWOUmtWrVc3bp183viHLY+f/5899NPP7k6depk1Oqtt97qrrzyyoyOrYiDPvvss1h/uap/Yasi7vpVuX6dsAGqthQoUgWqVKniPjnrg1h/Pxep9E7wW6wzW0HjOvnkk93ff//t6tevX9KDBg0auBNOOCGoRw899JD7448/3LnnnhvUjq980EEHucmTJ7s111xztfaGDh3q3n//fXfbbbdldC7Bb0YypTwo7vCm/oXNr+A3TD/VLl4FBL8VN7eC34rTvijPDPyedtppjn+jBXgdP368GzVqlJs4caK766673OOPP+6GDBni7rzzTrfWWmu5zp07u3POOcd9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauU8yX4DVvKgsvi1k/wGza/ql28Cgh+K25uBb8Vp31RnhnoXbZsmdt1111LxtehQwe38847m19s9+7dXa9evVy/fv3cgQce6LbbbjuD1TXWWMPts88+buHCha53794GnkBpu3bt3Pnnn+9mzJjhVqxY4W644Qa39tprW9uffPKJ22WXXQyg11tvPde6dWt37733um222cbqfPXVV65Ro0YGzwBz06ZN3eDBg60fVatWdT/88IO1S5tjxoxxd999t1u+fLm5aADfb731lvvwww+tP++9957gN08rVvAbJmzc9RP8hs2vahevAoLfiptbwW/FaV+UZwZ+a9as6Ro2bFgyvsMPP9xtu+22btKkSe7QQw91p556qlmAV65caQCLdXb27NlmlV2yZIkdM2LECAPoBQsWmLvDI4884n777Td39dVXl7RL3b333tstXrzYQBbfYo7lZ4MNNrD28T9+6aWXDGJxYxg5cqRr0aKF40uH46655hpXu3Zt17ZtWwPuL774wqB33Lhx9rN06VJXvXp1aytVkeU3bCnHHd7Uv7D5FfyG6afaxauA4Lfi5lbwW3HaF+WZU7k9MNjXX3/dNW7c2FwbsNYCpptttpltFtt3333NLQGQxRo8d+5ct9VWWxmQ/vnnn2axTQa/J510kps5c6ZZjHfffXf3/fffm3sE8IvvMe1idT7qqKPcAw88YOeKwm+bNm3svPxwnh9//NE99dRTJT6/WIKxEnv4BdSnTJmy2txpw1vZl7PgsuzaUTPu+gl+w+ZXtYtXAcFvxc2t4LfitC/KMwO/gCRQ6gsX+F9//eX22msvd8kllxiAPvHEExZRAX9fLLP4A+ODC/ziu4v1F0g+/fTT3Yknnug+//xz9/PPP7vrr79+FctvOvj97rvvzBoMQNMu7hCArYdfIPnhhx82KMddAjjGAo012W94S4TfZJMmy2/YUo47vKl/YfMr+A3TT7WLVwHBb8XNreC34rQvyjPj0sAmsmgh0gO+t2xGe+GFF8yl4brrrnNvvPGGO+CAA8xNYp111jGLLQDMJjc2srHxjXBjEyZMcC+//LJBMJvkAGMKbg/p4BdrLTD+wQcf2PH4BwPBr7zyiiPaAxZdNuJddNFF1hesxU8//bRZdgW/5bc8BZdhWsddP8Fv2PyqdvEqIPituLkV/Fac9jqzc+aagIUWFwfcDnBtAEopuCDgb+sLcAwkJwtPlk5MIHrzzTe3evgUb7LJJnau33//3YA32bmymRxZfrNRa/Vj4w5v6l/Y/Ap+w/RT7eJVQPBbcXMr+K047XXmIlFA8Bs2kYLL4tZP8Bs2v6pdvAoIfitubgW/Fae9zlwkCgh+wyZS8Fvc+vV89ha36aabhg0yj7XZeKv+lV1g6Vd27ah5WI1DleEtTMIy1Rb8lkk2VZIC/6eA4DdsNQh+i1u/oS/2ElwGTLHgMkA85yyqULqHm2P2PD/sBIG14/79Fzi82FYX/OZwathMxUImvFZFFKIakBWNcGLZlG+++cYiL0QTU2RTn2M//fRT86nFJze0rWzPna/jE/2CU51H8Bs2A3H/8lf/wub3kNurhDWg2lIgTwocsfvZ7sqjhuap9cyajfv3S2ajKLyjBL85nDMiGZAtLFkc2ByeJmVT0egH0YOIaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rE/cvf/UvbH4Fv2H6qXb+FBD85k/buLcs+M3hDKWC348//tjS7QKnxK29+eabLZzXLbfcYrFvsdb27NnTQoTxN9LsEpN2wIABFnOWrGYAGZ8DmGQ7q1+/vrv22mvd0KFDLZLBsGHD7LNmzZpZ+DAAkzi55513nlmCiZQwduxYSyCR2JdnnnnG0UfCghFjd/3117dsbGeccYa74447UioENF944YVurbXWsmQVxM/dfvvtrS1SEyf2j77SHuHMHnvsMTuGPu2www4OeN5vv/0sjNn+++/v7rvvPgNpxrrxxhtbHF7ao//oR9Y4wpKRuhgLLZ/R31SFyBE8BJDNjbrpCvGECcU2ffp064PgN4cXSZKmBJdh+sZdP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMpYJfoBIgbd68ucEoiR5mzJhhYbyALBI3YGE8/vjjXevWrd2jjz5qMXEBRdLtknoXcCY+7k033eQ22mgjd9ppp9nfiU9LogaSMwCTxLIFFIE2fgjzxe8rVqwwqzTtJ/aFcGOzZs2yeLfU5/xALLF5yZgGXCcr9erVM/jFzQOgJVUwfaOtVq1ardY/AJcwZqQiJoUw6YY513PPPWeQSwKKLbbYwh4QOnbsaDBOm4cddpjbaaedLD7vvHnzLEnG22+/7bbeeuuStMec75133rFsbtFCWuNBgwaZFRd9zzzzTDsuWvAHa9eu3WpD5OED3QW/ObxIBL85F1Pwm3NJ1WAlUUDwW0kmOskwBb85nPtk8OtT7WLNxR/2xRdfNEsmEAY4kpoXX1uSN5D1jPS5JHOgAGRffvmlWTWPPPJIA95nn33WYBagA/Sw7gKeTZs2tSxoWIrxPcYaC/xiQcWKS/xc4Ji4tol9weLq4feII44w/10K8HvPPfeYdTqxANX0G4vqGmusYWOpW7duCfxeddVVq/WPPhHaBRcMCgALiJLhjXPyO/DLv1i+u3fvbvF/sQyPGjXKPfjgg1YPSznWWcaOVZwCqHbt2tU0opDYgt/Rl4cNjqXt9957z6zOifAL+CcWwW8OL440TcUd3tS/sHUgy2+YfqqdPwUEv/nTNu4tC35zOEPJ4Bf/V0Cub9++JWfabbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc9x1111u3LhxloUMy+nw4cPd0Ucfbe34jGfUx8I7cODAEvilrWR9wbrr4TdaH//c/v37J4VfjsdHGMsqBdjFEustv4w3sX+05eEXiAfuL730UnsYILWwh9+5c+daIgos4lhlgWbaoj6FpBhkfONzMsH5gsvEHnvsYb/iEoFeaIeu3iK8dOlS99VXX60y67iLJFqMPVAnWn55OEnm0401Oq5F8BY2M9IvTD/Bb5h+qp0/BQS/+dM27i0LfnM4Q4ApVtpXX321pFWsolhO8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8AxHr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy82KzXAHS1YsMePH7/aSpDlN4cXR5qmBJdhOsddP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMAb/4p0YLbgdAHi4HFKyM+K7WrFnTvfnmm2adBQp33HFHR6gyrLNAHjc0LLwAG3+Lwi/WXDa44WtLe2z4AqQPPvjgpPCLjy2uFIA2EJzYlyeffDJr+GUsQ4YMMWsz8AwAn3XWWebTC0jfeOONq/WPaBNYkzmGhwCAnXq4NbDpbsyYMeYO4i2/+CijHW4LWJaxklOwAOO/i//z4MGDHdbcli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPiTu8qX9h8yv4DdNPtfOngOA3f9rGveUKh98lS5YYQGG1BASx1AGRbPTCIoj/aps2bczXFdjBX5SNX2yWwlrIjvz58+fb72zmwtrYrVs32xjFa3nABRcBAI9X9MSgJaIB1kD8YAGmhg0bWoSCxCgIvG7PVQHA8N9lIxnWx3SF1/rrrruuvfpPV7C+0m/gEX/idAVrK8dgJc2mLxyLfokFWMe/GD05Jllfk/UvGjsX2GcOatSoYeCP3unGwbkA7ei8LFu2zIAea3omhfPncl45p+A3E+UFv2EqFa5+gt98zbzaDVVA8BuqYOHWr3D4ZfMVkQoI9cWrcPxdASGgDqDFHxULJ6+7gVM2jFEH31ggFhcDABjIxW+WTVq4EBBZgbawDOIvitVx6tSpBruAL//HL5R22ECWLCIDlszKXgixNm3atNVkILQZERhUBL+ha0CW1TAF466f4DdsflU7fwoIfvOnbdxbrnD4xaJ76qmnGrDi18mGJYA1FfxibWSTExZiwmUBwlgE2TS1cuVKS2VI9ACsvMAz/rP4fuLTSUxZfthchX8tIE04MXb/J4uCQNsqUqA0BWT5LU2h9J/HHd7Uv7D5HfJiT7fZppuGNZLH2gsXLVL/AvQtdP2O2bNDwOjDq8b9+yV8hPFsocLhF1mAUF6t48cKmOIK4eEXiMWK6y2/hOJicxPwi0UXwMVSvOGGGzpes2MlZuc+m8VoC2sy8OuP5Tz8UN/DL7CdLAoCbahIgdIUEPyWppDgN0yhwtbvndd7me9+XAsGk/LoX9VqdVyNLQ7OWoa4w5H6l/WUrlIh7vqFjS6+tSscfolAwA59rL5sMAJSmzRpYpub2KAFmOISkQn84itbq1Ytg2F8hQFaLLylwS+boZJFQSAiQzaFc7KQAfCKKIyb6BBkdMum4PqB9ZyoB2UtbAzDnxif3dC2ytqHXNfjIYw3CqWlYhb8hikf9y9/9S9sfp8etvom1LAWC7P2AUe+IvitgKnT9VsBohfAKSscfvG9xbKLuwOwQcxaNi8RNgtfU6CUcFYefkn2QOSCZJZf3B7w3eV4CtnKAFIyoaWy/JK9C0AmwUSyiAzZzGGqDG/ZtBFyLDFpo6HOfFv4ObNREL/nZIU0xYRWY4NgWQvZ24g8wYNMuraI9kCYstKAsqz9yEU9NiaSMQ6/ZjbH4WpDprlURfAbprpuTsWtn+D3n/kV/Iat87LW1vdLWZUr7noVDr/Ii8US6yMbqKKhqghhVa1ataxngOxjpOQFsADq0qIm+BNkEwUhWadSwW+ySBIkYLjlllssVi3WWqzbo0ePtr/ha4zVGks44EUWMzae8TmASSpg4tYSI5eHAMaKywifNWvWzKJmAJiESCMeMJZgfDPX9gAAIABJREFUoj3g70xoscSoFoQZo488OLCJkIgKZIU744wzzCc6VQGasY4DiIBiixYtLJoFbfEgkdg/+kp7ZKTDz5pj6BPRKoBnMs0RH5iYwYSIA6QZK9ZXNiXSHv2/+eabLUkIGxbxFWfe+Iz+pipkouMhoHbt2lY3XaF9HhYI10Y0CvQA6FNFlBD8Zn2JrlJBN6fi1k/wK/gNW+FhtfX9EqZfsdaOBfwWi7ip4DdZJIkZM2a46tWrW7xbXD8AdWLXEq6NrG0TJ040UCTkG5ZrrLqEeCPcG1nUSOPL39944w1zESFiBjCJtRtQBBz54UGA31esWOGIm0v7wDHWdsCYGLr4SvskF9Tn/EAskTOItgFcJyv16tUz+MXNA6DFOuozvGE5TewfgEuMX+IOs1kRf23ORZg7IBcLPCmITz/9dNexY0eDcdokdjIPRsRHJoQdftzEQiajHPUAVM5HquTETG34jJMK+v777zd9ifHLcdGCvx/Z5nzhQYGHMB4m/BsB9E8WQ5g6gt+wK1g3p+LWT/Ar+A1b4WG19f0Spl+x1hb85nBmk8EvIJUskgQQBjjOnDnTfG3xbwa0iFOMWwcFIOMVPFZN3D0AXqJjALMAHaCHdRfwJKzb559/bpZiXD2wxgK/WFCx4gKIwHGyvmBx9fDLhkL8dynA7z333JM0vTFQTb+xqBK3mLHUrVu3BH5JSpHYP/rk0xvTPgALiBKdg3P6DG/8i+W7e/fuZm3FMjxq1CjLfkfBUk5sX8aOVZyClbxr166mEQXXF35HXwCfYwFrwuFhdU6EX1IgR8vvv/9uVngeQNggecghh6RcKYLfsItIN6fi1k/wK/gNW+FhtfX9EqZfsdYW/OZwZpPBL6/Lk0WS4NU7YIfVliQfQBkAhvsHIOsL0Na5c+fV0hsDZPgxYznFT/roo4+2dlKlNwZ+aStZX7DuZpvemOPxEcaySgF2scR6yy9xlxP7R2Y2D79APHBPqmHcGojMkSq9MdBMW9SnsLGRBCdYzAl75wsuE/iOU3CJwLUE7dDVW4RxpcF/PFqw8EYtxmhF+D0273FO0jj7wsPJlClTVls1WKPjWvTlHzYz0i9MP8Gv4DdsBYXV1vUbpl+x1hb85nBmgV+stCTe8AWrKH69+Ls2aNDA3ByAXiylpCTG4tuhQwfzXeW1P9ZNYhMDzYRaw8qJj240vTFpenFZAMR69epl4EqqYNwHUsEvllJgMVlUC3xas4VfXCWAQnyL8cPFT5dNih5+AdHE/mHdBX6xhgOLuBugF5n8gNlU8MuDAtFA+BxwRQvOi65YeHEZYdw9evQwa7cvRPlAd5Ka4CNNqmjmA+COFizYxIH2Bcs6cxH9W7plIstv2EWkm1Nx6yf4FfyGrfCw2vp+CdOvWGsLfnM4s8Av/qnRgtsBkJcsksSbb75p/rdAIemC2fiHdRbI44IFcgE2/haF34EDB9oGN3xtsVqy4QuQPvjgg5PCLz62uFIA2kBwYl9I/Zwt/DLGIUOGmLUZeAaAyYiHTy9tsVkssX9EmyDaA8fwEACwUw+3BjbdjRkzxnxy586da5sU8VFGO9wWsCxjJadgjcV/F/9nQuFhzW3ZsqVtaEvml4s+hLNDT9rnJ12hn0BztHz00UfmT52sCH7DLiLdnIpbP8Gv4DdshYfV1vdLmH7FWlvwW04zm00kCV7rr7vuuqVGqcD6SmQF4JFX9OkK1laOwUqaTV84FheLxAKs419MTF+OSRZRI1n/OBZ/WnyPgX1cDGrUqGH/x70h3Tg4F6DNcb4sW7bMgD5VJIbEfnP+aP1cTL/gN0xF3ZyKWz/Br+A3bIWH1db3S5h+xVpb8FusM5ujcRFijXjLiYXQZkRgUFG0h9A1oJtTmIJx10/wK/gNW+FhteN+fcS9f2Hqx7e24De+c6OeFYgCsvyGTVTcv/zVv7D5fef1nuWSPrisvSy/9MZ1leGtrJMUUE/Xb4B4RVxV8FvEk6uhlY8Cgt8wnQvq5jT93rDB5qF2ecFbWbv+WY3mtqchrqWg1l8MRZR+YZMSd/3CRhff2oLf+M5N0p6Rwpm4uERtqFmzph1DzF18X9k8RvIMIi9kU2iPjWhrr712NtVidyx+w2y2y3b8oQMR/IYpGPcv/1X6d/c+zn27apKUsNEXf+3PzvlnQ29cS0GtvxiKKP3CJiXu+oWNLr61Bb/xnZukPSN8GKBK2DKiIVCIgkDGNEKGERbMx95NNzQiI5DCl8gGJH/wERYKTI5VurtgwQKL/uATX5TXWAS/YUrH/ctf8Bs4v4LfIAEL6voIGml+Kku//Oha6K0KfgtsBokJjIX37rvvttTHxK0tDX4JSUZoMQrATBKNxo0bW7zdsWPHWjphQqHx/4YNG1qcYeL1kiiC+MNESCAe7xlnnGHhxYBmUi0D2T5yAtZnQJq4xCSXIDMcIdZIZEFaYoCdRBZEeiAxRbVq1dzUqVNdp06dLJUzm+p69uxpsYIJxcZGO2LtEkuYJB5EtCBs3J133mnnJHkFIeCi/SHUHFnh6D9pj8nQRiSI3r17W0IOzkd8ZFIkn3322dYW53jxxRfd9OnT3fz58y3lMimgk9VPtVQEv2EXUUHdnGT5zXqyZfnNWrJVKhTU9RE21LzUln55kbXgGxX8FtAULl++3F4fksYYmPzvf/9r/6aDX+CPqAykB6Z+27Zt3SeffGLgt2LFCoNhsr4RN5dYwcTqJQEFAEvGNiCQcGStWrWyVMTAIbAIfGNl9oW4vrgdAK4AL4Drk1IApFiq69SpY5nTiJcLkBOjGNAkqQR9IJkHSSw4N+X++++32Lz0s1u3bgb9QDLATzILklh07NixpD9oQ6pnQBZr9uzZsx3Z64ByMuihFQB/4IEH2t/QDy0AcBKTUI/MdKnqC37zc7EU1M1J8Jv1IhD8Zi2Z4DdMMumXQ/2KtSnBbwHNLJALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEJ06sjyVc8Jufi0Xwmx9d49Kq4DdsJgrq+ggbal5qS7+8yFrwjQp+C2gKSRlMkgdcBgA0wBaYw10hlc/voEGDDHSBRQouDmSL4wshCr/e5xf3hs0339x+cJWIQi7nxxJ7xBFHWCY5XwBW+kQbJJvAAgxs/utf/7LsdcQE5jPqPPHEEyVZ6LDcAp+MAReMKPziv9ysWTNzUWBzH/2lHazSZI4D4D38+v54+MXKC4Bj7R49erS1z79YmfmMggsF/6dtIBiLNv3ecMMNDcAT65NGGYsz8D1lypTVVg39imvRl3/YzMjnN1A/+fwGCajrN0g+u3dow2WYhsVYW/BbILOKq8Mee+xhFlPvZ8trfNwMAMdU8EsGOCyofI5ls1GjRhYRgvS9uETgjhDd8Obht02bNq5BgwYO6CMrHODao0cP8+VNhF8kxMIKHOOH632IAd3mzZubBRn/W2AV1wbamjlzprktpIJffI/pGxZnwJm00bhqEJli/PjxZuFFC6AzEX6xTtMfUhqT7pjsc4wDCzHwimUbKzR9IUxUIvySYS+xvgf7ZMtFPr9hF1FB3Zzk9pD1ZMvym7Vkq1QoqOsjbKh5qS398iJrwTcq+C2QKQQe2ZAFDPqCNRcrJDDJZi5AOFm0BzaH4X4AJAOn/fr1c2wOY5Pb448/7gDdqOUXGL7kkktsMxnRE5YuXepatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj27y5Mm28Q14JbwbKZAZCwCMJr4/Ucsv8Pr888+bnzAuHEA7riK4cdAXLAFstBszZkxSy2+y+qmWiuA37CIqqJuT4DfryRb8Zi2Z4DdMMumXQ/2KtSnBb7HObMK4sLriKuFjA/MxAAlIYtlNVYgfjIUYd4ZMCrCKL3K0EJWCzXPeYl1aO/j84nvMRj3cL3z/6D9WWfpCBArcNqpWrZqyOc6LO0a0P4AvbhBYf7EKpyvJ6ic7XvBb2oym/1zwG6Zf3GsLfsNmqKCuj7Ch5qW29MuLrAXfqOC34Kew+Abg4Re3jkIogt+wWSqom5Msv1lPtuA3a8lWqVBQ10fYUPNSW/rlRdaCb1TwW/BTWHwDwDeZjX2ZWoorWgHBb9gMFNTNafo9YYPNQ+1FCxe5TTfbNA8t56bJz2ocpg1HAVIW1PURMM58VZV++VK2sNsV/Bb2/Kn3MVDgySefdPXq1YtBT9QFKSAFpIAUKDQF4hyNotC0zLS/gt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1ACkgBSQAlJACkgBKSAFMlVA8JupUjpOCkgBKSAFpIAUkAJSoOAVEPwW/BRqAFJACkgBKSAFpIAUkAKZKiD4zVQpHScFpIAUkAJSQApIASlQ8AoIfgt+CjUAKSAFpIAUkAJSQApIgUwVEPxmqpSOkwJSQApIASkgBaSAFCh4BQS/BT+FGoAUkAJSQApIASkgBaRApgoIfjNVSsdJASkgBaSAFJACUkAKFLwCgt+Cn0INQApIASkgBaSAFJACUiBTBQS/mSql46SAFJACUkAKSAEpIAUKXgHBb8FPoQYgBaSAFJACUkAKSAEpkKkCgt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1AAqWoGnnnrK1a1bt6K7ofNLgVgqMGXeI7HslzpVORXYZbNGbouqO8Zq8DvuGK/+xEqcPHVG8JsnYStrs7NmzXKLFi1aZfi1atUqKDicP3++++mnn1ydOnUymsZbb73VXXnllRkdWxEHffbZZy7OX67qX9iqiLt+R/SpEjZA1ZYCOVTg/rZz3TY1ds1hi2FNxf36DRtdfGsLfuM7NwXZs5NPPtn9/fffrn79+iX9b9CggTvhhBOCxvPQQw+5P/74w5177rlB7fjKBx10kJs8ebJbc801V2tv6NCh7v3333e33XZbRucS/GYkU8qD4v7lr/6Fza/gN0w/1c6tAoLf3OpZqK0Jfgt15mLab+D3tNNOc/wbLcDr+PHj3ahRo9zEiRPdXXfd5R5//HE3ZMgQd+edd7q11lrLde7c2Z1zzjnu22+/Nch999133THHHOOuuOIK16RJE/frr7+6sWPHuubNm1vTX375pbvgggtctWrV3NSpU12nTp2s7WnTprmePXu69u3bu9dee81169bNzZs3z51yyimub9++rkuXLu6OO+5wxx13nBs9erS77LLL3LBhw+wc/fv3NygePny4++WXXxxW4D59+rhWrVqlVFzwG7YYBZfFrZ/gN2x+VTu3Cgh+c6tnobYm+C3UmYtpv4HeZcuWuV13/b/XSh06dHA777yzq1evnuvevbvr1auX69evnzvwwAPddtttZ7C6xhpruH322cctXLjQ9e7d28ATKG3Xrp07//zz3YwZM9yKFSvcDTfc4NZee20b/SeffOJ22WUXA+j11lvPtW7d2t17771um222sTpfffWVa9SokcEzwNy0aVM3ePBg60fVqlXdDz/8YO3S5pgxY9zdd9/tli9fbi4awPdbb73lPvzwQ+vPe++9J/jN05oT/IYJG3f9BL9h86vauVVA8JtbPQu1NcFvoc5cTPsN/NasWdM1bNiwpIeHH36423bbbd2kSZPcoYce6k499VSzAK9cudIAFuvs7NmzzSq7ZMkSO2bEiBEG0AsWLDB3h0ceecT99ttv7uqrry5pl7p77723W7x4sYEsvsUcy88GG2xg7eN//NJLLxnE4sYwcuRI16JFC1elShU77pprrnG1a9d2bdu2NeD+4osvDHrHjRtnP0uXLnXVq1e3tlIVWX7DFmPc4U39C5tfwW+YfqqdWwUEv7nVs1BbE/wW6szFtN+p3B7o7uuvv+4aN25srg1YawHTzTbbzDaL7bvvvuaWAMhiDZ47d67baqutDEj//PNPs9gmg9+TTjrJzZw50yzGu+++u/v+++/NPeL/t3cm4FZN7x9fhoQkNMhMZpHQQIgoFTJTkjkyVKRCmaVk/gk/JUlChgaKEEVmDaTMNChzoSJk/D+f13/f3+7cc849565z7tln3+96nvvcumevtd/9Xeuc89nvftf7Ar/EHjMuXue2bdu6++67z84Vht+OHTvaefnhPEuXLnVkbwhifvEE4yUO4BdQf/XVV0uprw1v5V+Qgsvya0fPqOsn+PWbX/XOrQKC39zqWayjCX6LdeYiajfwC0gCpUHDy/rXX3+5PfbYw3Xt2tUA9Mknn7SMCsT74pklHpgYXOCX2F28v0DySSed5I455hi3YMEC9/PPP7urrrpqFc9vOvj95ptvzBsMQDMu4RCAbQC/QPJDDz1kUE64BHCMBxpvcir4TSa7PL9+izHq8Cb7/OZX8Ounn3rnVgHBb271LNbRBL/FOnMRtZuQBjaRhRuZHoi9ZTPaCy+8YCENV155pXvjjTfcPvvsY2ESa621lnlsAWA2ubGRjY1vpBubOHGie+mllwyC2SQHGNMIe0gHv3hrgfEPP/zQjic+GAh++eWXHdke8OiyEe+8884zW/AWP/300+bZFfxW3AITXPppHXX9BL9+86veuVVA8JtbPYt1NMFvsc5cTOwmNAEPLSEOhB0Q2gCU0ghBIN42aMAxkJwsPVk6OYDoOnXqWD9iijfccEM71++//27Am+xc2cgrz282apU+NurwJvv85lfw66efeudWAcFvbvUs1tEEv8U6c7I7MgoIfv2mQnAZb/0Ev37zq965VUDwm1s9i3U0wW+xzpzsjowCgl+/qRD8xlu/EZP7u9q1avldZB57L2bjrewrt8LFpl+DLQ5Uhbdyz3Z8Ogp+4zOXupICKSD49RNe8Btv/d58bYCrFWG4JOtMlO1bvUpLlSf3eIvo88VDvBh3FfzmcHLZTMUbjfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/Hzp0712Jqicn1HSvbc+fr+MS44FTnEfz6zYC+nOKt38PDV/O7wErcu1adZm67nUcKfj3WgD5fPMSLcVfBbw4nl0wGVAtLlgc2h6dJOVQ4+0H4IDIaUNCBqmXJGqm+vvzyS0tRVt520003WZU1qrSlG4ssC5QPznbTWnntKk8/0rK99957btiwYWYn6djSNcFveVT+Xx99OcVbP8Fv+edX8Ft+7YKe+nzx1zCOIwh+czirqeD3008/tXK7wCl5a6+77jpL53X99ddb7lu8tf3797cUYfyNMrvkpL3rrrss5yxVzQAyXgcwqXa22267uSuuuMLdf//9lslgxIgR9lqLFi0sfRiASZ7cs846yzzBZEoYO3asFZBItOWZZ55x2EhaMHLsrrPOOlaNrVOnTu6WW25JqRDQfO6557o111zTilWQP3frrbe2sShNnGgftjIe6czGjBljx2DTNtts44Dnpk2bWhqzvffe2917770G0lzr+uuvb3l4GQ/70Y+qcaQlo3QxHlpew95UjcwR3ARQzY2+6Rr5hEnFNmPGDLNB8JvDN0mSofTl5Kdv1PUT/JZ/fgW/5ddO8OuvXZxHEPzmcHZTwS9QCZC2bNnSYJRCD7NmzbI0XkAWhRvwMB511FHuxBNPdI899pjlxAUUKbdL6V3Amfy41157ratevbrr0KGD/Z38tBRqoDgDMEkuW0ARaOOHNF/8f+XKleaVZvxEW0g3Nnv2bMt3S3/OD8SSm5eKacB1sla/fn2DX8I8AFpKBWMbY7Vv376UfQAuacwoRUwJYcoNc67nnnvOIJcCFBtvvLHdIHTr1s1gnDFbtWrltt12W8vPO3/+fCuSMXPmTLfZZpuVlD3mfG+//bZVcws3yhoPHjzYvLjoe/LJJ9tx4Ua835lnnlnqErn5QHfBbw7fJILfnIsp+M25pJEZUPDrPxVRf39E3T7/GYjmCILfHM5LMvgNSu3izSUedvLkyebJBMIAR0rzEmtL8QaqnlE+l2IONIBs4cKF5tVs06aNAe+zzz5rMAvQAXp4dwHPAw44wKqg4Skm9hhvLPCLBxUvLvlzgWPy2ibagsc1gN/WrVtb/C4N+B0yZIh5pxMbUI3deFRXX311u5ZddtmlBH4vvfTSUvZhE9XeCMGgAbCAKBXeOCf/B375jee7b9++lv8Xz/Cjjz7qHnjgAeuHpxzvLNeOV5wGqPbu3ds0olHYgv+jLzcbHMvY77//vnmdE+EX8E9sgt8cvjnSDBX1D3/Z57cO5Pktv36C3/JrF/TU+9dfwziOIPjN4awmg1/iXwG5W2+9teRMO+20kz16B+zw2l5wwQUGZQAYm88A2aABbT169DAvKKESnOPOO+90TzzxhFUhw3M6cuRId+ihh9o4QcUz+uPh/e9//1sCv4yVzBa8uwH8hvsTn3vHHXckhV+OJ0YYzyoN2MUTG3h+ud5E+xgrgF8gHri/8MIL7WaA0sIB/H700UdWiAKPOF5ZoJmx6E+jKAYV33idSnBBI2SiQYMG9l9CItAL7dA18AgvW7bMLVq0aJVZJ1wk0WMcAHWi55ebk2Qx3Xijo9r04e83M9LPTz/Bb/n1E/yWXzvBr792cR6h0sDv9OnTzVMJaCVrkyZNKjMWtKyFAJjipX3llVdKDsUriueUeNeGDRtamAPQi6e0V69e5vHt0qWLxa7y2B/v5qhRo2zTWNu2bc3LSYxuIvwSPgGIDRgwwMCVEsKED6SCXzylwOLuu+9eyhZifLOFX0IlNtlkE4stJg6XON3OnTuXwC8gmmgf3l3gF284sAjYolfPnj0NZlPBLzcKRxxxhL0OuKIF50VXPLyEjHDd/fr1M2930BYvXmzXOmjQIIuRPv/8881LDXCHG+ti/PjxpaZXnt+yVnxuXhdc+ukYdf0Ev+WfX8Fv+bUT/PprF+cRKg384hllU1myR/hMMFD2zz//eM018Et8argRdgDkEXJAw8tI7GrNmjXdm2++ad5ZoLBevXqOVGV4Z4E8vtDw8AJs/C0Mv3hz2eBGrC3jseELkN5///2Twi8xtoRSANpAcKItEyZMyBp+uZbhw4ebtxl4BoBPOeUUi+kFpK+55ppS9pFtAm8yx3ATALDTj7AGNt2NHj3awkECzy8xymhH2AKeZbzkNDzAxO8S/zx06FCHN7ddu3a2oY15TGzoM3HiRNOT8fnJpAG/zE3Ya5+sn7I9ZKJm6mOiDm+yz29+Bb/l10/wW37tBL/+2sV5hFjDL/GqbKrCs8fGMeAIDyCxoGyAAro4Bq8l0MQGMjIqkLWA14mPzVUDwIjfZSMZ3sd0jcf6VatWtUf/6RreVzIrcB3EE6dreFs5Bi9pNrZwLCEWiQ1YJ76YnL4ck8zWZPaFc+cC+8Qib7TRRgb+hDekuw7OBWhzXNCWL19uQI83PZPG+cP9M+lT1jGC37IUSv+64DLe+gl+yz+/gt/yayf49dcuziPEFn555E2GAFJpUcGHLAdsrvrxxx/Ni0h4AXGheATZhAb88igeLyuP7wFkNpJV9kaKNUJGEhupzdBXzTnBr98qEPzGWz/Bb/nnV/Bbfu0Ev/7axXmE2MIvO/rZDEaWABqgxmN1UmqR6zVIbRVkAADm2GxGHGuw+YrH3mpSoCwFBL9lKSTPr59Cxa3fm6/1j3T54OiXN26lCm8ebyDdXHuIF+OusYVfwJXY0SBDQJD2a+DAgeYFJmaUxgY4dvQDwb///rurUqWKxZayWYvYWjUpUJYCgt+yFCpueKs0X54f3eM3kSl6z1urpeDNQ9lKs/48NErXVfrlSdgiHza28EsKLjIETJs2zREXuuWWW1rYA8UlAFtifdlwRhoscsES9sCGNdKMsSGKDWZkEMimkV+XNxob0QrRiJslOwQV3bJpeLyJpyU2uryNjWHEExOz6ztWeW3IdT9CZLg5KqsUs+DXT3l9OUVEv4e3cG7FF37GJOk97+B/N/RGtWn9+c2M9Iu3fn5XF93esYVfJAds2eTGJimqqRHyQJ5bQh6AxC+++ML+RnUw4JccsWw24xgKQ9SoUSOrmUtV4S2rQTwOxoMdTnUWDIUGFJYg20KyRpliUquRt7e8jeptZJ7Aw55uLLI9kKasLKAsrx256MfGRNYEoTBsjmNjH5XmUjXBr5/q+vKMiH6CX7+JyFNvvT/8hJV+fvrFtXes4ZdJ++6778x7B5iFG95OgDic0YFUZ1QuI+43WcqsshZBKvglIwO5eoFTSvded911VoDh+uuvt9RrgDhp2Mg0wd+owAaAE7oBeFHFjI1nvM51AOxkrSBHLnlsKT9M6jNea9GihaVPAzDZvEc+YDzBZHtg8x+pxRJtIc0YNuLt7t69u90sAP+dOnWyEsupGtBMvmIAEVAkSwbZLBiLdGqJ9mEr47GRkJhsjsEmslUAz1SaIz8w2TdIEQdIc63MH1XtGA/70Y/cv2xYJD8yGRx4DXtTNSrRcRNAvDd90zXG52aBdG1ko0APgD5VRgnBb1nvjPSv68spIvoJfv0mIk+99f7wE1b6+ekX196xh9+KnLhU8AtUAqQtW7Y0GCVvLeEXwDf5bik+gSeUOGTikdmo9/zzzxsokqKNFGwDkVdqAAAgAElEQVSA88MPP2y5bamiRhlf/v7GG29YjPKcOXMMJrfffnsDRcCRH2Ce/69cudKRN5fxE20hJVlQ5IL+nB+Ipbwx1d+A62Stfv36Br+EeQC0eEeDCm94ThPtA3DJ8Uve4bfeesvS0HEuinMAuRT5IPaaG4Ru3boZjDMmuZPZsEh+5Pnz51tWDnIhU1GOfgAq5yOsJbFSG+EvlIImdR36EtLCceFGLuFgAyR/50aBmx9uJig5ja7on+qGSPDr9y7Tl1NE9BP8+k1Ennrr/eEnrPTz0y+uvQW/OZzZZPALSOFdxptLPCxp1fBkAmGAI/HGxNpSgALQIh6ZghQ0gIxH8Hg127RpY8BLWWBgFqAD9PDuAp7EKi9YsMA8xcQe440NNvnhxQUQgbhktuBxDeC3devWVtiBBvwSG52sMAhQjd14VMlbzLXssssuJfBLOrlE+7ApKG/M+AAsIPriiy/aOYMKb/zG8923b1/ztuIZJmsH6eloeMrJ7cu14xWn4SUnPR0a0aj8xv/Rl5sNjg0ye+B1ToRfQmTCjc2PeOG5ASHP8UEHHZRypQh+/d5E+nKKiH6CX7+JyFNvvT/8hJV+fvrFtbfgN4czmwx+eVwOyIWrhO2000726B2ww2tLlbT333/fYpQJxwBkgwa09ejRo1R5Y4Dsgw8+MM/pyJEjHRXsGCdVeWPgl7GS2YJ3N9vyxhxPjDCeVRqwiyc28PxyvYn2kXkjgF8gHrin1DA3A0F6OQA1qPCGRxyvLNDMWEHmDuKyKYfM6+ecc06JVoRMELdNIySC0BK0Q9fAI0w1OEokhxse3rDHGK1OOOEEu1nhnITBBO3VV1+1G5TEhjc6qk0f/n4zU2n0E/z6LZQ89a4060/65UkBDZtMAcFvDtcF8IuX9pVXXikZFa8onlPiXRs2bGhhDkAvnlJKEuPx7dKli8Wu8tgf7+aoUaMsxrRt27bm5SRGN1zemDK9hE8AYQMGDDBwpVQw4QOp4BdPKbC4++67l7KFmNZs4ZdQCaCQ2GLicInTpThIAL+AaKJ9eHeBX7zhwCJgi149e/Y0mA08v4nwy40CmTt4HXBFC86Lrnh4CRnhuvv162fe7qBR6ATdBw0aZDHSlIpmPgDucMODPX78+JI/4VlnLsJ/S7dM5Pn1exPpyz0i+gl+/SYiT731/vATVvr56RfX3oLfHM4s8Et8arixcQvII+SAhpeR2NWaNWtaqjXib4FCUgGRqgzvLJDHGxbIBdj4Wxh+yT/MBjdibRmPDV+A9P77758UfomxJZQC0AaCE22ZMGFC1vDLtQwfPty8zcAzAHzKKadYTC8gzWaxRPvINkG2B47hJgBgpx9hDWy6owgJ4SAB/BKjjHaELeBZxktOwxtL/C7xz0OHDnV4c9u1a2cb2pLF5aIPlfzQk/H5SdewE2gOt08++cTiqZM1wa/fm0hfThHRT/DrNxF56q33h5+w0s9Pv7j2FvxW0MwCYMTvspEM72O6xmP9qlWrug033DDtcXhfyawAPPKIPl3D28oxeEmzsYVjCbFIbMA68cXk9OWYZLYms49jiacl9hjYJ8Rgo402sn8T3pDuOjgXoM1xQSOHM0CfKhNDot2cP9w/F9Mv+PVTUV9OEdFP8Os3EXnqrfeHn7DSz0+/uPYW/MZ1ZnN0XaRYmz59eqnRSG1GBgY15wS/fqtAX04R0U/w6zcReeqt94efsNLPT7+49hb8xnVmdV0VpoDg109qfTlFRL8Ph/gZkqL3vKqtVOHNQ1m9PzzEc85CCFVh0E/DOPYW/MZxVnVNFapAZOH36XtMhyWLl7hatWtVqCbZnEz2ZaNW6WOjrt+8nVsKPjymWPDmIZ7g10+8GPcW/BbZ5FKFjry4ZG1g0xyNnLvEvrJ5jOIZZF7IpjEeG9GqVKmSTbfIHUvcMJvtsr1+3wuJLPwOvdS5R27wvTz1lwJeCswb+u+G3qg2waXfzEi/eOvnd3XR7S34je7cJLWM9GGAKmnLyIZAIwsCFdNIGUZasCD3brpLIzMCJXzJbBDOrVtkcqxiLqWsyf4QFL6oqGsR/FaU0jpPMSog+PWbNcGl9PNTQL2TKSD4LbJ1QU5gPLxUjKP0MZkjyoJfUpKRWowGMFNEY99997V8u2PHjrVywqRC49+NGze2PMPk66VQBPmHyZBAPt5OnTpZejGgmVLLQHaQOQHvMyBNXmKKS1AZjhRrFLIgtRvATiELMj1QmKJGjRpu2rRprnv37lbKmU11/fv3t1zBpGJjox25dsklTBEPMlqQNu62226zc1K8ghRwYXtINUdVOOyn7DEV2sgEMXDgQCvIwfnIj0yJ5FNPPdXG4hxU3ZsxY4b74osvrOQyJaCT9U+1VAS/RfYmkrkVqoDg109uwa/081NAvQW/Rb4GVqxYYY8PKWMMTN5+++32Ox38An9kZaA8MP3POOMM99lnnxn4rVy50mCYqm/kzSVXMLl6KUABwFKxDQgkHVn79u2tFDFwCCwC33iZg0ZeX8IOAFeAF8ANilIApHiqd955Z6ucRr5cgJwcxYAmRSWwgWIeFLHg3LRhw4ZZbl7s7NOnj0E/kAzwU8yCIhbdunUrsQdtKPUMyOLNnjNnjqN6HVBOBT20AuCbNWtmf0M/tADAKUxCPyrTpeov+C3yN5DML4gCgl8/2QW/0s9PAfUW/Bb5GgBygU4e61MJboMNNrD/p4NfvLcALN5TGnCLF5SiDUAtYwGKFJkgby/FJABRqqdxbBBCcNddd7nevXu7KVOm2HHhssKMC4ziDaZaGuEHeIepyhb8DS8x4DtmzBjr/8MPP5hnuG7dunYsP+T+JaYZ+MUDDJBT6a558+YGqfwQ9gHUAqk//vijeaYDe3gd+H3vvfdc06ZNbWwKWrRp08bGB76BYRpeaEom77rrrhYygo7kEabUMvmJE/vjCRf8FvkbSOYXRAHBr5/sgl/p56eAegt+i3wNUDKYIg+EDABogC0wR7hCqpjfwYMHG+gCizRCHKgWxwdqGH6DqmqEN9SpU8d+CJUIQy7nxxPbunVrqyQXNIAVmxiDYhN4gIHNLbbYwqrXkROY1+jz5JNPllShw3MLfHINhGCE4Zf45RYtWliIApv7sJdx8EpTOQ6AD+A3sCeAX7y8ADje7scff9zG5zdeZl6jEULBvxkbCMajjd3VqlUzAE/sTxllPM7A96uvvlpqJWFX5Jo2vEVuSiqjQYJfv1kX/Eo/PwXUW/BbxGuAUIcGDRqYxzSIs+UxPmEGgGMq+KUCHB5UXsez2aRJE8sIQfleQiIIRwhveAvgt2PHjq5hw4YO6KMqHODar18/i+VNhF9kxcMKHBOHG8QQA7otW7Y0DzLxt8AqoQ2M9e6771rYQir4JfYY2/A4A86UjSZUg8wU48ePNw8vWgCdifCLdxp7KGlMuWOqz3EdeIiBVzzbeKGxZcmSJaXglwp7if0DsE+2hBTzW8RvLJmedwUEv34SC36ln58C6i34LeI1ADyyIQsYDBreXLyQwCSbuQDhZNke2BxG+AGQDJwOGjTIsTmMTW7jxo1zgG7Y8wsMd+3a1TaTkT1h2bJlrl27do4MEWy4I4yAvuFGPDBeYja+EV4AePI3NpgBqWx0A0op25wJ/AKrQP7SpUvd1KlTbeMb8Ep6N0ogcy0AMJoE9oQ9v8DrpEmTLE6YEA6gnVARwjiwhfhgNtqNHj06qec3Wf9Uy0fwW8RvLJmedwUEv34SC36ln58C6i34rcRrAK8roRJBbmCkACABSTy7qRr5g/EQE86QSQNWiUUON7JSsHku8FiXNQ4xv8Qes1GP8IvAPuzHK4stZKAgbGO99dZLORznJRwjbA/gSxgE3l+8wulasv7Jjhf8ljWjer0yKyD49Zt9wa/081NAvQW/WgNFoUAAv4R1FEMT/BbDLMnGQikg+PVTXvAr/fwUUG/Br9ZAUShAbDIb+zL1FBf6oiILv08NMWmIa65VK8LljWWf1xKO+vzO26WVKrx5zLDg10M8lTf2Ey/GvVXkIsaTq0urGAUmTJjg6tevXzEn01mkgBSQAlIgVgpEufx3rIQOXYzgN64zq+uSAlJACkgBKSAFpIAUKKWA4FeLQgpIASkgBaSAFJACUqDSKCD4rTRTrQuVAlJACkgBKSAFpIAUEPxqDUgBKSAFpIAUkAJSQApUGgUEv5VmqnWhUkAKSAEpIAWkgBSQAoJfrQEpIAWkgBSQAlJACkiBSqOA4LfSTLUuVApIASkgBaSAFJACUkDwqzUgBaSAFJACUkAKSAEpUGkUEPxWmqnWhUoBKSAFpIAUkAJSQAoIfrUGpIAUkAJSQApIASkgBSqNAoLfSjPVulApIAWkgBSQAlJACkgBwa/WgBSQAlJACkgBKSAFpEClUUDwW2mmWhcqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVOtCpYAUkAJSQApIASkgBQS/WgNSQApIASkgBaSAFJAClUYBwW+lmWpdqBSQAlJACkgBKSAFpIDgV2tACkgBKSAFpIAUkAJSoNIoIPitNFOtC5UCUkAKSAEpIAWkgBQQ/GoNSAEpIAWkgBSQAlJAClQaBQS/lWaqdaFSQApIASkgBaSAFJACgl+tASngqcBTTz3ldtllF89R1F0KxFOBR95/Kp4XpquSAjlQoEP9w129evVyMJKGyEYBwW82aunYMhWYPXu2W7JkySrH1a1bt6jg8IsvvnA//fST23nnncu8Xg644YYb3CWXXJLRsYU4aN68eZH+cJV9fqsi6vqt1nMrvwtUbykQUwVWW20199l5UyL9+RxT6Z3gN64zW6DrOu6449zff//tdttttxILGjZs6I4++mgvix588EH3xx9/uNNPP91rnKDzfvvt56ZOnerWWGONUuPdf//97oMPPnA33nhjRucS/GYkU8qDog5vss9vfgW/fvqpd3wVEPwWbm4Fv4XTPpZnBn47dOjg+B1uwOv48ePdo48+6p5//nl35513unHjxrnhw4e72267za255pquR48e7rTTTnNff/21Qe4777zjDj/8cHfxxRe75s2bu19//dWNHTvWtWzZ0oZeuHChO+ecc1yNGjXctGnTXPfu3W3s6dOnu/79+7vOnTu71157zfXp08fNnz/fHX/88e7WW291vXr1crfccos78sgj3eOPP+4uuugiN2LECDvHHXfcYVA8cuRI98svvzi8wDfffLNr3759yvkS/PotZcFlvPUT/PrNr3rHVwHBb+HmVvBbOO1jeWagd/ny5W7HHXcsub4uXbq47bbbztWvX9/17dvXDRgwwA0aNMg1a9bMbbXVVgarq6++uttrr73c4sWL3cCBAw08gdIzzzzTnX322W7WrFlu5cqV7uqrr3ZVqlSxsT/77DO3/fbbG0Cvvfba7sQTT3T33HOP23zzza3PokWLXJMmTQyeAeYDDjjADR061OxYb7313Pfff2/jMubo0aPd3Xff7VasWGEhGsD3W2+95T7++GOz5/333xf85mnFCn79hI26foJfv/lV7/gqIPgt3NwKfgunfSzPDPzWrFnTNW7cuOT6DjnkELflllu6KVOmuIMPPtidcMIJ5gH+559/DGDxzs6ZM8e8sj/++KMd8/DDDxtAf/fddxbu8Mgjj7jffvvNXXbZZSXj0nfPPfd0P/zwg4EsscUcy8+6665r4xN//OKLLxrEEsYwatQod9hhhzk+dDju8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXbylHHd5kn9/8Cn799FPv+Cog+C3c3Ap+C6d9LM+cKuyBi3399dfdvvvua6ENeGsB09q1a9tmsUaNGllYAiCLN/ijjz5ym266qQHpn3/+aR7bZPB77LHHunfffdc8xrvuuqv79ttvLTwC+CX2mHHxOrdt29bdd999dq4w/Hbs2NHOyw/nWbp0qSN7QxDziycYL3EAv4D6q6++WmrutOGt/MtZcFl+7egZdf0Ev37zq97xVUDwW7i5FfwWTvtYnhn4BSSB0qDxBv/rr7/cHnvs4bp27WoA+uSTT1pGBeJ98cwSD0wMLvBL7C7eXyD5pJNOcsccc4xbsGCB+/nnn91VV121iuc3Hfx+88035g0GoBmXcAjANoBfIPmhhx4yKCdcAjjGA403ORX8Jps0eX79lnLU4U32+c2v4NdPP/WOrwKC38LNreC3cNrH8syENLCJLNzI9EDsLZvRXnjhBQtpuPLKK90bb7zh9tlnHwuTWGuttcxjCwCzyY2NbGx8I93YxIkT3UsvvWQQzCY5wJhG2EM6+MVbC4x/+OGHdjzxwUDwyy+/7Mj2gEeXjXjnnXee2YK3+OmnnzbPruC34pan4NJP66jrJ/j1m1/1jq8Cgt/Cza3gt3Da68zOWWgCHlpCHAg7ILQBKKURgkC8bdCAYyA5WXqydGIC0XXq1LF+xBRvuOGGdq7ff//dgDfZubKZHHl+s1Gr9LFRhzfZ5ze/gl8//dQ7vgoIfgs3t4LfwmmvM8dEAcGv30QKLuOtn+DXb37VO74KCH4LN7eC38JprzPHRAHBr99ECn7jrV//Cbe7WrVq+11kHnsvWbJY9nnoK/08xHPOtdp4b1V485OwXL0Fv+WSTZ2kwP8UEPz6rQbBb7z1GzllgKtdq5bfReax92Kyzsi+citcDPqdfFDfcl9fvjtG/fMv39dfqPEjDb9z5861OM2tt946K33I1frll19aEYVk7ZVXXrENTzxyyGVjMxULmfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/HBnNFTK7vWNmeO1/HEx+8/vrrlxljLPj1m4Gof/jLPr/5PeyW3H7O+lmj3pVNgeMaXOVOb3V1ZC876p8vkRXO07C8wS8VsQYPHmzlYsvbbrrpJqvc1a1bt4yHoBwtFboee+wx16ZNm6T9ABpyzAJquWxkMqBaWLI8sLk8T6qxwtkPwseQ0YCCDlQtS9ZI9cXNAinKytuCuaJKW7qxuOmgfHC2m9bKa1d5+lE2mXLG5CCm7DKpzyiGkaoJfsuj8v/6RP3DX/b5za/g108/9fZTQPDrp19ce6eEX/KfAnHTpk2zXfeUfqVSF/8/66yz3Pz5892pp55qeVrx9F1wwQXuueees9RV999/v5WSnT17tpWGPeWUUwy88EqSxmrIkCFWkYvStUHaKXKskpMVEDv33HMNOoAPcrKSG/b66683G8jVetdddxmQJGvAFYUIyAd7xRVXWIncsWPHum222cYBaE2bNjVvHvBLIQXSXHGt7PynJC4ASW7Z6667zmzIpqWC308//bTU2OjANZH7Fl369+9vKcKSXSdVzciTy+vcDFDtbLfddrPrQ2syGYwYMcJea9Gihc0BgEmeXOYKTzCZEtCBAhKJ1/nMM884bCQtGDl211lnHavG1qlTJ3fLLbeklCDZXOGlZyx0T7QPWxmPdGZjxoxJOjekMdt7773dvffea+WOuVbmizy8jIf9zA1rkbRklC4mcwOvYW+qxhrmJoBqbvRN1xifm4VrrrnGsk+gB0BPRopkTfCbzbuk9LGCy3jrJ/j1m1/19lNA8OunX1x7p4RfSs3ypQ7gkCcVmJw5c6aFCwAZhBQAtLfffrsVBuAHgKOAAeC78cYbmxd00qRJBp08kgeIAF5yuDLWokWLXN++fW1s8rny7/r16xv8EjoAJOFxY7wTTzzRvLnkigWgCG1YffXVS80L9l544YVWOAGwpqQt/QBzQIoiB8AUEN+qVSurNNayZUsDP6CRfwOMADfQnk1LBb/Jxp41a5al8SLfLdePJ/Soo45Kep2U3gXKyY977bXXuurVq7sOHTpYSV7y0wLv6I++5LIFFAFHfkjzxf9Xrlxp84GOiddJujFuVLgRoD96AbHk5qViGnCdrCWbK2xjLDynifaxDkhjxo0PJYSTzQ3rhpsPvP3oxvwzT9tuu63NJzddrDHWz2abbVZS9pjzvf3221bNLdwoa8wTiGHDhpm+J598sh0XbrVq1bJ1GTRuFAiJ4WaCYhzoiv6pwmQEv9m8SwS/fmoVn36C31zPuMbLRgHBbzZqVZ5j08IvIQRAMA34mDBhgnkWASIa3lqKAQCMFDfAC3fEEUe4Bg0aGFz26dPHTZ482SAMcCOm9LvvvjOvGscFfwNQ6P/ss8/aMXjpAFsgmBAGKnvhzaXIAQ1Q4dH0FltsUWqm3nvvPYNrvNZ4BIEkYAcYJi6V/wO/NWrUcIceeqh5oYNyuHiWCYXAZo7h/9m0ZPCbamwgjOujNC/XTPEGQCvZdeLVJIQD4EUjYBagA/Tw7nKTwA0CVdDwiBN7jNca3fGg4sXFgwnEkdc28Trxhgfw27p1a9OJBvyiD97pxAZUJ5urAH4vvfTSUvZhEwDJ/NOSzQ3wy9/x8HMzhLcVr/2jjz7qHnjgAeuHp5w1wbXjFafxNKB3796mEY0bNv6PvtzIcCxjE46D1zncgF/AP9x4EoAXnhutJ554wh100EEpl4LgN5t3Selj5fmNt36CX7/5VW8/BQS/fvrFtXda+AUw8EzSAE28vIAYAEEDrPg3oQ8AI5DA43egeMsttzT4BQgBTUIMABk8wMAP4wFZhDbwGpW6Ro0aZXGnwDANgMK7B8iwKQvACxowQ7GCxBaGX7y8gDKeYGAWuwL45W//+c9/HMfjdQW2AtBnzJ122sm1bds2q3lPBr88Lk82No/e0QOvLSEj6AiAJbvOHj16mBeUUAnOceedd5rW3HjgpR05cqSBPOMEFc8wHA/vf//73xL4RbNktnAzE8BvuD9efmK2k8EvxyebqwB+0TLRPsYK4BeITzY3ACrrgbnFIw6YAs2MFcSPUxSDim+8zo1O0AiZ4MaLRkgEeqEdugYe4WXLltkTh3DDwxv2GHOjwM0YN0Kcc5NNNik5nJuTZDHdeKOj2gSXfjMj/fz0E/z66afefgoIfv30i2vvtPALYAEZACKgA4QCAgAAEAUgED86ffp08zLizcUDB6gQD4ynEVDAywmYAF880saDi5cTjzGhBXjY2FlPfDDjE69KbCexn507dzbPH14/4BiYBErx/iXbsBaGX2AQeALYe/bsadcSwC8xv/ydx+gA5O67727xsw0bNjTgB0zxzGbTAFPGJJtE0PBgA4/Jxu7Vq5d5fLt06WJec2A92XWicSL8EprBPAwYMMDAlRLChHakgl9uZIDFZNdJTGu28EuoRLK5CuCX+U60j5sd4BdvOLCYbG6SwS83CqytIFQGLVgj6Mqa5OaF6+7Xr5+tw6AtXrzYdB80aJDFSJ9//vn2RIEbn3DDgz1+/PiSP+FZZy7Cf0u3DuT5zeZdUvpYwWW89RP8+s2vevspIPj10y+uvdPCLx5dHpPziHvo0KEWxwmc8aiZx8L16tWzGNwg9AGvGxCLJxJ4BVp5dA284KFjHGJ7J06caKEIAByP6BmLR/PEkBKDC7QCZIwBHBM7CjgDP3xR4vkEZJK1MPwS/wsUBrawsWv06NEGksSdAoS8BogvX77cYJ2GJ5D40po1a2Y178Av8anhhnccyEs29ptvvmneWaAQLfGKJ7tO/haGX7y5eNiJi8ZWwjsA6f333z8p/HKt3HAA2lxzoi2Es2QLv1xjsrkippex2CyWaB8x4niTOYYbjGRzw41S4PklRhntCFvgKQBechreWOJ3iX9mXeLNbdeunW1oSxaXiz6sOdYN4/OTrmEn0Bxun3zyicVDJ2uC36zeJqUOFvzGWz/Br9/8qrefAsftfpU7vaVSnfmpGL/eaeGXx794P6tWrWoQHDRglUfleH8D2ADceGRPbHDwN6ADD2HgoSWWl01e4cbGNUIbwpkVyB5B38SwBh53Ywt/B7AAksRGdgjAOWjYxXVstNFGBpecJ1WKM85JLDGbvZJtpvOZ/mzGDl9nunOiLZkVuMkoK20b3laOwUuajS0cyxOAxAasE1+caq44Ppl9jMf6YT1lMzeMx7mY2/Ba4aYFoE+ViSHRbs6fbRaPsuZd8FuWQulfF/zGWz/Br9/8qrefAvL8+ukX195lwi+e2yg2oBlPcmIDyMoCwSheT1RtIsUaYS2JjVhtbnTUnGVFUcxv+VeC4Lf82tEz6voJfv3mV739FJDn10+/uPZOCb94CmlhL2pcRdB1SQEfBQS/PupFH96iDpdRt2/k5P6uVu3oljdesniJ7PN4CxeDficf/G9WoCi2qL9/o6hZLmzKW4W3XBinMaRAMSgg+PWbpah/+Fe4fd/OdI6fDFvU4WPeei1tT0NUW4XPb5ZCyL4sBUs4XPr56RfX3oLfIpvZf/75x3IWk7Uh2JBH+Aexr2zeo3gGWTKyaYzHRrQqVapk0y1yxxJDTCx4ttfveyGCXz8F9eWUoB/gO7KRn6gR6j3vmH839Ea1af35zYz0i7d+flcX3d6C3+jOTVLLSB8GqJK2jGwINLIgUDGNdG5k1gjyJKe7NDIjkG+ZzAbh9GJFJscq5lJAhewPQeGLiroWwa+f0vryFPz6rSC/3lp/0s9PAb/eUV9/flcX3d6C3+jOTVLLyAmMh5cqbUGJ57Lgl5RkQbESgJliIfvuu6/l2x07dmxJ7mX+3bhxY8unTL5eCkWQf5gMCeQvpqw16cWAZqrzAdlB5gS8z4A0+ZcpLkFlOFKsUciCtHEAO0VGyPRA2jsKn1AFsHv37pYuj011lMcmrzOp2NhoR65dcgmTOo+MFqSNI/0e56R4BSngwvaQao4NmthPKWvyR5MJgvzR5KnmfKTXI7czeagZi3NQoGXGjBmOioaUXKYEdLL+qZaK4NfvTRT1D/8Kt0+eX78FlWXvCp9f2ZelAn6Ha3799Itrb8FvEc3sihUr7PEhZYyBSSru8Tsd/AJ/ZGWgPDD9yZn82WefGfitXLnSvMekrCNvLrmCyatM5gIAlhb4tOEAACAASURBVBR0QCCp4sjxTG5m4BBYBL7xMgeNvL6EHQCuAC+AGxSlAEjxVJPjmcIo5MsFyMlRDGhSVAIbKOZB9TXOTRs2bJjl5sVOqgUC/UAyaegoZkERi27dupXYgzaUegZk8WbPmTPHUvIB5VTQQysAvlmzZvY39EMLAJzCJPSjMl2q/oLf/LxZ9OUkz29+VlZmo2r9ZaZTqqOkX7z187u66PYW/EZ3bkpZBuQCnTzWp9gIOZP5fzr4xXsLwOI9pQG3eEHJkQzUMhagSAEQ0sRRTAIQpXoaxwYhBFTu6927txUj4bhwWWHGBUbxBlMtjfADvMNUZQv+hpcY8B0zZoz1p7gJnuG6devasfyQ+5eYZuAXDzBATkW/5s2bG6TyQ9gHUAukUlAFz3RgD68DvxQ6adq0qY1NQYs2bdrY+MA3MEzDC01xll133dVCRtCRPMKUwSY/cWJ/POGC3/y8WfTlKfjNz8rKbFStv8x0Evz66VSs+uXnqgs/quC38HOQsQWUDCb1HCEDABpgC8wRrpAq5nfw4MEGusAijfLSVIvjAz8Mv0FVNcIb6tSpYz+ESoQhl/PjiW3durVVkgsawIpNjEGxCTzAwOYWW2xh1evICcxr9KGaXlCCGc8t8Mk1EIIRhl/il1u0aGEhCmzuw17GwStN5TgAPoDfwJ4AfvHyAuB4ux9//HEbn994mXmNRggF/2ZsIBiPNnZXq1bNADyxP2WU8ThTrhsAT2zK85vxMi51oOBD8Fv+1ePfU+vPT0PpF2/9/K4uur0Fv9Gdm1UsI9SB8tF4TIM4Wx7jE2YAOKaCXyrA4UHldTybTZo0sYwQlO8lJIJwhPCGtwB+O3bs6Bo2bOiAPqrCAaz9+vWzWN5E+MVQPKzAMXG4ADbllAHdli1bmgeZ+FtgldCGTOCX2GNsw+MMOFM2mlANMlOMHz/ePLxoAXQmwi/eaeyhpDHVBqkIyHXgIQZc8WzjhcaWJUuWlIJfKuwl9g/APtlyUcyv35tIX56CX78V5Ndb60/6+Sng1zvq68/v6qLbW/Ab3blZxTLgkQ1ZwGDQ8ObiiQQm2cwFCCfL9sDmMMIPgGTgdNCgQY7NYQDquHHjHKAb9vwCw127drXNZGRPWLZsmWvXrp0jQwQb7ggjoG+4EQ+Ml5iNb4QXAJ78jQ1mQCob3YBSylNnAr/AKpBPSeypU6faxjfglfRuVPDjWgBgNAnsCXt+gddJkyZZnDAhHEA7oSKEcWAL8cFstBs9enRSz2+y/qmWiuDX700U9Q//CrdPG978FlSWvSt8fmVflgr4Ha759dMvrr0Fv3Gd2YTrwutKqESQG5iXAUhAEs9uqkb+YDzEhDNk0oBVYpHDjawUbJ4LPNZljUPML7HHbNQj/CKwD/vxymILGSgI21hvvfVSDsd5CccI2wP4EgaB9xevcLqWrH+y4wW/Zc1o+tf15ZSgj+DXb0Fl2VvrL0vBEg6XfvHWz+/qottb8Bvduam0lgXwS1hHMTTBr98s6ctT8Ou3gvx6a/1JPz8F/HpHff35XV10ewt+ozs3ldYyYpPZ2Jepp7jQQgl+/WYg6h/+FW4fnt9vZmQsKnHrtWrVyvj4ij5wXvVWqvDmIXqFr78sbZV9WQpWZJ5zv6uLbm/Bb3TnRpYViQITJkxw9evXLxJrZaYUkAJSQApESYEol/+Okk65tEXwm0s1NZYUkAJSQApIASkgBaRApBUQ/EZ6emScFJACUkAKSAEpIAWkQC4VEPzmUk2NJQWkgBSQAlJACkgBKRBpBQS/kZ4eGScFpIAUkAJSQApIASmQSwUEv7lUU2NJASkgBaSAFJACUkAKRFoBwW+kp0fGSQEpIAWkgBSQAlJACuRSAcFvLtXUWFJACkgBKSAFpIAUkAKRVkDwG+npkXFSQApIASkgBaSAFJACuVRA8JtLNTWWFJACUkAKSAEpIAWkQKQVEPxGenpknBSQAlJACkgBKSAFpEAuFRD85lJNjSUFpIAUkAJSQApIASkQaQUEv5GeHhknBaSAFJACUkAKSAEpkEsFBL+5VFNjSQEpIAWkgBSQAlJACkRaAcFvpKdHxkkBKSAFpIAUkAJSQArkUgHBby7V1FhSQApIASkgBaSAFJACkVZA8Bvp6ZFxUkAKSAEpIAWkgBSQArlUQPCbSzU1lhSQAlJACkgBKSAFpECkFRD8Rnp6ZJwUkAJSQApIASkgBaRALhUQ/OZSTY0lBaSAFJACUkAKSAEpEGkFBL+Rnh4ZJwWkgBSQAlJACkgBKZBLBQS/uVRTY0kBKSAFpIAUkAJSQApEWgHBb6SnR8YVgwITJkxw9evXLwZTZaMUqHAFZnz+SIWfUyeMpwKNtuoQywurV69eLK8ryhcl+I3y7BShbbNnz3ZLlixZxfK6deu6XXbZpWiu5osvvnA//fST23nnnTOy+YYbbnCXXHJJRscW4qB58+a5KH+4yj6/VRF1/U76z2p+F6jeUsA5t97aNd2Qc1b9bslEmKi/P6JuXyYaF+Mxgt9inLUI23zccce5v//+2+22224lVjZs2NAdffTRXlY/+OCD7o8//nCnn3661zhB5/32289NnTrVrbHGGqXGu//++90HH3zgbrzxxozOJfjNSKaUB0X9w1/2+c2v4NdPP/X+VwHBr1ZCLhUQ/OZSTY3lgN8OHTrY73ADXsePH+8effRR9/zzz7s777zTjRs3zg0fPtzddtttbs0113Q9evRwp512mvv6668Nct955x13+OGHu4svvtg1b97c/frrr27s2LGuZcuWNvTChQvdOeec42rUqOGmTZvmunfvbmNPnz7d9e/f33Xu3Nm99tprrk+fPm7+/Pnu+OOPd7feeqvr1auXu+WWW9yRRx7pHn/8cXfRRRe5ESNG2DnuuOMOg+KRI0e6X375xeEFvvnmm1379u1Tzq7g12/hCy7jrZ/g129+1VvwqzWQewUEv7nXtFKPCPQuX77c7bjjjiU6dOnSxW233XYWF9u3b183YMAAN2jQINesWTO31VZbGayuvvrqbq+99nKLFy92AwcONPAESs8880x39tlnu1mzZrmVK1e6q6++2lWpUsXG/uyzz9z2229vAL322mu7E0880d1zzz1u8803tz6LFi1yTZo0MXgGmA844AA3dOhQs2O99dZz33//vY3LmKNHj3Z33323W7FihYVoAN9vvfWW+/jjj82e999/X/Cbp5Ut+PUTNur6CX795le9Bb9aA7lXQPCbe00r9YjAb82aNV3jxo1LdDjkkEPclltu6aZMmeIOPvhgd8IJJ5gH+J9//jGAxTs7Z84c88r++OOPdszDDz9sAP3dd99ZuMMjjzzifvvtN3fZZZeVjEvfPffc0/3www8GssQWcyw/6667ro1P/PGLL75oEEsYw6hRo9xhhx3mVlttNTvu8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXb8lHHd5kn9/8Cn799FNvwa/WQO4VEPzmXtNKPWKqsAdEef31192+++5roQ14awHT2rVr22axRo0aWVgCIIs3+KOPPnKbbrqpAemff/5pHttk8Hvssce6d9991zzGu+66q/v2228tPAL4JfaYcfE6t23b1t133312rjD8duzY0c7LD+dZunSpe+qpp0pifvEE4yUO4BdQf/XVV0vNsTa8lX/ZCy7Lrx09o66f4NdvftVb8Ks1kHsF8ga/fCDTEneZ8/gY4KlTp07Sq8l2p32yQT788EPzPqY6R+5l1IiBAsAvIAmUBg0v619//eX22GMP17VrVwPQJ5980jIqEO+LZ5Z4YGJwgV9id/H+AsknnXSSO+aYY9yCBQvczz//7K666qpVPL/p4Pebb74xbzAAzbiEQwC2AfwCyQ899JBBOeESwDEeaLzJwYa3RPhNNtPy/Pqt/6jDm+zzm1/Br59+6i341RrIvQJ5g18eYeN5Y3NRuLGTfvfddzcQCrdg9z0bjbLZaZ9MEuI9W7duvQqA5V46jZhMAUIa2EQWbmR6IPaWzWgvvPCChTRceeWV7o033nD77LOP3aistdZa5rEFgNnkxkY2Nr6RbmzixInupZdeMghmkxxgTCPsIR384q0FxrkZohEfDAS//PLLjvWGR5eNeOedd57Zgrf46aefNs+u4Lfi1rfg0k/rqOsn+PWbX/UW/GoN5F6BvMIvoEOsJY0NTnjcrrnmGtt4BIAQcwkIATx4APl91FFHZbzTHq8doMJOfx5Xs2GJ+NIAfhmLTVNkCNhmm23cTTfd5Jo2berefPNN20jFY/Ru3bq5Cy+80H366afWD6DC23jddddZBgK1/CrADRIeWkIcCDtgToBSGnNKvG3QgGMgOVl6snRWAtE8BaAfMcUbbrihnev333834E12rmyuWp7fbNQqfWzU4U32+c2v4NdPP/UW/GoN5F6BvMIvUPDMM89YTCbpogh54FE2UIo3b/LkyQasxIEGu+95/J3pTnu8y5yDx9Z493gkPnPmzBL4BWzY5PTYY4+55557zjZN8dgbr1/Pnj1dgwYN3IEHHmh98P7hhSQrwFlnnWWP50855ZTcK64RY6eA4NdvSgWX8dZP8Os3v+ot+NUayL0CeYVfcquSN5W28cYbW95WUl0F8EtsJY+3acHuex5DZ7rTHvglRpjftG233da98sorlrqKsAc8yYDt22+/bXGlc+fOtcfuO+20k22MovE3wJvYUEAczyJQvv7669v/1aRAWQoIfstSKP3rgt946/foi/1d7Vq1/C4yj70Xs/FW9pVb4YrU76DdumRtpz5fspasUnTIK/zyCBvYpW2xxRYWbkCqqgB+w3G5YfjNNN4S6GUTFPGjwTmI2aSAAmNXrVrVwhsIawBm2dBEzDFxoEE4Bo/BebzOxrwAohkLQCZDgJoUKEsBwW9ZCgl+M1Lo3XsyOizxILKm1IowvM2r3lLltcs1s/92Erx5iCf9/MSLce+8wi8eXDYqsYOejVAAZzjsIRF+iekkNCEb+A3O8d5771mWAVJkUVSBsYkr5kvhiiuusDAHbKGgwiabbGKxwuSepaABxx166KEGxpTiBaaJQT333HMjN/Vs4sKLzaZBNorRiGmlsAQpwijasPfee2dlN+MRChIUj8iqc4QOJqvD7Nmzs75+30sQ/PopqC/3/9fvgUbOfTvTT8wI9p537FzBr8e86P3hIZ7g10+8GPfOG/yygW3w4MG2sYg3L+VjiaENw2+bNm1sBz8t2H1Padxs4JfzENsLAJILljK0bFxjbEIZyDQAFLLhjfhjKnmx4x8PNBuesKdfv36WeovNcTSqhQHEAVxGaf7JM4tWxDcT3kFj4x+FGQB8NvwFXu10dhNewoZD4qsJSeGmgY1gxdwoiMEaCBfCqIjrEfz6qawvd8Gv3wry6631J/38FPDrHfX153d10e2dN/gNLpkKWeyyD3bwp5Iicfd9+Di8eZ988kmprsTrkj8WDy0hDsHO/fCBeAMJv9hoo40s3ysZHIjrBXw5Z7gP/1+4cKHbeuutrdxuFBtebWCeeGSqkWFnWfBLQYkgNARgJtsGmwzxtJMJI8ily7+pzEYVtOrVq1vaL0oDowve806dOrlrr722JEsHkB1kxODmA5AmrptUZUOGDLGqa4SdBKnFCDtBd+K8a9SoYVk6yOlLCjQ88v3793edO3e2mxDmlc2JeOlJf8fNy7333mtZQThnjx497MYlbA/x3ITZYD9PEK6//noLi6E8MU8FOB+bGYlFP/XUU20szkGM94wZMyx+nA2SlElO1j/VehD8+r1Tov7hX2H2yfPrt5DK2bvC5lf2lVMBv26aXz/94to77/CbC+GAPOAqsbG5De9lEFeci3NFeQwKLhCbTMEHvL+33367/U4Hv8AfGwEpJ0x/yviSzg3wW7lypXmPKf5AHDY5mfHOU4QCgN1ss81KygrjUWfjIHAYZOnAyxw0UthxcwG4ArwALpsNFy1aZPODp5qcvYS/kG8XIMfDDmhSYAIb8NhzPOemDRs2zOK3sbNPnz4G/UAywL/XXntZVTdS1QX2oA2bHAFZvNmE27CxESgn0whaAfDNmjWzv6EfWgDgrCX6Efedqr/gNz/vDn05/b+ugt/8LLAyRtX685Nd+sVbP7+ri27vooDfVPLhuaSts8460VU4h5YBuXh8eaz/wAMPWA5c/p8OfvHe4sXEe0oDbvGC4kkPygUDioSEkH3j0ksvNRClCAnHBiEEd911l+vdu7ebMmWKHRdk6QguDxglZ/OOO+7oCD/gpuSII44o+RteYsB3zJgx1p/QEzzDhKZwLD944YlpBn7xAAPkX375pWvevLlBKj+EfQC1QCqbFfFMB/bwOvBL/Df5nBn75JNPthAYxge+gywfeKEJr6EkMiEj6EjFOTZGkns4sT+ecMFvDhdzaCh9eQp+87OyMhtV6y8znVIdJf3irZ/f1UW3d1HDb3RlzY9lVDYD9AkZANAAW2COcIVUMb/EXQO6QSYLQhzIdsEHVhh+g5hfwhsoCMEPoRJhyOX8QSaNcPligBWbGIONgniAgU0yfBCaQjlrXqMPsdVlVWUDfolfbtGihYUosLkPexkHr3SjRo0M4AP4DTZOBvCLlxcAx9tNtTk04jdeZl6jEULBvxk7iDHH7mrVqhmAJ/YnjzQeZzZKAuCJDbui2vTl5DczFaafPL9+E1XO3hU2v7KvnAr4ddP8+ukX196C3yKZWUIdKMqBxzSIs+UxPmEGeMBTwS+V6/Cg8jqeTcoMkxGCzBaERBCOEN7wFsBvx44dLfMF0EfMNsDKxkBieZOVjsbDChwThxvEEAO6FA3Bg0z8LbBKaEMm8EvsMbbhcQacW7VqZaEaZKagEAoeXrQAOhPhF+809lBIhRR6bOTjOvAQA654tvFCYwtpohLhl4pzif0DsE+2XBTz6/cm0peTPL9+K8ivt9af9PNTwK931Nef39VFt7fgN7pzs4plwCMbsoDBoOHNxRMJTLKZCxBOlu2BzWGEJADJwCmlptkcRqaNcePGOUA37PkFhqlwx2YysiewabFdu3aODBFsuAtn6QhsIR4YLzGx2YQXAJ78jQ1mQCob3YBSNiZmAr/AKpBPDuapU6faxjfglQwcbFjkWgBgNAnsCXt+gddJkyZZnDAhHEA7oSJBlg/ig9loR/aPZJ7fZP1TLRXBr9+bKOof/hVmnzy/fgupnL0rbH5lXzkV8Oum+fXTL669Bb9xndmE68LrSqhEOH0bAAlI4tlN1cgfjIeYcIZMGrBKLHK4sWGRzXOBx7qscQh7IPaYjXqEXwT2YT9eWWwhAwVhG+myiHBewjHC9gDhhEHg/cUrnK4l65/seMFvWTOa/nV9Of2/PoJfv4VUzt5af+UU7v+7Sb946+d3ddHtLfiN7txUWssC+CWsoxia4NdvlvTlKfj1W0F+vbX+pJ+fAn69o77+/K4uur0Fv9Gdm0prGbHJbOzL1FNcaKEEv34zEPUP/wqz790h5RIy+uWNW6nCW7lm9t9OFbb+ymmj7CuncEXiOfe7uuj2FvxGd25kWZEoMGHCBFe/fv0isVZmSgEpIAWkQJQUYA+KWsUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6dTwUeOqpp9wuu+wSj4vRVUiBHCvw1VeP5HhEDZeoQI0ajVy1attJmCJVoF69ekVqefGaLfgt3rmLpOWzZ892S5YsWcW2unXrFhUcfvHFF+6nn35yO++8c0Ya33DDDe6SSy7J6NhCHDRv3jwX5Q9X2ee3KqKu373DVvO7QPUuU4Hjjn3fbbBBYW7Ao77+ZF+Zy6dSHiD4rZTTnr+LPu6449zff//tdtttt5KTNGzY0B199NFeJ33wwQfdH3/84U4//XSvcYLO++23n5s6dapbY401So13//33uw8++MDdeOONGZ1L8JuRTCkP0pdTvPUT/PrNbya9Bb+pVdLnSyYrqPIdI/itfHOe1ysGfjt06OD4HW7A6/jx492jjz7qnn/+eXfnnXe6cePGueHDh7vbbrvNrbnmmq5Hjx7utNNOc19//bVB7jvvvOMOP/xwd/HFF7vmzZu7X3/91Y0dO9a1bNnShl64cKE755xzXI0aNdy0adNc9+7dbezp06e7/v37u86dO7vXXnvN9enTx82fP98df/zx7tZbb3W9evVyt9xyizvyyCPd448/7i666CI3YsQIO8cdd9xhUDxy5Ej3yy+/OLzAN998s2vfvn1K3QS/fktKX07x1k/w6ze/mfQW/Ap+M1knOuZ/Cgh+tRpyqgDQu3z5crfjjjuWjNulSxe33Xbbufr167u+ffu6AQMGuEGDBrlmzZq5rbbaymB19dVXd3vttZdbvHixGzhwoIEnUHrmmWe6s88+282aNcutXLnSXX311a5KlSo29meffea23357A+i1117bnXjiie6ee+5xm2++ufVZtGiRa9KkicEzwHzAAQe4oUOHmh3rrbee+/77721cxhw9erS7++673YoVKyxEA/h+66233Mcff2z2vP/++4LfnK6U/w0m+PUTNur6CX795jeT3oJfwW8m60THCH61BvKkAPBbs2ZN17hx45IzHHLIIW7LLbd0U6ZMcQcffLA74YQTzAP8zz//GMDinZ0zZ455ZX/88Uc75uGHHzaA/u677yzc4ZFHHnG//fabu+yyy0rGpe+ee+7pfvjhBwNZYos5lp91113Xxif++MUXXzSIJYxh1KhR7rDDDnOrrbaaHXf55Ze7HXbYwZ1xxhkG3J9//rlB7xNPPGE/y5YtcxtssIGNlarJ8+u3mKIOb7LPb34Fv376ZdJb8Cv4zWSd6BjBr9ZAnhRIFfbA6V5//XW37777WmgD3lrAtHbt2rZZrFGjRhaWAMjiDf7oo4/cpptuakD6559/msc2Gfwee+yx7t133zWP8a677uq+/fZbC48Afok9Zly8zm3btnX33XefnSsMvx07drTz8sN5li5d6sjeEMT84gnGSxzA76uvvmqwnti04a38C0pwWX7t6Bl1/QS/fvObSW/Br+A3k3WiYyoh/PLYGtCqU6eO5j+PCgC/gCRQGjS8rH/99ZfbY489XNeuXQ1An3zyScuoQLwvnlnigYnBBX6J3cX7CySfdNJJ7phjjnELFixwP//8s7vqqqtW8fymg99vvvnGvMEANOMSDgHYBvALJD/00EMG5YRLAMd4oPEmp4LfZNLJ8+u3oKIOb7LPb34Fv376ZdJb8Cv4zWSd6JhKAr8A7+DBg20TEzv4d999dwMwtfwpQEgDm8jCjUwPxN6yGe2FF16wkIYrr7zSvfHGG26fffaxMIm11lrLPLYAMJvc2MjGxjfSjU2cONG99NJLBsFskgOMaYQ9pINfvLXA+IcffmjHEx8MBL/88suObA94dNmId95555kteIuffvpph3dX8Ju/NZI4suDST+uo6yf49ZvfTHoLfgW/mawTHVNB8MsjaDYsBbCBZw1PHF62K664wh5vX3fddY6Y0MS/8aj60ksvdY899phZC/iQIYCd93gR8eBtsskmtit/m222cffee2+prAHALnln2bDEI3M2PAE9vXv3dsOGDbN+Q4YMcXvvvbcBFb8Zh41XxJiuv/76Wit5VoDQBDy0hDgQdsA8AaU0QhCItw0acAwkJ0tPls5MIBqPP/2IKd5www3tXL///rsBb7JzZXPZ8vxmo1bpY6MOb7LPb34Fv376ZdJb8Cv4zWSd6JgKgt9rrrnGdtyzw5/H1XjxeKS97bbbGhCTfopH4MRQJv4N+CRlFvGcNDY/Pffcc/bYnAa8AsNkACCVVbKsAa+88ort5J80aZJ594466igDWqD6gQceMC8fXsXJkye7jTfe2B6xd+vWzbyFbITyzU2rhVY5FBD8+s2z4DLe+gl+/eY3k96CX8FvJutEx1QQ/OJBDXbts9ueR+KkuWKnP/BJI5frl19+aR7e8N/w8LEZKRn8kr8VkKUfuVl5/J0sa8Ann3xiYAzcEj9KHx5vs7sfjzQN6CU8gvRXM2fOtLhQYB1PZADaWjBSIJ0Cgl+/9SH4jbd+r7za39WuVcvvIvPYezEbb4vcvrp191eFtxRrRJ8veXzzFPHQecvzS7wlxQfmzp1rG83YvU98JkBJPCVxuDQeeVO4gLjM8N+IzSRvawC/eGwJYaB/z549XYsWLcxzTGgDizsxawCPt5PBL6muGBcQpjEu4ExFMmzkkThe6lq1apkXWE0KlKWA4LcshdK/Htsvp79+d272/X7iZNCbrCl8XkW1zavRUuW1PSYntu8PD02y6Sr9slGr8hybN/hFwlNOOcWKC/D7+uuvt3hLPK5HHHGEeVkJiSDE8MOUmgAAGt9JREFUYMyYMbbRKfw3QhwoNoB3l9yrwCmwC/ySQxZAveuuuwxYW7VqlTRrwKeffmqFEtjAFHh+sYEwC2J933zzTQuHALDxABcD/HJTQXYEoJ+NYjRiWiksQegHRRuIXc6mMR6x0EHxiGz6RulYsjpwg5Tt9fteg+DXT8HYfjkBvwOr+okTg97zTpwr+PWYx9i+Pzw0yaar9MtGrcpzbF7hl5KzZ511lu2wZ3MRRQ4ILyDmlhRTNLy9eGGT/Y34YEIkCEWgzCzFB4BfvMSUw2VDFKVo2fhGeqrErAHnn3++bWojjAGw5TzkmQXACbdgTGKLKV0bhl/ihPGkRDHsAXAHVIF/7KShJdrgEWfzICEmZTWyHFDkgUpm4Wsvq1+UX6cgBvmAw4UwKsJewa+fyrH9chL82sIQ/Or94aeAX+/Yfr74yVLpe+cVfgN18dxuttlmBqxBI8frOuusU+bf8GiGsy6QBgtQZoNcsIOfMVNlDWBXP68RQxxuX331lWUSCHb7F8tKoFQwHl5K8aIrZYHLgl8KSpBajAYwk/WCmwCyJxByEuTS5d941QkNqV69um0IpDQwGpKdo1OnTu7aa681aCaWG8gO5hTvMyDNTQVzhGedqmuJ2T64CSKNGSEx3Bxxg0MKNEoc9+/f3xHPjbc+04weYXtIo8aNDvZzU8PTBnIDk+2D3MPBzRhPEE499VR7WkDWEGLCZ8yYYTdDVIEjLCZZ/1RrRPDr9+6J7ZeT4Ffw6/fW+Fe/efPkOffQUfp5iBfjrhUCv7nUL4BfvJ+VrVFtrF69elbwgeu//fbb7Xc6+AX+uFHAg05/yvgS4wz4kSkDGMazjle8V69eFqJCBg505oYlKCuMd/ztt982OAQWgW+8zEEjswdhB4ArwAvgBmEs4WwfbHok3y5AvvbaaxtokuYOG84++2wLheHctEwyehCXHdiDNoTPALJ4sylYQbo9oJxNjWgFwDdr1sz+hn5oAYCTGYR+lFhO1V/wm593XGy/nAS/gt8cvGVi+/7IgTaZDCH9MlGp8h1TdPCbzGNcWaYNyAU6eaxPZgw81/w/HfzivQVgyYdMA27xgrIZMCgXDCg+88wzFjqCVx0QpRgIxwYhBMRXkx+Z0BWOA27DLZzZg/ADvMPEdidm+yC+m/6EwuAZJu8zx/KDF56YZuA304weeKYDewBZ4Pe9995zTZs2tbFPPvlk16ZNGxufVHvAMI2c02y8pCQyISPoyNriKQNPChL74wkX/ObnnRbbLyfBr+A3B2+Z2L4/cqBNJkNIv0xUqnzHFB38Vr4p+t8VU4iDUBFCBgA0wBaYI1whVcwvFe4AXTyaNEIc2GTIB0IYfoPNfoQ3EE7CD6ESYcjl/ORWbt269Srli4PMHoxBijg8wMDmFltsUSrbB2WNy6rKBvxmmtED+A3sCeAXLy8AjrebanNoxG+8zLxGo5gJ/2bjYFDNDburVatmAJ7YnzhzQkzYPEncdWLDWx7Vpg9/v5kpt36CX8Gv39L7Vz+FPXipKP285IttZ8FvkUwtoQ4NGjQwj2kQZ8tjfMIMiN1NBb9kvCCkgdfxbFJmmIwQlHsmJIKNc+ENbwH8kmO5YcOGtrmQymgAa79+/SyWNxF+kRAPK3BMVo0ghhjQTcz2QWhDJvCbaUYPoDMRfvFOYw8FTFZbbTVLX8d14CEGXPFsE36BLaSJSoRf0u8l9g/APtlyUcyv35sotl9Ogl/Br99bQ/Ar/XKggIZIpoDgt0jWBZu32JBF+EHQ8ObiiQQm2cwFCCfL9tCjRw8LPwCSgdNBgwY5NodRMnrcuHFWTCTs+QWGyXTBZjKyJyxbtsy1a9fOkSGCDXeEEdA33IgHxkvMxjfCCwBP/paY7aNq1aoZwW+mGT3QJLAn7PkFXqnsx+ZAQjiAdkJFCONg0x3xwWy0Gz16dFLPb7L+qZaK4NfvTST49dMv6r2V7cFvhmL7/vCTJePe0i9jqSrVgYLfSjLd5DcmVCLIDcxlA8NkwcCzm6qRbQMPMeEMmTTSzxGLHG7Jsn2kGyvbjB6pxuK8hIiE7QF8CYPA+4tXOF1L1j/Z8YLfTFZG6mNi++Ukz69NuuBX7w8/Bfx6x/bzxU+WSt9b8Fvpl0D0BCi2jB6CX781FNsvJ8Gv4NfvrfGvfor59VJR+nnJF9vOgt/YTm3xXlixZfQQ/Pqttdh+OVl54+F+4mTQe8niJa5W7SiXN26lPLUZzGOqQ2L7/vDQJJuu0i8btSrPsYLfyjPXutI8KTBhwgSrXKgmBaSAFJACUiBbBdiDolaxCgh+K1ZvnS2GCrCZkOIcalJACkgBKSAFslGAlKBsOlerWAUEvxWrt84WQwWiHvYg+/wWnfSTfn4K+PXW+pN+fgqodzIFBL9aF1LAUwF9OfkJKP2kn58Cfr21/qSfnwJ+vaO+/vyuLrq9Bb/RnRtZViQKRP3DS/b5LSTpJ/38FPDrrfUn/fwUUG95frUGpEAeFNCXk5+o0k/6+Sng11vrT/r5KeDXO+rrz+/qottbnt/ozo0sKxIFqLJHqemoNtnnNzPST/r5KeDXW+tP+vkpoN7y/GoNSAEpIAWkgBSQAlJAClRqBeT5rdTTr4uXAlJACkgBKSAFpEDlUkDwW7nmW1dbIAWWL1/u1l9//VXOvmLFCrfOOuu41VdfvcKsWrZsmatRo0aFnS/bE33//femU5UqVbLtWmHHf/XVV27TTTetsPNlcyL0q1mzZjZd8n4sFRurV6+e9/OU9wRR1CzxWqK+5qL8ni30Z97PP//sqlWr5lZbbbWSaS3EZ3953x9x7Sf4jevM6roiocBnn33mpk6d6m699Vb3/vvvm01LliyxpOZrrrmm+/zzz13v3r3daaedlld7p02b5gYMGOA22GAD991337lrrrnGNW7cOK/nzGZwdDjppJMcCd+xr1u3bu6oo47KZogKOfapp55y7dq1c3///fcqX2YVcvI0J5kyZYo799xz3Z577un4Yu3cubM74ogjCmrWzJkz3RlnnOG22morW+fDhg1zjRo1KqhN4ZNHUbNk4kR1zUX9PVvozzw+x2bPnu2OOeYYx/dAnTp1CvLZH5k3XMQMEfxGbEJkTrwUGDhwoJszZ46bNWtWCfzyN7xh/fv3d998843bZJNNDFjWXXfdvF386aef7po0aWKAxO7iL774wt1xxx15O1+2AwP/bdu2de3bt3d44vjSaNGiRbbD5PX4BQsWuMsuu8xR0S9q8ItW2NayZUv38ssvu7POOst9/PHHedWjrMEPOeQQ16tXL8fvMWPGuCFDhrhJkyaV1a3CXo+iZokXH+U1F/X3bKE/81jzr732mrvtttvct99+a/BbiM/+CntDFdmJBL9FNmEyt/gUAOROPPHEEvjFKwekdOjQwf3zzz8W9jB37lyXz/rueLnwpB555JHuySefNAjZe++9IyPmPvvsY17fZ5991h144IHuxhtvdDvttFNk7Fu5cqU79NBD3YgRI8zOqMEvN1PcPK2xxhruoosucr/++qu7++67C6ofOr3++uum1zvvvOPatGljEBCVFkXNwtpEfc1F/T0blc88wh0C+C3EZ39U3m9Rs0PwG7UZkT1Fp8Bvv/2W1KPVunVrV7VqVfNihuH3hBNOcPwcd9xxdq0bb7yxe+utt9zWW2/tfe2TJ082L3K48aj5nnvucY8//rh5Vh966CF39tlnu549e3qfL9sBUtm3xx57uAMOOMDddNNN5pFeunSpu/fee7Md3vv4VPbhLW/YsKHDm8SXWaHgN5V9xCDzBXv++ee7Tz/91I0fP97CDQrZiAPF+8yTjXnz5tn8Llq0qJAmlTp31DQLG3jBBRdEYs2lmjA+t6Lwnk1l39VXXx2Jz7ww/Obzsz9Sb6wiMEbwWwSTJBOjrQCg1qVLl1JGApxsLkuE32uvvdY2dV144YXur7/+chtuuKHBXi42vuH1+/LLL1exhb8R/zlu3DjXrFkzh0eEmNogBrki1U1lH7GhN998s4U+4AXHzkJ4CZPZR6gIj8iDGOnp06fbv8m/utZaa1WkfObVTTa/ACY2nnLKKe6SSy5xa6+9doXalexkzZs3t0e+e+21l5sxY4Zj3QPlUWkLFy6MnGaBNtzArrfeepFYc6nmq379+pF4z6aD8yh85oXhN5+f/VF5XxWLHYLfYpkp2Vm0CiTCLwBw5513mrcYbyyb4d544428Xh+P7AEjQi3w/BL68Nhjj+X1nNkMfuaZZ5oHnE15Dz74oHvuuefcyJEjsxkib8cSmsKGlaDtsMMO7qOPPnL8Du/gzpsBGQzMkwWAHDiOSuPJQq1atdzFF19ssb/AXL9+/aJinj2NiZpmgTjFsOai/J5Fx6h85oXhtxCf/ZF5w0XMEMFvxCZE5sRPgUT4JR6TD+YPPvjAYjOff/5517Rp07xe+EsvveROPvlkiwsly8TQoUPNuxqVxmPx8847z7zRm2++ufvvf//rCIWIYitk2EM6Lxe7y4PG5ppCeM7D9gUefP5GlhFu8DbaaKPITCk3W1HTLJU4UVxzUX/PRuUzj7ljndWuXds+7yv6sz8yb7iIGSL4jdiEyJzKowDxj3Xr1q2wnLZ4k8jywAakqDbSwOEtVIuHAn/++acjRy1rLipe8ngoG52riPJ7NqqfeRX92R+d1RIdSwS/0ZkLWSIFpIAUkAJSQApIASmQZwUEv3kWWMNLASkgBaSAFJACUkAKREcBwW905kKWSAEpIAWkgBSQAlJACuRZAcFvngXW8FJACkgBKSAFpIAUkALRUUDwG525kCVSQApIASkgBaSAFJACeVZA8JtngTW8FJACuVFg+fLlJUVBcjNi7kYhhRFtnXXWyd2gGiknCvzxxx+OH9L8xbXx3mANkr4t00ZlylmzZrmdd97ZivEkth9++MH+FKX0dJlem46TAmUpIPgtSyG9LgWkQEEVoMAEFeBeeeUVs6NevXqWp/iggw4qqF3hk+++++4OmKCcb74agAOkUMjilltuydlpmjRp4lauXOnefffdnI3JQE8//bSN2bdv37Tjcn4q5VExLx+Ninc33nij++abb9LCYTo77rrrLstVfNJJJ5XLxFxojA333XefXUPHjh3th6qQpPMiT3irVq1c//79M7bvkUcesUIfpCqrWbNmqX7Dhw93l156qZs/f36sbxwyFkwHxkoBwW+splMXIwXipQB5YimPS6GQTp06uapVq7phw4bZRX766aduu+22i8QF33HHHQ5be/TokTd7li1bZgDGOagKmKuGvoB7rstdU/KbEt9///132hy/3Dgwr9OmTcvVJa0yDhAOWF922WVWZS5VS2cHeYrxkFKVsTzNV+MXX3zRbvYoAIMnlvfD1KlTHSWkqRJ5wgknWNXBHXfcMWPzDjnkECut/uijjybt89NPP1kZ9uuvv94gWE0KxEkBwW+cZlPXIgVipsAzzzxjFZHatWvnKA1KozQzJXP5Qj799NPdkCFDzLNHxam9997bSkcDGzfccIN74okn3AEHHGAlnffZZx93zDHHlJTYpd9+++3njjjiCAMKHo3PmDHDde7c2arNVatWzd199902Ht4xxvnPf/5jXkpsat26tUEVxz/77LPu999/N5CYPn26u+mmm+xvVNEDuvbff397LI0X9OGHH7Z/t2nTxgHNePKovgck0l5++WUHmPBa+FF9IvxyHN5AKlkdeOCB9m/OP2LECLMZbyO6jB492n6wj8p5aAEkcS177rmnaZUMfjPVDzvwrqI/AHnFFVc4HpmfffbZVtnqsMMOc0899ZRdV3Bcy5YtTYv69etbn59//tkq+gGXXDuefcAsaNdee62NMWHCBKsURxnsPn36OMY5+OCD3eGHH+66devm7r33XvtZe+21Xe/eve2G6fbbb7drpmQ2nvPrrrvOxt9kk01s/plD4JK5SmYH83DVVVe56tWrm9f96quvzvpdFtaYQjOsL+aNMBmeanB9VapUsfXKesHLf9ppp5nNt912m5s8ebLZ8PXXX1uFRqqFnXPOObY+uQbW08yZMzNe859//rnbeuutHe8v1jzvLWAae1jbW221lY2NpxvNWXsqUpL1tKtDhBUQ/EZ4cmSaFKjsCuDh7Nmzpxs8eLDDk5jY8HbhkWvcuLEB0M0332xQQ/jBueeea/2AL2CCsAkABtAEAumDtxGvHkACOK+xxhrutddeczzyBaq23HJLg1zgu2vXrvYDdG222WZmCiEYwFavXr0MnLBnp512stcAGiAtAMv777/fnXXWWfa4GuAFaoAgoBUAxJvHeWgAx6hRo1yHDh1KLjkMv4zNtey7774G0QAndvbr18+gF7DkEfi2225r3k7CD1q0aGEltfEcA3+LFy82mMJ7mAx+M9HvrbfeKvG+A5tAP3A2ZswYgzO0fOCBBwxC0RKdL7zwQvPeA20TJ04sufYzzzzTbjK4uSGsA9AM2oMPPmjzBgBzUwHcMz76AP7cUBAec+WVVxqccl7KhvOb8YKwhwULFtg8U/4ZyGNOaEuXLjUdmINEO5ibo48+2tYV64Z1ETRuwhg/sWEv6ytoYfgFKLGXGwHWC/0fe+wxuwkD2mmsE8IS8L6iETdehKZwQxCEK7DWzz//fANWwJjrzmTOWPOsS24KvvzyS9OR+WD9csPH2txll13shiDQHW1ZS2pSIC4KCH7jMpO6DikQQwUAuMsvv9zg4Pjjjy91hcAewPPee++ZF5FHtIDf22+/bY/cgV+8kHx5A4V4MwEWYAQQ+/bbbw1+ebwLIBI/iWe3bdu2BnB4IhmL/gALsIktwC9QjacO2GM84AHoxqv6ySefmLcXUMKDhycN+MQ7B2gRq4mH88033zTgA5Swk7KnCxcutOOBfgAnaGH4xYvNo25+OB+wzvUA+Y0aNTKb8PYCMYMGDXLHHnus2Qz4ERuK15GbATx/eBrTwW86/YijxRP7wgsvGEwDpTQ8kRdccEFJ2APXzTUSs4q3Hm8j4IWGaMc4gDjxpYSycIMBoAWN14FP1gIwSIgJP6eeeqpBJOdmbtCWmyQgd+TIkTbOX3/9VQK/wCs3DpwHzyc3TIRFBPCbyo5UYQ9cD57+xAbgh0MQAvjlZoGbFuYNLz064d0/8sgj7caKucFubha4AeCmiutlPdLwQnfv3r0ETrlO4n15ioGnPYDfdHOGzttvv73dhPH+4clFKvhlXrEp8UYshh81uqRKpoDgt5JNuC5XChSTAoGXC28cHlYaj2eBYiAAiAMSApgBvnj8zTF8YQO/QOncuXPNwwg8ABmAMBAAbAbwS8wroQfE1QKJPB4HLAgNwOsIZDdo0KAEfsOAFoZf4BUYAT6BYGAHqAJYA8DlOgjBGDdunNnHI/cg7hW7Nt1007Twy2NvIB+AwfscNEAQwOM314kejMf142kFEIHwoLVv394AMh38ptOPm44ddtjBhsMLyc0C3tZE+OWx+lFHHWXxqccdd5zp/uOPP7pdd93Vwh2CaweIiWvF/oEDB66yVNGYxs0IgMiccD00vJTctODRBQKDBnBjT+D55eYHjzs3PRwbzEEAv6nsSAW/hCOgbWIDqpnDoAXwy3rlvMF6BuAJueF1bhbwMI8dO9Z+80SAOQR+8e7jDQZSmfNgAx5eXNYo/+cpQgC/6eaMmzi83EGMcBCbjQaEhXAjiD1oipcd8Bb8FtOnpmzNRAHBbyYq6RgpIAUKosCKFSsM7ogd5cuffwMvNGJMgS9AFSAAqogD5ksciAKCM4VfvKYABFAGdAGNgBDnBLR4HI3nOez5xQuJ54wWwC+ePR7v49W95pprzHsJbBBugIeR0AD+VrduXYv15LE9YBHebJUJ/AJDhDlw3cALHmK8vYAT14ANtCBWGuhmRz+gireSmwps5ZE7oFZe+CW0gLATwAs7AGwe1f/yyy8W3oD3He82HmigipsHHs9z48L/ueEIX3s6+MVjG8Te4ukNQgQItcBDys0F58Kbjd5cI32AuAB+AT7CJLAHb3gwf5nAL/YSdrHNNtuUvBcAcEIDEluwGS0Rfrlewi2IM+YmBTt5WsHNEuEQhKhws4TXn5s91iXwy/uA9cf8oR3xtwA56wwdgGRu7DKBX9YNOgTZNYKnJdzccUPCOGiEboRGMI+818LXXZAPA51UCuRQAcFvDsXUUFJACuReAeIwSckEKNCAAx4Z45EiTAHwAnKDFoRI8Hc27STzggFKgEXg+WUzGA3IBtDwYBKagNeX44AOvHSM9frrr9uj+UT4DQASYABwGQtbsQOgBtjw6OGJpOHhBNTwfoYBMHjEnxj2kJjqDC8mMdHBeQjBCNK/AUWAKd5nII9GHDHgieeUFsTVpkrDlal+QegA14p2XB/nIASEeaMxT0EISzCHXDs3E+Fr/+qrryw8I5nnF1jnRifYQEdIyZQpU9ycOXNMQ9YHIS3cZNAILeDGhXho4BdvL15WbnK4WQBmuWFgfaEt4B54fhPtYFwgO/DMBmuNOWddJDbicIkfD1pYY0I+uAbmjUZYAR5xvK7ANToBmwA6nmJ04iYlvMbpx/oHjANPPrBa1pyx3rnBCMJPGIeQHuYBezgnx+Axx6sNTHNDhXZqUiBOCgh+4zSbuhYpEGMFABK8inh/2RkfbsTD8uVNrCyPv7NpeNCIFwaa+JIntjTY2Q60AQsAWTa73elH+AOAG4Yg7MKzy+YlvLMAtk8jnpXzcA2AXCaN42vVqpXT3K3MDY/zE23AA0wWjaCIAvPETQDxtpnam8k1hY9hfDRPVpyBMAGyTuA5J3QELyzrBuArqwG6hMXkolgG80bGhWCDGedGQ54SsBbZ4IaHlzAH4npZ16laEB7BOg2HWpR1PeHXWa9Bvt9gTXK9nJenC8HTlmzG1LFSIMoKCH6jPDuyTQpIgbwrEMAv8Y1q8VYArzpefG6igpaYWaJQCgDWxOIGTwawI5ziL5Vd3EjhscXTTQhDrhrgTWYQPMPc2KhJgTgpIPiN02zqWqSAFMhaAbIe4M0LNlRlPYA6FJUCeKMJy/j+++8NGsl8EJWGR5i4YAq44B1nM2AmTweAeuKWgzR7ubgeNpFy7nRe51ycR2NIgUIoIPgthOo6pxSQAlJACkgBKSAFpEBBFBD8FkR2nVQKSAEpIAWkgBSQAlKgEAoIfguhus4pBaSAFJACUkAKSAEpUBAF/g8jZSZkAL2zpAAAAABJRU5ErkJggg==", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "linker.training.estimate_probability_two_random_records_match(\n", + " [\n", + " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n", + " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n", + " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n", + " ],\n", + " recall=0.6,\n", + ")" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "linker.match_weights_chart()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e9b076af-b956-4e85-abfa-5c45d92a3cac", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", - "config": { - "view": { - "continuousHeight": 300, - "continuousWidth": 400 - } - }, - "data": { - "values": [ - { - "cum_prop": 0.044465973348096204, - "match_probability": 0.99988, - "match_weight": 13.08, - "prop": 0.0006920004745146111 - }, - { - "cum_prop": 0.045513859780932614, - "match_probability": 0.99989, - "match_weight": 13.22, - "prop": 0.001047886432836411 - }, - { - "cum_prop": 0.0464233461188661, - "match_probability": 0.9999, - "match_weight": 13.36, - "prop": 0.0009094863379334888 - }, - { - "cum_prop": 0.04790620427854027, - "match_probability": 0.99991, - "match_weight": 13.52, - "prop": 0.0014828581596741666 - }, - { - "cum_prop": 0.049369290996085446, - "match_probability": 0.99992, - "match_weight": 13.7, - "prop": 0.0014630867175451777 - }, - { - "cum_prop": 0.05108940646130748, - "match_probability": 0.99993, - "match_weight": 13.91, - "prop": 0.0017201154652220333 - }, - { - "cum_prop": 0.05304677923207738, - "match_probability": 0.99994, - "match_weight": 14.15, - "prop": 0.0019573727707699 - }, - { - "cum_prop": 0.05557752382458796, - "match_probability": 0.99995, - "match_weight": 14.44, - "prop": 0.0025307445925105776 - }, - { - "cum_prop": 0.05864209735458124, - "match_probability": 0.99996, - "match_weight": 14.8, - "prop": 0.0030645735299932777 - }, - { - "cum_prop": 0.06285341452805587, - "match_probability": 0.99997, - "match_weight": 15.29, - "prop": 0.004211317173474633 - }, - { - "cum_prop": 0.07068290561113547, - "match_probability": 0.99998, - "match_weight": 16.02, - "prop": 0.0078294910830796 - }, - { - "cum_prop": 0.08849697496935445, - "match_probability": 0.99999, - "match_weight": 17.61, - "prop": 0.017814069358218988 - }, - { - "cum_prop": 0.000039542884257977775, - "match_probability": 0.00014, - "match_weight": -12.85, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.00009885721064494443, - "match_probability": 0.00138, - "match_weight": -9.5, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.00011862865277393331, - "match_probability": 0.00289, - "match_weight": -8.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0001384000949029222, - "match_probability": 0.00299, - "match_weight": -8.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00015817153703191107, - "match_probability": 0.00427, - "match_weight": -7.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00017794297916089996, - "match_probability": 0.00468, - "match_weight": -7.73, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00019771442128988884, - "match_probability": 0.00576, - "match_weight": -7.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00021748586341887772, - "match_probability": 0.00736, - "match_weight": -7.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0002372573055478666, - "match_probability": 0.00755, - "match_weight": -7.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0002768001898058444, - "match_probability": 0.0081, - "match_weight": -6.94, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.00029657163193483327, - "match_probability": 0.01017, - "match_weight": -6.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00031634307406382215, - "match_probability": 0.01075, - "match_weight": -6.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00033611451619281103, - "match_probability": 0.01252, - "match_weight": -6.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0003558859583217999, - "match_probability": 0.01304, - "match_weight": -6.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0003756574004507888, - "match_probability": 0.01345, - "match_weight": -6.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0003954288425797777, - "match_probability": 0.01899, - "match_weight": -5.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00041520028470876655, - "match_probability": 0.02144, - "match_weight": -5.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00043497172683775544, - "match_probability": 0.02372, - "match_weight": -5.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0004547431689667443, - "match_probability": 0.0249, - "match_weight": -5.29, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0004745146110957332, - "match_probability": 0.02731, - "match_weight": -5.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0004942860532247221, - "match_probability": 0.02899, - "match_weight": -5.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0005536003796116888, - "match_probability": 0.03062, - "match_weight": -4.98, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.0005733718217406777, - "match_probability": 0.03191, - "match_weight": -4.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0005931432638696666, - "match_probability": 0.03218, - "match_weight": -4.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0006129147059986556, - "match_probability": 0.03653, - "match_weight": -4.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0006326861481276445, - "match_probability": 0.03661, - "match_weight": -4.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0006722290323856223, - "match_probability": 0.03799, - "match_weight": -4.66, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0006920004745146112, - "match_probability": 0.03958, - "match_weight": -4.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0007117719166436001, - "match_probability": 0.04044, - "match_weight": -4.57, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0007315433587725891, - "match_probability": 0.04419, - "match_weight": -4.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.000751314800901578, - "match_probability": 0.04776, - "match_weight": -4.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0007908576851595558, - "match_probability": 0.05002, - "match_weight": -4.25, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0008106291272885447, - "match_probability": 0.05328, - "match_weight": -4.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0008304005694175337, - "match_probability": 0.05332, - "match_weight": -4.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0008501720115465226, - "match_probability": 0.06221, - "match_weight": -3.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0008699434536755115, - "match_probability": 0.06485, - "match_weight": -3.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0008897148958045005, - "match_probability": 0.06675, - "match_weight": -3.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0009094863379334894, - "match_probability": 0.06686, - "match_weight": -3.8, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0009292577800624783, - "match_probability": 0.07164, - "match_weight": -3.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0009490292221914673, - "match_probability": 0.0732, - "match_weight": -3.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0009688006643204562, - "match_probability": 0.07654, - "match_weight": -3.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001008343548578434, - "match_probability": 0.08657, - "match_weight": -3.4, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.001028114990707423, - "match_probability": 0.09094, - "match_weight": -3.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0010478864328364117, - "match_probability": 0.097, - "match_weight": -3.22, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0010676578749654005, - "match_probability": 0.09885, - "match_weight": -3.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0010874293170943894, - "match_probability": 0.11022, - "match_weight": -3.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0011072007592233782, - "match_probability": 0.11388, - "match_weight": -2.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001146743643481356, - "match_probability": 0.11561, - "match_weight": -2.94, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.001166515085610345, - "match_probability": 0.13167, - "match_weight": -2.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0011862865277393337, - "match_probability": 0.13926, - "match_weight": -2.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0012258294119973116, - "match_probability": 0.14956, - "match_weight": -2.51, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0012456008541263004, - "match_probability": 0.15963, - "match_weight": -2.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0012653722962552892, - "match_probability": 0.16667, - "match_weight": -2.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001285143738384278, - "match_probability": 0.20132, - "match_weight": -1.99, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0013444580647712448, - "match_probability": 0.20174, - "match_weight": -1.98, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.0013642295069002336, - "match_probability": 0.21995, - "match_weight": -1.83, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0014037723911582115, - "match_probability": 0.22577, - "match_weight": -1.78, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0014433152754161893, - "match_probability": 0.22849, - "match_weight": -1.76, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0014630867175451782, - "match_probability": 0.24007, - "match_weight": -1.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001482858159674167, - "match_probability": 0.2584, - "match_weight": -1.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0015026296018031558, - "match_probability": 0.26376, - "match_weight": -1.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0015224010439321446, - "match_probability": 0.29225, - "match_weight": -1.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0015421724860611335, - "match_probability": 0.29476, - "match_weight": -1.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0015619439281901223, - "match_probability": 0.29638, - "match_weight": -1.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0015817153703191111, - "match_probability": 0.29739, - "match_weight": -1.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0016014868124481, - "match_probability": 0.30885, - "match_weight": -1.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0016212582545770888, - "match_probability": 0.31241, - "match_weight": -1.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0016410296967060776, - "match_probability": 0.32152, - "match_weight": -1.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0016608011388350664, - "match_probability": 0.33986, - "match_weight": -0.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0016805725809640553, - "match_probability": 0.34871, - "match_weight": -0.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001700344023093044, - "match_probability": 0.35131, - "match_weight": -0.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001720115465222033, - "match_probability": 0.35322, - "match_weight": -0.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0017398869073510217, - "match_probability": 0.35609, - "match_weight": -0.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0017596583494800106, - "match_probability": 0.3618, - "match_weight": -0.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0017794297916089994, - "match_probability": 0.3732, - "match_weight": -0.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0017992012337379882, - "match_probability": 0.37942, - "match_weight": -0.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001818972675866977, - "match_probability": 0.38254, - "match_weight": -0.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0018387441179959659, - "match_probability": 0.38719, - "match_weight": -0.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0018585155601249547, - "match_probability": 0.39491, - "match_weight": -0.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0018782870022539435, - "match_probability": 0.39585, - "match_weight": -0.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0018980584443829324, - "match_probability": 0.40582, - "match_weight": -0.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0019178298865119212, - "match_probability": 0.41491, - "match_weight": -0.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00193760132864091, - "match_probability": 0.42367, - "match_weight": -0.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001957372770769899, - "match_probability": 0.43094, - "match_weight": -0.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.001977144212898888, - "match_probability": 0.4477, - "match_weight": -0.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0019969156550278767, - "match_probability": 0.45241, - "match_weight": -0.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0020166870971568655, - "match_probability": 0.45261, - "match_weight": -0.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0020364585392858544, - "match_probability": 0.46716, - "match_weight": -0.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002056229981414843, - "match_probability": 0.47114, - "match_weight": -0.17, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002076001423543832, - "match_probability": 0.4762, - "match_weight": -0.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002095772865672821, - "match_probability": 0.47977, - "match_weight": -0.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0021155443078018097, - "match_probability": 0.48659, - "match_weight": -0.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0021353157499307985, - "match_probability": 0.4927, - "match_weight": -0.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0021550871920597873, - "match_probability": 0.50485, - "match_weight": 0.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002174858634188776, - "match_probability": 0.50816, - "match_weight": 0.05, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002194630076317765, - "match_probability": 0.52312, - "match_weight": 0.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002214401518446754, - "match_probability": 0.54292, - "match_weight": 0.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0022341729605757426, - "match_probability": 0.54317, - "match_weight": 0.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0022539444027047315, - "match_probability": 0.55731, - "match_weight": 0.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002313258729091698, - "match_probability": 0.55824, - "match_weight": 0.34, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.0023330301712206868, - "match_probability": 0.56114, - "match_weight": 0.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0023528016133496756, - "match_probability": 0.58298, - "match_weight": 0.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0023923444976076532, - "match_probability": 0.59084, - "match_weight": 0.53, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.002412115939736642, - "match_probability": 0.59318, - "match_weight": 0.54, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002431887381865631, - "match_probability": 0.6, - "match_weight": 0.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0024516588239946197, - "match_probability": 0.60702, - "match_weight": 0.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0024714302661236085, - "match_probability": 0.60788, - "match_weight": 0.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0024912017082525974, - "match_probability": 0.61225, - "match_weight": 0.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002510973150381586, - "match_probability": 0.61797, - "match_weight": 0.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002530744592510575, - "match_probability": 0.62072, - "match_weight": 0.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002550516034639564, - "match_probability": 0.62199, - "match_weight": 0.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0025702874767685527, - "match_probability": 0.62573, - "match_weight": 0.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0025900589188975415, - "match_probability": 0.63318, - "match_weight": 0.79, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002629601803155519, - "match_probability": 0.64007, - "match_weight": 0.83, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.002649373245284508, - "match_probability": 0.64653, - "match_weight": 0.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0029261734350903524, - "match_probability": 0.65464, - "match_weight": 0.92, - "prop": 0.00027680018980584444 - }, - { - "cum_prop": 0.0029459448772193413, - "match_probability": 0.65954, - "match_weight": 0.95, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00296571631934833, - "match_probability": 0.66939, - "match_weight": 1.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.002985487761477319, - "match_probability": 0.67887, - "match_weight": 1.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0030052592036063077, - "match_probability": 0.67945, - "match_weight": 1.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0030250306457352966, - "match_probability": 0.68099, - "match_weight": 1.09, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0030448020878642854, - "match_probability": 0.68445, - "match_weight": 1.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003084344972122263, - "match_probability": 0.68527, - "match_weight": 1.12, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.003104116414251252, - "match_probability": 0.68561, - "match_weight": 1.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0031238878563802407, - "match_probability": 0.69065, - "match_weight": 1.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0031436592985092295, - "match_probability": 0.69213, - "match_weight": 1.17, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0031634307406382184, - "match_probability": 0.69612, - "match_weight": 1.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003183202182767207, - "match_probability": 0.7016, - "match_weight": 1.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003202973624896196, - "match_probability": 0.70173, - "match_weight": 1.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003222745067025185, - "match_probability": 0.70567, - "match_weight": 1.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0032425165091541737, - "match_probability": 0.70696, - "match_weight": 1.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0032622879512831625, - "match_probability": 0.70932, - "match_weight": 1.29, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0032820593934121513, - "match_probability": 0.70989, - "match_weight": 1.29, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00330183083554114, - "match_probability": 0.72092, - "match_weight": 1.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003321602277670129, - "match_probability": 0.72923, - "match_weight": 1.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003341373719799118, - "match_probability": 0.73507, - "match_weight": 1.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0033611451619281066, - "match_probability": 0.73659, - "match_weight": 1.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0033809166040570954, - "match_probability": 0.73869, - "match_weight": 1.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0034006880461860843, - "match_probability": 0.73939, - "match_weight": 1.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003420459488315073, - "match_probability": 0.74069, - "match_weight": 1.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003440230930444062, - "match_probability": 0.74147, - "match_weight": 1.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0034600023725730508, - "match_probability": 0.74214, - "match_weight": 1.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0034797738147020396, - "match_probability": 0.74235, - "match_weight": 1.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0034995452568310284, - "match_probability": 0.74281, - "match_weight": 1.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0035193166989600172, - "match_probability": 0.74584, - "match_weight": 1.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003539088141089006, - "match_probability": 0.74876, - "match_weight": 1.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003558859583217995, - "match_probability": 0.74983, - "match_weight": 1.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0035984024674759725, - "match_probability": 0.75027, - "match_weight": 1.59, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0036181739096049614, - "match_probability": 0.75162, - "match_weight": 1.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00363794535173395, - "match_probability": 0.75371, - "match_weight": 1.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003677488235991928, - "match_probability": 0.75716, - "match_weight": 1.64, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0036972596781209167, - "match_probability": 0.75822, - "match_weight": 1.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0037170311202499055, - "match_probability": 0.7591, - "match_weight": 1.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0037368025623788943, - "match_probability": 0.76512, - "match_weight": 1.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003756574004507883, - "match_probability": 0.77503, - "match_weight": 1.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003776345446636872, - "match_probability": 0.77712, - "match_weight": 1.8, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003796116888765861, - "match_probability": 0.77885, - "match_weight": 1.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0038158883308948496, - "match_probability": 0.78515, - "match_weight": 1.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0038356597730238385, - "match_probability": 0.78533, - "match_weight": 1.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0038554312151528273, - "match_probability": 0.7859, - "match_weight": 1.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003875202657281816, - "match_probability": 0.7891, - "match_weight": 1.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003894974099410805, - "match_probability": 0.78988, - "match_weight": 1.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.003934516983668783, - "match_probability": 0.79065, - "match_weight": 1.92, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0046067460160544044, - "match_probability": 0.79127, - "match_weight": 1.92, - "prop": 0.0006722290323856222 - }, - { - "cum_prop": 0.004626517458183393, - "match_probability": 0.79143, - "match_weight": 1.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004646288900312382, - "match_probability": 0.79435, - "match_weight": 1.95, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004666060342441371, - "match_probability": 0.80054, - "match_weight": 2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00468583178457036, - "match_probability": 0.80297, - "match_weight": 2.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004705603226699349, - "match_probability": 0.80359, - "match_weight": 2.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004725374668828337, - "match_probability": 0.8049, - "match_weight": 2.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004764917553086315, - "match_probability": 0.80873, - "match_weight": 2.08, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.004784688995215304, - "match_probability": 0.80972, - "match_weight": 2.09, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004804460437344293, - "match_probability": 0.81227, - "match_weight": 2.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0048242318794732815, - "match_probability": 0.8137, - "match_weight": 2.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00484400332160227, - "match_probability": 0.81873, - "match_weight": 2.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004863774763731259, - "match_probability": 0.82443, - "match_weight": 2.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004883546205860248, - "match_probability": 0.82464, - "match_weight": 2.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004903317647989237, - "match_probability": 0.83118, - "match_weight": 2.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004923089090118226, - "match_probability": 0.83157, - "match_weight": 2.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0049428605322472145, - "match_probability": 0.83649, - "match_weight": 2.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004962631974376203, - "match_probability": 0.83966, - "match_weight": 2.39, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.004982403416505192, - "match_probability": 0.83979, - "match_weight": 2.39, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005002174858634181, - "match_probability": 0.84311, - "match_weight": 2.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00502194630076317, - "match_probability": 0.84363, - "match_weight": 2.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005041717742892159, - "match_probability": 0.84466, - "match_weight": 2.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0050614891850211475, - "match_probability": 0.84597, - "match_weight": 2.46, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005081260627150136, - "match_probability": 0.84627, - "match_weight": 2.46, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005101032069279125, - "match_probability": 0.84709, - "match_weight": 2.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005120803511408114, - "match_probability": 0.84721, - "match_weight": 2.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005140574953537103, - "match_probability": 0.85097, - "match_weight": 2.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005160346395666092, - "match_probability": 0.85419, - "match_weight": 2.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00518011783779508, - "match_probability": 0.85558, - "match_weight": 2.57, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005199889279924069, - "match_probability": 0.85816, - "match_weight": 2.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005219660722053058, - "match_probability": 0.85956, - "match_weight": 2.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005239432164182047, - "match_probability": 0.85989, - "match_weight": 2.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005259203606311036, - "match_probability": 0.8618, - "match_weight": 2.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0052789750484400245, - "match_probability": 0.86199, - "match_weight": 2.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005298746490569013, - "match_probability": 0.86278, - "match_weight": 2.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005318517932698002, - "match_probability": 0.86409, - "match_weight": 2.67, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005338289374826991, - "match_probability": 0.86522, - "match_weight": 2.68, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00535806081695598, - "match_probability": 0.86646, - "match_weight": 2.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005377832259084969, - "match_probability": 0.86776, - "match_weight": 2.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0053976037012139575, - "match_probability": 0.86989, - "match_weight": 2.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005417375143342946, - "match_probability": 0.87035, - "match_weight": 2.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005437146585471935, - "match_probability": 0.87067, - "match_weight": 2.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005456918027600924, - "match_probability": 0.87221, - "match_weight": 2.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005476689469729913, - "match_probability": 0.87772, - "match_weight": 2.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005496460911858902, - "match_probability": 0.8782, - "match_weight": 2.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0055162323539878905, - "match_probability": 0.87898, - "match_weight": 2.86, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005536003796116879, - "match_probability": 0.87964, - "match_weight": 2.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005555775238245868, - "match_probability": 0.8805, - "match_weight": 2.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005575546680374857, - "match_probability": 0.88124, - "match_weight": 2.89, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005595318122503846, - "match_probability": 0.88201, - "match_weight": 2.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005615089564632835, - "match_probability": 0.88271, - "match_weight": 2.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005634861006761823, - "match_probability": 0.88302, - "match_weight": 2.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005654632448890812, - "match_probability": 0.88768, - "match_weight": 2.98, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00569417533314879, - "match_probability": 0.88911, - "match_weight": 3, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.005713946775277779, - "match_probability": 0.88922, - "match_weight": 3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0057337182174067676, - "match_probability": 0.89042, - "match_weight": 3.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005753489659535756, - "match_probability": 0.89194, - "match_weight": 3.05, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005773261101664745, - "match_probability": 0.89247, - "match_weight": 3.05, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005793032543793734, - "match_probability": 0.89352, - "match_weight": 3.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005812803985922723, - "match_probability": 0.89534, - "match_weight": 3.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005832575428051712, - "match_probability": 0.8955, - "match_weight": 3.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0058523468701807005, - "match_probability": 0.89596, - "match_weight": 3.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005872118312309689, - "match_probability": 0.89764, - "match_weight": 3.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005891889754438678, - "match_probability": 0.89852, - "match_weight": 3.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005911661196567667, - "match_probability": 0.9006, - "match_weight": 3.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005931432638696656, - "match_probability": 0.90137, - "match_weight": 3.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005951204080825645, - "match_probability": 0.90162, - "match_weight": 3.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0059709755229546335, - "match_probability": 0.90296, - "match_weight": 3.22, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.005990746965083622, - "match_probability": 0.90409, - "match_weight": 3.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006010518407212611, - "match_probability": 0.90593, - "match_weight": 3.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0060302898493416, - "match_probability": 0.90663, - "match_weight": 3.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006050061291470589, - "match_probability": 0.90768, - "match_weight": 3.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006069832733599578, - "match_probability": 0.90861, - "match_weight": 3.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0060896041757285664, - "match_probability": 0.90862, - "match_weight": 3.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006109375617857555, - "match_probability": 0.90882, - "match_weight": 3.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006129147059986544, - "match_probability": 0.91009, - "match_weight": 3.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006148918502115533, - "match_probability": 0.91017, - "match_weight": 3.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006168689944244522, - "match_probability": 0.91055, - "match_weight": 3.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006188461386373511, - "match_probability": 0.91057, - "match_weight": 3.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006208232828502499, - "match_probability": 0.91075, - "match_weight": 3.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006228004270631488, - "match_probability": 0.91253, - "match_weight": 3.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006247775712760477, - "match_probability": 0.91255, - "match_weight": 3.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006267547154889466, - "match_probability": 0.91267, - "match_weight": 3.39, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006287318597018455, - "match_probability": 0.91319, - "match_weight": 3.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0063070900391474435, - "match_probability": 0.91426, - "match_weight": 3.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006326861481276432, - "match_probability": 0.91466, - "match_weight": 3.42, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006346632923405421, - "match_probability": 0.91537, - "match_weight": 3.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00636640436553441, - "match_probability": 0.91548, - "match_weight": 3.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006386175807663399, - "match_probability": 0.91582, - "match_weight": 3.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006405947249792388, - "match_probability": 0.91672, - "match_weight": 3.46, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0064257186919213765, - "match_probability": 0.91863, - "match_weight": 3.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006445490134050365, - "match_probability": 0.92036, - "match_weight": 3.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006465261576179354, - "match_probability": 0.92038, - "match_weight": 3.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006485033018308343, - "match_probability": 0.92043, - "match_weight": 3.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006504804460437332, - "match_probability": 0.92072, - "match_weight": 3.54, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006524575902566321, - "match_probability": 0.92273, - "match_weight": 3.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0065443473446953095, - "match_probability": 0.92286, - "match_weight": 3.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006564118786824298, - "match_probability": 0.92329, - "match_weight": 3.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006583890228953287, - "match_probability": 0.92341, - "match_weight": 3.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006603661671082276, - "match_probability": 0.92417, - "match_weight": 3.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006623433113211265, - "match_probability": 0.92448, - "match_weight": 3.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006643204555340254, - "match_probability": 0.92467, - "match_weight": 3.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006662975997469242, - "match_probability": 0.92468, - "match_weight": 3.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006682747439598231, - "match_probability": 0.92558, - "match_weight": 3.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00670251888172722, - "match_probability": 0.92577, - "match_weight": 3.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006722290323856209, - "match_probability": 0.9264, - "match_weight": 3.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006742061765985198, - "match_probability": 0.92772, - "match_weight": 3.68, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0067618332081141866, - "match_probability": 0.92883, - "match_weight": 3.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006781604650243175, - "match_probability": 0.9289, - "match_weight": 3.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006801376092372164, - "match_probability": 0.92978, - "match_weight": 3.73, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006821147534501153, - "match_probability": 0.93075, - "match_weight": 3.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006840918976630142, - "match_probability": 0.93146, - "match_weight": 3.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006860690418759131, - "match_probability": 0.93189, - "match_weight": 3.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0068804618608881195, - "match_probability": 0.93234, - "match_weight": 3.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006900233303017108, - "match_probability": 0.9333, - "match_weight": 3.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006920004745146097, - "match_probability": 0.93372, - "match_weight": 3.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006939776187275086, - "match_probability": 0.93396, - "match_weight": 3.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006959547629404075, - "match_probability": 0.93504, - "match_weight": 3.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.006979319071533064, - "match_probability": 0.93594, - "match_weight": 3.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0069990905136620525, - "match_probability": 0.93607, - "match_weight": 3.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007018861955791041, - "match_probability": 0.93675, - "match_weight": 3.89, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00703863339792003, - "match_probability": 0.93743, - "match_weight": 3.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007058404840049019, - "match_probability": 0.93777, - "match_weight": 3.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007078176282178008, - "match_probability": 0.93824, - "match_weight": 3.93, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0071177191664359854, - "match_probability": 0.94016, - "match_weight": 3.97, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.007137490608564974, - "match_probability": 0.9413, - "match_weight": 4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007157262050693963, - "match_probability": 0.94144, - "match_weight": 4.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007177033492822952, - "match_probability": 0.9416, - "match_weight": 4.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00721657637708093, - "match_probability": 0.9424, - "match_weight": 4.03, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.007236347819209918, - "match_probability": 0.94242, - "match_weight": 4.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007256119261338907, - "match_probability": 0.94328, - "match_weight": 4.06, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007275890703467896, - "match_probability": 0.94369, - "match_weight": 4.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007295662145596885, - "match_probability": 0.94377, - "match_weight": 4.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007315433587725874, - "match_probability": 0.9439, - "match_weight": 4.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007354976471983851, - "match_probability": 0.94563, - "match_weight": 4.12, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.00737474791411284, - "match_probability": 0.94565, - "match_weight": 4.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007394519356241829, - "match_probability": 0.94732, - "match_weight": 4.17, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007414290798370818, - "match_probability": 0.94755, - "match_weight": 4.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007434062240499807, - "match_probability": 0.94798, - "match_weight": 4.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0074538336826287955, - "match_probability": 0.94799, - "match_weight": 4.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007473605124757784, - "match_probability": 0.94811, - "match_weight": 4.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007493376566886773, - "match_probability": 0.94831, - "match_weight": 4.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007513148009015762, - "match_probability": 0.94833, - "match_weight": 4.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007532919451144751, - "match_probability": 0.9484, - "match_weight": 4.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00755269089327374, - "match_probability": 0.94856, - "match_weight": 4.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007592233777531717, - "match_probability": 0.94963, - "match_weight": 4.24, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.007612005219660706, - "match_probability": 0.94968, - "match_weight": 4.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007631776661789695, - "match_probability": 0.94993, - "match_weight": 4.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007671319546047673, - "match_probability": 0.95005, - "match_weight": 4.25, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.007691090988176661, - "match_probability": 0.9504, - "match_weight": 4.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00771086243030565, - "match_probability": 0.95075, - "match_weight": 4.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007730633872434639, - "match_probability": 0.95097, - "match_weight": 4.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007750405314563628, - "match_probability": 0.95155, - "match_weight": 4.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007770176756692617, - "match_probability": 0.9529, - "match_weight": 4.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0077899481988216055, - "match_probability": 0.953, - "match_weight": 4.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007809719640950594, - "match_probability": 0.9535, - "match_weight": 4.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007829491083079584, - "match_probability": 0.95376, - "match_weight": 4.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007849262525208574, - "match_probability": 0.95464, - "match_weight": 4.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007869033967337563, - "match_probability": 0.95468, - "match_weight": 4.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007888805409466553, - "match_probability": 0.95489, - "match_weight": 4.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007908576851595543, - "match_probability": 0.95615, - "match_weight": 4.45, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007928348293724533, - "match_probability": 0.95628, - "match_weight": 4.45, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007948119735853522, - "match_probability": 0.95695, - "match_weight": 4.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.007967891177982512, - "match_probability": 0.95709, - "match_weight": 4.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00800743406224049, - "match_probability": 0.95717, - "match_weight": 4.48, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.00802720550436948, - "match_probability": 0.95754, - "match_weight": 4.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008046976946498469, - "match_probability": 0.9583, - "match_weight": 4.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008066748388627459, - "match_probability": 0.95894, - "match_weight": 4.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008086519830756448, - "match_probability": 0.95978, - "match_weight": 4.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008106291272885438, - "match_probability": 0.95981, - "match_weight": 4.58, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008126062715014428, - "match_probability": 0.96005, - "match_weight": 4.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008145834157143417, - "match_probability": 0.96008, - "match_weight": 4.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008165605599272407, - "match_probability": 0.96036, - "match_weight": 4.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008205148483530385, - "match_probability": 0.9606, - "match_weight": 4.61, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.008224919925659374, - "match_probability": 0.9607, - "match_weight": 4.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008244691367788364, - "match_probability": 0.96107, - "match_weight": 4.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008264462809917354, - "match_probability": 0.96146, - "match_weight": 4.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008284234252046344, - "match_probability": 0.96162, - "match_weight": 4.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008304005694175333, - "match_probability": 0.96179, - "match_weight": 4.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008323777136304323, - "match_probability": 0.96207, - "match_weight": 4.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008343548578433313, - "match_probability": 0.96238, - "match_weight": 4.68, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008363320020562302, - "match_probability": 0.96272, - "match_weight": 4.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008383091462691292, - "match_probability": 0.96289, - "match_weight": 4.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008402862904820282, - "match_probability": 0.96299, - "match_weight": 4.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008422634346949271, - "match_probability": 0.96321, - "match_weight": 4.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008442405789078261, - "match_probability": 0.96341, - "match_weight": 4.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008481948673336239, - "match_probability": 0.96385, - "match_weight": 4.74, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.008501720115465228, - "match_probability": 0.96439, - "match_weight": 4.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008521491557594218, - "match_probability": 0.96447, - "match_weight": 4.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008541262999723208, - "match_probability": 0.96492, - "match_weight": 4.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008561034441852198, - "match_probability": 0.96519, - "match_weight": 4.79, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008580805883981187, - "match_probability": 0.9654, - "match_weight": 4.8, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008600577326110177, - "match_probability": 0.96554, - "match_weight": 4.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008620348768239167, - "match_probability": 0.96559, - "match_weight": 4.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008640120210368156, - "match_probability": 0.96566, - "match_weight": 4.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008659891652497146, - "match_probability": 0.96572, - "match_weight": 4.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008679663094626136, - "match_probability": 0.96578, - "match_weight": 4.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008699434536755125, - "match_probability": 0.96615, - "match_weight": 4.83, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008719205978884115, - "match_probability": 0.96653, - "match_weight": 4.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008738977421013105, - "match_probability": 0.96726, - "match_weight": 4.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008778520305271082, - "match_probability": 0.96747, - "match_weight": 4.89, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.008798291747400072, - "match_probability": 0.96777, - "match_weight": 4.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008818063189529062, - "match_probability": 0.96784, - "match_weight": 4.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008837834631658052, - "match_probability": 0.96789, - "match_weight": 4.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00887737751591603, - "match_probability": 0.96822, - "match_weight": 4.93, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.008897148958045019, - "match_probability": 0.96858, - "match_weight": 4.95, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008916920400174009, - "match_probability": 0.96897, - "match_weight": 4.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008936691842302998, - "match_probability": 0.96898, - "match_weight": 4.97, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008956463284431988, - "match_probability": 0.96918, - "match_weight": 4.97, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008976234726560978, - "match_probability": 0.9697, - "match_weight": 5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.008996006168689967, - "match_probability": 0.96971, - "match_weight": 5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009015777610818957, - "match_probability": 0.96974, - "match_weight": 5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009035549052947947, - "match_probability": 0.96987, - "match_weight": 5.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009055320495076936, - "match_probability": 0.97015, - "match_weight": 5.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009075091937205926, - "match_probability": 0.97023, - "match_weight": 5.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009114634821463904, - "match_probability": 0.97025, - "match_weight": 5.03, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.009134406263592893, - "match_probability": 0.97035, - "match_weight": 5.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009154177705721883, - "match_probability": 0.97112, - "match_weight": 5.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009173949147850873, - "match_probability": 0.97156, - "match_weight": 5.09, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009193720589979863, - "match_probability": 0.97193, - "match_weight": 5.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009213492032108852, - "match_probability": 0.97204, - "match_weight": 5.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009233263474237842, - "match_probability": 0.97228, - "match_weight": 5.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00927280635849582, - "match_probability": 0.9723, - "match_weight": 5.13, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.00929257780062481, - "match_probability": 0.97241, - "match_weight": 5.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009312349242753799, - "match_probability": 0.97287, - "match_weight": 5.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009391435011269754, - "match_probability": 0.97307, - "match_weight": 5.18, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.009411206453398744, - "match_probability": 0.9733, - "match_weight": 5.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009430977895527734, - "match_probability": 0.97346, - "match_weight": 5.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009450749337656723, - "match_probability": 0.97348, - "match_weight": 5.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009470520779785713, - "match_probability": 0.97417, - "match_weight": 5.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009490292221914703, - "match_probability": 0.97453, - "match_weight": 5.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009510063664043692, - "match_probability": 0.97455, - "match_weight": 5.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009529835106172682, - "match_probability": 0.97462, - "match_weight": 5.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009549606548301672, - "match_probability": 0.97475, - "match_weight": 5.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009569377990430662, - "match_probability": 0.97539, - "match_weight": 5.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009589149432559651, - "match_probability": 0.97547, - "match_weight": 5.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009608920874688641, - "match_probability": 0.97551, - "match_weight": 5.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00962869231681763, - "match_probability": 0.97568, - "match_weight": 5.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00964846375894662, - "match_probability": 0.9764, - "match_weight": 5.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.00966823520107561, - "match_probability": 0.97656, - "match_weight": 5.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009707778085333588, - "match_probability": 0.9766, - "match_weight": 5.38, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.009727549527462577, - "match_probability": 0.97679, - "match_weight": 5.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009767092411720555, - "match_probability": 0.97681, - "match_weight": 5.4, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.009786863853849545, - "match_probability": 0.97686, - "match_weight": 5.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009806635295978534, - "match_probability": 0.97703, - "match_weight": 5.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009826406738107524, - "match_probability": 0.97738, - "match_weight": 5.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009846178180236514, - "match_probability": 0.97741, - "match_weight": 5.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009865949622365503, - "match_probability": 0.97744, - "match_weight": 5.44, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009885721064494493, - "match_probability": 0.97774, - "match_weight": 5.46, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009905492506623483, - "match_probability": 0.97793, - "match_weight": 5.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009925263948752473, - "match_probability": 0.97799, - "match_weight": 5.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009945035390881462, - "match_probability": 0.97807, - "match_weight": 5.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009964806833010452, - "match_probability": 0.97813, - "match_weight": 5.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.009984578275139442, - "match_probability": 0.97816, - "match_weight": 5.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010004349717268431, - "match_probability": 0.97818, - "match_weight": 5.49, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010043892601526409, - "match_probability": 0.9782, - "match_weight": 5.49, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.010063664043655399, - "match_probability": 0.97827, - "match_weight": 5.49, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010083435485784388, - "match_probability": 0.97853, - "match_weight": 5.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010103206927913378, - "match_probability": 0.97867, - "match_weight": 5.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010122978370042368, - "match_probability": 0.97869, - "match_weight": 5.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010142749812171357, - "match_probability": 0.97877, - "match_weight": 5.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010162521254300347, - "match_probability": 0.97908, - "match_weight": 5.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010182292696429337, - "match_probability": 0.97933, - "match_weight": 5.57, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010202064138558327, - "match_probability": 0.97963, - "match_weight": 5.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010221835580687316, - "match_probability": 0.9798, - "match_weight": 5.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010241607022816306, - "match_probability": 0.97984, - "match_weight": 5.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010261378464945296, - "match_probability": 0.9799, - "match_weight": 5.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010300921349203273, - "match_probability": 0.98004, - "match_weight": 5.62, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.010320692791332263, - "match_probability": 0.98009, - "match_weight": 5.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010340464233461253, - "match_probability": 0.98023, - "match_weight": 5.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010498635770493163, - "match_probability": 0.98035, - "match_weight": 5.64, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.010518407212622153, - "match_probability": 0.98045, - "match_weight": 5.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010538178654751143, - "match_probability": 0.98049, - "match_weight": 5.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010557950096880132, - "match_probability": 0.98067, - "match_weight": 5.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010577721539009122, - "match_probability": 0.98076, - "match_weight": 5.67, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0106172644232671, - "match_probability": 0.98082, - "match_weight": 5.68, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01063703586539609, - "match_probability": 0.98113, - "match_weight": 5.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010656807307525079, - "match_probability": 0.98116, - "match_weight": 5.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010676578749654069, - "match_probability": 0.98119, - "match_weight": 5.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010696350191783058, - "match_probability": 0.9813, - "match_weight": 5.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010716121633912048, - "match_probability": 0.98137, - "match_weight": 5.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010735893076041038, - "match_probability": 0.98159, - "match_weight": 5.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010755664518170028, - "match_probability": 0.98165, - "match_weight": 5.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010775435960299017, - "match_probability": 0.98184, - "match_weight": 5.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010795207402428007, - "match_probability": 0.98214, - "match_weight": 5.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010814978844556997, - "match_probability": 0.98222, - "match_weight": 5.79, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010834750286685986, - "match_probability": 0.98267, - "match_weight": 5.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010854521728814976, - "match_probability": 0.98278, - "match_weight": 5.83, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010874293170943966, - "match_probability": 0.98279, - "match_weight": 5.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010894064613072955, - "match_probability": 0.98289, - "match_weight": 5.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010913836055201945, - "match_probability": 0.983, - "match_weight": 5.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010933607497330935, - "match_probability": 0.9831, - "match_weight": 5.86, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010953378939459925, - "match_probability": 0.98314, - "match_weight": 5.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010973150381588914, - "match_probability": 0.98317, - "match_weight": 5.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.010992921823717904, - "match_probability": 0.98331, - "match_weight": 5.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011012693265846894, - "match_probability": 0.98343, - "match_weight": 5.89, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011032464707975883, - "match_probability": 0.98351, - "match_weight": 5.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011052236150104873, - "match_probability": 0.98356, - "match_weight": 5.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011072007592233863, - "match_probability": 0.98366, - "match_weight": 5.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01111155047649184, - "match_probability": 0.98368, - "match_weight": 5.91, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01113132191862083, - "match_probability": 0.98373, - "match_weight": 5.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01115109336074982, - "match_probability": 0.98379, - "match_weight": 5.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01117086480287881, - "match_probability": 0.98383, - "match_weight": 5.93, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011190636245007799, - "match_probability": 0.98396, - "match_weight": 5.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011210407687136789, - "match_probability": 0.98397, - "match_weight": 5.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011230179129265778, - "match_probability": 0.98399, - "match_weight": 5.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011249950571394768, - "match_probability": 0.98408, - "match_weight": 5.95, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011269722013523758, - "match_probability": 0.98415, - "match_weight": 5.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011289493455652748, - "match_probability": 0.98416, - "match_weight": 5.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011309264897781737, - "match_probability": 0.98421, - "match_weight": 5.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011329036339910727, - "match_probability": 0.98424, - "match_weight": 5.97, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011368579224168705, - "match_probability": 0.98425, - "match_weight": 5.97, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.011388350666297694, - "match_probability": 0.98438, - "match_weight": 5.98, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011408122108426684, - "match_probability": 0.98442, - "match_weight": 5.98, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011427893550555674, - "match_probability": 0.98448, - "match_weight": 5.99, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011447664992684663, - "match_probability": 0.98462, - "match_weight": 6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011467436434813653, - "match_probability": 0.98476, - "match_weight": 6.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011487207876942643, - "match_probability": 0.98478, - "match_weight": 6.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011506979319071632, - "match_probability": 0.98485, - "match_weight": 6.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011526750761200622, - "match_probability": 0.98495, - "match_weight": 6.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0115662936454586, - "match_probability": 0.98498, - "match_weight": 6.04, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01158606508758759, - "match_probability": 0.98506, - "match_weight": 6.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01160583652971658, - "match_probability": 0.98511, - "match_weight": 6.05, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011645379413974557, - "match_probability": 0.98513, - "match_weight": 6.05, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.011665150856103547, - "match_probability": 0.98522, - "match_weight": 6.06, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011704693740361524, - "match_probability": 0.98533, - "match_weight": 6.07, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.011724465182490514, - "match_probability": 0.9854, - "match_weight": 6.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011744236624619504, - "match_probability": 0.98548, - "match_weight": 6.09, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011764008066748493, - "match_probability": 0.98558, - "match_weight": 6.09, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011783779508877483, - "match_probability": 0.98584, - "match_weight": 6.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011803550951006473, - "match_probability": 0.9859, - "match_weight": 6.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011823322393135462, - "match_probability": 0.98594, - "match_weight": 6.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011843093835264452, - "match_probability": 0.98597, - "match_weight": 6.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011862865277393442, - "match_probability": 0.98601, - "match_weight": 6.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011882636719522431, - "match_probability": 0.98618, - "match_weight": 6.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.011902408161651421, - "match_probability": 0.98619, - "match_weight": 6.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01192217960378041, - "match_probability": 0.98625, - "match_weight": 6.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0119419510459094, - "match_probability": 0.98634, - "match_weight": 6.17, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01196172248803839, - "match_probability": 0.98638, - "match_weight": 6.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01198149393016738, - "match_probability": 0.98647, - "match_weight": 6.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012021036814425358, - "match_probability": 0.98656, - "match_weight": 6.2, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.012040808256554347, - "match_probability": 0.98658, - "match_weight": 6.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012060579698683337, - "match_probability": 0.98673, - "match_weight": 6.22, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012080351140812327, - "match_probability": 0.98683, - "match_weight": 6.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012100122582941316, - "match_probability": 0.98691, - "match_weight": 6.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012119894025070306, - "match_probability": 0.98696, - "match_weight": 6.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012139665467199296, - "match_probability": 0.98697, - "match_weight": 6.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012159436909328285, - "match_probability": 0.98698, - "match_weight": 6.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012198979793586263, - "match_probability": 0.98714, - "match_weight": 6.26, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.012218751235715253, - "match_probability": 0.98719, - "match_weight": 6.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012238522677844242, - "match_probability": 0.9872, - "match_weight": 6.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012258294119973232, - "match_probability": 0.98738, - "match_weight": 6.29, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012278065562102222, - "match_probability": 0.98746, - "match_weight": 6.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012297837004231212, - "match_probability": 0.98752, - "match_weight": 6.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012317608446360201, - "match_probability": 0.98753, - "match_weight": 6.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012337379888489191, - "match_probability": 0.98754, - "match_weight": 6.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01235715133061818, - "match_probability": 0.98764, - "match_weight": 6.32, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01237692277274717, - "match_probability": 0.98774, - "match_weight": 6.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01239669421487616, - "match_probability": 0.98777, - "match_weight": 6.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01241646565700515, - "match_probability": 0.98787, - "match_weight": 6.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012456008541263127, - "match_probability": 0.98788, - "match_weight": 6.35, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.012475779983392117, - "match_probability": 0.98795, - "match_weight": 6.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012495551425521107, - "match_probability": 0.98796, - "match_weight": 6.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012515322867650096, - "match_probability": 0.98798, - "match_weight": 6.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012535094309779086, - "match_probability": 0.98809, - "match_weight": 6.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012574637194037064, - "match_probability": 0.98823, - "match_weight": 6.39, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.012594408636166054, - "match_probability": 0.98828, - "match_weight": 6.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012614180078295043, - "match_probability": 0.9883, - "match_weight": 6.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012633951520424033, - "match_probability": 0.98835, - "match_weight": 6.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012653722962553023, - "match_probability": 0.98841, - "match_weight": 6.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012673494404682012, - "match_probability": 0.98846, - "match_weight": 6.42, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012693265846811002, - "match_probability": 0.98853, - "match_weight": 6.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012713037288939992, - "match_probability": 0.98876, - "match_weight": 6.46, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01275258017319797, - "match_probability": 0.98881, - "match_weight": 6.47, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.012772351615326959, - "match_probability": 0.98883, - "match_weight": 6.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012792123057455949, - "match_probability": 0.98889, - "match_weight": 6.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012811894499584938, - "match_probability": 0.98891, - "match_weight": 6.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012831665941713928, - "match_probability": 0.98899, - "match_weight": 6.49, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012851437383842918, - "match_probability": 0.98904, - "match_weight": 6.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012871208825971907, - "match_probability": 0.98913, - "match_weight": 6.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012890980268100897, - "match_probability": 0.98915, - "match_weight": 6.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012910751710229887, - "match_probability": 0.98916, - "match_weight": 6.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012930523152358877, - "match_probability": 0.98919, - "match_weight": 6.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012950294594487866, - "match_probability": 0.9892, - "match_weight": 6.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012970066036616856, - "match_probability": 0.98921, - "match_weight": 6.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.012989837478745846, - "match_probability": 0.98923, - "match_weight": 6.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013009608920874835, - "match_probability": 0.98928, - "match_weight": 6.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013029380363003825, - "match_probability": 0.98942, - "match_weight": 6.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013049151805132815, - "match_probability": 0.98944, - "match_weight": 6.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013068923247261804, - "match_probability": 0.9895, - "match_weight": 6.56, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013088694689390794, - "match_probability": 0.98952, - "match_weight": 6.56, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013108466131519784, - "match_probability": 0.98954, - "match_weight": 6.56, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013128237573648774, - "match_probability": 0.9897, - "match_weight": 6.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01318755190003574, - "match_probability": 0.98974, - "match_weight": 6.59, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01320732334216473, - "match_probability": 0.98979, - "match_weight": 6.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01322709478429372, - "match_probability": 0.9898, - "match_weight": 6.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01324686622642271, - "match_probability": 0.98982, - "match_weight": 6.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0132666376685517, - "match_probability": 0.98984, - "match_weight": 6.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01328640911068069, - "match_probability": 0.98995, - "match_weight": 6.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013306180552809679, - "match_probability": 0.99001, - "match_weight": 6.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013345723437067657, - "match_probability": 0.99002, - "match_weight": 6.63, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.013405037763454624, - "match_probability": 0.99009, - "match_weight": 6.64, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.013444580647712602, - "match_probability": 0.9901, - "match_weight": 6.64, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.013464352089841591, - "match_probability": 0.99011, - "match_weight": 6.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013484123531970581, - "match_probability": 0.99013, - "match_weight": 6.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01350389497409957, - "match_probability": 0.99016, - "match_weight": 6.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01352366641622856, - "match_probability": 0.99017, - "match_weight": 6.65, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01354343785835755, - "match_probability": 0.99018, - "match_weight": 6.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013582980742615528, - "match_probability": 0.99036, - "match_weight": 6.68, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.013602752184744517, - "match_probability": 0.99047, - "match_weight": 6.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013622523626873507, - "match_probability": 0.99048, - "match_weight": 6.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013642295069002497, - "match_probability": 0.99057, - "match_weight": 6.71, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013701609395389464, - "match_probability": 0.99066, - "match_weight": 6.73, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.013721380837518454, - "match_probability": 0.99067, - "match_weight": 6.73, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013741152279647444, - "match_probability": 0.99075, - "match_weight": 6.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013780695163905421, - "match_probability": 0.99082, - "match_weight": 6.75, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.013800466606034411, - "match_probability": 0.99083, - "match_weight": 6.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0138202380481634, - "match_probability": 0.99087, - "match_weight": 6.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01384000949029239, - "match_probability": 0.9909, - "match_weight": 6.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01385978093242138, - "match_probability": 0.99092, - "match_weight": 6.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01387955237455037, - "match_probability": 0.99094, - "match_weight": 6.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01389932381667936, - "match_probability": 0.99098, - "match_weight": 6.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01391909525880835, - "match_probability": 0.99099, - "match_weight": 6.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.013958638143066327, - "match_probability": 0.99107, - "match_weight": 6.79, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.013998181027324304, - "match_probability": 0.99117, - "match_weight": 6.81, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014017952469453294, - "match_probability": 0.99118, - "match_weight": 6.81, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014037723911582284, - "match_probability": 0.99126, - "match_weight": 6.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014057495353711274, - "match_probability": 0.99128, - "match_weight": 6.83, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014077266795840263, - "match_probability": 0.99133, - "match_weight": 6.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014097038237969253, - "match_probability": 0.99135, - "match_weight": 6.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014116809680098243, - "match_probability": 0.99137, - "match_weight": 6.84, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014136581122227232, - "match_probability": 0.99142, - "match_weight": 6.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014156352564356222, - "match_probability": 0.99145, - "match_weight": 6.86, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014176124006485212, - "match_probability": 0.99152, - "match_weight": 6.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014195895448614201, - "match_probability": 0.99157, - "match_weight": 6.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014235438332872179, - "match_probability": 0.99161, - "match_weight": 6.89, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014255209775001169, - "match_probability": 0.99164, - "match_weight": 6.89, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014274981217130158, - "match_probability": 0.99172, - "match_weight": 6.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014294752659259148, - "match_probability": 0.99176, - "match_weight": 6.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014314524101388138, - "match_probability": 0.99186, - "match_weight": 6.93, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014334295543517128, - "match_probability": 0.9919, - "match_weight": 6.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014354066985646117, - "match_probability": 0.99192, - "match_weight": 6.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014373838427775107, - "match_probability": 0.99193, - "match_weight": 6.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014393609869904097, - "match_probability": 0.99195, - "match_weight": 6.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014413381312033086, - "match_probability": 0.99201, - "match_weight": 6.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014433152754162076, - "match_probability": 0.99205, - "match_weight": 6.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014472695638420054, - "match_probability": 0.99206, - "match_weight": 6.97, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014492467080549043, - "match_probability": 0.99209, - "match_weight": 6.97, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014512238522678033, - "match_probability": 0.99213, - "match_weight": 6.98, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01455178140693601, - "match_probability": 0.99215, - "match_weight": 6.98, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014571552849065, - "match_probability": 0.99224, - "match_weight": 7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01459132429119399, - "match_probability": 0.99225, - "match_weight": 7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01461109573332298, - "match_probability": 0.9923, - "match_weight": 7.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014650638617580957, - "match_probability": 0.99232, - "match_weight": 7.01, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014670410059709947, - "match_probability": 0.99234, - "match_weight": 7.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014690181501838937, - "match_probability": 0.99235, - "match_weight": 7.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014709952943967926, - "match_probability": 0.99243, - "match_weight": 7.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014729724386096916, - "match_probability": 0.99245, - "match_weight": 7.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014749495828225906, - "match_probability": 0.99248, - "match_weight": 7.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014769267270354896, - "match_probability": 0.99251, - "match_weight": 7.05, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014789038712483885, - "match_probability": 0.99257, - "match_weight": 7.06, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014808810154612875, - "match_probability": 0.9926, - "match_weight": 7.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014828581596741865, - "match_probability": 0.99262, - "match_weight": 7.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014868124480999842, - "match_probability": 0.99264, - "match_weight": 7.08, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.014887895923128832, - "match_probability": 0.99267, - "match_weight": 7.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014907667365257822, - "match_probability": 0.99275, - "match_weight": 7.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014927438807386811, - "match_probability": 0.99279, - "match_weight": 7.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014947210249515801, - "match_probability": 0.99283, - "match_weight": 7.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.014986753133773779, - "match_probability": 0.99284, - "match_weight": 7.12, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015006524575902768, - "match_probability": 0.99293, - "match_weight": 7.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015026296018031758, - "match_probability": 0.99299, - "match_weight": 7.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015065838902289736, - "match_probability": 0.99302, - "match_weight": 7.15, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015085610344418725, - "match_probability": 0.99304, - "match_weight": 7.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015105381786547715, - "match_probability": 0.99315, - "match_weight": 7.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015125153228676705, - "match_probability": 0.99317, - "match_weight": 7.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015144924670805695, - "match_probability": 0.99326, - "match_weight": 7.2, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015164696112934684, - "match_probability": 0.99327, - "match_weight": 7.21, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015204238997192662, - "match_probability": 0.9933, - "match_weight": 7.21, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015224010439321652, - "match_probability": 0.99331, - "match_weight": 7.21, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01526355332357963, - "match_probability": 0.99332, - "match_weight": 7.22, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015283324765708619, - "match_probability": 0.99341, - "match_weight": 7.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015303096207837609, - "match_probability": 0.99344, - "match_weight": 7.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015322867649966598, - "match_probability": 0.99345, - "match_weight": 7.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015342639092095588, - "match_probability": 0.99348, - "match_weight": 7.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015362410534224578, - "match_probability": 0.99349, - "match_weight": 7.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015382181976353567, - "match_probability": 0.99353, - "match_weight": 7.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015421724860611545, - "match_probability": 0.99356, - "match_weight": 7.27, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015441496302740535, - "match_probability": 0.99357, - "match_weight": 7.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015461267744869524, - "match_probability": 0.99359, - "match_weight": 7.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015481039186998514, - "match_probability": 0.99361, - "match_weight": 7.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015500810629127504, - "match_probability": 0.99364, - "match_weight": 7.29, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015520582071256494, - "match_probability": 0.99373, - "match_weight": 7.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015540353513385483, - "match_probability": 0.99374, - "match_weight": 7.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015560124955514473, - "match_probability": 0.99375, - "match_weight": 7.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01559966783977245, - "match_probability": 0.99377, - "match_weight": 7.32, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01561943928190144, - "match_probability": 0.99382, - "match_weight": 7.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01563921072403043, - "match_probability": 0.99383, - "match_weight": 7.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01567875360828841, - "match_probability": 0.99387, - "match_weight": 7.34, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015698525050417397, - "match_probability": 0.99391, - "match_weight": 7.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015718296492546385, - "match_probability": 0.99393, - "match_weight": 7.35, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015738067934675373, - "match_probability": 0.99394, - "match_weight": 7.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01575783937680436, - "match_probability": 0.99396, - "match_weight": 7.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01581715370319133, - "match_probability": 0.99397, - "match_weight": 7.37, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.015856696587449308, - "match_probability": 0.99398, - "match_weight": 7.37, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.015876468029578296, - "match_probability": 0.99403, - "match_weight": 7.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015896239471707284, - "match_probability": 0.99405, - "match_weight": 7.38, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.015935782355965263, - "match_probability": 0.99406, - "match_weight": 7.39, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01599509668235223, - "match_probability": 0.99407, - "match_weight": 7.39, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01601486812448122, - "match_probability": 0.9941, - "match_weight": 7.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016034639566610207, - "match_probability": 0.99412, - "match_weight": 7.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016074182450868186, - "match_probability": 0.99413, - "match_weight": 7.4, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016093953892997174, - "match_probability": 0.99414, - "match_weight": 7.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016113725335126162, - "match_probability": 0.99416, - "match_weight": 7.41, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01613349677725515, - "match_probability": 0.99422, - "match_weight": 7.43, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01617303966151313, - "match_probability": 0.99423, - "match_weight": 7.43, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016192811103642117, - "match_probability": 0.99431, - "match_weight": 7.45, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016212582545771105, - "match_probability": 0.99438, - "match_weight": 7.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016252125430029084, - "match_probability": 0.99443, - "match_weight": 7.48, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016271896872158072, - "match_probability": 0.99446, - "match_weight": 7.49, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01629166831428706, - "match_probability": 0.99452, - "match_weight": 7.5, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01631143975641605, - "match_probability": 0.99454, - "match_weight": 7.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016331211198545036, - "match_probability": 0.99462, - "match_weight": 7.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016350982640674024, - "match_probability": 0.99464, - "match_weight": 7.53, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016370754082803012, - "match_probability": 0.99468, - "match_weight": 7.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016390525524932, - "match_probability": 0.99469, - "match_weight": 7.55, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01643006840918998, - "match_probability": 0.99476, - "match_weight": 7.57, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01646961129344796, - "match_probability": 0.99483, - "match_weight": 7.59, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016489382735576947, - "match_probability": 0.99484, - "match_weight": 7.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016528925619834926, - "match_probability": 0.99488, - "match_weight": 7.6, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016548697061963914, - "match_probability": 0.99489, - "match_weight": 7.6, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016568468504092902, - "match_probability": 0.99494, - "match_weight": 7.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01658823994622189, - "match_probability": 0.99495, - "match_weight": 7.62, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016608011388350878, - "match_probability": 0.99497, - "match_weight": 7.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016627782830479866, - "match_probability": 0.99498, - "match_weight": 7.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016667325714737845, - "match_probability": 0.99507, - "match_weight": 7.66, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016706868598995825, - "match_probability": 0.99514, - "match_weight": 7.68, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.016726640041124813, - "match_probability": 0.99515, - "match_weight": 7.68, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016766182925382792, - "match_probability": 0.99517, - "match_weight": 7.69, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01678595436751178, - "match_probability": 0.99519, - "match_weight": 7.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016805725809640768, - "match_probability": 0.99523, - "match_weight": 7.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016825497251769756, - "match_probability": 0.99529, - "match_weight": 7.72, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.016845268693898744, - "match_probability": 0.99534, - "match_weight": 7.74, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01690458302028571, - "match_probability": 0.99535, - "match_weight": 7.74, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01694412590454369, - "match_probability": 0.99536, - "match_weight": 7.74, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01696389734667268, - "match_probability": 0.99538, - "match_weight": 7.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017003440230930658, - "match_probability": 0.99539, - "match_weight": 7.76, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.017023211673059646, - "match_probability": 0.99541, - "match_weight": 7.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017042983115188634, - "match_probability": 0.99542, - "match_weight": 7.76, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017062754557317622, - "match_probability": 0.99543, - "match_weight": 7.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01708252599944661, - "match_probability": 0.99545, - "match_weight": 7.77, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017102297441575598, - "match_probability": 0.99546, - "match_weight": 7.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017122068883704586, - "match_probability": 0.99548, - "match_weight": 7.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017161611767962565, - "match_probability": 0.99551, - "match_weight": 7.79, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.017181383210091553, - "match_probability": 0.99553, - "match_weight": 7.8, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01724069753647852, - "match_probability": 0.99556, - "match_weight": 7.81, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01726046897860751, - "match_probability": 0.99558, - "match_weight": 7.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017280240420736497, - "match_probability": 0.99559, - "match_weight": 7.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017300011862865484, - "match_probability": 0.9956, - "match_weight": 7.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017319783304994472, - "match_probability": 0.99561, - "match_weight": 7.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017359326189252452, - "match_probability": 0.99562, - "match_weight": 7.83, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01741864051563942, - "match_probability": 0.99566, - "match_weight": 7.84, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.017438411957768407, - "match_probability": 0.99568, - "match_weight": 7.85, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017477954842026387, - "match_probability": 0.9957, - "match_weight": 7.86, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.017497726284155374, - "match_probability": 0.99573, - "match_weight": 7.87, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017517497726284362, - "match_probability": 0.99581, - "match_weight": 7.89, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01753726916841335, - "match_probability": 0.99583, - "match_weight": 7.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01755704061054234, - "match_probability": 0.99586, - "match_weight": 7.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017576812052671326, - "match_probability": 0.99587, - "match_weight": 7.91, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017596583494800314, - "match_probability": 0.99588, - "match_weight": 7.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01765589782118728, - "match_probability": 0.99591, - "match_weight": 7.93, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01769544070544526, - "match_probability": 0.99592, - "match_weight": 7.93, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01771521214757425, - "match_probability": 0.99594, - "match_weight": 7.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017734983589703237, - "match_probability": 0.99596, - "match_weight": 7.94, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017774526473961216, - "match_probability": 0.99598, - "match_weight": 7.95, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.017794297916090204, - "match_probability": 0.99606, - "match_weight": 7.98, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017814069358219192, - "match_probability": 0.99608, - "match_weight": 7.99, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01783384080034818, - "match_probability": 0.99609, - "match_weight": 7.99, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017853612242477168, - "match_probability": 0.99612, - "match_weight": 8, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017873383684606156, - "match_probability": 0.99613, - "match_weight": 8.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.017912926568864136, - "match_probability": 0.99614, - "match_weight": 8.01, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.017932698010993123, - "match_probability": 0.99615, - "match_weight": 8.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01795246945312211, - "match_probability": 0.99616, - "match_weight": 8.02, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0179722408952511, - "match_probability": 0.99619, - "match_weight": 8.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01801178377950908, - "match_probability": 0.9962, - "match_weight": 8.04, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.018031555221638067, - "match_probability": 0.99623, - "match_weight": 8.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018071098105896046, - "match_probability": 0.99626, - "match_weight": 8.06, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.018110640990154026, - "match_probability": 0.99627, - "match_weight": 8.06, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.018130412432283013, - "match_probability": 0.99628, - "match_weight": 8.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018150183874412, - "match_probability": 0.9963, - "match_weight": 8.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01816995531654099, - "match_probability": 0.99631, - "match_weight": 8.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018229269642927957, - "match_probability": 0.99632, - "match_weight": 8.08, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.018249041085056945, - "match_probability": 0.99633, - "match_weight": 8.08, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018268812527185933, - "match_probability": 0.99636, - "match_weight": 8.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01828858396931492, - "match_probability": 0.99637, - "match_weight": 8.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01830835541144391, - "match_probability": 0.99639, - "match_weight": 8.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018367669737830876, - "match_probability": 0.9964, - "match_weight": 8.11, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.018387441179959864, - "match_probability": 0.99641, - "match_weight": 8.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018407212622088852, - "match_probability": 0.99642, - "match_weight": 8.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01842698406421784, - "match_probability": 0.99645, - "match_weight": 8.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018446755506346828, - "match_probability": 0.99648, - "match_weight": 8.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018466526948475816, - "match_probability": 0.99649, - "match_weight": 8.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018486298390604804, - "match_probability": 0.9965, - "match_weight": 8.15, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01850606983273379, - "match_probability": 0.99654, - "match_weight": 8.17, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01852584127486278, - "match_probability": 0.99656, - "match_weight": 8.18, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018545612716991768, - "match_probability": 0.99659, - "match_weight": 8.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018565384159120756, - "match_probability": 0.9966, - "match_weight": 8.19, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018624698485507723, - "match_probability": 0.99663, - "match_weight": 8.21, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.01864446992763671, - "match_probability": 0.99664, - "match_weight": 8.21, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0186642413697657, - "match_probability": 0.99666, - "match_weight": 8.22, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018684012811894687, - "match_probability": 0.99667, - "match_weight": 8.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018703784254023675, - "match_probability": 0.99668, - "match_weight": 8.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018723555696152663, - "match_probability": 0.99671, - "match_weight": 8.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01874332713828165, - "match_probability": 0.99672, - "match_weight": 8.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01876309858041064, - "match_probability": 0.99673, - "match_weight": 8.25, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018802641464668618, - "match_probability": 0.99674, - "match_weight": 8.26, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.018822412906797606, - "match_probability": 0.99675, - "match_weight": 8.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018842184348926594, - "match_probability": 0.99676, - "match_weight": 8.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.018861955791055582, - "match_probability": 0.99677, - "match_weight": 8.27, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01888172723318457, - "match_probability": 0.9968, - "match_weight": 8.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01892127011744255, - "match_probability": 0.99681, - "match_weight": 8.29, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.018941041559571537, - "match_probability": 0.99683, - "match_weight": 8.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019000355885958504, - "match_probability": 0.99687, - "match_weight": 8.31, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.019020127328087492, - "match_probability": 0.9969, - "match_weight": 8.33, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01907944165447446, - "match_probability": 0.99691, - "match_weight": 8.33, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.019099213096603448, - "match_probability": 0.99692, - "match_weight": 8.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019118984538732436, - "match_probability": 0.99693, - "match_weight": 8.34, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019158527422990415, - "match_probability": 0.99694, - "match_weight": 8.35, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019178298865119403, - "match_probability": 0.99696, - "match_weight": 8.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01919807030724839, - "match_probability": 0.99698, - "match_weight": 8.36, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01921784174937738, - "match_probability": 0.99699, - "match_weight": 8.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01925738463363536, - "match_probability": 0.99701, - "match_weight": 8.38, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019296927517893338, - "match_probability": 0.99704, - "match_weight": 8.4, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019316698960022326, - "match_probability": 0.99705, - "match_weight": 8.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019336470402151314, - "match_probability": 0.99708, - "match_weight": 8.42, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0193562418442803, - "match_probability": 0.99709, - "match_weight": 8.42, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01937601328640929, - "match_probability": 0.99714, - "match_weight": 8.45, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019395784728538278, - "match_probability": 0.99718, - "match_weight": 8.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019415556170667266, - "match_probability": 0.99719, - "match_weight": 8.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019435327612796253, - "match_probability": 0.9972, - "match_weight": 8.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01945509905492524, - "match_probability": 0.99721, - "match_weight": 8.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.01949464193918322, - "match_probability": 0.99722, - "match_weight": 8.49, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.0195341848234412, - "match_probability": 0.99725, - "match_weight": 8.5, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019553956265570188, - "match_probability": 0.99726, - "match_weight": 8.51, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019593499149828168, - "match_probability": 0.99727, - "match_weight": 8.51, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019633042034086147, - "match_probability": 0.99728, - "match_weight": 8.52, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019672584918344126, - "match_probability": 0.99729, - "match_weight": 8.52, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019712127802602106, - "match_probability": 0.9973, - "match_weight": 8.53, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01979121357111806, - "match_probability": 0.99733, - "match_weight": 8.55, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.01981098501324705, - "match_probability": 0.99735, - "match_weight": 8.56, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019830756455376037, - "match_probability": 0.99736, - "match_weight": 8.56, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019870299339634016, - "match_probability": 0.99737, - "match_weight": 8.57, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.019890070781763004, - "match_probability": 0.99738, - "match_weight": 8.57, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.019929613666020984, - "match_probability": 0.99743, - "match_weight": 8.6, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.01994938510814997, - "match_probability": 0.99745, - "match_weight": 8.61, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020028470876665927, - "match_probability": 0.99746, - "match_weight": 8.62, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.020068013760923906, - "match_probability": 0.99748, - "match_weight": 8.63, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020087785203052894, - "match_probability": 0.99749, - "match_weight": 8.63, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020107556645181882, - "match_probability": 0.9975, - "match_weight": 8.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02012732808731087, - "match_probability": 0.99751, - "match_weight": 8.64, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020147099529439858, - "match_probability": 0.99753, - "match_weight": 8.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020166870971568846, - "match_probability": 0.99754, - "match_weight": 8.66, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020186642413697834, - "match_probability": 0.99758, - "match_weight": 8.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020206413855826822, - "match_probability": 0.99761, - "match_weight": 8.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02022618529795581, - "match_probability": 0.99765, - "match_weight": 8.73, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02026572818221379, - "match_probability": 0.99766, - "match_weight": 8.74, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020285499624342777, - "match_probability": 0.99769, - "match_weight": 8.75, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020325042508600757, - "match_probability": 0.99771, - "match_weight": 8.77, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020364585392858736, - "match_probability": 0.99772, - "match_weight": 8.77, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020384356834987724, - "match_probability": 0.99773, - "match_weight": 8.78, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02046344260350368, - "match_probability": 0.99775, - "match_weight": 8.79, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02050298548776166, - "match_probability": 0.99776, - "match_weight": 8.8, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020522756929890647, - "match_probability": 0.99779, - "match_weight": 8.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020542528372019635, - "match_probability": 0.9978, - "match_weight": 8.82, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020562299814148623, - "match_probability": 0.99781, - "match_weight": 8.83, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020601842698406602, - "match_probability": 0.99782, - "match_weight": 8.84, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02064138558266458, - "match_probability": 0.99784, - "match_weight": 8.85, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020720471351180537, - "match_probability": 0.99787, - "match_weight": 8.87, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.020740242793309525, - "match_probability": 0.99788, - "match_weight": 8.88, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02081932856182548, - "match_probability": 0.99789, - "match_weight": 8.89, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02085887144608346, - "match_probability": 0.9979, - "match_weight": 8.89, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.020878642888212447, - "match_probability": 0.99792, - "match_weight": 8.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.020937957214599415, - "match_probability": 0.99793, - "match_weight": 8.92, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.020957728656728403, - "match_probability": 0.99794, - "match_weight": 8.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02097750009885739, - "match_probability": 0.99795, - "match_weight": 8.92, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021056585867373346, - "match_probability": 0.99797, - "match_weight": 8.94, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.021115900193760313, - "match_probability": 0.99798, - "match_weight": 8.95, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.0211356716358893, - "match_probability": 0.99799, - "match_weight": 8.96, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02117521452014728, - "match_probability": 0.998, - "match_weight": 8.97, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.021254300288663236, - "match_probability": 0.99801, - "match_weight": 8.97, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.021293843172921215, - "match_probability": 0.99802, - "match_weight": 8.98, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.021353157499308183, - "match_probability": 0.99803, - "match_weight": 8.99, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02137292894143717, - "match_probability": 0.99804, - "match_weight": 8.99, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02139270038356616, - "match_probability": 0.99806, - "match_weight": 9.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021412471825695147, - "match_probability": 0.99807, - "match_weight": 9.01, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021491557594211102, - "match_probability": 0.99808, - "match_weight": 9.02, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02151132903634009, - "match_probability": 0.99809, - "match_weight": 9.03, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021570643362727057, - "match_probability": 0.9981, - "match_weight": 9.04, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.021590414804856045, - "match_probability": 0.99811, - "match_weight": 9.04, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021610186246985033, - "match_probability": 0.99814, - "match_weight": 9.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02162995768911402, - "match_probability": 0.99815, - "match_weight": 9.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021669500573372, - "match_probability": 0.99816, - "match_weight": 9.09, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02170904345762998, - "match_probability": 0.99817, - "match_weight": 9.09, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.021728814899758968, - "match_probability": 0.99818, - "match_weight": 9.1, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021748586341887956, - "match_probability": 0.99819, - "match_weight": 9.11, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021768357784016944, - "match_probability": 0.9982, - "match_weight": 9.12, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.0218474435525329, - "match_probability": 0.99822, - "match_weight": 9.13, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.021867214994661887, - "match_probability": 0.99823, - "match_weight": 9.14, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.021946300763177842, - "match_probability": 0.99824, - "match_weight": 9.15, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02196607220530683, - "match_probability": 0.99825, - "match_weight": 9.16, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02200561508956481, - "match_probability": 0.99826, - "match_weight": 9.17, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02204515797382279, - "match_probability": 0.99827, - "match_weight": 9.17, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02208470085808077, - "match_probability": 0.99828, - "match_weight": 9.18, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022124243742338748, - "match_probability": 0.99829, - "match_weight": 9.19, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022163786626596727, - "match_probability": 0.9983, - "match_weight": 9.2, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022183558068725715, - "match_probability": 0.99831, - "match_weight": 9.21, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022223100952983695, - "match_probability": 0.99832, - "match_weight": 9.21, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022242872395112682, - "match_probability": 0.99833, - "match_weight": 9.23, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022282415279370662, - "match_probability": 0.99834, - "match_weight": 9.23, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02230218672149965, - "match_probability": 0.99835, - "match_weight": 9.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02234172960575763, - "match_probability": 0.99836, - "match_weight": 9.25, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022361501047886617, - "match_probability": 0.99837, - "match_weight": 9.26, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022381272490015605, - "match_probability": 0.99839, - "match_weight": 9.28, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022420815374273585, - "match_probability": 0.9984, - "match_weight": 9.28, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022440586816402572, - "match_probability": 0.99842, - "match_weight": 9.3, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02246035825853156, - "match_probability": 0.99843, - "match_weight": 9.31, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02249990114278954, - "match_probability": 0.99845, - "match_weight": 9.33, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022618529795563475, - "match_probability": 0.99846, - "match_weight": 9.34, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.022658072679821454, - "match_probability": 0.99847, - "match_weight": 9.35, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.022677844121950442, - "match_probability": 0.99849, - "match_weight": 9.37, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022756929890466397, - "match_probability": 0.99852, - "match_weight": 9.4, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.022776701332595385, - "match_probability": 0.99853, - "match_weight": 9.4, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.022934872869627296, - "match_probability": 0.99854, - "match_weight": 9.42, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.022994187196014263, - "match_probability": 0.99856, - "match_weight": 9.44, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02305350152240123, - "match_probability": 0.99857, - "match_weight": 9.45, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.023112815848788198, - "match_probability": 0.99858, - "match_weight": 9.46, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.023132587290917186, - "match_probability": 0.99859, - "match_weight": 9.47, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023152358733046174, - "match_probability": 0.9986, - "match_weight": 9.48, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023191901617304153, - "match_probability": 0.99861, - "match_weight": 9.49, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02327098738582011, - "match_probability": 0.99862, - "match_weight": 9.5, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.023290758827949096, - "match_probability": 0.99864, - "match_weight": 9.52, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023350073154336064, - "match_probability": 0.99865, - "match_weight": 9.53, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02336984459646505, - "match_probability": 0.99866, - "match_weight": 9.54, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023488473249238986, - "match_probability": 0.99867, - "match_weight": 9.56, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.02356755901775494, - "match_probability": 0.99868, - "match_weight": 9.57, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.023646644786270897, - "match_probability": 0.99869, - "match_weight": 9.57, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.023666416228399885, - "match_probability": 0.9987, - "match_weight": 9.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023686187670528873, - "match_probability": 0.99871, - "match_weight": 9.59, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.023785044881173816, - "match_probability": 0.99872, - "match_weight": 9.61, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.023844359207560784, - "match_probability": 0.99873, - "match_weight": 9.62, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02390367353394775, - "match_probability": 0.99874, - "match_weight": 9.64, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02394321641820573, - "match_probability": 0.99875, - "match_weight": 9.65, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.024042073628850674, - "match_probability": 0.99876, - "match_weight": 9.66, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.024081616513108653, - "match_probability": 0.99877, - "match_weight": 9.67, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02410138795523764, - "match_probability": 0.99878, - "match_weight": 9.67, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02412115939736663, - "match_probability": 0.99879, - "match_weight": 9.69, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.024140930839495617, - "match_probability": 0.9988, - "match_weight": 9.7, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02425955949226955, - "match_probability": 0.99881, - "match_weight": 9.72, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.02429910237652753, - "match_probability": 0.99882, - "match_weight": 9.73, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.024358416702914498, - "match_probability": 0.99883, - "match_weight": 9.74, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.024437502471430454, - "match_probability": 0.99884, - "match_weight": 9.76, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02449681679781742, - "match_probability": 0.99885, - "match_weight": 9.77, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.024575902566333376, - "match_probability": 0.99886, - "match_weight": 9.78, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.0247143026612363, - "match_probability": 0.99887, - "match_weight": 9.79, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.024793388429752254, - "match_probability": 0.99888, - "match_weight": 9.81, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.024832931314010234, - "match_probability": 0.99889, - "match_weight": 9.81, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.024951559966784168, - "match_probability": 0.9989, - "match_weight": 9.83, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.024991102851042148, - "match_probability": 0.99891, - "match_weight": 9.84, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.025030645735300127, - "match_probability": 0.99892, - "match_weight": 9.85, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02514927438807406, - "match_probability": 0.99894, - "match_weight": 9.89, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.025287674482976984, - "match_probability": 0.99895, - "match_weight": 9.9, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.025307445925105972, - "match_probability": 0.99896, - "match_weight": 9.9, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02536676025149294, - "match_probability": 0.99897, - "match_weight": 9.93, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02540630313575092, - "match_probability": 0.99898, - "match_weight": 9.93, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.025465617462137886, - "match_probability": 0.99899, - "match_weight": 9.96, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.025485388904266874, - "match_probability": 0.999, - "match_weight": 9.97, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02554470323065384, - "match_probability": 0.99901, - "match_weight": 9.98, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02558424611491182, - "match_probability": 0.99902, - "match_weight": 9.99, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02574241765194373, - "match_probability": 0.99903, - "match_weight": 10.01, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.025841274862588675, - "match_probability": 0.99904, - "match_weight": 10.03, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.025880817746846654, - "match_probability": 0.99905, - "match_weight": 10.04, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.02594013207323362, - "match_probability": 0.99906, - "match_weight": 10.06, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.02595990351536261, - "match_probability": 0.99907, - "match_weight": 10.07, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.02611807505239452, - "match_probability": 0.99908, - "match_weight": 10.09, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.026197160820910476, - "match_probability": 0.99909, - "match_weight": 10.11, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.026236703705168455, - "match_probability": 0.9991, - "match_weight": 10.12, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.026256475147297443, - "match_probability": 0.99911, - "match_weight": 10.13, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.026335560915813398, - "match_probability": 0.99912, - "match_weight": 10.16, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.026414646684329354, - "match_probability": 0.99913, - "match_weight": 10.17, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02649373245284531, - "match_probability": 0.99914, - "match_weight": 10.19, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02663213254774823, - "match_probability": 0.99915, - "match_weight": 10.2, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.0266914468741352, - "match_probability": 0.99916, - "match_weight": 10.22, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.026711218316264187, - "match_probability": 0.99917, - "match_weight": 10.24, - "prop": 0.000019771442128988888 - }, - { - "cum_prop": 0.026770532642651154, - "match_probability": 0.99918, - "match_weight": 10.25, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.026869389853296097, - "match_probability": 0.99919, - "match_weight": 10.28, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02700778994819902, - "match_probability": 0.9992, - "match_weight": 10.3, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.02716596148523093, - "match_probability": 0.99921, - "match_weight": 10.31, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.02720550436948891, - "match_probability": 0.99922, - "match_weight": 10.32, - "prop": 0.000039542884257977775 - }, - { - "cum_prop": 0.027304361580133853, - "match_probability": 0.99923, - "match_weight": 10.34, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02736367590652082, - "match_probability": 0.99924, - "match_weight": 10.36, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.027462533117165764, - "match_probability": 0.99925, - "match_weight": 10.38, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02752184744355273, - "match_probability": 0.99926, - "match_weight": 10.41, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.027620704654197675, - "match_probability": 0.99927, - "match_weight": 10.43, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02769979042271363, - "match_probability": 0.99928, - "match_weight": 10.44, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.027798647633358573, - "match_probability": 0.99929, - "match_weight": 10.46, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02785796195974554, - "match_probability": 0.9993, - "match_weight": 10.48, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.027937047728261496, - "match_probability": 0.99931, - "match_weight": 10.51, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.02801613349677745, - "match_probability": 0.99933, - "match_weight": 10.55, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.028114990707422394, - "match_probability": 0.99934, - "match_weight": 10.57, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.028253390802325317, - "match_probability": 0.99935, - "match_weight": 10.6, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.028312705128712284, - "match_probability": 0.99936, - "match_weight": 10.62, - "prop": 0.00005931432638696666 - }, - { - "cum_prop": 0.028530190992131162, - "match_probability": 0.99937, - "match_weight": 10.64, - "prop": 0.00021748586341887777 - }, - { - "cum_prop": 0.028629048202776106, - "match_probability": 0.99938, - "match_weight": 10.66, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02870813397129206, - "match_probability": 0.99939, - "match_weight": 10.69, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.028826762624065996, - "match_probability": 0.9994, - "match_weight": 10.7, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.02894539127683993, - "match_probability": 0.99941, - "match_weight": 10.73, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.02910356281387184, - "match_probability": 0.99942, - "match_weight": 10.76, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.029202420024516784, - "match_probability": 0.99943, - "match_weight": 10.78, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.029340820119419707, - "match_probability": 0.99944, - "match_weight": 10.8, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.029419905887935662, - "match_probability": 0.99945, - "match_weight": 10.83, - "prop": 0.00007908576851595555 - }, - { - "cum_prop": 0.029518763098580605, - "match_probability": 0.99946, - "match_weight": 10.87, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.02963739175135454, - "match_probability": 0.99947, - "match_weight": 10.89, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.029775791846257463, - "match_probability": 0.99948, - "match_weight": 10.92, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.02995373482541836, - "match_probability": 0.99949, - "match_weight": 10.95, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.030072363478192296, - "match_probability": 0.9995, - "match_weight": 10.98, - "prop": 0.00011862865277393333 - }, - { - "cum_prop": 0.030230535015224207, - "match_probability": 0.99951, - "match_weight": 11.01, - "prop": 0.0001581715370319111 - }, - { - "cum_prop": 0.03036893511012713, - "match_probability": 0.99952, - "match_weight": 11.04, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.030606192415674995, - "match_probability": 0.99953, - "match_weight": 11.07, - "prop": 0.00023725730554786665 - }, - { - "cum_prop": 0.030784135394835894, - "match_probability": 0.99954, - "match_weight": 11.1, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.030882992605480837, - "match_probability": 0.99955, - "match_weight": 11.12, - "prop": 0.00009885721064494445 - }, - { - "cum_prop": 0.03117956423741567, - "match_probability": 0.99956, - "match_weight": 11.17, - "prop": 0.0002965716319348333 - }, - { - "cum_prop": 0.03131796433231859, - "match_probability": 0.99957, - "match_weight": 11.2, - "prop": 0.00013840009490292222 - }, - { - "cum_prop": 0.03149590731147949, - "match_probability": 0.99958, - "match_weight": 11.22, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.03175293605915635, - "match_probability": 0.99959, - "match_weight": 11.27, - "prop": 0.00025702874767685556 - }, - { - "cum_prop": 0.03199019336470422, - "match_probability": 0.9996, - "match_weight": 11.3, - "prop": 0.00023725730554786665 - }, - { - "cum_prop": 0.03232630788089703, - "match_probability": 0.99961, - "match_weight": 11.34, - "prop": 0.0003361145161928111 - }, - { - "cum_prop": 0.03260310807070287, - "match_probability": 0.99962, - "match_weight": 11.38, - "prop": 0.00027680018980584444 - }, - { - "cum_prop": 0.03278105104986377, - "match_probability": 0.99963, - "match_weight": 11.42, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.03301830835541164, - "match_probability": 0.99964, - "match_weight": 11.45, - "prop": 0.00023725730554786665 - }, - { - "cum_prop": 0.03333465142947546, - "match_probability": 0.99965, - "match_weight": 11.5, - "prop": 0.0003163430740638222 - }, - { - "cum_prop": 0.03357190873502333, - "match_probability": 0.99966, - "match_weight": 11.54, - "prop": 0.00023725730554786665 - }, - { - "cum_prop": 0.03374985171418423, - "match_probability": 0.99967, - "match_weight": 11.59, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.034026651903990075, - "match_probability": 0.99968, - "match_weight": 11.63, - "prop": 0.00027680018980584444 - }, - { - "cum_prop": 0.034204594883150974, - "match_probability": 0.99969, - "match_weight": 11.68, - "prop": 0.00017794297916089998 - }, - { - "cum_prop": 0.03450116651508581, - "match_probability": 0.9997, - "match_weight": 11.72, - "prop": 0.0002965716319348333 - }, - { - "cum_prop": 0.034698880936375694, - "match_probability": 0.99971, - "match_weight": 11.78, - "prop": 0.0001977144212898889 - }, - { - "cum_prop": 0.035015224010439515, - "match_probability": 0.99972, - "match_weight": 11.82, - "prop": 0.0003163430740638222 - }, - { - "cum_prop": 0.03543042429514828, - "match_probability": 0.99973, - "match_weight": 11.88, - "prop": 0.00041520028470876666 - }, - { - "cum_prop": 0.03594448179050199, - "match_probability": 0.99974, - "match_weight": 11.94, - "prop": 0.0005140574953537111 - }, - { - "cum_prop": 0.03633991063308177, - "match_probability": 0.99975, - "match_weight": 11.99, - "prop": 0.0003954288425797778 - }, - { - "cum_prop": 0.03665625370714559, - "match_probability": 0.99976, - "match_weight": 12.05, - "prop": 0.0003163430740638222 - }, - { - "cum_prop": 0.037110996876112336, - "match_probability": 0.99977, - "match_weight": 12.12, - "prop": 0.0004547431689667444 - }, - { - "cum_prop": 0.037664597255724026, - "match_probability": 0.99978, - "match_weight": 12.18, - "prop": 0.0005536003796116889 - }, - { - "cum_prop": 0.03837636917236763, - "match_probability": 0.99979, - "match_weight": 12.25, - "prop": 0.0007117719166435999 - }, - { - "cum_prop": 0.03867294080430246, - "match_probability": 0.9998, - "match_weight": 12.32, - "prop": 0.0002965716319348333 - }, - { - "cum_prop": 0.03914745541539819, - "match_probability": 0.99981, - "match_weight": 12.4, - "prop": 0.0004745146110957333 - }, - { - "cum_prop": 0.03964174146862291, - "match_probability": 0.99982, - "match_weight": 12.47, - "prop": 0.0004942860532247222 - }, - { - "cum_prop": 0.040175570406105615, - "match_probability": 0.99983, - "match_weight": 12.56, - "prop": 0.0005338289374827 - }, - { - "cum_prop": 0.0412629997232, - "match_probability": 0.99984, - "match_weight": 12.65, - "prop": 0.001087429317094389 - }, - { - "cum_prop": 0.04185614298706967, - "match_probability": 0.99985, - "match_weight": 12.75, - "prop": 0.0005931432638696666 - }, - { - "cum_prop": 0.04266677211435821, - "match_probability": 0.99986, - "match_weight": 12.85, - "prop": 0.0008106291272885444 - }, - { - "cum_prop": 0.04377397287358159, - "match_probability": 0.99987, - "match_weight": 12.97, - "prop": 0.0011072007592233778 - } - ] - }, - "height": 400, - "layer": [ - { - "encoding": { - "x": { - "axis": { - "format": "+", - "title": "Threshold match weight" - }, - "field": "match_weight", - "type": "quantitative" - }, - "y": { - "axis": { - "format": "%", - "title": "Percentage of unlinkable records" - }, - "field": "cum_prop", - "type": "quantitative" - } - }, - "mark": "line" - }, - { - "encoding": { - "opacity": { - "value": 0 - }, - "tooltip": [ - { - "field": "match_weight", - "format": "+.5", - "title": "Match weight", - "type": "quantitative" - }, - { - "field": "match_probability", - "format": ".5", - "title": "Match probability", - "type": "quantitative" - }, - { - "field": "cum_prop", - "format": ".3%", - "title": "Proportion of unlinkable records", - "type": "quantitative" - } - ], - "x": { - "field": "match_weight", - "type": "quantitative" - }, - "y": { - "field": "cum_prop", - "type": "quantitative" - } - }, - "mark": "point", - "selection": { - "selector112": { - "empty": "none", - "fields": [ - "match_weight", - "cum_prop" - ], - "nearest": true, - "on": "mouseover", - "type": "single" - } - } - }, + "cell_type": "code", + "execution_count": 11, + "id": "3ba5c515-629c-490c-b8e4-a63ea242ea0a", + "metadata": {}, + "outputs": [ { - "encoding": { - "opacity": { - "condition": { - "selection": "selector112", - "value": 1 - }, - "value": 0 - }, - "x": { - "axis": { - "title": "Threshold match weight" - }, - "field": "match_weight", - "type": "quantitative" - }, - "y": { - "axis": { - "format": "%", - "title": "Percentage of unlinkable records" - }, - "field": "cum_prop", - "type": "quantitative" - } - }, - "mark": "point" - }, - { - "encoding": { - "x": { - "field": "match_weight", - "type": "quantitative" - } - }, - "mark": { - "color": "gray", - "type": "rule" - }, - "transform": [ - { - "filter": { - "selection": "selector112" - } - } - ] - }, - { - "encoding": { - "y": { - "field": "cum_prop", - "type": "quantitative" - } - }, - "mark": { - "color": "gray", - "type": "rule" - }, - "transform": [ - { - "filter": { - "selection": "selector112" - } - } - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n", + "\n", + "Estimated u probabilities using random sampling\n", + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - dob (no m values are trained).\n", + " - postcode_fake (no m values are trained).\n", + " - birth_place (no m values are trained).\n", + " - occupation (no m values are trained).\n" + ] } - ], - "title": { - "subtitle": "Records with insufficient information to exceed a given match threshold", - "text": "Unlinkable records" - }, - "width": 400 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHeCAYAAAAM+duYAAAAAXNSR0IArs4c6QAAIABJREFUeF7sfQmYVbX5/ocssokzVQZxK4yKlkULVMEOVmGm4gL414ICAsWytYiIglA3FhXQqShQlaJSFxYXFGVRq4Va6IwCdaBW0IIKorgA6gjKIuv/eePvjHcu996TsyQn5+bL8/jIzOQk+d73S96TnORLlUOHDh0iTowAI8AIMAKMgGUIVGEBtIxxNpcRYAQYAUZAIMACyI7ACDACjAAjYCUCLIBW0s5GMwKMACPACLAAsg8wAowAI8AIWIkAC6CVtNtlNPZ5ValSpZLRzt6v5N+nQyaxjF27dtG+ffuoTp06VK1atcjA9GpDZA3lihkBQxFgATSUGG5WOAiMGDGCJk2aRLfffjvdcccdolAIGMQL6auvvqKf/OQnGSubPn06/f73v6fx48fTLbfcQl27dqXnn3+eXn/9dbrgggsyPrtixQpq27Yt9e3blx577DFPRrVr145KS0vpgw8+oFNOOeWwZ6+66ip69tln6V//+hchb5zThAkT6NZbb6UHHniArr322jibwm2PEQIsgDEii5vqHQFHAG+77Ta68847DxPAL7/8ko455piMBf/lL3+hP/zhD3TXXXeJQXratGm0evVquvHGG+mMM87I+Owbb7xBBQUF1LNnT5o9e7YnAxwBfP/99+nUU09NK4DLli2j8847z1PZpmXGywU4mjp1Kl133XWmNY/bk6UIsABmKbFs1g8IyAggZnIPPvggXXLJJfTvf/+bysrKqLCwkG6++WZq3LgxJQsgZpNLly6lKVOmUN26dWngwIHUpk0b2rlzJ7388st01lln0dChQ8XsMFkAZ8yYQc888wwdd9xx9Mgjj9CaNWvE7BR1/vSnPxUzuT/+8Y+Ul5cn/o0ZIGauCxcupO3bt9NvfvMbGjt2LNWoUYOcGaAjgP/4xz+EyL/77rt02mmniZlUjx49DnMFCDFmtb169aLFixdTgwYN6M9//jNleh7txOwXM1rY9+tf/1oIVc2aNam8vFz8bdGiRaKNP//5z8Vs2RHlX/3qV3TCCScIex566CGaP3++eA4vEG+++SY1a9ZM2Dtz5swKAXznnXcEPi+88AI1bNiQ2rdvT+PGjRPPcWIEwkKABTAsJLkcIxGQEcA5c+YIwULKz8+nbdu20bfffisGeMxIkgUwcQn06KOPplatWolnjzrqKKpfvz5t2LCBmjRpQuvWraskgP/v//0/uvLKK0U+CAnyHH/88bR161a6/PLLafPmzUKAneVSRwBR9tlnny3+hgSxHjx4cCUBrFevnhAepEsvvZQgirDh6aefFvkS0z333CNE1kn9+vUTtqZ7vkOHDmIJFuVB1P7zn/+If48aNYomTpxI559/vliGhYhBeCHaSG+//TadeeaZh31//d///kdXXHGFEGpgAQxhOxLwxmwborh+/XoaPnw4LV++XJQ5efJkuv766430M25UPBFgAYwnb9xqSQS8CGDnzp3pueeeo02bNglxwoC+ZcsWKQFE3rVr11JOTo6Y7UDUMIBDTLEEeuKJJ1YM8o4w4PsjZoTHHnusyDNr1iyxzIp/l5SUVMwA8e0QoojZGmZeEKQlS5ZUEkB8C8T3M4jSoEGD6NVXXxVC4pSVSgCbNm0qZlm//OUvhQCmex6zyCFDhlQs40LARo4cSY0aNaI+ffoIcYaQwWbM0PC3P/3pTzRgwAB6+OGHKwQQMzgIGGaTEHdghpcEzKIdzCCAEEfghYRyIKLAES8XF154oSTznI0RcEeABdAdI84RYwSwNIdZCmYS9957r7Dk66+/rvjuhyW7J554QswAMTPC4L1jxw4xK8Ggjn/LzAA7duxIf/vb30T555xzjpitYaBH+RChxLRq1Spq2bIlHTx4kG666Sa67777Kv09WQAhOKeffnqlzTvYhXr11VeLTTCY7WHJEaKXnBwRTyWAEKTRo0eLP1100UVpn8dSKdqYagaGGSYE8rLLLqMXX3xRlPXSSy9Rp06dxGwRbXN22u7evVsIJIS+d+/elb6LYjn0/vvvr1gCdX522g1BBA+Y3XJiBMJCgAUwLCS5HCMRcAZofI/Dtz4kfL/DzxhUP/nkE/H9CwIIgYRQ+hFADMz4BpZOACFEEAnMuDBjwrcvfC/s0qWLmOE89dRT9Nlnn4kZXrIAYscpZkX4TviLX/yi4u+J3wD/+te/0uOPPy6+J2JJEwKJ2SsEp3Xr1pW4cZZAEwXtmmuuSfs8liox08Ps8u677xYzWWAG/PA9EEugDpaoyCnf2fjjCKBzbMMRSNiN2TASlofxbRAzwG7duonZNPJ//PHHAld8CwSGwKhq1apG+ho3Kn4IsADGjzNusQcEPvzww4odlBApfMuCKGK5DkLx6KOPahFAiAHEDzM5CAg2oZx00kli4w2OSeCbHMQF37vwMwTS+QaImSjaiuVZPItlQSztJgogxA7CAZHArPeVV14RMzrMpHAMJNUMMFEAUXa651EelmmRMNP8+9//Tv/85z/Fv/HCgKVUfPe8+OKLxa5YzOSQIPD4XbIAYtMMNvzgOyKWnWvVqiVmskgQQHwPBTawZcyYMeKsJZZ18X0Wy8osgB46AGfNiAALIDtI1iMAMcA3NIiekzDYY8ZUu3btCgGEUEAwMDBjU4mzBJruHCBEAPmwCSbdDBBlnXvuuWLHJXY5YjaHTTQoG4M5lg9RDhLaiDbhbx999JGYHWLzB5ZXneVNzFznzZtHubm5FQLonAN0ztI5NkJIMDPEd8nEVFxcLGZzyUuamZ6HqAEbJ2E3KpaOcZ4SOzZhE+xxkoMlfk4WQPwO3zMxqwU+SBBC7HTFzBLfG5PbAkwwC8TuXE6MQFgIsACGhSSXYzwCmD198803YkZo0nZ6tAtCiv/SJSzL4pgFjgRkSsizceNGkc/tfGOqcjI9j79hpoeynRmhUwaWK2EH2olZtgy+33//vRB6bKY58sgjD2sOvp9iCRRHPtLlMd7puIFGI8ACaDQ93DhGgBFgBBgBVQiwAKpClstlBBgBRoARMBoBFkCj6eHGMQKMACPACKhCgAVQFbJcLiPACDACjIDRCLAAaqJn//79Wq7OQT1HHHGE+C+qhA0R2MDg7D7ETj9sdY/y6iAvWMStvV5si2teBA3Af3HxoahwPnDggKjay1ER9Fc8pwrbsMekMMvLSgFMRSa2UWMLObZ+4zyRzoSIIC1atBAHe8NKOCPWv39/sXUe28NxqBi77/B7XN2DbfeZUuLzYbUJ5SDGJc68IRoKDnfj/BbCYWGrPLawz507lxAcOVXC1nhEN8GZNj8JuwoR6Ll79+7ieENikrU3sb3Nmzf30wxfzyD82sqVK8VZvKA4JDcg0T98Nc6AhxAF5rXXXhNHQMJMztVY6W7cCLOuoGXhjCjGtuTIQonl4tzkp59+Ks63ZkrJ/oZACAgKoSLJjkmJdeMYzHvvvSeODiUnnH/FGBLGtVlZLYCJgy3iLiI8E7ZTI46izqRCAHEdD24UwJZ0ROPAVTIYPGWdLfH5MLFALEvcgIDoHeis2MKOs2yIN4kOjIPSyefSnPpxQBqxIXEQ3E9yQpxhAECQ6cQkYy+ipyS2108b/D6DM3DDhg0jHNwPikNyGxL9w2/7on5OlQBiVom4q4iwk/zSFLXNyfUj+AHCySEYerokK4CJ/oYXLtMEEEEWEIEo1RViLIAununMAEFs4sFZXCuDaBx409m7d6+IgwiRxICMmIyYOSBhtoJAwv/973/FAWdcMYOzY3gjQRR+hKRyIl7gbQyDKwjDlTiIc4jwToisgRiUWIpA8GKEh8IMEH/D2w0OZyNEFTo2ooMkJoSFgkMidBZmUYiOgTBeOFuFGQriNsI2RBGBqEB0EIoKQZNxVQ4GPDgP/sNsDCG+kpdE8PaE54EP3qZQLuI97tmzR1wDhNklEtqNw9R4U0Ye3IeHKCWIWrJgwQKRBwKHg9KIVoIZKTrpDTfcIHDE7AMHxXEFEDow4k+ifcAHZeFcHhwah7PxogBs8Jafjh+0L117cWUODpVjNgx8EDzZSTL24mB2YnshiDJ8w6fAAfjEmzdCnUHMEEEFMwuEWYOtSAj3hUPiEHoEdgaOsLWoqEicscMBc0SFcXCAL8OPcBgf+TBDhq/hcHkm3hy7ERot0T+AUarysESdnHAoH7x+9913YkUBZYE3BM3GgX5co4SycDsE/BThy1L1my+++EIEwQY34B4+hVioSJj1wi+ABw78oz6cX4Qwod/hpg5EjUGwbCyrp5oBog3od1gaQ39FpJxkfweOwBT5fvaznwmOkAd+ivBzqAcrJxgDnNUT5EU/xSCcrp3gBS9cOHuJGSp8AAECEn0PdiKfExwdfRm3giBAguMX6HtOnNNU9qCv/fa3vxWY4RlE4AGvuJsSZzKBOwIIQAAxPiFAAfBGezCLSjwTirYm+hvshl+h/yIvIvCgvXgpwJiC/LARS6T4fSq/wN/SjW14KU83JsEujDcYkzFOwrcwliUKIMYIBGvHizVepHHeFIEXeAaYRggdAURnRZxCCA8CCmNQx4CPO8kwyED80BkxuMO54JiYfaDDYbaIwRydCQ6Bty6IIJYyMbAhMgfug8Nt3ei8GIxwgwCEFB0KM00MfHBA/A5RSNAOOD3ahCgdWI7F9yYnhqRjDhwRMxE4NxwTnRMig7IgghAWOC3ywSEgZGg/BmuIJ/LCUTEgwEkQ+zJ52RFOiechPugsaDuicCAkFW4ogIjBoRGNBIM2Dizj3jsIC2bT+LezZILYjrAVDgpcsYSJDo0ZGV4QEHoMkT5wtx4wxw3swBHCjutzMDhicMWM1lkCTccPllbTtReBlzGIYpDEYAIMnSRjL4JUO+2FOEFIZfgG1+Ac4gU8MRCBb/CLBDEEVvAjhPjCixdeluBHuPYHnR2+hPwYcIGbgwPEFYMdBkW0Bb+HX2LQSIdD4iF0+Gaif0DgU5XnXBbs4IV24DlwBMHACxlud0CwcAxm8GNEhsG/0RfgX6n6DdoPW/GSiWex+gLRxywXS9bgHIMbBjS8BOEgPXiEz8DH8MIE4Yc/oM8kCyD6AgZzLLMjOg5WQfBSibyJCTMeYAffxlgADpzwdMAR4oRxASIOIUPCywL+w4tfunZCcPBijXYiJBz6G/5zgow7bXDy4fcY4GEb/AG8O6HlMPtPZw/GJfgRMMMLLXDEuIIXD2CJ4OJ4gYI4oT3wLbxkQODRfqwQOQnjXbK/wX+B2e9+9zvxEoIXEIyHzkXF6FeIHoQX0FR+AbvSjW1OSL/kMQnCDf+HXXjxgA9C7BDZCC8rzgwQ4o67KjFGQNTBIYSSBdBFAFP9GYKFgRhvf3jbcd72EOwXnRSxC0Ewol5gSQRvP+hcEC38DR0U3xORELkDpMKhMQA43xHw1oTBzAn0C7LQySGA+E6HvCAY5WOAwqCemND50WHwN7xlo3x0VgzOmBXijRqR9iFgGJiSl0Ah8uiQSBBNOJAzo0snCHAwdHYnDBhmu+iMeFNFZ0Ob4ZB4s8UbfyoBRAdG58P3BTgpOisGY/we311hCwQQgytEGgMdEkQVET9OPvlkMUh9/vnnafnB4IkBK1V7MaDgTTfVEmiyAKZ6Hn7htBcDoizfzjVFjs+AF3CHpTUMJPA1vITgmyI6MGaauN4HWGH1APmSl6QcAYRvYPBxBAozTHCL8tPhkHxLfaJ/pCsv+fsPXnyAp/MtCasAeFlEveAOeMIv8aIArh3BTO43EDbMJNCP8KKAPgAxgdigTsyGwT1mtCgbbQf/EEv4mhPHFJghJQsg/BQCAJHFzAACiJcf9J/EhD6Aly0nnBtecHHjBwTaEUDn6iq8gEB00U6IJWxL1068pEIoHF+G8MD/k5fu0B70I3CNhL6AF1ZnxgaMUCfGp3T2JC6BgkfY4AgtRB8CjDoS68GLA3BObk+yv0EAMdMHFrAXL3IY6yCAeAkCJ9hYl8kv0o1t8JVUYxIEG9hhRQkJWONlC/hhbMZ4g1m4c3k06sZLPV6g8ULIAugigBhsnRkgOhmm2BhY8CaBJZXkhMEeeTB7QWdMTBA6OALeEBNFBB0cIoNOB4dBwtsYxBQzKiRsDMEbHDo/nBNihhkClmHQAZKveIHA4dsell3g5Bj0MQuDI8FJMCg5A3oqAXQ2x6BuOB4Gj2RnSRaExE0AGIwgchiwMZhjSQeij7rgeBjMEwUQbcPAIiuAmE1jcHXwcfB0Nn9AFNLxg5cLdNJU7cXsSlYAUz2PwdcRQLyVy/KdvGkFLztYEnKCQuNFCVcF4QUGy1Z4+8aLBgQEs6ZMAohnMRjgxQcJ/oMZD4QmHQ4QvMSUKIDpykveoIVl+cTYnijPiY2Kf0P4gJEjbOgfqfoN+iD6VXKCcKAv4eUwOeHFCysbEF30LyTMerDCkCyAGNyxJAiMnBdTzHCTBRCCg/KcvuYssSUKIAZw8IFVH6yAoG1YTnTuSkzVTtiHsQV+iYSXBPT35HaiPRjYMUNDAr7o15h1wV6sNqBOiHA6exIFEDzixQOCn5iS68GL9ltvvXVYe9K9cKEs+CNesOETyd/iMvlFurEteQOaMybhpQH93LkODPZjUoD24moxCCAE3nkpghAiYYICHlkAD+s6P/wi3TdAvA2BXCzZ4BJOrD873wjRkfCm7qxF4/sPBjFcv4LvHRhEIEZ4O0M+OAfeIEEU6ksUQLyhYxB37kfD2xdmmlg+AKkoC9+7IATIgzfX6tWrHzZogXi0Ad/1ILJwJCx14u0skwAm7gKVFUC8jWEGhOQIIEQcMRrxHwZ5LO0535OwDOfs1oSQYcYrK4CYBWG50cEHd+cBAwxgeEFBW9Lxg80tGPhTtdeLAKZ6PlEA0R5ZvpM3EWDABJ9Ox3YEEN+w8DKCDo7b1yEaWN7OJICYlSd+74Bw4IUDA2w6HDIJYLrynLsMHSd0lrOcGQb8Hi9m8EPwhRkI+IIfON+o8fKY3G8wYGIGi2cdgUIfgNDgOfRFJxg4nkW/wIshysLg7twAjxeuL7/88rCBHEt8+A6OVROUCbHFslqyAELcIIyYdSGBI8z0EgUQM0RnBgeu8K0dPo8X5nTthEAk7rrMJICJ+YAL8uKTRaIAYmk7nT2JAogVGSy5O/jAH7CCAmFLrEdWABM3wWQSwHR+gZfldGMbfC7VmASfwos2PlUhOThgnMQLD8rDzBb9By8i2EuAhH6OsZwF0KMA4s0bb4FYmgSRcBgMQhA5dFI4Ojo01qbhnBAbdBq8maCjYHaBt0PMivD2CyFCJ8IUPlEAMcChA2OgwncbzPiQH8RiWQfr9sjvRMTH4JC8A825yBUDHpwHb7CYNSIv/p0ogBiUMEBgrT95F2gQAcTAhOUQtBdij2MkGJQwq8Ygi5kgll3wM2yTFUDYCnxQNkQHswkMSJgROUt/6fjBi0S6gR8DIL4DYRDFIJiYkme8bgLoiKkM37ICiM6Ot3b4H/wGS6z4Tgn/wXdUfH/B4AXcHRzgs3iBwgAPfDD7g4iCb1kBTPSPdOXhO0xiQl/A92BcaQThQn3YKIPVAHxbAp7wBSydYcCEaKXqNxjI4PPAEd+J0Q/wYgGOYCv6HfwIzyMPXgrxe7xUYfkLm6ewlA5/wQw6eWaFsvDihvx4qYKPwhYsLycm9FkMsCgP2GNQxnfpZAHEi6sz0DpL6fgmmK6dWJoOUwDxspPOHgz6mHHDBqwuAB+8nGM1AAKEGTt+JyOAyf4mK4Dp/AIz23RjG/p3KgFEHwdf8DH4E8QfqwKYmCTOPLH0iWVP2AxfwayZvwGmEb/EGSCm5Og4TnJuooYTYbkSIoQ3fSSACsfCmzs6BTo8EjomyMVAj86JN0IMCFjCwmCGQQsDAKblzhIovvvgTRTOiYTlK4ghZo2YKeGtFUuAEFZ8+IdzJCdnqQuDJZZH8I0SzoE3IaTEZQVHLDFgYYCTnQFiqRTtTDWQol4ILb5NOLMztAPOiTcy2IvBDFgAYwwujgBiSQjLtPimgdmjIzbON0BHjJzlIAxEaDtwdAZ+ZwduMj+YJaRrL9rnfHBP/g7o4JXJXohxYntl+ZYRQPCPt34sLWGZCwlvsFgGw0sYBnIIC2bdqNfBAS88GHyBh+OP2DSFGXImHBL9KdE/UH+q8uCPiQmbETDDwLdSp168qUOMsQyOPoQXQrwwQsDBP8QxVb9Bv3J2WKMszEow2CHhBdOZKaMNeNmCP+GbE8QeswAk9FUsTzuzBaetECdnmRQDMPwSgyNeNhJnwigPoogZBerBbA//AevkpWTwBBFKnBWna2fysQO8OGOGnNzO5HyoA30fY0PizAcDfDp7nFUJZ1aKFyiIPvogZoIQ4+R6gDXyJLcHL/2J/pZOAJPP46XzC0wm0o1t6V7KMRvH5AAvd7ABL1iYwWJ1IbFeZ3zFmAvusJ8AL8I8A8wggjJ/wgdVfHTGYIK368SEnVJYBkm+fgYOAEcECW7nhrBzEp3WWbt2yscbKMqAqIYVfQFlYpbmJQKEDEZ4+4aAYWaVbAcGZ7yZJe62lCnTyYPdpGhvunOBmfjJVA+WVtDeMJIXvmXqw0sQXhSwIQTcw8eAHzo/7MVLkbNU6JSHJXYIDvJhZurcrydTX6LPOf4hWx7aiu9W8AHsEpapN12/ca5ZwjefZG7wQoDl9ORrqoAHsMKydzImibajfRjQgSnaiPLgl4l9ARt34GeoAy85EG7MmrCsKJvStVP2edl8mezBS7bzWQLlYRyBKPjpg+n8za2dmfzCz9gG7iBuWKZONx7Cr/BijTzJn4vc2pvp71l5ED4IIPwsI8AIZB8CmGXg2ACWR/FSg5USzFyTl8qzz3K2iAWQfYARYASsRgCfJfCtCd9XMQPFdyV8n+dkNwI8A7Sbf7aeEWAEGAFrEWABtJZ6NpwRYAQYAbsRYAG0m3+2nhFgBBgBaxFgAbSWejacEWAEGAG7EVAqgNjaiiMGmbZP4wA1trWGvX3fblrZekaAEWAEGAE3BJQIIOJo4tApgqfiHBEOx+LgIk7349wTzs/hwCaEEXEzcRDY7UydmyH8d0aAEWAEGAFGwAsCSgQQgoeDszhkiqDD+DeCOCP6A0IZ4RAqIivgECcOwOJnTowAI8AIMAKMgE4ElAggZn9Y1nQCuyLmG0JTIbwTzuBA+BCZAbNChFYKKxqKTuC4LkaAEWAEGIF4I6BEABG/D9f/IGgvoi0gSCu+ByLckxPVG3E5ERsSy6W4FgP3f+EZJMR+g0AmJsT5Q+BUTowAI8AIMAKMgFcEEL4yOSkRQFSCb30I2ovYbYgan3jhJuK64eYCBHXFRZMQPwRGxT1a6TbMIMgsbiTO5oSYm6lIyiab2cbsYZO5zA4ubeZRiQAiwjpAhbjhxgREOH/yyScrvAVR0BHpHd//8Dfcd4erTiCA6ZZDWQC5s8UFARsGFHBhg51sY1x6XeZ2puNRiQBi5yeuJcG1OfjeB2FDRHckRFTHJZu45w5X22ADDC6AxK5QXPmTLrEAZrcjZod1P1hhw6Bpi502cGmzjUoE0BnMsOyJa4YSlzWdO/Mgjl4SC6AXtMzNa3NnM5cVfy1jLv3hZtpTNvOoVADDJJoFMEw0oyvL5s4WHepqamYu1eCqu1SbeWQB1O1tGeqz2RENoiFwU2zgkZdAA7uJMQXo9tcNn39DGz//hlo0rk95uXW04KD1G6AKi3gGqAJV/WXq7mz6LeRvgFFgrqpO9tfwkZ2zeA09tWQt9ShsRj2LmodfQYoSWQC1wBysEu5swfAz5WkbeOQZoCneFrwduv315of/QWs2bqNbe7ejtk1PCG6ARAksgBIgRZ1FtyNGYS/bGAXqaupkLtXgqrtU3Tx2vvkZYeLTY66gOjWrazGXBVALzMEq0e2IwVrr72m20R9uJj7FXJrIivc26eTxnQ1b6ZZHXqfGDXNo6tCO3hvr8wkWQJ/A6XxMpyPqtCuxLrYxKuTDr5e5DB/TKErUyeP80vX06KLVVNiqEQ3r1kabuSyA2qD2X5FOR/TfymBPso3B8DPpaebSJDb8t0Unj+NnltDydz+lYV3PocLWjf032uOTLIAeAYsiu05HjMI+1Mk2RoV8+PUyl+FjGkWJOnnsPm4e7dyzj2aM7KTtCESmcYfPAUbhcWnq1OmIUZnNNkaFfPj1MpfhYxpFibp43Fq+k/oVLxIbX7ABRmfiGaBOtH3WpcsRfTYvlMfYxlBgNKIQ5tIIGgI3QhePS8o20uTnVoqjDzgCoTOxAOpE22dduhzRZ/NCeYxtDAVGIwphLo2gIXAjdPE4ee4KWrLqI+rfqSVdVtAkcLu9FMAC6AWtiPLqcsSIzBPVso1Roh9u3cxluHhGVZouHq+f+iohDNqEAe2pRX6eVnNZALXC7a8yXY7or3XhPMU2hoOjCaUwlyawELwNOnjExhdsgEFaOPGq4I32WAILoEfAosiuwxGjsCuxTrYxagbCq5+5DA/LKEvSwaNzAL554/o0cWAH7eayAGqH3HuFOhzRe6vCfYJtDBfPKEtjLqNEP7y6dfAYRQBsmRdvPgYRnh8FLkmHIwZuZMAC2MaAABr0OHNpEBkBmqKDxygCYLMABnCKKB7V4YhR2CXjiFG3K8z6beAReNlgJ9sYTs+IIgC2zLjDM8Bw+A2lFO5socAYeSE28MgCGLmbhdYA1f6KnZ/YAZqXU4dmjOoUWru9FMTfAL2gFVFe1Y4YkVmVqmUbTWAhnDYwl+HgGHUpqnmMKgA2zwCj9iyP9at2RI/NUZKdbVQCaySFMpeRwB56pap5jCoANgtg6K6itkDVjqi29XKls41yOMUhF3MZB5bc26iax/7Fi2hL+U6aMrQj5TfMcW+Qghy8BKoA1LCLVO2IYbfXT3lsox/UzHyGuTSTF6+tUsljlAGweQbo1RMizq/SESM2raJ6ttEUJoK3g7kMjqEJJajkMcoA2CyAJniXhzaodEQPzVCalW3h0NNzAAAgAElEQVRUCq/WwplLrXArq0wlj48sWk0LStdTj8Jm1LOouTIb3ArmJVA3hAz4u0pHNMA80QS20RQmgreDuQyOoQklqOQxygDYPAM0wbs8tEGlI3pohtKsbKNSeLUWzlxqhVtZZap4jDoANgugMpdRU7AqR1TTWn+lso3+cDPxKebSRFa8t0kVj1EHwGYB9O4LkT6hyhEjNSqpcrbRJDaCtYW5DIafKU+r4tEJgN2loAkN6NQyUnP5G2Ck8MtVrsoR5WrXk4tt1IOzjlqYSx0oq69DFY9RB8DmGaB63wm1BlWOGGojAxbGNgYE0KDHmUuDyAjQFFU84gJcfAd8eswVVKdm9QAtDP4ozwCDY6i8BFWOqLzhHipgGz2AZXhW5tJwgiSbp4JHEwJg8wxQ0gFMyabCEU2xzWkH22gaI/7bw1z6x86kJ1XwaEIAbBZAk7xMoi0qHFGiWq1Z2EatcCutjLlUCq+2wlXwOHnuClqy6iPq36klXVbQRJst6SriJdDIKXBvgApHdK9Vbw62US/eKmtjLlWiq69sFTyaEAA78hngt99+S3Xr1qUqVaqkZXPPnj1UvXp1qlq1akbG77nnHho1apQ+r4igJhWOGIEZGatkG01jxH97mEv/2Jn0ZNg8mhIAOzIBLC8vpwEDBtBRRx1F27Zto65du1Lfvn1p/PjxtH37dqpduzaNGTNGCGPv3r1p+vTp4neZEgugSV3Gf1vC7mz+W6LuSRtsBHo22Mk2eu8ny9/9lHAHYPPG9WniwA7eC1DwhNYl0Mcff5xefvllevbZZ+mNN96ga665hl555RUaMWIEzZs3T4jh8OHDafPmzbRlyxbxs1tiAXRDKB5/5wElHjzJtJK5lEHJ/Dxh82hKAOzIZoCff/45/fznP6cOHTpQSUkJDRs2TAhe+/btKTc3VwhfaWkp9erVi2bPnk3VqlVz9RIWQFeIYpEh7M5motE22MgzQBM9z1+bwvZXUwJgRyaAr732mljaHDhwIK1YsYJq1KhBixYtogMHDlBZWRm1atWKZs2aRQ0aNKB169bRsmXLaOTIkdS2bVvRZogmBDI5devWzR/D/BQjwAgwAoyAFgSuf+Tfop4pA87WUp9sJfn5+YdlrXLo0KFDsgXI5sOS5xlnnCE2rWAjTL169cRSZ15enihi165dNGjQIBoyZAhNmjRJiN/gwYOFWKbbMMMzQFn0zc4X9tumidbaYCPPAE30PH9tCtNfnQDYjRvm0NShHf01SMFTWr8B3nvvveID+YMPPkibNm2iNm3a0Kefflqx1FlcXExFRUVCFJcuXUpjx46lgoICIYDplkNZABV4RQRFhtnZImi+VJU22MgCKOUKscgUpr+aFAA7EXytAghh69y5M+FbINLo0aPFrlAk7ArFz9OmTaN9+/aJDTDLly8Xu0L79OmT1mFYAGPRl1wbGWZnc60sogw22MgCGJFzKag2TH81KQB2ZALoVPzZZ59R/fr1xTk/J+3YsUP8E8uiXhILoBe0zM0bZmcz1UobbGQBNNX7vLcrTH91AmDPGNmJ8nLreG+Moie0zgBV2MACqAJV/WWG2dn0t16uRhtsZAGU84U45ArLX00LgB35DDBM8lkAw0QzurLC6mzRWeBesw02sgC6+0FccoTlr0vKNtLk51ZSYatGNKxbG6PM5xmgUXSkbkxYjmiyqWyjyex4axtz6Q0vU3OHxaNpAbB5Bmiqx6VpV1iOaLLZbKPJ7HhrG3PpDS9Tc4fFo2kBsFkATfU4FsCYMeOtuWENKN5q1Z/bBjvZRjm/ws3v2ACDm99xA7xpiZdATWMkRXu4s8WAJIkm2sAjYLDBTrZRwuGJyMQA2DwDlOPOmFzc2YyhIlBDbOCRBTCQixj1cBj+amIAbBZAo9zMvTFhOKJ7LdHmYBujxT/M2pnLMNGMrqwweHQOwE8Y0J5a5P8Q8tKkxEugJrGRpi1hOKLpZrKNpjMk3z7mUh4rk3OGwWPnm58RJuL7H74DmpZYAE1jJEV7wnBE081kG01nSL59zKU8VibnDMqjqQGwEzFnATTZA/+vbUEdMQYm8saJOJAk2Ub2V0mgDM8WlEdTA2CzABrueMnNC+qIcTCXbYwDS3JtZC7lcDI9V1Aex88sEbtAh3U9hwpbNzbSXJ4BGklL5UYFdcQYmMgzwDiQJNlG9ldJoAzPFpRHUwNg8wzQcMfjGWDMCJJsbtABRbKayLPZYCfbmNnNTA6AzQIY+RDhrQHc2bzhZWpuG3gE9jbYyTZm7mVOAOy2TU+gW3u3M7VLpvXVKocOHTpkbKsTGsa3QcSBJfc28oDijlFccjCXcWHKZRa3YQPl5+f7MsbkANg8A/RFaXQP8YASHfZh1mwDjzwDDNNjoi0riL9eP/VVwjLolKEdKb9hTrSGZKidN8EYS82PDQviiDEwTzSRbYwLU+7tZC7dMYpDDr88OgGwYePCiVcZbSoLoNH0/NA4v44YA9Mqmsg2xoktdUtncUGB/TU9U6YHwOYl0Lj0sv9rJ3e2mBGWprk28MgvbNnhq0F4dA7A9yhsRj2LmhsNCM8AjaaHZ4AxoEe6iSyA0lAZn9EGLv3aaHoAbJ4BGt+9KjfQryPGyUy2MU5s8RIo+2t6HzA9ADYLYMzGGu5sMSOMl0B9b5+PC9PcJ1MzFYcA2CyAcell/A0wZkzxzCjIt6M4kc0CmJqt+aXr6dFFq6mwVSMa1q2N8ZTyN0DjKeJdoDGgSKqJNgyaLIBSrhCLTH78NQ4BsHkGGAv3+7GRfhwxZibyUY+4EZahveyv2UGmHx7jEACbBTBm/unHEWNmIgtg3AhjAeTvnEk+sLV8J/UrXiRufscN8HFIvAQaA5ZYAGNAkkQTbeCRl0AlHCEmWbz6a1wCYPMMMCYO6DTTqyPGzDzRXLYxjqylbjNzmR1ceuUxLgGwWQBj5p9eHTFm5rEAxpEwXgLlJdAkH3ACYE8Y0J5a5OfFwqt5CTQGNLEAxoAkiSbawCPP5iUcISZZvPhrnAJg8wwwJg7IS6AxI8qluV4GlDhbboOdbGNlD41TAGwWwJiNLtzZYkZYmubawCPPALPDV73yGKcA2CyAMfNRGwZOtjFmTsnfAPkbYIIPOAGwb+3djto2PSE2zszfAGNAFYtDDEiSaKINPHqdOUjAZmQWG7j0YmOcAmDHYga4Z88eql69OlWtWjVjB7jnnnto1KhRRnaSsBrlxRHDqlN3OWyjbsTV1cdcqsNWZ8myPG74/BvCDtDGDXNo6tCOOpsYuC6tM8A//elPVFpaKhp98OBBWrhwIa1atYpefvll2r59O9WuXZvGjBlDVapUod69e9P06dPF7zIlFsDAPmBEAbKdzYjG+myEDTbyDNCncxj4mKy/xi0AthEzQMzajjvuOLrssstoxIgRNG/ePOrbty8NHz6cNm/eTFu2bBE/uyUWQDeE4vF32c4WD2tSt9IGG1kA4+yhldsu669xC4AduQD+97//pcsvv5zee+89qlGjBrVv355yc3OF8GGG2KtXL5o9ezZVq1bN1ZtYAF0hikUG2c4WC2PSNNIGG1kA4+yh/gQwbgGwIxfA/v3707nnnkv9+vUTbTlw4ACVlZVRq1ataNasWdSgQQNat24dLVu2jEaOHElt27ZN61UsgNnR4WwQBxtsZAHMjv4oy6MTADsvpw7NGNUpdsZr/QYIdL766is69thjqby8nHJycioBtmvXLho0aBANGTKEJk2aJMRv8ODBtGLFCvFdsKSkpOIbYuKD3bp1ix3w3GBGgBFgBOKOwIr1X9KcpRupxU9zqP+Fp8XSnPz8/MPaXeXQoUOHVFjz/PPP0xNPPEELFiw4rPji4mIqKioS3/+WLl1KY8eOpYKCAiGA6ZZDeQaogiX9ZdowO7LBRtmZg34PC7dGG7iUsTGOAbAjXQK98cYbxRJn8tGFbdu20ejRo2natGm0b98+sQFm+fLlYldonz59eAk0xVtKuF062tJkOlu0LQxeuw02sgAG9xNTSpDx1/7Fi2hL+U6aMrQj5TesvKJnih2Z2qF9CTRdY3bs2CH+VK9ePU+48QzQE1zGZpbpbMY2XrJhNtjIAijpDDHI5uavcbwANxl2YwTQrz+wAPpFzqzn3DqbWa311xobbGQB9OcbJj7l5q9xvACXBdBET3Npk5sjxtCkw5rMNmYDiz/YwFxmB5duPD6yaDUtKF1PPQqbUc+i5rE0mmeAMaDNzRFjYIJrE9lGV4hik4G5jA1VGRvqxmMcL8DlGWAMfdPNEWNoEs8As4G0NDawv2YHuZl4jOsFuCyAMfRNHlBiSFqKJtvAIy+BZoevuvEY1wtwWQBj6J82DJxsYwwdk2eA2UOaxxe2bPj+l0nklR2ED9tjeBdo2IhGUx4LYDS4q6iVuVSBqv4yM/GYDd//WAD1+5SvGnlA8QWbcQ/ZwKPb0plxpPhskA1cZrLRuQB34cSrfCJoxmO8C9QMHjK2wvbOFgOKpJpoA48sgFKuEItM6fz1nQ1b6ZZHXo/lBbj8DTAWrle5kTYMnGxjDB2TvwFmD2kevgHOWbyGnlqylroUNKEBnVrGGgOeAcaAPhaHGJAk0UQbeOQZoIQjxCRLOn+9+eF/0JqN2+jW3u2obdMTYmJN6mayAMaAPhsGTrYxBo4o2UTmUhIow7Ol49H5/vf0mCuoTs3qhluRuXksgDGgjweUGJAk0UQbeOQZoIQjxCRLKn/Npu9/mXyVj0EY5KQ2DJxso0EOF7ApzGVAAA15PBWP2fT9jwXQEEdzawYPKG4IxePvNvDIM8B4+KJMK1P56/iZJYQoMMO6nkOFrRvLFGN0Hl4CNZqeHxpnw8DJNsbAESWbyFxKAmV4tlQ8dh83jxAHdMbITpSXW8dwC9ybxwLojlHkOXhAiZyCUBpgA4/8whaKqxhRSLK/bvj8G0IEmLycOjRjVCcj2hi0ESyAQRHU8LwNAyfbqMGRNFXBXGoCWnE1yTzOL11Pjy5aTYWtGtGwbm0U166neBZAPTgHqoUHlEDwGfOwDTzyDNAYdwvckGR/zbbvf5l8lXeBBnaf8AqwYeBkG8Pzl6hLYi6jZiCc+pN5zLbvf6EL4P79+6latWrhoC9ZCt8GIQmU4dl40DScIA/NYy49gGVw1kQet5bvpH7Fi8TBdxyAz5YUaAl09erVdP3119PLL79Mv/71r2nt2rUEQfrDH/6gDR8WQG1QK62IB02l8GotnLnUCreyyhJ5XFK2kSY/t1KEPkMItGxJgQTw3HPPFVv0b7/9drruuuuoVatW9P7779PXX3+tbSbIApgdrsiDZnbwyN8As5PHyXNX0JJVH1H/Ti3psoImWWOkbwHcs2cP1apVixYsWECTJ0+mNWvW0FtvvUUnn3wyvf3223TmmWdqAYkFUAvMyithAVQOsbYKmEttUCutKJHH/sWLaEv5TpoytCPlN8xRWq/Own0LIBp5+umn089+9jOaP38+DRw4kBo2bEjjxo2j7777jurU0XNIkgVQp7uoq4sHTXXY6i6ZudSNuJr6HB6z9ftfptUKqV2gTz75JP32t78V6GPW165dO+rcuTPNnj1bDSMpSmUB1Aa10op40FQKr9bCmUutcCurzOExW7//BRZAFFBeXk5Vq1alevXq0apVq8R3QJ2JBVAn2urq4kFTHba6S2YudSOupj6Hx0cWraYFpeupR2Ez6lnUXE1lEZXqawm0f//+tHfv3rRNnj59uvg+qCOxAOpAWX0dPGiqx1hXDcylLqTV1uPwiPBnCIM2YUB7apGfp7ZSzaX7EsAqVapkbOaOHTvoqKOO0mIKC6AWmJVXwoOmcoi1VcBcaoNaaUXgsW5ug6w8/+cA50sADx48KJ7v2rUrbd26laZOnUo//elPxXGIpUuX0n/+8x+qXl3PTcEsgEr7gLbCedDUBrXyiphL5RBrqQA8vvP5/qyL/5kIni8BRAGI+gKRw/k/CCDS3Llz6corr+RjECG7Jw8oIQMaUXE28AhobbDTFhufKv0sq+7/S+76vgUQBTVr1ozeffdduvzyy8UmmHnz5olvfx9++CHVrVtXyzDDM0AtMCuvxJYBJT8/XzmWUVfAXEbNQDj1r/3f+/THJ1aJwhD+DGHQsi0FEkCEPpswYQItXLiQvv32W+rQoQPddttt1L59e204sQBqg1ppRTxoKoVXa+HMpVa4lVU2/x9l9OjfP6DmjevTxIEdlNUTZcG+BRBLoA888AA1b96cLrjgAsLGl5/85CfabWEB1A65kgp50FQCaySFMpeRwB56pXc+toRWrv8y68KfJQLlWwCdJVAIIZZBcRYwisQCGAXq4dfJg2b4mEZVInMZFfLh1nvlmOdo994DWRf+LDQBvPrqq2nOnDl03nnniZmgczxi0qRJVLNmzXDZSFMaC6AWmJVXwoOmcoi1VcBcaoNaWUU494fzf3k5dWjGqE7K6om64EAzwAYNGohjEMlp+/btYlNMurRz507CUYpMZwURbBu7TN1mliyAUbtQOPXzoBkOjiaUwlyawEKwNjjRX7oUNKEBnVoGK8zgpwMJ4K5du+jQoUOHmZcuEDZErV+/fgSBPOKII6hly5YiePb48ePF72rXrk1jxowRM8nevXsTIsrgd5kSC6DB3uWhaTxoegDL8KzMpeEESTTPif6Cu/9wB2C2pkACiJ2fM2fOFMug+Hf37t1FcOzjjz8+JV6PP/44rVy5kh566CEhnC+88AK1aNGCRo0aJY5Q9O3bl4YPH06bN2+mLVu2iJ/dEgugG0Lx+DsPmvHgSaaVzKUMSubmcW5/qFWjKj07rqu5DQ2hZYEE8Oabb6a7775bLGUeffTRQriaNm0qDsJXq1btsOaNHj1a3BlYVlZGJ554It1111108cUXi2MTubm54vnS0lLq1auXuFEiVRnJhbIAhuAFBhTBg6YBJITUBOYyJCAjKmZ+6XoR/aXFT3Nowu87RtQKPdX6FkB8x8Nh9wEDBtBf/vIXsaSJi3FvuOEGeu+99+iMM844zIJrrrmGli1bRi+//DKtXr2abrrpJvr444/F90CIIm6SmDVrFuHb4rp160TekSNHUtu2bUVZJSUlQiCTU7du3fSgxbUwAowAI5DlCDz62vv0zqZvqOf5jalNk2Oz3FqiVMEpXO8DxPc/fOsbO3as+G6H5IRCwyyvdevWhwF344030pFHHkkTJ04Uf4PQQdBOPfVU8TPKHDRoEA0ZMoSwkxTiN3jwYFqxYkXFDlOeAWanP/KsIXt4ZS7jy+XOPfuo+7h5woC7f9uKmp1xWnyNkWi57xkgysYFuBAwLGNis8rzzz9PZ599dlrBwvfCRx55hBYvXiyWO88991z67LPPKnZ6FhcXU1FRkfj+h6DaENeCggJRXrrlUF4ClWA5Bll40IwBSZJNZC4lgTIw2/J3P6XxM0uoccMcGtbptJSzIwOb7btJgQRw06ZNIhTaU089JTbBIBD2rbfeSmeeeWbKBn3//fc0dOhQsQQKwcQOUGycQdq2bRvhG+G0adNo3759YgPM8uXLxeyyT58+aQ1kAfTNvVEP8qBpFB2BGsNcBoIv0ocnz11BS1Z9JKK/tGhYjQXQjQ2IGo434OgCRE1m4wpukcc5wcQzfgilhpTp/GCqtrAAujEUj7/zoBkPnmRayVzKoGRmHix/Yhl0ytCORLu/ZgHMRNOSJUvETA3LmieffLLYzYkZ3BVXXKGNXRZAbVArrYgHTaXwai2cudQKd2iVJUd/sZlH100wQB3fAN9//316/fXXRSDsjh070n//+1/65ptvxLEIHYkFUAfK6uuwubOpR1dvDcylXrzDqi05+ovNPLoKoHMhLq4/uvPOOwUHr7zyCl1yySXi212bNm3C4iVjOSyAWmBWXonNnU05uJorYC41Ax5SdcnRX2zm0VUAgfkpp5wibn/G+T+cCcQuzvXr14sNLcceq+f8CAtgSN4fcTE2d7aIoQ+9euYydEiVF+hEf8Glt7j8FslmHqUEEN8AcU4Pouck3BF47bXXKifMqYAFUBvUSiuyubMpBTaCwpnLCEAPWKUT/QVxPxH/kwUwVZTrFCAjG87sYWfnhRdeKA7H60wsgDrRVlcXD5rqsNVdMnOpG/Hg9eHsH84ADut6DhW2bswCeEhCALEB5qKLLhJTZcQFXbNmDfXs2bPibF9wWtxLYAF0xygOOXjQjANLcm1kLuVwMiVXYvQXLH9iGZRngBICiHBnEMH69evTVVddJaK7INoL7wIN17V5QAkXz6hKs4FH2wfOqHwrSL1O9JfmjevTxIEdKoqywV99R4LBAXjc+o5vfghojUPtCEqNgNarVq0Sd/3pSDwD1IGy+jps7mzq0dVbA3OpF++gtSVGf7msoAkLIBFJbYJB1BaEPcvJyaEaNWqIGyFee+01+uqrr8Rt7joSC6AOlNXXwYOmeox11cBc6kI6nHqc6C8zRnaivNwf93DYzKOUACIGKG5vQBxQJ+FMIM4G6kosgLqQVluPzZ1NLbL6S2cu9WPut8bk6C+J5djMo6sAHjhwgP7zn/+Iy3AB1MaNG+mss86iX/7yl3658PUcC6Av2Ix7yObOZhwZARvEXAYEUOPjydFfWAB/QMBVAHGJbcOGDcUN8AiFFlViAYwK+XDr5UEzXDyjLI25jBJ9b3X3L15EW8p30oQB7alFfl6lh23m0VUAgdQf/vAHcRs8rjGCEOIbINLll18udSuEN6pS52YBDAPF6MuwubNFj364LWAuw8VTVWmpor/wDFByBohsuNF969ath/Gzfft2z9ca+SWZBdAvcmY9x4OmWXwEaQ1zGQQ9fc860V8KWzWiYd0Oj91sM49SM0BEgMFxiOTUoUMHngGG6Mc2O2KIMEZelA08AmQb7MwGG29++B+0ZuO2StFfeAboYQYY+YhCRDwDNIGF4G3IhgHFDQUbbGQBdPMCM/6eLvoLCyALoBkemtAKGwZOttE4t/PdIObSN3TaHkwX/YUFkAVQmxPKVsQDiixSZuezgUeeAZrtg07r0kV/YQH0IIAIF/r000/TP//5T2rfvr2I/lJUVKTtNng0lZdA49Hh3FppgzjYYCMLoJunm/F3J/rLlKEdKb9hTspG2eCv6WyU2gRzxx130JgxYwR4uA2ipKRE/BuC6ByJUE03C6BqhPWUb3Nn04OwvlqYS31Y+6kpU/QXngFKzgAx+zv66KPp0ksvFUGxcSj+jDPOoN/+9rfihohTTz3VDzeen2EB9AyZkQ/woGkkLb4axVz6gk3bQ3MWr6GnlqylLgVNaECn9JcW2Myj6wxw3759IgD23XffTV9//bW4DeKCCy6gjh070qZNm+jkk0/WQigLoBaYlVdic2dTDq7mCphLzYB7rO76qa8SZoG4+R03wKdLNvPoKoAArVOnTvTSSy+JeKBICIoNEdQZGo0F0KP3G5rd5s5mKCW+m8Vc+oZO+YNO9BdUtHDiVRnrs5lHKQHEtUdPPvkk4VaI//3vf9S2bVuaOnWqWArVlVgAdSGtth6bO5taZPWXzlzqx1y2xiVlG2nycyvFzA8zwEzJZh4zCiCAyXRhfOPGjXkTjKxHSuSz2REl4IlNFht4BBk22BlXG8fPLCGcARzW9RwqbN2YBXDDBsrPzz8Mh4wCWKVKlYzAcSzQcMfkuHY2LyiwjV7QMjsvc2kuP+kuv03VYpt5zCiA9957L+E+wHTphhtuEBtkdCReAtWBsvo6bO5s6tHVWwNzqRdv2dqc6C+NG+bQ1KEdXR+zmUepb4BA8LvvvhObXnA/IDbA4GiEzsQCqBNtdXXZ3NnUoRpNycxlNLi71SoT/SWxDJt5lBJARIHp0aNHJdxHjRoljkboSiyAupBWW4/NnU0tsvpLZy71Yy5To5flT5RnM4+uAogl0NzcXHH04YknnhBLnlOmTKHly5fTp59+Sscff7wMJ4HzsAAGhtCIAmzubEYQEGIjmMsQwQypqHc2bKVbHnmd8nLq0IxRnaRKtZlHVwF0IsFcffXVNG3aNAHowoULqUuXLiyAUu4ln8lmR5RHyfycNvBo+8zBVC98ZNFqWlC63jX6Cy+B/oBARgF87bXXxCaYBx98UByEnzlzprgA97777iOcDVy3bh1fiBtiT7Bh4GQbQ3SYiItiLiMmIEX1/YsX0ZbynZQp+HXyYzbzyMcgDPJhmx3RIBoCN8UGHnkGGNhNQi9ANvg1C+CPCGQUQMz6Mh2DuOSSS3gGGKIb2zBwso0hOkzERTGXEROQVL2f5U/bX2RcvwECoN27d9Njjz0mbn9AwlGI9957j+bNm0d169YN5AV79uwR9wsiyHamxJtgAsFszMM8aBpDReCGMJeBIQy1ANng1zwDlJwBOtmcYNjJwGFnaCoB/P7776l+/fp00UUXiUdOP/10uvPOO2n8+PGE6DG1a9cW9wsi0kzv3r1p+vTp4ncsgKnD9YTaSyIujAfNiAkIsXrmMkQwAxblBL+uU7M6PT3mCk+l2cyj6wxw//79YoaGGdiCBQvE7k/M1ubMmUNvvfWWELHkhIDZo0ePFnmwacaZZo8YMULMGvv27UvDhw+nzZs305YtW8TPbolngG4IxePvNne2eDAk30rmUh4r1Tnnl66nRxetpsJWjWhYtzaeqrOZR1cBxHInBA9hz2rVqkWrV68mhEhr1qyZWAZNdSPEokWLqGfPnuLs4Nlnny3Es3379uI/nCmE8JWWllKvXr1o9uzZUt8RWQA9+bSxmW3ubMaS4rNhzKVP4BQ85nf505mcpAoUraCZkRWZzlddBRAt7tOnjzgCgeuQEiPCpFsCXbJkCa1atYqGDBlCzzzzDE2cOFFcowQxLSsro1atWtGsWbOoQYMG4ijFsmXLaOTIkeKapXSJBTAy3wm1Yh40Q4Uz0sKYy0jhr6g88e4/LH9iGdRLsplHKQHENz2cCSwsLKRnn31WiNhVVylCE5EAACAASURBVF1F7dqlvmdq7969YtaI/7CLFMugn3zyCZ144omCl127dtGgQYOEQE6aNEmI3+DBg2nFihViSbWkpETMEJNTt27dvPDKeRkBRoARyHoEVqz/kuYs3UgtfppD/S88Levt9Wug5+uQnIqweQWxP53veR999JEQrb/+9a8pN8Fgg8u2bdvooYceojfeeENsdPnwww8r2l1cXExFRUXi+9/SpUtp7NixVFBQIATQqSPZSJ4B+qXdrOdsfts0i4ngrWEug2MYRgle7v5LVZ/NPErNAE866STxLW/GjBlC1G677TaBY7r7AD///HMhcBAz/Ddu3DjCTlIkCCM2yCCs2r59+8QGGMQVhWhiqTVdYgEMo6tEX4bNnS169MNtAXMZLp5+Stu5Zx8h+DWSn+VPPGczj1ICiODXw4YNq+CnSZMmIhzapZdempGzL774go477rhKeXbs2CF+rlevnie+WQA9wWVsZps7m7Gk+GwYc+kTuBAfW1K2kSY/t5Jk7/7jGWBlBDIKYHl5eUXu5557jgYOHEh5eXniG2CdOnXEjk5diQVQF9Jq6+FBUy2+OktnLnWinbour3f/sQB6EMBUZ/wSH0+3BKrCLVgAVaCqv0weNPVjrqpG5lIVsvLler37jwXQgwAiegt2dKZL+BZ45JFHyrMVICcLYADwDHqUB02DyAjYFOYyIIABH1/+7qeEDTBBlj/RBJt5lPoGCJBwFAIX4CamRo0a0RFHHBGQRrnHWQDlcDI9l82dzXRuvLaPufSKWLj5w1j+ZAHEjbcuCTs2cQwCB98TEy+BuiHn7e88oHjDy9TcNvBo+8Bpgu85y59e7v5L1W4b/NV3JBjoo7OT85prrqEaNWpUYHjrrbfyEmiIPcFmRwwRxsiLsoFHFsBo3czv3X8sgJURcF0CdQQQUVtuv/32yFjnJdDIoA+1YhvEwQYbWQBD7RaeC5uzeA09tWQtdSloQgM6tfT8fOIDNvir7xkggLr66qtp4cKFIqh14tGHrl27SgWyDsTO/z3MAhgGitGXYXNnix79cFvAXIaLp5fSbn74H7Rm4za6tXc7atv0BC+PHpbXZh5dZ4BAC0Grt27dehhw/A0wkN+xI4YLnzGl2TCg8AwwOncLI/oLzwB/QEBKABGqDLtAkxPid6aL3Rm2e/AMMGxEoynPBnGwwUYWwGj6D2p1jj80b1yfJg7sELghNvir5yVQXF30xBNPiKuLcO/f7t27DwMa9/nhslwdiQVQB8rq67C5s6lHV28NzKVevJ3awjr+4JRnM49pZ4A4AI9D7hMmTKDJkyfzEqgGX7fZETXAq60KG3jkGaA2dzqsov7Fi2hL+U4KevyBBTDDEih2f+JOvpNPPplwuwNubkhO5557rrjzT0fiGaAOlNXXYYM42GAjC6D6vpKqBmf5My+nDs0Y9cMNO0GTDf7qeQkUoOLWdiyFpku4HZ6XQIO634/P2+yI4aEYfUk28MgCGI2fOXf/9e/Uki4raBJKI2zwV18CyMGwQ/Ev6UJsdkRpkGKQ0QYeWQD1O+LW8p3Ur3iRqNjv3X+pWm2Dv/oSQOz+zDQDbNOmDS+BhtgPbHbEEGGMvCgbeGQB1O9m80vX06OLVlNhq0Y0rFub0Bpgg7/6EsBEhFevXk1r1qypBHr37t15CTQ0N7Q7KnuIMEZelA0DCgugfje7fuqrhBBoYRx+T2y9Df4aSAD79+9PM2bMOIxxPggfbiew2RHDRTLa0mzgkQVQr485y591alYXy59hJhv81bcAHjhwQBx2x6F3BL9O3PRywQUX8EH4ED3RZkcMEcbIi7KBRxZAvW72yKLVtKB0fejLn7bzKBUJplmzZnTxxRfTvffeq5f1hNr4GERk0IdasQ3iYIONtg+coXYKicKcs39hL3/azqOUAHbp0kUEw+7WrRsdc8wxFXTdf//9VLNmTQn6gmdhAQyOoQkl2CAONtho+8Cpsy85Vx+pWP60nUcpAeRg2Hrc3YaBk23U40s6amEudaBM5IQ+C+Pqo1QttplHKQHcv38/pbo4XtcheJDGM0A9nU11LTZ3NtXY6i6fuVSPeOLNDzNGdqK83DqhV2ozj1ICeMcdd9COHTsOA/6uu+7iJdAQ3dFmRwwRxsiLsoFH25fOdDnZkrKNNPm5leLOP3z/U5Fs8Fffu0ABOC+BqnC7w8u02RH1IKynFht4ZAHU40tO6LNhXc+hwtaNlVRqg78GEsCvvvqqIiLMrl276KabbqKPPvqI3nzzTY4EE6JL2uyIIcIYeVE28MgCqMfNuo+bR1gGVbX8aTuPUkugyVTPnDmT+vTpQx988AGdcsopWjyBvwFqgVl5JTaIgw022j5wKu8oRPTOhq10yyOvU+OGOTR1aEdlVdrgr4FmgO3atRNXIjkJhSF9++23VLduXWXEJBbMAqgFZuWV2NzZlIOruQLmUi3gcxavoaeWrCVVuz8Tx/P8/Hy1xkRceiABvPDCC2nLli3CBESFwawPM8BOncK5j0oGGxZAGZTMz8ODpvkcybaQuZRFyl8+VbE/k1tjM4++lkD90RnsKRbAYPiZ8rTNnc0UDsJqB3MZFpKHl6My9icL4I8IsACq82HPJfOA4hkyIx+wgUcAb4OdUdmo6uqjVB0mKht1dt5AS6A6G5quLp4BmsBC8DbY3NmCo2dWCcylOj50LX/a/iKTdgaIWyBeeuklOvvss2nVqlV01lln0YknnqiOcZeSWQAjgz7UinnQDBXOSAtjLtXAnxj7c8aozoQYoCqTzTymFcDvv/9eRHkZOHAgvfjii9SrVy9q27ZtJR4uv/xyvg4pRM+02RFDhDHyomzg0faZg0onUx37k78BSn4DbN26tZj9pUt8IW643cCGgZNtDNdnoiyNuVSDfuebnxEFqzz8nthym3nMuAnmu+++EwKIa5CuvfZaOu+88yoxjp9xLEJH4iVQHSirr8PmzqYeXb01MJfh463r8DsL4A8ISO0C/eyzz8SB93//+9+0c+dOKioqotq1a0ux//XXX1OdOnXoyCOPTJl/z5494pb5qlWrZiyPBVAKbuMz8aBpPEXSDWQupaGSzqhz96fTKJt5lBLApUuXUufOnUXkFydNnjyZrr/++ozEbtq0iVq0aEF/+9vf6Je//CWNHz+esGwK8RwzZgxVqVKFevfuTdOnT3cVVBZA6T5kdEabO5vRxPhoHHPpAzSXR5zvfyqDXyc3wWYeXQXw4MGDYifo1q1b6bbbbhNC9ec//1nMBr/88stKN8QnArt371668soraePGjTRt2jQ67rjjaMSIETRv3jzq27cvDR8+nDZv3iwizOBnt8QC6IZQPP5uc2eLB0PyrWQu5bGSzdm/eBFtKd9JU4Z2pPyGObKPBcpnM4+uAoibII499liaOnUqXXfddQLoxYsX069//Wtavnw5tWnTJiX4N954IxUWFgqxHD16tJgBtm/fnnJzc4XwlZaWip2ls2fPlvqOyAIYyMeNedjmzmYMCSE1hLkMCcj/K0Zn9JfEltvMo6sA4ib4o48+mpo1a0b333+/mAFiKfPZZ5+lL774QtwVmJyef/55mj9/Pj355JN00UUXVQggzhaWlZVRq1ataNasWeLZdevW0bJly2jkyJEVxyxKSkqEQCYnbMbhxAgwAoxANiIwe+lGWrn+SzqnybF09flq7v7LRtxkbUoV8NtVAFH4lClTaNiwYZXqwXLonXfembLuc889VyyZHnPMMWKptEmTJmKm94tf/ELkx52CgwYNoiFDhtCkSZOE+A0ePJhWrFghvgumSjwDlKXZ7Hw2v22azYz31jGX3jFL9wTu/Ot3z0Lld/+lqt9mHqUEEKB9/PHH9MILL9COHTvoiiuuEDPCdOmTTz4h7O5E6tevnxC3Ll26VGx0KS4uFjtJ8f0PG2zGjh1LBQUFQgDTHatgAQyvs0VZks2dLUrcVdTNXIaH6pKyjTT5uZXUvHF9mjiwQ3gFS5RkM4/SAiiBY8osuDLplltuEd8AkbZt2yaWRLExZt++fWIDDL4lYlcorlhKl1gA/TJg1nM2dzazmAjeGuYyOIZOCbj4FmcAde7+dOq2mUflApjsIphBItWrV8+T97AAeoLL2Mw2dzZjSfHZMObSJ3BJjyVuftER+zO51TbzqF0A/boMC6Bf5Mx6zubOZhYTwVvDXAbHECU4Z/8KWzWiYd1S76oPp6bUpdjMo5QA4gA8zvC9/PLLYvMKAmVjR+aZZ56pkpdKZbMAaoNaaUU2dzalwEZQOHMZHHTn5geUpCv2J88Af0RASgBxoH3u3LniqZtvvllsVlmzZo3YGJMuxFlw16hcAgtg2IhGUx4PmtHgrqJW5jI4qrpvfkjVYpt5dBXA/fv3i1id48aNE3FAEbPz4osvpl/96lf09ttva5sFsgAG72wmlGBzZzMB/zDbwFwGRzOKyC88A/QwA8ThdRxNwHEGzPbwX/369cXOzvLycsrJ0ROuhwUweGczoQQeNE1gIZw2MJfBcIwq8gsLoAcBRFbE7bzvvvsq4YYwZjNnzgzmAR6eZgH0AJbBWXnQNJgcj01jLj0ClpTdOfvXtukJdGvvdsEKC/C0zTy6LoECV4RDQwgzBLL+8MMPqWXLljR06FDXGxwCcHLYoyyAYaIZXVk2d7boUFdTM3MZDNfxM0to+bufUv9OLemygibBCgvwtM08SgkgIsBg52dyQpDsdu3aUc2aNQPAL/coC6AcTqbnsrmzmc6N1/Yxl14Rq5y/+7h5kYQ+S261zTxKCSCCViO2Z6qEwNYIXK1aBFkAg3U2U562ubOZwkFY7WAu/SOJmR9mgHk5dWjGqE7+CwrhSZt5lBLAq6++WtzYgODX2BAzceJEEckFVyLhd3//+99FbE+ViQVQJbr6yra5s+lDWU9NzKV/nE1Z/oQFNvPoKoDOMYgbbrihYiPM3XffLc4D4lgELrrFNUnYJaoysQCqRFdf2TZ3Nn0o66mJufSHc9Shz3gJ9EcEXAUQWTHbQzSYv/zlL+IYBDbA1KpVS+wC7dixo1gCdYJd+3MJ96dYAN0xikMOHjTjwJJcG5lLOZySc5lw+D2xTTbzKCWAiAKDGR5EEOmoo46iGTNmiKuRpk+fLpZH+Rugv87AjhgcN9NKsGFAsX3pLIjPOZtfpgztSPkN9ZyjztReG/w1nY1SAgjwcCD+rbfeot27d4u7+xAdBhtjcBC+Ro0aQfxB6lmeAUrBZHwmmzub8eR4bCBz6REwfG/7/Bu6fuqrRmx+cVpvM49SAgjRe+yxx+j9998XmB08eJDee+89cS6wbt263r3AxxMsgD5AM/ARmzubgXQEahJz6R2+RxatpgWl66lLQRMa0Kml9wIUPGEzj1ICiEttX3rppcOgx5IoC2B4HmmzI4aHYvQl2cAjL4H68zMn9ueEAe2pRX6ev0JCfsoGf/W9BOrsAsUMbMGCBdSlSxcREHvOnDliSbRKlSoh05G6OJ4BaoFZeSU2dzbl4GqugLn0BriJy5+2v8i4zgCx3AnBwzEI7PxcvXo13XvvvdSsWTOxDHrGGWd48wKfuVkAfQJn2GM8aBpGSIDmMJfewDNx+ZMFEIE+XVKfPn3EkYennnqKevToUZGbl0DdkPP2dx5QvOFlam4beLR94PTqezv37KN+9ywUoc9M2f3p2GCDv/peAgVIOPC+ZMkSEe3l2WefFYGxu3btSueff75XP/Cdn2eAvqEz6kGbO5tRRITQGOZSHkTn7F/zxvVp4sAO8g9qyGkzjxmXQBEAGztAW7duTWPHjqXOnTsLOtauXSuCYG/atIlOPvlkDRQRsQBqgVl5JTZ3NuXgaq6AuZQDPHH2N2NkJ8rLrSP3oKZcNvOYUQCLi4tp1KhRaWnAzLB27dpaaGIB1AKz8kps7mzKwdVcAXMpB7jJsz/bl7IzCuDrr79Or776Kj300EN0wQUXUNOmTSsYb9OmDV1++eVyHhBCLhbAEEA0oAgeNA0gIaQmMJfuQJo++2MBlNgEs3DhQjrrrLO0LXemcisWQPfOFoccPGjGgSW5NjKX7jiZPvtjAZQQwH/96180adIkevPNNysxjtvh+SC8eyeQzcEDiixSZuezgUfbB04ZD3RufUBeE7/9OTbY4K+BdoHizN+7775LuPw2Me4ndobyN0CZriCXx2ZHlEMoHrls4JEF0N0X5yxeQ08tWUuFrRrRsG5t3B+IKIcN/upbABEEG5fgjhkzRuwEjSrxEmhUyIdbr82dLVwkoy+NuczMgRP27Nbe7aht0xOiJyxNC2zm0TUSDDC75ppraOXKlfT0009Tbm5uBYwnnHACh0IL0a1tdsQQYYy8KBt45BlgZjdb/u6nhFvf69SsTk+PuSJyn8zUABv81fcMEMA1aNBAXH2UnLZv3y4uy9WReAaoA2X1ddjc2dSjq7cG5jI93rc88jq9s2ErDet6DhW2bqyXGI+12cyj1Axw8uTJFZfhJmI7cuRIcUO8jsQCqANl9XXY3NnUo6u3BuYyNd44+oBLb5Ew+8Ms0ORkM49SAgjyPvroI7ELND8/n4455hg69dRTtXLKAqgVbmWV2dzZlIEaUcHMZWrgl5RtpMnPrRTf/fD9z/RkM49SAohzgLgGCenmm2+mkpISatmyJU2ZMkUbtyyA2qBWWpHNnU0psBEUzlymBj1Oy5+wwGYepQTwpJNOory8PMrJySFEgMGu0DvvvJM+/fRTOv7447V0PRZALTArr8TmzqYcXM0VMJeHA+7c+YdlzxmjOhu//MkC6HIQHgGxa9asSQ8++KAIfo27Abt16ybOBK5Zs0bcC6gjsQDqQFl9HTxoqsdYVw3M5eFIm3rnXyafsJlHqRkgRO7LL7+k4447Tsz+sCMUB+DXrVunq6/xbRDakFZbkc2dTS2y+ktnLitjnrj5xeTIL8meYjOPUgKIW+BxEB7fAp00f/78iu+C6bpeeXl5pXODqfLt2bOHqlevLmaWmRLPAPUPcCpqtLmzqcAzyjKZy8roO5Ff4rL5xWm9zTxKCSCAQii0KlWq0DfffEO1atWin//852n73v/+9z+6+uqr6ZRTTqFdu3ZRr169qHv37jR+/HjC2UHMHiGoKK937940ffp015BqLIBRDnXh1W1zZwsPRTNKYi4r84CjD5gFThjQnlrk55lBkkQrbOZRSgAfeOABuu666+iVV14RN0JgSRRnACFKqdJ9991HDRs2pB49etDixYtp+PDh9MILL9CIESNo3rx51LdvX/G7zZs305YtW8TPbokF0A2hePzd5s4WD4bkW8lc/oiVE/mlccMcmjq0ozyIBuS0mUcpATz99NOpfv369Nxzz1GdOnXo2muvpZkzZ7ruAsU9gpjdYZYH8Wvfvr1YEoXwlZaWipnh7NmzxXdFt8QC6IZQPP5uc2eLB0PyrWQuf8TKOfrQv1NLuqygiTyIBuS0mUdXAdy/f7/4Rvf73/+epk2bJuiCaEG8cDC+bdu2aSm8//776fnnnxfLm6+99hohsHZZWZnYQTpr1iwRYg0baZYtWyZmlJnKYgE0oKeE0ASbO1sI8BlVBHP5Ax3Owfc4HX1IdCSbeXQVQAD1q1/9inAn4GWXXUZHHXUUYQPM0UcfTR988EHKUGgvvvginXPOOeKMIL4ZYtaXeGYQ3wUHDRpEQ4YMEfcMQvwGDx5MK1asEN8FcdAeM8TkhOMXnBgBRoARMAmBcU//l77+9nvqeX5jatPkWJOaxm1JQABRzJKTlABu3LiRMJt75plnxBGISy+9lG666SY6//zzUwL8xz/+UQgjNrpg80xhYSF99tlnFTs9i4uLqaioSHz/W7p0qbhmqaCgQAhguuVQngFmhy/b/LaZHQz+aAVzSTS/dD09umg15eXUoRmjOsWSYpt5dBVALIFiE0zz5s2pQ4cOtHv3bvEdMFOC6A0cOJDef/99cYHuhAkTxHdApG3bttHo0aPFcuq+ffvEBpjly5cLsezTp0/aYlkAY9m3Dmu0zZ0tOxhkAXQQcKK+4GfT7/zL5Hs290lXAQRw2PUJIYSwuZ3XSwT6888/F9/5jjjiiIpf79ixQ/zb6zVKLIDZMXza3Nmyg0EWQAeByXNX0JJVHxl/47ub39ncJ6UEEGf65syZQ+edd56YCeI7HRK+3yFMmo7EAqgDZfV12NzZ1KOrtwabuUyc/cUp6ksqD7GZRykB5Atx9QwsNjuiHoT11GIDj0DSBjvT2egceyhs1YiGdWujx7EU1WIzj1ICiF2bqWJmu30LDJMvngGGiWZ0Zdnc2aJDXU3NtnIZtwtv3di3lUfgIiWA3377rTjI/vLLL4vjC7ghAkcSzjzzTDdsQ/s7C2BoUEZakM2dLVLgFVRuK5fOt7+4xfxM5wK28igtgFdeeSXNnTtX4IcLcXFcAVchffzxxynPASroa3wbhApQIyjT5s4WAdxKq7SRS+e6IwAb929/jnPYyKNju+sM0IkEM27cONq5c6fYBXrxxReLw/Fvv/22tlkgzwCVjmXaCre5s2kDWVNFtnG5tXwn9SteJNAd1vUcKmzdWBPSaquxjcdENF0FEOHLcDi9X79+YraH/xAX9JZbbiFcd4Rb4nUkFkAdKKuvw+bOph5dvTXYxuX1U18l7P7Mho0viZ5iG4+eBBCZcXMDbnhITIgFioDYuhILoC6k1dZjc2dTi6z+0m3i0rnrDxFfJg5sT3m5mYOB6GfDf4028ZiMkusMEA9gByiCWOMqow8//JBatmxJQ4cOdb3Dzz8lhz/JAhgmmtGVZXNniw51NTXbxKUz+4tzxJd0XmATj54EEFFbnn32WXENUtOmTcU1SLjkNorEAhgF6uHXaXNnCx/NaEu0hcuN5VVo8nMrKa63Pbh5iS08eg6GjR2fd999dwV+Z599Nq1cudINTyV/ZwFUAqv2Qm3ubNrBVlyhLVxe/8i/BZI9CptRz6LmilHVX7wtPHoWQMz2GjVqJGaAuMEBYogbHPLy8rSzxAKoHXIlFdrc2ZQAGmGhNnD51wVv0gtvfhzr2x7cXMQGHtPZmPEbIGJ+4vgDbm/45z//KW50X7VqlfgGqDuxAOpGXE19Nnc2NYhGV2q2c5l47CEbv/05npPtPMJO3wJ4+eWX0xVXXEFr164VM0AIojOVvOqqq8Rt8ToSC6AOlNXXYXNnU4+u3hqynctsiveZyTOyncdAApgJuO3bt3u+1shvF2UB9IucWc/Z3NnMYiJ4a7KZS+e2h1o1qtLdvy+i/IZ6zjsHZ8V7CdnMo9ssN+MSKMKfHTx4MC2iv/nNb9Le4O6dhsxPsACGjWg05dnc2aJBXF2t2colgl3f8vA/xKH385s3oBFXX6AORANKzlYeE6H1tQRqADcVTWABNIkN/22xubP5R83MJ7OVS+fQO449jPh/P6NfnPUzMwkIqVXZyiMLYEgOoqsYmx1RF8Y66rGBR+CYjXZi9tfvnoWE//fv1JJaNKxWsedBh+9EUUc28piMI88Ao/Asj3Xa7IgeoTI6uw08ZqsAOrO/5o3r08SBHbJS5GXFwehO5rFxLIAeAYsiuw0DJ9sYhWepqTMbuUwOeZaNNrIA/oiAVCxQNd3HW6n8DdAbXqbm5gHFVGa8tyvbuHxnw1bC0YfEkGfZZmMqlm22kQXQe79X9oTNjqgM1AgKtoHHbFsCxTe/7uPmCW9JDHlmA5c228gCGMEAma5Kmx3RIBoCN8UGHrNNABOvO5p6fUcxC8w2G3ncyT8MAhbAwMNdeAXYMHCyjeH5S9QlZQuXzqF34Jkc8ixbbMzkKzbbyAIY9SiSUL/NjmgQDYGbYgOP2TQ7ml+6nh5dtDplwGsbuLTZRhbAwMNdeAXY7IjhoRh9STbwmC0CmDj7G9b1HCps3biSA9nApc02sgBGP15WtMBmRzSIhsBNsYHHbBFAJ+B126YniOXP5GQDlzbbyAIYeLgLrwCbHTE8FKMvyQYes0EAl7/7KY2fWSI2vEwd2pHycuuwAEbffZS0IF2fZAFUAre/Qm0YONlGf75h4lNx5hJn/qY8t5K2lO+kLgVNaECn1HecxtlGWZ+x2UYWQFkv0ZDPZkfUAK+2KmzgMc4zQFx0O3TqqyLeZ15OHZoxqlNa37CBS5ttZAHUNiy6V2SzI7qjE58cNvAYZwGcPHcFLVn1UcalT8fbbODSZhtZAA0aV212RINoCNwUG3iMqwAm7vqcMKA9tcjPy8i3DVzabCMLYODhLrwCbHbE8FCMviQbeIyjAEL8cNEtlj4LWzWiYd3auDqLDVzabCMLoGsX0JfBZkfUh7L6mmzgMY4CiB2f2PmJ736J4c4yeYQNXNpsIwug+vFQugabHVEapBhktIHHuAkgNr70K14kvCc53BkL4AZrL/1lATRoQLVh4GQbDXK4gE2JE5fO7M+56FbW9DjZKGtTcj6bbVQqgOXl5VSvXj2qWrVqWm727NlD1atXz5gHD/N9gH7d26znbO5sZjERvDVx4TJx9jdjZKeUB97ToREXG4OwabONSgTw448/pquuuorq169P1apVo1atWtFtt91G48ePp+3bt1Pt2rVpzJgxVKVKFerduzdNnz5d/C5TYgEM4uLmPGtzZzOHhXBaEgcuseEFt7y7HXhnATz8qqBwvMSMUtL5qhIBvOuuu2jfvn00btw4wgyvVq1a9MYbb9Cf/vQnmjdvHvXt25eGDx9Omzdvpi1btoif3RILoBtC8fh7HAbNoEjaYGMcvgFiw8uC0vWEqC/Y+DJxYHtPs7842BjUV223UYkA7t69W8zuatasSfPnz6cbb7yRPvjgA+rQoQPl5uYK4SstLaVevXrR7NmzxSzRLbEAuiEUj7/bIA422Gj6wJkY7QVtlTnzl6oH2cClzTYqEUA40t69e2nixIk0adIkevHFF4X4HThwgMrKysSS6KxZs6hBgwa0bt06WrZsGY0cOZLatm0rfLCk6Ef3WgAAIABJREFUpEQIZHLq1q1bPEZ5biUjwAhEikDxvLX06Ve76Cd1a9B1nc6gnxx1ZKTt4cqjRyA/X9ON8Fj2vPLKK6lGjRr05z//mRo2bFjJ+l27dtGgQYNoyJAhQiAhfoMHD6YVK1aImWOqxDPA6B0ojBbY/LYZBn4mlWEql1jyxDVHuOVhwsAOlN8wxzdsptro26AUD9pso5IZ4MMPP0yLFi2iBQsWpOSpuLiYioqKxPe/pUuX0tixY6mgoEAIYLrlUBbAMF0+urJs7mzRoa6mZhO5XFK2kSY/t1IYLBvtJRM6JtoYNps226hEAK+55hp6/PHHK/G0fv16Ou2002jbtm00evRomjZtmtgogw0wy5cvF7tC+/Tpk5ZbFsCw3T6a8mzubNEgrq5W07hMjPOJ8343dGvjedNLMlqm2aiCTZttVCKAmUjasWOH+DPOB3pJLIBe0DI3r82dzVxW/LXMJC5x3AFxPiGCjRvmiAtuw0gm2RiGPanKsNlG7QLol0QWQL/ImfWczZ3NLCaCt8YkLh9ZtFocecB3P4Q6c7vlQdZ6k2yUbbPXfDbbyALo1VsU5rfZERXCqr1oG3gEqKbYiW9++PaHNKzrOVTYunFonJtiY2gGpSjIZhtZAFV6lseybXZEj1AZnd0GHk0RwMTvfv07taTLCpqE6hs2cGmzjSyAoXaXYIXZ7IjBkDPraRt4NEUAcdzBifQyY1Sn0B3BBi5ttpEFMPQu479Amx3RP2rmPWkDjyYIYOLS55ShHQOd90vnRTZwabONLIAGjZ82O6JBNARuig08Ri2Aief9ehQ2o55FzQPzlqoAG7i02UYWQCXdxl+hNjuiP8TMfMoGHqMUwMQ4n2Ecds/kRTZwabONLIAGjaE2O6JBNARuig08RimAztJnmOf9eAmUr0MK3PFVFsDnAFWiq69sG8TBBhujEkAnzifq93vDgxdvt4FLm23kGaCX3qA4r82OqBharcXbwGMUAoj7/SbPXUGI+oID70+PuUI5rzZwabONLIDKu5B8BTY7ojxK5ue0gUfdAoiZ3/iZJUL8sPQ5cWAHIYKqkw1c2mwjC6DqHuShfJsd0QNMxme1gUedAvjootW0uGyjED/c7D71+o5axE+njVE6tQ3+ms5GFsAoPS+pbpsd0SAaAjfFBh51iQNEr/u4eYIT7PjEcYe83DqBOZItwAYubbaRBVC2J2jIZ7MjaoBXWxU28KhLAJ3zfpj5qYj04uYUNnBps40sgG49QOPfbXZEjTArr8oGHnUIIOJ84oojzAJVxPmUcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MCjDgG8fuqr4n4/3d/9Ep3EBi5ttpEFUMuQKFeJzY4oh1A8ctnAo2oBdIJcY6fnhIEdlMT5lPEmG7i02UYWQJleoCmPzY6oCWIt1djAo0oBdMQPdUS19Ok4ig1c2mwjC6CWIVGuEpsdUQ6heOSygUdVAujc7I7yw77c1o/32MClzTayAPrpFYqesdkRFUEaSbE28KhCABPDnHUpaEIDOrWMhD/+Bhg57KE3gM8Bhg5p+AXaMHCyjeH7TVQlhsll4o7PqI48pMIxTBuj4smtXptt5Bmgm3do/LvNjqgRZuVV2cBjmDNAHHPAjs8t5Tu1hjmTcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MBjmALoXG+EHZ9Th3bUGunFzSFs4NJmG1kA3XqAxr/b7IgaYVZelQ08hiWApm16SXYOG7i02UYWQOXDoXwFNjuiPErm57SBxzAEEDe748gDlj57FDYTcT5NSzZwabONLIAG9TibHdEgGgI3xQYewxBAXG+EO/6w6WXiwPZGLX06TmADlzbbyAIYeLgLrwCbHTE8FKMvyQYegwrg/NL1hGuOkKI+7J7JY2zg0mYbWQCjHy8rWmCzIxpEQ+Cm2MBjEAF8aslamrN4jcDZlPN+6Ui3gUubbWQBDDzchVeAzY4YHorRl2QDj34FEEueWPqMg/j5tTF6D/TWAhv8NZ2NLIDefEVpbpsdUSmwmgu3gUc/4pAofs0b16eJAztoZsZ7dTZwabONLIDe+4SyJ2x2RGWgRlCwDTx6FUCEOcPMD4feIX639TmPcO7P9GQDlzbbyAJoUA+02RENoiFwU2zg0YsAIswZIr0gRXm3nx9ibeDSZhtZAP30CkXP2OyIiiCNpFgbeJQVQMz4cKs7RDBOMz/HcWzg0mYbWQAjGSJTV2qzIxpEQ+Cm2MCjrAA6kV5MDHMmQ7QNXNpsIwugTC/QlMdmR9QEsZZqbOBRRgATrzcy+axfJqewgUubbVQqgPv376e9e/dS7dq10/rYnj17qHr16lS1atWMg9M999xDo0aN0jKARVWJzY4YFeYq6rWBx0wCiGXPyXNXiCgvSHHZ8ZnKF2zg0mYblQjggQMHaM2aNTRjxgwhbPfff7/wrfHjx9P27duFII4ZM4aqVKlCvXv3punTp2cUSTzLAqhiqNZfps2dTT/aamtMxyXie2L2h1TYqhEN6NwqFjs+WQDV+kuUpWs9B/jdd9/R6NGj6a233qLWrVsLAUQDRowYQfPmzaO+ffvS8OHDafPmzbRlyxbxs1tiAXRDKB5/ZwGMB08yrUzFpbPsiW9+t/ZuRy3y82SKMjYP+6ux1HhqmFYBdFr24IMP0gcffFAxA2zfvj3l5uYK4SstLaVevXrR7NmzqVq1aq7GsAC6QhSLDDygxIImqUYmc5kY37Nt0xOEAMY9sb/GncEf2m+EAGJptKysjFq1akWzZs2iBg0a0Lp162jZsmU0cuRIatu2bVq0WQCz2xGzw7rMnS2bbEweVJaUbSRcbIsE8RvWrU1slz0TeWIBzA6vNUIAHSh37dpFgwYNoiFDhtCkSZOE+A0ePJhWrFghvguWlJSIGWJy6tatW3awwVYwAlmEwN9WfUavlP2w4eWEY2rTyCuaZZF1bEq2IJCfn3+YKUo2wTi1JC+BOr8vLi6moqIi8f1v6dKlNHbsWCooKBACmG45lGeA2eGG/EadHTzCitdK36Y/L/pfhUGNG+bQbb3bGXmvn1/U2V/9ImfWc5HNAD/88EO67777KtDYtm2b2CAzbdo02rdvn9gAs3z5crErtE+fPmlRYwE0y6H8toYHFL/ImfUcrjR6Ydl7tHvvARHerLB1IyNvdA+KGvtrUATNeD4SAUxl+o4dO8Sv69Wr5wkZFkBPcBmbmQcUY6mRbhgussWGFyTM+nCrQxwCW0sbmJCR/dUPauY9Y4wA+oWGBdAvcmY9xwOKWXx4ac3W8p1io4tzxq/FT3Nowu87eikidnnZX2NHWcoGswDGgEfubDEgSaKJ2cgjgllPmFlCW8p3CgQQ2qxFw2qUamOBBESxyZKNXCaDb7ONSjfBhOnlPAMME83oyrK5s0WHerCaF5SupzmL14i7/LDUOWFgB8pvmJP2bFWw2sx6mv3VLD78toZngH6R0/gcdzaNYCusKlt4hODhNgec8UNKvs4oW+zM5Apso8KOorFoFkCNYPutijubX+TMei7uPEL4nlq8pmKjC9DFZpepQyt/74u7nTJewzbKoGR+HhZA8zniJaUYcCTTxDgPmvjWhwtsIYJIWPJEVBdEd0lOcbZThkfkYRtlkTI7Hwug2fyI1nFniwFJEk2MK4843oArjJyNLsO6nkOFrRuntTiudkpQWJGFbfSClrl5WQDN5YY7Wwy48dLEuA2amPVB/JzjDYkbXTLZHTc7vXDo5GUb/aBm3jMsgOZxwktKMeDETxPjMmjiXN/4mSUEAXRSj8JmdFm706UOtsfFTj8csgAGQc28Z1kAzeOEBTAGnPhpounCkLy7EzbiG1+PoubieINsMt1OWTt4lrvB2vOcfA4wjF4SUhk8oIQEZMTFmMzjklUf0YKSdRWzPhxtuKFbG18BrE22MywXYBvDQjLacngGGC3+UrVzZ5OCyfhMJvKI5U6c6cMmFye5bXJxA9pEO93a7PXvbKNXxMzMzwJoJi+VWsWdLQYkSTTRNB4x68NhdmeTC77ztW12oqflzlRmm2anBDWes7CNniEz8gEWQCNpqdwo7mwxIEmiiSbwiO98ED2EMXOONWB3J77zXVbQRMIK9ywm2OneymA52MZg+JnyNAugKUxkaAd3thiQJNHEKHnEUuc7G7fRIwtXVTrM3qWgifTuTgkTRZYo7ZRtY9B8bGNQBM14ngXQDB4ytoI7WwxIkmhiFDymCl+Gi2q7tGtCRa0bSx1rkDCtUpYo7PTaxqD52cagCJrxPAugGTywAG6wd8u1ChfEdz3czr7hs/KKGR/idiKCS1hLnenazeKgglH9ZdrMIx+D0O9vaWu02RENoiFwU1TyiJkednIuX7uZNn7+TcX3PTQaRxpwiD1V3M7ARqUoQKWdKtrrp0y20Q9q5j3DM0DzODmsRdzZYkCSRBNV8ChE7/+EzwlU7TQFMz4ErPZyiF3CDNcsKux0rVRzBrZRM+CKqmMBVARsmMVyZwsTzejKUsHjzQ//g9Zs3CaMwre9wtaNqEV+HjXIrePrEHsY6KiwM4x2hVkG2xgmmtGVxQIYHfbSNXNnk4bK6IwqeHQEsH+nlsq/7cmCq8JO2bp15WMbdSGtth4WQLX4hlI6d7ZQYIy8EBU8OgI4YUB7MfMzIamw0wS7EtvANprGiL/2sAD6w03rU9zZtMKtrLKweMQtDSve/VREcHF2ebIAKqMtZcFhcam31d5qs9lG3gXqzVeU5rbZEZUCq7nwMHjE0YY5i9dUajm+/U29vqOSM31+IArDTj/16nyGbdSJtrq6eAaoDtvQSubOFhqUkRbkl0eELcOsT0Rz2bBV2ICjDT2Lmke62SUdmH7tjJQcj5WzjR4BMzQ7C6ChxCQ2iztbDEiSaKIXHiF2c5asFef6ko83eLmcVqJZoWfxYmfolWsqkG3UBLTialgAFQMcRvHc2cJAMfoyZHnsX7yo0kF2LHG2bXaCOMge5fEGWQRl7ZQtz8R8bKOJrHhvEwugd8y0P8GdTTvkSip04xHXE2HGh4PtuKEBB9kheAM6tzLm+54MMG52ypRheh620XSG5NrHAiiHU6S5uLNFCn9olSfy6IQuw1IndnImXkiLCoNeShtao30UxP7qAzQDH7GZR94FapBD2uyIBtHguynYwLJmw1Z6/6PP6Ktdh2jn7r1iU0tywqwP1xPhPJ8pZ/r8GM3+6gc1856xmUcWQIP80WZHNIgG16Y4d+45szrM8pxdm+kexoYWLHNC8PJy67jWEYcM7K9xYMm9jTbzyALo7h/actjsiNpA9liRE38Ty5cQueQbGBKLw8wOG1iq0176VevTxZ/q1KqhPUi1RxN9Z2d/9Q2dUQ/azCMLoEGuaLMjRkUDZnHYlOIkJ+JKuuVLIWo1q4uZnLN5BTO6xF2bNvAIHGywk22MqmeGWy9vggkXTyWlcWcLDisEbes3uyoKcpYmkwXNbcnSKQAiB8HLPz5XLF2e2/QE1yVMG3hkAQzuq6aUYIO/sgCa4m0Z2mGzI8rQk7gc6RwaT7wJPfHfMuU5szksWzrf5SB0EDykxH/LlmeLMNhiJ/dJL55vbl4WQHO5+XH5bcMGys/Pj0FL/TcxlSM6woZSMTNLnp15ETbnXJ3TwkQRS95xqeqwuQ2DJgug/z5g2pM2+GskArhz506qVasWHXHEEWk537NnD1WvXp2qVq2a0S/uueceGjVqlGm+E2p7stkRMWPDBpJlZetoc/k+gRuWK7eU75TGEHExk2dmYczYpBsgmTGbeUyEwAY72UZJpzc8m1YB/PLLL6lnz55UrVo12rRpE910003Ut29fGj9+PG3fvp1q165NY8aMoSpVqlDv3r1p+vTp4neZEgugPg/D2bVde34QKSdBqCBYTpKZlXn9zpYobonCpmqmpgpRGwZNngGq8h795drgr1oF8O6776Zvv/1WCN4XX3xBDRs2pDVr1tDtt99O8+bNE2I4fPhw2rx5M23ZskX87JZUC2Dy5gm39oTx92QRKS8vp9zc3DCKdj2X5kXIwmiQszR5TJ0j6LRGx1ccDYibuMlgYcOAwgIo4wnxyGODv2oVwP79+1NRURF1796dDh06JJZAP/zwQ+rXr58Y4CF8paWl1KtXL5o9e7aYKbol1QKIu9dwBxsnIgRlzsutPCNPFioZ4UoV5cTmzpZtvsVcZgejNvOo5BzglVdeSfiva9euwkMaNGhAK1asoJNOOonKysqoVatWNGvWLPH7devW0bJly2jkyJHUtm1bkb+kpEQIZGLCd8J9+yovy4Xpflv21qWte+uGWaRrWXWq7qVqVQ665vOTQbZs2Xx+2sDPMAKMACNgAgL169en3/3ud4c1RYkA3nHHHVSvXj0aNmwYHThwQMz6vvnmm4rNMLt27aJBgwbRkCFDaNKkSUL8Bg8eLEQS3wVTJdUzQBNIYhtNYCF4G2zgESjZYCfbGLw/mFBCOh6VCOCCBQvogQceoNdee43mzp1L9913H7355psVOBQXF4slUnz/W7p0KY0dO5YKCgqEAKZbDmVHNMGNgreBeQyOoSklMJemMBGsHTbzqEQAd+/eTZdccgm9++67hH///e9/pzZt2giWtm3bRqNHj6Zp06aJJU1sgFm+fLnYFdqnT5+0TNpMUjD3Nutp5tEsPoK0hrkMgp45z9rMoxIBdKj95JNP6LjjjhPn/Jy0Y8cO8U8skXpJNpPkBSfT8zKPpjMk3z7mUh4rk3PazKNSAQyTdGyMadeuXZhFGlcW22gcJb4aZAOPAMYGO9lGX13AuIfS8RgbATQOUW4QI8AIMAKMQKwRYAGMNX3ceEaAEWAEGAG/CGSVAOL7otdvi36BU/Hc/v37ae/evZXCwh08eFBsJKpTJztuEVeBm8llysTDNbn9trftu+++E30v8XjW999/L36uUaNGVsCDeMyIxZy4VyNOhmHcBE85OTmVmi3T97JCAD/44ANxnALHLdau/SGaC5wUhx8vuugi8fPpp59Od955p5G84qwkQsXNmDFDOOL9998v2vnYY4/R5MmT6YQTTiCQjKg5sCnuKU7c+MU6XTxcv+X9//bOLFSnKIrj+w0hGaJkzJB5yJAkY6bMV7rdPIiiEEIyPyhReCISkksZM+WaQikiQ8ZCFFIoRXn2ot+q/bWdzuS79/u+M6xVwr3nnL3W2ufs/15r7/1fSb1vwoQJpkWLFoXjSydOnDCNGjVKqrqx9frx44d59eqVqaqqMowvbdu2lW9w9erV5vnz53K+GUKPffv2hZL9x26wAhcCEK9fv5Zz2Ng1Z84c0SJNfcqYD5c0pwwIgNjQ07p1a18uaj8XZwIA4R6lI1+8eFEAwHfv3slxi5MnT8aiWqvA+1doktkLuj59+tQMGTJEAJCPjRkZBAIMMCtXrhRO1Y0bN1ZS1QZpO019E9dgBsnz588XKpb48eEy4ESRvsdtrxLXeW1Eh27dupkPHz4I5WFURZdK6By3zZ07dwp7FfYg9CVsVHyLnFcGAB88eCDkHo8fPy5Mqo8ePSpnmNMgV65cEbCeNm2aqPvy5UtTW1trLl++bPbs2VMAwCT3Kcfmjh07JvqTLWOyZaP07du3S18RMHi5qIO+vUwAIM5gtlZTU1MAwLq6OpkF4Ihhw4bJzGDcuHGJfk/3798vs00+uk+fPglZAByqCDNNAJ4oMe2Sxr6J8jmTFz7AS5cuyaVBfLhprvfotRHy9latWpnmzZvLJG3Tpk1m6dKlUa5K5O9nzpwphBxEda6Q6rQACH0joMgZZmT27Nlm7ty5UtEmDcK4AgCuWrXqH3WhrJw/f74AYNL7lCUue5QOI2wBAdjFiFyx7fbt275c1H7fXmoAkDw1zDJemTx5sswCvAB4584d8+zZM6FbO3PmjGGGR+QRRLVWjhf427dvEuW50qxZMzN+/Hj5kQuA2DNv3jzhSkVILZHmPXLkSDlUbZA2sOHz58//PKtLly5ChpC0vinWYNun9NPp06eF0IE+PXjwoC8fLvanTYJs7Nmzp1AZkr348uWLGTRokBDdMwNPizBOEB1s27ZNJsw9evQwQ4cONe3btxcTXAA8cOCAefv2rUxGEcj9mVRD6p9ksd/hxYsXRU2AjvdwwIAB8n8XAOm/pPWpO/bPmjVLIlbEjv2MJQsXLjT9+vWTAAFCFT8uar9vLzUASCoQ/lCvHDp0SGafXgAkPCYlwx/y9VCscTC/Q4cOFXtXYbyx63tWCfThhfMCIBtfSJexCYaP0N5Hrj4tQnro5s2b/6g7depUGWiS1jfF+tT2KWt+rOOOHTtW3jHeyTA+3GLbq8R9QTaSVSH1aTdPEEXRt1SBSYusWbPGfP361dy9e1cG0DZt2hh+ZpmrXADkGtacoHpEsBfwBzCTLPY75P1kHOzVq5fhO7Rl6FwAZOklaX3qjv1nz54VcEMY+wkoeOf27t1rqqur5edRXNRuX6UGAKNeMC8AMhMn0mDWRu6eNIVNJ0Y9q1K/dyNAdBg4cKDo379/f5ntMEudNGlSpdRrsHbT2DdRxnvTg1F8uFHPS+LvvTaSaiLlRGqepYbevXtLZJ+mCND6OU4K9OfPn6Zr165S5PvXr19m8ODBMqlmspMGiZMCTXqfuilQgBrfo/Pw4cMLXfA/315mAfD79++SB2bGwx/AY/r06Yl+TwFAQJpZJkJH2vQKC9ds6KlkCrehnJfGvomy3QsOYXy4Uc9K6u+9NjIAkU4jLUjksGTJksImoKTaEKRXGACyI9Tuvt6wYYNMSgF8CP+XL1+eGlPDAJBxhjXNpPepC4DslyBl7cqCBQtkjTaIi9rbWZkBwKC3kIr08JGmVVjc/f37t+wAzZqkvW/i9IcfH26c+9J0DZGRexQiTboXoyvpbs4ApvnMcZTdWejTON9e5gEwqqP19+oB9YB6QD2QTw8oAOaz39Vq9YB6QD2Qew8oAOb+FVAHqAfUA+qBfHpAATCf/a5WqwfUA+qB3HtAATD3r4A6QD2gHlAP5NMDCoD57He1Wj1QUQ9wTARp0qRJRfXQxvPtAQXAfPd/pqyHKQh2CK9AZAwbBudAYaZpaDIBDkXDQL9161ZhoYgrEJtDms22eu53hYO9UHTZ6iZxnxl1HWdNKRsD92OQFGtPVNvu7yF5gOLKUv353RumB0eDOIcH805ayKj/xz96bXk8oABYHj9rK2XwwKlTp8zDhw+FjxLeQ4iNGRxbtmwpVTbgEbx27ZrQQDWkcGYKCi0OScM5G1e4HjoxGIu43xX0heU+DCDituNe17FjR2Fs8ePVtdcVa8//6AOfpi0vFHRfmB5wj3bu3Fn8jR9V1APFeEABsBiv6T2J9gDUdwAf7P7QriGw6gCAUOLB6I8QfUE4DghRKgb2CKo5AKKAKYTW0F7BkkEtSZj0qfhAXUYGb9hD4HGFkR4AA1iJ5rhn0aJFZseOHcLcQ72yXbt2mY8fP5oRI0ZI5ALAuQAInya0YtevXxfdnzx5IlywXgCEt5G0ITUV0ZOqE/Cq0gbk1JCmQ+QMGwbtoM+YMWOkriRE6viD6g3wXeIfex3RGPajMzy6YfbYziei5kD4hQsXhBPzxo0bQjwPtybPpy3qcMKcgs/4N3owMaEfaIfrieYgrQeUiehgI2ncuLHw3wbpATXgrVu3hHcVHkhbyy7RL6YqlzgPKAAmrktUofp6IAwAGTBh8YduDjqrP3/+SDFQwAIB7AAVBmLIggEbQAKwhCyZQZ80JyTlAAhAOXHixEIER0kgQPTNmzdSNw6wIeKiJBf3UncNVh+AzQVAAIJac1DeAbQAMoDmBUBqtQGkixcvFrAk2u3Tp4/oBlEwz1y2bJnp1KmT8MfOmDFDwIU/UF0BFLQPKMGO3717dwERwJyf7d69W5j1bUTqtQc7rOAn2PdJVQLs79+/F39QHxBAZCIANRW+wMeHDx+WaBcqvNGjRxciXHyybt06eQaMMqSpAUkAMUgPJjG2iCuTk759+9b3tdH7c+gBBcAcdnrWTQ4DQNYIAQ8GeQprUluMQR4AZFAdOXKkWbFihfx//fr1El0RFTHwAy7Uf2NNkWiPiBJQ4xkM1LDSA2THjx+XgR+AIpIDDGDiZ5AmZUd7kEYT/dgUKJEoQEHtOdjvSdsGASDllihmCoivXbtWIkFAlrU9Ik90BzxoA75EOGSJKu/fv2/cFCgRFpEawAWnIvo2bdpU9AyyZ8qUKYXXh6KxRKSUgaICBOV1qMmGHYAcz4MYG2BjkkA1hXv37snPN2/eXADAUaNGyfWAPRMLypu5AOjnV0BfU6BZ/5JLb58CYOl9rC2U2QNhAGjXAImSiOwAmy1btghoAGREbGySIb0GANpSPwACxMdEOADX1atXxSo3YrJrgPweQKAt6s2RJqXAMREX7QCw1Hbk9xYAqSwAt6Td9NKuXTsBNL8IEAAG9NjQQmQH0AFg6E50Cyk15XxsqhEABpy8AAj4AYLU+yMqhNQaewFfd03TtcddP7XFUwE49GaiQJRHZRbSn4Ae4Ab4usWoKVvDBMGucdrojWeQWqbILvbYCNDPr9yjAFjmDyuDzSkAZrBT825SsQDIgEwExG5O1vpYt2Pdin9bpnzAkg02gBADu61FFgQYDOYABNcRLTGYA7qsk/EsC4CAJGlW/mb3J6AVFAFGASDtEeWyHshaGtGlGwECtHV1dZJKpWIKv6+qqjI1NTWShkWvOADIe0Yqk6iO1CoTBtpGqCEIiLG7FTvYhUuk+OjRIyloSuRsAZAUJvYSUdMuaVU3AgwDQNLUpFC9u2jz/g2o/fE8oAAYz096VYo8YAGQElgMrIjdBEP6jTQe0RxrXm4EaAGQtUFSi0QzCNETa3KU1WJNjYgLYZCura2V6ImBm2MNREHnzp2Top1EeLRFtMmGGius1QE67jEIok/AhDU9AI40J+2FRYDojx3oA8hwDxEgaVZ041n8nKg4dBk5AAABOklEQVQK24hCWbckagWwACSAz0az2Il/SEEG2ePdQWvX7/gbXVgzJRIlOiR9jN9o0/oMgCfyZBMQG2+I+lgXRCd8RKqZtDFFW9ElSA+iS45SkG5NW1miFH1KmVdVATDzXawGFusBSlGxwYN1LLcOI5s7iBS9RxfC2mGnI3XlSNuxc9JPACoiQ9oD/Ooj7KS0z/LWkAR4WGtjlylCWSp2lbJxplT1Jjm2gL9sm65trCUCzmyq4TqAjQjW70ynex82MHHgmUE+rY8P9d7se0ABMPt9rBaqBxLtAdb62LHqCmukRMQq6oFSekABsJTe1WerB9QDsTzAoXeOjZA2JQJkE5CKeqDUHlAALLWH9fnqAfWAekA9kEgPKAAmsltUKfWAekA9oB4otQcUAEvtYX2+ekA9oB5QDyTSA38Bc5fX6UWaUGEAAAAASUVORK5CYII=", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "linker.training.estimate_u_using_random_sampling(max_pairs=5e6)" ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "linker.unlinkables_chart()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "4624c6a0-a1a8-4762-9003-b3da5aa45a77", - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
match_weightmatch_probabilityunique_id_lunique_id_rfirst_name_lfirst_name_rgamma_first_nametf_first_name_ltf_first_name_rbf_first_name...bf_birth_placebf_tf_adj_birth_placeoccupation_loccupation_rgamma_occupationtf_occupation_ltf_occupation_rbf_occupationbf_tf_adj_occupationmatch_key
019.4657510.999999Q5536981-1Q5536981-4georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
133.5725921.000000Q5536981-1Q5536981-5georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
233.5725921.000000Q5536981-1Q5536981-6georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
333.5725921.000000Q5536981-1Q5536981-7georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
422.0256281.000000Q5536981-1Q5536981-8georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
\n", - "

5 rows × 47 columns

\n", - "
" + "cell_type": "code", + "execution_count": 12, + "id": "ad8c0de1-769a-4861-849d-8b7e6655a681", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n", + "Estimating the m probabilities of the model by blocking on:\n", + "l.first_name = r.first_name and l.surname = r.surname\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - dob\n", + " - postcode_fake\n", + " - birth_place\n", + " - occupation\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - first_name\n", + " - surname\n", + "\n", + "Iteration 1: Largest change in params was -0.533 in probability_two_random_records_match\n", + "Iteration 2: Largest change in params was -0.0419 in the m_probability of birth_place, level `All other comparisons`\n", + "Iteration 3: Largest change in params was -0.0154 in the m_probability of birth_place, level `All other comparisons`\n", + "Iteration 4: Largest change in params was 0.00489 in the m_probability of birth_place, level `Exact match`\n", + "\n", + "EM converged after 4 iterations\n", + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n" + ] + } ], - "text/plain": [ - " match_weight match_probability unique_id_l unique_id_r first_name_l \\\n", - "0 19.465751 0.999999 Q5536981-1 Q5536981-4 george \n", - "1 33.572592 1.000000 Q5536981-1 Q5536981-5 george \n", - "2 33.572592 1.000000 Q5536981-1 Q5536981-6 george \n", - "3 33.572592 1.000000 Q5536981-1 Q5536981-7 george \n", - "4 22.025628 1.000000 Q5536981-1 Q5536981-8 george \n", - "\n", - " first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n", - "0 george 3 0.028014 0.028014 \n", - "1 george 3 0.028014 0.028014 \n", - "2 george 3 0.028014 0.028014 \n", - "3 george 3 0.028014 0.028014 \n", - "4 george 3 0.028014 0.028014 \n", - "\n", - " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n", - "0 48.723867 ... 162.73433 0.097709 politician \n", - "1 48.723867 ... 162.73433 0.097709 politician \n", - "2 48.723867 ... 162.73433 0.097709 politician \n", - "3 48.723867 ... 162.73433 0.097709 politician \n", - "4 48.723867 ... 162.73433 0.097709 politician \n", - "\n", - " occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n", - "0 politician 1 0.088932 0.088932 \n", - "1 politician 1 0.088932 0.088932 \n", - "2 politician 1 0.088932 0.088932 \n", - "3 politician 1 0.088932 0.088932 \n", - "4 politician 1 0.088932 0.088932 \n", - "\n", - " bf_occupation bf_tf_adj_occupation match_key \n", - "0 21.983413 0.459975 0 \n", - "1 21.983413 0.459975 0 \n", - "2 21.983413 0.459975 0 \n", - "3 21.983413 0.459975 0 \n", - "4 21.983413 0.459975 0 \n", - "\n", - "[5 rows x 47 columns]" + "source": [ + "blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", + "training_session_names = linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)" ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_predict = linker.predict()\n", - "df_e = df_predict.as_pandas_dataframe(limit=5)\n", - "df_e" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "cf6b3c45-1031-4ab0-9398-94d731117e2c", - "metadata": {}, - "source": [ - "You can also view rows in this dataset as a waterfall chart as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "c2f47ebb-3181-4db6-89ba-1ef60df3bba7", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", - "config": { - "view": { - "continuousHeight": 300, - "continuousWidth": 400 + "cell_type": "code", + "execution_count": 13, + "id": "c44fc676-e57e-4e8c-b9c6-8989e720b03a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n", + "Estimating the m probabilities of the model by blocking on:\n", + "l.dob = r.dob\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + " - postcode_fake\n", + " - birth_place\n", + " - occupation\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - dob\n", + "\n", + "Iteration 1: Largest change in params was -0.356 in the m_probability of first_name, level `Exact match`\n", + "Iteration 2: Largest change in params was 0.0401 in the m_probability of first_name, level `All other comparisons`\n", + "Iteration 3: Largest change in params was 0.00536 in the m_probability of first_name, level `All other comparisons`\n", + "\n", + "EM converged after 3 iterations\n", + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] } - }, - "data": { - "values": [ - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4047701974773831, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3048250240606851, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 0, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 0, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "sw1e 5la", - "value_r": "sw1v 1an" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 0, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 0, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 724060.5742920743, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 19.46575087143477, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4047701974773831, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3048250240606851, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 1, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 1, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 1, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.674900319705338, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.5672536577405403, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 1, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 1, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 12774887550.161978, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 33.57259154089463, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4047701974773831, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3048250240606851, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 2, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 2, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 2, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.674900319705338, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.5672536577405403, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 2, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 2, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 12774887550.161978, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 33.57259154089463, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4047701974773831, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3048250240606851, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 3, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 3, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 3, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.674900319705338, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.5672536577405403, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sw1e 5la", - "value_r": "sw1e 5la" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 3, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 3, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 12774887550.161978, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 33.57259154089463, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4047701974773831, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3048250240606851, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "george", - "value_r": "george" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 4, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "lucan", - "value_r": "lucan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 4, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-12-13", - "value_r": "1860-12-13" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "sw1e 5la", - "value_r": "" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 4, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 4, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 4269476.815657544, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 22.025627861254016, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - } - ] - }, - "height": 450, - "layer": [ + ], + "source": [ + "blocking_rule = \"l.dob = r.dob\"\n", + "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "31b6440a-4353-45af-a986-ba59c0d784d3", + "metadata": {}, + "outputs": [ { - "layer": [ - { - "encoding": { - "color": { - "value": "black" - }, - "size": { - "value": 0.5 - }, - "y": { - "field": "zero", - "type": "quantitative" - } - }, - "mark": "rule" - }, - { - "encoding": { - "color": { - "condition": { - "test": "(datum.log2_bayes_factor < 0)", - "value": "red" - }, - "value": "green" - }, - "opacity": { - "condition": { - "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", - "value": 1 - }, - "value": 0.5 - }, - "tooltip": [ - { - "field": "column_name", - "title": "Comparison column", - "type": "nominal" - }, - { - "field": "value_l", - "title": "Value (L)", - "type": "nominal" - }, - { - "field": "value_r", - "title": "Value (R)", - "type": "nominal" - }, - { - "field": "label_for_charts", - "title": "Label", - "type": "ordinal" - }, - { - "field": "sql_condition", - "title": "SQL condition", - "type": "nominal" - }, - { - "field": "comparison_vector_value", - "title": "Comparison vector value", - "type": "nominal" - }, - { - "field": "bayes_factor", - "format": ",.4f", - "title": "Bayes factor = m/u", - "type": "quantitative" - }, - { - "field": "log2_bayes_factor", - "format": ",.4f", - "title": "Match weight = log2(m/u)", - "type": "quantitative" - }, - { - "field": "prob", - "format": ".4f", - "title": "Adjusted match score", - "type": "quantitative" - }, - { - "field": "bayes_factor_description", - "title": "Match weight description", - "type": "nominal" - } - ], - "x": { - "axis": { - "grid": true, - "labelAlign": "center", - "labelAngle": -20, - "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", - "labelPadding": 10, - "tickBand": "extent", - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "grid": false, - "orient": "left", - "title": "log2(Bayes factor)" - }, - "field": "previous_sum", - "type": "quantitative" - }, - "y2": { - "field": "sum" - } - }, - "mark": { - "type": "bar", - "width": 60 - } - }, - { - "encoding": { - "color": { - "value": "white" - }, - "text": { - "condition": { - "field": "log2_bayes_factor", - "format": ".2f", - "test": "abs(datum.log2_bayes_factor) > 1", - "type": "nominal" - }, - "value": "" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "orient": "left" - }, - "field": "center", - "type": "quantitative" - } - }, - "mark": { - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "black" - }, - "text": { - "field": "column_name", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -25, - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" - }, - "text": { - "field": "value_l", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -13, - "fontSize": 8, - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" - }, - "text": { - "field": "value_r", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v5.2.json", + "config": { + "header": { + "title": null + }, + "mark": { + "tooltip": null + }, + "title": { + "anchor": "middle" + }, + "view": { + "height": 60, + "width": 400 + } + }, + "data": { + "values": [ + { + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": "The probability that two random records drawn at random match is 0.000 or one in 7,362.3 records.This is equivalent to a starting match weight of -12.846.", + "comparison_name": "probability_two_random_records_match", + "comparison_sort_order": -1, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "m_probability_description": null, + "max_comparison_vector_value": 0, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": null, + "tf_adjustment_column": null, + "tf_adjustment_weight": null, + "u_probability": null, + "u_probability_description": null + }, + { + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "comparison_name": "first_name", + "comparison_sort_order": 0, + "comparison_vector_value": 3, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "m_probability_description": "Amongst matching record comparisons, 55.25% of records are in the exact match comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "tf_adjustment_column": "first_name", + "tf_adjustment_weight": 1, + "u_probability": 0.011339110875462712, + "u_probability_description": "Amongst non-matching record comparisons, 1.13% of records are in the exact match comparison level" + }, + { + "bayes_factor": 26.589733743152838, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 26.59 times more likely to be a match", + "comparison_name": "first_name", + "comparison_sort_order": 0, + "comparison_vector_value": 2, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 4.732797425698729, + "m_probability": 0.0867239389400622, + "m_probability_description": "Amongst matching record comparisons, 8.67% of records are in the levenshtein_distance <= 1 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 1", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.0032615572528023004, + "u_probability_description": "Amongst non-matching record comparisons, 0.33% of records are in the levenshtein_distance <= 1 comparison level" + }, + { + "bayes_factor": 7.778809222513577, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", + "comparison_name": "first_name", + "comparison_sort_order": 0, + "comparison_vector_value": 1, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 2.9595493248441493, + "m_probability": 0.07354167451568606, + "m_probability_description": "Amongst matching record comparisons, 7.35% of records are in the levenshtein_distance <= 2 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.009454104402360242, + "u_probability_description": "Amongst non-matching record comparisons, 0.95% of records are in the levenshtein_distance <= 2 comparison level" + }, + { + "bayes_factor": 0.2943290699918006, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", + "comparison_name": "first_name", + "comparison_sort_order": 0, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -1.7644980549473468, + "m_probability": 0.28724905116399735, + "m_probability_description": "Amongst matching record comparisons, 28.72% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.9759452274693747, + "u_probability_description": "Amongst non-matching record comparisons, 97.59% of records are in the all other comparisons comparison level" + }, + { + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "comparison_name": "surname", + "comparison_sort_order": 1, + "comparison_vector_value": 3, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "m_probability_description": "Amongst matching record comparisons, 78.16% of records are in the exact match comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "tf_adjustment_column": "surname", + "tf_adjustment_weight": 1, + "u_probability": 0.0006304723913592461, + "u_probability_description": "Amongst non-matching record comparisons, 0.06% of records are in the exact match comparison level" + }, + { + "bayes_factor": 333.4770408553619, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", + "comparison_name": "surname", + "comparison_sort_order": 1, + "comparison_vector_value": 2, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 8.381443628293102, + "m_probability": 0.1284849300847964, + "m_probability_description": "Amongst matching record comparisons, 12.85% of records are in the levenshtein_distance <= 1 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.0003852886836084281, + "u_probability_description": "Amongst non-matching record comparisons, 0.04% of records are in the levenshtein_distance <= 1 comparison level" + }, + { + "bayes_factor": 9.930908563690332, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", + "comparison_name": "surname", + "comparison_sort_order": 1, + "comparison_vector_value": 1, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 3.311925713762501, + "m_probability": 0.020267294367821084, + "m_probability_description": "Amongst matching record comparisons, 2.03% of records are in the levenshtein_distance <= 2 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.0020408298231566584, + "u_probability_description": "Amongst non-matching record comparisons, 0.20% of records are in the levenshtein_distance <= 2 comparison level" + }, + { + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "comparison_name": "surname", + "comparison_sort_order": 1, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "m_probability_description": "Amongst matching record comparisons, 6.96% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.9969434091018756, + "u_probability_description": "Amongst non-matching record comparisons, 99.69% of records are in the all other comparisons comparison level" + }, + { + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "comparison_name": "dob", + "comparison_sort_order": 2, + "comparison_vector_value": 3, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "m_probability_description": "Amongst matching record comparisons, 61.84% of records are in the exact match comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "tf_adjustment_column": "dob", + "tf_adjustment_weight": 1, + "u_probability": 0.002091550682362922, + "u_probability_description": "Amongst non-matching record comparisons, 0.21% of records are in the exact match comparison level" + }, + { + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "comparison_name": "dob", + "comparison_sort_order": 2, + "comparison_vector_value": 2, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "m_probability_description": "Amongst matching record comparisons, 34.12% of records are in the levenshtein_distance <= 1 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.02148930701890366, + "u_probability_description": "Amongst non-matching record comparisons, 2.15% of records are in the levenshtein_distance <= 1 comparison level" + }, + { + "bayes_factor": 0.4683030453214949, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", + "comparison_name": "dob", + "comparison_sort_order": 2, + "comparison_vector_value": 1, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": -1.094485675137949, + "m_probability": 0.03711726145166532, + "m_probability_description": "Amongst matching record comparisons, 3.71% of records are in the levenshtein_distance <= 2 comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.07925906487792309, + "u_probability_description": "Amongst non-matching record comparisons, 7.93% of records are in the levenshtein_distance <= 2 comparison level" + }, + { + "bayes_factor": 0.0037043486234159474, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", + "comparison_name": "dob", + "comparison_sort_order": 2, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -8.076564404852965, + "m_probability": 0.0033233936977775237, + "m_probability_description": "Amongst matching record comparisons, 0.33% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 3, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.8971600774208104, + "u_probability_description": "Amongst non-matching record comparisons, 89.72% of records are in the all other comparisons comparison level" + }, + { + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "comparison_name": "postcode_fake", + "comparison_sort_order": 3, + "comparison_vector_value": 2, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "m_probability_description": "Amongst matching record comparisons, 68.78% of records are in the exact match comparison level", + "max_comparison_vector_value": 2, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "tf_adjustment_column": "postcode_fake", + "tf_adjustment_weight": 1, + "u_probability": 0.00015514157328739382, + "u_probability_description": "Amongst non-matching record comparisons, 0.02% of records are in the exact match comparison level" + }, + { + "bayes_factor": 259.82892721059164, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 259.83 times more likely to be a match", + "comparison_name": "postcode_fake", + "comparison_sort_order": 3, + "comparison_vector_value": 1, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 8.02141824727364, + "m_probability": 0.14271550398348254, + "m_probability_description": "Amongst matching record comparisons, 14.27% of records are in the levenshtein_distance <= 2 comparison level", + "max_comparison_vector_value": 2, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "levenshtein_distance(\"postcode_fake_l\", \"postcode_fake_r\") <= 2", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.0005492671871281347, + "u_probability_description": "Amongst non-matching record comparisons, 0.05% of records are in the levenshtein_distance <= 2 comparison level" + }, + { + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "comparison_name": "postcode_fake", + "comparison_sort_order": 3, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "m_probability_description": "Amongst matching record comparisons, 16.95% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 2, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.9992955912395844, + "u_probability_description": "Amongst non-matching record comparisons, 99.93% of records are in the all other comparisons comparison level" + }, + { + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "comparison_name": "birth_place", + "comparison_sort_order": 4, + "comparison_vector_value": 1, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "m_probability_description": "Amongst matching record comparisons, 84.58% of records are in the exact match comparison level", + "max_comparison_vector_value": 1, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "tf_adjustment_column": "birth_place", + "tf_adjustment_weight": 1, + "u_probability": 0.005197616804158735, + "u_probability_description": "Amongst non-matching record comparisons, 0.52% of records are in the exact match comparison level" + }, + { + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "comparison_name": "birth_place", + "comparison_sort_order": 4, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "m_probability_description": "Amongst matching record comparisons, 15.42% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 1, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.9948023831958412, + "u_probability_description": "Amongst non-matching record comparisons, 99.48% of records are in the all other comparisons comparison level" + }, + { + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "comparison_name": "occupation", + "comparison_sort_order": 5, + "comparison_vector_value": 1, + "has_tf_adjustments": true, + "is_null_level": false, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "m_probability_description": "Amongst matching record comparisons, 89.93% of records are in the exact match comparison level", + "max_comparison_vector_value": 1, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "tf_adjustment_column": "occupation", + "tf_adjustment_weight": 1, + "u_probability": 0.040906446283799566, + "u_probability_description": "Amongst non-matching record comparisons, 4.09% of records are in the exact match comparison level" + }, + { + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "comparison_name": "occupation", + "comparison_sort_order": 5, + "comparison_vector_value": 0, + "has_tf_adjustments": false, + "is_null_level": false, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "m_probability_description": "Amongst matching record comparisons, 10.07% of records are in the all other comparisons comparison level", + "max_comparison_vector_value": 1, + "probability_two_random_records_match": 0.00013582694460587586, + "sql_condition": "ELSE", + "tf_adjustment_column": null, + "tf_adjustment_weight": 1, + "u_probability": 0.9590935537162004, + "u_probability_description": "Amongst non-matching record comparisons, 95.91% of records are in the all other comparisons comparison level" + } + ] + }, + "resolve": { + "axis": { + "y": "independent" + }, + "scale": { + "y": "independent" + } + }, + "selection": { + "zoom_selector": { + "bind": "scales", + "encodings": [ + "x" + ], + "type": "interval" + } + }, + "title": { + "subtitle": "Use mousewheel to zoom", + "text": "Model parameters (components of final match weight)" + }, + "vconcat": [ + { + "encoding": { + "color": { + "field": "log2_bayes_factor", + "scale": { + "domain": [ + -10, + 0, + 10 + ], + "range": [ + "red", + "orange", + "green" + ] + }, + "title": "Match weight", + "type": "quantitative" + }, + "tooltip": [ + { + "field": "comparison_name", + "title": "Comparison name", + "type": "nominal" + }, + { + "field": "probability_two_random_records_match", + "format": ".4f", + "title": "Probability two random records match", + "type": "nominal" + }, + { + "field": "log2_bayes_factor", + "format": ",.4f", + "title": "Equivalent match weight", + "type": "quantitative" + }, + { + "field": "bayes_factor_description", + "title": "Match weight description", + "type": "nominal" + } + ], + "x": { + "axis": { + "domain": false, + "labels": false, + "ticks": false, + "title": "" + }, + "field": "log2_bayes_factor", + "scale": { + "domain": [ + -10, + 10 + ] + }, + "type": "quantitative" + }, + "y": { + "axis": { + "title": "Prior (starting) match weight", + "titleAlign": "right", + "titleAngle": 0, + "titleFontWeight": "normal" + }, + "field": "label_for_charts", + "sort": { + "field": "comparison_vector_value", + "order": "descending" + }, + "type": "nominal" + } + }, + "height": 20, + "mark": { + "clip": true, + "height": 15, + "type": "bar" + }, + "selection": { + "zoom_selector": { + "bind": "scales", + "encodings": [ + "x" + ], + "type": "interval" + } + }, + "transform": [ + { + "filter": "(datum.comparison_name == 'probability_two_random_records_match')" + } + ] + }, + { + "encoding": { + "color": { + "field": "log2_bayes_factor", + "scale": { + "domain": [ + -10, + 0, + 10 + ], + "range": [ + "red", + "orange", + "green" + ] + }, + "title": "Match weight", + "type": "quantitative" + }, + "row": { + "field": "comparison_name", + "header": { + "labelAlign": "left", + "labelAnchor": "middle", + "labelAngle": 0 + }, + "sort": { + "field": "comparison_sort_order" + }, + "type": "nominal" + }, + "tooltip": [ + { + "field": "comparison_name", + "title": "Comparison name", + "type": "nominal" + }, + { + "field": "label_for_charts", + "title": "Label", + "type": "ordinal" + }, + { + "field": "sql_condition", + "title": "SQL condition", + "type": "nominal" + }, + { + "field": "m_probability", + "format": ".4f", + "title": "M probability", + "type": "quantitative" + }, + { + "field": "u_probability", + "format": ".4f", + "title": "U probability", + "type": "quantitative" + }, + { + "field": "bayes_factor", + "format": ",.4f", + "title": "Bayes factor = m/u", + "type": "quantitative" + }, + { + "field": "log2_bayes_factor", + "format": ",.4f", + "title": "Match weight = log2(m/u)", + "type": "quantitative" + }, + { + "field": "bayes_factor_description", + "title": "Match weight description", + "type": "nominal" + } + ], + "x": { + "axis": { + "title": "Comparison level match weight = log2(m/u)" + }, + "field": "log2_bayes_factor", + "scale": { + "domain": [ + -10, + 10 + ] + }, + "type": "quantitative" + }, + "y": { + "axis": { + "title": null + }, + "field": "label_for_charts", + "sort": { + "field": "comparison_vector_value", + "order": "descending" + }, + "type": "nominal" + } + }, + "height": { + "step": 12 + }, + "mark": { + "clip": true, + "type": "bar" + }, + "resolve": { + "axis": { + "y": "independent" + }, + "scale": { + "y": "independent" + } + }, + "selection": { + "zoom_selector": { + "bind": "scales", + "encodings": [ + "x" + ], + "type": "interval" + } + }, + "transform": [ + { + "filter": "(datum.comparison_name != 'probability_two_random_records_match')" + } + ] + } + ] }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -5, - "fontSize": 8, - "type": "text" - } - } - ] - }, - { - "encoding": { - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "x2": { - "field": "lead" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAHICAYAAABH1oIKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8VdP7/1fmIUoZMnzNohIZyhD1j4zJTMpckam+olBmKSH5fkuJUImSkoQMEZGpQhMyZshUKUXI1P/1fnzX/e1O55x7zl3n3LvPuZ/1et1X3Xv2Wnutz1r77Pd+9rOep8rKlStXOhUpIAWkgBSQAlJACkgBKVAJFKgi+K0Es6whSgEpIAWkgBSQAlJACpgCgl8tBCkgBaSAFJACUkAKSIFKo4Dgt9JMtQYqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVFfugUb3dVapUqVEjFR/z5da/nzRPuTrXMXc7k8//eS++eYbt8MOO7h11lmnmIcam7GxdpcsWeI22GADt956663Wrz///NM+32STTdyKFSscv1erVi24/7pm/pHw999/d7/++qtpv+666wbrGm1g2bJl7ttvv9X1lFNV1VicFRD8xnl21LecKAAkbb311iVt/fbbb3bz4AYdvYkvXrzYbtzZlsMPP9xNnDjRvfPOO26vvfZKWf29995zu+++uzvkkEPciy++mO1pYnv8rFmz3NSpU91+++3n6tevXy79PPbYY91bb73lPv/8c7f++uuXyznjfpIhQ4Y4HqrOOeecnHf17bffds2aNXM8dHCexHOMHTvWnXTSSXbeGTNmuLZt29r1sGDBArfZZpsF9WfjjTe28/7xxx9urbXWCmorXeVnn33WzZ8/351wwgmuZs2aac8zcOBAd/HFF7v//Oc/7t///nfe+hRteMCAAe6SSy5xN954o7vuuutKPafXLVVAp+h4f/zxR7fzzjtn3HapJ9cBUiDmCgh+Yz5B6l64Aonw+8Ybb7j999/fvf76665x48YlJygr/B566KFu0qRJpcLvnDlzDA6LDX7vvPNOd9lll7n+/fvbzTnfZcyYMe6UU05xPXv2dN27d8/36Qqmff82IR/RK5lf5vnMM890V155patXr94qujRp0sS9+uqrtg6uuuoqN3jwYAPJ2267zVWtWjVIw/KCXx6onnzyyVKvYwbDWu/UqZPr06ePu/zyy4PGl2llvmMeeeQR17JlS/sprZS2HhLHe+KJJ7rHH3/cvf/++65OnTqlNa/PpUBBKyD4LejpU+czUcDD70YbbWQWJG7IXbt2dbfffru74oornP+7h9+5c+e6Ll26uFdeecWsik2bNrWb3Lbbbmune+2119w111zjPvnkE3fEEUe4d999126Y/Oy5557unnvucffdd5/d/PfZZx938803u7333tulg1+sWkD0dtttZ9bhESNGmJWrc+fO7owzzrDzYn279tpr7V+OO+iggww0Nt98c7sBT5s2zV144YXu7rvvdh06dLD2unXrZuOgrQMPPNDglD499NBD7v7773dHHXWUPQTMnj3bHX/88a5169YGNx999JEBZu/evc2t4NNPP7W2Jk+e7GrVqmXH0hcs3pdeeqkdX7t2bdPz3HPPTavBRRdd5LCWYxV88803zWrM+QEmbr5bbrmlWRmxcCV7vQ54cYNGXyz6P/zwg83H888/76pXr25zcsEFF9h88eodaBs6dKjVYR7Q5rzzzjMrKboxbyeffLIbOXKkrQ80Ry/q/fzzz6aHt2QyVvq2aNEih+Vsp512cr169XL77ruvzVG6tfPxxx+7888/3yzky5cvdxMmTLD1AkT9v//3/6w+gNOjRw/r6y677GLWReaktLqnn366rRkKYPTwww873nCwFh577DH7P+uYsdDnxIK7Ag8STz31lFu6dKlr0KCBPVwcfPDBdr3ccccdNl88NF599dXumGOOKWmiffv2tpYoaI9ud911l/WZPtF2aeNGeyyb1EETHhC5BpmHdPCbzfzRv1Tn6du3r12nzD8PxIyX64R/GQPrgDUL/HMdefhlXPPmzXMzZ850DRs2tL/jihMtrA/WCusKqzLXKG+BbrrpJpt3rheurwceeMBtscUW7oYbbnDjxo2zJtCf755NN93UYV3H0sxaxPLO+mc98gaEa4L+UY9rkPnx8Mv3HOsALbn2sFQzp4njZZ74PmjXrp19f6lIgWJWQPBbzLOrsZkCHn6BM24AgCPgcfTRRxvE4OvGjQT4/euvv9yOO+5oN8E99tjDbnqfffaZASY3OY6nPmWbbbYxUOBYChCFVRlgAaiB02eeecY+46YOgKSy/EZdMKjLq2LOS3nuuecMZLfaaisDEG6g9BfY5SbIa+gjjzzSjvNl2LBhBqZALjfzGjVqmFWLcXz//fcGbEAMBV2AV18Yvz/38OHD7Xy77babnZOb9ZdffmmfcxMHkIEUxs7NH8sfOqbSgP5Hre1oiK7cvOkDMAMQ84CR7JUyN2jGcthhhxnsYuUEEDi+bt26Dt9F+gnk8pAAQAMTHsy8Rry2pv/eas/n0XEn/s6DDuMGyhLnnvmi76ytdGvnww8/tH5RonOM/nwGQAGdlBYtWthDC2sLax/HpKsLQANeFOCoX79+9oAH9ABsPFzRznHHHVcCVn6+0RAwxnLL+gC60ZNCn1jTgBK60i/m2OvAMTyA3XrrrXb82WefbQ8irVq1sjXx1VdfuYULF6btO2NnfaEJ/WNeWSes4bPOOist/GYzfzwIpToPDyOsE87LwwPr5oknnrB/0YRrnuuNwvfF6NGj7aGFwrxwfTNXfl2WXEzOuQcffNB0YV54MF577bXtY3TiYYRx88Pa5kGHtplv1jnXAv/nYWjQoEGruD3wEPbyyy/b9xD+wPSdArgCsNF9BVxzfk6nTJnicFVKHC/fTZyT7x5gXEUKFLMCgt9inl2NzRSIwi/WEaxS3Ow23HBDu/lgJfPwC0gCYB4SgOFGjRrZjRyQBICwkOHfCEwAPf4VMMecdtpp9jesNIAM1h2sjtxoqJMJ/GI9BEDoBwAIvGBNw7qGBYgbGX0BSPg/NzMPv8AoIIL1CUsa8M55gRism5RffvnF2gN+sUZh9UIHrEHANBYorI/XX3+93aB5CDj11FMNMgESLK2ALgXY5GYbdXvYddddU2oAHHj4ffTRRw2sgXFu4BSsVJwPYOImzHxFywsvvGCAAbgCsNzEsRRSHwBZc801HVZQHjSADu/DDQgDKVg2gRuOB8w8PGEx4++Mi3n0fq0eMIBmoAXoA3CxVFN4GACKmBv8JtOtHeCcPgBTWP6wUmO5BlpYMwAra5O5wDrNORknegG26eqyXhJfc2Ph5SEFaz9j4zz4umO19wDGGKZPn27jBsA4Bms71kPmAgv5vffea5piAcXyj4tDYvnXv/5l1xAPg1hqsZomwm+qcbMeGSvXEQ94vFF4+umnbf1x3aSz/GYzf1hV050n0Q3An9e7AdAXxsT1z5wDv1hKeZD+4IMP7OHLP1xG9QGWGRfrhjcbrFe/doBrHjzQmfb93gTaY66aN29uc8geAf7mfX5ZF5yLNnmjxLpnDrkeEuHXu3n5OeS64DslmZuHn7fvvvvOrNAqUqBYFRD8FuvMalwlCkThl5sN1hUggxsJ1lBuJB5+ubFhYQFEOnbsaG14MKQu8AvoAATcsCj+NTwQ4V9/J8rPzQagKA1+ozdPXpVycwU6sfBgyQNUoyURfl966aWSV+gAMjDmLUK+HuAPVAO/3rr63//+116h4ubAeP2GHqx6ACR/S1YATjT08MtrVW7EyQoa4I5AnxkTlk1fvE+p/x04ZR6wNEaL9y8GygH08ePH24NKMosmcwqUUf7++2+DQ2855m9Y29EXVwMPx4AhFj+sZLzeBvqxxAE4QCHwyzgACArr5ZZbbjELIZCTbu0AoAAsrgHMLYUHK0AKgGGuotZ7P27WBMenq8saTIRfrPZYTn0BbukvcxotPMRxTUQ1BD55de7nKRfwm2rcgCHt+7ckvm9s6kLXTOA3k/nDZSPdeaIwiMsMD5qUZD7U3u2BuUdPv67QmAfCxOKhElcSrjtciKjLGgb2WXPM8wEHHJD02uFhjOvWwy8PiDw4tmnTxh7eKTzIcj0nwq/fKOi/x/znyeDXP0RzTfDgpyIFilUBwW+xzqzGVaJAFH55pbr99tuX+PkChkCFh1+spdyMon5v/oYA8PI6EMsqoIIvHq9SeVXIK0+sQhxLm1gY8d3l71jDsKJk6vaAhYfXsx70uMFhUeZmxU0Pv0XG5K2oUcuvhwDcM/wue4AYq5S35GQDv9yk6QuvbQE/rMKUr7/+2qAAeONBImr55TypNPBuD1HQwsqEJZT2eLhAOyxkwADjjMK0BzoPoFjFsHB6NwcgF4shr4EBPayrFI7DGu43OXpI8ZbD0uAJMMMShwb0i/Hj5uABAn9lxpFu7fBgRD8BesaYCL+sJ94S+DaAFqziQPcaa6yRtm4i/LLWAHjWH28veHhinii8WcA67wsPIVgfvTWcv7PGgToPV7mA31TjBuzwreWtA28zgDOsoLmEX+aPtwbpzhOFQd7aAMB8LwC2rCP6iXb0k7aiG95Kg18gl/Gw7pgrxolV1+83YJ6YayIu8DfWI772XMfMJfM1atSoEvjleuR7jOuatzqsRf8glQi/Ht4zgV//1oY2+a5RkQLFqoDgt1hnVuNKCr/4F3o4876W/pUtvqrAGbBHAYCJq+k3EgFi+H76175sduE1I355FOAXOAQysG7igoAFlVfaWHZ4RVma5Zd2sFABSh5WgF3ipeKjzGdACRZazsvvvNb0gO4hDtcELFfcSLEAA5OAFQVXCCy9mVh+AUgs3H4TDzdtII++AXJYLRkjVnIse1jqOF8qDbzbRhR+vYUWqARcuZHz2h+90C4Kv4wZ6xg3Zm7QFF4jMw/0gVfoWOZ9RA1ABVcNIAGrLhZbzgcIoGGm8Bt1e+CcQCFwilWYwkMRv6dbO+iWDn556GHNoAO6A2yclwcLNj2mqxuFX7THv5Q1xCt7XG/oF1ZD1jd9RVtfsICjDw8IWML9gxefY/Hmb/mEXx5ogG3eCuAnz5sYYNBb93Nh+UVHrJnpzuOjHfAGBCsqOuL6wfgBS9Y2xYd7ywZ+uU5og8IbIB4qvUuOfyjgIYV1zZyxbvl+8tFMeNjiGo6GOvOwy3cAD3t8/1Ayhd/E8bLufNhA776i24gUKFYFBL/FOrMaV0r45VUwN1xe0WPpjcIvNyR2x7MD229kAyC58QBKFG8V4/9ABDFBublx88H3EnDzwMwx3orFTS1VnN/ohjdeNbP5iMINFgswFk0svVjwKNwcgVn6RqxbYIwbvIdfjgFu2dhGwTcVeAcm8R9khzg3Vu/24F/jercHNkqhjwcQXoMDVN6FAlgC/PgXqy2wyWeAGpCQSgPOC7wmuilEN+DR30TN/WQCCH7jn3+dC9QAtn6+gAagDYswFjmsZLhm+ILVmPHh8+1jNJdm+Y3Cb3RjHW2ylnxEjnRrh6ggpQFsog682uaBik2BpdUF/v0DExZDxsTfopsZgTk2KCYWfJjxCY8ei5WU+aR4+MVKzPpMLP4a4pU/c5fM5zeV5ReLOg9OfpMla5nrx7v0pIPfbOaPazXdeXjI5NwUHlZ5qMIazIOVX5OE2eOc/nrxGuHvzXdHMp9f6rJu+Zw1yn4A5tW7S0VdqHg4Z336zXVoyfrievFxfnmY4e0A/eI644EQrfDj5vvB+6snusH4jYk8HHItJ47XP5wncyHS7UQKFJsCgt9im1GNJycK4M6AhQyrI1bPRD9WLCNsyuKGwSvpxILlFR9QPicjVmnFw6+/eQKqwFlihiyslsAAP5kU4A/rNcAYWrwmWIeAnehucj4DABirH2+2GqApbg+87uWVbqosVtz8sRB7qyTjAoSBJ+qwMz8xgx59wXrGq2zvCpGtHriPAPl+UyBAygalxH6WtnZKOy9uKbRNyLfSki0ktgV8cn5Ay2uARZm/oUu6dcPrcdYXbfDgkCzMXGl9L+vnnJvrjT5GN+OVtb1U9Uo7D9cK+nPd0Q+OZ2Mkf+PBNp9JNnyf/TzwFoN5SHZOrjVcZ/iMhxYsvzxcAL+EDvQbUkvTLzpeHox4YOZBMRrKrrQ29LkUKEQFBL+FOGvqc9EpkAi/RTfAHA4I6xm+kcAI/s7lVaLwi3VNRQpUlAK8CcL9yof4A9C5Lnh45gEy2/THwD0PW/g6RzeiVtT4dF4pkG8FBL/5VljtS4EMFMAyhwUHi53AqnTB2HDE62NcLELT55Z+tn+O4DUzbiBYf/ELVZECFanAF198Ya4LwCowjEsVG3GB2GwLLjls2iQBRnQzZLbt6HgpUCgKCH4LZabUTykgBaSAFJACUkAKSIFgBQS/wRKqASkgBaSAFJACUkAKSIFCUUDwWygzpX5KASlQlAqwWS+fm7yKUjQNSgpIASkQoIDgN0A8VZUCUiBzBXw4KJ9u1dck3Br+hoRMq2yFHf1E9fBJOELHj+84IJ2YyIJ2CddHHFkiCKhIASkgBSqzAoLfyjz7GrsUKEcFUsEvcYwJzC/43SF4Njz8+iyB0QaJW8uGPRJpqEgBKSAFKrMCgt/KPPsauxQoRwUygV+ytpHogexmJEoYNGiQ7T4njinpYUmsQZzerl27WsrnxNK+fXuLrUwiD2LWkkmLXfHANTFkyfaG5ZO+kEBk3LhxFi2CBABksiPkU7NmzezvxEYmGx7RHUjywXEkOCHpBBZbEgwQF5V4usRWJXkESQpIpADQ485AkgT6zLnZiU84KpIaENqOxCMkHCDZAYlQHn30UUtlSwIDYglTkrXrY/+S5ITz0EeSbFCPguU3EX75jOx8pDAmmghjvOWWW9w999xj2pLEomfPniUZvryuJLlIDCdHHSzIqepzbhKkkGTDZ4sjCQNjoQ/MK/NBLFqiZpBs5eOPP7b5QE8VKSAFpEC+FRD85lthtS8FpIApkAn8kv2tadOmlgELdwhgkWD+wCkQCXwCnmRtI+4uABktpMcl9ilwNWPGDMt4RkYywNSDF9ndgL3p06db+lqA12fI22+//QyuvRuC7zMJMoilCsyS/YuseqS3JuQaYFurVi3Lpka4uttuu80SRRCCimQgnKNVq1aWOIHxAL6cm5TUtEviCbLSAZOMiT4DwZw7Vbs8HJDuul+/fq5OnTqWkRB4BySTwS9QzvHoBpjiAgGMc05SbqMHwN2jR49V9Hz99ddLsvr16dPHwr3RFnOSrD6WZWIw0yZ9ITMeqbRJC05dshSedNJJpodPt8w8UwBhNAbQVaSAFJAC+VRA8JtPddW2FJACJQpkAr9YZQnej/WXTHGA1r777msZ9qJphElRDaQCf4nw27x5c7OkArC0hxUY6y2QBbjyA4gCZqSqpQB/VatWNXBNBb9A9amnnmrt0UfSVWMNHjVqlCPNLckFsALTZyyeZPgjDjEwChgD5hQyaJGJa86cOWbZxud34sSJjn6T5Y7zYz199tlnU7YLeJPQAMinYI3mwQDXkWTwyzFRt4dGjRqZhdrDLu3QV+AzWaEvRx11VIlmqerju81xPs0xbQH3WIvRCvjlYYO5bdeunWmFZZk4tczx5MmTTVsVKSAFpEA+FRD85lNdtS0FpECJAt4fFWvpoYceWvJ3QBeg9D9YYRcsWGCvxUljvNdee1ka4cQCiAKeifCL6wNWTFJEU+/77783UMTi+/DDDxuIkRBg0aJFJemDOQ+B/gHsKPxyDNCGhXaLLbYwYMN1YqONNjJrK5bTK6+80qy1iWX27Nnuo48+MqjETeP555+3VNiMB/BmnCeeeKLBL6/9sZj+9ddflrIWqzVAmqpdrKe0HS30afHixRnBL0DKWI877jhrAu2Bb1LrJhbcRrDkMgbvWpGqPjDPA0nUfxvoxyKO5jxkMB8UHggYK64bHpJxN+FBRUUKSAEpkE8FBL/5VFdtSwEpsIoCWB+x2vLK3BeACDjt3bu3WVM5BqvogAEDzPcW6yCZ78aPH18CzVgosRQCjInwe8EFF5gPrIdfQBqA9fALhAKc+Bfju0oBpPFFpS7w62EUIN57770NfvHhJW0sPwA8r+1xpcDiC8xizaVwHP0H3nFz2HTTTW2TGVZPYA+XA6y/+CQzrmi0hyj8jhkzJmW7uIbwgx80ZcmSJe67774z7TKx/OLzC5BefPHFVh9tsIhj4Y0W3C+wxDIG+ozmlFT1cXU45phjrD8cC0xjZadd3FV4YPDWZeCXvvbt21fwq+8JKSAFylUBwW+5yq2TSYHKrQDAA9BOmDDBwBXfVayYpGnFzxdI5f8tWrQwwMQyCtRhKd52223NagvU8soeKySv/7OFX16zH3/88QZ0uCsAqHXr1jV/W0AXWAPi6CvpXtmUBvzic0x/6R/H4G8M1LIhj/7wyh7gxccXcKcOsIuLwLRp0xyWYMAZ/17Oh3U0MdRZFH6xkKZqF2syG+TQEYsvOqy//vpmzU0Fv8A9x7FRDz9crOCPPPKI+dhi9UXrxLTNF154oR2HZuhFAdjZtJesPjDNhjw0wEqOOwf+vVikeTgQ/Fbu61+jlwJxUUDwG5eZUD+kQCVQANjDykr0BF/YzIb7AAW/3M6dO5sl+NdffzUfXKyxbJYCiLGWUgBlXB4Sk0Pwij3R8rtw4UIDN6ybgCsb0fDfxTcV8KUAaoA11sqbbrrJ3C0oZ555pgElIMtn+B/TB4ATqzHW6Bo1apgl21sw6Tvn8a/v8T/mM3ye8QlmExtuGX7zXjLLr7dKp2qXtnhomDRpkvUT6MZSTISKVHF+AXp0BprZBAhYo6uvzyY2+u6LB/HEZQkwY3VOVR/wxyqORujLw0Pbtm3tYaY0+MX6jFVZRQpIASmQTwUEv/lUV21LASmQVAGgiNffWH/XWWedVY7BSghgYh3FcuoLPsNEDWBjWi4iAvBK/9NPPzUY9eHD/LnYeEbBwhstRGpgIx3WT+pFC5CNtZYxrbfeejmb+VTt4lKAPy59wpoMWJdW0JYxAfLA7bx580x/olJkUj/afrr6wDlzSNg5NrepSAEpIAXipIDgN06zob5IASkgBaSAFJACUkAK5FUBwW9e5VXjUkAKSAEpIAWkgBSQAnFSQPAbp9lQX6SAFJACUkAKSAEpIAXyqoDgN6/yqnEpIAWkgBSQAlJACkiBOCkg+I3TbKgvUkAKSAEpIAWkgBSQAnlVQPCbV3nVuBSQAlJACkgBKSAFpECcFBD8xmk21BcpIAWkgBSQAlJACkiBvCog+M2rvP80ThxOYoomxgwth1OnPcUPP/xgfYrGUi2vPhGzlVij2cYWzVX/SEGbmCChrG2THICYtCpSQApIASkgBbJVgHjYKv+nAAmOKGStzFeplPBLtqbEIPlkciJl6A477LCK1mPHjrVUnok577OZkE6dOlk2JDJUJSvPP/+8BcwnY1SmhaxJpGgFIqn7999/Zw2SpDhdY401LI1rLgsB7sm+RRrVVIWUsA8++KDbb7/9cnlqa4uUtFtuuaUjc1iyQiICNCNJQGIpy1yQqevKK6/M+Thy1SBJGeL85ar+hc209JN+YQqE1db6i49+r7/+umvcuLF1iMyUZ5xxhiNJjs/cSPZK0sKnKmRnrF69ujv99NNTHkN2zmOOOcY999xz7vDDDw8bfIrae+65pxkMP/zww5Ttk7CH5ESMh3FFC0mK7rrrLktB7/VIbKhSwy8ZpsjUhIikXD3ggANKUpR6oZYsWWJZm3bbbbcyTfIHH3zgTj75ZDdnzpyUcEqq0/3339/SsmZatthiC/fiiy9av959911Lb5ptWbZsmdtll12sb5tttlm21VMeTxauvffe29F+qpJP+CXrFVZdUr1mC79lmYtXDzvekVY3rmXxkiWuxiabxLV7Tv0Lm5q46zfvzBP18BUwxYLLAPGcs4yMleXhPwq/8AQp3T2soiIGvuuuuy6loGR6rFOnjsMIlKqQ0v24445zEyZMsBTx+Sj9+/c3wx6p7lMV3lyTth4jF2nbo+XLL7902223nf09lRGsUsMvYMtTDgWxhw4d6l566SXXvHlz17JlSzdx4kRbLI8//rjr16+fmzt3rjv//PPdjBkzDJYvv/xyWyitWrVy9evXd0OGDHFvvfWWTYgvXbp0MSsj/+L+cOmllzqsyZyDiSW9aLt27cy8//DDD9uxTNYrr7ziDjzwQHfbbbeZRTh6DizI9JcLGos0T2mcl2NZEK+++qpd8Cx++s9TENZdxoYFGstsnz593Pbbb+8uvPBCA+DLLrtslcWDNZMFNHPmTHtyZKws+mnTpllfsBr//PPPDqs2FwELrWvXru6UU05xjRo1suO4QNCOp7I77rjDUqiiw7nnnuuAX8bHOCn/+c9/THNfeODgqXLKlCnmlgFc0g5jv/766w36TzzxRHvqGzlypD3Z8n+s4ZyLJ0JA9oknnnDdu3d3G264obXBfGORRmf0R3P6PmLECHuIiM4Fc5RJ+avKFpkcpmOkQKVU4ItP36g08JGPCa5M8Cb9whTw8Mv9kHsdllPui7AN6cY9/ALFWEYXLVrkmjZtavff++67z+6tG220kfHADTfcYPDMcVhhjz76aNerVy/jCO7tvC1/7bXXrMO9e/e2e78vvF0/4YQT7Kdbt27uyCOPtLfTQDXsglUaNsC9YeDAgXYfhgnoB4Yz2v7999/tDTIGRO7ZjAX+gjdgiNatWxtrAeCMA6NX27ZtrY9wDvzGG37YjX4klkoNvwBP1apVHRN1++23u/POO89ErlGjhsEt0PTpp5+6QYMG2aQBVjvvvLO9Vgf+3n//fZuIffbZxxbHnXfe6Q455JBVfGibNWtmwAe0PfTQQwbIQCT1aGPSpEk20QAjIAkANmnSxM7BpAGRwHL0HFiJAVYWDwDMK34Wlgdr2mahs1iB4WHDhtkiZYz0gSe/9957z/xUec1B+1iRo4XzP/LII+6ZZ56xn2uuucbcP7COA/pYdx977DH35ptvusGDB7vZs2e7Y4891s7H/3ndQB84jgsFyGWBHnroobZIGQOWWeo++uhf3kB3AAAgAElEQVSjtsgB7WjhYqB/6623njv44IPdRRddZL8D0TzNoj8aoik6nXXWWTZf/A1NuIC5OGiff3lI4MLiAvPwy0MBYM+83nzzzavMRaY+wYLfsC9s1S5uBQS/YfMr+JV+mSrg4Rd3B+71GK4wEmHoAjiBX8Bx2223NUCENy655BL7gW+ARO6dACl1uC8CkNzb+RsMUbt2bbun83eMRX379nU//fSTYx9NdP8Q92kgnD0x/i0sb9vhHbiA/8NH3McxRMEC9Pfbb781BsK4BvDCMTAITIbh8aOPPjI3Q4xt3tAIq40bN87amjp1qvEObTKeHj16uHr16gl+UcD7/CIMgAMAs0BYDEwi8PvNN9/YIgAMgd8xY8bY5jCspvzLU8m6665rEwXY8nSDe0O04FPKsVhlsRAzKfi4stCwagKCG2ywgVkovdsD5+eJhcXBogGqqQf8Rs/h3R5wV/A+v8AvfefpjcIxQPvFF19sVmEsrTxpcU4Pv3zOAmYhJsIvY+TJj/NjBcVSzia1nXbayYCaPk+ePNkWHPDJxUX/v/vuuxK3B6y1WLx79uxpzbOYuRD23Xdfg3CAlL9hyU30wWWBA77ozA2AJ076yzg4B/OHxRzQpgCvvOagL8wd52Dc/hUOn82aNasEfj///HOz+uI/DUwz12VxexD8ZvrVrOMqowKC37BZF/xKv0wV8PCLdRXDDtwCl3Af5y0v8As0ck985513jDMwAuIXy1vWqNsDxjwMSMAmxjYAlDeoMBDwizEMgyEwjWUZN0esxr5gzKMfvJnFmAZ7ALinnXaatYvRaeuttzaOOOyww9zLL79sb605z9VXX23wy70choJRsEx7horCb5s2bcxyzB6is88+2+pj2JPbQ5JV4+E36vbgD+NvAKR/ivHwy1MPC8D/3UMkEMaTCdZErJPR4gEZdwmsmBRerWOZpV1AksmMApd3IOcVAr7IWFc9/EbPkQp+vWuBh1/cInitgWXX+wVvvPHGZrFlgQCvvEpIdCxnsfq2WIAsWKyqFA+/WK1ZdLhXYIHmyTERfhkbYOv9bniowM+6QYMGJRveuADRNhF+gV1e2QC/PHHyeoMLGOsyFxVO8Vhyo/7OzAEXCfDLax8eIPih3HPPPXaBecuvPx8XLtZ4wW+mX7E6TgpkroDgN3Otkh0p+JV+mSrg4feBBx4wOKVwrwd0uVcCv7ggYITz7gUYoXCtTIRfABUA9oZA3A8wFmLsivr88kYWuPaGQd9XIBQ2Am7hA5hpwYIFZpV94YUXzLCFKyLgjQXYF9wqgVjgFxiGdTDs0RfeDsMOUfj1Pr+8PYZT4CssvYLfHMEvT0oIiiXzpJNOciwunmLeeOMNs8omg19ODUBiOcY6jGVynXXWcVdccYVZLgE0QI4nICa0ffv2ZoVmkQGMACjtp4JfFhdPTlHLbzL4xe1ir732Mr8cdmiyU9NbfnEZYCECsdGSCfxycfDkxw/giC4efoFZHNbxuQVcOS++x2iInzPWWx/tIRX8YjH2G/F4KMElBSstMIueWHV5KkVfdMTlhDb5QVsuLGAYCy8XENZr9EkHvzzFMheMP9Miy2+mSum4yqiA4Dds1gW/0i9TBaLwi9GNeyRGLoAQNwbglzev3LN5UwuAYmiLWn4xjnGPZd1xz+Rz3ozjYwuEAqqZwO/y5cuNZyj4DQO/WJ0pvNHmc/bm4EYBT+FmyVtymAFG8W4PnA+jFW4M06dPNyDOFH4xvrG/ifMklkrt85vO8uvj0EZDnfEKgYWAHwtPMMAnT1HAL36myXb8A2xYfQFFrKssJtwOaB/fF5zKgWjvyM0ixUeVRcOxvDLAMonbQPQcuAs8+eST9lQHUHqfX3x5gGkP3ixigJvFwgLiCY8nL/8qg6cmLN0AeSL8+rZYcDyNRS2/ACZQiSUWoGSMADU+RDic4+YBmGN5BlTffvttc1HgKRM3DI7n4sPXORX80h/8fChowsXBBchFwesXnkh56uQBgfnwT4eAKxc4Ywa88Z3GCo+PElrxt2ios6jlNzoXme5kFfxm+tWs4yqjAoLfsFkX/Eq/TBWIwi9vPoFW3CwxgAG/GO94U4vVlz05gCcswj0VoxQ8wv0Rl0Lut9THJZACO8A88ADw6/mH+zlvxhMtv9Tx/rpALcYsfHm5p2OlpcAwnBPLNIXN6rCS3+MEU7CHCMMh58PFkTq4gMI5+Pzyf5hj9OjR1jYMhRsFb4axUgPe9FHwm+kqSnEciwS3CRYSr+NLK0y6jxBBQgcWGpZdHMmjAZyxigK8uEJgFebpC0jm6Qgn8sRz8cqexYYLQWkFAMVVgT7jSgH4AYP0BxjEfQFQLUvB0suiZhHiEsLTHX0Hxn/55ZeSJz98o7Hi5iOhBhBMuz6WoR8HESMAfu+LzRcAFuBUoU98vehcZKKJ4DcTlXRMZVVA8Bs284Jf6RemwOq14Qc4hvt+YqIprLLcv+EPCjzCPR5jWL6SUhFZCobw5/Q9ph+4OOJLzIZ2DFVYrdnMly4WMfWpix8ybWIAFPzmehVl0B6md3ZfZho6K4MmszqEJzheN/AqAfcGnMfxn+HvWIDTxf3L6kQxO5gHDeAeNwYsw1if8V/2/tdl6S5Wc3yjoqXLVX3L0pTqSIFKoYDgN2yaBb/SL0yBwq7Nvh8sv77gP8x9GCNeSKmUbg8hgpWlLpZEfnhyqqiC/w+b7chgh6sBmd1wN8A9IPFpq6L6mI/zYqkHVnmaJUwblt9cF1l+c62o2ismBQS/YbMp+JV+YQoUfm1cLOEX3h6zfwm3x9Ai+A1VUPUrvQKC30q/BCRAGgUEv2HLQ/Ar/cIUUO1kCgh+tS6kQKACgt9AAVW9qBUQ/IZNr+BX+oUpoNqCX60BKZAHBQS/eRBVTRaNAoLfsKkU/Eq/MAVUW/CrNSAF8qCA4DcPoqrJolFA8Bs2lYJf6RemgGoLfrUGpEAeFBD85kFUNVk0Cgh+w6ZS8Cv9MlVgvZuqZHpo0uN+u27lKn8nYhJhUaOb4gkhRkjTXGw6C+psYGX5/AYKqOpS4NXDjncHNW68ihCrfoU4l/iVVNrnvjF/XGn1/fHJjvtxyRJX/X/xoEtrJ/TzdP2IChQ9jyWbSYhXnawf/A09wr7es1+v9C+TeNrZt5ybGnHv37yzTrL0pnEtgsuwmZF+8dGv1s1h347fXfPPHeevv/5yc+bMsYyq5B4gNCqFjLBkSCU+MGBM6FSfhTVMhfKvLfgtf811xiJT4NZbb7VscnEtujmFzYz0k35hCoTV1vqTfpkqULtnGPx+dPU/8EuIUOL/k82NbGvAL7C79tprl2Ry69Spk9tyyy0tw1ohFsFvIc6a+hwrBQS/YdOhm7v0C1MgrLbWn/QLUyCsdi7X3z63VHFVIq/IVq50Wf0+/apV30kOGDDA8gEAv6Q/JlHXp59+agMm89qMGTPMOlyIRfBbiLOmPsdKAXKNk0lORQpIASkgBaRAtgrkyi3ooFvDLL9TrkwNv7NmzXKnnHKK+/DDD214w4cPd5MnT3b33XdftsONxfGC31hMgzohBaSAFJACUkAKSIGyK9C8Txj8vtAlNfyyyY2Nb2x4q1KlSokfcOfOncve4QqsKfitQPF1aikgBaSAFJACUkAK5EKBlsBvlH8TdwiX8vuTl6eGX/q35557uoEDB7r69eu7I444wt14443u8MMPz0XXy70NwW+5S64TSgEpIAWkgBSQAlIgtwqcfGeY5XdM59XhFx/fvn37WkfHjx/vzjjjDPt/ixYt3IgRI8wKXIhF8FuIs6Y+SwEpIAWkgBSQAlIgosDp/wkD0YcvTQzCubq8v/zyi1u6dKlFeijkIvgt5NlT36WAFJACUkAKSAEp4Jxr2y8Mfh/oVDr8FovQgt9imUmNQwpIASkgBaSAFKi0ClzYPwx+7+4o+K20i0cDlwJSQApIASkgBaRAoSnQeUAY/N55seC30OZc/ZUCUkAKSAEpIAWkQKVV4KqBYfDb+yLBb6VdPBq4FJACUkAKSAEpIAUKTYHrB4XB740XCH4Lbc7VXykgBaSAFJACUkAKVFoFet5TJWmYXx/eN1WYX//37h0Ev5V28WjgUkAKSAEpIAWkgBQoNAX6DE4Ov34cpeW8uPw8wW+hzbn6KwWkgBSQAlJACkiBSqtA/8Fhbg8dBb+Vdu1o4FJACkgBKSAFpIAUKDgF7r0/DH7PbyfLb8FNujosBaSAFJACUkAKSIHKqsDQB/5xeyjx8V3pHNmHE31+U31+dlvBb2VdOxq3FJACUkAKSAEpIAUKToFHhoRZfk87V/BbcJOuDksBKSAFpIAUkAJSoLIq8PjQMPg94RzBb2VdOxq3FJACUkAKSAEpIAUKToEJw8Lg9+izBb8FN+nqsBSQAlJACkgBKSAFKqsCLwK/qzj9uqx+P/QswW9lXTsatxSQAlJACkgBKSAFCk6BKcPDLL8HnSn4LbhJV4elgBSQAlJACkgBKVBZFZgWCL8NBb+Vdelo3FJACkgBKSAFpIAUKDwFZj0UZvnd4wxZfgtv1tVjKVBBCjz11FOubt26FXR2nVYKxFuBj79+JN4dLO/eFRhfbFnzIFd1/W3KW6VKdb4dd9wxJ+OdO7yKxfX1gX1X/i/Ob6a/7yr4zck8qJFKqMCsWbPcokWLVhl5rVq1CgoO58+f73766SdXp06djGbw1ltvdVdeeWVGx1bEQZ999pnL1ZdrPvqv/oWpGnf9bronzBoVpo5qhyrQqc1nrvpGO6RsJu7rrzL17/OHw6617U9f9cls+fLlbv3113drrLFG6DKKXf0qK1fybKAiBXKjwMknn+z+/vtvV79+/ZIGGzRo4E444YSgEzz00EPujz/+cOeee25QO77yQQcd5CZPnuzWXHPN1dobOnSoe//9991tt92W0bkEvxnJpJtnmEwFq5/gN08TX07NCn7zK3Qu4fzbQPjd8n/wiwGrTZs2bq211nJffPGF69q1qzvnnHPyK0Q5ty74LWfBi/10wO9pp53m+DdagNfx48e7UaNGuYkTJ7q77rrLPf74427IkCHuzjvvtIusc+fOdoF9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauUUyf4DVvVufzyD+tJ8trqX5iqgt8w/Sq6tuA3vzOQy++XxYHwW+N/8Nu7d297+8l99LvvvnNbbrmlwwq8wQYb5FeMcmxd8FuOYleGUwG9y5Ytc7vuumvJcDt06OB23nlnV69ePde9e3fXq1cv169fP3fggQe67bbbzmCV1yr77LOPW7hwoePCAzyB0nbt2rnzzz/fzZgxw61YscLdcMMNbu2117a2P/nkE7fLLrsYQK+33nqudevW7t5773XbbLON1fnqq69co0aNDJ4B5qZNm7rBgwdbP6pWrep++OEHa5c2x4wZ4+6++267wPHfBb7feust9+GHH1p/3nvvPcFvnhZwLr/889FF9S9MVcFvmH4VXVvwm98ZyOX3y/IE+OW1fjpHiMTPN/wf/GI44p6JIQvnAO7Pn376aazd57KdJcFvtorp+LQKAL81a9Z0DRs2LDnu8MMPd9tuu62bNGmSO/TQQ92pp55qFmAuKgAW6+zs2bPNKrtkyRI7ZsSIEQbQCxYsMHeHRx55xP3222/u6quvLmmXunvvvbdbvHixgSy+xRzLD0+otM/rm5deeskgFjeGkSNHuhYtWrgqVarYcddcc42rXbu2a9u2rQE3r3iA3nHjxtnP0qVLXfXq1a2tVEWW37CLIpdf/mE9keU3H/oJfvOhavm1KfjNr9a5/P77a0SYz++abf65z3GP5se/wd1iiy3svrj99tvnV4xybF3wW45iV4ZTpXJ7YOyvv/66a9y4sbk2YK0FTDfbbDPbLLbvvvuaWwIgizV47ty5bquttjIg/fPPP81imwx+TzrpJDdz5kyzGO++++7u+++/N/cI4BffY9rF6nzUUUe5Bx54wM4VhV/8mjgvP5znxx9/dERv8D6/WIKxEnv4nTJlisF6YtGGt7Kv7lx++Ze9F6lrqn9hqgp+w/Sr6NqC3/zOQE6/XwJDnbn/RXu46aab3MYbb+wuvfRS99dff7lNNtnE7o3FtPFN8JvfdV3pWgd+AUmg1BesrFxAe+21l7vkkksMQJ944gnzKcLfF8ss/sD44AK/+O5i/QWSTz/9dHfiiSe6zz//3P3888/u+uuvX8Xymw5+8VXCGgxA0y7uEICth18g+eGHHzYox10COMYCjTU5Ffwmm1BZfsOWeU6//MO6krS2+hcmquA3TL+Kri34ze8M5PT75cEwy6/7X3pj7sfsy3n++edtXwxvZd944438ClHOrQt+y1nwYj8dr0q4WKKFSA/43rIZ7YUXXjCXhuuuu84upgMOOMDcJNZZZx2z2ALAbHJjIxsb3wg3NmHCBPfyyy8bBLNJDjCm4PaQDn6x1gLjH3zwgR2PfzAQ/MorrziiPWDRZSPeRRddZH3BWvz00087rLuC3/JbqTn98s9Dt9W/MFEFv2H6VXRtwW9+ZyCn3y8PBMJv23/cHrgXH3300XYf5P/cu/fbb7/8ClHOrQt+y1lwnW5VBXBNwEKLiwNuB7g2AKUUXrPgb+sLFyGQnCw8WTpdgejNN9/c6uFTzCsczvX777+X7F5NPFc28yTLbzZqrX5sTr/8w7qStLb6Fyaq4DdMv4quLfjN7wzk9PtlcCD8nrfq3hY2jfP21G8yz68S5du64Ld89dbZilABwW/YpOb0yz+sK4LfPOgn+M2DqOXYpOA3v2Ln9PtvUCD8XlB50j4IfvO7rtV6JVBA8Bs2yTn98g/riuA3D/o990pPt+lmm+ah5dw0uWjhIvUvjZQ7bXO4MrzlZqnl//tlQCD8Xiz4zeNUq2kpUFwKCH7D5lPwW9z6TZ7Sy222aXzhdyFRZ4q0f3V3Oz9scWVQW9dvBiKlOSSn+v03EH7/LfgNm81KWpvNVCxkwmtVRCGqAVnRCCeWTfnmm28s8kI0MUU29TmWANj41OKTG9pWtufO1/GJfsGpziP4DZuBnH75h3Ul/5aZSti/gfcF3pDzoFllaHKXnVq7w5qNyPtQdf2GSZxT/fpWWTWrRWIWi9J+7yz4DZvNSlqbSAZkCyNaQEWUaPSD6PmJaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rk9Mv/7CuCH7zoJ/gNw+iZtCk4PcfkSrV98ttgQ+aVwh+M7i0dEiiAqng9+OPP7Z0u8ApcWtvvvlmC+d1yy23WOxbrLXk0CZEGH8jzS4xaQcMGGAxZ8lqBpDxOYBJtrP69eu7a6+91g0dOtQiGQwbNsw+a9asmYUPAzCJk3veeeeZJZhICWPHjrUEEol9eeaZZxx9JCwYMXbXX399y8Z2xhlnuDvuuCPlRAPNF154oVtrrbUsWQXxc8kAQ1ukJk7sH32lPcKZPfbYY3YMfdphhx0c8EwoFcKY7b///u6+++4zkGasBNsmDi/t0X/0I2scYclIXYyFls/ob6pCNAceAsjmRt10hXjChGKbPn269UHwm99rvVLdnPIgZdz1E/zmYdIzaFLwWwnht3cg/F4l+M3g0tIhmcIvUAmQkisbGCXRw4wZMyyMF5BF4gYsjMcff7xr3bq1e/TRRy2uHqBIul1S7wLOxMcl88pGG21kObf5O/FpSdRAcgZgkli2gCLQxg9hvvh9xYoVZpWm/cS+EG5s1qxZFu+W+pwfiCU2LxnTgOtkpV69ega/uHkAtKQKpm+01apVq9X6B+ASxoxUxKRKJN0w53ruuecMcklAQRpFHhA6duxoME6bhx12mNtpp50sPu+8efMsScbbb7/ttt5665K0x5zvnXfesWxu0UJa40GDBpkVF33PPPNMOy5aNt10U9euXbvVhsjDB7oLfvN7rccd3tS/sPkX/IbpV9bagt9KCL89AuH3WsFvWa+3Sl0vmeXXp9rFmos/7IsvvmiWTCAMcCQ1L762JG8g6xmpc0nmQAHIvvzyS7NqHnnkkQa8zz77rMEsQAfoYd0FPJs2bWpZ0LAU43uMNRb4xYKKFZf4ucAxiRwS+4LF1cPvEUccYf67FOD3nnvuMet0YgGq6bdPechY6tatWwK/V1111Wr9o09ke8MFgwLAAqJkeOOc/A788i+W7+7du1v8XyzDo0aNcg8++KDVw1KOdZaxYxWnAKpdu3Y1jSgktuB39OVhg2Np+7333jOrcyL8Av6JRfBbPpez4DJM57jrJ/gNm9+y1hb8VkL4vTEQfq8X/Jb1eqvU9ZLBL/6vgBzpAX3Zbbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc5B2cNy4cZZ9Bcvp8OHDLRsL7fiMZ9THwjtw4MAS+KWtZH3BuuvhN1of/9z+/fsnhV+Ox0cYyyoF2MUS6y2/jDexf7Tl4ReIB+7JHc7DAKmFPfzOnTvXElFgEccqCzTTFvUpJMUg4xufkwnOF1wm9thjD/sVlwj0Qjt09RbhpUuXOgJ3RwvuIokWYw/UiZZf/Ll5QEksWKPjWuIOR+pf2MqJu36C37D5LWttwW8lhN9rA+G3h+C3rNdb0noAB9DQsGFDt2jRIrMQFmMBTLHSvvrqqyXDW2ONNQwe8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8Awnr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy92zAfAHS1YsMllnlhk+S2fqzTu8Kb+ha0DwW+YfmWtLfithPDbPRB+ewl+y3q9Ja2HvyaAh+8mFs50G5N8A6VFKMhpB3PUGPDLGKMFtwMgD5cDClZGfFdr1qzp3nzzTbPOAoU77rijI1QZ1lkgjxsuFl6Ajb9F4RdrLhvc8LWlPTZ8AdIHH3xwUvjFxxZXCkAbCE7sy5NPPpk1/DKWIUOGmLUZeAaAzzrrLPPpBaRvvPHG1fpHtAmsyRzDQwDATj3cGth0N2bMGHMH8ZZffJTRDrcFLMtYySlYgPHfxf958ODBjoerli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPEVwWt36C37D5LWttwW8lhN+ugfB7u+C3rNfbavWwNgIphxxyiG1ewhrIRi2iCuB/ikUOy573zwSQsCBGIxSwUSyx8Nof/1l25M+fP982T7GZi/a7detmG6N4LQ+4cCyAxyt6YtBybqyB+MECTFikk0Vk4HV7rgoAhv8uG8mwPqYrvNZfd9117dV/uoL1lX4Dj/gTpytYWzkGK2k2feFY9EsswDr+xejJMcn6mqx/0di5wD5zUKNGDQN/9E43Ds4FaEfnZdmyZQb0WNMzKZw/l/PKOQW/mSgv+A1TqXD1E/zma+bTtyv4rYTw2zkwzm9fwW/Ortbly5fb63HAE0snvpi86gYCseYBolgPsQJiFeT1NRY+Xv37CAVrr732av3hdTZ1cTEAgIFcrMps0sKFAGDGdxbLIP6iQPXUqVMNdgFf/k9f8LFlA1myiAxYMit7IcTatGnTVpOB0GZY9FUEv6FrQJbfMAXjrp/gN2x+y1pb8FsJ4bdjoOW3v+C3rNdb0npsaGJTFZucPPxi8V2yZIlZItnVz9/xg+X1NRunCPOFVdDv5k9sGPglXBaRC7AIco6VK1eaTzHRA4BtrMFANL6f+HQSU5YfNlfhX4vlmPOw+z9ZFATaVpECpSkgy29pCqX/PO7wpv6Fze/kV3u6TTeLb3rjRQsXFW3/6u3WIWzyMqit6yMDkdIcklP9LgqE34GC37DZTKidDH5xdfCRArDw4u8JoBK9gE1NhLYqDX6x6AK4vDLfcMMNHa/Z8YNl5z6bxYBcNlYBv/5YXuHzAzx7+MU6nCwKAm2oSIHSFBD8lqaQ4DdMocLWb+brvYoWLhNnZuOajdxGNRrkdLpzCkc57VkltKzGXb/zAuF3sOA3p1NcGvwSGYBwXfht4n5AwgL8Y32EgmSdAV4T4Rdf2Vq1ahkME+sWoMXCWxr8shkqWRQELNHZFM7JFxUAXhGFcRMdAn/pbAquH1jPiXpQ1sLGMKz4+OyGtlXWPuS6Hm8mWLulpWIW/IYpr5t7cev34oOBN+Qwecq1dqNj3hX8lqvipZ+sUn2/nBvo8/uA4Lf0FZXFEaXBL4kU2PBGKDCsvbgtkLnMRygAjhNLMvjF7QF4JvwVhWxlACkb7FJZfsneBSCTYCJZRIYshmkxeIlQQFi3iijEpI2GOvN9KC1yBmmKCa3GBsGyFrK3EXmCUGPp2sKvmzBlpQFlWfuRi3o8ePEAhl8zm+PY2MdmzVRF8BumeqW6OYVJlbR23PUT/IZNetznV/2L0fyeGfigOVzwGzabZahNOC7cH6K79olQgGsEUJdYWrRoYTv/kxWyj5GSF8DCelda1ATfRjZREJKdNxX8JoskQQKGW265xWLVYq3t2bOnGz16tP0NX2Os1oTaArzwe2bjGZ8DmKQCxmeajYM8BDBWQp/xWbNmzSx8GoBJiDTiAUcjZxBajLjBaEoa4ZtvvtnCjNFHHhzYRIiuZIUjJB0+0akK0Ix1HEAEFJkTNjLSFg8Sif2jr7RHRjr8rDkGH2yiVQDPZJrjQYeYwYSIA6QZKw9PbJnhk9gAACAASURBVEqkPfpPn3GbwU+czY3MG5+lC6FHJjoeAmrXrm110xXaJwsd4dp4GEMPgD5VRAnBbxku+EgV3TyLWz/Bb3HPr67fGM1v60D4HSn4DZvNHNb+4osvHDCbWIDC0sJ75bAbGTWVCn6TRZKYMWOGq169usW7JRwcoE7sWsK14fc8ceJEA0XGj+UaWB0xYoSFjSOLGml8+TsWcqJjzJ4922ASazegCDjyg3b87iNn0D5wTDQMwJgYuvhK+yQX1Of8QCyRM9ioCFwnK/Xq1TP4xc0DoMU66jO8YTlN7B+AS4xfHnTYrIi/NuciOQeQiwWeFMRAeceOHQ3GaZPYyUSWID4yIezw4yYWMhsjqQegcj5SJSdmauPhiVTQ999/v+lLjF+OixZiCZNtzhceuogXzMOEfyOA/sliCFNH8JvR5ZHyIN08i1s/wW9xz6+u3xjN78mB8DsmM/jlnguzRCNxwRHcO9l/VQilykp8BVRyokAy+GUxJIskAYQBjjNnzjRfWxJQAFrEKcbdgwKQ8Qoeq+aRRx5pwEvEDGAWoAP0sO4CnoR1+/zzz81SjKsH1ljgFwsqVlwWK3CcrC9YXD38HnHEEZbYgQL84pKCdTqxANX0G4sqcYsZC5n7PPwSxi6xf/TJpzemPQAWEMXNhXP6DG/8i+WbKCBYW7EMswGS7HcULOX4gzN2Hw0EKzmuM2hEwfXFx44G8DkWsCYcHlbnRPglBXK0/P7772aF5wGEDZLEqU5VBL9hl49unsWtn+C3uOdX12+M5vf4QPgdlx4HCV2LoY03rp07d7YQtRQSXv3nP/8xgxRvYjHI8TY4zkXwm8PZSQa/vC5PFkmCV++AHYuEOMdAGQDG5jNA1hegjUWWmN4YIMOPGcspmwWPPvpoaydVemPgl7aS9QXrbrbpjTkeH2EfsQPYZeF7+CXucmL/yMzm4ReIB+5JNYxbA5E5UqU3Bpppi/oUNjaSDhmL+QUXXFCiFS4Te+yxh/2OSwSuJWiHrt4iTDY4oolECxbeqMUYrU499VR7s8A5iVPtC/7cPKAkFqzRcS26OYXNjPQL00/wG6af1p/0y1iBowPhd0J6+MVYh4slhro+ffoY/AK7WIAxhFWrVs1cJ7lnkmwszkXwm8PZAX6x0pJ4wxesolhO8XdlQx9uDkAvllJSEmPxJfUzT1K89se6SWxioJlQa1g58dFNhF9cFoCwXr16GbiyCHEfSAW/PnJGsqgW+LRmC7+84mCB41uMHy5+umTm8/ALiCb2D+su8Is1HFjE3QC9Lr/8coPZVPDLg8Kxxx5rnwOuaMF50RULL69fGHePHj3M2u0LUT7QnaQm+EiTKpr5ALijBQs2YfZ8wbLOXET/lm6ZyPIbdhHp5l7c+gl+i3t+df3GaH4PD4Tf5zNzBOAejHsi3IErIm6U/o0xBiPcOnE1jHMR/OZwdoBf/FOjBbcDIC9ZJAky3uF/y6IhXTChyrDOAnl8odx1110GbPwtCr8DBw60py98bbFa8uQFSB988MFJ4RcfWx85AwhO7Aupn7OFX8bIqw6szcAzAExGPHx6aYvNYon9I8se0R44hocALhzq4dbApjtiPeMOMnfuXNukSOQMtMNtAcsyVnIKFxf+u/g/E6MZay7JUdjQlswvF30IZ4eetM9PukI/geZo+eijj8yfOlkR/IZdRLp5Frd+gt/inl9dvzGa36aB8Dv5H/jlHo4bZbSwD8i/WY3Cb+JbYN5EY5yCfeJcBL/lNDvZRJLgtf66665bapQKrK9EVgAeS9v8h7WVY7CSZtMXjsXFIrEA6/gXE9OXY5JF1EjWP47FnxbfY2AfF4MaNWrY/3FvSDcOzgVoc5wvy5YtM//fVJEYEvvN+aP1czH9gt8wFXXzLG79BL/FPb+6fmM0v/sHwu+b/8Avboi8SY4W3kRjiKNE4dfva+J+j/GJ8LEUXA7jXAS/cZ6dGPSNEGvTpk1brSc4sxOBQUXRHkLXgG6eYQrGXT/Bb3HPb9zXX6Xq316B8Ptu9m4PrG7cKXkjjXshm+Z581taSNGwqyK8tuA3XEO1UMkVkOU3bAFUqptTmFRJa8ddv5mv9zT3pbiWRYsW5ax/G2+6nzK8xWyi43595LR/uwTC78eZwy9x9XE/pLA/xsfZJ94/YVlThQaNy/IQ/MZlJtSPglVA8Bs2dTn98g/rSkHC5Wr6ff60c8u/zoMSZWvys/Wb256GuBatv7CZkX4x0m/zQPhdkBn8Jhsxrovsv4lGRwpTJr+1Bb/51TfnrROWmbi4vGaoWbOmtU/MXXxf2TzGLksiL2RTaI+NaNGA1dnUj8uxXHw432c7/tD+C37DFNTNM8f6Ab9PHRPWaA5rf3b0Pxt641q0/sJmRvrFSL/1AuH3t7LDb5gK5V9b8Fv+mgedkfBhgCoxbomGQCEKAhnTCBmGn42PvZvuRERGIIUvkQ1I/uAjLAR1roIrL1iwwKI/+MQX5dUdwW+Y0rp55lg/wW9Wgmr9ZSXXagdLv+LWL2x08a0t+I3v3CTtGTGBsfDefffdlvqYuLWlwS8hyQgtRgGYSaLRuHFji7c7duxYi9dHKDT+37BhQ4szTLxeEkUQf5gICcTjxaeH8GJAMz49QLaPnID1GZAmLjHJJcgMR4g1ElmQlhhgZwcpkR5ITEEw7KlTp1pAbFI5s6muZ8+eFiuYUGxstCPWLq9QCJ1CRAtCp7CTlHOyk5Sdp9H+EGqOrHD0n7THZGgjEkTv3r0tIQfnIz4ycQnPPvtsa4tzvPjii2769Olu/vz5lnKZFNDJ6qdaKoLfsItIN88c6yf4zUpQrb+s5BL8hslVcPrleLixaU7wG5upKL0jpBbk9SHx94DJ//73v/ZvOvgF/ojKQHpg6rdt29Z98sknBn4rVqwwGCbrG47rxAomVi8JKABYMrYBgYQja9WqlaUiBg6BReA7upuT3Z24HQCuAC+A65NSAKRYquvUqWOZ04iXC5AToxjQJKkEfSCZB0ksODeFINnE5qWfZIsB+oFkgJ9kFiSx6NixY0l/0IZUz4As1mzSMJK9Digngx5aAfAHHnig/Q390AIAJzEJ9chMl6q+4Lf0NVqWIwQfZVHt/+ok9fmV20PGomr9ZSxV0gOlX3HrFza6+NYW/MZ3blbrGZALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEK0ysjyVc8Jufi0U3zzBdBb851i+suZzX1vURJqn0C9OvWGsLfgtoZkkZTJIHXAYANMAWmMNdIZXP76BBgwx0gUUKLg4EqOYLIQq/3ucX94bNN9/cfnCViEIu58cSSxw/0gn7ArDSJ9og2QQWYGDzX//6l2WvIyYwn1GHnOA+BTOWW+CTMfhA2R5+8V9u1qyZuSiwuY/+0g5WaTLHAfAefn1/PPxi5QXAsXaPHj3a2udfrMx8RsGFgv/TNhCMRZt+b7jhhgbgifVJo4zFGfieMmXKaquGfsW16Ms/bGYKTj+5PWQ14QU3v1mNLv8HS78wjeOuX9jo4ltb8BvfuVmlZ7g6kFoQi6n3s+U1Pm4GgGMq+CUDHBZUPsey2ahRI4sIQfpeXCJwR4huePPw26ZNG9egQQMH9JEVDmDt0aOH+fImwi8dxcIKHOOH632IAV1yfmNBxv8WWMW1IRP4xfeYvmFxBpxJG42rBpEpiCmIhRctgM5E+MU6TX9IaUysQbLPMQ4sxMArlm2s0PSFGJ+J8EuGvcT6HuyTLRf5/IZdRHH/8i+4/gl+s1qQBTe/WY0u/wdLvzCN465f2OjiW1vwG9+5WaVnwCMbsoBBX7DmYoUEJtnMBQgni/bA5jDcD4Bk4LRfv36OzWFscnv88ccdoBu1/ALDl1xyiW0mI3oCsftatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj5YnnI1vwCvh3UiBzFgAYDTx/YlafoHX559/3vyEceEA2nEVwY2DvuAfzEa7MWPGJLX8JqufaqkIfsMuorh/+Rdc/wS/WS3IgpvfrEaX/4OlX5jGcdcvbHTxrS34je/c5LRnWF1xlfCxgWkcgAQkseymKsQPxkKMO0MmBVjFFzlaiErB5jlvsS6tHXx+8T1mox7uF75/9B+rLH0hAgVuG1WrVk3ZHOfFHSPaH8AXNwisv6VloElWP9nJBL+lzWj6z+P+5V9w/RP8ZrUgC25+sxpd/g+WfmEax12/sNHFt7bgN75zU2l75uEXt45CKILfsFmK+5d/wfVP8JvVgiy4+c1qdPk/WPqFaRx3/cJGF9/agt/4zk2l7Rm+yWzsy9RSXNFCCX7DZiDuX/4F1z9Lbzw/bFJyWPuz9Q9ThrcAPQtu/QWMNR9VpV8+VC38NgW/hT+HGkEFK/Dkk0+6evXqVXAvdHopIAWkgBQoRAXinP67EPXMpM+C30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUIKSAFJACUkAKSAEpIAUyUUDwm4lKOkYKSAEpIAWkgBSQAlKgKBQQ/BbFNGoQUkAKSAEpIAWkgBSQApkoIPjNRCUdIwWkgBSQAlJACkgBKVAUCgh+i2IaNQgpIAWkgBSQAlJACkiBTBQQ/Gaiko6RAlJACkgBKSAFpIAUKAoFBL9FMY0ahBSQAlJACkgBKSAFpEAmCgh+M1FJx0gBKSAFpIAUkAJSQAoUhQKC36KYRg1CCkgBKSAFpIAUkAJSIBMFBL+ZqKRjpIAUkAJSQApIASkgBYpCAcFvUUyjBiEFpIAUkAJSQApIASmQiQKC30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUICpSgSeffNLVq1evIrugc0uB2CrwyEePxrZv6pgUqGgFTqt9qttxxx0ruhuV7vyC30o35fkd8KxZs9yiRYtWOUmtWrVc3bp183viHLY+f/5899NPP7k6depk1Oqtt97qrrzyyoyOrYiDPvvss1h/uap/Yasi7vpVuX6dsAGqthQoUgWqVKniPjnrg1h/Pxep9E7wW6wzW0HjOvnkk93ff//t6tevX9KDBg0auBNOOCGoRw899JD7448/3LnnnhvUjq980EEHucmTJ7s111xztfaGDh3q3n//fXfbbbdldC7Bb0YypTwo7vCm/oXNr+A3TD/VLl4FBL8VN7eC34rTvijPDPyedtppjn+jBXgdP368GzVqlJs4caK766673OOPP+6GDBni7rzzTrfWWmu5zp07u3POOcd9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauU8yX4DVvKgsvi1k/wGza/ql28Cgh+K25uBb8Vp31RnhnoXbZsmdt1111LxtehQwe38847m19s9+7dXa9evVy/fv3cgQce6LbbbjuD1TXWWMPts88+buHCha53794GnkBpu3bt3Pnnn+9mzJjhVqxY4W644Qa39tprW9uffPKJ22WXXQyg11tvPde6dWt37733um222cbqfPXVV65Ro0YGzwBz06ZN3eDBg60fVatWdT/88IO1S5tjxoxxd999t1u+fLm5aADfb731lvvwww+tP++9957gN08rVvAbJmzc9RP8hs2vahevAoLfiptbwW/FaV+UZwZ+a9as6Ro2bFgyvsMPP9xtu+22btKkSe7QQw91p556qlmAV65caQCLdXb27NlmlV2yZIkdM2LECAPoBQsWmLvDI4884n777Td39dVXl7RL3b333tstXrzYQBbfYo7lZ4MNNrD28T9+6aWXDGJxYxg5cqRr0aKF40uH46655hpXu3Zt17ZtWwPuL774wqB33Lhx9rN06VJXvXp1aytVkeU3bCnHHd7Uv7D5FfyG6afaxauA4Lfi5lbwW3HaF+WZU7k9MNjXX3/dNW7c2FwbsNYCpptttpltFtt3333NLQGQxRo8d+5ct9VWWxmQ/vnnn2axTQa/J510kps5c6ZZjHfffXf3/fffm3sE8IvvMe1idT7qqKPcAw88YOeKwm+bNm3svPxwnh9//NE99dRTJT6/WIKxEnv4BdSnTJmy2txpw1vZl7PgsuzaUTPu+gl+w+ZXtYtXAcFvxc2t4LfitC/KMwO/gCRQ6gsX+F9//eX22msvd8kllxiAPvHEExZRAX9fLLP4A+ODC/ziu4v1F0g+/fTT3Yknnug+//xz9/PPP7vrr79+FctvOvj97rvvzBoMQNMu7hCArYdfIPnhhx82KMddAjjGAo012W94S4TfZJMmy2/YUo47vKl/YfMr+A3TT7WLVwHBb8XNreC34rQvyjPj0sAmsmgh0gO+t2xGe+GFF8yl4brrrnNvvPGGO+CAA8xNYp111jGLLQDMJjc2srHxjXBjEyZMcC+//LJBMJvkAGMKbg/p4BdrLTD+wQcf2PH4BwPBr7zyiiPaAxZdNuJddNFF1hesxU8//bRZdgW/5bc8BZdhWsddP8Fv2PyqdvEqIPituLkV/Fac9jqzc+aagIUWFwfcDnBtAEopuCDgb+sLcAwkJwtPlk5MIHrzzTe3evgUb7LJJnau33//3YA32bmymRxZfrNRa/Vj4w5v6l/Y/Ap+w/RT7eJVQPBbcXMr+K047XXmIlFA8Bs2kYLL4tZP8Bs2v6pdvAoIfitubgW/Fae9zlwkCgh+wyZS8Fvc+vV89ha36aabhg0yj7XZeKv+lV1g6Vd27ah5WI1DleEtTMIy1Rb8lkk2VZIC/6eA4DdsNQh+i1u/oS/2ElwGTLHgMkA85yyqULqHm2P2PD/sBIG14/79Fzi82FYX/OZwathMxUImvFZFFKIakBWNcGLZlG+++cYiL0QTU2RTn2M//fRT86nFJze0rWzPna/jE/2CU51H8Bs2A3H/8lf/wub3kNurhDWg2lIgTwocsfvZ7sqjhuap9cyajfv3S2ajKLyjBL85nDMiGZAtLFkc2ByeJmVT0egH0YOIaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rE/cvf/UvbH4Fv2H6qXb+FBD85k/buLcs+M3hDKWC348//tjS7QKnxK29+eabLZzXLbfcYrFvsdb27NnTQoTxN9LsEpN2wIABFnOWrGYAGZ8DmGQ7q1+/vrv22mvd0KFDLZLBsGHD7LNmzZpZ+DAAkzi55513nlmCiZQwduxYSyCR2JdnnnnG0UfCghFjd/3117dsbGeccYa74447UioENF944YVurbXWsmQVxM/dfvvtrS1SEyf2j77SHuHMHnvsMTuGPu2www4OeN5vv/0sjNn+++/v7rvvPgNpxrrxxhtbHF7ao//oR9Y4wpKRuhgLLZ/R31SFyBE8BJDNjbrpCvGECcU2ffp064PgN4cXSZKmBJdh+sZdP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMpYJfoBIgbd68ucEoiR5mzJhhYbyALBI3YGE8/vjjXevWrd2jjz5qMXEBRdLtknoXcCY+7k033eQ22mgjd9ppp9nfiU9LogaSMwCTxLIFFIE2fgjzxe8rVqwwqzTtJ/aFcGOzZs2yeLfU5/xALLF5yZgGXCcr9erVM/jFzQOgJVUwfaOtVq1ardY/AJcwZqQiJoUw6YY513PPPWeQSwKKLbbYwh4QOnbsaDBOm4cddpjbaaedLD7vvHnzLEnG22+/7bbeeuuStMec75133rFsbtFCWuNBgwaZFRd9zzzzTDsuWvAHa9eu3WpD5OED3QW/ObxIBL85F1Pwm3NJ1WAlUUDwW0kmOskwBb85nPtk8OtT7WLNxR/2xRdfNEsmEAY4kpoXX1uSN5D1jPS5JHOgAGRffvmlWTWPPPJIA95nn33WYBagA/Sw7gKeTZs2tSxoWIrxPcYaC/xiQcWKS/xc4Ji4tol9weLq4feII44w/10K8HvPPfeYdTqxANX0G4vqGmusYWOpW7duCfxeddVVq/WPPhHaBRcMCgALiJLhjXPyO/DLv1i+u3fvbvF/sQyPGjXKPfjgg1YPSznWWcaOVZwCqHbt2tU0opDYgt/Rl4cNjqXt9957z6zOifAL+CcWwW8OL440TcUd3tS/sHUgy2+YfqqdPwUEv/nTNu4tC35zOEPJ4Bf/V0Cub9++JWfabbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc9x1111u3LhxloUMy+nw4cPd0Ucfbe34jGfUx8I7cODAEvilrWR9wbrr4TdaH//c/v37J4VfjsdHGMsqBdjFEustv4w3sX+05eEXiAfuL730UnsYILWwh9+5c+daIgos4lhlgWbaoj6FpBhkfONzMsH5gsvEHnvsYb/iEoFeaIeu3iK8dOlS99VXX60y67iLJFqMPVAnWn55OEnm0401Oq5F8BY2M9IvTD/Bb5h+qp0/BQS/+dM27i0LfnM4Q4ApVtpXX321pFWsolhO8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8AxHr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy82KzXAHS1YsMePH7/aSpDlN4cXR5qmBJdhOsddP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMAb/4p0YLbgdAHi4HFKyM+K7WrFnTvfnmm2adBQp33HFHR6gyrLNAHjc0LLwAG3+Lwi/WXDa44WtLe2z4AqQPPvjgpPCLjy2uFIA2EJzYlyeffDJr+GUsQ4YMMWsz8AwAn3XWWebTC0jfeOONq/WPaBNYkzmGhwCAnXq4NbDpbsyYMeYO4i2/+CijHW4LWJaxklOwAOO/i//z4MGDHdbcli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPiTu8qX9h8yv4DdNPtfOngOA3f9rGveUKh98lS5YYQGG1BASx1AGRbPTCIoj/aps2bczXFdjBX5SNX2yWwlrIjvz58+fb72zmwtrYrVs32xjFa3nABRcBAI9X9MSgJaIB1kD8YAGmhg0bWoSCxCgIvG7PVQHA8N9lIxnWx3SF1/rrrruuvfpPV7C+0m/gEX/idAVrK8dgJc2mLxyLfokFWMe/GD05Jllfk/UvGjsX2GcOatSoYeCP3unGwbkA7ei8LFu2zIAea3omhfPncl45p+A3E+UFv2EqFa5+gt98zbzaDVVA8BuqYOHWr3D4ZfMVkQoI9cWrcPxdASGgDqDFHxULJ6+7gVM2jFEH31ggFhcDABjIxW+WTVq4EBBZgbawDOIvitVx6tSpBruAL//HL5R22ECWLCIDlszKXgixNm3atNVkILQZERhUBL+ha0CW1TAF466f4DdsflU7fwoIfvOnbdxbrnD4xaJ76qmnGrDi18mGJYA1FfxibWSTExZiwmUBwlgE2TS1cuVKS2VI9ACsvMAz/rP4fuLTSUxZfthchX8tIE04MXb/J4uCQNsqUqA0BWT5LU2h9J/HHd7Uv7D5HfJiT7fZppuGNZLH2gsXLVL/AvQtdP2O2bNDwOjDq8b9+yV8hPFsocLhF1mAUF6t48cKmOIK4eEXiMWK6y2/hOJicxPwi0UXwMVSvOGGGzpes2MlZuc+m8VoC2sy8OuP5Tz8UN/DL7CdLAoCbahIgdIUEPyWppDgN0yhwtbvndd7me9+XAsGk/LoX9VqdVyNLQ7OWoa4w5H6l/WUrlIh7vqFjS6+tSscfolAwA59rL5sMAJSmzRpYpub2KAFmOISkQn84itbq1Ytg2F8hQFaLLylwS+boZJFQSAiQzaFc7KQAfCKKIyb6BBkdMum4PqB9ZyoB2UtbAzDnxif3dC2ytqHXNfjIYw3CqWlYhb8hikf9y9/9S9sfp8etvom1LAWC7P2AUe+IvitgKnT9VsBohfAKSscfvG9xbKLuwOwQcxaNi8RNgtfU6CUcFYefkn2QOSCZJZf3B7w3eV4CtnKAFIyoaWy/JK9C0AmwUSyiAzZzGGqDG/ZtBFyLDFpo6HOfFv4ObNREL/nZIU0xYRWY4NgWQvZ24g8wYNMuraI9kCYstKAsqz9yEU9NiaSMQ6/ZjbH4WpDprlURfAbprpuTsWtn+D3n/kV/Iat87LW1vdLWZUr7noVDr/Ii8US6yMbqKKhqghhVa1ataxngOxjpOQFsADq0qIm+BNkEwUhWadSwW+ySBIkYLjlllssVi3WWqzbo0ePtr/ha4zVGks44EUWMzae8TmASSpg4tYSI5eHAMaKywifNWvWzKJmAJiESCMeMJZgfDPX9gAAIABJREFUoj3g70xoscSoFoQZo488OLCJkIgKZIU744wzzCc6VQGasY4DiIBiixYtLJoFbfEgkdg/+kp7ZKTDz5pj6BPRKoBnMs0RH5iYwYSIA6QZK9ZXNiXSHv2/+eabLUkIGxbxFWfe+Iz+pipkouMhoHbt2lY3XaF9HhYI10Y0CvQA6FNFlBD8Zn2JrlJBN6fi1k/wK/gNW+FhtfX9EqZfsdaOBfwWi7ip4DdZJIkZM2a46tWrW7xbXD8AdWLXEq6NrG0TJ040UCTkG5ZrrLqEeCPcG1nUSOPL39944w1zESFiBjCJtRtQBBz54UGA31esWOGIm0v7wDHWdsCYGLr4SvskF9Tn/EAskTOItgFcJyv16tUz+MXNA6DFOuozvGE5TewfgEuMX+IOs1kRf23ORZg7IBcLPCmITz/9dNexY0eDcdokdjIPRsRHJoQdftzEQiajHPUAVM5HquTETG34jJMK+v777zd9ifHLcdGCvx/Z5nzhQYGHMB4m/BsB9E8WQ5g6gt+wK1g3p+LWT/Ar+A1b4WG19f0Spl+x1hb85nBmk8EvIJUskgQQBjjOnDnTfG3xbwa0iFOMWwcFIOMVPFZN3D0AXqJjALMAHaCHdRfwJKzb559/bpZiXD2wxgK/WFCx4gKIwHGyvmBx9fDLhkL8dynA7z333JM0vTFQTb+xqBK3mLHUrVu3BH5JSpHYP/rk0xvTPgALiBKdg3P6DG/8i+W7e/fuZm3FMjxq1CjLfkfBUk5sX8aOVZyClbxr166mEQXXF35HXwCfYwFrwuFhdU6EX1IgR8vvv/9uVngeQNggecghh6RcKYLfsItIN6fi1k/wK/gNW+FhtfX9EqZfsdYW/OZwZpPBL6/Lk0WS4NU7YIfVliQfQBkAhvsHIOsL0Na5c+fV0hsDZPgxYznFT/roo4+2dlKlNwZ+aStZX7DuZpvemOPxEcaySgF2scR6yy9xlxP7R2Y2D79APHBPqmHcGojMkSq9MdBMW9SnsLGRBCdYzAl75wsuE/iOU3CJwLUE7dDVW4RxpcF/PFqw8EYtxmhF+D0273FO0jj7wsPJlClTVls1WKPjWvTlHzYz0i9MP8Gv4DdsBYXV1vUbpl+x1hb85nBmgV+stCTe8AWrKH69+Ls2aNDA3ByAXiylpCTG4tuhQwfzXeW1P9ZNYhMDzYRaw8qJj240vTFpenFZAMR69epl4EqqYNwHUsEvllJgMVlUC3xas4VfXCWAQnyL8cPFT5dNih5+AdHE/mHdBX6xhgOLuBugF5n8gNlU8MuDAtFA+BxwRQvOi65YeHEZYdw9evQwa7cvRPlAd5Ka4CNNqmjmA+COFizYxIH2Bcs6cxH9W7plIstv2EWkm1Nx6yf4FfyGrfCw2vp+CdOvWGsLfnM4s8Av/qnRgtsBkJcsksSbb75p/rdAIemC2fiHdRbI44IFcgE2/haF34EDB9oGN3xtsVqy4QuQPvjgg5PCLz62uFIA2kBwYl9I/Zwt/DLGIUOGmLUZeAaAyYiHTy9tsVkssX9EmyDaA8fwEACwUw+3BjbdjRkzxnxy586da5sU8VFGO9wWsCxjJadgjcV/F/9nQuFhzW3ZsqVtaEvml4s+hLNDT9rnJ12hn0BztHz00UfmT52sCH7DLiLdnIpbP8Gv4DdshYfV1vdLmH7FWlvwW04zm00kCV7rr7vuuqVGqcD6SmQF4JFX9OkK1laOwUqaTV84FheLxAKs419MTF+OSRZRI1n/OBZ/WnyPgX1cDGrUqGH/x70h3Tg4F6DNcb4sW7bMgD5VJIbEfnP+aP1cTL/gN0xF3ZyKWz/Br+A3bIWH1db3S5h+xVpb8FusM5ujcRFijXjLiYXQZkRgUFG0h9A1oJtTmIJx10/wK/gNW+FhteN+fcS9f2Hqx7e24De+c6OeFYgCsvyGTVTcv/zVv7D5fef1nuWSPrisvSy/9MZ1leGtrJMUUE/Xb4B4RVxV8FvEk6uhlY8Cgt8wnQvq5jT93rDB5qF2ecFbWbv+WY3mtqchrqWg1l8MRZR+YZMSd/3CRhff2oLf+M5N0p6Rwpm4uERtqFmzph1DzF18X9k8RvIMIi9kU2iPjWhrr712NtVidyx+w2y2y3b8oQMR/IYpGPcv/1X6d/c+zn27apKUsNEXf+3PzvlnQ29cS0GtvxiKKP3CJiXu+oWNLr61Bb/xnZukPSN8GKBK2DKiIVCIgkDGNEKGERbMx95NNzQiI5DCl8gGJH/wERYKTI5VurtgwQKL/uATX5TXWAS/YUrH/ctf8Bs4v4LfIAEL6voIGml+Kku//Oha6K0KfgtsBokJjIX37rvvttTHxK0tDX4JSUZoMQrATBKNxo0bW7zdsWPHWjphQqHx/4YNG1qcYeL1kiiC+MNESCAe7xlnnGHhxYBmUi0D2T5yAtZnQJq4xCSXIDMcIdZIZEFaYoCdRBZEeiAxRbVq1dzUqVNdp06dLJUzm+p69uxpsYIJxcZGO2LtEkuYJB5EtCBs3J133mnnJHkFIeCi/SHUHFnh6D9pj8nQRiSI3r17W0IOzkd8ZFIkn3322dYW53jxxRfd9OnT3fz58y3lMimgk9VPtVQEv2EXUUHdnGT5zXqyZfnNWrJVKhTU9RE21LzUln55kbXgGxX8FtAULl++3F4fksYYmPzvf/9r/6aDX+CPqAykB6Z+27Zt3SeffGLgt2LFCoNhsr4RN5dYwcTqJQEFAEvGNiCQcGStWrWyVMTAIbAIfGNl9oW4vrgdAK4AL4Drk1IApFiq69SpY5nTiJcLkBOjGNAkqQR9IJkHSSw4N+X++++32Lz0s1u3bgb9QDLATzILklh07NixpD9oQ6pnQBZr9uzZsx3Z64ByMuihFQB/4IEH2t/QDy0AcBKTUI/MdKnqC37zc7EU1M1J8Jv1IhD8Zi2Z4DdMMumXQ/2KtSnBbwHNLJALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEJ06sjyVc8Jufi0Xwmx9d49Kq4DdsJgrq+ggbal5qS7+8yFrwjQp+C2gKSRlMkgdcBgA0wBaYw10hlc/voEGDDHSBRQouDmSL4wshCr/e5xf3hs0339x+cJWIQi7nxxJ7xBFHWCY5XwBW+kQbJJvAAgxs/utf/7LsdcQE5jPqPPHEEyVZ6LDcAp+MAReMKPziv9ysWTNzUWBzH/2lHazSZI4D4D38+v54+MXKC4Bj7R49erS1z79YmfmMggsF/6dtIBiLNv3ecMMNDcAT65NGGYsz8D1lypTVVg39imvRl3/YzMjnN1A/+fwGCajrN0g+u3dow2WYhsVYW/BbILOKq8Mee+xhFlPvZ8trfNwMAMdU8EsGOCyofI5ls1GjRhYRgvS9uETgjhDd8Obht02bNq5BgwYO6CMrHODao0cP8+VNhF8kxMIKHOOH632IAd3mzZubBRn/W2AV1wbamjlzprktpIJffI/pGxZnwJm00bhqEJli/PjxZuFFC6AzEX6xTtMfUhqT7pjsc4wDCzHwimUbKzR9IUxUIvySYS+xvgf7ZMtFPr9hF1FB3Zzk9pD1ZMvym7Vkq1QoqOsjbKh5qS398iJrwTcq+C2QKQQe2ZAFDPqCNRcrJDDJZi5AOFm0BzaH4X4AJAOn/fr1c2wOY5Pb448/7gDdqOUXGL7kkktsMxnRE5YuXepatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj27y5Mm28Q14JbwbKZAZCwCMJr4/Ucsv8Pr888+bnzAuHEA7riK4cdAXLAFstBszZkxSy2+y+qmWiuA37CIqqJuT4DfryRb8Zi2Z4DdMMumXQ/2KtSnBb7HObMK4sLriKuFjA/MxAAlIYtlNVYgfjIUYd4ZMCrCKL3K0EJWCzXPeYl1aO/j84nvMRj3cL3z/6D9WWfpCBArcNqpWrZqyOc6LO0a0P4AvbhBYf7EKpyvJ6ic7XvBb2oym/1zwG6Zf3GsLfsNmqKCuj7Ch5qW29MuLrAXfqOC34Kew+Abg4Re3jkIogt+wWSqom5Msv1lPtuA3a8lWqVBQ10fYUPNSW/rlRdaCb1TwW/BTWHwDwDeZjX2ZWoorWgHBb9gMFNTNafo9YYPNQ+1FCxe5TTfbNA8t56bJz2ocpg1HAVIW1PURMM58VZV++VK2sNsV/Bb2/Kn3MVDgySefdPXq1YtBT9QFKSAFpIAUKDQF4hyNotC0zLS/gt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1ACkgBSQAlJACkgBKSAFMlVA8JupUjpOCkgBKSAFpIAUkAJSoOAVEPwW/BRqAFJACkgBKSAFpIAUkAKZKiD4zVQpHScFpIAUkAJSQApIASlQ8AoIfgt+CjUAKSAFpIAUkAJSQApIgUwVEPxmqpSOkwJSQApIASkgBaSAFCh4BQS/BT+FGoAUkAJSQApIASkgBaRApgoIfjNVSsdJASkgBaSAFJACUkAKFLwCgt+Cn0INQApIASkgBaSAFJACUiBTBQS/mSql46SAFJACUkAKSAEpIAUKXgHBb8FPoQYgBaSAFJACUkAKSAEpkKkCgt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1AAqWoGnnnrK1a1bt6K7ofNLgVgqMGXeI7HslzpVORXYZbNGbouqO8Zq8DvuGK/+xEqcPHVG8JsnYStrs7NmzXKLFi1aZfi1atUqKDicP3++++mnn1ydOnUymsZbb73VXXnllRkdWxEHffbZZy7OX67qX9iqiLt+R/SpEjZA1ZYCOVTg/rZz3TY1ds1hi2FNxf36DRtdfGsLfuM7NwXZs5NPPtn9/fffrn79+iX9b9CggTvhhBOCxvPQQw+5P/74w5177rlB7fjKBx10kJs8ebJbc801V2tv6NCh7v3333e33XZbRucS/GYkU8qD4v7lr/6Fza/gN0w/1c6tAoLf3OpZqK0Jfgt15mLab+D3tNNOc/wbLcDr+PHj3ahRo9zEiRPdXXfd5R5//HE3ZMgQd+edd7q11lrLde7c2Z1zzjnu22+/Nch999133THHHOOuuOIK16RJE/frr7+6sWPHuubNm1vTX375pbvgggtctWrV3NSpU12nTp2s7WnTprmePXu69u3bu9dee81169bNzZs3z51yyimub9++rkuXLu6OO+5wxx13nBs9erS77LLL3LBhw+wc/fv3NygePny4++WXXxxW4D59+rhWrVqlVFzwG7YYBZfFrZ/gN2x+VTu3Cgh+c6tnobYm+C3UmYtpv4HeZcuWuV13/b/XSh06dHA777yzq1evnuvevbvr1auX69evnzvwwAPddtttZ7C6xhpruH322cctXLjQ9e7d28ATKG3Xrp07//zz3YwZM9yKFSvcDTfc4NZee20b/SeffOJ22WUXA+j11lvPtW7d2t17771um222sTpfffWVa9SokcEzwNy0aVM3ePBg60fVqlXdDz/8YO3S5pgxY9zdd9/tli9fbi4awPdbb73lPvzwQ+vPe++9J/jN05oT/IYJG3f9BL9h86vauVVA8JtbPQu1NcFvoc5cTPsN/NasWdM1bNiwpIeHH36423bbbd2kSZPcoYce6k499VSzAK9cudIAFuvs7NmzzSq7ZMkSO2bEiBEG0AsWLDB3h0ceecT99ttv7uqrry5pl7p77723W7x4sYEsvsUcy88GG2xg7eN//NJLLxnE4sYwcuRI16JFC1elShU77pprrnG1a9d2bdu2NeD+4osvDHrHjRtnP0uXLnXVq1e3tlIVWX7DFmPc4U39C5tfwW+YfqqdWwUEv7nVs1BbE/wW6szFtN+p3B7o7uuvv+4aN25srg1YawHTzTbbzDaL7bvvvuaWAMhiDZ47d67baqutDEj//PNPs9gmg9+TTjrJzZw50yzGu+++u/v+++/NPeL/t3cm4FZN7x9fhoQkNMhMZpHQQIgoFTJTkjkyVKRCmaVk/gk/JUlChgaKEEVmDaTMNChzoSJk/D+f13/f3+7cc849565z7tln3+96nvvcumevtd/9Xeuc89nvftf7Ar/EHjMuXue2bdu6++67z84Vht+OHTvaefnhPEuXLnVkbwhifvEE4yUO4BdQf/XVV0uprw1v5V+Qgsvya0fPqOsn+PWbX/XOrQKC39zqWayjCX6LdeYiajfwC0gCpUHDy/rXX3+5PfbYw3Xt2tUA9Mknn7SMCsT74pklHpgYXOCX2F28v0DySSed5I455hi3YMEC9/PPP7urrrpqFc9vOvj95ptvzBsMQDMu4RCAbQC/QPJDDz1kUE64BHCMBxpvcir4TSa7PL9+izHq8Cb7/OZX8Ounn3rnVgHBb271LNbRBL/FOnMRtZuQBjaRhRuZHoi9ZTPaCy+8YCENV155pXvjjTfcPvvsY2ESa621lnlsAWA2ubGRjY1vpBubOHGie+mllwyC2SQHGNMIe0gHv3hrgfEPP/zQjic+GAh++eWXHdke8OiyEe+8884zW/AWP/300+bZFfxW3AITXPppHXX9BL9+86veuVVA8JtbPYt1NMFvsc5cTOwmNAEPLSEOhB0Q2gCU0ghBIN42aMAxkJwsPVk6OYDoOnXqWD9iijfccEM71++//27Am+xc2cgrz282apU+NurwJvv85lfw66efeudWAcFvbvUs1tEEv8U6c7I7MgoIfv2mQnAZb/0Ev37zq965VUDwm1s9i3U0wW+xzpzsjowCgl+/qRD8xlu/EZP7u9q1avldZB57L2bjrewrt8LFpl+DLQ5Uhbdyz3Z8Ogp+4zOXupICKSD49RNe8Btv/d58bYCrFWG4JOtMlO1bvUpLlSf3eIvo88VDvBh3FfzmcHLZTMUbjfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/Hzp0712Jqicn1HSvbc+fr+MS44FTnEfz6zYC+nOKt38PDV/O7wErcu1adZm67nUcKfj3WgD5fPMSLcVfBbw4nl0wGVAtLlgc2h6dJOVQ4+0H4IDIaUNCBqmXJGqm+vvzyS0tRVt520003WZU1qrSlG4ssC5QPznbTWnntKk8/0rK99957btiwYWYn6djSNcFveVT+Xx99OcVbP8Fv+edX8Ft+7YKe+nzx1zCOIwh+czirqeD3008/tXK7wCl5a6+77jpL53X99ddb7lu8tf3797cUYfyNMrvkpL3rrrss5yxVzQAyXgcwqXa22267uSuuuMLdf//9lslgxIgR9lqLFi0sfRiASZ7cs846yzzBZEoYO3asFZBItOWZZ55x2EhaMHLsrrPOOlaNrVOnTu6WW25JqRDQfO6557o111zTilWQP3frrbe2sShNnGgftjIe6czGjBljx2DTNtts44Dnpk2bWhqzvffe2917770G0lzr+uuvb3l4GQ/70Y+qcaQlo3QxHlpew95UjcwR3ARQzY2+6Rr5hEnFNmPGDLNB8JvDN0mSofTl5Kdv1PUT/JZ/fgW/5ddO8OuvXZxHEPzmcHZTwS9QCZC2bNnSYJRCD7NmzbI0XkAWhRvwMB511FHuxBNPdI899pjlxAUUKbdL6V3Amfy41157ratevbrr0KGD/Z38tBRqoDgDMEkuW0ARaOOHNF/8f+XKleaVZvxEW0g3Nnv2bMt3S3/OD8SSm5eKacB1sla/fn2DX8I8AFpKBWMbY7Vv376UfQAuacwoRUwJYcoNc67nnnvOIJcCFBtvvLHdIHTr1s1gnDFbtWrltt12W8vPO3/+fCuSMXPmTLfZZpuVlD3mfG+//bZVcws3yhoPHjzYvLjoe/LJJ9tx4Ua835lnnlnqErn5QHfBbw7fJILfnIsp+M25pJEZUPDrPxVRf39E3T7/GYjmCILfHM5LMvgNSu3izSUedvLkyebJBMIAR0rzEmtL8QaqnlE+l2IONIBs4cKF5tVs06aNAe+zzz5rMAvQAXp4dwHPAw44wKqg4Skm9hhvLPCLBxUvLvlzgWPy2ibagsc1gN/WrVtb/C4N+B0yZIh5pxMbUI3deFRXX311u5ZddtmlBH4vvfTSUvZhE9XeCMGgAbCAKBXeOCf/B375jee7b9++lv8Xz/Cjjz7qHnjgAeuHpxzvLNeOV5wGqPbu3ds0olHYgv+jLzcbHMvY77//vnmdE+EX8E9sgt8cvjnSDBX1D3/Z57cO5Pktv36C3/JrF/TU+9dfwziOIPjN4awmg1/iXwG5W2+9teRMO+20kz16B+zw2l5wwQUGZQAYm88A2aABbT169DAvKKESnOPOO+90TzzxhFUhw3M6cuRId+ihh9o4QcUz+uPh/e9//1sCv4yVzBa8uwH8hvsTn3vHHXckhV+OJ0YYzyoN2MUTG3h+ud5E+xgrgF8gHri/8MIL7WaA0sIB/H700UdWiAKPOF5ZoJmx6E+jKAYV33idSnBBI2SiQYMG9l9CItAL7dA18AgvW7bMLVq0aJVZJ1wk0WMcAHWi55ebk2Qx3Xijo9r04e83M9LPTz/Bb/n1E/yWXzvBr792cR6h0sDv9OnTzVMJaCVrkyZNKjMWtKyFAJjipX3llVdKDsUriueUeNeGDRtamAPQi6e0V69e5vHt0qWLxa7y2B/v5qhRo2zTWNu2bc3LSYxuIvwSPgGIDRgwwMCVEsKED6SCXzylwOLuu+9eyhZifLOFX0IlNtlkE4stJg6XON3OnTuXwC8gmmgf3l3gF284sAjYolfPnj0NZlPBLzcKRxxxhL0OuKIF50VXPLyEjHDd/fr1M2930BYvXmzXOmjQIIuRPv/8881LDXCHG+ti/PjxpaZXnt+yVnxuXhdc+ukYdf0Ev+WfX8Fv+bUT/PprF+cRKg384hllU1myR/hMMFD2zz//eM018Et8argRdgDkEXJAw8tI7GrNmjXdm2++ad5ZoLBevXqOVGV4Z4E8vtDw8AJs/C0Mv3hz2eBGrC3jseELkN5///2Twi8xtoRSANpAcKItEyZMyBp+uZbhw4ebtxl4BoBPOeUUi+kFpK+55ppS9pFtAm8yx3ATALDTj7AGNt2NHj3awkECzy8xymhH2AKeZbzkNDzAxO8S/zx06FCHN7ddu3a2oY15TGzoM3HiRNOT8fnJpAG/zE3Ya5+sn7I9ZKJm6mOiDm+yz29+Bb/l10/wW37tBL/+2sV5hFjDL/GqbKrCs8fGMeAIDyCxoGyAAro4Bq8l0MQGMjIqkLWA14mPzVUDwIjfZSMZ3sd0jcf6VatWtUf/6RreVzIrcB3EE6dreFs5Bi9pNrZwLCEWiQ1YJ76YnL4ck8zWZPaFc+cC+8Qib7TRRgb+hDekuw7OBWhzXNCWL19uQI83PZPG+cP9M+lT1jGC37IUSv+64DLe+gl+yz+/gt/yayf49dcuziPEFn555E2GAFJpUcGHLAdsrvrxxx/Ni0h4AXGheATZhAb88igeLyuP7wFkNpJV9kaKNUJGEhupzdBXzTnBr98qEPzGWz/Bb/nnV/Bbfu0Ev/7axXmE2MIvO/rZDEaWABqgxmN1UmqR6zVIbRVkAADm2GxGHGuw+YrH3mpSoCwFBL9lKSTPr59Cxa3fm6/1j3T54OiXN26lCm8ebyDdXHuIF+OusYVfwJXY0SBDQJD2a+DAgeYFJmaUxgY4dvQDwb///rurUqWKxZayWYvYWjUpUJYCgt+yFCpueKs0X54f3eM3kSl6z1urpeDNQ9lKs/48NErXVfrlSdgiHza28EsKLjIETJs2zREXuuWWW1rYA8UlAFtifdlwRhoscsES9sCGNdKMsSGKDWZkEMimkV+XNxob0QrRiJslOwQV3bJpeLyJpyU2uryNjWHEExOz6ztWeW3IdT9CZLg5KqsUs+DXT3l9OUVEv4e3cG7FF37GJOk97+B/N/RGtWn9+c2M9Iu3fn5XF93esYVfJAds2eTGJimqqRHyQJ5bQh6AxC+++ML+RnUw4JccsWw24xgKQ9SoUSOrmUtV4S2rQTwOxoMdTnUWDIUGFJYg20KyRpliUquRt7e8jeptZJ7Aw55uLLI9kKasLKAsrx256MfGRNYEoTBsjmNjH5XmUjXBr5/q+vKMiH6CX7+JyFNvvT/8hJV+fvrFtXes4ZdJ++6778x7B5iFG95OgDic0YFUZ1QuI+43WcqsshZBKvglIwO5eoFTSvded911VoDh+uuvt9RrgDhp2Mg0wd+owAaAE7oBeFHFjI1nvM51AOxkrSBHLnlsKT9M6jNea9GihaVPAzDZvEc+YDzBZHtg8x+pxRJtIc0YNuLt7t69u90sAP+dOnWyEsupGtBMvmIAEVAkSwbZLBiLdGqJ9mEr47GRkJhsjsEmslUAz1SaIz8w2TdIEQdIc63MH1XtGA/70Y/cv2xYJD8yGRx4DXtTNSrRcRNAvDd90zXG52aBdG1ko0APgD5VRgnBb1nvjPSv68spIvoJfv0mIk+99f7wE1b6+ekX196xh9+KnLhU8AtUAqQtW7Y0GCVvLeEXwDf5bik+gSeUOGTikdmo9/zzzxsokqKNFGwDkVdqAAAgAElEQVSA88MPP2y5bamiRhlf/v7GG29YjPKcOXMMJrfffnsDRcCRH2Ce/69cudKRN5fxE20hJVlQ5IL+nB+Ipbwx1d+A62Stfv36Br+EeQC0eEeDCm94ThPtA3DJ8Uve4bfeesvS0HEuinMAuRT5IPaaG4Ru3boZjDMmuZPZsEh+5Pnz51tWDnIhU1GOfgAq5yOsJbFSG+EvlIImdR36EtLCceFGLuFgAyR/50aBmx9uJig5ja7on+qGSPDr9y7Tl1NE9BP8+k1Ennrr/eEnrPTz0y+uvQW/OZzZZPALSOFdxptLPCxp1fBkAmGAI/HGxNpSgALQIh6ZghQ0gIxH8Hg127RpY8BLWWBgFqAD9PDuAp7EKi9YsMA8xcQe440NNvnhxQUQgbhktuBxDeC3devWVtiBBvwSG52sMAhQjd14VMlbzLXssssuJfBLOrlE+7ApKG/M+AAsIPriiy/aOYMKb/zG8923b1/ztuIZJmsH6eloeMrJ7cu14xWn4SUnPR0a0aj8xv/Rl5sNjg0ye+B1ToRfQmTCjc2PeOG5ASHP8UEHHZRypQh+/d5E+nKKiH6CX7+JyFNvvT/8hJV+fvrFtbfgN4czmwx+eVwOyIWrhO2000726B2ww2tLlbT333/fYpQJxwBkgwa09ejRo1R5Y4Dsgw8+MM/pyJEjHRXsGCdVeWPgl7GS2YJ3N9vyxhxPjDCeVRqwiyc28PxyvYn2kXkjgF8gHrin1DA3A0F6OQA1qPCGRxyvLNDMWEHmDuKyKYfM6+ecc06JVoRMELdNIySC0BK0Q9fAI0w1OEokhxse3rDHGK1OOOEEu1nhnITBBO3VV1+1G5TEhjc6qk0f/n4zU2n0E/z6LZQ89a4060/65UkBDZtMAcFvDtcF8IuX9pVXXikZFa8onlPiXRs2bGhhDkAvnlJKEuPx7dKli8Wu8tgf7+aoUaMsxrRt27bm5SRGN1zemDK9hE8AYQMGDDBwpVQw4QOp4BdPKbC4++67l7KFmNZs4ZdQCaCQ2GLicInTpThIAL+AaKJ9eHeBX7zhwCJgi149e/Y0mA08v4nwy40CmTt4HXBFC86Lrnh4CRnhuvv162fe7qBR6ATdBw0aZDHSlIpmPgDucMODPX78+JI/4VlnLsJ/S7dM5Pn1exPpyz0i+gl+/SYiT731/vATVvr56RfX3oLfHM4s8Et8arixcQvII+SAhpeR2NWaNWtaqjXib4FCUgGRqgzvLJDHGxbIBdj4Wxh+yT/MBjdibRmPDV+A9P77758UfomxJZQC0AaCE22ZMGFC1vDLtQwfPty8zcAzAHzKKadYTC8gzWaxRPvINkG2B47hJgBgpx9hDWy6owgJ4SAB/BKjjHaELeBZxktOwxtL/C7xz0OHDnV4c9u1a2cb2pLF5aIPlfzQk/H5SdewE2gOt08++cTiqZM1wa/fm0hfThHRT/DrNxF56q33h5+w0s9Pv7j2FvxW0MwCYMTvspEM72O6xmP9qlWrug033DDtcXhfyawAPPKIPl3D28oxeEmzsYVjCbFIbMA68cXk9OWYZLYms49jiacl9hjYJ8Rgo402sn8T3pDuOjgXoM1xQSOHM0CfKhNDot2cP9w/F9Mv+PVTUV9OEdFP8Os3EXnqrfeHn7DSz0+/uPYW/MZ1ZnN0XaRYmz59eqnRSG1GBgY15wS/fqtAX04R0U/w6zcReeqt94efsNLPT7+49hb8xnVmdV0VpoDg109qfTlFRL8Ph/gZkqL3vKqtVOHNQ1m9PzzEc85CCFVh0E/DOPYW/MZxVnVNFapAZOH36XtMhyWLl7hatWtVqCbZnEz2ZaNW6WOjrt+8nVsKPjymWPDmIZ7g10+8GPcW/BbZ5FKFjry4ZG1g0xyNnLvEvrJ5jOIZZF7IpjEeG9GqVKmSTbfIHUvcMJvtsr1+3wuJLPwOvdS5R27wvTz1lwJeCswb+u+G3qg2waXfzEi/eOvnd3XR7S34je7cJLWM9GGAKmnLyIZAIwsCFdNIGUZasCD3brpLIzMCJXzJbBDOrVtkcqxiLqWsyf4QFL6oqGsR/FaU0jpPMSog+PWbNcGl9PNTQL2TKSD4LbJ1QU5gPLxUjKP0MZkjyoJfUpKRWowGMFNEY99997V8u2PHjrVywqRC49+NGze2PMPk66VQBPmHyZBAPt5OnTpZejGgmVLLQHaQOQHvMyBNXmKKS1AZjhRrFLIgtRvATiELMj1QmKJGjRpu2rRprnv37lbKmU11/fv3t1zBpGJjox25dsklTBEPMlqQNu62226zc1K8ghRwYXtINUdVOOyn7DEV2sgEMXDgQCvIwfnIj0yJ5FNPPdXG4hxU3ZsxY4b74osvrOQyJaCT9U+1VAS/RfYmkrkVqoDg109uwa/081NAvQW/Rb4GVqxYYY8PKWMMTN5+++32Ox38An9kZaA8MP3POOMM99lnnxn4rVy50mCYqm/kzSVXMLl6KUABwFKxDQgkHVn79u2tFDFwCCwC33iZg0ZeX8IOAFeAF8ANilIApHiqd955Z6ucRr5cgJwcxYAmRSWwgWIeFLHg3LRhw4ZZbl7s7NOnj0E/kAzwU8yCIhbdunUrsQdtKPUMyOLNnjNnjqN6HVBOBT20AuCbNWtmf0M/tADAKUxCPyrTpeov+C3yN5DML4gCgl8/2QW/0s9PAfUW/Bb5GgBygU4e61MJboMNNrD/p4NfvLcALN5TGnCLF5SiDUAtYwGKFJkgby/FJABRqqdxbBBCcNddd7nevXu7KVOm2HHhssKMC4ziDaZaGuEHeIepyhb8DS8x4DtmzBjr/8MPP5hnuG7dunYsP+T+JaYZ+MUDDJBT6a558+YGqfwQ9gHUAqk//vijeaYDe3gd+H3vvfdc06ZNbWwKWrRp08bGB76BYRpeaEom77rrrhYygo7kEabUMvmJE/vjCRf8FvkbSOYXRAHBr5/sgl/p56eAegt+i3wNUDKYIg+EDABogC0wR7hCqpjfwYMHG+gCizRCHKgWxwdqGH6DqmqEN9SpU8d+CJUIQy7nxxPbunVrqyQXNIAVmxiDYhN4gIHNLbbYwqrXkROY1+jz5JNPllShw3MLfHINhGCE4Zf45RYtWliIApv7sJdx8EpTOQ6AD+A3sCeAX7y8ADje7scff9zG5zdeZl6jEULBvxkbCMajjd3VqlUzAE/sTxllPM7A96uvvlpqJWFX5Jo2vEVuSiqjQYJfv1kX/Eo/PwXUW/BbxGuAUIcGDRqYxzSIs+UxPmEGgGMq+KUCHB5UXsez2aRJE8sIQfleQiIIRwhveAvgt2PHjq5hw4YO6KMqHODar18/i+VNhF9kxcMKHBOHG8QQA7otW7Y0DzLxt8AqoQ2M9e6771rYQir4JfYY2/A4A86UjSZUg8wU48ePNw8vWgCdifCLdxp7KGlMuWOqz3EdeIiBVzzbeKGxZcmSJaXglwp7if0DsE+2hBTzW8RvLJmedwUEv34SC36ln58C6i34LeI1ADyyIQsYDBreXLyQwCSbuQDhZNke2BxG+AGQDJwOGjTIsTmMTW7jxo1zgG7Y8wsMd+3a1TaTkT1h2bJlrl27do4MEWy4I4yAvuFGPDBeYja+EV4AePI3NpgBqWx0A0op25wJ/AKrQP7SpUvd1KlTbeMb8Ep6N0ogcy0AMJoE9oQ9v8DrpEmTLE6YEA6gnVARwjiwhfhgNtqNHj06qec3Wf9Uy0fwW8RvLJmedwUEv34SC36ln58C6i34rcRrAK8roRJBbmCkACABSTy7qRr5g/EQE86QSQNWiUUON7JSsHku8FiXNQ4xv8Qes1GP8IvAPuzHK4stZKAgbGO99dZLORznJRwjbA/gSxgE3l+8wulasv7Jjhf8ljWjer0yKyD49Zt9wa/081NAvQW/WgNFoUAAv4R1FEMT/BbDLMnGQikg+PVTXvAr/fwUUG/Br9ZAUShAbDIb+zL1FBf6oiILv08NMWmIa65VK8LljWWf1xKO+vzO26WVKrx5zLDg10M8lTf2Ey/GvVXkIsaTq0urGAUmTJjg6tevXzEn01mkgBSQAlIgVgpEufx3rIQOXYzgN64zq+uSAlJACkgBKSAFpIAUKKWA4FeLQgpIASkgBaSAFJACUqDSKCD4rTRTrQuVAlJACkgBKSAFpIAUEPxqDUgBKSAFpIAUkAJSQApUGgUEv5VmqnWhUkAKSAEpIAWkgBSQAoJfrQEpIAWkgBSQAlJACkiBSqOA4LfSTLUuVApIASkgBaSAFJACUkDwqzUgBaSAFJACUkAKSAEpUGkUEPxWmqnWhUoBKSAFpIAUkAJSQAoIfrUGpIAUkAJSQApIASkgBSqNAoLfSjPVulApIAWkgBSQAlJACkgBwa/WgBSQAlJACkgBKSAFpEClUUDwW2mmWhcqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVOtCpYAUkAJSQApIASkgBQS/WgNSQApIASkgBaSAFJAClUYBwW+lmWpdqBSQAlJACkgBKSAFpIDgV2tACkgBKSAFpIAUkAJSoNIoIPitNFOtC5UCUkAKSAEpIAWkgBQQ/GoNSAEpIAWkgBSQAlJAClQaBQS/lWaqdaFSQApIASkgBaSAFJACgl+tASngqcBTTz3ldtllF89R1F0KxFOBR95/Kp4XpquSAjlQoEP9w129evVyMJKGyEYBwW82aunYMhWYPXu2W7JkySrH1a1bt6jg8IsvvnA//fST23nnncu8Xg644YYb3CWXXJLRsYU4aN68eZH+cJV9fqsi6vqt1nMrvwtUbykQUwVWW20199l5UyL9+RxT6Z3gN64zW6DrOu6449zff//tdttttxILGjZs6I4++mgvix588EH3xx9/uNNPP91rnKDzfvvt56ZOnerWWGONUuPdf//97oMPPnA33nhjRucS/GYkU8qDog5vss9vfgW/fvqpd3wVEPwWbm4Fv4XTPpZnBn47dOjg+B1uwOv48ePdo48+6p5//nl35513unHjxrnhw4e72267za255pquR48e7rTTTnNff/21Qe4777zjDj/8cHfxxRe75s2bu19//dWNHTvWtWzZ0oZeuHChO+ecc1yNGjXctGnTXPfu3W3s6dOnu/79+7vOnTu71157zfXp08fNnz/fHX/88e7WW291vXr1crfccos78sgj3eOPP+4uuugiN2LECDvHHXfcYVA8cuRI98svvzi8wDfffLNr3759yvkS/PotZcFlvPUT/PrNr3rHVwHBb+HmVvBbOO1jeWagd/ny5W7HHXcsub4uXbq47bbbztWvX9/17dvXDRgwwA0aNMg1a9bMbbXVVgarq6++uttrr73c4sWL3cCBAw08gdIzzzzTnX322W7WrFlu5cqV7uqrr3ZVqlSxsT/77DO3/fbbG0Cvvfba7sQTT3T33HOP23zzza3PokWLXJMmTQyeAeYDDjjADR061OxYb7313Pfff2/jMubo0aPd3Xff7VasWGEhGsD3W2+95T7++GOz5/333xf85mnFCn79hI26foJfv/lV7/gqIPgt3NwKfgunfSzPDPzWrFnTNW7cuOT6DjnkELflllu6KVOmuIMPPtidcMIJ5gH+559/DGDxzs6ZM8e8sj/++KMd8/DDDxtAf/fddxbu8Mgjj7jffvvNXXbZZSXj0nfPPfd0P/zwg4EsscUcy8+6665r4xN//OKLLxrEEsYwatQod9hhhzk+dDju8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXbylHHd5kn9/8Cn799FPv+Cog+C3c3Ap+C6d9LM+cKuyBi3399dfdvvvua6ENeGsB09q1a9tmsUaNGllYAiCLN/ijjz5ym266qQHpn3/+aR7bZPB77LHHunfffdc8xrvuuqv79ttvLTwC+CX2mHHxOrdt29bdd999dq4w/Hbs2NHOyw/nWbp0qSN7QxDziycYL3EAv4D6q6++WmrutOGt/MtZcFl+7egZdf0Ev37zq97xVUDwW7i5FfwWTvtYnhn4BSSB0qDxBv/rr7/cHnvs4bp27WoA+uSTT1pGBeJ98cwSD0wMLvBL7C7eXyD5pJNOcsccc4xbsGCB+/nnn91VV121iuc3Hfx+88035g0GoBmXcAjANoBfIPmhhx4yKCdcAjjGA403ORX8Jps0eX79lnLU4U32+c2v4NdPP/WOrwKC38LNreC3cNrH8syENLCJLNzI9EDsLZvRXnjhBQtpuPLKK90bb7zh9tlnHwuTWGuttcxjCwCzyY2NbGx8I93YxIkT3UsvvWQQzCY5wJhG2EM6+MVbC4x/+OGHdjzxwUDwyy+/7Mj2gEeXjXjnnXee2YK3+OmnnzbPruC34pan4NJP66jrJ/j1m1/1jq8Cgt/Cza3gt3Da68zOWWgCHlpCHAg7ILQBKKURgkC8bdCAYyA5WXqydGIC0XXq1LF+xBRvuOGGdq7ff//dgDfZubKZHHl+s1Gr9LFRhzfZ5ze/gl8//dQ7vgoIfgs3t4LfwmmvM8dEAcGv30QKLuOtn+DXb37VO74KCH4LN7eC38JprzPHRAHBr99ECn7jrV//Cbe7WrVq+11kHnsvWbJY9nnoK/08xHPOtdp4b1V485OwXL0Fv+WSTZ2kwP8UEPz6rQbBb7z1GzllgKtdq5bfReax92Kyzsi+citcDPqdfFDfcl9fvjtG/fMv39dfqPEjDb9z5861OM2tt946K33I1frll19aEYVk7ZVXXrENTzxyyGVjMxULmfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/HBnNFTK7vWNmeO1/HEx+8/vrrlxljLPj1m4Gof/jLPr/5PeyW3H7O+lmj3pVNgeMaXOVOb3V1ZC876p8vkRXO07C8wS8VsQYPHmzlYsvbbrrpJqvc1a1bt4yHoBwtFboee+wx16ZNm6T9ABpyzAJquWxkMqBaWLI8sLk8T6qxwtkPwseQ0YCCDlQtS9ZI9cXNAinKytuCuaJKW7qxuOmgfHC2m9bKa1d5+lE2mXLG5CCm7DKpzyiGkaoJfsuj8v/6RP3DX/b5za/g108/9fZTQPDrp19ce6eEX/KfAnHTpk2zXfeUfqVSF/8/66yz3Pz5892pp55qeVrx9F1wwQXuueees9RV999/v5WSnT17tpWGPeWUUwy88EqSxmrIkCFWkYvStUHaKXKskpMVEDv33HMNOoAPcrKSG/b66683G8jVetdddxmQJGvAFYUIyAd7xRVXWIncsWPHum222cYBaE2bNjVvHvBLIQXSXHGt7PynJC4ASW7Z6667zmzIpqWC308//bTU2OjANZH7Fl369+9vKcKSXSdVzciTy+vcDFDtbLfddrPrQ2syGYwYMcJea9Gihc0BgEmeXOYKTzCZEtCBAhKJ1/nMM884bCQtGDl211lnHavG1qlTJ3fLLbeklCDZXOGlZyx0T7QPWxmPdGZjxoxJOjekMdt7773dvffea+WOuVbmizy8jIf9zA1rkbRklC4mcwOvYW+qxhrmJoBqbvRN1xifm4VrrrnGsk+gB0BPRopkTfCbzbuk9LGCy3jrJ/j1m1/19lNA8OunX1x7p4RfSs3ypQ7gkCcVmJw5c6aFCwAZhBQAtLfffrsVBuAHgKOAAeC78cYbmxd00qRJBp08kgeIAF5yuDLWokWLXN++fW1s8rny7/r16xv8EjoAJOFxY7wTTzzRvLnkigWgCG1YffXVS80L9l544YVWOAGwpqQt/QBzQIoiB8AUEN+qVSurNNayZUsDP6CRfwOMADfQnk1LBb/Jxp41a5al8SLfLdePJ/Soo45Kep2U3gXKyY977bXXuurVq7sOHTpYSV7y0wLv6I++5LIFFAFHfkjzxf9Xrlxp84GOiddJujFuVLgRoD96AbHk5qViGnCdrCWbK2xjLDynifaxDkhjxo0PJYSTzQ3rhpsPvP3oxvwzT9tuu63NJzddrDHWz2abbVZS9pjzvf3221bNLdwoa8wTiGHDhpm+J598sh0XbrVq1bJ1GTRuFAiJ4WaCYhzoiv6pwmQEv9m8SwS/fmoVn36C31zPuMbLRgHBbzZqVZ5j08IvIQRAMA34mDBhgnkWASIa3lqKAQCMFDfAC3fEEUe4Bg0aGFz26dPHTZ482SAMcCOm9LvvvjOvGscFfwNQ6P/ss8/aMXjpAFsgmBAGKnvhzaXIAQ1Q4dH0FltsUWqm3nvvPYNrvNZ4BIEkYAcYJi6V/wO/NWrUcIceeqh5oYNyuHiWCYXAZo7h/9m0ZPCbamwgjOujNC/XTPEGQCvZdeLVJIQD4EUjYBagA/Tw7nKTwA0CVdDwiBN7jNca3fGg4sXFgwnEkdc28Trxhgfw27p1a9OJBvyiD97pxAZUJ5urAH4vvfTSUvZhEwDJ/NOSzQ3wy9/x8HMzhLcVr/2jjz7qHnjgAeuHp5w1wbXjFafxNKB3796mEY0bNv6PvtzIcCxjE46D1zncgF/AP9x4EoAXnhutJ554wh100EEpl4LgN5t3Selj5fmNt36CX7/5VW8/BQS/fvrFtXda+AUw8EzSAE28vIAYAEEDrPg3oQ8AI5DA43egeMsttzT4BQgBTUIMABk8wMAP4wFZhDbwGpW6Ro0aZXGnwDANgMK7B8iwKQvACxowQ7GCxBaGX7y8gDKeYGAWuwL45W//+c9/HMfjdQW2AtBnzJ122sm1bds2q3lPBr88Lk82No/e0QOvLSEj6AiAJbvOHj16mBeUUAnOceedd5rW3HjgpR05cqSBPOMEFc8wHA/vf//73xL4RbNktnAzE8BvuD9efmK2k8EvxyebqwB+0TLRPsYK4BeITzY3ACrrgbnFIw6YAs2MFcSPUxSDim+8zo1O0AiZ4MaLRkgEeqEdugYe4WXLltkTh3DDwxv2GHOjwM0YN0Kcc5NNNik5nJuTZDHdeKOj2gSXfjMj/fz0E/z66afefgoIfv30i2vvtPALYAEZACKgA4QCAgAAEAUgED86ffp08zLizcUDB6gQD4ynEVDAywmYAF880saDi5cTjzGhBXjY2FlPfDDjE69KbCexn507dzbPH14/4BiYBErx/iXbsBaGX2AQeALYe/bsadcSwC8xv/ydx+gA5O67727xsw0bNjTgB0zxzGbTAFPGJJtE0PBgA4/Jxu7Vq5d5fLt06WJec2A92XWicSL8EprBPAwYMMDAlRLChHakgl9uZIDFZNdJTGu28EuoRLK5CuCX+U60j5sd4BdvOLCYbG6SwS83CqytIFQGLVgj6Mqa5OaF6+7Xr5+tw6AtXrzYdB80aJDFSJ9//vn2RIEbn3DDgz1+/PiSP+FZZy7Cf0u3DuT5zeZdUvpYwWW89RP8+s2vevspIPj10y+uvdPCLx5dHpPziHvo0KEWxwmc8aiZx8L16tWzGNwg9AGvGxCLJxJ4BVp5dA284KFjHGJ7J06caKEIAByP6BmLR/PEkBKDC7QCZIwBHBM7CjgDP3xR4vkEZJK1MPwS/wsUBrawsWv06NEGksSdAoS8BogvX77cYJ2GJ5D40po1a2Y178Av8anhhnccyEs29ptvvmneWaAQLfGKJ7tO/haGX7y5eNiJi8ZWwjsA6f333z8p/HKt3HAA2lxzoi2Es2QLv1xjsrkippex2CyWaB8x4niTOYYbjGRzw41S4PklRhntCFvgKQBechreWOJ3iX9mXeLNbdeunW1oSxaXiz6sOdYN4/OTrmEn0Bxun3zyicVDJ2uC36zeJqUOFvzGWz/Br9/8qrefAsftfpU7vaVSnfmpGL/eaeGXx794P6tWrWoQHDRglUfleH8D2ADceGRPbHDwN6ADD2HgoSWWl01e4cbGNUIbwpkVyB5B38SwBh53Ywt/B7AAksRGdgjAOWjYxXVstNFGBpecJ1WKM85JLDGbvZJtpvOZ/mzGDl9nunOiLZkVuMkoK20b3laOwUuajS0cyxOAxAasE1+caq44Ppl9jMf6YT1lMzeMx7mY2/Ba4aYFoE+ViSHRbs6fbRaPsuZd8FuWQulfF/zGWz/Br9/8qrefAvL8+ukX195lwi+e2yg2oBlPcmIDyMoCwSheT1RtIsUaYS2JjVhtbnTUnGVFUcxv+VeC4Lf82tEz6voJfv3mV739FJDn10+/uPZOCb94CmlhL2pcRdB1SQEfBQS/PupFH96iDpdRt2/k5P6uVu3oljdesniJ7PN4CxeDficf/G9WoCi2qL9/o6hZLmzKW4W3XBinMaRAMSgg+PWbpah/+Fe4fd/OdI6fDFvU4WPeei1tT0NUW4XPb5ZCyL4sBUs4XPr56RfX3oLfIpvZf/75x3IWk7Uh2JBH+Aexr2zeo3gGWTKyaYzHRrQqVapk0y1yxxJDTCx4ttfveyGCXz8F9eWUoB/gO7KRn6gR6j3vmH839Ea1af35zYz0i7d+flcX3d6C3+jOTVLLSB8GqJK2jGwINLIgUDGNdG5k1gjyJKe7NDIjkG+ZzAbh9GJFJscq5lJAhewPQeGLiroWwa+f0vryFPz6rSC/3lp/0s9PAb/eUV9/flcX3d6C3+jOTVLLyAmMh5cqbUGJ57Lgl5RkQbESgJliIfvuu6/l2x07dmxJ7mX+3bhxY8unTL5eCkWQf5gMCeQvpqw16cWAZqrzAdlB5gS8z4A0+ZcpLkFlOFKsUciCtHEAO0VGyPRA2jsKn1AFsHv37pYuj011lMcmrzOp2NhoR65dcgmTOo+MFqSNI/0e56R4BSngwvaQao4NmthPKWvyR5MJgvzR5KnmfKTXI7czeagZi3NQoGXGjBmOioaUXKYEdLL+qZaK4NfvTRT1D/8Kt0+eX78FlWXvCp9f2ZelAn6Ha3799Itrb8FvEc3sihUr7PEhZYyBSSru8Tsd/AJ/ZGWgPDD9yZn82WefGfitXLnSvMekrCNvLrmCyatM5gIAlhb4tOEAACAASURBVBR0QCCp4sjxTG5m4BBYBL7xMgeNvL6EHQCuAC+AGxSlAEjxVJPjmcIo5MsFyMlRDGhSVAIbKOZB9TXOTRs2bJjl5sVOqgUC/UAyaegoZkERi27dupXYgzaUegZk8WbPmTPHUvIB5VTQQysAvlmzZvY39EMLAJzCJPSjMl2q/oLf/LxZ9OUkz29+VlZmo2r9ZaZTqqOkX7z187u66PYW/EZ3bkpZBuQCnTzWp9gIOZP5fzr4xXsLwOI9pQG3eEHJkQzUMhagSAEQ0sRRTAIQpXoaxwYhBFTu6927txUj4bhwWWHGBUbxBlMtjfADvMNUZQv+hpcY8B0zZoz1p7gJnuG6devasfyQ+5eYZuAXDzBATkW/5s2bG6TyQ9gHUAukUlAFz3RgD68DvxQ6adq0qY1NQYs2bdrY+MA3MEzDC01xll133dVCRtCRPMKUwSY/cWJ/POGC3/y8WfTlKfjNz8rKbFStv8x0Evz66VSs+uXnqgs/quC38HOQsQWUDCb1HCEDABpgC8wRrpAq5nfw4MEGusAijfLSVIvjAz8Mv0FVNcIb6tSpYz+ESoQhl/PjiW3durVVkgsawIpNjEGxCTzAwOYWW2xh1evICcxr9KGaXlCCGc8t8Mk1EIIRhl/il1u0aGEhCmzuw17GwStN5TgAPoDfwJ4AfvHyAuB4ux9//HEbn994mXmNRggF/2ZsIBiPNnZXq1bNADyxP2WU8ThTrhsAT2zK85vxMi51oOBD8Fv+1ePfU+vPT0PpF2/9/K4uur0Fv9Gdm1UsI9SB8tF4TIM4Wx7jE2YAOKaCXyrA4UHldTybTZo0sYwQlO8lJIJwhPCGtwB+O3bs6Bo2bOiAPqrCAaz9+vWzWN5E+MVQPKzAMXG4ADbllAHdli1bmgeZ+FtgldCGTOCX2GNsw+MMOFM2mlANMlOMHz/ePLxoAXQmwi/eaeyhpDHVBqkIyHXgIQZc8WzjhcaWJUuWlIJfKuwl9g/APtlyUcyv35tIX56CX78V5Ndb60/6+Sng1zvq68/v6qLbW/Ab3blZxTLgkQ1ZwGDQ8ObiiQQm2cwFCCfL9sDmMMIPgGTgdNCgQY7NYQDquHHjHKAb9vwCw127drXNZGRPWLZsmWvXrp0jQwQb7ggjoG+4EQ+Ml5iNb4QXAJ78jQ1mQCob3YBSylNnAr/AKpBPSeypU6faxjfglfRuVPDjWgBgNAnsCXt+gddJkyZZnDAhHEA7oSKEcWAL8cFstBs9enRSz2+y/qmWiuDX700U9Q//CrdPG978FlSWvSt8fmVflgr4Ha759dMvrr0Fv3Gd2YTrwutKqESQG5iXAUhAEs9uqkb+YDzEhDNk0oBVYpHDjawUbJ4LPNZljUPML7HHbNQj/CKwD/vxymILGSgI21hvvfVSDsd5CccI2wP4EgaB9xevcLqWrH+y4wW/Zc1o+tf15ZSgj+DXb0Fl2VvrL0vBEg6XfvHWz+/qottb8Bvduam0lgXwS1hHMTTBr98s6ctT8Ou3gvx6a/1JPz8F/HpHff35XV10ewt+ozs3ldYyYpPZ2Jepp7jQQgl+/WYg6h/+FW4fnt9vZmQsKnHrtWrVyvj4ij5wXvVWqvDmIXqFr78sbZV9WQpWZJ5zv6uLbm/Bb3TnRpYViQITJkxw9evXLxJrZaYUkAJSQApESYEol/+Okk65tEXwm0s1NZYUkAJSQApIASkgBaRApBUQ/EZ6emScFJACUkAKSAEpIAWkQC4VEPzmUk2NJQWkgBSQAlJACkgBKRBpBQS/kZ4eGScFpIAUkAJSQApIASmQSwUEv7lUU2NJASkgBaSAFJACUkAKRFoBwW+kp0fGSQEpIAWkgBSQAlJACuRSAcFvLtXUWFJACkgBKSAFpIAUkAKRVkDwG+npkXFSQApIASkgBaSAFJACuVRA8JtLNTWWFJACUkAKSAEpIAWkQKQVEPxGenpknBSQAlJACkgBKSAFpEAuFRD85lJNjSUFpIAUkAJSQApIASkQaQUEv5GeHhknBaSAFJACUkAKSAEpkEsFBL+5VFNjSQEpIAWkgBSQAlJACkRaAcFvpKdHxkkBKSAFpIAUkAJSQArkUgHBby7V1FhSQApIASkgBaSAFJACkVZA8Bvp6ZFxUkAKSAEpIAWkgBSQArlUQPCbSzU1lhSQAlJACkgBKSAFpECkFRD8Rnp6ZJwUkAJSQApIASkgBaRALhUQ/OZSTY0lBaSAFJACUkAKSAEpEGkFBL+Rnh4ZJwWkgBSQAlJACkgBKZBLBQS/uVRTY0kBKSAFpIAUkAJSQApEWgHBb6SnR8YVgwITJkxw9evXLwZTZaMUqHAFZnz+SIWfUyeMpwKNtuoQywurV69eLK8ryhcl+I3y7BShbbNnz3ZLlixZxfK6deu6XXbZpWiu5osvvnA//fST23nnnTOy+YYbbnCXXHJJRscW4qB58+a5KH+4yj6/VRF1/U76z2p+F6jeUsA5t97aNd2Qc1b9bslEmKi/P6JuXyYaF+Mxgt9inLUI23zccce5v//+2+22224lVjZs2NAdffTRXlY/+OCD7o8//nCnn3661zhB5/32289NnTrVrbHGGqXGu//++90HH3zgbrzxxozOJfjNSKaUB0X9w1/2+c2v4NdPP/X+VwHBr1ZCLhUQ/OZSTY3lgN8OHTrY73ADXsePH+8effRR9/zzz7s777zTjRs3zg0fPtzddtttbs0113Q9evRwp512mvv6668Nct955x13+OGHu4svvtg1b97c/frrr27s2LGuZcuWNvTChQvdOeec42rUqOGmTZvmunfvbmNPnz7d9e/f33Xu3Nm99tprrk+fPm7+/Pnu+OOPd7feeqvr1auXu+WWW9yRRx7pHn/8cXfRRRe5ESNG2DnuuOMOg+KRI0e6X375xeEFvvnmm1379u1Tzq7g12/hCy7jrZ/g129+1VvwqzWQewUEv7nXtFKPCPQuX77c7bjjjiU6dOnSxW233XYWF9u3b183YMAAN2jQINesWTO31VZbGayuvvrqbq+99nKLFy92AwcONPAESs8880x39tlnu1mzZrmVK1e6q6++2lWpUsXG/uyzz9z2229vAL322mu7E0880d1zzz1u8803tz6LFi1yTZo0MXgGmA844AA3dOhQs2O99dZz33//vY3LmKNHj3Z33323W7FihYVoAN9vvfWW+/jjj82e999/X/Cbp5Ut+PUTNur6CX795le9Bb9aA7lXQPCbe00r9YjAb82aNV3jxo1LdDjkkEPclltu6aZMmeIOPvhgd8IJJ5gH+J9//jGAxTs7Z84c88r++OOPdszDDz9sAP3dd99ZuMMjjzzifvvtN3fZZZeVjEvfPffc0/3www8GssQWcyw/6667ro1P/PGLL75oEEsYw6hRo9xhhx3mVlttNTvu8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXb8lHHd5kn9/8Cn799FNvwa/WQO4VEPzmXtNKPWKqsAdEef31192+++5roQ14awHT2rVr22axRo0aWVgCIIs3+KOPPnKbbrqpAemff/5pHttk8Hvssce6d9991zzGu+66q/v2228tPAL4JfaYcfE6t23b1t133312rjD8duzY0c7LD+dZunSpe+qpp0pifvEE4yUO4BdQf/XVV0vNsTa8lX/ZCy7Lrx09o66f4NdvftVb8Ks1kHsF8ga/fCDTEneZ8/gY4KlTp07Sq8l2p32yQT788EPzPqY6R+5l1IiBAsAvIAmUBg0v619//eX22GMP17VrVwPQJ5980jIqEO+LZ5Z4YGJwgV9id/H+AsknnXSSO+aYY9yCBQvczz//7K666qpVPL/p4Pebb74xbzAAzbiEQwC2AfwCyQ899JBBOeESwDEeaLzJwYa3RPhNNtPy/Pqt/6jDm+zzm1/Br59+6i341RrIvQJ5g18eYeN5Y3NRuLGTfvfddzcQCrdg9z0bjbLZaZ9MEuI9W7duvQqA5V46jZhMAUIa2EQWbmR6IPaWzWgvvPCChTRceeWV7o033nD77LOP3aistdZa5rEFgNnkxkY2Nr6RbmzixInupZdeMghmkxxgTCPsIR384q0FxrkZohEfDAS//PLLjvWGR5eNeOedd57Zgrf46aefNs+u4Lfi1rfg0k/rqOsn+PWbX/UW/GoN5F6BvMIvoEOsJY0NTnjcrrnmGtt4BIAQcwkIATx4APl91FFHZbzTHq8doMJOfx5Xs2GJ+NIAfhmLTVNkCNhmm23cTTfd5Jo2berefPNN20jFY/Ru3bq5Cy+80H366afWD6DC23jddddZBgK1/CrADRIeWkIcCDtgToBSGnNKvG3QgGMgOVl6snRWAtE8BaAfMcUbbrihnev333834E12rmyuWp7fbNQqfWzU4U32+c2v4NdPP/UW/GoN5F6BvMIvUPDMM89YTCbpogh54FE2UIo3b/LkyQasxIEGu+95/J3pTnu8y5yDx9Z493gkPnPmzBL4BWzY5PTYY4+55557zjZN8dgbr1/Pnj1dgwYN3IEHHmh98P7hhSQrwFlnnWWP50855ZTcK64RY6eA4NdvSgWX8dZP8Os3v+ot+NUayL0CeYVfcquSN5W28cYbW95WUl0F8EtsJY+3acHuex5DZ7rTHvglRpjftG233da98sorlrqKsAc8yYDt22+/bXGlc+fOtcfuO+20k22MovE3wJvYUEAczyJQvv7669v/1aRAWQoIfstSKP3rgt946/foi/1d7Vq1/C4yj70Xs/FW9pVb4YrU76DdumRtpz5fspasUnTIK/zyCBvYpW2xxRYWbkCqqgB+w3G5YfjNNN4S6GUTFPGjwTmI2aSAAmNXrVrVwhsIawBm2dBEzDFxoEE4Bo/BebzOxrwAohkLQCZDgJoUKEsBwW9ZCgl+M1Lo3XsyOizxILKm1IowvM2r3lLltcs1s/92Erx5iCf9/MSLce+8wi8eXDYqsYOejVAAZzjsIRF+iekkNCEb+A3O8d5771mWAVJkUVSBsYkr5kvhiiuusDAHbKGgwiabbGKxwuSepaABxx166KEGxpTiBaaJQT333HMjN/Vs4sKLzaZBNorRiGmlsAQpwijasPfee2dlN+MRChIUj8iqc4QOJqvD7Nmzs75+30sQ/PopqC/3/9fvgUbOfTvTT8wI9p537FzBr8e86P3hIZ7g10+8GPfOG/yygW3w4MG2sYg3L+VjiaENw2+bNm1sBz8t2H1Padxs4JfzENsLAJILljK0bFxjbEIZyDQAFLLhjfhjKnmx4x8PNBuesKdfv36WeovNcTSqhQHEAVxGaf7JM4tWxDcT3kFj4x+FGQB8NvwFXu10dhNewoZD4qsJSeGmgY1gxdwoiMEaCBfCqIjrEfz6qawvd8Gv3wry6631J/38FPDrHfX153d10e2dN/gNLpkKWeyyD3bwp5Iicfd9+Di8eZ988kmprsTrkj8WDy0hDsHO/fCBeAMJv9hoo40s3ysZHIjrBXw5Z7gP/1+4cKHbeuutrdxuFBtebWCeeGSqkWFnWfBLQYkgNARgJtsGmwzxtJMJI8ily7+pzEYVtOrVq1vaL0oDowve806dOrlrr722JEsHkB1kxODmA5AmrptUZUOGDLGqa4SdBKnFCDtBd+K8a9SoYVk6yOlLCjQ88v3793edO3e2mxDmlc2JeOlJf8fNy7333mtZQThnjx497MYlbA/x3ITZYD9PEK6//noLi6E8MU8FOB+bGYlFP/XUU20szkGM94wZMyx+nA2SlElO1j/VehD8+r1Tov7hX2H2yfPrt5DK2bvC5lf2lVMBv26aXz/94to77/CbC+GAPOAqsbG5De9lEFeci3NFeQwKLhCbTMEHvL+33367/U4Hv8AfGwEpJ0x/yviSzg3wW7lypXmPKf5AHDY5mfHOU4QCgN1ss81KygrjUWfjIHAYZOnAyxw0UthxcwG4ArwALpsNFy1aZPODp5qcvYS/kG8XIMfDDmhSYAIb8NhzPOemDRs2zOK3sbNPnz4G/UAywL/XXntZVTdS1QX2oA2bHAFZvNmE27CxESgn0whaAfDNmjWzv6EfWgDgrCX6Efedqr/gNz/vDn05/b+ugt/8LLAyRtX685Nd+sVbP7+ri27vooDfVPLhuaSts8460VU4h5YBuXh8eaz/wAMPWA5c/p8OfvHe4sXEe0oDbvGC4kkPygUDioSEkH3j0ksvNRClCAnHBiEEd911l+vdu7ebMmWKHRdk6QguDxglZ/OOO+7oCD/gpuSII44o+RteYsB3zJgx1p/QEzzDhKZwLD944YlpBn7xAAPkX375pWvevLlBKj+EfQC1QCqbFfFMB/bwOvBL/Df5nBn75JNPthAYxge+gywfeKEJr6EkMiEj6EjFOTZGkns4sT+ecMFvDhdzaCh9eQp+87OyMhtV6y8znVIdJf3irZ/f1UW3d1HDb3RlzY9lVDYD9AkZANAAW2COcIVUMb/EXQO6QSYLQhzIdsEHVhh+g5hfwhsoCMEPoRJhyOX8QSaNcPligBWbGIONgniAgU0yfBCaQjlrXqMPsdVlVWUDfolfbtGihYUosLkPexkHr3SjRo0M4AP4DTZOBvCLlxcAx9tNtTk04jdeZl6jEULBvxk7iDHH7mrVqhmAJ/YnjzQeZzZKAuCJDbui2vTl5DczFaafPL9+E1XO3hU2v7KvnAr4ddP8+ukX196C3yKZWUIdKMqBxzSIs+UxPmEGeMBTwS+V6/Cg8jqeTcoMkxGCzBaERBCOEN7wFsBvx44dLfMF0EfMNsDKxkBieZOVjsbDChwThxvEEAO6FA3Bg0z8LbBKaEMm8EvsMbbhcQacW7VqZaEaZKagEAoeXrQAOhPhF+809lBIhRR6bOTjOvAQA654tvFCYwtpohLhl4pzif0DsE+2XBTz6/cm0peTPL9+K8ivt9af9PNTwK931Nef39VFt7fgN7pzs4plwCMbsoDBoOHNxRMJTLKZCxBOlu2BzWGEJADJwCmlptkcRqaNcePGOUA37PkFhqlwx2YysiewabFdu3aODBFsuAtn6QhsIR4YLzGx2YQXAJ78jQ1mQCob3YBSNiZmAr/AKpBPDuapU6faxjfglQwcbFjkWgBgNAnsCXt+gddJkyZZnDAhHEA7oSJBlg/ig9loR/aPZJ7fZP1TLRXBr9+bKOof/hVmnzy/fgupnL0rbH5lXzkV8Oum+fXTL669Bb9xndmE68LrSqhEOH0bAAlI4tlN1cgfjIeYcIZMGrBKLHK4sWGRzXOBx7qscQh7IPaYjXqEXwT2YT9eWWwhAwVhG+myiHBewjHC9gDhhEHg/cUrnK4l65/seMFvWTOa/nV9Of2/PoJfv4VUzt5af+UU7v+7Sb946+d3ddHtLfiN7txUWssC+CWsoxia4NdvlvTlKfj1W0F+vbX+pJ+fAn69o77+/K4uur0Fv9Gdm0prGbHJbOzL1FNcaKEEv34zEPUP/wqz790h5RIy+uWNW6nCW7lm9t9OFbb+ymmj7CuncEXiOfe7uuj2FvxGd25kWZEoMGHCBFe/fv0isVZmSgEpIAWkQJQUYA+KWsUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6dTwUeOqpp9wuu+wSj4vRVUiBHCvw1VeP5HhEDZeoQI0ajVy1attJmCJVoF69ekVqefGaLfgt3rmLpOWzZ892S5YsWcW2unXrFhUcfvHFF+6nn35yO++8c0Ya33DDDe6SSy7J6NhCHDRv3jwX5Q9X2ee3KqKu373DVvO7QPUuU4Hjjn3fbbBBYW7Ao77+ZF+Zy6dSHiD4rZTTnr+LPu6449zff//tdtttt5KTNGzY0B199NFeJ33wwQfdH3/84U4//XSvcYLO++23n5s6dapbY401So13//33uw8++MDdeOONGZ1L8JuRTCkP0pdTvPUT/PrNbya9Bb+pVdLnSyYrqPIdI/itfHOe1ysGfjt06OD4HW7A6/jx492jjz7qnn/+eXfnnXe6cePGueHDh7vbbrvNrbnmmq5Hjx7utNNOc19//bVB7jvvvOMOP/xwd/HFF7vmzZu7X3/91Y0dO9a1bNnShl64cKE755xzXI0aNdy0adNc9+7dbezp06e7/v37u86dO7vXXnvN9enTx82fP98df/zx7tZbb3W9evVyt9xyizvyyCPd448/7i666CI3YsQIO8cdd9xhUDxy5Ej3yy+/OLzAN998s2vfvn1K3QS/fktKX07x1k/w6ze/mfQW/Ap+M1knOuZ/Cgh+tRpyqgDQu3z5crfjjjuWjNulSxe33Xbbufr167u+ffu6AQMGuEGDBrlmzZq5rbbaymB19dVXd3vttZdbvHixGzhwoIEnUHrmmWe6s88+282aNcutXLnSXX311a5KlSo29meffea23357A+i1117bnXjiie6ee+5xm2++ufVZtGiRa9KkicEzwHzAAQe4oUOHmh3rrbee+/77721cxhw9erS7++673YoVKyxEA/h+66233Mcff2z2vP/++4LfnK6U/w0m+PUTNur6CX795jeT3oJfwW8m60THCH61BvKkAPBbs2ZN17hx45IzHHLIIW7LLbd0U6ZMcQcffLA74YQTzAP8zz//GMDinZ0zZ455ZX/88Uc75uGHHzaA/u677yzc4ZFHHnG//fabu+yyy0rGpe+ee+7pfvjhBwNZYos5lp91113Xxif++MUXXzSIJYxh1KhR7rDDDnOrrbaaHXf55Ze7HXbYwZ1xxhkG3J9//rlB7xNPPGE/y5YtcxtssIGNlarJ8+u3mKIOb7LPb34Fv376ZdJb8Cv4zWSd6BjBr9ZAnhRIFfbA6V5//XW37777WmgD3lrAtHbt2rZZrFGjRhaWAMjiDf7oo4/cpptuakD6559/msc2Gfwee+yx7t133zWP8a677uq+/fZbC48Afok9Zly8zm3btnX33XefnSsMvx07drTz8sN5li5d6sjeEMT84gnGSxzA76uvvmqwnti04a38C0pwWX7t6Bl1/QS/fvObSW/Br+A3k3WiYyoh/PLYGtCqU6eO5j+PCgC/gCRQGjS8rH/99ZfbY489XNeuXQ1An3zyScuoQLwvnlnigYnBBX6J3cX7CySfdNJJ7phjjnELFixwP//8s7vqqqtW8fymg99vvvnGvMEANOMSDgHYBvALJD/00EMG5YRLAMd4oPEmp4LfZNLJ8+u3oKIOb7LPb34Fv376ZdJb8Cv4zWSd6JhKAr8A7+DBg20TEzv4d999dwMwtfwpQEgDm8jCjUwPxN6yGe2FF16wkIYrr7zSvfHGG26fffaxMIm11lrLPLYAMJvc2MjGxjfSjU2cONG99NJLBsFskgOMaYQ9pINfvLXA+IcffmjHEx8MBL/88suObA94dNmId95555kteIuffvpph3dX8Ju/NZI4suDST+uo6yf49ZvfTHoLfgW/mawTHVNB8MsjaDYsBbCBZw1PHF62K664wh5vX3fddY6Y0MS/8aj60ksvdY899phZC/iQIYCd93gR8eBtsskmtit/m222cffee2+prAHALnln2bDEI3M2PAE9vXv3dsOGDbN+Q4YMcXvvvbcBFb8Zh41XxJiuv/76Wit5VoDQBDy0hDgQdsA8AaU0QhCItw0acAwkJ0tPls5MIBqPP/2IKd5www3tXL///rsBb7JzZXPZ8vxmo1bpY6MOb7LPb34Fv376ZdJb8Cv4zWSd6JgKgt9rrrnGdtyzw5/H1XjxeKS97bbbGhCTfopH4MRQJv4N+CRlFvGcNDY/Pffcc/bYnAa8AsNkACCVVbKsAa+88ort5J80aZJ594466igDWqD6gQceMC8fXsXJkye7jTfe2B6xd+vWzbyFbITyzU2rhVY5FBD8+s2z4DLe+gl+/eY3k96CX8FvJutEx1QQ/OJBDXbts9ueR+KkuWKnP/BJI5frl19+aR7e8N/w8LEZKRn8kr8VkKUfuVl5/J0sa8Ann3xiYAzcEj9KHx5vs7sfjzQN6CU8gvRXM2fOtLhQYB1PZADaWjBSIJ0Cgl+/9SH4jbd+r7za39WuVcvvIvPYezEbb4vcvrp191eFtxRrRJ8veXzzFPHQecvzS7wlxQfmzp1rG83YvU98JkBJPCVxuDQeeVO4gLjM8N+IzSRvawC/eGwJYaB/z549XYsWLcxzTGgDizsxawCPt5PBL6muGBcQpjEu4ExFMmzkkThe6lq1apkXWE0KlKWA4LcshdK/Htsvp79+d272/X7iZNCbrCl8XkW1zavRUuW1PSYntu8PD02y6Sr9slGr8hybN/hFwlNOOcWKC/D7+uuvt3hLPK5HHHGEeVkJiSDE8MOUmgAAGt9JREFUYMyYMbbRKfw3QhwoNoB3l9yrwCmwC/ySQxZAveuuuwxYW7VqlTRrwKeffmqFEtjAFHh+sYEwC2J933zzTQuHALDxABcD/HJTQXYEoJ+NYjRiWiksQegHRRuIXc6mMR6x0EHxiGz6RulYsjpwg5Tt9fteg+DXT8HYfjkBvwOr+okTg97zTpwr+PWYx9i+Pzw0yaar9MtGrcpzbF7hl5KzZ511lu2wZ3MRRQ4ILyDmlhRTNLy9eGGT/Y34YEIkCEWgzCzFB4BfvMSUw2VDFKVo2fhGeqrErAHnn3++bWojjAGw5TzkmQXACbdgTGKLKV0bhl/ihPGkRDHsAXAHVIF/7KShJdrgEWfzICEmZTWyHFDkgUpm4Wsvq1+UX6cgBvmAw4UwKsJewa+fyrH9chL82sIQ/Or94aeAX+/Yfr74yVLpe+cVfgN18dxuttlmBqxBI8frOuusU+bf8GiGsy6QBgtQZoNcsIOfMVNlDWBXP68RQxxuX331lWUSCHb7F8tKoFQwHl5K8aIrZYHLgl8KSpBajAYwk/WCmwCyJxByEuTS5d941QkNqV69um0IpDQwGpKdo1OnTu7aa681aCaWG8gO5hTvMyDNTQVzhGedqmuJ2T64CSKNGSEx3Bxxg0MKNEoc9+/f3xHPjbc+04weYXtIo8aNDvZzU8PTBnIDk+2D3MPBzRhPEE499VR7WkDWEGLCZ8yYYTdDVIEjLCZZ/1RrRPDr9+6J7ZeT4Ffw6/fW+Fe/efPkOffQUfp5iBfjrhUCv7nUL4BfvJ+VrVFtrF69elbwgeu//fbb7Xc6+AX+uFHAg05/yvgS4wz4kSkDGMazjle8V69eFqJCBg505oYlKCuMd/ztt982OAQWgW+8zEEjswdhB4ArwAvgBmEs4WwfbHok3y5AvvbaaxtokuYOG84++2wLheHctEwyehCXHdiDNoTPALJ4sylYQbo9oJxNjWgFwDdr1sz+hn5oAYCTGYR+lFhO1V/wm593XGy/nAS/gt8cvGVi+/7IgTaZDCH9MlGp8h1TdPCbzGNcWaYNyAU6eaxPZgw81/w/HfzivQVgyYdMA27xgrIZMCgXDCg+88wzFjqCVx0QpRgIxwYhBMRXkx+Z0BWOA27DLZzZg/ADvMPEdidm+yC+m/6EwuAZJu8zx/KDF56YZuA304weeKYDewBZ4Pe9995zTZs2tbFPPvlk16ZNGxufVHvAMI2c02y8pCQyISPoyNriKQNPChL74wkX/ObnnRbbLyfBr+A3B2+Z2L4/cqBNJkNIv0xUqnzHFB38Vr4p+t8VU4iDUBFCBgA0wBaYI1whVcwvFe4AXTyaNEIc2GTIB0IYfoPNfoQ3EE7CD6ESYcjl/ORWbt269Srli4PMHoxBijg8wMDmFltsUSrbB2WNy6rKBvxmmtED+A3sCeAXLy8AjrebanNoxG+8zLxGo5gJ/2bjYFDNDburVatmAJ7YnzhzQkzYPEncdWLDWx7Vpg9/v5kpt36CX8Gv39L7Vz+FPXipKP285IttZ8FvkUwtoQ4NGjQwj2kQZ8tjfMIMiN1NBb9kvCCkgdfxbFJmmIwQlHsmJIKNc+ENbwH8kmO5YcOGtrmQymgAa79+/SyWNxF+kRAPK3BMVo0ghhjQTcz2QWhDJvCbaUYPoDMRfvFOYw8FTFZbbTVLX8d14CEGXPFsE36BLaSJSoRf0u8l9g/APtlyUcyv35sotl9Ogl/Br99bQ/Ar/XKggIZIpoDgt0jWBZu32JBF+EHQ8ObiiQQm2cwFCCfL9tCjRw8LPwCSgdNBgwY5NodRMnrcuHFWTCTs+QWGyXTBZjKyJyxbtsy1a9fOkSGCDXeEEdA33IgHxkvMxjfCCwBP/paY7aNq1aoZwW+mGT3QJLAn7PkFXqnsx+ZAQjiAdkJFCONg0x3xwWy0Gz16dFLPb7L+qZaK4NfvTST49dMv6r2V7cFvhmL7/vCTJePe0i9jqSrVgYLfSjLd5DcmVCLIDcxlA8NkwcCzm6qRbQMPMeEMmTTSzxGLHG7Jsn2kGyvbjB6pxuK8hIiE7QF8CYPA+4tXOF1L1j/Z8YLfTFZG6mNi++Ukz69NuuBX7w8/Bfx6x/bzxU+WSt9b8Fvpl0D0BCi2jB6CX781FNsvJ8Gv4NfvrfGvfor59VJR+nnJF9vOgt/YTm3xXlixZfQQ/Pqttdh+OVl54+F+4mTQe8niJa5W7SiXN26lPLUZzGOqQ2L7/vDQJJuu0i8btSrPsYLfyjPXutI8KTBhwgSrXKgmBaSAFJACUiBbBdiDolaxCgh+K1ZvnS2GCrCZkOIcalJACkgBKSAFslGAlKBsOlerWAUEvxWrt84WQwWiHvYg+/wWnfSTfn4K+PXW+pN+fgqodzIFBL9aF1LAUwF9OfkJKP2kn58Cfr21/qSfnwJ+vaO+/vyuLrq9Bb/RnRtZViQKRP3DS/b5LSTpJ/38FPDrrfUn/fwUUG95frUGpEAeFNCXk5+o0k/6+Sng11vrT/r5KeDXO+rrz+/qottbnt/ozo0sKxIFqLJHqemoNtnnNzPST/r5KeDXW+tP+vkpoN7y/GoNSAEpIAWkgBSQAlJAClRqBeT5rdTTr4uXAlJACkgBKSAFpEDlUkDwW7nmW1dbIAWWL1/u1l9//VXOvmLFCrfOOuu41VdfvcKsWrZsmatRo0aFnS/bE33//femU5UqVbLtWmHHf/XVV27TTTetsPNlcyL0q1mzZjZd8n4sFRurV6+e9/OU9wRR1CzxWqK+5qL8ni30Z97PP//sqlWr5lZbbbWSaS3EZ3953x9x7Sf4jevM6roiocBnn33mpk6d6m699Vb3/vvvm01LliyxpOZrrrmm+/zzz13v3r3daaedlld7p02b5gYMGOA22GAD991337lrrrnGNW7cOK/nzGZwdDjppJMcCd+xr1u3bu6oo47KZogKOfapp55y7dq1c3///fcqX2YVcvI0J5kyZYo799xz3Z577un4Yu3cubM74ogjCmrWzJkz3RlnnOG22morW+fDhg1zjRo1KqhN4ZNHUbNk4kR1zUX9PVvozzw+x2bPnu2OOeYYx/dAnTp1CvLZH5k3XMQMEfxGbEJkTrwUGDhwoJszZ46bNWtWCfzyN7xh/fv3d998843bZJNNDFjWXXfdvF386aef7po0aWKAxO7iL774wt1xxx15O1+2AwP/bdu2de3bt3d44vjSaNGiRbbD5PX4BQsWuMsuu8xR0S9q8ItW2NayZUv38ssvu7POOst9/PHHedWjrMEPOeQQ16tXL8fvMWPGuCFDhrhJkyaV1a3CXo+iZokXH+U1F/X3bKE/81jzr732mrvtttvct99+a/BbiM/+CntDFdmJBL9FNmEyt/gUAOROPPHEEvjFKwekdOjQwf3zzz8W9jB37lyXz/rueLnwpB555JHuySefNAjZe++9IyPmPvvsY17fZ5991h144IHuxhtvdDvttFNk7Fu5cqU79NBD3YgRI8zOqMEvN1PcPK2xxhruoosucr/++qu7++67C6ofOr3++uum1zvvvOPatGljEBCVFkXNwtpEfc1F/T0blc88wh0C+C3EZ39U3m9Rs0PwG7UZkT1Fp8Bvv/2W1KPVunVrV7VqVfNihuH3hBNOcPwcd9xxdq0bb7yxe+utt9zWW2/tfe2TJ082L3K48aj5nnvucY8//rh5Vh966CF39tlnu549e3qfL9sBUtm3xx57uAMOOMDddNNN5pFeunSpu/fee7Md3vv4VPbhLW/YsKHDm8SXWaHgN5V9xCDzBXv++ee7Tz/91I0fP97CDQrZiAPF+8yTjXnz5tn8Llq0qJAmlTp31DQLG3jBBRdEYs2lmjA+t6Lwnk1l39VXXx2Jz7ww/Obzsz9Sb6wiMEbwWwSTJBOjrQCg1qVLl1JGApxsLkuE32uvvdY2dV144YXur7/+chtuuKHBXi42vuH1+/LLL1exhb8R/zlu3DjXrFkzh0eEmNogBrki1U1lH7GhN998s4U+4AXHzkJ4CZPZR6gIj8iDGOnp06fbv8m/utZaa1WkfObVTTa/ACY2nnLKKe6SSy5xa6+9doXalexkzZs3t0e+e+21l5sxY4Zj3QPlUWkLFy6MnGaBNtzArrfeepFYc6nmq379+pF4z6aD8yh85oXhN5+f/VF5XxWLHYLfYpkp2Vm0CiTCLwBw5513mrcYbyyb4d544428Xh+P7AEjQi3w/BL68Nhjj+X1nNkMfuaZZ5oHnE15Dz74oHvuuefcyJEjsxkib8cSmsKGlaDtsMMO7qOPPnL8Du/gzpsBGQzMkwWAHDiOSuPJQq1atdzFF19ssb/AXL9+/aJinj2NiZpmgTjFsOai/J5Fx6h85oXhtxCf/ZF5w0XMEMFvxCZE5sRPgUT4JR6TD+YPPvjAYjOff/5517Rp07xe+EsvveROPvlkiwsly8TQoUPNuxqVxmPx8847z7zRm2++ufvvf//rCIWIYitk2EM6Lxe7y4PG5ppCeM7D9gUefP5GlhFu8DbaaKPITCk3W1HTLJU4UVxzUX/PRuUzj7ljndWuXds+7yv6sz8yb7iIGSL4jdiEyJzKowDxj3Xr1q2wnLZ4k8jywAakqDbSwOEtVIuHAn/++acjRy1rLipe8ngoG52riPJ7NqqfeRX92R+d1RIdSwS/0ZkLWSIFpIAUkAJSQApIASmQZwUEv3kWWMNLASkgBaSAFJACUkAKREcBwW905kKWSAEpIAWkgBSQAlJACuRZAcFvngXW8FJACkgBKSAFpIAUkALRUUDwG525kCVSQApIASkgBaSAFJACeVZA8JtngTW8FJACuVFg+fLlJUVBcjNi7kYhhRFtnXXWyd2gGiknCvzxxx+OH9L8xbXx3mANkr4t00ZlylmzZrmdd97ZivEkth9++MH+FKX0dJlem46TAmUpIPgtSyG9LgWkQEEVoMAEFeBeeeUVs6NevXqWp/iggw4qqF3hk+++++4OmKCcb74agAOkUMjilltuydlpmjRp4lauXOnefffdnI3JQE8//bSN2bdv37Tjcn4q5VExLx+Ninc33nij++abb9LCYTo77rrrLstVfNJJJ5XLxFxojA333XefXUPHjh3th6qQpPMiT3irVq1c//79M7bvkUcesUIfpCqrWbNmqX7Dhw93l156qZs/f36sbxwyFkwHxkoBwW+splMXIwXipQB5YimPS6GQTp06uapVq7phw4bZRX766aduu+22i8QF33HHHQ5be/TokTd7li1bZgDGOagKmKuGvoB7rstdU/KbEt9///132hy/3Dgwr9OmTcvVJa0yDhAOWF922WVWZS5VS2cHeYrxkFKVsTzNV+MXX3zRbvYoAIMnlvfD1KlTHSWkqRJ5wgknWNXBHXfcMWPzDjnkECut/uijjybt89NPP1kZ9uuvv94gWE0KxEkBwW+cZlPXIgVipsAzzzxjFZHatWvnKA1KozQzJXP5Qj799NPdkCFDzLNHxam9997bSkcDGzfccIN74okn3AEHHGAlnffZZx93zDHHlJTYpd9+++3njjjiCAMKHo3PmDHDde7c2arNVatWzd199902Ht4xxvnPf/5jXkpsat26tUEVxz/77LPu999/N5CYPn26u+mmm+xvVNEDuvbff397LI0X9OGHH7Z/t2nTxgHNePKovgck0l5++WUHmPBa+FF9IvxyHN5AKlkdeOCB9m/OP2LECLMZbyO6jB492n6wj8p5aAEkcS177rmnaZUMfjPVDzvwrqI/AHnFFVc4HpmfffbZVtnqsMMOc0899ZRdV3Bcy5YtTYv69etbn59//tkq+gGXXDuefcAsaNdee62NMWHCBKsURxnsPn36OMY5+OCD3eGHH+66devm7r33XvtZe+21Xe/eve2G6fbbb7drpmQ2nvPrrrvOxt9kk01s/plD4JK5SmYH83DVVVe56tWrm9f96quvzvpdFtaYQjOsL+aNMBmeanB9VapUsfXKesHLf9ppp5nNt912m5s8ebLZ8PXXX1uFRqqFnXPOObY+uQbW08yZMzNe859//rnbeuutHe8v1jzvLWAae1jbW221lY2NpxvNWXsqUpL1tKtDhBUQ/EZ4cmSaFKjsCuDh7Nmzpxs8eLDDk5jY8HbhkWvcuLEB0M0332xQQ/jBueeea/2AL2CCsAkABtAEAumDtxGvHkACOK+xxhrutddeczzyBaq23HJLg1zgu2vXrvYDdG222WZmCiEYwFavXr0MnLBnp512stcAGiAtAMv777/fnXXWWfa4GuAFaoAgoBUAxJvHeWgAx6hRo1yHDh1KLjkMv4zNtey7774G0QAndvbr18+gF7DkEfi2225r3k7CD1q0aGEltfEcA3+LFy82mMJ7mAx+M9HvrbfeKvG+A5tAP3A2ZswYgzO0fOCBBwxC0RKdL7zwQvPeA20TJ04sufYzzzzTbjK4uSGsA9AM2oMPPmjzBgBzUwHcMz76AP7cUBAec+WVVxqccl7KhvOb8YKwhwULFtg8U/4ZyGNOaEuXLjUdmINEO5ibo48+2tYV64Z1ETRuwhg/sWEv6ytoYfgFKLGXGwHWC/0fe+wxuwkD2mmsE8IS8L6iETdehKZwQxCEK7DWzz//fANWwJjrzmTOWPOsS24KvvzyS9OR+WD9csPH2txll13shiDQHW1ZS2pSIC4KCH7jMpO6DikQQwUAuMsvv9zg4Pjjjy91hcAewPPee++ZF5FHtIDf22+/bY/cgV+8kHx5A4V4MwEWYAQQ+/bbbw1+ebwLIBI/iWe3bdu2BnB4IhmL/gALsIktwC9QjacO2GM84AHoxqv6ySefmLcXUMKDhycN+MQ7B2gRq4mH88033zTgA5Swk7KnCxcutOOBfgAnaGH4xYvNo25+OB+wzvUA+Y0aNTKb8PYCMYMGDXLHHnus2Qz4ERuK15GbATx/eBrTwW86/YijxRP7wgsvGEwDpTQ8kRdccEFJ2APXzTUSs4q3Hm8j4IWGaMc4gDjxpYSycIMBoAWN14FP1gIwSIgJP6eeeqpBJOdmbtCWmyQgd+TIkTbOX3/9VQK/wCs3DpwHzyc3TIRFBPCbyo5UYQ9cD57+xAbgh0MQAvjlZoGbFuYNLz064d0/8sgj7caKucFubha4AeCmiutlPdLwQnfv3r0ETrlO4n15ioGnPYDfdHOGzttvv73dhPH+4clFKvhlXrEp8UYshh81uqRKpoDgt5JNuC5XChSTAoGXC28cHlYaj2eBYiAAiAMSApgBvnj8zTF8YQO/QOncuXPNwwg8ABmAMBAAbAbwS8wroQfE1QKJPB4HLAgNwOsIZDdo0KAEfsOAFoZf4BUYAT6BYGAHqAJYA8DlOgjBGDdunNnHI/cg7hW7Nt1007Twy2NvIB+AwfscNEAQwOM314kejMf142kFEIHwoLVv394AMh38ptOPm44ddtjBhsMLyc0C3tZE+OWx+lFHHWXxqccdd5zp/uOPP7pdd93Vwh2CaweIiWvF/oEDB66yVNGYxs0IgMiccD00vJTctODRBQKDBnBjT+D55eYHjzs3PRwbzEEAv6nsSAW/hCOgbWIDqpnDoAXwy3rlvMF6BuAJueF1bhbwMI8dO9Z+80SAOQR+8e7jDQZSmfNgAx5eXNYo/+cpQgC/6eaMmzi83EGMcBCbjQaEhXAjiD1oipcd8Bb8FtOnpmzNRAHBbyYq6RgpIAUKosCKFSsM7ogd5cuffwMvNGJMgS9AFSAAqogD5ksciAKCM4VfvKYABFAGdAGNgBDnBLR4HI3nOez5xQuJ54wWwC+ePR7v49W95pprzHsJbBBugIeR0AD+VrduXYv15LE9YBHebJUJ/AJDhDlw3cALHmK8vYAT14ANtCBWGuhmRz+gireSmwps5ZE7oFZe+CW0gLATwAs7AGwe1f/yyy8W3oD3He82HmigipsHHs9z48L/ueEIX3s6+MVjG8Te4ukNQgQItcBDys0F58Kbjd5cI32AuAB+AT7CJLAHb3gwf5nAL/YSdrHNNtuUvBcAcEIDEluwGS0Rfrlewi2IM+YmBTt5WsHNEuEQhKhws4TXn5s91iXwy/uA9cf8oR3xtwA56wwdgGRu7DKBX9YNOgTZNYKnJdzccUPCOGiEboRGMI+818LXXZAPA51UCuRQAcFvDsXUUFJACuReAeIwSckEKNCAAx4Z45EiTAHwAnKDFoRI8Hc27STzggFKgEXg+WUzGA3IBtDwYBKagNeX44AOvHSM9frrr9uj+UT4DQASYABwGQtbsQOgBtjw6OGJpOHhBNTwfoYBMHjEnxj2kJjqDC8mMdHBeQjBCNK/AUWAKd5nII9GHDHgieeUFsTVpkrDlal+QegA14p2XB/nIASEeaMxT0EISzCHXDs3E+Fr/+qrryw8I5nnF1jnRifYQEdIyZQpU9ycOXNMQ9YHIS3cZNAILeDGhXho4BdvL15WbnK4WQBmuWFgfaEt4B54fhPtYFwgO/DMBmuNOWddJDbicIkfD1pYY0I+uAbmjUZYAR5xvK7ANToBmwA6nmJ04iYlvMbpx/oHjANPPrBa1pyx3rnBCMJPGIeQHuYBezgnx+Axx6sNTHNDhXZqUiBOCgh+4zSbuhYpEGMFABK8inh/2RkfbsTD8uVNrCyPv7NpeNCIFwaa+JIntjTY2Q60AQsAWTa73elH+AOAG4Yg7MKzy+YlvLMAtk8jnpXzcA2AXCaN42vVqpXT3K3MDY/zE23AA0wWjaCIAvPETQDxtpnam8k1hY9hfDRPVpyBMAGyTuA5J3QELyzrBuArqwG6hMXkolgG80bGhWCDGedGQ54SsBbZ4IaHlzAH4npZ16laEB7BOg2HWpR1PeHXWa9Bvt9gTXK9nJenC8HTlmzG1LFSIMoKCH6jPDuyTQpIgbwrEMAv8Y1q8VYArzpefG6igpaYWaJQCgDWxOIGTwawI5ziL5Vd3EjhscXTTQhDrhrgTWYQPMPc2KhJgTgpIPiN02zqWqSAFMhaAbIe4M0LNlRlPYA6FJUCeKMJy/j+++8NGsl8EJWGR5i4YAq44B1nM2AmTweAeuKWgzR7ubgeNpFy7nRe51ycR2NIgUIoIPgthOo6pxSQAlJACkgBKSAFpEBBFBD8FkR2nVQKSAEpIAWkgBSQAlKgEAoIfguhus4pBaSAFJACUkAKSAEpUBAF/g8jZSZkAL2zpAAAAABJRU5ErkJggg==", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] }, - "y": { - "axis": { - "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", - "orient": "right", - "title": "Probability" - }, - "field": "sum", - "scale": { - "zero": false - }, - "type": "quantitative" - } - }, - "mark": { - "color": "black", - "strokeWidth": 2, - "type": "rule", - "x2Offset": 30, - "xOffset": -30 - } + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" } - ], - "params": [ + ], + "source": [ + "linker.visualisations.match_weights_chart()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e9b076af-b956-4e85-abfa-5c45d92a3cac", + "metadata": {}, + "outputs": [ { - "bind": { - "input": "range", - "max": 4, - "min": 0, - "step": 1 - }, - "description": "Filter by the interation number", - "name": "record_number", - "value": 0 - } - ], - "resolve": { - "axis": { - "y": "independent" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", + "config": { + "view": { + "continuousHeight": 300, + "continuousWidth": 400 + } + }, + "data": { + "values": [ + { + "cum_prop": 0.044465973348096204, + "match_probability": 0.99988, + "match_weight": 13.08, + "prop": 0.0006920004745146111 + }, + { + "cum_prop": 0.045513859780932614, + "match_probability": 0.99989, + "match_weight": 13.22, + "prop": 0.001047886432836411 + }, + { + "cum_prop": 0.0464233461188661, + "match_probability": 0.9999, + "match_weight": 13.36, + "prop": 0.0009094863379334888 + }, + { + "cum_prop": 0.04790620427854027, + "match_probability": 0.99991, + "match_weight": 13.52, + "prop": 0.0014828581596741666 + }, + { + "cum_prop": 0.049369290996085446, + "match_probability": 0.99992, + "match_weight": 13.7, + "prop": 0.0014630867175451777 + }, + { + "cum_prop": 0.05108940646130748, + "match_probability": 0.99993, + "match_weight": 13.91, + "prop": 0.0017201154652220333 + }, + { + "cum_prop": 0.05304677923207738, + "match_probability": 0.99994, + "match_weight": 14.15, + "prop": 0.0019573727707699 + }, + { + "cum_prop": 0.05557752382458796, + "match_probability": 0.99995, + "match_weight": 14.44, + "prop": 0.0025307445925105776 + }, + { + "cum_prop": 0.05864209735458124, + "match_probability": 0.99996, + "match_weight": 14.8, + "prop": 0.0030645735299932777 + }, + { + "cum_prop": 0.06285341452805587, + "match_probability": 0.99997, + "match_weight": 15.29, + "prop": 0.004211317173474633 + }, + { + "cum_prop": 0.07068290561113547, + "match_probability": 0.99998, + "match_weight": 16.02, + "prop": 0.0078294910830796 + }, + { + "cum_prop": 0.08849697496935445, + "match_probability": 0.99999, + "match_weight": 17.61, + "prop": 0.017814069358218988 + }, + { + "cum_prop": 0.000039542884257977775, + "match_probability": 0.00014, + "match_weight": -12.85, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.00009885721064494443, + "match_probability": 0.00138, + "match_weight": -9.5, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.00011862865277393331, + "match_probability": 0.00289, + "match_weight": -8.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0001384000949029222, + "match_probability": 0.00299, + "match_weight": -8.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00015817153703191107, + "match_probability": 0.00427, + "match_weight": -7.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00017794297916089996, + "match_probability": 0.00468, + "match_weight": -7.73, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00019771442128988884, + "match_probability": 0.00576, + "match_weight": -7.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00021748586341887772, + "match_probability": 0.00736, + "match_weight": -7.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0002372573055478666, + "match_probability": 0.00755, + "match_weight": -7.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0002768001898058444, + "match_probability": 0.0081, + "match_weight": -6.94, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.00029657163193483327, + "match_probability": 0.01017, + "match_weight": -6.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00031634307406382215, + "match_probability": 0.01075, + "match_weight": -6.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00033611451619281103, + "match_probability": 0.01252, + "match_weight": -6.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0003558859583217999, + "match_probability": 0.01304, + "match_weight": -6.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0003756574004507888, + "match_probability": 0.01345, + "match_weight": -6.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0003954288425797777, + "match_probability": 0.01899, + "match_weight": -5.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00041520028470876655, + "match_probability": 0.02144, + "match_weight": -5.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00043497172683775544, + "match_probability": 0.02372, + "match_weight": -5.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0004547431689667443, + "match_probability": 0.0249, + "match_weight": -5.29, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0004745146110957332, + "match_probability": 0.02731, + "match_weight": -5.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0004942860532247221, + "match_probability": 0.02899, + "match_weight": -5.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0005536003796116888, + "match_probability": 0.03062, + "match_weight": -4.98, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.0005733718217406777, + "match_probability": 0.03191, + "match_weight": -4.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0005931432638696666, + "match_probability": 0.03218, + "match_weight": -4.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0006129147059986556, + "match_probability": 0.03653, + "match_weight": -4.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0006326861481276445, + "match_probability": 0.03661, + "match_weight": -4.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0006722290323856223, + "match_probability": 0.03799, + "match_weight": -4.66, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0006920004745146112, + "match_probability": 0.03958, + "match_weight": -4.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0007117719166436001, + "match_probability": 0.04044, + "match_weight": -4.57, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0007315433587725891, + "match_probability": 0.04419, + "match_weight": -4.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.000751314800901578, + "match_probability": 0.04776, + "match_weight": -4.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0007908576851595558, + "match_probability": 0.05002, + "match_weight": -4.25, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0008106291272885447, + "match_probability": 0.05328, + "match_weight": -4.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0008304005694175337, + "match_probability": 0.05332, + "match_weight": -4.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0008501720115465226, + "match_probability": 0.06221, + "match_weight": -3.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0008699434536755115, + "match_probability": 0.06485, + "match_weight": -3.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0008897148958045005, + "match_probability": 0.06675, + "match_weight": -3.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0009094863379334894, + "match_probability": 0.06686, + "match_weight": -3.8, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0009292577800624783, + "match_probability": 0.07164, + "match_weight": -3.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0009490292221914673, + "match_probability": 0.0732, + "match_weight": -3.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0009688006643204562, + "match_probability": 0.07654, + "match_weight": -3.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001008343548578434, + "match_probability": 0.08657, + "match_weight": -3.4, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.001028114990707423, + "match_probability": 0.09094, + "match_weight": -3.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0010478864328364117, + "match_probability": 0.097, + "match_weight": -3.22, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0010676578749654005, + "match_probability": 0.09885, + "match_weight": -3.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0010874293170943894, + "match_probability": 0.11022, + "match_weight": -3.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0011072007592233782, + "match_probability": 0.11388, + "match_weight": -2.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001146743643481356, + "match_probability": 0.11561, + "match_weight": -2.94, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.001166515085610345, + "match_probability": 0.13167, + "match_weight": -2.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0011862865277393337, + "match_probability": 0.13926, + "match_weight": -2.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0012258294119973116, + "match_probability": 0.14956, + "match_weight": -2.51, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0012456008541263004, + "match_probability": 0.15963, + "match_weight": -2.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0012653722962552892, + "match_probability": 0.16667, + "match_weight": -2.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001285143738384278, + "match_probability": 0.20132, + "match_weight": -1.99, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0013444580647712448, + "match_probability": 0.20174, + "match_weight": -1.98, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.0013642295069002336, + "match_probability": 0.21995, + "match_weight": -1.83, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0014037723911582115, + "match_probability": 0.22577, + "match_weight": -1.78, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0014433152754161893, + "match_probability": 0.22849, + "match_weight": -1.76, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0014630867175451782, + "match_probability": 0.24007, + "match_weight": -1.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001482858159674167, + "match_probability": 0.2584, + "match_weight": -1.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0015026296018031558, + "match_probability": 0.26376, + "match_weight": -1.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0015224010439321446, + "match_probability": 0.29225, + "match_weight": -1.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0015421724860611335, + "match_probability": 0.29476, + "match_weight": -1.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0015619439281901223, + "match_probability": 0.29638, + "match_weight": -1.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0015817153703191111, + "match_probability": 0.29739, + "match_weight": -1.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0016014868124481, + "match_probability": 0.30885, + "match_weight": -1.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0016212582545770888, + "match_probability": 0.31241, + "match_weight": -1.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0016410296967060776, + "match_probability": 0.32152, + "match_weight": -1.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0016608011388350664, + "match_probability": 0.33986, + "match_weight": -0.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0016805725809640553, + "match_probability": 0.34871, + "match_weight": -0.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001700344023093044, + "match_probability": 0.35131, + "match_weight": -0.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001720115465222033, + "match_probability": 0.35322, + "match_weight": -0.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0017398869073510217, + "match_probability": 0.35609, + "match_weight": -0.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0017596583494800106, + "match_probability": 0.3618, + "match_weight": -0.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0017794297916089994, + "match_probability": 0.3732, + "match_weight": -0.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0017992012337379882, + "match_probability": 0.37942, + "match_weight": -0.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001818972675866977, + "match_probability": 0.38254, + "match_weight": -0.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0018387441179959659, + "match_probability": 0.38719, + "match_weight": -0.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0018585155601249547, + "match_probability": 0.39491, + "match_weight": -0.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0018782870022539435, + "match_probability": 0.39585, + "match_weight": -0.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0018980584443829324, + "match_probability": 0.40582, + "match_weight": -0.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0019178298865119212, + "match_probability": 0.41491, + "match_weight": -0.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00193760132864091, + "match_probability": 0.42367, + "match_weight": -0.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001957372770769899, + "match_probability": 0.43094, + "match_weight": -0.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.001977144212898888, + "match_probability": 0.4477, + "match_weight": -0.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0019969156550278767, + "match_probability": 0.45241, + "match_weight": -0.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0020166870971568655, + "match_probability": 0.45261, + "match_weight": -0.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0020364585392858544, + "match_probability": 0.46716, + "match_weight": -0.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002056229981414843, + "match_probability": 0.47114, + "match_weight": -0.17, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002076001423543832, + "match_probability": 0.4762, + "match_weight": -0.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002095772865672821, + "match_probability": 0.47977, + "match_weight": -0.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0021155443078018097, + "match_probability": 0.48659, + "match_weight": -0.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0021353157499307985, + "match_probability": 0.4927, + "match_weight": -0.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0021550871920597873, + "match_probability": 0.50485, + "match_weight": 0.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002174858634188776, + "match_probability": 0.50816, + "match_weight": 0.05, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002194630076317765, + "match_probability": 0.52312, + "match_weight": 0.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002214401518446754, + "match_probability": 0.54292, + "match_weight": 0.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0022341729605757426, + "match_probability": 0.54317, + "match_weight": 0.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0022539444027047315, + "match_probability": 0.55731, + "match_weight": 0.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002313258729091698, + "match_probability": 0.55824, + "match_weight": 0.34, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.0023330301712206868, + "match_probability": 0.56114, + "match_weight": 0.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0023528016133496756, + "match_probability": 0.58298, + "match_weight": 0.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0023923444976076532, + "match_probability": 0.59084, + "match_weight": 0.53, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.002412115939736642, + "match_probability": 0.59318, + "match_weight": 0.54, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002431887381865631, + "match_probability": 0.6, + "match_weight": 0.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0024516588239946197, + "match_probability": 0.60702, + "match_weight": 0.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0024714302661236085, + "match_probability": 0.60788, + "match_weight": 0.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0024912017082525974, + "match_probability": 0.61225, + "match_weight": 0.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002510973150381586, + "match_probability": 0.61797, + "match_weight": 0.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002530744592510575, + "match_probability": 0.62072, + "match_weight": 0.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002550516034639564, + "match_probability": 0.62199, + "match_weight": 0.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0025702874767685527, + "match_probability": 0.62573, + "match_weight": 0.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0025900589188975415, + "match_probability": 0.63318, + "match_weight": 0.79, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002629601803155519, + "match_probability": 0.64007, + "match_weight": 0.83, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.002649373245284508, + "match_probability": 0.64653, + "match_weight": 0.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0029261734350903524, + "match_probability": 0.65464, + "match_weight": 0.92, + "prop": 0.00027680018980584444 + }, + { + "cum_prop": 0.0029459448772193413, + "match_probability": 0.65954, + "match_weight": 0.95, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00296571631934833, + "match_probability": 0.66939, + "match_weight": 1.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.002985487761477319, + "match_probability": 0.67887, + "match_weight": 1.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0030052592036063077, + "match_probability": 0.67945, + "match_weight": 1.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0030250306457352966, + "match_probability": 0.68099, + "match_weight": 1.09, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0030448020878642854, + "match_probability": 0.68445, + "match_weight": 1.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003084344972122263, + "match_probability": 0.68527, + "match_weight": 1.12, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.003104116414251252, + "match_probability": 0.68561, + "match_weight": 1.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0031238878563802407, + "match_probability": 0.69065, + "match_weight": 1.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0031436592985092295, + "match_probability": 0.69213, + "match_weight": 1.17, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0031634307406382184, + "match_probability": 0.69612, + "match_weight": 1.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003183202182767207, + "match_probability": 0.7016, + "match_weight": 1.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003202973624896196, + "match_probability": 0.70173, + "match_weight": 1.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003222745067025185, + "match_probability": 0.70567, + "match_weight": 1.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0032425165091541737, + "match_probability": 0.70696, + "match_weight": 1.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0032622879512831625, + "match_probability": 0.70932, + "match_weight": 1.29, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0032820593934121513, + "match_probability": 0.70989, + "match_weight": 1.29, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00330183083554114, + "match_probability": 0.72092, + "match_weight": 1.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003321602277670129, + "match_probability": 0.72923, + "match_weight": 1.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003341373719799118, + "match_probability": 0.73507, + "match_weight": 1.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0033611451619281066, + "match_probability": 0.73659, + "match_weight": 1.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0033809166040570954, + "match_probability": 0.73869, + "match_weight": 1.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0034006880461860843, + "match_probability": 0.73939, + "match_weight": 1.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003420459488315073, + "match_probability": 0.74069, + "match_weight": 1.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003440230930444062, + "match_probability": 0.74147, + "match_weight": 1.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0034600023725730508, + "match_probability": 0.74214, + "match_weight": 1.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0034797738147020396, + "match_probability": 0.74235, + "match_weight": 1.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0034995452568310284, + "match_probability": 0.74281, + "match_weight": 1.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0035193166989600172, + "match_probability": 0.74584, + "match_weight": 1.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003539088141089006, + "match_probability": 0.74876, + "match_weight": 1.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003558859583217995, + "match_probability": 0.74983, + "match_weight": 1.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0035984024674759725, + "match_probability": 0.75027, + "match_weight": 1.59, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0036181739096049614, + "match_probability": 0.75162, + "match_weight": 1.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00363794535173395, + "match_probability": 0.75371, + "match_weight": 1.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003677488235991928, + "match_probability": 0.75716, + "match_weight": 1.64, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0036972596781209167, + "match_probability": 0.75822, + "match_weight": 1.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0037170311202499055, + "match_probability": 0.7591, + "match_weight": 1.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0037368025623788943, + "match_probability": 0.76512, + "match_weight": 1.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003756574004507883, + "match_probability": 0.77503, + "match_weight": 1.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003776345446636872, + "match_probability": 0.77712, + "match_weight": 1.8, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003796116888765861, + "match_probability": 0.77885, + "match_weight": 1.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0038158883308948496, + "match_probability": 0.78515, + "match_weight": 1.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0038356597730238385, + "match_probability": 0.78533, + "match_weight": 1.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0038554312151528273, + "match_probability": 0.7859, + "match_weight": 1.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003875202657281816, + "match_probability": 0.7891, + "match_weight": 1.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003894974099410805, + "match_probability": 0.78988, + "match_weight": 1.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.003934516983668783, + "match_probability": 0.79065, + "match_weight": 1.92, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0046067460160544044, + "match_probability": 0.79127, + "match_weight": 1.92, + "prop": 0.0006722290323856222 + }, + { + "cum_prop": 0.004626517458183393, + "match_probability": 0.79143, + "match_weight": 1.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004646288900312382, + "match_probability": 0.79435, + "match_weight": 1.95, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004666060342441371, + "match_probability": 0.80054, + "match_weight": 2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00468583178457036, + "match_probability": 0.80297, + "match_weight": 2.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004705603226699349, + "match_probability": 0.80359, + "match_weight": 2.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004725374668828337, + "match_probability": 0.8049, + "match_weight": 2.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004764917553086315, + "match_probability": 0.80873, + "match_weight": 2.08, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.004784688995215304, + "match_probability": 0.80972, + "match_weight": 2.09, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004804460437344293, + "match_probability": 0.81227, + "match_weight": 2.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0048242318794732815, + "match_probability": 0.8137, + "match_weight": 2.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00484400332160227, + "match_probability": 0.81873, + "match_weight": 2.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004863774763731259, + "match_probability": 0.82443, + "match_weight": 2.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004883546205860248, + "match_probability": 0.82464, + "match_weight": 2.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004903317647989237, + "match_probability": 0.83118, + "match_weight": 2.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004923089090118226, + "match_probability": 0.83157, + "match_weight": 2.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0049428605322472145, + "match_probability": 0.83649, + "match_weight": 2.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004962631974376203, + "match_probability": 0.83966, + "match_weight": 2.39, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.004982403416505192, + "match_probability": 0.83979, + "match_weight": 2.39, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005002174858634181, + "match_probability": 0.84311, + "match_weight": 2.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00502194630076317, + "match_probability": 0.84363, + "match_weight": 2.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005041717742892159, + "match_probability": 0.84466, + "match_weight": 2.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0050614891850211475, + "match_probability": 0.84597, + "match_weight": 2.46, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005081260627150136, + "match_probability": 0.84627, + "match_weight": 2.46, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005101032069279125, + "match_probability": 0.84709, + "match_weight": 2.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005120803511408114, + "match_probability": 0.84721, + "match_weight": 2.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005140574953537103, + "match_probability": 0.85097, + "match_weight": 2.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005160346395666092, + "match_probability": 0.85419, + "match_weight": 2.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00518011783779508, + "match_probability": 0.85558, + "match_weight": 2.57, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005199889279924069, + "match_probability": 0.85816, + "match_weight": 2.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005219660722053058, + "match_probability": 0.85956, + "match_weight": 2.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005239432164182047, + "match_probability": 0.85989, + "match_weight": 2.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005259203606311036, + "match_probability": 0.8618, + "match_weight": 2.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0052789750484400245, + "match_probability": 0.86199, + "match_weight": 2.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005298746490569013, + "match_probability": 0.86278, + "match_weight": 2.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005318517932698002, + "match_probability": 0.86409, + "match_weight": 2.67, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005338289374826991, + "match_probability": 0.86522, + "match_weight": 2.68, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00535806081695598, + "match_probability": 0.86646, + "match_weight": 2.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005377832259084969, + "match_probability": 0.86776, + "match_weight": 2.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0053976037012139575, + "match_probability": 0.86989, + "match_weight": 2.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005417375143342946, + "match_probability": 0.87035, + "match_weight": 2.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005437146585471935, + "match_probability": 0.87067, + "match_weight": 2.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005456918027600924, + "match_probability": 0.87221, + "match_weight": 2.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005476689469729913, + "match_probability": 0.87772, + "match_weight": 2.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005496460911858902, + "match_probability": 0.8782, + "match_weight": 2.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0055162323539878905, + "match_probability": 0.87898, + "match_weight": 2.86, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005536003796116879, + "match_probability": 0.87964, + "match_weight": 2.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005555775238245868, + "match_probability": 0.8805, + "match_weight": 2.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005575546680374857, + "match_probability": 0.88124, + "match_weight": 2.89, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005595318122503846, + "match_probability": 0.88201, + "match_weight": 2.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005615089564632835, + "match_probability": 0.88271, + "match_weight": 2.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005634861006761823, + "match_probability": 0.88302, + "match_weight": 2.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005654632448890812, + "match_probability": 0.88768, + "match_weight": 2.98, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00569417533314879, + "match_probability": 0.88911, + "match_weight": 3, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.005713946775277779, + "match_probability": 0.88922, + "match_weight": 3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0057337182174067676, + "match_probability": 0.89042, + "match_weight": 3.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005753489659535756, + "match_probability": 0.89194, + "match_weight": 3.05, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005773261101664745, + "match_probability": 0.89247, + "match_weight": 3.05, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005793032543793734, + "match_probability": 0.89352, + "match_weight": 3.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005812803985922723, + "match_probability": 0.89534, + "match_weight": 3.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005832575428051712, + "match_probability": 0.8955, + "match_weight": 3.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0058523468701807005, + "match_probability": 0.89596, + "match_weight": 3.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005872118312309689, + "match_probability": 0.89764, + "match_weight": 3.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005891889754438678, + "match_probability": 0.89852, + "match_weight": 3.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005911661196567667, + "match_probability": 0.9006, + "match_weight": 3.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005931432638696656, + "match_probability": 0.90137, + "match_weight": 3.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005951204080825645, + "match_probability": 0.90162, + "match_weight": 3.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0059709755229546335, + "match_probability": 0.90296, + "match_weight": 3.22, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.005990746965083622, + "match_probability": 0.90409, + "match_weight": 3.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006010518407212611, + "match_probability": 0.90593, + "match_weight": 3.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0060302898493416, + "match_probability": 0.90663, + "match_weight": 3.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006050061291470589, + "match_probability": 0.90768, + "match_weight": 3.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006069832733599578, + "match_probability": 0.90861, + "match_weight": 3.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0060896041757285664, + "match_probability": 0.90862, + "match_weight": 3.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006109375617857555, + "match_probability": 0.90882, + "match_weight": 3.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006129147059986544, + "match_probability": 0.91009, + "match_weight": 3.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006148918502115533, + "match_probability": 0.91017, + "match_weight": 3.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006168689944244522, + "match_probability": 0.91055, + "match_weight": 3.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006188461386373511, + "match_probability": 0.91057, + "match_weight": 3.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006208232828502499, + "match_probability": 0.91075, + "match_weight": 3.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006228004270631488, + "match_probability": 0.91253, + "match_weight": 3.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006247775712760477, + "match_probability": 0.91255, + "match_weight": 3.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006267547154889466, + "match_probability": 0.91267, + "match_weight": 3.39, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006287318597018455, + "match_probability": 0.91319, + "match_weight": 3.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0063070900391474435, + "match_probability": 0.91426, + "match_weight": 3.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006326861481276432, + "match_probability": 0.91466, + "match_weight": 3.42, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006346632923405421, + "match_probability": 0.91537, + "match_weight": 3.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00636640436553441, + "match_probability": 0.91548, + "match_weight": 3.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006386175807663399, + "match_probability": 0.91582, + "match_weight": 3.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006405947249792388, + "match_probability": 0.91672, + "match_weight": 3.46, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0064257186919213765, + "match_probability": 0.91863, + "match_weight": 3.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006445490134050365, + "match_probability": 0.92036, + "match_weight": 3.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006465261576179354, + "match_probability": 0.92038, + "match_weight": 3.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006485033018308343, + "match_probability": 0.92043, + "match_weight": 3.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006504804460437332, + "match_probability": 0.92072, + "match_weight": 3.54, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006524575902566321, + "match_probability": 0.92273, + "match_weight": 3.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0065443473446953095, + "match_probability": 0.92286, + "match_weight": 3.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006564118786824298, + "match_probability": 0.92329, + "match_weight": 3.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006583890228953287, + "match_probability": 0.92341, + "match_weight": 3.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006603661671082276, + "match_probability": 0.92417, + "match_weight": 3.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006623433113211265, + "match_probability": 0.92448, + "match_weight": 3.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006643204555340254, + "match_probability": 0.92467, + "match_weight": 3.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006662975997469242, + "match_probability": 0.92468, + "match_weight": 3.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006682747439598231, + "match_probability": 0.92558, + "match_weight": 3.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00670251888172722, + "match_probability": 0.92577, + "match_weight": 3.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006722290323856209, + "match_probability": 0.9264, + "match_weight": 3.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006742061765985198, + "match_probability": 0.92772, + "match_weight": 3.68, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0067618332081141866, + "match_probability": 0.92883, + "match_weight": 3.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006781604650243175, + "match_probability": 0.9289, + "match_weight": 3.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006801376092372164, + "match_probability": 0.92978, + "match_weight": 3.73, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006821147534501153, + "match_probability": 0.93075, + "match_weight": 3.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006840918976630142, + "match_probability": 0.93146, + "match_weight": 3.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006860690418759131, + "match_probability": 0.93189, + "match_weight": 3.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0068804618608881195, + "match_probability": 0.93234, + "match_weight": 3.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006900233303017108, + "match_probability": 0.9333, + "match_weight": 3.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006920004745146097, + "match_probability": 0.93372, + "match_weight": 3.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006939776187275086, + "match_probability": 0.93396, + "match_weight": 3.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006959547629404075, + "match_probability": 0.93504, + "match_weight": 3.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.006979319071533064, + "match_probability": 0.93594, + "match_weight": 3.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0069990905136620525, + "match_probability": 0.93607, + "match_weight": 3.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007018861955791041, + "match_probability": 0.93675, + "match_weight": 3.89, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00703863339792003, + "match_probability": 0.93743, + "match_weight": 3.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007058404840049019, + "match_probability": 0.93777, + "match_weight": 3.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007078176282178008, + "match_probability": 0.93824, + "match_weight": 3.93, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0071177191664359854, + "match_probability": 0.94016, + "match_weight": 3.97, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.007137490608564974, + "match_probability": 0.9413, + "match_weight": 4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007157262050693963, + "match_probability": 0.94144, + "match_weight": 4.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007177033492822952, + "match_probability": 0.9416, + "match_weight": 4.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00721657637708093, + "match_probability": 0.9424, + "match_weight": 4.03, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.007236347819209918, + "match_probability": 0.94242, + "match_weight": 4.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007256119261338907, + "match_probability": 0.94328, + "match_weight": 4.06, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007275890703467896, + "match_probability": 0.94369, + "match_weight": 4.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007295662145596885, + "match_probability": 0.94377, + "match_weight": 4.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007315433587725874, + "match_probability": 0.9439, + "match_weight": 4.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007354976471983851, + "match_probability": 0.94563, + "match_weight": 4.12, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.00737474791411284, + "match_probability": 0.94565, + "match_weight": 4.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007394519356241829, + "match_probability": 0.94732, + "match_weight": 4.17, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007414290798370818, + "match_probability": 0.94755, + "match_weight": 4.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007434062240499807, + "match_probability": 0.94798, + "match_weight": 4.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0074538336826287955, + "match_probability": 0.94799, + "match_weight": 4.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007473605124757784, + "match_probability": 0.94811, + "match_weight": 4.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007493376566886773, + "match_probability": 0.94831, + "match_weight": 4.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007513148009015762, + "match_probability": 0.94833, + "match_weight": 4.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007532919451144751, + "match_probability": 0.9484, + "match_weight": 4.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00755269089327374, + "match_probability": 0.94856, + "match_weight": 4.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007592233777531717, + "match_probability": 0.94963, + "match_weight": 4.24, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.007612005219660706, + "match_probability": 0.94968, + "match_weight": 4.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007631776661789695, + "match_probability": 0.94993, + "match_weight": 4.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007671319546047673, + "match_probability": 0.95005, + "match_weight": 4.25, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.007691090988176661, + "match_probability": 0.9504, + "match_weight": 4.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00771086243030565, + "match_probability": 0.95075, + "match_weight": 4.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007730633872434639, + "match_probability": 0.95097, + "match_weight": 4.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007750405314563628, + "match_probability": 0.95155, + "match_weight": 4.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007770176756692617, + "match_probability": 0.9529, + "match_weight": 4.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0077899481988216055, + "match_probability": 0.953, + "match_weight": 4.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007809719640950594, + "match_probability": 0.9535, + "match_weight": 4.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007829491083079584, + "match_probability": 0.95376, + "match_weight": 4.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007849262525208574, + "match_probability": 0.95464, + "match_weight": 4.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007869033967337563, + "match_probability": 0.95468, + "match_weight": 4.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007888805409466553, + "match_probability": 0.95489, + "match_weight": 4.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007908576851595543, + "match_probability": 0.95615, + "match_weight": 4.45, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007928348293724533, + "match_probability": 0.95628, + "match_weight": 4.45, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007948119735853522, + "match_probability": 0.95695, + "match_weight": 4.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.007967891177982512, + "match_probability": 0.95709, + "match_weight": 4.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00800743406224049, + "match_probability": 0.95717, + "match_weight": 4.48, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.00802720550436948, + "match_probability": 0.95754, + "match_weight": 4.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008046976946498469, + "match_probability": 0.9583, + "match_weight": 4.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008066748388627459, + "match_probability": 0.95894, + "match_weight": 4.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008086519830756448, + "match_probability": 0.95978, + "match_weight": 4.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008106291272885438, + "match_probability": 0.95981, + "match_weight": 4.58, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008126062715014428, + "match_probability": 0.96005, + "match_weight": 4.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008145834157143417, + "match_probability": 0.96008, + "match_weight": 4.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008165605599272407, + "match_probability": 0.96036, + "match_weight": 4.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008205148483530385, + "match_probability": 0.9606, + "match_weight": 4.61, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.008224919925659374, + "match_probability": 0.9607, + "match_weight": 4.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008244691367788364, + "match_probability": 0.96107, + "match_weight": 4.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008264462809917354, + "match_probability": 0.96146, + "match_weight": 4.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008284234252046344, + "match_probability": 0.96162, + "match_weight": 4.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008304005694175333, + "match_probability": 0.96179, + "match_weight": 4.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008323777136304323, + "match_probability": 0.96207, + "match_weight": 4.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008343548578433313, + "match_probability": 0.96238, + "match_weight": 4.68, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008363320020562302, + "match_probability": 0.96272, + "match_weight": 4.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008383091462691292, + "match_probability": 0.96289, + "match_weight": 4.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008402862904820282, + "match_probability": 0.96299, + "match_weight": 4.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008422634346949271, + "match_probability": 0.96321, + "match_weight": 4.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008442405789078261, + "match_probability": 0.96341, + "match_weight": 4.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008481948673336239, + "match_probability": 0.96385, + "match_weight": 4.74, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.008501720115465228, + "match_probability": 0.96439, + "match_weight": 4.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008521491557594218, + "match_probability": 0.96447, + "match_weight": 4.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008541262999723208, + "match_probability": 0.96492, + "match_weight": 4.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008561034441852198, + "match_probability": 0.96519, + "match_weight": 4.79, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008580805883981187, + "match_probability": 0.9654, + "match_weight": 4.8, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008600577326110177, + "match_probability": 0.96554, + "match_weight": 4.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008620348768239167, + "match_probability": 0.96559, + "match_weight": 4.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008640120210368156, + "match_probability": 0.96566, + "match_weight": 4.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008659891652497146, + "match_probability": 0.96572, + "match_weight": 4.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008679663094626136, + "match_probability": 0.96578, + "match_weight": 4.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008699434536755125, + "match_probability": 0.96615, + "match_weight": 4.83, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008719205978884115, + "match_probability": 0.96653, + "match_weight": 4.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008738977421013105, + "match_probability": 0.96726, + "match_weight": 4.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008778520305271082, + "match_probability": 0.96747, + "match_weight": 4.89, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.008798291747400072, + "match_probability": 0.96777, + "match_weight": 4.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008818063189529062, + "match_probability": 0.96784, + "match_weight": 4.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008837834631658052, + "match_probability": 0.96789, + "match_weight": 4.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00887737751591603, + "match_probability": 0.96822, + "match_weight": 4.93, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.008897148958045019, + "match_probability": 0.96858, + "match_weight": 4.95, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008916920400174009, + "match_probability": 0.96897, + "match_weight": 4.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008936691842302998, + "match_probability": 0.96898, + "match_weight": 4.97, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008956463284431988, + "match_probability": 0.96918, + "match_weight": 4.97, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008976234726560978, + "match_probability": 0.9697, + "match_weight": 5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.008996006168689967, + "match_probability": 0.96971, + "match_weight": 5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009015777610818957, + "match_probability": 0.96974, + "match_weight": 5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009035549052947947, + "match_probability": 0.96987, + "match_weight": 5.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009055320495076936, + "match_probability": 0.97015, + "match_weight": 5.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009075091937205926, + "match_probability": 0.97023, + "match_weight": 5.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009114634821463904, + "match_probability": 0.97025, + "match_weight": 5.03, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.009134406263592893, + "match_probability": 0.97035, + "match_weight": 5.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009154177705721883, + "match_probability": 0.97112, + "match_weight": 5.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009173949147850873, + "match_probability": 0.97156, + "match_weight": 5.09, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009193720589979863, + "match_probability": 0.97193, + "match_weight": 5.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009213492032108852, + "match_probability": 0.97204, + "match_weight": 5.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009233263474237842, + "match_probability": 0.97228, + "match_weight": 5.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00927280635849582, + "match_probability": 0.9723, + "match_weight": 5.13, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.00929257780062481, + "match_probability": 0.97241, + "match_weight": 5.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009312349242753799, + "match_probability": 0.97287, + "match_weight": 5.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009391435011269754, + "match_probability": 0.97307, + "match_weight": 5.18, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.009411206453398744, + "match_probability": 0.9733, + "match_weight": 5.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009430977895527734, + "match_probability": 0.97346, + "match_weight": 5.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009450749337656723, + "match_probability": 0.97348, + "match_weight": 5.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009470520779785713, + "match_probability": 0.97417, + "match_weight": 5.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009490292221914703, + "match_probability": 0.97453, + "match_weight": 5.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009510063664043692, + "match_probability": 0.97455, + "match_weight": 5.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009529835106172682, + "match_probability": 0.97462, + "match_weight": 5.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009549606548301672, + "match_probability": 0.97475, + "match_weight": 5.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009569377990430662, + "match_probability": 0.97539, + "match_weight": 5.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009589149432559651, + "match_probability": 0.97547, + "match_weight": 5.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009608920874688641, + "match_probability": 0.97551, + "match_weight": 5.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00962869231681763, + "match_probability": 0.97568, + "match_weight": 5.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00964846375894662, + "match_probability": 0.9764, + "match_weight": 5.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.00966823520107561, + "match_probability": 0.97656, + "match_weight": 5.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009707778085333588, + "match_probability": 0.9766, + "match_weight": 5.38, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.009727549527462577, + "match_probability": 0.97679, + "match_weight": 5.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009767092411720555, + "match_probability": 0.97681, + "match_weight": 5.4, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.009786863853849545, + "match_probability": 0.97686, + "match_weight": 5.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009806635295978534, + "match_probability": 0.97703, + "match_weight": 5.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009826406738107524, + "match_probability": 0.97738, + "match_weight": 5.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009846178180236514, + "match_probability": 0.97741, + "match_weight": 5.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009865949622365503, + "match_probability": 0.97744, + "match_weight": 5.44, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009885721064494493, + "match_probability": 0.97774, + "match_weight": 5.46, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009905492506623483, + "match_probability": 0.97793, + "match_weight": 5.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009925263948752473, + "match_probability": 0.97799, + "match_weight": 5.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009945035390881462, + "match_probability": 0.97807, + "match_weight": 5.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009964806833010452, + "match_probability": 0.97813, + "match_weight": 5.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.009984578275139442, + "match_probability": 0.97816, + "match_weight": 5.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010004349717268431, + "match_probability": 0.97818, + "match_weight": 5.49, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010043892601526409, + "match_probability": 0.9782, + "match_weight": 5.49, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.010063664043655399, + "match_probability": 0.97827, + "match_weight": 5.49, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010083435485784388, + "match_probability": 0.97853, + "match_weight": 5.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010103206927913378, + "match_probability": 0.97867, + "match_weight": 5.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010122978370042368, + "match_probability": 0.97869, + "match_weight": 5.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010142749812171357, + "match_probability": 0.97877, + "match_weight": 5.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010162521254300347, + "match_probability": 0.97908, + "match_weight": 5.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010182292696429337, + "match_probability": 0.97933, + "match_weight": 5.57, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010202064138558327, + "match_probability": 0.97963, + "match_weight": 5.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010221835580687316, + "match_probability": 0.9798, + "match_weight": 5.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010241607022816306, + "match_probability": 0.97984, + "match_weight": 5.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010261378464945296, + "match_probability": 0.9799, + "match_weight": 5.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010300921349203273, + "match_probability": 0.98004, + "match_weight": 5.62, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.010320692791332263, + "match_probability": 0.98009, + "match_weight": 5.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010340464233461253, + "match_probability": 0.98023, + "match_weight": 5.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010498635770493163, + "match_probability": 0.98035, + "match_weight": 5.64, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.010518407212622153, + "match_probability": 0.98045, + "match_weight": 5.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010538178654751143, + "match_probability": 0.98049, + "match_weight": 5.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010557950096880132, + "match_probability": 0.98067, + "match_weight": 5.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010577721539009122, + "match_probability": 0.98076, + "match_weight": 5.67, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0106172644232671, + "match_probability": 0.98082, + "match_weight": 5.68, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01063703586539609, + "match_probability": 0.98113, + "match_weight": 5.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010656807307525079, + "match_probability": 0.98116, + "match_weight": 5.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010676578749654069, + "match_probability": 0.98119, + "match_weight": 5.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010696350191783058, + "match_probability": 0.9813, + "match_weight": 5.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010716121633912048, + "match_probability": 0.98137, + "match_weight": 5.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010735893076041038, + "match_probability": 0.98159, + "match_weight": 5.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010755664518170028, + "match_probability": 0.98165, + "match_weight": 5.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010775435960299017, + "match_probability": 0.98184, + "match_weight": 5.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010795207402428007, + "match_probability": 0.98214, + "match_weight": 5.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010814978844556997, + "match_probability": 0.98222, + "match_weight": 5.79, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010834750286685986, + "match_probability": 0.98267, + "match_weight": 5.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010854521728814976, + "match_probability": 0.98278, + "match_weight": 5.83, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010874293170943966, + "match_probability": 0.98279, + "match_weight": 5.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010894064613072955, + "match_probability": 0.98289, + "match_weight": 5.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010913836055201945, + "match_probability": 0.983, + "match_weight": 5.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010933607497330935, + "match_probability": 0.9831, + "match_weight": 5.86, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010953378939459925, + "match_probability": 0.98314, + "match_weight": 5.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010973150381588914, + "match_probability": 0.98317, + "match_weight": 5.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.010992921823717904, + "match_probability": 0.98331, + "match_weight": 5.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011012693265846894, + "match_probability": 0.98343, + "match_weight": 5.89, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011032464707975883, + "match_probability": 0.98351, + "match_weight": 5.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011052236150104873, + "match_probability": 0.98356, + "match_weight": 5.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011072007592233863, + "match_probability": 0.98366, + "match_weight": 5.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01111155047649184, + "match_probability": 0.98368, + "match_weight": 5.91, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01113132191862083, + "match_probability": 0.98373, + "match_weight": 5.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01115109336074982, + "match_probability": 0.98379, + "match_weight": 5.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01117086480287881, + "match_probability": 0.98383, + "match_weight": 5.93, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011190636245007799, + "match_probability": 0.98396, + "match_weight": 5.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011210407687136789, + "match_probability": 0.98397, + "match_weight": 5.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011230179129265778, + "match_probability": 0.98399, + "match_weight": 5.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011249950571394768, + "match_probability": 0.98408, + "match_weight": 5.95, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011269722013523758, + "match_probability": 0.98415, + "match_weight": 5.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011289493455652748, + "match_probability": 0.98416, + "match_weight": 5.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011309264897781737, + "match_probability": 0.98421, + "match_weight": 5.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011329036339910727, + "match_probability": 0.98424, + "match_weight": 5.97, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011368579224168705, + "match_probability": 0.98425, + "match_weight": 5.97, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.011388350666297694, + "match_probability": 0.98438, + "match_weight": 5.98, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011408122108426684, + "match_probability": 0.98442, + "match_weight": 5.98, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011427893550555674, + "match_probability": 0.98448, + "match_weight": 5.99, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011447664992684663, + "match_probability": 0.98462, + "match_weight": 6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011467436434813653, + "match_probability": 0.98476, + "match_weight": 6.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011487207876942643, + "match_probability": 0.98478, + "match_weight": 6.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011506979319071632, + "match_probability": 0.98485, + "match_weight": 6.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011526750761200622, + "match_probability": 0.98495, + "match_weight": 6.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0115662936454586, + "match_probability": 0.98498, + "match_weight": 6.04, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01158606508758759, + "match_probability": 0.98506, + "match_weight": 6.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01160583652971658, + "match_probability": 0.98511, + "match_weight": 6.05, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011645379413974557, + "match_probability": 0.98513, + "match_weight": 6.05, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.011665150856103547, + "match_probability": 0.98522, + "match_weight": 6.06, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011704693740361524, + "match_probability": 0.98533, + "match_weight": 6.07, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.011724465182490514, + "match_probability": 0.9854, + "match_weight": 6.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011744236624619504, + "match_probability": 0.98548, + "match_weight": 6.09, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011764008066748493, + "match_probability": 0.98558, + "match_weight": 6.09, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011783779508877483, + "match_probability": 0.98584, + "match_weight": 6.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011803550951006473, + "match_probability": 0.9859, + "match_weight": 6.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011823322393135462, + "match_probability": 0.98594, + "match_weight": 6.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011843093835264452, + "match_probability": 0.98597, + "match_weight": 6.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011862865277393442, + "match_probability": 0.98601, + "match_weight": 6.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011882636719522431, + "match_probability": 0.98618, + "match_weight": 6.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.011902408161651421, + "match_probability": 0.98619, + "match_weight": 6.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01192217960378041, + "match_probability": 0.98625, + "match_weight": 6.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0119419510459094, + "match_probability": 0.98634, + "match_weight": 6.17, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01196172248803839, + "match_probability": 0.98638, + "match_weight": 6.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01198149393016738, + "match_probability": 0.98647, + "match_weight": 6.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012021036814425358, + "match_probability": 0.98656, + "match_weight": 6.2, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.012040808256554347, + "match_probability": 0.98658, + "match_weight": 6.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012060579698683337, + "match_probability": 0.98673, + "match_weight": 6.22, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012080351140812327, + "match_probability": 0.98683, + "match_weight": 6.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012100122582941316, + "match_probability": 0.98691, + "match_weight": 6.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012119894025070306, + "match_probability": 0.98696, + "match_weight": 6.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012139665467199296, + "match_probability": 0.98697, + "match_weight": 6.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012159436909328285, + "match_probability": 0.98698, + "match_weight": 6.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012198979793586263, + "match_probability": 0.98714, + "match_weight": 6.26, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.012218751235715253, + "match_probability": 0.98719, + "match_weight": 6.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012238522677844242, + "match_probability": 0.9872, + "match_weight": 6.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012258294119973232, + "match_probability": 0.98738, + "match_weight": 6.29, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012278065562102222, + "match_probability": 0.98746, + "match_weight": 6.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012297837004231212, + "match_probability": 0.98752, + "match_weight": 6.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012317608446360201, + "match_probability": 0.98753, + "match_weight": 6.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012337379888489191, + "match_probability": 0.98754, + "match_weight": 6.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01235715133061818, + "match_probability": 0.98764, + "match_weight": 6.32, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01237692277274717, + "match_probability": 0.98774, + "match_weight": 6.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01239669421487616, + "match_probability": 0.98777, + "match_weight": 6.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01241646565700515, + "match_probability": 0.98787, + "match_weight": 6.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012456008541263127, + "match_probability": 0.98788, + "match_weight": 6.35, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.012475779983392117, + "match_probability": 0.98795, + "match_weight": 6.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012495551425521107, + "match_probability": 0.98796, + "match_weight": 6.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012515322867650096, + "match_probability": 0.98798, + "match_weight": 6.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012535094309779086, + "match_probability": 0.98809, + "match_weight": 6.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012574637194037064, + "match_probability": 0.98823, + "match_weight": 6.39, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.012594408636166054, + "match_probability": 0.98828, + "match_weight": 6.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012614180078295043, + "match_probability": 0.9883, + "match_weight": 6.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012633951520424033, + "match_probability": 0.98835, + "match_weight": 6.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012653722962553023, + "match_probability": 0.98841, + "match_weight": 6.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012673494404682012, + "match_probability": 0.98846, + "match_weight": 6.42, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012693265846811002, + "match_probability": 0.98853, + "match_weight": 6.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012713037288939992, + "match_probability": 0.98876, + "match_weight": 6.46, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01275258017319797, + "match_probability": 0.98881, + "match_weight": 6.47, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.012772351615326959, + "match_probability": 0.98883, + "match_weight": 6.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012792123057455949, + "match_probability": 0.98889, + "match_weight": 6.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012811894499584938, + "match_probability": 0.98891, + "match_weight": 6.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012831665941713928, + "match_probability": 0.98899, + "match_weight": 6.49, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012851437383842918, + "match_probability": 0.98904, + "match_weight": 6.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012871208825971907, + "match_probability": 0.98913, + "match_weight": 6.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012890980268100897, + "match_probability": 0.98915, + "match_weight": 6.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012910751710229887, + "match_probability": 0.98916, + "match_weight": 6.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012930523152358877, + "match_probability": 0.98919, + "match_weight": 6.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012950294594487866, + "match_probability": 0.9892, + "match_weight": 6.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012970066036616856, + "match_probability": 0.98921, + "match_weight": 6.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.012989837478745846, + "match_probability": 0.98923, + "match_weight": 6.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013009608920874835, + "match_probability": 0.98928, + "match_weight": 6.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013029380363003825, + "match_probability": 0.98942, + "match_weight": 6.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013049151805132815, + "match_probability": 0.98944, + "match_weight": 6.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013068923247261804, + "match_probability": 0.9895, + "match_weight": 6.56, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013088694689390794, + "match_probability": 0.98952, + "match_weight": 6.56, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013108466131519784, + "match_probability": 0.98954, + "match_weight": 6.56, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013128237573648774, + "match_probability": 0.9897, + "match_weight": 6.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01318755190003574, + "match_probability": 0.98974, + "match_weight": 6.59, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01320732334216473, + "match_probability": 0.98979, + "match_weight": 6.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01322709478429372, + "match_probability": 0.9898, + "match_weight": 6.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01324686622642271, + "match_probability": 0.98982, + "match_weight": 6.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0132666376685517, + "match_probability": 0.98984, + "match_weight": 6.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01328640911068069, + "match_probability": 0.98995, + "match_weight": 6.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013306180552809679, + "match_probability": 0.99001, + "match_weight": 6.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013345723437067657, + "match_probability": 0.99002, + "match_weight": 6.63, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.013405037763454624, + "match_probability": 0.99009, + "match_weight": 6.64, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.013444580647712602, + "match_probability": 0.9901, + "match_weight": 6.64, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.013464352089841591, + "match_probability": 0.99011, + "match_weight": 6.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013484123531970581, + "match_probability": 0.99013, + "match_weight": 6.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01350389497409957, + "match_probability": 0.99016, + "match_weight": 6.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01352366641622856, + "match_probability": 0.99017, + "match_weight": 6.65, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01354343785835755, + "match_probability": 0.99018, + "match_weight": 6.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013582980742615528, + "match_probability": 0.99036, + "match_weight": 6.68, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.013602752184744517, + "match_probability": 0.99047, + "match_weight": 6.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013622523626873507, + "match_probability": 0.99048, + "match_weight": 6.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013642295069002497, + "match_probability": 0.99057, + "match_weight": 6.71, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013701609395389464, + "match_probability": 0.99066, + "match_weight": 6.73, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.013721380837518454, + "match_probability": 0.99067, + "match_weight": 6.73, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013741152279647444, + "match_probability": 0.99075, + "match_weight": 6.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013780695163905421, + "match_probability": 0.99082, + "match_weight": 6.75, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.013800466606034411, + "match_probability": 0.99083, + "match_weight": 6.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0138202380481634, + "match_probability": 0.99087, + "match_weight": 6.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01384000949029239, + "match_probability": 0.9909, + "match_weight": 6.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01385978093242138, + "match_probability": 0.99092, + "match_weight": 6.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01387955237455037, + "match_probability": 0.99094, + "match_weight": 6.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01389932381667936, + "match_probability": 0.99098, + "match_weight": 6.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01391909525880835, + "match_probability": 0.99099, + "match_weight": 6.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.013958638143066327, + "match_probability": 0.99107, + "match_weight": 6.79, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.013998181027324304, + "match_probability": 0.99117, + "match_weight": 6.81, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014017952469453294, + "match_probability": 0.99118, + "match_weight": 6.81, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014037723911582284, + "match_probability": 0.99126, + "match_weight": 6.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014057495353711274, + "match_probability": 0.99128, + "match_weight": 6.83, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014077266795840263, + "match_probability": 0.99133, + "match_weight": 6.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014097038237969253, + "match_probability": 0.99135, + "match_weight": 6.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014116809680098243, + "match_probability": 0.99137, + "match_weight": 6.84, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014136581122227232, + "match_probability": 0.99142, + "match_weight": 6.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014156352564356222, + "match_probability": 0.99145, + "match_weight": 6.86, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014176124006485212, + "match_probability": 0.99152, + "match_weight": 6.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014195895448614201, + "match_probability": 0.99157, + "match_weight": 6.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014235438332872179, + "match_probability": 0.99161, + "match_weight": 6.89, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014255209775001169, + "match_probability": 0.99164, + "match_weight": 6.89, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014274981217130158, + "match_probability": 0.99172, + "match_weight": 6.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014294752659259148, + "match_probability": 0.99176, + "match_weight": 6.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014314524101388138, + "match_probability": 0.99186, + "match_weight": 6.93, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014334295543517128, + "match_probability": 0.9919, + "match_weight": 6.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014354066985646117, + "match_probability": 0.99192, + "match_weight": 6.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014373838427775107, + "match_probability": 0.99193, + "match_weight": 6.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014393609869904097, + "match_probability": 0.99195, + "match_weight": 6.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014413381312033086, + "match_probability": 0.99201, + "match_weight": 6.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014433152754162076, + "match_probability": 0.99205, + "match_weight": 6.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014472695638420054, + "match_probability": 0.99206, + "match_weight": 6.97, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014492467080549043, + "match_probability": 0.99209, + "match_weight": 6.97, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014512238522678033, + "match_probability": 0.99213, + "match_weight": 6.98, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01455178140693601, + "match_probability": 0.99215, + "match_weight": 6.98, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014571552849065, + "match_probability": 0.99224, + "match_weight": 7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01459132429119399, + "match_probability": 0.99225, + "match_weight": 7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01461109573332298, + "match_probability": 0.9923, + "match_weight": 7.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014650638617580957, + "match_probability": 0.99232, + "match_weight": 7.01, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014670410059709947, + "match_probability": 0.99234, + "match_weight": 7.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014690181501838937, + "match_probability": 0.99235, + "match_weight": 7.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014709952943967926, + "match_probability": 0.99243, + "match_weight": 7.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014729724386096916, + "match_probability": 0.99245, + "match_weight": 7.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014749495828225906, + "match_probability": 0.99248, + "match_weight": 7.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014769267270354896, + "match_probability": 0.99251, + "match_weight": 7.05, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014789038712483885, + "match_probability": 0.99257, + "match_weight": 7.06, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014808810154612875, + "match_probability": 0.9926, + "match_weight": 7.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014828581596741865, + "match_probability": 0.99262, + "match_weight": 7.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014868124480999842, + "match_probability": 0.99264, + "match_weight": 7.08, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.014887895923128832, + "match_probability": 0.99267, + "match_weight": 7.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014907667365257822, + "match_probability": 0.99275, + "match_weight": 7.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014927438807386811, + "match_probability": 0.99279, + "match_weight": 7.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014947210249515801, + "match_probability": 0.99283, + "match_weight": 7.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.014986753133773779, + "match_probability": 0.99284, + "match_weight": 7.12, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015006524575902768, + "match_probability": 0.99293, + "match_weight": 7.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015026296018031758, + "match_probability": 0.99299, + "match_weight": 7.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015065838902289736, + "match_probability": 0.99302, + "match_weight": 7.15, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015085610344418725, + "match_probability": 0.99304, + "match_weight": 7.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015105381786547715, + "match_probability": 0.99315, + "match_weight": 7.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015125153228676705, + "match_probability": 0.99317, + "match_weight": 7.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015144924670805695, + "match_probability": 0.99326, + "match_weight": 7.2, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015164696112934684, + "match_probability": 0.99327, + "match_weight": 7.21, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015204238997192662, + "match_probability": 0.9933, + "match_weight": 7.21, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015224010439321652, + "match_probability": 0.99331, + "match_weight": 7.21, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01526355332357963, + "match_probability": 0.99332, + "match_weight": 7.22, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015283324765708619, + "match_probability": 0.99341, + "match_weight": 7.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015303096207837609, + "match_probability": 0.99344, + "match_weight": 7.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015322867649966598, + "match_probability": 0.99345, + "match_weight": 7.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015342639092095588, + "match_probability": 0.99348, + "match_weight": 7.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015362410534224578, + "match_probability": 0.99349, + "match_weight": 7.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015382181976353567, + "match_probability": 0.99353, + "match_weight": 7.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015421724860611545, + "match_probability": 0.99356, + "match_weight": 7.27, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015441496302740535, + "match_probability": 0.99357, + "match_weight": 7.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015461267744869524, + "match_probability": 0.99359, + "match_weight": 7.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015481039186998514, + "match_probability": 0.99361, + "match_weight": 7.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015500810629127504, + "match_probability": 0.99364, + "match_weight": 7.29, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015520582071256494, + "match_probability": 0.99373, + "match_weight": 7.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015540353513385483, + "match_probability": 0.99374, + "match_weight": 7.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015560124955514473, + "match_probability": 0.99375, + "match_weight": 7.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01559966783977245, + "match_probability": 0.99377, + "match_weight": 7.32, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01561943928190144, + "match_probability": 0.99382, + "match_weight": 7.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01563921072403043, + "match_probability": 0.99383, + "match_weight": 7.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01567875360828841, + "match_probability": 0.99387, + "match_weight": 7.34, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015698525050417397, + "match_probability": 0.99391, + "match_weight": 7.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015718296492546385, + "match_probability": 0.99393, + "match_weight": 7.35, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015738067934675373, + "match_probability": 0.99394, + "match_weight": 7.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01575783937680436, + "match_probability": 0.99396, + "match_weight": 7.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01581715370319133, + "match_probability": 0.99397, + "match_weight": 7.37, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.015856696587449308, + "match_probability": 0.99398, + "match_weight": 7.37, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.015876468029578296, + "match_probability": 0.99403, + "match_weight": 7.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015896239471707284, + "match_probability": 0.99405, + "match_weight": 7.38, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.015935782355965263, + "match_probability": 0.99406, + "match_weight": 7.39, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01599509668235223, + "match_probability": 0.99407, + "match_weight": 7.39, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01601486812448122, + "match_probability": 0.9941, + "match_weight": 7.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016034639566610207, + "match_probability": 0.99412, + "match_weight": 7.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016074182450868186, + "match_probability": 0.99413, + "match_weight": 7.4, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016093953892997174, + "match_probability": 0.99414, + "match_weight": 7.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016113725335126162, + "match_probability": 0.99416, + "match_weight": 7.41, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01613349677725515, + "match_probability": 0.99422, + "match_weight": 7.43, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01617303966151313, + "match_probability": 0.99423, + "match_weight": 7.43, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016192811103642117, + "match_probability": 0.99431, + "match_weight": 7.45, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016212582545771105, + "match_probability": 0.99438, + "match_weight": 7.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016252125430029084, + "match_probability": 0.99443, + "match_weight": 7.48, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016271896872158072, + "match_probability": 0.99446, + "match_weight": 7.49, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01629166831428706, + "match_probability": 0.99452, + "match_weight": 7.5, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01631143975641605, + "match_probability": 0.99454, + "match_weight": 7.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016331211198545036, + "match_probability": 0.99462, + "match_weight": 7.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016350982640674024, + "match_probability": 0.99464, + "match_weight": 7.53, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016370754082803012, + "match_probability": 0.99468, + "match_weight": 7.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016390525524932, + "match_probability": 0.99469, + "match_weight": 7.55, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01643006840918998, + "match_probability": 0.99476, + "match_weight": 7.57, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01646961129344796, + "match_probability": 0.99483, + "match_weight": 7.59, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016489382735576947, + "match_probability": 0.99484, + "match_weight": 7.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016528925619834926, + "match_probability": 0.99488, + "match_weight": 7.6, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016548697061963914, + "match_probability": 0.99489, + "match_weight": 7.6, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016568468504092902, + "match_probability": 0.99494, + "match_weight": 7.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01658823994622189, + "match_probability": 0.99495, + "match_weight": 7.62, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016608011388350878, + "match_probability": 0.99497, + "match_weight": 7.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016627782830479866, + "match_probability": 0.99498, + "match_weight": 7.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016667325714737845, + "match_probability": 0.99507, + "match_weight": 7.66, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016706868598995825, + "match_probability": 0.99514, + "match_weight": 7.68, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.016726640041124813, + "match_probability": 0.99515, + "match_weight": 7.68, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016766182925382792, + "match_probability": 0.99517, + "match_weight": 7.69, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01678595436751178, + "match_probability": 0.99519, + "match_weight": 7.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016805725809640768, + "match_probability": 0.99523, + "match_weight": 7.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016825497251769756, + "match_probability": 0.99529, + "match_weight": 7.72, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.016845268693898744, + "match_probability": 0.99534, + "match_weight": 7.74, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01690458302028571, + "match_probability": 0.99535, + "match_weight": 7.74, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01694412590454369, + "match_probability": 0.99536, + "match_weight": 7.74, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01696389734667268, + "match_probability": 0.99538, + "match_weight": 7.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017003440230930658, + "match_probability": 0.99539, + "match_weight": 7.76, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.017023211673059646, + "match_probability": 0.99541, + "match_weight": 7.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017042983115188634, + "match_probability": 0.99542, + "match_weight": 7.76, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017062754557317622, + "match_probability": 0.99543, + "match_weight": 7.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01708252599944661, + "match_probability": 0.99545, + "match_weight": 7.77, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017102297441575598, + "match_probability": 0.99546, + "match_weight": 7.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017122068883704586, + "match_probability": 0.99548, + "match_weight": 7.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017161611767962565, + "match_probability": 0.99551, + "match_weight": 7.79, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.017181383210091553, + "match_probability": 0.99553, + "match_weight": 7.8, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01724069753647852, + "match_probability": 0.99556, + "match_weight": 7.81, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01726046897860751, + "match_probability": 0.99558, + "match_weight": 7.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017280240420736497, + "match_probability": 0.99559, + "match_weight": 7.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017300011862865484, + "match_probability": 0.9956, + "match_weight": 7.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017319783304994472, + "match_probability": 0.99561, + "match_weight": 7.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017359326189252452, + "match_probability": 0.99562, + "match_weight": 7.83, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01741864051563942, + "match_probability": 0.99566, + "match_weight": 7.84, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.017438411957768407, + "match_probability": 0.99568, + "match_weight": 7.85, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017477954842026387, + "match_probability": 0.9957, + "match_weight": 7.86, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.017497726284155374, + "match_probability": 0.99573, + "match_weight": 7.87, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017517497726284362, + "match_probability": 0.99581, + "match_weight": 7.89, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01753726916841335, + "match_probability": 0.99583, + "match_weight": 7.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01755704061054234, + "match_probability": 0.99586, + "match_weight": 7.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017576812052671326, + "match_probability": 0.99587, + "match_weight": 7.91, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017596583494800314, + "match_probability": 0.99588, + "match_weight": 7.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01765589782118728, + "match_probability": 0.99591, + "match_weight": 7.93, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01769544070544526, + "match_probability": 0.99592, + "match_weight": 7.93, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01771521214757425, + "match_probability": 0.99594, + "match_weight": 7.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017734983589703237, + "match_probability": 0.99596, + "match_weight": 7.94, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017774526473961216, + "match_probability": 0.99598, + "match_weight": 7.95, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.017794297916090204, + "match_probability": 0.99606, + "match_weight": 7.98, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017814069358219192, + "match_probability": 0.99608, + "match_weight": 7.99, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01783384080034818, + "match_probability": 0.99609, + "match_weight": 7.99, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017853612242477168, + "match_probability": 0.99612, + "match_weight": 8, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017873383684606156, + "match_probability": 0.99613, + "match_weight": 8.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.017912926568864136, + "match_probability": 0.99614, + "match_weight": 8.01, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.017932698010993123, + "match_probability": 0.99615, + "match_weight": 8.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01795246945312211, + "match_probability": 0.99616, + "match_weight": 8.02, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0179722408952511, + "match_probability": 0.99619, + "match_weight": 8.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01801178377950908, + "match_probability": 0.9962, + "match_weight": 8.04, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.018031555221638067, + "match_probability": 0.99623, + "match_weight": 8.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018071098105896046, + "match_probability": 0.99626, + "match_weight": 8.06, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.018110640990154026, + "match_probability": 0.99627, + "match_weight": 8.06, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.018130412432283013, + "match_probability": 0.99628, + "match_weight": 8.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018150183874412, + "match_probability": 0.9963, + "match_weight": 8.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01816995531654099, + "match_probability": 0.99631, + "match_weight": 8.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018229269642927957, + "match_probability": 0.99632, + "match_weight": 8.08, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.018249041085056945, + "match_probability": 0.99633, + "match_weight": 8.08, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018268812527185933, + "match_probability": 0.99636, + "match_weight": 8.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01828858396931492, + "match_probability": 0.99637, + "match_weight": 8.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01830835541144391, + "match_probability": 0.99639, + "match_weight": 8.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018367669737830876, + "match_probability": 0.9964, + "match_weight": 8.11, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.018387441179959864, + "match_probability": 0.99641, + "match_weight": 8.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018407212622088852, + "match_probability": 0.99642, + "match_weight": 8.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01842698406421784, + "match_probability": 0.99645, + "match_weight": 8.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018446755506346828, + "match_probability": 0.99648, + "match_weight": 8.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018466526948475816, + "match_probability": 0.99649, + "match_weight": 8.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018486298390604804, + "match_probability": 0.9965, + "match_weight": 8.15, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01850606983273379, + "match_probability": 0.99654, + "match_weight": 8.17, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01852584127486278, + "match_probability": 0.99656, + "match_weight": 8.18, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018545612716991768, + "match_probability": 0.99659, + "match_weight": 8.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018565384159120756, + "match_probability": 0.9966, + "match_weight": 8.19, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018624698485507723, + "match_probability": 0.99663, + "match_weight": 8.21, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.01864446992763671, + "match_probability": 0.99664, + "match_weight": 8.21, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0186642413697657, + "match_probability": 0.99666, + "match_weight": 8.22, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018684012811894687, + "match_probability": 0.99667, + "match_weight": 8.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018703784254023675, + "match_probability": 0.99668, + "match_weight": 8.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018723555696152663, + "match_probability": 0.99671, + "match_weight": 8.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01874332713828165, + "match_probability": 0.99672, + "match_weight": 8.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01876309858041064, + "match_probability": 0.99673, + "match_weight": 8.25, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018802641464668618, + "match_probability": 0.99674, + "match_weight": 8.26, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.018822412906797606, + "match_probability": 0.99675, + "match_weight": 8.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018842184348926594, + "match_probability": 0.99676, + "match_weight": 8.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.018861955791055582, + "match_probability": 0.99677, + "match_weight": 8.27, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01888172723318457, + "match_probability": 0.9968, + "match_weight": 8.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01892127011744255, + "match_probability": 0.99681, + "match_weight": 8.29, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.018941041559571537, + "match_probability": 0.99683, + "match_weight": 8.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019000355885958504, + "match_probability": 0.99687, + "match_weight": 8.31, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.019020127328087492, + "match_probability": 0.9969, + "match_weight": 8.33, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01907944165447446, + "match_probability": 0.99691, + "match_weight": 8.33, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.019099213096603448, + "match_probability": 0.99692, + "match_weight": 8.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019118984538732436, + "match_probability": 0.99693, + "match_weight": 8.34, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019158527422990415, + "match_probability": 0.99694, + "match_weight": 8.35, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019178298865119403, + "match_probability": 0.99696, + "match_weight": 8.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01919807030724839, + "match_probability": 0.99698, + "match_weight": 8.36, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01921784174937738, + "match_probability": 0.99699, + "match_weight": 8.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01925738463363536, + "match_probability": 0.99701, + "match_weight": 8.38, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019296927517893338, + "match_probability": 0.99704, + "match_weight": 8.4, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019316698960022326, + "match_probability": 0.99705, + "match_weight": 8.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019336470402151314, + "match_probability": 0.99708, + "match_weight": 8.42, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0193562418442803, + "match_probability": 0.99709, + "match_weight": 8.42, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01937601328640929, + "match_probability": 0.99714, + "match_weight": 8.45, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019395784728538278, + "match_probability": 0.99718, + "match_weight": 8.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019415556170667266, + "match_probability": 0.99719, + "match_weight": 8.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019435327612796253, + "match_probability": 0.9972, + "match_weight": 8.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01945509905492524, + "match_probability": 0.99721, + "match_weight": 8.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.01949464193918322, + "match_probability": 0.99722, + "match_weight": 8.49, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.0195341848234412, + "match_probability": 0.99725, + "match_weight": 8.5, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019553956265570188, + "match_probability": 0.99726, + "match_weight": 8.51, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019593499149828168, + "match_probability": 0.99727, + "match_weight": 8.51, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019633042034086147, + "match_probability": 0.99728, + "match_weight": 8.52, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019672584918344126, + "match_probability": 0.99729, + "match_weight": 8.52, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019712127802602106, + "match_probability": 0.9973, + "match_weight": 8.53, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01979121357111806, + "match_probability": 0.99733, + "match_weight": 8.55, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.01981098501324705, + "match_probability": 0.99735, + "match_weight": 8.56, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019830756455376037, + "match_probability": 0.99736, + "match_weight": 8.56, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019870299339634016, + "match_probability": 0.99737, + "match_weight": 8.57, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.019890070781763004, + "match_probability": 0.99738, + "match_weight": 8.57, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.019929613666020984, + "match_probability": 0.99743, + "match_weight": 8.6, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.01994938510814997, + "match_probability": 0.99745, + "match_weight": 8.61, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020028470876665927, + "match_probability": 0.99746, + "match_weight": 8.62, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.020068013760923906, + "match_probability": 0.99748, + "match_weight": 8.63, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020087785203052894, + "match_probability": 0.99749, + "match_weight": 8.63, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020107556645181882, + "match_probability": 0.9975, + "match_weight": 8.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02012732808731087, + "match_probability": 0.99751, + "match_weight": 8.64, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020147099529439858, + "match_probability": 0.99753, + "match_weight": 8.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020166870971568846, + "match_probability": 0.99754, + "match_weight": 8.66, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020186642413697834, + "match_probability": 0.99758, + "match_weight": 8.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020206413855826822, + "match_probability": 0.99761, + "match_weight": 8.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02022618529795581, + "match_probability": 0.99765, + "match_weight": 8.73, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02026572818221379, + "match_probability": 0.99766, + "match_weight": 8.74, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020285499624342777, + "match_probability": 0.99769, + "match_weight": 8.75, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020325042508600757, + "match_probability": 0.99771, + "match_weight": 8.77, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020364585392858736, + "match_probability": 0.99772, + "match_weight": 8.77, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020384356834987724, + "match_probability": 0.99773, + "match_weight": 8.78, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02046344260350368, + "match_probability": 0.99775, + "match_weight": 8.79, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02050298548776166, + "match_probability": 0.99776, + "match_weight": 8.8, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020522756929890647, + "match_probability": 0.99779, + "match_weight": 8.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020542528372019635, + "match_probability": 0.9978, + "match_weight": 8.82, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020562299814148623, + "match_probability": 0.99781, + "match_weight": 8.83, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020601842698406602, + "match_probability": 0.99782, + "match_weight": 8.84, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02064138558266458, + "match_probability": 0.99784, + "match_weight": 8.85, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020720471351180537, + "match_probability": 0.99787, + "match_weight": 8.87, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.020740242793309525, + "match_probability": 0.99788, + "match_weight": 8.88, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02081932856182548, + "match_probability": 0.99789, + "match_weight": 8.89, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02085887144608346, + "match_probability": 0.9979, + "match_weight": 8.89, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.020878642888212447, + "match_probability": 0.99792, + "match_weight": 8.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.020937957214599415, + "match_probability": 0.99793, + "match_weight": 8.92, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.020957728656728403, + "match_probability": 0.99794, + "match_weight": 8.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02097750009885739, + "match_probability": 0.99795, + "match_weight": 8.92, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021056585867373346, + "match_probability": 0.99797, + "match_weight": 8.94, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.021115900193760313, + "match_probability": 0.99798, + "match_weight": 8.95, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.0211356716358893, + "match_probability": 0.99799, + "match_weight": 8.96, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02117521452014728, + "match_probability": 0.998, + "match_weight": 8.97, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.021254300288663236, + "match_probability": 0.99801, + "match_weight": 8.97, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.021293843172921215, + "match_probability": 0.99802, + "match_weight": 8.98, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.021353157499308183, + "match_probability": 0.99803, + "match_weight": 8.99, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02137292894143717, + "match_probability": 0.99804, + "match_weight": 8.99, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02139270038356616, + "match_probability": 0.99806, + "match_weight": 9.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021412471825695147, + "match_probability": 0.99807, + "match_weight": 9.01, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021491557594211102, + "match_probability": 0.99808, + "match_weight": 9.02, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02151132903634009, + "match_probability": 0.99809, + "match_weight": 9.03, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021570643362727057, + "match_probability": 0.9981, + "match_weight": 9.04, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.021590414804856045, + "match_probability": 0.99811, + "match_weight": 9.04, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021610186246985033, + "match_probability": 0.99814, + "match_weight": 9.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02162995768911402, + "match_probability": 0.99815, + "match_weight": 9.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021669500573372, + "match_probability": 0.99816, + "match_weight": 9.09, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02170904345762998, + "match_probability": 0.99817, + "match_weight": 9.09, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.021728814899758968, + "match_probability": 0.99818, + "match_weight": 9.1, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021748586341887956, + "match_probability": 0.99819, + "match_weight": 9.11, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021768357784016944, + "match_probability": 0.9982, + "match_weight": 9.12, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.0218474435525329, + "match_probability": 0.99822, + "match_weight": 9.13, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.021867214994661887, + "match_probability": 0.99823, + "match_weight": 9.14, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.021946300763177842, + "match_probability": 0.99824, + "match_weight": 9.15, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02196607220530683, + "match_probability": 0.99825, + "match_weight": 9.16, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02200561508956481, + "match_probability": 0.99826, + "match_weight": 9.17, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02204515797382279, + "match_probability": 0.99827, + "match_weight": 9.17, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02208470085808077, + "match_probability": 0.99828, + "match_weight": 9.18, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022124243742338748, + "match_probability": 0.99829, + "match_weight": 9.19, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022163786626596727, + "match_probability": 0.9983, + "match_weight": 9.2, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022183558068725715, + "match_probability": 0.99831, + "match_weight": 9.21, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022223100952983695, + "match_probability": 0.99832, + "match_weight": 9.21, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022242872395112682, + "match_probability": 0.99833, + "match_weight": 9.23, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022282415279370662, + "match_probability": 0.99834, + "match_weight": 9.23, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02230218672149965, + "match_probability": 0.99835, + "match_weight": 9.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02234172960575763, + "match_probability": 0.99836, + "match_weight": 9.25, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022361501047886617, + "match_probability": 0.99837, + "match_weight": 9.26, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022381272490015605, + "match_probability": 0.99839, + "match_weight": 9.28, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022420815374273585, + "match_probability": 0.9984, + "match_weight": 9.28, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022440586816402572, + "match_probability": 0.99842, + "match_weight": 9.3, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02246035825853156, + "match_probability": 0.99843, + "match_weight": 9.31, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02249990114278954, + "match_probability": 0.99845, + "match_weight": 9.33, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022618529795563475, + "match_probability": 0.99846, + "match_weight": 9.34, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.022658072679821454, + "match_probability": 0.99847, + "match_weight": 9.35, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.022677844121950442, + "match_probability": 0.99849, + "match_weight": 9.37, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022756929890466397, + "match_probability": 0.99852, + "match_weight": 9.4, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.022776701332595385, + "match_probability": 0.99853, + "match_weight": 9.4, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.022934872869627296, + "match_probability": 0.99854, + "match_weight": 9.42, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.022994187196014263, + "match_probability": 0.99856, + "match_weight": 9.44, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02305350152240123, + "match_probability": 0.99857, + "match_weight": 9.45, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.023112815848788198, + "match_probability": 0.99858, + "match_weight": 9.46, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.023132587290917186, + "match_probability": 0.99859, + "match_weight": 9.47, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023152358733046174, + "match_probability": 0.9986, + "match_weight": 9.48, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023191901617304153, + "match_probability": 0.99861, + "match_weight": 9.49, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02327098738582011, + "match_probability": 0.99862, + "match_weight": 9.5, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.023290758827949096, + "match_probability": 0.99864, + "match_weight": 9.52, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023350073154336064, + "match_probability": 0.99865, + "match_weight": 9.53, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02336984459646505, + "match_probability": 0.99866, + "match_weight": 9.54, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023488473249238986, + "match_probability": 0.99867, + "match_weight": 9.56, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.02356755901775494, + "match_probability": 0.99868, + "match_weight": 9.57, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.023646644786270897, + "match_probability": 0.99869, + "match_weight": 9.57, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.023666416228399885, + "match_probability": 0.9987, + "match_weight": 9.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023686187670528873, + "match_probability": 0.99871, + "match_weight": 9.59, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.023785044881173816, + "match_probability": 0.99872, + "match_weight": 9.61, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.023844359207560784, + "match_probability": 0.99873, + "match_weight": 9.62, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02390367353394775, + "match_probability": 0.99874, + "match_weight": 9.64, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02394321641820573, + "match_probability": 0.99875, + "match_weight": 9.65, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.024042073628850674, + "match_probability": 0.99876, + "match_weight": 9.66, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.024081616513108653, + "match_probability": 0.99877, + "match_weight": 9.67, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02410138795523764, + "match_probability": 0.99878, + "match_weight": 9.67, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02412115939736663, + "match_probability": 0.99879, + "match_weight": 9.69, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.024140930839495617, + "match_probability": 0.9988, + "match_weight": 9.7, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02425955949226955, + "match_probability": 0.99881, + "match_weight": 9.72, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.02429910237652753, + "match_probability": 0.99882, + "match_weight": 9.73, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.024358416702914498, + "match_probability": 0.99883, + "match_weight": 9.74, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.024437502471430454, + "match_probability": 0.99884, + "match_weight": 9.76, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02449681679781742, + "match_probability": 0.99885, + "match_weight": 9.77, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.024575902566333376, + "match_probability": 0.99886, + "match_weight": 9.78, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.0247143026612363, + "match_probability": 0.99887, + "match_weight": 9.79, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.024793388429752254, + "match_probability": 0.99888, + "match_weight": 9.81, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.024832931314010234, + "match_probability": 0.99889, + "match_weight": 9.81, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.024951559966784168, + "match_probability": 0.9989, + "match_weight": 9.83, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.024991102851042148, + "match_probability": 0.99891, + "match_weight": 9.84, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.025030645735300127, + "match_probability": 0.99892, + "match_weight": 9.85, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02514927438807406, + "match_probability": 0.99894, + "match_weight": 9.89, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.025287674482976984, + "match_probability": 0.99895, + "match_weight": 9.9, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.025307445925105972, + "match_probability": 0.99896, + "match_weight": 9.9, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02536676025149294, + "match_probability": 0.99897, + "match_weight": 9.93, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02540630313575092, + "match_probability": 0.99898, + "match_weight": 9.93, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.025465617462137886, + "match_probability": 0.99899, + "match_weight": 9.96, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.025485388904266874, + "match_probability": 0.999, + "match_weight": 9.97, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02554470323065384, + "match_probability": 0.99901, + "match_weight": 9.98, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02558424611491182, + "match_probability": 0.99902, + "match_weight": 9.99, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02574241765194373, + "match_probability": 0.99903, + "match_weight": 10.01, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.025841274862588675, + "match_probability": 0.99904, + "match_weight": 10.03, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.025880817746846654, + "match_probability": 0.99905, + "match_weight": 10.04, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.02594013207323362, + "match_probability": 0.99906, + "match_weight": 10.06, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.02595990351536261, + "match_probability": 0.99907, + "match_weight": 10.07, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.02611807505239452, + "match_probability": 0.99908, + "match_weight": 10.09, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.026197160820910476, + "match_probability": 0.99909, + "match_weight": 10.11, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.026236703705168455, + "match_probability": 0.9991, + "match_weight": 10.12, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.026256475147297443, + "match_probability": 0.99911, + "match_weight": 10.13, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.026335560915813398, + "match_probability": 0.99912, + "match_weight": 10.16, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.026414646684329354, + "match_probability": 0.99913, + "match_weight": 10.17, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02649373245284531, + "match_probability": 0.99914, + "match_weight": 10.19, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02663213254774823, + "match_probability": 0.99915, + "match_weight": 10.2, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.0266914468741352, + "match_probability": 0.99916, + "match_weight": 10.22, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.026711218316264187, + "match_probability": 0.99917, + "match_weight": 10.24, + "prop": 0.000019771442128988888 + }, + { + "cum_prop": 0.026770532642651154, + "match_probability": 0.99918, + "match_weight": 10.25, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.026869389853296097, + "match_probability": 0.99919, + "match_weight": 10.28, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02700778994819902, + "match_probability": 0.9992, + "match_weight": 10.3, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.02716596148523093, + "match_probability": 0.99921, + "match_weight": 10.31, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.02720550436948891, + "match_probability": 0.99922, + "match_weight": 10.32, + "prop": 0.000039542884257977775 + }, + { + "cum_prop": 0.027304361580133853, + "match_probability": 0.99923, + "match_weight": 10.34, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02736367590652082, + "match_probability": 0.99924, + "match_weight": 10.36, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.027462533117165764, + "match_probability": 0.99925, + "match_weight": 10.38, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02752184744355273, + "match_probability": 0.99926, + "match_weight": 10.41, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.027620704654197675, + "match_probability": 0.99927, + "match_weight": 10.43, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02769979042271363, + "match_probability": 0.99928, + "match_weight": 10.44, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.027798647633358573, + "match_probability": 0.99929, + "match_weight": 10.46, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02785796195974554, + "match_probability": 0.9993, + "match_weight": 10.48, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.027937047728261496, + "match_probability": 0.99931, + "match_weight": 10.51, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.02801613349677745, + "match_probability": 0.99933, + "match_weight": 10.55, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.028114990707422394, + "match_probability": 0.99934, + "match_weight": 10.57, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.028253390802325317, + "match_probability": 0.99935, + "match_weight": 10.6, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.028312705128712284, + "match_probability": 0.99936, + "match_weight": 10.62, + "prop": 0.00005931432638696666 + }, + { + "cum_prop": 0.028530190992131162, + "match_probability": 0.99937, + "match_weight": 10.64, + "prop": 0.00021748586341887777 + }, + { + "cum_prop": 0.028629048202776106, + "match_probability": 0.99938, + "match_weight": 10.66, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02870813397129206, + "match_probability": 0.99939, + "match_weight": 10.69, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.028826762624065996, + "match_probability": 0.9994, + "match_weight": 10.7, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.02894539127683993, + "match_probability": 0.99941, + "match_weight": 10.73, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.02910356281387184, + "match_probability": 0.99942, + "match_weight": 10.76, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.029202420024516784, + "match_probability": 0.99943, + "match_weight": 10.78, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.029340820119419707, + "match_probability": 0.99944, + "match_weight": 10.8, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.029419905887935662, + "match_probability": 0.99945, + "match_weight": 10.83, + "prop": 0.00007908576851595555 + }, + { + "cum_prop": 0.029518763098580605, + "match_probability": 0.99946, + "match_weight": 10.87, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.02963739175135454, + "match_probability": 0.99947, + "match_weight": 10.89, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.029775791846257463, + "match_probability": 0.99948, + "match_weight": 10.92, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.02995373482541836, + "match_probability": 0.99949, + "match_weight": 10.95, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.030072363478192296, + "match_probability": 0.9995, + "match_weight": 10.98, + "prop": 0.00011862865277393333 + }, + { + "cum_prop": 0.030230535015224207, + "match_probability": 0.99951, + "match_weight": 11.01, + "prop": 0.0001581715370319111 + }, + { + "cum_prop": 0.03036893511012713, + "match_probability": 0.99952, + "match_weight": 11.04, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.030606192415674995, + "match_probability": 0.99953, + "match_weight": 11.07, + "prop": 0.00023725730554786665 + }, + { + "cum_prop": 0.030784135394835894, + "match_probability": 0.99954, + "match_weight": 11.1, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.030882992605480837, + "match_probability": 0.99955, + "match_weight": 11.12, + "prop": 0.00009885721064494445 + }, + { + "cum_prop": 0.03117956423741567, + "match_probability": 0.99956, + "match_weight": 11.17, + "prop": 0.0002965716319348333 + }, + { + "cum_prop": 0.03131796433231859, + "match_probability": 0.99957, + "match_weight": 11.2, + "prop": 0.00013840009490292222 + }, + { + "cum_prop": 0.03149590731147949, + "match_probability": 0.99958, + "match_weight": 11.22, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.03175293605915635, + "match_probability": 0.99959, + "match_weight": 11.27, + "prop": 0.00025702874767685556 + }, + { + "cum_prop": 0.03199019336470422, + "match_probability": 0.9996, + "match_weight": 11.3, + "prop": 0.00023725730554786665 + }, + { + "cum_prop": 0.03232630788089703, + "match_probability": 0.99961, + "match_weight": 11.34, + "prop": 0.0003361145161928111 + }, + { + "cum_prop": 0.03260310807070287, + "match_probability": 0.99962, + "match_weight": 11.38, + "prop": 0.00027680018980584444 + }, + { + "cum_prop": 0.03278105104986377, + "match_probability": 0.99963, + "match_weight": 11.42, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.03301830835541164, + "match_probability": 0.99964, + "match_weight": 11.45, + "prop": 0.00023725730554786665 + }, + { + "cum_prop": 0.03333465142947546, + "match_probability": 0.99965, + "match_weight": 11.5, + "prop": 0.0003163430740638222 + }, + { + "cum_prop": 0.03357190873502333, + "match_probability": 0.99966, + "match_weight": 11.54, + "prop": 0.00023725730554786665 + }, + { + "cum_prop": 0.03374985171418423, + "match_probability": 0.99967, + "match_weight": 11.59, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.034026651903990075, + "match_probability": 0.99968, + "match_weight": 11.63, + "prop": 0.00027680018980584444 + }, + { + "cum_prop": 0.034204594883150974, + "match_probability": 0.99969, + "match_weight": 11.68, + "prop": 0.00017794297916089998 + }, + { + "cum_prop": 0.03450116651508581, + "match_probability": 0.9997, + "match_weight": 11.72, + "prop": 0.0002965716319348333 + }, + { + "cum_prop": 0.034698880936375694, + "match_probability": 0.99971, + "match_weight": 11.78, + "prop": 0.0001977144212898889 + }, + { + "cum_prop": 0.035015224010439515, + "match_probability": 0.99972, + "match_weight": 11.82, + "prop": 0.0003163430740638222 + }, + { + "cum_prop": 0.03543042429514828, + "match_probability": 0.99973, + "match_weight": 11.88, + "prop": 0.00041520028470876666 + }, + { + "cum_prop": 0.03594448179050199, + "match_probability": 0.99974, + "match_weight": 11.94, + "prop": 0.0005140574953537111 + }, + { + "cum_prop": 0.03633991063308177, + "match_probability": 0.99975, + "match_weight": 11.99, + "prop": 0.0003954288425797778 + }, + { + "cum_prop": 0.03665625370714559, + "match_probability": 0.99976, + "match_weight": 12.05, + "prop": 0.0003163430740638222 + }, + { + "cum_prop": 0.037110996876112336, + "match_probability": 0.99977, + "match_weight": 12.12, + "prop": 0.0004547431689667444 + }, + { + "cum_prop": 0.037664597255724026, + "match_probability": 0.99978, + "match_weight": 12.18, + "prop": 0.0005536003796116889 + }, + { + "cum_prop": 0.03837636917236763, + "match_probability": 0.99979, + "match_weight": 12.25, + "prop": 0.0007117719166435999 + }, + { + "cum_prop": 0.03867294080430246, + "match_probability": 0.9998, + "match_weight": 12.32, + "prop": 0.0002965716319348333 + }, + { + "cum_prop": 0.03914745541539819, + "match_probability": 0.99981, + "match_weight": 12.4, + "prop": 0.0004745146110957333 + }, + { + "cum_prop": 0.03964174146862291, + "match_probability": 0.99982, + "match_weight": 12.47, + "prop": 0.0004942860532247222 + }, + { + "cum_prop": 0.040175570406105615, + "match_probability": 0.99983, + "match_weight": 12.56, + "prop": 0.0005338289374827 + }, + { + "cum_prop": 0.0412629997232, + "match_probability": 0.99984, + "match_weight": 12.65, + "prop": 0.001087429317094389 + }, + { + "cum_prop": 0.04185614298706967, + "match_probability": 0.99985, + "match_weight": 12.75, + "prop": 0.0005931432638696666 + }, + { + "cum_prop": 0.04266677211435821, + "match_probability": 0.99986, + "match_weight": 12.85, + "prop": 0.0008106291272885444 + }, + { + "cum_prop": 0.04377397287358159, + "match_probability": 0.99987, + "match_weight": 12.97, + "prop": 0.0011072007592233778 + } + ] + }, + "height": 400, + "layer": [ + { + "encoding": { + "x": { + "axis": { + "format": "+", + "title": "Threshold match weight" + }, + "field": "match_weight", + "type": "quantitative" + }, + "y": { + "axis": { + "format": "%", + "title": "Percentage of unlinkable records" + }, + "field": "cum_prop", + "type": "quantitative" + } + }, + "mark": "line" + }, + { + "encoding": { + "opacity": { + "value": 0 + }, + "tooltip": [ + { + "field": "match_weight", + "format": "+.5", + "title": "Match weight", + "type": "quantitative" + }, + { + "field": "match_probability", + "format": ".5", + "title": "Match probability", + "type": "quantitative" + }, + { + "field": "cum_prop", + "format": ".3%", + "title": "Proportion of unlinkable records", + "type": "quantitative" + } + ], + "x": { + "field": "match_weight", + "type": "quantitative" + }, + "y": { + "field": "cum_prop", + "type": "quantitative" + } + }, + "mark": "point", + "selection": { + "selector112": { + "empty": "none", + "fields": [ + "match_weight", + "cum_prop" + ], + "nearest": true, + "on": "mouseover", + "type": "single" + } + } + }, + { + "encoding": { + "opacity": { + "condition": { + "selection": "selector112", + "value": 1 + }, + "value": 0 + }, + "x": { + "axis": { + "title": "Threshold match weight" + }, + "field": "match_weight", + "type": "quantitative" + }, + "y": { + "axis": { + "format": "%", + "title": "Percentage of unlinkable records" + }, + "field": "cum_prop", + "type": "quantitative" + } + }, + "mark": "point" + }, + { + "encoding": { + "x": { + "field": "match_weight", + "type": "quantitative" + } + }, + "mark": { + "color": "gray", + "type": "rule" + }, + "transform": [ + { + "filter": { + "selection": "selector112" + } + } + ] + }, + { + "encoding": { + "y": { + "field": "cum_prop", + "type": "quantitative" + } + }, + "mark": { + "color": "gray", + "type": "rule" + }, + "transform": [ + { + "filter": { + "selection": "selector112" + } + } + ] + } + ], + "title": { + "subtitle": "Records with insufficient information to exceed a given match threshold", + "text": "Unlinkable records" + }, + "width": 400 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHeCAYAAAAM+duYAAAAAXNSR0IArs4c6QAAIABJREFUeF7sfQmYVbX5/ocssokzVQZxK4yKlkULVMEOVmGm4gL414ICAsWytYiIglA3FhXQqShQlaJSFxYXFGVRq4Va6IwCdaBW0IIKorgA6gjKIuv/eePvjHcu996TsyQn5+bL8/jIzOQk+d73S96TnORLlUOHDh0iTowAI8AIMAKMgGUIVGEBtIxxNpcRYAQYAUZAIMACyI7ACDACjAAjYCUCLIBW0s5GMwKMACPACLAAsg8wAowAI8AIWIkAC6CVtNtlNPZ5ValSpZLRzt6v5N+nQyaxjF27dtG+ffuoTp06VK1atcjA9GpDZA3lihkBQxFgATSUGG5WOAiMGDGCJk2aRLfffjvdcccdolAIGMQL6auvvqKf/OQnGSubPn06/f73v6fx48fTLbfcQl27dqXnn3+eXn/9dbrgggsyPrtixQpq27Yt9e3blx577DFPRrVr145KS0vpgw8+oFNOOeWwZ6+66ip69tln6V//+hchb5zThAkT6NZbb6UHHniArr322jibwm2PEQIsgDEii5vqHQFHAG+77Ta68847DxPAL7/8ko455piMBf/lL3+hP/zhD3TXXXeJQXratGm0evVquvHGG+mMM87I+Owbb7xBBQUF1LNnT5o9e7YnAxwBfP/99+nUU09NK4DLli2j8847z1PZpmXGywU4mjp1Kl133XWmNY/bk6UIsABmKbFs1g8IyAggZnIPPvggXXLJJfTvf/+bysrKqLCwkG6++WZq3LgxJQsgZpNLly6lKVOmUN26dWngwIHUpk0b2rlzJ7388st01lln0dChQ8XsMFkAZ8yYQc888wwdd9xx9Mgjj9CaNWvE7BR1/vSnPxUzuT/+8Y+Ul5cn/o0ZIGauCxcupO3bt9NvfvMbGjt2LNWoUYOcGaAjgP/4xz+EyL/77rt02mmniZlUjx49DnMFCDFmtb169aLFixdTgwYN6M9//jNleh7txOwXM1rY9+tf/1oIVc2aNam8vFz8bdGiRaKNP//5z8Vs2RHlX/3qV3TCCScIex566CGaP3++eA4vEG+++SY1a9ZM2Dtz5swKAXznnXcEPi+88AI1bNiQ2rdvT+PGjRPPcWIEwkKABTAsJLkcIxGQEcA5c+YIwULKz8+nbdu20bfffisGeMxIkgUwcQn06KOPplatWolnjzrqKKpfvz5t2LCBmjRpQuvWraskgP/v//0/uvLKK0U+CAnyHH/88bR161a6/PLLafPmzUKAneVSRwBR9tlnny3+hgSxHjx4cCUBrFevnhAepEsvvZQgirDh6aefFvkS0z333CNE1kn9+vUTtqZ7vkOHDmIJFuVB1P7zn/+If48aNYomTpxI559/vliGhYhBeCHaSG+//TadeeaZh31//d///kdXXHGFEGpgAQxhOxLwxmwborh+/XoaPnw4LV++XJQ5efJkuv766430M25UPBFgAYwnb9xqSQS8CGDnzp3pueeeo02bNglxwoC+ZcsWKQFE3rVr11JOTo6Y7UDUMIBDTLEEeuKJJ1YM8o4w4PsjZoTHHnusyDNr1iyxzIp/l5SUVMwA8e0QoojZGmZeEKQlS5ZUEkB8C8T3M4jSoEGD6NVXXxVC4pSVSgCbNm0qZlm//OUvhQCmex6zyCFDhlQs40LARo4cSY0aNaI+ffoIcYaQwWbM0PC3P/3pTzRgwAB6+OGHKwQQMzgIGGaTEHdghpcEzKIdzCCAEEfghYRyIKLAES8XF154oSTznI0RcEeABdAdI84RYwSwNIdZCmYS9957r7Dk66+/rvjuhyW7J554QswAMTPC4L1jxw4xK8Ggjn/LzAA7duxIf/vb30T555xzjpitYaBH+RChxLRq1Spq2bIlHTx4kG666Sa67777Kv09WQAhOKeffnqlzTvYhXr11VeLTTCY7WHJEaKXnBwRTyWAEKTRo0eLP1100UVpn8dSKdqYagaGGSYE8rLLLqMXX3xRlPXSSy9Rp06dxGwRbXN22u7evVsIJIS+d+/elb6LYjn0/vvvr1gCdX522g1BBA+Y3XJiBMJCgAUwLCS5HCMRcAZofI/Dtz4kfL/DzxhUP/nkE/H9CwIIgYRQ+hFADMz4BpZOACFEEAnMuDBjwrcvfC/s0qWLmOE89dRT9Nlnn4kZXrIAYscpZkX4TviLX/yi4u+J3wD/+te/0uOPPy6+J2JJEwKJ2SsEp3Xr1pW4cZZAEwXtmmuuSfs8liox08Ps8u677xYzWWAG/PA9EEugDpaoyCnf2fjjCKBzbMMRSNiN2TASlofxbRAzwG7duonZNPJ//PHHAld8CwSGwKhq1apG+ho3Kn4IsADGjzNusQcEPvzww4odlBApfMuCKGK5DkLx6KOPahFAiAHEDzM5CAg2oZx00kli4w2OSeCbHMQF37vwMwTS+QaImSjaiuVZPItlQSztJgogxA7CAZHArPeVV14RMzrMpHAMJNUMMFEAUXa651EelmmRMNP8+9//Tv/85z/Fv/HCgKVUfPe8+OKLxa5YzOSQIPD4XbIAYtMMNvzgOyKWnWvVqiVmskgQQHwPBTawZcyYMeKsJZZ18X0Wy8osgB46AGfNiAALIDtI1iMAMcA3NIiekzDYY8ZUu3btCgGEUEAwMDBjU4mzBJruHCBEAPmwCSbdDBBlnXvuuWLHJXY5YjaHTTQoG4M5lg9RDhLaiDbhbx999JGYHWLzB5ZXneVNzFznzZtHubm5FQLonAN0ztI5NkJIMDPEd8nEVFxcLGZzyUuamZ6HqAEbJ2E3KpaOcZ4SOzZhE+xxkoMlfk4WQPwO3zMxqwU+SBBC7HTFzBLfG5PbAkwwC8TuXE6MQFgIsACGhSSXYzwCmD198803YkZo0nZ6tAtCiv/SJSzL4pgFjgRkSsizceNGkc/tfGOqcjI9j79hpoeynRmhUwaWK2EH2olZtgy+33//vRB6bKY58sgjD2sOvp9iCRRHPtLlMd7puIFGI8ACaDQ93DhGgBFgBBgBVQiwAKpClstlBBgBRoARMBoBFkCj6eHGMQKMACPACKhCgAVQFbJcLiPACDACjIDRCLAAaqJn//79Wq7OQT1HHHGE+C+qhA0R2MDg7D7ETj9sdY/y6iAvWMStvV5si2teBA3Af3HxoahwPnDggKjay1ER9Fc8pwrbsMekMMvLSgFMRSa2UWMLObZ+4zyRzoSIIC1atBAHe8NKOCPWv39/sXUe28NxqBi77/B7XN2DbfeZUuLzYbUJ5SDGJc68IRoKDnfj/BbCYWGrPLawz507lxAcOVXC1nhEN8GZNj8JuwoR6Ll79+7ieENikrU3sb3Nmzf30wxfzyD82sqVK8VZvKA4JDcg0T98Nc6AhxAF5rXXXhNHQMJMztVY6W7cCLOuoGXhjCjGtuTIQonl4tzkp59+Ks63ZkrJ/oZACAgKoSLJjkmJdeMYzHvvvSeODiUnnH/FGBLGtVlZLYCJgy3iLiI8E7ZTI46izqRCAHEdD24UwJZ0ROPAVTIYPGWdLfH5MLFALEvcgIDoHeis2MKOs2yIN4kOjIPSyefSnPpxQBqxIXEQ3E9yQpxhAECQ6cQkYy+ipyS2108b/D6DM3DDhg0jHNwPikNyGxL9w2/7on5OlQBiVom4q4iwk/zSFLXNyfUj+AHCySEYerokK4CJ/oYXLtMEEEEWEIEo1RViLIAununMAEFs4sFZXCuDaBx409m7d6+IgwiRxICMmIyYOSBhtoJAwv/973/FAWdcMYOzY3gjQRR+hKRyIl7gbQyDKwjDlTiIc4jwToisgRiUWIpA8GKEh8IMEH/D2w0OZyNEFTo2ooMkJoSFgkMidBZmUYiOgTBeOFuFGQriNsI2RBGBqEB0EIoKQZNxVQ4GPDgP/sNsDCG+kpdE8PaE54EP3qZQLuI97tmzR1wDhNklEtqNw9R4U0Ye3IeHKCWIWrJgwQKRBwKHg9KIVoIZKTrpDTfcIHDE7AMHxXEFEDow4k+ifcAHZeFcHhwah7PxogBs8Jafjh+0L117cWUODpVjNgx8EDzZSTL24mB2YnshiDJ8w6fAAfjEmzdCnUHMEEEFMwuEWYOtSAj3hUPiEHoEdgaOsLWoqEicscMBc0SFcXCAL8OPcBgf+TBDhq/hcHkm3hy7ERot0T+AUarysESdnHAoH7x+9913YkUBZYE3BM3GgX5co4SycDsE/BThy1L1my+++EIEwQY34B4+hVioSJj1wi+ABw78oz6cX4Qwod/hpg5EjUGwbCyrp5oBog3od1gaQ39FpJxkfweOwBT5fvaznwmOkAd+ivBzqAcrJxgDnNUT5EU/xSCcrp3gBS9cOHuJGSp8AAECEn0PdiKfExwdfRm3giBAguMX6HtOnNNU9qCv/fa3vxWY4RlE4AGvuJsSZzKBOwIIQAAxPiFAAfBGezCLSjwTirYm+hvshl+h/yIvIvCgvXgpwJiC/LARS6T4fSq/wN/SjW14KU83JsEujDcYkzFOwrcwliUKIMYIBGvHizVepHHeFIEXeAaYRggdAURnRZxCCA8CCmNQx4CPO8kwyED80BkxuMO54JiYfaDDYbaIwRydCQ6Bty6IIJYyMbAhMgfug8Nt3ei8GIxwgwCEFB0KM00MfHBA/A5RSNAOOD3ahCgdWI7F9yYnhqRjDhwRMxE4NxwTnRMig7IgghAWOC3ywSEgZGg/BmuIJ/LCUTEgwEkQ+zJ52RFOiechPugsaDuicCAkFW4ogIjBoRGNBIM2Dizj3jsIC2bT+LezZILYjrAVDgpcsYSJDo0ZGV4QEHoMkT5wtx4wxw3swBHCjutzMDhicMWM1lkCTccPllbTtReBlzGIYpDEYAIMnSRjL4JUO+2FOEFIZfgG1+Ac4gU8MRCBb/CLBDEEVvAjhPjCixdeluBHuPYHnR2+hPwYcIGbgwPEFYMdBkW0Bb+HX2LQSIdD4iF0+Gaif0DgU5XnXBbs4IV24DlwBMHACxlud0CwcAxm8GNEhsG/0RfgX6n6DdoPW/GSiWex+gLRxywXS9bgHIMbBjS8BOEgPXiEz8DH8MIE4Yc/oM8kCyD6AgZzLLMjOg5WQfBSibyJCTMeYAffxlgADpzwdMAR4oRxASIOIUPCywL+w4tfunZCcPBijXYiJBz6G/5zgow7bXDy4fcY4GEb/AG8O6HlMPtPZw/GJfgRMMMLLXDEuIIXD2CJ4OJ4gYI4oT3wLbxkQODRfqwQOQnjXbK/wX+B2e9+9zvxEoIXEIyHzkXF6FeIHoQX0FR+AbvSjW1OSL/kMQnCDf+HXXjxgA9C7BDZCC8rzgwQ4o67KjFGQNTBIYSSBdBFAFP9GYKFgRhvf3jbcd72EOwXnRSxC0Ewol5gSQRvP+hcEC38DR0U3xORELkDpMKhMQA43xHw1oTBzAn0C7LQySGA+E6HvCAY5WOAwqCemND50WHwN7xlo3x0VgzOmBXijRqR9iFgGJiSl0Ah8uiQSBBNOJAzo0snCHAwdHYnDBhmu+iMeFNFZ0Ob4ZB4s8UbfyoBRAdG58P3BTgpOisGY/we311hCwQQgytEGgMdEkQVET9OPvlkMUh9/vnnafnB4IkBK1V7MaDgTTfVEmiyAKZ6Hn7htBcDoizfzjVFjs+AF3CHpTUMJPA1vITgmyI6MGaauN4HWGH1APmSl6QcAYRvYPBxBAozTHCL8tPhkHxLfaJ/pCsv+fsPXnyAp/MtCasAeFlEveAOeMIv8aIArh3BTO43EDbMJNCP8KKAPgAxgdigTsyGwT1mtCgbbQf/EEv4mhPHFJghJQsg/BQCAJHFzAACiJcf9J/EhD6Aly0nnBtecHHjBwTaEUDn6iq8gEB00U6IJWxL1068pEIoHF+G8MD/k5fu0B70I3CNhL6AF1ZnxgaMUCfGp3T2JC6BgkfY4AgtRB8CjDoS68GLA3BObk+yv0EAMdMHFrAXL3IY6yCAeAkCJ9hYl8kv0o1t8JVUYxIEG9hhRQkJWONlC/hhbMZ4g1m4c3k06sZLPV6g8ULIAugigBhsnRkgOhmm2BhY8CaBJZXkhMEeeTB7QWdMTBA6OALeEBNFBB0cIoNOB4dBwtsYxBQzKiRsDMEbHDo/nBNihhkClmHQAZKveIHA4dsell3g5Bj0MQuDI8FJMCg5A3oqAXQ2x6BuOB4Gj2RnSRaExE0AGIwgchiwMZhjSQeij7rgeBjMEwUQbcPAIiuAmE1jcHXwcfB0Nn9AFNLxg5cLdNJU7cXsSlYAUz2PwdcRQLyVy/KdvGkFLztYEnKCQuNFCVcF4QUGy1Z4+8aLBgQEs6ZMAohnMRjgxQcJ/oMZD4QmHQ4QvMSUKIDpykveoIVl+cTYnijPiY2Kf0P4gJEjbOgfqfoN+iD6VXKCcKAv4eUwOeHFCysbEF30LyTMerDCkCyAGNyxJAiMnBdTzHCTBRCCg/KcvuYssSUKIAZw8IFVH6yAoG1YTnTuSkzVTtiHsQV+iYSXBPT35HaiPRjYMUNDAr7o15h1wV6sNqBOiHA6exIFEDzixQOCn5iS68GL9ltvvXVYe9K9cKEs+CNesOETyd/iMvlFurEteQOaMybhpQH93LkODPZjUoD24moxCCAE3nkpghAiYYICHlkAD+s6P/wi3TdAvA2BXCzZ4BJOrD873wjRkfCm7qxF4/sPBjFcv4LvHRhEIEZ4O0M+OAfeIEEU6ksUQLyhYxB37kfD2xdmmlg+AKkoC9+7IATIgzfX6tWrHzZogXi0Ad/1ILJwJCx14u0skwAm7gKVFUC8jWEGhOQIIEQcMRrxHwZ5LO0535OwDOfs1oSQYcYrK4CYBWG50cEHd+cBAwxgeEFBW9Lxg80tGPhTtdeLAKZ6PlEA0R5ZvpM3EWDABJ9Ox3YEEN+w8DKCDo7b1yEaWN7OJICYlSd+74Bw4IUDA2w6HDIJYLrynLsMHSd0lrOcGQb8Hi9m8EPwhRkI+IIfON+o8fKY3G8wYGIGi2cdgUIfgNDgOfRFJxg4nkW/wIshysLg7twAjxeuL7/88rCBHEt8+A6OVROUCbHFslqyAELcIIyYdSGBI8z0EgUQM0RnBgeu8K0dPo8X5nTthEAk7rrMJICJ+YAL8uKTRaIAYmk7nT2JAogVGSy5O/jAH7CCAmFLrEdWABM3wWQSwHR+gZfldGMbfC7VmASfwos2PlUhOThgnMQLD8rDzBb9By8i2EuAhH6OsZwF0KMA4s0bb4FYmgSRcBgMQhA5dFI4Ojo01qbhnBAbdBq8maCjYHaBt0PMivD2CyFCJ8IUPlEAMcChA2OgwncbzPiQH8RiWQfr9sjvRMTH4JC8A825yBUDHpwHb7CYNSIv/p0ogBiUMEBgrT95F2gQAcTAhOUQtBdij2MkGJQwq8Ygi5kgll3wM2yTFUDYCnxQNkQHswkMSJgROUt/6fjBi0S6gR8DIL4DYRDFIJiYkme8bgLoiKkM37ICiM6Ot3b4H/wGS6z4Tgn/wXdUfH/B4AXcHRzgs3iBwgAPfDD7g4iCb1kBTPSPdOXhO0xiQl/A92BcaQThQn3YKIPVAHxbAp7wBSydYcCEaKXqNxjI4PPAEd+J0Q/wYgGOYCv6HfwIzyMPXgrxe7xUYfkLm6ewlA5/wQw6eWaFsvDihvx4qYKPwhYsLycm9FkMsCgP2GNQxnfpZAHEi6sz0DpL6fgmmK6dWJoOUwDxspPOHgz6mHHDBqwuAB+8nGM1AAKEGTt+JyOAyf4mK4Dp/AIz23RjG/p3KgFEHwdf8DH4E8QfqwKYmCTOPLH0iWVP2AxfwayZvwGmEb/EGSCm5Og4TnJuooYTYbkSIoQ3fSSACsfCmzs6BTo8EjomyMVAj86JN0IMCFjCwmCGQQsDAKblzhIovvvgTRTOiYTlK4ghZo2YKeGtFUuAEFZ8+IdzJCdnqQuDJZZH8I0SzoE3IaTEZQVHLDFgYYCTnQFiqRTtTDWQol4ILb5NOLMztAPOiTcy2IvBDFgAYwwujgBiSQjLtPimgdmjIzbON0BHjJzlIAxEaDtwdAZ+ZwduMj+YJaRrL9rnfHBP/g7o4JXJXohxYntl+ZYRQPCPt34sLWGZCwlvsFgGw0sYBnIIC2bdqNfBAS88GHyBh+OP2DSFGXImHBL9KdE/UH+q8uCPiQmbETDDwLdSp168qUOMsQyOPoQXQrwwQsDBP8QxVb9Bv3J2WKMszEow2CHhBdOZKaMNeNmCP+GbE8QeswAk9FUsTzuzBaetECdnmRQDMPwSgyNeNhJnwigPoogZBerBbA//AevkpWTwBBFKnBWna2fysQO8OGOGnNzO5HyoA30fY0PizAcDfDp7nFUJZ1aKFyiIPvogZoIQ4+R6gDXyJLcHL/2J/pZOAJPP46XzC0wm0o1t6V7KMRvH5AAvd7ABL1iYwWJ1IbFeZ3zFmAvusJ8AL8I8A8wggjJ/wgdVfHTGYIK368SEnVJYBkm+fgYOAEcECW7nhrBzEp3WWbt2yscbKMqAqIYVfQFlYpbmJQKEDEZ4+4aAYWaVbAcGZ7yZJe62lCnTyYPdpGhvunOBmfjJVA+WVtDeMJIXvmXqw0sQXhSwIQTcw8eAHzo/7MVLkbNU6JSHJXYIDvJhZurcrydTX6LPOf4hWx7aiu9W8AHsEpapN12/ca5ZwjefZG7wQoDl9ORrqoAHsMKydzImibajfRjQgSnaiPLgl4l9ARt34GeoAy85EG7MmrCsKJvStVP2edl8mezBS7bzWQLlYRyBKPjpg+n8za2dmfzCz9gG7iBuWKZONx7Cr/BijTzJn4vc2pvp71l5ED4IIPwsI8AIZB8CmGXg2ACWR/FSg5USzFyTl8qzz3K2iAWQfYARYASsRgCfJfCtCd9XMQPFdyV8n+dkNwI8A7Sbf7aeEWAEGAFrEWABtJZ6NpwRYAQYAbsRYAG0m3+2nhFgBBgBaxFgAbSWejacEWAEGAG7EVAqgNjaiiMGmbZP4wA1trWGvX3fblrZekaAEWAEGAE3BJQIIOJo4tApgqfiHBEOx+LgIk7349wTzs/hwCaEEXEzcRDY7UydmyH8d0aAEWAEGAFGwAsCSgQQgoeDszhkiqDD+DeCOCP6A0IZ4RAqIivgECcOwOJnTowAI8AIMAKMgE4ElAggZn9Y1nQCuyLmG0JTIbwTzuBA+BCZAbNChFYKKxqKTuC4LkaAEWAEGIF4I6BEABG/D9f/IGgvoi0gSCu+ByLckxPVG3E5ERsSy6W4FgP3f+EZJMR+g0AmJsT5Q+BUTowAI8AIMAKMgFcEEL4yOSkRQFSCb30I2ovYbYgan3jhJuK64eYCBHXFRZMQPwRGxT1a6TbMIMgsbiTO5oSYm6lIyiab2cbsYZO5zA4ubeZRiQAiwjpAhbjhxgREOH/yyScrvAVR0BHpHd//8Dfcd4erTiCA6ZZDWQC5s8UFARsGFHBhg51sY1x6XeZ2puNRiQBi5yeuJcG1OfjeB2FDRHckRFTHJZu45w5X22ADDC6AxK5QXPmTLrEAZrcjZod1P1hhw6Bpi502cGmzjUoE0BnMsOyJa4YSlzWdO/Mgjl4SC6AXtMzNa3NnM5cVfy1jLv3hZtpTNvOoVADDJJoFMEw0oyvL5s4WHepqamYu1eCqu1SbeWQB1O1tGeqz2RENoiFwU2zgkZdAA7uJMQXo9tcNn39DGz//hlo0rk95uXW04KD1G6AKi3gGqAJV/WXq7mz6LeRvgFFgrqpO9tfwkZ2zeA09tWQt9ShsRj2LmodfQYoSWQC1wBysEu5swfAz5WkbeOQZoCneFrwduv315of/QWs2bqNbe7ejtk1PCG6ARAksgBIgRZ1FtyNGYS/bGAXqaupkLtXgqrtU3Tx2vvkZYeLTY66gOjWrazGXBVALzMEq0e2IwVrr72m20R9uJj7FXJrIivc26eTxnQ1b6ZZHXqfGDXNo6tCO3hvr8wkWQJ/A6XxMpyPqtCuxLrYxKuTDr5e5DB/TKErUyeP80vX06KLVVNiqEQ3r1kabuSyA2qD2X5FOR/TfymBPso3B8DPpaebSJDb8t0Unj+NnltDydz+lYV3PocLWjf032uOTLIAeAYsiu05HjMI+1Mk2RoV8+PUyl+FjGkWJOnnsPm4e7dyzj2aM7KTtCESmcYfPAUbhcWnq1OmIUZnNNkaFfPj1MpfhYxpFibp43Fq+k/oVLxIbX7ABRmfiGaBOtH3WpcsRfTYvlMfYxlBgNKIQ5tIIGgI3QhePS8o20uTnVoqjDzgCoTOxAOpE22dduhzRZ/NCeYxtDAVGIwphLo2gIXAjdPE4ee4KWrLqI+rfqSVdVtAkcLu9FMAC6AWtiPLqcsSIzBPVso1Roh9u3cxluHhGVZouHq+f+iohDNqEAe2pRX6eVnNZALXC7a8yXY7or3XhPMU2hoOjCaUwlyawELwNOnjExhdsgEFaOPGq4I32WAILoEfAosiuwxGjsCuxTrYxagbCq5+5DA/LKEvSwaNzAL554/o0cWAH7eayAGqH3HuFOhzRe6vCfYJtDBfPKEtjLqNEP7y6dfAYRQBsmRdvPgYRnh8FLkmHIwZuZMAC2MaAABr0OHNpEBkBmqKDxygCYLMABnCKKB7V4YhR2CXjiFG3K8z6beAReNlgJ9sYTs+IIgC2zLjDM8Bw+A2lFO5socAYeSE28MgCGLmbhdYA1f6KnZ/YAZqXU4dmjOoUWru9FMTfAL2gFVFe1Y4YkVmVqmUbTWAhnDYwl+HgGHUpqnmMKgA2zwCj9iyP9at2RI/NUZKdbVQCaySFMpeRwB56pap5jCoANgtg6K6itkDVjqi29XKls41yOMUhF3MZB5bc26iax/7Fi2hL+U6aMrQj5TfMcW+Qghy8BKoA1LCLVO2IYbfXT3lsox/UzHyGuTSTF6+tUsljlAGweQbo1RMizq/SESM2raJ6ttEUJoK3g7kMjqEJJajkMcoA2CyAJniXhzaodEQPzVCalW3h0NNzAAAgAElEQVRUCq/WwplLrXArq0wlj48sWk0LStdTj8Jm1LOouTIb3ArmJVA3hAz4u0pHNMA80QS20RQmgreDuQyOoQklqOQxygDYPAM0wbs8tEGlI3pohtKsbKNSeLUWzlxqhVtZZap4jDoANgugMpdRU7AqR1TTWn+lso3+cDPxKebSRFa8t0kVj1EHwGYB9O4LkT6hyhEjNSqpcrbRJDaCtYW5DIafKU+r4tEJgN2loAkN6NQyUnP5G2Ck8MtVrsoR5WrXk4tt1IOzjlqYSx0oq69DFY9RB8DmGaB63wm1BlWOGGojAxbGNgYE0KDHmUuDyAjQFFU84gJcfAd8eswVVKdm9QAtDP4ozwCDY6i8BFWOqLzhHipgGz2AZXhW5tJwgiSbp4JHEwJg8wxQ0gFMyabCEU2xzWkH22gaI/7bw1z6x86kJ1XwaEIAbBZAk7xMoi0qHFGiWq1Z2EatcCutjLlUCq+2wlXwOHnuClqy6iPq36klXVbQRJst6SriJdDIKXBvgApHdK9Vbw62US/eKmtjLlWiq69sFTyaEAA78hngt99+S3Xr1qUqVaqkZXPPnj1UvXp1qlq1akbG77nnHho1apQ+r4igJhWOGIEZGatkG01jxH97mEv/2Jn0ZNg8mhIAOzIBLC8vpwEDBtBRRx1F27Zto65du1Lfvn1p/PjxtH37dqpduzaNGTNGCGPv3r1p+vTp4neZEgugSV3Gf1vC7mz+W6LuSRtsBHo22Mk2eu8ny9/9lHAHYPPG9WniwA7eC1DwhNYl0Mcff5xefvllevbZZ+mNN96ga665hl555RUaMWIEzZs3T4jh8OHDafPmzbRlyxbxs1tiAXRDKB5/5wElHjzJtJK5lEHJ/Dxh82hKAOzIZoCff/45/fznP6cOHTpQSUkJDRs2TAhe+/btKTc3VwhfaWkp9erVi2bPnk3VqlVz9RIWQFeIYpEh7M5motE22MgzQBM9z1+bwvZXUwJgRyaAr732mljaHDhwIK1YsYJq1KhBixYtogMHDlBZWRm1atWKZs2aRQ0aNKB169bRsmXLaOTIkdS2bVvRZogmBDI5devWzR/D/BQjwAgwAoyAFgSuf+Tfop4pA87WUp9sJfn5+YdlrXLo0KFDsgXI5sOS5xlnnCE2rWAjTL169cRSZ15enihi165dNGjQIBoyZAhNmjRJiN/gwYOFWKbbMMMzQFn0zc4X9tumidbaYCPPAE30PH9tCtNfnQDYjRvm0NShHf01SMFTWr8B3nvvveID+YMPPkibNm2iNm3a0Kefflqx1FlcXExFRUVCFJcuXUpjx46lgoICIYDplkNZABV4RQRFhtnZImi+VJU22MgCKOUKscgUpr+aFAA7EXytAghh69y5M+FbINLo0aPFrlAk7ArFz9OmTaN9+/aJDTDLly8Xu0L79OmT1mFYAGPRl1wbGWZnc60sogw22MgCGJFzKag2TH81KQB2ZALoVPzZZ59R/fr1xTk/J+3YsUP8E8uiXhILoBe0zM0bZmcz1UobbGQBNNX7vLcrTH91AmDPGNmJ8nLreG+Moie0zgBV2MACqAJV/WWG2dn0t16uRhtsZAGU84U45ArLX00LgB35DDBM8lkAw0QzurLC6mzRWeBesw02sgC6+0FccoTlr0vKNtLk51ZSYatGNKxbG6PM5xmgUXSkbkxYjmiyqWyjyex4axtz6Q0vU3OHxaNpAbB5Bmiqx6VpV1iOaLLZbKPJ7HhrG3PpDS9Tc4fFo2kBsFkATfU4FsCYMeOtuWENKN5q1Z/bBjvZRjm/ws3v2ACDm99xA7xpiZdATWMkRXu4s8WAJIkm2sAjYLDBTrZRwuGJyMQA2DwDlOPOmFzc2YyhIlBDbOCRBTCQixj1cBj+amIAbBZAo9zMvTFhOKJ7LdHmYBujxT/M2pnLMNGMrqwweHQOwE8Y0J5a5P8Q8tKkxEugJrGRpi1hOKLpZrKNpjMk3z7mUh4rk3OGwWPnm58RJuL7H74DmpZYAE1jJEV7wnBE081kG01nSL59zKU8VibnDMqjqQGwEzFnATTZA/+vbUEdMQYm8saJOJAk2Ub2V0mgDM8WlEdTA2CzABrueMnNC+qIcTCXbYwDS3JtZC7lcDI9V1Aex88sEbtAh3U9hwpbNzbSXJ4BGklL5UYFdcQYmMgzwDiQJNlG9ldJoAzPFpRHUwNg8wzQcMfjGWDMCJJsbtABRbKayLPZYCfbmNnNTA6AzQIY+RDhrQHc2bzhZWpuG3gE9jbYyTZm7mVOAOy2TU+gW3u3M7VLpvXVKocOHTpkbKsTGsa3QcSBJfc28oDijlFccjCXcWHKZRa3YQPl5+f7MsbkANg8A/RFaXQP8YASHfZh1mwDjzwDDNNjoi0riL9eP/VVwjLolKEdKb9hTrSGZKidN8EYS82PDQviiDEwTzSRbYwLU+7tZC7dMYpDDr88OgGwYePCiVcZbSoLoNH0/NA4v44YA9Mqmsg2xoktdUtncUGB/TU9U6YHwOYl0Lj0sv9rJ3e2mBGWprk28MgvbNnhq0F4dA7A9yhsRj2LmhsNCM8AjaaHZ4AxoEe6iSyA0lAZn9EGLv3aaHoAbJ4BGt+9KjfQryPGyUy2MU5s8RIo+2t6HzA9ADYLYMzGGu5sMSOMl0B9b5+PC9PcJ1MzFYcA2CyAcell/A0wZkzxzCjIt6M4kc0CmJqt+aXr6dFFq6mwVSMa1q2N8ZTyN0DjKeJdoDGgSKqJNgyaLIBSrhCLTH78NQ4BsHkGGAv3+7GRfhwxZibyUY+4EZahveyv2UGmHx7jEACbBTBm/unHEWNmIgtg3AhjAeTvnEk+sLV8J/UrXiRufscN8HFIvAQaA5ZYAGNAkkQTbeCRl0AlHCEmWbz6a1wCYPMMMCYO6DTTqyPGzDzRXLYxjqylbjNzmR1ceuUxLgGwWQBj5p9eHTFm5rEAxpEwXgLlJdAkH3ACYE8Y0J5a5OfFwqt5CTQGNLEAxoAkiSbawCPP5iUcISZZvPhrnAJg8wwwJg7IS6AxI8qluV4GlDhbboOdbGNlD41TAGwWwJiNLtzZYkZYmubawCPPALPDV73yGKcA2CyAMfNRGwZOtjFmTsnfAPkbYIIPOAGwb+3djto2PSE2zszfAGNAFYtDDEiSaKINPHqdOUjAZmQWG7j0YmOcAmDHYga4Z88eql69OlWtWjVjB7jnnnto1KhRRnaSsBrlxRHDqlN3OWyjbsTV1cdcqsNWZ8myPG74/BvCDtDGDXNo6tCOOpsYuC6tM8A//elPVFpaKhp98OBBWrhwIa1atYpefvll2r59O9WuXZvGjBlDVapUod69e9P06dPF7zIlFsDAPmBEAbKdzYjG+myEDTbyDNCncxj4mKy/xi0AthEzQMzajjvuOLrssstoxIgRNG/ePOrbty8NHz6cNm/eTFu2bBE/uyUWQDeE4vF32c4WD2tSt9IGG1kA4+yhldsu669xC4AduQD+97//pcsvv5zee+89qlGjBrVv355yc3OF8GGG2KtXL5o9ezZVq1bN1ZtYAF0hikUG2c4WC2PSNNIGG1kA4+yh/gQwbgGwIxfA/v3707nnnkv9+vUTbTlw4ACVlZVRq1ataNasWdSgQQNat24dLVu2jEaOHElt27ZN61UsgNnR4WwQBxtsZAHMjv4oy6MTADsvpw7NGNUpdsZr/QYIdL766is69thjqby8nHJycioBtmvXLho0aBANGTKEJk2aJMRv8ODBtGLFCvFdsKSkpOIbYuKD3bp1ix3w3GBGgBFgBOKOwIr1X9KcpRupxU9zqP+Fp8XSnPz8/MPaXeXQoUOHVFjz/PPP0xNPPEELFiw4rPji4mIqKioS3/+WLl1KY8eOpYKCAiGA6ZZDeQaogiX9ZdowO7LBRtmZg34PC7dGG7iUsTGOAbAjXQK98cYbxRJn8tGFbdu20ejRo2natGm0b98+sQFm+fLlYldonz59eAk0xVtKuF062tJkOlu0LQxeuw02sgAG9xNTSpDx1/7Fi2hL+U6aMrQj5TesvKJnih2Z2qF9CTRdY3bs2CH+VK9ePU+48QzQE1zGZpbpbMY2XrJhNtjIAijpDDHI5uavcbwANxl2YwTQrz+wAPpFzqzn3DqbWa311xobbGQB9OcbJj7l5q9xvACXBdBET3Npk5sjxtCkw5rMNmYDiz/YwFxmB5duPD6yaDUtKF1PPQqbUc+i5rE0mmeAMaDNzRFjYIJrE9lGV4hik4G5jA1VGRvqxmMcL8DlGWAMfdPNEWNoEs8As4G0NDawv2YHuZl4jOsFuCyAMfRNHlBiSFqKJtvAIy+BZoevuvEY1wtwWQBj6J82DJxsYwwdk2eA2UOaxxe2bPj+l0nklR2ED9tjeBdo2IhGUx4LYDS4q6iVuVSBqv4yM/GYDd//WAD1+5SvGnlA8QWbcQ/ZwKPb0plxpPhskA1cZrLRuQB34cSrfCJoxmO8C9QMHjK2wvbOFgOKpJpoA48sgFKuEItM6fz1nQ1b6ZZHXo/lBbj8DTAWrle5kTYMnGxjDB2TvwFmD2kevgHOWbyGnlqylroUNKEBnVrGGgOeAcaAPhaHGJAk0UQbeOQZoIQjxCRLOn+9+eF/0JqN2+jW3u2obdMTYmJN6mayAMaAPhsGTrYxBo4o2UTmUhIow7Ol49H5/vf0mCuoTs3qhluRuXksgDGgjweUGJAk0UQbeOQZoIQjxCRLKn/Npu9/mXyVj0EY5KQ2DJxso0EOF7ApzGVAAA15PBWP2fT9jwXQEEdzawYPKG4IxePvNvDIM8B4+KJMK1P56/iZJYQoMMO6nkOFrRvLFGN0Hl4CNZqeHxpnw8DJNsbAESWbyFxKAmV4tlQ8dh83jxAHdMbITpSXW8dwC9ybxwLojlHkOXhAiZyCUBpgA4/8whaKqxhRSLK/bvj8G0IEmLycOjRjVCcj2hi0ESyAQRHU8LwNAyfbqMGRNFXBXGoCWnE1yTzOL11Pjy5aTYWtGtGwbm0U166neBZAPTgHqoUHlEDwGfOwDTzyDNAYdwvckGR/zbbvf5l8lXeBBnaf8AqwYeBkG8Pzl6hLYi6jZiCc+pN5zLbvf6EL4P79+6latWrhoC9ZCt8GIQmU4dl40DScIA/NYy49gGVw1kQet5bvpH7Fi8TBdxyAz5YUaAl09erVdP3119PLL79Mv/71r2nt2rUEQfrDH/6gDR8WQG1QK62IB02l8GotnLnUCreyyhJ5XFK2kSY/t1KEPkMItGxJgQTw3HPPFVv0b7/9drruuuuoVatW9P7779PXX3+tbSbIApgdrsiDZnbwyN8As5PHyXNX0JJVH1H/Ti3psoImWWOkbwHcs2cP1apVixYsWECTJ0+mNWvW0FtvvUUnn3wyvf3223TmmWdqAYkFUAvMyithAVQOsbYKmEttUCutKJHH/sWLaEv5TpoytCPlN8xRWq/Own0LIBp5+umn089+9jOaP38+DRw4kBo2bEjjxo2j7777jurU0XNIkgVQp7uoq4sHTXXY6i6ZudSNuJr6HB6z9ftfptUKqV2gTz75JP32t78V6GPW165dO+rcuTPNnj1bDSMpSmUB1Aa10op40FQKr9bCmUutcCurzOExW7//BRZAFFBeXk5Vq1alevXq0apVq8R3QJ2JBVAn2urq4kFTHba6S2YudSOupj6Hx0cWraYFpeupR2Ez6lnUXE1lEZXqawm0f//+tHfv3rRNnj59uvg+qCOxAOpAWX0dPGiqx1hXDcylLqTV1uPwiPBnCIM2YUB7apGfp7ZSzaX7EsAqVapkbOaOHTvoqKOO0mIKC6AWmJVXwoOmcoi1VcBcaoNaaUXgsW5ug6w8/+cA50sADx48KJ7v2rUrbd26laZOnUo//elPxXGIpUuX0n/+8x+qXl3PTcEsgEr7gLbCedDUBrXyiphL5RBrqQA8vvP5/qyL/5kIni8BRAGI+gKRw/k/CCDS3Llz6corr+RjECG7Jw8oIQMaUXE28AhobbDTFhufKv0sq+7/S+76vgUQBTVr1ozeffdduvzyy8UmmHnz5olvfx9++CHVrVtXyzDDM0AtMCuvxJYBJT8/XzmWUVfAXEbNQDj1r/3f+/THJ1aJwhD+DGHQsi0FEkCEPpswYQItXLiQvv32W+rQoQPddttt1L59e204sQBqg1ppRTxoKoVXa+HMpVa4lVU2/x9l9OjfP6DmjevTxIEdlNUTZcG+BRBLoA888AA1b96cLrjgAsLGl5/85CfabWEB1A65kgp50FQCaySFMpeRwB56pXc+toRWrv8y68KfJQLlWwCdJVAIIZZBcRYwisQCGAXq4dfJg2b4mEZVInMZFfLh1nvlmOdo994DWRf+LDQBvPrqq2nOnDl03nnniZmgczxi0qRJVLNmzXDZSFMaC6AWmJVXwoOmcoi1VcBcaoNaWUU494fzf3k5dWjGqE7K6om64EAzwAYNGohjEMlp+/btYlNMurRz507CUYpMZwURbBu7TN1mliyAUbtQOPXzoBkOjiaUwlyawEKwNjjRX7oUNKEBnVoGK8zgpwMJ4K5du+jQoUOHmZcuEDZErV+/fgSBPOKII6hly5YiePb48ePF72rXrk1jxowRM8nevXsTIsrgd5kSC6DB3uWhaTxoegDL8KzMpeEESTTPif6Cu/9wB2C2pkACiJ2fM2fOFMug+Hf37t1FcOzjjz8+JV6PP/44rVy5kh566CEhnC+88AK1aNGCRo0aJY5Q9O3bl4YPH06bN2+mLVu2iJ/dEgugG0Lx+DsPmvHgSaaVzKUMSubmcW5/qFWjKj07rqu5DQ2hZYEE8Oabb6a7775bLGUeffTRQriaNm0qDsJXq1btsOaNHj1a3BlYVlZGJ554It1111108cUXi2MTubm54vnS0lLq1auXuFEiVRnJhbIAhuAFBhTBg6YBJITUBOYyJCAjKmZ+6XoR/aXFT3Nowu87RtQKPdX6FkB8x8Nh9wEDBtBf/vIXsaSJi3FvuOEGeu+99+iMM844zIJrrrmGli1bRi+//DKtXr2abrrpJvr444/F90CIIm6SmDVrFuHb4rp160TekSNHUtu2bUVZJSUlQiCTU7du3fSgxbUwAowAI5DlCDz62vv0zqZvqOf5jalNk2Oz3FqiVMEpXO8DxPc/fOsbO3as+G6H5IRCwyyvdevWhwF344030pFHHkkTJ04Uf4PQQdBOPfVU8TPKHDRoEA0ZMoSwkxTiN3jwYFqxYkXFDlOeAWanP/KsIXt4ZS7jy+XOPfuo+7h5woC7f9uKmp1xWnyNkWi57xkgysYFuBAwLGNis8rzzz9PZ599dlrBwvfCRx55hBYvXiyWO88991z67LPPKnZ6FhcXU1FRkfj+h6DaENeCggJRXrrlUF4ClWA5Bll40IwBSZJNZC4lgTIw2/J3P6XxM0uoccMcGtbptJSzIwOb7btJgQRw06ZNIhTaU089JTbBIBD2rbfeSmeeeWbKBn3//fc0dOhQsQQKwcQOUGycQdq2bRvhG+G0adNo3759YgPM8uXLxeyyT58+aQ1kAfTNvVEP8qBpFB2BGsNcBoIv0ocnz11BS1Z9JKK/tGhYjQXQjQ2IGo434OgCRE1m4wpukcc5wcQzfgilhpTp/GCqtrAAujEUj7/zoBkPnmRayVzKoGRmHix/Yhl0ytCORLu/ZgHMRNOSJUvETA3LmieffLLYzYkZ3BVXXKGNXRZAbVArrYgHTaXwai2cudQKd2iVJUd/sZlH100wQB3fAN9//316/fXXRSDsjh070n//+1/65ptvxLEIHYkFUAfK6uuwubOpR1dvDcylXrzDqi05+ovNPLoKoHMhLq4/uvPOOwUHr7zyCl1yySXi212bNm3C4iVjOSyAWmBWXonNnU05uJorYC41Ax5SdcnRX2zm0VUAgfkpp5wibn/G+T+cCcQuzvXr14sNLcceq+f8CAtgSN4fcTE2d7aIoQ+9euYydEiVF+hEf8Glt7j8FslmHqUEEN8AcU4Pouck3BF47bXXKifMqYAFUBvUSiuyubMpBTaCwpnLCEAPWKUT/QVxPxH/kwUwVZTrFCAjG87sYWfnhRdeKA7H60wsgDrRVlcXD5rqsNVdMnOpG/Hg9eHsH84ADut6DhW2bswCeEhCALEB5qKLLhJTZcQFXbNmDfXs2bPibF9wWtxLYAF0xygOOXjQjANLcm1kLuVwMiVXYvQXLH9iGZRngBICiHBnEMH69evTVVddJaK7INoL7wIN17V5QAkXz6hKs4FH2wfOqHwrSL1O9JfmjevTxIEdKoqywV99R4LBAXjc+o5vfghojUPtCEqNgNarVq0Sd/3pSDwD1IGy+jps7mzq0dVbA3OpF++gtSVGf7msoAkLIBFJbYJB1BaEPcvJyaEaNWqIGyFee+01+uqrr8Rt7joSC6AOlNXXwYOmeox11cBc6kI6nHqc6C8zRnaivNwf93DYzKOUACIGKG5vQBxQJ+FMIM4G6kosgLqQVluPzZ1NLbL6S2cu9WPut8bk6C+J5djMo6sAHjhwgP7zn/+Iy3AB1MaNG+mss86iX/7yl3658PUcC6Av2Ix7yObOZhwZARvEXAYEUOPjydFfWAB/QMBVAHGJbcOGDcUN8AiFFlViAYwK+XDr5UEzXDyjLI25jBJ9b3X3L15EW8p30oQB7alFfl6lh23m0VUAgdQf/vAHcRs8rjGCEOIbINLll18udSuEN6pS52YBDAPF6MuwubNFj364LWAuw8VTVWmpor/wDFByBohsuNF969ath/Gzfft2z9ca+SWZBdAvcmY9x4OmWXwEaQ1zGQQ9fc860V8KWzWiYd0Oj91sM49SM0BEgMFxiOTUoUMHngGG6Mc2O2KIMEZelA08AmQb7MwGG29++B+0ZuO2StFfeAboYQYY+YhCRDwDNIGF4G3IhgHFDQUbbGQBdPMCM/6eLvoLCyALoBkemtAKGwZOttE4t/PdIObSN3TaHkwX/YUFkAVQmxPKVsQDiixSZuezgUeeAZrtg07r0kV/YQH0IIAIF/r000/TP//5T2rfvr2I/lJUVKTtNng0lZdA49Hh3FppgzjYYCMLoJunm/F3J/rLlKEdKb9hTspG2eCv6WyU2gRzxx130JgxYwR4uA2ipKRE/BuC6ByJUE03C6BqhPWUb3Nn04OwvlqYS31Y+6kpU/QXngFKzgAx+zv66KPp0ksvFUGxcSj+jDPOoN/+9rfihohTTz3VDzeen2EB9AyZkQ/woGkkLb4axVz6gk3bQ3MWr6GnlqylLgVNaECn9JcW2Myj6wxw3759IgD23XffTV9//bW4DeKCCy6gjh070qZNm+jkk0/WQigLoBaYlVdic2dTDq7mCphLzYB7rO76qa8SZoG4+R03wKdLNvPoKoAArVOnTvTSSy+JeKBICIoNEdQZGo0F0KP3G5rd5s5mKCW+m8Vc+oZO+YNO9BdUtHDiVRnrs5lHKQHEtUdPPvkk4VaI//3vf9S2bVuaOnWqWArVlVgAdSGtth6bO5taZPWXzlzqx1y2xiVlG2nycyvFzA8zwEzJZh4zCiCAyXRhfOPGjXkTjKxHSuSz2REl4IlNFht4BBk22BlXG8fPLCGcARzW9RwqbN2YBXDDBsrPzz8Mh4wCWKVKlYzAcSzQcMfkuHY2LyiwjV7QMjsvc2kuP+kuv03VYpt5zCiA9957L+E+wHTphhtuEBtkdCReAtWBsvo6bO5s6tHVWwNzqRdv2dqc6C+NG+bQ1KEdXR+zmUepb4BA8LvvvhObXnA/IDbA4GiEzsQCqBNtdXXZ3NnUoRpNycxlNLi71SoT/SWxDJt5lBJARIHp0aNHJdxHjRoljkboSiyAupBWW4/NnU0tsvpLZy71Yy5To5flT5RnM4+uAogl0NzcXHH04YknnhBLnlOmTKHly5fTp59+Sscff7wMJ4HzsAAGhtCIAmzubEYQEGIjmMsQwQypqHc2bKVbHnmd8nLq0IxRnaRKtZlHVwF0IsFcffXVNG3aNAHowoULqUuXLiyAUu4ln8lmR5RHyfycNvBo+8zBVC98ZNFqWlC63jX6Cy+B/oBARgF87bXXxCaYBx98UByEnzlzprgA97777iOcDVy3bh1fiBtiT7Bh4GQbQ3SYiItiLiMmIEX1/YsX0ZbynZQp+HXyYzbzyMcgDPJhmx3RIBoCN8UGHnkGGNhNQi9ANvg1C+CPCGQUQMz6Mh2DuOSSS3gGGKIb2zBwso0hOkzERTGXEROQVL2f5U/bX2RcvwECoN27d9Njjz0mbn9AwlGI9957j+bNm0d169YN5AV79uwR9wsiyHamxJtgAsFszMM8aBpDReCGMJeBIQy1ANng1zwDlJwBOtmcYNjJwGFnaCoB/P7776l+/fp00UUXiUdOP/10uvPOO2n8+PGE6DG1a9cW9wsi0kzv3r1p+vTp4ncsgKnD9YTaSyIujAfNiAkIsXrmMkQwAxblBL+uU7M6PT3mCk+l2cyj6wxw//79YoaGGdiCBQvE7k/M1ubMmUNvvfWWELHkhIDZo0ePFnmwacaZZo8YMULMGvv27UvDhw+nzZs305YtW8TPbolngG4IxePvNne2eDAk30rmUh4r1Tnnl66nRxetpsJWjWhYtzaeqrOZR1cBxHInBA9hz2rVqkWrV68mhEhr1qyZWAZNdSPEokWLqGfPnuLs4Nlnny3Es3379uI/nCmE8JWWllKvXr1o9uzZUt8RWQA9+bSxmW3ubMaS4rNhzKVP4BQ85nf505mcpAoUraCZkRWZzlddBRAt7tOnjzgCgeuQEiPCpFsCXbJkCa1atYqGDBlCzzzzDE2cOFFcowQxLSsro1atWtGsWbOoQYMG4ijFsmXLaOTIkeKapXSJBTAy3wm1Yh40Q4Uz0sKYy0jhr6g88e4/LH9iGdRLsplHKQHENz2cCSwsLKRnn31WiNhVVylCE5EAACAASURBVF1F7dqlvmdq7969YtaI/7CLFMugn3zyCZ144omCl127dtGgQYOEQE6aNEmI3+DBg2nFihViSbWkpETMEJNTt27dvPDKeRkBRoARyHoEVqz/kuYs3UgtfppD/S88Levt9Wug5+uQnIqweQWxP53veR999JEQrb/+9a8pN8Fgg8u2bdvooYceojfeeENsdPnwww8r2l1cXExFRUXi+9/SpUtp7NixVFBQIATQqSPZSJ4B+qXdrOdsfts0i4ngrWEug2MYRgle7v5LVZ/NPErNAE866STxLW/GjBlC1G677TaBY7r7AD///HMhcBAz/Ddu3DjCTlIkCCM2yCCs2r59+8QGGMQVhWhiqTVdYgEMo6tEX4bNnS169MNtAXMZLp5+Stu5Zx8h+DWSn+VPPGczj1ICiODXw4YNq+CnSZMmIhzapZdempGzL774go477rhKeXbs2CF+rlevnie+WQA9wWVsZps7m7Gk+GwYc+kTuBAfW1K2kSY/t5Jk7/7jGWBlBDIKYHl5eUXu5557jgYOHEh5eXniG2CdOnXEjk5diQVQF9Jq6+FBUy2+OktnLnWinbour3f/sQB6EMBUZ/wSH0+3BKrCLVgAVaCqv0weNPVjrqpG5lIVsvLler37jwXQgwAiegt2dKZL+BZ45JFHyrMVICcLYADwDHqUB02DyAjYFOYyIIABH1/+7qeEDTBBlj/RBJt5lPoGCJBwFAIX4CamRo0a0RFHHBGQRrnHWQDlcDI9l82dzXRuvLaPufSKWLj5w1j+ZAHEjbcuCTs2cQwCB98TEy+BuiHn7e88oHjDy9TcNvBo+8Bpgu85y59e7v5L1W4b/NV3JBjoo7OT85prrqEaNWpUYHjrrbfyEmiIPcFmRwwRxsiLsoFHFsBo3czv3X8sgJURcF0CdQQQUVtuv/32yFjnJdDIoA+1YhvEwQYbWQBD7RaeC5uzeA09tWQtdSloQgM6tfT8fOIDNvir7xkggLr66qtp4cKFIqh14tGHrl27SgWyDsTO/z3MAhgGitGXYXNnix79cFvAXIaLp5fSbn74H7Rm4za6tXc7atv0BC+PHpbXZh5dZ4BAC0Grt27dehhw/A0wkN+xI4YLnzGl2TCg8AwwOncLI/oLzwB/QEBKABGqDLtAkxPid6aL3Rm2e/AMMGxEoynPBnGwwUYWwGj6D2p1jj80b1yfJg7sELghNvir5yVQXF30xBNPiKuLcO/f7t27DwMa9/nhslwdiQVQB8rq67C5s6lHV28NzKVevJ3awjr+4JRnM49pZ4A4AI9D7hMmTKDJkyfzEqgGX7fZETXAq60KG3jkGaA2dzqsov7Fi2hL+U4KevyBBTDDEih2f+JOvpNPPplwuwNubkhO5557rrjzT0fiGaAOlNXXYYM42GAjC6D6vpKqBmf5My+nDs0Y9cMNO0GTDf7qeQkUoOLWdiyFpku4HZ6XQIO634/P2+yI4aEYfUk28MgCGI2fOXf/9e/Uki4raBJKI2zwV18CyMGwQ/Ev6UJsdkRpkGKQ0QYeWQD1O+LW8p3Ur3iRqNjv3X+pWm2Dv/oSQOz+zDQDbNOmDS+BhtgPbHbEEGGMvCgbeGQB1O9m80vX06OLVlNhq0Y0rFub0Bpgg7/6EsBEhFevXk1r1qypBHr37t15CTQ0N7Q7KnuIMEZelA0DCgugfje7fuqrhBBoYRx+T2y9Df4aSAD79+9PM2bMOIxxPggfbiew2RHDRTLa0mzgkQVQr485y591alYXy59hJhv81bcAHjhwQBx2x6F3BL9O3PRywQUX8EH4ED3RZkcMEcbIi7KBRxZAvW72yKLVtKB0fejLn7bzKBUJplmzZnTxxRfTvffeq5f1hNr4GERk0IdasQ3iYIONtg+coXYKicKcs39hL3/azqOUAHbp0kUEw+7WrRsdc8wxFXTdf//9VLNmTQn6gmdhAQyOoQkl2CAONtho+8Cpsy85Vx+pWP60nUcpAeRg2Hrc3YaBk23U40s6amEudaBM5IQ+C+Pqo1QttplHKQHcv38/pbo4XtcheJDGM0A9nU11LTZ3NtXY6i6fuVSPeOLNDzNGdqK83DqhV2ozj1ICeMcdd9COHTsOA/6uu+7iJdAQ3dFmRwwRxsiLsoFH25fOdDnZkrKNNPm5leLOP3z/U5Fs8Fffu0ABOC+BqnC7w8u02RH1IKynFht4ZAHU40tO6LNhXc+hwtaNlVRqg78GEsCvvvqqIiLMrl276KabbqKPPvqI3nzzTY4EE6JL2uyIIcIYeVE28MgCqMfNuo+bR1gGVbX8aTuPUkugyVTPnDmT+vTpQx988AGdcsopWjyBvwFqgVl5JTaIgw022j5wKu8oRPTOhq10yyOvU+OGOTR1aEdlVdrgr4FmgO3atRNXIjkJhSF9++23VLduXWXEJBbMAqgFZuWV2NzZlIOruQLmUi3gcxavoaeWrCVVuz8Tx/P8/Hy1xkRceiABvPDCC2nLli3CBESFwawPM8BOncK5j0oGGxZAGZTMz8ODpvkcybaQuZRFyl8+VbE/k1tjM4++lkD90RnsKRbAYPiZ8rTNnc0UDsJqB3MZFpKHl6My9icL4I8IsACq82HPJfOA4hkyIx+wgUcAb4OdUdmo6uqjVB0mKht1dt5AS6A6G5quLp4BmsBC8DbY3NmCo2dWCcylOj50LX/a/iKTdgaIWyBeeuklOvvss2nVqlV01lln0YknnqiOcZeSWQAjgz7UinnQDBXOSAtjLtXAnxj7c8aozoQYoCqTzTymFcDvv/9eRHkZOHAgvfjii9SrVy9q27ZtJR4uv/xyvg4pRM+02RFDhDHyomzg0faZg0onUx37k78BSn4DbN26tZj9pUt8IW643cCGgZNtDNdnoiyNuVSDfuebnxEFqzz8nthym3nMuAnmu+++EwKIa5CuvfZaOu+88yoxjp9xLEJH4iVQHSirr8PmzqYeXb01MJfh463r8DsL4A8ISO0C/eyzz8SB93//+9+0c+dOKioqotq1a0ux//XXX1OdOnXoyCOPTJl/z5494pb5qlWrZiyPBVAKbuMz8aBpPEXSDWQupaGSzqhz96fTKJt5lBLApUuXUufOnUXkFydNnjyZrr/++ozEbtq0iVq0aEF/+9vf6Je//CWNHz+esGwK8RwzZgxVqVKFevfuTdOnT3cVVBZA6T5kdEabO5vRxPhoHHPpAzSXR5zvfyqDXyc3wWYeXQXw4MGDYifo1q1b6bbbbhNC9ec//1nMBr/88stKN8QnArt371668soraePGjTRt2jQ67rjjaMSIETRv3jzq27cvDR8+nDZv3iwizOBnt8QC6IZQPP5uc2eLB0PyrWQu5bGSzdm/eBFtKd9JU4Z2pPyGObKPBcpnM4+uAoibII499liaOnUqXXfddQLoxYsX069//Wtavnw5tWnTJiX4N954IxUWFgqxHD16tJgBtm/fnnJzc4XwlZaWip2ls2fPlvqOyAIYyMeNedjmzmYMCSE1hLkMCcj/K0Zn9JfEltvMo6sA4ib4o48+mpo1a0b333+/mAFiKfPZZ5+lL774QtwVmJyef/55mj9/Pj355JN00UUXVQggzhaWlZVRq1ataNasWeLZdevW0bJly2jkyJEVxyxKSkqEQCYnbMbhxAgwAoxANiIwe+lGWrn+SzqnybF09flq7v7LRtxkbUoV8NtVAFH4lClTaNiwYZXqwXLonXfembLuc889VyyZHnPMMWKptEmTJmKm94tf/ELkx52CgwYNoiFDhtCkSZOE+A0ePJhWrFghvgumSjwDlKXZ7Hw2v22azYz31jGX3jFL9wTu/Ot3z0Lld/+lqt9mHqUEEKB9/PHH9MILL9COHTvoiiuuEDPCdOmTTz4h7O5E6tevnxC3Ll26VGx0KS4uFjtJ8f0PG2zGjh1LBQUFQgDTHatgAQyvs0VZks2dLUrcVdTNXIaH6pKyjTT5uZXUvHF9mjiwQ3gFS5RkM4/SAiiBY8osuDLplltuEd8AkbZt2yaWRLExZt++fWIDDL4lYlcorlhKl1gA/TJg1nM2dzazmAjeGuYyOIZOCbj4FmcAde7+dOq2mUflApjsIphBItWrV8+T97AAeoLL2Mw2dzZjSfHZMObSJ3BJjyVuftER+zO51TbzqF0A/boMC6Bf5Mx6zubOZhYTwVvDXAbHECU4Z/8KWzWiYd1S76oPp6bUpdjMo5QA4gA8zvC9/PLLYvMKAmVjR+aZZ56pkpdKZbMAaoNaaUU2dzalwEZQOHMZHHTn5geUpCv2J88Af0RASgBxoH3u3LniqZtvvllsVlmzZo3YGJMuxFlw16hcAgtg2IhGUx4PmtHgrqJW5jI4qrpvfkjVYpt5dBXA/fv3i1id48aNE3FAEbPz4osvpl/96lf09ttva5sFsgAG72wmlGBzZzMB/zDbwFwGRzOKyC88A/QwA8ThdRxNwHEGzPbwX/369cXOzvLycsrJ0ROuhwUweGczoQQeNE1gIZw2MJfBcIwq8gsLoAcBRFbE7bzvvvsq4YYwZjNnzgzmAR6eZgH0AJbBWXnQNJgcj01jLj0ClpTdOfvXtukJdGvvdsEKC/C0zTy6LoECV4RDQwgzBLL+8MMPqWXLljR06FDXGxwCcHLYoyyAYaIZXVk2d7boUFdTM3MZDNfxM0to+bufUv9OLemygibBCgvwtM08SgkgIsBg52dyQpDsdu3aUc2aNQPAL/coC6AcTqbnsrmzmc6N1/Yxl14Rq5y/+7h5kYQ+S261zTxKCSCCViO2Z6qEwNYIXK1aBFkAg3U2U562ubOZwkFY7WAu/SOJmR9mgHk5dWjGqE7+CwrhSZt5lBLAq6++WtzYgODX2BAzceJEEckFVyLhd3//+99FbE+ViQVQJbr6yra5s+lDWU9NzKV/nE1Z/oQFNvPoKoDOMYgbbrihYiPM3XffLc4D4lgELrrFNUnYJaoysQCqRFdf2TZ3Nn0o66mJufSHc9Shz3gJ9EcEXAUQWTHbQzSYv/zlL+IYBDbA1KpVS+wC7dixo1gCdYJd+3MJ96dYAN0xikMOHjTjwJJcG5lLOZySc5lw+D2xTTbzKCWAiAKDGR5EEOmoo46iGTNmiKuRpk+fLpZH+Rugv87AjhgcN9NKsGFAsX3pLIjPOZtfpgztSPkN9ZyjztReG/w1nY1SAgjwcCD+rbfeot27d4u7+xAdBhtjcBC+Ro0aQfxB6lmeAUrBZHwmmzub8eR4bCBz6REwfG/7/Bu6fuqrRmx+cVpvM49SAgjRe+yxx+j9998XmB08eJDee+89cS6wbt263r3AxxMsgD5AM/ARmzubgXQEahJz6R2+RxatpgWl66lLQRMa0Kml9wIUPGEzj1ICiEttX3rppcOgx5IoC2B4HmmzI4aHYvQl2cAjL4H68zMn9ueEAe2pRX6ev0JCfsoGf/W9BOrsAsUMbMGCBdSlSxcREHvOnDliSbRKlSoh05G6OJ4BaoFZeSU2dzbl4GqugLn0BriJy5+2v8i4zgCx3AnBwzEI7PxcvXo13XvvvdSsWTOxDHrGGWd48wKfuVkAfQJn2GM8aBpGSIDmMJfewDNx+ZMFEIE+XVKfPn3EkYennnqKevToUZGbl0DdkPP2dx5QvOFlam4beLR94PTqezv37KN+9ywUoc9M2f3p2GCDv/peAgVIOPC+ZMkSEe3l2WefFYGxu3btSueff75XP/Cdn2eAvqEz6kGbO5tRRITQGOZSHkTn7F/zxvVp4sAO8g9qyGkzjxmXQBEAGztAW7duTWPHjqXOnTsLOtauXSuCYG/atIlOPvlkDRQRsQBqgVl5JTZ3NuXgaq6AuZQDPHH2N2NkJ8rLrSP3oKZcNvOYUQCLi4tp1KhRaWnAzLB27dpaaGIB1AKz8kps7mzKwdVcAXMpB7jJsz/bl7IzCuDrr79Or776Kj300EN0wQUXUNOmTSsYb9OmDV1++eVyHhBCLhbAEEA0oAgeNA0gIaQmMJfuQJo++2MBlNgEs3DhQjrrrLO0LXemcisWQPfOFoccPGjGgSW5NjKX7jiZPvtjAZQQwH/96180adIkevPNNysxjtvh+SC8eyeQzcEDiixSZuezgUfbB04ZD3RufUBeE7/9OTbY4K+BdoHizN+7775LuPw2Me4ndobyN0CZriCXx2ZHlEMoHrls4JEF0N0X5yxeQ08tWUuFrRrRsG5t3B+IKIcN/upbABEEG5fgjhkzRuwEjSrxEmhUyIdbr82dLVwkoy+NuczMgRP27Nbe7aht0xOiJyxNC2zm0TUSDDC75ppraOXKlfT0009Tbm5uBYwnnHACh0IL0a1tdsQQYYy8KBt45BlgZjdb/u6nhFvf69SsTk+PuSJyn8zUABv81fcMEMA1aNBAXH2UnLZv3y4uy9WReAaoA2X1ddjc2dSjq7cG5jI93rc88jq9s2ErDet6DhW2bqyXGI+12cyj1Axw8uTJFZfhJmI7cuRIcUO8jsQCqANl9XXY3NnUo6u3BuYyNd44+oBLb5Ew+8Ms0ORkM49SAgjyPvroI7ELND8/n4455hg69dRTtXLKAqgVbmWV2dzZlIEaUcHMZWrgl5RtpMnPrRTf/fD9z/RkM49SAohzgLgGCenmm2+mkpISatmyJU2ZMkUbtyyA2qBWWpHNnU0psBEUzlymBj1Oy5+wwGYepQTwpJNOory8PMrJySFEgMGu0DvvvJM+/fRTOv7447V0PRZALTArr8TmzqYcXM0VMJeHA+7c+YdlzxmjOhu//MkC6HIQHgGxa9asSQ8++KAIfo27Abt16ybOBK5Zs0bcC6gjsQDqQFl9HTxoqsdYVw3M5eFIm3rnXyafsJlHqRkgRO7LL7+k4447Tsz+sCMUB+DXrVunq6/xbRDakFZbkc2dTS2y+ktnLitjnrj5xeTIL8meYjOPUgKIW+BxEB7fAp00f/78iu+C6bpeeXl5pXODqfLt2bOHqlevLmaWmRLPAPUPcCpqtLmzqcAzyjKZy8roO5Ff4rL5xWm9zTxKCSCAQii0KlWq0DfffEO1atWin//852n73v/+9z+6+uqr6ZRTTqFdu3ZRr169qHv37jR+/HjC2UHMHiGoKK937940ffp015BqLIBRDnXh1W1zZwsPRTNKYi4r84CjD5gFThjQnlrk55lBkkQrbOZRSgAfeOABuu666+iVV14RN0JgSRRnACFKqdJ9991HDRs2pB49etDixYtp+PDh9MILL9CIESNo3rx51LdvX/G7zZs305YtW8TPbokF0A2hePzd5s4WD4bkW8lc/oiVE/mlccMcmjq0ozyIBuS0mUcpATz99NOpfv369Nxzz1GdOnXo2muvpZkzZ7ruAsU9gpjdYZYH8Wvfvr1YEoXwlZaWipnh7NmzxXdFt8QC6IZQPP5uc2eLB0PyrWQuf8TKOfrQv1NLuqygiTyIBuS0mUdXAdy/f7/4Rvf73/+epk2bJuiCaEG8cDC+bdu2aSm8//776fnnnxfLm6+99hohsHZZWZnYQTpr1iwRYg0baZYtWyZmlJnKYgE0oKeE0ASbO1sI8BlVBHP5Ax3Owfc4HX1IdCSbeXQVQAD1q1/9inAn4GWXXUZHHXUUYQPM0UcfTR988EHKUGgvvvginXPOOeKMIL4ZYtaXeGYQ3wUHDRpEQ4YMEfcMQvwGDx5MK1asEN8FcdAeM8TkhOMXnBgBRoARMAmBcU//l77+9nvqeX5jatPkWJOaxm1JQABRzJKTlABu3LiRMJt75plnxBGISy+9lG666SY6//zzUwL8xz/+UQgjNrpg80xhYSF99tlnFTs9i4uLqaioSHz/W7p0qbhmqaCgQAhguuVQngFmhy/b/LaZHQz+aAVzSTS/dD09umg15eXUoRmjOsWSYpt5dBVALIFiE0zz5s2pQ4cOtHv3bvEdMFOC6A0cOJDef/99cYHuhAkTxHdApG3bttHo0aPFcuq+ffvEBpjly5cLsezTp0/aYlkAY9m3Dmu0zZ0tOxhkAXQQcKK+4GfT7/zL5Hs290lXAQRw2PUJIYSwuZ3XSwT6888/F9/5jjjiiIpf79ixQ/zb6zVKLIDZMXza3Nmyg0EWQAeByXNX0JJVHxl/47ub39ncJ6UEEGf65syZQ+edd56YCeI7HRK+3yFMmo7EAqgDZfV12NzZ1KOrtwabuUyc/cUp6ksqD7GZRykB5Atx9QwsNjuiHoT11GIDj0DSBjvT2egceyhs1YiGdWujx7EU1WIzj1ICiF2bqWJmu30LDJMvngGGiWZ0Zdnc2aJDXU3NtnIZtwtv3di3lUfgIiWA3377rTjI/vLLL4vjC7ghAkcSzjzzTDdsQ/s7C2BoUEZakM2dLVLgFVRuK5fOt7+4xfxM5wK28igtgFdeeSXNnTtX4IcLcXFcAVchffzxxynPASroa3wbhApQIyjT5s4WAdxKq7SRS+e6IwAb929/jnPYyKNju+sM0IkEM27cONq5c6fYBXrxxReLw/Fvv/22tlkgzwCVjmXaCre5s2kDWVNFtnG5tXwn9SteJNAd1vUcKmzdWBPSaquxjcdENF0FEOHLcDi9X79+YraH/xAX9JZbbiFcd4Rb4nUkFkAdKKuvw+bOph5dvTXYxuX1U18l7P7Mho0viZ5iG4+eBBCZcXMDbnhITIgFioDYuhILoC6k1dZjc2dTi6z+0m3i0rnrDxFfJg5sT3m5mYOB6GfDf4028ZiMkusMEA9gByiCWOMqow8//JBatmxJQ4cOdb3Dzz8lhz/JAhgmmtGVZXNniw51NTXbxKUz+4tzxJd0XmATj54EEFFbnn32WXENUtOmTcU1SLjkNorEAhgF6uHXaXNnCx/NaEu0hcuN5VVo8nMrKa63Pbh5iS08eg6GjR2fd999dwV+Z599Nq1cudINTyV/ZwFUAqv2Qm3ubNrBVlyhLVxe/8i/BZI9CptRz6LmilHVX7wtPHoWQMz2GjVqJGaAuMEBYogbHPLy8rSzxAKoHXIlFdrc2ZQAGmGhNnD51wVv0gtvfhzr2x7cXMQGHtPZmPEbIGJ+4vgDbm/45z//KW50X7VqlfgGqDuxAOpGXE19Nnc2NYhGV2q2c5l47CEbv/05npPtPMJO3wJ4+eWX0xVXXEFr164VM0AIojOVvOqqq8Rt8ToSC6AOlNXXYXNnU4+u3hqynctsiveZyTOyncdAApgJuO3bt3u+1shvF2UB9IucWc/Z3NnMYiJ4a7KZS+e2h1o1qtLdvy+i/IZ6zjsHZ8V7CdnMo9ssN+MSKMKfHTx4MC2iv/nNb9Le4O6dhsxPsACGjWg05dnc2aJBXF2t2colgl3f8vA/xKH385s3oBFXX6AORANKzlYeE6H1tQRqADcVTWABNIkN/22xubP5R83MJ7OVS+fQO449jPh/P6NfnPUzMwkIqVXZyiMLYEgOoqsYmx1RF8Y66rGBR+CYjXZi9tfvnoWE//fv1JJaNKxWsedBh+9EUUc28piMI88Ao/Asj3Xa7IgeoTI6uw08ZqsAOrO/5o3r08SBHbJS5GXFwehO5rFxLIAeAYsiuw0DJ9sYhWepqTMbuUwOeZaNNrIA/oiAVCxQNd3HW6n8DdAbXqbm5gHFVGa8tyvbuHxnw1bC0YfEkGfZZmMqlm22kQXQe79X9oTNjqgM1AgKtoHHbFsCxTe/7uPmCW9JDHlmA5c228gCGMEAma5Kmx3RIBoCN8UGHrNNABOvO5p6fUcxC8w2G3ncyT8MAhbAwMNdeAXYMHCyjeH5S9QlZQuXzqF34Jkc8ixbbMzkKzbbyAIY9SiSUL/NjmgQDYGbYgOP2TQ7ml+6nh5dtDplwGsbuLTZRhbAwMNdeAXY7IjhoRh9STbwmC0CmDj7G9b1HCps3biSA9nApc02sgBGP15WtMBmRzSIhsBNsYHHbBFAJ+B126YniOXP5GQDlzbbyAIYeLgLrwCbHTE8FKMvyQYes0EAl7/7KY2fWSI2vEwd2pHycuuwAEbffZS0IF2fZAFUAre/Qm0YONlGf75h4lNx5hJn/qY8t5K2lO+kLgVNaECn1HecxtlGWZ+x2UYWQFkv0ZDPZkfUAK+2KmzgMc4zQFx0O3TqqyLeZ15OHZoxqlNa37CBS5ttZAHUNiy6V2SzI7qjE58cNvAYZwGcPHcFLVn1UcalT8fbbODSZhtZAA0aV212RINoCNwUG3iMqwAm7vqcMKA9tcjPy8i3DVzabCMLYODhLrwCbHbE8FCMviQbeIyjAEL8cNEtlj4LWzWiYd3auDqLDVzabCMLoGsX0JfBZkfUh7L6mmzgMY4CiB2f2PmJ736J4c4yeYQNXNpsIwug+vFQugabHVEapBhktIHHuAkgNr70K14kvCc53BkL4AZrL/1lATRoQLVh4GQbDXK4gE2JE5fO7M+56FbW9DjZKGtTcj6bbVQqgOXl5VSvXj2qWrVqWm727NlD1atXz5gHD/N9gH7d26znbO5sZjERvDVx4TJx9jdjZKeUB97ToREXG4OwabONSgTw448/pquuuorq169P1apVo1atWtFtt91G48ePp+3bt1Pt2rVpzJgxVKVKFerduzdNnz5d/C5TYgEM4uLmPGtzZzOHhXBaEgcuseEFt7y7HXhnATz8qqBwvMSMUtL5qhIBvOuuu2jfvn00btw4wgyvVq1a9MYbb9Cf/vQnmjdvHvXt25eGDx9Omzdvpi1btoif3RILoBtC8fh7HAbNoEjaYGMcvgFiw8uC0vWEqC/Y+DJxYHtPs7842BjUV223UYkA7t69W8zuatasSfPnz6cbb7yRPvjgA+rQoQPl5uYK4SstLaVevXrR7NmzxSzRLbEAuiEUj7/bIA422Gj6wJkY7QVtlTnzl6oH2cClzTYqEUA40t69e2nixIk0adIkevHFF4X4HThwgMrKysSS6KxZs6hBgwa0bt06WrZsGY0cOZLatm0rfLCk6Ef3WgAAIABJREFUpEQIZHLq1q1bPEZ5biUjwAhEikDxvLX06Ve76Cd1a9B1nc6gnxx1ZKTt4cqjRyA/X9ON8Fj2vPLKK6lGjRr05z//mRo2bFjJ+l27dtGgQYNoyJAhQiAhfoMHD6YVK1aImWOqxDPA6B0ojBbY/LYZBn4mlWEql1jyxDVHuOVhwsAOlN8wxzdsptro26AUD9pso5IZ4MMPP0yLFi2iBQsWpOSpuLiYioqKxPe/pUuX0tixY6mgoEAIYLrlUBbAMF0+urJs7mzRoa6mZhO5XFK2kSY/t1IYLBvtJRM6JtoYNps226hEAK+55hp6/PHHK/G0fv16Ou2002jbtm00evRomjZtmtgogw0wy5cvF7tC+/Tpk5ZbFsCw3T6a8mzubNEgrq5W07hMjPOJ8343dGvjedNLMlqm2aiCTZttVCKAmUjasWOH+DPOB3pJLIBe0DI3r82dzVxW/LXMJC5x3AFxPiGCjRvmiAtuw0gm2RiGPanKsNlG7QLol0QWQL/ImfWczZ3NLCaCt8YkLh9ZtFocecB3P4Q6c7vlQdZ6k2yUbbPXfDbbyALo1VsU5rfZERXCqr1oG3gEqKbYiW9++PaHNKzrOVTYunFonJtiY2gGpSjIZhtZAFV6lseybXZEj1AZnd0GHk0RwMTvfv07taTLCpqE6hs2cGmzjSyAoXaXYIXZ7IjBkDPraRt4NEUAcdzBifQyY1Sn0B3BBi5ttpEFMPQu479Amx3RP2rmPWkDjyYIYOLS55ShHQOd90vnRTZwabONLIAGjZ82O6JBNARuig08Ri2Aief9ehQ2o55FzQPzlqoAG7i02UYWQCXdxl+hNjuiP8TMfMoGHqMUwMQ4n2Ecds/kRTZwabONLIAGjaE2O6JBNARuig08RimAztJnmOf9eAmUr0MK3PFVFsDnAFWiq69sG8TBBhujEkAnzifq93vDgxdvt4FLm23kGaCX3qA4r82OqBharcXbwGMUAoj7/SbPXUGI+oID70+PuUI5rzZwabONLIDKu5B8BTY7ojxK5ue0gUfdAoiZ3/iZJUL8sPQ5cWAHIYKqkw1c2mwjC6DqHuShfJsd0QNMxme1gUedAvjootW0uGyjED/c7D71+o5axE+njVE6tQ3+ms5GFsAoPS+pbpsd0SAaAjfFBh51iQNEr/u4eYIT7PjEcYe83DqBOZItwAYubbaRBVC2J2jIZ7MjaoBXWxU28KhLAJ3zfpj5qYj04uYUNnBps40sgG49QOPfbXZEjTArr8oGHnUIIOJ84oojzAJVxPmUcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MCjDgG8fuqr4n4/3d/9Ep3EBi5ttpEFUMuQKFeJzY4oh1A8ctnAo2oBdIJcY6fnhIEdlMT5lPEmG7i02UYWQJleoCmPzY6oCWIt1djAo0oBdMQPdUS19Ok4ig1c2mwjC6CWIVGuEpsdUQ6heOSygUdVAujc7I7yw77c1o/32MClzTayAPrpFYqesdkRFUEaSbE28KhCABPDnHUpaEIDOrWMhD/+Bhg57KE3gM8Bhg5p+AXaMHCyjeH7TVQlhsll4o7PqI48pMIxTBuj4smtXptt5Bmgm3do/LvNjqgRZuVV2cBjmDNAHHPAjs8t5Tu1hjmTcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MBjmALoXG+EHZ9Th3bUGunFzSFs4NJmG1kA3XqAxr/b7IgaYVZelQ08hiWApm16SXYOG7i02UYWQOXDoXwFNjuiPErm57SBxzAEEDe748gDlj57FDYTcT5NSzZwabONLIAG9TibHdEgGgI3xQYewxBAXG+EO/6w6WXiwPZGLX06TmADlzbbyAIYeLgLrwCbHTE8FKMvyQYegwrg/NL1hGuOkKI+7J7JY2zg0mYbWQCjHy8rWmCzIxpEQ+Cm2MBjEAF8aslamrN4jcDZlPN+6Ui3gUubbWQBDDzchVeAzY4YHorRl2QDj34FEEueWPqMg/j5tTF6D/TWAhv8NZ2NLIDefEVpbpsdUSmwmgu3gUc/4pAofs0b16eJAztoZsZ7dTZwabONLIDe+4SyJ2x2RGWgRlCwDTx6FUCEOcPMD4feIX639TmPcO7P9GQDlzbbyAJoUA+02RENoiFwU2zg0YsAIswZIr0gRXm3nx9ibeDSZhtZAP30CkXP2OyIiiCNpFgbeJQVQMz4cKs7RDBOMz/HcWzg0mYbWQAjGSJTV2qzIxpEQ+Cm2MCjrAA6kV5MDHMmQ7QNXNpsIwugTC/QlMdmR9QEsZZqbOBRRgATrzcy+axfJqewgUubbVQqgPv376e9e/dS7dq10/rYnj17qHr16lS1atWMg9M999xDo0aN0jKARVWJzY4YFeYq6rWBx0wCiGXPyXNXiCgvSHHZ8ZnKF2zg0mYblQjggQMHaM2aNTRjxgwhbPfff7/wrfHjx9P27duFII4ZM4aqVKlCvXv3punTp2cUSTzLAqhiqNZfps2dTT/aamtMxyXie2L2h1TYqhEN6NwqFjs+WQDV+kuUpWs9B/jdd9/R6NGj6a233qLWrVsLAUQDRowYQfPmzaO+ffvS8OHDafPmzbRlyxbxs1tiAXRDKB5/ZwGMB08yrUzFpbPsiW9+t/ZuRy3y82SKMjYP+6ux1HhqmFYBdFr24IMP0gcffFAxA2zfvj3l5uYK4SstLaVevXrR7NmzqVq1aq7GsAC6QhSLDDygxIImqUYmc5kY37Nt0xOEAMY9sb/GncEf2m+EAGJptKysjFq1akWzZs2iBg0a0Lp162jZsmU0cuRIatu2bVq0WQCz2xGzw7rMnS2bbEweVJaUbSRcbIsE8RvWrU1slz0TeWIBzA6vNUIAHSh37dpFgwYNoiFDhtCkSZOE+A0ePJhWrFghvguWlJSIGWJy6tatW3awwVYwAlmEwN9WfUavlP2w4eWEY2rTyCuaZZF1bEq2IJCfn3+YKUo2wTi1JC+BOr8vLi6moqIi8f1v6dKlNHbsWCooKBACmG45lGeA2eGG/EadHTzCitdK36Y/L/pfhUGNG+bQbb3bGXmvn1/U2V/9ImfWc5HNAD/88EO67777KtDYtm2b2CAzbdo02rdvn9gAs3z5crErtE+fPmlRYwE0y6H8toYHFL/ImfUcrjR6Ydl7tHvvARHerLB1IyNvdA+KGvtrUATNeD4SAUxl+o4dO8Sv69Wr5wkZFkBPcBmbmQcUY6mRbhgussWGFyTM+nCrQxwCW0sbmJCR/dUPauY9Y4wA+oWGBdAvcmY9xwOKWXx4ac3W8p1io4tzxq/FT3Nowu87eikidnnZX2NHWcoGswDGgEfubDEgSaKJ2cgjgllPmFlCW8p3CgQQ2qxFw2qUamOBBESxyZKNXCaDb7ONSjfBhOnlPAMME83oyrK5s0WHerCaF5SupzmL14i7/LDUOWFgB8pvmJP2bFWw2sx6mv3VLD78toZngH6R0/gcdzaNYCusKlt4hODhNgec8UNKvs4oW+zM5Apso8KOorFoFkCNYPutijubX+TMei7uPEL4nlq8pmKjC9DFZpepQyt/74u7nTJewzbKoGR+HhZA8zniJaUYcCTTxDgPmvjWhwtsIYJIWPJEVBdEd0lOcbZThkfkYRtlkTI7Hwug2fyI1nFniwFJEk2MK4843oArjJyNLsO6nkOFrRuntTiudkpQWJGFbfSClrl5WQDN5YY7Wwy48dLEuA2amPVB/JzjDYkbXTLZHTc7vXDo5GUb/aBm3jMsgOZxwktKMeDETxPjMmjiXN/4mSUEAXRSj8JmdFm706UOtsfFTj8csgAGQc28Z1kAzeOEBTAGnPhpounCkLy7EzbiG1+PoubieINsMt1OWTt4lrvB2vOcfA4wjF4SUhk8oIQEZMTFmMzjklUf0YKSdRWzPhxtuKFbG18BrE22MywXYBvDQjLacngGGC3+UrVzZ5OCyfhMJvKI5U6c6cMmFye5bXJxA9pEO93a7PXvbKNXxMzMzwJoJi+VWsWdLQYkSTTRNB4x68NhdmeTC77ztW12oqflzlRmm2anBDWes7CNniEz8gEWQCNpqdwo7mwxIEmiiSbwiO98ED2EMXOONWB3J77zXVbQRMIK9ywm2OneymA52MZg+JnyNAugKUxkaAd3thiQJNHEKHnEUuc7G7fRIwtXVTrM3qWgifTuTgkTRZYo7ZRtY9B8bGNQBM14ngXQDB4ytoI7WwxIkmhiFDymCl+Gi2q7tGtCRa0bSx1rkDCtUpYo7PTaxqD52cagCJrxPAugGTywAG6wd8u1ChfEdz3czr7hs/KKGR/idiKCS1hLnenazeKgglH9ZdrMIx+D0O9vaWu02RENoiFwU1TyiJkednIuX7uZNn7+TcX3PTQaRxpwiD1V3M7ARqUoQKWdKtrrp0y20Q9q5j3DM0DzODmsRdzZYkCSRBNV8ChE7/+EzwlU7TQFMz4ErPZyiF3CDNcsKux0rVRzBrZRM+CKqmMBVARsmMVyZwsTzejKUsHjzQ//g9Zs3CaMwre9wtaNqEV+HjXIrePrEHsY6KiwM4x2hVkG2xgmmtGVxQIYHfbSNXNnk4bK6IwqeHQEsH+nlsq/7cmCq8JO2bp15WMbdSGtth4WQLX4hlI6d7ZQYIy8EBU8OgI4YUB7MfMzIamw0wS7EtvANprGiL/2sAD6w03rU9zZtMKtrLKweMQtDSve/VREcHF2ebIAKqMtZcFhcam31d5qs9lG3gXqzVeU5rbZEZUCq7nwMHjE0YY5i9dUajm+/U29vqOSM31+IArDTj/16nyGbdSJtrq6eAaoDtvQSubOFhqUkRbkl0eELcOsT0Rz2bBV2ICjDT2Lmke62SUdmH7tjJQcj5WzjR4BMzQ7C6ChxCQ2iztbDEiSaKIXHiF2c5asFef6ko83eLmcVqJZoWfxYmfolWsqkG3UBLTialgAFQMcRvHc2cJAMfoyZHnsX7yo0kF2LHG2bXaCOMge5fEGWQRl7ZQtz8R8bKOJrHhvEwugd8y0P8GdTTvkSip04xHXE2HGh4PtuKEBB9kheAM6tzLm+54MMG52ypRheh620XSG5NrHAiiHU6S5uLNFCn9olSfy6IQuw1IndnImXkiLCoNeShtao30UxP7qAzQDH7GZR94FapBD2uyIBtHguynYwLJmw1Z6/6PP6Ktdh2jn7r1iU0tywqwP1xPhPJ8pZ/r8GM3+6gc1856xmUcWQIP80WZHNIgG16Y4d+45szrM8pxdm+kexoYWLHNC8PJy67jWEYcM7K9xYMm9jTbzyALo7h/actjsiNpA9liRE38Ty5cQueQbGBKLw8wOG1iq0176VevTxZ/q1KqhPUi1RxN9Z2d/9Q2dUQ/azCMLoEGuaLMjRkUDZnHYlOIkJ+JKuuVLIWo1q4uZnLN5BTO6xF2bNvAIHGywk22MqmeGWy9vggkXTyWlcWcLDisEbes3uyoKcpYmkwXNbcnSKQAiB8HLPz5XLF2e2/QE1yVMG3hkAQzuq6aUYIO/sgCa4m0Z2mGzI8rQk7gc6RwaT7wJPfHfMuU5szksWzrf5SB0EDykxH/LlmeLMNhiJ/dJL55vbl4WQHO5+XH5bcMGys/Pj0FL/TcxlSM6woZSMTNLnp15ETbnXJ3TwkQRS95xqeqwuQ2DJgug/z5g2pM2+GskArhz506qVasWHXHEEWk537NnD1WvXp2qVq2a0S/uueceGjVqlGm+E2p7stkRMWPDBpJlZetoc/k+gRuWK7eU75TGEHExk2dmYczYpBsgmTGbeUyEwAY72UZJpzc8m1YB/PLLL6lnz55UrVo12rRpE910003Ut29fGj9+PG3fvp1q165NY8aMoSpVqlDv3r1p+vTp4neZEgugPg/D2bVde34QKSdBqCBYTpKZlXn9zpYobonCpmqmpgpRGwZNngGq8h795drgr1oF8O6776Zvv/1WCN4XX3xBDRs2pDVr1tDtt99O8+bNE2I4fPhw2rx5M23ZskX87JZUC2Dy5gm39oTx92QRKS8vp9zc3DCKdj2X5kXIwmiQszR5TJ0j6LRGx1ccDYibuMlgYcOAwgIo4wnxyGODv2oVwP79+1NRURF1796dDh06JJZAP/zwQ+rXr58Y4CF8paWl1KtXL5o9e7aYKbol1QKIu9dwBxsnIgRlzsutPCNPFioZ4UoV5cTmzpZtvsVcZgejNvOo5BzglVdeSfiva9euwkMaNGhAK1asoJNOOonKysqoVatWNGvWLPH7devW0bJly2jkyJHUtm1bkb+kpEQIZGLCd8J9+yovy4Xpflv21qWte+uGWaRrWXWq7qVqVQ665vOTQbZs2Xx+2sDPMAKMACNgAgL169en3/3ud4c1RYkA3nHHHVSvXj0aNmwYHThwQMz6vvnmm4rNMLt27aJBgwbRkCFDaNKkSUL8Bg8eLEQS3wVTJdUzQBNIYhtNYCF4G2zgESjZYCfbGLw/mFBCOh6VCOCCBQvogQceoNdee43mzp1L9913H7355psVOBQXF4slUnz/W7p0KY0dO5YKCgqEAKZbDmVHNMGNgreBeQyOoSklMJemMBGsHTbzqEQAd+/eTZdccgm9++67hH///e9/pzZt2giWtm3bRqNHj6Zp06aJJU1sgFm+fLnYFdqnT5+0TNpMUjD3Nutp5tEsPoK0hrkMgp45z9rMoxIBdKj95JNP6LjjjhPn/Jy0Y8cO8U8skXpJNpPkBSfT8zKPpjMk3z7mUh4rk3PazKNSAQyTdGyMadeuXZhFGlcW22gcJb4aZAOPAMYGO9lGX13AuIfS8RgbATQOUW4QI8AIMAKMQKwRYAGMNX3ceEaAEWAEGAG/CGSVAOL7otdvi36BU/Hc/v37ae/evZXCwh08eFBsJKpTJztuEVeBm8llysTDNbn9trftu+++E30v8XjW999/L36uUaNGVsCDeMyIxZy4VyNOhmHcBE85OTmVmi3T97JCAD/44ANxnALHLdau/SGaC5wUhx8vuugi8fPpp59Od955p5G84qwkQsXNmDFDOOL9998v2vnYY4/R5MmT6YQTTiCQjKg5sCnuKU7c+MU6XTxcv+X9//bOLFSnKIrj+w0hGaJkzJB5yJAkY6bMV7rdPIiiEEIyPyhReCISkksZM+WaQikiQ8ZCFFIoRXn2ot+q/bWdzuS79/u+M6xVwr3nnL3W2ufs/15r7/1fSb1vwoQJpkWLFoXjSydOnDCNGjVKqrqx9frx44d59eqVqaqqMowvbdu2lW9w9erV5vnz53K+GUKPffv2hZL9x26wAhcCEK9fv5Zz2Ng1Z84c0SJNfcqYD5c0pwwIgNjQ07p1a18uaj8XZwIA4R6lI1+8eFEAwHfv3slxi5MnT8aiWqvA+1doktkLuj59+tQMGTJEAJCPjRkZBAIMMCtXrhRO1Y0bN1ZS1QZpO019E9dgBsnz588XKpb48eEy4ESRvsdtrxLXeW1Eh27dupkPHz4I5WFURZdK6By3zZ07dwp7FfYg9CVsVHyLnFcGAB88eCDkHo8fPy5Mqo8ePSpnmNMgV65cEbCeNm2aqPvy5UtTW1trLl++bPbs2VMAwCT3Kcfmjh07JvqTLWOyZaP07du3S18RMHi5qIO+vUwAIM5gtlZTU1MAwLq6OpkF4Ihhw4bJzGDcuHGJfk/3798vs00+uk+fPglZAByqCDNNAJ4oMe2Sxr6J8jmTFz7AS5cuyaVBfLhprvfotRHy9latWpnmzZvLJG3Tpk1m6dKlUa5K5O9nzpwphBxEda6Q6rQACH0joMgZZmT27Nlm7ty5UtEmDcK4AgCuWrXqH3WhrJw/f74AYNL7lCUue5QOI2wBAdjFiFyx7fbt275c1H7fXmoAkDw1zDJemTx5sswCvAB4584d8+zZM6FbO3PmjGGGR+QRRLVWjhf427dvEuW50qxZMzN+/Hj5kQuA2DNv3jzhSkVILZHmPXLkSDlUbZA2sOHz58//PKtLly5ChpC0vinWYNun9NPp06eF0IE+PXjwoC8fLvanTYJs7Nmzp1AZkr348uWLGTRokBDdMwNPizBOEB1s27ZNJsw9evQwQ4cONe3btxcTXAA8cOCAefv2rUxGEcj9mVRD6p9ksd/hxYsXRU2AjvdwwIAB8n8XAOm/pPWpO/bPmjVLIlbEjv2MJQsXLjT9+vWTAAFCFT8uar9vLzUASCoQ/lCvHDp0SGafXgAkPCYlwx/y9VCscTC/Q4cOFXtXYbyx63tWCfThhfMCIBtfSJexCYaP0N5Hrj4tQnro5s2b/6g7depUGWiS1jfF+tT2KWt+rOOOHTtW3jHeyTA+3GLbq8R9QTaSVSH1aTdPEEXRt1SBSYusWbPGfP361dy9e1cG0DZt2hh+ZpmrXADkGtacoHpEsBfwBzCTLPY75P1kHOzVq5fhO7Rl6FwAZOklaX3qjv1nz54VcEMY+wkoeOf27t1rqqur5edRXNRuX6UGAKNeMC8AMhMn0mDWRu6eNIVNJ0Y9q1K/dyNAdBg4cKDo379/f5ntMEudNGlSpdRrsHbT2DdRxnvTg1F8uFHPS+LvvTaSaiLlRGqepYbevXtLZJ+mCND6OU4K9OfPn6Zr165S5PvXr19m8ODBMqlmspMGiZMCTXqfuilQgBrfo/Pw4cMLXfA/315mAfD79++SB2bGwx/AY/r06Yl+TwFAQJpZJkJH2vQKC9ds6KlkCrehnJfGvomy3QsOYXy4Uc9K6u+9NjIAkU4jLUjksGTJksImoKTaEKRXGACyI9Tuvt6wYYNMSgF8CP+XL1+eGlPDAJBxhjXNpPepC4DslyBl7cqCBQtkjTaIi9rbWZkBwKC3kIr08JGmVVjc/f37t+wAzZqkvW/i9IcfH26c+9J0DZGRexQiTboXoyvpbs4ApvnMcZTdWejTON9e5gEwqqP19+oB9YB6QD2QTw8oAOaz39Vq9YB6QD2Qew8oAOb+FVAHqAfUA+qBfHpAATCf/a5WqwfUA+qB3HtAATD3r4A6QD2gHlAP5NMDCoD57He1Wj1QUQ9wTARp0qRJRfXQxvPtAQXAfPd/pqyHKQh2CK9AZAwbBudAYaZpaDIBDkXDQL9161ZhoYgrEJtDms22eu53hYO9UHTZ6iZxnxl1HWdNKRsD92OQFGtPVNvu7yF5gOLKUv353RumB0eDOIcH805ayKj/xz96bXk8oABYHj9rK2XwwKlTp8zDhw+FjxLeQ4iNGRxbtmwpVTbgEbx27ZrQQDWkcGYKCi0OScM5G1e4HjoxGIu43xX0heU+DCDituNe17FjR2Fs8ePVtdcVa8//6AOfpi0vFHRfmB5wj3bu3Fn8jR9V1APFeEABsBiv6T2J9gDUdwAf7P7QriGw6gCAUOLB6I8QfUE4DghRKgb2CKo5AKKAKYTW0F7BkkEtSZj0qfhAXUYGb9hD4HGFkR4AA1iJ5rhn0aJFZseOHcLcQ72yXbt2mY8fP5oRI0ZI5ALAuQAInya0YtevXxfdnzx5IlywXgCEt5G0ITUV0ZOqE/Cq0gbk1JCmQ+QMGwbtoM+YMWOkriRE6viD6g3wXeIfex3RGPajMzy6YfbYziei5kD4hQsXhBPzxo0bQjwPtybPpy3qcMKcgs/4N3owMaEfaIfrieYgrQeUiehgI2ncuLHw3wbpATXgrVu3hHcVHkhbyy7RL6YqlzgPKAAmrktUofp6IAwAGTBh8YduDjqrP3/+SDFQwAIB7AAVBmLIggEbQAKwhCyZQZ80JyTlAAhAOXHixEIER0kgQPTNmzdSNw6wIeKiJBf3UncNVh+AzQVAAIJac1DeAbQAMoDmBUBqtQGkixcvFrAk2u3Tp4/oBlEwz1y2bJnp1KmT8MfOmDFDwIU/UF0BFLQPKMGO3717dwERwJyf7d69W5j1bUTqtQc7rOAn2PdJVQLs79+/F39QHxBAZCIANRW+wMeHDx+WaBcqvNGjRxciXHyybt06eQaMMqSpAUkAMUgPJjG2iCuTk759+9b3tdH7c+gBBcAcdnrWTQ4DQNYIAQ8GeQprUluMQR4AZFAdOXKkWbFihfx//fr1El0RFTHwAy7Uf2NNkWiPiBJQ4xkM1LDSA2THjx+XgR+AIpIDDGDiZ5AmZUd7kEYT/dgUKJEoQEHtOdjvSdsGASDllihmCoivXbtWIkFAlrU9Ik90BzxoA75EOGSJKu/fv2/cFCgRFpEawAWnIvo2bdpU9AyyZ8qUKYXXh6KxRKSUgaICBOV1qMmGHYAcz4MYG2BjkkA1hXv37snPN2/eXADAUaNGyfWAPRMLypu5AOjnV0BfU6BZ/5JLb58CYOl9rC2U2QNhAGjXAImSiOwAmy1btghoAGREbGySIb0GANpSPwACxMdEOADX1atXxSo3YrJrgPweQKAt6s2RJqXAMREX7QCw1Hbk9xYAqSwAt6Td9NKuXTsBNL8IEAAG9NjQQmQH0AFg6E50Cyk15XxsqhEABpy8AAj4AYLU+yMqhNQaewFfd03TtcddP7XFUwE49GaiQJRHZRbSn4Ae4Ab4usWoKVvDBMGucdrojWeQWqbILvbYCNDPr9yjAFjmDyuDzSkAZrBT825SsQDIgEwExG5O1vpYt2Pdin9bpnzAkg02gBADu61FFgQYDOYABNcRLTGYA7qsk/EsC4CAJGlW/mb3J6AVFAFGASDtEeWyHshaGtGlGwECtHV1dZJKpWIKv6+qqjI1NTWShkWvOADIe0Yqk6iO1CoTBtpGqCEIiLG7FTvYhUuk+OjRIyloSuRsAZAUJvYSUdMuaVU3AgwDQNLUpFC9u2jz/g2o/fE8oAAYz096VYo8YAGQElgMrIjdBEP6jTQe0RxrXm4EaAGQtUFSi0QzCNETa3KU1WJNjYgLYZCura2V6ImBm2MNREHnzp2Top1EeLRFtMmGGius1QE67jEIok/AhDU9AI40J+2FRYDojx3oA8hwDxEgaVZ041n8nKg4dBk5AAABOklEQVQK24hCWbckagWwACSAz0az2Il/SEEG2ePdQWvX7/gbXVgzJRIlOiR9jN9o0/oMgCfyZBMQG2+I+lgXRCd8RKqZtDFFW9ElSA+iS45SkG5NW1miFH1KmVdVATDzXawGFusBSlGxwYN1LLcOI5s7iBS9RxfC2mGnI3XlSNuxc9JPACoiQ9oD/Ooj7KS0z/LWkAR4WGtjlylCWSp2lbJxplT1Jjm2gL9sm65trCUCzmyq4TqAjQjW70ynex82MHHgmUE+rY8P9d7se0ABMPt9rBaqBxLtAdb62LHqCmukRMQq6oFSekABsJTe1WerB9QDsTzAoXeOjZA2JQJkE5CKeqDUHlAALLWH9fnqAfWAekA9kEgPKAAmsltUKfWAekA9oB4otQcUAEvtYX2+ekA9oB5QDyTSA38Bc5fX6UWaUGEAAAAASUVORK5CYII=", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } - }, - "title": { - "subtitle": "How each comparison contributes to the final match score", - "text": "Match weights waterfall chart" - }, - "transform": [ - { - "filter": "(datum.record_number == record_number)" - }, + ], + "source": [ + "linker.evaluation.unlinkables_chart()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "4624c6a0-a1a8-4762-9003-b3da5aa45a77", + "metadata": {}, + "outputs": [ { - "frame": [ - null, - 0 - ], - "window": [ - { - "as": "sum", - "field": "log2_bayes_factor", - "op": "sum" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
match_weightmatch_probabilityunique_id_lunique_id_rfirst_name_lfirst_name_rgamma_first_nametf_first_name_ltf_first_name_rbf_first_name...bf_birth_placebf_tf_adj_birth_placeoccupation_loccupation_rgamma_occupationtf_occupation_ltf_occupation_rbf_occupationbf_tf_adj_occupationmatch_key
019.4657510.999999Q5536981-1Q5536981-4georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
133.5725921.000000Q5536981-1Q5536981-5georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
233.5725921.000000Q5536981-1Q5536981-6georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
333.5725921.000000Q5536981-1Q5536981-7georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
422.0256281.000000Q5536981-1Q5536981-8georgegeorge30.0280140.02801448.723867...162.734330.097709politicianpolitician10.0889320.08893221.9834130.4599750
\n", + "

5 rows × 47 columns

\n", + "
" + ], + "text/plain": [ + " match_weight match_probability unique_id_l unique_id_r first_name_l \\\n", + "0 19.465751 0.999999 Q5536981-1 Q5536981-4 george \n", + "1 33.572592 1.000000 Q5536981-1 Q5536981-5 george \n", + "2 33.572592 1.000000 Q5536981-1 Q5536981-6 george \n", + "3 33.572592 1.000000 Q5536981-1 Q5536981-7 george \n", + "4 22.025628 1.000000 Q5536981-1 Q5536981-8 george \n", + "\n", + " first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n", + "0 george 3 0.028014 0.028014 \n", + "1 george 3 0.028014 0.028014 \n", + "2 george 3 0.028014 0.028014 \n", + "3 george 3 0.028014 0.028014 \n", + "4 george 3 0.028014 0.028014 \n", + "\n", + " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n", + "0 48.723867 ... 162.73433 0.097709 politician \n", + "1 48.723867 ... 162.73433 0.097709 politician \n", + "2 48.723867 ... 162.73433 0.097709 politician \n", + "3 48.723867 ... 162.73433 0.097709 politician \n", + "4 48.723867 ... 162.73433 0.097709 politician \n", + "\n", + " occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n", + "0 politician 1 0.088932 0.088932 \n", + "1 politician 1 0.088932 0.088932 \n", + "2 politician 1 0.088932 0.088932 \n", + "3 politician 1 0.088932 0.088932 \n", + "4 politician 1 0.088932 0.088932 \n", + "\n", + " bf_occupation bf_tf_adj_occupation match_key \n", + "0 21.983413 0.459975 0 \n", + "1 21.983413 0.459975 0 \n", + "2 21.983413 0.459975 0 \n", + "3 21.983413 0.459975 0 \n", + "4 21.983413 0.459975 0 \n", + "\n", + "[5 rows x 47 columns]" + ] }, - { - "as": "lead", - "field": "column_name", - "op": "lead" - } - ] - }, - { - "as": "sum", - "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" - }, - { - "as": "lead", - "calculate": "datum.lead === null ? datum.column_name : datum.lead" - }, - { - "as": "previous_sum", - "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" - }, - { - "as": "top_label", - "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "bottom_label", - "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "sum_top", - "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "sum_bottom", - "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "center", - "calculate": "(datum.sum + datum.previous_sum) / 2" - }, - { - "as": "text_log2_bayes_factor", - "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" - }, - { - "as": "dy", - "calculate": "datum.sum < datum.previous_sum ? 4 : -4" - }, - { - "as": "baseline", - "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" - }, - { - "as": "prob", - "calculate": "1. / (1 + pow(2, -1.*datum.sum))" - }, - { - "as": "zero", - "calculate": "0*datum.sum" + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" } - ], - "width": { - "step": 75 - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAIlCAYAAABVSXjKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQnYjVX3h5cMkVmKBmVojmYRiiJp0jyXqeH7mtOkGc2apEGfUtIsaZ5pkCEKlaL0qUiDUuYhJP/r3v7P+x3HOe9Zzzs55/Xb1/VeOGc9z7P3vdez2T9rrV1m9erVq01NBERABERABERABERABERABERABERABERABMysjMQi+YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBEQGKRfEEEREAEREAEREAEREAEREAEREAEREAERCCPgMQiOYMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIDEIvmACIiACIiACIiACIiACIiACIiACIiACIjAugQUWSSvEAEREAEREIESJpB4tkSZMmXynp7u8xLuXpE9bsWKFbZs2TKrWLGibbzxxkV239Jwo4ULF4ZhVKtWLd/hRD4R+Ql/TvSZ0sBCYxABERABERABEcg+AhKLsm9O1CMREAEREIFSTmDHHXe0b7/9NoxyzJgx1qJFi/D79u3b2/Dhw8PvX3/9dTv88MPzJTF58mT75JNPrFmzZtakSZN8bb/44gvbY4897JhjjrEXX3yxRAg/+OCDdsEFF1jv3r3thhtuyPjME0880YYOHWoTJkywvffeex37t99+23766acwhk033TTj/YraYM6cOfbKK6/YNttsE+aqIG3BggV2wAEHGHPXuXNne/zxx9PeZsqUKda4cWM76KCD7L333rMBAwbYv//9b7vlllvsmmuucT++OOZ+fc+Fe/AyFAEREAEREAERKBABiUUFwqaLREAEREAERKDgBBLFoj59+tiVV15py5cvDxE4UXvttdfsiCOOyPchffv2tUsvvdTuv//+IMrk1z777DPba6+9ggCFEFUS7f3337fnnnvOjjzyyPCTqR199NFBjBk/frztu+++65h37NjR4DJp0iTbc889M92uyL9HxGratGmhBLeXX345XM99br755nxFp6+++iqIgJFY9J///MfOPffccN21117rHl9xzP36ngv34GUoAiIgAiIgAiJQIAISiwqETReJgAiIgAiIQMEJRGJR1apVrVWrVvbmm2/auHHjbL/99jM+W7RoURBFEIsmTpxo119/ffh12223DfZXXXVV+PMll1wSIpR22GGHIDideeaZQWy588477b///a+1adPGEGBOOeUUiwSD/fffP9hzf+532223Wdu2bdcazFtvvRU+P/DAA0NU0COPPGJPPvmkHXvsseGZDzzwgD3//PPh9wcffLD16tXLEEFo3P+uu+6y2rVrhwime++917p162ZdunQJKWmIHPSxSpUqdvHFF4fIGu7BGCOxqGfPnvbSSy/Z3LlzDVHijjvuMKKUEElg07JlS7v77ruD4IKAwrOJnmG8Z599trVr167A40FMu/3220PfeT5RWyeddFIQr0477bQQCcYcde3a1fr162ffffedXX311TZy5EirW7duGANjKVeunF122WX26aefBoHnoYcesubNm4exM2cNGza0s846K4h9qZ53wgknWFyxqDBz/+yzzwbG+M3uu+8eBKrLL788jINIqK222ir4Xv/+/YNfMp7EuYCTmgiIgAiIgAiIQOkhILGo9MylRiICIiACIpAjBCKxCEGAtCtq+yA8XHHFFSHqBKEEMefQQw+1Lbfc0n7//ffwOSlYiA8IL506dQqbeaJsEE0QHTbbbLM8oQTh5MMPPwxEiCTiPkQW0bbeeutQK2fq1Knhz4sXL7bKlSvn0UMA2W677WzzzTe33377zQ477DBDQELs+Pjjj4NogGiCmIGYxBgQoGrVqhVEL37PvRFyEtPQbrrpppCOhtiyxRZb5KXinX766UGMisQiOpLY/1tvvdVq1KgRRClYEKXEc+GBmIRAhcCBiEWf6T9iVNTijIf+I+Ig5iBK0S8a46Ufb7zxRngGAhDztdNOO4V+0N8ff/zRvv/++/AdokqHDh3snXfeyesHotIHH3wQGO22224hpaxChQopnzd9+vQgrnkji0hTi0SyuHNP/xkH83LUUUfZu+++GzgPHjw4+FlyjSTYIywlzsX6iPTKkddd3RQBERABERCBnCQgsSgnp02dFgEREAERyGUCkVh033332UUXXRTSrm688Ub79ddfQ3rVo48+GsQiIo34PVE6CBdPPfVUiK7h96NHj7bkNLTjjz/ehg0bZg8//HCIsHnhhRfsiSeeCAIAQlEkFiFCIFIgwBAdgpiCOJLYoj7OnDkz1M3Bjka0DaIQghP9JuKE9vXXX4ci1ggWCCaIF3yWKBYh6FCr55tvvjHuf+GFFwaBJ1ksIpIIIYaIpnPOOSdEJsEhOfUJdqTgHXLIIUFwoVEAGj6IY3HHM2vWrMCdfrdu3dr+/vtvO/nkk4MYNGLECKtevfpaaWiIZNRZQqxCWPnzzz/D9zQKWCMGIhbxK+mGDRo0yBsTwtl1112X7/Pq1KnjFosKM/fMLf3cddddAzcioxDFiPBCoIvEIkQiosHgoDS0XF6B1HcREAEREAERyExAYlFmRrIQAREQAREQgSIlEAkxFKcmvYk0JFLLEEgQYyKxiIgePrvnnnvWen46sSgSY0hRi4Sh6MIoDY2ULyJHaBSRJjIpEm8SH0J/EDgopkzqGBFBCFqkuNEnIpkQQRC0UrVBgwbZkiVL8sQiom2IyCF6JToJjAgqUtuSxaKo6DeCBSlP0ffJAgWpZxSaJsIlameccUaIaNpkk03W6pZnPKS2cU8EoKgAeXQTCo8jriXWLELU6tGjR8rxk86FUIYIQzQR0T60SACLxKL8nkdamzeyqDBzz7yQYkf0WGJjzhGIIrEoOtkOG4lFRbok6GYiIAIiIAIikHUEJBZl3ZSoQyIgAiIgAqWdQCQWEUmE+MAJWUR3UHuHyJZILCJKhk05KUvUlPnll19CfZ90YhE1ix577LFQA4kUto8++ihEiFBzJkpDSyxwnZ9YRA0eBI6ohhLP5h7RnylezalgpKvxGQIV0Up//PGH/fXXXyFyaMiQIXliEdEq2BJ1RKQOEUmc6EVtpGSxKCpwnUksGjt2bBDXaKTnIRIhHMGAmkKJzTMeajRFogsRSwhP8EK8SiUWEbXFiWbU9+GZtJ9//jlENyECki6HWJQo3iWLRfk9L45YVJi5p08IZaQ3Erk2cODAEFGULBYxrqhJLCrtq5TGJwIiIAIisKETkFi0oXuAxi8CIiACIlDiBBLFIurYRMenIx6RmhSJRWXLlg31gqgVRGQMEUjUu4lqB5HCRSoXaVhEgHC0OwIFNYMQSxABEGdGjRoVahIln4aWn1hEHSXSymhch+AR2SMOIQrRP4Qs6hMhNPDc6Eh3RBMihxLT0IhQou4PKWykPEX1fLxiEVFI3JPC2t27dw9RTjBA1GHcjBdR55lnnglFvRObZzyIXdEYqTlELScKh9PoKzWhYEHKHs/m96SW0RBZZs+eHfrD54hXzF0msSi/5yHOeSOLqEtV0LknCowoMmooUY+KKDDES3yRCKgosihRLEqeC4RDNREQAREQAREQgdJDQGJR6ZlLjUQEREAERCBHCERiEeIC0TNEhSBAUDuI2juIRWz+EYGIJIoKVSPIICwh1syYMSPUOCKqhWga0sJIGeNeiCVRQ5xBkEp1fHp+YhHXcwpYdOpZVB+JX0899VR7+umnwyOmTZsWxBrEERp9oyg0dZIogoxYRPoakUVEASFEcE+EpT322CP8nnEhWEQFrknPI+Iqiizi/kTxEF3Fs2mc/IVQhSgW8eHz4447LkQ0IWQlN894iO6iqDNiCaIWYg3pWUTawJF+UXeJZ5NCRh+pqRSlwu2yyy6h4De/RgWuU0UWIS4hnuX3POoQUS+KOaYG1IABA4KgwzxHolw0RqK5Cjr3sMLXEBZpMMaHogi2VGJR8lwQaaQmAiIgAiIgAiJQeghILCo9c6mRiIAIiIAIlFICpG1xehk/yY0izPPnzw81eqI6PUT9kDbWqFGjtU45Ky48RJzQx6VLl4Znctx6qoaIsnz58iCAEaWDWEK0FClQiF2eRt0caiFRZLl8+fLhEp5NVBWROBSFLmwjComTzRhL8klgjHXevHlhjNF8MAcIfZUqVbJ69eqtc02m/uT3vEzXJn9f0LlnXIxh2223zeOa6dmp5iLTNfpeBERABERABEQgNwhILMqNeVIvRUAEREAERCDnCVADh7QmCipTLDoqIk2RbR29nvPTqwGIgAiIgAiIgAiUIgISi0rRZGooIiACIiACIpDNBIg84oh5Cm9T02jnnXcOqVMUg1YTAREQAREQAREQARHIHgISi7JnLtQTERABERABERABERABERABERABERABEVjvBCQWrfcpUAdEQAREQAREQAREQAREQAREQAREQAREIHsISCzKnrlQT0RABERABHKAAMWMN9poo/Cjlp0EVq5c6S7SnJ0jMFu1alXoWqpT3eL0mYLi3Csqfh7n2myyLSoe2TQm9UUEREAEREAEspmAxKJsnh31TQREQARKKQHq1XAs+VdffWW77rpr3ijvv/9++89//mNTpkzJ2pG3atUqHF9++umnZ20fPR3jKPgZM2bY448/7jHPCpuXXnopHFnPKWXJLRoPR9JzIhkndVWsWNHd75kzZ9onn3xiJ5xwgvuadIYINE8//bSdfPLJsUSaxPH17Nkz1HUaOHBggfvz6KOPWvfu3e2uu+6y0aNH24477hhOoCtIu/XWW+3rr7+2J598siCX53vNuHHjgqDVsmXLtHZFwaPIO64bioAIiIAIiEApJiCxqBRProYmAiIgAtlKgKPO2dAni0X9+vWzhx9+WGJRCUzcDz/8EI6x32mnnUrgaUXziN13392uu+66lIJONJ4qVaoUSCx67bXX7JJLLgnHxxe2zZ071zbddNMg9my55Zbu2yWOryjEkQMPPNA6dOhgPXr0CEIP0UXbbrutuz+JhrfccotNnTo1iGBF3S6//PIg7j344IMSi4oaru4nAiIgAiIgAgUkILGogOB0mQiIgAiIQMEJeMSi+fPn20UXXWQvv/yybbbZZnbVVVfZ2WefbUQ4IHL07t07bIA7d+5sDzzwQDhR65FHHrEff/wxHM+e2GbPnm0XX3yxffjhh8aGvE+fPnlHtb/yyit2991327Rp06x9+/Z2++2321ZbbWXz5s2z8847z9544w1r2rRp2HDzPZFF3IONMz+nnnpqiNxIThdKd326cf311192wAEH2GmnnWaPPfaYVa1a1ThqftCgQfb+++/bQQcdFD5ftGiRHX/88XbsscfaQw89FIZJ/4844ojw+3Tj4T4IKggY5cqVC7zgQqQJES333XefTZw40Y4++ujAs1q1aoEvDPgcUalv374h+oMIHJ5JVBjMN99887DRb968+TpO8cILL4RnMO6TTjrJ7rjjjhDx8+qrr9rVV19ts2bNCmPjmUSbDRgwIPSRvr777ru29957hxPU6B9RQ9gwFq5LNR78ASESdkSp1ahRw2677bbAa+zYsWF+eTZtzJgxYUx33nmntWvXzr7//ns77rjjjD4zRkQM/OKQQw4JdghAzCtRTM8995zVrl073O/II49ca9yINPgaUVAjRoywP/74IyXHxIuuv/76tcY3atSowL1y5crhXnAgqoc+5OfP0T0Z8zXXXGMNGzYM48NXt9lmGzvxxBODn/3rX/+ye+65x/A75uGss87K13/SiUXM17fffmtz5syxDz74INx/v/32y4tg4hmHH354uDd9euqpp4xUTj6jX8wFc0bDTy677LLAAd+G77nnnmsXXHCBIZ6l45HIMd388MxU9yWiiX4xjhUrVoT3j7FWqlTJzj///OD3rEH0kUgx/Gro0KHBr6644orwmZoIiIAIiIAIlEYCEotK46xqTCIgAiKQ5QQisYhIjrp16+b1duTIkUY6EGlobNomTJgQNpRLliwJosw777xjv/32W9isEwGCUHHOOeeEDTtiDlEUiB2kiUVt9erV1qxZs7C5u/LKK+29994L9mwqibSIhAVs2FwjgCAMIGwgRiCKvPXWWzZkyJCwKW7dunUQGdhcsgFlQ0m/2YAntnTXd+rUKeW4EKEQBnbZZZcwvv79+weRAIGMjTXjQqBArKHPCFiwQVAhfe/PP/80xppuPGyAicpB+IAV92Z8bOYR455//nmrWbNm2KyzMWZc2223nTVp0iRwgT2RX9OnT7fJkyfbwQcfbMccc0wQQegvNZw++uijtRgQOcb1CD3bb799EOwQRfbaa6/Amflns424h5iEQMK9brzxxiAGwoJ+8APPww47LPSNZ8I/1XgQEyM+iA9s9Em1Y6yIX/gLQhMNIRBB8ssvvwxju/fee8NcIxbilxdeeGEQ5hC4Fi5cGMaHMIgABM+333479AHBZeONN84bO3MC5xdffDGIUIwjFUdEtqghSiWOjzmFA+z33HPPkE6GwMOY0vkzPh61//73v8Fn+IEfYusOO+xgl156afAzfs8zmHfS1YjsYQ7z859UkUWIOPQTEQUhD76MC57Dhw8Pfsa7CmNYEDmIn5Huh5iHwIgfIADDlvcTEebZZ58N7+gZZ5wRRDzmMBUP+Ce2dPPD9anuy1zi8whGzBHrTpcuXYJPtm3bNgi1jAnhEE4IRYjNS5cuDb6IQNamTZssX3HVPREQAREQARGIT0BiUXxmukIEREAERKCQBCKxCOGDCJaosakk6uXjjz+26tWrB4GCaB4amzhSjBAb2ND++uuvQfxBWNpiiy3CxpwN+zfffBNqs0SNaIR99tkniAX169cPggpCAGJMFAFC1AmREWxGP/vsM3vzzTfD89koYoMoxKYU8QDRgk0kYgaNiA+iH6LIDD5DWEh1PZvQnXfeOeW4EKjYxLN55f5EkSAscS+ijDp27BiigbgH44cRG23Gg6hDtE3jxo3D5jx5PNSrQdxAtIEbogCbfJgQbUFqEsIB9yaFCuGA7w499NC85zMu5gqRBnEJsYgoJ+YE0YSIEvqa2IhYQViLRCTGRuQXghObbMZAY87gglDIhpzvomsQS/ic9KfENK1044nEIoQKxIl//vknCIXwJSUslViE3yWmoSEaIRLS1zJlyoToIiJMYIeIQI0dop0QvBgf4ldiAenENDSEtXQcTznllLV4JaehIZwwdzTEHkQuxJ50/kxUVGJDwERsRHDBlxLFosi3mcMoigyRJz//SScWJfazTp06QcyLIoHoKxE7zDniD0IX7z9iESIodolpaPg4UXKITzQEJcQ2npGKR3JaHMJYqvlB0El1X56NsBdFI1Ijincb1ryHRGPxbuFHRA/yXkb1ymCKb/FeqYmACIiACIhAaSMgsai0zajGIwIiIAI5QCBTGhrRDggfpO+QdkNjU4mQQ9oKYhBRNWwMEX0QUti0I+REUSMRBiIBEDKSG2kuXbt2DWIJURBsmomMQDhBEOH5qWrOEAGEMISwQmNDiThDX6KGgJXq+ujzVOMiagixiIgQxB/6TZRNVOybMSBOnHnmmUEsSrwHESn7779/EBJSjScSixI3+5FY9MQTTwRhhE0zjQ08wgpiApvgxGLjjJ1IG8aGeEeUF430LoQ/hKvExnwgQCBEJX9O9A5RTTTEKcQWIsmYX0QaNug0ojjGjx8fxMBksSjVeCKxaPHixYEnDcER4YjIkUSxiJQ9mCWLRYiCpMUlN6JjEAeIhsLfSPEi4oc0qcSWKBYhQqXjSERNYksWixDJogLkjAs+CEzp/Dkxoo775icWRX6GHYLY559/HgQxr/9E/caPEvvJu0nkHlFn8CIVj/lFjCUqCrEF8ZNGRE+yWIRwhWCYXGg8+TkRD/wisbG2pJqfdPflc/p01FFHhdsgSOEr+DLvNvdCcPvll19CxFlyYy6IOlQTAREQAREQgdJGQGJRaZtRjUcEREAEcoBAJrHo008/DRv9L774Imw2aWzKiOIhhQphA1GIlCHSl4gsInIAYQnxKLFFKUHUeYk2qYgMiEKIKAg9bML32GOPIBI988wzIVIGW6KSiBohqoD7IpTwk3gaWiqxCKEi1fUIMQgMqcaFQMGYSblp0KBBRrEoMVKKKCZSpYjqSDWe/MQihCEiPhCgEH3YlPN7Up6IxOA7IirYPPMc2JCCg9AWCXPpxCIitSZNmhRSwWjMK3OPAIU4QW0gWiQqkM6FCJB4ClhBxSL6hvhHgwsbekQLRL5I5ELEIoooWSwieo2oNqJsaCtXrgzF2En9IxWR+SHtD7GJNDb8icioqCWKRUTUpOPYokWLtXw1vwLXkTiC7xEJk8qfifhKbPmJRZGfYR+JRXzm9Z/oOcmFuBGLmDPS3xLFIqLMiPhBFOXdi8TPZLGIPhMhRcoiDTGI6B5Et0S/SCcWMU+p5gd/TnVfUtN4pyOxFxGZecXPebcR5xCHSYUlig4xk89p+BjvBuKumgiIgAiIgAiUNgISi0rbjGo8IiACIpADBDKJRYgJbDYpcEvUC1E/pKKQnoRgxEaO1J7of/VJByE6gI0lEQ2JjQgcNtFEIrGxJz2JzTubSgQBohgQb9jgc88KFSqE9CiilbiO6BcKQCMgINAgSmUSi3h+uuvZmKYaF2JDHLGIzTdiDJtv0owyjSe5QHEUWUR0C2NCvEHIitKHGDPiG9yIZoIbkUJwQkTxiEWIcBSvRtQjaoUIH0QxBECeSbof0UqMhTlnI54sPiSKRcw9kUFs/NONJ4osIkURPoh/3bp1C0IRQg+CDDWm8CfqTyFQIRZRvwg7BAmiqhBksItqQ1HAm++YP/qPP+CXMEIQo65Q1BAwqcvDnJD6lY4jKZeJLXF8yRwicYSaP+n8mcizwohFRNWkex/SFbj2ikVwQ8RBoIMX84/vMUek2PFuIeghXlIEe9iwYUGgIYqNeeMzj1jEupFqfvDZVPfFB0ll4z1CXCSqCMGMviWKRXClcDfCFaIykUb4CH6AT6qJgAiIgAiIQGkjILGotM2oxiMCIiACOUCATR8bMzbTiRtc0sHYDCMckOaDeMOGnIZgwSaN/8mPInfYwFMfhVPC+J5oj1q1aq1DgE1o4qlFbLwRKNjwkb5FigyN6AJSaHgOokJUl4e+EoFCZALihkcsInUq1fXpxkWB30xiERtnBA0if4h4YtNNBBP1lBBH8hsPohkFnhHVaIlpPYhupL2RMkaaFSlgRL3AlxQrnsE8ICTwfGoPecQiIrKYlyiVilPDSDGkthQFy9mgc29OniJyhHo1qcQiIpKIQqJ+EYWIuQdpVKnGQxoVfBAjosggUsqYW2pPkbKH8MVzEbKIfkEsgh2CD+OnRhEpUlGaHFwouIw9giW/RlFqsKPOTXLDT5hrfB3hLRXH5GsSx8e7kSyOMN9wSOfPyfcjSgchgxo7yTWLkiOLEEwRMdO9D8n+Ez0rlVhElBtpXYkRYwhvCEY0xC7mgXlBpEQ8RsCFEeIL733k20QYUU8olXgW8Ugcd7r5+f3331PelwgtRB9qS9EQB19//fXwLiAW4af4MA0bogPpLw1hmrkoX758Dqy66qIIiIAIiIAIxCMgsSgeL1mLgAiIgAiUIIEo6oOC1FHtooI+nigFoheoO0LUR9RIr0IsoPg1kR4LFiwI0UUIGIgLiAiID6TqxG3pri/MuKKoLKJX6Csbb/rqGU9+/afuDIWIObUssfEcnknUUWIR5zgsEPEQ+RJP6+J62CJCNWrUKLD3NCKbSIfjfpkaaULMNelDiQ2BAFGReU5szBcRSJEQhIhIyhppRhUrVswzpZD3jBkzQr+jukip+kIKX+RrXo7e8aXz50xMMn2f3/uQ6dpM3yOIMue8a7xP8GUemEuYIiJGp8rhcwg2yXOU6Rl8n9/8pLrvqlWrwtrAszK96/gIqYX4VJTm6OmTbERABERABEQg1whILMq1GVN/RUAEREAENmgCkViEUJR4ktwGDUWDFwEREAEREAEREAERKFICEouKFKduJgIiIAIiIALFS4BIHIptcwpXQaIuird3ursIiIAIiIAIiIAIiEBpICCxqDTMosYgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkVEQGJREYHUbURABERABERABERABERABERABERABESgNBCQWFQaZlFjEAEREAEREAEREAEREAEREAEREAEREIEiIiCxqIhA6jYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUBoIlLhYxJGjixcvXuf43NIAU2MQAREQAREQAREQAREQAREQAREQAREonQTQMipXrmxlypRJOUAOIqlatWqpGHyJikX33HOPDRgwwJo1a2YLFy60Pn36WP369W2zzTazDh06BKA77rij3XTTTaUCrgYhAiIgAiIgAiIgAiIgAiIgAiIgAiKQ2wR+//13mzx5sh177LE2ffp023zzzdca0MSJE61bt2627bbb2syZM+3RRx+1ffbZJ6cHXWJi0YoVK2zjjTcOUUUocTfffLP99ttvdv7559sNN9xgzzzzjJUrVy6nYarzIiACIiACIiACIiACIiACIiACIiACpYvAsGHDbMyYMda3b9+gYySLRe3bt7fLL7/c+BVbgmTefffdnIZQYmIRlObNm2c1a9a0pUuXWtu2be3iiy+2KlWq2KmnnmqEazVt2jREGx144IE5DVWdFwEREAEREAEREAEREAEREAEREAERKF0ESD9LJRbVq1fPxo4da/z62Wefhcwp7HK5lahYBKhJkyZZ165drXHjxiE0C3WOzy644AIbMmSI3XbbbfbNN9+EHMDRo0eH7xMbKWtt2rTJZebquwiIgAiIgAiIgAiIgAiIgAiIgAiIQJYQGDlypJFqlthatmxprVq1WuuzdGJRtWrVbNq0abbFFlvY999/b61bt7ZZs2ZlyegK1o0SFYvee++9EEV033332UknnRR6THpa2bJlw8+qVatCKhpQt95665QjIvKoR48eed8xEQ3B1eRhAAAgAElEQVQbNizY6EvZVWLhn1CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWyX6VrDOku1M6seiAAw4IKWp77723TZgwwW688UZ79dVX/R3KQssSE4tWr15t1atXtxEjRti+++6bh6Jnz542Z84c69+/fwjbOuOMM+y7775Li0piUXov0kLqf8PESqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/BbFoVYRHmdKVOmhHI6l112mdWuXduuvPLKULuIcju5fnBXiYlFVAzffvvt15q9zp07h7Szdu3ahYgifnr37m1HHHGExCK/n+dZaiH1QxMrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG9ZGLGIdDXK43A6GmlqnPROwEuLFi1CB2rUqGEff/yx1apVy9+hLLQsMbEo09hnz55tdevWzWQWCmArDS01Ji2kGd1HwpofkViJVQEI+C/ReiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+VXBW3jS0/J7w999/2y+//BKKXJOulusta8QiL0iJRelJaXHwepGFomOqdeXjJVY+TliJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C0LGlnkf0LuW0osyv05zBuBFlL/ZIqVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUWJSZlcSizIxyxkILqX+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW0osysxKYlFmRjljoYXUP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn4lVn4Cfkv5lVj5CfgtJRZlZiWxKDOjnLHQQuqfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JYSizKzkliUmVHOWGgh9U+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S4lFmVlJLMrMKGcstJD6p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Eis/Ab+lxKLMrCQWZWaUMxZaSP1TJVZi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31JiUWZWEosyM8oZCy2k/qkSK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKbEoMyuJRZkZ5YyFFlL/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVYQWDp0qVWrlw5q1Chgh9IPpZx/Oqvv/4Kd6pYsWKRPHt93WTVqlW2fPnywBCW3haHlfeepdVOYlHmmZVYlJlRzlhocfBPlViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX22YrL788kt79dVXrVOnTlalShWrVauWXXTRRdavXz8/kAKIRW+88YZ98cUXds0114SrTzvtNHvmmWfspptusuuuu65Inl2SN0kcD78/4ogjbNiwYXbssce6u6F30I3KJBZlZiWxKDOjnLHQ4uCfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pv9owWT377LN26qmn2pgxY2zPPfe0G2+80fbbbz/r2LGjH0gBxKJ//etf9vDDD9s///xjy5Yts8qVK9v+++9vDz30kO26665F8uySvEnieL755ht74oknAtcmTZq4u6F30I1KYpEDlcQiB6RcMdHi4J8psRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kl5WiDHdu3e3Tz/91HbYYQe7/vrr7fTTTw8PRSB54IEHjDSsww47zG699VarWrVqys9Hjx5tPXv2tPvuu8+aN29uvXv3NiJZPv74Y7vtttvs7bfftgMOOMCGDBkSBB+euc0229hHH31kPXr0CJvs3XffPTx/q622skMPPdS+/fZb22uvveyxxx6zs88+20488US7/PLL7aeffrLzzjvPPvzwQ6tUqZJ169YtiEk8i+8PPPDA8LxNNtkkRAgdeeSR60BM5VevvPKKnXPOOfb777/b4Ycfbn///be98847tvnmm9stt9xiZ511VtrJGDBggN1xxx1hHIwfbnvvvbf9+OOPdskllwTRiz+fe+65oT+k1V177bX2wgsv2BZbbGEnnHCCXXHFFXbzzTeHiKqRI0eGscF92223DczhRoTVypUrbcKECaE/cEDQiubqjz/+sNatW9u9994b5jRxPHC+7LLL7Pbbb7eDDjrI0vWZ6K2nn37aDjnkkBBV1aBBA7v//vtt55139jvjBmqpyKLMEy+xKDOjnLHQX9D+qRIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8qviY0UNmy233DI84IILLgjCxeTJk4MYg0C03Xbb2dZbbx1Eiv79+9udd95pxxxzTMrP69ata2eccUYQV9q3b29du3a1xx9/PAgb//73v+3RRx8NokubNm3s+eeft86dO9ugQYPCvWgIJdyfWjpjx44NAhLX8CuCR6NGjfLS0KLUML4jWgaRh3tuvPHGdtRRRwVBi2f+5z//sc0228ymT59uZcqUWQtkKr+aOnVqeBbCDhE4S5YsCeIOwhHiF2JPqkYfEFKaNm0a0rzuuuuuIABNmzYtj0OXLl3CuH799Vf75Zdf7MUXXwwM4IHYg7A2btw4e+SRR8K4Fy9eHD6vU6eO7bLLLvbBBx9YvXr1wtwgRpUtWzb0E4Zt27YNwhviDkIUc8kPfU8cD0JTlIbGPdP1GUHpnnvuCc9FVEL4gieClFr+BCQWZfYQiUWZGeWMhf6C9k+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfFR8rolcQKxBVSFdCfGjVqlWIDiKq5tJLLw3RPdtvv7299dZbQbyYOHFiys+JoMkkFiGUICohWCCOEF3z2Wef2YgRI2zOnDlBlKCR/vXSSy/lpaEhakQ1i4jwQQwiyogoJWyJIEIkIsKIX5966qlQayhKwfrzzz/D9YktnV8lpm0RpYPARXQSz03XqGd0ww032FdffRVS1Yik4prx48dbu3bt7Oijjw7i04wZM0I9JMQeIqX4HuGIMbz33nuBMyJNfmJRtWrVwj1Wr14dClUTgUUNonfffdcmTZoUhDGigVq2bGlEeyWO580338wTi6ZMmZKyz9wDfvSD/hLVhPAFB56rJrGosD4gsaiwBLPoev0F7Z8MsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kj5Wr732WogaevLJJ0PqGcINaV+IH3PnzrW+ffsGMQOx4Ouvv7by5cuHCKNUn5PyRC0cBAkEjOOPPz6IGImRRb/99lsQHRB6hg4darNnz7bddtstDPD8888PggeCVX5iEUWmuceZZ55pAwcODKIWQhBRP6S2IRZFfbjwwguDAFXcYhGpb3fffbf98MMPVr9+/fBMnk3EE/0hyoc0rnnz5tmsWbNCWheCEX0n+mjFihUhQoooqF69eoWaSfPnz7fq1asb4hBjiyKL+DNCDzWVatSoEe5D6lqzZs3C3CHYIVzBNT+xiCinVH1GQKTfiEULFiwIz2/YsGEQ6CQWZX4XFVmUmZHEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KjxWiDGlORLQgMJDShFCAGEEUEFEx1NLh5KxTTjkl1N4hKijV54hDRCWRpkZBaKKSaIliEalMCB9E1Rx33HFB5CBqiLo7RMBw/aJFi0LE0csvvxzEJ4QXbBGsotPQqOODEIJwReoYkTzU3yFqqajEIlLCEEk8kUVECCHa0F84XHXVVUHs+fnnn0PkFql9jINUOSKqEODoL6lt1Foi5Y96UKSmIRoRlcR8IC4hMnGPxDS0Bx98MIhO1B7ivqTfwRTRr2LFimHOkiOLGA+RUlEaGnWh0vWZ9D6JRf73LtFSYlFmbhKLMjPKGQv9Be2fKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvypeVtQVor5Q1KgdRKFmol0QiRA3aESqkIpWu3btlJ/XrFkzFGOm6DRRKETPIJIkikWIE4gWfE8B6hYtWuSlpPEZzyCyiFQoUsuoAYR4RBFsimMjVhHVRHFn6ghRiJp28MEHh0glomIQi+hnhw4dgriE2BInsui5554LwhiN+yMWEc1EtFW6RkoYghfpfFFDGEK0YZxEWkUNcYcoKqKQEN3wbxqRXRTynjlzZhB6eDY1gxCF4ECaGjWLmJeob/AiGmujjTYKUUXUM6JIORFL1DziGRTLjsbz+uuvB96IUqTGpetzVLNIkUX+dy+ylFiUmZnEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KnxWRLYgUFLtGtElspIotX748FFBOLBKd7nPS17gHKWtR49Qu6vAgqhCxRLoVhayjRqQNokziZ3yH0IToQSoUBZ0TG8W56XNUBNpPaY1lfn5FZBPPJg0sakTlfP755+s8hrpBCFk0xBVEHur88HnU4EdNJ6J5EMGixhj4HF6IcFGDE8/bdNNNgxAUNcQiaiIh4JHSR7RVNCdcQyQTz0gu5p1qPNE90/U5caB6B/3eJbEoMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXus0oUi/yjKV7LuH6FoDVq1Kh1OkUKGFE6JdEisYhopZJscVmVZN+y7VkSizLPiMSizIxyxkKLg3+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8KvdZcUoYYkv79u39gylmy1z0K8QqIpOo+1SSLRdZlSSfxGdJLMpMXmJRZkY5Y6HFwT9VYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+tH1akspDmQtpLchqPv0fZaxnHr0inolHkN26j2DOtUqVKcS/NGvs4rLKm0+upI2LlB1/UrEiLY61KTNXz9ya7LSUWZZ4fiUWZGeWMRVEvDjkz8AJ0VKz80MRKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7Bv1KhRKDxMAeLERv2S6IQjChInN05O4ojt0047LdQ6wfadd94pkiiPfffdNwhVxXmkdjpWjIXncnIUjfE988wzoRAxBYlTtaeeeiocLf7xxx+Hk6AS2+677x5OpeIo8+RGXRcKE3MqFcWHGTcbXU7kKmxbuHBhqI3D6WEcZV6YFtevCvOsXL9WrPwzWBBWpOZxsl5ymzNnTqhZFZ1s5+/FGkuKl1NInXt37Ngx7uXFbi+xKDNiiUWZGeWMRUEWh5wZXBF3VKz8QMVKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7777jvbbrvtrE+fPnbllVeu9aCvv/7annjiiXBsd5MmTdbpBHVOOJ6cU5M4GSnxaHF/j1Nbkg6DwMJR68XV0rHiqPWHH37Y/vnnHyMqiELHHNn+0EMPhSLAqRqcOnfunFIs4tQsTpHq3r37OpdShJiixRzRzrHoCEvUqvnkk08KPWyEKMQ8nstx5YVpcf2qMM/K9WvFyj+DBWGFkPPaa6/Zv//977xi5xTevvXWW+3mm2+2/fbbr0BiTyQWvfzyy2Ety7YmsSjzjEgsyswoZywKsjjkzOCKuKNi5QcqVmLlJ+C3lF+JlZ+A31J+JVZ+An7LuH4ViUVHHnmk8T/znLhE0eCrr746FN3lqOvbb789CCdE2hxzzDFGFA1Hivfr1y+ctkTkCsdrs8EiuoYjymlcxxHf6RobOwrqcuLTkCFDwgYPYYPTsRLFIo4379GjRzhlCjHl+uuvD+INQgtHnvM87M8991xjHPPmzbOBAweGH9LGiJji+PDklooVUQXnnHNO4MAR6og8REtxotYtt9wS2OQnFnXp0sXGjh0bnsvmlXvAhGPJGSOiHBtdIhjYlCLmDB8+3Lbeemu77777rFevXuGUrj333DOIcNTieeSRR4zj49M1uNWqVSucssXR7/SRo8vpe6JYhNhFFBOnYbVu3druvffecEpZIl+OXGeeEcWmT59u/fv3t6effjoIWhzfzjyv78Yx8AiY+CFjhTcRWY8//vg68wODVJ8X5xjivoPF2ZfSyCoSi5YsWbLWCXCLFi2ytm3b2oknnmhnn312WKOaNWtmU6dOtZ9++sm6du0aBFkEYNaTl156KVx/yCGHhHeB9zx6L5PFoueeey68C0QHEgXYt2/ffN8dnsc7+OGHH4b0027dutmNN94YTrXjGTyT6EH8lz5G79mOO+4Y+pLqPZNYlPlNkViUmVHOWGTTQprt0MTKP0NiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM61eRWMQTjjvuuCBQsOmaPHlyEGOiNDTqF7EJo5FmhUB05plnhiO22eiwcWODhejB50SycB8EjHT1jqKTrBBi2IA9//zzITqHzX0kFlHAmMgnGqLPnXfeGe5H1BPPwTYSaDg6nWLHbORuuOGGILwgJCHG8GuLFi3WApmKFRtLxCLsiRZiXIhQiD69e/dOWwA4iiziAXBiLAhpHPfOZhABiI3mhRdeGAQbGgIW40QgQ4QjzQ0RBPaMDVEH8YoUMnina0R4sTllXjgGnr4PGjQo3DMSiyIRjk0qgtoFF1wQfhCoEOe4HuGNY+hbtWplb775ph144IFho821CE2IcDAm0mp9NnwLjhzxjr+RQklUHGPgz8kt3efFNYa472Bx9YP7lkZWkViEf5cvXz7g45076KCDgmhKGhrvf+3atcN3kWiDL8+cOTOIi6ecckrw94022igwGjp0aPDrVGLRrFmzwjuC8M33iE5ENbHupXt3otRVRKlvvvkmvMesCaSabrXVVqFfDRs2DII2IlL0niEMI9qnes8kFmV+UyQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/pVJBZFqUqffvppiNIgKma33XZbRywiWogNEC1VGhrpW/yvPhsqhBzq5iCapGqRWMTGqG7duuFZ1Avif/7ZVJGGhlhEHaARI0aETVQktPA/9AgD1C9BqJkxY0aoM4RgQqTS/PnzjXQyPn/yySdDpBRjSmyeNDQEG8Qsom2ILErXIrGIaAX6xAaUqCyiB9i8JotFkXiVKg1t9uzZYbP4ww8/BKEsVd8T+8E8VKtWLYx/9erVoebRoYceas8++2yeWETfEQInTZoUIoaowQRjohiaNm1qRKAwZ0Qm/fzzzyGyiWgieBKhQQQYvkGqTocOHfwOGdMSfswZ4iRRFghbbLThRGMTjl8h4A0ePDgIWy+++KIREYXIxiY+ugccIkERERIBDaERgQCBEVERbtTGOv7440OkSFG0uO9gQZ+5obKKxCIEZuaShu8i6CaLRaxFrEm8CwixpMviM0QK8Y4R+UMEJcIy614qsQgBOhJ4EMSJ9sMP//vf/6Z8d4jaIxIQAYtoQtYzIpi4FoGJe9FXIguJYOTP0XsW9SfVeyaxKPObIrEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3j+lUkFiEAIQQhzlCfiP/tJhUiObIocROTX80i/jefaBREG4os5ycWESGCIMPmiv/h50QjNnSIRUQB7LDDDuHy888/PwgeCC38bz/PJzqGmkBEvfAZAtKmm24a7keEUNQQRJKL1haHWEREDkINKVsIGmz+iApKFosiES2/mkWINownmpt0XhCJRdR3Il2QaCI2n7CMIotOPvnkEOHEnJIWR+QFYiDRWohb2CKYwBCWiHGIbghKRBjxGRvgk046yRo3bux3yJiWpJY1aNAg1J0h6ok+kbYHS8Qg/BURjT+z8UaQI7IIxqRFIhogDOArRHQwftLo8AWuJ/Lq/fffD4ImURyIgAh6zE9RiWBx38GYiPLMN1RW6dLQ8NFksYi0M+qBvfDCCyEyCLEIMRIBl0hK3oGePXvmKxYBfOTIkSHqjlQ1BB7eccToVO9OnTp1gviNUEnkEKmQ9IsoQnwRcSgSgFnLWOui9yya3FTvmcSizG+KxKLMjHLGoqQW0pwBIrGoSKZKfuXHKFZi5Sfgt5RfiZWfgN9SflV8rCKxCHHlrrvuClEZ/BBFgoiTLBYlnnYWiRSvv/66ffnll2sVuI4jFhENwkaKDTwbODZ2URrasGHDQhFt7sfmjI0V6W0ISkS8IAAQbUSKB1FJRAFwctu4ceNCFAzpHUQRIH4liwGZxCLuQapInMgiNn0IWKSUIbwQmYTwkSwW8WfSXiKxiEgX+JNKExW4jiMWkWrF6XQ8E9EPJqS5RWLRLrvsEvgSZUU9JTbO9BVGRNewaSa6gk00fybaAtENoY6oI6IzSP0jyofUw+JqCCDUpUKwJDqLtLnx48eHmi9ETuGvbPbTiUWIS6QdErVG2h9CJRt0olAQHqlpg2DARh4WiEwUE0cAwNeLopXUerWhsiqsWMR6QGQd4ioRgdQRQzBCTE0VWYTgi2BKGiqCNlFBRDnyfqZ6d7gv90GERNBkDUKwGjBgQPAxxCJOVWSNIE018T2jb/h7qvdMYlHmt1NiUWZGOWNRUgtpzgCRWFQkUyW/8mMUK7HyE/Bbyq/Eyk/Abym/Kj5WsG3UqFEQCxBeaKRrsIki9YjNDWk+/O84G6VEsYg6MdQQonYIYgdpFlHkEZEdbJQ8kUVEwSDMkK7GM6ktREoI6UEIBFF6Gt/TT/43nnQqxCz+hz9qCCQ8l80ZfUM8otFvhAHSkhJbOr9iw0ZNExoiAmJRtLlLNxPcv1OnTiFyh77Rov4kFuuOahZFYhFcEUfoM/aIMpFYFKW/eCKLKKAd9RdGRGBRWBexBEGECAv6hqiEAMRz6QNROqRjMT4ajJlDhCQiehCQovFkqp3k99L0lggg1JVhE84x6EREEdFBfxkjc4n4kygWISoROYboQ6QR4ha21MtCIENEQ2BAJOK+bNDxuYkTJ+a8WLQhssokFlGLCH+mZlEUwYPojJCIDyDSEhGE6IwYyZrGGoavIPIg1CRGIZLaiR8iSNOI9kPYJfqH9M5U7w7pnIhKrB80hG2i96iBligW8Z33PZNYlHmFkViUmVHOWOgffv6pEiux8hPwW8qvxMpPwG8pvxIrPwG/pfyqZFiR9kXEDikT3sY1pD5RkyNVo64HG9rkhgBDmhFCAJsx6ocgDqQrho1wwjXJ3yMoEZ3DBiy5D/zvP2lH6caTn1/BAbEhMYWOKKHPP/98nbEgQpGyFTUEMj5LxyT5BvAjLQ37ZEErsiXagM1tcttpp51C5BKnlyGOIaAR+cNR4skNzkRDwCr5e9LO4FW/fv11GMOXZ/OM4m6IRYyHNJ7EQtpsstMV1oYfP4m+gV8guiU2PqPGDXbMbTrWhR1jSa1XYlXwmcIXeE9JGfM23n/8kFpeiS3du0PdLdY+/NbzHN4zBK5064bEoswzJbEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C2zza+IDKJ2THIjhY0IkEgs8o+w6CzjskKwIj0ruSFKEKlQnI1IIWqyJDeilkiRQcghKqu4WlxWBe0HtWFIO0QYzNUmVv6ZKylW/h5lr6XEosxzI7EoM6OcsdDi4J8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq9KJyuKaSPAcLrQ+milxa8QsIhGQDgqrpZNrBAZSZUksobaRNQiIm2RU9L4c2IjfS3V58XFifuKlZ9uNrHy93r9WEosysxdYlFmRjljocXBP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn6Vm6yoUUTtJ1LuqB/DaWjUqKIeE39Obuk+948+nmU2+ZVYxZu7bLaWWJR5diQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgtywpv+IkPk47o97LjjvuaEceeWQoOEw9F9ppp50WIoUocD148OBwOh4F2Nu1axcKtHOyXnQPahJx6hn2nTt3tkGDBoV6RdQtoiA7hb0peE39Goofb7nlln4g+ViKlR9jSbHy9yh7LSUWZZ4biUWZGeWMhRYH/1SJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/lV9rEitaxBgwahyDUF0BFxOC0KcQgx6LvvvgsnuCWehkZkESe+9evXz7p27WrPPvtsOBWPWlk1atQIp6edc8454XoKnr///vvh5KtHHnnErrnmmnDEOSfDdejQwQ8kC8QisSqS6cqZm0gsyjxVEosyM8oZC/0F7Z8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+ymxWnbA0cODBswOO0N998MxRmTj5dKM49CmO7PvxKrPKfMQSQ3Xff3Zo0aWKkUHG0OSfBdevWzSiWjlhE5FE6sQhxafjw4aF20bRp08JpdohFbdq0CbWN2rZtG45PJ+LoySefDCLTJ598Eo44P+KIIwrjTnnXlpRfiVWRTFfO3ERiUeapkliUmVHOWJTUQpozQLLgfyjEqjQQ8I9B76BY+Qn4LeVXYuUn4LeUX2U3KwSQu+++2y6//HJ/R83s+eeft7322su22267WNcVlfH68CuxyiwWcdw46WGbbbaZnXzyyeHEPApVr1ixwk488cQg/iSKRYhKTZs2DaLPZZddFk7Zw3blypVBwHzwwQetY8eOQSTivnPnzrXmzZvbxIkTc14sEquiWg2y/z4SizLPkcSizIxyxmJ9/AWdM3CSOipW/pkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSACh6DAbeVJ6qlSpEqJB+vfvbxwtv2jRIv/qJmMAACAASURBVNt///1tl112CSIRNgsWLAib/ylTpqxVk4YIEDbB//zzj9WrV6/YjqUXq+zzK6JlSEGrW7euVa5cOa+DS5YsWevPiT3HT/ihHlHUqEOE3yU2PqNeEXYISdQ0Ko5WUn4lVsUxe9l7T4lFmedGYlFmRjljUVILac4AyaejYuWfRbESKz8Bv6X8Sqz8BPyW8iux8hPwW64Pv4rEohYtWgQRqH379jZ06NCQYkaqGSk/FCweMmSINW7c2JYtWxbqwxDxgTBAmlFiTRpsKTbM/fr06WM9evTwA4hhKVZ+WCXFauTIkbbzzjvb5ptv7u9cllmKlX9CSoqVv0fZaymxKPPcSCzKzChnLLQ4+KdKrMTKT8BvKb8SKz8Bv6X8Sqz8BPyW8qvsZhWJRdSZ2WSTTUIEEdFDCEOIRdSFITKEU6m23357q1SpkrVu3doGDBgQatNQiDixJg1RIkQg8VNaxSKx8vt0rllqvfLPmFgVnFVxro3+XmWXpcSi7JqPQvVGi4Mfn1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVX2c0qEouoD4MgVLFiRStTpkwoMkw9mUSxqFOnTqEGDYLRvHnzQhoa0SSJNWlGjRpV6sUisfL7dK5Zar3yz5hYFZyVxKJ12Uks8vtT1ltqcfBPkViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXucUqv/oy0UiiukbRnz3X+Cn4LLPBrzzjFivffGaLVTb4VbawyNQPscpE6H/fKw0tMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsHruuef8Ny6Flr///ntO11wq7inhhLuo6R3005ZYlJmVxKLMjHLGQouDf6rESqz8BPyW8iux8hPwW8qvxMpPwG8pv8puVqShDRw4MBxTHqdRz4gi2Ntuu22cy4rMdn341YbA6vwrz7f+d/YvsnnSjUoPgV7nnWc9H3xQYlEBplRiUWZoEosyM8oZi/XxF3TOwEnqqFj5Z06sxMpPwG8pvxIrPwG/pfxKrPwE/Jbrw6+imkWXX365v6NmoQj2XnvtZdttt12s64rKWKz8JOOw6tq9q02YPMF/8xy33Lzy5sZP1JLTBvMd3u+/m/GzgbSd9tnHeg4aJLGoAPMtsSgzNIlFmRnljEWcv3RyZlDF1FGx8oMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSCy68MIL7emnn7Zos8wJZ/3797eNN97YFi1aFE5J44QzRCJsFixYEApcT5kyxX788ccwyNNOO83Gjh1rM2fONE5Fq1evnh199NF+ADEsxcoPKw6rD2d8aPxsKK1N/TbGT9TisLIPP7TwU5ytWTOz9u3Nhg41++ab1E+qXt3soovMvvjC7NVX19g0b27WurVZ2bJmP/xg9tZbZvPnF66nbdqY8fP/LRarwj0556+WWJR5CktcLOJkBv4yq1Gjxlq9oxgdpzhstNFG+fY6uUq5Xoj/4RKLzA6vhdTPSKzEKj4B/xVar8TKT8BvKb8SKz8Bv+X68KtILGrRokX4d3P79u1t6NChIcWMVLMzzzzTVq1aZUOGDLHGjRvbsmXLrEOHDvbggw/afvvtZ+PHj7dzzz3XJk+ebN99912w3XLLLY37FeeJP2JVPH4lseh7a9iwoQ9ucYpFW21l1q6dWf36ZmXKmL34otnkyWv3q1w5sxNOMGvUyIzfIyZRcwrxqHv3NbbLlplVqmT2/fdmTzzhG1c6K4lFBeZXULGINbly5crhhMpUDSG/atWqBe5XNl1YomIRR30OGDDAmjVrZgsXLgx/WW266aZ26qmnWrly5cL/eFxxxRXWpUuXtIwkFqV3n/XxF3Q2OXOcvoiVn5ZYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3Xh19FYlGTJk1sk002CRFERA8hDCEWXXrppcZ/tD7++OO2/fbbh/9wbd26dfh3Ntd88803RhTSF198EcQiIoqIQOKntIpFpZmVxKIsEYt2393s0EPNKlQwI8Bh2DCzL79cezGpWNHskkvWRA+VL/8/sYioog4dzMaMMRs+3Oy669YITjfd5F+MUllKLCowv7hiEYXWEeCPPfZYmz59+jpF1ydOnBjWXWrGoWs8+uijts8++xS4f9lwYYmJRStWrAghs5ESd/PNN9tvv/1mW221VQijveWWW2z27Nm2xRZbhL/8+IsxVZNYJLGoKF6c9fEPv6Lo9/q4h1j5qYuVWPkJ+C3lV2LlJ+C3lF9lN6tILKLANYJQxYoVw/9in3XWWcZ/viaKRZ06dQqbEgSjefPmhTS0kSNHGtH8/PubP48aNarUi0WlmZXEoiwRi6Jl46STzHbeObVYFNk0aWJ23HH/E4sQmCpXNlu0yGzLLc26dTNbssTszjv9i5HEosKxSro6rlg0bNgwGzNmjPXt2zfoGJtv/r+6WtyaCFDqzPErtoj37777bpH2uaRvVmJiEQPjL7CaNWva0qVLrW3btnbxxRfbiBEjrF27dsaRf/zFSBoa/wOSLtRQYpHEoqJ4SfSPZD9FsRIrPwG/pfxKrPwE/JbyK7HyE/BbZoNf8R+ppD3k15KLAHuu8VPwWYqVjxNWcVhJLCpBsahOHbMTT1x3IufONXv66TWfF0Qsiu5IhNEhh6z502uvmU2a5HeaVJaKLCowv7hiUfQghPtUYhH14KgPx6+fffZZSA3GLpdbiYpFgJo0aZJ17do1hNHyvyD8bwj/43H88ccHjnXq1Al51vXr17fRo0cH9S659ejRI++jOAttLk+Up+9i4aG0xkasxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+Kh5XEohIUi7bZxqxTp3UncsECs/vvX/N5QcWio44y23NPs5UrzYYMMZs+3e8w6SwlFhWYYSqxKPlmLVu2tFatWq31cTqxqFq1ajZt2rSQKcW9SQ2eNWtWgfuXDReWqFj03nvvhfpE9913n53ES2ZmN954owH2kksuCcX3iDyaP39+2kLXiixK7zb6C9r/SomVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsJJYVIJikWcKk8WiWrXMqLk7Y8aaote05DQ0Us/OOWfNd9OmrRGMaC+84HliehuJRQXmV9SRRQcccEBIUdt7771twoQJQed4NToJr8C9XL8XlphYRIpZ9erVQ9rZvvvumzdqAD7wwAMhn49THsjD/vjjj9NSkVgksagoXhn9Y8ZPUazEyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRVkmFpGmtssu/6tZFAlBc+aYPfjgGido3NiMzJnoNDQKYzdrtq6D9Orld5pUlhKLCsyvKMQiyutMmTLFmjZtapdddpnVrl3brrzyylC7qEqVKnZTYQuYF3h0RXNhiYlFVAzntIbE1rlzZ3vooYfssMMOs6lTp4ZjP4cPHx5OS0vXJBZJLCoK14/zF3RRPC+X7yFW/tkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Kp4WEksyjKxyD/NxW8psajAjAsjFnEy2mabbRZORyNNjZPeqbvcokWL0J8aNWqEAJhaRJ3lcCsxsSgTI/L56tata+U5YjCfJrFIYlEmX/J8r3/MeCitsRErsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWcfxKYpHEorSeJbHI/9IlWRZULMrvgZxC+csvv4Qi19Q2yvWWNWKRF6TEIolFXl/Jzy7OX9BF8bxcvodY+WdPrMTKT8BvKb8SKz8Bv6X8qnhY9e7d2/r16+e/eSmz/Oeff9LWHS1lQ409HE6B7tmzZ951cd5BiUV+sah31642auTI2POTsxfUrGnGz/83MnUqVarkGg4+uIDC3RtI22233eyDDz5I+w4m6wwbCJZ8hymxqBR5QZy/dErRsAs0FLHyYxMrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv+ravas9fu/j/pvLcoMh0KtLF+s5aJDEIseMt6nfxviJWpx3sPcll1ivDViwdeDdYE3q71HffvjsB4lFMTxAYlEMWNluGmchzfaxFHf/xMpPWKzEyk/Abym/Eis/Ab+l/Eqs/AT8lnH86rUvXrMxP47x3zzHLVtu09JabfO/Y6VnzJhh9evX941q9GizMRsOK2vZ0moeeWSBBBBFFvkjizh9e0Nuv/76azi63dPuGHaHvfvdux7TUmHTvmF7e+ehdyQWxZhNiUUxYGW7aZx/zGT7WIq7f2LlJyxWYuUn4LeUX4mVn4DfUn4lVn4Cfss4fqVNvX9Tbx9+aOFnQ2mFqC0jv4rhVxuKP6UZZ5z1qvfI3tbrw0KexpZDvHu17mU926RPBVUa2rqTKbEohxw8U1fjLA6Z7lXavxcr/wyLlVj5Cfgt5Vdi5Sfgt5RfiZWfgN8yjl9pUx9jUy+xyBo2bOhyRPlVDL9yES29RnHWK4lFa/uVxCKJRaV3ZdCpVbHmNs5CGuvGpdBYrPyTKlZi5Sfgt5RfiZWfgN9SflU8rLSpj7Gpl1gksSjNa1iYmkX+N7t0WsZZ2yUWSSzK9BYosigToRz6Ps7ikEPDKpauipUfq1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeP4lcQiiUVpPUtpaO6XTmKRG9U6hnHWK4lFEosyeZrEokyEcuj7OItDDg2rWLoqVn6sYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3jONXEoskFkks8r9b6SwlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRRKL/O+WxKLCs0q+Q5z1SmKRxKJMHiixKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRbkkFh3U4CDbb+v9bPaS2fbopEdTdr1etXp2xu5n2KrVq6zP6D7BhsifFvVa2EZlNrKZ82faU18+ZatXr/a/VBksFVlUcJRx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilhUpUIVu2y/y6xMmTK24K8F1ndc35Rdx6bqxlVtta223h/2tvo16luXPbrYylUrbeU/K22T8pvYiO9H2OgfR/tfKolFRcYq+UZx1iuJRRKLMjmixKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilh05l5nWt3Kda182fJpxaL9t93f2jZoG4ShcmXLBbHo5MYn2061d7LBnw+22YtnW/N6ze3XRb/aN39843+pJBYVGSuJRX6UvVr3sp5teuZdkLy29+nTx3r06OG/4QZgKbGoFE1ynH/MlKJhF2goYuXHJlZi5Sfgt5RfiZWfgN9SfiVWfgJ+yzh+JbFIYlEuiEXb1drOTt/tdHt12qt25I5H2sK/Fq4TWVSxXEW7ouUV9t3c76xOlTpWbeNqQSy6uPnFVrNiTfv7n7+t3Ebl7Lclv9kzXz4TBKeiakpDKzjJOOuVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWCSxKBfEoh4te9jSv5fa/ePvD5EWqcSiM3Y7w+rXrG93jLnDzmt6Xp5Y1H2/7lZ94+r2y6JfgmC0TfVtbMrvU2zo1KH+lyqDpcSigqOMs15JLJJYlMnTJBZlIpRD38dZHHJoWMXSVbHyYxUrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv5JYJLEo28Ui0s6u3f/a0E3qEJWxMuH3P8z7wQZ/MTiv+1e1usqILkq0WbZymf2y+BdrVLOR3fPxPbZ05VK77oDrbPGKxXbX2Lv8L5XEoiJjlXyjOOsVkWK9RvYqtr5k242VhhZ/RiQWxWeWtVfEWRyydhAl1DGx8oMWK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJRFYlHnzmbbbGO2fLnZ1Klmr7++7qS3bWvWrJlZmTJmP/5oNmyY2dKlZg0bmh13nFnFimZz5pi98ILZH3/4nSaVZZs2Zvz8f1tffkVBa+oQRa3VNq1sxaoV9uLXLxpFrw/Y9gAbNXNUKHxN6hlt3632tQplK9g7098Jfz5ku0Ps+3nfB5Fotzq72Ze/fWnDvh5WOD4JVyuyqOAo4/iVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJQlYhEi0P77m/31l1m5cmt+Bg82++GH/038lluanXOO2apVawSlTTYxmzjR7I03zK691myjjczmzzerWXONkPTYY36nyWKxKLlrpKFRb+jecfdah+06WPOtm9v4n8bbW9PfyjMl9SyqWVS2TNmQlrbpJpuG7yl+3X9Cf5u3bF7h+EgsKhJ+cdYriUUSizI5ncSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM41cSi7JELDr5ZLNGjczuvtts333NDjrI7PPPzV5++X8Tz+cHH7xGHPr+e7NLL10jDr333pqookmT1nzXtOmaa8aN8ztNDolFBR1UrUq1bJPym9jPi3621atXF/Q2Ka9TZFHBccZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVXYuUn4LeUX4mVn4DfMo5fSSzKErEomt6OHc12331NlNDDD5v9+uu6E7/PPmvEJCKLRoww23RTsz33XBNxVLas2aJFa1LYpk3zO80GIBYVDkb+V0ssKjjdOOuVxCKJRZk8TWJRJkI59H2cxSGHhlUsXRUrP1axEis/Ab+l/Cr7Wf3999+2fPlyq1y5sr+z69lyQ/Orv0ixMcqqVIxNfkNjFRtQwgVxWEksKkGxqE4dsxNPXHdq5841e/rpNZ+fccaa+kPUJCJK6NNP17WnjlCrVmtS1aZPN1u2zKxJkzW1ixCIEI4QjIhSKkzLkppFhRlCSV0rsajgpOOsVxKLJBZl8jSJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvKr7GL15Zdf2quvvmqdOnWyevXq2X/+8x8799xzrU2bNvbBBx+4OvvWW2/ZYYcdZi+++KIdc8wxaa/h/k2aNLE333zTdd84RsXpV2+88YZ98cUXds0118TpUlrbq6++2m6//XabPXu21WHTG7Oddtpp9swzz9hNN91k1113XcqrL730Uuvbt68h/JUlQiKhFSermEPJevM4rCQWlaBYRPHqTp3W9Z8FC8ymTDGrWtXslVfMdt7Z7KSTzP780+z++/9njyDEd++8Y7ZypdkVV5iRTvXWW2aHH272/vtmH31kduWVa6KObrzR7J9/Cu6vEovc7CQWuVGtYxhnvZJYJLEok6dJLMpEKIe+j7M45NCwiqWrYuXHKlZi5Sfgt5RfZRerZ5991k499VQbM2aMtWjRwg444AD7/PPPg/DTrl07V2cRU4444gh74YUX7DjqfaRpCCN77rmnvf322677xjEqTr/617/+ZQ8//LD9888/4ZSgwrarrrrK+vTpY7/++qvVrVs31u2WLl0aIr72339/e+ihh2zXXXdNef2FF15oDzzwgK1cudLKETUhsSgW58g4jl9JLCpBsSi/2TzzTLN69cy++sqsQgWzHXYwmzzZ7MMPzbp0MZsxw+z3381Y3zjtDHEJMQehacCANQLRwoVmEyaYHXjgmt/37Vsg/8m7SGKRm5/EIjcqiUUxUPVq3cso6J5ubefv5B49esS4Y+k3lVhUiuY4zj9mStGwCzQUsfJjEyux8hPwW8qvsocVc3HooYfat99+a3vttVcQIPr16xc6eN5559mDDz6YtrOvvfaaIXqQDrXPPvvY888/H8QiIoyIwCHyZdmyZdahQwe7//77QwQNP7Vr17btt9/eJk6cGMSo++67z6oSBVDIluhXRDr17NnTDjnkkBA1xfMuv/xya968eehTuv59+umndueddwYxC+Hs2muvtblz59o555xjv//+ux1++OH2+uuv20cffRT+UckzGQP3Q7RBcOvevbtxnx122MGuv/56O/3000MB2FtvvTVEbW2xxRZhvO+//34QizbeeGMbOHBg+CGl7IorrgjXpGvwfOedd2zzzTe3W265xdq3b28XXXSRffzxx7btttvaWWedFfqbKBY9+uij9uSTT1rnzp2tW7duYY4RA2fOnBmeRYRSsqBUyOkoNZfHWa8kFmWJWLTFFmYIRpFISlQRp6FVqbLmBDQEokceYZEzq1Fjja+Sdvbqq2bffGN29NFme+yx5nOijV580ezLLwvn0xKL3PwkFrlRrWMYZ71SZJEiizJ5msSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VX2sJo3b14QJxATED8QSM4++2yrUKFCEDYQR1I1olU2pRCssSc7M1y/aNGiIBZxT+5BtBLiEKlQkfDEnxFdWrZsaXPmzAkiVf/+/UPaW2Fbol899dRTdgb1SsyCQDJ48OAgriDOPPbYYyn7RxTOTjvtFK658cYbg7iDEMaY6B9C0BNPPBHElW222cZ++uknu+SSS8LYW7VqZYhnW3Ict5ldcMEF4brJkycHu99++8323ntv22WXXUJ6H2Om0Z9HHnnEbrjhBuvVq1d4xvDhw/OivFIxidIEmZvevXsHkYnP7rnnHnvvvfeMKK8ff/zR7rjjjhBZROTYKaecYieccEIQ8HgGfejSpYtVqlQpRCeREqf/UU3tgXHWK4lFWSIWRVNJ1N7ixWt+0rXq1ddEHyEgJTZSz0gR/emnNWlqhW0Si9wEJRa5Ua1jGGe9klgksSiTp0ksykQoh76Pszjk0LCKpati5ccqVmLlJ+C3lF9lF6vkNDQiZEhz+uSTT9J2dOTIkUFwQISh1hFRPAgsCCQIFEQNzZ8/3zbaaKMQ+TJu3Dj7448/Qk0k0q4+++wzW7FiRRBwiPZ59913/VDSWKYSi6K0uLvvvjtEFhF9Q72gdP2jnhICFhFWbdu2DYIK0TqJaWhc27Rp0yA6de3a1SZMmGA///xziBbiGoQb7BFlEJGInIIFgtD06dOtUaNG4XO+Ryxq3bp1+J5rZsyYESKA6CNiVaqGyAY3opmILOKeRAn9+eefgT8cEI1eeumlMBdRW7JkiW2yySZ5EUeIQ9Qy4jmMJ7/5LvTk5PAN4qxXEouyTCzKJr+TWOSeDYlFblQSi2KgUhpaDFj/byqxKD6zrL0izj9msnYQJdQxsfKDFiux8hPwW8qvsotVQcSi6JqooDURN0TwIFYgGpG6NWvWrDDQY489NggXixcvtoYNG9rWW28dxBrq/9SoUSNE3HgLaedHLpVY9PLLL9tRRx0VInnOP/98Gz16dIhyStc/BJcBAwaEcSAaIQBRhJrUsqhmEWltRx99tA0dOtSOP/74ME6iqRB6eBZiD9FHCGKk9pHihQ3XE2GE0IPI9Pjjj4cIIKKU+IzUsagh3nTk2O8ULVksoi+vvPJK6CP94L6JYhH3JpoL4QgGiHdELyEWlS9fPjyB1MCLL77Y75gbkGWc9UpikcSitK+GxCL3qiGxyI1KYlEMVBKLYsCSWBQfVrZfEecfM9k+luLun1j5CYuVWPkJ+C3lV9nFKhJ+EBNIKUO8yRRZhChRq1atEBWEyHDbbbeFlCtElh9++CGkthGxQhQRNXJOPvnkkA4VpaER6bNw4cKQRkX6FEJHYVsqsYh0N/rHiWFE8SAS3XvvvSn7RzoWwg1iCv2i/6RtTZ06NVyD2EOEFKlk1apVs9122y2kjlEviD8TYcT4qI9EFNGgQYOCiDNlypRQG4haTrAgqog+kbZHnzg9jvtSZ4lnPffcc0FwozaRRyzi2Q0aNLBhw4aF6CRqIY0YMcIQyphTxkxfFyxYYNOmTQvC2c033xzS1HbcccfwewSnojrprbDzmG3Xx1mvJBZJLJJYVPg3WGJRwRnGWa+UhqY0tEyepsiiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VV2sUJAIJIF8YJT0Kg1hABBylZ+DUGD9DMaaVujRo0KggW/RwAhzYpGJBFCSOPGjYOYQj0khAueh4hBClpBjo9P7lsqsYjInkmTJgVTinUTVURkTrr+UfgZkYhIHKKKsKeeDwIOdX9oFKsm/Ss6sh47xocwRVQPUUNRQzRDlCHljkghClPTENkQiIhaIprpyiuvDLWGaCeeeGKIToJTqhZFFvF8opa4f1Rv6OCDDw5RQxQUZ14Ri/7+++8Q2UXNIqK/+I4oJsZEYw6ot4RQprYugTjrlcQiiUVp3yFFFrmXF4lFblTrGMZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVX2ceKgtWkiSESUceGhsjwIUdNp2j77bdfiD4iagXxJCp2nWhK1Mzy5cuDCEHtosRGChqCTNxj4/Mjl0osQvDiVDJOHKO/nv4xHtLDELkiFlzHkfVwqk5BXOOU7QVBeKpfv/5aJ4lRFJtIIopdJ5/yRrFrIrKoHZTcuBfP43sP+8TrifTiNDPvqXKwgj3zt9VWW1mZMmX8TrmBWcZZryQWSSxK+3pILHKvHBKL3KjWMYyzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvcoMVggWRQqnaoYceGoSlbGrpxCKieHKtFTd7vYN+j4jDSmKRxCKJRf53K52lxKKCM4yzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvxMpPwG+Z6Fe//PKLffXVV7bvvvuGItpqaxPQO+j3iDisJBZJLJJY5H+3JBYVnlXyHeKsVxKLJBZl8kCJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TK2vnv7QAAIABJREFUT8BvGcevJBZJLJJY5H+3JBYVnpXEIj9DnYbmZxVZSiyKzyxrr4jzj5msHUQJdUys/KDFSqz8BPyW8iux8hPwW8qvxMpPwG8Zx68kFkkskljkf7ckFhWelcQiP0OJRX5WEovis8r6K+L8YybrB1PMHRQrP2CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRRKLJBb53y2JRYVnJbHIz1BikZ+VxKL4rLL+ijj/mMn6wRRzB8XKD1isxMpPwG8pv8oOVhSvPu6440Jnpk+fbqNHjw4nY7Vr1y6cjjVq1Cj7+uuvrXXr1rbjjjvarFmz7P3337d69erZQQcdtM4gvvzyy3Ai184772ycdvbKK6/YwoULw/WcGJbcEp8/efJk++STT8LJae3bt/cDSrDMRr9KZJLfoN577z2jzhKtVatW9t133wUWnORWHC0bWRXHOIvinnFYSSySWCSxqPBvnQpcF5xhnPVKNYtUsyiTpykNLROhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61fllx5Purr74ajoe/9tprQ2f69OkTRJ2xY8caJ51VrFjRnn/+edt///2DaNSjRw+78847g5DBcfSHH354EJCi9umnn9rw4cODPT+ISpMmTbJmzZrZRx99lPcc7JOfz3H0PJ97T5gwwY455hhr1KiRH9L/W2abXyUzyW9Affv2tb322iuY7LLLLkG4g8Fuu+0Wm4Pngmxj5enz+rKJw0pikcQiiUWFf1MlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61flnNnTvXiORBGLrmmmsMseauu+6yrl272ltvvRXECuaodu3aVqdOHatUqZJVq1bNnn76abv00kvDdX/88Yd17NgxbyAIQ+PHj7fGjRsHsQjhaNddd7Utt9wyCEHnn3++ValSJdgnP3/+/Pnh5LIWLVrY4MGDwz2aNm3qh1TCYtEbb7wRooCIviIKCmZnn3223XHHHdalSxf74osvQoTWihUr1mICM0Q6xLIGDRrY0UcfnTdGhLg2bdqEaCKYv/TSS0Esgg3RSbQDDzwwzE1RNL2DfopxWEksklgkscj/bqWzlFhUcIZx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5VXawuu222+zqq6+2v//+2/r16xdEIcSJk08+OQggpJJtv/32Qaw44ogjQppY586dQ2oawhBCEDakpFWoUMHefPNNq1q1ahCLaHPmzLEXX3zRNttsM2vbtm2ISKpcuXLe99HzIxpDhgwJ6XAnnnhieG7cVlJ+de+994aoqrp161rDhg3tkUceCZFWpN0RHQSff//737bxxhuvxeS5554Ln5GSB9+LLrooCGiISgMHDrQ999zTiEZq2bJliPpCLFq1apWtXr3avv32W1u+fHngXxStpFgVRV/X9z3isCpKsahsmbJ2ecvL1xn+jPkzbMhXQ9b6vPMenW2batvY8lXLbeqcqfb6t69b+bLl7dL9Ll3L7pOfP7EPfvigyJAWZlP/+cCBZhMmFFlfsv5G++xjxs//t59//jmIyp424ZcJxs+G0vbZch8767Cz8oYb5x3cUBilG2ccVhKLJBZlel8kFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvsoNVJNb88MMPQdQg+gexAsGGNLQoDYoUKQQkxJxLLrnEqK+DwMRGB7GIaBdqFSWKRVOnTrURI0aEmkjYLVu2zP773/+G+0Z1eKLns2nCJxCZxo0bF35/6qmn+iH9v2VJ+RXiGdFYY8aMsX333ddmz54dmB188MFhzIhu5557buhVIpPHHnssCGz8wAKBCR7UdZo5c6Y1adIkpOFRrwjxDf7vvPOONW/e3JYuXRqeI7EotlsU+oI4flWUYlG5jcrZVa2uyus/4hHRbD8t/MkGThqY93nbhm1t/232t7/+/su4hp/Bnw+2VatXWbc9u9mKVSvs73/+DvaIRfSxqFphxKJeXbpY78GDi6oruk8pItDlki42qO8giUUFmNM461XvD3tbr5G9CvCU3LxEBa7jz5vEovjMsvaKOItD1g6ihDomVn7QYiVWfgJ+S/lVdrBKjOzp37+/lS1b1v7666+QHoVYMXTo0BAJU6tWLTvhhBPs4YcfDsIG0S7/+te/rEaNGmsNJFEY4X5LliwJYgitU6dOVr169bXsEyObHnroIStfvnyInjn22GNDEe24raT86tFHHw1dY3xEXNHvQYMG2XXXXWdEHVGnieggWiITRLnXXnst2MP3zDPPDDYIbvfff3+IykJUY/yIZohFCFIwRCxavHixde/ePVxb2FZSrArbz2y4Pg6rohSLEseOUHRFyytCtFC/cf1s4fKFeV+f3Phka1Szkd398d2271b72kENDrLPZ39uvyz6xQ7b/jB77LPHbM6SObbs72VFjrNQYlGvXiEab0NtrHWsr2rrEuDvoJ49e+Z9Eecd3NB5xmGlyCJFFmV6XyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq+ykxViRFRXKOoh4gWRMlGj3g71i4hwKOqW6vlxnlGSfvXnn39azZo1baONNorTxSAMIbglC23cBPGJNL3kFnEpys1lSbKKBSgLjeOwKi6x6IRdT7BdN9vV3p7+to37aVxKSh137Gi719k9+OTDEx62vbfc20jnidq8ZfNCRNKSlUuKjHJhxKIi60SO3iiOX+XoEIus22LlRxmHlSKLJBZl8iyJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TKT8BvGcevikMsqlSukl3Z6kpbvGKx3T327rQdP2P3M6xhjYZByH3j2zesRqUatmfdPUMNoy2qbmFbVd0q1L2hnlFRNYlFBScZx68K/pTScaVY+ecxDitFFkksyuRZEosyEcqh7+MsDjk0rGLpqlj5sYqVWPkJ+C3lV9nBatiwYaGmEI2aOxzXTn2hdu3ahQ3nqFGjQrHm1q1bh4LOs2bNsvfffz+kiFHUOrlRy4faRTvvvHOIoCHFhCgarqeoc3JLfD6ns1FAm9PAOGGsIC3b/CqRR6bxJLLIZFsU32cbq6IYU3HdIw6r4hCLjtrpqCD6fDDjAxs5Y+Q6wyTtrGqFqvbKtFds5812tpN2Pcn+XPqnDft6mJXfqLzNXDDTalSsYZc0v8Tm/TUvpLEVVZNYVHCScfyq4E8pHVeKlX8e47BSZJHEokyeJbEoE6Ec+j7O4pBDwyqWroqVH6tYiZWfgN9SfrV+WZFKxhHunLh17bXXhs5wvD2iztixY+3QQw8NdXKef/75UHQa0ahHjx7G8e6tWrUKp5pRnBkBKWoUxh4+fHiw5wdRadKkSaF+z0cffZT3HOyTn0+xaJ7PvSnwfMwxx4R6PXFbNvlVMo90Y0k1F3HHXRD7bGJVkP6X5DVxWBWHWNR9v+5WfePqdvvo20MRaxrpZQdse4CNmjnKdquzm9WrXs+++v0rq1C2gu2w6Q42+bfJVrlC5VDLaPzP423zTTa3BjUb2NhZY+3d794tMnwSiwqOMo5fFfwppeNKsfLPYxxWiiySWJTJsyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/WL6u5c+cakTwIQ9dcc0042euuu+6yrl27hiPdOd2MOapdu7bVqVMn1CyiTtHTTz9tl156abjujz/+sI4dO+YNBGFo/Pjx1rhx4yAWIRztuuuu4eQvhCBOWovqISU/f/78+fbVV19ZixYtbPDgweEeTZs29UP6f8vi9iuipR5//PFwEhxjQSybM2dO4PXss8/+H3vnAWZFkX3xS84MIkiSIGJAFFdEYREBERUUFRGRRRFQWQyoBBFFBcyIKGJGUTBgAGEVsyIqYEBBV1Aw4N8l5yA58/9OsW92GGamT73pnpn35tR+88nOu13d/avT9eadd+uWM9RQBLxLly4uIyvGA7ucvfzyy3bDDTc47ih0feGFF7qrTs8Cv3v11Vdt06ZNtnPnTrf7Gcw27JaG8yOrC8Vfs9uiZpXd68tLx/uwisIsurPZnQ7HPdPuScXSuk5ra3x4Y5u5ZKYrZn1Vg6vcLmhoa7etdbuhFSxQ0Ho27GlYxoa2dddWe3zm46EWupZZFL9SfXQV/1mS40ix4sfRh5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WrvMEq7W5kI0eOdKYQjJtOnTo50wjmxFFHHWVYToVdv7BMDOZFzAiBEYQYLEnDDl1pd/7CHcJImTRpklWsWNHOPPNMl5GEAs4wk9DS7saG///GG2+45XAdO3Z05/VtUesKBaixaxkyoHAfRxxxhNsF7eijj3aMsKQPDG666SZ36Wl5PPbYY9ahQwe3NA8mG5b7pW1pWcAcKlmypON18skn27Jly5zpBjMNxhtMqey2qFll9/ry0vE+rKIwi1gWlUtXdnWN8JO2VShZwQoVLGQrN69ku6LjZBbRqA4K9NFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5Su8garmEGBTBcYG8j+wfIpGDZYhoalYPXr17cRI0Y4AwlmTu/eve3TTz912TUwPGAWIbMGtYrSmiPz5s2zKVOmOAMFcdhV7ffff3f9wlxBi51/6dKlLpMJJhK2jMe/O3fuzEP6b2TUusKuZFi6h2wgbGnfo0cPe+WVVxwDXPvnn3/usqLOOeecg8yi2bNnu+wpmHExMykjswgZRU899ZSr24RsLdR/glkExviRWeQti2wf4KOr3DSLsn2jcXQgsygOaDk0X8V/ZXnvSJ9nMO9dfc5ekQ8rmUUyi4LUmStmEf7Ywjdy8Wy7m/6PJJ8HIghGor8uFvwIipVY8QT4SOlKrHgCfGSUukqbzQKDolChQrZ9+3a3zAmZQhMmTLBixYpZ+fLl7ZJLLnFLrFCwes+ePdazZ8+Dtn9PaxahP2TiwBxCu+KKKywlJeWAG0+b2fT0009bkSJFDNvDt2/f3i238m1RssK14NqQWYSleWvXrrVrr73WLRH77bffnHGE+4HhhuV7aGl5wFC67777nAmEOk7pW4wF+CMLKXaOcuXKuSWAMot81RBevI+uZBYd+OErvFFIvp58dJV8d+93R2LF8/JhJbMoPrMoyMvAlz5lypThBy0PR+aoWbRq1Sq3Vh9/BOJby8MOO8z94YX09NatWztMWP9/zz3/W5Odnp3MoszV5DM55GFN5siliRWPWazEiifAR0pXeZMV/gCK1RWKXSEygrA8LdZQkBnmRTxf+ATddUbnDzom7es5oSuYPuvXr7dDDz3U59K8YnEOcMcXa/g7CYZd2C3GCuYUWszUC/s8idAfdIf7R3ZcRs1HVzKLZBaxmvfRFdtnssaJFT+yPqxkFvmZRRl5GWlHBhnEV155pdWsWdPVGXz++eetYcOG/ODlwcgcNYuwLSzStpHOvnLlSmcW/fLLLzZo0CBXzDGzN+m03GQWySwK4znymUjDOF8i9yFW/OiJlVjxBPhI6UqseAJZRz755JMuG+yyyy5zS/3uvPNO9/cXvqS74447wjpNlv2kvYYwTnjqqae6DLaff/7Zuzt8+/u3v/3Nsfjiiy+sWbNmGfaB+ln4QaZYUJNZJLMoSCOx1zW3s6TMPaO1a9fmD8jHkT6sZBb5mUUZeRlppYbM4ZtvvtllECN21KhR9vHH4e0+mRuyzlGzKHaD+DYyZha9++67ri4B3rCx8wnMoDPOOCNTFjKLZBaF8aD4TKRhnC+R+xArfvTESqx4AnykdCVWPIGsI7G0DzWQ8McrzJXYznVYAoid63Kipb2GMM6HAuDIDPr111+9u/vss89ccfbrrrvOBg8e7L7EzKjhQyqKmaNWV1CTWaQP9UEakVnEEvpfnN4HeWY+rGQW+ZlFGXkZaUcG72/YLRb//eGHH9zKKXgeidxy3SzCGy8KOPbq1csVzsSafWQbZZbeLrNIZlEYD5zPRBrG+RK5D7HiR0+sxIonwEdKV2LFE8g88u6773aGCOoo9O3b12CUoN4SDBLUUrr66qszPPjee++1Dz/80GXd4O807OTWp08fq1Gjhi1ZssQZLSjsjaWKSL/HeVB76vXXX3eFumHitGjRwmWVjx49+oBrGDJkiMGoeuKJJ1ytrHPPPdfuv/9+d434RnbYsGEuo6Bx48YuBsYQlkGiQDh26zvttNNcQXbsHIfzoMQBzjlu3DhX1uDRRx+1Bg0aZHhf6LdNmzau3hSKuD/33HPuGrDTHF478cQTXeYVCpfHzCKYbDfccIMrqfDII4+4Wl7pz7ex/EaDYZRfmgpcxz/Smtt5dmIVDSuZReGaRViij/eiKlWquPeR5s2b2+LFi/nBy4ORuW4W7dy50xXUxA8KZmIpGqAefvjhNmPGDLdsLX1Lu2WsJg+57vE8V9INT02sxIonwEdKV2LFE+AjpavMWeHLuYsuusj9EQuD4+uvv3ZmyHnnnWd33XWXM2IyajCRUHcBphJMn/Hjx1vXrl1t7NixbjkblrHh7zJ80ff222+712HuwExCUXQYQN27d7drrrnGOnTocMA11KpVy+rUqeP+5oMJhet66KGHrG3bti4DChnn+Pfw4cPddeOP8JEjR7od+XDdBQsWtHfeecftrofXkJmOXfhgZsH8Wb16tS1fvtzVfkrfUHcKZRBgQsE8wzH4wx6tf//+7jrwN+n8+fPdNSKzCNlXKHCOAuQwjTI63/hvxts3q77hRZvgkTKL4h9AzVc8O7GKhpXMooPNovSk8aVE06ZND/h12lVSaV/Alyr4YgTvp7NmzXJfnkyePJkfvDwYmetmEb7lwps5/kBA2laXLl3sjz/+yBSVMosyV5EmUv4JEyux4gnwkdKVWPEE+EgfXaH4Yn5uKCiJwpJqGRPAH7CxZWj4QxZmzMCBA11mUWYtZhbBdKlcubIzb9577z33txs2KOnYsaPLOEJBbmT4XHjhhe5vumrVqrku8f9RvwHGEnbDS7sMDX9Uw6hBdg9qAiFbCMYO6gfByPnpp5+cQYOsc1wnMtERD0MIqf0bNmywQw45xJlFyJTCOWFUnXXWWS7bafr06a7P2CYq6e/xrbfecubVRx995I6BgTZlyhR3bzCR0HBf2Inuzz//dP8fccgwWrZsWYbne3Dsg7a15tZ8I0GZRfEPtc/cHv9ZkuNIseLH0YeVzKLsZxZt3brVLevG+2m/fv3cbqi33HKLq12EDUOy2riLH9Xci8w1swh/0OKPDPzx0apVK/ftDX7w7Rb+EMmsySySWRTG4+IzkYZxvkTuQ6z40RMrseIJ8JE+urp90O12/z33850rMt8QGDJwoI1+6aW4zaJYrUmYQxMmTLBFixa57KGrrrrKLS/bvXu3W5YFQwrGDQwfZCTBiMHffFjyhQLRac0iGD8wjGC8IHMIWTxYwvbMM8/Yww8/7AwaZB/BuEEmD/qE6YRU/1hB60qVKrmi3S+88IL79hffAqetfXnppZe62kwZtbRmUaNGjZzphHb99dc7QwjZ7WnNImRX4V5gWuEDQkbnq316bVtYdGG+0ZXMoviH2mduj/8syXGkWPHj6MNKZlH8ZlHMy8CyZLwXbNy40SW8NGnSxA0W3pfwBQTeFxO55YpZlBGwFStWuG+sgprMIplFQRphXveZSJn+kjlGrPjRFSux4gnwkT666t6nu014cYLZPjMrYPv/m90W6ye7/aXvJ4T+ihQsYkULFU29Qyxnx7J2qu3cabZrFxWaDEHXXXKJjZ4yxRkt2Fxk7dq1XplFWEYGI6hHjx528cUX25tvvumWmKFkADKJkO2DDCDUGoLpAsMGXwDCXMKSMWTr4I9pmEWxa4C28YUhlqu1b9/e/vGPf7glZp06dXIZQtgABUvXbr31VpdFtHTpUrd0bujQoc5Mwi5oyEDC+fBH+aGHHur+DeMINZNmzpzplsbBiMqopTWLYHwh6wo1mHr27On++MfmKzCFkN2EpXK4zxNOOMFdG5a/4UvP9Ocb8MQAm7t1bjJIhroHmUUUpgyDfOb2+M+SHEeKFT+OPqxkFsVnFmU1GvjiBF+A4L0usxrM/GjmfmSeMYtYFDKLZBaxWskqzmciDeN8idyHWPGjJ1ZixRPgI310pZ2YPHZi+vxzM/zkl9aihd3y/vuuFg+WXmFZF9Lm77jjjizT5GPL0GCQfPPNN674NApe49tTLGWDERRb/oglWsg6ghkEwwf1i9BgtKDuELJ8kJ4fuwYYOjCJsKwNDYWmsWwM5g5MG2QYxRr6gqmEbCPUhUBxbWT6IM0fmemoWQQDB0WzkfmDBkMJ2UuZtbRmEZbKxZbY4R5xLcgsQl8wx2K7oSHDCZlOY8aMceZU+vM1aN9ABa61xTk1q/jM7VSHSRwkVvzg+rCSWRS+WcSPVGJEyixKjHGirtJncqA6TOIgseIHV6zEiifAR0pX0bCSWSSzKFNltWhh1qKF2/Fr7969hoxu7PKF9vvvvxvqPaVvMGNQzBnLyfbt2+dKByCbBuZMrCGbC8ei1hCWhKVta9ascdk/6etIxa4BNY7QcC07duxwy9rSfhOLnc9gROH4okX/l0GGb26RZYQaRWmvJXZuLJFD3Qj0n9W9wRBK3/CNMO47bb9B81Xa8+kZ9HgG+WkwKSODdJWUNx3nTYkVD86HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjIvKSrWJFcLH9B/ZTMWizDAh+ac7L5sNIHVY8PqvkwswhmUayl1dWPP/7odjNL35BGjyVdMbMoJ3Uf1rmyurdYbYmgc+kZzJyQlqEFqSfz1310Ff9ZkuNIseLH0YeVzCKZRUHKklkURCiBXveZHBLotiK5VLHisYqVWPEE+Mi8pKuYWYTlJciiyKxh+29sFy6ziB/nqCOz9UFVZlFqZlFW44QdyZBtg2Va+bX5zFcybD0M2/wqqP/et4+u8jkqEyteAT6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq6QRXHttde6orzt2rWzZ5991u22BLMIdUr69Olj3333nStei4K6l19+ucXMItRAQf0UFMN98skn3ZbfUTYfVvqg6vFBVWYRZRZFqe1E6VvPYOYjlS3DNlEEENF1+ugqoktImG7Fih8qH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI3NbVzCIsEsStv3GLkowjWAWYRla1apV3Y306tXL7fiEbVFRTBeFgJFZhHomJ510ktsSHAV3Y0V8+bv3i/RhJbNIZlGm6vpvzaLY6z668lNs8kX7sNIz6PEMJp9UvO7IR1deHSdhsFjxg+rDSmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4AnxkbuoKBXexg1K3bt3cjkZTpkwx7OIEswi7HrVo0cLtwoTts5FlhC20kXGEXZFgFq1cudIZRrGdk9BfrFAvT4CP9GGlD6oeH1SVWaTMIvIx1DOYOShlFpEiyiDMR1fxnyU5jhQrfhx9WMksklkUpCyZRUGEEuh1n8khgW4rkksVKx6rWIkVT4CPzE1dYeci7K4UK2j9xx9/WJ06dZxZBNPoggsusJdfftktPfvhhx+sQYMGbmtxxMEsWr9+vZUrV85tA46sIplF/LiHHZmtD6oyi2QWkYL0ma9k2HoYtiT/ZA3z0VWyMmDvS6xYUuZV3+muz++yIV8M4TtP8MghzYfY4BaDU+8iva4efPBBGzBgQILfZbiXL7MoXJ652psmUh6/WIkVT4CPlK4Sh9Wpp57qtvt++OGH7Z133nGmD8wi/KGA7b9Rh2jQoEEu8wjL1X7++Wd76KGHnFl05ZVXumwj/Pf888+3yZMn8zceR6SPrvRB1eODatRm0SWXmB19tNmuXWbz5pm9/77Z3r0HKuCaa8xSUv73uxUrzF580Qxb2l98sVnx4marV5u9+abZmjVxqCfNIVqGFjc/PYOZo8uWYRv3iCTHgT66So47jv8uxIpn58NKmUXKLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq4++OADO/fcc90Ft2zZ0qZOnWo33nijjRw50hlCKGYda/3797dhw4a5+kbYRhyZRliSVqZMGfvwww+N3X6bp3NgpA8rmUV5xCxq3Nisdev95hB+ChfebxZ9++2BgztokNm+fWY7duz//fLlZuPGmd1+u1nBgmYbNpgdcojZokVmL7wQr4T2HyezKG5+egZlFsUtniwO9NFVFOdPpD7Fih8tH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj8wLutq6dautW7fODj/88IMufPv27S7zCMWuYQqlb6tWrbLy5ctbYZgAETcfVjKL8ohZ1LWr2RFHmD31lNmePWY33LA/Q+jJJ/+nlqJFzQYONJs502z6dLPNm/e/dsIJ+7OKvv/e7L33zE45Zf/vv/kme0qTWRQ3Pz2DMoviFo/MolDQ+TyDoZwwgTvxYaXMIplFQVKXWRREKIFe95kcEui2IrlUseKxipVY8QT4SOkqGlYyi/KIWVSypFmxYmbr15u1aWPWqJHZr7+avfba/wa+Rg2zK6/83//fts3sX/8yq1vX7KST9ptMhQqZbdpk9u67+4/PTpNZFDc9n/lKz6DHMxj3iCTHgT66So47jv8uxIpn58NKmUUyi4KUJbMoiFACve4zOSTQbUVyqWLFYxUrseIJ8JHSVTSs9EHV44NqdmsWVapk1rHjwQO5bt3+pWRoeP2448x27zYbNWp/dlGs1aljdtFFZitX7l9u1qCB2dq1ZsuW7c8u2rp1v0EE4wiG0cMP86LJKFJmUdz8fOYrPYMez2DcI5IcB/roKjnuOP67ECuenQ8rZRbJLApSlsw00wCqAAAgAElEQVSiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdKV9GwCvuDakrxFOt2YjcrW7ysbdqxyWYsmmGzls066OK7/q2r1Shbw3bs2WHzVs+zd39718Wg+G2T6k2sYIGCtnDDQntl7iu2DzV6QmrZKq6bXbMImUFXXHHwnfz1l9kTT5j16mV26KH7jaAxY8zw+7QNtYjws2SJ2c6d++sUxWobnXee2dSpZtOmmd1yixkyle6+++AC2T4cZRb50Dog1me+CvsZjPuic+jAbD2DOXSNefU0PrrKq/eQU9clVjxpH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5SuomEV9gfVng17WpXSVeyvHX9Z2WJlndFz37T7bM++Pak3cGbtM+30Gqfb9t3brXDBwu7nxX+/aPtsn3X7WzfbtWeX7dq7y0oWKWlT/m+KM5zCatn6oJpdsyirmzj7bLMmTfYvJfvll/1FrJE19OOPZt26mf3nP2aLF5vBFIJZhP/ftOn+LCPshgaDaONGs1mzzM44Y/+/R4zIHjaZRXHz85mvwn4G477oHDowW89gDl1jXj2Nj67y6j3k1HWJFU/ah5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WraFiF/UG1T+M+tnvfbnt85uN2dYOr7fCyh9src16xBesWpN5Ap+M72ZGHHGkPf/2wnVrtVGt5REv794p/W/HCxe3YCsc642jF5hXWuHpjW75puf2y5hf+5gMis/VBNUqz6PrrzSpWPPDqsazslVfM/vnP/xW7vu46s8MO2x8HYwmv//mnWbt2Zn/72/7fw2iaNMls7tzscZNZFDc/n/kq7Gcw7ovOoQOz9Qzm0DXm1dP46Cqv3kNOXZdY8aR9WCmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdTZw40S7GblJmtmDBApsxY4ZVq1bNWrVqZQUKFLDp06fb/PnzrXnz5nbMMcfY4sWLberUqVa9enVr2bLlQTcxd+5ct+tZ3bp1be/evfb222/bxo0b3fG1atU6KD7t+efMmWPffvut1ahRw85GtkkczYdVVB9UYRRVK1vNZQndP/3+DO/igmMusBMrnWgFCxa0Z2c9ax2P72iHFD/Edu/d7bKNVm5Zaa/OfdX+2p5uOVYcTGKHZOuDapRmkc89YYkZjCVkGMEwijX8HnWR8Ptdu3x6zDhWZlHcDPPCMxj3xUd8YLaewYivLa9376OrvH4vUV+fWPGEfVgps0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXf311182efJkW7Rokd2O+i9m9uCDDzpT56uvvrI2bdpY8eLFbfz48Xb66ac702jAgAH20EMPWdOmTe3rr7+28847zxlIsfbdd9/ZJ5984uLxA1Pp+++/t0aNGtm0adNSz4P49OfftWuXOz/6njVrll100UV25JFH8pD+G+nDKiqzqN/f+1mZYmXc0rIRX4+wjTs2HnQfXU7sYrXL1XaG3Hu/vWdNaza1lGIptmzTMmcY1UipYT+v+tkmzJvgzSCzA7L1QTWvmEWh0QjoSGZR3KTzwjMY98VHfGC2nsGIry2vd++jq7x+L1Ffn1jxhH1YKbNIZlGQsmQWBRFKoNd9JocEuq1ILlWseKxiJVY8AT4yCl2tW7fOkMkDY2jgwIEGs2b48OHWvXt3++CDD+y4444znLdChQpWqVIlK1GihJUtW9bGjRtnffv2dcetWbPGLrjggtQbgTE0c+ZMO/74451ZBOOoXr16VrVqVWcEXX/99Va6dGkXn/78GzZssJ9++smaNGliL774ouvjlFNO4SHlAbOow3Ed3BIy1BnCv48/7HhX4DpWwBqXiGVnZYqWsbd/fdvqVqxrl9a71NZuXWsbdmxwy9Me+foR27prq93R7A7bvHOzDf9quDcDmUUhIJNZFDdEn/kqKsM27ouP+ECZRfED9tFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj4xSVw888IDddttttnv3bhs5cqQzhWDcdOrUyZlGWEp21FFHGZaXtW3b1i0T69q1q1uaBmMIRhBisCStaNGi9v7771uZMmWcWYS2evVqmzRpklWsWNHOPPNMl5FUqlSp1Ndj54/ReOONN9xyuI4dO7rz+jYfVmF/UB14+kArUrCIfbn4S2cUlStezl6b+5rLMmpWs5lNXzjd6leqb9VTqttPq36yooWK2tGHHm1zVs5x9YnOqXOO/d/6/3MmEeLmrpxrE+dP9EWQaXy2Pqgqs8hq164d2lgkc0e5+Qzmda7Zegbz+s1FfH0+uor4UvJ892LFD5EPK2UWySwKUpbMoiBCCfS6z+SQQLcVyaWKFY9VrMSKJ8BHRqmrmFnz559/OqMH2T9YTgbDBsvQsBSsfv36NmLECGcgwczp3bu3ffrpp85gQn0jmEXIREKtorRm0bx582zKlCmuJhLitm3bZr///rvr9+ijj3YAYudfunSpy2SCyfTNN9+4f3fu3JmH9N9IH1Zhm0UoWN3mqDZWwAq4ndD+3PCnvfTjS9a6TmtrfHhjm7lkpitmfVWDq1xdIrS129a6otZbdm6x6065zg4teaj7PeodPTXrKVu/bb03g8wOyNYHVZlFMotIJebmM0heYq6FZesZzLWrzhsn9tFV3rji3LsKseLZ+7BSZpHMoiBlySwKIpRAr/tMDgl0W5FcqljxWMVKrHgCfGSUukqb2fPUU09ZoUKFbPv27dauXTuXKTRhwgQrVqyYlS9f3i655BJ79tlnXcHqPXv2WM+ePa1cuXIH3Ehaswj9bdmyxZlDaFdccYWlpKQcEJ82s+npp5+2IkWK2I4dO6x9+/auiLZv82EVtlmEay1UoJArbh2rPZTZ9VcuXdllEOEnbStforyVLFLSlm5a6gynMFu2PqjKLJJZRIoxt59B8jJzJSxbz2CuXHHeOamPrvLOVefOlYgVz92HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjInNTV5s2bU+sKxa4QGUFYnhZrKE6N+kUozhx2y+j8PufwYRWFWeRzrTkdm60PqjKLZBaRgtUzmDmobD2DJP9kDfPRVbIyYO9LrFhS5rKY2SXGMotkFgUpS2ZREKEEet1nckig24rkUsWKxypWYsUT4COlq2hYySzi/0g2mUX0BwperckZ6TNf6Rn0eAaTUy70Xfnoiu40SQPFih9YH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6PU1cSJE11NITTUKZoxY4arL9SqVSuXOTR9+nRXzLp58+Z2zDHH2OLFi23q1KluiRiKWqdvKISN2kV169Z1tYzefvttt2wNx9eqVeug+LTnx+5sKKBdo0YNO/vss3lAaSJ9WOmDqscHVZlFMovIJ1LPYOaglFlEiiiDMB9dxX+W5DhSrPhx9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXWEp2eTJk23RokV2++23u4vB9vYwdb766itr06aNqzU0fvx4V3QaptGAAQPsoYcesqZNm7pdzc477zxnIMUaCmN/8sknLh4/MJW+//57a9SokU2bNi31PIhPf/5du3a586PvWbNm2UUXXeSKa/s2H1Yyi2QWZaqvFi3M8PPf5qMrX80mW7wPKz2DHs9gsgnF8358dOXZddKFixU/pD6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdGoat169YZMnlgDA0cONBg1gwfPty6d+9uH3zwgdvdDOetUKGCVapUydUsQp2icePGWd++fd1xa9assQsuuCD1RmAMzZw5044//nhnFsE4qlevnlWtWtUZQdhprXTp0i4+/fk3bNhgP/30kzVp0sRefPFF18cpp5zCQ4rjQ70+qPIfVD8YNsxszhzv8UjYA+rXNzvhhNTLX7FihVWuXJm6HZid+a01bNgwLlZzV861Oavyj67qH1bfbul2i0zIOB6QKN4H47iMhDhErPhh8mEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXdjWzkyJHOFIJx06lTJ2caYSnZUUcdZVhe1rZtW7dMrGvXrm5pGowhGEGIwZI07J6Wdjc03OHq1att0qRJVrFiRTvzzDNdRlKpUqWcmYSWdjc2/P833njDLYfr2LGjO69v82Els4g3i+7q3t2GjB3rOxyKFwERSEOgW+9uNmbEGJlFcajCZ26Po/ukOkSs+OH0YSWzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdxcyaP//80xk9yP7BcjIYNliGhqVg9evXtxEjRjgDCWZO79697dNPP7Xdu3e7+kYwi5CJhFpFac2iefPm2ZQpU1xNJMRhV7Xff//d9Xv00UcfYBYtXbrUZTLBRPrmm2/cvzt37sxD+m+kDyuZRR5m0V13OXMwv7atW7dayZIlqduHxrHMMr+0cuXKWZ06dVJv14dVfmEUu08syR08eLDMojgG3mduj6P7pDpErPjh9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXN7HnqqaesUKFCtn37dmvXrp3LFJowYYIVK1bMypcvb5dccok9++yzrmD1nj17rGfPnoYPimlbWrMI/W3ZssWZQ2hXXHGFpaSkHBCfNrPp6aeftiJFitiOHTusffv2roi2b/NhJbOIN4t8xyHZ4n10lWz37ns/YsUTEyux4gnwkdJVNKxkFsksClKWzKIgQgn0uiZSfrDESqx4AnykdJU3WW3evDm1rlDsCpERhOVpsYasCdQvwm5pYbeMzu9zDh9dySySWcRqy0dXbJ/JGidW/MiKlVjxBPhI6SoaVjKLZBYFKUtmURChBHpdEyk/WGIlVjwBPlK6EiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldRcNKZpHMoiBlySwKIpRAr2si5QdLrMSKJ8BHSldixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpatoWMksklkUpCyZRUGEEuh1TaT8YImVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ2ruz6/y4Z8MYTvPMEjhzQfYoNbZF6Q/8EHH7QBAwYk+F2Ge/kyi8Llmau9aSLl8YuVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ0rZRYpsyhIWTKLgggl0OuaSPnBEiux4gnwkdJVNKwmTpzId5yEkStXrrRKlSpRd/bz6p/t51U/U7HJEFTvsHo26JpBqbeiZ5AfVbESK54AHyldiRVPgI+UrqJhpcwimUVBypJZFEQogV7XRMoPlliJFU+Aj5SuomHV65Ze9uRDT/KdKzLfEOjWu5uNGTFGZlEcI675iocmVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj6669+luM7+fyXee4JEVS1a0iqUqpt7Fli1brFSpUgl+V9Fc/gknnGCDB2defyCasyZHrz7PYHLccfx3IVY8O7ESK54AHyldRcNKmUUyi4KUJbMoiFACva6JlB8ssRIrngAfKV1Fw0p1eFSHh1WWnkGWlJlYiRVPgI+UrsSKJ8BHSlfRsFJmkcyiIGXJLAoilECvayLlB0usxIonwEdKV9Gwklkks4hVlp5BlpTMIp6UWImVDwE+VvOVWPEE+EgfXSmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+0kdXMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAf6aMrZRbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEf66EpmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dKXMIplFQcqSWRREKIFe95kcEui2IrlUseKxipVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+ulFkksyhIWTKLgggl0Os+k0MC3VYklypWPFaxEiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldiRVPgI/00ZUyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klkksyhIWbliFm3evNlKlSplBQoUSL2+LVu2WIkSJaxgwYJZXvODDz5oAwYMSI3xeSCCYCT662LBj6BYiRVPgI+UrqJhJbNIZhGrLD2DLCkzsRIrngAfKV2JFU+Aj5SuomElsyg+sygjLyPtCG3atMnKlCnDD1oejsxRs2jVqlU2Z84ca9++vS1YsMAOO+wwW7NmjXXu3NkKFy5sCxcutP79+1u3bt0yRSazKHM1aSLlnzSxEiueAB8pXUXDSmaRzCJWWXoGWVIyi3hSYiVWPgT4WM1XYsUT4CN9dCWzyM8sysjLSDsys2fPtiuvvNJq1qzpfI3nn3/eGjZsyA9eHozMUbNo4sSJ9uWXX9qIESNs5cqVziwaOnSowX277777bMWKFValShVDllHJkiUzxCWzSGZRGM+Rz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZ5GcWZeRlpB2Zs88+226++WbDfxE7atQo+/jjj/nBy4OROWoWxe4fy89iZtHVV19trVq1sk6dOtm+ffvcMrQ//vjDateuLbPIUzA+k4Nn10kXLlb8kIqVWPEE+EgfXcksklnEKstHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrsI0i97t/K61OqKVFb+vuLvYKqWr2FPnPWVt6rSxv3b8ZQOmDLCx/x6b4Y38/fC/2yddPrGde3da+QfL2zNtn7GO9ToeFHvqc6fagnULeBjpIoc0H2KDWwxO/W16VumTUjI7UVovI21M9erV7auvvjL894cffrDWrVs7zyORW66bRR07djT8dOjQwXGsVKmSzZw502rVqiWzyFNZPpODZ9dJFy5W/JCKlVjxBPhIH13JLJJZxCrLR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj67CMIuuOukqu7HRjVa/Un13kQXu2l+T+J1/vGNtj25ryzYts8qlK7vfHfnYkfafDf856GaW9l1qVctU3Z84cndBe6X9K3Zx3YtT44oX3m9A1R5Z2/7c8CcPI11k1GZR2bJl7ddff3UrpTAOzZs3t8WLF8d9vXnhwFw3i+6++24D2N69e9uePXvskEMOsQ0bNrgMoxkzZrhla+mbClxnLB2fySEviC83r0GsePpiJVY8AT7SR1cyi2QWscry0RXbZ7LGiRU/smIlVjwBPlK6EiueAB/po6swzKIxF46xdse2s5RiKW7zqphZtGXgFitcsLAVu7eYDWo+yO5qcZfd9ultNnTG0ANuZuDpA+2+lvfZ1l1brUThEs4sSttubnKzPXTWQ/bq3FftskmX8SAyiGTMovSHnXbaada0adMDfp1ZZlGzZs1cuZ2TTz7ZZs2aZfA5Jk+enK1rzu2Dc90sAsAnnnjCreebMGGCPfLII/b1119nykU1izKXjM/kkNvCy+3zixU/AmIlVjwBPtJHVzKLZBaxyvLRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjqzDMotiVLe+33GUQxcyizbdttqKFilr5YeXthQtfsEuOu8Qmzp9oHcbvX02EBoNpdf/V9vH/fewykw4vc/gBZlGlUpVsWb9ltnHHRjt02KG2d99eHkScZlHapJTMTpbWLNq6dav9/PPPdsopp1i/fv2sQoUKdsstt7jaRaVLl7Z77rknW9ec2wfnmlmEauIVK1a0bdu22bnnnmvz5s1z//7kk0+sUaNGMoviUIbP5BBH90l1iFjxwylWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+uorSLBrVdpT98+R/uqVlMFfQPlzwobUZ1yb1Zj66/CM7o9YZVuGhCvbTdT8dZBZNuGSCdTiug3Wc0NEmzJvAQ8gkksksYs2imJeBnd6RebRx40ZXd7lJkybu7OXKlXMJMOXLl8/2dedmB7liFmV0w1jPV7lyZStSpEiWPJRZlDken8khN0WXF84tVvwoiJVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+uojSLcMVnH3m2dT2xq1uOhoLVD8x4wAZ+OjD1ZtYPWG/lipc7wFBat22dyyJCnSIsZdu+e7uVur8UDyCLyLDMoqwuZvfu3bZs2TJX5DpmkoVy8bnUSZ4xi9j7l1kks4jVSlZxPhNpGOdL5D7Eih89sYqGlcwimUWssvQMsqS0HTxPSqzEyocAH6v5Sqx4Anykj66iNIu+7fGtnVjpROv3cT9D3aGaKTWt0ehG1qBKA7uj2R1237T7rFDBQnZ42cPdzV1/yvVWumhp6/tRXxvxzQg7/+jzbfI/Jtunf35qrV5qxQPIZbMolAvNQ53ILMpDg5HdS/GZHLJ7rkQ/Xqz4ERQrseIJ8JE+upJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXUVpFmF5GZaZFSm0f9XQqNmj7Jp3r7FHWz9qNzW6yR6b+Zjd9OFNqTe2qM+iA5ahDT97uPX7ez976KuH7JZPbuEByCwKhVWsE5lFoeLM3c58JofcvdLcP7tY8WMgVmLFE+AjfXQls0hmEassH12xfSZrnFjxIytWYsUT4COlK7HiCfCRProK0yzK7ApbHtHSvl36rW3euZm/iYgic2IZWkSXnmvdyizKNfThn9hncgj/7InVo1jx4yVWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+usoJs4i/8ugjZRb5M/Yyi1DNHC03izWpZlHmg+wzOfhLJbmOECt+PMVKrHgCfKSPrmQWySxileWjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDvz7Kr3PwFNP3shAs2jhwoX2yiuvuK3fpk2b5ki0bNnSbRF31lln2YknnpijdGQWySwKQ3A+E2kY50vkPsSKHz2xioaVzCKZRayy9AyypFS0mSclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStTswjbvt1///02ePBg10eDBg2sWrVqht/Pnj3bVq1a5X7frVs3GzlypJUtWzboXKG8LrNIZlEYQvKZSMM4XyL3IVb86IlVNKxkFsksYpWlZ5AlJQOEJyVWYuVDgI/VfCVWPAE+0kdXMotkFgUpK1OzaPny5daqVSu79tpr7eKLL7YqVaoc0NemTZvss88+s2HDhtk999xjZ5xxRtC5QnldZpHMojCE5DORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFsksClJWpmbR3r17DTWK8NOhQwdr0aKF9e7dO8P+du7caUWLFg06VyivyyySWRSGkHwm0jDOl8h9iBU/emIVDSuZRTKLWGXpGWRJyQDhSYmVWPkQ4GM1X4kVT4CP9NGVzCKZRUHKCqxZhA7atm3r6hUtXrzYUlJSgvqM9HWZRTKLwhCYz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZJLMoSFmUWYQlZp9//rnrq3bt2ql9zpkzx0qVKhV0jlBfl1kksygMQflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFyCxau3btQX19+umnVrJkyaBzhPq6zCKZRWEIymciDeN8idyHWPGjJ1bRsJJZJLOIVZaeQZaUDBCelFiJlQ8BPlbzlVjxBPhIH13JLJJZFKQsyiyKdbJx40bbsWOHVaxYMajfyF6XWSSzKAxx+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJKSAcKTEiux8iHAx2q+EiueAB/poyuZRTKLgpRFmUUQ3a233moTJkxw/Z111ll2xx13WLNmzYL6D/11mUUyi8IQlc9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZlFnUsWNHZxThv6VLl041jVasWKFlaEGEc/B1n8khBy8rT55KrPhhESux4gnwkT66klkks4hVlo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySySWRSkrECzaP369Va+fHm799577fbbb3f9/etf/7L27dvb999/byeddFLQOUJ9XZlFmeP0mRxCHZQE7Eys+EETK7HiCfCRPrqSWSSziFWWj67YPpM1Tqz4kRUrseIJ8JHSlVjxBPhIH13JLJJZFKSsQLNo9+7dVqRIEevSpYuNHj3aChUqZEOHDnXL0H777Tc76qijgs4R6usyi2QWhSEon4k0jPMlch9ixY+eWEXDSmaRzCJWWXoGWVJaWsWTEiux8iHAx2q+EiueAB/poyuZRTKLgpQVaBahg6uuuspeeOEF11eZMmVs06ZNbknaG2+8EdR/6K/LLJJZFIaofCbSMM6XyH2IFT96YhUNK5lFMotYZekZZEcluVcAACAASURBVEnJAOFJiZVY+RDgYzVfiRVPgI/00ZXMIplFQcqizKJt27bZW2+95cyhv/76yzp16uTMokMOOSSo/9Bfl1kksygMUflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFV1xxhV199dWpu58tWbLELUt7/fXXrVKlSkHnCPV1mUUyi8IQlM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZWZpFY8eOtccff9wVsj788MPtsMMOc/2tWrXKYBitXbvWFb/OySazSGZRGHrzmUjDOF8i9yFW/OiJVTSsZBbJLGKVpWeQJSUDhCclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStLs+ill16ykSNHHmQWodNWrVoZjJucbjKLZBaFoTmfiTSM8yVyH2LFj55YRcNKZpHMIlZZegZZUjJAeFJiJVY+BPhYzVdixRPgI310JbNIZlGQsqhlaIMGDbILL7zQTj755KD+In9dZpHMojBE5jORhnG+RO5DrPjRE6toWIVtFpUpWsba1W1nNcrWsC27ttjXS762mUtmHnTxlxx3iR196NG2a+8um7d6nr3/+/u2d99eF9fo8EZ29pFn24SfJ9gva37hb5yIbFGrheEn1qQrAtp/Q8RKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFixYtsttuu83++c9/WrVq1Wzw4MF255132rHHHhvUf+ivyyySWRSGqHwm0jDOl8h9iBU/emIVDauwzaKO9TracRWPs7+2/2VlipWxAlbAHpjxgO3cszP1Bhof3tha12ntzCH8FC5Y2JlFSzcttVa1W1mtcrXccZPmT7I5K+fwN05EyiwiIGUSomeQZydWYsUT4COlK7HiCfCR0lU0rGQWySwKUhZlFrVr187efvttmz59ulWpUsXq1Knj6hfBRCpWrFjQOUJ9XWaRzKIwBKU3HZ6iWIkVT4CP9NFV2GZRvyb9rHTR0nb3F3fbxXUvtuMPO97G/zzeZQ/FWte/dbUjyh1hT333lO3Zt8duOPUGW711tc1YOMPaHNXGihYqagULFLSJ8yfa3JVz+RsnImUWEZBkFsUP6b9H+jyD2T5ZgncgVvwAipVY8QT4SOkqGlYyi/KHWbRnzx6bOfPgDPqYqgoWLGiNGzfOUGSBZtHu3butSJEiLpPo7rvvdp188MEHdu6557paRieddBKv3hAiZRbJLApBRqY3HZ6iWIkVT4CP9NFV2GZRk+pN3BKyHXt2ONNn+67t9vDXD9vuvbtTb6BkkZJWrFAxW799vbWp08YtO/t17a/22tzXXMylx19qdSvUlVnED3mORProKkcuKA+fRKz4wRErseIJ8JHSlVjxBPhIH13JLMofZtHGjRstJSUlSxHt27cvPrMIR5UtW9adANlFpUqVckvS/vWvf9mCBQvsyCOP5NUbQqTMIplFIchIZpEHRJ83HY9ukzJUrPhh9WEVtlnU7W/d3DKyrbu2WonCJdxFP/f9c7Zs07KDbiC2ZA1G0qjZo2z1ltUyi/hhzvFIH13l+MXlsROKFT8gYiVWPAE+UroSK54AH+mjK5lF+cMs2rFjhw0fPtyJCDvaP/PMM9atWze3WmzKlCn2+eefW7bMokceecT69et3gEq7dOli2C0tp5vMIplFYWjOZyIN43yJ3IdY8aMnVtGwCtssGtxisO3es9vum36fNavZzFoe0dLVHUL9oVgrUKCA9Tqllx1a8lDbsH2Djfn3GFfjKNaUWcSPdU5G6hnkaYuVWPEE+EjpSqx4AnykdBUNK5lF+cMsSqueH374wRo0aOAMoubNm9u9997rVpBlyyzCCZYvX27vv/++LV261Fq3bm0NGzY0rG/L6SazSGZRGJrTmw5PUazEiifAR/roKmyz6Namt1qxwsVs6p9T7cRKJ1qFkhXsvd/es322z5lH0xdOt0NKHGJYrrZn7x632xleW7ttrX3252fuJmUW8WOdk5E+usrJ68qL5xIrflTESqx4AnykdCVWPAE+0kdXMovyn1mEzKLq1avbww8/bL1797YOHTrYl19+aStXrsxQZIE1i3DUtm3bbMyYMfb777+7Tvbu3Wvz58+3SZMmWenSpXn1hhAps0hmUQgy0jI0D4g+bzoe3SZlqFjxw+rDKmyz6OSqJ9s5R57j6hXBBFq6camN/n602/0Mu6DNXDLTapevbRVLVjzghrBsbdiXw9zvYsvTVOCaH/OciPTRVU5cT14+h1jxoyNWYsUT4COlK7HiCfCRPrqSWZT/zCIoqV69ejZv3jwrU6aMbdq0yW688UYbOXJk/GZR27Zt7b333juoA3Qus4h/eKOO9Jkcor6WvN6/WPEjJFZixRPgI310FbZZFLvKqmWq2qotqw4obM3fQXSR2g0tfrY+uor/LMlxpFjx4yhWYsUT4COlK7HiCfCRPrqSWZQ/zSLsjPbAAw/Y3Llz7bLLLrNrrrnGqlatGp9ZFNsNDRk9kydPtgsuuMAKFSpkr776qs2aNctQ1yEnmzKLMqftMznk5JjlxXOJFT8qYiVWPAE+0kdXUZlF/NXmbKTMovh5++gq/rMkx5FixY+jWIkVT4CPlK7EiifAR/roSmZR/jSLeDWZBS5Dw5IzmEN9+vSxEiVKGIoioZo20pewFO3YY4/1OV+2Y2UWySzKtojMtAzNA6LPm45Ht0kZKlb8sPqwkll04B8zPOX8F+mjq/xH58A7FiteAWIlVjwBPlK6EiueAB/poyuZRfnDLNq8eXOGmUNVqlSxX3/9NUtxBZpFOPqKK66wl19+2V577TX7xz/+kdqhlqHxD25ORPpMDjlxPXn5HGLFj45YiRVPgI/00ZXMIplFrLJ8dMX2maxxYsWPrFiJFU+Aj5SuxIonwEf66EpmUf4wi7Zu3eoKWccaDCLo5MILL7S33nor+2bRjh077OOPP7YzzzzTxo8fb7Nnz7ZLL73UmjZtyis3pEhlFmUO0mdyCGk4ErYbseKHTqzEiifAR/roSmaRzCJWWT66YvtM1jix4kdWrMSKJ8BHSldixRPgI310JbMof5hF6dUDb6dGjRpWu3Zt+/rrr+Mzi7Zv326NGjVy26oNGzbMbrnlFmvVqhWv1IgiZRbJLApDWj4TaRjnS+Q+xIofPbGKhpXMIplFrLL0DLKktBybJyVWYuVDgI/VfCVWPAE+0kdXMovyn1m0b98+V3P69ddft2+//db5PIULF85UYJkuQ4vVKoptqXbYYYcdtPPZnDlzrFSpUrx6Q4iUWSSzKAQZqWaRB0SfNx2PbpMyVKz4YfVhJbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klmUf8yi//znP/bMM8/YuHHjrGzZsnb55Zdbz549rXz58lmKK8uaRS+99JKNGTPGPv/8czv66KOtUqVKB3T24YcfWsmSJXn1hhAps0hmUQgyklnkAdHnTcej26QMDYMVHH/Ug8NEnszNh5XMIplF7LPgoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KPWXT22WfbJ598Yg0aNLANGza4z8Lnn3++2+0+q0YVuB40aJBddNFFdtJJJ/FKjShSZpHMojCk5TORhnG+RO5DrPjR82U1d+5cN0ljE4Hq1avbrFmzrGXLls4s2rVrV5ZpofxV5c1IH1Yyi2QWsSr20RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLnjfr169vo0aPtqquucmLq27evjRgxwrZt22bFixfPVGCUWcTLM/pImUUyi8JQmc9EGsb5ErkPseJHz5cVdpjs3Lmzffnll9akSRO7++67bfDgwfb444/b9ddf79YUJ2vzYSWzSGYR+xz46IrtM1njxIofWbESK54AHyldiRVPgI/00ZXMovxlFmF3eyw/Q7vtttts6NCh9tdff2W5mkFmEf/s5flIn8khz99MxBcoVjxgsYqGFbi2adPGfvvtN5cS2qNHD2cUrVq1yk4//XTLapkvitI99dRThq0vW7Ro4b4ZqFq1ql1wwQV26KGHuuXDS5Yssfbt27v1yNga89xzz7VzzjnHZsyYYVdffbXrH7Xp0KZNm2ZIT4VJhaXFTz/9tD3xxBO2Zs0aa968uT366KMuy6lt27Zu44Mff/zRVq5caXfeead99NFHbrdMnAPXBIMLJhjWRS9cuNC9Kd1zzz0HZUn56Epmkcwi9in00RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLuZ3Xq1HGfDfC5YePGjfb999/bNddc4/7mz6rJLOKfvTwf6TM55PmbifgCxYoHLFbRsFq/fr3179/fnn/+eRswYIC1a9fObr/9dps6daozWpAmmtHuBIsXL3bbXV5yySXOAOrevXvqZI+lbIcffrjbBnPBggV21FFHOaPmyiuvtGrVqrkbwTaZSEPt3bu3YZMCrFdGe+edd5zJc9ppp7n+YSzhtV69erkfXCP6x6YHXbp0ccYQGkyiZcuW2XfffWfvv/++M5vwRtStWzcrUaKEexPCNxc4Pm3z0ZXMIplF7FPooyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KHWQT1zJs3z0aOHOn+1sff5/g7vV+/foZNzLJtFsF9wjfL+CAzZMgQmz9/vt18883WuHFjXrkhRWoZWuYgfSaHkIYjYbsRK37oxCo6VumXocXWD6NmUenSpTM8MYyZmPEDowYZQZdddpmlpKQ4Mycrs+i8886zt956y5lQJ554oq1bt85gPi1atMhq1qzp3jRgLiFTCN84wHB69dVXnYGEbCb0D4ML22wiy+i9995ztZVQMA/GFTZFwDacyEqCOVSoUCG7//777ZRTTnG/l1nEaalFrRaGn1jTM8hxQ5RYiRVPgI+UrsSKJ8BHSldixRPgI310JbMo/5hFMQXt3r3bChYs6H6YRmUWYWkDvnWeOHGiXXzxxa5ffCDBh4ycbjKLZBaFoTmfiTSM8yVyH2LFj54vq3jMIlzNF1984TKSsAQMy9awnA1ZPTBz8A3B7NmzXdYQDKG0mUVYnwzzBg2vFStWzJk4y5cvd8vYYBZ17NjRLTXD0jhkEGGDAxTFi5lFd9xxh+uzQ4cO7j0Bu7fBXEImEtZCwzCCeQSzqEiRIu5cFSpUsJtuuukAkD6slFmkzCL2KfTRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjK5lF+cMsCtplGasGkByUUQs0i+A+4Q/+UaNGuQ8E+HCAzKK6devaL7/8Yscccwyv3hAiZRbJLApBRvr22QOiz5uOR7dJGerLKmYWIRMHy84GDhzo6g9llVn0+eef2xlnnGF33XWXM3aQLbR69Wo3yce2xXzuueds/PjxzrRJaxbFjJ6szKJjjz3W1U+C8YPdEbDcLW1mUZBZhDpK9957r8s+wvsD/o0ldri3tM2HlcwimUXshOGjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZhB3Pjj76aFezCF/uYlUAyl7gy+DjjjvOfXk8duzY+MyiPXv2uG+csTPP8OHD3bbOXbt2dYVT8W105cqVefWGECmzSGZRCDKSWeQB0edNx6PbpAz1ZQVjBUu0YA79+9//thdffNGZRZs3b7ZSpUplyAiZPJ06dXJmEBqyPDE3X3rppW6J2UUXXeR+j7kabwQwa1DXCEvXMjOLVqxYYVWqVHGZRcgIQlYR3lDwxoIvDHA92LENNZBifcComjBhwkGZRVgah35gWKHhjQiZqaiDJLOIk72WoXGcMoryfQbjP1PiHylW/BiKlVjxBPhI6UqseAJ8pI+uZBblD7No69at7nPFCy+84D4ToOGL3N9//91+/vnnLMUVmFmEo1Gf6OGHH3YdYakDPpTgQwOWOuR0k1mUOXGfySGnxy2vnU+s+BERq2hZwd2HGVO2bFlX4yfWZs6c6Uyk9A2ZPzCIsFPZli1bXK2htA394bjy5cvzF54uEobU0qVLncGE3c3iaXhjQk2kzPrw0ZUyi5RZxGrQR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj65kFuUPswhfTuPzA77wxQ+SgfBlNYpe43NDRhvqxBRHmUX44PDZZ5+5Dw3Y5Qa74OBb5YoVK/LKDSlSZpHMojCk5DORhnG+RO5DrPjRC5MVlv1ix7T07eSTT3bbXyZ682Els0hmEat3H12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCKsEkCtUphDadu1116burtxZgqjzCJ8S43sImQV9ezZ03bs2OHqWGB5QU43mUUyi8LQnM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywp7RzHkxIrsfIhwMdqvhIrngAf6aMrmUX+ZtHevXsNNYAyKxeBkUIdUawYyEsNKxJQrgJ+DnZCwwZmKCuU2e7LsWunzKJYbQochN10sDzip59+ctstoyBSdhqMJ2QotW7d2nWDgqgoyJpZk1kksyg7eosd6zORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFvmZRWPGjLFHH33UlVhAts64ceMOWGn13nvvGWJKlChhCxcutJEjR9qhhx5qN954Y+oAYqMwZPnEao/yI5u9yAULFti//vUvV5cUG9dgaRquI6gFmkWx3dCw8w7qY6CmBrZpbtasmf3444/Zzi7CjmrYmvnVV1/Ncr1c7EZkFsksChI187rPRMr0l8wxYsWPrlhFw0pmkcwiVll6BllSMkB4UmIlVj4E+FjNV2LFE+AjfXQls4g3i2KeyIYNGywlJcUZQNgcBok0sVa9enV78803rVGjRs40wkYwyOSJNRhIyOjBzsaHHHIIP6jZjIwl58RqoWLjmfPPP9/69u2bWpc6s1MEmkUogISiR9jWGVlE+EEmELZBRj2NcuXKZevy3333XevcubMryIpCSzCDsC10Zk1mkcyibAnuvwf7TKRhnC+R+xArfvTEKhpWMotkFrHK0jPIkpIBwpMSK7HyIcDHar4SK54AH+mjK5lFvFn0559/WqtWreyPP/5wg/H444+7nYyff/751MFBMs0DDzzgMneGDRtmo0aNSo1HEDYJw2qq2I5k/KhmLxI7nh1//PH2ySef2J133mlnn3224X5efvllw7K6rDazCTSLcGnYBvmRRx454Covv/xyd4Lstk8//dS+//5769Wrl73xxhsOMLKNcNEzZsxw2zWnb9jaOdZ8HojsXmteP14s+BESK7HiCfCRua2rKVOmuC3qseV9Xm8+rGQWySxi9eyjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDjaL0pOG8dO0aVObM2eOq9mM5Vto8EG++OILGz16dOoh+B3qPJ977rk2ceJEtwPZt99+617HuDRv3tz9t0iRIvyAhhCJrKgjjjjCHnroIVu9erV98MEH1qFDB5cMFNpuaLNnz7ZJkyY5d+ykk05yqVclS5bM9uXv3LnTLW3DTyyLafHixW5r6IyaMosyR+4zOWR74BK8A7HiB1CsEocV1iIfeeSR2V4ezN9x/JE+upJZJLOIVZqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXcks4jOLUNQa3kcsE2fEiBFuUPr06XPA4CBjB8kuMGimT5+emnmE5WpYrZVVbWZ+lP0it27dapUrV3YrudK2008/3aZNm5ZlZ1RmEbZVQ9oVahWFYRClvaLBgwc7h+upp56yr776yrp06XJAulb6q5dZJLPI7/HIONpnIg3jfInch1jxo5fbrGJmESb+6667zrCuGsX2sEnB2LFj3U6Whx12mF144YVuLTXetLAjQrdu3Qxveti5ATH4tqFq1ar8jccR6cNKZpHMIlZiPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjfXQls4g3izACKAgNz+KEE06wc845x1DTGVlHWOaFcjpYZoafdu3a2ZVXXulqPOO/aNjECwWxGzZsyA9mSJHYnQ3Xh2uIteOOO84ZXZUqVcq+WYROVq1a5TrChwpAOPPMM0NJoVq+fLkzovChBT+A3rZt20wvWmaRzKIwnhufiTSM8yVyH2LFj15us4qZRR999JFbPrx27VqXEYo3tb/++ssZ/jDl69Wr53a0REbn1KlTrUePHvbcc8+5WnRY/rt58+bUHSr5u/eL9GEls0hmEasuH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWeRnFk2ePNlQigftvPPOcxt0zZ071xlGMGSwvKt3797udWT6Ix7+BnwU+Cn4QrZo0aL8YIYUidVbP/zwg/u7P6OGL44z2xmNyixCIWusyfv444/d+jvccJkyZeyaa65xa93SulTx3tOKFStcelRQk1kksyhII8zrPhMp018yx4TJ6rvvvnPrZT/88ENr0qSJ3X777YYUyHvvvddNqJhnsN0k1vrWrFnTnn76aZflgm0nkf6J3Qfq1KnjnHk4+pikYXxgXqhbt65LpURNM1wzJj0UcUP/6AP9YpL++uuv7eqrr3YTJgrPob4P1hgjkwbHP/nkk26XghYtWrh/V6hQgR7eMFnRJ00TmNYswpsVrgf3UqtWLStevLhbK/3NN9+4Ny5wgOkP7pjHwQC7ImBtNeb4rEz7eK4t/TE+rGQWySxiNeejK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL/MwijAKWdOELWOyEllHD8jP8HR11hj6vCHNGFj5DZdX27duX4cuUWYQjly1b5swifLDAB5K0DWvz8GEkJ5rMIplFYejMZyIN43yJ3EdYrDAJodAb2t13323333+/bd++3aVuwnjGbgLIaClVqpRz35Ee+dlnnzkz+rfffnMGNY7BfIOC+3i9ZcuW9sQTT7jjkRYKIwmtf//+zpSCKTJ//nw76qijnHGCDBq4/kuWLHHHY2eA8ePH26233uqMK5wDheywUwGMJhhSMLbYFhYr9nzp42JmEeZrFOCDOYY3h06dOtlLL73kvs3AUjOkwGIux7/XrVtnjRs3NtSlk1kUL/lwj2tRq4XhJ9ZyW1fh3l20vYkVz1esxIonwEdKV2LFE+AjpatoWMks8jeL+JHIO5EoYh37DPbPf/7T1VO644477KyzznJfqOPzUmy5XPqrpswibK+GrdbQ8GHqsssuc0vRateu7b79x4cQ1BrKiSazKHPKmkh5BYpV7rCKGT/I9kFWC5a1Yg5Bpk9WZhGWq8LggbkR253xP//5jzu2evXqVr58ebd9JbJlsCMY6qDBREJDRhKyj0qXLm0//vijM5rQB2KRjVSuXDk3QcIgQm0f/OA6UdMH54Qbj3mPaXlJV9g8IH2qK8yjYsWKuVvBv5F2ijcIvInkdFqsDytlFimziHn+EOOjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZtGbNGqtYsaJL+EE9JTR89nrnnXcMq7uwC31mjTKL8GEMa/E6d+5sMI5iHzbQKZY44Nv8zHYv46XNRcosklnEKSXrKJ+JNIzzJXIfYbJatGiRW/r15ptvpmYLYZJCgbVnn33WFWRGJgxMoZNPPjk1swi/i209GTOLkAKKOBg7WGKFJWSxLeOvv/56lwmJ3QhiZhEKO8MgwtKyXr162ffff+8yjmAEYRkW1hajZg/mORjhsYZlbTCamBYmK+Z8iRzjw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dCWzKH+YRQsXLnSrwM4//3y3mgJfGGOzG+yOhiyjzGoZQXWUWYQPW7///nvqLmVYToIlDqiJgTogOdlkFsksCkNvPhNpGOdL5D7CYgUjqEaNGs5wRiF7LClDzaF58+bZW2+95YyaQYMGGWqkPf74465mUGwZGjKHYPSgZWYWvfHGGy5TCLuA9ezZ0xncmASxthjLzYLMImQUYdkZzCIcP3z4cJd1gwLRbAuLFXu+9HHIqgLjmGkWbz85cZwPK5lFMotYTfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWQT1YFYbSG2nbY489ZjfccEOW4qLMIjhQMGnSt9g3+7x8sx8ps0hmUfZVpKUKPgx93nSC+h05cqQziWJF8mHsDB061BYsWOBqBeH3qCW0ePFit8Xjp59+6jKHGLMIS8xQlBlbxSNbqH79+i6zCBlEWI8bM4tQ2wiZR/g9TBVkDSGzaPTo0W6ewzK12PXBxEJdJLaFyYo9Z9q4WM0i3Htebz6sZBbJLGL17KMrts9kjRMrfmTFSqx4AnykdCVWPAE+0kdXMovyj1kEBf3yyy+uXAeWnaH8BlZVBDXKLEKxWXzjjg9e+C/WvaFeCHbVQc2LnGwyi2QWhaE3n4k0jPMlch9hs0JmIpajYelq2rRH/B5zC3Y+y868guLOMIaQFRRPw/aSuD4sv/XtI2xWvtcfM4uwJA9GHLK5YJ4ha2rs2LEu7RRskHqKmky4P7BG7agRI0a4ZX2IgbkW9S4OPqxkFsksYp8FH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCIsNXv99dcPEhFWiOGLc3zhjpUVGX3+CjSLYoVPn3nmGbf0DEvSsJMRPnDg2/+cqlUUuzuZRTKL+OlSrMQqDAJ8Hz5v0HyvfGTMLProo4/ccr21a9e6ZXQnnHCC2+azTZs29tVXX7mC3z/99JMz66ZOnep2iXvuuefcUsAZM2a4XenwjUOUzYeVzCKZRawWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BH+uhKZlH+MIuwWQ/qv6Zv8HNQVgh//+PL4ow2uwk0i9Apan8gqwjLN/BtNYq/Qoj4Br9KlSq8ekOIlFkkUH+44QAAIABJREFUAyQEGWnHHA+IPm86Ht0mZWhus0prFmHyx/VgEwIUtUMR8ObNm7uMUGQUoQYUdqSbPHmyW4b38ssvW9++fV0hcSzDw5K+KJsPK5lFMotYLfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWIbMIqw7SN5hD1apVsz///NPOOOOMDHdFo8wiVNBGwVl8U33bbbfZ9OnTnWmE/5/TTWaRzKIwNOczkYZxvkTuQ6z40cttVjGzCEY+MkHxLQG+SejUqZO99NJL7hsDLDVr2LChM4nw73Xr1lnjxo1t9uzZMov4oY40skWtFoafWMttXUV6syF3LlY8ULESK54AHyldiRVPgI+UrqJhJbMo/5hF2Ik6s4YaRiiAnVGjzKLYgTt37nRLF2LbTfOyDS9SZpHMojDUpDcdnqJYJSYrzNfp00lhHhUrVszdEP6NtcnIMootN+bvNPuRPrpSZpEyi1jF+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZltgwtrapQO9bbLIoVO0LR2f79+xt2MlqyZInrB1uvXXLJJbxyQ4qUWSSzKAwp+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJLSrqA8KbESKx8CfKzmK7HiCfCRPrqSWZQ/zCIsQ0NJocwaMouaNWvmbxahngWKn6JK9m+//eY6uPjii23ixImuwPXKlSt55YYUKbNIZlEYUvKZSMM4XyL3kdussMVjjRo13DyU11tus8rrfNJenw8rmUUyi1ht++iK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YxZFshsaXKYbbrjBHn30UStXrpyre/Hss8/a0KFDXe2irVu3GrZcy8kms0hmURh685lIwzhfIveR26xidXjq16+f5zHmNqs8DyjNBfqwklkks4jVto+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySzKH2ZRZLuhwSy655577I477rBjjjnG2rVrZzBrRo0aZddcc43bihkFUnOyySySWRSG3nwm0jDOl8h95DarmFmEKv4orL9hwwZ77733rGPHjjZ27FhXeweZjhdeeKGNGTPG1eBBLZ5u3brZiBEj3ByFmA4dOljVqlUjHYrcZhXpzYXcuQ8rmUUyi1j5+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZFthsazKLOnTu7nyuvvNL+/ve/W48ePdwHtaefflpmEf/c5kikz+SQIxeUh08iVvzg5DartNvBYwfGtWvX2qRJk+yEE05wc1CbNm3sq6++snr16rkC/IUKFXLLZzFXPffcczZw4ECbMWOGbd682Vq3bs3feByRuc0qjkvOtUN8WMksklnECtVHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrmQW5Q+zKCP1YHf7F154wX3RnlXLcjc0mEVZNWUW7aeD5XjIZki/8xD/WIcT6TM5hHPGxO1FrPixy21Wac2i3r17G67n888/t1q1alnx4sWtefPm9s0337hn8OuvvzbUWsO28FdddZW9/PLLeXY7+LvuustlbqoFE9hn+yyzXRqCj068iK43drUxI/735p3bz2AiERQrfrTESqx4AnykdCVWPAE+UrqKhpXMovxjFmFFxocffpgqpE2bNrl/lylTxn0euemmmzIUWZZmEQohZfUHOnZDwwe0nGw5sQwNdZl69uyZelu1a9e2Sy+91G699daDlt2tX7/eypcvbzfeeKPbLS43myZSnr5YJQ6rmFm0bNky+/XXX92SspSUFFdD7aWXXnImLZaaNWzY0JlE+Pe6deuscePGNnv27DxrFnXv093GPjqWHwhF5hsCgwcPtiFDhqTer+YrfujFSqx4AnykdCVWPAE+UroSK54AH+mjK5lF+cMswqZklStXttNPP92qVKnixLRo0SL3ZTtMJKwiQzmPjFqmZtGaNWvszjvvdMvP8CEsoyyjhQsXuuLXMFLwwSwnWk6YRbGaTIB25JFHOhdu3rx5hkyAQYMGHXCb27Zts7vvvtst0bvgggtyAkGm5/CZHHL1QvPAycWKH4S8xGrnzp0HZfDBPCpWrJi7Ifwb9YpgYu/atSvHs/18WE39Y6p9sfALfiASPLJ5zebWvFZzGSDkOGI5Zaz56IrsPmnDxIofWrESK54AHyldiRVPgI+UrqJhJbMof5hF+BL9lltusfvvv9/VeUXDF+qo/fr4449nKa5MzSIsrUJB608++cSQWQPjBI4UCiT98ssv9uOPP9qcOXPcdtbY2rp69eq8irMRmZNmEbIUzj//fLfsBabRRRdd5ArsogYK/v3KK6/Ya6+9ZldffbVz5W6++Wb78ssvrU+fPvbdd985NjDcLr/8csco7XHoG32G2TSR8jTFSqx4Anykj65Uh0d1eFhl+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK6iYSWzKLnNovnz5ztTCF5ErGGlBlZtvPjii4bEH2QdZdWyXIaGA99++21XzBoFZNOubWvZsqW1bdvWunbtakWKFOEVnM3InDSLhg8f7tK13nrrLXvggQecI4csKxhDaMimQlGounXrumVojzzySOpuS7169bI333zTGWpLlixx/NIehwK9sTSwbCJJPVwTKU9SrBKHFYzWGjVqOPM1rzcfXUVlFnU+obPVPqS23Tvt3kxxVS9b3bqc2MX27NtjD8540MW1O7ad1atYz2WR/r7ud3vjpzdCxd2iVgvDT6z5sAr1QhKwM7HiB02sxIonwEdKV2LFE+AjpSux4gnwkT66klmU3GYRSgr94x//MBSzhi6Q6IJEoFhDfdfRo0dnKa5Asyh29N69e+23335zHySOOuoot9QjN1pOmkVp7++UU05xOzChgC5Mn6FDh9qAAQMsbc2i9u3bW4sWLeyZZ55xNY+QZdS0aVN77LHHXFZW2uOiYOczOURx/kTqU6z40cptVrGaRfXr1+cvOpcifViFbRY1qNLAGlVrZJVKV3J3P+Tz/9W8SY+j39/7WZliZVA22u76/C47sdKJdlHdi1yNOvyvYIGC9vEfH9tXi78KjaTMovhR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWZTcZtGKFSsOSk655pprnCdx2mmnUeU6sjSLsOTsvffes3Hjxtnxxx/vlltVrVrV3n33XVenBzsSlSxZkldvCJE5aRY9/PDDzvxBVkOFChXc1U+YMMEB/uCDD9w23GnNolatWrm6RdiBCeleP/zwgzVo0MBVGD/mmGMOOC4EFAd1oYmUpypWicMqZhZNmzbNLQPdsGGDm5fwHGKtLeoUYf0tlsoi0w/1imBmd+vWzUaMGOEKXiOmQ4cOqZl//N37RfroKmyzCJlBx1Y41ooVLmYFrECmZtHpNU+3M48403bt2WWFCxV2ZlH3k7pbzZSaNv7n8bZ111br9rdutmLzCntm1jN+ALKIllkUP0ofXcV/luQ4Uqz4cRQrseIJ8JHSlVjxBPhI6SoaVjKLktssgmrgVaBsDmoyY8UT2jnnnON8jLPOOsvq1auXpbiyNItgelxxxRWpHaB20cyZM51Z1L17d/vrr78O2h2Ml3J8kTlpFsVqFqW90phZ9NFHH9nZZ599gFmEbKNKlSq5zCsUwsYHVyzj+/nnn90PPtzGjovv7rM+ShMpT1WsEodVzCzCs9OvXz9bu3aty/I74YQT3BzUpk0bt8wTk91PP/1kKAw8depU69Gjhz333HOuVtiMGTNs8+bNbmKMsvnoKmyzKHZfNze52UoXLZ2hWVS8cHHrf1p/+2PdHy4DqWyxss4suqnRTXZIiUNs+FfDbfvu7XZHszts887N7v+H1WQWxU/SR1fxnyU5jhQrfhzFSqx4AnykdCVWPAE+UrqKhpXMouQ3i9IqBzWM4GWgXhGeKXzZnq2aReeee65h+RkMj/fff9+wzOq8885z/8Uat2Q1i5599lm3jOydd95xdZkYs6h3794uiwGZDjDSYq1///42bNiw1IwkmUX8ZBdlpN50eLq5zSqtWYTnDNeDrMZatWpZ8eLFrXnz5m7rR2QUYZnomWeeaTB6MUfB8O7bt699++23tmrVqoOeZ54CF+nDKjfMoi71u1itQ2rZsC+H2XWnXJdqFvX9e1/3b9Q52r13tw1pMcS27dpmD365v55RGE1mUfwUfXQV/1mS40ix4sdRrMSKJ8BHSldixRPgI6WraFjJLMpfZlFMRSg7gcLXqF902223ZSmuLDOLUG9n+fLl7lv6mjVr2vPPP++WoiHDCA9tsppF/OOYceT27dtddXEs2StTpkx2u6OP10RKo3L6hY7VggnkNquYWYTq/b/++qtbUpaSkmKdOnWyl156ya23xVIzFJ+HSYR/Y4tIFKDHRCiz6H9jfGvTWw3ZRahLhKVqaDCFNu7Y6DKNRs0aZVt3b7U+jfvY+u3rbeQ3I4MFQkbILCJBZRCW289g/Fee80eKFc9crMSKJ8BHSldixRPgI6WraFjlO7OoxRAb3HxwKsz0ukq/gomnnryRWZpF+CCG3c7Q9uzZ4+qAYHt41PJBk1mUt4ShiZQfD7FKTFY7d+48qBgbzKNixYq5G8K/MU8hy2jXrl1U4TaeRHCkj65yKrOoYdWG1qxmM5u+cLrboAAZRGinVjvVihYqah8t+MgVu25SvYmt3rraZRZVKV3Ffljxg739y9vBN01GyCwiQcksih+Umb4I8KDnM195dJuUoWLFD6tYiRVPgI+UrqJhle/MouZDbHALmUW8mswCd0PD8o7PPvvMbr31VvdBAw3/H9lGqAVSokQJn/NlOzYnahZl+yJzqQNNpDx4sRIrngAf6aOrnDKLWtdpbY0Pb2wzl8y0DxZ8kHozff7eJ3UZGkyjGxrdYGWK7s+ERJHrJ759wv03rCazKH6SPrqK/yzJcaRY8eMoVmLFE+AjpSux4gnwkdJVNKxkFuXPZWi8mgizCJ1hGQi+sU/fsEMYlqqhbkhONZlFmZPWRMqrUKzEiifAR/roKiqziL/agyMrlqrolqet2rIqO91keKzMoviR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWSSzKEhZgZlF6AA7fKE4bEYNW8N/+eWXOWYYySySWRQkauZ1vekwlPbHiFU0rPKiWcTfqX+kzCJ/ZrEj9Azy7MRKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFl112mU2bNs3uueceVwvkgQcecEVkzzrrLPc7VNJu1apV0LlCeV1mkcyiMITkM5GGcb5E7kOs+NHzYSWzSEXmWWX56IrtM1njxIofWbESK54AHyldiRVPgI+UrqJhJbNIZlGQsgLNot27d1uRIkWsT58+9sgjj7j+hg4d6rZZ27Jli1WuXNltGY9tqnOiySySWRSGzvSmw1P0YYUsw/zcsGMbdkFkGgpI/7D8ByY0KWJOqnKS9bq4V+q9+OgqKQBk4ybEiocnVmLFE+AjpSux4gnwkdKVWPEE+EgfXcksklkUpKxAswgdIIto06ZN9swzz7hdh2688UZX2Prll1+2c845xy1Da9KkSdC5QnldZpHMojCE5DORhnG+RO7Dh1Xf2/raiKEjEvl2de0REejWu5uNGTFGZlEcfH2ewTi6T6pDxIofTrESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizaMKECS5zCIYRWpkyZez555+3jRs32qhRo9wStZwqci2zSGZRkKiZ1/Wmw1DaH+PDqnuf7vbplE/5zhM8MqVYiqUUT0m9i+3bt+fYXJho6LBsefDgzLcrTbT7ycnr9XkGc/K68uK5xIofFbESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizCJ3s2bPHZs2aZdu2bbPTTjvNLU1D0ety5cpZ0aJFg84T2usyi2QWhSEmvenwFH1YqQ6P6vCwyvLRFdtnssaJFT+yYiVWPAE+UroSK54AHyldiRVPgI/00ZXMIplFQcqizCJkFGHJ2auvvuqyizp16mRdu3ala3MEXYTP6zKLZBb56CWzWJ+JNIzzJXIfPqxkFsksYrXuoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFKGaNotZYfpaSkmJLliyx4447zn788Ue3O1pONplFMovC0JvPRBrG+RK5Dx9WMotkFrFa99EV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBygo0i7DjWenSpa1Hjx6uwHXBggXt0UcfdbujzZ8/34499tigc4T6uswimUVhCMpnIg3jfInchw8rmUUyi1it++iK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK7EiifAR/roSmaRzKIgZQWaRVu3brVSpUrZkCFDUouTouB1x44dXQ2jk08+Oegcob4us0hmURiC8plIwzhfIvfhw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZgWYROmjatKl9+eWX1qZNGytZsqRNnDjRTjnlFJs5c6YVKFAg6Byhvi6zSGZRGILymUjDOF8i9+HDSmaRzCJW6z66YvtM1jix4kdWrMSKJ8BHSldixRPgI6UrseIJ8JE+usp3ZlGLITa4eeY786b3GXjqyRtJmUULFy60+++/31577TVX4BpZRbfffrvVr18/x8nILJJZFIbofCbSMM6XyH34sJJZJLOI1bqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFimzKEhZlFkU62Tnzp22e/dul12UW01mkcyiMLTnM5GGcb5E7sOHlcwimUWs1n10xfaZrHFixY+sWIkVT4CPlK7EiifAR0pXYsUT4CN9dCWzSGZRkLKyNIuqV69uMIgya3/88Ycrfp2TTWaRzKIw9OYzkYZxvkTuw4eVzCKZRazWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BHSldixRPgI310le/MouZDbHALLUPj1WSWpVnUtm1bl0mUWZs0aVKOZxnJLJJZ5CPwzGJ9JtIwzpfIffiwklkks4jVuo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SOlKrHgCfKSPrmQWKbMoSFley9CCOsuJ12UWySwKQ2c+E2kY50vkPnxYySySWcRq3UdXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pHQlVjwBPtJHVzKLZBYFKUtmURChBHrdZ3JIoNuK5FLFisfqw0pmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZMouCCCXQ6z6TQwLdViSXKlY8Vh9WMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rH6sJJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFsksClJWnjGLtmzZYiVKlLCCBQtmec2qWZQ5Hp/JIUgYyf66WPEj7MNKZpHMIlZZPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjpSux4gnwkT66klnkbxbt3bvXtm3bZqVKleIHxcziPc7rJBEE57pZtGbNGuvcubMVLlzYFi5caP3797du3bpleqsyi2QWhfEc+EykYZwvkfvwYSWzSGYRq3UfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JHSlVjxBPhIH13JLPIzi8aMGWOPPvqoVatWze0YP27cOKtYsWLq4EybNs169OhhJ554ovtd+/btrVOnThZ0HD+6OR+Z62bR0KFDbdOmTXbffffZihUrrEqVKoYso5IlS2ZIQ2aRzKIwHhOfiTSM8yVyHz6sZBbJLGK17qMrts9kjRMrfmTFSqx4AnykdCVWPAE+UroSK54AH+mjK5lFvFkEc6hIkSK2YcMGS0lJsRtvvNH5Frfddlvq4IwePdp27drlDCMkwqAxx/Gjm/OR/8/emYDbNd3v/xtDRIIIYh7SGEoqVUWNNc90JKiZmqooNeRHa64ai9as1VBDqzHU2BbtP2qqMYgQLUWNMSYSkYjI//ms2x03N+dmv3vfm9xz9nnX89wn3Pueffb+rO9ee613fdfaXW4W7bfffrH55psn123q1KlpGdqLL74Y/fv3r0lj0UUXjYUWWmja36gQKs4lUnCahRYJZqVxQlWE1YRFJwQ/zVJ6vt0z+MlKEVbNwqi96zQrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRczRpW7w18L95d9V394A2uXOSZRWLhEQu322/fZ599YvDgwTWv8qWXXkqeBT4F5YILLognn3wyrrjiimn6Y445Ji699NKUCDNo0KAgyYWS97l6xtrlZtFOO+0U/Oy4446J02KLLRYPP/xw9OvXL+6///544IEHpuPX2r1rC3bjiFiunml38rm9EhHDOvmYPpwJdIhAv4ipy03t0CEa6cPdXukW8XIjnbHP1QRMwARMwARMwARMwAQiol8TUphJv/3000+fAcj6668fG2ywQTz99NPJAHr++eeT5uqrr4577703yCbKykUXXRRLLrlkbLHFFoFxNOecc6Yso7zP1XMtdLlZdMopp8QCCywQhx9+eEyZMiX69OmT0rva2+h6psvQhg2L4KdZysYbR/Dzv1Ik7bBZELV3nWalR0ARVl6G5mVoamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks2rrM7Q+Eptas00OG1V369YtzjvvvPTnI444YpoMDS/sojz22GOx8847xzPPPJP7Of2MZ7+yy82iW2+9NS688MK46667YujQoXHuuefGQw891C4Jm0Wt0NgsKn3HuCHV0RVhZbPIZpEaWUXiSj1mVXVmpdesWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsZmYWcVQ2rr744otj4MCBsdVWW8XJJ5+cso5GjhwZa621VvrvQw89NJlEZ511Vrz88stJX+tzW265pX6iXajscrMIB27bbbeNZ599Nr2G7u677461117bZpESFDaLFEo1NW5IdXRFWNksslmkRlaRuFKPWVWdWek1a1ZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8qzyziCSX3XffPX3BdtttF9ddd12MGDEimUQffvhh3HPPPcG+R2QgrbjiiskwGjBgQNT6HNlJjVC63CzKIL366qux+OKL527Q7MyiVmFls6j0PeaGVEdXhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8ozizjyhAkTYuzYselNaLUK2+q8//770bdv3+n+nPc5/axnr7JuzCL1sm0W2SxSY2VmOjekOsUirGwW2SxSI6tIXKnHrKrOrPSaNSuz0gnoSseVWekEdKXjyqx0ArrScVWelWIW6UevhtJmUSPXozOLSteeG1IdXRFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZtGM7GwW6fFUf0qbRaXrxA2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVkz1WyAAAgAElEQVRnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirDqTLNo14G7Rv8+/eNn//hZOtm555w79l1931i056Lx6dRP496X740HX31whgsZNGBQrLTwSjH5s8nx7DvPxp3/vjM+m/pZrL302rHu0utGr7l7xasfvho3P3dzjPtknA6ihnLjfhsHP1kpwqpDX1yBD5uVXolmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCvbxpXNIptFevQ0gtJmUela8kNHR1eEVWeYRV9d4qux9lJrx2LzLZZO8qRhJ6V/v7fq9+KLi3wxJk+ZnIwjyrkPnRsfTvpw2sWss/Q6sfUKWydziJ+55pgrmUUjRo+IYzY4JqZOnRrjJo2L3j16xzNvPxM3PHuDDsJmUYdYtf1wkbjq1C9uwIOZlV5pZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ2iwqXUtuSHV0RVh1hln07ZW/HSsvsnLMM9c80S26TTOLjv36sdF9zu5x+n2nx1bLbxVrLLlG3P/f++Oe/9wz7WL2+spe8YUFvxAXP3pxTJk6JQ792qHxzoR3YthLw2LQlwbFyLdHxg3P3RAnbHRCjJ80Pn7x0C90EDaLOsTKZlF5fEXuwfLfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOrMon1W3qUy1N1Bp6/hNV8nDhkXw0yzFZlHpmvZDR0dXhFVnmEXZmR213lExX/f5pplFJ250Ylpa9vP7fh5rLrlmbL/S9vHcu8/F9c9cP+1ies7dM+aZc574YOIHsc0K26SlZ8+/93wMHTk0jlzvyOgxV4/4ZMonSfO3l/4W971ynw7CZlGHWNksKo+vyD1Y/luq8Umz0uvRrMxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhc2i0nXjh46OrgirWWoWbXxiTPx0Ypx5/5kxcNGBscOAHeKF91+Ia56+ZoaL2elLO8WAvgPi088+jcsevyxlJO23+n5J9/GnHwem0itjX4khw4foIGwWdYiVzaLy+Ircg+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLCpdN37o6OiKsJqVZtHxGx4f0S3i1HtPjY36bRSb9Nskhr85PG55/pZpF9OtW7c4ZK1DYuGeC8eYiWNiyJNDYuzEsbHDKjvEwMUGRnZ+x339uLTv0cnDTtZB2CzqECubReXxFbkHy39LNT5pVno9mpVZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEb1q7BZVLpu/NDR0RVhNSvNoh+s9YNYrNdiaelZvwX7xbxzzRtXP3119OnRJzZcbsO0pKzPvH1ivWXWiymfTYlR746KqTE13vv4vfjok49i2xW3jXcnvBtPvvVkbNZ/s2lZSjqJGZV+G1p5ekXiqvy3VOOTZqXXo1mZlU5AVzquzEonoCsdV2alE9CVjqvyrLzB9YzsbBbp8VR/SptFpevEDamOrgirWWkWLTn/kvH91b8fc84xZzr5/479b/x2+G/T2894C9rDrz0c/RfqH3179p3u4iZMnhBnP3h2HLTmQbFor0XTptmTPp0Ut//79vSWtI4Um0Xl6RWJq/LfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUNosKl1Lbkh1dEVYdaZZVOsMWWa29PxLx9hJY+PDSR/qF/E/JRtc9+7RO0aPH134s7U+YLOoPMYicVX+W6rxSbPS69GszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4Iq1ltFulnPXuUNovKcy4SV+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoLRZVLqW3JDq6Iqwsln0n+jfv78Ot4mVReKqiTGlSzcrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRclWdls8hmkR49jaC0WVS6ltyQ6uiKsLJZZLNIjawicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk42iz7++OOYe+65Y/LkycHeMD169GgECqXOsWhDOnXq1Bg3blwssMACud83fvz46NWrV8Cze/fuMddcc+V+pp4FRVjZLLJZpMZykbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhpBGUnmUVTpkyJbbbZJu6+++7485//HD/84Q9j+eWXj7vuukumMGLEiLj11ltjzz33jGWWWUb+XFcJZ9aQjh07Ni688MLYeOONY/3114/HHnssNt1002QWYaS1Z/48//zz8d3vfjeeffbZ9DNgwIA4/fTT4//+7//ky7zjjjviqaeeiuOOO07+zKwWFnno2CyyWaTGY5G4Uo9ZVZ1Z6TVrVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5lFmCFrrbVW7LHHHsFNcv3118eCCy4Ye++9t0zh97//fey6667xwAMPxHrrrSd/rquEM2tI//vf/8Zyyy03zeg55ZRT4sQTT4wLLrggGWlkXdUq5513Xvz4xz+O0047LQ466KD45S9/mUymjTbaSL7MAw88MC6//PL47LPP2v0e+WCdJCzy0LFZZLNIDbsicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk4wi15//fXYcsstp2XCXHbZZXHRRRfFIossksyRHXfcMRZeeOG0pKp3797x05/+NDBPbrjhhmSo7L///rHZZpulzKR//etf8dWvfjWZTSussEJNghhSGCGUf/zjH+m7+Z6ePXvGJZdckjJ63n333WSwnH/++bHkkkumc5h33nlj0qRJ8dBDD8V+++0Xc845Z3CuK620Ulx99dVJx/E492HDhqWsoOw6ap3IzBpSzoksq6WXXjp23333+O1vfxtvv/12fP3rX4+//OUv6VzbFjKyMNfQkY00ZMiQ2GeffeL73/9+yrQiU+g73/lOXHPNNSkD6/3334+zzz47HQ9z7Sc/+Un63QEHHJCOsd1228Xtt99ekyGZT1tssUWsvfbaqd5ee+219F1kMFFPgwcPjptvvjmd51ZbbZU4wnT77bdPnyFzafTo0XH88cfHX//615RB9q1vfSsuvvjiZFBh/F166aXxyiuvpOvfd999Y8UVV5TuCJtFNoukQPGmzSqmpHPHT8dlVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5hFH374YZx00klBVswhhxwSRx11VMqGWWqppZL58sUvfjGZQPPPP3/8/Oc/j1dffTXOOuusZCjcdNNNMXTo0HjyySeT4XPFFVcko+KYY46JhRZaqCbB1VZbLZ5++un4xje+kf5+2223pWNhsCy77LLJ3OBvnAs/HJclcTR8GFOYMpgjLPFaddVV449//GMySTBbOEeOs/XWWycjhGNhxhQ1izBXjjjiiGTuYMLw/3//+9+TgYL5U2sZ2r///e/40Y9+lM6Pc+YcMFhOPvnkWGWVVWKnnXZKp7HOOuvEjTfeGJtsskn6f4w3uE6cODEZcD/4wQ9Sdtbvfve7lOlVq7z33nvJzKMcfPDByRzDNMLcefDBB+N73/teHH744THHHHPEueeem+qI78W0ghHHxRiiYBK98cYb8eijj8add96ZDCaMNowvDDoMPOqTxlMpNotsFilxgsadGZWUWemkzMqsihDQtW6vzEonoCsdV2alE9CVjqvyrGwWzciu21R27m2g0rYSp7shhg2L4KdZSieYRaDCUCEz6E9/+lMyDzBnWptFb775ZjJo2NwZQ+RXv/pVMmvIKMJ4WGONNVI2kbIMDbOIDBpMp2y515FHHhmnnnpqynB54okn4oUXXojrrrsuGT/3339/Op/55psvZcRgfqAnwwgThuVyZL5gzmDI8IPBRWYP54wZhkHSthRZhsbSMsw09iziPNorZA+xR9E777yTsqDITGptFp1xxhnJTKNkJhzZSnDEnCFTS1mGlplFmGcsWcuWAJKxtMEGG8Qf/vCHoM4wke67775kBmYZTkcffXQy+8gyYn8k9mAii2rbbbdNBtUjjzySsrs4T7K3MLK+/OUvJ/ZKsVlks0iJE5tFKqUWnTt+Oi+zMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPIyhnk1nE8jNMBApLoMg2YYkUGTCUf/7zn2kwo5pF88wzTzoehgbLxzB/MHlYIsUyNgyoE044IZkUmVm06KKLJoOIpWVkHGEqkbmDEYQRgqGEWcM59O/ff1rtYXrUMni6wiwi6whTi4JRxjI6somyzK233norZTTl7VmUmUVkVGFOcYxBgwal5W0vv/xyHHbYYbHDDjskfuy11NosYhkhxhxL+8hwwivGpCMLi+V8GEaYR3DjzXgUlqaRAaUUm0U2i5Q4sQGiUrJZVIyUjbUivDyg0GmZlVnpBHSl48qsdAK60nFVnpViFrGdCtt+8Obr9goJBm2TFT755JP49NNPZ9jO5KOPPkqrOVgRUo+lyzOLyMDo27fvtEE0GRcMZtsrzixqRWY2mUUsKcOoobCfD8udMBYefvjhZExgbmDIYNSQlYJ506NHj5pVSGZRLbNo5ZVXTsvMOC6fxfxonVmUZxZhNmF4cA5k55xzzjlpuRhL5WoVxSwi24fjsGF1Z2QWsT8Q/MaMGZOW3PHfZB6RvUMmFUvJWPIGTww4zLNaZWZmEVlFHGvkyJHJ+OF+wTBinyeWoeWZRbzR7Wc/+1nKPuJe5L833HDDxEEpNotsFilxYrNIpWSzqBgpm0VFeHlAodMyK7PSCehKx5VZ6QR0peOqPKs8s4iVK4zVWIGD8XPttdcmHyMrjz/+eFrxwmoRxsts0bLmmmumLVPY0oSVOYwD+RyGE+NWxqtoWf1R5OVS+lV2TNnlZtGoUaNSFgkD3PZeSd76Em0Wdb5ZlGWWtLcMrbVZRKDvtddeaYkXhY2Y2TeIZWW8UQ0nlT2MMIVqldZmEZk0SyyxRMosIpOFrCKOy6bV3IDjx4+Pl156KQYOHBiZWcReO7yRjMwidJhUmFO/+c1vkjHCMjU2iMbN5XrYf6moWcR3c56YN5hfL774YjKLOJ+Zucjsm4TxwzI03GMaktbL0DKziPPhTWlos3Nl7yGWqWH2sOcQpb0VoplZdOyxx6ZjkCFEphCZRZzft7/97VQPmGd8J3svsY8Sy+Iyswhzjb2M2mYWsQyR+vj1r3+dzoHsJLK5WN6mFJtFNouUOEHjzoxKyqx0UmZlVkUI6Fq3V2alE9CVjiuz0gnoSsdVeVYzM4sYH7LqArOHVTckTDCOZTyWFRIB2P+XfxmfsYqElw6xV222SocxFfvBMs5kvEZSQjYmJsuo1ouU9CvqfGWXm0UsZ8JVAxZmA5WUbf5b63JtFrWi0kmZRUXDasqUKWlfITJVWgc0+99gqPCmrcxMan1sDB/Mh/YKxgVvZ8Nkae/19HnnyrmxxItzm5n5mNeQkmLIfkdcX/fu3ad9LdlUxGrbQmYUZkyRwvVyrnyO/YGyMmHChLSXEEZqme8iW4+GbLHFFityOtNpOQf2lqIuMOxaL+2b2UFtFtksUoMu7x5Uj9MMOrPSa9mszEonoCsdV2alE9CVjiuz0gnoSsdVeVYzM4sYD22++eYpiYDCRDwJEmQPZYXxJy8b4t/hw4enlVOMiynPPPNM2lOXN2MzxiOTiOPtsssuafKeZWgcWx1z6VfZMeVsM4t4Axb7qbQu/fr1S1kYZImwDw2bJLMHCwDbMwtsFrUi2EVmUV7IsRkyddi2cOPwmvh6KGUbUrKwPvjggxkugU2+V1hhhU69tNn5XTM78SKsbBbZLFJvgiJxpR6zqjqz0mvWrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWMzOL8DLYJoUtOyhsnXLvvfem1S1Z4WVQ/J2MI+pho402SqtvKHyefX9ZgsbqF96yzUoPVodQmOQnKQF/pJ7KbDOLfvvb36YlMa0Lb+Aiq4isCn7ICiEbBKhkW7C5cbaJcuvPZW+U4nfT3RB+G1rduZH1FOytz8UNqV4zRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCvMoraFPXRZOsYeQ6w4YfUJSS1sUULh5URZYZ9Xfk8SwWOPPZZeEIRBxH+z1Qfl+OOPj3fffTcZSphLhx9+ePJA+vTpk1aG1NtG17PNLGqv2th8l+wi9qIhbYs3YWXpXbU+48yiVlTqNLNIv0W7TumGVGdfhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8rb4Jo9bfEs2E+XvWHZmxYjiRcLsZ0O+74ussgiaU8i9i5ib90f//jHwXYlLEtbfPHFk9dBxhH/zd64rCRhH1n23c1eKKVfwaxXdrlZxOvTWa9HRhE/QN9+++3bvXKbRTaLOuO2cEOqUyzCymaRzSI1sorElXrMqurMSq9ZszIrnYCudFyZlU5AVzquzEonoCsdV+VZ5ZlFvExo9913T1/AS554QdeIESOSYcRetyS8ZFuuLLjggsn84UVRZBjxZmk2xsZwyt7+ve2226aNrslauvvuu9t9E7Z+RZ2v7HKzKLskdgHHYcsrNotsFuXFiPJ3N6QKpRZNEVY2i2wWqZFVJK7UY1ZVZ1Z6zZqVWekEdKXjyqx0ArrScWVWOgFd6bgqzyrPLOLIvARo7NixaRlZrcJb09544420yXXrPZgxhCZOnJiWm7UubL+DB8Kb1uqx1I1ZpMKxWWSzSI2VmenckOoUi7CyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVaKWaQfvRpKm0WNXI/es6h07bkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwWzcjOZpEeT/WnrAOz6LXXXoubbropvc3uk08+STvC33PPPfHCCy+kNL3ddtstSMe75ZZb0t8HDBgQW2yxRVq3yW7v7E/FW/Jm9nleJdjZpSsa0mZgZbPIZpF6r3bFPaieW73pzEqvEbMyK52ArnRcmZVOQFc6rsxKJ6ArHVflWdksslmkR08jKOvALLryyitjk002iaWXXjpOP/309Po/dnZnh3g2+cIg4mfTTTeNZZddNs4///w48MADk1l03HHHpQ2+8j6/6667dnptdEVD2gysbBbZLFJv1q64B9VzqzedWek1YlZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8K5tFNov06GkEZR2YRZdcckkMGjQo2PH9rLPOiv333z+GDBkSW2+9dYwbNy5lDD3xxBNJ07dv3/RawIMPPjgZSrxSUPn8Ouus0+m10RUNqXKtjc7KZpHNIvVm7Yp7UD23etOZlV4jZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ1oFZNGrUqPSqP3Z35+f444+Pa6+9Nj766KMYM2ZM7LDDDimz6K677oru3bunDCSWnv3iF79IZpHy+eWXX77Ta6MrGlLlWhudlc0im0XqzdoV96B6bvWmMyu9RszKrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoKwDs+jRRx8N9hSaOnVq2ruIPYso48ePT+YQP5TPPvssJk+eHPPMM890ZNXPd3Z1dEVDql5rI7OyWWSzSL1Xu+IeVM+t3nRmpdeIWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsbBbZLNKjp7Vy7bUjttwyYujQiFGjWv4yaFDESitFTJ4c8eyzEXfeiSMy/fH53LrrRvTqFfHqqxE33xwxblzEQQdF9O79ufattyKuuqr4udWBWfT222/Hbbfdlowg9in6whe+UOg6Ovr5Ql/WStwVDWlHr7Wjn58drGwW2SxS46wr7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXpQLrVUxOabR/TrF9GtW8RNN0U8/XQEe+hsvXWLOcTPXHO1mEWPPPL58eedN+KYYyKmTm0xiDCHnnkm4oYbIk44oeX3kya16N98M+Lqq4udG+o6MIuKn3R9fMINqV4PRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhBudpqEdtsE8FSqjnmiLjxxogRIyL22iuCDJqLL46YMiXi0EMj3nkn4qKLPj/+l77Ukn00cuTnBtH48REXXBBx3HERDz8ccd99rNcqdk6t1TaLSrNzQ6qjK8LKZpHNIjWyisSVesyq6sxKr1mzMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPa+XOO0esssrnZlHPnhHsvfPBBy1mEsvNnn8+4ve///xTZBsdeWREjx4Rn3zSov/b3yJeeSVi330/1338ccvytH/9q/i51YFZ9Nprr6W9injrGZszs2fRPffcEy+88EJMmDAhdtttt/j000/jlltuSX8fMGBAbLHFFnHOOefEHHPMkTa7/utf/zrTz7MnUmeXrmhIm4GVzSKbReq92hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZtGMBDAidtppxt+//37Etde2/L6tWZSp+dyAARGffhpx2WUt2UVZYQnbfvu1/B+GEAYTRhHZRN/5TsTo0RFjxkR89asR773XknFUtNSBWXTllVfGJptskt5ydvrpp8fhhx8eF154Ydq/6MUXX0wGET+bbrppLLvssnH++efHgQcemMyi4447Lq6++urcz++6665FyeTqu6IhbQZWNotsFuXefP8TdMU9qJ5bvenMSq8RszIrnYCudFyZlU5AVzquzEonoCsdV+VZ2SyakV23qbzGqoFK20qc7oYYNiyCnyJl2WUj9txzxk+MHfu5gdPWLGL/okMOiVh44RbDZ8iQCPStyw47RAwc2HI+/LD0bO65I371q4g+fSJee60l4+gnP2nZ8+jkk4ucdYu2DsyiSy65JAYNGhQLLrhgnHXWWbH//vvHkCFDYuutt45x48aljKEnnngiafr27RvnnntuHHzwwclQOuqoo0L5/DrsEdXJpSsaUuVaG52VzSKbReqt2hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePa2Vbc0i3oy23not+xXxdjT8NrKDnnoqYu+9I15+ucUM2nbbiHffjXjyyYjNNouYODHi73+P2G67lr+j22CDliyjSy4pfm51YBaNGjUq7r777pg4cWL6Of744+Paa6+Njz76KMaMGRM77LBDyiy66667onv37ikDiaVnv/jFL5JZpHx++eWXL84m5xNd0ZAq19rorGwW2SxSb9auuAfVc6s3nVnpNWJWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhprcyWm2UbXP/whxF9+05/rAkTIq65JuKAA1qWo7H59UEHRSy6aMub1Hjz2e23t2yQffDBLb+nYDjxuZdeKn5udWAWPfroo8GeQiSosXcRexZRxo8fn8whfiifffZZTJ48OeZh76ZWRf18cTgz/0RXNKTqtTYyK5tFNovUe7Ur7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXo6S8kG1717t2QPtS7sYYThRIYRhlGZUgdm0dtvvx233XZbMoLYp+gLvCWuQOno5wt81XTSrmhIO3qtHf387GBls8hmkRpnXXEPqudWbzqz0mvErMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWNotsFunR0wjKOjCLGgFTrXN0Q6rXXBFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkFps6h0Lbkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwW2SzSo6cRlDaLSteSG1IdXRFWNotsFqmRVSSu1GNWVZZ2mCgAACAASURBVGdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkHZAbPolltuaYQrnGXnOHr06LQxt0ttAt/61rem/aHIQ8dmkc0i9Z4qElfqMauqMyu9Zs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoOyAWXTo4EPjwrMubISr9DnOZgInHXJInHjBBTaLBO4b99s4+MmKH9ACtP9JzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUHbALNrniH3ioUcfaoSr7JRzXKTnIsFPVj766KPo1auXdux3343gp0nK6uuuGycOGVLKAHFmkTOL1NvEnRmVVIRZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6Mq2cWWzyGaRHj2NoOyAWeRBfYFB/bBhEfw0S3FcyTXtzCIZ1QxCd/x0dmZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bPqNnXq1Kn5svpRtHX8pqtkD+qjf//+UmXZLKozs2jttSO23DJi6NCIUaNmrMPNNotA061bxH//G3HjjRETJkSssUbEFltEzD13xPvvR1xxRcTEiVIMtCuyWSTzs1kko7JZVB6VM4sKsPOAQodlVmalE9CVjiuz0gnoSseVWekEdKXNonxWNovyGdWvwoN6uW46NKiflSbkUktFbL55RL9+LUbQTTdFPP309Ne15JIRBxwQMWVKxKRJET17Rjz+eMTdd0cMHtzyuU8+iejePeLllyOuvFLmUlPouJL5dSiu5G+pptAdP71ezcqsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9R/So8qJfrpkOD+llpFq22WsQ227QYPXPM0ZIxNGLE9Nf1ta+1ZA/dcQebl0T8+McRY8ZEPPJISzbSyJERN98ccdxxESQKnnqqzMVmUQdReYPr0gDd8dPRmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLJLrpm7NouwKdt45YpVVaptFmWbNNSM23bQls+ieeyIWWijiq19t+e/772/JMpp33oiTTpK52CzqICqbRaUBuuOnozMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk102XmkWLLRax004znit7DF17bcvvFbOI+t5gg4i55op44YWWvYlWXTXizjtbsoyOOipivvkiTjkl4rPPZDYzCB1XMrsOxZX8LdUUuuOn16tZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhQf1ct10aFDf0WVoyy4bseeeM57r2LERF1yQbxYNHNiSdfTXv0ZMnhxx9NEty80eeihi/fVb/uVvP/lJi5F08skyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1HfULFLOsm1mEUvM9t67ZcPqt99u2QT7nXda9iei3jGa/vCHiAMPbNnc+l//asky+uCDiF/+UvnG9jWOK5lfh+JK/pZqCt3x0+vVrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8KDerluOjSonx1mEcvUBgz4fM+i7A1oGES//nXEwQdHLLhgy/VOmBBx660Ro0ZF7LZbxIortvyepWdXXx3x0ksyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1M8Os0i5kt69W96ahoHUuvTqFbHwwhGvvdaxvYqyYzqulNpImg7Flfwt1RS646fXq1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FB/Vy3XRoUF8vZpF8tR0UOq5kgB2KK/lbqil0x0+vV7MyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlTaL8lnZLMpnVL8KD+rluunQoN5mUfTv319iPezlYcFPs5QOxVWzQGrnOt3x0wPArMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8JmkVw3HRnUn7zPPvHS8OHydzW8cPHFI/j5Xxk3blzMP//80mW9Nf6t4KdZyuqrrB5Dzhsy7XLdmdFr3qzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPKszzzwzBg8erB+gCZQ2ixq5km0WybXXIbPoBz+Iky69VP4uC5uHwEFHHhSXnHOJzaISVe7OjA7NrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlM4vyWdksymdUvwqbRXLddMQsuuqqq+TvqaLwnXfeib59+1bx0jrlmvbaay+bRSVIuuOnQzMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk101HzCL5Syoq9ANar1izMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TOqX4XNIrlubBbJqGYQ+gGtszMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVThzowOz6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPCtvcD0jO5tFejzVn9JmkVwnNotkVDaLyqOyWVSAnTszOiyzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JXOLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZ1a/CZpFcNzaLZFQ2i8qjsllUgJ07fjosszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymdUvwqbRXLd2CySUdksKo/KZlEBdu746bDMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFfaLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFZdYhaNHz8+evXqFd26dZt2hh999FHMO++8Mcccc8z0rM8888wYPHjwNM10lTxsWAQ/zVLqyCxaddFVY7uVtpuO/HVPXxevfvjqdL/DtFlvmfVijm5zxCtjXolrRlwTU6dOTZq1l147tlx+yxg6cmiMendUp9aizaLyOP2A1tmZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z9XyQNrTctz55ptvOg9Fv9pyytlqFr399tvx9NNPx3e/+9144YUXYtFFF4133303dt1115hrrrnilVdeiaOPPjr23nvvdq/GZlErNHVkFmEUrbXkWjFh8oRpJ/j7Eb+fzizqt2C/2Psre8fkKZNj8meTo+fcPeOe/9wTL415KTbvv3nw927RLW567qZ4evTT5SK6nU/ZLCqP0w9onZ1ZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHRlUbNoyJAhcf7558dSSy0Vn376aVx77bXRt2/faV/4+OOPx7777hvLLbdc8jWuuOKKWHPNNaPW50iaqeWBnHXWWfHII4/EnHPOmUypK6+8MplD+++/fzKg3nnnndhxxx1n6pfoBPKVs9UsuvHGG+OBBx6I8847L0aPHp3MojPOOCNwyU477bR46623Yokllggctp49e9Y8e5tF9WkW7bnanrHcgsvF2Q+cHZ9+9mn6aVt2WXWXWHmRleOqJ6+Kt8a/Fesss068Oe7NmGfOeWKbFbeJ7nN2TxlHNz53Y4wYPSI/egsobBYVgNVG6ge0zs6szEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyiFmEOTT33HPHmDFjonfv3nHYYYcl3+LYY4+d9oVbbrllHHXUUcG/+B6XXXZZ3HnnnTU/hwHU1gN57rnnYpVVVkkmUY8ePWLPPfeMgQMHJkOK4/zxj3+MBx98MPbZZ594/vnn9QvtgHK2mkXZeQInM4v222+/2HzzzWOXXXZJy5FYhvbiiy9G//79bRblVWwdZRYd+rVDY+GeC6czph7JFvrdU7+b7gp+tM6Pok+PPslImmuOuWL0R6PjuhHXxdiJY5Nu51V3jlUWWcVmUV69z+a/+wGtAzcrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK4sYha99NJLybPAp6BccMEF8eSTT6bsoawss8wyyczh3+HDh8fWW28d//znP2t+Dj+krQcyYsSIWG+99ZJPwvY8fH755ZePn/70p/GVr3wlNt1007j//vvj8MMPjyOPPFK/0A4oO90smjhxYtx1110znNJWW20V88wzT/p9a7Nop512Cn5Ip6Istthi8fDDD0e/fv1qXpYzi1phqSOziOVli/RcJB5747H42lJfS0vMrnzyynh5zMvTTviIdY+I3vP0jjfGvZEMo2V7Lxsj3x4ZQ58dmjQ2izpwJ8/Cj/oBrcM1K7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCuLGIWsZXOoEGDpmX0XH311XHvvffGb37zm2lfuMACC6S/k3HEsTfaaKO44447an7uww8/rOmB/OxnP0tG0worrJAyiY477rh0nD322CMOOOCA5JN07949br/9dv1CO6DsdLOI1KwDDzxwhlO6/PLLU8pWW7PolFNOCcDikE2ZMiX69OmT0rvIMMI5Y9la2+INrv9HpI7Moi/0+ULar2j0+NGRLfka/ubwuOX5W6ZV3x6r7RHL91k+zn3o3KT96YY/jfGfjI9zHjzHZlEHbuJZ/VE/oHXCZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlbXMorafXn/99WODDTZIS8PYJofNp0l8YVsdyhFHHDHtIxtuuGH6/RprrBGPPfZY4HNcf/31NT/HErT2PBCykV599dWUlURG0d///vdYeeWV00u+ss9lq7T0qy2n7HSzSDmN1plFt956a1x44YUpG2no0KFx7rnnxkMPPdTuYZxZ1ApNHZlFgzcYHD3m7BF3vXhXetvZ/PPMH5c/fnksOf+SseFyG8Z9r9yXlp5ttcJW8Z8P/pNMoi8v9uW0NxF7FFGcWaTcPbNf4we0ztyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqySGYRR11ttdXi4osvTvsIsWrq5JNPTkbSyJEjY6211kpLwxZZZJE45phj0t5FvLns1FNPrfk5VmO19UDIVGLZGUvZSKDBdLrllltSFhHnetFFF6WNs9dee+14/fXX0wvCZnXpMrOIN6OxWRMu3bbbbhvPPvts+u+77747AWiv2CyqT7PoK4t/JbZfaftkCFFYfsYytK1X2DrWWXqdePi1h5ORdPBaB0/b24i3ol382MXxwccfpM/s9KWdYkDfAd6zaFbf9QWP7we0DsyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyqFlEksvuu++evmC77baL6667LthnCMOIZWXsZ8SeQ5QFF1wwJcAstNBCUetzmEW1PBDMpRtuuCG9+OvQQw9N+xWRRfSNb3wj3nzzzXTsE044Ib0dbXaULjGLal0YqVaLL7542i18ZsVmUSs6dZRZlJ3VMgssE2MnjY0PJ33YbjUuNO9CaU+j18e9njbDnh3Fb0MrT9kPaJ2dWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0ZVGziCNPmDAhxo4dm/YlqlV4a9obb7yRNrlmNVVW2vtcLQ+EpWYch+yi1oXjkmyT55foBPKVdWMW5Z9qi8JmUStSdWgWqfU4u3U2i8oT9wNaZ2dWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZxizSj14Npc2iRq5Hm0Vy7dksklHNIPQDWmdnVmalE9CVjiuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFdabMon5XNonxG9auwWSTXjc0iGZXNovKo0uZz/fv378ARmuejZqXXtVmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT6rSplF919wQcTw4flXXRXF6qtH8PO/8sYbb8SSSy4pXd3wt4bH8Debh9XqS6weh+546DQ2fuhIYZJEZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY6r8qzOPPPMGDx4sH6AJlBWyiw6eZ994qQrr2yCavMlFiWw9+F7x5DzhtgsKgrOZlEhYn5A67jMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsqzslk0I7tqmUUnnxz33HOPHiEVU06cODF69OhRsavqnMvZfPPN48QTT7RZVAKnHzo6NLMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EovQ8tnVSmzKP9yq61wQ6rXr1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArrSZlE+K5tF+YwaRuGGVK8qszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXNonxWNovyGTWMwg2pXlVmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzahiFG1K9qszKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymfUMAo3pHpVmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCttFuWzslmUz6hhFG5I9aoyK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AV9osymdlsyifUcMo3JDqVWVWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6jhlG4IdWryqzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEYNo3BDqleVWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jBpG4YZUryqzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZNYzCDaleVWZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TNqGIUbUr2qzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JU2i/JZ2SzKZ9QwCjekelWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bOyWZTPqGEUbkj1qjIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9RwyjckOpVZVZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqOGUbgh1avKrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8Rg2jcEOqV5VZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmMGkbhhlSvKrMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hk1jMINqV5VZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsusQsGj9+fPTq1Su6deuWf4ZtFGeeeWYMHjx42m/deHwOyCz0cDIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z3300Ucx77zzxhxzzDFN3572gw8+iD59+szwtRMnTow555wz5p57bv3iReVsNYvefvvtePrpp+O73/1uvPDCC7HooovGpEmTom/fvrH11lunU/7iF78Yp556arunb7Oo/Zp1QypGfUSYlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK4uaRUOGDInzzz8/llpqqfj000/j2muvTT5GVh5//PHYd999Y7nllotXXnklrrjiilhzzTWj1udImtl1111jrrnmStqjjz469t5775ra9957L3bbbbdYfvnlY8KECbH77rvHLrvsEhhNI0aMiGOOOSaOOOKI+M53vqNfvKicrWbRjTfeGA888ECcd955MXr06GQWjRo1Kk444YS47rrrEqy8YrPIZlFejCh/90NHodSiMSuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFd6bgyK52ArnRclWfV1mdofSTMITJ3xowZE717947DDjssllhiiTj22GOnybbccss46qijgn/xPS677LK48847a34Os4gMpNNOOy3eeuutdKyxY8emY7f9jnnmmSf9/Xvf+17cc889ceSRR8ZTTz2Vfq666qq45ZZb4pxzzml8sygjCZzMLLr99tuTqwastdZaK6ikTTbZpN1atllks0hvAszKrDqDgH4MP6DNSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCurJIZtFLL70Um2++ebz44ovpCy644IJ48sknU/ZQVpZZZpl48MEHg3+HDx+eVk7985//rPk5/BCOR4bQ1KlT0zK0YcOGpcyk9r7j4osvTgbUHnvskUyprOy4YbLRLgAAIABJREFU444p86ghMotYM3fXXXfNUEtbbbVV4IpRWptFf/vb3+KJJ56IQw45JK6//vo4/fTTU7YRmvvvvz9lIrUuPXv2TOlXLiZgAiZgAiZgAiZgAiZgAiZgAiZgAibQUQK1fIb1118/Nthgg7SVzqBBg+L5559PX3P11VfHvffeG7/5zW+mfe0CCyyQ/k4WEEbURhttFHfccUfNz3344Yex0047BUYPZbHFFktZQj/60Y/a/Q5WZ5GxxHm29lsayiwiberAAw+coa4uv/zylFbV1iz65JNP0oZM/EyZMiUtRXv11Vdj6aWXlup7Zuli0gEqJDILvTLNyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlUXiik2tMWnYfJqkFowbCnsFZWXDDTdMv19jjTXisccei1NOOSUlw9T6HKuqMJcOP/zw5IGwcfWbb74Z88033wzf8YUvfCG+9rWvxZJLLpmWqKF9/fXX0/9TGsosUqqndWbRiSeeGO+8806QVkXaFmlVWeqVcqwilawcr5E1ZqHXnlmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyaFytttpqybMYOHBgsGrq5JNPTllHI0eOTNvpsJfQIosskjacZpkYxg8v7qr1OVZjXXjhhSlDaOjQoXHuuefGQw89VFP797//Pa3Qwjd59tlnY7PNNos33ngjJdtU1izizWjsHo6Dxno9Mor4Afr2228v13LRSpYP3IBCs9ArzazMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZNK5uvfXW9CYyynbbbZde0MXbyDCMWFZGwst6662X/r7gggsm82ehhRaKWp/DLNp2222T+UPW0t133x1rr712Te1zzz0XBxxwQPz73/+O7t27x89//vOUYJMVMos4r29/+9v6xYvK2fo2tJmdE7uAL7744uJpfy4rWsmFv6CBPmAWemWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK8vEFXsn89Yy9iWqVXhrGlk/bHLNaqqstPc5tt/BA+FNa3lakmzY24jNsGdXqRuzqOwFswk2bp5LpA3BzUKLBLPSOKEyK7PSCehKx5VZ6QR0pePKrHQCuvK+++6LRRddNO0v0d4AQT9atZW+B/X6NSuz0gnoSseVWekE8pUNbxblX6IVJmACJmACJmACJmACJtA+gccffzwtA/i///u/JGLDUV7CQuF1xJMnT45//etfcdhhh8XRRx9tlCZgAiZgAiZQeQI2iypfxb5AEzABEzABEzCBZibAq3zZIHPVVVeNr3/9682Mot1rf++992LAgAHpjbwsI1h33XXj//2//xe33HJLej3ylVdeGQ888EDK4P7vf/+blhi4mIAJmIAJmECVCdgsqnLt+tpMQCDAuttXXnkldZLZZN7FBEzABEyg8QhgZrCXwTbbbJNOnv0R5p133pQt8/3vfz+9pWXIkCFx0EEHxQ9+8IPGu8BOOmM2CF1xxRVrHo1NQvfee+9kBmEanX766ennz3/+c3qVMW+5+eY3v5k2If3Sl77USWfkw1SZwD/+8Y945plnYosttmg37qp8/b62zicwderUuOmmm+Lpp59O7RWvVXcxgVlFwGbRrCLr45pAAxBgd/4jjjgidWDoQLPO2fsxNEDF+RRNwARMoA0BDI3LLrss/vSnP8UTTzwRxx13XPzlL38JDJD99tsvVl555Tj77LPTm1Zefvnlaa/cbSaQmGWXXHJJ/POf/0wbhP7tb39LzOaff/741a9+Fffcc09cccUVMXz48Dj++OPT22d4LpKN9dJLL0W/fv3S65BXWGGFZLq5mMDMCPCGZ2KMtzz/4he/iDvvvDPWWGMNQzOB0gR+85vfpDaJjZMXXnjhlP346KOPztYNj0ufvD/YkARsFjVktfmkWxNgx/mPPvrIMzZCWDBbypsH11prrfSgYRaahw7p9LvssksstdRScdFFFwlHssQEPidAdtqPf/zjuP3229MyFzIcvETDEWICnU+A1/KOGjUqvbK3bWFPnaWXXjplMfzwhz+MffbZJ2UZMVDltburrLJKerUuGaQMWJtxNvqUU06Jd999Nxk9r732Wtp7iPbqt7/9bcwzzzzxs5/9LG1kvfnmm8dTTz0V3/rWt+KMM85Iryl+8MEHY/nllw8yRXhu9unTp/MruM6OOH78+GSasUQPZtkroevsNOvidHhLEfcdhuP++++fjFlenU2csQz0mGOOSWYjhmWzF7Ieued4XThxhVnr0kLg6quvTm309773vfT/jHFYCkt7893vfje9qn3w4MHp9xjeX/nKV1K/3S84cgTNKgI2i2YVWR93thC48cYbg84fDSuD0xtuuMFLqdqQZyA/cuTI9JrHww8/PP11t912S7POvKaRBzWdYB5CzJbyNxcTyCPAxq/du3dPMjaEZY+Ps846K3WQmUm966678g7hv5uACRQkgMlDllC2jKxtZgwDewZgl156aVqiMHDgwLj++uvTvUk2zfvvv58G/OxftNxyyxX89saXk2VFv+Hmm28OjBCMITay/ulPf5qyazFFML6//OUvp4ysPfbYI8aMGZOWobEBNhNTm266aVreV/XCgB5TkiWMDFQZvGKgNaPJyBJE6p+JttaF32evsN5zzz2jR48ecfHFF6f7jf+nX0osrbnmmqlvNWLEiPjRj35U6dDBtKZP3vqV4a0vmOsnS4+lnA899FBazsnry5u50AZhJmJMv/DCC8EyM7aGwOSH0wknnJAMavpZ11xzTbofP/zww2SyXXjhhamPT8akiwnMCgI2i2YFVR9zlhCg48KMTM+ePdNDmCyZrbfeOqWL0+mjU0yjOWjQoFny/Y12UGagSU099dRTUweGZQnMcNG54eFMhtE3vvGNWG211eKcc85JnWRmTXkANVth1u/ggw9OM/IwobOXGSHNxmJm10vs0AEktf7cc89NM1oMVrkPN9tss/jPf/6TYm6nnXZK+6MQdy4m0JoAAwlMapdyBDD1+/btm0z+d955Z4bMGDJEGdDy92uvvTY9E3leMhPN8jSeoyeeeGIynJqxwIysIZaaMYBn0oQ3nJ133nmxww47pLatd+/eaeDG4IxBHM/EZsgiIjOG/hMmI1kfZKkde+yxcf7558fvf//7GDp0aPzyl79MmWrNVmi3WPLD4J0MbIyjQw45JA3SMT/oZ9GvYiC/+uqrJzwYs5iQPAd5XmLWYhjRN6ty2XLLLeOkk05KpjTmBss82TeN/gL3FX0teNI+jR49Oq0KIPZ69epVZSy517bJJpukzGziCoP2qquuSvGE8faTn/wkJk2alAwkjG72UeM+JJ7oy6+00kqJZTOY2LkgLeh0AjaLOh2pD9iZBLJN3Ei3ZFDKngs8dEj1/eIXv5iWTtExfvvtt9N/83c6gs1YeJDQmYMFA4Unn3wy1l9//cQLRsxwYYYsu+yyse2228Zee+2V0lY33HDD2HnnndNsKw9yHlJVL8wU0yFmxoalB8zWM4DaaqutUmeZTk72+uSqs1CuDxOI2GEJCwMp4onBA0s0uO8wiBhYXX755fG1r30t/Y5Y8t4MCt3m0bBMkXYmW4bBQMKb6uv1z+CTe4/B57Bhw+Kvf/1rzcwYBhwYQxgd3KO89p0JAT7PYKIqAwomOOacc8601KdIwfxgsokBPBMk7CMDKzJnyHi477770ox9//79ixy2rrVkRHFtxEbrkmXG0Nei/0QGA30oBvgYk0zC0Z6zpBFWZC8QS81YyDjDQONfWPAMZGnnAgsskEwk+hD0p+ifwpv/5u158CQTl3jlMzwjq1bYDJ4MRvbzog+KKc2SOzIdH3744RQzGBy0XRgcmEn0GSjEGRNMxFkzFu49jB7a9oUWWijtQURmGm3QxIkT08QlHCnsoUZ/nd9fcMEFaU86yiOPPBJf/epX/TxtxgCaDddss2g2QPZXlCPAJm4sZaEzyMOHAT6zOTxgDjzwwPQQxvjAfaczfNttt6W1vn/84x/LfWEDf4plB8ySMtPAf2OuYRyxrIwZwo022igtW2Dmi1mLP/zhD2nGgsHb66+/nma8mLGg41PVwsCUByoDC7KHmB0ktogxHsZ04mBCJw/DDGOkWQsxhJnGcgOWaRA3DOoZoLLHx5JLLpmWfxI/dGowANZZZ5203wezpsQerDHiqlR4a+B8882XZphdihMYN25cuu/YfwFDm9lk/iWGXDQCDMIWX3zxtEE1A4tamTHcuwwmGLySdUsmV9XuRWhhbDBQZ4DKgIs4IpOK7GNMDZaL1So8H8n+INOWjCLaLZYKkemAGcBzoWqFmGAihCxaCn0AshXItGIPFNpvMtay7FE0mIsYH/QLMEjod/HfZMs0S6HNp/9JvLAEjyw9Jk7IPiYrm+chRiN7g/E3Jpow2tjXir2xfve73yVUZH/wJr2qmuO0M/QL4LHvvvumOOGa2RiePiis6MOToYdxxn2GiYShRKbMr3/962TaNkthchfzjAxH+p8Y/9x/TOpivBF3jGsYz3z7299OsYfRtvHGG6f90+jT8zdvG9EsEdO112mzqGv5+9tbEWibGUNDyGwWnRcGoLjmdF5YH85eC7zRhZkaOjPsLYC5hMuepQBXGW7b12Z+8MEH6U0bPHiYwWEWAhOI/yfdl4E9Jhvp0tm+C3SsSbmvemGAyoOYwQOxhOFBR5klB5ggZDmwLwWdZVLJMSAZ0DLT04wF45CsM8xHOrz8P/ciDLm/WPbJ/ca6emKLDjAdGQansKQzyOxXFQ0V7isGp3SI4cCgkkGmy+cEMPHZOB+jmsJA6tlnn00mLR1hBlRkvaBjcIFJzQbD2evem4kl5gQD+KJLXjH+eR6yiW6tzBj212GwhplU5UJcwY+lQJlxzbXTHrE0lmdgexvnkl2LAULWBwYcBlPVCwN2+klMALBUiPadJXi05xhntNlkVaFjk2bae/oIDP7JVOaZme0RWXVWtE9cM0YHE030K2mnyGin/0B/lUkl+qEw5JnH3o8Y4ExasiyI+7PqS7GzzDTuv1133TVlCNHXIlZo64k3lp1985vfTCEDP/qgGLT0FVgeS9+BzKyq991bZ9LS9hM7TFDSF6ct43eYP2S4w47+afZmRgwi+h5kq7GZdbZPVtXvQ19ffRCwWVQf9dD0Z1ErM4aHDA8TZiNY+sKSKWYS6eTQYSEDhE3x2DCQjSlZcsUgpeql1msz2SQQBjyoMdjovDAII9MILsykstcMM7A8dKregcFEZAaVARWdGdbCM4vD0jL21mG/DpYcYKyxxIosIrixHwOdQ+KIFN9mKGx8TvywJI/7jRRnWDBzRaeF+43/Z/AJV7IU6PDRISadHgMFo63W25mqxo9BKSnzzO5xj7GUJVviU7VrLXs9dGSZFaUDjInNoJy4YoBw2GGHpVR7zNnMjGXpIjPQtO3NVoglBuK000XeKMiAnr1kmACAczNkxrSODeKF6+etcJjZ7Md3xx13pEklDEky17hHMYNqbeLNZAv9CgzM9jbhrUIsMlFC5jXPe+45BvG0WdyHtGXcgzzzyAohG4a9mU477bTUr+J5mT0Xq8Ci6DVgYsCL7CCygbhHMUPoS/EcxNigr8CSRl4cQhYuk0zN0o5xDx5xxBFpo3xY3HTTTakfQTYj7RLZxfQRmKDELMJ8I5OI9o7lkJhq/DTDG7y4z7in6LsTJywzY9yCQU1WNrzI/COjCMMRhsQeZi6sfvWrX6U4pDA552ICs5uAzaLZTdzflwiQlcCeJswokDZOx61WZgyb5GabuOGw33vvvSmtlwc2jWfVZvUxNpihyWZhaoULs1u1XptJKjkDsb333jt18pgZZODGAxyThBTXZijECQMoDA0MRfZsYqkL+zEweGBWkEwZOjc8nJm9Ic2cBzPsiSkYVjVdPIsBBlZ0WFiKwAaTDOYx2Pg9BhrLW9jvhH0IuF/J/Dj00EOTKUQHmY4Os6lVK9xf7FXCDB6FrAO4kC6P6cE+TJiJxAodZuKKwWqWSVM1HkWuJ8sCZQBAVgcDUUw1BqLcYzAiI4ulGtkSBAb2ZPuxHKiZCksxGCiQZcU9VuSNgnAmPjFImEipemYMz3raagxrjA/aZ7Jj2Pck26uQZx+TJczWY3IzkKd/kb0BNOt3ZO0Z+xVVddNqzDD6TmRYbbHFFmkASvtFjNFewZN+F/cgy3+YNKGNo7/A3pDcj3wOM7NKhXaILCol65V2igmT7IUfZICQtcZkG5MkDOIx3TDfmLxkwqTKBeOf7B/6RyzF5tlP3wkziAk4Jt+4LzHMiLclllgiLZel70A7R4wRg/TNmmEvQ/pQ9Cl5FtK/ou/EM47li2Rp039gbEOMYbqxXI/YZKknbRb9de5XMnOrniFa5fumKtdms6gqNdlA17Huuuums+WhwUCe9EsG8HRW2mbG0Mhmm7hhKD322GOV38Aak4PUbzI6aj0ksnXfbV+byewOhhtrwXkIsV8Ds6pFN/9soFBKp0pnjQEpgyeyXuigEFOkidNxwWCk88yDF+MMA4mODA9zZmmIw2zw0WjXXvR8mRGlk8syKpbc0UGhQ8O/3Hss3WA/J5a20MkjbRqGaJkRYzaaznKVCzOi7H+GKU17Q+YQWVfsbXXDDTekWGM/pmwvCjp3LIVpho316bi2t59Lxoo2h1lkOsQY1nR6iTcK2Q1k9bE3BX+jk8wsKtkMzbS5KYYkGXm078wos7yagYL6RkHasypnxLRuX2BF+8NzkT4Cs/JkKsCP+5L2n02b2XuH+5A3LpFVyyCWGXvaevoXxCTHIHOyGV79Th+AZZ5k7tGOs7Ts0ksvTfcaA1cGqzwrycDid/QTmGSa2URVo7b7GNWYixgcLK/GCKP9ZqkYJkd7BTOEDA/6FsQhZlFm7DKgh1/VC5NHTIawTxVtO1mjTCxh8nOfkYHG5C2F+42MPzLV2BuTSSUyS+lTNEOhz0S2FP2p7C1vxB5vOcNYJNYw+rnXaPdp7zFt+QwmNxMIZBF54qkZoqWxrtFmUWPVV92fLUYGMzI0ju0VBu3MbJGSyfIzZunpBNIhbJsZQ8NJR6dZNnHjAUNnhj0sGFDRua1VeOjUem0m7BmAMHtY5cLgCuOCh3OW5cKsFZtU05FhdpROHTNYDKqYzaHjzICBBzEZD3RiMCOboZAqziCfPSiYPWYAwaAJFhggGI2YISxnIeOKzBpm3ukg08FmOQP/Vv2V57RDGI3MqLMsiGUHtD3cb5gbLMfjzW8MMhik0uljbwE2oKzaLHzr+wLjlQ4/PDBWaxUGmQzWMYTIViMTBAOEwQTLpsjUy5ZdYUBiGmEQcY+2txFxVe7N1pkxtO3EDe0UpgWDdZZmZC9vaO+NghhEZIJgZnIfnnHGGZXAkw3ks4shI42MKdpmBl08z7LMPZb48IxkUEVfAdMIA5PYwpwk44M+AxMC7LvGYJZnBc8J9I1ssJE9htlDdqxSsmVADEIpmLIYJvAkm42JJeIOw4MJACaZqliID579ZLuwKTz8MDPIvKIfwHOuvSXU/A0dmck8F2GaZZxWkVXra8oyYzD76WuyfxOGI8up2PIANphpLHOkDadNw8gl+y97QQh9jEa+55Q6bt1e0cdiAoS2nAI39q0iA5kJJrLeKXBjiR7jJdo0sot4ZjbDvmkKU2vqj4DNovqrk4Y+I2YYMCqYmacBrFVw1JmtZ8aCQoePBwxva6lqZgyGFx3WWiYOHWMGVBhnDOR54DDjkO0PU4shn2nG12Zi9pAKTeYVcQM3BqUMwDCLyJJhwM9sDYzoFJMxk731jRTqqqeLZ/ECCwblZAnBgWUZmEF0+Bh4UjBosw3Qsywisq+Y6SLrj85eld+Q1/reYnPJ7I0/cKEzd/bZZ6clVFnMsMEk9yXtF6YR2URk1NARZDlQ1QrZi9xbtE0MMlmK0F6mIoYZGUTskYbRhi7bh4cBO58ntmDFHmLZxqhVY9b2emplxjBDz/1GW0+2Au1Ye28UxEwhC4LnBwNVOFdl+VTrgTwvFmAPIuKHJeoMzGnnudfQsaErbTsDd5ZOocM8IZuB5bQYupi5VSvZBBymIuY+fSvuJ+IGk4MlnbVK9tY8MmvJvMLsxUDjX5ax09eoWqHNxjjMsoUwhTBYiScMDp5pmNoYQPyO5yL9KCaXahU2/cZwpC/Bc7Dq+8XUyoyBAUYizzsmLzHc6EcxqQIb2nNMN5Z8MqlEFl/Vl/BnsUK707q9YqkdBizGNWwwh7hPaacw3ehX0O7ze8Y/RV9sULX71dfTOARsFjVOXTXEmTJAxSQizZcHcXtOOc46nWhm+zAASHFlVoLZnyplxjAQp2OGYcFb27IZBwZKDESZqacTSGeFBy0/dP7IzKIz094bgjhuM702k4ctnTyumZkbOirzzjtv6rTQcaZzwrIEZtyZXaYzyDIE3s5F+i9xyP47VS50QhgY0GljCSMzgHSWyUDgd8wq02Hmb2T1ce/ROcw2QGfgSjYWmW0YTM1W4EIKPfceHV4GpCxpybI4yFYg44oBLe0Ug3gGEGiqumE8gy7uu4EDB6Z2iSU9tNe1Bk20VwzqMfyJO95ChclBthFZaxSWOVatg8zyp9b7wZHdSXwQT2QO1cqMYVNmBg6wJWON5yWDBzK42r5RkHhjIqWKS6cwQpgYoV3iGcigHGOStguzgzae+4vMF4wR2JLZxl48MMYAZwBLGw+jKpbWE3D0r9hPiEw13ojHPUd8kDlTq5C9x8CUdgt+3JtVzg5lIomJEAbq9BO4p8hQw+ygD4HZSCYHmWk8F7nfuHfJUmZj9NYF7mTk0oZxrKq+rbF1e8UkUa3MGPoVtGP00+kz8OIQJhLI6iYzmThrL+O0Svck/U6umf47+w9xP7Vtr9hHjb4YSzuZACC7lvuVDCPuPZ6jZCNXxfCvUv36WtonYLPI0SERoPPPoJzZv7aldWZM9nYpnHUG9u0VGloyQkhl5eHOw7uKnb2bb745PVAwwpiRoXNCJ4QZeAZTDAxI4WWvABgz2MJEYgABVzoqrbnQgWZ5Gmn5Vd87hllClqnwgCXjg84cmS5ky8CRQScDe9J3yfCgw8dglDX1bPbNjBj7yVTlocyAqr1lc8QNJi2Za3TiyECABUYQadKYaSwPIkMGoxFG2YbCGGvNtAF6e20Shi5ZCyyJwlxjoMpAjN8TX9xzZK9xzzZLYTkBA3LaGrKKyBQi06pWof1iDxlMEkxxmLGMaGZLkhudI4MHMjWyN9vQXtO2c0/BiYxGBq5tM2PIZmDwSSYMGW18BsOoGUxa2mXMau4xDA+W92QDeQx/TGsGXBQYkgmJ4ciAFL5oqjowZS8h9nrJlp+zvxyZGzwHiQ/6EkyQkKFHW85zEeOWlxHUKhhLDPAxmar2qm0G3Azc2+7ryIbCLI1iL0L6BCyBZSkUTOkX0K5zz2J68HuYk+nHm2Jpw8jcov+FwUTbT7+N+7eKezm1ba8whdhTtG1mDBOeTMLRTyUeuW9bbxzf6O24cv4sJWOyhOc/5g99UNqwtu0VZhD9LjLf6f/zL8uveSbyLM2WhSrfaY0J1AsBm0X1UhN1eh40kHQ26NjSQcEMar1JLg0fM3+tM2PozDDTxUO2vV38GXQ0wy7/zH5mmwbT2WCmgT0pMDB46GbZHTxI6PTRsWH2i6wGOskMHthnhlR7PsuMBRkyDGirlupLTNC5ZQ8rOsIMMunAMSNKCjQDhMwQyt7KRXYan+FfCgYIBlHV1n7TQWGjTTISanX66bwwUGdQQIeXmS+yXug4M5PKAB5mxCOdYTrLWZZbnTY9s/20WLrI4J60cQYS7EuEccvSDdo3Bg/N8Jrf1uAxrMkuwjQjewqzjGdCe/cX2VZkEbFcphmWe5LJgBlErDBDn2Wn0WZxH/LWINrxWpkxMOWZSmZpFbOGat3ADLDgxfIysmh5DmKEZAN5PsNeclnmKL/nXqQvwTOA52V7+/jN9gZjFnwhz38MfwagLBlmKR4GEayyCTgG87Tp9MlowzE0MuOj9Smx3J+JKdqvbK++WXDKXXZIMrXZa497LMswgxlLOpmIw6hunSWDecR+V/Bkgg7DloE9k5aYRsQc7T8Dez7b3kb+XXbBnfDFtOe81Y3MfibZuE6yaVu3V+xt1TYzhuxJDBDGAjBrBlObfgD9Lt6cByMmBFi6yWRtVrj/arVX9OFpr9iziP4sBWOJZwF7P2FYuphAIxGwWdRItdUF58rDlsyWbJNSHjIYRtkmubyillmZtpkxPIgYvDJz2jozhsEEaasMNqoyOwgbuNSaeSI7hnRnfjB4mJmg48vAnc4e3OggMqND1gwzqgyy+Hu2pwezXAzQMInoBFWxwITlCDDgetmQ+plnnkkdZDatprBfDKYZhlH2ummWMTDTTMevaqX1ZvG8mhdDiMwXBlttC5077lU6MsQYmUPcgyw9I2uB2GSWmowjlmxUzWjsjLonw5H4I77gSUzBuqobv6rMaIsYHDCTzMCUH1Lr2xYGp7RTGCZVLq0zabnHyBqlEC8M5Bmw0pZlWaLcezwnmyEzpm29kzVF20VbRvtEphr752SbUMMIM4MMkWwgT9vPM5U+AtmQDFCrVmjLaZfbZinSPyKDKMtihBd9AozHbAKO/hP7pDHpRME8I0OE/hbmEBndDEhZTsx9SnsG82zQ2kgsmfxgLzgG2W0LEx+017TPxAxmEH0m7kn2ueKtlZjbLCUjI5cMWyZQ2POLJUFkKLM8r1kK5ge8MMTIvGISgL5T2/aKrRGIl7aZMdzL3MdV2Fif5YmY9e1tbM6EB20Pk+FMRnKvYUjykg8+h7nIvUv/ir5W1durZrlHfJ3tE7BZ5OiYKQEewKSC83DNXlHL7HrrTXKZ1WqbGcOuongDAAAPOElEQVSyFjKOWLfLIINBLBkyrA9nsMGMUBUKHVzeJsLMS3ubH9KRY0DBw4UBA2YQHRWyYHgoZQN9lhnxMKryW5Xaq3New0rmFPFG5hrGEMYYyx6zDDU6xXQCGTxUdYPO1nxa71XBQBQ+pDXT2a1VmH1mCRqxxYw0hhodPDqJZG0xcLBJlN/qYKpxL1fVmM0nML2CbDay9dgnhs4zS4iyVPpag9Mqv06afavInG2dScuAlGwQngFkhGbZaQzSGXBlm+43Q2YMkcPzjHaG5xl9BbKnyP4gm4NnIUYJz0MGWhiM8GPZXjaQR8OSRzIoq7hpPIwwpomZrJ1msogMZDiQPYV5xu+yPef4DBNvGEJMGvEszDL8yHiAIXsTwY3+FZNXjV7oB9AO07dkj5y2BWOIiUrMC95YyTOOpepsl0D/NNtcmAwhMrEoDPTpW7S3x1OjM8vOn34pmVdMRGKUkXlN2wRPTMqstM6mbd1ecV+2zYyhH8bkJwZToxfaIvriLKerVRi/EEswpDAJwCQ5fc8ddtghTfIy2Usfnv581durRq9vn3/HCdgs6jjDSh+BdHFmtugIk1rJ7CDLp3gYZ5vktpcZw6whD2p0DPqrsnSK6+LhwZs16NAyOMcYY++FWoZR1olhYMUDmIctnWXSW1nGwOebvTCjygOYWRo6cqSEYy7SyYERyxVY0khnuSoZaXl13nqzeO4hlo7RAWbGuFYhtljSQbo4r71l0NVMM6d5PP33cgQY2NK+kSGKScRAguwhBrRVGpzWotM2MwbTrFYmLW/AwRjiHmVmnvaLgT4ZNO3NXperjfr8FM842mmyhNgklw2qea4xG49pTeGNSey5R6YVg1n6Awz0yfjADG+WgXxWg1w7GdrEDANXMj3YgwizjaxajKPWLx/ArM0m4DCLuAerZmjTt2LTbtiQvcEzHyawqHWtZK2hywwMlq4zqULmDKY/n2OSk+VWzVQwFskkI+OFZXe027RD7BeWZWETc9lkbjO0V+yLxr6OmNJMyDJxTaZ2rYlr2i/6pLCjkF3Lfcq4B7ZkJvE7zCTiz8UEqk7AZlHVa7gTro/GkUaWDQXpKGOSMJDPNslttswYrjfbBJeMK2YHmW1m5qG9wswX65eZ9cPsYJaHDjMmmh82LdQYNGQZRTyI2SCXlHyyjniw8//NVMgUYklBtlcFg3M6vmwK317BJGLGGUOpam+daqa6r7drJaaY6a9CxsLM2GYbUdMmt5cZw4xz20xaBvo8CxjoMkDFMMHgrspb8tjnDJOQJT61Cn0EBuloaHdot9GSAcpyIPbo4A2DLI9iwonnJ1mQDNoYmFWFU5H7FjMDMx9TsVevXimTCGOELGyyQbIlnSwTYl8rSjYBV+R7Gk2L4cMyKLKJyPAgg4Ps9lovQOEeJUuEjFteksIyKybl4NQMe2K2V7eYGky0YYTQX8V0I3OIfgH3Mv0s+vTZyy+q1l7V4sJ9xPJN+uLEFW0OS8xav8ky+xwxxMQkcQU7JofJ0K6V4dZo95fP1wTKELBZVIZak32GlHsaWrJhmMkh/ZflUs26SS6DJgYGzNKQZcUsA505zLP23jiSvWq7vSVETRZSNS+XDZxZqscyFtbGMxu24IILNjWa1ntVsEEinT/iru3rj7O3uNCxbnZmTR0wvvhSBBiY83zL3vBD24OZXyszhqVVtfaY41nArHXVsj0ASiYLZnV7rw9nOTX767BZMIU9PuDBoJRlQWSNMkhjdp+lxGSrMZhv9mWx7CHH5ufEFFl6DExhQ/YVWVrsP0eGSDNsKEzccB+yDA8O3I8YjWRvzOxlDAzkyWAnq5uNiBnkN3vBNGPfNPrpxBMvHIAhhhF7FmLoZnsVNQsrMvGY6IYByzbpZ87sJTxsCk+2KIW4ImvbxQSalYDNomat+QLXzcwEKeV0/pi9YUBf9de25+Hh9eMsIyNdnOwgOnswofPXtpCij769PY3yvquZ/k6HBiNk4MCBzrj6X8Vne1XwLwMtZp/JsuK+ZNDKMg8yIar8Fpdmugd8rbOXAIMp2nDeSEbGLNkxGBvsz8Ggq21mDIMssmOqvsccmUBMhDALzz45ZB+wrKXWBuZZH4FJEYwN2iQyG8i6ZR86DG72TGMA6/I5gewtlywvJoOWpccYb2Q20L+olU1TdX7Zsn2MR8xGjA72AcOIrVUY8GOqNSOr9mKBDGMyh1jmyD1JVgx9q2Y3Z+mns7UG7RD7FZEpxMRvrcJzwVn/VW9tfH0qAZtFKqkm19HxI4WV9GCXFgIsN2DWj6UH7CnDnjGkS1Mwh3irFzPUpOAzQ0Gnx8UEihJovVcFHRwyh8hiY9DKcg8y/Np7lXnR77LeBJqRAHuesEdF1n5jzDKg4K1UtTJjmoERpgUGDyY0zzMmRmiL2issOSMbBDOb12/z/+zl5NI+gSybiDacDb/J3K765stKPGDW8gZBtj5gXx0mKRnkty7scXX99dcnHZsMu0xPgBcTsHcTy2bpfzrjOFI/nYwhTFr2WiVjiDfsZmXSpElp2T9vvCRjrVn2x/S9YwJ5BGwW5RHy302gHQLDhw9PbzChE8NeRCyjOu6449IDiAEGKfv8NON+DA6aziXQDHtVdC4xH80EdAIsTWDpDy9xYPadQTtv4mKQ1ayZMSzBY6DOG5MYkLNfIWZQe5MemakNL2bsnUWkxR8xt9JKKzmLoRUuMmEwHOlTYXLwBi9eIIKhe8MNN6Qsd/aJpN+19NJLa6CtanoC9MtZgkYMsW8a20dgDPFG5+uuuy5twM/eokzCec/Hpg8XA2hFwGaRw8EEOkDgmmuuSa8Fbr0XERt3kj7tYgImYAIm0BgE2CiX15kzUCArhs1P21v60hhX1PGzvPjii4NXszNo562oGGm8PrpWYdkGmcdkM7T3xsaOn5GP0AwEmBzhzYNsPszSRwrxdeqpp6ZM2lpvsGoGLr7GjhNgaR7LPdlXjQkBCllY7MvGSwlcTMAEZiRgs8hRYQImYAImYAIm0NQEGESQTcM+RSy98rLhSJkccGDjYd7EyOu3mYXP9vJgAP/www+nvYnYa45l2czIsymxiwmYgAmYgAmYQOMTsFnU+HXoKzABEzCB/9/evYRS/sZxHP9GSO4R2SC3ctlJlI2mLExjx4JsGJpy25DcspFrhsWMMTPYsHCJBQtW04ws7BRJRCSXhXOKcVkoMn2fOv6m+f/n3+mcpjk/799KnN/z+z2v56w+vs/3QQABBFwQ0EBEtwPZbDaa5T5x1OBM/+OuTb3n5uZMTyI9rXJ8fNwER3qog1bW8l95F7583IoAAggggMBfKkBY9JcuDK+FAAIIIIAAAn9OQHug6IEFbKP6x1xPpdJGwiUlJY/Nl7W5sJ4+pSfIcSGAAAIIIICAdQUIi6y7tswMAQQQQAABBBBAAAEEEEAAAQQQcFqAsMhpMm5AAAEEEEAAAQQQQAABBBBAAAEErCtAWGTdtWVmCCCAAAIIIIAAAggggAACCCCAgNMChEVOk3EDAggggAACCCCAAAIIIIAAAgggYF0BwiLrri0zQwABBBBAAAEEEEAAAQQQQAABBJwWICxymowbEEAAAQQQQAABBBBAAAEEEEAAAesKEBZZd22ZGQIIIIAAAh4rcHl5Kff39xIWFuaxc+DFEUAAAQQQQAABTxUgLPLUleO9EUAAAQQQsKDA3t6elJeXy8rKipldfHy8jIyMyIsXL3472+bmZunp6RG73S7h4eEWlGFKCCCAAAIIIIDAnxMgLPpz1jwJAQQQQAABBH4jcHd3JxkZGbKxsSGlpaXi5+cnY2Nj5o7d3V1JTEz8z7ubmpqkt7dXbDabRERE4IwAAggggAACCCDgggBhkQt43IoAAggggAAC7hNYWlqSly9fSkFBgSwsLJiB5+fnpbGxUTQMKisrk0+fPklfX5/s7+9Ldna2vH//3gRMT8Oijx8/mvuXl5fF39/fjBkbGyvDw8NSWFhofnd7eyurq6tSUVEh3t7eZtzk5GSZmJiQgIAAycvLk6ysLNna2pLj42PzbH0GFwIIIIAAAggg8BwECIuewyozRwQQQAABBDxAYGBgQOrr60XDnjdv3vzyxtvb25KSkiKZmZny6tUr6e/vl+joaNnZ2fkpLNJQRyuSrq+vTfATFRUlqamp8vXrV0lISDBBU2VlpWg4pUGQ/i09PV1mZmbMOA0NDY/VSVVVVfLt2zcTGh0eHkpMTIwHSPKKCCCAAAIIIICAawKERa75cTcCCCCAAAIIuEmgs7NT2traTGhTVFT0y6gdHR3S3t4um5ubkpaWJt3d3dLS0iJra2syPT39uA3t/8KiwMBAWV9fF0c4pRVGGkKFhoaafklauaRb2TRQ+vz5s0xOTkpJSYmpVtKqJy4EEEAAAQQQQMDqAoRFVl9h5ocAAggggICHCExNTUlxcbG8fv1aRkdHzVvrVjINkerq6kyFz9u3b+Xg4EDi4uLMFrTa2lrzmcXFxcewqLW11YQ8FxcXEhISIsHBwWarmqOyKDIy0mxBGxoakpqaGhM2JSUlSVBQkHm29j7SsEhDJw2kZmdnTXhFWOQhXyReEwEEEEAAAQRcFiAscpmQARBAAAEEEEDAHQI3Nzfm9LOzszNT1aM/Dw4OmqF165hWFGmfIq3y0d5DGuZoIHRycmIqkhwNrvX0NK040iqk8/NzeffuneTm5hIWuWORGAMBBBBAAAEEnoUAYdGzWGYmiQACCCCAgGcI6EloWl2kPYL00mof3WKWn58vDw8Poj2EtKeR43JsWWtubpaenh6x2+0mIMrJyTGhk/YjOjo6Mn2Ovnz5YnoWOSqLPnz4INXV1aaySJtb6/a0p5VFOmZXV5fMzc2ZcIrKIs/4DvGWCCCAAAIIIOC6AGGR64aMgAACCCCAAAJuFjg9PZWrqytTXeTj4/PT6N+/fzdBkJ5w5uvr+69P1mBJg6Pw8HDx8vJy89sxHAIIIIAAAgggYG0BwiJrry+zQwABBBBAAAEEEEAAAQQQQAABBJwSICxyiosPI4AAAggggAACCCCAAAIIIIAAAtYWICyy9voyOwQQQAABBBBAAAEEEEAAAQQQQMApAcIip7j4MAIIIIAAAggggAACCCCAAAIIIGBtAcIia68vs0MAAQQQQAABBBBAAAEEEEAAAQScEiAscoqLDyOAAAIIIIAAAggggAACCCCAAALWFvgB5BDRhAlSkuUAAAAASUVORK5CYII=", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "df_predict = linker.inference.predict()\n", + "df_e = df_predict.as_pandas_dataframe(limit=5)\n", + "df_e" ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from splink.charts import waterfall_chart\n", - "records_to_plot = df_e.to_dict(orient=\"records\")\n", - "linker.waterfall_chart(records_to_plot, filter_nulls=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "4c8f021b-49e7-4f9e-ad32-72066084470d", - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "Completed iteration 1, root rows count 642\n", - "Completed iteration 2, root rows count 119\n", - "Completed iteration 3, root rows count 35\n", - "Completed iteration 4, root rows count 6\n", - "Completed iteration 5, root rows count 0\n" - ] - } - ], - "source": [ - "clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, threshold_match_probability=0.95)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8b036e11-e15c-4196-a268-faf62c2ec85a", - "metadata": {}, - "outputs": [], - "source": [ - "linker.cluster_studio_dashboard(df_predict, clusters, \"dashboards/50k_cluster.html\", sampling_method='by_cluster_size', overwrite=True)\n", - "\n", - "from IPython.display import IFrame\n", - "\n", - "IFrame(\n", - " src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "d018c6cf-bee9-43ee-89c2-f81c7f3b6027", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", - "data": { - "values": [ - { - "f1": 0.03150014247597337, - "fn": 299097, - "fn_rate": 0.9839979471050563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.99999999999985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01600205289494376, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4864, - "tp_rate": 0.01600205289494376, - "truth_threshold": 42.6 - }, - { - "f1": 0.03141717290778856, - "fn": 299110, - "fn_rate": 0.9840407157497179, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999852, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015959284250282108, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4851, - "tp_rate": 0.015959284250282108, - "truth_threshold": 42.62 - }, - { - "f1": 0.031200409355588803, - "fn": 299144, - "fn_rate": 0.9841525722049869, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015847427795013178, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4817, - "tp_rate": 0.015847427795013178, - "truth_threshold": 42.64 - }, - { - "f1": 0.031021862348178136, - "fn": 299172, - "fn_rate": 0.9842446892857966, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998561, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015755310714203465, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4789, - "tp_rate": 0.015755310714203465, - "truth_threshold": 42.660000000000004 - }, - { - "f1": 0.030830526043016327, - "fn": 299202, - "fn_rate": 0.9843433861580927, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01565661384190735, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4759, - "tp_rate": 0.01565661384190735, - "truth_threshold": 42.68 - }, - { - "f1": 0.03072846480771224, - "fn": 299218, - "fn_rate": 0.9843960244899839, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.99999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015603975510016087, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4743, - "tp_rate": 0.015603975510016087, - "truth_threshold": 42.7 - }, - { - "f1": 0.030639152547863552, - "fn": 299232, - "fn_rate": 0.9844420830303887, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999862, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015557916969611233, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4729, - "tp_rate": 0.015557916969611233, - "truth_threshold": 42.72 - }, - { - "f1": 0.030441459479423828, - "fn": 299263, - "fn_rate": 0.9845440697984281, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998639, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015455930201571912, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4698, - "tp_rate": 0.015455930201571912, - "truth_threshold": 42.74 - }, - { - "f1": 0.030269058295964126, - "fn": 299290, - "fn_rate": 0.9846328969834945, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998658, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015367103016505406, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4671, - "tp_rate": 0.015367103016505406, - "truth_threshold": 42.76 - }, - { - "f1": 0.030135121998639058, - "fn": 299311, - "fn_rate": 0.9847019847941019, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998676, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015298015205898125, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4650, - "tp_rate": 0.015298015205898125, - "truth_threshold": 42.78 - }, - { - "f1": 0.030071289695398573, - "fn": 299321, - "fn_rate": 0.984734883751534, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015265116248466087, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4640, - "tp_rate": 0.015265116248466087, - "truth_threshold": 42.800000000000004 - }, - { - "f1": 0.029937131375980298, - "fn": 299342, - "fn_rate": 0.9848039715621412, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.015196028437858805, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4619, - "tp_rate": 0.015196028437858805, - "truth_threshold": 42.82 - }, - { - "f1": 0.029617865361553173, - "fn": 299392, - "fn_rate": 0.9849684663493014, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01503153365069861, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4569, - "tp_rate": 0.01503153365069861, - "truth_threshold": 42.84 - }, - { - "f1": 0.02940718842383694, - "fn": 299425, - "fn_rate": 0.9850770329088271, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998748, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01492296709117288, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4536, - "tp_rate": 0.01492296709117288, - "truth_threshold": 42.86 - }, - { - "f1": 0.029349601929410545, - "fn": 299434, - "fn_rate": 0.985106641970516, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998764, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014893358029484046, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4527, - "tp_rate": 0.014893358029484046, - "truth_threshold": 42.88 - }, - { - "f1": 0.02931775597927918, - "fn": 299439, - "fn_rate": 0.9851230914492319, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014876908550768026, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4522, - "tp_rate": 0.014876908550768026, - "truth_threshold": 42.9 - }, - { - "f1": 0.029215537530878605, - "fn": 299455, - "fn_rate": 0.9851757297811232, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998799, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014824270218876764, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4506, - "tp_rate": 0.014824270218876764, - "truth_threshold": 42.92 - }, - { - "f1": 0.02911330847787324, - "fn": 299471, - "fn_rate": 0.9852283681130145, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998815, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014771631886985501, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4490, - "tp_rate": 0.014771631886985501, - "truth_threshold": 42.94 - }, - { - "f1": 0.029011068818612734, - "fn": 299487, - "fn_rate": 0.9852810064449058, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998831, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01471899355509424, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4474, - "tp_rate": 0.01471899355509424, - "truth_threshold": 42.96 - }, - { - "f1": 0.028915115751248298, - "fn": 299502, - "fn_rate": 0.9853303548810538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998848, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014669645118946181, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4459, - "tp_rate": 0.014669645118946181, - "truth_threshold": 42.980000000000004 - }, - { - "f1": 0.028800072632473202, - "fn": 299520, - "fn_rate": 0.9853895730044315, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01461042699556851, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4441, - "tp_rate": 0.01461042699556851, - "truth_threshold": 43 - }, - { - "f1": 0.02869150150461762, - "fn": 299537, - "fn_rate": 0.985445501232066, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014554498767934044, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4424, - "tp_rate": 0.014554498767934044, - "truth_threshold": 43.02 - }, - { - "f1": 0.028602004086000585, - "fn": 299551, - "fn_rate": 0.9854915597724708, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998894, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014508440227529189, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4410, - "tp_rate": 0.014508440227529189, - "truth_threshold": 43.04 - }, - { - "f1": 0.028563645561738724, - "fn": 299557, - "fn_rate": 0.98551129914693, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999891, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014488700853069966, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4404, - "tp_rate": 0.014488700853069966, - "truth_threshold": 43.06 - }, - { - "f1": 0.02848043794105438, - "fn": 299570, - "fn_rate": 0.9855540677915917, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998924, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014445932208408315, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4391, - "tp_rate": 0.014445932208408315, - "truth_threshold": 43.08 - }, - { - "f1": 0.028371830547393413, - "fn": 299587, - "fn_rate": 0.9856099960192262, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999894, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01439000398077385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4374, - "tp_rate": 0.01439000398077385, - "truth_threshold": 43.1 - }, - { - "f1": 0.02820556067309314, - "fn": 299613, - "fn_rate": 0.9856955333085494, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998954, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014304466691450548, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4348, - "tp_rate": 0.014304466691450548, - "truth_threshold": 43.12 - }, - { - "f1": 0.02789852721728411, - "fn": 299661, - "fn_rate": 0.9858534483042233, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014146551695776761, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4300, - "tp_rate": 0.014146551695776761, - "truth_threshold": 43.14 - }, - { - "f1": 0.02773848609507001, - "fn": 299686, - "fn_rate": 0.9859356956978034, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.014064304302196663, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4275, - "tp_rate": 0.014064304302196663, - "truth_threshold": 43.160000000000004 - }, - { - "f1": 0.027565799719669833, - "fn": 299713, - "fn_rate": 0.9860245228828698, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013975477117130158, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4248, - "tp_rate": 0.013975477117130158, - "truth_threshold": 43.18 - }, - { - "f1": 0.02745059865667283, - "fn": 299731, - "fn_rate": 0.9860837410062475, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999011, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013916258993752487, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4230, - "tp_rate": 0.013916258993752487, - "truth_threshold": 43.2 - }, - { - "f1": 0.027232959929386416, - "fn": 299765, - "fn_rate": 0.9861955974615164, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013804402538483555, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4196, - "tp_rate": 0.013804402538483555, - "truth_threshold": 43.22 - }, - { - "f1": 0.02713683950905751, - "fn": 299780, - "fn_rate": 0.9862449458976645, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013755054102335497, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4181, - "tp_rate": 0.013755054102335497, - "truth_threshold": 43.24 - }, - { - "f1": 0.027021588711038415, - "fn": 299798, - "fn_rate": 0.9863041640210422, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999051, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013695835978957826, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4163, - "tp_rate": 0.013695835978957826, - "truth_threshold": 43.26 - }, - { - "f1": 0.026771919346671686, - "fn": 299837, - "fn_rate": 0.9864324699550271, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999064, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013567530044972876, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4124, - "tp_rate": 0.013567530044972876, - "truth_threshold": 43.28 - }, - { - "f1": 0.026682247541143247, - "fn": 299851, - "fn_rate": 0.9864785284954319, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01352147150456802, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4110, - "tp_rate": 0.01352147150456802, - "truth_threshold": 43.300000000000004 - }, - { - "f1": 0.026490066225165563, - "fn": 299881, - "fn_rate": 0.9865772253677281, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999909, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013422774632271903, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4080, - "tp_rate": 0.013422774632271903, - "truth_threshold": 43.32 - }, - { - "f1": 0.02637473946666147, - "fn": 299899, - "fn_rate": 0.9866364434911058, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013363556508894233, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4062, - "tp_rate": 0.013363556508894233, - "truth_threshold": 43.34 - }, - { - "f1": 0.026169680833793306, - "fn": 299931, - "fn_rate": 0.9867417201548883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999114, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013258279845111708, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4030, - "tp_rate": 0.013258279845111708, - "truth_threshold": 43.36 - }, - { - "f1": 0.025868339698126932, - "fn": 299978, - "fn_rate": 0.9868963452548188, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013103654745181124, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3983, - "tp_rate": 0.013103654745181124, - "truth_threshold": 43.38 - }, - { - "f1": 0.025810725674982302, - "fn": 299987, - "fn_rate": 0.9869259543165078, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01307404568349229, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3974, - "tp_rate": 0.01307404568349229, - "truth_threshold": 43.4 - }, - { - "f1": 0.02574661280056118, - "fn": 299997, - "fn_rate": 0.9869588532739397, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999151, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013041146726060252, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3964, - "tp_rate": 0.013041146726060252, - "truth_threshold": 43.42 - }, - { - "f1": 0.02568249576180362, - "fn": 300007, - "fn_rate": 0.9869917522313718, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999162, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.013008247768628212, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3954, - "tp_rate": 0.013008247768628212, - "truth_threshold": 43.44 - }, - { - "f1": 0.025470797253493223, - "fn": 300040, - "fn_rate": 0.9871003187908975, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012899681209102483, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3921, - "tp_rate": 0.012899681209102483, - "truth_threshold": 43.46 - }, - { - "f1": 0.025374675995400598, - "fn": 300055, - "fn_rate": 0.9871496672270456, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999185, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012850332772954425, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3906, - "tp_rate": 0.012850332772954425, - "truth_threshold": 43.480000000000004 - }, - { - "f1": 0.0251757429280526, - "fn": 300086, - "fn_rate": 0.9872516539950849, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012748346004915104, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3875, - "tp_rate": 0.012748346004915104, - "truth_threshold": 43.5 - }, - { - "f1": 0.02495760261466787, - "fn": 300120, - "fn_rate": 0.9873635104503539, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999207, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012636489549646171, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3841, - "tp_rate": 0.012636489549646171, - "truth_threshold": 43.52 - }, - { - "f1": 0.024842097055077585, - "fn": 300138, - "fn_rate": 0.9874227285737315, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999218, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012577271426268502, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3823, - "tp_rate": 0.012577271426268502, - "truth_threshold": 43.54 - }, - { - "f1": 0.02472024018403712, - "fn": 300157, - "fn_rate": 0.9874852365928524, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999228, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012514763407147628, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3804, - "tp_rate": 0.012514763407147628, - "truth_threshold": 43.56 - }, - { - "f1": 0.024649557763668384, - "fn": 300168, - "fn_rate": 0.9875214254460276, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999924, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012478574553972385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3793, - "tp_rate": 0.012478574553972385, - "truth_threshold": 43.58 - }, - { - "f1": 0.024611045400782457, - "fn": 300174, - "fn_rate": 0.9875411648204868, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999925, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012458835179513161, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3787, - "tp_rate": 0.012458835179513161, - "truth_threshold": 43.6 - }, - { - "f1": 0.02434141680695209, - "fn": 300216, - "fn_rate": 0.9876793404417014, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999261, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012320659558298598, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3745, - "tp_rate": 0.012320659558298598, - "truth_threshold": 43.62 - }, - { - "f1": 0.02414243647497026, - "fn": 300247, - "fn_rate": 0.9877813272097408, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012218672790259276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3714, - "tp_rate": 0.012218672790259276, - "truth_threshold": 43.64 - }, - { - "f1": 0.024026835166549652, - "fn": 300265, - "fn_rate": 0.9878405453331184, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999281, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012159454666881607, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3696, - "tp_rate": 0.012159454666881607, - "truth_threshold": 43.660000000000004 - }, - { - "f1": 0.023949760112337636, - "fn": 300277, - "fn_rate": 0.9878800240820368, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999291, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01211997591796316, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3684, - "tp_rate": 0.01211997591796316, - "truth_threshold": 43.68 - }, - { - "f1": 0.02390471918293579, - "fn": 300284, - "fn_rate": 0.9879030533522393, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012096946647760733, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3677, - "tp_rate": 0.012096946647760733, - "truth_threshold": 43.7 - }, - { - "f1": 0.02374419723547846, - "fn": 300309, - "fn_rate": 0.9879853007458194, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999309, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.012014699254180635, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3652, - "tp_rate": 0.012014699254180635, - "truth_threshold": 43.72 - }, - { - "f1": 0.023634897722987293, - "fn": 300326, - "fn_rate": 0.9880412289734538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999319, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011958771026546168, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3635, - "tp_rate": 0.011958771026546168, - "truth_threshold": 43.74 - }, - { - "f1": 0.023500035763751162, - "fn": 300347, - "fn_rate": 0.9881103167840611, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999328, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011889683215938886, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3614, - "tp_rate": 0.011889683215938886, - "truth_threshold": 43.76 - }, - { - "f1": 0.023461478437288665, - "fn": 300353, - "fn_rate": 0.9881300561585203, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999338, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011869943841479663, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3608, - "tp_rate": 0.011869943841479663, - "truth_threshold": 43.78 - }, - { - "f1": 0.02334579743131198, - "fn": 300371, - "fn_rate": 0.988189274281898, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999347, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011810725718101994, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3590, - "tp_rate": 0.011810725718101994, - "truth_threshold": 43.800000000000004 - }, - { - "f1": 0.02328787612748828, - "fn": 300380, - "fn_rate": 0.9882188833435869, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999356, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011781116656413158, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3581, - "tp_rate": 0.011781116656413158, - "truth_threshold": 43.82 - }, - { - "f1": 0.023178678737269285, - "fn": 300397, - "fn_rate": 0.9882748115712213, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999365, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011725188428778692, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3564, - "tp_rate": 0.011725188428778692, - "truth_threshold": 43.84 - }, - { - "f1": 0.023056460686945945, - "fn": 300416, - "fn_rate": 0.9883373195903422, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999374, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011662680409657818, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3545, - "tp_rate": 0.011662680409657818, - "truth_threshold": 43.86 - }, - { - "f1": 0.02299216900382444, - "fn": 300426, - "fn_rate": 0.9883702185477742, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999383, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011629781452225778, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3535, - "tp_rate": 0.011629781452225778, - "truth_threshold": 43.88 - }, - { - "f1": 0.022940732646477262, - "fn": 300434, - "fn_rate": 0.9883965377137198, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011603462286280147, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3527, - "tp_rate": 0.011603462286280147, - "truth_threshold": 43.9 - }, - { - "f1": 0.02283149575568348, - "fn": 300451, - "fn_rate": 0.9884524659413543, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999399, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011547534058645682, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3510, - "tp_rate": 0.011547534058645682, - "truth_threshold": 43.92 - }, - { - "f1": 0.02275432742033058, - "fn": 300463, - "fn_rate": 0.9884919446902728, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011508055309727235, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3498, - "tp_rate": 0.011508055309727235, - "truth_threshold": 43.94 - }, - { - "f1": 0.022657784832359713, - "fn": 300478, - "fn_rate": 0.9885412931264208, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999416, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011458706873579177, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3483, - "tp_rate": 0.011458706873579177, - "truth_threshold": 43.96 - }, - { - "f1": 0.022535651087748517, - "fn": 300497, - "fn_rate": 0.9886038011455417, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999424, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011396198854458302, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3464, - "tp_rate": 0.011396198854458302, - "truth_threshold": 43.980000000000004 - }, - { - "f1": 0.022413355627411306, - "fn": 300516, - "fn_rate": 0.9886663091646626, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999432, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011333690835337428, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3445, - "tp_rate": 0.011333690835337428, - "truth_threshold": 44 - }, - { - "f1": 0.022381262199089133, - "fn": 300521, - "fn_rate": 0.9886827586433786, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999439, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011317241356621408, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3440, - "tp_rate": 0.011317241356621408, - "truth_threshold": 44.02 - }, - { - "f1": 0.022355528373823992, - "fn": 300525, - "fn_rate": 0.9886959182263514, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011304081773648594, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3436, - "tp_rate": 0.011304081773648594, - "truth_threshold": 44.04 - }, - { - "f1": 0.022201111356922557, - "fn": 300549, - "fn_rate": 0.9887748757241883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999455, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0112251242758117, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3412, - "tp_rate": 0.0112251242758117, - "truth_threshold": 44.06 - }, - { - "f1": 0.022033799040820444, - "fn": 300575, - "fn_rate": 0.9888604130135116, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999463, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011139586986488398, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3386, - "tp_rate": 0.011139586986488398, - "truth_threshold": 44.08 - }, - { - "f1": 0.02197580513961827, - "fn": 300584, - "fn_rate": 0.9888900220752005, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999469, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011109977924799563, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3377, - "tp_rate": 0.011109977924799563, - "truth_threshold": 44.1 - }, - { - "f1": 0.021859950540153585, - "fn": 300602, - "fn_rate": 0.9889492401985781, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999477, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011050759801421893, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3359, - "tp_rate": 0.011050759801421893, - "truth_threshold": 44.12 - }, - { - "f1": 0.021853584886013838, - "fn": 300603, - "fn_rate": 0.9889525300943213, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999484, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011047469905678689, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3358, - "tp_rate": 0.011047469905678689, - "truth_threshold": 44.14 - }, - { - "f1": 0.021795581009404184, - "fn": 300612, - "fn_rate": 0.9889821391560102, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999492, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.011017860843989855, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3349, - "tp_rate": 0.011017860843989855, - "truth_threshold": 44.160000000000004 - }, - { - "f1": 0.021673337889290246, - "fn": 300631, - "fn_rate": 0.9890446471751311, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999498, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01095535282486898, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3330, - "tp_rate": 0.01095535282486898, - "truth_threshold": 44.18 - }, - { - "f1": 0.021608956001041395, - "fn": 300641, - "fn_rate": 0.989077546132563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01092245386743694, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3320, - "tp_rate": 0.01092245386743694, - "truth_threshold": 44.2 - }, - { - "f1": 0.021531692203548693, - "fn": 300653, - "fn_rate": 0.9891170248814815, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999512, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010882975118518495, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3308, - "tp_rate": 0.010882975118518495, - "truth_threshold": 44.22 - }, - { - "f1": 0.02141578519121237, - "fn": 300671, - "fn_rate": 0.9891762430048592, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999518, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010823756995140824, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3290, - "tp_rate": 0.010823756995140824, - "truth_threshold": 44.24 - }, - { - "f1": 0.021306235637982774, - "fn": 300688, - "fn_rate": 0.9892321712324936, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010767828767506357, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3273, - "tp_rate": 0.010767828767506357, - "truth_threshold": 44.26 - }, - { - "f1": 0.021113006341063268, - "fn": 300718, - "fn_rate": 0.9893308681047898, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010669131895210241, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3243, - "tp_rate": 0.010669131895210241, - "truth_threshold": 44.28 - }, - { - "f1": 0.021022819753247175, - "fn": 300732, - "fn_rate": 0.9893769266451946, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999538, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010623073354805387, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3229, - "tp_rate": 0.010623073354805387, - "truth_threshold": 44.300000000000004 - }, - { - "f1": 0.021003561360218238, - "fn": 300735, - "fn_rate": 0.9893867963324242, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010613203667575774, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3226, - "tp_rate": 0.010613203667575774, - "truth_threshold": 44.32 - }, - { - "f1": 0.02093913586998984, - "fn": 300745, - "fn_rate": 0.9894196952898563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999955, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010580304710143736, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3216, - "tp_rate": 0.010580304710143736, - "truth_threshold": 44.34 - }, - { - "f1": 0.02085530856480577, - "fn": 300758, - "fn_rate": 0.9894624639345179, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999557, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010537536065482085, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3203, - "tp_rate": 0.010537536065482085, - "truth_threshold": 44.36 - }, - { - "f1": 0.020707169369017387, - "fn": 300781, - "fn_rate": 0.9895381315366116, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999564, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010461868463388395, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3180, - "tp_rate": 0.010461868463388395, - "truth_threshold": 44.38 - }, - { - "f1": 0.020610433502862017, - "fn": 300796, - "fn_rate": 0.9895874799727596, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999569, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010412520027240336, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3165, - "tp_rate": 0.010412520027240336, - "truth_threshold": 44.4 - }, - { - "f1": 0.020545982625457482, - "fn": 300806, - "fn_rate": 0.9896203789301917, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999575, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010379621069808298, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3155, - "tp_rate": 0.010379621069808298, - "truth_threshold": 44.42 - }, - { - "f1": 0.020488039960144054, - "fn": 300815, - "fn_rate": 0.9896499879918805, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010350012008119462, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3146, - "tp_rate": 0.010350012008119462, - "truth_threshold": 44.44 - }, - { - "f1": 0.02033971160985268, - "fn": 300838, - "fn_rate": 0.9897256555939742, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010274344406025773, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3123, - "tp_rate": 0.010274344406025773, - "truth_threshold": 44.46 - }, - { - "f1": 0.020191493519181918, - "fn": 300861, - "fn_rate": 0.989801323196068, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999593, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010198676803932083, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3100, - "tp_rate": 0.010198676803932083, - "truth_threshold": 44.480000000000004 - }, - { - "f1": 0.020081812378681882, - "fn": 300878, - "fn_rate": 0.9898572514237024, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999598, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010142748576297617, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3083, - "tp_rate": 0.010142748576297617, - "truth_threshold": 44.5 - }, - { - "f1": 0.02003022446879193, - "fn": 300886, - "fn_rate": 0.989883570589648, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010116429410351986, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3075, - "tp_rate": 0.010116429410351986, - "truth_threshold": 44.52 - }, - { - "f1": 0.019830360516475354, - "fn": 300917, - "fn_rate": 0.9899855573576873, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999609, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.010014442642312665, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3044, - "tp_rate": 0.010014442642312665, - "truth_threshold": 44.54 - }, - { - "f1": 0.019778759332369153, - "fn": 300925, - "fn_rate": 0.990011876523633, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999615, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009988123476367034, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3036, - "tp_rate": 0.009988123476367034, - "truth_threshold": 44.56 - }, - { - "f1": 0.0197077391151388, - "fn": 300936, - "fn_rate": 0.9900480653768082, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999619, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00995193462319179, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3025, - "tp_rate": 0.00995193462319179, - "truth_threshold": 44.58 - }, - { - "f1": 0.01966903381327774, - "fn": 300942, - "fn_rate": 0.9900678047512674, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999625, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009932195248732567, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3019, - "tp_rate": 0.009932195248732567, - "truth_threshold": 44.6 - }, - { - "f1": 0.019630326998377714, - "fn": 300948, - "fn_rate": 0.9900875441257266, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009912455874273344, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3013, - "tp_rate": 0.009912455874273344, - "truth_threshold": 44.62 - }, - { - "f1": 0.019514197474556613, - "fn": 300966, - "fn_rate": 0.9901467622491044, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999635, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009853237750895675, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2995, - "tp_rate": 0.009853237750895675, - "truth_threshold": 44.64 - }, - { - "f1": 0.019398054330190463, - "fn": 300984, - "fn_rate": 0.990205980372482, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009794019627518004, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2977, - "tp_rate": 0.009794019627518004, - "truth_threshold": 44.660000000000004 - }, - { - "f1": 0.019243175612712354, - "fn": 301008, - "fn_rate": 0.9902849378703189, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999645, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00971506212968111, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2953, - "tp_rate": 0.00971506212968111, - "truth_threshold": 44.68 - }, - { - "f1": 0.019159335288367548, - "fn": 301021, - "fn_rate": 0.9903277065149806, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999965, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00967229348501946, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2940, - "tp_rate": 0.00967229348501946, - "truth_threshold": 44.7 - }, - { - "f1": 0.01901732936215695, - "fn": 301043, - "fn_rate": 0.9904000842213311, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009599915778668974, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2918, - "tp_rate": 0.009599915778668974, - "truth_threshold": 44.72 - }, - { - "f1": 0.01888821539604638, - "fn": 301063, - "fn_rate": 0.9904658821361951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999659, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009534117863804896, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2898, - "tp_rate": 0.009534117863804896, - "truth_threshold": 44.74 - }, - { - "f1": 0.01866216462858186, - "fn": 301098, - "fn_rate": 0.9905810284872072, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00941897151279276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2863, - "tp_rate": 0.00941897151279276, - "truth_threshold": 44.76 - }, - { - "f1": 0.018591189392852953, - "fn": 301109, - "fn_rate": 0.9906172173403824, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999669, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009382782659617516, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2852, - "tp_rate": 0.009382782659617516, - "truth_threshold": 44.78 - }, - { - "f1": 0.018513689700130377, - "fn": 301121, - "fn_rate": 0.990656696089301, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00934330391069907, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2840, - "tp_rate": 0.00934330391069907, - "truth_threshold": 44.800000000000004 - }, - { - "f1": 0.01837159118320088, - "fn": 301143, - "fn_rate": 0.9907290737956514, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999678, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009270926204348584, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2818, - "tp_rate": 0.009270926204348584, - "truth_threshold": 44.82 - }, - { - "f1": 0.0182875546833743, - "fn": 301156, - "fn_rate": 0.990771842440313, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999682, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009228157559686933, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2805, - "tp_rate": 0.009228157559686933, - "truth_threshold": 44.84 - }, - { - "f1": 0.01824239302642474, - "fn": 301163, - "fn_rate": 0.9907948717105155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999687, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009205128289484506, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2798, - "tp_rate": 0.009205128289484506, - "truth_threshold": 44.86 - }, - { - "f1": 0.018171267620326784, - "fn": 301174, - "fn_rate": 0.9908310605636907, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999691, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009168939436309264, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2787, - "tp_rate": 0.009168939436309264, - "truth_threshold": 44.88 - }, - { - "f1": 0.018100255594387354, - "fn": 301185, - "fn_rate": 0.990867249416866, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999696, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00913275058313402, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2776, - "tp_rate": 0.00913275058313402, - "truth_threshold": 44.9 - }, - { - "f1": 0.01809373532940379, - "fn": 301186, - "fn_rate": 0.9908705393126092, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999699, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009129460687390817, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2775, - "tp_rate": 0.009129460687390817, - "truth_threshold": 44.92 - }, - { - "f1": 0.01806148730153555, - "fn": 301191, - "fn_rate": 0.9908869887913252, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999704, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009113011208674797, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2770, - "tp_rate": 0.009113011208674797, - "truth_threshold": 44.94 - }, - { - "f1": 0.01799034950443401, - "fn": 301202, - "fn_rate": 0.9909231776445004, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009076822355499553, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2759, - "tp_rate": 0.009076822355499553, - "truth_threshold": 44.96 - }, - { - "f1": 0.01793865254701479, - "fn": 301210, - "fn_rate": 0.9909494968104461, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999711, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009050503189553923, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2751, - "tp_rate": 0.009050503189553923, - "truth_threshold": 44.980000000000004 - }, - { - "f1": 0.01787402755769444, - "fn": 301220, - "fn_rate": 0.9909823957678782, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999716, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.009017604232121884, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2741, - "tp_rate": 0.009017604232121884, - "truth_threshold": 45 - }, - { - "f1": 0.017680127302133877, - "fn": 301250, - "fn_rate": 0.9910810926401742, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008918907359825767, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2711, - "tp_rate": 0.008918907359825767, - "truth_threshold": 45.02 - }, - { - "f1": 0.017557361439025344, - "fn": 301269, - "fn_rate": 0.9911436006592951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999724, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008856399340704892, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2692, - "tp_rate": 0.008856399340704892, - "truth_threshold": 45.04 - }, - { - "f1": 0.017524979781377997, - "fn": 301274, - "fn_rate": 0.9911600501380111, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008839949861988874, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2687, - "tp_rate": 0.008839949861988874, - "truth_threshold": 45.06 - }, - { - "f1": 0.01746032781325211, - "fn": 301284, - "fn_rate": 0.9911929490954432, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999731, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008807050904556834, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2677, - "tp_rate": 0.008807050904556834, - "truth_threshold": 45.08 - }, - { - "f1": 0.017421534608260063, - "fn": 301290, - "fn_rate": 0.9912126884699024, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999735, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00878731153009761, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2671, - "tp_rate": 0.00878731153009761, - "truth_threshold": 45.1 - }, - { - "f1": 0.0173051458837496, - "fn": 301308, - "fn_rate": 0.99127190659328, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999738, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008728093406719942, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2653, - "tp_rate": 0.008728093406719942, - "truth_threshold": 45.12 - }, - { - "f1": 0.01721461187214612, - "fn": 301322, - "fn_rate": 0.9913179651336849, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999742, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008682034866315087, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2639, - "tp_rate": 0.008682034866315087, - "truth_threshold": 45.14 - }, - { - "f1": 0.017137004709903845, - "fn": 301334, - "fn_rate": 0.9913574438826034, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999746, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00864255611739664, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2627, - "tp_rate": 0.00864255611739664, - "truth_threshold": 45.160000000000004 - }, - { - "f1": 0.01710472239074701, - "fn": 301339, - "fn_rate": 0.9913738933613194, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999749, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00862610663868062, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2622, - "tp_rate": 0.00862610663868062, - "truth_threshold": 45.18 - }, - { - "f1": 0.016936546666840642, - "fn": 301365, - "fn_rate": 0.9914594306506427, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999752, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008540569349357319, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2596, - "tp_rate": 0.008540569349357319, - "truth_threshold": 45.2 - }, - { - "f1": 0.016813576130854904, - "fn": 301384, - "fn_rate": 0.9915219386697636, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999756, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008478061330236444, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2577, - "tp_rate": 0.008478061330236444, - "truth_threshold": 45.22 - }, - { - "f1": 0.016735937571364257, - "fn": 301396, - "fn_rate": 0.991561417418682, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008438582581317997, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2565, - "tp_rate": 0.008438582581317997, - "truth_threshold": 45.24 - }, - { - "f1": 0.01653539710402161, - "fn": 301427, - "fn_rate": 0.9916634041867213, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999762, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008336595813278678, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2534, - "tp_rate": 0.008336595813278678, - "truth_threshold": 45.26 - }, - { - "f1": 0.0164836240480805, - "fn": 301435, - "fn_rate": 0.9916897233526669, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999766, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008310276647333047, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2526, - "tp_rate": 0.008310276647333047, - "truth_threshold": 45.28 - }, - { - "f1": 0.01641237813075086, - "fn": 301446, - "fn_rate": 0.9917259122058422, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999769, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008274087794157803, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2515, - "tp_rate": 0.008274087794157803, - "truth_threshold": 45.300000000000004 - }, - { - "f1": 0.016354179582726957, - "fn": 301455, - "fn_rate": 0.9917555212675311, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999772, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008244478732468969, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2506, - "tp_rate": 0.008244478732468969, - "truth_threshold": 45.32 - }, - { - "f1": 0.016295870886059428, - "fn": 301464, - "fn_rate": 0.9917851303292199, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008214869670780132, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2497, - "tp_rate": 0.008214869670780132, - "truth_threshold": 45.34 - }, - { - "f1": 0.016263558403926227, - "fn": 301469, - "fn_rate": 0.9918015798079359, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008198420192064114, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2492, - "tp_rate": 0.008198420192064114, - "truth_threshold": 45.36 - }, - { - "f1": 0.016179349954314057, - "fn": 301482, - "fn_rate": 0.9918443484525975, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999781, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008155651547402464, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2479, - "tp_rate": 0.008155651547402464, - "truth_threshold": 45.38 - }, - { - "f1": 0.016069342279601335, - "fn": 301499, - "fn_rate": 0.991900276680232, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008099723319767996, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2462, - "tp_rate": 0.008099723319767996, - "truth_threshold": 45.4 - }, - { - "f1": 0.015985117979178225, - "fn": 301512, - "fn_rate": 0.9919430453248936, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999788, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008056954675106346, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2449, - "tp_rate": 0.008056954675106346, - "truth_threshold": 45.42 - }, - { - "f1": 0.015939843734701472, - "fn": 301519, - "fn_rate": 0.9919660745950961, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999793, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008033925404903918, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2442, - "tp_rate": 0.008033925404903918, - "truth_threshold": 45.46 - }, - { - "f1": 0.015913941997010423, - "fn": 301523, - "fn_rate": 0.9919792341780689, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999796, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.008020765821931102, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2438, - "tp_rate": 0.008020765821931102, - "truth_threshold": 45.480000000000004 - }, - { - "f1": 0.015836232726038395, - "fn": 301535, - "fn_rate": 0.9920187129269873, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999799, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007981287073012657, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2426, - "tp_rate": 0.007981287073012657, - "truth_threshold": 45.5 - }, - { - "f1": 0.015790847966577454, - "fn": 301542, - "fn_rate": 0.9920417421971898, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999801, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00795825780281023, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2419, - "tp_rate": 0.00795825780281023, - "truth_threshold": 45.52 - }, - { - "f1": 0.015771470350157975, - "fn": 301545, - "fn_rate": 0.9920516118844194, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999805, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007948388115580617, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2416, - "tp_rate": 0.007948388115580617, - "truth_threshold": 45.54 - }, - { - "f1": 0.01565488741929377, - "fn": 301563, - "fn_rate": 0.9921108300077971, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007889169992202946, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2398, - "tp_rate": 0.007889169992202946, - "truth_threshold": 45.56 - }, - { - "f1": 0.015551246645905556, - "fn": 301579, - "fn_rate": 0.9921634683396883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007836531660311685, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2382, - "tp_rate": 0.007836531660311685, - "truth_threshold": 45.58 - }, - { - "f1": 0.015454023138596538, - "fn": 301594, - "fn_rate": 0.9922128167758364, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999812, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0077871832241636265, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2367, - "tp_rate": 0.0077871832241636265, - "truth_threshold": 45.6 - }, - { - "f1": 0.015356891013084698, - "fn": 301609, - "fn_rate": 0.9922621652119844, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999815, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007737834788015568, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2352, - "tp_rate": 0.007737834788015568, - "truth_threshold": 45.62 - }, - { - "f1": 0.01526617868872797, - "fn": 301623, - "fn_rate": 0.9923082237523893, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007691776247610713, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2338, - "tp_rate": 0.007691776247610713, - "truth_threshold": 45.64 - }, - { - "f1": 0.015253219108313527, - "fn": 301625, - "fn_rate": 0.9923148035438757, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007685196456124305, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2336, - "tp_rate": 0.007685196456124305, - "truth_threshold": 45.660000000000004 - }, - { - "f1": 0.01511065255294279, - "fn": 301647, - "fn_rate": 0.9923871812502262, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999822, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00761281874977382, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2314, - "tp_rate": 0.00761281874977382, - "truth_threshold": 45.68 - }, - { - "f1": 0.015039312488571951, - "fn": 301658, - "fn_rate": 0.9924233701034014, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999825, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007576629896598577, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2303, - "tp_rate": 0.007576629896598577, - "truth_threshold": 45.7 - }, - { - "f1": 0.014987461470142625, - "fn": 301666, - "fn_rate": 0.9924496892693471, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999828, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0075503107306529454, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2295, - "tp_rate": 0.0075503107306529454, - "truth_threshold": 45.72 - }, - { - "f1": 0.014922643887593633, - "fn": 301676, - "fn_rate": 0.992482588226779, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0075174117732209065, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2285, - "tp_rate": 0.0075174117732209065, - "truth_threshold": 45.74 - }, - { - "f1": 0.014909679863115685, - "fn": 301678, - "fn_rate": 0.9924891680182655, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999832, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007510831981734499, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2283, - "tp_rate": 0.007510831981734499, - "truth_threshold": 45.76 - }, - { - "f1": 0.014870786773685826, - "fn": 301684, - "fn_rate": 0.9925089073927247, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999835, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007491092607275276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2277, - "tp_rate": 0.007491092607275276, - "truth_threshold": 45.78 - }, - { - "f1": 0.014747663429321595, - "fn": 301703, - "fn_rate": 0.9925714154118456, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999837, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007428584588154401, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2258, - "tp_rate": 0.007428584588154401, - "truth_threshold": 45.800000000000004 - }, - { - "f1": 0.014663331221465289, - "fn": 301716, - "fn_rate": 0.9926141840565073, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999839, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0073858159434927505, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2245, - "tp_rate": 0.0073858159434927505, - "truth_threshold": 45.82 - }, - { - "f1": 0.014630960156760287, - "fn": 301721, - "fn_rate": 0.9926306335352233, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999841, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0073693664647767314, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2240, - "tp_rate": 0.0073693664647767314, - "truth_threshold": 45.84 - }, - { - "f1": 0.014553150352071276, - "fn": 301733, - "fn_rate": 0.9926701122841417, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999843, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007329887715858284, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2228, - "tp_rate": 0.007329887715858284, - "truth_threshold": 45.86 - }, - { - "f1": 0.014416921428758068, - "fn": 301754, - "fn_rate": 0.992739200094749, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999846, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007260799905251003, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2207, - "tp_rate": 0.007260799905251003, - "truth_threshold": 45.88 - }, - { - "f1": 0.01425482292530917, - "fn": 301779, - "fn_rate": 0.9928214474883291, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999848, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007178552511670905, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2182, - "tp_rate": 0.007178552511670905, - "truth_threshold": 45.9 - }, - { - "f1": 0.01422887717303961, - "fn": 301783, - "fn_rate": 0.9928346070713019, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007165392928698089, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2178, - "tp_rate": 0.007165392928698089, - "truth_threshold": 45.92 - }, - { - "f1": 0.01419639765592845, - "fn": 301788, - "fn_rate": 0.9928510565500179, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999852, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00714894344998207, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2173, - "tp_rate": 0.00714894344998207, - "truth_threshold": 45.94 - }, - { - "f1": 0.014151035847984163, - "fn": 301795, - "fn_rate": 0.9928740858202204, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999853, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007125914179779643, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2166, - "tp_rate": 0.007125914179779643, - "truth_threshold": 45.96 - }, - { - "f1": 0.014118554040545926, - "fn": 301800, - "fn_rate": 0.9928905352989363, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999856, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007109464701063623, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2161, - "tp_rate": 0.007109464701063623, - "truth_threshold": 45.980000000000004 - }, - { - "f1": 0.014086163415175946, - "fn": 301805, - "fn_rate": 0.9929069847776524, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007093015222347604, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2156, - "tp_rate": 0.007093015222347604, - "truth_threshold": 46 - }, - { - "f1": 0.014079629944204157, - "fn": 301806, - "fn_rate": 0.9929102746733957, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0070897253266044, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2155, - "tp_rate": 0.0070897253266044, - "truth_threshold": 46.02 - }, - { - "f1": 0.013988801118581388, - "fn": 301820, - "fn_rate": 0.9929563332138005, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999862, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.007043666786199545, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2141, - "tp_rate": 0.007043666786199545, - "truth_threshold": 46.04 - }, - { - "f1": 0.013774716729615642, - "fn": 301853, - "fn_rate": 0.9930648997733262, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0069351002266738165, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2108, - "tp_rate": 0.0069351002266738165, - "truth_threshold": 46.06 - }, - { - "f1": 0.013547514328473308, - "fn": 301888, - "fn_rate": 0.9931800461243383, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0068199538756616804, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2073, - "tp_rate": 0.0068199538756616804, - "truth_threshold": 46.08 - }, - { - "f1": 0.013463172341677014, - "fn": 301901, - "fn_rate": 0.993222814769, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00677718523100003, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2060, - "tp_rate": 0.00677718523100003, - "truth_threshold": 46.1 - }, - { - "f1": 0.013437205897730838, - "fn": 301905, - "fn_rate": 0.9932359743519728, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999869, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006764025648027214, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2056, - "tp_rate": 0.006764025648027214, - "truth_threshold": 46.12 - }, - { - "f1": 0.013378735196465453, - "fn": 301914, - "fn_rate": 0.9932655834136617, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999871, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006734416586338379, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2047, - "tp_rate": 0.006734416586338379, - "truth_threshold": 46.14 - }, - { - "f1": 0.013313812508578488, - "fn": 301924, - "fn_rate": 0.9932984823710936, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999872, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00670151762890634, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2037, - "tp_rate": 0.00670151762890634, - "truth_threshold": 46.160000000000004 - }, - { - "f1": 0.013229449905877431, - "fn": 301937, - "fn_rate": 0.9933412510157553, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999875, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006658748984244689, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2024, - "tp_rate": 0.006658748984244689, - "truth_threshold": 46.18 - }, - { - "f1": 0.01320992738134923, - "fn": 301940, - "fn_rate": 0.9933511207029849, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006648879297015077, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2021, - "tp_rate": 0.006648879297015077, - "truth_threshold": 46.2 - }, - { - "f1": 0.013099580342785426, - "fn": 301957, - "fn_rate": 0.9934070489306194, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999878, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006592951069380611, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2004, - "tp_rate": 0.006592951069380611, - "truth_threshold": 46.22 - }, - { - "f1": 0.01306706759053471, - "fn": 301962, - "fn_rate": 0.9934234984093354, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006576501590664592, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1999, - "tp_rate": 0.006576501590664592, - "truth_threshold": 46.24 - }, - { - "f1": 0.01299567246721665, - "fn": 301973, - "fn_rate": 0.9934596872625107, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999881, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006540312737489349, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1988, - "tp_rate": 0.006540312737489349, - "truth_threshold": 46.26 - }, - { - "f1": 0.012865772338589472, - "fn": 301993, - "fn_rate": 0.9935254851773747, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999883, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006474514822625271, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1968, - "tp_rate": 0.006474514822625271, - "truth_threshold": 46.28 - }, - { - "f1": 0.012833252703285784, - "fn": 301998, - "fn_rate": 0.9935419346560908, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999885, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006458065343909252, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1963, - "tp_rate": 0.006458065343909252, - "truth_threshold": 46.300000000000004 - }, - { - "f1": 0.012794278205270694, - "fn": 302004, - "fn_rate": 0.99356167403055, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999886, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006438325969450028, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1957, - "tp_rate": 0.006438325969450028, - "truth_threshold": 46.32 - }, - { - "f1": 0.012709869763062922, - "fn": 302017, - "fn_rate": 0.9936044426752116, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006395557324788377, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1944, - "tp_rate": 0.006395557324788377, - "truth_threshold": 46.34 - }, - { - "f1": 0.012677345537757437, - "fn": 302022, - "fn_rate": 0.9936208921539277, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999889, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006379107846072358, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1939, - "tp_rate": 0.006379107846072358, - "truth_threshold": 46.36 - }, - { - "f1": 0.01261237699826735, - "fn": 302032, - "fn_rate": 0.9936537911113597, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999891, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006346208888640319, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1929, - "tp_rate": 0.006346208888640319, - "truth_threshold": 46.38 - }, - { - "f1": 0.01254740421080162, - "fn": 302042, - "fn_rate": 0.9936866900687917, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999892, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00631330993120828, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1919, - "tp_rate": 0.00631330993120828, - "truth_threshold": 46.4 - }, - { - "f1": 0.012508418499120552, - "fn": 302048, - "fn_rate": 0.9937064294432509, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999893, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006293570556749057, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1913, - "tp_rate": 0.006293570556749057, - "truth_threshold": 46.42 - }, - { - "f1": 0.012430442487134721, - "fn": 302060, - "fn_rate": 0.9937459081921693, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0062540918078306095, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1901, - "tp_rate": 0.0062540918078306095, - "truth_threshold": 46.44 - }, - { - "f1": 0.01242398482966063, - "fn": 302061, - "fn_rate": 0.9937491980879126, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999897, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006250801912087406, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1900, - "tp_rate": 0.006250801912087406, - "truth_threshold": 46.46 - }, - { - "f1": 0.012365457803120464, - "fn": 302070, - "fn_rate": 0.9937788071496014, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999898, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0062211928503985705, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1891, - "tp_rate": 0.0062211928503985705, - "truth_threshold": 46.480000000000004 - }, - { - "f1": 0.012203017402052147, - "fn": 302095, - "fn_rate": 0.9938610545431815, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0061389454568184735, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1866, - "tp_rate": 0.0061389454568184735, - "truth_threshold": 46.5 - }, - { - "f1": 0.01212501716729777, - "fn": 302107, - "fn_rate": 0.9939005332920999, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999901, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006099466707900026, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1854, - "tp_rate": 0.006099466707900026, - "truth_threshold": 46.52 - }, - { - "f1": 0.012105476567302787, - "fn": 302110, - "fn_rate": 0.9939104029793295, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006089597020670415, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1851, - "tp_rate": 0.006089597020670415, - "truth_threshold": 46.54 - }, - { - "f1": 0.012099015728720448, - "fn": 302111, - "fn_rate": 0.9939136928750728, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999903, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006086307124927211, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1850, - "tp_rate": 0.006086307124927211, - "truth_threshold": 46.56 - }, - { - "f1": 0.012053472158637559, - "fn": 302118, - "fn_rate": 0.9939367221452752, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999905, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006063277854724784, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1843, - "tp_rate": 0.006063277854724784, - "truth_threshold": 46.58 - }, - { - "f1": 0.012001465028973564, - "fn": 302126, - "fn_rate": 0.9939630413112208, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999907, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.006036958688779153, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1835, - "tp_rate": 0.006036958688779153, - "truth_threshold": 46.6 - }, - { - "f1": 0.011890979730392638, - "fn": 302143, - "fn_rate": 0.9940189695388553, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999908, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005981030461144687, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1818, - "tp_rate": 0.005981030461144687, - "truth_threshold": 46.62 - }, - { - "f1": 0.011845427311853276, - "fn": 302150, - "fn_rate": 0.9940419988090577, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999909, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005958001190942259, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1811, - "tp_rate": 0.005958001190942259, - "truth_threshold": 46.64 - }, - { - "f1": 0.011754393997867594, - "fn": 302164, - "fn_rate": 0.9940880573494626, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005911942650537404, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1797, - "tp_rate": 0.005911942650537404, - "truth_threshold": 46.660000000000004 - }, - { - "f1": 0.01159831749167577, - "fn": 302188, - "fn_rate": 0.9941670148472995, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999911, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005832985152700511, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1773, - "tp_rate": 0.005832985152700511, - "truth_threshold": 46.68 - }, - { - "f1": 0.011565836298932384, - "fn": 302193, - "fn_rate": 0.9941834643260155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999912, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005816535673984492, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1768, - "tp_rate": 0.005816535673984492, - "truth_threshold": 46.7 - }, - { - "f1": 0.011526811940259452, - "fn": 302199, - "fn_rate": 0.9942032037004748, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999913, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005796796299525268, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1762, - "tp_rate": 0.005796796299525268, - "truth_threshold": 46.72 - }, - { - "f1": 0.011435749146244128, - "fn": 302213, - "fn_rate": 0.9942492622408796, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999915, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005750737759120414, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1748, - "tp_rate": 0.005750737759120414, - "truth_threshold": 46.74 - }, - { - "f1": 0.01139671968125822, - "fn": 302219, - "fn_rate": 0.9942690016153388, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00573099838466119, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1742, - "tp_rate": 0.00573099838466119, - "truth_threshold": 46.76 - }, - { - "f1": 0.011351146236784257, - "fn": 302226, - "fn_rate": 0.9942920308855412, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999917, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005707969114458763, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1735, - "tp_rate": 0.005707969114458763, - "truth_threshold": 46.78 - }, - { - "f1": 0.011247055744569485, - "fn": 302242, - "fn_rate": 0.9943446692174325, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999918, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0056553307825675005, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1719, - "tp_rate": 0.0056553307825675005, - "truth_threshold": 46.800000000000004 - }, - { - "f1": 0.01119500641210186, - "fn": 302250, - "fn_rate": 0.9943709883833781, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999919, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00562901161662187, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1711, - "tp_rate": 0.00562901161662187, - "truth_threshold": 46.82 - }, - { - "f1": 0.011136484090269645, - "fn": 302259, - "fn_rate": 0.9944005974450669, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005599402554933034, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1702, - "tp_rate": 0.005599402554933034, - "truth_threshold": 46.84 - }, - { - "f1": 0.011116927304848525, - "fn": 302262, - "fn_rate": 0.9944104671322965, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999921, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0055895328677034225, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1699, - "tp_rate": 0.0055895328677034225, - "truth_threshold": 46.86 - }, - { - "f1": 0.011084428798576167, - "fn": 302267, - "fn_rate": 0.9944269166110126, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999922, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0055730833889874026, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1694, - "tp_rate": 0.0055730833889874026, - "truth_threshold": 46.88 - }, - { - "f1": 0.01101935585190614, - "fn": 302277, - "fn_rate": 0.9944598155684446, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999923, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0055401844315553644, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1684, - "tp_rate": 0.0055401844315553644, - "truth_threshold": 46.9 - }, - { - "f1": 0.010941262695005758, - "fn": 302289, - "fn_rate": 0.9944992943173631, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999925, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005500705682636917, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1672, - "tp_rate": 0.005500705682636917, - "truth_threshold": 46.92 - }, - { - "f1": 0.010843602143852783, - "fn": 302304, - "fn_rate": 0.9945486427535112, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999926, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005451357246488858, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1657, - "tp_rate": 0.005451357246488858, - "truth_threshold": 46.94 - }, - { - "f1": 0.010739458511397177, - "fn": 302320, - "fn_rate": 0.9946012810854024, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999927, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005398718914597597, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1641, - "tp_rate": 0.005398718914597597, - "truth_threshold": 46.96 - }, - { - "f1": 0.010693927236791299, - "fn": 302327, - "fn_rate": 0.9946243103556048, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0053756896443951695, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1634, - "tp_rate": 0.0053756896443951695, - "truth_threshold": 46.980000000000004 - }, - { - "f1": 0.010641848775794703, - "fn": 302335, - "fn_rate": 0.9946506295215505, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005349370478449538, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1626, - "tp_rate": 0.005349370478449538, - "truth_threshold": 47.02 - }, - { - "f1": 0.010609263634638166, - "fn": 302340, - "fn_rate": 0.9946670790002665, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005332920999733519, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1621, - "tp_rate": 0.005332920999733519, - "truth_threshold": 47.04 - }, - { - "f1": 0.010576746864937037, - "fn": 302345, - "fn_rate": 0.9946835284789824, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999932, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005316471521017499, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1616, - "tp_rate": 0.005316471521017499, - "truth_threshold": 47.06 - }, - { - "f1": 0.010544159805217756, - "fn": 302350, - "fn_rate": 0.9946999779576985, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999932, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00530002204230148, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1611, - "tp_rate": 0.00530002204230148, - "truth_threshold": 47.08 - }, - { - "f1": 0.010531138527996859, - "fn": 302352, - "fn_rate": 0.9947065577491849, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999933, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005293442250815072, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1609, - "tp_rate": 0.005293442250815072, - "truth_threshold": 47.1 - }, - { - "f1": 0.010485597031044435, - "fn": 302359, - "fn_rate": 0.9947295870193874, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999934, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005270412980612644, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1602, - "tp_rate": 0.005270412980612644, - "truth_threshold": 47.12 - }, - { - "f1": 0.010459552687214865, - "fn": 302363, - "fn_rate": 0.9947427466023602, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999936, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005257253397639829, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1598, - "tp_rate": 0.005257253397639829, - "truth_threshold": 47.14 - }, - { - "f1": 0.010381415564268555, - "fn": 302375, - "fn_rate": 0.9947822253512786, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005217774648721382, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1586, - "tp_rate": 0.005217774648721382, - "truth_threshold": 47.160000000000004 - }, - { - "f1": 0.010335798913399228, - "fn": 302382, - "fn_rate": 0.9948052546214811, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005194745378518955, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1579, - "tp_rate": 0.005194745378518955, - "truth_threshold": 47.18 - }, - { - "f1": 0.010296726387243318, - "fn": 302388, - "fn_rate": 0.9948249939959403, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005175006004059731, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1573, - "tp_rate": 0.005175006004059731, - "truth_threshold": 47.2 - }, - { - "f1": 0.010244627298495054, - "fn": 302396, - "fn_rate": 0.9948513131618859, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0051486868381141, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1565, - "tp_rate": 0.0051486868381141, - "truth_threshold": 47.22 - }, - { - "f1": 0.010238148230580904, - "fn": 302397, - "fn_rate": 0.9948546030576291, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005145396942370897, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1564, - "tp_rate": 0.005145396942370897, - "truth_threshold": 47.24 - }, - { - "f1": 0.01022512290440623, - "fn": 302399, - "fn_rate": 0.9948611828491155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999941, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0051388171508844884, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1562, - "tp_rate": 0.0051388171508844884, - "truth_threshold": 47.26 - }, - { - "f1": 0.010199071740453917, - "fn": 302403, - "fn_rate": 0.9948743424320883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999941, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005125657567911673, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1558, - "tp_rate": 0.005125657567911673, - "truth_threshold": 47.28 - }, - { - "f1": 0.010133940846066223, - "fn": 302413, - "fn_rate": 0.9949072413895204, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999942, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005092758610479634, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1548, - "tp_rate": 0.005092758610479634, - "truth_threshold": 47.300000000000004 - }, - { - "f1": 0.010101340735309522, - "fn": 302418, - "fn_rate": 0.9949236908682364, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005076309131763614, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1543, - "tp_rate": 0.005076309131763614, - "truth_threshold": 47.32 - }, - { - "f1": 0.010081833060556464, - "fn": 302421, - "fn_rate": 0.994933560555466, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005066439444534002, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1540, - "tp_rate": 0.005066439444534002, - "truth_threshold": 47.34 - }, - { - "f1": 0.00998409092397033, - "fn": 302436, - "fn_rate": 0.994982908991614, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005017091008385944, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1525, - "tp_rate": 0.005017091008385944, - "truth_threshold": 47.36 - }, - { - "f1": 0.009958033533890704, - "fn": 302440, - "fn_rate": 0.9949960685745869, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.005003931425413129, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1521, - "tp_rate": 0.005003931425413129, - "truth_threshold": 47.38 - }, - { - "f1": 0.00993852257773064, - "fn": 302443, - "fn_rate": 0.9950059382618165, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004994061738183517, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1518, - "tp_rate": 0.004994061738183517, - "truth_threshold": 47.4 - }, - { - "f1": 0.009879857269126265, - "fn": 302452, - "fn_rate": 0.9950355473235053, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004964452676494682, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1509, - "tp_rate": 0.004964452676494682, - "truth_threshold": 47.42 - }, - { - "f1": 0.009690937663698272, - "fn": 302481, - "fn_rate": 0.9951309543000583, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999948, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004869045699941769, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1480, - "tp_rate": 0.004869045699941769, - "truth_threshold": 47.44 - }, - { - "f1": 0.009625773499656222, - "fn": 302491, - "fn_rate": 0.9951638532574902, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999948, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00483614674250973, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1470, - "tp_rate": 0.00483614674250973, - "truth_threshold": 47.46 - }, - { - "f1": 0.009619225354418361, - "fn": 302492, - "fn_rate": 0.9951671431532335, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999949, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004832856846766526, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1469, - "tp_rate": 0.004832856846766526, - "truth_threshold": 47.480000000000004 - }, - { - "f1": 0.009534536501034654, - "fn": 302505, - "fn_rate": 0.9952099117978951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004790088202104875, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1456, - "tp_rate": 0.004790088202104875, - "truth_threshold": 47.5 - }, - { - "f1": 0.00951495347299076, - "fn": 302508, - "fn_rate": 0.9952197814851247, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004780218514875263, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1453, - "tp_rate": 0.004780218514875263, - "truth_threshold": 47.52 - }, - { - "f1": 0.009397634546621436, - "fn": 302526, - "fn_rate": 0.9952789996085024, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999951, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004721000391497593, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1435, - "tp_rate": 0.004721000391497593, - "truth_threshold": 47.54 - }, - { - "f1": 0.009260775311585139, - "fn": 302547, - "fn_rate": 0.9953480874191097, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004651912580890312, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1414, - "tp_rate": 0.004651912580890312, - "truth_threshold": 47.56 - }, - { - "f1": 0.009162955200419178, - "fn": 302562, - "fn_rate": 0.9953974358552578, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004602564144742253, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1399, - "tp_rate": 0.004602564144742253, - "truth_threshold": 47.58 - }, - { - "f1": 0.009149915836493558, - "fn": 302564, - "fn_rate": 0.9954040156467442, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999953, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004595984353255846, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1397, - "tp_rate": 0.004595984353255846, - "truth_threshold": 47.6 - }, - { - "f1": 0.00904559477569414, - "fn": 302580, - "fn_rate": 0.9954566539786354, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999953, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004543346021364583, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1381, - "tp_rate": 0.004543346021364583, - "truth_threshold": 47.62 - }, - { - "f1": 0.008999980349387883, - "fn": 302587, - "fn_rate": 0.9954796832488378, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999954, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004520316751162156, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1374, - "tp_rate": 0.004520316751162156, - "truth_threshold": 47.64 - }, - { - "f1": 0.008973897094946452, - "fn": 302591, - "fn_rate": 0.9954928428318106, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999954, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00450715716818934, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1370, - "tp_rate": 0.00450715716818934, - "truth_threshold": 47.660000000000004 - }, - { - "f1": 0.008954304878687838, - "fn": 302594, - "fn_rate": 0.9955027125190403, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004497287480959729, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1367, - "tp_rate": 0.004497287480959729, - "truth_threshold": 47.68 - }, - { - "f1": 0.00889564323099195, - "fn": 302603, - "fn_rate": 0.9955323215807291, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004467678419270893, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1358, - "tp_rate": 0.004467678419270893, - "truth_threshold": 47.7 - }, - { - "f1": 0.008797788433823337, - "fn": 302618, - "fn_rate": 0.9955816700168771, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004418329983122835, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1343, - "tp_rate": 0.004418329983122835, - "truth_threshold": 47.72 - }, - { - "f1": 0.008752161836381741, - "fn": 302625, - "fn_rate": 0.9956046992870796, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004395300712920407, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1336, - "tp_rate": 0.004395300712920407, - "truth_threshold": 47.74 - }, - { - "f1": 0.008549920397292852, - "fn": 302656, - "fn_rate": 0.9957066860551189, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0042933139448810866, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1305, - "tp_rate": 0.0042933139448810866, - "truth_threshold": 47.76 - }, - { - "f1": 0.00851732948961541, - "fn": 302661, - "fn_rate": 0.995723135533835, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999959, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0042768644661650675, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1300, - "tp_rate": 0.0042768644661650675, - "truth_threshold": 47.78 - }, - { - "f1": 0.008497729789227472, - "fn": 302664, - "fn_rate": 0.9957330052210646, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999959, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004266994778935456, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1297, - "tp_rate": 0.004266994778935456, - "truth_threshold": 47.800000000000004 - }, - { - "f1": 0.008465137001559367, - "fn": 302669, - "fn_rate": 0.9957494546997806, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004250545300219436, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1292, - "tp_rate": 0.004250545300219436, - "truth_threshold": 47.82 - }, - { - "f1": 0.008432487682146975, - "fn": 302674, - "fn_rate": 0.9957659041784965, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004234095821503417, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1287, - "tp_rate": 0.004234095821503417, - "truth_threshold": 47.84 - }, - { - "f1": 0.008399892544276345, - "fn": 302679, - "fn_rate": 0.9957823536572126, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999961, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004217646342787397, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1282, - "tp_rate": 0.004217646342787397, - "truth_threshold": 47.86 - }, - { - "f1": 0.008354191510830963, - "fn": 302686, - "fn_rate": 0.995805382927415, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999961, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00419461707258497, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1275, - "tp_rate": 0.00419461707258497, - "truth_threshold": 47.88 - }, - { - "f1": 0.008334643811920114, - "fn": 302689, - "fn_rate": 0.9958152526146447, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004184747385355358, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1272, - "tp_rate": 0.004184747385355358, - "truth_threshold": 47.9 - }, - { - "f1": 0.008236735710213683, - "fn": 302704, - "fn_rate": 0.9958646010507927, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0041353989492073, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1257, - "tp_rate": 0.0041353989492073, - "truth_threshold": 47.92 - }, - { - "f1": 0.0081519246143563, - "fn": 302717, - "fn_rate": 0.9959073696954543, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004092630304545649, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1244, - "tp_rate": 0.004092630304545649, - "truth_threshold": 47.94 - }, - { - "f1": 0.008086659632889244, - "fn": 302727, - "fn_rate": 0.9959402686528864, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00405973134711361, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1234, - "tp_rate": 0.00405973134711361, - "truth_threshold": 47.96 - }, - { - "f1": 0.008027891187669159, - "fn": 302736, - "fn_rate": 0.9959698777145752, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004030122285424775, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1225, - "tp_rate": 0.004030122285424775, - "truth_threshold": 47.980000000000004 - }, - { - "f1": 0.008001782542876054, - "fn": 302740, - "fn_rate": 0.995983037297548, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.004016962702451959, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1221, - "tp_rate": 0.004016962702451959, - "truth_threshold": 48 - }, - { - "f1": 0.007956116838262762, - "fn": 302747, - "fn_rate": 0.9960060665677505, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003993933432249532, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1214, - "tp_rate": 0.003993933432249532, - "truth_threshold": 48.02 - }, - { - "f1": 0.007832059667842022, - "fn": 302766, - "fn_rate": 0.9960685745868714, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003931425413128658, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1195, - "tp_rate": 0.003931425413128658, - "truth_threshold": 48.04 - }, - { - "f1": 0.007792888743241029, - "fn": 302772, - "fn_rate": 0.9960883139613306, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003911686038669435, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1189, - "tp_rate": 0.003911686038669435, - "truth_threshold": 48.06 - }, - { - "f1": 0.0077798314260621075, - "fn": 302774, - "fn_rate": 0.996094893752817, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999967, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003905106247183027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1187, - "tp_rate": 0.003905106247183027, - "truth_threshold": 48.08 - }, - { - "f1": 0.007708038382885009, - "fn": 302785, - "fn_rate": 0.9961310826059923, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999967, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003868917394007784, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1176, - "tp_rate": 0.003868917394007784, - "truth_threshold": 48.1 - }, - { - "f1": 0.0076492488398311525, - "fn": 302794, - "fn_rate": 0.9961606916676811, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003839308332318949, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1167, - "tp_rate": 0.003839308332318949, - "truth_threshold": 48.120000000000005 - }, - { - "f1": 0.007597011012060829, - "fn": 302802, - "fn_rate": 0.9961870108336267, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0038129891663733176, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1159, - "tp_rate": 0.0038129891663733176, - "truth_threshold": 48.14 - }, - { - "f1": 0.007479465883540586, - "fn": 302820, - "fn_rate": 0.9962462289570043, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0037537710429956473, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1141, - "tp_rate": 0.0037537710429956473, - "truth_threshold": 48.18 - }, - { - "f1": 0.007388032305433187, - "fn": 302834, - "fn_rate": 0.9962922874974092, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003707712502590793, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1127, - "tp_rate": 0.003707712502590793, - "truth_threshold": 48.2 - }, - { - "f1": 0.007374969680680202, - "fn": 302836, - "fn_rate": 0.9962988672888956, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0037011327111043852, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1125, - "tp_rate": 0.0037011327111043852, - "truth_threshold": 48.24 - }, - { - "f1": 0.007348843917373034, - "fn": 302840, - "fn_rate": 0.9963120268718685, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0036879731281315694, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1121, - "tp_rate": 0.0036879731281315694, - "truth_threshold": 48.26 - }, - { - "f1": 0.007342336436344565, - "fn": 302841, - "fn_rate": 0.9963153167676116, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999971, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0036846832323883657, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1120, - "tp_rate": 0.0036846832323883657, - "truth_threshold": 48.28 - }, - { - "f1": 0.007316209731345632, - "fn": 302845, - "fn_rate": 0.9963284763505844, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999971, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00367152364941555, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1116, - "tp_rate": 0.00367152364941555, - "truth_threshold": 48.300000000000004 - }, - { - "f1": 0.0072770183892221455, - "fn": 302851, - "fn_rate": 0.9963482157250437, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999971, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0036517842749563267, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1110, - "tp_rate": 0.0036517842749563267, - "truth_threshold": 48.32 - }, - { - "f1": 0.007237825505467705, - "fn": 302857, - "fn_rate": 0.9963679550995029, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003632044900497103, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1104, - "tp_rate": 0.003632044900497103, - "truth_threshold": 48.34 - }, - { - "f1": 0.0072116960597915164, - "fn": 302861, - "fn_rate": 0.9963811146824757, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0036188853175242877, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1100, - "tp_rate": 0.0036188853175242877, - "truth_threshold": 48.36 - }, - { - "f1": 0.007126747266004038, - "fn": 302874, - "fn_rate": 0.9964238833271374, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003576116672862637, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1087, - "tp_rate": 0.003576116672862637, - "truth_threshold": 48.38 - }, - { - "f1": 0.007087548599864936, - "fn": 302880, - "fn_rate": 0.9964436227015966, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0035563772984034134, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1081, - "tp_rate": 0.0035563772984034134, - "truth_threshold": 48.4 - }, - { - "f1": 0.007022214062786855, - "fn": 302890, - "fn_rate": 0.9964765216590287, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0035234783409713744, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1071, - "tp_rate": 0.0035234783409713744, - "truth_threshold": 48.44 - }, - { - "f1": 0.006963432145878002, - "fn": 302899, - "fn_rate": 0.9965061307207175, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999974, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0034938692792825395, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1062, - "tp_rate": 0.0034938692792825395, - "truth_threshold": 48.46 - }, - { - "f1": 0.006917669892726939, - "fn": 302906, - "fn_rate": 0.9965291599909198, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999974, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0034708400090801123, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1055, - "tp_rate": 0.0034708400090801123, - "truth_threshold": 48.480000000000004 - }, - { - "f1": 0.006885020163273335, - "fn": 302911, - "fn_rate": 0.9965456094696359, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999974, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003454390530364093, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1050, - "tp_rate": 0.003454390530364093, - "truth_threshold": 48.5 - }, - { - "f1": 0.0068719508996485336, - "fn": 302913, - "fn_rate": 0.9965521892611223, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003447810738877685, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1048, - "tp_rate": 0.003447810738877685, - "truth_threshold": 48.52 - }, - { - "f1": 0.006832742080379801, - "fn": 302919, - "fn_rate": 0.9965719286355815, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0034280713644184615, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1042, - "tp_rate": 0.0034280713644184615, - "truth_threshold": 48.54 - }, - { - "f1": 0.006819672131147541, - "fn": 302921, - "fn_rate": 0.996578508427068, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003421491572932054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1040, - "tp_rate": 0.003421491572932054, - "truth_threshold": 48.56 - }, - { - "f1": 0.0067804612549755075, - "fn": 302927, - "fn_rate": 0.9965982478015272, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0034017521984728303, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1034, - "tp_rate": 0.0034017521984728303, - "truth_threshold": 48.6 - }, - { - "f1": 0.006721620008787289, - "fn": 302936, - "fn_rate": 0.996627856863216, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0033721431367839953, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1025, - "tp_rate": 0.0033721431367839953, - "truth_threshold": 48.620000000000005 - }, - { - "f1": 0.006695477110124532, - "fn": 302940, - "fn_rate": 0.9966410164461889, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00335898355381118, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1021, - "tp_rate": 0.00335898355381118, - "truth_threshold": 48.64 - }, - { - "f1": 0.006682405403633025, - "fn": 302942, - "fn_rate": 0.9966475962376752, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999978, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0033524037623247718, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1019, - "tp_rate": 0.0033524037623247718, - "truth_threshold": 48.68 - }, - { - "f1": 0.00665626147631289, - "fn": 302946, - "fn_rate": 0.9966607558206481, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999978, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0033392441793519564, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1015, - "tp_rate": 0.0033392441793519564, - "truth_threshold": 48.7 - }, - { - "f1": 0.0066236023215398235, - "fn": 302951, - "fn_rate": 0.9966772052993641, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003322794700635937, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1010, - "tp_rate": 0.003322794700635937, - "truth_threshold": 48.72 - }, - { - "f1": 0.006577825579412652, - "fn": 302958, - "fn_rate": 0.9967002345695665, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0032997654304335097, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1003, - "tp_rate": 0.0032997654304335097, - "truth_threshold": 48.74 - }, - { - "f1": 0.006558237145855194, - "fn": 302961, - "fn_rate": 0.9967101042567961, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003289895743203898, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1000, - "tp_rate": 0.003289895743203898, - "truth_threshold": 48.76 - }, - { - "f1": 0.0064993835095359265, - "fn": 302970, - "fn_rate": 0.996739713318485, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003260286681515063, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 991, - "tp_rate": 0.003260286681515063, - "truth_threshold": 48.78 - }, - { - "f1": 0.006479793276230702, - "fn": 302973, - "fn_rate": 0.9967495830057146, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003250416994285451, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 988, - "tp_rate": 0.003250416994285451, - "truth_threshold": 48.800000000000004 - }, - { - "f1": 0.006473234781011845, - "fn": 302974, - "fn_rate": 0.9967528729014578, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003247127098542247, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 987, - "tp_rate": 0.003247127098542247, - "truth_threshold": 48.82 - }, - { - "f1": 0.006257502115350558, - "fn": 303007, - "fn_rate": 0.9968614394609835, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0031385605390165184, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 954, - "tp_rate": 0.0031385605390165184, - "truth_threshold": 48.84 - }, - { - "f1": 0.006133238874895046, - "fn": 303026, - "fn_rate": 0.9969239474801044, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030760525198956445, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 935, - "tp_rate": 0.0030760525198956445, - "truth_threshold": 48.86 - }, - { - "f1": 0.006113640239822625, - "fn": 303029, - "fn_rate": 0.996933817167334, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030661828326660327, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 932, - "tp_rate": 0.0030661828326660327, - "truth_threshold": 48.88 - }, - { - "f1": 0.00610708053999449, - "fn": 303030, - "fn_rate": 0.9969371070630771, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003062892936922829, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 931, - "tp_rate": 0.003062892936922829, - "truth_threshold": 48.92 - }, - { - "f1": 0.006087481304610218, - "fn": 303033, - "fn_rate": 0.9969469767503067, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030530232496932173, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 928, - "tp_rate": 0.0030530232496932173, - "truth_threshold": 48.94 - }, - { - "f1": 0.006067841750687142, - "fn": 303036, - "fn_rate": 0.9969568464375363, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030431535624636055, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 925, - "tp_rate": 0.0030431535624636055, - "truth_threshold": 48.96 - }, - { - "f1": 0.006061321683000748, - "fn": 303037, - "fn_rate": 0.9969601363332796, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.003039863666720402, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 924, - "tp_rate": 0.003039863666720402, - "truth_threshold": 48.980000000000004 - }, - { - "f1": 0.006022080963532954, - "fn": 303043, - "fn_rate": 0.9969798757077388, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030201242922611783, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 918, - "tp_rate": 0.0030201242922611783, - "truth_threshold": 49 - }, - { - "f1": 0.0060090003804825565, - "fn": 303045, - "fn_rate": 0.9969864554992253, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0030135445007747706, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 916, - "tp_rate": 0.0030135445007747706, - "truth_threshold": 49.02 - }, - { - "f1": 0.0059305132780518525, - "fn": 303057, - "fn_rate": 0.9970259342481437, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002974065751856324, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 904, - "tp_rate": 0.002974065751856324, - "truth_threshold": 49.04 - }, - { - "f1": 0.005891267409744865, - "fn": 303063, - "fn_rate": 0.9970456736226029, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0029543263773971003, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 898, - "tp_rate": 0.0029543263773971003, - "truth_threshold": 49.06 - }, - { - "f1": 0.005845459436054216, - "fn": 303070, - "fn_rate": 0.9970687028928054, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002931297107194673, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 891, - "tp_rate": 0.002931297107194673, - "truth_threshold": 49.08 - }, - { - "f1": 0.005838937182220764, - "fn": 303071, - "fn_rate": 0.9970719927885485, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002928007211451469, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 890, - "tp_rate": 0.002928007211451469, - "truth_threshold": 49.1 - }, - { - "f1": 0.005773520535362813, - "fn": 303081, - "fn_rate": 0.9971048917459806, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00289510825401943, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 880, - "tp_rate": 0.00289510825401943, - "truth_threshold": 49.120000000000005 - }, - { - "f1": 0.005740791770000918, - "fn": 303086, - "fn_rate": 0.9971213412246966, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0028786587753034105, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 875, - "tp_rate": 0.0028786587753034105, - "truth_threshold": 49.14 - }, - { - "f1": 0.005708099596496408, - "fn": 303091, - "fn_rate": 0.9971377907034126, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002862209296587391, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 870, - "tp_rate": 0.002862209296587391, - "truth_threshold": 49.160000000000004 - }, - { - "f1": 0.005642674365199134, - "fn": 303101, - "fn_rate": 0.9971706896608447, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002829310339155352, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 860, - "tp_rate": 0.002829310339155352, - "truth_threshold": 49.18 - }, - { - "f1": 0.005623027511498665, - "fn": 303104, - "fn_rate": 0.9971805593480743, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0028194406519257403, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 857, - "tp_rate": 0.0028194406519257403, - "truth_threshold": 49.2 - }, - { - "f1": 0.005518336493855028, - "fn": 303120, - "fn_rate": 0.9972331976799655, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002766802320034478, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 841, - "tp_rate": 0.002766802320034478, - "truth_threshold": 49.24 - }, - { - "f1": 0.00547907452853712, - "fn": 303126, - "fn_rate": 0.9972529370544247, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0027470629455752546, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 835, - "tp_rate": 0.0027470629455752546, - "truth_threshold": 49.26 - }, - { - "f1": 0.00540054596041787, - "fn": 303138, - "fn_rate": 0.9972924158033432, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002707584196656808, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 823, - "tp_rate": 0.002707584196656808, - "truth_threshold": 49.28 - }, - { - "f1": 0.00538745726453662, - "fn": 303140, - "fn_rate": 0.9972989955948296, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0027010044051704, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 821, - "tp_rate": 0.0027010044051704, - "truth_threshold": 49.300000000000004 - }, - { - "f1": 0.005374368396876435, - "fn": 303142, - "fn_rate": 0.997305575386316, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0026944246136839925, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 819, - "tp_rate": 0.0026944246136839925, - "truth_threshold": 49.32 - }, - { - "f1": 0.005322011208378723, - "fn": 303150, - "fn_rate": 0.9973318945522617, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002668105447738361, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 811, - "tp_rate": 0.002668105447738361, - "truth_threshold": 49.34 - }, - { - "f1": 0.005276213726030633, - "fn": 303157, - "fn_rate": 0.997354923822464, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002645076177535934, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 804, - "tp_rate": 0.002645076177535934, - "truth_threshold": 49.36 - }, - { - "f1": 0.005236942098320635, - "fn": 303163, - "fn_rate": 0.9973746631969233, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0026253368030767104, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 798, - "tp_rate": 0.0026253368030767104, - "truth_threshold": 49.38 - }, - { - "f1": 0.005191106210951856, - "fn": 303170, - "fn_rate": 0.9973976924671257, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002602307532874283, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 791, - "tp_rate": 0.002602307532874283, - "truth_threshold": 49.4 - }, - { - "f1": 0.005132210197478523, - "fn": 303179, - "fn_rate": 0.9974273015288145, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0025726984711854483, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 782, - "tp_rate": 0.0025726984711854483, - "truth_threshold": 49.42 - }, - { - "f1": 0.005106025503875461, - "fn": 303183, - "fn_rate": 0.9974404611117874, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0025595388882126324, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 778, - "tp_rate": 0.0025595388882126324, - "truth_threshold": 49.44 - }, - { - "f1": 0.005040560762384815, - "fn": 303193, - "fn_rate": 0.9974733600692194, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0025266399307805935, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 768, - "tp_rate": 0.0025266399307805935, - "truth_threshold": 49.46 - }, - { - "f1": 0.005027467298491103, - "fn": 303195, - "fn_rate": 0.9974799398607058, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0025200601392941857, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 766, - "tp_rate": 0.0025200601392941857, - "truth_threshold": 49.480000000000004 - }, - { - "f1": 0.005014373662724302, - "fn": 303197, - "fn_rate": 0.9974865196521923, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002513480347807778, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 764, - "tp_rate": 0.002513480347807778, - "truth_threshold": 49.5 - }, - { - "f1": 0.004935808238599071, - "fn": 303209, - "fn_rate": 0.9975259984011107, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024740015988893313, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 752, - "tp_rate": 0.0024740015988893313, - "truth_threshold": 49.52 - }, - { - "f1": 0.00490961838875251, - "fn": 303213, - "fn_rate": 0.9975391579840834, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024608420159165155, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 748, - "tp_rate": 0.0024608420159165155, - "truth_threshold": 49.54 - }, - { - "f1": 0.0048899595019461384, - "fn": 303216, - "fn_rate": 0.9975490276713131, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024509723286869037, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 745, - "tp_rate": 0.0024509723286869037, - "truth_threshold": 49.58 - }, - { - "f1": 0.0048834278512917455, - "fn": 303217, - "fn_rate": 0.9975523175670563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024476824329437, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 744, - "tp_rate": 0.0024476824329437, - "truth_threshold": 49.6 - }, - { - "f1": 0.004876864104179794, - "fn": 303218, - "fn_rate": 0.9975556074627995, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002444392537200496, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 743, - "tp_rate": 0.002444392537200496, - "truth_threshold": 49.620000000000005 - }, - { - "f1": 0.004863768534502563, - "fn": 303220, - "fn_rate": 0.9975621872542859, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024378127457140883, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 741, - "tp_rate": 0.0024378127457140883, - "truth_threshold": 49.64 - }, - { - "f1": 0.004831044713419277, - "fn": 303225, - "fn_rate": 0.997578636733002, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024213632669980688, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 736, - "tp_rate": 0.0024213632669980688, - "truth_threshold": 49.660000000000004 - }, - { - "f1": 0.004804852112953409, - "fn": 303229, - "fn_rate": 0.9975917963159747, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0024082036840252534, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 732, - "tp_rate": 0.0024082036840252534, - "truth_threshold": 49.68 - }, - { - "f1": 0.004778658824765005, - "fn": 303233, - "fn_rate": 0.9976049558989476, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0023950441010524375, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 728, - "tp_rate": 0.0023950441010524375, - "truth_threshold": 49.7 - }, - { - "f1": 0.0047000748335937195, - "fn": 303245, - "fn_rate": 0.997644434647866, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999989, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002355565352133991, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 716, - "tp_rate": 0.002355565352133991, - "truth_threshold": 49.74 - }, - { - "f1": 0.004693510483267471, - "fn": 303246, - "fn_rate": 0.9976477245436092, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002352275456390787, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 715, - "tp_rate": 0.002352275456390787, - "truth_threshold": 49.76 - }, - { - "f1": 0.004667314357735532, - "fn": 303250, - "fn_rate": 0.997660884126582, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0023391158734179713, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 711, - "tp_rate": 0.0023391158734179713, - "truth_threshold": 49.78 - }, - { - "f1": 0.004654216037023665, - "fn": 303252, - "fn_rate": 0.9976674639180685, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0023325360819315636, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 709, - "tp_rate": 0.0023325360819315636, - "truth_threshold": 49.800000000000004 - }, - { - "f1": 0.0046345834454779985, - "fn": 303255, - "fn_rate": 0.9976773336052981, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002322666394701952, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 706, - "tp_rate": 0.002322666394701952, - "truth_threshold": 49.82 - }, - { - "f1": 0.004628018879691203, - "fn": 303256, - "fn_rate": 0.9976806235010413, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002319376498958748, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 705, - "tp_rate": 0.002319376498958748, - "truth_threshold": 49.84 - }, - { - "f1": 0.004549423280180139, - "fn": 303268, - "fn_rate": 0.9977201022499597, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002279897750040301, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 693, - "tp_rate": 0.002279897750040301, - "truth_threshold": 49.86 - }, - { - "f1": 0.004542888279085645, - "fn": 303269, - "fn_rate": 0.9977233921457029, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0022766078542970974, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 692, - "tp_rate": 0.0022766078542970974, - "truth_threshold": 49.88 - }, - { - "f1": 0.004523223371081569, - "fn": 303272, - "fn_rate": 0.9977332618329325, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0022667381670674856, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 689, - "tp_rate": 0.0022667381670674856, - "truth_threshold": 49.9 - }, - { - "f1": 0.004516688112181928, - "fn": 303273, - "fn_rate": 0.9977365517286757, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0022634482713242816, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 688, - "tp_rate": 0.0022634482713242816, - "truth_threshold": 49.92 - }, - { - "f1": 0.004497022773973727, - "fn": 303276, - "fn_rate": 0.9977464214159053, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00225357858409467, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 685, - "tp_rate": 0.00225357858409467, - "truth_threshold": 49.94 - }, - { - "f1": 0.00444461951562182, - "fn": 303284, - "fn_rate": 0.997772740581851, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002227259418149039, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 677, - "tp_rate": 0.002227259418149039, - "truth_threshold": 49.96 - }, - { - "f1": 0.004411880564090444, - "fn": 303289, - "fn_rate": 0.997789190060567, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0022108099394330194, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 672, - "tp_rate": 0.0022108099394330194, - "truth_threshold": 49.980000000000004 - }, - { - "f1": 0.004346370255595459, - "fn": 303299, - "fn_rate": 0.9978220890179991, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0021779109820009804, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 662, - "tp_rate": 0.0021779109820009804, - "truth_threshold": 50 - }, - { - "f1": 0.004300496362633611, - "fn": 303306, - "fn_rate": 0.9978451182882014, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0021548817117985532, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 655, - "tp_rate": 0.0021548817117985532, - "truth_threshold": 50.02 - }, - { - "f1": 0.004248082781804811, - "fn": 303314, - "fn_rate": 0.9978714374541471, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002128562545852922, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 647, - "tp_rate": 0.002128562545852922, - "truth_threshold": 50.06 - }, - { - "f1": 0.004241544815269561, - "fn": 303315, - "fn_rate": 0.9978747273498902, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999991, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002125272650109718, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 646, - "tp_rate": 0.002125272650109718, - "truth_threshold": 50.08 - }, - { - "f1": 0.0042218749589631125, - "fn": 303318, - "fn_rate": 0.9978845970371198, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0021154029628801065, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 643, - "tp_rate": 0.0021154029628801065, - "truth_threshold": 50.120000000000005 - }, - { - "f1": 0.004202232435981616, - "fn": 303321, - "fn_rate": 0.9978944667243496, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0021055332756504948, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 640, - "tp_rate": 0.0021055332756504948, - "truth_threshold": 50.14 - }, - { - "f1": 0.004195666447800394, - "fn": 303322, - "fn_rate": 0.9978977566200927, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0021022433799072907, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 639, - "tp_rate": 0.0021022433799072907, - "truth_threshold": 50.18 - }, - { - "f1": 0.004143247360403425, - "fn": 303330, - "fn_rate": 0.9979240757860384, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0020759242139616594, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 631, - "tp_rate": 0.0020759242139616594, - "truth_threshold": 50.2 - }, - { - "f1": 0.0041170367841149354, - "fn": 303334, - "fn_rate": 0.9979372353690111, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.002062764630988844, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 627, - "tp_rate": 0.002062764630988844, - "truth_threshold": 50.22 - }, - { - "f1": 0.004018754186202277, - "fn": 303349, - "fn_rate": 0.9979865838051593, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0020134161948407855, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 612, - "tp_rate": 0.0020134161948407855, - "truth_threshold": 50.24 - }, - { - "f1": 0.003972866308123691, - "fn": 303356, - "fn_rate": 0.9980096130753616, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0019903869246383583, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 605, - "tp_rate": 0.0019903869246383583, - "truth_threshold": 50.26 - }, - { - "f1": 0.003946651256558599, - "fn": 303360, - "fn_rate": 0.9980227726583345, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0019772273416655425, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 601, - "tp_rate": 0.0019772273416655425, - "truth_threshold": 50.300000000000004 - }, - { - "f1": 0.003927002410049974, - "fn": 303363, - "fn_rate": 0.9980326423455641, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001967357654435931, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 598, - "tp_rate": 0.001967357654435931, - "truth_threshold": 50.32 - }, - { - "f1": 0.0039007860674954197, - "fn": 303367, - "fn_rate": 0.9980458019285369, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0019541980714631152, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 594, - "tp_rate": 0.0019541980714631152, - "truth_threshold": 50.34 - }, - { - "f1": 0.003887677637973154, - "fn": 303369, - "fn_rate": 0.9980523817200233, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0019476182799767075, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 592, - "tp_rate": 0.0019476182799767075, - "truth_threshold": 50.36 - }, - { - "f1": 0.003868001970119849, - "fn": 303372, - "fn_rate": 0.9980622514072529, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0019377485927470958, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 589, - "tp_rate": 0.0019377485927470958, - "truth_threshold": 50.38 - }, - { - "f1": 0.003789346485496063, - "fn": 303384, - "fn_rate": 0.9981017301561713, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001898269843828649, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 577, - "tp_rate": 0.001898269843828649, - "truth_threshold": 50.4 - }, - { - "f1": 0.003776236635405995, - "fn": 303386, - "fn_rate": 0.9981083099476578, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0018916900523422413, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 575, - "tp_rate": 0.0018916900523422413, - "truth_threshold": 50.42 - }, - { - "f1": 0.0037696940243125564, - "fn": 303387, - "fn_rate": 0.9981115998434009, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0018884001565990373, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 574, - "tp_rate": 0.0018884001565990373, - "truth_threshold": 50.46 - }, - { - "f1": 0.0036844628631100542, - "fn": 303400, - "fn_rate": 0.9981543684880626, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0018456315119373867, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 561, - "tp_rate": 0.0018456315119373867, - "truth_threshold": 50.480000000000004 - }, - { - "f1": 0.0036779193484828584, - "fn": 303401, - "fn_rate": 0.9981576583838058, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0018423416161941829, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 560, - "tp_rate": 0.0018423416161941829, - "truth_threshold": 50.5 - }, - { - "f1": 0.0035664556130625543, - "fn": 303418, - "fn_rate": 0.9982135866114403, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0017864133885597165, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 543, - "tp_rate": 0.0017864133885597165, - "truth_threshold": 50.52 - }, - { - "f1": 0.0035599109365455728, - "fn": 303419, - "fn_rate": 0.9982168765071835, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0017831234928165126, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 542, - "tp_rate": 0.0017831234928165126, - "truth_threshold": 50.54 - }, - { - "f1": 0.0035336849503116606, - "fn": 303423, - "fn_rate": 0.9982300360901563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001769963909843697, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 538, - "tp_rate": 0.001769963909843697, - "truth_threshold": 50.56 - }, - { - "f1": 0.0034418885721417217, - "fn": 303437, - "fn_rate": 0.9982760946305611, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0017239053694388426, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 524, - "tp_rate": 0.0017239053694388426, - "truth_threshold": 50.58 - }, - { - "f1": 0.0034287741147259938, - "fn": 303439, - "fn_rate": 0.9982826744220475, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0017173255779524346, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 522, - "tp_rate": 0.0017173255779524346, - "truth_threshold": 50.620000000000005 - }, - { - "f1": 0.003395976063952075, - "fn": 303444, - "fn_rate": 0.9982991239007636, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0017008760992364151, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 517, - "tp_rate": 0.0017008760992364151, - "truth_threshold": 50.64 - }, - { - "f1": 0.003389429708745517, - "fn": 303445, - "fn_rate": 0.9983024137965067, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016975862034932113, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 516, - "tp_rate": 0.0016975862034932113, - "truth_threshold": 50.660000000000004 - }, - { - "f1": 0.0033763145621629434, - "fn": 303447, - "fn_rate": 0.9983089935879932, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016910064120068036, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 514, - "tp_rate": 0.0016910064120068036, - "truth_threshold": 50.68 - }, - { - "f1": 0.0033435149604230303, - "fn": 303452, - "fn_rate": 0.9983254430667092, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001674556933290784, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 509, - "tp_rate": 0.001674556933290784, - "truth_threshold": 50.7 - }, - { - "f1": 0.003336968088600444, - "fn": 303453, - "fn_rate": 0.9983287329624524, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016712670375475802, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 508, - "tp_rate": 0.0016712670375475802, - "truth_threshold": 50.72 - }, - { - "f1": 0.0033303992537803643, - "fn": 303454, - "fn_rate": 0.9983320228581957, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016679771418043761, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 507, - "tp_rate": 0.0016679771418043761, - "truth_threshold": 50.74 - }, - { - "f1": 0.0032779347040662156, - "fn": 303462, - "fn_rate": 0.9983583420241413, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001641657975858745, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 499, - "tp_rate": 0.001641657975858745, - "truth_threshold": 50.76 - }, - { - "f1": 0.003271387186409948, - "fn": 303463, - "fn_rate": 0.9983616319198845, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016383680801155412, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 498, - "tp_rate": 0.0016383680801155412, - "truth_threshold": 50.78 - }, - { - "f1": 0.003264818135834828, - "fn": 303464, - "fn_rate": 0.9983649218156276, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016350781843723372, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 497, - "tp_rate": 0.0016350781843723372, - "truth_threshold": 50.800000000000004 - }, - { - "f1": 0.0032451536192659646, - "fn": 303467, - "fn_rate": 0.9983747915028572, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0016252084971427256, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 494, - "tp_rate": 0.0016252084971427256, - "truth_threshold": 50.82 - }, - { - "f1": 0.0031205245108988423, - "fn": 303486, - "fn_rate": 0.9984372995219781, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0015627004780218515, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 475, - "tp_rate": 0.0015627004780218515, - "truth_threshold": 50.84 - }, - { - "f1": 0.003100856677353235, - "fn": 303489, - "fn_rate": 0.9984471692092077, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0015528307907922397, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 472, - "tp_rate": 0.0015528307907922397, - "truth_threshold": 50.86 - }, - { - "f1": 0.0030877377393817955, - "fn": 303491, - "fn_rate": 0.9984537490006942, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001546250999305832, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 470, - "tp_rate": 0.001546250999305832, - "truth_threshold": 50.88 - }, - { - "f1": 0.003074618629035437, - "fn": 303493, - "fn_rate": 0.9984603287921806, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0015396712078194243, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 468, - "tp_rate": 0.0015396712078194243, - "truth_threshold": 50.9 - }, - { - "f1": 0.002963089497128891, - "fn": 303510, - "fn_rate": 0.9985162570198151, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014837429801849579, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 451, - "tp_rate": 0.0014837429801849579, - "truth_threshold": 50.92 - }, - { - "f1": 0.002917175858398707, - "fn": 303517, - "fn_rate": 0.9985392862900174, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014607137099825307, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 444, - "tp_rate": 0.0014607137099825307, - "truth_threshold": 50.94 - }, - { - "f1": 0.0029106056425014125, - "fn": 303518, - "fn_rate": 0.9985425761857607, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014574238142393268, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 443, - "tp_rate": 0.0014574238142393268, - "truth_threshold": 50.96 - }, - { - "f1": 0.0028974842478038908, - "fn": 303520, - "fn_rate": 0.998549155977247, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014508440227529189, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 441, - "tp_rate": 0.0014508440227529189, - "truth_threshold": 50.980000000000004 - }, - { - "f1": 0.0028843626806833115, - "fn": 303522, - "fn_rate": 0.9985557357687335, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014442642312665112, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 439, - "tp_rate": 0.0014442642312665112, - "truth_threshold": 51 - }, - { - "f1": 0.0028778112865393336, - "fn": 303523, - "fn_rate": 0.9985590256644767, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014409743355233073, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 438, - "tp_rate": 0.0014409743355233073, - "truth_threshold": 51.02 - }, - { - "f1": 0.0028449969447492396, - "fn": 303528, - "fn_rate": 0.9985754751431927, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014245248568072878, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 433, - "tp_rate": 0.0014245248568072878, - "truth_threshold": 51.04 - }, - { - "f1": 0.0028318746879024415, - "fn": 303530, - "fn_rate": 0.9985820549346791, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0014179450653208799, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 431, - "tp_rate": 0.0014179450653208799, - "truth_threshold": 51.06 - }, - { - "f1": 0.0027859545836837678, - "fn": 303537, - "fn_rate": 0.9986050842048816, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013949157951184527, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 424, - "tp_rate": 0.0013949157951184527, - "truth_threshold": 51.08 - }, - { - "f1": 0.00277938393608074, - "fn": 303538, - "fn_rate": 0.9986083741006248, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013916258993752488, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 423, - "tp_rate": 0.0013916258993752488, - "truth_threshold": 51.1 - }, - { - "f1": 0.0027728315077764124, - "fn": 303539, - "fn_rate": 0.9986116639963679, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001388336003632045, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 422, - "tp_rate": 0.001388336003632045, - "truth_threshold": 51.14 - }, - { - "f1": 0.002766260816999691, - "fn": 303540, - "fn_rate": 0.9986149538921112, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013850461078888411, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 421, - "tp_rate": 0.0013850461078888411, - "truth_threshold": 51.2 - }, - { - "f1": 0.0027400140614630493, - "fn": 303544, - "fn_rate": 0.998628113475084, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013718865249160255, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 417, - "tp_rate": 0.0013718865249160255, - "truth_threshold": 51.22 - }, - { - "f1": 0.002726890425000657, - "fn": 303546, - "fn_rate": 0.9986346932665704, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013653067334296175, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 415, - "tp_rate": 0.0013653067334296175, - "truth_threshold": 51.26 - }, - { - "f1": 0.002707213541324432, - "fn": 303549, - "fn_rate": 0.9986445629538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001355437046200006, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 412, - "tp_rate": 0.001355437046200006, - "truth_threshold": 51.28 - }, - { - "f1": 0.0026940894306271973, - "fn": 303551, - "fn_rate": 0.9986511427452864, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001348857254713598, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 410, - "tp_rate": 0.001348857254713598, - "truth_threshold": 51.32 - }, - { - "f1": 0.0026743941544446195, - "fn": 303554, - "fn_rate": 0.998661012432516, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013389875674839865, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 407, - "tp_rate": 0.0013389875674839865, - "truth_threshold": 51.34 - }, - { - "f1": 0.0026481449842951205, - "fn": 303558, - "fn_rate": 0.9986741720154888, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013258279845111708, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 403, - "tp_rate": 0.0013258279845111708, - "truth_threshold": 51.36 - }, - { - "f1": 0.0026415912630354645, - "fn": 303559, - "fn_rate": 0.9986774619112321, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001322538088767967, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 402, - "tp_rate": 0.001322538088767967, - "truth_threshold": 51.38 - }, - { - "f1": 0.002602215826203525, - "fn": 303565, - "fn_rate": 0.9986972012856913, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0013027987143087436, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 396, - "tp_rate": 0.0013027987143087436, - "truth_threshold": 51.4 - }, - { - "f1": 0.002595644574117152, - "fn": 303566, - "fn_rate": 0.9987004911814344, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012995088185655396, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 395, - "tp_rate": 0.0012995088185655396, - "truth_threshold": 51.480000000000004 - }, - { - "f1": 0.0025825190403280392, - "fn": 303568, - "fn_rate": 0.9987070709729209, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012929290270791319, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 393, - "tp_rate": 0.0012929290270791319, - "truth_threshold": 51.5 - }, - { - "f1": 0.002569393334034276, - "fn": 303570, - "fn_rate": 0.9987136507644073, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012863492355927241, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 391, - "tp_rate": 0.0012863492355927241, - "truth_threshold": 51.52 - }, - { - "f1": 0.0024972070710389694, - "fn": 303581, - "fn_rate": 0.9987498396175826, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001250160382417481, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 380, - "tp_rate": 0.001250160382417481, - "truth_threshold": 51.56 - }, - { - "f1": 0.0024840802003036097, - "fn": 303583, - "fn_rate": 0.9987564194090689, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012435805909310734, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 378, - "tp_rate": 0.0012435805909310734, - "truth_threshold": 51.58 - }, - { - "f1": 0.002470953157036959, - "fn": 303585, - "fn_rate": 0.9987629992005553, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012370007994446657, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 376, - "tp_rate": 0.0012370007994446657, - "truth_threshold": 51.6 - }, - { - "f1": 0.0024643814731086693, - "fn": 303586, - "fn_rate": 0.9987662890962985, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012337109037014616, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 375, - "tp_rate": 0.0012337109037014616, - "truth_threshold": 51.64 - }, - { - "f1": 0.0024315709920152465, - "fn": 303591, - "fn_rate": 0.9987827385750145, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012172614249854423, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 370, - "tp_rate": 0.0012172614249854423, - "truth_threshold": 51.68 - }, - { - "f1": 0.0024118714019084673, - "fn": 303594, - "fn_rate": 0.9987926082622441, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012073917377558305, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 367, - "tp_rate": 0.0012073917377558305, - "truth_threshold": 51.7 - }, - { - "f1": 0.0024053153526152875, - "fn": 303595, - "fn_rate": 0.9987958981579874, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0012041018420126267, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 366, - "tp_rate": 0.0012041018420126267, - "truth_threshold": 51.72 - }, - { - "f1": 0.002385615331028772, - "fn": 303598, - "fn_rate": 0.998805767845217, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001194232154783015, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 363, - "tp_rate": 0.001194232154783015, - "truth_threshold": 51.78 - }, - { - "f1": 0.0023790590230085237, - "fn": 303599, - "fn_rate": 0.9988090577409602, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001190942259039811, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 362, - "tp_rate": 0.001190942259039811, - "truth_threshold": 51.800000000000004 - }, - { - "f1": 0.002333101118574114, - "fn": 303606, - "fn_rate": 0.9988320870111627, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011679129888373838, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 355, - "tp_rate": 0.0011679129888373838, - "truth_threshold": 51.82 - }, - { - "f1": 0.0023068429769447147, - "fn": 303610, - "fn_rate": 0.9988452465941354, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011547534058645682, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 351, - "tp_rate": 0.0011547534058645682, - "truth_threshold": 51.84 - }, - { - "f1": 0.0023002858926752323, - "fn": 303611, - "fn_rate": 0.9988485364898786, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011514635101213643, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 350, - "tp_rate": 0.0011514635101213643, - "truth_threshold": 51.86 - }, - { - "f1": 0.002293713647267589, - "fn": 303612, - "fn_rate": 0.9988518263856219, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011481736143781603, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 349, - "tp_rate": 0.0011481736143781603, - "truth_threshold": 51.88 - }, - { - "f1": 0.0022871564336133126, - "fn": 303613, - "fn_rate": 0.998855116281365, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011448837186349564, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 348, - "tp_rate": 0.0011448837186349564, - "truth_threshold": 51.9 - }, - { - "f1": 0.0022740268019690708, - "fn": 303615, - "fn_rate": 0.9988616960728515, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011383039271485487, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 346, - "tp_rate": 0.0011383039271485487, - "truth_threshold": 51.92 - }, - { - "f1": 0.002260896997739103, - "fn": 303617, - "fn_rate": 0.9988682758643379, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011317241356621408, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 344, - "tp_rate": 0.0011317241356621408, - "truth_threshold": 51.94 - }, - { - "f1": 0.002254324622745675, - "fn": 303618, - "fn_rate": 0.9988715657600811, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001128434239918937, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 343, - "tp_rate": 0.001128434239918937, - "truth_threshold": 51.96 - }, - { - "f1": 0.0022411946027301823, - "fn": 303620, - "fn_rate": 0.9988781455515675, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011218544484325292, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 341, - "tp_rate": 0.0011218544484325292, - "truth_threshold": 51.980000000000004 - }, - { - "f1": 0.0022346368715083797, - "fn": 303621, - "fn_rate": 0.9988814354473107, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011185645526893254, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 340, - "tp_rate": 0.0011185645526893254, - "truth_threshold": 52 - }, - { - "f1": 0.002201803507111497, - "fn": 303626, - "fn_rate": 0.9988978849260267, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0011021150739733059, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 335, - "tp_rate": 0.0011021150739733059, - "truth_threshold": 52.02 - }, - { - "f1": 0.002195245387684279, - "fn": 303627, - "fn_rate": 0.9989011748217699, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010988251782301018, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 334, - "tp_rate": 0.0010988251782301018, - "truth_threshold": 52.04 - }, - { - "f1": 0.0021886727967031882, - "fn": 303628, - "fn_rate": 0.9989044647175132, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001095535282486898, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 333, - "tp_rate": 0.001095535282486898, - "truth_threshold": 52.06 - }, - { - "f1": 0.0021689835354431627, - "fn": 303631, - "fn_rate": 0.9989143344047428, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010856655952572864, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 330, - "tp_rate": 0.0010856655952572864, - "truth_threshold": 52.08 - }, - { - "f1": 0.0021427209927502417, - "fn": 303635, - "fn_rate": 0.9989274939877155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010725060122844707, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 326, - "tp_rate": 0.0010725060122844707, - "truth_threshold": 52.120000000000005 - }, - { - "f1": 0.0020836208993091844, - "fn": 303644, - "fn_rate": 0.9989571030494043, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010428969505956356, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 317, - "tp_rate": 0.0010428969505956356, - "truth_threshold": 52.14 - }, - { - "f1": 0.0020770616151125952, - "fn": 303645, - "fn_rate": 0.9989603929451476, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010396070548524317, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 316, - "tp_rate": 0.0010396070548524317, - "truth_threshold": 52.18 - }, - { - "f1": 0.002057356198689339, - "fn": 303648, - "fn_rate": 0.9989702626323772, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00102973736762282, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 313, - "tp_rate": 0.00102973736762282, - "truth_threshold": 52.2 - }, - { - "f1": 0.0020507966556239155, - "fn": 303649, - "fn_rate": 0.9989735525281204, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.001026447471879616, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 312, - "tp_rate": 0.001026447471879616, - "truth_threshold": 52.24 - }, - { - "f1": 0.002044223589419993, - "fn": 303650, - "fn_rate": 0.9989768424238636, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010231575761364122, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 311, - "tp_rate": 0.0010231575761364122, - "truth_threshold": 52.28 - }, - { - "f1": 0.002011397921555481, - "fn": 303655, - "fn_rate": 0.9989932919025796, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0010067080974203928, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 306, - "tp_rate": 0.0010067080974203928, - "truth_threshold": 52.300000000000004 - }, - { - "f1": 0.0019588638589618022, - "fn": 303663, - "fn_rate": 0.9990196110685252, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009803889314747615, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 298, - "tp_rate": 0.0009803889314747615, - "truth_threshold": 52.34 - }, - { - "f1": 0.001952290490307568, - "fn": 303664, - "fn_rate": 0.9990229009642685, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009770990357315576, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 297, - "tp_rate": 0.0009770990357315576, - "truth_threshold": 52.38 - }, - { - "f1": 0.0019325957916740619, - "fn": 303667, - "fn_rate": 0.9990327706514981, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000967229348501946, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 294, - "tp_rate": 0.000967229348501946, - "truth_threshold": 52.4 - }, - { - "f1": 0.0019063270336894002, - "fn": 303671, - "fn_rate": 0.9990459302344709, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009540697655291304, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 290, - "tp_rate": 0.0009540697655291304, - "truth_threshold": 52.44 - }, - { - "f1": 0.0018537874455203424, - "fn": 303679, - "fn_rate": 0.9990722494004165, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009277505995834993, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 282, - "tp_rate": 0.0009277505995834993, - "truth_threshold": 52.480000000000004 - }, - { - "f1": 0.0018275166152814572, - "fn": 303683, - "fn_rate": 0.9990854089833893, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009145910166106836, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 278, - "tp_rate": 0.0009145910166106836, - "truth_threshold": 52.5 - }, - { - "f1": 0.001807807097121971, - "fn": 303686, - "fn_rate": 0.999095278670619, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0009047213293810719, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 275, - "tp_rate": 0.0009047213293810719, - "truth_threshold": 52.52 - }, - { - "f1": 0.001788109074653554, - "fn": 303689, - "fn_rate": 0.9991051483578486, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008948516421514603, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 272, - "tp_rate": 0.0008948516421514603, - "truth_threshold": 52.54 - }, - { - "f1": 0.0017618365173488306, - "fn": 303693, - "fn_rate": 0.9991183079408213, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008816920591786446, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 268, - "tp_rate": 0.0008816920591786446, - "truth_threshold": 52.58 - }, - { - "f1": 0.0017289891658777742, - "fn": 303698, - "fn_rate": 0.9991347574195374, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008652425804626251, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 263, - "tp_rate": 0.0008652425804626251, - "truth_threshold": 52.6 - }, - { - "f1": 0.001715852239483009, - "fn": 303700, - "fn_rate": 0.9991413372110238, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008586627889762173, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 261, - "tp_rate": 0.0008586627889762173, - "truth_threshold": 52.620000000000005 - }, - { - "f1": 0.0017092893300900663, - "fn": 303701, - "fn_rate": 0.999144627106767, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008553728932330135, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 260, - "tp_rate": 0.0008553728932330135, - "truth_threshold": 52.64 - }, - { - "f1": 0.0016764404239093275, - "fn": 303706, - "fn_rate": 0.999161076585483, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000838923414516994, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 255, - "tp_rate": 0.000838923414516994, - "truth_threshold": 52.660000000000004 - }, - { - "f1": 0.001663302806576949, - "fn": 303708, - "fn_rate": 0.9991676563769694, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008323436230305861, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 253, - "tp_rate": 0.0008323436230305861, - "truth_threshold": 52.68 - }, - { - "f1": 0.0016567393791171946, - "fn": 303709, - "fn_rate": 0.9991709462727126, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008290537272873823, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 252, - "tp_rate": 0.0008290537272873823, - "truth_threshold": 52.7 - }, - { - "f1": 0.0016501650165016502, - "fn": 303710, - "fn_rate": 0.9991742361684558, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008257638315441783, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 251, - "tp_rate": 0.0008257638315441783, - "truth_threshold": 52.72 - }, - { - "f1": 0.0016370270536800236, - "fn": 303712, - "fn_rate": 0.9991808159599422, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008191840400577706, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 249, - "tp_rate": 0.0008191840400577706, - "truth_threshold": 52.76 - }, - { - "f1": 0.0016238889181086624, - "fn": 303714, - "fn_rate": 0.9991873957514287, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008126042485713628, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 247, - "tp_rate": 0.0008126042485713628, - "truth_threshold": 52.78 - }, - { - "f1": 0.0016173251020689928, - "fn": 303715, - "fn_rate": 0.9991906856471718, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0008093143528281588, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 246, - "tp_rate": 0.0008093143528281588, - "truth_threshold": 52.86 - }, - { - "f1": 0.001538491883469102, - "fn": 303727, - "fn_rate": 0.9992301643960902, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007698356039097121, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 234, - "tp_rate": 0.0007698356039097121, - "truth_threshold": 52.9 - }, - { - "f1": 0.0015056379236661297, - "fn": 303732, - "fn_rate": 0.9992466138748063, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007533861251936926, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 229, - "tp_rate": 0.0007533861251936926, - "truth_threshold": 52.92 - }, - { - "f1": 0.0014990729417334017, - "fn": 303733, - "fn_rate": 0.9992499037705496, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007500962294504887, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 228, - "tp_rate": 0.0007500962294504887, - "truth_threshold": 52.96 - }, - { - "f1": 0.001485932948919411, - "fn": 303735, - "fn_rate": 0.9992564835620359, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000743516437964081, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 226, - "tp_rate": 0.000743516437964081, - "truth_threshold": 52.980000000000004 - }, - { - "f1": 0.001466217815532704, - "fn": 303738, - "fn_rate": 0.9992663532492655, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007336467507344692, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 223, - "tp_rate": 0.0007336467507344692, - "truth_threshold": 53.02 - }, - { - "f1": 0.0014596524449178453, - "fn": 303739, - "fn_rate": 0.9992696431450088, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007303568549912653, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 222, - "tp_rate": 0.0007303568549912653, - "truth_threshold": 53.04 - }, - { - "f1": 0.0014530774339047018, - "fn": 303740, - "fn_rate": 0.9992729330407519, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007270669592480615, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 221, - "tp_rate": 0.0007270669592480615, - "truth_threshold": 53.08 - }, - { - "f1": 0.0014333712497287773, - "fn": 303743, - "fn_rate": 0.9992828027279815, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007171972720184497, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 218, - "tp_rate": 0.0007171972720184497, - "truth_threshold": 53.1 - }, - { - "f1": 0.0014005141793841682, - "fn": 303748, - "fn_rate": 0.9992992522066976, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0007007477933024302, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 213, - "tp_rate": 0.0007007477933024302, - "truth_threshold": 53.14 - }, - { - "f1": 0.0013939481609089594, - "fn": 303749, - "fn_rate": 0.9993025421024407, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006974578975592263, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 212, - "tp_rate": 0.0006974578975592263, - "truth_threshold": 53.160000000000004 - }, - { - "f1": 0.0013808067856790611, - "fn": 303751, - "fn_rate": 0.9993091218939272, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006908781060728185, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 210, - "tp_rate": 0.0006908781060728185, - "truth_threshold": 53.18 - }, - { - "f1": 0.0013742315152710655, - "fn": 303752, - "fn_rate": 0.9993124117896703, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006875882103296147, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 209, - "tp_rate": 0.0006875882103296147, - "truth_threshold": 53.2 - }, - { - "f1": 0.0013610899239893744, - "fn": 303754, - "fn_rate": 0.9993189915811568, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006810084188432068, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 207, - "tp_rate": 0.0006810084188432068, - "truth_threshold": 53.28 - }, - { - "f1": 0.0013545235167638724, - "fn": 303755, - "fn_rate": 0.9993222814768999, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000677718523100003, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 206, - "tp_rate": 0.000677718523100003, - "truth_threshold": 53.300000000000004 - }, - { - "f1": 0.0013150973172014729, - "fn": 303761, - "fn_rate": 0.9993420208513593, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006579791486407795, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 200, - "tp_rate": 0.0006579791486407795, - "truth_threshold": 53.32 - }, - { - "f1": 0.0013085218306154655, - "fn": 303762, - "fn_rate": 0.9993453107471024, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006546892528975757, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 199, - "tp_rate": 0.0006546892528975757, - "truth_threshold": 53.34 - }, - { - "f1": 0.0012953793751931562, - "fn": 303764, - "fn_rate": 0.9993518905385889, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006481094614111679, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 197, - "tp_rate": 0.0006481094614111679, - "truth_threshold": 53.36 - }, - { - "f1": 0.0012888123199936874, - "fn": 303765, - "fn_rate": 0.999355180434332, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000644819565667964, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 196, - "tp_rate": 0.000644819565667964, - "truth_threshold": 53.38 - }, - { - "f1": 0.0012822367469324952, - "fn": 303766, - "fn_rate": 0.9993584703300752, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00064152966992476, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 195, - "tp_rate": 0.00064152966992476, - "truth_threshold": 53.4 - }, - { - "f1": 0.0012756695621297105, - "fn": 303767, - "fn_rate": 0.9993617602258185, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006382397741815562, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 194, - "tp_rate": 0.0006382397741815562, - "truth_threshold": 53.44 - }, - { - "f1": 0.001269093945830073, - "fn": 303768, - "fn_rate": 0.9993650501215616, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006349498784383523, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 193, - "tp_rate": 0.0006349498784383523, - "truth_threshold": 53.46 - }, - { - "f1": 0.00125595097188248, - "fn": 303770, - "fn_rate": 0.9993716299130481, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006283700869519445, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 191, - "tp_rate": 0.0006283700869519445, - "truth_threshold": 53.58 - }, - { - "f1": 0.0012493835278645405, - "fn": 303771, - "fn_rate": 0.9993749198087912, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006250801912087405, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 190, - "tp_rate": 0.0006250801912087405, - "truth_threshold": 53.660000000000004 - }, - { - "f1": 0.0012362402514565277, - "fn": 303773, - "fn_rate": 0.9993814996002777, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006185003997223328, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 188, - "tp_rate": 0.0006185003997223328, - "truth_threshold": 53.68 - }, - { - "f1": 0.0012165210129345774, - "fn": 303776, - "fn_rate": 0.9993913692875073, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006086307124927212, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 185, - "tp_rate": 0.0006086307124927212, - "truth_threshold": 53.72 - }, - { - "f1": 0.0012099531800725972, - "fn": 303777, - "fn_rate": 0.9993946591832504, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006053408167495172, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 184, - "tp_rate": 0.0006053408167495172, - "truth_threshold": 53.76 - }, - { - "f1": 0.0012033773475722026, - "fn": 303778, - "fn_rate": 0.9993979490789937, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0006020509210063133, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 183, - "tp_rate": 0.0006020509210063133, - "truth_threshold": 53.78 - }, - { - "f1": 0.0011968093850898594, - "fn": 303779, - "fn_rate": 0.9994012389747369, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999999999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005987610252631094, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 182, - "tp_rate": 0.0005987610252631094, - "truth_threshold": 53.800000000000004 - }, - { - "f1": 0.0011705212765257876, - "fn": 303783, - "fn_rate": 0.9994143985577097, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005856014422902938, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 178, - "tp_rate": 0.0005856014422902938, - "truth_threshold": 53.84 - }, - { - "f1": 0.0011442324764741856, - "fn": 303787, - "fn_rate": 0.9994275581406825, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005724418593174782, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 174, - "tp_rate": 0.0005724418593174782, - "truth_threshold": 53.9 - }, - { - "f1": 0.0011113668497024299, - "fn": 303792, - "fn_rate": 0.9994440076193986, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005559923806014587, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 169, - "tp_rate": 0.0005559923806014587, - "truth_threshold": 53.92 - }, - { - "f1": 0.0010982218013468013, - "fn": 303794, - "fn_rate": 0.999450587410885, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005494125891150509, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 167, - "tp_rate": 0.0005494125891150509, - "truth_threshold": 53.980000000000004 - }, - { - "f1": 0.0010587856189292455, - "fn": 303800, - "fn_rate": 0.9994703267853442, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005296732146558275, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 161, - "tp_rate": 0.0005296732146558275, - "truth_threshold": 54 - }, - { - "f1": 0.0010456398789951335, - "fn": 303802, - "fn_rate": 0.9994769065768305, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005230934231694197, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 159, - "tp_rate": 0.0005230934231694197, - "truth_threshold": 54.02 - }, - { - "f1": 0.0010062016217602609, - "fn": 303808, - "fn_rate": 0.9994966459512898, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0005033540487101964, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 153, - "tp_rate": 0.0005033540487101964, - "truth_threshold": 54.06 - }, - { - "f1": 0.0009930551901930868, - "fn": 303810, - "fn_rate": 0.9995032257427762, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004967742572237886, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 151, - "tp_rate": 0.0004967742572237886, - "truth_threshold": 54.08 - }, - { - "f1": 0.0009864851533984414, - "fn": 303811, - "fn_rate": 0.9995065156385194, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004934843614805847, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 150, - "tp_rate": 0.0004934843614805847, - "truth_threshold": 54.14 - }, - { - "f1": 0.0009733384192457942, - "fn": 303813, - "fn_rate": 0.9995130954300058, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004869045699941769, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 148, - "tp_rate": 0.0004869045699941769, - "truth_threshold": 54.2 - }, - { - "f1": 0.0009667618083049443, - "fn": 303814, - "fn_rate": 0.999516385325749, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000483614674250973, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 147, - "tp_rate": 0.000483614674250973, - "truth_threshold": 54.26 - }, - { - "f1": 0.0009601915121700985, - "fn": 303815, - "fn_rate": 0.9995196752214922, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00048032477850776906, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 146, - "tp_rate": 0.00048032477850776906, - "truth_threshold": 54.28 - }, - { - "f1": 0.0009536148579771527, - "fn": 303816, - "fn_rate": 0.9995229651172355, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004770348827645652, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 145, - "tp_rate": 0.0004770348827645652, - "truth_threshold": 54.32 - }, - { - "f1": 0.0009470444321679426, - "fn": 303817, - "fn_rate": 0.9995262550129786, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004737449870213613, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 144, - "tp_rate": 0.0004737449870213613, - "truth_threshold": 54.36 - }, - { - "f1": 0.0009207497533706018, - "fn": 303821, - "fn_rate": 0.9995394145959514, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004605854040485457, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 140, - "tp_rate": 0.0004605854040485457, - "truth_threshold": 54.4 - }, - { - "f1": 0.0008944543828264759, - "fn": 303825, - "fn_rate": 0.9995525741789243, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00044742582107573013, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 136, - "tp_rate": 0.00044742582107573013, - "truth_threshold": 54.42 - }, - { - "f1": 0.0008813064381408381, - "fn": 303827, - "fn_rate": 0.9995591539704107, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004408460295893223, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 134, - "tp_rate": 0.0004408460295893223, - "truth_threshold": 54.5 - }, - { - "f1": 0.0008747295244233691, - "fn": 303828, - "fn_rate": 0.9995624438661539, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004375561338461184, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 133, - "tp_rate": 0.0004375561338461184, - "truth_threshold": 54.58 - }, - { - "f1": 0.0008681583205082672, - "fn": 303829, - "fn_rate": 0.9995657337618971, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004342662381029145, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 132, - "tp_rate": 0.0004342662381029145, - "truth_threshold": 54.6 - }, - { - "f1": 0.0008615813635347197, - "fn": 303830, - "fn_rate": 0.9995690236576403, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00043097634235971064, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 131, - "tp_rate": 0.00043097634235971064, - "truth_threshold": 54.7 - }, - { - "f1": 0.0008418615663886769, - "fn": 303833, - "fn_rate": 0.9995788933448699, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0004211066551300989, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 128, - "tp_rate": 0.0004211066551300989, - "truth_threshold": 54.74 - }, - { - "f1": 0.0008352845229012654, - "fn": 303834, - "fn_rate": 0.9995821832406131, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00041781675938689505, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 127, - "tp_rate": 0.00041781675938689505, - "truth_threshold": 54.76 - }, - { - "f1": 0.0008221358431496353, - "fn": 303836, - "fn_rate": 0.9995887630320995, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00041123696790048723, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 125, - "tp_rate": 0.00041123696790048723, - "truth_threshold": 54.78 - }, - { - "f1": 0.0008024151380219809, - "fn": 303839, - "fn_rate": 0.9995986327193291, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00040136728067087556, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 122, - "tp_rate": 0.00040136728067087556, - "truth_threshold": 54.800000000000004 - }, - { - "f1": 0.000762967152948605, - "fn": 303845, - "fn_rate": 0.9996183720937883, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00038162790621165216, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 116, - "tp_rate": 0.00038162790621165216, - "truth_threshold": 54.88 - }, - { - "f1": 0.0007563898499059446, - "fn": 303846, - "fn_rate": 0.9996216619895315, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00037833801046844825, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 115, - "tp_rate": 0.00037833801046844825, - "truth_threshold": 54.9 - }, - { - "f1": 0.0007169401782484297, - "fn": 303852, - "fn_rate": 0.9996414013639908, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00035859863600922484, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 109, - "tp_rate": 0.00035859863600922484, - "truth_threshold": 54.980000000000004 - }, - { - "f1": 0.0007103674178144362, - "fn": 303853, - "fn_rate": 0.999644691259734, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000355308740266021, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 108, - "tp_rate": 0.000355308740266021, - "truth_threshold": 55.02 - }, - { - "f1": 0.0007037899417235618, - "fn": 303854, - "fn_rate": 0.9996479811554771, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003520188445228171, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 107, - "tp_rate": 0.0003520188445228171, - "truth_threshold": 55.18 - }, - { - "f1": 0.0006972170515611743, - "fn": 303855, - "fn_rate": 0.9996512710512204, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00034872894877961317, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 106, - "tp_rate": 0.00034872894877961317, - "truth_threshold": 55.2 - }, - { - "f1": 0.0006906395322068235, - "fn": 303856, - "fn_rate": 0.9996545609469636, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00034543905303640926, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 105, - "tp_rate": 0.00034543905303640926, - "truth_threshold": 55.24 - }, - { - "f1": 0.0006840665123131972, - "fn": 303857, - "fn_rate": 0.9996578508427068, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003421491572932054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 104, - "tp_rate": 0.0003421491572932054, - "truth_threshold": 55.26 - }, - { - "f1": 0.0006774889496948011, - "fn": 303858, - "fn_rate": 0.99966114073845, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003388592615500015, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 103, - "tp_rate": 0.0003388592615500015, - "truth_threshold": 55.42 - }, - { - "f1": 0.0006709158000670916, - "fn": 303859, - "fn_rate": 0.9996644306341932, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003355693658067976, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 102, - "tp_rate": 0.0003355693658067976, - "truth_threshold": 55.46 - }, - { - "f1": 0.0006511872656712491, - "fn": 303862, - "fn_rate": 0.9996743003214228, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003256996785771859, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 99, - "tp_rate": 0.0003256996785771859, - "truth_threshold": 55.5 - }, - { - "f1": 0.0006446138565668392, - "fn": 303863, - "fn_rate": 0.9996775902171661, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000322409782833982, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 98, - "tp_rate": 0.000322409782833982, - "truth_threshold": 55.64 - }, - { - "f1": 0.0006314626253058647, - "fn": 303865, - "fn_rate": 0.9996841700086524, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003158299913475742, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 96, - "tp_rate": 0.0003158299913475742, - "truth_threshold": 55.74 - }, - { - "f1": 0.0006248848896255953, - "fn": 303866, - "fn_rate": 0.9996874599043957, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00031254009560437027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 95, - "tp_rate": 0.00031254009560437027, - "truth_threshold": 55.78 - }, - { - "f1": 0.0006051596437451488, - "fn": 303869, - "fn_rate": 0.9996973295916253, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0003026704083747586, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 92, - "tp_rate": 0.0003026704083747586, - "truth_threshold": 55.800000000000004 - }, - { - "f1": 0.0005985818215305277, - "fn": 303870, - "fn_rate": 0.9997006194873684, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002993805126315547, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 91, - "tp_rate": 0.0002993805126315547, - "truth_threshold": 55.82 - }, - { - "f1": 0.0005854300279559283, - "fn": 303872, - "fn_rate": 0.9997071992788549, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002928007211451469, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 89, - "tp_rate": 0.0002928007211451469, - "truth_threshold": 55.84 - }, - { - "f1": 0.0005722780613587328, - "fn": 303874, - "fn_rate": 0.9997137790703413, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002862209296587391, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 87, - "tp_rate": 0.0002862209296587391, - "truth_threshold": 55.92 - }, - { - "f1": 0.0005657038737559448, - "fn": 303875, - "fn_rate": 0.9997170689660845, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002829310339155352, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 86, - "tp_rate": 0.0002829310339155352, - "truth_threshold": 55.94 - }, - { - "f1": 0.0005591259217355268, - "fn": 303876, - "fn_rate": 0.9997203588618276, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00027964113817233134, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 85, - "tp_rate": 0.00027964113817233134, - "truth_threshold": 56.02 - }, - { - "f1": 0.0005459736090828959, - "fn": 303878, - "fn_rate": 0.9997269386533141, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002730613466859235, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 83, - "tp_rate": 0.0002730613466859235, - "truth_threshold": 56.08 - }, - { - "f1": 0.0005393991619578874, - "fn": 303879, - "fn_rate": 0.9997302285490572, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002697714509427196, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 82, - "tp_rate": 0.0002697714509427196, - "truth_threshold": 56.1 - }, - { - "f1": 0.0005196684646757005, - "fn": 303882, - "fn_rate": 0.9997400982362868, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00025990176371310794, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 79, - "tp_rate": 0.00025990176371310794, - "truth_threshold": 56.120000000000005 - }, - { - "f1": 0.00051309375801709, - "fn": 303883, - "fn_rate": 0.9997433881320301, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000256611867969904, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 78, - "tp_rate": 0.000256611867969904, - "truth_threshold": 56.14 - }, - { - "f1": 0.0005065156329143068, - "fn": 303884, - "fn_rate": 0.9997466780277733, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0002533219722267001, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 77, - "tp_rate": 0.0002533219722267001, - "truth_threshold": 56.28 - }, - { - "f1": 0.0004999407964846268, - "fn": 303885, - "fn_rate": 0.9997499679235166, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00025003207648349626, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 76, - "tp_rate": 0.00025003207648349626, - "truth_threshold": 56.300000000000004 - }, - { - "f1": 0.0004933626281098291, - "fn": 303886, - "fn_rate": 0.9997532578192597, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00024674218074029235, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 75, - "tp_rate": 0.00024674218074029235, - "truth_threshold": 56.32 - }, - { - "f1": 0.00048678766190623417, - "fn": 303887, - "fn_rate": 0.9997565477150029, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00024345228499708844, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 74, - "tp_rate": 0.00024345228499708844, - "truth_threshold": 56.4 - }, - { - "f1": 0.0004802094502588526, - "fn": 303888, - "fn_rate": 0.9997598376107462, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00024016238925388453, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 73, - "tp_rate": 0.00024016238925388453, - "truth_threshold": 56.42 - }, - { - "f1": 0.0004604808735980002, - "fn": 303891, - "fn_rate": 0.9997697072979758, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00023029270202427286, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 70, - "tp_rate": 0.00023029270202427286, - "truth_threshold": 56.54 - }, - { - "f1": 0.00045390257540374305, - "fn": 303892, - "fn_rate": 0.9997729971937189, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00022700280628106895, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 69, - "tp_rate": 0.00022700280628106895, - "truth_threshold": 56.6 - }, - { - "f1": 0.00044732721986132855, - "fn": 303893, - "fn_rate": 0.9997762870894621, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00022371291053786507, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 68, - "tp_rate": 0.00022371291053786507, - "truth_threshold": 56.660000000000004 - }, - { - "f1": 0.0004407488783927796, - "fn": 303894, - "fn_rate": 0.9997795769852054, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00022042301479466116, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 67, - "tp_rate": 0.00022042301479466116, - "truth_threshold": 56.72 - }, - { - "f1": 0.0004341733930650668, - "fn": 303895, - "fn_rate": 0.9997828668809485, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00021713311905145725, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 66, - "tp_rate": 0.00021713311905145725, - "truth_threshold": 56.82 - }, - { - "f1": 0.0004275950083216567, - "fn": 303896, - "fn_rate": 0.9997861567766917, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00021384322330825336, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 65, - "tp_rate": 0.00021384322330825336, - "truth_threshold": 57 - }, - { - "f1": 0.00042101939320579953, - "fn": 303897, - "fn_rate": 0.999789446672435, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00021055332756504945, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 64, - "tp_rate": 0.00021055332756504945, - "truth_threshold": 57.08 - }, - { - "f1": 0.0004144409651869589, - "fn": 303898, - "fn_rate": 0.9997927365681781, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00020726343182184557, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 63, - "tp_rate": 0.00020726343182184557, - "truth_threshold": 57.120000000000005 - }, - { - "f1": 0.0004078652202801113, - "fn": 303899, - "fn_rate": 0.9997960264639214, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00020397353607864166, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 62, - "tp_rate": 0.00020397353607864166, - "truth_threshold": 57.14 - }, - { - "f1": 0.0004012867489852708, - "fn": 303900, - "fn_rate": 0.9997993163596646, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00020068364033543778, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 61, - "tp_rate": 0.00020068364033543778, - "truth_threshold": 57.2 - }, - { - "f1": 0.00039471087428458656, - "fn": 303901, - "fn_rate": 0.9998026062554077, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00019739374459223387, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 60, - "tp_rate": 0.00019739374459223387, - "truth_threshold": 57.42 - }, - { - "f1": 0.0003552467978448361, - "fn": 303907, - "fn_rate": 0.9998223456298669, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001776543701330105, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 54, - "tp_rate": 0.0001776543701330105, - "truth_threshold": 57.46 - }, - { - "f1": 0.0003486681534403021, - "fn": 303908, - "fn_rate": 0.9998256355256102, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00017436447438980658, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 53, - "tp_rate": 0.00017436447438980658, - "truth_threshold": 57.56 - }, - { - "f1": 0.00034209175953580777, - "fn": 303909, - "fn_rate": 0.9998289254213534, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001710745786466027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 52, - "tp_rate": 0.0001710745786466027, - "truth_threshold": 57.6 - }, - { - "f1": 0.0003026256060735643, - "fn": 303915, - "fn_rate": 0.9998486647958126, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001513352041873793, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 46, - "tp_rate": 0.0001513352041873793, - "truth_threshold": 57.660000000000004 - }, - { - "f1": 0.000296046788550226, - "fn": 303916, - "fn_rate": 0.9998519546915559, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00014804530844417542, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 45, - "tp_rate": 0.00014804530844417542, - "truth_threshold": 57.82 - }, - { - "f1": 0.00028946987539637636, - "fn": 303917, - "fn_rate": 0.999855244587299, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001447554127009715, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 44, - "tp_rate": 0.0001447554127009715, - "truth_threshold": 57.86 - }, - { - "f1": 0.00028289101459191325, - "fn": 303918, - "fn_rate": 0.9998585344830422, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001414655169577676, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 43, - "tp_rate": 0.0001414655169577676, - "truth_threshold": 57.980000000000004 - }, - { - "f1": 0.00027631397161860776, - "fn": 303919, - "fn_rate": 0.9998618243787855, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00013817562121456371, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 42, - "tp_rate": 0.00013817562121456371, - "truth_threshold": 58.120000000000005 - }, - { - "f1": 0.00026973506753245045, - "fn": 303920, - "fn_rate": 0.9998651142745286, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0001348857254713598, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 41, - "tp_rate": 0.0001348857254713598, - "truth_threshold": 58.34 - }, - { - "f1": 0.0002631578947368421, - "fn": 303921, - "fn_rate": 0.9998684041702719, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00013159582972815592, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 40, - "tp_rate": 0.00013159582972815592, - "truth_threshold": 58.44 - }, - { - "f1": 0.00025657894736842105, - "fn": 303922, - "fn_rate": 0.9998716940660151, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000128305933984952, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 39, - "tp_rate": 0.000128305933984952, - "truth_threshold": 58.7 - }, - { - "f1": 0.00023684522164765326, - "fn": 303925, - "fn_rate": 0.9998815637532447, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00011843624675534032, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36, - "tp_rate": 0.00011843624675534032, - "truth_threshold": 58.84 - }, - { - "f1": 0.00023026618771299624, - "fn": 303926, - "fn_rate": 0.9998848536489878, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00011514635101213643, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35, - "tp_rate": 0.00011514635101213643, - "truth_threshold": 58.86 - }, - { - "f1": 0.0002236886254333967, - "fn": 303927, - "fn_rate": 0.9998881435447311, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00011185645526893253, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34, - "tp_rate": 0.00011185645526893253, - "truth_threshold": 58.980000000000004 - }, - { - "f1": 0.0002171095482147674, - "fn": 303928, - "fn_rate": 0.9998914334404743, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00010856655952572862, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33, - "tp_rate": 0.00010856655952572862, - "truth_threshold": 59.22 - }, - { - "f1": 0.00021053185610147635, - "fn": 303929, - "fn_rate": 0.9998947233362174, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00010527666378252473, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32, - "tp_rate": 0.00010527666378252473, - "truth_threshold": 59.44 - }, - { - "f1": 0.00020395273559830522, - "fn": 303930, - "fn_rate": 0.9998980132319607, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00010198676803932083, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31, - "tp_rate": 0.00010198676803932083, - "truth_threshold": 59.46 - }, - { - "f1": 0.0001973749136484753, - "fn": 303931, - "fn_rate": 0.9999013031277039, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00009869687229611694, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30, - "tp_rate": 0.00009869687229611694, - "truth_threshold": 59.52 - }, - { - "f1": 0.00019079574986019277, - "fn": 303932, - "fn_rate": 0.9999045930234471, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00009540697655291304, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29, - "tp_rate": 0.00009540697655291304, - "truth_threshold": 59.88 - }, - { - "f1": 0.0001842177980709765, - "fn": 303933, - "fn_rate": 0.9999078829191903, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00009211708080970914, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28, - "tp_rate": 0.00009211708080970914, - "truth_threshold": 60 - }, - { - "f1": 0.00017763859099701303, - "fn": 303934, - "fn_rate": 0.9999111728149335, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00008882718506650525, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27, - "tp_rate": 0.00008882718506650525, - "truth_threshold": 60.1 - }, - { - "f1": 0.00013816607562289874, - "fn": 303940, - "fn_rate": 0.9999309121893927, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00006908781060728186, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21, - "tp_rate": 0.00006908781060728186, - "truth_threshold": 60.14 - }, - { - "f1": 0.00013158760444766102, - "fn": 303941, - "fn_rate": 0.999934202085136, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00006579791486407796, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20, - "tp_rate": 0.00006579791486407796, - "truth_threshold": 60.26 - }, - { - "f1": 0.00012500822422527799, - "fn": 303942, - "fn_rate": 0.9999374919808791, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00006250801912087407, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19, - "tp_rate": 0.00006250801912087407, - "truth_threshold": 60.34 - }, - { - "f1": 0.00011842962319641553, - "fn": 303943, - "fn_rate": 0.9999407818766223, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00005921812337767016, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18, - "tp_rate": 0.00005921812337767016, - "truth_threshold": 60.42 - }, - { - "f1": 0.00011185019968550356, - "fn": 303944, - "fn_rate": 0.9999440717723656, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000055928227634466266, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17, - "tp_rate": 0.000055928227634466266, - "truth_threshold": 60.44 - }, - { - "f1": 0.00010527146880016843, - "fn": 303945, - "fn_rate": 0.9999473616681087, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000052638331891262364, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16, - "tp_rate": 0.000052638331891262364, - "truth_threshold": 60.54 - }, - { - "f1": 0.0000986920020001579, - "fn": 303946, - "fn_rate": 0.999950651563852, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00004934843614805847, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15, - "tp_rate": 0.00004934843614805847, - "truth_threshold": 60.7 - }, - { - "f1": 0.00009211314125550212, - "fn": 303947, - "fn_rate": 0.9999539414595952, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00004605854040485457, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14, - "tp_rate": 0.00004605854040485457, - "truth_threshold": 60.78 - }, - { - "f1": 0.00008553363116582339, - "fn": 303948, - "fn_rate": 0.9999572313553383, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000042768644661650676, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13, - "tp_rate": 0.000042768644661650676, - "truth_threshold": 60.92 - }, - { - "f1": 0.00007895464055899886, - "fn": 303949, - "fn_rate": 0.9999605212510816, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00003947874891844677, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12, - "tp_rate": 0.00003947874891844677, - "truth_threshold": 61.26 - }, - { - "f1": 0.00007237508717908228, - "fn": 303950, - "fn_rate": 0.9999638111468248, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00003618885317524288, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11, - "tp_rate": 0.00003618885317524288, - "truth_threshold": 61.36 - }, - { - "f1": 0.00006579596670724084, - "fn": 303951, - "fn_rate": 0.9999671010425679, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00003289895743203898, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10, - "tp_rate": 0.00003289895743203898, - "truth_threshold": 61.46 - }, - { - "f1": 0.00005921637003651676, - "fn": 303952, - "fn_rate": 0.9999703909383112, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00002960906168883508, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9, - "tp_rate": 0.00002960906168883508, - "truth_threshold": 61.480000000000004 - }, - { - "f1": 0.000052637119696810194, - "fn": 303953, - "fn_rate": 0.9999736808340544, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000026319165945631182, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8, - "tp_rate": 0.000026319165945631182, - "truth_threshold": 61.5 - }, - { - "f1": 0.00004605747973470892, - "fn": 303954, - "fn_rate": 0.9999769707297975, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000023029270202427286, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7, - "tp_rate": 0.000023029270202427286, - "truth_threshold": 61.54 - }, - { - "f1": 0.0000394780995242889, - "fn": 303955, - "fn_rate": 0.9999802606255408, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000019739374459223386, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6, - "tp_rate": 0.000019739374459223386, - "truth_threshold": 61.6 - }, - { - "f1": 0.00003289841627024075, - "fn": 303956, - "fn_rate": 0.999983550521284, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.00001644947871601949, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5, - "tp_rate": 0.00001644947871601949, - "truth_threshold": 62 - }, - { - "f1": 0.0000263189061862589, - "fn": 303957, - "fn_rate": 0.9999868404170272, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000013159582972815591, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4, - "tp_rate": 0.000013159582972815591, - "truth_threshold": 62.2 - }, - { - "f1": 0.000019739179639694174, - "fn": 303958, - "fn_rate": 0.9999901303127704, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.000009869687229611693, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 3, - "tp_rate": 0.000009869687229611693, - "truth_threshold": 62.52 - }, - { - "f1": 0.000013159539679302018, - "fn": 303959, - "fn_rate": 0.9999934202085136, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0000065797914864077955, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 2, - "tp_rate": 0.0000065797914864077955, - "truth_threshold": 63.4 - }, - { - "f1": 0.000006579769839651009, - "fn": 303960, - "fn_rate": 0.9999967101042568, - "fp": 0, - "fp_rate": 0, - "match_probability": 1, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0000032898957432038977, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 1, - "tp_rate": 0.0000032898957432038977, - "truth_threshold": 65.22 - }, - { - "f1": 0.39733748088785786, - "fn": 228598, - "fn_rate": 0.7520635871049246, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999780610216, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997877392907839, - "recall": 0.24793641289507534, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75363, - "tp_rate": 0.24793641289507534, - "truth_threshold": 22.12 - }, - { - "f1": 0.39686097472219733, - "fn": 228711, - "fn_rate": 0.7524353453239067, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997836306193, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997874206148859, - "recall": 0.24756465467609332, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75250, - "tp_rate": 0.24756465467609332, - "truth_threshold": 22.14 - }, - { - "f1": 0.39630276395827946, - "fn": 228843, - "fn_rate": 0.7528696115620096, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997866094399, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997870471424388, - "recall": 0.2471303884379904, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75118, - "tp_rate": 0.2471303884379904, - "truth_threshold": 22.16 - }, - { - "f1": 0.3958542222972759, - "fn": 228949, - "fn_rate": 0.7532183405107892, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997895472501, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997867462813883, - "recall": 0.2467816594892108, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75012, - "tp_rate": 0.2467816594892108, - "truth_threshold": 22.18 - }, - { - "f1": 0.39523072943337856, - "fn": 229096, - "fn_rate": 0.7537019551850402, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997924446148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997863276398552, - "recall": 0.24629804481495982, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74865, - "tp_rate": 0.24629804481495982, - "truth_threshold": 22.2 - }, - { - "f1": 0.3948377285160582, - "fn": 229189, - "fn_rate": 0.7540079154891581, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997953020905, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997860619350698, - "recall": 0.24599208451084184, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74772, - "tp_rate": 0.24599208451084184, - "truth_threshold": 22.22 - }, - { - "f1": 0.394218731015684, - "fn": 229335, - "fn_rate": 0.7544882402676659, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997981202265, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999785643471504, - "recall": 0.24551175973233408, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74626, - "tp_rate": 0.24551175973233408, - "truth_threshold": 22.240000000000002 - }, - { - "f1": 0.3937382757800735, - "fn": 229448, - "fn_rate": 0.754859998486648, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998008995644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997853184666371, - "recall": 0.24514000151335205, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74513, - "tp_rate": 0.24514000151335205, - "truth_threshold": 22.26 - }, - { - "f1": 0.3933785055126267, - "fn": 229533, - "fn_rate": 0.7551396396248203, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998036406385, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997850733437215, - "recall": 0.24486036037517972, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74428, - "tp_rate": 0.24486036037517972, - "truth_threshold": 22.28 - }, - { - "f1": 0.39291454310909973, - "fn": 229642, - "fn_rate": 0.7554982382608295, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998063439753, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997847581892783, - "recall": 0.2445017617391705, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74319, - "tp_rate": 0.2445017617391705, - "truth_threshold": 22.3 - }, - { - "f1": 0.39246939369100187, - "fn": 229747, - "fn_rate": 0.7558436773138659, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998090100946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997844537249091, - "recall": 0.24415632268613408, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74214, - "tp_rate": 0.24415632268613408, - "truth_threshold": 22.32 - }, - { - "f1": 0.39207295463081, - "fn": 229840, - "fn_rate": 0.7561496376179839, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998116395085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997841833362558, - "recall": 0.2438503623820161, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 74121, - "tp_rate": 0.2438503623820161, - "truth_threshold": 22.34 - }, - { - "f1": 0.3915422306414232, - "fn": 229965, - "fn_rate": 0.7565608745858844, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998142327226, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997838188401881, - "recall": 0.24343912541411564, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73996, - "tp_rate": 0.24343912541411564, - "truth_threshold": 22.36 - }, - { - "f1": 0.3910090830175097, - "fn": 230090, - "fn_rate": 0.7569721115537849, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998167902351, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997834531108314, - "recall": 0.24302788844621515, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73871, - "tp_rate": 0.24302788844621515, - "truth_threshold": 22.38 - }, - { - "f1": 0.39050321924771264, - "fn": 230209, - "fn_rate": 0.7573636091472261, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998193125376, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997831037848389, - "recall": 0.2426363908527739, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73752, - "tp_rate": 0.2426363908527739, - "truth_threshold": 22.400000000000002 - }, - { - "f1": 0.39001731927312017, - "fn": 230323, - "fn_rate": 0.7577386572619513, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998218001148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999782768077769, - "recall": 0.24226134273804864, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73638, - "tp_rate": 0.24226134273804864, - "truth_threshold": 22.42 - }, - { - "f1": 0.389559956345296, - "fn": 230430, - "fn_rate": 0.7580906761064742, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998242534449, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997824520374726, - "recall": 0.24190932389352582, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73531, - "tp_rate": 0.24190932389352582, - "truth_threshold": 22.44 - }, - { - "f1": 0.389138545022893, - "fn": 230529, - "fn_rate": 0.7584163757850514, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998266729992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997821588062302, - "recall": 0.24158362421494864, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73432, - "tp_rate": 0.24158362421494864, - "truth_threshold": 22.46 - }, - { - "f1": 0.38862089438307074, - "fn": 230650, - "fn_rate": 0.7588144531699791, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998290592429, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997817993372154, - "recall": 0.24118554683002097, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73311, - "tp_rate": 0.24118554683002097, - "truth_threshold": 22.48 - }, - { - "f1": 0.3880654791890932, - "fn": 230780, - "fn_rate": 0.7592421396165956, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998314126344, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997814118064948, - "recall": 0.24075786038340444, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73181, - "tp_rate": 0.24075786038340444, - "truth_threshold": 22.5 - }, - { - "f1": 0.3875267881771309, - "fn": 230906, - "fn_rate": 0.7596566664802392, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998337336261, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99978103488388, - "recall": 0.24034333351976075, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 73055, - "tp_rate": 0.24034333351976075, - "truth_threshold": 22.52 - }, - { - "f1": 0.38695880583075526, - "fn": 231039, - "fn_rate": 0.7600942226140853, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999836022664, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997806356083249, - "recall": 0.23990577738591465, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72922, - "tp_rate": 0.23990577738591465, - "truth_threshold": 22.54 - }, - { - "f1": 0.3864997133697106, - "fn": 231146, - "fn_rate": 0.7604462414586082, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998382801881, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997803133281158, - "recall": 0.23955375854139183, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72815, - "tp_rate": 0.23955375854139183, - "truth_threshold": 22.56 - }, - { - "f1": 0.38601996389508336, - "fn": 231258, - "fn_rate": 0.7608147097818471, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998405066322, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997799749721531, - "recall": 0.239185290218153, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72703, - "tp_rate": 0.239185290218153, - "truth_threshold": 22.580000000000002 - }, - { - "f1": 0.3855142048321392, - "fn": 231376, - "fn_rate": 0.761202917479545, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998427024241, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997796173606425, - "recall": 0.23879708252045492, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72585, - "tp_rate": 0.23879708252045492, - "truth_threshold": 22.6 - }, - { - "f1": 0.3849995484032069, - "fn": 231496, - "fn_rate": 0.7615977049687296, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999844867986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999779252493757, - "recall": 0.23840229503127047, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72465, - "tp_rate": 0.23840229503127047, - "truth_threshold": 22.62 - }, - { - "f1": 0.3845961716283865, - "fn": 231590, - "fn_rate": 0.7619069551685907, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999847003734, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997789658364071, - "recall": 0.2380930448314093, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72371, - "tp_rate": 0.2380930448314093, - "truth_threshold": 22.64 - }, - { - "f1": 0.3839659755449229, - "fn": 231737, - "fn_rate": 0.7623905698428417, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998491100784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997785160575858, - "recall": 0.23760943015715832, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72224, - "tp_rate": 0.23760943015715832, - "truth_threshold": 22.66 - }, - { - "f1": 0.383487994894839, - "fn": 231848, - "fn_rate": 0.7627557482703373, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998511874243, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997781752138529, - "recall": 0.23724425172966268, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72113, - "tp_rate": 0.23724425172966268, - "truth_threshold": 22.68 - }, - { - "f1": 0.3831440653174118, - "fn": 231928, - "fn_rate": 0.7630189399297936, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998532361707, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997779289094921, - "recall": 0.23698106007020636, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 72033, - "tp_rate": 0.23698106007020636, - "truth_threshold": 22.7 - }, - { - "f1": 0.38262789645907047, - "fn": 232048, - "fn_rate": 0.7634137274189781, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998552567114, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997775584256697, - "recall": 0.2365862725810219, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71913, - "tp_rate": 0.2365862725810219, - "truth_threshold": 22.72 - }, - { - "f1": 0.3821630626267357, - "fn": 232156, - "fn_rate": 0.7637690361592441, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998572494347, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997772239317191, - "recall": 0.2362309638407559, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71805, - "tp_rate": 0.2362309638407559, - "truth_threshold": 22.740000000000002 - }, - { - "f1": 0.38166349895918183, - "fn": 232272, - "fn_rate": 0.7641506640654557, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998592147237, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997768635381076, - "recall": 0.23584933593454424, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71689, - "tp_rate": 0.23584933593454424, - "truth_threshold": 22.76 - }, - { - "f1": 0.38095669264078486, - "fn": 232436, - "fn_rate": 0.7646902069673412, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998611529559, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997763520219175, - "recall": 0.23530979303265878, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71525, - "tp_rate": 0.23530979303265878, - "truth_threshold": 22.78 - }, - { - "f1": 0.3804444539162773, - "fn": 232555, - "fn_rate": 0.7650817045607825, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999863064504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997759793901039, - "recall": 0.23491829543921752, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71406, - "tp_rate": 0.23491829543921752, - "truth_threshold": 22.8 - }, - { - "f1": 0.38009059419131364, - "fn": 232637, - "fn_rate": 0.7653514760117252, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998649497351, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99977572189515, - "recall": 0.23464852398827482, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71324, - "tp_rate": 0.23464852398827482, - "truth_threshold": 22.82 - }, - { - "f1": 0.3795412262043745, - "fn": 232764, - "fn_rate": 0.765769292771112, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998668090118, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997753219215593, - "recall": 0.23423070722888792, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71197, - "tp_rate": 0.23423070722888792, - "truth_threshold": 22.84 - }, - { - "f1": 0.37905732918824087, - "fn": 232876, - "fn_rate": 0.7661377610943509, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998686426912, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997749680032629, - "recall": 0.23386223890564908, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 71085, - "tp_rate": 0.23386223890564908, - "truth_threshold": 22.86 - }, - { - "f1": 0.37863901601220384, - "fn": 232973, - "fn_rate": 0.7664568809814417, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998704511259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997746605825024, - "recall": 0.23354311901855832, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70988, - "tp_rate": 0.23354311901855832, - "truth_threshold": 22.88 - }, - { - "f1": 0.3781925081763422, - "fn": 233076, - "fn_rate": 0.7667957402429917, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998722346632, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997743332252014, - "recall": 0.23320425975700831, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70885, - "tp_rate": 0.23320425975700831, - "truth_threshold": 22.900000000000002 - }, - { - "f1": 0.37756594327437315, - "fn": 233221, - "fn_rate": 0.7672727751257563, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998739936462, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997738707671434, - "recall": 0.23272722487424374, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70740, - "tp_rate": 0.23272722487424374, - "truth_threshold": 22.92 - }, - { - "f1": 0.3771448401046394, - "fn": 233318, - "fn_rate": 0.7675918950128471, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998757284128, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997735603390934, - "recall": 0.23240810498715295, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70643, - "tp_rate": 0.23240810498715295, - "truth_threshold": 22.94 - }, - { - "f1": 0.3766941866302107, - "fn": 233422, - "fn_rate": 0.7679340441701402, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998774392962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997732265608391, - "recall": 0.23206595582985975, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70539, - "tp_rate": 0.23206595582985975, - "truth_threshold": 22.96 - }, - { - "f1": 0.3762085875150907, - "fn": 233534, - "fn_rate": 0.7683025124933791, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998791266254, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997728660051389, - "recall": 0.23169748750662092, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70427, - "tp_rate": 0.23169748750662092, - "truth_threshold": 22.98 - }, - { - "f1": 0.37562722099019424, - "fn": 233668, - "fn_rate": 0.7687433585229684, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998807907247, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997724331166707, - "recall": 0.2312566414770316, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70293, - "tp_rate": 0.2312566414770316, - "truth_threshold": 23 - }, - { - "f1": 0.3751670390523941, - "fn": 233774, - "fn_rate": 0.7690920874717481, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998824319137, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997720895118443, - "recall": 0.230907912528252, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70187, - "tp_rate": 0.230907912528252, - "truth_threshold": 23.02 - }, - { - "f1": 0.37460765598849305, - "fn": 233903, - "fn_rate": 0.7695164840226213, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998840505082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997716699489112, - "recall": 0.23048351597737868, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 70058, - "tp_rate": 0.23048351597737868, - "truth_threshold": 23.04 - }, - { - "f1": 0.37412415357131396, - "fn": 234014, - "fn_rate": 0.7698816624501169, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999885646819, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997713076912083, - "recall": 0.23011833754988303, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69947, - "tp_rate": 0.23011833754988303, - "truth_threshold": 23.06 - }, - { - "f1": 0.37365976844222826, - "fn": 234121, - "fn_rate": 0.7702336812946398, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998872211527, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997709573980761, - "recall": 0.22976631870536024, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69840, - "tp_rate": 0.22976631870536024, - "truth_threshold": 23.080000000000002 - }, - { - "f1": 0.37325405914525156, - "fn": 234214, - "fn_rate": 0.7705396415987578, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998887738123, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997706520648482, - "recall": 0.22946035840124226, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69747, - "tp_rate": 0.22946035840124226, - "truth_threshold": 23.1 - }, - { - "f1": 0.3727489775379542, - "fn": 234330, - "fn_rate": 0.7709212695049694, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999890305096, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997702700762416, - "recall": 0.2290787304950306, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69631, - "tp_rate": 0.2290787304950306, - "truth_threshold": 23.12 - }, - { - "f1": 0.37225765340273204, - "fn": 234443, - "fn_rate": 0.7712930277239515, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998918152979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997698967411626, - "recall": 0.22870697227604858, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69518, - "tp_rate": 0.22870697227604858, - "truth_threshold": 23.14 - }, - { - "f1": 0.37156877450875353, - "fn": 234601, - "fn_rate": 0.7718128312513777, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999998933047085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997693726937269, - "recall": 0.22818716874862235, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69360, - "tp_rate": 0.22818716874862235, - "truth_threshold": 23.16 - }, - { - "f1": 0.37096661825626076, - "fn": 234739, - "fn_rate": 0.7722668368639398, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999894773614, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997689130246397, - "recall": 0.2277331631360602, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 69222, - "tp_rate": 0.2277331631360602, - "truth_threshold": 23.18 - }, - { - "f1": 0.3704358920750307, - "fn": 234861, - "fn_rate": 0.7726682041446107, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999998962222966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997974361200336, - "recall": 0.22733179585538935, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 69100, - "tp_rate": 0.22733179585538935, - "truth_threshold": 23.2 - }, - { - "f1": 0.3699552771849294, - "fn": 234971, - "fn_rate": 0.7730300926763631, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999998976510348, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997971132108283, - "recall": 0.22696990732363692, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68990, - "tp_rate": 0.22696990732363692, - "truth_threshold": 23.22 - }, - { - "f1": 0.36950936271328266, - "fn": 235073, - "fn_rate": 0.7733656620421698, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999998990601031, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997968128646484, - "recall": 0.2266343379578301, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68888, - "tp_rate": 0.2266343379578301, - "truth_threshold": 23.240000000000002 - }, - { - "f1": 0.36901069891723093, - "fn": 235187, - "fn_rate": 0.7737407101568952, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999004497723, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997964761295575, - "recall": 0.22625928984310487, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68774, - "tp_rate": 0.22625928984310487, - "truth_threshold": 23.26 - }, - { - "f1": 0.3685204864801039, - "fn": 235299, - "fn_rate": 0.7741091784801339, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999018203096, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997961442134079, - "recall": 0.22589082151986603, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68662, - "tp_rate": 0.22589082151986603, - "truth_threshold": 23.28 - }, - { - "f1": 0.36794235766595795, - "fn": 235431, - "fn_rate": 0.7745434447182369, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999031719783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997957516339869, - "recall": 0.22545655528176312, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68530, - "tp_rate": 0.22545655528176312, - "truth_threshold": 23.3 - }, - { - "f1": 0.3674602705736397, - "fn": 235541, - "fn_rate": 0.7749053332499893, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999045050382, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997954233275858, - "recall": 0.2250946667500107, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68420, - "tp_rate": 0.2250946667500107, - "truth_threshold": 23.32 - }, - { - "f1": 0.36699544438714116, - "fn": 235647, - "fn_rate": 0.7752540621987689, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999058197454, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997951059594895, - "recall": 0.2247459378012311, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68314, - "tp_rate": 0.2247459378012311, - "truth_threshold": 23.34 - }, - { - "f1": 0.36649524147307444, - "fn": 235761, - "fn_rate": 0.7756291103134941, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999071163527, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997947635382766, - "recall": 0.22437088968650584, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68200, - "tp_rate": 0.22437088968650584, - "truth_threshold": 23.36 - }, - { - "f1": 0.36591567618709714, - "fn": 235893, - "fn_rate": 0.7760633765515971, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999083951091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997943656179313, - "recall": 0.22393662344840293, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 68068, - "tp_rate": 0.22393662344840293, - "truth_threshold": 23.38 - }, - { - "f1": 0.3653620710052808, - "fn": 236019, - "fn_rate": 0.7764779034152408, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999096562606, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997939843428101, - "recall": 0.22352209658475922, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 67942, - "tp_rate": 0.22352209658475922, - "truth_threshold": 23.400000000000002 - }, - { - "f1": 0.36479391481166684, - "fn": 236148, - "fn_rate": 0.776902299966114, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999109000495, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997935925221519, - "recall": 0.22309770003388593, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 67813, - "tp_rate": 0.22309770003388593, - "truth_threshold": 23.42 - }, - { - "f1": 0.3641691286869763, - "fn": 236290, - "fn_rate": 0.7773694651616491, - "fp": 14, - "fp_rate": 0.00008052039178922062, - "match_probability": 0.9999999121267147, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997931594888084, - "recall": 0.22263053483835096, - "row_count": 477830, - "tn": 173855, - "tn_rate": 0.9999194796082108, - "tp": 67671, - "tp_rate": 0.22263053483835096, - "truth_threshold": 23.44 - }, - { - "f1": 0.36362168185659915, - "fn": 236415, - "fn_rate": 0.7777807021295495, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999133364921, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998223748482785, - "recall": 0.22221929787045047, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 67546, - "tp_rate": 0.22221929787045047, - "truth_threshold": 23.46 - }, - { - "f1": 0.3632462294781845, - "fn": 236500, - "fn_rate": 0.7780603432677219, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999145296141, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998221510826553, - "recall": 0.22193965673227817, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 67461, - "tp_rate": 0.22193965673227817, - "truth_threshold": 23.48 - }, - { - "f1": 0.36268199274991514, - "fn": 236628, - "fn_rate": 0.778481449922852, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999157063101, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999821813052194, - "recall": 0.22151855007714805, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 67333, - "tp_rate": 0.22151855007714805, - "truth_threshold": 23.5 - }, - { - "f1": 0.3620344974377489, - "fn": 236775, - "fn_rate": 0.7789650645971029, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999168668061, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998214232566446, - "recall": 0.2210349354028971, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 67186, - "tp_rate": 0.2210349354028971, - "truth_threshold": 23.52 - }, - { - "f1": 0.3615170250268164, - "fn": 236892, - "fn_rate": 0.7793499823990577, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999180113253, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998211117902237, - "recall": 0.22065001760094222, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 67069, - "tp_rate": 0.22065001760094222, - "truth_threshold": 23.54 - }, - { - "f1": 0.361048806263075, - "fn": 236998, - "fn_rate": 0.7796987113478374, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999191400875, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998208286674132, - "recall": 0.2203012886521626, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66963, - "tp_rate": 0.2203012886521626, - "truth_threshold": 23.56 - }, - { - "f1": 0.3606422107409045, - "fn": 237090, - "fn_rate": 0.7800013817562121, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999202533097, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998205822107262, - "recall": 0.21999861824378786, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66871, - "tp_rate": 0.21999861824378786, - "truth_threshold": 23.580000000000002 - }, - { - "f1": 0.3601204123800327, - "fn": 237208, - "fn_rate": 0.7803895894539102, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999213512059, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998202651089643, - "recall": 0.2196104105460898, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66753, - "tp_rate": 0.2196104105460898, - "truth_threshold": 23.6 - }, - { - "f1": 0.35956287101996764, - "fn": 237334, - "fn_rate": 0.7808041163175539, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999224339869, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998199252689867, - "recall": 0.2191958836824461, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66627, - "tp_rate": 0.2191958836824461, - "truth_threshold": 23.62 - }, - { - "f1": 0.3590315266681062, - "fn": 237454, - "fn_rate": 0.7811989038067384, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999235018612, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999819600414919, - "recall": 0.21880109619326163, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66507, - "tp_rate": 0.21880109619326163, - "truth_threshold": 23.64 - }, - { - "f1": 0.35845205050385043, - "fn": 237585, - "fn_rate": 0.7816298801490981, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999245550335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998192444417666, - "recall": 0.21837011985090193, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66376, - "tp_rate": 0.21837011985090193, - "truth_threshold": 23.66 - }, - { - "f1": 0.3581008453290842, - "fn": 237664, - "fn_rate": 0.7818897819128112, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999255937067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998190290910736, - "recall": 0.2181102180871888, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66297, - "tp_rate": 0.2181102180871888, - "truth_threshold": 23.68 - }, - { - "f1": 0.35751183348823135, - "fn": 237797, - "fn_rate": 0.7823273380466573, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.99999992661808, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999818665377176, - "recall": 0.2176726619533427, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66164, - "tp_rate": 0.2176726619533427, - "truth_threshold": 23.7 - }, - { - "f1": 0.35710347958621136, - "fn": 237889, - "fn_rate": 0.7826300084550321, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999276283504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998184129289994, - "recall": 0.21736999154496794, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 66072, - "tp_rate": 0.21736999154496794, - "truth_threshold": 23.72 - }, - { - "f1": 0.3566771546271368, - "fn": 237985, - "fn_rate": 0.7829458384463797, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999286247123, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999818148754319, - "recall": 0.21705416155362037, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65976, - "tp_rate": 0.21705416155362037, - "truth_threshold": 23.740000000000002 - }, - { - "f1": 0.35615630881048693, - "fn": 238102, - "fn_rate": 0.7833307562483345, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999296073568, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998178257503302, - "recall": 0.21666924375166552, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65859, - "tp_rate": 0.21666924375166552, - "truth_threshold": 23.76 - }, - { - "f1": 0.35548582557887903, - "fn": 238253, - "fn_rate": 0.7838275305055583, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999305764732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998174071819842, - "recall": 0.21617246949444172, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65708, - "tp_rate": 0.21617246949444172, - "truth_threshold": 23.78 - }, - { - "f1": 0.3549642281174573, - "fn": 238370, - "fn_rate": 0.7842124483075131, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999315322473, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998170815359053, - "recall": 0.21578755169248687, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65591, - "tp_rate": 0.21578755169248687, - "truth_threshold": 23.8 - }, - { - "f1": 0.35452439209232833, - "fn": 238469, - "fn_rate": 0.7845381479860903, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.999999932474863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998168050806058, - "recall": 0.2154618520139097, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65492, - "tp_rate": 0.2154618520139097, - "truth_threshold": 23.82 - }, - { - "f1": 0.3541804281676719, - "fn": 238546, - "fn_rate": 0.7847914699583171, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999334045014, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998165894814067, - "recall": 0.21520853004168297, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65415, - "tp_rate": 0.21520853004168297, - "truth_threshold": 23.84 - }, - { - "f1": 0.3535439980067381, - "fn": 238689, - "fn_rate": 0.7852619250495951, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999343213413, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998161877335947, - "recall": 0.2147380749504048, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65272, - "tp_rate": 0.2147380749504048, - "truth_threshold": 23.86 - }, - { - "f1": 0.35303551594289273, - "fn": 238803, - "fn_rate": 0.7856369731643205, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999352255587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998158661961025, - "recall": 0.21436302683567957, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65158, - "tp_rate": 0.21436302683567957, - "truth_threshold": 23.88 - }, - { - "f1": 0.35261600494260725, - "fn": 238897, - "fn_rate": 0.7859462233641816, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999361173275, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998156002212797, - "recall": 0.2140537766358184, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 65064, - "tp_rate": 0.2140537766358184, - "truth_threshold": 23.900000000000002 - }, - { - "f1": 0.3522409419111429, - "fn": 238981, - "fn_rate": 0.7862225746066107, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999369968191, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998153618906942, - "recall": 0.2137774253933893, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64980, - "tp_rate": 0.2137774253933893, - "truth_threshold": 23.92 - }, - { - "f1": 0.35186922221921, - "fn": 239064, - "fn_rate": 0.7864956359532966, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999378642025, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998151257914927, - "recall": 0.21350436404670337, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64897, - "tp_rate": 0.21350436404670337, - "truth_threshold": 23.94 - }, - { - "f1": 0.35138653115017277, - "fn": 239172, - "fn_rate": 0.7868509446935626, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999387196443, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998148176725667, - "recall": 0.21314905530643735, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64789, - "tp_rate": 0.21314905530643735, - "truth_threshold": 23.96 - }, - { - "f1": 0.3509303965713666, - "fn": 239274, - "fn_rate": 0.7871865140593695, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.999999939563309, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998145257268273, - "recall": 0.21281348594063054, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64687, - "tp_rate": 0.21281348594063054, - "truth_threshold": 23.98 - }, - { - "f1": 0.35047400951817625, - "fn": 239376, - "fn_rate": 0.7875220834251763, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999403953588, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998142328591111, - "recall": 0.21247791657482373, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64585, - "tp_rate": 0.21247791657482373, - "truth_threshold": 24 - }, - { - "f1": 0.3500442379404118, - "fn": 239472, - "fn_rate": 0.7878379134165239, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999412159535, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998139563727694, - "recall": 0.21216208658347616, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64489, - "tp_rate": 0.21216208658347616, - "truth_threshold": 24.02 - }, - { - "f1": 0.3494314788067028, - "fn": 239609, - "fn_rate": 0.7882886291333427, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999420252508, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998135603753651, - "recall": 0.21171137086665723, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64352, - "tp_rate": 0.21171137086665723, - "truth_threshold": 24.04 - }, - { - "f1": 0.3487894573879223, - "fn": 239752, - "fn_rate": 0.7887590842246209, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999428234062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998131452328678, - "recall": 0.21124091577537907, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64209, - "tp_rate": 0.21124091577537907, - "truth_threshold": 24.060000000000002 - }, - { - "f1": 0.3482475683312503, - "fn": 239873, - "fn_rate": 0.7891571616095486, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999436105732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998127925117005, - "recall": 0.2108428383904514, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 64088, - "tp_rate": 0.2108428383904514, - "truth_threshold": 24.080000000000002 - }, - { - "f1": 0.34769090276569836, - "fn": 239997, - "fn_rate": 0.7895651086817059, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999443869031, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998124296611229, - "recall": 0.21043489131829413, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63964, - "tp_rate": 0.21043489131829413, - "truth_threshold": 24.1 - }, - { - "f1": 0.3471733610278885, - "fn": 240112, - "fn_rate": 0.7899434466921743, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.999999945152545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998120918870672, - "recall": 0.2100565533078257, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63849, - "tp_rate": 0.2100565533078257, - "truth_threshold": 24.12 - }, - { - "f1": 0.3467742812700554, - "fn": 240201, - "fn_rate": 0.7902362474133194, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999459076461, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998118296431036, - "recall": 0.20976375258668054, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63760, - "tp_rate": 0.20976375258668054, - "truth_threshold": 24.14 - }, - { - "f1": 0.3462885992209431, - "fn": 240309, - "fn_rate": 0.7905915561535855, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999466523515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115104297562, - "recall": 0.2094084438464145, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63652, - "tp_rate": 0.2094084438464145, - "truth_threshold": 24.16 - }, - { - "f1": 0.3457701831242687, - "fn": 240424, - "fn_rate": 0.7909698941640539, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999473868042, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998111693338998, - "recall": 0.20903010583594606, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63537, - "tp_rate": 0.20903010583594606, - "truth_threshold": 24.18 - }, - { - "f1": 0.3452533247685047, - "fn": 240539, - "fn_rate": 0.7913482321745224, - "fp": 12, - "fp_rate": 0.00006901747867647482, - "match_probability": 0.9999999481111456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998108270012926, - "recall": 0.20865176782547762, - "row_count": 477830, - "tn": 173857, - "tn_rate": 0.9999309825213235, - "tp": 63422, - "tp_rate": 0.20865176782547762, - "truth_threshold": 24.2 - }, - { - "f1": 0.3448136914842061, - "fn": 240637, - "fn_rate": 0.7916706419573564, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999488255148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998421069251903, - "recall": 0.20832935804264363, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 63324, - "tp_rate": 0.20832935804264363, - "truth_threshold": 24.22 - }, - { - "f1": 0.3442096088898573, - "fn": 240771, - "fn_rate": 0.7921114879869456, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999949530049, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998417721518987, - "recall": 0.2078885120130543, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 63190, - "tp_rate": 0.2078885120130543, - "truth_threshold": 24.240000000000002 - }, - { - "f1": 0.343650214147931, - "fn": 240895, - "fn_rate": 0.7925194350591029, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999502248836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998414610945526, - "recall": 0.20748056494089703, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 63066, - "tp_rate": 0.20748056494089703, - "truth_threshold": 24.26 - }, - { - "f1": 0.3432168746934104, - "fn": 240991, - "fn_rate": 0.7928352650504505, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999509101524, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998412194347411, - "recall": 0.20716473494954946, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62970, - "tp_rate": 0.20716473494954946, - "truth_threshold": 24.28 - }, - { - "f1": 0.3428320648973984, - "fn": 241076, - "fn_rate": 0.7931149061886229, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999515859868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998410048493521, - "recall": 0.20688509381137712, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62885, - "tp_rate": 0.20688509381137712, - "truth_threshold": 24.3 - }, - { - "f1": 0.34246702328954615, - "fn": 241157, - "fn_rate": 0.7933813877438224, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999522525168, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998407998216958, - "recall": 0.20661861225617761, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62804, - "tp_rate": 0.20661861225617761, - "truth_threshold": 24.32 - }, - { - "f1": 0.34190645029319516, - "fn": 241281, - "fn_rate": 0.7937893348159797, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999529098704, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998404849258254, - "recall": 0.20621066518402031, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62680, - "tp_rate": 0.20621066518402031, - "truth_threshold": 24.34 - }, - { - "f1": 0.3414848400525974, - "fn": 241374, - "fn_rate": 0.7940952951200977, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999535581742, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998402479352045, - "recall": 0.20590470487990237, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62587, - "tp_rate": 0.20590470487990237, - "truth_threshold": 24.36 - }, - { - "f1": 0.3410196095553603, - "fn": 241477, - "fn_rate": 0.7944341543816477, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999541975525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998399846385253, - "recall": 0.20556584561835237, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62484, - "tp_rate": 0.20556584561835237, - "truth_threshold": 24.38 - }, - { - "f1": 0.3404978981274226, - "fn": 241592, - "fn_rate": 0.794812492392116, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999548281283, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998396896391414, - "recall": 0.2051875076078839, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62369, - "tp_rate": 0.2051875076078839, - "truth_threshold": 24.400000000000002 - }, - { - "f1": 0.3398815960502889, - "fn": 241728, - "fn_rate": 0.7952599182131919, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999554500227, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998393393634626, - "recall": 0.20474008178680816, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62233, - "tp_rate": 0.20474008178680816, - "truth_threshold": 24.42 - }, - { - "f1": 0.3393156649675752, - "fn": 241853, - "fn_rate": 0.7956711551810923, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999560633555, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998390160661966, - "recall": 0.2043288448189077, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62108, - "tp_rate": 0.2043288448189077, - "truth_threshold": 24.44 - }, - { - "f1": 0.3389617486338798, - "fn": 241931, - "fn_rate": 0.7959277670490622, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999566682441, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999838813668601, - "recall": 0.2040722329509378, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 62030, - "tp_rate": 0.2040722329509378, - "truth_threshold": 24.46 - }, - { - "f1": 0.3383388362888942, - "fn": 242068, - "fn_rate": 0.7963784827658812, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999572648053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998384569406975, - "recall": 0.20362151723411884, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61893, - "tp_rate": 0.20362151723411884, - "truth_threshold": 24.48 - }, - { - "f1": 0.3378082056946624, - "fn": 242185, - "fn_rate": 0.796763400567836, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999578531533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998381510374519, - "recall": 0.203236599432164, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61776, - "tp_rate": 0.203236599432164, - "truth_threshold": 24.5 - }, - { - "f1": 0.3372990476815613, - "fn": 242297, - "fn_rate": 0.7971318688910748, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999584334013, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998378571196939, - "recall": 0.20286813110892515, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61664, - "tp_rate": 0.20286813110892515, - "truth_threshold": 24.52 - }, - { - "f1": 0.3366530594376895, - "fn": 242439, - "fn_rate": 0.7975990340866098, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999959005661, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998374829357083, - "recall": 0.2024009659133902, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61522, - "tp_rate": 0.2024009659133902, - "truth_threshold": 24.54 - }, - { - "f1": 0.33617051556436206, - "fn": 242545, - "fn_rate": 0.7979477630353894, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999595700421, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999837202487546, - "recall": 0.20205223696461058, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61416, - "tp_rate": 0.20205223696461058, - "truth_threshold": 24.560000000000002 - }, - { - "f1": 0.33586081167640247, - "fn": 242613, - "fn_rate": 0.7981714759459273, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999601266533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998370220672121, - "recall": 0.20182852405407273, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61348, - "tp_rate": 0.20182852405407273, - "truth_threshold": 24.580000000000002 - }, - { - "f1": 0.33534134346830813, - "fn": 242727, - "fn_rate": 0.7985465240606525, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999606756014, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998367186989746, - "recall": 0.20145347593934748, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61234, - "tp_rate": 0.20145347593934748, - "truth_threshold": 24.6 - }, - { - "f1": 0.33502221102389806, - "fn": 242797, - "fn_rate": 0.7987768167626768, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999961216992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998365318599405, - "recall": 0.20122318323732322, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61164, - "tp_rate": 0.20122318323732322, - "truth_threshold": 24.62 - }, - { - "f1": 0.33451134452170006, - "fn": 242909, - "fn_rate": 0.7991452850859156, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999617509291, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998362320264649, - "recall": 0.20085471491408438, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 61052, - "tp_rate": 0.20085471491408438, - "truth_threshold": 24.64 - }, - { - "f1": 0.3340585985027019, - "fn": 243008, - "fn_rate": 0.7994709847644929, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999622775153, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998359660777849, - "recall": 0.20052901523550717, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60953, - "tp_rate": 0.20052901523550717, - "truth_threshold": 24.66 - }, - { - "f1": 0.33352886998092146, - "fn": 243124, - "fn_rate": 0.7998526126707045, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999627968519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998356533600671, - "recall": 0.20014738732929555, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60837, - "tp_rate": 0.20014738732929555, - "truth_threshold": 24.68 - }, - { - "f1": 0.33280314165990216, - "fn": 243283, - "fn_rate": 0.8003757060938739, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999633090386, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998352227788031, - "recall": 0.19962429390612613, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60678, - "tp_rate": 0.19962429390612613, - "truth_threshold": 24.7 - }, - { - "f1": 0.33232751053370785, - "fn": 243387, - "fn_rate": 0.8007178552511671, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999638141739, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998349399181302, - "recall": 0.1992821447488329, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60574, - "tp_rate": 0.1992821447488329, - "truth_threshold": 24.72 - }, - { - "f1": 0.3318241437407048, - "fn": 243497, - "fn_rate": 0.8010797437829196, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999643123548, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998346396798624, - "recall": 0.19892025621708048, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60464, - "tp_rate": 0.19892025621708048, - "truth_threshold": 24.740000000000002 - }, - { - "f1": 0.3313241437613566, - "fn": 243606, - "fn_rate": 0.8014383424189288, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999648036773, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998343410916922, - "recall": 0.19856165758107125, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60355, - "tp_rate": 0.19856165758107125, - "truth_threshold": 24.76 - }, - { - "f1": 0.33082566389175655, - "fn": 243715, - "fn_rate": 0.8017969410549379, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999652882353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998340414232607, - "recall": 0.19820305894506204, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60246, - "tp_rate": 0.19820305894506204, - "truth_threshold": 24.78 - }, - { - "f1": 0.3301874872966782, - "fn": 243854, - "fn_rate": 0.8022542365632434, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999657661225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998336577008168, - "recall": 0.19774576343675668, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60107, - "tp_rate": 0.19774576343675668, - "truth_threshold": 24.8 - }, - { - "f1": 0.3297195419478207, - "fn": 243956, - "fn_rate": 0.8025898059290502, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999662374304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998333749895859, - "recall": 0.1974101940709499, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 60005, - "tp_rate": 0.1974101940709499, - "truth_threshold": 24.82 - }, - { - "f1": 0.32923296781817685, - "fn": 244062, - "fn_rate": 0.8029385348778297, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999667022497, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998330801715936, - "recall": 0.19706146512217027, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59899, - "tp_rate": 0.19706146512217027, - "truth_threshold": 24.84 - }, - { - "f1": 0.3287148528134244, - "fn": 244175, - "fn_rate": 0.8033102930968118, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999671606695, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999832764733427, - "recall": 0.19668970690318824, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59786, - "tp_rate": 0.19668970690318824, - "truth_threshold": 24.86 - }, - { - "f1": 0.3283012434486589, - "fn": 244265, - "fn_rate": 0.8036063837137001, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999676127783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998325126452953, - "recall": 0.1963936162862999, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59696, - "tp_rate": 0.1963936162862999, - "truth_threshold": 24.88 - }, - { - "f1": 0.3277715429979755, - "fn": 244380, - "fn_rate": 0.8039847217241686, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999680586628, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998321894245775, - "recall": 0.19601527827583143, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59581, - "tp_rate": 0.19601527827583143, - "truth_threshold": 24.900000000000002 - }, - { - "f1": 0.3272101917838373, - "fn": 244502, - "fn_rate": 0.8043860890048394, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999684984086, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998318451630261, - "recall": 0.19561391099516057, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59459, - "tp_rate": 0.19561391099516057, - "truth_threshold": 24.92 - }, - { - "f1": 0.3267682077647564, - "fn": 244598, - "fn_rate": 0.804701918996187, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999689321003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998315732740471, - "recall": 0.195298081003813, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59363, - "tp_rate": 0.195298081003813, - "truth_threshold": 24.94 - }, - { - "f1": 0.32623383202374334, - "fn": 244714, - "fn_rate": 0.8050835469023987, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999693598213, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998312435661609, - "recall": 0.19491645309760133, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59247, - "tp_rate": 0.19491645309760133, - "truth_threshold": 24.96 - }, - { - "f1": 0.3257267810128116, - "fn": 244824, - "fn_rate": 0.8054454354341511, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999697816536, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998309297174836, - "recall": 0.1945545645658489, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59137, - "tp_rate": 0.1945545645658489, - "truth_threshold": 24.98 - }, - { - "f1": 0.3252655588857546, - "fn": 244924, - "fn_rate": 0.8057744250084715, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999701976785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998306433857774, - "recall": 0.1942255749915285, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 59037, - "tp_rate": 0.1942255749915285, - "truth_threshold": 25 - }, - { - "f1": 0.32473945559860457, - "fn": 245038, - "fn_rate": 0.8061494731231967, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999706079759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998303157823291, - "recall": 0.19385052687680326, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58923, - "tp_rate": 0.19385052687680326, - "truth_threshold": 25.02 - }, - { - "f1": 0.3243109151047409, - "fn": 245131, - "fn_rate": 0.8064554334273147, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999710126245, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998300475866757, - "recall": 0.19354456657268532, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58830, - "tp_rate": 0.19354456657268532, - "truth_threshold": 25.04 - }, - { - "f1": 0.3236640379418739, - "fn": 245271, - "fn_rate": 0.8069160188313632, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999714117023, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998296422487223, - "recall": 0.19308398116863676, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58690, - "tp_rate": 0.19308398116863676, - "truth_threshold": 25.060000000000002 - }, - { - "f1": 0.32327567185914124, - "fn": 245355, - "fn_rate": 0.8071923700737924, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999718052858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998293981165552, - "recall": 0.19280762992620765, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58606, - "tp_rate": 0.19280762992620765, - "truth_threshold": 25.080000000000002 - }, - { - "f1": 0.3228408583046882, - "fn": 245449, - "fn_rate": 0.8075016202736536, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999721934507, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998291240900857, - "recall": 0.19249837972634648, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58512, - "tp_rate": 0.19249837972634648, - "truth_threshold": 25.1 - }, - { - "f1": 0.3224280755200141, - "fn": 245538, - "fn_rate": 0.8077944209947987, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999725762717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998288638269471, - "recall": 0.19220557900520133, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58423, - "tp_rate": 0.19220557900520133, - "truth_threshold": 25.12 - }, - { - "f1": 0.32199834391388354, - "fn": 245631, - "fn_rate": 0.8081003812989166, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999729538223, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998285910181693, - "recall": 0.19189961870108335, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58330, - "tp_rate": 0.19189961870108335, - "truth_threshold": 25.14 - }, - { - "f1": 0.32153880983539573, - "fn": 245730, - "fn_rate": 0.8084260809774938, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999973326175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998282996514483, - "recall": 0.19157391902250617, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58231, - "tp_rate": 0.19157391902250617, - "truth_threshold": 25.16 - }, - { - "f1": 0.32101963600209893, - "fn": 245842, - "fn_rate": 0.8087945493007327, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999736934014, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998279688279517, - "recall": 0.19120545069926734, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58119, - "tp_rate": 0.19120545069926734, - "truth_threshold": 25.18 - }, - { - "f1": 0.3205558164590182, - "fn": 245942, - "fn_rate": 0.8091235388750531, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999740555722, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998276723707112, - "recall": 0.19087646112494694, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 58019, - "tp_rate": 0.19087646112494694, - "truth_threshold": 25.2 - }, - { - "f1": 0.32011583502351515, - "fn": 246037, - "fn_rate": 0.8094360789706574, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999744127567, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998273897883799, - "recall": 0.19056392102934258, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57924, - "tp_rate": 0.19056392102934258, - "truth_threshold": 25.22 - }, - { - "f1": 0.3196088295290586, - "fn": 246146, - "fn_rate": 0.8097946776066667, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999747650239, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998270644185041, - "recall": 0.19020532239333335, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57815, - "tp_rate": 0.19020532239333335, - "truth_threshold": 25.240000000000002 - }, - { - "f1": 0.31932080812995545, - "fn": 246208, - "fn_rate": 0.8099986511427453, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999751124412, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998268787978464, - "recall": 0.19000134885725473, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57753, - "tp_rate": 0.19000134885725473, - "truth_threshold": 25.26 - }, - { - "f1": 0.31883745368065924, - "fn": 246312, - "fn_rate": 0.8103408003000385, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999754550756, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998265665377478, - "recall": 0.1896591996999615, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57649, - "tp_rate": 0.1896591996999615, - "truth_threshold": 25.28 - }, - { - "f1": 0.3183817305724133, - "fn": 246410, - "fn_rate": 0.8106632100828725, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999757929928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998262712600545, - "recall": 0.18933678991712752, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57551, - "tp_rate": 0.18933678991712752, - "truth_threshold": 25.3 - }, - { - "f1": 0.31786991024094385, - "fn": 246520, - "fn_rate": 0.8110250986146249, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999761262578, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998259386259595, - "recall": 0.1889749013853751, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57441, - "tp_rate": 0.1889749013853751, - "truth_threshold": 25.32 - }, - { - "f1": 0.3172422192451201, - "fn": 246655, - "fn_rate": 0.8114692345399575, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999764549347, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999825528648196, - "recall": 0.18853076546004258, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57306, - "tp_rate": 0.18853076546004258, - "truth_threshold": 25.34 - }, - { - "f1": 0.31657501093776824, - "fn": 246798, - "fn_rate": 0.8119396896312356, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999767790866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998250922638309, - "recall": 0.18806031036876442, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57163, - "tp_rate": 0.18806031036876442, - "truth_threshold": 25.36 - }, - { - "f1": 0.3160247745252288, - "fn": 246916, - "fn_rate": 0.8123278973289336, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999770987757, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998247305231794, - "recall": 0.18767210267106635, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 57045, - "tp_rate": 0.18767210267106635, - "truth_threshold": 25.38 - }, - { - "f1": 0.3156664025400484, - "fn": 246993, - "fn_rate": 0.8125812193011603, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999774140637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998244936642213, - "recall": 0.18741878069883966, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56968, - "tp_rate": 0.18741878069883966, - "truth_threshold": 25.400000000000002 - }, - { - "f1": 0.315100687881425, - "fn": 247114, - "fn_rate": 0.812979296686088, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999777250109, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998241201611059, - "recall": 0.187020703313912, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56847, - "tp_rate": 0.187020703313912, - "truth_threshold": 25.42 - }, - { - "f1": 0.31463913638909063, - "fn": 247213, - "fn_rate": 0.8133049963646652, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999780316773, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998238133831354, - "recall": 0.18669500363533478, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56748, - "tp_rate": 0.18669500363533478, - "truth_threshold": 25.44 - }, - { - "f1": 0.3141194870884728, - "fn": 247324, - "fn_rate": 0.8136701747921609, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999783341216, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998234681448267, - "recall": 0.18632982520783917, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56637, - "tp_rate": 0.18632982520783917, - "truth_threshold": 25.46 - }, - { - "f1": 0.3137415886787638, - "fn": 247405, - "fn_rate": 0.8139366563473603, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999786324022, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998232153590496, - "recall": 0.18606334365263966, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56556, - "tp_rate": 0.18606334365263966, - "truth_threshold": 25.48 - }, - { - "f1": 0.3133430621292746, - "fn": 247490, - "fn_rate": 0.8142162974855327, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999789265762, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998229493103875, - "recall": 0.18578370251446732, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56471, - "tp_rate": 0.18578370251446732, - "truth_threshold": 25.5 - }, - { - "f1": 0.3128188049843199, - "fn": 247602, - "fn_rate": 0.8145847658087715, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999792167003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998225975270095, - "recall": 0.1854152341912285, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56359, - "tp_rate": 0.1854152341912285, - "truth_threshold": 25.52 - }, - { - "f1": 0.31223799714607753, - "fn": 247726, - "fn_rate": 0.8149927128809288, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.99999997950283, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998222064183483, - "recall": 0.1850072871190712, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56235, - "tp_rate": 0.1850072871190712, - "truth_threshold": 25.54 - }, - { - "f1": 0.31194362223789507, - "fn": 247789, - "fn_rate": 0.8151999763127507, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999797850206, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998220070485209, - "recall": 0.18480002368724935, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56172, - "tp_rate": 0.18480002368724935, - "truth_threshold": 25.560000000000002 - }, - { - "f1": 0.31159114389504206, - "fn": 247864, - "fn_rate": 0.8154467184934909, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999800633262, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998217691197177, - "recall": 0.18455328150650907, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 56097, - "tp_rate": 0.18455328150650907, - "truth_threshold": 25.580000000000002 - }, - { - "f1": 0.3110901211245694, - "fn": 247971, - "fn_rate": 0.8157987373380138, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999803378004, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998214285714285, - "recall": 0.18420126266198625, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55990, - "tp_rate": 0.18420126266198625, - "truth_threshold": 25.6 - }, - { - "f1": 0.31075606435299674, - "fn": 248042, - "fn_rate": 0.8160323199357812, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999806084956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998212018809562, - "recall": 0.18396768006421876, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55919, - "tp_rate": 0.18396768006421876, - "truth_threshold": 25.62 - }, - { - "f1": 0.3102733291456588, - "fn": 248145, - "fn_rate": 0.8163711791973313, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999808754642, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998208719951277, - "recall": 0.18362882080266876, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55816, - "tp_rate": 0.18362882080266876, - "truth_threshold": 25.64 - }, - { - "f1": 0.3098167866774167, - "fn": 248242, - "fn_rate": 0.816690299084422, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999811387573, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998205602110212, - "recall": 0.183309700915578, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55719, - "tp_rate": 0.183309700915578, - "truth_threshold": 25.66 - }, - { - "f1": 0.30927152686234266, - "fn": 248358, - "fn_rate": 0.8170719269906337, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999813984256, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998201859277507, - "recall": 0.18292807300936634, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55603, - "tp_rate": 0.18292807300936634, - "truth_threshold": 25.68 - }, - { - "f1": 0.30873532521003727, - "fn": 248472, - "fn_rate": 0.8174469751053589, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999981654519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998198165732716, - "recall": 0.1825530248946411, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55489, - "tp_rate": 0.1825530248946411, - "truth_threshold": 25.7 - }, - { - "f1": 0.3082081992942774, - "fn": 248584, - "fn_rate": 0.8178154434285978, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999819070866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998194522180295, - "recall": 0.18218455657140226, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55377, - "tp_rate": 0.18218455657140226, - "truth_threshold": 25.72 - }, - { - "f1": 0.3077184309271693, - "fn": 248688, - "fn_rate": 0.8181575925858909, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999821561771, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99981911256625, - "recall": 0.18184240741410904, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55273, - "tp_rate": 0.18184240741410904, - "truth_threshold": 25.740000000000002 - }, - { - "f1": 0.3073470615095054, - "fn": 248767, - "fn_rate": 0.8184174943496041, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999824018383, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998188537062531, - "recall": 0.18158250565039594, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55194, - "tp_rate": 0.18158250565039594, - "truth_threshold": 25.76 - }, - { - "f1": 0.3069832464465535, - "fn": 248844, - "fn_rate": 0.8186708163218308, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999826441174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998186006856894, - "recall": 0.18132918367816925, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55117, - "tp_rate": 0.18132918367816925, - "truth_threshold": 25.78 - }, - { - "f1": 0.30658325023258926, - "fn": 248929, - "fn_rate": 0.8189504574600031, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999828830609, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998183205552124, - "recall": 0.18104954253999692, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 55032, - "tp_rate": 0.18104954253999692, - "truth_threshold": 25.8 - }, - { - "f1": 0.30609640568403457, - "fn": 249032, - "fn_rate": 0.8192893167215531, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999831187149, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998179799413895, - "recall": 0.18071068327844692, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54929, - "tp_rate": 0.18071068327844692, - "truth_threshold": 25.82 - }, - { - "f1": 0.30563932196587534, - "fn": 249129, - "fn_rate": 0.8196084366086439, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999833511245, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998176579993435, - "recall": 0.18039156339135612, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54832, - "tp_rate": 0.18039156339135612, - "truth_threshold": 25.84 - }, - { - "f1": 0.30501575264170405, - "fn": 249261, - "fn_rate": 0.8200427028467467, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999835803345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998172180588558, - "recall": 0.1799572971532532, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54700, - "tp_rate": 0.1799572971532532, - "truth_threshold": 25.86 - }, - { - "f1": 0.3046320310103461, - "fn": 249342, - "fn_rate": 0.8203091844019463, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999838063889, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998169470427795, - "recall": 0.1796908155980537, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54619, - "tp_rate": 0.1796908155980537, - "truth_threshold": 25.88 - }, - { - "f1": 0.30421199442119945, - "fn": 249431, - "fn_rate": 0.8206019851230915, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999840293311, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998166483314999, - "recall": 0.17939801487690854, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54530, - "tp_rate": 0.17939801487690854, - "truth_threshold": 25.900000000000002 - }, - { - "f1": 0.3037861666806172, - "fn": 249521, - "fn_rate": 0.8208980757399797, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999984249204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998163452708907, - "recall": 0.1791019242600202, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54440, - "tp_rate": 0.1791019242600202, - "truth_threshold": 25.92 - }, - { - "f1": 0.30308545142940085, - "fn": 249669, - "fn_rate": 0.821384980309974, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999844660499, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998158447202681, - "recall": 0.17861501969002602, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54292, - "tp_rate": 0.17861501969002602, - "truth_threshold": 25.94 - }, - { - "f1": 0.30274435355537566, - "fn": 249741, - "fn_rate": 0.8216218528034847, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999846799104, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998156002212797, - "recall": 0.17837814719651535, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54220, - "tp_rate": 0.17837814719651535, - "truth_threshold": 25.96 - }, - { - "f1": 0.30231220329516895, - "fn": 249832, - "fn_rate": 0.8219212333161162, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999848908265, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998152902713386, - "recall": 0.17807876668388378, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54129, - "tp_rate": 0.17807876668388378, - "truth_threshold": 25.98 - }, - { - "f1": 0.3018190147375948, - "fn": 249936, - "fn_rate": 0.8222633824734095, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999985098839, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998149347645044, - "recall": 0.1777366175265906, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 54025, - "tp_rate": 0.1777366175265906, - "truth_threshold": 26 - }, - { - "f1": 0.30137858966979786, - "fn": 250029, - "fn_rate": 0.8225693427775274, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999853039877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998146156983426, - "recall": 0.17743065722247262, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53932, - "tp_rate": 0.17743065722247262, - "truth_threshold": 26.02 - }, - { - "f1": 0.30100272759792523, - "fn": 250108, - "fn_rate": 0.8228292445412405, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999855063121, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998143437981546, - "recall": 0.17717075545875952, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53853, - "tp_rate": 0.17717075545875952, - "truth_threshold": 26.04 - }, - { - "f1": 0.30051436878005144, - "fn": 250211, - "fn_rate": 0.8231681038027905, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999857058509, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998139880952381, - "recall": 0.17683189619720951, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53750, - "tp_rate": 0.17683189619720951, - "truth_threshold": 26.060000000000002 - }, - { - "f1": 0.2999670027907809, - "fn": 250326, - "fn_rate": 0.823546441813259, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999859026427, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998135893373101, - "recall": 0.17645355818674105, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53635, - "tp_rate": 0.17645355818674105, - "truth_threshold": 26.080000000000002 - }, - { - "f1": 0.2994399906012409, - "fn": 250437, - "fn_rate": 0.8239116202407546, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999860967251, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998132028243732, - "recall": 0.17608837975924543, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53524, - "tp_rate": 0.17608837975924543, - "truth_threshold": 26.1 - }, - { - "f1": 0.2989776103951337, - "fn": 250534, - "fn_rate": 0.8242307401278454, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999862881357, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998128637460936, - "recall": 0.17576925987215467, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53427, - "tp_rate": 0.17576925987215467, - "truth_threshold": 26.12 - }, - { - "f1": 0.29844438349109675, - "fn": 250646, - "fn_rate": 0.8245992084510841, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999986476911, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998124706985466, - "recall": 0.1754007915489158, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53315, - "tp_rate": 0.1754007915489158, - "truth_threshold": 26.14 - }, - { - "f1": 0.2980347144456887, - "fn": 250732, - "fn_rate": 0.8248821394849997, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999866630873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998121677717463, - "recall": 0.17511786051500028, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53229, - "tp_rate": 0.17511786051500028, - "truth_threshold": 26.16 - }, - { - "f1": 0.2975827770061383, - "fn": 250827, - "fn_rate": 0.8251946795806041, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999868467006, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998118320036128, - "recall": 0.17480532041939592, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53134, - "tp_rate": 0.17480532041939592, - "truth_threshold": 26.18 - }, - { - "f1": 0.29720524555634603, - "fn": 250906, - "fn_rate": 0.8254545813443172, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999870277859, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115518703476, - "recall": 0.1745454186556828, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 53055, - "tp_rate": 0.1745454186556828, - "truth_threshold": 26.2 - }, - { - "f1": 0.29684829808096375, - "fn": 250981, - "fn_rate": 0.8257013235250575, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999872063782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998112851481411, - "recall": 0.17429867647494252, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52980, - "tp_rate": 0.17429867647494252, - "truth_threshold": 26.22 - }, - { - "f1": 0.29636147603461416, - "fn": 251083, - "fn_rate": 0.8260368928908642, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999873825117, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998109211919528, - "recall": 0.1739631071091357, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52878, - "tp_rate": 0.1739631071091357, - "truth_threshold": 26.240000000000002 - }, - { - "f1": 0.2958974301475535, - "fn": 251180, - "fn_rate": 0.8263560127779551, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999875562204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998105737720445, - "recall": 0.17364398722204494, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52781, - "tp_rate": 0.17364398722204494, - "truth_threshold": 26.26 - }, - { - "f1": 0.2955438799140962, - "fn": 251254, - "fn_rate": 0.8265994650629521, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999877275376, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998103078703264, - "recall": 0.17340053493704785, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52707, - "tp_rate": 0.17340053493704785, - "truth_threshold": 26.28 - }, - { - "f1": 0.29499893427266916, - "fn": 251368, - "fn_rate": 0.8269745131776775, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999878964962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998098967739483, - "recall": 0.1730254868223226, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52593, - "tp_rate": 0.1730254868223226, - "truth_threshold": 26.3 - }, - { - "f1": 0.29452062480362673, - "fn": 251468, - "fn_rate": 0.8273035027519978, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999880631287, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998095346932556, - "recall": 0.1726964972480022, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52493, - "tp_rate": 0.1726964972480022, - "truth_threshold": 26.32 - }, - { - "f1": 0.29410510247603655, - "fn": 251555, - "fn_rate": 0.8275897236816565, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999882274672, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998092185592186, - "recall": 0.17241027631834346, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52406, - "tp_rate": 0.17241027631834346, - "truth_threshold": 26.34 - }, - { - "f1": 0.29351133467320883, - "fn": 251679, - "fn_rate": 0.8279976707538138, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999883895432, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998087661592595, - "recall": 0.1720023292461862, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52282, - "tp_rate": 0.1720023292461862, - "truth_threshold": 26.36 - }, - { - "f1": 0.2927829261443415, - "fn": 251831, - "fn_rate": 0.8284977349067808, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999885493878, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998082086689681, - "recall": 0.1715022650932192, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52130, - "tp_rate": 0.1715022650932192, - "truth_threshold": 26.38 - }, - { - "f1": 0.2923417451293229, - "fn": 251923, - "fn_rate": 0.8288004053151555, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999887070317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998078696587765, - "recall": 0.17119959468484444, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 52038, - "tp_rate": 0.17119959468484444, - "truth_threshold": 26.400000000000002 - }, - { - "f1": 0.29196190262130195, - "fn": 252002, - "fn_rate": 0.8290603070788687, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999888625053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998075775943351, - "recall": 0.17093969292113134, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51959, - "tp_rate": 0.17093969292113134, - "truth_threshold": 26.42 - }, - { - "f1": 0.29146830192284995, - "fn": 252105, - "fn_rate": 0.8293991663404187, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999890158385, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998071954652373, - "recall": 0.17060083365958134, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51856, - "tp_rate": 0.17060083365958134, - "truth_threshold": 26.44 - }, - { - "f1": 0.29106487285729543, - "fn": 252189, - "fn_rate": 0.8296755175828479, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999891670607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998068827005523, - "recall": 0.1703244824171522, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51772, - "tp_rate": 0.1703244824171522, - "truth_threshold": 26.46 - }, - { - "f1": 0.29079581428563395, - "fn": 252245, - "fn_rate": 0.8298597517444672, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999893162009, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998066736264161, - "recall": 0.17014024825553278, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51716, - "tp_rate": 0.17014024825553278, - "truth_threshold": 26.48 - }, - { - "f1": 0.2904016827707225, - "fn": 252327, - "fn_rate": 0.8301295231954099, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999894632879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998063666640848, - "recall": 0.16987047680459005, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51634, - "tp_rate": 0.16987047680459005, - "truth_threshold": 26.5 - }, - { - "f1": 0.2900458470452564, - "fn": 252401, - "fn_rate": 0.830372975480407, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.99999998960835, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998060888113244, - "recall": 0.16962702451959297, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51560, - "tp_rate": 0.16962702451959297, - "truth_threshold": 26.52 - }, - { - "f1": 0.2895743770960409, - "fn": 252499, - "fn_rate": 0.830695385263241, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999897514149, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998057196145477, - "recall": 0.16930461473675898, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51462, - "tp_rate": 0.16930461473675898, - "truth_threshold": 26.54 - }, - { - "f1": 0.28908338727380184, - "fn": 252601, - "fn_rate": 0.8310309546290479, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999898925103, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998053338524431, - "recall": 0.1689690453709522, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51360, - "tp_rate": 0.1689690453709522, - "truth_threshold": 26.560000000000002 - }, - { - "f1": 0.28879844175730146, - "fn": 252660, - "fn_rate": 0.8312250584778968, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999900316631, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998051100153963, - "recall": 0.16877494152210318, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51301, - "tp_rate": 0.16877494152210318, - "truth_threshold": 26.580000000000002 - }, - { - "f1": 0.28832628514474595, - "fn": 252758, - "fn_rate": 0.8315474682607308, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999901689001, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998047370784762, - "recall": 0.1684525317392692, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51203, - "tp_rate": 0.1684525317392692, - "truth_threshold": 26.6 - }, - { - "f1": 0.2880081552654404, - "fn": 252824, - "fn_rate": 0.8317646013797823, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999903042477, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998044851115413, - "recall": 0.16823539862021772, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51137, - "tp_rate": 0.16823539862021772, - "truth_threshold": 26.62 - }, - { - "f1": 0.2875894315813194, - "fn": 252911, - "fn_rate": 0.832050822309441, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999990437732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999804151978065, - "recall": 0.16794917769055898, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 51050, - "tp_rate": 0.16794917769055898, - "truth_threshold": 26.64 - }, - { - "f1": 0.2871745169524475, - "fn": 252997, - "fn_rate": 0.8323337533433566, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999905693786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998038215560874, - "recall": 0.16766624665664345, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50964, - "tp_rate": 0.16766624665664345, - "truth_threshold": 26.66 - }, - { - "f1": 0.2866724910520531, - "fn": 253101, - "fn_rate": 0.8326759025006497, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999906992127, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998034204835856, - "recall": 0.16732409749935023, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50860, - "tp_rate": 0.16732409749935023, - "truth_threshold": 26.68 - }, - { - "f1": 0.286212845609129, - "fn": 253196, - "fn_rate": 0.8329884425962542, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999908272594, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998030526834072, - "recall": 0.16701155740374587, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50765, - "tp_rate": 0.16701155740374587, - "truth_threshold": 26.7 - }, - { - "f1": 0.28580693186560346, - "fn": 253280, - "fn_rate": 0.8332647938386832, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999909535432, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998027263222268, - "recall": 0.16673520616131673, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50681, - "tp_rate": 0.16673520616131673, - "truth_threshold": 26.72 - }, - { - "f1": 0.28535810784131227, - "fn": 253373, - "fn_rate": 0.8335707541428012, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999910780885, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998023637297917, - "recall": 0.1664292458571988, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50588, - "tp_rate": 0.1664292458571988, - "truth_threshold": 26.740000000000002 - }, - { - "f1": 0.2848259829368483, - "fn": 253483, - "fn_rate": 0.8339326426745537, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999912009191, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998019331326256, - "recall": 0.16606735732544636, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50478, - "tp_rate": 0.16606735732544636, - "truth_threshold": 26.76 - }, - { - "f1": 0.2842354216173806, - "fn": 253605, - "fn_rate": 0.8343340099552246, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999913220586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998014533613946, - "recall": 0.16566599004477547, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50356, - "tp_rate": 0.16566599004477547, - "truth_threshold": 26.78 - }, - { - "f1": 0.2839060797497869, - "fn": 253673, - "fn_rate": 0.8345577228657624, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999914415304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998011849377709, - "recall": 0.16544227713423762, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50288, - "tp_rate": 0.16544227713423762, - "truth_threshold": 26.8 - }, - { - "f1": 0.28337710009882816, - "fn": 253782, - "fn_rate": 0.8349163215017716, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999915593574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998007531530814, - "recall": 0.1650836784982284, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50179, - "tp_rate": 0.1650836784982284, - "truth_threshold": 26.82 - }, - { - "f1": 0.28308217166354127, - "fn": 253843, - "fn_rate": 0.8351170051421071, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999916755622, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998005106926269, - "recall": 0.16488299485789296, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50118, - "tp_rate": 0.16488299485789296, - "truth_threshold": 26.84 - }, - { - "f1": 0.28250981721614826, - "fn": 253961, - "fn_rate": 0.8355052128398051, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999917901672, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998000399920016, - "recall": 0.1644947871601949, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 50000, - "tp_rate": 0.1644947871601949, - "truth_threshold": 26.86 - }, - { - "f1": 0.28210620309250384, - "fn": 254044, - "fn_rate": 0.835778274186491, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999919031943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997997075730567, - "recall": 0.16422172581350897, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49917, - "tp_rate": 0.16422172581350897, - "truth_threshold": 26.88 - }, - { - "f1": 0.28160120299391717, - "fn": 254148, - "fn_rate": 0.8361204233437842, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999920146655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997992894847761, - "recall": 0.16387957665621578, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49813, - "tp_rate": 0.16387957665621578, - "truth_threshold": 26.900000000000002 - }, - { - "f1": 0.2809792566788065, - "fn": 254276, - "fn_rate": 0.8365415299989143, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999992124602, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997987725123252, - "recall": 0.16345847000108565, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49685, - "tp_rate": 0.16345847000108565, - "truth_threshold": 26.92 - }, - { - "f1": 0.28047359370050234, - "fn": 254380, - "fn_rate": 0.8368836791562075, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999922330249, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997983505071485, - "recall": 0.16311632084379246, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49581, - "tp_rate": 0.16311632084379246, - "truth_threshold": 26.94 - }, - { - "f1": 0.2800608828006088, - "fn": 254465, - "fn_rate": 0.8371633202943799, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999923399552, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997980042823092, - "recall": 0.16283667970562013, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49496, - "tp_rate": 0.16283667970562013, - "truth_threshold": 26.96 - }, - { - "f1": 0.27923735769803393, - "fn": 254634, - "fn_rate": 0.8377193126749813, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999924454133, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999797312361919, - "recall": 0.16228068732501866, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49327, - "tp_rate": 0.16228068732501866, - "truth_threshold": 26.98 - }, - { - "f1": 0.2787209223311966, - "fn": 254740, - "fn_rate": 0.8380680416237609, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999925494194, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999796875952144, - "recall": 0.16193195837623905, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49221, - "tp_rate": 0.16193195837623905, - "truth_threshold": 27 - }, - { - "f1": 0.27813181522077773, - "fn": 254861, - "fn_rate": 0.8384661190086886, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999926519938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997963754836082, - "recall": 0.16153388099131138, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49100, - "tp_rate": 0.16153388099131138, - "truth_threshold": 27.02 - }, - { - "f1": 0.2776578444871294, - "fn": 254958, - "fn_rate": 0.8387852388957794, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999992753156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997959724970926, - "recall": 0.16121476110422062, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 49003, - "tp_rate": 0.16121476110422062, - "truth_threshold": 27.04 - }, - { - "f1": 0.277120930443457, - "fn": 255068, - "fn_rate": 0.8391471274275318, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999928529254, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997955135676748, - "recall": 0.1608528725724682, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48893, - "tp_rate": 0.1608528725724682, - "truth_threshold": 27.060000000000002 - }, - { - "f1": 0.2768433643418763, - "fn": 255125, - "fn_rate": 0.8393346514848944, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999929513212, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997952749457478, - "recall": 0.16066534851510555, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48836, - "tp_rate": 0.16066534851510555, - "truth_threshold": 27.080000000000002 - }, - { - "f1": 0.2763589144561507, - "fn": 255224, - "fn_rate": 0.8396603511634716, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999930483625, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997948591708208, - "recall": 0.16033964883652838, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48737, - "tp_rate": 0.16033964883652838, - "truth_threshold": 27.1 - }, - { - "f1": 0.2758953183669302, - "fn": 255319, - "fn_rate": 0.839972891259076, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999931440678, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997944586039629, - "recall": 0.160027108740924, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48642, - "tp_rate": 0.160027108740924, - "truth_threshold": 27.12 - }, - { - "f1": 0.275416011846338, - "fn": 255417, - "fn_rate": 0.84029530104191, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999932384555, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997940437451085, - "recall": 0.15970469895809003, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48544, - "tp_rate": 0.15970469895809003, - "truth_threshold": 27.14 - }, - { - "f1": 0.27500907976574207, - "fn": 255500, - "fn_rate": 0.8405683623885959, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999933315437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997936910730127, - "recall": 0.15943163761140408, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48461, - "tp_rate": 0.15943163761140408, - "truth_threshold": 27.16 - }, - { - "f1": 0.2746133106286363, - "fn": 255581, - "fn_rate": 0.8408348439437954, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999934233502, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997933457325894, - "recall": 0.15916515605620457, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48380, - "tp_rate": 0.15916515605620457, - "truth_threshold": 27.18 - }, - { - "f1": 0.2742255984012354, - "fn": 255660, - "fn_rate": 0.8410947457075085, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999935138929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997930078036058, - "recall": 0.15890525429249147, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48301, - "tp_rate": 0.15890525429249147, - "truth_threshold": 27.2 - }, - { - "f1": 0.27383926948936943, - "fn": 255739, - "fn_rate": 0.8413546474712217, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999993603189, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997926687676232, - "recall": 0.15864535252877837, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48222, - "tp_rate": 0.15864535252877837, - "truth_threshold": 27.22 - }, - { - "f1": 0.2732942893984924, - "fn": 255850, - "fn_rate": 0.8417198258987173, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999936912558, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997921905197316, - "recall": 0.15828017410128273, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48111, - "tp_rate": 0.15828017410128273, - "truth_threshold": 27.240000000000002 - }, - { - "f1": 0.2730449109450899, - "fn": 255901, - "fn_rate": 0.8418876105816206, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999937781102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997919700436863, - "recall": 0.15811238941837932, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 48060, - "tp_rate": 0.15811238941837932, - "truth_threshold": 27.26 - }, - { - "f1": 0.2724405242279232, - "fn": 256024, - "fn_rate": 0.8422922677580348, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999938637688, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999791436377667, - "recall": 0.15770773224196524, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47937, - "tp_rate": 0.15770773224196524, - "truth_threshold": 27.28 - }, - { - "f1": 0.271974804725251, - "fn": 256119, - "fn_rate": 0.8426048078536391, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999939482481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997910223188163, - "recall": 0.15739519214636088, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47842, - "tp_rate": 0.15739519214636088, - "truth_threshold": 27.3 - }, - { - "f1": 0.27155228786043684, - "fn": 256205, - "fn_rate": 0.8428877388875546, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999940315644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997906460662396, - "recall": 0.15711226111244533, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47756, - "tp_rate": 0.15711226111244533, - "truth_threshold": 27.32 - }, - { - "f1": 0.27116889616889617, - "fn": 256283, - "fn_rate": 0.8431443507555245, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999941137335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997903036403288, - "recall": 0.15685564924447545, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47678, - "tp_rate": 0.15685564924447545, - "truth_threshold": 27.34 - }, - { - "f1": 0.27065744259609037, - "fn": 256387, - "fn_rate": 0.8434864999128178, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999941947715, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997898453261601, - "recall": 0.15651350008718223, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47574, - "tp_rate": 0.15651350008718223, - "truth_threshold": 27.36 - }, - { - "f1": 0.27027780622987013, - "fn": 256464, - "fn_rate": 0.8437398218850445, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999942746939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997895047045698, - "recall": 0.15626017811495554, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47497, - "tp_rate": 0.15626017811495554, - "truth_threshold": 27.38 - }, - { - "f1": 0.26976582689177037, - "fn": 256568, - "fn_rate": 0.8440819710423376, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999943535158, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999789042887581, - "recall": 0.15591802895766232, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47393, - "tp_rate": 0.15591802895766232, - "truth_threshold": 27.400000000000002 - }, - { - "f1": 0.26923383515157034, - "fn": 256676, - "fn_rate": 0.8444372797826037, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999944312526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997885611586849, - "recall": 0.1555627202173963, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47285, - "tp_rate": 0.1555627202173963, - "truth_threshold": 27.42 - }, - { - "f1": 0.26884941539618085, - "fn": 256754, - "fn_rate": 0.8446938916505736, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999945079192, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997882118728424, - "recall": 0.1553061083494264, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47207, - "tp_rate": 0.1553061083494264, - "truth_threshold": 27.44 - }, - { - "f1": 0.26849024790375503, - "fn": 256827, - "fn_rate": 0.8449340540398275, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999945835303, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997878839300866, - "recall": 0.15506594596017254, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47134, - "tp_rate": 0.15506594596017254, - "truth_threshold": 27.46 - }, - { - "f1": 0.26810966646535317, - "fn": 256904, - "fn_rate": 0.8451873760120542, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999946581004, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999787536915461, - "recall": 0.15481262398794582, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 47057, - "tp_rate": 0.15481262398794582, - "truth_threshold": 27.48 - }, - { - "f1": 0.2677050030489021, - "fn": 256986, - "fn_rate": 0.8454571474629969, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999947316439, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997871661168458, - "recall": 0.1545428525370031, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46975, - "tp_rate": 0.1545428525370031, - "truth_threshold": 27.5 - }, - { - "f1": 0.2672169555873517, - "fn": 257085, - "fn_rate": 0.845782847141574, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999994804175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997867167171437, - "recall": 0.1542171528584259, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46876, - "tp_rate": 0.1542171528584259, - "truth_threshold": 27.52 - }, - { - "f1": 0.26686128390359604, - "fn": 257157, - "fn_rate": 0.8460197196350847, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999948757075, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997863886871449, - "recall": 0.15398028036491523, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46804, - "tp_rate": 0.15398028036491523, - "truth_threshold": 27.54 - }, - { - "f1": 0.26645033248548583, - "fn": 257240, - "fn_rate": 0.8462927809817707, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999949462551, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999786009287197, - "recall": 0.1537072190182293, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46721, - "tp_rate": 0.1537072190182293, - "truth_threshold": 27.560000000000002 - }, - { - "f1": 0.2659261921468627, - "fn": 257346, - "fn_rate": 0.8466415099305503, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999950158315, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997855227882038, - "recall": 0.1533584900694497, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46615, - "tp_rate": 0.1533584900694497, - "truth_threshold": 27.580000000000002 - }, - { - "f1": 0.265526213680871, - "fn": 257427, - "fn_rate": 0.8469079914857498, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.99999999508445, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999785149535923, - "recall": 0.15309200851425017, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46534, - "tp_rate": 0.15309200851425017, - "truth_threshold": 27.6 - }, - { - "f1": 0.2651896494652376, - "fn": 257495, - "fn_rate": 0.8471317043962877, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999951521238, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997848351837507, - "recall": 0.15286829560371232, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46466, - "tp_rate": 0.15286829560371232, - "truth_threshold": 27.62 - }, - { - "f1": 0.264589684741776, - "fn": 257616, - "fn_rate": 0.8475297817812154, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999995218866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997842735411498, - "recall": 0.15247021821878465, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46345, - "tp_rate": 0.15247021821878465, - "truth_threshold": 27.64 - }, - { - "f1": 0.26417917266269214, - "fn": 257699, - "fn_rate": 0.8478028431279013, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999952846893, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997838865836791, - "recall": 0.15219715687209873, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46262, - "tp_rate": 0.15219715687209873, - "truth_threshold": 27.66 - }, - { - "f1": 0.26363381906878175, - "fn": 257809, - "fn_rate": 0.8481647316596537, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999953496064, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997833716043499, - "recall": 0.1518352683403463, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46152, - "tp_rate": 0.1518352683403463, - "truth_threshold": 27.68 - }, - { - "f1": 0.26328088398295113, - "fn": 257880, - "fn_rate": 0.8483983142574212, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999954136297, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997830379032783, - "recall": 0.15160168574257882, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 46081, - "tp_rate": 0.15160168574257882, - "truth_threshold": 27.7 - }, - { - "f1": 0.262730753843516, - "fn": 257991, - "fn_rate": 0.8487634926849168, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999954767717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997825141365811, - "recall": 0.15123650731508317, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45970, - "tp_rate": 0.15123650731508317, - "truth_threshold": 27.72 - }, - { - "f1": 0.261960169932473, - "fn": 258146, - "fn_rate": 0.8492734265251134, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999955390442, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997817785051828, - "recall": 0.15072657347488658, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45815, - "tp_rate": 0.15072657347488658, - "truth_threshold": 27.740000000000002 - }, - { - "f1": 0.2615029139762192, - "fn": 258238, - "fn_rate": 0.8495760969334881, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999956004595, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997813395141364, - "recall": 0.15042390306651182, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45723, - "tp_rate": 0.15042390306651182, - "truth_threshold": 27.76 - }, - { - "f1": 0.2611705079141711, - "fn": 258305, - "fn_rate": 0.8497965199482829, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999956610293, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997810187010029, - "recall": 0.15020348005171716, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45656, - "tp_rate": 0.15020348005171716, - "truth_threshold": 27.78 - }, - { - "f1": 0.26074269039308806, - "fn": 258391, - "fn_rate": 0.8500794509821984, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999957207651, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997806055287407, - "recall": 0.14992054901780164, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45570, - "tp_rate": 0.14992054901780164, - "truth_threshold": 27.8 - }, - { - "f1": 0.2604184550584303, - "fn": 258456, - "fn_rate": 0.8502932942055066, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999957796787, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997802922113589, - "recall": 0.14970670579449338, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45505, - "tp_rate": 0.14970670579449338, - "truth_threshold": 27.82 - }, - { - "f1": 0.25977684015274255, - "fn": 258585, - "fn_rate": 0.8507176907563799, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999958377811, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997796677389503, - "recall": 0.14928230924362007, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45376, - "tp_rate": 0.14928230924362007, - "truth_threshold": 27.84 - }, - { - "f1": 0.25937251264079525, - "fn": 258666, - "fn_rate": 0.8509841723115794, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999958950836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997792738108376, - "recall": 0.14901582768842056, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45295, - "tp_rate": 0.14901582768842056, - "truth_threshold": 27.86 - }, - { - "f1": 0.2588398375520538, - "fn": 258773, - "fn_rate": 0.8513361911561023, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999959515972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997787512721802, - "recall": 0.14866380884389774, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45188, - "tp_rate": 0.14866380884389774, - "truth_threshold": 27.88 - }, - { - "f1": 0.25849494399725, - "fn": 258842, - "fn_rate": 0.8515631939623833, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999960073327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999778412993862, - "recall": 0.14843680603761666, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45119, - "tp_rate": 0.14843680603761666, - "truth_threshold": 27.900000000000002 - }, - { - "f1": 0.25812145071544407, - "fn": 258917, - "fn_rate": 0.8518099361431236, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999960623009, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999778044124828, - "recall": 0.1481900638568764, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 45044, - "tp_rate": 0.1481900638568764, - "truth_threshold": 27.92 - }, - { - "f1": 0.25761223460356764, - "fn": 259019, - "fn_rate": 0.8521455055089304, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999961165125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997775404876312, - "recall": 0.14785449449106958, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44942, - "tp_rate": 0.14785449449106958, - "truth_threshold": 27.94 - }, - { - "f1": 0.2570670061123152, - "fn": 259128, - "fn_rate": 0.8525041041449396, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999961699776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997769997546997, - "recall": 0.14749589585506034, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44833, - "tp_rate": 0.14749589585506034, - "truth_threshold": 27.96 - }, - { - "f1": 0.2566871601936179, - "fn": 259204, - "fn_rate": 0.8527541362214232, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999962227066, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997766211718453, - "recall": 0.14724586377857685, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44757, - "tp_rate": 0.14724586377857685, - "truth_threshold": 27.98 - }, - { - "f1": 0.25610280829580334, - "fn": 259321, - "fn_rate": 0.853139054023378, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999962747097, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997760358342666, - "recall": 0.146860945976622, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44640, - "tp_rate": 0.146860945976622, - "truth_threshold": 28 - }, - { - "f1": 0.25560242173825715, - "fn": 259421, - "fn_rate": 0.8534680435976983, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999963259969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997755331088665, - "recall": 0.1465319564023016, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44540, - "tp_rate": 0.1465319564023016, - "truth_threshold": 28.02 - }, - { - "f1": 0.25523195077431726, - "fn": 259495, - "fn_rate": 0.8537114958826955, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999996376578, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999775159636658, - "recall": 0.1462885041173045, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44466, - "tp_rate": 0.1462885041173045, - "truth_threshold": 28.04 - }, - { - "f1": 0.25470528116854035, - "fn": 259600, - "fn_rate": 0.8540569349357319, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999964264626, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997746275720628, - "recall": 0.1459430650642681, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44361, - "tp_rate": 0.1459430650642681, - "truth_threshold": 28.060000000000002 - }, - { - "f1": 0.2542800204453174, - "fn": 259685, - "fn_rate": 0.8543365760739042, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999964756606, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997741950051935, - "recall": 0.14566342392609577, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44276, - "tp_rate": 0.14566342392609577, - "truth_threshold": 28.080000000000002 - }, - { - "f1": 0.253868866396296, - "fn": 259767, - "fn_rate": 0.854606347524847, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999965241813, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997737761288571, - "recall": 0.14539365247515307, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44194, - "tp_rate": 0.14539365247515307, - "truth_threshold": 28.1 - }, - { - "f1": 0.25332130461764774, - "fn": 259876, - "fn_rate": 0.8549649461608562, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999965720339, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997732169180179, - "recall": 0.14503505383914383, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 44085, - "tp_rate": 0.14503505383914383, - "truth_threshold": 28.12 - }, - { - "f1": 0.2528896169209989, - "fn": 259962, - "fn_rate": 0.8552478771947717, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999966192277, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997727737508237, - "recall": 0.1447521228052283, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43999, - "tp_rate": 0.1447521228052283, - "truth_threshold": 28.14 - }, - { - "f1": 0.252337147128155, - "fn": 260072, - "fn_rate": 0.8556097657265241, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999966657718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997722043782319, - "recall": 0.1443902342734759, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43889, - "tp_rate": 0.1443902342734759, - "truth_threshold": 28.16 - }, - { - "f1": 0.2519006705542712, - "fn": 260159, - "fn_rate": 0.8558959866561828, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999996711675, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997717520314069, - "recall": 0.14410401334381714, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43802, - "tp_rate": 0.14410401334381714, - "truth_threshold": 28.18 - }, - { - "f1": 0.251488394834479, - "fn": 260241, - "fn_rate": 0.8561657581071256, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999967569464, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999771324033844, - "recall": 0.14383424189287441, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43720, - "tp_rate": 0.14383424189287441, - "truth_threshold": 28.2 - }, - { - "f1": 0.25112048282885235, - "fn": 260314, - "fn_rate": 0.8564059204963794, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999968015946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997709416588405, - "recall": 0.14359407950362052, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43647, - "tp_rate": 0.14359407950362052, - "truth_threshold": 28.22 - }, - { - "f1": 0.2506373697204781, - "fn": 260410, - "fn_rate": 0.856721750487727, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999968456279, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999770436858658, - "recall": 0.14327824951227294, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43551, - "tp_rate": 0.14327824951227294, - "truth_threshold": 28.240000000000002 - }, - { - "f1": 0.2502302555836979, - "fn": 260491, - "fn_rate": 0.8569882320429265, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999996889055, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999770009199632, - "recall": 0.14301176795707343, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43470, - "tp_rate": 0.14301176795707343, - "truth_threshold": 28.26 - }, - { - "f1": 0.2497768821073845, - "fn": 260581, - "fn_rate": 0.8572843226598149, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999969318843, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999769532150265, - "recall": 0.1427156773401851, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43380, - "tp_rate": 0.1427156773401851, - "truth_threshold": 28.28 - }, - { - "f1": 0.24944858128458966, - "fn": 260646, - "fn_rate": 0.8574981658831231, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.999999996974124, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997691863819965, - "recall": 0.14250183411687684, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43315, - "tp_rate": 0.14250183411687684, - "truth_threshold": 28.3 - }, - { - "f1": 0.2491518492278804, - "fn": 260705, - "fn_rate": 0.8576922697319722, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999970157821, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999768871631304, - "recall": 0.14230773026802782, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43256, - "tp_rate": 0.14230773026802782, - "truth_threshold": 28.32 - }, - { - "f1": 0.24868782660298328, - "fn": 260797, - "fn_rate": 0.8579949401403469, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999970568668, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997683791170612, - "recall": 0.14200505985965306, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43164, - "tp_rate": 0.14200505985965306, - "truth_threshold": 28.34 - }, - { - "f1": 0.24824808095710105, - "fn": 260884, - "fn_rate": 0.8582811610700057, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999970973857, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997679114350035, - "recall": 0.14171883892999432, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 43077, - "tp_rate": 0.14171883892999432, - "truth_threshold": 28.36 - }, - { - "f1": 0.24771287419799276, - "fn": 260990, - "fn_rate": 0.8586298900187853, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999971373469, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997673390567925, - "recall": 0.1413701099812147, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 42971, - "tp_rate": 0.1413701099812147, - "truth_threshold": 28.38 - }, - { - "f1": 0.24729428180984725, - "fn": 261073, - "fn_rate": 0.8589029513654712, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999971767579, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997668888992494, - "recall": 0.14109704863452877, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 42888, - "tp_rate": 0.14109704863452877, - "truth_threshold": 28.400000000000002 - }, - { - "f1": 0.24677294697135738, - "fn": 261176, - "fn_rate": 0.8592418106270212, - "fp": 10, - "fp_rate": 0.00005751456556372901, - "match_probability": 0.9999999972156263, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997663278420377, - "recall": 0.14075818937297876, - "row_count": 477830, - "tn": 173859, - "tn_rate": 0.9999424854344363, - "tp": 42785, - "tp_rate": 0.14075818937297876, - "truth_threshold": 28.42 - }, - { - "f1": 0.24631627531298678, - "fn": 261267, - "fn_rate": 0.8595411911396528, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999972539596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998594847775175, - "recall": 0.14045880886034723, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42694, - "tp_rate": 0.14045880886034723, - "truth_threshold": 28.44 - }, - { - "f1": 0.24590570719602978, - "fn": 261348, - "fn_rate": 0.8598076726948523, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999972917651, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998592177197964, - "recall": 0.1401923273051477, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42613, - "tp_rate": 0.1401923273051477, - "truth_threshold": 28.46 - }, - { - "f1": 0.24551084842223134, - "fn": 261426, - "fn_rate": 0.8600642845628222, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999973290502, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998589595919231, - "recall": 0.13993571543717778, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42535, - "tp_rate": 0.13993571543717778, - "truth_threshold": 28.48 - }, - { - "f1": 0.24522725042286533, - "fn": 261482, - "fn_rate": 0.8602485187244416, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999997365822, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998587736848299, - "recall": 0.13975148127555836, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42479, - "tp_rate": 0.13975148127555836, - "truth_threshold": 28.5 - }, - { - "f1": 0.24493342725498574, - "fn": 261540, - "fn_rate": 0.8604393326775475, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999974020874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998585806208311, - "recall": 0.13956066732245256, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42421, - "tp_rate": 0.13956066732245256, - "truth_threshold": 28.52 - }, - { - "f1": 0.24448307527043184, - "fn": 261629, - "fn_rate": 0.8607321333986926, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999974378537, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998582833388445, - "recall": 0.1392678666013074, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42332, - "tp_rate": 0.1392678666013074, - "truth_threshold": 28.54 - }, - { - "f1": 0.24401079126300526, - "fn": 261722, - "fn_rate": 0.8610380937028106, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999974731275, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998579713575572, - "recall": 0.13896190629718944, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42239, - "tp_rate": 0.13896190629718944, - "truth_threshold": 28.560000000000002 - }, - { - "f1": 0.24364552456563066, - "fn": 261794, - "fn_rate": 0.8612749661963213, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999975079157, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998577288786664, - "recall": 0.13872503380367876, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42167, - "tp_rate": 0.13872503380367876, - "truth_threshold": 28.580000000000002 - }, - { - "f1": 0.24331634245292832, - "fn": 261859, - "fn_rate": 0.8614888094196295, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999997542225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999857509261898, - "recall": 0.1385111905803705, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42102, - "tp_rate": 0.1385111905803705, - "truth_threshold": 28.6 - }, - { - "f1": 0.2428796873825806, - "fn": 261945, - "fn_rate": 0.861771740453545, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999997576062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998572176478987, - "recall": 0.13822825954645498, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 42016, - "tp_rate": 0.13822825954645498, - "truth_threshold": 28.62 - }, - { - "f1": 0.2424268706597975, - "fn": 262034, - "fn_rate": 0.8620645411746902, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999997609433, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998569146018649, - "recall": 0.13793545882530983, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41927, - "tp_rate": 0.13793545882530983, - "truth_threshold": 28.64 - }, - { - "f1": 0.24193893544786263, - "fn": 262130, - "fn_rate": 0.8623803711660377, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999976423446, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998565862753065, - "recall": 0.13761962883396225, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41831, - "tp_rate": 0.13761962883396225, - "truth_threshold": 28.66 - }, - { - "f1": 0.24162945137330216, - "fn": 262191, - "fn_rate": 0.8625810548063731, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999976748032, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998563768671007, - "recall": 0.13741894519362682, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41770, - "tp_rate": 0.13741894519362682, - "truth_threshold": 28.68 - }, - { - "f1": 0.24122248709699817, - "fn": 262271, - "fn_rate": 0.8628442464658295, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999977068148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998561013046815, - "recall": 0.1371557535341705, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41690, - "tp_rate": 0.1371557535341705, - "truth_threshold": 28.7 - }, - { - "f1": 0.24066260353180186, - "fn": 262381, - "fn_rate": 0.8632061349975819, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999977383858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998557206752272, - "recall": 0.13679386500241808, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41580, - "tp_rate": 0.13679386500241808, - "truth_threshold": 28.72 - }, - { - "f1": 0.2400660046898069, - "fn": 262498, - "fn_rate": 0.8635910527995367, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999977695221, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998553136077551, - "recall": 0.1364089472004632, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41463, - "tp_rate": 0.1364089472004632, - "truth_threshold": 28.740000000000002 - }, - { - "f1": 0.23957235356121065, - "fn": 262595, - "fn_rate": 0.8639101726866275, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999978002297, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998549743788069, - "recall": 0.13608982731337244, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41366, - "tp_rate": 0.13608982731337244, - "truth_threshold": 28.76 - }, - { - "f1": 0.23868930351141499, - "fn": 262768, - "fn_rate": 0.8644793246502018, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999978305146, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998543653972184, - "recall": 0.13552067534979817, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41193, - "tp_rate": 0.13552067534979817, - "truth_threshold": 28.78 - }, - { - "f1": 0.23815844384679588, - "fn": 262872, - "fn_rate": 0.8648214738074951, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999978603826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998539968365981, - "recall": 0.13517852619250495, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41089, - "tp_rate": 0.13517852619250495, - "truth_threshold": 28.8 - }, - { - "f1": 0.23770900489320748, - "fn": 262960, - "fn_rate": 0.8651109846328969, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999978898393, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998536835174482, - "recall": 0.13488901536710302, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 41001, - "tp_rate": 0.13488901536710302, - "truth_threshold": 28.82 - }, - { - "f1": 0.23713223567074762, - "fn": 263073, - "fn_rate": 0.865482742851879, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999979188905, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999853279209664, - "recall": 0.134517257148121, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40888, - "tp_rate": 0.134517257148121, - "truth_threshold": 28.84 - }, - { - "f1": 0.23677432827509398, - "fn": 263143, - "fn_rate": 0.8657130355539033, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999979475418, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998530276308054, - "recall": 0.1342869644460967, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40818, - "tp_rate": 0.1342869644460967, - "truth_threshold": 28.86 - }, - { - "f1": 0.23627744510978044, - "fn": 263240, - "fn_rate": 0.8660321554409941, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999979757986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998526775848945, - "recall": 0.13396784455900593, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40721, - "tp_rate": 0.13396784455900593, - "truth_threshold": 28.88 - }, - { - "f1": 0.23590451925922917, - "fn": 263313, - "fn_rate": 0.8662723178302479, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999980036663, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998524130466867, - "recall": 0.13372768216975203, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40648, - "tp_rate": 0.13372768216975203, - "truth_threshold": 28.900000000000002 - }, - { - "f1": 0.23530470423630906, - "fn": 263430, - "fn_rate": 0.8666572356322028, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999980311505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998519870735377, - "recall": 0.13334276436779718, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40531, - "tp_rate": 0.13334276436779718, - "truth_threshold": 28.92 - }, - { - "f1": 0.2348538079614413, - "fn": 263518, - "fn_rate": 0.8669467464576047, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999980582562, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998516650597048, - "recall": 0.13305325354239525, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40443, - "tp_rate": 0.13305325354239525, - "truth_threshold": 28.94 - }, - { - "f1": 0.23423857794301317, - "fn": 263638, - "fn_rate": 0.8673415339467893, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999980849887, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998512236851893, - "recall": 0.13265846605321077, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40323, - "tp_rate": 0.13265846605321077, - "truth_threshold": 28.96 - }, - { - "f1": 0.23398210550778525, - "fn": 263688, - "fn_rate": 0.8675060287339494, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999981113533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998510390029544, - "recall": 0.1324939712660506, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40273, - "tp_rate": 0.1324939712660506, - "truth_threshold": 28.98 - }, - { - "f1": 0.23354660994787219, - "fn": 263773, - "fn_rate": 0.8677856698721218, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999981373549, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999850723988655, - "recall": 0.13221433012787825, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40188, - "tp_rate": 0.13221433012787825, - "truth_threshold": 29 - }, - { - "f1": 0.23320778405524167, - "fn": 263839, - "fn_rate": 0.8680028029911732, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999981629984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998504784688995, - "recall": 0.13199719700882678, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40122, - "tp_rate": 0.13199719700882678, - "truth_threshold": 29.02 - }, - { - "f1": 0.23281745985605154, - "fn": 263915, - "fn_rate": 0.8682528350676567, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999998188289, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998501947468291, - "recall": 0.13174716493234329, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 40046, - "tp_rate": 0.13174716493234329, - "truth_threshold": 29.04 - }, - { - "f1": 0.23229333255793666, - "fn": 264017, - "fn_rate": 0.8685884044334635, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999982132314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998498122653316, - "recall": 0.1314115955665365, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39944, - "tp_rate": 0.1314115955665365, - "truth_threshold": 29.060000000000002 - }, - { - "f1": 0.2318145065121663, - "fn": 264110, - "fn_rate": 0.8688943647375814, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999982378304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998494618260281, - "recall": 0.13110563526241853, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39851, - "tp_rate": 0.13110563526241853, - "truth_threshold": 29.080000000000002 - }, - { - "f1": 0.23138822461554573, - "fn": 264193, - "fn_rate": 0.8691674260842673, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999982620906, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998491476844169, - "recall": 0.1308325739157326, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39768, - "tp_rate": 0.1308325739157326, - "truth_threshold": 29.1 - }, - { - "f1": 0.23087802209314506, - "fn": 264292, - "fn_rate": 0.8694931257628445, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999982860169, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998487712665406, - "recall": 0.13050687423715543, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39669, - "tp_rate": 0.13050687423715543, - "truth_threshold": 29.12 - }, - { - "f1": 0.23054399394592076, - "fn": 264357, - "fn_rate": 0.8697069689861529, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999983096138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998485231002272, - "recall": 0.13029303101384718, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39604, - "tp_rate": 0.13029303101384718, - "truth_threshold": 29.14 - }, - { - "f1": 0.23024523160762944, - "fn": 264415, - "fn_rate": 0.8698977829392587, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999983328859, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998483009708737, - "recall": 0.13010221706074135, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39546, - "tp_rate": 0.13010221706074135, - "truth_threshold": 29.16 - }, - { - "f1": 0.22964740416312363, - "fn": 264531, - "fn_rate": 0.8702794108454703, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999983558375, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998478547520032, - "recall": 0.1297205891545297, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39430, - "tp_rate": 0.1297205891545297, - "truth_threshold": 29.18 - }, - { - "f1": 0.2292187327053368, - "fn": 264614, - "fn_rate": 0.8705524721921563, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999983784732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998475338601885, - "recall": 0.12944752780784377, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39347, - "tp_rate": 0.12944752780784377, - "truth_threshold": 29.2 - }, - { - "f1": 0.22868797529209522, - "fn": 264717, - "fn_rate": 0.8708913314537062, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999984007972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998471337579617, - "recall": 0.12910866854629377, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39244, - "tp_rate": 0.12910866854629377, - "truth_threshold": 29.22 - }, - { - "f1": 0.22822336208906505, - "fn": 264807, - "fn_rate": 0.8711874220705946, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999998422814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998467824310521, - "recall": 0.12881257792940543, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39154, - "tp_rate": 0.12881257792940543, - "truth_threshold": 29.240000000000002 - }, - { - "f1": 0.22793864737397468, - "fn": 264862, - "fn_rate": 0.8713683663364707, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999984445276, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998465669351745, - "recall": 0.1286316336635292, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39099, - "tp_rate": 0.1286316336635292, - "truth_threshold": 29.26 - }, - { - "f1": 0.22755182366832852, - "fn": 264937, - "fn_rate": 0.8716151085172111, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.9999999984659422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998462720983858, - "recall": 0.12838489148278892, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 39024, - "tp_rate": 0.12838489148278892, - "truth_threshold": 29.28 - }, - { - "f1": 0.22709112224483963, - "fn": 265026, - "fn_rate": 0.8719079092383563, - "fp": 6, - "fp_rate": 0.00003450873933823741, - "match_probability": 0.999999998487062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998459207519067, - "recall": 0.12809209076164377, - "row_count": 477830, - "tn": 173863, - "tn_rate": 0.9999654912606618, - "tp": 38935, - "tp_rate": 0.12809209076164377, - "truth_threshold": 29.3 - }, - { - "f1": 0.22648026699652252, - "fn": 265145, - "fn_rate": 0.8722994068317975, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999985078911, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1277005931682025, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38816, - "tp_rate": 0.1277005931682025, - "truth_threshold": 29.32 - }, - { - "f1": 0.22603970912656263, - "fn": 265230, - "fn_rate": 0.8725790479699699, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999985284334, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12742095203003018, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38731, - "tp_rate": 0.12742095203003018, - "truth_threshold": 29.34 - }, - { - "f1": 0.22570834841285592, - "fn": 265294, - "fn_rate": 0.8727896012975349, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999985486929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12721039870246512, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38667, - "tp_rate": 0.12721039870246512, - "truth_threshold": 29.36 - }, - { - "f1": 0.22533541961022432, - "fn": 265366, - "fn_rate": 0.8730264737910456, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999985686735, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12697352620895444, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38595, - "tp_rate": 0.12697352620895444, - "truth_threshold": 29.38 - }, - { - "f1": 0.22471936361831116, - "fn": 265485, - "fn_rate": 0.8734179713844868, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999998588379, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12658202861551318, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38476, - "tp_rate": 0.12658202861551318, - "truth_threshold": 29.400000000000002 - }, - { - "f1": 0.22434601768877568, - "fn": 265557, - "fn_rate": 0.8736548438779975, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999986078132, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1263451561220025, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38404, - "tp_rate": 0.1263451561220025, - "truth_threshold": 29.42 - }, - { - "f1": 0.223987426087363, - "fn": 265626, - "fn_rate": 0.8738818466842786, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999986269797, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12611815331572143, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38335, - "tp_rate": 0.12611815331572143, - "truth_threshold": 29.44 - }, - { - "f1": 0.22357224676812307, - "fn": 265706, - "fn_rate": 0.8741450383437349, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999986458826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1258549616562651, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38255, - "tp_rate": 0.1258549616562651, - "truth_threshold": 29.46 - }, - { - "f1": 0.22306923342238644, - "fn": 265803, - "fn_rate": 0.8744641582308257, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999986645252, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12553584176917434, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38158, - "tp_rate": 0.12553584176917434, - "truth_threshold": 29.48 - }, - { - "f1": 0.22271013009793889, - "fn": 265872, - "fn_rate": 0.8746911610371068, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999998682911, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12530883896289327, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38089, - "tp_rate": 0.12530883896289327, - "truth_threshold": 29.5 - }, - { - "f1": 0.2223313916766089, - "fn": 265945, - "fn_rate": 0.8749313234263606, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987010437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12506867657363938, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 38016, - "tp_rate": 0.12506867657363938, - "truth_threshold": 29.52 - }, - { - "f1": 0.22194079005095027, - "fn": 266020, - "fn_rate": 0.8751780656071009, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987189269, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12482193439289908, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37941, - "tp_rate": 0.12482193439289908, - "truth_threshold": 29.54 - }, - { - "f1": 0.2215513155816117, - "fn": 266095, - "fn_rate": 0.8754248077878412, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987365638, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12457519221215879, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37866, - "tp_rate": 0.12457519221215879, - "truth_threshold": 29.560000000000002 - }, - { - "f1": 0.22110832148228782, - "fn": 266180, - "fn_rate": 0.8757044489260135, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987539578, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12429555107398646, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37781, - "tp_rate": 0.12429555107398646, - "truth_threshold": 29.580000000000002 - }, - { - "f1": 0.22072889471650842, - "fn": 266253, - "fn_rate": 0.8759446113152675, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987711125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12405538868473258, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37708, - "tp_rate": 0.12405538868473258, - "truth_threshold": 29.6 - }, - { - "f1": 0.22016629581918257, - "fn": 266361, - "fn_rate": 0.8762999200555335, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999987880309, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12370007994446656, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37600, - "tp_rate": 0.12370007994446656, - "truth_threshold": 29.62 - }, - { - "f1": 0.219743469602905, - "fn": 266442, - "fn_rate": 0.876566401610733, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988047165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12343359838926704, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37519, - "tp_rate": 0.12343359838926704, - "truth_threshold": 29.64 - }, - { - "f1": 0.21923241412845434, - "fn": 266540, - "fn_rate": 0.8768888113935669, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988211723, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12311118860643307, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37421, - "tp_rate": 0.12311118860643307, - "truth_threshold": 29.66 - }, - { - "f1": 0.218601652698822, - "fn": 266661, - "fn_rate": 0.8772868887784946, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988374015, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1227131112215054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37300, - "tp_rate": 0.1227131112215054, - "truth_threshold": 29.68 - }, - { - "f1": 0.2183034196551037, - "fn": 266718, - "fn_rate": 0.8774744128358573, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988534074, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12252558716414277, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37243, - "tp_rate": 0.12252558716414277, - "truth_threshold": 29.7 - }, - { - "f1": 0.2177079363217919, - "fn": 266832, - "fn_rate": 0.8778494609505825, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988691929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12215053904941753, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37129, - "tp_rate": 0.12215053904941753, - "truth_threshold": 29.72 - }, - { - "f1": 0.21745249824067558, - "fn": 266881, - "fn_rate": 0.8780106658419995, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999988847611, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12198933415800053, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37080, - "tp_rate": 0.12198933415800053, - "truth_threshold": 29.740000000000002 - }, - { - "f1": 0.21717020640143583, - "fn": 266935, - "fn_rate": 0.8781883202121324, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989001149, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12181167978786753, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 37026, - "tp_rate": 0.12181167978786753, - "truth_threshold": 29.76 - }, - { - "f1": 0.21688195886569755, - "fn": 266990, - "fn_rate": 0.8783692644780087, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989152574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12163073552199131, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36971, - "tp_rate": 0.12163073552199131, - "truth_threshold": 29.78 - }, - { - "f1": 0.2164797831329543, - "fn": 267067, - "fn_rate": 0.8786225864502354, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989301913, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12137741354976461, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36894, - "tp_rate": 0.12137741354976461, - "truth_threshold": 29.8 - }, - { - "f1": 0.21610296318467526, - "fn": 267139, - "fn_rate": 0.8788594589437461, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989449196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12114054105625392, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36822, - "tp_rate": 0.12114054105625392, - "truth_threshold": 29.82 - }, - { - "f1": 0.21567361314939829, - "fn": 267221, - "fn_rate": 0.8791292303946888, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989594452, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1208707696053112, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36740, - "tp_rate": 0.1208707696053112, - "truth_threshold": 29.84 - }, - { - "f1": 0.2151857854190154, - "fn": 267314, - "fn_rate": 0.8794351906988067, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989737709, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12056480930119325, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36647, - "tp_rate": 0.12056480930119325, - "truth_threshold": 29.86 - }, - { - "f1": 0.21485035707573763, - "fn": 267378, - "fn_rate": 0.8796457440263719, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999989878993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1203542559736282, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36583, - "tp_rate": 0.1203542559736282, - "truth_threshold": 29.88 - }, - { - "f1": 0.21452529061741885, - "fn": 267440, - "fn_rate": 0.8798497175624505, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990018332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.12015028243754955, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36521, - "tp_rate": 0.12015028243754955, - "truth_threshold": 29.900000000000002 - }, - { - "f1": 0.21410567505478817, - "fn": 267520, - "fn_rate": 0.8801129092219068, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990155752, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11988709077809324, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36441, - "tp_rate": 0.11988709077809324, - "truth_threshold": 29.92 - }, - { - "f1": 0.213601875958696, - "fn": 267616, - "fn_rate": 0.8804287392132544, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990291281, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11957126078674567, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36345, - "tp_rate": 0.11957126078674567, - "truth_threshold": 29.94 - }, - { - "f1": 0.21310367126186766, - "fn": 267711, - "fn_rate": 0.8807412793088587, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990424944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1192587206911413, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36250, - "tp_rate": 0.1192587206911413, - "truth_threshold": 29.96 - }, - { - "f1": 0.2126144455747711, - "fn": 267804, - "fn_rate": 0.8810472396129767, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990556766, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11895276038702333, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36157, - "tp_rate": 0.11895276038702333, - "truth_threshold": 29.98 - }, - { - "f1": 0.21232010633355095, - "fn": 267860, - "fn_rate": 0.8812314737745961, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990686774, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11876852622540392, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36101, - "tp_rate": 0.11876852622540392, - "truth_threshold": 30 - }, - { - "f1": 0.21188429839577855, - "fn": 267943, - "fn_rate": 0.881504535121282, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990814992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.118495464878718, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 36018, - "tp_rate": 0.118495464878718, - "truth_threshold": 30.02 - }, - { - "f1": 0.21145755491353288, - "fn": 268024, - "fn_rate": 0.8817710166764815, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999990941445, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11822898332351847, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35937, - "tp_rate": 0.11822898332351847, - "truth_threshold": 30.04 - }, - { - "f1": 0.21122599704579026, - "fn": 268068, - "fn_rate": 0.8819157720891825, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991066156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1180842279108175, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35893, - "tp_rate": 0.1180842279108175, - "truth_threshold": 30.060000000000002 - }, - { - "f1": 0.21078965182329223, - "fn": 268151, - "fn_rate": 0.8821888334358684, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991189151, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11781116656413158, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35810, - "tp_rate": 0.11781116656413158, - "truth_threshold": 30.080000000000002 - }, - { - "f1": 0.21026755222685414, - "fn": 268250, - "fn_rate": 0.8825145331144456, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991310453, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11748546688555439, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35711, - "tp_rate": 0.11748546688555439, - "truth_threshold": 30.1 - }, - { - "f1": 0.20992561968869808, - "fn": 268315, - "fn_rate": 0.8827283763377538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991430085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11727162366224614, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35646, - "tp_rate": 0.11727162366224614, - "truth_threshold": 30.12 - }, - { - "f1": 0.20951438467519615, - "fn": 268393, - "fn_rate": 0.8829849882057238, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999154807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11701501179427624, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35568, - "tp_rate": 0.11701501179427624, - "truth_threshold": 30.14 - }, - { - "f1": 0.20901265047107834, - "fn": 268488, - "fn_rate": 0.8832975283013281, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999166443, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11670247169867187, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35473, - "tp_rate": 0.11670247169867187, - "truth_threshold": 30.16 - }, - { - "f1": 0.20862211221122112, - "fn": 268562, - "fn_rate": 0.8835409805863252, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991779188, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11645901941367479, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35399, - "tp_rate": 0.11645901941367479, - "truth_threshold": 30.18 - }, - { - "f1": 0.2081739243207555, - "fn": 268647, - "fn_rate": 0.8838206217244976, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999991892367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11617937827550245, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35314, - "tp_rate": 0.11617937827550245, - "truth_threshold": 30.2 - }, - { - "f1": 0.20778301886792452, - "fn": 268721, - "fn_rate": 0.8840640740094946, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992003986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11593592599050537, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35240, - "tp_rate": 0.11593592599050537, - "truth_threshold": 30.22 - }, - { - "f1": 0.20745537214939053, - "fn": 268783, - "fn_rate": 0.8842680475455733, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999211407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11573195245442672, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35178, - "tp_rate": 0.11573195245442672, - "truth_threshold": 30.240000000000002 - }, - { - "f1": 0.20703710257771485, - "fn": 268862, - "fn_rate": 0.8845279493092864, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992222638, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11547205069071362, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35099, - "tp_rate": 0.11547205069071362, - "truth_threshold": 30.26 - }, - { - "f1": 0.20660337839033802, - "fn": 268944, - "fn_rate": 0.8847977207602291, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992329711, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11520227923977089, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 35017, - "tp_rate": 0.11520227923977089, - "truth_threshold": 30.28 - }, - { - "f1": 0.20614358641447078, - "fn": 269031, - "fn_rate": 0.8850839416898878, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999243531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11491605831011215, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34930, - "tp_rate": 0.11491605831011215, - "truth_threshold": 30.3 - }, - { - "f1": 0.20578825584964466, - "fn": 269098, - "fn_rate": 0.8853043647046825, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992539456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1146956352953175, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34863, - "tp_rate": 0.1146956352953175, - "truth_threshold": 30.32 - }, - { - "f1": 0.20553404019174912, - "fn": 269146, - "fn_rate": 0.8854622797003563, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992642167, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11453772029964371, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34815, - "tp_rate": 0.11453772029964371, - "truth_threshold": 30.34 - }, - { - "f1": 0.2049723920040157, - "fn": 269252, - "fn_rate": 0.8858110086491359, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992743465, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11418899135086409, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34709, - "tp_rate": 0.11418899135086409, - "truth_threshold": 30.36 - }, - { - "f1": 0.2046390199819259, - "fn": 269315, - "fn_rate": 0.8860182720809577, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992843367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11398172791904225, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34646, - "tp_rate": 0.11398172791904225, - "truth_threshold": 30.38 - }, - { - "f1": 0.2043891776937618, - "fn": 269362, - "fn_rate": 0.8861728971808883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999992941895, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11382710281911167, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34599, - "tp_rate": 0.11382710281911167, - "truth_threshold": 30.400000000000002 - }, - { - "f1": 0.20393294610516613, - "fn": 269448, - "fn_rate": 0.8864558282148038, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993039066, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11354417178519613, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34513, - "tp_rate": 0.11354417178519613, - "truth_threshold": 30.42 - }, - { - "f1": 0.2035508064373142, - "fn": 269520, - "fn_rate": 0.8866927007083145, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993134899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11330729929168544, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34441, - "tp_rate": 0.11330729929168544, - "truth_threshold": 30.44 - }, - { - "f1": 0.20330657650521936, - "fn": 269566, - "fn_rate": 0.8868440359125019, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993229413, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11315596408749806, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34395, - "tp_rate": 0.11315596408749806, - "truth_threshold": 30.46 - }, - { - "f1": 0.20294070697575425, - "fn": 269635, - "fn_rate": 0.887071038718783, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993322626, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.112928961281217, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34326, - "tp_rate": 0.112928961281217, - "truth_threshold": 30.48 - }, - { - "f1": 0.20245184716464515, - "fn": 269727, - "fn_rate": 0.8873737091271577, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993414554, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11262629087284223, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34234, - "tp_rate": 0.11262629087284223, - "truth_threshold": 30.5 - }, - { - "f1": 0.2021328822301218, - "fn": 269787, - "fn_rate": 0.88757110287175, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993505219, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11242889712825001, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34174, - "tp_rate": 0.11242889712825001, - "truth_threshold": 30.52 - }, - { - "f1": 0.20181852601190264, - "fn": 269846, - "fn_rate": 0.887765206720599, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993594634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11223479327940097, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34115, - "tp_rate": 0.11223479327940097, - "truth_threshold": 30.54 - }, - { - "f1": 0.201462687273674, - "fn": 269913, - "fn_rate": 0.8879856297353936, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993682819, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11201437026460631, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 34048, - "tp_rate": 0.11201437026460631, - "truth_threshold": 30.560000000000002 - }, - { - "f1": 0.20101561297806608, - "fn": 269997, - "fn_rate": 0.8882619809778228, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993769789, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11173801902217718, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33964, - "tp_rate": 0.11173801902217718, - "truth_threshold": 30.580000000000002 - }, - { - "f1": 0.20061092562335725, - "fn": 270073, - "fn_rate": 0.8885120130543063, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993855563, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11148798694569369, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33888, - "tp_rate": 0.11148798694569369, - "truth_threshold": 30.6 - }, - { - "f1": 0.20021671295007903, - "fn": 270147, - "fn_rate": 0.8887554653393034, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999993940155, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1112445346606966, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33814, - "tp_rate": 0.1112445346606966, - "truth_threshold": 30.62 - }, - { - "f1": 0.19982232750962392, - "fn": 270221, - "fn_rate": 0.8889989176243005, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994023583, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11100108237569951, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33740, - "tp_rate": 0.11100108237569951, - "truth_threshold": 30.64 - }, - { - "f1": 0.1993365125440597, - "fn": 270312, - "fn_rate": 0.8892982981369321, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994105861, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11070170186306796, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33649, - "tp_rate": 0.11070170186306796, - "truth_threshold": 30.66 - }, - { - "f1": 0.19885161680265942, - "fn": 270403, - "fn_rate": 0.8895976786495636, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994187008, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1104023213504364, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33558, - "tp_rate": 0.1104023213504364, - "truth_threshold": 30.68 - }, - { - "f1": 0.19850409240963213, - "fn": 270468, - "fn_rate": 0.8898115218728718, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994267037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11018847812712815, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33493, - "tp_rate": 0.11018847812712815, - "truth_threshold": 30.7 - }, - { - "f1": 0.1982264479760049, - "fn": 270520, - "fn_rate": 0.8899825964515184, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994345965, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.11001740354848155, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33441, - "tp_rate": 0.11001740354848155, - "truth_threshold": 30.72 - }, - { - "f1": 0.19794396291070349, - "fn": 270573, - "fn_rate": 0.8901569609259082, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994423805, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10984303907409174, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33388, - "tp_rate": 0.10984303907409174, - "truth_threshold": 30.740000000000002 - }, - { - "f1": 0.1975640273009209, - "fn": 270644, - "fn_rate": 0.8903905435236757, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994500575, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10960945647632427, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33317, - "tp_rate": 0.10960945647632427, - "truth_threshold": 30.76 - }, - { - "f1": 0.19726470989437225, - "fn": 270700, - "fn_rate": 0.8905747776852951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994576286, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10942522231470485, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33261, - "tp_rate": 0.10942522231470485, - "truth_threshold": 30.78 - }, - { - "f1": 0.19694983420432907, - "fn": 270759, - "fn_rate": 0.8907688815341441, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994650957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10923111846585581, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33202, - "tp_rate": 0.10923111846585581, - "truth_threshold": 30.8 - }, - { - "f1": 0.19663961270112487, - "fn": 270817, - "fn_rate": 0.89095969548725, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994724599, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10904030451274999, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33144, - "tp_rate": 0.10904030451274999, - "truth_threshold": 30.82 - }, - { - "f1": 0.19636139230741845, - "fn": 270869, - "fn_rate": 0.8911307700658966, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994797226, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10886922993410339, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 33092, - "tp_rate": 0.10886922993410339, - "truth_threshold": 30.84 - }, - { - "f1": 0.19582017616752534, - "fn": 270970, - "fn_rate": 0.8914630495359602, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994868854, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1085369504640398, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32991, - "tp_rate": 0.1085369504640398, - "truth_threshold": 30.86 - }, - { - "f1": 0.1954833653914654, - "fn": 271033, - "fn_rate": 0.8916703129677821, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999994939497, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10832968703221794, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32928, - "tp_rate": 0.10832968703221794, - "truth_threshold": 30.88 - }, - { - "f1": 0.1950976200655551, - "fn": 271105, - "fn_rate": 0.8919071854612928, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995009166, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10809281453870727, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32856, - "tp_rate": 0.10809281453870727, - "truth_threshold": 30.900000000000002 - }, - { - "f1": 0.1946628813076119, - "fn": 271186, - "fn_rate": 0.8921736670164923, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995077876, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10782633298350776, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32775, - "tp_rate": 0.10782633298350776, - "truth_threshold": 30.92 - }, - { - "f1": 0.19431969394544246, - "fn": 271250, - "fn_rate": 0.8923842203440573, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995145641, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1076157796559427, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32711, - "tp_rate": 0.1076157796559427, - "truth_threshold": 30.94 - }, - { - "f1": 0.19386906247400382, - "fn": 271334, - "fn_rate": 0.8926605715864864, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995212472, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10733942841351357, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32627, - "tp_rate": 0.10733942841351357, - "truth_threshold": 30.96 - }, - { - "f1": 0.1935255732132032, - "fn": 271398, - "fn_rate": 0.8928711249140515, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995278384, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10712887508594852, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32563, - "tp_rate": 0.10712887508594852, - "truth_threshold": 30.98 - }, - { - "f1": 0.19318789752125068, - "fn": 271461, - "fn_rate": 0.8930783883458733, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995343387, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10692161165412668, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32500, - "tp_rate": 0.10692161165412668, - "truth_threshold": 31 - }, - { - "f1": 0.19273669940780555, - "fn": 271545, - "fn_rate": 0.8933547395883025, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995407496, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10664526041169756, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32416, - "tp_rate": 0.10664526041169756, - "truth_threshold": 31.02 - }, - { - "f1": 0.19225302272470457, - "fn": 271635, - "fn_rate": 0.8936508302051908, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995470722, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1063491697948092, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32326, - "tp_rate": 0.1063491697948092, - "truth_threshold": 31.04 - }, - { - "f1": 0.191881457863648, - "fn": 271704, - "fn_rate": 0.8938778330114718, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995533079, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10612216698852814, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32257, - "tp_rate": 0.10612216698852814, - "truth_threshold": 31.060000000000002 - }, - { - "f1": 0.19129565496804599, - "fn": 271813, - "fn_rate": 0.8942364316474811, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995594576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.1057635683525189, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32148, - "tp_rate": 0.1057635683525189, - "truth_threshold": 31.080000000000002 - }, - { - "f1": 0.19083755922196033, - "fn": 271898, - "fn_rate": 0.8945160727856534, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995655227, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10548392721434657, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32063, - "tp_rate": 0.10548392721434657, - "truth_threshold": 31.1 - }, - { - "f1": 0.19051445988260646, - "fn": 271958, - "fn_rate": 0.8947134665302456, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995715042, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10528653346975435, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 32003, - "tp_rate": 0.10528653346975435, - "truth_threshold": 31.12 - }, - { - "f1": 0.1902235717900628, - "fn": 272012, - "fn_rate": 0.8948911209003787, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995774035, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10510887909962133, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31949, - "tp_rate": 0.10510887909962133, - "truth_threshold": 31.14 - }, - { - "f1": 0.18987387001107658, - "fn": 272077, - "fn_rate": 0.8951049641236869, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995832215, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10489503587631308, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31884, - "tp_rate": 0.10489503587631308, - "truth_threshold": 31.16 - }, - { - "f1": 0.1894317999058857, - "fn": 272159, - "fn_rate": 0.8953747355746297, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995889594, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10462526442537036, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31802, - "tp_rate": 0.10462526442537036, - "truth_threshold": 31.18 - }, - { - "f1": 0.18903750484077572, - "fn": 272232, - "fn_rate": 0.8956148979638835, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999995946183, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10438510203611648, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31729, - "tp_rate": 0.10438510203611648, - "truth_threshold": 31.2 - }, - { - "f1": 0.1887305143728846, - "fn": 272289, - "fn_rate": 0.8958024220212462, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996001994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10419757797875386, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31672, - "tp_rate": 0.10419757797875386, - "truth_threshold": 31.220000000000002 - }, - { - "f1": 0.1882770870337478, - "fn": 272373, - "fn_rate": 0.8960787732636752, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996057035, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10392122673632473, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31588, - "tp_rate": 0.10392122673632473, - "truth_threshold": 31.240000000000002 - }, - { - "f1": 0.18789905746427485, - "fn": 272443, - "fn_rate": 0.8963090659656996, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996111318, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10369093403430045, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31518, - "tp_rate": 0.10369093403430045, - "truth_threshold": 31.26 - }, - { - "f1": 0.1874824837061198, - "fn": 272520, - "fn_rate": 0.8965623879379262, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996164856, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10343761206207375, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31441, - "tp_rate": 0.10343761206207375, - "truth_threshold": 31.28 - }, - { - "f1": 0.18707168546429445, - "fn": 272596, - "fn_rate": 0.8968124200144098, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996217656, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10318757998559025, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31365, - "tp_rate": 0.10318757998559025, - "truth_threshold": 31.3 - }, - { - "f1": 0.18666666666666668, - "fn": 272671, - "fn_rate": 0.89705916219515, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996269727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10294083780484996, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31290, - "tp_rate": 0.10294083780484996, - "truth_threshold": 31.32 - }, - { - "f1": 0.18634692952099097, - "fn": 272730, - "fn_rate": 0.897253266043999, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996321084, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10274673395600094, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31231, - "tp_rate": 0.10274673395600094, - "truth_threshold": 31.34 - }, - { - "f1": 0.1860546998549851, - "fn": 272784, - "fn_rate": 0.8974309204141321, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996371732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10256907958586792, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31177, - "tp_rate": 0.10256907958586792, - "truth_threshold": 31.36 - }, - { - "f1": 0.1856974023493458, - "fn": 272850, - "fn_rate": 0.8976480535331836, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996421683, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10235194646681646, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31111, - "tp_rate": 0.10235194646681646, - "truth_threshold": 31.38 - }, - { - "f1": 0.18527496014853997, - "fn": 272928, - "fn_rate": 0.8979046654011534, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996470947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10209533459884657, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 31033, - "tp_rate": 0.10209533459884657, - "truth_threshold": 31.400000000000002 - }, - { - "f1": 0.18486316053481747, - "fn": 273004, - "fn_rate": 0.898154697477637, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996519533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10184530252236307, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30957, - "tp_rate": 0.10184530252236307, - "truth_threshold": 31.42 - }, - { - "f1": 0.1842993423214083, - "fn": 273108, - "fn_rate": 0.8984968466349301, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996567449, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10150315336506986, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30853, - "tp_rate": 0.10150315336506986, - "truth_threshold": 31.44 - }, - { - "f1": 0.1840015772587959, - "fn": 273163, - "fn_rate": 0.8986777909008064, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996614707, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10132220909919365, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30798, - "tp_rate": 0.10132220909919365, - "truth_threshold": 31.46 - }, - { - "f1": 0.18362663957692194, - "fn": 273232, - "fn_rate": 0.8989047937070874, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996661313, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10109520629291258, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30729, - "tp_rate": 0.10109520629291258, - "truth_threshold": 31.48 - }, - { - "f1": 0.1831054950178425, - "fn": 273328, - "fn_rate": 0.899220623698435, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996707277, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.100779376301565, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30633, - "tp_rate": 0.100779376301565, - "truth_threshold": 31.5 - }, - { - "f1": 0.1826166503240619, - "fn": 273418, - "fn_rate": 0.8995167143153233, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999675261, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10048328568467665, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30543, - "tp_rate": 0.10048328568467665, - "truth_threshold": 31.52 - }, - { - "f1": 0.18229658776955185, - "fn": 273477, - "fn_rate": 0.8997108181641724, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996797317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10028918183582762, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30484, - "tp_rate": 0.10028918183582762, - "truth_threshold": 31.54 - }, - { - "f1": 0.18197532193333452, - "fn": 273536, - "fn_rate": 0.8999049220130214, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999684141, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.10009507798697859, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30425, - "tp_rate": 0.10009507798697859, - "truth_threshold": 31.560000000000002 - }, - { - "f1": 0.1815511444536176, - "fn": 273614, - "fn_rate": 0.9001615338809913, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996884895, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09983846611900869, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30347, - "tp_rate": 0.09983846611900869, - "truth_threshold": 31.580000000000002 - }, - { - "f1": 0.1812573671519264, - "fn": 273668, - "fn_rate": 0.9003391882511244, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996927781, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09966081174887567, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30293, - "tp_rate": 0.09966081174887567, - "truth_threshold": 31.6 - }, - { - "f1": 0.18105057806927258, - "fn": 273706, - "fn_rate": 0.900464204289366, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999996970077, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09953579571063394, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30255, - "tp_rate": 0.09953579571063394, - "truth_threshold": 31.62 - }, - { - "f1": 0.18068640243245507, - "fn": 273773, - "fn_rate": 0.9006846273041608, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997011791, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09931537269583927, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30188, - "tp_rate": 0.09931537269583927, - "truth_threshold": 31.64 - }, - { - "f1": 0.1802180433572211, - "fn": 273859, - "fn_rate": 0.9009675583380763, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997052931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09903244166192374, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30102, - "tp_rate": 0.09903244166192374, - "truth_threshold": 31.66 - }, - { - "f1": 0.1799069477793812, - "fn": 273916, - "fn_rate": 0.9011550823954388, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997093504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09884491760456111, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 30045, - "tp_rate": 0.09884491760456111, - "truth_threshold": 31.68 - }, - { - "f1": 0.17961263894212343, - "fn": 273970, - "fn_rate": 0.9013327367655719, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997133519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09866726323442811, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29991, - "tp_rate": 0.09866726323442811, - "truth_threshold": 31.7 - }, - { - "f1": 0.17925878892795744, - "fn": 274035, - "fn_rate": 0.9015465799888801, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997172982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09845342001111984, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29926, - "tp_rate": 0.09845342001111984, - "truth_threshold": 31.720000000000002 - }, - { - "f1": 0.17874604544147255, - "fn": 274129, - "fn_rate": 0.9018558301887413, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997211902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09814416981125867, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29832, - "tp_rate": 0.09814416981125867, - "truth_threshold": 31.740000000000002 - }, - { - "f1": 0.17846227602325163, - "fn": 274181, - "fn_rate": 0.9020269047673879, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997250287, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09797309523261208, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29780, - "tp_rate": 0.09797309523261208, - "truth_threshold": 31.76 - }, - { - "f1": 0.17800369242573189, - "fn": 274265, - "fn_rate": 0.9023032560098171, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997288144, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09769674399018295, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29696, - "tp_rate": 0.09769674399018295, - "truth_threshold": 31.78 - }, - { - "f1": 0.1776978417266187, - "fn": 274321, - "fn_rate": 0.9024874901714365, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997325478, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09751250982856353, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29640, - "tp_rate": 0.09751250982856353, - "truth_threshold": 31.8 - }, - { - "f1": 0.1773640342987348, - "fn": 274382, - "fn_rate": 0.9026881738117719, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997362299, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09731182618822809, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29579, - "tp_rate": 0.09731182618822809, - "truth_threshold": 31.82 - }, - { - "f1": 0.1770202353392748, - "fn": 274445, - "fn_rate": 0.9028954372435938, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997398613, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09710456275640625, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29516, - "tp_rate": 0.09710456275640625, - "truth_threshold": 31.84 - }, - { - "f1": 0.1764674121712421, - "fn": 274546, - "fn_rate": 0.9032277167136573, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997434427, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09677228328634266, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29415, - "tp_rate": 0.09677228328634266, - "truth_threshold": 31.86 - }, - { - "f1": 0.17605160516051604, - "fn": 274622, - "fn_rate": 0.9034777487901409, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997469748, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09652225120985916, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29339, - "tp_rate": 0.09652225120985916, - "truth_threshold": 31.88 - }, - { - "f1": 0.17564161044822701, - "fn": 274697, - "fn_rate": 0.9037244909708811, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997504583, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09627550902911887, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29264, - "tp_rate": 0.09627550902911887, - "truth_threshold": 31.900000000000002 - }, - { - "f1": 0.17537877878358585, - "fn": 274745, - "fn_rate": 0.9038824059665549, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997538939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09611759403344508, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29216, - "tp_rate": 0.09611759403344508, - "truth_threshold": 31.92 - }, - { - "f1": 0.1750391757776617, - "fn": 274807, - "fn_rate": 0.9040863795026336, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999757282, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09591362049736644, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29154, - "tp_rate": 0.09591362049736644, - "truth_threshold": 31.94 - }, - { - "f1": 0.1745459786682041, - "fn": 274897, - "fn_rate": 0.9043824701195219, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997606236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09561752988047809, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29064, - "tp_rate": 0.09561752988047809, - "truth_threshold": 31.96 - }, - { - "f1": 0.17423295932341848, - "fn": 274954, - "fn_rate": 0.9045699941768846, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997639192, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09543000582311546, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 29007, - "tp_rate": 0.09543000582311546, - "truth_threshold": 31.98 - }, - { - "f1": 0.1738879677024007, - "fn": 275017, - "fn_rate": 0.9047772576087064, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997671694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09522274239129362, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28944, - "tp_rate": 0.09522274239129362, - "truth_threshold": 32 - }, - { - "f1": 0.17342106844540592, - "fn": 275102, - "fn_rate": 0.9050568987468787, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997703748, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09494310125312129, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28859, - "tp_rate": 0.09494310125312129, - "truth_threshold": 32.02 - }, - { - "f1": 0.17303184391791987, - "fn": 275173, - "fn_rate": 0.9052904813446462, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997735362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0947095186553538, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28788, - "tp_rate": 0.0947095186553538, - "truth_threshold": 32.04 - }, - { - "f1": 0.17260845517506734, - "fn": 275250, - "fn_rate": 0.9055438033168729, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997766539, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09445619668312712, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28711, - "tp_rate": 0.09445619668312712, - "truth_threshold": 32.06 - }, - { - "f1": 0.17215293396033532, - "fn": 275333, - "fn_rate": 0.9058168646635588, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997797288, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09418313533644118, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28628, - "tp_rate": 0.09418313533644118, - "truth_threshold": 32.08 - }, - { - "f1": 0.17187810114934232, - "fn": 275383, - "fn_rate": 0.905981359450719, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997827613, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.094018640549281, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28578, - "tp_rate": 0.094018640549281, - "truth_threshold": 32.1 - }, - { - "f1": 0.1715701902659392, - "fn": 275439, - "fn_rate": 0.9061655936123384, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997857522, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09383440638766158, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28522, - "tp_rate": 0.09383440638766158, - "truth_threshold": 32.12 - }, - { - "f1": 0.1712121485599456, - "fn": 275504, - "fn_rate": 0.9063794368356467, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997887017, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09362056316435333, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28457, - "tp_rate": 0.09362056316435333, - "truth_threshold": 32.14 - }, - { - "f1": 0.17081595686423184, - "fn": 275576, - "fn_rate": 0.9066163093291574, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997916107, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09338369067084264, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28385, - "tp_rate": 0.09338369067084264, - "truth_threshold": 32.160000000000004 - }, - { - "f1": 0.17032047577771356, - "fn": 275666, - "fn_rate": 0.9069123999460457, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997944797, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09308760005395429, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28295, - "tp_rate": 0.09308760005395429, - "truth_threshold": 32.18 - }, - { - "f1": 0.16997898818160473, - "fn": 275728, - "fn_rate": 0.9071163734821244, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999997973091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09288362651787564, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28233, - "tp_rate": 0.09288362651787564, - "truth_threshold": 32.2 - }, - { - "f1": 0.1694560039506411, - "fn": 275823, - "fn_rate": 0.9074289135777287, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998000997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09257108642227128, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28138, - "tp_rate": 0.09257108642227128, - "truth_threshold": 32.22 - }, - { - "f1": 0.16916933196002965, - "fn": 275875, - "fn_rate": 0.9075999881563753, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998028517, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09240001184362467, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28086, - "tp_rate": 0.09240001184362467, - "truth_threshold": 32.24 - }, - { - "f1": 0.16877726100681978, - "fn": 275946, - "fn_rate": 0.9078335707541428, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999805566, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0921664292458572, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 28015, - "tp_rate": 0.0921664292458572, - "truth_threshold": 32.26 - }, - { - "f1": 0.1682585979354108, - "fn": 276040, - "fn_rate": 0.908142820954004, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998082427, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09185717904599604, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27921, - "tp_rate": 0.09185717904599604, - "truth_threshold": 32.28 - }, - { - "f1": 0.1678059071729958, - "fn": 276122, - "fn_rate": 0.9084125924049467, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998108827, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09158740759505331, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27839, - "tp_rate": 0.09158740759505331, - "truth_threshold": 32.3 - }, - { - "f1": 0.16734194310795983, - "fn": 276206, - "fn_rate": 0.9086889436473758, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998134864, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09131105635262418, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27755, - "tp_rate": 0.09131105635262418, - "truth_threshold": 32.32 - }, - { - "f1": 0.16710987294753282, - "fn": 276248, - "fn_rate": 0.9088271192685904, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998160541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09117288073140963, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27713, - "tp_rate": 0.09117288073140963, - "truth_threshold": 32.34 - }, - { - "f1": 0.16682246654323296, - "fn": 276300, - "fn_rate": 0.908998193847237, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998185866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09100180615276302, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27661, - "tp_rate": 0.09100180615276302, - "truth_threshold": 32.36 - }, - { - "f1": 0.16640224885837862, - "fn": 276376, - "fn_rate": 0.9092482259237205, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998210842, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09075177407627952, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27585, - "tp_rate": 0.09075177407627952, - "truth_threshold": 32.38 - }, - { - "f1": 0.16597680620753738, - "fn": 276453, - "fn_rate": 0.9095015478959472, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998235474, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09049845210405283, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27508, - "tp_rate": 0.09049845210405283, - "truth_threshold": 32.4 - }, - { - "f1": 0.16567797377298485, - "fn": 276507, - "fn_rate": 0.9096792022660802, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998259766, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09032079773391981, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27454, - "tp_rate": 0.09032079773391981, - "truth_threshold": 32.42 - }, - { - "f1": 0.1652572297774478, - "fn": 276583, - "fn_rate": 0.9099292343425637, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998283725, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.09007076565743631, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27378, - "tp_rate": 0.09007076565743631, - "truth_threshold": 32.44 - }, - { - "f1": 0.16481413279075524, - "fn": 276663, - "fn_rate": 0.91019242600202, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998307353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08980757399798, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27298, - "tp_rate": 0.08980757399798, - "truth_threshold": 32.46 - }, - { - "f1": 0.16442624732780173, - "fn": 276733, - "fn_rate": 0.9104227187040442, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998330656, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08957728129595573, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27228, - "tp_rate": 0.08957728129595573, - "truth_threshold": 32.480000000000004 - }, - { - "f1": 0.1639212559423494, - "fn": 276824, - "fn_rate": 0.9107220992166758, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998353639, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08927790078332418, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27137, - "tp_rate": 0.08927790078332418, - "truth_threshold": 32.5 - }, - { - "f1": 0.1633221547478776, - "fn": 276932, - "fn_rate": 0.9110774079569418, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998376304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08892259204305815, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 27029, - "tp_rate": 0.08892259204305815, - "truth_threshold": 32.52 - }, - { - "f1": 0.16289527125036263, - "fn": 277009, - "fn_rate": 0.9113307299291685, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998398659, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08866927007083146, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26952, - "tp_rate": 0.08866927007083146, - "truth_threshold": 32.54 - }, - { - "f1": 0.16260049567793025, - "fn": 277062, - "fn_rate": 0.9115050944035583, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998420704, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08849490559644164, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26899, - "tp_rate": 0.08849490559644164, - "truth_threshold": 32.56 - }, - { - "f1": 0.1623399393008718, - "fn": 277109, - "fn_rate": 0.9116597195034889, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998442447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08834028049651106, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26852, - "tp_rate": 0.08834028049651106, - "truth_threshold": 32.58 - }, - { - "f1": 0.16209548686692787, - "fn": 277153, - "fn_rate": 0.9118044749161899, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998463891, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0881955250838101, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26808, - "tp_rate": 0.0881955250838101, - "truth_threshold": 32.6 - }, - { - "f1": 0.16160638683924036, - "fn": 277241, - "fn_rate": 0.9120939857415918, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998485039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08790601425840815, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26720, - "tp_rate": 0.08790601425840815, - "truth_threshold": 32.62 - }, - { - "f1": 0.16138398257924025, - "fn": 277281, - "fn_rate": 0.91222558157132, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998505895, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08777441842868, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26680, - "tp_rate": 0.08777441842868, - "truth_threshold": 32.64 - }, - { - "f1": 0.16102197376700064, - "fn": 277346, - "fn_rate": 0.9124394247946283, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998526465, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08756057520537174, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26615, - "tp_rate": 0.08756057520537174, - "truth_threshold": 32.660000000000004 - }, - { - "f1": 0.160610223236168, - "fn": 277420, - "fn_rate": 0.9126828770796254, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998546752, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08731712292037465, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26541, - "tp_rate": 0.08731712292037465, - "truth_threshold": 32.68 - }, - { - "f1": 0.1603490954868151, - "fn": 277467, - "fn_rate": 0.912837502179556, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999856676, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08716249782044407, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26494, - "tp_rate": 0.08716249782044407, - "truth_threshold": 32.7 - }, - { - "f1": 0.159975543905953, - "fn": 277534, - "fn_rate": 0.9130579251943506, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998586491, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0869420748056494, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26427, - "tp_rate": 0.0869420748056494, - "truth_threshold": 32.72 - }, - { - "f1": 0.15968589557299234, - "fn": 277586, - "fn_rate": 0.9132289997729972, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998605952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0867710002270028, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26375, - "tp_rate": 0.0867710002270028, - "truth_threshold": 32.74 - }, - { - "f1": 0.15934648201190527, - "fn": 277647, - "fn_rate": 0.9134296834133326, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998625143, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08657031658666736, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26314, - "tp_rate": 0.08657031658666736, - "truth_threshold": 32.76 - }, - { - "f1": 0.15902318482447853, - "fn": 277705, - "fn_rate": 0.9136204973664385, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998644071, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08637950263356155, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26256, - "tp_rate": 0.08637950263356155, - "truth_threshold": 32.78 - }, - { - "f1": 0.1585933240443448, - "fn": 277782, - "fn_rate": 0.9138738193386652, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998662739, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08612618066133484, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26179, - "tp_rate": 0.08612618066133484, - "truth_threshold": 32.8 - }, - { - "f1": 0.15821396543784386, - "fn": 277850, - "fn_rate": 0.914097532249203, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998681149, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08590246775079698, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26111, - "tp_rate": 0.08590246775079698, - "truth_threshold": 32.82 - }, - { - "f1": 0.1578516754240832, - "fn": 277915, - "fn_rate": 0.9143113754725113, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998699307, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08568862452748872, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26046, - "tp_rate": 0.08568862452748872, - "truth_threshold": 32.84 - }, - { - "f1": 0.1576334674877564, - "fn": 277954, - "fn_rate": 0.9144396814064962, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998717214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08556031859350377, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 26007, - "tp_rate": 0.08556031859350377, - "truth_threshold": 32.86 - }, - { - "f1": 0.15732074007614152, - "fn": 278010, - "fn_rate": 0.9146239155681156, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998734874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08537608443188435, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25951, - "tp_rate": 0.08537608443188435, - "truth_threshold": 32.88 - }, - { - "f1": 0.15681791996895295, - "fn": 278100, - "fn_rate": 0.914920006185004, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998752291, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08507999381499601, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25861, - "tp_rate": 0.08507999381499601, - "truth_threshold": 32.9 - }, - { - "f1": 0.15646019201960226, - "fn": 278164, - "fn_rate": 0.915130559512569, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998769469, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08486944048743095, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25797, - "tp_rate": 0.08486944048743095, - "truth_threshold": 32.92 - }, - { - "f1": 0.15620298927548892, - "fn": 278210, - "fn_rate": 0.9152818947167565, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999878641, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08471810528324357, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25751, - "tp_rate": 0.08471810528324357, - "truth_threshold": 32.94 - }, - { - "f1": 0.1557666988235437, - "fn": 278288, - "fn_rate": 0.9155385065847264, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998803119, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08446149341527368, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25673, - "tp_rate": 0.08446149341527368, - "truth_threshold": 32.96 - }, - { - "f1": 0.1552518343640568, - "fn": 278380, - "fn_rate": 0.9158411769931011, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998819595, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0841588230068989, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25581, - "tp_rate": 0.0841588230068989, - "truth_threshold": 32.980000000000004 - }, - { - "f1": 0.15494949740202982, - "fn": 278434, - "fn_rate": 0.9160188313632341, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998835847, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0839811686367659, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25527, - "tp_rate": 0.0839811686367659, - "truth_threshold": 33 - }, - { - "f1": 0.1545074800854867, - "fn": 278513, - "fn_rate": 0.9162787331269472, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998851874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0837212668730528, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25448, - "tp_rate": 0.0837212668730528, - "truth_threshold": 33.02 - }, - { - "f1": 0.1542324508136993, - "fn": 278562, - "fn_rate": 0.9164399380183642, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999886768, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0835600619816358, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25399, - "tp_rate": 0.0835600619816358, - "truth_threshold": 33.04 - }, - { - "f1": 0.15379008746355685, - "fn": 278641, - "fn_rate": 0.9166998397820773, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999888327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08330016021792269, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25320, - "tp_rate": 0.08330016021792269, - "truth_threshold": 33.06 - }, - { - "f1": 0.15338630895968505, - "fn": 278713, - "fn_rate": 0.916936712275588, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998898644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08306328772441202, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25248, - "tp_rate": 0.08306328772441202, - "truth_threshold": 33.08 - }, - { - "f1": 0.15294260626500167, - "fn": 278792, - "fn_rate": 0.9171966140393011, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998913807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0828033859606989, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25169, - "tp_rate": 0.0828033859606989, - "truth_threshold": 33.1 - }, - { - "f1": 0.15269564794612958, - "fn": 278836, - "fn_rate": 0.9173413694520021, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999892876, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08265863054799794, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25125, - "tp_rate": 0.08265863054799794, - "truth_threshold": 33.12 - }, - { - "f1": 0.15225254250682357, - "fn": 278915, - "fn_rate": 0.9176012712157152, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998943508, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08239872878428482, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 25046, - "tp_rate": 0.08239872878428482, - "truth_threshold": 33.14 - }, - { - "f1": 0.15193190454476363, - "fn": 278972, - "fn_rate": 0.9177887952730778, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998958053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0822112047269222, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24989, - "tp_rate": 0.0822112047269222, - "truth_threshold": 33.160000000000004 - }, - { - "f1": 0.1516397180888908, - "fn": 279024, - "fn_rate": 0.9179598698517244, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998972399, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0820401301482756, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24937, - "tp_rate": 0.0820401301482756, - "truth_threshold": 33.18 - }, - { - "f1": 0.15143738102912468, - "fn": 279060, - "fn_rate": 0.9180783060984797, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999998986546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08192169390152026, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24901, - "tp_rate": 0.08192169390152026, - "truth_threshold": 33.2 - }, - { - "f1": 0.1510499038906056, - "fn": 279129, - "fn_rate": 0.9183053089047608, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999000498, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08169469109523919, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24832, - "tp_rate": 0.08169469109523919, - "truth_threshold": 33.22 - }, - { - "f1": 0.1505774121712888, - "fn": 279213, - "fn_rate": 0.9185816601471899, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999014259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08141833985281006, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24748, - "tp_rate": 0.08141833985281006, - "truth_threshold": 33.24 - }, - { - "f1": 0.15007607571054712, - "fn": 279302, - "fn_rate": 0.9188744608683351, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999902783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08112553913166491, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24659, - "tp_rate": 0.08112553913166491, - "truth_threshold": 33.26 - }, - { - "f1": 0.14978330208663046, - "fn": 279354, - "fn_rate": 0.9190455354469816, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999041214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08095446455301832, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24607, - "tp_rate": 0.08095446455301832, - "truth_threshold": 33.28 - }, - { - "f1": 0.14940030441400304, - "fn": 279422, - "fn_rate": 0.9192692483575196, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999054414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08073075164248045, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24539, - "tp_rate": 0.08073075164248045, - "truth_threshold": 33.3 - }, - { - "f1": 0.14905705186366985, - "fn": 279483, - "fn_rate": 0.919469931997855, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999067432, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08053006800214502, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24478, - "tp_rate": 0.08053006800214502, - "truth_threshold": 33.32 - }, - { - "f1": 0.14861128030210743, - "fn": 279562, - "fn_rate": 0.9197298337615681, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999080271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0802701662384319, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24399, - "tp_rate": 0.0802701662384319, - "truth_threshold": 33.34 - }, - { - "f1": 0.14841437116994188, - "fn": 279597, - "fn_rate": 0.9198449801125802, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999092933, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08015501988741977, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24364, - "tp_rate": 0.08015501988741977, - "truth_threshold": 33.36 - }, - { - "f1": 0.14822779720492732, - "fn": 279630, - "fn_rate": 0.9199535466721059, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999105421, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.08004645332789403, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24331, - "tp_rate": 0.08004645332789403, - "truth_threshold": 33.38 - }, - { - "f1": 0.14779901040778023, - "fn": 279706, - "fn_rate": 0.9202035787485895, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999117737, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07979642125141054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24255, - "tp_rate": 0.07979642125141054, - "truth_threshold": 33.4 - }, - { - "f1": 0.14760192577244197, - "fn": 279741, - "fn_rate": 0.9203187250996016, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999129883, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0796812749003984, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24220, - "tp_rate": 0.0796812749003984, - "truth_threshold": 33.42 - }, - { - "f1": 0.14689565196186016, - "fn": 279866, - "fn_rate": 0.9207299620675021, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999141862, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07927003793249791, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24095, - "tp_rate": 0.07927003793249791, - "truth_threshold": 33.44 - }, - { - "f1": 0.1465627629605239, - "fn": 279925, - "fn_rate": 0.9209240659163511, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999153677, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0790759340836489, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 24036, - "tp_rate": 0.0790759340836489, - "truth_threshold": 33.46 - }, - { - "f1": 0.14602012808783166, - "fn": 280021, - "fn_rate": 0.9212398959076987, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999165328, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07876010409230132, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23940, - "tp_rate": 0.07876010409230132, - "truth_threshold": 33.480000000000004 - }, - { - "f1": 0.14556768958574828, - "fn": 280101, - "fn_rate": 0.921503087567155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999917682, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.078496912432845, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23860, - "tp_rate": 0.078496912432845, - "truth_threshold": 33.5 - }, - { - "f1": 0.14518294320095682, - "fn": 280169, - "fn_rate": 0.9217268004776928, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999188153, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07827319952230714, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23792, - "tp_rate": 0.07827319952230714, - "truth_threshold": 33.52 - }, - { - "f1": 0.144775390625, - "fn": 280241, - "fn_rate": 0.9219636729712035, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999199329, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07803632702879645, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23720, - "tp_rate": 0.07803632702879645, - "truth_threshold": 33.54 - }, - { - "f1": 0.1444181943605052, - "fn": 280304, - "fn_rate": 0.9221709364030254, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999210353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07782906359697461, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23657, - "tp_rate": 0.07782906359697461, - "truth_threshold": 33.56 - }, - { - "f1": 0.14413495823767888, - "fn": 280354, - "fn_rate": 0.9223354311901856, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999221224, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07766456880981441, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23607, - "tp_rate": 0.07766456880981441, - "truth_threshold": 33.58 - }, - { - "f1": 0.1437496183206107, - "fn": 280422, - "fn_rate": 0.9225591441007235, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999231945, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07744085589927655, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23539, - "tp_rate": 0.07744085589927655, - "truth_threshold": 33.6 - }, - { - "f1": 0.1434722858451672, - "fn": 280471, - "fn_rate": 0.9227203489921404, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999242519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07727965100785956, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23490, - "tp_rate": 0.07727965100785956, - "truth_threshold": 33.62 - }, - { - "f1": 0.1430919043080908, - "fn": 280538, - "fn_rate": 0.9229407720069351, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999252948, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0770592279930649, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23423, - "tp_rate": 0.0770592279930649, - "truth_threshold": 33.64 - }, - { - "f1": 0.1427515244833865, - "fn": 280598, - "fn_rate": 0.9231381657515273, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999263233, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07686183424847266, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23363, - "tp_rate": 0.07686183424847266, - "truth_threshold": 33.660000000000004 - }, - { - "f1": 0.1423263090989097, - "fn": 280673, - "fn_rate": 0.9233849079322676, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999273376, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07661509206773237, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23288, - "tp_rate": 0.07661509206773237, - "truth_threshold": 33.68 - }, - { - "f1": 0.1419061416860753, - "fn": 280747, - "fn_rate": 0.9236283602172647, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999928338, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07637163978273528, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23214, - "tp_rate": 0.07637163978273528, - "truth_threshold": 33.7 - }, - { - "f1": 0.14149714767870572, - "fn": 280819, - "fn_rate": 0.9238652327107754, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999293245, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07613476728922461, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23142, - "tp_rate": 0.07613476728922461, - "truth_threshold": 33.72 - }, - { - "f1": 0.1411675493205807, - "fn": 280877, - "fn_rate": 0.9240560466638812, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999302975, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07594395333611878, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 23084, - "tp_rate": 0.07594395333611878, - "truth_threshold": 33.74 - }, - { - "f1": 0.14058150987025222, - "fn": 280980, - "fn_rate": 0.9243949059254313, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999312572, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07560509407456878, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22981, - "tp_rate": 0.07560509407456878, - "truth_threshold": 33.76 - }, - { - "f1": 0.14031985707992756, - "fn": 281026, - "fn_rate": 0.9245462411296186, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999322036, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0754537588703814, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22935, - "tp_rate": 0.0754537588703814, - "truth_threshold": 33.78 - }, - { - "f1": 0.1398873997919344, - "fn": 281102, - "fn_rate": 0.9247962732061021, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999331369, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0752037267938979, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22859, - "tp_rate": 0.0752037267938979, - "truth_threshold": 33.8 - }, - { - "f1": 0.13959751260833375, - "fn": 281153, - "fn_rate": 0.9249640578890055, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999340575, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0750359421109945, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22808, - "tp_rate": 0.0750359421109945, - "truth_threshold": 33.82 - }, - { - "f1": 0.13916471783820847, - "fn": 281229, - "fn_rate": 0.925214089965489, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999349654, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.074785910034511, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22732, - "tp_rate": 0.074785910034511, - "truth_threshold": 33.84 - }, - { - "f1": 0.1389307275020511, - "fn": 281270, - "fn_rate": 0.9253489756909603, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999358606, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07465102430903965, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22691, - "tp_rate": 0.07465102430903965, - "truth_threshold": 33.86 - }, - { - "f1": 0.13854934718173578, - "fn": 281337, - "fn_rate": 0.925569398705755, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999367437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07443060129424499, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22624, - "tp_rate": 0.07443060129424499, - "truth_threshold": 33.88 - }, - { - "f1": 0.1382581905712728, - "fn": 281388, - "fn_rate": 0.9257371833886584, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999376146, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07426281661134158, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22573, - "tp_rate": 0.07426281661134158, - "truth_threshold": 33.9 - }, - { - "f1": 0.137865124485395, - "fn": 281457, - "fn_rate": 0.9259641861949395, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999384734, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07403581380506052, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22504, - "tp_rate": 0.07403581380506052, - "truth_threshold": 33.92 - }, - { - "f1": 0.13744822177014143, - "fn": 281530, - "fn_rate": 0.9262043485841933, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999393205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07379565141580663, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22431, - "tp_rate": 0.07379565141580663, - "truth_threshold": 33.94 - }, - { - "f1": 0.13704339298847756, - "fn": 281601, - "fn_rate": 0.9264379311819608, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999401559, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07356206881803916, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22360, - "tp_rate": 0.07356206881803916, - "truth_threshold": 33.96 - }, - { - "f1": 0.13672363484785327, - "fn": 281657, - "fn_rate": 0.9266221653435802, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999409798, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07337783465641974, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22304, - "tp_rate": 0.07337783465641974, - "truth_threshold": 33.980000000000004 - }, - { - "f1": 0.13638620994095754, - "fn": 281716, - "fn_rate": 0.9268162691924293, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999417923, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07318373080757071, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22245, - "tp_rate": 0.07318373080757071, - "truth_threshold": 34 - }, - { - "f1": 0.13606622719607542, - "fn": 281772, - "fn_rate": 0.9270005033540487, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999425937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07299949664595129, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22189, - "tp_rate": 0.07299949664595129, - "truth_threshold": 34.02 - }, - { - "f1": 0.1358094350268626, - "fn": 281817, - "fn_rate": 0.9271485486624929, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999433841, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07285145133750712, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22144, - "tp_rate": 0.07285145133750712, - "truth_threshold": 34.04 - }, - { - "f1": 0.13560891833041985, - "fn": 281852, - "fn_rate": 0.927263695013505, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999441634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07273630498649498, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22109, - "tp_rate": 0.07273630498649498, - "truth_threshold": 34.06 - }, - { - "f1": 0.13533442528418327, - "fn": 281900, - "fn_rate": 0.9274216100091788, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999449322, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0725783899908212, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22061, - "tp_rate": 0.0725783899908212, - "truth_threshold": 34.08 - }, - { - "f1": 0.13505985139919136, - "fn": 281948, - "fn_rate": 0.9275795250048526, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999456903, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07242047499514741, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 22013, - "tp_rate": 0.07242047499514741, - "truth_threshold": 34.1 - }, - { - "f1": 0.1347394129811793, - "fn": 282004, - "fn_rate": 0.927763759166472, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999464381, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07223624083352799, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21957, - "tp_rate": 0.07223624083352799, - "truth_threshold": 34.12 - }, - { - "f1": 0.13434484790454446, - "fn": 282073, - "fn_rate": 0.9279907619727531, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999471755, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07200923802724692, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21888, - "tp_rate": 0.07200923802724692, - "truth_threshold": 34.14 - }, - { - "f1": 0.13387523559855846, - "fn": 282155, - "fn_rate": 0.9282605334236959, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999479027, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0717394665763042, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21806, - "tp_rate": 0.0717394665763042, - "truth_threshold": 34.160000000000004 - }, - { - "f1": 0.1334221709120385, - "fn": 282234, - "fn_rate": 0.9285204351874089, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999486199, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07147956481259109, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21727, - "tp_rate": 0.07147956481259109, - "truth_threshold": 34.18 - }, - { - "f1": 0.1330729118682169, - "fn": 282295, - "fn_rate": 0.9287211188277443, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999493273, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07127888117225566, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21666, - "tp_rate": 0.07127888117225566, - "truth_threshold": 34.2 - }, - { - "f1": 0.1327456460976134, - "fn": 282352, - "fn_rate": 0.928908642885107, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999500249, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07109135711489303, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21609, - "tp_rate": 0.07109135711489303, - "truth_threshold": 34.22 - }, - { - "f1": 0.13256824088124888, - "fn": 282383, - "fn_rate": 0.9290106296531463, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999950713, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07098937034685371, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21578, - "tp_rate": 0.07098937034685371, - "truth_threshold": 34.24 - }, - { - "f1": 0.13232727898345908, - "fn": 282425, - "fn_rate": 0.9291488052743608, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999513914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07085119472563914, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21536, - "tp_rate": 0.07085119472563914, - "truth_threshold": 34.26 - }, - { - "f1": 0.13205181780192227, - "fn": 282473, - "fn_rate": 0.9293067202700347, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999520607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07069327972996536, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21488, - "tp_rate": 0.07069327972996536, - "truth_threshold": 34.28 - }, - { - "f1": 0.13166677935472768, - "fn": 282540, - "fn_rate": 0.9295271432848293, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999527207, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0704728567151707, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21421, - "tp_rate": 0.0704728567151707, - "truth_threshold": 34.300000000000004 - }, - { - "f1": 0.13127090301003344, - "fn": 282609, - "fn_rate": 0.9297541460911104, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999533716, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.07024585390888963, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21352, - "tp_rate": 0.07024585390888963, - "truth_threshold": 34.32 - }, - { - "f1": 0.1308227307108113, - "fn": 282687, - "fn_rate": 0.9300107579590803, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999540136, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06998924204091972, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21274, - "tp_rate": 0.06998924204091972, - "truth_threshold": 34.34 - }, - { - "f1": 0.1304778364813915, - "fn": 282747, - "fn_rate": 0.9302081517036725, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999546466, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0697918482963275, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21214, - "tp_rate": 0.0697918482963275, - "truth_threshold": 34.36 - }, - { - "f1": 0.13024168496681368, - "fn": 282788, - "fn_rate": 0.9303430374291438, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999955271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06965696257085613, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21173, - "tp_rate": 0.06965696257085613, - "truth_threshold": 34.38 - }, - { - "f1": 0.12996560910036115, - "fn": 282836, - "fn_rate": 0.9305009524248177, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999558868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06949904757518234, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21125, - "tp_rate": 0.06949904757518234, - "truth_threshold": 34.4 - }, - { - "f1": 0.12960889042039972, - "fn": 282898, - "fn_rate": 0.9307049259608963, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999564941, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0692950740391037, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21063, - "tp_rate": 0.0692950740391037, - "truth_threshold": 34.42 - }, - { - "f1": 0.129281217111944, - "fn": 282955, - "fn_rate": 0.9308924500182589, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999570931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06910754998174108, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 21006, - "tp_rate": 0.06910754998174108, - "truth_threshold": 34.44 - }, - { - "f1": 0.12888352652217003, - "fn": 283024, - "fn_rate": 0.93111945282454, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999576838, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06888054717546001, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20937, - "tp_rate": 0.06888054717546001, - "truth_threshold": 34.46 - }, - { - "f1": 0.12857864082451884, - "fn": 283077, - "fn_rate": 0.9312938172989298, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999582664, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0687061827010702, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20884, - "tp_rate": 0.0687061827010702, - "truth_threshold": 34.480000000000004 - }, - { - "f1": 0.12829054723917313, - "fn": 283127, - "fn_rate": 0.93145831208609, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999588409, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06854168791391001, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20834, - "tp_rate": 0.06854168791391001, - "truth_threshold": 34.5 - }, - { - "f1": 0.1278063502817899, - "fn": 283211, - "fn_rate": 0.9317346633285191, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999594076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06826533667148088, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20750, - "tp_rate": 0.06826533667148088, - "truth_threshold": 34.52 - }, - { - "f1": 0.12750032341725753, - "fn": 283264, - "fn_rate": 0.931909027802909, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999599665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06809097219709108, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20697, - "tp_rate": 0.06809097219709108, - "truth_threshold": 34.54 - }, - { - "f1": 0.12718882084016217, - "fn": 283318, - "fn_rate": 0.9320866821730419, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999605176, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06791331782695806, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20643, - "tp_rate": 0.06791331782695806, - "truth_threshold": 34.56 - }, - { - "f1": 0.1269003001041429, - "fn": 283368, - "fn_rate": 0.9322511769602021, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999610611, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06774882303979787, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20593, - "tp_rate": 0.06774882303979787, - "truth_threshold": 34.58 - }, - { - "f1": 0.12659476117103236, - "fn": 283421, - "fn_rate": 0.9324255414345919, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999615973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06757445856540806, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20540, - "tp_rate": 0.06757445856540806, - "truth_threshold": 34.6 - }, - { - "f1": 0.12635764038710473, - "fn": 283462, - "fn_rate": 0.9325604271600633, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999962126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0674395728399367, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20499, - "tp_rate": 0.0674395728399367, - "truth_threshold": 34.62 - }, - { - "f1": 0.12615589475501196, - "fn": 283497, - "fn_rate": 0.9326755735110754, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999626474, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06732442648892456, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20464, - "tp_rate": 0.06732442648892456, - "truth_threshold": 34.64 - }, - { - "f1": 0.1257746070699659, - "fn": 283563, - "fn_rate": 0.9328927066301269, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999631617, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0671072933698731, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20398, - "tp_rate": 0.0671072933698731, - "truth_threshold": 34.660000000000004 - }, - { - "f1": 0.12522512520662177, - "fn": 283658, - "fn_rate": 0.9332052467257312, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999636688, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06679475327426874, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20303, - "tp_rate": 0.06679475327426874, - "truth_threshold": 34.68 - }, - { - "f1": 0.124965301124552, - "fn": 283703, - "fn_rate": 0.9333532920341754, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999964169, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06664670796582456, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20258, - "tp_rate": 0.06664670796582456, - "truth_threshold": 34.7 - }, - { - "f1": 0.12461207189086804, - "fn": 283764, - "fn_rate": 0.9335539756745109, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999646623, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06644602432548913, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20197, - "tp_rate": 0.06644602432548913, - "truth_threshold": 34.72 - }, - { - "f1": 0.12426488284407802, - "fn": 283824, - "fn_rate": 0.9337513694191031, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999651488, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06624863058089689, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20137, - "tp_rate": 0.06624863058089689, - "truth_threshold": 34.74 - }, - { - "f1": 0.12379018320082959, - "fn": 283906, - "fn_rate": 0.9340211408700458, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999656286, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06597885912995417, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 20055, - "tp_rate": 0.06597885912995417, - "truth_threshold": 34.76 - }, - { - "f1": 0.12339093552629142, - "fn": 283975, - "fn_rate": 0.9342481436763269, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999661018, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0657518563236731, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19986, - "tp_rate": 0.0657518563236731, - "truth_threshold": 34.78 - }, - { - "f1": 0.12317619091723009, - "fn": 284012, - "fn_rate": 0.9343698698188254, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999665685, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06563013018117456, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19949, - "tp_rate": 0.06563013018117456, - "truth_threshold": 34.800000000000004 - }, - { - "f1": 0.12288101575381803, - "fn": 284063, - "fn_rate": 0.9345376545017289, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999670287, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06546234549827117, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19898, - "tp_rate": 0.06546234549827117, - "truth_threshold": 34.82 - }, - { - "f1": 0.12249839403073579, - "fn": 284129, - "fn_rate": 0.9347547876207803, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999674827, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06524521237921971, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19832, - "tp_rate": 0.06524521237921971, - "truth_threshold": 34.84 - }, - { - "f1": 0.12199959222257234, - "fn": 284215, - "fn_rate": 0.9350377186546959, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999679303, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06496228134530417, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19746, - "tp_rate": 0.06496228134530417, - "truth_threshold": 34.86 - }, - { - "f1": 0.12165143397415695, - "fn": 284275, - "fn_rate": 0.935235112399288, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999683719, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06476488760071193, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19686, - "tp_rate": 0.06476488760071193, - "truth_threshold": 34.88 - }, - { - "f1": 0.1212737420499286, - "fn": 284340, - "fn_rate": 0.9354489556225963, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999688073, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06455104437740368, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19621, - "tp_rate": 0.06455104437740368, - "truth_threshold": 34.9 - }, - { - "f1": 0.12098957753792515, - "fn": 284389, - "fn_rate": 0.9356101605140134, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999692367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06438983948598669, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19572, - "tp_rate": 0.06438983948598669, - "truth_threshold": 34.92 - }, - { - "f1": 0.12058838077807732, - "fn": 284458, - "fn_rate": 0.9358371633202944, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999696603, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06416283667970563, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19503, - "tp_rate": 0.06416283667970563, - "truth_threshold": 34.94 - }, - { - "f1": 0.12040243389646046, - "fn": 284490, - "fn_rate": 0.9359424399840769, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999700779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0640575600159231, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19471, - "tp_rate": 0.0640575600159231, - "truth_threshold": 34.96 - }, - { - "f1": 0.12014125534191337, - "fn": 284535, - "fn_rate": 0.936090485292521, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999704899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06390951470747892, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19426, - "tp_rate": 0.06390951470747892, - "truth_threshold": 34.980000000000004 - }, - { - "f1": 0.11978077717707315, - "fn": 284597, - "fn_rate": 0.9362944588285997, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999708962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06370554117140027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19364, - "tp_rate": 0.06370554117140027, - "truth_threshold": 35 - }, - { - "f1": 0.11939689040951809, - "fn": 284663, - "fn_rate": 0.9365115919476512, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999712968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06348840805234882, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19298, - "tp_rate": 0.06348840805234882, - "truth_threshold": 35.02 - }, - { - "f1": 0.11915796768744315, - "fn": 284704, - "fn_rate": 0.9366464776731226, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999971692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06335352232687746, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19257, - "tp_rate": 0.06335352232687746, - "truth_threshold": 35.04 - }, - { - "f1": 0.11847106159083876, - "fn": 284822, - "fn_rate": 0.9370346853708206, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999720818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0629653146291794, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19139, - "tp_rate": 0.0629653146291794, - "truth_threshold": 35.06 - }, - { - "f1": 0.11810994372179125, - "fn": 284884, - "fn_rate": 0.9372386589068993, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999724661, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06276134109310076, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19077, - "tp_rate": 0.06276134109310076, - "truth_threshold": 35.08 - }, - { - "f1": 0.11783027338307688, - "fn": 284932, - "fn_rate": 0.937396573902573, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999728452, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06260342609742697, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 19029, - "tp_rate": 0.06260342609742697, - "truth_threshold": 35.1 - }, - { - "f1": 0.11752720336411324, - "fn": 284984, - "fn_rate": 0.9375676484812197, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999973219, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06243235151878037, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18977, - "tp_rate": 0.06243235151878037, - "truth_threshold": 35.12 - }, - { - "f1": 0.11721237348397567, - "fn": 285038, - "fn_rate": 0.9377453028513526, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999735877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.062254697148647356, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18923, - "tp_rate": 0.062254697148647356, - "truth_threshold": 35.14 - }, - { - "f1": 0.1169502970530111, - "fn": 285083, - "fn_rate": 0.9378933481597969, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999739514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.062106651840203184, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18878, - "tp_rate": 0.062106651840203184, - "truth_threshold": 35.160000000000004 - }, - { - "f1": 0.11669909168639017, - "fn": 285126, - "fn_rate": 0.9380348136767546, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.99999999997431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.061965186323245415, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18835, - "tp_rate": 0.061965186323245415, - "truth_threshold": 35.18 - }, - { - "f1": 0.11644854253420583, - "fn": 285169, - "fn_rate": 0.9381762791937124, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999746636, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.061823720806287646, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18792, - "tp_rate": 0.061823720806287646, - "truth_threshold": 35.2 - }, - { - "f1": 0.11618005243162507, - "fn": 285215, - "fn_rate": 0.9383276143978997, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999750124, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06167238560210027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18746, - "tp_rate": 0.06167238560210027, - "truth_threshold": 35.22 - }, - { - "f1": 0.11596987634425264, - "fn": 285251, - "fn_rate": 0.938446050644655, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999753565, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06155394935534493, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18710, - "tp_rate": 0.06155394935534493, - "truth_threshold": 35.24 - }, - { - "f1": 0.11573629234727087, - "fn": 285291, - "fn_rate": 0.9385776464743832, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999756958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06142235352561677, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18670, - "tp_rate": 0.06142235352561677, - "truth_threshold": 35.26 - }, - { - "f1": 0.11538580773165515, - "fn": 285351, - "fn_rate": 0.9387750402189755, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999760304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06122495978102454, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18610, - "tp_rate": 0.06122495978102454, - "truth_threshold": 35.28 - }, - { - "f1": 0.11502899134910545, - "fn": 285412, - "fn_rate": 0.9389757238593109, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999763604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0610242761406891, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18549, - "tp_rate": 0.0610242761406891, - "truth_threshold": 35.300000000000004 - }, - { - "f1": 0.11443884767127367, - "fn": 285513, - "fn_rate": 0.9393080033293745, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999766858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.060691996670625505, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18448, - "tp_rate": 0.060691996670625505, - "truth_threshold": 35.32 - }, - { - "f1": 0.11413468339351525, - "fn": 285565, - "fn_rate": 0.9394790779080211, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999770067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06052092209197891, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18396, - "tp_rate": 0.06052092209197891, - "truth_threshold": 35.34 - }, - { - "f1": 0.11397635963143363, - "fn": 285592, - "fn_rate": 0.9395679050930876, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999773234, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0604320949069124, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18369, - "tp_rate": 0.0604320949069124, - "truth_threshold": 35.36 - }, - { - "f1": 0.11355497768868422, - "fn": 285664, - "fn_rate": 0.9398047775865983, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999776356, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.06019522241340172, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18297, - "tp_rate": 0.06019522241340172, - "truth_threshold": 35.38 - }, - { - "f1": 0.11319817750685918, - "fn": 285725, - "fn_rate": 0.9400054612269337, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999779434, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.059994538773066285, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18236, - "tp_rate": 0.059994538773066285, - "truth_threshold": 35.4 - }, - { - "f1": 0.11282331466603752, - "fn": 285789, - "fn_rate": 0.9402160145544988, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999782471, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05978398544550123, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18172, - "tp_rate": 0.05978398544550123, - "truth_threshold": 35.42 - }, - { - "f1": 0.11250069858854067, - "fn": 285844, - "fn_rate": 0.940396958820375, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999785466, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05960304117962502, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18117, - "tp_rate": 0.05960304117962502, - "truth_threshold": 35.44 - }, - { - "f1": 0.11227797789094522, - "fn": 285882, - "fn_rate": 0.9405219748586168, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999788419, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05947802514138327, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18079, - "tp_rate": 0.05947802514138327, - "truth_threshold": 35.46 - }, - { - "f1": 0.11200278267783051, - "fn": 285929, - "fn_rate": 0.9406765999585474, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999791332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05932340004145269, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 18032, - "tp_rate": 0.05932340004145269, - "truth_threshold": 35.480000000000004 - }, - { - "f1": 0.11177373165110543, - "fn": 285968, - "fn_rate": 0.9408049058925323, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999794205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05919509410746773, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17993, - "tp_rate": 0.05919509410746773, - "truth_threshold": 35.5 - }, - { - "f1": 0.11128095193711747, - "fn": 286052, - "fn_rate": 0.9410812571349614, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999797038, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.058918742865038606, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17909, - "tp_rate": 0.058918742865038606, - "truth_threshold": 35.52 - }, - { - "f1": 0.11105794327475205, - "fn": 286090, - "fn_rate": 0.9412062731732032, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999799832, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05879372682679686, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17871, - "tp_rate": 0.05879372682679686, - "truth_threshold": 35.54 - }, - { - "f1": 0.11080587218914316, - "fn": 286133, - "fn_rate": 0.9413477386901609, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999802588, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05865226130983909, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17828, - "tp_rate": 0.05865226130983909, - "truth_threshold": 35.56 - }, - { - "f1": 0.11068223067551776, - "fn": 286154, - "fn_rate": 0.9414168265007682, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999805306, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05858317349923181, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17807, - "tp_rate": 0.05858317349923181, - "truth_threshold": 35.58 - }, - { - "f1": 0.11032433339757418, - "fn": 286215, - "fn_rate": 0.9416175101411036, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999807986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05838248985889637, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17746, - "tp_rate": 0.05838248985889637, - "truth_threshold": 35.6 - }, - { - "f1": 0.11001884012012908, - "fn": 286267, - "fn_rate": 0.9417885847197502, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999981063, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05821141528024977, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17694, - "tp_rate": 0.05821141528024977, - "truth_threshold": 35.62 - }, - { - "f1": 0.10963649367206692, - "fn": 286332, - "fn_rate": 0.9420024279430584, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999813237, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05799757205694152, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17629, - "tp_rate": 0.05799757205694152, - "truth_threshold": 35.64 - }, - { - "f1": 0.10929549780426209, - "fn": 286390, - "fn_rate": 0.9421932418961643, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999815808, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05780675810383569, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17571, - "tp_rate": 0.05780675810383569, - "truth_threshold": 35.660000000000004 - }, - { - "f1": 0.10903672920917733, - "fn": 286434, - "fn_rate": 0.9423379973088652, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999818344, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.057662002691134716, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17527, - "tp_rate": 0.057662002691134716, - "truth_threshold": 35.68 - }, - { - "f1": 0.108671980486955, - "fn": 286496, - "fn_rate": 0.942541970844944, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999820844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05745802915505607, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17465, - "tp_rate": 0.05745802915505607, - "truth_threshold": 35.7 - }, - { - "f1": 0.10850720913011282, - "fn": 286524, - "fn_rate": 0.9426340879257536, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999823311, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.057365912074246364, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17437, - "tp_rate": 0.057365912074246364, - "truth_threshold": 35.72 - }, - { - "f1": 0.10816025493405697, - "fn": 286583, - "fn_rate": 0.9428281917746026, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999825744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05717180822539734, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17378, - "tp_rate": 0.05717180822539734, - "truth_threshold": 35.74 - }, - { - "f1": 0.10764757884775815, - "fn": 286670, - "fn_rate": 0.9431144127042614, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999828143, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.056885587295738595, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17291, - "tp_rate": 0.056885587295738595, - "truth_threshold": 35.76 - }, - { - "f1": 0.10734122042341221, - "fn": 286722, - "fn_rate": 0.943285487282908, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999830509, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.056714512717092, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17239, - "tp_rate": 0.056714512717092, - "truth_threshold": 35.78 - }, - { - "f1": 0.10706456755679554, - "fn": 286769, - "fn_rate": 0.9434401123828385, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999832843, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.056559887617161415, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17192, - "tp_rate": 0.056559887617161415, - "truth_threshold": 35.800000000000004 - }, - { - "f1": 0.10674622700857682, - "fn": 286823, - "fn_rate": 0.9436177667529716, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999835144, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0563822332470284, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17138, - "tp_rate": 0.0563822332470284, - "truth_threshold": 35.82 - }, - { - "f1": 0.10652771115859243, - "fn": 286860, - "fn_rate": 0.9437394928954701, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999837413, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05626050710452986, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17101, - "tp_rate": 0.05626050710452986, - "truth_threshold": 35.84 - }, - { - "f1": 0.10626261619358536, - "fn": 286905, - "fn_rate": 0.9438875382039144, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999839652, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05611246179608568, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17056, - "tp_rate": 0.05611246179608568, - "truth_threshold": 35.86 - }, - { - "f1": 0.10598498302021996, - "fn": 286952, - "fn_rate": 0.9440421633038449, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999841859, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.055957836696155096, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 17009, - "tp_rate": 0.055957836696155096, - "truth_threshold": 35.88 - }, - { - "f1": 0.10566070660675446, - "fn": 287007, - "fn_rate": 0.9442231075697212, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999844037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.055776892430278883, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16954, - "tp_rate": 0.055776892430278883, - "truth_threshold": 35.9 - }, - { - "f1": 0.10525298741452285, - "fn": 287076, - "fn_rate": 0.9444501103760022, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999846184, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05554988962399782, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16885, - "tp_rate": 0.05554988962399782, - "truth_threshold": 35.92 - }, - { - "f1": 0.1046622561154309, - "fn": 287176, - "fn_rate": 0.9447790999503226, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999848301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.055220900049677425, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16785, - "tp_rate": 0.055220900049677425, - "truth_threshold": 35.94 - }, - { - "f1": 0.10446132355508993, - "fn": 287210, - "fn_rate": 0.9448909564055915, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999985039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05510904359440849, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16751, - "tp_rate": 0.05510904359440849, - "truth_threshold": 35.96 - }, - { - "f1": 0.10389999251440976, - "fn": 287305, - "fn_rate": 0.9452034965011958, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999852449, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.054796503498804126, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16656, - "tp_rate": 0.054796503498804126, - "truth_threshold": 35.980000000000004 - }, - { - "f1": 0.10360424998284284, - "fn": 287355, - "fn_rate": 0.945367991288356, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999854481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05463200871164393, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16606, - "tp_rate": 0.05463200871164393, - "truth_threshold": 36 - }, - { - "f1": 0.10327850439297125, - "fn": 287410, - "fn_rate": 0.9455489355542323, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999856485, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.054451064445767715, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16551, - "tp_rate": 0.054451064445767715, - "truth_threshold": 36.02 - }, - { - "f1": 0.10281680470861394, - "fn": 287488, - "fn_rate": 0.9458055474222022, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999985846, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05419445257779781, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16473, - "tp_rate": 0.05419445257779781, - "truth_threshold": 36.04 - }, - { - "f1": 0.10255625955866288, - "fn": 287532, - "fn_rate": 0.9459503028349031, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999860408, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05404969716509684, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16429, - "tp_rate": 0.05404969716509684, - "truth_threshold": 36.06 - }, - { - "f1": 0.10230749060396818, - "fn": 287574, - "fn_rate": 0.9460884784561178, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999986233, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.053911521543882276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16387, - "tp_rate": 0.053911521543882276, - "truth_threshold": 36.08 - }, - { - "f1": 0.10208860166713496, - "fn": 287611, - "fn_rate": 0.9462102045986163, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999864225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05378979540138373, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16350, - "tp_rate": 0.05378979540138373, - "truth_threshold": 36.1 - }, - { - "f1": 0.10182785559503663, - "fn": 287655, - "fn_rate": 0.9463549600113172, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999866095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05364503998868276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16306, - "tp_rate": 0.05364503998868276, - "truth_threshold": 36.12 - }, - { - "f1": 0.10137106093257128, - "fn": 287732, - "fn_rate": 0.946608281983544, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999867939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.053391718016456056, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16229, - "tp_rate": 0.053391718016456056, - "truth_threshold": 36.14 - }, - { - "f1": 0.1009977321429687, - "fn": 287795, - "fn_rate": 0.9468155454153658, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999869756, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.053184454584634215, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16166, - "tp_rate": 0.053184454584634215, - "truth_threshold": 36.160000000000004 - }, - { - "f1": 0.10063549392937707, - "fn": 287856, - "fn_rate": 0.9470162290557013, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999871549, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05298377094429878, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16105, - "tp_rate": 0.05298377094429878, - "truth_threshold": 36.18 - }, - { - "f1": 0.10025, - "fn": 287921, - "fn_rate": 0.9472300722790095, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999873318, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05276992772099052, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 16040, - "tp_rate": 0.05276992772099052, - "truth_threshold": 36.2 - }, - { - "f1": 0.09986997399479897, - "fn": 287985, - "fn_rate": 0.9474406256065745, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999875062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05255937439342547, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15976, - "tp_rate": 0.05255937439342547, - "truth_threshold": 36.22 - }, - { - "f1": 0.09957860251087881, - "fn": 288034, - "fn_rate": 0.9476018304979915, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999876782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.052398169502008485, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15927, - "tp_rate": 0.052398169502008485, - "truth_threshold": 36.24 - }, - { - "f1": 0.09912135330352397, - "fn": 288111, - "fn_rate": 0.9478551524702182, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999878478, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05214484752978178, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15850, - "tp_rate": 0.05214484752978178, - "truth_threshold": 36.26 - }, - { - "f1": 0.09893676902870724, - "fn": 288142, - "fn_rate": 0.9479571392382575, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999880151, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05204286076174246, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15819, - "tp_rate": 0.05204286076174246, - "truth_threshold": 36.28 - }, - { - "f1": 0.09863383876294851, - "fn": 288193, - "fn_rate": 0.948124923921161, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999881801, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05187507607883906, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15768, - "tp_rate": 0.05187507607883906, - "truth_threshold": 36.300000000000004 - }, - { - "f1": 0.09840157652726078, - "fn": 288232, - "fn_rate": 0.9482532298551459, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999883429, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05174677014485411, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15729, - "tp_rate": 0.05174677014485411, - "truth_threshold": 36.32 - }, - { - "f1": 0.09815171688857743, - "fn": 288274, - "fn_rate": 0.9483914054763605, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999885034, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05160859452363955, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15687, - "tp_rate": 0.05160859452363955, - "truth_threshold": 36.34 - }, - { - "f1": 0.09787798574477005, - "fn": 288320, - "fn_rate": 0.9485427406805478, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999886616, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.051457259319452164, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15641, - "tp_rate": 0.051457259319452164, - "truth_threshold": 36.36 - }, - { - "f1": 0.09762798848416573, - "fn": 288362, - "fn_rate": 0.9486809163017624, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999888177, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0513190836982376, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15599, - "tp_rate": 0.0513190836982376, - "truth_threshold": 36.38 - }, - { - "f1": 0.09725317374865414, - "fn": 288425, - "fn_rate": 0.9488881797335842, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999889717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05111182026641576, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15536, - "tp_rate": 0.05111182026641576, - "truth_threshold": 36.4 - }, - { - "f1": 0.0969315243455776, - "fn": 288479, - "fn_rate": 0.9490658341037173, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999891236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.050934165896282746, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15482, - "tp_rate": 0.050934165896282746, - "truth_threshold": 36.42 - }, - { - "f1": 0.0966392605997608, - "fn": 288528, - "fn_rate": 0.9492270389951343, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999892732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05077296100486576, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15433, - "tp_rate": 0.05077296100486576, - "truth_threshold": 36.44 - }, - { - "f1": 0.09655582691464713, - "fn": 288542, - "fn_rate": 0.9492730975355391, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999894209, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.050726902464460905, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15419, - "tp_rate": 0.050726902464460905, - "truth_threshold": 36.46 - }, - { - "f1": 0.09616239814101481, - "fn": 288608, - "fn_rate": 0.9494902306545906, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999895666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.05050976934540945, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15353, - "tp_rate": 0.05050976934540945, - "truth_threshold": 36.480000000000004 - }, - { - "f1": 0.09578700078308536, - "fn": 288671, - "fn_rate": 0.9496974940864124, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999897102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0503025059135876, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15290, - "tp_rate": 0.0503025059135876, - "truth_threshold": 36.5 - }, - { - "f1": 0.09538698681638177, - "fn": 288738, - "fn_rate": 0.9499179171012071, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999898519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.050082082898792936, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15223, - "tp_rate": 0.050082082898792936, - "truth_threshold": 36.52 - }, - { - "f1": 0.09501128102281274, - "fn": 288801, - "fn_rate": 0.9501251805330289, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999899916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.049874819466971095, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15160, - "tp_rate": 0.049874819466971095, - "truth_threshold": 36.54 - }, - { - "f1": 0.09446760492743629, - "fn": 288892, - "fn_rate": 0.9504245610456604, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999901295, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04957543895433954, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15069, - "tp_rate": 0.04957543895433954, - "truth_threshold": 36.56 - }, - { - "f1": 0.09411543405335925, - "fn": 288951, - "fn_rate": 0.9506186648945095, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999902653, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.049381335105490504, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 15010, - "tp_rate": 0.049381335105490504, - "truth_threshold": 36.58 - }, - { - "f1": 0.09384622138050833, - "fn": 288996, - "fn_rate": 0.9507667102029537, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999903993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04923328979704633, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14965, - "tp_rate": 0.04923328979704633, - "truth_threshold": 36.6 - }, - { - "f1": 0.09350577668502327, - "fn": 289053, - "fn_rate": 0.9509542342603163, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999905315, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04904576573968371, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14908, - "tp_rate": 0.04904576573968371, - "truth_threshold": 36.62 - }, - { - "f1": 0.09325462791616744, - "fn": 289095, - "fn_rate": 0.9510924098815309, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999906618, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.048907590118469145, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14866, - "tp_rate": 0.048907590118469145, - "truth_threshold": 36.64 - }, - { - "f1": 0.09299713912868902, - "fn": 289138, - "fn_rate": 0.9512338753984886, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999907904, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.048766124601511376, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14823, - "tp_rate": 0.048766124601511376, - "truth_threshold": 36.660000000000004 - }, - { - "f1": 0.09289572915555612, - "fn": 289155, - "fn_rate": 0.9512898036261231, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999909172, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04871019637387691, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14806, - "tp_rate": 0.04871019637387691, - "truth_threshold": 36.68 - }, - { - "f1": 0.0926444196232477, - "fn": 289197, - "fn_rate": 0.9514279792473377, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999910423, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04857202075266235, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14764, - "tp_rate": 0.04857202075266235, - "truth_threshold": 36.7 - }, - { - "f1": 0.09242895873079626, - "fn": 289233, - "fn_rate": 0.951546415494093, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999911656, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.048453584505907005, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14728, - "tp_rate": 0.048453584505907005, - "truth_threshold": 36.72 - }, - { - "f1": 0.09226704156755433, - "fn": 289260, - "fn_rate": 0.9516352426791594, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999912872, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0483647573208405, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14701, - "tp_rate": 0.0483647573208405, - "truth_threshold": 36.74 - }, - { - "f1": 0.09191974990897792, - "fn": 289318, - "fn_rate": 0.9518260566322653, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999914071, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04817394336773468, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14643, - "tp_rate": 0.04817394336773468, - "truth_threshold": 36.76 - }, - { - "f1": 0.09165050006592206, - "fn": 289363, - "fn_rate": 0.9519741019407095, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999915254, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0480258980592905, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14598, - "tp_rate": 0.0480258980592905, - "truth_threshold": 36.78 - }, - { - "f1": 0.09148845327941933, - "fn": 289390, - "fn_rate": 0.9520629291257761, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999916421, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.047937070874224, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14571, - "tp_rate": 0.047937070874224, - "truth_threshold": 36.800000000000004 - }, - { - "f1": 0.09123677352507142, - "fn": 289432, - "fn_rate": 0.9522011047469906, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999917571, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.047798895253009434, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14529, - "tp_rate": 0.047798895253009434, - "truth_threshold": 36.82 - }, - { - "f1": 0.09089538739825143, - "fn": 289489, - "fn_rate": 0.9523886288043532, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999918706, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04761137119564681, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14472, - "tp_rate": 0.04761137119564681, - "truth_threshold": 36.84 - }, - { - "f1": 0.09073949611502295, - "fn": 289515, - "fn_rate": 0.9524741660936765, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999919826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.047525833906323506, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14446, - "tp_rate": 0.047525833906323506, - "truth_threshold": 36.86 - }, - { - "f1": 0.09051160920695547, - "fn": 289553, - "fn_rate": 0.9525991821319182, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999992093, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04740081786808176, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14408, - "tp_rate": 0.04740081786808176, - "truth_threshold": 36.88 - }, - { - "f1": 0.0902716694729964, - "fn": 289593, - "fn_rate": 0.9527307779616464, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999922018, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.047269222038353605, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14368, - "tp_rate": 0.047269222038353605, - "truth_threshold": 36.9 - }, - { - "f1": 0.09006767328319101, - "fn": 289627, - "fn_rate": 0.9528426344169153, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999923092, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04715736558308467, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14334, - "tp_rate": 0.04715736558308467, - "truth_threshold": 36.92 - }, - { - "f1": 0.08985734933702004, - "fn": 289662, - "fn_rate": 0.9529577807679275, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999924151, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04704221923207254, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14299, - "tp_rate": 0.04704221923207254, - "truth_threshold": 36.94 - }, - { - "f1": 0.08948516332597942, - "fn": 289724, - "fn_rate": 0.9531617543040061, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999925195, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.046838245695993895, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14237, - "tp_rate": 0.046838245695993895, - "truth_threshold": 36.96 - }, - { - "f1": 0.08938909177766184, - "fn": 289740, - "fn_rate": 0.9532143926358974, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999926225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04678560736410263, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14221, - "tp_rate": 0.04678560736410263, - "truth_threshold": 36.980000000000004 - }, - { - "f1": 0.0891551571310924, - "fn": 289779, - "fn_rate": 0.9533426985698823, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999992724, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04665730143011768, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14182, - "tp_rate": 0.04665730143011768, - "truth_threshold": 37 - }, - { - "f1": 0.08890858906891501, - "fn": 289820, - "fn_rate": 0.9534775842953537, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999928242, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04652241570464632, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14141, - "tp_rate": 0.04652241570464632, - "truth_threshold": 37.02 - }, - { - "f1": 0.08867453515352353, - "fn": 289859, - "fn_rate": 0.9536058902293386, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999992923, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04639410977066137, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14102, - "tp_rate": 0.04639410977066137, - "truth_threshold": 37.04 - }, - { - "f1": 0.08847019759266479, - "fn": 289893, - "fn_rate": 0.9537177466846075, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999930205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04628225331539244, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14068, - "tp_rate": 0.04628225331539244, - "truth_threshold": 37.06 - }, - { - "f1": 0.08823547910311645, - "fn": 289932, - "fn_rate": 0.9538460526185926, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999931165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04615394738140748, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 14029, - "tp_rate": 0.04615394738140748, - "truth_threshold": 37.08 - }, - { - "f1": 0.08795314868749646, - "fn": 289979, - "fn_rate": 0.9540006777185231, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999932113, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0459993222814769, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13982, - "tp_rate": 0.0459993222814769, - "truth_threshold": 37.1 - }, - { - "f1": 0.08759799172025015, - "fn": 290038, - "fn_rate": 0.9541947815673721, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999933048, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04580521843262787, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13923, - "tp_rate": 0.04580521843262787, - "truth_threshold": 37.12 - }, - { - "f1": 0.08711658758228343, - "fn": 290118, - "fn_rate": 0.9544579732268285, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999993397, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04554202677317156, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13843, - "tp_rate": 0.04554202677317156, - "truth_threshold": 37.14 - }, - { - "f1": 0.08692395805797867, - "fn": 290150, - "fn_rate": 0.9545632498906109, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999934879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04543675010938903, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13811, - "tp_rate": 0.04543675010938903, - "truth_threshold": 37.160000000000004 - }, - { - "f1": 0.08680983911981671, - "fn": 290169, - "fn_rate": 0.9546257579097318, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999935775, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.045374242090268156, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13792, - "tp_rate": 0.045374242090268156, - "truth_threshold": 37.18 - }, - { - "f1": 0.08652078664417194, - "fn": 290217, - "fn_rate": 0.9547836729054057, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999993666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.045216327094594375, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13744, - "tp_rate": 0.045216327094594375, - "truth_threshold": 37.2 - }, - { - "f1": 0.0859424195864084, - "fn": 290313, - "fn_rate": 0.9550995028967532, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999937531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0449004971032468, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13648, - "tp_rate": 0.0449004971032468, - "truth_threshold": 37.22 - }, - { - "f1": 0.08553253133463501, - "fn": 290381, - "fn_rate": 0.9553232158072911, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999938392, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.044676784192708936, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13580, - "tp_rate": 0.044676784192708936, - "truth_threshold": 37.24 - }, - { - "f1": 0.08530339966362417, - "fn": 290419, - "fn_rate": 0.9554482318455328, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999993924, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04455176815446719, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13542, - "tp_rate": 0.04455176815446719, - "truth_threshold": 37.26 - }, - { - "f1": 0.08498346196251379, - "fn": 290472, - "fn_rate": 0.9556225963199226, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999940076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04437740368007738, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13489, - "tp_rate": 0.04437740368007738, - "truth_threshold": 37.28 - }, - { - "f1": 0.08473006351446719, - "fn": 290514, - "fn_rate": 0.9557607719411372, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999940901, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.044239228058862816, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13447, - "tp_rate": 0.044239228058862816, - "truth_threshold": 37.300000000000004 - }, - { - "f1": 0.084476597997265, - "fn": 290556, - "fn_rate": 0.9558989475623517, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999941714, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04410105243764825, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13405, - "tp_rate": 0.04410105243764825, - "truth_threshold": 37.32 - }, - { - "f1": 0.08420521870666835, - "fn": 290601, - "fn_rate": 0.956046992870796, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999942517, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04395300712920407, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13360, - "tp_rate": 0.04395300712920407, - "truth_threshold": 37.34 - }, - { - "f1": 0.08384868027056502, - "fn": 290660, - "fn_rate": 0.956241096719645, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999943309, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.043758903280355047, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13301, - "tp_rate": 0.043758903280355047, - "truth_threshold": 37.36 - }, - { - "f1": 0.08369794096508593, - "fn": 290685, - "fn_rate": 0.9563233441132251, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999944089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04367665588677495, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13276, - "tp_rate": 0.04367665588677495, - "truth_threshold": 37.38 - }, - { - "f1": 0.08338955691613123, - "fn": 290736, - "fn_rate": 0.9564911287961284, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999944859, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04350887120387155, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13225, - "tp_rate": 0.04350887120387155, - "truth_threshold": 37.4 - }, - { - "f1": 0.08318408838664111, - "fn": 290770, - "fn_rate": 0.9566029852513974, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999945618, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.043397014748602615, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13191, - "tp_rate": 0.043397014748602615, - "truth_threshold": 37.42 - }, - { - "f1": 0.08299066599394551, - "fn": 290802, - "fn_rate": 0.9567082619151799, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999946366, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04329173808482009, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13159, - "tp_rate": 0.04329173808482009, - "truth_threshold": 37.44 - }, - { - "f1": 0.08282138937595399, - "fn": 290830, - "fn_rate": 0.9568003789959896, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999947105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04319962100401038, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13131, - "tp_rate": 0.04319962100401038, - "truth_threshold": 37.46 - }, - { - "f1": 0.08260370407751312, - "fn": 290866, - "fn_rate": 0.9569188152427449, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999947833, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.043081184757255045, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13095, - "tp_rate": 0.043081184757255045, - "truth_threshold": 37.480000000000004 - }, - { - "f1": 0.08219869521874645, - "fn": 290933, - "fn_rate": 0.9571392382575397, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999948551, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04286076174246038, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 13028, - "tp_rate": 0.04286076174246038, - "truth_threshold": 37.5 - }, - { - "f1": 0.08199297058879207, - "fn": 290967, - "fn_rate": 0.9572510947128086, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999994926, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04274890528719145, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12994, - "tp_rate": 0.04274890528719145, - "truth_threshold": 37.52 - }, - { - "f1": 0.08172036224795683, - "fn": 291012, - "fn_rate": 0.9573991400212527, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999949958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.042600859978747276, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12949, - "tp_rate": 0.042600859978747276, - "truth_threshold": 37.54 - }, - { - "f1": 0.08142977068881721, - "fn": 291060, - "fn_rate": 0.9575570550169266, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999950647, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04244294498307349, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12901, - "tp_rate": 0.04244294498307349, - "truth_threshold": 37.56 - }, - { - "f1": 0.08110906290245196, - "fn": 291113, - "fn_rate": 0.9577314194913163, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999951327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04226858050868368, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12848, - "tp_rate": 0.04226858050868368, - "truth_threshold": 37.58 - }, - { - "f1": 0.08085463717696975, - "fn": 291155, - "fn_rate": 0.9578695951125309, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999951996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.042130404887469115, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12806, - "tp_rate": 0.042130404887469115, - "truth_threshold": 37.6 - }, - { - "f1": 0.08052741923261512, - "fn": 291209, - "fn_rate": 0.9580472494826638, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999952658, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04195275051733611, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12752, - "tp_rate": 0.04195275051733611, - "truth_threshold": 37.62 - }, - { - "f1": 0.08035139129226611, - "fn": 291238, - "fn_rate": 0.9581426564592168, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999995331, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.041857343540783194, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12723, - "tp_rate": 0.041857343540783194, - "truth_threshold": 37.64 - }, - { - "f1": 0.0801030817137335, - "fn": 291279, - "fn_rate": 0.9582775421846882, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999953952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04172245781531183, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12682, - "tp_rate": 0.04172245781531183, - "truth_threshold": 37.660000000000004 - }, - { - "f1": 0.07994542284660283, - "fn": 291305, - "fn_rate": 0.9583630794740114, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999954586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04163692052598853, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12656, - "tp_rate": 0.04163692052598853, - "truth_threshold": 37.68 - }, - { - "f1": 0.07959944402324994, - "fn": 291362, - "fn_rate": 0.9585506035313741, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999955211, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04144939646862591, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12599, - "tp_rate": 0.04144939646862591, - "truth_threshold": 37.7 - }, - { - "f1": 0.07930820948336872, - "fn": 291410, - "fn_rate": 0.9587085185270479, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999955828, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04129148147295212, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12551, - "tp_rate": 0.04129148147295212, - "truth_threshold": 37.72 - }, - { - "f1": 0.07915673995058234, - "fn": 291435, - "fn_rate": 0.958790765920628, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999956436, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04120923407937203, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12526, - "tp_rate": 0.04120923407937203, - "truth_threshold": 37.74 - }, - { - "f1": 0.0789503621402298, - "fn": 291469, - "fn_rate": 0.958902622375897, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999957035, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04109737762410309, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12492, - "tp_rate": 0.04109737762410309, - "truth_threshold": 37.76 - }, - { - "f1": 0.07867107450554035, - "fn": 291515, - "fn_rate": 0.9590539575800843, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999957627, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.040946042419915715, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12446, - "tp_rate": 0.040946042419915715, - "truth_threshold": 37.78 - }, - { - "f1": 0.07830034203056148, - "fn": 291576, - "fn_rate": 0.9592546412204197, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999995821, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04074535877958028, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12385, - "tp_rate": 0.04074535877958028, - "truth_threshold": 37.800000000000004 - }, - { - "f1": 0.07798440691255604, - "fn": 291628, - "fn_rate": 0.9594257157990663, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999958786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.040574284200933675, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12333, - "tp_rate": 0.040574284200933675, - "truth_threshold": 37.82 - }, - { - "f1": 0.07754678675107994, - "fn": 291700, - "fn_rate": 0.959662588292577, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999959354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04033741170742299, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12261, - "tp_rate": 0.04033741170742299, - "truth_threshold": 37.84 - }, - { - "f1": 0.07722476657979302, - "fn": 291753, - "fn_rate": 0.9598369527669668, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999959913, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04016304723303318, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12208, - "tp_rate": 0.04016304723303318, - "truth_threshold": 37.86 - }, - { - "f1": 0.07707247330330483, - "fn": 291778, - "fn_rate": 0.9599192001605469, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999960465, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.04008079983945309, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12183, - "tp_rate": 0.04008079983945309, - "truth_threshold": 37.88 - }, - { - "f1": 0.07688998272775012, - "fn": 291808, - "fn_rate": 0.960017897032843, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999961009, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03998210296715697, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12153, - "tp_rate": 0.03998210296715697, - "truth_threshold": 37.9 - }, - { - "f1": 0.0765190538265855, - "fn": 291869, - "fn_rate": 0.9602185806731784, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999961546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.039781419326821534, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12092, - "tp_rate": 0.039781419326821534, - "truth_threshold": 37.92 - }, - { - "f1": 0.07613532073799804, - "fn": 291932, - "fn_rate": 0.9604258441050003, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999962075, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.039574155894999685, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 12029, - "tp_rate": 0.039574155894999685, - "truth_threshold": 37.94 - }, - { - "f1": 0.07573973487294412, - "fn": 291997, - "fn_rate": 0.9606396873283085, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999962598, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03936031267169143, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11964, - "tp_rate": 0.03936031267169143, - "truth_threshold": 37.96 - }, - { - "f1": 0.0754409958338082, - "fn": 292046, - "fn_rate": 0.9608008922197255, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999963113, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.039199107780274446, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11915, - "tp_rate": 0.039199107780274446, - "truth_threshold": 37.980000000000004 - }, - { - "f1": 0.07524015172143034, - "fn": 292079, - "fn_rate": 0.9609094587792513, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999996362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03909054122074872, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11882, - "tp_rate": 0.03909054122074872, - "truth_threshold": 38 - }, - { - "f1": 0.07492320846131924, - "fn": 292131, - "fn_rate": 0.9610805333578979, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999964121, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.038919466642102114, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11830, - "tp_rate": 0.038919466642102114, - "truth_threshold": 38.02 - }, - { - "f1": 0.07449638920562524, - "fn": 292201, - "fn_rate": 0.9613108260599221, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999964615, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03868917394007784, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11760, - "tp_rate": 0.03868917394007784, - "truth_threshold": 38.04 - }, - { - "f1": 0.07422800593013089, - "fn": 292245, - "fn_rate": 0.9614555814726231, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999965102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03854441852737687, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11716, - "tp_rate": 0.03854441852737687, - "truth_threshold": 38.06 - }, - { - "f1": 0.07409965278657779, - "fn": 292266, - "fn_rate": 0.9615246692832304, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999965583, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03847533071676958, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11695, - "tp_rate": 0.03847533071676958, - "truth_threshold": 38.08 - }, - { - "f1": 0.07386777686950681, - "fn": 292304, - "fn_rate": 0.9616496853214722, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999966056, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.038350314678527835, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11657, - "tp_rate": 0.038350314678527835, - "truth_threshold": 38.1 - }, - { - "f1": 0.07362363662866232, - "fn": 292344, - "fn_rate": 0.9617812811512003, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999966523, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03821871884879968, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11617, - "tp_rate": 0.03821871884879968, - "truth_threshold": 38.12 - }, - { - "f1": 0.07341606875744745, - "fn": 292378, - "fn_rate": 0.9618931376064692, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999966984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03810686239353075, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11583, - "tp_rate": 0.03810686239353075, - "truth_threshold": 38.14 - }, - { - "f1": 0.07324509692059991, - "fn": 292406, - "fn_rate": 0.9619852546872789, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999967439, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03801474531272104, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11555, - "tp_rate": 0.03801474531272104, - "truth_threshold": 38.160000000000004 - }, - { - "f1": 0.07306821855803428, - "fn": 292435, - "fn_rate": 0.9620806616638319, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999967888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.037919338336168125, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11526, - "tp_rate": 0.037919338336168125, - "truth_threshold": 38.18 - }, - { - "f1": 0.07293971458096911, - "fn": 292456, - "fn_rate": 0.9621497494744392, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999996833, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03785025052556085, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11505, - "tp_rate": 0.03785025052556085, - "truth_threshold": 38.2 - }, - { - "f1": 0.07273833980065435, - "fn": 292489, - "fn_rate": 0.9622583160339648, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999968766, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03774168396603512, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11472, - "tp_rate": 0.03774168396603512, - "truth_threshold": 38.22 - }, - { - "f1": 0.07245724287064105, - "fn": 292535, - "fn_rate": 0.9624096512381523, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999969196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03759034876184774, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11426, - "tp_rate": 0.03759034876184774, - "truth_threshold": 38.24 - }, - { - "f1": 0.07225530673465376, - "fn": 292568, - "fn_rate": 0.962518217797678, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999996962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03748178220232201, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11393, - "tp_rate": 0.03748178220232201, - "truth_threshold": 38.26 - }, - { - "f1": 0.07199852844167047, - "fn": 292610, - "fn_rate": 0.9626563934188925, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999970038, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03734360658110744, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11351, - "tp_rate": 0.03734360658110744, - "truth_threshold": 38.28 - }, - { - "f1": 0.0718639982238574, - "fn": 292632, - "fn_rate": 0.962728771125243, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999997045, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03727122887475696, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11329, - "tp_rate": 0.03727122887475696, - "truth_threshold": 38.300000000000004 - }, - { - "f1": 0.0713687469861171, - "fn": 292713, - "fn_rate": 0.9629952526804425, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999970858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03700474731955744, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11248, - "tp_rate": 0.03700474731955744, - "truth_threshold": 38.32 - }, - { - "f1": 0.07109949105862344, - "fn": 292757, - "fn_rate": 0.9631400080931435, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999971259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.036859991906856474, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11204, - "tp_rate": 0.036859991906856474, - "truth_threshold": 38.34 - }, - { - "f1": 0.07083015993907082, - "fn": 292801, - "fn_rate": 0.9632847635058445, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999971654, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0367152364941555, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11160, - "tp_rate": 0.0367152364941555, - "truth_threshold": 38.36 - }, - { - "f1": 0.07069546617242889, - "fn": 292823, - "fn_rate": 0.963357141212195, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999972045, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.036642858787805016, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11138, - "tp_rate": 0.036642858787805016, - "truth_threshold": 38.38 - }, - { - "f1": 0.07054850606524182, - "fn": 292847, - "fn_rate": 0.9634360987100319, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999972429, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03656390128996812, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11114, - "tp_rate": 0.03656390128996812, - "truth_threshold": 38.4 - }, - { - "f1": 0.07035842612460481, - "fn": 292878, - "fn_rate": 0.9635380854780712, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999972808, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0364619145219288, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11083, - "tp_rate": 0.0364619145219288, - "truth_threshold": 38.42 - }, - { - "f1": 0.07027267244389424, - "fn": 292892, - "fn_rate": 0.963584144018476, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999973184, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03641585598152394, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11069, - "tp_rate": 0.03641585598152394, - "truth_threshold": 38.44 - }, - { - "f1": 0.0701197445111808, - "fn": 292917, - "fn_rate": 0.9636663914120561, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999973552, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03633360858794385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11044, - "tp_rate": 0.03633360858794385, - "truth_threshold": 38.46 - }, - { - "f1": 0.0698869084282113, - "fn": 292955, - "fn_rate": 0.9637914074502979, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999973916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0362085925497021, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 11006, - "tp_rate": 0.0362085925497021, - "truth_threshold": 38.480000000000004 - }, - { - "f1": 0.06961088777538565, - "fn": 293000, - "fn_rate": 0.963939452758742, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999974276, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03606054724125792, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10961, - "tp_rate": 0.03606054724125792, - "truth_threshold": 38.5 - }, - { - "f1": 0.06934749331487115, - "fn": 293043, - "fn_rate": 0.9640809182756999, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999997463, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03591908172430016, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10918, - "tp_rate": 0.03591908172430016, - "truth_threshold": 38.52 - }, - { - "f1": 0.0690222535622852, - "fn": 293096, - "fn_rate": 0.9642552827500896, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999974979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03574471724991035, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10865, - "tp_rate": 0.03574471724991035, - "truth_threshold": 38.54 - }, - { - "f1": 0.0687646131950798, - "fn": 293138, - "fn_rate": 0.9643934583713042, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999975323, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03560654162869579, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10823, - "tp_rate": 0.03560654162869579, - "truth_threshold": 38.56 - }, - { - "f1": 0.06848235675387147, - "fn": 293184, - "fn_rate": 0.9645447935754916, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999975663, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03545520642450841, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10777, - "tp_rate": 0.03545520642450841, - "truth_threshold": 38.58 - }, - { - "f1": 0.06807131280388978, - "fn": 293251, - "fn_rate": 0.9647652165902862, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999975998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03523478340971375, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10710, - "tp_rate": 0.03523478340971375, - "truth_threshold": 38.6 - }, - { - "f1": 0.06784390752429807, - "fn": 293288, - "fn_rate": 0.9648869427327847, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999976329, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.035113057267215204, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10673, - "tp_rate": 0.035113057267215204, - "truth_threshold": 38.62 - }, - { - "f1": 0.06763509218054672, - "fn": 293322, - "fn_rate": 0.9649987991880538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999976654, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03500120081194627, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10639, - "tp_rate": 0.03500120081194627, - "truth_threshold": 38.64 - }, - { - "f1": 0.06746945055503986, - "fn": 293349, - "fn_rate": 0.9650876263731203, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999976976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03491237362687977, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10612, - "tp_rate": 0.03491237362687977, - "truth_threshold": 38.660000000000004 - }, - { - "f1": 0.06719274595584494, - "fn": 293394, - "fn_rate": 0.9652356716815644, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999977293, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03476432831843559, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10567, - "tp_rate": 0.03476432831843559, - "truth_threshold": 38.68 - }, - { - "f1": 0.06696556329295049, - "fn": 293431, - "fn_rate": 0.9653573978240629, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999977606, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.034642602175937044, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10530, - "tp_rate": 0.034642602175937044, - "truth_threshold": 38.7 - }, - { - "f1": 0.0667993792612191, - "fn": 293458, - "fn_rate": 0.9654462250091295, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999977914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03455377499087054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10503, - "tp_rate": 0.03455377499087054, - "truth_threshold": 38.72 - }, - { - "f1": 0.0665780401236531, - "fn": 293494, - "fn_rate": 0.9655646612558848, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999978219, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.034435338744115196, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10467, - "tp_rate": 0.034435338744115196, - "truth_threshold": 38.74 - }, - { - "f1": 0.0664058524173028, - "fn": 293522, - "fn_rate": 0.9656567783366945, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999978518, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03434322166330549, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10439, - "tp_rate": 0.03434322166330549, - "truth_threshold": 38.76 - }, - { - "f1": 0.06616617890316834, - "fn": 293561, - "fn_rate": 0.9657850842706794, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999978814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03421491572932054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10400, - "tp_rate": 0.03421491572932054, - "truth_threshold": 38.78 - }, - { - "f1": 0.06574141244447838, - "fn": 293630, - "fn_rate": 0.9660120870769605, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999979106, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.033987912923039466, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10331, - "tp_rate": 0.033987912923039466, - "truth_threshold": 38.800000000000004 - }, - { - "f1": 0.06547058374277641, - "fn": 293674, - "fn_rate": 0.9661568424896615, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999979393, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0338431575103385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10287, - "tp_rate": 0.0338431575103385, - "truth_threshold": 38.82 - }, - { - "f1": 0.06531051294944339, - "fn": 293700, - "fn_rate": 0.9662423797789848, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999979676, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.033757620221015194, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10261, - "tp_rate": 0.033757620221015194, - "truth_threshold": 38.84 - }, - { - "f1": 0.06497797356828194, - "fn": 293754, - "fn_rate": 0.9664200341491178, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999979956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03357996585088219, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10207, - "tp_rate": 0.03357996585088219, - "truth_threshold": 38.86 - }, - { - "f1": 0.06460835126771684, - "fn": 293814, - "fn_rate": 0.9666174278937101, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999980232, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03338257210628995, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10147, - "tp_rate": 0.03338257210628995, - "truth_threshold": 38.88 - }, - { - "f1": 0.06447278770782525, - "fn": 293836, - "fn_rate": 0.9666898056000606, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999980504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.033310194399939465, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10125, - "tp_rate": 0.033310194399939465, - "truth_threshold": 38.9 - }, - { - "f1": 0.06426324302981672, - "fn": 293870, - "fn_rate": 0.9668016620553295, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999980773, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03319833794467053, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10091, - "tp_rate": 0.03319833794467053, - "truth_threshold": 38.92 - }, - { - "f1": 0.06400433107225885, - "fn": 293912, - "fn_rate": 0.966939837676544, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999981037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03306016232345597, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 10049, - "tp_rate": 0.03306016232345597, - "truth_threshold": 38.94 - }, - { - "f1": 0.06360966535646258, - "fn": 293976, - "fn_rate": 0.967150391004109, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999981298, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03284960899589092, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9985, - "tp_rate": 0.03284960899589092, - "truth_threshold": 38.96 - }, - { - "f1": 0.06350500751764736, - "fn": 293993, - "fn_rate": 0.9672063192317435, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999981556, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03279368076825646, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9968, - "tp_rate": 0.03279368076825646, - "truth_threshold": 38.980000000000004 - }, - { - "f1": 0.06339993373939193, - "fn": 294010, - "fn_rate": 0.967262247459378, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999998181, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03273775254062199, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9951, - "tp_rate": 0.03273775254062199, - "truth_threshold": 39 - }, - { - "f1": 0.06317184602738679, - "fn": 294047, - "fn_rate": 0.9673839736018766, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999982061, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03261602639812344, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9914, - "tp_rate": 0.03261602639812344, - "truth_threshold": 39.02 - }, - { - "f1": 0.06296799026261622, - "fn": 294080, - "fn_rate": 0.9674925401614023, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999982307, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.032507459838597715, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9881, - "tp_rate": 0.032507459838597715, - "truth_threshold": 39.04 - }, - { - "f1": 0.06279515891579088, - "fn": 294108, - "fn_rate": 0.967584657242212, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999982551, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.032415342757788006, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9853, - "tp_rate": 0.032415342757788006, - "truth_threshold": 39.06 - }, - { - "f1": 0.06251752887483746, - "fn": 294153, - "fn_rate": 0.9677327025506561, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999982792, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03226729744934383, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9808, - "tp_rate": 0.03226729744934383, - "truth_threshold": 39.08 - }, - { - "f1": 0.06223942063724803, - "fn": 294198, - "fn_rate": 0.9678807478591004, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999983028, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.032119252140899654, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9763, - "tp_rate": 0.032119252140899654, - "truth_threshold": 39.1 - }, - { - "f1": 0.06194927249773652, - "fn": 294245, - "fn_rate": 0.968035372959031, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999983262, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03196462704096907, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9716, - "tp_rate": 0.03196462704096907, - "truth_threshold": 39.12 - }, - { - "f1": 0.061782241351825286, - "fn": 294272, - "fn_rate": 0.9681242001440974, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999983492, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03187579985590257, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9689, - "tp_rate": 0.03187579985590257, - "truth_threshold": 39.14 - }, - { - "f1": 0.06154738976824867, - "fn": 294310, - "fn_rate": 0.9682492161823392, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999998372, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03175078381766082, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9651, - "tp_rate": 0.03175078381766082, - "truth_threshold": 39.160000000000004 - }, - { - "f1": 0.06134957586580777, - "fn": 294342, - "fn_rate": 0.9683544928461217, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999983944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.031645507153878295, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9619, - "tp_rate": 0.031645507153878295, - "truth_threshold": 39.18 - }, - { - "f1": 0.06101567334128589, - "fn": 294396, - "fn_rate": 0.9685321472162547, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999984165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03146785278374528, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9565, - "tp_rate": 0.03146785278374528, - "truth_threshold": 39.2 - }, - { - "f1": 0.06079938754027242, - "fn": 294431, - "fn_rate": 0.9686472935672669, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999984382, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03135270643273315, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9530, - "tp_rate": 0.03135270643273315, - "truth_threshold": 39.22 - }, - { - "f1": 0.06065091588880453, - "fn": 294455, - "fn_rate": 0.9687262510651038, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999984598, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.031273748934896255, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9506, - "tp_rate": 0.031273748934896255, - "truth_threshold": 39.24 - }, - { - "f1": 0.06050841617641429, - "fn": 294478, - "fn_rate": 0.9688019186671974, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999998481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.031198081332802562, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9483, - "tp_rate": 0.031198081332802562, - "truth_threshold": 39.26 - }, - { - "f1": 0.06017422381058745, - "fn": 294532, - "fn_rate": 0.9689795730373304, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999985019, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.031020426962669552, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9429, - "tp_rate": 0.031020426962669552, - "truth_threshold": 39.28 - }, - { - "f1": 0.05982753228184621, - "fn": 294588, - "fn_rate": 0.9691638071989499, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999985225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.030836192801050134, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9373, - "tp_rate": 0.030836192801050134, - "truth_threshold": 39.300000000000004 - }, - { - "f1": 0.059623364187679544, - "fn": 294621, - "fn_rate": 0.9692723737584756, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999985428, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.030727626241524406, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9340, - "tp_rate": 0.030727626241524406, - "truth_threshold": 39.32 - }, - { - "f1": 0.05943116161777381, - "fn": 294652, - "fn_rate": 0.9693743605265149, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999985629, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.030625639473485084, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9309, - "tp_rate": 0.030625639473485084, - "truth_threshold": 39.34 - }, - { - "f1": 0.05907181078630448, - "fn": 294710, - "fn_rate": 0.9695651744796208, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999985827, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03043482552037926, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9251, - "tp_rate": 0.03043482552037926, - "truth_threshold": 39.36 - }, - { - "f1": 0.05885508468081845, - "fn": 294745, - "fn_rate": 0.9696803208306328, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986022, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.030319679169367123, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9216, - "tp_rate": 0.030319679169367123, - "truth_threshold": 39.38 - }, - { - "f1": 0.05876830522221726, - "fn": 294759, - "fn_rate": 0.9697263793710378, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03027362062896227, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9202, - "tp_rate": 0.03027362062896227, - "truth_threshold": 39.4 - }, - { - "f1": 0.05869391665336101, - "fn": 294771, - "fn_rate": 0.9697658581199562, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03023414188004382, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9190, - "tp_rate": 0.03023414188004382, - "truth_threshold": 39.42 - }, - { - "f1": 0.058464329285819225, - "fn": 294808, - "fn_rate": 0.9698875842624547, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986592, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.03011241573754528, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9153, - "tp_rate": 0.03011241573754528, - "truth_threshold": 39.44 - }, - { - "f1": 0.05825348153826498, - "fn": 294842, - "fn_rate": 0.9699994407177237, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.030000559282276344, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9119, - "tp_rate": 0.030000559282276344, - "truth_threshold": 39.46 - }, - { - "f1": 0.058005366726296956, - "fn": 294882, - "fn_rate": 0.9701310365474518, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999986958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02986896345254819, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9079, - "tp_rate": 0.02986896345254819, - "truth_threshold": 39.480000000000004 - }, - { - "f1": 0.05782562857416696, - "fn": 294911, - "fn_rate": 0.9702264435240048, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999987138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.029773556475995274, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9050, - "tp_rate": 0.029773556475995274, - "truth_threshold": 39.5 - }, - { - "f1": 0.05773236718680111, - "fn": 294926, - "fn_rate": 0.9702757919601528, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999987315, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.029724208039847218, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9035, - "tp_rate": 0.029724208039847218, - "truth_threshold": 39.52 - }, - { - "f1": 0.057515337423312884, - "fn": 294961, - "fn_rate": 0.970390938311165, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999998749, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.029609061688835082, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 9000, - "tp_rate": 0.029609061688835082, - "truth_threshold": 39.54 - }, - { - "f1": 0.05722339045232876, - "fn": 295008, - "fn_rate": 0.9705455634110955, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999987662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0294544365889045, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8953, - "tp_rate": 0.0294544365889045, - "truth_threshold": 39.56 - }, - { - "f1": 0.05707437118476142, - "fn": 295032, - "fn_rate": 0.9706245209089324, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999987832, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.029375479091067604, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8929, - "tp_rate": 0.029375479091067604, - "truth_threshold": 39.58 - }, - { - "f1": 0.05679507997596246, - "fn": 295077, - "fn_rate": 0.9707725662173766, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02922743378262343, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8884, - "tp_rate": 0.02922743378262343, - "truth_threshold": 39.6 - }, - { - "f1": 0.056589900643197834, - "fn": 295110, - "fn_rate": 0.9708811327769022, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988164, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0291188672230977, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8851, - "tp_rate": 0.0291188672230977, - "truth_threshold": 39.62 - }, - { - "f1": 0.05636621735683045, - "fn": 295146, - "fn_rate": 0.9709995690236577, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02900043097634236, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8815, - "tp_rate": 0.02900043097634236, - "truth_threshold": 39.64 - }, - { - "f1": 0.056173739544163916, - "fn": 295177, - "fn_rate": 0.971101555791697, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988488, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02889844420830304, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8784, - "tp_rate": 0.02889844420830304, - "truth_threshold": 39.660000000000004 - }, - { - "f1": 0.05589382795011193, - "fn": 295222, - "fn_rate": 0.9712496011001411, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988647, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028750398899858864, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8739, - "tp_rate": 0.028750398899858864, - "truth_threshold": 39.68 - }, - { - "f1": 0.055738564767137656, - "fn": 295247, - "fn_rate": 0.9713318484937212, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988802, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028668151506278765, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8714, - "tp_rate": 0.028668151506278765, - "truth_threshold": 39.7 - }, - { - "f1": 0.05552072671443194, - "fn": 295282, - "fn_rate": 0.9714469948447334, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999988957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02855300515526663, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8679, - "tp_rate": 0.02855300515526663, - "truth_threshold": 39.72 - }, - { - "f1": 0.055290753098188754, - "fn": 295319, - "fn_rate": 0.9715687209872319, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989109, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028431279012768085, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8642, - "tp_rate": 0.028431279012768085, - "truth_threshold": 39.74 - }, - { - "f1": 0.05519725645258295, - "fn": 295334, - "fn_rate": 0.97161806942338, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028381930576620026, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8627, - "tp_rate": 0.028381930576620026, - "truth_threshold": 39.76 - }, - { - "f1": 0.05506037124959209, - "fn": 295356, - "fn_rate": 0.9716904471297304, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028309552870269542, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8605, - "tp_rate": 0.028309552870269542, - "truth_threshold": 39.78 - }, - { - "f1": 0.05486123109805653, - "fn": 295388, - "fn_rate": 0.971795723793513, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989553, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028204276206487015, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8573, - "tp_rate": 0.028204276206487015, - "truth_threshold": 39.800000000000004 - }, - { - "f1": 0.054686950010559794, - "fn": 295416, - "fn_rate": 0.9718878408743227, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989696, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.028112159125677307, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8545, - "tp_rate": 0.028112159125677307, - "truth_threshold": 39.82 - }, - { - "f1": 0.05441941740115598, - "fn": 295459, - "fn_rate": 0.9720293063912805, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989838, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02797069360871954, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8502, - "tp_rate": 0.02797069360871954, - "truth_threshold": 39.84 - }, - { - "f1": 0.05426996716148484, - "fn": 295483, - "fn_rate": 0.9721082638891173, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999989978, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027891736110882647, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8478, - "tp_rate": 0.027891736110882647, - "truth_threshold": 39.86 - }, - { - "f1": 0.054157864413289805, - "fn": 295501, - "fn_rate": 0.972167482012495, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990116, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027832517987504975, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8460, - "tp_rate": 0.027832517987504975, - "truth_threshold": 39.88 - }, - { - "f1": 0.054026888604353396, - "fn": 295522, - "fn_rate": 0.9722365698231024, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990252, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027763430176897693, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8439, - "tp_rate": 0.027763430176897693, - "truth_threshold": 39.9 - }, - { - "f1": 0.05375276927608242, - "fn": 295566, - "fn_rate": 0.9723813252358032, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990387, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027618674764196723, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8395, - "tp_rate": 0.027618674764196723, - "truth_threshold": 39.92 - }, - { - "f1": 0.05360321708950732, - "fn": 295590, - "fn_rate": 0.9724602827336402, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02753971726635983, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8371, - "tp_rate": 0.02753971726635983, - "truth_threshold": 39.94 - }, - { - "f1": 0.05350350286248543, - "fn": 295606, - "fn_rate": 0.9725129210655314, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999065, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027487078934468567, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8355, - "tp_rate": 0.027487078934468567, - "truth_threshold": 39.96 - }, - { - "f1": 0.05339771628380585, - "fn": 295623, - "fn_rate": 0.9725688492931659, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990778, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0274311507068341, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8338, - "tp_rate": 0.0274311507068341, - "truth_threshold": 39.980000000000004 - }, - { - "f1": 0.05317936105346758, - "fn": 295658, - "fn_rate": 0.9726839956441781, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999990905, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.027316004355821964, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8303, - "tp_rate": 0.027316004355821964, - "truth_threshold": 40 - }, - { - "f1": 0.052948825530224904, - "fn": 295695, - "fn_rate": 0.9728057217866766, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999103, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02719427821332342, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8266, - "tp_rate": 0.02719427821332342, - "truth_threshold": 40.02 - }, - { - "f1": 0.05267440147093683, - "fn": 295739, - "fn_rate": 0.9729504771993776, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991154, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02704952280062245, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8222, - "tp_rate": 0.02704952280062245, - "truth_threshold": 40.04 - }, - { - "f1": 0.05253716043054844, - "fn": 295761, - "fn_rate": 0.973022854905728, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991276, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026977145094271963, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8200, - "tp_rate": 0.026977145094271963, - "truth_threshold": 40.06 - }, - { - "f1": 0.05239990004421122, - "fn": 295783, - "fn_rate": 0.9730952326120785, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991396, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026904767387921476, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8178, - "tp_rate": 0.026904767387921476, - "truth_threshold": 40.08 - }, - { - "f1": 0.052181324173993286, - "fn": 295818, - "fn_rate": 0.9732103789630907, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02678962103690934, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8143, - "tp_rate": 0.02678962103690934, - "truth_threshold": 40.1 - }, - { - "f1": 0.051975518313198965, - "fn": 295851, - "fn_rate": 0.9733189455226164, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991631, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02668105447738361, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8110, - "tp_rate": 0.02668105447738361, - "truth_threshold": 40.12 - }, - { - "f1": 0.05174436119140863, - "fn": 295888, - "fn_rate": 0.9734406716651149, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991747, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026559328334885068, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8073, - "tp_rate": 0.026559328334885068, - "truth_threshold": 40.14 - }, - { - "f1": 0.05154454138114499, - "fn": 295920, - "fn_rate": 0.9735459483288974, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999186, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026454051671102544, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8041, - "tp_rate": 0.026454051671102544, - "truth_threshold": 40.160000000000004 - }, - { - "f1": 0.05135109145110107, - "fn": 295951, - "fn_rate": 0.9736479350969368, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999991972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026352064903063223, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 8010, - "tp_rate": 0.026352064903063223, - "truth_threshold": 40.18 - }, - { - "f1": 0.05126363974406647, - "fn": 295965, - "fn_rate": 0.9736939936373417, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02630600636265837, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7996, - "tp_rate": 0.02630600636265837, - "truth_threshold": 40.2 - }, - { - "f1": 0.05118226348318929, - "fn": 295978, - "fn_rate": 0.9737367622820032, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992192, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026263237717996716, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7983, - "tp_rate": 0.026263237717996716, - "truth_threshold": 40.22 - }, - { - "f1": 0.0510698050178568, - "fn": 295996, - "fn_rate": 0.973795980405381, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992298, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026204019594619047, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7965, - "tp_rate": 0.026204019594619047, - "truth_threshold": 40.24 - }, - { - "f1": 0.050876259241921934, - "fn": 296027, - "fn_rate": 0.9738979671734203, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.026102032826579726, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7934, - "tp_rate": 0.026102032826579726, - "truth_threshold": 40.26 - }, - { - "f1": 0.05071985122005964, - "fn": 296052, - "fn_rate": 0.9739802145670003, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992509, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02601978543299963, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7909, - "tp_rate": 0.02601978543299963, - "truth_threshold": 40.28 - }, - { - "f1": 0.0506012506012506, - "fn": 296071, - "fn_rate": 0.9740427225861212, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992613, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.025957277413878755, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7890, - "tp_rate": 0.025957277413878755, - "truth_threshold": 40.300000000000004 - }, - { - "f1": 0.050338669950738914, - "fn": 296113, - "fn_rate": 0.9741808982073358, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992715, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.025819101792664192, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7848, - "tp_rate": 0.025819101792664192, - "truth_threshold": 40.32 - }, - { - "f1": 0.050082112339945084, - "fn": 296154, - "fn_rate": 0.9743157839328072, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992815, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02568421606719283, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7807, - "tp_rate": 0.02568421606719283, - "truth_threshold": 40.34 - }, - { - "f1": 0.049844416642607386, - "fn": 296192, - "fn_rate": 0.9744407999710489, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999992913, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.025559200028951082, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7769, - "tp_rate": 0.025559200028951082, - "truth_threshold": 40.36 - }, - { - "f1": 0.04964420689256909, - "fn": 296224, - "fn_rate": 0.9745460766348314, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993011, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02545392336516856, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7737, - "tp_rate": 0.02545392336516856, - "truth_threshold": 40.38 - }, - { - "f1": 0.04940030417958147, - "fn": 296263, - "fn_rate": 0.9746743825688164, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993108, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.025325617431183604, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7698, - "tp_rate": 0.025325617431183604, - "truth_threshold": 40.4 - }, - { - "f1": 0.049181064359612864, - "fn": 296298, - "fn_rate": 0.9747895289198285, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993202, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02521047108017147, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7663, - "tp_rate": 0.02521047108017147, - "truth_threshold": 40.42 - }, - { - "f1": 0.049049749359760204, - "fn": 296319, - "fn_rate": 0.9748586167304358, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993295, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.025141383269564187, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7642, - "tp_rate": 0.025141383269564187, - "truth_threshold": 40.44 - }, - { - "f1": 0.04894314892196697, - "fn": 296336, - "fn_rate": 0.9749145449580703, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993389, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02508545504192972, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7625, - "tp_rate": 0.02508545504192972, - "truth_threshold": 40.46 - }, - { - "f1": 0.04859243090553077, - "fn": 296392, - "fn_rate": 0.9750987791196897, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999348, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024901220880310302, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7569, - "tp_rate": 0.024901220880310302, - "truth_threshold": 40.480000000000004 - }, - { - "f1": 0.048360792572521925, - "fn": 296429, - "fn_rate": 0.9752205052621883, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993568, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02477949473781176, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7532, - "tp_rate": 0.02477949473781176, - "truth_threshold": 40.5 - }, - { - "f1": 0.048003442119729255, - "fn": 296486, - "fn_rate": 0.9754080293195508, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993657, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024591970680449136, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7475, - "tp_rate": 0.024591970680449136, - "truth_threshold": 40.52 - }, - { - "f1": 0.04758356671205776, - "fn": 296553, - "fn_rate": 0.9756284523343455, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993745, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024371547665654476, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7408, - "tp_rate": 0.024371547665654476, - "truth_threshold": 40.54 - }, - { - "f1": 0.04740155457056594, - "fn": 296582, - "fn_rate": 0.9757238593108984, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999383, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024276140689101562, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7379, - "tp_rate": 0.024276140689101562, - "truth_threshold": 40.56 - }, - { - "f1": 0.04716320486215957, - "fn": 296620, - "fn_rate": 0.9758488753491402, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024151124650859813, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7341, - "tp_rate": 0.024151124650859813, - "truth_threshold": 40.58 - }, - { - "f1": 0.04691224755993343, - "fn": 296660, - "fn_rate": 0.9759804711788683, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999993999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.024019528821131658, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7301, - "tp_rate": 0.024019528821131658, - "truth_threshold": 40.6 - }, - { - "f1": 0.046648672964462436, - "fn": 296702, - "fn_rate": 0.9761186468000829, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994083, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023881353199917094, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7259, - "tp_rate": 0.023881353199917094, - "truth_threshold": 40.62 - }, - { - "f1": 0.04647934394200365, - "fn": 296729, - "fn_rate": 0.9762074739851494, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994164, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02379252601485059, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7232, - "tp_rate": 0.02379252601485059, - "truth_threshold": 40.64 - }, - { - "f1": 0.046353785044926925, - "fn": 296749, - "fn_rate": 0.9762732719000135, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994243, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02372672809998651, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7212, - "tp_rate": 0.02372672809998651, - "truth_threshold": 40.660000000000004 - }, - { - "f1": 0.046234340551623954, - "fn": 296768, - "fn_rate": 0.9763357799191343, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994323, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023664220080865637, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7193, - "tp_rate": 0.023664220080865637, - "truth_threshold": 40.68 - }, - { - "f1": 0.04610875057049374, - "fn": 296788, - "fn_rate": 0.9764015778339984, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994401, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02359842216600156, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7173, - "tp_rate": 0.02359842216600156, - "truth_threshold": 40.7 - }, - { - "f1": 0.0459393261460724, - "fn": 296815, - "fn_rate": 0.9764904050190649, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994479, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023509594980935054, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7146, - "tp_rate": 0.023509594980935054, - "truth_threshold": 40.72 - }, - { - "f1": 0.045826261379416755, - "fn": 296833, - "fn_rate": 0.9765496231424426, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994554, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023450376857557385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7128, - "tp_rate": 0.023450376857557385, - "truth_threshold": 40.74 - }, - { - "f1": 0.0456564929178106, - "fn": 296860, - "fn_rate": 0.9766384503275091, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999463, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023361549672490878, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7101, - "tp_rate": 0.023361549672490878, - "truth_threshold": 40.76 - }, - { - "f1": 0.0455121239205499, - "fn": 296883, - "fn_rate": 0.9767141179296028, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994703, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02328588207039719, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7078, - "tp_rate": 0.02328588207039719, - "truth_threshold": 40.78 - }, - { - "f1": 0.045298452753019254, - "fn": 296917, - "fn_rate": 0.9768259743848717, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023174025615128258, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7044, - "tp_rate": 0.023174025615128258, - "truth_threshold": 40.800000000000004 - }, - { - "f1": 0.04521659721150383, - "fn": 296930, - "fn_rate": 0.9768687430295334, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999994849, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.023131256970466606, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 7031, - "tp_rate": 0.023131256970466606, - "truth_threshold": 40.82 - }, - { - "f1": 0.0449212719975301, - "fn": 296977, - "fn_rate": 0.977023368129464, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999492, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022976631870536023, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6984, - "tp_rate": 0.022976631870536023, - "truth_threshold": 40.84 - }, - { - "f1": 0.0446697372822479, - "fn": 297017, - "fn_rate": 0.9771549639591921, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999499, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022845036040807867, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6944, - "tp_rate": 0.022845036040807867, - "truth_threshold": 40.86 - }, - { - "f1": 0.044569105272638375, - "fn": 297033, - "fn_rate": 0.9772076022910834, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995058, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022792397708916605, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6928, - "tp_rate": 0.022792397708916605, - "truth_threshold": 40.88 - }, - { - "f1": 0.044330062731220844, - "fn": 297071, - "fn_rate": 0.9773326183293252, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022667381670674856, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6890, - "tp_rate": 0.022667381670674856, - "truth_threshold": 40.9 - }, - { - "f1": 0.0442229614520934, - "fn": 297088, - "fn_rate": 0.9773885465569596, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995193, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02261145344304039, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6873, - "tp_rate": 0.02261145344304039, - "truth_threshold": 40.92 - }, - { - "f1": 0.044059354971558, - "fn": 297114, - "fn_rate": 0.9774740838462829, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022525916153717088, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6847, - "tp_rate": 0.022525916153717088, - "truth_threshold": 40.94 - }, - { - "f1": 0.04399027014504691, - "fn": 297125, - "fn_rate": 0.9775102726994581, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995325, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022489727300541846, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6836, - "tp_rate": 0.022489727300541846, - "truth_threshold": 40.96 - }, - { - "f1": 0.043820188563889695, - "fn": 297152, - "fn_rate": 0.9775990998845246, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995389, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02240090011547534, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6809, - "tp_rate": 0.02240090011547534, - "truth_threshold": 40.980000000000004 - }, - { - "f1": 0.04369428801287208, - "fn": 297172, - "fn_rate": 0.9776648977993887, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995453, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022335102200611263, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6789, - "tp_rate": 0.022335102200611263, - "truth_threshold": 41 - }, - { - "f1": 0.04360614798414088, - "fn": 297186, - "fn_rate": 0.9777109563397935, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02228904366020641, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6775, - "tp_rate": 0.02228904366020641, - "truth_threshold": 41.02 - }, - { - "f1": 0.04331648910489556, - "fn": 297232, - "fn_rate": 0.977862291543981, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995577, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.022137708456019027, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6729, - "tp_rate": 0.022137708456019027, - "truth_threshold": 41.04 - }, - { - "f1": 0.04319052370682718, - "fn": 297252, - "fn_rate": 0.977928089458845, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995638, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02207191054115495, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6709, - "tp_rate": 0.02207191054115495, - "truth_threshold": 41.06 - }, - { - "f1": 0.04299538369420354, - "fn": 297283, - "fn_rate": 0.9780300762268843, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995698, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02196992377311563, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6678, - "tp_rate": 0.02196992377311563, - "truth_threshold": 41.08 - }, - { - "f1": 0.042913342733705485, - "fn": 297296, - "fn_rate": 0.978072844871546, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995757, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02192715512845398, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6665, - "tp_rate": 0.02192715512845398, - "truth_threshold": 41.1 - }, - { - "f1": 0.04268649988731125, - "fn": 297332, - "fn_rate": 0.9781912811183013, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995816, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02180871888169864, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6629, - "tp_rate": 0.02180871888169864, - "truth_threshold": 41.12 - }, - { - "f1": 0.04252907613245579, - "fn": 297357, - "fn_rate": 0.9782735285118814, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021726471488118543, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6604, - "tp_rate": 0.021726471488118543, - "truth_threshold": 41.14 - }, - { - "f1": 0.042484817650809185, - "fn": 297364, - "fn_rate": 0.9782965577820839, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999593, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021703442217916116, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6597, - "tp_rate": 0.021703442217916116, - "truth_threshold": 41.160000000000004 - }, - { - "f1": 0.04225787544843843, - "fn": 297400, - "fn_rate": 0.9784149940288392, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999995985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021585005971160774, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6561, - "tp_rate": 0.021585005971160774, - "truth_threshold": 41.18 - }, - { - "f1": 0.04209394001855096, - "fn": 297426, - "fn_rate": 0.9785005313181625, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021499468681837473, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6535, - "tp_rate": 0.021499468681837473, - "truth_threshold": 41.2 - }, - { - "f1": 0.041942590636192635, - "fn": 297450, - "fn_rate": 0.9785794888159994, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02142051118400058, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6511, - "tp_rate": 0.02142051118400058, - "truth_threshold": 41.22 - }, - { - "f1": 0.04162720425743021, - "fn": 297500, - "fn_rate": 0.9787439836031596, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999615, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021256016396840383, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6461, - "tp_rate": 0.021256016396840383, - "truth_threshold": 41.24 - }, - { - "f1": 0.041261228750757176, - "fn": 297558, - "fn_rate": 0.9789347975562654, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996202, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.021065202443734558, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6403, - "tp_rate": 0.021065202443734558, - "truth_threshold": 41.26 - }, - { - "f1": 0.04112237467052478, - "fn": 297580, - "fn_rate": 0.9790071752626159, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996255, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02099282473738407, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6381, - "tp_rate": 0.02099282473738407, - "truth_threshold": 41.28 - }, - { - "f1": 0.0408572349339349, - "fn": 297622, - "fn_rate": 0.9791453508838305, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996306, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020854649116169507, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6339, - "tp_rate": 0.020854649116169507, - "truth_threshold": 41.300000000000004 - }, - { - "f1": 0.04061728474644011, - "fn": 297660, - "fn_rate": 0.9792703669220723, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996357, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02072963307792776, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6301, - "tp_rate": 0.02072963307792776, - "truth_threshold": 41.32 - }, - { - "f1": 0.040503603615218986, - "fn": 297678, - "fn_rate": 0.9793295850454499, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02067041495455009, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6283, - "tp_rate": 0.02067041495455009, - "truth_threshold": 41.34 - }, - { - "f1": 0.04029528383997937, - "fn": 297711, - "fn_rate": 0.9794381516049756, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996457, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02056184839502436, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6250, - "tp_rate": 0.02056184839502436, - "truth_threshold": 41.36 - }, - { - "f1": 0.040270014119649526, - "fn": 297715, - "fn_rate": 0.9794513111879485, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020548688812051547, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6246, - "tp_rate": 0.020548688812051547, - "truth_threshold": 41.38 - }, - { - "f1": 0.040143655742038646, - "fn": 297735, - "fn_rate": 0.9795171091028125, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996554, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020482890897187467, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6226, - "tp_rate": 0.020482890897187467, - "truth_threshold": 41.4 - }, - { - "f1": 0.03989708139339928, - "fn": 297774, - "fn_rate": 0.9796454150367975, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996602, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020354584963202516, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6187, - "tp_rate": 0.020354584963202516, - "truth_threshold": 41.42 - }, - { - "f1": 0.03972655746162776, - "fn": 297801, - "fn_rate": 0.979734242221864, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996648, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.02026575777813601, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6160, - "tp_rate": 0.02026575777813601, - "truth_threshold": 41.44 - }, - { - "f1": 0.03959367945823928, - "fn": 297822, - "fn_rate": 0.9798033300324712, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020196669967528728, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6139, - "tp_rate": 0.020196669967528728, - "truth_threshold": 41.46 - }, - { - "f1": 0.03945458884538729, - "fn": 297844, - "fn_rate": 0.9798757077388217, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996739, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020124292261178244, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6117, - "tp_rate": 0.020124292261178244, - "truth_threshold": 41.480000000000004 - }, - { - "f1": 0.039309281609010045, - "fn": 297867, - "fn_rate": 0.9799513753409155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.020048624659084555, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6094, - "tp_rate": 0.020048624659084555, - "truth_threshold": 41.5 - }, - { - "f1": 0.03918279930588258, - "fn": 297887, - "fn_rate": 0.9800171732557795, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996829, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019982826744220476, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6074, - "tp_rate": 0.019982826744220476, - "truth_threshold": 41.52 - }, - { - "f1": 0.03904364992322878, - "fn": 297909, - "fn_rate": 0.98008955096213, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01991044903786999, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6052, - "tp_rate": 0.01991044903786999, - "truth_threshold": 41.54 - }, - { - "f1": 0.03889802896867641, - "fn": 297932, - "fn_rate": 0.9801652185642237, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.0198347814357763, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6029, - "tp_rate": 0.0198347814357763, - "truth_threshold": 41.56 - }, - { - "f1": 0.03886007019717147, - "fn": 297938, - "fn_rate": 0.9801849579386829, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999996958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019815042061317078, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6023, - "tp_rate": 0.019815042061317078, - "truth_threshold": 41.58 - }, - { - "f1": 0.03875263738603589, - "fn": 297955, - "fn_rate": 0.9802408861663174, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01975911383368261, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6006, - "tp_rate": 0.01975911383368261, - "truth_threshold": 41.6 - }, - { - "f1": 0.038733530345459476, - "fn": 297958, - "fn_rate": 0.980250755853547, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019749244146452998, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 6003, - "tp_rate": 0.019749244146452998, - "truth_threshold": 41.62 - }, - { - "f1": 0.03847419673337162, - "fn": 297999, - "fn_rate": 0.9803856415790183, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01961435842098164, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5962, - "tp_rate": 0.01961435842098164, - "truth_threshold": 41.64 - }, - { - "f1": 0.03825252994630318, - "fn": 298034, - "fn_rate": 0.9805007879300305, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997122, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019499212069969504, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5927, - "tp_rate": 0.019499212069969504, - "truth_threshold": 41.660000000000004 - }, - { - "f1": 0.038087923010888716, - "fn": 298060, - "fn_rate": 0.9805863252193538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997161, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019413674780646203, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5901, - "tp_rate": 0.019413674780646203, - "truth_threshold": 41.68 - }, - { - "f1": 0.03803105998993068, - "fn": 298069, - "fn_rate": 0.9806159342810427, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997201, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019384065718957365, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5892, - "tp_rate": 0.019384065718957365, - "truth_threshold": 41.7 - }, - { - "f1": 0.03787262610222446, - "fn": 298094, - "fn_rate": 0.9806981816746227, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997239, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01930181832537727, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5867, - "tp_rate": 0.01930181832537727, - "truth_threshold": 41.72 - }, - { - "f1": 0.03766995054810262, - "fn": 298126, - "fn_rate": 0.9808034583384052, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997278, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019196541661594745, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5835, - "tp_rate": 0.019196541661594745, - "truth_threshold": 41.74 - }, - { - "f1": 0.037499031533276515, - "fn": 298153, - "fn_rate": 0.9808922855234717, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01910771447652824, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5808, - "tp_rate": 0.01910771447652824, - "truth_threshold": 41.76 - }, - { - "f1": 0.03733429757669286, - "fn": 298179, - "fn_rate": 0.9809778228127951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997352, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.019022177187204937, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5782, - "tp_rate": 0.019022177187204937, - "truth_threshold": 41.78 - }, - { - "f1": 0.037144185565945134, - "fn": 298209, - "fn_rate": 0.9810765196850911, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997388, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01892348031490882, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5752, - "tp_rate": 0.01892348031490882, - "truth_threshold": 41.800000000000004 - }, - { - "f1": 0.036700447613695814, - "fn": 298279, - "fn_rate": 0.9813068123871155, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997424, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01869318761288455, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5682, - "tp_rate": 0.01869318761288455, - "truth_threshold": 41.82 - }, - { - "f1": 0.03654826269790516, - "fn": 298303, - "fn_rate": 0.9813857698849523, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999746, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018614230115047654, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5658, - "tp_rate": 0.018614230115047654, - "truth_threshold": 41.84 - }, - { - "f1": 0.03639605418709665, - "fn": 298327, - "fn_rate": 0.9814647273827892, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997494, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01853527261721076, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5634, - "tp_rate": 0.01853527261721076, - "truth_threshold": 41.86 - }, - { - "f1": 0.03622467438494935, - "fn": 298354, - "fn_rate": 0.9815535545678558, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997529, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018446445432144257, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5607, - "tp_rate": 0.018446445432144257, - "truth_threshold": 41.88 - }, - { - "f1": 0.036180385062669594, - "fn": 298361, - "fn_rate": 0.9815765838380581, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997563, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01842341616194183, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5600, - "tp_rate": 0.01842341616194183, - "truth_threshold": 41.9 - }, - { - "f1": 0.035996278252329324, - "fn": 298390, - "fn_rate": 0.9816719908146111, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018328009185388915, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5571, - "tp_rate": 0.018328009185388915, - "truth_threshold": 41.92 - }, - { - "f1": 0.03579321486268174, - "fn": 298422, - "fn_rate": 0.9817772674783936, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999763, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018222732521606392, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5539, - "tp_rate": 0.018222732521606392, - "truth_threshold": 41.94 - }, - { - "f1": 0.03562196256850377, - "fn": 298449, - "fn_rate": 0.9818660946634601, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018133905336539885, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5512, - "tp_rate": 0.018133905336539885, - "truth_threshold": 41.96 - }, - { - "f1": 0.0355457894396691, - "fn": 298461, - "fn_rate": 0.9819055734123786, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.018094426587621438, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5500, - "tp_rate": 0.018094426587621438, - "truth_threshold": 41.980000000000004 - }, - { - "f1": 0.03541882109617373, - "fn": 298481, - "fn_rate": 0.9819713713272427, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997726, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01802862867275736, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5480, - "tp_rate": 0.01802862867275736, - "truth_threshold": 42 - }, - { - "f1": 0.03522187388901458, - "fn": 298512, - "fn_rate": 0.982073358095282, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997757, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01792664190471804, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5449, - "tp_rate": 0.01792664190471804, - "truth_threshold": 42.02 - }, - { - "f1": 0.03508862657892355, - "fn": 298533, - "fn_rate": 0.9821424459058893, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997788, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01785755409411076, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5428, - "tp_rate": 0.01785755409411076, - "truth_threshold": 42.04 - }, - { - "f1": 0.034980541225450267, - "fn": 298550, - "fn_rate": 0.9821983741335237, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01780162586647629, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5411, - "tp_rate": 0.01780162586647629, - "truth_threshold": 42.06 - }, - { - "f1": 0.03486620505957576, - "fn": 298568, - "fn_rate": 0.9822575922569013, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997848, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017742407743098623, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5393, - "tp_rate": 0.017742407743098623, - "truth_threshold": 42.08 - }, - { - "f1": 0.03483455525815586, - "fn": 298573, - "fn_rate": 0.9822740417356174, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997878, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017725958264382603, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5388, - "tp_rate": 0.017725958264382603, - "truth_threshold": 42.1 - }, - { - "f1": 0.03471373613939805, - "fn": 298592, - "fn_rate": 0.9823365497547383, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997907, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01766345024526173, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5369, - "tp_rate": 0.01766345024526173, - "truth_threshold": 42.12 - }, - { - "f1": 0.03456124355815923, - "fn": 298616, - "fn_rate": 0.9824155072525752, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997936, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017584492747424834, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5345, - "tp_rate": 0.017584492747424834, - "truth_threshold": 42.14 - }, - { - "f1": 0.03440872731035107, - "fn": 298640, - "fn_rate": 0.982494464750412, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997965, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01750553524958794, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5321, - "tp_rate": 0.01750553524958794, - "truth_threshold": 42.160000000000004 - }, - { - "f1": 0.03426889995473065, - "fn": 298662, - "fn_rate": 0.9825668424567625, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999997993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017433157543237456, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5299, - "tp_rate": 0.017433157543237456, - "truth_threshold": 42.18 - }, - { - "f1": 0.03416719483643983, - "fn": 298678, - "fn_rate": 0.9826194807886538, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999802, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01738051921134619, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5283, - "tp_rate": 0.01738051921134619, - "truth_threshold": 42.2 - }, - { - "f1": 0.0340527639978527, - "fn": 298696, - "fn_rate": 0.9826786989120315, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998048, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017321301087968522, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5265, - "tp_rate": 0.017321301087968522, - "truth_threshold": 42.22 - }, - { - "f1": 0.03390663708514175, - "fn": 298719, - "fn_rate": 0.9827543665141252, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998075, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017245633485874833, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5242, - "tp_rate": 0.017245633485874833, - "truth_threshold": 42.24 - }, - { - "f1": 0.03379217553301594, - "fn": 298737, - "fn_rate": 0.9828135846375028, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01718641536249716, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5224, - "tp_rate": 0.01718641536249716, - "truth_threshold": 42.26 - }, - { - "f1": 0.03369667173399748, - "fn": 298752, - "fn_rate": 0.9828629330736509, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998127, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017137066926349104, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5209, - "tp_rate": 0.017137066926349104, - "truth_threshold": 42.28 - }, - { - "f1": 0.0335504907066564, - "fn": 298775, - "fn_rate": 0.9829386006757446, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998154, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.017061399324255416, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5186, - "tp_rate": 0.017061399324255416, - "truth_threshold": 42.300000000000004 - }, - { - "f1": 0.033429517869620354, - "fn": 298794, - "fn_rate": 0.9830011086948655, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998178, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01699889130513454, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5167, - "tp_rate": 0.01699889130513454, - "truth_threshold": 42.32 - }, - { - "f1": 0.0332705708795155, - "fn": 298819, - "fn_rate": 0.9830833560884455, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01691664391155444, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5142, - "tp_rate": 0.01691664391155444, - "truth_threshold": 42.34 - }, - { - "f1": 0.03317501811781758, - "fn": 298834, - "fn_rate": 0.9831327045245937, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998228, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016867295475406385, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5127, - "tp_rate": 0.016867295475406385, - "truth_threshold": 42.36 - }, - { - "f1": 0.03301602914625544, - "fn": 298859, - "fn_rate": 0.9832149519181738, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998253, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016785048081826286, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5102, - "tp_rate": 0.016785048081826286, - "truth_threshold": 42.38 - }, - { - "f1": 0.03288873357019434, - "fn": 298879, - "fn_rate": 0.9832807498330378, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998277, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01671925016696221, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5082, - "tp_rate": 0.01671925016696221, - "truth_threshold": 42.4 - }, - { - "f1": 0.032716752530613305, - "fn": 298906, - "fn_rate": 0.9833695770181043, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.99999999999983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016630422981895703, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5055, - "tp_rate": 0.016630422981895703, - "truth_threshold": 42.42 - }, - { - "f1": 0.03266582094961943, - "fn": 298914, - "fn_rate": 0.9833958961840499, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998324, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016604103815950073, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5047, - "tp_rate": 0.016604103815950073, - "truth_threshold": 42.44 - }, - { - "f1": 0.032506747965900924, - "fn": 298939, - "fn_rate": 0.98347814357763, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998347, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016521856422369974, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 5022, - "tp_rate": 0.016521856422369974, - "truth_threshold": 42.46 - }, - { - "f1": 0.03229648810487134, - "fn": 298972, - "fn_rate": 0.9835867101371557, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.999999999999837, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016413289862844245, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4989, - "tp_rate": 0.016413289862844245, - "truth_threshold": 42.480000000000004 - }, - { - "f1": 0.03209913310328307, - "fn": 299003, - "fn_rate": 0.9836886969051951, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998392, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016311303094804927, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4958, - "tp_rate": 0.016311303094804927, - "truth_threshold": 42.5 - }, - { - "f1": 0.03193349131735364, - "fn": 299029, - "fn_rate": 0.9837742341945184, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998415, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016225765805481625, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4932, - "tp_rate": 0.016225765805481625, - "truth_threshold": 42.52 - }, - { - "f1": 0.03185055685055685, - "fn": 299042, - "fn_rate": 0.98381700283918, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998436, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016182997160819973, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4919, - "tp_rate": 0.016182997160819973, - "truth_threshold": 42.54 - }, - { - "f1": 0.03171684074882308, - "fn": 299063, - "fn_rate": 0.9838860906497873, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998458, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.01611390935021269, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4898, - "tp_rate": 0.01611390935021269, - "truth_threshold": 42.56 - }, - { - "f1": 0.031595648232094285, - "fn": 299082, - "fn_rate": 0.9839485986689082, - "fp": 0, - "fp_rate": 0, - "match_probability": 0.9999999999998479, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 1, - "recall": 0.016051401331091817, - "row_count": 477830, - "tn": 173869, - "tn_rate": 1, - "tp": 4879, - "tp_rate": 0.016051401331091817, - "truth_threshold": 42.58 - }, - { - "f1": 0.85910966959049, - "fn": 74577, - "fn_rate": 0.24535055484091708, - "fp": 660, - "fp_rate": 0.003795961327206115, - "match_probability": 0.7570845276442862, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971309836379127, - "recall": 0.7546494451590829, - "row_count": 477830, - "tn": 173209, - "tn_rate": 0.9962040386727938, - "tp": 229384, - "tp_rate": 0.7546494451590829, - "truth_threshold": 1.6400000000000001 - }, - { - "f1": 0.8587452934454789, - "fn": 74749, - "fn_rate": 0.24591641690874816, - "fp": 658, - "fp_rate": 0.003784458414093369, - "match_probability": 0.7596249330210829, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971375125070692, - "recall": 0.7540835830912518, - "row_count": 477830, - "tn": 173211, - "tn_rate": 0.9962155415859066, - "tp": 229212, - "tp_rate": 0.7540835830912518, - "truth_threshold": 1.6600000000000001 - }, - { - "f1": 0.8583940456916712, - "fn": 74914, - "fn_rate": 0.2464592497063768, - "fp": 657, - "fp_rate": 0.003778706957536996, - "match_probability": 0.7621471175890653, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971397973043569, - "recall": 0.7535407502936232, - "row_count": 477830, - "tn": 173212, - "tn_rate": 0.996221293042463, - "tp": 229047, - "tp_rate": 0.7535407502936232, - "truth_threshold": 1.68 - }, - { - "f1": 0.8581292569282268, - "fn": 75037, - "fn_rate": 0.2468639068827909, - "fp": 657, - "fp_rate": 0.003778706957536996, - "match_probability": 0.7646510369310004, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971382649261045, - "recall": 0.7531360931172091, - "row_count": 477830, - "tn": 173212, - "tn_rate": 0.996221293042463, - "tp": 228924, - "tp_rate": 0.7531360931172091, - "truth_threshold": 1.7 - }, - { - "f1": 0.8577208791291207, - "fn": 75230, - "fn_rate": 0.24749885676122924, - "fp": 655, - "fp_rate": 0.0037672040444242504, - "match_probability": 0.767136650755255, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997144551105996, - "recall": 0.7525011432387707, - "row_count": 477830, - "tn": 173214, - "tn_rate": 0.9962327959555758, - "tp": 228731, - "tp_rate": 0.7525011432387707, - "truth_threshold": 1.72 - }, - { - "f1": 0.8574622107197779, - "fn": 75353, - "fn_rate": 0.24790351393764332, - "fp": 652, - "fp_rate": 0.003749949674755132, - "match_probability": 0.7696039228492181, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971560673471168, - "recall": 0.7520964860623567, - "row_count": 477830, - "tn": 173217, - "tn_rate": 0.9962500503252448, - "tp": 228608, - "tp_rate": 0.7520964860623567, - "truth_threshold": 1.74 - }, - { - "f1": 0.8572114590992992, - "fn": 75473, - "fn_rate": 0.2482983014268278, - "fp": 648, - "fp_rate": 0.00372694384852964, - "match_probability": 0.7720528210314674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971719851965645, - "recall": 0.7517016985731723, - "row_count": 477830, - "tn": 173221, - "tn_rate": 0.9962730561514703, - "tp": 228488, - "tp_rate": 0.7517016985731723, - "truth_threshold": 1.76 - }, - { - "f1": 0.8569552229844338, - "fn": 75603, - "fn_rate": 0.2487259878734443, - "fp": 633, - "fp_rate": 0.0036406720001840465, - "match_probability": 0.774483317102736, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99723569921962, - "recall": 0.7512740121265558, - "row_count": 477830, - "tn": 173236, - "tn_rate": 0.996359327999816, - "tp": 228358, - "tp_rate": 0.7512740121265558, - "truth_threshold": 1.78 - }, - { - "f1": 0.8566119611405577, - "fn": 75763, - "fn_rate": 0.2492523711923569, - "fp": 633, - "fp_rate": 0.0036406720001840465, - "match_probability": 0.7768953867957377, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972337664040274, - "recall": 0.7507476288076431, - "row_count": 477830, - "tn": 173236, - "tn_rate": 0.996359327999816, - "tp": 228198, - "tp_rate": 0.7507476288076431, - "truth_threshold": 1.8 - }, - { - "f1": 0.8557937205580725, - "fn": 76147, - "fn_rate": 0.2505156911577472, - "fp": 629, - "fp_rate": 0.003617666173958555, - "match_probability": 0.7792890097239141, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972465779209694, - "recall": 0.7494843088422528, - "row_count": 477830, - "tn": 173240, - "tn_rate": 0.9963823338260415, - "tp": 227814, - "tp_rate": 0.7494843088422528, - "truth_threshold": 1.82 - }, - { - "f1": 0.8555099648300117, - "fn": 76279, - "fn_rate": 0.25094995739585013, - "fp": 629, - "fp_rate": 0.003617666173958555, - "match_probability": 0.7816641693291569, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972449860059305, - "recall": 0.7490500426041499, - "row_count": 477830, - "tn": 173240, - "tn_rate": 0.9963823338260415, - "tp": 227682, - "tp_rate": 0.7490500426041499, - "truth_threshold": 1.84 - }, - { - "f1": 0.8552717624155323, - "fn": 76392, - "fn_rate": 0.2513217156148322, - "fp": 627, - "fp_rate": 0.0036061632608458093, - "match_probability": 0.7840208528285652, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972523620045926, - "recall": 0.7486782843851678, - "row_count": 477830, - "tn": 173242, - "tn_rate": 0.9963938367391542, - "tp": 227569, - "tp_rate": 0.7486782843851678, - "truth_threshold": 1.86 - }, - { - "f1": 0.8550431540011427, - "fn": 76499, - "fn_rate": 0.251673734459355, - "fp": 626, - "fp_rate": 0.0036004118042894362, - "match_probability": 0.786359051160298, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972554452667391, - "recall": 0.748326265540645, - "row_count": 477830, - "tn": 173243, - "tn_rate": 0.9963995881957106, - "tp": 227462, - "tp_rate": 0.748326265540645, - "truth_threshold": 1.8800000000000001 - }, - { - "f1": 0.8548408321020239, - "fn": 76593, - "fn_rate": 0.25198298465921615, - "fp": 625, - "fp_rate": 0.0035946603477330632, - "match_probability": 0.7886787589285739, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972586877667297, - "recall": 0.7480170153407838, - "row_count": 477830, - "tn": 173244, - "tn_rate": 0.996405339652267, - "tp": 227368, - "tp_rate": 0.7480170153407838, - "truth_threshold": 1.9000000000000001 - }, - { - "f1": 0.8546454128733609, - "fn": 76686, - "fn_rate": 0.2522889449633341, - "fp": 623, - "fp_rate": 0.0035831574346203176, - "match_probability": 0.7909799743478786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972663208979455, - "recall": 0.7477110550366659, - "row_count": 477830, - "tn": 173246, - "tn_rate": 0.9964168425653797, - "tp": 227275, - "tp_rate": 0.7477110550366659, - "truth_threshold": 1.92 - }, - { - "f1": 0.8541973102605097, - "fn": 76894, - "fn_rate": 0.25297324327792053, - "fp": 623, - "fp_rate": 0.0035831574346203176, - "match_probability": 0.7932626991864332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997263823619834, - "recall": 0.7470267567220795, - "row_count": 477830, - "tn": 173246, - "tn_rate": 0.9964168425653797, - "tp": 227067, - "tp_rate": 0.7470267567220795, - "truth_threshold": 1.94 - }, - { - "f1": 0.8539671669758324, - "fn": 77003, - "fn_rate": 0.25333184191392977, - "fp": 620, - "fp_rate": 0.003565903064951199, - "match_probability": 0.795526938708981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997275659334382, - "recall": 0.7466681580860702, - "row_count": 477830, - "tn": 173249, - "tn_rate": 0.9964340969350488, - "tp": 226958, - "tp_rate": 0.7466681580860702, - "truth_threshold": 1.96 - }, - { - "f1": 0.8536770794128716, - "fn": 77139, - "fn_rate": 0.2537792677350055, - "fp": 618, - "fp_rate": 0.003554400151838453, - "match_probability": 0.7977727016189426, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972827998593036, - "recall": 0.7462207322649945, - "row_count": 477830, - "tn": 173251, - "tn_rate": 0.9964455998481615, - "tp": 226822, - "tp_rate": 0.7462207322649945, - "truth_threshold": 1.98 - }, - { - "f1": 0.8534952965666254, - "fn": 77224, - "fn_rate": 0.25405890887317784, - "fp": 617, - "fp_rate": 0.0035486486952820803, - "match_probability": 0.8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972861704654415, - "recall": 0.7459410911268222, - "row_count": 477830, - "tn": 173252, - "tn_rate": 0.996451351304718, - "tp": 226737, - "tp_rate": 0.7459410911268222, - "truth_threshold": 2 - }, - { - "f1": 0.8533231934582747, - "fn": 77303, - "fn_rate": 0.25431881063689094, - "fp": 617, - "fp_rate": 0.0035486486952820803, - "match_probability": 0.8022088492571531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972852271477285, - "recall": 0.7456811893631091, - "row_count": 477830, - "tn": 173252, - "tn_rate": 0.996451351304718, - "tp": 226658, - "tp_rate": 0.7456811893631091, - "truth_threshold": 2.02 - }, - { - "f1": 0.853167206991464, - "fn": 77376, - "fn_rate": 0.2545589730261448, - "fp": 616, - "fp_rate": 0.0035428972387257073, - "match_probability": 0.8043992680573092, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9972887443277099, - "recall": 0.7454410269738552, - "row_count": 477830, - "tn": 173253, - "tn_rate": 0.9964571027612743, - "tp": 226585, - "tp_rate": 0.7454410269738552, - "truth_threshold": 2.04 - }, - { - "f1": 0.8529306533193232, - "fn": 77490, - "fn_rate": 0.25493402114087005, - "fp": 610, - "fp_rate": 0.00350838849938747, - "match_probability": 0.8065712782694506, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973137338658893, - "recall": 0.74506597885913, - "row_count": 477830, - "tn": 173259, - "tn_rate": 0.9964916115006125, - "tp": 226471, - "tp_rate": 0.74506597885913, - "truth_threshold": 2.06 - }, - { - "f1": 0.8526616363478831, - "fn": 77616, - "fn_rate": 0.25534854800451373, - "fp": 609, - "fp_rate": 0.003502637042831097, - "match_probability": 0.8087249049044327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973166368515206, - "recall": 0.7446514519954862, - "row_count": 477830, - "tn": 173260, - "tn_rate": 0.996497362957169, - "tp": 226345, - "tp_rate": 0.7446514519954862, - "truth_threshold": 2.08 - }, - { - "f1": 0.8524086738634865, - "fn": 77736, - "fn_rate": 0.2557433354936982, - "fp": 605, - "fp_rate": 0.0034796312166056054, - "match_probability": 0.8108601760544609, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973328043027818, - "recall": 0.7442566645063018, - "row_count": 477830, - "tn": 173264, - "tn_rate": 0.9965203687833945, - "tp": 226225, - "tp_rate": 0.7442566645063018, - "truth_threshold": 2.1 - }, - { - "f1": 0.8520788339985753, - "fn": 77890, - "fn_rate": 0.2562499794381516, - "fp": 603, - "fp_rate": 0.0034681283034928598, - "match_probability": 0.8129771228322951, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973397919479076, - "recall": 0.7437500205618484, - "row_count": 477830, - "tn": 173266, - "tn_rate": 0.9965318716965071, - "tp": 226071, - "tp_rate": 0.7437500205618484, - "truth_threshold": 2.12 - }, - { - "f1": 0.8517103958436231, - "fn": 78061, - "fn_rate": 0.25681255161023947, - "fp": 601, - "fp_rate": 0.0034566253903801137, - "match_probability": 0.8150757793102267, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99734659008128, - "recall": 0.7431874483897605, - "row_count": 477830, - "tn": 173268, - "tn_rate": 0.9965433746096198, - "tp": 225900, - "tp_rate": 0.7431874483897605, - "truth_threshold": 2.14 - }, - { - "f1": 0.8514110295254581, - "fn": 78200, - "fn_rate": 0.25726984711854484, - "fp": 601, - "fp_rate": 0.0034566253903801137, - "match_probability": 0.8171561824588779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973449607266237, - "recall": 0.7427301528814552, - "row_count": 477830, - "tn": 173268, - "tn_rate": 0.9965433746096198, - "tp": 225761, - "tp_rate": 0.7427301528814552, - "truth_threshold": 2.16 - }, - { - "f1": 0.8511727384517891, - "fn": 78310, - "fn_rate": 0.25763173565029723, - "fp": 601, - "fp_rate": 0.0034566253903801137, - "match_probability": 0.8192183720858639, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997343669890211, - "recall": 0.7423682643497027, - "row_count": 477830, - "tn": 173268, - "tn_rate": 0.9965433746096198, - "tp": 225651, - "tp_rate": 0.7423682643497027, - "truth_threshold": 2.18 - }, - { - "f1": 0.8509332236680764, - "fn": 78422, - "fn_rate": 0.25800020397353607, - "fp": 599, - "fp_rate": 0.003445122477267368, - "match_probability": 0.8212623907743639, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973511749462718, - "recall": 0.7419997960264639, - "row_count": 477830, - "tn": 173270, - "tn_rate": 0.9965548775227326, - "tp": 225539, - "tp_rate": 0.7419997960264639, - "truth_threshold": 2.2 - }, - { - "f1": 0.8506155320899409, - "fn": 78570, - "fn_rate": 0.25848710854353024, - "fp": 597, - "fp_rate": 0.003433619564154622, - "match_probability": 0.823288283821645, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973582668106271, - "recall": 0.7415128914564697, - "row_count": 477830, - "tn": 173272, - "tn_rate": 0.9965663804358453, - "tp": 225391, - "tp_rate": 0.7415128914564697, - "truth_threshold": 2.22 - }, - { - "f1": 0.8502678439973876, - "fn": 78731, - "fn_rate": 0.2590167817581861, - "fp": 596, - "fp_rate": 0.0034278681075982495, - "match_probability": 0.8252960991775768, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973607999078937, - "recall": 0.7409832182418139, - "row_count": 477830, - "tn": 173273, - "tn_rate": 0.9965721318924018, - "tp": 225230, - "tp_rate": 0.7409832182418139, - "truth_threshold": 2.24 - }, - { - "f1": 0.8499509100521109, - "fn": 78877, - "fn_rate": 0.25949710653669383, - "fp": 596, - "fp_rate": 0.0034278681075982495, - "match_probability": 0.8272858873831817, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973590925203828, - "recall": 0.7405028934633061, - "row_count": 477830, - "tn": 173273, - "tn_rate": 0.9965721318924018, - "tp": 225084, - "tp_rate": 0.7405028934633061, - "truth_threshold": 2.2600000000000002 - }, - { - "f1": 0.8496717707758901, - "fn": 79007, - "fn_rate": 0.25992479298331034, - "fp": 594, - "fp_rate": 0.0034163651944855034, - "match_probability": 0.8292577015092557, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973664142444181, - "recall": 0.7400752070166896, - "row_count": 477830, - "tn": 173275, - "tn_rate": 0.9965836348055145, - "tp": 224954, - "tp_rate": 0.7400752070166896, - "truth_threshold": 2.2800000000000002 - }, - { - "f1": 0.8493632005077772, - "fn": 79149, - "fn_rate": 0.2603919581788453, - "fp": 594, - "fp_rate": 0.0034163651944855034, - "match_probability": 0.8312115970951024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973647551529241, - "recall": 0.7396080418211547, - "row_count": 477830, - "tn": 173275, - "tn_rate": 0.9965836348055145, - "tp": 224812, - "tp_rate": 0.7396080418211547, - "truth_threshold": 2.3000000000000003 - }, - { - "f1": 0.8491266920106112, - "fn": 79260, - "fn_rate": 0.2607571366063409, - "fp": 590, - "fp_rate": 0.0033933593682600118, - "match_probability": 0.8331476320874132, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973811648046305, - "recall": 0.7392428633936591, - "row_count": 477830, - "tn": 173279, - "tn_rate": 0.99660664063174, - "tp": 224701, - "tp_rate": 0.7392428633936591, - "truth_threshold": 2.32 - }, - { - "f1": 0.8487824423729711, - "fn": 79419, - "fn_rate": 0.26128023002951034, - "fp": 589, - "fp_rate": 0.0033876079117036387, - "match_probability": 0.835065866779332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973837454637522, - "recall": 0.7387197699704896, - "row_count": 477830, - "tn": 173280, - "tn_rate": 0.9966123920882963, - "tp": 224542, - "tp_rate": 0.7387197699704896, - "truth_threshold": 2.34 - }, - { - "f1": 0.8485032951327317, - "fn": 79548, - "fn_rate": 0.2617046265803837, - "fp": 588, - "fp_rate": 0.003381856455147266, - "match_probability": 0.8369663637497393, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973866782814299, - "recall": 0.7382953734196164, - "row_count": 477830, - "tn": 173281, - "tn_rate": 0.9966181435448528, - "tp": 224413, - "tp_rate": 0.7382953734196164, - "truth_threshold": 2.36 - }, - { - "f1": 0.8481711629595731, - "fn": 79702, - "fn_rate": 0.26221127052483706, - "fp": 586, - "fp_rate": 0.00337035354203452, - "match_probability": 0.8388491878027863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9973937601458782, - "recall": 0.7377887294751629, - "row_count": 477830, - "tn": 173283, - "tn_rate": 0.9966296464579655, - "tp": 224259, - "tp_rate": 0.7377887294751629, - "truth_threshold": 2.38 - }, - { - "f1": 0.8479292134491421, - "fn": 79816, - "fn_rate": 0.26258631863956233, - "fp": 583, - "fp_rate": 0.0033530991723654015, - "match_probability": 0.840714405907716, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974057527321918, - "recall": 0.7374136813604377, - "row_count": 477830, - "tn": 173286, - "tn_rate": 0.9966469008276346, - "tp": 224145, - "tp_rate": 0.7374136813604377, - "truth_threshold": 2.4 - }, - { - "f1": 0.8476354087046021, - "fn": 79953, - "fn_rate": 0.26303703435638126, - "fp": 580, - "fp_rate": 0.003335844802696283, - "match_probability": 0.8425620871389979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974174933656295, - "recall": 0.7369629656436187, - "row_count": 477830, - "tn": 173289, - "tn_rate": 0.9966641551973037, - "tp": 224008, - "tp_rate": 0.7369629656436187, - "truth_threshold": 2.42 - }, - { - "f1": 0.8473516476029704, - "fn": 80089, - "fn_rate": 0.26348446017745697, - "fp": 571, - "fp_rate": 0.0032840816936889265, - "match_probability": 0.8443923026168105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974559242212945, - "recall": 0.736515539822543, - "row_count": 477830, - "tn": 173298, - "tn_rate": 0.9967159183063111, - "tp": 223872, - "tp_rate": 0.736515539822543, - "truth_threshold": 2.44 - }, - { - "f1": 0.8470237689587545, - "fn": 80240, - "fn_rate": 0.26398123443468074, - "fp": 571, - "fp_rate": 0.0032840816936889265, - "match_probability": 0.8462051254478966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974542114743281, - "recall": 0.7360187655653192, - "row_count": 477830, - "tn": 173298, - "tn_rate": 0.9967159183063111, - "tp": 223721, - "tp_rate": 0.7360187655653192, - "truth_threshold": 2.46 - }, - { - "f1": 0.8467719946679593, - "fn": 80359, - "fn_rate": 0.264372732028122, - "fp": 566, - "fp_rate": 0.0032553244109070623, - "match_probability": 0.8480006306668223, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974751079547483, - "recall": 0.7356272679718779, - "row_count": 477830, - "tn": 173303, - "tn_rate": 0.996744675589093, - "tp": 223602, - "tp_rate": 0.7356272679718779, - "truth_threshold": 2.48 - }, - { - "f1": 0.8462876107200497, - "fn": 80580, - "fn_rate": 0.26509979898737007, - "fp": 566, - "fp_rate": 0.0032553244109070623, - "match_probability": 0.8497788951776651, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974726162886755, - "recall": 0.7349002010126299, - "row_count": 477830, - "tn": 173303, - "tn_rate": 0.996744675589093, - "tp": 223381, - "tp_rate": 0.7349002010126299, - "truth_threshold": 2.5 - }, - { - "f1": 0.8460378330857611, - "fn": 80695, - "fn_rate": 0.26547813699783857, - "fp": 566, - "fp_rate": 0.0032553244109070623, - "match_probability": 0.851539997696156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974713177740449, - "recall": 0.7345218630021615, - "row_count": 477830, - "tn": 173303, - "tn_rate": 0.996744675589093, - "tp": 223266, - "tp_rate": 0.7345218630021615, - "truth_threshold": 2.52 - }, - { - "f1": 0.8457266965856025, - "fn": 80838, - "fn_rate": 0.2659485920891167, - "fp": 565, - "fp_rate": 0.0032495729543506892, - "match_probability": 0.8532840186923007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974741604377526, - "recall": 0.7340514079108833, - "row_count": 477830, - "tn": 173304, - "tn_rate": 0.9967504270456493, - "tp": 223123, - "tp_rate": 0.7340514079108833, - "truth_threshold": 2.54 - }, - { - "f1": 0.84540663507109, - "fn": 80985, - "fn_rate": 0.26643220676336765, - "fp": 564, - "fp_rate": 0.003243821497794316, - "match_probability": 0.8550110403335041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974769616176076, - "recall": 0.7335677932366323, - "row_count": 477830, - "tn": 173305, - "tn_rate": 0.9967561785022057, - "tp": 222976, - "tp_rate": 0.7335677932366323, - "truth_threshold": 2.56 - }, - { - "f1": 0.8450469721277217, - "fn": 81150, - "fn_rate": 0.26697503956099633, - "fp": 563, - "fp_rate": 0.0032380700412379436, - "match_probability": 0.8567211464282175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974795634227798, - "recall": 0.7330249604390037, - "row_count": 477830, - "tn": 173306, - "tn_rate": 0.996761929958762, - "tp": 222811, - "tp_rate": 0.7330249604390037, - "truth_threshold": 2.58 - }, - { - "f1": 0.8448103849203188, - "fn": 81258, - "fn_rate": 0.26733034830126234, - "fp": 563, - "fp_rate": 0.0032380700412379436, - "match_probability": 0.8584144223701331, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9974783442172117, - "recall": 0.7326696516987377, - "row_count": 477830, - "tn": 173306, - "tn_rate": 0.996761929958762, - "tp": 222703, - "tp_rate": 0.7326696516987377, - "truth_threshold": 2.6 - }, - { - "f1": 0.8445635964163337, - "fn": 81394, - "fn_rate": 0.26777777412233805, - "fp": 531, - "fp_rate": 0.003054023431434011, - "match_probability": 0.8600909550829424, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9976198800527123, - "recall": 0.732222225877662, - "row_count": 477830, - "tn": 173338, - "tn_rate": 0.996945976568566, - "tp": 222567, - "tp_rate": 0.732222225877662, - "truth_threshold": 2.62 - }, - { - "f1": 0.8443729220118721, - "fn": 81489, - "fn_rate": 0.26809031421794244, - "fp": 519, - "fp_rate": 0.002985005952757536, - "match_probability": 0.8617508329656802, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9976725518070236, - "recall": 0.7319096857820576, - "row_count": 477830, - "tn": 173350, - "tn_rate": 0.9970149940472425, - "tp": 222472, - "tp_rate": 0.7319096857820576, - "truth_threshold": 2.64 - }, - { - "f1": 0.8439730583482672, - "fn": 81672, - "fn_rate": 0.26869236513894873, - "fp": 518, - "fp_rate": 0.002979254496201163, - "match_probability": 0.8633941458386707, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9976751179271747, - "recall": 0.7313076348610512, - "row_count": 477830, - "tn": 173351, - "tn_rate": 0.9970207455037988, - "tp": 222289, - "tp_rate": 0.7313076348610512, - "truth_threshold": 2.66 - }, - { - "f1": 0.843692085675224, - "fn": 81800, - "fn_rate": 0.26911347179407885, - "fp": 518, - "fp_rate": 0.002979254496201163, - "match_probability": 0.8650209848900923, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9976737815420403, - "recall": 0.7308865282059211, - "row_count": 477830, - "tn": 173351, - "tn_rate": 0.9970207455037988, - "tp": 222161, - "tp_rate": 0.7308865282059211, - "truth_threshold": 2.68 - }, - { - "f1": 0.8433601288616712, - "fn": 81965, - "fn_rate": 0.2696563045917075, - "fp": 499, - "fp_rate": 0.002869976821630078, - "match_probability": 0.8666314426231786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9977572529719769, - "recall": 0.7303436954082925, - "row_count": 477830, - "tn": 173370, - "tn_rate": 0.99713002317837, - "tp": 221996, - "tp_rate": 0.7303436954082925, - "truth_threshold": 2.7 - }, - { - "f1": 0.8431204164608428, - "fn": 82077, - "fn_rate": 0.2700247729149463, - "fp": 496, - "fp_rate": 0.002852722451960959, - "match_probability": 0.8682256128040682, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997769583595647, - "recall": 0.7299752270850537, - "row_count": 477830, - "tn": 173373, - "tn_rate": 0.997147277548039, - "tp": 221884, - "tp_rate": 0.7299752270850537, - "truth_threshold": 2.72 - }, - { - "f1": 0.8429487910367212, - "fn": 82166, - "fn_rate": 0.2703175736360915, - "fp": 481, - "fp_rate": 0.0027664506036153657, - "match_probability": 0.8698035904103196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978360236822689, - "recall": 0.7296824263639086, - "row_count": 477830, - "tn": 173388, - "tn_rate": 0.9972335493963846, - "tp": 221795, - "tp_rate": 0.7296824263639086, - "truth_threshold": 2.74 - }, - { - "f1": 0.842529085240666, - "fn": 82359, - "fn_rate": 0.2709525235145298, - "fp": 478, - "fp_rate": 0.0027491962339462467, - "match_probability": 0.8713654715801021, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978476224783862, - "recall": 0.7290474764854702, - "row_count": 477830, - "tn": 173391, - "tn_rate": 0.9972508037660538, - "tp": 221602, - "tp_rate": 0.7290474764854702, - "truth_threshold": 2.7600000000000002 - }, - { - "f1": 0.8422165514985795, - "fn": 82501, - "fn_rate": 0.2714196887100648, - "fp": 478, - "fp_rate": 0.0027491962339462467, - "match_probability": 0.8729113535620762, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978462453477999, - "recall": 0.7285803112899352, - "row_count": 477830, - "tn": 173391, - "tn_rate": 0.9972508037660538, - "tp": 221460, - "tp_rate": 0.7285803112899352, - "truth_threshold": 2.7800000000000002 - }, - { - "f1": 0.8419090514847417, - "fn": 82645, - "fn_rate": 0.27189343369708613, - "fp": 471, - "fp_rate": 0.0027089360380516364, - "match_probability": 0.8744413346659732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978763408134832, - "recall": 0.7281065663029138, - "row_count": 477830, - "tn": 173398, - "tn_rate": 0.9972910639619483, - "tp": 221316, - "tp_rate": 0.7281065663029138, - "truth_threshold": 2.8000000000000003 - }, - { - "f1": 0.8414727428408334, - "fn": 82843, - "fn_rate": 0.2725448330542405, - "fp": 471, - "fp_rate": 0.0027089360380516364, - "match_probability": 0.8759555142138866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978744432259724, - "recall": 0.7274551669457595, - "row_count": 477830, - "tn": 173398, - "tn_rate": 0.9972910639619483, - "tp": 221118, - "tp_rate": 0.7274551669457595, - "truth_threshold": 2.82 - }, - { - "f1": 0.8411736492299259, - "fn": 82983, - "fn_rate": 0.2730054184582891, - "fp": 466, - "fp_rate": 0.002680178755269772, - "match_probability": 0.8774539924922818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997895630498004, - "recall": 0.7269945815417109, - "row_count": 477830, - "tn": 173403, - "tn_rate": 0.9973198212447302, - "tp": 220978, - "tp_rate": 0.7269945815417109, - "truth_threshold": 2.84 - }, - { - "f1": 0.8408383023767639, - "fn": 83135, - "fn_rate": 0.27350548261125607, - "fp": 466, - "fp_rate": 0.002680178755269772, - "match_probability": 0.8789368707047344, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9978941850586556, - "recall": 0.7264945173887439, - "row_count": 477830, - "tn": 173403, - "tn_rate": 0.9973198212447302, - "tp": 220826, - "tp_rate": 0.7264945173887439, - "truth_threshold": 2.86 - }, - { - "f1": 0.8404164143116708, - "fn": 83329, - "fn_rate": 0.2741437223854376, - "fp": 461, - "fp_rate": 0.0026514214724879075, - "match_probability": 0.880404250925403, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979149045876622, - "recall": 0.7258562776145624, - "row_count": 477830, - "tn": 173408, - "tn_rate": 0.9973485785275121, - "tp": 220632, - "tp_rate": 0.7258562776145624, - "truth_threshold": 2.88 - }, - { - "f1": 0.8400617272190364, - "fn": 83491, - "fn_rate": 0.2746766854958366, - "fp": 460, - "fp_rate": 0.002645670015931535, - "match_probability": 0.8818562360532484, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979178925451501, - "recall": 0.7253233145041633, - "row_count": 477830, - "tn": 173409, - "tn_rate": 0.9973543299840685, - "tp": 220470, - "tp_rate": 0.7253233145041633, - "truth_threshold": 2.9 - }, - { - "f1": 0.8398406981840355, - "fn": 83591, - "fn_rate": 0.27500567507015705, - "fp": 459, - "fp_rate": 0.002639918559375162, - "match_probability": 0.8832929297669961, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979214686476867, - "recall": 0.724994324929843, - "row_count": 477830, - "tn": 173410, - "tn_rate": 0.9973600814406248, - "tp": 220370, - "tp_rate": 0.724994324929843, - "truth_threshold": 2.92 - }, - { - "f1": 0.8394597191088339, - "fn": 83764, - "fn_rate": 0.2755748270337313, - "fp": 459, - "fp_rate": 0.002639918559375162, - "match_probability": 0.8847144364808572, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979198390254513, - "recall": 0.7244251729662687, - "row_count": 477830, - "tn": 173410, - "tn_rate": 0.9973600814406248, - "tp": 220197, - "tp_rate": 0.7244251729662687, - "truth_threshold": 2.94 - }, - { - "f1": 0.8391348119222674, - "fn": 83913, - "fn_rate": 0.27606502149946865, - "fp": 455, - "fp_rate": 0.00261691273314967, - "match_probability": 0.8861208613010066, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997936536010848, - "recall": 0.7239349785005313, - "row_count": 477830, - "tn": 173414, - "tn_rate": 0.9973830872668503, - "tp": 220048, - "tp_rate": 0.7239349785005313, - "truth_threshold": 2.96 - }, - { - "f1": 0.8388590522107962, - "fn": 84039, - "fn_rate": 0.2764795483631124, - "fp": 453, - "fp_rate": 0.002605409820036924, - "match_probability": 0.8875123099828214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979444129325015, - "recall": 0.7235204516368876, - "row_count": 477830, - "tn": 173416, - "tn_rate": 0.9973945901799631, - "tp": 219922, - "tp_rate": 0.7235204516368876, - "truth_threshold": 2.98 - }, - { - "f1": 0.8385438923142665, - "fn": 84182, - "fn_rate": 0.2769500034543905, - "fp": 452, - "fp_rate": 0.0025996583634805516, - "match_probability": 0.8888888888888888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979476095554214, - "recall": 0.7230499965456094, - "row_count": 477830, - "tn": 173417, - "tn_rate": 0.9974003416365195, - "tp": 219779, - "tp_rate": 0.7230499965456094, - "truth_threshold": 3 - }, - { - "f1": 0.8382900124791537, - "fn": 84298, - "fn_rate": 0.2773316313606022, - "fp": 451, - "fp_rate": 0.0025939069069241785, - "match_probability": 0.890250704947779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997951061722562, - "recall": 0.7226683686393978, - "row_count": 477830, - "tn": 173418, - "tn_rate": 0.9974060930930758, - "tp": 219663, - "tp_rate": 0.7226683686393978, - "truth_threshold": 3.02 - }, - { - "f1": 0.8378725061273107, - "fn": 84487, - "fn_rate": 0.27795342165606773, - "fp": 450, - "fp_rate": 0.0025881554503678055, - "match_probability": 0.8915978656135887, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979538385987887, - "recall": 0.7220465783439323, - "row_count": 477830, - "tn": 173419, - "tn_rate": 0.9974118445496322, - "tp": 219474, - "tp_rate": 0.7220465783439323, - "truth_threshold": 3.04 - }, - { - "f1": 0.8376861397479954, - "fn": 84571, - "fn_rate": 0.2782297728984969, - "fp": 449, - "fp_rate": 0.002582403993811433, - "match_probability": 0.8929304788262556, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979575962408854, - "recall": 0.7217702271015032, - "row_count": 477830, - "tn": 173420, - "tn_rate": 0.9974175960061886, - "tp": 219390, - "tp_rate": 0.7217702271015032, - "truth_threshold": 3.06 - }, - { - "f1": 0.8374364105776134, - "fn": 84690, - "fn_rate": 0.27862127049193813, - "fp": 441, - "fp_rate": 0.0025363923413604496, - "match_probability": 0.8942486529726457, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979928269734926, - "recall": 0.7213787295080619, - "row_count": 477830, - "tn": 173428, - "tn_rate": 0.9974636076586395, - "tp": 219271, - "tp_rate": 0.7213787295080619, - "truth_threshold": 3.08 - }, - { - "f1": 0.8371699468247662, - "fn": 84810, - "fn_rate": 0.27901605798112256, - "fp": 441, - "fp_rate": 0.0025363923413604496, - "match_probability": 0.895552496848409, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9979917301176727, - "recall": 0.7209839420188774, - "row_count": 477830, - "tn": 173428, - "tn_rate": 0.9974636076586395, - "tp": 219151, - "tp_rate": 0.7209839420188774, - "truth_threshold": 3.1 - }, - { - "f1": 0.8367675269984179, - "fn": 84994, - "fn_rate": 0.2796213987978721, - "fp": 437, - "fp_rate": 0.002513386515134958, - "match_probability": 0.8968421196206098, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9980082405060984, - "recall": 0.7203786012021279, - "row_count": 477830, - "tn": 173432, - "tn_rate": 0.997486613484865, - "tp": 218967, - "tp_rate": 0.7203786012021279, - "truth_threshold": 3.12 - }, - { - "f1": 0.8363634973546592, - "fn": 85175, - "fn_rate": 0.280216869927392, - "fp": 437, - "fp_rate": 0.002513386515134958, - "match_probability": 0.8981176307911237, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9980065960232275, - "recall": 0.719783130072608, - "row_count": 477830, - "tn": 173432, - "tn_rate": 0.997486613484865, - "tp": 218786, - "tp_rate": 0.719783130072608, - "truth_threshold": 3.14 - }, - { - "f1": 0.8360552307462881, - "fn": 85315, - "fn_rate": 0.28067745533144056, - "fp": 436, - "fp_rate": 0.002507635058578585, - "match_probability": 0.8993791401608047, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9980098775800842, - "recall": 0.7193225446685595, - "row_count": 477830, - "tn": 173433, - "tn_rate": 0.9974923649414215, - "tp": 218646, - "tp_rate": 0.7193225446685595, - "truth_threshold": 3.16 - }, - { - "f1": 0.8356806254685659, - "fn": 85484, - "fn_rate": 0.281233447712042, - "fp": 434, - "fp_rate": 0.0024961321454658393, - "match_probability": 0.9006267577944164, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9980174591500656, - "recall": 0.718766552287958, - "row_count": 477830, - "tn": 173435, - "tn_rate": 0.9975038678545342, - "tp": 218477, - "tp_rate": 0.718766552287958, - "truth_threshold": 3.18 - }, - { - "f1": 0.8354044871598666, - "fn": 85613, - "fn_rate": 0.2816578442629153, - "fp": 427, - "fp_rate": 0.002455871949571229, - "match_probability": 0.9018605939863281, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9980482230602217, - "recall": 0.7183421557370847, - "row_count": 477830, - "tn": 173442, - "tn_rate": 0.9975441280504288, - "tp": 218348, - "tp_rate": 0.7183421557370847, - "truth_threshold": 3.2 - }, - { - "f1": 0.8353659003391439, - "fn": 85725, - "fn_rate": 0.2820263125861541, - "fp": 296, - "fp_rate": 0.001702431140686379, - "match_probability": 0.9030807592269698, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986455072941263, - "recall": 0.7179736874138458, - "row_count": 477830, - "tn": 173573, - "tn_rate": 0.9982975688593136, - "tp": 218236, - "tp_rate": 0.7179736874138458, - "truth_threshold": 3.22 - }, - { - "f1": 0.8349243912432461, - "fn": 85923, - "fn_rate": 0.28267771194330854, - "fp": 296, - "fp_rate": 0.001702431140686379, - "match_probability": 0.9042873641700437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986442789487666, - "recall": 0.7173222880566915, - "row_count": 477830, - "tn": 173573, - "tn_rate": 0.9982975688593136, - "tp": 218038, - "tp_rate": 0.7173222880566915, - "truth_threshold": 3.24 - }, - { - "f1": 0.8345367557773854, - "fn": 86096, - "fn_rate": 0.2832468639068828, - "fp": 296, - "fp_rate": 0.001702431140686379, - "match_probability": 0.9054805196004887, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986432038723695, - "recall": 0.7167531360931172, - "row_count": 477830, - "tn": 173573, - "tn_rate": 0.9982975688593136, - "tp": 217865, - "tp_rate": 0.7167531360931172, - "truth_threshold": 3.2600000000000002 - }, - { - "f1": 0.8342815982958051, - "fn": 86211, - "fn_rate": 0.28362520191735124, - "fp": 296, - "fp_rate": 0.001702431140686379, - "match_probability": 0.9066603364031919, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986424882822891, - "recall": 0.7163747980826488, - "row_count": 477830, - "tn": 173573, - "tn_rate": 0.9982975688593136, - "tp": 217750, - "tp_rate": 0.7163747980826488, - "truth_threshold": 3.2800000000000002 - }, - { - "f1": 0.8340084540183413, - "fn": 86334, - "fn_rate": 0.2840298590937653, - "fp": 294, - "fp_rate": 0.001690928227573633, - "match_probability": 0.9078269255324448, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986508872481312, - "recall": 0.7159701409062347, - "row_count": 477830, - "tn": 173575, - "tn_rate": 0.9983090717724263, - "tp": 217627, - "tp_rate": 0.7159701409062347, - "truth_threshold": 3.3000000000000003 - }, - { - "f1": 0.8337160227390339, - "fn": 86467, - "fn_rate": 0.28446741522761143, - "fp": 291, - "fp_rate": 0.0016736738579045142, - "match_probability": 0.9089803979821356, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986638198223018, - "recall": 0.7155325847723886, - "row_count": 477830, - "tn": 173578, - "tn_rate": 0.9983263261420955, - "tp": 217494, - "tp_rate": 0.7155325847723886, - "truth_threshold": 3.3200000000000003 - }, - { - "f1": 0.8333135212034527, - "fn": 86647, - "fn_rate": 0.2850595964613881, - "fp": 291, - "fp_rate": 0.0016736738579045142, - "match_probability": 0.9101208647566755, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986627145515958, - "recall": 0.7149404035386119, - "row_count": 477830, - "tn": 173578, - "tn_rate": 0.9983263261420955, - "tp": 217314, - "tp_rate": 0.7149404035386119, - "truth_threshold": 3.34 - }, - { - "f1": 0.833004107965464, - "fn": 86786, - "fn_rate": 0.2855168919696935, - "fp": 290, - "fp_rate": 0.0016679224013481414, - "match_probability": 0.911248436842651, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986664520727473, - "recall": 0.7144831080303066, - "row_count": 477830, - "tn": 173579, - "tn_rate": 0.9983320775986518, - "tp": 217175, - "tp_rate": 0.7144831080303066, - "truth_threshold": 3.36 - }, - { - "f1": 0.8326676565491469, - "fn": 86937, - "fn_rate": 0.28601366622691726, - "fp": 289, - "fp_rate": 0.0016621709447917686, - "match_probability": 0.9123632251811958, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986701209775761, - "recall": 0.7139863337730827, - "row_count": 477830, - "tn": 173580, - "tn_rate": 0.9983378290552082, - "tp": 217024, - "tp_rate": 0.7139863337730827, - "truth_threshold": 3.38 - }, - { - "f1": 0.8323002820901537, - "fn": 87101, - "fn_rate": 0.2865532091288027, - "fp": 289, - "fp_rate": 0.0016621709447917686, - "match_probability": 0.9134653406410783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986691165973595, - "recall": 0.7134467908711973, - "row_count": 477830, - "tn": 173580, - "tn_rate": 0.9983378290552082, - "tp": 216860, - "tp_rate": 0.7134467908711973, - "truth_threshold": 3.4 - }, - { - "f1": 0.8319646799116998, - "fn": 87255, - "fn_rate": 0.2870598530732561, - "fp": 283, - "fp_rate": 0.0016276622054535311, - "match_probability": 0.9145548939924946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9986957864223532, - "recall": 0.7129401469267439, - "row_count": 477830, - "tn": 173586, - "tn_rate": 0.9983723377945465, - "tp": 216706, - "tp_rate": 0.7129401469267439, - "truth_threshold": 3.42 - }, - { - "f1": 0.8316532451623061, - "fn": 87396, - "fn_rate": 0.28752372837304785, - "fp": 281, - "fp_rate": 0.0016161592923407853, - "match_probability": 0.9156319958815625, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987041494885771, - "recall": 0.7124762716269522, - "row_count": 477830, - "tn": 173588, - "tn_rate": 0.9983838407076592, - "tp": 216565, - "tp_rate": 0.7124762716269522, - "truth_threshold": 3.44 - }, - { - "f1": 0.8313249772403382, - "fn": 87543, - "fn_rate": 0.28800734304729886, - "fp": 280, - "fp_rate": 0.0016104078357844125, - "match_probability": 0.9166967568055082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987078791682433, - "recall": 0.7119926569527012, - "row_count": 477830, - "tn": 173589, - "tn_rate": 0.9983895921642156, - "tp": 216418, - "tp_rate": 0.7119926569527012, - "truth_threshold": 3.46 - }, - { - "f1": 0.8310305079535849, - "fn": 87677, - "fn_rate": 0.28844818907688813, - "fp": 275, - "fp_rate": 0.0015816505530025478, - "match_probability": 0.9177492870885379, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987301382071399, - "recall": 0.7115518109231118, - "row_count": 477830, - "tn": 173594, - "tn_rate": 0.9984183494469975, - "tp": 216284, - "tp_rate": 0.7115518109231118, - "truth_threshold": 3.48 - }, - { - "f1": 0.8307827704416535, - "fn": 87788, - "fn_rate": 0.2888133675043838, - "fp": 275, - "fp_rate": 0.0015816505530025478, - "match_probability": 0.9187896968583877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987294869899468, - "recall": 0.7111866324956162, - "row_count": 477830, - "tn": 173594, - "tn_rate": 0.9984183494469975, - "tp": 216173, - "tp_rate": 0.7111866324956162, - "truth_threshold": 3.5 - }, - { - "f1": 0.8305632005412137, - "fn": 87885, - "fn_rate": 0.28913248739147457, - "fp": 275, - "fp_rate": 0.0015816505530025478, - "match_probability": 0.9198180960235423, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99872891736114, - "recall": 0.7108675126085254, - "row_count": 477830, - "tn": 173594, - "tn_rate": 0.9984183494469975, - "tp": 216076, - "tp_rate": 0.7108675126085254, - "truth_threshold": 3.52 - }, - { - "f1": 0.8302612961766787, - "fn": 88020, - "fn_rate": 0.2895766233168071, - "fp": 274, - "fp_rate": 0.001575899096446175, - "match_probability": 0.9208345942511155, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987327428716787, - "recall": 0.7104233766831929, - "row_count": 477830, - "tn": 173595, - "tn_rate": 0.9984241009035538, - "tp": 215941, - "tp_rate": 0.7104233766831929, - "truth_threshold": 3.54 - }, - { - "f1": 0.8299783857792272, - "fn": 88155, - "fn_rate": 0.2900207592421396, - "fp": 262, - "fp_rate": 0.0015068816177697003, - "match_probability": 0.9218393009453847, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987874187755706, - "recall": 0.7099792407578603, - "row_count": 477830, - "tn": 173607, - "tn_rate": 0.9984931183822303, - "tp": 215806, - "tp_rate": 0.7099792407578603, - "truth_threshold": 3.56 - }, - { - "f1": 0.829699329106912, - "fn": 88279, - "fn_rate": 0.2904287063142969, - "fp": 262, - "fp_rate": 0.0015068816177697003, - "match_probability": 0.9228323252269688, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987867224836069, - "recall": 0.7095712936857032, - "row_count": 477830, - "tn": 173607, - "tn_rate": 0.9984931183822303, - "tp": 215682, - "tp_rate": 0.7095712936857032, - "truth_threshold": 3.58 - }, - { - "f1": 0.8294928570604101, - "fn": 88370, - "fn_rate": 0.29072808682692847, - "fp": 262, - "fp_rate": 0.0015068816177697003, - "match_probability": 0.9238137759126431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987862109861804, - "recall": 0.7092719131730716, - "row_count": 477830, - "tn": 173607, - "tn_rate": 0.9984931183822303, - "tp": 215591, - "tp_rate": 0.7092719131730716, - "truth_threshold": 3.6 - }, - { - "f1": 0.8292541196210179, - "fn": 88476, - "fn_rate": 0.29107681577570804, - "fp": 262, - "fp_rate": 0.0015068816177697003, - "match_probability": 0.9247837614957818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987856146319531, - "recall": 0.7089231842242919, - "row_count": 477830, - "tn": 173607, - "tn_rate": 0.9984931183822303, - "tp": 215485, - "tp_rate": 0.7089231842242919, - "truth_threshold": 3.62 - }, - { - "f1": 0.828936681281541, - "fn": 88619, - "fn_rate": 0.29154727086698623, - "fp": 260, - "fp_rate": 0.0014953787046569544, - "match_probability": 0.9257423901274181, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987940742664725, - "recall": 0.7084527291330138, - "row_count": 477830, - "tn": 173609, - "tn_rate": 0.998504621295343, - "tp": 215342, - "tp_rate": 0.7084527291330138, - "truth_threshold": 3.64 - }, - { - "f1": 0.8286668052764109, - "fn": 88738, - "fn_rate": 0.2919387684604275, - "fp": 260, - "fp_rate": 0.0014953787046569544, - "match_probability": 0.9266897695979149, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987934082967102, - "recall": 0.7080612315395726, - "row_count": 477830, - "tn": 173609, - "tn_rate": 0.998504621295343, - "tp": 215223, - "tp_rate": 0.7080612315395726, - "truth_threshold": 3.66 - }, - { - "f1": 0.8283690729272576, - "fn": 88870, - "fn_rate": 0.2923730346985304, - "fp": 260, - "fp_rate": 0.0014953787046569544, - "match_probability": 0.9276260073192355, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987926687129384, - "recall": 0.7076269653014696, - "row_count": 477830, - "tn": 173609, - "tn_rate": 0.998504621295343, - "tp": 215091, - "tp_rate": 0.7076269653014696, - "truth_threshold": 3.68 - }, - { - "f1": 0.8280118346842543, - "fn": 89029, - "fn_rate": 0.29289612812169985, - "fp": 259, - "fp_rate": 0.0014896272481005814, - "match_probability": 0.9285512103078053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987964180658113, - "recall": 0.7071038718783001, - "row_count": 477830, - "tn": 173610, - "tn_rate": 0.9985103727518995, - "tp": 214932, - "tp_rate": 0.7071038718783001, - "truth_threshold": 3.7 - }, - { - "f1": 0.827718285544736, - "fn": 89159, - "fn_rate": 0.29332381456831635, - "fp": 259, - "fp_rate": 0.0014896272481005814, - "match_probability": 0.9294654851679567, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987956905250138, - "recall": 0.7066761854316836, - "row_count": 477830, - "tn": 173610, - "tn_rate": 0.9985103727518995, - "tp": 214802, - "tp_rate": 0.7066761854316836, - "truth_threshold": 3.72 - }, - { - "f1": 0.8274962325744524, - "fn": 89258, - "fn_rate": 0.2936495142468935, - "fp": 259, - "fp_rate": 0.0014896272481005814, - "match_probability": 0.9303689380759456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987951358844819, - "recall": 0.7063504857531064, - "row_count": 477830, - "tn": 173610, - "tn_rate": 0.9985103727518995, - "tp": 214703, - "tp_rate": 0.7063504857531064, - "truth_threshold": 3.74 - }, - { - "f1": 0.8271759621575151, - "fn": 89399, - "fn_rate": 0.29411338954668526, - "fp": 259, - "fp_rate": 0.0014896272481005814, - "match_probability": 0.9312616747645321, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.998794345059375, - "recall": 0.7058866104533147, - "row_count": 477830, - "tn": 173610, - "tn_rate": 0.9985103727518995, - "tp": 214562, - "tp_rate": 0.7058866104533147, - "truth_threshold": 3.7600000000000002 - }, - { - "f1": 0.826967938460352, - "fn": 89491, - "fn_rate": 0.29441605995506004, - "fp": 259, - "fp_rate": 0.0014896272481005814, - "match_probability": 0.9321438005081154, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9987938285001094, - "recall": 0.70558394004494, - "row_count": 477830, - "tn": 173610, - "tn_rate": 0.9985103727518995, - "tp": 214470, - "tp_rate": 0.70558394004494, - "truth_threshold": 3.7800000000000002 - }, - { - "f1": 0.8267157760765181, - "fn": 89606, - "fn_rate": 0.2947943979655285, - "fp": 255, - "fp_rate": 0.00146662142187509, - "match_probability": 0.9330154201084124, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9988117981454732, - "recall": 0.7052056020344716, - "row_count": 477830, - "tn": 173614, - "tn_rate": 0.998533378578125, - "tp": 214355, - "tp_rate": 0.7052056020344716, - "truth_threshold": 3.8000000000000003 - }, - { - "f1": 0.8262003611501243, - "fn": 89833, - "fn_rate": 0.29554120429923575, - "fp": 255, - "fp_rate": 0.00146662142187509, - "match_probability": 0.9338766378806729, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9988105400148333, - "recall": 0.7044587957007642, - "row_count": 477830, - "tn": 173614, - "tn_rate": 0.998533378578125, - "tp": 214128, - "tp_rate": 0.7044587957007642, - "truth_threshold": 3.8200000000000003 - }, - { - "f1": 0.825850177349446, - "fn": 89989, - "fn_rate": 0.29605442803517557, - "fp": 253, - "fp_rate": 0.0014551185087623441, - "match_probability": 0.9347275576404188, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.998818998716303, - "recall": 0.7039455719648244, - "row_count": 477830, - "tn": 173616, - "tn_rate": 0.9985448814912377, - "tp": 213972, - "tp_rate": 0.7039455719648244, - "truth_threshold": 3.84 - }, - { - "f1": 0.8256847794614419, - "fn": 90088, - "fn_rate": 0.2963801277137528, - "fp": 217, - "fp_rate": 0.0012480660727329197, - "match_probability": 0.9355682826907014, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989864075855949, - "recall": 0.7036198722862472, - "row_count": 477830, - "tn": 173652, - "tn_rate": 0.9987519339272671, - "tp": 213873, - "tp_rate": 0.7036198722862472, - "truth_threshold": 3.86 - }, - { - "f1": 0.8254158879226456, - "fn": 90208, - "fn_rate": 0.2967749152029372, - "fp": 215, - "fp_rate": 0.0012365631596201738, - "match_probability": 0.9363989158098637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989951768488746, - "recall": 0.7032250847970628, - "row_count": 477830, - "tn": 173654, - "tn_rate": 0.9987634368403798, - "tp": 213753, - "tp_rate": 0.7032250847970628, - "truth_threshold": 3.88 - }, - { - "f1": 0.8251209931285945, - "fn": 90338, - "fn_rate": 0.2972026016495537, - "fp": 215, - "fp_rate": 0.0012365631596201738, - "match_probability": 0.9372195592398013, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989945659798539, - "recall": 0.7027973983504463, - "row_count": 477830, - "tn": 173654, - "tn_rate": 0.9987634368403798, - "tp": 213623, - "tp_rate": 0.7027973983504463, - "truth_threshold": 3.9 - }, - { - "f1": 0.8247714645586542, - "fn": 90492, - "fn_rate": 0.29770924559400713, - "fp": 215, - "fp_rate": 0.0012365631596201738, - "match_probability": 0.9380303146747102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989938413732428, - "recall": 0.7022907544059929, - "row_count": 477830, - "tn": 173654, - "tn_rate": 0.9987634368403798, - "tp": 213469, - "tp_rate": 0.7022907544059929, - "truth_threshold": 3.92 - }, - { - "f1": 0.8244755677163041, - "fn": 90623, - "fn_rate": 0.29814022193636686, - "fp": 214, - "fp_rate": 0.0012308117030638008, - "match_probability": 0.9388312832503134, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989979021502959, - "recall": 0.7018597780636332, - "row_count": 477830, - "tn": 173655, - "tn_rate": 0.9987691882969362, - "tp": 213338, - "tp_rate": 0.7018597780636332, - "truth_threshold": 3.94 - }, - { - "f1": 0.8240392793628701, - "fn": 90815, - "fn_rate": 0.298771881919062, - "fp": 214, - "fp_rate": 0.0012308117030638008, - "match_probability": 0.9396225655335566, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989970003749531, - "recall": 0.701228118080938, - "row_count": 477830, - "tn": 173655, - "tn_rate": 0.9987691882969362, - "tp": 213146, - "tp_rate": 0.701228118080938, - "truth_threshold": 3.96 - }, - { - "f1": 0.8236260973817535, - "fn": 90996, - "fn_rate": 0.29936735304858186, - "fp": 214, - "fp_rate": 0.0012308117030638008, - "match_probability": 0.9404042615127621, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9989961487763804, - "recall": 0.7006326469514181, - "row_count": 477830, - "tn": 173655, - "tn_rate": 0.9987691882969362, - "tp": 212965, - "tp_rate": 0.7006326469514181, - "truth_threshold": 3.98 - }, - { - "f1": 0.8233100449519919, - "fn": 91137, - "fn_rate": 0.2998312283483736, - "fp": 212, - "fp_rate": 0.0012193087899510552, - "match_probability": 0.9411764705882353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990048630278451, - "recall": 0.7001687716516264, - "row_count": 477830, - "tn": 173657, - "tn_rate": 0.998780691210049, - "tp": 212824, - "tp_rate": 0.7001687716516264, - "truth_threshold": 4 - }, - { - "f1": 0.8230231973223441, - "fn": 91263, - "fn_rate": 0.30024575521201735, - "fp": 212, - "fp_rate": 0.0012193087899510552, - "match_probability": 0.9419392915633099, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99900427410643, - "recall": 0.6997542447879826, - "row_count": 477830, - "tn": 173657, - "tn_rate": 0.998780691210049, - "tp": 212698, - "tp_rate": 0.6997542447879826, - "truth_threshold": 4.0200000000000005 - }, - { - "f1": 0.8226541876649868, - "fn": 91425, - "fn_rate": 0.30077871832241637, - "fp": 212, - "fp_rate": 0.0012193087899510552, - "match_probability": 0.9426928226358258, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990035158967416, - "recall": 0.6992212816775837, - "row_count": 477830, - "tn": 173657, - "tn_rate": 0.998780691210049, - "tp": 212536, - "tp_rate": 0.6992212816775837, - "truth_threshold": 4.04 - }, - { - "f1": 0.8223305444028449, - "fn": 91567, - "fn_rate": 0.30124588351795134, - "fp": 211, - "fp_rate": 0.0012135573333946822, - "match_probability": 0.9434371613900292, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990075492109781, - "recall": 0.6987541164820487, - "row_count": 477830, - "tn": 173658, - "tn_rate": 0.9987864426666053, - "tp": 212394, - "tp_rate": 0.6987541164820487, - "truth_threshold": 4.0600000000000005 - }, - { - "f1": 0.8220516534286522, - "fn": 91690, - "fn_rate": 0.3016505406943654, - "fp": 211, - "fp_rate": 0.0012135573333946822, - "match_probability": 0.9441724047888862, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990069747084459, - "recall": 0.6983494593056346, - "row_count": 477830, - "tn": 173658, - "tn_rate": 0.9987864426666053, - "tp": 212271, - "tp_rate": 0.6983494593056346, - "truth_threshold": 4.08 - }, - { - "f1": 0.8216089941268537, - "fn": 91884, - "fn_rate": 0.30228878046854696, - "fp": 211, - "fp_rate": 0.0012135573333946822, - "match_probability": 0.9448986491668007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990060672294242, - "recall": 0.6977112195314531, - "row_count": 477830, - "tn": 173658, - "tn_rate": 0.9987864426666053, - "tp": 212077, - "tp_rate": 0.6977112195314531, - "truth_threshold": 4.1 - }, - { - "f1": 0.8212854673827958, - "fn": 92025, - "fn_rate": 0.3027526557683387, - "fp": 211, - "fp_rate": 0.0012135573333946822, - "match_probability": 0.9456159902227271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990054066284227, - "recall": 0.6972473442316613, - "row_count": 477830, - "tn": 173658, - "tn_rate": 0.9987864426666053, - "tp": 211936, - "tp_rate": 0.6972473442316613, - "truth_threshold": 4.12 - }, - { - "f1": 0.8209962440259081, - "fn": 92153, - "fn_rate": 0.3031737624234688, - "fp": 209, - "fp_rate": 0.0012020544202819363, - "match_probability": 0.94632452301367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990142299909913, - "recall": 0.6968262375765312, - "row_count": 477830, - "tn": 173660, - "tn_rate": 0.998797945579718, - "tp": 211808, - "tp_rate": 0.6968262375765312, - "truth_threshold": 4.14 - }, - { - "f1": 0.8207251636115505, - "fn": 92273, - "fn_rate": 0.30356854991265325, - "fp": 208, - "fp_rate": 0.0011963029637255635, - "match_probability": 0.9470243419485608, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990183863782233, - "recall": 0.6964314500873467, - "row_count": 477830, - "tn": 173661, - "tn_rate": 0.9988036970362745, - "tp": 211688, - "tp_rate": 0.6964314500873467, - "truth_threshold": 4.16 - }, - { - "f1": 0.8204050291245569, - "fn": 92413, - "fn_rate": 0.30402913531670184, - "fp": 208, - "fp_rate": 0.0011963029637255635, - "match_probability": 0.9477155407825041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990177373958707, - "recall": 0.6959708646832982, - "row_count": 477830, - "tn": 173661, - "tn_rate": 0.9988036970362745, - "tp": 211548, - "tp_rate": 0.6959708646832982, - "truth_threshold": 4.18 - }, - { - "f1": 0.8200716873685926, - "fn": 92558, - "fn_rate": 0.30450617019946635, - "fp": 208, - "fp_rate": 0.0011963029637255635, - "match_probability": 0.9483982126113827, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990170643303042, - "recall": 0.6954938298005336, - "row_count": 477830, - "tn": 173661, - "tn_rate": 0.9988036970362745, - "tp": 211403, - "tp_rate": 0.6954938298005336, - "truth_threshold": 4.2 - }, - { - "f1": 0.8197498001660756, - "fn": 92700, - "fn_rate": 0.3049733353950013, - "fp": 206, - "fp_rate": 0.0011848000506128177, - "match_probability": 0.9490724498668156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990258527335234, - "recall": 0.6950266646049986, - "row_count": 477830, - "tn": 173663, - "tn_rate": 0.9988151999493872, - "tp": 211261, - "tp_rate": 0.6950266646049986, - "truth_threshold": 4.22 - }, - { - "f1": 0.8193910741594665, - "fn": 92858, - "fn_rate": 0.3054931389224275, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9497383443114579, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990345800186459, - "recall": 0.6945068610775724, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 211103, - "tp_rate": 0.6945068610775724, - "truth_threshold": 4.24 - }, - { - "f1": 0.8190014327370714, - "fn": 93028, - "fn_rate": 0.3060524211987722, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9503959870346359, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990338026968272, - "recall": 0.6939475788012278, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210933, - "tp_rate": 0.6939475788012278, - "truth_threshold": 4.26 - }, - { - "f1": 0.8183407470717352, - "fn": 93316, - "fn_rate": 0.30699991117281494, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9510454684483088, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990324829617404, - "recall": 0.6930000888271851, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210645, - "tp_rate": 0.6930000888271851, - "truth_threshold": 4.28 - }, - { - "f1": 0.8180140129715194, - "fn": 93459, - "fn_rate": 0.3074703662640931, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9516868782833479, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999031826336222, - "recall": 0.6925296337359069, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210502, - "tp_rate": 0.6925296337359069, - "truth_threshold": 4.3 - }, - { - "f1": 0.817637249223521, - "fn": 93623, - "fn_rate": 0.30800990916597853, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9523203055861257, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990310721851222, - "recall": 0.6919900908340215, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210338, - "tp_rate": 0.6919900908340215, - "truth_threshold": 4.32 - }, - { - "f1": 0.8172333608125554, - "fn": 93798, - "fn_rate": 0.30858564092103924, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9529458387154083, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999030266153912, - "recall": 0.6914143590789608, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210163, - "tp_rate": 0.6914143590789608, - "truth_threshold": 4.34 - }, - { - "f1": 0.8169757456010703, - "fn": 93910, - "fn_rate": 0.3089541092442781, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9535635653395406, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990297495897839, - "recall": 0.691045890755722, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 210051, - "tp_rate": 0.691045890755722, - "truth_threshold": 4.36 - }, - { - "f1": 0.8166167373458351, - "fn": 94066, - "fn_rate": 0.30946733298021784, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9541735724339184, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990290291719618, - "recall": 0.6905326670197821, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 209895, - "tp_rate": 0.6905326670197821, - "truth_threshold": 4.38 - }, - { - "f1": 0.8161930115436409, - "fn": 94250, - "fn_rate": 0.3100726737969674, - "fp": 204, - "fp_rate": 0.0011732971375000719, - "match_probability": 0.9547759462787397, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990281780720768, - "recall": 0.6899273262030327, - "row_count": 477830, - "tn": 173665, - "tn_rate": 0.9988267028625, - "tp": 209711, - "tp_rate": 0.6899273262030327, - "truth_threshold": 4.4 - }, - { - "f1": 0.815794494041246, - "fn": 94425, - "fn_rate": 0.31064840555202805, - "fp": 202, - "fp_rate": 0.001161794224387326, - "match_probability": 0.9553707724570261, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999036893648266, - "recall": 0.6893515944479719, - "row_count": 477830, - "tn": 173667, - "tn_rate": 0.9988382057756127, - "tp": 209536, - "tp_rate": 0.6893515944479719, - "truth_threshold": 4.42 - }, - { - "f1": 0.815462444066252, - "fn": 94569, - "fn_rate": 0.3111221505390494, - "fp": 202, - "fp_rate": 0.001161794224387326, - "match_probability": 0.9559581358529086, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990362319532048, - "recall": 0.6888778494609505, - "row_count": 477830, - "tn": 173667, - "tn_rate": 0.9988382057756127, - "tp": 209392, - "tp_rate": 0.6888778494609505, - "truth_threshold": 4.44 - }, - { - "f1": 0.8151550210940878, - "fn": 94705, - "fn_rate": 0.31156957636012517, - "fp": 198, - "fp_rate": 0.0011387883981618344, - "match_probability": 0.9565381206501699, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990546850382422, - "recall": 0.6884304236398748, - "row_count": 477830, - "tn": 173671, - "tn_rate": 0.9988612116018382, - "tp": 209256, - "tp_rate": 0.6884304236398748, - "truth_threshold": 4.46 - }, - { - "f1": 0.8147742594165738, - "fn": 94872, - "fn_rate": 0.3121189889492402, - "fp": 195, - "fp_rate": 0.0011215340284927158, - "match_probability": 0.9571108103310354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999068251753598, - "recall": 0.6878810110507598, - "row_count": 477830, - "tn": 173674, - "tn_rate": 0.9988784659715073, - "tp": 209089, - "tp_rate": 0.6878810110507598, - "truth_threshold": 4.48 - }, - { - "f1": 0.8144739765432243, - "fn": 95002, - "fn_rate": 0.31254667539585673, - "fp": 195, - "fp_rate": 0.0011215340284927158, - "match_probability": 0.9576762876752064, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990676726239995, - "recall": 0.6874533246041433, - "row_count": 477830, - "tn": 173674, - "tn_rate": 0.9988784659715073, - "tp": 208959, - "tp_rate": 0.6874533246041433, - "truth_threshold": 4.5 - }, - { - "f1": 0.8140895922767699, - "fn": 95169, - "fn_rate": 0.31309608798497174, - "fp": 194, - "fp_rate": 0.001115782571936343, - "match_probability": 0.9582346347591285, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990717081526992, - "recall": 0.6869039120150282, - "row_count": 477830, - "tn": 173675, - "tn_rate": 0.9988842174280637, - "tp": 208792, - "tp_rate": 0.6869039120150282, - "truth_threshold": 4.5200000000000005 - }, - { - "f1": 0.8137526764716206, - "fn": 95314, - "fn_rate": 0.3135731228677363, - "fp": 194, - "fp_rate": 0.001115782571936343, - "match_probability": 0.9587859329554874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990710636321412, - "recall": 0.6864268771322637, - "row_count": 477830, - "tn": 173675, - "tn_rate": 0.9988842174280637, - "tp": 208647, - "tp_rate": 0.6864268771322637, - "truth_threshold": 4.54 - }, - { - "f1": 0.8133734403895222, - "fn": 95482, - "fn_rate": 0.3141258253525946, - "fp": 189, - "fp_rate": 0.0010870252891544783, - "match_probability": 0.9593302629329274, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999094254988786, - "recall": 0.6858741746474054, - "row_count": 477830, - "tn": 173680, - "tn_rate": 0.9989129747108455, - "tp": 208479, - "tp_rate": 0.6858741746474054, - "truth_threshold": 4.5600000000000005 - }, - { - "f1": 0.8130863368871267, - "fn": 95606, - "fn_rate": 0.31453377242475183, - "fp": 189, - "fp_rate": 0.0010870252891544783, - "match_probability": 0.9598677046559833, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999093716433942, - "recall": 0.6854662275752481, - "row_count": 477830, - "tn": 173680, - "tn_rate": 0.9989129747108455, - "tp": 208355, - "tp_rate": 0.6854662275752481, - "truth_threshold": 4.58 - }, - { - "f1": 0.8128083624781414, - "fn": 95726, - "fn_rate": 0.3149285599139363, - "fp": 188, - "fp_rate": 0.0010812738325981055, - "match_probability": 0.9603983373852208, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990979882258676, - "recall": 0.6850714400860637, - "row_count": 477830, - "tn": 173681, - "tn_rate": 0.9989187261674018, - "tp": 208235, - "tp_rate": 0.6850714400860637, - "truth_threshold": 4.6000000000000005 - }, - { - "f1": 0.812497803806735, - "fn": 95860, - "fn_rate": 0.31536940594352564, - "fp": 188, - "fp_rate": 0.0010812738325981055, - "match_probability": 0.96092223967758, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990974079284072, - "recall": 0.6846305940564743, - "row_count": 477830, - "tn": 173681, - "tn_rate": 0.9989187261674018, - "tp": 208101, - "tp_rate": 0.6846305940564743, - "truth_threshold": 4.62 - }, - { - "f1": 0.8121221352580025, - "fn": 96022, - "fn_rate": 0.31590236905392466, - "fp": 188, - "fp_rate": 0.0010812738325981055, - "match_probability": 0.9614394893869119, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990967053770053, - "recall": 0.6840976309460753, - "row_count": 477830, - "tn": 173681, - "tn_rate": 0.9989187261674018, - "tp": 207939, - "tp_rate": 0.6840976309460753, - "truth_threshold": 4.64 - }, - { - "f1": 0.8116519041497845, - "fn": 96226, - "fn_rate": 0.3165735077855383, - "fp": 187, - "fp_rate": 0.0010755223760417327, - "match_probability": 0.9619501636647065, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991006242725637, - "recall": 0.6834264922144617, - "row_count": 477830, - "tn": 173682, - "tn_rate": 0.9989244776239583, - "tp": 207735, - "tp_rate": 0.6834264922144617, - "truth_threshold": 4.66 - }, - { - "f1": 0.811262497166397, - "fn": 96393, - "fn_rate": 0.31712292037465334, - "fp": 187, - "fp_rate": 0.0010755223760417327, - "match_probability": 0.9624543389610023, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990999013260812, - "recall": 0.6828770796253467, - "row_count": 477830, - "tn": 173682, - "tn_rate": 0.9989244776239583, - "tp": 207568, - "tp_rate": 0.6828770796253467, - "truth_threshold": 4.68 - }, - { - "f1": 0.8109557765684619, - "fn": 96525, - "fn_rate": 0.3175571866127562, - "fp": 187, - "fp_rate": 0.0010755223760417327, - "match_probability": 0.9629520910254744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990993290724053, - "recall": 0.6824428133872438, - "row_count": 477830, - "tn": 173682, - "tn_rate": 0.9989244776239583, - "tp": 207436, - "tp_rate": 0.6824428133872438, - "truth_threshold": 4.7 - }, - { - "f1": 0.8106202511350349, - "fn": 96670, - "fn_rate": 0.3180342214955208, - "fp": 187, - "fp_rate": 0.0010755223760417327, - "match_probability": 0.9634434949086931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990986996211646, - "recall": 0.6819657785044791, - "row_count": 477830, - "tn": 173682, - "tn_rate": 0.9989244776239583, - "tp": 207291, - "tp_rate": 0.6819657785044791, - "truth_threshold": 4.72 - }, - { - "f1": 0.8102534413493924, - "fn": 96827, - "fn_rate": 0.31855073512720383, - "fp": 187, - "fp_rate": 0.0010755223760417327, - "match_probability": 0.9639286249635483, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9990980170846175, - "recall": 0.6814492648727962, - "row_count": 477830, - "tn": 173682, - "tn_rate": 0.9989244776239583, - "tp": 207134, - "tp_rate": 0.6814492648727962, - "truth_threshold": 4.74 - }, - { - "f1": 0.8097444527061401, - "fn": 97047, - "fn_rate": 0.3192745121907087, - "fp": 186, - "fp_rate": 0.0010697709194853596, - "match_probability": 0.9644075548468342, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991018831482376, - "recall": 0.6807254878092913, - "row_count": 477830, - "tn": 173683, - "tn_rate": 0.9989302290805147, - "tp": 206914, - "tp_rate": 0.6807254878092913, - "truth_threshold": 4.76 - }, - { - "f1": 0.809385679557492, - "fn": 97201, - "fn_rate": 0.31978115613516206, - "fp": 186, - "fp_rate": 0.0010697709194853596, - "match_probability": 0.9648803575209879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991012148096605, - "recall": 0.6802188438648379, - "row_count": 477830, - "tn": 173683, - "tn_rate": 0.9989302290805147, - "tp": 206760, - "tp_rate": 0.6802188438648379, - "truth_threshold": 4.78 - }, - { - "f1": 0.8090322782753071, - "fn": 97356, - "fn_rate": 0.32029108997535866, - "fp": 181, - "fp_rate": 0.0010410136367034952, - "match_probability": 0.9653471052559783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991246989641465, - "recall": 0.6797089100246413, - "row_count": 477830, - "tn": 173688, - "tn_rate": 0.9989589863632965, - "tp": 206605, - "tp_rate": 0.6797089100246413, - "truth_threshold": 4.8 - }, - { - "f1": 0.8086038185222617, - "fn": 97539, - "fn_rate": 0.320893140896365, - "fp": 181, - "fp_rate": 0.0010410136367034952, - "match_probability": 0.9658078696313372, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991239236603534, - "recall": 0.679106859103635, - "row_count": 477830, - "tn": 173688, - "tn_rate": 0.9989589863632965, - "tp": 206422, - "tp_rate": 0.679106859103635, - "truth_threshold": 4.82 - }, - { - "f1": 0.8082809585756155, - "fn": 97678, - "fn_rate": 0.3213504364046703, - "fp": 181, - "fp_rate": 0.0010410136367034952, - "match_probability": 0.9662627215383301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999123333849969, - "recall": 0.6786495635953297, - "row_count": 477830, - "tn": 173688, - "tn_rate": 0.9989589863632965, - "tp": 206283, - "tp_rate": 0.6786495635953297, - "truth_threshold": 4.84 - }, - { - "f1": 0.8078566332970109, - "fn": 97859, - "fn_rate": 0.3219459075341902, - "fp": 181, - "fp_rate": 0.0010410136367034952, - "match_probability": 0.9667117311822604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991225646320832, - "recall": 0.6780540924658097, - "row_count": 477830, - "tn": 173688, - "tn_rate": 0.9989589863632965, - "tp": 206102, - "tp_rate": 0.6780540924658097, - "truth_threshold": 4.86 - }, - { - "f1": 0.8074912857831816, - "fn": 98016, - "fn_rate": 0.32246242116587326, - "fp": 180, - "fp_rate": 0.0010352621801471222, - "match_probability": 0.9671549680849019, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991267434808975, - "recall": 0.6775375788341268, - "row_count": 477830, - "tn": 173689, - "tn_rate": 0.9989647378198528, - "tp": 205945, - "tp_rate": 0.6775375788341268, - "truth_threshold": 4.88 - }, - { - "f1": 0.807157704828019, - "fn": 98160, - "fn_rate": 0.3229361661528946, - "fp": 179, - "fp_rate": 0.0010295107235907494, - "match_probability": 0.9675925010870554, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991309835906399, - "recall": 0.6770638338471053, - "row_count": 477830, - "tn": 173690, - "tn_rate": 0.9989704892764093, - "tp": 205801, - "tp_rate": 0.6770638338471053, - "truth_threshold": 4.9 - }, - { - "f1": 0.8067130946542422, - "fn": 98350, - "fn_rate": 0.3235612463441034, - "fp": 178, - "fp_rate": 0.0010237592670343766, - "match_probability": 0.9680243983512243, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991350363722065, - "recall": 0.6764387536558967, - "row_count": 477830, - "tn": 173691, - "tn_rate": 0.9989762407329656, - "tp": 205611, - "tp_rate": 0.6764387536558967, - "truth_threshold": 4.92 - }, - { - "f1": 0.8063524831435097, - "fn": 98504, - "fn_rate": 0.32406789028855676, - "fp": 178, - "fp_rate": 0.0010237592670343766, - "match_probability": 0.9684507273644041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991343886011622, - "recall": 0.6759321097114432, - "row_count": 477830, - "tn": 173691, - "tn_rate": 0.9989762407329656, - "tp": 205457, - "tp_rate": 0.6759321097114432, - "truth_threshold": 4.94 - }, - { - "f1": 0.8059533904959326, - "fn": 98675, - "fn_rate": 0.32463046246064464, - "fp": 177, - "fp_rate": 0.0010180078104780035, - "match_probability": 0.9688715549409818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991385310250508, - "recall": 0.6753695375393554, - "row_count": 477830, - "tn": 173692, - "tn_rate": 0.998981992189522, - "tp": 205286, - "tp_rate": 0.6753695375393554, - "truth_threshold": 4.96 - }, - { - "f1": 0.8056009362383952, - "fn": 98826, - "fn_rate": 0.3251272367178684, - "fp": 176, - "fp_rate": 0.0010122563539216307, - "match_probability": 0.9692869472257413, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991427639045156, - "recall": 0.6748727632821316, - "row_count": 477830, - "tn": 173693, - "tn_rate": 0.9989877436460783, - "tp": 205135, - "tp_rate": 0.6748727632821316, - "truth_threshold": 4.98 - }, - { - "f1": 0.8053241259029684, - "fn": 98944, - "fn_rate": 0.32551544441556646, - "fp": 176, - "fp_rate": 0.0010122563539216307, - "match_probability": 0.9696969696969697, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991422709351684, - "recall": 0.6744845555844335, - "row_count": 477830, - "tn": 173693, - "tn_rate": 0.9989877436460783, - "tp": 205017, - "tp_rate": 0.6744845555844335, - "truth_threshold": 5 - }, - { - "f1": 0.8047599584997013, - "fn": 99185, - "fn_rate": 0.32630830928967863, - "fp": 176, - "fp_rate": 0.0010122563539216307, - "match_probability": 0.9701016871696593, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991412623443539, - "recall": 0.6736916907103214, - "row_count": 477830, - "tn": 173693, - "tn_rate": 0.9989877436460783, - "tp": 204776, - "tp_rate": 0.6736916907103214, - "truth_threshold": 5.0200000000000005 - }, - { - "f1": 0.8042477402918061, - "fn": 99403, - "fn_rate": 0.32702550656169704, - "fp": 175, - "fp_rate": 0.0010065048973652577, - "match_probability": 0.9705011637988036, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991452281752331, - "recall": 0.672974493438303, - "row_count": 477830, - "tn": 173694, - "tn_rate": 0.9989934951026347, - "tp": 204558, - "tp_rate": 0.672974493438303, - "truth_threshold": 5.04 - }, - { - "f1": 0.803965597926752, - "fn": 99523, - "fn_rate": 0.3274202940508815, - "fp": 175, - "fp_rate": 0.0010065048973652577, - "match_probability": 0.9708954630827813, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991447268746365, - "recall": 0.6725797059491184, - "row_count": 477830, - "tn": 173694, - "tn_rate": 0.9989934951026347, - "tp": 204438, - "tp_rate": 0.6725797059491184, - "truth_threshold": 5.0600000000000005 - }, - { - "f1": 0.8036151213563589, - "fn": 99674, - "fn_rate": 0.3279170683081053, - "fp": 172, - "fp_rate": 0.000989250527696139, - "match_probability": 0.9712846478668253, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991587555451216, - "recall": 0.6720829316918947, - "row_count": 477830, - "tn": 173697, - "tn_rate": 0.9990107494723038, - "tp": 204287, - "tp_rate": 0.6720829316918947, - "truth_threshold": 5.08 - }, - { - "f1": 0.803223597742852, - "fn": 99841, - "fn_rate": 0.32846648089722036, - "fp": 172, - "fp_rate": 0.000989250527696139, - "match_probability": 0.9716687803465724, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991580678636461, - "recall": 0.6715335191027796, - "row_count": 477830, - "tn": 173697, - "tn_rate": 0.9990107494723038, - "tp": 204120, - "tp_rate": 0.6715335191027796, - "truth_threshold": 5.1000000000000005 - }, - { - "f1": 0.8029464552796889, - "fn": 99958, - "fn_rate": 0.32885139869917523, - "fp": 172, - "fp_rate": 0.000989250527696139, - "match_probability": 0.9720479220716894, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991575854046774, - "recall": 0.6711486013008248, - "row_count": 477830, - "tn": 173697, - "tn_rate": 0.9990107494723038, - "tp": 204003, - "tp_rate": 0.6711486013008248, - "truth_threshold": 5.12 - }, - { - "f1": 0.8026480002204698, - "fn": 100086, - "fn_rate": 0.3292725053543053, - "fp": 170, - "fp_rate": 0.0009777476145833932, - "match_probability": 0.9724221339495741, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991668504496557, - "recall": 0.6707274946456947, - "row_count": 477830, - "tn": 173699, - "tn_rate": 0.9990222523854166, - "tp": 203875, - "tp_rate": 0.6707274946456947, - "truth_threshold": 5.14 - }, - { - "f1": 0.802074224627577, - "fn": 100332, - "fn_rate": 0.33008181970713346, - "fp": 167, - "fp_rate": 0.0009604932449142745, - "match_probability": 0.972791476249125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991805531021217, - "recall": 0.6699181802928665, - "row_count": 477830, - "tn": 173702, - "tn_rate": 0.9990395067550857, - "tp": 203629, - "tp_rate": 0.6699181802928665, - "truth_threshold": 5.16 - }, - { - "f1": 0.8015266273122059, - "fn": 100564, - "fn_rate": 0.3308450755195568, - "fp": 167, - "fp_rate": 0.0009604932449142745, - "match_probability": 0.9731560086045776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991796191861037, - "recall": 0.6691549244804432, - "row_count": 477830, - "tn": 173702, - "tn_rate": 0.9990395067550857, - "tp": 203397, - "tp_rate": 0.6691549244804432, - "truth_threshold": 5.18 - }, - { - "f1": 0.8012825818759435, - "fn": 100670, - "fn_rate": 0.3311938044683364, - "fp": 163, - "fp_rate": 0.000937487418688783, - "match_probability": 0.9735157900194042, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991988361005436, - "recall": 0.6688061955316636, - "row_count": 477830, - "tn": 173706, - "tn_rate": 0.9990625125813112, - "tp": 203291, - "tp_rate": 0.6688061955316636, - "truth_threshold": 5.2 - }, - { - "f1": 0.8009706632602773, - "fn": 100802, - "fn_rate": 0.3316280707064393, - "fp": 163, - "fp_rate": 0.000937487418688783, - "match_probability": 0.9738708788702727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991983159717099, - "recall": 0.6683719292935607, - "row_count": 477830, - "tn": 173706, - "tn_rate": 0.9990625125813112, - "tp": 203159, - "tp_rate": 0.6683719292935607, - "truth_threshold": 5.22 - }, - { - "f1": 0.8005970926242891, - "fn": 100960, - "fn_rate": 0.33214787423386555, - "fp": 163, - "fp_rate": 0.000937487418688783, - "match_probability": 0.974221332911062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991976925045776, - "recall": 0.6678521257661345, - "row_count": 477830, - "tn": 173706, - "tn_rate": 0.9990625125813112, - "tp": 203001, - "tp_rate": 0.6678521257661345, - "truth_threshold": 5.24 - }, - { - "f1": 0.8001286183782248, - "fn": 101158, - "fn_rate": 0.3327992735910199, - "fp": 163, - "fp_rate": 0.000937487418688783, - "match_probability": 0.9745672092769317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991969098272617, - "recall": 0.6672007264089801, - "row_count": 477830, - "tn": 173706, - "tn_rate": 0.9990625125813112, - "tp": 202803, - "tp_rate": 0.6672007264089801, - "truth_threshold": 5.26 - }, - { - "f1": 0.7997789968033466, - "fn": 101305, - "fn_rate": 0.33328288826527086, - "fp": 163, - "fp_rate": 0.000937487418688783, - "match_probability": 0.9749085644884405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9991963277602197, - "recall": 0.6667171117347291, - "row_count": 477830, - "tn": 173706, - "tn_rate": 0.9990625125813112, - "tp": 202656, - "tp_rate": 0.6667171117347291, - "truth_threshold": 5.28 - }, - { - "f1": 0.7993643775044909, - "fn": 101486, - "fn_rate": 0.33387835939479077, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9752454544557132, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992350589744855, - "recall": 0.6661216406052092, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 202475, - "tp_rate": 0.6661216406052092, - "truth_threshold": 5.3 - }, - { - "f1": 0.7989660796726841, - "fn": 101654, - "fn_rate": 0.33443106187964905, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9755779344826514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992344242376348, - "recall": 0.665568938120351, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 202307, - "tp_rate": 0.665568938120351, - "truth_threshold": 5.32 - }, - { - "f1": 0.7984583412352234, - "fn": 101868, - "fn_rate": 0.3351350995686947, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9759060592711867, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992336141766544, - "recall": 0.6648649004313053, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 202093, - "tp_rate": 0.6648649004313053, - "truth_threshold": 5.34 - }, - { - "f1": 0.7980641923002438, - "fn": 102034, - "fn_rate": 0.33568122226206654, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9762298829255712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992329846300017, - "recall": 0.6643187777379335, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201927, - "tp_rate": 0.6643187777379335, - "truth_threshold": 5.36 - }, - { - "f1": 0.7976040328160522, - "fn": 102227, - "fn_rate": 0.33631617214050485, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9765494589567063, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992322513856624, - "recall": 0.6636838278594951, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201734, - "tp_rate": 0.6636838278594951, - "truth_threshold": 5.38 - }, - { - "f1": 0.7972608482432411, - "fn": 102372, - "fn_rate": 0.3367932070232694, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9768648402865033, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992316995796653, - "recall": 0.6632067929767306, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201589, - "tp_rate": 0.6632067929767306, - "truth_threshold": 5.4 - }, - { - "f1": 0.7969333502120387, - "fn": 102509, - "fn_rate": 0.33724392274008835, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9771760792522766, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992311774888769, - "recall": 0.6627560772599116, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201452, - "tp_rate": 0.6627560772599116, - "truth_threshold": 5.42 - }, - { - "f1": 0.7965001009129655, - "fn": 102691, - "fn_rate": 0.3378426837653515, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9774832276111642, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999230482809979, - "recall": 0.6621573162346486, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201270, - "tp_rate": 0.6621573162346486, - "truth_threshold": 5.44 - }, - { - "f1": 0.7960704982541706, - "fn": 102872, - "fn_rate": 0.3384381548948714, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9777863365445763, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992297907018346, - "recall": 0.6615618451051286, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 201089, - "tp_rate": 0.6615618451051286, - "truth_threshold": 5.46 - }, - { - "f1": 0.795704204715554, - "fn": 103025, - "fn_rate": 0.3389415089435816, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9780854566626659, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992292046884247, - "recall": 0.6610584910564185, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 200936, - "tp_rate": 0.6610584910564185, - "truth_threshold": 5.48 - }, - { - "f1": 0.7952072133459578, - "fn": 103234, - "fn_rate": 0.3396290971539112, - "fp": 155, - "fp_rate": 0.0008914757662377997, - "match_probability": 0.9783806380088231, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992284027438995, - "recall": 0.6603709028460888, - "row_count": 477830, - "tn": 173714, - "tn_rate": 0.9991085242337622, - "tp": 200727, - "tp_rate": 0.6603709028460888, - "truth_threshold": 5.5 - }, - { - "f1": 0.7948586872097263, - "fn": 103380, - "fn_rate": 0.34010942193241894, - "fp": 154, - "fp_rate": 0.0008857243096814268, - "match_probability": 0.9786719300641882, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992328193887463, - "recall": 0.659890578067581, - "row_count": 477830, - "tn": 173715, - "tn_rate": 0.9991142756903185, - "tp": 200581, - "tp_rate": 0.659890578067581, - "truth_threshold": 5.5200000000000005 - }, - { - "f1": 0.7945712620943608, - "fn": 103501, - "fn_rate": 0.34050749931734664, - "fp": 153, - "fp_rate": 0.0008799728531250539, - "match_probability": 0.9789593817521819, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992373375603775, - "recall": 0.6594925006826534, - "row_count": 477830, - "tn": 173716, - "tn_rate": 0.999120027146875, - "tp": 200460, - "tp_rate": 0.6594925006826534, - "truth_threshold": 5.54 - }, - { - "f1": 0.7941012026789644, - "fn": 103699, - "fn_rate": 0.341158898674501, - "fp": 152, - "fp_rate": 0.000874221396568681, - "match_probability": 0.9792430414430521, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992415699502031, - "recall": 0.658841101325499, - "row_count": 477830, - "tn": 173717, - "tn_rate": 0.9991257786034313, - "tp": 200262, - "tp_rate": 0.658841101325499, - "truth_threshold": 5.5600000000000005 - }, - { - "f1": 0.7938883160149124, - "fn": 103790, - "fn_rate": 0.34145827918713256, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9795229569584335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992611784204194, - "recall": 0.6585417208128674, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 200171, - "tp_rate": 0.6585417208128674, - "truth_threshold": 5.58 - }, - { - "f1": 0.7935429865868995, - "fn": 103935, - "fn_rate": 0.34193531406989713, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.979799175575919, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992606432403809, - "recall": 0.6580646859301029, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 200026, - "tp_rate": 0.6580646859301029, - "truth_threshold": 5.6000000000000005 - }, - { - "f1": 0.7932605314117012, - "fn": 104053, - "fn_rate": 0.3423235217675952, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9800717440336414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992602071420003, - "recall": 0.6576764782324048, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 199908, - "tp_rate": 0.6576764782324048, - "truth_threshold": 5.62 - }, - { - "f1": 0.7928054526761223, - "fn": 104243, - "fn_rate": 0.34294860195880394, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9803407085348623, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992595038675913, - "recall": 0.657051398041196, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 199718, - "tp_rate": 0.657051398041196, - "truth_threshold": 5.64 - }, - { - "f1": 0.792379628710414, - "fn": 104420, - "fn_rate": 0.34353091350535103, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9806061147525681, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992588475078747, - "recall": 0.656469086494649, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 199541, - "tp_rate": 0.656469086494649, - "truth_threshold": 5.66 - }, - { - "f1": 0.7919862717136127, - "fn": 104584, - "fn_rate": 0.34407045640723644, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9808680078340698, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992582383160005, - "recall": 0.6559295435927636, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 199377, - "tp_rate": 0.6559295435927636, - "truth_threshold": 5.68 - }, - { - "f1": 0.7916118649792383, - "fn": 104740, - "fn_rate": 0.34458368014317625, - "fp": 148, - "fp_rate": 0.0008512155703431895, - "match_probability": 0.9811264324056064, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992576579107083, - "recall": 0.6554163198568237, - "row_count": 477830, - "tn": 173721, - "tn_rate": 0.9991487844296568, - "tp": 199221, - "tp_rate": 0.6554163198568237, - "truth_threshold": 5.7 - }, - { - "f1": 0.7912675384554235, - "fn": 104886, - "fn_rate": 0.34506400492168404, - "fp": 145, - "fp_rate": 0.0008339612006740707, - "match_probability": 0.9813814325769498, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992721614295753, - "recall": 0.654935995078316, - "row_count": 477830, - "tn": 173724, - "tn_rate": 0.999166038799326, - "tp": 199075, - "tp_rate": 0.654935995078316, - "truth_threshold": 5.72 - }, - { - "f1": 0.790845437231365, - "fn": 105061, - "fn_rate": 0.3456397366767447, - "fp": 145, - "fp_rate": 0.0008339612006740707, - "match_probability": 0.9816330519460089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992715215152352, - "recall": 0.6543602633232553, - "row_count": 477830, - "tn": 173724, - "tn_rate": 0.999166038799326, - "tp": 198900, - "tp_rate": 0.6543602633232553, - "truth_threshold": 5.74 - }, - { - "f1": 0.7904766071520903, - "fn": 105217, - "fn_rate": 0.3461529604126845, - "fp": 141, - "fp_rate": 0.000810955374448579, - "match_probability": 0.9818813336034329, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992910475903161, - "recall": 0.6538470395873155, - "row_count": 477830, - "tn": 173728, - "tn_rate": 0.9991890446255515, - "tp": 198744, - "tp_rate": 0.6538470395873155, - "truth_threshold": 5.76 - }, - { - "f1": 0.790197521532433, - "fn": 105333, - "fn_rate": 0.34653458831889616, - "fp": 141, - "fp_rate": 0.000810955374448579, - "match_probability": 0.9821263201372112, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992906338513551, - "recall": 0.6534654116811038, - "row_count": 477830, - "tn": 173728, - "tn_rate": 0.9991890446255515, - "tp": 198628, - "tp_rate": 0.6534654116811038, - "truth_threshold": 5.78 - }, - { - "f1": 0.7896284915978762, - "fn": 105570, - "fn_rate": 0.3473142936100355, - "fp": 141, - "fp_rate": 0.000810955374448579, - "match_probability": 0.9823680536372692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992897870368505, - "recall": 0.6526857063899645, - "row_count": 477830, - "tn": 173728, - "tn_rate": 0.9991890446255515, - "tp": 198391, - "tp_rate": 0.6526857063899645, - "truth_threshold": 5.8 - }, - { - "f1": 0.7893056346270986, - "fn": 105704, - "fn_rate": 0.34775513963962484, - "fp": 141, - "fp_rate": 0.000810955374448579, - "match_probability": 0.982606575700058, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992893073518886, - "recall": 0.6522448603603752, - "row_count": 477830, - "tn": 173728, - "tn_rate": 0.9991890446255515, - "tp": 198257, - "tp_rate": 0.6522448603603752, - "truth_threshold": 5.82 - }, - { - "f1": 0.7890058777616719, - "fn": 105829, - "fn_rate": 0.3481663766075253, - "fp": 140, - "fp_rate": 0.0008052039178922062, - "match_probability": 0.9828419274331381, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992938992898645, - "recall": 0.6518336233924746, - "row_count": 477830, - "tn": 173729, - "tn_rate": 0.9991947960821078, - "tp": 198132, - "tp_rate": 0.6518336233924746, - "truth_threshold": 5.84 - }, - { - "f1": 0.7886682122001546, - "fn": 105969, - "fn_rate": 0.34862696201157384, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9830741494597539, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999298443958795, - "recall": 0.6513730379884262, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197992, - "tp_rate": 0.6513730379884262, - "truth_threshold": 5.86 - }, - { - "f1": 0.7883488259973942, - "fn": 106102, - "fn_rate": 0.34906451814541994, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9833032819233992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999297972706795, - "recall": 0.6509354818545801, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197859, - "tp_rate": 0.6509354818545801, - "truth_threshold": 5.88 - }, - { - "f1": 0.7879818097033515, - "fn": 106254, - "fn_rate": 0.34956458229838694, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9835293644923733, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992974333572576, - "recall": 0.6504354177016131, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197707, - "tp_rate": 0.6504354177016131, - "truth_threshold": 5.9 - }, - { - "f1": 0.7876250847187338, - "fn": 106401, - "fn_rate": 0.35004819697263795, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9837524363643234, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992969109606017, - "recall": 0.6499518030273621, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197560, - "tp_rate": 0.6499518030273621, - "truth_threshold": 5.92 - }, - { - "f1": 0.7871173596569947, - "fn": 106611, - "fn_rate": 0.35073907507871077, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9839725362707769, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992961633306159, - "recall": 0.6492609249212893, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197350, - "tp_rate": 0.6492609249212893, - "truth_threshold": 5.94 - }, - { - "f1": 0.786680977042221, - "fn": 106792, - "fn_rate": 0.3513345462082307, - "fp": 139, - "fp_rate": 0.0007994524613358333, - "match_probability": 0.9841897024816576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9992955176678087, - "recall": 0.6486654537917693, - "row_count": 477830, - "tn": 173730, - "tn_rate": 0.9992005475386642, - "tp": 197169, - "tp_rate": 0.6486654537917693, - "truth_threshold": 5.96 - }, - { - "f1": 0.7861336973746712, - "fn": 107018, - "fn_rate": 0.35207806264619473, - "fp": 138, - "fp_rate": 0.0007937010047794604, - "match_probability": 0.9844039728097899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999299780293382, - "recall": 0.6479219373538052, - "row_count": 477830, - "tn": 173731, - "tn_rate": 0.9992062989952205, - "tp": 196943, - "tp_rate": 0.6479219373538052, - "truth_threshold": 5.98 - }, - { - "f1": 0.7858468983194988, - "fn": 107137, - "fn_rate": 0.352469560239636, - "fp": 137, - "fp_rate": 0.0007879495482230875, - "match_probability": 0.9846153846153847, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993044308264073, - "recall": 0.647530439760364, - "row_count": 477830, - "tn": 173732, - "tn_rate": 0.999212050451777, - "tp": 196824, - "tp_rate": 0.647530439760364, - "truth_threshold": 6 - }, - { - "f1": 0.7855850675100936, - "fn": 107245, - "fn_rate": 0.352824868979902, - "fp": 137, - "fp_rate": 0.0007879495482230875, - "match_probability": 0.9848239748105114, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993040492143884, - "recall": 0.6471751310200979, - "row_count": 477830, - "tn": 173732, - "tn_rate": 0.999212050451777, - "tp": 196716, - "tp_rate": 0.6471751310200979, - "truth_threshold": 6.0200000000000005 - }, - { - "f1": 0.7852394838812767, - "fn": 107392, - "fn_rate": 0.353308483654153, - "fp": 131, - "fp_rate": 0.0007534408088848501, - "match_probability": 0.9850297798635513, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999334011184545, - "recall": 0.646691516345847, - "row_count": 477830, - "tn": 173738, - "tn_rate": 0.9992465591911152, - "tp": 196569, - "tp_rate": 0.646691516345847, - "truth_threshold": 6.04 - }, - { - "f1": 0.7849293939950931, - "fn": 107523, - "fn_rate": 0.3537394599965127, - "fp": 125, - "fp_rate": 0.0007189320695466126, - "match_probability": 0.9852328358036327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993640715699292, - "recall": 0.6462605400034873, - "row_count": 477830, - "tn": 173744, - "tn_rate": 0.9992810679304533, - "tp": 196438, - "tp_rate": 0.6462605400034873, - "truth_threshold": 6.0600000000000005 - }, - { - "f1": 0.7844242438778691, - "fn": 107731, - "fn_rate": 0.3544237583110991, - "fp": 125, - "fp_rate": 0.0007189320695466126, - "match_probability": 0.9854331782250482, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993633979272236, - "recall": 0.6455762416889009, - "row_count": 477830, - "tn": 173744, - "tn_rate": 0.9992810679304533, - "tp": 196230, - "tp_rate": 0.6455762416889009, - "truth_threshold": 6.08 - }, - { - "f1": 0.7841326200129549, - "fn": 107851, - "fn_rate": 0.3548185458002836, - "fp": 125, - "fp_rate": 0.0007189320695466126, - "match_probability": 0.9856308422916512, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993630086376029, - "recall": 0.6451814541997164, - "row_count": 477830, - "tn": 173744, - "tn_rate": 0.9992810679304533, - "tp": 196110, - "tp_rate": 0.6451814541997164, - "truth_threshold": 6.1000000000000005 - }, - { - "f1": 0.7838422620833083, - "fn": 107973, - "fn_rate": 0.35521991308095446, - "fp": 121, - "fp_rate": 0.0006959262433211211, - "match_probability": 0.9858258627412329, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993829961908939, - "recall": 0.6447800869190455, - "row_count": 477830, - "tn": 173748, - "tn_rate": 0.9993040737566788, - "tp": 195988, - "tp_rate": 0.6447800869190455, - "truth_threshold": 6.12 - }, - { - "f1": 0.7834618892925155, - "fn": 108130, - "fn_rate": 0.3557364267126375, - "fp": 121, - "fp_rate": 0.0006959262433211211, - "match_probability": 0.9860182738898777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993825018371846, - "recall": 0.6442635732873625, - "row_count": 477830, - "tn": 173748, - "tn_rate": 0.9993040737566788, - "tp": 195831, - "tp_rate": 0.6442635732873625, - "truth_threshold": 6.140000000000001 - }, - { - "f1": 0.7830090889807615, - "fn": 108316, - "fn_rate": 0.3563483473208734, - "fp": 121, - "fp_rate": 0.0006959262433211211, - "match_probability": 0.9862081096362973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993819151435898, - "recall": 0.6436516526791266, - "row_count": 477830, - "tn": 173748, - "tn_rate": 0.9993040737566788, - "tp": 195645, - "tp_rate": 0.6436516526791266, - "truth_threshold": 6.16 - }, - { - "f1": 0.7826241872978253, - "fn": 108474, - "fn_rate": 0.3568681508482996, - "fp": 121, - "fp_rate": 0.0006959262433211211, - "match_probability": 0.9863954034661423, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993814158930105, - "recall": 0.6431318491517004, - "row_count": 477830, - "tn": 173748, - "tn_rate": 0.9993040737566788, - "tp": 195487, - "tp_rate": 0.6431318491517004, - "truth_threshold": 6.18 - }, - { - "f1": 0.7822683021572938, - "fn": 108620, - "fn_rate": 0.3573484756268074, - "fp": 121, - "fp_rate": 0.0006959262433211211, - "match_probability": 0.9865801884562904, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993809538426907, - "recall": 0.6426515243731926, - "row_count": 477830, - "tn": 173748, - "tn_rate": 0.9993040737566788, - "tp": 195341, - "tp_rate": 0.6426515243731926, - "truth_threshold": 6.2 - }, - { - "f1": 0.7819024499671522, - "fn": 108770, - "fn_rate": 0.357841959988288, - "fp": 120, - "fp_rate": 0.0006901747867647482, - "match_probability": 0.9867624972791117, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993855952813717, - "recall": 0.6421580400117121, - "row_count": 477830, - "tn": 173749, - "tn_rate": 0.9993098252132353, - "tp": 195191, - "tp_rate": 0.6421580400117121, - "truth_threshold": 6.22 - }, - { - "f1": 0.7815501496616085, - "fn": 108915, - "fn_rate": 0.3583189948710525, - "fp": 120, - "fp_rate": 0.0006901747867647482, - "match_probability": 0.9869423622067105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993851388049148, - "recall": 0.6416810051289474, - "row_count": 477830, - "tn": 173749, - "tn_rate": 0.9993098252132353, - "tp": 195046, - "tp_rate": 0.6416810051289474, - "truth_threshold": 6.24 - }, - { - "f1": 0.7811056952283222, - "fn": 109097, - "fn_rate": 0.35891775589631564, - "fp": 119, - "fp_rate": 0.0006844233302083753, - "match_probability": 0.9871198151151404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993896903832642, - "recall": 0.6410822441036843, - "row_count": 477830, - "tn": 173750, - "tn_rate": 0.9993155766697916, - "tp": 194864, - "tp_rate": 0.6410822441036843, - "truth_threshold": 6.26 - }, - { - "f1": 0.7807773732578467, - "fn": 109232, - "fn_rate": 0.3593618918216482, - "fp": 119, - "fp_rate": 0.0006844233302083753, - "match_probability": 0.9872948874885967, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993892675316144, - "recall": 0.6406381081783519, - "row_count": 477830, - "tn": 173750, - "tn_rate": 0.9993155766697916, - "tp": 194729, - "tp_rate": 0.6406381081783519, - "truth_threshold": 6.28 - }, - { - "f1": 0.7804350790505907, - "fn": 109372, - "fn_rate": 0.3598224772256967, - "fp": 119, - "fp_rate": 0.0006844233302083753, - "match_probability": 0.9874676104235824, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993888283994494, - "recall": 0.6401775227743033, - "row_count": 477830, - "tn": 173750, - "tn_rate": 0.9993155766697916, - "tp": 194589, - "tp_rate": 0.6401775227743033, - "truth_threshold": 6.3 - }, - { - "f1": 0.7799898091420823, - "fn": 109554, - "fn_rate": 0.36042123825095984, - "fp": 119, - "fp_rate": 0.0006844233302083753, - "match_probability": 0.9876380146330476, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993882565826676, - "recall": 0.6395787617490402, - "row_count": 477830, - "tn": 173750, - "tn_rate": 0.9993155766697916, - "tp": 194407, - "tp_rate": 0.6395787617490402, - "truth_threshold": 6.32 - }, - { - "f1": 0.7796430592399658, - "fn": 109695, - "fn_rate": 0.3608851135507516, - "fp": 119, - "fp_rate": 0.0006844233302083753, - "match_probability": 0.9878061304505031, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9993878128456414, - "recall": 0.6391148864492484, - "row_count": 477830, - "tn": 173750, - "tn_rate": 0.9993155766697916, - "tp": 194266, - "tp_rate": 0.6391148864492484, - "truth_threshold": 6.34 - }, - { - "f1": 0.7792907983636896, - "fn": 109842, - "fn_rate": 0.36136872822500254, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9879719878341077, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994130760478395, - "recall": 0.6386312717749975, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 194119, - "tp_rate": 0.6386312717749975, - "truth_threshold": 6.36 - }, - { - "f1": 0.7788054522526285, - "fn": 110040, - "fn_rate": 0.3620201275821569, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9881356163707273, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994124771304146, - "recall": 0.637979872417843, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 193921, - "tp_rate": 0.637979872417843, - "truth_threshold": 6.38 - }, - { - "f1": 0.7783924503742271, - "fn": 110209, - "fn_rate": 0.3625761199627584, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9882970452799678, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994119649654917, - "recall": 0.6374238800372416, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 193752, - "tp_rate": 0.6374238800372416, - "truth_threshold": 6.4 - }, - { - "f1": 0.7780979132258803, - "fn": 110329, - "fn_rate": 0.3629709074519428, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9884563034181787, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994116007556285, - "recall": 0.6370290925480572, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 193632, - "tp_rate": 0.6370290925480572, - "truth_threshold": 6.42 - }, - { - "f1": 0.7776509273924473, - "fn": 110511, - "fn_rate": 0.36356966847720595, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9886134192824297, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994110475088342, - "recall": 0.636430331522794, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 193450, - "tp_rate": 0.636430331522794, - "truth_threshold": 6.44 - }, - { - "f1": 0.7774346850650133, - "fn": 110599, - "fn_rate": 0.3638591793026079, - "fp": 114, - "fp_rate": 0.0006556660474265108, - "match_probability": 0.9887684210144592, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994107796315822, - "recall": 0.6361408206973921, - "row_count": 477830, - "tn": 173755, - "tn_rate": 0.9993443339525735, - "tp": 193362, - "tp_rate": 0.6361408206973921, - "truth_threshold": 6.46 - }, - { - "f1": 0.7770055304172951, - "fn": 110778, - "fn_rate": 0.3644480706406414, - "fp": 106, - "fp_rate": 0.0006096543949755276, - "match_probability": 0.9889213364045922, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994515983837673, - "recall": 0.6355519293593586, - "row_count": 477830, - "tn": 173763, - "tn_rate": 0.9993903456050245, - "tp": 193183, - "tp_rate": 0.6355519293593586, - "truth_threshold": 6.48 - }, - { - "f1": 0.7765854718393164, - "fn": 110950, - "fn_rate": 0.3650139327084725, - "fp": 105, - "fp_rate": 0.0006039029384191547, - "match_probability": 0.989072192895632, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994562853414528, - "recall": 0.6349860672915275, - "row_count": 477830, - "tn": 173764, - "tn_rate": 0.9993960970615808, - "tp": 193011, - "tp_rate": 0.6349860672915275, - "truth_threshold": 6.5 - }, - { - "f1": 0.7762170777255457, - "fn": 111099, - "fn_rate": 0.3655041271742098, - "fp": 105, - "fp_rate": 0.0006039029384191547, - "match_probability": 0.9892210175867204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994558655106832, - "recall": 0.6344958728257901, - "row_count": 477830, - "tn": 173764, - "tn_rate": 0.9993960970615808, - "tp": 192862, - "tp_rate": 0.6344958728257901, - "truth_threshold": 6.5200000000000005 - }, - { - "f1": 0.7757391279839915, - "fn": 111293, - "fn_rate": 0.3661423669483914, - "fp": 105, - "fp_rate": 0.0006039029384191547, - "match_probability": 0.9893678372371703, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994553179127782, - "recall": 0.6338576330516086, - "row_count": 477830, - "tn": 173764, - "tn_rate": 0.9993960970615808, - "tp": 192668, - "tp_rate": 0.6338576330516086, - "truth_threshold": 6.54 - }, - { - "f1": 0.7752926202502074, - "fn": 111476, - "fn_rate": 0.3667444178693977, - "fp": 102, - "fp_rate": 0.0005866485687500359, - "match_probability": 0.9895126782702673, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994703692357221, - "recall": 0.6332555821306023, - "row_count": 477830, - "tn": 173767, - "tn_rate": 0.99941335143125, - "tp": 192485, - "tp_rate": 0.6332555821306023, - "truth_threshold": 6.5600000000000005 - }, - { - "f1": 0.7749839852704777, - "fn": 111603, - "fn_rate": 0.3671622346287846, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9896555667770431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994804061145809, - "recall": 0.6328377653712154, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 192358, - "tp_rate": 0.6328377653712154, - "truth_threshold": 6.58 - }, - { - "f1": 0.7745050622299606, - "fn": 111797, - "fn_rate": 0.36780047440296615, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9897965285200179, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994798818291516, - "recall": 0.6321995255970339, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 192164, - "tp_rate": 0.6321995255970339, - "truth_threshold": 6.6000000000000005 - }, - { - "f1": 0.7742135753246282, - "fn": 111915, - "fn_rate": 0.36818868210066424, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9899355889369128, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994795624160795, - "recall": 0.6318113178993358, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 192046, - "tp_rate": 0.6318113178993358, - "truth_threshold": 6.62 - }, - { - "f1": 0.7738585865103113, - "fn": 112058, - "fn_rate": 0.3686591371919424, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9900727731443332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994791748045604, - "recall": 0.6313408628080576, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191903, - "tp_rate": 0.6313408628080576, - "truth_threshold": 6.640000000000001 - }, - { - "f1": 0.7733292990418558, - "fn": 112272, - "fn_rate": 0.369363174880988, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9902081059414205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994785936628274, - "recall": 0.630636825119012, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191689, - "tp_rate": 0.630636825119012, - "truth_threshold": 6.66 - }, - { - "f1": 0.7728738452597635, - "fn": 112456, - "fn_rate": 0.36996851569773753, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9903416118134748, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994780929516454, - "recall": 0.6300314843022624, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191505, - "tp_rate": 0.6300314843022624, - "truth_threshold": 6.68 - }, - { - "f1": 0.7724824790879437, - "fn": 112614, - "fn_rate": 0.37048831922516373, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9904733149355459, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994776622250544, - "recall": 0.6295116807748362, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191347, - "tp_rate": 0.6295116807748362, - "truth_threshold": 6.7 - }, - { - "f1": 0.7720949015648663, - "fn": 112771, - "fn_rate": 0.37100483285684677, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9906032391759949, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994772335197867, - "recall": 0.6289951671431533, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191190, - "tp_rate": 0.6289951671431533, - "truth_threshold": 6.72 - }, - { - "f1": 0.7717030370113029, - "fn": 112929, - "fn_rate": 0.37152463638427297, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9907314081000241, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994768013728732, - "recall": 0.628475363615727, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 191032, - "tp_rate": 0.628475363615727, - "truth_threshold": 6.74 - }, - { - "f1": 0.771346600666734, - "fn": 113072, - "fn_rate": 0.37199509147555115, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9908578449731781, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999476409636157, - "recall": 0.6280049085244489, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 190889, - "tp_rate": 0.6280049085244489, - "truth_threshold": 6.76 - }, - { - "f1": 0.7709135888304559, - "fn": 113247, - "fn_rate": 0.3725708232306118, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9909825727648117, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994759294391397, - "recall": 0.6274291767693881, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 190714, - "tp_rate": 0.6274291767693881, - "truth_threshold": 6.78 - }, - { - "f1": 0.7705368118004787, - "fn": 113398, - "fn_rate": 0.37306759748783563, - "fp": 100, - "fp_rate": 0.0005751456556372901, - "match_probability": 0.9911056141515298, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994755143892627, - "recall": 0.6269324025121644, - "row_count": 477830, - "tn": 173769, - "tn_rate": 0.9994248543443627, - "tp": 190563, - "tp_rate": 0.6269324025121644, - "truth_threshold": 6.8 - }, - { - "f1": 0.7701054113307069, - "fn": 113574, - "fn_rate": 0.3736466191386395, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9912269915205945, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999490770878394, - "recall": 0.6263533808613605, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 190387, - "tp_rate": 0.6263533808613605, - "truth_threshold": 6.82 - }, - { - "f1": 0.7697380932150242, - "fn": 113721, - "fn_rate": 0.37413023381289046, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9913467269733026, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994903775934264, - "recall": 0.6258697661871095, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 190240, - "tp_rate": 0.6258697661871095, - "truth_threshold": 6.84 - }, - { - "f1": 0.7692450920866222, - "fn": 113919, - "fn_rate": 0.3747816331700448, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9914648423283329, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994898469014774, - "recall": 0.6252183668299551, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 190042, - "tp_rate": 0.6252183668299551, - "truth_threshold": 6.86 - }, - { - "f1": 0.768840497554339, - "fn": 114082, - "fn_rate": 0.37531788617618705, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9915813591250612, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994894091885291, - "recall": 0.6246821138238129, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 189879, - "tp_rate": 0.6246821138238129, - "truth_threshold": 6.88 - }, - { - "f1": 0.7684674394679498, - "fn": 114231, - "fn_rate": 0.37580808064192445, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9916962986268459, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994890084129233, - "recall": 0.6241919193580755, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 189730, - "tp_rate": 0.6241919193580755, - "truth_threshold": 6.9 - }, - { - "f1": 0.7679874552770091, - "fn": 114424, - "fn_rate": 0.3764430305203628, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9918096818242835, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999488488351245, - "recall": 0.6235569694796372, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 189537, - "tp_rate": 0.6235569694796372, - "truth_threshold": 6.92 - }, - { - "f1": 0.767478059952573, - "fn": 114628, - "fn_rate": 0.3771141692519764, - "fp": 97, - "fp_rate": 0.0005578912859681715, - "match_probability": 0.9919215294384318, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9994879374967006, - "recall": 0.6228858307480236, - "row_count": 477830, - "tn": 173772, - "tn_rate": 0.9994421087140318, - "tp": 189333, - "tp_rate": 0.6228858307480236, - "truth_threshold": 6.94 - }, - { - "f1": 0.7671203993171709, - "fn": 114773, - "fn_rate": 0.37759120413474095, - "fp": 93, - "fp_rate": 0.0005348854597426798, - "match_probability": 0.9920318619240045, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995086670083104, - "recall": 0.622408795865259, - "row_count": 477830, - "tn": 173776, - "tn_rate": 0.9994651145402573, - "tp": 189188, - "tp_rate": 0.622408795865259, - "truth_threshold": 6.96 - }, - { - "f1": 0.7667093916556474, - "fn": 114938, - "fn_rate": 0.37813403693236963, - "fp": 93, - "fp_rate": 0.0005348854597426798, - "match_probability": 0.9921406994725337, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995082383299139, - "recall": 0.6218659630676304, - "row_count": 477830, - "tn": 173776, - "tn_rate": 0.9994651145402573, - "tp": 189023, - "tp_rate": 0.6218659630676304, - "truth_threshold": 6.98 - }, - { - "f1": 0.7664291915839696, - "fn": 115050, - "fn_rate": 0.37850250525560847, - "fp": 93, - "fp_rate": 0.0005348854597426798, - "match_probability": 0.9922480620155039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995079469217583, - "recall": 0.6214974947443915, - "row_count": 477830, - "tn": 173776, - "tn_rate": 0.9994651145402573, - "tp": 188911, - "tp_rate": 0.6214974947443915, - "truth_threshold": 7 - }, - { - "f1": 0.7659695362249432, - "fn": 115233, - "fn_rate": 0.37910455617661476, - "fp": 93, - "fp_rate": 0.0005348854597426798, - "match_probability": 0.9923539692274538, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995074700377606, - "recall": 0.6208954438233852, - "row_count": 477830, - "tn": 173776, - "tn_rate": 0.9994651145402573, - "tp": 188728, - "tp_rate": 0.6208954438233852, - "truth_threshold": 7.0200000000000005 - }, - { - "f1": 0.7654525005379902, - "fn": 115440, - "fn_rate": 0.379785564595458, - "fp": 93, - "fp_rate": 0.0005348854597426798, - "match_probability": 0.9924584405290495, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995069294962198, - "recall": 0.620214435404542, - "row_count": 477830, - "tn": 173776, - "tn_rate": 0.9994651145402573, - "tp": 188521, - "tp_rate": 0.620214435404542, - "truth_threshold": 7.04 - }, - { - "f1": 0.7650654525220443, - "fn": 115595, - "fn_rate": 0.3802954984356546, - "fp": 92, - "fp_rate": 0.0005291340031863069, - "match_probability": 0.9925614950901266, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995118275690075, - "recall": 0.6197045015643454, - "row_count": 477830, - "tn": 173777, - "tn_rate": 0.9994708659968137, - "tp": 188366, - "tp_rate": 0.6197045015643454, - "truth_threshold": 7.0600000000000005 - }, - { - "f1": 0.764739339573583, - "fn": 115725, - "fn_rate": 0.3807231848822711, - "fp": 92, - "fp_rate": 0.0005291340031863069, - "match_probability": 0.9926631518327027, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999511490590884, - "recall": 0.6192768151177289, - "row_count": 477830, - "tn": 173777, - "tn_rate": 0.9994708659968137, - "tp": 188236, - "tp_rate": 0.6192768151177289, - "truth_threshold": 7.08 - }, - { - "f1": 0.7644431802019628, - "fn": 115843, - "fn_rate": 0.3811113925799691, - "fp": 92, - "fp_rate": 0.0005291340031863069, - "match_probability": 0.9927634294339601, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995111843153924, - "recall": 0.6188886074200308, - "row_count": 477830, - "tn": 173777, - "tn_rate": 0.9994708659968137, - "tp": 188118, - "tp_rate": 0.6188886074200308, - "truth_threshold": 7.1000000000000005 - }, - { - "f1": 0.7640303737367989, - "fn": 116008, - "fn_rate": 0.3816542253775978, - "fp": 90, - "fp_rate": 0.0005176310900735611, - "match_probability": 0.9928623463291987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999521386065953, - "recall": 0.6183457746224023, - "row_count": 477830, - "tn": 173779, - "tn_rate": 0.9994823689099265, - "tp": 187953, - "tp_rate": 0.6183457746224023, - "truth_threshold": 7.12 - }, - { - "f1": 0.7637077788214055, - "fn": 116137, - "fn_rate": 0.3820786219284711, - "fp": 89, - "fp_rate": 0.0005118796335171883, - "match_probability": 0.9929599207147589, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995263765678798, - "recall": 0.6179213780715289, - "row_count": 477830, - "tn": 173780, - "tn_rate": 0.9994881203664828, - "tp": 187824, - "tp_rate": 0.6179213780715289, - "truth_threshold": 7.140000000000001 - }, - { - "f1": 0.7634091981323919, - "fn": 116257, - "fn_rate": 0.38247340941765556, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9930561705509157, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995367190120932, - "recall": 0.6175265905823445, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187704, - "tp_rate": 0.6175265905823445, - "truth_threshold": 7.16 - }, - { - "f1": 0.7630963374597763, - "fn": 116382, - "fn_rate": 0.382884646385556, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9931511135647422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995364104312982, - "recall": 0.6171153536144439, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187579, - "tp_rate": 0.6171153536144439, - "truth_threshold": 7.18 - }, - { - "f1": 0.762809453278862, - "fn": 116496, - "fn_rate": 0.3832596945002813, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9932447672529455, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995361286469886, - "recall": 0.6167403054997187, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187465, - "tp_rate": 0.6167403054997187, - "truth_threshold": 7.2 - }, - { - "f1": 0.7623017553000945, - "fn": 116697, - "fn_rate": 0.38392096354466526, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9933371488846718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99953563098142, - "recall": 0.6160790364553347, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187264, - "tp_rate": 0.6160790364553347, - "truth_threshold": 7.22 - }, - { - "f1": 0.762054827427557, - "fn": 116795, - "fn_rate": 0.38424337332749925, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.993428275504284, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995353879510609, - "recall": 0.6157566266725008, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187166, - "tp_rate": 0.6157566266725008, - "truth_threshold": 7.24 - }, - { - "f1": 0.7617261475680233, - "fn": 116926, - "fn_rate": 0.384674349669859, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9935181639341092, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995350626863757, - "recall": 0.6153256503301411, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 187035, - "tp_rate": 0.6153256503301411, - "truth_threshold": 7.26 - }, - { - "f1": 0.7612680331308489, - "fn": 117107, - "fn_rate": 0.3852698207993789, - "fp": 87, - "fp_rate": 0.0005003767204044424, - "match_probability": 0.9936068307771581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995346125248072, - "recall": 0.6147301792006211, - "row_count": 477830, - "tn": 173782, - "tn_rate": 0.9994996232795955, - "tp": 186854, - "tp_rate": 0.6147301792006211, - "truth_threshold": 7.28 - }, - { - "f1": 0.7608076328971018, - "fn": 117290, - "fn_rate": 0.3858718717203852, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.9936942924198163, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995395085592508, - "recall": 0.6141281282796148, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 186671, - "tp_rate": 0.6141281282796148, - "truth_threshold": 7.3 - }, - { - "f1": 0.7604438881799688, - "fn": 117434, - "fn_rate": 0.3863456167074065, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.9937805650345067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995391532208368, - "recall": 0.6136543832925935, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 186527, - "tp_rate": 0.6136543832925935, - "truth_threshold": 7.32 - }, - { - "f1": 0.760079929857472, - "fn": 117578, - "fn_rate": 0.3868193616944279, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.9938656645823235, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995387973336051, - "recall": 0.6131806383055721, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 186383, - "tp_rate": 0.6131806383055721, - "truth_threshold": 7.34 - }, - { - "f1": 0.75967528096763, - "fn": 117738, - "fn_rate": 0.3873457450133405, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.9939496068156388, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999538401258125, - "recall": 0.6126542549866595, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 186223, - "tp_rate": 0.6126542549866595, - "truth_threshold": 7.36 - }, - { - "f1": 0.7590931352542649, - "fn": 117968, - "fn_rate": 0.38810242103427744, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.994032407280681, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995378307063129, - "recall": 0.6118975789657226, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 185993, - "tp_rate": 0.6118975789657226, - "truth_threshold": 7.38 - }, - { - "f1": 0.7587172630590541, - "fn": 118117, - "fn_rate": 0.3885926155000148, - "fp": 86, - "fp_rate": 0.0004946252638480695, - "match_probability": 0.9941140813200855, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995374603345345, - "recall": 0.6114073844999852, - "row_count": 477830, - "tn": 173783, - "tn_rate": 0.999505374736152, - "tp": 185844, - "tp_rate": 0.6114073844999852, - "truth_threshold": 7.4 - }, - { - "f1": 0.7583563724869626, - "fn": 118260, - "fn_rate": 0.38906307059129297, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9941946440754179, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995424843637303, - "recall": 0.610936929408707, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 185701, - "tp_rate": 0.610936929408707, - "truth_threshold": 7.42 - }, - { - "f1": 0.7577628331889719, - "fn": 118494, - "fn_rate": 0.38983290619520267, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9942741104896703, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995419073898422, - "recall": 0.6101670938047973, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 185467, - "tp_rate": 0.6101670938047973, - "truth_threshold": 7.44 - }, - { - "f1": 0.7573728952100703, - "fn": 118647, - "fn_rate": 0.3903362602439129, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9943524953097296, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995415293502122, - "recall": 0.6096637397560871, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 185314, - "tp_rate": 0.6096637397560871, - "truth_threshold": 7.46 - }, - { - "f1": 0.7569359837117836, - "fn": 118819, - "fn_rate": 0.3909021223117439, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9944298130888198, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995411036188029, - "recall": 0.6090978776882561, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 185142, - "tp_rate": 0.6090978776882561, - "truth_threshold": 7.48 - }, - { - "f1": 0.756523197225494, - "fn": 118982, - "fn_rate": 0.39143837531788617, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.994506078188917, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995406994337094, - "recall": 0.6085616246821138, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184979, - "tp_rate": 0.6085616246821138, - "truth_threshold": 7.5 - }, - { - "f1": 0.7560755081334075, - "fn": 119158, - "fn_rate": 0.39201739696869004, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9945813047831374, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995402622127991, - "recall": 0.6079826030313099, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184803, - "tp_rate": 0.6079826030313099, - "truth_threshold": 7.5200000000000005 - }, - { - "f1": 0.7557089772132006, - "fn": 119302, - "fn_rate": 0.39249114195571144, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9946555068581004, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995399038669727, - "recall": 0.6075088580442886, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184659, - "tp_rate": 0.6075088580442886, - "truth_threshold": 7.54 - }, - { - "f1": 0.7553941815294055, - "fn": 119425, - "fn_rate": 0.3928957991321255, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9947286982162634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995395973372476, - "recall": 0.6071042008678745, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184536, - "tp_rate": 0.6071042008678745, - "truth_threshold": 7.5600000000000005 - }, - { - "f1": 0.7549711721155736, - "fn": 119591, - "fn_rate": 0.39344192182549736, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9948008924782327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995391829985634, - "recall": 0.6065580781745027, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184370, - "tp_rate": 0.6065580781745027, - "truth_threshold": 7.58 - }, - { - "f1": 0.7546131884966228, - "fn": 119732, - "fn_rate": 0.3939057971252891, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9948721030850469, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995388304740823, - "recall": 0.6060942028747109, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184229, - "tp_rate": 0.6060942028747109, - "truth_threshold": 7.6000000000000005 - }, - { - "f1": 0.7542355867132666, - "fn": 119880, - "fn_rate": 0.3943927016952833, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9949423433004362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999538459867728, - "recall": 0.6056072983047167, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 184081, - "tp_rate": 0.6056072983047167, - "truth_threshold": 7.62 - }, - { - "f1": 0.75369530820879, - "fn": 120091, - "fn_rate": 0.3950868696970993, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9950116262130546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995379304721264, - "recall": 0.6049131303029007, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 183870, - "tp_rate": 0.6049131303029007, - "truth_threshold": 7.640000000000001 - }, - { - "f1": 0.7533723666838873, - "fn": 120218, - "fn_rate": 0.3955046864564862, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9950799647386886, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995376112452945, - "recall": 0.6044953135435138, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 183743, - "tp_rate": 0.6044953135435138, - "truth_threshold": 7.66 - }, - { - "f1": 0.7529796815657581, - "fn": 120371, - "fn_rate": 0.3960080405051964, - "fp": 85, - "fp_rate": 0.0004888738072916966, - "match_probability": 0.9951473716224397, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995372260786716, - "recall": 0.6039919594948036, - "row_count": 477830, - "tn": 173784, - "tn_rate": 0.9995111261927083, - "tp": 183590, - "tp_rate": 0.6039919594948036, - "truth_threshold": 7.68 - }, - { - "f1": 0.7524956815374958, - "fn": 120562, - "fn_rate": 0.3966364105921483, - "fp": 83, - "fp_rate": 0.00047737089417895085, - "match_probability": 0.9952138594408825, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995476395504737, - "recall": 0.6033635894078516, - "row_count": 477830, - "tn": 173786, - "tn_rate": 0.999522629105821, - "tp": 183399, - "tp_rate": 0.6033635894078516, - "truth_threshold": 7.7 - }, - { - "f1": 0.752, - "fn": 120755, - "fn_rate": 0.3972713604705867, - "fp": 83, - "fp_rate": 0.00047737089417895085, - "match_probability": 0.9952794406041985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995471632231067, - "recall": 0.6027286395294134, - "row_count": 477830, - "tn": 173786, - "tn_rate": 0.999522629105821, - "tp": 183206, - "tp_rate": 0.6027286395294134, - "truth_threshold": 7.72 - }, - { - "f1": 0.7516351677047707, - "fn": 120898, - "fn_rate": 0.39774181556186483, - "fp": 83, - "fp_rate": 0.00047737089417895085, - "match_probability": 0.9953441273582849, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995468096491323, - "recall": 0.6022581844381352, - "row_count": 477830, - "tn": 173786, - "tn_rate": 0.999522629105821, - "tp": 183063, - "tp_rate": 0.6022581844381352, - "truth_threshold": 7.74 - }, - { - "f1": 0.7512352397576754, - "fn": 121054, - "fn_rate": 0.39825503929780465, - "fp": 83, - "fp_rate": 0.00047737089417895085, - "match_probability": 0.9954079317868398, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995464233018198, - "recall": 0.6017449607021953, - "row_count": 477830, - "tn": 173786, - "tn_rate": 0.999522629105821, - "tp": 182907, - "tp_rate": 0.6017449607021953, - "truth_threshold": 7.76 - }, - { - "f1": 0.7506913370232035, - "fn": 121266, - "fn_rate": 0.39895249719536385, - "fp": 83, - "fp_rate": 0.00047737089417895085, - "match_probability": 0.9954708658134229, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995458972086356, - "recall": 0.6010475028046361, - "row_count": 477830, - "tn": 173786, - "tn_rate": 0.999522629105821, - "tp": 182695, - "tp_rate": 0.6010475028046361, - "truth_threshold": 7.78 - }, - { - "f1": 0.7502682039583205, - "fn": 121432, - "fn_rate": 0.39949861988873575, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9955329412034929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995564317397733, - "recall": 0.6005013801112643, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 182529, - "tp_rate": 0.6005013801112643, - "truth_threshold": 7.8 - }, - { - "f1": 0.7497604723936724, - "fn": 121629, - "fn_rate": 0.4001467293501469, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9955941695664209, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995559527007395, - "recall": 0.599853270649853, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 182332, - "tp_rate": 0.599853270649853, - "truth_threshold": 7.82 - }, - { - "f1": 0.7492615903574807, - "fn": 121823, - "fn_rate": 0.4007849691243284, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9956545623574807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995554799444625, - "recall": 0.5992150308756715, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 182138, - "tp_rate": 0.5992150308756715, - "truth_threshold": 7.84 - }, - { - "f1": 0.7487767238009012, - "fn": 122012, - "fn_rate": 0.401406759419794, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.995714130879816, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995550184035599, - "recall": 0.598593240580206, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 181949, - "tp_rate": 0.598593240580206, - "truth_threshold": 7.86 - }, - { - "f1": 0.7483141626802138, - "fn": 122191, - "fn_rate": 0.4019956507578275, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9957728862863844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995545803982381, - "recall": 0.5980043492421725, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 181770, - "tp_rate": 0.5980043492421725, - "truth_threshold": 7.88 - }, - { - "f1": 0.7479780925712404, - "fn": 122322, - "fn_rate": 0.4024266271001872, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9958308395818786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995542593000221, - "recall": 0.5975733728998128, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 181639, - "tp_rate": 0.5975733728998128, - "truth_threshold": 7.9 - }, - { - "f1": 0.7475603376187907, - "fn": 122484, - "fn_rate": 0.40295959021058625, - "fp": 81, - "fp_rate": 0.000465867981066205, - "match_probability": 0.9958880016246255, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995538615759151, - "recall": 0.5970404097894138, - "row_count": 477830, - "tn": 173788, - "tn_rate": 0.9995341320189338, - "tp": 181477, - "tp_rate": 0.5970404097894138, - "truth_threshold": 7.92 - }, - { - "f1": 0.7469811989482621, - "fn": 122709, - "fn_rate": 0.4036998167528071, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9959443831284631, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995588202854433, - "recall": 0.5963001832471929, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 181252, - "tp_rate": 0.5963001832471929, - "truth_threshold": 7.94 - }, - { - "f1": 0.7464800926823034, - "fn": 122903, - "fn_rate": 0.4043380565269887, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9959999946645937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995583477790414, - "recall": 0.5956619434730114, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 181058, - "tp_rate": 0.5956619434730114, - "truth_threshold": 7.96 - }, - { - "f1": 0.7460509927165045, - "fn": 123069, - "fn_rate": 0.4048841792203605, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9960548466634173, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995579426651636, - "recall": 0.5951158207796395, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 180892, - "tp_rate": 0.5951158207796395, - "truth_threshold": 7.98 - }, - { - "f1": 0.7455543177786029, - "fn": 123261, - "fn_rate": 0.4055158392030557, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9961089494163424, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995574731718111, - "recall": 0.5944841607969443, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 180700, - "tp_rate": 0.5944841607969443, - "truth_threshold": 8 - }, - { - "f1": 0.7451453004857795, - "fn": 123419, - "fn_rate": 0.40603564273048187, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9961623130775747, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995570860692496, - "recall": 0.5939643572695181, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 180542, - "tp_rate": 0.5939643572695181, - "truth_threshold": 8.02 - }, - { - "f1": 0.7445338662856719, - "fn": 123655, - "fn_rate": 0.406812058125878, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9962149476658856, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995565066025079, - "recall": 0.593187941874122, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 180306, - "tp_rate": 0.593187941874122, - "truth_threshold": 8.040000000000001 - }, - { - "f1": 0.7441823003147382, - "fn": 123790, - "fn_rate": 0.4072561940512105, - "fp": 80, - "fp_rate": 0.0004601165245098321, - "match_probability": 0.9962668630663583, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995561744456342, - "recall": 0.5927438059487895, - "row_count": 477830, - "tn": 173789, - "tn_rate": 0.9995398834754902, - "tp": 180171, - "tp_rate": 0.5927438059487895, - "truth_threshold": 8.06 - }, - { - "f1": 0.7437546999859517, - "fn": 123956, - "fn_rate": 0.40780231674458234, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.9963180690321144, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995668663893871, - "recall": 0.5921976832554177, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 180005, - "tp_rate": 0.5921976832554177, - "truth_threshold": 8.08 - }, - { - "f1": 0.7431979959820432, - "fn": 124171, - "fn_rate": 0.4085096443293712, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.9963685751860192, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995663486556808, - "recall": 0.5914903556706288, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 179790, - "tp_rate": 0.5914903556706288, - "truth_threshold": 8.1 - }, - { - "f1": 0.7428768714880527, - "fn": 124294, - "fn_rate": 0.4089143015057853, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.9964183910223661, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995660519068681, - "recall": 0.5910856984942148, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 179667, - "tp_rate": 0.5910856984942148, - "truth_threshold": 8.120000000000001 - }, - { - "f1": 0.742471305966291, - "fn": 124450, - "fn_rate": 0.4094275252417251, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.996467525908541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995656749578203, - "recall": 0.5905724747582749, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 179511, - "tp_rate": 0.5905724747582749, - "truth_threshold": 8.14 - }, - { - "f1": 0.742018635596306, - "fn": 124624, - "fn_rate": 0.4099999671010426, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.9965159890866674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999565253741326, - "recall": 0.5900000328989574, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 179337, - "tp_rate": 0.5900000328989574, - "truth_threshold": 8.16 - }, - { - "f1": 0.7416999826177646, - "fn": 124747, - "fn_rate": 0.41040462427745666, - "fp": 78, - "fp_rate": 0.00044861361139708633, - "match_probability": 0.9965637896752301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995649554916003, - "recall": 0.5895953757225434, - "row_count": 477830, - "tn": 173791, - "tn_rate": 0.9995513863886029, - "tp": 179214, - "tp_rate": 0.5895953757225434, - "truth_threshold": 8.18 - }, - { - "f1": 0.7412780227286841, - "fn": 124909, - "fn_rate": 0.4109375873878557, - "fp": 77, - "fp_rate": 0.0004428621548407134, - "match_probability": 0.9966109366706807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995701421880321, - "recall": 0.5890624126121443, - "row_count": 477830, - "tn": 173792, - "tn_rate": 0.9995571378451593, - "tp": 179052, - "tp_rate": 0.5890624126121443, - "truth_threshold": 8.2 - }, - { - "f1": 0.7408901349655649, - "fn": 125059, - "fn_rate": 0.41143107174933624, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9966574389490227, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995809517424027, - "recall": 0.5885689282506638, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 178902, - "tp_rate": 0.5885689282506638, - "truth_threshold": 8.22 - }, - { - "f1": 0.7404832823096139, - "fn": 125215, - "fn_rate": 0.41194429548527606, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9967033052673774, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995805861727649, - "recall": 0.5880557045147239, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 178746, - "tp_rate": 0.5880557045147239, - "truth_threshold": 8.24 - }, - { - "f1": 0.740044839146813, - "fn": 125383, - "fn_rate": 0.41249699797013434, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9967485442655314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995801917684002, - "recall": 0.5875030020298657, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 178578, - "tp_rate": 0.5875030020298657, - "truth_threshold": 8.26 - }, - { - "f1": 0.7395486128384989, - "fn": 125573, - "fn_rate": 0.41312207816134305, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9967931644674644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995797448210554, - "recall": 0.586877921838657, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 178388, - "tp_rate": 0.586877921838657, - "truth_threshold": 8.28 - }, - { - "f1": 0.7389306201341391, - "fn": 125810, - "fn_rate": 0.4139017834524824, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9968371742828585, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995791859773546, - "recall": 0.5860982165475176, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 178151, - "tp_rate": 0.5860982165475176, - "truth_threshold": 8.3 - }, - { - "f1": 0.7384439834024896, - "fn": 125996, - "fn_rate": 0.4145137040607183, - "fp": 75, - "fp_rate": 0.0004313592417279676, - "match_probability": 0.9968805820085895, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999578746349135, - "recall": 0.5854862959392817, - "row_count": 477830, - "tn": 173794, - "tn_rate": 0.999568640758272, - "tp": 177965, - "tp_rate": 0.5854862959392817, - "truth_threshold": 8.32 - }, - { - "f1": 0.738139212504306, - "fn": 126113, - "fn_rate": 0.4148986218626732, - "fp": 74, - "fp_rate": 0.0004256077851715947, - "match_probability": 0.9969233958301993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995840874090893, - "recall": 0.5851013781373269, - "row_count": 477830, - "tn": 173795, - "tn_rate": 0.9995743922148284, - "tp": 177848, - "tp_rate": 0.5851013781373269, - "truth_threshold": 8.34 - }, - { - "f1": 0.737558702990894, - "fn": 126334, - "fn_rate": 0.41562568882192125, - "fp": 74, - "fp_rate": 0.0004256077851715947, - "match_probability": 0.9969656238233504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995835701543604, - "recall": 0.5843743111780788, - "row_count": 477830, - "tn": 173795, - "tn_rate": 0.9995743922148284, - "tp": 177627, - "tp_rate": 0.5843743111780788, - "truth_threshold": 8.36 - }, - { - "f1": 0.737132864518648, - "fn": 126497, - "fn_rate": 0.4161619418280635, - "fp": 74, - "fp_rate": 0.0004256077851715947, - "match_probability": 0.9970072739552628, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995831878245784, - "recall": 0.5838380581719366, - "row_count": 477830, - "tn": 173795, - "tn_rate": 0.9995743922148284, - "tp": 177464, - "tp_rate": 0.5838380581719366, - "truth_threshold": 8.38 - }, - { - "f1": 0.7366144333495394, - "fn": 126694, - "fn_rate": 0.4168100512894746, - "fp": 74, - "fp_rate": 0.0004256077851715947, - "match_probability": 0.9970483540861322, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995827248070103, - "recall": 0.5831899487105253, - "row_count": 477830, - "tn": 173795, - "tn_rate": 0.9995743922148284, - "tp": 177267, - "tp_rate": 0.5831899487105253, - "truth_threshold": 8.4 - }, - { - "f1": 0.7363024232096097, - "fn": 126814, - "fn_rate": 0.4172048387786591, - "fp": 73, - "fp_rate": 0.0004198563286152218, - "match_probability": 0.9970888719705324, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995880826091863, - "recall": 0.5827951612213409, - "row_count": 477830, - "tn": 173796, - "tn_rate": 0.9995801436713848, - "tp": 177147, - "tp_rate": 0.5827951612213409, - "truth_threshold": 8.42 - }, - { - "f1": 0.7358715718396062, - "fn": 126978, - "fn_rate": 0.41774438168054456, - "fp": 73, - "fp_rate": 0.0004198563286152218, - "match_probability": 0.9971288352587981, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995877010663293, - "recall": 0.5822556183194555, - "row_count": 477830, - "tn": 173796, - "tn_rate": 0.9995801436713848, - "tp": 176983, - "tp_rate": 0.5822556183194555, - "truth_threshold": 8.44 - }, - { - "f1": 0.7354130272023958, - "fn": 127153, - "fn_rate": 0.4183201134356052, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.9971682514983926, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995929443690638, - "recall": 0.5816798865643947, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 176808, - "tp_rate": 0.5816798865643947, - "truth_threshold": 8.46 - }, - { - "f1": 0.7349605132856775, - "fn": 127325, - "fn_rate": 0.4188859755034363, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.9972071281352571, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999592548158544, - "recall": 0.5811140244965637, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 176636, - "tp_rate": 0.5811140244965637, - "truth_threshold": 8.48 - }, - { - "f1": 0.7344982455556157, - "fn": 127500, - "fn_rate": 0.41946170725849696, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.9972454725151444, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995921442449853, - "recall": 0.580538292741503, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 176461, - "tp_rate": 0.580538292741503, - "truth_threshold": 8.5 - }, - { - "f1": 0.7341335764873406, - "fn": 127639, - "fn_rate": 0.41991900276680233, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.9972832918849344, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995918228511174, - "recall": 0.5800809972331977, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 176322, - "tp_rate": 0.5800809972331977, - "truth_threshold": 8.52 - }, - { - "f1": 0.73359575132771, - "fn": 127843, - "fn_rate": 0.4205901414984159, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.997320593393935, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995913502468926, - "recall": 0.5794098585015841, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 176118, - "tp_rate": 0.5794098585015841, - "truth_threshold": 8.540000000000001 - }, - { - "f1": 0.7332011116620347, - "fn": 127992, - "fn_rate": 0.4210803359641533, - "fp": 72, - "fp_rate": 0.0004141048720588489, - "match_probability": 0.9973573840951653, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995910043683006, - "recall": 0.5789196640358467, - "row_count": 477830, - "tn": 173797, - "tn_rate": 0.9995858951279412, - "tp": 175969, - "tp_rate": 0.5789196640358467, - "truth_threshold": 8.56 - }, - { - "f1": 0.7328726587701823, - "fn": 128117, - "fn_rate": 0.4214915729320538, - "fp": 71, - "fp_rate": 0.000408353415502476, - "match_probability": 0.9973936709466236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9995963959866981, - "recall": 0.5785084270679463, - "row_count": 477830, - "tn": 173798, - "tn_rate": 0.9995916465844975, - "tp": 175844, - "tp_rate": 0.5785084270679463, - "truth_threshold": 8.58 - }, - { - "f1": 0.7325743300705364, - "fn": 128234, - "fn_rate": 0.4218764907340086, - "fp": 65, - "fp_rate": 0.0003738446761642386, - "match_probability": 0.9974294608125389, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996302448348048, - "recall": 0.5781235092659913, - "row_count": 477830, - "tn": 173804, - "tn_rate": 0.9996261553238358, - "tp": 175727, - "tp_rate": 0.5781235092659913, - "truth_threshold": 8.6 - }, - { - "f1": 0.7321673568280102, - "fn": 128388, - "fn_rate": 0.42238313467846206, - "fp": 65, - "fp_rate": 0.0003738446761642386, - "match_probability": 0.9974647604646075, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996299206322095, - "recall": 0.577616865321538, - "row_count": 477830, - "tn": 173804, - "tn_rate": 0.9996261553238358, - "tp": 175573, - "tp_rate": 0.577616865321538, - "truth_threshold": 8.620000000000001 - }, - { - "f1": 0.731676588501796, - "fn": 128573, - "fn_rate": 0.4229917653909548, - "fp": 65, - "fp_rate": 0.0003738446761642386, - "match_probability": 0.9974995765832131, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996295304155529, - "recall": 0.5770082346090453, - "row_count": 477830, - "tn": 173804, - "tn_rate": 0.9996261553238358, - "tp": 175388, - "tp_rate": 0.5770082346090453, - "truth_threshold": 8.64 - }, - { - "f1": 0.7313091522141916, - "fn": 128713, - "fn_rate": 0.4234523507950033, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9975339157586318, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996349365702291, - "recall": 0.5765476492049967, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 175248, - "tp_rate": 0.5765476492049967, - "truth_threshold": 8.66 - }, - { - "f1": 0.7308707013867437, - "fn": 128878, - "fn_rate": 0.42399518359263194, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9975677844922232, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996345926564543, - "recall": 0.576004816407368, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 175083, - "tp_rate": 0.576004816407368, - "truth_threshold": 8.68 - }, - { - "f1": 0.7304721101729595, - "fn": 129029, - "fn_rate": 0.4244919578498557, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9976011891976038, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999634277354911, - "recall": 0.5755080421501443, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174932, - "tp_rate": 0.5755080421501443, - "truth_threshold": 8.700000000000001 - }, - { - "f1": 0.7299959480176617, - "fn": 129208, - "fn_rate": 0.42508084918788924, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9976341362018084, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996339028812987, - "recall": 0.5749191508121108, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174753, - "tp_rate": 0.5749191508121108, - "truth_threshold": 8.72 - }, - { - "f1": 0.7295065525541589, - "fn": 129393, - "fn_rate": 0.425689479900382, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9976666317464351, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996335150487883, - "recall": 0.574310520099618, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174568, - "tp_rate": 0.574310520099618, - "truth_threshold": 8.74 - }, - { - "f1": 0.729141237647767, - "fn": 129530, - "fn_rate": 0.4261401956172009, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9976986819887761, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996332273131036, - "recall": 0.5738598043827992, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174431, - "tp_rate": 0.5738598043827992, - "truth_threshold": 8.76 - }, - { - "f1": 0.7286363655371697, - "fn": 129720, - "fn_rate": 0.4267652758084096, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9977302930029345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999632827514988, - "recall": 0.5732347241915904, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174241, - "tp_rate": 0.5732347241915904, - "truth_threshold": 8.78 - }, - { - "f1": 0.7282204020848846, - "fn": 129877, - "fn_rate": 0.42728178944009265, - "fp": 64, - "fp_rate": 0.0003680932196078657, - "match_probability": 0.9977614707809268, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996324964972323, - "recall": 0.5727182105599073, - "row_count": 477830, - "tn": 173805, - "tn_rate": 0.9996319067803922, - "tp": 174084, - "tp_rate": 0.5727182105599073, - "truth_threshold": 8.8 - }, - { - "f1": 0.7276923591988416, - "fn": 130076, - "fn_rate": 0.42793647869299023, - "fp": 63, - "fp_rate": 0.0003623417630514928, - "match_probability": 0.997792221233771, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996378227976177, - "recall": 0.5720635213070098, - "row_count": 477830, - "tn": 173806, - "tn_rate": 0.9996376582369485, - "tp": 173885, - "tp_rate": 0.5720635213070098, - "truth_threshold": 8.82 - }, - { - "f1": 0.7273526419999079, - "fn": 130203, - "fn_rate": 0.42835429545237713, - "fp": 63, - "fp_rate": 0.0003623417630514928, - "match_probability": 0.9978225501925614, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996375581776655, - "recall": 0.5716457045476229, - "row_count": 477830, - "tn": 173806, - "tn_rate": 0.9996376582369485, - "tp": 173758, - "tp_rate": 0.5716457045476229, - "truth_threshold": 8.84 - }, - { - "f1": 0.7269624859201815, - "fn": 130350, - "fn_rate": 0.4288379101266281, - "fp": 63, - "fp_rate": 0.0003623417630514928, - "match_probability": 0.9978524634095293, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996372514020522, - "recall": 0.5711620898733719, - "row_count": 477830, - "tn": 173806, - "tn_rate": 0.9996376582369485, - "tp": 173611, - "tp_rate": 0.5711620898733719, - "truth_threshold": 8.86 - }, - { - "f1": 0.7265358951482175, - "fn": 130510, - "fn_rate": 0.4293642934455407, - "fp": 63, - "fp_rate": 0.0003623417630514928, - "match_probability": 0.9978819665590902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996369169058404, - "recall": 0.5706357065544593, - "row_count": 477830, - "tn": 173806, - "tn_rate": 0.9996376582369485, - "tp": 173451, - "tp_rate": 0.5706357065544593, - "truth_threshold": 8.88 - }, - { - "f1": 0.7260674628116489, - "fn": 130685, - "fn_rate": 0.4299400252006014, - "fp": 63, - "fp_rate": 0.0003623417630514928, - "match_probability": 0.9979110652388782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996365503435465, - "recall": 0.5700599747993986, - "row_count": 477830, - "tn": 173806, - "tn_rate": 0.9996376582369485, - "tp": 173276, - "tp_rate": 0.5700599747993986, - "truth_threshold": 8.9 - }, - { - "f1": 0.7254910180895885, - "fn": 130906, - "fn_rate": 0.43066709215984944, - "fp": 55, - "fp_rate": 0.0003163301106005096, - "match_probability": 0.9979397649707662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996822829414823, - "recall": 0.5693329078401506, - "row_count": 477830, - "tn": 173814, - "tn_rate": 0.9996836698893995, - "tp": 173055, - "tp_rate": 0.5693329078401506, - "truth_threshold": 8.92 - }, - { - "f1": 0.7251008546435072, - "fn": 131052, - "fn_rate": 0.43114741693835723, - "fp": 55, - "fp_rate": 0.0003163301106005096, - "match_probability": 0.9979680712018738, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996820147545153, - "recall": 0.5688525830616428, - "row_count": 477830, - "tn": 173814, - "tn_rate": 0.9996836698893995, - "tp": 172909, - "tp_rate": 0.5688525830616428, - "truth_threshold": 8.94 - }, - { - "f1": 0.7247211513857487, - "fn": 131194, - "fn_rate": 0.4316145821338922, - "fp": 55, - "fp_rate": 0.0003163301106005096, - "match_probability": 0.9979959893055618, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996817534804596, - "recall": 0.5683854178661079, - "row_count": 477830, - "tn": 173814, - "tn_rate": 0.9996836698893995, - "tp": 172767, - "tp_rate": 0.5683854178661079, - "truth_threshold": 8.96 - }, - { - "f1": 0.7242448657585753, - "fn": 131372, - "fn_rate": 0.43220018357618245, - "fp": 55, - "fp_rate": 0.0003163301106005096, - "match_probability": 0.9980235245824145, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996814253608581, - "recall": 0.5677998164238175, - "row_count": 477830, - "tn": 173814, - "tn_rate": 0.9996836698893995, - "tp": 172589, - "tp_rate": 0.5677998164238175, - "truth_threshold": 8.98 - }, - { - "f1": 0.7238217972236098, - "fn": 131530, - "fn_rate": 0.4327199871036087, - "fp": 55, - "fp_rate": 0.0003163301106005096, - "match_probability": 0.9980506822612085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996811335412729, - "recall": 0.5672800128963913, - "row_count": 477830, - "tn": 173814, - "tn_rate": 0.9996836698893995, - "tp": 172431, - "tp_rate": 0.5672800128963913, - "truth_threshold": 9 - }, - { - "f1": 0.7233651217576437, - "fn": 131701, - "fn_rate": 0.43328255927569653, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9980774674998706, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996866186148543, - "recall": 0.5667174407243034, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 172260, - "tp_rate": 0.5667174407243034, - "truth_threshold": 9.02 - }, - { - "f1": 0.7229146450580333, - "fn": 131869, - "fn_rate": 0.4338352617605548, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9981038853864208, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996863127810115, - "recall": 0.5661647382394452, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 172092, - "tp_rate": 0.5661647382394452, - "truth_threshold": 9.040000000000001 - }, - { - "f1": 0.7224918583884862, - "fn": 132026, - "fn_rate": 0.4343517753922378, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9981299409399065, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999686026431923, - "recall": 0.5656482246077622, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 171935, - "tp_rate": 0.5656482246077622, - "truth_threshold": 9.06 - }, - { - "f1": 0.7220676261895954, - "fn": 132184, - "fn_rate": 0.43487157891966405, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9981556391113212, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996857377306773, - "recall": 0.565128421080336, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 171777, - "tp_rate": 0.565128421080336, - "truth_threshold": 9.08 - }, - { - "f1": 0.7215290481296915, - "fn": 132385, - "fn_rate": 0.435532847964048, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9981809847845143, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996853696906135, - "recall": 0.564467152035952, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 171576, - "tp_rate": 0.564467152035952, - "truth_threshold": 9.1 - }, - { - "f1": 0.7210569269860501, - "fn": 132560, - "fn_rate": 0.4361085797191087, - "fp": 54, - "fp_rate": 0.00031057865404413666, - "match_probability": 0.9982059827770873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996850485550144, - "recall": 0.5638914202808913, - "row_count": 477830, - "tn": 173815, - "tn_rate": 0.9996894213459558, - "tp": 171401, - "tp_rate": 0.5638914202808913, - "truth_threshold": 9.120000000000001 - }, - { - "f1": 0.7205701636253451, - "fn": 132742, - "fn_rate": 0.4367073407443718, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9982306378412784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996963875962656, - "recall": 0.5632926592556282, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 171219, - "tp_rate": 0.5632926592556282, - "truth_threshold": 9.14 - }, - { - "f1": 0.7201758004900186, - "fn": 132889, - "fn_rate": 0.4371909554186228, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9982549546648377, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996961267852551, - "recall": 0.5628090445813773, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 171072, - "tp_rate": 0.5628090445813773, - "truth_threshold": 9.16 - }, - { - "f1": 0.7196541529442484, - "fn": 133082, - "fn_rate": 0.4378259052970611, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9982789378718879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996957836787944, - "recall": 0.5621740947029389, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170879, - "tp_rate": 0.5621740947029389, - "truth_threshold": 9.18 - }, - { - "f1": 0.719195655562624, - "fn": 133252, - "fn_rate": 0.4383851875734058, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9983025920237768, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996954808182196, - "recall": 0.5616148124265942, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170709, - "tp_rate": 0.5616148124265942, - "truth_threshold": 9.200000000000001 - }, - { - "f1": 0.7186978437884586, - "fn": 133437, - "fn_rate": 0.4389938182858985, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9983259216199165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999695150548729, - "recall": 0.5610061817141014, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170524, - "tp_rate": 0.5610061817141014, - "truth_threshold": 9.22 - }, - { - "f1": 0.7184007621841974, - "fn": 133547, - "fn_rate": 0.43935570681765096, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9983489310986134, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996949538324358, - "recall": 0.5606442931823491, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170414, - "tp_rate": 0.5606442931823491, - "truth_threshold": 9.24 - }, - { - "f1": 0.7180614882501023, - "fn": 133672, - "fn_rate": 0.4397669437855514, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9983716248378863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996947299827992, - "recall": 0.5602330562144485, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170289, - "tp_rate": 0.5602330562144485, - "truth_threshold": 9.26 - }, - { - "f1": 0.71761266809523, - "fn": 133838, - "fn_rate": 0.44031306647892327, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.998394007156274, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996944322021448, - "recall": 0.5596869335210767, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 170123, - "tp_rate": 0.5596869335210767, - "truth_threshold": 9.28 - }, - { - "f1": 0.7171027923012326, - "fn": 134027, - "fn_rate": 0.4409348567743888, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9984160823136331, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996940924546728, - "recall": 0.5590651432256112, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 169934, - "tp_rate": 0.5590651432256112, - "truth_threshold": 9.3 - }, - { - "f1": 0.7166274072760738, - "fn": 134202, - "fn_rate": 0.4415105885294495, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9984378545119243, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996937771993569, - "recall": 0.5584894114705505, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 169759, - "tp_rate": 0.5584894114705505, - "truth_threshold": 9.32 - }, - { - "f1": 0.7162155314387061, - "fn": 134354, - "fn_rate": 0.4420106526824165, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9984593278959899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999693502849834, - "recall": 0.5579893473175835, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 169607, - "tp_rate": 0.5579893473175835, - "truth_threshold": 9.34 - }, - { - "f1": 0.7156406313370285, - "fn": 134566, - "fn_rate": 0.4427081105799757, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9984805065543192, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996931193824617, - "recall": 0.5572918894200243, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 169395, - "tp_rate": 0.5572918894200243, - "truth_threshold": 9.36 - }, - { - "f1": 0.7151901141487864, - "fn": 134732, - "fn_rate": 0.44325423327334756, - "fp": 52, - "fp_rate": 0.0002990757409313909, - "match_probability": 0.9985013945198057, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9996928184497965, - "recall": 0.5567457667266524, - "row_count": 477830, - "tn": 173817, - "tn_rate": 0.9997009242590686, - "tp": 169229, - "tp_rate": 0.5567457667266524, - "truth_threshold": 9.38 - }, - { - "f1": 0.7146921915891209, - "fn": 134917, - "fn_rate": 0.4438628639858403, - "fp": 49, - "fp_rate": 0.00028182137126227214, - "match_probability": 0.9985219957704938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997102186370813, - "recall": 0.5561371360141597, - "row_count": 477830, - "tn": 173820, - "tn_rate": 0.9997181786287377, - "tp": 169044, - "tp_rate": 0.5561371360141597, - "truth_threshold": 9.4 - }, - { - "f1": 0.714349753027945, - "fn": 135043, - "fn_rate": 0.444277390849484, - "fp": 49, - "fp_rate": 0.00028182137126227214, - "match_probability": 0.998542314230315, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997100025448756, - "recall": 0.555722609150516, - "row_count": 477830, - "tn": 173820, - "tn_rate": 0.9997181786287377, - "tp": 168918, - "tp_rate": 0.555722609150516, - "truth_threshold": 9.42 - }, - { - "f1": 0.7139025556199525, - "fn": 135208, - "fn_rate": 0.4448202236471126, - "fp": 49, - "fp_rate": 0.00028182137126227214, - "match_probability": 0.9985623537698158, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997097190791578, - "recall": 0.5551797763528874, - "row_count": 477830, - "tn": 173820, - "tn_rate": 0.9997181786287377, - "tp": 168753, - "tp_rate": 0.5551797763528874, - "truth_threshold": 9.44 - }, - { - "f1": 0.7135161440480724, - "fn": 135350, - "fn_rate": 0.44528738884264757, - "fp": 49, - "fp_rate": 0.00028182137126227214, - "match_probability": 0.9985821182068747, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997094746827938, - "recall": 0.5547126111573524, - "row_count": 477830, - "tn": 173820, - "tn_rate": 0.9997181786287377, - "tp": 168611, - "tp_rate": 0.5547126111573524, - "truth_threshold": 9.46 - }, - { - "f1": 0.7129618261793581, - "fn": 135553, - "fn_rate": 0.44595523767851797, - "fp": 49, - "fp_rate": 0.00028182137126227214, - "match_probability": 0.9986016113074108, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997091245837216, - "recall": 0.554044762321482, - "row_count": 477830, - "tn": 173820, - "tn_rate": 0.9997181786287377, - "tp": 168408, - "tp_rate": 0.554044762321482, - "truth_threshold": 9.48 - }, - { - "f1": 0.7124348820465037, - "fn": 135748, - "fn_rate": 0.4465967673484427, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9986208367860828, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997206703910615, - "recall": 0.5534032326515572, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 168213, - "tp_rate": 0.5534032326515572, - "truth_threshold": 9.5 - }, - { - "f1": 0.7120597181857466, - "fn": 135885, - "fn_rate": 0.44704748306526165, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9986397983069785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997204427710664, - "recall": 0.5529525169347383, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 168076, - "tp_rate": 0.5529525169347383, - "truth_threshold": 9.52 - }, - { - "f1": 0.7116121376504493, - "fn": 136049, - "fn_rate": 0.4475870259671471, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9986584994842955, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997201698033449, - "recall": 0.5524129740328529, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167912, - "tp_rate": 0.5524129740328529, - "truth_threshold": 9.540000000000001 - }, - { - "f1": 0.7111684854034713, - "fn": 136212, - "fn_rate": 0.44812327897328935, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9986769438830138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997198979713462, - "recall": 0.5518767210267107, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167749, - "tp_rate": 0.5518767210267107, - "truth_threshold": 9.56 - }, - { - "f1": 0.7107105748637588, - "fn": 136379, - "fn_rate": 0.4486726915624044, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9986951350195571, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997196189203539, - "recall": 0.5513273084375956, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167582, - "tp_rate": 0.5513273084375956, - "truth_threshold": 9.58 - }, - { - "f1": 0.7102237533198137, - "fn": 136557, - "fn_rate": 0.44925829300469466, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9987130763624487, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997193208759577, - "recall": 0.5507417069953053, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167404, - "tp_rate": 0.5507417069953053, - "truth_threshold": 9.6 - }, - { - "f1": 0.709895351501829, - "fn": 136677, - "fn_rate": 0.44965308049387914, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9987307713329557, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999719119589317, - "recall": 0.5503469195061208, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167284, - "tp_rate": 0.5503469195061208, - "truth_threshold": 9.620000000000001 - }, - { - "f1": 0.7094669457097131, - "fn": 136834, - "fn_rate": 0.4501695941255622, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.998748223305727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997188558029358, - "recall": 0.5498304058744379, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 167127, - "tp_rate": 0.5498304058744379, - "truth_threshold": 9.64 - }, - { - "f1": 0.7091065044033596, - "fn": 136965, - "fn_rate": 0.45060057046792185, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9987654356094217, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997186353214442, - "recall": 0.5493994295320781, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166996, - "tp_rate": 0.5493994295320781, - "truth_threshold": 9.66 - }, - { - "f1": 0.7086336894420492, - "fn": 137138, - "fn_rate": 0.45116972243149617, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9987824115273289, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997183436207826, - "recall": 0.5488302775685039, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166823, - "tp_rate": 0.5488302775685039, - "truth_threshold": 9.68 - }, - { - "f1": 0.7082166576725489, - "fn": 137290, - "fn_rate": 0.45166978658446316, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9987991542979808, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997180868292566, - "recall": 0.5483302134155369, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166671, - "tp_rate": 0.5483302134155369, - "truth_threshold": 9.700000000000001 - }, - { - "f1": 0.7078048490206746, - "fn": 137440, - "fn_rate": 0.4521632709459437, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988156671157563, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997178329571106, - "recall": 0.5478367290540562, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166521, - "tp_rate": 0.5478367290540562, - "truth_threshold": 9.72 - }, - { - "f1": 0.7072511098637546, - "fn": 137641, - "fn_rate": 0.4528245399903277, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988319531314767, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997174920507071, - "recall": 0.5471754600096723, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166320, - "tp_rate": 0.5471754600096723, - "truth_threshold": 9.74 - }, - { - "f1": 0.7068166833273072, - "fn": 137799, - "fn_rate": 0.45334434351775393, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988480154529947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997172234957192, - "recall": 0.5466556564822461, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166162, - "tp_rate": 0.5466556564822461, - "truth_threshold": 9.76 - }, - { - "f1": 0.7063752106347126, - "fn": 137960, - "fn_rate": 0.45387401673240974, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988638571457743, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997169493158605, - "recall": 0.5461259832675902, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 166001, - "tp_rate": 0.5461259832675902, - "truth_threshold": 9.78 - }, - { - "f1": 0.7059524620309201, - "fn": 138113, - "fn_rate": 0.45437737078111995, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988794812334637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997166882666747, - "recall": 0.54562262921888, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 165848, - "tp_rate": 0.54562262921888, - "truth_threshold": 9.8 - }, - { - "f1": 0.7055600027250741, - "fn": 138256, - "fn_rate": 0.4548478258723981, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9988948906984604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997164438438149, - "recall": 0.5451521741276019, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 165705, - "tp_rate": 0.5451521741276019, - "truth_threshold": 9.82 - }, - { - "f1": 0.7051036315776023, - "fn": 138421, - "fn_rate": 0.45539065867002676, - "fp": 47, - "fp_rate": 0.00027031845814952637, - "match_probability": 0.9989100884824688, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997161612928551, - "recall": 0.5446093413299733, - "row_count": 477830, - "tn": 173822, - "tn_rate": 0.9997296815418505, - "tp": 165540, - "tp_rate": 0.5446093413299733, - "truth_threshold": 9.84 - }, - { - "f1": 0.7046529464399847, - "fn": 138586, - "fn_rate": 0.4559334914676554, - "fp": 45, - "fp_rate": 0.00025881554503678054, - "match_probability": 0.9989250774870504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999727965179543, - "recall": 0.5440665085323446, - "row_count": 477830, - "tn": 173824, - "tn_rate": 0.9997411844549632, - "tp": 165375, - "tp_rate": 0.5440665085323446, - "truth_threshold": 9.86 - }, - { - "f1": 0.7040676260955564, - "fn": 138798, - "fn_rate": 0.4566309493652146, - "fp": 45, - "fp_rate": 0.00025881554503678054, - "match_probability": 0.9989398605741672, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997276160960729, - "recall": 0.5433690506347854, - "row_count": 477830, - "tn": 173824, - "tn_rate": 0.9997411844549632, - "tp": 165163, - "tp_rate": 0.5433690506347854, - "truth_threshold": 9.88 - }, - { - "f1": 0.7035217454346955, - "fn": 138995, - "fn_rate": 0.4572790588266258, - "fp": 45, - "fp_rate": 0.00025881554503678054, - "match_probability": 0.9989544405667166, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997272909078788, - "recall": 0.5427209411733742, - "row_count": 477830, - "tn": 173824, - "tn_rate": 0.9997411844549632, - "tp": 164966, - "tp_rate": 0.5427209411733742, - "truth_threshold": 9.9 - }, - { - "f1": 0.7029852083502213, - "fn": 139189, - "fn_rate": 0.4579172986008073, - "fp": 45, - "fp_rate": 0.00025881554503678054, - "match_probability": 0.998968820249061, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997269699120843, - "recall": 0.5420827013991927, - "row_count": 477830, - "tn": 173824, - "tn_rate": 0.9997411844549632, - "tp": 164772, - "tp_rate": 0.5420827013991927, - "truth_threshold": 9.92 - }, - { - "f1": 0.7026837876014048, - "fn": 139299, - "fn_rate": 0.4582791871325598, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9989830023675484, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997328573336733, - "recall": 0.5417208128674402, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 164662, - "tp_rate": 0.5417208128674402, - "truth_threshold": 9.94 - }, - { - "f1": 0.702207498922078, - "fn": 139471, - "fn_rate": 0.4588450492003908, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9989969896310279, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997325780689705, - "recall": 0.5411549507996092, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 164490, - "tp_rate": 0.5411549507996092, - "truth_threshold": 9.96 - }, - { - "f1": 0.7016988674217188, - "fn": 139654, - "fn_rate": 0.45944710012139717, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990107847113568, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997322803025233, - "recall": 0.5405528998786029, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 164307, - "tp_rate": 0.5405528998786029, - "truth_threshold": 9.98 - }, - { - "f1": 0.7013050814874938, - "fn": 139796, - "fn_rate": 0.4599142653169321, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990243902439024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997320487914791, - "recall": 0.5400857346830679, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 164165, - "tp_rate": 0.5400857346830679, - "truth_threshold": 10 - }, - { - "f1": 0.7009221591686039, - "fn": 139934, - "fn_rate": 0.4603682709294942, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990378088280355, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997318234179106, - "recall": 0.5396317290705057, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 164027, - "tp_rate": 0.5396317290705057, - "truth_threshold": 10.02 - }, - { - "f1": 0.7004321861093418, - "fn": 140111, - "fn_rate": 0.4609505824760413, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990510430276189, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997315337962341, - "recall": 0.5390494175239586, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163850, - "tp_rate": 0.5390494175239586, - "truth_threshold": 10.040000000000001 - }, - { - "f1": 0.6999875987290836, - "fn": 140271, - "fn_rate": 0.46147696579495395, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990640953714882, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997312714524778, - "recall": 0.538523034205046, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163690, - "tp_rate": 0.538523034205046, - "truth_threshold": 10.06 - }, - { - "f1": 0.6996608052560215, - "fn": 140388, - "fn_rate": 0.46186188359690883, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990769683539271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999731079288827, - "recall": 0.5381381164030912, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163573, - "tp_rate": 0.5381381164030912, - "truth_threshold": 10.08 - }, - { - "f1": 0.6991476105709982, - "fn": 140573, - "fn_rate": 0.46247051430940156, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9990896644351354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997307748788486, - "recall": 0.5375294856905984, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163388, - "tp_rate": 0.5375294856905984, - "truth_threshold": 10.1 - }, - { - "f1": 0.698675581733815, - "fn": 140742, - "fn_rate": 0.463026506690003, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9991021860416915, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997304961932587, - "recall": 0.536973493309997, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163219, - "tp_rate": 0.536973493309997, - "truth_threshold": 10.120000000000001 - }, - { - "f1": 0.6981560307984823, - "fn": 140929, - "fn_rate": 0.4636417171939821, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9991145355670089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997301871520028, - "recall": 0.5363582828060178, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 163032, - "tp_rate": 0.5363582828060178, - "truth_threshold": 10.14 - }, - { - "f1": 0.6978939568511721, - "fn": 141023, - "fn_rate": 0.4639509673938433, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9991267153717854, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999730031537225, - "recall": 0.5360490326061567, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 162938, - "tp_rate": 0.5360490326061567, - "truth_threshold": 10.16 - }, - { - "f1": 0.6974866965441007, - "fn": 141169, - "fn_rate": 0.4644312921723511, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9991387277844479, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997297894814414, - "recall": 0.535568707827649, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 162792, - "tp_rate": 0.535568707827649, - "truth_threshold": 10.18 - }, - { - "f1": 0.6970400912059935, - "fn": 141329, - "fn_rate": 0.46495767549126366, - "fp": 44, - "fp_rate": 0.0002530640884804077, - "match_probability": 0.9991505751015896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997295237158523, - "recall": 0.5350423245087363, - "row_count": 477830, - "tn": 173825, - "tn_rate": 0.9997469359115196, - "tp": 162632, - "tp_rate": 0.5350423245087363, - "truth_threshold": 10.200000000000001 - }, - { - "f1": 0.6966511320811343, - "fn": 141472, - "fn_rate": 0.46542813058254184, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9991622595884027, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999778495616059, - "recall": 0.5345718694174582, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 162489, - "tp_rate": 0.5345718694174582, - "truth_threshold": 10.22 - }, - { - "f1": 0.6962585559158047, - "fn": 141613, - "fn_rate": 0.4658920058823336, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.999173783479105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997783032811114, - "recall": 0.5341079941176664, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 162348, - "tp_rate": 0.5341079941176664, - "truth_threshold": 10.24 - }, - { - "f1": 0.6958446661919021, - "fn": 141761, - "fn_rate": 0.46637891045232777, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9991851489773601, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999778101037994, - "recall": 0.5336210895476723, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 162200, - "tp_rate": 0.5336210895476723, - "truth_threshold": 10.26 - }, - { - "f1": 0.6953633289272656, - "fn": 141933, - "fn_rate": 0.4669447725201588, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9991963582566927, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997778655346036, - "recall": 0.5330552274798411, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 162028, - "tp_rate": 0.5330552274798411, - "truth_threshold": 10.28 - }, - { - "f1": 0.6949949988624021, - "fn": 142064, - "fn_rate": 0.46737574886251854, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992074134608979, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997776858330297, - "recall": 0.5326242511374815, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161897, - "tp_rate": 0.5326242511374815, - "truth_threshold": 10.3 - }, - { - "f1": 0.6943827656257382, - "fn": 142283, - "fn_rate": 0.4680962360302802, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992183167044456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997773847656974, - "recall": 0.5319037639697198, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161678, - "tp_rate": 0.5319037639697198, - "truth_threshold": 10.32 - }, - { - "f1": 0.6940026635734845, - "fn": 142418, - "fn_rate": 0.4685403719556127, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992290700728785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997771987696421, - "recall": 0.5314596280443873, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161543, - "tp_rate": 0.5314596280443873, - "truth_threshold": 10.34 - }, - { - "f1": 0.6934638163267061, - "fn": 142610, - "fn_rate": 0.46917203193830787, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.999239675623206, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997769337059367, - "recall": 0.5308279680616921, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161351, - "tp_rate": 0.5308279680616921, - "truth_threshold": 10.36 - }, - { - "f1": 0.6929962595124468, - "fn": 142777, - "fn_rate": 0.4697214445274229, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992501353842916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997767026423521, - "recall": 0.5302785554725771, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161184, - "tp_rate": 0.5302785554725771, - "truth_threshold": 10.38 - }, - { - "f1": 0.6925759947702523, - "fn": 142926, - "fn_rate": 0.4702116389931603, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.999260451357236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997764960793687, - "recall": 0.5297883610068397, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 161035, - "tp_rate": 0.5297883610068397, - "truth_threshold": 10.4 - }, - { - "f1": 0.692231581302107, - "fn": 143049, - "fn_rate": 0.4706162961695744, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992706255157543, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999776325272759, - "recall": 0.5293837038304257, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160912, - "tp_rate": 0.5293837038304257, - "truth_threshold": 10.42 - }, - { - "f1": 0.691782678859602, - "fn": 143208, - "fn_rate": 0.4711393895927438, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992806598065492, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997761040867224, - "recall": 0.5288606104072562, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160753, - "tp_rate": 0.5288606104072562, - "truth_threshold": 10.44 - }, - { - "f1": 0.691388476356514, - "fn": 143348, - "fn_rate": 0.47159997499679235, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9992905561496781, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997759089692435, - "recall": 0.5284000250032076, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160613, - "tp_rate": 0.5284000250032076, - "truth_threshold": 10.46 - }, - { - "f1": 0.6908517757709649, - "fn": 143539, - "fn_rate": 0.4722283450837443, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993003164389153, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997756422241334, - "recall": 0.5277716549162557, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160422, - "tp_rate": 0.5277716549162557, - "truth_threshold": 10.48 - }, - { - "f1": 0.690413213171816, - "fn": 143694, - "fn_rate": 0.4727382789239409, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993099425421107, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997754252883602, - "recall": 0.5272617210760591, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160267, - "tp_rate": 0.5272617210760591, - "truth_threshold": 10.5 - }, - { - "f1": 0.6899335048503105, - "fn": 143864, - "fn_rate": 0.47329756120028554, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993194363015417, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997751868759094, - "recall": 0.5267024387997145, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 160097, - "tp_rate": 0.5267024387997145, - "truth_threshold": 10.52 - }, - { - "f1": 0.6894295063309148, - "fn": 144043, - "fn_rate": 0.47388645253831907, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993287995342623, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999774935293897, - "recall": 0.5261135474616809, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159918, - "tp_rate": 0.5261135474616809, - "truth_threshold": 10.540000000000001 - }, - { - "f1": 0.6890338828826109, - "fn": 144183, - "fn_rate": 0.4743470379423676, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993380340324456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997747381330797, - "recall": 0.5256529620576323, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159778, - "tp_rate": 0.5256529620576323, - "truth_threshold": 10.56 - }, - { - "f1": 0.6886719609357139, - "fn": 144311, - "fn_rate": 0.4747681445974977, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993471415637232, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997745575692296, - "recall": 0.5252318554025023, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159650, - "tp_rate": 0.5252318554025023, - "truth_threshold": 10.58 - }, - { - "f1": 0.6882588996763754, - "fn": 144457, - "fn_rate": 0.47524846937600546, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993561238715196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997743512598721, - "recall": 0.5247515306239945, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159504, - "tp_rate": 0.5247515306239945, - "truth_threshold": 10.6 - }, - { - "f1": 0.6877832741964726, - "fn": 144625, - "fn_rate": 0.47580117186086374, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993649826753817, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997741133950757, - "recall": 0.5241988281391363, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159336, - "tp_rate": 0.5241988281391363, - "truth_threshold": 10.620000000000001 - }, - { - "f1": 0.6872349613507794, - "fn": 144818, - "fn_rate": 0.47643612173930205, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993737196713037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997738395140062, - "recall": 0.523563878260698, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 159143, - "tp_rate": 0.523563878260698, - "truth_threshold": 10.64 - }, - { - "f1": 0.6868082974072762, - "fn": 144969, - "fn_rate": 0.4769328959965259, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993823365320493, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997736247704807, - "recall": 0.5230671040034741, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158992, - "tp_rate": 0.5230671040034741, - "truth_threshold": 10.66 - }, - { - "f1": 0.6864735238835958, - "fn": 145087, - "fn_rate": 0.4773211036942239, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993908349074672, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997734566735889, - "recall": 0.522678896305776, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158874, - "tp_rate": 0.522678896305776, - "truth_threshold": 10.68 - }, - { - "f1": 0.6860250004322344, - "fn": 145245, - "fn_rate": 0.4778409072216501, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9993992164248033, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997732312033865, - "recall": 0.5221590927783498, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158716, - "tp_rate": 0.5221590927783498, - "truth_threshold": 10.700000000000001 - }, - { - "f1": 0.685537745761466, - "fn": 145416, - "fn_rate": 0.478403479393738, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994074826890101, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999772986675579, - "recall": 0.5215965206062619, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158545, - "tp_rate": 0.5215965206062619, - "truth_threshold": 10.72 - }, - { - "f1": 0.6852578269274849, - "fn": 145515, - "fn_rate": 0.4787291790723152, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994156352830494, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999772844865663, - "recall": 0.5212708209276848, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158446, - "tp_rate": 0.5212708209276848, - "truth_threshold": 10.74 - }, - { - "f1": 0.6848269059382381, - "fn": 145666, - "fn_rate": 0.479225953329539, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994236757681928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997726282282055, - "recall": 0.520774046670461, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158295, - "tp_rate": 0.520774046670461, - "truth_threshold": 10.76 - }, - { - "f1": 0.6843758926021137, - "fn": 145825, - "fn_rate": 0.4797490467527084, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994316056843171, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997723996661861, - "recall": 0.5202509532472916, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 158136, - "tp_rate": 0.5202509532472916, - "truth_threshold": 10.78 - }, - { - "f1": 0.6839159083234482, - "fn": 145986, - "fn_rate": 0.4802787199673642, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994394265501966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997721677604724, - "recall": 0.5197212800326357, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157975, - "tp_rate": 0.5197212800326357, - "truth_threshold": 10.8 - }, - { - "f1": 0.6833858107435046, - "fn": 146172, - "fn_rate": 0.48089064057560016, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994471398637907, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997718992555045, - "recall": 0.5191093594243998, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157789, - "tp_rate": 0.5191093594243998, - "truth_threshold": 10.82 - }, - { - "f1": 0.6829465894911965, - "fn": 146326, - "fn_rate": 0.48139728452005354, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994547471025279, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997716764655517, - "recall": 0.5186027154799464, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157635, - "tp_rate": 0.5186027154799464, - "truth_threshold": 10.84 - }, - { - "f1": 0.6825456672950659, - "fn": 146467, - "fn_rate": 0.4818611598198453, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.999462249723586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997714721005523, - "recall": 0.5181388401801547, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157494, - "tp_rate": 0.5181388401801547, - "truth_threshold": 10.86 - }, - { - "f1": 0.6820786945513821, - "fn": 146630, - "fn_rate": 0.4823974128259875, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994696491641683, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997712353924266, - "recall": 0.5176025871740124, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157331, - "tp_rate": 0.5176025871740124, - "truth_threshold": 10.88 - }, - { - "f1": 0.681585760938862, - "fn": 146803, - "fn_rate": 0.4829665647895618, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994769468417765, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997709836253292, - "recall": 0.5170334352104382, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 157158, - "tp_rate": 0.5170334352104382, - "truth_threshold": 10.9 - }, - { - "f1": 0.6810208305311981, - "fn": 147000, - "fn_rate": 0.483614674250973, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994841441544793, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997706962553424, - "recall": 0.5163853257490271, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 156961, - "tp_rate": 0.5163853257490271, - "truth_threshold": 10.92 - }, - { - "f1": 0.680476942843253, - "fn": 147190, - "fn_rate": 0.4842397544421817, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994912424811782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997704184124433, - "recall": 0.5157602455578183, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 156771, - "tp_rate": 0.5157602455578183, - "truth_threshold": 10.94 - }, - { - "f1": 0.6798624259584152, - "fn": 147405, - "fn_rate": 0.48494708202697057, - "fp": 36, - "fp_rate": 0.00020705243602942445, - "match_probability": 0.9994982431818683, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99977010319812, - "recall": 0.5150529179730294, - "row_count": 477830, - "tn": 173833, - "tn_rate": 0.9997929475639705, - "tp": 156556, - "tp_rate": 0.5150529179730294, - "truth_threshold": 10.96 - }, - { - "f1": 0.679242987730701, - "fn": 147621, - "fn_rate": 0.4856576995075026, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995051475978975, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997761790567546, - "recall": 0.5143423004924974, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 156340, - "tp_rate": 0.5143423004924974, - "truth_threshold": 10.98 - }, - { - "f1": 0.6787938580288497, - "fn": 147778, - "fn_rate": 0.48617421313918563, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995119570522206, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997759541154029, - "recall": 0.5138257868608144, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 156183, - "tp_rate": 0.5138257868608144, - "truth_threshold": 11 - }, - { - "f1": 0.6783472166669565, - "fn": 147933, - "fn_rate": 0.4866841469793822, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995186728496503, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997757315955735, - "recall": 0.5133158530206178, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 156028, - "tp_rate": 0.5133158530206178, - "truth_threshold": 11.02 - }, - { - "f1": 0.6778356232303858, - "fn": 148111, - "fn_rate": 0.48726974842167253, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995252962771056, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997754755107933, - "recall": 0.5127302515783275, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 155850, - "tp_rate": 0.5127302515783275, - "truth_threshold": 11.040000000000001 - }, - { - "f1": 0.6772761884042205, - "fn": 148306, - "fn_rate": 0.4879112780915973, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995318286038558, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997751942963582, - "recall": 0.5120887219084027, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 155655, - "tp_rate": 0.5120887219084027, - "truth_threshold": 11.06 - }, - { - "f1": 0.6768803562024226, - "fn": 148443, - "fn_rate": 0.4883619938084162, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995382710817619, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997749963035107, - "recall": 0.5116380061915838, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 155518, - "tp_rate": 0.5116380061915838, - "truth_threshold": 11.08 - }, - { - "f1": 0.6764425442243808, - "fn": 148595, - "fn_rate": 0.4888620579613832, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.999544624945514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997747762240913, - "recall": 0.5111379420386168, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 155366, - "tp_rate": 0.5111379420386168, - "truth_threshold": 11.1 - }, - { - "f1": 0.6759972648441005, - "fn": 148750, - "fn_rate": 0.4893719918015798, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995508914128666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997745513572008, - "recall": 0.5106280081984202, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 155211, - "tp_rate": 0.5106280081984202, - "truth_threshold": 11.120000000000001 - }, - { - "f1": 0.6753640618055374, - "fn": 148969, - "fn_rate": 0.49009247896934144, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995570716848697, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997742328755637, - "recall": 0.5099075210306585, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154992, - "tp_rate": 0.5099075210306585, - "truth_threshold": 11.14 - }, - { - "f1": 0.6748559322772726, - "fn": 149145, - "fn_rate": 0.49067150062014536, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995631669460973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997739762739666, - "recall": 0.5093284993798547, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154816, - "tp_rate": 0.5093284993798547, - "truth_threshold": 11.16 - }, - { - "f1": 0.6744341198170346, - "fn": 149291, - "fn_rate": 0.4911518253986531, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995691783648718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997737629682298, - "recall": 0.5088481746013469, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154670, - "tp_rate": 0.5088481746013469, - "truth_threshold": 11.18 - }, - { - "f1": 0.6738732136313668, - "fn": 149485, - "fn_rate": 0.4917900651728347, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995751070934877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997734789108866, - "recall": 0.5082099348271654, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154476, - "tp_rate": 0.5082099348271654, - "truth_threshold": 11.200000000000001 - }, - { - "f1": 0.673439197769254, - "fn": 149635, - "fn_rate": 0.49228354953431525, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995809542684295, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997732587894611, - "recall": 0.5077164504656847, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154326, - "tp_rate": 0.5077164504656847, - "truth_threshold": 11.22 - }, - { - "f1": 0.6730382249848313, - "fn": 149774, - "fn_rate": 0.4927408450426206, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995867210105881, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997730544280323, - "recall": 0.5072591549573794, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154187, - "tp_rate": 0.5072591549573794, - "truth_threshold": 11.24 - }, - { - "f1": 0.6725399008755267, - "fn": 149946, - "fn_rate": 0.49330670711045166, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995924084254744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997728010386239, - "recall": 0.5066932928895483, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 154015, - "tp_rate": 0.5066932928895483, - "truth_threshold": 11.26 - }, - { - "f1": 0.6719773882957345, - "fn": 150140, - "fn_rate": 0.49394494688463325, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9995980176034294, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997725145590682, - "recall": 0.5060550531153668, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 153821, - "tp_rate": 0.5060550531153668, - "truth_threshold": 11.28 - }, - { - "f1": 0.6715131015435174, - "fn": 150300, - "fn_rate": 0.49447133020354583, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996035496198316, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997722777430772, - "recall": 0.5055286697964542, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 153661, - "tp_rate": 0.5055286697964542, - "truth_threshold": 11.3 - }, - { - "f1": 0.670881427072403, - "fn": 150517, - "fn_rate": 0.4951852375798211, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.999609005535302, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997719557724509, - "recall": 0.5048147624201789, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 153444, - "tp_rate": 0.5048147624201789, - "truth_threshold": 11.32 - }, - { - "f1": 0.670374225830155, - "fn": 150692, - "fn_rate": 0.4957609693348818, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996143863959054, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997716954547826, - "recall": 0.5042390306651182, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 153269, - "tp_rate": 0.5042390306651182, - "truth_threshold": 11.34 - }, - { - "f1": 0.6698637029906583, - "fn": 150867, - "fn_rate": 0.49633670108994243, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996196932333503, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999771434542118, - "recall": 0.5036632989100576, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 153094, - "tp_rate": 0.5036632989100576, - "truth_threshold": 11.36 - }, - { - "f1": 0.669379018738428, - "fn": 151034, - "fn_rate": 0.4968861136790575, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996249270651847, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997711850001961, - "recall": 0.5031138863209424, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 152927, - "tp_rate": 0.5031138863209424, - "truth_threshold": 11.38 - }, - { - "f1": 0.6688619057419222, - "fn": 151211, - "fn_rate": 0.4974684252256046, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996300888949902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997709199201492, - "recall": 0.5025315747743954, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 152750, - "tp_rate": 0.5025315747743954, - "truth_threshold": 11.4 - }, - { - "f1": 0.6683706546117185, - "fn": 151380, - "fn_rate": 0.4980244176062061, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996351797125727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997706662473135, - "recall": 0.5019755823937939, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 152581, - "tp_rate": 0.5019755823937939, - "truth_threshold": 11.42 - }, - { - "f1": 0.6678585983409363, - "fn": 151555, - "fn_rate": 0.49860014936126673, - "fp": 35, - "fp_rate": 0.00020130097947305156, - "match_probability": 0.9996402004941516, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997704029755774, - "recall": 0.5013998506387333, - "row_count": 477830, - "tn": 173834, - "tn_rate": 0.999798699020527, - "tp": 152406, - "tp_rate": 0.5013998506387333, - "truth_threshold": 11.44 - }, - { - "f1": 0.6674542258614568, - "fn": 151694, - "fn_rate": 0.4990574448695721, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996451522025451, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997767578676436, - "recall": 0.500942555130428, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 152267, - "tp_rate": 0.500942555130428, - "truth_threshold": 11.46 - }, - { - "f1": 0.6668815478461451, - "fn": 151890, - "fn_rate": 0.4997022644352401, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996500357873543, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997764702015055, - "recall": 0.50029773556476, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 152071, - "tp_rate": 0.50029773556476, - "truth_threshold": 11.48 - }, - { - "f1": 0.6665014387984278, - "fn": 152020, - "fn_rate": 0.5001299508818565, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996548521851435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997762789932555, - "recall": 0.4998700491181434, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151941, - "tp_rate": 0.4998700491181434, - "truth_threshold": 11.5 - }, - { - "f1": 0.6660918481074867, - "fn": 152160, - "fn_rate": 0.5005905362859051, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996596023196187, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997760727105082, - "recall": 0.4994094637140949, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151801, - "tp_rate": 0.4994094637140949, - "truth_threshold": 11.52 - }, - { - "f1": 0.6654755215284119, - "fn": 152371, - "fn_rate": 0.5012847042877211, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996642871018043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997757610932306, - "recall": 0.4987152957122789, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151590, - "tp_rate": 0.4987152957122789, - "truth_threshold": 11.540000000000001 - }, - { - "f1": 0.6650374586110892, - "fn": 152520, - "fn_rate": 0.5017748987534585, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996689074302161, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997755405182374, - "recall": 0.4982251012465415, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151441, - "tp_rate": 0.4982251012465415, - "truth_threshold": 11.56 - }, - { - "f1": 0.6644627009928828, - "fn": 152716, - "fn_rate": 0.5024197183191265, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996734641910328, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999775249704189, - "recall": 0.49758028168087354, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151245, - "tp_rate": 0.49758028168087354, - "truth_threshold": 11.58 - }, - { - "f1": 0.6640518567347836, - "fn": 152856, - "fn_rate": 0.502880303723175, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996779582582649, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997750415180727, - "recall": 0.497119696276825, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 151105, - "tp_rate": 0.497119696276825, - "truth_threshold": 11.6 - }, - { - "f1": 0.6636818807228545, - "fn": 152982, - "fn_rate": 0.5032948305868187, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996823904939214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999774853820532, - "recall": 0.49670516941318127, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 150979, - "tp_rate": 0.49670516941318127, - "truth_threshold": 11.620000000000001 - }, - { - "f1": 0.6633175772232605, - "fn": 153106, - "fn_rate": 0.503702777658976, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996867617481742, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997746687962674, - "recall": 0.496297222341024, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 150855, - "tp_rate": 0.496297222341024, - "truth_threshold": 11.64 - }, - { - "f1": 0.6628104408413904, - "fn": 153279, - "fn_rate": 0.5042719296225503, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996910728595202, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997744101488893, - "recall": 0.49572807037744976, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 150682, - "tp_rate": 0.49572807037744976, - "truth_threshold": 11.66 - }, - { - "f1": 0.6623514916835342, - "fn": 153435, - "fn_rate": 0.5047851533584901, - "fp": 34, - "fp_rate": 0.00019554952291667865, - "match_probability": 0.9996953246549412, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997741764080765, - "recall": 0.49521484664150994, - "row_count": 477830, - "tn": 173835, - "tn_rate": 0.9998044504770833, - "tp": 150526, - "tp_rate": 0.49521484664150994, - "truth_threshold": 11.68 - }, - { - "f1": 0.6618715803096265, - "fn": 153599, - "fn_rate": 0.5053246962603755, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.9996995179500615, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999787225554211, - "recall": 0.4946753037396245, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 150362, - "tp_rate": 0.4946753037396245, - "truth_threshold": 11.700000000000001 - }, - { - "f1": 0.6614296659650729, - "fn": 153749, - "fn_rate": 0.5058181806218561, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.999703653549304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997870131253161, - "recall": 0.4941818193781439, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 150212, - "tp_rate": 0.4941818193781439, - "truth_threshold": 11.72 - }, - { - "f1": 0.6608591843387399, - "fn": 153942, - "fn_rate": 0.5064531305002944, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.999707732246043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999786739175347, - "recall": 0.49354686949970555, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 150019, - "tp_rate": 0.49354686949970555, - "truth_threshold": 11.74 - }, - { - "f1": 0.6603162431582009, - "fn": 154126, - "fn_rate": 0.507058471317044, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.9997117548227562, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997864773432443, - "recall": 0.49294152868295604, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 149835, - "tp_rate": 0.49294152868295604, - "truth_threshold": 11.76 - }, - { - "f1": 0.6599308788263507, - "fn": 154257, - "fn_rate": 0.5074894476594036, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.9997157220511734, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997862905380136, - "recall": 0.4925105523405963, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 149704, - "tp_rate": 0.4925105523405963, - "truth_threshold": 11.78 - }, - { - "f1": 0.659430068264804, - "fn": 154426, - "fn_rate": 0.5080454400400052, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.9997196346924244, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997860490616246, - "recall": 0.4919545599599949, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 149535, - "tp_rate": 0.4919545599599949, - "truth_threshold": 11.8 - }, - { - "f1": 0.6590027835247099, - "fn": 154571, - "fn_rate": 0.5085224749227697, - "fp": 32, - "fp_rate": 0.00018404660980393285, - "match_probability": 0.9997234934971839, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997858414423579, - "recall": 0.4914775250772303, - "row_count": 477830, - "tn": 173837, - "tn_rate": 0.999815953390196, - "tp": 149390, - "tp_rate": 0.4914775250772303, - "truth_threshold": 11.82 - }, - { - "f1": 0.6585411058647015, - "fn": 154729, - "fn_rate": 0.5090422784501959, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997272992058148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999812407878869, - "recall": 0.4909577215498041, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 149232, - "tp_rate": 0.4909577215498041, - "truth_threshold": 11.84 - }, - { - "f1": 0.6579977838503613, - "fn": 154912, - "fn_rate": 0.5096443293712022, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997310525485098, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998121775994956, - "recall": 0.49035567062879776, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 149049, - "tp_rate": 0.49035567062879776, - "truth_threshold": 11.86 - }, - { - "f1": 0.657474716247847, - "fn": 155089, - "fn_rate": 0.5102266409177493, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997347542454303, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998119543317663, - "recall": 0.48977335908225067, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148872, - "tp_rate": 0.48977335908225067, - "truth_threshold": 11.88 - }, - { - "f1": 0.6569364672616418, - "fn": 155270, - "fn_rate": 0.5108221120472692, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997384050068445, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998117254688372, - "recall": 0.48917788795273076, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148691, - "tp_rate": 0.48917788795273076, - "truth_threshold": 11.9 - }, - { - "f1": 0.6565728882171488, - "fn": 155393, - "fn_rate": 0.5112267692236833, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997420055332628, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115696250236, - "recall": 0.4887732307763167, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148568, - "tp_rate": 0.4887732307763167, - "truth_threshold": 11.92 - }, - { - "f1": 0.6560918137729501, - "fn": 155555, - "fn_rate": 0.5117597323340823, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997455565155712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998113639732137, - "recall": 0.48824026766591766, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148406, - "tp_rate": 0.48824026766591766, - "truth_threshold": 11.94 - }, - { - "f1": 0.6555821893574866, - "fn": 155726, - "fn_rate": 0.5123223045061702, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997490586351637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998111464087466, - "recall": 0.4876776954938298, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148235, - "tp_rate": 0.4876776954938298, - "truth_threshold": 11.96 - }, - { - "f1": 0.6550290019865587, - "fn": 155912, - "fn_rate": 0.5129342251144061, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997525125640727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998109091891381, - "recall": 0.4870657748855939, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 148049, - "tp_rate": 0.4870657748855939, - "truth_threshold": 11.98 - }, - { - "f1": 0.654552777519596, - "fn": 156072, - "fn_rate": 0.5134606084333188, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997559189650964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998107046519332, - "recall": 0.48653939156668125, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147889, - "tp_rate": 0.48653939156668125, - "truth_threshold": 12 - }, - { - "f1": 0.6542593928876572, - "fn": 156171, - "fn_rate": 0.513786308111896, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997592784919264, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998105778727895, - "recall": 0.4862136918881041, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147790, - "tp_rate": 0.4862136918881041, - "truth_threshold": 12.02 - }, - { - "f1": 0.6538378081560896, - "fn": 156312, - "fn_rate": 0.5142501834116877, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997625917892721, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998103970151073, - "recall": 0.4857498165883123, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147649, - "tp_rate": 0.4857498165883123, - "truth_threshold": 12.040000000000001 - }, - { - "f1": 0.6533726704497632, - "fn": 156468, - "fn_rate": 0.5147634071476275, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997658594929839, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998101965143945, - "recall": 0.48523659285237253, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147493, - "tp_rate": 0.48523659285237253, - "truth_threshold": 12.06 - }, - { - "f1": 0.6529430271769716, - "fn": 156612, - "fn_rate": 0.5152371521346488, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997690822301749, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998100110600704, - "recall": 0.4847628478653511, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147349, - "tp_rate": 0.4847628478653511, - "truth_threshold": 12.08 - }, - { - "f1": 0.6523876653544703, - "fn": 156798, - "fn_rate": 0.5158490727428848, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997722606193405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998097709778451, - "recall": 0.4841509272571152, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147163, - "tp_rate": 0.4841509272571152, - "truth_threshold": 12.1 - }, - { - "f1": 0.6519438938186527, - "fn": 156947, - "fn_rate": 0.5163392672086221, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.999775395270477, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998095782157479, - "recall": 0.48366073279137783, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 147014, - "tp_rate": 0.48366073279137783, - "truth_threshold": 12.120000000000001 - }, - { - "f1": 0.6513218898210713, - "fn": 157155, - "fn_rate": 0.5170235655232086, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997784867851973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998093084707902, - "recall": 0.48297643447679145, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 146806, - "tp_rate": 0.48297643447679145, - "truth_threshold": 12.14 - }, - { - "f1": 0.6509284078604015, - "fn": 157286, - "fn_rate": 0.5174545418655683, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997815357568474, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998091381907663, - "recall": 0.4825454581344317, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 146675, - "tp_rate": 0.4825454581344317, - "truth_threshold": 12.16 - }, - { - "f1": 0.6504177654653135, - "fn": 157457, - "fn_rate": 0.5180171140376562, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.999784542770618, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998089154587394, - "recall": 0.48198288596234384, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 146504, - "tp_rate": 0.48198288596234384, - "truth_threshold": 12.18 - }, - { - "f1": 0.6498003491114536, - "fn": 157663, - "fn_rate": 0.5186948325607561, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997875084036579, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998086464469745, - "recall": 0.48130516743924384, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 146298, - "tp_rate": 0.48130516743924384, - "truth_threshold": 12.200000000000001 - }, - { - "f1": 0.6492559530421723, - "fn": 157844, - "fn_rate": 0.5192903036902761, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997904332251836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998084094563618, - "recall": 0.48070969630972393, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 146117, - "tp_rate": 0.48070969630972393, - "truth_threshold": 12.22 - }, - { - "f1": 0.6488056609979642, - "fn": 157994, - "fn_rate": 0.5197837880517566, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.999793317796588, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998082126100208, - "recall": 0.4802162119482434, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145967, - "tp_rate": 0.4802162119482434, - "truth_threshold": 12.24 - }, - { - "f1": 0.6483791078090055, - "fn": 158136, - "fn_rate": 0.5202509532472916, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997961626715484, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998080258890801, - "recall": 0.4797490467527084, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145825, - "tp_rate": 0.4797490467527084, - "truth_threshold": 12.26 - }, - { - "f1": 0.6478921477053365, - "fn": 158298, - "fn_rate": 0.5207839163576906, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9997989683961317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998078124249268, - "recall": 0.4792160836423094, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145663, - "tp_rate": 0.4792160836423094, - "truth_threshold": 12.280000000000001 - }, - { - "f1": 0.6474153043880647, - "fn": 158457, - "fn_rate": 0.5213070097808601, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998017355088994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998076024516944, - "recall": 0.47869299021913997, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145504, - "tp_rate": 0.47869299021913997, - "truth_threshold": 12.3 - }, - { - "f1": 0.6469999154341566, - "fn": 158595, - "fn_rate": 0.5217610153934222, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998044645410099, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998074198385077, - "recall": 0.4782389846065778, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145366, - "tp_rate": 0.4782389846065778, - "truth_threshold": 12.32 - }, - { - "f1": 0.6463869692220006, - "fn": 158798, - "fn_rate": 0.5224288642292926, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998071560163209, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998071505809589, - "recall": 0.4775711357707074, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145163, - "tp_rate": 0.4775711357707074, - "truth_threshold": 12.34 - }, - { - "f1": 0.645909058513292, - "fn": 158957, - "fn_rate": 0.5229519576524619, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998098104514891, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998069391582547, - "recall": 0.477048042347538, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 145004, - "tp_rate": 0.477048042347538, - "truth_threshold": 12.36 - }, - { - "f1": 0.645468601703034, - "fn": 159103, - "fn_rate": 0.5234322824309697, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998124283560689, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998067446130061, - "recall": 0.4765677175690302, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 144858, - "tp_rate": 0.4765677175690302, - "truth_threshold": 12.38 - }, - { - "f1": 0.6450218186842821, - "fn": 159251, - "fn_rate": 0.523919187000964, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998150102326104, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998065470021694, - "recall": 0.47608081299903604, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 144710, - "tp_rate": 0.47608081299903604, - "truth_threshold": 12.4 - }, - { - "f1": 0.6445521509595491, - "fn": 159406, - "fn_rate": 0.5244291208411606, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998175565767553, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998063396111576, - "recall": 0.47557087915883944, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 144555, - "tp_rate": 0.47557087915883944, - "truth_threshold": 12.42 - }, - { - "f1": 0.6440079935052769, - "fn": 159586, - "fn_rate": 0.5250213020749372, - "fp": 28, - "fp_rate": 0.00016104078357844124, - "match_probability": 0.9998200678773314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999806098211256, - "recall": 0.47497869792506275, - "row_count": 477830, - "tn": 173841, - "tn_rate": 0.9998389592164215, - "tp": 144375, - "tp_rate": 0.47497869792506275, - "truth_threshold": 12.44 - }, - { - "f1": 0.6436010244786136, - "fn": 159721, - "fn_rate": 0.5254654380002698, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998225446164466, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998128470128304, - "recall": 0.4745345619997302, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 144240, - "tp_rate": 0.4745345619997302, - "truth_threshold": 12.46 - }, - { - "f1": 0.6431711769615654, - "fn": 159863, - "fn_rate": 0.5259326031958047, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.999824987269581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998126626192542, - "recall": 0.4740673968041953, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 144098, - "tp_rate": 0.4740673968041953, - "truth_threshold": 12.48 - }, - { - "f1": 0.6426380299613762, - "fn": 160039, - "fn_rate": 0.5265116248466086, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998273963056777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998124335702228, - "recall": 0.47348837515339137, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143922, - "tp_rate": 0.47348837515339137, - "truth_threshold": 12.5 - }, - { - "f1": 0.6422318302008146, - "fn": 160173, - "fn_rate": 0.5269524708761979, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.999829772187233, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998122588047144, - "recall": 0.47304752912380205, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143788, - "tp_rate": 0.47304752912380205, - "truth_threshold": 12.52 - }, - { - "f1": 0.6415947592086977, - "fn": 160383, - "fn_rate": 0.5276433489822707, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998321153703844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998119842623864, - "recall": 0.4723566510177292, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143578, - "tp_rate": 0.4723566510177292, - "truth_threshold": 12.540000000000001 - }, - { - "f1": 0.6410769925390148, - "fn": 160554, - "fn_rate": 0.5282059211543586, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.999834426304998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999811760112665, - "recall": 0.4717940788456414, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143407, - "tp_rate": 0.4717940788456414, - "truth_threshold": 12.56 - }, - { - "f1": 0.6404935577211193, - "fn": 160746, - "fn_rate": 0.5288375811370538, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998367054347549, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115077979922, - "recall": 0.47116241886294624, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143215, - "tp_rate": 0.47116241886294624, - "truth_threshold": 12.58 - }, - { - "f1": 0.6399720825354784, - "fn": 160917, - "fn_rate": 0.5294001533091416, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.999838953197236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998112825100824, - "recall": 0.47059984669085836, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 143044, - "tp_rate": 0.47059984669085836, - "truth_threshold": 12.6 - }, - { - "f1": 0.6394469831579607, - "fn": 161090, - "fn_rate": 0.5299693052727159, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998411700240056, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999811054038545, - "recall": 0.4700306947272841, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 142871, - "tp_rate": 0.4700306947272841, - "truth_threshold": 12.620000000000001 - }, - { - "f1": 0.6388637645857773, - "fn": 161281, - "fn_rate": 0.5305976753596678, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998433563406941, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998108011520107, - "recall": 0.46940232464033216, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 142680, - "tp_rate": 0.46940232464033216, - "truth_threshold": 12.64 - }, - { - "f1": 0.6382723294077595, - "fn": 161475, - "fn_rate": 0.5312359151338494, - "fp": 27, - "fp_rate": 0.00015528932702206833, - "match_probability": 0.9998455125670797, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998105435995313, - "recall": 0.46876408486615057, - "row_count": 477830, - "tn": 173842, - "tn_rate": 0.999844710672978, - "tp": 142486, - "tp_rate": 0.46876408486615057, - "truth_threshold": 12.66 - }, - { - "f1": 0.6377764334207165, - "fn": 161638, - "fn_rate": 0.5317721681399916, - "fp": 26, - "fp_rate": 0.00014953787046569544, - "match_probability": 0.9998476391171683, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998173503150707, - "recall": 0.4682278318600084, - "row_count": 477830, - "tn": 173843, - "tn_rate": 0.9998504621295343, - "tp": 142323, - "tp_rate": 0.4682278318600084, - "truth_threshold": 12.68 - }, - { - "f1": 0.6372879076543764, - "fn": 161798, - "fn_rate": 0.5322985514589043, - "fp": 26, - "fp_rate": 0.00014953787046569544, - "match_probability": 0.9998497363992734, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998171447861649, - "recall": 0.46770144854109574, - "row_count": 477830, - "tn": 173843, - "tn_rate": 0.9998504621295343, - "tp": 142163, - "tp_rate": 0.46770144854109574, - "truth_threshold": 12.700000000000001 - }, - { - "f1": 0.6368479347811464, - "fn": 161942, - "fn_rate": 0.5327722964459256, - "fp": 26, - "fp_rate": 0.00014953787046569544, - "match_probability": 0.9998518048160936, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998169594142702, - "recall": 0.4672277035540744, - "row_count": 477830, - "tn": 173843, - "tn_rate": 0.9998504621295343, - "tp": 142019, - "tp_rate": 0.4672277035540744, - "truth_threshold": 12.72 - }, - { - "f1": 0.6363493630001794, - "fn": 162106, - "fn_rate": 0.5333118393478111, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998538447647903, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999830841773624, - "recall": 0.46668816065218893, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141855, - "tp_rate": 0.46668816065218893, - "truth_threshold": 12.74 - }, - { - "f1": 0.6358887831846494, - "fn": 162257, - "fn_rate": 0.5338086136050348, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998558566370636, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998306615488823, - "recall": 0.46619138639496516, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141704, - "tp_rate": 0.46619138639496516, - "truth_threshold": 12.76 - }, - { - "f1": 0.6353376370345762, - "fn": 162437, - "fn_rate": 0.5344007948388115, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998578408192266, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998304462090598, - "recall": 0.46559920516118847, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141524, - "tp_rate": 0.46559920516118847, - "truth_threshold": 12.780000000000001 - }, - { - "f1": 0.6348060790055149, - "fn": 162610, - "fn_rate": 0.5349699468023859, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998597976922806, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998302387267904, - "recall": 0.46503005319761415, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141351, - "tp_rate": 0.46503005319761415, - "truth_threshold": 12.8 - }, - { - "f1": 0.6342278713051448, - "fn": 162799, - "fn_rate": 0.5355917370978514, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998617276319876, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998300114742255, - "recall": 0.46440826290214865, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141162, - "tp_rate": 0.46440826290214865, - "truth_threshold": 12.82 - }, - { - "f1": 0.6337507191140515, - "fn": 162954, - "fn_rate": 0.536101670938048, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998636310089414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998298246484816, - "recall": 0.46389832906195205, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 141007, - "tp_rate": 0.46389832906195205, - "truth_threshold": 12.84 - }, - { - "f1": 0.6331978453818692, - "fn": 163134, - "fn_rate": 0.5366938521718246, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.99986550818864, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999829607173538, - "recall": 0.4633061478281753, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140827, - "tp_rate": 0.4633061478281753, - "truth_threshold": 12.86 - }, - { - "f1": 0.6327289737281236, - "fn": 163287, - "fn_rate": 0.5371972062205349, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998673595315546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998294218823295, - "recall": 0.46280279377946515, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140674, - "tp_rate": 0.46280279377946515, - "truth_threshold": 12.88 - }, - { - "f1": 0.63229835462231, - "fn": 163427, - "fn_rate": 0.5376577916245834, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998691853931992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998292519813885, - "recall": 0.46234220837541656, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140534, - "tp_rate": 0.46234220837541656, - "truth_threshold": 12.9 - }, - { - "f1": 0.6318075434332523, - "fn": 163586, - "fn_rate": 0.5381808850477529, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998709861241983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998290586115286, - "recall": 0.46181911495224715, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140375, - "tp_rate": 0.46181911495224715, - "truth_threshold": 12.92 - }, - { - "f1": 0.6312715844263439, - "fn": 163760, - "fn_rate": 0.5387533269070703, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998727620703545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998288464967018, - "recall": 0.46124667309292966, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140201, - "tp_rate": 0.46124667309292966, - "truth_threshold": 12.94 - }, - { - "f1": 0.6307890493392309, - "fn": 163917, - "fn_rate": 0.5392698405387534, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998745135727142, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999828654653454, - "recall": 0.4607301594612467, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 140044, - "tp_rate": 0.4607301594612467, - "truth_threshold": 12.96 - }, - { - "f1": 0.6302399459276783, - "fn": 164095, - "fn_rate": 0.5398554419810436, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998762409676335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998284366287797, - "recall": 0.4601445580189564, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 139866, - "tp_rate": 0.4601445580189564, - "truth_threshold": 12.98 - }, - { - "f1": 0.629889709693558, - "fn": 164208, - "fn_rate": 0.5402272002000257, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998779445868424, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998282979317055, - "recall": 0.4597727997999743, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 139753, - "tp_rate": 0.4597727997999743, - "truth_threshold": 13 - }, - { - "f1": 0.6294185543211658, - "fn": 164361, - "fn_rate": 0.5407305542487358, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998796247575082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998281097805535, - "recall": 0.45926944575126416, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 139600, - "tp_rate": 0.45926944575126416, - "truth_threshold": 13.02 - }, - { - "f1": 0.6289627862294165, - "fn": 164508, - "fn_rate": 0.5412141689229868, - "fp": 24, - "fp_rate": 0.00013803495735294964, - "match_probability": 0.9998812818022986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998279286190555, - "recall": 0.45878583107701315, - "row_count": 477830, - "tn": 173845, - "tn_rate": 0.999861965042647, - "tp": 139453, - "tp_rate": 0.45878583107701315, - "truth_threshold": 13.040000000000001 - }, - { - "f1": 0.6284026765691906, - "fn": 164690, - "fn_rate": 0.5418129299482499, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.999882916039443, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998348816172986, - "recall": 0.4581870700517501, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 139271, - "tp_rate": 0.4581870700517501, - "truth_threshold": 13.06 - }, - { - "f1": 0.6279586199425878, - "fn": 164833, - "fn_rate": 0.5422833850395281, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.999884527782794, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998347119316426, - "recall": 0.4577166149604719, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 139128, - "tp_rate": 0.4577166149604719, - "truth_threshold": 13.08 - }, - { - "f1": 0.6274692180226389, - "fn": 164991, - "fn_rate": 0.5428031885669543, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998861173418873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999834524040779, - "recall": 0.4571968114330457, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138970, - "tp_rate": 0.4571968114330457, - "truth_threshold": 13.1 - }, - { - "f1": 0.6270104741128169, - "fn": 165139, - "fn_rate": 0.5432900931369485, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998876850220009, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998343476538586, - "recall": 0.4567099068630515, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138822, - "tp_rate": 0.4567099068630515, - "truth_threshold": 13.120000000000001 - }, - { - "f1": 0.6266072703286376, - "fn": 165269, - "fn_rate": 0.543717779583565, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998892311242138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998341924088959, - "recall": 0.456282220416435, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138692, - "tp_rate": 0.456282220416435, - "truth_threshold": 13.14 - }, - { - "f1": 0.6261524694482609, - "fn": 165416, - "fn_rate": 0.544201394257816, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998907559454638, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998340165117487, - "recall": 0.455798605742184, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138545, - "tp_rate": 0.455798605742184, - "truth_threshold": 13.16 - }, - { - "f1": 0.6255454023430259, - "fn": 165611, - "fn_rate": 0.5448429239277407, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998922597786042, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998337826020972, - "recall": 0.45515707607225925, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138350, - "tp_rate": 0.45515707607225925, - "truth_threshold": 13.18 - }, - { - "f1": 0.6251272054599976, - "fn": 165746, - "fn_rate": 0.5452870598530732, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998937429124599, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998336202780711, - "recall": 0.45471294014692676, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138215, - "tp_rate": 0.45471294014692676, - "truth_threshold": 13.200000000000001 - }, - { - "f1": 0.6247805866705272, - "fn": 165857, - "fn_rate": 0.5456522382805689, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998952056318829, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998334865739501, - "recall": 0.4543477617194311, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 138104, - "tp_rate": 0.4543477617194311, - "truth_threshold": 13.22 - }, - { - "f1": 0.6242515579813449, - "fn": 166027, - "fn_rate": 0.5462115205569136, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.999896648217807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998332813847793, - "recall": 0.4537884794430864, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137934, - "tp_rate": 0.4537884794430864, - "truth_threshold": 13.24 - }, - { - "f1": 0.6238512589748929, - "fn": 166156, - "fn_rate": 0.5466359171077868, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998980709473013, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998331253446324, - "recall": 0.45336408289221314, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137805, - "tp_rate": 0.45336408289221314, - "truth_threshold": 13.26 - }, - { - "f1": 0.6233668603413687, - "fn": 166311, - "fn_rate": 0.5471458509479834, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9998994740936238, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998329374677678, - "recall": 0.45285414905201654, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137650, - "tp_rate": 0.45285414905201654, - "truth_threshold": 13.280000000000001 - }, - { - "f1": 0.6228554601671688, - "fn": 166475, - "fn_rate": 0.5476853938498689, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9999008579262733, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999832738220771, - "recall": 0.4523146061501311, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137486, - "tp_rate": 0.4523146061501311, - "truth_threshold": 13.3 - }, - { - "f1": 0.6222920179112054, - "fn": 166656, - "fn_rate": 0.5482808649793888, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9999022227110415, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998325177676803, - "recall": 0.4517191350206112, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137305, - "tp_rate": 0.4517191350206112, - "truth_threshold": 13.32 - }, - { - "f1": 0.6218235563474468, - "fn": 166806, - "fn_rate": 0.5487743493408694, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9999035687100634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998323346309175, - "recall": 0.4512256506591306, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 137155, - "tp_rate": 0.4512256506591306, - "truth_threshold": 13.34 - }, - { - "f1": 0.6212939655758896, - "fn": 166975, - "fn_rate": 0.5493303417214709, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9999048961818684, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998321278164208, - "recall": 0.4506696582785292, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 136986, - "tp_rate": 0.4506696582785292, - "truth_threshold": 13.36 - }, - { - "f1": 0.6208185691146914, - "fn": 167127, - "fn_rate": 0.5498304058744379, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.999906205381429, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998319413694586, - "recall": 0.4501695941255622, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 136834, - "tp_rate": 0.4501695941255622, - "truth_threshold": 13.38 - }, - { - "f1": 0.6201782974589889, - "fn": 167332, - "fn_rate": 0.5505048345017947, - "fp": 23, - "fp_rate": 0.00013228350079657673, - "match_probability": 0.9999074965602103, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998316892544565, - "recall": 0.44949516549820534, - "row_count": 477830, - "tn": 173846, - "tn_rate": 0.9998677164992035, - "tp": 136629, - "tp_rate": 0.44949516549820534, - "truth_threshold": 13.4 - }, - { - "f1": 0.619727199251705, - "fn": 167476, - "fn_rate": 0.550978579488816, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999087699662178, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999838836103643, - "recall": 0.449021420511184, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 136485, - "tp_rate": 0.449021420511184, - "truth_threshold": 13.42 - }, - { - "f1": 0.6191925431982122, - "fn": 167647, - "fn_rate": 0.5515411516609039, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999100258440452, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998386339631499, - "recall": 0.44845884833909616, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 136314, - "tp_rate": 0.44845884833909616, - "truth_threshold": 13.44 - }, - { - "f1": 0.6186358265927474, - "fn": 167824, - "fn_rate": 0.552123463207451, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999112644349214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998384241952424, - "recall": 0.447876536792549, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 136137, - "tp_rate": 0.447876536792549, - "truth_threshold": 13.46 - }, - { - "f1": 0.6180940388138544, - "fn": 167997, - "fn_rate": 0.5526926151710252, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999124859767564, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998382186401541, - "recall": 0.44730738482897475, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135964, - "tp_rate": 0.44730738482897475, - "truth_threshold": 13.48 - }, - { - "f1": 0.6176730057388157, - "fn": 168131, - "fn_rate": 0.5531334612006146, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999136907041872, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998380590642758, - "recall": 0.4468665387993854, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135830, - "tp_rate": 0.4468665387993854, - "truth_threshold": 13.5 - }, - { - "f1": 0.617119617137814, - "fn": 168307, - "fn_rate": 0.5537124828514184, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999148788486228, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998378489931896, - "recall": 0.44628751714858156, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135654, - "tp_rate": 0.44628751714858156, - "truth_threshold": 13.52 - }, - { - "f1": 0.6166035606364001, - "fn": 168471, - "fn_rate": 0.5542520257533039, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999160506382885, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998376527539996, - "recall": 0.4457479742466961, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135490, - "tp_rate": 0.4457479742466961, - "truth_threshold": 13.540000000000001 - }, - { - "f1": 0.6159754504022547, - "fn": 168670, - "fn_rate": 0.5549067150062015, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999172062982694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998374139956988, - "recall": 0.4450932849937985, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135291, - "tp_rate": 0.4450932849937985, - "truth_threshold": 13.56 - }, - { - "f1": 0.6153197924685583, - "fn": 168878, - "fn_rate": 0.5555910133207879, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999183460505544, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998371636875023, - "recall": 0.44440898667921214, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 135083, - "tp_rate": 0.44440898667921214, - "truth_threshold": 13.58 - }, - { - "f1": 0.6149584235106504, - "fn": 168993, - "fn_rate": 0.5559693513312564, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999194701140777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998370249648122, - "recall": 0.4440306486687437, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134968, - "tp_rate": 0.4440306486687437, - "truth_threshold": 13.6 - }, - { - "f1": 0.6144361944091197, - "fn": 169158, - "fn_rate": 0.5565121841288849, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999205787047616, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998368255145559, - "recall": 0.443487815871115, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134803, - "tp_rate": 0.443487815871115, - "truth_threshold": 13.620000000000001 - }, - { - "f1": 0.6139054940745706, - "fn": 169326, - "fn_rate": 0.5570648866137432, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999216720355576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999836621935733, - "recall": 0.4429351133862568, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134635, - "tp_rate": 0.4429351133862568, - "truth_threshold": 13.64 - }, - { - "f1": 0.6132524349353345, - "fn": 169533, - "fn_rate": 0.5577458950325864, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999227503164871, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998363703979174, - "recall": 0.4422541049674136, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134428, - "tp_rate": 0.4422541049674136, - "truth_threshold": 13.66 - }, - { - "f1": 0.6128112222546729, - "fn": 169672, - "fn_rate": 0.5582031905408917, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999238137546823, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998362010557587, - "recall": 0.44179680945910826, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134289, - "tp_rate": 0.44179680945910826, - "truth_threshold": 13.68 - }, - { - "f1": 0.6124105316973415, - "fn": 169799, - "fn_rate": 0.5586210073002786, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999248625544251, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998360460263519, - "recall": 0.44137899269972136, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134162, - "tp_rate": 0.44137899269972136, - "truth_threshold": 13.700000000000001 - }, - { - "f1": 0.6119226466357679, - "fn": 169953, - "fn_rate": 0.5591276512447321, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999258969171868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998358576438111, - "recall": 0.44087234875526793, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 134008, - "tp_rate": 0.44087234875526793, - "truth_threshold": 13.72 - }, - { - "f1": 0.6115313290763427, - "fn": 170076, - "fn_rate": 0.5595323084211461, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999269170416667, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998357068711867, - "recall": 0.44046769157885385, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133885, - "tp_rate": 0.44046769157885385, - "truth_threshold": 13.74 - }, - { - "f1": 0.6110428270514537, - "fn": 170230, - "fn_rate": 0.5600389523655995, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.99992792312383, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999835517708014, - "recall": 0.43996104763440047, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133731, - "tp_rate": 0.43996104763440047, - "truth_threshold": 13.76 - }, - { - "f1": 0.6105649028023458, - "fn": 170381, - "fn_rate": 0.5605357266228234, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999928915356946, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99983533180641, - "recall": 0.4394642733771767, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133580, - "tp_rate": 0.4394642733771767, - "truth_threshold": 13.780000000000001 - }, - { - "f1": 0.6100075905146003, - "fn": 170556, - "fn_rate": 0.561111458377884, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999929893931624, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998351158311286, - "recall": 0.438888541622116, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133405, - "tp_rate": 0.438888541622116, - "truth_threshold": 13.8 - }, - { - "f1": 0.6095925499021169, - "fn": 170687, - "fn_rate": 0.5615424347202437, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999308590358513, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998349537870603, - "recall": 0.43845756527975627, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133274, - "tp_rate": 0.43845756527975627, - "truth_threshold": 13.82 - }, - { - "f1": 0.6091090449870054, - "fn": 170839, - "fn_rate": 0.5620424988732107, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999318108550282, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998347653668209, - "recall": 0.4379575011267893, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 133122, - "tp_rate": 0.4379575011267893, - "truth_threshold": 13.84 - }, - { - "f1": 0.6085232994598554, - "fn": 171023, - "fn_rate": 0.5626478396899602, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999327495720041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998345367027678, - "recall": 0.43735216031003976, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132938, - "tp_rate": 0.43735216031003976, - "truth_threshold": 13.86 - }, - { - "f1": 0.607886059717897, - "fn": 171223, - "fn_rate": 0.563305818838601, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999336753671121, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998342874359747, - "recall": 0.436694181161399, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132738, - "tp_rate": 0.436694181161399, - "truth_threshold": 13.88 - }, - { - "f1": 0.6074669598479122, - "fn": 171354, - "fn_rate": 0.5637367951809608, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999345884182044, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998341237587556, - "recall": 0.4362632048190393, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132607, - "tp_rate": 0.4362632048190393, - "truth_threshold": 13.9 - }, - { - "f1": 0.6070202772367969, - "fn": 171494, - "fn_rate": 0.5641973805850092, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999354889006857, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998339484787416, - "recall": 0.43580261941499077, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132467, - "tp_rate": 0.43580261941499077, - "truth_threshold": 13.92 - }, - { - "f1": 0.6065012400122856, - "fn": 171657, - "fn_rate": 0.5647336335911515, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999936376987547, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998337439354322, - "recall": 0.4352663664088485, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132304, - "tp_rate": 0.4352663664088485, - "truth_threshold": 13.94 - }, - { - "f1": 0.6059964047252183, - "fn": 171815, - "fn_rate": 0.5652534371185777, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999372528493993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998335451849162, - "recall": 0.43474656288142227, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 132146, - "tp_rate": 0.43474656288142227, - "truth_threshold": 13.96 - }, - { - "f1": 0.6054976007633518, - "fn": 171971, - "fn_rate": 0.5657666608545175, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999381166545053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998333484834712, - "recall": 0.43423333914548246, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131990, - "tp_rate": 0.43423333914548246, - "truth_threshold": 13.98 - }, - { - "f1": 0.604985636008187, - "fn": 172131, - "fn_rate": 0.5662930441734302, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999389685688129, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998331462548918, - "recall": 0.4337069558265699, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131830, - "tp_rate": 0.4337069558265699, - "truth_threshold": 14 - }, - { - "f1": 0.6045071431194682, - "fn": 172280, - "fn_rate": 0.5667832386391676, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999398087559863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998329574876806, - "recall": 0.4332167613608325, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131681, - "tp_rate": 0.4332167613608325, - "truth_threshold": 14.02 - }, - { - "f1": 0.6040713800260833, - "fn": 172416, - "fn_rate": 0.5672306644602433, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999406373774375, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998327848168613, - "recall": 0.43276933553975677, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131545, - "tp_rate": 0.43276933553975677, - "truth_threshold": 14.040000000000001 - }, - { - "f1": 0.6033979757326827, - "fn": 172626, - "fn_rate": 0.5679215425663161, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999414545923574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999832517490503, - "recall": 0.43207845743368395, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131335, - "tp_rate": 0.43207845743368395, - "truth_threshold": 14.06 - }, - { - "f1": 0.603083498001011, - "fn": 172724, - "fn_rate": 0.56824395234915, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999422605577463, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998323924454704, - "recall": 0.43175604765084996, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131237, - "tp_rate": 0.43175604765084996, - "truth_threshold": 14.08 - }, - { - "f1": 0.6025247904819261, - "fn": 172898, - "fn_rate": 0.5688163942084675, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999430554284441, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998321699660525, - "recall": 0.4311836057915325, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 131063, - "tp_rate": 0.4311836057915325, - "truth_threshold": 14.1 - }, - { - "f1": 0.602074931134544, - "fn": 173038, - "fn_rate": 0.5692769796125161, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999438393571597, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998319905303753, - "recall": 0.43072302038748395, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130923, - "tp_rate": 0.43072302038748395, - "truth_threshold": 14.120000000000001 - }, - { - "f1": 0.6017065709882932, - "fn": 173153, - "fn_rate": 0.5696553176229845, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999446124945011, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998318428494993, - "recall": 0.43034468237701545, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130808, - "tp_rate": 0.43034468237701545, - "truth_threshold": 14.14 - }, - { - "f1": 0.6010373186188107, - "fn": 173361, - "fn_rate": 0.570339615937571, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999945374989003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998315750792363, - "recall": 0.42966038406242907, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130600, - "tp_rate": 0.42966038406242907, - "truth_threshold": 14.16 - }, - { - "f1": 0.6005883381977885, - "fn": 173500, - "fn_rate": 0.5707969114458763, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999461269871569, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998313956607374, - "recall": 0.4292030885541237, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130461, - "tp_rate": 0.4292030885541237, - "truth_threshold": 14.18 - }, - { - "f1": 0.6000709216591984, - "fn": 173661, - "fn_rate": 0.5713265846605321, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999468686334378, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998311873666764, - "recall": 0.4286734153394679, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130300, - "tp_rate": 0.4286734153394679, - "truth_threshold": 14.200000000000001 - }, - { - "f1": 0.5994001022867069, - "fn": 173869, - "fn_rate": 0.5720108829751185, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999476000703327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998309175031127, - "recall": 0.42798911702488146, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 130092, - "tp_rate": 0.42798911702488146, - "truth_threshold": 14.22 - }, - { - "f1": 0.5989288545565163, - "fn": 174015, - "fn_rate": 0.5724912077536263, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999483214383678, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998307275637079, - "recall": 0.4275087922463737, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129946, - "tp_rate": 0.4275087922463737, - "truth_threshold": 14.24 - }, - { - "f1": 0.5984139059870438, - "fn": 174174, - "fn_rate": 0.5730143011767957, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999490328761353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998305202258703, - "recall": 0.4269856988232043, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129787, - "tp_rate": 0.4269856988232043, - "truth_threshold": 14.26 - }, - { - "f1": 0.5979401414134892, - "fn": 174321, - "fn_rate": 0.5734979158510467, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999497345203204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999830328083787, - "recall": 0.4265020841489533, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129640, - "tp_rate": 0.4265020841489533, - "truth_threshold": 14.280000000000001 - }, - { - "f1": 0.597385639009625, - "fn": 174492, - "fn_rate": 0.5740604880231346, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999504265057271, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998301040226734, - "recall": 0.42593951197686547, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129469, - "tp_rate": 0.42593951197686547, - "truth_threshold": 14.3 - }, - { - "f1": 0.5968806543332964, - "fn": 174648, - "fn_rate": 0.5745737117590743, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999511089653043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998298990992384, - "recall": 0.42542628824092565, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129313, - "tp_rate": 0.42542628824092565, - "truth_threshold": 14.32 - }, - { - "f1": 0.5963539983192191, - "fn": 174811, - "fn_rate": 0.5751099647652166, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999517820301712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998296844517388, - "recall": 0.4248900352347834, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 129150, - "tp_rate": 0.4248900352347834, - "truth_threshold": 14.34 - }, - { - "f1": 0.595822324051662, - "fn": 174975, - "fn_rate": 0.575649507667102, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999524458296426, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998294679399727, - "recall": 0.42435049233289796, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128986, - "tp_rate": 0.42435049233289796, - "truth_threshold": 14.36 - }, - { - "f1": 0.5954395287050941, - "fn": 175093, - "fn_rate": 0.5760377153648001, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999531004912537, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998293118162774, - "recall": 0.4239622846351999, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128868, - "tp_rate": 0.4239622846351999, - "truth_threshold": 14.38 - }, - { - "f1": 0.5950908620339046, - "fn": 175200, - "fn_rate": 0.5763897342093229, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999537461407846, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998291699991458, - "recall": 0.4236102657906771, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128761, - "tp_rate": 0.4236102657906771, - "truth_threshold": 14.4 - }, - { - "f1": 0.5944867509097046, - "fn": 175386, - "fn_rate": 0.5770016548175588, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999543829022842, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998289229142204, - "recall": 0.42299834518244117, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128575, - "tp_rate": 0.42299834518244117, - "truth_threshold": 14.42 - }, - { - "f1": 0.5938347102850429, - "fn": 175587, - "fn_rate": 0.5776629238619428, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999550108980944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998286550982897, - "recall": 0.4223370761380572, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128374, - "tp_rate": 0.4223370761380572, - "truth_threshold": 14.44 - }, - { - "f1": 0.593426678265376, - "fn": 175712, - "fn_rate": 0.5780741608298433, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999556302488732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998284881228025, - "recall": 0.4219258391701567, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128249, - "tp_rate": 0.4219258391701567, - "truth_threshold": 14.46 - }, - { - "f1": 0.5930081323391236, - "fn": 175841, - "fn_rate": 0.5784985573807166, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999562410736184, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998283154625337, - "recall": 0.4215014426192834, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 128120, - "tp_rate": 0.4215014426192834, - "truth_threshold": 14.48 - }, - { - "f1": 0.5925130223405487, - "fn": 175993, - "fn_rate": 0.5789986215336836, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999568434896896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998281115712165, - "recall": 0.4210013784663164, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127968, - "tp_rate": 0.4210013784663164, - "truth_threshold": 14.5 - }, - { - "f1": 0.5920129319728207, - "fn": 176146, - "fn_rate": 0.5795019755823938, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999574376128317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998279058488544, - "recall": 0.4204980244176062, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127815, - "tp_rate": 0.4204980244176062, - "truth_threshold": 14.52 - }, - { - "f1": 0.5915432267510552, - "fn": 176290, - "fn_rate": 0.5799757205694152, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999580235571964, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998277117774663, - "recall": 0.42002427943058485, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127671, - "tp_rate": 0.42002427943058485, - "truth_threshold": 14.540000000000001 - }, - { - "f1": 0.5910386606658663, - "fn": 176445, - "fn_rate": 0.5804856544096118, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999586014353645, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998275023914441, - "recall": 0.41951434559038825, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127516, - "tp_rate": 0.41951434559038825, - "truth_threshold": 14.56 - }, - { - "f1": 0.5905767367244841, - "fn": 176586, - "fn_rate": 0.5809495297094035, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999591713583673, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998273114751525, - "recall": 0.4190504702905965, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127375, - "tp_rate": 0.4190504702905965, - "truth_threshold": 14.58 - }, - { - "f1": 0.590086454796757, - "fn": 176736, - "fn_rate": 0.5814430140708841, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999597334357079, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998271079082415, - "recall": 0.4185569859291159, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127225, - "tp_rate": 0.4185569859291159, - "truth_threshold": 14.6 - }, - { - "f1": 0.5897313371901517, - "fn": 176845, - "fn_rate": 0.5818016127068933, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999602877753826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998269596816058, - "recall": 0.41819838729310665, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 127116, - "tp_rate": 0.41819838729310665, - "truth_threshold": 14.620000000000001 - }, - { - "f1": 0.5891965396253735, - "fn": 177008, - "fn_rate": 0.5823378657130356, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999608344839012, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998267375467612, - "recall": 0.41766213428696447, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126953, - "tp_rate": 0.41766213428696447, - "truth_threshold": 14.64 - }, - { - "f1": 0.588803572754958, - "fn": 177128, - "fn_rate": 0.58273265320222, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999613736663076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998265736470774, - "recall": 0.41726734679778, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126833, - "tp_rate": 0.41726734679778, - "truth_threshold": 14.66 - }, - { - "f1": 0.5882314694408323, - "fn": 177303, - "fn_rate": 0.5833083849572807, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999619054261999, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998263340700979, - "recall": 0.4166916150427193, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126658, - "tp_rate": 0.4166916150427193, - "truth_threshold": 14.68 - }, - { - "f1": 0.5878595584956147, - "fn": 177416, - "fn_rate": 0.5836801431762627, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999624298657506, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998261790198076, - "recall": 0.41631985682373723, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126545, - "tp_rate": 0.41631985682373723, - "truth_threshold": 14.700000000000001 - }, - { - "f1": 0.5872801208318811, - "fn": 177593, - "fn_rate": 0.5842624547228098, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999629470857259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998259355961706, - "recall": 0.41573754527719015, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126368, - "tp_rate": 0.41573754527719015, - "truth_threshold": 14.72 - }, - { - "f1": 0.5868400989270506, - "fn": 177727, - "fn_rate": 0.5847033007523992, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999634571855048, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998257508554049, - "recall": 0.4152966992476008, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126234, - "tp_rate": 0.4152966992476008, - "truth_threshold": 14.74 - }, - { - "f1": 0.5864740319828136, - "fn": 177838, - "fn_rate": 0.5850684791798948, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999639602630992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998255975266558, - "recall": 0.4149315208201052, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 126123, - "tp_rate": 0.4149315208201052, - "truth_threshold": 14.76 - }, - { - "f1": 0.5859460766983607, - "fn": 177999, - "fn_rate": 0.5855981523945506, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999644564151715, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998253746507493, - "recall": 0.4144018476054494, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125962, - "tp_rate": 0.4144018476054494, - "truth_threshold": 14.780000000000001 - }, - { - "f1": 0.585452565647729, - "fn": 178149, - "fn_rate": 0.5860916367560312, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999649457370537, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998251664891842, - "recall": 0.4139083632439688, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125812, - "tp_rate": 0.4139083632439688, - "truth_threshold": 14.8 - }, - { - "f1": 0.5849277062443556, - "fn": 178308, - "fn_rate": 0.5866147301792006, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999654283227661, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998249452954048, - "recall": 0.4133852698207994, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125653, - "tp_rate": 0.4133852698207994, - "truth_threshold": 14.82 - }, - { - "f1": 0.5844400774876132, - "fn": 178456, - "fn_rate": 0.5871016347491947, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999659042650346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998247389007943, - "recall": 0.4128983652508052, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125505, - "tp_rate": 0.4128983652508052, - "truth_threshold": 14.84 - }, - { - "f1": 0.5837805855276644, - "fn": 178656, - "fn_rate": 0.5877596138978356, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999663736553089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998244592146943, - "recall": 0.4122403861021644, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125305, - "tp_rate": 0.4122403861021644, - "truth_threshold": 14.86 - }, - { - "f1": 0.5834044000801539, - "fn": 178770, - "fn_rate": 0.5881346620125608, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999668365837804, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998242993938329, - "recall": 0.4118653379874392, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125191, - "tp_rate": 0.4118653379874392, - "truth_threshold": 14.88 - }, - { - "f1": 0.5827901945975179, - "fn": 178956, - "fn_rate": 0.5887465826207967, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999672931393985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998240380077903, - "recall": 0.41125341737920323, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 125005, - "tp_rate": 0.41125341737920323, - "truth_threshold": 14.9 - }, - { - "f1": 0.5822793075143646, - "fn": 179111, - "fn_rate": 0.5892565164609933, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999677434098888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998238195912614, - "recall": 0.41074348353900664, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124850, - "tp_rate": 0.41074348353900664, - "truth_threshold": 14.92 - }, - { - "f1": 0.5818096993165224, - "fn": 179253, - "fn_rate": 0.5897236816565283, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999681874817694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998236190170768, - "recall": 0.41027631834347167, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124708, - "tp_rate": 0.41027631834347167, - "truth_threshold": 14.94 - }, - { - "f1": 0.5812735690549976, - "fn": 179415, - "fn_rate": 0.5902566447669273, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999686254403675, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998233896345771, - "recall": 0.40974335523307265, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124546, - "tp_rate": 0.40974335523307265, - "truth_threshold": 14.96 - }, - { - "f1": 0.5805846096376541, - "fn": 179623, - "fn_rate": 0.5909409430815138, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999690573698359, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998230942425217, - "recall": 0.40905905691848626, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124338, - "tp_rate": 0.40905905691848626, - "truth_threshold": 14.98 - }, - { - "f1": 0.580113877873221, - "fn": 179765, - "fn_rate": 0.5914081082770487, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999694833531692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998228920124298, - "recall": 0.4085918917229513, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124196, - "tp_rate": 0.4085918917229513, - "truth_threshold": 15 - }, - { - "f1": 0.5795850661184057, - "fn": 179924, - "fn_rate": 0.5919312017002181, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999699034722195, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998226650222878, - "recall": 0.4080687982997819, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 124037, - "tp_rate": 0.4080687982997819, - "truth_threshold": 15.02 - }, - { - "f1": 0.5791581948631658, - "fn": 180053, - "fn_rate": 0.5923555982510914, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999703178077124, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998224804325022, - "recall": 0.4076444017489086, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123908, - "tp_rate": 0.4076444017489086, - "truth_threshold": 15.040000000000001 - }, - { - "f1": 0.5787150678654753, - "fn": 180186, - "fn_rate": 0.5927931543849375, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999707264392624, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999822289716229, - "recall": 0.4072068456150625, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123775, - "tp_rate": 0.4072068456150625, - "truth_threshold": 15.06 - }, - { - "f1": 0.5782810212662467, - "fn": 180317, - "fn_rate": 0.5932241307272973, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999711294453882, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998221014668542, - "recall": 0.40677586927270276, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123644, - "tp_rate": 0.40677586927270276, - "truth_threshold": 15.08 - }, - { - "f1": 0.5778772695587898, - "fn": 180438, - "fn_rate": 0.5936222081122249, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999715269035279, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999821927232992, - "recall": 0.40637779188777506, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123523, - "tp_rate": 0.40637779188777506, - "truth_threshold": 15.1 - }, - { - "f1": 0.5772762587638419, - "fn": 180619, - "fn_rate": 0.5942176792417448, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999719188900533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998216659641387, - "recall": 0.40578232075825516, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123342, - "tp_rate": 0.40578232075825516, - "truth_threshold": 15.120000000000001 - }, - { - "f1": 0.5767520038954229, - "fn": 180776, - "fn_rate": 0.5947341928734279, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999723054802854, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998214387169561, - "recall": 0.4052658071265722, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123185, - "tp_rate": 0.4052658071265722, - "truth_threshold": 15.14 - }, - { - "f1": 0.5763300861745972, - "fn": 180903, - "fn_rate": 0.5951520096328148, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999726867485083, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998212544686382, - "recall": 0.4048479903671853, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 123058, - "tp_rate": 0.4048479903671853, - "truth_threshold": 15.16 - }, - { - "f1": 0.5759032306423806, - "fn": 181031, - "fn_rate": 0.5955731162879448, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999730627679836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998210683844102, - "recall": 0.40442688371205515, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122930, - "tp_rate": 0.40442688371205515, - "truth_threshold": 15.18 - }, - { - "f1": 0.5754026834629138, - "fn": 181181, - "fn_rate": 0.5960666006494254, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999734336109646, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998208498232928, - "recall": 0.4039333993505746, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122780, - "tp_rate": 0.4039333993505746, - "truth_threshold": 15.200000000000001 - }, - { - "f1": 0.5748750597744043, - "fn": 181339, - "fn_rate": 0.5965864041768516, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999737993487102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999820619027429, - "recall": 0.40341359582314834, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122622, - "tp_rate": 0.40341359582314834, - "truth_threshold": 15.22 - }, - { - "f1": 0.5743624135893372, - "fn": 181492, - "fn_rate": 0.5970897582255619, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999741600514982, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998203949677935, - "recall": 0.4029102417744382, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122469, - "tp_rate": 0.4029102417744382, - "truth_threshold": 15.24 - }, - { - "f1": 0.5738520940750367, - "fn": 181645, - "fn_rate": 0.597593112274272, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999745157886392, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998201703477252, - "recall": 0.40240688772572797, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122316, - "tp_rate": 0.40240688772572797, - "truth_threshold": 15.26 - }, - { - "f1": 0.5732918438418143, - "fn": 181812, - "fn_rate": 0.598142524863387, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999748666284898, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998199245320084, - "recall": 0.4018574751366129, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122149, - "tp_rate": 0.4018574751366129, - "truth_threshold": 15.280000000000001 - }, - { - "f1": 0.572887960376517, - "fn": 181933, - "fn_rate": 0.5985406022483147, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999752126384654, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998197460057353, - "recall": 0.40145939775168527, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 122028, - "tp_rate": 0.40145939775168527, - "truth_threshold": 15.3 - }, - { - "f1": 0.5723785862893265, - "fn": 182085, - "fn_rate": 0.5990406664012817, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999755538850542, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998195212390687, - "recall": 0.40095933359871827, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121876, - "tp_rate": 0.40095933359871827, - "truth_threshold": 15.32 - }, - { - "f1": 0.5718641503760812, - "fn": 182238, - "fn_rate": 0.5995440204499919, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999758904338284, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998192944268759, - "recall": 0.40045597955000806, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121723, - "tp_rate": 0.40045597955000806, - "truth_threshold": 15.34 - }, - { - "f1": 0.5714124585849566, - "fn": 182373, - "fn_rate": 0.5999881563753244, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999976222349458, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999819093824521, - "recall": 0.4000118436246755, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121588, - "tp_rate": 0.4000118436246755, - "truth_threshold": 15.36 - }, - { - "f1": 0.5708973292150309, - "fn": 182526, - "fn_rate": 0.6004915104240347, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999976549695723, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998188659360926, - "recall": 0.39950848957596535, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121435, - "tp_rate": 0.39950848957596535, - "truth_threshold": 15.38 - }, - { - "f1": 0.5702991251998871, - "fn": 182704, - "fn_rate": 0.601077111866325, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999976872535525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998186000874018, - "recall": 0.39892288813367505, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121257, - "tp_rate": 0.39892288813367505, - "truth_threshold": 15.4 - }, - { - "f1": 0.5697656911640162, - "fn": 182863, - "fn_rate": 0.6016002052894944, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.9999771909309003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998183619550859, - "recall": 0.39839979471050563, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 121098, - "tp_rate": 0.39839979471050563, - "truth_threshold": 15.42 - }, - { - "f1": 0.5691955040102421, - "fn": 183032, - "fn_rate": 0.6021561976700959, - "fp": 22, - "fp_rate": 0.00012653204424020384, - "match_probability": 0.999977504943031, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998181081595026, - "recall": 0.3978438023299042, - "row_count": 477830, - "tn": 173847, - "tn_rate": 0.9998734679557598, - "tp": 120929, - "tp_rate": 0.3978438023299042, - "truth_threshold": 15.44 - }, - { - "f1": 0.5687110960439209, - "fn": 183177, - "fn_rate": 0.6026332325528604, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.999977814632257, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998344425681269, - "recall": 0.3973667674471396, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120784, - "tp_rate": 0.3973667674471396, - "truth_threshold": 15.46 - }, - { - "f1": 0.5682884325546345, - "fn": 183302, - "fn_rate": 0.6030444695207609, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999781200580878, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998342710827899, - "recall": 0.3969555304792391, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120659, - "tp_rate": 0.3969555304792391, - "truth_threshold": 15.48 - }, - { - "f1": 0.5678904744630432, - "fn": 183420, - "fn_rate": 0.603432677218459, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999784212792137, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998341088743458, - "recall": 0.39656732278154105, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120541, - "tp_rate": 0.39656732278154105, - "truth_threshold": 15.5 - }, - { - "f1": 0.5671681891456206, - "fn": 183634, - "fn_rate": 0.6041367149075045, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.999978718353517, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998338138881734, - "recall": 0.3958632850924954, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120327, - "tp_rate": 0.3958632850924954, - "truth_threshold": 15.52 - }, - { - "f1": 0.5666614799202184, - "fn": 183784, - "fn_rate": 0.6046301992689852, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999790113380835, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998336064960024, - "recall": 0.39536980073101485, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120177, - "tp_rate": 0.39536980073101485, - "truth_threshold": 15.540000000000001 - }, - { - "f1": 0.5660712011358973, - "fn": 183959, - "fn_rate": 0.6052059310240459, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999793002892131, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999833363883288, - "recall": 0.39479406897595415, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 120002, - "tp_rate": 0.39479406897595415, - "truth_threshold": 15.56 - }, - { - "f1": 0.5655928388408888, - "fn": 184100, - "fn_rate": 0.6056698063238376, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999795852624306, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998331678914923, - "recall": 0.3943301936761624, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119861, - "tp_rate": 0.3943301936761624, - "truth_threshold": 15.58 - }, - { - "f1": 0.5650714676837673, - "fn": 184254, - "fn_rate": 0.606176450268291, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999798663124968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998329533020957, - "recall": 0.393823549731709, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119707, - "tp_rate": 0.393823549731709, - "truth_threshold": 15.6 - }, - { - "f1": 0.5646717189602664, - "fn": 184372, - "fn_rate": 0.606564657965989, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999801434934182, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998327885025374, - "recall": 0.3934353420340109, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119589, - "tp_rate": 0.3934353420340109, - "truth_threshold": 15.620000000000001 - }, - { - "f1": 0.5641408368208742, - "fn": 184529, - "fn_rate": 0.607081171597672, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999804168584587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998325687305362, - "recall": 0.39291882840232795, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119432, - "tp_rate": 0.39291882840232795, - "truth_threshold": 15.64 - }, - { - "f1": 0.5637269956767228, - "fn": 184651, - "fn_rate": 0.6074825388783429, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999806864601481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998323975530042, - "recall": 0.39251746112165703, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119310, - "tp_rate": 0.39251746112165703, - "truth_threshold": 15.66 - }, - { - "f1": 0.5632246385374177, - "fn": 184799, - "fn_rate": 0.6079694434483371, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999809523502939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998321894245775, - "recall": 0.39203055655166286, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 119162, - "tp_rate": 0.39203055655166286, - "truth_threshold": 15.68 - }, - { - "f1": 0.562662833527985, - "fn": 184964, - "fn_rate": 0.6085122762459657, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999812145799899, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998319567792836, - "recall": 0.39148772375403423, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118997, - "tp_rate": 0.39148772375403423, - "truth_threshold": 15.700000000000001 - }, - { - "f1": 0.5620645124668284, - "fn": 185140, - "fn_rate": 0.6090912978967696, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999814731996269, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998317079122525, - "recall": 0.39090870210323037, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118821, - "tp_rate": 0.39090870210323037, - "truth_threshold": 15.72 - }, - { - "f1": 0.5616133703048255, - "fn": 185273, - "fn_rate": 0.6095288540306157, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.999981728258902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998315193584257, - "recall": 0.3904711459693842, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118688, - "tp_rate": 0.3904711459693842, - "truth_threshold": 15.74 - }, - { - "f1": 0.5610346084478507, - "fn": 185443, - "fn_rate": 0.6100881363069605, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999819798068281, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998312777337225, - "recall": 0.38991186369303954, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118518, - "tp_rate": 0.38991186369303954, - "truth_threshold": 15.76 - }, - { - "f1": 0.5604438277539152, - "fn": 185616, - "fn_rate": 0.6106572882705347, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999822278917435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998310311325138, - "recall": 0.3893427117294653, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118345, - "tp_rate": 0.3893427117294653, - "truth_threshold": 15.780000000000001 - }, - { - "f1": 0.5600210325862975, - "fn": 185740, - "fn_rate": 0.611065235342692, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999824725613211, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998308539339147, - "recall": 0.38893476465730803, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118221, - "tp_rate": 0.38893476465730803, - "truth_threshold": 15.8 - }, - { - "f1": 0.5594798621938101, - "fn": 185899, - "fn_rate": 0.6115883287658614, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999827138625776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998306261750309, - "recall": 0.3884116712341386, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 118062, - "tp_rate": 0.3884116712341386, - "truth_threshold": 15.82 - }, - { - "f1": 0.5589472037469838, - "fn": 186055, - "fn_rate": 0.6121015525018012, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999829518418826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998304021165816, - "recall": 0.3878984474981988, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117906, - "tp_rate": 0.3878984474981988, - "truth_threshold": 15.84 - }, - { - "f1": 0.5585461270360623, - "fn": 186172, - "fn_rate": 0.612486470303756, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.999983186544967, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998302336833349, - "recall": 0.3875135296962439, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117789, - "tp_rate": 0.3875135296962439, - "truth_threshold": 15.860000000000001 - }, - { - "f1": 0.5579580548294821, - "fn": 186344, - "fn_rate": 0.6130523323715872, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999834180169326, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998299854637571, - "recall": 0.3869476676284129, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117617, - "tp_rate": 0.3869476676284129, - "truth_threshold": 15.88 - }, - { - "f1": 0.5572325611197334, - "fn": 186556, - "fn_rate": 0.6137497902691463, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999836463022602, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998296785182031, - "recall": 0.3862502097308536, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117405, - "tp_rate": 0.3862502097308536, - "truth_threshold": 15.9 - }, - { - "f1": 0.5567599134001823, - "fn": 186694, - "fn_rate": 0.6142037958817085, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999838714448183, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998294781177794, - "recall": 0.38579620411829146, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117267, - "tp_rate": 0.38579620411829146, - "truth_threshold": 15.92 - }, - { - "f1": 0.5563191314548417, - "fn": 186823, - "fn_rate": 0.6146281924325818, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999840934878717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998292903600267, - "recall": 0.3853718075674182, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 117138, - "tp_rate": 0.3853718075674182, - "truth_threshold": 15.94 - }, - { - "f1": 0.5557361004209546, - "fn": 186993, - "fn_rate": 0.6151874747089264, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999843124740891, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998290422949362, - "recall": 0.3848125252910735, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 116968, - "tp_rate": 0.3848125252910735, - "truth_threshold": 15.96 - }, - { - "f1": 0.5551684474694856, - "fn": 187158, - "fn_rate": 0.6157303075065551, - "fp": 20, - "fp_rate": 0.00011502913112745803, - "match_probability": 0.9999845284455526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998288008354519, - "recall": 0.3842696924934449, - "row_count": 477830, - "tn": 173849, - "tn_rate": 0.9998849708688725, - "tp": 116803, - "tp_rate": 0.3842696924934449, - "truth_threshold": 15.98 - }, - { - "f1": 0.5546695955648114, - "fn": 187304, - "fn_rate": 0.6162106322850629, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999847414437646, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999837155884672, - "recall": 0.3837893677149371, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 116657, - "tp_rate": 0.3837893677149371, - "truth_threshold": 16 - }, - { - "f1": 0.5541079828954941, - "fn": 187467, - "fn_rate": 0.6167468852912051, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999984951509656, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998369280681125, - "recall": 0.38325311470879486, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 116494, - "tp_rate": 0.38325311470879486, - "truth_threshold": 16.02 - }, - { - "f1": 0.5535713436017492, - "fn": 187623, - "fn_rate": 0.6172601090271449, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999851586835948, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999836709437335, - "recall": 0.38273989097285505, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 116338, - "tp_rate": 0.38273989097285505, - "truth_threshold": 16.04 - }, - { - "f1": 0.5531217127652992, - "fn": 187754, - "fn_rate": 0.6176910853695047, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999853630053928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998365253901881, - "recall": 0.3823089146304954, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 116207, - "tp_rate": 0.3823089146304954, - "truth_threshold": 16.06 - }, - { - "f1": 0.5526394728196435, - "fn": 187894, - "fn_rate": 0.6181516707735532, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999855645143139, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998363282394087, - "recall": 0.3818483292264468, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 116067, - "tp_rate": 0.3818483292264468, - "truth_threshold": 16.080000000000002 - }, - { - "f1": 0.5520349058760765, - "fn": 188069, - "fn_rate": 0.6187274025286139, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999857632490817, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998360811312127, - "recall": 0.38127259747138614, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115892, - "tp_rate": 0.38127259747138614, - "truth_threshold": 16.1 - }, - { - "f1": 0.5516623626609237, - "fn": 188177, - "fn_rate": 0.6190827112688799, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999859592478867, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998359282574717, - "recall": 0.38091728873112013, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115784, - "tp_rate": 0.38091728873112013, - "truth_threshold": 16.12 - }, - { - "f1": 0.5510203108837928, - "fn": 188363, - "fn_rate": 0.6196946318771158, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999861525483934, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998356643054223, - "recall": 0.3803053681228842, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115598, - "tp_rate": 0.3803053681228842, - "truth_threshold": 16.14 - }, - { - "f1": 0.5504515845993915, - "fn": 188528, - "fn_rate": 0.6202374646747445, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999863431877482, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998354294425389, - "recall": 0.37976253532525556, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115433, - "tp_rate": 0.37976253532525556, - "truth_threshold": 16.16 - }, - { - "f1": 0.5497483361561032, - "fn": 188731, - "fn_rate": 0.6209053135106148, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999865312025857, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998351395673715, - "recall": 0.37909468648938516, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115230, - "tp_rate": 0.37909468648938516, - "truth_threshold": 16.18 - }, - { - "f1": 0.5491045858948413, - "fn": 188917, - "fn_rate": 0.6215172341188507, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999867166290367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998348730695358, - "recall": 0.3784827658811492, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 115044, - "tp_rate": 0.3784827658811492, - "truth_threshold": 16.2 - }, - { - "f1": 0.5485434343530805, - "fn": 189079, - "fn_rate": 0.6220501972292498, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999868995027343, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998346402555244, - "recall": 0.3779498027707502, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114882, - "tp_rate": 0.3779498027707502, - "truth_threshold": 16.22 - }, - { - "f1": 0.5479380729233841, - "fn": 189254, - "fn_rate": 0.6226259289843105, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999870798588212, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998343880201523, - "recall": 0.37737407101568954, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114707, - "tp_rate": 0.37737407101568954, - "truth_threshold": 16.240000000000002 - }, - { - "f1": 0.5474384888493867, - "fn": 189398, - "fn_rate": 0.6230996739713318, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999872577319563, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998341798886387, - "recall": 0.37690032602866813, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114563, - "tp_rate": 0.37690032602866813, - "truth_threshold": 16.26 - }, - { - "f1": 0.5469337807542101, - "fn": 189543, - "fn_rate": 0.6235767088540964, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999874331563213, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998339697825004, - "recall": 0.37642329114590356, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114418, - "tp_rate": 0.37642329114590356, - "truth_threshold": 16.28 - }, - { - "f1": 0.5463896327467482, - "fn": 189700, - "fn_rate": 0.6240932224857795, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999876061656275, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998337416870844, - "recall": 0.3759067775142206, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114261, - "tp_rate": 0.3759067775142206, - "truth_threshold": 16.3 - }, - { - "f1": 0.5459168053881331, - "fn": 189836, - "fn_rate": 0.6245406483068552, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999877767931221, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998335435940566, - "recall": 0.37545935169314487, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 114125, - "tp_rate": 0.37545935169314487, - "truth_threshold": 16.32 - }, - { - "f1": 0.545457590460605, - "fn": 189968, - "fn_rate": 0.624974914544958, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999879450715947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998333508753464, - "recall": 0.37502508545504193, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113993, - "tp_rate": 0.37502508545504193, - "truth_threshold": 16.34 - }, - { - "f1": 0.5450398705761849, - "fn": 190088, - "fn_rate": 0.6253697020341425, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999881110333831, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998331752888702, - "recall": 0.37463029796585745, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113873, - "tp_rate": 0.37463029796585745, - "truth_threshold": 16.36 - }, - { - "f1": 0.5445243521728306, - "fn": 190236, - "fn_rate": 0.6258566066041367, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999882747103807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998329582219722, - "recall": 0.3741433933958633, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113725, - "tp_rate": 0.3741433933958633, - "truth_threshold": 16.38 - }, - { - "f1": 0.5439387262415696, - "fn": 190404, - "fn_rate": 0.626409309088995, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999884361340411, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998327111361556, - "recall": 0.37359069091100505, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113557, - "tp_rate": 0.37359069091100505, - "truth_threshold": 16.4 - }, - { - "f1": 0.5434106558437514, - "fn": 190555, - "fn_rate": 0.6269060833462188, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999885953353853, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998324884284769, - "recall": 0.3730939166537812, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113406, - "tp_rate": 0.3730939166537812, - "truth_threshold": 16.42 - }, - { - "f1": 0.5428778233692526, - "fn": 190708, - "fn_rate": 0.6274094373949289, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999887523450072, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998322621654072, - "recall": 0.37259056260507106, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113253, - "tp_rate": 0.37259056260507106, - "truth_threshold": 16.44 - }, - { - "f1": 0.5423140369048989, - "fn": 190869, - "fn_rate": 0.6279391106095847, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999889071930795, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999832023410632, - "recall": 0.3720608893904152, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 113092, - "tp_rate": 0.3720608893904152, - "truth_threshold": 16.46 - }, - { - "f1": 0.5416404799485701, - "fn": 191062, - "fn_rate": 0.6285740604880231, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999890599093596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998317363042207, - "recall": 0.3714259395119769, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112899, - "tp_rate": 0.3714259395119769, - "truth_threshold": 16.48 - }, - { - "f1": 0.5411037468264519, - "fn": 191215, - "fn_rate": 0.6290774145367334, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999892105231952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998315080033698, - "recall": 0.3709225854632667, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112746, - "tp_rate": 0.3709225854632667, - "truth_threshold": 16.5 - }, - { - "f1": 0.5405924432281914, - "fn": 191361, - "fn_rate": 0.6295577393152411, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999893590635301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998312895692556, - "recall": 0.3704422606847589, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112600, - "tp_rate": 0.3704422606847589, - "truth_threshold": 16.52 - }, - { - "f1": 0.5400224775224776, - "fn": 191524, - "fn_rate": 0.6300939923213833, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999895055589096, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998310450309454, - "recall": 0.36990600767861664, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112437, - "tp_rate": 0.36990600767861664, - "truth_threshold": 16.54 - }, - { - "f1": 0.5394003459542571, - "fn": 191701, - "fn_rate": 0.6306763038679304, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999989650037486, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998307786852394, - "recall": 0.36932369613206956, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112260, - "tp_rate": 0.36932369613206956, - "truth_threshold": 16.56 - }, - { - "f1": 0.5389159388803707, - "fn": 191839, - "fn_rate": 0.6311303094804925, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999897925270239, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998305704425678, - "recall": 0.3688696905195074, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 112122, - "tp_rate": 0.3688696905195074, - "truth_threshold": 16.580000000000002 - }, - { - "f1": 0.5384079085287867, - "fn": 191984, - "fn_rate": 0.6316073443632572, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999989933054906, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998303510839673, - "recall": 0.3683926556367429, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111977, - "tp_rate": 0.3683926556367429, - "truth_threshold": 16.6 - }, - { - "f1": 0.5378876789287363, - "fn": 192132, - "fn_rate": 0.6320942489332513, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999900716481379, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998301266003863, - "recall": 0.3679057510667487, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111829, - "tp_rate": 0.3679057510667487, - "truth_threshold": 16.62 - }, - { - "f1": 0.5374256034719181, - "fn": 192263, - "fn_rate": 0.6325252252756111, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999902083333535, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998299274058559, - "recall": 0.367474774724389, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111698, - "tp_rate": 0.367474774724389, - "truth_threshold": 16.64 - }, - { - "f1": 0.5367756779913934, - "fn": 192448, - "fn_rate": 0.6331338559881038, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.99999034313682, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99982964530359, - "recall": 0.36686614401189627, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111513, - "tp_rate": 0.36686614401189627, - "truth_threshold": 16.66 - }, - { - "f1": 0.5363551883362945, - "fn": 192567, - "fn_rate": 0.633525353581545, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999904760844428, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998294633480832, - "recall": 0.366474646418455, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111394, - "tp_rate": 0.366474646418455, - "truth_threshold": 16.68 - }, - { - "f1": 0.5358828629226472, - "fn": 192701, - "fn_rate": 0.6339661996111343, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999906072017711, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998292579911753, - "recall": 0.3660338003888657, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111260, - "tp_rate": 0.3660338003888657, - "truth_threshold": 16.7 - }, - { - "f1": 0.5353820061768546, - "fn": 192843, - "fn_rate": 0.6344333648066692, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999990736514002, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998290398337187, - "recall": 0.3655666351933307, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 111118, - "tp_rate": 0.3655666351933307, - "truth_threshold": 16.72 - }, - { - "f1": 0.5348666833754265, - "fn": 192989, - "fn_rate": 0.634913689585177, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999908640459861, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998288149489598, - "recall": 0.365086310414823, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110972, - "tp_rate": 0.365086310414823, - "truth_threshold": 16.740000000000002 - }, - { - "f1": 0.5344476800246847, - "fn": 193108, - "fn_rate": 0.6353051871786183, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999909898222314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998286312143734, - "recall": 0.36469481282138166, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110853, - "tp_rate": 0.36469481282138166, - "truth_threshold": 16.76 - }, - { - "f1": 0.5339175561032309, - "fn": 193258, - "fn_rate": 0.635798671540099, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999911138669091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998283990534853, - "recall": 0.3642013284599011, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110703, - "tp_rate": 0.3642013284599011, - "truth_threshold": 16.78 - }, - { - "f1": 0.5332336123911313, - "fn": 193451, - "fn_rate": 0.6364336214185372, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999912362038571, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998280994128238, - "recall": 0.36356637858146273, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110510, - "tp_rate": 0.36356637858146273, - "truth_threshold": 16.8 - }, - { - "f1": 0.5326884460920606, - "fn": 193605, - "fn_rate": 0.6369402653629906, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999913568565856, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998278595696489, - "recall": 0.36305973463700936, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110356, - "tp_rate": 0.36305973463700936, - "truth_threshold": 16.82 - }, - { - "f1": 0.5321641380242789, - "fn": 193753, - "fn_rate": 0.6374271699329849, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999914758482807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999827628439493, - "recall": 0.3625728300670152, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110208, - "tp_rate": 0.3625728300670152, - "truth_threshold": 16.84 - }, - { - "f1": 0.5317032879451671, - "fn": 193883, - "fn_rate": 0.6378548563796014, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999915932018099, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998274249071274, - "recall": 0.3621451436203987, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 110078, - "tp_rate": 0.3621451436203987, - "truth_threshold": 16.86 - }, - { - "f1": 0.531199567061916, - "fn": 194025, - "fn_rate": 0.6383220215751363, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999917089397252, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999827202037197, - "recall": 0.3616779784248637, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109936, - "tp_rate": 0.3616779784248637, - "truth_threshold": 16.88 - }, - { - "f1": 0.5305463440101321, - "fn": 194209, - "fn_rate": 0.6389273623918859, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999918230842687, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998269123903399, - "recall": 0.3610726376081142, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109752, - "tp_rate": 0.3610726376081142, - "truth_threshold": 16.9 - }, - { - "f1": 0.5301342307841089, - "fn": 194325, - "fn_rate": 0.6393089902980974, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999919356573761, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998267292873102, - "recall": 0.36069100970190254, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109636, - "tp_rate": 0.36069100970190254, - "truth_threshold": 16.92 - }, - { - "f1": 0.5294991244110334, - "fn": 194504, - "fn_rate": 0.6398978816361309, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999992046680681, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998264459790274, - "recall": 0.3601021183638691, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109457, - "tp_rate": 0.3601021183638691, - "truth_threshold": 16.94 - }, - { - "f1": 0.5289961673957648, - "fn": 194645, - "fn_rate": 0.6403617569359227, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999921561755195, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998262221612475, - "recall": 0.3596382430640773, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109316, - "tp_rate": 0.3596382430640773, - "truth_threshold": 16.96 - }, - { - "f1": 0.5285119566269726, - "fn": 194781, - "fn_rate": 0.6408091827569984, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999922641629336, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998260057326532, - "recall": 0.35919081724300156, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109180, - "tp_rate": 0.35919081724300156, - "truth_threshold": 16.98 - }, - { - "f1": 0.528096416345069, - "fn": 194898, - "fn_rate": 0.6411941005589533, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999992370663676, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998258191085605, - "recall": 0.35880589944104674, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 109063, - "tp_rate": 0.35880589944104674, - "truth_threshold": 17 - }, - { - "f1": 0.5276116113594862, - "fn": 195034, - "fn_rate": 0.641641526380029, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999924756982134, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999825601674224, - "recall": 0.358358473619971, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108927, - "tp_rate": 0.358358473619971, - "truth_threshold": 17.02 - }, - { - "f1": 0.5272286821705426, - "fn": 195141, - "fn_rate": 0.6419935452245519, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999925792867308, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998254302226224, - "recall": 0.3580064547754482, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108820, - "tp_rate": 0.3580064547754482, - "truth_threshold": 17.04 - }, - { - "f1": 0.5267053110126693, - "fn": 195288, - "fn_rate": 0.6424771598988028, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999926814491356, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998251941265226, - "recall": 0.35752284010119717, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108673, - "tp_rate": 0.35752284010119717, - "truth_threshold": 17.06 - }, - { - "f1": 0.5262910388426707, - "fn": 195404, - "fn_rate": 0.6428587878050145, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999927822050607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998250073681109, - "recall": 0.3571412121949855, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108557, - "tp_rate": 0.3571412121949855, - "truth_threshold": 17.080000000000002 - }, - { - "f1": 0.5257930445831455, - "fn": 195543, - "fn_rate": 0.6433160833133198, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999928815738692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998247830537547, - "recall": 0.3566839166866802, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108418, - "tp_rate": 0.3566839166866802, - "truth_threshold": 17.1 - }, - { - "f1": 0.5253544972518277, - "fn": 195666, - "fn_rate": 0.6437207404897339, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999929795746573, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998245840796204, - "recall": 0.3562792595102661, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108295, - "tp_rate": 0.3562792595102661, - "truth_threshold": 17.12 - }, - { - "f1": 0.5245027133551438, - "fn": 195904, - "fn_rate": 0.6445037356766165, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999930762262584, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998241977867427, - "recall": 0.3554962643233836, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 108057, - "tp_rate": 0.3554962643233836, - "truth_threshold": 17.14 - }, - { - "f1": 0.5240728692257645, - "fn": 196024, - "fn_rate": 0.6448985231658009, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999931715472467, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998240023713365, - "recall": 0.3551014768341991, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107937, - "tp_rate": 0.3551014768341991, - "truth_threshold": 17.16 - }, - { - "f1": 0.52362843377239, - "fn": 196148, - "fn_rate": 0.6453064702379582, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999932655559404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998237999851621, - "recall": 0.3546935297620418, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107813, - "tp_rate": 0.3546935297620418, - "truth_threshold": 17.18 - }, - { - "f1": 0.5231980800248742, - "fn": 196268, - "fn_rate": 0.6457012577271426, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999993358270406, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998236036838978, - "recall": 0.35429874227285735, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107693, - "tp_rate": 0.35429874227285735, - "truth_threshold": 17.2 - }, - { - "f1": 0.5227051825356712, - "fn": 196405, - "fn_rate": 0.6461519734439616, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999934497084612, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998233790378805, - "recall": 0.3538480265560384, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107556, - "tp_rate": 0.3538480265560384, - "truth_threshold": 17.22 - }, - { - "f1": 0.5221162354268156, - "fn": 196569, - "fn_rate": 0.646691516345847, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999935398876778, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998231093649627, - "recall": 0.353308483654153, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107392, - "tp_rate": 0.353308483654153, - "truth_threshold": 17.240000000000002 - }, - { - "f1": 0.5217497021421451, - "fn": 196671, - "fn_rate": 0.6470270857116538, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999936288253866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998229412258058, - "recall": 0.3529729142883462, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107290, - "tp_rate": 0.3529729142883462, - "truth_threshold": 17.26 - }, - { - "f1": 0.5213303109312372, - "fn": 196788, - "fn_rate": 0.6474120035136086, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999993716538679, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998227479662661, - "recall": 0.35258799648639133, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107173, - "tp_rate": 0.35258799648639133, - "truth_threshold": 17.28 - }, - { - "f1": 0.5208073808782311, - "fn": 196933, - "fn_rate": 0.6478890383963732, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999938030444118, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998225078703747, - "recall": 0.35211096160362676, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 107028, - "tp_rate": 0.35211096160362676, - "truth_threshold": 17.3 - }, - { - "f1": 0.5201641562892501, - "fn": 197112, - "fn_rate": 0.6484779297344068, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999938883592091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999822210577535, - "recall": 0.3515220702655933, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106849, - "tp_rate": 0.3515220702655933, - "truth_threshold": 17.32 - }, - { - "f1": 0.5197822371336329, - "fn": 197218, - "fn_rate": 0.6488266586831863, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999939724994668, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998220340570615, - "recall": 0.35117334131681366, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106743, - "tp_rate": 0.35117334131681366, - "truth_threshold": 17.34 - }, - { - "f1": 0.5191693135096164, - "fn": 197388, - "fn_rate": 0.649385940959531, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999940554813546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998217502251576, - "recall": 0.350614059040469, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106573, - "tp_rate": 0.350614059040469, - "truth_threshold": 17.36 - }, - { - "f1": 0.5186881730909799, - "fn": 197521, - "fn_rate": 0.6498234970933771, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999941373208195, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998215275364225, - "recall": 0.3501765029066229, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106440, - "tp_rate": 0.3501765029066229, - "truth_threshold": 17.38 - }, - { - "f1": 0.5180598957698551, - "fn": 197695, - "fn_rate": 0.6503959389526945, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999942180335896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998212353577645, - "recall": 0.3496040610473054, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106266, - "tp_rate": 0.3496040610473054, - "truth_threshold": 17.400000000000002 - }, - { - "f1": 0.5173804681288988, - "fn": 197883, - "fn_rate": 0.6510144393524169, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999942976351759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998209185933626, - "recall": 0.34898556064758307, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 106078, - "tp_rate": 0.34898556064758307, - "truth_threshold": 17.42 - }, - { - "f1": 0.5167993832581923, - "fn": 198044, - "fn_rate": 0.6515441125670728, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999943761408759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999820646428032, - "recall": 0.34845588743292727, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105917, - "tp_rate": 0.34845588743292727, - "truth_threshold": 17.44 - }, - { - "f1": 0.5163311922844146, - "fn": 198173, - "fn_rate": 0.651968509117946, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999994453565777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999820427759978, - "recall": 0.34803149088205393, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105788, - "tp_rate": 0.34803149088205393, - "truth_threshold": 17.46 - }, - { - "f1": 0.5156550612822892, - "fn": 198360, - "fn_rate": 0.6525837196219252, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999945299247582, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998201098276841, - "recall": 0.3474162803780748, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105601, - "tp_rate": 0.3474162803780748, - "truth_threshold": 17.48 - }, - { - "f1": 0.5151402654370136, - "fn": 198502, - "fn_rate": 0.6530508848174601, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999946052324943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998198676501261, - "recall": 0.34694911518253985, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105459, - "tp_rate": 0.34694911518253985, - "truth_threshold": 17.5 - }, - { - "f1": 0.514583933972821, - "fn": 198655, - "fn_rate": 0.6535542388661704, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999946795034576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998196059814859, - "recall": 0.3464457611338297, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105306, - "tp_rate": 0.3464457611338297, - "truth_threshold": 17.52 - }, - { - "f1": 0.5140683964569931, - "fn": 198797, - "fn_rate": 0.6540214040617053, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999947527519214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998193624445015, - "recall": 0.3459785959382947, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105164, - "tp_rate": 0.3459785959382947, - "truth_threshold": 17.54 - }, - { - "f1": 0.5136228057307711, - "fn": 198920, - "fn_rate": 0.6544260612381194, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999948249919623, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998191509613554, - "recall": 0.34557393876188064, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 105041, - "tp_rate": 0.34557393876188064, - "truth_threshold": 17.56 - }, - { - "f1": 0.5130920528084446, - "fn": 199066, - "fn_rate": 0.6549063860166271, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999948962374636, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998188992889414, - "recall": 0.34509361398337285, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104895, - "tp_rate": 0.34509361398337285, - "truth_threshold": 17.580000000000002 - }, - { - "f1": 0.5125851405308072, - "fn": 199205, - "fn_rate": 0.6553636815249325, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999994966502117, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998186590312574, - "recall": 0.34463631847506754, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104756, - "tp_rate": 0.34463631847506754, - "truth_threshold": 17.6 - }, - { - "f1": 0.512196912595319, - "fn": 199312, - "fn_rate": 0.6557157003694553, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999950357994258, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998184736500172, - "recall": 0.3442842996305447, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104649, - "tp_rate": 0.3442842996305447, - "truth_threshold": 17.62 - }, - { - "f1": 0.5116602445150582, - "fn": 199459, - "fn_rate": 0.6561993150437062, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999951041427074, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998182183484658, - "recall": 0.34380068495629373, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104502, - "tp_rate": 0.34380068495629373, - "truth_threshold": 17.64 - }, - { - "f1": 0.5110551631579463, - "fn": 199625, - "fn_rate": 0.6567454377370782, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999951715450961, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998179291840352, - "recall": 0.3432545622629219, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104336, - "tp_rate": 0.3432545622629219, - "truth_threshold": 17.66 - }, - { - "f1": 0.5105079795965367, - "fn": 199775, - "fn_rate": 0.6572389220985587, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999995238019545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998176670985077, - "recall": 0.3427610779014413, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104186, - "tp_rate": 0.3427610779014413, - "truth_threshold": 17.68 - }, - { - "f1": 0.5100042153969826, - "fn": 199913, - "fn_rate": 0.6576929277111209, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999953035788293, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999817425312539, - "recall": 0.3423070722888792, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 104048, - "tp_rate": 0.3423070722888792, - "truth_threshold": 17.7 - }, - { - "f1": 0.5096292446632216, - "fn": 200016, - "fn_rate": 0.6580317869726708, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999953682355479, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998172444307645, - "recall": 0.34196821302732916, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103945, - "tp_rate": 0.34196821302732916, - "truth_threshold": 17.72 - }, - { - "f1": 0.5090810105597708, - "fn": 200166, - "fn_rate": 0.6585252713341514, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999954320021266, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998169803687363, - "recall": 0.3414747286658486, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103795, - "tp_rate": 0.3414747286658486, - "truth_threshold": 17.740000000000002 - }, - { - "f1": 0.5085640550101317, - "fn": 200307, - "fn_rate": 0.6589891466339431, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999954948908198, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998167314537054, - "recall": 0.34101085336605685, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103654, - "tp_rate": 0.34101085336605685, - "truth_threshold": 17.76 - }, - { - "f1": 0.5079393906671051, - "fn": 200478, - "fn_rate": 0.659551718806031, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999955569137137, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998164286680451, - "recall": 0.34044828119396897, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103483, - "tp_rate": 0.34044828119396897, - "truth_threshold": 17.78 - }, - { - "f1": 0.5073703438184372, - "fn": 200633, - "fn_rate": 0.6600616526462276, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999956180827274, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998161533474605, - "recall": 0.3399383473537724, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103328, - "tp_rate": 0.3399383473537724, - "truth_threshold": 17.8 - }, - { - "f1": 0.506805778648865, - "fn": 200787, - "fn_rate": 0.6605682965906811, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999956784096167, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998158789840396, - "recall": 0.33943170340931894, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103174, - "tp_rate": 0.33943170340931894, - "truth_threshold": 17.82 - }, - { - "f1": 0.5062701470241371, - "fn": 200933, - "fn_rate": 0.6610486213691888, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999995737905975, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998156181160053, - "recall": 0.3389513786308112, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 103028, - "tp_rate": 0.3389513786308112, - "truth_threshold": 17.84 - }, - { - "f1": 0.5058149251383687, - "fn": 201057, - "fn_rate": 0.6614565684413461, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999957965832362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998153959756323, - "recall": 0.3385434315586539, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102904, - "tp_rate": 0.3385434315586539, - "truth_threshold": 17.86 - }, - { - "f1": 0.5053349461096688, - "fn": 201188, - "fn_rate": 0.6618875447837058, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999958544526771, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999815160712896, - "recall": 0.3381124552162942, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102773, - "tp_rate": 0.3381124552162942, - "truth_threshold": 17.88 - }, - { - "f1": 0.5048301099809157, - "fn": 201325, - "fn_rate": 0.6623382605005247, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999959115254188, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998149140324387, - "recall": 0.33766173949947526, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102636, - "tp_rate": 0.33766173949947526, - "truth_threshold": 17.900000000000002 - }, - { - "f1": 0.5043568536185749, - "fn": 201454, - "fn_rate": 0.662762657051398, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999959678124296, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998146811540487, - "recall": 0.33723734294860197, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102507, - "tp_rate": 0.33723734294860197, - "truth_threshold": 17.92 - }, - { - "f1": 0.5038513596653131, - "fn": 201591, - "fn_rate": 0.663213372768217, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999960233245266, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998144331910654, - "recall": 0.33678662723178304, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102370, - "tp_rate": 0.33678662723178304, - "truth_threshold": 17.94 - }, - { - "f1": 0.5033430819375104, - "fn": 201729, - "fn_rate": 0.6636673783807792, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999960780723782, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999814182746379, - "recall": 0.3363326216192209, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102232, - "tp_rate": 0.3363326216192209, - "truth_threshold": 17.96 - }, - { - "f1": 0.5028172621334358, - "fn": 201872, - "fn_rate": 0.6641378334720572, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999996132066506, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998139225134172, - "recall": 0.3358621665279427, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 102089, - "tp_rate": 0.3358621665279427, - "truth_threshold": 17.98 - }, - { - "f1": 0.5022197257493114, - "fn": 202034, - "fn_rate": 0.6646707965824563, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999961853172863, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999813626822043, - "recall": 0.3353292034175437, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101927, - "tp_rate": 0.3353292034175437, - "truth_threshold": 18 - }, - { - "f1": 0.5018580215274219, - "fn": 202132, - "fn_rate": 0.6649932063652902, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999962378349528, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998134474903778, - "recall": 0.3350067936347097, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101829, - "tp_rate": 0.3350067936347097, - "truth_threshold": 18.02 - }, - { - "f1": 0.5012400096636936, - "fn": 202299, - "fn_rate": 0.6655426189544054, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999962896295986, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998131410981402, - "recall": 0.3344573810455947, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101662, - "tp_rate": 0.3344573810455947, - "truth_threshold": 18.04 - }, - { - "f1": 0.5007669278989135, - "fn": 202427, - "fn_rate": 0.6659637256095354, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999963407111775, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998129055763986, - "recall": 0.33403627439046457, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101534, - "tp_rate": 0.33403627439046457, - "truth_threshold": 18.06 - }, - { - "f1": 0.5000912836454248, - "fn": 202610, - "fn_rate": 0.6665657765305417, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999963910895062, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998125678208543, - "recall": 0.3334342234694583, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101351, - "tp_rate": 0.3334342234694583, - "truth_threshold": 18.080000000000002 - }, - { - "f1": 0.4995236661417945, - "fn": 202763, - "fn_rate": 0.667069130579252, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999964407742665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998122844976635, - "recall": 0.33293086942074807, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101198, - "tp_rate": 0.33293086942074807, - "truth_threshold": 18.1 - }, - { - "f1": 0.4989654985112067, - "fn": 202914, - "fn_rate": 0.6675659048364757, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.999996489775007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998120040369659, - "recall": 0.3324340951635243, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 101047, - "tp_rate": 0.3324340951635243, - "truth_threshold": 18.12 - }, - { - "f1": 0.4983673610527928, - "fn": 203075, - "fn_rate": 0.6680955780511315, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999965381011445, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998117040780933, - "recall": 0.33190442194886843, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 100886, - "tp_rate": 0.33190442194886843, - "truth_threshold": 18.14 - }, - { - "f1": 0.4978701955862151, - "fn": 203209, - "fn_rate": 0.6685364240807209, - "fp": 19, - "fp_rate": 0.00010927767457108513, - "match_probability": 0.9999965857619664, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998114536920344, - "recall": 0.3314635759192791, - "row_count": 477830, - "tn": 173850, - "tn_rate": 0.9998907223254289, - "tp": 100752, - "tp_rate": 0.3314635759192791, - "truth_threshold": 18.16 - }, - { - "f1": 0.49744694943823003, - "fn": 203324, - "fn_rate": 0.6689147620911894, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999996632766632, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998311045760725, - "recall": 0.33108523790881067, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 100637, - "tp_rate": 0.33108523790881067, - "truth_threshold": 18.18 - }, - { - "f1": 0.4968599798247523, - "fn": 203482, - "fn_rate": 0.6694345656186156, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999966791241749, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998308390383697, - "recall": 0.33056543438138447, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 100479, - "tp_rate": 0.33056543438138447, - "truth_threshold": 18.2 - }, - { - "f1": 0.4963494261970716, - "fn": 203619, - "fn_rate": 0.6698852813354345, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999996724843504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998306081168604, - "recall": 0.33011471866456554, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 100342, - "tp_rate": 0.33011471866456554, - "truth_threshold": 18.22 - }, - { - "f1": 0.4956722703630938, - "fn": 203801, - "fn_rate": 0.6704840423606976, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999967699334056, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998303003683481, - "recall": 0.3295159576393024, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 100160, - "tp_rate": 0.3295159576393024, - "truth_threshold": 18.240000000000002 - }, - { - "f1": 0.4951211663655041, - "fn": 203949, - "fn_rate": 0.6709709469306918, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999968144025453, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998300492857072, - "recall": 0.32902905306930824, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 100012, - "tp_rate": 0.32902905306930824, - "truth_threshold": 18.26 - }, - { - "f1": 0.4946740287716344, - "fn": 204069, - "fn_rate": 0.6713657344198762, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999996858259469, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998298451590948, - "recall": 0.32863426558012376, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99892, - "tp_rate": 0.32863426558012376, - "truth_threshold": 18.28 - }, - { - "f1": 0.4941346068105934, - "fn": 204214, - "fn_rate": 0.6718427693026408, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999969015126052, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998295978509282, - "recall": 0.3281572306973592, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99747, - "tp_rate": 0.3281572306973592, - "truth_threshold": 18.3 - }, - { - "f1": 0.49367195242814665, - "fn": 204338, - "fn_rate": 0.672250716374798, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999969441702665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998293857888398, - "recall": 0.3277492836252019, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99623, - "tp_rate": 0.3277492836252019, - "truth_threshold": 18.32 - }, - { - "f1": 0.49317913688322246, - "fn": 204470, - "fn_rate": 0.672684982612901, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999969862406507, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998291594645656, - "recall": 0.327315017387099, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99491, - "tp_rate": 0.327315017387099, - "truth_threshold": 18.34 - }, - { - "f1": 0.4926785244983066, - "fn": 204604, - "fn_rate": 0.6731258286424903, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999970277318428, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998289290961418, - "recall": 0.3268741713575097, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99357, - "tp_rate": 0.3268741713575097, - "truth_threshold": 18.36 - }, - { - "f1": 0.492110262858957, - "fn": 204756, - "fn_rate": 0.6736258927954573, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999997068651817, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998286670294895, - "recall": 0.3263741072045427, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99205, - "tp_rate": 0.3263741072045427, - "truth_threshold": 18.38 - }, - { - "f1": 0.4915216388024594, - "fn": 204913, - "fn_rate": 0.6741424064271403, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999997109008437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998283954979054, - "recall": 0.32585759357285965, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 99048, - "tp_rate": 0.32585759357285965, - "truth_threshold": 18.400000000000002 - }, - { - "f1": 0.4909899623713029, - "fn": 205055, - "fn_rate": 0.6746095716226753, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999971488094587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998281491665234, - "recall": 0.32539042837732474, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98906, - "tp_rate": 0.32539042837732474, - "truth_threshold": 18.42 - }, - { - "f1": 0.4906427667022518, - "fn": 205148, - "fn_rate": 0.6749155319267932, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999997188062531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998279874532024, - "recall": 0.32508446807320673, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98813, - "tp_rate": 0.32508446807320673, - "truth_threshold": 18.44 - }, - { - "f1": 0.49033542914469047, - "fn": 205230, - "fn_rate": 0.675185303377736, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999972267751978, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998278446145745, - "recall": 0.32481469662226403, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98731, - "tp_rate": 0.32481469662226403, - "truth_threshold": 18.46 - }, - { - "f1": 0.48984042764596003, - "fn": 205362, - "fn_rate": 0.6756195696158389, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999972649548987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998276141802547, - "recall": 0.32438043038416114, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98599, - "tp_rate": 0.32438043038416114, - "truth_threshold": 18.48 - }, - { - "f1": 0.4893776680067784, - "fn": 205485, - "fn_rate": 0.6760242267922529, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999973026089712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998273989014448, - "recall": 0.32397577320774706, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98476, - "tp_rate": 0.32397577320774706, - "truth_threshold": 18.5 - }, - { - "f1": 0.4889696379217784, - "fn": 205594, - "fn_rate": 0.6763828254282622, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999973397446519, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998272076760449, - "recall": 0.32361717457173783, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98367, - "tp_rate": 0.32361717457173783, - "truth_threshold": 18.52 - }, - { - "f1": 0.4884762837693367, - "fn": 205725, - "fn_rate": 0.6768138017706219, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999973763690773, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998269772933142, - "recall": 0.3231861982293781, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98236, - "tp_rate": 0.3231861982293781, - "truth_threshold": 18.54 - }, - { - "f1": 0.4881455066322496, - "fn": 205813, - "fn_rate": 0.6771033125960239, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999997412489286, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998268221871339, - "recall": 0.32289668740397615, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98148, - "tp_rate": 0.32289668740397615, - "truth_threshold": 18.56 - }, - { - "f1": 0.4876565935979463, - "fn": 205943, - "fn_rate": 0.6775309990426404, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999974481122197, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998265925434794, - "recall": 0.32246900095735964, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 98018, - "tp_rate": 0.32246900095735964, - "truth_threshold": 18.580000000000002 - }, - { - "f1": 0.4872852678304835, - "fn": 206042, - "fn_rate": 0.6778566987212176, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999974832447245, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999826417252083, - "recall": 0.3221433012787825, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97919, - "tp_rate": 0.3221433012787825, - "truth_threshold": 18.6 - }, - { - "f1": 0.48674306537366335, - "fn": 206186, - "fn_rate": 0.6783304437082389, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999975178935521, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998261616492147, - "recall": 0.32166955629176114, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97775, - "tp_rate": 0.32166955629176114, - "truth_threshold": 18.62 - }, - { - "f1": 0.486290932993387, - "fn": 206306, - "fn_rate": 0.6787252311974233, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999975520653613, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999825948071095, - "recall": 0.32127476880257666, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97655, - "tp_rate": 0.32127476880257666, - "truth_threshold": 18.64 - }, - { - "f1": 0.485898866330617, - "fn": 206410, - "fn_rate": 0.6790673803547166, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999975857667196, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998257625450968, - "recall": 0.32093261964528347, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97551, - "tp_rate": 0.32093261964528347, - "truth_threshold": 18.66 - }, - { - "f1": 0.48544124681122447, - "fn": 206531, - "fn_rate": 0.6794654577396443, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999976190041034, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998255461943415, - "recall": 0.32053454226035577, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97430, - "tp_rate": 0.32053454226035577, - "truth_threshold": 18.68 - }, - { - "f1": 0.4848373076002871, - "fn": 206691, - "fn_rate": 0.6799918410585568, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999976517839005, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998252592843854, - "recall": 0.32000815894144313, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97270, - "tp_rate": 0.32000815894144313, - "truth_threshold": 18.7 - }, - { - "f1": 0.48399597031599106, - "fn": 206914, - "fn_rate": 0.6807254878092913, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999976841124106, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998248578257645, - "recall": 0.3192745121907087, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 97047, - "tp_rate": 0.3192745121907087, - "truth_threshold": 18.72 - }, - { - "f1": 0.483529640660311, - "fn": 207037, - "fn_rate": 0.6811301449857055, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999977159958466, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998246356030988, - "recall": 0.3188698550142946, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96924, - "tp_rate": 0.3188698550142946, - "truth_threshold": 18.740000000000002 - }, - { - "f1": 0.4829973051202715, - "fn": 207178, - "fn_rate": 0.6815940202854972, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999977474403359, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998243801652893, - "recall": 0.31840597971450285, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96783, - "tp_rate": 0.31840597971450285, - "truth_threshold": 18.76 - }, - { - "f1": 0.48238642036944585, - "fn": 207339, - "fn_rate": 0.682123693500153, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999977784519215, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998240875836878, - "recall": 0.317876306499847, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96622, - "tp_rate": 0.317876306499847, - "truth_threshold": 18.78 - }, - { - "f1": 0.48206813210957866, - "fn": 207423, - "fn_rate": 0.6824000447425821, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999978090365634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998239345450779, - "recall": 0.3175999552574179, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96538, - "tp_rate": 0.3175999552574179, - "truth_threshold": 18.8 - }, - { - "f1": 0.48156769501278773, - "fn": 207555, - "fn_rate": 0.682834310980685, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999978392001393, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998236935171069, - "recall": 0.31716568901931497, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96406, - "tp_rate": 0.31716568901931497, - "truth_threshold": 18.82 - }, - { - "f1": 0.48109469392242005, - "fn": 207680, - "fn_rate": 0.6832455479485855, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999978689484461, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998234646617791, - "recall": 0.3167544520514145, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96281, - "tp_rate": 0.3167544520514145, - "truth_threshold": 18.84 - }, - { - "f1": 0.4806999305267472, - "fn": 207784, - "fn_rate": 0.6835876971058787, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999997898287201, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998232738008608, - "recall": 0.3164123028941213, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96177, - "tp_rate": 0.3164123028941213, - "truth_threshold": 18.86 - }, - { - "f1": 0.4801935893525856, - "fn": 207917, - "fn_rate": 0.6840252532397249, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999979272220422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998230291169153, - "recall": 0.31597474676027515, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 96044, - "tp_rate": 0.31597474676027515, - "truth_threshold": 18.88 - }, - { - "f1": 0.4797831533779763, - "fn": 208025, - "fn_rate": 0.6843805619799909, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999979557585305, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998228299271519, - "recall": 0.31561943802000914, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95936, - "tp_rate": 0.31561943802000914, - "truth_threshold": 18.900000000000002 - }, - { - "f1": 0.4792583846954294, - "fn": 208163, - "fn_rate": 0.684834567592553, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999979839021501, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998225747534311, - "recall": 0.315165432407447, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95798, - "tp_rate": 0.315165432407447, - "truth_threshold": 18.92 - }, - { - "f1": 0.47877893156511947, - "fn": 208289, - "fn_rate": 0.6852490944561966, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999980116583098, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998223411259393, - "recall": 0.3147509055438033, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95672, - "tp_rate": 0.3147509055438033, - "truth_threshold": 18.94 - }, - { - "f1": 0.4782763229691779, - "fn": 208421, - "fn_rate": 0.6856833606942996, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999980390323437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998220957125067, - "recall": 0.3143166393057004, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95540, - "tp_rate": 0.3143166393057004, - "truth_threshold": 18.96 - }, - { - "f1": 0.47768952634689155, - "fn": 208575, - "fn_rate": 0.686190004638753, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999980660295127, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998218085385155, - "recall": 0.313809995361247, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95386, - "tp_rate": 0.313809995361247, - "truth_threshold": 18.98 - }, - { - "f1": 0.47732851117545105, - "fn": 208670, - "fn_rate": 0.6865025447343573, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999980926550052, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998216309229025, - "recall": 0.31349745526564265, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95291, - "tp_rate": 0.31349745526564265, - "truth_threshold": 19 - }, - { - "f1": 0.476809676999088, - "fn": 208806, - "fn_rate": 0.686949970555433, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998118913938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998213760349682, - "recall": 0.3130500294445669, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 95155, - "tp_rate": 0.3130500294445669, - "truth_threshold": 19.02 - }, - { - "f1": 0.47615299779426506, - "fn": 208978, - "fn_rate": 0.6875158326232642, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999981448113576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998210526315789, - "recall": 0.31248416737673584, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94983, - "tp_rate": 0.31248416737673584, - "truth_threshold": 19.04 - }, - { - "f1": 0.4756894995486912, - "fn": 209099, - "fn_rate": 0.6879139100081918, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999981703522411, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998208244184699, - "recall": 0.31208608999180815, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94862, - "tp_rate": 0.31208608999180815, - "truth_threshold": 19.06 - }, - { - "f1": 0.4751466021901289, - "fn": 209241, - "fn_rate": 0.6883810752037268, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998195541497, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998205558546291, - "recall": 0.31161892479627323, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94720, - "tp_rate": 0.31161892479627323, - "truth_threshold": 19.080000000000002 - }, - { - "f1": 0.47472578201049703, - "fn": 209351, - "fn_rate": 0.6887429637354793, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999982203839662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998203472581821, - "recall": 0.3112570362645208, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94610, - "tp_rate": 0.3112570362645208, - "truth_threshold": 19.1 - }, - { - "f1": 0.4741872173393634, - "fn": 209492, - "fn_rate": 0.689206839035271, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999982448844231, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998200791651674, - "recall": 0.31079316096472903, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94469, - "tp_rate": 0.31079316096472903, - "truth_threshold": 19.12 - }, - { - "f1": 0.4736228973135827, - "fn": 209639, - "fn_rate": 0.689690453709522, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998269047576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998197988106722, - "recall": 0.3103095462904781, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94322, - "tp_rate": 0.3103095462904781, - "truth_threshold": 19.14 - }, - { - "f1": 0.47316289115475413, - "fn": 209759, - "fn_rate": 0.6900852411987064, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999982928780689, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998195693013087, - "recall": 0.3099147588012936, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94202, - "tp_rate": 0.3099147588012936, - "truth_threshold": 19.16 - }, - { - "f1": 0.47260284297321337, - "fn": 209905, - "fn_rate": 0.6905655659772142, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999983163804814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99981928927535, - "recall": 0.3094344340227858, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 94056, - "tp_rate": 0.3094344340227858, - "truth_threshold": 19.18 - }, - { - "f1": 0.4720347034075087, - "fn": 210053, - "fn_rate": 0.6910524705472083, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999983395593304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998190045248869, - "recall": 0.30894752945279164, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93908, - "tp_rate": 0.30894752945279164, - "truth_threshold": 19.2 - }, - { - "f1": 0.47164290167528106, - "fn": 210155, - "fn_rate": 0.6913880399130151, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999983624190703, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998188077550281, - "recall": 0.3086119600869848, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93806, - "tp_rate": 0.3086119600869848, - "truth_threshold": 19.22 - }, - { - "f1": 0.4709971429721138, - "fn": 210323, - "fn_rate": 0.6919407423978734, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999983849640944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998184827291655, - "recall": 0.3080592576021266, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93638, - "tp_rate": 0.3080592576021266, - "truth_threshold": 19.240000000000002 - }, - { - "f1": 0.47044320103051285, - "fn": 210467, - "fn_rate": 0.6924144873848948, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999984071987357, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.99981820320604, - "recall": 0.30758551261510525, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93494, - "tp_rate": 0.30758551261510525, - "truth_threshold": 19.26 - }, - { - "f1": 0.470004378922785, - "fn": 210581, - "fn_rate": 0.69278953549962, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999984291272669, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998179813056094, - "recall": 0.30721046450038, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93380, - "tp_rate": 0.30721046450038, - "truth_threshold": 19.28 - }, - { - "f1": 0.469603830294975, - "fn": 210685, - "fn_rate": 0.6931316846569132, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999984507539025, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998177783970931, - "recall": 0.3068683153430868, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93276, - "tp_rate": 0.3068683153430868, - "truth_threshold": 19.3 - }, - { - "f1": 0.46915681702581974, - "fn": 210801, - "fn_rate": 0.6935133125631249, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999984720827987, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998175515416895, - "recall": 0.3064866874368751, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93160, - "tp_rate": 0.3064866874368751, - "truth_threshold": 19.32 - }, - { - "f1": 0.46854753388080006, - "fn": 210959, - "fn_rate": 0.6940331160905511, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999984931180547, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998172416388049, - "recall": 0.30596688390944893, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 93002, - "tp_rate": 0.30596688390944893, - "truth_threshold": 19.34 - }, - { - "f1": 0.4680586213500247, - "fn": 211086, - "fn_rate": 0.694450932849938, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999985138637129, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998169917753951, - "recall": 0.305549067150062, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92875, - "tp_rate": 0.305549067150062, - "truth_threshold": 19.36 - }, - { - "f1": 0.4676725007057305, - "fn": 211186, - "fn_rate": 0.6947799224242583, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999985343237603, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998167945512544, - "recall": 0.3052200775757416, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92775, - "tp_rate": 0.3052200775757416, - "truth_threshold": 19.38 - }, - { - "f1": 0.46709564200058495, - "fn": 211335, - "fn_rate": 0.6952701168899957, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998554502129, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998164998974558, - "recall": 0.30472988311000426, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92626, - "tp_rate": 0.30472988311000426, - "truth_threshold": 19.400000000000002 - }, - { - "f1": 0.4666239577080422, - "fn": 211457, - "fn_rate": 0.6956714841706666, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998574402697, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999816257930632, - "recall": 0.30432851582933335, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92504, - "tp_rate": 0.30432851582933335, - "truth_threshold": 19.42 - }, - { - "f1": 0.46600996159688335, - "fn": 211616, - "fn_rate": 0.6961945775938361, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999985940292888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999815941621013, - "recall": 0.3038054224061639, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92345, - "tp_rate": 0.3038054224061639, - "truth_threshold": 19.44 - }, - { - "f1": 0.4655066230514498, - "fn": 211746, - "fn_rate": 0.6966222640404526, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999986133856762, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998156821927314, - "recall": 0.3033777359595474, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92215, - "tp_rate": 0.3033777359595474, - "truth_threshold": 19.46 - }, - { - "f1": 0.46489442825615984, - "fn": 211904, - "fn_rate": 0.6971420675678788, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999986324755792, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998153659013402, - "recall": 0.3028579324321212, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 92057, - "tp_rate": 0.3028579324321212, - "truth_threshold": 19.48 - }, - { - "f1": 0.46413702506063054, - "fn": 212099, - "fn_rate": 0.6977835972378036, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999986513026666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998149740419465, - "recall": 0.30221640276219647, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91862, - "tp_rate": 0.30221640276219647, - "truth_threshold": 19.5 - }, - { - "f1": 0.4635831547450568, - "fn": 212242, - "fn_rate": 0.6982540523290817, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999986698705566, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998146856196041, - "recall": 0.30174594767091834, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91719, - "tp_rate": 0.30174594767091834, - "truth_threshold": 19.52 - }, - { - "f1": 0.46304713847273976, - "fn": 212380, - "fn_rate": 0.6987080579416438, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999986881828178, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998144064280879, - "recall": 0.3012919420583562, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91581, - "tp_rate": 0.3012919420583562, - "truth_threshold": 19.54 - }, - { - "f1": 0.4624434755338843, - "fn": 212535, - "fn_rate": 0.6992179917818404, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987062429692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998140918386317, - "recall": 0.3007820082181596, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91426, - "tp_rate": 0.3007820082181596, - "truth_threshold": 19.56 - }, - { - "f1": 0.46194557726752955, - "fn": 212663, - "fn_rate": 0.6996390984369706, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987240544819, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998138312434978, - "recall": 0.30036090156302947, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91298, - "tp_rate": 0.30036090156302947, - "truth_threshold": 19.580000000000002 - }, - { - "f1": 0.46158751366452083, - "fn": 212755, - "fn_rate": 0.6999417688453453, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987416207787, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998136434890323, - "recall": 0.3000582311546547, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91206, - "tp_rate": 0.3000582311546547, - "truth_threshold": 19.6 - }, - { - "f1": 0.46091764300831367, - "fn": 212927, - "fn_rate": 0.7005076309131764, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987589452358, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998132914520433, - "recall": 0.29949236908682364, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 91034, - "tp_rate": 0.29949236908682364, - "truth_threshold": 19.62 - }, - { - "f1": 0.46034857394660467, - "fn": 213073, - "fn_rate": 0.7009879556916842, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987760311826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998129915846213, - "recall": 0.29901204430831585, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90888, - "tp_rate": 0.29901204430831585, - "truth_threshold": 19.64 - }, - { - "f1": 0.45987272764120546, - "fn": 213195, - "fn_rate": 0.701389322972355, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999987928819026, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998127402707555, - "recall": 0.298610677027645, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90766, - "tp_rate": 0.298610677027645, - "truth_threshold": 19.66 - }, - { - "f1": 0.45945124114373753, - "fn": 213303, - "fn_rate": 0.701744631712621, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988095006345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999812517231872, - "recall": 0.298255368287379, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90658, - "tp_rate": 0.298255368287379, - "truth_threshold": 19.68 - }, - { - "f1": 0.45878732260828564, - "fn": 213473, - "fn_rate": 0.7023039139889657, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988258905718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998121650737528, - "recall": 0.2976960860110343, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90488, - "tp_rate": 0.2976960860110343, - "truth_threshold": 19.7 - }, - { - "f1": 0.45823231657215896, - "fn": 213615, - "fn_rate": 0.7027710791845007, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988420548644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998118699025044, - "recall": 0.29722892081549934, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90346, - "tp_rate": 0.29722892081549934, - "truth_threshold": 19.72 - }, - { - "f1": 0.4576769106656316, - "fn": 213757, - "fn_rate": 0.7032382443800356, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988579966191, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115738021082, - "recall": 0.29676175561996443, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90204, - "tp_rate": 0.29676175561996443, - "truth_threshold": 19.740000000000002 - }, - { - "f1": 0.45730119821561793, - "fn": 213853, - "fn_rate": 0.7035540743713832, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988737188994, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998113730929264, - "recall": 0.2964459256286168, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 90108, - "tp_rate": 0.2964459256286168, - "truth_threshold": 19.76 - }, - { - "f1": 0.4568548018640919, - "fn": 213967, - "fn_rate": 0.7039291224861084, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999988892247269, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998111341947096, - "recall": 0.2960708775138916, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89994, - "tp_rate": 0.2960708775138916, - "truth_threshold": 19.78 - }, - { - "f1": 0.4560761049541359, - "fn": 214166, - "fn_rate": 0.704583811739006, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989045170816, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998107157172761, - "recall": 0.29541618826099403, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89795, - "tp_rate": 0.29541618826099403, - "truth_threshold": 19.8 - }, - { - "f1": 0.45556622514873923, - "fn": 214296, - "fn_rate": 0.7050114981856225, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989195989024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998104413371691, - "recall": 0.2949885018143775, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89665, - "tp_rate": 0.2949885018143775, - "truth_threshold": 19.82 - }, - { - "f1": 0.4551922510087715, - "fn": 214391, - "fn_rate": 0.7053240382812269, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989344730877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998102403250472, - "recall": 0.29467596171877314, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89570, - "tp_rate": 0.29467596171877314, - "truth_threshold": 19.84 - }, - { - "f1": 0.4546397360487639, - "fn": 214532, - "fn_rate": 0.7057879135810187, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989491424962, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998099411935693, - "recall": 0.2942120864189814, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89429, - "tp_rate": 0.2942120864189814, - "truth_threshold": 19.86 - }, - { - "f1": 0.45417607453062386, - "fn": 214650, - "fn_rate": 0.7061761212787167, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999998963609947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999809690130754, - "recall": 0.29382387872128335, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89311, - "tp_rate": 0.29382387872128335, - "truth_threshold": 19.88 - }, - { - "f1": 0.4536649387777942, - "fn": 214780, - "fn_rate": 0.7066038077253332, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989778782205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998094127671024, - "recall": 0.2933961922746668, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89181, - "tp_rate": 0.2933961922746668, - "truth_threshold": 19.900000000000002 - }, - { - "f1": 0.4532821794017229, - "fn": 214877, - "fn_rate": 0.7069229276124239, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999989919500589, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998092052838913, - "recall": 0.293077072387576, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 89084, - "tp_rate": 0.293077072387576, - "truth_threshold": 19.92 - }, - { - "f1": 0.4529409070320174, - "fn": 214964, - "fn_rate": 0.7072091485420827, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990058281665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998090188060305, - "recall": 0.2927908514579173, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88997, - "tp_rate": 0.2927908514579173, - "truth_threshold": 19.94 - }, - { - "f1": 0.45247113446148207, - "fn": 215083, - "fn_rate": 0.707600646135524, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990195152105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998087631475336, - "recall": 0.292399353864476, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88878, - "tp_rate": 0.292399353864476, - "truth_threshold": 19.96 - }, - { - "f1": 0.4520349133277657, - "fn": 215194, - "fn_rate": 0.7079658245630196, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990330138213, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998085240583889, - "recall": 0.2920341754369804, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88767, - "tp_rate": 0.2920341754369804, - "truth_threshold": 19.98 - }, - { - "f1": 0.4515302483851906, - "fn": 215322, - "fn_rate": 0.7083869312181497, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990463265931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998082476087349, - "recall": 0.2916130687818503, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88639, - "tp_rate": 0.2916130687818503, - "truth_threshold": 20 - }, - { - "f1": 0.45087806916514633, - "fn": 215487, - "fn_rate": 0.7089297640157783, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990594560844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998078900679165, - "recall": 0.29107023598422166, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88474, - "tp_rate": 0.29107023598422166, - "truth_threshold": 20.02 - }, - { - "f1": 0.4503094507376857, - "fn": 215631, - "fn_rate": 0.7094035090027997, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990724048183, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998075769409261, - "recall": 0.2905964909972003, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88330, - "tp_rate": 0.2905964909972003, - "truth_threshold": 20.04 - }, - { - "f1": 0.4498906175899154, - "fn": 215737, - "fn_rate": 0.7097522379515793, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990851752837, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998073457916388, - "recall": 0.2902477620484207, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88224, - "tp_rate": 0.2902477620484207, - "truth_threshold": 20.06 - }, - { - "f1": 0.449294732814692, - "fn": 215888, - "fn_rate": 0.7102490122088031, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999990977699345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998070155522761, - "recall": 0.2897509877911969, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 88073, - "tp_rate": 0.2897509877911969, - "truth_threshold": 20.080000000000002 - }, - { - "f1": 0.4486723450729024, - "fn": 216045, - "fn_rate": 0.7107655258404861, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991101911914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998066709881387, - "recall": 0.28923447415951387, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87916, - "tp_rate": 0.28923447415951387, - "truth_threshold": 20.1 - }, - { - "f1": 0.4480675958543932, - "fn": 216198, - "fn_rate": 0.7112688798891963, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991224414414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998063340168604, - "recall": 0.2887311201108037, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87763, - "tp_rate": 0.2887311201108037, - "truth_threshold": 20.12 - }, - { - "f1": 0.44762376541003196, - "fn": 216310, - "fn_rate": 0.7116373482124352, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999999134523039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998060865994434, - "recall": 0.28836265178756487, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87651, - "tp_rate": 0.28836265178756487, - "truth_threshold": 20.14 - }, - { - "f1": 0.44707937837810224, - "fn": 216447, - "fn_rate": 0.7120880639292541, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991464383059, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998057830939896, - "recall": 0.28791193607074594, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87514, - "tp_rate": 0.28791193607074594, - "truth_threshold": 20.16 - }, - { - "f1": 0.44663498390311207, - "fn": 216559, - "fn_rate": 0.712456532252493, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991581895321, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998055342660063, - "recall": 0.2875434677475071, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87402, - "tp_rate": 0.2875434677475071, - "truth_threshold": 20.18 - }, - { - "f1": 0.4461954465992619, - "fn": 216670, - "fn_rate": 0.7128217106799886, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.999999169778976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998052870298254, - "recall": 0.28717828932001144, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87291, - "tp_rate": 0.28717828932001144, - "truth_threshold": 20.2 - }, - { - "f1": 0.44568980063506347, - "fn": 216797, - "fn_rate": 0.7132395274393755, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991812088648, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998050033837648, - "recall": 0.28676047256062454, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87164, - "tp_rate": 0.28676047256062454, - "truth_threshold": 20.22 - }, - { - "f1": 0.4452894844517185, - "fn": 216898, - "fn_rate": 0.713571806909439, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999991924813951, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998047772163527, - "recall": 0.28642819309056095, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 87063, - "tp_rate": 0.28642819309056095, - "truth_threshold": 20.240000000000002 - }, - { - "f1": 0.4447434664265395, - "fn": 217035, - "fn_rate": 0.714022522626258, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992035987335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999804469595022, - "recall": 0.285977477373742, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86926, - "tp_rate": 0.285977477373742, - "truth_threshold": 20.26 - }, - { - "f1": 0.44438530861228104, - "fn": 217125, - "fn_rate": 0.7143186132431463, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992145630165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998042669798395, - "recall": 0.2856813867568537, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86836, - "tp_rate": 0.2856813867568537, - "truth_threshold": 20.28 - }, - { - "f1": 0.4439871619650179, - "fn": 217225, - "fn_rate": 0.7146476028174668, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992253763512, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998040413588003, - "recall": 0.2853523971825333, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86736, - "tp_rate": 0.2853523971825333, - "truth_threshold": 20.3 - }, - { - "f1": 0.4434931769886582, - "fn": 217349, - "fn_rate": 0.7150555498896239, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992360408158, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998037608652991, - "recall": 0.284944450110376, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86612, - "tp_rate": 0.284944450110376, - "truth_threshold": 20.32 - }, - { - "f1": 0.4429749526199867, - "fn": 217479, - "fn_rate": 0.7154832363362406, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992465584596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998034659360224, - "recall": 0.2845167636637595, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86482, - "tp_rate": 0.2845167636637595, - "truth_threshold": 20.34 - }, - { - "f1": 0.442568104150549, - "fn": 217581, - "fn_rate": 0.7158188057020473, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992569313043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998032339085848, - "recall": 0.2841811942979527, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86380, - "tp_rate": 0.2841811942979527, - "truth_threshold": 20.36 - }, - { - "f1": 0.4420543887163402, - "fn": 217710, - "fn_rate": 0.7162432022529206, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992671613431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998029396763574, - "recall": 0.2837567977470794, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86251, - "tp_rate": 0.2837567977470794, - "truth_threshold": 20.38 - }, - { - "f1": 0.44158600607005166, - "fn": 217827, - "fn_rate": 0.7166281200548754, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992772505422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998026720525589, - "recall": 0.2833718799451245, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86134, - "tp_rate": 0.2833718799451245, - "truth_threshold": 20.400000000000002 - }, - { - "f1": 0.44105564929303703, - "fn": 217960, - "fn_rate": 0.7170656761887216, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992872008404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998023669464531, - "recall": 0.2829343238112784, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 86001, - "tp_rate": 0.2829343238112784, - "truth_threshold": 20.42 - }, - { - "f1": 0.4405466689923356, - "fn": 218087, - "fn_rate": 0.7174834929481084, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999992970141501, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998020747226135, - "recall": 0.2825165070518915, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 85874, - "tp_rate": 0.2825165070518915, - "truth_threshold": 20.44 - }, - { - "f1": 0.440023606691984, - "fn": 218218, - "fn_rate": 0.7179144692904682, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999993066923574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998017723880597, - "recall": 0.2820855307095318, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 85743, - "tp_rate": 0.2820855307095318, - "truth_threshold": 20.46 - }, - { - "f1": 0.43949505631590297, - "fn": 218350, - "fn_rate": 0.7183487355285711, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999993162373221, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999801466809922, - "recall": 0.2816512644714289, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 85611, - "tp_rate": 0.2816512644714289, - "truth_threshold": 20.48 - }, - { - "f1": 0.4388086837280249, - "fn": 218521, - "fn_rate": 0.7189113077006589, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999993256508786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998010695437471, - "recall": 0.281088692299341, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 85440, - "tp_rate": 0.281088692299341, - "truth_threshold": 20.5 - }, - { - "f1": 0.4382391927578376, - "fn": 218663, - "fn_rate": 0.7193784728961939, - "fp": 17, - "fp_rate": 0.00009777476145833932, - "match_probability": 0.9999993349348361, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998007384398993, - "recall": 0.28062152710380606, - "row_count": 477830, - "tn": 173852, - "tn_rate": 0.9999022252385417, - "tp": 85298, - "tp_rate": 0.28062152710380606, - "truth_threshold": 20.52 - }, - { - "f1": 0.43748168785307107, - "fn": 218852, - "fn_rate": 0.7200002631916594, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993440909787, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998120411160059, - "recall": 0.27999973680834056, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 85109, - "tp_rate": 0.27999973680834056, - "truth_threshold": 20.54 - }, - { - "f1": 0.436988703266643, - "fn": 218975, - "fn_rate": 0.7204049203680736, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993531210661, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998117691348439, - "recall": 0.2795950796319265, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84986, - "tp_rate": 0.2795950796319265, - "truth_threshold": 20.56 - }, - { - "f1": 0.4366350025972423, - "fn": 219063, - "fn_rate": 0.7206944311934754, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993620268339, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998115740631698, - "recall": 0.2793055688065245, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84898, - "tp_rate": 0.2793055688065245, - "truth_threshold": 20.580000000000002 - }, - { - "f1": 0.4360075941942488, - "fn": 219219, - "fn_rate": 0.7212076549294153, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993708099935, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998112272587838, - "recall": 0.2787923450705847, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84742, - "tp_rate": 0.2787923450705847, - "truth_threshold": 20.6 - }, - { - "f1": 0.43553558653841207, - "fn": 219336, - "fn_rate": 0.7215925727313701, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993794722328, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998109663165605, - "recall": 0.2784074272686299, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84625, - "tp_rate": 0.2784074272686299, - "truth_threshold": 20.62 - }, - { - "f1": 0.4349688513617876, - "fn": 219477, - "fn_rate": 0.7220564480311619, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999993880152168, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998106508875739, - "recall": 0.27794355196883813, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84484, - "tp_rate": 0.27794355196883813, - "truth_threshold": 20.64 - }, - { - "f1": 0.43439140086218, - "fn": 219620, - "fn_rate": 0.7225269031224401, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999396440587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998103299074173, - "recall": 0.27747309687755994, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84341, - "tp_rate": 0.27747309687755994, - "truth_threshold": 20.66 - }, - { - "f1": 0.4338025411415558, - "fn": 219766, - "fn_rate": 0.7230072279009478, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994047499629, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999810001068744, - "recall": 0.27699277209905215, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84195, - "tp_rate": 0.27699277209905215, - "truth_threshold": 20.68 - }, - { - "f1": 0.4333475923702127, - "fn": 219879, - "fn_rate": 0.7233789861199299, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994129449412, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998097457727889, - "recall": 0.27662101388007015, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 84082, - "tp_rate": 0.27662101388007015, - "truth_threshold": 20.7 - }, - { - "f1": 0.4327498646593282, - "fn": 220027, - "fn_rate": 0.723865890689924, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999421027097, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998094103633115, - "recall": 0.276134109310076, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83934, - "tp_rate": 0.276134109310076, - "truth_threshold": 20.72 - }, - { - "f1": 0.4321950414416645, - "fn": 220164, - "fn_rate": 0.724316606406743, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994289979836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999809098827151, - "recall": 0.27568339359325705, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83797, - "tp_rate": 0.27568339359325705, - "truth_threshold": 20.740000000000002 - }, - { - "f1": 0.43166926355109325, - "fn": 220294, - "fn_rate": 0.7247442928533595, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994368591326, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998088022656931, - "recall": 0.27525570714664055, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83667, - "tp_rate": 0.27525570714664055, - "truth_threshold": 20.76 - }, - { - "f1": 0.43116448784314537, - "fn": 220419, - "fn_rate": 0.72515552982126, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999444612055, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998085162402164, - "recall": 0.27484447017874003, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83542, - "tp_rate": 0.27484447017874003, - "truth_threshold": 20.78 - }, - { - "f1": 0.43064611889826787, - "fn": 220547, - "fn_rate": 0.72557663647639, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994522582408, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998082224619441, - "recall": 0.27442336352360996, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83414, - "tp_rate": 0.27442336352360996, - "truth_threshold": 20.8 - }, - { - "f1": 0.43013551479094364, - "fn": 220673, - "fn_rate": 0.7259911633400338, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994597991594, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999807932392202, - "recall": 0.2740088366599662, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83288, - "tp_rate": 0.2740088366599662, - "truth_threshold": 20.82 - }, - { - "f1": 0.42960023971151956, - "fn": 220805, - "fn_rate": 0.7264254295781367, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.99999946723626, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998076275669696, - "recall": 0.27357457042186334, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83156, - "tp_rate": 0.27357457042186334, - "truth_threshold": 20.84 - }, - { - "f1": 0.42910002325521307, - "fn": 220928, - "fn_rate": 0.7268300867545507, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999474570972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998073426531325, - "recall": 0.27316991324544926, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 83033, - "tp_rate": 0.27316991324544926, - "truth_threshold": 20.86 - }, - { - "f1": 0.4286290301736393, - "fn": 221044, - "fn_rate": 0.7272117146607624, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999481804705, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998070731795545, - "recall": 0.2727882853392376, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82917, - "tp_rate": 0.2727882853392376, - "truth_threshold": 20.88 - }, - { - "f1": 0.4281171141356058, - "fn": 221170, - "fn_rate": 0.7276262415244061, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999488938849, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998067796200805, - "recall": 0.2723737584755939, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82791, - "tp_rate": 0.2723737584755939, - "truth_threshold": 20.900000000000002 - }, - { - "f1": 0.42756123425497244, - "fn": 221307, - "fn_rate": 0.728076957241225, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999994959747754, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999806459416959, - "recall": 0.271923042758775, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82654, - "tp_rate": 0.271923042758775, - "truth_threshold": 20.92 - }, - { - "f1": 0.42711669710909084, - "fn": 221416, - "fn_rate": 0.7284355558772343, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995029138362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998062038977241, - "recall": 0.27156444412276576, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82545, - "tp_rate": 0.27156444412276576, - "truth_threshold": 20.94 - }, - { - "f1": 0.4266496897046112, - "fn": 221531, - "fn_rate": 0.7288138938877027, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999509757365, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999805933580768, - "recall": 0.2711861061122973, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82430, - "tp_rate": 0.2711861061122973, - "truth_threshold": 20.96 - }, - { - "f1": 0.42618019529268014, - "fn": 221646, - "fn_rate": 0.7291922318981712, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995165066768, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998056625086541, - "recall": 0.2708077681018288, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82315, - "tp_rate": 0.2708077681018288, - "truth_threshold": 20.98 - }, - { - "f1": 0.4257563673651175, - "fn": 221750, - "fn_rate": 0.7295343810554643, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995231630692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998054167122721, - "recall": 0.27046561894453564, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82211, - "tp_rate": 0.27046561894453564, - "truth_threshold": 21 - }, - { - "f1": 0.4252967047768044, - "fn": 221863, - "fn_rate": 0.7299061392744464, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999529727821, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998051489392795, - "recall": 0.2700938607255536, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82098, - "tp_rate": 0.2700938607255536, - "truth_threshold": 21.02 - }, - { - "f1": 0.42489986475913133, - "fn": 221960, - "fn_rate": 0.7302252591615371, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995362021941, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998049184925076, - "recall": 0.2697747408384628, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 82001, - "tp_rate": 0.2697747408384628, - "truth_threshold": 21.04 - }, - { - "f1": 0.42454883749857475, - "fn": 222046, - "fn_rate": 0.7305081901954527, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995425874326, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998047137225227, - "recall": 0.2694918098045473, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81915, - "tp_rate": 0.2694918098045473, - "truth_threshold": 21.06 - }, - { - "f1": 0.42404761411003505, - "fn": 222169, - "fn_rate": 0.7309128473718668, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995488847637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998044201056131, - "recall": 0.2690871526281332, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81792, - "tp_rate": 0.2690871526281332, - "truth_threshold": 21.080000000000002 - }, - { - "f1": 0.42353569613425857, - "fn": 222294, - "fn_rate": 0.7313240843397673, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995550953977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998041208084913, - "recall": 0.26867591566023274, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81667, - "tp_rate": 0.26867591566023274, - "truth_threshold": 21.1 - }, - { - "f1": 0.42313498259611043, - "fn": 222392, - "fn_rate": 0.7316464941226013, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995612205282, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998038855181712, - "recall": 0.26835350587739876, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81569, - "tp_rate": 0.26835350587739876, - "truth_threshold": 21.12 - }, - { - "f1": 0.4224527606661512, - "fn": 222559, - "fn_rate": 0.7321959067117163, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995672613322, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998034832592302, - "recall": 0.2678040932882837, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81402, - "tp_rate": 0.2678040932882837, - "truth_threshold": 21.14 - }, - { - "f1": 0.42187946152767897, - "fn": 222699, - "fn_rate": 0.7326564921157649, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995732189708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998031447624204, - "recall": 0.26734350788423517, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81262, - "tp_rate": 0.26734350788423517, - "truth_threshold": 21.16 - }, - { - "f1": 0.4213385405576646, - "fn": 222831, - "fn_rate": 0.7330907583538677, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995790945889, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998028245384862, - "recall": 0.2669092416461322, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81130, - "tp_rate": 0.2669092416461322, - "truth_threshold": 21.18 - }, - { - "f1": 0.4208330735822787, - "fn": 222954, - "fn_rate": 0.7334954155302819, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995848893156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998025252088913, - "recall": 0.26650458446971814, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 81007, - "tp_rate": 0.26650458446971814, - "truth_threshold": 21.2 - }, - { - "f1": 0.42011600590424314, - "fn": 223129, - "fn_rate": 0.7340711472853425, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995906042648, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998020977637048, - "recall": 0.2659288527146575, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80832, - "tp_rate": 0.2659288527146575, - "truth_threshold": 21.22 - }, - { - "f1": 0.4197001362072013, - "fn": 223230, - "fn_rate": 0.7344034267554062, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999995962405346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998018502235377, - "recall": 0.2655965732445939, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80731, - "tp_rate": 0.2655965732445939, - "truth_threshold": 21.240000000000002 - }, - { - "f1": 0.4193139095300743, - "fn": 223324, - "fn_rate": 0.7347126769552673, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996017992082, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998016192826057, - "recall": 0.26528732304473274, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80637, - "tp_rate": 0.26528732304473274, - "truth_threshold": 21.26 - }, - { - "f1": 0.41872707883579996, - "fn": 223467, - "fn_rate": 0.7351831320465454, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996072813541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998012669233636, - "recall": 0.26481686795345455, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80494, - "tp_rate": 0.26481686795345455, - "truth_threshold": 21.28 - }, - { - "f1": 0.4183598607635113, - "fn": 223556, - "fn_rate": 0.7354759327676906, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996126880256, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999801046990214, - "recall": 0.2645240672323094, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80405, - "tp_rate": 0.2645240672323094, - "truth_threshold": 21.3 - }, - { - "f1": 0.41790407786192, - "fn": 223667, - "fn_rate": 0.7358411111951862, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996180202619, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998007720084672, - "recall": 0.26415888880481375, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80294, - "tp_rate": 0.26415888880481375, - "truth_threshold": 21.32 - }, - { - "f1": 0.4175252096684349, - "fn": 223759, - "fn_rate": 0.736143781603561, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996232790879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999800543518911, - "recall": 0.263856218396439, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80202, - "tp_rate": 0.263856218396439, - "truth_threshold": 21.34 - }, - { - "f1": 0.41709670532241183, - "fn": 223863, - "fn_rate": 0.7364859307608542, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999628465514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9998002845944529, - "recall": 0.26351406923914583, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 80098, - "tp_rate": 0.26351406923914583, - "truth_threshold": 21.36 - }, - { - "f1": 0.4165030083608991, - "fn": 224007, - "fn_rate": 0.7369596757478756, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996335805373, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997999249718644, - "recall": 0.2630403242521244, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79954, - "tp_rate": 0.2630403242521244, - "truth_threshold": 21.38 - }, - { - "f1": 0.4159036546408676, - "fn": 224152, - "fn_rate": 0.7374367106306401, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996386251405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997995615408707, - "recall": 0.2625632893693599, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79809, - "tp_rate": 0.2625632893693599, - "truth_threshold": 21.400000000000002 - }, - { - "f1": 0.4154547065753396, - "fn": 224261, - "fn_rate": 0.7377953092666494, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996436002931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997992874705204, - "recall": 0.2622046907333507, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79700, - "tp_rate": 0.2622046907333507, - "truth_threshold": 21.42 - }, - { - "f1": 0.4149868079381798, - "fn": 224374, - "fn_rate": 0.7381670674856314, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996485069516, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997990025501552, - "recall": 0.2618329325143686, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79587, - "tp_rate": 0.2618329325143686, - "truth_threshold": 21.44 - }, - { - "f1": 0.41457041375677384, - "fn": 224475, - "fn_rate": 0.738499346955695, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996533460586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997987472013282, - "recall": 0.26150065304430503, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79486, - "tp_rate": 0.26150065304430503, - "truth_threshold": 21.46 - }, - { - "f1": 0.41412681684909064, - "fn": 224582, - "fn_rate": 0.7388513658002178, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996581185442, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997984759745576, - "recall": 0.2611486341997822, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79379, - "tp_rate": 0.2611486341997822, - "truth_threshold": 21.48 - }, - { - "f1": 0.41359406720838354, - "fn": 224711, - "fn_rate": 0.739275762351091, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996628253256, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997981480079732, - "recall": 0.2607242376489089, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79250, - "tp_rate": 0.2607242376489089, - "truth_threshold": 21.5 - }, - { - "f1": 0.4129179458262849, - "fn": 224874, - "fn_rate": 0.7398120153572333, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996674673074, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997977320708443, - "recall": 0.26018798464276666, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 79087, - "tp_rate": 0.26018798464276666, - "truth_threshold": 21.52 - }, - { - "f1": 0.4123346268952946, - "fn": 225015, - "fn_rate": 0.740275890657025, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996720453818, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997973708872623, - "recall": 0.2597241093429749, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78946, - "tp_rate": 0.2597241093429749, - "truth_threshold": 21.54 - }, - { - "f1": 0.41183692875167843, - "fn": 225135, - "fn_rate": 0.7406706781462096, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996765604284, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997970624793892, - "recall": 0.25932932185379043, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78826, - "tp_rate": 0.25932932185379043, - "truth_threshold": 21.56 - }, - { - "f1": 0.41132231275380343, - "fn": 225259, - "fn_rate": 0.7410786252183669, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996810133152, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997967428034249, - "recall": 0.2589213747816332, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78702, - "tp_rate": 0.2589213747816332, - "truth_threshold": 21.580000000000002 - }, - { - "f1": 0.41084059577271137, - "fn": 225375, - "fn_rate": 0.7414602531245785, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996854048978, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997964428386046, - "recall": 0.25853974687542153, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78586, - "tp_rate": 0.25853974687542153, - "truth_threshold": 21.6 - }, - { - "f1": 0.4103003932725295, - "fn": 225505, - "fn_rate": 0.741887939571195, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996897360202, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997961056172903, - "recall": 0.258112060428805, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78456, - "tp_rate": 0.258112060428805, - "truth_threshold": 21.62 - }, - { - "f1": 0.40990955646574495, - "fn": 225599, - "fn_rate": 0.7421971897710562, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996940075148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997958610834673, - "recall": 0.25780281022894386, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78362, - "tp_rate": 0.25780281022894386, - "truth_threshold": 21.64 - }, - { - "f1": 0.4093468409540455, - "fn": 225734, - "fn_rate": 0.7426413256963886, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999996982202024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997955088634127, - "recall": 0.2573586743036113, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78227, - "tp_rate": 0.2573586743036113, - "truth_threshold": 21.66 - }, - { - "f1": 0.40897742558503486, - "fn": 225823, - "fn_rate": 0.7429341264175339, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997023748929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997952759935512, - "recall": 0.2570658735824662, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78138, - "tp_rate": 0.2570658735824662, - "truth_threshold": 21.68 - }, - { - "f1": 0.40852761474950655, - "fn": 225931, - "fn_rate": 0.7432894351577999, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997064723845, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997949926966149, - "recall": 0.2567105648422002, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 78030, - "tp_rate": 0.2567105648422002, - "truth_threshold": 21.7 - }, - { - "f1": 0.4079941761504983, - "fn": 226059, - "fn_rate": 0.74371054181293, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997105134647, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997946559203265, - "recall": 0.25628945818707005, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77902, - "tp_rate": 0.25628945818707005, - "truth_threshold": 21.72 - }, - { - "f1": 0.40748017058016117, - "fn": 226182, - "fn_rate": 0.744115198989344, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997144989102, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997943312552221, - "recall": 0.25588480101065597, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77779, - "tp_rate": 0.25588480101065597, - "truth_threshold": 21.740000000000002 - }, - { - "f1": 0.40681244038197467, - "fn": 226342, - "fn_rate": 0.7446415823082566, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999718429487, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997939073871321, - "recall": 0.25535841769174333, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77619, - "tp_rate": 0.25535841769174333, - "truth_threshold": 21.76 - }, - { - "f1": 0.4064418383983476, - "fn": 226431, - "fn_rate": 0.7449343830294018, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997223059504, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999793670853429, - "recall": 0.2550656169705982, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77530, - "tp_rate": 0.2550656169705982, - "truth_threshold": 21.78 - }, - { - "f1": 0.40605221622698695, - "fn": 226524, - "fn_rate": 0.7452403433335197, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997261290454, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997934231082075, - "recall": 0.25475965666648026, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77437, - "tp_rate": 0.25475965666648026, - "truth_threshold": 21.8 - }, - { - "f1": 0.4056091138921816, - "fn": 226630, - "fn_rate": 0.7455890722822994, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997298995067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997931400054301, - "recall": 0.25441092771770063, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77331, - "tp_rate": 0.25441092771770063, - "truth_threshold": 21.82 - }, - { - "f1": 0.4050371225437469, - "fn": 226767, - "fn_rate": 0.7460397879991183, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999733618059, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997927729568709, - "recall": 0.2539602120008817, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77194, - "tp_rate": 0.2539602120008817, - "truth_threshold": 21.84 - }, - { - "f1": 0.40461020080405596, - "fn": 226869, - "fn_rate": 0.7463753573649251, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999737285417, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999792498832806, - "recall": 0.2536246426350749, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 77092, - "tp_rate": 0.2536246426350749, - "truth_threshold": 21.86 - }, - { - "f1": 0.4039568194228588, - "fn": 227025, - "fn_rate": 0.7468885811008649, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997409022854, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997920781786048, - "recall": 0.2531114188991351, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76936, - "tp_rate": 0.2531114188991351, - "truth_threshold": 21.88 - }, - { - "f1": 0.40337312946787335, - "fn": 227164, - "fn_rate": 0.7473458766091703, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997444693592, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997917019254553, - "recall": 0.25265412339082977, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76797, - "tp_rate": 0.25265412339082977, - "truth_threshold": 21.900000000000002 - }, - { - "f1": 0.40282470142548643, - "fn": 227295, - "fn_rate": 0.74777685295153, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997479873242, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997913460786103, - "recall": 0.25222314704847004, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76666, - "tp_rate": 0.25222314704847004, - "truth_threshold": 21.92 - }, - { - "f1": 0.40229057385234784, - "fn": 227422, - "fn_rate": 0.7481946697109169, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997514568563, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997909999346875, - "recall": 0.25180533028908314, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76539, - "tp_rate": 0.25180533028908314, - "truth_threshold": 21.94 - }, - { - "f1": 0.4017109296541861, - "fn": 227560, - "fn_rate": 0.748648675323479, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997548786224, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997906225054635, - "recall": 0.251351324676521, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76401, - "tp_rate": 0.251351324676521, - "truth_threshold": 21.96 - }, - { - "f1": 0.4011613534396154, - "fn": 227691, - "fn_rate": 0.7490796516658387, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.99999975825328, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997902629578166, - "recall": 0.25092034833416127, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76270, - "tp_rate": 0.25092034833416127, - "truth_threshold": 21.98 - }, - { - "f1": 0.40070185038065126, - "fn": 227800, - "fn_rate": 0.749438250301848, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997615814777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.999789962849679, - "recall": 0.2505617496981521, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76161, - "tp_rate": 0.2505617496981521, - "truth_threshold": 22 - }, - { - "f1": 0.4001431563878275, - "fn": 227933, - "fn_rate": 0.7498758064356941, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997648638552, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997895954973437, - "recall": 0.25012419356430593, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 76028, - "tp_rate": 0.25012419356430593, - "truth_threshold": 22.02 - }, - { - "f1": 0.3997304596400162, - "fn": 228031, - "fn_rate": 0.750198216218528, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997681010433, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997893239933637, - "recall": 0.24980178378147197, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75930, - "tp_rate": 0.24980178378147197, - "truth_threshold": 22.04 - }, - { - "f1": 0.3993512648229669, - "fn": 228121, - "fn_rate": 0.7504943068354164, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999771293664, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997890740350137, - "recall": 0.24950569316458363, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75840, - "tp_rate": 0.24950569316458363, - "truth_threshold": 22.06 - }, - { - "f1": 0.39865138943763995, - "fn": 228287, - "fn_rate": 0.7510404295287882, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.999999774442331, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997886114414057, - "recall": 0.24895957047121176, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75674, - "tp_rate": 0.24895957047121176, - "truth_threshold": 22.080000000000002 - }, - { - "f1": 0.3980690992643184, - "fn": 228425, - "fn_rate": 0.7514944351413504, - "fp": 16, - "fp_rate": 0.00009202330490196642, - "match_probability": 0.9999997775476493, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9997882253282507, - "recall": 0.24850556485864964, - "row_count": 477830, - "tn": 173853, - "tn_rate": 0.999907976695098, - "tp": 75536, - "tp_rate": 0.24850556485864964, - "truth_threshold": 22.1 - }, - { - "f1": 0.7776026810268742, - "fn": 0, - "fn_rate": 0, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.660044869636506e-9, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.63612791160036, - "recall": 1, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303961, - "tp_rate": 1, - "truth_threshold": -26.96 - }, - { - "f1": 0.7775969956049467, - "fn": 3, - "fn_rate": 0.000009869687229611693, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.1367597838873383e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6361256270574915, - "recall": 0.9999901303127704, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303958, - "tp_rate": 0.9999901303127704, - "truth_threshold": -25.48 - }, - { - "f1": 0.7775964266436084, - "fn": 4, - "fn_rate": 0.000013159582972815591, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.3220913456904493e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6361248655368272, - "recall": 0.9999868404170272, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303957, - "tp_rate": 0.9999868404170272, - "truth_threshold": -25.36 - }, - { - "f1": 0.777593868398769, - "fn": 5, - "fn_rate": 0.00001644947871601949, - "fp": 173869, - "fp_rate": 1, - "match_probability": 3.423387752987849e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6361241040129755, - "recall": 0.999983550521284, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303956, - "tp_rate": 0.999983550521284, - "truth_threshold": -24.8 - }, - { - "f1": 0.7775782321278729, - "fn": 15, - "fn_rate": 0.00004934843614805847, - "fp": 173869, - "fp_rate": 1, - "match_probability": 4.517187172301535e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.636116488599144, - "recall": 0.999950651563852, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303946, - "tp_rate": 0.999950651563852, - "truth_threshold": -24.400000000000002 - }, - { - "f1": 0.7775432618016968, - "fn": 38, - "fn_rate": 0.00012501603824174813, - "fp": 173869, - "fp_rate": 1, - "match_probability": 4.9775116316185605e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6360989719375796, - "recall": 0.9998749839617582, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303923, - "tp_rate": 0.9998749839617582, - "truth_threshold": -24.26 - }, - { - "f1": 0.7775281933727666, - "fn": 47, - "fn_rate": 0.0001546250999305832, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.338192003972388e-8, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6360921171326732, - "recall": 0.9998453749000694, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303914, - "tp_rate": 0.9998453749000694, - "truth_threshold": -23.7 - }, - { - "f1": 0.7773561539032335, - "fn": 157, - "fn_rate": 0.000516513631683012, - "fp": 173869, - "fp_rate": 1, - "match_probability": 1.096949040514205e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6360083153119394, - "recall": 0.999483486368317, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303804, - "tp_rate": 0.999483486368317, - "truth_threshold": -23.12 - }, - { - "f1": 0.77732486879713, - "fn": 177, - "fn_rate": 0.0005823115465470899, - "fp": 173869, - "fp_rate": 1, - "match_probability": 1.225607038318767e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359930744703791, - "recall": 0.9994176884534529, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303784, - "tp_rate": 0.9994176884534529, - "truth_threshold": -22.96 - }, - { - "f1": 0.7773117844842146, - "fn": 186, - "fn_rate": 0.000611920608235925, - "fp": 173869, - "fp_rate": 1, - "match_probability": 1.3693549605601495e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359862156752728, - "recall": 0.9993880793917641, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303775, - "tp_rate": 0.9993880793917641, - "truth_threshold": -22.8 - }, - { - "f1": 0.7773055271238485, - "fn": 190, - "fn_rate": 0.0006250801912087405, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.01879773478931e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359831672389247, - "recall": 0.9993749198087912, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303771, - "tp_rate": 0.9993749198087912, - "truth_threshold": -22.240000000000002 - }, - { - "f1": 0.7772335628760136, - "fn": 236, - "fn_rate": 0.0007764153953961198, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.0469790951995952e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359481065507523, - "recall": 0.9992235846046039, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303725, - "tp_rate": 0.9992235846046039, - "truth_threshold": -22.22 - }, - { - "f1": 0.7772304338035089, - "fn": 238, - "fn_rate": 0.0007829951868825277, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.2245235061202631e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359465820197994, - "recall": 0.9992170048131175, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303723, - "tp_rate": 0.9992170048131175, - "truth_threshold": -22.1 - }, - { - "f1": 0.7772022714302896, - "fn": 256, - "fn_rate": 0.0008422133102601978, - "fp": 173869, - "fp_rate": 1, - "match_probability": 2.935276155400355e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6359328606666192, - "recall": 0.9991577866897398, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303705, - "tp_rate": 0.9991577866897398, - "truth_threshold": -21.7 - }, - { - "f1": 0.777130295026923, - "fn": 302, - "fn_rate": 0.0009935485144475771, - "fp": 173869, - "fp_rate": 1, - "match_probability": 3.059924852476653e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6358977902866428, - "recall": 0.9990064514855524, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303659, - "tp_rate": 0.9990064514855524, - "truth_threshold": -21.64 - }, - { - "f1": 0.7771240358087945, - "fn": 306, - "fn_rate": 0.0010067080974203928, - "fp": 173869, - "fp_rate": 1, - "match_probability": 3.3253269256413913e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6358947403690705, - "recall": 0.9989932919025796, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303655, - "tp_rate": 0.9989932919025796, - "truth_threshold": -21.52 - }, - { - "f1": 0.7771209061757021, - "fn": 308, - "fn_rate": 0.0010132878889068005, - "fp": 173869, - "fp_rate": 1, - "match_probability": 4.3273866777349967e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6358932153911233, - "recall": 0.9989867121110932, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303653, - "tp_rate": 0.9989867121110932, - "truth_threshold": -21.14 - }, - { - "f1": 0.7765573111498588, - "fn": 668, - "fn_rate": 0.0021976503564602036, - "fp": 173869, - "fp_rate": 1, - "match_probability": 4.702721789815695e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.635618511113626, - "recall": 0.9978023496435398, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303293, - "tp_rate": 0.9978023496435398, - "truth_threshold": -21.02 - }, - { - "f1": 0.7761468124887944, - "fn": 930, - "fn_rate": 0.003059603041179625, - "fp": 173869, - "fp_rate": 1, - "match_probability": 4.902426350740596e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6354183266932271, - "recall": 0.9969403969588204, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303031, - "tp_rate": 0.9969403969588204, - "truth_threshold": -20.96 - }, - { - "f1": 0.7761034995914624, - "fn": 957, - "fn_rate": 0.00314843022624613, - "fp": 173869, - "fp_rate": 1, - "match_probability": 5.7897290296989e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353976844988078, - "recall": 0.9968515697737539, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303004, - "tp_rate": 0.9968515697737539, - "truth_threshold": -20.72 - }, - { - "f1": 0.7761029261095856, - "fn": 958, - "fn_rate": 0.003151720121989334, - "fp": 173869, - "fp_rate": 1, - "match_probability": 6.468789338535844e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353969199281988, - "recall": 0.9968482798780106, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 303003, - "tp_rate": 0.9968482798780106, - "truth_threshold": -20.56 - }, - { - "f1": 0.7760120085965977, - "fn": 1016, - "fn_rate": 0.0033425340750951604, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.02985849809981e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353525693456987, - "recall": 0.9966574659249049, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302945, - "tp_rate": 0.9966574659249049, - "truth_threshold": -20.44 - }, - { - "f1": 0.7760057379253813, - "fn": 1020, - "fn_rate": 0.003355693658067976, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.127991595781558e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353495102871165, - "recall": 0.996644306341932, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302941, - "tp_rate": 0.996644306341932, - "truth_threshold": -20.42 - }, - { - "f1": 0.7759780929716659, - "fn": 1037, - "fn_rate": 0.003411621885702442, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.227494578490585e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353365087155223, - "recall": 0.9965883781142976, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302924, - "tp_rate": 0.9965883781142976, - "truth_threshold": -20.400000000000002 - }, - { - "f1": 0.7759624153371656, - "fn": 1047, - "fn_rate": 0.003444520843134481, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.430686957241937e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353288602991298, - "recall": 0.9965554791568655, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302914, - "tp_rate": 0.9965554791568655, - "truth_threshold": -20.36 - }, - { - "f1": 0.775930484858887, - "fn": 1068, - "fn_rate": 0.003513608653741763, - "fp": 173869, - "fp_rate": 1, - "match_probability": 7.854369834792407e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353127975803441, - "recall": 0.9964863913462583, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302893, - "tp_rate": 0.9964863913462583, - "truth_threshold": -20.28 - }, - { - "f1": 0.7759242133523244, - "fn": 1072, - "fn_rate": 0.0035267682367145785, - "fp": 173869, - "fp_rate": 1, - "match_probability": 9.022300655021115e-7, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353097378544251, - "recall": 0.9964732317632854, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302889, - "tp_rate": 0.9964732317632854, - "truth_threshold": -20.080000000000002 - }, - { - "f1": 0.7759216516078788, - "fn": 1073, - "fn_rate": 0.0035300581324577826, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.000001050857503825523, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6353089729149232, - "recall": 0.9964699418675422, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302888, - "tp_rate": 0.9964699418675422, - "truth_threshold": -19.86 - }, - { - "f1": 0.7755201406346497, - "fn": 1329, - "fn_rate": 0.00437227144271798, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000010954829183746414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6351130427848001, - "recall": 0.995627728557282, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302632, - "tp_rate": 0.995627728557282, - "truth_threshold": -19.8 - }, - { - "f1": 0.7755195653845168, - "fn": 1330, - "fn_rate": 0.0043755613384611845, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000011579451355209237, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.635112277019937, - "recall": 0.9956244386615388, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302631, - "tp_rate": 0.9956244386615388, - "truth_threshold": -19.72 - }, - { - "f1": 0.7754536671373546, - "fn": 1372, - "fn_rate": 0.004513736959675748, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.00000120711809735545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6350801119930823, - "recall": 0.9954862630403243, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302589, - "tp_rate": 0.9954862630403243, - "truth_threshold": -19.66 - }, - { - "f1": 0.7754473907438872, - "fn": 1376, - "fn_rate": 0.004526896542648563, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.000001241054764180587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6350770483614367, - "recall": 0.9954731034573514, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302585, - "tp_rate": 0.9954731034573514, - "truth_threshold": -19.62 - }, - { - "f1": 0.7754416897741193, - "fn": 1379, - "fn_rate": 0.004536766229878175, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.000001311817182236054, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6350747506039446, - "recall": 0.9954632337701218, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302582, - "tp_rate": 0.9954632337701218, - "truth_threshold": -19.54 - }, - { - "f1": 0.7752722016034777, - "fn": 1487, - "fn_rate": 0.0048920749701441965, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000015492460975215529, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349920120585376, - "recall": 0.9951079250298558, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302474, - "tp_rate": 0.9951079250298558, - "truth_threshold": -19.3 - }, - { - "f1": 0.7752716256013698, - "fn": 1488, - "fn_rate": 0.0048953648658874, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000015708727331369402, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349912457855911, - "recall": 0.9951046351341126, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302473, - "tp_rate": 0.9951046351341126, - "truth_threshold": -19.28 - }, - { - "f1": 0.7752502274795269, - "fn": 1501, - "fn_rate": 0.004938133510549051, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000016604406696292195, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349812839445006, - "recall": 0.9950618664894509, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302460, - "tp_rate": 0.9950618664894509, - "truth_threshold": -19.2 - }, - { - "f1": 0.7752496514107612, - "fn": 1502, - "fn_rate": 0.0049414234062922545, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000017309524239438608, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349805176265094, - "recall": 0.9950585765937078, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302459, - "tp_rate": 0.9950585765937078, - "truth_threshold": -19.14 - }, - { - "f1": 0.7752470882545932, - "fn": 1503, - "fn_rate": 0.004944713302035458, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000017551155769142057, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349797513053008, - "recall": 0.9950552866979645, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302458, - "tp_rate": 0.9950552866979645, - "truth_threshold": -19.12 - }, - { - "f1": 0.775240233659113, - "fn": 1508, - "fn_rate": 0.004961162780751478, - "fp": 173869, - "fp_rate": 1, - "match_probability": 0.0000018044585029675095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6349759196509924, - "recall": 0.9950388372192486, - "row_count": 477830, - "tn": 0, - "tn_rate": 0, - "tp": 302453, - "tp_rate": 0.9950388372192486, - "truth_threshold": -19.080000000000002 - }, - { - "f1": 0.8023775288768152, - "fn": 1508, - "fn_rate": 0.004961162780751478, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000019339704872557063, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6722193575918138, - "recall": 0.9950388372192486, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302453, - "tp_rate": 0.9950388372192486, - "truth_threshold": -18.98 - }, - { - "f1": 0.8023489336414308, - "fn": 1526, - "fn_rate": 0.005020380904129148, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000019609676562463853, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6722062438599377, - "recall": 0.9949796190958708, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302435, - "tp_rate": 0.9949796190958708, - "truth_threshold": -18.96 - }, - { - "f1": 0.8023367486085097, - "fn": 1533, - "fn_rate": 0.005043410174331575, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.000002044241469521586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6722011437919392, - "recall": 0.9949565898256684, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302428, - "tp_rate": 0.9949565898256684, - "truth_threshold": -18.900000000000002 - }, - { - "f1": 0.8023335712182271, - "fn": 1535, - "fn_rate": 0.005049989965817983, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000021017127990503803, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721996866005046, - "recall": 0.994950010034182, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302426, - "tp_rate": 0.994950010034182, - "truth_threshold": -18.86 - }, - { - "f1": 0.8023330468095041, - "fn": 1536, - "fn_rate": 0.005053279861561187, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000022525596641027384, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721989579999289, - "recall": 0.9949467201384388, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302425, - "tp_rate": 0.9949467201384388, - "truth_threshold": -18.76 - }, - { - "f1": 0.8023303938110853, - "fn": 1537, - "fn_rate": 0.005056569757304391, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000022840041533901063, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721982293961143, - "recall": 0.9949434302426956, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302424, - "tp_rate": 0.9949434302426956, - "truth_threshold": -18.740000000000002 - }, - { - "f1": 0.8023298693925414, - "fn": 1538, - "fn_rate": 0.005059859653047595, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000023158875893710783, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721975007890607, - "recall": 0.9949401403469524, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302423, - "tp_rate": 0.9949401403469524, - "truth_threshold": -18.72 - }, - { - "f1": 0.8023272163870842, - "fn": 1539, - "fn_rate": 0.005063149548790799, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000024821064479311417, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721967721787682, - "recall": 0.9949368504512092, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302422, - "tp_rate": 0.9949368504512092, - "truth_threshold": -18.62 - }, - { - "f1": 0.8023240389462234, - "fn": 1541, - "fn_rate": 0.005069729340277207, - "fp": 147479, - "fp_rate": 0.8482190614773192, - "match_probability": 0.0000025167552755248973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6721953149484662, - "recall": 0.9949302706597228, - "row_count": 477830, - "tn": 26390, - "tn_rate": 0.15178093852268087, - "tp": 302420, - "tp_rate": 0.9949302706597228, - "truth_threshold": -18.6 - }, - { - "f1": 0.8023347129364321, - "fn": 1545, - "fn_rate": 0.005082888923250022, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000025875107139958215, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6722163070514516, - "recall": 0.99491711107675, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 302416, - "tp_rate": 0.99491711107675, - "truth_threshold": -18.56 - }, - { - "f1": 0.8023341885126513, - "fn": 1546, - "fn_rate": 0.005086178818993226, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.00000277322480226071, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.672215578445712, - "recall": 0.9949138211810068, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 302415, - "tp_rate": 0.9949138211810068, - "truth_threshold": -18.46 - }, - { - "f1": 0.8007693370312516, - "fn": 2529, - "fn_rate": 0.008320146334562658, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000028909915630084804, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6714977890152486, - "recall": 0.9916798536654373, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301432, - "tp_rate": 0.9916798536654373, - "truth_threshold": -18.400000000000002 - }, - { - "f1": 0.800606308585032, - "fn": 2632, - "fn_rate": 0.008659005596112658, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000029313481830057973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671422396121143, - "recall": 0.9913409944038873, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301329, - "tp_rate": 0.9913409944038873, - "truth_threshold": -18.38 - }, - { - "f1": 0.8006036516674815, - "fn": 2633, - "fn_rate": 0.008662295491855864, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.000003013759349323224, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6714216639816752, - "recall": 0.9913377045081442, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301328, - "tp_rate": 0.9913377045081442, - "truth_threshold": -18.34 - }, - { - "f1": 0.8006004649618067, - "fn": 2635, - "fn_rate": 0.008668875283342271, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000030558297334917884, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6714201996929515, - "recall": 0.9913311247166577, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301326, - "tp_rate": 0.9913311247166577, - "truth_threshold": -18.32 - }, - { - "f1": 0.8005967484383842, - "fn": 2638, - "fn_rate": 0.008678744970571882, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.000003098487394723601, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671418003235395, - "recall": 0.9913212550294281, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301323, - "tp_rate": 0.9913212550294281, - "truth_threshold": -18.3 - }, - { - "f1": 0.8005940914996559, - "fn": 2639, - "fn_rate": 0.008682034866315087, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.000003185597454736396, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6714172710763506, - "recall": 0.9913179651336849, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301322, - "tp_rate": 0.9913179651336849, - "truth_threshold": -18.26 - }, - { - "f1": 0.8004729828477287, - "fn": 2715, - "fn_rate": 0.008932066942798583, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000032300665943862097, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713616174402564, - "recall": 0.9910679330572014, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301246, - "tp_rate": 0.9910679330572014, - "truth_threshold": -18.240000000000002 - }, - { - "f1": 0.8004602331458212, - "fn": 2723, - "fn_rate": 0.008958386108744214, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000033208758251411607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713557580660618, - "recall": 0.9910416138912558, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301238, - "tp_rate": 0.9910416138912558, - "truth_threshold": -18.2 - }, - { - "f1": 0.8004597029203093, - "fn": 2724, - "fn_rate": 0.008961676004487417, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000034142380336736073, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713550256295966, - "recall": 0.9910383239955126, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301237, - "tp_rate": 0.9910383239955126, - "truth_threshold": -18.16 - }, - { - "f1": 0.8004506706915244, - "fn": 2729, - "fn_rate": 0.008978125483203437, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.000003510224992977848, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713513633982995, - "recall": 0.9910218745167966, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301232, - "tp_rate": 0.9910218745167966, - "truth_threshold": -18.12 - }, - { - "f1": 0.8004501404363759, - "fn": 2730, - "fn_rate": 0.008981415378946641, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000035592257334204593, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713506309422457, - "recall": 0.9910185846210534, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301231, - "tp_rate": 0.9910185846210534, - "truth_threshold": -18.1 - }, - { - "f1": 0.8004442956372932, - "fn": 2733, - "fn_rate": 0.008991285066176254, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000036089104938057927, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713484335544951, - "recall": 0.9910087149338237, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301228, - "tp_rate": 0.9910087149338237, - "truth_threshold": -18.080000000000002 - }, - { - "f1": 0.8004411080847672, - "fn": 2735, - "fn_rate": 0.008997864857662661, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000036592888225585765, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713469686130037, - "recall": 0.9910021351423374, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301226, - "tp_rate": 0.9910021351423374, - "truth_threshold": -18.06 - }, - { - "f1": 0.800437390220635, - "fn": 2738, - "fn_rate": 0.009007734544892272, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000037103704013906797, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713447711762792, - "recall": 0.9909922654551078, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301223, - "tp_rate": 0.9909922654551078, - "truth_threshold": -18.04 - }, - { - "f1": 0.800421452069792, - "fn": 2748, - "fn_rate": 0.009040633502324312, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000037621650471616754, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713374461749682, - "recall": 0.9909593664976757, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301213, - "tp_rate": 0.9909593664976757, - "truth_threshold": -18.02 - }, - { - "f1": 0.8004187947427441, - "fn": 2749, - "fn_rate": 0.009043923398067515, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000038146827137652828, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713367136568786, - "recall": 0.9909560766019325, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301212, - "tp_rate": 0.9909560766019325, - "truth_threshold": -18 - }, - { - "f1": 0.8004156070546906, - "fn": 2751, - "fn_rate": 0.009050503189553923, - "fp": 147463, - "fp_rate": 0.8481270381724172, - "match_probability": 0.0000039766754733776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713352486109037, - "recall": 0.9909494968104461, - "row_count": 477830, - "tn": 26406, - "tn_rate": 0.15187296182758284, - "tp": 301210, - "tp_rate": 0.9909494968104461, - "truth_threshold": -17.94 - }, - { - "f1": 0.8004368773368553, - "fn": 2751, - "fn_rate": 0.009050503189553923, - "fp": 147443, - "fp_rate": 0.8480120090412897, - "match_probability": 0.000004088474581213888, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713651753136611, - "recall": 0.9909494968104461, - "row_count": 477830, - "tn": 26426, - "tn_rate": 0.1519879909587103, - "tp": 301210, - "tp_rate": 0.9909494968104461, - "truth_threshold": -17.900000000000002 - }, - { - "f1": 0.8004336896036736, - "fn": 2753, - "fn_rate": 0.009057082981040332, - "fp": 147443, - "fp_rate": 0.8480120090412897, - "match_probability": 0.000004145547322903667, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671363710322723, - "recall": 0.9909429170189596, - "row_count": 477830, - "tn": 26426, - "tn_rate": 0.1519879909587103, - "tp": 301208, - "tp_rate": 0.9909429170189596, - "truth_threshold": -17.88 - }, - { - "f1": 0.8004012809099244, - "fn": 2774, - "fn_rate": 0.009126170791647613, - "fp": 147443, - "fp_rate": 0.8480120090412897, - "match_probability": 0.000004203416763725948, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713483271292602, - "recall": 0.9908738292083524, - "row_count": 477830, - "tn": 26426, - "tn_rate": 0.1519879909587103, - "tp": 301187, - "tp_rate": 0.9908738292083524, - "truth_threshold": -17.86 - }, - { - "f1": 0.8002551495016611, - "fn": 2865, - "fn_rate": 0.009425551304279167, - "fp": 147443, - "fp_rate": 0.8480120090412897, - "match_probability": 0.0000042620940249991784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6712816499791545, - "recall": 0.9905744486957209, - "row_count": 477830, - "tn": 26426, - "tn_rate": 0.1519879909587103, - "tp": 301096, - "tp_rate": 0.9905744486957209, - "truth_threshold": -17.84 - }, - { - "f1": 0.8002806734035371, - "fn": 2865, - "fn_rate": 0.009425551304279167, - "fp": 147419, - "fp_rate": 0.8478739740839367, - "match_probability": 0.000004381917272552001, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671317570203895, - "recall": 0.9905744486957209, - "row_count": 477830, - "tn": 26450, - "tn_rate": 0.15212602591606325, - "tp": 301096, - "tp_rate": 0.9905744486957209, - "truth_threshold": -17.8 - }, - { - "f1": 0.8002764450233251, - "fn": 2893, - "fn_rate": 0.009517668385088876, - "fp": 147382, - "fp_rate": 0.847661170191351, - "match_probability": 0.000004443086286379355, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713524361690266, - "recall": 0.9904823316149112, - "row_count": 477830, - "tn": 26487, - "tn_rate": 0.15233882980864905, - "tp": 301068, - "tp_rate": 0.9904823316149112, - "truth_threshold": -17.78 - }, - { - "f1": 0.8002828267792303, - "fn": 2893, - "fn_rate": 0.009517668385088876, - "fp": 147376, - "fp_rate": 0.8476266614520127, - "match_probability": 0.000004505109180178255, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671361418594072, - "recall": 0.9904823316149112, - "row_count": 477830, - "tn": 26493, - "tn_rate": 0.1523733385479873, - "tp": 301068, - "tp_rate": 0.9904823316149112, - "truth_threshold": -17.76 - }, - { - "f1": 0.8002870966026902, - "fn": 2909, - "fn_rate": 0.009570306716980139, - "fp": 147348, - "fp_rate": 0.8474656206684342, - "match_probability": 0.000004631764452096345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713916146297948, - "recall": 0.9904296932830199, - "row_count": 477830, - "tn": 26521, - "tn_rate": 0.15253437933156572, - "tp": 301052, - "tp_rate": 0.9904296932830199, - "truth_threshold": -17.72 - }, - { - "f1": 0.8002238403236912, - "fn": 2948, - "fn_rate": 0.009698612650965091, - "fp": 147348, - "fp_rate": 0.8474656206684342, - "match_probability": 0.00000469642117070095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671363031128934, - "recall": 0.990301387349035, - "row_count": 477830, - "tn": 26521, - "tn_rate": 0.15253437933156572, - "tp": 301013, - "tp_rate": 0.990301387349035, - "truth_threshold": -17.7 - }, - { - "f1": 0.8002233092301149, - "fn": 2949, - "fn_rate": 0.009701902546708295, - "fp": 147348, - "fp_rate": 0.8474656206684342, - "match_probability": 0.000004761980454925296, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713622981532696, - "recall": 0.9902980974532917, - "row_count": 477830, - "tn": 26521, - "tn_rate": 0.15253437933156572, - "tp": 301012, - "tp_rate": 0.9902980974532917, - "truth_threshold": -17.68 - }, - { - "f1": 0.8002238462745015, - "fn": 2956, - "fn_rate": 0.009724931816910722, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.00000482845490387591, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713736388738953, - "recall": 0.9902750681830893, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 301005, - "tp_rate": 0.9902750681830893, - "truth_threshold": -17.66 - }, - { - "f1": 0.8002211877676784, - "fn": 2957, - "fn_rate": 0.009728221712653926, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.00000489585729252954, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713729058908287, - "recall": 0.990271778287346, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 301004, - "tp_rate": 0.990271778287346, - "truth_threshold": -17.64 - }, - { - "f1": 0.8002142773589119, - "fn": 2962, - "fn_rate": 0.009744671191369946, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000004964200574188029, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671369240926448, - "recall": 0.9902553288086301, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300999, - "tp_rate": 0.9902553288086301, - "truth_threshold": -17.62 - }, - { - "f1": 0.8002116188308858, - "fn": 2963, - "fn_rate": 0.00974796108711315, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005103762536321944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713685079237623, - "recall": 0.9902520389128868, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300998, - "tp_rate": 0.9902520389128868, - "truth_threshold": -17.580000000000002 - }, - { - "f1": 0.800211087686463, - "fn": 2964, - "fn_rate": 0.009751250982856353, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005247248078653649, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713677749178069, - "recall": 0.9902487490171437, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300997, - "tp_rate": 0.9902487490171437, - "truth_threshold": -17.54 - }, - { - "f1": 0.800208429151369, - "fn": 2965, - "fn_rate": 0.009754540878599557, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005320496542440611, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713670419085813, - "recall": 0.9902454591214005, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300996, - "tp_rate": 0.9902454591214005, - "truth_threshold": -17.52 - }, - { - "f1": 0.8001924804993858, - "fn": 2975, - "fn_rate": 0.009787439836031597, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005546434223012468, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713597116364763, - "recall": 0.9902125601639684, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300986, - "tp_rate": 0.9902125601639684, - "truth_threshold": -17.46 - }, - { - "f1": 0.8001829111046714, - "fn": 2981, - "fn_rate": 0.00980717921049082, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005702364824139267, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713553133162472, - "recall": 0.9901928207895092, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300980, - "tp_rate": 0.9901928207895092, - "truth_threshold": -17.42 - }, - { - "f1": 0.8001823798712174, - "fn": 2982, - "fn_rate": 0.009810469106234024, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.00000578196641040085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713545802514298, - "recall": 0.9901895308937659, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300979, - "tp_rate": 0.9901895308937659, - "truth_threshold": -17.400000000000002 - }, - { - "f1": 0.8001728102941763, - "fn": 2988, - "fn_rate": 0.009830208480693247, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005862679180457631, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.671350181793848, - "recall": 0.9901697915193067, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300973, - "tp_rate": 0.9901697915193067, - "truth_threshold": -17.38 - }, - { - "f1": 0.8001605819233674, - "fn": 2995, - "fn_rate": 0.009853237750895675, - "fp": 147337, - "fp_rate": 0.8474023546463142, - "match_probability": 0.000005944518645493533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713450501111972, - "recall": 0.9901467622491044, - "row_count": 477830, - "tn": 26532, - "tn_rate": 0.15259764535368583, - "tp": 300966, - "tp_rate": 0.9901467622491044, - "truth_threshold": -17.36 - }, - { - "f1": 0.8001733461659125, - "fn": 2995, - "fn_rate": 0.009853237750895675, - "fp": 147325, - "fp_rate": 0.8473333371676377, - "match_probability": 0.000006111640790849928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713630208949097, - "recall": 0.9901467622491044, - "row_count": 477830, - "tn": 26544, - "tn_rate": 0.1526666628323623, - "tp": 300966, - "tp_rate": 0.9901467622491044, - "truth_threshold": -17.32 - }, - { - "f1": 0.8001776010039242, - "fn": 2995, - "fn_rate": 0.009853237750895675, - "fp": 147321, - "fp_rate": 0.8473103313414122, - "match_probability": 0.000006196955588258426, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6713690113699483, - "recall": 0.9901467622491044, - "row_count": 477830, - "tn": 26548, - "tn_rate": 0.1526896686585878, - "tp": 300966, - "tp_rate": 0.9901467622491044, - "truth_threshold": -17.3 - }, - { - "f1": 0.7985511722140283, - "fn": 4014, - "fn_rate": 0.013205641513220446, - "fp": 147321, - "fp_rate": 0.8473103313414122, - "match_probability": 0.000006283461320993584, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6706202992389351, - "recall": 0.9867943584867795, - "row_count": 477830, - "tn": 26548, - "tn_rate": 0.1526896686585878, - "tp": 299947, - "tp_rate": 0.9867943584867795, - "truth_threshold": -17.28 - }, - { - "f1": 0.798554887902644, - "fn": 4015, - "fn_rate": 0.01320893140896365, - "fp": 147315, - "fp_rate": 0.847275822602074, - "match_probability": 0.000006460112322179412, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6706285591634414, - "recall": 0.9867910685910364, - "row_count": 477830, - "tn": 26554, - "tn_rate": 0.15272417739792601, - "tp": 299946, - "tp_rate": 0.9867910685910364, - "truth_threshold": -17.240000000000002 - }, - { - "f1": 0.7985756123535677, - "fn": 4016, - "fn_rate": 0.013212221304706853, - "fp": 147295, - "fp_rate": 0.8471607934709465, - "match_probability": 0.000006550291538878178, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.670657812360254, - "recall": 0.9867877786952931, - "row_count": 477830, - "tn": 26574, - "tn_rate": 0.15283920652905347, - "tp": 299945, - "tp_rate": 0.9867877786952931, - "truth_threshold": -17.22 - }, - { - "f1": 0.7985724136645731, - "fn": 4018, - "fn_rate": 0.013218801096193262, - "fp": 147295, - "fp_rate": 0.8471607934709465, - "match_probability": 0.000006641729593923075, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6706563395775851, - "recall": 0.9867811989038068, - "row_count": 477830, - "tn": 26574, - "tn_rate": 0.15283920652905347, - "tp": 299943, - "tp_rate": 0.9867811989038068, - "truth_threshold": -17.2 - }, - { - "f1": 0.7985659971458391, - "fn": 4026, - "fn_rate": 0.013245120262138893, - "fp": 147289, - "fp_rate": 0.8471262847316082, - "match_probability": 0.000006734444059575694, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6706594458258054, - "recall": 0.9867548797378611, - "row_count": 477830, - "tn": 26580, - "tn_rate": 0.15287371526839172, - "tp": 299935, - "tp_rate": 0.9867548797378611, - "truth_threshold": -17.18 - }, - { - "f1": 0.7977209267627249, - "fn": 4554, - "fn_rate": 0.014982185214550551, - "fp": 147289, - "fp_rate": 0.8471262847316082, - "match_probability": 0.0000068284527533841125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702701613625374, - "recall": 0.9850178147854495, - "row_count": 477830, - "tn": 26580, - "tn_rate": 0.15287371526839172, - "tp": 299407, - "tp_rate": 0.9850178147854495, - "truth_threshold": -17.16 - }, - { - "f1": 0.7973785835929609, - "fn": 4771, - "fn_rate": 0.015696092590825796, - "fp": 147283, - "fp_rate": 0.84709177599227, - "match_probability": 0.00000692377374160662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701189097661001, - "recall": 0.9843039074091742, - "row_count": 477830, - "tn": 26586, - "tn_rate": 0.15290822400772996, - "tp": 299190, - "tp_rate": 0.9843039074091742, - "truth_threshold": -17.14 - }, - { - "f1": 0.7973753784486802, - "fn": 4773, - "fn_rate": 0.015702672382312204, - "fp": 147283, - "fp_rate": 0.84709177599227, - "match_probability": 0.000007118426130755453, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.670117432039259, - "recall": 0.9842973276176878, - "row_count": 477830, - "tn": 26586, - "tn_rate": 0.15290822400772996, - "tp": 299188, - "tp_rate": 0.9842973276176878, - "truth_threshold": -17.1 - }, - { - "f1": 0.7973748384259691, - "fn": 4774, - "fn_rate": 0.01570596227805541, - "fp": 147283, - "fp_rate": 0.84709177599227, - "match_probability": 0.000007217794939235686, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701166931708737, - "recall": 0.9842940377219446, - "row_count": 477830, - "tn": 26586, - "tn_rate": 0.15290822400772996, - "tp": 299187, - "tp_rate": 0.9842940377219446, - "truth_threshold": -17.080000000000002 - }, - { - "f1": 0.7973721732873152, - "fn": 4775, - "fn_rate": 0.01570925217379861, - "fp": 147283, - "fp_rate": 0.84709177599227, - "match_probability": 0.000007318550864425777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701159542991787, - "recall": 0.9842907478262014, - "row_count": 477830, - "tn": 26586, - "tn_rate": 0.15290822400772996, - "tp": 299186, - "tp_rate": 0.9842907478262014, - "truth_threshold": -17.06 - }, - { - "f1": 0.7973689681088659, - "fn": 4777, - "fn_rate": 0.01571583196528502, - "fp": 147283, - "fp_rate": 0.84709177599227, - "match_probability": 0.00000742071326918649, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.670114476545859, - "recall": 0.984284168034715, - "row_count": 477830, - "tn": 26586, - "tn_rate": 0.15290822400772996, - "tp": 299184, - "tp_rate": 0.984284168034715, - "truth_threshold": -17.04 - }, - { - "f1": 0.7973753434734057, - "fn": 4777, - "fn_rate": 0.01571583196528502, - "fp": 147278, - "fp_rate": 0.8470630187094882, - "match_probability": 0.000007524301786658165, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701219812660428, - "recall": 0.984284168034715, - "row_count": 477830, - "tn": 26591, - "tn_rate": 0.1529369812905118, - "tp": 299184, - "tp_rate": 0.984284168034715, - "truth_threshold": -17.02 - }, - { - "f1": 0.7971803353849517, - "fn": 4898, - "fn_rate": 0.01611390935021269, - "fp": 147278, - "fp_rate": 0.8470630187094882, - "match_probability": 0.000007629336324033172, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700325535857113, - "recall": 0.9838860906497873, - "row_count": 477830, - "tn": 26591, - "tn_rate": 0.1529369812905118, - "tp": 299063, - "tp_rate": 0.9838860906497873, - "truth_threshold": -17 - }, - { - "f1": 0.7971792165141919, - "fn": 4904, - "fn_rate": 0.016133648724671917, - "fp": 147270, - "fp_rate": 0.8470170070570372, - "match_probability": 0.000007735837066381084, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700401275298156, - "recall": 0.9838663512753281, - "row_count": 477830, - "tn": 26599, - "tn_rate": 0.1529829929429628, - "tp": 299057, - "tp_rate": 0.9838663512753281, - "truth_threshold": -16.98 - }, - { - "f1": 0.7971658505247389, - "fn": 4913, - "fn_rate": 0.01616325778636075, - "fp": 147270, - "fp_rate": 0.8470170070570372, - "match_probability": 0.000007843824480527219, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700334738908132, - "recall": 0.9838367422136393, - "row_count": 477830, - "tn": 26599, - "tn_rate": 0.1529829929429628, - "tp": 299048, - "tp_rate": 0.9838367422136393, - "truth_threshold": -16.96 - }, - { - "f1": 0.7971460332100861, - "fn": 4930, - "fn_rate": 0.016219186013995218, - "fp": 147262, - "fp_rate": 0.8469709954045862, - "match_probability": 0.000007953319318985333, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700329155958081, - "recall": 0.9837808139860048, - "row_count": 477830, - "tn": 26607, - "tn_rate": 0.1530290045954138, - "tp": 299031, - "tp_rate": 0.9837808139860048, - "truth_threshold": -16.94 - }, - { - "f1": 0.7971390793444301, - "fn": 4935, - "fn_rate": 0.016235635492711235, - "fp": 147262, - "fp_rate": 0.8469709954045862, - "match_probability": 0.000008064342623945162, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700292188004159, - "recall": 0.9837643645072888, - "row_count": 477830, - "tn": 26607, - "tn_rate": 0.1530290045954138, - "tp": 299026, - "tp_rate": 0.9837643645072888, - "truth_threshold": -16.92 - }, - { - "f1": 0.7971582048171894, - "fn": 4935, - "fn_rate": 0.016235635492711235, - "fp": 147244, - "fp_rate": 0.8468674691865715, - "match_probability": 0.000008176915731315674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700562439778609, - "recall": 0.9837643645072888, - "row_count": 477830, - "tn": 26625, - "tn_rate": 0.1531325308134285, - "tp": 299026, - "tp_rate": 0.9837643645072888, - "truth_threshold": -16.9 - }, - { - "f1": 0.7971624550468792, - "fn": 4935, - "fn_rate": 0.016235635492711235, - "fp": 147240, - "fp_rate": 0.846844463360346, - "match_probability": 0.000008291060274824607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700622498689123, - "recall": 0.9837643645072888, - "row_count": 477830, - "tn": 26629, - "tn_rate": 0.153155536639654, - "tp": 299026, - "tp_rate": 0.9837643645072888, - "truth_threshold": -16.88 - }, - { - "f1": 0.797177331207712, - "fn": 4935, - "fn_rate": 0.016235635492711235, - "fp": 147226, - "fp_rate": 0.8467639429685568, - "match_probability": 0.000008524151719262247, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6700832713354786, - "recall": 0.9837643645072888, - "row_count": 477830, - "tn": 26643, - "tn_rate": 0.15323605703144322, - "tp": 299026, - "tp_rate": 0.9837643645072888, - "truth_threshold": -16.84 - }, - { - "f1": 0.7972511797797744, - "fn": 4936, - "fn_rate": 0.01623892538845444, - "fp": 147154, - "fp_rate": 0.8463498380964979, - "match_probability": 0.000008643143414443251, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701906633884607, - "recall": 0.9837610746115456, - "row_count": 477830, - "tn": 26715, - "tn_rate": 0.15365016190350206, - "tp": 299025, - "tp_rate": 0.9837610746115456, - "truth_threshold": -16.82 - }, - { - "f1": 0.7972506392157176, - "fn": 4937, - "fn_rate": 0.016242215284197645, - "fp": 147154, - "fp_rate": 0.8463498380964979, - "match_probability": 0.00000876379614287431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701899242006554, - "recall": 0.9837577847158023, - "row_count": 477830, - "tn": 26715, - "tn_rate": 0.15365016190350206, - "tp": 299024, - "tp_rate": 0.9837577847158023, - "truth_threshold": -16.8 - }, - { - "f1": 0.7972522242692639, - "fn": 4938, - "fn_rate": 0.016245505179940847, - "fp": 147150, - "fp_rate": 0.8463268322702725, - "match_probability": 0.000008886133090902635, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701951933442858, - "recall": 0.9837544948200592, - "row_count": 477830, - "tn": 26719, - "tn_rate": 0.15367316772972756, - "tp": 299023, - "tp_rate": 0.9837544948200592, - "truth_threshold": -16.78 - }, - { - "f1": 0.7972543499010841, - "fn": 4938, - "fn_rate": 0.016245505179940847, - "fp": 147148, - "fp_rate": 0.8463153293571597, - "match_probability": 0.00000901017776852193, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701981975520597, - "recall": 0.9837544948200592, - "row_count": 477830, - "tn": 26721, - "tn_rate": 0.1536846706428403, - "tp": 299023, - "tp_rate": 0.9837544948200592, - "truth_threshold": -16.76 - }, - { - "f1": 0.7972511431351899, - "fn": 4940, - "fn_rate": 0.016252084971427255, - "fp": 147148, - "fp_rate": 0.8463153293571597, - "match_probability": 0.000009135954013889686, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6701967191804002, - "recall": 0.9837479150285727, - "row_count": 477830, - "tn": 26721, - "tn_rate": 0.1536846706428403, - "tp": 299021, - "tp_rate": 0.9837479150285727, - "truth_threshold": -16.740000000000002 - }, - { - "f1": 0.797265482313355, - "fn": 4941, - "fn_rate": 0.01625537486717046, - "fp": 147133, - "fp_rate": 0.846229057508814, - "match_probability": 0.000009392798228865447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702185124833857, - "recall": 0.9837446251328296, - "row_count": 477830, - "tn": 26736, - "tn_rate": 0.1537709424911859, - "tp": 299020, - "tp_rate": 0.9837446251328296, - "truth_threshold": -16.7 - }, - { - "f1": 0.7972676080371998, - "fn": 4941, - "fn_rate": 0.01625537486717046, - "fp": 147131, - "fp_rate": 0.8462175545957014, - "match_probability": 0.000009656863180023442, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702215169303666, - "recall": 0.9837446251328296, - "row_count": 477830, - "tn": 26738, - "tn_rate": 0.15378244540429864, - "tp": 299020, - "tp_rate": 0.9837446251328296, - "truth_threshold": -16.66 - }, - { - "f1": 0.7972670674967671, - "fn": 4942, - "fn_rate": 0.016258664762913662, - "fp": 147130, - "fp_rate": 0.846211803139145, - "match_probability": 0.000009791666646456521, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702222800006276, - "recall": 0.9837413352370863, - "row_count": 477830, - "tn": 26739, - "tn_rate": 0.15378819686085501, - "tp": 299019, - "tp_rate": 0.9837413352370863, - "truth_threshold": -16.64 - }, - { - "f1": 0.7972627795612341, - "fn": 4946, - "fn_rate": 0.01627182434588648, - "fp": 147129, - "fp_rate": 0.8462060516825887, - "match_probability": 0.000009928351862046044, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.670220825563047, - "recall": 0.9837281756541135, - "row_count": 477830, - "tn": 26740, - "tn_rate": 0.1537939483174114, - "tp": 299015, - "tp_rate": 0.9837281756541135, - "truth_threshold": -16.62 - }, - { - "f1": 0.7972691568301742, - "fn": 4946, - "fn_rate": 0.01627182434588648, - "fp": 147123, - "fp_rate": 0.8461715429432504, - "match_probability": 0.000010066945093988067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.670229839197737, - "recall": 0.9837281756541135, - "row_count": 477830, - "tn": 26746, - "tn_rate": 0.15382845705674963, - "tp": 299015, - "tp_rate": 0.9837281756541135, - "truth_threshold": -16.6 - }, - { - "f1": 0.7972627430695353, - "fn": 4950, - "fn_rate": 0.016284983928859294, - "fp": 147123, - "fp_rate": 0.8461715429432504, - "match_probability": 0.000010207472976125722, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702268825061528, - "recall": 0.9837150160711408, - "row_count": 477830, - "tn": 26746, - "tn_rate": 0.15382845705674963, - "tp": 299011, - "tp_rate": 0.9837150160711408, - "truth_threshold": -16.580000000000002 - }, - { - "f1": 0.7973047202060657, - "fn": 4951, - "fn_rate": 0.0162882738246025, - "fp": 147082, - "fp_rate": 0.845935733224439, - "match_probability": 0.000010349962514066602, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702877433354555, - "recall": 0.9837117261753975, - "row_count": 477830, - "tn": 26787, - "tn_rate": 0.1540642667755609, - "tp": 299010, - "tp_rate": 0.9837117261753975, - "truth_threshold": -16.56 - }, - { - "f1": 0.7972731902820406, - "fn": 4970, - "fn_rate": 0.01635078184372337, - "fp": 147082, - "fp_rate": 0.845935733224439, - "match_probability": 0.000010494441090371449, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702736995962544, - "recall": 0.9836492181562766, - "row_count": 477830, - "tn": 26787, - "tn_rate": 0.1540642667755609, - "tp": 298991, - "tp_rate": 0.9836492181562766, - "truth_threshold": -16.54 - }, - { - "f1": 0.7972437847826841, - "fn": 4989, - "fn_rate": 0.016413289862844245, - "fp": 147082, - "fp_rate": 0.845935733224439, - "match_probability": 0.000010640936469815525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6702596546606465, - "recall": 0.9835867101371557, - "row_count": 477830, - "tn": 26787, - "tn_rate": 0.1540642667755609, - "tp": 298972, - "tp_rate": 0.9835867101371557, - "truth_threshold": -16.52 - }, - { - "f1": 0.8036444864978199, - "fn": 4994, - "fn_rate": 0.016429739341560265, - "fp": 141100, - "fp_rate": 0.8115305201042164, - "match_probability": 0.000010789476804723106, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6793670054787112, - "recall": 0.9835702606584398, - "row_count": 477830, - "tn": 32769, - "tn_rate": 0.1884694798957836, - "tp": 298967, - "tp_rate": 0.9835702606584398, - "truth_threshold": -16.5 - }, - { - "f1": 0.8038373740659979, - "fn": 4997, - "fn_rate": 0.016439609028789878, - "fp": 140917, - "fp_rate": 0.8104780035544001, - "match_probability": 0.000011092806920501003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6796474501058241, - "recall": 0.9835603909712102, - "row_count": 477830, - "tn": 32952, - "tn_rate": 0.18952199644559986, - "tp": 298964, - "tp_rate": 0.9835603909712102, - "truth_threshold": -16.46 - }, - { - "f1": 0.8038357917605494, - "fn": 5000, - "fn_rate": 0.01644947871601949, - "fp": 140914, - "fp_rate": 0.810460749184731, - "match_probability": 0.000011247654992825144, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6796499005399261, - "recall": 0.9835505212839805, - "row_count": 477830, - "tn": 32955, - "tn_rate": 0.18953925081526896, - "tp": 298961, - "tp_rate": 0.9835505212839805, - "truth_threshold": -16.44 - }, - { - "f1": 0.8039527328664708, - "fn": 5016, - "fn_rate": 0.016502117047910752, - "fp": 140783, - "fp_rate": 0.8097073083758461, - "match_probability": 0.000011404664614720203, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6798407197176436, - "recall": 0.9834978829520893, - "row_count": 477830, - "tn": 33086, - "tn_rate": 0.19029269162415383, - "tp": 298945, - "tp_rate": 0.9834978829520893, - "truth_threshold": -16.42 - }, - { - "f1": 0.803949523996546, - "fn": 5100, - "fn_rate": 0.01677846829033988, - "fp": 140660, - "fp_rate": 0.8089998792194123, - "match_probability": 0.00001156386595891718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6799697852889851, - "recall": 0.9832215317096601, - "row_count": 477830, - "tn": 33209, - "tn_rate": 0.19100012078058767, - "tp": 298861, - "tp_rate": 0.9832215317096601, - "truth_threshold": -16.4 - }, - { - "f1": 0.8062252652535994, - "fn": 5107, - "fn_rate": 0.016801497560542306, - "fp": 138551, - "fp_rate": 0.7968700573420219, - "match_probability": 0.000011725289619303927, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6832432185274516, - "recall": 0.9831985024394577, - "row_count": 477830, - "tn": 35318, - "tn_rate": 0.20312994265797812, - "tp": 298854, - "tp_rate": 0.9831985024394577, - "truth_threshold": -16.38 - }, - { - "f1": 0.8062215220094906, - "fn": 5110, - "fn_rate": 0.016811367247771918, - "fp": 138551, - "fp_rate": 0.7968700573420219, - "match_probability": 0.000012223206877850105, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6832410459943027, - "recall": 0.9831886327522281, - "row_count": 477830, - "tn": 35318, - "tn_rate": 0.20312994265797812, - "tp": 298851, - "tp_rate": 0.9831886327522281, - "truth_threshold": -16.32 - }, - { - "f1": 0.8062280469841749, - "fn": 5110, - "fn_rate": 0.016811367247771918, - "fp": 138545, - "fp_rate": 0.7968355486026836, - "match_probability": 0.000012393834372475679, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6832504183851704, - "recall": 0.9831886327522281, - "row_count": 477830, - "tn": 35324, - "tn_rate": 0.20316445139731637, - "tp": 298851, - "tp_rate": 0.9831886327522281, - "truth_threshold": -16.3 - }, - { - "f1": 0.8062683289402331, - "fn": 5112, - "fn_rate": 0.016817947039258326, - "fp": 138505, - "fp_rate": 0.7966054903404287, - "match_probability": 0.000012566843678710988, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6833114593670117, - "recall": 0.9831820529607417, - "row_count": 477830, - "tn": 35364, - "tn_rate": 0.2033945096595713, - "tp": 298849, - "tp_rate": 0.9831820529607417, - "truth_threshold": -16.28 - }, - { - "f1": 0.8061813668618298, - "fn": 5166, - "fn_rate": 0.016995601409391336, - "fp": 138505, - "fp_rate": 0.7966054903404287, - "match_probability": 0.00001274226804373564, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6832723530756918, - "recall": 0.9830043985906086, - "row_count": 477830, - "tn": 35364, - "tn_rate": 0.2033945096595713, - "tp": 298795, - "tp_rate": 0.9830043985906086, - "truth_threshold": -16.26 - }, - { - "f1": 0.8064185295840182, - "fn": 5166, - "fn_rate": 0.016995601409391336, - "fp": 138286, - "fp_rate": 0.795345921354583, - "match_probability": 0.000012920141178795591, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6836147075713654, - "recall": 0.9830043985906086, - "row_count": 477830, - "tn": 35583, - "tn_rate": 0.20465407864541696, - "tp": 298795, - "tp_rate": 0.9830043985906086, - "truth_threshold": -16.240000000000002 - }, - { - "f1": 0.8066101022317126, - "fn": 5166, - "fn_rate": 0.016995601409391336, - "fp": 138111, - "fp_rate": 0.7943394164572178, - "match_probability": 0.00001310049726567996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.683888525220528, - "recall": 0.9830043985906086, - "row_count": 477830, - "tn": 35758, - "tn_rate": 0.20566058354278222, - "tp": 298795, - "tp_rate": 0.9830043985906086, - "truth_threshold": -16.22 - }, - { - "f1": 0.8066297000194372, - "fn": 5166, - "fn_rate": 0.016995601409391336, - "fp": 138093, - "fp_rate": 0.794235890239203, - "match_probability": 0.000013283370963288116, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.683916701763381, - "recall": 0.9830043985906086, - "row_count": 477830, - "tn": 35776, - "tn_rate": 0.20576410976079693, - "tp": 298795, - "tp_rate": 0.9830043985906086, - "truth_threshold": -16.2 - }, - { - "f1": 0.8067832947663163, - "fn": 5168, - "fn_rate": 0.017002181200877743, - "fp": 137948, - "fp_rate": 0.793401929038529, - "match_probability": 0.000013468797414288652, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841423177581221, - "recall": 0.9829978187991223, - "row_count": 477830, - "tn": 35921, - "tn_rate": 0.20659807096147098, - "tp": 298793, - "tp_rate": 0.9829978187991223, - "truth_threshold": -16.18 - }, - { - "f1": 0.8067827730525179, - "fn": 5169, - "fn_rate": 0.01700547109662095, - "fp": 137948, - "fp_rate": 0.793401929038529, - "match_probability": 0.000013656812251871, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841415945413747, - "recall": 0.982994528903379, - "row_count": 477830, - "tn": 35921, - "tn_rate": 0.20659807096147098, - "tp": 298792, - "tp_rate": 0.982994528903379, - "truth_threshold": -16.16 - }, - { - "f1": 0.8068073501019347, - "fn": 5172, - "fn_rate": 0.01701534078385056, - "fp": 137921, - "fp_rate": 0.7932466397115069, - "match_probability": 0.000014236750918251151, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841817224244923, - "recall": 0.9829846592161494, - "row_count": 477830, - "tn": 35948, - "tn_rate": 0.20675336028849306, - "tp": 298789, - "tp_rate": 0.9829846592161494, - "truth_threshold": -16.1 - }, - { - "f1": 0.8067875881325222, - "fn": 5189, - "fn_rate": 0.017071269011485025, - "fp": 137913, - "fp_rate": 0.793200628059056, - "match_probability": 0.000014435485686095844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841819618260302, - "recall": 0.982928730988515, - "row_count": 477830, - "tn": 35956, - "tn_rate": 0.20679937194094405, - "tp": 298772, - "tp_rate": 0.982928730988515, - "truth_threshold": -16.080000000000002 - }, - { - "f1": 0.8067870663908706, - "fn": 5190, - "fn_rate": 0.01707455890722823, - "fp": 137913, - "fp_rate": 0.793200628059056, - "match_probability": 0.000014636994607262019, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841812386073225, - "recall": 0.9829254410927718, - "row_count": 477830, - "tn": 35956, - "tn_rate": 0.20679937194094405, - "tp": 298771, - "tp_rate": 0.9829254410927718, - "truth_threshold": -16.06 - }, - { - "f1": 0.8067947374674602, - "fn": 5192, - "fn_rate": 0.017081138698714637, - "fp": 137903, - "fp_rate": 0.7931431134934922, - "match_probability": 0.000014841316405219397, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6841954602081196, - "recall": 0.9829188613012854, - "row_count": 477830, - "tn": 35966, - "tn_rate": 0.20685688650650777, - "tp": 298769, - "tp_rate": 0.9829188613012854, - "truth_threshold": -16.04 - }, - { - "f1": 0.8068368405133302, - "fn": 5199, - "fn_rate": 0.017104167968917065, - "fp": 137854, - "fp_rate": 0.79286129212223, - "match_probability": 0.000015048490343933547, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6842671821463254, - "recall": 0.9828958320310829, - "row_count": 477830, - "tn": 36015, - "tn_rate": 0.20713870787777006, - "tp": 298762, - "tp_rate": 0.9828958320310829, - "truth_threshold": -16.02 - }, - { - "f1": 0.8068013946315866, - "fn": 5221, - "fn_rate": 0.01717654567526755, - "fp": 137854, - "fp_rate": 0.79286129212223, - "match_probability": 0.000015258556235409006, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6842512723491391, - "recall": 0.9828234543247325, - "row_count": 477830, - "tn": 36015, - "tn_rate": 0.20713870787777006, - "tp": 298740, - "tp_rate": 0.9828234543247325, - "truth_threshold": -16 - }, - { - "f1": 0.8067954714861346, - "fn": 5224, - "fn_rate": 0.01718641536249716, - "fp": 137854, - "fp_rate": 0.79286129212223, - "match_probability": 0.000015471554447337795, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6842491027071104, - "recall": 0.9828135846375028, - "row_count": 477830, - "tn": 36015, - "tn_rate": 0.20713870787777006, - "tp": 298737, - "tp_rate": 0.9828135846375028, - "truth_threshold": -15.98 - }, - { - "f1": 0.8068063661480375, - "fn": 5224, - "fn_rate": 0.01718641536249716, - "fp": 137845, - "fp_rate": 0.7928095290132225, - "match_probability": 0.000015687525910854657, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6842632082861868, - "recall": 0.9828135846375028, - "row_count": 477830, - "tn": 36024, - "tn_rate": 0.2071904709867774, - "tp": 298737, - "tp_rate": 0.9828135846375028, - "truth_threshold": -15.96 - }, - { - "f1": 0.8069567425351565, - "fn": 5224, - "fn_rate": 0.01718641536249716, - "fp": 137706, - "fp_rate": 0.7920100765518867, - "match_probability": 0.000015906512128400478, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.684481134993573, - "recall": 0.9828135846375028, - "row_count": 477830, - "tn": 36163, - "tn_rate": 0.20798992344811323, - "tp": 298737, - "tp_rate": 0.9828135846375028, - "truth_threshold": -15.94 - }, - { - "f1": 0.807041241402413, - "fn": 5225, - "fn_rate": 0.017189705258240366, - "fp": 137628, - "fp_rate": 0.7915614629404897, - "match_probability": 0.00001612855518169533, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6846027628310309, - "recall": 0.9828102947417596, - "row_count": 477830, - "tn": 36241, - "tn_rate": 0.20843853705951032, - "tp": 298736, - "tp_rate": 0.9828102947417596, - "truth_threshold": -15.92 - }, - { - "f1": 0.8070528545338621, - "fn": 5232, - "fn_rate": 0.017212734528442793, - "fp": 137607, - "fp_rate": 0.7914406823528058, - "match_probability": 0.000016353697739823012, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6846306516079351, - "recall": 0.9827872654715573, - "row_count": 477830, - "tn": 36262, - "tn_rate": 0.20855931764719415, - "tp": 298729, - "tp_rate": 0.9827872654715573, - "truth_threshold": -15.9 - }, - { - "f1": 0.8070437070777478, - "fn": 5237, - "fn_rate": 0.017229184007158813, - "fp": 137607, - "fp_rate": 0.7914406823528058, - "match_probability": 0.000016581983067428103, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6846270377305302, - "recall": 0.9827708159928412, - "row_count": 477830, - "tn": 36262, - "tn_rate": 0.20855931764719415, - "tp": 298724, - "tp_rate": 0.9827708159928412, - "truth_threshold": -15.88 - }, - { - "f1": 0.806859971520364, - "fn": 5351, - "fn_rate": 0.017604232121884056, - "fp": 137607, - "fp_rate": 0.7914406823528058, - "match_probability": 0.000016813455033027547, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6845446188479587, - "recall": 0.9823957678781159, - "row_count": 477830, - "tn": 36262, - "tn_rate": 0.20855931764719415, - "tp": 298610, - "tp_rate": 0.9823957678781159, - "truth_threshold": -15.860000000000001 - }, - { - "f1": 0.8069079382922552, - "fn": 5351, - "fn_rate": 0.017604232121884056, - "fp": 137564, - "fp_rate": 0.7911933697208818, - "match_probability": 0.000017048158117438166, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.6846121043436794, - "recall": 0.9823957678781159, - "row_count": 477830, - "tn": 36305, - "tn_rate": 0.2088066302791182, - "tp": 298610, - "tp_rate": 0.9823957678781159, - "truth_threshold": -15.84 - }, - { - "f1": 0.8414346177039128, - "fn": 5351, - "fn_rate": 0.017604232121884056, - "fp": 107194, - "fp_rate": 0.6165216341038368, - "match_probability": 0.00001728613742232168, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7358478477294458, - "recall": 0.9823957678781159, - "row_count": 477830, - "tn": 66675, - "tn_rate": 0.3834783658961632, - "tp": 298610, - "tp_rate": 0.9823957678781159, - "truth_threshold": -15.82 - }, - { - "f1": 0.8414393597835889, - "fn": 5351, - "fn_rate": 0.017604232121884056, - "fp": 107189, - "fp_rate": 0.6164928768210549, - "match_probability": 0.000017527438678849133, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.735856914383722, - "recall": 0.9823957678781159, - "row_count": 477830, - "tn": 66680, - "tn_rate": 0.3835071231789451, - "tp": 298610, - "tp_rate": 0.9823957678781159, - "truth_threshold": -15.8 - }, - { - "f1": 0.8414578818782036, - "fn": 5352, - "fn_rate": 0.01760752201762726, - "fp": 107173, - "fp_rate": 0.6164008535161529, - "match_probability": 0.000017772108256485995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7358852783021426, - "recall": 0.9823924779823727, - "row_count": 477830, - "tn": 66696, - "tn_rate": 0.383599146483847, - "tp": 298609, - "tp_rate": 0.9823924779823727, - "truth_threshold": -15.780000000000001 - }, - { - "f1": 0.8414485345296433, - "fn": 5357, - "fn_rate": 0.01762397149634328, - "fp": 107173, - "fp_rate": 0.6164008535161529, - "match_probability": 0.00001802019317189998, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7358820238702538, - "recall": 0.9823760285036567, - "row_count": 477830, - "tn": 66696, - "tn_rate": 0.383599146483847, - "tp": 298604, - "tp_rate": 0.9823760285036567, - "truth_threshold": -15.76 - }, - { - "f1": 0.8414480877396666, - "fn": 5358, - "fn_rate": 0.017627261392086487, - "fp": 107173, - "fp_rate": 0.6164008535161529, - "match_probability": 0.000018271741097992973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7358813729742518, - "recall": 0.9823727386079135, - "row_count": 477830, - "tn": 66696, - "tn_rate": 0.383599146483847, - "tp": 298603, - "tp_rate": 0.9823727386079135, - "truth_threshold": -15.74 - }, - { - "f1": 0.8415814795085779, - "fn": 5362, - "fn_rate": 0.0176404209750593, - "fp": 107055, - "fp_rate": 0.6157221816425009, - "match_probability": 0.000018526800373059223, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7360928278779453, - "recall": 0.9823595790249408, - "row_count": 477830, - "tn": 66814, - "tn_rate": 0.384277818357499, - "tp": 298599, - "tp_rate": 0.9823595790249408, - "truth_threshold": -15.72 - }, - { - "f1": 0.8416352853631587, - "fn": 5369, - "fn_rate": 0.01766345024526173, - "fp": 107000, - "fp_rate": 0.6154058515319004, - "match_probability": 0.00001878542001007107, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361880904948815, - "recall": 0.9823365497547383, - "row_count": 477830, - "tn": 66869, - "tn_rate": 0.38459414846809953, - "tp": 298592, - "tp_rate": 0.9823365497547383, - "truth_threshold": -15.700000000000001 - }, - { - "f1": 0.8413559551436233, - "fn": 5580, - "fn_rate": 0.01835761824707775, - "fp": 106945, - "fp_rate": 0.6150895214212999, - "match_probability": 0.00001904764970609435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361506540414382, - "recall": 0.9816423817529223, - "row_count": 477830, - "tn": 66924, - "tn_rate": 0.38491047857870003, - "tp": 298381, - "tp_rate": 0.9816423817529223, - "truth_threshold": -15.68 - }, - { - "f1": 0.8413749347921102, - "fn": 5580, - "fn_rate": 0.01835761824707775, - "fp": 106929, - "fp_rate": 0.6149974981163979, - "match_probability": 0.00001931353985183501, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361797142927635, - "recall": 0.9816423817529223, - "row_count": 477830, - "tn": 66940, - "tn_rate": 0.385002501883602, - "tp": 298381, - "tp_rate": 0.9816423817529223, - "truth_threshold": -15.66 - }, - { - "f1": 0.8413721149914701, - "fn": 5581, - "fn_rate": 0.018360908142820955, - "fp": 106929, - "fp_rate": 0.6149974981163979, - "match_probability": 0.00001958314154131918, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.736179063381272, - "recall": 0.981639091857179, - "row_count": 477830, - "tn": 66940, - "tn_rate": 0.385002501883602, - "tp": 298380, - "tp_rate": 0.981639091857179, - "truth_threshold": -15.64 - }, - { - "f1": 0.8413633441239834, - "fn": 5590, - "fn_rate": 0.01839051720450979, - "fp": 106925, - "fp_rate": 0.6149744922901725, - "match_probability": 0.000019856506581707993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361804705696577, - "recall": 0.9816094827954902, - "row_count": 477830, - "tn": 66944, - "tn_rate": 0.3850255077098275, - "tp": 298371, - "tp_rate": 0.9816094827954902, - "truth_threshold": -15.620000000000001 - }, - { - "f1": 0.8413728343259339, - "fn": 5590, - "fn_rate": 0.01839051720450979, - "fp": 106917, - "fp_rate": 0.6149284806377215, - "match_probability": 0.00002013368750324953, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361950020726002, - "recall": 0.9816094827954902, - "row_count": 477830, - "tn": 66952, - "tn_rate": 0.3850715193622785, - "tp": 298371, - "tp_rate": 0.9816094827954902, - "truth_threshold": -15.6 - }, - { - "f1": 0.8413602127341584, - "fn": 5597, - "fn_rate": 0.018413546474712217, - "fp": 106917, - "fp_rate": 0.6149284806377215, - "match_probability": 0.000020414737569369415, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7361904456414191, - "recall": 0.9815864535252878, - "row_count": 477830, - "tn": 66952, - "tn_rate": 0.3850715193622785, - "tp": 298364, - "tp_rate": 0.9815864535252878, - "truth_threshold": -15.58 - }, - { - "f1": 0.8413958026654935, - "fn": 5597, - "fn_rate": 0.018413546474712217, - "fp": 106887, - "fp_rate": 0.6147559369410304, - "match_probability": 0.00002069971078690248, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7362449444911919, - "recall": 0.9815864535252878, - "row_count": 477830, - "tn": 66982, - "tn_rate": 0.3852440630589697, - "tp": 298364, - "tp_rate": 0.9815864535252878, - "truth_threshold": -15.56 - }, - { - "f1": 0.841375751200652, - "fn": 5610, - "fn_rate": 0.018456315119373866, - "fp": 106887, - "fp_rate": 0.6147559369410304, - "match_probability": 0.000020988661916466824, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7362364832518175, - "recall": 0.9815436848806262, - "row_count": 477830, - "tn": 66982, - "tn_rate": 0.3852440630589697, - "tp": 298351, - "tp_rate": 0.9815436848806262, - "truth_threshold": -15.540000000000001 - }, - { - "f1": 0.8414115802150878, - "fn": 5636, - "fn_rate": 0.018541852408697167, - "fp": 106821, - "fp_rate": 0.6143763408083097, - "match_probability": 0.000021578720786338814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7363394924298895, - "recall": 0.9814581475913028, - "row_count": 477830, - "tn": 67048, - "tn_rate": 0.3856236591916903, - "tp": 298325, - "tp_rate": 0.9814581475913028, - "truth_threshold": -15.5 - }, - { - "f1": 0.8414017769002962, - "fn": 5642, - "fn_rate": 0.018561591783156393, - "fp": 106821, - "fp_rate": 0.6143763408083097, - "match_probability": 0.00002187994191220544, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7363355876980797, - "recall": 0.9814384082168436, - "row_count": 477830, - "tn": 67048, - "tn_rate": 0.3856236591916903, - "tp": 298319, - "tp_rate": 0.9814384082168436, - "truth_threshold": -15.48 - }, - { - "f1": 0.8414863248634743, - "fn": 5644, - "fn_rate": 0.0185681715746428, - "fp": 106747, - "fp_rate": 0.6139507330231381, - "match_probability": 0.00002218536774300117, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7364688049295913, - "recall": 0.9814318284253573, - "row_count": 477830, - "tn": 67122, - "tn_rate": 0.38604926697686187, - "tp": 298317, - "tp_rate": 0.9814318284253573, - "truth_threshold": -15.46 - }, - { - "f1": 0.8415053144675377, - "fn": 5644, - "fn_rate": 0.0185681715746428, - "fp": 106731, - "fp_rate": 0.6138587097182362, - "match_probability": 0.000022495056969010486, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7364978965455946, - "recall": 0.9814318284253573, - "row_count": 477830, - "tn": 67138, - "tn_rate": 0.38614129028176386, - "tp": 298317, - "tp_rate": 0.9814318284253573, - "truth_threshold": -15.44 - }, - { - "f1": 0.8414959577096885, - "fn": 5649, - "fn_rate": 0.01858462105335882, - "fp": 106731, - "fp_rate": 0.6138587097182362, - "match_probability": 0.00002280906909965718, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7364946437785618, - "recall": 0.9814153789466412, - "row_count": 477830, - "tn": 67138, - "tn_rate": 0.38614129028176386, - "tp": 298312, - "tp_rate": 0.9814153789466412, - "truth_threshold": -15.42 - }, - { - "f1": 0.8414867388446631, - "fn": 5659, - "fn_rate": 0.018617520010790856, - "fp": 106725, - "fp_rate": 0.6138242009788979, - "match_probability": 0.000023127464474935175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7364990482116007, - "recall": 0.9813824799892091, - "row_count": 477830, - "tn": 67144, - "tn_rate": 0.3861757990211021, - "tp": 298302, - "tp_rate": 0.9813824799892091, - "truth_threshold": -15.4 - }, - { - "f1": 0.8414494470774092, - "fn": 5684, - "fn_rate": 0.018699767404370956, - "fp": 106722, - "fp_rate": 0.6138069466092287, - "match_probability": 0.00002345030427699851, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7364882382425636, - "recall": 0.981300232595629, - "row_count": 477830, - "tn": 67147, - "tn_rate": 0.3861930533907712, - "tp": 298277, - "tp_rate": 0.981300232595629, - "truth_threshold": -15.38 - }, - { - "f1": 0.8414595270134934, - "fn": 5688, - "fn_rate": 0.01871292698734377, - "fp": 106708, - "fp_rate": 0.6137264262174396, - "match_probability": 0.000023777650541913158, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7365110955822619, - "recall": 0.9812870730126563, - "row_count": 477830, - "tn": 67161, - "tn_rate": 0.38627357378256044, - "tp": 298273, - "tp_rate": 0.9812870730126563, - "truth_threshold": -15.36 - }, - { - "f1": 0.8414942418480255, - "fn": 5690, - "fn_rate": 0.018719506778830178, - "fp": 106676, - "fp_rate": 0.6135423796076356, - "match_probability": 0.00002410956617157259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7365679953179058, - "recall": 0.9812804932211698, - "row_count": 477830, - "tn": 67193, - "tn_rate": 0.38645762039236436, - "tp": 298271, - "tp_rate": 0.9812804932211698, - "truth_threshold": -15.34 - }, - { - "f1": 0.8414933474772325, - "fn": 5692, - "fn_rate": 0.018726086570316585, - "fp": 106674, - "fp_rate": 0.6135308766945229, - "match_probability": 0.000024446114945779867, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.736570332120817, - "recall": 0.9812739134296834, - "row_count": 477830, - "tn": 67195, - "tn_rate": 0.3864691233054771, - "tp": 298269, - "tp_rate": 0.9812739134296834, - "truth_threshold": -15.32 - }, - { - "f1": 0.8415095191341933, - "fn": 5693, - "fn_rate": 0.01872937646605979, - "fp": 106660, - "fp_rate": 0.6134503563027337, - "match_probability": 0.000025133371510271085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7365951477793583, - "recall": 0.9812706235339402, - "row_count": 477830, - "tn": 67209, - "tn_rate": 0.38654964369726635, - "tp": 298268, - "tp_rate": 0.9812706235339402, - "truth_threshold": -15.280000000000001 - }, - { - "f1": 0.8416064243429777, - "fn": 5694, - "fn_rate": 0.018732666361802996, - "fp": 106576, - "fp_rate": 0.6129672339519984, - "match_probability": 0.000025484211360819274, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7367473316816643, - "recall": 0.981267333638197, - "row_count": 477830, - "tn": 67293, - "tn_rate": 0.38703276604800163, - "tp": 298267, - "tp_rate": 0.981267333638197, - "truth_threshold": -15.26 - }, - { - "f1": 0.8416254225523006, - "fn": 5694, - "fn_rate": 0.018732666361802996, - "fp": 106561, - "fp_rate": 0.6128809621036527, - "match_probability": 0.00002583994850180852, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7367746302133251, - "recall": 0.981267333638197, - "row_count": 477830, - "tn": 67308, - "tn_rate": 0.3871190378963473, - "tp": 298267, - "tp_rate": 0.981267333638197, - "truth_threshold": -15.24 - }, - { - "f1": 0.8416432217666496, - "fn": 5702, - "fn_rate": 0.018758985527748625, - "fp": 106535, - "fp_rate": 0.612731424233187, - "match_probability": 0.000026200651289799313, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7368167512364314, - "recall": 0.9812410144722514, - "row_count": 477830, - "tn": 67334, - "tn_rate": 0.38726857576681295, - "tp": 298259, - "tp_rate": 0.9812410144722514, - "truth_threshold": -15.22 - }, - { - "f1": 0.841685080300375, - "fn": 5704, - "fn_rate": 0.018765565319235032, - "fp": 106496, - "fp_rate": 0.6125071174274885, - "match_probability": 0.000026566389035375488, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7368864467959472, - "recall": 0.981234434680765, - "row_count": 477830, - "tn": 67373, - "tn_rate": 0.38749288257251147, - "tp": 298257, - "tp_rate": 0.981234434680765, - "truth_threshold": -15.200000000000001 - }, - { - "f1": 0.8416837173860894, - "fn": 5723, - "fn_rate": 0.018828073338355907, - "fp": 106471, - "fp_rate": 0.6123633310135792, - "match_probability": 0.00002693723201645637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.736919613845998, - "recall": 0.9811719266616441, - "row_count": 477830, - "tn": 67398, - "tn_rate": 0.3876366689864208, - "tp": 298238, - "tp_rate": 0.9811719266616441, - "truth_threshold": -15.18 - }, - { - "f1": 0.8417189030224177, - "fn": 5724, - "fn_rate": 0.018831363234099112, - "fp": 106440, - "fp_rate": 0.6121850358603317, - "match_probability": 0.000027694519714661317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7369754149605735, - "recall": 0.9811686367659009, - "row_count": 477830, - "tn": 67429, - "tn_rate": 0.38781496413966837, - "tp": 298237, - "tp_rate": 0.9811686367659009, - "truth_threshold": -15.14 - }, - { - "f1": 0.8416814379099725, - "fn": 5760, - "fn_rate": 0.018949799480854453, - "fp": 106422, - "fp_rate": 0.6120815096423169, - "match_probability": 0.00002808110994672502, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7369847981948628, - "recall": 0.9810502005191456, - "row_count": 477830, - "tn": 67447, - "tn_rate": 0.3879184903576831, - "tp": 298201, - "tp_rate": 0.9810502005191456, - "truth_threshold": -15.120000000000001 - }, - { - "f1": 0.8416244887128691, - "fn": 5813, - "fn_rate": 0.01912416395524426, - "fp": 106397, - "fp_rate": 0.6119377232284076, - "match_probability": 0.000028473096472119992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7369958842650385, - "recall": 0.9808758360447557, - "row_count": 477830, - "tn": 67472, - "tn_rate": 0.3880622767715924, - "tp": 298148, - "tp_rate": 0.9808758360447557, - "truth_threshold": -15.1 - }, - { - "f1": 0.8416286271620412, - "fn": 5825, - "fn_rate": 0.019163642704162705, - "fp": 106377, - "fp_rate": 0.6118226940972802, - "match_probability": 0.000028870554611713878, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7370245208435823, - "recall": 0.9808363572958373, - "row_count": 477830, - "tn": 67492, - "tn_rate": 0.38817730590271987, - "tp": 298136, - "tp_rate": 0.9808363572958373, - "truth_threshold": -15.08 - }, - { - "f1": 0.8416577028297492, - "fn": 5845, - "fn_rate": 0.01922944061902678, - "fp": 106325, - "fp_rate": 0.6115236183563487, - "match_probability": 0.000029273560737573354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7371062775534627, - "recall": 0.9807705593809732, - "row_count": 477830, - "tn": 67544, - "tn_rate": 0.3884763816436513, - "tp": 298116, - "tp_rate": 0.9807705593809732, - "truth_threshold": -15.06 - }, - { - "f1": 0.8416667607765193, - "fn": 5846, - "fn_rate": 0.019232730514769987, - "fp": 106317, - "fp_rate": 0.6114776067038977, - "match_probability": 0.000029682192287631416, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737120208094315, - "recall": 0.98076726948523, - "row_count": 477830, - "tn": 67552, - "tn_rate": 0.3885223932961022, - "tp": 298115, - "tp_rate": 0.98076726948523, - "truth_threshold": -15.040000000000001 - }, - { - "f1": 0.8417157716709066, - "fn": 5848, - "fn_rate": 0.019239310306256394, - "fp": 106272, - "fp_rate": 0.611218791158861, - "match_probability": 0.000030096527780559407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7372009347527727, - "recall": 0.9807606896937436, - "row_count": 477830, - "tn": 67597, - "tn_rate": 0.38878120884113904, - "tp": 298113, - "tp_rate": 0.9807606896937436, - "truth_threshold": -15.02 - }, - { - "f1": 0.8417585520464204, - "fn": 5848, - "fn_rate": 0.019239310306256394, - "fp": 106236, - "fp_rate": 0.6110117387228315, - "match_probability": 0.000030516646830846227, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7372665692260894, - "recall": 0.9807606896937436, - "row_count": 477830, - "tn": 67633, - "tn_rate": 0.38898826127716846, - "tp": 298113, - "tp_rate": 0.9807606896937436, - "truth_threshold": -15 - }, - { - "f1": 0.8417775669425408, - "fn": 5848, - "fn_rate": 0.019239310306256394, - "fp": 106220, - "fp_rate": 0.6109197154179296, - "match_probability": 0.00003094263016408827, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737295743854694, - "recall": 0.9807606896937436, - "row_count": 477830, - "tn": 67649, - "tn_rate": 0.3890802845820704, - "tp": 298113, - "tp_rate": 0.9807606896937436, - "truth_threshold": -14.98 - }, - { - "f1": 0.8418980481205641, - "fn": 5871, - "fn_rate": 0.019314977908350083, - "fp": 106087, - "fp_rate": 0.610154771695932, - "match_probability": 0.00003137455963249214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737523411772565, - "recall": 0.9806850220916499, - "row_count": 477830, - "tn": 67782, - "tn_rate": 0.389845228304068, - "tp": 298090, - "tp_rate": 0.9806850220916499, - "truth_threshold": -14.96 - }, - { - "f1": 0.8418812471226872, - "fn": 5882, - "fn_rate": 0.01935116676152533, - "fp": 106087, - "fp_rate": 0.610154771695932, - "match_probability": 0.00003181251823059389, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737516268068071, - "recall": 0.9806488332384746, - "row_count": 477830, - "tn": 67782, - "tn_rate": 0.389845228304068, - "tp": 298079, - "tp_rate": 0.9806488332384746, - "truth_threshold": -14.94 - }, - { - "f1": 0.841874705206165, - "fn": 5886, - "fn_rate": 0.019364326344498143, - "fp": 106087, - "fp_rate": 0.610154771695932, - "match_probability": 0.00003225659011119708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737513670260935, - "recall": 0.9806356736555019, - "row_count": 477830, - "tn": 67782, - "tn_rate": 0.389845228304068, - "tp": 298075, - "tp_rate": 0.9806356736555019, - "truth_threshold": -14.92 - }, - { - "f1": 0.8418387233441604, - "fn": 5908, - "fn_rate": 0.01943670405084863, - "fp": 106087, - "fp_rate": 0.610154771695932, - "match_probability": 0.00003270686060153373, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7374993814024843, - "recall": 0.9805632959491514, - "row_count": 477830, - "tn": 67782, - "tn_rate": 0.389845228304068, - "tp": 298053, - "tp_rate": 0.9805632959491514, - "truth_threshold": -14.9 - }, - { - "f1": 0.841766752912199, - "fn": 5952, - "fn_rate": 0.0195814594635496, - "fp": 106087, - "fp_rate": 0.610154771695932, - "match_probability": 0.00003316341621965, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7374707990180551, - "recall": 0.9804185405364504, - "row_count": 477830, - "tn": 67782, - "tn_rate": 0.389845228304068, - "tp": 298009, - "tp_rate": 0.9804185405364504, - "truth_threshold": -14.88 - }, - { - "f1": 0.8417924613576787, - "fn": 5953, - "fn_rate": 0.019584749359292802, - "fp": 106064, - "fp_rate": 0.6100224881951354, - "match_probability": 0.00003362634469102074, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375121265517036, - "recall": 0.9804152506407072, - "row_count": 477830, - "tn": 67805, - "tn_rate": 0.38997751180486456, - "tp": 298008, - "tp_rate": 0.9804152506407072, - "truth_threshold": -14.86 - }, - { - "f1": 0.8418012225850555, - "fn": 5960, - "fn_rate": 0.01960777862949523, - "fp": 106047, - "fp_rate": 0.609924713433677, - "match_probability": 0.000034095734965395514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375386092741456, - "recall": 0.9803922213705047, - "row_count": 477830, - "tn": 67822, - "tn_rate": 0.3900752865663229, - "tp": 298001, - "tp_rate": 0.9803922213705047, - "truth_threshold": -14.84 - }, - { - "f1": 0.8417943756267744, - "fn": 5970, - "fn_rate": 0.01964067758692727, - "fp": 106039, - "fp_rate": 0.609878701781226, - "match_probability": 0.00003457167723387977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375467168279584, - "recall": 0.9803593224130728, - "row_count": 477830, - "tn": 67830, - "tn_rate": 0.3901212982187739, - "tp": 297991, - "tp_rate": 0.9803593224130728, - "truth_threshold": -14.82 - }, - { - "f1": 0.8417469227705094, - "fn": 6007, - "fn_rate": 0.019762403729425816, - "fp": 106027, - "fp_rate": 0.6098096843025497, - "match_probability": 0.00003505426294625404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375445874929761, - "recall": 0.9802375962705742, - "row_count": 477830, - "tn": 67842, - "tn_rate": 0.3901903156974504, - "tp": 297954, - "tp_rate": 0.9802375962705742, - "truth_threshold": -14.8 - }, - { - "f1": 0.8417689154332306, - "fn": 6011, - "fn_rate": 0.01977556331239863, - "fp": 106004, - "fp_rate": 0.609677400801753, - "match_probability": 0.000035543584828534594, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375839823346223, - "recall": 0.9802244366876014, - "row_count": 477830, - "tn": 67865, - "tn_rate": 0.39032259919824697, - "tp": 297950, - "tp_rate": 0.9802244366876014, - "truth_threshold": -14.780000000000001 - }, - { - "f1": 0.8417699525078188, - "fn": 6014, - "fn_rate": 0.019785432999628243, - "fp": 105998, - "fp_rate": 0.6096428920624148, - "match_probability": 0.00003603973690077914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7375929891445617, - "recall": 0.9802145670003718, - "row_count": 477830, - "tn": 67871, - "tn_rate": 0.3903571079375852, - "tp": 297947, - "tp_rate": 0.9802145670003718, - "truth_threshold": -14.76 - }, - { - "f1": 0.8417824338947232, - "fn": 6018, - "fn_rate": 0.019798592582601058, - "fp": 105983, - "fp_rate": 0.6095566202140692, - "match_probability": 0.0000365428144951405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7376177814748246, - "recall": 0.9802014074173989, - "row_count": 477830, - "tn": 67886, - "tn_rate": 0.3904433797859308, - "tp": 297943, - "tp_rate": 0.9802014074173989, - "truth_threshold": -14.74 - }, - { - "f1": 0.8418561676348922, - "fn": 6018, - "fn_rate": 0.019798592582601058, - "fp": 105921, - "fp_rate": 0.609200029907574, - "match_probability": 0.000037052914274172446, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377310183626171, - "recall": 0.9802014074173989, - "row_count": 477830, - "tn": 67948, - "tn_rate": 0.3907999700924259, - "tp": 297943, - "tp_rate": 0.9802014074173989, - "truth_threshold": -14.72 - }, - { - "f1": 0.8420515603492379, - "fn": 6044, - "fn_rate": 0.01988412987192436, - "fp": 105720, - "fp_rate": 0.6080439871397432, - "match_probability": 0.000037570134249390434, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7380814940156626, - "recall": 0.9801158701280757, - "row_count": 477830, - "tn": 68149, - "tn_rate": 0.3919560128602569, - "tp": 297917, - "tp_rate": 0.9801158701280757, - "truth_threshold": -14.700000000000001 - }, - { - "f1": 0.8420658407599925, - "fn": 6044, - "fn_rate": 0.01988412987192436, - "fp": 105708, - "fp_rate": 0.6079749696610667, - "match_probability": 0.00003809457380009125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7381034375967792, - "recall": 0.9801158701280757, - "row_count": 477830, - "tn": 68161, - "tn_rate": 0.3920250303389333, - "tp": 297917, - "tp_rate": 0.9801158701280757, - "truth_threshold": -14.68 - }, - { - "f1": 0.8421225209741978, - "fn": 6045, - "fn_rate": 0.01988741976766756, - "fp": 105659, - "fp_rate": 0.6076931482898044, - "match_probability": 0.00003862633369243492, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7381924053769435, - "recall": 0.9801125802323324, - "row_count": 477830, - "tn": 68210, - "tn_rate": 0.3923068517101956, - "tp": 297916, - "tp_rate": 0.9801125802323324, - "truth_threshold": -14.66 - }, - { - "f1": 0.842165371024735, - "fn": 6045, - "fn_rate": 0.01988741976766756, - "fp": 105623, - "fp_rate": 0.607486095853775, - "match_probability": 0.00003916551609879306, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7382582600442584, - "recall": 0.9801125802323324, - "row_count": 477830, - "tn": 68246, - "tn_rate": 0.39251390414622506, - "tp": 297916, - "tp_rate": 0.9801125802323324, - "truth_threshold": -14.64 - }, - { - "f1": 0.8421132980136944, - "fn": 6087, - "fn_rate": 0.020025595388882125, - "fp": 105610, - "fp_rate": 0.6074113269185422, - "match_probability": 0.0000397122246173665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7382548006860247, - "recall": 0.9799744046111178, - "row_count": 477830, - "tn": 68259, - "tn_rate": 0.3925886730814579, - "tp": 297874, - "tp_rate": 0.9799744046111178, - "truth_threshold": -14.620000000000001 - }, - { - "f1": 0.8382298294334399, - "fn": 8459, - "fn_rate": 0.027829228091761773, - "fp": 105599, - "fp_rate": 0.607348060896422, - "match_probability": 0.00004026656429207677, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7367271584962392, - "recall": 0.9721707719082382, - "row_count": 477830, - "tn": 68270, - "tn_rate": 0.392651939103578, - "tp": 295502, - "tp_rate": 0.9721707719082382, - "truth_threshold": -14.6 - }, - { - "f1": 0.8382455563057057, - "fn": 8461, - "fn_rate": 0.02783580788324818, - "fp": 105584, - "fp_rate": 0.6072617890480764, - "match_probability": 0.00004082864163273459, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7367533982906324, - "recall": 0.9721641921167519, - "row_count": 477830, - "tn": 68285, - "tn_rate": 0.39273821095192357, - "tp": 295500, - "tp_rate": 0.9721641921167519, - "truth_threshold": -14.58 - }, - { - "f1": 0.8384653799662908, - "fn": 8464, - "fn_rate": 0.027845677570477793, - "fp": 105394, - "fp_rate": 0.6061690123023655, - "match_probability": 0.000041398564635490015, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7371006083948006, - "recall": 0.9721543224295222, - "row_count": 477830, - "tn": 68475, - "tn_rate": 0.3938309876976344, - "tp": 295497, - "tp_rate": 0.9721543224295222, - "truth_threshold": -14.56 - }, - { - "f1": 0.8385315425500217, - "fn": 8465, - "fn_rate": 0.027848967466220995, - "fp": 105338, - "fp_rate": 0.6058469307352087, - "match_probability": 0.00004197644280356719, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7372029318870156, - "recall": 0.972151032533779, - "row_count": 477830, - "tn": 68531, - "tn_rate": 0.3941530692647913, - "tp": 295496, - "tp_rate": 0.972151032533779, - "truth_threshold": -14.540000000000001 - }, - { - "f1": 0.8385977160241566, - "fn": 8466, - "fn_rate": 0.0278522573619642, - "fp": 105281, - "fp_rate": 0.6055190977114955, - "match_probability": 0.000042562387168288515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7373071241790926, - "recall": 0.9721477426380358, - "row_count": 477830, - "tn": 68588, - "tn_rate": 0.3944809022885046, - "tp": 295495, - "tp_rate": 0.9721477426380358, - "truth_threshold": -14.52 - }, - { - "f1": 0.8386497947783436, - "fn": 8503, - "fn_rate": 0.027973983504462743, - "fp": 105185, - "fp_rate": 0.6049669578820837, - "match_probability": 0.00004315651031039153, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7374595337994174, - "recall": 0.9720260164955372, - "row_count": 477830, - "tn": 68684, - "tn_rate": 0.39503304211791634, - "tp": 295458, - "tp_rate": 0.9720260164955372, - "truth_threshold": -14.5 - }, - { - "f1": 0.8388003429538319, - "fn": 8507, - "fn_rate": 0.027987143087435558, - "fp": 105053, - "fp_rate": 0.6042077656166425, - "match_probability": 0.000043758926381643505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7376999652939898, - "recall": 0.9720128569125644, - "row_count": 477830, - "tn": 68816, - "tn_rate": 0.3957922343833576, - "tp": 295454, - "tp_rate": 0.9720128569125644, - "truth_threshold": -14.48 - }, - { - "f1": 0.8388510002782494, - "fn": 8516, - "fn_rate": 0.028016752149124396, - "fp": 104998, - "fp_rate": 0.6038914355060419, - "match_probability": 0.000044369751126756925, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377953916037988, - "recall": 0.9719832478508756, - "row_count": 477830, - "tn": 68871, - "tn_rate": 0.3961085644939581, - "tp": 295445, - "tp_rate": 0.9719832478508756, - "truth_threshold": -14.46 - }, - { - "f1": 0.8381329923273657, - "fn": 9022, - "fn_rate": 0.029681439395185565, - "fp": 104900, - "fp_rate": 0.6033277927635173, - "match_probability": 0.000044989101905610624, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7376444018717534, - "recall": 0.9703185606048145, - "row_count": 477830, - "tn": 68969, - "tn_rate": 0.39667220723648267, - "tp": 294939, - "tp_rate": 0.9703185606048145, - "truth_threshold": -14.44 - }, - { - "f1": 0.8381383796502855, - "fn": 9031, - "fn_rate": 0.029711048456874403, - "fp": 104883, - "fp_rate": 0.603230018002059, - "match_probability": 0.00004561709771578043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7376698606598585, - "recall": 0.9702889515431256, - "row_count": 477830, - "tn": 68986, - "tn_rate": 0.396769981997941, - "tp": 294930, - "tp_rate": 0.9702889515431256, - "truth_threshold": -14.42 - }, - { - "f1": 0.8381784129889248, - "fn": 9032, - "fn_rate": 0.029714338352617605, - "fp": 104848, - "fp_rate": 0.603028717022586, - "match_probability": 0.00004625385921538452, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377337865860217, - "recall": 0.9702856616473824, - "row_count": 477830, - "tn": 69021, - "tn_rate": 0.396971282977414, - "tp": 294929, - "tp_rate": 0.9702856616473824, - "truth_threshold": -14.4 - }, - { - "f1": 0.8381501082921672, - "fn": 9078, - "fn_rate": 0.029865673556804986, - "fp": 104808, - "fp_rate": 0.602798658760331, - "match_probability": 0.000046899508746246485, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377774330670442, - "recall": 0.970134326443195, - "row_count": 477830, - "tn": 69061, - "tn_rate": 0.39720134123966894, - "tp": 294883, - "tp_rate": 0.970134326443195, - "truth_threshold": -14.38 - }, - { - "f1": 0.8380802947095541, - "fn": 9121, - "fn_rate": 0.03000713907376275, - "fp": 104808, - "fp_rate": 0.602798658760331, - "match_probability": 0.000047554170357381744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377492193129954, - "recall": 0.9699928609262373, - "row_count": 477830, - "tn": 69061, - "tn_rate": 0.39720134123966894, - "tp": 294840, - "tp_rate": 0.9699928609262373, - "truth_threshold": -14.36 - }, - { - "f1": 0.8380741494529609, - "fn": 9124, - "fn_rate": 0.030017008760992364, - "fp": 104808, - "fp_rate": 0.602798658760331, - "match_probability": 0.00004821796982881093, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377472506849829, - "recall": 0.9699829912390077, - "row_count": 477830, - "tn": 69061, - "tn_rate": 0.39720134123966894, - "tp": 294837, - "tp_rate": 0.9699829912390077, - "truth_threshold": -14.34 - }, - { - "f1": 0.8380736891774351, - "fn": 9125, - "fn_rate": 0.03002029865673557, - "fp": 104808, - "fp_rate": 0.602798658760331, - "match_probability": 0.000048891034695705744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7377465944690775, - "recall": 0.9699797013432644, - "row_count": 477830, - "tn": 69061, - "tn_rate": 0.39720134123966894, - "tp": 294836, - "tp_rate": 0.9699797013432644, - "truth_threshold": -14.32 - }, - { - "f1": 0.8380708466694333, - "fn": 9126, - "fn_rate": 0.03002358855247877, - "fp": 104808, - "fp_rate": 0.602798658760331, - "match_probability": 0.000049573494272870864, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.737745938249888, - "recall": 0.9699764114475212, - "row_count": 477830, - "tn": 69061, - "tn_rate": 0.39720134123966894, - "tp": 294835, - "tp_rate": 0.9699764114475212, - "truth_threshold": -14.3 - }, - { - "f1": 0.8381199559950991, - "fn": 9128, - "fn_rate": 0.03003016834396518, - "fp": 104764, - "fp_rate": 0.6025455946718506, - "match_probability": 0.00005026547967956725, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7378258595535001, - "recall": 0.9699698316560348, - "row_count": 477830, - "tn": 69105, - "tn_rate": 0.39745440532814935, - "tp": 294833, - "tp_rate": 0.9699698316560348, - "truth_threshold": -14.280000000000001 - }, - { - "f1": 0.8381613326017178, - "fn": 9152, - "fn_rate": 0.030109125841802073, - "fp": 104697, - "fp_rate": 0.6021602470825737, - "match_probability": 0.00005096712386468152, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7379338483026537, - "recall": 0.969890874158198, - "row_count": 477830, - "tn": 69172, - "tn_rate": 0.39783975291742635, - "tp": 294809, - "tp_rate": 0.969890874158198, - "truth_threshold": -14.26 - }, - { - "f1": 0.8381282998268523, - "fn": 9172, - "fn_rate": 0.030174923756666153, - "fp": 104697, - "fp_rate": 0.6021602470825737, - "match_probability": 0.000051678561632245805, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7379207281356543, - "recall": 0.9698250762433338, - "row_count": 477830, - "tn": 69172, - "tn_rate": 0.39783975291742635, - "tp": 294789, - "tp_rate": 0.9698250762433338, - "truth_threshold": -14.24 - }, - { - "f1": 0.8381245362090975, - "fn": 9175, - "fn_rate": 0.030184793443895762, - "fp": 104695, - "fp_rate": 0.602148744169461, - "match_probability": 0.000052399929667313805, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7379224543845639, - "recall": 0.9698152065561042, - "row_count": 477830, - "tn": 69174, - "tn_rate": 0.3978512558305391, - "tp": 294786, - "tp_rate": 0.9698152065561042, - "truth_threshold": -14.22 - }, - { - "f1": 0.8381491549327813, - "fn": 9194, - "fn_rate": 0.030247301463016636, - "fp": 104649, - "fp_rate": 0.6018841771678678, - "match_probability": 0.0000531313665621969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7379949726600837, - "recall": 0.9697526985369833, - "row_count": 477830, - "tn": 69220, - "tn_rate": 0.39811582283213226, - "tp": 294767, - "tp_rate": 0.9697526985369833, - "truth_threshold": -14.200000000000001 - }, - { - "f1": 0.8381744508423971, - "fn": 9196, - "fn_rate": 0.030253881254503043, - "fp": 104625, - "fp_rate": 0.6017461422105148, - "match_probability": 0.000053873012843066357, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7380380079621423, - "recall": 0.969746118745497, - "row_count": 477830, - "tn": 69244, - "tn_rate": 0.3982538577894852, - "tp": 294765, - "tp_rate": 0.969746118745497, - "truth_threshold": -14.18 - }, - { - "f1": 0.8381873709713193, - "fn": 9199, - "fn_rate": 0.030263750941732656, - "fp": 104609, - "fp_rate": 0.6016541189056128, - "match_probability": 0.00005462501099692568, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7380656081688455, - "recall": 0.9697362490582674, - "row_count": 477830, - "tn": 69260, - "tn_rate": 0.3983458810943872, - "tp": 294762, - "tp_rate": 0.9697362490582674, - "truth_threshold": -14.16 - }, - { - "f1": 0.8381966108249987, - "fn": 9210, - "fn_rate": 0.030299939794907898, - "fp": 104586, - "fp_rate": 0.6015218354048163, - "match_probability": 0.00005538750549895966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7381009022454719, - "recall": 0.9697000602050921, - "row_count": 477830, - "tn": 69283, - "tn_rate": 0.3984781645951837, - "tp": 294751, - "tp_rate": 0.9697000602050921, - "truth_threshold": -14.14 - }, - { - "f1": 0.8381862389625901, - "fn": 9217, - "fn_rate": 0.030322969065110325, - "fp": 104586, - "fp_rate": 0.6015218354048163, - "match_probability": 0.00005616064284026378, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7380963113214635, - "recall": 0.9696770309348897, - "row_count": 477830, - "tn": 69283, - "tn_rate": 0.3984781645951837, - "tp": 294744, - "tp_rate": 0.9696770309348897, - "truth_threshold": -14.120000000000001 - }, - { - "f1": 0.8382301499048697, - "fn": 9220, - "fn_rate": 0.030332838752339938, - "fp": 104544, - "fp_rate": 0.6012802742294486, - "match_probability": 0.000056944571555960515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7381719824185732, - "recall": 0.9696671612476601, - "row_count": 477830, - "tn": 69325, - "tn_rate": 0.39871972577055137, - "tp": 294741, - "tp_rate": 0.9696671612476601, - "truth_threshold": -14.1 - }, - { - "f1": 0.8382578375411324, - "fn": 9222, - "fn_rate": 0.030339418543826345, - "fp": 104519, - "fp_rate": 0.6011364878155393, - "match_probability": 0.00005773944225370692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.738216892335282, - "recall": 0.9696605814561736, - "row_count": 477830, - "tn": 69350, - "tn_rate": 0.3988635121844607, - "tp": 294739, - "tp_rate": 0.9696605814561736, - "truth_threshold": -14.08 - }, - { - "f1": 0.8382640698058043, - "fn": 9224, - "fn_rate": 0.030345998335312752, - "fp": 104511, - "fp_rate": 0.6010904761630883, - "match_probability": 0.000058545407642600166, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7382303731014307, - "recall": 0.9696540016646873, - "row_count": 477830, - "tn": 69358, - "tn_rate": 0.3989095238369117, - "tp": 294737, - "tp_rate": 0.9696540016646873, - "truth_threshold": -14.06 - }, - { - "f1": 0.838313304415843, - "fn": 9231, - "fn_rate": 0.03036902760551518, - "fp": 104460, - "fp_rate": 0.6007971518787133, - "match_probability": 0.00005936262256248524, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7383200981988527, - "recall": 0.9696309723944848, - "row_count": 477830, - "tn": 69409, - "tn_rate": 0.3992028481212867, - "tp": 294730, - "tp_rate": 0.9696309723944848, - "truth_threshold": -14.040000000000001 - }, - { - "f1": 0.8383026413849208, - "fn": 9249, - "fn_rate": 0.030428245728892852, - "fp": 104443, - "fp_rate": 0.600699377117255, - "match_probability": 0.0000601912440136712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7383397427064674, - "recall": 0.9695717542711072, - "row_count": 477830, - "tn": 69426, - "tn_rate": 0.39930062288274504, - "tp": 294712, - "tp_rate": 0.9695717542711072, - "truth_threshold": -14.02 - }, - { - "f1": 0.8383169488439832, - "fn": 9249, - "fn_rate": 0.030428245728892852, - "fp": 104431, - "fp_rate": 0.6006303596385785, - "match_probability": 0.000061031431187061336, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7383619404574301, - "recall": 0.9695717542711072, - "row_count": 477830, - "tn": 69438, - "tn_rate": 0.39936964036142153, - "tp": 294712, - "tp_rate": 0.9695717542711072, - "truth_threshold": -14 - }, - { - "f1": 0.8384801411175601, - "fn": 9252, - "fn_rate": 0.030438115416122465, - "fp": 104291, - "fp_rate": 0.5998251557206863, - "match_probability": 0.00006188334549470357, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7386190476190476, - "recall": 0.9695618845838775, - "row_count": 477830, - "tn": 69578, - "tn_rate": 0.4001748442793137, - "tp": 294709, - "tp_rate": 0.9695618845838775, - "truth_threshold": -13.98 - }, - { - "f1": 0.8383413290537733, - "fn": 9336, - "fn_rate": 0.03071446665855159, - "fp": 104291, - "fp_rate": 0.5998251557206863, - "match_probability": 0.00006274715060076599, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7385640084629346, - "recall": 0.9692855333414484, - "row_count": 477830, - "tn": 69578, - "tn_rate": 0.4001748442793137, - "tp": 294625, - "tp_rate": 0.9692855333414484, - "truth_threshold": -13.96 - }, - { - "f1": 0.8385795731091193, - "fn": 9342, - "fn_rate": 0.030734206033010813, - "fp": 104082, - "fp_rate": 0.5986231013004043, - "match_probability": 0.00006362301245294422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7389472311331048, - "recall": 0.9692657939669892, - "row_count": 477830, - "tn": 69787, - "tn_rate": 0.4013768986995957, - "tp": 294619, - "tp_rate": 0.9692657939669892, - "truth_threshold": -13.94 - }, - { - "f1": 0.8386595384904436, - "fn": 9355, - "fn_rate": 0.030776974677672465, - "fp": 103997, - "fp_rate": 0.5981342274931126, - "match_probability": 0.00006451109931430596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7390962938061179, - "recall": 0.9692230253223275, - "row_count": 477830, - "tn": 69872, - "tn_rate": 0.4018657725068874, - "tp": 294606, - "tp_rate": 0.9692230253223275, - "truth_threshold": -13.92 - }, - { - "f1": 0.8386825863168443, - "fn": 9362, - "fn_rate": 0.030800003947874893, - "fp": 103968, - "fp_rate": 0.5979674352529778, - "match_probability": 0.00006541158179557995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7391454887133154, - "recall": 0.9691999960521251, - "row_count": 477830, - "tn": 69901, - "tn_rate": 0.4020325647470222, - "tp": 294599, - "tp_rate": 0.9691999960521251, - "truth_threshold": -13.9 - }, - { - "f1": 0.8386751467598945, - "fn": 9373, - "fn_rate": 0.030836192801050134, - "fp": 103960, - "fp_rate": 0.5979214236005268, - "match_probability": 0.00006632463288789393, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.739153125846824, - "recall": 0.9691638071989499, - "row_count": 477830, - "tn": 69909, - "tn_rate": 0.40207857639947314, - "tp": 294588, - "tp_rate": 0.9691638071989499, - "truth_threshold": -13.88 - }, - { - "f1": 0.8385957919312131, - "fn": 9421, - "fn_rate": 0.030994107796723923, - "fp": 103960, - "fp_rate": 0.5979214236005268, - "match_probability": 0.00006725042799596908, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7391217063989962, - "recall": 0.969005892203276, - "row_count": 477830, - "tn": 69909, - "tn_rate": 0.40207857639947314, - "tp": 294540, - "tp_rate": 0.969005892203276, - "truth_threshold": -13.86 - }, - { - "f1": 0.8386079013161267, - "fn": 9457, - "fn_rate": 0.03111254404347926, - "fp": 103900, - "fp_rate": 0.5975763362071445, - "match_probability": 0.00006818914497177655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7392094456882963, - "recall": 0.9688874559565207, - "row_count": 477830, - "tn": 69969, - "tn_rate": 0.40242366379285555, - "tp": 294504, - "tp_rate": 0.9688874559565207, - "truth_threshold": -13.84 - }, - { - "f1": 0.8402368214565946, - "fn": 9479, - "fn_rate": 0.031184921749829748, - "fp": 102507, - "fp_rate": 0.589564557224117, - "match_probability": 0.00006914096414866335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7417888153072252, - "recall": 0.9688150782501702, - "row_count": 477830, - "tn": 71362, - "tn_rate": 0.410435442775883, - "tp": 294482, - "tp_rate": 0.9688150782501702, - "truth_threshold": -13.82 - }, - { - "f1": 0.8402176580360556, - "fn": 9500, - "fn_rate": 0.03125400956043703, - "fp": 102495, - "fp_rate": 0.5894955397454406, - "match_probability": 0.0000701060683759531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7417975795806084, - "recall": 0.968745990439563, - "row_count": 477830, - "tn": 71374, - "tn_rate": 0.41050446025455944, - "tp": 294461, - "tp_rate": 0.968745990439563, - "truth_threshold": -13.8 - }, - { - "f1": 0.8402838814250003, - "fn": 9502, - "fn_rate": 0.03126058935192344, - "fp": 102436, - "fp_rate": 0.5891562038086146, - "match_probability": 0.0000710846430540288, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7419065495912017, - "recall": 0.9687394106480766, - "row_count": 477830, - "tn": 71433, - "tn_rate": 0.41084379619138545, - "tp": 294459, - "tp_rate": 0.9687394106480766, - "truth_threshold": -13.780000000000001 - }, - { - "f1": 0.8403577666411717, - "fn": 9503, - "fn_rate": 0.03126387924766664, - "fp": 102373, - "fp_rate": 0.588793862045563, - "match_probability": 0.00007207687616990448, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7420236826256014, - "recall": 0.9687361207523334, - "row_count": 477830, - "tn": 71496, - "tn_rate": 0.41120613795443695, - "tp": 294458, - "tp_rate": 0.9687361207523334, - "truth_threshold": -13.76 - }, - { - "f1": 0.8403512677374796, - "fn": 9512, - "fn_rate": 0.03129348830935548, - "fp": 102366, - "fp_rate": 0.5887536018496684, - "match_probability": 0.00007308295833329186, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7420309212101357, - "recall": 0.9687065116906445, - "row_count": 477830, - "tn": 71503, - "tn_rate": 0.4112463981503316, - "tp": 294449, - "tp_rate": 0.9687065116906445, - "truth_threshold": -13.74 - }, - { - "f1": 0.8404059777831056, - "fn": 9513, - "fn_rate": 0.03129677820509868, - "fp": 102320, - "fp_rate": 0.5884890348480752, - "match_probability": 0.00007410308281316996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7421162997015889, - "recall": 0.9687032217949013, - "row_count": 477830, - "tn": 71549, - "tn_rate": 0.4115109651519247, - "tp": 294448, - "tp_rate": 0.9687032217949013, - "truth_threshold": -13.72 - }, - { - "f1": 0.840176886556793, - "fn": 9663, - "fn_rate": 0.03179026256657926, - "fp": 102304, - "fp_rate": 0.5883970115431733, - "match_probability": 0.00007513744557486346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7420487037382565, - "recall": 0.9682097374334208, - "row_count": 477830, - "tn": 71565, - "tn_rate": 0.4116029884568267, - "tp": 294298, - "tp_rate": 0.9682097374334208, - "truth_threshold": -13.700000000000001 - }, - { - "f1": 0.8402009906784863, - "fn": 9668, - "fn_rate": 0.03180671204529528, - "fp": 102276, - "fp_rate": 0.5882359707595949, - "match_probability": 0.0000761862453176377, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7420978442591327, - "recall": 0.9681932879547047, - "row_count": 477830, - "tn": 71593, - "tn_rate": 0.4117640292404051, - "tp": 294293, - "tp_rate": 0.9681932879547047, - "truth_threshold": -13.68 - }, - { - "f1": 0.8401721139926849, - "fn": 9705, - "fn_rate": 0.031928438187793826, - "fp": 102250, - "fp_rate": 0.5880864328891292, - "match_probability": 0.00007724968351281685, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.742122439509112, - "recall": 0.9680715618122062, - "row_count": 477830, - "tn": 71619, - "tn_rate": 0.41191356711087085, - "tp": 294256, - "tp_rate": 0.9680715618122062, - "truth_threshold": -13.66 - }, - { - "f1": 0.8401731438573048, - "fn": 9708, - "fn_rate": 0.03193830787502344, - "fp": 102244, - "fp_rate": 0.5880519241497909, - "match_probability": 0.00007832796444243376, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7421317185249825, - "recall": 0.9680616921249766, - "row_count": 477830, - "tn": 71625, - "tn_rate": 0.41194807585020904, - "tp": 294253, - "tp_rate": 0.9680616921249766, - "truth_threshold": -13.64 - }, - { - "f1": 0.8401620737212709, - "fn": 9727, - "fn_rate": 0.032000815894144316, - "fp": 102227, - "fp_rate": 0.5879541493883326, - "match_probability": 0.0000794212952384171, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7421511825879469, - "recall": 0.9679991841058557, - "row_count": 477830, - "tn": 71642, - "tn_rate": 0.41204585061166743, - "tp": 294234, - "tp_rate": 0.9679991841058557, - "truth_threshold": -13.620000000000001 - }, - { - "f1": 0.8402131481328121, - "fn": 9736, - "fn_rate": 0.03203042495583315, - "fp": 102173, - "fp_rate": 0.5876435707342884, - "match_probability": 0.00008052988592232462, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7422464290939914, - "recall": 0.9679695750441668, - "row_count": 477830, - "tn": 71696, - "tn_rate": 0.41235642926571153, - "tp": 294225, - "tp_rate": 0.9679695750441668, - "truth_threshold": -13.6 - }, - { - "f1": 0.8402432093582483, - "fn": 9749, - "fn_rate": 0.0320731936004948, - "fp": 102130, - "fp_rate": 0.5873962581023644, - "match_probability": 0.00008165394944562937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7423185027072579, - "recall": 0.9679268063995052, - "row_count": 477830, - "tn": 71739, - "tn_rate": 0.4126037418976356, - "tp": 294212, - "tp_rate": 0.9679268063995052, - "truth_threshold": -13.58 - }, - { - "f1": 0.8402446965283251, - "fn": 9751, - "fn_rate": 0.03207977339198121, - "fp": 102125, - "fp_rate": 0.5873675008195826, - "match_probability": 0.00008279370173056753, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7423265671717107, - "recall": 0.9679202266080188, - "row_count": 477830, - "tn": 71744, - "tn_rate": 0.41263249918041744, - "tp": 294210, - "tp_rate": 0.9679202266080188, - "truth_threshold": -13.56 - }, - { - "f1": 0.8402338473138118, - "fn": 9759, - "fn_rate": 0.03210609255792684, - "fp": 102123, - "fp_rate": 0.5873559979064699, - "match_probability": 0.0000839493617115541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7423251119661893, - "recall": 0.9678939074420732, - "row_count": 477830, - "tn": 71746, - "tn_rate": 0.4126440020935302, - "tp": 294202, - "tp_rate": 0.9678939074420732, - "truth_threshold": -13.540000000000001 - }, - { - "f1": 0.8402879136259123, - "fn": 9772, - "fn_rate": 0.03214886120258849, - "fp": 102060, - "fp_rate": 0.5869936561434184, - "match_probability": 0.0000851211513771759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7424346812231702, - "recall": 0.9678511387974115, - "row_count": 477830, - "tn": 71809, - "tn_rate": 0.4130063438565817, - "tp": 294189, - "tp_rate": 0.9678511387974115, - "truth_threshold": -13.52 - }, - { - "f1": 0.8403133060818744, - "fn": 9790, - "fn_rate": 0.03220807932596616, - "fp": 102015, - "fp_rate": 0.5867348405983815, - "match_probability": 0.00008630929581276842, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7425073071739031, - "recall": 0.9677919206740339, - "row_count": 477830, - "tn": 71854, - "tn_rate": 0.41326515940161845, - "tp": 294171, - "tp_rate": 0.9677919206740339, - "truth_threshold": -13.5 - }, - { - "f1": 0.8404828571428572, - "fn": 9792, - "fn_rate": 0.03221465911745257, - "fp": 101871, - "fp_rate": 0.5859066308542639, - "match_probability": 0.00008751402324358653, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7427759822240178, - "recall": 0.9677853408825474, - "row_count": 477830, - "tn": 71998, - "tn_rate": 0.41409336914573613, - "tp": 294169, - "tp_rate": 0.9677853408825474, - "truth_threshold": -13.48 - }, - { - "f1": 0.8405110093892689, - "fn": 9804, - "fn_rate": 0.03225413786637101, - "fp": 101831, - "fp_rate": 0.5856765725920089, - "match_probability": 0.00008873556507857524, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7428432174712365, - "recall": 0.967745862133629, - "row_count": 477830, - "tn": 72038, - "tn_rate": 0.41432342740799105, - "tp": 294157, - "tp_rate": 0.967745862133629, - "truth_threshold": -13.46 - }, - { - "f1": 0.8405764383812174, - "fn": 9808, - "fn_rate": 0.03226729744934383, - "fp": 101770, - "fp_rate": 0.5853257337420702, - "match_probability": 0.00008997415595475012, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7429550695463512, - "recall": 0.9677327025506561, - "row_count": 477830, - "tn": 72099, - "tn_rate": 0.4146742662579298, - "tp": 294153, - "tp_rate": 0.9677327025506561, - "truth_threshold": -13.44 - }, - { - "f1": 0.8405995484811248, - "fn": 9810, - "fn_rate": 0.03227387724083024, - "fp": 101748, - "fp_rate": 0.58519920169783, - "match_probability": 0.0000912300337821952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7429950568200475, - "recall": 0.9677261227591698, - "row_count": 477830, - "tn": 72121, - "tn_rate": 0.41480079830217004, - "tp": 294151, - "tp_rate": 0.9677261227591698, - "truth_threshold": -13.42 - }, - { - "f1": 0.8406803203255844, - "fn": 9812, - "fn_rate": 0.03228045703231665, - "fp": 101678, - "fp_rate": 0.5847965997388839, - "match_probability": 0.00009250343978968807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7431251531603453, - "recall": 0.9677195429676834, - "row_count": 477830, - "tn": 72191, - "tn_rate": 0.41520340026111613, - "tp": 294149, - "tp_rate": 0.9677195429676834, - "truth_threshold": -13.4 - }, - { - "f1": 0.8407548097398124, - "fn": 9812, - "fn_rate": 0.03228045703231665, - "fp": 101617, - "fp_rate": 0.5844457608889452, - "match_probability": 0.00009379461857095894, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7432396921413158, - "recall": 0.9677195429676834, - "row_count": 477830, - "tn": 72252, - "tn_rate": 0.4155542391110549, - "tp": 294149, - "tp_rate": 0.9677195429676834, - "truth_threshold": -13.38 - }, - { - "f1": 0.8407965034345352, - "fn": 9826, - "fn_rate": 0.0323265155727215, - "fp": 101563, - "fp_rate": 0.584135182234901, - "match_probability": 0.00009510381813159443, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7433320360476929, - "recall": 0.9676734844272785, - "row_count": 477830, - "tn": 72306, - "tn_rate": 0.41586481776509904, - "tp": 294135, - "tp_rate": 0.9676734844272785, - "truth_threshold": -13.36 - }, - { - "f1": 0.8407664070808604, - "fn": 9871, - "fn_rate": 0.032474560881165675, - "fp": 101526, - "fp_rate": 0.5839223783423152, - "match_probability": 0.00009643128993659314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7433723610774085, - "recall": 0.9675254391188344, - "row_count": 477830, - "tn": 72343, - "tn_rate": 0.4160776216576848, - "tp": 294090, - "tp_rate": 0.9675254391188344, - "truth_threshold": -13.34 - }, - { - "f1": 0.8408107010711365, - "fn": 9911, - "fn_rate": 0.032606156710893834, - "fp": 101434, - "fp_rate": 0.5833932443391289, - "match_probability": 0.00009777728895858458, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7435193332726482, - "recall": 0.9673938432891062, - "row_count": 477830, - "tn": 72435, - "tn_rate": 0.41660675566087113, - "tp": 294050, - "tp_rate": 0.9673938432891062, - "truth_threshold": -13.32 - }, - { - "f1": 0.8400958000217468, - "fn": 10366, - "fn_rate": 0.034103059274051606, - "fp": 101401, - "fp_rate": 0.5832034462727685, - "match_probability": 0.00009914207372671765, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7432860079595742, - "recall": 0.9658969407259484, - "row_count": 477830, - "tn": 72468, - "tn_rate": 0.4167965537272314, - "tp": 293595, - "tp_rate": 0.9658969407259484, - "truth_threshold": -13.3 - }, - { - "f1": 0.8400972887903283, - "fn": 10368, - "fn_rate": 0.03410963906553801, - "fp": 101396, - "fp_rate": 0.5831746889899867, - "match_probability": 0.00010052590637623026, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.743294117051361, - "recall": 0.965890360934462, - "row_count": 477830, - "tn": 72473, - "tn_rate": 0.4168253110100133, - "tp": 293593, - "tp_rate": 0.965890360934462, - "truth_threshold": -13.280000000000001 - }, - { - "f1": 0.8554769453121358, - "fn": 10375, - "fn_rate": 0.03413266833574044, - "fp": 88822, - "fp_rate": 0.5108558742501539, - "match_probability": 0.00010192905269870875, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7677297546076441, - "recall": 0.9658673316642595, - "row_count": 477830, - "tn": 85047, - "tn_rate": 0.48914412574984617, - "tp": 293586, - "tp_rate": 0.9658673316642595, - "truth_threshold": -13.26 - }, - { - "f1": 0.8559832523748155, - "fn": 10381, - "fn_rate": 0.034152407710199666, - "fp": 88407, - "fp_rate": 0.5084690197792591, - "match_probability": 0.00010335178219304575, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.768560186603209, - "recall": 0.9658475922898003, - "row_count": 477830, - "tn": 85462, - "tn_rate": 0.4915309802207409, - "tp": 293580, - "tp_rate": 0.9658475922898003, - "truth_threshold": -13.24 - }, - { - "f1": 0.8566534676000361, - "fn": 10385, - "fn_rate": 0.03416556729317248, - "fp": 87866, - "fp_rate": 0.5053574817822614, - "match_probability": 0.00010479436811710874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7696478101520021, - "recall": 0.9658344327068276, - "row_count": 477830, - "tn": 86003, - "tn_rate": 0.49464251821773864, - "tp": 293576, - "tp_rate": 0.9658344327068276, - "truth_threshold": -13.22 - }, - { - "f1": 0.8566459380827178, - "fn": 10403, - "fn_rate": 0.03422478541655015, - "fp": 87848, - "fp_rate": 0.5052539555642467, - "match_probability": 0.00010625708754012587, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7696732615637929, - "recall": 0.9657752145834498, - "row_count": 477830, - "tn": 86021, - "tn_rate": 0.4947460444357534, - "tp": 293558, - "tp_rate": 0.9657752145834498, - "truth_threshold": -13.200000000000001 - }, - { - "f1": 0.8570260793913543, - "fn": 10403, - "fn_rate": 0.03422478541655015, - "fp": 87543, - "fp_rate": 0.5034997613145529, - "match_probability": 0.00010774022139580177, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.77028924090989, - "recall": 0.9657752145834498, - "row_count": 477830, - "tn": 86326, - "tn_rate": 0.49650023868544707, - "tp": 293558, - "tp_rate": 0.9657752145834498, - "truth_threshold": -13.18 - }, - { - "f1": 0.8566102893270655, - "fn": 10763, - "fn_rate": 0.035409147884103556, - "fp": 87395, - "fp_rate": 0.5026485457442097, - "match_probability": 0.00010924405453617098, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7703714992130701, - "recall": 0.9645908521158965, - "row_count": 477830, - "tn": 86474, - "tn_rate": 0.4973514542557903, - "tp": 293198, - "tp_rate": 0.9645908521158965, - "truth_threshold": -13.16 - }, - { - "f1": 0.8566415586085189, - "fn": 10772, - "fn_rate": 0.03543875694579239, - "fp": 87358, - "fp_rate": 0.5024357418516239, - "match_probability": 0.0001107688757862026, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7704409704977309, - "recall": 0.9645612430542077, - "row_count": 477830, - "tn": 86511, - "tn_rate": 0.49756425814837607, - "tp": 293189, - "tp_rate": 0.9645612430542077, - "truth_threshold": -13.14 - }, - { - "f1": 0.8644874970511913, - "fn": 10796, - "fn_rate": 0.03551771444362928, - "fp": 81114, - "fp_rate": 0.46652364711363153, - "match_probability": 0.00011231497799916251, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7832793183694516, - "recall": 0.9644822855563707, - "row_count": 477830, - "tn": 92755, - "tn_rate": 0.5334763528863685, - "tp": 293165, - "tp_rate": 0.9644822855563707, - "truth_threshold": -13.120000000000001 - }, - { - "f1": 0.8643985820538984, - "fn": 10859, - "fn_rate": 0.035724977875451126, - "fp": 81101, - "fp_rate": 0.4664488781783987, - "match_probability": 0.00011388265811274712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7832700432652865, - "recall": 0.9642750221245489, - "row_count": 477830, - "tn": 92768, - "tn_rate": 0.5335511218216014, - "tp": 293102, - "tp_rate": 0.9642750221245489, - "truth_threshold": -13.1 - }, - { - "f1": 0.8644014309856164, - "fn": 10871, - "fn_rate": 0.03576445662436958, - "fp": 81083, - "fp_rate": 0.46634535196038396, - "match_probability": 0.00011547221720599655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7833007726372561, - "recall": 0.9642355433756304, - "row_count": 477830, - "tn": 92786, - "tn_rate": 0.533654648039616, - "tp": 293090, - "tp_rate": 0.9642355433756304, - "truth_threshold": -13.08 - }, - { - "f1": 0.8644048300230647, - "fn": 10888, - "fn_rate": 0.03582038485200404, - "fp": 81059, - "fp_rate": 0.46620731700303103, - "match_probability": 0.00011708396055700113, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7833411737033988, - "recall": 0.964179615147996, - "row_count": 477830, - "tn": 92810, - "tn_rate": 0.533792682996969, - "tp": 293073, - "tp_rate": 0.964179615147996, - "truth_threshold": -13.06 - }, - { - "f1": 0.8643982810135767, - "fn": 10898, - "fn_rate": 0.03585328380943608, - "fp": 81050, - "fp_rate": 0.4661555538940237, - "match_probability": 0.00011871819770140902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.783354227198734, - "recall": 0.9641467161905639, - "row_count": 477830, - "tn": 92819, - "tn_rate": 0.5338444461059764, - "tp": 293063, - "tp_rate": 0.9641467161905639, - "truth_threshold": -13.040000000000001 - }, - { - "f1": 0.8644292292670264, - "fn": 10929, - "fn_rate": 0.0359552705774754, - "fp": 80985, - "fp_rate": 0.46578170921785944, - "match_probability": 0.00012037524249174837, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7834724090081467, - "recall": 0.9640447294225246, - "row_count": 477830, - "tn": 92884, - "tn_rate": 0.5342182907821406, - "tp": 293032, - "tp_rate": 0.9640447294225246, - "truth_threshold": -13.02 - }, - { - "f1": 0.8644368793991493, - "fn": 10929, - "fn_rate": 0.0359552705774754, - "fp": 80980, - "fp_rate": 0.46575295193507754, - "match_probability": 0.00012205541315757354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7834828829021528, - "recall": 0.9640447294225246, - "row_count": 477830, - "tn": 92889, - "tn_rate": 0.5342470480649224, - "tp": 293032, - "tp_rate": 0.9640447294225246, - "truth_threshold": -13 - }, - { - "f1": 0.8651773640169835, - "fn": 10941, - "fn_rate": 0.03599474932639385, - "fp": 80383, - "fp_rate": 0.46231933237092293, - "match_probability": 0.00012375903236644915, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7847285640447452, - "recall": 0.9640052506736062, - "row_count": 477830, - "tn": 93486, - "tn_rate": 0.5376806676290771, - "tp": 293020, - "tp_rate": 0.9640052506736062, - "truth_threshold": -12.98 - }, - { - "f1": 0.8653541144259651, - "fn": 10972, - "fn_rate": 0.03609673609443317, - "fp": 80204, - "fp_rate": 0.4612898216473322, - "match_probability": 0.00012548642728578072, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7850870729086559, - "recall": 0.9639032639055668, - "row_count": 477830, - "tn": 93665, - "tn_rate": 0.5387101783526678, - "tp": 292989, - "tp_rate": 0.9639032639055668, - "truth_threshold": -12.96 - }, - { - "f1": 0.8653668938955378, - "fn": 10972, - "fn_rate": 0.03609673609443317, - "fp": 80194, - "fp_rate": 0.46123230708176843, - "match_probability": 0.0001272379296455061, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7851081104980666, - "recall": 0.9639032639055668, - "row_count": 477830, - "tn": 93675, - "tn_rate": 0.5387676929182316, - "tp": 292989, - "tp_rate": 0.9639032639055668, - "truth_threshold": -12.94 - }, - { - "f1": 0.8655373307177803, - "fn": 10987, - "fn_rate": 0.03614608453058123, - "fp": 80041, - "fp_rate": 0.4603523342286434, - "match_probability": 0.00012901387580165717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7854214977949948, - "recall": 0.9638539154694188, - "row_count": 477830, - "tn": 93828, - "tn_rate": 0.5396476657713566, - "tp": 292974, - "tp_rate": 0.9638539154694188, - "truth_threshold": -12.92 - }, - { - "f1": 0.8655884273444171, - "fn": 11000, - "fn_rate": 0.036188853175242876, - "fp": 79985, - "fp_rate": 0.4600302526614865, - "match_probability": 0.0001308146068008071, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7855319536876653, - "recall": 0.9638111468247571, - "row_count": 477830, - "tn": 93884, - "tn_rate": 0.5399697473385134, - "tp": 292961, - "tp_rate": 0.9638111468247571, - "truth_threshold": -12.9 - }, - { - "f1": 0.8655854727244255, - "fn": 11001, - "fn_rate": 0.03619214307098608, - "fp": 79985, - "fp_rate": 0.4600302526614865, - "match_probability": 0.00013264046844541213, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7855313786215126, - "recall": 0.9638078569290139, - "row_count": 477830, - "tn": 93884, - "tn_rate": 0.5399697473385134, - "tp": 292960, - "tp_rate": 0.9638078569290139, - "truth_threshold": -12.88 - }, - { - "f1": 0.8656147504653843, - "fn": 11011, - "fn_rate": 0.03622504202841812, - "fp": 79950, - "fp_rate": 0.4598289516820135, - "match_probability": 0.00013449181136006226, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7855993563958166, - "recall": 0.9637749579715819, - "row_count": 477830, - "tn": 93919, - "tn_rate": 0.5401710483179866, - "tp": 292950, - "tp_rate": 0.9637749579715819, - "truth_threshold": -12.86 - }, - { - "f1": 0.8656131621092942, - "fn": 11015, - "fn_rate": 0.036238201611390936, - "fp": 79945, - "fp_rate": 0.4598001943992316, - "match_probability": 0.00013636899105865216, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7856075904218659, - "recall": 0.9637617983886091, - "row_count": 477830, - "tn": 93924, - "tn_rate": 0.5401998056007684, - "tp": 292946, - "tp_rate": 0.9637617983886091, - "truth_threshold": -12.84 - }, - { - "f1": 0.8654820234879693, - "fn": 11094, - "fn_rate": 0.03649810337510404, - "fp": 79945, - "fp_rate": 0.4598001943992316, - "match_probability": 0.00013827236801248723, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7855621600163085, - "recall": 0.9635018966248959, - "row_count": 477830, - "tn": 93924, - "tn_rate": 0.5401998056007684, - "tp": 292867, - "tp_rate": 0.9635018966248959, - "truth_threshold": -12.82 - }, - { - "f1": 0.8654465069406067, - "fn": 11119, - "fn_rate": 0.03658035076868414, - "fp": 79939, - "fp_rate": 0.45976568565989334, - "match_probability": 0.00014020230771933477, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7855604228756294, - "recall": 0.9634196492313158, - "row_count": 477830, - "tn": 93930, - "tn_rate": 0.5402343143401066, - "tp": 292842, - "tp_rate": 0.9634196492313158, - "truth_threshold": -12.8 - }, - { - "f1": 0.8655104025347958, - "fn": 11132, - "fn_rate": 0.03662311941334579, - "fp": 79872, - "fp_rate": 0.4593803380706164, - "match_probability": 0.00014215918077343544, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7856941623446141, - "recall": 0.9633768805866542, - "row_count": 477830, - "tn": 93997, - "tn_rate": 0.5406196619293836, - "tp": 292829, - "tp_rate": 0.9633768805866542, - "truth_threshold": -12.780000000000001 - }, - { - "f1": 0.8655449764852985, - "fn": 11148, - "fn_rate": 0.036675757745237056, - "fp": 79824, - "fp_rate": 0.4591042681559105, - "match_probability": 0.0001441433629364879, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7857861672351377, - "recall": 0.963324242254763, - "row_count": 477830, - "tn": 94045, - "tn_rate": 0.5408957318440896, - "tp": 292813, - "tp_rate": 0.963324242254763, - "truth_threshold": -12.76 - }, - { - "f1": 0.8655433866891322, - "fn": 11152, - "fn_rate": 0.03668891732820987, - "fp": 79820, - "fp_rate": 0.459081262329685, - "match_probability": 0.00014615523520961874, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7857923027998358, - "recall": 0.9633110826717901, - "row_count": 477830, - "tn": 94049, - "tn_rate": 0.540918737670315, - "tp": 292809, - "tp_rate": 0.9633110826717901, - "truth_threshold": -12.74 - }, - { - "f1": 0.8655214513549546, - "fn": 11175, - "fn_rate": 0.03676458493030356, - "fp": 79807, - "fp_rate": 0.45900649339445215, - "match_probability": 0.00014819518390635442, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7858064966330554, - "recall": 0.9632354150696965, - "row_count": 477830, - "tn": 94062, - "tn_rate": 0.5409935066055479, - "tp": 292786, - "tp_rate": 0.9632354150696965, - "truth_threshold": -12.72 - }, - { - "f1": 0.8656401341115112, - "fn": 11179, - "fn_rate": 0.036777744513276374, - "fp": 79709, - "fp_rate": 0.4584428506519276, - "match_probability": 0.00015026360072660546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7860109371770057, - "recall": 0.9632222554867236, - "row_count": 477830, - "tn": 94160, - "tn_rate": 0.5415571493480724, - "tp": 292782, - "tp_rate": 0.9632222554867236, - "truth_threshold": -12.700000000000001 - }, - { - "f1": 0.865829747593488, - "fn": 11185, - "fn_rate": 0.0367974838877356, - "fp": 79553, - "fp_rate": 0.4575456234291334, - "match_probability": 0.00015236088283167914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7863368150211237, - "recall": 0.9632025161122644, - "row_count": 477830, - "tn": 94316, - "tn_rate": 0.5424543765708666, - "tp": 292776, - "tp_rate": 0.9632025161122644, - "truth_threshold": -12.68 - }, - { - "f1": 0.8659662386601948, - "fn": 11196, - "fn_rate": 0.03683367274091084, - "fp": 79433, - "fp_rate": 0.45685544864236866, - "match_probability": 0.0001544874329203339, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7865840224826571, - "recall": 0.9631663272590891, - "row_count": 477830, - "tn": 94436, - "tn_rate": 0.5431445513576313, - "tp": 292765, - "tp_rate": 0.9631663272590891, - "truth_threshold": -12.66 - }, - { - "f1": 0.8660491891540104, - "fn": 11200, - "fn_rate": 0.03684683232388366, - "fp": 79363, - "fp_rate": 0.45645284668342256, - "match_probability": 0.00015664365930589128, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.78672969225312, - "recall": 0.9631531676761164, - "row_count": 477830, - "tn": 94506, - "tn_rate": 0.5435471533165774, - "tp": 292761, - "tp_rate": 0.9631531676761164, - "truth_threshold": -12.64 - }, - { - "f1": 0.8660434570384723, - "fn": 11208, - "fn_rate": 0.03687315148982929, - "fp": 79357, - "fp_rate": 0.4564183379440843, - "match_probability": 0.00015882997599441802, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7867377925882132, - "recall": 0.9631268485101707, - "row_count": 477830, - "tn": 94512, - "tn_rate": 0.5435816620559156, - "tp": 292753, - "tp_rate": 0.9631268485101707, - "truth_threshold": -12.620000000000001 - }, - { - "f1": 0.8660450145551795, - "fn": 11217, - "fn_rate": 0.03690276055151812, - "fp": 79344, - "fp_rate": 0.4563435690088515, - "match_probability": 0.00016104680276399447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7867601212616371, - "recall": 0.9630972394484819, - "row_count": 477830, - "tn": 94525, - "tn_rate": 0.5436564309911485, - "tp": 292744, - "tp_rate": 0.9630972394484819, - "truth_threshold": -12.6 - }, - { - "f1": 0.8660566363722427, - "fn": 11220, - "fn_rate": 0.03691263023874773, - "fp": 79330, - "fp_rate": 0.4562630486170623, - "match_probability": 0.00016329456524508346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7867880055150764, - "recall": 0.9630873697612523, - "row_count": 477830, - "tn": 94539, - "tn_rate": 0.5437369513829378, - "tp": 292741, - "tp_rate": 0.9630873697612523, - "truth_threshold": -12.58 - }, - { - "f1": 0.8658711273691563, - "fn": 11397, - "fn_rate": 0.037494941785294826, - "fp": 79244, - "fp_rate": 0.4557684233532142, - "match_probability": 0.00016557369500201663, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7868684912643085, - "recall": 0.9625050582147052, - "row_count": 477830, - "tn": 94625, - "tn_rate": 0.5442315766467858, - "tp": 292564, - "tp_rate": 0.9625050582147052, - "truth_threshold": -12.56 - }, - { - "f1": 0.8658590367044435, - "fn": 11421, - "fn_rate": 0.03757389928313172, - "fp": 79222, - "fp_rate": 0.455641891308974, - "match_probability": 0.0001678846296156108, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7869012970664027, - "recall": 0.9624261007168683, - "row_count": 477830, - "tn": 94647, - "tn_rate": 0.544358108691026, - "tp": 292540, - "tp_rate": 0.9624261007168683, - "truth_threshold": -12.540000000000001 - }, - { - "f1": 0.8658546692319077, - "fn": 11432, - "fn_rate": 0.03761008813630696, - "fp": 79210, - "fp_rate": 0.45557287383029754, - "match_probability": 0.00017022781276693265, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.786920393071483, - "recall": 0.962389911863693, - "row_count": 477830, - "tn": 94659, - "tn_rate": 0.5444271261697025, - "tp": 292529, - "tp_rate": 0.962389911863693, - "truth_threshold": -12.52 - }, - { - "f1": 0.8658469443934667, - "fn": 11445, - "fn_rate": 0.03765285678096861, - "fp": 79200, - "fp_rate": 0.4555153592647338, - "match_probability": 0.00017260369432222522, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.7869341109879585, - "recall": 0.9623471432190314, - "row_count": 477830, - "tn": 94669, - "tn_rate": 0.5444846407352663, - "tp": 292516, - "tp_rate": 0.9623471432190314, - "truth_threshold": -12.5 - }, - { - "f1": 0.8825417801874866, - "fn": 11454, - "fn_rate": 0.03768246584265745, - "fp": 66407, - "fp_rate": 0.38193697553905526, - "match_probability": 0.00017501273041901525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8149779612943491, - "recall": 0.9623175341573426, - "row_count": 477830, - "tn": 107462, - "tn_rate": 0.6180630244609447, - "tp": 292507, - "tp_rate": 0.9623175341573426, - "truth_threshold": -12.48 - }, - { - "f1": 0.8829135034788776, - "fn": 11465, - "fn_rate": 0.03771865469583269, - "fp": 66113, - "fp_rate": 0.38024604731148165, - "match_probability": 0.00017745538355341462, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.81564043289488, - "recall": 0.9622813453041673, - "row_count": 477830, - "tn": 107756, - "tn_rate": 0.6197539526885184, - "tp": 292496, - "tp_rate": 0.9622813453041673, - "truth_threshold": -12.46 - }, - { - "f1": 0.8829375201881308, - "fn": 11480, - "fn_rate": 0.03776800313198075, - "fp": 66077, - "fp_rate": 0.38003899487545223, - "match_probability": 0.00017993212266863398, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.815714612419748, - "recall": 0.9622319968680193, - "row_count": 477830, - "tn": 107792, - "tn_rate": 0.6199610051245478, - "tp": 292481, - "tp_rate": 0.9622319968680193, - "truth_threshold": -12.44 - }, - { - "f1": 0.8828220062379792, - "fn": 11573, - "fn_rate": 0.03807396343609871, - "fp": 66046, - "fp_rate": 0.37986069972220465, - "match_probability": 0.00018244342324472447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8157373463454918, - "recall": 0.9619260365639013, - "row_count": 477830, - "tn": 107823, - "tn_rate": 0.6201393002777954, - "tp": 292388, - "tp_rate": 0.9619260365639013, - "truth_threshold": -12.42 - }, - { - "f1": 0.8827886947094405, - "fn": 11637, - "fn_rate": 0.03828451676366376, - "fp": 65990, - "fp_rate": 0.37953861815504775, - "match_probability": 0.00018498976738956673, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8158319239549668, - "recall": 0.9617154832363363, - "row_count": 477830, - "tn": 107879, - "tn_rate": 0.6204613818449523, - "tp": 292324, - "tp_rate": 0.9617154832363363, - "truth_threshold": -12.4 - }, - { - "f1": 0.88282002724343, - "fn": 11669, - "fn_rate": 0.038389793427446285, - "fp": 65926, - "fp_rate": 0.3791705249354399, - "match_probability": 0.00018757164393112065, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.815961230312268, - "recall": 0.9616102065725537, - "row_count": 477830, - "tn": 107943, - "tn_rate": 0.6208294750645601, - "tp": 292292, - "tp_rate": 0.9616102065725537, - "truth_threshold": -12.38 - }, - { - "f1": 0.8828979325511425, - "fn": 11690, - "fn_rate": 0.03845888123805356, - "fp": 65840, - "fp_rate": 0.3786758996715918, - "match_probability": 0.00019018954851095674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8161463903649986, - "recall": 0.9615411187619465, - "row_count": 477830, - "tn": 108029, - "tn_rate": 0.6213241003284081, - "tp": 292271, - "tp_rate": 0.9615411187619465, - "truth_threshold": -12.36 - }, - { - "f1": 0.882926210342515, - "fn": 11693, - "fn_rate": 0.03846875092528318, - "fp": 65816, - "fp_rate": 0.3785378647142389, - "match_probability": 0.0001928439836790836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8161995509433541, - "recall": 0.9615312490747169, - "row_count": 477830, - "tn": 108053, - "tn_rate": 0.6214621352857611, - "tp": 292268, - "tp_rate": 0.9615312490747169, - "truth_threshold": -12.34 - }, - { - "f1": 0.8829253408496999, - "fn": 11703, - "fn_rate": 0.03850164988271522, - "fp": 65803, - "fp_rate": 0.37846309577900605, - "match_probability": 0.0001955354589900938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8162240512091515, - "recall": 0.9614983501172848, - "row_count": 477830, - "tn": 108066, - "tn_rate": 0.621536904220994, - "tp": 292258, - "tp_rate": 0.9614983501172848, - "truth_threshold": -12.32 - }, - { - "f1": 0.8829322819896981, - "fn": 11706, - "fn_rate": 0.03851151956994483, - "fp": 65794, - "fp_rate": 0.37841133266999866, - "match_probability": 0.00019826449110064116, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8162430281888792, - "recall": 0.9614884804300552, - "row_count": 477830, - "tn": 108075, - "tn_rate": 0.6215886673300013, - "tp": 292255, - "tp_rate": 0.9614884804300552, - "truth_threshold": -12.3 - }, - { - "f1": 0.8829230857546854, - "fn": 11732, - "fn_rate": 0.038597056859268127, - "fp": 65768, - "fp_rate": 0.378261794799533, - "match_probability": 0.00020103160386827137, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8162889633153351, - "recall": 0.9614029431407318, - "row_count": 477830, - "tn": 108101, - "tn_rate": 0.621738205200467, - "tp": 292229, - "tp_rate": 0.9614029431407318, - "truth_threshold": -12.280000000000001 - }, - { - "f1": 0.8829377069786555, - "fn": 11751, - "fn_rate": 0.038659564878389, - "fp": 65733, - "fp_rate": 0.3780604938200599, - "match_probability": 0.00020383732845162376, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8163590292309111, - "recall": 0.961340435121611, - "row_count": 477830, - "tn": 108136, - "tn_rate": 0.6219395061799401, - "tp": 292210, - "tp_rate": 0.961340435121611, - "truth_threshold": -12.26 - }, - { - "f1": 0.8829215669684406, - "fn": 11774, - "fn_rate": 0.0387352324804827, - "fp": 65716, - "fp_rate": 0.37796271905860157, - "match_probability": 0.0002066822034120213, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8163860040290246, - "recall": 0.9612647675195173, - "row_count": 477830, - "tn": 108153, - "tn_rate": 0.6220372809413984, - "tp": 292187, - "tp_rate": 0.9612647675195173, - "truth_threshold": -12.24 - }, - { - "f1": 0.8829150071618085, - "fn": 11785, - "fn_rate": 0.038771421333657935, - "fp": 65708, - "fp_rate": 0.37791670740615063, - "match_probability": 0.00020956677481647222, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8163986096053469, - "recall": 0.961228578666342, - "row_count": 477830, - "tn": 108161, - "tn_rate": 0.6220832925938494, - "tp": 292176, - "tp_rate": 0.961228578666342, - "truth_threshold": -12.22 - }, - { - "f1": 0.8828395106501293, - "fn": 11840, - "fn_rate": 0.038952365599534154, - "fp": 65694, - "fp_rate": 0.3778361870143614, - "match_probability": 0.0002124915963420977, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8164023308134092, - "recall": 0.9610476344004658, - "row_count": 477830, - "tn": 108175, - "tn_rate": 0.6221638129856386, - "tp": 292121, - "tp_rate": 0.9610476344004658, - "truth_threshold": -12.200000000000001 - }, - { - "f1": 0.8827989941851327, - "fn": 11864, - "fn_rate": 0.03903132309737104, - "fp": 65694, - "fp_rate": 0.3778361870143614, - "match_probability": 0.0002154572293820086, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.816390015400052, - "recall": 0.960968676902629, - "row_count": 477830, - "tn": 108175, - "tn_rate": 0.6221638129856386, - "tp": 292097, - "tp_rate": 0.960968676902629, - "truth_threshold": -12.18 - }, - { - "f1": 0.8828153808024083, - "fn": 11878, - "fn_rate": 0.039077381637775896, - "fp": 65664, - "fp_rate": 0.3776636433176702, - "match_probability": 0.00021846424315264881, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8164512909961509, - "recall": 0.9609226183622241, - "row_count": 477830, - "tn": 108205, - "tn_rate": 0.6223363566823298, - "tp": 292083, - "tp_rate": 0.9609226183622241, - "truth_threshold": -12.16 - }, - { - "f1": 0.8827476965490556, - "fn": 11941, - "fn_rate": 0.039284645069597744, - "fp": 65636, - "fp_rate": 0.37750260253409174, - "match_probability": 0.00022151321480262968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8164828774017492, - "recall": 0.9607153549304023, - "row_count": 477830, - "tn": 108233, - "tn_rate": 0.6224973974659083, - "tp": 292020, - "tp_rate": 0.9607153549304023, - "truth_threshold": -12.14 - }, - { - "f1": 0.8827655007708818, - "fn": 11951, - "fn_rate": 0.039317544027029784, - "fp": 65609, - "fp_rate": 0.3773473132070697, - "match_probability": 0.00022460472952307015, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8165393896856711, - "recall": 0.9606824559729702, - "row_count": 477830, - "tn": 108260, - "tn_rate": 0.6226526867929303, - "tp": 292010, - "tp_rate": 0.9606824559729702, - "truth_threshold": -12.120000000000001 - }, - { - "f1": 0.8827747579977145, - "fn": 11955, - "fn_rate": 0.0393307036100026, - "fp": 65597, - "fp_rate": 0.3772782957283932, - "match_probability": 0.00022773938065946784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8165647379915717, - "recall": 0.9606692963899974, - "row_count": 477830, - "tn": 108272, - "tn_rate": 0.6227217042716068, - "tp": 292006, - "tp_rate": 0.9606692963899974, - "truth_threshold": -12.1 - }, - { - "f1": 0.8838267965349621, - "fn": 11957, - "fn_rate": 0.03933728340148901, - "fp": 64807, - "fp_rate": 0.3727346450488586, - "match_probability": 0.00023091776982511915, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8183716309194503, - "recall": 0.960662716598511, - "row_count": 477830, - "tn": 109062, - "tn_rate": 0.6272653549511413, - "tp": 292004, - "tp_rate": 0.960662716598511, - "truth_threshold": -12.08 - }, - { - "f1": 0.8837876700924818, - "fn": 12015, - "fn_rate": 0.03952809735459483, - "fp": 64764, - "fp_rate": 0.3724873324169346, - "match_probability": 0.000234140507016114, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8184407501892293, - "recall": 0.9604719026454052, - "row_count": 477830, - "tn": 109105, - "tn_rate": 0.6275126675830655, - "tp": 291946, - "tp_rate": 0.9604719026454052, - "truth_threshold": -12.06 - }, - { - "f1": 0.8837868360577811, - "fn": 12063, - "fn_rate": 0.03968601235026862, - "fp": 64703, - "fp_rate": 0.37213649356699585, - "match_probability": 0.00023740821072792089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8185563136390531, - "recall": 0.9603139876497314, - "row_count": 477830, - "tn": 109166, - "tn_rate": 0.6278635064330041, - "tp": 291898, - "tp_rate": 0.9603139876497314, - "truth_threshold": -12.040000000000001 - }, - { - "f1": 0.8838707919098074, - "fn": 12083, - "fn_rate": 0.0397518102651327, - "fp": 64616, - "fp_rate": 0.3716361168465914, - "match_probability": 0.00024072150807358944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8187458975466628, - "recall": 0.9602481897348673, - "row_count": 477830, - "tn": 109253, - "tn_rate": 0.6283638831534086, - "tp": 291878, - "tp_rate": 0.9602481897348673, - "truth_threshold": -12.02 - }, - { - "f1": 0.8838660831907451, - "fn": 12104, - "fn_rate": 0.03982089807573998, - "fp": 64593, - "fp_rate": 0.37150383334579484, - "match_probability": 0.000244081034903588, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8187880488147005, - "recall": 0.96017910192426, - "row_count": 477830, - "tn": 109276, - "tn_rate": 0.6284961666542052, - "tp": 291857, - "tp_rate": 0.96017910192426, - "truth_threshold": -12 - }, - { - "f1": 0.8839555606709515, - "fn": 12116, - "fn_rate": 0.03986037682465843, - "fp": 64510, - "fp_rate": 0.37102646245161586, - "match_probability": 0.00024748743592730506, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8189726536740048, - "recall": 0.9601396231753416, - "row_count": 477830, - "tn": 109359, - "tn_rate": 0.6289735375483841, - "tp": 291845, - "tp_rate": 0.9601396231753416, - "truth_threshold": -11.98 - }, - { - "f1": 0.8839888287109399, - "fn": 12128, - "fn_rate": 0.03989985557357687, - "fp": 64470, - "fp_rate": 0.37079640418936094, - "match_probability": 0.00025094136483622993, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8190584979638117, - "recall": 0.9601001444264231, - "row_count": 477830, - "tn": 109399, - "tn_rate": 0.629203595810639, - "tp": 291833, - "tp_rate": 0.9601001444264231, - "truth_threshold": -11.96 - }, - { - "f1": 0.8838193762651055, - "fn": 12290, - "fn_rate": 0.040432818683975906, - "fp": 64393, - "fp_rate": 0.37035354203452026, - "match_probability": 0.00025444348442884174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8191532982834546, - "recall": 0.9595671813160241, - "row_count": 477830, - "tn": 109476, - "tn_rate": 0.6296464579654798, - "tp": 291671, - "tp_rate": 0.9595671813160241, - "truth_threshold": -11.94 - }, - { - "f1": 0.8838624434827933, - "fn": 12297, - "fn_rate": 0.04045584795417833, - "fp": 64352, - "fp_rate": 0.37011773231570894, - "match_probability": 0.00025799446673722515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8192440789178015, - "recall": 0.9595441520458217, - "row_count": 477830, - "tn": 109517, - "tn_rate": 0.629882267684291, - "tp": 291664, - "tp_rate": 0.9595441520458217, - "truth_threshold": -11.92 - }, - { - "f1": 0.8838498324130699, - "fn": 12310, - "fn_rate": 0.040498616598839986, - "fp": 64344, - "fp_rate": 0.370071720663258, - "match_probability": 0.0002615949931554435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8192558884253992, - "recall": 0.95950138340116, - "row_count": 477830, - "tn": 109525, - "tn_rate": 0.629928279336742, - "tp": 291651, - "tp_rate": 0.95950138340116, - "truth_threshold": -11.9 - }, - { - "f1": 0.8838669006422205, - "fn": 12330, - "fn_rate": 0.04056441451370406, - "fp": 64307, - "fp_rate": 0.3698589167706722, - "match_probability": 0.00026524575456968495, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8193308947063814, - "recall": 0.9594355854862959, - "row_count": 477830, - "tn": 109562, - "tn_rate": 0.6301410832293278, - "tp": 291631, - "tp_rate": 0.9594355854862959, - "truth_threshold": -11.88 - }, - { - "f1": 0.8838835410503856, - "fn": 12336, - "fn_rate": 0.040584153888163284, - "fp": 64287, - "fp_rate": 0.3697438876395447, - "match_probability": 0.0002689474514902129, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8193738901750994, - "recall": 0.9594158461118367, - "row_count": 477830, - "tn": 109582, - "tn_rate": 0.6302561123604553, - "tp": 291625, - "tp_rate": 0.9594158461118367, - "truth_threshold": -11.86 - }, - { - "f1": 0.8844384188193617, - "fn": 12359, - "fn_rate": 0.04065982149025697, - "fp": 63844, - "fp_rate": 0.3671959923850715, - "match_probability": 0.00027270079418514036, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8203834056368619, - "recall": 0.9593401785097431, - "row_count": 477830, - "tn": 110025, - "tn_rate": 0.6328040076149285, - "tp": 291602, - "tp_rate": 0.9593401785097431, - "truth_threshold": -11.84 - }, - { - "f1": 0.8845240298131671, - "fn": 12375, - "fn_rate": 0.04071245982214824, - "fp": 63759, - "fp_rate": 0.3667071185777798, - "match_probability": 0.0002765065028160592, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8205715572190406, - "recall": 0.9592875401778518, - "row_count": 477830, - "tn": 110110, - "tn_rate": 0.6332928814222202, - "tp": 291586, - "tp_rate": 0.9592875401778518, - "truth_threshold": -11.82 - }, - { - "f1": 0.88455797585098, - "fn": 12393, - "fn_rate": 0.04077167794552591, - "fp": 63712, - "fp_rate": 0.3664368001196303, - "match_probability": 0.00028036530757554303, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8206710200405314, - "recall": 0.9592283220544741, - "row_count": 477830, - "tn": 110157, - "tn_rate": 0.6335631998803697, - "tp": 291568, - "tp_rate": 0.9592283220544741, - "truth_threshold": -11.8 - }, - { - "f1": 0.8846842418283994, - "fn": 12408, - "fn_rate": 0.04082102638167397, - "fp": 63599, - "fp_rate": 0.36578688552876015, - "match_probability": 0.0002842779488265541, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8209245618777312, - "recall": 0.959178973618326, - "row_count": 477830, - "tn": 110270, - "tn_rate": 0.6342131144712398, - "tp": 291553, - "tp_rate": 0.959178973618326, - "truth_threshold": -11.78 - }, - { - "f1": 0.8846807425973916, - "fn": 12418, - "fn_rate": 0.040853925339106006, - "fp": 63589, - "fp_rate": 0.3657293709631964, - "match_probability": 0.0002882451772437776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8209426354144375, - "recall": 0.959146074660894, - "row_count": 477830, - "tn": 110280, - "tn_rate": 0.6342706290368035, - "tp": 291543, - "tp_rate": 0.959146074660894, - "truth_threshold": -11.76 - }, - { - "f1": 0.8847824305498648, - "fn": 12442, - "fn_rate": 0.0409328828369429, - "fp": 63483, - "fp_rate": 0.3651197165682209, - "match_probability": 0.00029226775395691364, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8211756553484205, - "recall": 0.9590671171630571, - "row_count": 477830, - "tn": 110386, - "tn_rate": 0.634880283431779, - "tp": 291519, - "tp_rate": 0.9590671171630571, - "truth_threshold": -11.74 - }, - { - "f1": 0.8849735112406455, - "fn": 12464, - "fn_rate": 0.041005260543293384, - "fp": 63312, - "fp_rate": 0.36413621749708114, - "match_probability": 0.00029634645069594797, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8215603324605633, - "recall": 0.9589947394567067, - "row_count": 477830, - "tn": 110557, - "tn_rate": 0.6358637825029189, - "tp": 291497, - "tp_rate": 0.9589947394567067, - "truth_threshold": -11.72 - }, - { - "f1": 0.8849091036070094, - "fn": 12533, - "fn_rate": 0.04123226334957445, - "fp": 63274, - "fp_rate": 0.36391766214793897, - "match_probability": 0.0003004820499384334, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8216136362354878, - "recall": 0.9587677366504256, - "row_count": 477830, - "tn": 110595, - "tn_rate": 0.636082337852061, - "tp": 291428, - "tp_rate": 0.9587677366504256, - "truth_threshold": -11.700000000000001 - }, - { - "f1": 0.8848937029512955, - "fn": 12554, - "fn_rate": 0.041301351160181736, - "fp": 63259, - "fp_rate": 0.3638313902995934, - "match_probability": 0.00030467534505880815, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8216378226274862, - "recall": 0.9586986488398183, - "row_count": 477830, - "tn": 110610, - "tn_rate": 0.6361686097004067, - "tp": 291407, - "tp_rate": 0.9586986488398183, - "truth_threshold": -11.68 - }, - { - "f1": 0.8848993176497025, - "fn": 12561, - "fn_rate": 0.04132438043038416, - "fp": 63245, - "fp_rate": 0.36375086990780414, - "match_probability": 0.00030892714047977567, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.821666737159695, - "recall": 0.9586756195696159, - "row_count": 477830, - "tn": 110624, - "tn_rate": 0.6362491300921959, - "tp": 291400, - "tp_rate": 0.9586756195696159, - "truth_threshold": -11.66 - }, - { - "f1": 0.8849166218723712, - "fn": 12573, - "fn_rate": 0.04136385917930261, - "fp": 63218, - "fp_rate": 0.36359558058078206, - "match_probability": 0.00031323825182578204, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8217232646937728, - "recall": 0.9586361408206974, - "row_count": 477830, - "tn": 110651, - "tn_rate": 0.6364044194192179, - "tp": 291388, - "tp_rate": 0.9586361408206974, - "truth_threshold": -11.64 - }, - { - "f1": 0.8849093907450094, - "fn": 12586, - "fn_rate": 0.04140662782396426, - "fp": 63206, - "fp_rate": 0.3635265631021056, - "match_probability": 0.00031760950607860996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8217445379194035, - "recall": 0.9585933721760358, - "row_count": 477830, - "tn": 110663, - "tn_rate": 0.6364734368978944, - "tp": 291375, - "tp_rate": 0.9585933721760358, - "truth_threshold": -11.620000000000001 - }, - { - "f1": 0.8850178767250204, - "fn": 12614, - "fn_rate": 0.04149874490477397, - "fp": 63091, - "fp_rate": 0.3628651455981227, - "match_probability": 0.000322041741735126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8219970770628432, - "recall": 0.958501255095226, - "row_count": 477830, - "tn": 110778, - "tn_rate": 0.6371348544018772, - "tp": 291347, - "tp_rate": 0.958501255095226, - "truth_threshold": -11.6 - }, - { - "f1": 0.8850092501739154, - "fn": 12631, - "fn_rate": 0.04155467313240843, - "fp": 63075, - "fp_rate": 0.3627731222932208, - "match_probability": 0.0003265358089672047, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8220256486223388, - "recall": 0.9584453268675915, - "row_count": 477830, - "tn": 110794, - "tn_rate": 0.6372268777067792, - "tp": 291330, - "tp_rate": 0.9584453268675915, - "truth_threshold": -11.58 - }, - { - "f1": 0.8850078838716342, - "fn": 12658, - "fn_rate": 0.04164350031747494, - "fp": 63043, - "fp_rate": 0.3625890756834168, - "match_probability": 0.0003310925697838664, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8220863224080418, - "recall": 0.958356499682525, - "row_count": 477830, - "tn": 110826, - "tn_rate": 0.6374109243165832, - "tp": 291303, - "tp_rate": 0.958356499682525, - "truth_threshold": -11.56 - }, - { - "f1": 0.885070463619624, - "fn": 12679, - "fn_rate": 0.04171258812808222, - "fp": 62969, - "fp_rate": 0.3621634678982452, - "match_probability": 0.0003357128981956508, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8222475024770572, - "recall": 0.9582874118719178, - "row_count": 477830, - "tn": 110900, - "tn_rate": 0.6378365321017547, - "tp": 291282, - "tp_rate": 0.9582874118719178, - "truth_threshold": -11.540000000000001 - }, - { - "f1": 0.8850209367764049, - "fn": 12713, - "fn_rate": 0.041824444583351154, - "fp": 62964, - "fp_rate": 0.3621347106154634, - "match_probability": 0.00034039768038126314, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8222420471356137, - "recall": 0.9581755554166489, - "row_count": 477830, - "tn": 110905, - "tn_rate": 0.6378652893845367, - "tp": 291248, - "tp_rate": 0.9581755554166489, - "truth_threshold": -11.52 - }, - { - "f1": 0.8851094868327077, - "fn": 12729, - "fn_rate": 0.04187708291524241, - "fp": 62877, - "fp_rate": 0.36163433389505895, - "match_probability": 0.0003451478148565189, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8224360295841111, - "recall": 0.9581229170847576, - "row_count": 477830, - "tn": 110992, - "tn_rate": 0.638365666104941, - "tp": 291232, - "tp_rate": 0.9581229170847576, - "truth_threshold": -11.5 - }, - { - "f1": 0.8851341904501383, - "fn": 12743, - "fn_rate": 0.041923141455647274, - "fp": 62841, - "fp_rate": 0.3614272814590295, - "match_probability": 0.00034996421264562645, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.822512632075445, - "recall": 0.9580768585443528, - "row_count": 477830, - "tn": 111028, - "tn_rate": 0.6385727185409705, - "tp": 291218, - "tp_rate": 0.9580768585443528, - "truth_threshold": -11.48 - }, - { - "f1": 0.8850431430256669, - "fn": 12865, - "fn_rate": 0.04232450873631815, - "fp": 62756, - "fp_rate": 0.3609384076517378, - "match_probability": 0.00035484779745482883, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8226490171031957, - "recall": 0.9576754912636819, - "row_count": 477830, - "tn": 111113, - "tn_rate": 0.6390615923482622, - "tp": 291096, - "tp_rate": 0.9576754912636819, - "truth_threshold": -11.46 - }, - { - "f1": 0.8850180148679669, - "fn": 12883, - "fn_rate": 0.04238372685969582, - "fp": 62752, - "fp_rate": 0.3609154018255123, - "match_probability": 0.00035979950584844554, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8226492948591131, - "recall": 0.9576162731403042, - "row_count": 477830, - "tn": 111117, - "tn_rate": 0.6390845981744877, - "tp": 291078, - "tp_rate": 0.9576162731403042, - "truth_threshold": -11.44 - }, - { - "f1": 0.8850400308935723, - "fn": 12897, - "fn_rate": 0.04242978540010067, - "fp": 62718, - "fp_rate": 0.3607198523025956, - "match_probability": 0.00036482028742734155, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.822721336868467, - "recall": 0.9575702145998993, - "row_count": 477830, - "tn": 111151, - "tn_rate": 0.6392801476974044, - "tp": 291064, - "tp_rate": 0.9575702145998993, - "truth_threshold": -11.42 - }, - { - "f1": 0.8850483830747429, - "fn": 12927, - "fn_rate": 0.042528482272396785, - "fp": 62673, - "fp_rate": 0.36046103675755886, - "match_probability": 0.00036991110500986284, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8228109706621582, - "recall": 0.9574715177276032, - "row_count": 477830, - "tn": 111196, - "tn_rate": 0.6395389632424412, - "tp": 291034, - "tp_rate": 0.9574715177276032, - "truth_threshold": -11.4 - }, - { - "f1": 0.8851505686052064, - "fn": 12935, - "fn_rate": 0.04255480143834242, - "fp": 62588, - "fp_rate": 0.3599721629502672, - "match_probability": 0.0003750729348152639, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8230047452872341, - "recall": 0.9574451985616576, - "row_count": 477830, - "tn": 111281, - "tn_rate": 0.6400278370497329, - "tp": 291026, - "tp_rate": 0.9574451985616576, - "truth_threshold": -11.38 - }, - { - "f1": 0.8851574951638217, - "fn": 12946, - "fn_rate": 0.04259099029151766, - "fp": 62568, - "fp_rate": 0.3598571338191397, - "match_probability": 0.0003803067666496687, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8230457912286507, - "recall": 0.9574090097084823, - "row_count": 477830, - "tn": 111301, - "tn_rate": 0.6401428661808602, - "tp": 291015, - "tp_rate": 0.9574090097084823, - "truth_threshold": -11.36 - }, - { - "f1": 0.8851413637732704, - "fn": 13023, - "fn_rate": 0.04284431226374436, - "fp": 62483, - "fp_rate": 0.359368260011848, - "match_probability": 0.0003856136040945928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8232051858831252, - "recall": 0.9571556877362556, - "row_count": 477830, - "tn": 111386, - "tn_rate": 0.640631739988152, - "tp": 290938, - "tp_rate": 0.9571556877362556, - "truth_threshold": -11.34 - }, - { - "f1": 0.885192780468807, - "fn": 13030, - "fn_rate": 0.042867341533946786, - "fp": 62437, - "fp_rate": 0.35910369301025485, - "match_probability": 0.0003909944646980703, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8233088451699079, - "recall": 0.9571326584660532, - "row_count": 477830, - "tn": 111432, - "tn_rate": 0.6408963069897452, - "tp": 290931, - "tp_rate": 0.9571326584660532, - "truth_threshold": -11.32 - }, - { - "f1": 0.8852199631214133, - "fn": 13037, - "fn_rate": 0.04289037080414922, - "fp": 62408, - "fp_rate": 0.35893690077012, - "match_probability": 0.00039645038016841163, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8233729183883712, - "recall": 0.9571096291958507, - "row_count": 477830, - "tn": 111461, - "tn_rate": 0.6410630992298799, - "tp": 290924, - "tp_rate": 0.9571096291958507, - "truth_threshold": -11.3 - }, - { - "f1": 0.8850565617400991, - "fn": 13150, - "fn_rate": 0.04326212902313126, - "fp": 62387, - "fp_rate": 0.3588161201824362, - "match_probability": 0.00040198239657063386, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8233653644697875, - "recall": 0.9567378709768688, - "row_count": 477830, - "tn": 111482, - "tn_rate": 0.6411838798175638, - "tp": 290811, - "tp_rate": 0.9567378709768688, - "truth_threshold": -11.28 - }, - { - "f1": 0.8850399069750452, - "fn": 13213, - "fn_rate": 0.043469392454953105, - "fp": 62320, - "fp_rate": 0.3584307725931592, - "match_probability": 0.0004075915745255968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8234900925600734, - "recall": 0.9565306075450469, - "row_count": 477830, - "tn": 111549, - "tn_rate": 0.6415692274068407, - "tp": 290748, - "tp_rate": 0.9565306075450469, - "truth_threshold": -11.26 - }, - { - "f1": 0.8850389961460483, - "fn": 13231, - "fn_rate": 0.043528610578330774, - "fp": 62297, - "fp_rate": 0.3582984890923626, - "match_probability": 0.000413278989411887, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8235347438014656, - "recall": 0.9564713894216692, - "row_count": 477830, - "tn": 111572, - "tn_rate": 0.6417015109076374, - "tp": 290730, - "tp_rate": 0.9564713894216692, - "truth_threshold": -11.24 - }, - { - "f1": 0.885006241057022, - "fn": 13263, - "fn_rate": 0.0436338872421133, - "fp": 62282, - "fp_rate": 0.35821221724401703, - "match_probability": 0.0004190457315704786, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8235537424216669, - "recall": 0.9563661127578867, - "row_count": 477830, - "tn": 111587, - "tn_rate": 0.6417877827559829, - "tp": 290698, - "tp_rate": 0.9563661127578867, - "truth_threshold": -11.22 - }, - { - "f1": 0.8850515919048358, - "fn": 13272, - "fn_rate": 0.04366349630380213, - "fp": 62236, - "fp_rate": 0.3579476502424239, - "match_probability": 0.00042489290651221616, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8236565842601119, - "recall": 0.9563365036961978, - "row_count": 477830, - "tn": 111633, - "tn_rate": 0.6420523497575761, - "tp": 290689, - "tp_rate": 0.9563365036961978, - "truth_threshold": -11.200000000000001 - }, - { - "f1": 0.8850283173984532, - "fn": 13300, - "fn_rate": 0.04375561338461184, - "fp": 62218, - "fp_rate": 0.3578441240244092, - "match_probability": 0.00043082163512815456, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8236846057713834, - "recall": 0.9562443866153881, - "row_count": 477830, - "tn": 111651, - "tn_rate": 0.6421558759755909, - "tp": 290661, - "tp_rate": 0.9562443866153881, - "truth_threshold": -11.18 - }, - { - "f1": 0.8850657319743346, - "fn": 13324, - "fn_rate": 0.043834570882448735, - "fp": 62160, - "fp_rate": 0.3575105395441395, - "match_probability": 0.0004368330539027926, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8238080255784488, - "recall": 0.9561654291175513, - "row_count": 477830, - "tn": 111709, - "tn_rate": 0.6424894604558604, - "tp": 290637, - "tp_rate": 0.9561654291175513, - "truth_threshold": -11.16 - }, - { - "f1": 0.8851000718714597, - "fn": 13326, - "fn_rate": 0.043841150673935146, - "fp": 62132, - "fp_rate": 0.3573494987605611, - "match_probability": 0.00044292831513024784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8238724143698248, - "recall": 0.9561588493260649, - "row_count": 477830, - "tn": 111737, - "tn_rate": 0.6426505012394389, - "tp": 290635, - "tp_rate": 0.9561588493260649, - "truth_threshold": -11.14 - }, - { - "f1": 0.8850836234492884, - "fn": 13373, - "fn_rate": 0.04399577577386573, - "fp": 62086, - "fp_rate": 0.35708493175896794, - "match_probability": 0.0004491085871334007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8239564016627253, - "recall": 0.9560042242261343, - "row_count": 477830, - "tn": 111783, - "tn_rate": 0.6429150682410321, - "tp": 290588, - "tp_rate": 0.9560042242261343, - "truth_threshold": -11.120000000000001 - }, - { - "f1": 0.8850329278025185, - "fn": 13410, - "fn_rate": 0.04411750191636427, - "fp": 62077, - "fp_rate": 0.3570331686499606, - "match_probability": 0.00045537505448605916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8239589595834704, - "recall": 0.9558824980836357, - "row_count": 477830, - "tn": 111792, - "tn_rate": 0.6429668313500394, - "tp": 290551, - "tp_rate": 0.9558824980836357, - "truth_threshold": -11.1 - }, - { - "f1": 0.8850127939563787, - "fn": 13429, - "fn_rate": 0.04418000993548515, - "fp": 62067, - "fp_rate": 0.35697565408439685, - "match_probability": 0.000461728918238175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8239728416699991, - "recall": 0.9558199900645149, - "row_count": 477830, - "tn": 111802, - "tn_rate": 0.6430243459156031, - "tp": 290532, - "tp_rate": 0.9558199900645149, - "truth_threshold": -11.08 - }, - { - "f1": 0.8850064887193766, - "fn": 13447, - "fn_rate": 0.044239228058862816, - "fp": 62049, - "fp_rate": 0.35687212786638217, - "match_probability": 0.00046817139614416427, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8240059223457935, - "recall": 0.9557607719411372, - "row_count": 477830, - "tn": 111820, - "tn_rate": 0.6431278721336179, - "tp": 290514, - "tp_rate": 0.9557607719411372, - "truth_threshold": -11.06 - }, - { - "f1": 0.8850436737765401, - "fn": 13464, - "fn_rate": 0.04429515628649728, - "fp": 62000, - "fp_rate": 0.3565903064951199, - "match_probability": 0.0004747037228943636, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.824111978257971, - "recall": 0.9557048437135027, - "row_count": 477830, - "tn": 111869, - "tn_rate": 0.6434096935048801, - "tp": 290497, - "tp_rate": 0.9557048437135027, - "truth_threshold": -11.040000000000001 - }, - { - "f1": 0.8851039454480638, - "fn": 13469, - "fn_rate": 0.0443116057652133, - "fp": 61949, - "fp_rate": 0.35629698221074485, - "match_probability": 0.0004813271503496699, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8242287361572576, - "recall": 0.9556883942347867, - "row_count": 477830, - "tn": 111920, - "tn_rate": 0.6437030177892551, - "tp": 290492, - "tp_rate": 0.9556883942347867, - "truth_threshold": -11.02 - }, - { - "f1": 0.8851155761132542, - "fn": 13482, - "fn_rate": 0.04435437440987495, - "fp": 61924, - "fp_rate": 0.3561531957968356, - "match_probability": 0.0004880429477794046, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8242807240574002, - "recall": 0.955645625590125, - "row_count": 477830, - "tn": 111945, - "tn_rate": 0.6438468042031644, - "tp": 290479, - "tp_rate": 0.955645625590125, - "truth_threshold": -11 - }, - { - "f1": 0.8923439904887422, - "fn": 13495, - "fn_rate": 0.044397143054536604, - "fp": 56592, - "fp_rate": 0.32548642943825523, - "match_probability": 0.0004948524021024512, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8369379181577719, - "recall": 0.9556028569454634, - "row_count": 477830, - "tn": 117277, - "tn_rate": 0.6745135705617448, - "tp": 290466, - "tp_rate": 0.9556028569454634, - "truth_threshold": -10.98 - }, - { - "f1": 0.8926244221500934, - "fn": 13551, - "fn_rate": 0.04458137721615602, - "fp": 56318, - "fp_rate": 0.32391053034180906, - "match_probability": 0.000501756818131702, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8375729678595325, - "recall": 0.9554186227838439, - "row_count": 477830, - "tn": 117551, - "tn_rate": 0.676089469658191, - "tp": 290410, - "tp_rate": 0.9554186227838439, - "truth_threshold": -10.96 - }, - { - "f1": 0.8926113431881545, - "fn": 13574, - "fn_rate": 0.04465704481824971, - "fp": 56299, - "fp_rate": 0.32380125266723797, - "match_probability": 0.0005087575188218651, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8376080949331672, - "recall": 0.9553429551817503, - "row_count": 477830, - "tn": 117570, - "tn_rate": 0.676198747332762, - "tp": 290387, - "tp_rate": 0.9553429551817503, - "truth_threshold": -10.94 - }, - { - "f1": 0.8926780680207697, - "fn": 13588, - "fn_rate": 0.044703103358654565, - "fp": 56233, - "fp_rate": 0.3234216565345174, - "match_probability": 0.000515855845520672, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8377610312573931, - "recall": 0.9552968966413454, - "row_count": 477830, - "tn": 117636, - "tn_rate": 0.6765783434654826, - "tp": 290373, - "tp_rate": 0.9552968966413454, - "truth_threshold": -10.92 - }, - { - "f1": 0.8926147876432443, - "fn": 13655, - "fn_rate": 0.04492352637344923, - "fp": 56195, - "fp_rate": 0.3232031011853752, - "match_probability": 0.0005230531582235416, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8378215358685833, - "recall": 0.9550764736265508, - "row_count": 477830, - "tn": 117674, - "tn_rate": 0.6767968988146248, - "tp": 290306, - "tp_rate": 0.9550764736265508, - "truth_threshold": -10.9 - }, - { - "f1": 0.8926088440498996, - "fn": 13673, - "fn_rate": 0.0449827444968269, - "fp": 56178, - "fp_rate": 0.32310532642391687, - "match_probability": 0.0005303508358317331, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.83785421946165, - "recall": 0.9550172555031731, - "row_count": 477830, - "tn": 117691, - "tn_rate": 0.6768946735760831, - "tp": 290288, - "tp_rate": 0.9550172555031731, - "truth_threshold": -10.88 - }, - { - "f1": 0.8925434820044773, - "fn": 13713, - "fn_rate": 0.04511434032655505, - "fp": 56176, - "fp_rate": 0.3230938235108041, - "match_probability": 0.0005377502764140461, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8378403343879177, - "recall": 0.954885659673445, - "row_count": 477830, - "tn": 117693, - "tn_rate": 0.6769061764891959, - "tp": 290248, - "tp_rate": 0.954885659673445, - "truth_threshold": -10.86 - }, - { - "f1": 0.8925425917953134, - "fn": 13724, - "fn_rate": 0.045150529179730295, - "fp": 56163, - "fp_rate": 0.3230190545755713, - "match_probability": 0.0005452528974721083, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8378666281755196, - "recall": 0.9548494708202697, - "row_count": 477830, - "tn": 117706, - "tn_rate": 0.6769809454244288, - "tp": 290237, - "tp_rate": 0.9548494708202697, - "truth_threshold": -10.84 - }, - { - "f1": 0.8925867148911566, - "fn": 13740, - "fn_rate": 0.04520316751162156, - "fp": 56111, - "fp_rate": 0.3227199788346399, - "match_probability": 0.0005528601362093087, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8379849393067923, - "recall": 0.9547968324883784, - "row_count": 477830, - "tn": 117758, - "tn_rate": 0.6772800211653601, - "tp": 290221, - "tp_rate": 0.9547968324883784, - "truth_threshold": -10.82 - }, - { - "f1": 0.8926547937621113, - "fn": 13750, - "fn_rate": 0.04523606646905359, - "fp": 56048, - "fp_rate": 0.3223576370715884, - "match_probability": 0.0005605734498034131, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8381327272359708, - "recall": 0.9547639335309464, - "row_count": 477830, - "tn": 117821, - "tn_rate": 0.6776423629284116, - "tp": 290211, - "tp_rate": 0.9547639335309464, - "truth_threshold": -10.8 - }, - { - "f1": 0.8924540609730581, - "fn": 13917, - "fn_rate": 0.04578547905816865, - "fp": 55988, - "fp_rate": 0.32201254967820603, - "match_probability": 0.0005683943156829212, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8381999352661026, - "recall": 0.9542145209418313, - "row_count": 477830, - "tn": 117881, - "tn_rate": 0.677987450321794, - "tp": 290044, - "tp_rate": 0.9542145209418313, - "truth_threshold": -10.78 - }, - { - "f1": 0.8925214661619426, - "fn": 13954, - "fn_rate": 0.04590720520066719, - "fp": 55892, - "fp_rate": 0.3214604098487942, - "match_probability": 0.0005763242318072081, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8384152599458223, - "recall": 0.9540927947993328, - "row_count": 477830, - "tn": 117977, - "tn_rate": 0.6785395901512058, - "tp": 290007, - "tp_rate": 0.9540927947993328, - "truth_threshold": -10.76 - }, - { - "f1": 0.8926325509811466, - "fn": 13967, - "fn_rate": 0.04594997384532884, - "fp": 55795, - "fp_rate": 0.32090251856282603, - "match_probability": 0.0005843647169505126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8386443756163441, - "recall": 0.9540500261546712, - "row_count": 477830, - "tn": 118074, - "tn_rate": 0.679097481437174, - "tp": 289994, - "tp_rate": 0.9540500261546712, - "truth_threshold": -10.74 - }, - { - "f1": 0.8925929460440403, - "fn": 14012, - "fn_rate": 0.04609801915377302, - "fp": 55768, - "fp_rate": 0.32074722923580395, - "match_probability": 0.0005925173109898081, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8386888697981297, - "recall": 0.953901980846227, - "row_count": 477830, - "tn": 118101, - "tn_rate": 0.679252770764196, - "tp": 289949, - "tp_rate": 0.953901980846227, - "truth_threshold": -10.72 - }, - { - "f1": 0.8927566309281144, - "fn": 14024, - "fn_rate": 0.04613749790269146, - "fp": 55634, - "fp_rate": 0.31997653405725, - "match_probability": 0.0006007835751966225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8390084816144874, - "recall": 0.9538625020973085, - "row_count": 477830, - "tn": 118235, - "tn_rate": 0.68002346594275, - "tp": 289937, - "tp_rate": 0.9538625020973085, - "truth_threshold": -10.700000000000001 - }, - { - "f1": 0.8928893693160995, - "fn": 14030, - "fn_rate": 0.04615723727715069, - "fp": 55530, - "fp_rate": 0.3193783825753872, - "match_probability": 0.000609165092532851, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.839258266490284, - "recall": 0.9538427627228493, - "row_count": 477830, - "tn": 118339, - "tn_rate": 0.6806216174246128, - "tp": 289931, - "tp_rate": 0.9538427627228493, - "truth_threshold": -10.68 - }, - { - "f1": 0.8930468759629725, - "fn": 14153, - "fn_rate": 0.04656189445356477, - "fp": 55264, - "fp_rate": 0.317848495131392, - "match_probability": 0.0006176634679506185, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8398479157972829, - "recall": 0.9534381055464353, - "row_count": 477830, - "tn": 118605, - "tn_rate": 0.682151504868608, - "tp": 289808, - "tp_rate": 0.9534381055464353, - "truth_threshold": -10.66 - }, - { - "f1": 0.893022668162264, - "fn": 14168, - "fn_rate": 0.04661124288971283, - "fp": 55262, - "fp_rate": 0.31783699221827927, - "match_probability": 0.0006262803286962502, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8398458216806016, - "recall": 0.9533887571102871, - "row_count": 477830, - "tn": 118607, - "tn_rate": 0.6821630077817207, - "tp": 289793, - "tp_rate": 0.9533887571102871, - "truth_threshold": -10.64 - }, - { - "f1": 0.8930292758089369, - "fn": 14173, - "fn_rate": 0.04662769236842884, - "fp": 55252, - "fp_rate": 0.3177794776527155, - "match_probability": 0.0006350173246183965, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8398678414096916, - "recall": 0.9533723076315711, - "row_count": 477830, - "tn": 118617, - "tn_rate": 0.6822205223472845, - "tp": 289788, - "tp_rate": 0.9533723076315711, - "truth_threshold": -10.620000000000001 - }, - { - "f1": 0.891475787309828, - "fn": 15138, - "fn_rate": 0.049802441760620604, - "fp": 55182, - "fp_rate": 0.31737687569376943, - "match_probability": 0.0006438761284803746, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.839589540849697, - "recall": 0.9501975582393793, - "row_count": 477830, - "tn": 118687, - "tn_rate": 0.6826231243062305, - "tp": 288823, - "tp_rate": 0.9501975582393793, - "truth_threshold": -10.6 - }, - { - "f1": 0.8915326439265319, - "fn": 15149, - "fn_rate": 0.04983863061379585, - "fp": 55127, - "fp_rate": 0.31706054558316893, - "match_probability": 0.0006528584362767788, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8397186710434118, - "recall": 0.9501613693862041, - "row_count": 477830, - "tn": 118742, - "tn_rate": 0.682939454416831, - "tp": 288812, - "tp_rate": 0.9501613693862041, - "truth_threshold": -10.58 - }, - { - "f1": 0.8957581773345534, - "fn": 15182, - "fn_rate": 0.04994719717332158, - "fp": 52031, - "fp_rate": 0.2992540360846384, - "match_probability": 0.0006619659675544257, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8473313576479563, - "recall": 0.9500528028266785, - "row_count": 477830, - "tn": 121838, - "tn_rate": 0.7007459639153616, - "tp": 288779, - "tp_rate": 0.9500528028266785, - "truth_threshold": -10.56 - }, - { - "f1": 0.8957055595367724, - "fn": 15233, - "fn_rate": 0.050114981856224976, - "fp": 52005, - "fp_rate": 0.29910449821417273, - "match_probability": 0.0006712004657376785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8473731631512064, - "recall": 0.949885018143775, - "row_count": 477830, - "tn": 121864, - "tn_rate": 0.7008955017858273, - "tp": 288728, - "tp_rate": 0.949885018143775, - "truth_threshold": -10.540000000000001 - }, - { - "f1": 0.895650285430628, - "fn": 15275, - "fn_rate": 0.05025315747743954, - "fp": 51994, - "fp_rate": 0.29904123219205264, - "match_probability": 0.0006805636984582193, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8473817071738875, - "recall": 0.9497468425225605, - "row_count": 477830, - "tn": 121875, - "tn_rate": 0.7009587678079474, - "tp": 288686, - "tp_rate": 0.9497468425225605, - "truth_threshold": -10.52 - }, - { - "f1": 0.8956079246629536, - "fn": 15320, - "fn_rate": 0.05040120278588372, - "fp": 51968, - "fp_rate": 0.29889169432158696, - "match_probability": 0.000690057457889322, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8474262277273942, - "recall": 0.9495987972141163, - "row_count": 477830, - "tn": 121901, - "tn_rate": 0.7011083056784131, - "tp": 288641, - "tp_rate": 0.9495987972141163, - "truth_threshold": -10.5 - }, - { - "f1": 0.8957775329371053, - "fn": 15337, - "fn_rate": 0.05045713101351818, - "fp": 51825, - "fp_rate": 0.29806923603402563, - "match_probability": 0.0006996835610846967, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8477745565415085, - "recall": 0.9495428689864818, - "row_count": 477830, - "tn": 122044, - "tn_rate": 0.7019307639659744, - "tp": 288624, - "tp_rate": 0.9495428689864818, - "truth_threshold": -10.48 - }, - { - "f1": 0.8957162234727736, - "fn": 15389, - "fn_rate": 0.050628205592164785, - "fp": 51805, - "fp_rate": 0.29795420690289814, - "match_probability": 0.000709443850321953, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8478011146464067, - "recall": 0.9493717944078353, - "row_count": 477830, - "tn": 122064, - "tn_rate": 0.7020457930971018, - "tp": 288572, - "tp_rate": 0.9493717944078353, - "truth_threshold": -10.46 - }, - { - "f1": 0.8957102635181489, - "fn": 15416, - "fn_rate": 0.05071703277723129, - "fp": 51777, - "fp_rate": 0.2977931661193197, - "match_probability": 0.0007193401934507505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8478587925552858, - "recall": 0.9492829672227687, - "row_count": 477830, - "tn": 122092, - "tn_rate": 0.7022068338806803, - "tp": 288545, - "tp_rate": 0.9492829672227687, - "truth_threshold": -10.44 - }, - { - "f1": 0.8958743486712584, - "fn": 15459, - "fn_rate": 0.05085849829418906, - "fp": 51606, - "fp_rate": 0.29680966704817996, - "match_probability": 0.0007293744842456983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8482658449668928, - "recall": 0.9491415017058109, - "row_count": 477830, - "tn": 122263, - "tn_rate": 0.7031903329518201, - "tp": 288502, - "tp_rate": 0.9491415017058109, - "truth_threshold": -10.42 - }, - { - "f1": 0.895605385623839, - "fn": 15671, - "fn_rate": 0.051555956191748284, - "fp": 51538, - "fp_rate": 0.2964185680023466, - "match_probability": 0.0007395486427640722, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8483409254093247, - "recall": 0.9484440438082518, - "row_count": 477830, - "tn": 122331, - "tn_rate": 0.7035814319976534, - "tp": 288290, - "tp_rate": 0.9484440438082518, - "truth_threshold": -10.4 - }, - { - "f1": 0.8956330738114915, - "fn": 15680, - "fn_rate": 0.05158556525343712, - "fp": 51506, - "fp_rate": 0.29623452139254264, - "match_probability": 0.0007498646157084, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8484168022908469, - "recall": 0.9484144347465628, - "row_count": 477830, - "tn": 122363, - "tn_rate": 0.7037654786074573, - "tp": 288281, - "tp_rate": 0.9484144347465628, - "truth_threshold": -10.38 - }, - { - "f1": 0.895629288058069, - "fn": 15726, - "fn_rate": 0.051736900457624496, - "fp": 51453, - "fp_rate": 0.2959296941950549, - "match_probability": 0.0007603243767939938, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8485286498198347, - "recall": 0.9482630995423755, - "row_count": 477830, - "tn": 122416, - "tn_rate": 0.7040703058049451, - "tp": 288235, - "tp_rate": 0.9482630995423755, - "truth_threshold": -10.36 - }, - { - "f1": 0.8956503093603652, - "fn": 15747, - "fn_rate": 0.05180598826823178, - "fp": 51412, - "fp_rate": 0.2956938844762436, - "match_probability": 0.0007709299271214838, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8486217191852214, - "recall": 0.9481940117317682, - "row_count": 477830, - "tn": 122457, - "tn_rate": 0.7043061155237564, - "tp": 288214, - "tp_rate": 0.9481940117317682, - "truth_threshold": -10.34 - }, - { - "f1": 0.8956308793869122, - "fn": 15764, - "fn_rate": 0.051861916495866245, - "fp": 51404, - "fp_rate": 0.2956478728237926, - "match_probability": 0.0007816832955544318, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8486341324083262, - "recall": 0.9481380835041338, - "row_count": 477830, - "tn": 122465, - "tn_rate": 0.7043521271762073, - "tp": 288197, - "tp_rate": 0.9481380835041338, - "truth_threshold": -10.32 - }, - { - "f1": 0.8956630385459338, - "fn": 15785, - "fn_rate": 0.05193100430647353, - "fp": 51356, - "fp_rate": 0.2953718029090867, - "match_probability": 0.0007925865391020799, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8487447427635687, - "recall": 0.9480689956935264, - "row_count": 477830, - "tn": 122513, - "tn_rate": 0.7046281970909133, - "tp": 288176, - "tp_rate": 0.9480689956935264, - "truth_threshold": -10.3 - }, - { - "f1": 0.895677202972836, - "fn": 15810, - "fn_rate": 0.05201325170005362, - "fp": 51315, - "fp_rate": 0.29513599319027545, - "match_probability": 0.0008036417433073089, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8488361131895389, - "recall": 0.9479867482999463, - "row_count": 477830, - "tn": 122554, - "tn_rate": 0.7048640068097246, - "tp": 288151, - "tp_rate": 0.9479867482999463, - "truth_threshold": -10.28 - }, - { - "f1": 0.8956223304049391, - "fn": 15859, - "fn_rate": 0.05217445659147062, - "fp": 51293, - "fp_rate": 0.2950094611460352, - "match_probability": 0.0008148510226398721, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8488693115691156, - "recall": 0.9478255434085294, - "row_count": 477830, - "tn": 122576, - "tn_rate": 0.7049905388539648, - "tp": 288102, - "tp_rate": 0.9478255434085294, - "truth_threshold": -10.26 - }, - { - "f1": 0.8956557965720184, - "fn": 15876, - "fn_rate": 0.05223038481910508, - "fp": 51248, - "fp_rate": 0.29475064560099845, - "match_probability": 0.0008262165208949831, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8489743113696575, - "recall": 0.9477696151808949, - "row_count": 477830, - "tn": 122621, - "tn_rate": 0.7052493543990015, - "tp": 288085, - "tp_rate": 0.9477696151808949, - "truth_threshold": -10.24 - }, - { - "f1": 0.895669315821549, - "fn": 15903, - "fn_rate": 0.05231921200417159, - "fp": 51206, - "fp_rate": 0.2945090844256308, - "match_probability": 0.0008377404115973132, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8490673929447274, - "recall": 0.9476807879958284, - "row_count": 477830, - "tn": 122663, - "tn_rate": 0.7054909155743692, - "tp": 288058, - "tp_rate": 0.9476807879958284, - "truth_threshold": -10.22 - }, - { - "f1": 0.8957094703848354, - "fn": 15908, - "fn_rate": 0.05233566148288761, - "fp": 51170, - "fp_rate": 0.29430203198960136, - "match_probability": 0.0008494248984104829, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8491552754382811, - "recall": 0.9476643385171124, - "row_count": 477830, - "tn": 122699, - "tn_rate": 0.7056979680103986, - "tp": 288053, - "tp_rate": 0.9476643385171124, - "truth_threshold": -10.200000000000001 - }, - { - "f1": 0.8957131528617853, - "fn": 15931, - "fn_rate": 0.0524113290849813, - "fp": 51139, - "fp_rate": 0.2941237368363538, - "match_probability": 0.0008612722155521146, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8492226589104547, - "recall": 0.9475886709150187, - "row_count": 477830, - "tn": 122730, - "tn_rate": 0.7058762631636462, - "tp": 288030, - "tp_rate": 0.9475886709150187, - "truth_threshold": -10.18 - }, - { - "f1": 0.8957020681076038, - "fn": 15948, - "fn_rate": 0.05246725731261576, - "fp": 51126, - "fp_rate": 0.29404896790112095, - "match_probability": 0.000873284628214516, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8492476536169535, - "recall": 0.9475327426873842, - "row_count": 477830, - "tn": 122743, - "tn_rate": 0.705951032098879, - "tp": 288013, - "tp_rate": 0.9475327426873842, - "truth_threshold": -10.16 - }, - { - "f1": 0.8956737304083036, - "fn": 16001, - "fn_rate": 0.05264162178700557, - "fp": 51082, - "fp_rate": 0.29379590381264054, - "match_probability": 0.0008854644329910831, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.849334300765097, - "recall": 0.9473583782129944, - "row_count": 477830, - "tn": 122787, - "tn_rate": 0.7062040961873595, - "tp": 287960, - "tp_rate": 0.9473583782129944, - "truth_threshold": -10.14 - }, - { - "f1": 0.8961420545621489, - "fn": 16044, - "fn_rate": 0.05278308730396334, - "fp": 50693, - "fp_rate": 0.2915585872122115, - "match_probability": 0.0008978139583084768, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8502908951300907, - "recall": 0.9472169126960367, - "row_count": 477830, - "tn": 123176, - "tn_rate": 0.7084414127877885, - "tp": 287917, - "tp_rate": 0.9472169126960367, - "truth_threshold": -10.120000000000001 - }, - { - "f1": 0.8964068873182427, - "fn": 16062, - "fn_rate": 0.05284230542734101, - "fp": 50481, - "fp_rate": 0.2903392784222604, - "match_probability": 0.0009103355648646677, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8508156510432059, - "recall": 0.947157694572659, - "row_count": 477830, - "tn": 123388, - "tn_rate": 0.7096607215777395, - "tp": 287899, - "tp_rate": 0.947157694572659, - "truth_threshold": -10.1 - }, - { - "f1": 0.8964498239080274, - "fn": 16076, - "fn_rate": 0.05288836396774586, - "fp": 50433, - "fp_rate": 0.2900632085075545, - "match_probability": 0.0009230316460729091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8509301899396425, - "recall": 0.9471116360322541, - "row_count": 477830, - "tn": 123436, - "tn_rate": 0.7099367914924455, - "tp": 287885, - "tp_rate": 0.9471116360322541, - "truth_threshold": -10.08 - }, - { - "f1": 0.8965202577494573, - "fn": 16100, - "fn_rate": 0.05296732146558276, - "fp": 50352, - "fp_rate": 0.28959734052648833, - "match_probability": 0.0009359046285117405, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.851123404481791, - "recall": 0.9470326785344172, - "row_count": 477830, - "tn": 123517, - "tn_rate": 0.7104026594735117, - "tp": 287861, - "tp_rate": 0.9470326785344172, - "truth_threshold": -10.06 - }, - { - "f1": 0.896473644212441, - "fn": 16132, - "fn_rate": 0.05307259812936528, - "fp": 50346, - "fp_rate": 0.2895628317871501, - "match_probability": 0.0009489569723810712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8511244178310047, - "recall": 0.9469274018706347, - "row_count": 477830, - "tn": 123523, - "tn_rate": 0.7104371682128499, - "tp": 287829, - "tp_rate": 0.9469274018706347, - "truth_threshold": -10.040000000000001 - }, - { - "f1": 0.8964872770089056, - "fn": 16159, - "fn_rate": 0.053161425314431784, - "fp": 50303, - "fp_rate": 0.2893155191552261, - "match_probability": 0.0009621911719644465, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8512207746114373, - "recall": 0.9468385746855682, - "row_count": 477830, - "tn": 123566, - "tn_rate": 0.710684480844774, - "tp": 287802, - "tp_rate": 0.9468385746855682, - "truth_threshold": -10.02 - }, - { - "f1": 0.8965076753873523, - "fn": 16217, - "fn_rate": 0.05335223926753761, - "fp": 50218, - "fp_rate": 0.28882664534793434, - "match_probability": 0.000975609756097561, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8514093300430225, - "recall": 0.9466477607324624, - "row_count": 477830, - "tn": 123651, - "tn_rate": 0.7111733546520657, - "tp": 287744, - "tp_rate": 0.9466477607324624, - "truth_threshold": -10 - }, - { - "f1": 0.8965252866506057, - "fn": 16301, - "fn_rate": 0.05362859050996674, - "fp": 50101, - "fp_rate": 0.28815372493083874, - "match_probability": 0.0009892152886431212, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8516673032114425, - "recall": 0.9463714094900333, - "row_count": 477830, - "tn": 123768, - "tn_rate": 0.7118462750691613, - "tp": 287660, - "tp_rate": 0.9463714094900333, - "truth_threshold": -9.98 - }, - { - "f1": 0.8965234574673665, - "fn": 16324, - "fn_rate": 0.05370425811206043, - "fp": 50074, - "fp_rate": 0.28799843560381666, - "match_probability": 0.0010030103689721156, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8517252917435322, - "recall": 0.9462957418879395, - "row_count": 477830, - "tn": 123795, - "tn_rate": 0.7120015643961833, - "tp": 287637, - "tp_rate": 0.9462957418879395, - "truth_threshold": -9.96 - }, - { - "f1": 0.896532698248425, - "fn": 16356, - "fn_rate": 0.05380953477584295, - "fp": 50028, - "fp_rate": 0.2877338686022235, - "match_probability": 0.0010169976324515963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8518272799163589, - "recall": 0.9461904652241571, - "row_count": 477830, - "tn": 123841, - "tn_rate": 0.7122661313977765, - "tp": 287605, - "tp_rate": 0.9461904652241571, - "truth_threshold": -9.94 - }, - { - "f1": 0.9007962362021225, - "fn": 16380, - "fn_rate": 0.053888492273679846, - "fp": 46962, - "fp_rate": 0.2700999028003842, - "match_probability": 0.0010311797509390394, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8596234265849233, - "recall": 0.9461115077263201, - "row_count": 477830, - "tn": 126907, - "tn_rate": 0.7299000971996158, - "tp": 287581, - "tp_rate": 0.9461115077263201, - "truth_threshold": -9.92 - }, - { - "f1": 0.9008816783847803, - "fn": 16432, - "fn_rate": 0.05405956685232645, - "fp": 46838, - "fp_rate": 0.26938672218739396, - "match_probability": 0.0010455594332833937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8599203868802843, - "recall": 0.9459404331476735, - "row_count": 477830, - "tn": 127031, - "tn_rate": 0.730613277812606, - "tp": 287529, - "tp_rate": 0.9459404331476735, - "truth_threshold": -9.9 - }, - { - "f1": 0.9008451445708, - "fn": 16486, - "fn_rate": 0.05423722122245946, - "fp": 46799, - "fp_rate": 0.26916241538169544, - "match_probability": 0.0010601394258328775, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8599980854029927, - "recall": 0.9457627787775406, - "row_count": 477830, - "tn": 127070, - "tn_rate": 0.7308375846183046, - "tp": 287475, - "tp_rate": 0.9457627787775406, - "truth_threshold": -9.88 - }, - { - "f1": 0.9002022482479658, - "fn": 16873, - "fn_rate": 0.055510410875079366, - "fp": 46782, - "fp_rate": 0.26906464062023705, - "match_probability": 0.00107492251294963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8598795938538952, - "recall": 0.9444895891249206, - "row_count": 477830, - "tn": 127087, - "tn_rate": 0.730935359379763, - "tp": 287088, - "tp_rate": 0.9444895891249206, - "truth_threshold": -9.86 - }, - { - "f1": 0.9001737363347279, - "fn": 16919, - "fn_rate": 0.05566174607926675, - "fp": 46745, - "fp_rate": 0.2688518367276513, - "match_probability": 0.0010899115175312943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8599556004278177, - "recall": 0.9443382539207332, - "row_count": 477830, - "tn": 127124, - "tn_rate": 0.7311481632723488, - "tp": 287042, - "tp_rate": 0.9443382539207332, - "truth_threshold": -9.84 - }, - { - "f1": 0.9001263944950963, - "fn": 16962, - "fn_rate": 0.05580321159622451, - "fp": 46726, - "fp_rate": 0.2687425590530802, - "match_probability": 0.0011051093015396422, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8599865158438834, - "recall": 0.9441967884037755, - "row_count": 477830, - "tn": 127143, - "tn_rate": 0.7312574409469198, - "tp": 286999, - "tp_rate": 0.9441967884037755, - "truth_threshold": -9.82 - }, - { - "f1": 0.900108846695546, - "fn": 17009, - "fn_rate": 0.055957836696155096, - "fp": 46681, - "fp_rate": 0.26848374350804344, - "match_probability": 0.0011205187665362995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8600827855757673, - "recall": 0.9440421633038449, - "row_count": 477830, - "tn": 127188, - "tn_rate": 0.7315162564919566, - "tp": 286952, - "tp_rate": 0.9440421633038449, - "truth_threshold": -9.8 - }, - { - "f1": 0.901032475240063, - "fn": 17020, - "fn_rate": 0.05599402554933034, - "fp": 46014, - "fp_rate": 0.2646475219849427, - "match_probability": 0.0011361428542256968, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8618011442987791, - "recall": 0.9440059744506697, - "row_count": 477830, - "tn": 127855, - "tn_rate": 0.7353524780150573, - "tp": 286941, - "tp_rate": 0.9440059744506697, - "truth_threshold": -9.78 - }, - { - "f1": 0.9010464101098542, - "fn": 17048, - "fn_rate": 0.05608614263014005, - "fp": 45970, - "fp_rate": 0.26439445789646226, - "match_probability": 0.0011519845470053095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8619034315360051, - "recall": 0.94391385736986, - "row_count": 477830, - "tn": 127899, - "tn_rate": 0.7356055421035377, - "tp": 286913, - "tp_rate": 0.94391385736986, - "truth_threshold": -9.76 - }, - { - "f1": 0.901097416955626, - "fn": 17066, - "fn_rate": 0.05614536075351772, - "fp": 45913, - "fp_rate": 0.264066624872749, - "match_probability": 0.0011680468685233154, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8620435806831567, - "recall": 0.9438546392464823, - "row_count": 477830, - "tn": 127956, - "tn_rate": 0.735933375127251, - "tp": 286895, - "tp_rate": 0.9438546392464823, - "truth_threshold": -9.74 - }, - { - "f1": 0.9010880596217713, - "fn": 17169, - "fn_rate": 0.05648422001506772, - "fp": 45794, - "fp_rate": 0.26338220154254066, - "match_probability": 0.0011843328842437272, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8623092974448714, - "recall": 0.9435157799849323, - "row_count": 477830, - "tn": 128075, - "tn_rate": 0.7366177984574593, - "tp": 286792, - "tp_rate": 0.9435157799849323, - "truth_threshold": -9.72 - }, - { - "f1": 0.9011038387697838, - "fn": 17182, - "fn_rate": 0.056526988659729376, - "fp": 45766, - "fp_rate": 0.2632211607589622, - "match_probability": 0.0012008457020191263, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8623765204709137, - "recall": 0.9434730113402706, - "row_count": 477830, - "tn": 128103, - "tn_rate": 0.7367788392410378, - "tp": 286779, - "tp_rate": 0.9434730113402706, - "truth_threshold": -9.700000000000001 - }, - { - "f1": 0.9010608479241821, - "fn": 17211, - "fn_rate": 0.05662239563628228, - "fp": 45761, - "fp_rate": 0.26319240347618034, - "match_probability": 0.0012175884726710806, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8623774852561269, - "recall": 0.9433776043637178, - "row_count": 477830, - "tn": 128108, - "tn_rate": 0.7368075965238197, - "tp": 286750, - "tp_rate": 0.9433776043637178, - "truth_threshold": -9.68 - }, - { - "f1": 0.9010261003472714, - "fn": 17259, - "fn_rate": 0.05678031063195607, - "fp": 45728, - "fp_rate": 0.26300260540982, - "match_probability": 0.001234564390578344, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8624432211292603, - "recall": 0.9432196893680439, - "row_count": 477830, - "tn": 128141, - "tn_rate": 0.73699739459018, - "tp": 286702, - "tp_rate": 0.9432196893680439, - "truth_threshold": -9.66 - }, - { - "f1": 0.901102907665664, - "fn": 17267, - "fn_rate": 0.05680662979790171, - "fp": 45664, - "fp_rate": 0.26263451219021217, - "match_probability": 0.001251776694272957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.862605985112439, - "recall": 0.9431933702020983, - "row_count": 477830, - "tn": 128205, - "tn_rate": 0.7373654878097878, - "tp": 286694, - "tp_rate": 0.9431933702020983, - "truth_threshold": -9.64 - }, - { - "f1": 0.9010194170179459, - "fn": 17326, - "fn_rate": 0.057000733646750734, - "fp": 45650, - "fp_rate": 0.2625539917984229, - "match_probability": 0.0012692286670443176, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8626179334005447, - "recall": 0.9429992663532493, - "row_count": 477830, - "tn": 128219, - "tn_rate": 0.737446008201577, - "tp": 286635, - "tp_rate": 0.9429992663532493, - "truth_threshold": -9.620000000000001 - }, - { - "f1": 0.900939985538684, - "fn": 17381, - "fn_rate": 0.057181677912626946, - "fp": 45640, - "fp_rate": 0.26249647723285924, - "match_probability": 0.0012869236375513526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8626211546565529, - "recall": 0.942818322087373, - "row_count": 477830, - "tn": 128229, - "tn_rate": 0.7375035227671408, - "tp": 286580, - "tp_rate": 0.942818322087373, - "truth_threshold": -9.6 - }, - { - "f1": 0.9008831694748458, - "fn": 17427, - "fn_rate": 0.05733301311681433, - "fp": 45623, - "fp_rate": 0.2623987024714009, - "match_probability": 0.0013048649804428731, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8626462787175944, - "recall": 0.9426669868831856, - "row_count": 477830, - "tn": 128246, - "tn_rate": 0.7376012975285992, - "tp": 286534, - "tp_rate": 0.9426669868831856, - "truth_threshold": -9.58 - }, - { - "f1": 0.9007609584302874, - "fn": 17501, - "fn_rate": 0.05757646540181142, - "fp": 45619, - "fp_rate": 0.2623756966451754, - "match_probability": 0.0013230561169862418, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8626260618708199, - "recall": 0.9424235345981886, - "row_count": 477830, - "tn": 128250, - "tn_rate": 0.7376243033548247, - "tp": 286460, - "tp_rate": 0.9424235345981886, - "truth_threshold": -9.56 - }, - { - "f1": 0.9007012578616352, - "fn": 17538, - "fn_rate": 0.05769819154430996, - "fp": 45617, - "fp_rate": 0.26236419373206266, - "match_probability": 0.001341500515704429, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.862615949885556, - "recall": 0.94230180845569, - "row_count": 477830, - "tn": 128252, - "tn_rate": 0.7376358062679373, - "tp": 286423, - "tp_rate": 0.94230180845569, - "truth_threshold": -9.540000000000001 - }, - { - "f1": 0.9010514327422826, - "fn": 17560, - "fn_rate": 0.057770569250660445, - "fp": 45342, - "fp_rate": 0.2607825431790601, - "match_probability": 0.0013602016930215866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8633219088270137, - "recall": 0.9422294307493395, - "row_count": 477830, - "tn": 128527, - "tn_rate": 0.7392174568209399, - "tp": 286401, - "tp_rate": 0.9422294307493395, - "truth_threshold": -9.52 - }, - { - "f1": 0.9010053018265343, - "fn": 17608, - "fn_rate": 0.05792848424633423, - "fp": 45316, - "fp_rate": 0.2606330053085944, - "match_probability": 0.0013791632139172336, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8633698054385547, - "recall": 0.9420715157536658, - "row_count": 477830, - "tn": 128553, - "tn_rate": 0.7393669946914055, - "tp": 286353, - "tp_rate": 0.9420715157536658, - "truth_threshold": -9.5 - }, - { - "f1": 0.9009516796012009, - "fn": 17680, - "fn_rate": 0.058165356739844916, - "fp": 45266, - "fp_rate": 0.26034543248077574, - "match_probability": 0.0013983886925891824, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8634703375388708, - "recall": 0.9418346432601551, - "row_count": 477830, - "tn": 128603, - "tn_rate": 0.7396545675192242, - "tp": 286281, - "tp_rate": 0.9418346432601551, - "truth_threshold": -9.48 - }, - { - "f1": 0.9007863060612928, - "fn": 17792, - "fn_rate": 0.05853382506308375, - "fp": 45247, - "fp_rate": 0.26023615480620466, - "match_probability": 0.0014178817931252896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8634737007265793, - "recall": 0.9414661749369162, - "row_count": 477830, - "tn": 128622, - "tn_rate": 0.7397638451937953, - "tp": 286169, - "tp_rate": 0.9414661749369162, - "truth_threshold": -9.46 - }, - { - "f1": 0.9007898158145743, - "fn": 17808, - "fn_rate": 0.058586463394975016, - "fp": 45224, - "fp_rate": 0.2601038713054081, - "match_probability": 0.0014376462301841668, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8635270401989275, - "recall": 0.941413536605025, - "row_count": 477830, - "tn": 128645, - "tn_rate": 0.7398961286945919, - "tp": 286153, - "tp_rate": 0.941413536605025, - "truth_threshold": -9.44 - }, - { - "f1": 0.9009002200957842, - "fn": 17845, - "fn_rate": 0.05870818953747356, - "fp": 45102, - "fp_rate": 0.2594021936055306, - "match_probability": 0.0014576857696849406, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8638298643189681, - "recall": 0.9412918104625264, - "row_count": 477830, - "tn": 128767, - "tn_rate": 0.7405978063944694, - "tp": 286116, - "tp_rate": 0.9412918104625264, - "truth_threshold": -9.42 - }, - { - "f1": 0.9010481955791847, - "fn": 17880, - "fn_rate": 0.05882333588848569, - "fp": 44954, - "fp_rate": 0.2585509780351874, - "match_probability": 0.0014780042295062135, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8642016705182232, - "recall": 0.9411766641115143, - "row_count": 477830, - "tn": 128915, - "tn_rate": 0.7414490219648125, - "tp": 286081, - "tp_rate": 0.9411766641115143, - "truth_threshold": -9.4 - }, - { - "f1": 0.9010158600160648, - "fn": 17920, - "fn_rate": 0.05895493171821385, - "fp": 44928, - "fp_rate": 0.2584014401647217, - "match_probability": 0.0014986054801942956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8642531475757548, - "recall": 0.9410450682817861, - "row_count": 477830, - "tn": 128941, - "tn_rate": 0.7415985598352783, - "tp": 286041, - "tp_rate": 0.9410450682817861, - "truth_threshold": -9.38 - }, - { - "f1": 0.9010077526705919, - "fn": 17946, - "fn_rate": 0.05904046900753715, - "fp": 44902, - "fp_rate": 0.25825190229425604, - "match_probability": 0.0015194934456808581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8643103859880272, - "recall": 0.9409595309924629, - "row_count": 477830, - "tn": 128967, - "tn_rate": 0.741748097705744, - "tp": 286015, - "tp_rate": 0.9409595309924629, - "truth_threshold": -9.36 - }, - { - "f1": 0.9009961502353334, - "fn": 17965, - "fn_rate": 0.059102977026658024, - "fp": 44887, - "fp_rate": 0.25816563044591045, - "match_probability": 0.0015406721040101049, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8643417763983039, - "recall": 0.940897022973342, - "row_count": 477830, - "tn": 128982, - "tn_rate": 0.7418343695540895, - "tp": 285996, - "tp_rate": 0.940897022973342, - "truth_threshold": -9.34 - }, - { - "f1": 0.9009414937863931, - "fn": 18031, - "fn_rate": 0.05932011014570948, - "fp": 44846, - "fp_rate": 0.25792982072709913, - "match_probability": 0.0015621454880756095, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8644218443901613, - "recall": 0.9406798898542905, - "row_count": 477830, - "tn": 129023, - "tn_rate": 0.7420701792729009, - "tp": 285930, - "tp_rate": 0.9406798898542905, - "truth_threshold": -9.32 - }, - { - "f1": 0.9009699742852821, - "fn": 18058, - "fn_rate": 0.059408937330775985, - "fp": 44792, - "fp_rate": 0.257619242073055, - "match_probability": 0.0015839176863668995, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8645519285141898, - "recall": 0.940591062669224, - "row_count": 477830, - "tn": 129077, - "tn_rate": 0.742380757926945, - "tp": 285903, - "tp_rate": 0.940591062669224, - "truth_threshold": -9.3 - }, - { - "f1": 0.9009335543774938, - "fn": 18111, - "fn_rate": 0.05958330180516579, - "fp": 44753, - "fp_rate": 0.25739493526735646, - "match_probability": 0.0016059928437259468, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8646322023696095, - "recall": 0.9404166981948342, - "row_count": 477830, - "tn": 129116, - "tn_rate": 0.7426050647326435, - "tp": 285850, - "tp_rate": 0.9404166981948342, - "truth_threshold": -9.28 - }, - { - "f1": 0.9005851825227168, - "fn": 18326, - "fn_rate": 0.06029062938995463, - "fp": 44736, - "fp_rate": 0.2572971605058981, - "match_probability": 0.0016283751621136546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8645885988782308, - "recall": 0.9397093706100453, - "row_count": 477830, - "tn": 129133, - "tn_rate": 0.7427028394941019, - "tp": 285635, - "tp_rate": 0.9397093706100453, - "truth_threshold": -9.26 - }, - { - "f1": 0.9005543677747715, - "fn": 18379, - "fn_rate": 0.06046499386434444, - "fp": 44693, - "fp_rate": 0.25704984787397406, - "match_probability": 0.001651068901386505, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8646794338051623, - "recall": 0.9395350061356555, - "row_count": 477830, - "tn": 129176, - "tn_rate": 0.7429501521260259, - "tp": 285582, - "tp_rate": 0.9395350061356555, - "truth_threshold": -9.24 - }, - { - "f1": 0.9005011843595154, - "fn": 18458, - "fn_rate": 0.060724895628057544, - "fp": 44635, - "fp_rate": 0.25671626339370446, - "match_probability": 0.0016740783800834494, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8647989628579563, - "recall": 0.9392751043719425, - "row_count": 477830, - "tn": 129234, - "tn_rate": 0.7432837366062955, - "tp": 285503, - "tp_rate": 0.9392751043719425, - "truth_threshold": -9.22 - }, - { - "f1": 0.9005330893949909, - "fn": 18474, - "fn_rate": 0.06077753395994881, - "fp": 44593, - "fp_rate": 0.2564747022183368, - "match_probability": 0.0016974079762232014, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8649024478914202, - "recall": 0.9392224660400512, - "row_count": 477830, - "tn": 129276, - "tn_rate": 0.7435252977816632, - "tp": 285487, - "tp_rate": 0.9392224660400512, - "truth_threshold": -9.200000000000001 - }, - { - "f1": 0.9004063629881561, - "fn": 18570, - "fn_rate": 0.06109336395129639, - "fp": 44565, - "fp_rate": 0.25631366143475837, - "match_probability": 0.0017210621281120474, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8649365369928111, - "recall": 0.9389066360487036, - "row_count": 477830, - "tn": 129304, - "tn_rate": 0.7436863385652417, - "tp": 285391, - "tp_rate": 0.9389066360487036, - "truth_threshold": -9.18 - }, - { - "f1": 0.9005462618459296, - "fn": 18595, - "fn_rate": 0.06117561134487648, - "fp": 44436, - "fp_rate": 0.2555717235389863, - "match_probability": 0.0017450453351622972, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8652646133134426, - "recall": 0.9388243886551235, - "row_count": 477830, - "tn": 129433, - "tn_rate": 0.7444282764610137, - "tp": 285366, - "tp_rate": 0.9388243886551235, - "truth_threshold": -9.16 - }, - { - "f1": 0.9007595272369119, - "fn": 18622, - "fn_rate": 0.06126443852994298, - "fp": 44253, - "fp_rate": 0.25451920698917, - "match_probability": 0.001769362158721538, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8657339983980193, - "recall": 0.938735561470057, - "row_count": 477830, - "tn": 129616, - "tn_rate": 0.74548079301083, - "tp": 285339, - "tp_rate": 0.938735561470057, - "truth_threshold": -9.14 - }, - { - "f1": 0.9007293278186468, - "fn": 18673, - "fn_rate": 0.06143222321284639, - "fp": 44212, - "fp_rate": 0.2542833972703587, - "match_probability": 0.001794017222912777, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8658209408194234, - "recall": 0.9385677767871536, - "row_count": 477830, - "tn": 129657, - "tn_rate": 0.7457166027296412, - "tp": 285288, - "tp_rate": 0.9385677767871536, - "truth_threshold": -9.120000000000001 - }, - { - "f1": 0.9005902061774281, - "fn": 18772, - "fn_rate": 0.061757922891423574, - "fp": 44189, - "fp_rate": 0.2541511137695621, - "match_probability": 0.0018190152154856484, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8658410701382606, - "recall": 0.9382420771085764, - "row_count": 477830, - "tn": 129680, - "tn_rate": 0.7458488862304379, - "tp": 285189, - "tp_rate": 0.9382420771085764, - "truth_threshold": -9.1 - }, - { - "f1": 0.9006006593989616, - "fn": 18784, - "fn_rate": 0.06179740164034202, - "fp": 44167, - "fp_rate": 0.25402458172532194, - "match_probability": 0.0018443608886787883, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8658940196268947, - "recall": 0.938202598359658, - "row_count": 477830, - "tn": 129702, - "tn_rate": 0.7459754182746781, - "tp": 285177, - "tp_rate": 0.938202598359658, - "truth_threshold": -9.08 - }, - { - "f1": 0.9006791117849584, - "fn": 18815, - "fn_rate": 0.061899388408381335, - "fp": 44073, - "fp_rate": 0.25348394480902287, - "match_probability": 0.0018700590600935494, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.866128625626103, - "recall": 0.9381006115916186, - "row_count": 477830, - "tn": 129796, - "tn_rate": 0.7465160551909771, - "tp": 285146, - "tp_rate": 0.9381006115916186, - "truth_threshold": -9.06 - }, - { - "f1": 0.9007111018445685, - "fn": 18840, - "fn_rate": 0.061981635801961435, - "fp": 44021, - "fp_rate": 0.2531848690680915, - "match_probability": 0.0018961146135791532, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.866255294067606, - "recall": 0.9380183641980385, - "row_count": 477830, - "tn": 129848, - "tn_rate": 0.7468151309319085, - "tp": 285121, - "tp_rate": 0.9380183641980385, - "truth_threshold": -9.040000000000001 - }, - { - "f1": 0.9006334412763605, - "fn": 18888, - "fn_rate": 0.062139550797635223, - "fp": 44017, - "fp_rate": 0.253161863241866, - "match_probability": 0.001922532500129454, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8662463155975569, - "recall": 0.9378604492023648, - "row_count": 477830, - "tn": 129852, - "tn_rate": 0.746838136758134, - "tp": 285073, - "tp_rate": 0.9378604492023648, - "truth_threshold": -9.02 - }, - { - "f1": 0.9006325394468282, - "fn": 18909, - "fn_rate": 0.0622086386082425, - "fp": 43992, - "fp_rate": 0.2530180768279567, - "match_probability": 0.001949317738791423, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8663035946560338, - "recall": 0.9377913613917574, - "row_count": 477830, - "tn": 129877, - "tn_rate": 0.7469819231720434, - "tp": 285052, - "tp_rate": 0.9377913613917574, - "truth_threshold": -9 - }, - { - "f1": 0.9004939434256225, - "fn": 19015, - "fn_rate": 0.06255736755702211, - "fp": 43960, - "fp_rate": 0.25283403021815276, - "match_probability": 0.001976475417585539, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8663447915209816, - "recall": 0.9374426324429779, - "row_count": 477830, - "tn": 129909, - "tn_rate": 0.7471659697818472, - "tp": 284946, - "tp_rate": 0.9374426324429779, - "truth_threshold": -8.98 - }, - { - "f1": 0.9004273180105692, - "fn": 19073, - "fn_rate": 0.06274818151012794, - "fp": 43935, - "fp_rate": 0.25269024380424343, - "match_probability": 0.0020040106944381785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8663870836285783, - "recall": 0.937251818489872, - "row_count": 477830, - "tn": 129934, - "tn_rate": 0.7473097561957566, - "tp": 284888, - "tp_rate": 0.937251818489872, - "truth_threshold": -8.96 - }, - { - "f1": 0.9003701350629483, - "fn": 19110, - "fn_rate": 0.06286990765262648, - "fp": 43931, - "fp_rate": 0.25266723797801793, - "match_probability": 0.002031928798126188, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8663825878545662, - "recall": 0.9371300923473735, - "row_count": 477830, - "tn": 129938, - "tn_rate": 0.7473327620219821, - "tp": 284851, - "tp_rate": 0.9371300923473735, - "truth_threshold": -8.94 - }, - { - "f1": 0.900332877063095, - "fn": 19156, - "fn_rate": 0.06302124285681386, - "fp": 43900, - "fp_rate": 0.25248894282477036, - "match_probability": 0.0020602350292337574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.866445597115955, - "recall": 0.9369787571431861, - "row_count": 477830, - "tn": 129969, - "tn_rate": 0.7475110571752296, - "tp": 284805, - "tp_rate": 0.9369787571431861, - "truth_threshold": -8.92 - }, - { - "f1": 0.8997222503416511, - "fn": 19548, - "fn_rate": 0.0643108819881498, - "fp": 43850, - "fp_rate": 0.25220136999695175, - "match_probability": 0.0020889347611217834, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.866418085498518, - "recall": 0.9356891180118502, - "row_count": 477830, - "tn": 130019, - "tn_rate": 0.7477986300030482, - "tp": 284413, - "tp_rate": 0.9356891180118502, - "truth_threshold": -8.9 - }, - { - "f1": 0.8995947087503046, - "fn": 19627, - "fn_rate": 0.0645707837518629, - "fp": 43843, - "fp_rate": 0.2521611098010571, - "match_probability": 0.002118033440909814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.866404409815435, - "recall": 0.9354292162481371, - "row_count": 477830, - "tn": 130026, - "tn_rate": 0.7478388901989429, - "tp": 284334, - "tp_rate": 0.9354292162481371, - "truth_threshold": -8.88 - }, - { - "f1": 0.8995816958720154, - "fn": 19659, - "fn_rate": 0.06467606041564543, - "fp": 43814, - "fp_rate": 0.2519943175609223, - "match_probability": 0.0021475365904707793, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8664679564544246, - "recall": 0.9353239395843546, - "row_count": 477830, - "tn": 130055, - "tn_rate": 0.7480056824390777, - "tp": 284302, - "tp_rate": 0.9353239395843546, - "truth_threshold": -8.86 - }, - { - "f1": 0.9003246598989595, - "fn": 19715, - "fn_rate": 0.06486029457726485, - "fp": 43223, - "fp_rate": 0.2485952067361059, - "match_probability": 0.0021774498074386152, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8680088802298843, - "recall": 0.9351397054227352, - "row_count": 477830, - "tn": 130646, - "tn_rate": 0.7514047932638941, - "tp": 284246, - "tp_rate": 0.9351397054227352, - "truth_threshold": -8.84 - }, - { - "f1": 0.9003006027893659, - "fn": 19737, - "fn_rate": 0.06493267228361534, - "fp": 43214, - "fp_rate": 0.24854344362709857, - "match_probability": 0.002207778766228983, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8680238701677875, - "recall": 0.9350673277163847, - "row_count": 477830, - "tn": 130655, - "tn_rate": 0.7514565563729014, - "tp": 284224, - "tp_rate": 0.9350673277163847, - "truth_threshold": -8.82 - }, - { - "f1": 0.9003640695946439, - "fn": 19807, - "fn_rate": 0.0651629649856396, - "fp": 43083, - "fp_rate": 0.2477900028182137, - "match_probability": 0.002238529219073188, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8683431274580808, - "recall": 0.9348370350143604, - "row_count": 477830, - "tn": 130786, - "tn_rate": 0.7522099971817863, - "tp": 284154, - "tp_rate": 0.9348370350143604, - "truth_threshold": -8.8 - }, - { - "f1": 0.9003546088053265, - "fn": 19846, - "fn_rate": 0.06529127091962456, - "fp": 43043, - "fp_rate": 0.24755994455595878, - "match_probability": 0.0022697069970654916, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8684336008900898, - "recall": 0.9347087290803754, - "row_count": 477830, - "tn": 130826, - "tn_rate": 0.7524400554440412, - "tp": 284115, - "tp_rate": 0.9347087290803754, - "truth_threshold": -8.78 - }, - { - "f1": 0.8999302495165024, - "fn": 20114, - "fn_rate": 0.06617296297880321, - "fp": 43012, - "fp_rate": 0.24738164940271123, - "match_probability": 0.002301318011223944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8684080903386475, - "recall": 0.9338270370211968, - "row_count": 477830, - "tn": 130857, - "tn_rate": 0.7526183505972888, - "tp": 283847, - "tp_rate": 0.9338270370211968, - "truth_threshold": -8.76 - }, - { - "f1": 0.8999080503503599, - "fn": 20139, - "fn_rate": 0.0662552103723833, - "fp": 42998, - "fp_rate": 0.24730112901092202, - "match_probability": 0.002333368253564943, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8684352242824797, - "recall": 0.9337447896276168, - "row_count": 477830, - "tn": 130871, - "tn_rate": 0.752698870989078, - "tp": 283822, - "tp_rate": 0.9337447896276168, - "truth_threshold": -8.74 - }, - { - "f1": 0.8997897554122919, - "fn": 20215, - "fn_rate": 0.0665052424488668, - "fp": 42988, - "fp_rate": 0.24724361444535828, - "match_probability": 0.0023658637981916145, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8684312009157296, - "recall": 0.9334947575511332, - "row_count": 477830, - "tn": 130881, - "tn_rate": 0.7527563855546417, - "tp": 283746, - "tp_rate": 0.9334947575511332, - "truth_threshold": -8.72 - }, - { - "f1": 0.899750693047952, - "fn": 20293, - "fn_rate": 0.0667618543168367, - "fp": 42919, - "fp_rate": 0.24684676394296856, - "match_probability": 0.002398810802396238, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8685832565288881, - "recall": 0.9332381456831633, - "row_count": 477830, - "tn": 130950, - "tn_rate": 0.7531532360570314, - "tp": 283668, - "tp_rate": 0.9332381456831633, - "truth_threshold": -8.700000000000001 - }, - { - "f1": 0.8997354447003293, - "fn": 20323, - "fn_rate": 0.06686055118913281, - "fp": 42893, - "fp_rate": 0.24669722607250286, - "match_probability": 0.00243221550777684, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8686403434895921, - "recall": 0.9331394488108672, - "row_count": 477830, - "tn": 130976, - "tn_rate": 0.7533027739274971, - "tp": 283638, - "tp_rate": 0.9331394488108672, - "truth_threshold": -8.68 - }, - { - "f1": 0.8997328917481949, - "fn": 20340, - "fn_rate": 0.06691647941676729, - "fp": 42875, - "fp_rate": 0.24659369985448815, - "match_probability": 0.0024660842413681285, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8686813927276291, - "recall": 0.9330835205832327, - "row_count": 477830, - "tn": 130994, - "tn_rate": 0.7534063001455118, - "tp": 283621, - "tp_rate": 0.9330835205832327, - "truth_threshold": -8.66 - }, - { - "f1": 0.8997960005964524, - "fn": 20348, - "fn_rate": 0.06694279858271292, - "fp": 42821, - "fp_rate": 0.24628312120044402, - "match_probability": 0.002500423416786966, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8688218751723166, - "recall": 0.9330572014172871, - "row_count": 477830, - "tn": 131048, - "tn_rate": 0.753716878799556, - "tp": 283613, - "tp_rate": 0.9330572014172871, - "truth_threshold": -8.64 - }, - { - "f1": 0.8997096666719551, - "fn": 20413, - "fn_rate": 0.06715664180602117, - "fp": 42801, - "fp_rate": 0.24616809206931656, - "match_probability": 0.0025352395353924907, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.868848992949266, - "recall": 0.9328433581939788, - "row_count": 477830, - "tn": 131068, - "tn_rate": 0.7538319079306834, - "tp": 283548, - "tp_rate": 0.9328433581939788, - "truth_threshold": -8.620000000000001 - }, - { - "f1": 0.8996829789192088, - "fn": 20452, - "fn_rate": 0.06728494774000612, - "fp": 42772, - "fp_rate": 0.24600129982918173, - "match_probability": 0.0025705391874611093, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8689105403011514, - "recall": 0.9327150522599938, - "row_count": 477830, - "tn": 131097, - "tn_rate": 0.7539987001708183, - "tp": 283509, - "tp_rate": 0.9327150522599938, - "truth_threshold": -8.6 - }, - { - "f1": 0.8996569223298814, - "fn": 20489, - "fn_rate": 0.06740667388250467, - "fp": 42746, - "fp_rate": 0.24585176195871605, - "match_probability": 0.0026063290533764843, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8689649252953546, - "recall": 0.9325933261174953, - "row_count": 477830, - "tn": 131123, - "tn_rate": 0.754148238041284, - "tp": 283472, - "tp_rate": 0.9325933261174953, - "truth_threshold": -8.58 - }, - { - "f1": 0.8994345834298976, - "fn": 20649, - "fn_rate": 0.06793305720141729, - "fp": 42705, - "fp_rate": 0.24561595223990476, - "match_probability": 0.0026426159048347467, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8690098982568394, - "recall": 0.9320669427985827, - "row_count": 477830, - "tn": 131164, - "tn_rate": 0.7543840477600953, - "tp": 283312, - "tp_rate": 0.9320669427985827, - "truth_threshold": -8.56 - }, - { - "f1": 0.8994158359260905, - "fn": 20663, - "fn_rate": 0.06797911574182214, - "fp": 42701, - "fp_rate": 0.24559294641367926, - "match_probability": 0.0026794066060650402, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8690149356286369, - "recall": 0.9320208842581779, - "row_count": 477830, - "tn": 131168, - "tn_rate": 0.7544070535863208, - "tp": 283298, - "tp_rate": 0.9320208842581779, - "truth_threshold": -8.540000000000001 - }, - { - "f1": 0.8993408351960983, - "fn": 20719, - "fn_rate": 0.06816334990344156, - "fp": 42686, - "fp_rate": 0.24550667456533368, - "match_probability": 0.0027167081150656154, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8690324243391179, - "recall": 0.9318366500965585, - "row_count": 477830, - "tn": 131183, - "tn_rate": 0.7544933254346663, - "tp": 283242, - "tp_rate": 0.9318366500965585, - "truth_threshold": -8.52 - }, - { - "f1": 0.8993559696657901, - "fn": 20761, - "fn_rate": 0.06830152552465613, - "fp": 42623, - "fp_rate": 0.24514433280228218, - "match_probability": 0.0027545274848556306, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.869183575131283, - "recall": 0.9316984744753439, - "row_count": 477830, - "tn": 131246, - "tn_rate": 0.7548556671977178, - "tp": 283200, - "tp_rate": 0.9316984744753439, - "truth_threshold": -8.5 - }, - { - "f1": 0.8993054121951451, - "fn": 20803, - "fn_rate": 0.06843970114587068, - "fp": 42607, - "fp_rate": 0.24505230949738022, - "match_probability": 0.0027928718647428573, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8692093994136878, - "recall": 0.9315602988541293, - "row_count": 477830, - "tn": 131262, - "tn_rate": 0.7549476905026198, - "tp": 283158, - "tp_rate": 0.9315602988541293, - "truth_threshold": -8.48 - }, - { - "f1": 0.8993241054243081, - "fn": 20816, - "fn_rate": 0.06848246979053234, - "fp": 42579, - "fp_rate": 0.24489126871380176, - "match_probability": 0.0028317485016074407, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8692788986995125, - "recall": 0.9315175302094677, - "row_count": 477830, - "tn": 131290, - "tn_rate": 0.7551087312861983, - "tp": 283145, - "tp_rate": 0.9315175302094677, - "truth_threshold": -8.46 - }, - { - "f1": 0.8992496298978963, - "fn": 20897, - "fn_rate": 0.06874895134573185, - "fp": 42532, - "fp_rate": 0.24462095025565225, - "match_probability": 0.002871164741201907, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8693718596051548, - "recall": 0.9312510486542681, - "row_count": 477830, - "tn": 131337, - "tn_rate": 0.7553790497443478, - "tp": 283064, - "tp_rate": 0.9312510486542681, - "truth_threshold": -8.44 - }, - { - "f1": 0.9015675918463563, - "fn": 20940, - "fn_rate": 0.06889041686268962, - "fp": 40861, - "fp_rate": 0.23501026634995312, - "match_probability": 0.002911128029467595, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8738398552559266, - "recall": 0.9311095831373104, - "row_count": 477830, - "tn": 133008, - "tn_rate": 0.7649897336500469, - "tp": 283021, - "tp_rate": 0.9311095831373104, - "truth_threshold": -8.42 - }, - { - "f1": 0.9015463145585532, - "fn": 21017, - "fn_rate": 0.06914373883491633, - "fp": 40781, - "fp_rate": 0.23455014982544328, - "match_probability": 0.002951645913867726, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8740257934975674, - "recall": 0.9308562611650837, - "row_count": 477830, - "tn": 133088, - "tn_rate": 0.7654498501745567, - "tp": 282944, - "tp_rate": 0.9308562611650837, - "truth_threshold": -8.4 - }, - { - "f1": 0.9015002804262479, - "fn": 21063, - "fn_rate": 0.0692950740391037, - "fp": 40758, - "fp_rate": 0.23441786632464673, - "match_probability": 0.0029927260447372276, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.874070000247176, - "recall": 0.9307049259608963, - "row_count": 477830, - "tn": 133111, - "tn_rate": 0.7655821336753533, - "tp": 282898, - "tp_rate": 0.9307049259608963, - "truth_threshold": -8.38 - }, - { - "f1": 0.9014042759341654, - "fn": 21140, - "fn_rate": 0.06954839601133041, - "fp": 40731, - "fp_rate": 0.23426257699762465, - "match_probability": 0.0030343761766495666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8741129710216595, - "recall": 0.9304516039886696, - "row_count": 477830, - "tn": 133138, - "tn_rate": 0.7657374230023754, - "tp": 282821, - "tp_rate": 0.9304516039886696, - "truth_threshold": -8.36 - }, - { - "f1": 0.9013951175666243, - "fn": 21160, - "fn_rate": 0.06961419392619447, - "fp": 40713, - "fp_rate": 0.23415905077960994, - "match_probability": 0.003076604169800717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.874153823327584, - "recall": 0.9303858060738055, - "row_count": 477830, - "tn": 133156, - "tn_rate": 0.76584094922039, - "tp": 282801, - "tp_rate": 0.9303858060738055, - "truth_threshold": -8.34 - }, - { - "f1": 0.9013935905036944, - "fn": 21174, - "fn_rate": 0.06966025246659933, - "fp": 40696, - "fp_rate": 0.2340612760181516, - "match_probability": 0.003119417991410515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8741943162391841, - "recall": 0.9303397475334007, - "row_count": 477830, - "tn": 133173, - "tn_rate": 0.7659387239818484, - "tp": 282787, - "tp_rate": 0.9303397475334007, - "truth_threshold": -8.32 - }, - { - "f1": 0.9025279285030322, - "fn": 21199, - "fn_rate": 0.06974249986017943, - "fp": 39878, - "fp_rate": 0.22935658455503857, - "match_probability": 0.0031628257171415226, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8764009422266303, - "recall": 0.9302575001398206, - "row_count": 477830, - "tn": 133991, - "tn_rate": 0.7706434154449614, - "tp": 282762, - "tp_rate": 0.9302575001398206, - "truth_threshold": -8.3 - }, - { - "f1": 0.9024422943713271, - "fn": 21252, - "fn_rate": 0.06991686433456924, - "fp": 39872, - "fp_rate": 0.22932207581570033, - "match_probability": 0.0032068355325356353, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8763969359633704, - "recall": 0.9300831356654308, - "row_count": 477830, - "tn": 133997, - "tn_rate": 0.7706779241842997, - "tp": 282709, - "tp_rate": 0.9300831356654308, - "truth_threshold": -8.28 - }, - { - "f1": 0.9024541307103155, - "fn": 21288, - "fn_rate": 0.07003530058132458, - "fp": 39820, - "fp_rate": 0.22902300007476895, - "match_probability": 0.0032514557344685887, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8765244516935251, - "recall": 0.9299646994186754, - "row_count": 477830, - "tn": 134049, - "tn_rate": 0.770976999925231, - "tp": 282673, - "tp_rate": 0.9299646994186754, - "truth_threshold": -8.26 - }, - { - "f1": 0.90244774670643, - "fn": 21327, - "fn_rate": 0.07016360651530953, - "fp": 39778, - "fp_rate": 0.22878143889940128, - "match_probability": 0.0032966947326226116, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8766236988697691, - "recall": 0.9298363934846905, - "row_count": 477830, - "tn": 134091, - "tn_rate": 0.7712185611005987, - "tp": 282634, - "tp_rate": 0.9298363934846905, - "truth_threshold": -8.24 - }, - { - "f1": 0.9023776366725863, - "fn": 21441, - "fn_rate": 0.07053865463003478, - "fp": 39687, - "fp_rate": 0.22825805635277133, - "match_probability": 0.0033425610509773486, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.876827629443184, - "recall": 0.9294613453699653, - "row_count": 477830, - "tn": 134182, - "tn_rate": 0.7717419436472287, - "tp": 282520, - "tp_rate": 0.9294613453699653, - "truth_threshold": -8.22 - }, - { - "f1": 0.902302118741534, - "fn": 21526, - "fn_rate": 0.07081829576820711, - "fp": 39637, - "fp_rate": 0.2279704835249527, - "match_probability": 0.0033890633293192944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8769312451874115, - "recall": 0.9291817042317929, - "row_count": 477830, - "tn": 134232, - "tn_rate": 0.7720295164750473, - "tp": 282435, - "tp_rate": 0.9291817042317929, - "truth_threshold": -8.2 - }, - { - "f1": 0.9022837206627519, - "fn": 21548, - "fn_rate": 0.07089067347455759, - "fp": 39622, - "fp_rate": 0.2278842116766071, - "match_probability": 0.0034362103247699053, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8769636840716071, - "recall": 0.9291093265254424, - "row_count": 477830, - "tn": 134247, - "tn_rate": 0.7721157883233929, - "tp": 282413, - "tp_rate": 0.9291093265254424, - "truth_threshold": -8.18 - }, - { - "f1": 0.9021561998734654, - "fn": 21624, - "fn_rate": 0.07114070555104109, - "fp": 39618, - "fp_rate": 0.2278612058503816, - "match_probability": 0.0034840109133326283, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8769455358668137, - "recall": 0.9288592944489589, - "row_count": 477830, - "tn": 134251, - "tn_rate": 0.7721387941496184, - "tp": 282337, - "tp_rate": 0.9288592944489589, - "truth_threshold": -8.16 - }, - { - "f1": 0.9021805479653439, - "fn": 21666, - "fn_rate": 0.07127888117225566, - "fp": 39551, - "fp_rate": 0.2274758582611046, - "match_probability": 0.003532474091458984, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8771120349483915, - "recall": 0.9287211188277443, - "row_count": 477830, - "tn": 134318, - "tn_rate": 0.7725241417388954, - "tp": 282295, - "tp_rate": 0.9287211188277443, - "truth_threshold": -8.14 - }, - { - "f1": 0.9021499395868894, - "fn": 21727, - "fn_rate": 0.07147956481259109, - "fp": 39498, - "fp_rate": 0.22717103106361686, - "match_probability": 0.003581608977633939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.877233225168774, - "recall": 0.9285204351874089, - "row_count": 477830, - "tn": 134371, - "tn_rate": 0.7728289689363831, - "tp": 282234, - "tp_rate": 0.9285204351874089, - "truth_threshold": -8.120000000000001 - }, - { - "f1": 0.9015903173597917, - "fn": 22086, - "fn_rate": 0.07266063738440129, - "fp": 39449, - "fp_rate": 0.2268892096923546, - "match_probability": 0.0036314248139807737, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8772298365512691, - "recall": 0.9273393626155987, - "row_count": 477830, - "tn": 134420, - "tn_rate": 0.7731107903076454, - "tp": 281875, - "tp_rate": 0.9273393626155987, - "truth_threshold": -8.1 - }, - { - "f1": 0.9015591611111822, - "fn": 22130, - "fn_rate": 0.07280539279710226, - "fp": 39417, - "fp_rate": 0.22670516308255065, - "match_probability": 0.0036819309678855936, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8773004034266361, - "recall": 0.9271946072028977, - "row_count": 477830, - "tn": 134452, - "tn_rate": 0.7732948369174494, - "tp": 281831, - "tp_rate": 0.9271946072028977, - "truth_threshold": -8.08 - }, - { - "f1": 0.9014790145022122, - "fn": 22183, - "fn_rate": 0.07297975727149207, - "fp": 39408, - "fp_rate": 0.2266533999735433, - "match_probability": 0.0037331369336417713, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8773047393099326, - "recall": 0.9270202427285079, - "row_count": 477830, - "tn": 134461, - "tn_rate": 0.7733466000264567, - "tp": 281778, - "tp_rate": 0.9270202427285079, - "truth_threshold": -8.06 - }, - { - "f1": 0.9014750111985665, - "fn": 22214, - "fn_rate": 0.07308174403953138, - "fp": 39372, - "fp_rate": 0.2264463475375139, - "match_probability": 0.0037850523341144294, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8773912474814632, - "recall": 0.9269182559604686, - "row_count": 477830, - "tn": 134497, - "tn_rate": 0.7735536524624861, - "tp": 281747, - "tp_rate": 0.9269182559604686, - "truth_threshold": -8.040000000000001 - }, - { - "f1": 0.9014330150277771, - "fn": 22274, - "fn_rate": 0.07327913778412362, - "fp": 39329, - "fp_rate": 0.22619903490558985, - "match_probability": 0.0038376869224252233, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8774858574027463, - "recall": 0.9267208622158764, - "row_count": 477830, - "tn": 134540, - "tn_rate": 0.7738009650944102, - "tp": 281687, - "tp_rate": 0.9267208622158764, - "truth_threshold": -8.02 - }, - { - "f1": 0.9013883021621414, - "fn": 22306, - "fn_rate": 0.07338441444790615, - "fp": 39321, - "fp_rate": 0.22615302325313885, - "match_probability": 0.0038910505836575876, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8774955136832661, - "recall": 0.9266155855520939, - "row_count": 477830, - "tn": 134548, - "tn_rate": 0.7738469767468611, - "tp": 281655, - "tp_rate": 0.9266155855520939, - "truth_threshold": -8 - }, - { - "f1": 0.9013875774210586, - "fn": 22354, - "fn_rate": 0.07354232944357993, - "fp": 39263, - "fp_rate": 0.22581943877286922, - "match_probability": 0.003945153336582717, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.877635802661514, - "recall": 0.92645767055642, - "row_count": 477830, - "tn": 134606, - "tn_rate": 0.7741805612271307, - "tp": 281607, - "tp_rate": 0.92645767055642, - "truth_threshold": -7.98 - }, - { - "f1": 0.9012990671558176, - "fn": 22415, - "fn_rate": 0.07374301308391537, - "fp": 39250, - "fp_rate": 0.22574466983763639, - "match_probability": 0.004000005335406395, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8776481003503784, - "recall": 0.9262569869160846, - "row_count": 477830, - "tn": 134619, - "tn_rate": 0.7742553301623636, - "tp": 281546, - "tp_rate": 0.9262569869160846, - "truth_threshold": -7.96 - }, - { - "f1": 0.9012049195813041, - "fn": 22512, - "fn_rate": 0.07406213297100615, - "fp": 39196, - "fp_rate": 0.22543409118359226, - "match_probability": 0.004055616871536931, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8777588922328432, - "recall": 0.9259378670289938, - "row_count": 477830, - "tn": 134673, - "tn_rate": 0.7745659088164077, - "tp": 281449, - "tp_rate": 0.9259378670289938, - "truth_threshold": -7.94 - }, - { - "f1": 0.9011989854738298, - "fn": 22549, - "fn_rate": 0.0741838591135047, - "fp": 39156, - "fp_rate": 0.22520403292133734, - "match_probability": 0.004111998375374417, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.877854308602231, - "recall": 0.9258161408864953, - "row_count": 477830, - "tn": 134713, - "tn_rate": 0.7747959670786627, - "tp": 281412, - "tp_rate": 0.9258161408864953, - "truth_threshold": -7.92 - }, - { - "f1": 0.901206455352825, - "fn": 22571, - "fn_rate": 0.07425623681985517, - "fp": 39124, - "fp_rate": 0.2250199863115334, - "match_probability": 0.00416916041812146, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8779335692044653, - "recall": 0.9257437631801448, - "row_count": 477830, - "tn": 134745, - "tn_rate": 0.7749800136884666, - "tp": 281390, - "tp_rate": 0.9257437631801448, - "truth_threshold": -7.9 - }, - { - "f1": 0.901106644672571, - "fn": 22631, - "fn_rate": 0.07445363056444741, - "fp": 39119, - "fp_rate": 0.22499122902875154, - "match_probability": 0.004227113713615665, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.877924412308979, - "recall": 0.9255463694355526, - "row_count": 477830, - "tn": 134750, - "tn_rate": 0.7750087709712484, - "tp": 281330, - "tp_rate": 0.9255463694355526, - "truth_threshold": -7.88 - }, - { - "f1": 0.9011212917280708, - "fn": 22685, - "fn_rate": 0.07463128493458042, - "fp": 39044, - "fp_rate": 0.22455986978702355, - "match_probability": 0.004285869120183992, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8781093906093906, - "recall": 0.9253687150654196, - "row_count": 477830, - "tn": 134825, - "tn_rate": 0.7754401302129764, - "tp": 281276, - "tp_rate": 0.9253687150654196, - "truth_threshold": -7.86 - }, - { - "f1": 0.9010865420662563, - "fn": 22740, - "fn_rate": 0.07481222920045663, - "fp": 39001, - "fp_rate": 0.22431255715509954, - "match_probability": 0.00434543764251929, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8782063693312764, - "recall": 0.9251877707995434, - "row_count": 477830, - "tn": 134868, - "tn_rate": 0.7756874428449004, - "tp": 281221, - "tp_rate": 0.9251877707995434, - "truth_threshold": -7.84 - }, - { - "f1": 0.9010334385464567, - "fn": 22780, - "fn_rate": 0.07494382503018479, - "fp": 38988, - "fp_rate": 0.22423778821986667, - "match_probability": 0.004405830433579104, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.878226811465195, - "recall": 0.9250561749698152, - "row_count": 477830, - "tn": 134881, - "tn_rate": 0.7757622117801333, - "tp": 281181, - "tp_rate": 0.9250561749698152, - "truth_threshold": -7.82 - }, - { - "f1": 0.90098962305873, - "fn": 22818, - "fn_rate": 0.07506884106842654, - "fp": 38972, - "fp_rate": 0.2241457649149647, - "match_probability": 0.00446705879650708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8782562516595599, - "recall": 0.9249311589315734, - "row_count": 477830, - "tn": 134897, - "tn_rate": 0.7758542350850353, - "tp": 281143, - "tp_rate": 0.9249311589315734, - "truth_threshold": -7.8 - }, - { - "f1": 0.9009746763632168, - "fn": 22856, - "fn_rate": 0.07519385710666829, - "fp": 38937, - "fp_rate": 0.22394446393549167, - "match_probability": 0.004529134186577057, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8783378431580855, - "recall": 0.9248061428933317, - "row_count": 477830, - "tn": 134932, - "tn_rate": 0.7760555360645084, - "tp": 281105, - "tp_rate": 0.9248061428933317, - "truth_threshold": -7.78 - }, - { - "f1": 0.9008901297211013, - "fn": 22904, - "fn_rate": 0.07535177210234208, - "fp": 38936, - "fp_rate": 0.2239387124789353, - "match_probability": 0.004592068213160174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.8783223383011504, - "recall": 0.9246482278976579, - "row_count": 477830, - "tn": 134933, - "tn_rate": 0.7760612875210647, - "tp": 281057, - "tp_rate": 0.9246482278976579, - "truth_threshold": -7.76 - }, - { - "f1": 0.9127129240212396, - "fn": 22923, - "fn_rate": 0.07541428012146295, - "fp": 30831, - "fp_rate": 0.17732315708953292, - "match_probability": 0.004655872641715067, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9011411842792968, - "recall": 0.9245857198785371, - "row_count": 477830, - "tn": 143038, - "tn_rate": 0.822676842910467, - "tp": 281038, - "tp_rate": 0.9245857198785371, - "truth_threshold": -7.74 - }, - { - "f1": 0.9125203431619364, - "fn": 23048, - "fn_rate": 0.07582551708936344, - "fp": 30813, - "fp_rate": 0.1772196308715182, - "match_probability": 0.0047205593958014914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9011535771799594, - "recall": 0.9241744829106365, - "row_count": 477830, - "tn": 143056, - "tn_rate": 0.8227803691284817, - "tp": 280913, - "tp_rate": 0.9241744829106365, - "truth_threshold": -7.72 - }, - { - "f1": 0.9124100398018032, - "fn": 23144, - "fn_rate": 0.076141347080711, - "fp": 30772, - "fp_rate": 0.17698382115270692, - "match_probability": 0.004786140559117481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9012416998032665, - "recall": 0.923858652919289, - "row_count": 477830, - "tn": 143097, - "tn_rate": 0.8230161788472931, - "tp": 280817, - "tp_rate": 0.923858652919289, - "truth_threshold": -7.7 - }, - { - "f1": 0.9123932943175873, - "fn": 23182, - "fn_rate": 0.07626636311895275, - "fp": 30739, - "fp_rate": 0.17679402308634662, - "match_probability": 0.0048526283775603, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9013251240698772, - "recall": 0.9237336368810473, - "row_count": 477830, - "tn": 143130, - "tn_rate": 0.8232059769136534, - "tp": 280779, - "tp_rate": 0.9237336368810473, - "truth_threshold": -7.68 - }, - { - "f1": 0.9122963820023141, - "fn": 23262, - "fn_rate": 0.07652955477840907, - "fp": 30708, - "fp_rate": 0.17661572793309907, - "match_probability": 0.004920035261311362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9013894999149024, - "recall": 0.9234704452215909, - "row_count": 477830, - "tn": 143161, - "tn_rate": 0.8233842720669009, - "tp": 280699, - "tp_rate": 0.9234704452215909, - "truth_threshold": -7.66 - }, - { - "f1": 0.9122961556839125, - "fn": 23294, - "fn_rate": 0.0766348314421916, - "fp": 30671, - "fp_rate": 0.17640292404051325, - "match_probability": 0.004988373786945367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9014864873545793, - "recall": 0.9233651685578084, - "row_count": 477830, - "tn": 143198, - "tn_rate": 0.8235970759594867, - "tp": 280667, - "tp_rate": 0.9233651685578084, - "truth_threshold": -7.640000000000001 - }, - { - "f1": 0.9122040499201914, - "fn": 23357, - "fn_rate": 0.07684209487401344, - "fp": 30658, - "fp_rate": 0.1763281551052804, - "match_probability": 0.005057656699563808, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9015041990348966, - "recall": 0.9231579051259866, - "row_count": 477830, - "tn": 143211, - "tn_rate": 0.8236718448947196, - "tp": 280604, - "tp_rate": 0.9231579051259866, - "truth_threshold": -7.62 - }, - { - "f1": 0.9121003452782709, - "fn": 23419, - "fn_rate": 0.07704606841009208, - "fp": 30654, - "fp_rate": 0.1763051492790549, - "match_probability": 0.005127896914953068, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9014961631897582, - "recall": 0.9229539315899079, - "row_count": 477830, - "tn": 143215, - "tn_rate": 0.8236948507209451, - "tp": 280542, - "tp_rate": 0.9229539315899079, - "truth_threshold": -7.6000000000000005 - }, - { - "f1": 0.9119810363664742, - "fn": 23494, - "fn_rate": 0.07729281059083237, - "fp": 30644, - "fp_rate": 0.1762476347134912, - "match_probability": 0.005199107521767358, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9015013933933548, - "recall": 0.9227071894091676, - "row_count": 477830, - "tn": 143225, - "tn_rate": 0.8237523652865089, - "tp": 280467, - "tp_rate": 0.9227071894091676, - "truth_threshold": -7.58 - }, - { - "f1": 0.9121875050828712, - "fn": 23550, - "fn_rate": 0.07747704475245179, - "fp": 30439, - "fp_rate": 0.17506858611943474, - "match_probability": 0.0052713017837366085, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9020781727521312, - "recall": 0.9225229552475482, - "row_count": 477830, - "tn": 143430, - "tn_rate": 0.8249314138805652, - "tp": 280411, - "tp_rate": 0.9225229552475482, - "truth_threshold": -7.5600000000000005 - }, - { - "f1": 0.9121977088830399, - "fn": 23587, - "fn_rate": 0.07759877089495033, - "fp": 30388, - "fp_rate": 0.17477526183505973, - "match_probability": 0.005344493141899607, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9022145564773042, - "recall": 0.9224012291050496, - "row_count": 477830, - "tn": 143481, - "tn_rate": 0.8252247381649402, - "tp": 280374, - "tp_rate": 0.9224012291050496, - "truth_threshold": -7.54 - }, - { - "f1": 0.912210200927357, - "fn": 23616, - "fn_rate": 0.07769417787150325, - "fp": 30344, - "fp_rate": 0.17452219774657932, - "match_probability": 0.005418695216862511, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9023332013685711, - "recall": 0.9223058221284968, - "row_count": 477830, - "tn": 143525, - "tn_rate": 0.8254778022534207, - "tp": 280345, - "tp_rate": 0.9223058221284968, - "truth_threshold": -7.5200000000000005 - }, - { - "f1": 0.9121507493531642, - "fn": 23689, - "fn_rate": 0.07793434026075714, - "fp": 30298, - "fp_rate": 0.17425763074498618, - "match_probability": 0.005493921811082985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9024438934861706, - "recall": 0.9220656597392428, - "row_count": 477830, - "tn": 143571, - "tn_rate": 0.8257423692550139, - "tp": 280272, - "tp_rate": 0.9220656597392428, - "truth_threshold": -7.5 - }, - { - "f1": 0.9120650203269894, - "fn": 23750, - "fn_rate": 0.07813502390109257, - "fp": 30282, - "fp_rate": 0.1741656074400842, - "match_probability": 0.005570186911180121, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9024712312354868, - "recall": 0.9218649760989074, - "row_count": 477830, - "tn": 143587, - "tn_rate": 0.8258343925599158, - "tp": 280211, - "tp_rate": 0.9218649760989074, - "truth_threshold": -7.48 - }, - { - "f1": 0.9118518470284103, - "fn": 23893, - "fn_rate": 0.07860547899237073, - "fp": 30255, - "fp_rate": 0.17401031811306214, - "match_probability": 0.00564750469027039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9025048095049352, - "recall": 0.9213945210076293, - "row_count": 477830, - "tn": 143614, - "tn_rate": 0.8259896818869379, - "tp": 280068, - "tp_rate": 0.9213945210076293, - "truth_threshold": -7.46 - }, - { - "f1": 0.9119454458415155, - "fn": 23929, - "fn_rate": 0.07872391523912607, - "fp": 30150, - "fp_rate": 0.17340641517464297, - "match_probability": 0.005725889510329732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9027990018763178, - "recall": 0.921276084760874, - "row_count": 477830, - "tn": 143719, - "tn_rate": 0.826593584825357, - "tp": 280032, - "tp_rate": 0.921276084760874, - "truth_threshold": -7.44 - }, - { - "f1": 0.9119290324051903, - "fn": 24038, - "fn_rate": 0.07908251387513529, - "fp": 30031, - "fp_rate": 0.1727219918444346, - "match_probability": 0.005805355924582104, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9031114294379166, - "recall": 0.9209174861248647, - "row_count": 477830, - "tn": 143838, - "tn_rate": 0.8272780081555654, - "tp": 279923, - "tp_rate": 0.9209174861248647, - "truth_threshold": -7.42 - }, - { - "f1": 0.9118627390288643, - "fn": 24093, - "fn_rate": 0.07926345814101152, - "fp": 30009, - "fp_rate": 0.1725954598001944, - "match_probability": 0.005885918679914525, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9031583499259384, - "recall": 0.9207365418589885, - "row_count": 477830, - "tn": 143860, - "tn_rate": 0.8274045401998056, - "tp": 279868, - "tp_rate": 0.9207365418589885, - "truth_threshold": -7.4 - }, - { - "f1": 0.9117967166533065, - "fn": 24147, - "fn_rate": 0.07944111251114452, - "fp": 29990, - "fp_rate": 0.1724861821256233, - "match_probability": 0.005967592719318969, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9031968599501621, - "recall": 0.9205588874888555, - "row_count": 477830, - "tn": 143879, - "tn_rate": 0.8275138178743767, - "tp": 279814, - "tp_rate": 0.9205588874888555, - "truth_threshold": -7.38 - }, - { - "f1": 0.9117484112758677, - "fn": 24191, - "fn_rate": 0.07958586792384549, - "fp": 29969, - "fp_rate": 0.17236540153793947, - "match_probability": 0.006050393184361143, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9032443444319249, - "recall": 0.9204141320761545, - "row_count": 477830, - "tn": 143900, - "tn_rate": 0.8276345984620606, - "tp": 279770, - "tp_rate": 0.9204141320761545, - "truth_threshold": -7.36 - }, - { - "f1": 0.9115573302909298, - "fn": 24318, - "fn_rate": 0.08000368468323239, - "fp": 29946, - "fp_rate": 0.17223311803714292, - "match_probability": 0.0061343354176764545, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9032717570714722, - "recall": 0.9199963153167676, - "row_count": 477830, - "tn": 143923, - "tn_rate": 0.8277668819628571, - "tp": 279643, - "tp_rate": 0.9199963153167676, - "truth_threshold": -7.34 - }, - { - "f1": 0.9115726325742138, - "fn": 24368, - "fn_rate": 0.08016817947039258, - "fp": 29876, - "fp_rate": 0.1718305160781968, - "match_probability": 0.006219434965493263, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9034604435339242, - "recall": 0.9198318205296074, - "row_count": 477830, - "tn": 143993, - "tn_rate": 0.8281694839218032, - "tp": 279593, - "tp_rate": 0.9198318205296074, - "truth_threshold": -7.32 - }, - { - "f1": 0.9112962141571216, - "fn": 24543, - "fn_rate": 0.08074391122545327, - "fp": 29853, - "fp_rate": 0.17169823257740022, - "match_probability": 0.00630570758018367, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9034730058751063, - "recall": 0.9192560887745468, - "row_count": 477830, - "tn": 144016, - "tn_rate": 0.8283017674225998, - "tp": 279418, - "tp_rate": 0.9192560887745468, - "truth_threshold": -7.3 - }, - { - "f1": 0.9110527517698105, - "fn": 24696, - "fn_rate": 0.08124726527416345, - "fp": 29834, - "fp_rate": 0.17158895490282913, - "match_probability": 0.006393169222841944, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9034807618271169, - "recall": 0.9187527347258365, - "row_count": 477830, - "tn": 144035, - "tn_rate": 0.8284110450971709, - "tp": 279265, - "tp_rate": 0.9187527347258365, - "truth_threshold": -7.28 - }, - { - "f1": 0.9109800223822404, - "fn": 24752, - "fn_rate": 0.08143149943578289, - "fp": 29816, - "fp_rate": 0.17148542868481442, - "match_probability": 0.006481836065890851, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9035158967721059, - "recall": 0.9185685005642171, - "row_count": 477830, - "tn": 144053, - "tn_rate": 0.8285145713151856, - "tp": 279209, - "tp_rate": 0.9185685005642171, - "truth_threshold": -7.26 - }, - { - "f1": 0.9109143830475954, - "fn": 24804, - "fn_rate": 0.08160257401442948, - "fp": 29798, - "fp_rate": 0.1713819024667997, - "match_probability": 0.00657172449571595, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9035522972601188, - "recall": 0.9183974259855705, - "row_count": 477830, - "tn": 144071, - "tn_rate": 0.8286180975332003, - "tp": 279157, - "tp_rate": 0.9183974259855705, - "truth_threshold": -7.24 - }, - { - "f1": 0.9120228471346321, - "fn": 24851, - "fn_rate": 0.08175719911436007, - "fp": 28997, - "fp_rate": 0.16677498576514502, - "match_probability": 0.006662851115328145, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9058865913465127, - "recall": 0.9182428008856399, - "row_count": 477830, - "tn": 144872, - "tn_rate": 0.833225014234855, - "tp": 279110, - "tp_rate": 0.9182428008856399, - "truth_threshold": -7.22 - }, - { - "f1": 0.911998457546584, - "fn": 24884, - "fn_rate": 0.0818657656738858, - "fp": 28975, - "fp_rate": 0.1666484537209048, - "match_probability": 0.006755232747054526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9059412047316687, - "recall": 0.9181342343261142, - "row_count": 477830, - "tn": 144894, - "tn_rate": 0.8333515462790951, - "tp": 279077, - "tp_rate": 0.9181342343261142, - "truth_threshold": -7.2 - }, - { - "f1": 0.9117507657005384, - "fn": 25030, - "fn_rate": 0.08234609045239356, - "fp": 28967, - "fp_rate": 0.16660244206845384, - "match_probability": 0.006848886435257802, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9059201423848158, - "recall": 0.9176539095476064, - "row_count": 477830, - "tn": 144902, - "tn_rate": 0.8333975579315461, - "tp": 278931, - "tp_rate": 0.9176539095476064, - "truth_threshold": -7.18 - }, - { - "f1": 0.9117075945394634, - "fn": 25066, - "fn_rate": 0.0824645266991489, - "fp": 28952, - "fp_rate": 0.16651617022010826, - "match_probability": 0.006943829449084327, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9059532819874808, - "recall": 0.9175354733008511, - "row_count": 477830, - "tn": 144917, - "tn_rate": 0.8334838297798918, - "tp": 278895, - "tp_rate": 0.9175354733008511, - "truth_threshold": -7.16 - }, - { - "f1": 0.9115853558852091, - "fn": 25159, - "fn_rate": 0.08277048700326686, - "fp": 28924, - "fp_rate": 0.1663551294365298, - "match_probability": 0.007040079285241038, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060072922015039, - "recall": 0.9172295129967332, - "row_count": 477830, - "tn": 144945, - "tn_rate": 0.8336448705634703, - "tp": 278802, - "tp_rate": 0.9172295129967332, - "truth_threshold": -7.140000000000001 - }, - { - "f1": 0.9114453891432309, - "fn": 25241, - "fn_rate": 0.08304025845420959, - "fp": 28920, - "fp_rate": 0.1663321236103043, - "match_probability": 0.0071376536708013, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9059940189832272, - "recall": 0.9169597415457904, - "row_count": 477830, - "tn": 144949, - "tn_rate": 0.8336678763896956, - "tp": 278720, - "tp_rate": 0.9169597415457904, - "truth_threshold": -7.12 - }, - { - "f1": 0.9113585818942962, - "fn": 25304, - "fn_rate": 0.08324752188603143, - "fp": 28902, - "fp_rate": 0.1662285973922896, - "match_probability": 0.007236570566039904, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060277865385178, - "recall": 0.9167524781139685, - "row_count": 477830, - "tn": 144967, - "tn_rate": 0.8337714026077104, - "tp": 278657, - "tp_rate": 0.9167524781139685, - "truth_threshold": -7.1000000000000005 - }, - { - "f1": 0.9113411503049927, - "fn": 25323, - "fn_rate": 0.08331002990515231, - "fp": 28892, - "fp_rate": 0.16617108282672588, - "match_probability": 0.007336848167297341, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060514421357266, - "recall": 0.9166899700948477, - "row_count": 477830, - "tn": 144977, - "tn_rate": 0.8338289171732741, - "tp": 278638, - "tp_rate": 0.9166899700948477, - "truth_threshold": -7.08 - }, - { - "f1": 0.9111043500734445, - "fn": 25461, - "fn_rate": 0.08376403551771444, - "fp": 28886, - "fp_rate": 0.16613657408738763, - "match_probability": 0.007438504909873419, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060269498285544, - "recall": 0.9162359644822855, - "row_count": 477830, - "tn": 144983, - "tn_rate": 0.8338634259126124, - "tp": 278500, - "tp_rate": 0.9162359644822855, - "truth_threshold": -7.0600000000000005 - }, - { - "f1": 0.9109803741926196, - "fn": 25549, - "fn_rate": 0.08405354634311639, - "fp": 28864, - "fp_rate": 0.16601004204314743, - "match_probability": 0.0075415594709504815, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060649058175712, - "recall": 0.9159464536568837, - "row_count": 477830, - "tn": 145005, - "tn_rate": 0.8339899579568526, - "tp": 278412, - "tp_rate": 0.9159464536568837, - "truth_threshold": -7.04 - }, - { - "f1": 0.9109474958687152, - "fn": 25580, - "fn_rate": 0.08415553311115571, - "fp": 28849, - "fp_rate": 0.16592377019480184, - "match_probability": 0.007646030772546182, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9060996647462813, - "recall": 0.9158444668888442, - "row_count": 477830, - "tn": 145020, - "tn_rate": 0.8340762298051981, - "tp": 278381, - "tp_rate": 0.9158444668888442, - "truth_threshold": -7.0200000000000005 - }, - { - "f1": 0.9110973637869295, - "fn": 25608, - "fn_rate": 0.08424765019196542, - "fp": 28715, - "fp_rate": 0.16515307501624787, - "match_probability": 0.007751937984496124, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.906486511131085, - "recall": 0.9157523498080345, - "row_count": 477830, - "tn": 145154, - "tn_rate": 0.8348469249837521, - "tp": 278353, - "tp_rate": 0.9157523498080345, - "truth_threshold": -7 - }, - { - "f1": 0.9110687010406471, - "fn": 25645, - "fn_rate": 0.08436937633446397, - "fp": 28689, - "fp_rate": 0.16500353714578217, - "match_probability": 0.007859300527466294, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.906552010553574, - "recall": 0.915630623665536, - "row_count": 477830, - "tn": 145180, - "tn_rate": 0.8349964628542178, - "tp": 278316, - "tp_rate": 0.915630623665536, - "truth_threshold": -6.98 - }, - { - "f1": 0.9109766637856526, - "fn": 25705, - "fn_rate": 0.08456677007905619, - "fp": 28680, - "fp_rate": 0.1649517740367748, - "match_probability": 0.007968138075995553, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9065603252795371, - "recall": 0.9154332299209438, - "row_count": 477830, - "tn": 145189, - "tn_rate": 0.8350482259632251, - "tp": 278256, - "tp_rate": 0.9154332299209438, - "truth_threshold": -6.96 - }, - { - "f1": 0.9109051261230584, - "fn": 25756, - "fn_rate": 0.0847345547619596, - "fp": 28667, - "fp_rate": 0.16487700510154196, - "match_probability": 0.008078470561568152, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9065832008133684, - "recall": 0.9152654452380404, - "row_count": 477830, - "tn": 145202, - "tn_rate": 0.835122994898458, - "tp": 278205, - "tp_rate": 0.9152654452380404, - "truth_threshold": -6.94 - }, - { - "f1": 0.9108437522513377, - "fn": 25813, - "fn_rate": 0.08492207881932222, - "fp": 28639, - "fp_rate": 0.16471596431796354, - "match_probability": 0.008190318175716487, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9066485868045256, - "recall": 0.9150779211806778, - "row_count": 477830, - "tn": 145230, - "tn_rate": 0.8352840356820365, - "tp": 278148, - "tp_rate": 0.9150779211806778, - "truth_threshold": -6.92 - }, - { - "f1": 0.9106461449772849, - "fn": 25938, - "fn_rate": 0.0853333157872227, - "fp": 28622, - "fp_rate": 0.16461818955650517, - "match_probability": 0.008303701373154063, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9066607966867224, - "recall": 0.9146666842127773, - "row_count": 477830, - "tn": 145247, - "tn_rate": 0.8353818104434948, - "tp": 278023, - "tp_rate": 0.9146666842127773, - "truth_threshold": -6.9 - }, - { - "f1": 0.9104500106482316, - "fn": 26078, - "fn_rate": 0.08579390119127125, - "fp": 28586, - "fp_rate": 0.16441113712047575, - "match_probability": 0.008418640874938868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9067246605692583, - "recall": 0.9142060988087287, - "row_count": 477830, - "tn": 145283, - "tn_rate": 0.8355888628795243, - "tp": 277883, - "tp_rate": 0.9142060988087287, - "truth_threshold": -6.88 - }, - { - "f1": 0.9104362187385309, - "fn": 26125, - "fn_rate": 0.08594852629120184, - "fp": 28539, - "fp_rate": 0.16414081866232624, - "match_probability": 0.008535157671667086, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9068494492044064, - "recall": 0.9140514737087981, - "row_count": 477830, - "tn": 145330, - "tn_rate": 0.8358591813376738, - "tp": 277836, - "tp_rate": 0.9140514737087981, - "truth_threshold": -6.86 - }, - { - "f1": 0.9104528977194511, - "fn": 26180, - "fn_rate": 0.08612947055707805, - "fp": 28462, - "fp_rate": 0.16369795650748553, - "match_probability": 0.008653273026697373, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9070607328167501, - "recall": 0.9138705294429219, - "row_count": 477830, - "tn": 145407, - "tn_rate": 0.8363020434925145, - "tp": 277781, - "tp_rate": 0.9138705294429219, - "truth_threshold": -6.84 - }, - { - "f1": 0.9103947704876114, - "fn": 26256, - "fn_rate": 0.08637950263356155, - "fp": 28410, - "fp_rate": 0.16339888076655412, - "match_probability": 0.008773008479405596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9071917416657138, - "recall": 0.9136204973664385, - "row_count": 477830, - "tn": 145459, - "tn_rate": 0.8366011192334458, - "tp": 277705, - "tp_rate": 0.9136204973664385, - "truth_threshold": -6.82 - }, - { - "f1": 0.9102668354197953, - "fn": 26346, - "fn_rate": 0.08667559325044989, - "fp": 28388, - "fp_rate": 0.16327234872231391, - "match_probability": 0.008894385848470222, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9072296676829966, - "recall": 0.9133244067495501, - "row_count": 477830, - "tn": 145481, - "tn_rate": 0.8367276512776861, - "tp": 277615, - "tp_rate": 0.9133244067495501, - "truth_threshold": -6.8 - }, - { - "f1": 0.9102440496100846, - "fn": 26393, - "fn_rate": 0.08683021835038048, - "fp": 28348, - "fp_rate": 0.163042290460059, - "match_probability": 0.009017427235188254, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9073340394095111, - "recall": 0.9131697816496195, - "row_count": 477830, - "tn": 145521, - "tn_rate": 0.836957709539941, - "tp": 277568, - "tp_rate": 0.9131697816496195, - "truth_threshold": -6.78 - }, - { - "f1": 0.9101855526727523, - "fn": 26470, - "fn_rate": 0.08708354032260718, - "fp": 28294, - "fp_rate": 0.16273171180601487, - "match_probability": 0.009142155026821896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9074709354611901, - "recall": 0.9129164596773929, - "row_count": 477830, - "tn": 145575, - "tn_rate": 0.8372682881939851, - "tp": 277491, - "tp_rate": 0.9129164596773929, - "truth_threshold": -6.76 - }, - { - "f1": 0.9101099268794347, - "fn": 26524, - "fn_rate": 0.08726119469274018, - "fp": 28281, - "fp_rate": 0.16265694287078203, - "match_probability": 0.009268591899975812, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.907493179989402, - "recall": 0.9127388053072598, - "row_count": 477830, - "tn": 145588, - "tn_rate": 0.837343057129218, - "tp": 277437, - "tp_rate": 0.9127388053072598, - "truth_threshold": -6.74 - }, - { - "f1": 0.9099717492806074, - "fn": 26628, - "fn_rate": 0.08760334385003339, - "fp": 28248, - "fp_rate": 0.16246714480442173, - "match_probability": 0.009396760824005125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9075596977560778, - "recall": 0.9123966561499666, - "row_count": 477830, - "tn": 145621, - "tn_rate": 0.8375328551955783, - "tp": 277333, - "tp_rate": 0.9123966561499666, - "truth_threshold": -6.72 - }, - { - "f1": 0.9098975526839097, - "fn": 26677, - "fn_rate": 0.08776454874145038, - "fp": 28239, - "fp_rate": 0.16241538169541436, - "match_probability": 0.00952668506445404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9075716067202797, - "recall": 0.9122354512585497, - "row_count": 477830, - "tn": 145630, - "tn_rate": 0.8375846183045856, - "tp": 277284, - "tp_rate": 0.9122354512585497, - "truth_threshold": -6.7 - }, - { - "f1": 0.909801875244087, - "fn": 26738, - "fn_rate": 0.08796523238178582, - "fp": 28230, - "fp_rate": 0.16236361858640702, - "match_probability": 0.009658388186525174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9075798895411078, - "recall": 0.9120347676182142, - "row_count": 477830, - "tn": 145639, - "tn_rate": 0.837636381413593, - "tp": 277223, - "tp_rate": 0.9120347676182142, - "truth_threshold": -6.68 - }, - { - "f1": 0.9095803704506208, - "fn": 26901, - "fn_rate": 0.08850148538792806, - "fp": 28184, - "fp_rate": 0.16209905158481386, - "match_probability": 0.009791894058579487, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.90766730877593, - "recall": 0.911498514612072, - "row_count": 477830, - "tn": 145685, - "tn_rate": 0.8379009484151861, - "tp": 277060, - "tp_rate": 0.911498514612072, - "truth_threshold": -6.66 - }, - { - "f1": 0.9095448680698506, - "fn": 26920, - "fn_rate": 0.08856399340704893, - "fp": 28184, - "fp_rate": 0.16209905158481386, - "match_probability": 0.009927226855666866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9076615611434188, - "recall": 0.9114360065929511, - "row_count": 477830, - "tn": 145685, - "tn_rate": 0.8379009484151861, - "tp": 277041, - "tp_rate": 0.9114360065929511, - "truth_threshold": -6.640000000000001 - }, - { - "f1": 0.9094017037878738, - "fn": 27050, - "fn_rate": 0.08899167985366543, - "fp": 28124, - "fp_rate": 0.16175396419143148, - "match_probability": 0.010064411063087227, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9078007441768977, - "recall": 0.9110083201463346, - "row_count": 477830, - "tn": 145745, - "tn_rate": 0.8382460358085685, - "tp": 276911, - "tp_rate": 0.9110083201463346, - "truth_threshold": -6.62 - }, - { - "f1": 0.9092596181323103, - "fn": 27136, - "fn_rate": 0.08927461088758097, - "fp": 28117, - "fp_rate": 0.16171370399553686, - "match_probability": 0.010203471479982122, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9077955807989716, - "recall": 0.9107253891124191, - "row_count": 477830, - "tn": 145752, - "tn_rate": 0.8382862960044631, - "tp": 276825, - "tp_rate": 0.9107253891124191, - "truth_threshold": -6.6000000000000005 - }, - { - "f1": 0.9093181945115201, - "fn": 27180, - "fn_rate": 0.08941936630028194, - "fp": 28024, - "fp_rate": 0.1611788185357942, - "match_probability": 0.010344433222956822, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9080592509965387, - "recall": 0.9105806336997181, - "row_count": 477830, - "tn": 145845, - "tn_rate": 0.8388211814642058, - "tp": 276781, - "tp_rate": 0.9105806336997181, - "truth_threshold": -6.58 - }, - { - "f1": 0.9083698615271799, - "fn": 27723, - "fn_rate": 0.09120577968884166, - "fp": 28007, - "fp_rate": 0.16108104377433585, - "match_probability": 0.010487321729732655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.907945898864402, - "recall": 0.9087942203111583, - "row_count": 477830, - "tn": 145862, - "tn_rate": 0.8389189562256641, - "tp": 276238, - "tp_rate": 0.9087942203111583, - "truth_threshold": -6.5600000000000005 - }, - { - "f1": 0.9082552211807269, - "fn": 27806, - "fn_rate": 0.09147884103552759, - "fp": 27984, - "fp_rate": 0.16094876027353927, - "match_probability": 0.010632162762829713, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9079894390393866, - "recall": 0.9085211589644724, - "row_count": 477830, - "tn": 145885, - "tn_rate": 0.8390512397264607, - "tp": 276155, - "tp_rate": 0.9085211589644724, - "truth_threshold": -6.54 - }, - { - "f1": 0.9081725629512672, - "fn": 27872, - "fn_rate": 0.09169597415457904, - "fp": 27961, - "fp_rate": 0.1608164767727427, - "match_probability": 0.010778982413279539, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9080381516197994, - "recall": 0.9083040258454209, - "row_count": 477830, - "tn": 145908, - "tn_rate": 0.8391835232272573, - "tp": 276089, - "tp_rate": 0.9083040258454209, - "truth_threshold": -6.5200000000000005 - }, - { - "f1": 0.90816736082325, - "fn": 27909, - "fn_rate": 0.09181770029707759, - "fp": 27920, - "fp_rate": 0.1605806670539314, - "match_probability": 0.010927807104367976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9081494348163647, - "recall": 0.9081822997029224, - "row_count": 477830, - "tn": 145949, - "tn_rate": 0.8394193329460686, - "tp": 276052, - "tp_rate": 0.9081822997029224, - "truth_threshold": -6.5 - }, - { - "f1": 0.9082619826389118, - "fn": 27942, - "fn_rate": 0.09192626685660331, - "fp": 27816, - "fp_rate": 0.15998251557206863, - "match_probability": 0.011078663595407736, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9084503102012605, - "recall": 0.9080737331433967, - "row_count": 477830, - "tn": 146053, - "tn_rate": 0.8400174844279313, - "tp": 276019, - "tp_rate": 0.9080737331433967, - "truth_threshold": -6.48 - }, - { - "f1": 0.908127766715487, - "fn": 28040, - "fn_rate": 0.0922486766394373, - "fp": 27789, - "fp_rate": 0.15982722624504656, - "match_probability": 0.011231578985540796, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9085015310658193, - "recall": 0.9077513233605627, - "row_count": 477830, - "tn": 146080, - "tn_rate": 0.8401727737549535, - "tp": 275921, - "tp_rate": 0.9077513233605627, - "truth_threshold": -6.46 - }, - { - "f1": 0.9081381416966202, - "fn": 28065, - "fn_rate": 0.09233092403301739, - "fp": 27752, - "fp_rate": 0.15961442235246076, - "match_probability": 0.011386580717570208, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9086047001791548, - "recall": 0.9076690759669827, - "row_count": 477830, - "tn": 146117, - "tn_rate": 0.8403855776475393, - "tp": 275896, - "tp_rate": 0.9076690759669827, - "truth_threshold": -6.44 - }, - { - "f1": 0.9078936537986666, - "fn": 28211, - "fn_rate": 0.09281124881152517, - "fp": 27740, - "fp_rate": 0.1595454048737843, - "match_probability": 0.011543696581821352, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9085966588684965, - "recall": 0.9071887511884749, - "row_count": 477830, - "tn": 146129, - "tn_rate": 0.8404545951262157, - "tp": 275750, - "tp_rate": 0.9071887511884749, - "truth_threshold": -6.42 - }, - { - "f1": 0.9076837449488047, - "fn": 28351, - "fn_rate": 0.09327183421557371, - "fp": 27711, - "fp_rate": 0.15937861263364947, - "match_probability": 0.011702954720032218, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9086413403621906, - "recall": 0.9067281657844263, - "row_count": 477830, - "tn": 146158, - "tn_rate": 0.8406213873663505, - "tp": 275610, - "tp_rate": 0.9067281657844263, - "truth_threshold": -6.4 - }, - { - "f1": 0.9076038801693045, - "fn": 28417, - "fn_rate": 0.09348896733462517, - "fp": 27686, - "fp_rate": 0.15923482621974014, - "match_probability": 0.011864383629272682, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9086963690927679, - "recall": 0.9065110326653748, - "row_count": 477830, - "tn": 146183, - "tn_rate": 0.8407651737802598, - "tp": 275544, - "tp_rate": 0.9065110326653748, - "truth_threshold": -6.38 - }, - { - "f1": 0.9075116705815689, - "fn": 28494, - "fn_rate": 0.09374228930685187, - "fp": 27655, - "fp_rate": 0.1590565310664926, - "match_probability": 0.012028012165892355, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.908766107375908, - "recall": 0.9062577106931481, - "row_count": 477830, - "tn": 146214, - "tn_rate": 0.8409434689335075, - "tp": 275467, - "tp_rate": 0.9062577106931481, - "truth_threshold": -6.36 - }, - { - "f1": 0.9074140584070038, - "fn": 28569, - "fn_rate": 0.09398903148759216, - "fp": 27629, - "fp_rate": 0.15890699319602689, - "match_probability": 0.012193869549496904, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9088215008200752, - "recall": 0.9060109685124078, - "row_count": 477830, - "tn": 146240, - "tn_rate": 0.8410930068039731, - "tp": 275392, - "tp_rate": 0.9060109685124078, - "truth_threshold": -6.34 - }, - { - "f1": 0.90723487557385, - "fn": 28676, - "fn_rate": 0.09434105033211497, - "fp": 27621, - "fp_rate": 0.15886098154357592, - "match_probability": 0.012361985366952384, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9088132952136967, - "recall": 0.9056589496678851, - "row_count": 477830, - "tn": 146248, - "tn_rate": 0.8411390184564241, - "tp": 275285, - "tp_rate": 0.9056589496678851, - "truth_threshold": -6.32 - }, - { - "f1": 0.9069691545437464, - "fn": 28831, - "fn_rate": 0.09485098417231158, - "fp": 27611, - "fp_rate": 0.15880346697801218, - "match_probability": 0.01253238957641751, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9087966281408861, - "recall": 0.9051490158276885, - "row_count": 477830, - "tn": 146258, - "tn_rate": 0.8411965330219878, - "tp": 275130, - "tp_rate": 0.9051490158276885, - "truth_threshold": -6.3 - }, - { - "f1": 0.9072315582894932, - "fn": 28902, - "fn_rate": 0.09508456677007905, - "fp": 27350, - "fp_rate": 0.15730233681679887, - "match_probability": 0.01270511251140324, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.909559569986343, - "recall": 0.904915433229921, - "row_count": 477830, - "tn": 146519, - "tn_rate": 0.8426976631832012, - "tp": 275059, - "tp_rate": 0.904915433229921, - "truth_threshold": -6.28 - }, - { - "f1": 0.9070296056321301, - "fn": 29024, - "fn_rate": 0.09548593405074993, - "fp": 27339, - "fp_rate": 0.15723907079467875, - "match_probability": 0.012880184884859674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9095561672114226, - "recall": 0.9045140659492501, - "row_count": 477830, - "tn": 146530, - "tn_rate": 0.8427609292053212, - "tp": 274937, - "tp_rate": 0.9045140659492501, - "truth_threshold": -6.26 - }, - { - "f1": 0.9067553296812092, - "fn": 29196, - "fn_rate": 0.096051796118581, - "fp": 27315, - "fp_rate": 0.1571010358373258, - "match_probability": 0.013057637793289553, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9095769332627118, - "recall": 0.9039482038814189, - "row_count": 477830, - "tn": 146554, - "tn_rate": 0.8428989641626742, - "tp": 274765, - "tp_rate": 0.9039482038814189, - "truth_threshold": -6.24 - }, - { - "f1": 0.9065901784358641, - "fn": 29295, - "fn_rate": 0.0963774957971582, - "fp": 27306, - "fp_rate": 0.15704927272831845, - "match_probability": 0.013237502720888259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.90957439762627, - "recall": 0.9036225042028418, - "row_count": 477830, - "tn": 146563, - "tn_rate": 0.8429507272716815, - "tp": 274666, - "tp_rate": 0.9036225042028418, - "truth_threshold": -6.22 - }, - { - "f1": 0.9048066177783362, - "fn": 30295, - "fn_rate": 0.09966739154036208, - "fp": 27290, - "fp_rate": 0.1569572494234165, - "match_probability": 0.013419811543709683, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9093222929597682, - "recall": 0.9003326084596379, - "row_count": 477830, - "tn": 146579, - "tn_rate": 0.8430427505765835, - "tp": 273666, - "tp_rate": 0.9003326084596379, - "truth_threshold": -6.2 - }, - { - "f1": 0.904633396170255, - "fn": 30427, - "fn_rate": 0.100101657778465, - "fp": 27245, - "fp_rate": 0.1566984338783797, - "match_probability": 0.013604596533857708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9094185431828685, - "recall": 0.899898342221535, - "row_count": 477830, - "tn": 146624, - "tn_rate": 0.8433015661216203, - "tp": 273534, - "tp_rate": 0.899898342221535, - "truth_threshold": -6.18 - }, - { - "f1": 0.904551167559701, - "fn": 30479, - "fn_rate": 0.10027273235711161, - "fp": 27237, - "fp_rate": 0.1566524222259287, - "match_probability": 0.013791890363702633, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9094270731147682, - "recall": 0.8997272676428884, - "row_count": 477830, - "tn": 146632, - "tn_rate": 0.8433475777740713, - "tp": 273482, - "tp_rate": 0.8997272676428884, - "truth_threshold": -6.16 - }, - { - "f1": 0.9044960552790426, - "fn": 30644, - "fn_rate": 0.10081556515474024, - "fp": 27074, - "fp_rate": 0.15571493480723994, - "match_probability": 0.013981726110122288, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9098708017217559, - "recall": 0.8991844348452598, - "row_count": 477830, - "tn": 146795, - "tn_rate": 0.84428506519276, - "tp": 273317, - "tp_rate": 0.8991844348452598, - "truth_threshold": -6.140000000000001 - }, - { - "f1": 0.9044490705040161, - "fn": 30679, - "fn_rate": 0.10093071150575238, - "fp": 27064, - "fp_rate": 0.1556574202416762, - "match_probability": 0.01417413725876712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9098905928495802, - "recall": 0.8990692884942476, - "row_count": 477830, - "tn": 146805, - "tn_rate": 0.8443425797583238, - "tp": 273282, - "tp_rate": 0.8990692884942476, - "truth_threshold": -6.12 - }, - { - "f1": 0.904331388997398, - "fn": 30786, - "fn_rate": 0.1012827303502752, - "fp": 27013, - "fp_rate": 0.1553640959573012, - "match_probability": 0.014369157708348785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9100130584833505, - "recall": 0.8987172696497248, - "row_count": 477830, - "tn": 146856, - "tn_rate": 0.8446359040426988, - "tp": 273175, - "tp_rate": 0.8987172696497248, - "truth_threshold": -6.1000000000000005 - }, - { - "f1": 0.9042895548874968, - "fn": 30833, - "fn_rate": 0.10143735545020578, - "fp": 26983, - "fp_rate": 0.15519155226061, - "match_probability": 0.01456682177495178, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9100899333913118, - "recall": 0.8985626445497942, - "row_count": 477830, - "tn": 146886, - "tn_rate": 0.84480844773939, - "tp": 273128, - "tp_rate": 0.8985626445497942, - "truth_threshold": -6.08 - }, - { - "f1": 0.9040295151135795, - "fn": 30992, - "fn_rate": 0.1019604488733752, - "fp": 26965, - "fp_rate": 0.15508802604259528, - "match_probability": 0.014767164196367252, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9100968879820227, - "recall": 0.8980395511266248, - "row_count": 477830, - "tn": 146904, - "tn_rate": 0.8449119739574047, - "tp": 272969, - "tp_rate": 0.8980395511266248, - "truth_threshold": -6.0600000000000005 - }, - { - "f1": 0.9037775414674869, - "fn": 31144, - "fn_rate": 0.1024605130263422, - "fp": 26949, - "fp_rate": 0.15499600273769332, - "match_probability": 0.014970220136448715, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9100998779047658, - "recall": 0.8975394869736578, - "row_count": 477830, - "tn": 146920, - "tn_rate": 0.8450039972623067, - "tp": 272817, - "tp_rate": 0.8975394869736578, - "truth_threshold": -6.04 - }, - { - "f1": 0.9036230011199693, - "fn": 31253, - "fn_rate": 0.10281911166235141, - "fp": 26920, - "fp_rate": 0.15482921049755852, - "match_probability": 0.015176025189488596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9101552591880598, - "recall": 0.8971808883376485, - "row_count": 477830, - "tn": 146949, - "tn_rate": 0.8451707895024415, - "tp": 272708, - "tp_rate": 0.8971808883376485, - "truth_threshold": -6.0200000000000005 - }, - { - "f1": 0.9035442660436447, - "fn": 31312, - "fn_rate": 0.10301321551120045, - "fp": 26901, - "fp_rate": 0.15471993282298743, - "match_probability": 0.015384615384615385, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9101952929394092, - "recall": 0.8969867844887995, - "row_count": 477830, - "tn": 146968, - "tn_rate": 0.8452800671770125, - "tp": 272649, - "tp_rate": 0.8969867844887995, - "truth_threshold": -6 - }, - { - "f1": 0.9034882757477836, - "fn": 31356, - "fn_rate": 0.10315797092390142, - "fp": 26885, - "fp_rate": 0.15462790951808544, - "match_probability": 0.01559602719021019, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9102307255667968, - "recall": 0.8968420290760986, - "row_count": 477830, - "tn": 146984, - "tn_rate": 0.8453720904819145, - "tp": 272605, - "tp_rate": 0.8968420290760986, - "truth_threshold": -5.98 - }, - { - "f1": 0.9032984154345952, - "fn": 31472, - "fn_rate": 0.10353959883011307, - "fp": 26870, - "fp_rate": 0.15454163766973986, - "match_probability": 0.015810297518342384, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9102415494439786, - "recall": 0.8964604011698869, - "row_count": 477830, - "tn": 146999, - "tn_rate": 0.8454583623302602, - "tp": 272489, - "tp_rate": 0.8964604011698869, - "truth_threshold": -5.96 - }, - { - "f1": 0.9032842056400139, - "fn": 31535, - "fn_rate": 0.10374686226193491, - "fp": 26804, - "fp_rate": 0.15416204153701926, - "match_probability": 0.016027463729223174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9104234201116198, - "recall": 0.896253137738065, - "row_count": 477830, - "tn": 147065, - "tn_rate": 0.8458379584629807, - "tp": 272426, - "tp_rate": 0.896253137738065, - "truth_threshold": -5.94 - }, - { - "f1": 0.9031568055873369, - "fn": 31624, - "fn_rate": 0.10403966298308007, - "fp": 26781, - "fp_rate": 0.15402975803622268, - "match_probability": 0.016247563635676584, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9104667723105931, - "recall": 0.8959603370169199, - "row_count": 477830, - "tn": 147088, - "tn_rate": 0.8459702419637773, - "tp": 272337, - "tp_rate": 0.8959603370169199, - "truth_threshold": -5.92 - }, - { - "f1": 0.9030544048238967, - "fn": 31691, - "fn_rate": 0.10426008599787473, - "fp": 26768, - "fp_rate": 0.15395498910098981, - "match_probability": 0.016470635507626726, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.910486292711963, - "recall": 0.8957399140021253, - "row_count": 477830, - "tn": 147101, - "tn_rate": 0.8460450108990102, - "tp": 272270, - "tp_rate": 0.8957399140021253, - "truth_threshold": -5.9 - }, - { - "f1": 0.9024278531007817, - "fn": 32064, - "fn_rate": 0.10548721711008978, - "fp": 26733, - "fp_rate": 0.15375368812151677, - "match_probability": 0.016696718076600735, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9104811974684393, - "recall": 0.8945127828899102, - "row_count": 477830, - "tn": 147136, - "tn_rate": 0.8462463118784832, - "tp": 271897, - "tp_rate": 0.8945127828899102, - "truth_threshold": -5.88 - }, - { - "f1": 0.9023616297402706, - "fn": 32102, - "fn_rate": 0.10561223314833153, - "fp": 26730, - "fp_rate": 0.15373643375184765, - "match_probability": 0.0169258505402461, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9104789526740771, - "recall": 0.8943877668516684, - "row_count": 477830, - "tn": 147139, - "tn_rate": 0.8462635662481524, - "tp": 271859, - "tp_rate": 0.8943877668516684, - "truth_threshold": -5.86 - }, - { - "f1": 0.9022589341443009, - "fn": 32197, - "fn_rate": 0.1059247732439359, - "fp": 26684, - "fp_rate": 0.1534718667502545, - "match_probability": 0.017158072566861807, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9105907896853053, - "recall": 0.8940752267560641, - "row_count": 477830, - "tn": 147185, - "tn_rate": 0.8465281332497455, - "tp": 271764, - "tp_rate": 0.8940752267560641, - "truth_threshold": -5.84 - }, - { - "f1": 0.9021289737688912, - "fn": 32302, - "fn_rate": 0.10627021229697231, - "fp": 26643, - "fp_rate": 0.15323605703144322, - "match_probability": 0.017393424299941902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9106844741235393, - "recall": 0.8937297877030277, - "row_count": 477830, - "tn": 147226, - "tn_rate": 0.8467639429685568, - "tp": 271659, - "tp_rate": 0.8937297877030277, - "truth_threshold": -5.82 - }, - { - "f1": 0.9019897638919795, - "fn": 32380, - "fn_rate": 0.10652682416494222, - "fp": 26641, - "fp_rate": 0.15322455411833047, - "match_probability": 0.017631946362730785, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9106672210635031, - "recall": 0.8934731758350578, - "row_count": 477830, - "tn": 147228, - "tn_rate": 0.8467754458816695, - "tp": 271581, - "tp_rate": 0.8934731758350578, - "truth_threshold": -5.8 - }, - { - "f1": 0.9018548783566522, - "fn": 32463, - "fn_rate": 0.10679988551162814, - "fp": 26630, - "fp_rate": 0.15316128809621035, - "match_probability": 0.01787367986278876, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9106759512692535, - "recall": 0.8932001144883719, - "row_count": 477830, - "tn": 147239, - "tn_rate": 0.8468387119037897, - "tp": 271498, - "tp_rate": 0.8932001144883719, - "truth_threshold": -5.78 - }, - { - "f1": 0.9017574750830565, - "fn": 32532, - "fn_rate": 0.1070268883179092, - "fp": 26610, - "fp_rate": 0.15304625896508292, - "match_probability": 0.018118666396567108, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.910716382755277, - "recall": 0.8929731116820908, - "row_count": 477830, - "tn": 147259, - "tn_rate": 0.846953741034917, - "tp": 271429, - "tp_rate": 0.8929731116820908, - "truth_threshold": -5.76 - }, - { - "f1": 0.9029532354468125, - "fn": 32638, - "fn_rate": 0.10737561726668882, - "fp": 25684, - "fp_rate": 0.1477204101938816, - "match_probability": 0.018366948053991125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9135239236785665, - "recall": 0.8926243827333111, - "row_count": 477830, - "tn": 148185, - "tn_rate": 0.8522795898061184, - "tp": 271323, - "tp_rate": 0.8926243827333111, - "truth_threshold": -5.74 - }, - { - "f1": 0.9025602610201092, - "fn": 32868, - "fn_rate": 0.10813229328762572, - "fp": 25666, - "fp_rate": 0.1476168839758669, - "match_probability": 0.018618567423050236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9135123113368087, - "recall": 0.8918677067123743, - "row_count": 477830, - "tn": 148203, - "tn_rate": 0.8523831160241331, - "tp": 271093, - "tp_rate": 0.8918677067123743, - "truth_threshold": -5.72 - }, - { - "f1": 0.9024999334061427, - "fn": 32915, - "fn_rate": 0.1082869183875563, - "fp": 25650, - "fp_rate": 0.14752486067096493, - "match_probability": 0.018873567594393605, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9135478739180845, - "recall": 0.8917130816124437, - "row_count": 477830, - "tn": 148219, - "tn_rate": 0.8524751393290351, - "tp": 271046, - "tp_rate": 0.8917130816124437, - "truth_threshold": -5.7 - }, - { - "f1": 0.902293778122679, - "fn": 33050, - "fn_rate": 0.10873105431288882, - "fp": 25622, - "fp_rate": 0.14736381988738648, - "match_probability": 0.01913199216593024, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9135947769725461, - "recall": 0.8912689456871111, - "row_count": 477830, - "tn": 148247, - "tn_rate": 0.8526361801126136, - "tp": 270911, - "tp_rate": 0.8912689456871111, - "truth_threshold": -5.68 - }, - { - "f1": 0.9021919451014357, - "fn": 33132, - "fn_rate": 0.10900082576383155, - "fp": 25591, - "fp_rate": 0.14718552473413893, - "match_probability": 0.019393885247431873, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9136664192699548, - "recall": 0.8909991742361685, - "row_count": 477830, - "tn": 148278, - "tn_rate": 0.8528144752658611, - "tp": 270829, - "tp_rate": 0.8909991742361685, - "truth_threshold": -5.66 - }, - { - "f1": 0.9021412841041223, - "fn": 33186, - "fn_rate": 0.10917848013396456, - "fp": 25559, - "fp_rate": 0.14700147812433498, - "match_probability": 0.019659291465137646, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9137493503951623, - "recall": 0.8908215198660354, - "row_count": 477830, - "tn": 148310, - "tn_rate": 0.852998521875665, - "tp": 270775, - "tp_rate": 0.8908215198660354, - "truth_threshold": -5.64 - }, - { - "f1": 0.902026576744682, - "fn": 33252, - "fn_rate": 0.10939561325301601, - "fp": 25554, - "fp_rate": 0.14697272084155313, - "match_probability": 0.019928255966358603, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9137455571569855, - "recall": 0.890604386746984, - "row_count": 477830, - "tn": 148315, - "tn_rate": 0.8530272791584469, - "tp": 270709, - "tp_rate": 0.890604386746984, - "truth_threshold": -5.62 - }, - { - "f1": 0.9017208680667815, - "fn": 33424, - "fn_rate": 0.10996147532084709, - "fp": 25548, - "fp_rate": 0.1469382121022149, - "match_probability": 0.02020082442408101, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9137139672729115, - "recall": 0.8900385246791529, - "row_count": 477830, - "tn": 148321, - "tn_rate": 0.8530617878977851, - "tp": 270537, - "tp_rate": 0.8900385246791529, - "truth_threshold": -5.6000000000000005 - }, - { - "f1": 0.9016074297791201, - "fn": 33495, - "fn_rate": 0.11019505791861456, - "fp": 25537, - "fp_rate": 0.14687494608009477, - "match_probability": 0.02047704304156655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.913727225737577, - "recall": 0.8898049420813854, - "row_count": 477830, - "tn": 148332, - "tn_rate": 0.8531250539199052, - "tp": 270466, - "tp_rate": 0.8898049420813854, - "truth_threshold": -5.58 - }, - { - "f1": 0.9014607179890705, - "fn": 33594, - "fn_rate": 0.11052075759719175, - "fp": 25514, - "fp_rate": 0.14674266257929822, - "match_probability": 0.020756958556947872, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9137693870170778, - "recall": 0.8894792424028083, - "row_count": 477830, - "tn": 148355, - "tn_rate": 0.8532573374207018, - "tp": 270367, - "tp_rate": 0.8894792424028083, - "truth_threshold": -5.5600000000000005 - }, - { - "f1": 0.9014555579638862, - "fn": 33628, - "fn_rate": 0.11063261405246068, - "fp": 25477, - "fp_rate": 0.14652985868671242, - "match_probability": 0.02104061824781806, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9138737703255468, - "recall": 0.8893673859475393, - "row_count": 477830, - "tn": 148392, - "tn_rate": 0.8534701413132876, - "tp": 270333, - "tp_rate": 0.8893673859475393, - "truth_threshold": -5.54 - }, - { - "f1": 0.9012971159266091, - "fn": 33735, - "fn_rate": 0.1109846328969835, - "fp": 25451, - "fp_rate": 0.14638032081624672, - "match_probability": 0.021328069935811763, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9139229632335285, - "recall": 0.8890153671030165, - "row_count": 477830, - "tn": 148418, - "tn_rate": 0.8536196791837533, - "tp": 270226, - "tp_rate": 0.8890153671030165, - "truth_threshold": -5.5200000000000005 - }, - { - "f1": 0.9019668070018463, - "fn": 33803, - "fn_rate": 0.11120834580752136, - "fp": 24924, - "fp_rate": 0.1433493032110382, - "match_probability": 0.021619361991176866, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9155353427182953, - "recall": 0.8887916541924786, - "row_count": 477830, - "tn": 148945, - "tn_rate": 0.8566506967889618, - "tp": 270158, - "tp_rate": 0.8887916541924786, - "truth_threshold": -5.5 - }, - { - "f1": 0.9017218463429132, - "fn": 33944, - "fn_rate": 0.1116722211073131, - "fp": 24915, - "fp_rate": 0.14329754010203083, - "match_probability": 0.021914543337334162, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.915522900193943, - "recall": 0.8883277788926869, - "row_count": 477830, - "tn": 148954, - "tn_rate": 0.8567024598979691, - "tp": 270017, - "tp_rate": 0.8883277788926869, - "truth_threshold": -5.48 - }, - { - "f1": 0.9015856261503055, - "fn": 34047, - "fn_rate": 0.1120110803688631, - "fp": 24880, - "fp_rate": 0.14309623912255778, - "match_probability": 0.02221366345542378, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9156020814534895, - "recall": 0.8879889196311369, - "row_count": 477830, - "tn": 148989, - "tn_rate": 0.8569037608774422, - "tp": 269914, - "tp_rate": 0.8879889196311369, - "truth_threshold": -5.46 - }, - { - "f1": 0.9015217572872296, - "fn": 34113, - "fn_rate": 0.11222821348791456, - "fp": 24842, - "fp_rate": 0.14287768377341561, - "match_probability": 0.02251677238883578, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9157012453764973, - "recall": 0.8877717865120854, - "row_count": 477830, - "tn": 149027, - "tn_rate": 0.8571223162265844, - "tp": 269848, - "tp_rate": 0.8877717865120854, - "truth_threshold": -5.44 - }, - { - "f1": 0.9013829904537238, - "fn": 34196, - "fn_rate": 0.1125012748346005, - "fp": 24832, - "fp_rate": 0.1428201692078519, - "match_probability": 0.02282392074772345, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.915708578159316, - "recall": 0.8874987251653995, - "row_count": 477830, - "tn": 149037, - "tn_rate": 0.8571798307921481, - "tp": 269765, - "tp_rate": 0.8874987251653995, - "truth_threshold": -5.42 - }, - { - "f1": 0.9013705130818666, - "fn": 34243, - "fn_rate": 0.11265589993453108, - "fp": 24784, - "fp_rate": 0.142544099293146, - "match_probability": 0.023135159713496674, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9158443745713102, - "recall": 0.8873441000654689, - "row_count": 477830, - "tn": 149085, - "tn_rate": 0.857455900706854, - "tp": 269718, - "tp_rate": 0.8873441000654689, - "truth_threshold": -5.4 - }, - { - "f1": 0.9012921727620945, - "fn": 34307, - "fn_rate": 0.11286645326209613, - "fp": 24758, - "fp_rate": 0.14239456142268028, - "match_probability": 0.023450541043293725, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9159069603141177, - "recall": 0.8871335467379039, - "row_count": 477830, - "tn": 149111, - "tn_rate": 0.8576054385773197, - "tp": 269654, - "tp_rate": 0.8871335467379039, - "truth_threshold": -5.38 - }, - { - "f1": 0.901193711536983, - "fn": 34368, - "fn_rate": 0.11306713690243156, - "fp": 24749, - "fp_rate": 0.14234279831367294, - "match_probability": 0.023770117074428793, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9159175381019359, - "recall": 0.8869328630975685, - "row_count": 477830, - "tn": 149120, - "tn_rate": 0.8576572016863271, - "tp": 269593, - "tp_rate": 0.8869328630975685, - "truth_threshold": -5.36 - }, - { - "f1": 0.9010488236257803, - "fn": 34460, - "fn_rate": 0.11336980731080631, - "fp": 24733, - "fp_rate": 0.14225077500877098, - "match_probability": 0.024093940728813348, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9159410537191487, - "recall": 0.8866301926891936, - "row_count": 477830, - "tn": 149136, - "tn_rate": 0.8577492249912291, - "tp": 269501, - "tp_rate": 0.8866301926891936, - "truth_threshold": -5.34 - }, - { - "f1": 0.9009367235077135, - "fn": 34562, - "fn_rate": 0.11370537667661312, - "fp": 24682, - "fp_rate": 0.14195745072439594, - "match_probability": 0.024422065517348556, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9160707424145048, - "recall": 0.8862946233233869, - "row_count": 477830, - "tn": 149187, - "tn_rate": 0.8580425492756041, - "tp": 269399, - "tp_rate": 0.8862946233233869, - "truth_threshold": -5.32 - }, - { - "f1": 0.9008027829810008, - "fn": 34657, - "fn_rate": 0.1140179167722175, - "fp": 24655, - "fp_rate": 0.1418021613973739, - "match_probability": 0.024754545544286844, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9161277593133736, - "recall": 0.8859820832277825, - "row_count": 477830, - "tn": 149214, - "tn_rate": 0.8581978386026261, - "tp": 269304, - "tp_rate": 0.8859820832277825, - "truth_threshold": -5.3 - }, - { - "f1": 0.9007263031470906, - "fn": 34724, - "fn_rate": 0.11423833978701214, - "fp": 24624, - "fp_rate": 0.14162386624412632, - "match_probability": 0.0250914355115595, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9162052807279633, - "recall": 0.8857616602129879, - "row_count": 477830, - "tn": 149245, - "tn_rate": 0.8583761337558736, - "tp": 269237, - "tp_rate": 0.8857616602129879, - "truth_threshold": -5.28 - }, - { - "f1": 0.9003664842612581, - "fn": 34945, - "fn_rate": 0.11496540674626021, - "fp": 24593, - "fp_rate": 0.14144557109087877, - "match_probability": 0.02543279072306829, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9162389436291122, - "recall": 0.8850345932537398, - "row_count": 477830, - "tn": 149276, - "tn_rate": 0.8585544289091213, - "tp": 269016, - "tp_rate": 0.8850345932537398, - "truth_threshold": -5.26 - }, - { - "f1": 0.900325052473713, - "fn": 35015, - "fn_rate": 0.11519569944828448, - "fp": 24536, - "fp_rate": 0.14111773806716552, - "match_probability": 0.025778667088937956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9163969170170573, - "recall": 0.8848043005517156, - "row_count": 477830, - "tn": 149333, - "tn_rate": 0.8588822619328345, - "tp": 268946, - "tp_rate": 0.8848043005517156, - "truth_threshold": -5.24 - }, - { - "f1": 0.9002504285408185, - "fn": 35067, - "fn_rate": 0.11536677402693109, - "fp": 24522, - "fp_rate": 0.14103721767537628, - "match_probability": 0.02612912112972733, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9164258254491916, - "recall": 0.8846332259730689, - "row_count": 477830, - "tn": 149347, - "tn_rate": 0.8589627823246238, - "tp": 268894, - "tp_rate": 0.8846332259730689, - "truth_threshold": -5.22 - }, - { - "f1": 0.9000622831808623, - "fn": 35170, - "fn_rate": 0.11570563328848109, - "fp": 24520, - "fp_rate": 0.14102571476226355, - "match_probability": 0.026484209980595738, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9164027261166475, - "recall": 0.884294366711519, - "row_count": 477830, - "tn": 149349, - "tn_rate": 0.8589742852377364, - "tp": 268791, - "tp_rate": 0.884294366711519, - "truth_threshold": -5.2 - }, - { - "f1": 0.9154485174357192, - "fn": 35297, - "fn_rate": 0.11612345004786798, - "fp": 14331, - "fp_rate": 0.08242412390938005, - "match_probability": 0.026843991395422352, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.949359529320306, - "recall": 0.883876549952132, - "row_count": 477830, - "tn": 159538, - "tn_rate": 0.91757587609062, - "tp": 268664, - "tp_rate": 0.883876549952132, - "truth_threshold": -5.18 - }, - { - "f1": 0.9153844843156298, - "fn": 35346, - "fn_rate": 0.11628465493928497, - "fp": 14315, - "fp_rate": 0.08233210060447808, - "match_probability": 0.027208523750875003, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9494044463294808, - "recall": 0.883715345060715, - "row_count": 477830, - "tn": 159554, - "tn_rate": 0.917667899395522, - "tp": 268615, - "tp_rate": 0.883715345060715, - "truth_threshold": -5.16 - }, - { - "f1": 0.915198778426133, - "fn": 35449, - "fn_rate": 0.11662351420083497, - "fp": 14311, - "fp_rate": 0.08230909477825259, - "match_probability": 0.0275778660504259, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9493994477111126, - "recall": 0.8833764857991651, - "row_count": 477830, - "tn": 159558, - "tn_rate": 0.9176909052217475, - "tp": 268512, - "tp_rate": 0.8833764857991651, - "truth_threshold": -5.14 - }, - { - "f1": 0.9150951757615424, - "fn": 35516, - "fn_rate": 0.11684393721562963, - "fp": 14298, - "fp_rate": 0.08223432584301975, - "match_probability": 0.027952077928310608, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9494311088161334, - "recall": 0.8831560627843703, - "row_count": 477830, - "tn": 159571, - "tn_rate": 0.9177656741569803, - "tp": 268445, - "tp_rate": 0.8831560627843703, - "truth_threshold": -5.12 - }, - { - "f1": 0.9150014830674608, - "fn": 35581, - "fn_rate": 0.11705778043893789, - "fp": 14282, - "fp_rate": 0.08214230253811777, - "match_probability": 0.028331219653427598, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9494732224352761, - "recall": 0.8829422195610621, - "row_count": 477830, - "tn": 159587, - "tn_rate": 0.9178576974618822, - "tp": 268380, - "tp_rate": 0.8829422195610621, - "truth_threshold": -5.1000000000000005 - }, - { - "f1": 0.9148984052401687, - "fn": 35646, - "fn_rate": 0.11727162366224614, - "fp": 14271, - "fp_rate": 0.08207903651599768, - "match_probability": 0.02871535213317462, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9494985597304891, - "recall": 0.8827283763377538, - "row_count": 477830, - "tn": 159598, - "tn_rate": 0.9179209634840023, - "tp": 268315, - "tp_rate": 0.8827283763377538, - "truth_threshold": -5.08 - }, - { - "f1": 0.9147601702545634, - "fn": 35746, - "fn_rate": 0.11760061323656654, - "fp": 14241, - "fp_rate": 0.0819064928193065, - "match_probability": 0.029104536917218708, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.949581527742374, - "recall": 0.8823993867634334, - "row_count": 477830, - "tn": 159628, - "tn_rate": 0.9180935071806935, - "tp": 268215, - "tp_rate": 0.8823993867634334, - "truth_threshold": -5.0600000000000005 - }, - { - "f1": 0.9183632925960432, - "fn": 35843, - "fn_rate": 0.1179197331236573, - "fp": 11826, - "fp_rate": 0.06801672523566593, - "match_probability": 0.029498836201196473, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.957755836881662, - "recall": 0.8820802668763427, - "row_count": 477830, - "tn": 162043, - "tn_rate": 0.9319832747643341, - "tp": 268118, - "tp_rate": 0.8820802668763427, - "truth_threshold": -5.04 - }, - { - "f1": 0.918295828637396, - "fn": 35893, - "fn_rate": 0.1180842279108175, - "fp": 11809, - "fp_rate": 0.0679189504742076, - "match_probability": 0.02989831283034073, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9578064649828317, - "recall": 0.8819157720891825, - "row_count": 477830, - "tn": 162060, - "tn_rate": 0.9320810495257924, - "tp": 268068, - "tp_rate": 0.8819157720891825, - "truth_threshold": -5.0200000000000005 - }, - { - "f1": 0.918101705600592, - "fn": 36002, - "fn_rate": 0.11844282654682674, - "fp": 11804, - "fp_rate": 0.06789019319142572, - "match_probability": 0.030303030303030304, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9578071439039473, - "recall": 0.8815571734531733, - "row_count": 477830, - "tn": 162065, - "tn_rate": 0.9321098068085742, - "tp": 267959, - "tp_rate": 0.8815571734531733, - "truth_threshold": -5 - }, - { - "f1": 0.9180090255862006, - "fn": 36052, - "fn_rate": 0.11860732133398692, - "fp": 11804, - "fp_rate": 0.06789019319142572, - "match_probability": 0.03071305277425868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9577996017346352, - "recall": 0.8813926786660131, - "row_count": 477830, - "tn": 162065, - "tn_rate": 0.9321098068085742, - "tp": 267909, - "tp_rate": 0.8813926786660131, - "truth_threshold": -4.98 - }, - { - "f1": 0.9178362963953126, - "fn": 36174, - "fn_rate": 0.1190086886146578, - "fp": 11771, - "fp_rate": 0.06770039512506543, - "match_probability": 0.031128445059018316, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9578942473475988, - "recall": 0.8809913113853421, - "row_count": 477830, - "tn": 162098, - "tn_rate": 0.9322996048749346, - "tp": 267787, - "tp_rate": 0.8809913113853421, - "truth_threshold": -4.96 - }, - { - "f1": 0.9177450150311764, - "fn": 36230, - "fn_rate": 0.11919292277627722, - "fp": 11762, - "fp_rate": 0.06764863201605807, - "match_probability": 0.03154927263559596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9579166562311042, - "recall": 0.8808070772237228, - "row_count": 477830, - "tn": 162107, - "tn_rate": 0.9323513679839419, - "tp": 267731, - "tp_rate": 0.8808070772237228, - "truth_threshold": -4.94 - }, - { - "f1": 0.9176560126983692, - "fn": 36289, - "fn_rate": 0.11938702662512625, - "fp": 11749, - "fp_rate": 0.06757386308082522, - "match_probability": 0.03197560164877564, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9579523371543298, - "recall": 0.8806129733748738, - "row_count": 477830, - "tn": 162120, - "tn_rate": 0.9324261369191748, - "tp": 267672, - "tp_rate": 0.8806129733748738, - "truth_threshold": -4.92 - }, - { - "f1": 0.9172094235630233, - "fn": 36533, - "fn_rate": 0.120189761186468, - "fp": 11745, - "fp_rate": 0.06755085725459972, - "match_probability": 0.03240749891294454, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9579293126484295, - "recall": 0.879810238813532, - "row_count": 477830, - "tn": 162124, - "tn_rate": 0.9324491427454003, - "tp": 267428, - "tp_rate": 0.879810238813532, - "truth_threshold": -4.9 - }, - { - "f1": 0.9169782839891591, - "fn": 36671, - "fn_rate": 0.12064376679903013, - "fp": 11730, - "fp_rate": 0.06746458540625414, - "match_probability": 0.032845031915098126, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.957960002867178, - "recall": 0.8793562332009699, - "row_count": 477830, - "tn": 162139, - "tn_rate": 0.9325354145937459, - "tp": 267290, - "tp_rate": 0.8793562332009699, - "truth_threshold": -4.88 - }, - { - "f1": 0.9171430924552, - "fn": 36700, - "fn_rate": 0.12073917377558305, - "fp": 11591, - "fp_rate": 0.0666651329449183, - "match_probability": 0.0332882688177396, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9584331473326352, - "recall": 0.8792608262244169, - "row_count": 477830, - "tn": 162278, - "tn_rate": 0.9333348670550817, - "tp": 267261, - "tp_rate": 0.8792608262244169, - "truth_threshold": -4.86 - }, - { - "f1": 0.9170513555348863, - "fn": 36768, - "fn_rate": 0.12096288668612092, - "fp": 11568, - "fp_rate": 0.06653284944412173, - "match_probability": 0.03373727846166985, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9585020860163366, - "recall": 0.8790371133138791, - "row_count": 477830, - "tn": 162301, - "tn_rate": 0.9334671505558783, - "tp": 267193, - "tp_rate": 0.8790371133138791, - "truth_threshold": -4.84 - }, - { - "f1": 0.9169018049004868, - "fn": 36851, - "fn_rate": 0.12123594803280684, - "fp": 11565, - "fp_rate": 0.06651559507445261, - "match_probability": 0.034192130368662726, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.958500044855118, - "recall": 0.8787640519671932, - "row_count": 477830, - "tn": 162304, - "tn_rate": 0.9334844049255474, - "tp": 267110, - "tp_rate": 0.8787640519671932, - "truth_threshold": -4.82 - }, - { - "f1": 0.9168097173775714, - "fn": 36920, - "fn_rate": 0.12146295083908791, - "fp": 11543, - "fp_rate": 0.0663890630302124, - "match_probability": 0.034652894744021626, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9585654596100278, - "recall": 0.8785370491609121, - "row_count": 477830, - "tn": 162326, - "tn_rate": 0.9336109369697876, - "tp": 267041, - "tp_rate": 0.8785370491609121, - "truth_threshold": -4.8 - }, - { - "f1": 0.9164600262393274, - "fn": 37119, - "fn_rate": 0.12211764009198549, - "fp": 11530, - "fp_rate": 0.06631429409497955, - "match_probability": 0.03511964247901206, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9585806043711292, - "recall": 0.8778823599080146, - "row_count": 477830, - "tn": 162339, - "tn_rate": 0.9336857059050204, - "tp": 266842, - "tp_rate": 0.8778823599080146, - "truth_threshold": -4.78 - }, - { - "f1": 0.9164339663468969, - "fn": 37144, - "fn_rate": 0.12219988748556558, - "fp": 11516, - "fp_rate": 0.06623377370319034, - "match_probability": 0.0355924451531659, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9586251001498205, - "recall": 0.8778001125144345, - "row_count": 477830, - "tn": 162353, - "tn_rate": 0.9337662262968097, - "tp": 266817, - "tp_rate": 0.8778001125144345, - "truth_threshold": -4.76 - }, - { - "f1": 0.9162882093069593, - "fn": 37235, - "fn_rate": 0.12249926799819713, - "fp": 11501, - "fp_rate": 0.06614750185484473, - "match_probability": 0.03607137503645171, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9586632497924357, - "recall": 0.8775007320018029, - "row_count": 477830, - "tn": 162368, - "tn_rate": 0.9338524981451553, - "tp": 266726, - "tp_rate": 0.8775007320018029, - "truth_threshold": -4.74 - }, - { - "f1": 0.9161020326823436, - "fn": 37335, - "fn_rate": 0.12282825757251753, - "fp": 11501, - "fp_rate": 0.06614750185484473, - "match_probability": 0.036556505091306896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9586483872475524, - "recall": 0.8771717424274825, - "row_count": 477830, - "tn": 162368, - "tn_rate": 0.9338524981451553, - "tp": 266626, - "tp_rate": 0.8771717424274825, - "truth_threshold": -4.72 - }, - { - "f1": 0.9160752641979552, - "fn": 37406, - "fn_rate": 0.123061840170285, - "fp": 11435, - "fp_rate": 0.06576790572212413, - "match_probability": 0.03704790897452556, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9588654268139142, - "recall": 0.876938159829715, - "row_count": 477830, - "tn": 162434, - "tn_rate": 0.9342320942778759, - "tp": 266555, - "tp_rate": 0.876938159829715, - "truth_threshold": -4.7 - }, - { - "f1": 0.9160147926146909, - "fn": 37441, - "fn_rate": 0.12317698652129715, - "fp": 11432, - "fp_rate": 0.065750651352455, - "match_probability": 0.037545661038997695, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9588705963619618, - "recall": 0.8768230134787028, - "row_count": 477830, - "tn": 162437, - "tn_rate": 0.9342493486475449, - "tp": 266520, - "tp_rate": 0.8768230134787028, - "truth_threshold": -4.68 - }, - { - "f1": 0.9158714662853371, - "fn": 37523, - "fn_rate": 0.12344675797223986, - "fp": 11425, - "fp_rate": 0.0657103911565604, - "match_probability": 0.0380498363352935, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9588826148137751, - "recall": 0.8765532420277602, - "row_count": 477830, - "tn": 162444, - "tn_rate": 0.9342896088434396, - "tp": 266438, - "tp_rate": 0.8765532420277602, - "truth_threshold": -4.66 - }, - { - "f1": 0.9157968563059532, - "fn": 37585, - "fn_rate": 0.1236507315083185, - "fp": 11400, - "fp_rate": 0.06556660474265108, - "match_probability": 0.03856051061308806, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.958959737342319, - "recall": 0.8763492684916815, - "row_count": 477830, - "tn": 162469, - "tn_rate": 0.9344333952573489, - "tp": 266376, - "tp_rate": 0.8763492684916815, - "truth_threshold": -4.64 - }, - { - "f1": 0.9158113778633831, - "fn": 37698, - "fn_rate": 0.12402248972730054, - "fp": 11257, - "fp_rate": 0.06474414645508975, - "match_probability": 0.03907776032242, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9594371576823292, - "recall": 0.8759775102726994, - "row_count": 477830, - "tn": 162612, - "tn_rate": 0.9352558535449103, - "tp": 266263, - "tp_rate": 0.8759775102726994, - "truth_threshold": -4.62 - }, - { - "f1": 0.9156960544872897, - "fn": 37759, - "fn_rate": 0.12422317336763598, - "fp": 11257, - "fp_rate": 0.06474414645508975, - "match_probability": 0.039601662614779175, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9594282398480496, - "recall": 0.875776826632364, - "row_count": 477830, - "tn": 162612, - "tn_rate": 0.9352558535449103, - "tp": 266202, - "tp_rate": 0.875776826632364, - "truth_threshold": -4.6000000000000005 - }, - { - "f1": 0.9155255226324989, - "fn": 37869, - "fn_rate": 0.12458506189938841, - "fp": 11235, - "fp_rate": 0.06461761441084955, - "match_probability": 0.0401322953440168, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.959488257544343, - "recall": 0.8754149381006116, - "row_count": 477830, - "tn": 162634, - "tn_rate": 0.9353823855891504, - "tp": 266092, - "tp_rate": 0.8754149381006116, - "truth_threshold": -4.58 - }, - { - "f1": 0.915386283004649, - "fn": 37947, - "fn_rate": 0.12484167376735832, - "fp": 11231, - "fp_rate": 0.06459460858462406, - "match_probability": 0.04066973706707255, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9594907031686776, - "recall": 0.8751583262326417, - "row_count": 477830, - "tn": 162638, - "tn_rate": 0.9354053914153759, - "tp": 266014, - "tp_rate": 0.8751583262326417, - "truth_threshold": -4.5600000000000005 - }, - { - "f1": 0.9152329459218547, - "fn": 38030, - "fn_rate": 0.12511473511404422, - "fp": 11230, - "fp_rate": 0.06458885712806768, - "match_probability": 0.041214067044512546, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9594820339080895, - "recall": 0.8748852648859557, - "row_count": 477830, - "tn": 162639, - "tn_rate": 0.9354111428719323, - "tp": 265931, - "tp_rate": 0.8748852648859557, - "truth_threshold": -4.54 - }, - { - "f1": 0.9151507433044089, - "fn": 38085, - "fn_rate": 0.12529567937992045, - "fp": 11217, - "fp_rate": 0.06451408819283483, - "match_probability": 0.041765365240871495, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9595190062542179, - "recall": 0.8747043206200795, - "row_count": 477830, - "tn": 162652, - "tn_rate": 0.9354859118071651, - "tp": 265876, - "tp_rate": 0.8747043206200795, - "truth_threshold": -4.5200000000000005 - }, - { - "f1": 0.9150260422942005, - "fn": 38156, - "fn_rate": 0.12552926197768793, - "fp": 11212, - "fp_rate": 0.06448533091005297, - "match_probability": 0.04232371232479359, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9595259496709588, - "recall": 0.8744707380223121, - "row_count": 477830, - "tn": 162657, - "tn_rate": 0.9355146690899471, - "tp": 265805, - "tp_rate": 0.8744707380223121, - "truth_threshold": -4.5 - }, - { - "f1": 0.9150009295536077, - "fn": 38188, - "fn_rate": 0.12563453864147045, - "fp": 11191, - "fp_rate": 0.06436455032236914, - "match_probability": 0.04288918966896465, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9595940266605046, - "recall": 0.8743654613585295, - "row_count": 477830, - "tn": 162678, - "tn_rate": 0.9356354496776309, - "tp": 265773, - "tp_rate": 0.8743654613585295, - "truth_threshold": -4.48 - }, - { - "f1": 0.9148813090097722, - "fn": 38263, - "fn_rate": 0.12588128082221076, - "fp": 11177, - "fp_rate": 0.06428402993057993, - "match_probability": 0.0434618793498302, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9596316027088037, - "recall": 0.8741187191777893, - "row_count": 477830, - "tn": 162692, - "tn_rate": 0.9357159700694201, - "tp": 265698, - "tp_rate": 0.8741187191777893, - "truth_threshold": -4.46 - }, - { - "f1": 0.9148259878367117, - "fn": 38312, - "fn_rate": 0.12604248571362772, - "fp": 11155, - "fp_rate": 0.06415749788633972, - "match_probability": 0.04404186414709147, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9597007268681088, - "recall": 0.8739575142863723, - "row_count": 477830, - "tn": 162714, - "tn_rate": 0.9358425021136603, - "tp": 265649, - "tp_rate": 0.8739575142863723, - "truth_threshold": -4.44 - }, - { - "f1": 0.9147340757146253, - "fn": 38389, - "fn_rate": 0.12629580768585444, - "fp": 11122, - "fp_rate": 0.0639676998199794, - "match_probability": 0.04462922754297395, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9598039711739322, - "recall": 0.8737041923141455, - "row_count": 477830, - "tn": 162747, - "tn_rate": 0.9360323001800206, - "tp": 265572, - "tp_rate": 0.8737041923141455, - "truth_threshold": -4.42 - }, - { - "f1": 0.9177388022039558, - "fn": 38461, - "fn_rate": 0.12653268017936511, - "fp": 9135, - "fp_rate": 0.05253955564246646, - "match_probability": 0.04522405372126023, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9667376699983614, - "recall": 0.8734673198206349, - "row_count": 477830, - "tn": 164734, - "tn_rate": 0.9474604443575335, - "tp": 265500, - "tp_rate": 0.8734673198206349, - "truth_threshold": -4.4 - }, - { - "f1": 0.917671258923787, - "fn": 38520, - "fn_rate": 0.12672678402821413, - "fp": 9109, - "fp_rate": 0.05239001777200076, - "match_probability": 0.04582642756608153, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9668220724822437, - "recall": 0.8732732159717859, - "row_count": 477830, - "tn": 164760, - "tn_rate": 0.9476099822279992, - "tp": 265441, - "tp_rate": 0.8732732159717859, - "truth_threshold": -4.38 - }, - { - "f1": 0.9174874121617883, - "fn": 38653, - "fn_rate": 0.12716434016206027, - "fp": 9068, - "fp_rate": 0.05215420805318947, - "match_probability": 0.046436434660459415, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9669504621395457, - "recall": 0.8728356598379398, - "row_count": 477830, - "tn": 164801, - "tn_rate": 0.9478457919468105, - "tp": 265308, - "tp_rate": 0.8728356598379398, - "truth_threshold": -4.36 - }, - { - "f1": 0.9173886427541269, - "fn": 38710, - "fn_rate": 0.12735186421942288, - "fp": 9062, - "fp_rate": 0.052119699313851235, - "match_probability": 0.047054161284591715, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9669647446530059, - "recall": 0.8726481357805771, - "row_count": 477830, - "tn": 164807, - "tn_rate": 0.9478803006861488, - "tp": 265251, - "tp_rate": 0.8726481357805771, - "truth_threshold": -4.34 - }, - { - "f1": 0.9172677175977335, - "fn": 38800, - "fn_rate": 0.12764795483631125, - "fp": 9033, - "fp_rate": 0.05195290707371642, - "match_probability": 0.04767969441387431, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9670561719074816, - "recall": 0.8723520451636888, - "row_count": 477830, - "tn": 164836, - "tn_rate": 0.9480470929262835, - "tp": 265161, - "tp_rate": 0.8723520451636888, - "truth_threshold": -4.32 - }, - { - "f1": 0.9171885488101087, - "fn": 38877, - "fn_rate": 0.12790127680853794, - "fp": 8992, - "fp_rate": 0.05171709735490513, - "match_probability": 0.04831312171665215, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9671915818969921, - "recall": 0.8720987231914621, - "row_count": 477830, - "tn": 164877, - "tn_rate": 0.9482829026450948, - "tp": 265084, - "tp_rate": 0.8720987231914621, - "truth_threshold": -4.3 - }, - { - "f1": 0.9170052395157774, - "fn": 38985, - "fn_rate": 0.12825658554880395, - "fp": 8980, - "fp_rate": 0.05164807987622865, - "match_probability": 0.04895453155169113, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9672210135934237, - "recall": 0.8717434144511961, - "row_count": 477830, - "tn": 164889, - "tn_rate": 0.9483519201237713, - "tp": 264976, - "tp_rate": 0.8717434144511961, - "truth_threshold": -4.28 - }, - { - "f1": 0.9169527896995708, - "fn": 39035, - "fn_rate": 0.12842108033596417, - "fp": 8953, - "fp_rate": 0.05149279054920659, - "match_probability": 0.04960401296536411, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9673103815918709, - "recall": 0.8715789196640359, - "row_count": 477830, - "tn": 164916, - "tn_rate": 0.9485072094507934, - "tp": 264926, - "tp_rate": 0.8715789196640359, - "truth_threshold": -4.26 - }, - { - "f1": 0.9168642627445144, - "fn": 39089, - "fn_rate": 0.12859873470609717, - "fp": 8945, - "fp_rate": 0.051446778896755606, - "match_probability": 0.05026165568854217, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9673321963209005, - "recall": 0.8714012652939028, - "row_count": 477830, - "tn": 164924, - "tn_rate": 0.9485532211032444, - "tp": 264872, - "tp_rate": 0.8714012652939028, - "truth_threshold": -4.24 - }, - { - "f1": 0.9166721489139956, - "fn": 39216, - "fn_rate": 0.12901655146548405, - "fp": 8916, - "fp_rate": 0.05127998665662079, - "match_probability": 0.05092755013318443, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9674195446190725, - "recall": 0.8709834485345159, - "row_count": 477830, - "tn": 164953, - "tn_rate": 0.9487200133433792, - "tp": 264745, - "tp_rate": 0.8709834485345159, - "truth_threshold": -4.22 - }, - { - "f1": 0.9164704089548931, - "fn": 39343, - "fn_rate": 0.12943436822487095, - "fp": 8893, - "fp_rate": 0.05114770315582421, - "match_probability": 0.05160178738861727, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9674857683968835, - "recall": 0.870565631775129, - "row_count": 477830, - "tn": 164976, - "tn_rate": 0.9488522968441758, - "tp": 264618, - "tp_rate": 0.870565631775129, - "truth_threshold": -4.2 - }, - { - "f1": 0.9160418543413484, - "fn": 39573, - "fn_rate": 0.13019104424580785, - "fp": 8892, - "fp_rate": 0.05114195169926784, - "match_probability": 0.052284459217495936, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.967461943793911, - "recall": 0.8698089557541921, - "row_count": 477830, - "tn": 164977, - "tn_rate": 0.9488580483007322, - "tp": 264388, - "tp_rate": 0.8698089557541921, - "truth_threshold": -4.18 - }, - { - "f1": 0.9159089333980179, - "fn": 39648, - "fn_rate": 0.13043778642654813, - "fp": 8886, - "fp_rate": 0.051107442959929604, - "match_probability": 0.05297565805143919, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9674742586905516, - "recall": 0.8695622135734519, - "row_count": 477830, - "tn": 164983, - "tn_rate": 0.9488925570400704, - "tp": 264313, - "tp_rate": 0.8695622135734519, - "truth_threshold": -4.16 - }, - { - "f1": 0.9157313496987806, - "fn": 39778, - "fn_rate": 0.13086547287316466, - "fp": 8845, - "fp_rate": 0.05087163324111831, - "match_probability": 0.05367547698633007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9676040552617314, - "recall": 0.8691345271268354, - "row_count": 477830, - "tn": 165024, - "tn_rate": 0.9491283667588817, - "tp": 264183, - "tp_rate": 0.8691345271268354, - "truth_threshold": -4.14 - }, - { - "f1": 0.9156017943935602, - "fn": 39852, - "fn_rate": 0.13110892515816175, - "fp": 8839, - "fp_rate": 0.05083712450178007, - "match_probability": 0.05438400977727288, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9676165423450621, - "recall": 0.8688910748418383, - "row_count": 477830, - "tn": 165030, - "tn_rate": 0.9491628754982199, - "tp": 264109, - "tp_rate": 0.8688910748418383, - "truth_threshold": -4.12 - }, - { - "f1": 0.9151909270627406, - "fn": 40084, - "fn_rate": 0.13187218097058503, - "fp": 8823, - "fp_rate": 0.05074510119687811, - "match_probability": 0.05510135083319928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9676457645764577, - "recall": 0.8681278190294149, - "row_count": 477830, - "tn": 165046, - "tn_rate": 0.9492548988031219, - "tp": 263877, - "tp_rate": 0.8681278190294149, - "truth_threshold": -4.1 - }, - { - "f1": 0.9151564131290604, - "fn": 40115, - "fn_rate": 0.13197416773862436, - "fp": 8808, - "fp_rate": 0.05065882934853252, - "match_probability": 0.05582759521111378, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9676953208095241, - "recall": 0.8680258322613756, - "row_count": 477830, - "tn": 165061, - "tn_rate": 0.9493411706514675, - "tp": 263846, - "tp_rate": 0.8680258322613756, - "truth_threshold": -4.08 - }, - { - "f1": 0.9150295053303868, - "fn": 40201, - "fn_rate": 0.1322570987725399, - "fp": 8785, - "fp_rate": 0.050526545847735936, - "match_probability": 0.05656283860997083, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9677667908051881, - "recall": 0.8677429012274601, - "row_count": 477830, - "tn": 165084, - "tn_rate": 0.949473454152264, - "tp": 263760, - "tp_rate": 0.8677429012274601, - "truth_threshold": -4.0600000000000005 - }, - { - "f1": 0.9147861933992872, - "fn": 40337, - "fn_rate": 0.13270452459361562, - "fp": 8777, - "fp_rate": 0.050480534195284955, - "match_probability": 0.05730717736417426, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9677791197535985, - "recall": 0.8672954754063844, - "row_count": 477830, - "tn": 165092, - "tn_rate": 0.949519465804715, - "tp": 263624, - "tp_rate": 0.8672954754063844, - "truth_threshold": -4.04 - }, - { - "f1": 0.9146731265118572, - "fn": 40408, - "fn_rate": 0.1329381071913831, - "fp": 8765, - "fp_rate": 0.050411516716608484, - "match_probability": 0.0580607084366901, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9678133652567954, - "recall": 0.8670618928086169, - "row_count": 477830, - "tn": 165104, - "tn_rate": 0.9495884832833915, - "tp": 263553, - "tp_rate": 0.8670618928086169, - "truth_threshold": -4.0200000000000005 - }, - { - "f1": 0.9145849169903402, - "fn": 40470, - "fn_rate": 0.13314208072746175, - "fp": 8747, - "fp_rate": 0.05030799049859377, - "match_probability": 0.058823529411764705, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9678700254924, - "recall": 0.8668579192725383, - "row_count": 477830, - "tn": 165122, - "tn_rate": 0.9496920095014062, - "tp": 263491, - "tp_rate": 0.8668579192725383, - "truth_threshold": -4 - }, - { - "f1": 0.9142976182209569, - "fn": 40625, - "fn_rate": 0.13365201456765835, - "fp": 8743, - "fp_rate": 0.05028498467236828, - "match_probability": 0.059595738487237926, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9678659506981429, - "recall": 0.8663479854323416, - "row_count": 477830, - "tn": 165126, - "tn_rate": 0.9497150153276317, - "tp": 263336, - "tp_rate": 0.8663479854323416, - "truth_threshold": -3.98 - }, - { - "f1": 0.9142021799292339, - "fn": 40679, - "fn_rate": 0.13382966893779136, - "fp": 8740, - "fp_rate": 0.05026773030269916, - "match_probability": 0.06037743446644346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9678702457889435, - "recall": 0.8661703310622086, - "row_count": 477830, - "tn": 165129, - "tn_rate": 0.9497322696973008, - "tp": 263282, - "tp_rate": 0.8661703310622086, - "truth_threshold": -3.96 - }, - { - "f1": 0.9141457112792712, - "fn": 40730, - "fn_rate": 0.13399745362069476, - "fp": 8714, - "fp_rate": 0.05011819243223346, - "match_probability": 0.061168716749686526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9679567559616834, - "recall": 0.8660025463793053, - "row_count": 477830, - "tn": 165155, - "tn_rate": 0.9498818075677665, - "tp": 263231, - "tp_rate": 0.8660025463793053, - "truth_threshold": -3.94 - }, - { - "f1": 0.9138592261677309, - "fn": 40892, - "fn_rate": 0.13453041673109378, - "fp": 8703, - "fp_rate": 0.05005492641011336, - "match_probability": 0.061969685325289826, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9679768335222172, - "recall": 0.8654695832689062, - "row_count": 477830, - "tn": 165166, - "tn_rate": 0.9499450735898867, - "tp": 263069, - "tp_rate": 0.8654695832689062, - "truth_threshold": -3.92 - }, - { - "f1": 0.913809037404543, - "fn": 40943, - "fn_rate": 0.1346982014139972, - "fp": 8673, - "fp_rate": 0.04988238271342217, - "match_probability": 0.06278044076019877, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9680777059232731, - "recall": 0.8653017985860028, - "row_count": 477830, - "tn": 165196, - "tn_rate": 0.9501176172865778, - "tp": 263018, - "tp_rate": 0.8653017985860028, - "truth_threshold": -3.9 - }, - { - "f1": 0.9136257649311431, - "fn": 41046, - "fn_rate": 0.1350370606755472, - "fp": 8666, - "fp_rate": 0.049842122517527565, - "match_probability": 0.06360108419013638, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9680905512535855, - "recall": 0.8649629393244528, - "row_count": 477830, - "tn": 165203, - "tn_rate": 0.9501578774824725, - "tp": 262915, - "tp_rate": 0.8649629393244528, - "truth_threshold": -3.88 - }, - { - "f1": 0.913567503883728, - "fn": 41092, - "fn_rate": 0.13518839587973458, - "fp": 8648, - "fp_rate": 0.049738596299512855, - "match_probability": 0.06443171730929868, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.968149323983397, - "recall": 0.8648116041202655, - "row_count": 477830, - "tn": 165221, - "tn_rate": 0.9502614037004872, - "tp": 262869, - "tp_rate": 0.8648116041202655, - "truth_threshold": -3.86 - }, - { - "f1": 0.9134674212297339, - "fn": 41182, - "fn_rate": 0.13548448649662292, - "fp": 8605, - "fp_rate": 0.049491283667588815, - "match_probability": 0.06527244235958121, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9682921616602306, - "recall": 0.8645155135033771, - "row_count": 477830, - "tn": 165264, - "tn_rate": 0.9505087163324112, - "tp": 262779, - "tp_rate": 0.8645155135033771, - "truth_threshold": -3.84 - }, - { - "f1": 0.9134024704405839, - "fn": 41229, - "fn_rate": 0.1356391115965535, - "fp": 8589, - "fp_rate": 0.04939926036268685, - "match_probability": 0.06612336211932712, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.96834376992566, - "recall": 0.8643608884034465, - "row_count": 477830, - "tn": 165280, - "tn_rate": 0.9506007396373132, - "tp": 262732, - "tp_rate": 0.8643608884034465, - "truth_threshold": -3.8200000000000003 - }, - { - "f1": 0.9132785579922045, - "fn": 41303, - "fn_rate": 0.1358825638815506, - "fp": 8580, - "fp_rate": 0.04934749725367949, - "match_probability": 0.06698457989158756, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.968367264173899, - "recall": 0.8641174361184494, - "row_count": 477830, - "tn": 165289, - "tn_rate": 0.9506525027463205, - "tp": 262658, - "tp_rate": 0.8641174361184494, - "truth_threshold": -3.8000000000000003 - }, - { - "f1": 0.9129412501260838, - "fn": 41484, - "fn_rate": 0.1364780350110705, - "fp": 8576, - "fp_rate": 0.049324491427454, - "match_probability": 0.06785619949188462, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9683604313547535, - "recall": 0.8635219649889295, - "row_count": 477830, - "tn": 165293, - "tn_rate": 0.950675508572546, - "tp": 262477, - "tp_rate": 0.8635219649889295, - "truth_threshold": -3.7800000000000002 - }, - { - "f1": 0.9128452015291658, - "fn": 41539, - "fn_rate": 0.1366589792769467, - "fp": 8571, - "fp_rate": 0.049295734144672136, - "match_probability": 0.0687383252354679, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9683718767643444, - "recall": 0.8633410207230533, - "row_count": 477830, - "tn": 165298, - "tn_rate": 0.9507042658553279, - "tp": 262422, - "tp_rate": 0.8633410207230533, - "truth_threshold": -3.7600000000000002 - }, - { - "f1": 0.9128060938647254, - "fn": 41647, - "fn_rate": 0.13701428801721274, - "fp": 8467, - "fp_rate": 0.04869758266280936, - "match_probability": 0.06963106192405447, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687311886727651, - "recall": 0.8629857119827873, - "row_count": 477830, - "tn": 165402, - "tn_rate": 0.9513024173371907, - "tp": 262314, - "tp_rate": 0.8629857119827873, - "truth_threshold": -3.74 - }, - { - "f1": 0.9125554294783886, - "fn": 41782, - "fn_rate": 0.13745842394254526, - "fp": 8464, - "fp_rate": 0.048680328293140236, - "match_probability": 0.07053451483204333, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687263295189604, - "recall": 0.8625415760574547, - "row_count": 477830, - "tn": 165405, - "tn_rate": 0.9513196717068597, - "tp": 262179, - "tp_rate": 0.8625415760574547, - "truth_threshold": -3.72 - }, - { - "f1": 0.9123473380773998, - "fn": 41902, - "fn_rate": 0.13785321143172974, - "fp": 8452, - "fp_rate": 0.048611310814463765, - "match_probability": 0.07144878969219468, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687554295389097, - "recall": 0.8621467885682703, - "row_count": 477830, - "tn": 165417, - "tn_rate": 0.9513886891855362, - "tp": 262059, - "tp_rate": 0.8621467885682703, - "truth_threshold": -3.7 - }, - { - "f1": 0.9120020338298339, - "fn": 42086, - "fn_rate": 0.13845855224847925, - "fp": 8451, - "fp_rate": 0.04860555935790739, - "match_probability": 0.07237399268076448, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687377462767177, - "recall": 0.8615414477515208, - "row_count": 477830, - "tn": 165418, - "tn_rate": 0.9513944406420927, - "tp": 261875, - "tp_rate": 0.8615414477515208, - "truth_threshold": -3.68 - }, - { - "f1": 0.9118457396229175, - "fn": 42171, - "fn_rate": 0.13873819338665158, - "fp": 8447, - "fp_rate": 0.0485825535316819, - "match_probability": 0.07331023040208501, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687422521712423, - "recall": 0.8612618066133484, - "row_count": 477830, - "tn": 165422, - "tn_rate": 0.951417446468318, - "tp": 261790, - "tp_rate": 0.8612618066133484, - "truth_threshold": -3.66 - }, - { - "f1": 0.9117621444620556, - "fn": 42226, - "fn_rate": 0.13891913765252778, - "fp": 8434, - "fp_rate": 0.04850778459644905, - "match_probability": 0.07425760987258186, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687825028038006, - "recall": 0.8610808623474722, - "row_count": 477830, - "tn": 165435, - "tn_rate": 0.951492215403551, - "tp": 261735, - "tp_rate": 0.8610808623474722, - "truth_threshold": -3.64 - }, - { - "f1": 0.9114190034463653, - "fn": 42412, - "fn_rate": 0.13953105826076373, - "fp": 8428, - "fp_rate": 0.048473275857110816, - "match_probability": 0.0752162385042182, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9687825259188746, - "recall": 0.8604689417392363, - "row_count": 477830, - "tn": 165441, - "tn_rate": 0.9515267241428892, - "tp": 261549, - "tp_rate": 0.8604689417392363, - "truth_threshold": -3.62 - }, - { - "f1": 0.9113274225251976, - "fn": 42472, - "fn_rate": 0.13972845200535594, - "fp": 8415, - "fp_rate": 0.048398506921877964, - "match_probability": 0.0761862240873569, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9688222479103681, - "recall": 0.860271547994644, - "row_count": 477830, - "tn": 165454, - "tn_rate": 0.951601493078122, - "tp": 261489, - "tp_rate": 0.860271547994644, - "truth_threshold": -3.6 - }, - { - "f1": 0.9111207185094277, - "fn": 42637, - "fn_rate": 0.1402712848029846, - "fp": 8347, - "fp_rate": 0.04800740787604461, - "match_probability": 0.07716767477303127, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9690474689529093, - "recall": 0.8597287151970154, - "row_count": 477830, - "tn": 165522, - "tn_rate": 0.9519925921239554, - "tp": 261324, - "tp_rate": 0.8597287151970154, - "truth_threshold": -3.58 - }, - { - "f1": 0.9109888308871477, - "fn": 42714, - "fn_rate": 0.14052460677521128, - "fp": 8338, - "fp_rate": 0.04795564476703725, - "match_probability": 0.07816069905461534, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9690709794684422, - "recall": 0.8594753932247887, - "row_count": 477830, - "tn": 165531, - "tn_rate": 0.9520443552329627, - "tp": 261247, - "tp_rate": 0.8594753932247887, - "truth_threshold": -3.56 - }, - { - "f1": 0.9105073841612967, - "fn": 42985, - "fn_rate": 0.14141616852161956, - "fp": 8318, - "fp_rate": 0.04784061563590979, - "match_probability": 0.07916540574888453, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9691118257369269, - "recall": 0.8585838314783805, - "row_count": 477830, - "tn": 165551, - "tn_rate": 0.9521593843640902, - "tp": 260976, - "tp_rate": 0.8585838314783805, - "truth_threshold": -3.54 - }, - { - "f1": 0.9104476570323923, - "fn": 43044, - "fn_rate": 0.14161027237046858, - "fp": 8285, - "fp_rate": 0.04765081756954949, - "match_probability": 0.08018190397645779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9692238542061352, - "recall": 0.8583897276295315, - "row_count": 477830, - "tn": 165584, - "tn_rate": 0.9523491824304505, - "tp": 260917, - "tp_rate": 0.8583897276295315, - "truth_threshold": -3.52 - }, - { - "f1": 0.9102902374670184, - "fn": 43141, - "fn_rate": 0.14192939225755935, - "fp": 8267, - "fp_rate": 0.04754729135153478, - "match_probability": 0.08121030314161229, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9692775942353217, - "recall": 0.8580706077424406, - "row_count": 477830, - "tn": 165602, - "tn_rate": 0.9524527086484652, - "tp": 260820, - "tp_rate": 0.8580706077424406, - "truth_threshold": -3.5 - }, - { - "f1": 0.9101888373067123, - "fn": 43201, - "fn_rate": 0.1421267860021516, - "fp": 8260, - "fp_rate": 0.047507031155640166, - "match_probability": 0.08225071291146206, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9692959631254182, - "recall": 0.8578732139978484, - "row_count": 477830, - "tn": 165609, - "tn_rate": 0.9524929688443599, - "tp": 260760, - "tp_rate": 0.8578732139978484, - "truth_threshold": -3.48 - }, - { - "f1": 0.9096655456491599, - "fn": 43481, - "fn_rate": 0.14304795681024868, - "fp": 8253, - "fp_rate": 0.04746677095974555, - "match_probability": 0.08330324319449184, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9692892201553215, - "recall": 0.8569520431897513, - "row_count": 477830, - "tn": 165616, - "tn_rate": 0.9525332290402544, - "tp": 260480, - "tp_rate": 0.8569520431897513, - "truth_threshold": -3.46 - }, - { - "f1": 0.9095227450542082, - "fn": 43561, - "fn_rate": 0.143311148469705, - "fp": 8247, - "fp_rate": 0.04743226222040732, - "match_probability": 0.08436800411843749, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693017230789847, - "recall": 0.8566888515302951, - "row_count": 477830, - "tn": 165622, - "tn_rate": 0.9525677377795927, - "tp": 260400, - "tp_rate": 0.8566888515302951, - "truth_threshold": -3.44 - }, - { - "f1": 0.9093252935442963, - "fn": 43673, - "fn_rate": 0.14367961679294383, - "fp": 8238, - "fp_rate": 0.047380499111399965, - "match_probability": 0.08544510600750539, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.969321406493226, - "recall": 0.8563203832070562, - "row_count": 477830, - "tn": 165631, - "tn_rate": 0.9526195008886, - "tp": 260288, - "tp_rate": 0.8563203832070562, - "truth_threshold": -3.42 - }, - { - "f1": 0.9092633741405333, - "fn": 43708, - "fn_rate": 0.14379476314395598, - "fp": 8234, - "fp_rate": 0.04735749328517447, - "match_probability": 0.08653465935892166, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693318484693858, - "recall": 0.856205236856044, - "row_count": 477830, - "tn": 165635, - "tn_rate": 0.9526425067148255, - "tp": 260253, - "tp_rate": 0.856205236856044, - "truth_threshold": -3.4 - }, - { - "f1": 0.9091382406999742, - "fn": 43782, - "fn_rate": 0.14403821542895306, - "fp": 8224, - "fp_rate": 0.04729997871961074, - "match_probability": 0.08763677481880414, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.969359507904159, - "recall": 0.855961784571047, - "row_count": 477830, - "tn": 165645, - "tn_rate": 0.9527000212803892, - "tp": 260179, - "tp_rate": 0.855961784571047, - "truth_threshold": -3.38 - }, - { - "f1": 0.9085579034220426, - "fn": 44088, - "fn_rate": 0.14504492352637344, - "fp": 8223, - "fp_rate": 0.04729422726305437, - "match_probability": 0.08875156315734896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693281511100501, - "recall": 0.8549550764736266, - "row_count": 477830, - "tn": 165646, - "tn_rate": 0.9527057727369457, - "tp": 259873, - "tp_rate": 0.8549550764736266, - "truth_threshold": -3.36 - }, - { - "f1": 0.9081844285659325, - "fn": 44292, - "fn_rate": 0.14571606225798706, - "fp": 8213, - "fp_rate": 0.04723671269749064, - "match_probability": 0.08987913524332442, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693409784905294, - "recall": 0.8542839377420129, - "row_count": 477830, - "tn": 165656, - "tn_rate": 0.9527632873025094, - "tp": 259669, - "tp_rate": 0.8542839377420129, - "truth_threshold": -3.34 - }, - { - "f1": 0.9078733766233766, - "fn": 44469, - "fn_rate": 0.14629837380453414, - "fp": 8195, - "fp_rate": 0.047133186479475925, - "match_probability": 0.0910196020178644, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693858872489138, - "recall": 0.8537016261954659, - "row_count": 477830, - "tn": 165674, - "tn_rate": 0.952866813520524, - "tp": 259492, - "tp_rate": 0.8537016261954659, - "truth_threshold": -3.3200000000000003 - }, - { - "f1": 0.9076583906356621, - "fn": 44584, - "fn_rate": 0.14667671181500258, - "fp": 8193, - "fp_rate": 0.04712168356636318, - "match_probability": 0.09217307446755524, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9693799753335576, - "recall": 0.8533232881849974, - "row_count": 477830, - "tn": 165676, - "tn_rate": 0.9528783164336369, - "tp": 259377, - "tp_rate": 0.8533232881849974, - "truth_threshold": -3.3000000000000003 - }, - { - "f1": 0.9075790239941764, - "fn": 44633, - "fn_rate": 0.14683791670641957, - "fp": 8184, - "fp_rate": 0.04706992045735583, - "match_probability": 0.0933396635968081, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9694069798738001, - "recall": 0.8531620832935805, - "row_count": 477830, - "tn": 165685, - "tn_rate": 0.9529300795426442, - "tp": 259328, - "tp_rate": 0.8531620832935805, - "truth_threshold": -3.2800000000000002 - }, - { - "f1": 0.9070909867577958, - "fn": 44894, - "fn_rate": 0.1476965794953958, - "fp": 8176, - "fp_rate": 0.04702390880490484, - "match_probability": 0.09451948039951134, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9694061210209435, - "recall": 0.8523034205046042, - "row_count": 477830, - "tn": 165693, - "tn_rate": 0.9529760911950952, - "tp": 259067, - "tp_rate": 0.8523034205046042, - "truth_threshold": -3.2600000000000002 - }, - { - "f1": 0.907007283933324, - "fn": 44956, - "fn_rate": 0.14790055303147442, - "fp": 8154, - "fp_rate": 0.04689737676066464, - "match_probability": 0.09571263582995625, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9694788496737897, - "recall": 0.8520994469685256, - "row_count": 477830, - "tn": 165715, - "tn_rate": 0.9531026232393354, - "tp": 259005, - "tp_rate": 0.8520994469685256, - "truth_threshold": -3.24 - }, - { - "f1": 0.9067806702908704, - "fn": 45086, - "fn_rate": 0.14832823947809093, - "fp": 8141, - "fp_rate": 0.04682260782543179, - "match_probability": 0.09691924077303016, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9695111903406537, - "recall": 0.8516717605219091, - "row_count": 477830, - "tn": 165728, - "tn_rate": 0.9531773921745682, - "tp": 258875, - "tp_rate": 0.8516717605219091, - "truth_threshold": -3.22 - }, - { - "f1": 0.9064288142066738, - "fn": 45278, - "fn_rate": 0.14895989946078608, - "fp": 8130, - "fp_rate": 0.04675934180331169, - "match_probability": 0.09813940601367187, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.969529220840064, - "recall": 0.8510401005392139, - "row_count": 477830, - "tn": 165739, - "tn_rate": 0.9532406581966884, - "tp": 258683, - "tp_rate": 0.8510401005392139, - "truth_threshold": -3.2 - }, - { - "f1": 0.9062016998159993, - "fn": 45399, - "fn_rate": 0.14935797684571375, - "fp": 8128, - "fp_rate": 0.04674783889019894, - "match_probability": 0.09937324220558363, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9695226667666579, - "recall": 0.8506420231542863, - "row_count": 477830, - "tn": 165741, - "tn_rate": 0.953252161109801, - "tp": 258562, - "tp_rate": 0.8506420231542863, - "truth_threshold": -3.18 - }, - { - "f1": 0.9057720492843668, - "fn": 45633, - "fn_rate": 0.15012781244962348, - "fp": 8116, - "fp_rate": 0.04667882141152247, - "match_probability": 0.10062085983919537, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9695395655372235, - "recall": 0.8498721875503765, - "row_count": 477830, - "tn": 165753, - "tn_rate": 0.9533211785884775, - "tp": 258328, - "tp_rate": 0.8498721875503765, - "truth_threshold": -3.16 - }, - { - "f1": 0.905689688425999, - "fn": 45690, - "fn_rate": 0.15031533650698609, - "fp": 8099, - "fp_rate": 0.04658104665006413, - "match_probability": 0.10188236920887628, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.969594924353343, - "recall": 0.8496846634930139, - "row_count": 477830, - "tn": 165770, - "tn_rate": 0.9534189533499359, - "tp": 258271, - "tp_rate": 0.8496846634930139, - "truth_threshold": -3.14 - }, - { - "f1": 0.9055577379031693, - "fn": 45772, - "fn_rate": 0.15058510795792882, - "fp": 8083, - "fp_rate": 0.04648902334516216, - "match_probability": 0.10315788037939025, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9696438228578296, - "recall": 0.8494148920420712, - "row_count": 477830, - "tn": 165786, - "tn_rate": 0.9535109766548379, - "tp": 258189, - "tp_rate": 0.8494148920420712, - "truth_threshold": -3.12 - }, - { - "f1": 0.9054527597032463, - "fn": 45830, - "fn_rate": 0.15077592191103464, - "fp": 8078, - "fp_rate": 0.046460266062380295, - "match_probability": 0.10444750315159104, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9696554211164912, - "recall": 0.8492240780889654, - "row_count": 477830, - "tn": 165791, - "tn_rate": 0.9535397339376197, - "tp": 258131, - "tp_rate": 0.8492240780889654, - "truth_threshold": -3.1 - }, - { - "f1": 0.9053773399567792, - "fn": 45885, - "fn_rate": 0.15095686617691084, - "fp": 8060, - "fp_rate": 0.046356739844365585, - "match_probability": 0.1057513470273544, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9697147323173114, - "recall": 0.8490431338230892, - "row_count": 477830, - "tn": 165809, - "tn_rate": 0.9536432601556344, - "tp": 258076, - "tp_rate": 0.8490431338230892, - "truth_threshold": -3.08 - }, - { - "f1": 0.9052960266643277, - "fn": 45929, - "fn_rate": 0.15110162158961182, - "fp": 8057, - "fp_rate": 0.04633948547469647, - "match_probability": 0.10706952117374435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9697206573740365, - "recall": 0.8488983784103882, - "row_count": 477830, - "tn": 165812, - "tn_rate": 0.9536605145253035, - "tp": 258032, - "tp_rate": 0.8488983784103882, - "truth_threshold": -3.06 - }, - { - "f1": 0.9046201376211206, - "fn": 46289, - "fn_rate": 0.15228598405716523, - "fp": 8047, - "fp_rate": 0.04628197090913274, - "match_probability": 0.10840213438641137, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9697161286923404, - "recall": 0.8477140159428348, - "row_count": 477830, - "tn": 165822, - "tn_rate": 0.9537180290908672, - "tp": 257672, - "tp_rate": 0.8477140159428348, - "truth_threshold": -3.04 - }, - { - "f1": 0.9044988992391232, - "fn": 46357, - "fn_rate": 0.15250969696770308, - "fp": 8042, - "fp_rate": 0.046253213626350875, - "match_probability": 0.10974929505222096, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9697266286712392, - "recall": 0.8474903030322969, - "row_count": 477830, - "tn": 165827, - "tn_rate": 0.9537467863736492, - "tp": 257604, - "tp_rate": 0.8474903030322969, - "truth_threshold": -3.02 - }, - { - "f1": 0.9042198612696462, - "fn": 46507, - "fn_rate": 0.15300318132918367, - "fp": 8035, - "fp_rate": 0.04621295343045626, - "match_probability": 0.1111111111111111, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9697350926027067, - "recall": 0.8469968186708163, - "row_count": 477830, - "tn": 165834, - "tn_rate": 0.9537870465695437, - "tp": 257454, - "tp_rate": 0.8469968186708163, - "truth_threshold": -3 - }, - { - "f1": 0.9041225814610294, - "fn": 46579, - "fn_rate": 0.15324005382269437, - "fp": 8010, - "fp_rate": 0.04606916701654694, - "match_probability": 0.11248769001717858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9698182311448725, - "recall": 0.8467599461773057, - "row_count": 477830, - "tn": 165859, - "tn_rate": 0.953930832983453, - "tp": 257382, - "tp_rate": 0.8467599461773057, - "truth_threshold": -2.98 - }, - { - "f1": 0.9040247895557836, - "fn": 46643, - "fn_rate": 0.1534506071502594, - "fp": 7993, - "fp_rate": 0.0459713922550886, - "match_probability": 0.11387913869899342, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9698730923331487, - "recall": 0.8465493928497406, - "row_count": 477830, - "tn": 165876, - "tn_rate": 0.9540286077449114, - "tp": 257318, - "tp_rate": 0.8465493928497406, - "truth_threshold": -2.96 - }, - { - "f1": 0.9040885034123576, - "fn": 46699, - "fn_rate": 0.15363484131187882, - "fp": 7886, - "fp_rate": 0.0453559864035567, - "match_probability": 0.11528556351914263, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9702581199933622, - "recall": 0.8463651586881211, - "row_count": 477830, - "tn": 165983, - "tn_rate": 0.9546440135964434, - "tp": 257262, - "tp_rate": 0.8463651586881211, - "truth_threshold": -2.94 - }, - { - "f1": 0.903720812503955, - "fn": 46894, - "fn_rate": 0.15427637098180358, - "fp": 7880, - "fp_rate": 0.045321477664218464, - "match_probability": 0.1167070702330039, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.970258202583913, - "recall": 0.8457236290181964, - "row_count": 477830, - "tn": 165989, - "tn_rate": 0.9546785223357815, - "tp": 257067, - "tp_rate": 0.8457236290181964, - "truth_threshold": -2.92 - }, - { - "f1": 0.9035727722476362, - "fn": 46984, - "fn_rate": 0.15457246159869192, - "fp": 7865, - "fp_rate": 0.04523520581587287, - "match_probability": 0.1181437639467516, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9703030486101147, - "recall": 0.845427538401308, - "row_count": 477830, - "tn": 166004, - "tn_rate": 0.9547647941841272, - "tp": 256977, - "tp_rate": 0.845427538401308, - "truth_threshold": -2.9 - }, - { - "f1": 0.903302160525307, - "fn": 47126, - "fn_rate": 0.1550396267942269, - "fp": 7862, - "fp_rate": 0.045217951446203754, - "match_probability": 0.11959574907459691, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9702981144478403, - "recall": 0.8449603732057731, - "row_count": 477830, - "tn": 166007, - "tn_rate": 0.9547820485537962, - "tp": 256835, - "tp_rate": 0.8449603732057731, - "truth_threshold": -2.88 - }, - { - "f1": 0.9031290123999648, - "fn": 47224, - "fn_rate": 0.15536203657706088, - "fp": 7853, - "fp_rate": 0.04516618833719639, - "match_probability": 0.12106312929526573, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9703201179182886, - "recall": 0.8446379634229392, - "row_count": 477830, - "tn": 166016, - "tn_rate": 0.9548338116628036, - "tp": 256737, - "tp_rate": 0.8446379634229392, - "truth_threshold": -2.86 - }, - { - "f1": 0.9030156942782743, - "fn": 47342, - "fn_rate": 0.15575024427475892, - "fp": 7781, - "fp_rate": 0.044752083465137545, - "match_probability": 0.12254600750771812, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.970571104387292, - "recall": 0.8442497557252411, - "row_count": 477830, - "tn": 166088, - "tn_rate": 0.9552479165348624, - "tp": 256619, - "tp_rate": 0.8442497557252411, - "truth_threshold": -2.84 - }, - { - "f1": 0.9029367774630044, - "fn": 47387, - "fn_rate": 0.15589828958320312, - "fp": 7776, - "fp_rate": 0.04472332618235568, - "match_probability": 0.12404448578611339, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9705844524304899, - "recall": 0.8441017104167969, - "row_count": 477830, - "tn": 166093, - "tn_rate": 0.9552766738176444, - "tp": 256574, - "tp_rate": 0.8441017104167969, - "truth_threshold": -2.82 - }, - { - "f1": 0.9028361455451608, - "fn": 47449, - "fn_rate": 0.15610226311928174, - "fp": 7764, - "fp_rate": 0.04465430870367921, - "match_probability": 0.12555866533402688, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9706216228488399, - "recall": 0.8438977368807182, - "row_count": 477830, - "tn": 166105, - "tn_rate": 0.9553456912963207, - "tp": 256512, - "tp_rate": 0.8438977368807182, - "truth_threshold": -2.8000000000000003 - }, - { - "f1": 0.902552383903327, - "fn": 47628, - "fn_rate": 0.15669115445731524, - "fp": 7724, - "fp_rate": 0.04442425044142429, - "match_probability": 0.12708864643792386, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.97074873985541, - "recall": 0.8433088455426847, - "row_count": 477830, - "tn": 166145, - "tn_rate": 0.9555757495585757, - "tp": 256333, - "tp_rate": 0.8433088455426847, - "truth_threshold": -2.7800000000000002 - }, - { - "f1": 0.9023971939413362, - "fn": 47719, - "fn_rate": 0.1569905349699468, - "fp": 7711, - "fp_rate": 0.044349481506191446, - "match_probability": 0.12863452841989784, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9707864657723155, - "recall": 0.8430094650300533, - "row_count": 477830, - "tn": 166158, - "tn_rate": 0.9556505184938086, - "tp": 256242, - "tp_rate": 0.8430094650300533, - "truth_threshold": -2.7600000000000002 - }, - { - "f1": 0.9021658716682285, - "fn": 47874, - "fn_rate": 0.1575004688101434, - "fp": 7669, - "fp_rate": 0.04410792033082378, - "match_probability": 0.13019640958968035, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9709238841959993, - "recall": 0.8424995311898565, - "row_count": 477830, - "tn": 166200, - "tn_rate": 0.9558920796691762, - "tp": 256087, - "tp_rate": 0.8424995311898565, - "truth_threshold": -2.74 - }, - { - "f1": 0.9020104664070622, - "fn": 48002, - "fn_rate": 0.1579215754652735, - "fp": 7611, - "fp_rate": 0.04377433585055415, - "match_probability": 0.13177438719593176, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9711234207231475, - "recall": 0.8420784245347265, - "row_count": 477830, - "tn": 166258, - "tn_rate": 0.9562256641494459, - "tp": 255959, - "tp_rate": 0.8420784245347265, - "truth_threshold": -2.72 - }, - { - "f1": 0.901949795926999, - "fn": 48058, - "fn_rate": 0.1581058096268929, - "fp": 7581, - "fp_rate": 0.043601792153862964, - "match_probability": 0.13336855737682143, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9712278544427745, - "recall": 0.8418941903731071, - "row_count": 477830, - "tn": 166288, - "tn_rate": 0.956398207846137, - "tp": 255903, - "tp_rate": 0.8418941903731071, - "truth_threshold": -2.7 - }, - { - "f1": 0.901677143673075, - "fn": 48212, - "fn_rate": 0.15861245357134632, - "fp": 7564, - "fp_rate": 0.04350401739240463, - "match_probability": 0.13497901510990773, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9712737312627937, - "recall": 0.8413875464286537, - "row_count": 477830, - "tn": 166305, - "tn_rate": 0.9564959826075954, - "tp": 255749, - "tp_rate": 0.8413875464286537, - "truth_threshold": -2.68 - }, - { - "f1": 0.9015782458763214, - "fn": 48268, - "fn_rate": 0.15879668773296574, - "fp": 7559, - "fp_rate": 0.043475260109622764, - "match_probability": 0.13660585416132934, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9712860681020468, - "recall": 0.8412033122670343, - "row_count": 477830, - "tn": 166310, - "tn_rate": 0.9565247398903772, - "tp": 255693, - "tp_rate": 0.8412033122670343, - "truth_threshold": -2.66 - }, - { - "f1": 0.9014705363754981, - "fn": 48331, - "fn_rate": 0.15900395116478758, - "fp": 7550, - "fp_rate": 0.04342349700061541, - "match_probability": 0.1382491670343198, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9713124097575804, - "recall": 0.8409960488352124, - "row_count": 477830, - "tn": 166319, - "tn_rate": 0.9565765029993846, - "tp": 255630, - "tp_rate": 0.8409960488352124, - "truth_threshold": -2.64 - }, - { - "f1": 0.901073197578426, - "fn": 48550, - "fn_rate": 0.15972443833254923, - "fp": 7533, - "fp_rate": 0.043325722239157066, - "match_probability": 0.1399090449170576, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9713513143483024, - "recall": 0.8402755616674508, - "row_count": 477830, - "tn": 166336, - "tn_rate": 0.9566742777608429, - "tp": 255411, - "tp_rate": 0.8402755616674508, - "truth_threshold": -2.62 - }, - { - "f1": 0.9009572264777382, - "fn": 48609, - "fn_rate": 0.15991854218139828, - "fp": 7533, - "fp_rate": 0.043325722239157066, - "match_probability": 0.14158557762986687, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9713448846453773, - "recall": 0.8400814578186018, - "row_count": 477830, - "tn": 166336, - "tn_rate": 0.9566742777608429, - "tp": 255352, - "tp_rate": 0.8400814578186018, - "truth_threshold": -2.6 - }, - { - "f1": 0.9003279683964146, - "fn": 48935, - "fn_rate": 0.16099104819368273, - "fp": 7531, - "fp_rate": 0.04331421932604432, - "match_probability": 0.14327885357178247, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9713167045631996, - "recall": 0.8390089518063173, - "row_count": 477830, - "tn": 166338, - "tn_rate": 0.9566857806739557, - "tp": 255026, - "tp_rate": 0.8390089518063173, - "truth_threshold": -2.58 - }, - { - "f1": 0.9002047950284241, - "fn": 49014, - "fn_rate": 0.16125094995739586, - "fp": 7512, - "fp_rate": 0.04320494165147323, - "match_probability": 0.14498895966649594, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9713783867194495, - "recall": 0.8387490500426041, - "row_count": 477830, - "tn": 166357, - "tn_rate": 0.9567950583485267, - "tp": 254947, - "tp_rate": 0.8387490500426041, - "truth_threshold": -2.56 - }, - { - "f1": 0.9000723985096502, - "fn": 49101, - "fn_rate": 0.16153717088705458, - "fp": 7489, - "fp_rate": 0.04307265815067666, - "match_probability": 0.14671598130769928, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9714540554757213, - "recall": 0.8384628291129455, - "row_count": 477830, - "tn": 166380, - "tn_rate": 0.9569273418493234, - "tp": 254860, - "tp_rate": 0.8384628291129455, - "truth_threshold": -2.54 - }, - { - "f1": 0.8999650326185624, - "fn": 49162, - "fn_rate": 0.16173785452739003, - "fp": 7483, - "fp_rate": 0.04303814941133842, - "match_probability": 0.14846000230384404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9714696395482725, - "recall": 0.83826214547261, - "row_count": 477830, - "tn": 166386, - "tn_rate": 0.9569618505886616, - "tp": 254799, - "tp_rate": 0.83826214547261, - "truth_threshold": -2.52 - }, - { - "f1": 0.8998728274692667, - "fn": 49225, - "fn_rate": 0.16194511795921188, - "fp": 7463, - "fp_rate": 0.04292312028021096, - "match_probability": 0.15022110482233483, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9715368861055915, - "recall": 0.8380548820407882, - "row_count": 477830, - "tn": 166406, - "tn_rate": 0.957076879719789, - "tp": 254736, - "tp_rate": 0.8380548820407882, - "truth_threshold": -2.5 - }, - { - "f1": 0.9041257869674987, - "fn": 49342, - "fn_rate": 0.16233003576116672, - "fp": 4659, - "fp_rate": 0.026796036096141347, - "match_probability": 0.15199936933317765, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.982030870339944, - "recall": 0.8376699642388332, - "row_count": 477830, - "tn": 169210, - "tn_rate": 0.9732039639038587, - "tp": 254619, - "tp_rate": 0.8376699642388332, - "truth_threshold": -2.48 - }, - { - "f1": 0.9038026392909791, - "fn": 49527, - "fn_rate": 0.16293866647365945, - "fp": 4636, - "fp_rate": 0.026663752595344772, - "match_probability": 0.15379487455210342, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9821052225267303, - "recall": 0.8370613335263406, - "row_count": 477830, - "tn": 169233, - "tn_rate": 0.9733362474046552, - "tp": 254434, - "tp_rate": 0.8370613335263406, - "truth_threshold": -2.46 - }, - { - "f1": 0.9037096510611691, - "fn": 49583, - "fn_rate": 0.16312290063527887, - "fp": 4626, - "fp_rate": 0.026606238029781043, - "match_probability": 0.15560769738318947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9821392719803556, - "recall": 0.8368770993647211, - "row_count": 477830, - "tn": 169243, - "tn_rate": 0.973393761970219, - "tp": 254378, - "tp_rate": 0.8368770993647211, - "truth_threshold": -2.44 - }, - { - "f1": 0.9034670968704804, - "fn": 49710, - "fn_rate": 0.16354071739466577, - "fp": 4623, - "fp_rate": 0.026588983660111924, - "match_probability": 0.1574379128610021, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9821418914220817, - "recall": 0.8364592826053342, - "row_count": 477830, - "tn": 169246, - "tn_rate": 0.973411016339888, - "tp": 254251, - "tp_rate": 0.8364592826053342, - "truth_threshold": -2.42 - }, - { - "f1": 0.9029682272761209, - "fn": 49975, - "fn_rate": 0.1644125397666148, - "fp": 4612, - "fp_rate": 0.02652571763799182, - "match_probability": 0.15928559409228404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9821653686416755, - "recall": 0.8355874602333851, - "row_count": 477830, - "tn": 169257, - "tn_rate": 0.9734742823620082, - "tp": 253986, - "tp_rate": 0.8355874602333851, - "truth_threshold": -2.4 - }, - { - "f1": 0.9027746663679713, - "fn": 50080, - "fn_rate": 0.1647579788196512, - "fp": 4605, - "fp_rate": 0.02648545744209721, - "match_probability": 0.16115081219721364, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9821847218031151, - "recall": 0.8352420211803488, - "row_count": 477830, - "tn": 169264, - "tn_rate": 0.9735145425579028, - "tp": 253881, - "tp_rate": 0.8352420211803488, - "truth_threshold": -2.38 - }, - { - "f1": 0.9026530104200007, - "fn": 50144, - "fn_rate": 0.16496853214721627, - "fp": 4602, - "fp_rate": 0.026468203072428094, - "match_probability": 0.16303363625026068, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.982191711909728, - "recall": 0.8350314678527837, - "row_count": 477830, - "tn": 169267, - "tn_rate": 0.9735317969275719, - "tp": 253817, - "tp_rate": 0.8350314678527837, - "truth_threshold": -2.36 - }, - { - "f1": 0.9025282057848535, - "fn": 50217, - "fn_rate": 0.16520869453647014, - "fp": 4592, - "fp_rate": 0.026410688506864365, - "match_probability": 0.1649341332206679, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.982224699616004, - "recall": 0.8347913054635299, - "row_count": 477830, - "tn": 169277, - "tn_rate": 0.9735893114931357, - "tp": 253744, - "tp_rate": 0.8347913054635299, - "truth_threshold": -2.34 - }, - { - "f1": 0.9023955546701576, - "fn": 50294, - "fn_rate": 0.16546201650869685, - "fp": 4580, - "fp_rate": 0.02634167102818789, - "match_probability": 0.16685236791258687, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9822650408330009, - "recall": 0.8345379834913031, - "row_count": 477830, - "tn": 169289, - "tn_rate": 0.9736583289718121, - "tp": 253667, - "tp_rate": 0.8345379834913031, - "truth_threshold": -2.32 - }, - { - "f1": 0.9022489779798691, - "fn": 50374, - "fn_rate": 0.16572520816815314, - "fp": 4574, - "fp_rate": 0.02630716228884965, - "match_probability": 0.1687884029048976, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9822823741773544, - "recall": 0.8342747918318468, - "row_count": 477830, - "tn": 169295, - "tn_rate": 0.9736928377111503, - "tp": 253587, - "tp_rate": 0.8342747918318468, - "truth_threshold": -2.3000000000000003 - }, - { - "f1": 0.9018597284262604, - "fn": 50579, - "fn_rate": 0.16639963679550995, - "fp": 4568, - "fp_rate": 0.026272653549511412, - "match_probability": 0.17074229849074432, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9822911416941268, - "recall": 0.83360036320449, - "row_count": 477830, - "tn": 169301, - "tn_rate": 0.9737273464504886, - "tp": 253382, - "tp_rate": 0.83360036320449, - "truth_threshold": -2.2800000000000002 - }, - { - "f1": 0.9016148900265588, - "fn": 50710, - "fn_rate": 0.16683061313786965, - "fp": 4561, - "fp_rate": 0.026232393353616802, - "match_probability": 0.17271411261681832, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9823088141746699, - "recall": 0.8331693868621304, - "row_count": 477830, - "tn": 169308, - "tn_rate": 0.9737676066463832, - "tp": 253251, - "tp_rate": 0.8331693868621304, - "truth_threshold": -2.2600000000000002 - }, - { - "f1": 0.9013250905413249, - "fn": 50859, - "fn_rate": 0.16732080760360704, - "fp": 4560, - "fp_rate": 0.02622664189706043, - "match_probability": 0.1747039008224231, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9823023961624143, - "recall": 0.832679192396393, - "row_count": 477830, - "tn": 169309, - "tn_rate": 0.9737733581029395, - "tp": 253102, - "tp_rate": 0.832679192396393, - "truth_threshold": -2.24 - }, - { - "f1": 0.9004348290979078, - "fn": 51326, - "fn_rate": 0.16885718891568327, - "fp": 4545, - "fp_rate": 0.026140370048714837, - "match_probability": 0.17671171617835496, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9823275526868341, - "recall": 0.8311428110843168, - "row_count": 477830, - "tn": 169324, - "tn_rate": 0.9738596299512852, - "tp": 252635, - "tp_rate": 0.8311428110843168, - "truth_threshold": -2.22 - }, - { - "f1": 0.900186101564394, - "fn": 51466, - "fn_rate": 0.1693177743197318, - "fp": 4528, - "fp_rate": 0.026042595287256498, - "match_probability": 0.17873760922563603, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.982382899584862, - "recall": 0.8306822256802682, - "row_count": 477830, - "tn": 169341, - "tn_rate": 0.9739574047127435, - "tp": 252495, - "tp_rate": 0.8306822256802682, - "truth_threshold": -2.2 - }, - { - "f1": 0.9000852174471135, - "fn": 51524, - "fn_rate": 0.16950858827283763, - "fp": 4521, - "fp_rate": 0.026002335091361888, - "match_probability": 0.18078162791413613, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9824056849757548, - "recall": 0.8304914117271623, - "row_count": 477830, - "tn": 169348, - "tn_rate": 0.9739976649086381, - "tp": 252437, - "tp_rate": 0.8304914117271623, - "truth_threshold": -2.18 - }, - { - "f1": 0.8998134720939274, - "fn": 51665, - "fn_rate": 0.16997246357262938, - "fp": 4517, - "fp_rate": 0.025979329265136394, - "match_probability": 0.18284381754112208, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9824113265294202, - "recall": 0.8300275364273706, - "row_count": 477830, - "tn": 169352, - "tn_rate": 0.9740206707348636, - "tp": 252296, - "tp_rate": 0.8300275364273706, - "truth_threshold": -2.16 - }, - { - "f1": 0.8996989327093202, - "fn": 51743, - "fn_rate": 0.1702290754405993, - "fp": 4494, - "fp_rate": 0.02584704576433982, - "match_probability": 0.18492422068977335, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9824940010595531, - "recall": 0.8297709245594007, - "row_count": 477830, - "tn": 169375, - "tn_rate": 0.9741529542356602, - "tp": 252218, - "tp_rate": 0.8297709245594007, - "truth_threshold": -2.14 - }, - { - "f1": 0.8994862280576567, - "fn": 51853, - "fn_rate": 0.1705909639723517, - "fp": 4492, - "fp_rate": 0.025835542851227074, - "match_probability": 0.187022877167705, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9824941543257989, - "recall": 0.8294090360276483, - "row_count": 477830, - "tn": 169377, - "tn_rate": 0.974164457148773, - "tp": 252108, - "tp_rate": 0.8294090360276483, - "truth_threshold": -2.12 - }, - { - "f1": 0.8993248595836396, - "fn": 51936, - "fn_rate": 0.17086402531903763, - "fp": 4490, - "fp_rate": 0.025824039938114326, - "match_probability": 0.18913982394553902, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9824961503225932, - "recall": 0.8291359746809623, - "row_count": 477830, - "tn": 169379, - "tn_rate": 0.9741759600618857, - "tp": 252025, - "tp_rate": 0.8291359746809623, - "truth_threshold": -2.1 - }, - { - "f1": 0.8991662919263081, - "fn": 52020, - "fn_rate": 0.17114037656146677, - "fp": 4486, - "fp_rate": 0.025801034111888835, - "match_probability": 0.19127509509556725, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9825057423750229, - "recall": 0.8288596234385333, - "row_count": 477830, - "tn": 169383, - "tn_rate": 0.9741989658881112, - "tp": 251941, - "tp_rate": 0.8288596234385333, - "truth_threshold": -2.08 - }, - { - "f1": 0.8990546975960474, - "fn": 52116, - "fn_rate": 0.17145620655281435, - "fp": 4439, - "fp_rate": 0.025530715653739308, - "match_probability": 0.1934287217305493, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9826793713224392, - "recall": 0.8285437934471857, - "row_count": 477830, - "tn": 169430, - "tn_rate": 0.9744692843462607, - "tp": 251845, - "tp_rate": 0.8285437934471857, - "truth_threshold": -2.06 - }, - { - "f1": 0.899107704177859, - "fn": 52254, - "fn_rate": 0.17191021216537647, - "fp": 4236, - "fp_rate": 0.024363169972795612, - "match_probability": 0.19560073194269076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.983449439914356, - "recall": 0.8280897878346235, - "row_count": 477830, - "tn": 169633, - "tn_rate": 0.9756368300272044, - "tp": 251707, - "tp_rate": 0.8280897878346235, - "truth_threshold": -2.04 - }, - { - "f1": 0.8989031013291411, - "fn": 52376, - "fn_rate": 0.17231157944604736, - "fp": 4215, - "fp_rate": 0.02424238938511178, - "match_probability": 0.19779115074284692, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.98352228303362, - "recall": 0.8276884205539526, - "row_count": 477830, - "tn": 169654, - "tn_rate": 0.9757576106148882, - "tp": 251585, - "tp_rate": 0.8276884205539526, - "truth_threshold": -2.02 - }, - { - "f1": 0.8987417315574869, - "fn": 52467, - "fn_rate": 0.17261095995867892, - "fp": 4203, - "fp_rate": 0.024173371906435304, - "match_probability": 0.2, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9835625760177085, - "recall": 0.8273890400413211, - "row_count": 477830, - "tn": 169666, - "tn_rate": 0.9758266280935647, - "tp": 251494, - "tp_rate": 0.8273890400413211, - "truth_threshold": -2 - }, - { - "f1": 0.8986154198058586, - "fn": 52532, - "fn_rate": 0.17282480318198717, - "fp": 4202, - "fp_rate": 0.024167620449878933, - "match_probability": 0.20222729838105732, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9835622440157884, - "recall": 0.8271751968180129, - "row_count": 477830, - "tn": 169667, - "tn_rate": 0.975832379550121, - "tp": 251429, - "tp_rate": 0.8271751968180129, - "truth_threshold": -1.98 - }, - { - "f1": 0.8983612535123656, - "fn": 52666, - "fn_rate": 0.17326564921157647, - "fp": 4197, - "fp_rate": 0.02413886316709707, - "match_probability": 0.2044730612910191, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9835728711662205, - "recall": 0.8267343507884235, - "row_count": 477830, - "tn": 169672, - "tn_rate": 0.975861136832903, - "tp": 251295, - "tp_rate": 0.8267343507884235, - "truth_threshold": -1.96 - }, - { - "f1": 0.8981363616859991, - "fn": 52781, - "fn_rate": 0.17364398722204494, - "fp": 4195, - "fp_rate": 0.02412736025398432, - "match_probability": 0.2067373008135667, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.98357317670093, - "recall": 0.8263560127779551, - "row_count": 477830, - "tn": 169674, - "tn_rate": 0.9758726397460157, - "tp": 251180, - "tp_rate": 0.8263560127779551, - "truth_threshold": -1.94 - }, - { - "f1": 0.898156195790189, - "fn": 52850, - "fn_rate": 0.173870990028326, - "fp": 4099, - "fp_rate": 0.023575220424572524, - "match_probability": 0.2090200256521214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9839387171349085, - "recall": 0.826129009971674, - "row_count": 477830, - "tn": 169770, - "tn_rate": 0.9764247795754275, - "tp": 251111, - "tp_rate": 0.826129009971674, - "truth_threshold": -1.92 - }, - { - "f1": 0.897931147974972, - "fn": 52965, - "fn_rate": 0.17424932803879445, - "fp": 4098, - "fp_rate": 0.02356946896801615, - "match_probability": 0.21132124107142602, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9839353336417164, - "recall": 0.8257506719612056, - "row_count": 477830, - "tn": 169771, - "tn_rate": 0.9764305310319839, - "tp": 250996, - "tp_rate": 0.8257506719612056, - "truth_threshold": -1.9000000000000001 - }, - { - "f1": 0.8978024101213647, - "fn": 53036, - "fn_rate": 0.17448291063656193, - "fp": 4091, - "fp_rate": 0.02352920877212154, - "match_probability": 0.213640948839702, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9839578693101609, - "recall": 0.825517089363438, - "row_count": 477830, - "tn": 169778, - "tn_rate": 0.9764707912278785, - "tp": 250925, - "tp_rate": 0.825517089363438, - "truth_threshold": -1.8800000000000001 - }, - { - "f1": 0.8976642821612995, - "fn": 53115, - "fn_rate": 0.17474281240027503, - "fp": 4080, - "fp_rate": 0.02346594275000144, - "match_probability": 0.2159791471714348, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9839953555149338, - "recall": 0.825257187599725, - "row_count": 477830, - "tn": 169789, - "tn_rate": 0.9765340572499985, - "tp": 250846, - "tp_rate": 0.825257187599725, - "truth_threshold": -1.86 - }, - { - "f1": 0.8985604393240947, - "fn": 53286, - "fn_rate": 0.17530538457236292, - "fp": 3313, - "fp_rate": 0.019054575571263423, - "match_probability": 0.21833583067084317, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9869560766650393, - "recall": 0.8246946154276371, - "row_count": 477830, - "tn": 170556, - "tn_rate": 0.9809454244287366, - "tp": 250675, - "tp_rate": 0.8246946154276371, - "truth_threshold": -1.84 - }, - { - "f1": 0.8984164656028508, - "fn": 53363, - "fn_rate": 0.1755587065445896, - "fp": 3307, - "fp_rate": 0.019020066831925184, - "match_probability": 0.2207109902760858, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9869754435714145, - "recall": 0.8244412934554104, - "row_count": 477830, - "tn": 170562, - "tn_rate": 0.9809799331680749, - "tp": 250598, - "tp_rate": 0.8244412934554104, - "truth_threshold": -1.82 - }, - { - "f1": 0.8982591390716603, - "fn": 53450, - "fn_rate": 0.17584492747424835, - "fp": 3298, - "fp_rate": 0.01896830372291783, - "match_probability": 0.22310461320426225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.987005976935412, - "recall": 0.8241550725257517, - "row_count": 477830, - "tn": 170571, - "tn_rate": 0.9810316962770822, - "tp": 250511, - "tp_rate": 0.8241550725257517, - "truth_threshold": -1.8 - }, - { - "f1": 0.89802806191986, - "fn": 53580, - "fn_rate": 0.17627261392086485, - "fp": 3282, - "fp_rate": 0.018876280418015864, - "match_probability": 0.225516682897264, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9870615738203837, - "recall": 0.8237273860791352, - "row_count": 477830, - "tn": 170587, - "tn_rate": 0.9811237195819842, - "tp": 250381, - "tp_rate": 0.8237273860791352, - "truth_threshold": -1.78 - }, - { - "f1": 0.8978935889341675, - "fn": 53657, - "fn_rate": 0.17652593589309154, - "fp": 3272, - "fp_rate": 0.018818765852452134, - "match_probability": 0.22794717896853242, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9870965706533741, - "recall": 0.8234740641069085, - "row_count": 477830, - "tn": 170597, - "tn_rate": 0.9811812341475479, - "tp": 250304, - "tp_rate": 0.8234740641069085, - "truth_threshold": -1.76 - }, - { - "f1": 0.8975640740395174, - "fn": 53844, - "fn_rate": 0.17714114639707068, - "fp": 3247, - "fp_rate": 0.01867497943854281, - "match_probability": 0.2303960771507819, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9871844460933676, - "recall": 0.8228588536029293, - "row_count": 477830, - "tn": 170622, - "tn_rate": 0.9813250205614572, - "tp": 250117, - "tp_rate": 0.8228588536029293, - "truth_threshold": -1.74 - }, - { - "f1": 0.8974936020990141, - "fn": 53913, - "fn_rate": 0.17736814920335175, - "fp": 3206, - "fp_rate": 0.018439169719731523, - "match_probability": 0.23286334924474508, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9873407725050739, - "recall": 0.8226318507966482, - "row_count": 477830, - "tn": 170663, - "tn_rate": 0.9815608302802685, - "tp": 250048, - "tp_rate": 0.8226318507966482, - "truth_threshold": -1.72 - }, - { - "f1": 0.8979181261338938, - "fn": 54021, - "fn_rate": 0.17772345794361777, - "fp": 2810, - "fp_rate": 0.016161592923407853, - "match_probability": 0.2353489630689996, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9888822947576656, - "recall": 0.8222765420563822, - "row_count": 477830, - "tn": 171059, - "tn_rate": 0.9838384070765921, - "tp": 249940, - "tp_rate": 0.8222765420563822, - "truth_threshold": -1.7 - }, - { - "f1": 0.897744912038634, - "fn": 54115, - "fn_rate": 0.17803270814347893, - "fp": 2802, - "fp_rate": 0.01611558127095687, - "match_probability": 0.2378528824109348, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9889094708843925, - "recall": 0.8219672918565211, - "row_count": 477830, - "tn": 171067, - "tn_rate": 0.9838844187290431, - "tp": 249846, - "tp_rate": 0.8219672918565211, - "truth_threshold": -1.68 - }, - { - "f1": 0.8974855697003242, - "fn": 54250, - "fn_rate": 0.17847684406881145, - "fp": 2796, - "fp_rate": 0.016081072531618633, - "match_probability": 0.24037506697891697, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9889270396464257, - "recall": 0.8215231559311885, - "row_count": 477830, - "tn": 171073, - "tn_rate": 0.9839189274683814, - "tp": 249711, - "tp_rate": 0.8215231559311885, - "truth_threshold": -1.6600000000000001 - }, - { - "f1": 0.897396174058072, - "fn": 54300, - "fn_rate": 0.17864133885597167, - "fp": 2790, - "fp_rate": 0.016046563792280394, - "match_probability": 0.2429154723557138, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9889483503729437, - "recall": 0.8213586611440283, - "row_count": 477830, - "tn": 171079, - "tn_rate": 0.9839534362077196, - "tp": 249661, - "tp_rate": 0.8213586611440283, - "truth_threshold": -1.6400000000000001 - }, - { - "f1": 0.8971211614587266, - "fn": 54442, - "fn_rate": 0.1791085040515066, - "fp": 2786, - "fp_rate": 0.016023557966054904, - "match_probability": 0.2454740499532359, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9889578090010107, - "recall": 0.8208914959484934, - "row_count": 477830, - "tn": 171083, - "tn_rate": 0.9839764420339451, - "tp": 249519, - "tp_rate": 0.8208914959484934, - "truth_threshold": -1.62 - }, - { - "f1": 0.8969559667008289, - "fn": 54531, - "fn_rate": 0.17940130477265176, - "fp": 2780, - "fp_rate": 0.015989049226716665, - "match_probability": 0.2480507469686566, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9889774394353912, - "recall": 0.8205986952273483, - "row_count": 477830, - "tn": 171089, - "tn_rate": 0.9840109507732834, - "tp": 249430, - "tp_rate": 0.8205986952273483, - "truth_threshold": -1.6 - }, - { - "f1": 0.8967427272465687, - "fn": 54645, - "fn_rate": 0.179776352887377, - "fp": 2772, - "fp_rate": 0.015943037574265684, - "match_probability": 0.25064550634196875, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9890038399289137, - "recall": 0.820223647112623, - "row_count": 477830, - "tn": 171097, - "tn_rate": 0.9840569624257344, - "tp": 249316, - "tp_rate": 0.820223647112623, - "truth_threshold": -1.58 - }, - { - "f1": 0.8966464972048148, - "fn": 54713, - "fn_rate": 0.18000006579791486, - "fp": 2748, - "fp_rate": 0.015805002616912735, - "match_probability": 0.2532582667150385, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9890950650010317, - "recall": 0.8199999342020852, - "row_count": 477830, - "tn": 171121, - "tn_rate": 0.9841949973830872, - "tp": 249248, - "tp_rate": 0.8199999342020852, - "truth_threshold": -1.56 - }, - { - "f1": 0.8964667362285468, - "fn": 54806, - "fn_rate": 0.18030602610203283, - "fp": 2745, - "fp_rate": 0.015787748247243615, - "match_probability": 0.2558889623922157, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9891028185788011, - "recall": 0.8196939738979672, - "row_count": 477830, - "tn": 171124, - "tn_rate": 0.9842122517527564, - "tp": 249155, - "tp_rate": 0.8196939738979672, - "truth_threshold": -1.54 - }, - { - "f1": 0.8964321056514151, - "fn": 54847, - "fn_rate": 0.18044091182750419, - "fp": 2715, - "fp_rate": 0.015615204550552427, - "match_probability": 0.2585375233025599, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9892188747126026, - "recall": 0.8195590881724958, - "row_count": 477830, - "tn": 171154, - "tn_rate": 0.9843847954494476, - "tp": 249114, - "tp_rate": 0.8195590881724958, - "truth_threshold": -1.52 - }, - { - "f1": 0.8961788758350611, - "fn": 54981, - "fn_rate": 0.1808817578570935, - "fp": 2707, - "fp_rate": 0.015569192898101445, - "match_probability": 0.2612038749637415, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9892445775904198, - "recall": 0.8191182421429065, - "row_count": 477830, - "tn": 171162, - "tn_rate": 0.9844308071018986, - "tp": 248980, - "tp_rate": 0.8191182421429065, - "truth_threshold": -1.5 - }, - { - "f1": 0.8954549711478197, - "fn": 55363, - "fn_rate": 0.1821384980309974, - "fp": 2686, - "fp_rate": 0.015448412310417613, - "match_probability": 0.2638879384476761, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9893108992215979, - "recall": 0.8178615019690026, - "row_count": 477830, - "tn": 171183, - "tn_rate": 0.9845515876895824, - "tp": 248598, - "tp_rate": 0.8178615019690026, - "truth_threshold": -1.48 - }, - { - "f1": 0.8950641750924251, - "fn": 55561, - "fn_rate": 0.18278989738815177, - "fp": 2683, - "fp_rate": 0.015431157940748494, - "match_probability": 0.26658963034795197, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9893142904935818, - "recall": 0.8172101026118482, - "row_count": 477830, - "tn": 171186, - "tn_rate": 0.9845688420592515, - "tp": 248400, - "tp_rate": 0.8172101026118482, - "truth_threshold": -1.46 - }, - { - "f1": 0.8949485193687541, - "fn": 55628, - "fn_rate": 0.18301032040294643, - "fp": 2672, - "fp_rate": 0.015367891918628392, - "match_probability": 0.26930886274910526, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9893547937292085, - "recall": 0.8169896795970536, - "row_count": 477830, - "tn": 171197, - "tn_rate": 0.9846321080813716, - "tp": 248333, - "tp_rate": 0.8169896795970536, - "truth_threshold": -1.44 - }, - { - "f1": 0.8946924474435505, - "fn": 55759, - "fn_rate": 0.18344129674530615, - "fp": 2669, - "fp_rate": 0.015350637548959274, - "match_probability": 0.2720455431978043, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9893610660458961, - "recall": 0.8165587032546938, - "row_count": 477830, - "tn": 171200, - "tn_rate": 0.9846493624510407, - "tp": 248202, - "tp_rate": 0.8165587032546938, - "truth_threshold": -1.42 - }, - { - "f1": 0.894573850219375, - "fn": 55825, - "fn_rate": 0.1836584298643576, - "fp": 2662, - "fp_rate": 0.015310377353064664, - "match_probability": 0.2747995746759952, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9893858802701776, - "recall": 0.8163415701356423, - "row_count": 477830, - "tn": 171207, - "tn_rate": 0.9846896226469354, - "tp": 248136, - "tp_rate": 0.8163415701356423, - "truth_threshold": -1.4000000000000001 - }, - { - "f1": 0.8943859282203656, - "fn": 55929, - "fn_rate": 0.18400057902165082, - "fp": 2650, - "fp_rate": 0.015241359874388188, - "match_probability": 0.27757085557606836, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9894288381295825, - "recall": 0.8159994209783492, - "row_count": 477830, - "tn": 171219, - "tn_rate": 0.9847586401256118, - "tp": 248032, - "tp_rate": 0.8159994209783492, - "truth_threshold": -1.3800000000000001 - }, - { - "f1": 0.8942869508764336, - "fn": 56011, - "fn_rate": 0.18427035047259352, - "fp": 2609, - "fp_rate": 0.0150055501555769, - "match_probability": 0.2803592796780973, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9895872828355796, - "recall": 0.8157296495274065, - "row_count": 477830, - "tn": 171260, - "tn_rate": 0.9849944498444231, - "tp": 247950, - "tp_rate": 0.8157296495274065, - "truth_threshold": -1.36 - }, - { - "f1": 0.8941741304120421, - "fn": 56070, - "fn_rate": 0.18446445432144257, - "fp": 2607, - "fp_rate": 0.014994047242464155, - "match_probability": 0.28316473612920606, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9895927312792917, - "recall": 0.8155355456785575, - "row_count": 477830, - "tn": 171262, - "tn_rate": 0.9850059527575359, - "tp": 247891, - "tp_rate": 0.8155355456785575, - "truth_threshold": -1.34 - }, - { - "f1": 0.893929226017809, - "fn": 56196, - "fn_rate": 0.18487898118508625, - "fp": 2602, - "fp_rate": 0.01496528995968229, - "match_probability": 0.2859871094251169, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9896072565473885, - "recall": 0.8151210188149137, - "row_count": 477830, - "tn": 171267, - "tn_rate": 0.9850347100403177, - "tp": 247765, - "tp_rate": 0.8151210188149137, - "truth_threshold": -1.32 - }, - { - "f1": 0.8937478573104058, - "fn": 56299, - "fn_rate": 0.18521784044663625, - "fp": 2587, - "fp_rate": 0.014879018111336696, - "match_probability": 0.2888262793939301, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9896622963528325, - "recall": 0.8147821595533637, - "row_count": 477830, - "tn": 171282, - "tn_rate": 0.9851209818886633, - "tp": 247662, - "tp_rate": 0.8147821595533637, - "truth_threshold": -1.3 - }, - { - "f1": 0.8935986658773589, - "fn": 56402, - "fn_rate": 0.18555669970818625, - "fp": 2552, - "fp_rate": 0.014677717131863645, - "match_probability": 0.29168212118218634, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9897965303405288, - "recall": 0.8144433002918138, - "row_count": 477830, - "tn": 171317, - "tn_rate": 0.9853222828681364, - "tp": 247559, - "tp_rate": 0.8144433002918138, - "truth_threshold": -1.28 - }, - { - "f1": 0.8934971912140598, - "fn": 56473, - "fn_rate": 0.18579028230595374, - "fp": 2528, - "fp_rate": 0.014539682174510694, - "match_probability": 0.29455450524326093, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9898886471265839, - "recall": 0.8142097176940463, - "row_count": 477830, - "tn": 171341, - "tn_rate": 0.9854603178254893, - "tp": 247488, - "tp_rate": 0.8142097176940463, - "truth_threshold": -1.26 - }, - { - "f1": 0.8933603425988113, - "fn": 56552, - "fn_rate": 0.18605018406966684, - "fp": 2515, - "fp_rate": 0.014464913239277847, - "match_probability": 0.2974432973281369, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9899369408300123, - "recall": 0.8139498159303332, - "row_count": 477830, - "tn": 171354, - "tn_rate": 0.9855350867607221, - "tp": 247409, - "tp_rate": 0.8139498159303332, - "truth_threshold": -1.24 - }, - { - "f1": 0.8931315079476873, - "fn": 56677, - "fn_rate": 0.18646142103756733, - "fp": 2501, - "fp_rate": 0.014384392847488627, - "match_probability": 0.300348358478604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.989987389154673, - "recall": 0.8135385789624326, - "row_count": 477830, - "tn": 171368, - "tn_rate": 0.9856156071525114, - "tp": 247284, - "tp_rate": 0.8135385789624326, - "truth_threshold": -1.22 - }, - { - "f1": 0.8929477129377424, - "fn": 56777, - "fn_rate": 0.1867904106118877, - "fp": 2491, - "fp_rate": 0.014326878281924898, - "match_probability": 0.30326954502292763, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9900230299389206, - "recall": 0.8132095893881123, - "row_count": 477830, - "tn": 171378, - "tn_rate": 0.9856731217180751, - "tp": 247184, - "tp_rate": 0.8132095893881123, - "truth_threshold": -1.2 - }, - { - "f1": 0.892855207102516, - "fn": 56866, - "fn_rate": 0.18708321133303285, - "fp": 2438, - "fp_rate": 0.014022051084437133, - "match_probability": 0.3062067085740297, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9902297491714522, - "recall": 0.8129167886669671, - "row_count": 477830, - "tn": 171431, - "tn_rate": 0.9859779489155629, - "tp": 247095, - "tp_rate": 0.8129167886669671, - "truth_threshold": -1.18 - }, - { - "f1": 0.8925480925632739, - "fn": 57034, - "fn_rate": 0.1876359138178911, - "fp": 2421, - "fp_rate": 0.013924276322978794, - "match_probability": 0.309159696030225, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9902906780884547, - "recall": 0.8123640861821089, - "row_count": 477830, - "tn": 171448, - "tn_rate": 0.9860757236770212, - "tp": 246927, - "tp_rate": 0.8123640861821089, - "truth_threshold": -1.16 - }, - { - "f1": 0.8923995719698066, - "fn": 57109, - "fn_rate": 0.1878826559986314, - "fp": 2419, - "fp_rate": 0.013912773409866049, - "match_probability": 0.3121283495785485, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9902957022678129, - "recall": 0.8121173440013686, - "row_count": 477830, - "tn": 171450, - "tn_rate": 0.9860872265901339, - "tp": 246852, - "tp_rate": 0.8121173440013686, - "truth_threshold": -1.1400000000000001 - }, - { - "f1": 0.8920747539181438, - "fn": 57272, - "fn_rate": 0.18841890900477365, - "fp": 2419, - "fp_rate": 0.013912773409866049, - "match_probability": 0.3151125067007146, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9902893524093968, - "recall": 0.8115810909952264, - "row_count": 477830, - "tn": 171450, - "tn_rate": 0.9860872265901339, - "tp": 246689, - "tp_rate": 0.8115810909952264, - "truth_threshold": -1.12 - }, - { - "f1": 0.8917927589337713, - "fn": 57424, - "fn_rate": 0.18891897315774064, - "fp": 2405, - "fp_rate": 0.013832253018076827, - "match_probability": 0.3181120001817404, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9903391151352524, - "recall": 0.8110810268422594, - "row_count": 477830, - "tn": 171464, - "tn_rate": 0.9861677469819232, - "tp": 246537, - "tp_rate": 0.8110810268422594, - "truth_threshold": -1.1 - }, - { - "f1": 0.8916581947373943, - "fn": 57504, - "fn_rate": 0.18918216481719694, - "fp": 2388, - "fp_rate": 0.013734478256618488, - "match_probability": 0.32112665812126734, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9904036649319857, - "recall": 0.810817835182803, - "row_count": 477830, - "tn": 171481, - "tn_rate": 0.9862655217433816, - "tp": 246457, - "tp_rate": 0.810817835182803, - "truth_threshold": -1.08 - }, - { - "f1": 0.8916610571877329, - "fn": 57579, - "fn_rate": 0.18942890699793724, - "fp": 2294, - "fp_rate": 0.013193841340319435, - "match_probability": 0.3241563039476125, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.990775145168814, - "recall": 0.8105710930020628, - "row_count": 477830, - "tn": 171575, - "tn_rate": 0.9868061586596806, - "tp": 246382, - "tp_rate": 0.8105710930020628, - "truth_threshold": -1.06 - }, - { - "f1": 0.8915106632497937, - "fn": 57658, - "fn_rate": 0.18968880876165034, - "fp": 2288, - "fp_rate": 0.013159332600981198, - "match_probability": 0.32720075643457636, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.990796126971612, - "recall": 0.8103111912383496, - "row_count": 477830, - "tn": 171581, - "tn_rate": 0.9868406673990188, - "tp": 246303, - "tp_rate": 0.8103111912383496, - "truth_threshold": -1.04 - }, - { - "f1": 0.8913433830024472, - "fn": 57747, - "fn_rate": 0.1899816094827955, - "fp": 2282, - "fp_rate": 0.01312482386164296, - "match_probability": 0.33025982972103385, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.990816753589595, - "recall": 0.8100183905172045, - "row_count": 477830, - "tn": 171587, - "tn_rate": 0.9868751761383571, - "tp": 246214, - "tp_rate": 0.8100183905172045, - "truth_threshold": -1.02 - }, - { - "f1": 0.8910571637564547, - "fn": 57892, - "fn_rate": 0.19045864436556006, - "fp": 2278, - "fp_rate": 0.013101818035417469, - "match_probability": 0.3333333333333333, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9908273504411167, - "recall": 0.80954135563444, - "row_count": 477830, - "tn": 171591, - "tn_rate": 0.9868981819645826, - "tp": 246069, - "tp_rate": 0.80954135563444, - "truth_threshold": -1 - }, - { - "f1": 0.8909588048890901, - "fn": 57945, - "fn_rate": 0.19063300883994985, - "fp": 2274, - "fp_rate": 0.013078812209191978, - "match_probability": 0.33642107221052214, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9908413548672923, - "recall": 0.8093669911600502, - "row_count": 477830, - "tn": 171595, - "tn_rate": 0.9869211877908081, - "tp": 246016, - "tp_rate": 0.8093669911600502, - "truth_threshold": -0.98 - }, - { - "f1": 0.8907664388250763, - "fn": 58048, - "fn_rate": 0.19097186810149985, - "fp": 2265, - "fp_rate": 0.013027049100184622, - "match_probability": 0.339522846732419, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9908734859657181, - "recall": 0.8090281318985001, - "row_count": 477830, - "tn": 171604, - "tn_rate": 0.9869729508998154, - "tp": 245913, - "tp_rate": 0.8090281318985001, - "truth_threshold": -0.96 - }, - { - "f1": 0.8905932433656372, - "fn": 58135, - "fn_rate": 0.1912580890311586, - "fp": 2263, - "fp_rate": 0.013015546187071876, - "match_probability": 0.3426384527505482, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9908782735228083, - "recall": 0.8087419109688414, - "row_count": 477830, - "tn": 171606, - "tn_rate": 0.9869844538129281, - "tp": 245826, - "tp_rate": 0.8087419109688414, - "truth_threshold": -0.9400000000000001 - }, - { - "f1": 0.8904260484531376, - "fn": 58223, - "fn_rate": 0.19154759985656056, - "fp": 2258, - "fp_rate": 0.012986788904290012, - "match_probability": 0.34576768162194854, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9908950144357167, - "recall": 0.8084524001434394, - "row_count": 477830, - "tn": 171611, - "tn_rate": 0.9870132110957099, - "tp": 245738, - "tp_rate": 0.8084524001434394, - "truth_threshold": -0.92 - }, - { - "f1": 0.8902117265024173, - "fn": 58332, - "fn_rate": 0.19190619849256976, - "fp": 2254, - "fp_rate": 0.01296378307806452, - "match_probability": 0.34891032024586677, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909070004800652, - "recall": 0.8080938015074303, - "row_count": 477830, - "tn": 171615, - "tn_rate": 0.9870362169219354, - "tp": 245629, - "tp_rate": 0.8080938015074303, - "truth_threshold": -0.9 - }, - { - "f1": 0.8898266985715322, - "fn": 58529, - "fn_rate": 0.19255430795398093, - "fp": 2247, - "fp_rate": 0.01292352288216991, - "match_probability": 0.3520661511033437, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909277734486978, - "recall": 0.807445692046019, - "row_count": 477830, - "tn": 171622, - "tn_rate": 0.9870764771178301, - "tp": 245432, - "tp_rate": 0.807445692046019, - "truth_threshold": -0.88 - }, - { - "f1": 0.8896491705194453, - "fn": 58618, - "fn_rate": 0.19284710867512608, - "fp": 2246, - "fp_rate": 0.012917771425613537, - "match_probability": 0.3552349522996959, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909285145947518, - "recall": 0.8071528913248739, - "row_count": 477830, - "tn": 171623, - "tn_rate": 0.9870822285743864, - "tp": 245343, - "tp_rate": 0.8071528913248739, - "truth_threshold": -0.86 - }, - { - "f1": 0.8894792388233459, - "fn": 58704, - "fn_rate": 0.19313003970904163, - "fp": 2244, - "fp_rate": 0.01290626851250079, - "match_probability": 0.3584164976098956, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.990933369966182, - "recall": 0.8068699602909584, - "row_count": 477830, - "tn": 171625, - "tn_rate": 0.9870937314874992, - "tp": 245257, - "tp_rate": 0.8068699602909584, - "truth_threshold": -0.84 - }, - { - "f1": 0.8893217406444172, - "fn": 58783, - "fn_rate": 0.19338994147275473, - "fp": 2243, - "fp_rate": 0.012900517055944418, - "match_probability": 0.36161055652684515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909344800966773, - "recall": 0.8066100585272453, - "row_count": 477830, - "tn": 171626, - "tn_rate": 0.9870994829440556, - "tp": 245178, - "tp_rate": 0.8066100585272453, - "truth_threshold": -0.8200000000000001 - }, - { - "f1": 0.8890823864048645, - "fn": 58905, - "fn_rate": 0.1937913087534256, - "fp": 2240, - "fp_rate": 0.0128832626862753, - "match_probability": 0.36481689431254416, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909420289855072, - "recall": 0.8062086912465743, - "row_count": 477830, - "tn": 171629, - "tn_rate": 0.9871167373137247, - "tp": 245056, - "tp_rate": 0.8062086912465743, - "truth_threshold": -0.8 - }, - { - "f1": 0.8889009844584027, - "fn": 58995, - "fn_rate": 0.19408739937031397, - "fp": 2239, - "fp_rate": 0.012877511229718926, - "match_probability": 0.36803527205213776, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909427398313141, - "recall": 0.8059126006296861, - "row_count": 477830, - "tn": 171630, - "tn_rate": 0.9871224887702811, - "tp": 244966, - "tp_rate": 0.8059126006296861, - "truth_threshold": -0.78 - }, - { - "f1": 0.8886739449194988, - "fn": 59110, - "fn_rate": 0.1944657373807824, - "fp": 2237, - "fp_rate": 0.01286600831660618, - "match_probability": 0.37126544671083744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909465453603574, - "recall": 0.8055342626192176, - "row_count": 477830, - "tn": 171632, - "tn_rate": 0.9871339916833938, - "tp": 244851, - "tp_rate": 0.8055342626192176, - "truth_threshold": -0.76 - }, - { - "f1": 0.8885049042740876, - "fn": 59201, - "fn_rate": 0.19476511789341397, - "fp": 2228, - "fp_rate": 0.012814245207598824, - "match_probability": 0.37450717119369914, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909793188333036, - "recall": 0.805234882106586, - "row_count": 477830, - "tn": 171641, - "tn_rate": 0.9871857547924012, - "tp": 244760, - "tp_rate": 0.805234882106586, - "truth_threshold": -0.74 - }, - { - "f1": 0.888297466768814, - "fn": 59307, - "fn_rate": 0.19511384684219357, - "fp": 2224, - "fp_rate": 0.012791239381373333, - "match_probability": 0.3777601944082411, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909915018754203, - "recall": 0.8048861531578064, - "row_count": 477830, - "tn": 171645, - "tn_rate": 0.9872087606186266, - "tp": 244654, - "tp_rate": 0.8048861531578064, - "truth_threshold": -0.72 - }, - { - "f1": 0.8881480997305561, - "fn": 59381, - "fn_rate": 0.19535729912719066, - "fp": 2224, - "fp_rate": 0.012791239381373333, - "match_probability": 0.3810242613298804, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909888008298082, - "recall": 0.8046427008728093, - "row_count": 477830, - "tn": 171645, - "tn_rate": 0.9872087606186266, - "tp": 244580, - "tp_rate": 0.8046427008728093, - "truth_threshold": -0.7000000000000001 - }, - { - "f1": 0.88792640051139, - "fn": 59490, - "fn_rate": 0.1957158977631999, - "fp": 2224, - "fp_rate": 0.012791239381373333, - "match_probability": 0.38429911307016507, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9909848193112953, - "recall": 0.8042841022368001, - "row_count": 477830, - "tn": 171645, - "tn_rate": 0.9872087606186266, - "tp": 244471, - "tp_rate": 0.8042841022368001, - "truth_threshold": -0.68 - }, - { - "f1": 0.8878128519016311, - "fn": 59555, - "fn_rate": 0.19592974098650814, - "fp": 2213, - "fp_rate": 0.012727973359253231, - "match_probability": 0.38758448694777375, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910266443380275, - "recall": 0.8040702590134918, - "row_count": 477830, - "tn": 171656, - "tn_rate": 0.9872720266407468, - "tp": 244406, - "tp_rate": 0.8040702590134918, - "truth_threshold": -0.66 - }, - { - "f1": 0.8875505510197408, - "fn": 59692, - "fn_rate": 0.19638045670332707, - "fp": 2205, - "fp_rate": 0.012681961706802247, - "match_probability": 0.3908801165622518, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910538231213029, - "recall": 0.803619543296673, - "row_count": 477830, - "tn": 171664, - "tn_rate": 0.9873180382931978, - "tp": 244269, - "tp_rate": 0.803619543296673, - "truth_threshold": -0.64 - }, - { - "f1": 0.8874167372257734, - "fn": 59759, - "fn_rate": 0.19660087971812173, - "fp": 2203, - "fp_rate": 0.012670458793689502, - "match_probability": 0.3941857318704517, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910594346705627, - "recall": 0.8033991202818783, - "row_count": 477830, - "tn": 171666, - "tn_rate": 0.9873295412063104, - "tp": 244202, - "tp_rate": 0.8033991202818783, - "truth_threshold": -0.62 - }, - { - "f1": 0.8870972432243805, - "fn": 59917, - "fn_rate": 0.19712068324554796, - "fp": 2203, - "fp_rate": 0.012670458793689502, - "match_probability": 0.39750105926563917, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910536981161192, - "recall": 0.802879316754452, - "row_count": 477830, - "tn": 171666, - "tn_rate": 0.9873295412063104, - "tp": 244044, - "tp_rate": 0.802879316754452, - "truth_threshold": -0.6 - }, - { - "f1": 0.886909825992743, - "fn": 60020, - "fn_rate": 0.19745954250709796, - "fp": 2191, - "fp_rate": 0.012601441315013027, - "match_probability": 0.4008258216592253, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910982724716818, - "recall": 0.802540457492902, - "row_count": 477830, - "tn": 171678, - "tn_rate": 0.9873985586849869, - "tp": 243941, - "tp_rate": 0.802540457492902, - "truth_threshold": -0.58 - }, - { - "f1": 0.8866665454479336, - "fn": 60141, - "fn_rate": 0.19785761989202563, - "fp": 2190, - "fp_rate": 0.012595689858456655, - "match_probability": 0.4041597385650814, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9910979228486647, - "recall": 0.8021423801079743, - "row_count": 477830, - "tn": 171679, - "tn_rate": 0.9874043101415434, - "tp": 243820, - "tp_rate": 0.8021423801079743, - "truth_threshold": -0.56 - }, - { - "f1": 0.8864534949277445, - "fn": 60251, - "fn_rate": 0.19821950842377806, - "fp": 2184, - "fp_rate": 0.012561181119118416, - "match_probability": 0.4075025261863895, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911181240697211, - "recall": 0.801780491576222, - "row_count": 477830, - "tn": 171685, - "tn_rate": 0.9874388188808816, - "tp": 243710, - "tp_rate": 0.801780491576222, - "truth_threshold": -0.54 - }, - { - "f1": 0.8863684313910937, - "fn": 60293, - "fn_rate": 0.19835768404499263, - "fp": 2184, - "fp_rate": 0.012561181119118416, - "match_probability": 0.4108538975049788, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911166067390137, - "recall": 0.8016423159550073, - "row_count": 477830, - "tn": 171685, - "tn_rate": 0.9874388188808816, - "tp": 243668, - "tp_rate": 0.8016423159550073, - "truth_threshold": -0.52 - }, - { - "f1": 0.8861897468174823, - "fn": 60382, - "fn_rate": 0.19865048476613775, - "fp": 2182, - "fp_rate": 0.01254967820600567, - "match_probability": 0.4142135623730951, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911214553977238, - "recall": 0.8013495152338622, - "row_count": 477830, - "tn": 171687, - "tn_rate": 0.9874503217939943, - "tp": 243579, - "tp_rate": 0.8013495152338622, - "truth_threshold": -0.5 - }, - { - "f1": 0.8860498795584051, - "fn": 60455, - "fn_rate": 0.19889064715539165, - "fp": 2177, - "fp_rate": 0.012520920923223806, - "match_probability": 0.41758122760754685, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911389880455709, - "recall": 0.8011093528446084, - "row_count": 477830, - "tn": 171692, - "tn_rate": 0.9874790790767762, - "tp": 243506, - "tp_rate": 0.8011093528446084, - "truth_threshold": -0.48 - }, - { - "f1": 0.8858548692921066, - "fn": 60552, - "fn_rate": 0.19920976704248242, - "fp": 2176, - "fp_rate": 0.012515169466667433, - "match_probability": 0.4209565970861701, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911395239937293, - "recall": 0.8007902329575176, - "row_count": 477830, - "tn": 171693, - "tn_rate": 0.9874848305333326, - "tp": 243409, - "tp_rate": 0.8007902329575176, - "truth_threshold": -0.46 - }, - { - "f1": 0.8857428841814079, - "fn": 60612, - "fn_rate": 0.19940716078707466, - "fp": 2170, - "fp_rate": 0.012480660727329196, - "match_probability": 0.42433937184654724, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9911615801628387, - "recall": 0.8005928392129253, - "row_count": 477830, - "tn": 171699, - "tn_rate": 0.9875193392726708, - "tp": 243349, - "tp_rate": 0.8005928392129253, - "truth_threshold": -0.44 - }, - { - "f1": 0.885595503327363, - "fn": 60695, - "fn_rate": 0.19968022213376058, - "fp": 2158, - "fp_rate": 0.012411643248652722, - "match_probability": 0.4277292501869187, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912070539148575, - "recall": 0.8003197778662394, - "row_count": 477830, - "tn": 171711, - "tn_rate": 0.9875883567513473, - "tp": 243266, - "tp_rate": 0.8003197778662394, - "truth_threshold": -0.42 - }, - { - "f1": 0.8854336198767172, - "fn": 60774, - "fn_rate": 0.19994012389747368, - "fp": 2158, - "fp_rate": 0.012411643248652722, - "match_probability": 0.43112592776921604, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912042226252827, - "recall": 0.8000598761025263, - "row_count": 477830, - "tn": 171711, - "tn_rate": 0.9875883567513473, - "tp": 243187, - "tp_rate": 0.8000598761025263, - "truth_threshold": -0.4 - }, - { - "f1": 0.8852285887005732, - "fn": 60879, - "fn_rate": 0.2002855629505101, - "fp": 2153, - "fp_rate": 0.012382885965870857, - "match_probability": 0.434529097724148, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912206658918996, - "recall": 0.7997144370494899, - "row_count": 477830, - "tn": 171716, - "tn_rate": 0.9876171140341291, - "tp": 243082, - "tp_rate": 0.7997144370494899, - "truth_threshold": -0.38 - }, - { - "f1": 0.8850694027105482, - "fn": 60959, - "fn_rate": 0.2005487546099664, - "fp": 2152, - "fp_rate": 0.012377134509314484, - "match_probability": 0.4379384507582655, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912218442285258, - "recall": 0.7994512453900335, - "row_count": 477830, - "tn": 171717, - "tn_rate": 0.9876228654906856, - "tp": 243002, - "tp_rate": 0.7994512453900335, - "truth_threshold": -0.36 - }, - { - "f1": 0.8848866351926328, - "fn": 61049, - "fn_rate": 0.20084484522685475, - "fp": 2151, - "fp_rate": 0.012371383052758112, - "match_probability": 0.4413536752629294, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912226651922159, - "recall": 0.7991551547731452, - "row_count": 477830, - "tn": 171718, - "tn_rate": 0.9876286169472419, - "tp": 242912, - "tp_rate": 0.7991551547731452, - "truth_threshold": -0.34 - }, - { - "f1": 0.8846159451974931, - "fn": 61187, - "fn_rate": 0.2012988508394169, - "fp": 2145, - "fp_rate": 0.012336874313419873, - "match_probability": 0.4447744574251037, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912420024579555, - "recall": 0.7987011491605831, - "row_count": 477830, - "tn": 171724, - "tn_rate": 0.9876631256865801, - "tp": 242774, - "tp_rate": 0.7987011491605831, - "truth_threshold": -0.32 - }, - { - "f1": 0.884481244328473, - "fn": 61262, - "fn_rate": 0.2015455930201572, - "fp": 2134, - "fp_rate": 0.01227360829129977, - "match_probability": 0.44820048133989093, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9912838547091283, - "recall": 0.7984544069798428, - "row_count": 477830, - "tn": 171735, - "tn_rate": 0.9877263917087002, - "tp": 242699, - "tp_rate": 0.7984544069798428, - "truth_threshold": -0.3 - }, - { - "f1": 0.8842969783795015, - "fn": 61378, - "fn_rate": 0.20192722092636883, - "fp": 2103, - "fp_rate": 0.012095313138052212, - "match_probability": 0.45163142912472937, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9914053112969274, - "recall": 0.7980727790736312, - "row_count": 477830, - "tn": 171766, - "tn_rate": 0.9879046868619478, - "tp": 242583, - "tp_rate": 0.7980727790736312, - "truth_threshold": -0.28 - }, - { - "f1": 0.8841942928392523, - "fn": 61438, - "fn_rate": 0.20212461467096107, - "fp": 2090, - "fp_rate": 0.012020544202819365, - "match_probability": 0.4550669810351646, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.991455891551144, - "recall": 0.7978753853290389, - "row_count": 477830, - "tn": 171779, - "tn_rate": 0.9879794557971806, - "tp": 242523, - "tp_rate": 0.7978753853290389, - "truth_threshold": -0.26 - }, - { - "f1": 0.884033870861869, - "fn": 61543, - "fn_rate": 0.20247005372399748, - "fp": 2057, - "fp_rate": 0.011830746136459059, - "match_probability": 0.4585068155821077, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9915860517435321, - "recall": 0.7975299462760025, - "row_count": 477830, - "tn": 171812, - "tn_rate": 0.9881692538635409, - "tp": 242418, - "tp_rate": 0.7975299462760025, - "truth_threshold": -0.24 - }, - { - "f1": 0.8837217785916747, - "fn": 61709, - "fn_rate": 0.20301617641736933, - "fp": 2042, - "fp_rate": 0.011744474288113465, - "match_probability": 0.46195060965049234, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916412191867177, - "recall": 0.7969838235826306, - "row_count": 477830, - "tn": 171827, - "tn_rate": 0.9882555257118866, - "tp": 242252, - "tp_rate": 0.7969838235826306, - "truth_threshold": -0.22 - }, - { - "f1": 0.8835751629933124, - "fn": 61781, - "fn_rate": 0.20325304891088, - "fp": 2041, - "fp_rate": 0.011738722831557092, - "match_probability": 0.46539803861923645, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.991642815318912, - "recall": 0.79674695108912, - "row_count": 477830, - "tn": 171828, - "tn_rate": 0.9882612771684429, - "tp": 242180, - "tp_rate": 0.79674695108912, - "truth_threshold": -0.2 - }, - { - "f1": 0.883143237768491, - "fn": 61993, - "fn_rate": 0.20395050680843924, - "fp": 2041, - "fp_rate": 0.011738722831557092, - "match_probability": 0.4688487764824174, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916355544262712, - "recall": 0.7960494931915607, - "row_count": 477830, - "tn": 171828, - "tn_rate": 0.9882612771684429, - "tp": 241968, - "tp_rate": 0.7960494931915607, - "truth_threshold": -0.18 - }, - { - "f1": 0.882881435752905, - "fn": 62123, - "fn_rate": 0.20437819325505574, - "fp": 2039, - "fp_rate": 0.011727219918444345, - "match_probability": 0.47230249597156454, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916392279714774, - "recall": 0.7956218067449442, - "row_count": 477830, - "tn": 171830, - "tn_rate": 0.9882727800815556, - "tp": 241838, - "tp_rate": 0.7956218067449442, - "truth_threshold": -0.16 - }, - { - "f1": 0.8825638890714813, - "fn": 62285, - "fn_rate": 0.2049111563654548, - "fp": 2031, - "fp_rate": 0.011681208265993363, - "match_probability": 0.47575886867897205, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916662221438038, - "recall": 0.7950888436345452, - "row_count": 477830, - "tn": 171838, - "tn_rate": 0.9883187917340066, - "tp": 241676, - "tp_rate": 0.7950888436345452, - "truth_threshold": -0.14 - }, - { - "f1": 0.8823944073516735, - "fn": 62372, - "fn_rate": 0.20519737729511353, - "fp": 2027, - "fp_rate": 0.011658202439767871, - "match_probability": 0.4792175651819362, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916795284381978, - "recall": 0.7948026227048864, - "row_count": 477830, - "tn": 171842, - "tn_rate": 0.9883417975602321, - "tp": 241589, - "tp_rate": 0.7948026227048864, - "truth_threshold": -0.12 - }, - { - "f1": 0.8821676993219546, - "fn": 62487, - "fn_rate": 0.20557571530558197, - "fp": 2022, - "fp_rate": 0.011629445156986006, - "match_probability": 0.48267825516781476, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9916959621513289, - "recall": 0.7944242846944181, - "row_count": 477830, - "tn": 171847, - "tn_rate": 0.988370554843014, - "tp": 241474, - "tp_rate": 0.7944242846944181, - "truth_threshold": -0.1 - }, - { - "f1": 0.8819249812727239, - "fn": 62609, - "fn_rate": 0.20597708258625283, - "fp": 2018, - "fp_rate": 0.011606439330760516, - "match_probability": 0.4861406075598103, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.991708098779636, - "recall": 0.7940229174137472, - "row_count": 477830, - "tn": 171851, - "tn_rate": 0.9883935606692394, - "tp": 241352, - "tp_rate": 0.7940229174137472, - "truth_threshold": -0.08 - }, - { - "f1": 0.8816685916460767, - "fn": 62740, - "fn_rate": 0.20640805892861255, - "fp": 2010, - "fp_rate": 0.011560427678309532, - "match_probability": 0.48960429064337574, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917362507246198, - "recall": 0.7935919410713874, - "row_count": 477830, - "tn": 171859, - "tn_rate": 0.9884395723216904, - "tp": 241221, - "tp_rate": 0.7935919410713874, - "truth_threshold": -0.06 - }, - { - "f1": 0.8814751449481988, - "fn": 62837, - "fn_rate": 0.20672717881570332, - "fp": 2007, - "fp_rate": 0.011543173308640414, - "match_probability": 0.49306897219313867, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917451908641843, - "recall": 0.7932728211842967, - "row_count": 477830, - "tn": 171862, - "tn_rate": 0.9884568266913596, - "tp": 241124, - "tp_rate": 0.7932728211842967, - "truth_threshold": -0.04 - }, - { - "f1": 0.8812207019109118, - "fn": 62963, - "fn_rate": 0.20714170567934703, - "fp": 2006, - "fp_rate": 0.01153742185208404, - "match_probability": 0.4965343196002423, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.991744991851986, - "recall": 0.792858294320653, - "row_count": 477830, - "tn": 171863, - "tn_rate": 0.9884625781479159, - "tp": 240998, - "tp_rate": 0.792858294320653, - "truth_threshold": -0.02 - }, - { - "f1": 0.8808845525125343, - "fn": 63141, - "fn_rate": 0.2077273071216373, - "fp": 2003, - "fp_rate": 0.011520167482414922, - "match_probability": 0.5, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917531291172595, - "recall": 0.7923116394424015, - "row_count": 477830, - "tn": 171870, - "tn_rate": 0.9885028383438106, - "tp": 240877, - "tp_rate": 0.7924602169357253, - "truth_threshold": 0 - }, - { - "f1": 0.8807299531621919, - "fn": 63237, - "fn_rate": 0.2080431371129849, - "fp": 2003, - "fp_rate": 0.011520167482414922, - "match_probability": 0.5, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917531291172595, - "recall": 0.7920615295579947, - "row_count": 477830, - "tn": 171867, - "tn_rate": 0.9884855839741414, - "tp": 240877, - "tp_rate": 0.7924602169357253, - "truth_threshold": 0 - }, - { - "f1": 0.8805545290564298, - "fn": 63294, - "fn_rate": 0.20823066117034753, - "fp": 1998, - "fp_rate": 0.011491410199633057, - "match_probability": 0.5034656803997578, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917664269672182, - "recall": 0.7917693388296525, - "row_count": 477830, - "tn": 171871, - "tn_rate": 0.9885085898003669, - "tp": 240667, - "tp_rate": 0.7917693388296525, - "truth_threshold": 0.02 - }, - { - "f1": 0.8804281401518617, - "fn": 63362, - "fn_rate": 0.20845437408088538, - "fp": 1991, - "fp_rate": 0.011451150003738447, - "match_probability": 0.5069310278068614, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9917927367162702, - "recall": 0.7915456259191146, - "row_count": 477830, - "tn": 171878, - "tn_rate": 0.9885488499962616, - "tp": 240599, - "tp_rate": 0.7915456259191146, - "truth_threshold": 0.04 - }, - { - "f1": 0.8802589825893135, - "fn": 63454, - "fn_rate": 0.20875704448926014, - "fp": 1978, - "fp_rate": 0.011376381068505598, - "match_probability": 0.5103957093566241, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9918427943996536, - "recall": 0.7912429555107399, - "row_count": 477830, - "tn": 171891, - "tn_rate": 0.9886236189314944, - "tp": 240507, - "tp_rate": 0.7912429555107399, - "truth_threshold": 0.06 - }, - { - "f1": 0.8799802310043748, - "fn": 63590, - "fn_rate": 0.20920447031033587, - "fp": 1978, - "fp_rate": 0.011376381068505598, - "match_probability": 0.5138593924401896, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9918382167865352, - "recall": 0.7907955296896642, - "row_count": 477830, - "tn": 171891, - "tn_rate": 0.9886236189314944, - "tp": 240371, - "tp_rate": 0.7907955296896642, - "truth_threshold": 0.08 - }, - { - "f1": 0.8797621314428837, - "fn": 63705, - "fn_rate": 0.2095828083208043, - "fp": 1968, - "fp_rate": 0.01131886650294187, - "match_probability": 0.5173217448321853, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9918752889887047, - "recall": 0.7904171916791957, - "row_count": 477830, - "tn": 171901, - "tn_rate": 0.9886811334970581, - "tp": 240256, - "tp_rate": 0.7904171916791957, - "truth_threshold": 0.1 - }, - { - "f1": 0.8796176594458992, - "fn": 63777, - "fn_rate": 0.20981968081431498, - "fp": 1965, - "fp_rate": 0.011301612133272751, - "match_probability": 0.5207824348180637, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9918851616153691, - "recall": 0.790180319185685, - "row_count": 477830, - "tn": 171904, - "tn_rate": 0.9886983878667273, - "tp": 240184, - "tp_rate": 0.790180319185685, - "truth_threshold": 0.12 - }, - { - "f1": 0.8794379240113118, - "fn": 63885, - "fn_rate": 0.21017498955458103, - "fp": 1940, - "fp_rate": 0.01115782571936343, - "match_probability": 0.5242411313210279, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9919840010577813, - "recall": 0.789825010445419, - "row_count": 477830, - "tn": 171929, - "tn_rate": 0.9888421742806366, - "tp": 240076, - "tp_rate": 0.789825010445419, - "truth_threshold": 0.14 - }, - { - "f1": 0.8792805929356249, - "fn": 63964, - "fn_rate": 0.21043489131829413, - "fp": 1937, - "fp_rate": 0.01114057134969431, - "match_probability": 0.5276975040284355, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9919936842279299, - "recall": 0.7895651086817059, - "row_count": 477830, - "tn": 171932, - "tn_rate": 0.9888594286503057, - "tp": 239997, - "tp_rate": 0.7895651086817059, - "truth_threshold": 0.16 - }, - { - "f1": 0.8789650180498799, - "fn": 64131, - "fn_rate": 0.2109843039074092, - "fp": 1919, - "fp_rate": 0.011037045131679598, - "match_probability": 0.5311512235175825, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920620147342906, - "recall": 0.7890156960925908, - "row_count": 477830, - "tn": 171950, - "tn_rate": 0.9889629548683204, - "tp": 239830, - "tp_rate": 0.7890156960925908, - "truth_threshold": 0.18 - }, - { - "f1": 0.8787257830971975, - "fn": 64249, - "fn_rate": 0.21137251160510723, - "fp": 1918, - "fp_rate": 0.011031293675123226, - "match_probability": 0.5346019613807635, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920622439266648, - "recall": 0.7886274883948927, - "row_count": 477830, - "tn": 171951, - "tn_rate": 0.9889687063248768, - "tp": 239712, - "tp_rate": 0.7886274883948927, - "truth_threshold": 0.2 - }, - { - "f1": 0.878524341328562, - "fn": 64347, - "fn_rate": 0.21169492138794122, - "fp": 1918, - "fp_rate": 0.011031293675123226, - "match_probability": 0.5380493903495076, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920590232350165, - "recall": 0.7883050786120588, - "row_count": 477830, - "tn": 171951, - "tn_rate": 0.9889687063248768, - "tp": 239614, - "tp_rate": 0.7883050786120588, - "truth_threshold": 0.22 - }, - { - "f1": 0.8782981469868826, - "fn": 64457, - "fn_rate": 0.21205680991969364, - "fp": 1917, - "fp_rate": 0.011025542218566851, - "match_probability": 0.5414931844178922, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920595142924601, - "recall": 0.7879431900803063, - "row_count": 477830, - "tn": 171952, - "tn_rate": 0.9889744577814331, - "tp": 239504, - "tp_rate": 0.7879431900803063, - "truth_threshold": 0.24 - }, - { - "f1": 0.8779873152587386, - "fn": 64612, - "fn_rate": 0.21256674375989024, - "fp": 1912, - "fp_rate": 0.010996784935784987, - "match_probability": 0.5449330189648354, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920749727473566, - "recall": 0.7874332562401097, - "row_count": 477830, - "tn": 171957, - "tn_rate": 0.989003215064215, - "tp": 239349, - "tp_rate": 0.7874332562401097, - "truth_threshold": 0.26 - }, - { - "f1": 0.8769322279092652, - "fn": 65125, - "fn_rate": 0.21425446027615386, - "fp": 1912, - "fp_rate": 0.010996784935784987, - "match_probability": 0.5483685708752706, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9920580856331102, - "recall": 0.7857455397238462, - "row_count": 477830, - "tn": 171957, - "tn_rate": 0.989003215064215, - "tp": 238836, - "tp_rate": 0.7857455397238462, - "truth_threshold": 0.28 - }, - { - "f1": 0.8767457831281055, - "fn": 65224, - "fn_rate": 0.21458015995473104, - "fp": 1900, - "fp_rate": 0.010927767457108512, - "match_probability": 0.5517995186601091, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.992104289863986, - "recall": 0.785419840045269, - "row_count": 477830, - "tn": 171969, - "tn_rate": 0.9890722325428914, - "tp": 238737, - "tp_rate": 0.785419840045269, - "truth_threshold": 0.3 - }, - { - "f1": 0.8765225312587238, - "fn": 65333, - "fn_rate": 0.21493875859074027, - "fp": 1900, - "fp_rate": 0.010927767457108512, - "match_probability": 0.5552255425748963, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.992100711767445, - "recall": 0.7850612414092597, - "row_count": 477830, - "tn": 171969, - "tn_rate": 0.9890722325428914, - "tp": 238628, - "tp_rate": 0.7850612414092597, - "truth_threshold": 0.32 - }, - { - "f1": 0.8763395628901127, - "fn": 65424, - "fn_rate": 0.2152381391033718, - "fp": 1896, - "fp_rate": 0.010904761630883022, - "match_probability": 0.5586463247370707, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921142272483394, - "recall": 0.7847618608966281, - "row_count": 477830, - "tn": 171973, - "tn_rate": 0.989095238369117, - "tp": 238537, - "tp_rate": 0.7847618608966281, - "truth_threshold": 0.34 - }, - { - "f1": 0.8758880496903542, - "fn": 65645, - "fn_rate": 0.21596520606261987, - "fp": 1894, - "fp_rate": 0.010893258717770275, - "match_probability": 0.5620615492417346, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921152325048915, - "recall": 0.7840347939373801, - "row_count": 477830, - "tn": 171975, - "tn_rate": 0.9891067412822298, - "tp": 238316, - "tp_rate": 0.7840347939373801, - "truth_threshold": 0.36 - }, - { - "f1": 0.8757595250785716, - "fn": 65715, - "fn_rate": 0.21619549876464414, - "fp": 1884, - "fp_rate": 0.010835744152206546, - "match_probability": 0.5654709022758521, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921542497813685, - "recall": 0.7838045012353558, - "row_count": 477830, - "tn": 171985, - "tn_rate": 0.9891642558477934, - "tp": 238246, - "tp_rate": 0.7838045012353558, - "truth_threshold": 0.38 - }, - { - "f1": 0.8755675655802496, - "fn": 65811, - "fn_rate": 0.21651132875599172, - "fp": 1879, - "fp_rate": 0.010806986869424683, - "match_probability": 0.5688740722307839, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921717792433414, - "recall": 0.7834886712440082, - "row_count": 477830, - "tn": 171990, - "tn_rate": 0.9891930131305753, - "tp": 238150, - "tp_rate": 0.7834886712440082, - "truth_threshold": 0.4 - }, - { - "f1": 0.8753429090454442, - "fn": 65922, - "fn_rate": 0.21687650718348736, - "fp": 1877, - "fp_rate": 0.010795483956311936, - "match_probability": 0.5722707498130813, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921764284166125, - "recall": 0.7831234928165126, - "row_count": 477830, - "tn": 171992, - "tn_rate": 0.9892045160436881, - "tp": 238039, - "tp_rate": 0.7831234928165126, - "truth_threshold": 0.42 - }, - { - "f1": 0.8747677511690625, - "fn": 66200, - "fn_rate": 0.21779109820009804, - "fp": 1877, - "fp_rate": 0.010795483956311936, - "match_probability": 0.5756606281534528, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921673524232384, - "recall": 0.782208901799902, - "row_count": 477830, - "tn": 171992, - "tn_rate": 0.9892045160436881, - "tp": 237761, - "tp_rate": 0.782208901799902, - "truth_threshold": 0.44 - }, - { - "f1": 0.874631116475203, - "fn": 66266, - "fn_rate": 0.2180082313191495, - "fp": 1877, - "fp_rate": 0.010795483956311936, - "match_probability": 0.57904340291383, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921651945970313, - "recall": 0.7819917686808505, - "row_count": 477830, - "tn": 171992, - "tn_rate": 0.9892045160436881, - "tp": 237695, - "tp_rate": 0.7819917686808505, - "truth_threshold": 0.46 - }, - { - "f1": 0.8743687891056312, - "fn": 66395, - "fn_rate": 0.2184326278700228, - "fp": 1873, - "fp_rate": 0.010772478130086444, - "match_probability": 0.5824187723924531, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921775483526075, - "recall": 0.7815673721299772, - "row_count": 477830, - "tn": 171996, - "tn_rate": 0.9892275218699136, - "tp": 237566, - "tp_rate": 0.7815673721299772, - "truth_threshold": 0.48 - }, - { - "f1": 0.8741648229884889, - "fn": 66495, - "fn_rate": 0.2187616174443432, - "fp": 1872, - "fp_rate": 0.010766726673530071, - "match_probability": 0.5857864376269051, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9921784254903108, - "recall": 0.7812383825556568, - "row_count": 477830, - "tn": 171997, - "tn_rate": 0.9892332733264699, - "tp": 237466, - "tp_rate": 0.7812383825556568, - "truth_threshold": 0.5 - }, - { - "f1": 0.8743323190722827, - "fn": 66613, - "fn_rate": 0.21914982514204126, - "fp": 1616, - "fp_rate": 0.009294353795098608, - "match_probability": 0.5891461024950211, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.993237475100852, - "recall": 0.7808501748579587, - "row_count": 477830, - "tn": 172253, - "tn_rate": 0.9907056462049014, - "tp": 237348, - "tp_rate": 0.7808501748579587, - "truth_threshold": 0.52 - }, - { - "f1": 0.8738787543762668, - "fn": 66834, - "fn_rate": 0.2198768921012893, - "fp": 1612, - "fp_rate": 0.009271347968873116, - "match_probability": 0.5924974738136106, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.993247856445742, - "recall": 0.7801231078987106, - "row_count": 477830, - "tn": 172257, - "tn_rate": 0.9907286520311269, - "tp": 237127, - "tp_rate": 0.7801231078987106, - "truth_threshold": 0.54 - }, - { - "f1": 0.8736485913649918, - "fn": 66948, - "fn_rate": 0.22025194021601455, - "fp": 1608, - "fp_rate": 0.009248342142647626, - "match_probability": 0.5958402614349186, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9932612804405312, - "recall": 0.7797480597839854, - "row_count": 477830, - "tn": 172261, - "tn_rate": 0.9907516578573524, - "tp": 237013, - "tp_rate": 0.7797480597839854, - "truth_threshold": 0.56 - }, - { - "f1": 0.8733906528824458, - "fn": 67073, - "fn_rate": 0.22066317718391504, - "fp": 1607, - "fp_rate": 0.009242590686091253, - "match_probability": 0.5991741783407747, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9932619132476572, - "recall": 0.779336822816085, - "row_count": 477830, - "tn": 172262, - "tn_rate": 0.9907574093139088, - "tp": 236888, - "tp_rate": 0.779336822816085, - "truth_threshold": 0.58 - }, - { - "f1": 0.8732572503180368, - "fn": 67138, - "fn_rate": 0.2208770204072233, - "fp": 1607, - "fp_rate": 0.009242590686091253, - "match_probability": 0.6024989407343608, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9932600763326762, - "recall": 0.7791229795927767, - "row_count": 477830, - "tn": 172262, - "tn_rate": 0.9907574093139088, - "tp": 236823, - "tp_rate": 0.7791229795927767, - "truth_threshold": 0.6 - }, - { - "f1": 0.8729214925417177, - "fn": 67305, - "fn_rate": 0.22142643299633835, - "fp": 1599, - "fp_rate": 0.00919657903364027, - "match_probability": 0.6058142681295483, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9932887032800991, - "recall": 0.7785735670036616, - "row_count": 477830, - "tn": 172270, - "tn_rate": 0.9908034209663598, - "tp": 236656, - "tp_rate": 0.7785735670036616, - "truth_threshold": 0.62 - }, - { - "f1": 0.8728260789363005, - "fn": 67378, - "fn_rate": 0.22166659538559222, - "fp": 1564, - "fp_rate": 0.008995278054167218, - "match_probability": 0.6091198834377483, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9934326277467279, - "recall": 0.7783334046144078, - "row_count": 477830, - "tn": 172305, - "tn_rate": 0.9910047219458328, - "tp": 236583, - "tp_rate": 0.7783334046144078, - "truth_threshold": 0.64 - }, - { - "f1": 0.8725180047323561, - "fn": 67595, - "fn_rate": 0.22238050276186747, - "fp": 1475, - "fp_rate": 0.00848339842065003, - "match_probability": 0.6124155130522262, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9937983779079301, - "recall": 0.7776194972381325, - "row_count": 477830, - "tn": 172394, - "tn_rate": 0.99151660157935, - "tp": 236366, - "tp_rate": 0.7776194972381325, - "truth_threshold": 0.66 - }, - { - "f1": 0.8722834715442952, - "fn": 67710, - "fn_rate": 0.22275884077233593, - "fp": 1472, - "fp_rate": 0.00846614405098091, - "match_probability": 0.6157008869298349, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938079193010353, - "recall": 0.7772411592276641, - "row_count": 477830, - "tn": 172397, - "tn_rate": 0.9915338559490191, - "tp": 236251, - "tp_rate": 0.7772411592276641, - "truth_threshold": 0.68 - }, - { - "f1": 0.8720247877420332, - "fn": 67835, - "fn_rate": 0.22317007774023642, - "fp": 1471, - "fp_rate": 0.008460392594424538, - "match_probability": 0.6189757386701197, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938088443877658, - "recall": 0.7768299222597636, - "row_count": 477830, - "tn": 172398, - "tn_rate": 0.9915396074055755, - "tp": 236126, - "tp_rate": 0.7768299222597636, - "truth_threshold": 0.7000000000000001 - }, - { - "f1": 0.8715014649970996, - "fn": 68090, - "fn_rate": 0.22400900115475342, - "fp": 1466, - "fp_rate": 0.008431635311642673, - "match_probability": 0.622239805591759, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938231291370498, - "recall": 0.7759909988452466, - "row_count": 477830, - "tn": 172403, - "tn_rate": 0.9915683646883573, - "tp": 235871, - "tp_rate": 0.7759909988452466, - "truth_threshold": 0.72 - }, - { - "f1": 0.8712697116290758, - "fn": 68205, - "fn_rate": 0.22438733916522186, - "fp": 1461, - "fp_rate": 0.008402878028860809, - "match_probability": 0.6254928288063007, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938410822158614, - "recall": 0.7756126608347782, - "row_count": 477830, - "tn": 172408, - "tn_rate": 0.9915971219711391, - "tp": 235756, - "tp_rate": 0.7756126608347782, - "truth_threshold": 0.74 - }, - { - "f1": 0.8709604678500927, - "fn": 68354, - "fn_rate": 0.22487753363095925, - "fp": 1460, - "fp_rate": 0.008397126572304436, - "match_probability": 0.6287345532891625, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938414034850908, - "recall": 0.7751224663690408, - "row_count": 477830, - "tn": 172409, - "tn_rate": 0.9916028734276956, - "tp": 235607, - "tp_rate": 0.7751224663690408, - "truth_threshold": 0.76 - }, - { - "f1": 0.8707450545387317, - "fn": 68468, - "fn_rate": 0.22525258174568447, - "fp": 1446, - "fp_rate": 0.008316606180515216, - "match_probability": 0.6319647279478622, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.993897163404927, - "recall": 0.7747474182543155, - "row_count": 477830, - "tn": 172423, - "tn_rate": 0.9916833938194848, - "tp": 235493, - "tp_rate": 0.7747474182543155, - "truth_threshold": 0.78 - }, - { - "f1": 0.8702683707252113, - "fn": 68697, - "fn_rate": 0.22600596787087818, - "fp": 1445, - "fp_rate": 0.008310854723958842, - "match_probability": 0.6351831056874558, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938954581363615, - "recall": 0.7739940321291219, - "row_count": 477830, - "tn": 172424, - "tn_rate": 0.9916891452760411, - "tp": 235264, - "tp_rate": 0.7739940321291219, - "truth_threshold": 0.8 - }, - { - "f1": 0.87001291286958, - "fn": 68820, - "fn_rate": 0.22641062504729226, - "fp": 1445, - "fp_rate": 0.008310854723958842, - "match_probability": 0.6383894434731548, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938922844124335, - "recall": 0.7735893749527077, - "row_count": 477830, - "tn": 172424, - "tn_rate": 0.9916891452760411, - "tp": 235141, - "tp_rate": 0.7735893749527077, - "truth_threshold": 0.8200000000000001 - }, - { - "f1": 0.8697071417732856, - "fn": 68967, - "fn_rate": 0.2268942397215432, - "fp": 1444, - "fp_rate": 0.00830510326740247, - "match_probability": 0.6415835023901045, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9938926906842386, - "recall": 0.7731057602784568, - "row_count": 477830, - "tn": 172425, - "tn_rate": 0.9916948967325975, - "tp": 234994, - "tp_rate": 0.7731057602784568, - "truth_threshold": 0.84 - }, - { - "f1": 0.8703466980869913, - "fn": 69064, - "fn_rate": 0.227213359608634, - "fp": 920, - "fp_rate": 0.00529134003186307, - "match_probability": 0.6447650477003041, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9960986697311899, - "recall": 0.772786640391366, - "row_count": 477830, - "tn": 172949, - "tn_rate": 0.994708659968137, - "tp": 234897, - "tp_rate": 0.772786640391366, - "truth_threshold": 0.86 - }, - { - "f1": 0.8701766999214338, - "fn": 69156, - "fn_rate": 0.22751603001700876, - "fp": 907, - "fp_rate": 0.005216571096630222, - "match_probability": 0.6479338488966562, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9961520838989953, - "recall": 0.7724839699829913, - "row_count": 477830, - "tn": 172962, - "tn_rate": 0.9947834289033698, - "tp": 234805, - "tp_rate": 0.7724839699829913, - "truth_threshold": 0.88 - }, - { - "f1": 0.8698588750783101, - "fn": 69307, - "fn_rate": 0.22801280427423254, - "fp": 907, - "fp_rate": 0.005216571096630222, - "match_probability": 0.6510896797541332, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9961496172965814, - "recall": 0.7719871957257675, - "row_count": 477830, - "tn": 172962, - "tn_rate": 0.9947834289033698, - "tp": 234654, - "tp_rate": 0.7719871957257675, - "truth_threshold": 0.9 - }, - { - "f1": 0.8696832176543869, - "fn": 69397, - "fn_rate": 0.2283088948911209, - "fp": 899, - "fp_rate": 0.0051705594441792384, - "match_probability": 0.6542323183780514, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9961819903764073, - "recall": 0.7716911051088791, - "row_count": 477830, - "tn": 172970, - "tn_rate": 0.9948294405558208, - "tp": 234564, - "tp_rate": 0.7716911051088791, - "truth_threshold": 0.92 - }, - { - "f1": 0.869085863944266, - "fn": 69685, - "fn_rate": 0.22925638486516361, - "fp": 896, - "fp_rate": 0.00515330507451012, - "match_probability": 0.6573615472494517, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9961900226217407, - "recall": 0.7707436151348364, - "row_count": 477830, - "tn": 172973, - "tn_rate": 0.9948466949254898, - "tp": 234276, - "tp_rate": 0.7707436151348364, - "truth_threshold": 0.9400000000000001 - }, - { - "f1": 0.8688912058595446, - "fn": 69787, - "fn_rate": 0.22959195423097042, - "fp": 884, - "fp_rate": 0.005084287595833645, - "match_probability": 0.660477153267581, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962392260633546, - "recall": 0.7704080457690295, - "row_count": 477830, - "tn": 172985, - "tn_rate": 0.9949157124041663, - "tp": 234174, - "tp_rate": 0.7704080457690295, - "truth_threshold": 0.96 - }, - { - "f1": 0.8686714615481678, - "fn": 69894, - "fn_rate": 0.22994397307549325, - "fp": 881, - "fp_rate": 0.005067033226164526, - "match_probability": 0.6635789277894779, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962502340943528, - "recall": 0.7700560269245068, - "row_count": 477830, - "tn": 172988, - "tn_rate": 0.9949329667738355, - "tp": 234067, - "tp_rate": 0.7700560269245068, - "truth_threshold": 0.98 - }, - { - "f1": 0.8684325793064537, - "fn": 70007, - "fn_rate": 0.23031573129447527, - "fp": 881, - "fp_rate": 0.005067033226164526, - "match_probability": 0.6666666666666666, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962484297485469, - "recall": 0.7696842687055248, - "row_count": 477830, - "tn": 172988, - "tn_rate": 0.9949329667738355, - "tp": 233954, - "tp_rate": 0.7696842687055248, - "truth_threshold": 1 - }, - { - "f1": 0.8680917583804898, - "fn": 70170, - "fn_rate": 0.2308519843006175, - "fp": 881, - "fp_rate": 0.005067033226164526, - "match_probability": 0.6697401702789662, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962458239585464, - "recall": 0.7691480156993825, - "row_count": 477830, - "tn": 172988, - "tn_rate": 0.9949329667738355, - "tp": 233791, - "tp_rate": 0.7691480156993825, - "truth_threshold": 1.02 - }, - { - "f1": 0.8676661231069822, - "fn": 70374, - "fn_rate": 0.2315231230322311, - "fp": 879, - "fp_rate": 0.005055530313051781, - "match_probability": 0.6727992435654236, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962510555901495, - "recall": 0.7684768769677689, - "row_count": 477830, - "tn": 172990, - "tn_rate": 0.9949444696869483, - "tp": 233587, - "tp_rate": 0.7684768769677689, - "truth_threshold": 1.04 - }, - { - "f1": 0.8675572462368307, - "fn": 70425, - "fn_rate": 0.2316909077151345, - "fp": 879, - "fp_rate": 0.005055530313051781, - "match_probability": 0.6758436960523875, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962502399590469, - "recall": 0.7683090922848655, - "row_count": 477830, - "tn": 172990, - "tn_rate": 0.9949444696869483, - "tp": 233536, - "tp_rate": 0.7683090922848655, - "truth_threshold": 1.06 - }, - { - "f1": 0.8671321914473757, - "fn": 70627, - "fn_rate": 0.2323554666552617, - "fp": 879, - "fp_rate": 0.005055530313051781, - "match_probability": 0.6788733418787326, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962470059304992, - "recall": 0.7676445333447383, - "row_count": 477830, - "tn": 172990, - "tn_rate": 0.9949444696869483, - "tp": 233334, - "tp_rate": 0.7676445333447383, - "truth_threshold": 1.08 - }, - { - "f1": 0.8668837444429576, - "fn": 70745, - "fn_rate": 0.23274367435295976, - "fp": 879, - "fp_rate": 0.005055530313051781, - "match_probability": 0.6818879998182596, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962451141630535, - "recall": 0.7672563256470403, - "row_count": 477830, - "tn": 172990, - "tn_rate": 0.9949444696869483, - "tp": 233216, - "tp_rate": 0.7672563256470403, - "truth_threshold": 1.1 - }, - { - "f1": 0.8665796606766389, - "fn": 70897, - "fn_rate": 0.23324373850592675, - "fp": 869, - "fp_rate": 0.004998015747488051, - "match_probability": 0.6848874932992853, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962852611645214, - "recall": 0.7667562614940733, - "row_count": 477830, - "tn": 173000, - "tn_rate": 0.995001984252512, - "tp": 233064, - "tp_rate": 0.7667562614940733, - "truth_threshold": 1.12 - }, - { - "f1": 0.8663842795409412, - "fn": 70992, - "fn_rate": 0.2335562786015311, - "fp": 867, - "fp_rate": 0.004986512834375305, - "match_probability": 0.6878716504214515, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962922732171265, - "recall": 0.7664437213984688, - "row_count": 477830, - "tn": 173002, - "tn_rate": 0.9950134871656247, - "tp": 232969, - "tp_rate": 0.7664437213984688, - "truth_threshold": 1.1400000000000001 - }, - { - "f1": 0.866113907146816, - "fn": 71121, - "fn_rate": 0.23398067515240442, - "fp": 866, - "fp_rate": 0.004980761377818933, - "match_probability": 0.690840303969775, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962944896579463, - "recall": 0.7660193248475956, - "row_count": 477830, - "tn": 173003, - "tn_rate": 0.9950192386221811, - "tp": 232840, - "tp_rate": 0.7660193248475956, - "truth_threshold": 1.16 - }, - { - "f1": 0.8656999114365879, - "fn": 71318, - "fn_rate": 0.2346287846138156, - "fp": 864, - "fp_rate": 0.0049692584647061866, - "match_probability": 0.6937932914259702, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9962998967911026, - "recall": 0.7653712153861845, - "row_count": 477830, - "tn": 173005, - "tn_rate": 0.9950307415352938, - "tp": 232643, - "tp_rate": 0.7653712153861845, - "truth_threshold": 1.18 - }, - { - "f1": 0.8655382118904595, - "fn": 71403, - "fn_rate": 0.23490842575198792, - "fp": 854, - "fp_rate": 0.004911743899142458, - "match_probability": 0.6967304549770723, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9963412335269823, - "recall": 0.7650915742480121, - "row_count": 477830, - "tn": 173015, - "tn_rate": 0.9950882561008575, - "tp": 232558, - "tp_rate": 0.7650915742480121, - "truth_threshold": 1.2 - }, - { - "f1": 0.8651523500327635, - "fn": 71588, - "fn_rate": 0.23551705646448065, - "fp": 851, - "fp_rate": 0.0048944895294733394, - "match_probability": 0.6996516415213959, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9963511473947793, - "recall": 0.7644829435355194, - "row_count": 477830, - "tn": 173018, - "tn_rate": 0.9951055104705266, - "tp": 232373, - "tp_rate": 0.7644829435355194, - "truth_threshold": 1.22 - }, - { - "f1": 0.8647963174007285, - "fn": 71758, - "fn_rate": 0.23607633874082531, - "fp": 848, - "fp_rate": 0.004877235159804221, - "match_probability": 0.7025567026718631, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9963613114725961, - "recall": 0.7639236612591747, - "row_count": 477830, - "tn": 173021, - "tn_rate": 0.9951227648401958, - "tp": 232203, - "tp_rate": 0.7639236612591747, - "truth_threshold": 1.24 - }, - { - "f1": 0.8644691646859842, - "fn": 71915, - "fn_rate": 0.23659285237250832, - "fp": 845, - "fp_rate": 0.004859980790135101, - "match_probability": 0.705445494756739, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9963716931955292, - "recall": 0.7634071476274917, - "row_count": 477830, - "tn": 173024, - "tn_rate": 0.995140019209865, - "tp": 232046, - "tp_rate": 0.7634071476274917, - "truth_threshold": 1.26 - }, - { - "f1": 0.8642322167157283, - "fn": 72027, - "fn_rate": 0.23696132069574716, - "fp": 845, - "fp_rate": 0.004859980790135101, - "match_probability": 0.7083178788178136, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9963699474608964, - "recall": 0.7630386793042528, - "row_count": 477830, - "tn": 173024, - "tn_rate": 0.995140019209865, - "tp": 231934, - "tp_rate": 0.7630386793042528, - "truth_threshold": 1.28 - }, - { - "f1": 0.8639953486118513, - "fn": 72145, - "fn_rate": 0.23734952839344522, - "fp": 837, - "fp_rate": 0.004813969137684119, - "match_probability": 0.7111737206060699, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9964023674743072, - "recall": 0.7626504716065547, - "row_count": 477830, - "tn": 173032, - "tn_rate": 0.9951860308623158, - "tp": 231816, - "tp_rate": 0.7626504716065547, - "truth_threshold": 1.3 - }, - { - "f1": 0.8637100772824032, - "fn": 72282, - "fn_rate": 0.23780024411026415, - "fp": 835, - "fp_rate": 0.004802466224571373, - "match_probability": 0.714012890574883, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9964088183937311, - "recall": 0.7621997558897359, - "row_count": 477830, - "tn": 173034, - "tn_rate": 0.9951975337754286, - "tp": 231679, - "tp_rate": 0.7621997558897359, - "truth_threshold": 1.32 - }, - { - "f1": 0.863561786859572, - "fn": 72371, - "fn_rate": 0.2380930448314093, - "fp": 809, - "fp_rate": 0.004652928354105678, - "match_probability": 0.7168352638707939, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9965189178955159, - "recall": 0.7619069551685907, - "row_count": 477830, - "tn": 173060, - "tn_rate": 0.9953470716458943, - "tp": 231590, - "tp_rate": 0.7619069551685907, - "truth_threshold": 1.34 - }, - { - "f1": 0.8630732327848304, - "fn": 72603, - "fn_rate": 0.2388563006438326, - "fp": 807, - "fp_rate": 0.004641425440992932, - "match_probability": 0.7196407203219027, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9965240238623393, - "recall": 0.7611436993561674, - "row_count": 477830, - "tn": 173062, - "tn_rate": 0.9953585745590071, - "tp": 231358, - "tp_rate": 0.7611436993561674, - "truth_threshold": 1.36 - }, - { - "f1": 0.8628463541861003, - "fn": 72713, - "fn_rate": 0.23921818917558502, - "fp": 804, - "fp_rate": 0.004624171071323813, - "match_probability": 0.7224291444239316, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9965352593384241, - "recall": 0.760781810824415, - "row_count": 477830, - "tn": 173065, - "tn_rate": 0.9953758289286762, - "tp": 231248, - "tp_rate": 0.760781810824415, - "truth_threshold": 1.3800000000000001 - }, - { - "f1": 0.862551971754238, - "fn": 72854, - "fn_rate": 0.23968206447537677, - "fp": 801, - "fp_rate": 0.004606916701654694, - "match_probability": 0.7252004253240049, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9965460441209445, - "recall": 0.7603179355246232, - "row_count": 477830, - "tn": 173068, - "tn_rate": 0.9953930832983453, - "tp": 231107, - "tp_rate": 0.7603179355246232, - "truth_threshold": 1.4000000000000001 - }, - { - "f1": 0.8622490694522742, - "fn": 73005, - "fn_rate": 0.24017883873260057, - "fp": 789, - "fp_rate": 0.004537899222978219, - "match_probability": 0.7279544568021957, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9965953958014196, - "recall": 0.7598211612673994, - "row_count": 477830, - "tn": 173080, - "tn_rate": 0.9954621007770218, - "tp": 230956, - "tp_rate": 0.7598211612673994, - "truth_threshold": 1.42 - }, - { - "f1": 0.8619922175500967, - "fn": 73135, - "fn_rate": 0.24060652517921707, - "fp": 778, - "fp_rate": 0.004474633200858117, - "match_probability": 0.7306911372508947, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9966408179478765, - "recall": 0.7593934748207829, - "row_count": 477830, - "tn": 173091, - "tn_rate": 0.9955253667991418, - "tp": 230826, - "tp_rate": 0.7593934748207829, - "truth_threshold": 1.44 - }, - { - "f1": 0.8616606401099722, - "fn": 73291, - "fn_rate": 0.2411197489151569, - "fp": 778, - "fp_rate": 0.004474633200858117, - "match_probability": 0.7334103696520481, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9966385538004217, - "recall": 0.7588802510848431, - "row_count": 477830, - "tn": 173091, - "tn_rate": 0.9955253667991418, - "tp": 230670, - "tp_rate": 0.7588802510848431, - "truth_threshold": 1.46 - }, - { - "f1": 0.8613293875431104, - "fn": 73446, - "fn_rate": 0.2416296827553535, - "fp": 778, - "fp_rate": 0.004474633200858117, - "match_probability": 0.7361120615523239, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9966363011418418, - "recall": 0.7583703172446465, - "row_count": 477830, - "tn": 173091, - "tn_rate": 0.9955253667991418, - "tp": 230515, - "tp_rate": 0.7583703172446465, - "truth_threshold": 1.48 - }, - { - "f1": 0.8611603304549362, - "fn": 73592, - "fn_rate": 0.24211000753386125, - "fp": 690, - "fp_rate": 0.003968505023897302, - "match_probability": 0.7387961250362586, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9970137497349162, - "recall": 0.7578899924661388, - "row_count": 477830, - "tn": 173179, - "tn_rate": 0.9960314949761027, - "tp": 230369, - "tp_rate": 0.7578899924661388, - "truth_threshold": 1.5 - }, - { - "f1": 0.86088520458718, - "fn": 73725, - "fn_rate": 0.24254756366770738, - "fp": 685, - "fp_rate": 0.003939747741115438, - "match_probability": 0.74146247669744, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9970336175575196, - "recall": 0.7574524363322926, - "row_count": 477830, - "tn": 173184, - "tn_rate": 0.9960602522588846, - "tp": 230236, - "tp_rate": 0.7574524363322926, - "truth_threshold": 1.52 - }, - { - "f1": 0.8605374876101064, - "fn": 73892, - "fn_rate": 0.24309697625682242, - "fp": 681, - "fp_rate": 0.0039167419148899455, - "match_probability": 0.7441110376077843, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9970487540628385, - "recall": 0.7569030237431775, - "row_count": 477830, - "tn": 173188, - "tn_rate": 0.99608325808511, - "tp": 230069, - "tp_rate": 0.7569030237431775, - "truth_threshold": 1.54 - }, - { - "f1": 0.8600850146680237, - "fn": 74105, - "fn_rate": 0.24379772405012484, - "fp": 680, - "fp_rate": 0.003910990458333573, - "match_probability": 0.7467417332849615, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9970503522226464, - "recall": 0.7562022759498751, - "row_count": 477830, - "tn": 173189, - "tn_rate": 0.9960890095416665, - "tp": 229856, - "tp_rate": 0.7562022759498751, - "truth_threshold": 1.56 - }, - { - "f1": 0.8597180736781429, - "fn": 74277, - "fn_rate": 0.24436358611795592, - "fp": 679, - "fp_rate": 0.0039052390017772, - "match_probability": 0.7493544936580313, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9970524780455194, - "recall": 0.7556364138820441, - "row_count": 477830, - "tn": 173190, - "tn_rate": 0.9960947609982228, - "tp": 229684, - "tp_rate": 0.7556364138820441, - "truth_threshold": 1.58 - }, - { - "f1": 0.8595324737559339, - "fn": 74373, - "fn_rate": 0.2446794161093035, - "fp": 667, - "fp_rate": 0.0038362215231007254, - "match_probability": 0.7519492530313435, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.9971032116566415, - "recall": 0.7553205838906965, - "row_count": 477830, - "tn": 173202, - "tn_rate": 0.9961637784768993, - "tp": 229588, - "tp_rate": 0.7553205838906965, - "truth_threshold": 1.6 - }, - { - "f1": 0.8592720191731575, - "fn": 74501, - "fn_rate": 0.2451005227644336, - "fp": 660, - "fp_rate": 0.003795961327206115, - "match_probability": 0.754525950046764, - "n": 173869, - "n_rate": 0.36387208839964, - "p": 303961, - "p_rate": 0, - "precision": 0.997131931166348, - "recall": 0.7548994772355664, - "row_count": 477830, - "tn": 173209, - "tn_rate": 0.9962040386727938, - "tp": 229460, - "tp_rate": 0.7548994772355664, - "truth_threshold": 1.62 - } - ] - }, - "encoding": { - "tooltip": [ - { - "field": "truth_threshold", - "format": ".4f", - "type": "quantitative" - }, - { - "field": "match_probability", - "format": ".4%", - "type": "quantitative" - }, - { - "field": "fp_rate", - "format": ".4f", - "title": "FP_rate", - "type": "quantitative" - }, - { - "field": "tp_rate", - "format": ".4f", - "title": "TP_rate", - "type": "quantitative" - }, - { - "field": "tp", - "format": ",.0f", - "title": "TP", - "type": "quantitative" - }, - { - "field": "tn", - "format": ",.0f", - "title": "TN", - "type": "quantitative" - }, - { - "field": "fp", - "format": ",.0f", - "title": "FP", - "type": "quantitative" - }, - { - "field": "fn", - "format": ",.0f", - "title": "FN", - "type": "quantitative" - }, - { - "field": "precision", - "format": ".4f", - "type": "quantitative" - }, - { - "field": "recall", - "format": ".4f", - "type": "quantitative" - }, - { - "field": "f1", - "format": ".4f", - "title": "F1", - "type": "quantitative" - } - ], - "x": { - "field": "fp_rate", - "sort": [ - "truth_threshold" - ], - "title": "False Positive Rate amongst clerically reviewed records", - "type": "quantitative" - }, - "y": { - "field": "tp_rate", - "sort": [ - "truth_threshold" - ], - "title": "True Positive Rate amongst clerically reviewed records", - "type": "quantitative" - } - }, - "height": 400, - "mark": { - "clip": true, - "point": true, - "type": "line" - }, - "selection": { - "selector076": { - "bind": "scales", - "encodings": [ - "x" - ], - "type": "interval" - } - }, - "title": "Receiver operating characteristic curve", - "width": 400 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAHQCAYAAAAxsWT9AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TVX7xx+Xa7rmeY4rZI4yhTJFZYq6KFSIBi9RXjJEKNKbkFK9SBGKzOJNSoq4MiURkpAMDa5Zpv6f3/Lft3PPPefstc+z9z533/Osz6dPdc961n72d629fns9ew0Z/v77779JkhAQAkJACAiBKCKQQcQvimpbblUICAEhIAQUARE/aQhCQAgIASEQdQRE/KKuyuWGhYAQEAJCQMRP2oAQEAJCQAhEHQERv3Re5YHmM2XIkMGVuz59+jTh+rlz53blemn1IpcuXaILFy5Q1qxZKUuWLGnVzTTv1/nz5+ny5csUFxdHmTJlsuQvx9bShSSzZwiI+HmmqsJztEGDBrR+/foUxoUKFaIWLVrQhAkTKH/+/OEVrGFliOxff/1FmTNn1rBIH1l27NhBmzZtojp16lDVqlXpjTfeoH/96180cuRIGj58uKs3mStXLjpz5ox6CYlk+u2332jJkiVUqlQpat68eViu3H///bRgwQJas2YNNWrUKGQZ//vf/+iXX36hdu3aqTZuxTYs58TIcwRE/DxXZdYcNsQPYle8eHHCKGTVqlV04sQJJYDoJJxKffv2pYsXL9KUKVMsv6k75ZMb5eKl4umnn6bJkycr0fv888/pgw8+oNatW6t/3EzGC0ikxW/z5s1Uq1YtJUYLFy4MC8Gbb75J27ZtU2xvuummkGW0adOGli1bRlu3bqUaNWqQFduwnBMjzxEQ8fNclVlz2BC/tWvX0u23366MIX4QPqRr166pUcHbb79N06ZNU2/Lt9xyC73wwgtUs2ZNlQdv7P/5z39o37596o373nvvpQceeED9ho599OjRtGvXLipXrhz17t07+be77rqLEG5Cnj59+tD3339Pw4YNU2/+p06dUkIQGxtLK1asUNcdPHgwwc8iRYqoazz33HNKNJ955hn65ptv6IknnlCd2GOPPUadO3dOAeKHH36gAQMG0JdffknZsmWjO+64g1555RU10kAH2K9fP2rcuDH9/vvvSvDLli1LY8aMoVtvvdX0PsANLw5gCSEHD/gP/7Zs2UI33HCD+u3ZZ59V/49r7d27l8qXL08DBw6kvHnz0sSJE6l79+70yCOPKLt169ZRQkICzZ8/X72ItG3bVo0KERoFC5SRmJhIlStXVrwWL16symrVqlWqBrBz504aMmSIyl+9enW68847FW+UZYgf6g/swPPJJ5+kp556SpUzd+5cNTJF3cK2SZMmiiPyWblvRBOuXLlC48ePpzlz5tDZs2eV3127dlXsUF+IQOTMmZO6detGkyZNov3791uqc9Qx2gdsIWgrV66k999/n1avXq3+H23m8ccfp5dfflm1X4x469evr3xavnx5Cts//vhDtUU8C3ny5FHPA2zRXvxTML4ZM2akpk2bKs4oB+nVV19VdYVRPtqbP0M8N8jbsmVLGjRokLIBD7DAfd144430/PPPqzKQGjZsqNpxgQIFrD34ktuUgIifKSJvZzDEb9asWVS3bl01EkNn99Zbb6mO7rPPPlMdOkQLHRPyo1NBQod48OBBatasmfp/CN8XX3yh/hudSYkSJejmm29W/4+HGcKDDgejnI4dOyZ3vAh7vv7660rEIADTp09Xb//33XefEoAZM2aoN3l0+rjGoUOH6KefflJiB98gop988klyRbz33nv00EMPJf8/BC0+Pl5du1q1aqrjhT065AMHDihRwL0iwWcIF/LifiFSx48f17oP44LohNGpQbQwkoHfEGcIG/yCeEBwMdLBKAUdrW/YE500BBQJLxjIi/TRRx8pJug0wRm+YqSO6yDh5aRHjx4pGiTCiRBy3A86yu3bt6v/Rsf60ksvJdcBjCAERggc4osOFdzBAeJrRAQMvv7fhkPdN+oQnTY6fXDHCwGYIGG0BqH5+OOP1W+o13//+9+W63zp0qXJYc8KFSpQsWLFVL2DGUQc9YARJkLO8AXc8IIFn1588cVkW7wYgRVYVKpUifBtGraoC7y8+KZQfFEuhA/JGFnjOUKbnTdvnmrb/gzR7tu3b6/qFu0cba9o0aKqDtBO8JKAFyK8OOXLl482btyo/hsvlxBbSfYREPGzj2WaLCnQNz84iocNnS7eNNGRQATwYELMRo0aRe+++67qQL777jvVafz3v/+lnj17qg565syZqrNERwtRQ0eL0RgECh0bOll0rr7f/CBQGAHguidPnqRHH31UXQMiitFhhw4dVIeEjhedAIQDCR0TOhGUjX+PGzeOypQpk4I13rYhrPAJb8xXr16l2rVrq/vDyACdJMQPHSXuBwkii84ZQozOWec+0NlhxIQRDuwgHrhXXAMjDeO+/cOe/t/8DPGDOIEdhAMvBRglYZQCgYCvGHGgwwMLfEcMJH5G2Q8++CDNnj2bIFAYIZYuXZpee+215DrYsGGDevlB54qRGeoQLwrgitElGGFECoEaMWKEqnuj/nTv2/i+iI66YsWKqgzUAUalGEn6hj3RwVutc9/vdmgj+H9wQvkFCxYkvGRBKDCC9Q97+tpCVJAHAoQXPDAGF7wYgiHaqJFC8cVoWlf8DIaY/GU8b6hTiC1GfmgH+EyAZwRp9+7danIUXjzxIoeXVOMFLk12NB50SsTPg5VmxWVD/BAGw0OHN010tnjTReeLN/Bgb5TojL/99lvV8eIhNcKgxvX9R2TG39F54zr+E14QskPn+tVXX9E999yjsqMTg1gYISD/e0PnhFETOulgEx0guBjJorPHfSKhPIS/0OlAVNFx4H7Q6SOhwxw7dqz6/euvv04xsgx2H8aMTYSKwQ2i65usip8hSBhpgwfEAGExjCYNMUP5/fv3V2HTQOIH0Ycf+N0IZfr6ZNQBZklCgAwuKAsjEHT6xkjfsEP4FVwMW537xkjWCM0F+r7o/80PdWO1zn0FDEKK0bcxaobv4I+XErTzUOKHFyq8KBkvS6Gep1B8Ibb+4oeQMsLL/iM/gyGuhRccRAfAAG1g0aJF6hk7d+4c1atXL6A7eGYRWZBkHwERP/tYpsmSAn3zw7cFfFMyHv7ChQurEBFGYVWqVFFhM4QG8XcIxDvvvKO+y919990qtAkBQ8eDUSBGbxgxIByHDhaihw4B3w39xQ/5MXrDCAThHCM0B0F6+OGHlUDhWkhHjhxRoSSM4BC6gvgFEmDkxajL8AGdOpIhzBixYnSLsiHKKBciYHSOU6dOVeEvnfswOnVMpIA9Rk4It/3666/qO5tV8UM4FvfnK37oEDFqQzgOLx7wFXkwSg0kfghnI9RqsMRLDSbaYFSDFwH/CS++4ofRBTpidKpgiPIxWvMXP537xgsNvpfh+hjZ4zsaOmyMRFE+OnbfkV84de4rfmibhw8fVqO1H3/8UY3YIITGC04o8YOfCBUbYU68zGC0ixCzbygT7SgUXwidseQCfmCkhu+cn376aSrx830hQHvBCA/tB6Jn+IHvfmirGHmirWOGNCImKBuCLt/97O1iRfzs5ZnmSgskfggNYnSBERHEDJ0kwn7ovCFO+GaBMCje5mNiYpT4IJyE8AzEAmEYdHbHjh1T+SEqGEmhE4dI4TsXOlV/8cPbLzotiCsSHnwsBfj555+TQ5nohFEu/EGngE4fo6JQ4rdnz57k2X8QYVwHoT0kdDTogI2QEUZUEGmE3ZDQ4aDT1LkPowMzxAoijkkuGEFDzPH/eJOH72CKSRToTDHqCfTNL5D4ffjhh8lih/LQIRujm0Dih5Gz0SniuxY6XnwvxH+jTkKJH0bVCCNjogfaCUbQqBt8n8MkJn9bs/tGuBWhQLwkQbBx70goE9dCfSJMiTz4byN8rVvnvuIHUTBepPCdDe0EI/9evXqpyVsY1WJEhZc8jJzRJn2XSSDsifaHekLYHSNG4xu470NsxtcoBy8/aFfGN3H/kZ//aBht2hhx43kDe4TrIYgIG+OFAc8c6tB4GURoWpJ9BET87GOZJksyxA8iB7FDQkdthFfwcOMNE9/sDMFAHmMEgNAOBMX3N8ySxMxMJPz30KFDk+8doorRG978jW9Avuv8DKH1n1yA0SS+exmTOzDygUDh38YoLtjIDxdHxwZxNoQVb8/o/DAbD+FSdGy+kxuMt/ouXbqY3oe/COCbHzo7o6NDR4WRI64JIT969Ki6Hu4FnS46fIgfvqVihGp888PEDIyGMPsUgoGwJ8QPnTLqA/WEFxLMiMW1goW+jG+MRiVgAgi+nWIxuL/vEGsIHjp7jN4h0HiZQcKLAerZ/5ut0XGb3TfYY8QF/5HAA6N9jIYg4sa3S3TwGNVarXND/MACPqK9YGRmJNQvJu1gVIUROe4HCS9xGGmijcAWE14wAxn1YLQXCA2iGxgR+qdQfHEPxgxcvATCB1wDbRf+BltqYnzzxLUg5MZ6W7zIYfRqTBYCQ9wjojSS7CUg4mcvT0+XBiFEx43OOnv27CnuBQ8oRlHoHNCp+iaEtDCrErPWOIvm0bliJIalCiVLlkw1U84MrmGPb5gYVRjfMg3xg0hBmOErOkj/3Vas3gdCfBB4/OOf4EtSUpLi6M8y1H3ABuFnhNPQeUI0MJMWHaohloHs4TtEDHVgJTwGYQNzzM6EyOqkUPeN8hCOhD9Y+uK7Ewt+Q0gUfzOYcesc5eG+cc9oM4hUGAkRAPiBSSaB7g0jNdiiHeD+Q+18FIovRmwI90P8rO48E4g3OIExRqR43uwoU6deoy2PiF+01XgU3q+v+GH0lJYTvj9hRGZMw4eQYHSCjhVT42V7tLRce+KblwiI+HmptsTXsAggDIfvWAhF4htQWk9YW4mwHULVEENMQsKsQ4zqJAkBIWAPARE/ezhKKUJACAgBIeAhAiJ+HqoscVUICAEhIATsISDiZw9HKUUICAEhIAQ8REDEz0OVJa4KASEgBISAPQRE/OzhKKUIASEgBISAhwg4Kn7YXd93oa0/F6ydwZou37U5HmInrgoBISAEhIBHCTgiftjZAtPLscUQ9t3DGiXfhAXT2H0BizcxrRubBMumrR5tQeK2EBACQsCDBBwRP2wjhEW62BbI2PnAlw32QsTCXew/iH0csX4Jo0ArO2F4kLW4LASEgBAQAmmEgCPiZ9wbtgsKJH44yw3nVHXq1Ent3I+wJ7ZYwrZakoSAEBACQkAIOE0gIuKHDXzxD/YuRMJO/9jhHke54BBU47Rp4+ZxUCUOH5UkBISAEBAC1gg8N/tbOn3+UiqjST2vHxidHtNTU79Jvi3cZ6CBVUTED7vbY2NbbDWFTWHz5s2rNgEONvEFu9AHO/gyLVQcNsdNy6NW8Y/XSoSf8OMR4Flz21+bIfNUhC1aU5oQP4zucH7b6tWr1ZlnOH4ER3vgJGqcgxYsifjxmi334eFd3dxa/DNnFCqH8BN+oQi0HvwhD5DHrSMmfpj5ibAlEkZ7RngThzni0EYcO4IDOOvUqSPi51Ajk86RB1b4CT8egfCsfzt1gQrmzqaOXTIiS59s+omSzl2k5rfGU96cWbUKDiZ+k55uTvEF82qVkdZfvj7bcoCmLt9G5y5epjJF89DPx04lj3YjIn5mVHFcS5EiRUzPEZORnxnJ0L9L5y38eAR41r7t78rVv+m+4R+p0yqQMhBR3crFaUiXBryLMKzTyvMx+r2vaNMPv6a6k0wZYyihUUWa+9n3KX4rWzwvTfxXc9M7DyZ+y8Z2NLXVyRBJfhA7iB7ED6lpzdLUs3VNissaS0a4N02Knw5Y5BHx0yUVOF8kG6eO5+KfDqXgebzAb9B72+jipStBb+Llx5pSxdIFeCDCtE4L/PBNDp11sJQhA1Ggz3Z33hpPBfOkPHjat4yFa3fTxctXAxbrdfH76WgSTZqfSPg3xK5nqxrU9JYyqe41WP06OuElzLaYykzEj0cyLTzcoe5A/Evf9fvAyAV09mJw4ePdvViHS8DL4ucf5uyXUIfii+YJiELEL9wWomEnnbcGpBBZhF/65tdm8IcUvXMNeXVrZt2kRmkqnC8uaLaFX/5AfwUY+WEN9tIxHcyK1/rdzec3VJgzmLMiflrVGF4mNys/HA/Fv3Co/WMj/Hj82gz5MGDIzrfUpzvUocY1SvMuFKZ1WqhfCNT9wz8KegdF8sXRsT/PpfgdE15mDmlreteBvvnNHnYv5YrLYmqrk8EtfrphTn+fRfx0ajHMPG5VfpjupZgtFm4ZTtoJPx7dtMJvzuqdlLjrCJUslJua3Vqann/3S7p61XzMlysuK80eZt6J8ygFt04r/OZ/sZtmfrIj2VF854vNlJE61C9FHVvUphUbf6RlX++jq39fo7tujaf2d1TURtLh+YXqm2vGDBlo0YsJ2nY6Gd3gZyXMKeKnU2s25XGj8jmuin8ceuSJl4esuQtRTIYMlDEmA2F2oO40eB4Zojmf7qS5n6echahbZoGc2WnGkNa62R3LJ88HD62T/MIJc4r48erTkrWTlW/JkSCZxT8eRaf4Hf79ND375ufqTf7S5asqNJg9SyxN6X835c6hF5IaMnUNfffTiVQ3iNlvT7S9he64+QbezYew/v3Ueer20rKwytcN2YVVuEUjp+rXohtBs0erf+GGOUX87Gp5GuVEa+PUQKOVJRL8MLW83bCP6Nrff6u1ZnlyZaWn2temmuWLpPLZbv/aP/cRXb4SePq5cfHFL3ZQo7hQ6aU562n9d78EzZIze2ZH18+9tWQLHTx+SquO/TPVi/DaPl9/7K7fsICEMIpG/zhhThE/u1ugNE7HiDr9cA+d9gV9f+A3JXRmexy+8mQzqlAyf4p7tdO/sbPX09c7gwuWceGc2bNQ6SK5QzLf9fNvdPWa+Tc1xyouzILz585O7z4b+XCn4b6d9RsmkpBm0eSfHWFOET8nWmGQMqOpcTqB1Ql+l69cUzuJmImdE/eTlsqsXLoAYVq7E+nQ8dN0+vxf2kXbOb1e+6IaGZ1ofxqX1c4SLf7ZFeYU8dNuWvyM0dI4+aQClxCM31ffHab/zN2QQsAwPXtMz8Z0Q+HgoyJMGQ+0tskp/50o985by5hO/ce2TgeOJgW9fNv65enRVjWccE+VefLMRer20tJUo8+YmAy05MUO9PX3v9CRE6fp5pJZqNyNZR3zg1uwPL88gnbwszPMKeLHq09L1nZUvqULWszsNf8uXblGCSOw/2PgkB6E7/G2twSkcPSPs/Tagk0WCf2TfVT3O6hGuZTf/ezk99Kcr2n9d4dD+ofZmoteMJ+OjjDuvyb+j3757bSaLJMpUwxVLJmfyhbPR7UrFqOq8YXC5qBriG+X76/aSWcuXKIKpfJTi1qpD6S2k5+uX1byiX9WaKXOy+U3bfk2WrJ+ryrYd29Onlf/WAfzT7Y3s4Ewt/JtcCFkEWnRv5fnfk3r1GQNTDjJQE1vLUN9218/XPPx8SvoyO9nnMaSqvwn772V7q6TeoRiN78nJ6ykwydOJ18fSxQ6Nq2sZnre26C85fu22z/LDpgYiH88oumV34mT5+jFWevU3pxIiFIgWmF3EvGzm6hPeem1cYaDDIucEZqseEPqTYo7Pr+QLly6EvQ73JAu9ale5RLUdsg8NTklWMoYE0MVb0g5KcXI++eZi/SrpnDiGxS+hmHE8vLjTYNeT+o3nJZg/ubNK9U+a6lfHstw+G3cdYQmzk9URxAVyhNHQx9qEHRvTp53wdfpysiPS5a8sQjayZPmcdTK8sQf6fSZi8k0Ebob/2Qzii+WV4Xlnnh1pQ2krxfxQNPK9GCzKkHLC3aES664zDR7WDvLfoTzcFu+CMNA/GPAk+eXBy8Mfr5hzrqVihM2pca6VKeSjPycIhtG5TvoSsCineocR89aR5t2HQl6O3lyZKF76pajZev3qm9CdqT2t99E3e6uHrIozPB8eOwySjp7UY3sere7hZrXCn/ChVP87OCBMsQ/Hknh5w4/t8Kc/ncj4ser35DW0fbwJJ25SF3HLLGdaLd7qlP7hjfRwLc+o90Hf09RPkT0ibY1bb+mToHRVr86TKzkEX5WaKXOmx74uRnmFPHjtTdL1umhceresHE6sk7+jBljqEOjivTxxn10+lzokV+hvNlp+sB/Fj5jMfi+X/5U+1Ri5uKjLZ2bsm92L9FUv2Yswvld+IVD7R8br/NzO8wp4sdrb5asvd44dW52wJTVtOfwHzpZk/O0qV+OeraqqWY29p6wMuCZblgTNqHHreTkN0lLTgfIHA31y2UUyl748eh6lV+kwpwifrz2Zsnaq40z1E1u33+CsmfJROVL5KO2Q+cFXXMXrIw8ObPSLL+zxj5au5t+SzpPbW8rR8UK5ko2TY/8LDUgZmbhxwMo/OznF8kwp4gfrz4tWaeHh+e9/31LC77cw9oOLCYmhl7q1ZjKl8xvuimzL+D0wM9Sg7E5s/DjARV+9vKLdJhTxI9Xn5asvf7wvDovkdZs+9nSPftnXja2Y9j2XucX9o3bZCj8eCCFnz380kqYU8SPV5+WrCPx8Ez9eDtt+O4wZc8aSx0aV6Lbq5cK6nMo/+Z9/j3N+nSnpfv1zdyoxg30TIe6YdvDMBL8rDgs/lmhlTqv8Ev//E5czOLaonWrNGWpg1ViFvK7/XAHmnH5cItqdH+jigG9DuVfsAXhZrefLXMstWlQjrrcWdUsq+nvbvMzdcgvg/hnlVjK/MIvffMbP/sL+mLncXWTbixat0pTxM8qMQv53Xq4DxxLor6TPgnoGWZNVi5dMOBvFy5coGzZsqX6DYvAffeY1L3lciXy06u9m+lmN83nFj9TR4JkEP/CJXfdTvilT35pNczpT1vEj9f+Qlo7/XCP+/+TANw8thT7XsZmjKG2DcpTQqOKtHrLAXUuXKt65Wwn6TQ/rsPiH4+g8Et//Hxnc+bLkZlGdG/s2N6cPHqytyeXX8TE78yFy/TgqIWm/mMxOI7jCZSOHj1KRYsWDfjbkKlrUv3d7UNHpXM0rd6ItT+eZzLyS4/8/Gdz3lurMFW+yf6XYjvYhYo8yMbWNhB2svPW/Sa3ZExHiglyYHco/2Z98h3N/2JX8gL0rJkz0fyR99lARb8IJ/npexE8p/jHoyj80ge/YGFOr9aviB+vXSprpypfdyuxyU/dRaWLBD/Z3Cn/bEDnKD/xzy4CvHKk/XmfX6hF616tXxE/Xrt0rPP+5bcz9MSrK0y901lf59XGaXrzLmUQfjzQws/b/MwWrXu1fkX8eO3SMfFrPXieOuU8WGrXsAJ1v+dmLe+92ji1bs6FTMKPB1n4eZOf7mxOr9avY+J37do1whT7uLi4oDV/5swZypEjh5pFGCqNGzeOBg0axGtBDlrbXfkPj11Kf56+EMTjDLRsbAdLd2O3f5YurpFZ/NOAFCKL8BN+PAKpra3szenV9ueI+M2YMYMmTpxIxYsXpytXrtDs2bOpYMF/1qDt2bOHRo0aRdgL8uDBg9SrVy/q0qVL0PqLNvELNcllYu87qWyJfJbaulcbp6WbdDCz8OPBFX7e4mcW5vS/G6/Wr+3iB7GLjY2lpKQkyp07N/Xt21dNsx88eHAyM4hd+fLlacCAAbRv3z7133/99Rdlzpw5YCuJJvHbdfA3GvTW5wE5hLsEwauNk9dl2Gct/HgshZ83+OmGOUX8gtTngQMHqFmzZrR//36VY/LkybR9+3aaPn16sgVGfRBICOLGjRupXr16dOTIESpWrFjUi1+oGZ46k1sCAZTOxxudT7heSv2GS+66nfAjshLmFPEL0t527NhBCQkJhNAm0qxZs2jt2rU0bdq0ZItdu3ZR3bp1qX379rRhwwbau3cvGd//1q9fT+vWrUtVOspMz2nWmv204+ApunT5asDbLJArKz3Xkb+PZnpmKPcmBISAdQKLNhxK3puz6g15qHOjeMqWOaP1gtKwRaDDsm0Pe2KSS/bs2QkTXhCmmzBhgkLSv3//FGhOnTpFy5cvp7JlyyqxPHz4cFB06T3s2eWFxXTq3F8hm84jd1en+26/KazmJW+2YWFLNhJ+wo9HgGftVPsLN8wpI78Q9Vm9enWaMmUKVa1alVq0aEEjR46k5s2bU2JiovobJsSgQsePH6/CoRgZzpw5MyrFT2che7jf+gygTj08vEf6H2vxj0dS+Ak/qwQ4YU4RvxC0ly5dmjx7s2XLljRnzhw1CsyVK5cSQIwM77nnHvX/v/zyi/pbsO99uEwkR35nz1+ijzfup8yZMlDLeuUoc2zqcEC4nY+O8OH+3x5wDxXLn9Nq+5aRS9jEUhqGW782Xd60GPHPFFHIDNHGz+psTjO6XuVne9jTAHX+/HlCaDPYhsrIh1BniRIl0sQ6v9VbD9DsVTvpypVrVDm+ED37YD165cONtHb7wRR1/+yDt1H9qiVT/C2cyr946QoljFhg1q4oY0wGWvyitXV96eXNzBSOSxnCqV+XXFOXEf94tKOFn11hzvTSvzgmfrzmmNLa6ZHftOVbacn6fSkuGpc1ls5dvJzqNjCCfaBp5RR/P3nyJOXNm/d6R/TryYB2/gUdOHqKzl4I/p0Pole3Ugl6tvNtbJTR8nCzQQUpQPjxyAq/yPOzM8wp4serT0vWTouf7skJlpxmZM4Sm5E+GnU/o4SUptL58FAKP+HHI8Cz5ra/uZ99T3NW71ROOHHSOtc/Hh1z62D+ReXI78hvp4koAxUvmJNemrOe1n/3izlBnxyhRn7xxfISRo1macdPJ+iDz75Ple21vs2pTNHro0i7klcbp133zy1H+PEICr/I8EPk6sVZ6+i7n04oB9BvPdisCs+ZANZerd+oEr+te4/R8zPWJm8XHZMhA137O/jm0Qg9Xr2W8vcyRfPQa31bpGgC4VZ+/9c/pR+P/JlcVo3yRWhUt8AH0nJabLj+ca5pxVb8s0IrdV7hJ/z8CUDwIHwQQLyMD+3agKrGF+KBCmLt1fYXVeJnJbyJfUfnDGtLT7y6kpLO/UXYe7ty6YI0pmfjVE2AW/mY/IJDZJ1icik6AAAgAElEQVRKXP+c8ssoV/zjERZ+ws+XgG+Ys0qZgjTsoYZa0ahwKXq1/UWN+K36Zj9NXrhZu34/GnUfZYnVEySvVr42DIczCj8eYOEn/EDArTCnP22vtr+oEb97h86nq9euaT0lVheVe7XytWC4kEn48SALP+HnZphTxI/X3ixZ2zHbM1jIE+FNbMXmm6xuIC2dj6XqtD1szLu6ubXUrzmjUDmEn7P83A5zivjx6tOSNVf8fks6T93HLQt4zaVjOtChE6dpy56jVKJgLqpdMfDJEvJwW6oyS5mlc7SES14eeLjSDb9IhTlF/GxugKGK44rfAyMX09mLgReUWx3lBfJTOm9eYxB+wo9HgGftxfYXyTCniB+vvVmy5opfsJCn1W97wZz24sNjqQIcziz8eICFX3Txi3SYM6rFD6e1Z8qkNxOS1yyvWzslfk8l1KZmNcuwXZTOh4dQ+Ak/HgGetVfaX1oJc0aV+G3bto2eeuopWrFiBd155530/fffK0F64okneK1O09op8bMj5Ilb8MrDo4nb9WzCj4dc+KV/fucoh2uL1q3S9Gr701rqUK9ePdXBP/fcc9SnTx+qWbMm7du3j/78809XRoAiflabY8r8Xm2cvLu2z1r48VgKPx6/KR+to5VbjqhC3Fi0btVbr9avqfhdvHiRsmXLRjijb+LEibRz507avHkzlSpVir799luqVq2aVVaW83PE741F39D/Nv2U6pp2fe+TkZ/l6kxl4NWHh3/n9pQg/Hgc0yq/tBrmjKqwZ4UKFahixYq0ZMkS6tWrlzqjD6eznz17luLi4ngtT8OaI37BDowV8dMA71KWtNr5GLcv/vEagvCzzs93Nme2zBnpuYdvd2xvTuvepY/IkunID7c5c+ZMevjhh9UdY7TXoEEDat26Nc2ePZvLTcueI37BZnrmz52N3n22jdb1zTLJw21GKPTvwk/48QjwrNNa+/Ofzdnl9pJU+aZyvJt00Dqt8dMdmWqJHwrDga0ZM2akXLly0datW9V3P7eSmfj9fuo8DXzrc0o6e5EyZ4qhtg0qqOM7nnh1Bf3y25mAbr43uC3ly5XVllvwauXbcvM2FCL8eBCFX/rgFyzMKfXrTP2GFL+SJUvSpUuXgl55//79lCNHDp5nGtZm4td2yLxURxM9fFc1mvnJd/R3gCOLcELD0jEdNa6sl0Uapx6nYLmEn/DjEeBZp4X2F2rRelrwLxRhr/oXUvxatWqlxA8ihxvMmTMnlSlThnbs2EHx8fFq8gsmwzidQonf4ROn6ckJKy25cFftstS73a2WbNJj5dsGgFmQVx8e5m3bZi78eCgjzc9s0Xqk/TOj61X/tMKelStXptq1a9Nbb71FWbJkoTfffJOefPJJOn36tBJEp1Mo8Xv6jVW075eTqVzAhBaM8K75HUaLjHat7zMu6tXKd7redMsXfrqkAucTft7kpzubU+rXmfo1FT/s5hIbG0tt27alBQsWqO9+48ePpwEDBqhvfzVq1OB5pmEdSvwSRiwgHAbrnzJljKF+CXXolQ82pPgpW5ZMNO/5+zSuqp9FGqc+q0A5hZ/w4xHgWUei/VnZmzMS/lkh6lX/TMUPENq0aUPLli1TozyEOU+cOEG1atWijRs3Eo4EcjoFEr8rV6/RwLdWBxz1wZ+ShXPSlH730PYfj9PU5dvowl+XqVrZwtTv/tq2u+vVyrcdRJgFCr8wwf2/mfDzFj+zMKf/3Uj9OlO/WuJ36tQpmj9/Pi1fvpwOHz5M9913H3Xt2pUwIcaN5C9+P/16kp6avCrkpdvdfhN1v7u6G+7J9mZMyvJw8wAKP2/w0w1zivjx6lOXn6n4Iez5+uuvU5UqVahZs2b2eqVZmr/4BVu751uc3d/1QrkqnY9mRQbJJvyEH48Az9qN9mclzKnbefPu2j5rN/hxvA3mn6n44aKY8AIR3LVrl/rm53byFb9uLy2h309dDOkCTpxYNNre73oifs7VulcfHueIWCtZ+Fnj5ba4WA1zuu0fj553N/bXEr/OnTvTnDlzqGHDhmoEiJmUSJj4kjWrPQvFQ1WAr/gF264sUqM+XFc6H97jI/yEH48Az9qp9hdumFPEj1efuvy0xK9w4cJqkot/wrdA7PjidPIVv1Ahz2IFctKkPs0pa2b3zhoU8ePXvlOdD9+z6yWIfzyS0ciPE+bU7bx5tWKftVfrV0v8zp8/r3ZKOXPmDP31119UoEABRc6NTa1xHR3xmzqgJRXJ7/xuM4GajFcr377mzytJ+Ak/HgGetd3tjxvmFPHj1acuPy3xQ+N49tln1YxPJBxoO2zYMLr99tvt9TJIaYb4dRu3jH5POh8wl5sTXHThugJH4yJ2P9wal7SURfyzhCtVZuGXNvjZFeaU/oVXn7r8tMSvQ4cOSvjwb+zlaYjgsWPHKHv27PZ6GqA0Q/zcOJ4onJuRziccav/YCD/hxyPAs7aj/dkZ5tTtvHl3bZ+1Hfzs8yZ1SWHP9sRpDvny5aMXXniBhg4dqkpetGgRtW/fPuQOL9euXaMLFy6EDI0ijAoxNSbQBANgiF+w733Nb42nPvfVcpJfyLK9WvkRA+Z3YeHHqwnhF1l+S9fvVRtpIJUpmofG9mpCcVljeU75WEv98lCGLX7G9mZY1D5t2jS11OGll15SYc+9e/dSuXKpz5maMWOGOvW9ePHiaokEzv0rWLBg8h1AUHv27Kl2jPntt9/o/vvvp0ceeSToHZqJXyRDnnBaGqczjZNXqn3WUr88lumVH8KcE+cn0sZdRxSgNvXLU89W9m/3mF758VqVvnXY4odL9OjRg9555x11NQgWRmwIgX744YepPDDEMikpiXLnzk19+/ZVJ78PHjw4Oe+7775LK1asoHnz5tHXX39N3bp1oz179oj46denpZzy8FjClSqz8BN+/gR+OppEY2ato+Mnz6lRHvYRrlupOA9UEGtpfzysLPFD+HLx4sVK7LC8oVOnTkr88ubNm8qrAwcOqJ1gcAwS0uTJk2n79u00ffr05LxHjx6lm2++mZo0aULr1q2jfv360TPPPCPix6vjoNby8PDACj/h50vAP8w5rGsDKpQ3jgcphLW0Px5alvjh0tjdJU+ePOobHsTrpptuCugRzvpLSEhIHsnNmjWL1q5dq0KmRlq1apXaG7RXr16UmJhImTNnVvuGIq1fv14Jon9q1/5+euadzQGvOaln5L738apFrIWAEPAKgQuXrtKctQdox8/Xj1C7o0phal+vlFfcj2o/cf6sf9Ka7Ym9Pfv06UMrV66kUqVKqe3OBg4cqNbf+SeMEjEDFBNeMJFlwoQJKkv//v2TsyLMCfEcNGiQCqFiofzx48epUKFCASsI16nROIEmL/om4O/yzS90u5Y3R95zL/yEn5thTn/a0v6caX9a4lehQgU1YeWjjz5SI7/evXsTRnRHjhyhYsWKpfKsevXqNGXKFKpatSq1aNGCRo4cSc2bN1ejPPwNv6FC33jjDTp48CDVqVNHlYU9OQMliN+fuW+lXQd/T63eGTLQ0jEdeHSY1tI4eQCFn/DjEeBZm7U/t8OcIn68+tTlZyp+xgSWxx9/XJ3gjoTZm126dKENGzZQ3bp1U3m6dOlS9TtSy5Yt1b6gGAVihAcBxNKJ1q1bq/Ap0vDhw9Xsz2AJ4rfpfFm6dOlqqiwxGTLQEhG/kK3F7OG2t6lZL038s87M10L4OcPPrdmcZt5L/ZoRCv0765sfdnL56quv1GnumO25ZMkSNZPzxx9/pCxZsgS8MrZEw+QYzPQMln799Vc1osRJ8aESxG/DmXi6evVaqmxxWWLpg+fb8+gwraVx8gAKP+HHI8CzDtT+Ihnm1B258O7aPmuvPr+mIz8gwgxOfLvDbE9scI3R3L///W+644477CMYoiSI3/pTZdT+ov6pSc0bqH9C6tGnK479/0W8WvluMgp1LeHHqwnhZy+/SIc5Rfx49anLT0v8UNjPP/+s1uThG1+JEiXoxhtvtNdDE/Fbl1Q6YI52DcpT95b2Lyy1cnPS+VihlTqv8BN+PAI8a6P9pZUwp27nzbtr+6y9+vxqid+yZcuoTZs2ihYWq2MpQo0aNWjSpEn2EQxR0uAXJtHOc0UC5sBWQlXK/LN7jCsO+V3Eq5UfCVaBrin8eDUh/Pj8KFs+1xatW/VW6tcqsZT5Wd/8SpYsqZYhYJ0fZmZiVubo0aODzvbkuZrauu2QD+ja39cP0PVPkV7mAH+kcfJqXPgJPx4BnvWMpRto4YZDqhDszen0onWr3srzYZWYTeKH8/twWruxLAF7e2IRe82aNWnnzp1qzZ/TKdiG1pkyZqRFL9zv9OVNy5fGaYooZAbhJ/x4BMKzTqthTv+7kecjvPo1rFgjPwjc77//TkWKFFGjPkx6wUL2UPtx8txNaR1M/Pq0r0XNa6VeuW/ntXXKksapQyl4HuEn/HgErFv7zubMljkjPd2xnmN7c1r3Tm/kwi3XLnuvPr9a3/y2bdtGI0aMIHz7MxKWOxjfAe2CGKycYOK38IUEis0Y4/TlTcv3auWb3phLGYQfD7Tws8bPfzbnQ3eUolurV7RWiIu5pX55sMMe+WGRO7Y3q1KlCt1yyy30yy+/UNmyZV05xNa45UDilzdnVpo5pC2Pik3W0jh5IIWf8OMR0LMOFuaU9qfHL1gur/LTGvkh7AkRxObW+ObndgokfmlhoovBwauV73Y9preHR/jpEUgLz0eoRetpwb9QJMU/vXZmtX/REr/OnTurLcoaNmyoRoDGyevjx49Xk2GcTiJ+PMLy8Ag/HgGedaTbn9mi9Uj7Z0ZX/DMjFPr3sMOeKLZw4cJqkot/wvZl2K/T6STixyMsD4/w4xHgWUeq/enO5oyUf7pUxT9dUoHzscQP+3QG2loMJzy4kUT8eJTl4RF+PAI860i0Pyt7c0bCPytExT8rtFLnZYkf79J8a3/xQ9g10scY+d6VNE5eHQs/4ccjkNLaLMzpfy1pfzz6XuWn9c2Ph4Zv7S9+mWMz0oJRkV/cbtyZVyufXzP2lCD8eByF33V+umFOET9ee0sv/DwpfvlyZ6f3nm1tbw0ySpPOhwFPtofjwRN+ip+VMGd66bzZDcemArza/4UUv5kzZ6olDsFS165dTc/is4Ov/8ivaP4c9N8BLe0o2pYyvFr5tty8DYUIPx7EaOdnNcwp4sdrb+mFX0jxM5Y0BEMVqdmehfLG0fSBreytQUZp0d75MNBdf2v/6SeKj4/8NnXB7kP849WwU/zCDXOml86bVyv2WTtVv3Z5GNaEl40bN9LVq1fpxRdfpO+++44GDBhAZcqUoVdeeYXOnTtHiYmJaq9Pp5P/yK98iXw0vvedTl9Wu3yvVr72DTqcUfjxAEcjP06YU8SP197SCz/Tb34Ie8bGxtJzzz1Ho0aNUvdtnO+3b98+Vw619Re/htVK0sAHbrO3BhmlRWPnw8CVylT48WhGGz9umDO9dN68VmOftVfbn6n4AZGxkH3MmDGUI0cOmjJlCn3zzTeunefnL34tb7uRHm99i321xyzJq5XPvG3bzIUfD2W08LMrzCnix2tv6YWflvgtWLCAnnzyyRS7vEycOJGeeuopeykGKc1f/J5scwvdXe9GV66tc5Fo6Xx0WISTR/iFQ+0fm2jgZ2eYM7103rxWY5+1V9uflvgBE779rVq1ipKSkqhly5aubGtmVI+/+I3p2YSqxhe0r/aYJXm18pm3bZu58OOhTO/8PttygKYu36bW8Tlx0np658drXebWXuWnJX74tnfXXXepWXmDBw9WJ7g/+OCD1KlTJ3MyNuTwF7+FoxMoNlPkz/Ezbs2rlW9D1dhShPDjYUyv/CB2ED2IH1LTmqWpZ+uaFJc1lgfMzzq98rMVUojCvMpPS/xwjh8EsGDBgtSxY0d1pt+sWbPUKDB37tyOM/YXv7R0nBFu3quV73jFaV5A+GmCCpItPfJDmHPS/ES1eB1i17NVDWp6SxkeqCji5wiodMbPVPz++usvdWwRDrQ9dOiQOs8vISGBatasSVu3bqUaNWo4zlnEj4c4PXaOPCLWrIWfNV7+ua3y8w9z9kuoQ/FF8/CcSIcjF8eAWCzYav1aLJ6dPZh/puKHK2O2Z7Vq1ShPnjyUOXNmiomJUd///vjjj4js8CIjP2vtwauN09pdOpdb+PHY6vJzK8zJFWceDevWuvysl2yPhVf90xK/uXPn0mOPPUZnzpxJpjV69GgaNmyYPfRMSpGRHw+zVxsn767tsxZ+PJY6/NwMc4r48eozvfDTEr9du3apnV3Wrl1LBw4coOrVq9Ntt7m3yFzEj9dYdTof3hV41uJfdPNzO8yZXjpvXquxz9qrz6+W+OEkd6TWrVurZQ6NGzdWIVC3kq/4pbWz/MDAq5XvVv2ZXUf4mREK/btX+UUqzCnix2tv6YWflvhhQfvnn39OX3zxRXLos1GjRrRixQrKli2bvSQDlCbix0Ps1c6Rd9f2WQs/HstA/CIZ5kwvnTevVuyz9urzoSV+ly9fpt27d6stzWbMmEHr169X5CJxqoOM/Kw3Wq82Tut36oyF8ONx9ecX6TCniB+vPtMLPy3xK1mypFrbh2NnEPKsU6cO3XrrrXTzzTdTsGOPrl27RhcuXKC4uDg2aRn58RBK5y38eAR41kb7SythzvTSefNqxT5rr/YvWuLXoEEDNdrLmTMn4b/r1atHtWrVojvvvFOt+/NPGB0iVFq8eHF1GO7s2bPVAnkj/ec//0kePUIkcUpEqDWDvuIXkyEDLRnTwb6as6Ekr1a+DbduSxHCj4fRC/woWz7XFq1bpekFfnLepdVa/Sc/a50fijl9+rT6xjdp0iTCOX/Bwp7GEUjG7i99+/alokWLqm3RAqVBgwZRkSJFqH///kHvzlf8MmaMocUvJIRPwgFLeXh4UIVf+uY393+baEniL8l7czq9aN0qTWl/VomlzO9Vflojv169etGSJUuST3XACPDuu++m9957T+3+4puwFKJZs2a0f/9+9efJkyfT9u3bafr06akI79ixg9q1a6e+J2LxfLDkK37ZssTSvOfb82rLZmuvVr7NGMIuTviFjU4ZplV+aTXM6U87rfIz/BT/nHk+tMQPSx1uuOEGatWqlRK22rVrBz3BHYKG7c/27NmjPMYeoFgfOG3atFR38Oijj6oQao8ePZJ/Q3h13bp1KfKuSyqd/P9xWTPRmK7Ob6nGwy3WQiC6CRz54zzNXnuA8O9smTNSu3qlqE75AtENRe4+YgQChY21xA8hTPyzYcMGNeklf/78QU9wxySX7NmzE77lYTLMhAkT1A37hzWxNVqBAgXo5MmTpmsGfUd+eXJkoVlD740YxEAXljczXnUIv/TFz382Z0K94tSwVhXeTTpoLe2PB9er/LTEDxNS2rRpowjh2x1GZtjQGt//AiXsAIPT3qtWrUotWrSgkSNHUvPmzSkxMVH9DeKIA3IRNl26dKkpeV/xK5g7O73zbGtTGzczeLXy3WQU6lrCj1cTaYVfsDDn8V8Pq5fmtJrSCr9gfMQ/XsthTXjBUodChQqpERqWOWTKlImwt+eRI0eoWLFiqTyDoHXp0kX9HTvCzJkzR40CsUE2BLBixYr09NNPE8KpmPBilnzFr1De7DR9oIifGTPf3+XhsUIrdV7hZ84v1KJ14WfOT14OeYzC4Wc68jOONHrjjTfo4MGDKY40wqG2lStXDnjd8+fPq0XwmOnJTb7iVzhvHE0b2IpbpK328nDzcAo/b/MzW7Qu9evt+jXz3qv1ayp+uHEI3O+//66WJGDUd+LECRW6NCa1mMHh/u4rfsXy56S3B9zDLdJWe69Wvq0QGIUJPwa8CM721J3NKfXrzfrV9dqr9aslftu2baMRI0aoxehGwtIH4zugLqRw8/mKX+nCuWlyv7vCLcoRO69WviMwwihU+IUBzcckEvys7M0ZCf+sEBX/rNBKnder/LTEz7hdzMzENmdly5ZVIz+3kq/4VShVgF55oqlbl9a6jlcrX+vmXMgk/HiQ3eZnFub0vxu3/bNKU/yzSixlfq/yCyp+2My6RIkS6sBarNE7duxYKkJYyJ4jRw4eOQ1rX/GrUqYgje3VRMPKvSxerXz3CIW+kvDj1YRb/HTDnCJ+vPoUfu7wCyp+2KYMyxS6d++udnfBujz/hDCoGyNAX/GrfmMheqFHY3vpMEtzq/MJ103xL1xy1+2EH5GVMKd03rz2Jvzc4acV9pw6daoSwlKlStnrlWZpvuJ3a4WiNOKR2zUt3ckmnSOPs/BL2/yshjml8+bVp/Bzh5+W+GE9HmZ4NmnShLp27Ur33nuv6a4sdrrvK363VS5Og7s0sLN4dlnSefMQCr+0yS/cMKd03rz6FH7u8NMSvzVr1tDHH39MixYtUiEgpE6dOtG7775LWbJksdfTAKX5il+TW8pQ//trO35NKxeQztsKrdR5hV/a48cJc0rnzatP4ecOPy3xM1zBur7XX39d/YMUiZPc2zW8ibrfU91eOszSpPPmARR+aYsfN8wpnTevPoWfO/y0xA/7eb7//vtqmQNSzZo1qVu3bvT4448HPd3BTvd9R34dm1SiLndWtbN4dlnSefMQCr+0wc+uMKd03rz6FH7u8NMSP3zzw3l7OIKoQ4cOam9ON5Ov+HVoXJG6Nq/m5uVNryWdtymikBmEX+T52RnmlM6bV5/Czx1+WuKHHV6qVaumNrLG4bX58uVzZcRnIEghfo0qUtcWIn5WmoeIixVaqfOmd34bdx2hifMTHTtpPb3z47Uuc2vhZ84oVI5g/LTEb9++fXTXXXepyS4IgWJD6wcffFBNenEj+Ypfj3uq070Nb3LjstrXkMapjSpgRuEXOX7Tlm+jJev3KgfqVipO/RLqUFzWWJ5DftZSvzycws8Zflrid8sttxAEsGDBgtSxY0f17Q8ntOOA29y5c/M807D2Fb8n29xCd9e7UcPKvSzSOHmshZ/7/E6cPEcvzlqnFq8jPdqqBrWtX57nSBBrqV8eVuHnDD9T8TOONMIMz0OHDqU40mjr1q3qUFunk6/4PZVQi5rVTFsHY0rj5LUA4ecuP98wZ6E8cTT0oQYUXzQPz4kQ1lK/PLTCzxl+puKHy+IQWnzzw2G2mPgSExNDq1atUluexcbaGyIJdJu+4je0S0OqWzn1Abo8PDxraZzCj0eAZ22l/bkR5vS/Gyv+8UiEZy3+hcfNsPIqPy3xmzt3Lj322GN05syZZEo4yR2bXruRfMVvdPc76OZyRdy4rPY1vFr52jfocEbhxwOsw8/NMKeIH68+hZ87/EzF7+rVq7R9+3bKmTOnmvBy4MABql69Ot122232ehiiNF/xe+uZllS8gPMnSVi5OZ3Ox0p5ducV/3hEvc7P7TCndN689ib83OFnKn7Xrl2jokWLUqVKlQjbnEUi+Yrf1IEtqUheET8r9eD1ztvKvTqR18v8IhHmlM7b3lbo5fZnL4nwSmMtdXjiiSforbfeouHDhysRxDc/pHbt2rmy3s9X/GYNaUt5cmYNj4JDVtI4eWCFn/38IhnmFPHj1afwc4ef6cgPbhinOvi7FIm9PT8Y0d72dUhc1NJ58wgKP3v5RTrMKZ03rz6Fnzv8tMRv7dq1hCUP/glHHGXKlMleTwOU5jvyWza2o+PXs3oB6bytEkuZX/jZxy8thDml8+bVp/Bzh5+W+NnrivXSRPysM/O1EHFJ//xy5C3s2qJ1qzSl/VklJi+HPGJ6/ET8bKAsDzcPovDj8Vvy+Raa+9VBtTenG4vWrXor9WuVmF7nzSvVPmuv1q+Inw1twKuVb8Ot21KE8AsfY1oMc0rYLvz6DGQpzwePJ3u2Z7Nmzejuu++m7Nmz8zwJw1rCnmFA8zGRhyf98UtLsznN6Er7MyMU+nfh5ww/rZGf72zPRx55RG1u3bRpU1e2NsNti/g5U/m8Uu2zlofbGkv/2ZyPNClNDWtVsVaIi7mlfnmwhZ8z/LTE7+TJk4QZn9jPc8GCBXTixAm14wtOcu/RowdVqFCB552JtYgfD688POmHX6Aw5/FfD1N8fNra7N2XuLS/9NP+0lNYVkv8cMO//vqrEr+lS5fSokWLUjDAlmelS5fm1XAIaxE/HlrpfLzPL1SYU+rX+/Ub6g6kfp2pXy3xa968OX366afKA4z4OnfurEKfeNu84YYbaObMmdS1a1eehyJ+jvGTh4eHNtL8zBatR9o/M7rinxmh0L8LP2f4aYlfyZIlqUGDBur0dghhlixZkr354osv6MYbb6QSJUrwPBTxc4yfPDw8tJHkpzObM5L+6ZAV/3QoBc8j/JzhF1L8AP3vv/+mixcvUtasqffTLFOmTPI+n/7uYUPsCxcuUFxcXFDPz507R8iH0WSoJGFPZyqfV6p91vJwp2ZpZTan8OO1ReEXnfxCil+GDBlCUgm2t+eMGTNo4sSJVLx4cbpy5QrNnj2bChYsmFwWxBQTZWCPTbJxGvzIkSODXkvELzobJ++u7bN2u3M0C3P635nb/lklK/5ZJZYyv/Bzhl9I8XvllVcI5/kFS/3791cnu/smiB1Od09KSqLcuXNT37591ZFIgwcPTs727rvv0qZNm2jKlClqZIkJNG3btqWMGTMGvJSInzOVzyvVPmt5uP9hqRPmFPGzr+2hJGl/PJ5e5acV9gyGJlDYEzM/sSB+//79ymzy5MnqMNzp06cnF4OjkTZv3kxbtmxR3wpfeOEFtYA+WBLxi87Gybtr+6zdeLithDlF/OyrWxE/Pks3ng+Ol8H8sz3suWPHDkpISKA9e/Yof2fNmqXWCE6bNi3Z/27dutGXX35JK1asoG3bttG///1vOnToECHMun79elq3bl2Ke12X9M8yikk9a3E4iK0QSHMEvvv5JM1ee4AuXLpK+XJkpkebl6Pi+d3fSSnNgRGHhIBNBAKtg7U97IlJLvz40KIAACAASURBVNgCDRNZIGYTJkxQ7iNEaqSnn35azRgdO3as+hN2kIHoYdZooCQjP14L8OqbGe+u7bN2kl84YU4Z+dlXtzLy47N08vngexc8rK211AEO4Dw/TFBBwne6H3/8kWrXrh1wi7Pq1aur73lVq1alFi1aqMksWCKRmJio/oZdYqZOnUqrV6+mX375herVq6cW0cs3PzuqOnUZXm2cztCwXqoT/DhhThE/63UYysKJ+rXTQ/GPRzOssKdxyQ8//FBNXMG2Zr4p2GxP7ALTpUsXlbVly5Y0Z84cNQrMlSuXEkAMQVEewp4YJUIcO3XqFPQOZeTnTOXzSrXPOtoebquzOc1IRxs/Mx5Wfxd+VomlzO9Vflojv7Jly1KePHlo3759VLduXdq9ezcVKlSINm7cGHRz6/Pnz6uRImZ6BkvYMxSCGGzEZ9iJ+EVn4+TdtX3Wdj7cdoQ5ZeRnX92iJDvr117Prpcm/vGohj3yu3z5slrO8P7776tJKgUKFFAbWpcqVYogXhBFp5OIH4+wPDyR54eDZof893P66WiScubRVjWobf3yPMf+31rql4dR+EUnP62RH7Y3gwA+8cQTNGrUKLrvvvsIa/X27t1L5cqV45HTsBbx04AUIos83JHl991PJ+jFWevUSetxWWNpTK8mFF/UvpdGqd/I1i/v6ubWUr/mjELlCHvkh0I///xzNVsTyxbwDQ+TVFq3bq1OeHAjifjxKMvDEzl+cz/7nuas3qkcqFKmIA17qKESQDuT1C+PpvCLTn5aIz+g2bVrlwpxYonC999/T7fffjuPmAVrET8LsAJklYfbfX4Y5WG0h1Ef0gNNK9ODzZw5cFbq1/365V3RmrXUrzVe/rlZI7/XX3+d+vTpQytXrlTf+ipXrkwDBw6kcePG8bzStBbx0wQVJJs8PO7y8w9zDu3agKrGF+I5EcJa6peHVvhFJz+tkR9OasfG1B999JE6paF3794qBHrkyBEqVqwYj5yGtYifBiTpHHmQbOLnRphT983WMSAWCxZxsQjML7vwc4afqfgZG1Vjhuebb76pvMApDVjHt2HDBrX0wekk4scjLA+P8/zcDHOK+PHqU/gJPxAwFT9kwve9r776Sp28gLP3lixZok5swC4vvgfb2ov0n9JE/HhkRfyc5ed2mFM6b159Cj/hpy1+OKkBe3Ripxfs8oIZn9iM+o477rCXYpDSRPx4mEX8nOMXiTCndN68+hR+wk9b/AxUOqez24v1emkifjyqIn7284tkmFM6b159Cj/hF1L8sLMLztobNmyYOo7o2LFjqYjhzL4cOXLYSzJAaSJ+PMQifvbyi3SYUzpvXn0KP+EXUvww0QUnMnTv3l194/vjjz9SEVu2bJnamNrpJOLHIyziZx+/tBDmlM6bV5/CT/hphT0hgljnV6VKFXVCeySSiB+Puogfn1/hYiVdW7Ru1VupX6vEUuYXftHJT2u2Jxa1QwSxy4vZCQw8jIGtRfx4VOXh5vFbtf5bemf1/uS9OZ1etG7VW6lfq8RE/HjE0gc/LfHr3LmzOpOvYcOGagSIs/mQxo8fT1mzZrWTY8CyRPx4iKVzDJ9fWgxzStgu/PoMZCnPB4+nV/lpiV/hwoVTHWQLXMEOs+WhTG0t4scj6tXGybtrnnVams1pdidSv2aEQv8u/KKTn5b44WDav//+OxUhbHXmRhLx41GWh9saP//ZnN2blaXm9atbK8TF3FK/PNjCLzr5aYnfmTNnaMCAAbRixQp67LHH6K+//qKEhASqVq0aj5qmtYifJqgg2eTh1ucXKMx5/NfDFB8fr1+IyzmlfnnAhV908tMSvw4dOtD8+fMVocGDB1NiYiLt3LmTDh06JNubEZE8PN5/eEKFOaV+vV+/oe5A6jc669dU/IyNrUeOHEnnzp1Tsz3vvvtutd/nt99+68roT0Z+0dk4eXetb222aF06R32WgXIKP+HHI8CzDtb+TMXv6tWrlClTJurRo4ca5eEfHG80ZMgQOnnypDrg1ukk4scjLJ1PcH46szmFn7Q/HgGetbQ/Z/iZih8u+8wzz9Crr76awgMcaYQz/dxIIn48yvLwpOZnZTan8JP2xyPAs5b25ww/LfHDTM8tW7bQwoULCft51qhRg/r27evK1ma4bRE/ZyqfV6p91m4/3GZhTv87c9s/q2TFP6vEUuYXftHJL6T4vf/++4STHIKlBx54gGJjY3nkNKxF/DQghcgiD/c/cHTCnCJ+vPYm/ISfvQR4pYX1zc/YySXYpWWR+3UyIi7ONE5eqSmtrYQ5pfO2k7w8H1ya0r/wCIYlfhs3bgw58qtTp44re33KyM+ZyueVap+10w+31TCniJ99dSsvh3yWTj8fXA+96p/WNz8sd3j33XcJYpc/f3612L1Tp06unOWHihHx4zVPrzZO3l1ftw4nzCniZwf5f8qI5vZnB0nhx6MY1sjPuOQTTzxBb731Fq1cuZJKlSpFOOWhUaNG9Nlnn1FMTAzPMw1rET8NSCGyROPDwwlzivjx2pvwE372EuCVFrb4YaZnkSJF6J577qG3335bid0bb7xB/fr1o71791K5cuV4nmlYi/hpQBLxSybADXNK581rb8JP+NlLgFda2OJnLHJv0qQJrVq1Sn3jGzVqFI0YMYK2bt2qlj04nUT8eISjaeRnR5hTOm9eexN+ws9eArzSwhY/XLZbt27qmx9Szpw5CRtd169fn9atW8fzStNaxE8TVJBs0SB+doY5pfPmtTfhJ/zsJcArjSV+ONII3/sWL15MBw8epLZt21LHjh2pRIkSQb3C+sALFy6QHcceifg5U/m8Uu2z5orzT0eTaMysdXT85DmKyxpLdp+0zvXPPlKBSxL/eISFX3Ty05rtaRXNjBkzaOLEiVS8eHHCTNHZs2er/UCNhCOR8P933XWX+lOFChVo9OjRQS8j4me1BlLmT88P99L1e2nq8m3qhssUzUPDujagQnntPWcyPfPjtSw9a+GnxylYLuHnDD/bxc84BSIpKYly586ttkErWrSoOgrJSD/88AMNHz6c5syZozbNNksifmaEQv+eHh8ehDknzk+kjbuOqJtvU7889WzlzPfn9MiP16KsWQs/a7z8cws/Z/jZLn4HDhygZs2aqT1AkSZPnkzbt2+n6dOnJ9/B8uXL6cEHH1TfDmvVqkXjxo2jxo0by8iPV8dBrdPbw+Mf5uyXUIfqViruED3ZoYQLNr21Py4Pq/bCzyoxvciXlvhNmTJFiVPFihVVqTjKCMsd+vTpo0Z3vmnHjh3qlPc9e/aoP+Pkh7Vr19K0adOSs2F9IGaK/utf/6IPP/yQxo4dSxgNYjs1TKJZv359ijLXJZVO/v9JPWvxSIi1pwms3XmcFm44pO6heP7s9OidN1K+nFk8fU/ivBAQAs4SiI+PT3WBkOK3Zs0a+uSTTwjih0XtlSpVUgUcPnxYhSyPHDlCxYoVS1EoJrlkz55dbYsGMZswYYL6vX///sn5Ll26pJZM4B9jKQXKDDaBRsKevIaRHt4c3Qxz+tNOD/x4LYhnLfyEH48Azzqs2Z4vv/wyDRo0KOCVEa7ctGlTwN+qV6+uBLNq1arUokULwinwzZs3p8TERPU3hDl/++03lefrr7+mrl27JodJAxUo4udM5fNKtc/arHN0O8wp4mdf3aIks/q192rWSxP/rDPztfAqv5AjP8zKxEiuXbt21Lt3b/Utz0gIdwY79WHp0qWEw26RWrZsqUaJyJsrVy4lgDj9HWVhsgv+gTi2atUqaA2I+EVn48RduzGb04yuVx9us/ty63fhxyMt/Jzhp/XN7/Tp02rpwtChQ+n555+n3bt304ABA6hu3bpBvcLaQBx5hJmewdKxY8fU1mlmScTPjFDo37348EQyzCkjP157E37Cz14CvNLCCnsal2zTpg0tW7aMFixYQPfdd5/6M77P4TudG0nEj0fZa+IX6TCndN689ib8hJ+9BHilhS1+xro9bGqNvT0hgBj5YeYnZmhigbrTScSPR9hL4pcWwpzSefPam/ATfvYS4JUWtvhhNiZmdOKb3yuvvELY4Prhhx+m9u3b09GjR7XCljzX5Tw/Lj8viF/hYiVdW7RulacX+AWaym31Pp3KL/x4ZIWfM/y0vvnh+9748eOVBzjIFvt64iijLVu28LzStJaRnyaoINnS+sPz1Tc76b01Pyfvzen0onWrNNM6P/HPao2mzC/8opOflvjhTD+s+cOMTaz3wxKFDh06pNivk4cvtLWIH49uWn6402KYU8J2vPYm/ISfvQR4pYUd9sRlFy1aRFj24J8KFChADRo0oKxZs/K8M7EW8ePhTYvil5Zmc5rRTYv8fH0W/8xqMPTvwi86+WmN/AoXLkwnTpwISKhmzZpqOzInBVDEL301Tv/ZnA80vIHaNrmFd5MOWkvnyIMr/IQfjwDPmjXy69y5M3355Zfq2CEsSsdenFiwfuedd6q/ffrppykWwPNcTW0t4scjmpY6n0BhzrMnj5NM2Ai/jtNS/Qa6C/Ev/LqFpfBzhp/pyM9Y6oC9OV999VXlxUsvvaSOKDp37pya7Yn9O3v06MHzMIS1iB8PbVp4eEKFOdOCf6EIi3/eb39Sv7w6TI/8TMUPN41RHo4feuuttyhLlizqjL5s2bKpExuwdyfCnrfddptjdEX8eGgj3XmbLVqPtH9mdMU/M0Khfxd+wo9HgGfNCnvOnz9fjewggEg5c+ZU5/Nh2zMsfkdIVL75pT4yg1dl9llHsvPRmc0ZSf90KIt/OpSC5xF+wo9HgGfNEj9cGovdN2/erDa6rl+/PsXGxqpJMNikOnPmzDzvTKxl5MfDG4nOx8pszkj4Z4Wo+GeFVuq8wk/48QjwrFnid/z4cZo3b546kd03vf766yr86XQS8eMRdrvzMQtz+t+N2/5ZpSn+WSWWMr/wE348Ajxrlvg1bdqUPv/881Qe4NQGfA90Oon48Qi72fnohDlF/Hj1KfyEn70EeKW52b+E42nY4mectN69e3c12xPhTiPhxHY3kogfj7IbjdNKmFM6b159Cj/hZy8BXmlu9C8cD8MWP1z0nnvuURNaFi5cyPEhbFsRv7DRKUOnG6fVMKd03rz6FH7Cz14CvNKc7l943gXv/7SWOtSuXZu++eYbNcuzYMGCyb7s2LGD4uLiuL6Z2ov4mSIKmcHJxhlOmFM6b159Cj/hZy8BXmlO9i88z65bs0Z+2MT6t99+S+XHxx9/TG6EPkX8eE3AicbJCXNK582rT+En/OwlwCvNif6F51FKa5b4GUVhXR82uPYd/dnpZLCyRPx4lO1unNwwp3TevPoUfsLPXgK80uzuX3jepLZmiR+Mn332WcJidyTs6Tls2DC6/fbb7fYzYHkifjzMdjZOO8Kc0nnz6lP4CT97CfBKs7N/4XkS2Jolfgh7Qvjw7xw5ciSL4LFjxyTs6cKEEm6DsKNx2hnmlM6bW6N6YR17rxJ+aXa0v/Cvbm4p/pkzCpXDq/xMJ7ycPHmS8uXLRy+88AINHTpUMcD5fu3bt6etW7dSjRo1eOQ0rGXkpwEpRBZu40SYc9L8RMK/47LGUs9WNajpLWV4TvlYc/2zzZEgBYl/PMLCT/jxCPCswx75Gac6dO3alaZNm0YZM2ZUpzog7Ll3714qV64czzMNaxE/DUgOid9nWw7Q1OXbCCO/MkXzUL+EOhRfNA/PIT9r6Rx5OIWf8OMR4Fl7tf2ZjvyABZtav/POO4oQljtgg2uEQD/88EMeNU1rET9NUDaOXCB2ED2IH1LTmqWpZ+uaauRnd/Lqw2M3h3DLE37hkrtuJ/yik5+W+GEz68WLFyuxw5ZmnTp1UuKXN29eHjVNaxE/TVA2iZ/TYU5/N6Xzcbd+eVezbi31a52Zr4Xwc4aflvgZb0cQPqSYmBj17ypVqqgwqNNJxI9H2MrD40aYU8SPV5/CT/jZS4BXmpX+hXel8KzD/uaHy+Hw2smTJ6e6smxsfR2JVyvft0LdDHNK5x3eQxzMKj20P3uJWCtN+FnjlV6eX9ORn7GxdXx8PPXq1SvFSA+i6PRZfgAtIz9nG6fbYc708vDwasU+a+m8eSyFX3TyMxU/YKlQoQK1bNlSneoQiSTix6Me6uGORJhTxI9Xn8JP+NlLgFeaV18etMRv6tSpatRXq1YtdbqDkf73v//JInePhj0jGeaUzpvX2Qg/4WcvAV5p6Vb8/v77bypSpAidOHGCChUqlCLMuXv3brXji9NJRn48wv6NM9JhTum8efUp/ISfvQR4paVb8bt27RrlyZOHHn30UUthT9hhiYTZkUd//vmnypMlS5agNSDiZ1/jTAthTum8efUp/ISfvQR4paVb8QOWjh070s6dO2nw4MEpRKpdu3aUKVOmVORmzJhBEydOpOLFixN2iJk9e3bAkyAOHjxIVatWJYRPb7vtNhE/XhsMao3GWbhYSdcWrVu9Da8+PFbv06n8wo9HVvhFJz+tb36FCxdWYU//FGipg7EdWlJSEuXOnVstkyhatKgSTt906dIltVD+wIED9Oabb4r48dpfSOuvvtlJH2044tjenFzXpfPhERR+wo9HgGft1fanJX5r1qxR5/j5p2bNmqUa+UHM8Pf9+/er7FgfuH37dpo+fXoK86effpqaNm2qfh8+fLiIH6/9BbVGmPPtpVvowqWrju3NyXXdqw8P977tshd+PJLCLzr5aYkfvt0hlLlv3z5FCd/zMNll4cKFqSa87NixgxISEmjPnj0q76xZs2jt2rVqU2wjLViwgJYsWUIzZ86ku+66K4X4rV+/ntatW5eiNtYllU7+/0k9a/FqKkqsIXaLNhyixL2/qzuuXb4Ata9XirJldn5HnihBLLcpBISARwhgnbp/0hK/Vq1a0ccff5zKGBtc+8/2hFBmz55dCWSGDBlowoQJyq5///7J9vXq1VNh1Pz589M333xD5cuXV98Fb7311oAoZcKLtRbmP5uzbZ0S9MBdta0V4mJuefPmwRZ+wo9HgGft1fZnKn7GN7xx48bR0qVLqU2bNmqXlzlz5tDmzZuVwPmn6tWr05QpU9RklhYtWtDIkSOpefPmlJiYqP72xx9/0MWLF5UZTox48sknVbkQzUBJxE+/cQaazUkX/qRAbz76pTqb06sPj7NU9EsXfvqsAuUUftHJz1T8MIKD2GHkli1bNtq2bRu98sorVLlyZRX6vOmmm1KRg0h26dJF/R07w0AoIZK5cuVSAlixYsVkG4wqhwwZIt/8eO1PnbcX7Agiebh5cIWf8OMR4FlL+3OGn6n44bIPPfSQ+nY3d+5ceuCBB5I9CRT2NH48f/68Ov4IMz25SUZ+oQmaLVqXh4fXAoWf8OMR4FlL+3OGn5b4YabnqlWr1OzMefPm0ZYtW9TavwYNGvC80rQW8QsOSmfRujw8mg0tSDbhJ/x4BHjW0v6c4aclfrxL861F/FIztLI3pzw8vDYo/IQfjwDPWtqfM/xE/HhclbXbjdMszOl/S277ZxWp+GeVWMr8wk/48QjwrL3a/kT8ePXuuvjphDlF/GyoVJ8ivPpw20sh/NKEX/jsIvFybdVbr9avlvjhZIcPPviAvvjiC2rcuDHFxsaqXVywfZkbScKeFHI2p1kdeLVxmt2XW78LPx5p4Sf8eAR41sHan5b4jRo1ikaMGKE8wB6dxg4sEMOYmBieZxrW0S5+VsOcMvLTaFQWskjnbQFWgKzCT/jxCPCswxY/jPowwsN6PRxki6ULWNv38MMPq+3ObrzxRp5nGtbRLH7hhDlF/DQalYUs0nlbgCXix4Ml/FzjZzryu3z5sjrA9qWXXiKcvYcF740aNVI7t+BIolKlStnurH+B0Sh+VmZzmlWAdN5mhEL/LvyEH48Az1ranzP8TMUPlzX29syZM6fyAovbIYA47cGNFG3ixw1zysjP3lYpnQ+Pp/ATfjwCPOuww564LPbixAkM2OHlhx9+oLp169Jrr70WcGsznpuBraNJ/OwIc4r42dsKpfPm8RR+wo9HgGfNEj9sUo1ZnsaenCdPnqQ33niD+vTp48qMz2gRv4kfbSKIH1LTmqWpZ+uaFJc1llfzEViHaNVh6RytEkuZX/gJPx4BnrVX21/IsCfCmp988ok6oQFhzkqVKilKhw8fVptVHzlyhIoVK8Yjp2Gd3sXvxMlz9OKsdeqkdaR+99empreU0SCjl8WrjVPv7pzPJfx4jIWf8OMR4FmHNfJ7+eWXadCgQQGvXKtWLdq0aRPPK03r9Cx+G3cdoYnzE9U6vkJ54mjoQw0ovmgeTTJ62aTz0eMULJfwE348AjxraX/O8As58sOG1jictl27dtS7d2+1sN1IWP4Q6Cw/npuBrdOr+E1bvo2WrN+rbrpupeLUL6GOLWFOf4ry8PBapfATfjwCPGtpf87w05rtCQGcMWOGWteHhDP+cJbfwoULU53kznMzOsTPP8z5aKsa1LZ+eSfQqTLl4eGhFX7Cj0eAZy3tzxl+WuJnLHXwdyHUeX48d1Nap6eRnxthThn52dn65OWBS1M6bx5B4ecMP1Pxu3LlitrLc9y4cYQT2tu0aaMWumPCy+bNm10JfaYX8XMrzCnix3tYhJ/ws5cArzQRP2f4mYofQpwQu/79+1O2bNlo27Zt9Morr1DlypVV6BNbnTmdvC5+boc5pfO2t0VK58PjKfyEH48Azzqs2Z7GJR966CGaNWuWWuT+wAMPJHsiYc/rKEI93JEIc4r48R4W4Sf87CXAK01eHpzhZzryw2Ux63PVqlXUtGlTmjdvHm3ZsoU6duxIDRo04Hmlae3VkV+kwpzSeWs2LM1s0vloggqSTfgJPx4BnnXYIz+IHjawbtKkCZUuXZp+/PFHOn78OH333XfUo0cPddKD08lr4hfpMKeIn70tUjpvHk/hJ/x4BHjWYYnf6NGjafjw4erK2NQa6/wWLVqU7MmpU6coV65cPM80rL0kfmkhzCnip9GoLGSRztsCrABZhZ/w4xHgWYclfiVLllRXHThwIE2cOFF927rzzjtVuDN//vz02GOPUaZMmXieaVh7RfzSSphTxE+jUVnIIp23BVgifjxYws81fiG/+WEHl2HDhhFGgGPHjqUhQ4bQ2bNnKS4uznYHQxWY1sVv87e7adbaQ8l7czq9aN0qfOm8rRJLmV/4CT8eAZ61tD9n+JmKH4QPAjhhwgR6+umnCSe7u53SsvghzPnqhxvowqWrju3NyeUtDw+PoPATfjwCPGtpf87wMxW/mjVrqvP7tm7dShs3bqQnn3wy2ZPx48dH9YSXtBrmlLAn72ERfsLPXgK80kT8nOFnKn6hLhutE178Z3O2q1eKurepx6shB63l4eHBFX7Cj0eAZy3tzxl+IcXv119/DRnmxFl+bpzskJbCnoFmc9KFPyk+Pp5XQw5ay8PDgyv8hB+PAM9a2p8z/LQWufMuzbdOK+IXLMwpjZNXx8JP+PEI8Kyl/UUnPxE/jXo3W7QuD48GxBBZhJ/w4xHgWUv7i05+In4m9a6zaF0enuh8eHh3bZ+1tD8eS+EXnfy0xA8bWA8YMIBWrFihFrZjr8+EhASqVq1aUGo4DQKH4IZaE3jy5EnKmzevKflIhT11Z3PKw2NahSEzCD/hxyPAs5b2F538tMSvQ4cONH/+fEVo8ODBlJiYSDt37qRDhw5RlixZUpHDqe/YEaZ48eKE8wBnz55NBQsWTM73ww8/UOfOnals2bJ0/vx56tKlC3Xq1CloDbgtfmZhTn9H5eGJzoeHd9f2WUv747EUftHJz1T8jMNsR44cSefOnVNn+9199910++2307fffptq9GfkT0pKoty5c1Pfvn2paNGiSjSN9Oqrr6q/4Xik1atX0zPPPKPKCpbcFD+dMKeIH+9hEX7Cz14CvNJE/KKTn6n4Xb16Ve3fiRMcMMrDPxjFYaszhC3z5MmTgtyBAwfUBtj79+9Xf588eTJt376dpk+fnorwlClT6O2336auXbuqsGqkxU83zCmdN+9hEX7Cz14CvNJE/KKTn6n4AQtGZhit+SaEKnHArX/asWOH+h64Z88e9RPyrF27lqZNm5YqL7ZMW7BgAWXPnl2dF4i0fv16WrduXYq865JKJ///pJ61eDUVwPrPM3/RtE9/pCN/nFe/YtF6oyqFbb+OFCgEhIAQEALuEwi0DltL/LCfJw6wXbhwoRrR1ahRQ4UzIVr+CZNc8HdMeMECeAgcUv/+/ZOzLl68mGrXrk1YJI/wKCa9HDlyRP1/oORk2DOcMKe/j/LmyGvMwk/48QjwrKX9RSc/LfHr1q0btWjRglq1akU5cuQwJVW9enVCSLNq1arKDt8LmzdvribK4G+jRo1S4dMRI0bQrl271Anx2E0G3xPdFL9ww5wifqZNwFIG6Xws4UqVWfgJPx4BnrVX25+W+BUuXJhOnDihCD3yyCNqpmajRo2CnuW3dOlSNYMTqWXLljRnzhw1CsTBtxBAjCR79epF+/bto8yZM9OYMWPUd79gye6Rn9XZnGZNw6uVb3Zfbv0u/HikhZ/w4xHgWXu1/WmJ3+nTp9V3u5UrV6pvdBDCQoUKESa3BAp9AiWWMGDja8zqDJaOHj1KENaYmJiQ9O0UPzvCnDLy4z0swk/42UuAV5pXO2/eXdtn7VV+WuIHTAcPHqTPPvtMLXSHACJ57VQHu8Kc0nnb9+CgJK8+PPZSCL804Rc+O2l/PHZe5qclfg0aNFCzMJEw4sM3wI4dO6qJL24k7sjv3MXL9OKsdfTdT9dDt3aftC6dD68VCD/hxyPAs5b2F538tMQPO7E0btyYHnzwQbW4Hev+3Ewc8YPgQfgggHFZY2lo1wZUNb6Qre7Lw8PDKfyEH48Az1raX3TyCyl+mJCSP39++v333wOe2wdRNPtex8N63Tpc8Zv72fc0Z/VOVUaVMgVp2EMNlQDaneTh4REVkN65KQAAIABJREFUfsKPR4BnLe0vOvkFFb9Lly6p5QiYiYl9Oo3Znr6Y0uo3P/8w5wNNK9ODzarwajiEtTw8PLTCT/jxCPCspf1FJ7+g4odtzcaNG0d33HEHbd68We3r6Z+wJRmWKjidrIz83Ahz+t+vPDy8FiD8hB+PAM9a2l908tP65ocF6/jmV7FiRUUJe3q+8cYb1KdPH7V5tdNJV/zcCnOK+Nlb49L58HgKP+HHI8Cz9mr7Cyl+a9asoU8++UTt1oJF7ZUqVVKUDh8+rBauh9qSjIczpbWZ+Lkd5hTxs7N2ZakDl6ZXOx/ufdtlL/x4JL3KL6T4vfzyyzRo0KCAZGrVqkWbNm3iUdO0DiV+kQhzivhpVpxmNq8+PJq353g24cdDLPyik19I8cOJ7dioul27dtS7d291VJGREO7ElmVupGDiF6kwp4ifvbUunQ+Pp/ATfjwCPGuvtr+g4odTGd577z2qWbMm7d69W4mgf8L+nbGx9i8d8L+Ov/hFOswp4sd7WISf8LOXAK80r3bevLu2z9qr/Dy31GFMz8aOL1q32iy8WvlW79Op/MKPR1b4CT8eAZ61V9tfUPHDyQvY0qxUqVKEDagvX76cilC9evWCHkPEw5nS2nfkZ/zi5KJ1q757tfKt3qdT+YUfj6zwE348Ajxrr7Y/raUOQIOZn1jugBPXsfMLjjXKkycPj5qmtb/4Ob1oXdOt5GxerXyr9+lUfuHHIyv8hB+PAM/aq+1PS/wGDhxI//nPf9RZfHXq1FGk8C0Qp7u7kXzFD2FPu/fm5N6DVyufe9922Qs/HknhJ/x4BHjWXm1/puKH8GeRIkWoQ4cOatLL9OnT1Ro/bHKNcCh+czqZrfNz+vpm5Xu18s3uy63fhR+PtPATfjwCPGuvtj9T8cNyh6xZs9LChQvp8ccfp3LlyqlF79WrV6cffviBKlSowCOnYS3ipwEpRBavNk7eXdtnLfx4LIWf8OMR4FkHa3+m4ofL4uy+efPmKQ+mTp1KY8eOJWx8jZ1e3EgifjzK0vkIPx4BnrW0P+HHI8CzZokfTnR488031aJ2bGaNw2yx6B1n+7mRRPx4lKXzEX48AjxraX/Cj0eAZ80SP1x6x44dKvR5+vRpuu+++6hu3bquLHPAtUX8nKl8Xqn2WUvnyGMp/IQfjwDP2qvtTyvsOW3aNOrZs2cKQgkJCcmhUB46c2sRP3NGoXJ4tXHy7to+a+HHYyn8hB+PAM867JEfvu2VLFlSnejw+uuvU7Zs2Wj06NH07rvv0sGDB9UieKeTiB+PsHQ+wo9HgGct7U/48QjwrMMWv6SkJMqbNy9NmDCB+vXrp7zAQvcWLVqoHWBuu+02nmca1iJ+GpBCZJHOR/jxCPCspf0JPx4BnnXY4ofLYuSHESAmu2TPnp3++9//0rFjx+jnn39WI0Gnk4gfj7B0PsKPR4BnLe1P+PEI8KxZ4vfFF19Qjx49CIUg5cyZk9555x26//77eV5pWov4aYIKkk06H+HHI8CzlvYn/HgEeNYs8cOlsdPLtm3b6OzZsyrUmSlTJp5HFqxF/CzACpBVOh/hxyPAs5b2J/x4BHjWYYkfljVgcftHH32kJrxgbV/ZsmV5noRhLeIXBjQfE+l8hB+PAM9a2p/w4xHgWYclfoMHD6aXXnop+cq1atWiTZs28TwJw1rELwxoIn48aMJP+NlGgFeQvDw4wy/kOj+M8kqXLq1Gfi+//LISwuPHj1OhQoV43li0FvGzCMwvuzw8wo9HgGct7U/48QjwrMMa+WE7s5EjR9Lw4cMJk15wnt/WrVupRo0aPG8sWov4WQQm4scDJvyEn60EeIXJy4Mz/EKO/CB+7dq1o/bt29P333+vRn4Qw/j4eOUNNryOjY3leaZhLeKnASlEFnl4hB+PAM9a2p/w4xHgWYc98gt12VOnTlGuXLkCZrl27Zo6/y8uLi5oESdPnlT2GTNmDHl3In7OVD6vVPuspXPksRR+wo9HgGft1fYXcuQ3f/58gogFS9jgOtCShxkzZtDEiROpePHidOXKFZo9ezYVLFgwuZhDhw6pUSP+BnucCj9s2LCg1xHxi87Gybtr+6y9+nDbR4BXkvATfjwCPOuwRn7hXBJih1AotkXLnTs39e3bl4oWLUqYOWqkF154gS5fvqxCqBcvXlS7xBw5coSKFSsW8JIifuHUxD820vkIPx4BnrW0P+HHI8Czdk38Dhw4QM2aNaP9+/crjydPnkzbt2+n6dOnJ98BwqH4nogT4pcsWUJPP/00/fjjj+pvgZKInzOVzyvVPmvpHHkshZ/w4xHgWXu1/WkdaWQFDc79w3FHe/bsUWazZs2itWvXEo5F8k3YKxQnwo8fP54WL15MTZo0UT+vW7dObZjtm9YllU7+30k9a1lxR/IKASEgBIRAlBMwJmn6YtASP2xt9sEHHyQvd0BYE6M7hDX9E0Z12Pwa3woxksNpEEj9+/dPzopQZ4cOHShz5sxqZIiwaKgkIz9ey/Xqmxnvru2zFn48lsJP+PEI8KxZYc9Ro0bRiBEjlAf4dofRGRLW/sXExKTyrHr16jRlyhSqWrWqOvoI3/aaN29OiYmJ6m/vv/8+LV++nJYuXap1VyJ+WpiCZpLOR/jxCPCspf0JPx4BnnXY4odRH0Z4LVu2VN/oMEq76aab6OGHH6Z9+/bRjTfemMoziFqXLl3U32E3Z84cNQrEsgYIIHaLwWG4vmnv3r1Urly5gHcp4udM5fNKtc9aOkceS+En/HgEeNZebX+mYU/MykR4Egvc//zzT7Umr1GjRmpEF+ok9/PnzxPWAZqFNHWwi/jpUAqex6uNk3fX9lkLPx5L4Sf8eAR41mGP/HDZVq1a0ccff6zO8UM6c+aMEsA1a9bwvNK0FvHTBBUkm3Q+wo9HgGct7U/48QjwrFni98cff9DMmTNp7ty59MMPP1DdunXptddeU+FPN5KIH4+ydD7Cj0eAZy3tT/jxCPCsWeKHbcjw7c8/5cuXj+eVprWInyYoGfnxQAk/4ecIAV6h8vLgDD/Tb364bOHChenEiROpPAi1tyfP3ZTWIn48mvLwCD8eAZ61tD/hxyPAs2aN/LDMAd/5kM6ePavW/JUsWVIdb5QlSxaeZxrWIn4akEJkkc5H+PEI8Kyl/Qk/HgGeNUv8/C+Njau7d++uZn/mzZuX55mGtYifBiQRPx4k4Sf8HCPAK1heHpzhpxX2XLZsmdqAGunq1atqkTpmf2IfT5z07nQS8eMRlodH+PEI8Kyl/Qk/HgGeNWvkF+ibX/369emrr74Kuhk1z92U1iJ+PJrS+Qg/HgGetbQ/4ccjwLNmid/q1auTR37YqQXf+7DMAYvf3UgifjzK0vkIPx4BnrW0P+HHI8CzDlv8cD4fljS0bt1aHUobiSTix6MunY/w4xHgWUv7E348AjzrsMUPl33qqafUovZPP/2UKlasmBzqxNZlwc7g47krYU87+Unnw6Mp/IQfjwDPWtqfM/y0JrzIOr/Q8KVxOtM4eaXaZy31y2Mp/IQfjwDPOqyR37Zt29QCd2xtdu7cuVQeDBs2TNb5EZE83M40Tl6p9llL/fJYCj/hxyPAsw5L/BDSfO655wjn+UUyyTc/Hn3pfIQfjwDPWtqf8OMR4FmL+PH4hbSWh5sHV/gJPx4BnrW0v+jkF/KbH0Z+OMYISxsCpU2bNlFcXByPnIa1jPw0IIXIIg+38OMR4FlL+xN+PAI867BHfriscY6fvwu//vor5ciRg+eZhrWInwYkET8eJOEn/BwjwCtYXh6c4Wc68pNvfubgpXGaMwqVQ/gJPx4BnrW0v+jkJ+LHq3dlLQ8PD6LwE348AjxraX/RyS+k+K1cuZLi4+OpQoUKPDpMawl78gDKwy38eAR41tL+hB+PAM86rG9+vEvaZy3ix2MpnY/w4xHgWUv7E348AjxrET8ev5DW8nDz4Ao/4ccjwLOW9hed/LS2N+Oh4VvLyI/HUB5u4ccjwLOW9if8eAR41jLy4/GTkZ/wc5AAr2gRF+HHI8Cz9mr7k5Efr96VtVcr34Zbt6UI4cfDKPyEH48Az9qr7U/Ej1fvIn7CzwYCvCK82vnw7to+a+HHY+lVfiJ+vHoX8RN+NhDgFeHVzod31/ZZCz8eS6/yE/Hj1buIn/CzgQCvCK92Pry7ts9a+PFYepWfiB+v3kX8hJ8NBHhFeLXz4d21fdbCj8fSq/xE/Hj1/n/tnQeQFUUTx4cPMYCCCRUxIEZURMWcA4KKWTFizgnFjAFFxSygBNMhKoIBI2YxoaCiqIgYUCjMYgZFUAT86jdVc7U89r3ddz2774brqbrijvdmtuc/M/3v7pntUfJT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKX2bkN2/ePDNr1qyS9/3NmTPHzJ492zRs2LAk+vqSe92cnLJe+6sd6uL2h4CsJcVP8ZMhIKud60vugwYNMn369DHNmzc3ENyQIUNM06ZNq3swd+5cM2HCBDNw4EBTv35907t3byU/2fiWrK3KRwau4qf4yRCQ1db5lw1+3j0/yK5BgwZm2rRppkmTJqZLly6mWbNmplu3btU9mDFjhunevbsZO3asadu2rZKfbGwTa+viSYRIjQcZRIqf4pchArKmc/P8pkyZYtq1a2cmT55sJe7bt68ZN26c9fIKS//+/c2kSZOU/GRjm1hbyS8RIlXeMogUP8UvQwRkTedGfuPHjzedOnUyEydOtBIPHjzYjBw50lRVVaUiv1GjRpnRo0fP991R01pU/33LiZvLkNDaioAioAgoAnUKAe6lLSzew54ccuEACwde6tWrV+3Vde3aNRX5xY2IHniRzVP1/BQ/GQKy2jr/FD8ZArLauXl+iNmmTRszYMAA07p1a9OhQwfTo0cP0759ezNmzBj7f+50p4Y9ZYOatrYqn7RIxX9P8VP8ZAjIauv8ywY/754fYg4fPtx07tzZStyxY0czdOhQ6wU2btzYEmCrVq3sZ5Afe4O9evUq2Tv1/LIZfFmr/mrr4pZhqfgpfjIEZLVDnX+ZkB9Qzpw500yfPt2e9JQWJT8ZgqFOTlmv/dVW/GRYKn6KnwwBWe1cw54yUResreQnQ1SVj+InQ0BWW+ef4idDQFZbyU+GX8naurhl4Cp+ip8MAVltnX91E7/Mwp4yOOevrZ6fDE1d3IqfDAFZbZ1/ip8MAVlt9fxk+Knnp/hliICsaSUXxU+GgKx2qPNPPT/ZuNvaoQ6+h657aULxk8Go+Cl+MgRktUOdf0p+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhoqfkp9s3JX8FD8PCMiaCFX5yHrtr7biJ8MyVPyU/GTjruSn+HlAQNZEqMpH1mt/tRU/GZah4qfkJxt3JT/FzwMCsiZCVT6yXvurrfjJsAwVPyU/2bgr+Sl+HhCQNRGq8pH12l9txU+GZaj4KfnJxl3JT/HzgICsiVCVj6zX/morfjIsQ8VPyU827kp+ip8HBGRNhKp8ZL32V1vxk2EZKn5KfrJxV/JT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKn5KfbNyV/BQ/DwjImghV+ch67a+24ifDMlT8lPxk467kp/h5QEDWRKjKR9Zrf7UVPxmWoeKn5CcbdyU/xc8DArImQlU+sl77q634ybAMFT8lP9m4K/kpfh4QkDURqvKR9dpfbcVPhmWo+Cn5ycZdyU/x84CArIlQlY+s1/5qK34yLEPFT8lPNu5KfoqfBwRkTYSqfGS99ldb8ZNhGSp+Sn6ycVfyU/w8ICBrIlTlI+u1v9qKnwzLUPFT8pONu5Kf4ucBAVkToSofWa/91Vb8ZFiGip+Sn2zclfwUPw8IyJoIVfnIeu2vtuInwzJU/JT8ZOOu5Kf4eUBA1kSoykfWa3+1FT8ZlqHip+QnG3clP8XPAwKyJkJVPrJe+6ut+MmwDBU/JT/ZuCv5KX4eEJA1EarykfXaX23FT4ZlqPgp+cnGXclP8fOAgKyJUJWPrNf+ait+MixDxU/JTzbuSn6KnwcEZE2EqnxkvfZXW/GTYRkqfkp+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhopfZuQ3b948M2vWLNOoUaOiyP71119miSWWMP/73/9Kor93t4eqP3/q2kNkI5VB7VAHPwMoatSk4lcj2KorKX6KnwwBWe1Q518m5Ddo0CDTp08f07x5czNnzhwzZMgQ07Rp02qEf/nlF3P44YebRRZZxHz11Vfm/PPPN8ccc0zREVDyq5uTU9Zrf7VDXdz+EJC1pPgpfjIEZLWLzT/v5AfZNWjQwEybNs00adLEdOnSxTRr1sx069atugfXXXed+fPPP03Pnj3N1KlT7ed4gQ0bNoztpZJfNoMva9VfbVWOMiwVP8VPhoCsdqjzzzv5TZkyxbRr185MnjzZItq3b18zbtw4M3DgwGqETzjhBPudQw891Pz333827Mn3W7ZsqeQnm4extUOdnBlAUaMmFb8awaZhWRlsil/G+Hknv/Hjx5tOnTqZiRMnWtEHDx5sRo4caaqqqqq7cvDBBxt+DjroIPt/K664ohkzZoxp0aKFGTVqlBk9evR83caT/Pfffz1Boc0oAoqAIqAI1BUEVlhhBXPssccu0F3v5MchF8KXHHipV6+e6d27t31o165dqx9+5ZVXmsaNG5uzzz7bzJ071yyzzDI2TFrs4Mv1119vLrzwwlo7ViqfbGgUP8VPhoCsts6/uomfd/IDxjZt2pgBAwaY1q1bmw4dOpgePXqY9u3bW++O/3vppZdMv379zIsvvmiGDRtmevXqZd56662iI6CTs25OTlmv/dXW+SfDUvFT/GQIyGoXm3+ZkN/w4cNN586drcQdO3Y0Q4cOtV4g3p4Lb+65557mk08+sa9DjBgxwmy55ZZKfrIxVvwUv4wQkDWr5Kf4yRCQ1c6V/BB15syZZvr06fYkZ7HyzTffmJVWWsmeDi1VdPFkM/iyVv3V1vGVYan4KX4yBGS1Q51/mXh+MigXrM0hmO222853s97aU/lkUCp+ip8MAVltnX91E78gyE82NFpbEVAEFAFFQBGYHwElP50RioAioAgoAnUOgaDIL02+UDLHLLXUUpkNZBoZyHIze/bsohlrMhPOGPuKSVJO1d9//90ePqpfv36WosS2nVY+Xn+pREkjH3L99ttvNm/tYostlquYaeXLVajIw9LIRzYnvpflOi3W/zTyVQo7nptGPnTckksuaQ8R5l1qi3wzZsyw668YBmnyRgdDfkn5Qt977z1z3HHHmdVXX93mCyWjzGabbeZ1biTJwDuLEyZMsM+GWNw7jl6FKNFYknxff/21OeSQQ2yeVfKqbrrppubSSy/NSzyTJN9nn31mjjjiCLPmmmvaA1OcGCYLUF4lST4nB/OLV3aef/55s8022+QlXiJ+//zzjx3b3Xff3cq07rrrmquuuqrWyPf333+b448/3h6E453eTTbZxL4GlVdJGt8bb7yxOsEGSv6pp54y77//vpUzj5IkH0briSeeaI2Gn3/+2SYJKZUT2bfMSfKR2IR3uBlb1shJJ51Uferflyw//fSTIZHKAQccYCZNmmR4gT1ayskbHQT5pckXynuE5513nn2f8NFHHzV33HGHfY/QV0kjA9ZI9+7dzdixY03btm1zJb808l199dU2Uw4KB0XEjRrfffedWXnllX3BVLSdNPLxviengw877DD7Lui5555rPvzww8xl4wFp5ON7ePRkJyKN32233ZYb+aWRD+OB+cerRRg3eZY08t1zzz3mnXfese8Ak9bw8ccfN/vuu28uEYg08kXxIqkGJ9GjyTmyxDONfOD37LPPmocffti8+eabNmuJy6SVpWxp1wdkt84661g9/MUXX9jfMcgWXXRRb+Kh28kAhmPx448/LkB+5eSNDoL80uQLXXXVVe2E4N8PPvjAWr+A46ukkcE9q3///tYqydPzSyMf4VDCBIsvvrh58sknzTnnnGPlzCN8kkY+hx/KEePlyCOPtAspj5JWPjDbddddbc5aiCYvzy+NfE8//bS9LYWw2Oabb244gr7zzjvnAZ81BpJy+jrDkCjNKqusYjDG9thjj1ojnxMEz2L//fc3n376qVfFXaqjafD74YcfzMYbb2x22WUXmwaSDFkYiHmUNPLh9fHaGpcYvP3222brrbfOzLhGZ8WRXzl5o4MgvzT5QtnDwgrCcyAR8Y477mh4j9BXSSNDJckvrXx4Ltdee625+eabzRNPPGEXUh4lrXzIgtGAhUeaPJ/ee6l+ppEPmTAa7rvvPmtc5Ul+aeR7+eWXbZjujDPOMA899JAdZ7zBPIybNPLhqbz++uvWe8FA5SozQvG1RT43P1CgKG5CtHmVNPixFjAI8bBIFoJHhcGTR0kjH0lLttpqKxuSJGPX559/bg0x9id9l2LkVypvdKEMQZBfmnyhO+ywg1WahBsJO2KFkGnGV0kjQyXJL418hDqZHCwaPJdSCQh84ebaSSMfZLzFFlvYMCy5Xjn0kldYNo18KET2HJZbbjnz7rvv2rAOd1X63luOwz6NfBg27DXzw/4zoU8MQLysrEsa+fCaOSAEKVNIaE8Ia6211spaPHsILCnnMEL8+uuvZvnllzfsry299NKZy1XO+sB4WG+99WyeY0gFgz/O+8lC6LT4sZ8LIbNvzwUHPh2QaL+KkV85eaODID86HZcvlBffP/74Yxviwf1n0l5wwQU2VIa14XuzP0mGSpJfGozuvPNOOzF9GgXlLLQk/C666CKrHC+//HKb+o7w4vfff5/LnlAa/FjIGBAUvILTTjvN7LPPPrmd6k3CD9w4CEHYmC0AvAR3tVg541TT7ybJxw0vd911l93P/fbbb613VZvGl37j3d97770VWSNJ+N100002qsW2CgdKSAmJcZjX/m6SfMiFfESVOPTHbT5ESbIoheRXk7zRwZBfXL7Qjz76yGZ++eOPP+wid/svWGy43csuu6xX3JNkiJIf8nCAI8+SJB+WI5vm0UJoYu21185FzCT5IDxCOmyW451ec801VoHnVZLki8qx1157mYsvvji3PT+enSQfe0Lsu6EM+eFgE3LmVZLk4/ADl1sT9sQLQ748T/MmyQdOeKd4pJW4RSZJPry8vffe2zDOFMLunP7MqyTJByGTsxmPFOMGQsrqMB3kRxSG082UmuSNDob86GBSvlBOTGFJcuglq32EJBnymojFnrMwyMfiRgEVu+IqS4wXBvymTp1qTypWoqTBr5LvmaaRrxK4uWemkQ8dh9JPyomcRT/SyOdC7Vnp4DT9SpM3OijyS9Np/Y4ioAgoAoqAIpCEgJJfEkL6uSKgCCgCisBCh4CS30I3pNohRUARUAQUgSQElPySENLPFQFFQBFQBBY6BJT8Froh1Q4pAoqAIqAIJCGg5JeEkH6eGgFehKWQM7SwcEqM4/c+8/ylFky/6AUB8sLyw2sKoRVe+nd5JvN6Ly40jOqavEp+FRxxUlGRkaawkAGDF77jynPPPWffpSHNFi9YSwrvxpApwhXeISI1FsnBa1J4CZaXwEkz98wzz9ik1LwLx9F23rnkHa9bbrmlJk1X1yHp9YMPPjhfG6Ro4wV+skoUK1F5RALUwso16RuZdCCDchKH8+7bDTfcYHiVgldRyim8i9ukSRP7Hh0v47vfeSE6jwJGvPPIS+yk38q6gC/X6pCEo7YUcm6S+Lkm41db+uBTDiU/n2iW2RYJfkmNxdVC2267bXVtyM1dS1PYpCM/UoGREV9SID/Kqaeeal+cJQMHhRRF7rNy2idlGu9akgn/5JNPtoTE1TAQImmHyOghJWyuZCKrPURKNhgwfOWVV+zLv6Uy10TlqeT7R+Xgmfa7NekbRhfjUo5yhkBIqHzJJZeUna+ROUXyCeYG5Od+zysRBEmqyTZC4m+uo8q6gC+3vOR160Ka/mBQk+yctV6p90DTyJnXd5T88kI65jmO/MjUUHivGQl/UfBkquGOQpLtkv0kSn4ofDLjk18S0oFYsKS5LuaBBx4wt99+u02DxL14pHorDPdAcGussUa19e8ywOCR8hIt6btee+01G8bkrkSXtR3PixRaLOyddtrJ5lQlkwPZWMgviYJBVjIwdOzY0cpCqjLyitIW6aP69etn83jiSTzyyCP258svv7Spm3gm7fI7KeuixZGfS5iLguF+s5YtW9osPyROxkMhzRKe6GWXXWYvno3KQ4o3vpf0rLi2tt9+e3uPGv3Ac2J8GBvyaXITBfk+MSLAg7yVKHuXBxRZGAvaJQUfNy5wJyBhRDxkxhOSwPsmiTEYMJbcwoHiph3unHP3CEJCcX2L4hXtA9lfeM4GG2xgIw6O/LjZg/FkHnEHYJ8+faxBRj/JY0o4G0+NHJx854UXXrB5V7nSiXGkHQw2MvIwx8Cf64roV4cOHWx7jFcc+ZF3lPlE2jPGizYw7DBkogq6UBbmYlVVlf0BH5JkYwwyzzbaaCP7/9zthlzcHEHfSYGI50PS+7j1wbOZG9zjx7jyN94SdWkXz/HMM89c4LmMKeN21lln2fWJIctY0f9C8kvTD9qjxOHLXGeesW6Y4ySSZgwYT4gN2ekzGJJhhT6gB8jjS10MRcgPAxAMWXfoFzLF5JktpoJqt/rRSn4VHAVHfihMripxhfvYUIBMWixjsvVjdUOIXJbrJjeKhgXJJMbDuuKKK+yiZqKjOLnoEiXNImLRF6ZsgvwgOTwpckKefvrpdkGRRgmljRzU4WYAwqx8j8W22mqr2aS1yAFhnnLKKfYZztpF8UE2KH+UNjK6sCcLG9JDCffs2dOGKslwwIifAAAJAUlEQVTDyndZnCgOvF6IAsWJoo8jPxY8Sg+iRnGjlAipuiTJKEOIAowIdSGjk4frapKeBenEtYUHQTo4cEJZoOxI5bT++uubDTfc0GKEhY1R4lI7MZYoGTLj813GHUWNDMjFODMOkBDGC7KDM4QD0UBEJGsnqTGF8UapQTq0i+fu+hZNB0cfGCueyfU35FskHSDpxaLkBwmTWo4xh4SYCyhInkv6O+TkeWTNcGFPjA7wgbwwuhgD8OZvQtM8jww9zN9hw4aZ3XbbLZb89ttvP0tGGH8YgWRnYv5y71+0QMpRWQil833mPH0fMWKE/Rc5WSskRmdskIW5i3Hiwp4Qetz6aN68uTXgIEDmHXOM8SEFG99nPTBGcc+F7Ogzxh79hoRY14Xkl7YfhJXj8KUPrVq1svmM+Z18n+DFc1gDyExhnTGejDNzE/kZIwpji8HKWKIvHnvsMTtGXFvUokWLCmrEfB+t5Jcv3vM9zZEfCoOFQmGRsmiZiExKssyj4FC2kCDehiM/NvEPPPBAe6Ej1i0KlQXBvgqLAOKiPRQCi6VQoRTu+aHkuNkdj4/f8dS4GsdldKd9FhBKgsLf7A9y+zqKOhrqiYbiUETRPT8UAKREv1iYt956q7Xy3XUkfM6t0Sht9oqQxRXn+RUOG3tXhLOw2EmcjAJ3igD5scpdGJbnJj0L4ijWFp4ThM0zUe54FHwXpYR3g5d81FFHWYUDsYEFihnioa9Y2mB3//33W+wcVow1RIJyQplh0BDahYSYK05x4n3iiWDc0FaxsCeEybjffffd1kjhbxIho6BJigx5QhqMJ2QLQeF1v/HGG3YOghmyMA7MleieH0TAPHO5Yfl+o0aN7BjgyVHPtQVBQQxxnh/Kmz4wP6jHfGDcMMQKyS8qC1gwr+g7EQO8bbw0bl1nbDHAUOiQEHOBOeHI79VXX41dH3ibEAlrAAOBaAo/Rx99tO077WCcxT2X8ceAwHB0N5IUI780/cAYisOXZNGQL0Yw85DzARiSGIGMM9gx18hzTLSH70LYGJnMPz7j+dRjLoI3cwnSZ/1WIqVgpVSwkl+lkDfGKjT2/OLCnljEWKxYb1i5JKQuJD8XUoSgsHYpWN+EzFBqLFiX/4/wIcosWpznh5LAi0KhQJYscgiVmwsIH6EAUE4sDhQHCxAvAq+E0CbE67wJt89RivywOJENj4jFymKE7FjEhEwJYbrC96L3gUXDnihbR2RYvSx2Z0SgPMGBxV5IfnjBSc8ijFWsLZQO+KDwCJ3SD5QPHiFEDW6QG0SGUsYK5/46SAwZCcvxOZiBnbPYIT+IjcJenMOddpkreP6EvOiz84I4vMAcccQe3c9k/jCPGF/CbXhuzCU8VEgR8qMeShGlHr34FpwxrDBqnNEUJT9CbHgP5JmEMPCImWuQIOF66tJP9vdKkR/GA/MfXKLzoXBPirnpZOHEKaeGGQMiDK7QJ0KU1KXfhP4ISfOM6IEXDJJi68MdQGM8GTtIwe3HM/eLPZf5xnpye6h4bpB9nOeXph8YDnH4IjvRAeelsX6YP6xJxpm/ncHo1qC79shta7DeXEQIL5c1QuECWoyiulKU/Co40qXIz+3HEbJjEhOrx3plT815flh/WKlYuSgCFqkjD8JukAxKg99RBij8QvKL7vlFP+MZHG7A08OixVJ0e1ooScJUWNgQMGTJgovz/FhQkEjU80MJE46juIMqEBVhTuSnv3gEeId4v9FSuOfHvg5WMqFMPFy8LzxX2kCps9fEaxZ4Hih65IHYkp5FqLdYW5BHEvlx+AcFCHGh3CF3yAjliCVejPwgU77P5xgsGBmQJoYPmOFpgz19xftibNhTc32LKi935xskBAFBSk5Bu7AnXh5hQMYIzwHvi70iZMVzZdwgeUqU/Jh7EA3hb05PulAnxhBy0U9C3pAkBAhBFzvwQh8wKCjOkCpclszjqCwcnmIsIVvqIzfhYELmhIEhCQrhSAzMKPlhiBRbH7SBvBgxzGuMQmdUsk9b7LmQD0YVxMQpT8awmOeXph8YEnH4EoLFS2edYNAQYsfTxKMHY8gPAxTD0J0PIBLBWsD4ZU5AfkQmOA8AwTPezA3mUF3a91Pyq6Xk57wjxCMchaWKQiV84V51YFFDHlipFJQkh0kIIxGKY/+GgvIj/OMIx3W58MBLFApCZBAbyszJgGVJHRYge1sUQrYQFaQU3UdCGaEQKRzKYMFDQFizFJQ4fcKLwUugoCix0nkmyifupnn3qoNb4M4LQA7CX5AGio769BurFnywwJ08hDTTPIswWVxbKB1HfhgHWP08A2WHl+o8Zrx1rG1X2MtjXAmvISfKCWWN4mFs8fwIZeO9o7zxZFDe7PXhfbGnCek5fCB5FG4Ua/oWLeyrYiBRwMQdyIi+6sDcgBzdPEKBE3IrJBxHfngSEBmk5yIOYE3bGA0YWihZDAyiAxgmYFHqVQfmDs9nDyrumqNCWSA87u50z8cQQ5HjmbkQc5R8HPlhTLnDL3HrAyKAXJj7eEWEBDE8uT4No6fYcyEfLtQmRMzcYB5gvMV5flHyK9Ye4xWHL1424+7Ine+xFjFCXATBrQ0MZaIPjAGFfmEwEC3AOCGci7wU+ks7Ib7DWVMVruRXU+RyqEeIigUU3fOKeywWHJZe4clIPB6Ihz2dmhzvRxG7tgvf68LjwsKFaIsVng85ofTSFp5JeI+DDzV9GZlQHAqosH6hPGmeVayttP0htAiGHH5JGkfaxNMnpEW4Dhw4AYk1jlVOgdz4f8ieELUrpbDG08WL4TBDKUxplzlUjgJEkbIPjWHl5hh/442kfReQcYAgIWHmVDnPp1/gUJO7OyXrI+65hKkhQdZbuXO3WD/i8GXMGVOMINZfUuIICA58CnEFd6IQrLVyME8792v795T8avsIqXx1CgEX/o12mpAaXsXCWtxBHjxLPFktikAeCCj55YGyPkMRKAMBwp+EOfFo8PzSelBlPKJWfZVwKZ4xodOaRChqVWdUmGAQUPILZqhUUEVAEVAEFAFfCCj5+UJS21EEFAFFQBEIBgElv2CGSgVVBBQBRUAR8IXA/wEnbzwhUOZURwAAAABJRU5ErkJggg==", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + "attachments": {}, + "cell_type": "markdown", + "id": "cf6b3c45-1031-4ab0-9398-94d731117e2c", + "metadata": {}, + "source": [ + "You can also view rows in this dataset as a waterfall chart as follows:" ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "linker.roc_chart_from_labels_column(\"cluster\",match_weight_round_to_nearest=0.02)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "3a7de8fb-a7e3-4322-b718-3e3cf9803e9c", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", - "config": { - "view": { - "continuousHeight": 300, - "continuousWidth": 400 - } - }, - "data": { - "values": [ - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 0, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 0, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 0, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 0, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 1, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 1, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 1, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 1, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 2, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 2, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 2, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 2, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 3, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 3, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 3, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 3, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 4, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 4, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 4, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 4, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 5, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 5, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 5, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 5, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 5, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 5, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 5, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 6, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 6, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 6, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 6, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 6, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 6, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 6, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 7, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 7, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 7, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 7, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 7, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "me17 4nw", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "maidstone", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 7, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1175.0185002272876, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.198467756325595, - "m_probability": null, - "record_number": 7, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 8, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 8, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 8, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 8, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 8, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 8, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 44707.80551426446, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 15.448239112381744, - "m_probability": null, - "record_number": 8, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 9, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 9, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 2, - "bayes_factor": 13.63690070072612, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.769443890879799, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norman", - "value_r": "norman" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 9, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 2.640131796652814, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4006099514137826, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "macdougall", - "value_r": "macdougall" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 9, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 9, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "dn32 0sd" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "north east lincolnshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 9, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.43356375526865354, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.205683938471788, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "painter", - "value_r": "painter" - }, - { - "bar_sort_order": 13, - "bayes_factor": 44707.80551426446, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 15.448239112381744, - "m_probability": null, - "record_number": 9, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 10, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 7.778809222513577, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 2.9595493248441493, - "m_probability": 0.07354167451568606, - "record_number": 10, - "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", - "term_frequency_adjustment": false, - "u_probability": 0.009454104402360242, - "value_l": "william", - "value_r": "willie" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 0, - "m_probability": 0.07354167451568606, - "record_number": 10, - "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", - "term_frequency_adjustment": true, - "u_probability": 0.009454104402360242, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 10, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.1169788370454212, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.1596018519099875, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 10, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 6, - "bayes_factor": 3.7243862718894305, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.897002708675377, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "l37 5aa", - "value_r": "sw1p 4lg" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 10, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "wales", - "value_r": "wales" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.8006442152248647, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.8485131509070939, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "wales", - "value_r": "wales" - }, - { - "bar_sort_order": 11, - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9590935537162004, - "value_l": "association football player", - "value_r": "association football manager" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.10073668618440759, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9590935537162004, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 8410.342139625365, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 13.037948776355417, - "m_probability": null, - "record_number": 10, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 11, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 0.2943290699918006, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -1.7644980549473468, - "m_probability": 0.28724905116399735, - "record_number": 11, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9759452274693747, - "value_l": "william", - "value_r": "will" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.28724905116399735, - "record_number": 11, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9759452274693747, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 11, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.1169788370454212, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.1596018519099875, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 11, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 6, - "bayes_factor": 3.7243862718894305, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.897002708675377, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sw1p 4lg" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 11, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "association football player", - "value_r": "association football player" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1.490609683099434, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.49 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.5759025366451791, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "association football player", - "value_r": "association football player" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1997.8309788652232, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 10.964218817608423, - "m_probability": null, - "record_number": 11, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 12, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 12, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 333.4770408553619, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 8.381443628293102, - "m_probability": 0.1284849300847964, - "record_number": 12, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.0003852886836084281, - "value_l": "bevan", - "value_r": "brvan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.1284849300847964, - "record_number": 12, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.0003852886836084281, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 12, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-81", - "value_r": "1852-01-81" - }, - { - "bar_sort_order": 6, - "bayes_factor": 16.387299596313493, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 4.034506232425312, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-81", - "value_r": "1852-01-81" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 12, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "ol3 7ne", - "value_r": "ch42 0ns" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 12, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 64921.415925324545, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 15.986406844718264, - "m_probability": null, - "record_number": 12, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 13, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 13, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "ed", - "value_r": "ed" - }, - { - "bar_sort_order": 2, - "bayes_factor": 6.225541624244533, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 6.23 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.638199357601547, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "ed", - "value_r": "ed" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 13, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "thomas", - "value_r": "dyer" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 13, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "None" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 13, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.8677289824782918, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.204683578355832, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 13, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 10, - "bayes_factor": 3.6012884304497295, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.8485131509070938, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 6486.8228086590925, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 12.663296315961755, - "m_probability": null, - "record_number": 13, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 14, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 14, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 14, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 14, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-07", - "value_r": "1852-01-07" - }, - { - "bar_sort_order": 6, - "bayes_factor": 16.387299596313493, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 4.034506232425312, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-07", - "value_r": "1852-01-07" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "m9 6ns", - "value_r": "ch6 5nz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "wales", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9590935537162004, - "value_l": "artist", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.10073668618440759, - "record_number": 14, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9590935537162004, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 2782.8094472485195, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.442326408235818, - "m_probability": null, - "record_number": 14, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 15, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 15, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 15, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 15, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.38109999061194166, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3917585222767863, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ch42 0ns" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 15, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "wales", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 15, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3633.189784025681, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.827021013289533, - "m_probability": null, - "record_number": 15, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 16, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 16, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 16, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 16, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.38109999061194166, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3917585222767863, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ch42 0ns" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 16, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "wales", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 16, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3633.189784025681, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.827021013289533, - "m_probability": null, - "record_number": 16, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 17, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 17, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 17, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 17, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.38109999061194166, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3917585222767863, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 17, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "wales", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 17, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3633.189784025681, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.827021013289533, - "m_probability": null, - "record_number": 17, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 18, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 18, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 18, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 18, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.38109999061194166, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.3917585222767863, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1852-01-01", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 18, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "wales", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 18, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3633.189784025681, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.827021013289533, - "m_probability": null, - "record_number": 18, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 19, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 19, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 19, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 19, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1852-01-81", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 19, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "ol3 7ne", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3303.4930368139717, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.689776588431448, - "m_probability": null, - "record_number": 19, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 20, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 20, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 2, - "bayes_factor": 35.79686433940606, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.16176131365856, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "irwin", - "value_r": "irwin" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 20, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7083280430044135, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4975104345670039, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bevan", - "value_r": "bevan" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 20, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1852-01-81", - "value_r": "1852-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 20, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "ol3 7ne", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "wirral" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "visual artist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 3303.4930368139717, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 11.689776588431448, - "m_probability": null, - "record_number": 20, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 21, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 21, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 21, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "barlow", - "value_r": "barlow" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.708320574304762, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.7725787288007404, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "barlow", - "value_r": "barlow" - }, - { - "bar_sort_order": 5, - "bayes_factor": 0.0037043486234159474, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", - "column_name": "dob", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -8.076564404852965, - "m_probability": 0.0033233936977775237, - "record_number": 21, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.8971600774208104, - "value_l": "1544-01-01", - "value_r": "1498-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.0033233936977775237, - "record_number": 21, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.8971600774208104, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 21, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "cm3 4bs", - "value_r": "cm3 4bs" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.337450159852669, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.5672536577405403, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cm3 4bs", - "value_r": "cm3 4bs" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 21, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "chelmsford", - "value_r": "chelmsford" - }, - { - "bar_sort_order": 10, - "bayes_factor": 2.140388406776726, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.0978726198438111, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "chelmsford", - "value_r": "chelmsford" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "scientist", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 5575.084648618187, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 12.444777994845623, - "m_probability": null, - "record_number": 21, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 22, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 22, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 22, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "barlow", - "value_r": "barlow" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.708320574304762, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.7725787288007404, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "barlow", - "value_r": "barlow" - }, - { - "bar_sort_order": 5, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "1498-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 22, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "cm3 4bs", - "value_r": "cm3 4bs" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.337450159852669, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.5672536577405403, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cm3 4bs", - "value_r": "cm3 4bs" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 22, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "chelmsford", - "value_r": "chelmsford" - }, - { - "bar_sort_order": 10, - "bayes_factor": 2.140388406776726, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.0978726198438111, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "chelmsford", - "value_r": "chelmsford" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "scientist", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 1505010.7901229756, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 20.52134239969859, - "m_probability": null, - "record_number": 22, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 23, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 23, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 23, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.93609665087873, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.9531509744425611, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 23, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 23, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 23, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.8677289824782918, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.204683578355832, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 23, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 10, - "bayes_factor": 3.6012884304497295, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.8485131509070938, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 357545718.6376666, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 28.41355248724083, - "m_probability": null, - "record_number": 23, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 24, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 24, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 24, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.93609665087873, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.9531509744425611, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 24, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 24, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 24, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.8677289824782918, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.204683578355832, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 24, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 10, - "bayes_factor": 3.6012884304497295, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.8485131509070938, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 357545718.6376666, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 28.41355248724083, - "m_probability": null, - "record_number": 24, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 25, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 25, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 25, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.93609665087873, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.9531509744425611, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 25, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 25, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 25, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.8677289824782918, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.204683578355832, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 25, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 10, - "bayes_factor": 3.6012884304497295, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.8485131509070938, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 357545718.6376666, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 28.41355248724083, - "m_probability": null, - "record_number": 25, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 26, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 26, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 26, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.93609665087873, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.9531509744425611, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "dyer", - "value_r": "dyer" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 26, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1850-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 26, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 26, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.8677289824782918, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.204683578355832, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "gl2 8jb", - "value_r": "gl2 8jb" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 26, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 10, - "bayes_factor": 3.6012884304497295, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.8485131509070938, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "tewkesbury", - "value_r": "tewkesbury" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 357545718.6376666, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 28.41355248724083, - "m_probability": null, - "record_number": 26, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 27, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 27, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 27, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 27, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 27, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 27, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 27, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 27, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 27, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 28, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 28, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 28, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 28, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 28, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 28, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 28, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 28, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 28, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 29, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 29, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 29, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 29, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 29, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 29, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 29, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 9498277.481511904, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 23.179234472851824, - "m_probability": null, - "record_number": 29, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 30, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 30, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 30, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 30, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 30, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 30, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 30, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 9498277.481511904, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 23.179234472851824, - "m_probability": null, - "record_number": 30, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 31, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 31, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 31, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 31, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 31, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 31, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 31, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 31, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 31, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 32, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 32, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 32, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 32, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 32, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 32, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 32, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 32, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 32, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 33, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 33, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 33, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 33, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 33, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 33, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 33, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 33, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 33, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 34, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 34, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 34, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 34, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 34, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 34, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 34, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 34, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 656549519.3217664, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 29.290328587560083, - "m_probability": null, - "record_number": 34, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 35, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 35, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 35, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 0.4683030453214949, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", - "column_name": "dob", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": -1.094485675137949, - "m_probability": 0.03711726145166532, - "record_number": 35, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", - "term_frequency_adjustment": false, - "u_probability": 0.07925906487792309, - "value_l": "1680-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 0, - "m_probability": 0.03711726145166532, - "record_number": 35, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", - "term_frequency_adjustment": true, - "u_probability": 0.07925906487792309, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 35, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 35, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 35, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 19365395.160392523, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 24.206977604778523, - "m_probability": null, - "record_number": 35, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 36, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 36, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 36, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 0.4683030453214949, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", - "column_name": "dob", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": -1.094485675137949, - "m_probability": 0.03711726145166532, - "record_number": 36, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", - "term_frequency_adjustment": false, - "u_probability": 0.07925906487792309, - "value_l": "1680-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 0, - "m_probability": 0.03711726145166532, - "record_number": 36, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", - "term_frequency_adjustment": true, - "u_probability": 0.07925906487792309, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 36, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 36, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 36, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 19365395.160392523, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 24.206977604778523, - "m_probability": null, - "record_number": 36, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 37, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 37, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 37, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 37, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 37, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 37, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 37, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "oswestry", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 37, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 6777.620508935834, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 12.726563144676158, - "m_probability": null, - "record_number": 37, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 38, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 38, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 38, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 38, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 38, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 38, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.5061752397790036, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.982291157019384, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sy10 8ra", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 38, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "oswestry", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 38, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 6777.620508935834, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 12.726563144676158, - "m_probability": null, - "record_number": 38, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 39, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 39, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 39, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 39, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 39, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 39, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 39, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 292565.96219926194, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 18.158402407198313, - "m_probability": null, - "record_number": 39, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 40, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 40, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 40, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.7260362440795238, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4618865248362826, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "cartwright", - "value_r": "cartwright" - }, - { - "bar_sort_order": 5, - "bayes_factor": 15.876987624378211, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 3.9888653076436063, - "m_probability": 0.3411854615955972, - "record_number": 40, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": false, - "u_probability": 0.02148930701890366, - "value_l": "1600-01-01", - "value_r": "1606-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 2, - "label_for_charts": "Levenshtein_distance <= 1", - "log2_bayes_factor": 0, - "m_probability": 0.3411854615955972, - "record_number": 40, - "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", - "term_frequency_adjustment": true, - "u_probability": 0.02148930701890366, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sy10 8ra" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 40, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.3345951242254879, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4164021382693085, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "shropshire", - "value_r": "shropshire" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 40, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 3.144325592920995, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.6527506154881986, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "actor", - "value_r": "actor" - }, - { - "bar_sort_order": 13, - "bayes_factor": 292565.96219926194, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 18.158402407198313, - "m_probability": null, - "record_number": 40, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 41, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 41, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4385527024735812, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1891778678878713, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 41, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "norfolk", - "value_r": "norfolk" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.9075453050994048, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.13995842994892027, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norfolk", - "value_r": "norfolk" - }, - { - "bar_sort_order": 5, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "1655-01-11" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 41, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "ec1m 3ln", - "value_r": "ec1m 3ln" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.674900319705338, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.5672536577405403, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "ec1m 3ln", - "value_r": "ec1m 3ln" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 41, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "camden", - "value_r": "camden" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.71122624175026, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.49161953935785924, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "camden", - "value_r": "camden" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 41, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 11437060.827131525, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 23.447213010477377, - "m_probability": null, - "record_number": 41, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 42, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 42, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4385527024735812, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1891778678878713, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 42, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "norfolk", - "value_r": "norfolk" - }, - { - "bar_sort_order": 4, - "bayes_factor": 0.9075453050994048, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.13995842994892027, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "norfolk", - "value_r": "norfolk" - }, - { - "bar_sort_order": 5, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "1655-01-11" - }, - { - "bar_sort_order": 6, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 7, - "bayes_factor": 4433.459980200162, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Exact match", - "log2_bayes_factor": 12.114217337381147, - "m_probability": 0.687813956434951, - "record_number": 42, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.00015514157328739382, - "value_l": "ec1m 3ln", - "value_r": "ec1m 3ln" - }, - { - "bar_sort_order": 8, - "bayes_factor": 0.674900319705338, - "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 2, - "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.5672536577405403, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "ec1m 3ln", - "value_r": "ec1m 3ln" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 42, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "camden", - "value_r": "camden" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.71122624175026, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.49161953935785924, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "camden", - "value_r": "camden" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 42, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.4599747087910215, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1203735565543766, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "politician", - "value_r": "politician" - }, - { - "bar_sort_order": 13, - "bayes_factor": 11437060.827131525, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 23.447213010477377, - "m_probability": null, - "record_number": 42, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 43, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 43, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1239.7644819625823, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 10.275850362551136, - "m_probability": 0.7816372776652062, - "record_number": 43, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.0006304723913592461, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1.1169788370454212, - "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.1596018519099875, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"surname_l\" = \"surname_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "owen", - "value_r": "owen" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 43, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 6, - "bayes_factor": 3.7243862718894305, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.897002708675377, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-11-20", - "value_r": "1860-11-20" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "l37 5aa", - "value_r": "sw1p 4lg" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 43, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "wales", - "value_r": "wales" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1.8006442152248647, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.8485131509070939, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "wales", - "value_r": "wales" - }, - { - "bar_sort_order": 11, - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9590935537162004, - "value_l": "association football player", - "value_r": "association football manager" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.10073668618440759, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9590935537162004, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 10853.316525050908, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": 13.405848344165456, - "m_probability": null, - "record_number": 43, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - } - ] - }, - "height": 450, - "layer": [ + "cell_type": "code", + "execution_count": 17, + "id": "c2f47ebb-3181-4db6-89ba-1ef60df3bba7", + "metadata": {}, + "outputs": [ { - "layer": [ - { - "encoding": { - "color": { - "value": "black" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", + "config": { + "view": { + "continuousHeight": 300, + "continuousWidth": 400 + } + }, + "data": { + "values": [ + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4047701974773831, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3048250240606851, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 0, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 0, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "sw1e 5la", + "value_r": "sw1v 1an" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 0, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 0, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 724060.5742920743, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 19.46575087143477, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4047701974773831, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3048250240606851, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 1, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 1, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 1, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.674900319705338, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.5672536577405403, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 1, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 1, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 12774887550.161978, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 33.57259154089463, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4047701974773831, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3048250240606851, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 2, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 2, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 2, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.674900319705338, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.5672536577405403, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 2, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 2, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 12774887550.161978, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 33.57259154089463, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4047701974773831, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3048250240606851, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 3, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 3, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 3, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.674900319705338, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.5672536577405403, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sw1e 5la", + "value_r": "sw1e 5la" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 3, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 3, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 12774887550.161978, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 33.57259154089463, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4047701974773831, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3048250240606851, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "george", + "value_r": "george" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 4, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "lucan", + "value_r": "lucan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 4, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-12-13", + "value_r": "1860-12-13" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "sw1e 5la", + "value_r": "" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 4, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 4, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 4269476.815657544, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 22.025627861254016, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + } + ] + }, + "height": 450, + "layer": [ + { + "layer": [ + { + "encoding": { + "color": { + "value": "black" + }, + "size": { + "value": 0.5 + }, + "y": { + "field": "zero", + "type": "quantitative" + } + }, + "mark": "rule" + }, + { + "encoding": { + "color": { + "condition": { + "test": "(datum.log2_bayes_factor < 0)", + "value": "red" + }, + "value": "green" + }, + "opacity": { + "condition": { + "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", + "value": 1 + }, + "value": 0.5 + }, + "tooltip": [ + { + "field": "column_name", + "title": "Comparison column", + "type": "nominal" + }, + { + "field": "value_l", + "title": "Value (L)", + "type": "nominal" + }, + { + "field": "value_r", + "title": "Value (R)", + "type": "nominal" + }, + { + "field": "label_for_charts", + "title": "Label", + "type": "ordinal" + }, + { + "field": "sql_condition", + "title": "SQL condition", + "type": "nominal" + }, + { + "field": "comparison_vector_value", + "title": "Comparison vector value", + "type": "nominal" + }, + { + "field": "bayes_factor", + "format": ",.4f", + "title": "Bayes factor = m/u", + "type": "quantitative" + }, + { + "field": "log2_bayes_factor", + "format": ",.4f", + "title": "Match weight = log2(m/u)", + "type": "quantitative" + }, + { + "field": "prob", + "format": ".4f", + "title": "Adjusted match score", + "type": "quantitative" + }, + { + "field": "bayes_factor_description", + "title": "Match weight description", + "type": "nominal" + } + ], + "x": { + "axis": { + "grid": true, + "labelAlign": "center", + "labelAngle": -20, + "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", + "labelPadding": 10, + "tickBand": "extent", + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "grid": false, + "orient": "left", + "title": "log2(Bayes factor)" + }, + "field": "previous_sum", + "type": "quantitative" + }, + "y2": { + "field": "sum" + } + }, + "mark": { + "type": "bar", + "width": 60 + } + }, + { + "encoding": { + "color": { + "value": "white" + }, + "text": { + "condition": { + "field": "log2_bayes_factor", + "format": ".2f", + "test": "abs(datum.log2_bayes_factor) > 1", + "type": "nominal" + }, + "value": "" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "orient": "left" + }, + "field": "center", + "type": "quantitative" + } + }, + "mark": { + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "black" + }, + "text": { + "field": "column_name", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -25, + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_l", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -13, + "fontSize": 8, + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_r", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -5, + "fontSize": 8, + "type": "text" + } + } + ] + }, + { + "encoding": { + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "x2": { + "field": "lead" + }, + "y": { + "axis": { + "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", + "orient": "right", + "title": "Probability" + }, + "field": "sum", + "scale": { + "zero": false + }, + "type": "quantitative" + } + }, + "mark": { + "color": "black", + "strokeWidth": 2, + "type": "rule", + "x2Offset": 30, + "xOffset": -30 + } + } + ], + "params": [ + { + "bind": { + "input": "range", + "max": 4, + "min": 0, + "step": 1 + }, + "description": "Filter by the interation number", + "name": "record_number", + "value": 0 + } + ], + "resolve": { + "axis": { + "y": "independent" + } + }, + "title": { + "subtitle": "How each comparison contributes to the final match score", + "text": "Match weights waterfall chart" + }, + "transform": [ + { + "filter": "(datum.record_number == record_number)" + }, + { + "frame": [ + null, + 0 + ], + "window": [ + { + "as": "sum", + "field": "log2_bayes_factor", + "op": "sum" + }, + { + "as": "lead", + "field": "column_name", + "op": "lead" + } + ] + }, + { + "as": "sum", + "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" + }, + { + "as": "lead", + "calculate": "datum.lead === null ? datum.column_name : datum.lead" + }, + { + "as": "previous_sum", + "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" + }, + { + "as": "top_label", + "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "bottom_label", + "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "sum_top", + "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "sum_bottom", + "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "center", + "calculate": "(datum.sum + datum.previous_sum) / 2" + }, + { + "as": "text_log2_bayes_factor", + "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" + }, + { + "as": "dy", + "calculate": "datum.sum < datum.previous_sum ? 4 : -4" + }, + { + "as": "baseline", + "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" + }, + { + "as": "prob", + "calculate": "1. / (1 + pow(2, -1.*datum.sum))" + }, + { + "as": "zero", + "calculate": "0*datum.sum" + } + ], + "width": { + "step": 75 + } }, - "size": { - "value": 0.5 - }, - "y": { - "field": "zero", - "type": "quantitative" - } - }, - "mark": "rule" - }, - { - "encoding": { - "color": { - "condition": { - "test": "(datum.log2_bayes_factor < 0)", - "value": "red" - }, - "value": "green" - }, - "opacity": { - "condition": { - "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", - "value": 1 - }, - "value": 0.5 - }, - "tooltip": [ - { - "field": "column_name", - "title": "Comparison column", - "type": "nominal" - }, - { - "field": "value_l", - "title": "Value (L)", - "type": "nominal" - }, - { - "field": "value_r", - "title": "Value (R)", - "type": "nominal" - }, - { - "field": "label_for_charts", - "title": "Label", - "type": "ordinal" - }, - { - "field": "sql_condition", - "title": "SQL condition", - "type": "nominal" - }, - { - "field": "comparison_vector_value", - "title": "Comparison vector value", - "type": "nominal" - }, - { - "field": "bayes_factor", - "format": ",.4f", - "title": "Bayes factor = m/u", - "type": "quantitative" - }, - { - "field": "log2_bayes_factor", - "format": ",.4f", - "title": "Match weight = log2(m/u)", - "type": "quantitative" - }, - { - "field": "prob", - "format": ".4f", - "title": "Adjusted match score", - "type": "quantitative" - }, - { - "field": "bayes_factor_description", - "title": "Match weight description", - "type": "nominal" - } - ], - "x": { - "axis": { - "grid": true, - "labelAlign": "center", - "labelAngle": -20, - "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", - "labelPadding": 10, - "tickBand": "extent", - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "grid": false, - "orient": "left", - "title": "log2(Bayes factor)" - }, - "field": "previous_sum", - "type": "quantitative" - }, - "y2": { - "field": "sum" - } - }, - "mark": { - "type": "bar", - "width": 60 - } - }, - { - "encoding": { - "color": { - "value": "white" - }, - "text": { - "condition": { - "field": "log2_bayes_factor", - "format": ".2f", - "test": "abs(datum.log2_bayes_factor) > 1", - "type": "nominal" - }, - "value": "" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "orient": "left" - }, - "field": "center", - "type": "quantitative" - } - }, - "mark": { - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "black" - }, - "text": { - "field": "column_name", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -25, - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" - }, - "text": { - "field": "value_l", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -13, - "fontSize": 8, - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" - }, - "text": { - "field": "value_r", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -5, - "fontSize": 8, - "type": "text" - } - } - ] - }, - { - "encoding": { - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "x2": { - "field": "lead" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAIlCAYAAABVSXjKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQnYjVX3h5cMkVmKBmVojmYRiiJp0jyXqeH7mtOkGc2apEGfUtIsaZ5pkCEKlaL0qUiDUuYhJP/r3v7P+x3HOe9Zzzs55/Xb1/VeOGc9z7P3vdez2T9rrV1m9erVq01NBERABERABERABERABERABERABERABERABMysjMQi+YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBEQGKRfEEEREAEREAEREAEREAEREAEREAEREAERCCPgMQiOYMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIDEIvmACIiACIiACIiACIiACIiACIiACIiACIjAugQUWSSvEAEREAEREIESJpB4tkSZMmXynp7u8xLuXpE9bsWKFbZs2TKrWLGibbzxxkV239Jwo4ULF4ZhVKtWLd/hRD4R+Ql/TvSZ0sBCYxABERABERABEcg+AhKLsm9O1CMREAEREIFSTmDHHXe0b7/9NoxyzJgx1qJFi/D79u3b2/Dhw8PvX3/9dTv88MPzJTF58mT75JNPrFmzZtakSZN8bb/44gvbY4897JhjjrEXX3yxRAg/+OCDdsEFF1jv3r3thhtuyPjME0880YYOHWoTJkywvffeex37t99+23766acwhk033TTj/YraYM6cOfbKK6/YNttsE+aqIG3BggV2wAEHGHPXuXNne/zxx9PeZsqUKda4cWM76KCD7L333rMBAwbYv//9b7vlllvsmmuucT++OOZ+fc+Fe/AyFAEREAEREAERKBABiUUFwqaLREAEREAERKDgBBLFoj59+tiVV15py5cvDxE4UXvttdfsiCOOyPchffv2tUsvvdTuv//+IMrk1z777DPba6+9ggCFEFUS7f3337fnnnvOjjzyyPCTqR199NFBjBk/frztu+++65h37NjR4DJp0iTbc889M92uyL9HxGratGmhBLeXX345XM99br755nxFp6+++iqIgJFY9J///MfOPffccN21117rHl9xzP36ngv34GUoAiIgAiIgAiJQIAISiwqETReJgAiIgAiIQMEJRGJR1apVrVWrVvbmm2/auHHjbL/99jM+W7RoURBFEIsmTpxo119/ffh12223DfZXXXVV+PMll1wSIpR22GGHIDideeaZQWy588477b///a+1adPGEGBOOeUUiwSD/fffP9hzf+532223Wdu2bdcazFtvvRU+P/DAA0NU0COPPGJPPvmkHXvsseGZDzzwgD3//PPh9wcffLD16tXLEEFo3P+uu+6y2rVrhwime++917p162ZdunQJKWmIHPSxSpUqdvHFF4fIGu7BGCOxqGfPnvbSSy/Z3LlzDVHijjvuMKKUEElg07JlS7v77ruD4IKAwrOJnmG8Z599trVr167A40FMu/3220PfeT5RWyeddFIQr0477bQQCcYcde3a1fr162ffffedXX311TZy5EirW7duGANjKVeunF122WX26aefBoHnoYcesubNm4exM2cNGza0s846K4h9qZ53wgknWFyxqDBz/+yzzwbG+M3uu+8eBKrLL788jINIqK222ir4Xv/+/YNfMp7EuYCTmgiIgAiIgAiIQOkhILGo9MylRiICIiACIpAjBCKxCEGAtCtq+yA8XHHFFSHqBKEEMefQQw+1Lbfc0n7//ffwOSlYiA8IL506dQqbeaJsEE0QHTbbbLM8oQTh5MMPPwxEiCTiPkQW0bbeeutQK2fq1Knhz4sXL7bKlSvn0UMA2W677WzzzTe33377zQ477DBDQELs+Pjjj4NogGiCmIGYxBgQoGrVqhVEL37PvRFyEtPQbrrpppCOhtiyxRZb5KXinX766UGMisQiOpLY/1tvvdVq1KgRRClYEKXEc+GBmIRAhcCBiEWf6T9iVNTijIf+I+Ig5iBK0S8a46Ufb7zxRngGAhDztdNOO4V+0N8ff/zRvv/++/AdokqHDh3snXfeyesHotIHH3wQGO22224hpaxChQopnzd9+vQgrnkji0hTi0SyuHNP/xkH83LUUUfZu+++GzgPHjw4+FlyjSTYIywlzsX6iPTKkddd3RQBERABERCBnCQgsSgnp02dFgEREAERyGUCkVh033332UUXXRTSrm688Ub79ddfQ3rVo48+GsQiIo34PVE6CBdPPfVUiK7h96NHj7bkNLTjjz/ehg0bZg8//HCIsHnhhRfsiSeeCAIAQlEkFiFCIFIgwBAdgpiCOJLYoj7OnDkz1M3Bjka0DaIQghP9JuKE9vXXX4ci1ggWCCaIF3yWKBYh6FCr55tvvjHuf+GFFwaBJ1ksIpIIIYaIpnPOOSdEJsEhOfUJdqTgHXLIIUFwoVEAGj6IY3HHM2vWrMCdfrdu3dr+/vtvO/nkk4MYNGLECKtevfpaaWiIZNRZQqxCWPnzzz/D9zQKWCMGIhbxK+mGDRo0yBsTwtl1112X7/Pq1KnjFosKM/fMLf3cddddAzcioxDFiPBCoIvEIkQiosHgoDS0XF6B1HcREAEREAERyExAYlFmRrIQAREQAREQgSIlEAkxFKcmvYk0JFLLEEgQYyKxiIgePrvnnnvWen46sSgSY0hRi4Sh6MIoDY2ULyJHaBSRJjIpEm8SH0J/EDgopkzqGBFBCFqkuNEnIpkQQRC0UrVBgwbZkiVL8sQiom2IyCF6JToJjAgqUtuSxaKo6DeCBSlP0ffJAgWpZxSaJsIlameccUaIaNpkk03W6pZnPKS2cU8EoKgAeXQTCo8jriXWLELU6tGjR8rxk86FUIYIQzQR0T60SACLxKL8nkdamzeyqDBzz7yQYkf0WGJjzhGIIrEoOtkOG4lFRbok6GYiIAIiIAIikHUEJBZl3ZSoQyIgAiIgAqWdQCQWEUmE+MAJWUR3UHuHyJZILCJKhk05KUvUlPnll19CfZ90YhE1ix577LFQA4kUto8++ihEiFBzJkpDSyxwnZ9YRA0eBI6ohhLP5h7RnylezalgpKvxGQIV0Up//PGH/fXXXyFyaMiQIXliEdEq2BJ1RKQOEUmc6EVtpGSxKCpwnUksGjt2bBDXaKTnIRIhHMGAmkKJzTMeajRFogsRSwhP8EK8SiUWEbXFiWbU9+GZtJ9//jlENyECki6HWJQo3iWLRfk9L45YVJi5p08IZaQ3Erk2cODAEFGULBYxrqhJLCrtq5TGJwIiIAIisKETkFi0oXuAxi8CIiACIlDiBBLFIurYRMenIx6RmhSJRWXLlg31gqgVRGQMEUjUu4lqB5HCRSoXaVhEgHC0OwIFNYMQSxABEGdGjRoVahIln4aWn1hEHSXSymhch+AR2SMOIQrRP4Qs6hMhNPDc6Eh3RBMihxLT0IhQou4PKWykPEX1fLxiEVFI3JPC2t27dw9RTjBA1GHcjBdR55lnnglFvRObZzyIXdEYqTlELScKh9PoKzWhYEHKHs/m96SW0RBZZs+eHfrD54hXzF0msSi/5yHOeSOLqEtV0LknCowoMmooUY+KKDDES3yRCKgosihRLEqeC4RDNREQAREQAREQgdJDQGJR6ZlLjUQEREAERCBHCERiEeIC0TNEhSBAUDuI2juIRWz+EYGIJIoKVSPIICwh1syYMSPUOCKqhWga0sJIGeNeiCVRQ5xBkEp1fHp+YhHXcwpYdOpZVB+JX0899VR7+umnwyOmTZsWxBrEERp9oyg0dZIogoxYRPoakUVEASFEcE+EpT322CP8nnEhWEQFrknPI+Iqiizi/kTxEF3Fs2mc/IVQhSgW8eHz4447LkQ0IWQlN894iO6iqDNiCaIWYg3pWUTawJF+UXeJZ5NCRh+pqRSlwu2yyy6h4De/RgWuU0UWIS4hnuX3POoQUS+KOaYG1IABA4KgwzxHolw0RqK5Cjr3sMLXEBZpMMaHogi2VGJR8lwQaaQmAiIgAiIgAiJQeghILCo9c6mRiIAIiIAIlFICpG1xehk/yY0izPPnzw81eqI6PUT9kDbWqFGjtU45Ky48RJzQx6VLl4Znctx6qoaIsnz58iCAEaWDWEK0FClQiF2eRt0caiFRZLl8+fLhEp5NVBWROBSFLmwjComTzRhL8klgjHXevHlhjNF8MAcIfZUqVbJ69eqtc02m/uT3vEzXJn9f0LlnXIxh2223zeOa6dmp5iLTNfpeBERABERABEQgNwhILMqNeVIvRUAEREAERCDnCVADh7QmCipTLDoqIk2RbR29nvPTqwGIgAiIgAiIgAiUIgISi0rRZGooIiACIiACIpDNBIg84oh5Cm9T02jnnXcOqVMUg1YTAREQAREQAREQARHIHgISi7JnLtQTERABERABERABERABERABERABERABEVjvBCQWrfcpUAdEQAREQAREQAREQAREQAREQAREQAREIHsISCzKnrlQT0RABERABHKAAMWMN9poo/Cjlp0EVq5c6S7SnJ0jMFu1alXoWqpT3eL0mYLi3Csqfh7n2myyLSoe2TQm9UUEREAEREAEspmAxKJsnh31TQREQARKKQHq1XAs+VdffWW77rpr3ijvv/9++89//mNTpkzJ2pG3atUqHF9++umnZ20fPR3jKPgZM2bY448/7jHPCpuXXnopHFnPKWXJLRoPR9JzIhkndVWsWNHd75kzZ9onn3xiJ5xwgvuadIYINE8//bSdfPLJsUSaxPH17Nkz1HUaOHBggfvz6KOPWvfu3e2uu+6y0aNH24477hhOoCtIu/XWW+3rr7+2J598siCX53vNuHHjgqDVsmXLtHZFwaPIO64bioAIiIAIiEApJiCxqBRProYmAiIgAtlKgKPO2dAni0X9+vWzhx9+WGJRCUzcDz/8EI6x32mnnUrgaUXziN13392uu+66lIJONJ4qVaoUSCx67bXX7JJLLgnHxxe2zZ071zbddNMg9my55Zbu2yWOryjEkQMPPNA6dOhgPXr0CEIP0UXbbrutuz+JhrfccotNnTo1iGBF3S6//PIg7j344IMSi4oaru4nAiIgAiIgAgUkILGogOB0mQiIgAiIQMEJeMSi+fPn20UXXWQvv/yybbbZZnbVVVfZ2WefbUQ4IHL07t07bIA7d+5sDzzwQDhR65FHHrEff/wxHM+e2GbPnm0XX3yxffjhh8aGvE+fPnlHtb/yyit2991327Rp06x9+/Z2++2321ZbbWXz5s2z8847z9544w1r2rRp2HDzPZFF3IONMz+nnnpqiNxIThdKd326cf311192wAEH2GmnnWaPPfaYVa1a1ThqftCgQfb+++/bQQcdFD5ftGiRHX/88XbsscfaQw89FIZJ/4844ojw+3Tj4T4IKggY5cqVC7zgQqQJES333XefTZw40Y4++ujAs1q1aoEvDPgcUalv374h+oMIHJ5JVBjMN99887DRb968+TpO8cILL4RnMO6TTjrJ7rjjjhDx8+qrr9rVV19ts2bNCmPjmUSbDRgwIPSRvr777ru29957hxPU6B9RQ9gwFq5LNR78ASESdkSp1ahRw2677bbAa+zYsWF+eTZtzJgxYUx33nmntWvXzr7//ns77rjjjD4zRkQM/OKQQw4JdghAzCtRTM8995zVrl073O/II49ca9yINPgaUVAjRoywP/74IyXHxIuuv/76tcY3atSowL1y5crhXnAgqoc+5OfP0T0Z8zXXXGMNGzYM48NXt9lmGzvxxBODn/3rX/+ye+65x/A75uGss87K13/SiUXM17fffmtz5syxDz74INx/v/32y4tg4hmHH354uDd9euqpp4xUTj6jX8wFc0bDTy677LLAAd+G77nnnmsXXHCBIZ6l45HIMd388MxU9yWiiX4xjhUrVoT3j7FWqlTJzj///OD3rEH0kUgx/Gro0KHBr6644orwmZoIiIAIiIAIlEYCEotK46xqTCIgAiKQ5QQisYhIjrp16+b1duTIkUY6EGlobNomTJgQNpRLliwJosw777xjv/32W9isEwGCUHHOOeeEDTtiDlEUiB2kiUVt9erV1qxZs7C5u/LKK+29994L9mwqibSIhAVs2FwjgCAMIGwgRiCKvPXWWzZkyJCwKW7dunUQGdhcsgFlQ0m/2YAntnTXd+rUKeW4EKEQBnbZZZcwvv79+weRAIGMjTXjQqBArKHPCFiwQVAhfe/PP/80xppuPGyAicpB+IAV92Z8bOYR455//nmrWbNm2KyzMWZc2223nTVp0iRwgT2RX9OnT7fJkyfbwQcfbMccc0wQQegvNZw++uijtRgQOcb1CD3bb799EOwQRfbaa6/Amflns424h5iEQMK9brzxxiAGwoJ+8APPww47LPSNZ8I/1XgQEyM+iA9s9Em1Y6yIX/gLQhMNIRBB8ssvvwxju/fee8NcIxbilxdeeGEQ5hC4Fi5cGMaHMIgABM+333479AHBZeONN84bO3MC5xdffDGIUIwjFUdEtqghSiWOjzmFA+z33HPPkE6GwMOY0vkzPh61//73v8Fn+IEfYusOO+xgl156afAzfs8zmHfS1YjsYQ7z859UkUWIOPQTEQUhD76MC57Dhw8Pfsa7CmNYEDmIn5Huh5iHwIgfIADDlvcTEebZZ58N7+gZZ5wRRDzmMBUP+Ce2dPPD9anuy1zi8whGzBHrTpcuXYJPtm3bNgi1jAnhEE4IRYjNS5cuDb6IQNamTZssX3HVPREQAREQARGIT0BiUXxmukIEREAERKCQBCKxCOGDCJaosakk6uXjjz+26tWrB4GCaB4amzhSjBAb2ND++uuvQfxBWNpiiy3CxpwN+zfffBNqs0SNaIR99tkniAX169cPggpCAGJMFAFC1AmREWxGP/vsM3vzzTfD89koYoMoxKYU8QDRgk0kYgaNiA+iH6LIDD5DWEh1PZvQnXfeOeW4EKjYxLN55f5EkSAscS+ijDp27BiigbgH44cRG23Gg6hDtE3jxo3D5jx5PNSrQdxAtIEbogCbfJgQbUFqEsIB9yaFCuGA7w499NC85zMu5gqRBnEJsYgoJ+YE0YSIEvqa2IhYQViLRCTGRuQXghObbMZAY87gglDIhpzvomsQS/ic9KfENK1044nEIoQKxIl//vknCIXwJSUslViE3yWmoSEaIRLS1zJlyoToIiJMYIeIQI0dop0QvBgf4ldiAenENDSEtXQcTznllLV4JaehIZwwdzTEHkQuxJ50/kxUVGJDwERsRHDBlxLFosi3mcMoigyRJz//SScWJfazTp06QcyLIoHoKxE7zDniD0IX7z9iESIodolpaPg4UXKITzQEJcQ2npGKR3JaHMJYqvlB0El1X56NsBdFI1Ijincb1ryHRGPxbuFHRA/yXkb1ymCKb/FeqYmACIiACIhAaSMgsai0zajGIwIiIAI5QCBTGhrRDggfpO+QdkNjU4mQQ9oKYhBRNWwMEX0QUti0I+REUSMRBiIBEDKSG2kuXbt2DWIJURBsmomMQDhBEOH5qWrOEAGEMISwQmNDiThDX6KGgJXq+ujzVOMiagixiIgQxB/6TZRNVOybMSBOnHnmmUEsSrwHESn7779/EBJSjScSixI3+5FY9MQTTwRhhE0zjQ08wgpiApvgxGLjjJ1IG8aGeEeUF430LoQ/hKvExnwgQCBEJX9O9A5RTTTEKcQWIsmYX0QaNug0ojjGjx8fxMBksSjVeCKxaPHixYEnDcER4YjIkUSxiJQ9mCWLRYiCpMUlN6JjEAeIhsLfSPEi4oc0qcSWKBYhQqXjSERNYksWixDJogLkjAs+CEzp/Dkxoo775icWRX6GHYLY559/HgQxr/9E/caPEvvJu0nkHlFn8CIVj/lFjCUqCrEF8ZNGRE+yWIRwhWCYXGg8+TkRD/wisbG2pJqfdPflc/p01FFHhdsgSOEr+DLvNvdCcPvll19CxFlyYy6IOlQTAREQAREQgdJGQGJRaZtRjUcEREAEcoBAJrHo008/DRv9L774Imw2aWzKiOIhhQphA1GIlCHSl4gsInIAYQnxKLFFKUHUeYk2qYgMiEKIKAg9bML32GOPIBI988wzIVIGW6KSiBohqoD7IpTwk3gaWiqxCKEi1fUIMQgMqcaFQMGYSblp0KBBRrEoMVKKKCZSpYjqSDWe/MQihCEiPhCgEH3YlPN7Up6IxOA7IirYPPMc2JCCg9AWCXPpxCIitSZNmhRSwWjMK3OPAIU4QW0gWiQqkM6FCJB4ClhBxSL6hvhHgwsbekQLRL5I5ELEIoooWSwieo2oNqJsaCtXrgzF2En9IxWR+SHtD7GJNDb8icioqCWKRUTUpOPYokWLtXw1vwLXkTiC7xEJk8qfifhKbPmJRZGfYR+JRXzm9Z/oOcmFuBGLmDPS3xLFIqLMiPhBFOXdi8TPZLGIPhMhRcoiDTGI6B5Et0S/SCcWMU+p5gd/TnVfUtN4pyOxFxGZecXPebcR5xCHSYUlig4xk89p+BjvBuKumgiIgAiIgAiUNgISi0rbjGo8IiACIpADBDKJRYgJbDYpcEvUC1E/pKKQnoRgxEaO1J7of/VJByE6gI0lEQ2JjQgcNtFEIrGxJz2JzTubSgQBohgQb9jgc88KFSqE9CiilbiO6BcKQCMgINAgSmUSi3h+uuvZmKYaF2JDHLGIzTdiDJtv0owyjSe5QHEUWUR0C2NCvEHIitKHGDPiG9yIZoIbkUJwQkTxiEWIcBSvRtQjaoUIH0QxBECeSbof0UqMhTlnI54sPiSKRcw9kUFs/NONJ4osIkURPoh/3bp1C0IRQg+CDDWm8CfqTyFQIRZRvwg7BAmiqhBksItqQ1HAm++YP/qPP+CXMEIQo65Q1BAwqcvDnJD6lY4jKZeJLXF8yRwicYSaP+n8mcizwohFRNWkex/SFbj2ikVwQ8RBoIMX84/vMUek2PFuIeghXlIEe9iwYUGgIYqNeeMzj1jEupFqfvDZVPfFB0ll4z1CXCSqCMGMviWKRXClcDfCFaIykUb4CH6AT6qJgAiIgAiIQGkjILGotM2oxiMCIiACOUCATR8bMzbTiRtc0sHYDCMckOaDeMOGnIZgwSaN/8mPInfYwFMfhVPC+J5oj1q1aq1DgE1o4qlFbLwRKNjwkb5FigyN6AJSaHgOokJUl4e+EoFCZALihkcsInUq1fXpxkWB30xiERtnBA0if4h4YtNNBBP1lBBH8hsPohkFnhHVaIlpPYhupL2RMkaaFSlgRL3AlxQrnsE8ICTwfGoPecQiIrKYlyiVilPDSDGkthQFy9mgc29OniJyhHo1qcQiIpKIQqJ+EYWIuQdpVKnGQxoVfBAjosggUsqYW2pPkbKH8MVzEbKIfkEsgh2CD+OnRhEpUlGaHFwouIw9giW/RlFqsKPOTXLDT5hrfB3hLRXH5GsSx8e7kSyOMN9wSOfPyfcjSgchgxo7yTWLkiOLEEwRMdO9D8n+Ez0rlVhElBtpXYkRYwhvCEY0xC7mgXlBpEQ8RsCFEeIL733k20QYUU8olXgW8Ugcd7r5+f3331PelwgtRB9qS9EQB19//fXwLiAW4af4MA0bogPpLw1hmrkoX758Dqy66qIIiIAIiIAIxCMgsSgeL1mLgAiIgAiUIIEo6oOC1FHtooI+nigFoheoO0LUR9RIr0IsoPg1kR4LFiwI0UUIGIgLiAiID6TqxG3pri/MuKKoLKJX6Csbb/rqGU9+/afuDIWIObUssfEcnknUUWIR5zgsEPEQ+RJP6+J62CJCNWrUKLD3NCKbSIfjfpkaaULMNelDiQ2BAFGReU5szBcRSJEQhIhIyhppRhUrVswzpZD3jBkzQr+jukip+kIKX+RrXo7e8aXz50xMMn2f3/uQ6dpM3yOIMue8a7xP8GUemEuYIiJGp8rhcwg2yXOU6Rl8n9/8pLrvqlWrwtrAszK96/gIqYX4VJTm6OmTbERABERABEQg1whILMq1GVN/RUAEREAENmgCkViEUJR4ktwGDUWDFwEREAEREAEREAERKFICEouKFKduJgIiIAIiIALFS4BIHIptcwpXQaIuird3ursIiIAIiIAIiIAIiEBpICCxqDTMosYgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkVEQGJREYHUbURABERABERABERABERABERABERABESgNBCQWFQaZlFjEAEREAEREAEREAEREAEREAEREAEREIEiIiCxqIhA6jYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUBoIlLhYxJGjixcvXuf43NIAU2MQAREQAREQAREQAREQAREQAREQAREonQTQMipXrmxlypRJOUAOIqlatWqpGHyJikX33HOPDRgwwJo1a2YLFy60Pn36WP369W2zzTazDh06BKA77rij3XTTTaUCrgYhAiIgAiIgAiIgAiIgAiIgAiIgAiKQ2wR+//13mzx5sh177LE2ffp023zzzdca0MSJE61bt2627bbb2syZM+3RRx+1ffbZJ6cHXWJi0YoVK2zjjTcOUUUocTfffLP99ttvdv7559sNN9xgzzzzjJUrVy6nYarzIiACIiACIiACIiACIiACIiACIiACpYvAsGHDbMyYMda3b9+gYySLRe3bt7fLL7/c+BVbgmTefffdnIZQYmIRlObNm2c1a9a0pUuXWtu2be3iiy+2KlWq2KmnnmqEazVt2jREGx144IE5DVWdFwEREAEREAEREAEREAEREAEREAERKF0ESD9LJRbVq1fPxo4da/z62Wefhcwp7HK5lahYBKhJkyZZ165drXHjxiE0C3WOzy644AIbMmSI3XbbbfbNN9+EHMDRo0eH7xMbKWtt2rTJZebquwiIgAiIgAiIgAiIgAiIgAiIgAiIQJYQGDlypJFqlthatmxprVq1WuuzdGJRtWrVbNq0abbFFlvY999/b61bt7ZZs2ZlyegK1o0SFYvee++9EEV033332UknnRR6THpa2bJlw8+qVatCKhpQt95665QjIvKoR48eed8xEQ3B1eRhAAAgAElEQVQbNizY6EvZVWLhn1CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWyX6VrDOku1M6seiAAw4IKWp77723TZgwwW688UZ79dVX/R3KQssSE4tWr15t1atXtxEjRti+++6bh6Jnz542Z84c69+/fwjbOuOMM+y7775Li0piUXov0kLqf8PESqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/BbFoVYRHmdKVOmhHI6l112mdWuXduuvPLKULuIcju5fnBXiYlFVAzffvvt15q9zp07h7Szdu3ahYgifnr37m1HHHGExCK/n+dZaiH1QxMrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG9ZGLGIdDXK43A6GmlqnPROwEuLFi1CB2rUqGEff/yx1apVy9+hLLQsMbEo09hnz55tdevWzWQWCmArDS01Ji2kGd1HwpofkViJVQEI+C/ReiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+VXBW3jS0/J7w999/2y+//BKKXJOulusta8QiL0iJRelJaXHwepGFomOqdeXjJVY+TliJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C0LGlnkf0LuW0osyv05zBuBFlL/ZIqVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUWJSZlcSizIxyxkILqX+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW0osysxKYlFmRjljoYXUP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn4lVn4Cfkv5lVj5CfgtJRZlZiWxKDOjnLHQQuqfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JYSizKzkliUmVHOWGgh9U+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S4lFmVlJLMrMKGcstJD6p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Eis/Ab+lxKLMrCQWZWaUMxZaSP1TJVZi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31JiUWZWEosyM8oZCy2k/qkSK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKbEoMyuJRZkZ5YyFFlL/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVYQWDp0qVWrlw5q1Chgh9IPpZx/Oqvv/4Kd6pYsWKRPHt93WTVqlW2fPnywBCW3haHlfeepdVOYlHmmZVYlJlRzlhocfBPlViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX22YrL788kt79dVXrVOnTlalShWrVauWXXTRRdavXz8/kAKIRW+88YZ98cUXds0114SrTzvtNHvmmWfspptusuuuu65Inl2SN0kcD78/4ogjbNiwYXbssce6u6F30I3KJBZlZiWxKDOjnLHQ4uCfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pv9owWT377LN26qmn2pgxY2zPPfe0G2+80fbbbz/r2LGjH0gBxKJ//etf9vDDD9s///xjy5Yts8qVK9v+++9vDz30kO26665F8uySvEnieL755ht74oknAtcmTZq4u6F30I1KYpEDlcQiB6RcMdHi4J8psRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kl5WiDHdu3e3Tz/91HbYYQe7/vrr7fTTTw8PRSB54IEHjDSsww47zG699VarWrVqys9Hjx5tPXv2tPvuu8+aN29uvXv3NiJZPv74Y7vtttvs7bfftgMOOMCGDBkSBB+euc0229hHH31kPXr0CJvs3XffPTx/q622skMPPdS+/fZb22uvveyxxx6zs88+20488US7/PLL7aeffrLzzjvPPvzwQ6tUqZJ169YtiEk8i+8PPPDA8LxNNtkkRAgdeeSR60BM5VevvPKKnXPOOfb777/b4Ycfbn///be98847tvnmm9stt9xiZ511VtrJGDBggN1xxx1hHIwfbnvvvbf9+OOPdskllwTRiz+fe+65oT+k1V177bX2wgsv2BZbbGEnnHCCXXHFFXbzzTeHiKqRI0eGscF92223DczhRoTVypUrbcKECaE/cEDQiubqjz/+sNatW9u9994b5jRxPHC+7LLL7Pbbb7eDDjrI0vWZ6K2nn37aDjnkkBBV1aBBA7v//vtt55139jvjBmqpyKLMEy+xKDOjnLHQX9D+qRIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8qviY0UNmy233DI84IILLgjCxeTJk4MYg0C03Xbb2dZbbx1Eiv79+9udd95pxxxzTMrP69ata2eccUYQV9q3b29du3a1xx9/PAgb//73v+3RRx8NokubNm3s+eeft86dO9ugQYPCvWgIJdyfWjpjx44NAhLX8CuCR6NGjfLS0KLUML4jWgaRh3tuvPHGdtRRRwVBi2f+5z//sc0228ymT59uZcqUWQtkKr+aOnVqeBbCDhE4S5YsCeIOwhHiF2JPqkYfEFKaNm0a0rzuuuuuIABNmzYtj0OXLl3CuH799Vf75Zdf7MUXXwwM4IHYg7A2btw4e+SRR8K4Fy9eHD6vU6eO7bLLLvbBBx9YvXr1wtwgRpUtWzb0E4Zt27YNwhviDkIUc8kPfU8cD0JTlIbGPdP1GUHpnnvuCc9FVEL4gieClFr+BCQWZfYQiUWZGeWMhf6C9k+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfFR8rolcQKxBVSFdCfGjVqlWIDiKq5tJLLw3RPdtvv7299dZbQbyYOHFiys+JoMkkFiGUICohWCCOEF3z2Wef2YgRI2zOnDlBlKCR/vXSSy/lpaEhakQ1i4jwQQwiyogoJWyJIEIkIsKIX5966qlQayhKwfrzzz/D9YktnV8lpm0RpYPARXQSz03XqGd0ww032FdffRVS1Yik4prx48dbu3bt7Oijjw7i04wZM0I9JMQeIqX4HuGIMbz33nuBMyJNfmJRtWrVwj1Wr14dClUTgUUNonfffdcmTZoUhDGigVq2bGlEeyWO580338wTi6ZMmZKyz9wDfvSD/hLVhPAFB56rJrGosD4gsaiwBLPoev0F7Z8MsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kj5Wr732WogaevLJJ0PqGcINaV+IH3PnzrW+ffsGMQOx4Ouvv7by5cuHCKNUn5PyRC0cBAkEjOOPPz6IGImRRb/99lsQHRB6hg4darNnz7bddtstDPD8888PggeCVX5iEUWmuceZZ55pAwcODKIWQhBRP6S2IRZFfbjwwguDAFXcYhGpb3fffbf98MMPVr9+/fBMnk3EE/0hyoc0rnnz5tmsWbNCWheCEX0n+mjFihUhQoooqF69eoWaSfPnz7fq1asb4hBjiyKL+DNCDzWVatSoEe5D6lqzZs3C3CHYIVzBNT+xiCinVH1GQKTfiEULFiwIz2/YsGEQ6CQWZX4XFVmUmZHEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KjxWiDGlORLQgMJDShFCAGEEUEFEx1NLh5KxTTjkl1N4hKijV54hDRCWRpkZBaKKSaIliEalMCB9E1Rx33HFB5CBqiLo7RMBw/aJFi0LE0csvvxzEJ4QXbBGsotPQqOODEIJwReoYkTzU3yFqqajEIlLCEEk8kUVECCHa0F84XHXVVUHs+fnnn0PkFql9jINUOSKqEODoL6lt1Foi5Y96UKSmIRoRlcR8IC4hMnGPxDS0Bx98MIhO1B7ivqTfwRTRr2LFimHOkiOLGA+RUlEaGnWh0vWZ9D6JRf73LtFSYlFmbhKLMjPKGQv9Be2fKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvypeVtQVor5Q1KgdRKFmol0QiRA3aESqkIpWu3btlJ/XrFkzFGOm6DRRKETPIJIkikWIE4gWfE8B6hYtWuSlpPEZzyCyiFQoUsuoAYR4RBFsimMjVhHVRHFn6ghRiJp28MEHh0glomIQi+hnhw4dgriE2BInsui5554LwhiN+yMWEc1EtFW6RkoYghfpfFFDGEK0YZxEWkUNcYcoKqKQEN3wbxqRXRTynjlzZhB6eDY1gxCF4ECaGjWLmJeob/AiGmujjTYKUUXUM6JIORFL1DziGRTLjsbz+uuvB96IUqTGpetzVLNIkUX+dy+ylFiUmZnEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KnxWRLYgUFLtGtElspIotX748FFBOLBKd7nPS17gHKWtR49Qu6vAgqhCxRLoVhayjRqQNokziZ3yH0IToQSoUBZ0TG8W56XNUBNpPaY1lfn5FZBPPJg0sakTlfP755+s8hrpBCFk0xBVEHur88HnU4EdNJ6J5EMGixhj4HF6IcFGDE8/bdNNNgxAUNcQiaiIh4JHSR7RVNCdcQyQTz0gu5p1qPNE90/U5caB6B/3eJbEoMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXus0oUi/yjKV7LuH6FoDVq1Kh1OkUKGFE6JdEisYhopZJscVmVZN+y7VkSizLPiMSizIxyxkKLg3+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8KvdZcUoYYkv79u39gylmy1z0K8QqIpOo+1SSLRdZlSSfxGdJLMpMXmJRZkY5Y6HFwT9VYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+tH1akspDmQtpLchqPv0fZaxnHr0inolHkN26j2DOtUqVKcS/NGvs4rLKm0+upI2LlB1/UrEiLY61KTNXz9ya7LSUWZZ4fiUWZGeWMRVEvDjkz8AJ0VKz80MRKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7Bv1KhRKDxMAeLERv2S6IQjChInN05O4ojt0047LdQ6wfadd94pkiiPfffdNwhVxXmkdjpWjIXncnIUjfE988wzoRAxBYlTtaeeeiocLf7xxx+Hk6AS2+677x5OpeIo8+RGXRcKE3MqFcWHGTcbXU7kKmxbuHBhqI3D6WEcZV6YFtevCvOsXL9WrPwzWBBWpOZxsl5ymzNnTqhZFZ1s5+/FGkuKl1NInXt37Ngx7uXFbi+xKDNiiUWZGeWMRUEWh5wZXBF3VKz8QMVKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7777jvbbrvtrE+fPnbllVeu9aCvv/7annjiiXBsd5MmTdbpBHVOOJ6cU5M4GSnxaHF/j1Nbkg6DwMJR68XV0rHiqPWHH37Y/vnnHyMqiELHHNn+0EMPhSLAqRqcOnfunFIs4tQsTpHq3r37OpdShJiixRzRzrHoCEvUqvnkk08KPWyEKMQ8nstx5YVpcf2qMM/K9WvFyj+DBWGFkPPaa6/Zv//977xi5xTevvXWW+3mm2+2/fbbr0BiTyQWvfzyy2Ety7YmsSjzjEgsyswoZywKsjjkzOCKuKNi5QcqVmLlJ+C3lF+JlZ+A31J+JVZ+An7LuH4ViUVHHnmk8T/znLhE0eCrr746FN3lqOvbb789CCdE2hxzzDFGFA1Hivfr1y+ctkTkCsdrs8EiuoYjymlcxxHf6RobOwrqcuLTkCFDwgYPYYPTsRLFIo4379GjRzhlCjHl+uuvD+INQgtHnvM87M8991xjHPPmzbOBAweGH9LGiJji+PDklooVUQXnnHNO4MAR6og8REtxotYtt9wS2OQnFnXp0sXGjh0bnsvmlXvAhGPJGSOiHBtdIhjYlCLmDB8+3Lbeemu77777rFevXuGUrj333DOIcNTieeSRR4zj49M1uNWqVSucssXR7/SRo8vpe6JYhNhFFBOnYbVu3druvffecEpZIl+OXGeeEcWmT59u/fv3t6effjoIWhzfzjyv78Yx8AiY+CFjhTcRWY8//vg68wODVJ8X5xjivoPF2ZfSyCoSi5YsWbLWCXCLFi2ytm3b2oknnmhnn312WKOaNWtmU6dOtZ9++sm6du0aBFkEYNaTl156KVx/yCGHhHeB9zx6L5PFoueeey68C0QHEgXYt2/ffN8dnsc7+OGHH4b0027dutmNN94YTrXjGTyT6EH8lz5G79mOO+4Y+pLqPZNYlPlNkViUmVHOWGTTQprt0MTKP0NiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM61eRWMQTjjvuuCBQsOmaPHlyEGOiNDTqF7EJo5FmhUB05plnhiO22eiwcWODhejB50SycB8EjHT1jqKTrBBi2IA9//zzITqHzX0kFlHAmMgnGqLPnXfeGe5H1BPPwTYSaDg6nWLHbORuuOGGILwgJCHG8GuLFi3WApmKFRtLxCLsiRZiXIhQiD69e/dOWwA4iiziAXBiLAhpHPfOZhABiI3mhRdeGAQbGgIW40QgQ4QjzQ0RBPaMDVEH8YoUMnina0R4sTllXjgGnr4PGjQo3DMSiyIRjk0qgtoFF1wQfhCoEOe4HuGNY+hbtWplb775ph144IFho821CE2IcDAm0mp9NnwLjhzxjr+RQklUHGPgz8kt3efFNYa472Bx9YP7lkZWkViEf5cvXz7g45076KCDgmhKGhrvf+3atcN3kWiDL8+cOTOIi6ecckrw94022igwGjp0aPDrVGLRrFmzwjuC8M33iE5ENbHupXt3otRVRKlvvvkmvMesCaSabrXVVqFfDRs2DII2IlL0niEMI9qnes8kFmV+UyQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/pVJBZFqUqffvppiNIgKma33XZbRywiWogNEC1VGhrpW/yvPhsqhBzq5iCapGqRWMTGqG7duuFZ1Avif/7ZVJGGhlhEHaARI0aETVQktPA/9AgD1C9BqJkxY0aoM4RgQqTS/PnzjXQyPn/yySdDpBRjSmyeNDQEG8Qsom2ILErXIrGIaAX6xAaUqCyiB9i8JotFkXiVKg1t9uzZYbP4ww8/BKEsVd8T+8E8VKtWLYx/9erVoebRoYceas8++2yeWETfEQInTZoUIoaowQRjohiaNm1qRKAwZ0Qm/fzzzyGyiWgieBKhQQQYvkGqTocOHfwOGdMSfswZ4iRRFghbbLThRGMTjl8h4A0ePDgIWy+++KIREYXIxiY+ugccIkERERIBDaERgQCBEVERbtTGOv7440OkSFG0uO9gQZ+5obKKxCIEZuaShu8i6CaLRaxFrEm8CwixpMviM0QK8Y4R+UMEJcIy614qsQgBOhJ4EMSJ9sMP//vf/6Z8d4jaIxIQAYtoQtYzIpi4FoGJe9FXIguJYOTP0XsW9SfVeyaxKPObIrEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3j+lUkFiEAIQQhzlCfiP/tJhUiObIocROTX80i/jefaBREG4os5ycWESGCIMPmiv/h50QjNnSIRUQB7LDDDuHy888/PwgeCC38bz/PJzqGmkBEvfAZAtKmm24a7keEUNQQRJKL1haHWEREDkINKVsIGmz+iApKFosiES2/mkWINownmpt0XhCJRdR3Il2QaCI2n7CMIotOPvnkEOHEnJIWR+QFYiDRWohb2CKYwBCWiHGIbghKRBjxGRvgk046yRo3bux3yJiWpJY1aNAg1J0h6ok+kbYHS8Qg/BURjT+z8UaQI7IIxqRFIhogDOArRHQwftLo8AWuJ/Lq/fffD4ImURyIgAh6zE9RiWBx38GYiPLMN1RW6dLQ8NFksYi0M+qBvfDCCyEyCLEIMRIBl0hK3oGePXvmKxYBfOTIkSHqjlQ1BB7eccToVO9OnTp1gviNUEnkEKmQ9IsoQnwRcSgSgFnLWOui9yya3FTvmcSizG+KxKLMjHLGoqQW0pwBIrGoSKZKfuXHKFZi5Sfgt5RfiZWfgN9SflV8rCKxCHHlrrvuClEZ/BBFgoiTLBYlnnYWiRSvv/66ffnll2sVuI4jFhENwkaKDTwbODZ2URrasGHDQhFt7sfmjI0V6W0ISkS8IAAQbUSKB1FJRAFwctu4ceNCFAzpHUQRIH4liwGZxCLuQapInMgiNn0IWKSUIbwQmYTwkSwW8WfSXiKxiEgX+JNKExW4jiMWkWrF6XQ8E9EPJqS5RWLRLrvsEvgSZUU9JTbO9BVGRNewaSa6gk00fybaAtENoY6oI6IzSP0jyofUw+JqCCDUpUKwJDqLtLnx48eHmi9ETuGvbPbTiUWIS6QdErVG2h9CJRt0olAQHqlpg2DARh4WiEwUE0cAwNeLopXUerWhsiqsWMR6QGQd4ioRgdQRQzBCTE0VWYTgi2BKGiqCNlFBRDnyfqZ6d7gv90GERNBkDUKwGjBgQPAxxCJOVWSNIE018T2jb/h7qvdMYlHmt1NiUWZGOWNRUgtpzgCRWFQkUyW/8mMUK7HyE/Bbyq/Eyk/Abym/Kj5WsG3UqFEQCxBeaKRrsIki9YjNDWk+/O84G6VEsYg6MdQQonYIYgdpFlHkEZEdbJQ8kUVEwSDMkK7GM6ktREoI6UEIBFF6Gt/TT/43nnQqxCz+hz9qCCQ8l80ZfUM8otFvhAHSkhJbOr9iw0ZNExoiAmJRtLlLNxPcv1OnTiFyh77Rov4kFuuOahZFYhFcEUfoM/aIMpFYFKW/eCKLKKAd9RdGRGBRWBexBEGECAv6hqiEAMRz6QNROqRjMT4ajJlDhCQiehCQovFkqp3k99L0lggg1JVhE84x6EREEdFBfxkjc4n4kygWISoROYboQ6QR4ha21MtCIENEQ2BAJOK+bNDxuYkTJ+a8WLQhssokFlGLCH+mZlEUwYPojJCIDyDSEhGE6IwYyZrGGoavIPIg1CRGIZLaiR8iSNOI9kPYJfqH9M5U7w7pnIhKrB80hG2i96iBligW8Z33PZNYlHmFkViUmVHOWOgffv6pEiux8hPwW8qvxMpPwG8pvxIrPwG/pfyqZFiR9kXEDikT3sY1pD5RkyNVo64HG9rkhgBDmhFCAJsx6ocgDqQrho1wwjXJ3yMoEZ3DBiy5D/zvP2lH6caTn1/BAbEhMYWOKKHPP/98nbEgQpGyFTUEMj5LxyT5BvAjLQ37ZEErsiXagM1tcttpp51C5BKnlyGOIaAR+cNR4skNzkRDwCr5e9LO4FW/fv11GMOXZ/OM4m6IRYyHNJ7EQtpsstMV1oYfP4m+gV8guiU2PqPGDXbMbTrWhR1jSa1XYlXwmcIXeE9JGfM23n/8kFpeiS3du0PdLdY+/NbzHN4zBK5064bEoswzJbEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C2zza+IDKJ2THIjhY0IkEgs8o+w6CzjskKwIj0ruSFKEKlQnI1IIWqyJDeilkiRQcghKqu4WlxWBe0HtWFIO0QYzNUmVv6ZKylW/h5lr6XEosxzI7EoM6OcsdDi4J8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq9KJyuKaSPAcLrQ+milxa8QsIhGQDgqrpZNrBAZSZUksobaRNQiIm2RU9L4c2IjfS3V58XFifuKlZ9uNrHy93r9WEosysxdYlFmRjljocXBP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn6Vm6yoUUTtJ1LuqB/DaWjUqKIeE39Obuk+948+nmU2+ZVYxZu7bLaWWJR5diQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgtywpv+IkPk47o97LjjvuaEceeWQoOEw9F9ppp50WIoUocD148OBwOh4F2Nu1axcKtHOyXnQPahJx6hn2nTt3tkGDBoV6RdQtoiA7hb0peE39Goofb7nlln4g+ViKlR9jSbHy9yh7LSUWZZ4biUWZGeWMhRYH/1SJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/lV9rEitaxBgwahyDUF0BFxOC0KcQgx6LvvvgsnuCWehkZkESe+9evXz7p27WrPPvtsOBWPWlk1atQIp6edc8454XoKnr///vvh5KtHHnnErrnmmnDEOSfDdejQwQ8kC8QisSqS6cqZm0gsyjxVEosyM8oZC/0F7Z8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+ymxWnbA0cODBswOO0N998MxRmTj5dKM49CmO7PvxKrPKfMQSQ3Xff3Zo0aWKkUHG0OSfBdevWzSiWjlhE5FE6sQhxafjw4aF20bRp08JpdohFbdq0CbWN2rZtG45PJ+LoySefDCLTJ598Eo44P+KIIwrjTnnXlpRfiVWRTFfO3ERiUeapkliUmVHOWJTUQpozQLLgfyjEqjQQ8I9B76BY+Qn4LeVXYuUn4LeUX2U3KwSQu+++2y6//HJ/R83s+eeft7322su22267WNcVlfH68CuxyiwWcdw46WGbbbaZnXzyyeHEPApVr1ixwk488cQg/iSKRYhKTZs2DaLPZZddFk7Zw3blypVBwHzwwQetY8eOQSTivnPnzrXmzZvbxIkTc14sEquiWg2y/z4SizLPkcSizIxyxmJ9/AWdM3CSOipW/pkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSACh6DAbeVJ6qlSpEqJB+vfvbxwtv2jRIv/qJmMAACAASURBVNt///1tl112CSIRNgsWLAib/ylTpqxVk4YIEDbB//zzj9WrV6/YjqUXq+zzK6JlSEGrW7euVa5cOa+DS5YsWevPiT3HT/ihHlHUqEOE3yU2PqNeEXYISdQ0Ko5WUn4lVsUxe9l7T4lFmedGYlFmRjljUVILac4AyaejYuWfRbESKz8Bv6X8Sqz8BPyW8iux8hPwW64Pv4rEohYtWgQRqH379jZ06NCQYkaqGSk/FCweMmSINW7c2JYtWxbqwxDxgTBAmlFiTRpsKTbM/fr06WM9evTwA4hhKVZ+WCXFauTIkbbzzjvb5ptv7u9cllmKlX9CSoqVv0fZaymxKPPcSCzKzChnLLQ4+KdKrMTKT8BvKb8SKz8Bv6X8Sqz8BPyW8qvsZhWJRdSZ2WSTTUIEEdFDCEOIRdSFITKEU6m23357q1SpkrVu3doGDBgQatNQiDixJg1RIkQg8VNaxSKx8vt0rllqvfLPmFgVnFVxro3+XmWXpcSi7JqPQvVGi4Mfn1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVX2c0qEouoD4MgVLFiRStTpkwoMkw9mUSxqFOnTqEGDYLRvHnzQhoa0SSJNWlGjRpV6sUisfL7dK5Zar3yz5hYFZyVxKJ12Uks8vtT1ltqcfBPkViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXucUqv/oy0UiiukbRnz3X+Cn4LLPBrzzjFivffGaLVTb4VbawyNQPscpE6H/fKw0tMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsHruuef8Ny6Flr///ntO11wq7inhhLuo6R3005ZYlJmVxKLMjHLGQouDf6rESqz8BPyW8iux8hPwW8qvxMpPwG8pv8puVqShDRw4MBxTHqdRz4gi2Ntuu22cy4rMdn341YbA6vwrz7f+d/YvsnnSjUoPgV7nnWc9H3xQYlEBplRiUWZoEosyM8oZi/XxF3TOwEnqqFj5Z06sxMpPwG8pvxIrPwG/pfxKrPwE/Jbrw6+imkWXX365v6NmoQj2XnvtZdttt12s64rKWKz8JOOw6tq9q02YPMF/8xy33Lzy5sZP1JLTBvMd3u+/m/GzgbSd9tnHeg4aJLGoAPMtsSgzNIlFmRnljEWcv3RyZlDF1FGx8oMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSCy68MIL7emnn7Zos8wJZ/3797eNN97YFi1aFE5J44QzRCJsFixYEApcT5kyxX788ccwyNNOO83Gjh1rM2fONE5Fq1evnh199NF+ADEsxcoPKw6rD2d8aPxsKK1N/TbGT9TisLIPP7TwU5ytWTOz9u3Nhg41++ab1E+qXt3soovMvvjC7NVX19g0b27WurVZ2bJmP/xg9tZbZvPnF66nbdqY8fP/LRarwj0556+WWJR5CktcLOJkBv4yq1Gjxlq9oxgdpzhstNFG+fY6uUq5Xoj/4RKLzA6vhdTPSKzEKj4B/xVar8TKT8BvKb8SKz8Bv+X68KtILGrRokX4d3P79u1t6NChIcWMVLMzzzzTVq1aZUOGDLHGjRvbsmXLrEOHDvbggw/afvvtZ+PHj7dzzz3XJk+ebN99912w3XLLLY37FeeJP2JVPH4lseh7a9iwoQ9ucYpFW21l1q6dWf36ZmXKmL34otnkyWv3q1w5sxNOMGvUyIzfIyZRcwrxqHv3NbbLlplVqmT2/fdmTzzhG1c6K4lFBeZXULGINbly5crhhMpUDSG/atWqBe5XNl1YomIRR30OGDDAmjVrZgsXLgx/WW266aZ26qmnWrly5cL/eFxxxRXWpUuXtIwkFqV3n/XxF3Q2OXOcvoiVn5ZYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3Xh19FYlGTJk1sk002CRFERA8hDCEWXXrppcZ/tD7++OO2/fbbh/9wbd26dfh3Ntd88803RhTSF198EcQiIoqIQOKntIpFpZmVxKIsEYt2393s0EPNKlQwI8Bh2DCzL79cezGpWNHskkvWRA+VL/8/sYioog4dzMaMMRs+3Oy669YITjfd5F+MUllKLCowv7hiEYXWEeCPPfZYmz59+jpF1ydOnBjWXWrGoWs8+uijts8++xS4f9lwYYmJRStWrAghs5ESd/PNN9tvv/1mW221VQijveWWW2z27Nm2xRZbhL/8+IsxVZNYJLGoKF6c9fEPv6Lo9/q4h1j5qYuVWPkJ+C3lV2LlJ+C3lF9lN6tILKLANYJQxYoVw/9in3XWWcZ/viaKRZ06dQqbEgSjefPmhTS0kSNHGtH8/PubP48aNarUi0WlmZXEoiwRi6Jl46STzHbeObVYFNk0aWJ23HH/E4sQmCpXNlu0yGzLLc26dTNbssTszjv9i5HEosKxSro6rlg0bNgwGzNmjPXt2zfoGJtv/r+6WtyaCFDqzPErtoj37777bpH2uaRvVmJiEQPjL7CaNWva0qVLrW3btnbxxRfbiBEjrF27dsaRf/zFSBoa/wOSLtRQYpHEoqJ4SfSPZD9FsRIrPwG/pfxKrPwE/JbyK7HyE/BbZoNf8R+ppD3k15KLAHuu8VPwWYqVjxNWcVhJLCpBsahOHbMTT1x3IufONXv66TWfF0Qsiu5IhNEhh6z502uvmU2a5HeaVJaKLCowv7hiUfQghPtUYhH14KgPx6+fffZZSA3GLpdbiYpFgJo0aZJ17do1hNHyvyD8bwj/43H88ccHjnXq1Al51vXr17fRo0cH9S659ejRI++jOAttLk+Up+9i4aG0xkasxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+Kh5XEohIUi7bZxqxTp3UncsECs/vvX/N5QcWio44y23NPs5UrzYYMMZs+3e8w6SwlFhWYYSqxKPlmLVu2tFatWq31cTqxqFq1ajZt2rSQKcW9SQ2eNWtWgfuXDReWqFj03nvvhfpE9913n53ES2ZmN954owH2kksuCcX3iDyaP39+2kLXiixK7zb6C9r/SomVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsJJYVIJikWcKk8WiWrXMqLk7Y8aaote05DQ0Us/OOWfNd9OmrRGMaC+84HliehuJRQXmV9SRRQcccEBIUdt7771twoQJQed4NToJr8C9XL8XlphYRIpZ9erVQ9rZvvvumzdqAD7wwAMhn49THsjD/vjjj9NSkVgksagoXhn9Y8ZPUazEyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRVkmFpGmtssu/6tZFAlBc+aYPfjgGido3NiMzJnoNDQKYzdrtq6D9Orld5pUlhKLCsyvKMQiyutMmTLFmjZtapdddpnVrl3brrzyylC7qEqVKnZTYQuYF3h0RXNhiYlFVAzntIbE1rlzZ3vooYfssMMOs6lTp4ZjP4cPHx5OS0vXJBZJLCoK14/zF3RRPC+X7yFW/tkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Kp4WEksyjKxyD/NxW8psajAjAsjFnEy2mabbRZORyNNjZPeqbvcokWL0J8aNWqEAJhaRJ3lcCsxsSgTI/L56tata+U5YjCfJrFIYlEmX/J8r3/MeCitsRErsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWcfxKYpHEorSeJbHI/9IlWRZULMrvgZxC+csvv4Qi19Q2yvWWNWKRF6TEIolFXl/Jzy7OX9BF8bxcvodY+WdPrMTKT8BvKb8SKz8Bv6X8qnhY9e7d2/r16+e/eSmz/Oeff9LWHS1lQ409HE6B7tmzZ951cd5BiUV+sah31642auTI2POTsxfUrGnGz/83MnUqVarkGg4+uIDC3RtI22233eyDDz5I+w4m6wwbCJZ8hymxqBR5QZy/dErRsAs0FLHyYxMrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv+ravas9fu/j/pvLcoMh0KtLF+s5aJDEIseMt6nfxviJWpx3sPcll1ivDViwdeDdYE3q71HffvjsB4lFMTxAYlEMWNluGmchzfaxFHf/xMpPWKzEyk/Abym/Eis/Ab+l/Eqs/AT8lnH86rUvXrMxP47x3zzHLVtu09JabfO/Y6VnzJhh9evX941q9GizMRsOK2vZ0moeeWSBBBBFFvkjizh9e0Nuv/76azi63dPuGHaHvfvdux7TUmHTvmF7e+ehdyQWxZhNiUUxYGW7aZx/zGT7WIq7f2LlJyxWYuUn4LeUX4mVn4DfUn4lVn4Cfss4fqVNvX9Tbx9+aOFnQ2mFqC0jv4rhVxuKP6UZZ5z1qvfI3tbrw0KexpZDvHu17mU926RPBVUa2rqTKbEohxw8U1fjLA6Z7lXavxcr/wyLlVj5Cfgt5Vdi5Sfgt5RfiZWfgN8yjl9pUx9jUy+xyBo2bOhyRPlVDL9yES29RnHWK4lFa/uVxCKJRaV3ZdCpVbHmNs5CGuvGpdBYrPyTKlZi5Sfgt5RfiZWfgN9SflU8rLSpj7Gpl1gksSjNa1iYmkX+N7t0WsZZ2yUWSSzK9BYosigToRz6Ps7ikEPDKpauipUfq1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeP4lcQiiUVpPUtpaO6XTmKRG9U6hnHWK4lFEosyeZrEokyEcuj7OItDDg2rWLoqVn6sYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3jONXEoskFkks8r9b6SwlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRRKL/O+WxKLCs0q+Q5z1SmKRxKJMHiixKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRbkkFh3U4CDbb+v9bPaS2fbopEdTdr1etXp2xu5n2KrVq6zP6D7BhsifFvVa2EZlNrKZ82faU18+ZatXr/a/VBksFVlUcJRx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilhUpUIVu2y/y6xMmTK24K8F1ndc35Rdx6bqxlVtta223h/2tvo16luXPbrYylUrbeU/K22T8pvYiO9H2OgfR/tfKolFRcYq+UZx1iuJRRKLMjmixKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilh05l5nWt3Kda182fJpxaL9t93f2jZoG4ShcmXLBbHo5MYn2061d7LBnw+22YtnW/N6ze3XRb/aN39843+pJBYVGSuJRX6UvVr3sp5teuZdkLy29+nTx3r06OG/4QZgKbGoFE1ynH/MlKJhF2goYuXHJlZi5Sfgt5RfiZWfgN9SfiVWfgJ+yzh+JbFIYlEuiEXb1drOTt/tdHt12qt25I5H2sK/Fq4TWVSxXEW7ouUV9t3c76xOlTpWbeNqQSy6uPnFVrNiTfv7n7+t3Ebl7Lclv9kzXz4TBKeiakpDKzjJOOuVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWCSxKBfEoh4te9jSv5fa/ePvD5EWqcSiM3Y7w+rXrG93jLnDzmt6Xp5Y1H2/7lZ94+r2y6JfgmC0TfVtbMrvU2zo1KH+lyqDpcSigqOMs15JLJJYlMnTJBZlIpRD38dZHHJoWMXSVbHyYxUrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv5JYJLEo28Ui0s6u3f/a0E3qEJWxMuH3P8z7wQZ/MTiv+1e1usqILkq0WbZymf2y+BdrVLOR3fPxPbZ05VK77oDrbPGKxXbX2Lv8L5XEoiJjlXyjOOsVkWK9RvYqtr5k242VhhZ/RiQWxWeWtVfEWRyydhAl1DGx8oMWK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJRFYlHnzmbbbGO2fLnZ1Klmr7++7qS3bWvWrJlZmTJmP/5oNmyY2dKlZg0bmh13nFnFimZz5pi98ILZH3/4nSaVZZs2Zvz8f1tffkVBa+oQRa3VNq1sxaoV9uLXLxpFrw/Y9gAbNXNUKHxN6hlt3632tQplK9g7098Jfz5ku0Ps+3nfB5Fotzq72Ze/fWnDvh5WOD4JVyuyqOAo4/iVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJQlYhEi0P77m/31l1m5cmt+Bg82++GH/038lluanXOO2apVawSlTTYxmzjR7I03zK691myjjczmzzerWXONkPTYY36nyWKxKLlrpKFRb+jecfdah+06WPOtm9v4n8bbW9PfyjMl9SyqWVS2TNmQlrbpJpuG7yl+3X9Cf5u3bF7h+EgsKhJ+cdYriUUSizI5ncSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM41cSi7JELDr5ZLNGjczuvtts333NDjrI7PPPzV5++X8Tz+cHH7xGHPr+e7NLL10jDr333pqookmT1nzXtOmaa8aN8ztNDolFBR1UrUq1bJPym9jPi3621atXF/Q2Ka9TZFHBccZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVXYuUn4LeUX4mVn4DfMo5fSSzKErEomt6OHc12331NlNDDD5v9+uu6E7/PPmvEJCKLRoww23RTsz33XBNxVLas2aJFa1LYpk3zO80GIBYVDkb+V0ssKjjdOOuVxCKJRZk8TWJRJkI59H2cxSGHhlUsXRUrP1axEis/Ab+l/Cr7Wf3999+2fPlyq1y5sr+z69lyQ/Orv0ixMcqqVIxNfkNjFRtQwgVxWEksKkGxqE4dsxNPXHdq5841e/rpNZ+fccaa+kPUJCJK6NNP17WnjlCrVmtS1aZPN1u2zKxJkzW1ixCIEI4QjIhSKkzLkppFhRlCSV0rsajgpOOsVxKLJBZl8jSJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvKr7GL15Zdf2quvvmqdOnWyevXq2X/+8x8799xzrU2bNvbBBx+4OvvWW2/ZYYcdZi+++KIdc8wxaa/h/k2aNLE333zTdd84RsXpV2+88YZ98cUXds0118TpUlrbq6++2m6//XabPXu21WHTG7Oddtpp9swzz9hNN91k1113XcqrL730Uuvbt68h/JUlQiKhFSermEPJevM4rCQWlaBYRPHqTp3W9Z8FC8ymTDGrWtXslVfMdt7Z7KSTzP780+z++/9njyDEd++8Y7ZypdkVV5iRTvXWW2aHH272/vtmH31kduWVa6KObrzR7J9/Cu6vEovc7CQWuVGtYxhnvZJYJLEok6dJLMpEKIe+j7M45NCwiqWrYuXHKlZi5Sfgt5RfZRerZ5991k499VQbM2aMtWjRwg444AD7/PPPg/DTrl07V2cRU4444gh74YUX7DjqfaRpCCN77rmnvf322677xjEqTr/617/+ZQ8//LD9888/4ZSgwrarrrrK+vTpY7/++qvVrVs31u2WLl0aIr72339/e+ihh2zXXXdNef2FF15oDzzwgK1cudLKETUhsSgW58g4jl9JLCpBsSi/2TzzTLN69cy++sqsQgWzHXYwmzzZ7MMPzbp0MZsxw+z3381Y3zjtDHEJMQehacCANQLRwoVmEyaYHXjgmt/37Vsg/8m7SGKRm5/EIjcqiUUxUPVq3cso6J5ubefv5B49esS4Y+k3lVhUiuY4zj9mStGwCzQUsfJjEyux8hPwW8qvsocVc3HooYfat99+a3vttVcQIPr16xc6eN5559mDDz6YtrOvvfaaIXqQDrXPPvvY888/H8QiIoyIwCHyZdmyZdahQwe7//77QwQNP7Vr17btt9/eJk6cGMSo++67z6oSBVDIluhXRDr17NnTDjnkkBA1xfMuv/xya968eehTuv59+umndueddwYxC+Hs2muvtblz59o555xjv//+ux1++OH2+uuv20cffRT+UckzGQP3Q7RBcOvevbtxnx122MGuv/56O/3000MB2FtvvTVEbW2xxRZhvO+//34QizbeeGMbOHBg+CGl7IorrgjXpGvwfOedd2zzzTe3W265xdq3b28XXXSRffzxx7btttvaWWedFfqbKBY9+uij9uSTT1rnzp2tW7duYY4RA2fOnBmeRYRSsqBUyOkoNZfHWa8kFmWJWLTFFmYIRpFISlQRp6FVqbLmBDQEokceYZEzq1Fjja+Sdvbqq2bffGN29NFme+yx5nOijV580ezLLwvn0xKL3PwkFrlRrWMYZ71SZJEiizJ5msSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VX2sJo3b14QJxATED8QSM4++2yrUKFCEDYQR1I1olU2pRCssSc7M1y/aNGiIBZxT+5BtBLiEKlQkfDEnxFdWrZsaXPmzAkiVf/+/UPaW2Fbol899dRTdgb1SsyCQDJ48OAgriDOPPbYYyn7RxTOTjvtFK658cYbg7iDEMaY6B9C0BNPPBHElW222cZ++uknu+SSS8LYW7VqZYhnW3Ict5ldcMEF4brJkycHu99++8323ntv22WXXUJ6H2Om0Z9HHnnEbrjhBuvVq1d4xvDhw/OivFIxidIEmZvevXsHkYnP7rnnHnvvvfeMKK8ff/zR7rjjjhBZROTYKaecYieccEIQ8HgGfejSpYtVqlQpRCeREqf/UU3tgXHWK4lFWSIWRVNJ1N7ixWt+0rXq1ddEHyEgJTZSz0gR/emnNWlqhW0Si9wEJRa5Ua1jGGe9klgksSiTp0ksykQoh76Pszjk0LCKpati5ccqVmLlJ+C3lF9lF6vkNDQiZEhz+uSTT9J2dOTIkUFwQISh1hFRPAgsCCQIFEQNzZ8/3zbaaKMQ+TJu3Dj7448/Qk0k0q4+++wzW7FiRRBwiPZ59913/VDSWKYSi6K0uLvvvjtEFhF9Q72gdP2jnhICFhFWbdu2DYIK0TqJaWhc27Rp0yA6de3a1SZMmGA///xziBbiGoQb7BFlEJGInIIFgtD06dOtUaNG4XO+Ryxq3bp1+J5rZsyYESKA6CNiVaqGyAY3opmILOKeRAn9+eefgT8cEI1eeumlMBdRW7JkiW2yySZ5EUeIQ9Qy4jmMJ7/5LvTk5PAN4qxXEouyTCzKJr+TWOSeDYlFblQSi2KgUhpaDFj/byqxKD6zrL0izj9msnYQJdQxsfKDFiux8hPwW8qvsotVQcSi6JqooDURN0TwIFYgGpG6NWvWrDDQY489NggXixcvtoYNG9rWW28dxBrq/9SoUSNE3HgLaedHLpVY9PLLL9tRRx0VInnOP/98Gz16dIhyStc/BJcBAwaEcSAaIQBRhJrUsqhmEWltRx99tA0dOtSOP/74ME6iqRB6eBZiD9FHCGKk9pHihQ3XE2GE0IPI9Pjjj4cIIKKU+IzUsagh3nTk2O8ULVksoi+vvPJK6CP94L6JYhH3JpoL4QgGiHdELyEWlS9fPjyB1MCLL77Y75gbkGWc9UpikcSitK+GxCL3qiGxyI1KYlEMVBKLYsCSWBQfVrZfEecfM9k+luLun1j5CYuVWPkJ+C3lV9nFKhJ+EBNIKUO8yRRZhChRq1atEBWEyHDbbbeFlCtElh9++CGkthGxQhQRNXJOPvnkkA4VpaER6bNw4cKQRkX6FEJHYVsqsYh0N/rHiWFE8SAS3XvvvSn7RzoWwg1iCv2i/6RtTZ06NVyD2EOEFKlk1apVs9122y2kjlEviD8TYcT4qI9EFNGgQYOCiDNlypRQG4haTrAgqog+kbZHnzg9jvtSZ4lnPffcc0FwozaRRyzi2Q0aNLBhw4aF6CRqIY0YMcIQyphTxkxfFyxYYNOmTQvC2c033xzS1HbcccfwewSnojrprbDzmG3Xx1mvJBZJLJJYVPg3WGJRwRnGWa+UhqY0tEyepsiiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VV2sUJAIJIF8YJT0Kg1hABBylZ+DUGD9DMaaVujRo0KggW/RwAhzYpGJBFCSOPGjYOYQj0khAueh4hBClpBjo9P7lsqsYjInkmTJgVTinUTVURkTrr+UfgZkYhIHKKKsKeeDwIOdX9oFKsm/Ss6sh47xocwRVQPUUNRQzRDlCHljkghClPTENkQiIhaIprpyiuvDLWGaCeeeGKIToJTqhZFFvF8opa4f1Rv6OCDDw5RQxQUZ14Ri/7+++8Q2UXNIqK/+I4oJsZEYw6ot4RQprYugTjrlcQiiUVp3yFFFrmXF4lFblTrGMZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVX2ceKgtWkiSESUceGhsjwIUdNp2j77bdfiD4iagXxJCp2nWhK1Mzy5cuDCEHtosRGChqCTNxj4/Mjl0osQvDiVDJOHKO/nv4xHtLDELkiFlzHkfVwqk5BXOOU7QVBeKpfv/5aJ4lRFJtIIopdJ5/yRrFrIrKoHZTcuBfP43sP+8TrifTiNDPvqXKwgj3zt9VWW1mZMmX8TrmBWcZZryQWSSxK+3pILHKvHBKL3KjWMYyzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvcoMVggWRQqnaoYceGoSlbGrpxCKieHKtFTd7vYN+j4jDSmKRxCKJRf53K52lxKKCM4yzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvxMpPwG+Z6Fe//PKLffXVV7bvvvuGItpqaxPQO+j3iDisJBZJLJJY5H+3JBYVnlXyHeKsVxKLJBZl8kCJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TK2vnv7QAAIABJREFUT8BvGcevJBZJLJJY5H+3JBYVnpXEIj9DnYbmZxVZSiyKzyxrr4jzj5msHUQJdUys/KDFSqz8BPyW8iux8hPwW8qvxMpPwG8Zx68kFkkskljkf7ckFhWelcQiP0OJRX5WEovis8r6K+L8YybrB1PMHRQrP2CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRRKLJBb53y2JRYVnJbHIz1BikZ+VxKL4rLL+ijj/mMn6wRRzB8XKD1isxMpPwG8pv8oOVhSvPu6440Jnpk+fbqNHjw4nY7Vr1y6cjjVq1Cj7+uuvrXXr1rbjjjvarFmz7P3337d69erZQQcdtM4gvvzyy3Ai184772ycdvbKK6/YwoULw/WcGJbcEp8/efJk++STT8LJae3bt/cDSrDMRr9KZJLfoN577z2jzhKtVatW9t133wUWnORWHC0bWRXHOIvinnFYSSySWCSxqPBvnQpcF5xhnPVKNYtUsyiTpykNLROhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61fllx5Purr74ajoe/9tprQ2f69OkTRJ2xY8caJ51VrFjRnn/+edt///2DaNSjRw+78847g5DBcfSHH354EJCi9umnn9rw4cODPT+ISpMmTbJmzZrZRx99lPcc7JOfz3H0PJ97T5gwwY455hhr1KiRH9L/W2abXyUzyW9Affv2tb322iuY7LLLLkG4g8Fuu+0Wm4Pngmxj5enz+rKJw0pikcQiiUWFf1MlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61flnNnTvXiORBGLrmmmsMseauu+6yrl272ltvvRXECuaodu3aVqdOHatUqZJVq1bNnn76abv00kvDdX/88Yd17NgxbyAIQ+PHj7fGjRsHsQjhaNddd7Utt9wyCEHnn3++ValSJdgnP3/+/Pnh5LIWLVrY4MGDwz2aNm3qh1TCYtEbb7wRooCIviIKCmZnn3223XHHHdalSxf74osvQoTWihUr1mICM0Q6xLIGDRrY0UcfnTdGhLg2bdqEaCKYv/TSS0Esgg3RSbQDDzwwzE1RNL2DfopxWEksklgkscj/bqWzlFhUcIZx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5VXawuu222+zqq6+2v//+2/r16xdEIcSJk08+OQggpJJtv/32Qaw44ogjQppY586dQ2oawhBCEDakpFWoUMHefPNNq1q1ahCLaHPmzLEXX3zRNttsM2vbtm2ISKpcuXLe99HzIxpDhgwJ6XAnnnhieG7cVlJ+de+994aoqrp161rDhg3tkUceCZFWpN0RHQSff//737bxxhuvxeS5554Ln5GSB9+LLrooCGiISgMHDrQ999zTiEZq2bJliPpCLFq1apWtXr3avv32W1u+fHngXxStpFgVRV/X9z3isCpKsahsmbJ2ecvL1xn+jPkzbMhXQ9b6vPMenW2batvY8lXLbeqcqfb6t69b+bLl7dL9Ll3L7pOfP7EPfvigyJAWZlP/+cCBZhMmFFlfsv5G++xjxs//t59//jmIyp424ZcJxs+G0vbZch8767Cz8oYb5x3cUBilG2ccVhKLJBZlel8kFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvsoNVJNb88MMPQdQg+gexAsGGNLQoDYoUKQQkxJxLLrnEqK+DwMRGB7GIaBdqFSWKRVOnTrURI0aEmkjYLVu2zP773/+G+0Z1eKLns2nCJxCZxo0bF35/6qmn+iH9v2VJ+RXiGdFYY8aMsX333ddmz54dmB188MFhzIhu5557buhVIpPHHnssCGz8wAKBCR7UdZo5c6Y1adIkpOFRrwjxDf7vvPOONW/e3JYuXRqeI7EotlsU+oI4flWUYlG5jcrZVa2uyus/4hHRbD8t/MkGThqY93nbhm1t/232t7/+/su4hp/Bnw+2VatXWbc9u9mKVSvs73/+DvaIRfSxqFphxKJeXbpY78GDi6oruk8pItDlki42qO8giUUFmNM461XvD3tbr5G9CvCU3LxEBa7jz5vEovjMsvaKOItD1g6ihDomVn7QYiVWfgJ+S/lVdrBKjOzp37+/lS1b1v7666+QHoVYMXTo0BAJU6tWLTvhhBPs4YcfDsIG0S7/+te/rEaNGmsNJFEY4X5LliwJYgitU6dOVr169bXsEyObHnroIStfvnyInjn22GNDEe24raT86tFHHw1dY3xEXNHvQYMG2XXXXWdEHVGnieggWiITRLnXXnst2MP3zDPPDDYIbvfff3+IykJUY/yIZohFCFIwRCxavHixde/ePVxb2FZSrArbz2y4Pg6rohSLEseOUHRFyytCtFC/cf1s4fKFeV+f3Phka1Szkd398d2271b72kENDrLPZ39uvyz6xQ7b/jB77LPHbM6SObbs72VFjrNQYlGvXiEab0NtrHWsr2rrEuDvoJ49e+Z9Eecd3NB5xmGlyCJFFmV6XyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq+ykxViRFRXKOoh4gWRMlGj3g71i4hwKOqW6vlxnlGSfvXnn39azZo1baONNorTxSAMIbglC23cBPGJNL3kFnEpys1lSbKKBSgLjeOwKi6x6IRdT7BdN9vV3p7+to37aVxKSh137Gi719k9+OTDEx62vbfc20jnidq8ZfNCRNKSlUuKjHJhxKIi60SO3iiOX+XoEIus22LlRxmHlSKLJBZl8iyJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TKT8BvGcevikMsqlSukl3Z6kpbvGKx3T327rQdP2P3M6xhjYZByH3j2zesRqUatmfdPUMNoy2qbmFbVd0q1L2hnlFRNYlFBScZx68K/pTScaVY+ecxDitFFkksyuRZEosyEcqh7+MsDjk0rGLpqlj5sYqVWPkJ+C3lV9nBatiwYaGmEI2aOxzXTn2hdu3ahQ3nqFGjQrHm1q1bh4LOs2bNsvfffz+kiFHUOrlRy4faRTvvvHOIoCHFhCgarqeoc3JLfD6ns1FAm9PAOGGsIC3b/CqRR6bxJLLIZFsU32cbq6IYU3HdIw6r4hCLjtrpqCD6fDDjAxs5Y+Q6wyTtrGqFqvbKtFds5812tpN2Pcn+XPqnDft6mJXfqLzNXDDTalSsYZc0v8Tm/TUvpLEVVZNYVHCScfyq4E8pHVeKlX8e47BSZJHEokyeJbEoE6Ec+j7O4pBDwyqWroqVH6tYiZWfgN9SfrV+WZFKxhHunLh17bXXhs5wvD2iztixY+3QQw8NdXKef/75UHQa0ahHjx7G8e6tWrUKp5pRnBkBKWoUxh4+fHiw5wdRadKkSaF+z0cffZT3HOyTn0+xaJ7PvSnwfMwxx4R6PXFbNvlVMo90Y0k1F3HHXRD7bGJVkP6X5DVxWBWHWNR9v+5WfePqdvvo20MRaxrpZQdse4CNmjnKdquzm9WrXs+++v0rq1C2gu2w6Q42+bfJVrlC5VDLaPzP423zTTa3BjUb2NhZY+3d794tMnwSiwqOMo5fFfwppeNKsfLPYxxWiiySWJTJsyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/WL6u5c+cakTwIQ9dcc0042euuu+6yrl27hiPdOd2MOapdu7bVqVMn1CyiTtHTTz9tl156abjujz/+sI4dO+YNBGFo/Pjx1rhx4yAWIRztuuuu4eQvhCBOWovqISU/f/78+fbVV19ZixYtbPDgweEeTZs29UP6f8vi9iuipR5//PFwEhxjQSybM2dO4PXss8/+H3vnAWZFkX3xS84MIkiSIGJAFFdEYREBERUUFRGRRRFQWQyoBBFFBcyIKGJGUTBgAGEVsyIqYEBBV1Aw4N8l5yA58/9OsW92GGamT73pnpn35tR+88nOu13d/avT9eadd+uWM9RQBLxLly4uIyvGA7ucvfzyy3bDDTc47ih0feGFF7qrTs8Cv3v11Vdt06ZNtnPnTrf7Gcw27JaG8yOrC8Vfs9uiZpXd68tLx/uwisIsurPZnQ7HPdPuScXSuk5ra3x4Y5u5ZKYrZn1Vg6vcLmhoa7etdbuhFSxQ0Ho27GlYxoa2dddWe3zm46EWupZZFL9SfXQV/1mS40ix4sfRh5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WrvMEq7W5kI0eOdKYQjJtOnTo50wjmxFFHHWVYToVdv7BMDOZFzAiBEYQYLEnDDl1pd/7CHcJImTRpklWsWNHOPPNMl5GEAs4wk9DS7saG///GG2+45XAdO3Z05/VtUesKBaixaxkyoHAfRxxxhNsF7eijj3aMsKQPDG666SZ36Wl5PPbYY9ahQwe3NA8mG5b7pW1pWcAcKlmypON18skn27Jly5zpBjMNxhtMqey2qFll9/ry0vE+rKIwi1gWlUtXdnWN8JO2VShZwQoVLGQrN69ku6LjZBbRqA4K9NFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5Su8garmEGBTBcYG8j+wfIpGDZYhoalYPXr17cRI0Y4AwlmTu/eve3TTz912TUwPGAWIbMGtYrSmiPz5s2zKVOmOAMFcdhV7ffff3f9wlxBi51/6dKlLpMJJhK2jMe/O3fuzEP6b2TUusKuZFi6h2wgbGnfo0cPe+WVVxwDXPvnn3/usqLOOeecg8yi2bNnu+wpmHExMykjswgZRU899ZSr24RsLdR/glkExviRWeQti2wf4KOr3DSLsn2jcXQgsygOaDk0X8V/ZXnvSJ9nMO9dfc5ekQ8rmUUyi4LUmStmEf7Ywjdy8Wy7m/6PJJ8HIghGor8uFvwIipVY8QT4SOlKrHgCfGSUukqbzQKDolChQrZ9+3a3zAmZQhMmTLBixYpZ+fLl7ZJLLnFLrFCwes+ePdazZ8+Dtn9PaxahP2TiwBxCu+KKKywlJeWAG0+b2fT0009bkSJFDNvDt2/f3i238m1RssK14NqQWYSleWvXrrVrr73WLRH77bffnHGE+4HhhuV7aGl5wFC67777nAmEOk7pW4wF+CMLKXaOcuXKuSWAMot81RBevI+uZBYd+OErvFFIvp58dJV8d+93R2LF8/JhJbMoPrMoyMvAlz5lypThBy0PR+aoWbRq1Sq3Vh9/BOJby8MOO8z94YX09NatWztMWP9/zz3/W5Odnp3MoszV5DM55GFN5siliRWPWazEiifAR0pXeZMV/gCK1RWKXSEygrA8LdZQkBnmRTxf+ATddUbnDzom7es5oSuYPuvXr7dDDz3U59K8YnEOcMcXa/g7CYZd2C3GCuYUWszUC/s8idAfdIf7R3ZcRs1HVzKLZBaxmvfRFdtnssaJFT+yPqxkFvmZRRl5GWlHBhnEV155pdWsWdPVGXz++eetYcOG/ODlwcgcNYuwLSzStpHOvnLlSmcW/fLLLzZo0CBXzDGzN+m03GQWySwK4znymUjDOF8i9yFW/OiJlVjxBPhI6UqseAJZRz755JMuG+yyyy5zS/3uvPNO9/cXvqS74447wjpNlv2kvYYwTnjqqae6DLaff/7Zuzt8+/u3v/3Nsfjiiy+sWbNmGfaB+ln4QaZYUJNZJLMoSCOx1zW3s6TMPaO1a9fmD8jHkT6sZBb5mUUZeRlppYbM4ZtvvtllECN21KhR9vHH4e0+mRuyzlGzKHaD+DYyZha9++67ri4B3rCx8wnMoDPOOCNTFjKLZBaF8aD4TKRhnC+R+xArfvTESqx4AnykdCVWPIGsI7G0DzWQ8McrzJXYznVYAoid63Kipb2GMM6HAuDIDPr111+9u/vss89ccfbrrrvOBg8e7L7EzKjhQyqKmaNWV1CTWaQP9UEakVnEEvpfnN4HeWY+rGQW+ZlFGXkZaUcG72/YLRb//eGHH9zKKXgeidxy3SzCGy8KOPbq1csVzsSafWQbZZbeLrNIZlEYD5zPRBrG+RK5D7HiR0+sxIonwEdKV2LFE8g88u6773aGCOoo9O3b12CUoN4SDBLUUrr66qszPPjee++1Dz/80GXd4O807OTWp08fq1Gjhi1ZssQZLSjsjaWKSL/HeVB76vXXX3eFumHitGjRwmWVjx49+oBrGDJkiMGoeuKJJ1ytrHPPPdfuv/9+d434RnbYsGEuo6Bx48YuBsYQlkGiQDh26zvttNNcQXbsHIfzoMQBzjlu3DhX1uDRRx+1Bg0aZHhf6LdNmzau3hSKuD/33HPuGrDTHF478cQTXeYVCpfHzCKYbDfccIMrqfDII4+4Wl7pz7ex/EaDYZRfmgpcxz/Smtt5dmIVDSuZReGaRViij/eiKlWquPeR5s2b2+LFi/nBy4ORuW4W7dy50xXUxA8KZmIpGqAefvjhNmPGDLdsLX1Lu2WsJg+57vE8V9INT02sxIonwEdKV2LFE+AjpavMWeHLuYsuusj9EQuD4+uvv3ZmyHnnnWd33XWXM2IyajCRUHcBphJMn/Hjx1vXrl1t7NixbjkblrHh7zJ80ff222+712HuwExCUXQYQN27d7drrrnGOnTocMA11KpVy+rUqeP+5oMJhet66KGHrG3bti4DChnn+Pfw4cPddeOP8JEjR7od+XDdBQsWtHfeecftrofXkJmOXfhgZsH8Wb16tS1fvtzVfkrfUHcKZRBgQsE8wzH4wx6tf//+7jrwN+n8+fPdNSKzCNlXKHCOAuQwjTI63/hvxts3q77hRZvgkTKL4h9AzVc8O7GKhpXMooPNovSk8aVE06ZND/h12lVSaV/Alyr4YgTvp7NmzXJfnkyePJkfvDwYmetmEb7lwps5/kBA2laXLl3sjz/+yBSVMosyV5EmUv4JEyux4gnwkdKVWPEE+EgfXaH4Yn5uKCiJwpJqGRPAH7CxZWj4QxZmzMCBA11mUWYtZhbBdKlcubIzb9577z33txs2KOnYsaPLOEJBbmT4XHjhhe5vumrVqrku8f9RvwHGEnbDS7sMDX9Uw6hBdg9qAiFbCMYO6gfByPnpp5+cQYOsc1wnMtERD0MIqf0bNmywQw45xJlFyJTCOWFUnXXWWS7bafr06a7P2CYq6e/xrbfecubVRx995I6BgTZlyhR3bzCR0HBf2Inuzz//dP8fccgwWrZsWYbne3Dsg7a15tZ8I0GZRfEPtc/cHv9ZkuNIseLH0YeVzKLsZxZt3brVLevG+2m/fv3cbqi33HKLq12EDUOy2riLH9Xci8w1swh/0OKPDPzx0apVK/ftDX7w7Rb+EMmsySySWRTG4+IzkYZxvkTuQ6z40RMrseIJ8JE+urp90O12/z33850rMt8QGDJwoI1+6aW4zaJYrUmYQxMmTLBFixa57KGrrrrKLS/bvXu3W5YFQwrGDQwfZCTBiMHffFjyhQLRac0iGD8wjGC8IHMIWTxYwvbMM8/Yww8/7AwaZB/BuEEmD/qE6YRU/1hB60qVKrmi3S+88IL79hffAqetfXnppZe62kwZtbRmUaNGjZzphHb99dc7QwjZ7WnNImRX4V5gWuEDQkbnq316bVtYdGG+0ZXMoviH2mduj/8syXGkWPHj6MNKZlH8ZlHMy8CyZLwXbNy40SW8NGnSxA0W3pfwBQTeFxO55YpZlBGwFStWuG+sgprMIplFQRphXveZSJn+kjlGrPjRFSux4gnwkT666t6nu014cYLZPjMrYPv/m90W6ye7/aXvJ4T+ihQsYkULFU29Qyxnx7J2qu3cabZrFxWaDEHXXXKJjZ4yxRkt2Fxk7dq1XplFWEYGI6hHjx528cUX25tvvumWmKFkADKJkO2DDCDUGoLpAsMGXwDCXMKSMWTr4I9pmEWxa4C28YUhlqu1b9/e/vGPf7glZp06dXIZQtgABUvXbr31VpdFtHTpUrd0bujQoc5Mwi5oyEDC+fBH+aGHHur+DeMINZNmzpzplsbBiMqopTWLYHwh6wo1mHr27On++MfmKzCFkN2EpXK4zxNOOMFdG5a/4UvP9Ocb8MQAm7t1bjJIhroHmUUUpgyDfOb2+M+SHEeKFT+OPqxkFsVnFmU1GvjiBF+A4L0usxrM/GjmfmSeMYtYFDKLZBaxWskqzmciDeN8idyHWPGjJ1ZixRPgI310pZ2YPHZi+vxzM/zkl9aihd3y/vuuFg+WXmFZF9Lm77jjjizT5GPL0GCQfPPNN674NApe49tTLGWDERRb/oglWsg6ghkEwwf1i9BgtKDuELJ8kJ4fuwYYOjCJsKwNDYWmsWwM5g5MG2QYxRr6gqmEbCPUhUBxbWT6IM0fmemoWQQDB0WzkfmDBkMJ2UuZtbRmEZbKxZbY4R5xLcgsQl8wx2K7oSHDCZlOY8aMceZU+vM1aN9ABa61xTk1q/jM7VSHSRwkVvzg+rCSWRS+WcSPVGJEyixKjHGirtJncqA6TOIgseIHV6zEiifAR0pX0bCSWSSzKFNltWhh1qKF2/Fr7969hoxu7PKF9vvvvxvqPaVvMGNQzBnLyfbt2+dKByCbBuZMrCGbC8ei1hCWhKVta9ascdk/6etIxa4BNY7QcC07duxwy9rSfhOLnc9gROH4okX/l0GGb26RZYQaRWmvJXZuLJFD3Qj0n9W9wRBK3/CNMO47bb9B81Xa8+kZ9HgG+WkwKSODdJWUNx3nTYkVD86HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjIvKSrWJFcLH9B/ZTMWizDAh+ac7L5sNIHVY8PqvkwswhmUayl1dWPP/7odjNL35BGjyVdMbMoJ3Uf1rmyurdYbYmgc+kZzJyQlqEFqSfz1310Ff9ZkuNIseLH0YeVzCKZRUHKklkURCiBXveZHBLotiK5VLHisYqVWPEE+Mi8pKuYWYTlJciiyKxh+29sFy6ziB/nqCOz9UFVZlFqZlFW44QdyZBtg2Va+bX5zFcybD0M2/wqqP/et4+u8jkqEyteAT6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq6QRXHttde6orzt2rWzZ5991u22BLMIdUr69Olj3333nStei4K6l19+ucXMItRAQf0UFMN98skn3ZbfUTYfVvqg6vFBVWYRZRZFqe1E6VvPYOYjlS3DNlEEENF1+ugqoktImG7Fih8qH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI3NbVzCIsEsStv3GLkowjWAWYRla1apV3Y306tXL7fiEbVFRTBeFgJFZhHomJ510ktsSHAV3Y0V8+bv3i/RhJbNIZlGm6vpvzaLY6z668lNs8kX7sNIz6PEMJp9UvO7IR1deHSdhsFjxg+rDSmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4AnxkbuoKBXexg1K3bt3cjkZTpkwx7OIEswi7HrVo0cLtwoTts5FlhC20kXGEXZFgFq1cudIZRrGdk9BfrFAvT4CP9GGlD6oeH1SVWaTMIvIx1DOYOShlFpEiyiDMR1fxnyU5jhQrfhx9WMksklkUpCyZRUGEEuh1n8khgW4rkksVKx6rWIkVT4CPzE1dYeci7K4UK2j9xx9/WJ06dZxZBNPoggsusJdfftktPfvhhx+sQYMGbmtxxMEsWr9+vZUrV85tA46sIplF/LiHHZmtD6oyi2QWkYL0ma9k2HoYtiT/ZA3z0VWyMmDvS6xYUuZV3+muz++yIV8M4TtP8MghzYfY4BaDU+8iva4efPBBGzBgQILfZbiXL7MoXJ652psmUh6/WIkVT4CPlK4Sh9Wpp57qtvt++OGH7Z133nGmD8wi/KGA7b9Rh2jQoEEu8wjL1X7++Wd76KGHnFl05ZVXumwj/Pf888+3yZMn8zceR6SPrvRB1eODatRm0SWXmB19tNmuXWbz5pm9/77Z3r0HKuCaa8xSUv73uxUrzF580Qxb2l98sVnx4marV5u9+abZmjVxqCfNIVqGFjc/PYOZo8uWYRv3iCTHgT66So47jv8uxIpn58NKmUXKLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq4++OADO/fcc90Ft2zZ0qZOnWo33nijjRw50hlCKGYda/3797dhw4a5+kbYRhyZRliSVqZMGfvwww+N3X6bp3NgpA8rmUV5xCxq3Nisdev95hB+ChfebxZ9++2BgztokNm+fWY7duz//fLlZuPGmd1+u1nBgmYbNpgdcojZokVmL7wQr4T2HyezKG5+egZlFsUtniwO9NFVFOdPpD7Fih8tH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj8wLutq6dautW7fODj/88IMufPv27S7zCMWuYQqlb6tWrbLy5ctbYZgAETcfVjKL8ohZ1LWr2RFHmD31lNmePWY33LA/Q+jJJ/+nlqJFzQYONJs502z6dLPNm/e/dsIJ+7OKvv/e7L33zE45Zf/vv/kme0qTWRQ3Pz2DMoviFo/MolDQ+TyDoZwwgTvxYaXMIplFQVKXWRREKIFe95kcEui2IrlUseKxipVY8QT4SOkqGlYyi/KIWVSypFmxYmbr15u1aWPWqJHZr7+avfba/wa+Rg2zK6/83//fts3sX/8yq1vX7KST9ptMhQqZbdpk9u67+4/PTpNZFDc9n/lKz6DHMxj3iCTHgT66So47jv8uxIpn58NKmUUyi4KUJbMoiFACve4zOSTQbUVyqWLFYxUrseIJ8JHSVTSs9EHV44NqdmsWVapk1rHjwQO5bt3+pWRoeP2448x27zYbNWp/dlGs1aljdtFFZitX7l9u1qCB2dq1ZsuW7c8u2rp1v0EE4wiG0cMP86LJKFJmUdz8fOYrPYMez2DcI5IcB/roKjnuOP67ECuenQ8rZRbJLApSlsw00wCqAAAgAElEQVSiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdKV9GwCvuDakrxFOt2YjcrW7ysbdqxyWYsmmGzls066OK7/q2r1Shbw3bs2WHzVs+zd39718Wg+G2T6k2sYIGCtnDDQntl7iu2DzV6QmrZKq6bXbMImUFXXHHwnfz1l9kTT5j16mV26KH7jaAxY8zw+7QNtYjws2SJ2c6d++sUxWobnXee2dSpZtOmmd1yixkyle6+++AC2T4cZRb50Dog1me+CvsZjPuic+jAbD2DOXSNefU0PrrKq/eQU9clVjxpH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5SuomEV9gfVng17WpXSVeyvHX9Z2WJlndFz37T7bM++Pak3cGbtM+30Gqfb9t3brXDBwu7nxX+/aPtsn3X7WzfbtWeX7dq7y0oWKWlT/m+KM5zCatn6oJpdsyirmzj7bLMmTfYvJfvll/1FrJE19OOPZt26mf3nP2aLF5vBFIJZhP/ftOn+LCPshgaDaONGs1mzzM44Y/+/R4zIHjaZRXHz85mvwn4G477oHDowW89gDl1jXj2Nj67y6j3k1HWJFU/ah5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WraFiF/UG1T+M+tnvfbnt85uN2dYOr7fCyh9src16xBesWpN5Ap+M72ZGHHGkPf/2wnVrtVGt5REv794p/W/HCxe3YCsc642jF5hXWuHpjW75puf2y5hf+5gMis/VBNUqz6PrrzSpWPPDqsazslVfM/vnP/xW7vu46s8MO2x8HYwmv//mnWbt2Zn/72/7fw2iaNMls7tzscZNZFDc/n/kq7Gcw7ovOoQOz9Qzm0DXm1dP46Cqv3kNOXZdY8aR9WCmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdTZw40S7GblJmtmDBApsxY4ZVq1bNWrVqZQUKFLDp06fb/PnzrXnz5nbMMcfY4sWLberUqVa9enVr2bLlQTcxd+5ct+tZ3bp1be/evfb222/bxo0b3fG1atU6KD7t+efMmWPffvut1ahRw85GtkkczYdVVB9UYRRVK1vNZQndP/3+DO/igmMusBMrnWgFCxa0Z2c9ax2P72iHFD/Edu/d7bKNVm5Zaa/OfdX+2p5uOVYcTGKHZOuDapRmkc89YYkZjCVkGMEwijX8HnWR8Ptdu3x6zDhWZlHcDPPCMxj3xUd8YLaewYivLa9376OrvH4vUV+fWPGEfVgps0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXf311182efJkW7Rokd2O+i9m9uCDDzpT56uvvrI2bdpY8eLFbfz48Xb66ac702jAgAH20EMPWdOmTe3rr7+28847zxlIsfbdd9/ZJ5984uLxA1Pp+++/t0aNGtm0adNSz4P49OfftWuXOz/6njVrll100UV25JFH8pD+G+nDKiqzqN/f+1mZYmXc0rIRX4+wjTs2HnQfXU7sYrXL1XaG3Hu/vWdNaza1lGIptmzTMmcY1UipYT+v+tkmzJvgzSCzA7L1QTWvmEWh0QjoSGZR3KTzwjMY98VHfGC2nsGIry2vd++jq7x+L1Ffn1jxhH1YKbNIZlGQsmQWBRFKoNd9JocEuq1ILlWseKxiJVY8AT4yCl2tW7fOkMkDY2jgwIEGs2b48OHWvXt3++CDD+y4444znLdChQpWqVIlK1GihJUtW9bGjRtnffv2dcetWbPGLrjggtQbgTE0c+ZMO/74451ZBOOoXr16VrVqVWcEXX/99Va6dGkXn/78GzZssJ9++smaNGliL774ouvjlFNO4SHlAbOow3Ed3BIy1BnCv48/7HhX4DpWwBqXiGVnZYqWsbd/fdvqVqxrl9a71NZuXWsbdmxwy9Me+foR27prq93R7A7bvHOzDf9quDcDmUUhIJNZFDdEn/kqKsM27ouP+ECZRfED9tFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj4xSVw888IDddttttnv3bhs5cqQzhWDcdOrUyZlGWEp21FFHGZaXtW3b1i0T69q1q1uaBmMIRhBisCStaNGi9v7771uZMmWcWYS2evVqmzRpklWsWNHOPPNMl5FUqlSp1Ndj54/ReOONN9xyuI4dO7rz+jYfVmF/UB14+kArUrCIfbn4S2cUlStezl6b+5rLMmpWs5lNXzjd6leqb9VTqttPq36yooWK2tGHHm1zVs5x9YnOqXOO/d/6/3MmEeLmrpxrE+dP9EWQaXy2Pqgqs8hq164d2lgkc0e5+Qzmda7Zegbz+s1FfH0+uor4UvJ892LFD5EPK2UWySwKUpbMoiBCCfS6z+SQQLcVyaWKFY9VrMSKJ8BHRqmrmFnz559/OqMH2T9YTgbDBsvQsBSsfv36NmLECGcgwczp3bu3ffrpp85gQn0jmEXIREKtorRm0bx582zKlCmuJhLitm3bZr///rvr9+ijj3YAYudfunSpy2SCyfTNN9+4f3fu3JmH9N9IH1Zhm0UoWN3mqDZWwAq4ndD+3PCnvfTjS9a6TmtrfHhjm7lkpitmfVWDq1xdIrS129a6otZbdm6x6065zg4teaj7PeodPTXrKVu/bb03g8wOyNYHVZlFMotIJebmM0heYq6FZesZzLWrzhsn9tFV3rji3LsKseLZ+7BSZpHMoiBlySwKIpRAr/tMDgl0W5FcqljxWMVKrHgCfGSUukqb2fPUU09ZoUKFbPv27dauXTuXKTRhwgQrVqyYlS9f3i655BJ79tlnXcHqPXv2WM+ePa1cuXIH3Ehaswj9bdmyxZlDaFdccYWlpKQcEJ82s+npp5+2IkWK2I4dO6x9+/auiLZv82EVtlmEay1UoJArbh2rPZTZ9VcuXdllEOEnbStforyVLFLSlm5a6gynMFu2PqjKLJJZRIoxt59B8jJzJSxbz2CuXHHeOamPrvLOVefOlYgVz92HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjInNTV5s2bU+sKxa4QGUFYnhZrKE6N+kUozhx2y+j8PufwYRWFWeRzrTkdm60PqjKLZBaRgtUzmDmobD2DJP9kDfPRVbIyYO9LrFhS5rKY2SXGMotkFgUpS2ZREKEEet1nckig24rkUsWKxypWYsUT4COlq2hYySzi/0g2mUX0BwperckZ6TNf6Rn0eAaTUy70Xfnoiu40SQPFih9YH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6PU1cSJE11NITTUKZoxY4arL9SqVSuXOTR9+nRXzLp58+Z2zDHH2OLFi23q1KluiRiKWqdvKISN2kV169Z1tYzefvttt2wNx9eqVeug+LTnx+5sKKBdo0YNO/vss3lAaSJ9WOmDqscHVZlFMovIJ1LPYOaglFlEiiiDMB9dxX+W5DhSrPhx9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXWEp2eTJk23RokV2++23u4vB9vYwdb766itr06aNqzU0fvx4V3QaptGAAQPsoYcesqZNm7pdzc477zxnIMUaCmN/8sknLh4/MJW+//57a9SokU2bNi31PIhPf/5du3a586PvWbNm2UUXXeSKa/s2H1Yyi2QWZaqvFi3M8PPf5qMrX80mW7wPKz2DHs9gsgnF8358dOXZddKFixU/pD6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdGoat169YZMnlgDA0cONBg1gwfPty6d+9uH3zwgdvdDOetUKGCVapUydUsQp2icePGWd++fd1xa9assQsuuCD1RmAMzZw5044//nhnFsE4qlevnlWtWtUZQdhprXTp0i4+/fk3bNhgP/30kzVp0sRefPFF18cpp5zCQ4rjQ70+qPIfVD8YNsxszhzv8UjYA+rXNzvhhNTLX7FihVWuXJm6HZid+a01bNgwLlZzV861Oavyj67qH1bfbul2i0zIOB6QKN4H47iMhDhErPhh8mEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXdjWzkyJHOFIJx06lTJ2caYSnZUUcdZVhe1rZtW7dMrGvXrm5pGowhGEGIwZI07J6Wdjc03OHq1att0qRJVrFiRTvzzDNdRlKpUqWcmYSWdjc2/P833njDLYfr2LGjO69v82Els4g3i+7q3t2GjB3rOxyKFwERSEOgW+9uNmbEGJlFcajCZ26Po/ukOkSs+OH0YSWzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdxcyaP//80xk9yP7BcjIYNliGhqVg9evXtxEjRjgDCWZO79697dNPP7Xdu3e7+kYwi5CJhFpFac2iefPm2ZQpU1xNJMRhV7Xff//d9Xv00UcfYBYtXbrUZTLBRPrmm2/cvzt37sxD+m+kDyuZRR5m0V13OXMwv7atW7dayZIlqduHxrHMMr+0cuXKWZ06dVJv14dVfmEUu08syR08eLDMojgG3mduj6P7pDpErPjh9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXN7HnqqaesUKFCtn37dmvXrp3LFJowYYIVK1bMypcvb5dccok9++yzrmD1nj17rGfPnoYPimlbWrMI/W3ZssWZQ2hXXHGFpaSkHBCfNrPp6aeftiJFitiOHTusffv2roi2b/NhJbOIN4t8xyHZ4n10lWz37ns/YsUTEyux4gnwkdJVNKxkFsksClKWzKIgQgn0uiZSfrDESqx4AnykdJU3WW3evDm1rlDsCpERhOVpsYasCdQvwm5pYbeMzu9zDh9dySySWcRqy0dXbJ/JGidW/MiKlVjxBPhI6SoaVjKLZBYFKUtmURChBHpdEyk/WGIlVjwBPlK6EiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldRcNKZpHMoiBlySwKIpRAr2si5QdLrMSKJ8BHSldixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpatoWMksklkUpCyZRUGEEuh1TaT8YImVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ2ruz6/y4Z8MYTvPMEjhzQfYoNbZF6Q/8EHH7QBAwYk+F2Ge/kyi8Llmau9aSLl8YuVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ0rZRYpsyhIWTKLgggl0OuaSPnBEiux4gnwkdJVNKwmTpzId5yEkStXrrRKlSpRd/bz6p/t51U/U7HJEFTvsHo26JpBqbeiZ5AfVbESK54AHyldiRVPgI+UrqJhpcwimUVBypJZFEQogV7XRMoPlliJFU+Aj5SuomHV65Ze9uRDT/KdKzLfEOjWu5uNGTFGZlEcI675iocmVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj6669+luM7+fyXee4JEVS1a0iqUqpt7Fli1brFSpUgl+V9Fc/gknnGCDB2defyCasyZHrz7PYHLccfx3IVY8O7ESK54AHyldRcNKmUUyi4KUJbMoiFACva6JlB8ssRIrngAfKV1Fw0p1eFSHh1WWnkGWlJlYiRVPgI+UrsSKJ8BHSlfRsFJmkcyiIGXJLAoilECvayLlB0usxIonwEdKV9Gwklkks4hVlp5BlpTMIp6UWImVDwE+VvOVWPEE+EgfXSmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+0kdXMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAf6aMrZRbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEf66EpmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dKXMIplFQcqSWRREKIFe95kcEui2IrlUseKxipVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+ulFkksyhIWTKLgggl0Os+k0MC3VYklypWPFaxEiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldiRVPgI/00ZUyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klkksyhIWbliFm3evNlKlSplBQoUSL2+LVu2WIkSJaxgwYJZXvODDz5oAwYMSI3xeSCCYCT662LBj6BYiRVPgI+UrqJhJbNIZhGrLD2DLCkzsRIrngAfKV2JFU+Aj5SuomElsyg+sygjLyPtCG3atMnKlCnDD1oejsxRs2jVqlU2Z84ca9++vS1YsMAOO+wwW7NmjXXu3NkKFy5sCxcutP79+1u3bt0yRSazKHM1aSLlnzSxEiueAB8pXUXDSmaRzCJWWXoGWVIyi3hSYiVWPgT4WM1XYsUT4CN9dCWzyM8sysjLSDsys2fPtiuvvNJq1qzpfI3nn3/eGjZsyA9eHozMUbNo4sSJ9uWXX9qIESNs5cqVziwaOnSowX277777bMWKFValShVDllHJkiUzxCWzSGZRGM+Rz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZ5GcWZeRlpB2Zs88+226++WbDfxE7atQo+/jjj/nBy4OROWoWxe4fy89iZtHVV19trVq1sk6dOtm+ffvcMrQ//vjDateuLbPIUzA+k4Nn10kXLlb8kIqVWPEE+EgfXcksklnEKstHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrsI0i97t/K61OqKVFb+vuLvYKqWr2FPnPWVt6rSxv3b8ZQOmDLCx/x6b4Y38/fC/2yddPrGde3da+QfL2zNtn7GO9ToeFHvqc6fagnULeBjpIoc0H2KDWwxO/W16VumTUjI7UVovI21M9erV7auvvjL894cffrDWrVs7zyORW66bRR07djT8dOjQwXGsVKmSzZw502rVqiWzyFNZPpODZ9dJFy5W/JCKlVjxBPhIH13JLJJZxCrLR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj67CMIuuOukqu7HRjVa/Un13kQXu2l+T+J1/vGNtj25ryzYts8qlK7vfHfnYkfafDf856GaW9l1qVctU3Z84cndBe6X9K3Zx3YtT44oX3m9A1R5Z2/7c8CcPI11k1GZR2bJl7ddff3UrpTAOzZs3t8WLF8d9vXnhwFw3i+6++24D2N69e9uePXvskEMOsQ0bNrgMoxkzZrhla+mbClxnLB2fySEviC83r0GsePpiJVY8AT7SR1cyi2QWscry0RXbZ7LGiRU/smIlVjwBPlK6EiueAB/po6swzKIxF46xdse2s5RiKW7zqphZtGXgFitcsLAVu7eYDWo+yO5qcZfd9ultNnTG0ANuZuDpA+2+lvfZ1l1brUThEs4sSttubnKzPXTWQ/bq3FftskmX8SAyiGTMovSHnXbaada0adMDfp1ZZlGzZs1cuZ2TTz7ZZs2aZfA5Jk+enK1rzu2Dc90sAsAnnnjCreebMGGCPfLII/b1119nykU1izKXjM/kkNvCy+3zixU/AmIlVjwBPtJHVzKLZBaxyvLRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjqzDMotiVLe+33GUQxcyizbdttqKFilr5YeXthQtfsEuOu8Qmzp9oHcbvX02EBoNpdf/V9vH/fewykw4vc/gBZlGlUpVsWb9ltnHHRjt02KG2d99eHkScZlHapJTMTpbWLNq6dav9/PPPdsopp1i/fv2sQoUKdsstt7jaRaVLl7Z77rknW9ec2wfnmlmEauIVK1a0bdu22bnnnmvz5s1z//7kk0+sUaNGMoviUIbP5BBH90l1iFjxwylWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+uorSLBrVdpT98+R/uqVlMFfQPlzwobUZ1yb1Zj66/CM7o9YZVuGhCvbTdT8dZBZNuGSCdTiug3Wc0NEmzJvAQ8gkksksYs2imJeBnd6RebRx40ZXd7lJkybu7OXKlXMJMOXLl8/2dedmB7liFmV0w1jPV7lyZStSpEiWPJRZlDken8khN0WXF84tVvwoiJVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+uojSLcMVnH3m2dT2xq1uOhoLVD8x4wAZ+OjD1ZtYPWG/lipc7wFBat22dyyJCnSIsZdu+e7uVur8UDyCLyLDMoqwuZvfu3bZs2TJX5DpmkoVy8bnUSZ4xi9j7l1kks4jVSlZxPhNpGOdL5D7Eih89sYqGlcwimUWssvQMsqS0HTxPSqzEyocAH6v5Sqx4Anykj66iNIu+7fGtnVjpROv3cT9D3aGaKTWt0ehG1qBKA7uj2R1237T7rFDBQnZ42cPdzV1/yvVWumhp6/tRXxvxzQg7/+jzbfI/Jtunf35qrV5qxQPIZbMolAvNQ53ILMpDg5HdS/GZHLJ7rkQ/Xqz4ERQrseIJ8JE+upJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXUVpFmF5GZaZFSm0f9XQqNmj7Jp3r7FHWz9qNzW6yR6b+Zjd9OFNqTe2qM+iA5ahDT97uPX7ez976KuH7JZPbuEByCwKhVWsE5lFoeLM3c58JofcvdLcP7tY8WMgVmLFE+AjfXQls0hmEassH12xfSZrnFjxIytWYsUT4COlK7HiCfCRProK0yzK7ApbHtHSvl36rW3euZm/iYgic2IZWkSXnmvdyizKNfThn9hncgj/7InVo1jx4yVWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+usoJs4i/8ugjZRb5M/Yyi1DNHC03izWpZlHmg+wzOfhLJbmOECt+PMVKrHgCfKSPrmQWySxileWjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDvz7Kr3PwFNP3shAs2jhwoX2yiuvuK3fpk2b5ki0bNnSbRF31lln2YknnpijdGQWySwKQ3A+E2kY50vkPsSKHz2xioaVzCKZRayy9AyypFS0mSclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStTswjbvt1///02ePBg10eDBg2sWrVqht/Pnj3bVq1a5X7frVs3GzlypJUtWzboXKG8LrNIZlEYQvKZSMM4XyL3IVb86IlVNKxkFsksYpWlZ5AlJQOEJyVWYuVDgI/VfCVWPAE+0kdXMotkFgUpK1OzaPny5daqVSu79tpr7eKLL7YqVaoc0NemTZvss88+s2HDhtk999xjZ5xxRtC5QnldZpHMojCE5DORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFsksClJWpmbR3r17DTWK8NOhQwdr0aKF9e7dO8P+du7caUWLFg06VyivyyySWRSGkHwm0jDOl8h9iBU/emIVDSuZRTKLWGXpGWRJyQDhSYmVWPkQ4GM1X4kVT4CP9NGVzCKZRUHKCqxZhA7atm3r6hUtXrzYUlJSgvqM9HWZRTKLwhCYz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZJLMoSFmUWYQlZp9//rnrq3bt2ql9zpkzx0qVKhV0jlBfl1kksygMQflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFyCxau3btQX19+umnVrJkyaBzhPq6zCKZRWEIymciDeN8idyHWPGjJ1bRsJJZJLOIVZaeQZaUDBCelFiJlQ8BPlbzlVjxBPhIH13JLJJZFKQsyiyKdbJx40bbsWOHVaxYMajfyF6XWSSzKAxx+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJKSAcKTEiux8iHAx2q+EiueAB/poyuZRTKLgpRFmUUQ3a233moTJkxw/Z111ll2xx13WLNmzYL6D/11mUUyi8IQlc9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZlFnUsWNHZxThv6VLl041jVasWKFlaEGEc/B1n8khBy8rT55KrPhhESux4gnwkT66klkks4hVlo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySySWRSkrECzaP369Va+fHm799577fbbb3f9/etf/7L27dvb999/byeddFLQOUJ9XZlFmeP0mRxCHZQE7Eys+EETK7HiCfCRPrqSWSSziFWWj67YPpM1Tqz4kRUrseIJ8JHSlVjxBPhIH13JLJJZFKSsQLNo9+7dVqRIEevSpYuNHj3aChUqZEOHDnXL0H777Tc76qijgs4R6usyi2QWhSEon4k0jPMlch9ixY+eWEXDSmaRzCJWWXoGWVJaWsWTEiux8iHAx2q+EiueAB/poyuZRTKLgpQVaBahg6uuuspeeOEF11eZMmVs06ZNbknaG2+8EdR/6K/LLJJZFIaofCbSMM6XyH2IFT96YhUNK5lFMotYZekZZEcluVcAACAASURBVEnJAOFJiZVY+RDgYzVfiRVPgI/00ZXMIplFQcqizKJt27bZW2+95cyhv/76yzp16uTMokMOOSSo/9Bfl1kksygMUflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFV1xxhV199dWpu58tWbLELUt7/fXXrVKlSkHnCPV1mUUyi8IQlM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZWZpFY8eOtccff9wVsj788MPtsMMOc/2tWrXKYBitXbvWFb/OySazSGZRGHrzmUjDOF8i9yFW/OiJVTSsZBbJLGKVpWeQJSUDhCclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStLs+ill16ykSNHHmQWodNWrVoZjJucbjKLZBaFoTmfiTSM8yVyH2LFj55YRcNKZpHMIlZZegZZUjJAeFJiJVY+BPhYzVdixRPgI310JbNIZlGQsqhlaIMGDbILL7zQTj755KD+In9dZpHMojBE5jORhnG+RO5DrPjRE6toWIVtFpUpWsba1W1nNcrWsC27ttjXS762mUtmHnTxlxx3iR196NG2a+8um7d6nr3/+/u2d99eF9fo8EZ29pFn24SfJ9gva37hb5yIbFGrheEn1qQrAtp/Q8RKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFixYtsttuu83++c9/WrVq1Wzw4MF255132rHHHhvUf+ivyyySWRSGqHwm0jDOl8h9iBU/emIVDauwzaKO9TracRWPs7+2/2VlipWxAlbAHpjxgO3cszP1Bhof3tha12ntzCH8FC5Y2JlFSzcttVa1W1mtcrXccZPmT7I5K+fwN05EyiwiIGUSomeQZydWYsUT4COlK7HiCfCR0lU0rGQWySwKUhZlFrVr187efvttmz59ulWpUsXq1Knj6hfBRCpWrFjQOUJ9XWaRzKIwBKU3HZ6iWIkVT4CP9NFV2GZRvyb9rHTR0nb3F3fbxXUvtuMPO97G/zzeZQ/FWte/dbUjyh1hT333lO3Zt8duOPUGW711tc1YOMPaHNXGihYqagULFLSJ8yfa3JVz+RsnImUWEZBkFsUP6b9H+jyD2T5ZgncgVvwAipVY8QT4SOkqGlYyi/KHWbRnzx6bOfPgDPqYqgoWLGiNGzfOUGSBZtHu3butSJEiLpPo7rvvdp188MEHdu6557paRieddBKv3hAiZRbJLApBRqY3HZ6iWIkVT4CP9NFV2GZRk+pN3BKyHXt2ONNn+67t9vDXD9vuvbtTb6BkkZJWrFAxW799vbWp08YtO/t17a/22tzXXMylx19qdSvUlVnED3mORProKkcuKA+fRKz4wRErseIJ8JHSlVjxBPhIH13JLMofZtHGjRstJSUlSxHt27cvPrMIR5UtW9adANlFpUqVckvS/vWvf9mCBQvsyCOP5NUbQqTMIplFIchIZpEHRJ83HY9ukzJUrPhh9WEVtlnU7W/d3DKyrbu2WonCJdxFP/f9c7Zs07KDbiC2ZA1G0qjZo2z1ltUyi/hhzvFIH13l+MXlsROKFT8gYiVWPAE+UroSK54AH+mjK5lF+cMs2rFjhw0fPtyJCDvaP/PMM9atWze3WmzKlCn2+eefW7bMokceecT69et3gEq7dOli2C0tp5vMIplFYWjOZyIN43yJ3IdY8aMnVtGwCtssGtxisO3es9vum36fNavZzFoe0dLVHUL9oVgrUKCA9Tqllx1a8lDbsH2Djfn3GFfjKNaUWcSPdU5G6hnkaYuVWPEE+EjpSqx4AnykdBUNK5lF+cMsSqueH374wRo0aOAMoubNm9u9997rVpBlyyzCCZYvX27vv/++LV261Fq3bm0NGzY0rG/L6SazSGZRGJrTmw5PUazEiifAR/roKmyz6Namt1qxwsVs6p9T7cRKJ1qFkhXsvd/es322z5lH0xdOt0NKHGJYrrZn7x632xleW7ttrX3252fuJmUW8WOdk5E+usrJ68qL5xIrflTESqx4AnykdCVWPAE+0kdXMovyn1mEzKLq1avbww8/bL1797YOHTrYl19+aStXrsxQZIE1i3DUtm3bbMyYMfb777+7Tvbu3Wvz58+3SZMmWenSpXn1hhAps0hmUQgy0jI0D4g+bzoe3SZlqFjxw+rDKmyz6OSqJ9s5R57j6hXBBFq6camN/n602/0Mu6DNXDLTapevbRVLVjzghrBsbdiXw9zvYsvTVOCaH/OciPTRVU5cT14+h1jxoyNWYsUT4COlK7HiCfCRPrqSWZT/zCIoqV69ejZv3jwrU6aMbdq0yW688UYbOXJk/GZR27Zt7b333juoA3Qus4h/eKOO9Jkcor6WvN6/WPEjJFZixRPgI310FbZZFLvKqmWq2qotqw4obM3fQXSR2g0tfrY+uor/LMlxpFjx4yhWYsUT4COlK7HiCfCRPrqSWZQ/zSLsjPbAAw/Y3Llz7bLLLrNrrrnGqlatGp9ZFNsNDRk9kydPtgsuuMAKFSpkr776qs2aNctQ1yEnmzKLMqftMznk5JjlxXOJFT8qYiVWPAE+0kdXUZlF/NXmbKTMovh5++gq/rMkx5FixY+jWIkVT4CPlK7EiifAR/roSmZR/jSLeDWZBS5Dw5IzmEN9+vSxEiVKGIoioZo20pewFO3YY4/1OV+2Y2UWySzKtojMtAzNA6LPm45Ht0kZKlb8sPqwkll04B8zPOX8F+mjq/xH58A7FiteAWIlVjwBPlK6EiueAB/poyuZRfnDLNq8eXOGmUNVqlSxX3/9NUtxBZpFOPqKK66wl19+2V577TX7xz/+kdqhlqHxD25ORPpMDjlxPXn5HGLFj45YiRVPgI/00ZXMIplFrLJ8dMX2maxxYsWPrFiJFU+Aj5SuxIonwEf66EpmUf4wi7Zu3eoKWccaDCLo5MILL7S33nor+2bRjh077OOPP7YzzzzTxo8fb7Nnz7ZLL73UmjZtyis3pEhlFmUO0mdyCGk4ErYbseKHTqzEiifAR/roSmaRzCJWWT66YvtM1jix4kdWrMSKJ8BHSldixRPgI310JbMof5hF6dUDb6dGjRpWu3Zt+/rrr+Mzi7Zv326NGjVy26oNGzbMbrnlFmvVqhWv1IgiZRbJLApDWj4TaRjnS+Q+xIofPbGKhpXMIplFrLL0DLKktBybJyVWYuVDgI/VfCVWPAE+0kdXMovyn1m0b98+V3P69ddft2+//db5PIULF85UYJkuQ4vVKoptqXbYYYcdtPPZnDlzrFSpUrx6Q4iUWSSzKAQZqWaRB0SfNx2PbpMyVKz4YfVhJbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klmUf8yi//znP/bMM8/YuHHjrGzZsnb55Zdbz549rXz58lmKK8uaRS+99JKNGTPGPv/8czv66KOtUqVKB3T24YcfWsmSJXn1hhAps0hmUQgyklnkAdHnTcej26QMDYMVHH/Ug8NEnszNh5XMIplF7LPgoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KPWXT22WfbJ598Yg0aNLANGza4z8Lnn3++2+0+q0YVuB40aJBddNFFdtJJJ/FKjShSZpHMojCk5TORhnG+RO5DrPjR82U1d+5cN0ljE4Hq1avbrFmzrGXLls4s2rVrV5ZpofxV5c1IH1Yyi2QWsSr20RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLnjfr169vo0aPtqquucmLq27evjRgxwrZt22bFixfPVGCUWcTLM/pImUUyi8JQmc9EGsb5ErkPseJHz5cVdpjs3Lmzffnll9akSRO7++67bfDgwfb444/b9ddf79YUJ2vzYSWzSGYR+xz46IrtM1njxIofWbESK54AHyldiRVPgI/00ZXMovxlFmF3eyw/Q7vtttts6NCh9tdff2W5mkFmEf/s5flIn8khz99MxBcoVjxgsYqGFbi2adPGfvvtN5cS2qNHD2cUrVq1yk4//XTLapkvitI99dRThq0vW7Ro4b4ZqFq1ql1wwQV26KGHuuXDS5Yssfbt27v1yNga89xzz7VzzjnHZsyYYVdffbXrH7Xp0KZNm2ZIT4VJhaXFTz/9tD3xxBO2Zs0aa968uT366KMuy6lt27Zu44Mff/zRVq5caXfeead99NFHbrdMnAPXBIMLJhjWRS9cuNC9Kd1zzz0HZUn56Epmkcwi9in00RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLuZ3Xq1HGfDfC5YePGjfb999/bNddc4/7mz6rJLOKfvTwf6TM55PmbifgCxYoHLFbRsFq/fr3179/fnn/+eRswYIC1a9fObr/9dps6daozWpAmmtHuBIsXL3bbXV5yySXOAOrevXvqZI+lbIcffrjbBnPBggV21FFHOaPmyiuvtGrVqrkbwTaZSEPt3bu3YZMCrFdGe+edd5zJc9ppp7n+YSzhtV69erkfXCP6x6YHXbp0ccYQGkyiZcuW2XfffWfvv/++M5vwRtStWzcrUaKEexPCNxc4Pm3z0ZXMIplF7FPooyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KHWQT1zJs3z0aOHOn+1sff5/g7vV+/foZNzLJtFsF9wjfL+CAzZMgQmz9/vt18883WuHFjXrkhRWoZWuYgfSaHkIYjYbsRK37oxCo6VumXocXWD6NmUenSpTM8MYyZmPEDowYZQZdddpmlpKQ4Mycrs+i8886zt956y5lQJ554oq1bt85gPi1atMhq1qzp3jRgLiFTCN84wHB69dVXnYGEbCb0D4ML22wiy+i9995ztZVQMA/GFTZFwDacyEqCOVSoUCG7//777ZRTTnG/l1nEaalFrRaGn1jTM8hxQ5RYiRVPgI+UrsSKJ8BHSldixRPgI310JbMo/5hFMQXt3r3bChYs6H6YRmUWYWkDvnWeOHGiXXzxxa5ffCDBh4ycbjKLZBaFoTmfiTSM8yVyH2LFj54vq3jMIlzNF1984TKSsAQMy9awnA1ZPTBz8A3B7NmzXdYQDKG0mUVYnwzzBg2vFStWzJk4y5cvd8vYYBZ17NjRLTXD0jhkEGGDAxTFi5lFd9xxh+uzQ4cO7j0Bu7fBXEImEtZCwzCCeQSzqEiRIu5cFSpUsJtuuukAkD6slFmkzCL2KfTRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjK5lF+cMsCtplGasGkByUUQs0i+A+4Q/+UaNGuQ8E+HCAzKK6devaL7/8Yscccwyv3hAiZRbJLApBRvr22QOiz5uOR7dJGerLKmYWIRMHy84GDhzo6g9llVn0+eef2xlnnGF33XWXM3aQLbR69Wo3yce2xXzuueds/PjxzrRJaxbFjJ6szKJjjz3W1U+C8YPdEbDcLW1mUZBZhDpK9957r8s+wvsD/o0ldri3tM2HlcwimUXshOGjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZhB3Pjj76aFezCF/uYlUAyl7gy+DjjjvOfXk8duzY+MyiPXv2uG+csTPP8OHD3bbOXbt2dYVT8W105cqVefWGECmzSGZRCDKSWeQB0edNx6PbpAz1ZQVjBUu0YA79+9//thdffNGZRZs3b7ZSpUplyAiZPJ06dXJmEBqyPDE3X3rppW6J2UUXXeR+j7kabwQwa1DXCEvXMjOLVqxYYVWqVHGZRcgIQlYR3lDwxoIvDHA92LENNZBifcComjBhwkGZRVgah35gWKHhjQiZqaiDJLOIk72WoXGcMoryfQbjP1PiHylW/BiKlVjxBPhI6UqseAJ8pI+uZBblD7No69at7nPFCy+84D4ToOGL3N9//91+/vnnLMUVmFmEo1Gf6OGHH3YdYakDPpTgQwOWOuR0k1mUOXGfySGnxy2vnU+s+BERq2hZwd2HGVO2bFlX4yfWZs6c6Uyk9A2ZPzCIsFPZli1bXK2htA394bjy5cvzF54uEobU0qVLncGE3c3iaXhjQk2kzPrw0ZUyi5RZxGrQR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj65kFuUPswhfTuPzA77wxQ+SgfBlNYpe43NDRhvqxBRHmUX44PDZZ5+5Dw3Y5Qa74OBb5YoVK/LKDSlSZpHMojCk5DORhnG+RO5DrPjRC5MVlv1ix7T07eSTT3bbXyZ682Els0hmEat3H12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCKsEkCtUphDadu1116burtxZgqjzCJ8S43sImQV9ezZ03bs2OHqWGB5QU43mUUyi8LQnM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywp7RzHkxIrsfIhwMdqvhIrngAf6aMrmUX+ZtHevXsNNYAyKxeBkUIdUawYyEsNKxJQrgJ+DnZCwwZmKCuU2e7LsWunzKJYbQochN10sDzip59+ctstoyBSdhqMJ2QotW7d2nWDgqgoyJpZk1kksyg7eosd6zORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFvmZRWPGjLFHH33UlVhAts64ceMOWGn13nvvGWJKlChhCxcutJEjR9qhhx5qN954Y+oAYqMwZPnEao/yI5u9yAULFti//vUvV5cUG9dgaRquI6gFmkWx3dCw8w7qY6CmBrZpbtasmf3444/Zzi7CjmrYmvnVV1/Ncr1c7EZkFsksChI187rPRMr0l8wxYsWPrlhFw0pmkcwiVll6BllSMkB4UmIlVj4E+FjNV2LFE+AjfXQls4g3i2KeyIYNGywlJcUZQNgcBok0sVa9enV78803rVGjRs40wkYwyOSJNRhIyOjBzsaHHHIIP6jZjIwl58RqoWLjmfPPP9/69u2bWpc6s1MEmkUogISiR9jWGVlE+EEmELZBRj2NcuXKZevy3333XevcubMryIpCSzCDsC10Zk1mkcyibAnuvwf7TKRhnC+R+xArfvTEKhpWMotkFrHK0jPIkpIBwpMSK7HyIcDHar4SK54AH+mjK5lFvFn0559/WqtWreyPP/5wg/H444+7nYyff/751MFBMs0DDzzgMneGDRtmo0aNSo1HEDYJw2qq2I5k/KhmLxI7nh1//PH2ySef2J133mlnn3224X5efvllw7K6rDazCTSLcGnYBvmRRx454Covv/xyd4Lstk8//dS+//5769Wrl73xxhsOMLKNcNEzZsxw2zWnb9jaOdZ8HojsXmteP14s+BESK7HiCfCRua2rKVOmuC3qseV9Xm8+rGQWySxi9eyjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDjaL0pOG8dO0aVObM2eOq9mM5Vto8EG++OILGz16dOoh+B3qPJ977rk2ceJEtwPZt99+617HuDRv3tz9t0iRIvyAhhCJrKgjjjjCHnroIVu9erV98MEH1qFDB5cMFNpuaLNnz7ZJkyY5d+ykk05yqVclS5bM9uXv3LnTLW3DTyyLafHixW5r6IyaMosyR+4zOWR74BK8A7HiB1CsEocV1iIfeeSR2V4ezN9x/JE+upJZJLOIVZqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXcks4jOLUNQa3kcsE2fEiBFuUPr06XPA4CBjB8kuMGimT5+emnmE5WpYrZVVbWZ+lP0it27dapUrV3YrudK2008/3aZNm5ZlZ1RmEbZVQ9oVahWFYRClvaLBgwc7h+upp56yr776yrp06XJAulb6q5dZJLPI7/HIONpnIg3jfInch1jxo5fbrGJmESb+6667zrCuGsX2sEnB2LFj3U6Whx12mF144YVuLTXetLAjQrdu3Qxveti5ATH4tqFq1ar8jccR6cNKZpHMIlZiPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjfXQls4g3izACKAgNz+KEE06wc845x1DTGVlHWOaFcjpYZoafdu3a2ZVXXulqPOO/aNjECwWxGzZsyA9mSJHYnQ3Xh2uIteOOO84ZXZUqVcq+WYROVq1a5TrChwpAOPPMM0NJoVq+fLkzovChBT+A3rZt20wvWmaRzKIwnhufiTSM8yVyH2LFj15us4qZRR999JFbPrx27VqXEYo3tb/++ssZ/jDl69Wr53a0REbn1KlTrUePHvbcc8+5WnRY/rt58+bUHSr5u/eL9GEls0hmEasuH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWeRnFk2ePNlQigftvPPOcxt0zZ071xlGMGSwvKt3797udWT6Ix7+BnwU+Cn4QrZo0aL8YIYUidVbP/zwg/u7P6OGL44z2xmNyixCIWusyfv444/d+jvccJkyZeyaa65xa93SulTx3tOKFStcelRQk1kksyhII8zrPhMp018yx4TJ6rvvvnPrZT/88ENr0qSJ3X777YYUyHvvvddNqJhnsN0k1vrWrFnTnn76aZflgm0nkf6J3Qfq1KnjnHk4+pikYXxgXqhbt65LpURNM1wzJj0UcUP/6AP9YpL++uuv7eqrr3YTJgrPob4P1hgjkwbHP/nkk26XghYtWrh/V6hQgR7eMFnRJ00TmNYswpsVrgf3UqtWLStevLhbK/3NN9+4Ny5wgOkP7pjHwQC7ImBtNeb4rEz7eK4t/TE+rGQWySxiNeejK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL/MwijAKWdOELWOyEllHD8jP8HR11hj6vCHNGFj5DZdX27duX4cuUWYQjly1b5swifLDAB5K0DWvz8GEkJ5rMIplFYejMZyIN43yJ3EdYrDAJodAb2t13323333+/bd++3aVuwnjGbgLIaClVqpRz35Ee+dlnnzkz+rfffnMGNY7BfIOC+3i9ZcuW9sQTT7jjkRYKIwmtf//+zpSCKTJ//nw76qijnHGCDBq4/kuWLHHHY2eA8ePH26233uqMK5wDheywUwGMJhhSMLbYFhYr9nzp42JmEeZrFOCDOYY3h06dOtlLL73kvs3AUjOkwGIux7/XrVtnjRs3NtSlk1kUL/lwj2tRq4XhJ9ZyW1fh3l20vYkVz1esxIonwEdKV2LFE+AjpatoWMks8jeL+JHIO5EoYh37DPbPf/7T1VO644477KyzznJfqOPzUmy5XPqrpswibK+GrdbQ8GHqsssuc0vRateu7b79x4cQ1BrKiSazKHPKmkh5BYpV7rCKGT/I9kFWC5a1Yg5Bpk9WZhGWq8LggbkR253xP//5jzu2evXqVr58ebd9JbJlsCMY6qDBREJDRhKyj0qXLm0//vijM5rQB2KRjVSuXDk3QcIgQm0f/OA6UdMH54Qbj3mPaXlJV9g8IH2qK8yjYsWKuVvBv5F2ijcIvInkdFqsDytlFimziHn+EOOjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZtGbNGqtYsaJL+EE9JTR89nrnnXcMq7uwC31mjTKL8GEMa/E6d+5sMI5iHzbQKZY44Nv8zHYv46XNRcosklnEKSXrKJ+JNIzzJXIfYbJatGiRW/r15ptvpmYLYZJCgbVnn33WFWRGJgxMoZNPPjk1swi/i209GTOLkAKKOBg7WGKFJWSxLeOvv/56lwmJ3QhiZhEKO8MgwtKyXr162ffff+8yjmAEYRkW1hajZg/mORjhsYZlbTCamBYmK+Z8iRzjw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dCWzKH+YRQsXLnSrwM4//3y3mgJfGGOzG+yOhiyjzGoZQXWUWYQPW7///nvqLmVYToIlDqiJgTogOdlkFsksCkNvPhNpGOdL5D7CYgUjqEaNGs5wRiF7LClDzaF58+bZW2+95YyaQYMGGWqkPf74465mUGwZGjKHYPSgZWYWvfHGGy5TCLuA9ezZ0xncmASxthjLzYLMImQUYdkZzCIcP3z4cJd1gwLRbAuLFXu+9HHIqgLjmGkWbz85cZwPK5lFMotYTfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWQT1YFYbSG2nbY489ZjfccEOW4qLMIjhQMGnSt9g3+7x8sx8ps0hmUfZVpKUKPgx93nSC+h05cqQziWJF8mHsDB061BYsWOBqBeH3qCW0ePFit8Xjp59+6jKHGLMIS8xQlBlbxSNbqH79+i6zCBlEWI8bM4tQ2wiZR/g9TBVkDSGzaPTo0W6ewzK12PXBxEJdJLaFyYo9Z9q4WM0i3Htebz6sZBbJLGL17KMrts9kjRMrfmTFSqx4AnykdCVWPAE+0kdXMovyj1kEBf3yyy+uXAeWnaH8BlZVBDXKLEKxWXzjjg9e+C/WvaFeCHbVQc2LnGwyi2QWhaE3n4k0jPMlch9hs0JmIpajYelq2rRH/B5zC3Y+y868guLOMIaQFRRPw/aSuD4sv/XtI2xWvtcfM4uwJA9GHLK5YJ4ha2rs2LEu7RRskHqKmky4P7BG7agRI0a4ZX2IgbkW9S4OPqxkFsksYp8FH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCIsNXv99dcPEhFWiOGLc3zhjpUVGX3+CjSLYoVPn3nmGbf0DEvSsJMRPnDg2/+cqlUUuzuZRTKL+OlSrMQqDAJ8Hz5v0HyvfGTMLProo4/ccr21a9e6ZXQnnHCC2+azTZs29tVXX7mC3z/99JMz66ZOnep2iXvuuefcUsAZM2a4XenwjUOUzYeVzCKZRawWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BH+uhKZlH+MIuwWQ/qv6Zv8HNQVgh//+PL4ow2uwk0i9Apan8gqwjLN/BtNYq/Qoj4Br9KlSq8ekOIlFkkUH+44QAAIABJREFUAyQEGWnHHA+IPm86Ht0mZWhus0prFmHyx/VgEwIUtUMR8ObNm7uMUGQUoQYUdqSbPHmyW4b38ssvW9++fV0hcSzDw5K+KJsPK5lFMotYLfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWIbMIqw7SN5hD1apVsz///NPOOOOMDHdFo8wiVNBGwVl8U33bbbfZ9OnTnWmE/5/TTWaRzKIwNOczkYZxvkTuQ6z40cttVjGzCEY+MkHxLQG+SejUqZO99NJL7hsDLDVr2LChM4nw73Xr1lnjxo1t9uzZMov4oY40skWtFoafWMttXUV6syF3LlY8ULESK54AHyldiRVPgI+UrqJhJbMo/5hF2Ik6s4YaRiiAnVGjzKLYgTt37nRLF2LbTfOyDS9SZpHMojDUpDcdnqJYJSYrzNfp00lhHhUrVszdEP6NtcnIMootN+bvNPuRPrpSZpEyi1jF+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZltgwtrapQO9bbLIoVO0LR2f79+xt2MlqyZInrB1uvXXLJJbxyQ4qUWSSzKAwp+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJLSrqA8KbESKx8CfKzmK7HiCfCRPrqSWZQ/zCIsQ0NJocwaMouaNWvmbxahngWKn6JK9m+//eY6uPjii23ixImuwPXKlSt55YYUKbNIZlEYUvKZSMM4XyL3kdussMVjjRo13DyU11tus8rrfNJenw8rmUUyi1ht++iK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YxZFshsaXKYbbrjBHn30UStXrpyre/Hss8/a0KFDXe2irVu3GrZcy8kms0hmURh685lIwzhfIveR26xidXjq16+f5zHmNqs8DyjNBfqwklkks4jVto+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySzKH2ZRZLuhwSy655577I477rBjjjnG2rVrZzBrRo0aZddcc43bihkFUnOyySySWRSG3nwm0jDOl8h95DarmFmEKv4orL9hwwZ77733rGPHjjZ27FhXeweZjhdeeKGNGTPG1eBBLZ5u3brZiBEj3ByFmA4dOljVqlUjHYrcZhXpzYXcuQ8rmUUyi1j5+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZFthsazKLOnTu7nyuvvNL+/ve/W48ePdwHtaefflpmEf/c5kikz+SQIxeUh08iVvzg5DartNvBYwfGtWvX2qRJk+yEE05wc1CbNm3sq6++snr16rkC/IUKFXLLZzFXPffcczZw4ECbMWOGbd682Vq3bs3feByRuc0qjkvOtUN8WMksklnECtVHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrmQW5Q+zKCP1YHf7F154wX3RnlXLcjc0mEVZNWUW7aeD5XjIZki/8xD/WIcT6TM5hHPGxO1FrPixy21Wac2i3r17G67n888/t1q1alnx4sWtefPm9s0337hn8OuvvzbUWsO28FdddZW9/PLLeXY7+LvuustlbqoFE9hn+yyzXRqCj068iK43drUxI/735p3bz2AiERQrfrTESqx4AnykdCVWPAE+UrqKhpXMovxjFmFFxocffpgqpE2bNrl/lylTxn0euemmmzIUWZZmEQohZfUHOnZDwwe0nGw5sQwNdZl69uyZelu1a9e2Sy+91G699daDlt2tX7/eypcvbzfeeKPbLS43myZSnr5YJQ6rmFm0bNky+/XXX92SspSUFFdD7aWXXnImLZaaNWzY0JlE+Pe6deuscePGNnv27DxrFnXv093GPjqWHwhF5hsCgwcPtiFDhqTer+YrfujFSqx4AnykdCVWPAE+UroSK54AH+mjK5lF+cMswqZklStXttNPP92qVKnixLRo0SL3ZTtMJKwiQzmPjFqmZtGaNWvszjvvdMvP8CEsoyyjhQsXuuLXMFLwwSwnWk6YRbGaTIB25JFHOhdu3rx5hkyAQYMGHXCb27Zts7vvvtst0bvgggtyAkGm5/CZHHL1QvPAycWKH4S8xGrnzp0HZfDBPCpWrJi7Ifwb9YpgYu/atSvHs/18WE39Y6p9sfALfiASPLJ5zebWvFZzGSDkOGI5Zaz56IrsPmnDxIofWrESK54AHyldiRVPgI+UrqJhJbMof5hF+BL9lltusfvvv9/VeUXDF+qo/fr4449nKa5MzSIsrUJB608++cSQWQPjBI4UCiT98ssv9uOPP9qcOXPcdtbY2rp69eq8irMRmZNmEbIUzj//fLfsBabRRRdd5ArsogYK/v3KK6/Ya6+9ZldffbVz5W6++Wb78ssvrU+fPvbdd985NjDcLr/8csco7XHoG32G2TSR8jTFSqx4Anykj65Uh0d1eFhl+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK6iYSWzKLnNovnz5ztTCF5ErGGlBlZtvPjii4bEH2QdZdWyXIaGA99++21XzBoFZNOubWvZsqW1bdvWunbtakWKFOEVnM3InDSLhg8f7tK13nrrLXvggQecI4csKxhDaMimQlGounXrumVojzzySOpuS7169bI333zTGWpLlixx/NIehwK9sTSwbCJJPVwTKU9SrBKHFYzWGjVqOPM1rzcfXUVlFnU+obPVPqS23Tvt3kxxVS9b3bqc2MX27NtjD8540MW1O7ad1atYz2WR/r7ud3vjpzdCxd2iVgvDT6z5sAr1QhKwM7HiB02sxIonwEdKV2LFE+AjpSux4gnwkT66klmU3GYRSgr94x//MBSzhi6Q6IJEoFhDfdfRo0dnKa5Asyh29N69e+23335zHySOOuoot9QjN1pOmkVp7++UU05xOzChgC5Mn6FDh9qAAQMsbc2i9u3bW4sWLeyZZ55xNY+QZdS0aVN77LHHXFZW2uOiYOczOURx/kTqU6z40cptVrGaRfXr1+cvOpcifViFbRY1qNLAGlVrZJVKV3J3P+Tz/9W8SY+j39/7WZliZVA22u76/C47sdKJdlHdi1yNOvyvYIGC9vEfH9tXi78KjaTMovhR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWZTcZtGKFSsOSk655pprnCdx2mmnUeU6sjSLsOTsvffes3Hjxtnxxx/vlltVrVrV3n33XVenBzsSlSxZkldvCJE5aRY9/PDDzvxBVkOFChXc1U+YMMEB/uCDD9w23GnNolatWrm6RdiBCeleP/zwgzVo0MBVGD/mmGMOOC4EFAd1oYmUpypWicMqZhZNmzbNLQPdsGGDm5fwHGKtLeoUYf0tlsoi0w/1imBmd+vWzUaMGOEKXiOmQ4cOqZl//N37RfroKmyzCJlBx1Y41ooVLmYFrECmZtHpNU+3M48403bt2WWFCxV2ZlH3k7pbzZSaNv7n8bZ111br9rdutmLzCntm1jN+ALKIllkUP0ofXcV/luQ4Uqz4cRQrseIJ8JHSlVjxBPhI6SoaVjKLktssgmrgVaBsDmoyY8UT2jnnnON8jLPOOsvq1auXpbiyNItgelxxxRWpHaB20cyZM51Z1L17d/vrr78O2h2Ml3J8kTlpFsVqFqW90phZ9NFHH9nZZ599gFmEbKNKlSq5zCsUwsYHVyzj+/nnn90PPtzGjovv7rM+ShMpT1WsEodVzCzCs9OvXz9bu3aty/I74YQT3BzUpk0bt8wTk91PP/1kKAw8depU69Gjhz333HOuVtiMGTNs8+bNbmKMsvnoKmyzKHZfNze52UoXLZ2hWVS8cHHrf1p/+2PdHy4DqWyxss4suqnRTXZIiUNs+FfDbfvu7XZHszts887N7v+H1WQWxU/SR1fxnyU5jhQrfhzFSqx4AnykdCVWPAE+UrqKhpXMouQ3i9IqBzWM4GWgXhGeKXzZnq2aReeee65h+RkMj/fff9+wzOq8885z/8Uat2Q1i5599lm3jOydd95xdZkYs6h3794uiwGZDjDSYq1///42bNiw1IwkmUX8ZBdlpN50eLq5zSqtWYTnDNeDrMZatWpZ8eLFrXnz5m7rR2QUYZnomWeeaTB6MUfB8O7bt699++23tmrVqoOeZ54CF+nDKjfMoi71u1itQ2rZsC+H2XWnXJdqFvX9e1/3b9Q52r13tw1pMcS27dpmD365v55RGE1mUfwUfXQV/1mS40ix4sdRrMSKJ8BHSldixRPgI6WraFjJLMpfZlFMRSg7gcLXqF902223ZSmuLDOLUG9n+fLl7lv6mjVr2vPPP++WoiHDCA9tsppF/OOYceT27dtddXEs2StTpkx2u6OP10RKo3L6hY7VggnkNquYWYTq/b/++qtbUpaSkmKdOnWyl156ya23xVIzFJ+HSYR/Y4tIFKDHRCiz6H9jfGvTWw3ZRahLhKVqaDCFNu7Y6DKNRs0aZVt3b7U+jfvY+u3rbeQ3I4MFQkbILCJBZRCW289g/Fee80eKFc9crMSKJ8BHSldixRPgI6WraFjlO7OoxRAb3HxwKsz0ukq/gomnnryRWZpF+CCG3c7Q9uzZ4+qAYHt41PJBk1mUt4ShiZQfD7FKTFY7d+48qBgbzKNixYq5G8K/MU8hy2jXrl1U4TaeRHCkj65yKrOoYdWG1qxmM5u+cLrboAAZRGinVjvVihYqah8t+MgVu25SvYmt3rraZRZVKV3Ffljxg739y9vBN01GyCwiQcksih+Umb4I8KDnM195dJuUoWLFD6tYiRVPgI+UrqJhle/MouZDbHALmUW8mswCd0PD8o7PPvvMbr31VvdBAw3/H9lGqAVSokQJn/NlOzYnahZl+yJzqQNNpDx4sRIrngAf6aOrnDKLWtdpbY0Pb2wzl8y0DxZ8kHozff7eJ3UZGkyjGxrdYGWK7s+ERJHrJ759wv03rCazKH6SPrqK/yzJcaRY8eMoVmLFE+AjpSux4gnwkdJVNKxkFuXPZWi8mgizCJ1hGQi+sU/fsEMYlqqhbkhONZlFmZPWRMqrUKzEiifAR/roKiqziL/agyMrlqrolqet2rIqO91keKzMoviR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWSSzKEhZgZlF6AA7fKE4bEYNW8N/+eWXOWYYySySWRQkauZ1vekwlPbHiFU0rPKiWcTfqX+kzCJ/ZrEj9Azy7MRKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFl112mU2bNs3uueceVwvkgQcecEVkzzrrLPc7VNJu1apV0LlCeV1mkcyiMITkM5GGcb5E7kOs+NHzYSWzSEXmWWX56IrtM1njxIofWbESK54AHyldiRVPgI+UrqJhJbNIZlGQsgLNot27d1uRIkWsT58+9sgjj7j+hg4d6rZZ27Jli1WuXNltGY9tqnOiySySWRSGzvSmw1P0YYUsw/zcsGMbdkFkGgpI/7D8ByY0KWJOqnKS9bq4V+q9+OgqKQBk4ybEiocnVmLFE+AjpSux4gnwkdKVWPEE+EgfXcksklkUpKxAswgdIIto06ZN9swzz7hdh2688UZX2Prll1+2c845xy1Da9KkSdC5QnldZpHMojCE5DORhnG+RO7Dh1Xf2/raiKEjEvl2de0REejWu5uNGTFGZlEcfH2ewTi6T6pDxIofTrESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizaMKECS5zCIYRWpkyZez555+3jRs32qhRo9wStZwqci2zSGZRkKiZ1/Wmw1DaH+PDqnuf7vbplE/5zhM8MqVYiqUUT0m9i+3bt+fYXJho6LBsefDgzLcrTbT7ycnr9XkGc/K68uK5xIofFbESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizCJ3s2bPHZs2aZdu2bbPTTjvNLU1D0ety5cpZ0aJFg84T2usyi2QWhSEmvenwFH1YqQ6P6vCwyvLRFdtnssaJFT+yYiVWPAE+UroSK54AHyldiRVPgI/00ZXMIplFQcqizCJkFGHJ2auvvuqyizp16mRdu3ala3MEXYTP6zKLZBb56CWzWJ+JNIzzJXIfPqxkFsksYrXuoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFKGaNotZYfpaSkmJLliyx4447zn788Ue3O1pONplFMovC0JvPRBrG+RK5Dx9WMotkFrFa99EV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBygo0i7DjWenSpa1Hjx6uwHXBggXt0UcfdbujzZ8/34499tigc4T6uswimUVhCMpnIg3jfInchw8rmUUyi1it++iK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK7EiifAR/roSmaRzKIgZQWaRVu3brVSpUrZkCFDUouTouB1x44dXQ2jk08+Oegcob4us0hmURiC8plIwzhfIvfhw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZgWYROmjatKl9+eWX1qZNGytZsqRNnDjRTjnlFJs5c6YVKFAg6Byhvi6zSGZRGILymUjDOF8i9+HDSmaRzCJW6z66YvtM1jix4kdWrMSKJ8BHSldixRPgI6UrseIJ8JE+usp3ZlGLITa4eeY786b3GXjqyRtJmUULFy60+++/31577TVX4BpZRbfffrvVr18/x8nILJJZFIbofCbSMM6XyH34sJJZJLOI1bqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFimzKEhZlFkU62Tnzp22e/dul12UW01mkcyiMLTnM5GGcb5E7sOHlcwimUWs1n10xfaZrHFixY+sWIkVT4CPlK7EiifAR0pXYsUT4CN9dCWzSGZRkLKyNIuqV69uMIgya3/88Ycrfp2TTWaRzKIw9OYzkYZxvkTuw4eVzCKZRazWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BHSldixRPgI310le/MouZDbHALLUPj1WSWpVnUtm1bl0mUWZs0aVKOZxnJLJJZ5CPwzGJ9JtIwzpfIffiwklkks4jVuo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SOlKrHgCfKSPrmQWKbMoSFley9CCOsuJ12UWySwKQ2c+E2kY50vkPnxYySySWcRq3UdXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pHQlVjwBPtJHVzKLZBYFKUtmURChBHrdZ3JIoNuK5FLFisfqw0pmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZMouCCCXQ6z6TQwLdViSXKlY8Vh9WMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rH6sJJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFsksClJWnjGLtmzZYiVKlLCCBQtmec2qWZQ5Hp/JIUgYyf66WPEj7MNKZpHMIlZZPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjpSux4gnwkT66klnkbxbt3bvXtm3bZqVKleIHxcziPc7rJBEE57pZtGbNGuvcubMVLlzYFi5caP3797du3bpleqsyi2QWhfEc+EykYZwvkfvwYSWzSGYRq3UfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JHSlVjxBPhIH13JLPIzi8aMGWOPPvqoVatWze0YP27cOKtYsWLq4EybNs169OhhJ554ovtd+/btrVOnThZ0HD+6OR+Z62bR0KFDbdOmTXbffffZihUrrEqVKoYso5IlS2ZIQ2aRzKIwHhOfiTSM8yVyHz6sZBbJLGK17qMrts9kjRMrfmTFSqx4AnykdCVWPAE+UroSK54AH+mjK5lFvFkEc6hIkSK2YcMGS0lJsRtvvNH5Frfddlvq4IwePdp27drlDCMkwqAxx/Gjm/OR/8/emYDbNd3v/xtDRIIIYh7SGEoqVUWNNc90JKiZmqooNeRHa64ai9as1VBDqzHU2BbtP2qqMYgQLUWNMSYSkYjI//ms2x03N+dmv3vfm9xz9nnX89wn3Pueffb+rO9ee613fdfaXW4W7bfffrH55psn123q1KlpGdqLL74Y/fv3r0lj0UUXjYUWWmja36gQKs4lUnCahRYJZqVxQlWE1YRFJwQ/zVJ6vt0z+MlKEVbNwqi96zQrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRczRpW7w18L95d9V394A2uXOSZRWLhEQu322/fZ599YvDgwTWv8qWXXkqeBT4F5YILLognn3wyrrjiimn6Y445Ji699NKUCDNo0KAgyYWS97l6xtrlZtFOO+0U/Oy4446J02KLLRYPP/xw9OvXL+6///544IEHpuPX2r1rC3bjiFiunml38rm9EhHDOvmYPpwJdIhAv4ipy03t0CEa6cPdXukW8XIjnbHP1QRMwARMwARMwARMwAQiol8TUphJv/3000+fAcj6668fG2ywQTz99NPJAHr++eeT5uqrr4577703yCbKykUXXRRLLrlkbLHFFoFxNOecc6Yso7zP1XMtdLlZdMopp8QCCywQhx9+eEyZMiX69OmT0rva2+h6psvQhg2L4KdZysYbR/Dzv1Ik7bBZELV3nWalR0ARVl6G5mVoamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks2rrM7Q+Eptas00OG1V369YtzjvvvPTnI444YpoMDS/sojz22GOx8847xzPPPJP7Of2MZ7+yy82iW2+9NS688MK46667YujQoXHuuefGQw891C4Jm0Wt0NgsKn3HuCHV0RVhZbPIZpEaWUXiSj1mVXVmpdesWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsZmYWcVQ2rr744otj4MCBsdVWW8XJJ5+cso5GjhwZa621VvrvQw89NJlEZ511Vrz88stJX+tzW265pX6iXajscrMIB27bbbeNZ599Nr2G7u677461117bZpESFDaLFEo1NW5IdXRFWNksslmkRlaRuFKPWVWdWek1a1ZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8qzyziCSX3XffPX3BdtttF9ddd12MGDEimUQffvhh3HPPPcG+R2QgrbjiiskwGjBgQNT6HNlJjVC63CzKIL366qux+OKL527Q7MyiVmFls6j0PeaGVEdXhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8ozizjyhAkTYuzYselNaLUK2+q8//770bdv3+n+nPc5/axnr7JuzCL1sm0W2SxSY2VmOjekOsUirGwW2SxSI6tIXKnHrKrOrPSaNSuz0gnoSseVWekEdKXjyqx0ArrScVWelWIW6UevhtJmUSPXozOLSteeG1IdXRFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZtGM7GwW6fFUf0qbRaXrxA2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVkz1WyAAAgAElEQVRnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirDqTLNo14G7Rv8+/eNn//hZOtm555w79l1931i056Lx6dRP496X740HX31whgsZNGBQrLTwSjH5s8nx7DvPxp3/vjM+m/pZrL302rHu0utGr7l7xasfvho3P3dzjPtknA6ihnLjfhsHP1kpwqpDX1yBD5uVXolmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCvbxpXNIptFevQ0gtJmUela8kNHR1eEVWeYRV9d4qux9lJrx2LzLZZO8qRhJ6V/v7fq9+KLi3wxJk+ZnIwjyrkPnRsfTvpw2sWss/Q6sfUKWydziJ+55pgrmUUjRo+IYzY4JqZOnRrjJo2L3j16xzNvPxM3PHuDDsJmUYdYtf1wkbjq1C9uwIOZlV5pZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ2iwqXUtuSHV0RVh1hln07ZW/HSsvsnLMM9c80S26TTOLjv36sdF9zu5x+n2nx1bLbxVrLLlG3P/f++Oe/9wz7WL2+spe8YUFvxAXP3pxTJk6JQ792qHxzoR3YthLw2LQlwbFyLdHxg3P3RAnbHRCjJ80Pn7x0C90EDaLOsTKZlF5fEXuwfLfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOrMon1W3qUy1N1Bp6/hNV8nDhkXw0yzFZlHpmvZDR0dXhFVnmEXZmR213lExX/f5pplFJ250Ylpa9vP7fh5rLrlmbL/S9vHcu8/F9c9cP+1ies7dM+aZc574YOIHsc0K26SlZ8+/93wMHTk0jlzvyOgxV4/4ZMonSfO3l/4W971ynw7CZlGHWNksKo+vyD1Y/luq8Umz0uvRrMxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhc2i0nXjh46OrgirWWoWbXxiTPx0Ypx5/5kxcNGBscOAHeKF91+Ia56+ZoaL2elLO8WAvgPi088+jcsevyxlJO23+n5J9/GnHwem0itjX4khw4foIGwWdYiVzaLy+Ircg+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLCpdN37o6OiKsJqVZtHxGx4f0S3i1HtPjY36bRSb9Nskhr85PG55/pZpF9OtW7c4ZK1DYuGeC8eYiWNiyJNDYuzEsbHDKjvEwMUGRnZ+x339uLTv0cnDTtZB2CzqECubReXxFbkHy39LNT5pVno9mpVZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEb1q7BZVLpu/NDR0RVhNSvNoh+s9YNYrNdiaelZvwX7xbxzzRtXP3119OnRJzZcbsO0pKzPvH1ivWXWiymfTYlR746KqTE13vv4vfjok49i2xW3jXcnvBtPvvVkbNZ/s2lZSjqJGZV+G1p5ekXiqvy3VOOTZqXXo1mZlU5AVzquzEonoCsdV2alE9CVjqvyrLzB9YzsbBbp8VR/SptFpevEDamOrgirWWkWLTn/kvH91b8fc84xZzr5/479b/x2+G/T2894C9rDrz0c/RfqH3179p3u4iZMnhBnP3h2HLTmQbFor0XTptmTPp0Ut//79vSWtI4Um0Xl6RWJq/LfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUNosKl1Lbkh1dEVYdaZZVOsMWWa29PxLx9hJY+PDSR/qF/E/JRtc9+7RO0aPH134s7U+YLOoPMYicVX+W6rxSbPS69GszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4Iq1ltFulnPXuUNovKcy4SV+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoLRZVLqW3JDq6Iqwsln0n+jfv78Ot4mVReKqiTGlSzcrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRclWdls8hmkR49jaC0WVS6ltyQ6uiKsLJZZLNIjawicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk42iz7++OOYe+65Y/LkycHeMD169GgECqXOsWhDOnXq1Bg3blwssMACud83fvz46NWrV8Cze/fuMddcc+V+pp4FRVjZLLJZpMZykbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhpBGUnmUVTpkyJbbbZJu6+++7485//HD/84Q9j+eWXj7vuukumMGLEiLj11ltjzz33jGWWWUb+XFcJZ9aQjh07Ni688MLYeOONY/3114/HHnssNt1002QWYaS1Z/48//zz8d3vfjeeffbZ9DNgwIA4/fTT4//+7//ky7zjjjviqaeeiuOOO07+zKwWFnno2CyyWaTGY5G4Uo9ZVZ1Z6TVrVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5lFmCFrrbVW7LHHHsFNcv3118eCCy4Ye++9t0zh97//fey6667xwAMPxHrrrSd/rquEM2tI//vf/8Zyyy03zeg55ZRT4sQTT4wLLrggGWlkXdUq5513Xvz4xz+O0047LQ466KD45S9/mUymjTbaSL7MAw88MC6//PL47LPP2v0e+WCdJCzy0LFZZLNIDbsicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk4wi15//fXYcsstp2XCXHbZZXHRRRfFIossksyRHXfcMRZeeOG0pKp3797x05/+NDBPbrjhhmSo7L///rHZZpulzKR//etf8dWvfjWZTSussEJNghhSGCGUf/zjH+m7+Z6ePXvGJZdckjJ63n333WSwnH/++bHkkkumc5h33nlj0qRJ8dBDD8V+++0Xc845Z3CuK620Ulx99dVJx/E492HDhqWsoOw6ap3IzBpSzoksq6WXXjp23333+O1vfxtvv/12fP3rX4+//OUv6VzbFjKyMNfQkY00ZMiQ2GeffeL73/9+yrQiU+g73/lOXHPNNSkD6/3334+zzz47HQ9z7Sc/+Un63QEHHJCOsd1228Xtt99ekyGZT1tssUWsvfbaqd5ee+219F1kMFFPgwcPjptvvjmd51ZbbZU4wnT77bdPnyFzafTo0XH88cfHX//615RB9q1vfSsuvvjiZFBh/F166aXxyiuvpOvfd999Y8UVV5TuCJtFNoukQPGmzSqmpHPHT8dlVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5hFH374YZx00klBVswhhxwSRx11VMqGWWqppZL58sUvfjGZQPPPP3/8/Oc/j1dffTXOOuusZCjcdNNNMXTo0HjyySeT4XPFFVcko+KYY46JhRZaqCbB1VZbLZ5++un4xje+kf5+2223pWNhsCy77LLJ3OBvnAs/HJclcTR8GFOYMpgjLPFaddVV449//GMySTBbOEeOs/XWWycjhGNhxhQ1izBXjjjiiGTuYMLw/3//+9+TgYL5U2sZ2r///e/40Y9+lM6Pc+YcMFhOPvnkWGWVVWKnnXZKp7HOOuvEjTfeGJtsskn6f4w3uE6cODEZcD/4wQ9Sdtbvfve7lOlVq7z33nvJzKMcfPDByRzDNMLcefDBB+N73/teHH744THHHHPEueeem+qI78W0ghHHxRiiYBK98cYb8eijj8add96ZDCaMNowvDDoMPOqTxlMpNotsFilxgsadGZWUWemkzMqsihDQtW6vzEonoCsdV2alE9CVjqvyrGwWzciu21R27m2g0rYSp7shhg2L4KdZSieYRaDCUCEz6E9/+lMyDzBnWptFb775ZjJo2NwZQ+RXv/pVMmvIKMJ4WGONNVI2kbIMDbOIDBpMp2y515FHHhmnnnpqynB54okn4oUXXojrrrsuGT/3339/Op/55psvZcRgfqAnwwgThuVyZL5gzmDI8IPBRWYP54wZhkHSthRZhsbSMsw09iziPNorZA+xR9E777yTsqDITGptFp1xxhnJTKNkJhzZSnDEnCFTS1mGlplFmGcsWcuWAJKxtMEGG8Qf/vCHoM4wke67775kBmYZTkcffXQy+8gyYn8k9mAii2rbbbdNBtUjjzySsrs4T7K3MLK+/OUvJ/ZKsVlks0iJE5tFKqUWnTt+Oi+zMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPIyhnk1nE8jNMBApLoMg2YYkUGTCUf/7zn2kwo5pF88wzTzoehgbLxzB/MHlYIsUyNgyoE044IZkUmVm06KKLJoOIpWVkHGEqkbmDEYQRgqGEWcM59O/ff1rtYXrUMni6wiwi6whTi4JRxjI6somyzK233norZTTl7VmUmUVkVGFOcYxBgwal5W0vv/xyHHbYYbHDDjskfuy11NosYhkhxhxL+8hwwivGpCMLi+V8GEaYR3DjzXgUlqaRAaUUm0U2i5Q4sQGiUrJZVIyUjbUivDyg0GmZlVnpBHSl48qsdAK60nFVnpViFrGdCtt+8Obr9goJBm2TFT755JP49NNPZ9jO5KOPPkqrOVgRUo+lyzOLyMDo27fvtEE0GRcMZtsrzixqRWY2mUUsKcOoobCfD8udMBYefvjhZExgbmDIYNSQlYJ506NHj5pVSGZRLbNo5ZVXTsvMOC6fxfxonVmUZxZhNmF4cA5k55xzzjlpuRhL5WoVxSwi24fjsGF1Z2QWsT8Q/MaMGZOW3PHfZB6RvUMmFUvJWPIGTww4zLNaZWZmEVlFHGvkyJHJ+OF+wTBinyeWoeWZRbzR7Wc/+1nKPuJe5L833HDDxEEpNotsFilxYrNIpWSzqBgpm0VFeHlAodMyK7PSCehKx5VZ6QR0peOqPKs8s4iVK4zVWIGD8XPttdcmHyMrjz/+eFrxwmoRxsts0bLmmmumLVPY0oSVOYwD+RyGE+NWxqtoWf1R5OVS+lV2TNnlZtGoUaNSFgkD3PZeSd76Em0Wdb5ZlGWWtLcMrbVZRKDvtddeaYkXhY2Y2TeIZWW8UQ0nlT2MMIVqldZmEZk0SyyxRMosIpOFrCKOy6bV3IDjx4+Pl156KQYOHBiZWcReO7yRjMwidJhUmFO/+c1vkjHCMjU2iMbN5XrYf6moWcR3c56YN5hfL774YjKLOJ+Zucjsm4TxwzI03GMaktbL0DKziPPhTWlos3Nl7yGWqWH2sOcQpb0VoplZdOyxx6ZjkCFEphCZRZzft7/97VQPmGd8J3svsY8Sy+Iyswhzjb2M2mYWsQyR+vj1r3+dzoHsJLK5WN6mFJtFNouUOEHjzoxKyqx0UmZlVkUI6Fq3V2alE9CVjiuz0gnoSsdVeVYzM4sYH7LqArOHVTckTDCOZTyWFRIB2P+XfxmfsYqElw6xV222SocxFfvBMs5kvEZSQjYmJsuo1ouU9CvqfGWXm0UsZ8JVAxZmA5WUbf5b63JtFrWi0kmZRUXDasqUKWlfITJVWgc0+99gqPCmrcxMan1sDB/Mh/YKxgVvZ8Nkae/19HnnyrmxxItzm5n5mNeQkmLIfkdcX/fu3ad9LdlUxGrbQmYUZkyRwvVyrnyO/YGyMmHChLSXEEZqme8iW4+GbLHFFityOtNpOQf2lqIuMOxaL+2b2UFtFtksUoMu7x5Uj9MMOrPSa9mszEonoCsdV2alE9CVjiuz0gnoSsdVeVYzM4sYD22++eYpiYDCRDwJEmQPZYXxJy8b4t/hw4enlVOMiynPPPNM2lOXN2MzxiOTiOPtsssuafKeZWgcWx1z6VfZMeVsM4t4Axb7qbQu/fr1S1kYZImwDw2bJLMHCwDbMwtsFrUi2EVmUV7IsRkyddi2cOPwmvh6KGUbUrKwPvjggxkugU2+V1hhhU69tNn5XTM78SKsbBbZLFJvgiJxpR6zqjqz0mvWrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWMzOL8DLYJoUtOyhsnXLvvfem1S1Z4WVQ/J2MI+pho402SqtvKHyefX9ZgsbqF96yzUoPVodQmOQnKQF/pJ7KbDOLfvvb36YlMa0Lb+Aiq4isCn7ICiEbBKhkW7C5cbaJcuvPZW+U4nfT3RB+G1rduZH1FOytz8UNqV4zRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCvMoraFPXRZOsYeQ6w4YfUJSS1sUULh5URZYZ9Xfk8SwWOPPZZeEIRBxH+z1Qfl+OOPj3fffTcZSphLhx9+ePJA+vTpk1aG1NtG17PNLGqv2th8l+wi9qIhbYs3YWXpXbU+48yiVlTqNLNIv0W7TumGVGdfhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8rb4Jo9bfEs2E+XvWHZmxYjiRcLsZ0O+74ussgiaU8i9i5ib90f//jHwXYlLEtbfPHFk9dBxhH/zd64rCRhH1n23c1eKKVfwaxXdrlZxOvTWa9HRhE/QN9+++3bvXKbRTaLOuO2cEOqUyzCymaRzSI1sorElXrMqurMSq9ZszIrnYCudFyZlU5AVzquzEonoCsdV+VZ5ZlFvExo9913T1/AS554QdeIESOSYcRetyS8ZFuuLLjggsn84UVRZBjxZmk2xsZwyt7+ve2226aNrslauvvuu9t9E7Z+RZ2v7HKzKLskdgHHYcsrNotsFuXFiPJ3N6QKpRZNEVY2i2wWqZFVJK7UY1ZVZ1Z6zZqVWekEdKXjyqx0ArrScWVWOgFd6bgqzyrPLOLIvARo7NixaRlZrcJb09544420yXXrPZgxhCZOnJiWm7UubL+DB8Kb1uqx1I1ZpMKxWWSzSI2VmenckOoUi7CyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVaKWaQfvRpKm0WNXI/es6h07bkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwWzcjOZpEeT/WnrAOz6LXXXoubbropvc3uk08+STvC33PPPfHCCy+kNL3ddtstSMe75ZZb0t8HDBgQW2yxRVq3yW7v7E/FW/Jm9nleJdjZpSsa0mZgZbPIZpF6r3bFPaieW73pzEqvEbMyK52ArnRcmZVOQFc6rsxKJ6ArHVflWdksslmkR08jKOvALLryyitjk002iaWXXjpOP/309Po/dnZnh3g2+cIg4mfTTTeNZZddNs4///w48MADk1l03HHHpQ2+8j6/6667dnptdEVD2gysbBbZLFJv1q64B9VzqzedWek1YlZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8K5tFNov06GkEZR2YRZdcckkMGjQo2PH9rLPOiv333z+GDBkSW2+9dYwbNy5lDD3xxBNJ07dv3/RawIMPPjgZSrxSUPn8Ouus0+m10RUNqXKtjc7KZpHNIvVm7Yp7UD23etOZlV4jZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ1oFZNGrUqPSqP3Z35+f444+Pa6+9Nj766KMYM2ZM7LDDDimz6K677oru3bunDCSWnv3iF79IZpHy+eWXX77Ta6MrGlLlWhudlc0im0XqzdoV96B6bvWmMyu9RszKrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoKwDs+jRRx8N9hSaOnVq2ruIPYso48ePT+YQP5TPPvssJk+eHPPMM890ZNXPd3Z1dEVDql5rI7OyWWSzSL1Xu+IeVM+t3nRmpdeIWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsbBbZLNKjp7Vy7bUjttwyYujQiFGjWv4yaFDESitFTJ4c8eyzEXfeiSMy/fH53LrrRvTqFfHqqxE33xwxblzEQQdF9O79ufattyKuuqr4udWBWfT222/Hbbfdlowg9in6whe+UOg6Ovr5Ql/WStwVDWlHr7Wjn58drGwW2SxS46wr7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXpQLrVUxOabR/TrF9GtW8RNN0U8/XQEe+hsvXWLOcTPXHO1mEWPPPL58eedN+KYYyKmTm0xiDCHnnkm4oYbIk44oeX3kya16N98M+Lqq4udG+o6MIuKn3R9fMINqV4PRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhBudpqEdtsE8FSqjnmiLjxxogRIyL22iuCDJqLL46YMiXi0EMj3nkn4qKLPj/+l77Ukn00cuTnBtH48REXXBBx3HERDz8ccd99rNcqdk6t1TaLSrNzQ6qjK8LKZpHNIjWyisSVesyq6sxKr1mzMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPa+XOO0esssrnZlHPnhHsvfPBBy1mEsvNnn8+4ve///xTZBsdeWREjx4Rn3zSov/b3yJeeSVi330/1338ccvytH/9q/i51YFZ9Nprr6W9injrGZszs2fRPffcEy+88EJMmDAhdtttt/j000/jlltuSX8fMGBAbLHFFnHOOefEHHPMkTa7/utf/zrTz7MnUmeXrmhIm4GVzSKbReq92hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZtGMBDAidtppxt+//37Etde2/L6tWZSp+dyAARGffhpx2WUt2UVZYQnbfvu1/B+GEAYTRhHZRN/5TsTo0RFjxkR89asR773XknFUtNSBWXTllVfGJptskt5ydvrpp8fhhx8eF154Ydq/6MUXX0wGET+bbrppLLvssnH++efHgQcemMyi4447Lq6++urcz++6665FyeTqu6IhbQZWNotsFuXefP8TdMU9qJ5bvenMSq8RszIrnYCudFyZlU5AVzquzEonoCsdV+VZ2SyakV23qbzGqoFK20qc7oYYNiyCnyJl2WUj9txzxk+MHfu5gdPWLGL/okMOiVh44RbDZ8iQCPStyw47RAwc2HI+/LD0bO65I371q4g+fSJee60l4+gnP2nZ8+jkk4ucdYu2DsyiSy65JAYNGhQLLrhgnHXWWbH//vvHkCFDYuutt45x48aljKEnnngiafr27RvnnntuHHzwwclQOuqoo0L5/DrsEdXJpSsaUuVaG52VzSKbReqt2hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePa2Vbc0i3oy23not+xXxdjT8NrKDnnoqYu+9I15+ucUM2nbbiHffjXjyyYjNNouYODHi73+P2G67lr+j22CDliyjSy4pfm51YBaNGjUq7r777pg4cWL6Of744+Paa6+Njz76KMaMGRM77LBDyiy66667onv37ikDiaVnv/jFL5JZpHx++eWXL84m5xNd0ZAq19rorGwW2SxSb9auuAfVc6s3nVnpNWJWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhprcyWm2UbXP/whxF9+05/rAkTIq65JuKAA1qWo7H59UEHRSy6aMub1Hjz2e23t2yQffDBLb+nYDjxuZdeKn5udWAWPfroo8GeQiSosXcRexZRxo8fn8whfiifffZZTJ48OeZh76ZWRf18cTgz/0RXNKTqtTYyK5tFNovUe7Ur7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXo6S8kG1717t2QPtS7sYYThRIYRhlGZUgdm0dtvvx233XZbMoLYp+gLvCWuQOno5wt81XTSrmhIO3qtHf387GBls8hmkRpnXXEPqudWbzqz0mvErMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWNotsFunR0wjKOjCLGgFTrXN0Q6rXXBFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkFps6h0Lbkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwW2SzSo6cRlDaLSteSG1IdXRFWNotsFqmRVSSu1GNWVZZ2mCgAACAASURBVGdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkHZAbPolltuaYQrnGXnOHr06LQxt0ttAt/61rem/aHIQ8dmkc0i9Z4qElfqMauqMyu9Zs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoOyAWXTo4EPjwrMubISr9DnOZgInHXJInHjBBTaLBO4b99s4+MmKH9ACtP9JzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUHbALNrniH3ioUcfaoSr7JRzXKTnIsFPVj766KPo1auXdux3343gp0nK6uuuGycOGVLKAHFmkTOL1NvEnRmVVIRZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6Mq2cWWzyGaRHj2NoOyAWeRBfYFB/bBhEfw0S3FcyTXtzCIZ1QxCd/x0dmZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bPqNnXq1Kn5svpRtHX8pqtkD+qjf//+UmXZLKozs2jttSO23DJi6NCIUaNmrMPNNotA061bxH//G3HjjRETJkSssUbEFltEzD13xPvvR1xxRcTEiVIMtCuyWSTzs1kko7JZVB6VM4sKsPOAQodlVmalE9CVjiuz0gnoSseVWekEdKXNonxWNovyGdWvwoN6uW46NKiflSbkUktFbL55RL9+LUbQTTdFPP309Ne15JIRBxwQMWVKxKRJET17Rjz+eMTdd0cMHtzyuU8+iejePeLllyOuvFLmUlPouJL5dSiu5G+pptAdP71ezcqsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9R/So8qJfrpkOD+llpFq22WsQ227QYPXPM0ZIxNGLE9Nf1ta+1ZA/dcQebl0T8+McRY8ZEPPJISzbSyJERN98ccdxxESQKnnqqzMVmUQdReYPr0gDd8dPRmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLJLrpm7NouwKdt45YpVVaptFmWbNNSM23bQls+ieeyIWWijiq19t+e/772/JMpp33oiTTpK52CzqICqbRaUBuuOnozMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk102XmkWLLRax004znit7DF17bcvvFbOI+t5gg4i55op44YWWvYlWXTXizjtbsoyOOipivvkiTjkl4rPPZDYzCB1XMrsOxZX8LdUUuuOn16tZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhQf1ct10aFDf0WVoyy4bseeeM57r2LERF1yQbxYNHNiSdfTXv0ZMnhxx9NEty80eeihi/fVb/uVvP/lJi5F08skyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1HfULFLOsm1mEUvM9t67ZcPqt99u2QT7nXda9iei3jGa/vCHiAMPbNnc+l//asky+uCDiF/+UvnG9jWOK5lfh+JK/pZqCt3x0+vVrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8KDerluOjSonx1mEcvUBgz4fM+i7A1oGES//nXEwQdHLLhgy/VOmBBx660Ro0ZF7LZbxIortvyepWdXXx3x0ksyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1M8Os0i5kt69W96ahoHUuvTqFbHwwhGvvdaxvYqyYzqulNpImg7Flfwt1RS646fXq1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FB/Vy3XRoUF8vZpF8tR0UOq5kgB2KK/lbqil0x0+vV7MyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlTaL8lnZLMpnVL8KD+rluunQoN5mUfTv319iPezlYcFPs5QOxVWzQGrnOt3x0wPArMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8JmkVw3HRnUn7zPPvHS8OHydzW8cPHFI/j5Xxk3blzMP//80mW9Nf6t4KdZyuqrrB5Dzhsy7XLdmdFr3qzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPKszzzwzBg8erB+gCZQ2ixq5km0WybXXIbPoBz+Iky69VP4uC5uHwEFHHhSXnHOJzaISVe7OjA7NrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlM4vyWdksymdUvwqbRXLddMQsuuqqq+TvqaLwnXfeib59+1bx0jrlmvbaay+bRSVIuuOnQzMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk101HzCL5Syoq9ANar1izMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TOqX4XNIrlubBbJqGYQ+gGtszMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVThzowOz6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPCtvcD0jO5tFejzVn9JmkVwnNotkVDaLyqOyWVSAnTszOiyzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JXOLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZ1a/CZpFcNzaLZFQ2i8qjsllUgJ07fjosszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymdUvwqbRXLd2CySUdksKo/KZlEBdu746bDMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFfaLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFZdYhaNHz8+evXqFd26dZt2hh999FHMO++8Mcccc8z0rM8888wYPHjwNM10lTxsWAQ/zVLqyCxaddFVY7uVtpuO/HVPXxevfvjqdL/DtFlvmfVijm5zxCtjXolrRlwTU6dOTZq1l147tlx+yxg6cmiMendUp9aizaLyOP2A1tmZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z9XyQNrTctz55ptvOg9Fv9pyytlqFr399tvx9NNPx3e/+9144YUXYtFFF4133303dt1115hrrrnilVdeiaOPPjr23nvvdq/GZlErNHVkFmEUrbXkWjFh8oRpJ/j7Eb+fzizqt2C/2Psre8fkKZNj8meTo+fcPeOe/9wTL415KTbvv3nw927RLW567qZ4evTT5SK6nU/ZLCqP0w9onZ1ZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHRlUbNoyJAhcf7558dSSy0Vn376aVx77bXRt2/faV/4+OOPx7777hvLLbdc8jWuuOKKWHPNNaPW50iaqeWBnHXWWfHII4/EnHPOmUypK6+8MplD+++/fzKg3nnnndhxxx1n6pfoBPKVs9UsuvHGG+OBBx6I8847L0aPHp3MojPOOCNwyU477bR46623Yokllggctp49e9Y8e5tF9WkW7bnanrHcgsvF2Q+cHZ9+9mn6aVt2WXWXWHmRleOqJ6+Kt8a/Fesss068Oe7NmGfOeWKbFbeJ7nN2TxlHNz53Y4wYPSI/egsobBYVgNVG6ge0zs6szEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyiFmEOTT33HPHmDFjonfv3nHYYYcl3+LYY4+d9oVbbrllHHXUUcG/+B6XXXZZ3HnnnTU/hwHU1gN57rnnYpVVVkkmUY8ePWLPPfeMgQMHJkOK4/zxj3+MBx98MPbZZ594/vnn9QvtgHK2mkXZeQInM4v222+/2HzzzWOXXXZJy5FYhvbiiy9G//79bRblVWwdZRYd+rVDY+GeC6czph7JFvrdU7+b7gp+tM6Pok+PPslImmuOuWL0R6PjuhHXxdiJY5Nu51V3jlUWWcVmUV69z+a/+wGtAzcrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK4sYha99NJLybPAp6BccMEF8eSTT6bsoawss8wyyczh3+HDh8fWW28d//znP2t+Dj+krQcyYsSIWG+99ZJPwvY8fH755ZePn/70p/GVr3wlNt1007j//vvj8MMPjyOPPFK/0A4oO90smjhxYtx1110znNJWW20V88wzT/p9a7Nop512Cn5Ip6Istthi8fDDD0e/fv1qXpYzi1phqSOziOVli/RcJB5747H42lJfS0vMrnzyynh5zMvTTviIdY+I3vP0jjfGvZEMo2V7Lxsj3x4ZQ58dmjQ2izpwJ8/Cj/oBrcM1K7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCuLGIWsZXOoEGDpmX0XH311XHvvffGb37zm2lfuMACC6S/k3HEsTfaaKO44447an7uww8/rOmB/OxnP0tG0worrJAyiY477rh0nD322CMOOOCA5JN07949br/9dv1CO6DsdLOI1KwDDzxwhlO6/PLLU8pWW7PolFNOCcDikE2ZMiX69OmT0rvIMMI5Y9la2+INrv9HpI7Moi/0+ULar2j0+NGRLfka/ubwuOX5W6ZV3x6r7RHL91k+zn3o3KT96YY/jfGfjI9zHjzHZlEHbuJZ/VE/oHXCZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlbXMorafXn/99WODDTZIS8PYJofNp0l8YVsdyhFHHDHtIxtuuGH6/RprrBGPPfZY4HNcf/31NT/HErT2PBCykV599dWUlURG0d///vdYeeWV00u+ss9lq7T0qy2n7HSzSDmN1plFt956a1x44YUpG2no0KFx7rnnxkMPPdTuYZxZ1ApNHZlFgzcYHD3m7BF3vXhXetvZ/PPMH5c/fnksOf+SseFyG8Z9r9yXlp5ttcJW8Z8P/pNMoi8v9uW0NxF7FFGcWaTcPbNf4we0ztyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqySGYRR11ttdXi4osvTvsIsWrq5JNPTkbSyJEjY6211kpLwxZZZJE45phj0t5FvLns1FNPrfk5VmO19UDIVGLZGUvZSKDBdLrllltSFhHnetFFF6WNs9dee+14/fXX0wvCZnXpMrOIN6OxWRMu3bbbbhvPPvts+u+77747AWiv2CyqT7PoK4t/JbZfaftkCFFYfsYytK1X2DrWWXqdePi1h5ORdPBaB0/b24i3ol382MXxwccfpM/s9KWdYkDfAd6zaFbf9QWP7we0DsyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyqFlEksvuu++evmC77baL6667LthnCMOIZWXsZ8SeQ5QFF1wwJcAstNBCUetzmEW1PBDMpRtuuCG9+OvQQw9N+xWRRfSNb3wj3nzzzXTsE044Ib0dbXaULjGLal0YqVaLL7542i18ZsVmUSs6dZRZlJ3VMgssE2MnjY0PJ33YbjUuNO9CaU+j18e9njbDnh3Fb0MrT9kPaJ2dWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0ZVGziCNPmDAhxo4dm/YlqlV4a9obb7yRNrlmNVVW2vtcLQ+EpWYch+yi1oXjkmyT55foBPKVdWMW5Z9qi8JmUStSdWgWqfU4u3U2i8oT9wNaZ2dWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZxizSj14Npc2iRq5Hm0Vy7dksklHNIPQDWmdnVmalE9CVjiuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFdabMon5XNonxG9auwWSTXjc0iGZXNovKo0uZz/fv378ARmuejZqXXtVmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT6rSplF919wQcTw4flXXRXF6qtH8PO/8sYbb8SSSy4pXd3wt4bH8Debh9XqS6weh+546DQ2fuhIYZJEZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY6r8qzOPPPMGDx4sH6AJlBWyiw6eZ994qQrr2yCavMlFiWw9+F7x5DzhtgsKgrOZlEhYn5A67jMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsqzslk0I7tqmUUnnxz33HOPHiEVU06cODF69OhRsavqnMvZfPPN48QTT7RZVAKnHzo6NLMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EovQ8tnVSmzKP9yq61wQ6rXr1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArrSZlE+K5tF+YwaRuGGVK8qszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXNonxWNovyGTWMwg2pXlVmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzahiFG1K9qszKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymfUMAo3pHpVmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCttFuWzslmUz6hhFG5I9aoyK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AV9osymdlsyifUcMo3JDqVWVWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6jhlG4IdWryqzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEYNo3BDqleVWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jBpG4YZUryqzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZNYzCDaleVWZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TNqGIUbUr2qzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JU2i/JZ2SzKZ9QwCjekelWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bOyWZTPqGEUbkj1qjIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9RwyjckOpVZVZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqOGUbgh1avKrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8Rg2jcEOqV5VZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmMGkbhhlSvKrMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hk1jMINqV5VZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsusQsGj9+fPTq1Su6deuWf4ZtFGeeeWYMHjx42m/deHwOyCz0cDIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z3300Ucx77zzxhxzzDFN3572gw8+iD59+szwtRMnTow555wz5p57bv3iReVsNYvefvvtePrpp+O73/1uvPDCC7HooovGpEmTom/fvrH11lunU/7iF78Yp556arunb7Oo/Zp1QypGfUSYlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK4uaRUOGDInzzz8/llpqqfj000/j2muvTT5GVh5//PHYd999Y7nllotXXnklrrjiilhzzTWj1udImtl1111jrrnmStqjjz469t5775ra9957L3bbbbdYfvnlY8KECbH77rvHLrvsEhhNI0aMiGOOOSaOOOKI+M53vqNfvKicrWbRjTfeGA888ECcd955MXr06GQWjRo1Kk444YS47rrrEqy8YrPIZlFejCh/90NHodSiMSuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFd6bgyK52ArnRclWfV1mdofSTMITJ3xowZE717947DDjssllhiiTj22GOnybbccss46qijgn/xPS677LK48847a34Os4gMpNNOOy3eeuutdKyxY8emY7f9jnnmmSf9/Xvf+17cc889ceSRR8ZTTz2Vfq666qq45ZZb4pxzzml8sygjCZzMLLr99tuTqwastdZaK6ikTTbZpN1atllks0hvAszKrDqDgH4MP6DNSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCurJIZtFLL70Um2++ebz44ovpCy644IJ48sknU/ZQVpZZZpl48MEHg3+HDx+eVk7985//rPk5/BCOR4bQ1KlT0zK0YcOGpcyk9r7j4osvTgbUHnvskUyprOy4YbLRLgAAIABJREFU444p86ghMotYM3fXXXfNUEtbbbVV4IpRWptFf/vb3+KJJ56IQw45JK6//vo4/fTTU7YRmvvvvz9lIrUuPXv2TOlXLiZgAiZgAiZgAiZgAiZgAiZgAiZgAibQUQK1fIb1118/Nthgg7SVzqBBg+L5559PX3P11VfHvffeG7/5zW+mfe0CCyyQ/k4WEEbURhttFHfccUfNz3344Yex0047BUYPZbHFFktZQj/60Y/a/Q5WZ5GxxHm29lsayiwiberAAw+coa4uv/zylFbV1iz65JNP0oZM/EyZMiUtRXv11Vdj6aWXlup7Zuli0gEqJDILvTLNyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlUXiik2tMWnYfJqkFowbCnsFZWXDDTdMv19jjTXisccei1NOOSUlw9T6HKuqMJcOP/zw5IGwcfWbb74Z88033wzf8YUvfCG+9rWvxZJLLpmWqKF9/fXX0/9TGsosUqqndWbRiSeeGO+8806QVkXaFmlVWeqVcqwilawcr5E1ZqHXnlmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyaFytttpqybMYOHBgsGrq5JNPTllHI0eOTNvpsJfQIosskjacZpkYxg8v7qr1OVZjXXjhhSlDaOjQoXHuuefGQw89VFP797//Pa3Qwjd59tlnY7PNNos33ngjJdtU1izizWjsHo6Dxno9Mor4Afr2228v13LRSpYP3IBCs9ArzazMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZNK5uvfXW9CYyynbbbZde0MXbyDCMWFZGwst6662X/r7gggsm82ehhRaKWp/DLNp2222T+UPW0t133x1rr712Te1zzz0XBxxwQPz73/+O7t27x89//vOUYJMVMos4r29/+9v6xYvK2fo2tJmdE7uAL7744uJpfy4rWsmFv6CBPmAWemWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK8vEFXsn89Yy9iWqVXhrGlk/bHLNaqqstPc5tt/BA+FNa3lakmzY24jNsGdXqRuzqOwFswk2bp5LpA3BzUKLBLPSOKEyK7PSCehKx5VZ6QR0pePKrHQCuvK+++6LRRddNO0v0d4AQT9atZW+B/X6NSuz0gnoSseVWekE8pUNbxblX6IVJmACJmACJmACJmACJtA+gccffzwtA/i///u/JGLDUV7CQuF1xJMnT45//etfcdhhh8XRRx9tlCZgAiZgAiZQeQI2iypfxb5AEzABEzABEzCBZibAq3zZIHPVVVeNr3/9682Mot1rf++992LAgAHpjbwsI1h33XXj//2//xe33HJLej3ylVdeGQ888EDK4P7vf/+blhi4mIAJmIAJmECVCdgsqnLt+tpMQCDAuttXXnkldZLZZN7FBEzABEyg8QhgZrCXwTbbbJNOnv0R5p133pQt8/3vfz+9pWXIkCFx0EEHxQ9+8IPGu8BOOmM2CF1xxRVrHo1NQvfee+9kBmEanX766ennz3/+c3qVMW+5+eY3v5k2If3Sl77USWfkw1SZwD/+8Y945plnYosttmg37qp8/b62zicwderUuOmmm+Lpp59O7RWvVXcxgVlFwGbRrCLr45pAAxBgd/4jjjgidWDoQLPO2fsxNEDF+RRNwARMoA0BDI3LLrss/vSnP8UTTzwRxx13XPzlL38JDJD99tsvVl555Tj77LPTm1Zefvnlaa/cbSaQmGWXXHJJ/POf/0wbhP7tb39LzOaff/741a9+Fffcc09cccUVMXz48Dj++OPT22d4LpKN9dJLL0W/fv3S65BXWGGFZLq5mMDMCPCGZ2KMtzz/4he/iDvvvDPWWGMNQzOB0gR+85vfpDaJjZMXXnjhlP346KOPztYNj0ufvD/YkARsFjVktfmkWxNgx/mPPvrIMzZCWDBbypsH11prrfSgYRaahw7p9LvssksstdRScdFFFwlHssQEPidAdtqPf/zjuP3229MyFzIcvETDEWICnU+A1/KOGjUqvbK3bWFPnaWXXjplMfzwhz+MffbZJ2UZMVDltburrLJKerUuGaQMWJtxNvqUU06Jd999Nxk9r732Wtp7iPbqt7/9bcwzzzzxs5/9LG1kvfnmm8dTTz0V3/rWt+KMM85Iryl+8MEHY/nllw8yRXhu9unTp/MruM6OOH78+GSasUQPZtkroevsNOvidHhLEfcdhuP++++fjFlenU2csQz0mGOOSWYjhmWzF7Ieued4XThxhVnr0kLg6quvTm309773vfT/jHFYCkt7893vfje9qn3w4MHp9xjeX/nKV1K/3S84cgTNKgI2i2YVWR93thC48cYbg84fDSuD0xtuuMFLqdqQZyA/cuTI9JrHww8/PP11t912S7POvKaRBzWdYB5CzJbyNxcTyCPAxq/du3dPMjaEZY+Ps846K3WQmUm966678g7hv5uACRQkgMlDllC2jKxtZgwDewZgl156aVqiMHDgwLj++uvTvUk2zfvvv58G/OxftNxyyxX89saXk2VFv+Hmm28OjBCMITay/ulPf5qyazFFML6//OUvp4ysPfbYI8aMGZOWobEBNhNTm266aVreV/XCgB5TkiWMDFQZvGKgNaPJyBJE6p+JttaF32evsN5zzz2jR48ecfHFF6f7jf+nX0osrbnmmqlvNWLEiPjRj35U6dDBtKZP3vqV4a0vmOsnS4+lnA899FBazsnry5u50AZhJmJMv/DCC8EyM7aGwOSH0wknnJAMavpZ11xzTbofP/zww2SyXXjhhamPT8akiwnMCgI2i2YFVR9zlhCg48KMTM+ePdNDmCyZrbfeOqWL0+mjU0yjOWjQoFny/Y12UGagSU099dRTUweGZQnMcNG54eFMhtE3vvGNWG211eKcc85JnWRmTXkANVth1u/ggw9OM/IwobOXGSHNxmJm10vs0AEktf7cc89NM1oMVrkPN9tss/jPf/6TYm6nnXZK+6MQdy4m0JoAAwlMapdyBDD1+/btm0z+d955Z4bMGDJEGdDy92uvvTY9E3leMhPN8jSeoyeeeGIynJqxwIysIZaaMYBn0oQ3nJ133nmxww47pLatd+/eaeDG4IxBHM/EZsgiIjOG/hMmI1kfZKkde+yxcf7558fvf//7GDp0aPzyl79MmWrNVmi3WPLD4J0MbIyjQw45JA3SMT/oZ9GvYiC/+uqrJzwYs5iQPAd5XmLWYhjRN6ty2XLLLeOkk05KpjTmBss82TeN/gL3FX0teNI+jR49Oq0KIPZ69epVZSy517bJJpukzGziCoP2qquuSvGE8faTn/wkJk2alAwkjG72UeM+JJ7oy6+00kqJZTOY2LkgLeh0AjaLOh2pD9iZBLJN3Ei3ZFDKngs8dEj1/eIXv5iWTtExfvvtt9N/83c6gs1YeJDQmYMFA4Unn3wy1l9//cQLRsxwYYYsu+yyse2228Zee+2V0lY33HDD2HnnndNsKw9yHlJVL8wU0yFmxoalB8zWM4DaaqutUmeZTk72+uSqs1CuDxOI2GEJCwMp4onBA0s0uO8wiBhYXX755fG1r30t/Y5Y8t4MCt3m0bBMkXYmW4bBQMKb6uv1z+CTe4/B57Bhw+Kvf/1rzcwYBhwYQxgd3KO89p0JAT7PYKIqAwomOOacc8601KdIwfxgsokBPBMk7CMDKzJnyHi477770ox9//79ixy2rrVkRHFtxEbrkmXG0Nei/0QGA30oBvgYk0zC0Z6zpBFWZC8QS81YyDjDQONfWPAMZGnnAgsskEwk+hD0p+ifwpv/5u158CQTl3jlMzwjq1bYDJ4MRvbzog+KKc2SOzIdH3744RQzGBy0XRgcmEn0GSjEGRNMxFkzFu49jB7a9oUWWijtQURmGm3QxIkT08QlHCnsoUZ/nd9fcMEFaU86yiOPPBJf/epX/TxtxgCaDddss2g2QPZXlCPAJm4sZaEzyMOHAT6zOTxgDjzwwPQQxvjAfaczfNttt6W1vn/84x/LfWEDf4plB8ySMtPAf2OuYRyxrIwZwo022igtW2Dmi1mLP/zhD2nGgsHb66+/nma8mLGg41PVwsCUByoDC7KHmB0ktogxHsZ04mBCJw/DDGOkWQsxhJnGcgOWaRA3DOoZoLLHx5JLLpmWfxI/dGowANZZZ5203wezpsQerDHiqlR4a+B8882XZphdihMYN25cuu/YfwFDm9lk/iWGXDQCDMIWX3zxtEE1A4tamTHcuwwmGLySdUsmV9XuRWhhbDBQZ4DKgIs4IpOK7GNMDZaL1So8H8n+INOWjCLaLZYKkemAGcBzoWqFmGAihCxaCn0AshXItGIPFNpvMtay7FE0mIsYH/QLMEjod/HfZMs0S6HNp/9JvLAEjyw9Jk7IPiYrm+chRiN7g/E3Jpow2tjXir2xfve73yVUZH/wJr2qmuO0M/QL4LHvvvumOOGa2RiePiis6MOToYdxxn2GiYShRKbMr3/962TaNkthchfzjAxH+p8Y/9x/TOpivBF3jGsYz3z7299OsYfRtvHGG6f90+jT8zdvG9EsEdO112mzqGv5+9tbEWibGUNDyGwWnRcGoLjmdF5YH85eC7zRhZkaOjPsLYC5hMuepQBXGW7b12Z+8MEH6U0bPHiYwWEWAhOI/yfdl4E9Jhvp0tm+C3SsSbmvemGAyoOYwQOxhOFBR5klB5ggZDmwLwWdZVLJMSAZ0DLT04wF45CsM8xHOrz8P/ciDLm/WPbJ/ca6emKLDjAdGQansKQzyOxXFQ0V7isGp3SI4cCgkkGmy+cEMPHZOB+jmsJA6tlnn00mLR1hBlRkvaBjcIFJzQbD2evem4kl5gQD+KJLXjH+eR6yiW6tzBj212GwhplU5UJcwY+lQJlxzbXTHrE0lmdgexvnkl2LAULWBwYcBlPVCwN2+klMALBUiPadJXi05xhntNlkVaFjk2bae/oIDP7JVOaZme0RWXVWtE9cM0YHE030K2mnyGin/0B/lUkl+qEw5JnH3o8Y4ExasiyI+7PqS7GzzDTuv1133TVlCNHXIlZo64k3lp1985vfTCEDP/qgGLT0FVgeS9+BzKyq991bZ9LS9hM7TFDSF6ct43eYP2S4w47+afZmRgwi+h5kq7GZdbZPVtXvQ19ffRCwWVQf9dD0Z1ErM4aHDA8TZiNY+sKSKWYS6eTQYSEDhE3x2DCQjSlZcsUgpeql1msz2SQQBjyoMdjovDAII9MILsykstcMM7A8dKregcFEZAaVARWdGdbCM4vD0jL21mG/DpYcYKyxxIosIrixHwOdQ+KIFN9mKGx8TvywJI/7jRRnWDBzRaeF+43/Z/AJV7IU6PDRISadHgMFo63W25mqxo9BKSnzzO5xj7GUJVviU7VrLXs9dGSZFaUDjInNoJy4YoBw2GGHpVR7zNnMjGXpIjPQtO3NVoglBuK000XeKMiAnr1kmACAczNkxrSODeKF6+etcJjZ7Md3xx13pEklDEky17hHMYNqbeLNZAv9CgzM9jbhrUIsMlFC5jXPe+45BvG0WdyHtGXcgzzzyAohG4a9mU477bTUr+J5mT0Xq8Ci6DVgYsCL7CCygbhHMUPoS/EcxNigr8CSRl4cQhYuk0zN0o5xDx5xxBFpo3xY3HTTTakfQTYj7RLZxfQRmKDELMJ8I5OI9o7lkJhq/DTDG7y4z7in6LsTJywzY9yCQU1WNrzI/COjCMMRhsQeZi6sfvWrX6U4pDA552ICs5uAzaLZTdzflwiQlcCeJswokDZOx61WZgyb5GabuOGw33vvvSmtlwc2jWfVZvUxNpihyWZhaoULs1u1XptJKjkDsb333jt18pgZZODGAxyThBTXZijECQMoDA0MRfZsYqkL+zEweGBWkEwZOjc8nJm9Ic2cBzPsiSkYVjVdPIsBBlZ0WFiKwAaTDOYx2Pg9BhrLW9jvhH0IuF/J/Dj00EOTKUQHmY4Os6lVK9xf7FXCDB6FrAO4kC6P6cE+TJiJxAodZuKKwWqWSVM1HkWuJ8sCZQBAVgcDUUw1BqLcYzAiI4ulGtkSBAb2ZPuxHKiZCksxGCiQZcU9VuSNgnAmPjFImEipemYMz3raagxrjA/aZ7Jj2Pck26uQZx+TJczWY3IzkKd/kb0BNOt3ZO0Z+xVVddNqzDD6TmRYbbHFFmkASvtFjNFewZN+F/cgy3+YNKGNo7/A3pDcj3wOM7NKhXaILCol65V2igmT7IUfZICQtcZkG5MkDOIx3TDfmLxkwqTKBeOf7B/6RyzF5tlP3wkziAk4Jt+4LzHMiLclllgiLZel70A7R4wRg/TNmmEvQ/pQ9Cl5FtK/ou/EM47li2Rp039gbEOMYbqxXI/YZKknbRb9de5XMnOrniFa5fumKtdms6gqNdlA17Huuuums+WhwUCe9EsG8HRW2mbG0Mhmm7hhKD322GOV38Aak4PUbzI6aj0ksnXfbV+byewOhhtrwXkIsV8Ds6pFN/9soFBKp0pnjQEpgyeyXuigEFOkidNxwWCk88yDF+MMA4mODA9zZmmIw2zw0WjXXvR8mRGlk8syKpbc0UGhQ8O/3Hss3WA/J5a20MkjbRqGaJkRYzaaznKVCzOi7H+GKU17Q+YQWVfsbXXDDTekWGM/pmwvCjp3LIVpho316bi2t59Lxoo2h1lkOsQY1nR6iTcK2Q1k9bE3BX+jk8wsKtkMzbS5KYYkGXm078wos7yagYL6RkHasypnxLRuX2BF+8NzkT4Cs/JkKsCP+5L2n02b2XuH+5A3LpFVyyCWGXvaevoXxCTHIHOyGV79Th+AZZ5k7tGOs7Ts0ksvTfcaA1cGqzwrycDid/QTmGSa2URVo7b7GNWYixgcLK/GCKP9ZqkYJkd7BTOEDA/6FsQhZlFm7DKgh1/VC5NHTIawTxVtO1mjTCxh8nOfkYHG5C2F+42MPzLV2BuTSSUyS+lTNEOhz0S2FP2p7C1vxB5vOcNYJNYw+rnXaPdp7zFt+QwmNxMIZBF54qkZoqWxrtFmUWPVV92fLUYGMzI0ju0VBu3MbJGSyfIzZunpBNIhbJsZQ8NJR6dZNnHjAUNnhj0sGFDRua1VeOjUem0m7BmAMHtY5cLgCuOCh3OW5cKsFZtU05FhdpROHTNYDKqYzaHjzICBBzEZD3RiMCOboZAqziCfPSiYPWYAwaAJFhggGI2YISxnIeOKzBpm3ukg08FmOQP/Vv2V57RDGI3MqLMsiGUHtD3cb5gbLMfjzW8MMhik0uljbwE2oKzaLHzr+wLjlQ4/PDBWaxUGmQzWMYTIViMTBAOEwQTLpsjUy5ZdYUBiGmEQcY+2txFxVe7N1pkxtO3EDe0UpgWDdZZmZC9vaO+NghhEZIJgZnIfnnHGGZXAkw3ks4shI42MKdpmBl08z7LMPZb48IxkUEVfAdMIA5PYwpwk44M+AxMC7LvGYJZnBc8J9I1ssJE9htlDdqxSsmVADEIpmLIYJvAkm42JJeIOw4MJACaZqliID579ZLuwKTz8MDPIvKIfwHOuvSXU/A0dmck8F2GaZZxWkVXra8oyYzD76WuyfxOGI8up2PIANphpLHOkDadNw8gl+y97QQh9jEa+55Q6bt1e0cdiAoS2nAI39q0iA5kJJrLeKXBjiR7jJdo0sot4ZjbDvmkKU2vqj4DNovqrk4Y+I2YYMCqYmacBrFVw1JmtZ8aCQoePBwxva6lqZgyGFx3WWiYOHWMGVBhnDOR54DDjkO0PU4shn2nG12Zi9pAKTeYVcQM3BqUMwDCLyJJhwM9sDYzoFJMxk731jRTqqqeLZ/ECCwblZAnBgWUZmEF0+Bh4UjBosw3Qsywisq+Y6SLrj85eld+Q1/reYnPJ7I0/cKEzd/bZZ6clVFnMsMEk9yXtF6YR2URk1NARZDlQ1QrZi9xbtE0MMlmK0F6mIoYZGUTskYbRhi7bh4cBO58ntmDFHmLZxqhVY9b2emplxjBDz/1GW0+2Au1Ye28UxEwhC4LnBwNVOFdl+VTrgTwvFmAPIuKHJeoMzGnnudfQsaErbTsDd5ZOocM8IZuB5bQYupi5VSvZBBymIuY+fSvuJ+IGk4MlnbVK9tY8MmvJvMLsxUDjX5ax09eoWqHNxjjMsoUwhTBYiScMDp5pmNoYQPyO5yL9KCaXahU2/cZwpC/Bc7Dq+8XUyoyBAUYizzsmLzHc6EcxqQIb2nNMN5Z8MqlEFl/Vl/BnsUK707q9YqkdBizGNWwwh7hPaacw3ehX0O7ze8Y/RV9sULX71dfTOARsFjVOXTXEmTJAxSQizZcHcXtOOc46nWhm+zAASHFlVoLZnyplxjAQp2OGYcFb27IZBwZKDESZqacTSGeFBy0/dP7IzKIz094bgjhuM702k4ctnTyumZkbOirzzjtv6rTQcaZzwrIEZtyZXaYzyDIE3s5F+i9xyP47VS50QhgY0GljCSMzgHSWyUDgd8wq02Hmb2T1ce/ROcw2QGfgSjYWmW0YTM1W4EIKPfceHV4GpCxpybI4yFYg44oBLe0Ug3gGEGiqumE8gy7uu4EDB6Z2iSU9tNe1Bk20VwzqMfyJO95ChclBthFZaxSWOVatg8zyp9b7wZHdSXwQT2QO1cqMYVNmBg6wJWON5yWDBzK42r5RkHhjIqWKS6cwQpgYoV3iGcigHGOStguzgzae+4vMF4wR2JLZxl48MMYAZwBLGw+jKpbWE3D0r9hPiEw13ojHPUd8kDlTq5C9x8CUdgt+3JtVzg5lIomJEAbq9BO4p8hQw+ygD4HZSCYHmWk8F7nfuHfJUmZj9NYF7mTk0oZxrKq+rbF1e8UkUa3MGPoVtGP00+kz8OIQJhLI6iYzmThrL+O0Svck/U6umf47+w9xP7Vtr9hHjb4YSzuZACC7lvuVDCPuPZ6jZCNXxfCvUv36WtonYLPI0SERoPPPoJzZv7aldWZM9nYpnHUG9u0VGloyQkhl5eHOw7uKnb2bb745PVAwwpiRoXNCJ4QZeAZTDAxI4WWvABgz2MJEYgABVzoqrbnQgWZ5Gmn5Vd87hllClqnwgCXjg84cmS5ky8CRQScDe9J3yfCgw8dglDX1bPbNjBj7yVTlocyAqr1lc8QNJi2Za3TiyECABUYQadKYaSwPIkMGoxFG2YbCGGvNtAF6e20Shi5ZCyyJwlxjoMpAjN8TX9xzZK9xzzZLYTkBA3LaGrKKyBQi06pWof1iDxlMEkxxmLGMaGZLkhudI4MHMjWyN9vQXtO2c0/BiYxGBq5tM2PIZmDwSSYMGW18BsOoGUxa2mXMau4xDA+W92QDeQx/TGsGXBQYkgmJ4ciAFL5oqjowZS8h9nrJlp+zvxyZGzwHiQ/6EkyQkKFHW85zEeOWlxHUKhhLDPAxmar2qm0G3Azc2+7ryIbCLI1iL0L6BCyBZSkUTOkX0K5zz2J68HuYk+nHm2Jpw8jcov+FwUTbT7+N+7eKezm1ba8whdhTtG1mDBOeTMLRTyUeuW9bbxzf6O24cv4sJWOyhOc/5g99UNqwtu0VZhD9LjLf6f/zL8uveSbyLM2WhSrfaY0J1AsBm0X1UhN1eh40kHQ26NjSQcEMar1JLg0fM3+tM2PozDDTxUO2vV38GXQ0wy7/zH5mmwbT2WCmgT0pMDB46GbZHTxI6PTRsWH2i6wGOskMHthnhlR7PsuMBRkyDGirlupLTNC5ZQ8rOsIMMunAMSNKCjQDhMwQyt7KRXYan+FfCgYIBlHV1n7TQWGjTTISanX66bwwUGdQQIeXmS+yXug4M5PKAB5mxCOdYTrLWZZbnTY9s/20WLrI4J60cQYS7EuEccvSDdo3Bg/N8Jrf1uAxrMkuwjQjewqzjGdCe/cX2VZkEbFcphmWe5LJgBlErDBDn2Wn0WZxH/LWINrxWpkxMOWZSmZpFbOGat3ADLDgxfIysmh5DmKEZAN5PsNeclnmKL/nXqQvwTOA52V7+/jN9gZjFnwhz38MfwagLBlmKR4GEayyCTgG87Tp9MlowzE0MuOj9Smx3J+JKdqvbK++WXDKXXZIMrXZa497LMswgxlLOpmIw6hunSWDecR+V/Bkgg7DloE9k5aYRsQc7T8Dez7b3kb+XXbBnfDFtOe81Y3MfibZuE6yaVu3V+xt1TYzhuxJDBDGAjBrBlObfgD9Lt6cByMmBFi6yWRtVrj/arVX9OFpr9iziP4sBWOJZwF7P2FYuphAIxGwWdRItdUF58rDlsyWbJNSHjIYRtkmubyillmZtpkxPIgYvDJz2jozhsEEaasMNqoyOwgbuNSaeSI7hnRnfjB4mJmg48vAnc4e3OggMqND1gwzqgyy+Hu2pwezXAzQMInoBFWxwITlCDDgetmQ+plnnkkdZDatprBfDKYZhlH2ummWMTDTTMevaqX1ZvG8mhdDiMwXBlttC5077lU6MsQYmUPcgyw9I2uB2GSWmowjlmxUzWjsjLonw5H4I77gSUzBuqobv6rMaIsYHDCTzMCUH1Lr2xYGp7RTGCZVLq0zabnHyBqlEC8M5Bmw0pZlWaLcezwnmyEzpm29kzVF20VbRvtEphr752SbUMMIM4MMkWwgT9vPM5U+AtmQDFCrVmjLaZfbZinSPyKDKMtihBd9AozHbAKO/hP7pDHpRME8I0OE/hbmEBndDEhZTsx9SnsG82zQ2kgsmfxgLzgG2W0LEx+017TPxAxmEH0m7kn2ueKtlZjbLCUjI5cMWyZQ2POLJUFkKLM8r1kK5ge8MMTIvGISgL5T2/aKrRGIl7aZMdzL3MdV2Fif5YmY9e1tbM6EB20Pk+FMRnKvYUjykg8+h7nIvUv/ir5W1durZrlHfJ3tE7BZ5OiYKQEewKSC83DNXlHL7HrrTXKZ1WqbGcOuongDAAAPOElEQVSyFjKOWLfLIINBLBkyrA9nsMGMUBUKHVzeJsLMS3ubH9KRY0DBw4UBA2YQHRWyYHgoZQN9lhnxMKryW5Xaq3New0rmFPFG5hrGEMYYyx6zDDU6xXQCGTxUdYPO1nxa71XBQBQ+pDXT2a1VmH1mCRqxxYw0hhodPDqJZG0xcLBJlN/qYKpxL1fVmM0nML2CbDay9dgnhs4zS4iyVPpag9Mqv06afavInG2dScuAlGwQngFkhGbZaQzSGXBlm+43Q2YMkcPzjHaG5xl9BbKnyP4gm4NnIUYJz0MGWhiM8GPZXjaQR8OSRzIoq7hpPIwwpomZrJ1msogMZDiQPYV5xu+yPef4DBNvGEJMGvEszDL8yHiAIXsTwY3+FZNXjV7oB9AO07dkj5y2BWOIiUrMC95YyTOOpepsl0D/NNtcmAwhMrEoDPTpW7S3x1OjM8vOn34pmVdMRGKUkXlN2wRPTMqstM6mbd1ecV+2zYyhH8bkJwZToxfaIvriLKerVRi/EEswpDAJwCQ5fc8ddtghTfIy2Usfnv581durRq9vn3/HCdgs6jjDSh+BdHFmtugIk1rJ7CDLp3gYZ5vktpcZw6whD2p0DPqrsnSK6+LhwZs16NAyOMcYY++FWoZR1olhYMUDmIctnWXSW1nGwOebvTCjygOYWRo6cqSEYy7SyYERyxVY0khnuSoZaXl13nqzeO4hlo7RAWbGuFYhtljSQbo4r71l0NVMM6d5PP33cgQY2NK+kSGKScRAguwhBrRVGpzWotM2MwbTrFYmLW/AwRjiHmVmnvaLgT4ZNO3NXperjfr8FM842mmyhNgklw2qea4xG49pTeGNSey5R6YVg1n6Awz0yfjADG+WgXxWg1w7GdrEDANXMj3YgwizjaxajKPWLx/ArM0m4DCLuAerZmjTt2LTbtiQvcEzHyawqHWtZK2hywwMlq4zqULmDKY/n2OSk+VWzVQwFskkI+OFZXe027RD7BeWZWETc9lkbjO0V+yLxr6OmNJMyDJxTaZ2rYlr2i/6pLCjkF3Lfcq4B7ZkJvE7zCTiz8UEqk7AZlHVa7gTro/GkUaWDQXpKGOSMJDPNslttswYrjfbBJeMK2YHmW1m5qG9wswX65eZ9cPsYJaHDjMmmh82LdQYNGQZRTyI2SCXlHyyjniw8//NVMgUYklBtlcFg3M6vmwK317BJGLGGUOpam+daqa6r7drJaaY6a9CxsLM2GYbUdMmt5cZw4xz20xaBvo8CxjoMkDFMMHgrspb8tjnDJOQJT61Cn0EBuloaHdot9GSAcpyIPbo4A2DLI9iwonnJ1mQDNoYmFWFU5H7FjMDMx9TsVevXimTCGOELGyyQbIlnSwTYl8rSjYBV+R7Gk2L4cMyKLKJyPAgg4Ps9lovQOEeJUuEjFteksIyKybl4NQMe2K2V7eYGky0YYTQX8V0I3OIfgH3Mv0s+vTZyy+q1l7V4sJ9xPJN+uLEFW0OS8xav8ky+xwxxMQkcQU7JofJ0K6V4dZo95fP1wTKELBZVIZak32GlHsaWrJhmMkh/ZflUs26SS6DJgYGzNKQZcUsA505zLP23jiSvWq7vSVETRZSNS+XDZxZqscyFtbGMxu24IILNjWa1ntVsEEinT/iru3rj7O3uNCxbnZmTR0wvvhSBBiY83zL3vBD24OZXyszhqVVtfaY41nArHXVsj0ASiYLZnV7rw9nOTX767BZMIU9PuDBoJRlQWSNMkhjdp+lxGSrMZhv9mWx7CHH5ufEFFl6DExhQ/YVWVrsP0eGSDNsKEzccB+yDA8O3I8YjWRvzOxlDAzkyWAnq5uNiBnkN3vBNGPfNPrpxBMvHIAhhhF7FmLoZnsVNQsrMvGY6IYByzbpZ87sJTxsCk+2KIW4ImvbxQSalYDNomat+QLXzcwEKeV0/pi9YUBf9de25+Hh9eMsIyNdnOwgOnswofPXtpCij769PY3yvquZ/k6HBiNk4MCBzrj6X8Vne1XwLwMtZp/JsuK+ZNDKMg8yIar8Fpdmugd8rbOXAIMp2nDeSEbGLNkxGBvsz8Ggq21mDIMssmOqvsccmUBMhDALzz45ZB+wrKXWBuZZH4FJEYwN2iQyG8i6ZR86DG72TGMA6/I5gewtlywvJoOWpccYb2Q20L+olU1TdX7Zsn2MR8xGjA72AcOIrVUY8GOqNSOr9mKBDGMyh1jmyD1JVgx9q2Y3Z+mns7UG7RD7FZEpxMRvrcJzwVn/VW9tfH0qAZtFKqkm19HxI4WV9GCXFgIsN2DWj6UH7CnDnjGkS1Mwh3irFzPUpOAzQ0Gnx8UEihJovVcFHRwyh8hiY9DKcg8y/Np7lXnR77LeBJqRAHuesEdF1n5jzDKg4K1UtTJjmoERpgUGDyY0zzMmRmiL2issOSMbBDOb12/z/+zl5NI+gSybiDacDb/J3K765stKPGDW8gZBtj5gXx0mKRnkty7scXX99dcnHZsMu0xPgBcTsHcTy2bpfzrjOFI/nYwhTFr2WiVjiDfsZmXSpElp2T9vvCRjrVn2x/S9YwJ5BGwW5RHy302gHQLDhw9PbzChE8NeRCyjOu6449IDiAEGKfv8NON+DA6aziXQDHtVdC4xH80EdAIsTWDpDy9xYPadQTtv4mKQ1ayZMSzBY6DOG5MYkLNfIWZQe5MemakNL2bsnUWkxR8xt9JKKzmLoRUuMmEwHOlTYXLwBi9eIIKhe8MNN6Qsd/aJpN+19NJLa6CtanoC9MtZgkYMsW8a20dgDPFG5+uuuy5twM/eokzCec/Hpg8XA2hFwGaRw8EEOkDgmmuuSa8Fbr0XERt3kj7tYgImYAIm0BgE2CiX15kzUCArhs1P21v60hhX1PGzvPjii4NXszNo562oGGm8PrpWYdkGmcdkM7T3xsaOn5GP0AwEmBzhzYNsPszSRwrxdeqpp6ZM2lpvsGoGLr7GjhNgaR7LPdlXjQkBCllY7MvGSwlcTMAEZiRgs8hRYQImYAImYAIm0NQEGESQTcM+RSy98rLhSJkccGDjYd7EyOu3mYXP9vJgAP/www+nvYnYa45l2czIsymxiwmYgAmYgAmYQOMTsFnU+HXoKzABEzCB/9/evYRS/sZxHP9GSO4R2SC3ctlJlI2mLExjx4JsGJpy25DcspFrhsWMMTPYsHCJBQtW04ws7BRJRCSXhXOKcVkoMn2fOv6m+f/n3+mcpjk/799KnN/z+z2v56w+vs/3QQABBFwQ0EBEtwPZbDaa5T5x1OBM/+OuTb3n5uZMTyI9rXJ8fNwER3qog1bW8l95F7583IoAAggggMBfKkBY9JcuDK+FAAIIIIAAAn9OQHug6IEFbKP6x1xPpdJGwiUlJY/Nl7W5sJ4+pSfIcSGAAAIIIICAdQUIi6y7tswMAQQQQAABBBBAAAEEEEAAAQQQcFqAsMhpMm5AAAEEEEAAAQQQQAABBBBAAAEErCtAWGTdtWVmCCCAAAIIIIAAAggggAACCCCAgNMChEVOk3EDAggggAACCCCAAAIIIIAAAgggYF0BwiLrri0zQwABBBBAAAEEEEAAAQQQQAABBJwWICxymowbEEAAAQQQQAABBBBAAAEEEEAAAesKEBZZd22ZGQIIIIAAAh4rcHl5Kff39xIWFuaxc+DFEUAAAQQQQAABTxUgLPLUleO9EUAAAQQQsKDA3t6elJeXy8rKipldfHy8jIyMyIsXL3472+bmZunp6RG73S7h4eEWlGFKCCCAAAIIIIDAnxMgLPpz1jwJAQQQQAABBH4jcHd3JxkZGbKxsSGlpaXi5+cnY2Nj5o7d3V1JTEz8z7ubmpqkt7dXbDabRERE4IwAAggggAACCCDgggBhkQt43IoAAggggAAC7hNYWlqSly9fSkFBgSwsLJiB5+fnpbGxUTQMKisrk0+fPklfX5/s7+9Ldna2vH//3gRMT8Oijx8/mvuXl5fF39/fjBkbGyvDw8NSWFhofnd7eyurq6tSUVEh3t7eZtzk5GSZmJiQgIAAycvLk6ysLNna2pLj42PzbH0GFwIIIIAAAggg8BwECIuewyozRwQQQAABBDxAYGBgQOrr60XDnjdv3vzyxtvb25KSkiKZmZny6tUr6e/vl+joaNnZ2fkpLNJQRyuSrq+vTfATFRUlqamp8vXrV0lISDBBU2VlpWg4pUGQ/i09PV1mZmbMOA0NDY/VSVVVVfLt2zcTGh0eHkpMTIwHSPKKCCCAAAIIIICAawKERa75cTcCCCCAAAIIuEmgs7NT2traTGhTVFT0y6gdHR3S3t4um5ubkpaWJt3d3dLS0iJra2syPT39uA3t/8KiwMBAWV9fF0c4pRVGGkKFhoaafklauaRb2TRQ+vz5s0xOTkpJSYmpVtKqJy4EEEAAAQQQQMDqAoRFVl9h5ocAAggggICHCExNTUlxcbG8fv1aRkdHzVvrVjINkerq6kyFz9u3b+Xg4EDi4uLMFrTa2lrzmcXFxcewqLW11YQ8FxcXEhISIsHBwWarmqOyKDIy0mxBGxoakpqaGhM2JSUlSVBQkHm29j7SsEhDJw2kZmdnTXhFWOQhXyReEwEEEEAAAQRcFiAscpmQARBAAAEEEEDAHQI3Nzfm9LOzszNT1aM/Dw4OmqF165hWFGmfIq3y0d5DGuZoIHRycmIqkhwNrvX0NK040iqk8/NzeffuneTm5hIWuWORGAMBBBBAAAEEnoUAYdGzWGYmiQACCCCAgGcI6EloWl2kPYL00mof3WKWn58vDw8Poj2EtKeR43JsWWtubpaenh6x2+0mIMrJyTGhk/YjOjo6Mn2Ovnz5YnoWOSqLPnz4INXV1aaySJtb6/a0p5VFOmZXV5fMzc2ZcIrKIs/4DvGWCCCAAAIIIOC6AGGR64aMgAACCCCAAAJuFjg9PZWrqytTXeTj4/PT6N+/fzdBkJ5w5uvr+69P1mBJg6Pw8HDx8vJy89sxHAIIIIAAAgggYG0BwiJrry+zQwABBBBAAAEEEEAAAQQQQAABBJwSICxyiosPI4AAAggggAACCCCAAAIIIIAAAtYWICyy9voyOwQQQAABBBBAAAEEEEAAAQQQQMApAcIip7j4MAIIIIAAAggggAACCCCAAAIIIGBtAcIia68vs0MAAQQQQAABBBBAAAEEEEAAAQScEiAscoqLDyOAAAIIIIAAAggggAACCCCAAALWFvgB5BDRhAlSkuUAAAAASUVORK5CYII=", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] }, - "y": { - "axis": { - "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", - "orient": "right", - "title": "Probability" - }, - "field": "sum", - "scale": { - "zero": false - }, - "type": "quantitative" - } - }, - "mark": { - "color": "black", - "strokeWidth": 2, - "type": "rule", - "x2Offset": 30, - "xOffset": -30 - } + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" } - ], - "params": [ + ], + "source": [ + "from splink.charts import waterfall_chart\n", + "records_to_plot = df_e.to_dict(orient=\"records\")\n", + "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4c8f021b-49e7-4f9e-ad32-72066084470d", + "metadata": {}, + "outputs": [ { - "bind": { - "input": "range", - "max": 43, - "min": 0, - "step": 1 - }, - "description": "Filter by the interation number", - "name": "record_number", - "value": 0 + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 1, root rows count 642\n", + "Completed iteration 2, root rows count 119\n", + "Completed iteration 3, root rows count 35\n", + "Completed iteration 4, root rows count 6\n", + "Completed iteration 5, root rows count 0\n" + ] } - ], - "resolve": { - "axis": { - "y": "independent" - } - }, - "title": { - "subtitle": "How each comparison contributes to the final match score", - "text": "Match weights waterfall chart" - }, - "transform": [ - { - "filter": "(datum.record_number == record_number)" - }, - { - "filter": "(datum.bayes_factor !== 1.0)" - }, + ], + "source": [ + "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, threshold_match_probability=0.95)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b036e11-e15c-4196-a268-faf62c2ec85a", + "metadata": {}, + "outputs": [], + "source": [ + "linker.visualisations.cluster_studio_dashboard(df_predict, clusters, \"dashboards/50k_cluster.html\", sampling_method='by_cluster_size', overwrite=True)\n", + "\n", + "from IPython.display import IFrame\n", + "\n", + "IFrame(\n", + " src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d018c6cf-bee9-43ee-89c2-f81c7f3b6027", + "metadata": {}, + "outputs": [ { - "frame": [ - null, - 0 - ], - "window": [ - { - "as": "sum", - "field": "log2_bayes_factor", - "op": "sum" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json", + "data": { + "values": [ + { + "f1": 0.03150014247597337, + "fn": 299097, + "fn_rate": 0.9839979471050563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.99999999999985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01600205289494376, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4864, + "tp_rate": 0.01600205289494376, + "truth_threshold": 42.6 + }, + { + "f1": 0.03141717290778856, + "fn": 299110, + "fn_rate": 0.9840407157497179, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999852, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015959284250282108, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4851, + "tp_rate": 0.015959284250282108, + "truth_threshold": 42.62 + }, + { + "f1": 0.031200409355588803, + "fn": 299144, + "fn_rate": 0.9841525722049869, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015847427795013178, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4817, + "tp_rate": 0.015847427795013178, + "truth_threshold": 42.64 + }, + { + "f1": 0.031021862348178136, + "fn": 299172, + "fn_rate": 0.9842446892857966, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998561, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015755310714203465, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4789, + "tp_rate": 0.015755310714203465, + "truth_threshold": 42.660000000000004 + }, + { + "f1": 0.030830526043016327, + "fn": 299202, + "fn_rate": 0.9843433861580927, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01565661384190735, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4759, + "tp_rate": 0.01565661384190735, + "truth_threshold": 42.68 + }, + { + "f1": 0.03072846480771224, + "fn": 299218, + "fn_rate": 0.9843960244899839, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.99999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015603975510016087, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4743, + "tp_rate": 0.015603975510016087, + "truth_threshold": 42.7 + }, + { + "f1": 0.030639152547863552, + "fn": 299232, + "fn_rate": 0.9844420830303887, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999862, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015557916969611233, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4729, + "tp_rate": 0.015557916969611233, + "truth_threshold": 42.72 + }, + { + "f1": 0.030441459479423828, + "fn": 299263, + "fn_rate": 0.9845440697984281, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998639, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015455930201571912, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4698, + "tp_rate": 0.015455930201571912, + "truth_threshold": 42.74 + }, + { + "f1": 0.030269058295964126, + "fn": 299290, + "fn_rate": 0.9846328969834945, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998658, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015367103016505406, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4671, + "tp_rate": 0.015367103016505406, + "truth_threshold": 42.76 + }, + { + "f1": 0.030135121998639058, + "fn": 299311, + "fn_rate": 0.9847019847941019, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998676, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015298015205898125, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4650, + "tp_rate": 0.015298015205898125, + "truth_threshold": 42.78 + }, + { + "f1": 0.030071289695398573, + "fn": 299321, + "fn_rate": 0.984734883751534, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015265116248466087, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4640, + "tp_rate": 0.015265116248466087, + "truth_threshold": 42.800000000000004 + }, + { + "f1": 0.029937131375980298, + "fn": 299342, + "fn_rate": 0.9848039715621412, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.015196028437858805, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4619, + "tp_rate": 0.015196028437858805, + "truth_threshold": 42.82 + }, + { + "f1": 0.029617865361553173, + "fn": 299392, + "fn_rate": 0.9849684663493014, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01503153365069861, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4569, + "tp_rate": 0.01503153365069861, + "truth_threshold": 42.84 + }, + { + "f1": 0.02940718842383694, + "fn": 299425, + "fn_rate": 0.9850770329088271, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998748, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01492296709117288, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4536, + "tp_rate": 0.01492296709117288, + "truth_threshold": 42.86 + }, + { + "f1": 0.029349601929410545, + "fn": 299434, + "fn_rate": 0.985106641970516, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998764, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014893358029484046, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4527, + "tp_rate": 0.014893358029484046, + "truth_threshold": 42.88 + }, + { + "f1": 0.02931775597927918, + "fn": 299439, + "fn_rate": 0.9851230914492319, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014876908550768026, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4522, + "tp_rate": 0.014876908550768026, + "truth_threshold": 42.9 + }, + { + "f1": 0.029215537530878605, + "fn": 299455, + "fn_rate": 0.9851757297811232, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998799, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014824270218876764, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4506, + "tp_rate": 0.014824270218876764, + "truth_threshold": 42.92 + }, + { + "f1": 0.02911330847787324, + "fn": 299471, + "fn_rate": 0.9852283681130145, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998815, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014771631886985501, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4490, + "tp_rate": 0.014771631886985501, + "truth_threshold": 42.94 + }, + { + "f1": 0.029011068818612734, + "fn": 299487, + "fn_rate": 0.9852810064449058, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998831, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01471899355509424, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4474, + "tp_rate": 0.01471899355509424, + "truth_threshold": 42.96 + }, + { + "f1": 0.028915115751248298, + "fn": 299502, + "fn_rate": 0.9853303548810538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998848, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014669645118946181, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4459, + "tp_rate": 0.014669645118946181, + "truth_threshold": 42.980000000000004 + }, + { + "f1": 0.028800072632473202, + "fn": 299520, + "fn_rate": 0.9853895730044315, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01461042699556851, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4441, + "tp_rate": 0.01461042699556851, + "truth_threshold": 43 + }, + { + "f1": 0.02869150150461762, + "fn": 299537, + "fn_rate": 0.985445501232066, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014554498767934044, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4424, + "tp_rate": 0.014554498767934044, + "truth_threshold": 43.02 + }, + { + "f1": 0.028602004086000585, + "fn": 299551, + "fn_rate": 0.9854915597724708, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998894, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014508440227529189, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4410, + "tp_rate": 0.014508440227529189, + "truth_threshold": 43.04 + }, + { + "f1": 0.028563645561738724, + "fn": 299557, + "fn_rate": 0.98551129914693, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999891, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014488700853069966, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4404, + "tp_rate": 0.014488700853069966, + "truth_threshold": 43.06 + }, + { + "f1": 0.02848043794105438, + "fn": 299570, + "fn_rate": 0.9855540677915917, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998924, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014445932208408315, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4391, + "tp_rate": 0.014445932208408315, + "truth_threshold": 43.08 + }, + { + "f1": 0.028371830547393413, + "fn": 299587, + "fn_rate": 0.9856099960192262, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999894, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01439000398077385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4374, + "tp_rate": 0.01439000398077385, + "truth_threshold": 43.1 + }, + { + "f1": 0.02820556067309314, + "fn": 299613, + "fn_rate": 0.9856955333085494, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998954, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014304466691450548, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4348, + "tp_rate": 0.014304466691450548, + "truth_threshold": 43.12 + }, + { + "f1": 0.02789852721728411, + "fn": 299661, + "fn_rate": 0.9858534483042233, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014146551695776761, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4300, + "tp_rate": 0.014146551695776761, + "truth_threshold": 43.14 + }, + { + "f1": 0.02773848609507001, + "fn": 299686, + "fn_rate": 0.9859356956978034, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.014064304302196663, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4275, + "tp_rate": 0.014064304302196663, + "truth_threshold": 43.160000000000004 + }, + { + "f1": 0.027565799719669833, + "fn": 299713, + "fn_rate": 0.9860245228828698, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013975477117130158, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4248, + "tp_rate": 0.013975477117130158, + "truth_threshold": 43.18 + }, + { + "f1": 0.02745059865667283, + "fn": 299731, + "fn_rate": 0.9860837410062475, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999011, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013916258993752487, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4230, + "tp_rate": 0.013916258993752487, + "truth_threshold": 43.2 + }, + { + "f1": 0.027232959929386416, + "fn": 299765, + "fn_rate": 0.9861955974615164, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013804402538483555, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4196, + "tp_rate": 0.013804402538483555, + "truth_threshold": 43.22 + }, + { + "f1": 0.02713683950905751, + "fn": 299780, + "fn_rate": 0.9862449458976645, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013755054102335497, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4181, + "tp_rate": 0.013755054102335497, + "truth_threshold": 43.24 + }, + { + "f1": 0.027021588711038415, + "fn": 299798, + "fn_rate": 0.9863041640210422, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999051, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013695835978957826, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4163, + "tp_rate": 0.013695835978957826, + "truth_threshold": 43.26 + }, + { + "f1": 0.026771919346671686, + "fn": 299837, + "fn_rate": 0.9864324699550271, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999064, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013567530044972876, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4124, + "tp_rate": 0.013567530044972876, + "truth_threshold": 43.28 + }, + { + "f1": 0.026682247541143247, + "fn": 299851, + "fn_rate": 0.9864785284954319, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01352147150456802, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4110, + "tp_rate": 0.01352147150456802, + "truth_threshold": 43.300000000000004 + }, + { + "f1": 0.026490066225165563, + "fn": 299881, + "fn_rate": 0.9865772253677281, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999909, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013422774632271903, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4080, + "tp_rate": 0.013422774632271903, + "truth_threshold": 43.32 + }, + { + "f1": 0.02637473946666147, + "fn": 299899, + "fn_rate": 0.9866364434911058, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013363556508894233, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4062, + "tp_rate": 0.013363556508894233, + "truth_threshold": 43.34 + }, + { + "f1": 0.026169680833793306, + "fn": 299931, + "fn_rate": 0.9867417201548883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999114, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013258279845111708, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4030, + "tp_rate": 0.013258279845111708, + "truth_threshold": 43.36 + }, + { + "f1": 0.025868339698126932, + "fn": 299978, + "fn_rate": 0.9868963452548188, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013103654745181124, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3983, + "tp_rate": 0.013103654745181124, + "truth_threshold": 43.38 + }, + { + "f1": 0.025810725674982302, + "fn": 299987, + "fn_rate": 0.9869259543165078, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01307404568349229, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3974, + "tp_rate": 0.01307404568349229, + "truth_threshold": 43.4 + }, + { + "f1": 0.02574661280056118, + "fn": 299997, + "fn_rate": 0.9869588532739397, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999151, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013041146726060252, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3964, + "tp_rate": 0.013041146726060252, + "truth_threshold": 43.42 + }, + { + "f1": 0.02568249576180362, + "fn": 300007, + "fn_rate": 0.9869917522313718, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999162, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.013008247768628212, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3954, + "tp_rate": 0.013008247768628212, + "truth_threshold": 43.44 + }, + { + "f1": 0.025470797253493223, + "fn": 300040, + "fn_rate": 0.9871003187908975, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012899681209102483, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3921, + "tp_rate": 0.012899681209102483, + "truth_threshold": 43.46 + }, + { + "f1": 0.025374675995400598, + "fn": 300055, + "fn_rate": 0.9871496672270456, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999185, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012850332772954425, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3906, + "tp_rate": 0.012850332772954425, + "truth_threshold": 43.480000000000004 + }, + { + "f1": 0.0251757429280526, + "fn": 300086, + "fn_rate": 0.9872516539950849, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012748346004915104, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3875, + "tp_rate": 0.012748346004915104, + "truth_threshold": 43.5 + }, + { + "f1": 0.02495760261466787, + "fn": 300120, + "fn_rate": 0.9873635104503539, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999207, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012636489549646171, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3841, + "tp_rate": 0.012636489549646171, + "truth_threshold": 43.52 + }, + { + "f1": 0.024842097055077585, + "fn": 300138, + "fn_rate": 0.9874227285737315, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999218, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012577271426268502, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3823, + "tp_rate": 0.012577271426268502, + "truth_threshold": 43.54 + }, + { + "f1": 0.02472024018403712, + "fn": 300157, + "fn_rate": 0.9874852365928524, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999228, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012514763407147628, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3804, + "tp_rate": 0.012514763407147628, + "truth_threshold": 43.56 + }, + { + "f1": 0.024649557763668384, + "fn": 300168, + "fn_rate": 0.9875214254460276, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999924, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012478574553972385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3793, + "tp_rate": 0.012478574553972385, + "truth_threshold": 43.58 + }, + { + "f1": 0.024611045400782457, + "fn": 300174, + "fn_rate": 0.9875411648204868, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999925, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012458835179513161, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3787, + "tp_rate": 0.012458835179513161, + "truth_threshold": 43.6 + }, + { + "f1": 0.02434141680695209, + "fn": 300216, + "fn_rate": 0.9876793404417014, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999261, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012320659558298598, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3745, + "tp_rate": 0.012320659558298598, + "truth_threshold": 43.62 + }, + { + "f1": 0.02414243647497026, + "fn": 300247, + "fn_rate": 0.9877813272097408, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012218672790259276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3714, + "tp_rate": 0.012218672790259276, + "truth_threshold": 43.64 + }, + { + "f1": 0.024026835166549652, + "fn": 300265, + "fn_rate": 0.9878405453331184, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999281, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012159454666881607, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3696, + "tp_rate": 0.012159454666881607, + "truth_threshold": 43.660000000000004 + }, + { + "f1": 0.023949760112337636, + "fn": 300277, + "fn_rate": 0.9878800240820368, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999291, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01211997591796316, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3684, + "tp_rate": 0.01211997591796316, + "truth_threshold": 43.68 + }, + { + "f1": 0.02390471918293579, + "fn": 300284, + "fn_rate": 0.9879030533522393, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012096946647760733, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3677, + "tp_rate": 0.012096946647760733, + "truth_threshold": 43.7 + }, + { + "f1": 0.02374419723547846, + "fn": 300309, + "fn_rate": 0.9879853007458194, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999309, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.012014699254180635, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3652, + "tp_rate": 0.012014699254180635, + "truth_threshold": 43.72 + }, + { + "f1": 0.023634897722987293, + "fn": 300326, + "fn_rate": 0.9880412289734538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999319, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011958771026546168, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3635, + "tp_rate": 0.011958771026546168, + "truth_threshold": 43.74 + }, + { + "f1": 0.023500035763751162, + "fn": 300347, + "fn_rate": 0.9881103167840611, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999328, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011889683215938886, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3614, + "tp_rate": 0.011889683215938886, + "truth_threshold": 43.76 + }, + { + "f1": 0.023461478437288665, + "fn": 300353, + "fn_rate": 0.9881300561585203, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999338, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011869943841479663, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3608, + "tp_rate": 0.011869943841479663, + "truth_threshold": 43.78 + }, + { + "f1": 0.02334579743131198, + "fn": 300371, + "fn_rate": 0.988189274281898, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999347, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011810725718101994, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3590, + "tp_rate": 0.011810725718101994, + "truth_threshold": 43.800000000000004 + }, + { + "f1": 0.02328787612748828, + "fn": 300380, + "fn_rate": 0.9882188833435869, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999356, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011781116656413158, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3581, + "tp_rate": 0.011781116656413158, + "truth_threshold": 43.82 + }, + { + "f1": 0.023178678737269285, + "fn": 300397, + "fn_rate": 0.9882748115712213, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999365, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011725188428778692, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3564, + "tp_rate": 0.011725188428778692, + "truth_threshold": 43.84 + }, + { + "f1": 0.023056460686945945, + "fn": 300416, + "fn_rate": 0.9883373195903422, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999374, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011662680409657818, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3545, + "tp_rate": 0.011662680409657818, + "truth_threshold": 43.86 + }, + { + "f1": 0.02299216900382444, + "fn": 300426, + "fn_rate": 0.9883702185477742, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999383, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011629781452225778, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3535, + "tp_rate": 0.011629781452225778, + "truth_threshold": 43.88 + }, + { + "f1": 0.022940732646477262, + "fn": 300434, + "fn_rate": 0.9883965377137198, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011603462286280147, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3527, + "tp_rate": 0.011603462286280147, + "truth_threshold": 43.9 + }, + { + "f1": 0.02283149575568348, + "fn": 300451, + "fn_rate": 0.9884524659413543, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999399, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011547534058645682, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3510, + "tp_rate": 0.011547534058645682, + "truth_threshold": 43.92 + }, + { + "f1": 0.02275432742033058, + "fn": 300463, + "fn_rate": 0.9884919446902728, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011508055309727235, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3498, + "tp_rate": 0.011508055309727235, + "truth_threshold": 43.94 + }, + { + "f1": 0.022657784832359713, + "fn": 300478, + "fn_rate": 0.9885412931264208, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999416, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011458706873579177, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3483, + "tp_rate": 0.011458706873579177, + "truth_threshold": 43.96 + }, + { + "f1": 0.022535651087748517, + "fn": 300497, + "fn_rate": 0.9886038011455417, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999424, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011396198854458302, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3464, + "tp_rate": 0.011396198854458302, + "truth_threshold": 43.980000000000004 + }, + { + "f1": 0.022413355627411306, + "fn": 300516, + "fn_rate": 0.9886663091646626, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999432, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011333690835337428, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3445, + "tp_rate": 0.011333690835337428, + "truth_threshold": 44 + }, + { + "f1": 0.022381262199089133, + "fn": 300521, + "fn_rate": 0.9886827586433786, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999439, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011317241356621408, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3440, + "tp_rate": 0.011317241356621408, + "truth_threshold": 44.02 + }, + { + "f1": 0.022355528373823992, + "fn": 300525, + "fn_rate": 0.9886959182263514, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011304081773648594, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3436, + "tp_rate": 0.011304081773648594, + "truth_threshold": 44.04 + }, + { + "f1": 0.022201111356922557, + "fn": 300549, + "fn_rate": 0.9887748757241883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999455, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0112251242758117, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3412, + "tp_rate": 0.0112251242758117, + "truth_threshold": 44.06 + }, + { + "f1": 0.022033799040820444, + "fn": 300575, + "fn_rate": 0.9888604130135116, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999463, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011139586986488398, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3386, + "tp_rate": 0.011139586986488398, + "truth_threshold": 44.08 + }, + { + "f1": 0.02197580513961827, + "fn": 300584, + "fn_rate": 0.9888900220752005, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999469, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011109977924799563, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3377, + "tp_rate": 0.011109977924799563, + "truth_threshold": 44.1 + }, + { + "f1": 0.021859950540153585, + "fn": 300602, + "fn_rate": 0.9889492401985781, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999477, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011050759801421893, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3359, + "tp_rate": 0.011050759801421893, + "truth_threshold": 44.12 + }, + { + "f1": 0.021853584886013838, + "fn": 300603, + "fn_rate": 0.9889525300943213, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999484, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011047469905678689, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3358, + "tp_rate": 0.011047469905678689, + "truth_threshold": 44.14 + }, + { + "f1": 0.021795581009404184, + "fn": 300612, + "fn_rate": 0.9889821391560102, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999492, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.011017860843989855, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3349, + "tp_rate": 0.011017860843989855, + "truth_threshold": 44.160000000000004 + }, + { + "f1": 0.021673337889290246, + "fn": 300631, + "fn_rate": 0.9890446471751311, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999498, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01095535282486898, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3330, + "tp_rate": 0.01095535282486898, + "truth_threshold": 44.18 + }, + { + "f1": 0.021608956001041395, + "fn": 300641, + "fn_rate": 0.989077546132563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01092245386743694, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3320, + "tp_rate": 0.01092245386743694, + "truth_threshold": 44.2 + }, + { + "f1": 0.021531692203548693, + "fn": 300653, + "fn_rate": 0.9891170248814815, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999512, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010882975118518495, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3308, + "tp_rate": 0.010882975118518495, + "truth_threshold": 44.22 + }, + { + "f1": 0.02141578519121237, + "fn": 300671, + "fn_rate": 0.9891762430048592, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999518, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010823756995140824, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3290, + "tp_rate": 0.010823756995140824, + "truth_threshold": 44.24 + }, + { + "f1": 0.021306235637982774, + "fn": 300688, + "fn_rate": 0.9892321712324936, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010767828767506357, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3273, + "tp_rate": 0.010767828767506357, + "truth_threshold": 44.26 + }, + { + "f1": 0.021113006341063268, + "fn": 300718, + "fn_rate": 0.9893308681047898, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010669131895210241, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3243, + "tp_rate": 0.010669131895210241, + "truth_threshold": 44.28 + }, + { + "f1": 0.021022819753247175, + "fn": 300732, + "fn_rate": 0.9893769266451946, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999538, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010623073354805387, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3229, + "tp_rate": 0.010623073354805387, + "truth_threshold": 44.300000000000004 + }, + { + "f1": 0.021003561360218238, + "fn": 300735, + "fn_rate": 0.9893867963324242, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010613203667575774, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3226, + "tp_rate": 0.010613203667575774, + "truth_threshold": 44.32 + }, + { + "f1": 0.02093913586998984, + "fn": 300745, + "fn_rate": 0.9894196952898563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999955, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010580304710143736, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3216, + "tp_rate": 0.010580304710143736, + "truth_threshold": 44.34 + }, + { + "f1": 0.02085530856480577, + "fn": 300758, + "fn_rate": 0.9894624639345179, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999557, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010537536065482085, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3203, + "tp_rate": 0.010537536065482085, + "truth_threshold": 44.36 + }, + { + "f1": 0.020707169369017387, + "fn": 300781, + "fn_rate": 0.9895381315366116, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999564, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010461868463388395, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3180, + "tp_rate": 0.010461868463388395, + "truth_threshold": 44.38 + }, + { + "f1": 0.020610433502862017, + "fn": 300796, + "fn_rate": 0.9895874799727596, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999569, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010412520027240336, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3165, + "tp_rate": 0.010412520027240336, + "truth_threshold": 44.4 + }, + { + "f1": 0.020545982625457482, + "fn": 300806, + "fn_rate": 0.9896203789301917, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999575, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010379621069808298, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3155, + "tp_rate": 0.010379621069808298, + "truth_threshold": 44.42 + }, + { + "f1": 0.020488039960144054, + "fn": 300815, + "fn_rate": 0.9896499879918805, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010350012008119462, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3146, + "tp_rate": 0.010350012008119462, + "truth_threshold": 44.44 + }, + { + "f1": 0.02033971160985268, + "fn": 300838, + "fn_rate": 0.9897256555939742, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010274344406025773, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3123, + "tp_rate": 0.010274344406025773, + "truth_threshold": 44.46 + }, + { + "f1": 0.020191493519181918, + "fn": 300861, + "fn_rate": 0.989801323196068, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999593, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010198676803932083, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3100, + "tp_rate": 0.010198676803932083, + "truth_threshold": 44.480000000000004 + }, + { + "f1": 0.020081812378681882, + "fn": 300878, + "fn_rate": 0.9898572514237024, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999598, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010142748576297617, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3083, + "tp_rate": 0.010142748576297617, + "truth_threshold": 44.5 + }, + { + "f1": 0.02003022446879193, + "fn": 300886, + "fn_rate": 0.989883570589648, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010116429410351986, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3075, + "tp_rate": 0.010116429410351986, + "truth_threshold": 44.52 + }, + { + "f1": 0.019830360516475354, + "fn": 300917, + "fn_rate": 0.9899855573576873, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999609, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.010014442642312665, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3044, + "tp_rate": 0.010014442642312665, + "truth_threshold": 44.54 + }, + { + "f1": 0.019778759332369153, + "fn": 300925, + "fn_rate": 0.990011876523633, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999615, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009988123476367034, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3036, + "tp_rate": 0.009988123476367034, + "truth_threshold": 44.56 + }, + { + "f1": 0.0197077391151388, + "fn": 300936, + "fn_rate": 0.9900480653768082, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999619, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00995193462319179, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3025, + "tp_rate": 0.00995193462319179, + "truth_threshold": 44.58 + }, + { + "f1": 0.01966903381327774, + "fn": 300942, + "fn_rate": 0.9900678047512674, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999625, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009932195248732567, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3019, + "tp_rate": 0.009932195248732567, + "truth_threshold": 44.6 + }, + { + "f1": 0.019630326998377714, + "fn": 300948, + "fn_rate": 0.9900875441257266, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009912455874273344, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3013, + "tp_rate": 0.009912455874273344, + "truth_threshold": 44.62 + }, + { + "f1": 0.019514197474556613, + "fn": 300966, + "fn_rate": 0.9901467622491044, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999635, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009853237750895675, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2995, + "tp_rate": 0.009853237750895675, + "truth_threshold": 44.64 + }, + { + "f1": 0.019398054330190463, + "fn": 300984, + "fn_rate": 0.990205980372482, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009794019627518004, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2977, + "tp_rate": 0.009794019627518004, + "truth_threshold": 44.660000000000004 + }, + { + "f1": 0.019243175612712354, + "fn": 301008, + "fn_rate": 0.9902849378703189, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999645, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00971506212968111, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2953, + "tp_rate": 0.00971506212968111, + "truth_threshold": 44.68 + }, + { + "f1": 0.019159335288367548, + "fn": 301021, + "fn_rate": 0.9903277065149806, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999965, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00967229348501946, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2940, + "tp_rate": 0.00967229348501946, + "truth_threshold": 44.7 + }, + { + "f1": 0.01901732936215695, + "fn": 301043, + "fn_rate": 0.9904000842213311, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009599915778668974, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2918, + "tp_rate": 0.009599915778668974, + "truth_threshold": 44.72 + }, + { + "f1": 0.01888821539604638, + "fn": 301063, + "fn_rate": 0.9904658821361951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999659, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009534117863804896, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2898, + "tp_rate": 0.009534117863804896, + "truth_threshold": 44.74 + }, + { + "f1": 0.01866216462858186, + "fn": 301098, + "fn_rate": 0.9905810284872072, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00941897151279276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2863, + "tp_rate": 0.00941897151279276, + "truth_threshold": 44.76 + }, + { + "f1": 0.018591189392852953, + "fn": 301109, + "fn_rate": 0.9906172173403824, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999669, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009382782659617516, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2852, + "tp_rate": 0.009382782659617516, + "truth_threshold": 44.78 + }, + { + "f1": 0.018513689700130377, + "fn": 301121, + "fn_rate": 0.990656696089301, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00934330391069907, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2840, + "tp_rate": 0.00934330391069907, + "truth_threshold": 44.800000000000004 + }, + { + "f1": 0.01837159118320088, + "fn": 301143, + "fn_rate": 0.9907290737956514, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999678, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009270926204348584, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2818, + "tp_rate": 0.009270926204348584, + "truth_threshold": 44.82 + }, + { + "f1": 0.0182875546833743, + "fn": 301156, + "fn_rate": 0.990771842440313, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999682, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009228157559686933, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2805, + "tp_rate": 0.009228157559686933, + "truth_threshold": 44.84 + }, + { + "f1": 0.01824239302642474, + "fn": 301163, + "fn_rate": 0.9907948717105155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999687, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009205128289484506, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2798, + "tp_rate": 0.009205128289484506, + "truth_threshold": 44.86 + }, + { + "f1": 0.018171267620326784, + "fn": 301174, + "fn_rate": 0.9908310605636907, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999691, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009168939436309264, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2787, + "tp_rate": 0.009168939436309264, + "truth_threshold": 44.88 + }, + { + "f1": 0.018100255594387354, + "fn": 301185, + "fn_rate": 0.990867249416866, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999696, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00913275058313402, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2776, + "tp_rate": 0.00913275058313402, + "truth_threshold": 44.9 + }, + { + "f1": 0.01809373532940379, + "fn": 301186, + "fn_rate": 0.9908705393126092, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999699, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009129460687390817, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2775, + "tp_rate": 0.009129460687390817, + "truth_threshold": 44.92 + }, + { + "f1": 0.01806148730153555, + "fn": 301191, + "fn_rate": 0.9908869887913252, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999704, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009113011208674797, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2770, + "tp_rate": 0.009113011208674797, + "truth_threshold": 44.94 + }, + { + "f1": 0.01799034950443401, + "fn": 301202, + "fn_rate": 0.9909231776445004, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009076822355499553, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2759, + "tp_rate": 0.009076822355499553, + "truth_threshold": 44.96 + }, + { + "f1": 0.01793865254701479, + "fn": 301210, + "fn_rate": 0.9909494968104461, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999711, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009050503189553923, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2751, + "tp_rate": 0.009050503189553923, + "truth_threshold": 44.980000000000004 + }, + { + "f1": 0.01787402755769444, + "fn": 301220, + "fn_rate": 0.9909823957678782, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999716, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.009017604232121884, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2741, + "tp_rate": 0.009017604232121884, + "truth_threshold": 45 + }, + { + "f1": 0.017680127302133877, + "fn": 301250, + "fn_rate": 0.9910810926401742, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008918907359825767, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2711, + "tp_rate": 0.008918907359825767, + "truth_threshold": 45.02 + }, + { + "f1": 0.017557361439025344, + "fn": 301269, + "fn_rate": 0.9911436006592951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999724, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008856399340704892, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2692, + "tp_rate": 0.008856399340704892, + "truth_threshold": 45.04 + }, + { + "f1": 0.017524979781377997, + "fn": 301274, + "fn_rate": 0.9911600501380111, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008839949861988874, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2687, + "tp_rate": 0.008839949861988874, + "truth_threshold": 45.06 + }, + { + "f1": 0.01746032781325211, + "fn": 301284, + "fn_rate": 0.9911929490954432, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999731, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008807050904556834, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2677, + "tp_rate": 0.008807050904556834, + "truth_threshold": 45.08 + }, + { + "f1": 0.017421534608260063, + "fn": 301290, + "fn_rate": 0.9912126884699024, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999735, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00878731153009761, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2671, + "tp_rate": 0.00878731153009761, + "truth_threshold": 45.1 + }, + { + "f1": 0.0173051458837496, + "fn": 301308, + "fn_rate": 0.99127190659328, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999738, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008728093406719942, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2653, + "tp_rate": 0.008728093406719942, + "truth_threshold": 45.12 + }, + { + "f1": 0.01721461187214612, + "fn": 301322, + "fn_rate": 0.9913179651336849, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999742, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008682034866315087, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2639, + "tp_rate": 0.008682034866315087, + "truth_threshold": 45.14 + }, + { + "f1": 0.017137004709903845, + "fn": 301334, + "fn_rate": 0.9913574438826034, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999746, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00864255611739664, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2627, + "tp_rate": 0.00864255611739664, + "truth_threshold": 45.160000000000004 + }, + { + "f1": 0.01710472239074701, + "fn": 301339, + "fn_rate": 0.9913738933613194, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999749, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00862610663868062, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2622, + "tp_rate": 0.00862610663868062, + "truth_threshold": 45.18 + }, + { + "f1": 0.016936546666840642, + "fn": 301365, + "fn_rate": 0.9914594306506427, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999752, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008540569349357319, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2596, + "tp_rate": 0.008540569349357319, + "truth_threshold": 45.2 + }, + { + "f1": 0.016813576130854904, + "fn": 301384, + "fn_rate": 0.9915219386697636, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999756, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008478061330236444, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2577, + "tp_rate": 0.008478061330236444, + "truth_threshold": 45.22 + }, + { + "f1": 0.016735937571364257, + "fn": 301396, + "fn_rate": 0.991561417418682, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008438582581317997, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2565, + "tp_rate": 0.008438582581317997, + "truth_threshold": 45.24 + }, + { + "f1": 0.01653539710402161, + "fn": 301427, + "fn_rate": 0.9916634041867213, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999762, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008336595813278678, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2534, + "tp_rate": 0.008336595813278678, + "truth_threshold": 45.26 + }, + { + "f1": 0.0164836240480805, + "fn": 301435, + "fn_rate": 0.9916897233526669, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999766, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008310276647333047, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2526, + "tp_rate": 0.008310276647333047, + "truth_threshold": 45.28 + }, + { + "f1": 0.01641237813075086, + "fn": 301446, + "fn_rate": 0.9917259122058422, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999769, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008274087794157803, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2515, + "tp_rate": 0.008274087794157803, + "truth_threshold": 45.300000000000004 + }, + { + "f1": 0.016354179582726957, + "fn": 301455, + "fn_rate": 0.9917555212675311, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999772, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008244478732468969, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2506, + "tp_rate": 0.008244478732468969, + "truth_threshold": 45.32 + }, + { + "f1": 0.016295870886059428, + "fn": 301464, + "fn_rate": 0.9917851303292199, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008214869670780132, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2497, + "tp_rate": 0.008214869670780132, + "truth_threshold": 45.34 + }, + { + "f1": 0.016263558403926227, + "fn": 301469, + "fn_rate": 0.9918015798079359, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008198420192064114, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2492, + "tp_rate": 0.008198420192064114, + "truth_threshold": 45.36 + }, + { + "f1": 0.016179349954314057, + "fn": 301482, + "fn_rate": 0.9918443484525975, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999781, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008155651547402464, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2479, + "tp_rate": 0.008155651547402464, + "truth_threshold": 45.38 + }, + { + "f1": 0.016069342279601335, + "fn": 301499, + "fn_rate": 0.991900276680232, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008099723319767996, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2462, + "tp_rate": 0.008099723319767996, + "truth_threshold": 45.4 + }, + { + "f1": 0.015985117979178225, + "fn": 301512, + "fn_rate": 0.9919430453248936, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999788, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008056954675106346, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2449, + "tp_rate": 0.008056954675106346, + "truth_threshold": 45.42 + }, + { + "f1": 0.015939843734701472, + "fn": 301519, + "fn_rate": 0.9919660745950961, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999793, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008033925404903918, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2442, + "tp_rate": 0.008033925404903918, + "truth_threshold": 45.46 + }, + { + "f1": 0.015913941997010423, + "fn": 301523, + "fn_rate": 0.9919792341780689, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999796, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.008020765821931102, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2438, + "tp_rate": 0.008020765821931102, + "truth_threshold": 45.480000000000004 + }, + { + "f1": 0.015836232726038395, + "fn": 301535, + "fn_rate": 0.9920187129269873, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999799, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007981287073012657, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2426, + "tp_rate": 0.007981287073012657, + "truth_threshold": 45.5 + }, + { + "f1": 0.015790847966577454, + "fn": 301542, + "fn_rate": 0.9920417421971898, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999801, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00795825780281023, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2419, + "tp_rate": 0.00795825780281023, + "truth_threshold": 45.52 + }, + { + "f1": 0.015771470350157975, + "fn": 301545, + "fn_rate": 0.9920516118844194, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999805, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007948388115580617, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2416, + "tp_rate": 0.007948388115580617, + "truth_threshold": 45.54 + }, + { + "f1": 0.01565488741929377, + "fn": 301563, + "fn_rate": 0.9921108300077971, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007889169992202946, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2398, + "tp_rate": 0.007889169992202946, + "truth_threshold": 45.56 + }, + { + "f1": 0.015551246645905556, + "fn": 301579, + "fn_rate": 0.9921634683396883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007836531660311685, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2382, + "tp_rate": 0.007836531660311685, + "truth_threshold": 45.58 + }, + { + "f1": 0.015454023138596538, + "fn": 301594, + "fn_rate": 0.9922128167758364, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999812, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0077871832241636265, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2367, + "tp_rate": 0.0077871832241636265, + "truth_threshold": 45.6 + }, + { + "f1": 0.015356891013084698, + "fn": 301609, + "fn_rate": 0.9922621652119844, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999815, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007737834788015568, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2352, + "tp_rate": 0.007737834788015568, + "truth_threshold": 45.62 + }, + { + "f1": 0.01526617868872797, + "fn": 301623, + "fn_rate": 0.9923082237523893, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007691776247610713, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2338, + "tp_rate": 0.007691776247610713, + "truth_threshold": 45.64 + }, + { + "f1": 0.015253219108313527, + "fn": 301625, + "fn_rate": 0.9923148035438757, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007685196456124305, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2336, + "tp_rate": 0.007685196456124305, + "truth_threshold": 45.660000000000004 + }, + { + "f1": 0.01511065255294279, + "fn": 301647, + "fn_rate": 0.9923871812502262, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999822, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00761281874977382, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2314, + "tp_rate": 0.00761281874977382, + "truth_threshold": 45.68 + }, + { + "f1": 0.015039312488571951, + "fn": 301658, + "fn_rate": 0.9924233701034014, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999825, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007576629896598577, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2303, + "tp_rate": 0.007576629896598577, + "truth_threshold": 45.7 + }, + { + "f1": 0.014987461470142625, + "fn": 301666, + "fn_rate": 0.9924496892693471, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999828, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0075503107306529454, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2295, + "tp_rate": 0.0075503107306529454, + "truth_threshold": 45.72 + }, + { + "f1": 0.014922643887593633, + "fn": 301676, + "fn_rate": 0.992482588226779, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0075174117732209065, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2285, + "tp_rate": 0.0075174117732209065, + "truth_threshold": 45.74 + }, + { + "f1": 0.014909679863115685, + "fn": 301678, + "fn_rate": 0.9924891680182655, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999832, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007510831981734499, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2283, + "tp_rate": 0.007510831981734499, + "truth_threshold": 45.76 + }, + { + "f1": 0.014870786773685826, + "fn": 301684, + "fn_rate": 0.9925089073927247, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999835, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007491092607275276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2277, + "tp_rate": 0.007491092607275276, + "truth_threshold": 45.78 + }, + { + "f1": 0.014747663429321595, + "fn": 301703, + "fn_rate": 0.9925714154118456, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999837, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007428584588154401, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2258, + "tp_rate": 0.007428584588154401, + "truth_threshold": 45.800000000000004 + }, + { + "f1": 0.014663331221465289, + "fn": 301716, + "fn_rate": 0.9926141840565073, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999839, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0073858159434927505, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2245, + "tp_rate": 0.0073858159434927505, + "truth_threshold": 45.82 + }, + { + "f1": 0.014630960156760287, + "fn": 301721, + "fn_rate": 0.9926306335352233, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999841, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0073693664647767314, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2240, + "tp_rate": 0.0073693664647767314, + "truth_threshold": 45.84 + }, + { + "f1": 0.014553150352071276, + "fn": 301733, + "fn_rate": 0.9926701122841417, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999843, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007329887715858284, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2228, + "tp_rate": 0.007329887715858284, + "truth_threshold": 45.86 + }, + { + "f1": 0.014416921428758068, + "fn": 301754, + "fn_rate": 0.992739200094749, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999846, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007260799905251003, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2207, + "tp_rate": 0.007260799905251003, + "truth_threshold": 45.88 + }, + { + "f1": 0.01425482292530917, + "fn": 301779, + "fn_rate": 0.9928214474883291, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999848, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007178552511670905, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2182, + "tp_rate": 0.007178552511670905, + "truth_threshold": 45.9 + }, + { + "f1": 0.01422887717303961, + "fn": 301783, + "fn_rate": 0.9928346070713019, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007165392928698089, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2178, + "tp_rate": 0.007165392928698089, + "truth_threshold": 45.92 + }, + { + "f1": 0.01419639765592845, + "fn": 301788, + "fn_rate": 0.9928510565500179, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999852, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00714894344998207, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2173, + "tp_rate": 0.00714894344998207, + "truth_threshold": 45.94 + }, + { + "f1": 0.014151035847984163, + "fn": 301795, + "fn_rate": 0.9928740858202204, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999853, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007125914179779643, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2166, + "tp_rate": 0.007125914179779643, + "truth_threshold": 45.96 + }, + { + "f1": 0.014118554040545926, + "fn": 301800, + "fn_rate": 0.9928905352989363, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999856, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007109464701063623, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2161, + "tp_rate": 0.007109464701063623, + "truth_threshold": 45.980000000000004 + }, + { + "f1": 0.014086163415175946, + "fn": 301805, + "fn_rate": 0.9929069847776524, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007093015222347604, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2156, + "tp_rate": 0.007093015222347604, + "truth_threshold": 46 + }, + { + "f1": 0.014079629944204157, + "fn": 301806, + "fn_rate": 0.9929102746733957, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0070897253266044, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2155, + "tp_rate": 0.0070897253266044, + "truth_threshold": 46.02 + }, + { + "f1": 0.013988801118581388, + "fn": 301820, + "fn_rate": 0.9929563332138005, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999862, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.007043666786199545, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2141, + "tp_rate": 0.007043666786199545, + "truth_threshold": 46.04 + }, + { + "f1": 0.013774716729615642, + "fn": 301853, + "fn_rate": 0.9930648997733262, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0069351002266738165, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2108, + "tp_rate": 0.0069351002266738165, + "truth_threshold": 46.06 + }, + { + "f1": 0.013547514328473308, + "fn": 301888, + "fn_rate": 0.9931800461243383, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0068199538756616804, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2073, + "tp_rate": 0.0068199538756616804, + "truth_threshold": 46.08 + }, + { + "f1": 0.013463172341677014, + "fn": 301901, + "fn_rate": 0.993222814769, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00677718523100003, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2060, + "tp_rate": 0.00677718523100003, + "truth_threshold": 46.1 + }, + { + "f1": 0.013437205897730838, + "fn": 301905, + "fn_rate": 0.9932359743519728, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999869, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006764025648027214, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2056, + "tp_rate": 0.006764025648027214, + "truth_threshold": 46.12 + }, + { + "f1": 0.013378735196465453, + "fn": 301914, + "fn_rate": 0.9932655834136617, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999871, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006734416586338379, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2047, + "tp_rate": 0.006734416586338379, + "truth_threshold": 46.14 + }, + { + "f1": 0.013313812508578488, + "fn": 301924, + "fn_rate": 0.9932984823710936, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999872, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00670151762890634, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2037, + "tp_rate": 0.00670151762890634, + "truth_threshold": 46.160000000000004 + }, + { + "f1": 0.013229449905877431, + "fn": 301937, + "fn_rate": 0.9933412510157553, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999875, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006658748984244689, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2024, + "tp_rate": 0.006658748984244689, + "truth_threshold": 46.18 + }, + { + "f1": 0.01320992738134923, + "fn": 301940, + "fn_rate": 0.9933511207029849, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006648879297015077, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2021, + "tp_rate": 0.006648879297015077, + "truth_threshold": 46.2 + }, + { + "f1": 0.013099580342785426, + "fn": 301957, + "fn_rate": 0.9934070489306194, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999878, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006592951069380611, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2004, + "tp_rate": 0.006592951069380611, + "truth_threshold": 46.22 + }, + { + "f1": 0.01306706759053471, + "fn": 301962, + "fn_rate": 0.9934234984093354, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006576501590664592, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1999, + "tp_rate": 0.006576501590664592, + "truth_threshold": 46.24 + }, + { + "f1": 0.01299567246721665, + "fn": 301973, + "fn_rate": 0.9934596872625107, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999881, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006540312737489349, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1988, + "tp_rate": 0.006540312737489349, + "truth_threshold": 46.26 + }, + { + "f1": 0.012865772338589472, + "fn": 301993, + "fn_rate": 0.9935254851773747, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999883, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006474514822625271, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1968, + "tp_rate": 0.006474514822625271, + "truth_threshold": 46.28 + }, + { + "f1": 0.012833252703285784, + "fn": 301998, + "fn_rate": 0.9935419346560908, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999885, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006458065343909252, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1963, + "tp_rate": 0.006458065343909252, + "truth_threshold": 46.300000000000004 + }, + { + "f1": 0.012794278205270694, + "fn": 302004, + "fn_rate": 0.99356167403055, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999886, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006438325969450028, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1957, + "tp_rate": 0.006438325969450028, + "truth_threshold": 46.32 + }, + { + "f1": 0.012709869763062922, + "fn": 302017, + "fn_rate": 0.9936044426752116, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006395557324788377, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1944, + "tp_rate": 0.006395557324788377, + "truth_threshold": 46.34 + }, + { + "f1": 0.012677345537757437, + "fn": 302022, + "fn_rate": 0.9936208921539277, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999889, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006379107846072358, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1939, + "tp_rate": 0.006379107846072358, + "truth_threshold": 46.36 + }, + { + "f1": 0.01261237699826735, + "fn": 302032, + "fn_rate": 0.9936537911113597, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999891, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006346208888640319, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1929, + "tp_rate": 0.006346208888640319, + "truth_threshold": 46.38 + }, + { + "f1": 0.01254740421080162, + "fn": 302042, + "fn_rate": 0.9936866900687917, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999892, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00631330993120828, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1919, + "tp_rate": 0.00631330993120828, + "truth_threshold": 46.4 + }, + { + "f1": 0.012508418499120552, + "fn": 302048, + "fn_rate": 0.9937064294432509, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999893, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006293570556749057, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1913, + "tp_rate": 0.006293570556749057, + "truth_threshold": 46.42 + }, + { + "f1": 0.012430442487134721, + "fn": 302060, + "fn_rate": 0.9937459081921693, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0062540918078306095, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1901, + "tp_rate": 0.0062540918078306095, + "truth_threshold": 46.44 + }, + { + "f1": 0.01242398482966063, + "fn": 302061, + "fn_rate": 0.9937491980879126, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999897, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006250801912087406, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1900, + "tp_rate": 0.006250801912087406, + "truth_threshold": 46.46 + }, + { + "f1": 0.012365457803120464, + "fn": 302070, + "fn_rate": 0.9937788071496014, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999898, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0062211928503985705, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1891, + "tp_rate": 0.0062211928503985705, + "truth_threshold": 46.480000000000004 + }, + { + "f1": 0.012203017402052147, + "fn": 302095, + "fn_rate": 0.9938610545431815, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0061389454568184735, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1866, + "tp_rate": 0.0061389454568184735, + "truth_threshold": 46.5 + }, + { + "f1": 0.01212501716729777, + "fn": 302107, + "fn_rate": 0.9939005332920999, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999901, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006099466707900026, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1854, + "tp_rate": 0.006099466707900026, + "truth_threshold": 46.52 + }, + { + "f1": 0.012105476567302787, + "fn": 302110, + "fn_rate": 0.9939104029793295, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006089597020670415, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1851, + "tp_rate": 0.006089597020670415, + "truth_threshold": 46.54 + }, + { + "f1": 0.012099015728720448, + "fn": 302111, + "fn_rate": 0.9939136928750728, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999903, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006086307124927211, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1850, + "tp_rate": 0.006086307124927211, + "truth_threshold": 46.56 + }, + { + "f1": 0.012053472158637559, + "fn": 302118, + "fn_rate": 0.9939367221452752, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999905, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006063277854724784, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1843, + "tp_rate": 0.006063277854724784, + "truth_threshold": 46.58 + }, + { + "f1": 0.012001465028973564, + "fn": 302126, + "fn_rate": 0.9939630413112208, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999907, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.006036958688779153, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1835, + "tp_rate": 0.006036958688779153, + "truth_threshold": 46.6 + }, + { + "f1": 0.011890979730392638, + "fn": 302143, + "fn_rate": 0.9940189695388553, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999908, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005981030461144687, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1818, + "tp_rate": 0.005981030461144687, + "truth_threshold": 46.62 + }, + { + "f1": 0.011845427311853276, + "fn": 302150, + "fn_rate": 0.9940419988090577, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999909, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005958001190942259, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1811, + "tp_rate": 0.005958001190942259, + "truth_threshold": 46.64 + }, + { + "f1": 0.011754393997867594, + "fn": 302164, + "fn_rate": 0.9940880573494626, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005911942650537404, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1797, + "tp_rate": 0.005911942650537404, + "truth_threshold": 46.660000000000004 + }, + { + "f1": 0.01159831749167577, + "fn": 302188, + "fn_rate": 0.9941670148472995, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999911, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005832985152700511, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1773, + "tp_rate": 0.005832985152700511, + "truth_threshold": 46.68 + }, + { + "f1": 0.011565836298932384, + "fn": 302193, + "fn_rate": 0.9941834643260155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999912, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005816535673984492, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1768, + "tp_rate": 0.005816535673984492, + "truth_threshold": 46.7 + }, + { + "f1": 0.011526811940259452, + "fn": 302199, + "fn_rate": 0.9942032037004748, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999913, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005796796299525268, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1762, + "tp_rate": 0.005796796299525268, + "truth_threshold": 46.72 + }, + { + "f1": 0.011435749146244128, + "fn": 302213, + "fn_rate": 0.9942492622408796, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999915, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005750737759120414, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1748, + "tp_rate": 0.005750737759120414, + "truth_threshold": 46.74 + }, + { + "f1": 0.01139671968125822, + "fn": 302219, + "fn_rate": 0.9942690016153388, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00573099838466119, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1742, + "tp_rate": 0.00573099838466119, + "truth_threshold": 46.76 + }, + { + "f1": 0.011351146236784257, + "fn": 302226, + "fn_rate": 0.9942920308855412, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999917, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005707969114458763, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1735, + "tp_rate": 0.005707969114458763, + "truth_threshold": 46.78 + }, + { + "f1": 0.011247055744569485, + "fn": 302242, + "fn_rate": 0.9943446692174325, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999918, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0056553307825675005, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1719, + "tp_rate": 0.0056553307825675005, + "truth_threshold": 46.800000000000004 + }, + { + "f1": 0.01119500641210186, + "fn": 302250, + "fn_rate": 0.9943709883833781, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999919, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00562901161662187, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1711, + "tp_rate": 0.00562901161662187, + "truth_threshold": 46.82 + }, + { + "f1": 0.011136484090269645, + "fn": 302259, + "fn_rate": 0.9944005974450669, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005599402554933034, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1702, + "tp_rate": 0.005599402554933034, + "truth_threshold": 46.84 + }, + { + "f1": 0.011116927304848525, + "fn": 302262, + "fn_rate": 0.9944104671322965, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999921, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0055895328677034225, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1699, + "tp_rate": 0.0055895328677034225, + "truth_threshold": 46.86 + }, + { + "f1": 0.011084428798576167, + "fn": 302267, + "fn_rate": 0.9944269166110126, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999922, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0055730833889874026, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1694, + "tp_rate": 0.0055730833889874026, + "truth_threshold": 46.88 + }, + { + "f1": 0.01101935585190614, + "fn": 302277, + "fn_rate": 0.9944598155684446, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999923, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0055401844315553644, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1684, + "tp_rate": 0.0055401844315553644, + "truth_threshold": 46.9 + }, + { + "f1": 0.010941262695005758, + "fn": 302289, + "fn_rate": 0.9944992943173631, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999925, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005500705682636917, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1672, + "tp_rate": 0.005500705682636917, + "truth_threshold": 46.92 + }, + { + "f1": 0.010843602143852783, + "fn": 302304, + "fn_rate": 0.9945486427535112, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999926, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005451357246488858, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1657, + "tp_rate": 0.005451357246488858, + "truth_threshold": 46.94 + }, + { + "f1": 0.010739458511397177, + "fn": 302320, + "fn_rate": 0.9946012810854024, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999927, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005398718914597597, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1641, + "tp_rate": 0.005398718914597597, + "truth_threshold": 46.96 + }, + { + "f1": 0.010693927236791299, + "fn": 302327, + "fn_rate": 0.9946243103556048, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0053756896443951695, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1634, + "tp_rate": 0.0053756896443951695, + "truth_threshold": 46.980000000000004 + }, + { + "f1": 0.010641848775794703, + "fn": 302335, + "fn_rate": 0.9946506295215505, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005349370478449538, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1626, + "tp_rate": 0.005349370478449538, + "truth_threshold": 47.02 + }, + { + "f1": 0.010609263634638166, + "fn": 302340, + "fn_rate": 0.9946670790002665, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005332920999733519, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1621, + "tp_rate": 0.005332920999733519, + "truth_threshold": 47.04 + }, + { + "f1": 0.010576746864937037, + "fn": 302345, + "fn_rate": 0.9946835284789824, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999932, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005316471521017499, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1616, + "tp_rate": 0.005316471521017499, + "truth_threshold": 47.06 + }, + { + "f1": 0.010544159805217756, + "fn": 302350, + "fn_rate": 0.9946999779576985, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999932, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00530002204230148, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1611, + "tp_rate": 0.00530002204230148, + "truth_threshold": 47.08 + }, + { + "f1": 0.010531138527996859, + "fn": 302352, + "fn_rate": 0.9947065577491849, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999933, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005293442250815072, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1609, + "tp_rate": 0.005293442250815072, + "truth_threshold": 47.1 + }, + { + "f1": 0.010485597031044435, + "fn": 302359, + "fn_rate": 0.9947295870193874, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999934, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005270412980612644, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1602, + "tp_rate": 0.005270412980612644, + "truth_threshold": 47.12 + }, + { + "f1": 0.010459552687214865, + "fn": 302363, + "fn_rate": 0.9947427466023602, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999936, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005257253397639829, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1598, + "tp_rate": 0.005257253397639829, + "truth_threshold": 47.14 + }, + { + "f1": 0.010381415564268555, + "fn": 302375, + "fn_rate": 0.9947822253512786, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005217774648721382, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1586, + "tp_rate": 0.005217774648721382, + "truth_threshold": 47.160000000000004 + }, + { + "f1": 0.010335798913399228, + "fn": 302382, + "fn_rate": 0.9948052546214811, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005194745378518955, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1579, + "tp_rate": 0.005194745378518955, + "truth_threshold": 47.18 + }, + { + "f1": 0.010296726387243318, + "fn": 302388, + "fn_rate": 0.9948249939959403, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005175006004059731, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1573, + "tp_rate": 0.005175006004059731, + "truth_threshold": 47.2 + }, + { + "f1": 0.010244627298495054, + "fn": 302396, + "fn_rate": 0.9948513131618859, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0051486868381141, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1565, + "tp_rate": 0.0051486868381141, + "truth_threshold": 47.22 + }, + { + "f1": 0.010238148230580904, + "fn": 302397, + "fn_rate": 0.9948546030576291, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005145396942370897, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1564, + "tp_rate": 0.005145396942370897, + "truth_threshold": 47.24 + }, + { + "f1": 0.01022512290440623, + "fn": 302399, + "fn_rate": 0.9948611828491155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999941, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0051388171508844884, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1562, + "tp_rate": 0.0051388171508844884, + "truth_threshold": 47.26 + }, + { + "f1": 0.010199071740453917, + "fn": 302403, + "fn_rate": 0.9948743424320883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999941, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005125657567911673, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1558, + "tp_rate": 0.005125657567911673, + "truth_threshold": 47.28 + }, + { + "f1": 0.010133940846066223, + "fn": 302413, + "fn_rate": 0.9949072413895204, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999942, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005092758610479634, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1548, + "tp_rate": 0.005092758610479634, + "truth_threshold": 47.300000000000004 + }, + { + "f1": 0.010101340735309522, + "fn": 302418, + "fn_rate": 0.9949236908682364, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005076309131763614, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1543, + "tp_rate": 0.005076309131763614, + "truth_threshold": 47.32 + }, + { + "f1": 0.010081833060556464, + "fn": 302421, + "fn_rate": 0.994933560555466, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005066439444534002, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1540, + "tp_rate": 0.005066439444534002, + "truth_threshold": 47.34 + }, + { + "f1": 0.00998409092397033, + "fn": 302436, + "fn_rate": 0.994982908991614, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005017091008385944, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1525, + "tp_rate": 0.005017091008385944, + "truth_threshold": 47.36 + }, + { + "f1": 0.009958033533890704, + "fn": 302440, + "fn_rate": 0.9949960685745869, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.005003931425413129, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1521, + "tp_rate": 0.005003931425413129, + "truth_threshold": 47.38 + }, + { + "f1": 0.00993852257773064, + "fn": 302443, + "fn_rate": 0.9950059382618165, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004994061738183517, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1518, + "tp_rate": 0.004994061738183517, + "truth_threshold": 47.4 + }, + { + "f1": 0.009879857269126265, + "fn": 302452, + "fn_rate": 0.9950355473235053, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004964452676494682, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1509, + "tp_rate": 0.004964452676494682, + "truth_threshold": 47.42 + }, + { + "f1": 0.009690937663698272, + "fn": 302481, + "fn_rate": 0.9951309543000583, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999948, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004869045699941769, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1480, + "tp_rate": 0.004869045699941769, + "truth_threshold": 47.44 + }, + { + "f1": 0.009625773499656222, + "fn": 302491, + "fn_rate": 0.9951638532574902, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999948, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00483614674250973, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1470, + "tp_rate": 0.00483614674250973, + "truth_threshold": 47.46 + }, + { + "f1": 0.009619225354418361, + "fn": 302492, + "fn_rate": 0.9951671431532335, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999949, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004832856846766526, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1469, + "tp_rate": 0.004832856846766526, + "truth_threshold": 47.480000000000004 + }, + { + "f1": 0.009534536501034654, + "fn": 302505, + "fn_rate": 0.9952099117978951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004790088202104875, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1456, + "tp_rate": 0.004790088202104875, + "truth_threshold": 47.5 + }, + { + "f1": 0.00951495347299076, + "fn": 302508, + "fn_rate": 0.9952197814851247, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004780218514875263, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1453, + "tp_rate": 0.004780218514875263, + "truth_threshold": 47.52 + }, + { + "f1": 0.009397634546621436, + "fn": 302526, + "fn_rate": 0.9952789996085024, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999951, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004721000391497593, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1435, + "tp_rate": 0.004721000391497593, + "truth_threshold": 47.54 + }, + { + "f1": 0.009260775311585139, + "fn": 302547, + "fn_rate": 0.9953480874191097, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004651912580890312, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1414, + "tp_rate": 0.004651912580890312, + "truth_threshold": 47.56 + }, + { + "f1": 0.009162955200419178, + "fn": 302562, + "fn_rate": 0.9953974358552578, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004602564144742253, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1399, + "tp_rate": 0.004602564144742253, + "truth_threshold": 47.58 + }, + { + "f1": 0.009149915836493558, + "fn": 302564, + "fn_rate": 0.9954040156467442, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999953, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004595984353255846, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1397, + "tp_rate": 0.004595984353255846, + "truth_threshold": 47.6 + }, + { + "f1": 0.00904559477569414, + "fn": 302580, + "fn_rate": 0.9954566539786354, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999953, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004543346021364583, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1381, + "tp_rate": 0.004543346021364583, + "truth_threshold": 47.62 + }, + { + "f1": 0.008999980349387883, + "fn": 302587, + "fn_rate": 0.9954796832488378, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999954, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004520316751162156, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1374, + "tp_rate": 0.004520316751162156, + "truth_threshold": 47.64 + }, + { + "f1": 0.008973897094946452, + "fn": 302591, + "fn_rate": 0.9954928428318106, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999954, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00450715716818934, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1370, + "tp_rate": 0.00450715716818934, + "truth_threshold": 47.660000000000004 + }, + { + "f1": 0.008954304878687838, + "fn": 302594, + "fn_rate": 0.9955027125190403, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004497287480959729, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1367, + "tp_rate": 0.004497287480959729, + "truth_threshold": 47.68 + }, + { + "f1": 0.00889564323099195, + "fn": 302603, + "fn_rate": 0.9955323215807291, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004467678419270893, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1358, + "tp_rate": 0.004467678419270893, + "truth_threshold": 47.7 + }, + { + "f1": 0.008797788433823337, + "fn": 302618, + "fn_rate": 0.9955816700168771, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004418329983122835, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1343, + "tp_rate": 0.004418329983122835, + "truth_threshold": 47.72 + }, + { + "f1": 0.008752161836381741, + "fn": 302625, + "fn_rate": 0.9956046992870796, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004395300712920407, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1336, + "tp_rate": 0.004395300712920407, + "truth_threshold": 47.74 + }, + { + "f1": 0.008549920397292852, + "fn": 302656, + "fn_rate": 0.9957066860551189, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0042933139448810866, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1305, + "tp_rate": 0.0042933139448810866, + "truth_threshold": 47.76 + }, + { + "f1": 0.00851732948961541, + "fn": 302661, + "fn_rate": 0.995723135533835, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999959, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0042768644661650675, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1300, + "tp_rate": 0.0042768644661650675, + "truth_threshold": 47.78 + }, + { + "f1": 0.008497729789227472, + "fn": 302664, + "fn_rate": 0.9957330052210646, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999959, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004266994778935456, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1297, + "tp_rate": 0.004266994778935456, + "truth_threshold": 47.800000000000004 + }, + { + "f1": 0.008465137001559367, + "fn": 302669, + "fn_rate": 0.9957494546997806, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004250545300219436, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1292, + "tp_rate": 0.004250545300219436, + "truth_threshold": 47.82 + }, + { + "f1": 0.008432487682146975, + "fn": 302674, + "fn_rate": 0.9957659041784965, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004234095821503417, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1287, + "tp_rate": 0.004234095821503417, + "truth_threshold": 47.84 + }, + { + "f1": 0.008399892544276345, + "fn": 302679, + "fn_rate": 0.9957823536572126, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999961, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004217646342787397, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1282, + "tp_rate": 0.004217646342787397, + "truth_threshold": 47.86 + }, + { + "f1": 0.008354191510830963, + "fn": 302686, + "fn_rate": 0.995805382927415, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999961, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00419461707258497, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1275, + "tp_rate": 0.00419461707258497, + "truth_threshold": 47.88 + }, + { + "f1": 0.008334643811920114, + "fn": 302689, + "fn_rate": 0.9958152526146447, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004184747385355358, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1272, + "tp_rate": 0.004184747385355358, + "truth_threshold": 47.9 + }, + { + "f1": 0.008236735710213683, + "fn": 302704, + "fn_rate": 0.9958646010507927, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0041353989492073, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1257, + "tp_rate": 0.0041353989492073, + "truth_threshold": 47.92 + }, + { + "f1": 0.0081519246143563, + "fn": 302717, + "fn_rate": 0.9959073696954543, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004092630304545649, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1244, + "tp_rate": 0.004092630304545649, + "truth_threshold": 47.94 + }, + { + "f1": 0.008086659632889244, + "fn": 302727, + "fn_rate": 0.9959402686528864, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00405973134711361, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1234, + "tp_rate": 0.00405973134711361, + "truth_threshold": 47.96 + }, + { + "f1": 0.008027891187669159, + "fn": 302736, + "fn_rate": 0.9959698777145752, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004030122285424775, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1225, + "tp_rate": 0.004030122285424775, + "truth_threshold": 47.980000000000004 + }, + { + "f1": 0.008001782542876054, + "fn": 302740, + "fn_rate": 0.995983037297548, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.004016962702451959, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1221, + "tp_rate": 0.004016962702451959, + "truth_threshold": 48 + }, + { + "f1": 0.007956116838262762, + "fn": 302747, + "fn_rate": 0.9960060665677505, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003993933432249532, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1214, + "tp_rate": 0.003993933432249532, + "truth_threshold": 48.02 + }, + { + "f1": 0.007832059667842022, + "fn": 302766, + "fn_rate": 0.9960685745868714, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003931425413128658, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1195, + "tp_rate": 0.003931425413128658, + "truth_threshold": 48.04 + }, + { + "f1": 0.007792888743241029, + "fn": 302772, + "fn_rate": 0.9960883139613306, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003911686038669435, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1189, + "tp_rate": 0.003911686038669435, + "truth_threshold": 48.06 + }, + { + "f1": 0.0077798314260621075, + "fn": 302774, + "fn_rate": 0.996094893752817, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999967, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003905106247183027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1187, + "tp_rate": 0.003905106247183027, + "truth_threshold": 48.08 + }, + { + "f1": 0.007708038382885009, + "fn": 302785, + "fn_rate": 0.9961310826059923, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999967, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003868917394007784, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1176, + "tp_rate": 0.003868917394007784, + "truth_threshold": 48.1 + }, + { + "f1": 0.0076492488398311525, + "fn": 302794, + "fn_rate": 0.9961606916676811, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003839308332318949, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1167, + "tp_rate": 0.003839308332318949, + "truth_threshold": 48.120000000000005 + }, + { + "f1": 0.007597011012060829, + "fn": 302802, + "fn_rate": 0.9961870108336267, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0038129891663733176, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1159, + "tp_rate": 0.0038129891663733176, + "truth_threshold": 48.14 + }, + { + "f1": 0.007479465883540586, + "fn": 302820, + "fn_rate": 0.9962462289570043, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0037537710429956473, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1141, + "tp_rate": 0.0037537710429956473, + "truth_threshold": 48.18 + }, + { + "f1": 0.007388032305433187, + "fn": 302834, + "fn_rate": 0.9962922874974092, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003707712502590793, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1127, + "tp_rate": 0.003707712502590793, + "truth_threshold": 48.2 + }, + { + "f1": 0.007374969680680202, + "fn": 302836, + "fn_rate": 0.9962988672888956, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0037011327111043852, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1125, + "tp_rate": 0.0037011327111043852, + "truth_threshold": 48.24 + }, + { + "f1": 0.007348843917373034, + "fn": 302840, + "fn_rate": 0.9963120268718685, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0036879731281315694, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1121, + "tp_rate": 0.0036879731281315694, + "truth_threshold": 48.26 + }, + { + "f1": 0.007342336436344565, + "fn": 302841, + "fn_rate": 0.9963153167676116, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999971, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0036846832323883657, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1120, + "tp_rate": 0.0036846832323883657, + "truth_threshold": 48.28 + }, + { + "f1": 0.007316209731345632, + "fn": 302845, + "fn_rate": 0.9963284763505844, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999971, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00367152364941555, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1116, + "tp_rate": 0.00367152364941555, + "truth_threshold": 48.300000000000004 + }, + { + "f1": 0.0072770183892221455, + "fn": 302851, + "fn_rate": 0.9963482157250437, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999971, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0036517842749563267, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1110, + "tp_rate": 0.0036517842749563267, + "truth_threshold": 48.32 + }, + { + "f1": 0.007237825505467705, + "fn": 302857, + "fn_rate": 0.9963679550995029, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003632044900497103, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1104, + "tp_rate": 0.003632044900497103, + "truth_threshold": 48.34 + }, + { + "f1": 0.0072116960597915164, + "fn": 302861, + "fn_rate": 0.9963811146824757, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0036188853175242877, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1100, + "tp_rate": 0.0036188853175242877, + "truth_threshold": 48.36 + }, + { + "f1": 0.007126747266004038, + "fn": 302874, + "fn_rate": 0.9964238833271374, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003576116672862637, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1087, + "tp_rate": 0.003576116672862637, + "truth_threshold": 48.38 + }, + { + "f1": 0.007087548599864936, + "fn": 302880, + "fn_rate": 0.9964436227015966, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0035563772984034134, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1081, + "tp_rate": 0.0035563772984034134, + "truth_threshold": 48.4 + }, + { + "f1": 0.007022214062786855, + "fn": 302890, + "fn_rate": 0.9964765216590287, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0035234783409713744, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1071, + "tp_rate": 0.0035234783409713744, + "truth_threshold": 48.44 + }, + { + "f1": 0.006963432145878002, + "fn": 302899, + "fn_rate": 0.9965061307207175, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999974, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0034938692792825395, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1062, + "tp_rate": 0.0034938692792825395, + "truth_threshold": 48.46 + }, + { + "f1": 0.006917669892726939, + "fn": 302906, + "fn_rate": 0.9965291599909198, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999974, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0034708400090801123, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1055, + "tp_rate": 0.0034708400090801123, + "truth_threshold": 48.480000000000004 + }, + { + "f1": 0.006885020163273335, + "fn": 302911, + "fn_rate": 0.9965456094696359, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999974, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003454390530364093, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1050, + "tp_rate": 0.003454390530364093, + "truth_threshold": 48.5 + }, + { + "f1": 0.0068719508996485336, + "fn": 302913, + "fn_rate": 0.9965521892611223, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003447810738877685, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1048, + "tp_rate": 0.003447810738877685, + "truth_threshold": 48.52 + }, + { + "f1": 0.006832742080379801, + "fn": 302919, + "fn_rate": 0.9965719286355815, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0034280713644184615, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1042, + "tp_rate": 0.0034280713644184615, + "truth_threshold": 48.54 + }, + { + "f1": 0.006819672131147541, + "fn": 302921, + "fn_rate": 0.996578508427068, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003421491572932054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1040, + "tp_rate": 0.003421491572932054, + "truth_threshold": 48.56 + }, + { + "f1": 0.0067804612549755075, + "fn": 302927, + "fn_rate": 0.9965982478015272, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0034017521984728303, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1034, + "tp_rate": 0.0034017521984728303, + "truth_threshold": 48.6 + }, + { + "f1": 0.006721620008787289, + "fn": 302936, + "fn_rate": 0.996627856863216, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0033721431367839953, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1025, + "tp_rate": 0.0033721431367839953, + "truth_threshold": 48.620000000000005 + }, + { + "f1": 0.006695477110124532, + "fn": 302940, + "fn_rate": 0.9966410164461889, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00335898355381118, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1021, + "tp_rate": 0.00335898355381118, + "truth_threshold": 48.64 + }, + { + "f1": 0.006682405403633025, + "fn": 302942, + "fn_rate": 0.9966475962376752, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999978, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0033524037623247718, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1019, + "tp_rate": 0.0033524037623247718, + "truth_threshold": 48.68 + }, + { + "f1": 0.00665626147631289, + "fn": 302946, + "fn_rate": 0.9966607558206481, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999978, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0033392441793519564, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1015, + "tp_rate": 0.0033392441793519564, + "truth_threshold": 48.7 + }, + { + "f1": 0.0066236023215398235, + "fn": 302951, + "fn_rate": 0.9966772052993641, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003322794700635937, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1010, + "tp_rate": 0.003322794700635937, + "truth_threshold": 48.72 + }, + { + "f1": 0.006577825579412652, + "fn": 302958, + "fn_rate": 0.9967002345695665, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0032997654304335097, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1003, + "tp_rate": 0.0032997654304335097, + "truth_threshold": 48.74 + }, + { + "f1": 0.006558237145855194, + "fn": 302961, + "fn_rate": 0.9967101042567961, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003289895743203898, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1000, + "tp_rate": 0.003289895743203898, + "truth_threshold": 48.76 + }, + { + "f1": 0.0064993835095359265, + "fn": 302970, + "fn_rate": 0.996739713318485, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003260286681515063, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 991, + "tp_rate": 0.003260286681515063, + "truth_threshold": 48.78 + }, + { + "f1": 0.006479793276230702, + "fn": 302973, + "fn_rate": 0.9967495830057146, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003250416994285451, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 988, + "tp_rate": 0.003250416994285451, + "truth_threshold": 48.800000000000004 + }, + { + "f1": 0.006473234781011845, + "fn": 302974, + "fn_rate": 0.9967528729014578, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003247127098542247, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 987, + "tp_rate": 0.003247127098542247, + "truth_threshold": 48.82 + }, + { + "f1": 0.006257502115350558, + "fn": 303007, + "fn_rate": 0.9968614394609835, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0031385605390165184, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 954, + "tp_rate": 0.0031385605390165184, + "truth_threshold": 48.84 + }, + { + "f1": 0.006133238874895046, + "fn": 303026, + "fn_rate": 0.9969239474801044, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030760525198956445, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 935, + "tp_rate": 0.0030760525198956445, + "truth_threshold": 48.86 + }, + { + "f1": 0.006113640239822625, + "fn": 303029, + "fn_rate": 0.996933817167334, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030661828326660327, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 932, + "tp_rate": 0.0030661828326660327, + "truth_threshold": 48.88 + }, + { + "f1": 0.00610708053999449, + "fn": 303030, + "fn_rate": 0.9969371070630771, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003062892936922829, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 931, + "tp_rate": 0.003062892936922829, + "truth_threshold": 48.92 + }, + { + "f1": 0.006087481304610218, + "fn": 303033, + "fn_rate": 0.9969469767503067, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030530232496932173, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 928, + "tp_rate": 0.0030530232496932173, + "truth_threshold": 48.94 + }, + { + "f1": 0.006067841750687142, + "fn": 303036, + "fn_rate": 0.9969568464375363, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030431535624636055, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 925, + "tp_rate": 0.0030431535624636055, + "truth_threshold": 48.96 + }, + { + "f1": 0.006061321683000748, + "fn": 303037, + "fn_rate": 0.9969601363332796, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.003039863666720402, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 924, + "tp_rate": 0.003039863666720402, + "truth_threshold": 48.980000000000004 + }, + { + "f1": 0.006022080963532954, + "fn": 303043, + "fn_rate": 0.9969798757077388, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030201242922611783, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 918, + "tp_rate": 0.0030201242922611783, + "truth_threshold": 49 + }, + { + "f1": 0.0060090003804825565, + "fn": 303045, + "fn_rate": 0.9969864554992253, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0030135445007747706, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 916, + "tp_rate": 0.0030135445007747706, + "truth_threshold": 49.02 + }, + { + "f1": 0.0059305132780518525, + "fn": 303057, + "fn_rate": 0.9970259342481437, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002974065751856324, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 904, + "tp_rate": 0.002974065751856324, + "truth_threshold": 49.04 + }, + { + "f1": 0.005891267409744865, + "fn": 303063, + "fn_rate": 0.9970456736226029, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0029543263773971003, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 898, + "tp_rate": 0.0029543263773971003, + "truth_threshold": 49.06 + }, + { + "f1": 0.005845459436054216, + "fn": 303070, + "fn_rate": 0.9970687028928054, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002931297107194673, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 891, + "tp_rate": 0.002931297107194673, + "truth_threshold": 49.08 + }, + { + "f1": 0.005838937182220764, + "fn": 303071, + "fn_rate": 0.9970719927885485, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002928007211451469, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 890, + "tp_rate": 0.002928007211451469, + "truth_threshold": 49.1 + }, + { + "f1": 0.005773520535362813, + "fn": 303081, + "fn_rate": 0.9971048917459806, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00289510825401943, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 880, + "tp_rate": 0.00289510825401943, + "truth_threshold": 49.120000000000005 + }, + { + "f1": 0.005740791770000918, + "fn": 303086, + "fn_rate": 0.9971213412246966, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0028786587753034105, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 875, + "tp_rate": 0.0028786587753034105, + "truth_threshold": 49.14 + }, + { + "f1": 0.005708099596496408, + "fn": 303091, + "fn_rate": 0.9971377907034126, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002862209296587391, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 870, + "tp_rate": 0.002862209296587391, + "truth_threshold": 49.160000000000004 + }, + { + "f1": 0.005642674365199134, + "fn": 303101, + "fn_rate": 0.9971706896608447, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002829310339155352, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 860, + "tp_rate": 0.002829310339155352, + "truth_threshold": 49.18 + }, + { + "f1": 0.005623027511498665, + "fn": 303104, + "fn_rate": 0.9971805593480743, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0028194406519257403, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 857, + "tp_rate": 0.0028194406519257403, + "truth_threshold": 49.2 + }, + { + "f1": 0.005518336493855028, + "fn": 303120, + "fn_rate": 0.9972331976799655, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002766802320034478, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 841, + "tp_rate": 0.002766802320034478, + "truth_threshold": 49.24 + }, + { + "f1": 0.00547907452853712, + "fn": 303126, + "fn_rate": 0.9972529370544247, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0027470629455752546, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 835, + "tp_rate": 0.0027470629455752546, + "truth_threshold": 49.26 + }, + { + "f1": 0.00540054596041787, + "fn": 303138, + "fn_rate": 0.9972924158033432, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002707584196656808, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 823, + "tp_rate": 0.002707584196656808, + "truth_threshold": 49.28 + }, + { + "f1": 0.00538745726453662, + "fn": 303140, + "fn_rate": 0.9972989955948296, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0027010044051704, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 821, + "tp_rate": 0.0027010044051704, + "truth_threshold": 49.300000000000004 + }, + { + "f1": 0.005374368396876435, + "fn": 303142, + "fn_rate": 0.997305575386316, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0026944246136839925, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 819, + "tp_rate": 0.0026944246136839925, + "truth_threshold": 49.32 + }, + { + "f1": 0.005322011208378723, + "fn": 303150, + "fn_rate": 0.9973318945522617, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002668105447738361, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 811, + "tp_rate": 0.002668105447738361, + "truth_threshold": 49.34 + }, + { + "f1": 0.005276213726030633, + "fn": 303157, + "fn_rate": 0.997354923822464, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002645076177535934, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 804, + "tp_rate": 0.002645076177535934, + "truth_threshold": 49.36 + }, + { + "f1": 0.005236942098320635, + "fn": 303163, + "fn_rate": 0.9973746631969233, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0026253368030767104, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 798, + "tp_rate": 0.0026253368030767104, + "truth_threshold": 49.38 + }, + { + "f1": 0.005191106210951856, + "fn": 303170, + "fn_rate": 0.9973976924671257, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002602307532874283, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 791, + "tp_rate": 0.002602307532874283, + "truth_threshold": 49.4 + }, + { + "f1": 0.005132210197478523, + "fn": 303179, + "fn_rate": 0.9974273015288145, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0025726984711854483, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 782, + "tp_rate": 0.0025726984711854483, + "truth_threshold": 49.42 + }, + { + "f1": 0.005106025503875461, + "fn": 303183, + "fn_rate": 0.9974404611117874, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0025595388882126324, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 778, + "tp_rate": 0.0025595388882126324, + "truth_threshold": 49.44 + }, + { + "f1": 0.005040560762384815, + "fn": 303193, + "fn_rate": 0.9974733600692194, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0025266399307805935, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 768, + "tp_rate": 0.0025266399307805935, + "truth_threshold": 49.46 + }, + { + "f1": 0.005027467298491103, + "fn": 303195, + "fn_rate": 0.9974799398607058, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0025200601392941857, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 766, + "tp_rate": 0.0025200601392941857, + "truth_threshold": 49.480000000000004 + }, + { + "f1": 0.005014373662724302, + "fn": 303197, + "fn_rate": 0.9974865196521923, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002513480347807778, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 764, + "tp_rate": 0.002513480347807778, + "truth_threshold": 49.5 + }, + { + "f1": 0.004935808238599071, + "fn": 303209, + "fn_rate": 0.9975259984011107, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024740015988893313, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 752, + "tp_rate": 0.0024740015988893313, + "truth_threshold": 49.52 + }, + { + "f1": 0.00490961838875251, + "fn": 303213, + "fn_rate": 0.9975391579840834, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024608420159165155, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 748, + "tp_rate": 0.0024608420159165155, + "truth_threshold": 49.54 + }, + { + "f1": 0.0048899595019461384, + "fn": 303216, + "fn_rate": 0.9975490276713131, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024509723286869037, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 745, + "tp_rate": 0.0024509723286869037, + "truth_threshold": 49.58 + }, + { + "f1": 0.0048834278512917455, + "fn": 303217, + "fn_rate": 0.9975523175670563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024476824329437, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 744, + "tp_rate": 0.0024476824329437, + "truth_threshold": 49.6 + }, + { + "f1": 0.004876864104179794, + "fn": 303218, + "fn_rate": 0.9975556074627995, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002444392537200496, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 743, + "tp_rate": 0.002444392537200496, + "truth_threshold": 49.620000000000005 + }, + { + "f1": 0.004863768534502563, + "fn": 303220, + "fn_rate": 0.9975621872542859, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024378127457140883, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 741, + "tp_rate": 0.0024378127457140883, + "truth_threshold": 49.64 + }, + { + "f1": 0.004831044713419277, + "fn": 303225, + "fn_rate": 0.997578636733002, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024213632669980688, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 736, + "tp_rate": 0.0024213632669980688, + "truth_threshold": 49.660000000000004 + }, + { + "f1": 0.004804852112953409, + "fn": 303229, + "fn_rate": 0.9975917963159747, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0024082036840252534, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 732, + "tp_rate": 0.0024082036840252534, + "truth_threshold": 49.68 + }, + { + "f1": 0.004778658824765005, + "fn": 303233, + "fn_rate": 0.9976049558989476, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0023950441010524375, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 728, + "tp_rate": 0.0023950441010524375, + "truth_threshold": 49.7 + }, + { + "f1": 0.0047000748335937195, + "fn": 303245, + "fn_rate": 0.997644434647866, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999989, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002355565352133991, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 716, + "tp_rate": 0.002355565352133991, + "truth_threshold": 49.74 + }, + { + "f1": 0.004693510483267471, + "fn": 303246, + "fn_rate": 0.9976477245436092, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002352275456390787, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 715, + "tp_rate": 0.002352275456390787, + "truth_threshold": 49.76 + }, + { + "f1": 0.004667314357735532, + "fn": 303250, + "fn_rate": 0.997660884126582, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0023391158734179713, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 711, + "tp_rate": 0.0023391158734179713, + "truth_threshold": 49.78 + }, + { + "f1": 0.004654216037023665, + "fn": 303252, + "fn_rate": 0.9976674639180685, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0023325360819315636, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 709, + "tp_rate": 0.0023325360819315636, + "truth_threshold": 49.800000000000004 + }, + { + "f1": 0.0046345834454779985, + "fn": 303255, + "fn_rate": 0.9976773336052981, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002322666394701952, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 706, + "tp_rate": 0.002322666394701952, + "truth_threshold": 49.82 + }, + { + "f1": 0.004628018879691203, + "fn": 303256, + "fn_rate": 0.9976806235010413, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002319376498958748, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 705, + "tp_rate": 0.002319376498958748, + "truth_threshold": 49.84 + }, + { + "f1": 0.004549423280180139, + "fn": 303268, + "fn_rate": 0.9977201022499597, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002279897750040301, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 693, + "tp_rate": 0.002279897750040301, + "truth_threshold": 49.86 + }, + { + "f1": 0.004542888279085645, + "fn": 303269, + "fn_rate": 0.9977233921457029, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0022766078542970974, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 692, + "tp_rate": 0.0022766078542970974, + "truth_threshold": 49.88 + }, + { + "f1": 0.004523223371081569, + "fn": 303272, + "fn_rate": 0.9977332618329325, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0022667381670674856, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 689, + "tp_rate": 0.0022667381670674856, + "truth_threshold": 49.9 + }, + { + "f1": 0.004516688112181928, + "fn": 303273, + "fn_rate": 0.9977365517286757, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0022634482713242816, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 688, + "tp_rate": 0.0022634482713242816, + "truth_threshold": 49.92 + }, + { + "f1": 0.004497022773973727, + "fn": 303276, + "fn_rate": 0.9977464214159053, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00225357858409467, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 685, + "tp_rate": 0.00225357858409467, + "truth_threshold": 49.94 + }, + { + "f1": 0.00444461951562182, + "fn": 303284, + "fn_rate": 0.997772740581851, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002227259418149039, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 677, + "tp_rate": 0.002227259418149039, + "truth_threshold": 49.96 + }, + { + "f1": 0.004411880564090444, + "fn": 303289, + "fn_rate": 0.997789190060567, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0022108099394330194, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 672, + "tp_rate": 0.0022108099394330194, + "truth_threshold": 49.980000000000004 + }, + { + "f1": 0.004346370255595459, + "fn": 303299, + "fn_rate": 0.9978220890179991, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0021779109820009804, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 662, + "tp_rate": 0.0021779109820009804, + "truth_threshold": 50 + }, + { + "f1": 0.004300496362633611, + "fn": 303306, + "fn_rate": 0.9978451182882014, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0021548817117985532, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 655, + "tp_rate": 0.0021548817117985532, + "truth_threshold": 50.02 + }, + { + "f1": 0.004248082781804811, + "fn": 303314, + "fn_rate": 0.9978714374541471, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002128562545852922, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 647, + "tp_rate": 0.002128562545852922, + "truth_threshold": 50.06 + }, + { + "f1": 0.004241544815269561, + "fn": 303315, + "fn_rate": 0.9978747273498902, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999991, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002125272650109718, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 646, + "tp_rate": 0.002125272650109718, + "truth_threshold": 50.08 + }, + { + "f1": 0.0042218749589631125, + "fn": 303318, + "fn_rate": 0.9978845970371198, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0021154029628801065, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 643, + "tp_rate": 0.0021154029628801065, + "truth_threshold": 50.120000000000005 + }, + { + "f1": 0.004202232435981616, + "fn": 303321, + "fn_rate": 0.9978944667243496, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0021055332756504948, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 640, + "tp_rate": 0.0021055332756504948, + "truth_threshold": 50.14 + }, + { + "f1": 0.004195666447800394, + "fn": 303322, + "fn_rate": 0.9978977566200927, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0021022433799072907, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 639, + "tp_rate": 0.0021022433799072907, + "truth_threshold": 50.18 + }, + { + "f1": 0.004143247360403425, + "fn": 303330, + "fn_rate": 0.9979240757860384, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0020759242139616594, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 631, + "tp_rate": 0.0020759242139616594, + "truth_threshold": 50.2 + }, + { + "f1": 0.0041170367841149354, + "fn": 303334, + "fn_rate": 0.9979372353690111, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.002062764630988844, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 627, + "tp_rate": 0.002062764630988844, + "truth_threshold": 50.22 + }, + { + "f1": 0.004018754186202277, + "fn": 303349, + "fn_rate": 0.9979865838051593, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0020134161948407855, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 612, + "tp_rate": 0.0020134161948407855, + "truth_threshold": 50.24 + }, + { + "f1": 0.003972866308123691, + "fn": 303356, + "fn_rate": 0.9980096130753616, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0019903869246383583, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 605, + "tp_rate": 0.0019903869246383583, + "truth_threshold": 50.26 + }, + { + "f1": 0.003946651256558599, + "fn": 303360, + "fn_rate": 0.9980227726583345, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0019772273416655425, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 601, + "tp_rate": 0.0019772273416655425, + "truth_threshold": 50.300000000000004 + }, + { + "f1": 0.003927002410049974, + "fn": 303363, + "fn_rate": 0.9980326423455641, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001967357654435931, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 598, + "tp_rate": 0.001967357654435931, + "truth_threshold": 50.32 + }, + { + "f1": 0.0039007860674954197, + "fn": 303367, + "fn_rate": 0.9980458019285369, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0019541980714631152, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 594, + "tp_rate": 0.0019541980714631152, + "truth_threshold": 50.34 + }, + { + "f1": 0.003887677637973154, + "fn": 303369, + "fn_rate": 0.9980523817200233, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0019476182799767075, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 592, + "tp_rate": 0.0019476182799767075, + "truth_threshold": 50.36 + }, + { + "f1": 0.003868001970119849, + "fn": 303372, + "fn_rate": 0.9980622514072529, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0019377485927470958, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 589, + "tp_rate": 0.0019377485927470958, + "truth_threshold": 50.38 + }, + { + "f1": 0.003789346485496063, + "fn": 303384, + "fn_rate": 0.9981017301561713, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001898269843828649, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 577, + "tp_rate": 0.001898269843828649, + "truth_threshold": 50.4 + }, + { + "f1": 0.003776236635405995, + "fn": 303386, + "fn_rate": 0.9981083099476578, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0018916900523422413, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 575, + "tp_rate": 0.0018916900523422413, + "truth_threshold": 50.42 + }, + { + "f1": 0.0037696940243125564, + "fn": 303387, + "fn_rate": 0.9981115998434009, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0018884001565990373, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 574, + "tp_rate": 0.0018884001565990373, + "truth_threshold": 50.46 + }, + { + "f1": 0.0036844628631100542, + "fn": 303400, + "fn_rate": 0.9981543684880626, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0018456315119373867, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 561, + "tp_rate": 0.0018456315119373867, + "truth_threshold": 50.480000000000004 + }, + { + "f1": 0.0036779193484828584, + "fn": 303401, + "fn_rate": 0.9981576583838058, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0018423416161941829, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 560, + "tp_rate": 0.0018423416161941829, + "truth_threshold": 50.5 + }, + { + "f1": 0.0035664556130625543, + "fn": 303418, + "fn_rate": 0.9982135866114403, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0017864133885597165, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 543, + "tp_rate": 0.0017864133885597165, + "truth_threshold": 50.52 + }, + { + "f1": 0.0035599109365455728, + "fn": 303419, + "fn_rate": 0.9982168765071835, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0017831234928165126, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 542, + "tp_rate": 0.0017831234928165126, + "truth_threshold": 50.54 + }, + { + "f1": 0.0035336849503116606, + "fn": 303423, + "fn_rate": 0.9982300360901563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001769963909843697, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 538, + "tp_rate": 0.001769963909843697, + "truth_threshold": 50.56 + }, + { + "f1": 0.0034418885721417217, + "fn": 303437, + "fn_rate": 0.9982760946305611, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0017239053694388426, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 524, + "tp_rate": 0.0017239053694388426, + "truth_threshold": 50.58 + }, + { + "f1": 0.0034287741147259938, + "fn": 303439, + "fn_rate": 0.9982826744220475, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0017173255779524346, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 522, + "tp_rate": 0.0017173255779524346, + "truth_threshold": 50.620000000000005 + }, + { + "f1": 0.003395976063952075, + "fn": 303444, + "fn_rate": 0.9982991239007636, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0017008760992364151, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 517, + "tp_rate": 0.0017008760992364151, + "truth_threshold": 50.64 + }, + { + "f1": 0.003389429708745517, + "fn": 303445, + "fn_rate": 0.9983024137965067, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016975862034932113, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 516, + "tp_rate": 0.0016975862034932113, + "truth_threshold": 50.660000000000004 + }, + { + "f1": 0.0033763145621629434, + "fn": 303447, + "fn_rate": 0.9983089935879932, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016910064120068036, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 514, + "tp_rate": 0.0016910064120068036, + "truth_threshold": 50.68 + }, + { + "f1": 0.0033435149604230303, + "fn": 303452, + "fn_rate": 0.9983254430667092, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001674556933290784, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 509, + "tp_rate": 0.001674556933290784, + "truth_threshold": 50.7 + }, + { + "f1": 0.003336968088600444, + "fn": 303453, + "fn_rate": 0.9983287329624524, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016712670375475802, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 508, + "tp_rate": 0.0016712670375475802, + "truth_threshold": 50.72 + }, + { + "f1": 0.0033303992537803643, + "fn": 303454, + "fn_rate": 0.9983320228581957, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016679771418043761, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 507, + "tp_rate": 0.0016679771418043761, + "truth_threshold": 50.74 + }, + { + "f1": 0.0032779347040662156, + "fn": 303462, + "fn_rate": 0.9983583420241413, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001641657975858745, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 499, + "tp_rate": 0.001641657975858745, + "truth_threshold": 50.76 + }, + { + "f1": 0.003271387186409948, + "fn": 303463, + "fn_rate": 0.9983616319198845, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016383680801155412, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 498, + "tp_rate": 0.0016383680801155412, + "truth_threshold": 50.78 + }, + { + "f1": 0.003264818135834828, + "fn": 303464, + "fn_rate": 0.9983649218156276, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016350781843723372, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 497, + "tp_rate": 0.0016350781843723372, + "truth_threshold": 50.800000000000004 + }, + { + "f1": 0.0032451536192659646, + "fn": 303467, + "fn_rate": 0.9983747915028572, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0016252084971427256, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 494, + "tp_rate": 0.0016252084971427256, + "truth_threshold": 50.82 + }, + { + "f1": 0.0031205245108988423, + "fn": 303486, + "fn_rate": 0.9984372995219781, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0015627004780218515, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 475, + "tp_rate": 0.0015627004780218515, + "truth_threshold": 50.84 + }, + { + "f1": 0.003100856677353235, + "fn": 303489, + "fn_rate": 0.9984471692092077, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0015528307907922397, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 472, + "tp_rate": 0.0015528307907922397, + "truth_threshold": 50.86 + }, + { + "f1": 0.0030877377393817955, + "fn": 303491, + "fn_rate": 0.9984537490006942, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001546250999305832, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 470, + "tp_rate": 0.001546250999305832, + "truth_threshold": 50.88 + }, + { + "f1": 0.003074618629035437, + "fn": 303493, + "fn_rate": 0.9984603287921806, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0015396712078194243, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 468, + "tp_rate": 0.0015396712078194243, + "truth_threshold": 50.9 + }, + { + "f1": 0.002963089497128891, + "fn": 303510, + "fn_rate": 0.9985162570198151, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014837429801849579, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 451, + "tp_rate": 0.0014837429801849579, + "truth_threshold": 50.92 + }, + { + "f1": 0.002917175858398707, + "fn": 303517, + "fn_rate": 0.9985392862900174, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014607137099825307, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 444, + "tp_rate": 0.0014607137099825307, + "truth_threshold": 50.94 + }, + { + "f1": 0.0029106056425014125, + "fn": 303518, + "fn_rate": 0.9985425761857607, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014574238142393268, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 443, + "tp_rate": 0.0014574238142393268, + "truth_threshold": 50.96 + }, + { + "f1": 0.0028974842478038908, + "fn": 303520, + "fn_rate": 0.998549155977247, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014508440227529189, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 441, + "tp_rate": 0.0014508440227529189, + "truth_threshold": 50.980000000000004 + }, + { + "f1": 0.0028843626806833115, + "fn": 303522, + "fn_rate": 0.9985557357687335, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014442642312665112, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 439, + "tp_rate": 0.0014442642312665112, + "truth_threshold": 51 + }, + { + "f1": 0.0028778112865393336, + "fn": 303523, + "fn_rate": 0.9985590256644767, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014409743355233073, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 438, + "tp_rate": 0.0014409743355233073, + "truth_threshold": 51.02 + }, + { + "f1": 0.0028449969447492396, + "fn": 303528, + "fn_rate": 0.9985754751431927, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014245248568072878, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 433, + "tp_rate": 0.0014245248568072878, + "truth_threshold": 51.04 + }, + { + "f1": 0.0028318746879024415, + "fn": 303530, + "fn_rate": 0.9985820549346791, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0014179450653208799, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 431, + "tp_rate": 0.0014179450653208799, + "truth_threshold": 51.06 + }, + { + "f1": 0.0027859545836837678, + "fn": 303537, + "fn_rate": 0.9986050842048816, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013949157951184527, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 424, + "tp_rate": 0.0013949157951184527, + "truth_threshold": 51.08 + }, + { + "f1": 0.00277938393608074, + "fn": 303538, + "fn_rate": 0.9986083741006248, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013916258993752488, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 423, + "tp_rate": 0.0013916258993752488, + "truth_threshold": 51.1 + }, + { + "f1": 0.0027728315077764124, + "fn": 303539, + "fn_rate": 0.9986116639963679, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001388336003632045, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 422, + "tp_rate": 0.001388336003632045, + "truth_threshold": 51.14 + }, + { + "f1": 0.002766260816999691, + "fn": 303540, + "fn_rate": 0.9986149538921112, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013850461078888411, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 421, + "tp_rate": 0.0013850461078888411, + "truth_threshold": 51.2 + }, + { + "f1": 0.0027400140614630493, + "fn": 303544, + "fn_rate": 0.998628113475084, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013718865249160255, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 417, + "tp_rate": 0.0013718865249160255, + "truth_threshold": 51.22 + }, + { + "f1": 0.002726890425000657, + "fn": 303546, + "fn_rate": 0.9986346932665704, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013653067334296175, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 415, + "tp_rate": 0.0013653067334296175, + "truth_threshold": 51.26 + }, + { + "f1": 0.002707213541324432, + "fn": 303549, + "fn_rate": 0.9986445629538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001355437046200006, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 412, + "tp_rate": 0.001355437046200006, + "truth_threshold": 51.28 + }, + { + "f1": 0.0026940894306271973, + "fn": 303551, + "fn_rate": 0.9986511427452864, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001348857254713598, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 410, + "tp_rate": 0.001348857254713598, + "truth_threshold": 51.32 + }, + { + "f1": 0.0026743941544446195, + "fn": 303554, + "fn_rate": 0.998661012432516, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013389875674839865, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 407, + "tp_rate": 0.0013389875674839865, + "truth_threshold": 51.34 + }, + { + "f1": 0.0026481449842951205, + "fn": 303558, + "fn_rate": 0.9986741720154888, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013258279845111708, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 403, + "tp_rate": 0.0013258279845111708, + "truth_threshold": 51.36 + }, + { + "f1": 0.0026415912630354645, + "fn": 303559, + "fn_rate": 0.9986774619112321, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001322538088767967, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 402, + "tp_rate": 0.001322538088767967, + "truth_threshold": 51.38 + }, + { + "f1": 0.002602215826203525, + "fn": 303565, + "fn_rate": 0.9986972012856913, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0013027987143087436, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 396, + "tp_rate": 0.0013027987143087436, + "truth_threshold": 51.4 + }, + { + "f1": 0.002595644574117152, + "fn": 303566, + "fn_rate": 0.9987004911814344, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012995088185655396, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 395, + "tp_rate": 0.0012995088185655396, + "truth_threshold": 51.480000000000004 + }, + { + "f1": 0.0025825190403280392, + "fn": 303568, + "fn_rate": 0.9987070709729209, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012929290270791319, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 393, + "tp_rate": 0.0012929290270791319, + "truth_threshold": 51.5 + }, + { + "f1": 0.002569393334034276, + "fn": 303570, + "fn_rate": 0.9987136507644073, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012863492355927241, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 391, + "tp_rate": 0.0012863492355927241, + "truth_threshold": 51.52 + }, + { + "f1": 0.0024972070710389694, + "fn": 303581, + "fn_rate": 0.9987498396175826, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001250160382417481, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 380, + "tp_rate": 0.001250160382417481, + "truth_threshold": 51.56 + }, + { + "f1": 0.0024840802003036097, + "fn": 303583, + "fn_rate": 0.9987564194090689, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012435805909310734, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 378, + "tp_rate": 0.0012435805909310734, + "truth_threshold": 51.58 + }, + { + "f1": 0.002470953157036959, + "fn": 303585, + "fn_rate": 0.9987629992005553, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012370007994446657, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 376, + "tp_rate": 0.0012370007994446657, + "truth_threshold": 51.6 + }, + { + "f1": 0.0024643814731086693, + "fn": 303586, + "fn_rate": 0.9987662890962985, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012337109037014616, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 375, + "tp_rate": 0.0012337109037014616, + "truth_threshold": 51.64 + }, + { + "f1": 0.0024315709920152465, + "fn": 303591, + "fn_rate": 0.9987827385750145, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012172614249854423, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 370, + "tp_rate": 0.0012172614249854423, + "truth_threshold": 51.68 + }, + { + "f1": 0.0024118714019084673, + "fn": 303594, + "fn_rate": 0.9987926082622441, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012073917377558305, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 367, + "tp_rate": 0.0012073917377558305, + "truth_threshold": 51.7 + }, + { + "f1": 0.0024053153526152875, + "fn": 303595, + "fn_rate": 0.9987958981579874, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0012041018420126267, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 366, + "tp_rate": 0.0012041018420126267, + "truth_threshold": 51.72 + }, + { + "f1": 0.002385615331028772, + "fn": 303598, + "fn_rate": 0.998805767845217, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001194232154783015, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 363, + "tp_rate": 0.001194232154783015, + "truth_threshold": 51.78 + }, + { + "f1": 0.0023790590230085237, + "fn": 303599, + "fn_rate": 0.9988090577409602, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001190942259039811, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 362, + "tp_rate": 0.001190942259039811, + "truth_threshold": 51.800000000000004 + }, + { + "f1": 0.002333101118574114, + "fn": 303606, + "fn_rate": 0.9988320870111627, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011679129888373838, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 355, + "tp_rate": 0.0011679129888373838, + "truth_threshold": 51.82 + }, + { + "f1": 0.0023068429769447147, + "fn": 303610, + "fn_rate": 0.9988452465941354, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011547534058645682, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 351, + "tp_rate": 0.0011547534058645682, + "truth_threshold": 51.84 + }, + { + "f1": 0.0023002858926752323, + "fn": 303611, + "fn_rate": 0.9988485364898786, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011514635101213643, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 350, + "tp_rate": 0.0011514635101213643, + "truth_threshold": 51.86 + }, + { + "f1": 0.002293713647267589, + "fn": 303612, + "fn_rate": 0.9988518263856219, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011481736143781603, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 349, + "tp_rate": 0.0011481736143781603, + "truth_threshold": 51.88 + }, + { + "f1": 0.0022871564336133126, + "fn": 303613, + "fn_rate": 0.998855116281365, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011448837186349564, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 348, + "tp_rate": 0.0011448837186349564, + "truth_threshold": 51.9 + }, + { + "f1": 0.0022740268019690708, + "fn": 303615, + "fn_rate": 0.9988616960728515, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011383039271485487, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 346, + "tp_rate": 0.0011383039271485487, + "truth_threshold": 51.92 + }, + { + "f1": 0.002260896997739103, + "fn": 303617, + "fn_rate": 0.9988682758643379, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011317241356621408, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 344, + "tp_rate": 0.0011317241356621408, + "truth_threshold": 51.94 + }, + { + "f1": 0.002254324622745675, + "fn": 303618, + "fn_rate": 0.9988715657600811, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001128434239918937, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 343, + "tp_rate": 0.001128434239918937, + "truth_threshold": 51.96 + }, + { + "f1": 0.0022411946027301823, + "fn": 303620, + "fn_rate": 0.9988781455515675, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011218544484325292, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 341, + "tp_rate": 0.0011218544484325292, + "truth_threshold": 51.980000000000004 + }, + { + "f1": 0.0022346368715083797, + "fn": 303621, + "fn_rate": 0.9988814354473107, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011185645526893254, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 340, + "tp_rate": 0.0011185645526893254, + "truth_threshold": 52 + }, + { + "f1": 0.002201803507111497, + "fn": 303626, + "fn_rate": 0.9988978849260267, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0011021150739733059, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 335, + "tp_rate": 0.0011021150739733059, + "truth_threshold": 52.02 + }, + { + "f1": 0.002195245387684279, + "fn": 303627, + "fn_rate": 0.9989011748217699, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010988251782301018, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 334, + "tp_rate": 0.0010988251782301018, + "truth_threshold": 52.04 + }, + { + "f1": 0.0021886727967031882, + "fn": 303628, + "fn_rate": 0.9989044647175132, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001095535282486898, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 333, + "tp_rate": 0.001095535282486898, + "truth_threshold": 52.06 + }, + { + "f1": 0.0021689835354431627, + "fn": 303631, + "fn_rate": 0.9989143344047428, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010856655952572864, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 330, + "tp_rate": 0.0010856655952572864, + "truth_threshold": 52.08 + }, + { + "f1": 0.0021427209927502417, + "fn": 303635, + "fn_rate": 0.9989274939877155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010725060122844707, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 326, + "tp_rate": 0.0010725060122844707, + "truth_threshold": 52.120000000000005 + }, + { + "f1": 0.0020836208993091844, + "fn": 303644, + "fn_rate": 0.9989571030494043, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010428969505956356, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 317, + "tp_rate": 0.0010428969505956356, + "truth_threshold": 52.14 + }, + { + "f1": 0.0020770616151125952, + "fn": 303645, + "fn_rate": 0.9989603929451476, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010396070548524317, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 316, + "tp_rate": 0.0010396070548524317, + "truth_threshold": 52.18 + }, + { + "f1": 0.002057356198689339, + "fn": 303648, + "fn_rate": 0.9989702626323772, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00102973736762282, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 313, + "tp_rate": 0.00102973736762282, + "truth_threshold": 52.2 + }, + { + "f1": 0.0020507966556239155, + "fn": 303649, + "fn_rate": 0.9989735525281204, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.001026447471879616, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 312, + "tp_rate": 0.001026447471879616, + "truth_threshold": 52.24 + }, + { + "f1": 0.002044223589419993, + "fn": 303650, + "fn_rate": 0.9989768424238636, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010231575761364122, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 311, + "tp_rate": 0.0010231575761364122, + "truth_threshold": 52.28 + }, + { + "f1": 0.002011397921555481, + "fn": 303655, + "fn_rate": 0.9989932919025796, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0010067080974203928, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 306, + "tp_rate": 0.0010067080974203928, + "truth_threshold": 52.300000000000004 + }, + { + "f1": 0.0019588638589618022, + "fn": 303663, + "fn_rate": 0.9990196110685252, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009803889314747615, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 298, + "tp_rate": 0.0009803889314747615, + "truth_threshold": 52.34 + }, + { + "f1": 0.001952290490307568, + "fn": 303664, + "fn_rate": 0.9990229009642685, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009770990357315576, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 297, + "tp_rate": 0.0009770990357315576, + "truth_threshold": 52.38 + }, + { + "f1": 0.0019325957916740619, + "fn": 303667, + "fn_rate": 0.9990327706514981, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000967229348501946, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 294, + "tp_rate": 0.000967229348501946, + "truth_threshold": 52.4 + }, + { + "f1": 0.0019063270336894002, + "fn": 303671, + "fn_rate": 0.9990459302344709, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009540697655291304, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 290, + "tp_rate": 0.0009540697655291304, + "truth_threshold": 52.44 + }, + { + "f1": 0.0018537874455203424, + "fn": 303679, + "fn_rate": 0.9990722494004165, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009277505995834993, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 282, + "tp_rate": 0.0009277505995834993, + "truth_threshold": 52.480000000000004 + }, + { + "f1": 0.0018275166152814572, + "fn": 303683, + "fn_rate": 0.9990854089833893, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009145910166106836, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 278, + "tp_rate": 0.0009145910166106836, + "truth_threshold": 52.5 + }, + { + "f1": 0.001807807097121971, + "fn": 303686, + "fn_rate": 0.999095278670619, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0009047213293810719, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 275, + "tp_rate": 0.0009047213293810719, + "truth_threshold": 52.52 + }, + { + "f1": 0.001788109074653554, + "fn": 303689, + "fn_rate": 0.9991051483578486, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008948516421514603, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 272, + "tp_rate": 0.0008948516421514603, + "truth_threshold": 52.54 + }, + { + "f1": 0.0017618365173488306, + "fn": 303693, + "fn_rate": 0.9991183079408213, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008816920591786446, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 268, + "tp_rate": 0.0008816920591786446, + "truth_threshold": 52.58 + }, + { + "f1": 0.0017289891658777742, + "fn": 303698, + "fn_rate": 0.9991347574195374, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008652425804626251, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 263, + "tp_rate": 0.0008652425804626251, + "truth_threshold": 52.6 + }, + { + "f1": 0.001715852239483009, + "fn": 303700, + "fn_rate": 0.9991413372110238, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008586627889762173, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 261, + "tp_rate": 0.0008586627889762173, + "truth_threshold": 52.620000000000005 + }, + { + "f1": 0.0017092893300900663, + "fn": 303701, + "fn_rate": 0.999144627106767, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008553728932330135, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 260, + "tp_rate": 0.0008553728932330135, + "truth_threshold": 52.64 + }, + { + "f1": 0.0016764404239093275, + "fn": 303706, + "fn_rate": 0.999161076585483, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000838923414516994, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 255, + "tp_rate": 0.000838923414516994, + "truth_threshold": 52.660000000000004 + }, + { + "f1": 0.001663302806576949, + "fn": 303708, + "fn_rate": 0.9991676563769694, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008323436230305861, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 253, + "tp_rate": 0.0008323436230305861, + "truth_threshold": 52.68 + }, + { + "f1": 0.0016567393791171946, + "fn": 303709, + "fn_rate": 0.9991709462727126, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008290537272873823, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 252, + "tp_rate": 0.0008290537272873823, + "truth_threshold": 52.7 + }, + { + "f1": 0.0016501650165016502, + "fn": 303710, + "fn_rate": 0.9991742361684558, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008257638315441783, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 251, + "tp_rate": 0.0008257638315441783, + "truth_threshold": 52.72 + }, + { + "f1": 0.0016370270536800236, + "fn": 303712, + "fn_rate": 0.9991808159599422, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008191840400577706, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 249, + "tp_rate": 0.0008191840400577706, + "truth_threshold": 52.76 + }, + { + "f1": 0.0016238889181086624, + "fn": 303714, + "fn_rate": 0.9991873957514287, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008126042485713628, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 247, + "tp_rate": 0.0008126042485713628, + "truth_threshold": 52.78 + }, + { + "f1": 0.0016173251020689928, + "fn": 303715, + "fn_rate": 0.9991906856471718, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0008093143528281588, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 246, + "tp_rate": 0.0008093143528281588, + "truth_threshold": 52.86 + }, + { + "f1": 0.001538491883469102, + "fn": 303727, + "fn_rate": 0.9992301643960902, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007698356039097121, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 234, + "tp_rate": 0.0007698356039097121, + "truth_threshold": 52.9 + }, + { + "f1": 0.0015056379236661297, + "fn": 303732, + "fn_rate": 0.9992466138748063, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007533861251936926, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 229, + "tp_rate": 0.0007533861251936926, + "truth_threshold": 52.92 + }, + { + "f1": 0.0014990729417334017, + "fn": 303733, + "fn_rate": 0.9992499037705496, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007500962294504887, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 228, + "tp_rate": 0.0007500962294504887, + "truth_threshold": 52.96 + }, + { + "f1": 0.001485932948919411, + "fn": 303735, + "fn_rate": 0.9992564835620359, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000743516437964081, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 226, + "tp_rate": 0.000743516437964081, + "truth_threshold": 52.980000000000004 + }, + { + "f1": 0.001466217815532704, + "fn": 303738, + "fn_rate": 0.9992663532492655, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007336467507344692, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 223, + "tp_rate": 0.0007336467507344692, + "truth_threshold": 53.02 + }, + { + "f1": 0.0014596524449178453, + "fn": 303739, + "fn_rate": 0.9992696431450088, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007303568549912653, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 222, + "tp_rate": 0.0007303568549912653, + "truth_threshold": 53.04 + }, + { + "f1": 0.0014530774339047018, + "fn": 303740, + "fn_rate": 0.9992729330407519, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007270669592480615, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 221, + "tp_rate": 0.0007270669592480615, + "truth_threshold": 53.08 + }, + { + "f1": 0.0014333712497287773, + "fn": 303743, + "fn_rate": 0.9992828027279815, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007171972720184497, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 218, + "tp_rate": 0.0007171972720184497, + "truth_threshold": 53.1 + }, + { + "f1": 0.0014005141793841682, + "fn": 303748, + "fn_rate": 0.9992992522066976, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0007007477933024302, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 213, + "tp_rate": 0.0007007477933024302, + "truth_threshold": 53.14 + }, + { + "f1": 0.0013939481609089594, + "fn": 303749, + "fn_rate": 0.9993025421024407, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006974578975592263, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 212, + "tp_rate": 0.0006974578975592263, + "truth_threshold": 53.160000000000004 + }, + { + "f1": 0.0013808067856790611, + "fn": 303751, + "fn_rate": 0.9993091218939272, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006908781060728185, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 210, + "tp_rate": 0.0006908781060728185, + "truth_threshold": 53.18 + }, + { + "f1": 0.0013742315152710655, + "fn": 303752, + "fn_rate": 0.9993124117896703, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006875882103296147, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 209, + "tp_rate": 0.0006875882103296147, + "truth_threshold": 53.2 + }, + { + "f1": 0.0013610899239893744, + "fn": 303754, + "fn_rate": 0.9993189915811568, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006810084188432068, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 207, + "tp_rate": 0.0006810084188432068, + "truth_threshold": 53.28 + }, + { + "f1": 0.0013545235167638724, + "fn": 303755, + "fn_rate": 0.9993222814768999, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000677718523100003, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 206, + "tp_rate": 0.000677718523100003, + "truth_threshold": 53.300000000000004 + }, + { + "f1": 0.0013150973172014729, + "fn": 303761, + "fn_rate": 0.9993420208513593, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006579791486407795, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 200, + "tp_rate": 0.0006579791486407795, + "truth_threshold": 53.32 + }, + { + "f1": 0.0013085218306154655, + "fn": 303762, + "fn_rate": 0.9993453107471024, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006546892528975757, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 199, + "tp_rate": 0.0006546892528975757, + "truth_threshold": 53.34 + }, + { + "f1": 0.0012953793751931562, + "fn": 303764, + "fn_rate": 0.9993518905385889, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006481094614111679, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 197, + "tp_rate": 0.0006481094614111679, + "truth_threshold": 53.36 + }, + { + "f1": 0.0012888123199936874, + "fn": 303765, + "fn_rate": 0.999355180434332, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000644819565667964, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 196, + "tp_rate": 0.000644819565667964, + "truth_threshold": 53.38 + }, + { + "f1": 0.0012822367469324952, + "fn": 303766, + "fn_rate": 0.9993584703300752, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00064152966992476, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 195, + "tp_rate": 0.00064152966992476, + "truth_threshold": 53.4 + }, + { + "f1": 0.0012756695621297105, + "fn": 303767, + "fn_rate": 0.9993617602258185, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006382397741815562, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 194, + "tp_rate": 0.0006382397741815562, + "truth_threshold": 53.44 + }, + { + "f1": 0.001269093945830073, + "fn": 303768, + "fn_rate": 0.9993650501215616, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006349498784383523, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 193, + "tp_rate": 0.0006349498784383523, + "truth_threshold": 53.46 + }, + { + "f1": 0.00125595097188248, + "fn": 303770, + "fn_rate": 0.9993716299130481, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006283700869519445, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 191, + "tp_rate": 0.0006283700869519445, + "truth_threshold": 53.58 + }, + { + "f1": 0.0012493835278645405, + "fn": 303771, + "fn_rate": 0.9993749198087912, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006250801912087405, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 190, + "tp_rate": 0.0006250801912087405, + "truth_threshold": 53.660000000000004 + }, + { + "f1": 0.0012362402514565277, + "fn": 303773, + "fn_rate": 0.9993814996002777, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006185003997223328, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 188, + "tp_rate": 0.0006185003997223328, + "truth_threshold": 53.68 + }, + { + "f1": 0.0012165210129345774, + "fn": 303776, + "fn_rate": 0.9993913692875073, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006086307124927212, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 185, + "tp_rate": 0.0006086307124927212, + "truth_threshold": 53.72 + }, + { + "f1": 0.0012099531800725972, + "fn": 303777, + "fn_rate": 0.9993946591832504, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006053408167495172, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 184, + "tp_rate": 0.0006053408167495172, + "truth_threshold": 53.76 + }, + { + "f1": 0.0012033773475722026, + "fn": 303778, + "fn_rate": 0.9993979490789937, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0006020509210063133, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 183, + "tp_rate": 0.0006020509210063133, + "truth_threshold": 53.78 + }, + { + "f1": 0.0011968093850898594, + "fn": 303779, + "fn_rate": 0.9994012389747369, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999999999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005987610252631094, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 182, + "tp_rate": 0.0005987610252631094, + "truth_threshold": 53.800000000000004 + }, + { + "f1": 0.0011705212765257876, + "fn": 303783, + "fn_rate": 0.9994143985577097, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005856014422902938, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 178, + "tp_rate": 0.0005856014422902938, + "truth_threshold": 53.84 + }, + { + "f1": 0.0011442324764741856, + "fn": 303787, + "fn_rate": 0.9994275581406825, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005724418593174782, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 174, + "tp_rate": 0.0005724418593174782, + "truth_threshold": 53.9 + }, + { + "f1": 0.0011113668497024299, + "fn": 303792, + "fn_rate": 0.9994440076193986, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005559923806014587, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 169, + "tp_rate": 0.0005559923806014587, + "truth_threshold": 53.92 + }, + { + "f1": 0.0010982218013468013, + "fn": 303794, + "fn_rate": 0.999450587410885, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005494125891150509, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 167, + "tp_rate": 0.0005494125891150509, + "truth_threshold": 53.980000000000004 + }, + { + "f1": 0.0010587856189292455, + "fn": 303800, + "fn_rate": 0.9994703267853442, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005296732146558275, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 161, + "tp_rate": 0.0005296732146558275, + "truth_threshold": 54 + }, + { + "f1": 0.0010456398789951335, + "fn": 303802, + "fn_rate": 0.9994769065768305, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005230934231694197, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 159, + "tp_rate": 0.0005230934231694197, + "truth_threshold": 54.02 + }, + { + "f1": 0.0010062016217602609, + "fn": 303808, + "fn_rate": 0.9994966459512898, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0005033540487101964, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 153, + "tp_rate": 0.0005033540487101964, + "truth_threshold": 54.06 + }, + { + "f1": 0.0009930551901930868, + "fn": 303810, + "fn_rate": 0.9995032257427762, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004967742572237886, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 151, + "tp_rate": 0.0004967742572237886, + "truth_threshold": 54.08 + }, + { + "f1": 0.0009864851533984414, + "fn": 303811, + "fn_rate": 0.9995065156385194, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004934843614805847, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 150, + "tp_rate": 0.0004934843614805847, + "truth_threshold": 54.14 + }, + { + "f1": 0.0009733384192457942, + "fn": 303813, + "fn_rate": 0.9995130954300058, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004869045699941769, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 148, + "tp_rate": 0.0004869045699941769, + "truth_threshold": 54.2 + }, + { + "f1": 0.0009667618083049443, + "fn": 303814, + "fn_rate": 0.999516385325749, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000483614674250973, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 147, + "tp_rate": 0.000483614674250973, + "truth_threshold": 54.26 + }, + { + "f1": 0.0009601915121700985, + "fn": 303815, + "fn_rate": 0.9995196752214922, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00048032477850776906, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 146, + "tp_rate": 0.00048032477850776906, + "truth_threshold": 54.28 + }, + { + "f1": 0.0009536148579771527, + "fn": 303816, + "fn_rate": 0.9995229651172355, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004770348827645652, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 145, + "tp_rate": 0.0004770348827645652, + "truth_threshold": 54.32 + }, + { + "f1": 0.0009470444321679426, + "fn": 303817, + "fn_rate": 0.9995262550129786, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004737449870213613, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 144, + "tp_rate": 0.0004737449870213613, + "truth_threshold": 54.36 + }, + { + "f1": 0.0009207497533706018, + "fn": 303821, + "fn_rate": 0.9995394145959514, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004605854040485457, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 140, + "tp_rate": 0.0004605854040485457, + "truth_threshold": 54.4 + }, + { + "f1": 0.0008944543828264759, + "fn": 303825, + "fn_rate": 0.9995525741789243, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00044742582107573013, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 136, + "tp_rate": 0.00044742582107573013, + "truth_threshold": 54.42 + }, + { + "f1": 0.0008813064381408381, + "fn": 303827, + "fn_rate": 0.9995591539704107, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004408460295893223, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 134, + "tp_rate": 0.0004408460295893223, + "truth_threshold": 54.5 + }, + { + "f1": 0.0008747295244233691, + "fn": 303828, + "fn_rate": 0.9995624438661539, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004375561338461184, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 133, + "tp_rate": 0.0004375561338461184, + "truth_threshold": 54.58 + }, + { + "f1": 0.0008681583205082672, + "fn": 303829, + "fn_rate": 0.9995657337618971, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004342662381029145, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 132, + "tp_rate": 0.0004342662381029145, + "truth_threshold": 54.6 + }, + { + "f1": 0.0008615813635347197, + "fn": 303830, + "fn_rate": 0.9995690236576403, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00043097634235971064, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 131, + "tp_rate": 0.00043097634235971064, + "truth_threshold": 54.7 + }, + { + "f1": 0.0008418615663886769, + "fn": 303833, + "fn_rate": 0.9995788933448699, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0004211066551300989, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 128, + "tp_rate": 0.0004211066551300989, + "truth_threshold": 54.74 + }, + { + "f1": 0.0008352845229012654, + "fn": 303834, + "fn_rate": 0.9995821832406131, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00041781675938689505, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 127, + "tp_rate": 0.00041781675938689505, + "truth_threshold": 54.76 + }, + { + "f1": 0.0008221358431496353, + "fn": 303836, + "fn_rate": 0.9995887630320995, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00041123696790048723, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 125, + "tp_rate": 0.00041123696790048723, + "truth_threshold": 54.78 + }, + { + "f1": 0.0008024151380219809, + "fn": 303839, + "fn_rate": 0.9995986327193291, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00040136728067087556, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 122, + "tp_rate": 0.00040136728067087556, + "truth_threshold": 54.800000000000004 + }, + { + "f1": 0.000762967152948605, + "fn": 303845, + "fn_rate": 0.9996183720937883, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00038162790621165216, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 116, + "tp_rate": 0.00038162790621165216, + "truth_threshold": 54.88 + }, + { + "f1": 0.0007563898499059446, + "fn": 303846, + "fn_rate": 0.9996216619895315, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00037833801046844825, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 115, + "tp_rate": 0.00037833801046844825, + "truth_threshold": 54.9 + }, + { + "f1": 0.0007169401782484297, + "fn": 303852, + "fn_rate": 0.9996414013639908, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00035859863600922484, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 109, + "tp_rate": 0.00035859863600922484, + "truth_threshold": 54.980000000000004 + }, + { + "f1": 0.0007103674178144362, + "fn": 303853, + "fn_rate": 0.999644691259734, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000355308740266021, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 108, + "tp_rate": 0.000355308740266021, + "truth_threshold": 55.02 + }, + { + "f1": 0.0007037899417235618, + "fn": 303854, + "fn_rate": 0.9996479811554771, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003520188445228171, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 107, + "tp_rate": 0.0003520188445228171, + "truth_threshold": 55.18 + }, + { + "f1": 0.0006972170515611743, + "fn": 303855, + "fn_rate": 0.9996512710512204, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00034872894877961317, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 106, + "tp_rate": 0.00034872894877961317, + "truth_threshold": 55.2 + }, + { + "f1": 0.0006906395322068235, + "fn": 303856, + "fn_rate": 0.9996545609469636, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00034543905303640926, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 105, + "tp_rate": 0.00034543905303640926, + "truth_threshold": 55.24 + }, + { + "f1": 0.0006840665123131972, + "fn": 303857, + "fn_rate": 0.9996578508427068, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003421491572932054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 104, + "tp_rate": 0.0003421491572932054, + "truth_threshold": 55.26 + }, + { + "f1": 0.0006774889496948011, + "fn": 303858, + "fn_rate": 0.99966114073845, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003388592615500015, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 103, + "tp_rate": 0.0003388592615500015, + "truth_threshold": 55.42 + }, + { + "f1": 0.0006709158000670916, + "fn": 303859, + "fn_rate": 0.9996644306341932, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003355693658067976, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 102, + "tp_rate": 0.0003355693658067976, + "truth_threshold": 55.46 + }, + { + "f1": 0.0006511872656712491, + "fn": 303862, + "fn_rate": 0.9996743003214228, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003256996785771859, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 99, + "tp_rate": 0.0003256996785771859, + "truth_threshold": 55.5 + }, + { + "f1": 0.0006446138565668392, + "fn": 303863, + "fn_rate": 0.9996775902171661, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000322409782833982, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 98, + "tp_rate": 0.000322409782833982, + "truth_threshold": 55.64 + }, + { + "f1": 0.0006314626253058647, + "fn": 303865, + "fn_rate": 0.9996841700086524, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003158299913475742, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 96, + "tp_rate": 0.0003158299913475742, + "truth_threshold": 55.74 + }, + { + "f1": 0.0006248848896255953, + "fn": 303866, + "fn_rate": 0.9996874599043957, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00031254009560437027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 95, + "tp_rate": 0.00031254009560437027, + "truth_threshold": 55.78 + }, + { + "f1": 0.0006051596437451488, + "fn": 303869, + "fn_rate": 0.9996973295916253, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0003026704083747586, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 92, + "tp_rate": 0.0003026704083747586, + "truth_threshold": 55.800000000000004 + }, + { + "f1": 0.0005985818215305277, + "fn": 303870, + "fn_rate": 0.9997006194873684, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002993805126315547, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 91, + "tp_rate": 0.0002993805126315547, + "truth_threshold": 55.82 + }, + { + "f1": 0.0005854300279559283, + "fn": 303872, + "fn_rate": 0.9997071992788549, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002928007211451469, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 89, + "tp_rate": 0.0002928007211451469, + "truth_threshold": 55.84 + }, + { + "f1": 0.0005722780613587328, + "fn": 303874, + "fn_rate": 0.9997137790703413, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002862209296587391, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 87, + "tp_rate": 0.0002862209296587391, + "truth_threshold": 55.92 + }, + { + "f1": 0.0005657038737559448, + "fn": 303875, + "fn_rate": 0.9997170689660845, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002829310339155352, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 86, + "tp_rate": 0.0002829310339155352, + "truth_threshold": 55.94 + }, + { + "f1": 0.0005591259217355268, + "fn": 303876, + "fn_rate": 0.9997203588618276, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00027964113817233134, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 85, + "tp_rate": 0.00027964113817233134, + "truth_threshold": 56.02 + }, + { + "f1": 0.0005459736090828959, + "fn": 303878, + "fn_rate": 0.9997269386533141, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002730613466859235, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 83, + "tp_rate": 0.0002730613466859235, + "truth_threshold": 56.08 + }, + { + "f1": 0.0005393991619578874, + "fn": 303879, + "fn_rate": 0.9997302285490572, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002697714509427196, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 82, + "tp_rate": 0.0002697714509427196, + "truth_threshold": 56.1 + }, + { + "f1": 0.0005196684646757005, + "fn": 303882, + "fn_rate": 0.9997400982362868, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00025990176371310794, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 79, + "tp_rate": 0.00025990176371310794, + "truth_threshold": 56.120000000000005 + }, + { + "f1": 0.00051309375801709, + "fn": 303883, + "fn_rate": 0.9997433881320301, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000256611867969904, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 78, + "tp_rate": 0.000256611867969904, + "truth_threshold": 56.14 + }, + { + "f1": 0.0005065156329143068, + "fn": 303884, + "fn_rate": 0.9997466780277733, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0002533219722267001, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 77, + "tp_rate": 0.0002533219722267001, + "truth_threshold": 56.28 + }, + { + "f1": 0.0004999407964846268, + "fn": 303885, + "fn_rate": 0.9997499679235166, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00025003207648349626, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 76, + "tp_rate": 0.00025003207648349626, + "truth_threshold": 56.300000000000004 + }, + { + "f1": 0.0004933626281098291, + "fn": 303886, + "fn_rate": 0.9997532578192597, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00024674218074029235, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 75, + "tp_rate": 0.00024674218074029235, + "truth_threshold": 56.32 + }, + { + "f1": 0.00048678766190623417, + "fn": 303887, + "fn_rate": 0.9997565477150029, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00024345228499708844, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 74, + "tp_rate": 0.00024345228499708844, + "truth_threshold": 56.4 + }, + { + "f1": 0.0004802094502588526, + "fn": 303888, + "fn_rate": 0.9997598376107462, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00024016238925388453, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 73, + "tp_rate": 0.00024016238925388453, + "truth_threshold": 56.42 + }, + { + "f1": 0.0004604808735980002, + "fn": 303891, + "fn_rate": 0.9997697072979758, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00023029270202427286, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 70, + "tp_rate": 0.00023029270202427286, + "truth_threshold": 56.54 + }, + { + "f1": 0.00045390257540374305, + "fn": 303892, + "fn_rate": 0.9997729971937189, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00022700280628106895, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 69, + "tp_rate": 0.00022700280628106895, + "truth_threshold": 56.6 + }, + { + "f1": 0.00044732721986132855, + "fn": 303893, + "fn_rate": 0.9997762870894621, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00022371291053786507, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 68, + "tp_rate": 0.00022371291053786507, + "truth_threshold": 56.660000000000004 + }, + { + "f1": 0.0004407488783927796, + "fn": 303894, + "fn_rate": 0.9997795769852054, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00022042301479466116, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 67, + "tp_rate": 0.00022042301479466116, + "truth_threshold": 56.72 + }, + { + "f1": 0.0004341733930650668, + "fn": 303895, + "fn_rate": 0.9997828668809485, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00021713311905145725, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 66, + "tp_rate": 0.00021713311905145725, + "truth_threshold": 56.82 + }, + { + "f1": 0.0004275950083216567, + "fn": 303896, + "fn_rate": 0.9997861567766917, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00021384322330825336, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 65, + "tp_rate": 0.00021384322330825336, + "truth_threshold": 57 + }, + { + "f1": 0.00042101939320579953, + "fn": 303897, + "fn_rate": 0.999789446672435, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00021055332756504945, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 64, + "tp_rate": 0.00021055332756504945, + "truth_threshold": 57.08 + }, + { + "f1": 0.0004144409651869589, + "fn": 303898, + "fn_rate": 0.9997927365681781, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00020726343182184557, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 63, + "tp_rate": 0.00020726343182184557, + "truth_threshold": 57.120000000000005 + }, + { + "f1": 0.0004078652202801113, + "fn": 303899, + "fn_rate": 0.9997960264639214, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00020397353607864166, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 62, + "tp_rate": 0.00020397353607864166, + "truth_threshold": 57.14 + }, + { + "f1": 0.0004012867489852708, + "fn": 303900, + "fn_rate": 0.9997993163596646, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00020068364033543778, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 61, + "tp_rate": 0.00020068364033543778, + "truth_threshold": 57.2 + }, + { + "f1": 0.00039471087428458656, + "fn": 303901, + "fn_rate": 0.9998026062554077, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00019739374459223387, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 60, + "tp_rate": 0.00019739374459223387, + "truth_threshold": 57.42 + }, + { + "f1": 0.0003552467978448361, + "fn": 303907, + "fn_rate": 0.9998223456298669, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001776543701330105, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 54, + "tp_rate": 0.0001776543701330105, + "truth_threshold": 57.46 + }, + { + "f1": 0.0003486681534403021, + "fn": 303908, + "fn_rate": 0.9998256355256102, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00017436447438980658, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 53, + "tp_rate": 0.00017436447438980658, + "truth_threshold": 57.56 + }, + { + "f1": 0.00034209175953580777, + "fn": 303909, + "fn_rate": 0.9998289254213534, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001710745786466027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 52, + "tp_rate": 0.0001710745786466027, + "truth_threshold": 57.6 + }, + { + "f1": 0.0003026256060735643, + "fn": 303915, + "fn_rate": 0.9998486647958126, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001513352041873793, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 46, + "tp_rate": 0.0001513352041873793, + "truth_threshold": 57.660000000000004 + }, + { + "f1": 0.000296046788550226, + "fn": 303916, + "fn_rate": 0.9998519546915559, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00014804530844417542, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 45, + "tp_rate": 0.00014804530844417542, + "truth_threshold": 57.82 + }, + { + "f1": 0.00028946987539637636, + "fn": 303917, + "fn_rate": 0.999855244587299, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001447554127009715, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 44, + "tp_rate": 0.0001447554127009715, + "truth_threshold": 57.86 + }, + { + "f1": 0.00028289101459191325, + "fn": 303918, + "fn_rate": 0.9998585344830422, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001414655169577676, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 43, + "tp_rate": 0.0001414655169577676, + "truth_threshold": 57.980000000000004 + }, + { + "f1": 0.00027631397161860776, + "fn": 303919, + "fn_rate": 0.9998618243787855, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00013817562121456371, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 42, + "tp_rate": 0.00013817562121456371, + "truth_threshold": 58.120000000000005 + }, + { + "f1": 0.00026973506753245045, + "fn": 303920, + "fn_rate": 0.9998651142745286, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0001348857254713598, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 41, + "tp_rate": 0.0001348857254713598, + "truth_threshold": 58.34 + }, + { + "f1": 0.0002631578947368421, + "fn": 303921, + "fn_rate": 0.9998684041702719, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00013159582972815592, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 40, + "tp_rate": 0.00013159582972815592, + "truth_threshold": 58.44 + }, + { + "f1": 0.00025657894736842105, + "fn": 303922, + "fn_rate": 0.9998716940660151, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000128305933984952, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 39, + "tp_rate": 0.000128305933984952, + "truth_threshold": 58.7 + }, + { + "f1": 0.00023684522164765326, + "fn": 303925, + "fn_rate": 0.9998815637532447, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00011843624675534032, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36, + "tp_rate": 0.00011843624675534032, + "truth_threshold": 58.84 + }, + { + "f1": 0.00023026618771299624, + "fn": 303926, + "fn_rate": 0.9998848536489878, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00011514635101213643, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35, + "tp_rate": 0.00011514635101213643, + "truth_threshold": 58.86 + }, + { + "f1": 0.0002236886254333967, + "fn": 303927, + "fn_rate": 0.9998881435447311, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00011185645526893253, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34, + "tp_rate": 0.00011185645526893253, + "truth_threshold": 58.980000000000004 + }, + { + "f1": 0.0002171095482147674, + "fn": 303928, + "fn_rate": 0.9998914334404743, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00010856655952572862, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33, + "tp_rate": 0.00010856655952572862, + "truth_threshold": 59.22 + }, + { + "f1": 0.00021053185610147635, + "fn": 303929, + "fn_rate": 0.9998947233362174, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00010527666378252473, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32, + "tp_rate": 0.00010527666378252473, + "truth_threshold": 59.44 + }, + { + "f1": 0.00020395273559830522, + "fn": 303930, + "fn_rate": 0.9998980132319607, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00010198676803932083, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31, + "tp_rate": 0.00010198676803932083, + "truth_threshold": 59.46 + }, + { + "f1": 0.0001973749136484753, + "fn": 303931, + "fn_rate": 0.9999013031277039, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00009869687229611694, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30, + "tp_rate": 0.00009869687229611694, + "truth_threshold": 59.52 + }, + { + "f1": 0.00019079574986019277, + "fn": 303932, + "fn_rate": 0.9999045930234471, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00009540697655291304, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29, + "tp_rate": 0.00009540697655291304, + "truth_threshold": 59.88 + }, + { + "f1": 0.0001842177980709765, + "fn": 303933, + "fn_rate": 0.9999078829191903, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00009211708080970914, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28, + "tp_rate": 0.00009211708080970914, + "truth_threshold": 60 + }, + { + "f1": 0.00017763859099701303, + "fn": 303934, + "fn_rate": 0.9999111728149335, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00008882718506650525, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27, + "tp_rate": 0.00008882718506650525, + "truth_threshold": 60.1 + }, + { + "f1": 0.00013816607562289874, + "fn": 303940, + "fn_rate": 0.9999309121893927, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00006908781060728186, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21, + "tp_rate": 0.00006908781060728186, + "truth_threshold": 60.14 + }, + { + "f1": 0.00013158760444766102, + "fn": 303941, + "fn_rate": 0.999934202085136, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00006579791486407796, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20, + "tp_rate": 0.00006579791486407796, + "truth_threshold": 60.26 + }, + { + "f1": 0.00012500822422527799, + "fn": 303942, + "fn_rate": 0.9999374919808791, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00006250801912087407, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19, + "tp_rate": 0.00006250801912087407, + "truth_threshold": 60.34 + }, + { + "f1": 0.00011842962319641553, + "fn": 303943, + "fn_rate": 0.9999407818766223, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00005921812337767016, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18, + "tp_rate": 0.00005921812337767016, + "truth_threshold": 60.42 + }, + { + "f1": 0.00011185019968550356, + "fn": 303944, + "fn_rate": 0.9999440717723656, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000055928227634466266, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17, + "tp_rate": 0.000055928227634466266, + "truth_threshold": 60.44 + }, + { + "f1": 0.00010527146880016843, + "fn": 303945, + "fn_rate": 0.9999473616681087, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000052638331891262364, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16, + "tp_rate": 0.000052638331891262364, + "truth_threshold": 60.54 + }, + { + "f1": 0.0000986920020001579, + "fn": 303946, + "fn_rate": 0.999950651563852, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00004934843614805847, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15, + "tp_rate": 0.00004934843614805847, + "truth_threshold": 60.7 + }, + { + "f1": 0.00009211314125550212, + "fn": 303947, + "fn_rate": 0.9999539414595952, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00004605854040485457, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14, + "tp_rate": 0.00004605854040485457, + "truth_threshold": 60.78 + }, + { + "f1": 0.00008553363116582339, + "fn": 303948, + "fn_rate": 0.9999572313553383, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000042768644661650676, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13, + "tp_rate": 0.000042768644661650676, + "truth_threshold": 60.92 + }, + { + "f1": 0.00007895464055899886, + "fn": 303949, + "fn_rate": 0.9999605212510816, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00003947874891844677, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12, + "tp_rate": 0.00003947874891844677, + "truth_threshold": 61.26 + }, + { + "f1": 0.00007237508717908228, + "fn": 303950, + "fn_rate": 0.9999638111468248, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00003618885317524288, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11, + "tp_rate": 0.00003618885317524288, + "truth_threshold": 61.36 + }, + { + "f1": 0.00006579596670724084, + "fn": 303951, + "fn_rate": 0.9999671010425679, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00003289895743203898, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10, + "tp_rate": 0.00003289895743203898, + "truth_threshold": 61.46 + }, + { + "f1": 0.00005921637003651676, + "fn": 303952, + "fn_rate": 0.9999703909383112, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00002960906168883508, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9, + "tp_rate": 0.00002960906168883508, + "truth_threshold": 61.480000000000004 + }, + { + "f1": 0.000052637119696810194, + "fn": 303953, + "fn_rate": 0.9999736808340544, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000026319165945631182, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8, + "tp_rate": 0.000026319165945631182, + "truth_threshold": 61.5 + }, + { + "f1": 0.00004605747973470892, + "fn": 303954, + "fn_rate": 0.9999769707297975, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000023029270202427286, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7, + "tp_rate": 0.000023029270202427286, + "truth_threshold": 61.54 + }, + { + "f1": 0.0000394780995242889, + "fn": 303955, + "fn_rate": 0.9999802606255408, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000019739374459223386, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6, + "tp_rate": 0.000019739374459223386, + "truth_threshold": 61.6 + }, + { + "f1": 0.00003289841627024075, + "fn": 303956, + "fn_rate": 0.999983550521284, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.00001644947871601949, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5, + "tp_rate": 0.00001644947871601949, + "truth_threshold": 62 + }, + { + "f1": 0.0000263189061862589, + "fn": 303957, + "fn_rate": 0.9999868404170272, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000013159582972815591, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4, + "tp_rate": 0.000013159582972815591, + "truth_threshold": 62.2 + }, + { + "f1": 0.000019739179639694174, + "fn": 303958, + "fn_rate": 0.9999901303127704, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.000009869687229611693, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 3, + "tp_rate": 0.000009869687229611693, + "truth_threshold": 62.52 + }, + { + "f1": 0.000013159539679302018, + "fn": 303959, + "fn_rate": 0.9999934202085136, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0000065797914864077955, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 2, + "tp_rate": 0.0000065797914864077955, + "truth_threshold": 63.4 + }, + { + "f1": 0.000006579769839651009, + "fn": 303960, + "fn_rate": 0.9999967101042568, + "fp": 0, + "fp_rate": 0, + "match_probability": 1, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0000032898957432038977, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 1, + "tp_rate": 0.0000032898957432038977, + "truth_threshold": 65.22 + }, + { + "f1": 0.39733748088785786, + "fn": 228598, + "fn_rate": 0.7520635871049246, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999780610216, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997877392907839, + "recall": 0.24793641289507534, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75363, + "tp_rate": 0.24793641289507534, + "truth_threshold": 22.12 + }, + { + "f1": 0.39686097472219733, + "fn": 228711, + "fn_rate": 0.7524353453239067, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997836306193, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997874206148859, + "recall": 0.24756465467609332, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75250, + "tp_rate": 0.24756465467609332, + "truth_threshold": 22.14 + }, + { + "f1": 0.39630276395827946, + "fn": 228843, + "fn_rate": 0.7528696115620096, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997866094399, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997870471424388, + "recall": 0.2471303884379904, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75118, + "tp_rate": 0.2471303884379904, + "truth_threshold": 22.16 + }, + { + "f1": 0.3958542222972759, + "fn": 228949, + "fn_rate": 0.7532183405107892, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997895472501, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997867462813883, + "recall": 0.2467816594892108, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75012, + "tp_rate": 0.2467816594892108, + "truth_threshold": 22.18 + }, + { + "f1": 0.39523072943337856, + "fn": 229096, + "fn_rate": 0.7537019551850402, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997924446148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997863276398552, + "recall": 0.24629804481495982, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74865, + "tp_rate": 0.24629804481495982, + "truth_threshold": 22.2 + }, + { + "f1": 0.3948377285160582, + "fn": 229189, + "fn_rate": 0.7540079154891581, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997953020905, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997860619350698, + "recall": 0.24599208451084184, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74772, + "tp_rate": 0.24599208451084184, + "truth_threshold": 22.22 + }, + { + "f1": 0.394218731015684, + "fn": 229335, + "fn_rate": 0.7544882402676659, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997981202265, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999785643471504, + "recall": 0.24551175973233408, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74626, + "tp_rate": 0.24551175973233408, + "truth_threshold": 22.240000000000002 + }, + { + "f1": 0.3937382757800735, + "fn": 229448, + "fn_rate": 0.754859998486648, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998008995644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997853184666371, + "recall": 0.24514000151335205, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74513, + "tp_rate": 0.24514000151335205, + "truth_threshold": 22.26 + }, + { + "f1": 0.3933785055126267, + "fn": 229533, + "fn_rate": 0.7551396396248203, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998036406385, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997850733437215, + "recall": 0.24486036037517972, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74428, + "tp_rate": 0.24486036037517972, + "truth_threshold": 22.28 + }, + { + "f1": 0.39291454310909973, + "fn": 229642, + "fn_rate": 0.7554982382608295, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998063439753, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997847581892783, + "recall": 0.2445017617391705, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74319, + "tp_rate": 0.2445017617391705, + "truth_threshold": 22.3 + }, + { + "f1": 0.39246939369100187, + "fn": 229747, + "fn_rate": 0.7558436773138659, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998090100946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997844537249091, + "recall": 0.24415632268613408, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74214, + "tp_rate": 0.24415632268613408, + "truth_threshold": 22.32 + }, + { + "f1": 0.39207295463081, + "fn": 229840, + "fn_rate": 0.7561496376179839, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998116395085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997841833362558, + "recall": 0.2438503623820161, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 74121, + "tp_rate": 0.2438503623820161, + "truth_threshold": 22.34 + }, + { + "f1": 0.3915422306414232, + "fn": 229965, + "fn_rate": 0.7565608745858844, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998142327226, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997838188401881, + "recall": 0.24343912541411564, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73996, + "tp_rate": 0.24343912541411564, + "truth_threshold": 22.36 + }, + { + "f1": 0.3910090830175097, + "fn": 230090, + "fn_rate": 0.7569721115537849, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998167902351, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997834531108314, + "recall": 0.24302788844621515, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73871, + "tp_rate": 0.24302788844621515, + "truth_threshold": 22.38 + }, + { + "f1": 0.39050321924771264, + "fn": 230209, + "fn_rate": 0.7573636091472261, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998193125376, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997831037848389, + "recall": 0.2426363908527739, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73752, + "tp_rate": 0.2426363908527739, + "truth_threshold": 22.400000000000002 + }, + { + "f1": 0.39001731927312017, + "fn": 230323, + "fn_rate": 0.7577386572619513, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998218001148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999782768077769, + "recall": 0.24226134273804864, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73638, + "tp_rate": 0.24226134273804864, + "truth_threshold": 22.42 + }, + { + "f1": 0.389559956345296, + "fn": 230430, + "fn_rate": 0.7580906761064742, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998242534449, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997824520374726, + "recall": 0.24190932389352582, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73531, + "tp_rate": 0.24190932389352582, + "truth_threshold": 22.44 + }, + { + "f1": 0.389138545022893, + "fn": 230529, + "fn_rate": 0.7584163757850514, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998266729992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997821588062302, + "recall": 0.24158362421494864, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73432, + "tp_rate": 0.24158362421494864, + "truth_threshold": 22.46 + }, + { + "f1": 0.38862089438307074, + "fn": 230650, + "fn_rate": 0.7588144531699791, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998290592429, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997817993372154, + "recall": 0.24118554683002097, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73311, + "tp_rate": 0.24118554683002097, + "truth_threshold": 22.48 + }, + { + "f1": 0.3880654791890932, + "fn": 230780, + "fn_rate": 0.7592421396165956, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998314126344, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997814118064948, + "recall": 0.24075786038340444, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73181, + "tp_rate": 0.24075786038340444, + "truth_threshold": 22.5 + }, + { + "f1": 0.3875267881771309, + "fn": 230906, + "fn_rate": 0.7596566664802392, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998337336261, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99978103488388, + "recall": 0.24034333351976075, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 73055, + "tp_rate": 0.24034333351976075, + "truth_threshold": 22.52 + }, + { + "f1": 0.38695880583075526, + "fn": 231039, + "fn_rate": 0.7600942226140853, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999836022664, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997806356083249, + "recall": 0.23990577738591465, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72922, + "tp_rate": 0.23990577738591465, + "truth_threshold": 22.54 + }, + { + "f1": 0.3864997133697106, + "fn": 231146, + "fn_rate": 0.7604462414586082, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998382801881, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997803133281158, + "recall": 0.23955375854139183, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72815, + "tp_rate": 0.23955375854139183, + "truth_threshold": 22.56 + }, + { + "f1": 0.38601996389508336, + "fn": 231258, + "fn_rate": 0.7608147097818471, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998405066322, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997799749721531, + "recall": 0.239185290218153, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72703, + "tp_rate": 0.239185290218153, + "truth_threshold": 22.580000000000002 + }, + { + "f1": 0.3855142048321392, + "fn": 231376, + "fn_rate": 0.761202917479545, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998427024241, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997796173606425, + "recall": 0.23879708252045492, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72585, + "tp_rate": 0.23879708252045492, + "truth_threshold": 22.6 + }, + { + "f1": 0.3849995484032069, + "fn": 231496, + "fn_rate": 0.7615977049687296, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999844867986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999779252493757, + "recall": 0.23840229503127047, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72465, + "tp_rate": 0.23840229503127047, + "truth_threshold": 22.62 + }, + { + "f1": 0.3845961716283865, + "fn": 231590, + "fn_rate": 0.7619069551685907, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999847003734, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997789658364071, + "recall": 0.2380930448314093, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72371, + "tp_rate": 0.2380930448314093, + "truth_threshold": 22.64 + }, + { + "f1": 0.3839659755449229, + "fn": 231737, + "fn_rate": 0.7623905698428417, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998491100784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997785160575858, + "recall": 0.23760943015715832, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72224, + "tp_rate": 0.23760943015715832, + "truth_threshold": 22.66 + }, + { + "f1": 0.383487994894839, + "fn": 231848, + "fn_rate": 0.7627557482703373, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998511874243, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997781752138529, + "recall": 0.23724425172966268, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72113, + "tp_rate": 0.23724425172966268, + "truth_threshold": 22.68 + }, + { + "f1": 0.3831440653174118, + "fn": 231928, + "fn_rate": 0.7630189399297936, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998532361707, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997779289094921, + "recall": 0.23698106007020636, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 72033, + "tp_rate": 0.23698106007020636, + "truth_threshold": 22.7 + }, + { + "f1": 0.38262789645907047, + "fn": 232048, + "fn_rate": 0.7634137274189781, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998552567114, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997775584256697, + "recall": 0.2365862725810219, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71913, + "tp_rate": 0.2365862725810219, + "truth_threshold": 22.72 + }, + { + "f1": 0.3821630626267357, + "fn": 232156, + "fn_rate": 0.7637690361592441, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998572494347, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997772239317191, + "recall": 0.2362309638407559, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71805, + "tp_rate": 0.2362309638407559, + "truth_threshold": 22.740000000000002 + }, + { + "f1": 0.38166349895918183, + "fn": 232272, + "fn_rate": 0.7641506640654557, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998592147237, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997768635381076, + "recall": 0.23584933593454424, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71689, + "tp_rate": 0.23584933593454424, + "truth_threshold": 22.76 + }, + { + "f1": 0.38095669264078486, + "fn": 232436, + "fn_rate": 0.7646902069673412, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998611529559, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997763520219175, + "recall": 0.23530979303265878, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71525, + "tp_rate": 0.23530979303265878, + "truth_threshold": 22.78 + }, + { + "f1": 0.3804444539162773, + "fn": 232555, + "fn_rate": 0.7650817045607825, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999863064504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997759793901039, + "recall": 0.23491829543921752, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71406, + "tp_rate": 0.23491829543921752, + "truth_threshold": 22.8 + }, + { + "f1": 0.38009059419131364, + "fn": 232637, + "fn_rate": 0.7653514760117252, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998649497351, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99977572189515, + "recall": 0.23464852398827482, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71324, + "tp_rate": 0.23464852398827482, + "truth_threshold": 22.82 + }, + { + "f1": 0.3795412262043745, + "fn": 232764, + "fn_rate": 0.765769292771112, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998668090118, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997753219215593, + "recall": 0.23423070722888792, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71197, + "tp_rate": 0.23423070722888792, + "truth_threshold": 22.84 + }, + { + "f1": 0.37905732918824087, + "fn": 232876, + "fn_rate": 0.7661377610943509, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998686426912, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997749680032629, + "recall": 0.23386223890564908, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 71085, + "tp_rate": 0.23386223890564908, + "truth_threshold": 22.86 + }, + { + "f1": 0.37863901601220384, + "fn": 232973, + "fn_rate": 0.7664568809814417, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998704511259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997746605825024, + "recall": 0.23354311901855832, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70988, + "tp_rate": 0.23354311901855832, + "truth_threshold": 22.88 + }, + { + "f1": 0.3781925081763422, + "fn": 233076, + "fn_rate": 0.7667957402429917, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998722346632, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997743332252014, + "recall": 0.23320425975700831, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70885, + "tp_rate": 0.23320425975700831, + "truth_threshold": 22.900000000000002 + }, + { + "f1": 0.37756594327437315, + "fn": 233221, + "fn_rate": 0.7672727751257563, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998739936462, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997738707671434, + "recall": 0.23272722487424374, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70740, + "tp_rate": 0.23272722487424374, + "truth_threshold": 22.92 + }, + { + "f1": 0.3771448401046394, + "fn": 233318, + "fn_rate": 0.7675918950128471, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998757284128, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997735603390934, + "recall": 0.23240810498715295, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70643, + "tp_rate": 0.23240810498715295, + "truth_threshold": 22.94 + }, + { + "f1": 0.3766941866302107, + "fn": 233422, + "fn_rate": 0.7679340441701402, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998774392962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997732265608391, + "recall": 0.23206595582985975, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70539, + "tp_rate": 0.23206595582985975, + "truth_threshold": 22.96 + }, + { + "f1": 0.3762085875150907, + "fn": 233534, + "fn_rate": 0.7683025124933791, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998791266254, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997728660051389, + "recall": 0.23169748750662092, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70427, + "tp_rate": 0.23169748750662092, + "truth_threshold": 22.98 + }, + { + "f1": 0.37562722099019424, + "fn": 233668, + "fn_rate": 0.7687433585229684, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998807907247, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997724331166707, + "recall": 0.2312566414770316, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70293, + "tp_rate": 0.2312566414770316, + "truth_threshold": 23 + }, + { + "f1": 0.3751670390523941, + "fn": 233774, + "fn_rate": 0.7690920874717481, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998824319137, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997720895118443, + "recall": 0.230907912528252, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70187, + "tp_rate": 0.230907912528252, + "truth_threshold": 23.02 + }, + { + "f1": 0.37460765598849305, + "fn": 233903, + "fn_rate": 0.7695164840226213, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998840505082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997716699489112, + "recall": 0.23048351597737868, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 70058, + "tp_rate": 0.23048351597737868, + "truth_threshold": 23.04 + }, + { + "f1": 0.37412415357131396, + "fn": 234014, + "fn_rate": 0.7698816624501169, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999885646819, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997713076912083, + "recall": 0.23011833754988303, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69947, + "tp_rate": 0.23011833754988303, + "truth_threshold": 23.06 + }, + { + "f1": 0.37365976844222826, + "fn": 234121, + "fn_rate": 0.7702336812946398, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998872211527, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997709573980761, + "recall": 0.22976631870536024, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69840, + "tp_rate": 0.22976631870536024, + "truth_threshold": 23.080000000000002 + }, + { + "f1": 0.37325405914525156, + "fn": 234214, + "fn_rate": 0.7705396415987578, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998887738123, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997706520648482, + "recall": 0.22946035840124226, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69747, + "tp_rate": 0.22946035840124226, + "truth_threshold": 23.1 + }, + { + "f1": 0.3727489775379542, + "fn": 234330, + "fn_rate": 0.7709212695049694, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999890305096, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997702700762416, + "recall": 0.2290787304950306, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69631, + "tp_rate": 0.2290787304950306, + "truth_threshold": 23.12 + }, + { + "f1": 0.37225765340273204, + "fn": 234443, + "fn_rate": 0.7712930277239515, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998918152979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997698967411626, + "recall": 0.22870697227604858, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69518, + "tp_rate": 0.22870697227604858, + "truth_threshold": 23.14 + }, + { + "f1": 0.37156877450875353, + "fn": 234601, + "fn_rate": 0.7718128312513777, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999998933047085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997693726937269, + "recall": 0.22818716874862235, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69360, + "tp_rate": 0.22818716874862235, + "truth_threshold": 23.16 + }, + { + "f1": 0.37096661825626076, + "fn": 234739, + "fn_rate": 0.7722668368639398, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999894773614, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997689130246397, + "recall": 0.2277331631360602, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 69222, + "tp_rate": 0.2277331631360602, + "truth_threshold": 23.18 + }, + { + "f1": 0.3704358920750307, + "fn": 234861, + "fn_rate": 0.7726682041446107, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999998962222966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997974361200336, + "recall": 0.22733179585538935, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 69100, + "tp_rate": 0.22733179585538935, + "truth_threshold": 23.2 + }, + { + "f1": 0.3699552771849294, + "fn": 234971, + "fn_rate": 0.7730300926763631, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999998976510348, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997971132108283, + "recall": 0.22696990732363692, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68990, + "tp_rate": 0.22696990732363692, + "truth_threshold": 23.22 + }, + { + "f1": 0.36950936271328266, + "fn": 235073, + "fn_rate": 0.7733656620421698, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999998990601031, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997968128646484, + "recall": 0.2266343379578301, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68888, + "tp_rate": 0.2266343379578301, + "truth_threshold": 23.240000000000002 + }, + { + "f1": 0.36901069891723093, + "fn": 235187, + "fn_rate": 0.7737407101568952, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999004497723, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997964761295575, + "recall": 0.22625928984310487, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68774, + "tp_rate": 0.22625928984310487, + "truth_threshold": 23.26 + }, + { + "f1": 0.3685204864801039, + "fn": 235299, + "fn_rate": 0.7741091784801339, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999018203096, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997961442134079, + "recall": 0.22589082151986603, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68662, + "tp_rate": 0.22589082151986603, + "truth_threshold": 23.28 + }, + { + "f1": 0.36794235766595795, + "fn": 235431, + "fn_rate": 0.7745434447182369, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999031719783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997957516339869, + "recall": 0.22545655528176312, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68530, + "tp_rate": 0.22545655528176312, + "truth_threshold": 23.3 + }, + { + "f1": 0.3674602705736397, + "fn": 235541, + "fn_rate": 0.7749053332499893, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999045050382, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997954233275858, + "recall": 0.2250946667500107, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68420, + "tp_rate": 0.2250946667500107, + "truth_threshold": 23.32 + }, + { + "f1": 0.36699544438714116, + "fn": 235647, + "fn_rate": 0.7752540621987689, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999058197454, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997951059594895, + "recall": 0.2247459378012311, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68314, + "tp_rate": 0.2247459378012311, + "truth_threshold": 23.34 + }, + { + "f1": 0.36649524147307444, + "fn": 235761, + "fn_rate": 0.7756291103134941, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999071163527, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997947635382766, + "recall": 0.22437088968650584, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68200, + "tp_rate": 0.22437088968650584, + "truth_threshold": 23.36 + }, + { + "f1": 0.36591567618709714, + "fn": 235893, + "fn_rate": 0.7760633765515971, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999083951091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997943656179313, + "recall": 0.22393662344840293, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 68068, + "tp_rate": 0.22393662344840293, + "truth_threshold": 23.38 + }, + { + "f1": 0.3653620710052808, + "fn": 236019, + "fn_rate": 0.7764779034152408, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999096562606, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997939843428101, + "recall": 0.22352209658475922, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 67942, + "tp_rate": 0.22352209658475922, + "truth_threshold": 23.400000000000002 + }, + { + "f1": 0.36479391481166684, + "fn": 236148, + "fn_rate": 0.776902299966114, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999109000495, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997935925221519, + "recall": 0.22309770003388593, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 67813, + "tp_rate": 0.22309770003388593, + "truth_threshold": 23.42 + }, + { + "f1": 0.3641691286869763, + "fn": 236290, + "fn_rate": 0.7773694651616491, + "fp": 14, + "fp_rate": 0.00008052039178922062, + "match_probability": 0.9999999121267147, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997931594888084, + "recall": 0.22263053483835096, + "row_count": 477830, + "tn": 173855, + "tn_rate": 0.9999194796082108, + "tp": 67671, + "tp_rate": 0.22263053483835096, + "truth_threshold": 23.44 + }, + { + "f1": 0.36362168185659915, + "fn": 236415, + "fn_rate": 0.7777807021295495, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999133364921, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998223748482785, + "recall": 0.22221929787045047, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 67546, + "tp_rate": 0.22221929787045047, + "truth_threshold": 23.46 + }, + { + "f1": 0.3632462294781845, + "fn": 236500, + "fn_rate": 0.7780603432677219, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999145296141, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998221510826553, + "recall": 0.22193965673227817, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 67461, + "tp_rate": 0.22193965673227817, + "truth_threshold": 23.48 + }, + { + "f1": 0.36268199274991514, + "fn": 236628, + "fn_rate": 0.778481449922852, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999157063101, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999821813052194, + "recall": 0.22151855007714805, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 67333, + "tp_rate": 0.22151855007714805, + "truth_threshold": 23.5 + }, + { + "f1": 0.3620344974377489, + "fn": 236775, + "fn_rate": 0.7789650645971029, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999168668061, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998214232566446, + "recall": 0.2210349354028971, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 67186, + "tp_rate": 0.2210349354028971, + "truth_threshold": 23.52 + }, + { + "f1": 0.3615170250268164, + "fn": 236892, + "fn_rate": 0.7793499823990577, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999180113253, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998211117902237, + "recall": 0.22065001760094222, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 67069, + "tp_rate": 0.22065001760094222, + "truth_threshold": 23.54 + }, + { + "f1": 0.361048806263075, + "fn": 236998, + "fn_rate": 0.7796987113478374, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999191400875, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998208286674132, + "recall": 0.2203012886521626, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66963, + "tp_rate": 0.2203012886521626, + "truth_threshold": 23.56 + }, + { + "f1": 0.3606422107409045, + "fn": 237090, + "fn_rate": 0.7800013817562121, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999202533097, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998205822107262, + "recall": 0.21999861824378786, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66871, + "tp_rate": 0.21999861824378786, + "truth_threshold": 23.580000000000002 + }, + { + "f1": 0.3601204123800327, + "fn": 237208, + "fn_rate": 0.7803895894539102, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999213512059, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998202651089643, + "recall": 0.2196104105460898, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66753, + "tp_rate": 0.2196104105460898, + "truth_threshold": 23.6 + }, + { + "f1": 0.35956287101996764, + "fn": 237334, + "fn_rate": 0.7808041163175539, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999224339869, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998199252689867, + "recall": 0.2191958836824461, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66627, + "tp_rate": 0.2191958836824461, + "truth_threshold": 23.62 + }, + { + "f1": 0.3590315266681062, + "fn": 237454, + "fn_rate": 0.7811989038067384, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999235018612, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999819600414919, + "recall": 0.21880109619326163, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66507, + "tp_rate": 0.21880109619326163, + "truth_threshold": 23.64 + }, + { + "f1": 0.35845205050385043, + "fn": 237585, + "fn_rate": 0.7816298801490981, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999245550335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998192444417666, + "recall": 0.21837011985090193, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66376, + "tp_rate": 0.21837011985090193, + "truth_threshold": 23.66 + }, + { + "f1": 0.3581008453290842, + "fn": 237664, + "fn_rate": 0.7818897819128112, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999255937067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998190290910736, + "recall": 0.2181102180871888, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66297, + "tp_rate": 0.2181102180871888, + "truth_threshold": 23.68 + }, + { + "f1": 0.35751183348823135, + "fn": 237797, + "fn_rate": 0.7823273380466573, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.99999992661808, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999818665377176, + "recall": 0.2176726619533427, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66164, + "tp_rate": 0.2176726619533427, + "truth_threshold": 23.7 + }, + { + "f1": 0.35710347958621136, + "fn": 237889, + "fn_rate": 0.7826300084550321, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999276283504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998184129289994, + "recall": 0.21736999154496794, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 66072, + "tp_rate": 0.21736999154496794, + "truth_threshold": 23.72 + }, + { + "f1": 0.3566771546271368, + "fn": 237985, + "fn_rate": 0.7829458384463797, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999286247123, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999818148754319, + "recall": 0.21705416155362037, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65976, + "tp_rate": 0.21705416155362037, + "truth_threshold": 23.740000000000002 + }, + { + "f1": 0.35615630881048693, + "fn": 238102, + "fn_rate": 0.7833307562483345, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999296073568, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998178257503302, + "recall": 0.21666924375166552, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65859, + "tp_rate": 0.21666924375166552, + "truth_threshold": 23.76 + }, + { + "f1": 0.35548582557887903, + "fn": 238253, + "fn_rate": 0.7838275305055583, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999305764732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998174071819842, + "recall": 0.21617246949444172, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65708, + "tp_rate": 0.21617246949444172, + "truth_threshold": 23.78 + }, + { + "f1": 0.3549642281174573, + "fn": 238370, + "fn_rate": 0.7842124483075131, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999315322473, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998170815359053, + "recall": 0.21578755169248687, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65591, + "tp_rate": 0.21578755169248687, + "truth_threshold": 23.8 + }, + { + "f1": 0.35452439209232833, + "fn": 238469, + "fn_rate": 0.7845381479860903, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.999999932474863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998168050806058, + "recall": 0.2154618520139097, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65492, + "tp_rate": 0.2154618520139097, + "truth_threshold": 23.82 + }, + { + "f1": 0.3541804281676719, + "fn": 238546, + "fn_rate": 0.7847914699583171, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999334045014, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998165894814067, + "recall": 0.21520853004168297, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65415, + "tp_rate": 0.21520853004168297, + "truth_threshold": 23.84 + }, + { + "f1": 0.3535439980067381, + "fn": 238689, + "fn_rate": 0.7852619250495951, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999343213413, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998161877335947, + "recall": 0.2147380749504048, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65272, + "tp_rate": 0.2147380749504048, + "truth_threshold": 23.86 + }, + { + "f1": 0.35303551594289273, + "fn": 238803, + "fn_rate": 0.7856369731643205, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999352255587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998158661961025, + "recall": 0.21436302683567957, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65158, + "tp_rate": 0.21436302683567957, + "truth_threshold": 23.88 + }, + { + "f1": 0.35261600494260725, + "fn": 238897, + "fn_rate": 0.7859462233641816, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999361173275, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998156002212797, + "recall": 0.2140537766358184, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 65064, + "tp_rate": 0.2140537766358184, + "truth_threshold": 23.900000000000002 + }, + { + "f1": 0.3522409419111429, + "fn": 238981, + "fn_rate": 0.7862225746066107, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999369968191, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998153618906942, + "recall": 0.2137774253933893, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64980, + "tp_rate": 0.2137774253933893, + "truth_threshold": 23.92 + }, + { + "f1": 0.35186922221921, + "fn": 239064, + "fn_rate": 0.7864956359532966, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999378642025, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998151257914927, + "recall": 0.21350436404670337, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64897, + "tp_rate": 0.21350436404670337, + "truth_threshold": 23.94 + }, + { + "f1": 0.35138653115017277, + "fn": 239172, + "fn_rate": 0.7868509446935626, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999387196443, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998148176725667, + "recall": 0.21314905530643735, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64789, + "tp_rate": 0.21314905530643735, + "truth_threshold": 23.96 + }, + { + "f1": 0.3509303965713666, + "fn": 239274, + "fn_rate": 0.7871865140593695, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.999999939563309, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998145257268273, + "recall": 0.21281348594063054, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64687, + "tp_rate": 0.21281348594063054, + "truth_threshold": 23.98 + }, + { + "f1": 0.35047400951817625, + "fn": 239376, + "fn_rate": 0.7875220834251763, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999403953588, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998142328591111, + "recall": 0.21247791657482373, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64585, + "tp_rate": 0.21247791657482373, + "truth_threshold": 24 + }, + { + "f1": 0.3500442379404118, + "fn": 239472, + "fn_rate": 0.7878379134165239, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999412159535, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998139563727694, + "recall": 0.21216208658347616, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64489, + "tp_rate": 0.21216208658347616, + "truth_threshold": 24.02 + }, + { + "f1": 0.3494314788067028, + "fn": 239609, + "fn_rate": 0.7882886291333427, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999420252508, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998135603753651, + "recall": 0.21171137086665723, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64352, + "tp_rate": 0.21171137086665723, + "truth_threshold": 24.04 + }, + { + "f1": 0.3487894573879223, + "fn": 239752, + "fn_rate": 0.7887590842246209, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999428234062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998131452328678, + "recall": 0.21124091577537907, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64209, + "tp_rate": 0.21124091577537907, + "truth_threshold": 24.060000000000002 + }, + { + "f1": 0.3482475683312503, + "fn": 239873, + "fn_rate": 0.7891571616095486, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999436105732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998127925117005, + "recall": 0.2108428383904514, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 64088, + "tp_rate": 0.2108428383904514, + "truth_threshold": 24.080000000000002 + }, + { + "f1": 0.34769090276569836, + "fn": 239997, + "fn_rate": 0.7895651086817059, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999443869031, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998124296611229, + "recall": 0.21043489131829413, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63964, + "tp_rate": 0.21043489131829413, + "truth_threshold": 24.1 + }, + { + "f1": 0.3471733610278885, + "fn": 240112, + "fn_rate": 0.7899434466921743, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.999999945152545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998120918870672, + "recall": 0.2100565533078257, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63849, + "tp_rate": 0.2100565533078257, + "truth_threshold": 24.12 + }, + { + "f1": 0.3467742812700554, + "fn": 240201, + "fn_rate": 0.7902362474133194, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999459076461, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998118296431036, + "recall": 0.20976375258668054, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63760, + "tp_rate": 0.20976375258668054, + "truth_threshold": 24.14 + }, + { + "f1": 0.3462885992209431, + "fn": 240309, + "fn_rate": 0.7905915561535855, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999466523515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115104297562, + "recall": 0.2094084438464145, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63652, + "tp_rate": 0.2094084438464145, + "truth_threshold": 24.16 + }, + { + "f1": 0.3457701831242687, + "fn": 240424, + "fn_rate": 0.7909698941640539, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999473868042, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998111693338998, + "recall": 0.20903010583594606, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63537, + "tp_rate": 0.20903010583594606, + "truth_threshold": 24.18 + }, + { + "f1": 0.3452533247685047, + "fn": 240539, + "fn_rate": 0.7913482321745224, + "fp": 12, + "fp_rate": 0.00006901747867647482, + "match_probability": 0.9999999481111456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998108270012926, + "recall": 0.20865176782547762, + "row_count": 477830, + "tn": 173857, + "tn_rate": 0.9999309825213235, + "tp": 63422, + "tp_rate": 0.20865176782547762, + "truth_threshold": 24.2 + }, + { + "f1": 0.3448136914842061, + "fn": 240637, + "fn_rate": 0.7916706419573564, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999488255148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998421069251903, + "recall": 0.20832935804264363, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 63324, + "tp_rate": 0.20832935804264363, + "truth_threshold": 24.22 + }, + { + "f1": 0.3442096088898573, + "fn": 240771, + "fn_rate": 0.7921114879869456, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999949530049, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998417721518987, + "recall": 0.2078885120130543, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 63190, + "tp_rate": 0.2078885120130543, + "truth_threshold": 24.240000000000002 + }, + { + "f1": 0.343650214147931, + "fn": 240895, + "fn_rate": 0.7925194350591029, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999502248836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998414610945526, + "recall": 0.20748056494089703, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 63066, + "tp_rate": 0.20748056494089703, + "truth_threshold": 24.26 + }, + { + "f1": 0.3432168746934104, + "fn": 240991, + "fn_rate": 0.7928352650504505, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999509101524, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998412194347411, + "recall": 0.20716473494954946, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62970, + "tp_rate": 0.20716473494954946, + "truth_threshold": 24.28 + }, + { + "f1": 0.3428320648973984, + "fn": 241076, + "fn_rate": 0.7931149061886229, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999515859868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998410048493521, + "recall": 0.20688509381137712, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62885, + "tp_rate": 0.20688509381137712, + "truth_threshold": 24.3 + }, + { + "f1": 0.34246702328954615, + "fn": 241157, + "fn_rate": 0.7933813877438224, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999522525168, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998407998216958, + "recall": 0.20661861225617761, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62804, + "tp_rate": 0.20661861225617761, + "truth_threshold": 24.32 + }, + { + "f1": 0.34190645029319516, + "fn": 241281, + "fn_rate": 0.7937893348159797, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999529098704, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998404849258254, + "recall": 0.20621066518402031, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62680, + "tp_rate": 0.20621066518402031, + "truth_threshold": 24.34 + }, + { + "f1": 0.3414848400525974, + "fn": 241374, + "fn_rate": 0.7940952951200977, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999535581742, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998402479352045, + "recall": 0.20590470487990237, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62587, + "tp_rate": 0.20590470487990237, + "truth_threshold": 24.36 + }, + { + "f1": 0.3410196095553603, + "fn": 241477, + "fn_rate": 0.7944341543816477, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999541975525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998399846385253, + "recall": 0.20556584561835237, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62484, + "tp_rate": 0.20556584561835237, + "truth_threshold": 24.38 + }, + { + "f1": 0.3404978981274226, + "fn": 241592, + "fn_rate": 0.794812492392116, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999548281283, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998396896391414, + "recall": 0.2051875076078839, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62369, + "tp_rate": 0.2051875076078839, + "truth_threshold": 24.400000000000002 + }, + { + "f1": 0.3398815960502889, + "fn": 241728, + "fn_rate": 0.7952599182131919, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999554500227, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998393393634626, + "recall": 0.20474008178680816, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62233, + "tp_rate": 0.20474008178680816, + "truth_threshold": 24.42 + }, + { + "f1": 0.3393156649675752, + "fn": 241853, + "fn_rate": 0.7956711551810923, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999560633555, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998390160661966, + "recall": 0.2043288448189077, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62108, + "tp_rate": 0.2043288448189077, + "truth_threshold": 24.44 + }, + { + "f1": 0.3389617486338798, + "fn": 241931, + "fn_rate": 0.7959277670490622, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999566682441, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999838813668601, + "recall": 0.2040722329509378, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 62030, + "tp_rate": 0.2040722329509378, + "truth_threshold": 24.46 + }, + { + "f1": 0.3383388362888942, + "fn": 242068, + "fn_rate": 0.7963784827658812, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999572648053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998384569406975, + "recall": 0.20362151723411884, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61893, + "tp_rate": 0.20362151723411884, + "truth_threshold": 24.48 + }, + { + "f1": 0.3378082056946624, + "fn": 242185, + "fn_rate": 0.796763400567836, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999578531533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998381510374519, + "recall": 0.203236599432164, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61776, + "tp_rate": 0.203236599432164, + "truth_threshold": 24.5 + }, + { + "f1": 0.3372990476815613, + "fn": 242297, + "fn_rate": 0.7971318688910748, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999584334013, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998378571196939, + "recall": 0.20286813110892515, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61664, + "tp_rate": 0.20286813110892515, + "truth_threshold": 24.52 + }, + { + "f1": 0.3366530594376895, + "fn": 242439, + "fn_rate": 0.7975990340866098, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999959005661, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998374829357083, + "recall": 0.2024009659133902, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61522, + "tp_rate": 0.2024009659133902, + "truth_threshold": 24.54 + }, + { + "f1": 0.33617051556436206, + "fn": 242545, + "fn_rate": 0.7979477630353894, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999595700421, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999837202487546, + "recall": 0.20205223696461058, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61416, + "tp_rate": 0.20205223696461058, + "truth_threshold": 24.560000000000002 + }, + { + "f1": 0.33586081167640247, + "fn": 242613, + "fn_rate": 0.7981714759459273, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999601266533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998370220672121, + "recall": 0.20182852405407273, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61348, + "tp_rate": 0.20182852405407273, + "truth_threshold": 24.580000000000002 + }, + { + "f1": 0.33534134346830813, + "fn": 242727, + "fn_rate": 0.7985465240606525, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999606756014, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998367186989746, + "recall": 0.20145347593934748, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61234, + "tp_rate": 0.20145347593934748, + "truth_threshold": 24.6 + }, + { + "f1": 0.33502221102389806, + "fn": 242797, + "fn_rate": 0.7987768167626768, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999961216992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998365318599405, + "recall": 0.20122318323732322, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61164, + "tp_rate": 0.20122318323732322, + "truth_threshold": 24.62 + }, + { + "f1": 0.33451134452170006, + "fn": 242909, + "fn_rate": 0.7991452850859156, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999617509291, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998362320264649, + "recall": 0.20085471491408438, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 61052, + "tp_rate": 0.20085471491408438, + "truth_threshold": 24.64 + }, + { + "f1": 0.3340585985027019, + "fn": 243008, + "fn_rate": 0.7994709847644929, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999622775153, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998359660777849, + "recall": 0.20052901523550717, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60953, + "tp_rate": 0.20052901523550717, + "truth_threshold": 24.66 + }, + { + "f1": 0.33352886998092146, + "fn": 243124, + "fn_rate": 0.7998526126707045, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999627968519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998356533600671, + "recall": 0.20014738732929555, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60837, + "tp_rate": 0.20014738732929555, + "truth_threshold": 24.68 + }, + { + "f1": 0.33280314165990216, + "fn": 243283, + "fn_rate": 0.8003757060938739, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999633090386, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998352227788031, + "recall": 0.19962429390612613, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60678, + "tp_rate": 0.19962429390612613, + "truth_threshold": 24.7 + }, + { + "f1": 0.33232751053370785, + "fn": 243387, + "fn_rate": 0.8007178552511671, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999638141739, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998349399181302, + "recall": 0.1992821447488329, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60574, + "tp_rate": 0.1992821447488329, + "truth_threshold": 24.72 + }, + { + "f1": 0.3318241437407048, + "fn": 243497, + "fn_rate": 0.8010797437829196, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999643123548, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998346396798624, + "recall": 0.19892025621708048, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60464, + "tp_rate": 0.19892025621708048, + "truth_threshold": 24.740000000000002 + }, + { + "f1": 0.3313241437613566, + "fn": 243606, + "fn_rate": 0.8014383424189288, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999648036773, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998343410916922, + "recall": 0.19856165758107125, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60355, + "tp_rate": 0.19856165758107125, + "truth_threshold": 24.76 + }, + { + "f1": 0.33082566389175655, + "fn": 243715, + "fn_rate": 0.8017969410549379, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999652882353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998340414232607, + "recall": 0.19820305894506204, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60246, + "tp_rate": 0.19820305894506204, + "truth_threshold": 24.78 + }, + { + "f1": 0.3301874872966782, + "fn": 243854, + "fn_rate": 0.8022542365632434, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999657661225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998336577008168, + "recall": 0.19774576343675668, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60107, + "tp_rate": 0.19774576343675668, + "truth_threshold": 24.8 + }, + { + "f1": 0.3297195419478207, + "fn": 243956, + "fn_rate": 0.8025898059290502, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999662374304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998333749895859, + "recall": 0.1974101940709499, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 60005, + "tp_rate": 0.1974101940709499, + "truth_threshold": 24.82 + }, + { + "f1": 0.32923296781817685, + "fn": 244062, + "fn_rate": 0.8029385348778297, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999667022497, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998330801715936, + "recall": 0.19706146512217027, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59899, + "tp_rate": 0.19706146512217027, + "truth_threshold": 24.84 + }, + { + "f1": 0.3287148528134244, + "fn": 244175, + "fn_rate": 0.8033102930968118, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999671606695, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999832764733427, + "recall": 0.19668970690318824, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59786, + "tp_rate": 0.19668970690318824, + "truth_threshold": 24.86 + }, + { + "f1": 0.3283012434486589, + "fn": 244265, + "fn_rate": 0.8036063837137001, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999676127783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998325126452953, + "recall": 0.1963936162862999, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59696, + "tp_rate": 0.1963936162862999, + "truth_threshold": 24.88 + }, + { + "f1": 0.3277715429979755, + "fn": 244380, + "fn_rate": 0.8039847217241686, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999680586628, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998321894245775, + "recall": 0.19601527827583143, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59581, + "tp_rate": 0.19601527827583143, + "truth_threshold": 24.900000000000002 + }, + { + "f1": 0.3272101917838373, + "fn": 244502, + "fn_rate": 0.8043860890048394, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999684984086, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998318451630261, + "recall": 0.19561391099516057, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59459, + "tp_rate": 0.19561391099516057, + "truth_threshold": 24.92 + }, + { + "f1": 0.3267682077647564, + "fn": 244598, + "fn_rate": 0.804701918996187, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999689321003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998315732740471, + "recall": 0.195298081003813, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59363, + "tp_rate": 0.195298081003813, + "truth_threshold": 24.94 + }, + { + "f1": 0.32623383202374334, + "fn": 244714, + "fn_rate": 0.8050835469023987, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999693598213, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998312435661609, + "recall": 0.19491645309760133, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59247, + "tp_rate": 0.19491645309760133, + "truth_threshold": 24.96 + }, + { + "f1": 0.3257267810128116, + "fn": 244824, + "fn_rate": 0.8054454354341511, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999697816536, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998309297174836, + "recall": 0.1945545645658489, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59137, + "tp_rate": 0.1945545645658489, + "truth_threshold": 24.98 + }, + { + "f1": 0.3252655588857546, + "fn": 244924, + "fn_rate": 0.8057744250084715, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999701976785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998306433857774, + "recall": 0.1942255749915285, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 59037, + "tp_rate": 0.1942255749915285, + "truth_threshold": 25 + }, + { + "f1": 0.32473945559860457, + "fn": 245038, + "fn_rate": 0.8061494731231967, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999706079759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998303157823291, + "recall": 0.19385052687680326, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58923, + "tp_rate": 0.19385052687680326, + "truth_threshold": 25.02 + }, + { + "f1": 0.3243109151047409, + "fn": 245131, + "fn_rate": 0.8064554334273147, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999710126245, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998300475866757, + "recall": 0.19354456657268532, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58830, + "tp_rate": 0.19354456657268532, + "truth_threshold": 25.04 + }, + { + "f1": 0.3236640379418739, + "fn": 245271, + "fn_rate": 0.8069160188313632, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999714117023, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998296422487223, + "recall": 0.19308398116863676, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58690, + "tp_rate": 0.19308398116863676, + "truth_threshold": 25.060000000000002 + }, + { + "f1": 0.32327567185914124, + "fn": 245355, + "fn_rate": 0.8071923700737924, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999718052858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998293981165552, + "recall": 0.19280762992620765, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58606, + "tp_rate": 0.19280762992620765, + "truth_threshold": 25.080000000000002 + }, + { + "f1": 0.3228408583046882, + "fn": 245449, + "fn_rate": 0.8075016202736536, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999721934507, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998291240900857, + "recall": 0.19249837972634648, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58512, + "tp_rate": 0.19249837972634648, + "truth_threshold": 25.1 + }, + { + "f1": 0.3224280755200141, + "fn": 245538, + "fn_rate": 0.8077944209947987, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999725762717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998288638269471, + "recall": 0.19220557900520133, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58423, + "tp_rate": 0.19220557900520133, + "truth_threshold": 25.12 + }, + { + "f1": 0.32199834391388354, + "fn": 245631, + "fn_rate": 0.8081003812989166, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999729538223, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998285910181693, + "recall": 0.19189961870108335, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58330, + "tp_rate": 0.19189961870108335, + "truth_threshold": 25.14 + }, + { + "f1": 0.32153880983539573, + "fn": 245730, + "fn_rate": 0.8084260809774938, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999973326175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998282996514483, + "recall": 0.19157391902250617, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58231, + "tp_rate": 0.19157391902250617, + "truth_threshold": 25.16 + }, + { + "f1": 0.32101963600209893, + "fn": 245842, + "fn_rate": 0.8087945493007327, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999736934014, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998279688279517, + "recall": 0.19120545069926734, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58119, + "tp_rate": 0.19120545069926734, + "truth_threshold": 25.18 + }, + { + "f1": 0.3205558164590182, + "fn": 245942, + "fn_rate": 0.8091235388750531, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999740555722, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998276723707112, + "recall": 0.19087646112494694, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 58019, + "tp_rate": 0.19087646112494694, + "truth_threshold": 25.2 + }, + { + "f1": 0.32011583502351515, + "fn": 246037, + "fn_rate": 0.8094360789706574, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999744127567, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998273897883799, + "recall": 0.19056392102934258, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57924, + "tp_rate": 0.19056392102934258, + "truth_threshold": 25.22 + }, + { + "f1": 0.3196088295290586, + "fn": 246146, + "fn_rate": 0.8097946776066667, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999747650239, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998270644185041, + "recall": 0.19020532239333335, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57815, + "tp_rate": 0.19020532239333335, + "truth_threshold": 25.240000000000002 + }, + { + "f1": 0.31932080812995545, + "fn": 246208, + "fn_rate": 0.8099986511427453, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999751124412, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998268787978464, + "recall": 0.19000134885725473, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57753, + "tp_rate": 0.19000134885725473, + "truth_threshold": 25.26 + }, + { + "f1": 0.31883745368065924, + "fn": 246312, + "fn_rate": 0.8103408003000385, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999754550756, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998265665377478, + "recall": 0.1896591996999615, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57649, + "tp_rate": 0.1896591996999615, + "truth_threshold": 25.28 + }, + { + "f1": 0.3183817305724133, + "fn": 246410, + "fn_rate": 0.8106632100828725, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999757929928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998262712600545, + "recall": 0.18933678991712752, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57551, + "tp_rate": 0.18933678991712752, + "truth_threshold": 25.3 + }, + { + "f1": 0.31786991024094385, + "fn": 246520, + "fn_rate": 0.8110250986146249, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999761262578, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998259386259595, + "recall": 0.1889749013853751, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57441, + "tp_rate": 0.1889749013853751, + "truth_threshold": 25.32 + }, + { + "f1": 0.3172422192451201, + "fn": 246655, + "fn_rate": 0.8114692345399575, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999764549347, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999825528648196, + "recall": 0.18853076546004258, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57306, + "tp_rate": 0.18853076546004258, + "truth_threshold": 25.34 + }, + { + "f1": 0.31657501093776824, + "fn": 246798, + "fn_rate": 0.8119396896312356, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999767790866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998250922638309, + "recall": 0.18806031036876442, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57163, + "tp_rate": 0.18806031036876442, + "truth_threshold": 25.36 + }, + { + "f1": 0.3160247745252288, + "fn": 246916, + "fn_rate": 0.8123278973289336, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999770987757, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998247305231794, + "recall": 0.18767210267106635, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 57045, + "tp_rate": 0.18767210267106635, + "truth_threshold": 25.38 + }, + { + "f1": 0.3156664025400484, + "fn": 246993, + "fn_rate": 0.8125812193011603, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999774140637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998244936642213, + "recall": 0.18741878069883966, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56968, + "tp_rate": 0.18741878069883966, + "truth_threshold": 25.400000000000002 + }, + { + "f1": 0.315100687881425, + "fn": 247114, + "fn_rate": 0.812979296686088, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999777250109, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998241201611059, + "recall": 0.187020703313912, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56847, + "tp_rate": 0.187020703313912, + "truth_threshold": 25.42 + }, + { + "f1": 0.31463913638909063, + "fn": 247213, + "fn_rate": 0.8133049963646652, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999780316773, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998238133831354, + "recall": 0.18669500363533478, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56748, + "tp_rate": 0.18669500363533478, + "truth_threshold": 25.44 + }, + { + "f1": 0.3141194870884728, + "fn": 247324, + "fn_rate": 0.8136701747921609, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999783341216, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998234681448267, + "recall": 0.18632982520783917, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56637, + "tp_rate": 0.18632982520783917, + "truth_threshold": 25.46 + }, + { + "f1": 0.3137415886787638, + "fn": 247405, + "fn_rate": 0.8139366563473603, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999786324022, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998232153590496, + "recall": 0.18606334365263966, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56556, + "tp_rate": 0.18606334365263966, + "truth_threshold": 25.48 + }, + { + "f1": 0.3133430621292746, + "fn": 247490, + "fn_rate": 0.8142162974855327, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999789265762, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998229493103875, + "recall": 0.18578370251446732, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56471, + "tp_rate": 0.18578370251446732, + "truth_threshold": 25.5 + }, + { + "f1": 0.3128188049843199, + "fn": 247602, + "fn_rate": 0.8145847658087715, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999792167003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998225975270095, + "recall": 0.1854152341912285, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56359, + "tp_rate": 0.1854152341912285, + "truth_threshold": 25.52 + }, + { + "f1": 0.31223799714607753, + "fn": 247726, + "fn_rate": 0.8149927128809288, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.99999997950283, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998222064183483, + "recall": 0.1850072871190712, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56235, + "tp_rate": 0.1850072871190712, + "truth_threshold": 25.54 + }, + { + "f1": 0.31194362223789507, + "fn": 247789, + "fn_rate": 0.8151999763127507, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999797850206, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998220070485209, + "recall": 0.18480002368724935, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56172, + "tp_rate": 0.18480002368724935, + "truth_threshold": 25.560000000000002 + }, + { + "f1": 0.31159114389504206, + "fn": 247864, + "fn_rate": 0.8154467184934909, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999800633262, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998217691197177, + "recall": 0.18455328150650907, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 56097, + "tp_rate": 0.18455328150650907, + "truth_threshold": 25.580000000000002 + }, + { + "f1": 0.3110901211245694, + "fn": 247971, + "fn_rate": 0.8157987373380138, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999803378004, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998214285714285, + "recall": 0.18420126266198625, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55990, + "tp_rate": 0.18420126266198625, + "truth_threshold": 25.6 + }, + { + "f1": 0.31075606435299674, + "fn": 248042, + "fn_rate": 0.8160323199357812, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999806084956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998212018809562, + "recall": 0.18396768006421876, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55919, + "tp_rate": 0.18396768006421876, + "truth_threshold": 25.62 + }, + { + "f1": 0.3102733291456588, + "fn": 248145, + "fn_rate": 0.8163711791973313, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999808754642, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998208719951277, + "recall": 0.18362882080266876, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55816, + "tp_rate": 0.18362882080266876, + "truth_threshold": 25.64 + }, + { + "f1": 0.3098167866774167, + "fn": 248242, + "fn_rate": 0.816690299084422, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999811387573, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998205602110212, + "recall": 0.183309700915578, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55719, + "tp_rate": 0.183309700915578, + "truth_threshold": 25.66 + }, + { + "f1": 0.30927152686234266, + "fn": 248358, + "fn_rate": 0.8170719269906337, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999813984256, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998201859277507, + "recall": 0.18292807300936634, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55603, + "tp_rate": 0.18292807300936634, + "truth_threshold": 25.68 + }, + { + "f1": 0.30873532521003727, + "fn": 248472, + "fn_rate": 0.8174469751053589, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999981654519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998198165732716, + "recall": 0.1825530248946411, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55489, + "tp_rate": 0.1825530248946411, + "truth_threshold": 25.7 + }, + { + "f1": 0.3082081992942774, + "fn": 248584, + "fn_rate": 0.8178154434285978, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999819070866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998194522180295, + "recall": 0.18218455657140226, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55377, + "tp_rate": 0.18218455657140226, + "truth_threshold": 25.72 + }, + { + "f1": 0.3077184309271693, + "fn": 248688, + "fn_rate": 0.8181575925858909, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999821561771, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99981911256625, + "recall": 0.18184240741410904, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55273, + "tp_rate": 0.18184240741410904, + "truth_threshold": 25.740000000000002 + }, + { + "f1": 0.3073470615095054, + "fn": 248767, + "fn_rate": 0.8184174943496041, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999824018383, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998188537062531, + "recall": 0.18158250565039594, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55194, + "tp_rate": 0.18158250565039594, + "truth_threshold": 25.76 + }, + { + "f1": 0.3069832464465535, + "fn": 248844, + "fn_rate": 0.8186708163218308, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999826441174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998186006856894, + "recall": 0.18132918367816925, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55117, + "tp_rate": 0.18132918367816925, + "truth_threshold": 25.78 + }, + { + "f1": 0.30658325023258926, + "fn": 248929, + "fn_rate": 0.8189504574600031, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999828830609, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998183205552124, + "recall": 0.18104954253999692, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 55032, + "tp_rate": 0.18104954253999692, + "truth_threshold": 25.8 + }, + { + "f1": 0.30609640568403457, + "fn": 249032, + "fn_rate": 0.8192893167215531, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999831187149, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998179799413895, + "recall": 0.18071068327844692, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54929, + "tp_rate": 0.18071068327844692, + "truth_threshold": 25.82 + }, + { + "f1": 0.30563932196587534, + "fn": 249129, + "fn_rate": 0.8196084366086439, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999833511245, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998176579993435, + "recall": 0.18039156339135612, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54832, + "tp_rate": 0.18039156339135612, + "truth_threshold": 25.84 + }, + { + "f1": 0.30501575264170405, + "fn": 249261, + "fn_rate": 0.8200427028467467, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999835803345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998172180588558, + "recall": 0.1799572971532532, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54700, + "tp_rate": 0.1799572971532532, + "truth_threshold": 25.86 + }, + { + "f1": 0.3046320310103461, + "fn": 249342, + "fn_rate": 0.8203091844019463, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999838063889, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998169470427795, + "recall": 0.1796908155980537, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54619, + "tp_rate": 0.1796908155980537, + "truth_threshold": 25.88 + }, + { + "f1": 0.30421199442119945, + "fn": 249431, + "fn_rate": 0.8206019851230915, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999840293311, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998166483314999, + "recall": 0.17939801487690854, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54530, + "tp_rate": 0.17939801487690854, + "truth_threshold": 25.900000000000002 + }, + { + "f1": 0.3037861666806172, + "fn": 249521, + "fn_rate": 0.8208980757399797, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999984249204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998163452708907, + "recall": 0.1791019242600202, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54440, + "tp_rate": 0.1791019242600202, + "truth_threshold": 25.92 + }, + { + "f1": 0.30308545142940085, + "fn": 249669, + "fn_rate": 0.821384980309974, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999844660499, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998158447202681, + "recall": 0.17861501969002602, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54292, + "tp_rate": 0.17861501969002602, + "truth_threshold": 25.94 + }, + { + "f1": 0.30274435355537566, + "fn": 249741, + "fn_rate": 0.8216218528034847, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999846799104, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998156002212797, + "recall": 0.17837814719651535, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54220, + "tp_rate": 0.17837814719651535, + "truth_threshold": 25.96 + }, + { + "f1": 0.30231220329516895, + "fn": 249832, + "fn_rate": 0.8219212333161162, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999848908265, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998152902713386, + "recall": 0.17807876668388378, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54129, + "tp_rate": 0.17807876668388378, + "truth_threshold": 25.98 + }, + { + "f1": 0.3018190147375948, + "fn": 249936, + "fn_rate": 0.8222633824734095, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999985098839, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998149347645044, + "recall": 0.1777366175265906, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 54025, + "tp_rate": 0.1777366175265906, + "truth_threshold": 26 + }, + { + "f1": 0.30137858966979786, + "fn": 250029, + "fn_rate": 0.8225693427775274, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999853039877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998146156983426, + "recall": 0.17743065722247262, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53932, + "tp_rate": 0.17743065722247262, + "truth_threshold": 26.02 + }, + { + "f1": 0.30100272759792523, + "fn": 250108, + "fn_rate": 0.8228292445412405, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999855063121, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998143437981546, + "recall": 0.17717075545875952, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53853, + "tp_rate": 0.17717075545875952, + "truth_threshold": 26.04 + }, + { + "f1": 0.30051436878005144, + "fn": 250211, + "fn_rate": 0.8231681038027905, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999857058509, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998139880952381, + "recall": 0.17683189619720951, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53750, + "tp_rate": 0.17683189619720951, + "truth_threshold": 26.060000000000002 + }, + { + "f1": 0.2999670027907809, + "fn": 250326, + "fn_rate": 0.823546441813259, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999859026427, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998135893373101, + "recall": 0.17645355818674105, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53635, + "tp_rate": 0.17645355818674105, + "truth_threshold": 26.080000000000002 + }, + { + "f1": 0.2994399906012409, + "fn": 250437, + "fn_rate": 0.8239116202407546, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999860967251, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998132028243732, + "recall": 0.17608837975924543, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53524, + "tp_rate": 0.17608837975924543, + "truth_threshold": 26.1 + }, + { + "f1": 0.2989776103951337, + "fn": 250534, + "fn_rate": 0.8242307401278454, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999862881357, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998128637460936, + "recall": 0.17576925987215467, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53427, + "tp_rate": 0.17576925987215467, + "truth_threshold": 26.12 + }, + { + "f1": 0.29844438349109675, + "fn": 250646, + "fn_rate": 0.8245992084510841, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999986476911, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998124706985466, + "recall": 0.1754007915489158, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53315, + "tp_rate": 0.1754007915489158, + "truth_threshold": 26.14 + }, + { + "f1": 0.2980347144456887, + "fn": 250732, + "fn_rate": 0.8248821394849997, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999866630873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998121677717463, + "recall": 0.17511786051500028, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53229, + "tp_rate": 0.17511786051500028, + "truth_threshold": 26.16 + }, + { + "f1": 0.2975827770061383, + "fn": 250827, + "fn_rate": 0.8251946795806041, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999868467006, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998118320036128, + "recall": 0.17480532041939592, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53134, + "tp_rate": 0.17480532041939592, + "truth_threshold": 26.18 + }, + { + "f1": 0.29720524555634603, + "fn": 250906, + "fn_rate": 0.8254545813443172, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999870277859, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115518703476, + "recall": 0.1745454186556828, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 53055, + "tp_rate": 0.1745454186556828, + "truth_threshold": 26.2 + }, + { + "f1": 0.29684829808096375, + "fn": 250981, + "fn_rate": 0.8257013235250575, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999872063782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998112851481411, + "recall": 0.17429867647494252, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52980, + "tp_rate": 0.17429867647494252, + "truth_threshold": 26.22 + }, + { + "f1": 0.29636147603461416, + "fn": 251083, + "fn_rate": 0.8260368928908642, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999873825117, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998109211919528, + "recall": 0.1739631071091357, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52878, + "tp_rate": 0.1739631071091357, + "truth_threshold": 26.240000000000002 + }, + { + "f1": 0.2958974301475535, + "fn": 251180, + "fn_rate": 0.8263560127779551, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999875562204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998105737720445, + "recall": 0.17364398722204494, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52781, + "tp_rate": 0.17364398722204494, + "truth_threshold": 26.26 + }, + { + "f1": 0.2955438799140962, + "fn": 251254, + "fn_rate": 0.8265994650629521, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999877275376, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998103078703264, + "recall": 0.17340053493704785, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52707, + "tp_rate": 0.17340053493704785, + "truth_threshold": 26.28 + }, + { + "f1": 0.29499893427266916, + "fn": 251368, + "fn_rate": 0.8269745131776775, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999878964962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998098967739483, + "recall": 0.1730254868223226, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52593, + "tp_rate": 0.1730254868223226, + "truth_threshold": 26.3 + }, + { + "f1": 0.29452062480362673, + "fn": 251468, + "fn_rate": 0.8273035027519978, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999880631287, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998095346932556, + "recall": 0.1726964972480022, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52493, + "tp_rate": 0.1726964972480022, + "truth_threshold": 26.32 + }, + { + "f1": 0.29410510247603655, + "fn": 251555, + "fn_rate": 0.8275897236816565, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999882274672, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998092185592186, + "recall": 0.17241027631834346, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52406, + "tp_rate": 0.17241027631834346, + "truth_threshold": 26.34 + }, + { + "f1": 0.29351133467320883, + "fn": 251679, + "fn_rate": 0.8279976707538138, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999883895432, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998087661592595, + "recall": 0.1720023292461862, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52282, + "tp_rate": 0.1720023292461862, + "truth_threshold": 26.36 + }, + { + "f1": 0.2927829261443415, + "fn": 251831, + "fn_rate": 0.8284977349067808, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999885493878, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998082086689681, + "recall": 0.1715022650932192, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52130, + "tp_rate": 0.1715022650932192, + "truth_threshold": 26.38 + }, + { + "f1": 0.2923417451293229, + "fn": 251923, + "fn_rate": 0.8288004053151555, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999887070317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998078696587765, + "recall": 0.17119959468484444, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 52038, + "tp_rate": 0.17119959468484444, + "truth_threshold": 26.400000000000002 + }, + { + "f1": 0.29196190262130195, + "fn": 252002, + "fn_rate": 0.8290603070788687, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999888625053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998075775943351, + "recall": 0.17093969292113134, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51959, + "tp_rate": 0.17093969292113134, + "truth_threshold": 26.42 + }, + { + "f1": 0.29146830192284995, + "fn": 252105, + "fn_rate": 0.8293991663404187, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999890158385, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998071954652373, + "recall": 0.17060083365958134, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51856, + "tp_rate": 0.17060083365958134, + "truth_threshold": 26.44 + }, + { + "f1": 0.29106487285729543, + "fn": 252189, + "fn_rate": 0.8296755175828479, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999891670607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998068827005523, + "recall": 0.1703244824171522, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51772, + "tp_rate": 0.1703244824171522, + "truth_threshold": 26.46 + }, + { + "f1": 0.29079581428563395, + "fn": 252245, + "fn_rate": 0.8298597517444672, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999893162009, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998066736264161, + "recall": 0.17014024825553278, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51716, + "tp_rate": 0.17014024825553278, + "truth_threshold": 26.48 + }, + { + "f1": 0.2904016827707225, + "fn": 252327, + "fn_rate": 0.8301295231954099, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999894632879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998063666640848, + "recall": 0.16987047680459005, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51634, + "tp_rate": 0.16987047680459005, + "truth_threshold": 26.5 + }, + { + "f1": 0.2900458470452564, + "fn": 252401, + "fn_rate": 0.830372975480407, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.99999998960835, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998060888113244, + "recall": 0.16962702451959297, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51560, + "tp_rate": 0.16962702451959297, + "truth_threshold": 26.52 + }, + { + "f1": 0.2895743770960409, + "fn": 252499, + "fn_rate": 0.830695385263241, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999897514149, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998057196145477, + "recall": 0.16930461473675898, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51462, + "tp_rate": 0.16930461473675898, + "truth_threshold": 26.54 + }, + { + "f1": 0.28908338727380184, + "fn": 252601, + "fn_rate": 0.8310309546290479, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999898925103, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998053338524431, + "recall": 0.1689690453709522, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51360, + "tp_rate": 0.1689690453709522, + "truth_threshold": 26.560000000000002 + }, + { + "f1": 0.28879844175730146, + "fn": 252660, + "fn_rate": 0.8312250584778968, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999900316631, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998051100153963, + "recall": 0.16877494152210318, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51301, + "tp_rate": 0.16877494152210318, + "truth_threshold": 26.580000000000002 + }, + { + "f1": 0.28832628514474595, + "fn": 252758, + "fn_rate": 0.8315474682607308, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999901689001, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998047370784762, + "recall": 0.1684525317392692, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51203, + "tp_rate": 0.1684525317392692, + "truth_threshold": 26.6 + }, + { + "f1": 0.2880081552654404, + "fn": 252824, + "fn_rate": 0.8317646013797823, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999903042477, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998044851115413, + "recall": 0.16823539862021772, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51137, + "tp_rate": 0.16823539862021772, + "truth_threshold": 26.62 + }, + { + "f1": 0.2875894315813194, + "fn": 252911, + "fn_rate": 0.832050822309441, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999990437732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999804151978065, + "recall": 0.16794917769055898, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 51050, + "tp_rate": 0.16794917769055898, + "truth_threshold": 26.64 + }, + { + "f1": 0.2871745169524475, + "fn": 252997, + "fn_rate": 0.8323337533433566, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999905693786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998038215560874, + "recall": 0.16766624665664345, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50964, + "tp_rate": 0.16766624665664345, + "truth_threshold": 26.66 + }, + { + "f1": 0.2866724910520531, + "fn": 253101, + "fn_rate": 0.8326759025006497, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999906992127, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998034204835856, + "recall": 0.16732409749935023, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50860, + "tp_rate": 0.16732409749935023, + "truth_threshold": 26.68 + }, + { + "f1": 0.286212845609129, + "fn": 253196, + "fn_rate": 0.8329884425962542, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999908272594, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998030526834072, + "recall": 0.16701155740374587, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50765, + "tp_rate": 0.16701155740374587, + "truth_threshold": 26.7 + }, + { + "f1": 0.28580693186560346, + "fn": 253280, + "fn_rate": 0.8332647938386832, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999909535432, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998027263222268, + "recall": 0.16673520616131673, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50681, + "tp_rate": 0.16673520616131673, + "truth_threshold": 26.72 + }, + { + "f1": 0.28535810784131227, + "fn": 253373, + "fn_rate": 0.8335707541428012, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999910780885, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998023637297917, + "recall": 0.1664292458571988, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50588, + "tp_rate": 0.1664292458571988, + "truth_threshold": 26.740000000000002 + }, + { + "f1": 0.2848259829368483, + "fn": 253483, + "fn_rate": 0.8339326426745537, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999912009191, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998019331326256, + "recall": 0.16606735732544636, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50478, + "tp_rate": 0.16606735732544636, + "truth_threshold": 26.76 + }, + { + "f1": 0.2842354216173806, + "fn": 253605, + "fn_rate": 0.8343340099552246, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999913220586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998014533613946, + "recall": 0.16566599004477547, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50356, + "tp_rate": 0.16566599004477547, + "truth_threshold": 26.78 + }, + { + "f1": 0.2839060797497869, + "fn": 253673, + "fn_rate": 0.8345577228657624, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999914415304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998011849377709, + "recall": 0.16544227713423762, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50288, + "tp_rate": 0.16544227713423762, + "truth_threshold": 26.8 + }, + { + "f1": 0.28337710009882816, + "fn": 253782, + "fn_rate": 0.8349163215017716, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999915593574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998007531530814, + "recall": 0.1650836784982284, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50179, + "tp_rate": 0.1650836784982284, + "truth_threshold": 26.82 + }, + { + "f1": 0.28308217166354127, + "fn": 253843, + "fn_rate": 0.8351170051421071, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999916755622, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998005106926269, + "recall": 0.16488299485789296, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50118, + "tp_rate": 0.16488299485789296, + "truth_threshold": 26.84 + }, + { + "f1": 0.28250981721614826, + "fn": 253961, + "fn_rate": 0.8355052128398051, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999917901672, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998000399920016, + "recall": 0.1644947871601949, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 50000, + "tp_rate": 0.1644947871601949, + "truth_threshold": 26.86 + }, + { + "f1": 0.28210620309250384, + "fn": 254044, + "fn_rate": 0.835778274186491, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999919031943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997997075730567, + "recall": 0.16422172581350897, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49917, + "tp_rate": 0.16422172581350897, + "truth_threshold": 26.88 + }, + { + "f1": 0.28160120299391717, + "fn": 254148, + "fn_rate": 0.8361204233437842, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999920146655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997992894847761, + "recall": 0.16387957665621578, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49813, + "tp_rate": 0.16387957665621578, + "truth_threshold": 26.900000000000002 + }, + { + "f1": 0.2809792566788065, + "fn": 254276, + "fn_rate": 0.8365415299989143, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999992124602, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997987725123252, + "recall": 0.16345847000108565, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49685, + "tp_rate": 0.16345847000108565, + "truth_threshold": 26.92 + }, + { + "f1": 0.28047359370050234, + "fn": 254380, + "fn_rate": 0.8368836791562075, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999922330249, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997983505071485, + "recall": 0.16311632084379246, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49581, + "tp_rate": 0.16311632084379246, + "truth_threshold": 26.94 + }, + { + "f1": 0.2800608828006088, + "fn": 254465, + "fn_rate": 0.8371633202943799, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999923399552, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997980042823092, + "recall": 0.16283667970562013, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49496, + "tp_rate": 0.16283667970562013, + "truth_threshold": 26.96 + }, + { + "f1": 0.27923735769803393, + "fn": 254634, + "fn_rate": 0.8377193126749813, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999924454133, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999797312361919, + "recall": 0.16228068732501866, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49327, + "tp_rate": 0.16228068732501866, + "truth_threshold": 26.98 + }, + { + "f1": 0.2787209223311966, + "fn": 254740, + "fn_rate": 0.8380680416237609, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999925494194, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999796875952144, + "recall": 0.16193195837623905, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49221, + "tp_rate": 0.16193195837623905, + "truth_threshold": 27 + }, + { + "f1": 0.27813181522077773, + "fn": 254861, + "fn_rate": 0.8384661190086886, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999926519938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997963754836082, + "recall": 0.16153388099131138, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49100, + "tp_rate": 0.16153388099131138, + "truth_threshold": 27.02 + }, + { + "f1": 0.2776578444871294, + "fn": 254958, + "fn_rate": 0.8387852388957794, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999992753156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997959724970926, + "recall": 0.16121476110422062, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 49003, + "tp_rate": 0.16121476110422062, + "truth_threshold": 27.04 + }, + { + "f1": 0.277120930443457, + "fn": 255068, + "fn_rate": 0.8391471274275318, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999928529254, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997955135676748, + "recall": 0.1608528725724682, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48893, + "tp_rate": 0.1608528725724682, + "truth_threshold": 27.060000000000002 + }, + { + "f1": 0.2768433643418763, + "fn": 255125, + "fn_rate": 0.8393346514848944, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999929513212, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997952749457478, + "recall": 0.16066534851510555, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48836, + "tp_rate": 0.16066534851510555, + "truth_threshold": 27.080000000000002 + }, + { + "f1": 0.2763589144561507, + "fn": 255224, + "fn_rate": 0.8396603511634716, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999930483625, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997948591708208, + "recall": 0.16033964883652838, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48737, + "tp_rate": 0.16033964883652838, + "truth_threshold": 27.1 + }, + { + "f1": 0.2758953183669302, + "fn": 255319, + "fn_rate": 0.839972891259076, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999931440678, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997944586039629, + "recall": 0.160027108740924, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48642, + "tp_rate": 0.160027108740924, + "truth_threshold": 27.12 + }, + { + "f1": 0.275416011846338, + "fn": 255417, + "fn_rate": 0.84029530104191, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999932384555, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997940437451085, + "recall": 0.15970469895809003, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48544, + "tp_rate": 0.15970469895809003, + "truth_threshold": 27.14 + }, + { + "f1": 0.27500907976574207, + "fn": 255500, + "fn_rate": 0.8405683623885959, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999933315437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997936910730127, + "recall": 0.15943163761140408, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48461, + "tp_rate": 0.15943163761140408, + "truth_threshold": 27.16 + }, + { + "f1": 0.2746133106286363, + "fn": 255581, + "fn_rate": 0.8408348439437954, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999934233502, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997933457325894, + "recall": 0.15916515605620457, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48380, + "tp_rate": 0.15916515605620457, + "truth_threshold": 27.18 + }, + { + "f1": 0.2742255984012354, + "fn": 255660, + "fn_rate": 0.8410947457075085, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999935138929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997930078036058, + "recall": 0.15890525429249147, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48301, + "tp_rate": 0.15890525429249147, + "truth_threshold": 27.2 + }, + { + "f1": 0.27383926948936943, + "fn": 255739, + "fn_rate": 0.8413546474712217, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999993603189, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997926687676232, + "recall": 0.15864535252877837, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48222, + "tp_rate": 0.15864535252877837, + "truth_threshold": 27.22 + }, + { + "f1": 0.2732942893984924, + "fn": 255850, + "fn_rate": 0.8417198258987173, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999936912558, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997921905197316, + "recall": 0.15828017410128273, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48111, + "tp_rate": 0.15828017410128273, + "truth_threshold": 27.240000000000002 + }, + { + "f1": 0.2730449109450899, + "fn": 255901, + "fn_rate": 0.8418876105816206, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999937781102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997919700436863, + "recall": 0.15811238941837932, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 48060, + "tp_rate": 0.15811238941837932, + "truth_threshold": 27.26 + }, + { + "f1": 0.2724405242279232, + "fn": 256024, + "fn_rate": 0.8422922677580348, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999938637688, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999791436377667, + "recall": 0.15770773224196524, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47937, + "tp_rate": 0.15770773224196524, + "truth_threshold": 27.28 + }, + { + "f1": 0.271974804725251, + "fn": 256119, + "fn_rate": 0.8426048078536391, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999939482481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997910223188163, + "recall": 0.15739519214636088, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47842, + "tp_rate": 0.15739519214636088, + "truth_threshold": 27.3 + }, + { + "f1": 0.27155228786043684, + "fn": 256205, + "fn_rate": 0.8428877388875546, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999940315644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997906460662396, + "recall": 0.15711226111244533, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47756, + "tp_rate": 0.15711226111244533, + "truth_threshold": 27.32 + }, + { + "f1": 0.27116889616889617, + "fn": 256283, + "fn_rate": 0.8431443507555245, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999941137335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997903036403288, + "recall": 0.15685564924447545, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47678, + "tp_rate": 0.15685564924447545, + "truth_threshold": 27.34 + }, + { + "f1": 0.27065744259609037, + "fn": 256387, + "fn_rate": 0.8434864999128178, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999941947715, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997898453261601, + "recall": 0.15651350008718223, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47574, + "tp_rate": 0.15651350008718223, + "truth_threshold": 27.36 + }, + { + "f1": 0.27027780622987013, + "fn": 256464, + "fn_rate": 0.8437398218850445, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999942746939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997895047045698, + "recall": 0.15626017811495554, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47497, + "tp_rate": 0.15626017811495554, + "truth_threshold": 27.38 + }, + { + "f1": 0.26976582689177037, + "fn": 256568, + "fn_rate": 0.8440819710423376, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999943535158, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999789042887581, + "recall": 0.15591802895766232, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47393, + "tp_rate": 0.15591802895766232, + "truth_threshold": 27.400000000000002 + }, + { + "f1": 0.26923383515157034, + "fn": 256676, + "fn_rate": 0.8444372797826037, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999944312526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997885611586849, + "recall": 0.1555627202173963, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47285, + "tp_rate": 0.1555627202173963, + "truth_threshold": 27.42 + }, + { + "f1": 0.26884941539618085, + "fn": 256754, + "fn_rate": 0.8446938916505736, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999945079192, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997882118728424, + "recall": 0.1553061083494264, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47207, + "tp_rate": 0.1553061083494264, + "truth_threshold": 27.44 + }, + { + "f1": 0.26849024790375503, + "fn": 256827, + "fn_rate": 0.8449340540398275, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999945835303, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997878839300866, + "recall": 0.15506594596017254, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47134, + "tp_rate": 0.15506594596017254, + "truth_threshold": 27.46 + }, + { + "f1": 0.26810966646535317, + "fn": 256904, + "fn_rate": 0.8451873760120542, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999946581004, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999787536915461, + "recall": 0.15481262398794582, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 47057, + "tp_rate": 0.15481262398794582, + "truth_threshold": 27.48 + }, + { + "f1": 0.2677050030489021, + "fn": 256986, + "fn_rate": 0.8454571474629969, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999947316439, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997871661168458, + "recall": 0.1545428525370031, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46975, + "tp_rate": 0.1545428525370031, + "truth_threshold": 27.5 + }, + { + "f1": 0.2672169555873517, + "fn": 257085, + "fn_rate": 0.845782847141574, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999994804175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997867167171437, + "recall": 0.1542171528584259, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46876, + "tp_rate": 0.1542171528584259, + "truth_threshold": 27.52 + }, + { + "f1": 0.26686128390359604, + "fn": 257157, + "fn_rate": 0.8460197196350847, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999948757075, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997863886871449, + "recall": 0.15398028036491523, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46804, + "tp_rate": 0.15398028036491523, + "truth_threshold": 27.54 + }, + { + "f1": 0.26645033248548583, + "fn": 257240, + "fn_rate": 0.8462927809817707, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999949462551, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999786009287197, + "recall": 0.1537072190182293, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46721, + "tp_rate": 0.1537072190182293, + "truth_threshold": 27.560000000000002 + }, + { + "f1": 0.2659261921468627, + "fn": 257346, + "fn_rate": 0.8466415099305503, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999950158315, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997855227882038, + "recall": 0.1533584900694497, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46615, + "tp_rate": 0.1533584900694497, + "truth_threshold": 27.580000000000002 + }, + { + "f1": 0.265526213680871, + "fn": 257427, + "fn_rate": 0.8469079914857498, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.99999999508445, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999785149535923, + "recall": 0.15309200851425017, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46534, + "tp_rate": 0.15309200851425017, + "truth_threshold": 27.6 + }, + { + "f1": 0.2651896494652376, + "fn": 257495, + "fn_rate": 0.8471317043962877, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999951521238, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997848351837507, + "recall": 0.15286829560371232, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46466, + "tp_rate": 0.15286829560371232, + "truth_threshold": 27.62 + }, + { + "f1": 0.264589684741776, + "fn": 257616, + "fn_rate": 0.8475297817812154, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999995218866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997842735411498, + "recall": 0.15247021821878465, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46345, + "tp_rate": 0.15247021821878465, + "truth_threshold": 27.64 + }, + { + "f1": 0.26417917266269214, + "fn": 257699, + "fn_rate": 0.8478028431279013, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999952846893, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997838865836791, + "recall": 0.15219715687209873, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46262, + "tp_rate": 0.15219715687209873, + "truth_threshold": 27.66 + }, + { + "f1": 0.26363381906878175, + "fn": 257809, + "fn_rate": 0.8481647316596537, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999953496064, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997833716043499, + "recall": 0.1518352683403463, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46152, + "tp_rate": 0.1518352683403463, + "truth_threshold": 27.68 + }, + { + "f1": 0.26328088398295113, + "fn": 257880, + "fn_rate": 0.8483983142574212, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999954136297, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997830379032783, + "recall": 0.15160168574257882, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 46081, + "tp_rate": 0.15160168574257882, + "truth_threshold": 27.7 + }, + { + "f1": 0.262730753843516, + "fn": 257991, + "fn_rate": 0.8487634926849168, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999954767717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997825141365811, + "recall": 0.15123650731508317, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45970, + "tp_rate": 0.15123650731508317, + "truth_threshold": 27.72 + }, + { + "f1": 0.261960169932473, + "fn": 258146, + "fn_rate": 0.8492734265251134, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999955390442, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997817785051828, + "recall": 0.15072657347488658, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45815, + "tp_rate": 0.15072657347488658, + "truth_threshold": 27.740000000000002 + }, + { + "f1": 0.2615029139762192, + "fn": 258238, + "fn_rate": 0.8495760969334881, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999956004595, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997813395141364, + "recall": 0.15042390306651182, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45723, + "tp_rate": 0.15042390306651182, + "truth_threshold": 27.76 + }, + { + "f1": 0.2611705079141711, + "fn": 258305, + "fn_rate": 0.8497965199482829, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999956610293, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997810187010029, + "recall": 0.15020348005171716, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45656, + "tp_rate": 0.15020348005171716, + "truth_threshold": 27.78 + }, + { + "f1": 0.26074269039308806, + "fn": 258391, + "fn_rate": 0.8500794509821984, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999957207651, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997806055287407, + "recall": 0.14992054901780164, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45570, + "tp_rate": 0.14992054901780164, + "truth_threshold": 27.8 + }, + { + "f1": 0.2604184550584303, + "fn": 258456, + "fn_rate": 0.8502932942055066, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999957796787, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997802922113589, + "recall": 0.14970670579449338, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45505, + "tp_rate": 0.14970670579449338, + "truth_threshold": 27.82 + }, + { + "f1": 0.25977684015274255, + "fn": 258585, + "fn_rate": 0.8507176907563799, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999958377811, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997796677389503, + "recall": 0.14928230924362007, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45376, + "tp_rate": 0.14928230924362007, + "truth_threshold": 27.84 + }, + { + "f1": 0.25937251264079525, + "fn": 258666, + "fn_rate": 0.8509841723115794, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999958950836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997792738108376, + "recall": 0.14901582768842056, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45295, + "tp_rate": 0.14901582768842056, + "truth_threshold": 27.86 + }, + { + "f1": 0.2588398375520538, + "fn": 258773, + "fn_rate": 0.8513361911561023, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999959515972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997787512721802, + "recall": 0.14866380884389774, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45188, + "tp_rate": 0.14866380884389774, + "truth_threshold": 27.88 + }, + { + "f1": 0.25849494399725, + "fn": 258842, + "fn_rate": 0.8515631939623833, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999960073327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999778412993862, + "recall": 0.14843680603761666, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45119, + "tp_rate": 0.14843680603761666, + "truth_threshold": 27.900000000000002 + }, + { + "f1": 0.25812145071544407, + "fn": 258917, + "fn_rate": 0.8518099361431236, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999960623009, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999778044124828, + "recall": 0.1481900638568764, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 45044, + "tp_rate": 0.1481900638568764, + "truth_threshold": 27.92 + }, + { + "f1": 0.25761223460356764, + "fn": 259019, + "fn_rate": 0.8521455055089304, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999961165125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997775404876312, + "recall": 0.14785449449106958, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44942, + "tp_rate": 0.14785449449106958, + "truth_threshold": 27.94 + }, + { + "f1": 0.2570670061123152, + "fn": 259128, + "fn_rate": 0.8525041041449396, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999961699776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997769997546997, + "recall": 0.14749589585506034, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44833, + "tp_rate": 0.14749589585506034, + "truth_threshold": 27.96 + }, + { + "f1": 0.2566871601936179, + "fn": 259204, + "fn_rate": 0.8527541362214232, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999962227066, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997766211718453, + "recall": 0.14724586377857685, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44757, + "tp_rate": 0.14724586377857685, + "truth_threshold": 27.98 + }, + { + "f1": 0.25610280829580334, + "fn": 259321, + "fn_rate": 0.853139054023378, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999962747097, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997760358342666, + "recall": 0.146860945976622, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44640, + "tp_rate": 0.146860945976622, + "truth_threshold": 28 + }, + { + "f1": 0.25560242173825715, + "fn": 259421, + "fn_rate": 0.8534680435976983, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999963259969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997755331088665, + "recall": 0.1465319564023016, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44540, + "tp_rate": 0.1465319564023016, + "truth_threshold": 28.02 + }, + { + "f1": 0.25523195077431726, + "fn": 259495, + "fn_rate": 0.8537114958826955, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999996376578, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999775159636658, + "recall": 0.1462885041173045, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44466, + "tp_rate": 0.1462885041173045, + "truth_threshold": 28.04 + }, + { + "f1": 0.25470528116854035, + "fn": 259600, + "fn_rate": 0.8540569349357319, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999964264626, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997746275720628, + "recall": 0.1459430650642681, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44361, + "tp_rate": 0.1459430650642681, + "truth_threshold": 28.060000000000002 + }, + { + "f1": 0.2542800204453174, + "fn": 259685, + "fn_rate": 0.8543365760739042, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999964756606, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997741950051935, + "recall": 0.14566342392609577, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44276, + "tp_rate": 0.14566342392609577, + "truth_threshold": 28.080000000000002 + }, + { + "f1": 0.253868866396296, + "fn": 259767, + "fn_rate": 0.854606347524847, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999965241813, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997737761288571, + "recall": 0.14539365247515307, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44194, + "tp_rate": 0.14539365247515307, + "truth_threshold": 28.1 + }, + { + "f1": 0.25332130461764774, + "fn": 259876, + "fn_rate": 0.8549649461608562, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999965720339, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997732169180179, + "recall": 0.14503505383914383, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 44085, + "tp_rate": 0.14503505383914383, + "truth_threshold": 28.12 + }, + { + "f1": 0.2528896169209989, + "fn": 259962, + "fn_rate": 0.8552478771947717, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999966192277, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997727737508237, + "recall": 0.1447521228052283, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43999, + "tp_rate": 0.1447521228052283, + "truth_threshold": 28.14 + }, + { + "f1": 0.252337147128155, + "fn": 260072, + "fn_rate": 0.8556097657265241, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999966657718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997722043782319, + "recall": 0.1443902342734759, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43889, + "tp_rate": 0.1443902342734759, + "truth_threshold": 28.16 + }, + { + "f1": 0.2519006705542712, + "fn": 260159, + "fn_rate": 0.8558959866561828, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999996711675, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997717520314069, + "recall": 0.14410401334381714, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43802, + "tp_rate": 0.14410401334381714, + "truth_threshold": 28.18 + }, + { + "f1": 0.251488394834479, + "fn": 260241, + "fn_rate": 0.8561657581071256, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999967569464, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999771324033844, + "recall": 0.14383424189287441, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43720, + "tp_rate": 0.14383424189287441, + "truth_threshold": 28.2 + }, + { + "f1": 0.25112048282885235, + "fn": 260314, + "fn_rate": 0.8564059204963794, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999968015946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997709416588405, + "recall": 0.14359407950362052, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43647, + "tp_rate": 0.14359407950362052, + "truth_threshold": 28.22 + }, + { + "f1": 0.2506373697204781, + "fn": 260410, + "fn_rate": 0.856721750487727, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999968456279, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999770436858658, + "recall": 0.14327824951227294, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43551, + "tp_rate": 0.14327824951227294, + "truth_threshold": 28.240000000000002 + }, + { + "f1": 0.2502302555836979, + "fn": 260491, + "fn_rate": 0.8569882320429265, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999996889055, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999770009199632, + "recall": 0.14301176795707343, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43470, + "tp_rate": 0.14301176795707343, + "truth_threshold": 28.26 + }, + { + "f1": 0.2497768821073845, + "fn": 260581, + "fn_rate": 0.8572843226598149, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999969318843, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999769532150265, + "recall": 0.1427156773401851, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43380, + "tp_rate": 0.1427156773401851, + "truth_threshold": 28.28 + }, + { + "f1": 0.24944858128458966, + "fn": 260646, + "fn_rate": 0.8574981658831231, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.999999996974124, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997691863819965, + "recall": 0.14250183411687684, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43315, + "tp_rate": 0.14250183411687684, + "truth_threshold": 28.3 + }, + { + "f1": 0.2491518492278804, + "fn": 260705, + "fn_rate": 0.8576922697319722, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999970157821, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999768871631304, + "recall": 0.14230773026802782, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43256, + "tp_rate": 0.14230773026802782, + "truth_threshold": 28.32 + }, + { + "f1": 0.24868782660298328, + "fn": 260797, + "fn_rate": 0.8579949401403469, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999970568668, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997683791170612, + "recall": 0.14200505985965306, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43164, + "tp_rate": 0.14200505985965306, + "truth_threshold": 28.34 + }, + { + "f1": 0.24824808095710105, + "fn": 260884, + "fn_rate": 0.8582811610700057, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999970973857, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997679114350035, + "recall": 0.14171883892999432, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 43077, + "tp_rate": 0.14171883892999432, + "truth_threshold": 28.36 + }, + { + "f1": 0.24771287419799276, + "fn": 260990, + "fn_rate": 0.8586298900187853, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999971373469, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997673390567925, + "recall": 0.1413701099812147, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 42971, + "tp_rate": 0.1413701099812147, + "truth_threshold": 28.38 + }, + { + "f1": 0.24729428180984725, + "fn": 261073, + "fn_rate": 0.8589029513654712, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999971767579, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997668888992494, + "recall": 0.14109704863452877, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 42888, + "tp_rate": 0.14109704863452877, + "truth_threshold": 28.400000000000002 + }, + { + "f1": 0.24677294697135738, + "fn": 261176, + "fn_rate": 0.8592418106270212, + "fp": 10, + "fp_rate": 0.00005751456556372901, + "match_probability": 0.9999999972156263, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997663278420377, + "recall": 0.14075818937297876, + "row_count": 477830, + "tn": 173859, + "tn_rate": 0.9999424854344363, + "tp": 42785, + "tp_rate": 0.14075818937297876, + "truth_threshold": 28.42 + }, + { + "f1": 0.24631627531298678, + "fn": 261267, + "fn_rate": 0.8595411911396528, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999972539596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998594847775175, + "recall": 0.14045880886034723, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42694, + "tp_rate": 0.14045880886034723, + "truth_threshold": 28.44 + }, + { + "f1": 0.24590570719602978, + "fn": 261348, + "fn_rate": 0.8598076726948523, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999972917651, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998592177197964, + "recall": 0.1401923273051477, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42613, + "tp_rate": 0.1401923273051477, + "truth_threshold": 28.46 + }, + { + "f1": 0.24551084842223134, + "fn": 261426, + "fn_rate": 0.8600642845628222, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999973290502, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998589595919231, + "recall": 0.13993571543717778, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42535, + "tp_rate": 0.13993571543717778, + "truth_threshold": 28.48 + }, + { + "f1": 0.24522725042286533, + "fn": 261482, + "fn_rate": 0.8602485187244416, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999997365822, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998587736848299, + "recall": 0.13975148127555836, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42479, + "tp_rate": 0.13975148127555836, + "truth_threshold": 28.5 + }, + { + "f1": 0.24493342725498574, + "fn": 261540, + "fn_rate": 0.8604393326775475, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999974020874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998585806208311, + "recall": 0.13956066732245256, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42421, + "tp_rate": 0.13956066732245256, + "truth_threshold": 28.52 + }, + { + "f1": 0.24448307527043184, + "fn": 261629, + "fn_rate": 0.8607321333986926, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999974378537, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998582833388445, + "recall": 0.1392678666013074, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42332, + "tp_rate": 0.1392678666013074, + "truth_threshold": 28.54 + }, + { + "f1": 0.24401079126300526, + "fn": 261722, + "fn_rate": 0.8610380937028106, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999974731275, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998579713575572, + "recall": 0.13896190629718944, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42239, + "tp_rate": 0.13896190629718944, + "truth_threshold": 28.560000000000002 + }, + { + "f1": 0.24364552456563066, + "fn": 261794, + "fn_rate": 0.8612749661963213, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999975079157, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998577288786664, + "recall": 0.13872503380367876, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42167, + "tp_rate": 0.13872503380367876, + "truth_threshold": 28.580000000000002 + }, + { + "f1": 0.24331634245292832, + "fn": 261859, + "fn_rate": 0.8614888094196295, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999997542225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999857509261898, + "recall": 0.1385111905803705, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42102, + "tp_rate": 0.1385111905803705, + "truth_threshold": 28.6 + }, + { + "f1": 0.2428796873825806, + "fn": 261945, + "fn_rate": 0.861771740453545, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999997576062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998572176478987, + "recall": 0.13822825954645498, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 42016, + "tp_rate": 0.13822825954645498, + "truth_threshold": 28.62 + }, + { + "f1": 0.2424268706597975, + "fn": 262034, + "fn_rate": 0.8620645411746902, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999997609433, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998569146018649, + "recall": 0.13793545882530983, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41927, + "tp_rate": 0.13793545882530983, + "truth_threshold": 28.64 + }, + { + "f1": 0.24193893544786263, + "fn": 262130, + "fn_rate": 0.8623803711660377, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999976423446, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998565862753065, + "recall": 0.13761962883396225, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41831, + "tp_rate": 0.13761962883396225, + "truth_threshold": 28.66 + }, + { + "f1": 0.24162945137330216, + "fn": 262191, + "fn_rate": 0.8625810548063731, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999976748032, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998563768671007, + "recall": 0.13741894519362682, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41770, + "tp_rate": 0.13741894519362682, + "truth_threshold": 28.68 + }, + { + "f1": 0.24122248709699817, + "fn": 262271, + "fn_rate": 0.8628442464658295, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999977068148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998561013046815, + "recall": 0.1371557535341705, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41690, + "tp_rate": 0.1371557535341705, + "truth_threshold": 28.7 + }, + { + "f1": 0.24066260353180186, + "fn": 262381, + "fn_rate": 0.8632061349975819, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999977383858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998557206752272, + "recall": 0.13679386500241808, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41580, + "tp_rate": 0.13679386500241808, + "truth_threshold": 28.72 + }, + { + "f1": 0.2400660046898069, + "fn": 262498, + "fn_rate": 0.8635910527995367, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999977695221, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998553136077551, + "recall": 0.1364089472004632, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41463, + "tp_rate": 0.1364089472004632, + "truth_threshold": 28.740000000000002 + }, + { + "f1": 0.23957235356121065, + "fn": 262595, + "fn_rate": 0.8639101726866275, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999978002297, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998549743788069, + "recall": 0.13608982731337244, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41366, + "tp_rate": 0.13608982731337244, + "truth_threshold": 28.76 + }, + { + "f1": 0.23868930351141499, + "fn": 262768, + "fn_rate": 0.8644793246502018, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999978305146, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998543653972184, + "recall": 0.13552067534979817, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41193, + "tp_rate": 0.13552067534979817, + "truth_threshold": 28.78 + }, + { + "f1": 0.23815844384679588, + "fn": 262872, + "fn_rate": 0.8648214738074951, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999978603826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998539968365981, + "recall": 0.13517852619250495, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41089, + "tp_rate": 0.13517852619250495, + "truth_threshold": 28.8 + }, + { + "f1": 0.23770900489320748, + "fn": 262960, + "fn_rate": 0.8651109846328969, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999978898393, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998536835174482, + "recall": 0.13488901536710302, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 41001, + "tp_rate": 0.13488901536710302, + "truth_threshold": 28.82 + }, + { + "f1": 0.23713223567074762, + "fn": 263073, + "fn_rate": 0.865482742851879, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999979188905, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999853279209664, + "recall": 0.134517257148121, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40888, + "tp_rate": 0.134517257148121, + "truth_threshold": 28.84 + }, + { + "f1": 0.23677432827509398, + "fn": 263143, + "fn_rate": 0.8657130355539033, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999979475418, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998530276308054, + "recall": 0.1342869644460967, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40818, + "tp_rate": 0.1342869644460967, + "truth_threshold": 28.86 + }, + { + "f1": 0.23627744510978044, + "fn": 263240, + "fn_rate": 0.8660321554409941, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999979757986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998526775848945, + "recall": 0.13396784455900593, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40721, + "tp_rate": 0.13396784455900593, + "truth_threshold": 28.88 + }, + { + "f1": 0.23590451925922917, + "fn": 263313, + "fn_rate": 0.8662723178302479, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999980036663, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998524130466867, + "recall": 0.13372768216975203, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40648, + "tp_rate": 0.13372768216975203, + "truth_threshold": 28.900000000000002 + }, + { + "f1": 0.23530470423630906, + "fn": 263430, + "fn_rate": 0.8666572356322028, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999980311505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998519870735377, + "recall": 0.13334276436779718, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40531, + "tp_rate": 0.13334276436779718, + "truth_threshold": 28.92 + }, + { + "f1": 0.2348538079614413, + "fn": 263518, + "fn_rate": 0.8669467464576047, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999980582562, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998516650597048, + "recall": 0.13305325354239525, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40443, + "tp_rate": 0.13305325354239525, + "truth_threshold": 28.94 + }, + { + "f1": 0.23423857794301317, + "fn": 263638, + "fn_rate": 0.8673415339467893, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999980849887, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998512236851893, + "recall": 0.13265846605321077, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40323, + "tp_rate": 0.13265846605321077, + "truth_threshold": 28.96 + }, + { + "f1": 0.23398210550778525, + "fn": 263688, + "fn_rate": 0.8675060287339494, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999981113533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998510390029544, + "recall": 0.1324939712660506, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40273, + "tp_rate": 0.1324939712660506, + "truth_threshold": 28.98 + }, + { + "f1": 0.23354660994787219, + "fn": 263773, + "fn_rate": 0.8677856698721218, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999981373549, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999850723988655, + "recall": 0.13221433012787825, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40188, + "tp_rate": 0.13221433012787825, + "truth_threshold": 29 + }, + { + "f1": 0.23320778405524167, + "fn": 263839, + "fn_rate": 0.8680028029911732, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999981629984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998504784688995, + "recall": 0.13199719700882678, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40122, + "tp_rate": 0.13199719700882678, + "truth_threshold": 29.02 + }, + { + "f1": 0.23281745985605154, + "fn": 263915, + "fn_rate": 0.8682528350676567, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999998188289, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998501947468291, + "recall": 0.13174716493234329, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 40046, + "tp_rate": 0.13174716493234329, + "truth_threshold": 29.04 + }, + { + "f1": 0.23229333255793666, + "fn": 264017, + "fn_rate": 0.8685884044334635, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999982132314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998498122653316, + "recall": 0.1314115955665365, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39944, + "tp_rate": 0.1314115955665365, + "truth_threshold": 29.060000000000002 + }, + { + "f1": 0.2318145065121663, + "fn": 264110, + "fn_rate": 0.8688943647375814, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999982378304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998494618260281, + "recall": 0.13110563526241853, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39851, + "tp_rate": 0.13110563526241853, + "truth_threshold": 29.080000000000002 + }, + { + "f1": 0.23138822461554573, + "fn": 264193, + "fn_rate": 0.8691674260842673, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999982620906, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998491476844169, + "recall": 0.1308325739157326, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39768, + "tp_rate": 0.1308325739157326, + "truth_threshold": 29.1 + }, + { + "f1": 0.23087802209314506, + "fn": 264292, + "fn_rate": 0.8694931257628445, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999982860169, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998487712665406, + "recall": 0.13050687423715543, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39669, + "tp_rate": 0.13050687423715543, + "truth_threshold": 29.12 + }, + { + "f1": 0.23054399394592076, + "fn": 264357, + "fn_rate": 0.8697069689861529, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999983096138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998485231002272, + "recall": 0.13029303101384718, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39604, + "tp_rate": 0.13029303101384718, + "truth_threshold": 29.14 + }, + { + "f1": 0.23024523160762944, + "fn": 264415, + "fn_rate": 0.8698977829392587, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999983328859, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998483009708737, + "recall": 0.13010221706074135, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39546, + "tp_rate": 0.13010221706074135, + "truth_threshold": 29.16 + }, + { + "f1": 0.22964740416312363, + "fn": 264531, + "fn_rate": 0.8702794108454703, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999983558375, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998478547520032, + "recall": 0.1297205891545297, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39430, + "tp_rate": 0.1297205891545297, + "truth_threshold": 29.18 + }, + { + "f1": 0.2292187327053368, + "fn": 264614, + "fn_rate": 0.8705524721921563, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999983784732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998475338601885, + "recall": 0.12944752780784377, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39347, + "tp_rate": 0.12944752780784377, + "truth_threshold": 29.2 + }, + { + "f1": 0.22868797529209522, + "fn": 264717, + "fn_rate": 0.8708913314537062, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999984007972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998471337579617, + "recall": 0.12910866854629377, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39244, + "tp_rate": 0.12910866854629377, + "truth_threshold": 29.22 + }, + { + "f1": 0.22822336208906505, + "fn": 264807, + "fn_rate": 0.8711874220705946, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999998422814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998467824310521, + "recall": 0.12881257792940543, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39154, + "tp_rate": 0.12881257792940543, + "truth_threshold": 29.240000000000002 + }, + { + "f1": 0.22793864737397468, + "fn": 264862, + "fn_rate": 0.8713683663364707, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999984445276, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998465669351745, + "recall": 0.1286316336635292, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39099, + "tp_rate": 0.1286316336635292, + "truth_threshold": 29.26 + }, + { + "f1": 0.22755182366832852, + "fn": 264937, + "fn_rate": 0.8716151085172111, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.9999999984659422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998462720983858, + "recall": 0.12838489148278892, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 39024, + "tp_rate": 0.12838489148278892, + "truth_threshold": 29.28 + }, + { + "f1": 0.22709112224483963, + "fn": 265026, + "fn_rate": 0.8719079092383563, + "fp": 6, + "fp_rate": 0.00003450873933823741, + "match_probability": 0.999999998487062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998459207519067, + "recall": 0.12809209076164377, + "row_count": 477830, + "tn": 173863, + "tn_rate": 0.9999654912606618, + "tp": 38935, + "tp_rate": 0.12809209076164377, + "truth_threshold": 29.3 + }, + { + "f1": 0.22648026699652252, + "fn": 265145, + "fn_rate": 0.8722994068317975, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999985078911, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1277005931682025, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38816, + "tp_rate": 0.1277005931682025, + "truth_threshold": 29.32 + }, + { + "f1": 0.22603970912656263, + "fn": 265230, + "fn_rate": 0.8725790479699699, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999985284334, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12742095203003018, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38731, + "tp_rate": 0.12742095203003018, + "truth_threshold": 29.34 + }, + { + "f1": 0.22570834841285592, + "fn": 265294, + "fn_rate": 0.8727896012975349, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999985486929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12721039870246512, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38667, + "tp_rate": 0.12721039870246512, + "truth_threshold": 29.36 + }, + { + "f1": 0.22533541961022432, + "fn": 265366, + "fn_rate": 0.8730264737910456, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999985686735, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12697352620895444, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38595, + "tp_rate": 0.12697352620895444, + "truth_threshold": 29.38 + }, + { + "f1": 0.22471936361831116, + "fn": 265485, + "fn_rate": 0.8734179713844868, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999998588379, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12658202861551318, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38476, + "tp_rate": 0.12658202861551318, + "truth_threshold": 29.400000000000002 + }, + { + "f1": 0.22434601768877568, + "fn": 265557, + "fn_rate": 0.8736548438779975, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999986078132, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1263451561220025, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38404, + "tp_rate": 0.1263451561220025, + "truth_threshold": 29.42 + }, + { + "f1": 0.223987426087363, + "fn": 265626, + "fn_rate": 0.8738818466842786, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999986269797, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12611815331572143, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38335, + "tp_rate": 0.12611815331572143, + "truth_threshold": 29.44 + }, + { + "f1": 0.22357224676812307, + "fn": 265706, + "fn_rate": 0.8741450383437349, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999986458826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1258549616562651, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38255, + "tp_rate": 0.1258549616562651, + "truth_threshold": 29.46 + }, + { + "f1": 0.22306923342238644, + "fn": 265803, + "fn_rate": 0.8744641582308257, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999986645252, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12553584176917434, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38158, + "tp_rate": 0.12553584176917434, + "truth_threshold": 29.48 + }, + { + "f1": 0.22271013009793889, + "fn": 265872, + "fn_rate": 0.8746911610371068, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999998682911, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12530883896289327, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38089, + "tp_rate": 0.12530883896289327, + "truth_threshold": 29.5 + }, + { + "f1": 0.2223313916766089, + "fn": 265945, + "fn_rate": 0.8749313234263606, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987010437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12506867657363938, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 38016, + "tp_rate": 0.12506867657363938, + "truth_threshold": 29.52 + }, + { + "f1": 0.22194079005095027, + "fn": 266020, + "fn_rate": 0.8751780656071009, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987189269, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12482193439289908, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37941, + "tp_rate": 0.12482193439289908, + "truth_threshold": 29.54 + }, + { + "f1": 0.2215513155816117, + "fn": 266095, + "fn_rate": 0.8754248077878412, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987365638, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12457519221215879, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37866, + "tp_rate": 0.12457519221215879, + "truth_threshold": 29.560000000000002 + }, + { + "f1": 0.22110832148228782, + "fn": 266180, + "fn_rate": 0.8757044489260135, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987539578, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12429555107398646, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37781, + "tp_rate": 0.12429555107398646, + "truth_threshold": 29.580000000000002 + }, + { + "f1": 0.22072889471650842, + "fn": 266253, + "fn_rate": 0.8759446113152675, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987711125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12405538868473258, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37708, + "tp_rate": 0.12405538868473258, + "truth_threshold": 29.6 + }, + { + "f1": 0.22016629581918257, + "fn": 266361, + "fn_rate": 0.8762999200555335, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999987880309, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12370007994446656, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37600, + "tp_rate": 0.12370007994446656, + "truth_threshold": 29.62 + }, + { + "f1": 0.219743469602905, + "fn": 266442, + "fn_rate": 0.876566401610733, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988047165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12343359838926704, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37519, + "tp_rate": 0.12343359838926704, + "truth_threshold": 29.64 + }, + { + "f1": 0.21923241412845434, + "fn": 266540, + "fn_rate": 0.8768888113935669, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988211723, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12311118860643307, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37421, + "tp_rate": 0.12311118860643307, + "truth_threshold": 29.66 + }, + { + "f1": 0.218601652698822, + "fn": 266661, + "fn_rate": 0.8772868887784946, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988374015, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1227131112215054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37300, + "tp_rate": 0.1227131112215054, + "truth_threshold": 29.68 + }, + { + "f1": 0.2183034196551037, + "fn": 266718, + "fn_rate": 0.8774744128358573, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988534074, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12252558716414277, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37243, + "tp_rate": 0.12252558716414277, + "truth_threshold": 29.7 + }, + { + "f1": 0.2177079363217919, + "fn": 266832, + "fn_rate": 0.8778494609505825, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988691929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12215053904941753, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37129, + "tp_rate": 0.12215053904941753, + "truth_threshold": 29.72 + }, + { + "f1": 0.21745249824067558, + "fn": 266881, + "fn_rate": 0.8780106658419995, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999988847611, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12198933415800053, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37080, + "tp_rate": 0.12198933415800053, + "truth_threshold": 29.740000000000002 + }, + { + "f1": 0.21717020640143583, + "fn": 266935, + "fn_rate": 0.8781883202121324, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989001149, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12181167978786753, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 37026, + "tp_rate": 0.12181167978786753, + "truth_threshold": 29.76 + }, + { + "f1": 0.21688195886569755, + "fn": 266990, + "fn_rate": 0.8783692644780087, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989152574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12163073552199131, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36971, + "tp_rate": 0.12163073552199131, + "truth_threshold": 29.78 + }, + { + "f1": 0.2164797831329543, + "fn": 267067, + "fn_rate": 0.8786225864502354, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989301913, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12137741354976461, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36894, + "tp_rate": 0.12137741354976461, + "truth_threshold": 29.8 + }, + { + "f1": 0.21610296318467526, + "fn": 267139, + "fn_rate": 0.8788594589437461, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989449196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12114054105625392, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36822, + "tp_rate": 0.12114054105625392, + "truth_threshold": 29.82 + }, + { + "f1": 0.21567361314939829, + "fn": 267221, + "fn_rate": 0.8791292303946888, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989594452, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1208707696053112, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36740, + "tp_rate": 0.1208707696053112, + "truth_threshold": 29.84 + }, + { + "f1": 0.2151857854190154, + "fn": 267314, + "fn_rate": 0.8794351906988067, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989737709, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12056480930119325, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36647, + "tp_rate": 0.12056480930119325, + "truth_threshold": 29.86 + }, + { + "f1": 0.21485035707573763, + "fn": 267378, + "fn_rate": 0.8796457440263719, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999989878993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1203542559736282, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36583, + "tp_rate": 0.1203542559736282, + "truth_threshold": 29.88 + }, + { + "f1": 0.21452529061741885, + "fn": 267440, + "fn_rate": 0.8798497175624505, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990018332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.12015028243754955, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36521, + "tp_rate": 0.12015028243754955, + "truth_threshold": 29.900000000000002 + }, + { + "f1": 0.21410567505478817, + "fn": 267520, + "fn_rate": 0.8801129092219068, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990155752, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11988709077809324, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36441, + "tp_rate": 0.11988709077809324, + "truth_threshold": 29.92 + }, + { + "f1": 0.213601875958696, + "fn": 267616, + "fn_rate": 0.8804287392132544, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990291281, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11957126078674567, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36345, + "tp_rate": 0.11957126078674567, + "truth_threshold": 29.94 + }, + { + "f1": 0.21310367126186766, + "fn": 267711, + "fn_rate": 0.8807412793088587, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990424944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1192587206911413, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36250, + "tp_rate": 0.1192587206911413, + "truth_threshold": 29.96 + }, + { + "f1": 0.2126144455747711, + "fn": 267804, + "fn_rate": 0.8810472396129767, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990556766, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11895276038702333, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36157, + "tp_rate": 0.11895276038702333, + "truth_threshold": 29.98 + }, + { + "f1": 0.21232010633355095, + "fn": 267860, + "fn_rate": 0.8812314737745961, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990686774, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11876852622540392, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36101, + "tp_rate": 0.11876852622540392, + "truth_threshold": 30 + }, + { + "f1": 0.21188429839577855, + "fn": 267943, + "fn_rate": 0.881504535121282, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990814992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.118495464878718, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 36018, + "tp_rate": 0.118495464878718, + "truth_threshold": 30.02 + }, + { + "f1": 0.21145755491353288, + "fn": 268024, + "fn_rate": 0.8817710166764815, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999990941445, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11822898332351847, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35937, + "tp_rate": 0.11822898332351847, + "truth_threshold": 30.04 + }, + { + "f1": 0.21122599704579026, + "fn": 268068, + "fn_rate": 0.8819157720891825, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991066156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1180842279108175, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35893, + "tp_rate": 0.1180842279108175, + "truth_threshold": 30.060000000000002 + }, + { + "f1": 0.21078965182329223, + "fn": 268151, + "fn_rate": 0.8821888334358684, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991189151, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11781116656413158, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35810, + "tp_rate": 0.11781116656413158, + "truth_threshold": 30.080000000000002 + }, + { + "f1": 0.21026755222685414, + "fn": 268250, + "fn_rate": 0.8825145331144456, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991310453, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11748546688555439, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35711, + "tp_rate": 0.11748546688555439, + "truth_threshold": 30.1 + }, + { + "f1": 0.20992561968869808, + "fn": 268315, + "fn_rate": 0.8827283763377538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991430085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11727162366224614, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35646, + "tp_rate": 0.11727162366224614, + "truth_threshold": 30.12 + }, + { + "f1": 0.20951438467519615, + "fn": 268393, + "fn_rate": 0.8829849882057238, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999154807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11701501179427624, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35568, + "tp_rate": 0.11701501179427624, + "truth_threshold": 30.14 + }, + { + "f1": 0.20901265047107834, + "fn": 268488, + "fn_rate": 0.8832975283013281, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999166443, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11670247169867187, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35473, + "tp_rate": 0.11670247169867187, + "truth_threshold": 30.16 + }, + { + "f1": 0.20862211221122112, + "fn": 268562, + "fn_rate": 0.8835409805863252, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991779188, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11645901941367479, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35399, + "tp_rate": 0.11645901941367479, + "truth_threshold": 30.18 + }, + { + "f1": 0.2081739243207555, + "fn": 268647, + "fn_rate": 0.8838206217244976, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999991892367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11617937827550245, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35314, + "tp_rate": 0.11617937827550245, + "truth_threshold": 30.2 + }, + { + "f1": 0.20778301886792452, + "fn": 268721, + "fn_rate": 0.8840640740094946, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992003986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11593592599050537, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35240, + "tp_rate": 0.11593592599050537, + "truth_threshold": 30.22 + }, + { + "f1": 0.20745537214939053, + "fn": 268783, + "fn_rate": 0.8842680475455733, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999211407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11573195245442672, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35178, + "tp_rate": 0.11573195245442672, + "truth_threshold": 30.240000000000002 + }, + { + "f1": 0.20703710257771485, + "fn": 268862, + "fn_rate": 0.8845279493092864, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992222638, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11547205069071362, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35099, + "tp_rate": 0.11547205069071362, + "truth_threshold": 30.26 + }, + { + "f1": 0.20660337839033802, + "fn": 268944, + "fn_rate": 0.8847977207602291, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992329711, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11520227923977089, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 35017, + "tp_rate": 0.11520227923977089, + "truth_threshold": 30.28 + }, + { + "f1": 0.20614358641447078, + "fn": 269031, + "fn_rate": 0.8850839416898878, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999243531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11491605831011215, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34930, + "tp_rate": 0.11491605831011215, + "truth_threshold": 30.3 + }, + { + "f1": 0.20578825584964466, + "fn": 269098, + "fn_rate": 0.8853043647046825, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992539456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1146956352953175, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34863, + "tp_rate": 0.1146956352953175, + "truth_threshold": 30.32 + }, + { + "f1": 0.20553404019174912, + "fn": 269146, + "fn_rate": 0.8854622797003563, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992642167, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11453772029964371, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34815, + "tp_rate": 0.11453772029964371, + "truth_threshold": 30.34 + }, + { + "f1": 0.2049723920040157, + "fn": 269252, + "fn_rate": 0.8858110086491359, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992743465, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11418899135086409, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34709, + "tp_rate": 0.11418899135086409, + "truth_threshold": 30.36 + }, + { + "f1": 0.2046390199819259, + "fn": 269315, + "fn_rate": 0.8860182720809577, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992843367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11398172791904225, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34646, + "tp_rate": 0.11398172791904225, + "truth_threshold": 30.38 + }, + { + "f1": 0.2043891776937618, + "fn": 269362, + "fn_rate": 0.8861728971808883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999992941895, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11382710281911167, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34599, + "tp_rate": 0.11382710281911167, + "truth_threshold": 30.400000000000002 + }, + { + "f1": 0.20393294610516613, + "fn": 269448, + "fn_rate": 0.8864558282148038, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993039066, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11354417178519613, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34513, + "tp_rate": 0.11354417178519613, + "truth_threshold": 30.42 + }, + { + "f1": 0.2035508064373142, + "fn": 269520, + "fn_rate": 0.8866927007083145, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993134899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11330729929168544, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34441, + "tp_rate": 0.11330729929168544, + "truth_threshold": 30.44 + }, + { + "f1": 0.20330657650521936, + "fn": 269566, + "fn_rate": 0.8868440359125019, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993229413, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11315596408749806, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34395, + "tp_rate": 0.11315596408749806, + "truth_threshold": 30.46 + }, + { + "f1": 0.20294070697575425, + "fn": 269635, + "fn_rate": 0.887071038718783, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993322626, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.112928961281217, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34326, + "tp_rate": 0.112928961281217, + "truth_threshold": 30.48 + }, + { + "f1": 0.20245184716464515, + "fn": 269727, + "fn_rate": 0.8873737091271577, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993414554, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11262629087284223, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34234, + "tp_rate": 0.11262629087284223, + "truth_threshold": 30.5 + }, + { + "f1": 0.2021328822301218, + "fn": 269787, + "fn_rate": 0.88757110287175, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993505219, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11242889712825001, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34174, + "tp_rate": 0.11242889712825001, + "truth_threshold": 30.52 + }, + { + "f1": 0.20181852601190264, + "fn": 269846, + "fn_rate": 0.887765206720599, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993594634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11223479327940097, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34115, + "tp_rate": 0.11223479327940097, + "truth_threshold": 30.54 + }, + { + "f1": 0.201462687273674, + "fn": 269913, + "fn_rate": 0.8879856297353936, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993682819, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11201437026460631, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 34048, + "tp_rate": 0.11201437026460631, + "truth_threshold": 30.560000000000002 + }, + { + "f1": 0.20101561297806608, + "fn": 269997, + "fn_rate": 0.8882619809778228, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993769789, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11173801902217718, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33964, + "tp_rate": 0.11173801902217718, + "truth_threshold": 30.580000000000002 + }, + { + "f1": 0.20061092562335725, + "fn": 270073, + "fn_rate": 0.8885120130543063, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993855563, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11148798694569369, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33888, + "tp_rate": 0.11148798694569369, + "truth_threshold": 30.6 + }, + { + "f1": 0.20021671295007903, + "fn": 270147, + "fn_rate": 0.8887554653393034, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999993940155, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1112445346606966, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33814, + "tp_rate": 0.1112445346606966, + "truth_threshold": 30.62 + }, + { + "f1": 0.19982232750962392, + "fn": 270221, + "fn_rate": 0.8889989176243005, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994023583, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11100108237569951, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33740, + "tp_rate": 0.11100108237569951, + "truth_threshold": 30.64 + }, + { + "f1": 0.1993365125440597, + "fn": 270312, + "fn_rate": 0.8892982981369321, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994105861, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11070170186306796, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33649, + "tp_rate": 0.11070170186306796, + "truth_threshold": 30.66 + }, + { + "f1": 0.19885161680265942, + "fn": 270403, + "fn_rate": 0.8895976786495636, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994187008, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1104023213504364, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33558, + "tp_rate": 0.1104023213504364, + "truth_threshold": 30.68 + }, + { + "f1": 0.19850409240963213, + "fn": 270468, + "fn_rate": 0.8898115218728718, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994267037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11018847812712815, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33493, + "tp_rate": 0.11018847812712815, + "truth_threshold": 30.7 + }, + { + "f1": 0.1982264479760049, + "fn": 270520, + "fn_rate": 0.8899825964515184, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994345965, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.11001740354848155, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33441, + "tp_rate": 0.11001740354848155, + "truth_threshold": 30.72 + }, + { + "f1": 0.19794396291070349, + "fn": 270573, + "fn_rate": 0.8901569609259082, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994423805, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10984303907409174, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33388, + "tp_rate": 0.10984303907409174, + "truth_threshold": 30.740000000000002 + }, + { + "f1": 0.1975640273009209, + "fn": 270644, + "fn_rate": 0.8903905435236757, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994500575, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10960945647632427, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33317, + "tp_rate": 0.10960945647632427, + "truth_threshold": 30.76 + }, + { + "f1": 0.19726470989437225, + "fn": 270700, + "fn_rate": 0.8905747776852951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994576286, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10942522231470485, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33261, + "tp_rate": 0.10942522231470485, + "truth_threshold": 30.78 + }, + { + "f1": 0.19694983420432907, + "fn": 270759, + "fn_rate": 0.8907688815341441, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994650957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10923111846585581, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33202, + "tp_rate": 0.10923111846585581, + "truth_threshold": 30.8 + }, + { + "f1": 0.19663961270112487, + "fn": 270817, + "fn_rate": 0.89095969548725, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994724599, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10904030451274999, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33144, + "tp_rate": 0.10904030451274999, + "truth_threshold": 30.82 + }, + { + "f1": 0.19636139230741845, + "fn": 270869, + "fn_rate": 0.8911307700658966, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994797226, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10886922993410339, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 33092, + "tp_rate": 0.10886922993410339, + "truth_threshold": 30.84 + }, + { + "f1": 0.19582017616752534, + "fn": 270970, + "fn_rate": 0.8914630495359602, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994868854, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1085369504640398, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32991, + "tp_rate": 0.1085369504640398, + "truth_threshold": 30.86 + }, + { + "f1": 0.1954833653914654, + "fn": 271033, + "fn_rate": 0.8916703129677821, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999994939497, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10832968703221794, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32928, + "tp_rate": 0.10832968703221794, + "truth_threshold": 30.88 + }, + { + "f1": 0.1950976200655551, + "fn": 271105, + "fn_rate": 0.8919071854612928, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995009166, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10809281453870727, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32856, + "tp_rate": 0.10809281453870727, + "truth_threshold": 30.900000000000002 + }, + { + "f1": 0.1946628813076119, + "fn": 271186, + "fn_rate": 0.8921736670164923, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995077876, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10782633298350776, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32775, + "tp_rate": 0.10782633298350776, + "truth_threshold": 30.92 + }, + { + "f1": 0.19431969394544246, + "fn": 271250, + "fn_rate": 0.8923842203440573, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995145641, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1076157796559427, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32711, + "tp_rate": 0.1076157796559427, + "truth_threshold": 30.94 + }, + { + "f1": 0.19386906247400382, + "fn": 271334, + "fn_rate": 0.8926605715864864, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995212472, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10733942841351357, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32627, + "tp_rate": 0.10733942841351357, + "truth_threshold": 30.96 + }, + { + "f1": 0.1935255732132032, + "fn": 271398, + "fn_rate": 0.8928711249140515, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995278384, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10712887508594852, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32563, + "tp_rate": 0.10712887508594852, + "truth_threshold": 30.98 + }, + { + "f1": 0.19318789752125068, + "fn": 271461, + "fn_rate": 0.8930783883458733, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995343387, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10692161165412668, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32500, + "tp_rate": 0.10692161165412668, + "truth_threshold": 31 + }, + { + "f1": 0.19273669940780555, + "fn": 271545, + "fn_rate": 0.8933547395883025, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995407496, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10664526041169756, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32416, + "tp_rate": 0.10664526041169756, + "truth_threshold": 31.02 + }, + { + "f1": 0.19225302272470457, + "fn": 271635, + "fn_rate": 0.8936508302051908, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995470722, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1063491697948092, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32326, + "tp_rate": 0.1063491697948092, + "truth_threshold": 31.04 + }, + { + "f1": 0.191881457863648, + "fn": 271704, + "fn_rate": 0.8938778330114718, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995533079, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10612216698852814, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32257, + "tp_rate": 0.10612216698852814, + "truth_threshold": 31.060000000000002 + }, + { + "f1": 0.19129565496804599, + "fn": 271813, + "fn_rate": 0.8942364316474811, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995594576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.1057635683525189, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32148, + "tp_rate": 0.1057635683525189, + "truth_threshold": 31.080000000000002 + }, + { + "f1": 0.19083755922196033, + "fn": 271898, + "fn_rate": 0.8945160727856534, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995655227, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10548392721434657, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32063, + "tp_rate": 0.10548392721434657, + "truth_threshold": 31.1 + }, + { + "f1": 0.19051445988260646, + "fn": 271958, + "fn_rate": 0.8947134665302456, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995715042, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10528653346975435, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 32003, + "tp_rate": 0.10528653346975435, + "truth_threshold": 31.12 + }, + { + "f1": 0.1902235717900628, + "fn": 272012, + "fn_rate": 0.8948911209003787, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995774035, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10510887909962133, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31949, + "tp_rate": 0.10510887909962133, + "truth_threshold": 31.14 + }, + { + "f1": 0.18987387001107658, + "fn": 272077, + "fn_rate": 0.8951049641236869, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995832215, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10489503587631308, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31884, + "tp_rate": 0.10489503587631308, + "truth_threshold": 31.16 + }, + { + "f1": 0.1894317999058857, + "fn": 272159, + "fn_rate": 0.8953747355746297, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995889594, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10462526442537036, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31802, + "tp_rate": 0.10462526442537036, + "truth_threshold": 31.18 + }, + { + "f1": 0.18903750484077572, + "fn": 272232, + "fn_rate": 0.8956148979638835, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999995946183, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10438510203611648, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31729, + "tp_rate": 0.10438510203611648, + "truth_threshold": 31.2 + }, + { + "f1": 0.1887305143728846, + "fn": 272289, + "fn_rate": 0.8958024220212462, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996001994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10419757797875386, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31672, + "tp_rate": 0.10419757797875386, + "truth_threshold": 31.220000000000002 + }, + { + "f1": 0.1882770870337478, + "fn": 272373, + "fn_rate": 0.8960787732636752, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996057035, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10392122673632473, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31588, + "tp_rate": 0.10392122673632473, + "truth_threshold": 31.240000000000002 + }, + { + "f1": 0.18789905746427485, + "fn": 272443, + "fn_rate": 0.8963090659656996, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996111318, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10369093403430045, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31518, + "tp_rate": 0.10369093403430045, + "truth_threshold": 31.26 + }, + { + "f1": 0.1874824837061198, + "fn": 272520, + "fn_rate": 0.8965623879379262, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996164856, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10343761206207375, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31441, + "tp_rate": 0.10343761206207375, + "truth_threshold": 31.28 + }, + { + "f1": 0.18707168546429445, + "fn": 272596, + "fn_rate": 0.8968124200144098, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996217656, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10318757998559025, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31365, + "tp_rate": 0.10318757998559025, + "truth_threshold": 31.3 + }, + { + "f1": 0.18666666666666668, + "fn": 272671, + "fn_rate": 0.89705916219515, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996269727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10294083780484996, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31290, + "tp_rate": 0.10294083780484996, + "truth_threshold": 31.32 + }, + { + "f1": 0.18634692952099097, + "fn": 272730, + "fn_rate": 0.897253266043999, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996321084, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10274673395600094, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31231, + "tp_rate": 0.10274673395600094, + "truth_threshold": 31.34 + }, + { + "f1": 0.1860546998549851, + "fn": 272784, + "fn_rate": 0.8974309204141321, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996371732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10256907958586792, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31177, + "tp_rate": 0.10256907958586792, + "truth_threshold": 31.36 + }, + { + "f1": 0.1856974023493458, + "fn": 272850, + "fn_rate": 0.8976480535331836, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996421683, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10235194646681646, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31111, + "tp_rate": 0.10235194646681646, + "truth_threshold": 31.38 + }, + { + "f1": 0.18527496014853997, + "fn": 272928, + "fn_rate": 0.8979046654011534, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996470947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10209533459884657, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 31033, + "tp_rate": 0.10209533459884657, + "truth_threshold": 31.400000000000002 + }, + { + "f1": 0.18486316053481747, + "fn": 273004, + "fn_rate": 0.898154697477637, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996519533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10184530252236307, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30957, + "tp_rate": 0.10184530252236307, + "truth_threshold": 31.42 + }, + { + "f1": 0.1842993423214083, + "fn": 273108, + "fn_rate": 0.8984968466349301, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996567449, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10150315336506986, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30853, + "tp_rate": 0.10150315336506986, + "truth_threshold": 31.44 + }, + { + "f1": 0.1840015772587959, + "fn": 273163, + "fn_rate": 0.8986777909008064, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996614707, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10132220909919365, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30798, + "tp_rate": 0.10132220909919365, + "truth_threshold": 31.46 + }, + { + "f1": 0.18362663957692194, + "fn": 273232, + "fn_rate": 0.8989047937070874, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996661313, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10109520629291258, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30729, + "tp_rate": 0.10109520629291258, + "truth_threshold": 31.48 + }, + { + "f1": 0.1831054950178425, + "fn": 273328, + "fn_rate": 0.899220623698435, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996707277, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.100779376301565, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30633, + "tp_rate": 0.100779376301565, + "truth_threshold": 31.5 + }, + { + "f1": 0.1826166503240619, + "fn": 273418, + "fn_rate": 0.8995167143153233, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999675261, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10048328568467665, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30543, + "tp_rate": 0.10048328568467665, + "truth_threshold": 31.52 + }, + { + "f1": 0.18229658776955185, + "fn": 273477, + "fn_rate": 0.8997108181641724, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996797317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10028918183582762, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30484, + "tp_rate": 0.10028918183582762, + "truth_threshold": 31.54 + }, + { + "f1": 0.18197532193333452, + "fn": 273536, + "fn_rate": 0.8999049220130214, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999684141, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.10009507798697859, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30425, + "tp_rate": 0.10009507798697859, + "truth_threshold": 31.560000000000002 + }, + { + "f1": 0.1815511444536176, + "fn": 273614, + "fn_rate": 0.9001615338809913, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996884895, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09983846611900869, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30347, + "tp_rate": 0.09983846611900869, + "truth_threshold": 31.580000000000002 + }, + { + "f1": 0.1812573671519264, + "fn": 273668, + "fn_rate": 0.9003391882511244, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996927781, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09966081174887567, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30293, + "tp_rate": 0.09966081174887567, + "truth_threshold": 31.6 + }, + { + "f1": 0.18105057806927258, + "fn": 273706, + "fn_rate": 0.900464204289366, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999996970077, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09953579571063394, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30255, + "tp_rate": 0.09953579571063394, + "truth_threshold": 31.62 + }, + { + "f1": 0.18068640243245507, + "fn": 273773, + "fn_rate": 0.9006846273041608, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997011791, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09931537269583927, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30188, + "tp_rate": 0.09931537269583927, + "truth_threshold": 31.64 + }, + { + "f1": 0.1802180433572211, + "fn": 273859, + "fn_rate": 0.9009675583380763, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997052931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09903244166192374, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30102, + "tp_rate": 0.09903244166192374, + "truth_threshold": 31.66 + }, + { + "f1": 0.1799069477793812, + "fn": 273916, + "fn_rate": 0.9011550823954388, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997093504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09884491760456111, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 30045, + "tp_rate": 0.09884491760456111, + "truth_threshold": 31.68 + }, + { + "f1": 0.17961263894212343, + "fn": 273970, + "fn_rate": 0.9013327367655719, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997133519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09866726323442811, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29991, + "tp_rate": 0.09866726323442811, + "truth_threshold": 31.7 + }, + { + "f1": 0.17925878892795744, + "fn": 274035, + "fn_rate": 0.9015465799888801, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997172982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09845342001111984, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29926, + "tp_rate": 0.09845342001111984, + "truth_threshold": 31.720000000000002 + }, + { + "f1": 0.17874604544147255, + "fn": 274129, + "fn_rate": 0.9018558301887413, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997211902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09814416981125867, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29832, + "tp_rate": 0.09814416981125867, + "truth_threshold": 31.740000000000002 + }, + { + "f1": 0.17846227602325163, + "fn": 274181, + "fn_rate": 0.9020269047673879, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997250287, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09797309523261208, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29780, + "tp_rate": 0.09797309523261208, + "truth_threshold": 31.76 + }, + { + "f1": 0.17800369242573189, + "fn": 274265, + "fn_rate": 0.9023032560098171, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997288144, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09769674399018295, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29696, + "tp_rate": 0.09769674399018295, + "truth_threshold": 31.78 + }, + { + "f1": 0.1776978417266187, + "fn": 274321, + "fn_rate": 0.9024874901714365, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997325478, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09751250982856353, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29640, + "tp_rate": 0.09751250982856353, + "truth_threshold": 31.8 + }, + { + "f1": 0.1773640342987348, + "fn": 274382, + "fn_rate": 0.9026881738117719, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997362299, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09731182618822809, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29579, + "tp_rate": 0.09731182618822809, + "truth_threshold": 31.82 + }, + { + "f1": 0.1770202353392748, + "fn": 274445, + "fn_rate": 0.9028954372435938, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997398613, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09710456275640625, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29516, + "tp_rate": 0.09710456275640625, + "truth_threshold": 31.84 + }, + { + "f1": 0.1764674121712421, + "fn": 274546, + "fn_rate": 0.9032277167136573, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997434427, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09677228328634266, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29415, + "tp_rate": 0.09677228328634266, + "truth_threshold": 31.86 + }, + { + "f1": 0.17605160516051604, + "fn": 274622, + "fn_rate": 0.9034777487901409, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997469748, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09652225120985916, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29339, + "tp_rate": 0.09652225120985916, + "truth_threshold": 31.88 + }, + { + "f1": 0.17564161044822701, + "fn": 274697, + "fn_rate": 0.9037244909708811, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997504583, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09627550902911887, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29264, + "tp_rate": 0.09627550902911887, + "truth_threshold": 31.900000000000002 + }, + { + "f1": 0.17537877878358585, + "fn": 274745, + "fn_rate": 0.9038824059665549, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997538939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09611759403344508, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29216, + "tp_rate": 0.09611759403344508, + "truth_threshold": 31.92 + }, + { + "f1": 0.1750391757776617, + "fn": 274807, + "fn_rate": 0.9040863795026336, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999757282, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09591362049736644, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29154, + "tp_rate": 0.09591362049736644, + "truth_threshold": 31.94 + }, + { + "f1": 0.1745459786682041, + "fn": 274897, + "fn_rate": 0.9043824701195219, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997606236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09561752988047809, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29064, + "tp_rate": 0.09561752988047809, + "truth_threshold": 31.96 + }, + { + "f1": 0.17423295932341848, + "fn": 274954, + "fn_rate": 0.9045699941768846, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997639192, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09543000582311546, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 29007, + "tp_rate": 0.09543000582311546, + "truth_threshold": 31.98 + }, + { + "f1": 0.1738879677024007, + "fn": 275017, + "fn_rate": 0.9047772576087064, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997671694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09522274239129362, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28944, + "tp_rate": 0.09522274239129362, + "truth_threshold": 32 + }, + { + "f1": 0.17342106844540592, + "fn": 275102, + "fn_rate": 0.9050568987468787, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997703748, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09494310125312129, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28859, + "tp_rate": 0.09494310125312129, + "truth_threshold": 32.02 + }, + { + "f1": 0.17303184391791987, + "fn": 275173, + "fn_rate": 0.9052904813446462, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997735362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0947095186553538, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28788, + "tp_rate": 0.0947095186553538, + "truth_threshold": 32.04 + }, + { + "f1": 0.17260845517506734, + "fn": 275250, + "fn_rate": 0.9055438033168729, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997766539, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09445619668312712, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28711, + "tp_rate": 0.09445619668312712, + "truth_threshold": 32.06 + }, + { + "f1": 0.17215293396033532, + "fn": 275333, + "fn_rate": 0.9058168646635588, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997797288, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09418313533644118, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28628, + "tp_rate": 0.09418313533644118, + "truth_threshold": 32.08 + }, + { + "f1": 0.17187810114934232, + "fn": 275383, + "fn_rate": 0.905981359450719, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997827613, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.094018640549281, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28578, + "tp_rate": 0.094018640549281, + "truth_threshold": 32.1 + }, + { + "f1": 0.1715701902659392, + "fn": 275439, + "fn_rate": 0.9061655936123384, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997857522, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09383440638766158, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28522, + "tp_rate": 0.09383440638766158, + "truth_threshold": 32.12 + }, + { + "f1": 0.1712121485599456, + "fn": 275504, + "fn_rate": 0.9063794368356467, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997887017, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09362056316435333, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28457, + "tp_rate": 0.09362056316435333, + "truth_threshold": 32.14 + }, + { + "f1": 0.17081595686423184, + "fn": 275576, + "fn_rate": 0.9066163093291574, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997916107, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09338369067084264, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28385, + "tp_rate": 0.09338369067084264, + "truth_threshold": 32.160000000000004 + }, + { + "f1": 0.17032047577771356, + "fn": 275666, + "fn_rate": 0.9069123999460457, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997944797, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09308760005395429, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28295, + "tp_rate": 0.09308760005395429, + "truth_threshold": 32.18 + }, + { + "f1": 0.16997898818160473, + "fn": 275728, + "fn_rate": 0.9071163734821244, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999997973091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09288362651787564, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28233, + "tp_rate": 0.09288362651787564, + "truth_threshold": 32.2 + }, + { + "f1": 0.1694560039506411, + "fn": 275823, + "fn_rate": 0.9074289135777287, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998000997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09257108642227128, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28138, + "tp_rate": 0.09257108642227128, + "truth_threshold": 32.22 + }, + { + "f1": 0.16916933196002965, + "fn": 275875, + "fn_rate": 0.9075999881563753, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998028517, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09240001184362467, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28086, + "tp_rate": 0.09240001184362467, + "truth_threshold": 32.24 + }, + { + "f1": 0.16877726100681978, + "fn": 275946, + "fn_rate": 0.9078335707541428, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999805566, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0921664292458572, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 28015, + "tp_rate": 0.0921664292458572, + "truth_threshold": 32.26 + }, + { + "f1": 0.1682585979354108, + "fn": 276040, + "fn_rate": 0.908142820954004, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998082427, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09185717904599604, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27921, + "tp_rate": 0.09185717904599604, + "truth_threshold": 32.28 + }, + { + "f1": 0.1678059071729958, + "fn": 276122, + "fn_rate": 0.9084125924049467, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998108827, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09158740759505331, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27839, + "tp_rate": 0.09158740759505331, + "truth_threshold": 32.3 + }, + { + "f1": 0.16734194310795983, + "fn": 276206, + "fn_rate": 0.9086889436473758, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998134864, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09131105635262418, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27755, + "tp_rate": 0.09131105635262418, + "truth_threshold": 32.32 + }, + { + "f1": 0.16710987294753282, + "fn": 276248, + "fn_rate": 0.9088271192685904, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998160541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09117288073140963, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27713, + "tp_rate": 0.09117288073140963, + "truth_threshold": 32.34 + }, + { + "f1": 0.16682246654323296, + "fn": 276300, + "fn_rate": 0.908998193847237, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998185866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09100180615276302, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27661, + "tp_rate": 0.09100180615276302, + "truth_threshold": 32.36 + }, + { + "f1": 0.16640224885837862, + "fn": 276376, + "fn_rate": 0.9092482259237205, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998210842, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09075177407627952, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27585, + "tp_rate": 0.09075177407627952, + "truth_threshold": 32.38 + }, + { + "f1": 0.16597680620753738, + "fn": 276453, + "fn_rate": 0.9095015478959472, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998235474, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09049845210405283, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27508, + "tp_rate": 0.09049845210405283, + "truth_threshold": 32.4 + }, + { + "f1": 0.16567797377298485, + "fn": 276507, + "fn_rate": 0.9096792022660802, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998259766, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09032079773391981, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27454, + "tp_rate": 0.09032079773391981, + "truth_threshold": 32.42 + }, + { + "f1": 0.1652572297774478, + "fn": 276583, + "fn_rate": 0.9099292343425637, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998283725, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.09007076565743631, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27378, + "tp_rate": 0.09007076565743631, + "truth_threshold": 32.44 + }, + { + "f1": 0.16481413279075524, + "fn": 276663, + "fn_rate": 0.91019242600202, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998307353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08980757399798, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27298, + "tp_rate": 0.08980757399798, + "truth_threshold": 32.46 + }, + { + "f1": 0.16442624732780173, + "fn": 276733, + "fn_rate": 0.9104227187040442, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998330656, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08957728129595573, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27228, + "tp_rate": 0.08957728129595573, + "truth_threshold": 32.480000000000004 + }, + { + "f1": 0.1639212559423494, + "fn": 276824, + "fn_rate": 0.9107220992166758, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998353639, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08927790078332418, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27137, + "tp_rate": 0.08927790078332418, + "truth_threshold": 32.5 + }, + { + "f1": 0.1633221547478776, + "fn": 276932, + "fn_rate": 0.9110774079569418, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998376304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08892259204305815, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 27029, + "tp_rate": 0.08892259204305815, + "truth_threshold": 32.52 + }, + { + "f1": 0.16289527125036263, + "fn": 277009, + "fn_rate": 0.9113307299291685, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998398659, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08866927007083146, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26952, + "tp_rate": 0.08866927007083146, + "truth_threshold": 32.54 + }, + { + "f1": 0.16260049567793025, + "fn": 277062, + "fn_rate": 0.9115050944035583, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998420704, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08849490559644164, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26899, + "tp_rate": 0.08849490559644164, + "truth_threshold": 32.56 + }, + { + "f1": 0.1623399393008718, + "fn": 277109, + "fn_rate": 0.9116597195034889, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998442447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08834028049651106, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26852, + "tp_rate": 0.08834028049651106, + "truth_threshold": 32.58 + }, + { + "f1": 0.16209548686692787, + "fn": 277153, + "fn_rate": 0.9118044749161899, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998463891, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0881955250838101, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26808, + "tp_rate": 0.0881955250838101, + "truth_threshold": 32.6 + }, + { + "f1": 0.16160638683924036, + "fn": 277241, + "fn_rate": 0.9120939857415918, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998485039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08790601425840815, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26720, + "tp_rate": 0.08790601425840815, + "truth_threshold": 32.62 + }, + { + "f1": 0.16138398257924025, + "fn": 277281, + "fn_rate": 0.91222558157132, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998505895, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08777441842868, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26680, + "tp_rate": 0.08777441842868, + "truth_threshold": 32.64 + }, + { + "f1": 0.16102197376700064, + "fn": 277346, + "fn_rate": 0.9124394247946283, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998526465, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08756057520537174, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26615, + "tp_rate": 0.08756057520537174, + "truth_threshold": 32.660000000000004 + }, + { + "f1": 0.160610223236168, + "fn": 277420, + "fn_rate": 0.9126828770796254, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998546752, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08731712292037465, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26541, + "tp_rate": 0.08731712292037465, + "truth_threshold": 32.68 + }, + { + "f1": 0.1603490954868151, + "fn": 277467, + "fn_rate": 0.912837502179556, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999856676, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08716249782044407, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26494, + "tp_rate": 0.08716249782044407, + "truth_threshold": 32.7 + }, + { + "f1": 0.159975543905953, + "fn": 277534, + "fn_rate": 0.9130579251943506, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998586491, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0869420748056494, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26427, + "tp_rate": 0.0869420748056494, + "truth_threshold": 32.72 + }, + { + "f1": 0.15968589557299234, + "fn": 277586, + "fn_rate": 0.9132289997729972, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998605952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0867710002270028, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26375, + "tp_rate": 0.0867710002270028, + "truth_threshold": 32.74 + }, + { + "f1": 0.15934648201190527, + "fn": 277647, + "fn_rate": 0.9134296834133326, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998625143, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08657031658666736, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26314, + "tp_rate": 0.08657031658666736, + "truth_threshold": 32.76 + }, + { + "f1": 0.15902318482447853, + "fn": 277705, + "fn_rate": 0.9136204973664385, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998644071, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08637950263356155, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26256, + "tp_rate": 0.08637950263356155, + "truth_threshold": 32.78 + }, + { + "f1": 0.1585933240443448, + "fn": 277782, + "fn_rate": 0.9138738193386652, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998662739, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08612618066133484, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26179, + "tp_rate": 0.08612618066133484, + "truth_threshold": 32.8 + }, + { + "f1": 0.15821396543784386, + "fn": 277850, + "fn_rate": 0.914097532249203, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998681149, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08590246775079698, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26111, + "tp_rate": 0.08590246775079698, + "truth_threshold": 32.82 + }, + { + "f1": 0.1578516754240832, + "fn": 277915, + "fn_rate": 0.9143113754725113, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998699307, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08568862452748872, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26046, + "tp_rate": 0.08568862452748872, + "truth_threshold": 32.84 + }, + { + "f1": 0.1576334674877564, + "fn": 277954, + "fn_rate": 0.9144396814064962, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998717214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08556031859350377, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 26007, + "tp_rate": 0.08556031859350377, + "truth_threshold": 32.86 + }, + { + "f1": 0.15732074007614152, + "fn": 278010, + "fn_rate": 0.9146239155681156, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998734874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08537608443188435, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25951, + "tp_rate": 0.08537608443188435, + "truth_threshold": 32.88 + }, + { + "f1": 0.15681791996895295, + "fn": 278100, + "fn_rate": 0.914920006185004, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998752291, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08507999381499601, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25861, + "tp_rate": 0.08507999381499601, + "truth_threshold": 32.9 + }, + { + "f1": 0.15646019201960226, + "fn": 278164, + "fn_rate": 0.915130559512569, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998769469, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08486944048743095, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25797, + "tp_rate": 0.08486944048743095, + "truth_threshold": 32.92 + }, + { + "f1": 0.15620298927548892, + "fn": 278210, + "fn_rate": 0.9152818947167565, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999878641, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08471810528324357, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25751, + "tp_rate": 0.08471810528324357, + "truth_threshold": 32.94 + }, + { + "f1": 0.1557666988235437, + "fn": 278288, + "fn_rate": 0.9155385065847264, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998803119, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08446149341527368, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25673, + "tp_rate": 0.08446149341527368, + "truth_threshold": 32.96 + }, + { + "f1": 0.1552518343640568, + "fn": 278380, + "fn_rate": 0.9158411769931011, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998819595, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0841588230068989, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25581, + "tp_rate": 0.0841588230068989, + "truth_threshold": 32.980000000000004 + }, + { + "f1": 0.15494949740202982, + "fn": 278434, + "fn_rate": 0.9160188313632341, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998835847, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0839811686367659, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25527, + "tp_rate": 0.0839811686367659, + "truth_threshold": 33 + }, + { + "f1": 0.1545074800854867, + "fn": 278513, + "fn_rate": 0.9162787331269472, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998851874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0837212668730528, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25448, + "tp_rate": 0.0837212668730528, + "truth_threshold": 33.02 + }, + { + "f1": 0.1542324508136993, + "fn": 278562, + "fn_rate": 0.9164399380183642, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999886768, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0835600619816358, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25399, + "tp_rate": 0.0835600619816358, + "truth_threshold": 33.04 + }, + { + "f1": 0.15379008746355685, + "fn": 278641, + "fn_rate": 0.9166998397820773, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999888327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08330016021792269, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25320, + "tp_rate": 0.08330016021792269, + "truth_threshold": 33.06 + }, + { + "f1": 0.15338630895968505, + "fn": 278713, + "fn_rate": 0.916936712275588, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998898644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08306328772441202, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25248, + "tp_rate": 0.08306328772441202, + "truth_threshold": 33.08 + }, + { + "f1": 0.15294260626500167, + "fn": 278792, + "fn_rate": 0.9171966140393011, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998913807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0828033859606989, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25169, + "tp_rate": 0.0828033859606989, + "truth_threshold": 33.1 + }, + { + "f1": 0.15269564794612958, + "fn": 278836, + "fn_rate": 0.9173413694520021, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999892876, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08265863054799794, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25125, + "tp_rate": 0.08265863054799794, + "truth_threshold": 33.12 + }, + { + "f1": 0.15225254250682357, + "fn": 278915, + "fn_rate": 0.9176012712157152, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998943508, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08239872878428482, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 25046, + "tp_rate": 0.08239872878428482, + "truth_threshold": 33.14 + }, + { + "f1": 0.15193190454476363, + "fn": 278972, + "fn_rate": 0.9177887952730778, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998958053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0822112047269222, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24989, + "tp_rate": 0.0822112047269222, + "truth_threshold": 33.160000000000004 + }, + { + "f1": 0.1516397180888908, + "fn": 279024, + "fn_rate": 0.9179598698517244, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998972399, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0820401301482756, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24937, + "tp_rate": 0.0820401301482756, + "truth_threshold": 33.18 + }, + { + "f1": 0.15143738102912468, + "fn": 279060, + "fn_rate": 0.9180783060984797, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999998986546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08192169390152026, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24901, + "tp_rate": 0.08192169390152026, + "truth_threshold": 33.2 + }, + { + "f1": 0.1510499038906056, + "fn": 279129, + "fn_rate": 0.9183053089047608, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999000498, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08169469109523919, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24832, + "tp_rate": 0.08169469109523919, + "truth_threshold": 33.22 + }, + { + "f1": 0.1505774121712888, + "fn": 279213, + "fn_rate": 0.9185816601471899, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999014259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08141833985281006, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24748, + "tp_rate": 0.08141833985281006, + "truth_threshold": 33.24 + }, + { + "f1": 0.15007607571054712, + "fn": 279302, + "fn_rate": 0.9188744608683351, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999902783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08112553913166491, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24659, + "tp_rate": 0.08112553913166491, + "truth_threshold": 33.26 + }, + { + "f1": 0.14978330208663046, + "fn": 279354, + "fn_rate": 0.9190455354469816, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999041214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08095446455301832, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24607, + "tp_rate": 0.08095446455301832, + "truth_threshold": 33.28 + }, + { + "f1": 0.14940030441400304, + "fn": 279422, + "fn_rate": 0.9192692483575196, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999054414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08073075164248045, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24539, + "tp_rate": 0.08073075164248045, + "truth_threshold": 33.3 + }, + { + "f1": 0.14905705186366985, + "fn": 279483, + "fn_rate": 0.919469931997855, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999067432, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08053006800214502, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24478, + "tp_rate": 0.08053006800214502, + "truth_threshold": 33.32 + }, + { + "f1": 0.14861128030210743, + "fn": 279562, + "fn_rate": 0.9197298337615681, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999080271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0802701662384319, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24399, + "tp_rate": 0.0802701662384319, + "truth_threshold": 33.34 + }, + { + "f1": 0.14841437116994188, + "fn": 279597, + "fn_rate": 0.9198449801125802, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999092933, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08015501988741977, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24364, + "tp_rate": 0.08015501988741977, + "truth_threshold": 33.36 + }, + { + "f1": 0.14822779720492732, + "fn": 279630, + "fn_rate": 0.9199535466721059, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999105421, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.08004645332789403, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24331, + "tp_rate": 0.08004645332789403, + "truth_threshold": 33.38 + }, + { + "f1": 0.14779901040778023, + "fn": 279706, + "fn_rate": 0.9202035787485895, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999117737, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07979642125141054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24255, + "tp_rate": 0.07979642125141054, + "truth_threshold": 33.4 + }, + { + "f1": 0.14760192577244197, + "fn": 279741, + "fn_rate": 0.9203187250996016, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999129883, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0796812749003984, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24220, + "tp_rate": 0.0796812749003984, + "truth_threshold": 33.42 + }, + { + "f1": 0.14689565196186016, + "fn": 279866, + "fn_rate": 0.9207299620675021, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999141862, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07927003793249791, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24095, + "tp_rate": 0.07927003793249791, + "truth_threshold": 33.44 + }, + { + "f1": 0.1465627629605239, + "fn": 279925, + "fn_rate": 0.9209240659163511, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999153677, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0790759340836489, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 24036, + "tp_rate": 0.0790759340836489, + "truth_threshold": 33.46 + }, + { + "f1": 0.14602012808783166, + "fn": 280021, + "fn_rate": 0.9212398959076987, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999165328, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07876010409230132, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23940, + "tp_rate": 0.07876010409230132, + "truth_threshold": 33.480000000000004 + }, + { + "f1": 0.14556768958574828, + "fn": 280101, + "fn_rate": 0.921503087567155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999917682, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.078496912432845, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23860, + "tp_rate": 0.078496912432845, + "truth_threshold": 33.5 + }, + { + "f1": 0.14518294320095682, + "fn": 280169, + "fn_rate": 0.9217268004776928, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999188153, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07827319952230714, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23792, + "tp_rate": 0.07827319952230714, + "truth_threshold": 33.52 + }, + { + "f1": 0.144775390625, + "fn": 280241, + "fn_rate": 0.9219636729712035, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999199329, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07803632702879645, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23720, + "tp_rate": 0.07803632702879645, + "truth_threshold": 33.54 + }, + { + "f1": 0.1444181943605052, + "fn": 280304, + "fn_rate": 0.9221709364030254, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999210353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07782906359697461, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23657, + "tp_rate": 0.07782906359697461, + "truth_threshold": 33.56 + }, + { + "f1": 0.14413495823767888, + "fn": 280354, + "fn_rate": 0.9223354311901856, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999221224, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07766456880981441, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23607, + "tp_rate": 0.07766456880981441, + "truth_threshold": 33.58 + }, + { + "f1": 0.1437496183206107, + "fn": 280422, + "fn_rate": 0.9225591441007235, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999231945, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07744085589927655, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23539, + "tp_rate": 0.07744085589927655, + "truth_threshold": 33.6 + }, + { + "f1": 0.1434722858451672, + "fn": 280471, + "fn_rate": 0.9227203489921404, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999242519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07727965100785956, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23490, + "tp_rate": 0.07727965100785956, + "truth_threshold": 33.62 + }, + { + "f1": 0.1430919043080908, + "fn": 280538, + "fn_rate": 0.9229407720069351, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999252948, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0770592279930649, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23423, + "tp_rate": 0.0770592279930649, + "truth_threshold": 33.64 + }, + { + "f1": 0.1427515244833865, + "fn": 280598, + "fn_rate": 0.9231381657515273, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999263233, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07686183424847266, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23363, + "tp_rate": 0.07686183424847266, + "truth_threshold": 33.660000000000004 + }, + { + "f1": 0.1423263090989097, + "fn": 280673, + "fn_rate": 0.9233849079322676, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999273376, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07661509206773237, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23288, + "tp_rate": 0.07661509206773237, + "truth_threshold": 33.68 + }, + { + "f1": 0.1419061416860753, + "fn": 280747, + "fn_rate": 0.9236283602172647, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999928338, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07637163978273528, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23214, + "tp_rate": 0.07637163978273528, + "truth_threshold": 33.7 + }, + { + "f1": 0.14149714767870572, + "fn": 280819, + "fn_rate": 0.9238652327107754, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999293245, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07613476728922461, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23142, + "tp_rate": 0.07613476728922461, + "truth_threshold": 33.72 + }, + { + "f1": 0.1411675493205807, + "fn": 280877, + "fn_rate": 0.9240560466638812, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999302975, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07594395333611878, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 23084, + "tp_rate": 0.07594395333611878, + "truth_threshold": 33.74 + }, + { + "f1": 0.14058150987025222, + "fn": 280980, + "fn_rate": 0.9243949059254313, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999312572, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07560509407456878, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22981, + "tp_rate": 0.07560509407456878, + "truth_threshold": 33.76 + }, + { + "f1": 0.14031985707992756, + "fn": 281026, + "fn_rate": 0.9245462411296186, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999322036, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0754537588703814, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22935, + "tp_rate": 0.0754537588703814, + "truth_threshold": 33.78 + }, + { + "f1": 0.1398873997919344, + "fn": 281102, + "fn_rate": 0.9247962732061021, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999331369, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0752037267938979, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22859, + "tp_rate": 0.0752037267938979, + "truth_threshold": 33.8 + }, + { + "f1": 0.13959751260833375, + "fn": 281153, + "fn_rate": 0.9249640578890055, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999340575, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0750359421109945, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22808, + "tp_rate": 0.0750359421109945, + "truth_threshold": 33.82 + }, + { + "f1": 0.13916471783820847, + "fn": 281229, + "fn_rate": 0.925214089965489, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999349654, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.074785910034511, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22732, + "tp_rate": 0.074785910034511, + "truth_threshold": 33.84 + }, + { + "f1": 0.1389307275020511, + "fn": 281270, + "fn_rate": 0.9253489756909603, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999358606, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07465102430903965, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22691, + "tp_rate": 0.07465102430903965, + "truth_threshold": 33.86 + }, + { + "f1": 0.13854934718173578, + "fn": 281337, + "fn_rate": 0.925569398705755, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999367437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07443060129424499, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22624, + "tp_rate": 0.07443060129424499, + "truth_threshold": 33.88 + }, + { + "f1": 0.1382581905712728, + "fn": 281388, + "fn_rate": 0.9257371833886584, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999376146, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07426281661134158, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22573, + "tp_rate": 0.07426281661134158, + "truth_threshold": 33.9 + }, + { + "f1": 0.137865124485395, + "fn": 281457, + "fn_rate": 0.9259641861949395, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999384734, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07403581380506052, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22504, + "tp_rate": 0.07403581380506052, + "truth_threshold": 33.92 + }, + { + "f1": 0.13744822177014143, + "fn": 281530, + "fn_rate": 0.9262043485841933, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999393205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07379565141580663, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22431, + "tp_rate": 0.07379565141580663, + "truth_threshold": 33.94 + }, + { + "f1": 0.13704339298847756, + "fn": 281601, + "fn_rate": 0.9264379311819608, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999401559, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07356206881803916, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22360, + "tp_rate": 0.07356206881803916, + "truth_threshold": 33.96 + }, + { + "f1": 0.13672363484785327, + "fn": 281657, + "fn_rate": 0.9266221653435802, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999409798, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07337783465641974, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22304, + "tp_rate": 0.07337783465641974, + "truth_threshold": 33.980000000000004 + }, + { + "f1": 0.13638620994095754, + "fn": 281716, + "fn_rate": 0.9268162691924293, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999417923, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07318373080757071, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22245, + "tp_rate": 0.07318373080757071, + "truth_threshold": 34 + }, + { + "f1": 0.13606622719607542, + "fn": 281772, + "fn_rate": 0.9270005033540487, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999425937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07299949664595129, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22189, + "tp_rate": 0.07299949664595129, + "truth_threshold": 34.02 + }, + { + "f1": 0.1358094350268626, + "fn": 281817, + "fn_rate": 0.9271485486624929, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999433841, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07285145133750712, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22144, + "tp_rate": 0.07285145133750712, + "truth_threshold": 34.04 + }, + { + "f1": 0.13560891833041985, + "fn": 281852, + "fn_rate": 0.927263695013505, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999441634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07273630498649498, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22109, + "tp_rate": 0.07273630498649498, + "truth_threshold": 34.06 + }, + { + "f1": 0.13533442528418327, + "fn": 281900, + "fn_rate": 0.9274216100091788, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999449322, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0725783899908212, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22061, + "tp_rate": 0.0725783899908212, + "truth_threshold": 34.08 + }, + { + "f1": 0.13505985139919136, + "fn": 281948, + "fn_rate": 0.9275795250048526, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999456903, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07242047499514741, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 22013, + "tp_rate": 0.07242047499514741, + "truth_threshold": 34.1 + }, + { + "f1": 0.1347394129811793, + "fn": 282004, + "fn_rate": 0.927763759166472, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999464381, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07223624083352799, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21957, + "tp_rate": 0.07223624083352799, + "truth_threshold": 34.12 + }, + { + "f1": 0.13434484790454446, + "fn": 282073, + "fn_rate": 0.9279907619727531, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999471755, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07200923802724692, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21888, + "tp_rate": 0.07200923802724692, + "truth_threshold": 34.14 + }, + { + "f1": 0.13387523559855846, + "fn": 282155, + "fn_rate": 0.9282605334236959, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999479027, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0717394665763042, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21806, + "tp_rate": 0.0717394665763042, + "truth_threshold": 34.160000000000004 + }, + { + "f1": 0.1334221709120385, + "fn": 282234, + "fn_rate": 0.9285204351874089, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999486199, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07147956481259109, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21727, + "tp_rate": 0.07147956481259109, + "truth_threshold": 34.18 + }, + { + "f1": 0.1330729118682169, + "fn": 282295, + "fn_rate": 0.9287211188277443, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999493273, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07127888117225566, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21666, + "tp_rate": 0.07127888117225566, + "truth_threshold": 34.2 + }, + { + "f1": 0.1327456460976134, + "fn": 282352, + "fn_rate": 0.928908642885107, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999500249, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07109135711489303, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21609, + "tp_rate": 0.07109135711489303, + "truth_threshold": 34.22 + }, + { + "f1": 0.13256824088124888, + "fn": 282383, + "fn_rate": 0.9290106296531463, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999950713, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07098937034685371, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21578, + "tp_rate": 0.07098937034685371, + "truth_threshold": 34.24 + }, + { + "f1": 0.13232727898345908, + "fn": 282425, + "fn_rate": 0.9291488052743608, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999513914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07085119472563914, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21536, + "tp_rate": 0.07085119472563914, + "truth_threshold": 34.26 + }, + { + "f1": 0.13205181780192227, + "fn": 282473, + "fn_rate": 0.9293067202700347, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999520607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07069327972996536, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21488, + "tp_rate": 0.07069327972996536, + "truth_threshold": 34.28 + }, + { + "f1": 0.13166677935472768, + "fn": 282540, + "fn_rate": 0.9295271432848293, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999527207, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0704728567151707, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21421, + "tp_rate": 0.0704728567151707, + "truth_threshold": 34.300000000000004 + }, + { + "f1": 0.13127090301003344, + "fn": 282609, + "fn_rate": 0.9297541460911104, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999533716, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.07024585390888963, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21352, + "tp_rate": 0.07024585390888963, + "truth_threshold": 34.32 + }, + { + "f1": 0.1308227307108113, + "fn": 282687, + "fn_rate": 0.9300107579590803, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999540136, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06998924204091972, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21274, + "tp_rate": 0.06998924204091972, + "truth_threshold": 34.34 + }, + { + "f1": 0.1304778364813915, + "fn": 282747, + "fn_rate": 0.9302081517036725, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999546466, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0697918482963275, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21214, + "tp_rate": 0.0697918482963275, + "truth_threshold": 34.36 + }, + { + "f1": 0.13024168496681368, + "fn": 282788, + "fn_rate": 0.9303430374291438, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999955271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06965696257085613, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21173, + "tp_rate": 0.06965696257085613, + "truth_threshold": 34.38 + }, + { + "f1": 0.12996560910036115, + "fn": 282836, + "fn_rate": 0.9305009524248177, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999558868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06949904757518234, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21125, + "tp_rate": 0.06949904757518234, + "truth_threshold": 34.4 + }, + { + "f1": 0.12960889042039972, + "fn": 282898, + "fn_rate": 0.9307049259608963, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999564941, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0692950740391037, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21063, + "tp_rate": 0.0692950740391037, + "truth_threshold": 34.42 + }, + { + "f1": 0.129281217111944, + "fn": 282955, + "fn_rate": 0.9308924500182589, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999570931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06910754998174108, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 21006, + "tp_rate": 0.06910754998174108, + "truth_threshold": 34.44 + }, + { + "f1": 0.12888352652217003, + "fn": 283024, + "fn_rate": 0.93111945282454, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999576838, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06888054717546001, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20937, + "tp_rate": 0.06888054717546001, + "truth_threshold": 34.46 + }, + { + "f1": 0.12857864082451884, + "fn": 283077, + "fn_rate": 0.9312938172989298, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999582664, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0687061827010702, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20884, + "tp_rate": 0.0687061827010702, + "truth_threshold": 34.480000000000004 + }, + { + "f1": 0.12829054723917313, + "fn": 283127, + "fn_rate": 0.93145831208609, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999588409, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06854168791391001, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20834, + "tp_rate": 0.06854168791391001, + "truth_threshold": 34.5 + }, + { + "f1": 0.1278063502817899, + "fn": 283211, + "fn_rate": 0.9317346633285191, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999594076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06826533667148088, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20750, + "tp_rate": 0.06826533667148088, + "truth_threshold": 34.52 + }, + { + "f1": 0.12750032341725753, + "fn": 283264, + "fn_rate": 0.931909027802909, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999599665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06809097219709108, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20697, + "tp_rate": 0.06809097219709108, + "truth_threshold": 34.54 + }, + { + "f1": 0.12718882084016217, + "fn": 283318, + "fn_rate": 0.9320866821730419, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999605176, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06791331782695806, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20643, + "tp_rate": 0.06791331782695806, + "truth_threshold": 34.56 + }, + { + "f1": 0.1269003001041429, + "fn": 283368, + "fn_rate": 0.9322511769602021, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999610611, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06774882303979787, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20593, + "tp_rate": 0.06774882303979787, + "truth_threshold": 34.58 + }, + { + "f1": 0.12659476117103236, + "fn": 283421, + "fn_rate": 0.9324255414345919, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999615973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06757445856540806, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20540, + "tp_rate": 0.06757445856540806, + "truth_threshold": 34.6 + }, + { + "f1": 0.12635764038710473, + "fn": 283462, + "fn_rate": 0.9325604271600633, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999962126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0674395728399367, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20499, + "tp_rate": 0.0674395728399367, + "truth_threshold": 34.62 + }, + { + "f1": 0.12615589475501196, + "fn": 283497, + "fn_rate": 0.9326755735110754, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999626474, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06732442648892456, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20464, + "tp_rate": 0.06732442648892456, + "truth_threshold": 34.64 + }, + { + "f1": 0.1257746070699659, + "fn": 283563, + "fn_rate": 0.9328927066301269, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999631617, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0671072933698731, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20398, + "tp_rate": 0.0671072933698731, + "truth_threshold": 34.660000000000004 + }, + { + "f1": 0.12522512520662177, + "fn": 283658, + "fn_rate": 0.9332052467257312, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999636688, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06679475327426874, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20303, + "tp_rate": 0.06679475327426874, + "truth_threshold": 34.68 + }, + { + "f1": 0.124965301124552, + "fn": 283703, + "fn_rate": 0.9333532920341754, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999964169, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06664670796582456, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20258, + "tp_rate": 0.06664670796582456, + "truth_threshold": 34.7 + }, + { + "f1": 0.12461207189086804, + "fn": 283764, + "fn_rate": 0.9335539756745109, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999646623, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06644602432548913, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20197, + "tp_rate": 0.06644602432548913, + "truth_threshold": 34.72 + }, + { + "f1": 0.12426488284407802, + "fn": 283824, + "fn_rate": 0.9337513694191031, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999651488, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06624863058089689, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20137, + "tp_rate": 0.06624863058089689, + "truth_threshold": 34.74 + }, + { + "f1": 0.12379018320082959, + "fn": 283906, + "fn_rate": 0.9340211408700458, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999656286, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06597885912995417, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 20055, + "tp_rate": 0.06597885912995417, + "truth_threshold": 34.76 + }, + { + "f1": 0.12339093552629142, + "fn": 283975, + "fn_rate": 0.9342481436763269, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999661018, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0657518563236731, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19986, + "tp_rate": 0.0657518563236731, + "truth_threshold": 34.78 + }, + { + "f1": 0.12317619091723009, + "fn": 284012, + "fn_rate": 0.9343698698188254, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999665685, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06563013018117456, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19949, + "tp_rate": 0.06563013018117456, + "truth_threshold": 34.800000000000004 + }, + { + "f1": 0.12288101575381803, + "fn": 284063, + "fn_rate": 0.9345376545017289, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999670287, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06546234549827117, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19898, + "tp_rate": 0.06546234549827117, + "truth_threshold": 34.82 + }, + { + "f1": 0.12249839403073579, + "fn": 284129, + "fn_rate": 0.9347547876207803, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999674827, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06524521237921971, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19832, + "tp_rate": 0.06524521237921971, + "truth_threshold": 34.84 + }, + { + "f1": 0.12199959222257234, + "fn": 284215, + "fn_rate": 0.9350377186546959, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999679303, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06496228134530417, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19746, + "tp_rate": 0.06496228134530417, + "truth_threshold": 34.86 + }, + { + "f1": 0.12165143397415695, + "fn": 284275, + "fn_rate": 0.935235112399288, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999683719, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06476488760071193, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19686, + "tp_rate": 0.06476488760071193, + "truth_threshold": 34.88 + }, + { + "f1": 0.1212737420499286, + "fn": 284340, + "fn_rate": 0.9354489556225963, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999688073, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06455104437740368, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19621, + "tp_rate": 0.06455104437740368, + "truth_threshold": 34.9 + }, + { + "f1": 0.12098957753792515, + "fn": 284389, + "fn_rate": 0.9356101605140134, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999692367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06438983948598669, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19572, + "tp_rate": 0.06438983948598669, + "truth_threshold": 34.92 + }, + { + "f1": 0.12058838077807732, + "fn": 284458, + "fn_rate": 0.9358371633202944, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999696603, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06416283667970563, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19503, + "tp_rate": 0.06416283667970563, + "truth_threshold": 34.94 + }, + { + "f1": 0.12040243389646046, + "fn": 284490, + "fn_rate": 0.9359424399840769, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999700779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0640575600159231, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19471, + "tp_rate": 0.0640575600159231, + "truth_threshold": 34.96 + }, + { + "f1": 0.12014125534191337, + "fn": 284535, + "fn_rate": 0.936090485292521, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999704899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06390951470747892, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19426, + "tp_rate": 0.06390951470747892, + "truth_threshold": 34.980000000000004 + }, + { + "f1": 0.11978077717707315, + "fn": 284597, + "fn_rate": 0.9362944588285997, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999708962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06370554117140027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19364, + "tp_rate": 0.06370554117140027, + "truth_threshold": 35 + }, + { + "f1": 0.11939689040951809, + "fn": 284663, + "fn_rate": 0.9365115919476512, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999712968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06348840805234882, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19298, + "tp_rate": 0.06348840805234882, + "truth_threshold": 35.02 + }, + { + "f1": 0.11915796768744315, + "fn": 284704, + "fn_rate": 0.9366464776731226, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999971692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06335352232687746, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19257, + "tp_rate": 0.06335352232687746, + "truth_threshold": 35.04 + }, + { + "f1": 0.11847106159083876, + "fn": 284822, + "fn_rate": 0.9370346853708206, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999720818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0629653146291794, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19139, + "tp_rate": 0.0629653146291794, + "truth_threshold": 35.06 + }, + { + "f1": 0.11810994372179125, + "fn": 284884, + "fn_rate": 0.9372386589068993, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999724661, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06276134109310076, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19077, + "tp_rate": 0.06276134109310076, + "truth_threshold": 35.08 + }, + { + "f1": 0.11783027338307688, + "fn": 284932, + "fn_rate": 0.937396573902573, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999728452, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06260342609742697, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 19029, + "tp_rate": 0.06260342609742697, + "truth_threshold": 35.1 + }, + { + "f1": 0.11752720336411324, + "fn": 284984, + "fn_rate": 0.9375676484812197, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999973219, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06243235151878037, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18977, + "tp_rate": 0.06243235151878037, + "truth_threshold": 35.12 + }, + { + "f1": 0.11721237348397567, + "fn": 285038, + "fn_rate": 0.9377453028513526, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999735877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.062254697148647356, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18923, + "tp_rate": 0.062254697148647356, + "truth_threshold": 35.14 + }, + { + "f1": 0.1169502970530111, + "fn": 285083, + "fn_rate": 0.9378933481597969, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999739514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.062106651840203184, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18878, + "tp_rate": 0.062106651840203184, + "truth_threshold": 35.160000000000004 + }, + { + "f1": 0.11669909168639017, + "fn": 285126, + "fn_rate": 0.9380348136767546, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.99999999997431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.061965186323245415, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18835, + "tp_rate": 0.061965186323245415, + "truth_threshold": 35.18 + }, + { + "f1": 0.11644854253420583, + "fn": 285169, + "fn_rate": 0.9381762791937124, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999746636, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.061823720806287646, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18792, + "tp_rate": 0.061823720806287646, + "truth_threshold": 35.2 + }, + { + "f1": 0.11618005243162507, + "fn": 285215, + "fn_rate": 0.9383276143978997, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999750124, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06167238560210027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18746, + "tp_rate": 0.06167238560210027, + "truth_threshold": 35.22 + }, + { + "f1": 0.11596987634425264, + "fn": 285251, + "fn_rate": 0.938446050644655, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999753565, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06155394935534493, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18710, + "tp_rate": 0.06155394935534493, + "truth_threshold": 35.24 + }, + { + "f1": 0.11573629234727087, + "fn": 285291, + "fn_rate": 0.9385776464743832, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999756958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06142235352561677, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18670, + "tp_rate": 0.06142235352561677, + "truth_threshold": 35.26 + }, + { + "f1": 0.11538580773165515, + "fn": 285351, + "fn_rate": 0.9387750402189755, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999760304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06122495978102454, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18610, + "tp_rate": 0.06122495978102454, + "truth_threshold": 35.28 + }, + { + "f1": 0.11502899134910545, + "fn": 285412, + "fn_rate": 0.9389757238593109, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999763604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0610242761406891, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18549, + "tp_rate": 0.0610242761406891, + "truth_threshold": 35.300000000000004 + }, + { + "f1": 0.11443884767127367, + "fn": 285513, + "fn_rate": 0.9393080033293745, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999766858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.060691996670625505, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18448, + "tp_rate": 0.060691996670625505, + "truth_threshold": 35.32 + }, + { + "f1": 0.11413468339351525, + "fn": 285565, + "fn_rate": 0.9394790779080211, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999770067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06052092209197891, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18396, + "tp_rate": 0.06052092209197891, + "truth_threshold": 35.34 + }, + { + "f1": 0.11397635963143363, + "fn": 285592, + "fn_rate": 0.9395679050930876, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999773234, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0604320949069124, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18369, + "tp_rate": 0.0604320949069124, + "truth_threshold": 35.36 + }, + { + "f1": 0.11355497768868422, + "fn": 285664, + "fn_rate": 0.9398047775865983, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999776356, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.06019522241340172, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18297, + "tp_rate": 0.06019522241340172, + "truth_threshold": 35.38 + }, + { + "f1": 0.11319817750685918, + "fn": 285725, + "fn_rate": 0.9400054612269337, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999779434, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.059994538773066285, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18236, + "tp_rate": 0.059994538773066285, + "truth_threshold": 35.4 + }, + { + "f1": 0.11282331466603752, + "fn": 285789, + "fn_rate": 0.9402160145544988, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999782471, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05978398544550123, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18172, + "tp_rate": 0.05978398544550123, + "truth_threshold": 35.42 + }, + { + "f1": 0.11250069858854067, + "fn": 285844, + "fn_rate": 0.940396958820375, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999785466, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05960304117962502, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18117, + "tp_rate": 0.05960304117962502, + "truth_threshold": 35.44 + }, + { + "f1": 0.11227797789094522, + "fn": 285882, + "fn_rate": 0.9405219748586168, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999788419, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05947802514138327, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18079, + "tp_rate": 0.05947802514138327, + "truth_threshold": 35.46 + }, + { + "f1": 0.11200278267783051, + "fn": 285929, + "fn_rate": 0.9406765999585474, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999791332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05932340004145269, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 18032, + "tp_rate": 0.05932340004145269, + "truth_threshold": 35.480000000000004 + }, + { + "f1": 0.11177373165110543, + "fn": 285968, + "fn_rate": 0.9408049058925323, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999794205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05919509410746773, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17993, + "tp_rate": 0.05919509410746773, + "truth_threshold": 35.5 + }, + { + "f1": 0.11128095193711747, + "fn": 286052, + "fn_rate": 0.9410812571349614, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999797038, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.058918742865038606, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17909, + "tp_rate": 0.058918742865038606, + "truth_threshold": 35.52 + }, + { + "f1": 0.11105794327475205, + "fn": 286090, + "fn_rate": 0.9412062731732032, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999799832, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05879372682679686, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17871, + "tp_rate": 0.05879372682679686, + "truth_threshold": 35.54 + }, + { + "f1": 0.11080587218914316, + "fn": 286133, + "fn_rate": 0.9413477386901609, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999802588, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05865226130983909, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17828, + "tp_rate": 0.05865226130983909, + "truth_threshold": 35.56 + }, + { + "f1": 0.11068223067551776, + "fn": 286154, + "fn_rate": 0.9414168265007682, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999805306, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05858317349923181, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17807, + "tp_rate": 0.05858317349923181, + "truth_threshold": 35.58 + }, + { + "f1": 0.11032433339757418, + "fn": 286215, + "fn_rate": 0.9416175101411036, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999807986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05838248985889637, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17746, + "tp_rate": 0.05838248985889637, + "truth_threshold": 35.6 + }, + { + "f1": 0.11001884012012908, + "fn": 286267, + "fn_rate": 0.9417885847197502, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999981063, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05821141528024977, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17694, + "tp_rate": 0.05821141528024977, + "truth_threshold": 35.62 + }, + { + "f1": 0.10963649367206692, + "fn": 286332, + "fn_rate": 0.9420024279430584, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999813237, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05799757205694152, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17629, + "tp_rate": 0.05799757205694152, + "truth_threshold": 35.64 + }, + { + "f1": 0.10929549780426209, + "fn": 286390, + "fn_rate": 0.9421932418961643, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999815808, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05780675810383569, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17571, + "tp_rate": 0.05780675810383569, + "truth_threshold": 35.660000000000004 + }, + { + "f1": 0.10903672920917733, + "fn": 286434, + "fn_rate": 0.9423379973088652, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999818344, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.057662002691134716, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17527, + "tp_rate": 0.057662002691134716, + "truth_threshold": 35.68 + }, + { + "f1": 0.108671980486955, + "fn": 286496, + "fn_rate": 0.942541970844944, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999820844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05745802915505607, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17465, + "tp_rate": 0.05745802915505607, + "truth_threshold": 35.7 + }, + { + "f1": 0.10850720913011282, + "fn": 286524, + "fn_rate": 0.9426340879257536, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999823311, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.057365912074246364, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17437, + "tp_rate": 0.057365912074246364, + "truth_threshold": 35.72 + }, + { + "f1": 0.10816025493405697, + "fn": 286583, + "fn_rate": 0.9428281917746026, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999825744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05717180822539734, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17378, + "tp_rate": 0.05717180822539734, + "truth_threshold": 35.74 + }, + { + "f1": 0.10764757884775815, + "fn": 286670, + "fn_rate": 0.9431144127042614, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999828143, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.056885587295738595, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17291, + "tp_rate": 0.056885587295738595, + "truth_threshold": 35.76 + }, + { + "f1": 0.10734122042341221, + "fn": 286722, + "fn_rate": 0.943285487282908, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999830509, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.056714512717092, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17239, + "tp_rate": 0.056714512717092, + "truth_threshold": 35.78 + }, + { + "f1": 0.10706456755679554, + "fn": 286769, + "fn_rate": 0.9434401123828385, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999832843, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.056559887617161415, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17192, + "tp_rate": 0.056559887617161415, + "truth_threshold": 35.800000000000004 + }, + { + "f1": 0.10674622700857682, + "fn": 286823, + "fn_rate": 0.9436177667529716, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999835144, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0563822332470284, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17138, + "tp_rate": 0.0563822332470284, + "truth_threshold": 35.82 + }, + { + "f1": 0.10652771115859243, + "fn": 286860, + "fn_rate": 0.9437394928954701, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999837413, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05626050710452986, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17101, + "tp_rate": 0.05626050710452986, + "truth_threshold": 35.84 + }, + { + "f1": 0.10626261619358536, + "fn": 286905, + "fn_rate": 0.9438875382039144, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999839652, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05611246179608568, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17056, + "tp_rate": 0.05611246179608568, + "truth_threshold": 35.86 + }, + { + "f1": 0.10598498302021996, + "fn": 286952, + "fn_rate": 0.9440421633038449, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999841859, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.055957836696155096, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 17009, + "tp_rate": 0.055957836696155096, + "truth_threshold": 35.88 + }, + { + "f1": 0.10566070660675446, + "fn": 287007, + "fn_rate": 0.9442231075697212, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999844037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.055776892430278883, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16954, + "tp_rate": 0.055776892430278883, + "truth_threshold": 35.9 + }, + { + "f1": 0.10525298741452285, + "fn": 287076, + "fn_rate": 0.9444501103760022, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999846184, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05554988962399782, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16885, + "tp_rate": 0.05554988962399782, + "truth_threshold": 35.92 + }, + { + "f1": 0.1046622561154309, + "fn": 287176, + "fn_rate": 0.9447790999503226, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999848301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.055220900049677425, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16785, + "tp_rate": 0.055220900049677425, + "truth_threshold": 35.94 + }, + { + "f1": 0.10446132355508993, + "fn": 287210, + "fn_rate": 0.9448909564055915, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999985039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05510904359440849, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16751, + "tp_rate": 0.05510904359440849, + "truth_threshold": 35.96 + }, + { + "f1": 0.10389999251440976, + "fn": 287305, + "fn_rate": 0.9452034965011958, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999852449, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.054796503498804126, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16656, + "tp_rate": 0.054796503498804126, + "truth_threshold": 35.980000000000004 + }, + { + "f1": 0.10360424998284284, + "fn": 287355, + "fn_rate": 0.945367991288356, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999854481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05463200871164393, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16606, + "tp_rate": 0.05463200871164393, + "truth_threshold": 36 + }, + { + "f1": 0.10327850439297125, + "fn": 287410, + "fn_rate": 0.9455489355542323, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999856485, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.054451064445767715, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16551, + "tp_rate": 0.054451064445767715, + "truth_threshold": 36.02 + }, + { + "f1": 0.10281680470861394, + "fn": 287488, + "fn_rate": 0.9458055474222022, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999985846, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05419445257779781, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16473, + "tp_rate": 0.05419445257779781, + "truth_threshold": 36.04 + }, + { + "f1": 0.10255625955866288, + "fn": 287532, + "fn_rate": 0.9459503028349031, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999860408, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05404969716509684, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16429, + "tp_rate": 0.05404969716509684, + "truth_threshold": 36.06 + }, + { + "f1": 0.10230749060396818, + "fn": 287574, + "fn_rate": 0.9460884784561178, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999986233, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.053911521543882276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16387, + "tp_rate": 0.053911521543882276, + "truth_threshold": 36.08 + }, + { + "f1": 0.10208860166713496, + "fn": 287611, + "fn_rate": 0.9462102045986163, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999864225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05378979540138373, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16350, + "tp_rate": 0.05378979540138373, + "truth_threshold": 36.1 + }, + { + "f1": 0.10182785559503663, + "fn": 287655, + "fn_rate": 0.9463549600113172, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999866095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05364503998868276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16306, + "tp_rate": 0.05364503998868276, + "truth_threshold": 36.12 + }, + { + "f1": 0.10137106093257128, + "fn": 287732, + "fn_rate": 0.946608281983544, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999867939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.053391718016456056, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16229, + "tp_rate": 0.053391718016456056, + "truth_threshold": 36.14 + }, + { + "f1": 0.1009977321429687, + "fn": 287795, + "fn_rate": 0.9468155454153658, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999869756, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.053184454584634215, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16166, + "tp_rate": 0.053184454584634215, + "truth_threshold": 36.160000000000004 + }, + { + "f1": 0.10063549392937707, + "fn": 287856, + "fn_rate": 0.9470162290557013, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999871549, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05298377094429878, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16105, + "tp_rate": 0.05298377094429878, + "truth_threshold": 36.18 + }, + { + "f1": 0.10025, + "fn": 287921, + "fn_rate": 0.9472300722790095, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999873318, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05276992772099052, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 16040, + "tp_rate": 0.05276992772099052, + "truth_threshold": 36.2 + }, + { + "f1": 0.09986997399479897, + "fn": 287985, + "fn_rate": 0.9474406256065745, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999875062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05255937439342547, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15976, + "tp_rate": 0.05255937439342547, + "truth_threshold": 36.22 + }, + { + "f1": 0.09957860251087881, + "fn": 288034, + "fn_rate": 0.9476018304979915, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999876782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.052398169502008485, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15927, + "tp_rate": 0.052398169502008485, + "truth_threshold": 36.24 + }, + { + "f1": 0.09912135330352397, + "fn": 288111, + "fn_rate": 0.9478551524702182, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999878478, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05214484752978178, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15850, + "tp_rate": 0.05214484752978178, + "truth_threshold": 36.26 + }, + { + "f1": 0.09893676902870724, + "fn": 288142, + "fn_rate": 0.9479571392382575, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999880151, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05204286076174246, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15819, + "tp_rate": 0.05204286076174246, + "truth_threshold": 36.28 + }, + { + "f1": 0.09863383876294851, + "fn": 288193, + "fn_rate": 0.948124923921161, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999881801, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05187507607883906, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15768, + "tp_rate": 0.05187507607883906, + "truth_threshold": 36.300000000000004 + }, + { + "f1": 0.09840157652726078, + "fn": 288232, + "fn_rate": 0.9482532298551459, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999883429, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05174677014485411, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15729, + "tp_rate": 0.05174677014485411, + "truth_threshold": 36.32 + }, + { + "f1": 0.09815171688857743, + "fn": 288274, + "fn_rate": 0.9483914054763605, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999885034, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05160859452363955, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15687, + "tp_rate": 0.05160859452363955, + "truth_threshold": 36.34 + }, + { + "f1": 0.09787798574477005, + "fn": 288320, + "fn_rate": 0.9485427406805478, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999886616, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.051457259319452164, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15641, + "tp_rate": 0.051457259319452164, + "truth_threshold": 36.36 + }, + { + "f1": 0.09762798848416573, + "fn": 288362, + "fn_rate": 0.9486809163017624, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999888177, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0513190836982376, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15599, + "tp_rate": 0.0513190836982376, + "truth_threshold": 36.38 + }, + { + "f1": 0.09725317374865414, + "fn": 288425, + "fn_rate": 0.9488881797335842, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999889717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05111182026641576, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15536, + "tp_rate": 0.05111182026641576, + "truth_threshold": 36.4 + }, + { + "f1": 0.0969315243455776, + "fn": 288479, + "fn_rate": 0.9490658341037173, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999891236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.050934165896282746, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15482, + "tp_rate": 0.050934165896282746, + "truth_threshold": 36.42 + }, + { + "f1": 0.0966392605997608, + "fn": 288528, + "fn_rate": 0.9492270389951343, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999892732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05077296100486576, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15433, + "tp_rate": 0.05077296100486576, + "truth_threshold": 36.44 + }, + { + "f1": 0.09655582691464713, + "fn": 288542, + "fn_rate": 0.9492730975355391, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999894209, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.050726902464460905, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15419, + "tp_rate": 0.050726902464460905, + "truth_threshold": 36.46 + }, + { + "f1": 0.09616239814101481, + "fn": 288608, + "fn_rate": 0.9494902306545906, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999895666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.05050976934540945, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15353, + "tp_rate": 0.05050976934540945, + "truth_threshold": 36.480000000000004 + }, + { + "f1": 0.09578700078308536, + "fn": 288671, + "fn_rate": 0.9496974940864124, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999897102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0503025059135876, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15290, + "tp_rate": 0.0503025059135876, + "truth_threshold": 36.5 + }, + { + "f1": 0.09538698681638177, + "fn": 288738, + "fn_rate": 0.9499179171012071, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999898519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.050082082898792936, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15223, + "tp_rate": 0.050082082898792936, + "truth_threshold": 36.52 + }, + { + "f1": 0.09501128102281274, + "fn": 288801, + "fn_rate": 0.9501251805330289, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999899916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.049874819466971095, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15160, + "tp_rate": 0.049874819466971095, + "truth_threshold": 36.54 + }, + { + "f1": 0.09446760492743629, + "fn": 288892, + "fn_rate": 0.9504245610456604, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999901295, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04957543895433954, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15069, + "tp_rate": 0.04957543895433954, + "truth_threshold": 36.56 + }, + { + "f1": 0.09411543405335925, + "fn": 288951, + "fn_rate": 0.9506186648945095, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999902653, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.049381335105490504, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 15010, + "tp_rate": 0.049381335105490504, + "truth_threshold": 36.58 + }, + { + "f1": 0.09384622138050833, + "fn": 288996, + "fn_rate": 0.9507667102029537, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999903993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04923328979704633, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14965, + "tp_rate": 0.04923328979704633, + "truth_threshold": 36.6 + }, + { + "f1": 0.09350577668502327, + "fn": 289053, + "fn_rate": 0.9509542342603163, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999905315, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04904576573968371, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14908, + "tp_rate": 0.04904576573968371, + "truth_threshold": 36.62 + }, + { + "f1": 0.09325462791616744, + "fn": 289095, + "fn_rate": 0.9510924098815309, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999906618, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.048907590118469145, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14866, + "tp_rate": 0.048907590118469145, + "truth_threshold": 36.64 + }, + { + "f1": 0.09299713912868902, + "fn": 289138, + "fn_rate": 0.9512338753984886, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999907904, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.048766124601511376, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14823, + "tp_rate": 0.048766124601511376, + "truth_threshold": 36.660000000000004 + }, + { + "f1": 0.09289572915555612, + "fn": 289155, + "fn_rate": 0.9512898036261231, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999909172, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04871019637387691, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14806, + "tp_rate": 0.04871019637387691, + "truth_threshold": 36.68 + }, + { + "f1": 0.0926444196232477, + "fn": 289197, + "fn_rate": 0.9514279792473377, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999910423, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04857202075266235, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14764, + "tp_rate": 0.04857202075266235, + "truth_threshold": 36.7 + }, + { + "f1": 0.09242895873079626, + "fn": 289233, + "fn_rate": 0.951546415494093, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999911656, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.048453584505907005, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14728, + "tp_rate": 0.048453584505907005, + "truth_threshold": 36.72 + }, + { + "f1": 0.09226704156755433, + "fn": 289260, + "fn_rate": 0.9516352426791594, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999912872, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0483647573208405, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14701, + "tp_rate": 0.0483647573208405, + "truth_threshold": 36.74 + }, + { + "f1": 0.09191974990897792, + "fn": 289318, + "fn_rate": 0.9518260566322653, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999914071, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04817394336773468, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14643, + "tp_rate": 0.04817394336773468, + "truth_threshold": 36.76 + }, + { + "f1": 0.09165050006592206, + "fn": 289363, + "fn_rate": 0.9519741019407095, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999915254, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0480258980592905, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14598, + "tp_rate": 0.0480258980592905, + "truth_threshold": 36.78 + }, + { + "f1": 0.09148845327941933, + "fn": 289390, + "fn_rate": 0.9520629291257761, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999916421, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.047937070874224, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14571, + "tp_rate": 0.047937070874224, + "truth_threshold": 36.800000000000004 + }, + { + "f1": 0.09123677352507142, + "fn": 289432, + "fn_rate": 0.9522011047469906, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999917571, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.047798895253009434, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14529, + "tp_rate": 0.047798895253009434, + "truth_threshold": 36.82 + }, + { + "f1": 0.09089538739825143, + "fn": 289489, + "fn_rate": 0.9523886288043532, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999918706, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04761137119564681, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14472, + "tp_rate": 0.04761137119564681, + "truth_threshold": 36.84 + }, + { + "f1": 0.09073949611502295, + "fn": 289515, + "fn_rate": 0.9524741660936765, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999919826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.047525833906323506, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14446, + "tp_rate": 0.047525833906323506, + "truth_threshold": 36.86 + }, + { + "f1": 0.09051160920695547, + "fn": 289553, + "fn_rate": 0.9525991821319182, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999992093, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04740081786808176, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14408, + "tp_rate": 0.04740081786808176, + "truth_threshold": 36.88 + }, + { + "f1": 0.0902716694729964, + "fn": 289593, + "fn_rate": 0.9527307779616464, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999922018, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.047269222038353605, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14368, + "tp_rate": 0.047269222038353605, + "truth_threshold": 36.9 + }, + { + "f1": 0.09006767328319101, + "fn": 289627, + "fn_rate": 0.9528426344169153, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999923092, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04715736558308467, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14334, + "tp_rate": 0.04715736558308467, + "truth_threshold": 36.92 + }, + { + "f1": 0.08985734933702004, + "fn": 289662, + "fn_rate": 0.9529577807679275, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999924151, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04704221923207254, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14299, + "tp_rate": 0.04704221923207254, + "truth_threshold": 36.94 + }, + { + "f1": 0.08948516332597942, + "fn": 289724, + "fn_rate": 0.9531617543040061, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999925195, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.046838245695993895, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14237, + "tp_rate": 0.046838245695993895, + "truth_threshold": 36.96 + }, + { + "f1": 0.08938909177766184, + "fn": 289740, + "fn_rate": 0.9532143926358974, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999926225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04678560736410263, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14221, + "tp_rate": 0.04678560736410263, + "truth_threshold": 36.980000000000004 + }, + { + "f1": 0.0891551571310924, + "fn": 289779, + "fn_rate": 0.9533426985698823, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999992724, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04665730143011768, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14182, + "tp_rate": 0.04665730143011768, + "truth_threshold": 37 + }, + { + "f1": 0.08890858906891501, + "fn": 289820, + "fn_rate": 0.9534775842953537, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999928242, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04652241570464632, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14141, + "tp_rate": 0.04652241570464632, + "truth_threshold": 37.02 + }, + { + "f1": 0.08867453515352353, + "fn": 289859, + "fn_rate": 0.9536058902293386, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999992923, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04639410977066137, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14102, + "tp_rate": 0.04639410977066137, + "truth_threshold": 37.04 + }, + { + "f1": 0.08847019759266479, + "fn": 289893, + "fn_rate": 0.9537177466846075, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999930205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04628225331539244, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14068, + "tp_rate": 0.04628225331539244, + "truth_threshold": 37.06 + }, + { + "f1": 0.08823547910311645, + "fn": 289932, + "fn_rate": 0.9538460526185926, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999931165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04615394738140748, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 14029, + "tp_rate": 0.04615394738140748, + "truth_threshold": 37.08 + }, + { + "f1": 0.08795314868749646, + "fn": 289979, + "fn_rate": 0.9540006777185231, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999932113, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0459993222814769, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13982, + "tp_rate": 0.0459993222814769, + "truth_threshold": 37.1 + }, + { + "f1": 0.08759799172025015, + "fn": 290038, + "fn_rate": 0.9541947815673721, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999933048, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04580521843262787, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13923, + "tp_rate": 0.04580521843262787, + "truth_threshold": 37.12 + }, + { + "f1": 0.08711658758228343, + "fn": 290118, + "fn_rate": 0.9544579732268285, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999993397, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04554202677317156, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13843, + "tp_rate": 0.04554202677317156, + "truth_threshold": 37.14 + }, + { + "f1": 0.08692395805797867, + "fn": 290150, + "fn_rate": 0.9545632498906109, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999934879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04543675010938903, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13811, + "tp_rate": 0.04543675010938903, + "truth_threshold": 37.160000000000004 + }, + { + "f1": 0.08680983911981671, + "fn": 290169, + "fn_rate": 0.9546257579097318, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999935775, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.045374242090268156, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13792, + "tp_rate": 0.045374242090268156, + "truth_threshold": 37.18 + }, + { + "f1": 0.08652078664417194, + "fn": 290217, + "fn_rate": 0.9547836729054057, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999993666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.045216327094594375, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13744, + "tp_rate": 0.045216327094594375, + "truth_threshold": 37.2 + }, + { + "f1": 0.0859424195864084, + "fn": 290313, + "fn_rate": 0.9550995028967532, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999937531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0449004971032468, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13648, + "tp_rate": 0.0449004971032468, + "truth_threshold": 37.22 + }, + { + "f1": 0.08553253133463501, + "fn": 290381, + "fn_rate": 0.9553232158072911, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999938392, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.044676784192708936, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13580, + "tp_rate": 0.044676784192708936, + "truth_threshold": 37.24 + }, + { + "f1": 0.08530339966362417, + "fn": 290419, + "fn_rate": 0.9554482318455328, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999993924, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04455176815446719, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13542, + "tp_rate": 0.04455176815446719, + "truth_threshold": 37.26 + }, + { + "f1": 0.08498346196251379, + "fn": 290472, + "fn_rate": 0.9556225963199226, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999940076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04437740368007738, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13489, + "tp_rate": 0.04437740368007738, + "truth_threshold": 37.28 + }, + { + "f1": 0.08473006351446719, + "fn": 290514, + "fn_rate": 0.9557607719411372, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999940901, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.044239228058862816, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13447, + "tp_rate": 0.044239228058862816, + "truth_threshold": 37.300000000000004 + }, + { + "f1": 0.084476597997265, + "fn": 290556, + "fn_rate": 0.9558989475623517, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999941714, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04410105243764825, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13405, + "tp_rate": 0.04410105243764825, + "truth_threshold": 37.32 + }, + { + "f1": 0.08420521870666835, + "fn": 290601, + "fn_rate": 0.956046992870796, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999942517, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04395300712920407, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13360, + "tp_rate": 0.04395300712920407, + "truth_threshold": 37.34 + }, + { + "f1": 0.08384868027056502, + "fn": 290660, + "fn_rate": 0.956241096719645, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999943309, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.043758903280355047, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13301, + "tp_rate": 0.043758903280355047, + "truth_threshold": 37.36 + }, + { + "f1": 0.08369794096508593, + "fn": 290685, + "fn_rate": 0.9563233441132251, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999944089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04367665588677495, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13276, + "tp_rate": 0.04367665588677495, + "truth_threshold": 37.38 + }, + { + "f1": 0.08338955691613123, + "fn": 290736, + "fn_rate": 0.9564911287961284, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999944859, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04350887120387155, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13225, + "tp_rate": 0.04350887120387155, + "truth_threshold": 37.4 + }, + { + "f1": 0.08318408838664111, + "fn": 290770, + "fn_rate": 0.9566029852513974, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999945618, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.043397014748602615, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13191, + "tp_rate": 0.043397014748602615, + "truth_threshold": 37.42 + }, + { + "f1": 0.08299066599394551, + "fn": 290802, + "fn_rate": 0.9567082619151799, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999946366, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04329173808482009, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13159, + "tp_rate": 0.04329173808482009, + "truth_threshold": 37.44 + }, + { + "f1": 0.08282138937595399, + "fn": 290830, + "fn_rate": 0.9568003789959896, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999947105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04319962100401038, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13131, + "tp_rate": 0.04319962100401038, + "truth_threshold": 37.46 + }, + { + "f1": 0.08260370407751312, + "fn": 290866, + "fn_rate": 0.9569188152427449, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999947833, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.043081184757255045, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13095, + "tp_rate": 0.043081184757255045, + "truth_threshold": 37.480000000000004 + }, + { + "f1": 0.08219869521874645, + "fn": 290933, + "fn_rate": 0.9571392382575397, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999948551, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04286076174246038, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 13028, + "tp_rate": 0.04286076174246038, + "truth_threshold": 37.5 + }, + { + "f1": 0.08199297058879207, + "fn": 290967, + "fn_rate": 0.9572510947128086, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999994926, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04274890528719145, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12994, + "tp_rate": 0.04274890528719145, + "truth_threshold": 37.52 + }, + { + "f1": 0.08172036224795683, + "fn": 291012, + "fn_rate": 0.9573991400212527, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999949958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.042600859978747276, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12949, + "tp_rate": 0.042600859978747276, + "truth_threshold": 37.54 + }, + { + "f1": 0.08142977068881721, + "fn": 291060, + "fn_rate": 0.9575570550169266, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999950647, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04244294498307349, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12901, + "tp_rate": 0.04244294498307349, + "truth_threshold": 37.56 + }, + { + "f1": 0.08110906290245196, + "fn": 291113, + "fn_rate": 0.9577314194913163, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999951327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04226858050868368, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12848, + "tp_rate": 0.04226858050868368, + "truth_threshold": 37.58 + }, + { + "f1": 0.08085463717696975, + "fn": 291155, + "fn_rate": 0.9578695951125309, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999951996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.042130404887469115, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12806, + "tp_rate": 0.042130404887469115, + "truth_threshold": 37.6 + }, + { + "f1": 0.08052741923261512, + "fn": 291209, + "fn_rate": 0.9580472494826638, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999952658, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04195275051733611, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12752, + "tp_rate": 0.04195275051733611, + "truth_threshold": 37.62 + }, + { + "f1": 0.08035139129226611, + "fn": 291238, + "fn_rate": 0.9581426564592168, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999995331, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.041857343540783194, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12723, + "tp_rate": 0.041857343540783194, + "truth_threshold": 37.64 + }, + { + "f1": 0.0801030817137335, + "fn": 291279, + "fn_rate": 0.9582775421846882, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999953952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04172245781531183, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12682, + "tp_rate": 0.04172245781531183, + "truth_threshold": 37.660000000000004 + }, + { + "f1": 0.07994542284660283, + "fn": 291305, + "fn_rate": 0.9583630794740114, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999954586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04163692052598853, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12656, + "tp_rate": 0.04163692052598853, + "truth_threshold": 37.68 + }, + { + "f1": 0.07959944402324994, + "fn": 291362, + "fn_rate": 0.9585506035313741, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999955211, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04144939646862591, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12599, + "tp_rate": 0.04144939646862591, + "truth_threshold": 37.7 + }, + { + "f1": 0.07930820948336872, + "fn": 291410, + "fn_rate": 0.9587085185270479, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999955828, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04129148147295212, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12551, + "tp_rate": 0.04129148147295212, + "truth_threshold": 37.72 + }, + { + "f1": 0.07915673995058234, + "fn": 291435, + "fn_rate": 0.958790765920628, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999956436, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04120923407937203, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12526, + "tp_rate": 0.04120923407937203, + "truth_threshold": 37.74 + }, + { + "f1": 0.0789503621402298, + "fn": 291469, + "fn_rate": 0.958902622375897, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999957035, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04109737762410309, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12492, + "tp_rate": 0.04109737762410309, + "truth_threshold": 37.76 + }, + { + "f1": 0.07867107450554035, + "fn": 291515, + "fn_rate": 0.9590539575800843, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999957627, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.040946042419915715, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12446, + "tp_rate": 0.040946042419915715, + "truth_threshold": 37.78 + }, + { + "f1": 0.07830034203056148, + "fn": 291576, + "fn_rate": 0.9592546412204197, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999995821, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04074535877958028, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12385, + "tp_rate": 0.04074535877958028, + "truth_threshold": 37.800000000000004 + }, + { + "f1": 0.07798440691255604, + "fn": 291628, + "fn_rate": 0.9594257157990663, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999958786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.040574284200933675, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12333, + "tp_rate": 0.040574284200933675, + "truth_threshold": 37.82 + }, + { + "f1": 0.07754678675107994, + "fn": 291700, + "fn_rate": 0.959662588292577, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999959354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04033741170742299, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12261, + "tp_rate": 0.04033741170742299, + "truth_threshold": 37.84 + }, + { + "f1": 0.07722476657979302, + "fn": 291753, + "fn_rate": 0.9598369527669668, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999959913, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04016304723303318, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12208, + "tp_rate": 0.04016304723303318, + "truth_threshold": 37.86 + }, + { + "f1": 0.07707247330330483, + "fn": 291778, + "fn_rate": 0.9599192001605469, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999960465, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.04008079983945309, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12183, + "tp_rate": 0.04008079983945309, + "truth_threshold": 37.88 + }, + { + "f1": 0.07688998272775012, + "fn": 291808, + "fn_rate": 0.960017897032843, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999961009, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03998210296715697, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12153, + "tp_rate": 0.03998210296715697, + "truth_threshold": 37.9 + }, + { + "f1": 0.0765190538265855, + "fn": 291869, + "fn_rate": 0.9602185806731784, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999961546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.039781419326821534, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12092, + "tp_rate": 0.039781419326821534, + "truth_threshold": 37.92 + }, + { + "f1": 0.07613532073799804, + "fn": 291932, + "fn_rate": 0.9604258441050003, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999962075, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.039574155894999685, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 12029, + "tp_rate": 0.039574155894999685, + "truth_threshold": 37.94 + }, + { + "f1": 0.07573973487294412, + "fn": 291997, + "fn_rate": 0.9606396873283085, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999962598, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03936031267169143, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11964, + "tp_rate": 0.03936031267169143, + "truth_threshold": 37.96 + }, + { + "f1": 0.0754409958338082, + "fn": 292046, + "fn_rate": 0.9608008922197255, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999963113, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.039199107780274446, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11915, + "tp_rate": 0.039199107780274446, + "truth_threshold": 37.980000000000004 + }, + { + "f1": 0.07524015172143034, + "fn": 292079, + "fn_rate": 0.9609094587792513, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999996362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03909054122074872, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11882, + "tp_rate": 0.03909054122074872, + "truth_threshold": 38 + }, + { + "f1": 0.07492320846131924, + "fn": 292131, + "fn_rate": 0.9610805333578979, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999964121, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.038919466642102114, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11830, + "tp_rate": 0.038919466642102114, + "truth_threshold": 38.02 + }, + { + "f1": 0.07449638920562524, + "fn": 292201, + "fn_rate": 0.9613108260599221, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999964615, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03868917394007784, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11760, + "tp_rate": 0.03868917394007784, + "truth_threshold": 38.04 + }, + { + "f1": 0.07422800593013089, + "fn": 292245, + "fn_rate": 0.9614555814726231, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999965102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03854441852737687, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11716, + "tp_rate": 0.03854441852737687, + "truth_threshold": 38.06 + }, + { + "f1": 0.07409965278657779, + "fn": 292266, + "fn_rate": 0.9615246692832304, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999965583, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03847533071676958, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11695, + "tp_rate": 0.03847533071676958, + "truth_threshold": 38.08 + }, + { + "f1": 0.07386777686950681, + "fn": 292304, + "fn_rate": 0.9616496853214722, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999966056, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.038350314678527835, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11657, + "tp_rate": 0.038350314678527835, + "truth_threshold": 38.1 + }, + { + "f1": 0.07362363662866232, + "fn": 292344, + "fn_rate": 0.9617812811512003, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999966523, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03821871884879968, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11617, + "tp_rate": 0.03821871884879968, + "truth_threshold": 38.12 + }, + { + "f1": 0.07341606875744745, + "fn": 292378, + "fn_rate": 0.9618931376064692, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999966984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03810686239353075, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11583, + "tp_rate": 0.03810686239353075, + "truth_threshold": 38.14 + }, + { + "f1": 0.07324509692059991, + "fn": 292406, + "fn_rate": 0.9619852546872789, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999967439, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03801474531272104, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11555, + "tp_rate": 0.03801474531272104, + "truth_threshold": 38.160000000000004 + }, + { + "f1": 0.07306821855803428, + "fn": 292435, + "fn_rate": 0.9620806616638319, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999967888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.037919338336168125, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11526, + "tp_rate": 0.037919338336168125, + "truth_threshold": 38.18 + }, + { + "f1": 0.07293971458096911, + "fn": 292456, + "fn_rate": 0.9621497494744392, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999996833, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03785025052556085, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11505, + "tp_rate": 0.03785025052556085, + "truth_threshold": 38.2 + }, + { + "f1": 0.07273833980065435, + "fn": 292489, + "fn_rate": 0.9622583160339648, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999968766, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03774168396603512, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11472, + "tp_rate": 0.03774168396603512, + "truth_threshold": 38.22 + }, + { + "f1": 0.07245724287064105, + "fn": 292535, + "fn_rate": 0.9624096512381523, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999969196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03759034876184774, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11426, + "tp_rate": 0.03759034876184774, + "truth_threshold": 38.24 + }, + { + "f1": 0.07225530673465376, + "fn": 292568, + "fn_rate": 0.962518217797678, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999996962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03748178220232201, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11393, + "tp_rate": 0.03748178220232201, + "truth_threshold": 38.26 + }, + { + "f1": 0.07199852844167047, + "fn": 292610, + "fn_rate": 0.9626563934188925, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999970038, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03734360658110744, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11351, + "tp_rate": 0.03734360658110744, + "truth_threshold": 38.28 + }, + { + "f1": 0.0718639982238574, + "fn": 292632, + "fn_rate": 0.962728771125243, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999997045, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03727122887475696, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11329, + "tp_rate": 0.03727122887475696, + "truth_threshold": 38.300000000000004 + }, + { + "f1": 0.0713687469861171, + "fn": 292713, + "fn_rate": 0.9629952526804425, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999970858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03700474731955744, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11248, + "tp_rate": 0.03700474731955744, + "truth_threshold": 38.32 + }, + { + "f1": 0.07109949105862344, + "fn": 292757, + "fn_rate": 0.9631400080931435, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999971259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.036859991906856474, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11204, + "tp_rate": 0.036859991906856474, + "truth_threshold": 38.34 + }, + { + "f1": 0.07083015993907082, + "fn": 292801, + "fn_rate": 0.9632847635058445, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999971654, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0367152364941555, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11160, + "tp_rate": 0.0367152364941555, + "truth_threshold": 38.36 + }, + { + "f1": 0.07069546617242889, + "fn": 292823, + "fn_rate": 0.963357141212195, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999972045, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.036642858787805016, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11138, + "tp_rate": 0.036642858787805016, + "truth_threshold": 38.38 + }, + { + "f1": 0.07054850606524182, + "fn": 292847, + "fn_rate": 0.9634360987100319, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999972429, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03656390128996812, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11114, + "tp_rate": 0.03656390128996812, + "truth_threshold": 38.4 + }, + { + "f1": 0.07035842612460481, + "fn": 292878, + "fn_rate": 0.9635380854780712, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999972808, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0364619145219288, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11083, + "tp_rate": 0.0364619145219288, + "truth_threshold": 38.42 + }, + { + "f1": 0.07027267244389424, + "fn": 292892, + "fn_rate": 0.963584144018476, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999973184, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03641585598152394, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11069, + "tp_rate": 0.03641585598152394, + "truth_threshold": 38.44 + }, + { + "f1": 0.0701197445111808, + "fn": 292917, + "fn_rate": 0.9636663914120561, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999973552, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03633360858794385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11044, + "tp_rate": 0.03633360858794385, + "truth_threshold": 38.46 + }, + { + "f1": 0.0698869084282113, + "fn": 292955, + "fn_rate": 0.9637914074502979, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999973916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0362085925497021, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 11006, + "tp_rate": 0.0362085925497021, + "truth_threshold": 38.480000000000004 + }, + { + "f1": 0.06961088777538565, + "fn": 293000, + "fn_rate": 0.963939452758742, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999974276, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03606054724125792, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10961, + "tp_rate": 0.03606054724125792, + "truth_threshold": 38.5 + }, + { + "f1": 0.06934749331487115, + "fn": 293043, + "fn_rate": 0.9640809182756999, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999997463, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03591908172430016, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10918, + "tp_rate": 0.03591908172430016, + "truth_threshold": 38.52 + }, + { + "f1": 0.0690222535622852, + "fn": 293096, + "fn_rate": 0.9642552827500896, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999974979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03574471724991035, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10865, + "tp_rate": 0.03574471724991035, + "truth_threshold": 38.54 + }, + { + "f1": 0.0687646131950798, + "fn": 293138, + "fn_rate": 0.9643934583713042, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999975323, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03560654162869579, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10823, + "tp_rate": 0.03560654162869579, + "truth_threshold": 38.56 + }, + { + "f1": 0.06848235675387147, + "fn": 293184, + "fn_rate": 0.9645447935754916, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999975663, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03545520642450841, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10777, + "tp_rate": 0.03545520642450841, + "truth_threshold": 38.58 + }, + { + "f1": 0.06807131280388978, + "fn": 293251, + "fn_rate": 0.9647652165902862, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999975998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03523478340971375, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10710, + "tp_rate": 0.03523478340971375, + "truth_threshold": 38.6 + }, + { + "f1": 0.06784390752429807, + "fn": 293288, + "fn_rate": 0.9648869427327847, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999976329, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.035113057267215204, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10673, + "tp_rate": 0.035113057267215204, + "truth_threshold": 38.62 + }, + { + "f1": 0.06763509218054672, + "fn": 293322, + "fn_rate": 0.9649987991880538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999976654, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03500120081194627, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10639, + "tp_rate": 0.03500120081194627, + "truth_threshold": 38.64 + }, + { + "f1": 0.06746945055503986, + "fn": 293349, + "fn_rate": 0.9650876263731203, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999976976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03491237362687977, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10612, + "tp_rate": 0.03491237362687977, + "truth_threshold": 38.660000000000004 + }, + { + "f1": 0.06719274595584494, + "fn": 293394, + "fn_rate": 0.9652356716815644, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999977293, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03476432831843559, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10567, + "tp_rate": 0.03476432831843559, + "truth_threshold": 38.68 + }, + { + "f1": 0.06696556329295049, + "fn": 293431, + "fn_rate": 0.9653573978240629, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999977606, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.034642602175937044, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10530, + "tp_rate": 0.034642602175937044, + "truth_threshold": 38.7 + }, + { + "f1": 0.0667993792612191, + "fn": 293458, + "fn_rate": 0.9654462250091295, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999977914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03455377499087054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10503, + "tp_rate": 0.03455377499087054, + "truth_threshold": 38.72 + }, + { + "f1": 0.0665780401236531, + "fn": 293494, + "fn_rate": 0.9655646612558848, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999978219, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.034435338744115196, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10467, + "tp_rate": 0.034435338744115196, + "truth_threshold": 38.74 + }, + { + "f1": 0.0664058524173028, + "fn": 293522, + "fn_rate": 0.9656567783366945, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999978518, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03434322166330549, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10439, + "tp_rate": 0.03434322166330549, + "truth_threshold": 38.76 + }, + { + "f1": 0.06616617890316834, + "fn": 293561, + "fn_rate": 0.9657850842706794, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999978814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03421491572932054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10400, + "tp_rate": 0.03421491572932054, + "truth_threshold": 38.78 + }, + { + "f1": 0.06574141244447838, + "fn": 293630, + "fn_rate": 0.9660120870769605, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999979106, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.033987912923039466, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10331, + "tp_rate": 0.033987912923039466, + "truth_threshold": 38.800000000000004 + }, + { + "f1": 0.06547058374277641, + "fn": 293674, + "fn_rate": 0.9661568424896615, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999979393, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0338431575103385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10287, + "tp_rate": 0.0338431575103385, + "truth_threshold": 38.82 + }, + { + "f1": 0.06531051294944339, + "fn": 293700, + "fn_rate": 0.9662423797789848, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999979676, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.033757620221015194, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10261, + "tp_rate": 0.033757620221015194, + "truth_threshold": 38.84 + }, + { + "f1": 0.06497797356828194, + "fn": 293754, + "fn_rate": 0.9664200341491178, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999979956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03357996585088219, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10207, + "tp_rate": 0.03357996585088219, + "truth_threshold": 38.86 + }, + { + "f1": 0.06460835126771684, + "fn": 293814, + "fn_rate": 0.9666174278937101, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999980232, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03338257210628995, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10147, + "tp_rate": 0.03338257210628995, + "truth_threshold": 38.88 + }, + { + "f1": 0.06447278770782525, + "fn": 293836, + "fn_rate": 0.9666898056000606, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999980504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.033310194399939465, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10125, + "tp_rate": 0.033310194399939465, + "truth_threshold": 38.9 + }, + { + "f1": 0.06426324302981672, + "fn": 293870, + "fn_rate": 0.9668016620553295, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999980773, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03319833794467053, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10091, + "tp_rate": 0.03319833794467053, + "truth_threshold": 38.92 + }, + { + "f1": 0.06400433107225885, + "fn": 293912, + "fn_rate": 0.966939837676544, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999981037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03306016232345597, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 10049, + "tp_rate": 0.03306016232345597, + "truth_threshold": 38.94 + }, + { + "f1": 0.06360966535646258, + "fn": 293976, + "fn_rate": 0.967150391004109, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999981298, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03284960899589092, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9985, + "tp_rate": 0.03284960899589092, + "truth_threshold": 38.96 + }, + { + "f1": 0.06350500751764736, + "fn": 293993, + "fn_rate": 0.9672063192317435, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999981556, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03279368076825646, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9968, + "tp_rate": 0.03279368076825646, + "truth_threshold": 38.980000000000004 + }, + { + "f1": 0.06339993373939193, + "fn": 294010, + "fn_rate": 0.967262247459378, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999998181, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03273775254062199, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9951, + "tp_rate": 0.03273775254062199, + "truth_threshold": 39 + }, + { + "f1": 0.06317184602738679, + "fn": 294047, + "fn_rate": 0.9673839736018766, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999982061, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03261602639812344, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9914, + "tp_rate": 0.03261602639812344, + "truth_threshold": 39.02 + }, + { + "f1": 0.06296799026261622, + "fn": 294080, + "fn_rate": 0.9674925401614023, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999982307, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.032507459838597715, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9881, + "tp_rate": 0.032507459838597715, + "truth_threshold": 39.04 + }, + { + "f1": 0.06279515891579088, + "fn": 294108, + "fn_rate": 0.967584657242212, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999982551, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.032415342757788006, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9853, + "tp_rate": 0.032415342757788006, + "truth_threshold": 39.06 + }, + { + "f1": 0.06251752887483746, + "fn": 294153, + "fn_rate": 0.9677327025506561, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999982792, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03226729744934383, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9808, + "tp_rate": 0.03226729744934383, + "truth_threshold": 39.08 + }, + { + "f1": 0.06223942063724803, + "fn": 294198, + "fn_rate": 0.9678807478591004, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999983028, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.032119252140899654, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9763, + "tp_rate": 0.032119252140899654, + "truth_threshold": 39.1 + }, + { + "f1": 0.06194927249773652, + "fn": 294245, + "fn_rate": 0.968035372959031, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999983262, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03196462704096907, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9716, + "tp_rate": 0.03196462704096907, + "truth_threshold": 39.12 + }, + { + "f1": 0.061782241351825286, + "fn": 294272, + "fn_rate": 0.9681242001440974, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999983492, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03187579985590257, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9689, + "tp_rate": 0.03187579985590257, + "truth_threshold": 39.14 + }, + { + "f1": 0.06154738976824867, + "fn": 294310, + "fn_rate": 0.9682492161823392, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999998372, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03175078381766082, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9651, + "tp_rate": 0.03175078381766082, + "truth_threshold": 39.160000000000004 + }, + { + "f1": 0.06134957586580777, + "fn": 294342, + "fn_rate": 0.9683544928461217, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999983944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.031645507153878295, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9619, + "tp_rate": 0.031645507153878295, + "truth_threshold": 39.18 + }, + { + "f1": 0.06101567334128589, + "fn": 294396, + "fn_rate": 0.9685321472162547, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999984165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03146785278374528, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9565, + "tp_rate": 0.03146785278374528, + "truth_threshold": 39.2 + }, + { + "f1": 0.06079938754027242, + "fn": 294431, + "fn_rate": 0.9686472935672669, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999984382, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03135270643273315, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9530, + "tp_rate": 0.03135270643273315, + "truth_threshold": 39.22 + }, + { + "f1": 0.06065091588880453, + "fn": 294455, + "fn_rate": 0.9687262510651038, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999984598, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.031273748934896255, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9506, + "tp_rate": 0.031273748934896255, + "truth_threshold": 39.24 + }, + { + "f1": 0.06050841617641429, + "fn": 294478, + "fn_rate": 0.9688019186671974, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999998481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.031198081332802562, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9483, + "tp_rate": 0.031198081332802562, + "truth_threshold": 39.26 + }, + { + "f1": 0.06017422381058745, + "fn": 294532, + "fn_rate": 0.9689795730373304, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999985019, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.031020426962669552, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9429, + "tp_rate": 0.031020426962669552, + "truth_threshold": 39.28 + }, + { + "f1": 0.05982753228184621, + "fn": 294588, + "fn_rate": 0.9691638071989499, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999985225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.030836192801050134, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9373, + "tp_rate": 0.030836192801050134, + "truth_threshold": 39.300000000000004 + }, + { + "f1": 0.059623364187679544, + "fn": 294621, + "fn_rate": 0.9692723737584756, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999985428, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.030727626241524406, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9340, + "tp_rate": 0.030727626241524406, + "truth_threshold": 39.32 + }, + { + "f1": 0.05943116161777381, + "fn": 294652, + "fn_rate": 0.9693743605265149, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999985629, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.030625639473485084, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9309, + "tp_rate": 0.030625639473485084, + "truth_threshold": 39.34 + }, + { + "f1": 0.05907181078630448, + "fn": 294710, + "fn_rate": 0.9695651744796208, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999985827, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03043482552037926, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9251, + "tp_rate": 0.03043482552037926, + "truth_threshold": 39.36 + }, + { + "f1": 0.05885508468081845, + "fn": 294745, + "fn_rate": 0.9696803208306328, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986022, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.030319679169367123, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9216, + "tp_rate": 0.030319679169367123, + "truth_threshold": 39.38 + }, + { + "f1": 0.05876830522221726, + "fn": 294759, + "fn_rate": 0.9697263793710378, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03027362062896227, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9202, + "tp_rate": 0.03027362062896227, + "truth_threshold": 39.4 + }, + { + "f1": 0.05869391665336101, + "fn": 294771, + "fn_rate": 0.9697658581199562, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03023414188004382, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9190, + "tp_rate": 0.03023414188004382, + "truth_threshold": 39.42 + }, + { + "f1": 0.058464329285819225, + "fn": 294808, + "fn_rate": 0.9698875842624547, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986592, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.03011241573754528, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9153, + "tp_rate": 0.03011241573754528, + "truth_threshold": 39.44 + }, + { + "f1": 0.05825348153826498, + "fn": 294842, + "fn_rate": 0.9699994407177237, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.030000559282276344, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9119, + "tp_rate": 0.030000559282276344, + "truth_threshold": 39.46 + }, + { + "f1": 0.058005366726296956, + "fn": 294882, + "fn_rate": 0.9701310365474518, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999986958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02986896345254819, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9079, + "tp_rate": 0.02986896345254819, + "truth_threshold": 39.480000000000004 + }, + { + "f1": 0.05782562857416696, + "fn": 294911, + "fn_rate": 0.9702264435240048, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999987138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.029773556475995274, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9050, + "tp_rate": 0.029773556475995274, + "truth_threshold": 39.5 + }, + { + "f1": 0.05773236718680111, + "fn": 294926, + "fn_rate": 0.9702757919601528, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999987315, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.029724208039847218, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9035, + "tp_rate": 0.029724208039847218, + "truth_threshold": 39.52 + }, + { + "f1": 0.057515337423312884, + "fn": 294961, + "fn_rate": 0.970390938311165, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999998749, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.029609061688835082, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 9000, + "tp_rate": 0.029609061688835082, + "truth_threshold": 39.54 + }, + { + "f1": 0.05722339045232876, + "fn": 295008, + "fn_rate": 0.9705455634110955, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999987662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0294544365889045, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8953, + "tp_rate": 0.0294544365889045, + "truth_threshold": 39.56 + }, + { + "f1": 0.05707437118476142, + "fn": 295032, + "fn_rate": 0.9706245209089324, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999987832, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.029375479091067604, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8929, + "tp_rate": 0.029375479091067604, + "truth_threshold": 39.58 + }, + { + "f1": 0.05679507997596246, + "fn": 295077, + "fn_rate": 0.9707725662173766, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02922743378262343, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8884, + "tp_rate": 0.02922743378262343, + "truth_threshold": 39.6 + }, + { + "f1": 0.056589900643197834, + "fn": 295110, + "fn_rate": 0.9708811327769022, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988164, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0291188672230977, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8851, + "tp_rate": 0.0291188672230977, + "truth_threshold": 39.62 + }, + { + "f1": 0.05636621735683045, + "fn": 295146, + "fn_rate": 0.9709995690236577, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02900043097634236, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8815, + "tp_rate": 0.02900043097634236, + "truth_threshold": 39.64 + }, + { + "f1": 0.056173739544163916, + "fn": 295177, + "fn_rate": 0.971101555791697, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988488, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02889844420830304, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8784, + "tp_rate": 0.02889844420830304, + "truth_threshold": 39.660000000000004 + }, + { + "f1": 0.05589382795011193, + "fn": 295222, + "fn_rate": 0.9712496011001411, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988647, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028750398899858864, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8739, + "tp_rate": 0.028750398899858864, + "truth_threshold": 39.68 + }, + { + "f1": 0.055738564767137656, + "fn": 295247, + "fn_rate": 0.9713318484937212, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988802, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028668151506278765, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8714, + "tp_rate": 0.028668151506278765, + "truth_threshold": 39.7 + }, + { + "f1": 0.05552072671443194, + "fn": 295282, + "fn_rate": 0.9714469948447334, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999988957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02855300515526663, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8679, + "tp_rate": 0.02855300515526663, + "truth_threshold": 39.72 + }, + { + "f1": 0.055290753098188754, + "fn": 295319, + "fn_rate": 0.9715687209872319, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989109, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028431279012768085, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8642, + "tp_rate": 0.028431279012768085, + "truth_threshold": 39.74 + }, + { + "f1": 0.05519725645258295, + "fn": 295334, + "fn_rate": 0.97161806942338, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028381930576620026, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8627, + "tp_rate": 0.028381930576620026, + "truth_threshold": 39.76 + }, + { + "f1": 0.05506037124959209, + "fn": 295356, + "fn_rate": 0.9716904471297304, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028309552870269542, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8605, + "tp_rate": 0.028309552870269542, + "truth_threshold": 39.78 + }, + { + "f1": 0.05486123109805653, + "fn": 295388, + "fn_rate": 0.971795723793513, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989553, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028204276206487015, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8573, + "tp_rate": 0.028204276206487015, + "truth_threshold": 39.800000000000004 + }, + { + "f1": 0.054686950010559794, + "fn": 295416, + "fn_rate": 0.9718878408743227, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989696, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.028112159125677307, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8545, + "tp_rate": 0.028112159125677307, + "truth_threshold": 39.82 + }, + { + "f1": 0.05441941740115598, + "fn": 295459, + "fn_rate": 0.9720293063912805, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989838, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02797069360871954, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8502, + "tp_rate": 0.02797069360871954, + "truth_threshold": 39.84 + }, + { + "f1": 0.05426996716148484, + "fn": 295483, + "fn_rate": 0.9721082638891173, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999989978, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027891736110882647, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8478, + "tp_rate": 0.027891736110882647, + "truth_threshold": 39.86 + }, + { + "f1": 0.054157864413289805, + "fn": 295501, + "fn_rate": 0.972167482012495, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990116, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027832517987504975, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8460, + "tp_rate": 0.027832517987504975, + "truth_threshold": 39.88 + }, + { + "f1": 0.054026888604353396, + "fn": 295522, + "fn_rate": 0.9722365698231024, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990252, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027763430176897693, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8439, + "tp_rate": 0.027763430176897693, + "truth_threshold": 39.9 + }, + { + "f1": 0.05375276927608242, + "fn": 295566, + "fn_rate": 0.9723813252358032, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990387, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027618674764196723, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8395, + "tp_rate": 0.027618674764196723, + "truth_threshold": 39.92 + }, + { + "f1": 0.05360321708950732, + "fn": 295590, + "fn_rate": 0.9724602827336402, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02753971726635983, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8371, + "tp_rate": 0.02753971726635983, + "truth_threshold": 39.94 + }, + { + "f1": 0.05350350286248543, + "fn": 295606, + "fn_rate": 0.9725129210655314, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999065, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027487078934468567, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8355, + "tp_rate": 0.027487078934468567, + "truth_threshold": 39.96 + }, + { + "f1": 0.05339771628380585, + "fn": 295623, + "fn_rate": 0.9725688492931659, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990778, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0274311507068341, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8338, + "tp_rate": 0.0274311507068341, + "truth_threshold": 39.980000000000004 + }, + { + "f1": 0.05317936105346758, + "fn": 295658, + "fn_rate": 0.9726839956441781, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999990905, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.027316004355821964, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8303, + "tp_rate": 0.027316004355821964, + "truth_threshold": 40 + }, + { + "f1": 0.052948825530224904, + "fn": 295695, + "fn_rate": 0.9728057217866766, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999103, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02719427821332342, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8266, + "tp_rate": 0.02719427821332342, + "truth_threshold": 40.02 + }, + { + "f1": 0.05267440147093683, + "fn": 295739, + "fn_rate": 0.9729504771993776, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991154, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02704952280062245, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8222, + "tp_rate": 0.02704952280062245, + "truth_threshold": 40.04 + }, + { + "f1": 0.05253716043054844, + "fn": 295761, + "fn_rate": 0.973022854905728, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991276, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026977145094271963, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8200, + "tp_rate": 0.026977145094271963, + "truth_threshold": 40.06 + }, + { + "f1": 0.05239990004421122, + "fn": 295783, + "fn_rate": 0.9730952326120785, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991396, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026904767387921476, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8178, + "tp_rate": 0.026904767387921476, + "truth_threshold": 40.08 + }, + { + "f1": 0.052181324173993286, + "fn": 295818, + "fn_rate": 0.9732103789630907, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02678962103690934, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8143, + "tp_rate": 0.02678962103690934, + "truth_threshold": 40.1 + }, + { + "f1": 0.051975518313198965, + "fn": 295851, + "fn_rate": 0.9733189455226164, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991631, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02668105447738361, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8110, + "tp_rate": 0.02668105447738361, + "truth_threshold": 40.12 + }, + { + "f1": 0.05174436119140863, + "fn": 295888, + "fn_rate": 0.9734406716651149, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991747, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026559328334885068, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8073, + "tp_rate": 0.026559328334885068, + "truth_threshold": 40.14 + }, + { + "f1": 0.05154454138114499, + "fn": 295920, + "fn_rate": 0.9735459483288974, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999186, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026454051671102544, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8041, + "tp_rate": 0.026454051671102544, + "truth_threshold": 40.160000000000004 + }, + { + "f1": 0.05135109145110107, + "fn": 295951, + "fn_rate": 0.9736479350969368, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999991972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026352064903063223, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 8010, + "tp_rate": 0.026352064903063223, + "truth_threshold": 40.18 + }, + { + "f1": 0.05126363974406647, + "fn": 295965, + "fn_rate": 0.9736939936373417, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02630600636265837, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7996, + "tp_rate": 0.02630600636265837, + "truth_threshold": 40.2 + }, + { + "f1": 0.05118226348318929, + "fn": 295978, + "fn_rate": 0.9737367622820032, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992192, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026263237717996716, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7983, + "tp_rate": 0.026263237717996716, + "truth_threshold": 40.22 + }, + { + "f1": 0.0510698050178568, + "fn": 295996, + "fn_rate": 0.973795980405381, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992298, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026204019594619047, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7965, + "tp_rate": 0.026204019594619047, + "truth_threshold": 40.24 + }, + { + "f1": 0.050876259241921934, + "fn": 296027, + "fn_rate": 0.9738979671734203, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.026102032826579726, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7934, + "tp_rate": 0.026102032826579726, + "truth_threshold": 40.26 + }, + { + "f1": 0.05071985122005964, + "fn": 296052, + "fn_rate": 0.9739802145670003, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992509, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02601978543299963, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7909, + "tp_rate": 0.02601978543299963, + "truth_threshold": 40.28 + }, + { + "f1": 0.0506012506012506, + "fn": 296071, + "fn_rate": 0.9740427225861212, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992613, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.025957277413878755, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7890, + "tp_rate": 0.025957277413878755, + "truth_threshold": 40.300000000000004 + }, + { + "f1": 0.050338669950738914, + "fn": 296113, + "fn_rate": 0.9741808982073358, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992715, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.025819101792664192, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7848, + "tp_rate": 0.025819101792664192, + "truth_threshold": 40.32 + }, + { + "f1": 0.050082112339945084, + "fn": 296154, + "fn_rate": 0.9743157839328072, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992815, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02568421606719283, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7807, + "tp_rate": 0.02568421606719283, + "truth_threshold": 40.34 + }, + { + "f1": 0.049844416642607386, + "fn": 296192, + "fn_rate": 0.9744407999710489, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999992913, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.025559200028951082, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7769, + "tp_rate": 0.025559200028951082, + "truth_threshold": 40.36 + }, + { + "f1": 0.04964420689256909, + "fn": 296224, + "fn_rate": 0.9745460766348314, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993011, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02545392336516856, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7737, + "tp_rate": 0.02545392336516856, + "truth_threshold": 40.38 + }, + { + "f1": 0.04940030417958147, + "fn": 296263, + "fn_rate": 0.9746743825688164, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993108, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.025325617431183604, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7698, + "tp_rate": 0.025325617431183604, + "truth_threshold": 40.4 + }, + { + "f1": 0.049181064359612864, + "fn": 296298, + "fn_rate": 0.9747895289198285, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993202, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02521047108017147, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7663, + "tp_rate": 0.02521047108017147, + "truth_threshold": 40.42 + }, + { + "f1": 0.049049749359760204, + "fn": 296319, + "fn_rate": 0.9748586167304358, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993295, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.025141383269564187, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7642, + "tp_rate": 0.025141383269564187, + "truth_threshold": 40.44 + }, + { + "f1": 0.04894314892196697, + "fn": 296336, + "fn_rate": 0.9749145449580703, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993389, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02508545504192972, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7625, + "tp_rate": 0.02508545504192972, + "truth_threshold": 40.46 + }, + { + "f1": 0.04859243090553077, + "fn": 296392, + "fn_rate": 0.9750987791196897, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999348, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024901220880310302, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7569, + "tp_rate": 0.024901220880310302, + "truth_threshold": 40.480000000000004 + }, + { + "f1": 0.048360792572521925, + "fn": 296429, + "fn_rate": 0.9752205052621883, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993568, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02477949473781176, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7532, + "tp_rate": 0.02477949473781176, + "truth_threshold": 40.5 + }, + { + "f1": 0.048003442119729255, + "fn": 296486, + "fn_rate": 0.9754080293195508, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993657, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024591970680449136, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7475, + "tp_rate": 0.024591970680449136, + "truth_threshold": 40.52 + }, + { + "f1": 0.04758356671205776, + "fn": 296553, + "fn_rate": 0.9756284523343455, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993745, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024371547665654476, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7408, + "tp_rate": 0.024371547665654476, + "truth_threshold": 40.54 + }, + { + "f1": 0.04740155457056594, + "fn": 296582, + "fn_rate": 0.9757238593108984, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999383, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024276140689101562, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7379, + "tp_rate": 0.024276140689101562, + "truth_threshold": 40.56 + }, + { + "f1": 0.04716320486215957, + "fn": 296620, + "fn_rate": 0.9758488753491402, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024151124650859813, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7341, + "tp_rate": 0.024151124650859813, + "truth_threshold": 40.58 + }, + { + "f1": 0.04691224755993343, + "fn": 296660, + "fn_rate": 0.9759804711788683, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999993999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.024019528821131658, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7301, + "tp_rate": 0.024019528821131658, + "truth_threshold": 40.6 + }, + { + "f1": 0.046648672964462436, + "fn": 296702, + "fn_rate": 0.9761186468000829, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994083, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023881353199917094, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7259, + "tp_rate": 0.023881353199917094, + "truth_threshold": 40.62 + }, + { + "f1": 0.04647934394200365, + "fn": 296729, + "fn_rate": 0.9762074739851494, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994164, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02379252601485059, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7232, + "tp_rate": 0.02379252601485059, + "truth_threshold": 40.64 + }, + { + "f1": 0.046353785044926925, + "fn": 296749, + "fn_rate": 0.9762732719000135, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994243, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02372672809998651, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7212, + "tp_rate": 0.02372672809998651, + "truth_threshold": 40.660000000000004 + }, + { + "f1": 0.046234340551623954, + "fn": 296768, + "fn_rate": 0.9763357799191343, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994323, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023664220080865637, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7193, + "tp_rate": 0.023664220080865637, + "truth_threshold": 40.68 + }, + { + "f1": 0.04610875057049374, + "fn": 296788, + "fn_rate": 0.9764015778339984, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994401, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02359842216600156, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7173, + "tp_rate": 0.02359842216600156, + "truth_threshold": 40.7 + }, + { + "f1": 0.0459393261460724, + "fn": 296815, + "fn_rate": 0.9764904050190649, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994479, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023509594980935054, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7146, + "tp_rate": 0.023509594980935054, + "truth_threshold": 40.72 + }, + { + "f1": 0.045826261379416755, + "fn": 296833, + "fn_rate": 0.9765496231424426, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994554, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023450376857557385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7128, + "tp_rate": 0.023450376857557385, + "truth_threshold": 40.74 + }, + { + "f1": 0.0456564929178106, + "fn": 296860, + "fn_rate": 0.9766384503275091, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999463, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023361549672490878, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7101, + "tp_rate": 0.023361549672490878, + "truth_threshold": 40.76 + }, + { + "f1": 0.0455121239205499, + "fn": 296883, + "fn_rate": 0.9767141179296028, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994703, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02328588207039719, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7078, + "tp_rate": 0.02328588207039719, + "truth_threshold": 40.78 + }, + { + "f1": 0.045298452753019254, + "fn": 296917, + "fn_rate": 0.9768259743848717, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023174025615128258, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7044, + "tp_rate": 0.023174025615128258, + "truth_threshold": 40.800000000000004 + }, + { + "f1": 0.04521659721150383, + "fn": 296930, + "fn_rate": 0.9768687430295334, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999994849, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.023131256970466606, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 7031, + "tp_rate": 0.023131256970466606, + "truth_threshold": 40.82 + }, + { + "f1": 0.0449212719975301, + "fn": 296977, + "fn_rate": 0.977023368129464, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999492, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022976631870536023, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6984, + "tp_rate": 0.022976631870536023, + "truth_threshold": 40.84 + }, + { + "f1": 0.0446697372822479, + "fn": 297017, + "fn_rate": 0.9771549639591921, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999499, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022845036040807867, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6944, + "tp_rate": 0.022845036040807867, + "truth_threshold": 40.86 + }, + { + "f1": 0.044569105272638375, + "fn": 297033, + "fn_rate": 0.9772076022910834, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995058, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022792397708916605, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6928, + "tp_rate": 0.022792397708916605, + "truth_threshold": 40.88 + }, + { + "f1": 0.044330062731220844, + "fn": 297071, + "fn_rate": 0.9773326183293252, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022667381670674856, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6890, + "tp_rate": 0.022667381670674856, + "truth_threshold": 40.9 + }, + { + "f1": 0.0442229614520934, + "fn": 297088, + "fn_rate": 0.9773885465569596, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995193, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02261145344304039, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6873, + "tp_rate": 0.02261145344304039, + "truth_threshold": 40.92 + }, + { + "f1": 0.044059354971558, + "fn": 297114, + "fn_rate": 0.9774740838462829, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022525916153717088, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6847, + "tp_rate": 0.022525916153717088, + "truth_threshold": 40.94 + }, + { + "f1": 0.04399027014504691, + "fn": 297125, + "fn_rate": 0.9775102726994581, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995325, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022489727300541846, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6836, + "tp_rate": 0.022489727300541846, + "truth_threshold": 40.96 + }, + { + "f1": 0.043820188563889695, + "fn": 297152, + "fn_rate": 0.9775990998845246, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995389, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02240090011547534, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6809, + "tp_rate": 0.02240090011547534, + "truth_threshold": 40.980000000000004 + }, + { + "f1": 0.04369428801287208, + "fn": 297172, + "fn_rate": 0.9776648977993887, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995453, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022335102200611263, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6789, + "tp_rate": 0.022335102200611263, + "truth_threshold": 41 + }, + { + "f1": 0.04360614798414088, + "fn": 297186, + "fn_rate": 0.9777109563397935, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02228904366020641, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6775, + "tp_rate": 0.02228904366020641, + "truth_threshold": 41.02 + }, + { + "f1": 0.04331648910489556, + "fn": 297232, + "fn_rate": 0.977862291543981, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995577, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.022137708456019027, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6729, + "tp_rate": 0.022137708456019027, + "truth_threshold": 41.04 + }, + { + "f1": 0.04319052370682718, + "fn": 297252, + "fn_rate": 0.977928089458845, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995638, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02207191054115495, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6709, + "tp_rate": 0.02207191054115495, + "truth_threshold": 41.06 + }, + { + "f1": 0.04299538369420354, + "fn": 297283, + "fn_rate": 0.9780300762268843, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995698, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02196992377311563, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6678, + "tp_rate": 0.02196992377311563, + "truth_threshold": 41.08 + }, + { + "f1": 0.042913342733705485, + "fn": 297296, + "fn_rate": 0.978072844871546, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995757, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02192715512845398, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6665, + "tp_rate": 0.02192715512845398, + "truth_threshold": 41.1 + }, + { + "f1": 0.04268649988731125, + "fn": 297332, + "fn_rate": 0.9781912811183013, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995816, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02180871888169864, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6629, + "tp_rate": 0.02180871888169864, + "truth_threshold": 41.12 + }, + { + "f1": 0.04252907613245579, + "fn": 297357, + "fn_rate": 0.9782735285118814, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021726471488118543, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6604, + "tp_rate": 0.021726471488118543, + "truth_threshold": 41.14 + }, + { + "f1": 0.042484817650809185, + "fn": 297364, + "fn_rate": 0.9782965577820839, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999593, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021703442217916116, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6597, + "tp_rate": 0.021703442217916116, + "truth_threshold": 41.160000000000004 + }, + { + "f1": 0.04225787544843843, + "fn": 297400, + "fn_rate": 0.9784149940288392, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999995985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021585005971160774, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6561, + "tp_rate": 0.021585005971160774, + "truth_threshold": 41.18 + }, + { + "f1": 0.04209394001855096, + "fn": 297426, + "fn_rate": 0.9785005313181625, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021499468681837473, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6535, + "tp_rate": 0.021499468681837473, + "truth_threshold": 41.2 + }, + { + "f1": 0.041942590636192635, + "fn": 297450, + "fn_rate": 0.9785794888159994, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02142051118400058, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6511, + "tp_rate": 0.02142051118400058, + "truth_threshold": 41.22 + }, + { + "f1": 0.04162720425743021, + "fn": 297500, + "fn_rate": 0.9787439836031596, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999615, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021256016396840383, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6461, + "tp_rate": 0.021256016396840383, + "truth_threshold": 41.24 + }, + { + "f1": 0.041261228750757176, + "fn": 297558, + "fn_rate": 0.9789347975562654, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996202, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.021065202443734558, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6403, + "tp_rate": 0.021065202443734558, + "truth_threshold": 41.26 + }, + { + "f1": 0.04112237467052478, + "fn": 297580, + "fn_rate": 0.9790071752626159, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996255, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02099282473738407, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6381, + "tp_rate": 0.02099282473738407, + "truth_threshold": 41.28 + }, + { + "f1": 0.0408572349339349, + "fn": 297622, + "fn_rate": 0.9791453508838305, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996306, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020854649116169507, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6339, + "tp_rate": 0.020854649116169507, + "truth_threshold": 41.300000000000004 + }, + { + "f1": 0.04061728474644011, + "fn": 297660, + "fn_rate": 0.9792703669220723, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996357, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02072963307792776, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6301, + "tp_rate": 0.02072963307792776, + "truth_threshold": 41.32 + }, + { + "f1": 0.040503603615218986, + "fn": 297678, + "fn_rate": 0.9793295850454499, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02067041495455009, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6283, + "tp_rate": 0.02067041495455009, + "truth_threshold": 41.34 + }, + { + "f1": 0.04029528383997937, + "fn": 297711, + "fn_rate": 0.9794381516049756, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996457, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02056184839502436, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6250, + "tp_rate": 0.02056184839502436, + "truth_threshold": 41.36 + }, + { + "f1": 0.040270014119649526, + "fn": 297715, + "fn_rate": 0.9794513111879485, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020548688812051547, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6246, + "tp_rate": 0.020548688812051547, + "truth_threshold": 41.38 + }, + { + "f1": 0.040143655742038646, + "fn": 297735, + "fn_rate": 0.9795171091028125, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996554, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020482890897187467, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6226, + "tp_rate": 0.020482890897187467, + "truth_threshold": 41.4 + }, + { + "f1": 0.03989708139339928, + "fn": 297774, + "fn_rate": 0.9796454150367975, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996602, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020354584963202516, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6187, + "tp_rate": 0.020354584963202516, + "truth_threshold": 41.42 + }, + { + "f1": 0.03972655746162776, + "fn": 297801, + "fn_rate": 0.979734242221864, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996648, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.02026575777813601, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6160, + "tp_rate": 0.02026575777813601, + "truth_threshold": 41.44 + }, + { + "f1": 0.03959367945823928, + "fn": 297822, + "fn_rate": 0.9798033300324712, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020196669967528728, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6139, + "tp_rate": 0.020196669967528728, + "truth_threshold": 41.46 + }, + { + "f1": 0.03945458884538729, + "fn": 297844, + "fn_rate": 0.9798757077388217, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996739, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020124292261178244, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6117, + "tp_rate": 0.020124292261178244, + "truth_threshold": 41.480000000000004 + }, + { + "f1": 0.039309281609010045, + "fn": 297867, + "fn_rate": 0.9799513753409155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.020048624659084555, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6094, + "tp_rate": 0.020048624659084555, + "truth_threshold": 41.5 + }, + { + "f1": 0.03918279930588258, + "fn": 297887, + "fn_rate": 0.9800171732557795, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996829, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019982826744220476, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6074, + "tp_rate": 0.019982826744220476, + "truth_threshold": 41.52 + }, + { + "f1": 0.03904364992322878, + "fn": 297909, + "fn_rate": 0.98008955096213, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01991044903786999, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6052, + "tp_rate": 0.01991044903786999, + "truth_threshold": 41.54 + }, + { + "f1": 0.03889802896867641, + "fn": 297932, + "fn_rate": 0.9801652185642237, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.0198347814357763, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6029, + "tp_rate": 0.0198347814357763, + "truth_threshold": 41.56 + }, + { + "f1": 0.03886007019717147, + "fn": 297938, + "fn_rate": 0.9801849579386829, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999996958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019815042061317078, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6023, + "tp_rate": 0.019815042061317078, + "truth_threshold": 41.58 + }, + { + "f1": 0.03875263738603589, + "fn": 297955, + "fn_rate": 0.9802408861663174, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01975911383368261, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6006, + "tp_rate": 0.01975911383368261, + "truth_threshold": 41.6 + }, + { + "f1": 0.038733530345459476, + "fn": 297958, + "fn_rate": 0.980250755853547, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019749244146452998, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 6003, + "tp_rate": 0.019749244146452998, + "truth_threshold": 41.62 + }, + { + "f1": 0.03847419673337162, + "fn": 297999, + "fn_rate": 0.9803856415790183, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01961435842098164, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5962, + "tp_rate": 0.01961435842098164, + "truth_threshold": 41.64 + }, + { + "f1": 0.03825252994630318, + "fn": 298034, + "fn_rate": 0.9805007879300305, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997122, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019499212069969504, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5927, + "tp_rate": 0.019499212069969504, + "truth_threshold": 41.660000000000004 + }, + { + "f1": 0.038087923010888716, + "fn": 298060, + "fn_rate": 0.9805863252193538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997161, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019413674780646203, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5901, + "tp_rate": 0.019413674780646203, + "truth_threshold": 41.68 + }, + { + "f1": 0.03803105998993068, + "fn": 298069, + "fn_rate": 0.9806159342810427, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997201, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019384065718957365, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5892, + "tp_rate": 0.019384065718957365, + "truth_threshold": 41.7 + }, + { + "f1": 0.03787262610222446, + "fn": 298094, + "fn_rate": 0.9806981816746227, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997239, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01930181832537727, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5867, + "tp_rate": 0.01930181832537727, + "truth_threshold": 41.72 + }, + { + "f1": 0.03766995054810262, + "fn": 298126, + "fn_rate": 0.9808034583384052, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997278, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019196541661594745, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5835, + "tp_rate": 0.019196541661594745, + "truth_threshold": 41.74 + }, + { + "f1": 0.037499031533276515, + "fn": 298153, + "fn_rate": 0.9808922855234717, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01910771447652824, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5808, + "tp_rate": 0.01910771447652824, + "truth_threshold": 41.76 + }, + { + "f1": 0.03733429757669286, + "fn": 298179, + "fn_rate": 0.9809778228127951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997352, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.019022177187204937, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5782, + "tp_rate": 0.019022177187204937, + "truth_threshold": 41.78 + }, + { + "f1": 0.037144185565945134, + "fn": 298209, + "fn_rate": 0.9810765196850911, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997388, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01892348031490882, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5752, + "tp_rate": 0.01892348031490882, + "truth_threshold": 41.800000000000004 + }, + { + "f1": 0.036700447613695814, + "fn": 298279, + "fn_rate": 0.9813068123871155, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997424, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01869318761288455, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5682, + "tp_rate": 0.01869318761288455, + "truth_threshold": 41.82 + }, + { + "f1": 0.03654826269790516, + "fn": 298303, + "fn_rate": 0.9813857698849523, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999746, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018614230115047654, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5658, + "tp_rate": 0.018614230115047654, + "truth_threshold": 41.84 + }, + { + "f1": 0.03639605418709665, + "fn": 298327, + "fn_rate": 0.9814647273827892, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997494, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01853527261721076, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5634, + "tp_rate": 0.01853527261721076, + "truth_threshold": 41.86 + }, + { + "f1": 0.03622467438494935, + "fn": 298354, + "fn_rate": 0.9815535545678558, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997529, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018446445432144257, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5607, + "tp_rate": 0.018446445432144257, + "truth_threshold": 41.88 + }, + { + "f1": 0.036180385062669594, + "fn": 298361, + "fn_rate": 0.9815765838380581, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997563, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01842341616194183, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5600, + "tp_rate": 0.01842341616194183, + "truth_threshold": 41.9 + }, + { + "f1": 0.035996278252329324, + "fn": 298390, + "fn_rate": 0.9816719908146111, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018328009185388915, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5571, + "tp_rate": 0.018328009185388915, + "truth_threshold": 41.92 + }, + { + "f1": 0.03579321486268174, + "fn": 298422, + "fn_rate": 0.9817772674783936, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999763, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018222732521606392, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5539, + "tp_rate": 0.018222732521606392, + "truth_threshold": 41.94 + }, + { + "f1": 0.03562196256850377, + "fn": 298449, + "fn_rate": 0.9818660946634601, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018133905336539885, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5512, + "tp_rate": 0.018133905336539885, + "truth_threshold": 41.96 + }, + { + "f1": 0.0355457894396691, + "fn": 298461, + "fn_rate": 0.9819055734123786, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.018094426587621438, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5500, + "tp_rate": 0.018094426587621438, + "truth_threshold": 41.980000000000004 + }, + { + "f1": 0.03541882109617373, + "fn": 298481, + "fn_rate": 0.9819713713272427, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997726, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01802862867275736, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5480, + "tp_rate": 0.01802862867275736, + "truth_threshold": 42 + }, + { + "f1": 0.03522187388901458, + "fn": 298512, + "fn_rate": 0.982073358095282, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997757, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01792664190471804, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5449, + "tp_rate": 0.01792664190471804, + "truth_threshold": 42.02 + }, + { + "f1": 0.03508862657892355, + "fn": 298533, + "fn_rate": 0.9821424459058893, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997788, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01785755409411076, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5428, + "tp_rate": 0.01785755409411076, + "truth_threshold": 42.04 + }, + { + "f1": 0.034980541225450267, + "fn": 298550, + "fn_rate": 0.9821983741335237, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01780162586647629, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5411, + "tp_rate": 0.01780162586647629, + "truth_threshold": 42.06 + }, + { + "f1": 0.03486620505957576, + "fn": 298568, + "fn_rate": 0.9822575922569013, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997848, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017742407743098623, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5393, + "tp_rate": 0.017742407743098623, + "truth_threshold": 42.08 + }, + { + "f1": 0.03483455525815586, + "fn": 298573, + "fn_rate": 0.9822740417356174, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997878, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017725958264382603, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5388, + "tp_rate": 0.017725958264382603, + "truth_threshold": 42.1 + }, + { + "f1": 0.03471373613939805, + "fn": 298592, + "fn_rate": 0.9823365497547383, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997907, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01766345024526173, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5369, + "tp_rate": 0.01766345024526173, + "truth_threshold": 42.12 + }, + { + "f1": 0.03456124355815923, + "fn": 298616, + "fn_rate": 0.9824155072525752, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997936, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017584492747424834, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5345, + "tp_rate": 0.017584492747424834, + "truth_threshold": 42.14 + }, + { + "f1": 0.03440872731035107, + "fn": 298640, + "fn_rate": 0.982494464750412, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997965, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01750553524958794, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5321, + "tp_rate": 0.01750553524958794, + "truth_threshold": 42.160000000000004 + }, + { + "f1": 0.03426889995473065, + "fn": 298662, + "fn_rate": 0.9825668424567625, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999997993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017433157543237456, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5299, + "tp_rate": 0.017433157543237456, + "truth_threshold": 42.18 + }, + { + "f1": 0.03416719483643983, + "fn": 298678, + "fn_rate": 0.9826194807886538, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999802, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01738051921134619, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5283, + "tp_rate": 0.01738051921134619, + "truth_threshold": 42.2 + }, + { + "f1": 0.0340527639978527, + "fn": 298696, + "fn_rate": 0.9826786989120315, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998048, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017321301087968522, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5265, + "tp_rate": 0.017321301087968522, + "truth_threshold": 42.22 + }, + { + "f1": 0.03390663708514175, + "fn": 298719, + "fn_rate": 0.9827543665141252, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998075, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017245633485874833, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5242, + "tp_rate": 0.017245633485874833, + "truth_threshold": 42.24 + }, + { + "f1": 0.03379217553301594, + "fn": 298737, + "fn_rate": 0.9828135846375028, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01718641536249716, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5224, + "tp_rate": 0.01718641536249716, + "truth_threshold": 42.26 + }, + { + "f1": 0.03369667173399748, + "fn": 298752, + "fn_rate": 0.9828629330736509, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998127, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017137066926349104, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5209, + "tp_rate": 0.017137066926349104, + "truth_threshold": 42.28 + }, + { + "f1": 0.0335504907066564, + "fn": 298775, + "fn_rate": 0.9829386006757446, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998154, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.017061399324255416, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5186, + "tp_rate": 0.017061399324255416, + "truth_threshold": 42.300000000000004 + }, + { + "f1": 0.033429517869620354, + "fn": 298794, + "fn_rate": 0.9830011086948655, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998178, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01699889130513454, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5167, + "tp_rate": 0.01699889130513454, + "truth_threshold": 42.32 + }, + { + "f1": 0.0332705708795155, + "fn": 298819, + "fn_rate": 0.9830833560884455, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01691664391155444, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5142, + "tp_rate": 0.01691664391155444, + "truth_threshold": 42.34 + }, + { + "f1": 0.03317501811781758, + "fn": 298834, + "fn_rate": 0.9831327045245937, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998228, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016867295475406385, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5127, + "tp_rate": 0.016867295475406385, + "truth_threshold": 42.36 + }, + { + "f1": 0.03301602914625544, + "fn": 298859, + "fn_rate": 0.9832149519181738, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998253, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016785048081826286, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5102, + "tp_rate": 0.016785048081826286, + "truth_threshold": 42.38 + }, + { + "f1": 0.03288873357019434, + "fn": 298879, + "fn_rate": 0.9832807498330378, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998277, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01671925016696221, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5082, + "tp_rate": 0.01671925016696221, + "truth_threshold": 42.4 + }, + { + "f1": 0.032716752530613305, + "fn": 298906, + "fn_rate": 0.9833695770181043, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.99999999999983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016630422981895703, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5055, + "tp_rate": 0.016630422981895703, + "truth_threshold": 42.42 + }, + { + "f1": 0.03266582094961943, + "fn": 298914, + "fn_rate": 0.9833958961840499, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998324, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016604103815950073, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5047, + "tp_rate": 0.016604103815950073, + "truth_threshold": 42.44 + }, + { + "f1": 0.032506747965900924, + "fn": 298939, + "fn_rate": 0.98347814357763, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998347, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016521856422369974, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 5022, + "tp_rate": 0.016521856422369974, + "truth_threshold": 42.46 + }, + { + "f1": 0.03229648810487134, + "fn": 298972, + "fn_rate": 0.9835867101371557, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.999999999999837, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016413289862844245, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4989, + "tp_rate": 0.016413289862844245, + "truth_threshold": 42.480000000000004 + }, + { + "f1": 0.03209913310328307, + "fn": 299003, + "fn_rate": 0.9836886969051951, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998392, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016311303094804927, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4958, + "tp_rate": 0.016311303094804927, + "truth_threshold": 42.5 + }, + { + "f1": 0.03193349131735364, + "fn": 299029, + "fn_rate": 0.9837742341945184, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998415, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016225765805481625, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4932, + "tp_rate": 0.016225765805481625, + "truth_threshold": 42.52 + }, + { + "f1": 0.03185055685055685, + "fn": 299042, + "fn_rate": 0.98381700283918, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998436, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016182997160819973, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4919, + "tp_rate": 0.016182997160819973, + "truth_threshold": 42.54 + }, + { + "f1": 0.03171684074882308, + "fn": 299063, + "fn_rate": 0.9838860906497873, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998458, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.01611390935021269, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4898, + "tp_rate": 0.01611390935021269, + "truth_threshold": 42.56 + }, + { + "f1": 0.031595648232094285, + "fn": 299082, + "fn_rate": 0.9839485986689082, + "fp": 0, + "fp_rate": 0, + "match_probability": 0.9999999999998479, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 1, + "recall": 0.016051401331091817, + "row_count": 477830, + "tn": 173869, + "tn_rate": 1, + "tp": 4879, + "tp_rate": 0.016051401331091817, + "truth_threshold": 42.58 + }, + { + "f1": 0.85910966959049, + "fn": 74577, + "fn_rate": 0.24535055484091708, + "fp": 660, + "fp_rate": 0.003795961327206115, + "match_probability": 0.7570845276442862, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971309836379127, + "recall": 0.7546494451590829, + "row_count": 477830, + "tn": 173209, + "tn_rate": 0.9962040386727938, + "tp": 229384, + "tp_rate": 0.7546494451590829, + "truth_threshold": 1.6400000000000001 + }, + { + "f1": 0.8587452934454789, + "fn": 74749, + "fn_rate": 0.24591641690874816, + "fp": 658, + "fp_rate": 0.003784458414093369, + "match_probability": 0.7596249330210829, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971375125070692, + "recall": 0.7540835830912518, + "row_count": 477830, + "tn": 173211, + "tn_rate": 0.9962155415859066, + "tp": 229212, + "tp_rate": 0.7540835830912518, + "truth_threshold": 1.6600000000000001 + }, + { + "f1": 0.8583940456916712, + "fn": 74914, + "fn_rate": 0.2464592497063768, + "fp": 657, + "fp_rate": 0.003778706957536996, + "match_probability": 0.7621471175890653, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971397973043569, + "recall": 0.7535407502936232, + "row_count": 477830, + "tn": 173212, + "tn_rate": 0.996221293042463, + "tp": 229047, + "tp_rate": 0.7535407502936232, + "truth_threshold": 1.68 + }, + { + "f1": 0.8581292569282268, + "fn": 75037, + "fn_rate": 0.2468639068827909, + "fp": 657, + "fp_rate": 0.003778706957536996, + "match_probability": 0.7646510369310004, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971382649261045, + "recall": 0.7531360931172091, + "row_count": 477830, + "tn": 173212, + "tn_rate": 0.996221293042463, + "tp": 228924, + "tp_rate": 0.7531360931172091, + "truth_threshold": 1.7 + }, + { + "f1": 0.8577208791291207, + "fn": 75230, + "fn_rate": 0.24749885676122924, + "fp": 655, + "fp_rate": 0.0037672040444242504, + "match_probability": 0.767136650755255, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997144551105996, + "recall": 0.7525011432387707, + "row_count": 477830, + "tn": 173214, + "tn_rate": 0.9962327959555758, + "tp": 228731, + "tp_rate": 0.7525011432387707, + "truth_threshold": 1.72 + }, + { + "f1": 0.8574622107197779, + "fn": 75353, + "fn_rate": 0.24790351393764332, + "fp": 652, + "fp_rate": 0.003749949674755132, + "match_probability": 0.7696039228492181, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971560673471168, + "recall": 0.7520964860623567, + "row_count": 477830, + "tn": 173217, + "tn_rate": 0.9962500503252448, + "tp": 228608, + "tp_rate": 0.7520964860623567, + "truth_threshold": 1.74 + }, + { + "f1": 0.8572114590992992, + "fn": 75473, + "fn_rate": 0.2482983014268278, + "fp": 648, + "fp_rate": 0.00372694384852964, + "match_probability": 0.7720528210314674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971719851965645, + "recall": 0.7517016985731723, + "row_count": 477830, + "tn": 173221, + "tn_rate": 0.9962730561514703, + "tp": 228488, + "tp_rate": 0.7517016985731723, + "truth_threshold": 1.76 + }, + { + "f1": 0.8569552229844338, + "fn": 75603, + "fn_rate": 0.2487259878734443, + "fp": 633, + "fp_rate": 0.0036406720001840465, + "match_probability": 0.774483317102736, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99723569921962, + "recall": 0.7512740121265558, + "row_count": 477830, + "tn": 173236, + "tn_rate": 0.996359327999816, + "tp": 228358, + "tp_rate": 0.7512740121265558, + "truth_threshold": 1.78 + }, + { + "f1": 0.8566119611405577, + "fn": 75763, + "fn_rate": 0.2492523711923569, + "fp": 633, + "fp_rate": 0.0036406720001840465, + "match_probability": 0.7768953867957377, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972337664040274, + "recall": 0.7507476288076431, + "row_count": 477830, + "tn": 173236, + "tn_rate": 0.996359327999816, + "tp": 228198, + "tp_rate": 0.7507476288076431, + "truth_threshold": 1.8 + }, + { + "f1": 0.8557937205580725, + "fn": 76147, + "fn_rate": 0.2505156911577472, + "fp": 629, + "fp_rate": 0.003617666173958555, + "match_probability": 0.7792890097239141, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972465779209694, + "recall": 0.7494843088422528, + "row_count": 477830, + "tn": 173240, + "tn_rate": 0.9963823338260415, + "tp": 227814, + "tp_rate": 0.7494843088422528, + "truth_threshold": 1.82 + }, + { + "f1": 0.8555099648300117, + "fn": 76279, + "fn_rate": 0.25094995739585013, + "fp": 629, + "fp_rate": 0.003617666173958555, + "match_probability": 0.7816641693291569, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972449860059305, + "recall": 0.7490500426041499, + "row_count": 477830, + "tn": 173240, + "tn_rate": 0.9963823338260415, + "tp": 227682, + "tp_rate": 0.7490500426041499, + "truth_threshold": 1.84 + }, + { + "f1": 0.8552717624155323, + "fn": 76392, + "fn_rate": 0.2513217156148322, + "fp": 627, + "fp_rate": 0.0036061632608458093, + "match_probability": 0.7840208528285652, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972523620045926, + "recall": 0.7486782843851678, + "row_count": 477830, + "tn": 173242, + "tn_rate": 0.9963938367391542, + "tp": 227569, + "tp_rate": 0.7486782843851678, + "truth_threshold": 1.86 + }, + { + "f1": 0.8550431540011427, + "fn": 76499, + "fn_rate": 0.251673734459355, + "fp": 626, + "fp_rate": 0.0036004118042894362, + "match_probability": 0.786359051160298, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972554452667391, + "recall": 0.748326265540645, + "row_count": 477830, + "tn": 173243, + "tn_rate": 0.9963995881957106, + "tp": 227462, + "tp_rate": 0.748326265540645, + "truth_threshold": 1.8800000000000001 + }, + { + "f1": 0.8548408321020239, + "fn": 76593, + "fn_rate": 0.25198298465921615, + "fp": 625, + "fp_rate": 0.0035946603477330632, + "match_probability": 0.7886787589285739, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972586877667297, + "recall": 0.7480170153407838, + "row_count": 477830, + "tn": 173244, + "tn_rate": 0.996405339652267, + "tp": 227368, + "tp_rate": 0.7480170153407838, + "truth_threshold": 1.9000000000000001 + }, + { + "f1": 0.8546454128733609, + "fn": 76686, + "fn_rate": 0.2522889449633341, + "fp": 623, + "fp_rate": 0.0035831574346203176, + "match_probability": 0.7909799743478786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972663208979455, + "recall": 0.7477110550366659, + "row_count": 477830, + "tn": 173246, + "tn_rate": 0.9964168425653797, + "tp": 227275, + "tp_rate": 0.7477110550366659, + "truth_threshold": 1.92 + }, + { + "f1": 0.8541973102605097, + "fn": 76894, + "fn_rate": 0.25297324327792053, + "fp": 623, + "fp_rate": 0.0035831574346203176, + "match_probability": 0.7932626991864332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997263823619834, + "recall": 0.7470267567220795, + "row_count": 477830, + "tn": 173246, + "tn_rate": 0.9964168425653797, + "tp": 227067, + "tp_rate": 0.7470267567220795, + "truth_threshold": 1.94 + }, + { + "f1": 0.8539671669758324, + "fn": 77003, + "fn_rate": 0.25333184191392977, + "fp": 620, + "fp_rate": 0.003565903064951199, + "match_probability": 0.795526938708981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997275659334382, + "recall": 0.7466681580860702, + "row_count": 477830, + "tn": 173249, + "tn_rate": 0.9964340969350488, + "tp": 226958, + "tp_rate": 0.7466681580860702, + "truth_threshold": 1.96 + }, + { + "f1": 0.8536770794128716, + "fn": 77139, + "fn_rate": 0.2537792677350055, + "fp": 618, + "fp_rate": 0.003554400151838453, + "match_probability": 0.7977727016189426, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972827998593036, + "recall": 0.7462207322649945, + "row_count": 477830, + "tn": 173251, + "tn_rate": 0.9964455998481615, + "tp": 226822, + "tp_rate": 0.7462207322649945, + "truth_threshold": 1.98 + }, + { + "f1": 0.8534952965666254, + "fn": 77224, + "fn_rate": 0.25405890887317784, + "fp": 617, + "fp_rate": 0.0035486486952820803, + "match_probability": 0.8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972861704654415, + "recall": 0.7459410911268222, + "row_count": 477830, + "tn": 173252, + "tn_rate": 0.996451351304718, + "tp": 226737, + "tp_rate": 0.7459410911268222, + "truth_threshold": 2 + }, + { + "f1": 0.8533231934582747, + "fn": 77303, + "fn_rate": 0.25431881063689094, + "fp": 617, + "fp_rate": 0.0035486486952820803, + "match_probability": 0.8022088492571531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972852271477285, + "recall": 0.7456811893631091, + "row_count": 477830, + "tn": 173252, + "tn_rate": 0.996451351304718, + "tp": 226658, + "tp_rate": 0.7456811893631091, + "truth_threshold": 2.02 + }, + { + "f1": 0.853167206991464, + "fn": 77376, + "fn_rate": 0.2545589730261448, + "fp": 616, + "fp_rate": 0.0035428972387257073, + "match_probability": 0.8043992680573092, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9972887443277099, + "recall": 0.7454410269738552, + "row_count": 477830, + "tn": 173253, + "tn_rate": 0.9964571027612743, + "tp": 226585, + "tp_rate": 0.7454410269738552, + "truth_threshold": 2.04 + }, + { + "f1": 0.8529306533193232, + "fn": 77490, + "fn_rate": 0.25493402114087005, + "fp": 610, + "fp_rate": 0.00350838849938747, + "match_probability": 0.8065712782694506, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973137338658893, + "recall": 0.74506597885913, + "row_count": 477830, + "tn": 173259, + "tn_rate": 0.9964916115006125, + "tp": 226471, + "tp_rate": 0.74506597885913, + "truth_threshold": 2.06 + }, + { + "f1": 0.8526616363478831, + "fn": 77616, + "fn_rate": 0.25534854800451373, + "fp": 609, + "fp_rate": 0.003502637042831097, + "match_probability": 0.8087249049044327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973166368515206, + "recall": 0.7446514519954862, + "row_count": 477830, + "tn": 173260, + "tn_rate": 0.996497362957169, + "tp": 226345, + "tp_rate": 0.7446514519954862, + "truth_threshold": 2.08 + }, + { + "f1": 0.8524086738634865, + "fn": 77736, + "fn_rate": 0.2557433354936982, + "fp": 605, + "fp_rate": 0.0034796312166056054, + "match_probability": 0.8108601760544609, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973328043027818, + "recall": 0.7442566645063018, + "row_count": 477830, + "tn": 173264, + "tn_rate": 0.9965203687833945, + "tp": 226225, + "tp_rate": 0.7442566645063018, + "truth_threshold": 2.1 + }, + { + "f1": 0.8520788339985753, + "fn": 77890, + "fn_rate": 0.2562499794381516, + "fp": 603, + "fp_rate": 0.0034681283034928598, + "match_probability": 0.8129771228322951, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973397919479076, + "recall": 0.7437500205618484, + "row_count": 477830, + "tn": 173266, + "tn_rate": 0.9965318716965071, + "tp": 226071, + "tp_rate": 0.7437500205618484, + "truth_threshold": 2.12 + }, + { + "f1": 0.8517103958436231, + "fn": 78061, + "fn_rate": 0.25681255161023947, + "fp": 601, + "fp_rate": 0.0034566253903801137, + "match_probability": 0.8150757793102267, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99734659008128, + "recall": 0.7431874483897605, + "row_count": 477830, + "tn": 173268, + "tn_rate": 0.9965433746096198, + "tp": 225900, + "tp_rate": 0.7431874483897605, + "truth_threshold": 2.14 + }, + { + "f1": 0.8514110295254581, + "fn": 78200, + "fn_rate": 0.25726984711854484, + "fp": 601, + "fp_rate": 0.0034566253903801137, + "match_probability": 0.8171561824588779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973449607266237, + "recall": 0.7427301528814552, + "row_count": 477830, + "tn": 173268, + "tn_rate": 0.9965433746096198, + "tp": 225761, + "tp_rate": 0.7427301528814552, + "truth_threshold": 2.16 + }, + { + "f1": 0.8511727384517891, + "fn": 78310, + "fn_rate": 0.25763173565029723, + "fp": 601, + "fp_rate": 0.0034566253903801137, + "match_probability": 0.8192183720858639, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997343669890211, + "recall": 0.7423682643497027, + "row_count": 477830, + "tn": 173268, + "tn_rate": 0.9965433746096198, + "tp": 225651, + "tp_rate": 0.7423682643497027, + "truth_threshold": 2.18 + }, + { + "f1": 0.8509332236680764, + "fn": 78422, + "fn_rate": 0.25800020397353607, + "fp": 599, + "fp_rate": 0.003445122477267368, + "match_probability": 0.8212623907743639, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973511749462718, + "recall": 0.7419997960264639, + "row_count": 477830, + "tn": 173270, + "tn_rate": 0.9965548775227326, + "tp": 225539, + "tp_rate": 0.7419997960264639, + "truth_threshold": 2.2 + }, + { + "f1": 0.8506155320899409, + "fn": 78570, + "fn_rate": 0.25848710854353024, + "fp": 597, + "fp_rate": 0.003433619564154622, + "match_probability": 0.823288283821645, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973582668106271, + "recall": 0.7415128914564697, + "row_count": 477830, + "tn": 173272, + "tn_rate": 0.9965663804358453, + "tp": 225391, + "tp_rate": 0.7415128914564697, + "truth_threshold": 2.22 + }, + { + "f1": 0.8502678439973876, + "fn": 78731, + "fn_rate": 0.2590167817581861, + "fp": 596, + "fp_rate": 0.0034278681075982495, + "match_probability": 0.8252960991775768, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973607999078937, + "recall": 0.7409832182418139, + "row_count": 477830, + "tn": 173273, + "tn_rate": 0.9965721318924018, + "tp": 225230, + "tp_rate": 0.7409832182418139, + "truth_threshold": 2.24 + }, + { + "f1": 0.8499509100521109, + "fn": 78877, + "fn_rate": 0.25949710653669383, + "fp": 596, + "fp_rate": 0.0034278681075982495, + "match_probability": 0.8272858873831817, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973590925203828, + "recall": 0.7405028934633061, + "row_count": 477830, + "tn": 173273, + "tn_rate": 0.9965721318924018, + "tp": 225084, + "tp_rate": 0.7405028934633061, + "truth_threshold": 2.2600000000000002 + }, + { + "f1": 0.8496717707758901, + "fn": 79007, + "fn_rate": 0.25992479298331034, + "fp": 594, + "fp_rate": 0.0034163651944855034, + "match_probability": 0.8292577015092557, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973664142444181, + "recall": 0.7400752070166896, + "row_count": 477830, + "tn": 173275, + "tn_rate": 0.9965836348055145, + "tp": 224954, + "tp_rate": 0.7400752070166896, + "truth_threshold": 2.2800000000000002 + }, + { + "f1": 0.8493632005077772, + "fn": 79149, + "fn_rate": 0.2603919581788453, + "fp": 594, + "fp_rate": 0.0034163651944855034, + "match_probability": 0.8312115970951024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973647551529241, + "recall": 0.7396080418211547, + "row_count": 477830, + "tn": 173275, + "tn_rate": 0.9965836348055145, + "tp": 224812, + "tp_rate": 0.7396080418211547, + "truth_threshold": 2.3000000000000003 + }, + { + "f1": 0.8491266920106112, + "fn": 79260, + "fn_rate": 0.2607571366063409, + "fp": 590, + "fp_rate": 0.0033933593682600118, + "match_probability": 0.8331476320874132, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973811648046305, + "recall": 0.7392428633936591, + "row_count": 477830, + "tn": 173279, + "tn_rate": 0.99660664063174, + "tp": 224701, + "tp_rate": 0.7392428633936591, + "truth_threshold": 2.32 + }, + { + "f1": 0.8487824423729711, + "fn": 79419, + "fn_rate": 0.26128023002951034, + "fp": 589, + "fp_rate": 0.0033876079117036387, + "match_probability": 0.835065866779332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973837454637522, + "recall": 0.7387197699704896, + "row_count": 477830, + "tn": 173280, + "tn_rate": 0.9966123920882963, + "tp": 224542, + "tp_rate": 0.7387197699704896, + "truth_threshold": 2.34 + }, + { + "f1": 0.8485032951327317, + "fn": 79548, + "fn_rate": 0.2617046265803837, + "fp": 588, + "fp_rate": 0.003381856455147266, + "match_probability": 0.8369663637497393, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973866782814299, + "recall": 0.7382953734196164, + "row_count": 477830, + "tn": 173281, + "tn_rate": 0.9966181435448528, + "tp": 224413, + "tp_rate": 0.7382953734196164, + "truth_threshold": 2.36 + }, + { + "f1": 0.8481711629595731, + "fn": 79702, + "fn_rate": 0.26221127052483706, + "fp": 586, + "fp_rate": 0.00337035354203452, + "match_probability": 0.8388491878027863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9973937601458782, + "recall": 0.7377887294751629, + "row_count": 477830, + "tn": 173283, + "tn_rate": 0.9966296464579655, + "tp": 224259, + "tp_rate": 0.7377887294751629, + "truth_threshold": 2.38 + }, + { + "f1": 0.8479292134491421, + "fn": 79816, + "fn_rate": 0.26258631863956233, + "fp": 583, + "fp_rate": 0.0033530991723654015, + "match_probability": 0.840714405907716, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974057527321918, + "recall": 0.7374136813604377, + "row_count": 477830, + "tn": 173286, + "tn_rate": 0.9966469008276346, + "tp": 224145, + "tp_rate": 0.7374136813604377, + "truth_threshold": 2.4 + }, + { + "f1": 0.8476354087046021, + "fn": 79953, + "fn_rate": 0.26303703435638126, + "fp": 580, + "fp_rate": 0.003335844802696283, + "match_probability": 0.8425620871389979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974174933656295, + "recall": 0.7369629656436187, + "row_count": 477830, + "tn": 173289, + "tn_rate": 0.9966641551973037, + "tp": 224008, + "tp_rate": 0.7369629656436187, + "truth_threshold": 2.42 + }, + { + "f1": 0.8473516476029704, + "fn": 80089, + "fn_rate": 0.26348446017745697, + "fp": 571, + "fp_rate": 0.0032840816936889265, + "match_probability": 0.8443923026168105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974559242212945, + "recall": 0.736515539822543, + "row_count": 477830, + "tn": 173298, + "tn_rate": 0.9967159183063111, + "tp": 223872, + "tp_rate": 0.736515539822543, + "truth_threshold": 2.44 + }, + { + "f1": 0.8470237689587545, + "fn": 80240, + "fn_rate": 0.26398123443468074, + "fp": 571, + "fp_rate": 0.0032840816936889265, + "match_probability": 0.8462051254478966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974542114743281, + "recall": 0.7360187655653192, + "row_count": 477830, + "tn": 173298, + "tn_rate": 0.9967159183063111, + "tp": 223721, + "tp_rate": 0.7360187655653192, + "truth_threshold": 2.46 + }, + { + "f1": 0.8467719946679593, + "fn": 80359, + "fn_rate": 0.264372732028122, + "fp": 566, + "fp_rate": 0.0032553244109070623, + "match_probability": 0.8480006306668223, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974751079547483, + "recall": 0.7356272679718779, + "row_count": 477830, + "tn": 173303, + "tn_rate": 0.996744675589093, + "tp": 223602, + "tp_rate": 0.7356272679718779, + "truth_threshold": 2.48 + }, + { + "f1": 0.8462876107200497, + "fn": 80580, + "fn_rate": 0.26509979898737007, + "fp": 566, + "fp_rate": 0.0032553244109070623, + "match_probability": 0.8497788951776651, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974726162886755, + "recall": 0.7349002010126299, + "row_count": 477830, + "tn": 173303, + "tn_rate": 0.996744675589093, + "tp": 223381, + "tp_rate": 0.7349002010126299, + "truth_threshold": 2.5 + }, + { + "f1": 0.8460378330857611, + "fn": 80695, + "fn_rate": 0.26547813699783857, + "fp": 566, + "fp_rate": 0.0032553244109070623, + "match_probability": 0.851539997696156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974713177740449, + "recall": 0.7345218630021615, + "row_count": 477830, + "tn": 173303, + "tn_rate": 0.996744675589093, + "tp": 223266, + "tp_rate": 0.7345218630021615, + "truth_threshold": 2.52 + }, + { + "f1": 0.8457266965856025, + "fn": 80838, + "fn_rate": 0.2659485920891167, + "fp": 565, + "fp_rate": 0.0032495729543506892, + "match_probability": 0.8532840186923007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974741604377526, + "recall": 0.7340514079108833, + "row_count": 477830, + "tn": 173304, + "tn_rate": 0.9967504270456493, + "tp": 223123, + "tp_rate": 0.7340514079108833, + "truth_threshold": 2.54 + }, + { + "f1": 0.84540663507109, + "fn": 80985, + "fn_rate": 0.26643220676336765, + "fp": 564, + "fp_rate": 0.003243821497794316, + "match_probability": 0.8550110403335041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974769616176076, + "recall": 0.7335677932366323, + "row_count": 477830, + "tn": 173305, + "tn_rate": 0.9967561785022057, + "tp": 222976, + "tp_rate": 0.7335677932366323, + "truth_threshold": 2.56 + }, + { + "f1": 0.8450469721277217, + "fn": 81150, + "fn_rate": 0.26697503956099633, + "fp": 563, + "fp_rate": 0.0032380700412379436, + "match_probability": 0.8567211464282175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974795634227798, + "recall": 0.7330249604390037, + "row_count": 477830, + "tn": 173306, + "tn_rate": 0.996761929958762, + "tp": 222811, + "tp_rate": 0.7330249604390037, + "truth_threshold": 2.58 + }, + { + "f1": 0.8448103849203188, + "fn": 81258, + "fn_rate": 0.26733034830126234, + "fp": 563, + "fp_rate": 0.0032380700412379436, + "match_probability": 0.8584144223701331, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9974783442172117, + "recall": 0.7326696516987377, + "row_count": 477830, + "tn": 173306, + "tn_rate": 0.996761929958762, + "tp": 222703, + "tp_rate": 0.7326696516987377, + "truth_threshold": 2.6 + }, + { + "f1": 0.8445635964163337, + "fn": 81394, + "fn_rate": 0.26777777412233805, + "fp": 531, + "fp_rate": 0.003054023431434011, + "match_probability": 0.8600909550829424, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9976198800527123, + "recall": 0.732222225877662, + "row_count": 477830, + "tn": 173338, + "tn_rate": 0.996945976568566, + "tp": 222567, + "tp_rate": 0.732222225877662, + "truth_threshold": 2.62 + }, + { + "f1": 0.8443729220118721, + "fn": 81489, + "fn_rate": 0.26809031421794244, + "fp": 519, + "fp_rate": 0.002985005952757536, + "match_probability": 0.8617508329656802, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9976725518070236, + "recall": 0.7319096857820576, + "row_count": 477830, + "tn": 173350, + "tn_rate": 0.9970149940472425, + "tp": 222472, + "tp_rate": 0.7319096857820576, + "truth_threshold": 2.64 + }, + { + "f1": 0.8439730583482672, + "fn": 81672, + "fn_rate": 0.26869236513894873, + "fp": 518, + "fp_rate": 0.002979254496201163, + "match_probability": 0.8633941458386707, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9976751179271747, + "recall": 0.7313076348610512, + "row_count": 477830, + "tn": 173351, + "tn_rate": 0.9970207455037988, + "tp": 222289, + "tp_rate": 0.7313076348610512, + "truth_threshold": 2.66 + }, + { + "f1": 0.843692085675224, + "fn": 81800, + "fn_rate": 0.26911347179407885, + "fp": 518, + "fp_rate": 0.002979254496201163, + "match_probability": 0.8650209848900923, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9976737815420403, + "recall": 0.7308865282059211, + "row_count": 477830, + "tn": 173351, + "tn_rate": 0.9970207455037988, + "tp": 222161, + "tp_rate": 0.7308865282059211, + "truth_threshold": 2.68 + }, + { + "f1": 0.8433601288616712, + "fn": 81965, + "fn_rate": 0.2696563045917075, + "fp": 499, + "fp_rate": 0.002869976821630078, + "match_probability": 0.8666314426231786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9977572529719769, + "recall": 0.7303436954082925, + "row_count": 477830, + "tn": 173370, + "tn_rate": 0.99713002317837, + "tp": 221996, + "tp_rate": 0.7303436954082925, + "truth_threshold": 2.7 + }, + { + "f1": 0.8431204164608428, + "fn": 82077, + "fn_rate": 0.2700247729149463, + "fp": 496, + "fp_rate": 0.002852722451960959, + "match_probability": 0.8682256128040682, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997769583595647, + "recall": 0.7299752270850537, + "row_count": 477830, + "tn": 173373, + "tn_rate": 0.997147277548039, + "tp": 221884, + "tp_rate": 0.7299752270850537, + "truth_threshold": 2.72 + }, + { + "f1": 0.8429487910367212, + "fn": 82166, + "fn_rate": 0.2703175736360915, + "fp": 481, + "fp_rate": 0.0027664506036153657, + "match_probability": 0.8698035904103196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978360236822689, + "recall": 0.7296824263639086, + "row_count": 477830, + "tn": 173388, + "tn_rate": 0.9972335493963846, + "tp": 221795, + "tp_rate": 0.7296824263639086, + "truth_threshold": 2.74 + }, + { + "f1": 0.842529085240666, + "fn": 82359, + "fn_rate": 0.2709525235145298, + "fp": 478, + "fp_rate": 0.0027491962339462467, + "match_probability": 0.8713654715801021, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978476224783862, + "recall": 0.7290474764854702, + "row_count": 477830, + "tn": 173391, + "tn_rate": 0.9972508037660538, + "tp": 221602, + "tp_rate": 0.7290474764854702, + "truth_threshold": 2.7600000000000002 + }, + { + "f1": 0.8422165514985795, + "fn": 82501, + "fn_rate": 0.2714196887100648, + "fp": 478, + "fp_rate": 0.0027491962339462467, + "match_probability": 0.8729113535620762, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978462453477999, + "recall": 0.7285803112899352, + "row_count": 477830, + "tn": 173391, + "tn_rate": 0.9972508037660538, + "tp": 221460, + "tp_rate": 0.7285803112899352, + "truth_threshold": 2.7800000000000002 + }, + { + "f1": 0.8419090514847417, + "fn": 82645, + "fn_rate": 0.27189343369708613, + "fp": 471, + "fp_rate": 0.0027089360380516364, + "match_probability": 0.8744413346659732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978763408134832, + "recall": 0.7281065663029138, + "row_count": 477830, + "tn": 173398, + "tn_rate": 0.9972910639619483, + "tp": 221316, + "tp_rate": 0.7281065663029138, + "truth_threshold": 2.8000000000000003 + }, + { + "f1": 0.8414727428408334, + "fn": 82843, + "fn_rate": 0.2725448330542405, + "fp": 471, + "fp_rate": 0.0027089360380516364, + "match_probability": 0.8759555142138866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978744432259724, + "recall": 0.7274551669457595, + "row_count": 477830, + "tn": 173398, + "tn_rate": 0.9972910639619483, + "tp": 221118, + "tp_rate": 0.7274551669457595, + "truth_threshold": 2.82 + }, + { + "f1": 0.8411736492299259, + "fn": 82983, + "fn_rate": 0.2730054184582891, + "fp": 466, + "fp_rate": 0.002680178755269772, + "match_probability": 0.8774539924922818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997895630498004, + "recall": 0.7269945815417109, + "row_count": 477830, + "tn": 173403, + "tn_rate": 0.9973198212447302, + "tp": 220978, + "tp_rate": 0.7269945815417109, + "truth_threshold": 2.84 + }, + { + "f1": 0.8408383023767639, + "fn": 83135, + "fn_rate": 0.27350548261125607, + "fp": 466, + "fp_rate": 0.002680178755269772, + "match_probability": 0.8789368707047344, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9978941850586556, + "recall": 0.7264945173887439, + "row_count": 477830, + "tn": 173403, + "tn_rate": 0.9973198212447302, + "tp": 220826, + "tp_rate": 0.7264945173887439, + "truth_threshold": 2.86 + }, + { + "f1": 0.8404164143116708, + "fn": 83329, + "fn_rate": 0.2741437223854376, + "fp": 461, + "fp_rate": 0.0026514214724879075, + "match_probability": 0.880404250925403, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979149045876622, + "recall": 0.7258562776145624, + "row_count": 477830, + "tn": 173408, + "tn_rate": 0.9973485785275121, + "tp": 220632, + "tp_rate": 0.7258562776145624, + "truth_threshold": 2.88 + }, + { + "f1": 0.8400617272190364, + "fn": 83491, + "fn_rate": 0.2746766854958366, + "fp": 460, + "fp_rate": 0.002645670015931535, + "match_probability": 0.8818562360532484, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979178925451501, + "recall": 0.7253233145041633, + "row_count": 477830, + "tn": 173409, + "tn_rate": 0.9973543299840685, + "tp": 220470, + "tp_rate": 0.7253233145041633, + "truth_threshold": 2.9 + }, + { + "f1": 0.8398406981840355, + "fn": 83591, + "fn_rate": 0.27500567507015705, + "fp": 459, + "fp_rate": 0.002639918559375162, + "match_probability": 0.8832929297669961, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979214686476867, + "recall": 0.724994324929843, + "row_count": 477830, + "tn": 173410, + "tn_rate": 0.9973600814406248, + "tp": 220370, + "tp_rate": 0.724994324929843, + "truth_threshold": 2.92 + }, + { + "f1": 0.8394597191088339, + "fn": 83764, + "fn_rate": 0.2755748270337313, + "fp": 459, + "fp_rate": 0.002639918559375162, + "match_probability": 0.8847144364808572, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979198390254513, + "recall": 0.7244251729662687, + "row_count": 477830, + "tn": 173410, + "tn_rate": 0.9973600814406248, + "tp": 220197, + "tp_rate": 0.7244251729662687, + "truth_threshold": 2.94 + }, + { + "f1": 0.8391348119222674, + "fn": 83913, + "fn_rate": 0.27606502149946865, + "fp": 455, + "fp_rate": 0.00261691273314967, + "match_probability": 0.8861208613010066, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997936536010848, + "recall": 0.7239349785005313, + "row_count": 477830, + "tn": 173414, + "tn_rate": 0.9973830872668503, + "tp": 220048, + "tp_rate": 0.7239349785005313, + "truth_threshold": 2.96 + }, + { + "f1": 0.8388590522107962, + "fn": 84039, + "fn_rate": 0.2764795483631124, + "fp": 453, + "fp_rate": 0.002605409820036924, + "match_probability": 0.8875123099828214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979444129325015, + "recall": 0.7235204516368876, + "row_count": 477830, + "tn": 173416, + "tn_rate": 0.9973945901799631, + "tp": 219922, + "tp_rate": 0.7235204516368876, + "truth_threshold": 2.98 + }, + { + "f1": 0.8385438923142665, + "fn": 84182, + "fn_rate": 0.2769500034543905, + "fp": 452, + "fp_rate": 0.0025996583634805516, + "match_probability": 0.8888888888888888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979476095554214, + "recall": 0.7230499965456094, + "row_count": 477830, + "tn": 173417, + "tn_rate": 0.9974003416365195, + "tp": 219779, + "tp_rate": 0.7230499965456094, + "truth_threshold": 3 + }, + { + "f1": 0.8382900124791537, + "fn": 84298, + "fn_rate": 0.2773316313606022, + "fp": 451, + "fp_rate": 0.0025939069069241785, + "match_probability": 0.890250704947779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997951061722562, + "recall": 0.7226683686393978, + "row_count": 477830, + "tn": 173418, + "tn_rate": 0.9974060930930758, + "tp": 219663, + "tp_rate": 0.7226683686393978, + "truth_threshold": 3.02 + }, + { + "f1": 0.8378725061273107, + "fn": 84487, + "fn_rate": 0.27795342165606773, + "fp": 450, + "fp_rate": 0.0025881554503678055, + "match_probability": 0.8915978656135887, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979538385987887, + "recall": 0.7220465783439323, + "row_count": 477830, + "tn": 173419, + "tn_rate": 0.9974118445496322, + "tp": 219474, + "tp_rate": 0.7220465783439323, + "truth_threshold": 3.04 + }, + { + "f1": 0.8376861397479954, + "fn": 84571, + "fn_rate": 0.2782297728984969, + "fp": 449, + "fp_rate": 0.002582403993811433, + "match_probability": 0.8929304788262556, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979575962408854, + "recall": 0.7217702271015032, + "row_count": 477830, + "tn": 173420, + "tn_rate": 0.9974175960061886, + "tp": 219390, + "tp_rate": 0.7217702271015032, + "truth_threshold": 3.06 + }, + { + "f1": 0.8374364105776134, + "fn": 84690, + "fn_rate": 0.27862127049193813, + "fp": 441, + "fp_rate": 0.0025363923413604496, + "match_probability": 0.8942486529726457, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979928269734926, + "recall": 0.7213787295080619, + "row_count": 477830, + "tn": 173428, + "tn_rate": 0.9974636076586395, + "tp": 219271, + "tp_rate": 0.7213787295080619, + "truth_threshold": 3.08 + }, + { + "f1": 0.8371699468247662, + "fn": 84810, + "fn_rate": 0.27901605798112256, + "fp": 441, + "fp_rate": 0.0025363923413604496, + "match_probability": 0.895552496848409, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9979917301176727, + "recall": 0.7209839420188774, + "row_count": 477830, + "tn": 173428, + "tn_rate": 0.9974636076586395, + "tp": 219151, + "tp_rate": 0.7209839420188774, + "truth_threshold": 3.1 + }, + { + "f1": 0.8367675269984179, + "fn": 84994, + "fn_rate": 0.2796213987978721, + "fp": 437, + "fp_rate": 0.002513386515134958, + "match_probability": 0.8968421196206098, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9980082405060984, + "recall": 0.7203786012021279, + "row_count": 477830, + "tn": 173432, + "tn_rate": 0.997486613484865, + "tp": 218967, + "tp_rate": 0.7203786012021279, + "truth_threshold": 3.12 + }, + { + "f1": 0.8363634973546592, + "fn": 85175, + "fn_rate": 0.280216869927392, + "fp": 437, + "fp_rate": 0.002513386515134958, + "match_probability": 0.8981176307911237, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9980065960232275, + "recall": 0.719783130072608, + "row_count": 477830, + "tn": 173432, + "tn_rate": 0.997486613484865, + "tp": 218786, + "tp_rate": 0.719783130072608, + "truth_threshold": 3.14 + }, + { + "f1": 0.8360552307462881, + "fn": 85315, + "fn_rate": 0.28067745533144056, + "fp": 436, + "fp_rate": 0.002507635058578585, + "match_probability": 0.8993791401608047, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9980098775800842, + "recall": 0.7193225446685595, + "row_count": 477830, + "tn": 173433, + "tn_rate": 0.9974923649414215, + "tp": 218646, + "tp_rate": 0.7193225446685595, + "truth_threshold": 3.16 + }, + { + "f1": 0.8356806254685659, + "fn": 85484, + "fn_rate": 0.281233447712042, + "fp": 434, + "fp_rate": 0.0024961321454658393, + "match_probability": 0.9006267577944164, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9980174591500656, + "recall": 0.718766552287958, + "row_count": 477830, + "tn": 173435, + "tn_rate": 0.9975038678545342, + "tp": 218477, + "tp_rate": 0.718766552287958, + "truth_threshold": 3.18 + }, + { + "f1": 0.8354044871598666, + "fn": 85613, + "fn_rate": 0.2816578442629153, + "fp": 427, + "fp_rate": 0.002455871949571229, + "match_probability": 0.9018605939863281, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9980482230602217, + "recall": 0.7183421557370847, + "row_count": 477830, + "tn": 173442, + "tn_rate": 0.9975441280504288, + "tp": 218348, + "tp_rate": 0.7183421557370847, + "truth_threshold": 3.2 + }, + { + "f1": 0.8353659003391439, + "fn": 85725, + "fn_rate": 0.2820263125861541, + "fp": 296, + "fp_rate": 0.001702431140686379, + "match_probability": 0.9030807592269698, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986455072941263, + "recall": 0.7179736874138458, + "row_count": 477830, + "tn": 173573, + "tn_rate": 0.9982975688593136, + "tp": 218236, + "tp_rate": 0.7179736874138458, + "truth_threshold": 3.22 + }, + { + "f1": 0.8349243912432461, + "fn": 85923, + "fn_rate": 0.28267771194330854, + "fp": 296, + "fp_rate": 0.001702431140686379, + "match_probability": 0.9042873641700437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986442789487666, + "recall": 0.7173222880566915, + "row_count": 477830, + "tn": 173573, + "tn_rate": 0.9982975688593136, + "tp": 218038, + "tp_rate": 0.7173222880566915, + "truth_threshold": 3.24 + }, + { + "f1": 0.8345367557773854, + "fn": 86096, + "fn_rate": 0.2832468639068828, + "fp": 296, + "fp_rate": 0.001702431140686379, + "match_probability": 0.9054805196004887, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986432038723695, + "recall": 0.7167531360931172, + "row_count": 477830, + "tn": 173573, + "tn_rate": 0.9982975688593136, + "tp": 217865, + "tp_rate": 0.7167531360931172, + "truth_threshold": 3.2600000000000002 + }, + { + "f1": 0.8342815982958051, + "fn": 86211, + "fn_rate": 0.28362520191735124, + "fp": 296, + "fp_rate": 0.001702431140686379, + "match_probability": 0.9066603364031919, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986424882822891, + "recall": 0.7163747980826488, + "row_count": 477830, + "tn": 173573, + "tn_rate": 0.9982975688593136, + "tp": 217750, + "tp_rate": 0.7163747980826488, + "truth_threshold": 3.2800000000000002 + }, + { + "f1": 0.8340084540183413, + "fn": 86334, + "fn_rate": 0.2840298590937653, + "fp": 294, + "fp_rate": 0.001690928227573633, + "match_probability": 0.9078269255324448, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986508872481312, + "recall": 0.7159701409062347, + "row_count": 477830, + "tn": 173575, + "tn_rate": 0.9983090717724263, + "tp": 217627, + "tp_rate": 0.7159701409062347, + "truth_threshold": 3.3000000000000003 + }, + { + "f1": 0.8337160227390339, + "fn": 86467, + "fn_rate": 0.28446741522761143, + "fp": 291, + "fp_rate": 0.0016736738579045142, + "match_probability": 0.9089803979821356, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986638198223018, + "recall": 0.7155325847723886, + "row_count": 477830, + "tn": 173578, + "tn_rate": 0.9983263261420955, + "tp": 217494, + "tp_rate": 0.7155325847723886, + "truth_threshold": 3.3200000000000003 + }, + { + "f1": 0.8333135212034527, + "fn": 86647, + "fn_rate": 0.2850595964613881, + "fp": 291, + "fp_rate": 0.0016736738579045142, + "match_probability": 0.9101208647566755, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986627145515958, + "recall": 0.7149404035386119, + "row_count": 477830, + "tn": 173578, + "tn_rate": 0.9983263261420955, + "tp": 217314, + "tp_rate": 0.7149404035386119, + "truth_threshold": 3.34 + }, + { + "f1": 0.833004107965464, + "fn": 86786, + "fn_rate": 0.2855168919696935, + "fp": 290, + "fp_rate": 0.0016679224013481414, + "match_probability": 0.911248436842651, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986664520727473, + "recall": 0.7144831080303066, + "row_count": 477830, + "tn": 173579, + "tn_rate": 0.9983320775986518, + "tp": 217175, + "tp_rate": 0.7144831080303066, + "truth_threshold": 3.36 + }, + { + "f1": 0.8326676565491469, + "fn": 86937, + "fn_rate": 0.28601366622691726, + "fp": 289, + "fp_rate": 0.0016621709447917686, + "match_probability": 0.9123632251811958, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986701209775761, + "recall": 0.7139863337730827, + "row_count": 477830, + "tn": 173580, + "tn_rate": 0.9983378290552082, + "tp": 217024, + "tp_rate": 0.7139863337730827, + "truth_threshold": 3.38 + }, + { + "f1": 0.8323002820901537, + "fn": 87101, + "fn_rate": 0.2865532091288027, + "fp": 289, + "fp_rate": 0.0016621709447917686, + "match_probability": 0.9134653406410783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986691165973595, + "recall": 0.7134467908711973, + "row_count": 477830, + "tn": 173580, + "tn_rate": 0.9983378290552082, + "tp": 216860, + "tp_rate": 0.7134467908711973, + "truth_threshold": 3.4 + }, + { + "f1": 0.8319646799116998, + "fn": 87255, + "fn_rate": 0.2870598530732561, + "fp": 283, + "fp_rate": 0.0016276622054535311, + "match_probability": 0.9145548939924946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9986957864223532, + "recall": 0.7129401469267439, + "row_count": 477830, + "tn": 173586, + "tn_rate": 0.9983723377945465, + "tp": 216706, + "tp_rate": 0.7129401469267439, + "truth_threshold": 3.42 + }, + { + "f1": 0.8316532451623061, + "fn": 87396, + "fn_rate": 0.28752372837304785, + "fp": 281, + "fp_rate": 0.0016161592923407853, + "match_probability": 0.9156319958815625, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987041494885771, + "recall": 0.7124762716269522, + "row_count": 477830, + "tn": 173588, + "tn_rate": 0.9983838407076592, + "tp": 216565, + "tp_rate": 0.7124762716269522, + "truth_threshold": 3.44 + }, + { + "f1": 0.8313249772403382, + "fn": 87543, + "fn_rate": 0.28800734304729886, + "fp": 280, + "fp_rate": 0.0016104078357844125, + "match_probability": 0.9166967568055082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987078791682433, + "recall": 0.7119926569527012, + "row_count": 477830, + "tn": 173589, + "tn_rate": 0.9983895921642156, + "tp": 216418, + "tp_rate": 0.7119926569527012, + "truth_threshold": 3.46 + }, + { + "f1": 0.8310305079535849, + "fn": 87677, + "fn_rate": 0.28844818907688813, + "fp": 275, + "fp_rate": 0.0015816505530025478, + "match_probability": 0.9177492870885379, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987301382071399, + "recall": 0.7115518109231118, + "row_count": 477830, + "tn": 173594, + "tn_rate": 0.9984183494469975, + "tp": 216284, + "tp_rate": 0.7115518109231118, + "truth_threshold": 3.48 + }, + { + "f1": 0.8307827704416535, + "fn": 87788, + "fn_rate": 0.2888133675043838, + "fp": 275, + "fp_rate": 0.0015816505530025478, + "match_probability": 0.9187896968583877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987294869899468, + "recall": 0.7111866324956162, + "row_count": 477830, + "tn": 173594, + "tn_rate": 0.9984183494469975, + "tp": 216173, + "tp_rate": 0.7111866324956162, + "truth_threshold": 3.5 + }, + { + "f1": 0.8305632005412137, + "fn": 87885, + "fn_rate": 0.28913248739147457, + "fp": 275, + "fp_rate": 0.0015816505530025478, + "match_probability": 0.9198180960235423, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99872891736114, + "recall": 0.7108675126085254, + "row_count": 477830, + "tn": 173594, + "tn_rate": 0.9984183494469975, + "tp": 216076, + "tp_rate": 0.7108675126085254, + "truth_threshold": 3.52 + }, + { + "f1": 0.8302612961766787, + "fn": 88020, + "fn_rate": 0.2895766233168071, + "fp": 274, + "fp_rate": 0.001575899096446175, + "match_probability": 0.9208345942511155, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987327428716787, + "recall": 0.7104233766831929, + "row_count": 477830, + "tn": 173595, + "tn_rate": 0.9984241009035538, + "tp": 215941, + "tp_rate": 0.7104233766831929, + "truth_threshold": 3.54 + }, + { + "f1": 0.8299783857792272, + "fn": 88155, + "fn_rate": 0.2900207592421396, + "fp": 262, + "fp_rate": 0.0015068816177697003, + "match_probability": 0.9218393009453847, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987874187755706, + "recall": 0.7099792407578603, + "row_count": 477830, + "tn": 173607, + "tn_rate": 0.9984931183822303, + "tp": 215806, + "tp_rate": 0.7099792407578603, + "truth_threshold": 3.56 + }, + { + "f1": 0.829699329106912, + "fn": 88279, + "fn_rate": 0.2904287063142969, + "fp": 262, + "fp_rate": 0.0015068816177697003, + "match_probability": 0.9228323252269688, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987867224836069, + "recall": 0.7095712936857032, + "row_count": 477830, + "tn": 173607, + "tn_rate": 0.9984931183822303, + "tp": 215682, + "tp_rate": 0.7095712936857032, + "truth_threshold": 3.58 + }, + { + "f1": 0.8294928570604101, + "fn": 88370, + "fn_rate": 0.29072808682692847, + "fp": 262, + "fp_rate": 0.0015068816177697003, + "match_probability": 0.9238137759126431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987862109861804, + "recall": 0.7092719131730716, + "row_count": 477830, + "tn": 173607, + "tn_rate": 0.9984931183822303, + "tp": 215591, + "tp_rate": 0.7092719131730716, + "truth_threshold": 3.6 + }, + { + "f1": 0.8292541196210179, + "fn": 88476, + "fn_rate": 0.29107681577570804, + "fp": 262, + "fp_rate": 0.0015068816177697003, + "match_probability": 0.9247837614957818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987856146319531, + "recall": 0.7089231842242919, + "row_count": 477830, + "tn": 173607, + "tn_rate": 0.9984931183822303, + "tp": 215485, + "tp_rate": 0.7089231842242919, + "truth_threshold": 3.62 + }, + { + "f1": 0.828936681281541, + "fn": 88619, + "fn_rate": 0.29154727086698623, + "fp": 260, + "fp_rate": 0.0014953787046569544, + "match_probability": 0.9257423901274181, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987940742664725, + "recall": 0.7084527291330138, + "row_count": 477830, + "tn": 173609, + "tn_rate": 0.998504621295343, + "tp": 215342, + "tp_rate": 0.7084527291330138, + "truth_threshold": 3.64 + }, + { + "f1": 0.8286668052764109, + "fn": 88738, + "fn_rate": 0.2919387684604275, + "fp": 260, + "fp_rate": 0.0014953787046569544, + "match_probability": 0.9266897695979149, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987934082967102, + "recall": 0.7080612315395726, + "row_count": 477830, + "tn": 173609, + "tn_rate": 0.998504621295343, + "tp": 215223, + "tp_rate": 0.7080612315395726, + "truth_threshold": 3.66 + }, + { + "f1": 0.8283690729272576, + "fn": 88870, + "fn_rate": 0.2923730346985304, + "fp": 260, + "fp_rate": 0.0014953787046569544, + "match_probability": 0.9276260073192355, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987926687129384, + "recall": 0.7076269653014696, + "row_count": 477830, + "tn": 173609, + "tn_rate": 0.998504621295343, + "tp": 215091, + "tp_rate": 0.7076269653014696, + "truth_threshold": 3.68 + }, + { + "f1": 0.8280118346842543, + "fn": 89029, + "fn_rate": 0.29289612812169985, + "fp": 259, + "fp_rate": 0.0014896272481005814, + "match_probability": 0.9285512103078053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987964180658113, + "recall": 0.7071038718783001, + "row_count": 477830, + "tn": 173610, + "tn_rate": 0.9985103727518995, + "tp": 214932, + "tp_rate": 0.7071038718783001, + "truth_threshold": 3.7 + }, + { + "f1": 0.827718285544736, + "fn": 89159, + "fn_rate": 0.29332381456831635, + "fp": 259, + "fp_rate": 0.0014896272481005814, + "match_probability": 0.9294654851679567, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987956905250138, + "recall": 0.7066761854316836, + "row_count": 477830, + "tn": 173610, + "tn_rate": 0.9985103727518995, + "tp": 214802, + "tp_rate": 0.7066761854316836, + "truth_threshold": 3.72 + }, + { + "f1": 0.8274962325744524, + "fn": 89258, + "fn_rate": 0.2936495142468935, + "fp": 259, + "fp_rate": 0.0014896272481005814, + "match_probability": 0.9303689380759456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987951358844819, + "recall": 0.7063504857531064, + "row_count": 477830, + "tn": 173610, + "tn_rate": 0.9985103727518995, + "tp": 214703, + "tp_rate": 0.7063504857531064, + "truth_threshold": 3.74 + }, + { + "f1": 0.8271759621575151, + "fn": 89399, + "fn_rate": 0.29411338954668526, + "fp": 259, + "fp_rate": 0.0014896272481005814, + "match_probability": 0.9312616747645321, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.998794345059375, + "recall": 0.7058866104533147, + "row_count": 477830, + "tn": 173610, + "tn_rate": 0.9985103727518995, + "tp": 214562, + "tp_rate": 0.7058866104533147, + "truth_threshold": 3.7600000000000002 + }, + { + "f1": 0.826967938460352, + "fn": 89491, + "fn_rate": 0.29441605995506004, + "fp": 259, + "fp_rate": 0.0014896272481005814, + "match_probability": 0.9321438005081154, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9987938285001094, + "recall": 0.70558394004494, + "row_count": 477830, + "tn": 173610, + "tn_rate": 0.9985103727518995, + "tp": 214470, + "tp_rate": 0.70558394004494, + "truth_threshold": 3.7800000000000002 + }, + { + "f1": 0.8267157760765181, + "fn": 89606, + "fn_rate": 0.2947943979655285, + "fp": 255, + "fp_rate": 0.00146662142187509, + "match_probability": 0.9330154201084124, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9988117981454732, + "recall": 0.7052056020344716, + "row_count": 477830, + "tn": 173614, + "tn_rate": 0.998533378578125, + "tp": 214355, + "tp_rate": 0.7052056020344716, + "truth_threshold": 3.8000000000000003 + }, + { + "f1": 0.8262003611501243, + "fn": 89833, + "fn_rate": 0.29554120429923575, + "fp": 255, + "fp_rate": 0.00146662142187509, + "match_probability": 0.9338766378806729, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9988105400148333, + "recall": 0.7044587957007642, + "row_count": 477830, + "tn": 173614, + "tn_rate": 0.998533378578125, + "tp": 214128, + "tp_rate": 0.7044587957007642, + "truth_threshold": 3.8200000000000003 + }, + { + "f1": 0.825850177349446, + "fn": 89989, + "fn_rate": 0.29605442803517557, + "fp": 253, + "fp_rate": 0.0014551185087623441, + "match_probability": 0.9347275576404188, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.998818998716303, + "recall": 0.7039455719648244, + "row_count": 477830, + "tn": 173616, + "tn_rate": 0.9985448814912377, + "tp": 213972, + "tp_rate": 0.7039455719648244, + "truth_threshold": 3.84 + }, + { + "f1": 0.8256847794614419, + "fn": 90088, + "fn_rate": 0.2963801277137528, + "fp": 217, + "fp_rate": 0.0012480660727329197, + "match_probability": 0.9355682826907014, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989864075855949, + "recall": 0.7036198722862472, + "row_count": 477830, + "tn": 173652, + "tn_rate": 0.9987519339272671, + "tp": 213873, + "tp_rate": 0.7036198722862472, + "truth_threshold": 3.86 + }, + { + "f1": 0.8254158879226456, + "fn": 90208, + "fn_rate": 0.2967749152029372, + "fp": 215, + "fp_rate": 0.0012365631596201738, + "match_probability": 0.9363989158098637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989951768488746, + "recall": 0.7032250847970628, + "row_count": 477830, + "tn": 173654, + "tn_rate": 0.9987634368403798, + "tp": 213753, + "tp_rate": 0.7032250847970628, + "truth_threshold": 3.88 + }, + { + "f1": 0.8251209931285945, + "fn": 90338, + "fn_rate": 0.2972026016495537, + "fp": 215, + "fp_rate": 0.0012365631596201738, + "match_probability": 0.9372195592398013, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989945659798539, + "recall": 0.7027973983504463, + "row_count": 477830, + "tn": 173654, + "tn_rate": 0.9987634368403798, + "tp": 213623, + "tp_rate": 0.7027973983504463, + "truth_threshold": 3.9 + }, + { + "f1": 0.8247714645586542, + "fn": 90492, + "fn_rate": 0.29770924559400713, + "fp": 215, + "fp_rate": 0.0012365631596201738, + "match_probability": 0.9380303146747102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989938413732428, + "recall": 0.7022907544059929, + "row_count": 477830, + "tn": 173654, + "tn_rate": 0.9987634368403798, + "tp": 213469, + "tp_rate": 0.7022907544059929, + "truth_threshold": 3.92 + }, + { + "f1": 0.8244755677163041, + "fn": 90623, + "fn_rate": 0.29814022193636686, + "fp": 214, + "fp_rate": 0.0012308117030638008, + "match_probability": 0.9388312832503134, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989979021502959, + "recall": 0.7018597780636332, + "row_count": 477830, + "tn": 173655, + "tn_rate": 0.9987691882969362, + "tp": 213338, + "tp_rate": 0.7018597780636332, + "truth_threshold": 3.94 + }, + { + "f1": 0.8240392793628701, + "fn": 90815, + "fn_rate": 0.298771881919062, + "fp": 214, + "fp_rate": 0.0012308117030638008, + "match_probability": 0.9396225655335566, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989970003749531, + "recall": 0.701228118080938, + "row_count": 477830, + "tn": 173655, + "tn_rate": 0.9987691882969362, + "tp": 213146, + "tp_rate": 0.701228118080938, + "truth_threshold": 3.96 + }, + { + "f1": 0.8236260973817535, + "fn": 90996, + "fn_rate": 0.29936735304858186, + "fp": 214, + "fp_rate": 0.0012308117030638008, + "match_probability": 0.9404042615127621, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9989961487763804, + "recall": 0.7006326469514181, + "row_count": 477830, + "tn": 173655, + "tn_rate": 0.9987691882969362, + "tp": 212965, + "tp_rate": 0.7006326469514181, + "truth_threshold": 3.98 + }, + { + "f1": 0.8233100449519919, + "fn": 91137, + "fn_rate": 0.2998312283483736, + "fp": 212, + "fp_rate": 0.0012193087899510552, + "match_probability": 0.9411764705882353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990048630278451, + "recall": 0.7001687716516264, + "row_count": 477830, + "tn": 173657, + "tn_rate": 0.998780691210049, + "tp": 212824, + "tp_rate": 0.7001687716516264, + "truth_threshold": 4 + }, + { + "f1": 0.8230231973223441, + "fn": 91263, + "fn_rate": 0.30024575521201735, + "fp": 212, + "fp_rate": 0.0012193087899510552, + "match_probability": 0.9419392915633099, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99900427410643, + "recall": 0.6997542447879826, + "row_count": 477830, + "tn": 173657, + "tn_rate": 0.998780691210049, + "tp": 212698, + "tp_rate": 0.6997542447879826, + "truth_threshold": 4.0200000000000005 + }, + { + "f1": 0.8226541876649868, + "fn": 91425, + "fn_rate": 0.30077871832241637, + "fp": 212, + "fp_rate": 0.0012193087899510552, + "match_probability": 0.9426928226358258, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990035158967416, + "recall": 0.6992212816775837, + "row_count": 477830, + "tn": 173657, + "tn_rate": 0.998780691210049, + "tp": 212536, + "tp_rate": 0.6992212816775837, + "truth_threshold": 4.04 + }, + { + "f1": 0.8223305444028449, + "fn": 91567, + "fn_rate": 0.30124588351795134, + "fp": 211, + "fp_rate": 0.0012135573333946822, + "match_probability": 0.9434371613900292, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990075492109781, + "recall": 0.6987541164820487, + "row_count": 477830, + "tn": 173658, + "tn_rate": 0.9987864426666053, + "tp": 212394, + "tp_rate": 0.6987541164820487, + "truth_threshold": 4.0600000000000005 + }, + { + "f1": 0.8220516534286522, + "fn": 91690, + "fn_rate": 0.3016505406943654, + "fp": 211, + "fp_rate": 0.0012135573333946822, + "match_probability": 0.9441724047888862, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990069747084459, + "recall": 0.6983494593056346, + "row_count": 477830, + "tn": 173658, + "tn_rate": 0.9987864426666053, + "tp": 212271, + "tp_rate": 0.6983494593056346, + "truth_threshold": 4.08 + }, + { + "f1": 0.8216089941268537, + "fn": 91884, + "fn_rate": 0.30228878046854696, + "fp": 211, + "fp_rate": 0.0012135573333946822, + "match_probability": 0.9448986491668007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990060672294242, + "recall": 0.6977112195314531, + "row_count": 477830, + "tn": 173658, + "tn_rate": 0.9987864426666053, + "tp": 212077, + "tp_rate": 0.6977112195314531, + "truth_threshold": 4.1 + }, + { + "f1": 0.8212854673827958, + "fn": 92025, + "fn_rate": 0.3027526557683387, + "fp": 211, + "fp_rate": 0.0012135573333946822, + "match_probability": 0.9456159902227271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990054066284227, + "recall": 0.6972473442316613, + "row_count": 477830, + "tn": 173658, + "tn_rate": 0.9987864426666053, + "tp": 211936, + "tp_rate": 0.6972473442316613, + "truth_threshold": 4.12 + }, + { + "f1": 0.8209962440259081, + "fn": 92153, + "fn_rate": 0.3031737624234688, + "fp": 209, + "fp_rate": 0.0012020544202819363, + "match_probability": 0.94632452301367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990142299909913, + "recall": 0.6968262375765312, + "row_count": 477830, + "tn": 173660, + "tn_rate": 0.998797945579718, + "tp": 211808, + "tp_rate": 0.6968262375765312, + "truth_threshold": 4.14 + }, + { + "f1": 0.8207251636115505, + "fn": 92273, + "fn_rate": 0.30356854991265325, + "fp": 208, + "fp_rate": 0.0011963029637255635, + "match_probability": 0.9470243419485608, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990183863782233, + "recall": 0.6964314500873467, + "row_count": 477830, + "tn": 173661, + "tn_rate": 0.9988036970362745, + "tp": 211688, + "tp_rate": 0.6964314500873467, + "truth_threshold": 4.16 + }, + { + "f1": 0.8204050291245569, + "fn": 92413, + "fn_rate": 0.30402913531670184, + "fp": 208, + "fp_rate": 0.0011963029637255635, + "match_probability": 0.9477155407825041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990177373958707, + "recall": 0.6959708646832982, + "row_count": 477830, + "tn": 173661, + "tn_rate": 0.9988036970362745, + "tp": 211548, + "tp_rate": 0.6959708646832982, + "truth_threshold": 4.18 + }, + { + "f1": 0.8200716873685926, + "fn": 92558, + "fn_rate": 0.30450617019946635, + "fp": 208, + "fp_rate": 0.0011963029637255635, + "match_probability": 0.9483982126113827, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990170643303042, + "recall": 0.6954938298005336, + "row_count": 477830, + "tn": 173661, + "tn_rate": 0.9988036970362745, + "tp": 211403, + "tp_rate": 0.6954938298005336, + "truth_threshold": 4.2 + }, + { + "f1": 0.8197498001660756, + "fn": 92700, + "fn_rate": 0.3049733353950013, + "fp": 206, + "fp_rate": 0.0011848000506128177, + "match_probability": 0.9490724498668156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990258527335234, + "recall": 0.6950266646049986, + "row_count": 477830, + "tn": 173663, + "tn_rate": 0.9988151999493872, + "tp": 211261, + "tp_rate": 0.6950266646049986, + "truth_threshold": 4.22 + }, + { + "f1": 0.8193910741594665, + "fn": 92858, + "fn_rate": 0.3054931389224275, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9497383443114579, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990345800186459, + "recall": 0.6945068610775724, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 211103, + "tp_rate": 0.6945068610775724, + "truth_threshold": 4.24 + }, + { + "f1": 0.8190014327370714, + "fn": 93028, + "fn_rate": 0.3060524211987722, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9503959870346359, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990338026968272, + "recall": 0.6939475788012278, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210933, + "tp_rate": 0.6939475788012278, + "truth_threshold": 4.26 + }, + { + "f1": 0.8183407470717352, + "fn": 93316, + "fn_rate": 0.30699991117281494, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9510454684483088, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990324829617404, + "recall": 0.6930000888271851, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210645, + "tp_rate": 0.6930000888271851, + "truth_threshold": 4.28 + }, + { + "f1": 0.8180140129715194, + "fn": 93459, + "fn_rate": 0.3074703662640931, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9516868782833479, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999031826336222, + "recall": 0.6925296337359069, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210502, + "tp_rate": 0.6925296337359069, + "truth_threshold": 4.3 + }, + { + "f1": 0.817637249223521, + "fn": 93623, + "fn_rate": 0.30800990916597853, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9523203055861257, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990310721851222, + "recall": 0.6919900908340215, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210338, + "tp_rate": 0.6919900908340215, + "truth_threshold": 4.32 + }, + { + "f1": 0.8172333608125554, + "fn": 93798, + "fn_rate": 0.30858564092103924, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9529458387154083, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999030266153912, + "recall": 0.6914143590789608, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210163, + "tp_rate": 0.6914143590789608, + "truth_threshold": 4.34 + }, + { + "f1": 0.8169757456010703, + "fn": 93910, + "fn_rate": 0.3089541092442781, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9535635653395406, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990297495897839, + "recall": 0.691045890755722, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 210051, + "tp_rate": 0.691045890755722, + "truth_threshold": 4.36 + }, + { + "f1": 0.8166167373458351, + "fn": 94066, + "fn_rate": 0.30946733298021784, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9541735724339184, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990290291719618, + "recall": 0.6905326670197821, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 209895, + "tp_rate": 0.6905326670197821, + "truth_threshold": 4.38 + }, + { + "f1": 0.8161930115436409, + "fn": 94250, + "fn_rate": 0.3100726737969674, + "fp": 204, + "fp_rate": 0.0011732971375000719, + "match_probability": 0.9547759462787397, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990281780720768, + "recall": 0.6899273262030327, + "row_count": 477830, + "tn": 173665, + "tn_rate": 0.9988267028625, + "tp": 209711, + "tp_rate": 0.6899273262030327, + "truth_threshold": 4.4 + }, + { + "f1": 0.815794494041246, + "fn": 94425, + "fn_rate": 0.31064840555202805, + "fp": 202, + "fp_rate": 0.001161794224387326, + "match_probability": 0.9553707724570261, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999036893648266, + "recall": 0.6893515944479719, + "row_count": 477830, + "tn": 173667, + "tn_rate": 0.9988382057756127, + "tp": 209536, + "tp_rate": 0.6893515944479719, + "truth_threshold": 4.42 + }, + { + "f1": 0.815462444066252, + "fn": 94569, + "fn_rate": 0.3111221505390494, + "fp": 202, + "fp_rate": 0.001161794224387326, + "match_probability": 0.9559581358529086, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990362319532048, + "recall": 0.6888778494609505, + "row_count": 477830, + "tn": 173667, + "tn_rate": 0.9988382057756127, + "tp": 209392, + "tp_rate": 0.6888778494609505, + "truth_threshold": 4.44 + }, + { + "f1": 0.8151550210940878, + "fn": 94705, + "fn_rate": 0.31156957636012517, + "fp": 198, + "fp_rate": 0.0011387883981618344, + "match_probability": 0.9565381206501699, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990546850382422, + "recall": 0.6884304236398748, + "row_count": 477830, + "tn": 173671, + "tn_rate": 0.9988612116018382, + "tp": 209256, + "tp_rate": 0.6884304236398748, + "truth_threshold": 4.46 + }, + { + "f1": 0.8147742594165738, + "fn": 94872, + "fn_rate": 0.3121189889492402, + "fp": 195, + "fp_rate": 0.0011215340284927158, + "match_probability": 0.9571108103310354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999068251753598, + "recall": 0.6878810110507598, + "row_count": 477830, + "tn": 173674, + "tn_rate": 0.9988784659715073, + "tp": 209089, + "tp_rate": 0.6878810110507598, + "truth_threshold": 4.48 + }, + { + "f1": 0.8144739765432243, + "fn": 95002, + "fn_rate": 0.31254667539585673, + "fp": 195, + "fp_rate": 0.0011215340284927158, + "match_probability": 0.9576762876752064, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990676726239995, + "recall": 0.6874533246041433, + "row_count": 477830, + "tn": 173674, + "tn_rate": 0.9988784659715073, + "tp": 208959, + "tp_rate": 0.6874533246041433, + "truth_threshold": 4.5 + }, + { + "f1": 0.8140895922767699, + "fn": 95169, + "fn_rate": 0.31309608798497174, + "fp": 194, + "fp_rate": 0.001115782571936343, + "match_probability": 0.9582346347591285, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990717081526992, + "recall": 0.6869039120150282, + "row_count": 477830, + "tn": 173675, + "tn_rate": 0.9988842174280637, + "tp": 208792, + "tp_rate": 0.6869039120150282, + "truth_threshold": 4.5200000000000005 + }, + { + "f1": 0.8137526764716206, + "fn": 95314, + "fn_rate": 0.3135731228677363, + "fp": 194, + "fp_rate": 0.001115782571936343, + "match_probability": 0.9587859329554874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990710636321412, + "recall": 0.6864268771322637, + "row_count": 477830, + "tn": 173675, + "tn_rate": 0.9988842174280637, + "tp": 208647, + "tp_rate": 0.6864268771322637, + "truth_threshold": 4.54 + }, + { + "f1": 0.8133734403895222, + "fn": 95482, + "fn_rate": 0.3141258253525946, + "fp": 189, + "fp_rate": 0.0010870252891544783, + "match_probability": 0.9593302629329274, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999094254988786, + "recall": 0.6858741746474054, + "row_count": 477830, + "tn": 173680, + "tn_rate": 0.9989129747108455, + "tp": 208479, + "tp_rate": 0.6858741746474054, + "truth_threshold": 4.5600000000000005 + }, + { + "f1": 0.8130863368871267, + "fn": 95606, + "fn_rate": 0.31453377242475183, + "fp": 189, + "fp_rate": 0.0010870252891544783, + "match_probability": 0.9598677046559833, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999093716433942, + "recall": 0.6854662275752481, + "row_count": 477830, + "tn": 173680, + "tn_rate": 0.9989129747108455, + "tp": 208355, + "tp_rate": 0.6854662275752481, + "truth_threshold": 4.58 + }, + { + "f1": 0.8128083624781414, + "fn": 95726, + "fn_rate": 0.3149285599139363, + "fp": 188, + "fp_rate": 0.0010812738325981055, + "match_probability": 0.9603983373852208, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990979882258676, + "recall": 0.6850714400860637, + "row_count": 477830, + "tn": 173681, + "tn_rate": 0.9989187261674018, + "tp": 208235, + "tp_rate": 0.6850714400860637, + "truth_threshold": 4.6000000000000005 + }, + { + "f1": 0.812497803806735, + "fn": 95860, + "fn_rate": 0.31536940594352564, + "fp": 188, + "fp_rate": 0.0010812738325981055, + "match_probability": 0.96092223967758, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990974079284072, + "recall": 0.6846305940564743, + "row_count": 477830, + "tn": 173681, + "tn_rate": 0.9989187261674018, + "tp": 208101, + "tp_rate": 0.6846305940564743, + "truth_threshold": 4.62 + }, + { + "f1": 0.8121221352580025, + "fn": 96022, + "fn_rate": 0.31590236905392466, + "fp": 188, + "fp_rate": 0.0010812738325981055, + "match_probability": 0.9614394893869119, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990967053770053, + "recall": 0.6840976309460753, + "row_count": 477830, + "tn": 173681, + "tn_rate": 0.9989187261674018, + "tp": 207939, + "tp_rate": 0.6840976309460753, + "truth_threshold": 4.64 + }, + { + "f1": 0.8116519041497845, + "fn": 96226, + "fn_rate": 0.3165735077855383, + "fp": 187, + "fp_rate": 0.0010755223760417327, + "match_probability": 0.9619501636647065, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991006242725637, + "recall": 0.6834264922144617, + "row_count": 477830, + "tn": 173682, + "tn_rate": 0.9989244776239583, + "tp": 207735, + "tp_rate": 0.6834264922144617, + "truth_threshold": 4.66 + }, + { + "f1": 0.811262497166397, + "fn": 96393, + "fn_rate": 0.31712292037465334, + "fp": 187, + "fp_rate": 0.0010755223760417327, + "match_probability": 0.9624543389610023, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990999013260812, + "recall": 0.6828770796253467, + "row_count": 477830, + "tn": 173682, + "tn_rate": 0.9989244776239583, + "tp": 207568, + "tp_rate": 0.6828770796253467, + "truth_threshold": 4.68 + }, + { + "f1": 0.8109557765684619, + "fn": 96525, + "fn_rate": 0.3175571866127562, + "fp": 187, + "fp_rate": 0.0010755223760417327, + "match_probability": 0.9629520910254744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990993290724053, + "recall": 0.6824428133872438, + "row_count": 477830, + "tn": 173682, + "tn_rate": 0.9989244776239583, + "tp": 207436, + "tp_rate": 0.6824428133872438, + "truth_threshold": 4.7 + }, + { + "f1": 0.8106202511350349, + "fn": 96670, + "fn_rate": 0.3180342214955208, + "fp": 187, + "fp_rate": 0.0010755223760417327, + "match_probability": 0.9634434949086931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990986996211646, + "recall": 0.6819657785044791, + "row_count": 477830, + "tn": 173682, + "tn_rate": 0.9989244776239583, + "tp": 207291, + "tp_rate": 0.6819657785044791, + "truth_threshold": 4.72 + }, + { + "f1": 0.8102534413493924, + "fn": 96827, + "fn_rate": 0.31855073512720383, + "fp": 187, + "fp_rate": 0.0010755223760417327, + "match_probability": 0.9639286249635483, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9990980170846175, + "recall": 0.6814492648727962, + "row_count": 477830, + "tn": 173682, + "tn_rate": 0.9989244776239583, + "tp": 207134, + "tp_rate": 0.6814492648727962, + "truth_threshold": 4.74 + }, + { + "f1": 0.8097444527061401, + "fn": 97047, + "fn_rate": 0.3192745121907087, + "fp": 186, + "fp_rate": 0.0010697709194853596, + "match_probability": 0.9644075548468342, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991018831482376, + "recall": 0.6807254878092913, + "row_count": 477830, + "tn": 173683, + "tn_rate": 0.9989302290805147, + "tp": 206914, + "tp_rate": 0.6807254878092913, + "truth_threshold": 4.76 + }, + { + "f1": 0.809385679557492, + "fn": 97201, + "fn_rate": 0.31978115613516206, + "fp": 186, + "fp_rate": 0.0010697709194853596, + "match_probability": 0.9648803575209879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991012148096605, + "recall": 0.6802188438648379, + "row_count": 477830, + "tn": 173683, + "tn_rate": 0.9989302290805147, + "tp": 206760, + "tp_rate": 0.6802188438648379, + "truth_threshold": 4.78 + }, + { + "f1": 0.8090322782753071, + "fn": 97356, + "fn_rate": 0.32029108997535866, + "fp": 181, + "fp_rate": 0.0010410136367034952, + "match_probability": 0.9653471052559783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991246989641465, + "recall": 0.6797089100246413, + "row_count": 477830, + "tn": 173688, + "tn_rate": 0.9989589863632965, + "tp": 206605, + "tp_rate": 0.6797089100246413, + "truth_threshold": 4.8 + }, + { + "f1": 0.8086038185222617, + "fn": 97539, + "fn_rate": 0.320893140896365, + "fp": 181, + "fp_rate": 0.0010410136367034952, + "match_probability": 0.9658078696313372, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991239236603534, + "recall": 0.679106859103635, + "row_count": 477830, + "tn": 173688, + "tn_rate": 0.9989589863632965, + "tp": 206422, + "tp_rate": 0.679106859103635, + "truth_threshold": 4.82 + }, + { + "f1": 0.8082809585756155, + "fn": 97678, + "fn_rate": 0.3213504364046703, + "fp": 181, + "fp_rate": 0.0010410136367034952, + "match_probability": 0.9662627215383301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999123333849969, + "recall": 0.6786495635953297, + "row_count": 477830, + "tn": 173688, + "tn_rate": 0.9989589863632965, + "tp": 206283, + "tp_rate": 0.6786495635953297, + "truth_threshold": 4.84 + }, + { + "f1": 0.8078566332970109, + "fn": 97859, + "fn_rate": 0.3219459075341902, + "fp": 181, + "fp_rate": 0.0010410136367034952, + "match_probability": 0.9667117311822604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991225646320832, + "recall": 0.6780540924658097, + "row_count": 477830, + "tn": 173688, + "tn_rate": 0.9989589863632965, + "tp": 206102, + "tp_rate": 0.6780540924658097, + "truth_threshold": 4.86 + }, + { + "f1": 0.8074912857831816, + "fn": 98016, + "fn_rate": 0.32246242116587326, + "fp": 180, + "fp_rate": 0.0010352621801471222, + "match_probability": 0.9671549680849019, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991267434808975, + "recall": 0.6775375788341268, + "row_count": 477830, + "tn": 173689, + "tn_rate": 0.9989647378198528, + "tp": 205945, + "tp_rate": 0.6775375788341268, + "truth_threshold": 4.88 + }, + { + "f1": 0.807157704828019, + "fn": 98160, + "fn_rate": 0.3229361661528946, + "fp": 179, + "fp_rate": 0.0010295107235907494, + "match_probability": 0.9675925010870554, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991309835906399, + "recall": 0.6770638338471053, + "row_count": 477830, + "tn": 173690, + "tn_rate": 0.9989704892764093, + "tp": 205801, + "tp_rate": 0.6770638338471053, + "truth_threshold": 4.9 + }, + { + "f1": 0.8067130946542422, + "fn": 98350, + "fn_rate": 0.3235612463441034, + "fp": 178, + "fp_rate": 0.0010237592670343766, + "match_probability": 0.9680243983512243, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991350363722065, + "recall": 0.6764387536558967, + "row_count": 477830, + "tn": 173691, + "tn_rate": 0.9989762407329656, + "tp": 205611, + "tp_rate": 0.6764387536558967, + "truth_threshold": 4.92 + }, + { + "f1": 0.8063524831435097, + "fn": 98504, + "fn_rate": 0.32406789028855676, + "fp": 178, + "fp_rate": 0.0010237592670343766, + "match_probability": 0.9684507273644041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991343886011622, + "recall": 0.6759321097114432, + "row_count": 477830, + "tn": 173691, + "tn_rate": 0.9989762407329656, + "tp": 205457, + "tp_rate": 0.6759321097114432, + "truth_threshold": 4.94 + }, + { + "f1": 0.8059533904959326, + "fn": 98675, + "fn_rate": 0.32463046246064464, + "fp": 177, + "fp_rate": 0.0010180078104780035, + "match_probability": 0.9688715549409818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991385310250508, + "recall": 0.6753695375393554, + "row_count": 477830, + "tn": 173692, + "tn_rate": 0.998981992189522, + "tp": 205286, + "tp_rate": 0.6753695375393554, + "truth_threshold": 4.96 + }, + { + "f1": 0.8056009362383952, + "fn": 98826, + "fn_rate": 0.3251272367178684, + "fp": 176, + "fp_rate": 0.0010122563539216307, + "match_probability": 0.9692869472257413, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991427639045156, + "recall": 0.6748727632821316, + "row_count": 477830, + "tn": 173693, + "tn_rate": 0.9989877436460783, + "tp": 205135, + "tp_rate": 0.6748727632821316, + "truth_threshold": 4.98 + }, + { + "f1": 0.8053241259029684, + "fn": 98944, + "fn_rate": 0.32551544441556646, + "fp": 176, + "fp_rate": 0.0010122563539216307, + "match_probability": 0.9696969696969697, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991422709351684, + "recall": 0.6744845555844335, + "row_count": 477830, + "tn": 173693, + "tn_rate": 0.9989877436460783, + "tp": 205017, + "tp_rate": 0.6744845555844335, + "truth_threshold": 5 + }, + { + "f1": 0.8047599584997013, + "fn": 99185, + "fn_rate": 0.32630830928967863, + "fp": 176, + "fp_rate": 0.0010122563539216307, + "match_probability": 0.9701016871696593, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991412623443539, + "recall": 0.6736916907103214, + "row_count": 477830, + "tn": 173693, + "tn_rate": 0.9989877436460783, + "tp": 204776, + "tp_rate": 0.6736916907103214, + "truth_threshold": 5.0200000000000005 + }, + { + "f1": 0.8042477402918061, + "fn": 99403, + "fn_rate": 0.32702550656169704, + "fp": 175, + "fp_rate": 0.0010065048973652577, + "match_probability": 0.9705011637988036, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991452281752331, + "recall": 0.672974493438303, + "row_count": 477830, + "tn": 173694, + "tn_rate": 0.9989934951026347, + "tp": 204558, + "tp_rate": 0.672974493438303, + "truth_threshold": 5.04 + }, + { + "f1": 0.803965597926752, + "fn": 99523, + "fn_rate": 0.3274202940508815, + "fp": 175, + "fp_rate": 0.0010065048973652577, + "match_probability": 0.9708954630827813, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991447268746365, + "recall": 0.6725797059491184, + "row_count": 477830, + "tn": 173694, + "tn_rate": 0.9989934951026347, + "tp": 204438, + "tp_rate": 0.6725797059491184, + "truth_threshold": 5.0600000000000005 + }, + { + "f1": 0.8036151213563589, + "fn": 99674, + "fn_rate": 0.3279170683081053, + "fp": 172, + "fp_rate": 0.000989250527696139, + "match_probability": 0.9712846478668253, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991587555451216, + "recall": 0.6720829316918947, + "row_count": 477830, + "tn": 173697, + "tn_rate": 0.9990107494723038, + "tp": 204287, + "tp_rate": 0.6720829316918947, + "truth_threshold": 5.08 + }, + { + "f1": 0.803223597742852, + "fn": 99841, + "fn_rate": 0.32846648089722036, + "fp": 172, + "fp_rate": 0.000989250527696139, + "match_probability": 0.9716687803465724, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991580678636461, + "recall": 0.6715335191027796, + "row_count": 477830, + "tn": 173697, + "tn_rate": 0.9990107494723038, + "tp": 204120, + "tp_rate": 0.6715335191027796, + "truth_threshold": 5.1000000000000005 + }, + { + "f1": 0.8029464552796889, + "fn": 99958, + "fn_rate": 0.32885139869917523, + "fp": 172, + "fp_rate": 0.000989250527696139, + "match_probability": 0.9720479220716894, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991575854046774, + "recall": 0.6711486013008248, + "row_count": 477830, + "tn": 173697, + "tn_rate": 0.9990107494723038, + "tp": 204003, + "tp_rate": 0.6711486013008248, + "truth_threshold": 5.12 + }, + { + "f1": 0.8026480002204698, + "fn": 100086, + "fn_rate": 0.3292725053543053, + "fp": 170, + "fp_rate": 0.0009777476145833932, + "match_probability": 0.9724221339495741, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991668504496557, + "recall": 0.6707274946456947, + "row_count": 477830, + "tn": 173699, + "tn_rate": 0.9990222523854166, + "tp": 203875, + "tp_rate": 0.6707274946456947, + "truth_threshold": 5.14 + }, + { + "f1": 0.802074224627577, + "fn": 100332, + "fn_rate": 0.33008181970713346, + "fp": 167, + "fp_rate": 0.0009604932449142745, + "match_probability": 0.972791476249125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991805531021217, + "recall": 0.6699181802928665, + "row_count": 477830, + "tn": 173702, + "tn_rate": 0.9990395067550857, + "tp": 203629, + "tp_rate": 0.6699181802928665, + "truth_threshold": 5.16 + }, + { + "f1": 0.8015266273122059, + "fn": 100564, + "fn_rate": 0.3308450755195568, + "fp": 167, + "fp_rate": 0.0009604932449142745, + "match_probability": 0.9731560086045776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991796191861037, + "recall": 0.6691549244804432, + "row_count": 477830, + "tn": 173702, + "tn_rate": 0.9990395067550857, + "tp": 203397, + "tp_rate": 0.6691549244804432, + "truth_threshold": 5.18 + }, + { + "f1": 0.8012825818759435, + "fn": 100670, + "fn_rate": 0.3311938044683364, + "fp": 163, + "fp_rate": 0.000937487418688783, + "match_probability": 0.9735157900194042, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991988361005436, + "recall": 0.6688061955316636, + "row_count": 477830, + "tn": 173706, + "tn_rate": 0.9990625125813112, + "tp": 203291, + "tp_rate": 0.6688061955316636, + "truth_threshold": 5.2 + }, + { + "f1": 0.8009706632602773, + "fn": 100802, + "fn_rate": 0.3316280707064393, + "fp": 163, + "fp_rate": 0.000937487418688783, + "match_probability": 0.9738708788702727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991983159717099, + "recall": 0.6683719292935607, + "row_count": 477830, + "tn": 173706, + "tn_rate": 0.9990625125813112, + "tp": 203159, + "tp_rate": 0.6683719292935607, + "truth_threshold": 5.22 + }, + { + "f1": 0.8005970926242891, + "fn": 100960, + "fn_rate": 0.33214787423386555, + "fp": 163, + "fp_rate": 0.000937487418688783, + "match_probability": 0.974221332911062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991976925045776, + "recall": 0.6678521257661345, + "row_count": 477830, + "tn": 173706, + "tn_rate": 0.9990625125813112, + "tp": 203001, + "tp_rate": 0.6678521257661345, + "truth_threshold": 5.24 + }, + { + "f1": 0.8001286183782248, + "fn": 101158, + "fn_rate": 0.3327992735910199, + "fp": 163, + "fp_rate": 0.000937487418688783, + "match_probability": 0.9745672092769317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991969098272617, + "recall": 0.6672007264089801, + "row_count": 477830, + "tn": 173706, + "tn_rate": 0.9990625125813112, + "tp": 202803, + "tp_rate": 0.6672007264089801, + "truth_threshold": 5.26 + }, + { + "f1": 0.7997789968033466, + "fn": 101305, + "fn_rate": 0.33328288826527086, + "fp": 163, + "fp_rate": 0.000937487418688783, + "match_probability": 0.9749085644884405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9991963277602197, + "recall": 0.6667171117347291, + "row_count": 477830, + "tn": 173706, + "tn_rate": 0.9990625125813112, + "tp": 202656, + "tp_rate": 0.6667171117347291, + "truth_threshold": 5.28 + }, + { + "f1": 0.7993643775044909, + "fn": 101486, + "fn_rate": 0.33387835939479077, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9752454544557132, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992350589744855, + "recall": 0.6661216406052092, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 202475, + "tp_rate": 0.6661216406052092, + "truth_threshold": 5.3 + }, + { + "f1": 0.7989660796726841, + "fn": 101654, + "fn_rate": 0.33443106187964905, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9755779344826514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992344242376348, + "recall": 0.665568938120351, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 202307, + "tp_rate": 0.665568938120351, + "truth_threshold": 5.32 + }, + { + "f1": 0.7984583412352234, + "fn": 101868, + "fn_rate": 0.3351350995686947, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9759060592711867, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992336141766544, + "recall": 0.6648649004313053, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 202093, + "tp_rate": 0.6648649004313053, + "truth_threshold": 5.34 + }, + { + "f1": 0.7980641923002438, + "fn": 102034, + "fn_rate": 0.33568122226206654, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9762298829255712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992329846300017, + "recall": 0.6643187777379335, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201927, + "tp_rate": 0.6643187777379335, + "truth_threshold": 5.36 + }, + { + "f1": 0.7976040328160522, + "fn": 102227, + "fn_rate": 0.33631617214050485, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9765494589567063, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992322513856624, + "recall": 0.6636838278594951, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201734, + "tp_rate": 0.6636838278594951, + "truth_threshold": 5.38 + }, + { + "f1": 0.7972608482432411, + "fn": 102372, + "fn_rate": 0.3367932070232694, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9768648402865033, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992316995796653, + "recall": 0.6632067929767306, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201589, + "tp_rate": 0.6632067929767306, + "truth_threshold": 5.4 + }, + { + "f1": 0.7969333502120387, + "fn": 102509, + "fn_rate": 0.33724392274008835, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9771760792522766, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992311774888769, + "recall": 0.6627560772599116, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201452, + "tp_rate": 0.6627560772599116, + "truth_threshold": 5.42 + }, + { + "f1": 0.7965001009129655, + "fn": 102691, + "fn_rate": 0.3378426837653515, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9774832276111642, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999230482809979, + "recall": 0.6621573162346486, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201270, + "tp_rate": 0.6621573162346486, + "truth_threshold": 5.44 + }, + { + "f1": 0.7960704982541706, + "fn": 102872, + "fn_rate": 0.3384381548948714, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9777863365445763, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992297907018346, + "recall": 0.6615618451051286, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 201089, + "tp_rate": 0.6615618451051286, + "truth_threshold": 5.46 + }, + { + "f1": 0.795704204715554, + "fn": 103025, + "fn_rate": 0.3389415089435816, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9780854566626659, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992292046884247, + "recall": 0.6610584910564185, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 200936, + "tp_rate": 0.6610584910564185, + "truth_threshold": 5.48 + }, + { + "f1": 0.7952072133459578, + "fn": 103234, + "fn_rate": 0.3396290971539112, + "fp": 155, + "fp_rate": 0.0008914757662377997, + "match_probability": 0.9783806380088231, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992284027438995, + "recall": 0.6603709028460888, + "row_count": 477830, + "tn": 173714, + "tn_rate": 0.9991085242337622, + "tp": 200727, + "tp_rate": 0.6603709028460888, + "truth_threshold": 5.5 + }, + { + "f1": 0.7948586872097263, + "fn": 103380, + "fn_rate": 0.34010942193241894, + "fp": 154, + "fp_rate": 0.0008857243096814268, + "match_probability": 0.9786719300641882, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992328193887463, + "recall": 0.659890578067581, + "row_count": 477830, + "tn": 173715, + "tn_rate": 0.9991142756903185, + "tp": 200581, + "tp_rate": 0.659890578067581, + "truth_threshold": 5.5200000000000005 + }, + { + "f1": 0.7945712620943608, + "fn": 103501, + "fn_rate": 0.34050749931734664, + "fp": 153, + "fp_rate": 0.0008799728531250539, + "match_probability": 0.9789593817521819, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992373375603775, + "recall": 0.6594925006826534, + "row_count": 477830, + "tn": 173716, + "tn_rate": 0.999120027146875, + "tp": 200460, + "tp_rate": 0.6594925006826534, + "truth_threshold": 5.54 + }, + { + "f1": 0.7941012026789644, + "fn": 103699, + "fn_rate": 0.341158898674501, + "fp": 152, + "fp_rate": 0.000874221396568681, + "match_probability": 0.9792430414430521, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992415699502031, + "recall": 0.658841101325499, + "row_count": 477830, + "tn": 173717, + "tn_rate": 0.9991257786034313, + "tp": 200262, + "tp_rate": 0.658841101325499, + "truth_threshold": 5.5600000000000005 + }, + { + "f1": 0.7938883160149124, + "fn": 103790, + "fn_rate": 0.34145827918713256, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9795229569584335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992611784204194, + "recall": 0.6585417208128674, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 200171, + "tp_rate": 0.6585417208128674, + "truth_threshold": 5.58 + }, + { + "f1": 0.7935429865868995, + "fn": 103935, + "fn_rate": 0.34193531406989713, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.979799175575919, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992606432403809, + "recall": 0.6580646859301029, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 200026, + "tp_rate": 0.6580646859301029, + "truth_threshold": 5.6000000000000005 + }, + { + "f1": 0.7932605314117012, + "fn": 104053, + "fn_rate": 0.3423235217675952, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9800717440336414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992602071420003, + "recall": 0.6576764782324048, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 199908, + "tp_rate": 0.6576764782324048, + "truth_threshold": 5.62 + }, + { + "f1": 0.7928054526761223, + "fn": 104243, + "fn_rate": 0.34294860195880394, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9803407085348623, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992595038675913, + "recall": 0.657051398041196, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 199718, + "tp_rate": 0.657051398041196, + "truth_threshold": 5.64 + }, + { + "f1": 0.792379628710414, + "fn": 104420, + "fn_rate": 0.34353091350535103, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9806061147525681, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992588475078747, + "recall": 0.656469086494649, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 199541, + "tp_rate": 0.656469086494649, + "truth_threshold": 5.66 + }, + { + "f1": 0.7919862717136127, + "fn": 104584, + "fn_rate": 0.34407045640723644, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9808680078340698, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992582383160005, + "recall": 0.6559295435927636, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 199377, + "tp_rate": 0.6559295435927636, + "truth_threshold": 5.68 + }, + { + "f1": 0.7916118649792383, + "fn": 104740, + "fn_rate": 0.34458368014317625, + "fp": 148, + "fp_rate": 0.0008512155703431895, + "match_probability": 0.9811264324056064, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992576579107083, + "recall": 0.6554163198568237, + "row_count": 477830, + "tn": 173721, + "tn_rate": 0.9991487844296568, + "tp": 199221, + "tp_rate": 0.6554163198568237, + "truth_threshold": 5.7 + }, + { + "f1": 0.7912675384554235, + "fn": 104886, + "fn_rate": 0.34506400492168404, + "fp": 145, + "fp_rate": 0.0008339612006740707, + "match_probability": 0.9813814325769498, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992721614295753, + "recall": 0.654935995078316, + "row_count": 477830, + "tn": 173724, + "tn_rate": 0.999166038799326, + "tp": 199075, + "tp_rate": 0.654935995078316, + "truth_threshold": 5.72 + }, + { + "f1": 0.790845437231365, + "fn": 105061, + "fn_rate": 0.3456397366767447, + "fp": 145, + "fp_rate": 0.0008339612006740707, + "match_probability": 0.9816330519460089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992715215152352, + "recall": 0.6543602633232553, + "row_count": 477830, + "tn": 173724, + "tn_rate": 0.999166038799326, + "tp": 198900, + "tp_rate": 0.6543602633232553, + "truth_threshold": 5.74 + }, + { + "f1": 0.7904766071520903, + "fn": 105217, + "fn_rate": 0.3461529604126845, + "fp": 141, + "fp_rate": 0.000810955374448579, + "match_probability": 0.9818813336034329, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992910475903161, + "recall": 0.6538470395873155, + "row_count": 477830, + "tn": 173728, + "tn_rate": 0.9991890446255515, + "tp": 198744, + "tp_rate": 0.6538470395873155, + "truth_threshold": 5.76 + }, + { + "f1": 0.790197521532433, + "fn": 105333, + "fn_rate": 0.34653458831889616, + "fp": 141, + "fp_rate": 0.000810955374448579, + "match_probability": 0.9821263201372112, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992906338513551, + "recall": 0.6534654116811038, + "row_count": 477830, + "tn": 173728, + "tn_rate": 0.9991890446255515, + "tp": 198628, + "tp_rate": 0.6534654116811038, + "truth_threshold": 5.78 + }, + { + "f1": 0.7896284915978762, + "fn": 105570, + "fn_rate": 0.3473142936100355, + "fp": 141, + "fp_rate": 0.000810955374448579, + "match_probability": 0.9823680536372692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992897870368505, + "recall": 0.6526857063899645, + "row_count": 477830, + "tn": 173728, + "tn_rate": 0.9991890446255515, + "tp": 198391, + "tp_rate": 0.6526857063899645, + "truth_threshold": 5.8 + }, + { + "f1": 0.7893056346270986, + "fn": 105704, + "fn_rate": 0.34775513963962484, + "fp": 141, + "fp_rate": 0.000810955374448579, + "match_probability": 0.982606575700058, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992893073518886, + "recall": 0.6522448603603752, + "row_count": 477830, + "tn": 173728, + "tn_rate": 0.9991890446255515, + "tp": 198257, + "tp_rate": 0.6522448603603752, + "truth_threshold": 5.82 + }, + { + "f1": 0.7890058777616719, + "fn": 105829, + "fn_rate": 0.3481663766075253, + "fp": 140, + "fp_rate": 0.0008052039178922062, + "match_probability": 0.9828419274331381, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992938992898645, + "recall": 0.6518336233924746, + "row_count": 477830, + "tn": 173729, + "tn_rate": 0.9991947960821078, + "tp": 198132, + "tp_rate": 0.6518336233924746, + "truth_threshold": 5.84 + }, + { + "f1": 0.7886682122001546, + "fn": 105969, + "fn_rate": 0.34862696201157384, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9830741494597539, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999298443958795, + "recall": 0.6513730379884262, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197992, + "tp_rate": 0.6513730379884262, + "truth_threshold": 5.86 + }, + { + "f1": 0.7883488259973942, + "fn": 106102, + "fn_rate": 0.34906451814541994, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9833032819233992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999297972706795, + "recall": 0.6509354818545801, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197859, + "tp_rate": 0.6509354818545801, + "truth_threshold": 5.88 + }, + { + "f1": 0.7879818097033515, + "fn": 106254, + "fn_rate": 0.34956458229838694, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9835293644923733, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992974333572576, + "recall": 0.6504354177016131, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197707, + "tp_rate": 0.6504354177016131, + "truth_threshold": 5.9 + }, + { + "f1": 0.7876250847187338, + "fn": 106401, + "fn_rate": 0.35004819697263795, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9837524363643234, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992969109606017, + "recall": 0.6499518030273621, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197560, + "tp_rate": 0.6499518030273621, + "truth_threshold": 5.92 + }, + { + "f1": 0.7871173596569947, + "fn": 106611, + "fn_rate": 0.35073907507871077, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9839725362707769, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992961633306159, + "recall": 0.6492609249212893, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197350, + "tp_rate": 0.6492609249212893, + "truth_threshold": 5.94 + }, + { + "f1": 0.786680977042221, + "fn": 106792, + "fn_rate": 0.3513345462082307, + "fp": 139, + "fp_rate": 0.0007994524613358333, + "match_probability": 0.9841897024816576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9992955176678087, + "recall": 0.6486654537917693, + "row_count": 477830, + "tn": 173730, + "tn_rate": 0.9992005475386642, + "tp": 197169, + "tp_rate": 0.6486654537917693, + "truth_threshold": 5.96 + }, + { + "f1": 0.7861336973746712, + "fn": 107018, + "fn_rate": 0.35207806264619473, + "fp": 138, + "fp_rate": 0.0007937010047794604, + "match_probability": 0.9844039728097899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999299780293382, + "recall": 0.6479219373538052, + "row_count": 477830, + "tn": 173731, + "tn_rate": 0.9992062989952205, + "tp": 196943, + "tp_rate": 0.6479219373538052, + "truth_threshold": 5.98 + }, + { + "f1": 0.7858468983194988, + "fn": 107137, + "fn_rate": 0.352469560239636, + "fp": 137, + "fp_rate": 0.0007879495482230875, + "match_probability": 0.9846153846153847, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993044308264073, + "recall": 0.647530439760364, + "row_count": 477830, + "tn": 173732, + "tn_rate": 0.999212050451777, + "tp": 196824, + "tp_rate": 0.647530439760364, + "truth_threshold": 6 + }, + { + "f1": 0.7855850675100936, + "fn": 107245, + "fn_rate": 0.352824868979902, + "fp": 137, + "fp_rate": 0.0007879495482230875, + "match_probability": 0.9848239748105114, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993040492143884, + "recall": 0.6471751310200979, + "row_count": 477830, + "tn": 173732, + "tn_rate": 0.999212050451777, + "tp": 196716, + "tp_rate": 0.6471751310200979, + "truth_threshold": 6.0200000000000005 + }, + { + "f1": 0.7852394838812767, + "fn": 107392, + "fn_rate": 0.353308483654153, + "fp": 131, + "fp_rate": 0.0007534408088848501, + "match_probability": 0.9850297798635513, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999334011184545, + "recall": 0.646691516345847, + "row_count": 477830, + "tn": 173738, + "tn_rate": 0.9992465591911152, + "tp": 196569, + "tp_rate": 0.646691516345847, + "truth_threshold": 6.04 + }, + { + "f1": 0.7849293939950931, + "fn": 107523, + "fn_rate": 0.3537394599965127, + "fp": 125, + "fp_rate": 0.0007189320695466126, + "match_probability": 0.9852328358036327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993640715699292, + "recall": 0.6462605400034873, + "row_count": 477830, + "tn": 173744, + "tn_rate": 0.9992810679304533, + "tp": 196438, + "tp_rate": 0.6462605400034873, + "truth_threshold": 6.0600000000000005 + }, + { + "f1": 0.7844242438778691, + "fn": 107731, + "fn_rate": 0.3544237583110991, + "fp": 125, + "fp_rate": 0.0007189320695466126, + "match_probability": 0.9854331782250482, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993633979272236, + "recall": 0.6455762416889009, + "row_count": 477830, + "tn": 173744, + "tn_rate": 0.9992810679304533, + "tp": 196230, + "tp_rate": 0.6455762416889009, + "truth_threshold": 6.08 + }, + { + "f1": 0.7841326200129549, + "fn": 107851, + "fn_rate": 0.3548185458002836, + "fp": 125, + "fp_rate": 0.0007189320695466126, + "match_probability": 0.9856308422916512, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993630086376029, + "recall": 0.6451814541997164, + "row_count": 477830, + "tn": 173744, + "tn_rate": 0.9992810679304533, + "tp": 196110, + "tp_rate": 0.6451814541997164, + "truth_threshold": 6.1000000000000005 + }, + { + "f1": 0.7838422620833083, + "fn": 107973, + "fn_rate": 0.35521991308095446, + "fp": 121, + "fp_rate": 0.0006959262433211211, + "match_probability": 0.9858258627412329, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993829961908939, + "recall": 0.6447800869190455, + "row_count": 477830, + "tn": 173748, + "tn_rate": 0.9993040737566788, + "tp": 195988, + "tp_rate": 0.6447800869190455, + "truth_threshold": 6.12 + }, + { + "f1": 0.7834618892925155, + "fn": 108130, + "fn_rate": 0.3557364267126375, + "fp": 121, + "fp_rate": 0.0006959262433211211, + "match_probability": 0.9860182738898777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993825018371846, + "recall": 0.6442635732873625, + "row_count": 477830, + "tn": 173748, + "tn_rate": 0.9993040737566788, + "tp": 195831, + "tp_rate": 0.6442635732873625, + "truth_threshold": 6.140000000000001 + }, + { + "f1": 0.7830090889807615, + "fn": 108316, + "fn_rate": 0.3563483473208734, + "fp": 121, + "fp_rate": 0.0006959262433211211, + "match_probability": 0.9862081096362973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993819151435898, + "recall": 0.6436516526791266, + "row_count": 477830, + "tn": 173748, + "tn_rate": 0.9993040737566788, + "tp": 195645, + "tp_rate": 0.6436516526791266, + "truth_threshold": 6.16 + }, + { + "f1": 0.7826241872978253, + "fn": 108474, + "fn_rate": 0.3568681508482996, + "fp": 121, + "fp_rate": 0.0006959262433211211, + "match_probability": 0.9863954034661423, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993814158930105, + "recall": 0.6431318491517004, + "row_count": 477830, + "tn": 173748, + "tn_rate": 0.9993040737566788, + "tp": 195487, + "tp_rate": 0.6431318491517004, + "truth_threshold": 6.18 + }, + { + "f1": 0.7822683021572938, + "fn": 108620, + "fn_rate": 0.3573484756268074, + "fp": 121, + "fp_rate": 0.0006959262433211211, + "match_probability": 0.9865801884562904, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993809538426907, + "recall": 0.6426515243731926, + "row_count": 477830, + "tn": 173748, + "tn_rate": 0.9993040737566788, + "tp": 195341, + "tp_rate": 0.6426515243731926, + "truth_threshold": 6.2 + }, + { + "f1": 0.7819024499671522, + "fn": 108770, + "fn_rate": 0.357841959988288, + "fp": 120, + "fp_rate": 0.0006901747867647482, + "match_probability": 0.9867624972791117, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993855952813717, + "recall": 0.6421580400117121, + "row_count": 477830, + "tn": 173749, + "tn_rate": 0.9993098252132353, + "tp": 195191, + "tp_rate": 0.6421580400117121, + "truth_threshold": 6.22 + }, + { + "f1": 0.7815501496616085, + "fn": 108915, + "fn_rate": 0.3583189948710525, + "fp": 120, + "fp_rate": 0.0006901747867647482, + "match_probability": 0.9869423622067105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993851388049148, + "recall": 0.6416810051289474, + "row_count": 477830, + "tn": 173749, + "tn_rate": 0.9993098252132353, + "tp": 195046, + "tp_rate": 0.6416810051289474, + "truth_threshold": 6.24 + }, + { + "f1": 0.7811056952283222, + "fn": 109097, + "fn_rate": 0.35891775589631564, + "fp": 119, + "fp_rate": 0.0006844233302083753, + "match_probability": 0.9871198151151404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993896903832642, + "recall": 0.6410822441036843, + "row_count": 477830, + "tn": 173750, + "tn_rate": 0.9993155766697916, + "tp": 194864, + "tp_rate": 0.6410822441036843, + "truth_threshold": 6.26 + }, + { + "f1": 0.7807773732578467, + "fn": 109232, + "fn_rate": 0.3593618918216482, + "fp": 119, + "fp_rate": 0.0006844233302083753, + "match_probability": 0.9872948874885967, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993892675316144, + "recall": 0.6406381081783519, + "row_count": 477830, + "tn": 173750, + "tn_rate": 0.9993155766697916, + "tp": 194729, + "tp_rate": 0.6406381081783519, + "truth_threshold": 6.28 + }, + { + "f1": 0.7804350790505907, + "fn": 109372, + "fn_rate": 0.3598224772256967, + "fp": 119, + "fp_rate": 0.0006844233302083753, + "match_probability": 0.9874676104235824, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993888283994494, + "recall": 0.6401775227743033, + "row_count": 477830, + "tn": 173750, + "tn_rate": 0.9993155766697916, + "tp": 194589, + "tp_rate": 0.6401775227743033, + "truth_threshold": 6.3 + }, + { + "f1": 0.7799898091420823, + "fn": 109554, + "fn_rate": 0.36042123825095984, + "fp": 119, + "fp_rate": 0.0006844233302083753, + "match_probability": 0.9876380146330476, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993882565826676, + "recall": 0.6395787617490402, + "row_count": 477830, + "tn": 173750, + "tn_rate": 0.9993155766697916, + "tp": 194407, + "tp_rate": 0.6395787617490402, + "truth_threshold": 6.32 + }, + { + "f1": 0.7796430592399658, + "fn": 109695, + "fn_rate": 0.3608851135507516, + "fp": 119, + "fp_rate": 0.0006844233302083753, + "match_probability": 0.9878061304505031, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9993878128456414, + "recall": 0.6391148864492484, + "row_count": 477830, + "tn": 173750, + "tn_rate": 0.9993155766697916, + "tp": 194266, + "tp_rate": 0.6391148864492484, + "truth_threshold": 6.34 + }, + { + "f1": 0.7792907983636896, + "fn": 109842, + "fn_rate": 0.36136872822500254, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9879719878341077, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994130760478395, + "recall": 0.6386312717749975, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 194119, + "tp_rate": 0.6386312717749975, + "truth_threshold": 6.36 + }, + { + "f1": 0.7788054522526285, + "fn": 110040, + "fn_rate": 0.3620201275821569, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9881356163707273, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994124771304146, + "recall": 0.637979872417843, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 193921, + "tp_rate": 0.637979872417843, + "truth_threshold": 6.38 + }, + { + "f1": 0.7783924503742271, + "fn": 110209, + "fn_rate": 0.3625761199627584, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9882970452799678, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994119649654917, + "recall": 0.6374238800372416, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 193752, + "tp_rate": 0.6374238800372416, + "truth_threshold": 6.4 + }, + { + "f1": 0.7780979132258803, + "fn": 110329, + "fn_rate": 0.3629709074519428, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9884563034181787, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994116007556285, + "recall": 0.6370290925480572, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 193632, + "tp_rate": 0.6370290925480572, + "truth_threshold": 6.42 + }, + { + "f1": 0.7776509273924473, + "fn": 110511, + "fn_rate": 0.36356966847720595, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9886134192824297, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994110475088342, + "recall": 0.636430331522794, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 193450, + "tp_rate": 0.636430331522794, + "truth_threshold": 6.44 + }, + { + "f1": 0.7774346850650133, + "fn": 110599, + "fn_rate": 0.3638591793026079, + "fp": 114, + "fp_rate": 0.0006556660474265108, + "match_probability": 0.9887684210144592, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994107796315822, + "recall": 0.6361408206973921, + "row_count": 477830, + "tn": 173755, + "tn_rate": 0.9993443339525735, + "tp": 193362, + "tp_rate": 0.6361408206973921, + "truth_threshold": 6.46 + }, + { + "f1": 0.7770055304172951, + "fn": 110778, + "fn_rate": 0.3644480706406414, + "fp": 106, + "fp_rate": 0.0006096543949755276, + "match_probability": 0.9889213364045922, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994515983837673, + "recall": 0.6355519293593586, + "row_count": 477830, + "tn": 173763, + "tn_rate": 0.9993903456050245, + "tp": 193183, + "tp_rate": 0.6355519293593586, + "truth_threshold": 6.48 + }, + { + "f1": 0.7765854718393164, + "fn": 110950, + "fn_rate": 0.3650139327084725, + "fp": 105, + "fp_rate": 0.0006039029384191547, + "match_probability": 0.989072192895632, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994562853414528, + "recall": 0.6349860672915275, + "row_count": 477830, + "tn": 173764, + "tn_rate": 0.9993960970615808, + "tp": 193011, + "tp_rate": 0.6349860672915275, + "truth_threshold": 6.5 + }, + { + "f1": 0.7762170777255457, + "fn": 111099, + "fn_rate": 0.3655041271742098, + "fp": 105, + "fp_rate": 0.0006039029384191547, + "match_probability": 0.9892210175867204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994558655106832, + "recall": 0.6344958728257901, + "row_count": 477830, + "tn": 173764, + "tn_rate": 0.9993960970615808, + "tp": 192862, + "tp_rate": 0.6344958728257901, + "truth_threshold": 6.5200000000000005 + }, + { + "f1": 0.7757391279839915, + "fn": 111293, + "fn_rate": 0.3661423669483914, + "fp": 105, + "fp_rate": 0.0006039029384191547, + "match_probability": 0.9893678372371703, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994553179127782, + "recall": 0.6338576330516086, + "row_count": 477830, + "tn": 173764, + "tn_rate": 0.9993960970615808, + "tp": 192668, + "tp_rate": 0.6338576330516086, + "truth_threshold": 6.54 + }, + { + "f1": 0.7752926202502074, + "fn": 111476, + "fn_rate": 0.3667444178693977, + "fp": 102, + "fp_rate": 0.0005866485687500359, + "match_probability": 0.9895126782702673, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994703692357221, + "recall": 0.6332555821306023, + "row_count": 477830, + "tn": 173767, + "tn_rate": 0.99941335143125, + "tp": 192485, + "tp_rate": 0.6332555821306023, + "truth_threshold": 6.5600000000000005 + }, + { + "f1": 0.7749839852704777, + "fn": 111603, + "fn_rate": 0.3671622346287846, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9896555667770431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994804061145809, + "recall": 0.6328377653712154, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 192358, + "tp_rate": 0.6328377653712154, + "truth_threshold": 6.58 + }, + { + "f1": 0.7745050622299606, + "fn": 111797, + "fn_rate": 0.36780047440296615, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9897965285200179, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994798818291516, + "recall": 0.6321995255970339, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 192164, + "tp_rate": 0.6321995255970339, + "truth_threshold": 6.6000000000000005 + }, + { + "f1": 0.7742135753246282, + "fn": 111915, + "fn_rate": 0.36818868210066424, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9899355889369128, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994795624160795, + "recall": 0.6318113178993358, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 192046, + "tp_rate": 0.6318113178993358, + "truth_threshold": 6.62 + }, + { + "f1": 0.7738585865103113, + "fn": 112058, + "fn_rate": 0.3686591371919424, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9900727731443332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994791748045604, + "recall": 0.6313408628080576, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191903, + "tp_rate": 0.6313408628080576, + "truth_threshold": 6.640000000000001 + }, + { + "f1": 0.7733292990418558, + "fn": 112272, + "fn_rate": 0.369363174880988, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9902081059414205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994785936628274, + "recall": 0.630636825119012, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191689, + "tp_rate": 0.630636825119012, + "truth_threshold": 6.66 + }, + { + "f1": 0.7728738452597635, + "fn": 112456, + "fn_rate": 0.36996851569773753, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9903416118134748, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994780929516454, + "recall": 0.6300314843022624, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191505, + "tp_rate": 0.6300314843022624, + "truth_threshold": 6.68 + }, + { + "f1": 0.7724824790879437, + "fn": 112614, + "fn_rate": 0.37048831922516373, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9904733149355459, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994776622250544, + "recall": 0.6295116807748362, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191347, + "tp_rate": 0.6295116807748362, + "truth_threshold": 6.7 + }, + { + "f1": 0.7720949015648663, + "fn": 112771, + "fn_rate": 0.37100483285684677, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9906032391759949, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994772335197867, + "recall": 0.6289951671431533, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191190, + "tp_rate": 0.6289951671431533, + "truth_threshold": 6.72 + }, + { + "f1": 0.7717030370113029, + "fn": 112929, + "fn_rate": 0.37152463638427297, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9907314081000241, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994768013728732, + "recall": 0.628475363615727, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 191032, + "tp_rate": 0.628475363615727, + "truth_threshold": 6.74 + }, + { + "f1": 0.771346600666734, + "fn": 113072, + "fn_rate": 0.37199509147555115, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9908578449731781, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999476409636157, + "recall": 0.6280049085244489, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 190889, + "tp_rate": 0.6280049085244489, + "truth_threshold": 6.76 + }, + { + "f1": 0.7709135888304559, + "fn": 113247, + "fn_rate": 0.3725708232306118, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9909825727648117, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994759294391397, + "recall": 0.6274291767693881, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 190714, + "tp_rate": 0.6274291767693881, + "truth_threshold": 6.78 + }, + { + "f1": 0.7705368118004787, + "fn": 113398, + "fn_rate": 0.37306759748783563, + "fp": 100, + "fp_rate": 0.0005751456556372901, + "match_probability": 0.9911056141515298, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994755143892627, + "recall": 0.6269324025121644, + "row_count": 477830, + "tn": 173769, + "tn_rate": 0.9994248543443627, + "tp": 190563, + "tp_rate": 0.6269324025121644, + "truth_threshold": 6.8 + }, + { + "f1": 0.7701054113307069, + "fn": 113574, + "fn_rate": 0.3736466191386395, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9912269915205945, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999490770878394, + "recall": 0.6263533808613605, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 190387, + "tp_rate": 0.6263533808613605, + "truth_threshold": 6.82 + }, + { + "f1": 0.7697380932150242, + "fn": 113721, + "fn_rate": 0.37413023381289046, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9913467269733026, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994903775934264, + "recall": 0.6258697661871095, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 190240, + "tp_rate": 0.6258697661871095, + "truth_threshold": 6.84 + }, + { + "f1": 0.7692450920866222, + "fn": 113919, + "fn_rate": 0.3747816331700448, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9914648423283329, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994898469014774, + "recall": 0.6252183668299551, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 190042, + "tp_rate": 0.6252183668299551, + "truth_threshold": 6.86 + }, + { + "f1": 0.768840497554339, + "fn": 114082, + "fn_rate": 0.37531788617618705, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9915813591250612, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994894091885291, + "recall": 0.6246821138238129, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 189879, + "tp_rate": 0.6246821138238129, + "truth_threshold": 6.88 + }, + { + "f1": 0.7684674394679498, + "fn": 114231, + "fn_rate": 0.37580808064192445, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9916962986268459, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994890084129233, + "recall": 0.6241919193580755, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 189730, + "tp_rate": 0.6241919193580755, + "truth_threshold": 6.9 + }, + { + "f1": 0.7679874552770091, + "fn": 114424, + "fn_rate": 0.3764430305203628, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9918096818242835, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999488488351245, + "recall": 0.6235569694796372, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 189537, + "tp_rate": 0.6235569694796372, + "truth_threshold": 6.92 + }, + { + "f1": 0.767478059952573, + "fn": 114628, + "fn_rate": 0.3771141692519764, + "fp": 97, + "fp_rate": 0.0005578912859681715, + "match_probability": 0.9919215294384318, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9994879374967006, + "recall": 0.6228858307480236, + "row_count": 477830, + "tn": 173772, + "tn_rate": 0.9994421087140318, + "tp": 189333, + "tp_rate": 0.6228858307480236, + "truth_threshold": 6.94 + }, + { + "f1": 0.7671203993171709, + "fn": 114773, + "fn_rate": 0.37759120413474095, + "fp": 93, + "fp_rate": 0.0005348854597426798, + "match_probability": 0.9920318619240045, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995086670083104, + "recall": 0.622408795865259, + "row_count": 477830, + "tn": 173776, + "tn_rate": 0.9994651145402573, + "tp": 189188, + "tp_rate": 0.622408795865259, + "truth_threshold": 6.96 + }, + { + "f1": 0.7667093916556474, + "fn": 114938, + "fn_rate": 0.37813403693236963, + "fp": 93, + "fp_rate": 0.0005348854597426798, + "match_probability": 0.9921406994725337, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995082383299139, + "recall": 0.6218659630676304, + "row_count": 477830, + "tn": 173776, + "tn_rate": 0.9994651145402573, + "tp": 189023, + "tp_rate": 0.6218659630676304, + "truth_threshold": 6.98 + }, + { + "f1": 0.7664291915839696, + "fn": 115050, + "fn_rate": 0.37850250525560847, + "fp": 93, + "fp_rate": 0.0005348854597426798, + "match_probability": 0.9922480620155039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995079469217583, + "recall": 0.6214974947443915, + "row_count": 477830, + "tn": 173776, + "tn_rate": 0.9994651145402573, + "tp": 188911, + "tp_rate": 0.6214974947443915, + "truth_threshold": 7 + }, + { + "f1": 0.7659695362249432, + "fn": 115233, + "fn_rate": 0.37910455617661476, + "fp": 93, + "fp_rate": 0.0005348854597426798, + "match_probability": 0.9923539692274538, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995074700377606, + "recall": 0.6208954438233852, + "row_count": 477830, + "tn": 173776, + "tn_rate": 0.9994651145402573, + "tp": 188728, + "tp_rate": 0.6208954438233852, + "truth_threshold": 7.0200000000000005 + }, + { + "f1": 0.7654525005379902, + "fn": 115440, + "fn_rate": 0.379785564595458, + "fp": 93, + "fp_rate": 0.0005348854597426798, + "match_probability": 0.9924584405290495, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995069294962198, + "recall": 0.620214435404542, + "row_count": 477830, + "tn": 173776, + "tn_rate": 0.9994651145402573, + "tp": 188521, + "tp_rate": 0.620214435404542, + "truth_threshold": 7.04 + }, + { + "f1": 0.7650654525220443, + "fn": 115595, + "fn_rate": 0.3802954984356546, + "fp": 92, + "fp_rate": 0.0005291340031863069, + "match_probability": 0.9925614950901266, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995118275690075, + "recall": 0.6197045015643454, + "row_count": 477830, + "tn": 173777, + "tn_rate": 0.9994708659968137, + "tp": 188366, + "tp_rate": 0.6197045015643454, + "truth_threshold": 7.0600000000000005 + }, + { + "f1": 0.764739339573583, + "fn": 115725, + "fn_rate": 0.3807231848822711, + "fp": 92, + "fp_rate": 0.0005291340031863069, + "match_probability": 0.9926631518327027, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999511490590884, + "recall": 0.6192768151177289, + "row_count": 477830, + "tn": 173777, + "tn_rate": 0.9994708659968137, + "tp": 188236, + "tp_rate": 0.6192768151177289, + "truth_threshold": 7.08 + }, + { + "f1": 0.7644431802019628, + "fn": 115843, + "fn_rate": 0.3811113925799691, + "fp": 92, + "fp_rate": 0.0005291340031863069, + "match_probability": 0.9927634294339601, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995111843153924, + "recall": 0.6188886074200308, + "row_count": 477830, + "tn": 173777, + "tn_rate": 0.9994708659968137, + "tp": 188118, + "tp_rate": 0.6188886074200308, + "truth_threshold": 7.1000000000000005 + }, + { + "f1": 0.7640303737367989, + "fn": 116008, + "fn_rate": 0.3816542253775978, + "fp": 90, + "fp_rate": 0.0005176310900735611, + "match_probability": 0.9928623463291987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999521386065953, + "recall": 0.6183457746224023, + "row_count": 477830, + "tn": 173779, + "tn_rate": 0.9994823689099265, + "tp": 187953, + "tp_rate": 0.6183457746224023, + "truth_threshold": 7.12 + }, + { + "f1": 0.7637077788214055, + "fn": 116137, + "fn_rate": 0.3820786219284711, + "fp": 89, + "fp_rate": 0.0005118796335171883, + "match_probability": 0.9929599207147589, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995263765678798, + "recall": 0.6179213780715289, + "row_count": 477830, + "tn": 173780, + "tn_rate": 0.9994881203664828, + "tp": 187824, + "tp_rate": 0.6179213780715289, + "truth_threshold": 7.140000000000001 + }, + { + "f1": 0.7634091981323919, + "fn": 116257, + "fn_rate": 0.38247340941765556, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9930561705509157, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995367190120932, + "recall": 0.6175265905823445, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187704, + "tp_rate": 0.6175265905823445, + "truth_threshold": 7.16 + }, + { + "f1": 0.7630963374597763, + "fn": 116382, + "fn_rate": 0.382884646385556, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9931511135647422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995364104312982, + "recall": 0.6171153536144439, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187579, + "tp_rate": 0.6171153536144439, + "truth_threshold": 7.18 + }, + { + "f1": 0.762809453278862, + "fn": 116496, + "fn_rate": 0.3832596945002813, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9932447672529455, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995361286469886, + "recall": 0.6167403054997187, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187465, + "tp_rate": 0.6167403054997187, + "truth_threshold": 7.2 + }, + { + "f1": 0.7623017553000945, + "fn": 116697, + "fn_rate": 0.38392096354466526, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9933371488846718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99953563098142, + "recall": 0.6160790364553347, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187264, + "tp_rate": 0.6160790364553347, + "truth_threshold": 7.22 + }, + { + "f1": 0.762054827427557, + "fn": 116795, + "fn_rate": 0.38424337332749925, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.993428275504284, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995353879510609, + "recall": 0.6157566266725008, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187166, + "tp_rate": 0.6157566266725008, + "truth_threshold": 7.24 + }, + { + "f1": 0.7617261475680233, + "fn": 116926, + "fn_rate": 0.384674349669859, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9935181639341092, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995350626863757, + "recall": 0.6153256503301411, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 187035, + "tp_rate": 0.6153256503301411, + "truth_threshold": 7.26 + }, + { + "f1": 0.7612680331308489, + "fn": 117107, + "fn_rate": 0.3852698207993789, + "fp": 87, + "fp_rate": 0.0005003767204044424, + "match_probability": 0.9936068307771581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995346125248072, + "recall": 0.6147301792006211, + "row_count": 477830, + "tn": 173782, + "tn_rate": 0.9994996232795955, + "tp": 186854, + "tp_rate": 0.6147301792006211, + "truth_threshold": 7.28 + }, + { + "f1": 0.7608076328971018, + "fn": 117290, + "fn_rate": 0.3858718717203852, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.9936942924198163, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995395085592508, + "recall": 0.6141281282796148, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 186671, + "tp_rate": 0.6141281282796148, + "truth_threshold": 7.3 + }, + { + "f1": 0.7604438881799688, + "fn": 117434, + "fn_rate": 0.3863456167074065, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.9937805650345067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995391532208368, + "recall": 0.6136543832925935, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 186527, + "tp_rate": 0.6136543832925935, + "truth_threshold": 7.32 + }, + { + "f1": 0.760079929857472, + "fn": 117578, + "fn_rate": 0.3868193616944279, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.9938656645823235, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995387973336051, + "recall": 0.6131806383055721, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 186383, + "tp_rate": 0.6131806383055721, + "truth_threshold": 7.34 + }, + { + "f1": 0.75967528096763, + "fn": 117738, + "fn_rate": 0.3873457450133405, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.9939496068156388, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999538401258125, + "recall": 0.6126542549866595, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 186223, + "tp_rate": 0.6126542549866595, + "truth_threshold": 7.36 + }, + { + "f1": 0.7590931352542649, + "fn": 117968, + "fn_rate": 0.38810242103427744, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.994032407280681, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995378307063129, + "recall": 0.6118975789657226, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 185993, + "tp_rate": 0.6118975789657226, + "truth_threshold": 7.38 + }, + { + "f1": 0.7587172630590541, + "fn": 118117, + "fn_rate": 0.3885926155000148, + "fp": 86, + "fp_rate": 0.0004946252638480695, + "match_probability": 0.9941140813200855, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995374603345345, + "recall": 0.6114073844999852, + "row_count": 477830, + "tn": 173783, + "tn_rate": 0.999505374736152, + "tp": 185844, + "tp_rate": 0.6114073844999852, + "truth_threshold": 7.4 + }, + { + "f1": 0.7583563724869626, + "fn": 118260, + "fn_rate": 0.38906307059129297, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9941946440754179, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995424843637303, + "recall": 0.610936929408707, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 185701, + "tp_rate": 0.610936929408707, + "truth_threshold": 7.42 + }, + { + "f1": 0.7577628331889719, + "fn": 118494, + "fn_rate": 0.38983290619520267, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9942741104896703, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995419073898422, + "recall": 0.6101670938047973, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 185467, + "tp_rate": 0.6101670938047973, + "truth_threshold": 7.44 + }, + { + "f1": 0.7573728952100703, + "fn": 118647, + "fn_rate": 0.3903362602439129, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9943524953097296, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995415293502122, + "recall": 0.6096637397560871, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 185314, + "tp_rate": 0.6096637397560871, + "truth_threshold": 7.46 + }, + { + "f1": 0.7569359837117836, + "fn": 118819, + "fn_rate": 0.3909021223117439, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9944298130888198, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995411036188029, + "recall": 0.6090978776882561, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 185142, + "tp_rate": 0.6090978776882561, + "truth_threshold": 7.48 + }, + { + "f1": 0.756523197225494, + "fn": 118982, + "fn_rate": 0.39143837531788617, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.994506078188917, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995406994337094, + "recall": 0.6085616246821138, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184979, + "tp_rate": 0.6085616246821138, + "truth_threshold": 7.5 + }, + { + "f1": 0.7560755081334075, + "fn": 119158, + "fn_rate": 0.39201739696869004, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9945813047831374, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995402622127991, + "recall": 0.6079826030313099, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184803, + "tp_rate": 0.6079826030313099, + "truth_threshold": 7.5200000000000005 + }, + { + "f1": 0.7557089772132006, + "fn": 119302, + "fn_rate": 0.39249114195571144, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9946555068581004, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995399038669727, + "recall": 0.6075088580442886, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184659, + "tp_rate": 0.6075088580442886, + "truth_threshold": 7.54 + }, + { + "f1": 0.7553941815294055, + "fn": 119425, + "fn_rate": 0.3928957991321255, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9947286982162634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995395973372476, + "recall": 0.6071042008678745, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184536, + "tp_rate": 0.6071042008678745, + "truth_threshold": 7.5600000000000005 + }, + { + "f1": 0.7549711721155736, + "fn": 119591, + "fn_rate": 0.39344192182549736, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9948008924782327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995391829985634, + "recall": 0.6065580781745027, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184370, + "tp_rate": 0.6065580781745027, + "truth_threshold": 7.58 + }, + { + "f1": 0.7546131884966228, + "fn": 119732, + "fn_rate": 0.3939057971252891, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9948721030850469, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995388304740823, + "recall": 0.6060942028747109, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184229, + "tp_rate": 0.6060942028747109, + "truth_threshold": 7.6000000000000005 + }, + { + "f1": 0.7542355867132666, + "fn": 119880, + "fn_rate": 0.3943927016952833, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9949423433004362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999538459867728, + "recall": 0.6056072983047167, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 184081, + "tp_rate": 0.6056072983047167, + "truth_threshold": 7.62 + }, + { + "f1": 0.75369530820879, + "fn": 120091, + "fn_rate": 0.3950868696970993, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9950116262130546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995379304721264, + "recall": 0.6049131303029007, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 183870, + "tp_rate": 0.6049131303029007, + "truth_threshold": 7.640000000000001 + }, + { + "f1": 0.7533723666838873, + "fn": 120218, + "fn_rate": 0.3955046864564862, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9950799647386886, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995376112452945, + "recall": 0.6044953135435138, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 183743, + "tp_rate": 0.6044953135435138, + "truth_threshold": 7.66 + }, + { + "f1": 0.7529796815657581, + "fn": 120371, + "fn_rate": 0.3960080405051964, + "fp": 85, + "fp_rate": 0.0004888738072916966, + "match_probability": 0.9951473716224397, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995372260786716, + "recall": 0.6039919594948036, + "row_count": 477830, + "tn": 173784, + "tn_rate": 0.9995111261927083, + "tp": 183590, + "tp_rate": 0.6039919594948036, + "truth_threshold": 7.68 + }, + { + "f1": 0.7524956815374958, + "fn": 120562, + "fn_rate": 0.3966364105921483, + "fp": 83, + "fp_rate": 0.00047737089417895085, + "match_probability": 0.9952138594408825, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995476395504737, + "recall": 0.6033635894078516, + "row_count": 477830, + "tn": 173786, + "tn_rate": 0.999522629105821, + "tp": 183399, + "tp_rate": 0.6033635894078516, + "truth_threshold": 7.7 + }, + { + "f1": 0.752, + "fn": 120755, + "fn_rate": 0.3972713604705867, + "fp": 83, + "fp_rate": 0.00047737089417895085, + "match_probability": 0.9952794406041985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995471632231067, + "recall": 0.6027286395294134, + "row_count": 477830, + "tn": 173786, + "tn_rate": 0.999522629105821, + "tp": 183206, + "tp_rate": 0.6027286395294134, + "truth_threshold": 7.72 + }, + { + "f1": 0.7516351677047707, + "fn": 120898, + "fn_rate": 0.39774181556186483, + "fp": 83, + "fp_rate": 0.00047737089417895085, + "match_probability": 0.9953441273582849, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995468096491323, + "recall": 0.6022581844381352, + "row_count": 477830, + "tn": 173786, + "tn_rate": 0.999522629105821, + "tp": 183063, + "tp_rate": 0.6022581844381352, + "truth_threshold": 7.74 + }, + { + "f1": 0.7512352397576754, + "fn": 121054, + "fn_rate": 0.39825503929780465, + "fp": 83, + "fp_rate": 0.00047737089417895085, + "match_probability": 0.9954079317868398, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995464233018198, + "recall": 0.6017449607021953, + "row_count": 477830, + "tn": 173786, + "tn_rate": 0.999522629105821, + "tp": 182907, + "tp_rate": 0.6017449607021953, + "truth_threshold": 7.76 + }, + { + "f1": 0.7506913370232035, + "fn": 121266, + "fn_rate": 0.39895249719536385, + "fp": 83, + "fp_rate": 0.00047737089417895085, + "match_probability": 0.9954708658134229, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995458972086356, + "recall": 0.6010475028046361, + "row_count": 477830, + "tn": 173786, + "tn_rate": 0.999522629105821, + "tp": 182695, + "tp_rate": 0.6010475028046361, + "truth_threshold": 7.78 + }, + { + "f1": 0.7502682039583205, + "fn": 121432, + "fn_rate": 0.39949861988873575, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9955329412034929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995564317397733, + "recall": 0.6005013801112643, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 182529, + "tp_rate": 0.6005013801112643, + "truth_threshold": 7.8 + }, + { + "f1": 0.7497604723936724, + "fn": 121629, + "fn_rate": 0.4001467293501469, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9955941695664209, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995559527007395, + "recall": 0.599853270649853, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 182332, + "tp_rate": 0.599853270649853, + "truth_threshold": 7.82 + }, + { + "f1": 0.7492615903574807, + "fn": 121823, + "fn_rate": 0.4007849691243284, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9956545623574807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995554799444625, + "recall": 0.5992150308756715, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 182138, + "tp_rate": 0.5992150308756715, + "truth_threshold": 7.84 + }, + { + "f1": 0.7487767238009012, + "fn": 122012, + "fn_rate": 0.401406759419794, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.995714130879816, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995550184035599, + "recall": 0.598593240580206, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 181949, + "tp_rate": 0.598593240580206, + "truth_threshold": 7.86 + }, + { + "f1": 0.7483141626802138, + "fn": 122191, + "fn_rate": 0.4019956507578275, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9957728862863844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995545803982381, + "recall": 0.5980043492421725, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 181770, + "tp_rate": 0.5980043492421725, + "truth_threshold": 7.88 + }, + { + "f1": 0.7479780925712404, + "fn": 122322, + "fn_rate": 0.4024266271001872, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9958308395818786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995542593000221, + "recall": 0.5975733728998128, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 181639, + "tp_rate": 0.5975733728998128, + "truth_threshold": 7.9 + }, + { + "f1": 0.7475603376187907, + "fn": 122484, + "fn_rate": 0.40295959021058625, + "fp": 81, + "fp_rate": 0.000465867981066205, + "match_probability": 0.9958880016246255, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995538615759151, + "recall": 0.5970404097894138, + "row_count": 477830, + "tn": 173788, + "tn_rate": 0.9995341320189338, + "tp": 181477, + "tp_rate": 0.5970404097894138, + "truth_threshold": 7.92 + }, + { + "f1": 0.7469811989482621, + "fn": 122709, + "fn_rate": 0.4036998167528071, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9959443831284631, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995588202854433, + "recall": 0.5963001832471929, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 181252, + "tp_rate": 0.5963001832471929, + "truth_threshold": 7.94 + }, + { + "f1": 0.7464800926823034, + "fn": 122903, + "fn_rate": 0.4043380565269887, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9959999946645937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995583477790414, + "recall": 0.5956619434730114, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 181058, + "tp_rate": 0.5956619434730114, + "truth_threshold": 7.96 + }, + { + "f1": 0.7460509927165045, + "fn": 123069, + "fn_rate": 0.4048841792203605, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9960548466634173, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995579426651636, + "recall": 0.5951158207796395, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 180892, + "tp_rate": 0.5951158207796395, + "truth_threshold": 7.98 + }, + { + "f1": 0.7455543177786029, + "fn": 123261, + "fn_rate": 0.4055158392030557, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9961089494163424, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995574731718111, + "recall": 0.5944841607969443, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 180700, + "tp_rate": 0.5944841607969443, + "truth_threshold": 8 + }, + { + "f1": 0.7451453004857795, + "fn": 123419, + "fn_rate": 0.40603564273048187, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9961623130775747, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995570860692496, + "recall": 0.5939643572695181, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 180542, + "tp_rate": 0.5939643572695181, + "truth_threshold": 8.02 + }, + { + "f1": 0.7445338662856719, + "fn": 123655, + "fn_rate": 0.406812058125878, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9962149476658856, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995565066025079, + "recall": 0.593187941874122, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 180306, + "tp_rate": 0.593187941874122, + "truth_threshold": 8.040000000000001 + }, + { + "f1": 0.7441823003147382, + "fn": 123790, + "fn_rate": 0.4072561940512105, + "fp": 80, + "fp_rate": 0.0004601165245098321, + "match_probability": 0.9962668630663583, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995561744456342, + "recall": 0.5927438059487895, + "row_count": 477830, + "tn": 173789, + "tn_rate": 0.9995398834754902, + "tp": 180171, + "tp_rate": 0.5927438059487895, + "truth_threshold": 8.06 + }, + { + "f1": 0.7437546999859517, + "fn": 123956, + "fn_rate": 0.40780231674458234, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.9963180690321144, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995668663893871, + "recall": 0.5921976832554177, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 180005, + "tp_rate": 0.5921976832554177, + "truth_threshold": 8.08 + }, + { + "f1": 0.7431979959820432, + "fn": 124171, + "fn_rate": 0.4085096443293712, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.9963685751860192, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995663486556808, + "recall": 0.5914903556706288, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 179790, + "tp_rate": 0.5914903556706288, + "truth_threshold": 8.1 + }, + { + "f1": 0.7428768714880527, + "fn": 124294, + "fn_rate": 0.4089143015057853, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.9964183910223661, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995660519068681, + "recall": 0.5910856984942148, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 179667, + "tp_rate": 0.5910856984942148, + "truth_threshold": 8.120000000000001 + }, + { + "f1": 0.742471305966291, + "fn": 124450, + "fn_rate": 0.4094275252417251, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.996467525908541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995656749578203, + "recall": 0.5905724747582749, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 179511, + "tp_rate": 0.5905724747582749, + "truth_threshold": 8.14 + }, + { + "f1": 0.742018635596306, + "fn": 124624, + "fn_rate": 0.4099999671010426, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.9965159890866674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999565253741326, + "recall": 0.5900000328989574, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 179337, + "tp_rate": 0.5900000328989574, + "truth_threshold": 8.16 + }, + { + "f1": 0.7416999826177646, + "fn": 124747, + "fn_rate": 0.41040462427745666, + "fp": 78, + "fp_rate": 0.00044861361139708633, + "match_probability": 0.9965637896752301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995649554916003, + "recall": 0.5895953757225434, + "row_count": 477830, + "tn": 173791, + "tn_rate": 0.9995513863886029, + "tp": 179214, + "tp_rate": 0.5895953757225434, + "truth_threshold": 8.18 + }, + { + "f1": 0.7412780227286841, + "fn": 124909, + "fn_rate": 0.4109375873878557, + "fp": 77, + "fp_rate": 0.0004428621548407134, + "match_probability": 0.9966109366706807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995701421880321, + "recall": 0.5890624126121443, + "row_count": 477830, + "tn": 173792, + "tn_rate": 0.9995571378451593, + "tp": 179052, + "tp_rate": 0.5890624126121443, + "truth_threshold": 8.2 + }, + { + "f1": 0.7408901349655649, + "fn": 125059, + "fn_rate": 0.41143107174933624, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9966574389490227, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995809517424027, + "recall": 0.5885689282506638, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 178902, + "tp_rate": 0.5885689282506638, + "truth_threshold": 8.22 + }, + { + "f1": 0.7404832823096139, + "fn": 125215, + "fn_rate": 0.41194429548527606, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9967033052673774, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995805861727649, + "recall": 0.5880557045147239, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 178746, + "tp_rate": 0.5880557045147239, + "truth_threshold": 8.24 + }, + { + "f1": 0.740044839146813, + "fn": 125383, + "fn_rate": 0.41249699797013434, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9967485442655314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995801917684002, + "recall": 0.5875030020298657, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 178578, + "tp_rate": 0.5875030020298657, + "truth_threshold": 8.26 + }, + { + "f1": 0.7395486128384989, + "fn": 125573, + "fn_rate": 0.41312207816134305, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9967931644674644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995797448210554, + "recall": 0.586877921838657, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 178388, + "tp_rate": 0.586877921838657, + "truth_threshold": 8.28 + }, + { + "f1": 0.7389306201341391, + "fn": 125810, + "fn_rate": 0.4139017834524824, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9968371742828585, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995791859773546, + "recall": 0.5860982165475176, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 178151, + "tp_rate": 0.5860982165475176, + "truth_threshold": 8.3 + }, + { + "f1": 0.7384439834024896, + "fn": 125996, + "fn_rate": 0.4145137040607183, + "fp": 75, + "fp_rate": 0.0004313592417279676, + "match_probability": 0.9968805820085895, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999578746349135, + "recall": 0.5854862959392817, + "row_count": 477830, + "tn": 173794, + "tn_rate": 0.999568640758272, + "tp": 177965, + "tp_rate": 0.5854862959392817, + "truth_threshold": 8.32 + }, + { + "f1": 0.738139212504306, + "fn": 126113, + "fn_rate": 0.4148986218626732, + "fp": 74, + "fp_rate": 0.0004256077851715947, + "match_probability": 0.9969233958301993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995840874090893, + "recall": 0.5851013781373269, + "row_count": 477830, + "tn": 173795, + "tn_rate": 0.9995743922148284, + "tp": 177848, + "tp_rate": 0.5851013781373269, + "truth_threshold": 8.34 + }, + { + "f1": 0.737558702990894, + "fn": 126334, + "fn_rate": 0.41562568882192125, + "fp": 74, + "fp_rate": 0.0004256077851715947, + "match_probability": 0.9969656238233504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995835701543604, + "recall": 0.5843743111780788, + "row_count": 477830, + "tn": 173795, + "tn_rate": 0.9995743922148284, + "tp": 177627, + "tp_rate": 0.5843743111780788, + "truth_threshold": 8.36 + }, + { + "f1": 0.737132864518648, + "fn": 126497, + "fn_rate": 0.4161619418280635, + "fp": 74, + "fp_rate": 0.0004256077851715947, + "match_probability": 0.9970072739552628, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995831878245784, + "recall": 0.5838380581719366, + "row_count": 477830, + "tn": 173795, + "tn_rate": 0.9995743922148284, + "tp": 177464, + "tp_rate": 0.5838380581719366, + "truth_threshold": 8.38 + }, + { + "f1": 0.7366144333495394, + "fn": 126694, + "fn_rate": 0.4168100512894746, + "fp": 74, + "fp_rate": 0.0004256077851715947, + "match_probability": 0.9970483540861322, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995827248070103, + "recall": 0.5831899487105253, + "row_count": 477830, + "tn": 173795, + "tn_rate": 0.9995743922148284, + "tp": 177267, + "tp_rate": 0.5831899487105253, + "truth_threshold": 8.4 + }, + { + "f1": 0.7363024232096097, + "fn": 126814, + "fn_rate": 0.4172048387786591, + "fp": 73, + "fp_rate": 0.0004198563286152218, + "match_probability": 0.9970888719705324, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995880826091863, + "recall": 0.5827951612213409, + "row_count": 477830, + "tn": 173796, + "tn_rate": 0.9995801436713848, + "tp": 177147, + "tp_rate": 0.5827951612213409, + "truth_threshold": 8.42 + }, + { + "f1": 0.7358715718396062, + "fn": 126978, + "fn_rate": 0.41774438168054456, + "fp": 73, + "fp_rate": 0.0004198563286152218, + "match_probability": 0.9971288352587981, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995877010663293, + "recall": 0.5822556183194555, + "row_count": 477830, + "tn": 173796, + "tn_rate": 0.9995801436713848, + "tp": 176983, + "tp_rate": 0.5822556183194555, + "truth_threshold": 8.44 + }, + { + "f1": 0.7354130272023958, + "fn": 127153, + "fn_rate": 0.4183201134356052, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.9971682514983926, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995929443690638, + "recall": 0.5816798865643947, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 176808, + "tp_rate": 0.5816798865643947, + "truth_threshold": 8.46 + }, + { + "f1": 0.7349605132856775, + "fn": 127325, + "fn_rate": 0.4188859755034363, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.9972071281352571, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999592548158544, + "recall": 0.5811140244965637, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 176636, + "tp_rate": 0.5811140244965637, + "truth_threshold": 8.48 + }, + { + "f1": 0.7344982455556157, + "fn": 127500, + "fn_rate": 0.41946170725849696, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.9972454725151444, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995921442449853, + "recall": 0.580538292741503, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 176461, + "tp_rate": 0.580538292741503, + "truth_threshold": 8.5 + }, + { + "f1": 0.7341335764873406, + "fn": 127639, + "fn_rate": 0.41991900276680233, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.9972832918849344, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995918228511174, + "recall": 0.5800809972331977, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 176322, + "tp_rate": 0.5800809972331977, + "truth_threshold": 8.52 + }, + { + "f1": 0.73359575132771, + "fn": 127843, + "fn_rate": 0.4205901414984159, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.997320593393935, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995913502468926, + "recall": 0.5794098585015841, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 176118, + "tp_rate": 0.5794098585015841, + "truth_threshold": 8.540000000000001 + }, + { + "f1": 0.7332011116620347, + "fn": 127992, + "fn_rate": 0.4210803359641533, + "fp": 72, + "fp_rate": 0.0004141048720588489, + "match_probability": 0.9973573840951653, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995910043683006, + "recall": 0.5789196640358467, + "row_count": 477830, + "tn": 173797, + "tn_rate": 0.9995858951279412, + "tp": 175969, + "tp_rate": 0.5789196640358467, + "truth_threshold": 8.56 + }, + { + "f1": 0.7328726587701823, + "fn": 128117, + "fn_rate": 0.4214915729320538, + "fp": 71, + "fp_rate": 0.000408353415502476, + "match_probability": 0.9973936709466236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9995963959866981, + "recall": 0.5785084270679463, + "row_count": 477830, + "tn": 173798, + "tn_rate": 0.9995916465844975, + "tp": 175844, + "tp_rate": 0.5785084270679463, + "truth_threshold": 8.58 + }, + { + "f1": 0.7325743300705364, + "fn": 128234, + "fn_rate": 0.4218764907340086, + "fp": 65, + "fp_rate": 0.0003738446761642386, + "match_probability": 0.9974294608125389, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996302448348048, + "recall": 0.5781235092659913, + "row_count": 477830, + "tn": 173804, + "tn_rate": 0.9996261553238358, + "tp": 175727, + "tp_rate": 0.5781235092659913, + "truth_threshold": 8.6 + }, + { + "f1": 0.7321673568280102, + "fn": 128388, + "fn_rate": 0.42238313467846206, + "fp": 65, + "fp_rate": 0.0003738446761642386, + "match_probability": 0.9974647604646075, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996299206322095, + "recall": 0.577616865321538, + "row_count": 477830, + "tn": 173804, + "tn_rate": 0.9996261553238358, + "tp": 175573, + "tp_rate": 0.577616865321538, + "truth_threshold": 8.620000000000001 + }, + { + "f1": 0.731676588501796, + "fn": 128573, + "fn_rate": 0.4229917653909548, + "fp": 65, + "fp_rate": 0.0003738446761642386, + "match_probability": 0.9974995765832131, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996295304155529, + "recall": 0.5770082346090453, + "row_count": 477830, + "tn": 173804, + "tn_rate": 0.9996261553238358, + "tp": 175388, + "tp_rate": 0.5770082346090453, + "truth_threshold": 8.64 + }, + { + "f1": 0.7313091522141916, + "fn": 128713, + "fn_rate": 0.4234523507950033, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9975339157586318, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996349365702291, + "recall": 0.5765476492049967, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 175248, + "tp_rate": 0.5765476492049967, + "truth_threshold": 8.66 + }, + { + "f1": 0.7308707013867437, + "fn": 128878, + "fn_rate": 0.42399518359263194, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9975677844922232, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996345926564543, + "recall": 0.576004816407368, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 175083, + "tp_rate": 0.576004816407368, + "truth_threshold": 8.68 + }, + { + "f1": 0.7304721101729595, + "fn": 129029, + "fn_rate": 0.4244919578498557, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9976011891976038, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999634277354911, + "recall": 0.5755080421501443, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174932, + "tp_rate": 0.5755080421501443, + "truth_threshold": 8.700000000000001 + }, + { + "f1": 0.7299959480176617, + "fn": 129208, + "fn_rate": 0.42508084918788924, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9976341362018084, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996339028812987, + "recall": 0.5749191508121108, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174753, + "tp_rate": 0.5749191508121108, + "truth_threshold": 8.72 + }, + { + "f1": 0.7295065525541589, + "fn": 129393, + "fn_rate": 0.425689479900382, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9976666317464351, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996335150487883, + "recall": 0.574310520099618, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174568, + "tp_rate": 0.574310520099618, + "truth_threshold": 8.74 + }, + { + "f1": 0.729141237647767, + "fn": 129530, + "fn_rate": 0.4261401956172009, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9976986819887761, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996332273131036, + "recall": 0.5738598043827992, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174431, + "tp_rate": 0.5738598043827992, + "truth_threshold": 8.76 + }, + { + "f1": 0.7286363655371697, + "fn": 129720, + "fn_rate": 0.4267652758084096, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9977302930029345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999632827514988, + "recall": 0.5732347241915904, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174241, + "tp_rate": 0.5732347241915904, + "truth_threshold": 8.78 + }, + { + "f1": 0.7282204020848846, + "fn": 129877, + "fn_rate": 0.42728178944009265, + "fp": 64, + "fp_rate": 0.0003680932196078657, + "match_probability": 0.9977614707809268, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996324964972323, + "recall": 0.5727182105599073, + "row_count": 477830, + "tn": 173805, + "tn_rate": 0.9996319067803922, + "tp": 174084, + "tp_rate": 0.5727182105599073, + "truth_threshold": 8.8 + }, + { + "f1": 0.7276923591988416, + "fn": 130076, + "fn_rate": 0.42793647869299023, + "fp": 63, + "fp_rate": 0.0003623417630514928, + "match_probability": 0.997792221233771, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996378227976177, + "recall": 0.5720635213070098, + "row_count": 477830, + "tn": 173806, + "tn_rate": 0.9996376582369485, + "tp": 173885, + "tp_rate": 0.5720635213070098, + "truth_threshold": 8.82 + }, + { + "f1": 0.7273526419999079, + "fn": 130203, + "fn_rate": 0.42835429545237713, + "fp": 63, + "fp_rate": 0.0003623417630514928, + "match_probability": 0.9978225501925614, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996375581776655, + "recall": 0.5716457045476229, + "row_count": 477830, + "tn": 173806, + "tn_rate": 0.9996376582369485, + "tp": 173758, + "tp_rate": 0.5716457045476229, + "truth_threshold": 8.84 + }, + { + "f1": 0.7269624859201815, + "fn": 130350, + "fn_rate": 0.4288379101266281, + "fp": 63, + "fp_rate": 0.0003623417630514928, + "match_probability": 0.9978524634095293, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996372514020522, + "recall": 0.5711620898733719, + "row_count": 477830, + "tn": 173806, + "tn_rate": 0.9996376582369485, + "tp": 173611, + "tp_rate": 0.5711620898733719, + "truth_threshold": 8.86 + }, + { + "f1": 0.7265358951482175, + "fn": 130510, + "fn_rate": 0.4293642934455407, + "fp": 63, + "fp_rate": 0.0003623417630514928, + "match_probability": 0.9978819665590902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996369169058404, + "recall": 0.5706357065544593, + "row_count": 477830, + "tn": 173806, + "tn_rate": 0.9996376582369485, + "tp": 173451, + "tp_rate": 0.5706357065544593, + "truth_threshold": 8.88 + }, + { + "f1": 0.7260674628116489, + "fn": 130685, + "fn_rate": 0.4299400252006014, + "fp": 63, + "fp_rate": 0.0003623417630514928, + "match_probability": 0.9979110652388782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996365503435465, + "recall": 0.5700599747993986, + "row_count": 477830, + "tn": 173806, + "tn_rate": 0.9996376582369485, + "tp": 173276, + "tp_rate": 0.5700599747993986, + "truth_threshold": 8.9 + }, + { + "f1": 0.7254910180895885, + "fn": 130906, + "fn_rate": 0.43066709215984944, + "fp": 55, + "fp_rate": 0.0003163301106005096, + "match_probability": 0.9979397649707662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996822829414823, + "recall": 0.5693329078401506, + "row_count": 477830, + "tn": 173814, + "tn_rate": 0.9996836698893995, + "tp": 173055, + "tp_rate": 0.5693329078401506, + "truth_threshold": 8.92 + }, + { + "f1": 0.7251008546435072, + "fn": 131052, + "fn_rate": 0.43114741693835723, + "fp": 55, + "fp_rate": 0.0003163301106005096, + "match_probability": 0.9979680712018738, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996820147545153, + "recall": 0.5688525830616428, + "row_count": 477830, + "tn": 173814, + "tn_rate": 0.9996836698893995, + "tp": 172909, + "tp_rate": 0.5688525830616428, + "truth_threshold": 8.94 + }, + { + "f1": 0.7247211513857487, + "fn": 131194, + "fn_rate": 0.4316145821338922, + "fp": 55, + "fp_rate": 0.0003163301106005096, + "match_probability": 0.9979959893055618, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996817534804596, + "recall": 0.5683854178661079, + "row_count": 477830, + "tn": 173814, + "tn_rate": 0.9996836698893995, + "tp": 172767, + "tp_rate": 0.5683854178661079, + "truth_threshold": 8.96 + }, + { + "f1": 0.7242448657585753, + "fn": 131372, + "fn_rate": 0.43220018357618245, + "fp": 55, + "fp_rate": 0.0003163301106005096, + "match_probability": 0.9980235245824145, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996814253608581, + "recall": 0.5677998164238175, + "row_count": 477830, + "tn": 173814, + "tn_rate": 0.9996836698893995, + "tp": 172589, + "tp_rate": 0.5677998164238175, + "truth_threshold": 8.98 + }, + { + "f1": 0.7238217972236098, + "fn": 131530, + "fn_rate": 0.4327199871036087, + "fp": 55, + "fp_rate": 0.0003163301106005096, + "match_probability": 0.9980506822612085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996811335412729, + "recall": 0.5672800128963913, + "row_count": 477830, + "tn": 173814, + "tn_rate": 0.9996836698893995, + "tp": 172431, + "tp_rate": 0.5672800128963913, + "truth_threshold": 9 + }, + { + "f1": 0.7233651217576437, + "fn": 131701, + "fn_rate": 0.43328255927569653, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9980774674998706, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996866186148543, + "recall": 0.5667174407243034, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 172260, + "tp_rate": 0.5667174407243034, + "truth_threshold": 9.02 + }, + { + "f1": 0.7229146450580333, + "fn": 131869, + "fn_rate": 0.4338352617605548, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9981038853864208, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996863127810115, + "recall": 0.5661647382394452, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 172092, + "tp_rate": 0.5661647382394452, + "truth_threshold": 9.040000000000001 + }, + { + "f1": 0.7224918583884862, + "fn": 132026, + "fn_rate": 0.4343517753922378, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9981299409399065, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999686026431923, + "recall": 0.5656482246077622, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 171935, + "tp_rate": 0.5656482246077622, + "truth_threshold": 9.06 + }, + { + "f1": 0.7220676261895954, + "fn": 132184, + "fn_rate": 0.43487157891966405, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9981556391113212, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996857377306773, + "recall": 0.565128421080336, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 171777, + "tp_rate": 0.565128421080336, + "truth_threshold": 9.08 + }, + { + "f1": 0.7215290481296915, + "fn": 132385, + "fn_rate": 0.435532847964048, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9981809847845143, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996853696906135, + "recall": 0.564467152035952, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 171576, + "tp_rate": 0.564467152035952, + "truth_threshold": 9.1 + }, + { + "f1": 0.7210569269860501, + "fn": 132560, + "fn_rate": 0.4361085797191087, + "fp": 54, + "fp_rate": 0.00031057865404413666, + "match_probability": 0.9982059827770873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996850485550144, + "recall": 0.5638914202808913, + "row_count": 477830, + "tn": 173815, + "tn_rate": 0.9996894213459558, + "tp": 171401, + "tp_rate": 0.5638914202808913, + "truth_threshold": 9.120000000000001 + }, + { + "f1": 0.7205701636253451, + "fn": 132742, + "fn_rate": 0.4367073407443718, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9982306378412784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996963875962656, + "recall": 0.5632926592556282, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 171219, + "tp_rate": 0.5632926592556282, + "truth_threshold": 9.14 + }, + { + "f1": 0.7201758004900186, + "fn": 132889, + "fn_rate": 0.4371909554186228, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9982549546648377, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996961267852551, + "recall": 0.5628090445813773, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 171072, + "tp_rate": 0.5628090445813773, + "truth_threshold": 9.16 + }, + { + "f1": 0.7196541529442484, + "fn": 133082, + "fn_rate": 0.4378259052970611, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9982789378718879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996957836787944, + "recall": 0.5621740947029389, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170879, + "tp_rate": 0.5621740947029389, + "truth_threshold": 9.18 + }, + { + "f1": 0.719195655562624, + "fn": 133252, + "fn_rate": 0.4383851875734058, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9983025920237768, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996954808182196, + "recall": 0.5616148124265942, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170709, + "tp_rate": 0.5616148124265942, + "truth_threshold": 9.200000000000001 + }, + { + "f1": 0.7186978437884586, + "fn": 133437, + "fn_rate": 0.4389938182858985, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9983259216199165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999695150548729, + "recall": 0.5610061817141014, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170524, + "tp_rate": 0.5610061817141014, + "truth_threshold": 9.22 + }, + { + "f1": 0.7184007621841974, + "fn": 133547, + "fn_rate": 0.43935570681765096, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9983489310986134, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996949538324358, + "recall": 0.5606442931823491, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170414, + "tp_rate": 0.5606442931823491, + "truth_threshold": 9.24 + }, + { + "f1": 0.7180614882501023, + "fn": 133672, + "fn_rate": 0.4397669437855514, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9983716248378863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996947299827992, + "recall": 0.5602330562144485, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170289, + "tp_rate": 0.5602330562144485, + "truth_threshold": 9.26 + }, + { + "f1": 0.71761266809523, + "fn": 133838, + "fn_rate": 0.44031306647892327, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.998394007156274, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996944322021448, + "recall": 0.5596869335210767, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 170123, + "tp_rate": 0.5596869335210767, + "truth_threshold": 9.28 + }, + { + "f1": 0.7171027923012326, + "fn": 134027, + "fn_rate": 0.4409348567743888, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9984160823136331, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996940924546728, + "recall": 0.5590651432256112, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 169934, + "tp_rate": 0.5590651432256112, + "truth_threshold": 9.3 + }, + { + "f1": 0.7166274072760738, + "fn": 134202, + "fn_rate": 0.4415105885294495, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9984378545119243, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996937771993569, + "recall": 0.5584894114705505, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 169759, + "tp_rate": 0.5584894114705505, + "truth_threshold": 9.32 + }, + { + "f1": 0.7162155314387061, + "fn": 134354, + "fn_rate": 0.4420106526824165, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9984593278959899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999693502849834, + "recall": 0.5579893473175835, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 169607, + "tp_rate": 0.5579893473175835, + "truth_threshold": 9.34 + }, + { + "f1": 0.7156406313370285, + "fn": 134566, + "fn_rate": 0.4427081105799757, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9984805065543192, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996931193824617, + "recall": 0.5572918894200243, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 169395, + "tp_rate": 0.5572918894200243, + "truth_threshold": 9.36 + }, + { + "f1": 0.7151901141487864, + "fn": 134732, + "fn_rate": 0.44325423327334756, + "fp": 52, + "fp_rate": 0.0002990757409313909, + "match_probability": 0.9985013945198057, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9996928184497965, + "recall": 0.5567457667266524, + "row_count": 477830, + "tn": 173817, + "tn_rate": 0.9997009242590686, + "tp": 169229, + "tp_rate": 0.5567457667266524, + "truth_threshold": 9.38 + }, + { + "f1": 0.7146921915891209, + "fn": 134917, + "fn_rate": 0.4438628639858403, + "fp": 49, + "fp_rate": 0.00028182137126227214, + "match_probability": 0.9985219957704938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997102186370813, + "recall": 0.5561371360141597, + "row_count": 477830, + "tn": 173820, + "tn_rate": 0.9997181786287377, + "tp": 169044, + "tp_rate": 0.5561371360141597, + "truth_threshold": 9.4 + }, + { + "f1": 0.714349753027945, + "fn": 135043, + "fn_rate": 0.444277390849484, + "fp": 49, + "fp_rate": 0.00028182137126227214, + "match_probability": 0.998542314230315, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997100025448756, + "recall": 0.555722609150516, + "row_count": 477830, + "tn": 173820, + "tn_rate": 0.9997181786287377, + "tp": 168918, + "tp_rate": 0.555722609150516, + "truth_threshold": 9.42 + }, + { + "f1": 0.7139025556199525, + "fn": 135208, + "fn_rate": 0.4448202236471126, + "fp": 49, + "fp_rate": 0.00028182137126227214, + "match_probability": 0.9985623537698158, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997097190791578, + "recall": 0.5551797763528874, + "row_count": 477830, + "tn": 173820, + "tn_rate": 0.9997181786287377, + "tp": 168753, + "tp_rate": 0.5551797763528874, + "truth_threshold": 9.44 + }, + { + "f1": 0.7135161440480724, + "fn": 135350, + "fn_rate": 0.44528738884264757, + "fp": 49, + "fp_rate": 0.00028182137126227214, + "match_probability": 0.9985821182068747, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997094746827938, + "recall": 0.5547126111573524, + "row_count": 477830, + "tn": 173820, + "tn_rate": 0.9997181786287377, + "tp": 168611, + "tp_rate": 0.5547126111573524, + "truth_threshold": 9.46 + }, + { + "f1": 0.7129618261793581, + "fn": 135553, + "fn_rate": 0.44595523767851797, + "fp": 49, + "fp_rate": 0.00028182137126227214, + "match_probability": 0.9986016113074108, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997091245837216, + "recall": 0.554044762321482, + "row_count": 477830, + "tn": 173820, + "tn_rate": 0.9997181786287377, + "tp": 168408, + "tp_rate": 0.554044762321482, + "truth_threshold": 9.48 + }, + { + "f1": 0.7124348820465037, + "fn": 135748, + "fn_rate": 0.4465967673484427, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9986208367860828, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997206703910615, + "recall": 0.5534032326515572, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 168213, + "tp_rate": 0.5534032326515572, + "truth_threshold": 9.5 + }, + { + "f1": 0.7120597181857466, + "fn": 135885, + "fn_rate": 0.44704748306526165, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9986397983069785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997204427710664, + "recall": 0.5529525169347383, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 168076, + "tp_rate": 0.5529525169347383, + "truth_threshold": 9.52 + }, + { + "f1": 0.7116121376504493, + "fn": 136049, + "fn_rate": 0.4475870259671471, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9986584994842955, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997201698033449, + "recall": 0.5524129740328529, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167912, + "tp_rate": 0.5524129740328529, + "truth_threshold": 9.540000000000001 + }, + { + "f1": 0.7111684854034713, + "fn": 136212, + "fn_rate": 0.44812327897328935, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9986769438830138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997198979713462, + "recall": 0.5518767210267107, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167749, + "tp_rate": 0.5518767210267107, + "truth_threshold": 9.56 + }, + { + "f1": 0.7107105748637588, + "fn": 136379, + "fn_rate": 0.4486726915624044, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9986951350195571, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997196189203539, + "recall": 0.5513273084375956, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167582, + "tp_rate": 0.5513273084375956, + "truth_threshold": 9.58 + }, + { + "f1": 0.7102237533198137, + "fn": 136557, + "fn_rate": 0.44925829300469466, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9987130763624487, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997193208759577, + "recall": 0.5507417069953053, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167404, + "tp_rate": 0.5507417069953053, + "truth_threshold": 9.6 + }, + { + "f1": 0.709895351501829, + "fn": 136677, + "fn_rate": 0.44965308049387914, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9987307713329557, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999719119589317, + "recall": 0.5503469195061208, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167284, + "tp_rate": 0.5503469195061208, + "truth_threshold": 9.620000000000001 + }, + { + "f1": 0.7094669457097131, + "fn": 136834, + "fn_rate": 0.4501695941255622, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.998748223305727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997188558029358, + "recall": 0.5498304058744379, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 167127, + "tp_rate": 0.5498304058744379, + "truth_threshold": 9.64 + }, + { + "f1": 0.7091065044033596, + "fn": 136965, + "fn_rate": 0.45060057046792185, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9987654356094217, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997186353214442, + "recall": 0.5493994295320781, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166996, + "tp_rate": 0.5493994295320781, + "truth_threshold": 9.66 + }, + { + "f1": 0.7086336894420492, + "fn": 137138, + "fn_rate": 0.45116972243149617, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9987824115273289, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997183436207826, + "recall": 0.5488302775685039, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166823, + "tp_rate": 0.5488302775685039, + "truth_threshold": 9.68 + }, + { + "f1": 0.7082166576725489, + "fn": 137290, + "fn_rate": 0.45166978658446316, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9987991542979808, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997180868292566, + "recall": 0.5483302134155369, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166671, + "tp_rate": 0.5483302134155369, + "truth_threshold": 9.700000000000001 + }, + { + "f1": 0.7078048490206746, + "fn": 137440, + "fn_rate": 0.4521632709459437, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988156671157563, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997178329571106, + "recall": 0.5478367290540562, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166521, + "tp_rate": 0.5478367290540562, + "truth_threshold": 9.72 + }, + { + "f1": 0.7072511098637546, + "fn": 137641, + "fn_rate": 0.4528245399903277, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988319531314767, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997174920507071, + "recall": 0.5471754600096723, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166320, + "tp_rate": 0.5471754600096723, + "truth_threshold": 9.74 + }, + { + "f1": 0.7068166833273072, + "fn": 137799, + "fn_rate": 0.45334434351775393, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988480154529947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997172234957192, + "recall": 0.5466556564822461, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166162, + "tp_rate": 0.5466556564822461, + "truth_threshold": 9.76 + }, + { + "f1": 0.7063752106347126, + "fn": 137960, + "fn_rate": 0.45387401673240974, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988638571457743, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997169493158605, + "recall": 0.5461259832675902, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 166001, + "tp_rate": 0.5461259832675902, + "truth_threshold": 9.78 + }, + { + "f1": 0.7059524620309201, + "fn": 138113, + "fn_rate": 0.45437737078111995, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988794812334637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997166882666747, + "recall": 0.54562262921888, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 165848, + "tp_rate": 0.54562262921888, + "truth_threshold": 9.8 + }, + { + "f1": 0.7055600027250741, + "fn": 138256, + "fn_rate": 0.4548478258723981, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9988948906984604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997164438438149, + "recall": 0.5451521741276019, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 165705, + "tp_rate": 0.5451521741276019, + "truth_threshold": 9.82 + }, + { + "f1": 0.7051036315776023, + "fn": 138421, + "fn_rate": 0.45539065867002676, + "fp": 47, + "fp_rate": 0.00027031845814952637, + "match_probability": 0.9989100884824688, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997161612928551, + "recall": 0.5446093413299733, + "row_count": 477830, + "tn": 173822, + "tn_rate": 0.9997296815418505, + "tp": 165540, + "tp_rate": 0.5446093413299733, + "truth_threshold": 9.84 + }, + { + "f1": 0.7046529464399847, + "fn": 138586, + "fn_rate": 0.4559334914676554, + "fp": 45, + "fp_rate": 0.00025881554503678054, + "match_probability": 0.9989250774870504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999727965179543, + "recall": 0.5440665085323446, + "row_count": 477830, + "tn": 173824, + "tn_rate": 0.9997411844549632, + "tp": 165375, + "tp_rate": 0.5440665085323446, + "truth_threshold": 9.86 + }, + { + "f1": 0.7040676260955564, + "fn": 138798, + "fn_rate": 0.4566309493652146, + "fp": 45, + "fp_rate": 0.00025881554503678054, + "match_probability": 0.9989398605741672, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997276160960729, + "recall": 0.5433690506347854, + "row_count": 477830, + "tn": 173824, + "tn_rate": 0.9997411844549632, + "tp": 165163, + "tp_rate": 0.5433690506347854, + "truth_threshold": 9.88 + }, + { + "f1": 0.7035217454346955, + "fn": 138995, + "fn_rate": 0.4572790588266258, + "fp": 45, + "fp_rate": 0.00025881554503678054, + "match_probability": 0.9989544405667166, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997272909078788, + "recall": 0.5427209411733742, + "row_count": 477830, + "tn": 173824, + "tn_rate": 0.9997411844549632, + "tp": 164966, + "tp_rate": 0.5427209411733742, + "truth_threshold": 9.9 + }, + { + "f1": 0.7029852083502213, + "fn": 139189, + "fn_rate": 0.4579172986008073, + "fp": 45, + "fp_rate": 0.00025881554503678054, + "match_probability": 0.998968820249061, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997269699120843, + "recall": 0.5420827013991927, + "row_count": 477830, + "tn": 173824, + "tn_rate": 0.9997411844549632, + "tp": 164772, + "tp_rate": 0.5420827013991927, + "truth_threshold": 9.92 + }, + { + "f1": 0.7026837876014048, + "fn": 139299, + "fn_rate": 0.4582791871325598, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9989830023675484, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997328573336733, + "recall": 0.5417208128674402, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 164662, + "tp_rate": 0.5417208128674402, + "truth_threshold": 9.94 + }, + { + "f1": 0.702207498922078, + "fn": 139471, + "fn_rate": 0.4588450492003908, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9989969896310279, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997325780689705, + "recall": 0.5411549507996092, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 164490, + "tp_rate": 0.5411549507996092, + "truth_threshold": 9.96 + }, + { + "f1": 0.7016988674217188, + "fn": 139654, + "fn_rate": 0.45944710012139717, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990107847113568, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997322803025233, + "recall": 0.5405528998786029, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 164307, + "tp_rate": 0.5405528998786029, + "truth_threshold": 9.98 + }, + { + "f1": 0.7013050814874938, + "fn": 139796, + "fn_rate": 0.4599142653169321, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990243902439024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997320487914791, + "recall": 0.5400857346830679, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 164165, + "tp_rate": 0.5400857346830679, + "truth_threshold": 10 + }, + { + "f1": 0.7009221591686039, + "fn": 139934, + "fn_rate": 0.4603682709294942, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990378088280355, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997318234179106, + "recall": 0.5396317290705057, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 164027, + "tp_rate": 0.5396317290705057, + "truth_threshold": 10.02 + }, + { + "f1": 0.7004321861093418, + "fn": 140111, + "fn_rate": 0.4609505824760413, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990510430276189, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997315337962341, + "recall": 0.5390494175239586, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163850, + "tp_rate": 0.5390494175239586, + "truth_threshold": 10.040000000000001 + }, + { + "f1": 0.6999875987290836, + "fn": 140271, + "fn_rate": 0.46147696579495395, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990640953714882, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997312714524778, + "recall": 0.538523034205046, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163690, + "tp_rate": 0.538523034205046, + "truth_threshold": 10.06 + }, + { + "f1": 0.6996608052560215, + "fn": 140388, + "fn_rate": 0.46186188359690883, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990769683539271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999731079288827, + "recall": 0.5381381164030912, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163573, + "tp_rate": 0.5381381164030912, + "truth_threshold": 10.08 + }, + { + "f1": 0.6991476105709982, + "fn": 140573, + "fn_rate": 0.46247051430940156, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9990896644351354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997307748788486, + "recall": 0.5375294856905984, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163388, + "tp_rate": 0.5375294856905984, + "truth_threshold": 10.1 + }, + { + "f1": 0.698675581733815, + "fn": 140742, + "fn_rate": 0.463026506690003, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9991021860416915, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997304961932587, + "recall": 0.536973493309997, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163219, + "tp_rate": 0.536973493309997, + "truth_threshold": 10.120000000000001 + }, + { + "f1": 0.6981560307984823, + "fn": 140929, + "fn_rate": 0.4636417171939821, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9991145355670089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997301871520028, + "recall": 0.5363582828060178, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 163032, + "tp_rate": 0.5363582828060178, + "truth_threshold": 10.14 + }, + { + "f1": 0.6978939568511721, + "fn": 141023, + "fn_rate": 0.4639509673938433, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9991267153717854, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999730031537225, + "recall": 0.5360490326061567, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 162938, + "tp_rate": 0.5360490326061567, + "truth_threshold": 10.16 + }, + { + "f1": 0.6974866965441007, + "fn": 141169, + "fn_rate": 0.4644312921723511, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9991387277844479, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997297894814414, + "recall": 0.535568707827649, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 162792, + "tp_rate": 0.535568707827649, + "truth_threshold": 10.18 + }, + { + "f1": 0.6970400912059935, + "fn": 141329, + "fn_rate": 0.46495767549126366, + "fp": 44, + "fp_rate": 0.0002530640884804077, + "match_probability": 0.9991505751015896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997295237158523, + "recall": 0.5350423245087363, + "row_count": 477830, + "tn": 173825, + "tn_rate": 0.9997469359115196, + "tp": 162632, + "tp_rate": 0.5350423245087363, + "truth_threshold": 10.200000000000001 + }, + { + "f1": 0.6966511320811343, + "fn": 141472, + "fn_rate": 0.46542813058254184, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9991622595884027, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999778495616059, + "recall": 0.5345718694174582, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 162489, + "tp_rate": 0.5345718694174582, + "truth_threshold": 10.22 + }, + { + "f1": 0.6962585559158047, + "fn": 141613, + "fn_rate": 0.4658920058823336, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.999173783479105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997783032811114, + "recall": 0.5341079941176664, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 162348, + "tp_rate": 0.5341079941176664, + "truth_threshold": 10.24 + }, + { + "f1": 0.6958446661919021, + "fn": 141761, + "fn_rate": 0.46637891045232777, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9991851489773601, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999778101037994, + "recall": 0.5336210895476723, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 162200, + "tp_rate": 0.5336210895476723, + "truth_threshold": 10.26 + }, + { + "f1": 0.6953633289272656, + "fn": 141933, + "fn_rate": 0.4669447725201588, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9991963582566927, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997778655346036, + "recall": 0.5330552274798411, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 162028, + "tp_rate": 0.5330552274798411, + "truth_threshold": 10.28 + }, + { + "f1": 0.6949949988624021, + "fn": 142064, + "fn_rate": 0.46737574886251854, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992074134608979, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997776858330297, + "recall": 0.5326242511374815, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161897, + "tp_rate": 0.5326242511374815, + "truth_threshold": 10.3 + }, + { + "f1": 0.6943827656257382, + "fn": 142283, + "fn_rate": 0.4680962360302802, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992183167044456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997773847656974, + "recall": 0.5319037639697198, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161678, + "tp_rate": 0.5319037639697198, + "truth_threshold": 10.32 + }, + { + "f1": 0.6940026635734845, + "fn": 142418, + "fn_rate": 0.4685403719556127, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992290700728785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997771987696421, + "recall": 0.5314596280443873, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161543, + "tp_rate": 0.5314596280443873, + "truth_threshold": 10.34 + }, + { + "f1": 0.6934638163267061, + "fn": 142610, + "fn_rate": 0.46917203193830787, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.999239675623206, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997769337059367, + "recall": 0.5308279680616921, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161351, + "tp_rate": 0.5308279680616921, + "truth_threshold": 10.36 + }, + { + "f1": 0.6929962595124468, + "fn": 142777, + "fn_rate": 0.4697214445274229, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992501353842916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997767026423521, + "recall": 0.5302785554725771, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161184, + "tp_rate": 0.5302785554725771, + "truth_threshold": 10.38 + }, + { + "f1": 0.6925759947702523, + "fn": 142926, + "fn_rate": 0.4702116389931603, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.999260451357236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997764960793687, + "recall": 0.5297883610068397, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 161035, + "tp_rate": 0.5297883610068397, + "truth_threshold": 10.4 + }, + { + "f1": 0.692231581302107, + "fn": 143049, + "fn_rate": 0.4706162961695744, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992706255157543, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999776325272759, + "recall": 0.5293837038304257, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160912, + "tp_rate": 0.5293837038304257, + "truth_threshold": 10.42 + }, + { + "f1": 0.691782678859602, + "fn": 143208, + "fn_rate": 0.4711393895927438, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992806598065492, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997761040867224, + "recall": 0.5288606104072562, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160753, + "tp_rate": 0.5288606104072562, + "truth_threshold": 10.44 + }, + { + "f1": 0.691388476356514, + "fn": 143348, + "fn_rate": 0.47159997499679235, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9992905561496781, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997759089692435, + "recall": 0.5284000250032076, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160613, + "tp_rate": 0.5284000250032076, + "truth_threshold": 10.46 + }, + { + "f1": 0.6908517757709649, + "fn": 143539, + "fn_rate": 0.4722283450837443, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993003164389153, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997756422241334, + "recall": 0.5277716549162557, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160422, + "tp_rate": 0.5277716549162557, + "truth_threshold": 10.48 + }, + { + "f1": 0.690413213171816, + "fn": 143694, + "fn_rate": 0.4727382789239409, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993099425421107, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997754252883602, + "recall": 0.5272617210760591, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160267, + "tp_rate": 0.5272617210760591, + "truth_threshold": 10.5 + }, + { + "f1": 0.6899335048503105, + "fn": 143864, + "fn_rate": 0.47329756120028554, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993194363015417, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997751868759094, + "recall": 0.5267024387997145, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 160097, + "tp_rate": 0.5267024387997145, + "truth_threshold": 10.52 + }, + { + "f1": 0.6894295063309148, + "fn": 144043, + "fn_rate": 0.47388645253831907, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993287995342623, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999774935293897, + "recall": 0.5261135474616809, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159918, + "tp_rate": 0.5261135474616809, + "truth_threshold": 10.540000000000001 + }, + { + "f1": 0.6890338828826109, + "fn": 144183, + "fn_rate": 0.4743470379423676, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993380340324456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997747381330797, + "recall": 0.5256529620576323, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159778, + "tp_rate": 0.5256529620576323, + "truth_threshold": 10.56 + }, + { + "f1": 0.6886719609357139, + "fn": 144311, + "fn_rate": 0.4747681445974977, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993471415637232, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997745575692296, + "recall": 0.5252318554025023, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159650, + "tp_rate": 0.5252318554025023, + "truth_threshold": 10.58 + }, + { + "f1": 0.6882588996763754, + "fn": 144457, + "fn_rate": 0.47524846937600546, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993561238715196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997743512598721, + "recall": 0.5247515306239945, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159504, + "tp_rate": 0.5247515306239945, + "truth_threshold": 10.6 + }, + { + "f1": 0.6877832741964726, + "fn": 144625, + "fn_rate": 0.47580117186086374, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993649826753817, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997741133950757, + "recall": 0.5241988281391363, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159336, + "tp_rate": 0.5241988281391363, + "truth_threshold": 10.620000000000001 + }, + { + "f1": 0.6872349613507794, + "fn": 144818, + "fn_rate": 0.47643612173930205, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993737196713037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997738395140062, + "recall": 0.523563878260698, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 159143, + "tp_rate": 0.523563878260698, + "truth_threshold": 10.64 + }, + { + "f1": 0.6868082974072762, + "fn": 144969, + "fn_rate": 0.4769328959965259, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993823365320493, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997736247704807, + "recall": 0.5230671040034741, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158992, + "tp_rate": 0.5230671040034741, + "truth_threshold": 10.66 + }, + { + "f1": 0.6864735238835958, + "fn": 145087, + "fn_rate": 0.4773211036942239, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993908349074672, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997734566735889, + "recall": 0.522678896305776, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158874, + "tp_rate": 0.522678896305776, + "truth_threshold": 10.68 + }, + { + "f1": 0.6860250004322344, + "fn": 145245, + "fn_rate": 0.4778409072216501, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9993992164248033, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997732312033865, + "recall": 0.5221590927783498, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158716, + "tp_rate": 0.5221590927783498, + "truth_threshold": 10.700000000000001 + }, + { + "f1": 0.685537745761466, + "fn": 145416, + "fn_rate": 0.478403479393738, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994074826890101, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999772986675579, + "recall": 0.5215965206062619, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158545, + "tp_rate": 0.5215965206062619, + "truth_threshold": 10.72 + }, + { + "f1": 0.6852578269274849, + "fn": 145515, + "fn_rate": 0.4787291790723152, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994156352830494, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999772844865663, + "recall": 0.5212708209276848, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158446, + "tp_rate": 0.5212708209276848, + "truth_threshold": 10.74 + }, + { + "f1": 0.6848269059382381, + "fn": 145666, + "fn_rate": 0.479225953329539, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994236757681928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997726282282055, + "recall": 0.520774046670461, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158295, + "tp_rate": 0.520774046670461, + "truth_threshold": 10.76 + }, + { + "f1": 0.6843758926021137, + "fn": 145825, + "fn_rate": 0.4797490467527084, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994316056843171, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997723996661861, + "recall": 0.5202509532472916, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 158136, + "tp_rate": 0.5202509532472916, + "truth_threshold": 10.78 + }, + { + "f1": 0.6839159083234482, + "fn": 145986, + "fn_rate": 0.4802787199673642, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994394265501966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997721677604724, + "recall": 0.5197212800326357, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157975, + "tp_rate": 0.5197212800326357, + "truth_threshold": 10.8 + }, + { + "f1": 0.6833858107435046, + "fn": 146172, + "fn_rate": 0.48089064057560016, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994471398637907, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997718992555045, + "recall": 0.5191093594243998, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157789, + "tp_rate": 0.5191093594243998, + "truth_threshold": 10.82 + }, + { + "f1": 0.6829465894911965, + "fn": 146326, + "fn_rate": 0.48139728452005354, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994547471025279, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997716764655517, + "recall": 0.5186027154799464, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157635, + "tp_rate": 0.5186027154799464, + "truth_threshold": 10.84 + }, + { + "f1": 0.6825456672950659, + "fn": 146467, + "fn_rate": 0.4818611598198453, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.999462249723586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997714721005523, + "recall": 0.5181388401801547, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157494, + "tp_rate": 0.5181388401801547, + "truth_threshold": 10.86 + }, + { + "f1": 0.6820786945513821, + "fn": 146630, + "fn_rate": 0.4823974128259875, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994696491641683, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997712353924266, + "recall": 0.5176025871740124, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157331, + "tp_rate": 0.5176025871740124, + "truth_threshold": 10.88 + }, + { + "f1": 0.681585760938862, + "fn": 146803, + "fn_rate": 0.4829665647895618, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994769468417765, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997709836253292, + "recall": 0.5170334352104382, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 157158, + "tp_rate": 0.5170334352104382, + "truth_threshold": 10.9 + }, + { + "f1": 0.6810208305311981, + "fn": 147000, + "fn_rate": 0.483614674250973, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994841441544793, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997706962553424, + "recall": 0.5163853257490271, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 156961, + "tp_rate": 0.5163853257490271, + "truth_threshold": 10.92 + }, + { + "f1": 0.680476942843253, + "fn": 147190, + "fn_rate": 0.4842397544421817, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994912424811782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997704184124433, + "recall": 0.5157602455578183, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 156771, + "tp_rate": 0.5157602455578183, + "truth_threshold": 10.94 + }, + { + "f1": 0.6798624259584152, + "fn": 147405, + "fn_rate": 0.48494708202697057, + "fp": 36, + "fp_rate": 0.00020705243602942445, + "match_probability": 0.9994982431818683, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99977010319812, + "recall": 0.5150529179730294, + "row_count": 477830, + "tn": 173833, + "tn_rate": 0.9997929475639705, + "tp": 156556, + "tp_rate": 0.5150529179730294, + "truth_threshold": 10.96 + }, + { + "f1": 0.679242987730701, + "fn": 147621, + "fn_rate": 0.4856576995075026, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995051475978975, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997761790567546, + "recall": 0.5143423004924974, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 156340, + "tp_rate": 0.5143423004924974, + "truth_threshold": 10.98 + }, + { + "f1": 0.6787938580288497, + "fn": 147778, + "fn_rate": 0.48617421313918563, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995119570522206, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997759541154029, + "recall": 0.5138257868608144, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 156183, + "tp_rate": 0.5138257868608144, + "truth_threshold": 11 + }, + { + "f1": 0.6783472166669565, + "fn": 147933, + "fn_rate": 0.4866841469793822, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995186728496503, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997757315955735, + "recall": 0.5133158530206178, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 156028, + "tp_rate": 0.5133158530206178, + "truth_threshold": 11.02 + }, + { + "f1": 0.6778356232303858, + "fn": 148111, + "fn_rate": 0.48726974842167253, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995252962771056, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997754755107933, + "recall": 0.5127302515783275, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 155850, + "tp_rate": 0.5127302515783275, + "truth_threshold": 11.040000000000001 + }, + { + "f1": 0.6772761884042205, + "fn": 148306, + "fn_rate": 0.4879112780915973, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995318286038558, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997751942963582, + "recall": 0.5120887219084027, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 155655, + "tp_rate": 0.5120887219084027, + "truth_threshold": 11.06 + }, + { + "f1": 0.6768803562024226, + "fn": 148443, + "fn_rate": 0.4883619938084162, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995382710817619, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997749963035107, + "recall": 0.5116380061915838, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 155518, + "tp_rate": 0.5116380061915838, + "truth_threshold": 11.08 + }, + { + "f1": 0.6764425442243808, + "fn": 148595, + "fn_rate": 0.4888620579613832, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.999544624945514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997747762240913, + "recall": 0.5111379420386168, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 155366, + "tp_rate": 0.5111379420386168, + "truth_threshold": 11.1 + }, + { + "f1": 0.6759972648441005, + "fn": 148750, + "fn_rate": 0.4893719918015798, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995508914128666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997745513572008, + "recall": 0.5106280081984202, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 155211, + "tp_rate": 0.5106280081984202, + "truth_threshold": 11.120000000000001 + }, + { + "f1": 0.6753640618055374, + "fn": 148969, + "fn_rate": 0.49009247896934144, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995570716848697, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997742328755637, + "recall": 0.5099075210306585, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154992, + "tp_rate": 0.5099075210306585, + "truth_threshold": 11.14 + }, + { + "f1": 0.6748559322772726, + "fn": 149145, + "fn_rate": 0.49067150062014536, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995631669460973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997739762739666, + "recall": 0.5093284993798547, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154816, + "tp_rate": 0.5093284993798547, + "truth_threshold": 11.16 + }, + { + "f1": 0.6744341198170346, + "fn": 149291, + "fn_rate": 0.4911518253986531, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995691783648718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997737629682298, + "recall": 0.5088481746013469, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154670, + "tp_rate": 0.5088481746013469, + "truth_threshold": 11.18 + }, + { + "f1": 0.6738732136313668, + "fn": 149485, + "fn_rate": 0.4917900651728347, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995751070934877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997734789108866, + "recall": 0.5082099348271654, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154476, + "tp_rate": 0.5082099348271654, + "truth_threshold": 11.200000000000001 + }, + { + "f1": 0.673439197769254, + "fn": 149635, + "fn_rate": 0.49228354953431525, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995809542684295, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997732587894611, + "recall": 0.5077164504656847, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154326, + "tp_rate": 0.5077164504656847, + "truth_threshold": 11.22 + }, + { + "f1": 0.6730382249848313, + "fn": 149774, + "fn_rate": 0.4927408450426206, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995867210105881, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997730544280323, + "recall": 0.5072591549573794, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154187, + "tp_rate": 0.5072591549573794, + "truth_threshold": 11.24 + }, + { + "f1": 0.6725399008755267, + "fn": 149946, + "fn_rate": 0.49330670711045166, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995924084254744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997728010386239, + "recall": 0.5066932928895483, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 154015, + "tp_rate": 0.5066932928895483, + "truth_threshold": 11.26 + }, + { + "f1": 0.6719773882957345, + "fn": 150140, + "fn_rate": 0.49394494688463325, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9995980176034294, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997725145590682, + "recall": 0.5060550531153668, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 153821, + "tp_rate": 0.5060550531153668, + "truth_threshold": 11.28 + }, + { + "f1": 0.6715131015435174, + "fn": 150300, + "fn_rate": 0.49447133020354583, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996035496198316, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997722777430772, + "recall": 0.5055286697964542, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 153661, + "tp_rate": 0.5055286697964542, + "truth_threshold": 11.3 + }, + { + "f1": 0.670881427072403, + "fn": 150517, + "fn_rate": 0.4951852375798211, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.999609005535302, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997719557724509, + "recall": 0.5048147624201789, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 153444, + "tp_rate": 0.5048147624201789, + "truth_threshold": 11.32 + }, + { + "f1": 0.670374225830155, + "fn": 150692, + "fn_rate": 0.4957609693348818, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996143863959054, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997716954547826, + "recall": 0.5042390306651182, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 153269, + "tp_rate": 0.5042390306651182, + "truth_threshold": 11.34 + }, + { + "f1": 0.6698637029906583, + "fn": 150867, + "fn_rate": 0.49633670108994243, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996196932333503, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999771434542118, + "recall": 0.5036632989100576, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 153094, + "tp_rate": 0.5036632989100576, + "truth_threshold": 11.36 + }, + { + "f1": 0.669379018738428, + "fn": 151034, + "fn_rate": 0.4968861136790575, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996249270651847, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997711850001961, + "recall": 0.5031138863209424, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 152927, + "tp_rate": 0.5031138863209424, + "truth_threshold": 11.38 + }, + { + "f1": 0.6688619057419222, + "fn": 151211, + "fn_rate": 0.4974684252256046, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996300888949902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997709199201492, + "recall": 0.5025315747743954, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 152750, + "tp_rate": 0.5025315747743954, + "truth_threshold": 11.4 + }, + { + "f1": 0.6683706546117185, + "fn": 151380, + "fn_rate": 0.4980244176062061, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996351797125727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997706662473135, + "recall": 0.5019755823937939, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 152581, + "tp_rate": 0.5019755823937939, + "truth_threshold": 11.42 + }, + { + "f1": 0.6678585983409363, + "fn": 151555, + "fn_rate": 0.49860014936126673, + "fp": 35, + "fp_rate": 0.00020130097947305156, + "match_probability": 0.9996402004941516, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997704029755774, + "recall": 0.5013998506387333, + "row_count": 477830, + "tn": 173834, + "tn_rate": 0.999798699020527, + "tp": 152406, + "tp_rate": 0.5013998506387333, + "truth_threshold": 11.44 + }, + { + "f1": 0.6674542258614568, + "fn": 151694, + "fn_rate": 0.4990574448695721, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996451522025451, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997767578676436, + "recall": 0.500942555130428, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 152267, + "tp_rate": 0.500942555130428, + "truth_threshold": 11.46 + }, + { + "f1": 0.6668815478461451, + "fn": 151890, + "fn_rate": 0.4997022644352401, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996500357873543, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997764702015055, + "recall": 0.50029773556476, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 152071, + "tp_rate": 0.50029773556476, + "truth_threshold": 11.48 + }, + { + "f1": 0.6665014387984278, + "fn": 152020, + "fn_rate": 0.5001299508818565, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996548521851435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997762789932555, + "recall": 0.4998700491181434, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151941, + "tp_rate": 0.4998700491181434, + "truth_threshold": 11.5 + }, + { + "f1": 0.6660918481074867, + "fn": 152160, + "fn_rate": 0.5005905362859051, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996596023196187, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997760727105082, + "recall": 0.4994094637140949, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151801, + "tp_rate": 0.4994094637140949, + "truth_threshold": 11.52 + }, + { + "f1": 0.6654755215284119, + "fn": 152371, + "fn_rate": 0.5012847042877211, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996642871018043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997757610932306, + "recall": 0.4987152957122789, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151590, + "tp_rate": 0.4987152957122789, + "truth_threshold": 11.540000000000001 + }, + { + "f1": 0.6650374586110892, + "fn": 152520, + "fn_rate": 0.5017748987534585, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996689074302161, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997755405182374, + "recall": 0.4982251012465415, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151441, + "tp_rate": 0.4982251012465415, + "truth_threshold": 11.56 + }, + { + "f1": 0.6644627009928828, + "fn": 152716, + "fn_rate": 0.5024197183191265, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996734641910328, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999775249704189, + "recall": 0.49758028168087354, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151245, + "tp_rate": 0.49758028168087354, + "truth_threshold": 11.58 + }, + { + "f1": 0.6640518567347836, + "fn": 152856, + "fn_rate": 0.502880303723175, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996779582582649, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997750415180727, + "recall": 0.497119696276825, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 151105, + "tp_rate": 0.497119696276825, + "truth_threshold": 11.6 + }, + { + "f1": 0.6636818807228545, + "fn": 152982, + "fn_rate": 0.5032948305868187, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996823904939214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999774853820532, + "recall": 0.49670516941318127, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 150979, + "tp_rate": 0.49670516941318127, + "truth_threshold": 11.620000000000001 + }, + { + "f1": 0.6633175772232605, + "fn": 153106, + "fn_rate": 0.503702777658976, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996867617481742, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997746687962674, + "recall": 0.496297222341024, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 150855, + "tp_rate": 0.496297222341024, + "truth_threshold": 11.64 + }, + { + "f1": 0.6628104408413904, + "fn": 153279, + "fn_rate": 0.5042719296225503, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996910728595202, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997744101488893, + "recall": 0.49572807037744976, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 150682, + "tp_rate": 0.49572807037744976, + "truth_threshold": 11.66 + }, + { + "f1": 0.6623514916835342, + "fn": 153435, + "fn_rate": 0.5047851533584901, + "fp": 34, + "fp_rate": 0.00019554952291667865, + "match_probability": 0.9996953246549412, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997741764080765, + "recall": 0.49521484664150994, + "row_count": 477830, + "tn": 173835, + "tn_rate": 0.9998044504770833, + "tp": 150526, + "tp_rate": 0.49521484664150994, + "truth_threshold": 11.68 + }, + { + "f1": 0.6618715803096265, + "fn": 153599, + "fn_rate": 0.5053246962603755, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.9996995179500615, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999787225554211, + "recall": 0.4946753037396245, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 150362, + "tp_rate": 0.4946753037396245, + "truth_threshold": 11.700000000000001 + }, + { + "f1": 0.6614296659650729, + "fn": 153749, + "fn_rate": 0.5058181806218561, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.999703653549304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997870131253161, + "recall": 0.4941818193781439, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 150212, + "tp_rate": 0.4941818193781439, + "truth_threshold": 11.72 + }, + { + "f1": 0.6608591843387399, + "fn": 153942, + "fn_rate": 0.5064531305002944, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.999707732246043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999786739175347, + "recall": 0.49354686949970555, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 150019, + "tp_rate": 0.49354686949970555, + "truth_threshold": 11.74 + }, + { + "f1": 0.6603162431582009, + "fn": 154126, + "fn_rate": 0.507058471317044, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.9997117548227562, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997864773432443, + "recall": 0.49294152868295604, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 149835, + "tp_rate": 0.49294152868295604, + "truth_threshold": 11.76 + }, + { + "f1": 0.6599308788263507, + "fn": 154257, + "fn_rate": 0.5074894476594036, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.9997157220511734, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997862905380136, + "recall": 0.4925105523405963, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 149704, + "tp_rate": 0.4925105523405963, + "truth_threshold": 11.78 + }, + { + "f1": 0.659430068264804, + "fn": 154426, + "fn_rate": 0.5080454400400052, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.9997196346924244, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997860490616246, + "recall": 0.4919545599599949, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 149535, + "tp_rate": 0.4919545599599949, + "truth_threshold": 11.8 + }, + { + "f1": 0.6590027835247099, + "fn": 154571, + "fn_rate": 0.5085224749227697, + "fp": 32, + "fp_rate": 0.00018404660980393285, + "match_probability": 0.9997234934971839, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997858414423579, + "recall": 0.4914775250772303, + "row_count": 477830, + "tn": 173837, + "tn_rate": 0.999815953390196, + "tp": 149390, + "tp_rate": 0.4914775250772303, + "truth_threshold": 11.82 + }, + { + "f1": 0.6585411058647015, + "fn": 154729, + "fn_rate": 0.5090422784501959, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997272992058148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999812407878869, + "recall": 0.4909577215498041, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 149232, + "tp_rate": 0.4909577215498041, + "truth_threshold": 11.84 + }, + { + "f1": 0.6579977838503613, + "fn": 154912, + "fn_rate": 0.5096443293712022, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997310525485098, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998121775994956, + "recall": 0.49035567062879776, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 149049, + "tp_rate": 0.49035567062879776, + "truth_threshold": 11.86 + }, + { + "f1": 0.657474716247847, + "fn": 155089, + "fn_rate": 0.5102266409177493, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997347542454303, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998119543317663, + "recall": 0.48977335908225067, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148872, + "tp_rate": 0.48977335908225067, + "truth_threshold": 11.88 + }, + { + "f1": 0.6569364672616418, + "fn": 155270, + "fn_rate": 0.5108221120472692, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997384050068445, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998117254688372, + "recall": 0.48917788795273076, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148691, + "tp_rate": 0.48917788795273076, + "truth_threshold": 11.9 + }, + { + "f1": 0.6565728882171488, + "fn": 155393, + "fn_rate": 0.5112267692236833, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997420055332628, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115696250236, + "recall": 0.4887732307763167, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148568, + "tp_rate": 0.4887732307763167, + "truth_threshold": 11.92 + }, + { + "f1": 0.6560918137729501, + "fn": 155555, + "fn_rate": 0.5117597323340823, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997455565155712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998113639732137, + "recall": 0.48824026766591766, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148406, + "tp_rate": 0.48824026766591766, + "truth_threshold": 11.94 + }, + { + "f1": 0.6555821893574866, + "fn": 155726, + "fn_rate": 0.5123223045061702, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997490586351637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998111464087466, + "recall": 0.4876776954938298, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148235, + "tp_rate": 0.4876776954938298, + "truth_threshold": 11.96 + }, + { + "f1": 0.6550290019865587, + "fn": 155912, + "fn_rate": 0.5129342251144061, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997525125640727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998109091891381, + "recall": 0.4870657748855939, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 148049, + "tp_rate": 0.4870657748855939, + "truth_threshold": 11.98 + }, + { + "f1": 0.654552777519596, + "fn": 156072, + "fn_rate": 0.5134606084333188, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997559189650964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998107046519332, + "recall": 0.48653939156668125, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147889, + "tp_rate": 0.48653939156668125, + "truth_threshold": 12 + }, + { + "f1": 0.6542593928876572, + "fn": 156171, + "fn_rate": 0.513786308111896, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997592784919264, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998105778727895, + "recall": 0.4862136918881041, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147790, + "tp_rate": 0.4862136918881041, + "truth_threshold": 12.02 + }, + { + "f1": 0.6538378081560896, + "fn": 156312, + "fn_rate": 0.5142501834116877, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997625917892721, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998103970151073, + "recall": 0.4857498165883123, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147649, + "tp_rate": 0.4857498165883123, + "truth_threshold": 12.040000000000001 + }, + { + "f1": 0.6533726704497632, + "fn": 156468, + "fn_rate": 0.5147634071476275, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997658594929839, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998101965143945, + "recall": 0.48523659285237253, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147493, + "tp_rate": 0.48523659285237253, + "truth_threshold": 12.06 + }, + { + "f1": 0.6529430271769716, + "fn": 156612, + "fn_rate": 0.5152371521346488, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997690822301749, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998100110600704, + "recall": 0.4847628478653511, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147349, + "tp_rate": 0.4847628478653511, + "truth_threshold": 12.08 + }, + { + "f1": 0.6523876653544703, + "fn": 156798, + "fn_rate": 0.5158490727428848, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997722606193405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998097709778451, + "recall": 0.4841509272571152, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147163, + "tp_rate": 0.4841509272571152, + "truth_threshold": 12.1 + }, + { + "f1": 0.6519438938186527, + "fn": 156947, + "fn_rate": 0.5163392672086221, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.999775395270477, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998095782157479, + "recall": 0.48366073279137783, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 147014, + "tp_rate": 0.48366073279137783, + "truth_threshold": 12.120000000000001 + }, + { + "f1": 0.6513218898210713, + "fn": 157155, + "fn_rate": 0.5170235655232086, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997784867851973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998093084707902, + "recall": 0.48297643447679145, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 146806, + "tp_rate": 0.48297643447679145, + "truth_threshold": 12.14 + }, + { + "f1": 0.6509284078604015, + "fn": 157286, + "fn_rate": 0.5174545418655683, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997815357568474, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998091381907663, + "recall": 0.4825454581344317, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 146675, + "tp_rate": 0.4825454581344317, + "truth_threshold": 12.16 + }, + { + "f1": 0.6504177654653135, + "fn": 157457, + "fn_rate": 0.5180171140376562, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.999784542770618, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998089154587394, + "recall": 0.48198288596234384, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 146504, + "tp_rate": 0.48198288596234384, + "truth_threshold": 12.18 + }, + { + "f1": 0.6498003491114536, + "fn": 157663, + "fn_rate": 0.5186948325607561, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997875084036579, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998086464469745, + "recall": 0.48130516743924384, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 146298, + "tp_rate": 0.48130516743924384, + "truth_threshold": 12.200000000000001 + }, + { + "f1": 0.6492559530421723, + "fn": 157844, + "fn_rate": 0.5192903036902761, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997904332251836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998084094563618, + "recall": 0.48070969630972393, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 146117, + "tp_rate": 0.48070969630972393, + "truth_threshold": 12.22 + }, + { + "f1": 0.6488056609979642, + "fn": 157994, + "fn_rate": 0.5197837880517566, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.999793317796588, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998082126100208, + "recall": 0.4802162119482434, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145967, + "tp_rate": 0.4802162119482434, + "truth_threshold": 12.24 + }, + { + "f1": 0.6483791078090055, + "fn": 158136, + "fn_rate": 0.5202509532472916, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997961626715484, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998080258890801, + "recall": 0.4797490467527084, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145825, + "tp_rate": 0.4797490467527084, + "truth_threshold": 12.26 + }, + { + "f1": 0.6478921477053365, + "fn": 158298, + "fn_rate": 0.5207839163576906, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9997989683961317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998078124249268, + "recall": 0.4792160836423094, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145663, + "tp_rate": 0.4792160836423094, + "truth_threshold": 12.280000000000001 + }, + { + "f1": 0.6474153043880647, + "fn": 158457, + "fn_rate": 0.5213070097808601, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998017355088994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998076024516944, + "recall": 0.47869299021913997, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145504, + "tp_rate": 0.47869299021913997, + "truth_threshold": 12.3 + }, + { + "f1": 0.6469999154341566, + "fn": 158595, + "fn_rate": 0.5217610153934222, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998044645410099, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998074198385077, + "recall": 0.4782389846065778, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145366, + "tp_rate": 0.4782389846065778, + "truth_threshold": 12.32 + }, + { + "f1": 0.6463869692220006, + "fn": 158798, + "fn_rate": 0.5224288642292926, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998071560163209, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998071505809589, + "recall": 0.4775711357707074, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145163, + "tp_rate": 0.4775711357707074, + "truth_threshold": 12.34 + }, + { + "f1": 0.645909058513292, + "fn": 158957, + "fn_rate": 0.5229519576524619, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998098104514891, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998069391582547, + "recall": 0.477048042347538, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 145004, + "tp_rate": 0.477048042347538, + "truth_threshold": 12.36 + }, + { + "f1": 0.645468601703034, + "fn": 159103, + "fn_rate": 0.5234322824309697, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998124283560689, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998067446130061, + "recall": 0.4765677175690302, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 144858, + "tp_rate": 0.4765677175690302, + "truth_threshold": 12.38 + }, + { + "f1": 0.6450218186842821, + "fn": 159251, + "fn_rate": 0.523919187000964, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998150102326104, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998065470021694, + "recall": 0.47608081299903604, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 144710, + "tp_rate": 0.47608081299903604, + "truth_threshold": 12.4 + }, + { + "f1": 0.6445521509595491, + "fn": 159406, + "fn_rate": 0.5244291208411606, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998175565767553, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998063396111576, + "recall": 0.47557087915883944, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 144555, + "tp_rate": 0.47557087915883944, + "truth_threshold": 12.42 + }, + { + "f1": 0.6440079935052769, + "fn": 159586, + "fn_rate": 0.5250213020749372, + "fp": 28, + "fp_rate": 0.00016104078357844124, + "match_probability": 0.9998200678773314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999806098211256, + "recall": 0.47497869792506275, + "row_count": 477830, + "tn": 173841, + "tn_rate": 0.9998389592164215, + "tp": 144375, + "tp_rate": 0.47497869792506275, + "truth_threshold": 12.44 + }, + { + "f1": 0.6436010244786136, + "fn": 159721, + "fn_rate": 0.5254654380002698, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998225446164466, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998128470128304, + "recall": 0.4745345619997302, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 144240, + "tp_rate": 0.4745345619997302, + "truth_threshold": 12.46 + }, + { + "f1": 0.6431711769615654, + "fn": 159863, + "fn_rate": 0.5259326031958047, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.999824987269581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998126626192542, + "recall": 0.4740673968041953, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 144098, + "tp_rate": 0.4740673968041953, + "truth_threshold": 12.48 + }, + { + "f1": 0.6426380299613762, + "fn": 160039, + "fn_rate": 0.5265116248466086, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998273963056777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998124335702228, + "recall": 0.47348837515339137, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143922, + "tp_rate": 0.47348837515339137, + "truth_threshold": 12.5 + }, + { + "f1": 0.6422318302008146, + "fn": 160173, + "fn_rate": 0.5269524708761979, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.999829772187233, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998122588047144, + "recall": 0.47304752912380205, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143788, + "tp_rate": 0.47304752912380205, + "truth_threshold": 12.52 + }, + { + "f1": 0.6415947592086977, + "fn": 160383, + "fn_rate": 0.5276433489822707, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998321153703844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998119842623864, + "recall": 0.4723566510177292, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143578, + "tp_rate": 0.4723566510177292, + "truth_threshold": 12.540000000000001 + }, + { + "f1": 0.6410769925390148, + "fn": 160554, + "fn_rate": 0.5282059211543586, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.999834426304998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999811760112665, + "recall": 0.4717940788456414, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143407, + "tp_rate": 0.4717940788456414, + "truth_threshold": 12.56 + }, + { + "f1": 0.6404935577211193, + "fn": 160746, + "fn_rate": 0.5288375811370538, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998367054347549, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115077979922, + "recall": 0.47116241886294624, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143215, + "tp_rate": 0.47116241886294624, + "truth_threshold": 12.58 + }, + { + "f1": 0.6399720825354784, + "fn": 160917, + "fn_rate": 0.5294001533091416, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.999838953197236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998112825100824, + "recall": 0.47059984669085836, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 143044, + "tp_rate": 0.47059984669085836, + "truth_threshold": 12.6 + }, + { + "f1": 0.6394469831579607, + "fn": 161090, + "fn_rate": 0.5299693052727159, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998411700240056, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999811054038545, + "recall": 0.4700306947272841, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 142871, + "tp_rate": 0.4700306947272841, + "truth_threshold": 12.620000000000001 + }, + { + "f1": 0.6388637645857773, + "fn": 161281, + "fn_rate": 0.5305976753596678, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998433563406941, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998108011520107, + "recall": 0.46940232464033216, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 142680, + "tp_rate": 0.46940232464033216, + "truth_threshold": 12.64 + }, + { + "f1": 0.6382723294077595, + "fn": 161475, + "fn_rate": 0.5312359151338494, + "fp": 27, + "fp_rate": 0.00015528932702206833, + "match_probability": 0.9998455125670797, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998105435995313, + "recall": 0.46876408486615057, + "row_count": 477830, + "tn": 173842, + "tn_rate": 0.999844710672978, + "tp": 142486, + "tp_rate": 0.46876408486615057, + "truth_threshold": 12.66 + }, + { + "f1": 0.6377764334207165, + "fn": 161638, + "fn_rate": 0.5317721681399916, + "fp": 26, + "fp_rate": 0.00014953787046569544, + "match_probability": 0.9998476391171683, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998173503150707, + "recall": 0.4682278318600084, + "row_count": 477830, + "tn": 173843, + "tn_rate": 0.9998504621295343, + "tp": 142323, + "tp_rate": 0.4682278318600084, + "truth_threshold": 12.68 + }, + { + "f1": 0.6372879076543764, + "fn": 161798, + "fn_rate": 0.5322985514589043, + "fp": 26, + "fp_rate": 0.00014953787046569544, + "match_probability": 0.9998497363992734, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998171447861649, + "recall": 0.46770144854109574, + "row_count": 477830, + "tn": 173843, + "tn_rate": 0.9998504621295343, + "tp": 142163, + "tp_rate": 0.46770144854109574, + "truth_threshold": 12.700000000000001 + }, + { + "f1": 0.6368479347811464, + "fn": 161942, + "fn_rate": 0.5327722964459256, + "fp": 26, + "fp_rate": 0.00014953787046569544, + "match_probability": 0.9998518048160936, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998169594142702, + "recall": 0.4672277035540744, + "row_count": 477830, + "tn": 173843, + "tn_rate": 0.9998504621295343, + "tp": 142019, + "tp_rate": 0.4672277035540744, + "truth_threshold": 12.72 + }, + { + "f1": 0.6363493630001794, + "fn": 162106, + "fn_rate": 0.5333118393478111, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998538447647903, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999830841773624, + "recall": 0.46668816065218893, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141855, + "tp_rate": 0.46668816065218893, + "truth_threshold": 12.74 + }, + { + "f1": 0.6358887831846494, + "fn": 162257, + "fn_rate": 0.5338086136050348, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998558566370636, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998306615488823, + "recall": 0.46619138639496516, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141704, + "tp_rate": 0.46619138639496516, + "truth_threshold": 12.76 + }, + { + "f1": 0.6353376370345762, + "fn": 162437, + "fn_rate": 0.5344007948388115, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998578408192266, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998304462090598, + "recall": 0.46559920516118847, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141524, + "tp_rate": 0.46559920516118847, + "truth_threshold": 12.780000000000001 + }, + { + "f1": 0.6348060790055149, + "fn": 162610, + "fn_rate": 0.5349699468023859, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998597976922806, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998302387267904, + "recall": 0.46503005319761415, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141351, + "tp_rate": 0.46503005319761415, + "truth_threshold": 12.8 + }, + { + "f1": 0.6342278713051448, + "fn": 162799, + "fn_rate": 0.5355917370978514, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998617276319876, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998300114742255, + "recall": 0.46440826290214865, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141162, + "tp_rate": 0.46440826290214865, + "truth_threshold": 12.82 + }, + { + "f1": 0.6337507191140515, + "fn": 162954, + "fn_rate": 0.536101670938048, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998636310089414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998298246484816, + "recall": 0.46389832906195205, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 141007, + "tp_rate": 0.46389832906195205, + "truth_threshold": 12.84 + }, + { + "f1": 0.6331978453818692, + "fn": 163134, + "fn_rate": 0.5366938521718246, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.99986550818864, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999829607173538, + "recall": 0.4633061478281753, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140827, + "tp_rate": 0.4633061478281753, + "truth_threshold": 12.86 + }, + { + "f1": 0.6327289737281236, + "fn": 163287, + "fn_rate": 0.5371972062205349, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998673595315546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998294218823295, + "recall": 0.46280279377946515, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140674, + "tp_rate": 0.46280279377946515, + "truth_threshold": 12.88 + }, + { + "f1": 0.63229835462231, + "fn": 163427, + "fn_rate": 0.5376577916245834, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998691853931992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998292519813885, + "recall": 0.46234220837541656, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140534, + "tp_rate": 0.46234220837541656, + "truth_threshold": 12.9 + }, + { + "f1": 0.6318075434332523, + "fn": 163586, + "fn_rate": 0.5381808850477529, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998709861241983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998290586115286, + "recall": 0.46181911495224715, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140375, + "tp_rate": 0.46181911495224715, + "truth_threshold": 12.92 + }, + { + "f1": 0.6312715844263439, + "fn": 163760, + "fn_rate": 0.5387533269070703, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998727620703545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998288464967018, + "recall": 0.46124667309292966, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140201, + "tp_rate": 0.46124667309292966, + "truth_threshold": 12.94 + }, + { + "f1": 0.6307890493392309, + "fn": 163917, + "fn_rate": 0.5392698405387534, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998745135727142, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999828654653454, + "recall": 0.4607301594612467, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 140044, + "tp_rate": 0.4607301594612467, + "truth_threshold": 12.96 + }, + { + "f1": 0.6302399459276783, + "fn": 164095, + "fn_rate": 0.5398554419810436, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998762409676335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998284366287797, + "recall": 0.4601445580189564, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 139866, + "tp_rate": 0.4601445580189564, + "truth_threshold": 12.98 + }, + { + "f1": 0.629889709693558, + "fn": 164208, + "fn_rate": 0.5402272002000257, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998779445868424, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998282979317055, + "recall": 0.4597727997999743, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 139753, + "tp_rate": 0.4597727997999743, + "truth_threshold": 13 + }, + { + "f1": 0.6294185543211658, + "fn": 164361, + "fn_rate": 0.5407305542487358, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998796247575082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998281097805535, + "recall": 0.45926944575126416, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 139600, + "tp_rate": 0.45926944575126416, + "truth_threshold": 13.02 + }, + { + "f1": 0.6289627862294165, + "fn": 164508, + "fn_rate": 0.5412141689229868, + "fp": 24, + "fp_rate": 0.00013803495735294964, + "match_probability": 0.9998812818022986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998279286190555, + "recall": 0.45878583107701315, + "row_count": 477830, + "tn": 173845, + "tn_rate": 0.999861965042647, + "tp": 139453, + "tp_rate": 0.45878583107701315, + "truth_threshold": 13.040000000000001 + }, + { + "f1": 0.6284026765691906, + "fn": 164690, + "fn_rate": 0.5418129299482499, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.999882916039443, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998348816172986, + "recall": 0.4581870700517501, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 139271, + "tp_rate": 0.4581870700517501, + "truth_threshold": 13.06 + }, + { + "f1": 0.6279586199425878, + "fn": 164833, + "fn_rate": 0.5422833850395281, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.999884527782794, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998347119316426, + "recall": 0.4577166149604719, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 139128, + "tp_rate": 0.4577166149604719, + "truth_threshold": 13.08 + }, + { + "f1": 0.6274692180226389, + "fn": 164991, + "fn_rate": 0.5428031885669543, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998861173418873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999834524040779, + "recall": 0.4571968114330457, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138970, + "tp_rate": 0.4571968114330457, + "truth_threshold": 13.1 + }, + { + "f1": 0.6270104741128169, + "fn": 165139, + "fn_rate": 0.5432900931369485, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998876850220009, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998343476538586, + "recall": 0.4567099068630515, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138822, + "tp_rate": 0.4567099068630515, + "truth_threshold": 13.120000000000001 + }, + { + "f1": 0.6266072703286376, + "fn": 165269, + "fn_rate": 0.543717779583565, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998892311242138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998341924088959, + "recall": 0.456282220416435, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138692, + "tp_rate": 0.456282220416435, + "truth_threshold": 13.14 + }, + { + "f1": 0.6261524694482609, + "fn": 165416, + "fn_rate": 0.544201394257816, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998907559454638, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998340165117487, + "recall": 0.455798605742184, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138545, + "tp_rate": 0.455798605742184, + "truth_threshold": 13.16 + }, + { + "f1": 0.6255454023430259, + "fn": 165611, + "fn_rate": 0.5448429239277407, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998922597786042, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998337826020972, + "recall": 0.45515707607225925, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138350, + "tp_rate": 0.45515707607225925, + "truth_threshold": 13.18 + }, + { + "f1": 0.6251272054599976, + "fn": 165746, + "fn_rate": 0.5452870598530732, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998937429124599, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998336202780711, + "recall": 0.45471294014692676, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138215, + "tp_rate": 0.45471294014692676, + "truth_threshold": 13.200000000000001 + }, + { + "f1": 0.6247805866705272, + "fn": 165857, + "fn_rate": 0.5456522382805689, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998952056318829, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998334865739501, + "recall": 0.4543477617194311, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 138104, + "tp_rate": 0.4543477617194311, + "truth_threshold": 13.22 + }, + { + "f1": 0.6242515579813449, + "fn": 166027, + "fn_rate": 0.5462115205569136, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.999896648217807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998332813847793, + "recall": 0.4537884794430864, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137934, + "tp_rate": 0.4537884794430864, + "truth_threshold": 13.24 + }, + { + "f1": 0.6238512589748929, + "fn": 166156, + "fn_rate": 0.5466359171077868, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998980709473013, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998331253446324, + "recall": 0.45336408289221314, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137805, + "tp_rate": 0.45336408289221314, + "truth_threshold": 13.26 + }, + { + "f1": 0.6233668603413687, + "fn": 166311, + "fn_rate": 0.5471458509479834, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9998994740936238, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998329374677678, + "recall": 0.45285414905201654, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137650, + "tp_rate": 0.45285414905201654, + "truth_threshold": 13.280000000000001 + }, + { + "f1": 0.6228554601671688, + "fn": 166475, + "fn_rate": 0.5476853938498689, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9999008579262733, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999832738220771, + "recall": 0.4523146061501311, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137486, + "tp_rate": 0.4523146061501311, + "truth_threshold": 13.3 + }, + { + "f1": 0.6222920179112054, + "fn": 166656, + "fn_rate": 0.5482808649793888, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9999022227110415, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998325177676803, + "recall": 0.4517191350206112, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137305, + "tp_rate": 0.4517191350206112, + "truth_threshold": 13.32 + }, + { + "f1": 0.6218235563474468, + "fn": 166806, + "fn_rate": 0.5487743493408694, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9999035687100634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998323346309175, + "recall": 0.4512256506591306, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 137155, + "tp_rate": 0.4512256506591306, + "truth_threshold": 13.34 + }, + { + "f1": 0.6212939655758896, + "fn": 166975, + "fn_rate": 0.5493303417214709, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9999048961818684, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998321278164208, + "recall": 0.4506696582785292, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 136986, + "tp_rate": 0.4506696582785292, + "truth_threshold": 13.36 + }, + { + "f1": 0.6208185691146914, + "fn": 167127, + "fn_rate": 0.5498304058744379, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.999906205381429, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998319413694586, + "recall": 0.4501695941255622, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 136834, + "tp_rate": 0.4501695941255622, + "truth_threshold": 13.38 + }, + { + "f1": 0.6201782974589889, + "fn": 167332, + "fn_rate": 0.5505048345017947, + "fp": 23, + "fp_rate": 0.00013228350079657673, + "match_probability": 0.9999074965602103, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998316892544565, + "recall": 0.44949516549820534, + "row_count": 477830, + "tn": 173846, + "tn_rate": 0.9998677164992035, + "tp": 136629, + "tp_rate": 0.44949516549820534, + "truth_threshold": 13.4 + }, + { + "f1": 0.619727199251705, + "fn": 167476, + "fn_rate": 0.550978579488816, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999087699662178, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999838836103643, + "recall": 0.449021420511184, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 136485, + "tp_rate": 0.449021420511184, + "truth_threshold": 13.42 + }, + { + "f1": 0.6191925431982122, + "fn": 167647, + "fn_rate": 0.5515411516609039, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999100258440452, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998386339631499, + "recall": 0.44845884833909616, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 136314, + "tp_rate": 0.44845884833909616, + "truth_threshold": 13.44 + }, + { + "f1": 0.6186358265927474, + "fn": 167824, + "fn_rate": 0.552123463207451, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999112644349214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998384241952424, + "recall": 0.447876536792549, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 136137, + "tp_rate": 0.447876536792549, + "truth_threshold": 13.46 + }, + { + "f1": 0.6180940388138544, + "fn": 167997, + "fn_rate": 0.5526926151710252, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999124859767564, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998382186401541, + "recall": 0.44730738482897475, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135964, + "tp_rate": 0.44730738482897475, + "truth_threshold": 13.48 + }, + { + "f1": 0.6176730057388157, + "fn": 168131, + "fn_rate": 0.5531334612006146, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999136907041872, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998380590642758, + "recall": 0.4468665387993854, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135830, + "tp_rate": 0.4468665387993854, + "truth_threshold": 13.5 + }, + { + "f1": 0.617119617137814, + "fn": 168307, + "fn_rate": 0.5537124828514184, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999148788486228, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998378489931896, + "recall": 0.44628751714858156, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135654, + "tp_rate": 0.44628751714858156, + "truth_threshold": 13.52 + }, + { + "f1": 0.6166035606364001, + "fn": 168471, + "fn_rate": 0.5542520257533039, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999160506382885, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998376527539996, + "recall": 0.4457479742466961, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135490, + "tp_rate": 0.4457479742466961, + "truth_threshold": 13.540000000000001 + }, + { + "f1": 0.6159754504022547, + "fn": 168670, + "fn_rate": 0.5549067150062015, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999172062982694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998374139956988, + "recall": 0.4450932849937985, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135291, + "tp_rate": 0.4450932849937985, + "truth_threshold": 13.56 + }, + { + "f1": 0.6153197924685583, + "fn": 168878, + "fn_rate": 0.5555910133207879, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999183460505544, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998371636875023, + "recall": 0.44440898667921214, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 135083, + "tp_rate": 0.44440898667921214, + "truth_threshold": 13.58 + }, + { + "f1": 0.6149584235106504, + "fn": 168993, + "fn_rate": 0.5559693513312564, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999194701140777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998370249648122, + "recall": 0.4440306486687437, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134968, + "tp_rate": 0.4440306486687437, + "truth_threshold": 13.6 + }, + { + "f1": 0.6144361944091197, + "fn": 169158, + "fn_rate": 0.5565121841288849, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999205787047616, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998368255145559, + "recall": 0.443487815871115, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134803, + "tp_rate": 0.443487815871115, + "truth_threshold": 13.620000000000001 + }, + { + "f1": 0.6139054940745706, + "fn": 169326, + "fn_rate": 0.5570648866137432, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999216720355576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999836621935733, + "recall": 0.4429351133862568, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134635, + "tp_rate": 0.4429351133862568, + "truth_threshold": 13.64 + }, + { + "f1": 0.6132524349353345, + "fn": 169533, + "fn_rate": 0.5577458950325864, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999227503164871, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998363703979174, + "recall": 0.4422541049674136, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134428, + "tp_rate": 0.4422541049674136, + "truth_threshold": 13.66 + }, + { + "f1": 0.6128112222546729, + "fn": 169672, + "fn_rate": 0.5582031905408917, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999238137546823, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998362010557587, + "recall": 0.44179680945910826, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134289, + "tp_rate": 0.44179680945910826, + "truth_threshold": 13.68 + }, + { + "f1": 0.6124105316973415, + "fn": 169799, + "fn_rate": 0.5586210073002786, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999248625544251, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998360460263519, + "recall": 0.44137899269972136, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134162, + "tp_rate": 0.44137899269972136, + "truth_threshold": 13.700000000000001 + }, + { + "f1": 0.6119226466357679, + "fn": 169953, + "fn_rate": 0.5591276512447321, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999258969171868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998358576438111, + "recall": 0.44087234875526793, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 134008, + "tp_rate": 0.44087234875526793, + "truth_threshold": 13.72 + }, + { + "f1": 0.6115313290763427, + "fn": 170076, + "fn_rate": 0.5595323084211461, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999269170416667, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998357068711867, + "recall": 0.44046769157885385, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133885, + "tp_rate": 0.44046769157885385, + "truth_threshold": 13.74 + }, + { + "f1": 0.6110428270514537, + "fn": 170230, + "fn_rate": 0.5600389523655995, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.99992792312383, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999835517708014, + "recall": 0.43996104763440047, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133731, + "tp_rate": 0.43996104763440047, + "truth_threshold": 13.76 + }, + { + "f1": 0.6105649028023458, + "fn": 170381, + "fn_rate": 0.5605357266228234, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999928915356946, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99983533180641, + "recall": 0.4394642733771767, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133580, + "tp_rate": 0.4394642733771767, + "truth_threshold": 13.780000000000001 + }, + { + "f1": 0.6100075905146003, + "fn": 170556, + "fn_rate": 0.561111458377884, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999929893931624, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998351158311286, + "recall": 0.438888541622116, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133405, + "tp_rate": 0.438888541622116, + "truth_threshold": 13.8 + }, + { + "f1": 0.6095925499021169, + "fn": 170687, + "fn_rate": 0.5615424347202437, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999308590358513, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998349537870603, + "recall": 0.43845756527975627, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133274, + "tp_rate": 0.43845756527975627, + "truth_threshold": 13.82 + }, + { + "f1": 0.6091090449870054, + "fn": 170839, + "fn_rate": 0.5620424988732107, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999318108550282, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998347653668209, + "recall": 0.4379575011267893, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 133122, + "tp_rate": 0.4379575011267893, + "truth_threshold": 13.84 + }, + { + "f1": 0.6085232994598554, + "fn": 171023, + "fn_rate": 0.5626478396899602, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999327495720041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998345367027678, + "recall": 0.43735216031003976, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132938, + "tp_rate": 0.43735216031003976, + "truth_threshold": 13.86 + }, + { + "f1": 0.607886059717897, + "fn": 171223, + "fn_rate": 0.563305818838601, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999336753671121, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998342874359747, + "recall": 0.436694181161399, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132738, + "tp_rate": 0.436694181161399, + "truth_threshold": 13.88 + }, + { + "f1": 0.6074669598479122, + "fn": 171354, + "fn_rate": 0.5637367951809608, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999345884182044, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998341237587556, + "recall": 0.4362632048190393, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132607, + "tp_rate": 0.4362632048190393, + "truth_threshold": 13.9 + }, + { + "f1": 0.6070202772367969, + "fn": 171494, + "fn_rate": 0.5641973805850092, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999354889006857, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998339484787416, + "recall": 0.43580261941499077, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132467, + "tp_rate": 0.43580261941499077, + "truth_threshold": 13.92 + }, + { + "f1": 0.6065012400122856, + "fn": 171657, + "fn_rate": 0.5647336335911515, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999936376987547, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998337439354322, + "recall": 0.4352663664088485, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132304, + "tp_rate": 0.4352663664088485, + "truth_threshold": 13.94 + }, + { + "f1": 0.6059964047252183, + "fn": 171815, + "fn_rate": 0.5652534371185777, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999372528493993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998335451849162, + "recall": 0.43474656288142227, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 132146, + "tp_rate": 0.43474656288142227, + "truth_threshold": 13.96 + }, + { + "f1": 0.6054976007633518, + "fn": 171971, + "fn_rate": 0.5657666608545175, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999381166545053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998333484834712, + "recall": 0.43423333914548246, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131990, + "tp_rate": 0.43423333914548246, + "truth_threshold": 13.98 + }, + { + "f1": 0.604985636008187, + "fn": 172131, + "fn_rate": 0.5662930441734302, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999389685688129, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998331462548918, + "recall": 0.4337069558265699, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131830, + "tp_rate": 0.4337069558265699, + "truth_threshold": 14 + }, + { + "f1": 0.6045071431194682, + "fn": 172280, + "fn_rate": 0.5667832386391676, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999398087559863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998329574876806, + "recall": 0.4332167613608325, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131681, + "tp_rate": 0.4332167613608325, + "truth_threshold": 14.02 + }, + { + "f1": 0.6040713800260833, + "fn": 172416, + "fn_rate": 0.5672306644602433, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999406373774375, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998327848168613, + "recall": 0.43276933553975677, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131545, + "tp_rate": 0.43276933553975677, + "truth_threshold": 14.040000000000001 + }, + { + "f1": 0.6033979757326827, + "fn": 172626, + "fn_rate": 0.5679215425663161, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999414545923574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999832517490503, + "recall": 0.43207845743368395, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131335, + "tp_rate": 0.43207845743368395, + "truth_threshold": 14.06 + }, + { + "f1": 0.603083498001011, + "fn": 172724, + "fn_rate": 0.56824395234915, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999422605577463, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998323924454704, + "recall": 0.43175604765084996, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131237, + "tp_rate": 0.43175604765084996, + "truth_threshold": 14.08 + }, + { + "f1": 0.6025247904819261, + "fn": 172898, + "fn_rate": 0.5688163942084675, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999430554284441, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998321699660525, + "recall": 0.4311836057915325, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 131063, + "tp_rate": 0.4311836057915325, + "truth_threshold": 14.1 + }, + { + "f1": 0.602074931134544, + "fn": 173038, + "fn_rate": 0.5692769796125161, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999438393571597, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998319905303753, + "recall": 0.43072302038748395, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130923, + "tp_rate": 0.43072302038748395, + "truth_threshold": 14.120000000000001 + }, + { + "f1": 0.6017065709882932, + "fn": 173153, + "fn_rate": 0.5696553176229845, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999446124945011, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998318428494993, + "recall": 0.43034468237701545, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130808, + "tp_rate": 0.43034468237701545, + "truth_threshold": 14.14 + }, + { + "f1": 0.6010373186188107, + "fn": 173361, + "fn_rate": 0.570339615937571, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999945374989003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998315750792363, + "recall": 0.42966038406242907, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130600, + "tp_rate": 0.42966038406242907, + "truth_threshold": 14.16 + }, + { + "f1": 0.6005883381977885, + "fn": 173500, + "fn_rate": 0.5707969114458763, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999461269871569, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998313956607374, + "recall": 0.4292030885541237, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130461, + "tp_rate": 0.4292030885541237, + "truth_threshold": 14.18 + }, + { + "f1": 0.6000709216591984, + "fn": 173661, + "fn_rate": 0.5713265846605321, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999468686334378, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998311873666764, + "recall": 0.4286734153394679, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130300, + "tp_rate": 0.4286734153394679, + "truth_threshold": 14.200000000000001 + }, + { + "f1": 0.5994001022867069, + "fn": 173869, + "fn_rate": 0.5720108829751185, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999476000703327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998309175031127, + "recall": 0.42798911702488146, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 130092, + "tp_rate": 0.42798911702488146, + "truth_threshold": 14.22 + }, + { + "f1": 0.5989288545565163, + "fn": 174015, + "fn_rate": 0.5724912077536263, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999483214383678, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998307275637079, + "recall": 0.4275087922463737, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129946, + "tp_rate": 0.4275087922463737, + "truth_threshold": 14.24 + }, + { + "f1": 0.5984139059870438, + "fn": 174174, + "fn_rate": 0.5730143011767957, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999490328761353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998305202258703, + "recall": 0.4269856988232043, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129787, + "tp_rate": 0.4269856988232043, + "truth_threshold": 14.26 + }, + { + "f1": 0.5979401414134892, + "fn": 174321, + "fn_rate": 0.5734979158510467, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999497345203204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999830328083787, + "recall": 0.4265020841489533, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129640, + "tp_rate": 0.4265020841489533, + "truth_threshold": 14.280000000000001 + }, + { + "f1": 0.597385639009625, + "fn": 174492, + "fn_rate": 0.5740604880231346, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999504265057271, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998301040226734, + "recall": 0.42593951197686547, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129469, + "tp_rate": 0.42593951197686547, + "truth_threshold": 14.3 + }, + { + "f1": 0.5968806543332964, + "fn": 174648, + "fn_rate": 0.5745737117590743, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999511089653043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998298990992384, + "recall": 0.42542628824092565, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129313, + "tp_rate": 0.42542628824092565, + "truth_threshold": 14.32 + }, + { + "f1": 0.5963539983192191, + "fn": 174811, + "fn_rate": 0.5751099647652166, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999517820301712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998296844517388, + "recall": 0.4248900352347834, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 129150, + "tp_rate": 0.4248900352347834, + "truth_threshold": 14.34 + }, + { + "f1": 0.595822324051662, + "fn": 174975, + "fn_rate": 0.575649507667102, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999524458296426, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998294679399727, + "recall": 0.42435049233289796, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128986, + "tp_rate": 0.42435049233289796, + "truth_threshold": 14.36 + }, + { + "f1": 0.5954395287050941, + "fn": 175093, + "fn_rate": 0.5760377153648001, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999531004912537, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998293118162774, + "recall": 0.4239622846351999, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128868, + "tp_rate": 0.4239622846351999, + "truth_threshold": 14.38 + }, + { + "f1": 0.5950908620339046, + "fn": 175200, + "fn_rate": 0.5763897342093229, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999537461407846, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998291699991458, + "recall": 0.4236102657906771, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128761, + "tp_rate": 0.4236102657906771, + "truth_threshold": 14.4 + }, + { + "f1": 0.5944867509097046, + "fn": 175386, + "fn_rate": 0.5770016548175588, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999543829022842, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998289229142204, + "recall": 0.42299834518244117, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128575, + "tp_rate": 0.42299834518244117, + "truth_threshold": 14.42 + }, + { + "f1": 0.5938347102850429, + "fn": 175587, + "fn_rate": 0.5776629238619428, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999550108980944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998286550982897, + "recall": 0.4223370761380572, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128374, + "tp_rate": 0.4223370761380572, + "truth_threshold": 14.44 + }, + { + "f1": 0.593426678265376, + "fn": 175712, + "fn_rate": 0.5780741608298433, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999556302488732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998284881228025, + "recall": 0.4219258391701567, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128249, + "tp_rate": 0.4219258391701567, + "truth_threshold": 14.46 + }, + { + "f1": 0.5930081323391236, + "fn": 175841, + "fn_rate": 0.5784985573807166, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999562410736184, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998283154625337, + "recall": 0.4215014426192834, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 128120, + "tp_rate": 0.4215014426192834, + "truth_threshold": 14.48 + }, + { + "f1": 0.5925130223405487, + "fn": 175993, + "fn_rate": 0.5789986215336836, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999568434896896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998281115712165, + "recall": 0.4210013784663164, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127968, + "tp_rate": 0.4210013784663164, + "truth_threshold": 14.5 + }, + { + "f1": 0.5920129319728207, + "fn": 176146, + "fn_rate": 0.5795019755823938, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999574376128317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998279058488544, + "recall": 0.4204980244176062, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127815, + "tp_rate": 0.4204980244176062, + "truth_threshold": 14.52 + }, + { + "f1": 0.5915432267510552, + "fn": 176290, + "fn_rate": 0.5799757205694152, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999580235571964, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998277117774663, + "recall": 0.42002427943058485, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127671, + "tp_rate": 0.42002427943058485, + "truth_threshold": 14.540000000000001 + }, + { + "f1": 0.5910386606658663, + "fn": 176445, + "fn_rate": 0.5804856544096118, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999586014353645, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998275023914441, + "recall": 0.41951434559038825, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127516, + "tp_rate": 0.41951434559038825, + "truth_threshold": 14.56 + }, + { + "f1": 0.5905767367244841, + "fn": 176586, + "fn_rate": 0.5809495297094035, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999591713583673, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998273114751525, + "recall": 0.4190504702905965, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127375, + "tp_rate": 0.4190504702905965, + "truth_threshold": 14.58 + }, + { + "f1": 0.590086454796757, + "fn": 176736, + "fn_rate": 0.5814430140708841, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999597334357079, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998271079082415, + "recall": 0.4185569859291159, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127225, + "tp_rate": 0.4185569859291159, + "truth_threshold": 14.6 + }, + { + "f1": 0.5897313371901517, + "fn": 176845, + "fn_rate": 0.5818016127068933, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999602877753826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998269596816058, + "recall": 0.41819838729310665, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 127116, + "tp_rate": 0.41819838729310665, + "truth_threshold": 14.620000000000001 + }, + { + "f1": 0.5891965396253735, + "fn": 177008, + "fn_rate": 0.5823378657130356, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999608344839012, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998267375467612, + "recall": 0.41766213428696447, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126953, + "tp_rate": 0.41766213428696447, + "truth_threshold": 14.64 + }, + { + "f1": 0.588803572754958, + "fn": 177128, + "fn_rate": 0.58273265320222, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999613736663076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998265736470774, + "recall": 0.41726734679778, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126833, + "tp_rate": 0.41726734679778, + "truth_threshold": 14.66 + }, + { + "f1": 0.5882314694408323, + "fn": 177303, + "fn_rate": 0.5833083849572807, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999619054261999, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998263340700979, + "recall": 0.4166916150427193, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126658, + "tp_rate": 0.4166916150427193, + "truth_threshold": 14.68 + }, + { + "f1": 0.5878595584956147, + "fn": 177416, + "fn_rate": 0.5836801431762627, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999624298657506, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998261790198076, + "recall": 0.41631985682373723, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126545, + "tp_rate": 0.41631985682373723, + "truth_threshold": 14.700000000000001 + }, + { + "f1": 0.5872801208318811, + "fn": 177593, + "fn_rate": 0.5842624547228098, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999629470857259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998259355961706, + "recall": 0.41573754527719015, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126368, + "tp_rate": 0.41573754527719015, + "truth_threshold": 14.72 + }, + { + "f1": 0.5868400989270506, + "fn": 177727, + "fn_rate": 0.5847033007523992, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999634571855048, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998257508554049, + "recall": 0.4152966992476008, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126234, + "tp_rate": 0.4152966992476008, + "truth_threshold": 14.74 + }, + { + "f1": 0.5864740319828136, + "fn": 177838, + "fn_rate": 0.5850684791798948, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999639602630992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998255975266558, + "recall": 0.4149315208201052, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 126123, + "tp_rate": 0.4149315208201052, + "truth_threshold": 14.76 + }, + { + "f1": 0.5859460766983607, + "fn": 177999, + "fn_rate": 0.5855981523945506, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999644564151715, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998253746507493, + "recall": 0.4144018476054494, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125962, + "tp_rate": 0.4144018476054494, + "truth_threshold": 14.780000000000001 + }, + { + "f1": 0.585452565647729, + "fn": 178149, + "fn_rate": 0.5860916367560312, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999649457370537, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998251664891842, + "recall": 0.4139083632439688, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125812, + "tp_rate": 0.4139083632439688, + "truth_threshold": 14.8 + }, + { + "f1": 0.5849277062443556, + "fn": 178308, + "fn_rate": 0.5866147301792006, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999654283227661, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998249452954048, + "recall": 0.4133852698207994, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125653, + "tp_rate": 0.4133852698207994, + "truth_threshold": 14.82 + }, + { + "f1": 0.5844400774876132, + "fn": 178456, + "fn_rate": 0.5871016347491947, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999659042650346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998247389007943, + "recall": 0.4128983652508052, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125505, + "tp_rate": 0.4128983652508052, + "truth_threshold": 14.84 + }, + { + "f1": 0.5837805855276644, + "fn": 178656, + "fn_rate": 0.5877596138978356, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999663736553089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998244592146943, + "recall": 0.4122403861021644, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125305, + "tp_rate": 0.4122403861021644, + "truth_threshold": 14.86 + }, + { + "f1": 0.5834044000801539, + "fn": 178770, + "fn_rate": 0.5881346620125608, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999668365837804, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998242993938329, + "recall": 0.4118653379874392, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125191, + "tp_rate": 0.4118653379874392, + "truth_threshold": 14.88 + }, + { + "f1": 0.5827901945975179, + "fn": 178956, + "fn_rate": 0.5887465826207967, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999672931393985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998240380077903, + "recall": 0.41125341737920323, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 125005, + "tp_rate": 0.41125341737920323, + "truth_threshold": 14.9 + }, + { + "f1": 0.5822793075143646, + "fn": 179111, + "fn_rate": 0.5892565164609933, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999677434098888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998238195912614, + "recall": 0.41074348353900664, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124850, + "tp_rate": 0.41074348353900664, + "truth_threshold": 14.92 + }, + { + "f1": 0.5818096993165224, + "fn": 179253, + "fn_rate": 0.5897236816565283, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999681874817694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998236190170768, + "recall": 0.41027631834347167, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124708, + "tp_rate": 0.41027631834347167, + "truth_threshold": 14.94 + }, + { + "f1": 0.5812735690549976, + "fn": 179415, + "fn_rate": 0.5902566447669273, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999686254403675, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998233896345771, + "recall": 0.40974335523307265, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124546, + "tp_rate": 0.40974335523307265, + "truth_threshold": 14.96 + }, + { + "f1": 0.5805846096376541, + "fn": 179623, + "fn_rate": 0.5909409430815138, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999690573698359, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998230942425217, + "recall": 0.40905905691848626, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124338, + "tp_rate": 0.40905905691848626, + "truth_threshold": 14.98 + }, + { + "f1": 0.580113877873221, + "fn": 179765, + "fn_rate": 0.5914081082770487, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999694833531692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998228920124298, + "recall": 0.4085918917229513, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124196, + "tp_rate": 0.4085918917229513, + "truth_threshold": 15 + }, + { + "f1": 0.5795850661184057, + "fn": 179924, + "fn_rate": 0.5919312017002181, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999699034722195, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998226650222878, + "recall": 0.4080687982997819, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 124037, + "tp_rate": 0.4080687982997819, + "truth_threshold": 15.02 + }, + { + "f1": 0.5791581948631658, + "fn": 180053, + "fn_rate": 0.5923555982510914, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999703178077124, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998224804325022, + "recall": 0.4076444017489086, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123908, + "tp_rate": 0.4076444017489086, + "truth_threshold": 15.040000000000001 + }, + { + "f1": 0.5787150678654753, + "fn": 180186, + "fn_rate": 0.5927931543849375, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999707264392624, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999822289716229, + "recall": 0.4072068456150625, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123775, + "tp_rate": 0.4072068456150625, + "truth_threshold": 15.06 + }, + { + "f1": 0.5782810212662467, + "fn": 180317, + "fn_rate": 0.5932241307272973, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999711294453882, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998221014668542, + "recall": 0.40677586927270276, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123644, + "tp_rate": 0.40677586927270276, + "truth_threshold": 15.08 + }, + { + "f1": 0.5778772695587898, + "fn": 180438, + "fn_rate": 0.5936222081122249, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999715269035279, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999821927232992, + "recall": 0.40637779188777506, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123523, + "tp_rate": 0.40637779188777506, + "truth_threshold": 15.1 + }, + { + "f1": 0.5772762587638419, + "fn": 180619, + "fn_rate": 0.5942176792417448, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999719188900533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998216659641387, + "recall": 0.40578232075825516, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123342, + "tp_rate": 0.40578232075825516, + "truth_threshold": 15.120000000000001 + }, + { + "f1": 0.5767520038954229, + "fn": 180776, + "fn_rate": 0.5947341928734279, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999723054802854, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998214387169561, + "recall": 0.4052658071265722, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123185, + "tp_rate": 0.4052658071265722, + "truth_threshold": 15.14 + }, + { + "f1": 0.5763300861745972, + "fn": 180903, + "fn_rate": 0.5951520096328148, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999726867485083, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998212544686382, + "recall": 0.4048479903671853, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 123058, + "tp_rate": 0.4048479903671853, + "truth_threshold": 15.16 + }, + { + "f1": 0.5759032306423806, + "fn": 181031, + "fn_rate": 0.5955731162879448, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999730627679836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998210683844102, + "recall": 0.40442688371205515, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122930, + "tp_rate": 0.40442688371205515, + "truth_threshold": 15.18 + }, + { + "f1": 0.5754026834629138, + "fn": 181181, + "fn_rate": 0.5960666006494254, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999734336109646, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998208498232928, + "recall": 0.4039333993505746, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122780, + "tp_rate": 0.4039333993505746, + "truth_threshold": 15.200000000000001 + }, + { + "f1": 0.5748750597744043, + "fn": 181339, + "fn_rate": 0.5965864041768516, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999737993487102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999820619027429, + "recall": 0.40341359582314834, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122622, + "tp_rate": 0.40341359582314834, + "truth_threshold": 15.22 + }, + { + "f1": 0.5743624135893372, + "fn": 181492, + "fn_rate": 0.5970897582255619, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999741600514982, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998203949677935, + "recall": 0.4029102417744382, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122469, + "tp_rate": 0.4029102417744382, + "truth_threshold": 15.24 + }, + { + "f1": 0.5738520940750367, + "fn": 181645, + "fn_rate": 0.597593112274272, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999745157886392, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998201703477252, + "recall": 0.40240688772572797, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122316, + "tp_rate": 0.40240688772572797, + "truth_threshold": 15.26 + }, + { + "f1": 0.5732918438418143, + "fn": 181812, + "fn_rate": 0.598142524863387, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999748666284898, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998199245320084, + "recall": 0.4018574751366129, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122149, + "tp_rate": 0.4018574751366129, + "truth_threshold": 15.280000000000001 + }, + { + "f1": 0.572887960376517, + "fn": 181933, + "fn_rate": 0.5985406022483147, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999752126384654, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998197460057353, + "recall": 0.40145939775168527, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 122028, + "tp_rate": 0.40145939775168527, + "truth_threshold": 15.3 + }, + { + "f1": 0.5723785862893265, + "fn": 182085, + "fn_rate": 0.5990406664012817, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999755538850542, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998195212390687, + "recall": 0.40095933359871827, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121876, + "tp_rate": 0.40095933359871827, + "truth_threshold": 15.32 + }, + { + "f1": 0.5718641503760812, + "fn": 182238, + "fn_rate": 0.5995440204499919, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999758904338284, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998192944268759, + "recall": 0.40045597955000806, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121723, + "tp_rate": 0.40045597955000806, + "truth_threshold": 15.34 + }, + { + "f1": 0.5714124585849566, + "fn": 182373, + "fn_rate": 0.5999881563753244, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999976222349458, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999819093824521, + "recall": 0.4000118436246755, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121588, + "tp_rate": 0.4000118436246755, + "truth_threshold": 15.36 + }, + { + "f1": 0.5708973292150309, + "fn": 182526, + "fn_rate": 0.6004915104240347, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999976549695723, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998188659360926, + "recall": 0.39950848957596535, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121435, + "tp_rate": 0.39950848957596535, + "truth_threshold": 15.38 + }, + { + "f1": 0.5702991251998871, + "fn": 182704, + "fn_rate": 0.601077111866325, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999976872535525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998186000874018, + "recall": 0.39892288813367505, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121257, + "tp_rate": 0.39892288813367505, + "truth_threshold": 15.4 + }, + { + "f1": 0.5697656911640162, + "fn": 182863, + "fn_rate": 0.6016002052894944, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.9999771909309003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998183619550859, + "recall": 0.39839979471050563, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 121098, + "tp_rate": 0.39839979471050563, + "truth_threshold": 15.42 + }, + { + "f1": 0.5691955040102421, + "fn": 183032, + "fn_rate": 0.6021561976700959, + "fp": 22, + "fp_rate": 0.00012653204424020384, + "match_probability": 0.999977504943031, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998181081595026, + "recall": 0.3978438023299042, + "row_count": 477830, + "tn": 173847, + "tn_rate": 0.9998734679557598, + "tp": 120929, + "tp_rate": 0.3978438023299042, + "truth_threshold": 15.44 + }, + { + "f1": 0.5687110960439209, + "fn": 183177, + "fn_rate": 0.6026332325528604, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.999977814632257, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998344425681269, + "recall": 0.3973667674471396, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120784, + "tp_rate": 0.3973667674471396, + "truth_threshold": 15.46 + }, + { + "f1": 0.5682884325546345, + "fn": 183302, + "fn_rate": 0.6030444695207609, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999781200580878, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998342710827899, + "recall": 0.3969555304792391, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120659, + "tp_rate": 0.3969555304792391, + "truth_threshold": 15.48 + }, + { + "f1": 0.5678904744630432, + "fn": 183420, + "fn_rate": 0.603432677218459, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999784212792137, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998341088743458, + "recall": 0.39656732278154105, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120541, + "tp_rate": 0.39656732278154105, + "truth_threshold": 15.5 + }, + { + "f1": 0.5671681891456206, + "fn": 183634, + "fn_rate": 0.6041367149075045, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.999978718353517, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998338138881734, + "recall": 0.3958632850924954, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120327, + "tp_rate": 0.3958632850924954, + "truth_threshold": 15.52 + }, + { + "f1": 0.5666614799202184, + "fn": 183784, + "fn_rate": 0.6046301992689852, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999790113380835, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998336064960024, + "recall": 0.39536980073101485, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120177, + "tp_rate": 0.39536980073101485, + "truth_threshold": 15.540000000000001 + }, + { + "f1": 0.5660712011358973, + "fn": 183959, + "fn_rate": 0.6052059310240459, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999793002892131, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999833363883288, + "recall": 0.39479406897595415, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 120002, + "tp_rate": 0.39479406897595415, + "truth_threshold": 15.56 + }, + { + "f1": 0.5655928388408888, + "fn": 184100, + "fn_rate": 0.6056698063238376, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999795852624306, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998331678914923, + "recall": 0.3943301936761624, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119861, + "tp_rate": 0.3943301936761624, + "truth_threshold": 15.58 + }, + { + "f1": 0.5650714676837673, + "fn": 184254, + "fn_rate": 0.606176450268291, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999798663124968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998329533020957, + "recall": 0.393823549731709, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119707, + "tp_rate": 0.393823549731709, + "truth_threshold": 15.6 + }, + { + "f1": 0.5646717189602664, + "fn": 184372, + "fn_rate": 0.606564657965989, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999801434934182, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998327885025374, + "recall": 0.3934353420340109, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119589, + "tp_rate": 0.3934353420340109, + "truth_threshold": 15.620000000000001 + }, + { + "f1": 0.5641408368208742, + "fn": 184529, + "fn_rate": 0.607081171597672, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999804168584587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998325687305362, + "recall": 0.39291882840232795, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119432, + "tp_rate": 0.39291882840232795, + "truth_threshold": 15.64 + }, + { + "f1": 0.5637269956767228, + "fn": 184651, + "fn_rate": 0.6074825388783429, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999806864601481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998323975530042, + "recall": 0.39251746112165703, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119310, + "tp_rate": 0.39251746112165703, + "truth_threshold": 15.66 + }, + { + "f1": 0.5632246385374177, + "fn": 184799, + "fn_rate": 0.6079694434483371, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999809523502939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998321894245775, + "recall": 0.39203055655166286, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 119162, + "tp_rate": 0.39203055655166286, + "truth_threshold": 15.68 + }, + { + "f1": 0.562662833527985, + "fn": 184964, + "fn_rate": 0.6085122762459657, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999812145799899, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998319567792836, + "recall": 0.39148772375403423, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118997, + "tp_rate": 0.39148772375403423, + "truth_threshold": 15.700000000000001 + }, + { + "f1": 0.5620645124668284, + "fn": 185140, + "fn_rate": 0.6090912978967696, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999814731996269, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998317079122525, + "recall": 0.39090870210323037, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118821, + "tp_rate": 0.39090870210323037, + "truth_threshold": 15.72 + }, + { + "f1": 0.5616133703048255, + "fn": 185273, + "fn_rate": 0.6095288540306157, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.999981728258902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998315193584257, + "recall": 0.3904711459693842, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118688, + "tp_rate": 0.3904711459693842, + "truth_threshold": 15.74 + }, + { + "f1": 0.5610346084478507, + "fn": 185443, + "fn_rate": 0.6100881363069605, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999819798068281, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998312777337225, + "recall": 0.38991186369303954, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118518, + "tp_rate": 0.38991186369303954, + "truth_threshold": 15.76 + }, + { + "f1": 0.5604438277539152, + "fn": 185616, + "fn_rate": 0.6106572882705347, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999822278917435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998310311325138, + "recall": 0.3893427117294653, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118345, + "tp_rate": 0.3893427117294653, + "truth_threshold": 15.780000000000001 + }, + { + "f1": 0.5600210325862975, + "fn": 185740, + "fn_rate": 0.611065235342692, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999824725613211, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998308539339147, + "recall": 0.38893476465730803, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118221, + "tp_rate": 0.38893476465730803, + "truth_threshold": 15.8 + }, + { + "f1": 0.5594798621938101, + "fn": 185899, + "fn_rate": 0.6115883287658614, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999827138625776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998306261750309, + "recall": 0.3884116712341386, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 118062, + "tp_rate": 0.3884116712341386, + "truth_threshold": 15.82 + }, + { + "f1": 0.5589472037469838, + "fn": 186055, + "fn_rate": 0.6121015525018012, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999829518418826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998304021165816, + "recall": 0.3878984474981988, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117906, + "tp_rate": 0.3878984474981988, + "truth_threshold": 15.84 + }, + { + "f1": 0.5585461270360623, + "fn": 186172, + "fn_rate": 0.612486470303756, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.999983186544967, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998302336833349, + "recall": 0.3875135296962439, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117789, + "tp_rate": 0.3875135296962439, + "truth_threshold": 15.860000000000001 + }, + { + "f1": 0.5579580548294821, + "fn": 186344, + "fn_rate": 0.6130523323715872, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999834180169326, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998299854637571, + "recall": 0.3869476676284129, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117617, + "tp_rate": 0.3869476676284129, + "truth_threshold": 15.88 + }, + { + "f1": 0.5572325611197334, + "fn": 186556, + "fn_rate": 0.6137497902691463, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999836463022602, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998296785182031, + "recall": 0.3862502097308536, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117405, + "tp_rate": 0.3862502097308536, + "truth_threshold": 15.9 + }, + { + "f1": 0.5567599134001823, + "fn": 186694, + "fn_rate": 0.6142037958817085, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999838714448183, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998294781177794, + "recall": 0.38579620411829146, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117267, + "tp_rate": 0.38579620411829146, + "truth_threshold": 15.92 + }, + { + "f1": 0.5563191314548417, + "fn": 186823, + "fn_rate": 0.6146281924325818, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999840934878717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998292903600267, + "recall": 0.3853718075674182, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 117138, + "tp_rate": 0.3853718075674182, + "truth_threshold": 15.94 + }, + { + "f1": 0.5557361004209546, + "fn": 186993, + "fn_rate": 0.6151874747089264, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999843124740891, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998290422949362, + "recall": 0.3848125252910735, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 116968, + "tp_rate": 0.3848125252910735, + "truth_threshold": 15.96 + }, + { + "f1": 0.5551684474694856, + "fn": 187158, + "fn_rate": 0.6157303075065551, + "fp": 20, + "fp_rate": 0.00011502913112745803, + "match_probability": 0.9999845284455526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998288008354519, + "recall": 0.3842696924934449, + "row_count": 477830, + "tn": 173849, + "tn_rate": 0.9998849708688725, + "tp": 116803, + "tp_rate": 0.3842696924934449, + "truth_threshold": 15.98 + }, + { + "f1": 0.5546695955648114, + "fn": 187304, + "fn_rate": 0.6162106322850629, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999847414437646, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999837155884672, + "recall": 0.3837893677149371, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 116657, + "tp_rate": 0.3837893677149371, + "truth_threshold": 16 + }, + { + "f1": 0.5541079828954941, + "fn": 187467, + "fn_rate": 0.6167468852912051, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999984951509656, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998369280681125, + "recall": 0.38325311470879486, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 116494, + "tp_rate": 0.38325311470879486, + "truth_threshold": 16.02 + }, + { + "f1": 0.5535713436017492, + "fn": 187623, + "fn_rate": 0.6172601090271449, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999851586835948, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999836709437335, + "recall": 0.38273989097285505, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 116338, + "tp_rate": 0.38273989097285505, + "truth_threshold": 16.04 + }, + { + "f1": 0.5531217127652992, + "fn": 187754, + "fn_rate": 0.6176910853695047, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999853630053928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998365253901881, + "recall": 0.3823089146304954, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 116207, + "tp_rate": 0.3823089146304954, + "truth_threshold": 16.06 + }, + { + "f1": 0.5526394728196435, + "fn": 187894, + "fn_rate": 0.6181516707735532, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999855645143139, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998363282394087, + "recall": 0.3818483292264468, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 116067, + "tp_rate": 0.3818483292264468, + "truth_threshold": 16.080000000000002 + }, + { + "f1": 0.5520349058760765, + "fn": 188069, + "fn_rate": 0.6187274025286139, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999857632490817, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998360811312127, + "recall": 0.38127259747138614, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115892, + "tp_rate": 0.38127259747138614, + "truth_threshold": 16.1 + }, + { + "f1": 0.5516623626609237, + "fn": 188177, + "fn_rate": 0.6190827112688799, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999859592478867, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998359282574717, + "recall": 0.38091728873112013, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115784, + "tp_rate": 0.38091728873112013, + "truth_threshold": 16.12 + }, + { + "f1": 0.5510203108837928, + "fn": 188363, + "fn_rate": 0.6196946318771158, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999861525483934, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998356643054223, + "recall": 0.3803053681228842, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115598, + "tp_rate": 0.3803053681228842, + "truth_threshold": 16.14 + }, + { + "f1": 0.5504515845993915, + "fn": 188528, + "fn_rate": 0.6202374646747445, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999863431877482, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998354294425389, + "recall": 0.37976253532525556, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115433, + "tp_rate": 0.37976253532525556, + "truth_threshold": 16.16 + }, + { + "f1": 0.5497483361561032, + "fn": 188731, + "fn_rate": 0.6209053135106148, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999865312025857, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998351395673715, + "recall": 0.37909468648938516, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115230, + "tp_rate": 0.37909468648938516, + "truth_threshold": 16.18 + }, + { + "f1": 0.5491045858948413, + "fn": 188917, + "fn_rate": 0.6215172341188507, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999867166290367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998348730695358, + "recall": 0.3784827658811492, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 115044, + "tp_rate": 0.3784827658811492, + "truth_threshold": 16.2 + }, + { + "f1": 0.5485434343530805, + "fn": 189079, + "fn_rate": 0.6220501972292498, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999868995027343, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998346402555244, + "recall": 0.3779498027707502, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114882, + "tp_rate": 0.3779498027707502, + "truth_threshold": 16.22 + }, + { + "f1": 0.5479380729233841, + "fn": 189254, + "fn_rate": 0.6226259289843105, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999870798588212, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998343880201523, + "recall": 0.37737407101568954, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114707, + "tp_rate": 0.37737407101568954, + "truth_threshold": 16.240000000000002 + }, + { + "f1": 0.5474384888493867, + "fn": 189398, + "fn_rate": 0.6230996739713318, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999872577319563, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998341798886387, + "recall": 0.37690032602866813, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114563, + "tp_rate": 0.37690032602866813, + "truth_threshold": 16.26 + }, + { + "f1": 0.5469337807542101, + "fn": 189543, + "fn_rate": 0.6235767088540964, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999874331563213, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998339697825004, + "recall": 0.37642329114590356, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114418, + "tp_rate": 0.37642329114590356, + "truth_threshold": 16.28 + }, + { + "f1": 0.5463896327467482, + "fn": 189700, + "fn_rate": 0.6240932224857795, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999876061656275, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998337416870844, + "recall": 0.3759067775142206, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114261, + "tp_rate": 0.3759067775142206, + "truth_threshold": 16.3 + }, + { + "f1": 0.5459168053881331, + "fn": 189836, + "fn_rate": 0.6245406483068552, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999877767931221, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998335435940566, + "recall": 0.37545935169314487, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 114125, + "tp_rate": 0.37545935169314487, + "truth_threshold": 16.32 + }, + { + "f1": 0.545457590460605, + "fn": 189968, + "fn_rate": 0.624974914544958, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999879450715947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998333508753464, + "recall": 0.37502508545504193, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113993, + "tp_rate": 0.37502508545504193, + "truth_threshold": 16.34 + }, + { + "f1": 0.5450398705761849, + "fn": 190088, + "fn_rate": 0.6253697020341425, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999881110333831, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998331752888702, + "recall": 0.37463029796585745, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113873, + "tp_rate": 0.37463029796585745, + "truth_threshold": 16.36 + }, + { + "f1": 0.5445243521728306, + "fn": 190236, + "fn_rate": 0.6258566066041367, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999882747103807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998329582219722, + "recall": 0.3741433933958633, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113725, + "tp_rate": 0.3741433933958633, + "truth_threshold": 16.38 + }, + { + "f1": 0.5439387262415696, + "fn": 190404, + "fn_rate": 0.626409309088995, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999884361340411, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998327111361556, + "recall": 0.37359069091100505, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113557, + "tp_rate": 0.37359069091100505, + "truth_threshold": 16.4 + }, + { + "f1": 0.5434106558437514, + "fn": 190555, + "fn_rate": 0.6269060833462188, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999885953353853, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998324884284769, + "recall": 0.3730939166537812, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113406, + "tp_rate": 0.3730939166537812, + "truth_threshold": 16.42 + }, + { + "f1": 0.5428778233692526, + "fn": 190708, + "fn_rate": 0.6274094373949289, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999887523450072, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998322621654072, + "recall": 0.37259056260507106, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113253, + "tp_rate": 0.37259056260507106, + "truth_threshold": 16.44 + }, + { + "f1": 0.5423140369048989, + "fn": 190869, + "fn_rate": 0.6279391106095847, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999889071930795, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999832023410632, + "recall": 0.3720608893904152, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 113092, + "tp_rate": 0.3720608893904152, + "truth_threshold": 16.46 + }, + { + "f1": 0.5416404799485701, + "fn": 191062, + "fn_rate": 0.6285740604880231, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999890599093596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998317363042207, + "recall": 0.3714259395119769, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112899, + "tp_rate": 0.3714259395119769, + "truth_threshold": 16.48 + }, + { + "f1": 0.5411037468264519, + "fn": 191215, + "fn_rate": 0.6290774145367334, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999892105231952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998315080033698, + "recall": 0.3709225854632667, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112746, + "tp_rate": 0.3709225854632667, + "truth_threshold": 16.5 + }, + { + "f1": 0.5405924432281914, + "fn": 191361, + "fn_rate": 0.6295577393152411, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999893590635301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998312895692556, + "recall": 0.3704422606847589, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112600, + "tp_rate": 0.3704422606847589, + "truth_threshold": 16.52 + }, + { + "f1": 0.5400224775224776, + "fn": 191524, + "fn_rate": 0.6300939923213833, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999895055589096, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998310450309454, + "recall": 0.36990600767861664, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112437, + "tp_rate": 0.36990600767861664, + "truth_threshold": 16.54 + }, + { + "f1": 0.5394003459542571, + "fn": 191701, + "fn_rate": 0.6306763038679304, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999989650037486, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998307786852394, + "recall": 0.36932369613206956, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112260, + "tp_rate": 0.36932369613206956, + "truth_threshold": 16.56 + }, + { + "f1": 0.5389159388803707, + "fn": 191839, + "fn_rate": 0.6311303094804925, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999897925270239, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998305704425678, + "recall": 0.3688696905195074, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 112122, + "tp_rate": 0.3688696905195074, + "truth_threshold": 16.580000000000002 + }, + { + "f1": 0.5384079085287867, + "fn": 191984, + "fn_rate": 0.6316073443632572, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999989933054906, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998303510839673, + "recall": 0.3683926556367429, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111977, + "tp_rate": 0.3683926556367429, + "truth_threshold": 16.6 + }, + { + "f1": 0.5378876789287363, + "fn": 192132, + "fn_rate": 0.6320942489332513, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999900716481379, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998301266003863, + "recall": 0.3679057510667487, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111829, + "tp_rate": 0.3679057510667487, + "truth_threshold": 16.62 + }, + { + "f1": 0.5374256034719181, + "fn": 192263, + "fn_rate": 0.6325252252756111, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999902083333535, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998299274058559, + "recall": 0.367474774724389, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111698, + "tp_rate": 0.367474774724389, + "truth_threshold": 16.64 + }, + { + "f1": 0.5367756779913934, + "fn": 192448, + "fn_rate": 0.6331338559881038, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.99999034313682, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99982964530359, + "recall": 0.36686614401189627, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111513, + "tp_rate": 0.36686614401189627, + "truth_threshold": 16.66 + }, + { + "f1": 0.5363551883362945, + "fn": 192567, + "fn_rate": 0.633525353581545, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999904760844428, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998294633480832, + "recall": 0.366474646418455, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111394, + "tp_rate": 0.366474646418455, + "truth_threshold": 16.68 + }, + { + "f1": 0.5358828629226472, + "fn": 192701, + "fn_rate": 0.6339661996111343, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999906072017711, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998292579911753, + "recall": 0.3660338003888657, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111260, + "tp_rate": 0.3660338003888657, + "truth_threshold": 16.7 + }, + { + "f1": 0.5353820061768546, + "fn": 192843, + "fn_rate": 0.6344333648066692, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999990736514002, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998290398337187, + "recall": 0.3655666351933307, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 111118, + "tp_rate": 0.3655666351933307, + "truth_threshold": 16.72 + }, + { + "f1": 0.5348666833754265, + "fn": 192989, + "fn_rate": 0.634913689585177, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999908640459861, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998288149489598, + "recall": 0.365086310414823, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110972, + "tp_rate": 0.365086310414823, + "truth_threshold": 16.740000000000002 + }, + { + "f1": 0.5344476800246847, + "fn": 193108, + "fn_rate": 0.6353051871786183, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999909898222314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998286312143734, + "recall": 0.36469481282138166, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110853, + "tp_rate": 0.36469481282138166, + "truth_threshold": 16.76 + }, + { + "f1": 0.5339175561032309, + "fn": 193258, + "fn_rate": 0.635798671540099, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999911138669091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998283990534853, + "recall": 0.3642013284599011, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110703, + "tp_rate": 0.3642013284599011, + "truth_threshold": 16.78 + }, + { + "f1": 0.5332336123911313, + "fn": 193451, + "fn_rate": 0.6364336214185372, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999912362038571, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998280994128238, + "recall": 0.36356637858146273, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110510, + "tp_rate": 0.36356637858146273, + "truth_threshold": 16.8 + }, + { + "f1": 0.5326884460920606, + "fn": 193605, + "fn_rate": 0.6369402653629906, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999913568565856, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998278595696489, + "recall": 0.36305973463700936, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110356, + "tp_rate": 0.36305973463700936, + "truth_threshold": 16.82 + }, + { + "f1": 0.5321641380242789, + "fn": 193753, + "fn_rate": 0.6374271699329849, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999914758482807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999827628439493, + "recall": 0.3625728300670152, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110208, + "tp_rate": 0.3625728300670152, + "truth_threshold": 16.84 + }, + { + "f1": 0.5317032879451671, + "fn": 193883, + "fn_rate": 0.6378548563796014, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999915932018099, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998274249071274, + "recall": 0.3621451436203987, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 110078, + "tp_rate": 0.3621451436203987, + "truth_threshold": 16.86 + }, + { + "f1": 0.531199567061916, + "fn": 194025, + "fn_rate": 0.6383220215751363, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999917089397252, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999827202037197, + "recall": 0.3616779784248637, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109936, + "tp_rate": 0.3616779784248637, + "truth_threshold": 16.88 + }, + { + "f1": 0.5305463440101321, + "fn": 194209, + "fn_rate": 0.6389273623918859, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999918230842687, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998269123903399, + "recall": 0.3610726376081142, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109752, + "tp_rate": 0.3610726376081142, + "truth_threshold": 16.9 + }, + { + "f1": 0.5301342307841089, + "fn": 194325, + "fn_rate": 0.6393089902980974, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999919356573761, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998267292873102, + "recall": 0.36069100970190254, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109636, + "tp_rate": 0.36069100970190254, + "truth_threshold": 16.92 + }, + { + "f1": 0.5294991244110334, + "fn": 194504, + "fn_rate": 0.6398978816361309, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999992046680681, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998264459790274, + "recall": 0.3601021183638691, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109457, + "tp_rate": 0.3601021183638691, + "truth_threshold": 16.94 + }, + { + "f1": 0.5289961673957648, + "fn": 194645, + "fn_rate": 0.6403617569359227, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999921561755195, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998262221612475, + "recall": 0.3596382430640773, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109316, + "tp_rate": 0.3596382430640773, + "truth_threshold": 16.96 + }, + { + "f1": 0.5285119566269726, + "fn": 194781, + "fn_rate": 0.6408091827569984, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999922641629336, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998260057326532, + "recall": 0.35919081724300156, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109180, + "tp_rate": 0.35919081724300156, + "truth_threshold": 16.98 + }, + { + "f1": 0.528096416345069, + "fn": 194898, + "fn_rate": 0.6411941005589533, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999992370663676, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998258191085605, + "recall": 0.35880589944104674, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 109063, + "tp_rate": 0.35880589944104674, + "truth_threshold": 17 + }, + { + "f1": 0.5276116113594862, + "fn": 195034, + "fn_rate": 0.641641526380029, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999924756982134, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999825601674224, + "recall": 0.358358473619971, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108927, + "tp_rate": 0.358358473619971, + "truth_threshold": 17.02 + }, + { + "f1": 0.5272286821705426, + "fn": 195141, + "fn_rate": 0.6419935452245519, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999925792867308, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998254302226224, + "recall": 0.3580064547754482, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108820, + "tp_rate": 0.3580064547754482, + "truth_threshold": 17.04 + }, + { + "f1": 0.5267053110126693, + "fn": 195288, + "fn_rate": 0.6424771598988028, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999926814491356, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998251941265226, + "recall": 0.35752284010119717, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108673, + "tp_rate": 0.35752284010119717, + "truth_threshold": 17.06 + }, + { + "f1": 0.5262910388426707, + "fn": 195404, + "fn_rate": 0.6428587878050145, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999927822050607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998250073681109, + "recall": 0.3571412121949855, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108557, + "tp_rate": 0.3571412121949855, + "truth_threshold": 17.080000000000002 + }, + { + "f1": 0.5257930445831455, + "fn": 195543, + "fn_rate": 0.6433160833133198, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999928815738692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998247830537547, + "recall": 0.3566839166866802, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108418, + "tp_rate": 0.3566839166866802, + "truth_threshold": 17.1 + }, + { + "f1": 0.5253544972518277, + "fn": 195666, + "fn_rate": 0.6437207404897339, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999929795746573, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998245840796204, + "recall": 0.3562792595102661, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108295, + "tp_rate": 0.3562792595102661, + "truth_threshold": 17.12 + }, + { + "f1": 0.5245027133551438, + "fn": 195904, + "fn_rate": 0.6445037356766165, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999930762262584, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998241977867427, + "recall": 0.3554962643233836, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 108057, + "tp_rate": 0.3554962643233836, + "truth_threshold": 17.14 + }, + { + "f1": 0.5240728692257645, + "fn": 196024, + "fn_rate": 0.6448985231658009, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999931715472467, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998240023713365, + "recall": 0.3551014768341991, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107937, + "tp_rate": 0.3551014768341991, + "truth_threshold": 17.16 + }, + { + "f1": 0.52362843377239, + "fn": 196148, + "fn_rate": 0.6453064702379582, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999932655559404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998237999851621, + "recall": 0.3546935297620418, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107813, + "tp_rate": 0.3546935297620418, + "truth_threshold": 17.18 + }, + { + "f1": 0.5231980800248742, + "fn": 196268, + "fn_rate": 0.6457012577271426, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999993358270406, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998236036838978, + "recall": 0.35429874227285735, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107693, + "tp_rate": 0.35429874227285735, + "truth_threshold": 17.2 + }, + { + "f1": 0.5227051825356712, + "fn": 196405, + "fn_rate": 0.6461519734439616, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999934497084612, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998233790378805, + "recall": 0.3538480265560384, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107556, + "tp_rate": 0.3538480265560384, + "truth_threshold": 17.22 + }, + { + "f1": 0.5221162354268156, + "fn": 196569, + "fn_rate": 0.646691516345847, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999935398876778, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998231093649627, + "recall": 0.353308483654153, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107392, + "tp_rate": 0.353308483654153, + "truth_threshold": 17.240000000000002 + }, + { + "f1": 0.5217497021421451, + "fn": 196671, + "fn_rate": 0.6470270857116538, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999936288253866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998229412258058, + "recall": 0.3529729142883462, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107290, + "tp_rate": 0.3529729142883462, + "truth_threshold": 17.26 + }, + { + "f1": 0.5213303109312372, + "fn": 196788, + "fn_rate": 0.6474120035136086, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999993716538679, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998227479662661, + "recall": 0.35258799648639133, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107173, + "tp_rate": 0.35258799648639133, + "truth_threshold": 17.28 + }, + { + "f1": 0.5208073808782311, + "fn": 196933, + "fn_rate": 0.6478890383963732, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999938030444118, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998225078703747, + "recall": 0.35211096160362676, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 107028, + "tp_rate": 0.35211096160362676, + "truth_threshold": 17.3 + }, + { + "f1": 0.5201641562892501, + "fn": 197112, + "fn_rate": 0.6484779297344068, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999938883592091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999822210577535, + "recall": 0.3515220702655933, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106849, + "tp_rate": 0.3515220702655933, + "truth_threshold": 17.32 + }, + { + "f1": 0.5197822371336329, + "fn": 197218, + "fn_rate": 0.6488266586831863, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999939724994668, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998220340570615, + "recall": 0.35117334131681366, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106743, + "tp_rate": 0.35117334131681366, + "truth_threshold": 17.34 + }, + { + "f1": 0.5191693135096164, + "fn": 197388, + "fn_rate": 0.649385940959531, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999940554813546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998217502251576, + "recall": 0.350614059040469, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106573, + "tp_rate": 0.350614059040469, + "truth_threshold": 17.36 + }, + { + "f1": 0.5186881730909799, + "fn": 197521, + "fn_rate": 0.6498234970933771, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999941373208195, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998215275364225, + "recall": 0.3501765029066229, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106440, + "tp_rate": 0.3501765029066229, + "truth_threshold": 17.38 + }, + { + "f1": 0.5180598957698551, + "fn": 197695, + "fn_rate": 0.6503959389526945, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999942180335896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998212353577645, + "recall": 0.3496040610473054, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106266, + "tp_rate": 0.3496040610473054, + "truth_threshold": 17.400000000000002 + }, + { + "f1": 0.5173804681288988, + "fn": 197883, + "fn_rate": 0.6510144393524169, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999942976351759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998209185933626, + "recall": 0.34898556064758307, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 106078, + "tp_rate": 0.34898556064758307, + "truth_threshold": 17.42 + }, + { + "f1": 0.5167993832581923, + "fn": 198044, + "fn_rate": 0.6515441125670728, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999943761408759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999820646428032, + "recall": 0.34845588743292727, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105917, + "tp_rate": 0.34845588743292727, + "truth_threshold": 17.44 + }, + { + "f1": 0.5163311922844146, + "fn": 198173, + "fn_rate": 0.651968509117946, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999994453565777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999820427759978, + "recall": 0.34803149088205393, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105788, + "tp_rate": 0.34803149088205393, + "truth_threshold": 17.46 + }, + { + "f1": 0.5156550612822892, + "fn": 198360, + "fn_rate": 0.6525837196219252, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999945299247582, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998201098276841, + "recall": 0.3474162803780748, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105601, + "tp_rate": 0.3474162803780748, + "truth_threshold": 17.48 + }, + { + "f1": 0.5151402654370136, + "fn": 198502, + "fn_rate": 0.6530508848174601, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999946052324943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998198676501261, + "recall": 0.34694911518253985, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105459, + "tp_rate": 0.34694911518253985, + "truth_threshold": 17.5 + }, + { + "f1": 0.514583933972821, + "fn": 198655, + "fn_rate": 0.6535542388661704, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999946795034576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998196059814859, + "recall": 0.3464457611338297, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105306, + "tp_rate": 0.3464457611338297, + "truth_threshold": 17.52 + }, + { + "f1": 0.5140683964569931, + "fn": 198797, + "fn_rate": 0.6540214040617053, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999947527519214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998193624445015, + "recall": 0.3459785959382947, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105164, + "tp_rate": 0.3459785959382947, + "truth_threshold": 17.54 + }, + { + "f1": 0.5136228057307711, + "fn": 198920, + "fn_rate": 0.6544260612381194, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999948249919623, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998191509613554, + "recall": 0.34557393876188064, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 105041, + "tp_rate": 0.34557393876188064, + "truth_threshold": 17.56 + }, + { + "f1": 0.5130920528084446, + "fn": 199066, + "fn_rate": 0.6549063860166271, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999948962374636, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998188992889414, + "recall": 0.34509361398337285, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104895, + "tp_rate": 0.34509361398337285, + "truth_threshold": 17.580000000000002 + }, + { + "f1": 0.5125851405308072, + "fn": 199205, + "fn_rate": 0.6553636815249325, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999994966502117, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998186590312574, + "recall": 0.34463631847506754, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104756, + "tp_rate": 0.34463631847506754, + "truth_threshold": 17.6 + }, + { + "f1": 0.512196912595319, + "fn": 199312, + "fn_rate": 0.6557157003694553, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999950357994258, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998184736500172, + "recall": 0.3442842996305447, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104649, + "tp_rate": 0.3442842996305447, + "truth_threshold": 17.62 + }, + { + "f1": 0.5116602445150582, + "fn": 199459, + "fn_rate": 0.6561993150437062, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999951041427074, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998182183484658, + "recall": 0.34380068495629373, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104502, + "tp_rate": 0.34380068495629373, + "truth_threshold": 17.64 + }, + { + "f1": 0.5110551631579463, + "fn": 199625, + "fn_rate": 0.6567454377370782, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999951715450961, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998179291840352, + "recall": 0.3432545622629219, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104336, + "tp_rate": 0.3432545622629219, + "truth_threshold": 17.66 + }, + { + "f1": 0.5105079795965367, + "fn": 199775, + "fn_rate": 0.6572389220985587, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999995238019545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998176670985077, + "recall": 0.3427610779014413, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104186, + "tp_rate": 0.3427610779014413, + "truth_threshold": 17.68 + }, + { + "f1": 0.5100042153969826, + "fn": 199913, + "fn_rate": 0.6576929277111209, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999953035788293, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999817425312539, + "recall": 0.3423070722888792, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 104048, + "tp_rate": 0.3423070722888792, + "truth_threshold": 17.7 + }, + { + "f1": 0.5096292446632216, + "fn": 200016, + "fn_rate": 0.6580317869726708, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999953682355479, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998172444307645, + "recall": 0.34196821302732916, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103945, + "tp_rate": 0.34196821302732916, + "truth_threshold": 17.72 + }, + { + "f1": 0.5090810105597708, + "fn": 200166, + "fn_rate": 0.6585252713341514, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999954320021266, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998169803687363, + "recall": 0.3414747286658486, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103795, + "tp_rate": 0.3414747286658486, + "truth_threshold": 17.740000000000002 + }, + { + "f1": 0.5085640550101317, + "fn": 200307, + "fn_rate": 0.6589891466339431, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999954948908198, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998167314537054, + "recall": 0.34101085336605685, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103654, + "tp_rate": 0.34101085336605685, + "truth_threshold": 17.76 + }, + { + "f1": 0.5079393906671051, + "fn": 200478, + "fn_rate": 0.659551718806031, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999955569137137, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998164286680451, + "recall": 0.34044828119396897, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103483, + "tp_rate": 0.34044828119396897, + "truth_threshold": 17.78 + }, + { + "f1": 0.5073703438184372, + "fn": 200633, + "fn_rate": 0.6600616526462276, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999956180827274, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998161533474605, + "recall": 0.3399383473537724, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103328, + "tp_rate": 0.3399383473537724, + "truth_threshold": 17.8 + }, + { + "f1": 0.506805778648865, + "fn": 200787, + "fn_rate": 0.6605682965906811, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999956784096167, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998158789840396, + "recall": 0.33943170340931894, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103174, + "tp_rate": 0.33943170340931894, + "truth_threshold": 17.82 + }, + { + "f1": 0.5062701470241371, + "fn": 200933, + "fn_rate": 0.6610486213691888, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999995737905975, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998156181160053, + "recall": 0.3389513786308112, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 103028, + "tp_rate": 0.3389513786308112, + "truth_threshold": 17.84 + }, + { + "f1": 0.5058149251383687, + "fn": 201057, + "fn_rate": 0.6614565684413461, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999957965832362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998153959756323, + "recall": 0.3385434315586539, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102904, + "tp_rate": 0.3385434315586539, + "truth_threshold": 17.86 + }, + { + "f1": 0.5053349461096688, + "fn": 201188, + "fn_rate": 0.6618875447837058, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999958544526771, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999815160712896, + "recall": 0.3381124552162942, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102773, + "tp_rate": 0.3381124552162942, + "truth_threshold": 17.88 + }, + { + "f1": 0.5048301099809157, + "fn": 201325, + "fn_rate": 0.6623382605005247, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999959115254188, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998149140324387, + "recall": 0.33766173949947526, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102636, + "tp_rate": 0.33766173949947526, + "truth_threshold": 17.900000000000002 + }, + { + "f1": 0.5043568536185749, + "fn": 201454, + "fn_rate": 0.662762657051398, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999959678124296, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998146811540487, + "recall": 0.33723734294860197, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102507, + "tp_rate": 0.33723734294860197, + "truth_threshold": 17.92 + }, + { + "f1": 0.5038513596653131, + "fn": 201591, + "fn_rate": 0.663213372768217, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999960233245266, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998144331910654, + "recall": 0.33678662723178304, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102370, + "tp_rate": 0.33678662723178304, + "truth_threshold": 17.94 + }, + { + "f1": 0.5033430819375104, + "fn": 201729, + "fn_rate": 0.6636673783807792, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999960780723782, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999814182746379, + "recall": 0.3363326216192209, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102232, + "tp_rate": 0.3363326216192209, + "truth_threshold": 17.96 + }, + { + "f1": 0.5028172621334358, + "fn": 201872, + "fn_rate": 0.6641378334720572, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999996132066506, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998139225134172, + "recall": 0.3358621665279427, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 102089, + "tp_rate": 0.3358621665279427, + "truth_threshold": 17.98 + }, + { + "f1": 0.5022197257493114, + "fn": 202034, + "fn_rate": 0.6646707965824563, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999961853172863, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999813626822043, + "recall": 0.3353292034175437, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101927, + "tp_rate": 0.3353292034175437, + "truth_threshold": 18 + }, + { + "f1": 0.5018580215274219, + "fn": 202132, + "fn_rate": 0.6649932063652902, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999962378349528, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998134474903778, + "recall": 0.3350067936347097, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101829, + "tp_rate": 0.3350067936347097, + "truth_threshold": 18.02 + }, + { + "f1": 0.5012400096636936, + "fn": 202299, + "fn_rate": 0.6655426189544054, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999962896295986, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998131410981402, + "recall": 0.3344573810455947, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101662, + "tp_rate": 0.3344573810455947, + "truth_threshold": 18.04 + }, + { + "f1": 0.5007669278989135, + "fn": 202427, + "fn_rate": 0.6659637256095354, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999963407111775, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998129055763986, + "recall": 0.33403627439046457, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101534, + "tp_rate": 0.33403627439046457, + "truth_threshold": 18.06 + }, + { + "f1": 0.5000912836454248, + "fn": 202610, + "fn_rate": 0.6665657765305417, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999963910895062, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998125678208543, + "recall": 0.3334342234694583, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101351, + "tp_rate": 0.3334342234694583, + "truth_threshold": 18.080000000000002 + }, + { + "f1": 0.4995236661417945, + "fn": 202763, + "fn_rate": 0.667069130579252, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999964407742665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998122844976635, + "recall": 0.33293086942074807, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101198, + "tp_rate": 0.33293086942074807, + "truth_threshold": 18.1 + }, + { + "f1": 0.4989654985112067, + "fn": 202914, + "fn_rate": 0.6675659048364757, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.999996489775007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998120040369659, + "recall": 0.3324340951635243, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 101047, + "tp_rate": 0.3324340951635243, + "truth_threshold": 18.12 + }, + { + "f1": 0.4983673610527928, + "fn": 203075, + "fn_rate": 0.6680955780511315, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999965381011445, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998117040780933, + "recall": 0.33190442194886843, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 100886, + "tp_rate": 0.33190442194886843, + "truth_threshold": 18.14 + }, + { + "f1": 0.4978701955862151, + "fn": 203209, + "fn_rate": 0.6685364240807209, + "fp": 19, + "fp_rate": 0.00010927767457108513, + "match_probability": 0.9999965857619664, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998114536920344, + "recall": 0.3314635759192791, + "row_count": 477830, + "tn": 173850, + "tn_rate": 0.9998907223254289, + "tp": 100752, + "tp_rate": 0.3314635759192791, + "truth_threshold": 18.16 + }, + { + "f1": 0.49744694943823003, + "fn": 203324, + "fn_rate": 0.6689147620911894, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999996632766632, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998311045760725, + "recall": 0.33108523790881067, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 100637, + "tp_rate": 0.33108523790881067, + "truth_threshold": 18.18 + }, + { + "f1": 0.4968599798247523, + "fn": 203482, + "fn_rate": 0.6694345656186156, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999966791241749, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998308390383697, + "recall": 0.33056543438138447, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 100479, + "tp_rate": 0.33056543438138447, + "truth_threshold": 18.2 + }, + { + "f1": 0.4963494261970716, + "fn": 203619, + "fn_rate": 0.6698852813354345, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999996724843504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998306081168604, + "recall": 0.33011471866456554, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 100342, + "tp_rate": 0.33011471866456554, + "truth_threshold": 18.22 + }, + { + "f1": 0.4956722703630938, + "fn": 203801, + "fn_rate": 0.6704840423606976, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999967699334056, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998303003683481, + "recall": 0.3295159576393024, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 100160, + "tp_rate": 0.3295159576393024, + "truth_threshold": 18.240000000000002 + }, + { + "f1": 0.4951211663655041, + "fn": 203949, + "fn_rate": 0.6709709469306918, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999968144025453, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998300492857072, + "recall": 0.32902905306930824, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 100012, + "tp_rate": 0.32902905306930824, + "truth_threshold": 18.26 + }, + { + "f1": 0.4946740287716344, + "fn": 204069, + "fn_rate": 0.6713657344198762, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999996858259469, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998298451590948, + "recall": 0.32863426558012376, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99892, + "tp_rate": 0.32863426558012376, + "truth_threshold": 18.28 + }, + { + "f1": 0.4941346068105934, + "fn": 204214, + "fn_rate": 0.6718427693026408, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999969015126052, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998295978509282, + "recall": 0.3281572306973592, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99747, + "tp_rate": 0.3281572306973592, + "truth_threshold": 18.3 + }, + { + "f1": 0.49367195242814665, + "fn": 204338, + "fn_rate": 0.672250716374798, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999969441702665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998293857888398, + "recall": 0.3277492836252019, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99623, + "tp_rate": 0.3277492836252019, + "truth_threshold": 18.32 + }, + { + "f1": 0.49317913688322246, + "fn": 204470, + "fn_rate": 0.672684982612901, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999969862406507, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998291594645656, + "recall": 0.327315017387099, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99491, + "tp_rate": 0.327315017387099, + "truth_threshold": 18.34 + }, + { + "f1": 0.4926785244983066, + "fn": 204604, + "fn_rate": 0.6731258286424903, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999970277318428, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998289290961418, + "recall": 0.3268741713575097, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99357, + "tp_rate": 0.3268741713575097, + "truth_threshold": 18.36 + }, + { + "f1": 0.492110262858957, + "fn": 204756, + "fn_rate": 0.6736258927954573, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999997068651817, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998286670294895, + "recall": 0.3263741072045427, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99205, + "tp_rate": 0.3263741072045427, + "truth_threshold": 18.38 + }, + { + "f1": 0.4915216388024594, + "fn": 204913, + "fn_rate": 0.6741424064271403, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999997109008437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998283954979054, + "recall": 0.32585759357285965, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 99048, + "tp_rate": 0.32585759357285965, + "truth_threshold": 18.400000000000002 + }, + { + "f1": 0.4909899623713029, + "fn": 205055, + "fn_rate": 0.6746095716226753, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999971488094587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998281491665234, + "recall": 0.32539042837732474, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98906, + "tp_rate": 0.32539042837732474, + "truth_threshold": 18.42 + }, + { + "f1": 0.4906427667022518, + "fn": 205148, + "fn_rate": 0.6749155319267932, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999997188062531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998279874532024, + "recall": 0.32508446807320673, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98813, + "tp_rate": 0.32508446807320673, + "truth_threshold": 18.44 + }, + { + "f1": 0.49033542914469047, + "fn": 205230, + "fn_rate": 0.675185303377736, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999972267751978, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998278446145745, + "recall": 0.32481469662226403, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98731, + "tp_rate": 0.32481469662226403, + "truth_threshold": 18.46 + }, + { + "f1": 0.48984042764596003, + "fn": 205362, + "fn_rate": 0.6756195696158389, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999972649548987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998276141802547, + "recall": 0.32438043038416114, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98599, + "tp_rate": 0.32438043038416114, + "truth_threshold": 18.48 + }, + { + "f1": 0.4893776680067784, + "fn": 205485, + "fn_rate": 0.6760242267922529, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999973026089712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998273989014448, + "recall": 0.32397577320774706, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98476, + "tp_rate": 0.32397577320774706, + "truth_threshold": 18.5 + }, + { + "f1": 0.4889696379217784, + "fn": 205594, + "fn_rate": 0.6763828254282622, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999973397446519, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998272076760449, + "recall": 0.32361717457173783, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98367, + "tp_rate": 0.32361717457173783, + "truth_threshold": 18.52 + }, + { + "f1": 0.4884762837693367, + "fn": 205725, + "fn_rate": 0.6768138017706219, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999973763690773, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998269772933142, + "recall": 0.3231861982293781, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98236, + "tp_rate": 0.3231861982293781, + "truth_threshold": 18.54 + }, + { + "f1": 0.4881455066322496, + "fn": 205813, + "fn_rate": 0.6771033125960239, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999997412489286, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998268221871339, + "recall": 0.32289668740397615, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98148, + "tp_rate": 0.32289668740397615, + "truth_threshold": 18.56 + }, + { + "f1": 0.4876565935979463, + "fn": 205943, + "fn_rate": 0.6775309990426404, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999974481122197, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998265925434794, + "recall": 0.32246900095735964, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 98018, + "tp_rate": 0.32246900095735964, + "truth_threshold": 18.580000000000002 + }, + { + "f1": 0.4872852678304835, + "fn": 206042, + "fn_rate": 0.6778566987212176, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999974832447245, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999826417252083, + "recall": 0.3221433012787825, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97919, + "tp_rate": 0.3221433012787825, + "truth_threshold": 18.6 + }, + { + "f1": 0.48674306537366335, + "fn": 206186, + "fn_rate": 0.6783304437082389, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999975178935521, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998261616492147, + "recall": 0.32166955629176114, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97775, + "tp_rate": 0.32166955629176114, + "truth_threshold": 18.62 + }, + { + "f1": 0.486290932993387, + "fn": 206306, + "fn_rate": 0.6787252311974233, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999975520653613, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999825948071095, + "recall": 0.32127476880257666, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97655, + "tp_rate": 0.32127476880257666, + "truth_threshold": 18.64 + }, + { + "f1": 0.485898866330617, + "fn": 206410, + "fn_rate": 0.6790673803547166, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999975857667196, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998257625450968, + "recall": 0.32093261964528347, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97551, + "tp_rate": 0.32093261964528347, + "truth_threshold": 18.66 + }, + { + "f1": 0.48544124681122447, + "fn": 206531, + "fn_rate": 0.6794654577396443, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999976190041034, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998255461943415, + "recall": 0.32053454226035577, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97430, + "tp_rate": 0.32053454226035577, + "truth_threshold": 18.68 + }, + { + "f1": 0.4848373076002871, + "fn": 206691, + "fn_rate": 0.6799918410585568, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999976517839005, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998252592843854, + "recall": 0.32000815894144313, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97270, + "tp_rate": 0.32000815894144313, + "truth_threshold": 18.7 + }, + { + "f1": 0.48399597031599106, + "fn": 206914, + "fn_rate": 0.6807254878092913, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999976841124106, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998248578257645, + "recall": 0.3192745121907087, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 97047, + "tp_rate": 0.3192745121907087, + "truth_threshold": 18.72 + }, + { + "f1": 0.483529640660311, + "fn": 207037, + "fn_rate": 0.6811301449857055, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999977159958466, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998246356030988, + "recall": 0.3188698550142946, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96924, + "tp_rate": 0.3188698550142946, + "truth_threshold": 18.740000000000002 + }, + { + "f1": 0.4829973051202715, + "fn": 207178, + "fn_rate": 0.6815940202854972, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999977474403359, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998243801652893, + "recall": 0.31840597971450285, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96783, + "tp_rate": 0.31840597971450285, + "truth_threshold": 18.76 + }, + { + "f1": 0.48238642036944585, + "fn": 207339, + "fn_rate": 0.682123693500153, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999977784519215, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998240875836878, + "recall": 0.317876306499847, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96622, + "tp_rate": 0.317876306499847, + "truth_threshold": 18.78 + }, + { + "f1": 0.48206813210957866, + "fn": 207423, + "fn_rate": 0.6824000447425821, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999978090365634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998239345450779, + "recall": 0.3175999552574179, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96538, + "tp_rate": 0.3175999552574179, + "truth_threshold": 18.8 + }, + { + "f1": 0.48156769501278773, + "fn": 207555, + "fn_rate": 0.682834310980685, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999978392001393, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998236935171069, + "recall": 0.31716568901931497, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96406, + "tp_rate": 0.31716568901931497, + "truth_threshold": 18.82 + }, + { + "f1": 0.48109469392242005, + "fn": 207680, + "fn_rate": 0.6832455479485855, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999978689484461, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998234646617791, + "recall": 0.3167544520514145, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96281, + "tp_rate": 0.3167544520514145, + "truth_threshold": 18.84 + }, + { + "f1": 0.4806999305267472, + "fn": 207784, + "fn_rate": 0.6835876971058787, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999997898287201, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998232738008608, + "recall": 0.3164123028941213, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96177, + "tp_rate": 0.3164123028941213, + "truth_threshold": 18.86 + }, + { + "f1": 0.4801935893525856, + "fn": 207917, + "fn_rate": 0.6840252532397249, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999979272220422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998230291169153, + "recall": 0.31597474676027515, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 96044, + "tp_rate": 0.31597474676027515, + "truth_threshold": 18.88 + }, + { + "f1": 0.4797831533779763, + "fn": 208025, + "fn_rate": 0.6843805619799909, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999979557585305, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998228299271519, + "recall": 0.31561943802000914, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95936, + "tp_rate": 0.31561943802000914, + "truth_threshold": 18.900000000000002 + }, + { + "f1": 0.4792583846954294, + "fn": 208163, + "fn_rate": 0.684834567592553, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999979839021501, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998225747534311, + "recall": 0.315165432407447, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95798, + "tp_rate": 0.315165432407447, + "truth_threshold": 18.92 + }, + { + "f1": 0.47877893156511947, + "fn": 208289, + "fn_rate": 0.6852490944561966, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999980116583098, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998223411259393, + "recall": 0.3147509055438033, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95672, + "tp_rate": 0.3147509055438033, + "truth_threshold": 18.94 + }, + { + "f1": 0.4782763229691779, + "fn": 208421, + "fn_rate": 0.6856833606942996, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999980390323437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998220957125067, + "recall": 0.3143166393057004, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95540, + "tp_rate": 0.3143166393057004, + "truth_threshold": 18.96 + }, + { + "f1": 0.47768952634689155, + "fn": 208575, + "fn_rate": 0.686190004638753, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999980660295127, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998218085385155, + "recall": 0.313809995361247, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95386, + "tp_rate": 0.313809995361247, + "truth_threshold": 18.98 + }, + { + "f1": 0.47732851117545105, + "fn": 208670, + "fn_rate": 0.6865025447343573, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999980926550052, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998216309229025, + "recall": 0.31349745526564265, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95291, + "tp_rate": 0.31349745526564265, + "truth_threshold": 19 + }, + { + "f1": 0.476809676999088, + "fn": 208806, + "fn_rate": 0.686949970555433, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998118913938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998213760349682, + "recall": 0.3130500294445669, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 95155, + "tp_rate": 0.3130500294445669, + "truth_threshold": 19.02 + }, + { + "f1": 0.47615299779426506, + "fn": 208978, + "fn_rate": 0.6875158326232642, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999981448113576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998210526315789, + "recall": 0.31248416737673584, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94983, + "tp_rate": 0.31248416737673584, + "truth_threshold": 19.04 + }, + { + "f1": 0.4756894995486912, + "fn": 209099, + "fn_rate": 0.6879139100081918, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999981703522411, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998208244184699, + "recall": 0.31208608999180815, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94862, + "tp_rate": 0.31208608999180815, + "truth_threshold": 19.06 + }, + { + "f1": 0.4751466021901289, + "fn": 209241, + "fn_rate": 0.6883810752037268, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998195541497, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998205558546291, + "recall": 0.31161892479627323, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94720, + "tp_rate": 0.31161892479627323, + "truth_threshold": 19.080000000000002 + }, + { + "f1": 0.47472578201049703, + "fn": 209351, + "fn_rate": 0.6887429637354793, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999982203839662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998203472581821, + "recall": 0.3112570362645208, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94610, + "tp_rate": 0.3112570362645208, + "truth_threshold": 19.1 + }, + { + "f1": 0.4741872173393634, + "fn": 209492, + "fn_rate": 0.689206839035271, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999982448844231, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998200791651674, + "recall": 0.31079316096472903, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94469, + "tp_rate": 0.31079316096472903, + "truth_threshold": 19.12 + }, + { + "f1": 0.4736228973135827, + "fn": 209639, + "fn_rate": 0.689690453709522, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998269047576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998197988106722, + "recall": 0.3103095462904781, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94322, + "tp_rate": 0.3103095462904781, + "truth_threshold": 19.14 + }, + { + "f1": 0.47316289115475413, + "fn": 209759, + "fn_rate": 0.6900852411987064, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999982928780689, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998195693013087, + "recall": 0.3099147588012936, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94202, + "tp_rate": 0.3099147588012936, + "truth_threshold": 19.16 + }, + { + "f1": 0.47260284297321337, + "fn": 209905, + "fn_rate": 0.6905655659772142, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999983163804814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99981928927535, + "recall": 0.3094344340227858, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 94056, + "tp_rate": 0.3094344340227858, + "truth_threshold": 19.18 + }, + { + "f1": 0.4720347034075087, + "fn": 210053, + "fn_rate": 0.6910524705472083, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999983395593304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998190045248869, + "recall": 0.30894752945279164, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93908, + "tp_rate": 0.30894752945279164, + "truth_threshold": 19.2 + }, + { + "f1": 0.47164290167528106, + "fn": 210155, + "fn_rate": 0.6913880399130151, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999983624190703, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998188077550281, + "recall": 0.3086119600869848, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93806, + "tp_rate": 0.3086119600869848, + "truth_threshold": 19.22 + }, + { + "f1": 0.4709971429721138, + "fn": 210323, + "fn_rate": 0.6919407423978734, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999983849640944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998184827291655, + "recall": 0.3080592576021266, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93638, + "tp_rate": 0.3080592576021266, + "truth_threshold": 19.240000000000002 + }, + { + "f1": 0.47044320103051285, + "fn": 210467, + "fn_rate": 0.6924144873848948, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999984071987357, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.99981820320604, + "recall": 0.30758551261510525, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93494, + "tp_rate": 0.30758551261510525, + "truth_threshold": 19.26 + }, + { + "f1": 0.470004378922785, + "fn": 210581, + "fn_rate": 0.69278953549962, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999984291272669, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998179813056094, + "recall": 0.30721046450038, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93380, + "tp_rate": 0.30721046450038, + "truth_threshold": 19.28 + }, + { + "f1": 0.469603830294975, + "fn": 210685, + "fn_rate": 0.6931316846569132, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999984507539025, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998177783970931, + "recall": 0.3068683153430868, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93276, + "tp_rate": 0.3068683153430868, + "truth_threshold": 19.3 + }, + { + "f1": 0.46915681702581974, + "fn": 210801, + "fn_rate": 0.6935133125631249, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999984720827987, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998175515416895, + "recall": 0.3064866874368751, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93160, + "tp_rate": 0.3064866874368751, + "truth_threshold": 19.32 + }, + { + "f1": 0.46854753388080006, + "fn": 210959, + "fn_rate": 0.6940331160905511, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999984931180547, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998172416388049, + "recall": 0.30596688390944893, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 93002, + "tp_rate": 0.30596688390944893, + "truth_threshold": 19.34 + }, + { + "f1": 0.4680586213500247, + "fn": 211086, + "fn_rate": 0.694450932849938, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999985138637129, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998169917753951, + "recall": 0.305549067150062, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92875, + "tp_rate": 0.305549067150062, + "truth_threshold": 19.36 + }, + { + "f1": 0.4676725007057305, + "fn": 211186, + "fn_rate": 0.6947799224242583, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999985343237603, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998167945512544, + "recall": 0.3052200775757416, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92775, + "tp_rate": 0.3052200775757416, + "truth_threshold": 19.38 + }, + { + "f1": 0.46709564200058495, + "fn": 211335, + "fn_rate": 0.6952701168899957, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998554502129, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998164998974558, + "recall": 0.30472988311000426, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92626, + "tp_rate": 0.30472988311000426, + "truth_threshold": 19.400000000000002 + }, + { + "f1": 0.4666239577080422, + "fn": 211457, + "fn_rate": 0.6956714841706666, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998574402697, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999816257930632, + "recall": 0.30432851582933335, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92504, + "tp_rate": 0.30432851582933335, + "truth_threshold": 19.42 + }, + { + "f1": 0.46600996159688335, + "fn": 211616, + "fn_rate": 0.6961945775938361, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999985940292888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999815941621013, + "recall": 0.3038054224061639, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92345, + "tp_rate": 0.3038054224061639, + "truth_threshold": 19.44 + }, + { + "f1": 0.4655066230514498, + "fn": 211746, + "fn_rate": 0.6966222640404526, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999986133856762, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998156821927314, + "recall": 0.3033777359595474, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92215, + "tp_rate": 0.3033777359595474, + "truth_threshold": 19.46 + }, + { + "f1": 0.46489442825615984, + "fn": 211904, + "fn_rate": 0.6971420675678788, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999986324755792, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998153659013402, + "recall": 0.3028579324321212, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 92057, + "tp_rate": 0.3028579324321212, + "truth_threshold": 19.48 + }, + { + "f1": 0.46413702506063054, + "fn": 212099, + "fn_rate": 0.6977835972378036, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999986513026666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998149740419465, + "recall": 0.30221640276219647, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91862, + "tp_rate": 0.30221640276219647, + "truth_threshold": 19.5 + }, + { + "f1": 0.4635831547450568, + "fn": 212242, + "fn_rate": 0.6982540523290817, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999986698705566, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998146856196041, + "recall": 0.30174594767091834, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91719, + "tp_rate": 0.30174594767091834, + "truth_threshold": 19.52 + }, + { + "f1": 0.46304713847273976, + "fn": 212380, + "fn_rate": 0.6987080579416438, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999986881828178, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998144064280879, + "recall": 0.3012919420583562, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91581, + "tp_rate": 0.3012919420583562, + "truth_threshold": 19.54 + }, + { + "f1": 0.4624434755338843, + "fn": 212535, + "fn_rate": 0.6992179917818404, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987062429692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998140918386317, + "recall": 0.3007820082181596, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91426, + "tp_rate": 0.3007820082181596, + "truth_threshold": 19.56 + }, + { + "f1": 0.46194557726752955, + "fn": 212663, + "fn_rate": 0.6996390984369706, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987240544819, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998138312434978, + "recall": 0.30036090156302947, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91298, + "tp_rate": 0.30036090156302947, + "truth_threshold": 19.580000000000002 + }, + { + "f1": 0.46158751366452083, + "fn": 212755, + "fn_rate": 0.6999417688453453, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987416207787, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998136434890323, + "recall": 0.3000582311546547, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91206, + "tp_rate": 0.3000582311546547, + "truth_threshold": 19.6 + }, + { + "f1": 0.46091764300831367, + "fn": 212927, + "fn_rate": 0.7005076309131764, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987589452358, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998132914520433, + "recall": 0.29949236908682364, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 91034, + "tp_rate": 0.29949236908682364, + "truth_threshold": 19.62 + }, + { + "f1": 0.46034857394660467, + "fn": 213073, + "fn_rate": 0.7009879556916842, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987760311826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998129915846213, + "recall": 0.29901204430831585, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90888, + "tp_rate": 0.29901204430831585, + "truth_threshold": 19.64 + }, + { + "f1": 0.45987272764120546, + "fn": 213195, + "fn_rate": 0.701389322972355, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999987928819026, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998127402707555, + "recall": 0.298610677027645, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90766, + "tp_rate": 0.298610677027645, + "truth_threshold": 19.66 + }, + { + "f1": 0.45945124114373753, + "fn": 213303, + "fn_rate": 0.701744631712621, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988095006345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999812517231872, + "recall": 0.298255368287379, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90658, + "tp_rate": 0.298255368287379, + "truth_threshold": 19.68 + }, + { + "f1": 0.45878732260828564, + "fn": 213473, + "fn_rate": 0.7023039139889657, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988258905718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998121650737528, + "recall": 0.2976960860110343, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90488, + "tp_rate": 0.2976960860110343, + "truth_threshold": 19.7 + }, + { + "f1": 0.45823231657215896, + "fn": 213615, + "fn_rate": 0.7027710791845007, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988420548644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998118699025044, + "recall": 0.29722892081549934, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90346, + "tp_rate": 0.29722892081549934, + "truth_threshold": 19.72 + }, + { + "f1": 0.4576769106656316, + "fn": 213757, + "fn_rate": 0.7032382443800356, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988579966191, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115738021082, + "recall": 0.29676175561996443, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90204, + "tp_rate": 0.29676175561996443, + "truth_threshold": 19.740000000000002 + }, + { + "f1": 0.45730119821561793, + "fn": 213853, + "fn_rate": 0.7035540743713832, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988737188994, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998113730929264, + "recall": 0.2964459256286168, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 90108, + "tp_rate": 0.2964459256286168, + "truth_threshold": 19.76 + }, + { + "f1": 0.4568548018640919, + "fn": 213967, + "fn_rate": 0.7039291224861084, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999988892247269, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998111341947096, + "recall": 0.2960708775138916, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89994, + "tp_rate": 0.2960708775138916, + "truth_threshold": 19.78 + }, + { + "f1": 0.4560761049541359, + "fn": 214166, + "fn_rate": 0.704583811739006, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989045170816, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998107157172761, + "recall": 0.29541618826099403, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89795, + "tp_rate": 0.29541618826099403, + "truth_threshold": 19.8 + }, + { + "f1": 0.45556622514873923, + "fn": 214296, + "fn_rate": 0.7050114981856225, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989195989024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998104413371691, + "recall": 0.2949885018143775, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89665, + "tp_rate": 0.2949885018143775, + "truth_threshold": 19.82 + }, + { + "f1": 0.4551922510087715, + "fn": 214391, + "fn_rate": 0.7053240382812269, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989344730877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998102403250472, + "recall": 0.29467596171877314, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89570, + "tp_rate": 0.29467596171877314, + "truth_threshold": 19.84 + }, + { + "f1": 0.4546397360487639, + "fn": 214532, + "fn_rate": 0.7057879135810187, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989491424962, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998099411935693, + "recall": 0.2942120864189814, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89429, + "tp_rate": 0.2942120864189814, + "truth_threshold": 19.86 + }, + { + "f1": 0.45417607453062386, + "fn": 214650, + "fn_rate": 0.7061761212787167, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999998963609947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999809690130754, + "recall": 0.29382387872128335, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89311, + "tp_rate": 0.29382387872128335, + "truth_threshold": 19.88 + }, + { + "f1": 0.4536649387777942, + "fn": 214780, + "fn_rate": 0.7066038077253332, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989778782205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998094127671024, + "recall": 0.2933961922746668, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89181, + "tp_rate": 0.2933961922746668, + "truth_threshold": 19.900000000000002 + }, + { + "f1": 0.4532821794017229, + "fn": 214877, + "fn_rate": 0.7069229276124239, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999989919500589, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998092052838913, + "recall": 0.293077072387576, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 89084, + "tp_rate": 0.293077072387576, + "truth_threshold": 19.92 + }, + { + "f1": 0.4529409070320174, + "fn": 214964, + "fn_rate": 0.7072091485420827, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990058281665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998090188060305, + "recall": 0.2927908514579173, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88997, + "tp_rate": 0.2927908514579173, + "truth_threshold": 19.94 + }, + { + "f1": 0.45247113446148207, + "fn": 215083, + "fn_rate": 0.707600646135524, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990195152105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998087631475336, + "recall": 0.292399353864476, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88878, + "tp_rate": 0.292399353864476, + "truth_threshold": 19.96 + }, + { + "f1": 0.4520349133277657, + "fn": 215194, + "fn_rate": 0.7079658245630196, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990330138213, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998085240583889, + "recall": 0.2920341754369804, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88767, + "tp_rate": 0.2920341754369804, + "truth_threshold": 19.98 + }, + { + "f1": 0.4515302483851906, + "fn": 215322, + "fn_rate": 0.7083869312181497, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990463265931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998082476087349, + "recall": 0.2916130687818503, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88639, + "tp_rate": 0.2916130687818503, + "truth_threshold": 20 + }, + { + "f1": 0.45087806916514633, + "fn": 215487, + "fn_rate": 0.7089297640157783, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990594560844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998078900679165, + "recall": 0.29107023598422166, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88474, + "tp_rate": 0.29107023598422166, + "truth_threshold": 20.02 + }, + { + "f1": 0.4503094507376857, + "fn": 215631, + "fn_rate": 0.7094035090027997, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990724048183, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998075769409261, + "recall": 0.2905964909972003, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88330, + "tp_rate": 0.2905964909972003, + "truth_threshold": 20.04 + }, + { + "f1": 0.4498906175899154, + "fn": 215737, + "fn_rate": 0.7097522379515793, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990851752837, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998073457916388, + "recall": 0.2902477620484207, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88224, + "tp_rate": 0.2902477620484207, + "truth_threshold": 20.06 + }, + { + "f1": 0.449294732814692, + "fn": 215888, + "fn_rate": 0.7102490122088031, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999990977699345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998070155522761, + "recall": 0.2897509877911969, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 88073, + "tp_rate": 0.2897509877911969, + "truth_threshold": 20.080000000000002 + }, + { + "f1": 0.4486723450729024, + "fn": 216045, + "fn_rate": 0.7107655258404861, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991101911914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998066709881387, + "recall": 0.28923447415951387, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87916, + "tp_rate": 0.28923447415951387, + "truth_threshold": 20.1 + }, + { + "f1": 0.4480675958543932, + "fn": 216198, + "fn_rate": 0.7112688798891963, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991224414414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998063340168604, + "recall": 0.2887311201108037, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87763, + "tp_rate": 0.2887311201108037, + "truth_threshold": 20.12 + }, + { + "f1": 0.44762376541003196, + "fn": 216310, + "fn_rate": 0.7116373482124352, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999999134523039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998060865994434, + "recall": 0.28836265178756487, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87651, + "tp_rate": 0.28836265178756487, + "truth_threshold": 20.14 + }, + { + "f1": 0.44707937837810224, + "fn": 216447, + "fn_rate": 0.7120880639292541, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991464383059, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998057830939896, + "recall": 0.28791193607074594, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87514, + "tp_rate": 0.28791193607074594, + "truth_threshold": 20.16 + }, + { + "f1": 0.44663498390311207, + "fn": 216559, + "fn_rate": 0.712456532252493, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991581895321, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998055342660063, + "recall": 0.2875434677475071, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87402, + "tp_rate": 0.2875434677475071, + "truth_threshold": 20.18 + }, + { + "f1": 0.4461954465992619, + "fn": 216670, + "fn_rate": 0.7128217106799886, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.999999169778976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998052870298254, + "recall": 0.28717828932001144, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87291, + "tp_rate": 0.28717828932001144, + "truth_threshold": 20.2 + }, + { + "f1": 0.44568980063506347, + "fn": 216797, + "fn_rate": 0.7132395274393755, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991812088648, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998050033837648, + "recall": 0.28676047256062454, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87164, + "tp_rate": 0.28676047256062454, + "truth_threshold": 20.22 + }, + { + "f1": 0.4452894844517185, + "fn": 216898, + "fn_rate": 0.713571806909439, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999991924813951, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998047772163527, + "recall": 0.28642819309056095, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 87063, + "tp_rate": 0.28642819309056095, + "truth_threshold": 20.240000000000002 + }, + { + "f1": 0.4447434664265395, + "fn": 217035, + "fn_rate": 0.714022522626258, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992035987335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999804469595022, + "recall": 0.285977477373742, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86926, + "tp_rate": 0.285977477373742, + "truth_threshold": 20.26 + }, + { + "f1": 0.44438530861228104, + "fn": 217125, + "fn_rate": 0.7143186132431463, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992145630165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998042669798395, + "recall": 0.2856813867568537, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86836, + "tp_rate": 0.2856813867568537, + "truth_threshold": 20.28 + }, + { + "f1": 0.4439871619650179, + "fn": 217225, + "fn_rate": 0.7146476028174668, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992253763512, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998040413588003, + "recall": 0.2853523971825333, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86736, + "tp_rate": 0.2853523971825333, + "truth_threshold": 20.3 + }, + { + "f1": 0.4434931769886582, + "fn": 217349, + "fn_rate": 0.7150555498896239, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992360408158, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998037608652991, + "recall": 0.284944450110376, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86612, + "tp_rate": 0.284944450110376, + "truth_threshold": 20.32 + }, + { + "f1": 0.4429749526199867, + "fn": 217479, + "fn_rate": 0.7154832363362406, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992465584596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998034659360224, + "recall": 0.2845167636637595, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86482, + "tp_rate": 0.2845167636637595, + "truth_threshold": 20.34 + }, + { + "f1": 0.442568104150549, + "fn": 217581, + "fn_rate": 0.7158188057020473, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992569313043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998032339085848, + "recall": 0.2841811942979527, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86380, + "tp_rate": 0.2841811942979527, + "truth_threshold": 20.36 + }, + { + "f1": 0.4420543887163402, + "fn": 217710, + "fn_rate": 0.7162432022529206, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992671613431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998029396763574, + "recall": 0.2837567977470794, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86251, + "tp_rate": 0.2837567977470794, + "truth_threshold": 20.38 + }, + { + "f1": 0.44158600607005166, + "fn": 217827, + "fn_rate": 0.7166281200548754, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992772505422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998026720525589, + "recall": 0.2833718799451245, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86134, + "tp_rate": 0.2833718799451245, + "truth_threshold": 20.400000000000002 + }, + { + "f1": 0.44105564929303703, + "fn": 217960, + "fn_rate": 0.7170656761887216, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992872008404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998023669464531, + "recall": 0.2829343238112784, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 86001, + "tp_rate": 0.2829343238112784, + "truth_threshold": 20.42 + }, + { + "f1": 0.4405466689923356, + "fn": 218087, + "fn_rate": 0.7174834929481084, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999992970141501, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998020747226135, + "recall": 0.2825165070518915, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 85874, + "tp_rate": 0.2825165070518915, + "truth_threshold": 20.44 + }, + { + "f1": 0.440023606691984, + "fn": 218218, + "fn_rate": 0.7179144692904682, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999993066923574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998017723880597, + "recall": 0.2820855307095318, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 85743, + "tp_rate": 0.2820855307095318, + "truth_threshold": 20.46 + }, + { + "f1": 0.43949505631590297, + "fn": 218350, + "fn_rate": 0.7183487355285711, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999993162373221, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999801466809922, + "recall": 0.2816512644714289, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 85611, + "tp_rate": 0.2816512644714289, + "truth_threshold": 20.48 + }, + { + "f1": 0.4388086837280249, + "fn": 218521, + "fn_rate": 0.7189113077006589, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999993256508786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998010695437471, + "recall": 0.281088692299341, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 85440, + "tp_rate": 0.281088692299341, + "truth_threshold": 20.5 + }, + { + "f1": 0.4382391927578376, + "fn": 218663, + "fn_rate": 0.7193784728961939, + "fp": 17, + "fp_rate": 0.00009777476145833932, + "match_probability": 0.9999993349348361, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998007384398993, + "recall": 0.28062152710380606, + "row_count": 477830, + "tn": 173852, + "tn_rate": 0.9999022252385417, + "tp": 85298, + "tp_rate": 0.28062152710380606, + "truth_threshold": 20.52 + }, + { + "f1": 0.43748168785307107, + "fn": 218852, + "fn_rate": 0.7200002631916594, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993440909787, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998120411160059, + "recall": 0.27999973680834056, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 85109, + "tp_rate": 0.27999973680834056, + "truth_threshold": 20.54 + }, + { + "f1": 0.436988703266643, + "fn": 218975, + "fn_rate": 0.7204049203680736, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993531210661, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998117691348439, + "recall": 0.2795950796319265, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84986, + "tp_rate": 0.2795950796319265, + "truth_threshold": 20.56 + }, + { + "f1": 0.4366350025972423, + "fn": 219063, + "fn_rate": 0.7206944311934754, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993620268339, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998115740631698, + "recall": 0.2793055688065245, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84898, + "tp_rate": 0.2793055688065245, + "truth_threshold": 20.580000000000002 + }, + { + "f1": 0.4360075941942488, + "fn": 219219, + "fn_rate": 0.7212076549294153, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993708099935, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998112272587838, + "recall": 0.2787923450705847, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84742, + "tp_rate": 0.2787923450705847, + "truth_threshold": 20.6 + }, + { + "f1": 0.43553558653841207, + "fn": 219336, + "fn_rate": 0.7215925727313701, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993794722328, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998109663165605, + "recall": 0.2784074272686299, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84625, + "tp_rate": 0.2784074272686299, + "truth_threshold": 20.62 + }, + { + "f1": 0.4349688513617876, + "fn": 219477, + "fn_rate": 0.7220564480311619, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999993880152168, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998106508875739, + "recall": 0.27794355196883813, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84484, + "tp_rate": 0.27794355196883813, + "truth_threshold": 20.64 + }, + { + "f1": 0.43439140086218, + "fn": 219620, + "fn_rate": 0.7225269031224401, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999396440587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998103299074173, + "recall": 0.27747309687755994, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84341, + "tp_rate": 0.27747309687755994, + "truth_threshold": 20.66 + }, + { + "f1": 0.4338025411415558, + "fn": 219766, + "fn_rate": 0.7230072279009478, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994047499629, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999810001068744, + "recall": 0.27699277209905215, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84195, + "tp_rate": 0.27699277209905215, + "truth_threshold": 20.68 + }, + { + "f1": 0.4333475923702127, + "fn": 219879, + "fn_rate": 0.7233789861199299, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994129449412, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998097457727889, + "recall": 0.27662101388007015, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 84082, + "tp_rate": 0.27662101388007015, + "truth_threshold": 20.7 + }, + { + "f1": 0.4327498646593282, + "fn": 220027, + "fn_rate": 0.723865890689924, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999421027097, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998094103633115, + "recall": 0.276134109310076, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83934, + "tp_rate": 0.276134109310076, + "truth_threshold": 20.72 + }, + { + "f1": 0.4321950414416645, + "fn": 220164, + "fn_rate": 0.724316606406743, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994289979836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999809098827151, + "recall": 0.27568339359325705, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83797, + "tp_rate": 0.27568339359325705, + "truth_threshold": 20.740000000000002 + }, + { + "f1": 0.43166926355109325, + "fn": 220294, + "fn_rate": 0.7247442928533595, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994368591326, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998088022656931, + "recall": 0.27525570714664055, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83667, + "tp_rate": 0.27525570714664055, + "truth_threshold": 20.76 + }, + { + "f1": 0.43116448784314537, + "fn": 220419, + "fn_rate": 0.72515552982126, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999444612055, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998085162402164, + "recall": 0.27484447017874003, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83542, + "tp_rate": 0.27484447017874003, + "truth_threshold": 20.78 + }, + { + "f1": 0.43064611889826787, + "fn": 220547, + "fn_rate": 0.72557663647639, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994522582408, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998082224619441, + "recall": 0.27442336352360996, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83414, + "tp_rate": 0.27442336352360996, + "truth_threshold": 20.8 + }, + { + "f1": 0.43013551479094364, + "fn": 220673, + "fn_rate": 0.7259911633400338, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994597991594, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999807932392202, + "recall": 0.2740088366599662, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83288, + "tp_rate": 0.2740088366599662, + "truth_threshold": 20.82 + }, + { + "f1": 0.42960023971151956, + "fn": 220805, + "fn_rate": 0.7264254295781367, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.99999946723626, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998076275669696, + "recall": 0.27357457042186334, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83156, + "tp_rate": 0.27357457042186334, + "truth_threshold": 20.84 + }, + { + "f1": 0.42910002325521307, + "fn": 220928, + "fn_rate": 0.7268300867545507, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999474570972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998073426531325, + "recall": 0.27316991324544926, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 83033, + "tp_rate": 0.27316991324544926, + "truth_threshold": 20.86 + }, + { + "f1": 0.4286290301736393, + "fn": 221044, + "fn_rate": 0.7272117146607624, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999481804705, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998070731795545, + "recall": 0.2727882853392376, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82917, + "tp_rate": 0.2727882853392376, + "truth_threshold": 20.88 + }, + { + "f1": 0.4281171141356058, + "fn": 221170, + "fn_rate": 0.7276262415244061, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999488938849, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998067796200805, + "recall": 0.2723737584755939, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82791, + "tp_rate": 0.2723737584755939, + "truth_threshold": 20.900000000000002 + }, + { + "f1": 0.42756123425497244, + "fn": 221307, + "fn_rate": 0.728076957241225, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999994959747754, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999806459416959, + "recall": 0.271923042758775, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82654, + "tp_rate": 0.271923042758775, + "truth_threshold": 20.92 + }, + { + "f1": 0.42711669710909084, + "fn": 221416, + "fn_rate": 0.7284355558772343, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995029138362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998062038977241, + "recall": 0.27156444412276576, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82545, + "tp_rate": 0.27156444412276576, + "truth_threshold": 20.94 + }, + { + "f1": 0.4266496897046112, + "fn": 221531, + "fn_rate": 0.7288138938877027, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999509757365, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999805933580768, + "recall": 0.2711861061122973, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82430, + "tp_rate": 0.2711861061122973, + "truth_threshold": 20.96 + }, + { + "f1": 0.42618019529268014, + "fn": 221646, + "fn_rate": 0.7291922318981712, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995165066768, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998056625086541, + "recall": 0.2708077681018288, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82315, + "tp_rate": 0.2708077681018288, + "truth_threshold": 20.98 + }, + { + "f1": 0.4257563673651175, + "fn": 221750, + "fn_rate": 0.7295343810554643, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995231630692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998054167122721, + "recall": 0.27046561894453564, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82211, + "tp_rate": 0.27046561894453564, + "truth_threshold": 21 + }, + { + "f1": 0.4252967047768044, + "fn": 221863, + "fn_rate": 0.7299061392744464, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999529727821, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998051489392795, + "recall": 0.2700938607255536, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82098, + "tp_rate": 0.2700938607255536, + "truth_threshold": 21.02 + }, + { + "f1": 0.42489986475913133, + "fn": 221960, + "fn_rate": 0.7302252591615371, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995362021941, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998049184925076, + "recall": 0.2697747408384628, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 82001, + "tp_rate": 0.2697747408384628, + "truth_threshold": 21.04 + }, + { + "f1": 0.42454883749857475, + "fn": 222046, + "fn_rate": 0.7305081901954527, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995425874326, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998047137225227, + "recall": 0.2694918098045473, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81915, + "tp_rate": 0.2694918098045473, + "truth_threshold": 21.06 + }, + { + "f1": 0.42404761411003505, + "fn": 222169, + "fn_rate": 0.7309128473718668, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995488847637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998044201056131, + "recall": 0.2690871526281332, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81792, + "tp_rate": 0.2690871526281332, + "truth_threshold": 21.080000000000002 + }, + { + "f1": 0.42353569613425857, + "fn": 222294, + "fn_rate": 0.7313240843397673, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995550953977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998041208084913, + "recall": 0.26867591566023274, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81667, + "tp_rate": 0.26867591566023274, + "truth_threshold": 21.1 + }, + { + "f1": 0.42313498259611043, + "fn": 222392, + "fn_rate": 0.7316464941226013, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995612205282, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998038855181712, + "recall": 0.26835350587739876, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81569, + "tp_rate": 0.26835350587739876, + "truth_threshold": 21.12 + }, + { + "f1": 0.4224527606661512, + "fn": 222559, + "fn_rate": 0.7321959067117163, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995672613322, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998034832592302, + "recall": 0.2678040932882837, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81402, + "tp_rate": 0.2678040932882837, + "truth_threshold": 21.14 + }, + { + "f1": 0.42187946152767897, + "fn": 222699, + "fn_rate": 0.7326564921157649, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995732189708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998031447624204, + "recall": 0.26734350788423517, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81262, + "tp_rate": 0.26734350788423517, + "truth_threshold": 21.16 + }, + { + "f1": 0.4213385405576646, + "fn": 222831, + "fn_rate": 0.7330907583538677, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995790945889, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998028245384862, + "recall": 0.2669092416461322, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81130, + "tp_rate": 0.2669092416461322, + "truth_threshold": 21.18 + }, + { + "f1": 0.4208330735822787, + "fn": 222954, + "fn_rate": 0.7334954155302819, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995848893156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998025252088913, + "recall": 0.26650458446971814, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 81007, + "tp_rate": 0.26650458446971814, + "truth_threshold": 21.2 + }, + { + "f1": 0.42011600590424314, + "fn": 223129, + "fn_rate": 0.7340711472853425, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995906042648, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998020977637048, + "recall": 0.2659288527146575, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80832, + "tp_rate": 0.2659288527146575, + "truth_threshold": 21.22 + }, + { + "f1": 0.4197001362072013, + "fn": 223230, + "fn_rate": 0.7344034267554062, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999995962405346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998018502235377, + "recall": 0.2655965732445939, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80731, + "tp_rate": 0.2655965732445939, + "truth_threshold": 21.240000000000002 + }, + { + "f1": 0.4193139095300743, + "fn": 223324, + "fn_rate": 0.7347126769552673, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996017992082, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998016192826057, + "recall": 0.26528732304473274, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80637, + "tp_rate": 0.26528732304473274, + "truth_threshold": 21.26 + }, + { + "f1": 0.41872707883579996, + "fn": 223467, + "fn_rate": 0.7351831320465454, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996072813541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998012669233636, + "recall": 0.26481686795345455, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80494, + "tp_rate": 0.26481686795345455, + "truth_threshold": 21.28 + }, + { + "f1": 0.4183598607635113, + "fn": 223556, + "fn_rate": 0.7354759327676906, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996126880256, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999801046990214, + "recall": 0.2645240672323094, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80405, + "tp_rate": 0.2645240672323094, + "truth_threshold": 21.3 + }, + { + "f1": 0.41790407786192, + "fn": 223667, + "fn_rate": 0.7358411111951862, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996180202619, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998007720084672, + "recall": 0.26415888880481375, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80294, + "tp_rate": 0.26415888880481375, + "truth_threshold": 21.32 + }, + { + "f1": 0.4175252096684349, + "fn": 223759, + "fn_rate": 0.736143781603561, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996232790879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999800543518911, + "recall": 0.263856218396439, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80202, + "tp_rate": 0.263856218396439, + "truth_threshold": 21.34 + }, + { + "f1": 0.41709670532241183, + "fn": 223863, + "fn_rate": 0.7364859307608542, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999628465514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9998002845944529, + "recall": 0.26351406923914583, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 80098, + "tp_rate": 0.26351406923914583, + "truth_threshold": 21.36 + }, + { + "f1": 0.4165030083608991, + "fn": 224007, + "fn_rate": 0.7369596757478756, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996335805373, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997999249718644, + "recall": 0.2630403242521244, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79954, + "tp_rate": 0.2630403242521244, + "truth_threshold": 21.38 + }, + { + "f1": 0.4159036546408676, + "fn": 224152, + "fn_rate": 0.7374367106306401, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996386251405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997995615408707, + "recall": 0.2625632893693599, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79809, + "tp_rate": 0.2625632893693599, + "truth_threshold": 21.400000000000002 + }, + { + "f1": 0.4154547065753396, + "fn": 224261, + "fn_rate": 0.7377953092666494, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996436002931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997992874705204, + "recall": 0.2622046907333507, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79700, + "tp_rate": 0.2622046907333507, + "truth_threshold": 21.42 + }, + { + "f1": 0.4149868079381798, + "fn": 224374, + "fn_rate": 0.7381670674856314, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996485069516, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997990025501552, + "recall": 0.2618329325143686, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79587, + "tp_rate": 0.2618329325143686, + "truth_threshold": 21.44 + }, + { + "f1": 0.41457041375677384, + "fn": 224475, + "fn_rate": 0.738499346955695, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996533460586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997987472013282, + "recall": 0.26150065304430503, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79486, + "tp_rate": 0.26150065304430503, + "truth_threshold": 21.46 + }, + { + "f1": 0.41412681684909064, + "fn": 224582, + "fn_rate": 0.7388513658002178, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996581185442, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997984759745576, + "recall": 0.2611486341997822, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79379, + "tp_rate": 0.2611486341997822, + "truth_threshold": 21.48 + }, + { + "f1": 0.41359406720838354, + "fn": 224711, + "fn_rate": 0.739275762351091, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996628253256, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997981480079732, + "recall": 0.2607242376489089, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79250, + "tp_rate": 0.2607242376489089, + "truth_threshold": 21.5 + }, + { + "f1": 0.4129179458262849, + "fn": 224874, + "fn_rate": 0.7398120153572333, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996674673074, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997977320708443, + "recall": 0.26018798464276666, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 79087, + "tp_rate": 0.26018798464276666, + "truth_threshold": 21.52 + }, + { + "f1": 0.4123346268952946, + "fn": 225015, + "fn_rate": 0.740275890657025, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996720453818, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997973708872623, + "recall": 0.2597241093429749, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78946, + "tp_rate": 0.2597241093429749, + "truth_threshold": 21.54 + }, + { + "f1": 0.41183692875167843, + "fn": 225135, + "fn_rate": 0.7406706781462096, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996765604284, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997970624793892, + "recall": 0.25932932185379043, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78826, + "tp_rate": 0.25932932185379043, + "truth_threshold": 21.56 + }, + { + "f1": 0.41132231275380343, + "fn": 225259, + "fn_rate": 0.7410786252183669, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996810133152, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997967428034249, + "recall": 0.2589213747816332, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78702, + "tp_rate": 0.2589213747816332, + "truth_threshold": 21.580000000000002 + }, + { + "f1": 0.41084059577271137, + "fn": 225375, + "fn_rate": 0.7414602531245785, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996854048978, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997964428386046, + "recall": 0.25853974687542153, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78586, + "tp_rate": 0.25853974687542153, + "truth_threshold": 21.6 + }, + { + "f1": 0.4103003932725295, + "fn": 225505, + "fn_rate": 0.741887939571195, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996897360202, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997961056172903, + "recall": 0.258112060428805, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78456, + "tp_rate": 0.258112060428805, + "truth_threshold": 21.62 + }, + { + "f1": 0.40990955646574495, + "fn": 225599, + "fn_rate": 0.7421971897710562, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996940075148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997958610834673, + "recall": 0.25780281022894386, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78362, + "tp_rate": 0.25780281022894386, + "truth_threshold": 21.64 + }, + { + "f1": 0.4093468409540455, + "fn": 225734, + "fn_rate": 0.7426413256963886, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999996982202024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997955088634127, + "recall": 0.2573586743036113, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78227, + "tp_rate": 0.2573586743036113, + "truth_threshold": 21.66 + }, + { + "f1": 0.40897742558503486, + "fn": 225823, + "fn_rate": 0.7429341264175339, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997023748929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997952759935512, + "recall": 0.2570658735824662, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78138, + "tp_rate": 0.2570658735824662, + "truth_threshold": 21.68 + }, + { + "f1": 0.40852761474950655, + "fn": 225931, + "fn_rate": 0.7432894351577999, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997064723845, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997949926966149, + "recall": 0.2567105648422002, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 78030, + "tp_rate": 0.2567105648422002, + "truth_threshold": 21.7 + }, + { + "f1": 0.4079941761504983, + "fn": 226059, + "fn_rate": 0.74371054181293, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997105134647, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997946559203265, + "recall": 0.25628945818707005, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77902, + "tp_rate": 0.25628945818707005, + "truth_threshold": 21.72 + }, + { + "f1": 0.40748017058016117, + "fn": 226182, + "fn_rate": 0.744115198989344, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997144989102, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997943312552221, + "recall": 0.25588480101065597, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77779, + "tp_rate": 0.25588480101065597, + "truth_threshold": 21.740000000000002 + }, + { + "f1": 0.40681244038197467, + "fn": 226342, + "fn_rate": 0.7446415823082566, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999718429487, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997939073871321, + "recall": 0.25535841769174333, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77619, + "tp_rate": 0.25535841769174333, + "truth_threshold": 21.76 + }, + { + "f1": 0.4064418383983476, + "fn": 226431, + "fn_rate": 0.7449343830294018, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997223059504, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999793670853429, + "recall": 0.2550656169705982, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77530, + "tp_rate": 0.2550656169705982, + "truth_threshold": 21.78 + }, + { + "f1": 0.40605221622698695, + "fn": 226524, + "fn_rate": 0.7452403433335197, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997261290454, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997934231082075, + "recall": 0.25475965666648026, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77437, + "tp_rate": 0.25475965666648026, + "truth_threshold": 21.8 + }, + { + "f1": 0.4056091138921816, + "fn": 226630, + "fn_rate": 0.7455890722822994, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997298995067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997931400054301, + "recall": 0.25441092771770063, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77331, + "tp_rate": 0.25441092771770063, + "truth_threshold": 21.82 + }, + { + "f1": 0.4050371225437469, + "fn": 226767, + "fn_rate": 0.7460397879991183, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999733618059, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997927729568709, + "recall": 0.2539602120008817, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77194, + "tp_rate": 0.2539602120008817, + "truth_threshold": 21.84 + }, + { + "f1": 0.40461020080405596, + "fn": 226869, + "fn_rate": 0.7463753573649251, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999737285417, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999792498832806, + "recall": 0.2536246426350749, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 77092, + "tp_rate": 0.2536246426350749, + "truth_threshold": 21.86 + }, + { + "f1": 0.4039568194228588, + "fn": 227025, + "fn_rate": 0.7468885811008649, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997409022854, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997920781786048, + "recall": 0.2531114188991351, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76936, + "tp_rate": 0.2531114188991351, + "truth_threshold": 21.88 + }, + { + "f1": 0.40337312946787335, + "fn": 227164, + "fn_rate": 0.7473458766091703, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997444693592, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997917019254553, + "recall": 0.25265412339082977, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76797, + "tp_rate": 0.25265412339082977, + "truth_threshold": 21.900000000000002 + }, + { + "f1": 0.40282470142548643, + "fn": 227295, + "fn_rate": 0.74777685295153, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997479873242, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997913460786103, + "recall": 0.25222314704847004, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76666, + "tp_rate": 0.25222314704847004, + "truth_threshold": 21.92 + }, + { + "f1": 0.40229057385234784, + "fn": 227422, + "fn_rate": 0.7481946697109169, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997514568563, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997909999346875, + "recall": 0.25180533028908314, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76539, + "tp_rate": 0.25180533028908314, + "truth_threshold": 21.94 + }, + { + "f1": 0.4017109296541861, + "fn": 227560, + "fn_rate": 0.748648675323479, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997548786224, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997906225054635, + "recall": 0.251351324676521, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76401, + "tp_rate": 0.251351324676521, + "truth_threshold": 21.96 + }, + { + "f1": 0.4011613534396154, + "fn": 227691, + "fn_rate": 0.7490796516658387, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.99999975825328, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997902629578166, + "recall": 0.25092034833416127, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76270, + "tp_rate": 0.25092034833416127, + "truth_threshold": 21.98 + }, + { + "f1": 0.40070185038065126, + "fn": 227800, + "fn_rate": 0.749438250301848, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997615814777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.999789962849679, + "recall": 0.2505617496981521, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76161, + "tp_rate": 0.2505617496981521, + "truth_threshold": 22 + }, + { + "f1": 0.4001431563878275, + "fn": 227933, + "fn_rate": 0.7498758064356941, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997648638552, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997895954973437, + "recall": 0.25012419356430593, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 76028, + "tp_rate": 0.25012419356430593, + "truth_threshold": 22.02 + }, + { + "f1": 0.3997304596400162, + "fn": 228031, + "fn_rate": 0.750198216218528, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997681010433, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997893239933637, + "recall": 0.24980178378147197, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75930, + "tp_rate": 0.24980178378147197, + "truth_threshold": 22.04 + }, + { + "f1": 0.3993512648229669, + "fn": 228121, + "fn_rate": 0.7504943068354164, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999771293664, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997890740350137, + "recall": 0.24950569316458363, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75840, + "tp_rate": 0.24950569316458363, + "truth_threshold": 22.06 + }, + { + "f1": 0.39865138943763995, + "fn": 228287, + "fn_rate": 0.7510404295287882, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.999999774442331, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997886114414057, + "recall": 0.24895957047121176, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75674, + "tp_rate": 0.24895957047121176, + "truth_threshold": 22.080000000000002 + }, + { + "f1": 0.3980690992643184, + "fn": 228425, + "fn_rate": 0.7514944351413504, + "fp": 16, + "fp_rate": 0.00009202330490196642, + "match_probability": 0.9999997775476493, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9997882253282507, + "recall": 0.24850556485864964, + "row_count": 477830, + "tn": 173853, + "tn_rate": 0.999907976695098, + "tp": 75536, + "tp_rate": 0.24850556485864964, + "truth_threshold": 22.1 + }, + { + "f1": 0.7776026810268742, + "fn": 0, + "fn_rate": 0, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.660044869636506e-9, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.63612791160036, + "recall": 1, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303961, + "tp_rate": 1, + "truth_threshold": -26.96 + }, + { + "f1": 0.7775969956049467, + "fn": 3, + "fn_rate": 0.000009869687229611693, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.1367597838873383e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6361256270574915, + "recall": 0.9999901303127704, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303958, + "tp_rate": 0.9999901303127704, + "truth_threshold": -25.48 + }, + { + "f1": 0.7775964266436084, + "fn": 4, + "fn_rate": 0.000013159582972815591, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.3220913456904493e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6361248655368272, + "recall": 0.9999868404170272, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303957, + "tp_rate": 0.9999868404170272, + "truth_threshold": -25.36 + }, + { + "f1": 0.777593868398769, + "fn": 5, + "fn_rate": 0.00001644947871601949, + "fp": 173869, + "fp_rate": 1, + "match_probability": 3.423387752987849e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6361241040129755, + "recall": 0.999983550521284, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303956, + "tp_rate": 0.999983550521284, + "truth_threshold": -24.8 + }, + { + "f1": 0.7775782321278729, + "fn": 15, + "fn_rate": 0.00004934843614805847, + "fp": 173869, + "fp_rate": 1, + "match_probability": 4.517187172301535e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.636116488599144, + "recall": 0.999950651563852, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303946, + "tp_rate": 0.999950651563852, + "truth_threshold": -24.400000000000002 + }, + { + "f1": 0.7775432618016968, + "fn": 38, + "fn_rate": 0.00012501603824174813, + "fp": 173869, + "fp_rate": 1, + "match_probability": 4.9775116316185605e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6360989719375796, + "recall": 0.9998749839617582, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303923, + "tp_rate": 0.9998749839617582, + "truth_threshold": -24.26 + }, + { + "f1": 0.7775281933727666, + "fn": 47, + "fn_rate": 0.0001546250999305832, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.338192003972388e-8, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6360921171326732, + "recall": 0.9998453749000694, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303914, + "tp_rate": 0.9998453749000694, + "truth_threshold": -23.7 + }, + { + "f1": 0.7773561539032335, + "fn": 157, + "fn_rate": 0.000516513631683012, + "fp": 173869, + "fp_rate": 1, + "match_probability": 1.096949040514205e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6360083153119394, + "recall": 0.999483486368317, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303804, + "tp_rate": 0.999483486368317, + "truth_threshold": -23.12 + }, + { + "f1": 0.77732486879713, + "fn": 177, + "fn_rate": 0.0005823115465470899, + "fp": 173869, + "fp_rate": 1, + "match_probability": 1.225607038318767e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359930744703791, + "recall": 0.9994176884534529, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303784, + "tp_rate": 0.9994176884534529, + "truth_threshold": -22.96 + }, + { + "f1": 0.7773117844842146, + "fn": 186, + "fn_rate": 0.000611920608235925, + "fp": 173869, + "fp_rate": 1, + "match_probability": 1.3693549605601495e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359862156752728, + "recall": 0.9993880793917641, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303775, + "tp_rate": 0.9993880793917641, + "truth_threshold": -22.8 + }, + { + "f1": 0.7773055271238485, + "fn": 190, + "fn_rate": 0.0006250801912087405, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.01879773478931e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359831672389247, + "recall": 0.9993749198087912, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303771, + "tp_rate": 0.9993749198087912, + "truth_threshold": -22.240000000000002 + }, + { + "f1": 0.7772335628760136, + "fn": 236, + "fn_rate": 0.0007764153953961198, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.0469790951995952e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359481065507523, + "recall": 0.9992235846046039, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303725, + "tp_rate": 0.9992235846046039, + "truth_threshold": -22.22 + }, + { + "f1": 0.7772304338035089, + "fn": 238, + "fn_rate": 0.0007829951868825277, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.2245235061202631e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359465820197994, + "recall": 0.9992170048131175, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303723, + "tp_rate": 0.9992170048131175, + "truth_threshold": -22.1 + }, + { + "f1": 0.7772022714302896, + "fn": 256, + "fn_rate": 0.0008422133102601978, + "fp": 173869, + "fp_rate": 1, + "match_probability": 2.935276155400355e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6359328606666192, + "recall": 0.9991577866897398, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303705, + "tp_rate": 0.9991577866897398, + "truth_threshold": -21.7 + }, + { + "f1": 0.777130295026923, + "fn": 302, + "fn_rate": 0.0009935485144475771, + "fp": 173869, + "fp_rate": 1, + "match_probability": 3.059924852476653e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6358977902866428, + "recall": 0.9990064514855524, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303659, + "tp_rate": 0.9990064514855524, + "truth_threshold": -21.64 + }, + { + "f1": 0.7771240358087945, + "fn": 306, + "fn_rate": 0.0010067080974203928, + "fp": 173869, + "fp_rate": 1, + "match_probability": 3.3253269256413913e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6358947403690705, + "recall": 0.9989932919025796, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303655, + "tp_rate": 0.9989932919025796, + "truth_threshold": -21.52 + }, + { + "f1": 0.7771209061757021, + "fn": 308, + "fn_rate": 0.0010132878889068005, + "fp": 173869, + "fp_rate": 1, + "match_probability": 4.3273866777349967e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6358932153911233, + "recall": 0.9989867121110932, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303653, + "tp_rate": 0.9989867121110932, + "truth_threshold": -21.14 + }, + { + "f1": 0.7765573111498588, + "fn": 668, + "fn_rate": 0.0021976503564602036, + "fp": 173869, + "fp_rate": 1, + "match_probability": 4.702721789815695e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.635618511113626, + "recall": 0.9978023496435398, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303293, + "tp_rate": 0.9978023496435398, + "truth_threshold": -21.02 + }, + { + "f1": 0.7761468124887944, + "fn": 930, + "fn_rate": 0.003059603041179625, + "fp": 173869, + "fp_rate": 1, + "match_probability": 4.902426350740596e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6354183266932271, + "recall": 0.9969403969588204, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303031, + "tp_rate": 0.9969403969588204, + "truth_threshold": -20.96 + }, + { + "f1": 0.7761034995914624, + "fn": 957, + "fn_rate": 0.00314843022624613, + "fp": 173869, + "fp_rate": 1, + "match_probability": 5.7897290296989e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353976844988078, + "recall": 0.9968515697737539, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303004, + "tp_rate": 0.9968515697737539, + "truth_threshold": -20.72 + }, + { + "f1": 0.7761029261095856, + "fn": 958, + "fn_rate": 0.003151720121989334, + "fp": 173869, + "fp_rate": 1, + "match_probability": 6.468789338535844e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353969199281988, + "recall": 0.9968482798780106, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 303003, + "tp_rate": 0.9968482798780106, + "truth_threshold": -20.56 + }, + { + "f1": 0.7760120085965977, + "fn": 1016, + "fn_rate": 0.0033425340750951604, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.02985849809981e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353525693456987, + "recall": 0.9966574659249049, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302945, + "tp_rate": 0.9966574659249049, + "truth_threshold": -20.44 + }, + { + "f1": 0.7760057379253813, + "fn": 1020, + "fn_rate": 0.003355693658067976, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.127991595781558e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353495102871165, + "recall": 0.996644306341932, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302941, + "tp_rate": 0.996644306341932, + "truth_threshold": -20.42 + }, + { + "f1": 0.7759780929716659, + "fn": 1037, + "fn_rate": 0.003411621885702442, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.227494578490585e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353365087155223, + "recall": 0.9965883781142976, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302924, + "tp_rate": 0.9965883781142976, + "truth_threshold": -20.400000000000002 + }, + { + "f1": 0.7759624153371656, + "fn": 1047, + "fn_rate": 0.003444520843134481, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.430686957241937e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353288602991298, + "recall": 0.9965554791568655, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302914, + "tp_rate": 0.9965554791568655, + "truth_threshold": -20.36 + }, + { + "f1": 0.775930484858887, + "fn": 1068, + "fn_rate": 0.003513608653741763, + "fp": 173869, + "fp_rate": 1, + "match_probability": 7.854369834792407e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353127975803441, + "recall": 0.9964863913462583, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302893, + "tp_rate": 0.9964863913462583, + "truth_threshold": -20.28 + }, + { + "f1": 0.7759242133523244, + "fn": 1072, + "fn_rate": 0.0035267682367145785, + "fp": 173869, + "fp_rate": 1, + "match_probability": 9.022300655021115e-7, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353097378544251, + "recall": 0.9964732317632854, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302889, + "tp_rate": 0.9964732317632854, + "truth_threshold": -20.080000000000002 + }, + { + "f1": 0.7759216516078788, + "fn": 1073, + "fn_rate": 0.0035300581324577826, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.000001050857503825523, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6353089729149232, + "recall": 0.9964699418675422, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302888, + "tp_rate": 0.9964699418675422, + "truth_threshold": -19.86 + }, + { + "f1": 0.7755201406346497, + "fn": 1329, + "fn_rate": 0.00437227144271798, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000010954829183746414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6351130427848001, + "recall": 0.995627728557282, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302632, + "tp_rate": 0.995627728557282, + "truth_threshold": -19.8 + }, + { + "f1": 0.7755195653845168, + "fn": 1330, + "fn_rate": 0.0043755613384611845, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000011579451355209237, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.635112277019937, + "recall": 0.9956244386615388, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302631, + "tp_rate": 0.9956244386615388, + "truth_threshold": -19.72 + }, + { + "f1": 0.7754536671373546, + "fn": 1372, + "fn_rate": 0.004513736959675748, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.00000120711809735545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6350801119930823, + "recall": 0.9954862630403243, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302589, + "tp_rate": 0.9954862630403243, + "truth_threshold": -19.66 + }, + { + "f1": 0.7754473907438872, + "fn": 1376, + "fn_rate": 0.004526896542648563, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.000001241054764180587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6350770483614367, + "recall": 0.9954731034573514, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302585, + "tp_rate": 0.9954731034573514, + "truth_threshold": -19.62 + }, + { + "f1": 0.7754416897741193, + "fn": 1379, + "fn_rate": 0.004536766229878175, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.000001311817182236054, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6350747506039446, + "recall": 0.9954632337701218, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302582, + "tp_rate": 0.9954632337701218, + "truth_threshold": -19.54 + }, + { + "f1": 0.7752722016034777, + "fn": 1487, + "fn_rate": 0.0048920749701441965, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000015492460975215529, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349920120585376, + "recall": 0.9951079250298558, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302474, + "tp_rate": 0.9951079250298558, + "truth_threshold": -19.3 + }, + { + "f1": 0.7752716256013698, + "fn": 1488, + "fn_rate": 0.0048953648658874, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000015708727331369402, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349912457855911, + "recall": 0.9951046351341126, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302473, + "tp_rate": 0.9951046351341126, + "truth_threshold": -19.28 + }, + { + "f1": 0.7752502274795269, + "fn": 1501, + "fn_rate": 0.004938133510549051, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000016604406696292195, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349812839445006, + "recall": 0.9950618664894509, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302460, + "tp_rate": 0.9950618664894509, + "truth_threshold": -19.2 + }, + { + "f1": 0.7752496514107612, + "fn": 1502, + "fn_rate": 0.0049414234062922545, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000017309524239438608, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349805176265094, + "recall": 0.9950585765937078, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302459, + "tp_rate": 0.9950585765937078, + "truth_threshold": -19.14 + }, + { + "f1": 0.7752470882545932, + "fn": 1503, + "fn_rate": 0.004944713302035458, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000017551155769142057, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349797513053008, + "recall": 0.9950552866979645, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302458, + "tp_rate": 0.9950552866979645, + "truth_threshold": -19.12 + }, + { + "f1": 0.775240233659113, + "fn": 1508, + "fn_rate": 0.004961162780751478, + "fp": 173869, + "fp_rate": 1, + "match_probability": 0.0000018044585029675095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6349759196509924, + "recall": 0.9950388372192486, + "row_count": 477830, + "tn": 0, + "tn_rate": 0, + "tp": 302453, + "tp_rate": 0.9950388372192486, + "truth_threshold": -19.080000000000002 + }, + { + "f1": 0.8023775288768152, + "fn": 1508, + "fn_rate": 0.004961162780751478, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000019339704872557063, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6722193575918138, + "recall": 0.9950388372192486, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302453, + "tp_rate": 0.9950388372192486, + "truth_threshold": -18.98 + }, + { + "f1": 0.8023489336414308, + "fn": 1526, + "fn_rate": 0.005020380904129148, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000019609676562463853, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6722062438599377, + "recall": 0.9949796190958708, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302435, + "tp_rate": 0.9949796190958708, + "truth_threshold": -18.96 + }, + { + "f1": 0.8023367486085097, + "fn": 1533, + "fn_rate": 0.005043410174331575, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.000002044241469521586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6722011437919392, + "recall": 0.9949565898256684, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302428, + "tp_rate": 0.9949565898256684, + "truth_threshold": -18.900000000000002 + }, + { + "f1": 0.8023335712182271, + "fn": 1535, + "fn_rate": 0.005049989965817983, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000021017127990503803, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721996866005046, + "recall": 0.994950010034182, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302426, + "tp_rate": 0.994950010034182, + "truth_threshold": -18.86 + }, + { + "f1": 0.8023330468095041, + "fn": 1536, + "fn_rate": 0.005053279861561187, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000022525596641027384, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721989579999289, + "recall": 0.9949467201384388, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302425, + "tp_rate": 0.9949467201384388, + "truth_threshold": -18.76 + }, + { + "f1": 0.8023303938110853, + "fn": 1537, + "fn_rate": 0.005056569757304391, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000022840041533901063, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721982293961143, + "recall": 0.9949434302426956, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302424, + "tp_rate": 0.9949434302426956, + "truth_threshold": -18.740000000000002 + }, + { + "f1": 0.8023298693925414, + "fn": 1538, + "fn_rate": 0.005059859653047595, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000023158875893710783, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721975007890607, + "recall": 0.9949401403469524, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302423, + "tp_rate": 0.9949401403469524, + "truth_threshold": -18.72 + }, + { + "f1": 0.8023272163870842, + "fn": 1539, + "fn_rate": 0.005063149548790799, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000024821064479311417, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721967721787682, + "recall": 0.9949368504512092, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302422, + "tp_rate": 0.9949368504512092, + "truth_threshold": -18.62 + }, + { + "f1": 0.8023240389462234, + "fn": 1541, + "fn_rate": 0.005069729340277207, + "fp": 147479, + "fp_rate": 0.8482190614773192, + "match_probability": 0.0000025167552755248973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6721953149484662, + "recall": 0.9949302706597228, + "row_count": 477830, + "tn": 26390, + "tn_rate": 0.15178093852268087, + "tp": 302420, + "tp_rate": 0.9949302706597228, + "truth_threshold": -18.6 + }, + { + "f1": 0.8023347129364321, + "fn": 1545, + "fn_rate": 0.005082888923250022, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000025875107139958215, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6722163070514516, + "recall": 0.99491711107675, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 302416, + "tp_rate": 0.99491711107675, + "truth_threshold": -18.56 + }, + { + "f1": 0.8023341885126513, + "fn": 1546, + "fn_rate": 0.005086178818993226, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.00000277322480226071, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.672215578445712, + "recall": 0.9949138211810068, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 302415, + "tp_rate": 0.9949138211810068, + "truth_threshold": -18.46 + }, + { + "f1": 0.8007693370312516, + "fn": 2529, + "fn_rate": 0.008320146334562658, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000028909915630084804, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6714977890152486, + "recall": 0.9916798536654373, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301432, + "tp_rate": 0.9916798536654373, + "truth_threshold": -18.400000000000002 + }, + { + "f1": 0.800606308585032, + "fn": 2632, + "fn_rate": 0.008659005596112658, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000029313481830057973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671422396121143, + "recall": 0.9913409944038873, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301329, + "tp_rate": 0.9913409944038873, + "truth_threshold": -18.38 + }, + { + "f1": 0.8006036516674815, + "fn": 2633, + "fn_rate": 0.008662295491855864, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.000003013759349323224, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6714216639816752, + "recall": 0.9913377045081442, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301328, + "tp_rate": 0.9913377045081442, + "truth_threshold": -18.34 + }, + { + "f1": 0.8006004649618067, + "fn": 2635, + "fn_rate": 0.008668875283342271, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000030558297334917884, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6714201996929515, + "recall": 0.9913311247166577, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301326, + "tp_rate": 0.9913311247166577, + "truth_threshold": -18.32 + }, + { + "f1": 0.8005967484383842, + "fn": 2638, + "fn_rate": 0.008678744970571882, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.000003098487394723601, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671418003235395, + "recall": 0.9913212550294281, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301323, + "tp_rate": 0.9913212550294281, + "truth_threshold": -18.3 + }, + { + "f1": 0.8005940914996559, + "fn": 2639, + "fn_rate": 0.008682034866315087, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.000003185597454736396, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6714172710763506, + "recall": 0.9913179651336849, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301322, + "tp_rate": 0.9913179651336849, + "truth_threshold": -18.26 + }, + { + "f1": 0.8004729828477287, + "fn": 2715, + "fn_rate": 0.008932066942798583, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000032300665943862097, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713616174402564, + "recall": 0.9910679330572014, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301246, + "tp_rate": 0.9910679330572014, + "truth_threshold": -18.240000000000002 + }, + { + "f1": 0.8004602331458212, + "fn": 2723, + "fn_rate": 0.008958386108744214, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000033208758251411607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713557580660618, + "recall": 0.9910416138912558, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301238, + "tp_rate": 0.9910416138912558, + "truth_threshold": -18.2 + }, + { + "f1": 0.8004597029203093, + "fn": 2724, + "fn_rate": 0.008961676004487417, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000034142380336736073, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713550256295966, + "recall": 0.9910383239955126, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301237, + "tp_rate": 0.9910383239955126, + "truth_threshold": -18.16 + }, + { + "f1": 0.8004506706915244, + "fn": 2729, + "fn_rate": 0.008978125483203437, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.000003510224992977848, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713513633982995, + "recall": 0.9910218745167966, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301232, + "tp_rate": 0.9910218745167966, + "truth_threshold": -18.12 + }, + { + "f1": 0.8004501404363759, + "fn": 2730, + "fn_rate": 0.008981415378946641, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000035592257334204593, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713506309422457, + "recall": 0.9910185846210534, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301231, + "tp_rate": 0.9910185846210534, + "truth_threshold": -18.1 + }, + { + "f1": 0.8004442956372932, + "fn": 2733, + "fn_rate": 0.008991285066176254, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000036089104938057927, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713484335544951, + "recall": 0.9910087149338237, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301228, + "tp_rate": 0.9910087149338237, + "truth_threshold": -18.080000000000002 + }, + { + "f1": 0.8004411080847672, + "fn": 2735, + "fn_rate": 0.008997864857662661, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000036592888225585765, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713469686130037, + "recall": 0.9910021351423374, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301226, + "tp_rate": 0.9910021351423374, + "truth_threshold": -18.06 + }, + { + "f1": 0.800437390220635, + "fn": 2738, + "fn_rate": 0.009007734544892272, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000037103704013906797, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713447711762792, + "recall": 0.9909922654551078, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301223, + "tp_rate": 0.9909922654551078, + "truth_threshold": -18.04 + }, + { + "f1": 0.800421452069792, + "fn": 2748, + "fn_rate": 0.009040633502324312, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000037621650471616754, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713374461749682, + "recall": 0.9909593664976757, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301213, + "tp_rate": 0.9909593664976757, + "truth_threshold": -18.02 + }, + { + "f1": 0.8004187947427441, + "fn": 2749, + "fn_rate": 0.009043923398067515, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000038146827137652828, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713367136568786, + "recall": 0.9909560766019325, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301212, + "tp_rate": 0.9909560766019325, + "truth_threshold": -18 + }, + { + "f1": 0.8004156070546906, + "fn": 2751, + "fn_rate": 0.009050503189553923, + "fp": 147463, + "fp_rate": 0.8481270381724172, + "match_probability": 0.0000039766754733776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713352486109037, + "recall": 0.9909494968104461, + "row_count": 477830, + "tn": 26406, + "tn_rate": 0.15187296182758284, + "tp": 301210, + "tp_rate": 0.9909494968104461, + "truth_threshold": -17.94 + }, + { + "f1": 0.8004368773368553, + "fn": 2751, + "fn_rate": 0.009050503189553923, + "fp": 147443, + "fp_rate": 0.8480120090412897, + "match_probability": 0.000004088474581213888, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713651753136611, + "recall": 0.9909494968104461, + "row_count": 477830, + "tn": 26426, + "tn_rate": 0.1519879909587103, + "tp": 301210, + "tp_rate": 0.9909494968104461, + "truth_threshold": -17.900000000000002 + }, + { + "f1": 0.8004336896036736, + "fn": 2753, + "fn_rate": 0.009057082981040332, + "fp": 147443, + "fp_rate": 0.8480120090412897, + "match_probability": 0.000004145547322903667, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671363710322723, + "recall": 0.9909429170189596, + "row_count": 477830, + "tn": 26426, + "tn_rate": 0.1519879909587103, + "tp": 301208, + "tp_rate": 0.9909429170189596, + "truth_threshold": -17.88 + }, + { + "f1": 0.8004012809099244, + "fn": 2774, + "fn_rate": 0.009126170791647613, + "fp": 147443, + "fp_rate": 0.8480120090412897, + "match_probability": 0.000004203416763725948, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713483271292602, + "recall": 0.9908738292083524, + "row_count": 477830, + "tn": 26426, + "tn_rate": 0.1519879909587103, + "tp": 301187, + "tp_rate": 0.9908738292083524, + "truth_threshold": -17.86 + }, + { + "f1": 0.8002551495016611, + "fn": 2865, + "fn_rate": 0.009425551304279167, + "fp": 147443, + "fp_rate": 0.8480120090412897, + "match_probability": 0.0000042620940249991784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6712816499791545, + "recall": 0.9905744486957209, + "row_count": 477830, + "tn": 26426, + "tn_rate": 0.1519879909587103, + "tp": 301096, + "tp_rate": 0.9905744486957209, + "truth_threshold": -17.84 + }, + { + "f1": 0.8002806734035371, + "fn": 2865, + "fn_rate": 0.009425551304279167, + "fp": 147419, + "fp_rate": 0.8478739740839367, + "match_probability": 0.000004381917272552001, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671317570203895, + "recall": 0.9905744486957209, + "row_count": 477830, + "tn": 26450, + "tn_rate": 0.15212602591606325, + "tp": 301096, + "tp_rate": 0.9905744486957209, + "truth_threshold": -17.8 + }, + { + "f1": 0.8002764450233251, + "fn": 2893, + "fn_rate": 0.009517668385088876, + "fp": 147382, + "fp_rate": 0.847661170191351, + "match_probability": 0.000004443086286379355, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713524361690266, + "recall": 0.9904823316149112, + "row_count": 477830, + "tn": 26487, + "tn_rate": 0.15233882980864905, + "tp": 301068, + "tp_rate": 0.9904823316149112, + "truth_threshold": -17.78 + }, + { + "f1": 0.8002828267792303, + "fn": 2893, + "fn_rate": 0.009517668385088876, + "fp": 147376, + "fp_rate": 0.8476266614520127, + "match_probability": 0.000004505109180178255, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671361418594072, + "recall": 0.9904823316149112, + "row_count": 477830, + "tn": 26493, + "tn_rate": 0.1523733385479873, + "tp": 301068, + "tp_rate": 0.9904823316149112, + "truth_threshold": -17.76 + }, + { + "f1": 0.8002870966026902, + "fn": 2909, + "fn_rate": 0.009570306716980139, + "fp": 147348, + "fp_rate": 0.8474656206684342, + "match_probability": 0.000004631764452096345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713916146297948, + "recall": 0.9904296932830199, + "row_count": 477830, + "tn": 26521, + "tn_rate": 0.15253437933156572, + "tp": 301052, + "tp_rate": 0.9904296932830199, + "truth_threshold": -17.72 + }, + { + "f1": 0.8002238403236912, + "fn": 2948, + "fn_rate": 0.009698612650965091, + "fp": 147348, + "fp_rate": 0.8474656206684342, + "match_probability": 0.00000469642117070095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671363031128934, + "recall": 0.990301387349035, + "row_count": 477830, + "tn": 26521, + "tn_rate": 0.15253437933156572, + "tp": 301013, + "tp_rate": 0.990301387349035, + "truth_threshold": -17.7 + }, + { + "f1": 0.8002233092301149, + "fn": 2949, + "fn_rate": 0.009701902546708295, + "fp": 147348, + "fp_rate": 0.8474656206684342, + "match_probability": 0.000004761980454925296, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713622981532696, + "recall": 0.9902980974532917, + "row_count": 477830, + "tn": 26521, + "tn_rate": 0.15253437933156572, + "tp": 301012, + "tp_rate": 0.9902980974532917, + "truth_threshold": -17.68 + }, + { + "f1": 0.8002238462745015, + "fn": 2956, + "fn_rate": 0.009724931816910722, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.00000482845490387591, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713736388738953, + "recall": 0.9902750681830893, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 301005, + "tp_rate": 0.9902750681830893, + "truth_threshold": -17.66 + }, + { + "f1": 0.8002211877676784, + "fn": 2957, + "fn_rate": 0.009728221712653926, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.00000489585729252954, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713729058908287, + "recall": 0.990271778287346, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 301004, + "tp_rate": 0.990271778287346, + "truth_threshold": -17.64 + }, + { + "f1": 0.8002142773589119, + "fn": 2962, + "fn_rate": 0.009744671191369946, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000004964200574188029, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671369240926448, + "recall": 0.9902553288086301, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300999, + "tp_rate": 0.9902553288086301, + "truth_threshold": -17.62 + }, + { + "f1": 0.8002116188308858, + "fn": 2963, + "fn_rate": 0.00974796108711315, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005103762536321944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713685079237623, + "recall": 0.9902520389128868, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300998, + "tp_rate": 0.9902520389128868, + "truth_threshold": -17.580000000000002 + }, + { + "f1": 0.800211087686463, + "fn": 2964, + "fn_rate": 0.009751250982856353, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005247248078653649, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713677749178069, + "recall": 0.9902487490171437, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300997, + "tp_rate": 0.9902487490171437, + "truth_threshold": -17.54 + }, + { + "f1": 0.800208429151369, + "fn": 2965, + "fn_rate": 0.009754540878599557, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005320496542440611, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713670419085813, + "recall": 0.9902454591214005, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300996, + "tp_rate": 0.9902454591214005, + "truth_threshold": -17.52 + }, + { + "f1": 0.8001924804993858, + "fn": 2975, + "fn_rate": 0.009787439836031597, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005546434223012468, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713597116364763, + "recall": 0.9902125601639684, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300986, + "tp_rate": 0.9902125601639684, + "truth_threshold": -17.46 + }, + { + "f1": 0.8001829111046714, + "fn": 2981, + "fn_rate": 0.00980717921049082, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005702364824139267, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713553133162472, + "recall": 0.9901928207895092, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300980, + "tp_rate": 0.9901928207895092, + "truth_threshold": -17.42 + }, + { + "f1": 0.8001823798712174, + "fn": 2982, + "fn_rate": 0.009810469106234024, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.00000578196641040085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713545802514298, + "recall": 0.9901895308937659, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300979, + "tp_rate": 0.9901895308937659, + "truth_threshold": -17.400000000000002 + }, + { + "f1": 0.8001728102941763, + "fn": 2988, + "fn_rate": 0.009830208480693247, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005862679180457631, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.671350181793848, + "recall": 0.9901697915193067, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300973, + "tp_rate": 0.9901697915193067, + "truth_threshold": -17.38 + }, + { + "f1": 0.8001605819233674, + "fn": 2995, + "fn_rate": 0.009853237750895675, + "fp": 147337, + "fp_rate": 0.8474023546463142, + "match_probability": 0.000005944518645493533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713450501111972, + "recall": 0.9901467622491044, + "row_count": 477830, + "tn": 26532, + "tn_rate": 0.15259764535368583, + "tp": 300966, + "tp_rate": 0.9901467622491044, + "truth_threshold": -17.36 + }, + { + "f1": 0.8001733461659125, + "fn": 2995, + "fn_rate": 0.009853237750895675, + "fp": 147325, + "fp_rate": 0.8473333371676377, + "match_probability": 0.000006111640790849928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713630208949097, + "recall": 0.9901467622491044, + "row_count": 477830, + "tn": 26544, + "tn_rate": 0.1526666628323623, + "tp": 300966, + "tp_rate": 0.9901467622491044, + "truth_threshold": -17.32 + }, + { + "f1": 0.8001776010039242, + "fn": 2995, + "fn_rate": 0.009853237750895675, + "fp": 147321, + "fp_rate": 0.8473103313414122, + "match_probability": 0.000006196955588258426, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6713690113699483, + "recall": 0.9901467622491044, + "row_count": 477830, + "tn": 26548, + "tn_rate": 0.1526896686585878, + "tp": 300966, + "tp_rate": 0.9901467622491044, + "truth_threshold": -17.3 + }, + { + "f1": 0.7985511722140283, + "fn": 4014, + "fn_rate": 0.013205641513220446, + "fp": 147321, + "fp_rate": 0.8473103313414122, + "match_probability": 0.000006283461320993584, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6706202992389351, + "recall": 0.9867943584867795, + "row_count": 477830, + "tn": 26548, + "tn_rate": 0.1526896686585878, + "tp": 299947, + "tp_rate": 0.9867943584867795, + "truth_threshold": -17.28 + }, + { + "f1": 0.798554887902644, + "fn": 4015, + "fn_rate": 0.01320893140896365, + "fp": 147315, + "fp_rate": 0.847275822602074, + "match_probability": 0.000006460112322179412, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6706285591634414, + "recall": 0.9867910685910364, + "row_count": 477830, + "tn": 26554, + "tn_rate": 0.15272417739792601, + "tp": 299946, + "tp_rate": 0.9867910685910364, + "truth_threshold": -17.240000000000002 + }, + { + "f1": 0.7985756123535677, + "fn": 4016, + "fn_rate": 0.013212221304706853, + "fp": 147295, + "fp_rate": 0.8471607934709465, + "match_probability": 0.000006550291538878178, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.670657812360254, + "recall": 0.9867877786952931, + "row_count": 477830, + "tn": 26574, + "tn_rate": 0.15283920652905347, + "tp": 299945, + "tp_rate": 0.9867877786952931, + "truth_threshold": -17.22 + }, + { + "f1": 0.7985724136645731, + "fn": 4018, + "fn_rate": 0.013218801096193262, + "fp": 147295, + "fp_rate": 0.8471607934709465, + "match_probability": 0.000006641729593923075, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6706563395775851, + "recall": 0.9867811989038068, + "row_count": 477830, + "tn": 26574, + "tn_rate": 0.15283920652905347, + "tp": 299943, + "tp_rate": 0.9867811989038068, + "truth_threshold": -17.2 + }, + { + "f1": 0.7985659971458391, + "fn": 4026, + "fn_rate": 0.013245120262138893, + "fp": 147289, + "fp_rate": 0.8471262847316082, + "match_probability": 0.000006734444059575694, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6706594458258054, + "recall": 0.9867548797378611, + "row_count": 477830, + "tn": 26580, + "tn_rate": 0.15287371526839172, + "tp": 299935, + "tp_rate": 0.9867548797378611, + "truth_threshold": -17.18 + }, + { + "f1": 0.7977209267627249, + "fn": 4554, + "fn_rate": 0.014982185214550551, + "fp": 147289, + "fp_rate": 0.8471262847316082, + "match_probability": 0.0000068284527533841125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702701613625374, + "recall": 0.9850178147854495, + "row_count": 477830, + "tn": 26580, + "tn_rate": 0.15287371526839172, + "tp": 299407, + "tp_rate": 0.9850178147854495, + "truth_threshold": -17.16 + }, + { + "f1": 0.7973785835929609, + "fn": 4771, + "fn_rate": 0.015696092590825796, + "fp": 147283, + "fp_rate": 0.84709177599227, + "match_probability": 0.00000692377374160662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701189097661001, + "recall": 0.9843039074091742, + "row_count": 477830, + "tn": 26586, + "tn_rate": 0.15290822400772996, + "tp": 299190, + "tp_rate": 0.9843039074091742, + "truth_threshold": -17.14 + }, + { + "f1": 0.7973753784486802, + "fn": 4773, + "fn_rate": 0.015702672382312204, + "fp": 147283, + "fp_rate": 0.84709177599227, + "match_probability": 0.000007118426130755453, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.670117432039259, + "recall": 0.9842973276176878, + "row_count": 477830, + "tn": 26586, + "tn_rate": 0.15290822400772996, + "tp": 299188, + "tp_rate": 0.9842973276176878, + "truth_threshold": -17.1 + }, + { + "f1": 0.7973748384259691, + "fn": 4774, + "fn_rate": 0.01570596227805541, + "fp": 147283, + "fp_rate": 0.84709177599227, + "match_probability": 0.000007217794939235686, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701166931708737, + "recall": 0.9842940377219446, + "row_count": 477830, + "tn": 26586, + "tn_rate": 0.15290822400772996, + "tp": 299187, + "tp_rate": 0.9842940377219446, + "truth_threshold": -17.080000000000002 + }, + { + "f1": 0.7973721732873152, + "fn": 4775, + "fn_rate": 0.01570925217379861, + "fp": 147283, + "fp_rate": 0.84709177599227, + "match_probability": 0.000007318550864425777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701159542991787, + "recall": 0.9842907478262014, + "row_count": 477830, + "tn": 26586, + "tn_rate": 0.15290822400772996, + "tp": 299186, + "tp_rate": 0.9842907478262014, + "truth_threshold": -17.06 + }, + { + "f1": 0.7973689681088659, + "fn": 4777, + "fn_rate": 0.01571583196528502, + "fp": 147283, + "fp_rate": 0.84709177599227, + "match_probability": 0.00000742071326918649, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.670114476545859, + "recall": 0.984284168034715, + "row_count": 477830, + "tn": 26586, + "tn_rate": 0.15290822400772996, + "tp": 299184, + "tp_rate": 0.984284168034715, + "truth_threshold": -17.04 + }, + { + "f1": 0.7973753434734057, + "fn": 4777, + "fn_rate": 0.01571583196528502, + "fp": 147278, + "fp_rate": 0.8470630187094882, + "match_probability": 0.000007524301786658165, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701219812660428, + "recall": 0.984284168034715, + "row_count": 477830, + "tn": 26591, + "tn_rate": 0.1529369812905118, + "tp": 299184, + "tp_rate": 0.984284168034715, + "truth_threshold": -17.02 + }, + { + "f1": 0.7971803353849517, + "fn": 4898, + "fn_rate": 0.01611390935021269, + "fp": 147278, + "fp_rate": 0.8470630187094882, + "match_probability": 0.000007629336324033172, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700325535857113, + "recall": 0.9838860906497873, + "row_count": 477830, + "tn": 26591, + "tn_rate": 0.1529369812905118, + "tp": 299063, + "tp_rate": 0.9838860906497873, + "truth_threshold": -17 + }, + { + "f1": 0.7971792165141919, + "fn": 4904, + "fn_rate": 0.016133648724671917, + "fp": 147270, + "fp_rate": 0.8470170070570372, + "match_probability": 0.000007735837066381084, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700401275298156, + "recall": 0.9838663512753281, + "row_count": 477830, + "tn": 26599, + "tn_rate": 0.1529829929429628, + "tp": 299057, + "tp_rate": 0.9838663512753281, + "truth_threshold": -16.98 + }, + { + "f1": 0.7971658505247389, + "fn": 4913, + "fn_rate": 0.01616325778636075, + "fp": 147270, + "fp_rate": 0.8470170070570372, + "match_probability": 0.000007843824480527219, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700334738908132, + "recall": 0.9838367422136393, + "row_count": 477830, + "tn": 26599, + "tn_rate": 0.1529829929429628, + "tp": 299048, + "tp_rate": 0.9838367422136393, + "truth_threshold": -16.96 + }, + { + "f1": 0.7971460332100861, + "fn": 4930, + "fn_rate": 0.016219186013995218, + "fp": 147262, + "fp_rate": 0.8469709954045862, + "match_probability": 0.000007953319318985333, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700329155958081, + "recall": 0.9837808139860048, + "row_count": 477830, + "tn": 26607, + "tn_rate": 0.1530290045954138, + "tp": 299031, + "tp_rate": 0.9837808139860048, + "truth_threshold": -16.94 + }, + { + "f1": 0.7971390793444301, + "fn": 4935, + "fn_rate": 0.016235635492711235, + "fp": 147262, + "fp_rate": 0.8469709954045862, + "match_probability": 0.000008064342623945162, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700292188004159, + "recall": 0.9837643645072888, + "row_count": 477830, + "tn": 26607, + "tn_rate": 0.1530290045954138, + "tp": 299026, + "tp_rate": 0.9837643645072888, + "truth_threshold": -16.92 + }, + { + "f1": 0.7971582048171894, + "fn": 4935, + "fn_rate": 0.016235635492711235, + "fp": 147244, + "fp_rate": 0.8468674691865715, + "match_probability": 0.000008176915731315674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700562439778609, + "recall": 0.9837643645072888, + "row_count": 477830, + "tn": 26625, + "tn_rate": 0.1531325308134285, + "tp": 299026, + "tp_rate": 0.9837643645072888, + "truth_threshold": -16.9 + }, + { + "f1": 0.7971624550468792, + "fn": 4935, + "fn_rate": 0.016235635492711235, + "fp": 147240, + "fp_rate": 0.846844463360346, + "match_probability": 0.000008291060274824607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700622498689123, + "recall": 0.9837643645072888, + "row_count": 477830, + "tn": 26629, + "tn_rate": 0.153155536639654, + "tp": 299026, + "tp_rate": 0.9837643645072888, + "truth_threshold": -16.88 + }, + { + "f1": 0.797177331207712, + "fn": 4935, + "fn_rate": 0.016235635492711235, + "fp": 147226, + "fp_rate": 0.8467639429685568, + "match_probability": 0.000008524151719262247, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6700832713354786, + "recall": 0.9837643645072888, + "row_count": 477830, + "tn": 26643, + "tn_rate": 0.15323605703144322, + "tp": 299026, + "tp_rate": 0.9837643645072888, + "truth_threshold": -16.84 + }, + { + "f1": 0.7972511797797744, + "fn": 4936, + "fn_rate": 0.01623892538845444, + "fp": 147154, + "fp_rate": 0.8463498380964979, + "match_probability": 0.000008643143414443251, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701906633884607, + "recall": 0.9837610746115456, + "row_count": 477830, + "tn": 26715, + "tn_rate": 0.15365016190350206, + "tp": 299025, + "tp_rate": 0.9837610746115456, + "truth_threshold": -16.82 + }, + { + "f1": 0.7972506392157176, + "fn": 4937, + "fn_rate": 0.016242215284197645, + "fp": 147154, + "fp_rate": 0.8463498380964979, + "match_probability": 0.00000876379614287431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701899242006554, + "recall": 0.9837577847158023, + "row_count": 477830, + "tn": 26715, + "tn_rate": 0.15365016190350206, + "tp": 299024, + "tp_rate": 0.9837577847158023, + "truth_threshold": -16.8 + }, + { + "f1": 0.7972522242692639, + "fn": 4938, + "fn_rate": 0.016245505179940847, + "fp": 147150, + "fp_rate": 0.8463268322702725, + "match_probability": 0.000008886133090902635, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701951933442858, + "recall": 0.9837544948200592, + "row_count": 477830, + "tn": 26719, + "tn_rate": 0.15367316772972756, + "tp": 299023, + "tp_rate": 0.9837544948200592, + "truth_threshold": -16.78 + }, + { + "f1": 0.7972543499010841, + "fn": 4938, + "fn_rate": 0.016245505179940847, + "fp": 147148, + "fp_rate": 0.8463153293571597, + "match_probability": 0.00000901017776852193, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701981975520597, + "recall": 0.9837544948200592, + "row_count": 477830, + "tn": 26721, + "tn_rate": 0.1536846706428403, + "tp": 299023, + "tp_rate": 0.9837544948200592, + "truth_threshold": -16.76 + }, + { + "f1": 0.7972511431351899, + "fn": 4940, + "fn_rate": 0.016252084971427255, + "fp": 147148, + "fp_rate": 0.8463153293571597, + "match_probability": 0.000009135954013889686, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6701967191804002, + "recall": 0.9837479150285727, + "row_count": 477830, + "tn": 26721, + "tn_rate": 0.1536846706428403, + "tp": 299021, + "tp_rate": 0.9837479150285727, + "truth_threshold": -16.740000000000002 + }, + { + "f1": 0.797265482313355, + "fn": 4941, + "fn_rate": 0.01625537486717046, + "fp": 147133, + "fp_rate": 0.846229057508814, + "match_probability": 0.000009392798228865447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702185124833857, + "recall": 0.9837446251328296, + "row_count": 477830, + "tn": 26736, + "tn_rate": 0.1537709424911859, + "tp": 299020, + "tp_rate": 0.9837446251328296, + "truth_threshold": -16.7 + }, + { + "f1": 0.7972676080371998, + "fn": 4941, + "fn_rate": 0.01625537486717046, + "fp": 147131, + "fp_rate": 0.8462175545957014, + "match_probability": 0.000009656863180023442, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702215169303666, + "recall": 0.9837446251328296, + "row_count": 477830, + "tn": 26738, + "tn_rate": 0.15378244540429864, + "tp": 299020, + "tp_rate": 0.9837446251328296, + "truth_threshold": -16.66 + }, + { + "f1": 0.7972670674967671, + "fn": 4942, + "fn_rate": 0.016258664762913662, + "fp": 147130, + "fp_rate": 0.846211803139145, + "match_probability": 0.000009791666646456521, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702222800006276, + "recall": 0.9837413352370863, + "row_count": 477830, + "tn": 26739, + "tn_rate": 0.15378819686085501, + "tp": 299019, + "tp_rate": 0.9837413352370863, + "truth_threshold": -16.64 + }, + { + "f1": 0.7972627795612341, + "fn": 4946, + "fn_rate": 0.01627182434588648, + "fp": 147129, + "fp_rate": 0.8462060516825887, + "match_probability": 0.000009928351862046044, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.670220825563047, + "recall": 0.9837281756541135, + "row_count": 477830, + "tn": 26740, + "tn_rate": 0.1537939483174114, + "tp": 299015, + "tp_rate": 0.9837281756541135, + "truth_threshold": -16.62 + }, + { + "f1": 0.7972691568301742, + "fn": 4946, + "fn_rate": 0.01627182434588648, + "fp": 147123, + "fp_rate": 0.8461715429432504, + "match_probability": 0.000010066945093988067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.670229839197737, + "recall": 0.9837281756541135, + "row_count": 477830, + "tn": 26746, + "tn_rate": 0.15382845705674963, + "tp": 299015, + "tp_rate": 0.9837281756541135, + "truth_threshold": -16.6 + }, + { + "f1": 0.7972627430695353, + "fn": 4950, + "fn_rate": 0.016284983928859294, + "fp": 147123, + "fp_rate": 0.8461715429432504, + "match_probability": 0.000010207472976125722, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702268825061528, + "recall": 0.9837150160711408, + "row_count": 477830, + "tn": 26746, + "tn_rate": 0.15382845705674963, + "tp": 299011, + "tp_rate": 0.9837150160711408, + "truth_threshold": -16.580000000000002 + }, + { + "f1": 0.7973047202060657, + "fn": 4951, + "fn_rate": 0.0162882738246025, + "fp": 147082, + "fp_rate": 0.845935733224439, + "match_probability": 0.000010349962514066602, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702877433354555, + "recall": 0.9837117261753975, + "row_count": 477830, + "tn": 26787, + "tn_rate": 0.1540642667755609, + "tp": 299010, + "tp_rate": 0.9837117261753975, + "truth_threshold": -16.56 + }, + { + "f1": 0.7972731902820406, + "fn": 4970, + "fn_rate": 0.01635078184372337, + "fp": 147082, + "fp_rate": 0.845935733224439, + "match_probability": 0.000010494441090371449, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702736995962544, + "recall": 0.9836492181562766, + "row_count": 477830, + "tn": 26787, + "tn_rate": 0.1540642667755609, + "tp": 298991, + "tp_rate": 0.9836492181562766, + "truth_threshold": -16.54 + }, + { + "f1": 0.7972437847826841, + "fn": 4989, + "fn_rate": 0.016413289862844245, + "fp": 147082, + "fp_rate": 0.845935733224439, + "match_probability": 0.000010640936469815525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6702596546606465, + "recall": 0.9835867101371557, + "row_count": 477830, + "tn": 26787, + "tn_rate": 0.1540642667755609, + "tp": 298972, + "tp_rate": 0.9835867101371557, + "truth_threshold": -16.52 + }, + { + "f1": 0.8036444864978199, + "fn": 4994, + "fn_rate": 0.016429739341560265, + "fp": 141100, + "fp_rate": 0.8115305201042164, + "match_probability": 0.000010789476804723106, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6793670054787112, + "recall": 0.9835702606584398, + "row_count": 477830, + "tn": 32769, + "tn_rate": 0.1884694798957836, + "tp": 298967, + "tp_rate": 0.9835702606584398, + "truth_threshold": -16.5 + }, + { + "f1": 0.8038373740659979, + "fn": 4997, + "fn_rate": 0.016439609028789878, + "fp": 140917, + "fp_rate": 0.8104780035544001, + "match_probability": 0.000011092806920501003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6796474501058241, + "recall": 0.9835603909712102, + "row_count": 477830, + "tn": 32952, + "tn_rate": 0.18952199644559986, + "tp": 298964, + "tp_rate": 0.9835603909712102, + "truth_threshold": -16.46 + }, + { + "f1": 0.8038357917605494, + "fn": 5000, + "fn_rate": 0.01644947871601949, + "fp": 140914, + "fp_rate": 0.810460749184731, + "match_probability": 0.000011247654992825144, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6796499005399261, + "recall": 0.9835505212839805, + "row_count": 477830, + "tn": 32955, + "tn_rate": 0.18953925081526896, + "tp": 298961, + "tp_rate": 0.9835505212839805, + "truth_threshold": -16.44 + }, + { + "f1": 0.8039527328664708, + "fn": 5016, + "fn_rate": 0.016502117047910752, + "fp": 140783, + "fp_rate": 0.8097073083758461, + "match_probability": 0.000011404664614720203, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6798407197176436, + "recall": 0.9834978829520893, + "row_count": 477830, + "tn": 33086, + "tn_rate": 0.19029269162415383, + "tp": 298945, + "tp_rate": 0.9834978829520893, + "truth_threshold": -16.42 + }, + { + "f1": 0.803949523996546, + "fn": 5100, + "fn_rate": 0.01677846829033988, + "fp": 140660, + "fp_rate": 0.8089998792194123, + "match_probability": 0.00001156386595891718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6799697852889851, + "recall": 0.9832215317096601, + "row_count": 477830, + "tn": 33209, + "tn_rate": 0.19100012078058767, + "tp": 298861, + "tp_rate": 0.9832215317096601, + "truth_threshold": -16.4 + }, + { + "f1": 0.8062252652535994, + "fn": 5107, + "fn_rate": 0.016801497560542306, + "fp": 138551, + "fp_rate": 0.7968700573420219, + "match_probability": 0.000011725289619303927, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6832432185274516, + "recall": 0.9831985024394577, + "row_count": 477830, + "tn": 35318, + "tn_rate": 0.20312994265797812, + "tp": 298854, + "tp_rate": 0.9831985024394577, + "truth_threshold": -16.38 + }, + { + "f1": 0.8062215220094906, + "fn": 5110, + "fn_rate": 0.016811367247771918, + "fp": 138551, + "fp_rate": 0.7968700573420219, + "match_probability": 0.000012223206877850105, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6832410459943027, + "recall": 0.9831886327522281, + "row_count": 477830, + "tn": 35318, + "tn_rate": 0.20312994265797812, + "tp": 298851, + "tp_rate": 0.9831886327522281, + "truth_threshold": -16.32 + }, + { + "f1": 0.8062280469841749, + "fn": 5110, + "fn_rate": 0.016811367247771918, + "fp": 138545, + "fp_rate": 0.7968355486026836, + "match_probability": 0.000012393834372475679, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6832504183851704, + "recall": 0.9831886327522281, + "row_count": 477830, + "tn": 35324, + "tn_rate": 0.20316445139731637, + "tp": 298851, + "tp_rate": 0.9831886327522281, + "truth_threshold": -16.3 + }, + { + "f1": 0.8062683289402331, + "fn": 5112, + "fn_rate": 0.016817947039258326, + "fp": 138505, + "fp_rate": 0.7966054903404287, + "match_probability": 0.000012566843678710988, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6833114593670117, + "recall": 0.9831820529607417, + "row_count": 477830, + "tn": 35364, + "tn_rate": 0.2033945096595713, + "tp": 298849, + "tp_rate": 0.9831820529607417, + "truth_threshold": -16.28 + }, + { + "f1": 0.8061813668618298, + "fn": 5166, + "fn_rate": 0.016995601409391336, + "fp": 138505, + "fp_rate": 0.7966054903404287, + "match_probability": 0.00001274226804373564, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6832723530756918, + "recall": 0.9830043985906086, + "row_count": 477830, + "tn": 35364, + "tn_rate": 0.2033945096595713, + "tp": 298795, + "tp_rate": 0.9830043985906086, + "truth_threshold": -16.26 + }, + { + "f1": 0.8064185295840182, + "fn": 5166, + "fn_rate": 0.016995601409391336, + "fp": 138286, + "fp_rate": 0.795345921354583, + "match_probability": 0.000012920141178795591, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6836147075713654, + "recall": 0.9830043985906086, + "row_count": 477830, + "tn": 35583, + "tn_rate": 0.20465407864541696, + "tp": 298795, + "tp_rate": 0.9830043985906086, + "truth_threshold": -16.240000000000002 + }, + { + "f1": 0.8066101022317126, + "fn": 5166, + "fn_rate": 0.016995601409391336, + "fp": 138111, + "fp_rate": 0.7943394164572178, + "match_probability": 0.00001310049726567996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.683888525220528, + "recall": 0.9830043985906086, + "row_count": 477830, + "tn": 35758, + "tn_rate": 0.20566058354278222, + "tp": 298795, + "tp_rate": 0.9830043985906086, + "truth_threshold": -16.22 + }, + { + "f1": 0.8066297000194372, + "fn": 5166, + "fn_rate": 0.016995601409391336, + "fp": 138093, + "fp_rate": 0.794235890239203, + "match_probability": 0.000013283370963288116, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.683916701763381, + "recall": 0.9830043985906086, + "row_count": 477830, + "tn": 35776, + "tn_rate": 0.20576410976079693, + "tp": 298795, + "tp_rate": 0.9830043985906086, + "truth_threshold": -16.2 + }, + { + "f1": 0.8067832947663163, + "fn": 5168, + "fn_rate": 0.017002181200877743, + "fp": 137948, + "fp_rate": 0.793401929038529, + "match_probability": 0.000013468797414288652, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841423177581221, + "recall": 0.9829978187991223, + "row_count": 477830, + "tn": 35921, + "tn_rate": 0.20659807096147098, + "tp": 298793, + "tp_rate": 0.9829978187991223, + "truth_threshold": -16.18 + }, + { + "f1": 0.8067827730525179, + "fn": 5169, + "fn_rate": 0.01700547109662095, + "fp": 137948, + "fp_rate": 0.793401929038529, + "match_probability": 0.000013656812251871, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841415945413747, + "recall": 0.982994528903379, + "row_count": 477830, + "tn": 35921, + "tn_rate": 0.20659807096147098, + "tp": 298792, + "tp_rate": 0.982994528903379, + "truth_threshold": -16.16 + }, + { + "f1": 0.8068073501019347, + "fn": 5172, + "fn_rate": 0.01701534078385056, + "fp": 137921, + "fp_rate": 0.7932466397115069, + "match_probability": 0.000014236750918251151, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841817224244923, + "recall": 0.9829846592161494, + "row_count": 477830, + "tn": 35948, + "tn_rate": 0.20675336028849306, + "tp": 298789, + "tp_rate": 0.9829846592161494, + "truth_threshold": -16.1 + }, + { + "f1": 0.8067875881325222, + "fn": 5189, + "fn_rate": 0.017071269011485025, + "fp": 137913, + "fp_rate": 0.793200628059056, + "match_probability": 0.000014435485686095844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841819618260302, + "recall": 0.982928730988515, + "row_count": 477830, + "tn": 35956, + "tn_rate": 0.20679937194094405, + "tp": 298772, + "tp_rate": 0.982928730988515, + "truth_threshold": -16.080000000000002 + }, + { + "f1": 0.8067870663908706, + "fn": 5190, + "fn_rate": 0.01707455890722823, + "fp": 137913, + "fp_rate": 0.793200628059056, + "match_probability": 0.000014636994607262019, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841812386073225, + "recall": 0.9829254410927718, + "row_count": 477830, + "tn": 35956, + "tn_rate": 0.20679937194094405, + "tp": 298771, + "tp_rate": 0.9829254410927718, + "truth_threshold": -16.06 + }, + { + "f1": 0.8067947374674602, + "fn": 5192, + "fn_rate": 0.017081138698714637, + "fp": 137903, + "fp_rate": 0.7931431134934922, + "match_probability": 0.000014841316405219397, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6841954602081196, + "recall": 0.9829188613012854, + "row_count": 477830, + "tn": 35966, + "tn_rate": 0.20685688650650777, + "tp": 298769, + "tp_rate": 0.9829188613012854, + "truth_threshold": -16.04 + }, + { + "f1": 0.8068368405133302, + "fn": 5199, + "fn_rate": 0.017104167968917065, + "fp": 137854, + "fp_rate": 0.79286129212223, + "match_probability": 0.000015048490343933547, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6842671821463254, + "recall": 0.9828958320310829, + "row_count": 477830, + "tn": 36015, + "tn_rate": 0.20713870787777006, + "tp": 298762, + "tp_rate": 0.9828958320310829, + "truth_threshold": -16.02 + }, + { + "f1": 0.8068013946315866, + "fn": 5221, + "fn_rate": 0.01717654567526755, + "fp": 137854, + "fp_rate": 0.79286129212223, + "match_probability": 0.000015258556235409006, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6842512723491391, + "recall": 0.9828234543247325, + "row_count": 477830, + "tn": 36015, + "tn_rate": 0.20713870787777006, + "tp": 298740, + "tp_rate": 0.9828234543247325, + "truth_threshold": -16 + }, + { + "f1": 0.8067954714861346, + "fn": 5224, + "fn_rate": 0.01718641536249716, + "fp": 137854, + "fp_rate": 0.79286129212223, + "match_probability": 0.000015471554447337795, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6842491027071104, + "recall": 0.9828135846375028, + "row_count": 477830, + "tn": 36015, + "tn_rate": 0.20713870787777006, + "tp": 298737, + "tp_rate": 0.9828135846375028, + "truth_threshold": -15.98 + }, + { + "f1": 0.8068063661480375, + "fn": 5224, + "fn_rate": 0.01718641536249716, + "fp": 137845, + "fp_rate": 0.7928095290132225, + "match_probability": 0.000015687525910854657, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6842632082861868, + "recall": 0.9828135846375028, + "row_count": 477830, + "tn": 36024, + "tn_rate": 0.2071904709867774, + "tp": 298737, + "tp_rate": 0.9828135846375028, + "truth_threshold": -15.96 + }, + { + "f1": 0.8069567425351565, + "fn": 5224, + "fn_rate": 0.01718641536249716, + "fp": 137706, + "fp_rate": 0.7920100765518867, + "match_probability": 0.000015906512128400478, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.684481134993573, + "recall": 0.9828135846375028, + "row_count": 477830, + "tn": 36163, + "tn_rate": 0.20798992344811323, + "tp": 298737, + "tp_rate": 0.9828135846375028, + "truth_threshold": -15.94 + }, + { + "f1": 0.807041241402413, + "fn": 5225, + "fn_rate": 0.017189705258240366, + "fp": 137628, + "fp_rate": 0.7915614629404897, + "match_probability": 0.00001612855518169533, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6846027628310309, + "recall": 0.9828102947417596, + "row_count": 477830, + "tn": 36241, + "tn_rate": 0.20843853705951032, + "tp": 298736, + "tp_rate": 0.9828102947417596, + "truth_threshold": -15.92 + }, + { + "f1": 0.8070528545338621, + "fn": 5232, + "fn_rate": 0.017212734528442793, + "fp": 137607, + "fp_rate": 0.7914406823528058, + "match_probability": 0.000016353697739823012, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6846306516079351, + "recall": 0.9827872654715573, + "row_count": 477830, + "tn": 36262, + "tn_rate": 0.20855931764719415, + "tp": 298729, + "tp_rate": 0.9827872654715573, + "truth_threshold": -15.9 + }, + { + "f1": 0.8070437070777478, + "fn": 5237, + "fn_rate": 0.017229184007158813, + "fp": 137607, + "fp_rate": 0.7914406823528058, + "match_probability": 0.000016581983067428103, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6846270377305302, + "recall": 0.9827708159928412, + "row_count": 477830, + "tn": 36262, + "tn_rate": 0.20855931764719415, + "tp": 298724, + "tp_rate": 0.9827708159928412, + "truth_threshold": -15.88 + }, + { + "f1": 0.806859971520364, + "fn": 5351, + "fn_rate": 0.017604232121884056, + "fp": 137607, + "fp_rate": 0.7914406823528058, + "match_probability": 0.000016813455033027547, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6845446188479587, + "recall": 0.9823957678781159, + "row_count": 477830, + "tn": 36262, + "tn_rate": 0.20855931764719415, + "tp": 298610, + "tp_rate": 0.9823957678781159, + "truth_threshold": -15.860000000000001 + }, + { + "f1": 0.8069079382922552, + "fn": 5351, + "fn_rate": 0.017604232121884056, + "fp": 137564, + "fp_rate": 0.7911933697208818, + "match_probability": 0.000017048158117438166, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.6846121043436794, + "recall": 0.9823957678781159, + "row_count": 477830, + "tn": 36305, + "tn_rate": 0.2088066302791182, + "tp": 298610, + "tp_rate": 0.9823957678781159, + "truth_threshold": -15.84 + }, + { + "f1": 0.8414346177039128, + "fn": 5351, + "fn_rate": 0.017604232121884056, + "fp": 107194, + "fp_rate": 0.6165216341038368, + "match_probability": 0.00001728613742232168, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7358478477294458, + "recall": 0.9823957678781159, + "row_count": 477830, + "tn": 66675, + "tn_rate": 0.3834783658961632, + "tp": 298610, + "tp_rate": 0.9823957678781159, + "truth_threshold": -15.82 + }, + { + "f1": 0.8414393597835889, + "fn": 5351, + "fn_rate": 0.017604232121884056, + "fp": 107189, + "fp_rate": 0.6164928768210549, + "match_probability": 0.000017527438678849133, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.735856914383722, + "recall": 0.9823957678781159, + "row_count": 477830, + "tn": 66680, + "tn_rate": 0.3835071231789451, + "tp": 298610, + "tp_rate": 0.9823957678781159, + "truth_threshold": -15.8 + }, + { + "f1": 0.8414578818782036, + "fn": 5352, + "fn_rate": 0.01760752201762726, + "fp": 107173, + "fp_rate": 0.6164008535161529, + "match_probability": 0.000017772108256485995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7358852783021426, + "recall": 0.9823924779823727, + "row_count": 477830, + "tn": 66696, + "tn_rate": 0.383599146483847, + "tp": 298609, + "tp_rate": 0.9823924779823727, + "truth_threshold": -15.780000000000001 + }, + { + "f1": 0.8414485345296433, + "fn": 5357, + "fn_rate": 0.01762397149634328, + "fp": 107173, + "fp_rate": 0.6164008535161529, + "match_probability": 0.00001802019317189998, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7358820238702538, + "recall": 0.9823760285036567, + "row_count": 477830, + "tn": 66696, + "tn_rate": 0.383599146483847, + "tp": 298604, + "tp_rate": 0.9823760285036567, + "truth_threshold": -15.76 + }, + { + "f1": 0.8414480877396666, + "fn": 5358, + "fn_rate": 0.017627261392086487, + "fp": 107173, + "fp_rate": 0.6164008535161529, + "match_probability": 0.000018271741097992973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7358813729742518, + "recall": 0.9823727386079135, + "row_count": 477830, + "tn": 66696, + "tn_rate": 0.383599146483847, + "tp": 298603, + "tp_rate": 0.9823727386079135, + "truth_threshold": -15.74 + }, + { + "f1": 0.8415814795085779, + "fn": 5362, + "fn_rate": 0.0176404209750593, + "fp": 107055, + "fp_rate": 0.6157221816425009, + "match_probability": 0.000018526800373059223, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7360928278779453, + "recall": 0.9823595790249408, + "row_count": 477830, + "tn": 66814, + "tn_rate": 0.384277818357499, + "tp": 298599, + "tp_rate": 0.9823595790249408, + "truth_threshold": -15.72 + }, + { + "f1": 0.8416352853631587, + "fn": 5369, + "fn_rate": 0.01766345024526173, + "fp": 107000, + "fp_rate": 0.6154058515319004, + "match_probability": 0.00001878542001007107, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361880904948815, + "recall": 0.9823365497547383, + "row_count": 477830, + "tn": 66869, + "tn_rate": 0.38459414846809953, + "tp": 298592, + "tp_rate": 0.9823365497547383, + "truth_threshold": -15.700000000000001 + }, + { + "f1": 0.8413559551436233, + "fn": 5580, + "fn_rate": 0.01835761824707775, + "fp": 106945, + "fp_rate": 0.6150895214212999, + "match_probability": 0.00001904764970609435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361506540414382, + "recall": 0.9816423817529223, + "row_count": 477830, + "tn": 66924, + "tn_rate": 0.38491047857870003, + "tp": 298381, + "tp_rate": 0.9816423817529223, + "truth_threshold": -15.68 + }, + { + "f1": 0.8413749347921102, + "fn": 5580, + "fn_rate": 0.01835761824707775, + "fp": 106929, + "fp_rate": 0.6149974981163979, + "match_probability": 0.00001931353985183501, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361797142927635, + "recall": 0.9816423817529223, + "row_count": 477830, + "tn": 66940, + "tn_rate": 0.385002501883602, + "tp": 298381, + "tp_rate": 0.9816423817529223, + "truth_threshold": -15.66 + }, + { + "f1": 0.8413721149914701, + "fn": 5581, + "fn_rate": 0.018360908142820955, + "fp": 106929, + "fp_rate": 0.6149974981163979, + "match_probability": 0.00001958314154131918, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.736179063381272, + "recall": 0.981639091857179, + "row_count": 477830, + "tn": 66940, + "tn_rate": 0.385002501883602, + "tp": 298380, + "tp_rate": 0.981639091857179, + "truth_threshold": -15.64 + }, + { + "f1": 0.8413633441239834, + "fn": 5590, + "fn_rate": 0.01839051720450979, + "fp": 106925, + "fp_rate": 0.6149744922901725, + "match_probability": 0.000019856506581707993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361804705696577, + "recall": 0.9816094827954902, + "row_count": 477830, + "tn": 66944, + "tn_rate": 0.3850255077098275, + "tp": 298371, + "tp_rate": 0.9816094827954902, + "truth_threshold": -15.620000000000001 + }, + { + "f1": 0.8413728343259339, + "fn": 5590, + "fn_rate": 0.01839051720450979, + "fp": 106917, + "fp_rate": 0.6149284806377215, + "match_probability": 0.00002013368750324953, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361950020726002, + "recall": 0.9816094827954902, + "row_count": 477830, + "tn": 66952, + "tn_rate": 0.3850715193622785, + "tp": 298371, + "tp_rate": 0.9816094827954902, + "truth_threshold": -15.6 + }, + { + "f1": 0.8413602127341584, + "fn": 5597, + "fn_rate": 0.018413546474712217, + "fp": 106917, + "fp_rate": 0.6149284806377215, + "match_probability": 0.000020414737569369415, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7361904456414191, + "recall": 0.9815864535252878, + "row_count": 477830, + "tn": 66952, + "tn_rate": 0.3850715193622785, + "tp": 298364, + "tp_rate": 0.9815864535252878, + "truth_threshold": -15.58 + }, + { + "f1": 0.8413958026654935, + "fn": 5597, + "fn_rate": 0.018413546474712217, + "fp": 106887, + "fp_rate": 0.6147559369410304, + "match_probability": 0.00002069971078690248, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7362449444911919, + "recall": 0.9815864535252878, + "row_count": 477830, + "tn": 66982, + "tn_rate": 0.3852440630589697, + "tp": 298364, + "tp_rate": 0.9815864535252878, + "truth_threshold": -15.56 + }, + { + "f1": 0.841375751200652, + "fn": 5610, + "fn_rate": 0.018456315119373866, + "fp": 106887, + "fp_rate": 0.6147559369410304, + "match_probability": 0.000020988661916466824, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7362364832518175, + "recall": 0.9815436848806262, + "row_count": 477830, + "tn": 66982, + "tn_rate": 0.3852440630589697, + "tp": 298351, + "tp_rate": 0.9815436848806262, + "truth_threshold": -15.540000000000001 + }, + { + "f1": 0.8414115802150878, + "fn": 5636, + "fn_rate": 0.018541852408697167, + "fp": 106821, + "fp_rate": 0.6143763408083097, + "match_probability": 0.000021578720786338814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7363394924298895, + "recall": 0.9814581475913028, + "row_count": 477830, + "tn": 67048, + "tn_rate": 0.3856236591916903, + "tp": 298325, + "tp_rate": 0.9814581475913028, + "truth_threshold": -15.5 + }, + { + "f1": 0.8414017769002962, + "fn": 5642, + "fn_rate": 0.018561591783156393, + "fp": 106821, + "fp_rate": 0.6143763408083097, + "match_probability": 0.00002187994191220544, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7363355876980797, + "recall": 0.9814384082168436, + "row_count": 477830, + "tn": 67048, + "tn_rate": 0.3856236591916903, + "tp": 298319, + "tp_rate": 0.9814384082168436, + "truth_threshold": -15.48 + }, + { + "f1": 0.8414863248634743, + "fn": 5644, + "fn_rate": 0.0185681715746428, + "fp": 106747, + "fp_rate": 0.6139507330231381, + "match_probability": 0.00002218536774300117, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7364688049295913, + "recall": 0.9814318284253573, + "row_count": 477830, + "tn": 67122, + "tn_rate": 0.38604926697686187, + "tp": 298317, + "tp_rate": 0.9814318284253573, + "truth_threshold": -15.46 + }, + { + "f1": 0.8415053144675377, + "fn": 5644, + "fn_rate": 0.0185681715746428, + "fp": 106731, + "fp_rate": 0.6138587097182362, + "match_probability": 0.000022495056969010486, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7364978965455946, + "recall": 0.9814318284253573, + "row_count": 477830, + "tn": 67138, + "tn_rate": 0.38614129028176386, + "tp": 298317, + "tp_rate": 0.9814318284253573, + "truth_threshold": -15.44 + }, + { + "f1": 0.8414959577096885, + "fn": 5649, + "fn_rate": 0.01858462105335882, + "fp": 106731, + "fp_rate": 0.6138587097182362, + "match_probability": 0.00002280906909965718, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7364946437785618, + "recall": 0.9814153789466412, + "row_count": 477830, + "tn": 67138, + "tn_rate": 0.38614129028176386, + "tp": 298312, + "tp_rate": 0.9814153789466412, + "truth_threshold": -15.42 + }, + { + "f1": 0.8414867388446631, + "fn": 5659, + "fn_rate": 0.018617520010790856, + "fp": 106725, + "fp_rate": 0.6138242009788979, + "match_probability": 0.000023127464474935175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7364990482116007, + "recall": 0.9813824799892091, + "row_count": 477830, + "tn": 67144, + "tn_rate": 0.3861757990211021, + "tp": 298302, + "tp_rate": 0.9813824799892091, + "truth_threshold": -15.4 + }, + { + "f1": 0.8414494470774092, + "fn": 5684, + "fn_rate": 0.018699767404370956, + "fp": 106722, + "fp_rate": 0.6138069466092287, + "match_probability": 0.00002345030427699851, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7364882382425636, + "recall": 0.981300232595629, + "row_count": 477830, + "tn": 67147, + "tn_rate": 0.3861930533907712, + "tp": 298277, + "tp_rate": 0.981300232595629, + "truth_threshold": -15.38 + }, + { + "f1": 0.8414595270134934, + "fn": 5688, + "fn_rate": 0.01871292698734377, + "fp": 106708, + "fp_rate": 0.6137264262174396, + "match_probability": 0.000023777650541913158, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7365110955822619, + "recall": 0.9812870730126563, + "row_count": 477830, + "tn": 67161, + "tn_rate": 0.38627357378256044, + "tp": 298273, + "tp_rate": 0.9812870730126563, + "truth_threshold": -15.36 + }, + { + "f1": 0.8414942418480255, + "fn": 5690, + "fn_rate": 0.018719506778830178, + "fp": 106676, + "fp_rate": 0.6135423796076356, + "match_probability": 0.00002410956617157259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7365679953179058, + "recall": 0.9812804932211698, + "row_count": 477830, + "tn": 67193, + "tn_rate": 0.38645762039236436, + "tp": 298271, + "tp_rate": 0.9812804932211698, + "truth_threshold": -15.34 + }, + { + "f1": 0.8414933474772325, + "fn": 5692, + "fn_rate": 0.018726086570316585, + "fp": 106674, + "fp_rate": 0.6135308766945229, + "match_probability": 0.000024446114945779867, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.736570332120817, + "recall": 0.9812739134296834, + "row_count": 477830, + "tn": 67195, + "tn_rate": 0.3864691233054771, + "tp": 298269, + "tp_rate": 0.9812739134296834, + "truth_threshold": -15.32 + }, + { + "f1": 0.8415095191341933, + "fn": 5693, + "fn_rate": 0.01872937646605979, + "fp": 106660, + "fp_rate": 0.6134503563027337, + "match_probability": 0.000025133371510271085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7365951477793583, + "recall": 0.9812706235339402, + "row_count": 477830, + "tn": 67209, + "tn_rate": 0.38654964369726635, + "tp": 298268, + "tp_rate": 0.9812706235339402, + "truth_threshold": -15.280000000000001 + }, + { + "f1": 0.8416064243429777, + "fn": 5694, + "fn_rate": 0.018732666361802996, + "fp": 106576, + "fp_rate": 0.6129672339519984, + "match_probability": 0.000025484211360819274, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7367473316816643, + "recall": 0.981267333638197, + "row_count": 477830, + "tn": 67293, + "tn_rate": 0.38703276604800163, + "tp": 298267, + "tp_rate": 0.981267333638197, + "truth_threshold": -15.26 + }, + { + "f1": 0.8416254225523006, + "fn": 5694, + "fn_rate": 0.018732666361802996, + "fp": 106561, + "fp_rate": 0.6128809621036527, + "match_probability": 0.00002583994850180852, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7367746302133251, + "recall": 0.981267333638197, + "row_count": 477830, + "tn": 67308, + "tn_rate": 0.3871190378963473, + "tp": 298267, + "tp_rate": 0.981267333638197, + "truth_threshold": -15.24 + }, + { + "f1": 0.8416432217666496, + "fn": 5702, + "fn_rate": 0.018758985527748625, + "fp": 106535, + "fp_rate": 0.612731424233187, + "match_probability": 0.000026200651289799313, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7368167512364314, + "recall": 0.9812410144722514, + "row_count": 477830, + "tn": 67334, + "tn_rate": 0.38726857576681295, + "tp": 298259, + "tp_rate": 0.9812410144722514, + "truth_threshold": -15.22 + }, + { + "f1": 0.841685080300375, + "fn": 5704, + "fn_rate": 0.018765565319235032, + "fp": 106496, + "fp_rate": 0.6125071174274885, + "match_probability": 0.000026566389035375488, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7368864467959472, + "recall": 0.981234434680765, + "row_count": 477830, + "tn": 67373, + "tn_rate": 0.38749288257251147, + "tp": 298257, + "tp_rate": 0.981234434680765, + "truth_threshold": -15.200000000000001 + }, + { + "f1": 0.8416837173860894, + "fn": 5723, + "fn_rate": 0.018828073338355907, + "fp": 106471, + "fp_rate": 0.6123633310135792, + "match_probability": 0.00002693723201645637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.736919613845998, + "recall": 0.9811719266616441, + "row_count": 477830, + "tn": 67398, + "tn_rate": 0.3876366689864208, + "tp": 298238, + "tp_rate": 0.9811719266616441, + "truth_threshold": -15.18 + }, + { + "f1": 0.8417189030224177, + "fn": 5724, + "fn_rate": 0.018831363234099112, + "fp": 106440, + "fp_rate": 0.6121850358603317, + "match_probability": 0.000027694519714661317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7369754149605735, + "recall": 0.9811686367659009, + "row_count": 477830, + "tn": 67429, + "tn_rate": 0.38781496413966837, + "tp": 298237, + "tp_rate": 0.9811686367659009, + "truth_threshold": -15.14 + }, + { + "f1": 0.8416814379099725, + "fn": 5760, + "fn_rate": 0.018949799480854453, + "fp": 106422, + "fp_rate": 0.6120815096423169, + "match_probability": 0.00002808110994672502, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7369847981948628, + "recall": 0.9810502005191456, + "row_count": 477830, + "tn": 67447, + "tn_rate": 0.3879184903576831, + "tp": 298201, + "tp_rate": 0.9810502005191456, + "truth_threshold": -15.120000000000001 + }, + { + "f1": 0.8416244887128691, + "fn": 5813, + "fn_rate": 0.01912416395524426, + "fp": 106397, + "fp_rate": 0.6119377232284076, + "match_probability": 0.000028473096472119992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7369958842650385, + "recall": 0.9808758360447557, + "row_count": 477830, + "tn": 67472, + "tn_rate": 0.3880622767715924, + "tp": 298148, + "tp_rate": 0.9808758360447557, + "truth_threshold": -15.1 + }, + { + "f1": 0.8416286271620412, + "fn": 5825, + "fn_rate": 0.019163642704162705, + "fp": 106377, + "fp_rate": 0.6118226940972802, + "match_probability": 0.000028870554611713878, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7370245208435823, + "recall": 0.9808363572958373, + "row_count": 477830, + "tn": 67492, + "tn_rate": 0.38817730590271987, + "tp": 298136, + "tp_rate": 0.9808363572958373, + "truth_threshold": -15.08 + }, + { + "f1": 0.8416577028297492, + "fn": 5845, + "fn_rate": 0.01922944061902678, + "fp": 106325, + "fp_rate": 0.6115236183563487, + "match_probability": 0.000029273560737573354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7371062775534627, + "recall": 0.9807705593809732, + "row_count": 477830, + "tn": 67544, + "tn_rate": 0.3884763816436513, + "tp": 298116, + "tp_rate": 0.9807705593809732, + "truth_threshold": -15.06 + }, + { + "f1": 0.8416667607765193, + "fn": 5846, + "fn_rate": 0.019232730514769987, + "fp": 106317, + "fp_rate": 0.6114776067038977, + "match_probability": 0.000029682192287631416, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737120208094315, + "recall": 0.98076726948523, + "row_count": 477830, + "tn": 67552, + "tn_rate": 0.3885223932961022, + "tp": 298115, + "tp_rate": 0.98076726948523, + "truth_threshold": -15.040000000000001 + }, + { + "f1": 0.8417157716709066, + "fn": 5848, + "fn_rate": 0.019239310306256394, + "fp": 106272, + "fp_rate": 0.611218791158861, + "match_probability": 0.000030096527780559407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7372009347527727, + "recall": 0.9807606896937436, + "row_count": 477830, + "tn": 67597, + "tn_rate": 0.38878120884113904, + "tp": 298113, + "tp_rate": 0.9807606896937436, + "truth_threshold": -15.02 + }, + { + "f1": 0.8417585520464204, + "fn": 5848, + "fn_rate": 0.019239310306256394, + "fp": 106236, + "fp_rate": 0.6110117387228315, + "match_probability": 0.000030516646830846227, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7372665692260894, + "recall": 0.9807606896937436, + "row_count": 477830, + "tn": 67633, + "tn_rate": 0.38898826127716846, + "tp": 298113, + "tp_rate": 0.9807606896937436, + "truth_threshold": -15 + }, + { + "f1": 0.8417775669425408, + "fn": 5848, + "fn_rate": 0.019239310306256394, + "fp": 106220, + "fp_rate": 0.6109197154179296, + "match_probability": 0.00003094263016408827, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737295743854694, + "recall": 0.9807606896937436, + "row_count": 477830, + "tn": 67649, + "tn_rate": 0.3890802845820704, + "tp": 298113, + "tp_rate": 0.9807606896937436, + "truth_threshold": -14.98 + }, + { + "f1": 0.8418980481205641, + "fn": 5871, + "fn_rate": 0.019314977908350083, + "fp": 106087, + "fp_rate": 0.610154771695932, + "match_probability": 0.00003137455963249214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737523411772565, + "recall": 0.9806850220916499, + "row_count": 477830, + "tn": 67782, + "tn_rate": 0.389845228304068, + "tp": 298090, + "tp_rate": 0.9806850220916499, + "truth_threshold": -14.96 + }, + { + "f1": 0.8418812471226872, + "fn": 5882, + "fn_rate": 0.01935116676152533, + "fp": 106087, + "fp_rate": 0.610154771695932, + "match_probability": 0.00003181251823059389, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737516268068071, + "recall": 0.9806488332384746, + "row_count": 477830, + "tn": 67782, + "tn_rate": 0.389845228304068, + "tp": 298079, + "tp_rate": 0.9806488332384746, + "truth_threshold": -14.94 + }, + { + "f1": 0.841874705206165, + "fn": 5886, + "fn_rate": 0.019364326344498143, + "fp": 106087, + "fp_rate": 0.610154771695932, + "match_probability": 0.00003225659011119708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737513670260935, + "recall": 0.9806356736555019, + "row_count": 477830, + "tn": 67782, + "tn_rate": 0.389845228304068, + "tp": 298075, + "tp_rate": 0.9806356736555019, + "truth_threshold": -14.92 + }, + { + "f1": 0.8418387233441604, + "fn": 5908, + "fn_rate": 0.01943670405084863, + "fp": 106087, + "fp_rate": 0.610154771695932, + "match_probability": 0.00003270686060153373, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7374993814024843, + "recall": 0.9805632959491514, + "row_count": 477830, + "tn": 67782, + "tn_rate": 0.389845228304068, + "tp": 298053, + "tp_rate": 0.9805632959491514, + "truth_threshold": -14.9 + }, + { + "f1": 0.841766752912199, + "fn": 5952, + "fn_rate": 0.0195814594635496, + "fp": 106087, + "fp_rate": 0.610154771695932, + "match_probability": 0.00003316341621965, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7374707990180551, + "recall": 0.9804185405364504, + "row_count": 477830, + "tn": 67782, + "tn_rate": 0.389845228304068, + "tp": 298009, + "tp_rate": 0.9804185405364504, + "truth_threshold": -14.88 + }, + { + "f1": 0.8417924613576787, + "fn": 5953, + "fn_rate": 0.019584749359292802, + "fp": 106064, + "fp_rate": 0.6100224881951354, + "match_probability": 0.00003362634469102074, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375121265517036, + "recall": 0.9804152506407072, + "row_count": 477830, + "tn": 67805, + "tn_rate": 0.38997751180486456, + "tp": 298008, + "tp_rate": 0.9804152506407072, + "truth_threshold": -14.86 + }, + { + "f1": 0.8418012225850555, + "fn": 5960, + "fn_rate": 0.01960777862949523, + "fp": 106047, + "fp_rate": 0.609924713433677, + "match_probability": 0.000034095734965395514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375386092741456, + "recall": 0.9803922213705047, + "row_count": 477830, + "tn": 67822, + "tn_rate": 0.3900752865663229, + "tp": 298001, + "tp_rate": 0.9803922213705047, + "truth_threshold": -14.84 + }, + { + "f1": 0.8417943756267744, + "fn": 5970, + "fn_rate": 0.01964067758692727, + "fp": 106039, + "fp_rate": 0.609878701781226, + "match_probability": 0.00003457167723387977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375467168279584, + "recall": 0.9803593224130728, + "row_count": 477830, + "tn": 67830, + "tn_rate": 0.3901212982187739, + "tp": 297991, + "tp_rate": 0.9803593224130728, + "truth_threshold": -14.82 + }, + { + "f1": 0.8417469227705094, + "fn": 6007, + "fn_rate": 0.019762403729425816, + "fp": 106027, + "fp_rate": 0.6098096843025497, + "match_probability": 0.00003505426294625404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375445874929761, + "recall": 0.9802375962705742, + "row_count": 477830, + "tn": 67842, + "tn_rate": 0.3901903156974504, + "tp": 297954, + "tp_rate": 0.9802375962705742, + "truth_threshold": -14.8 + }, + { + "f1": 0.8417689154332306, + "fn": 6011, + "fn_rate": 0.01977556331239863, + "fp": 106004, + "fp_rate": 0.609677400801753, + "match_probability": 0.000035543584828534594, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375839823346223, + "recall": 0.9802244366876014, + "row_count": 477830, + "tn": 67865, + "tn_rate": 0.39032259919824697, + "tp": 297950, + "tp_rate": 0.9802244366876014, + "truth_threshold": -14.780000000000001 + }, + { + "f1": 0.8417699525078188, + "fn": 6014, + "fn_rate": 0.019785432999628243, + "fp": 105998, + "fp_rate": 0.6096428920624148, + "match_probability": 0.00003603973690077914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7375929891445617, + "recall": 0.9802145670003718, + "row_count": 477830, + "tn": 67871, + "tn_rate": 0.3903571079375852, + "tp": 297947, + "tp_rate": 0.9802145670003718, + "truth_threshold": -14.76 + }, + { + "f1": 0.8417824338947232, + "fn": 6018, + "fn_rate": 0.019798592582601058, + "fp": 105983, + "fp_rate": 0.6095566202140692, + "match_probability": 0.0000365428144951405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7376177814748246, + "recall": 0.9802014074173989, + "row_count": 477830, + "tn": 67886, + "tn_rate": 0.3904433797859308, + "tp": 297943, + "tp_rate": 0.9802014074173989, + "truth_threshold": -14.74 + }, + { + "f1": 0.8418561676348922, + "fn": 6018, + "fn_rate": 0.019798592582601058, + "fp": 105921, + "fp_rate": 0.609200029907574, + "match_probability": 0.000037052914274172446, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377310183626171, + "recall": 0.9802014074173989, + "row_count": 477830, + "tn": 67948, + "tn_rate": 0.3907999700924259, + "tp": 297943, + "tp_rate": 0.9802014074173989, + "truth_threshold": -14.72 + }, + { + "f1": 0.8420515603492379, + "fn": 6044, + "fn_rate": 0.01988412987192436, + "fp": 105720, + "fp_rate": 0.6080439871397432, + "match_probability": 0.000037570134249390434, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7380814940156626, + "recall": 0.9801158701280757, + "row_count": 477830, + "tn": 68149, + "tn_rate": 0.3919560128602569, + "tp": 297917, + "tp_rate": 0.9801158701280757, + "truth_threshold": -14.700000000000001 + }, + { + "f1": 0.8420658407599925, + "fn": 6044, + "fn_rate": 0.01988412987192436, + "fp": 105708, + "fp_rate": 0.6079749696610667, + "match_probability": 0.00003809457380009125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7381034375967792, + "recall": 0.9801158701280757, + "row_count": 477830, + "tn": 68161, + "tn_rate": 0.3920250303389333, + "tp": 297917, + "tp_rate": 0.9801158701280757, + "truth_threshold": -14.68 + }, + { + "f1": 0.8421225209741978, + "fn": 6045, + "fn_rate": 0.01988741976766756, + "fp": 105659, + "fp_rate": 0.6076931482898044, + "match_probability": 0.00003862633369243492, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7381924053769435, + "recall": 0.9801125802323324, + "row_count": 477830, + "tn": 68210, + "tn_rate": 0.3923068517101956, + "tp": 297916, + "tp_rate": 0.9801125802323324, + "truth_threshold": -14.66 + }, + { + "f1": 0.842165371024735, + "fn": 6045, + "fn_rate": 0.01988741976766756, + "fp": 105623, + "fp_rate": 0.607486095853775, + "match_probability": 0.00003916551609879306, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7382582600442584, + "recall": 0.9801125802323324, + "row_count": 477830, + "tn": 68246, + "tn_rate": 0.39251390414622506, + "tp": 297916, + "tp_rate": 0.9801125802323324, + "truth_threshold": -14.64 + }, + { + "f1": 0.8421132980136944, + "fn": 6087, + "fn_rate": 0.020025595388882125, + "fp": 105610, + "fp_rate": 0.6074113269185422, + "match_probability": 0.0000397122246173665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7382548006860247, + "recall": 0.9799744046111178, + "row_count": 477830, + "tn": 68259, + "tn_rate": 0.3925886730814579, + "tp": 297874, + "tp_rate": 0.9799744046111178, + "truth_threshold": -14.620000000000001 + }, + { + "f1": 0.8382298294334399, + "fn": 8459, + "fn_rate": 0.027829228091761773, + "fp": 105599, + "fp_rate": 0.607348060896422, + "match_probability": 0.00004026656429207677, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7367271584962392, + "recall": 0.9721707719082382, + "row_count": 477830, + "tn": 68270, + "tn_rate": 0.392651939103578, + "tp": 295502, + "tp_rate": 0.9721707719082382, + "truth_threshold": -14.6 + }, + { + "f1": 0.8382455563057057, + "fn": 8461, + "fn_rate": 0.02783580788324818, + "fp": 105584, + "fp_rate": 0.6072617890480764, + "match_probability": 0.00004082864163273459, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7367533982906324, + "recall": 0.9721641921167519, + "row_count": 477830, + "tn": 68285, + "tn_rate": 0.39273821095192357, + "tp": 295500, + "tp_rate": 0.9721641921167519, + "truth_threshold": -14.58 + }, + { + "f1": 0.8384653799662908, + "fn": 8464, + "fn_rate": 0.027845677570477793, + "fp": 105394, + "fp_rate": 0.6061690123023655, + "match_probability": 0.000041398564635490015, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7371006083948006, + "recall": 0.9721543224295222, + "row_count": 477830, + "tn": 68475, + "tn_rate": 0.3938309876976344, + "tp": 295497, + "tp_rate": 0.9721543224295222, + "truth_threshold": -14.56 + }, + { + "f1": 0.8385315425500217, + "fn": 8465, + "fn_rate": 0.027848967466220995, + "fp": 105338, + "fp_rate": 0.6058469307352087, + "match_probability": 0.00004197644280356719, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7372029318870156, + "recall": 0.972151032533779, + "row_count": 477830, + "tn": 68531, + "tn_rate": 0.3941530692647913, + "tp": 295496, + "tp_rate": 0.972151032533779, + "truth_threshold": -14.540000000000001 + }, + { + "f1": 0.8385977160241566, + "fn": 8466, + "fn_rate": 0.0278522573619642, + "fp": 105281, + "fp_rate": 0.6055190977114955, + "match_probability": 0.000042562387168288515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7373071241790926, + "recall": 0.9721477426380358, + "row_count": 477830, + "tn": 68588, + "tn_rate": 0.3944809022885046, + "tp": 295495, + "tp_rate": 0.9721477426380358, + "truth_threshold": -14.52 + }, + { + "f1": 0.8386497947783436, + "fn": 8503, + "fn_rate": 0.027973983504462743, + "fp": 105185, + "fp_rate": 0.6049669578820837, + "match_probability": 0.00004315651031039153, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7374595337994174, + "recall": 0.9720260164955372, + "row_count": 477830, + "tn": 68684, + "tn_rate": 0.39503304211791634, + "tp": 295458, + "tp_rate": 0.9720260164955372, + "truth_threshold": -14.5 + }, + { + "f1": 0.8388003429538319, + "fn": 8507, + "fn_rate": 0.027987143087435558, + "fp": 105053, + "fp_rate": 0.6042077656166425, + "match_probability": 0.000043758926381643505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7376999652939898, + "recall": 0.9720128569125644, + "row_count": 477830, + "tn": 68816, + "tn_rate": 0.3957922343833576, + "tp": 295454, + "tp_rate": 0.9720128569125644, + "truth_threshold": -14.48 + }, + { + "f1": 0.8388510002782494, + "fn": 8516, + "fn_rate": 0.028016752149124396, + "fp": 104998, + "fp_rate": 0.6038914355060419, + "match_probability": 0.000044369751126756925, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377953916037988, + "recall": 0.9719832478508756, + "row_count": 477830, + "tn": 68871, + "tn_rate": 0.3961085644939581, + "tp": 295445, + "tp_rate": 0.9719832478508756, + "truth_threshold": -14.46 + }, + { + "f1": 0.8381329923273657, + "fn": 9022, + "fn_rate": 0.029681439395185565, + "fp": 104900, + "fp_rate": 0.6033277927635173, + "match_probability": 0.000044989101905610624, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7376444018717534, + "recall": 0.9703185606048145, + "row_count": 477830, + "tn": 68969, + "tn_rate": 0.39667220723648267, + "tp": 294939, + "tp_rate": 0.9703185606048145, + "truth_threshold": -14.44 + }, + { + "f1": 0.8381383796502855, + "fn": 9031, + "fn_rate": 0.029711048456874403, + "fp": 104883, + "fp_rate": 0.603230018002059, + "match_probability": 0.00004561709771578043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7376698606598585, + "recall": 0.9702889515431256, + "row_count": 477830, + "tn": 68986, + "tn_rate": 0.396769981997941, + "tp": 294930, + "tp_rate": 0.9702889515431256, + "truth_threshold": -14.42 + }, + { + "f1": 0.8381784129889248, + "fn": 9032, + "fn_rate": 0.029714338352617605, + "fp": 104848, + "fp_rate": 0.603028717022586, + "match_probability": 0.00004625385921538452, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377337865860217, + "recall": 0.9702856616473824, + "row_count": 477830, + "tn": 69021, + "tn_rate": 0.396971282977414, + "tp": 294929, + "tp_rate": 0.9702856616473824, + "truth_threshold": -14.4 + }, + { + "f1": 0.8381501082921672, + "fn": 9078, + "fn_rate": 0.029865673556804986, + "fp": 104808, + "fp_rate": 0.602798658760331, + "match_probability": 0.000046899508746246485, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377774330670442, + "recall": 0.970134326443195, + "row_count": 477830, + "tn": 69061, + "tn_rate": 0.39720134123966894, + "tp": 294883, + "tp_rate": 0.970134326443195, + "truth_threshold": -14.38 + }, + { + "f1": 0.8380802947095541, + "fn": 9121, + "fn_rate": 0.03000713907376275, + "fp": 104808, + "fp_rate": 0.602798658760331, + "match_probability": 0.000047554170357381744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377492193129954, + "recall": 0.9699928609262373, + "row_count": 477830, + "tn": 69061, + "tn_rate": 0.39720134123966894, + "tp": 294840, + "tp_rate": 0.9699928609262373, + "truth_threshold": -14.36 + }, + { + "f1": 0.8380741494529609, + "fn": 9124, + "fn_rate": 0.030017008760992364, + "fp": 104808, + "fp_rate": 0.602798658760331, + "match_probability": 0.00004821796982881093, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377472506849829, + "recall": 0.9699829912390077, + "row_count": 477830, + "tn": 69061, + "tn_rate": 0.39720134123966894, + "tp": 294837, + "tp_rate": 0.9699829912390077, + "truth_threshold": -14.34 + }, + { + "f1": 0.8380736891774351, + "fn": 9125, + "fn_rate": 0.03002029865673557, + "fp": 104808, + "fp_rate": 0.602798658760331, + "match_probability": 0.000048891034695705744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7377465944690775, + "recall": 0.9699797013432644, + "row_count": 477830, + "tn": 69061, + "tn_rate": 0.39720134123966894, + "tp": 294836, + "tp_rate": 0.9699797013432644, + "truth_threshold": -14.32 + }, + { + "f1": 0.8380708466694333, + "fn": 9126, + "fn_rate": 0.03002358855247877, + "fp": 104808, + "fp_rate": 0.602798658760331, + "match_probability": 0.000049573494272870864, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.737745938249888, + "recall": 0.9699764114475212, + "row_count": 477830, + "tn": 69061, + "tn_rate": 0.39720134123966894, + "tp": 294835, + "tp_rate": 0.9699764114475212, + "truth_threshold": -14.3 + }, + { + "f1": 0.8381199559950991, + "fn": 9128, + "fn_rate": 0.03003016834396518, + "fp": 104764, + "fp_rate": 0.6025455946718506, + "match_probability": 0.00005026547967956725, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7378258595535001, + "recall": 0.9699698316560348, + "row_count": 477830, + "tn": 69105, + "tn_rate": 0.39745440532814935, + "tp": 294833, + "tp_rate": 0.9699698316560348, + "truth_threshold": -14.280000000000001 + }, + { + "f1": 0.8381613326017178, + "fn": 9152, + "fn_rate": 0.030109125841802073, + "fp": 104697, + "fp_rate": 0.6021602470825737, + "match_probability": 0.00005096712386468152, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7379338483026537, + "recall": 0.969890874158198, + "row_count": 477830, + "tn": 69172, + "tn_rate": 0.39783975291742635, + "tp": 294809, + "tp_rate": 0.969890874158198, + "truth_threshold": -14.26 + }, + { + "f1": 0.8381282998268523, + "fn": 9172, + "fn_rate": 0.030174923756666153, + "fp": 104697, + "fp_rate": 0.6021602470825737, + "match_probability": 0.000051678561632245805, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7379207281356543, + "recall": 0.9698250762433338, + "row_count": 477830, + "tn": 69172, + "tn_rate": 0.39783975291742635, + "tp": 294789, + "tp_rate": 0.9698250762433338, + "truth_threshold": -14.24 + }, + { + "f1": 0.8381245362090975, + "fn": 9175, + "fn_rate": 0.030184793443895762, + "fp": 104695, + "fp_rate": 0.602148744169461, + "match_probability": 0.000052399929667313805, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7379224543845639, + "recall": 0.9698152065561042, + "row_count": 477830, + "tn": 69174, + "tn_rate": 0.3978512558305391, + "tp": 294786, + "tp_rate": 0.9698152065561042, + "truth_threshold": -14.22 + }, + { + "f1": 0.8381491549327813, + "fn": 9194, + "fn_rate": 0.030247301463016636, + "fp": 104649, + "fp_rate": 0.6018841771678678, + "match_probability": 0.0000531313665621969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7379949726600837, + "recall": 0.9697526985369833, + "row_count": 477830, + "tn": 69220, + "tn_rate": 0.39811582283213226, + "tp": 294767, + "tp_rate": 0.9697526985369833, + "truth_threshold": -14.200000000000001 + }, + { + "f1": 0.8381744508423971, + "fn": 9196, + "fn_rate": 0.030253881254503043, + "fp": 104625, + "fp_rate": 0.6017461422105148, + "match_probability": 0.000053873012843066357, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7380380079621423, + "recall": 0.969746118745497, + "row_count": 477830, + "tn": 69244, + "tn_rate": 0.3982538577894852, + "tp": 294765, + "tp_rate": 0.969746118745497, + "truth_threshold": -14.18 + }, + { + "f1": 0.8381873709713193, + "fn": 9199, + "fn_rate": 0.030263750941732656, + "fp": 104609, + "fp_rate": 0.6016541189056128, + "match_probability": 0.00005462501099692568, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7380656081688455, + "recall": 0.9697362490582674, + "row_count": 477830, + "tn": 69260, + "tn_rate": 0.3983458810943872, + "tp": 294762, + "tp_rate": 0.9697362490582674, + "truth_threshold": -14.16 + }, + { + "f1": 0.8381966108249987, + "fn": 9210, + "fn_rate": 0.030299939794907898, + "fp": 104586, + "fp_rate": 0.6015218354048163, + "match_probability": 0.00005538750549895966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7381009022454719, + "recall": 0.9697000602050921, + "row_count": 477830, + "tn": 69283, + "tn_rate": 0.3984781645951837, + "tp": 294751, + "tp_rate": 0.9697000602050921, + "truth_threshold": -14.14 + }, + { + "f1": 0.8381862389625901, + "fn": 9217, + "fn_rate": 0.030322969065110325, + "fp": 104586, + "fp_rate": 0.6015218354048163, + "match_probability": 0.00005616064284026378, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7380963113214635, + "recall": 0.9696770309348897, + "row_count": 477830, + "tn": 69283, + "tn_rate": 0.3984781645951837, + "tp": 294744, + "tp_rate": 0.9696770309348897, + "truth_threshold": -14.120000000000001 + }, + { + "f1": 0.8382301499048697, + "fn": 9220, + "fn_rate": 0.030332838752339938, + "fp": 104544, + "fp_rate": 0.6012802742294486, + "match_probability": 0.000056944571555960515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7381719824185732, + "recall": 0.9696671612476601, + "row_count": 477830, + "tn": 69325, + "tn_rate": 0.39871972577055137, + "tp": 294741, + "tp_rate": 0.9696671612476601, + "truth_threshold": -14.1 + }, + { + "f1": 0.8382578375411324, + "fn": 9222, + "fn_rate": 0.030339418543826345, + "fp": 104519, + "fp_rate": 0.6011364878155393, + "match_probability": 0.00005773944225370692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.738216892335282, + "recall": 0.9696605814561736, + "row_count": 477830, + "tn": 69350, + "tn_rate": 0.3988635121844607, + "tp": 294739, + "tp_rate": 0.9696605814561736, + "truth_threshold": -14.08 + }, + { + "f1": 0.8382640698058043, + "fn": 9224, + "fn_rate": 0.030345998335312752, + "fp": 104511, + "fp_rate": 0.6010904761630883, + "match_probability": 0.000058545407642600166, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7382303731014307, + "recall": 0.9696540016646873, + "row_count": 477830, + "tn": 69358, + "tn_rate": 0.3989095238369117, + "tp": 294737, + "tp_rate": 0.9696540016646873, + "truth_threshold": -14.06 + }, + { + "f1": 0.838313304415843, + "fn": 9231, + "fn_rate": 0.03036902760551518, + "fp": 104460, + "fp_rate": 0.6007971518787133, + "match_probability": 0.00005936262256248524, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7383200981988527, + "recall": 0.9696309723944848, + "row_count": 477830, + "tn": 69409, + "tn_rate": 0.3992028481212867, + "tp": 294730, + "tp_rate": 0.9696309723944848, + "truth_threshold": -14.040000000000001 + }, + { + "f1": 0.8383026413849208, + "fn": 9249, + "fn_rate": 0.030428245728892852, + "fp": 104443, + "fp_rate": 0.600699377117255, + "match_probability": 0.0000601912440136712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7383397427064674, + "recall": 0.9695717542711072, + "row_count": 477830, + "tn": 69426, + "tn_rate": 0.39930062288274504, + "tp": 294712, + "tp_rate": 0.9695717542711072, + "truth_threshold": -14.02 + }, + { + "f1": 0.8383169488439832, + "fn": 9249, + "fn_rate": 0.030428245728892852, + "fp": 104431, + "fp_rate": 0.6006303596385785, + "match_probability": 0.000061031431187061336, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7383619404574301, + "recall": 0.9695717542711072, + "row_count": 477830, + "tn": 69438, + "tn_rate": 0.39936964036142153, + "tp": 294712, + "tp_rate": 0.9695717542711072, + "truth_threshold": -14 + }, + { + "f1": 0.8384801411175601, + "fn": 9252, + "fn_rate": 0.030438115416122465, + "fp": 104291, + "fp_rate": 0.5998251557206863, + "match_probability": 0.00006188334549470357, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7386190476190476, + "recall": 0.9695618845838775, + "row_count": 477830, + "tn": 69578, + "tn_rate": 0.4001748442793137, + "tp": 294709, + "tp_rate": 0.9695618845838775, + "truth_threshold": -13.98 + }, + { + "f1": 0.8383413290537733, + "fn": 9336, + "fn_rate": 0.03071446665855159, + "fp": 104291, + "fp_rate": 0.5998251557206863, + "match_probability": 0.00006274715060076599, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7385640084629346, + "recall": 0.9692855333414484, + "row_count": 477830, + "tn": 69578, + "tn_rate": 0.4001748442793137, + "tp": 294625, + "tp_rate": 0.9692855333414484, + "truth_threshold": -13.96 + }, + { + "f1": 0.8385795731091193, + "fn": 9342, + "fn_rate": 0.030734206033010813, + "fp": 104082, + "fp_rate": 0.5986231013004043, + "match_probability": 0.00006362301245294422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7389472311331048, + "recall": 0.9692657939669892, + "row_count": 477830, + "tn": 69787, + "tn_rate": 0.4013768986995957, + "tp": 294619, + "tp_rate": 0.9692657939669892, + "truth_threshold": -13.94 + }, + { + "f1": 0.8386595384904436, + "fn": 9355, + "fn_rate": 0.030776974677672465, + "fp": 103997, + "fp_rate": 0.5981342274931126, + "match_probability": 0.00006451109931430596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7390962938061179, + "recall": 0.9692230253223275, + "row_count": 477830, + "tn": 69872, + "tn_rate": 0.4018657725068874, + "tp": 294606, + "tp_rate": 0.9692230253223275, + "truth_threshold": -13.92 + }, + { + "f1": 0.8386825863168443, + "fn": 9362, + "fn_rate": 0.030800003947874893, + "fp": 103968, + "fp_rate": 0.5979674352529778, + "match_probability": 0.00006541158179557995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7391454887133154, + "recall": 0.9691999960521251, + "row_count": 477830, + "tn": 69901, + "tn_rate": 0.4020325647470222, + "tp": 294599, + "tp_rate": 0.9691999960521251, + "truth_threshold": -13.9 + }, + { + "f1": 0.8386751467598945, + "fn": 9373, + "fn_rate": 0.030836192801050134, + "fp": 103960, + "fp_rate": 0.5979214236005268, + "match_probability": 0.00006632463288789393, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.739153125846824, + "recall": 0.9691638071989499, + "row_count": 477830, + "tn": 69909, + "tn_rate": 0.40207857639947314, + "tp": 294588, + "tp_rate": 0.9691638071989499, + "truth_threshold": -13.88 + }, + { + "f1": 0.8385957919312131, + "fn": 9421, + "fn_rate": 0.030994107796723923, + "fp": 103960, + "fp_rate": 0.5979214236005268, + "match_probability": 0.00006725042799596908, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7391217063989962, + "recall": 0.969005892203276, + "row_count": 477830, + "tn": 69909, + "tn_rate": 0.40207857639947314, + "tp": 294540, + "tp_rate": 0.969005892203276, + "truth_threshold": -13.86 + }, + { + "f1": 0.8386079013161267, + "fn": 9457, + "fn_rate": 0.03111254404347926, + "fp": 103900, + "fp_rate": 0.5975763362071445, + "match_probability": 0.00006818914497177655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7392094456882963, + "recall": 0.9688874559565207, + "row_count": 477830, + "tn": 69969, + "tn_rate": 0.40242366379285555, + "tp": 294504, + "tp_rate": 0.9688874559565207, + "truth_threshold": -13.84 + }, + { + "f1": 0.8402368214565946, + "fn": 9479, + "fn_rate": 0.031184921749829748, + "fp": 102507, + "fp_rate": 0.589564557224117, + "match_probability": 0.00006914096414866335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7417888153072252, + "recall": 0.9688150782501702, + "row_count": 477830, + "tn": 71362, + "tn_rate": 0.410435442775883, + "tp": 294482, + "tp_rate": 0.9688150782501702, + "truth_threshold": -13.82 + }, + { + "f1": 0.8402176580360556, + "fn": 9500, + "fn_rate": 0.03125400956043703, + "fp": 102495, + "fp_rate": 0.5894955397454406, + "match_probability": 0.0000701060683759531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7417975795806084, + "recall": 0.968745990439563, + "row_count": 477830, + "tn": 71374, + "tn_rate": 0.41050446025455944, + "tp": 294461, + "tp_rate": 0.968745990439563, + "truth_threshold": -13.8 + }, + { + "f1": 0.8402838814250003, + "fn": 9502, + "fn_rate": 0.03126058935192344, + "fp": 102436, + "fp_rate": 0.5891562038086146, + "match_probability": 0.0000710846430540288, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7419065495912017, + "recall": 0.9687394106480766, + "row_count": 477830, + "tn": 71433, + "tn_rate": 0.41084379619138545, + "tp": 294459, + "tp_rate": 0.9687394106480766, + "truth_threshold": -13.780000000000001 + }, + { + "f1": 0.8403577666411717, + "fn": 9503, + "fn_rate": 0.03126387924766664, + "fp": 102373, + "fp_rate": 0.588793862045563, + "match_probability": 0.00007207687616990448, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7420236826256014, + "recall": 0.9687361207523334, + "row_count": 477830, + "tn": 71496, + "tn_rate": 0.41120613795443695, + "tp": 294458, + "tp_rate": 0.9687361207523334, + "truth_threshold": -13.76 + }, + { + "f1": 0.8403512677374796, + "fn": 9512, + "fn_rate": 0.03129348830935548, + "fp": 102366, + "fp_rate": 0.5887536018496684, + "match_probability": 0.00007308295833329186, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7420309212101357, + "recall": 0.9687065116906445, + "row_count": 477830, + "tn": 71503, + "tn_rate": 0.4112463981503316, + "tp": 294449, + "tp_rate": 0.9687065116906445, + "truth_threshold": -13.74 + }, + { + "f1": 0.8404059777831056, + "fn": 9513, + "fn_rate": 0.03129677820509868, + "fp": 102320, + "fp_rate": 0.5884890348480752, + "match_probability": 0.00007410308281316996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7421162997015889, + "recall": 0.9687032217949013, + "row_count": 477830, + "tn": 71549, + "tn_rate": 0.4115109651519247, + "tp": 294448, + "tp_rate": 0.9687032217949013, + "truth_threshold": -13.72 + }, + { + "f1": 0.840176886556793, + "fn": 9663, + "fn_rate": 0.03179026256657926, + "fp": 102304, + "fp_rate": 0.5883970115431733, + "match_probability": 0.00007513744557486346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7420487037382565, + "recall": 0.9682097374334208, + "row_count": 477830, + "tn": 71565, + "tn_rate": 0.4116029884568267, + "tp": 294298, + "tp_rate": 0.9682097374334208, + "truth_threshold": -13.700000000000001 + }, + { + "f1": 0.8402009906784863, + "fn": 9668, + "fn_rate": 0.03180671204529528, + "fp": 102276, + "fp_rate": 0.5882359707595949, + "match_probability": 0.0000761862453176377, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7420978442591327, + "recall": 0.9681932879547047, + "row_count": 477830, + "tn": 71593, + "tn_rate": 0.4117640292404051, + "tp": 294293, + "tp_rate": 0.9681932879547047, + "truth_threshold": -13.68 + }, + { + "f1": 0.8401721139926849, + "fn": 9705, + "fn_rate": 0.031928438187793826, + "fp": 102250, + "fp_rate": 0.5880864328891292, + "match_probability": 0.00007724968351281685, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.742122439509112, + "recall": 0.9680715618122062, + "row_count": 477830, + "tn": 71619, + "tn_rate": 0.41191356711087085, + "tp": 294256, + "tp_rate": 0.9680715618122062, + "truth_threshold": -13.66 + }, + { + "f1": 0.8401731438573048, + "fn": 9708, + "fn_rate": 0.03193830787502344, + "fp": 102244, + "fp_rate": 0.5880519241497909, + "match_probability": 0.00007832796444243376, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7421317185249825, + "recall": 0.9680616921249766, + "row_count": 477830, + "tn": 71625, + "tn_rate": 0.41194807585020904, + "tp": 294253, + "tp_rate": 0.9680616921249766, + "truth_threshold": -13.64 + }, + { + "f1": 0.8401620737212709, + "fn": 9727, + "fn_rate": 0.032000815894144316, + "fp": 102227, + "fp_rate": 0.5879541493883326, + "match_probability": 0.0000794212952384171, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7421511825879469, + "recall": 0.9679991841058557, + "row_count": 477830, + "tn": 71642, + "tn_rate": 0.41204585061166743, + "tp": 294234, + "tp_rate": 0.9679991841058557, + "truth_threshold": -13.620000000000001 + }, + { + "f1": 0.8402131481328121, + "fn": 9736, + "fn_rate": 0.03203042495583315, + "fp": 102173, + "fp_rate": 0.5876435707342884, + "match_probability": 0.00008052988592232462, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7422464290939914, + "recall": 0.9679695750441668, + "row_count": 477830, + "tn": 71696, + "tn_rate": 0.41235642926571153, + "tp": 294225, + "tp_rate": 0.9679695750441668, + "truth_threshold": -13.6 + }, + { + "f1": 0.8402432093582483, + "fn": 9749, + "fn_rate": 0.0320731936004948, + "fp": 102130, + "fp_rate": 0.5873962581023644, + "match_probability": 0.00008165394944562937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7423185027072579, + "recall": 0.9679268063995052, + "row_count": 477830, + "tn": 71739, + "tn_rate": 0.4126037418976356, + "tp": 294212, + "tp_rate": 0.9679268063995052, + "truth_threshold": -13.58 + }, + { + "f1": 0.8402446965283251, + "fn": 9751, + "fn_rate": 0.03207977339198121, + "fp": 102125, + "fp_rate": 0.5873675008195826, + "match_probability": 0.00008279370173056753, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7423265671717107, + "recall": 0.9679202266080188, + "row_count": 477830, + "tn": 71744, + "tn_rate": 0.41263249918041744, + "tp": 294210, + "tp_rate": 0.9679202266080188, + "truth_threshold": -13.56 + }, + { + "f1": 0.8402338473138118, + "fn": 9759, + "fn_rate": 0.03210609255792684, + "fp": 102123, + "fp_rate": 0.5873559979064699, + "match_probability": 0.0000839493617115541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7423251119661893, + "recall": 0.9678939074420732, + "row_count": 477830, + "tn": 71746, + "tn_rate": 0.4126440020935302, + "tp": 294202, + "tp_rate": 0.9678939074420732, + "truth_threshold": -13.540000000000001 + }, + { + "f1": 0.8402879136259123, + "fn": 9772, + "fn_rate": 0.03214886120258849, + "fp": 102060, + "fp_rate": 0.5869936561434184, + "match_probability": 0.0000851211513771759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7424346812231702, + "recall": 0.9678511387974115, + "row_count": 477830, + "tn": 71809, + "tn_rate": 0.4130063438565817, + "tp": 294189, + "tp_rate": 0.9678511387974115, + "truth_threshold": -13.52 + }, + { + "f1": 0.8403133060818744, + "fn": 9790, + "fn_rate": 0.03220807932596616, + "fp": 102015, + "fp_rate": 0.5867348405983815, + "match_probability": 0.00008630929581276842, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7425073071739031, + "recall": 0.9677919206740339, + "row_count": 477830, + "tn": 71854, + "tn_rate": 0.41326515940161845, + "tp": 294171, + "tp_rate": 0.9677919206740339, + "truth_threshold": -13.5 + }, + { + "f1": 0.8404828571428572, + "fn": 9792, + "fn_rate": 0.03221465911745257, + "fp": 101871, + "fp_rate": 0.5859066308542639, + "match_probability": 0.00008751402324358653, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7427759822240178, + "recall": 0.9677853408825474, + "row_count": 477830, + "tn": 71998, + "tn_rate": 0.41409336914573613, + "tp": 294169, + "tp_rate": 0.9677853408825474, + "truth_threshold": -13.48 + }, + { + "f1": 0.8405110093892689, + "fn": 9804, + "fn_rate": 0.03225413786637101, + "fp": 101831, + "fp_rate": 0.5856765725920089, + "match_probability": 0.00008873556507857524, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7428432174712365, + "recall": 0.967745862133629, + "row_count": 477830, + "tn": 72038, + "tn_rate": 0.41432342740799105, + "tp": 294157, + "tp_rate": 0.967745862133629, + "truth_threshold": -13.46 + }, + { + "f1": 0.8405764383812174, + "fn": 9808, + "fn_rate": 0.03226729744934383, + "fp": 101770, + "fp_rate": 0.5853257337420702, + "match_probability": 0.00008997415595475012, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7429550695463512, + "recall": 0.9677327025506561, + "row_count": 477830, + "tn": 72099, + "tn_rate": 0.4146742662579298, + "tp": 294153, + "tp_rate": 0.9677327025506561, + "truth_threshold": -13.44 + }, + { + "f1": 0.8405995484811248, + "fn": 9810, + "fn_rate": 0.03227387724083024, + "fp": 101748, + "fp_rate": 0.58519920169783, + "match_probability": 0.0000912300337821952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7429950568200475, + "recall": 0.9677261227591698, + "row_count": 477830, + "tn": 72121, + "tn_rate": 0.41480079830217004, + "tp": 294151, + "tp_rate": 0.9677261227591698, + "truth_threshold": -13.42 + }, + { + "f1": 0.8406803203255844, + "fn": 9812, + "fn_rate": 0.03228045703231665, + "fp": 101678, + "fp_rate": 0.5847965997388839, + "match_probability": 0.00009250343978968807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7431251531603453, + "recall": 0.9677195429676834, + "row_count": 477830, + "tn": 72191, + "tn_rate": 0.41520340026111613, + "tp": 294149, + "tp_rate": 0.9677195429676834, + "truth_threshold": -13.4 + }, + { + "f1": 0.8407548097398124, + "fn": 9812, + "fn_rate": 0.03228045703231665, + "fp": 101617, + "fp_rate": 0.5844457608889452, + "match_probability": 0.00009379461857095894, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7432396921413158, + "recall": 0.9677195429676834, + "row_count": 477830, + "tn": 72252, + "tn_rate": 0.4155542391110549, + "tp": 294149, + "tp_rate": 0.9677195429676834, + "truth_threshold": -13.38 + }, + { + "f1": 0.8407965034345352, + "fn": 9826, + "fn_rate": 0.0323265155727215, + "fp": 101563, + "fp_rate": 0.584135182234901, + "match_probability": 0.00009510381813159443, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7433320360476929, + "recall": 0.9676734844272785, + "row_count": 477830, + "tn": 72306, + "tn_rate": 0.41586481776509904, + "tp": 294135, + "tp_rate": 0.9676734844272785, + "truth_threshold": -13.36 + }, + { + "f1": 0.8407664070808604, + "fn": 9871, + "fn_rate": 0.032474560881165675, + "fp": 101526, + "fp_rate": 0.5839223783423152, + "match_probability": 0.00009643128993659314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7433723610774085, + "recall": 0.9675254391188344, + "row_count": 477830, + "tn": 72343, + "tn_rate": 0.4160776216576848, + "tp": 294090, + "tp_rate": 0.9675254391188344, + "truth_threshold": -13.34 + }, + { + "f1": 0.8408107010711365, + "fn": 9911, + "fn_rate": 0.032606156710893834, + "fp": 101434, + "fp_rate": 0.5833932443391289, + "match_probability": 0.00009777728895858458, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7435193332726482, + "recall": 0.9673938432891062, + "row_count": 477830, + "tn": 72435, + "tn_rate": 0.41660675566087113, + "tp": 294050, + "tp_rate": 0.9673938432891062, + "truth_threshold": -13.32 + }, + { + "f1": 0.8400958000217468, + "fn": 10366, + "fn_rate": 0.034103059274051606, + "fp": 101401, + "fp_rate": 0.5832034462727685, + "match_probability": 0.00009914207372671765, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7432860079595742, + "recall": 0.9658969407259484, + "row_count": 477830, + "tn": 72468, + "tn_rate": 0.4167965537272314, + "tp": 293595, + "tp_rate": 0.9658969407259484, + "truth_threshold": -13.3 + }, + { + "f1": 0.8400972887903283, + "fn": 10368, + "fn_rate": 0.03410963906553801, + "fp": 101396, + "fp_rate": 0.5831746889899867, + "match_probability": 0.00010052590637623026, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.743294117051361, + "recall": 0.965890360934462, + "row_count": 477830, + "tn": 72473, + "tn_rate": 0.4168253110100133, + "tp": 293593, + "tp_rate": 0.965890360934462, + "truth_threshold": -13.280000000000001 + }, + { + "f1": 0.8554769453121358, + "fn": 10375, + "fn_rate": 0.03413266833574044, + "fp": 88822, + "fp_rate": 0.5108558742501539, + "match_probability": 0.00010192905269870875, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7677297546076441, + "recall": 0.9658673316642595, + "row_count": 477830, + "tn": 85047, + "tn_rate": 0.48914412574984617, + "tp": 293586, + "tp_rate": 0.9658673316642595, + "truth_threshold": -13.26 + }, + { + "f1": 0.8559832523748155, + "fn": 10381, + "fn_rate": 0.034152407710199666, + "fp": 88407, + "fp_rate": 0.5084690197792591, + "match_probability": 0.00010335178219304575, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.768560186603209, + "recall": 0.9658475922898003, + "row_count": 477830, + "tn": 85462, + "tn_rate": 0.4915309802207409, + "tp": 293580, + "tp_rate": 0.9658475922898003, + "truth_threshold": -13.24 + }, + { + "f1": 0.8566534676000361, + "fn": 10385, + "fn_rate": 0.03416556729317248, + "fp": 87866, + "fp_rate": 0.5053574817822614, + "match_probability": 0.00010479436811710874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7696478101520021, + "recall": 0.9658344327068276, + "row_count": 477830, + "tn": 86003, + "tn_rate": 0.49464251821773864, + "tp": 293576, + "tp_rate": 0.9658344327068276, + "truth_threshold": -13.22 + }, + { + "f1": 0.8566459380827178, + "fn": 10403, + "fn_rate": 0.03422478541655015, + "fp": 87848, + "fp_rate": 0.5052539555642467, + "match_probability": 0.00010625708754012587, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7696732615637929, + "recall": 0.9657752145834498, + "row_count": 477830, + "tn": 86021, + "tn_rate": 0.4947460444357534, + "tp": 293558, + "tp_rate": 0.9657752145834498, + "truth_threshold": -13.200000000000001 + }, + { + "f1": 0.8570260793913543, + "fn": 10403, + "fn_rate": 0.03422478541655015, + "fp": 87543, + "fp_rate": 0.5034997613145529, + "match_probability": 0.00010774022139580177, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.77028924090989, + "recall": 0.9657752145834498, + "row_count": 477830, + "tn": 86326, + "tn_rate": 0.49650023868544707, + "tp": 293558, + "tp_rate": 0.9657752145834498, + "truth_threshold": -13.18 + }, + { + "f1": 0.8566102893270655, + "fn": 10763, + "fn_rate": 0.035409147884103556, + "fp": 87395, + "fp_rate": 0.5026485457442097, + "match_probability": 0.00010924405453617098, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7703714992130701, + "recall": 0.9645908521158965, + "row_count": 477830, + "tn": 86474, + "tn_rate": 0.4973514542557903, + "tp": 293198, + "tp_rate": 0.9645908521158965, + "truth_threshold": -13.16 + }, + { + "f1": 0.8566415586085189, + "fn": 10772, + "fn_rate": 0.03543875694579239, + "fp": 87358, + "fp_rate": 0.5024357418516239, + "match_probability": 0.0001107688757862026, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7704409704977309, + "recall": 0.9645612430542077, + "row_count": 477830, + "tn": 86511, + "tn_rate": 0.49756425814837607, + "tp": 293189, + "tp_rate": 0.9645612430542077, + "truth_threshold": -13.14 + }, + { + "f1": 0.8644874970511913, + "fn": 10796, + "fn_rate": 0.03551771444362928, + "fp": 81114, + "fp_rate": 0.46652364711363153, + "match_probability": 0.00011231497799916251, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7832793183694516, + "recall": 0.9644822855563707, + "row_count": 477830, + "tn": 92755, + "tn_rate": 0.5334763528863685, + "tp": 293165, + "tp_rate": 0.9644822855563707, + "truth_threshold": -13.120000000000001 + }, + { + "f1": 0.8643985820538984, + "fn": 10859, + "fn_rate": 0.035724977875451126, + "fp": 81101, + "fp_rate": 0.4664488781783987, + "match_probability": 0.00011388265811274712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7832700432652865, + "recall": 0.9642750221245489, + "row_count": 477830, + "tn": 92768, + "tn_rate": 0.5335511218216014, + "tp": 293102, + "tp_rate": 0.9642750221245489, + "truth_threshold": -13.1 + }, + { + "f1": 0.8644014309856164, + "fn": 10871, + "fn_rate": 0.03576445662436958, + "fp": 81083, + "fp_rate": 0.46634535196038396, + "match_probability": 0.00011547221720599655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7833007726372561, + "recall": 0.9642355433756304, + "row_count": 477830, + "tn": 92786, + "tn_rate": 0.533654648039616, + "tp": 293090, + "tp_rate": 0.9642355433756304, + "truth_threshold": -13.08 + }, + { + "f1": 0.8644048300230647, + "fn": 10888, + "fn_rate": 0.03582038485200404, + "fp": 81059, + "fp_rate": 0.46620731700303103, + "match_probability": 0.00011708396055700113, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7833411737033988, + "recall": 0.964179615147996, + "row_count": 477830, + "tn": 92810, + "tn_rate": 0.533792682996969, + "tp": 293073, + "tp_rate": 0.964179615147996, + "truth_threshold": -13.06 + }, + { + "f1": 0.8643982810135767, + "fn": 10898, + "fn_rate": 0.03585328380943608, + "fp": 81050, + "fp_rate": 0.4661555538940237, + "match_probability": 0.00011871819770140902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.783354227198734, + "recall": 0.9641467161905639, + "row_count": 477830, + "tn": 92819, + "tn_rate": 0.5338444461059764, + "tp": 293063, + "tp_rate": 0.9641467161905639, + "truth_threshold": -13.040000000000001 + }, + { + "f1": 0.8644292292670264, + "fn": 10929, + "fn_rate": 0.0359552705774754, + "fp": 80985, + "fp_rate": 0.46578170921785944, + "match_probability": 0.00012037524249174837, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7834724090081467, + "recall": 0.9640447294225246, + "row_count": 477830, + "tn": 92884, + "tn_rate": 0.5342182907821406, + "tp": 293032, + "tp_rate": 0.9640447294225246, + "truth_threshold": -13.02 + }, + { + "f1": 0.8644368793991493, + "fn": 10929, + "fn_rate": 0.0359552705774754, + "fp": 80980, + "fp_rate": 0.46575295193507754, + "match_probability": 0.00012205541315757354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7834828829021528, + "recall": 0.9640447294225246, + "row_count": 477830, + "tn": 92889, + "tn_rate": 0.5342470480649224, + "tp": 293032, + "tp_rate": 0.9640447294225246, + "truth_threshold": -13 + }, + { + "f1": 0.8651773640169835, + "fn": 10941, + "fn_rate": 0.03599474932639385, + "fp": 80383, + "fp_rate": 0.46231933237092293, + "match_probability": 0.00012375903236644915, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7847285640447452, + "recall": 0.9640052506736062, + "row_count": 477830, + "tn": 93486, + "tn_rate": 0.5376806676290771, + "tp": 293020, + "tp_rate": 0.9640052506736062, + "truth_threshold": -12.98 + }, + { + "f1": 0.8653541144259651, + "fn": 10972, + "fn_rate": 0.03609673609443317, + "fp": 80204, + "fp_rate": 0.4612898216473322, + "match_probability": 0.00012548642728578072, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7850870729086559, + "recall": 0.9639032639055668, + "row_count": 477830, + "tn": 93665, + "tn_rate": 0.5387101783526678, + "tp": 292989, + "tp_rate": 0.9639032639055668, + "truth_threshold": -12.96 + }, + { + "f1": 0.8653668938955378, + "fn": 10972, + "fn_rate": 0.03609673609443317, + "fp": 80194, + "fp_rate": 0.46123230708176843, + "match_probability": 0.0001272379296455061, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7851081104980666, + "recall": 0.9639032639055668, + "row_count": 477830, + "tn": 93675, + "tn_rate": 0.5387676929182316, + "tp": 292989, + "tp_rate": 0.9639032639055668, + "truth_threshold": -12.94 + }, + { + "f1": 0.8655373307177803, + "fn": 10987, + "fn_rate": 0.03614608453058123, + "fp": 80041, + "fp_rate": 0.4603523342286434, + "match_probability": 0.00012901387580165717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7854214977949948, + "recall": 0.9638539154694188, + "row_count": 477830, + "tn": 93828, + "tn_rate": 0.5396476657713566, + "tp": 292974, + "tp_rate": 0.9638539154694188, + "truth_threshold": -12.92 + }, + { + "f1": 0.8655884273444171, + "fn": 11000, + "fn_rate": 0.036188853175242876, + "fp": 79985, + "fp_rate": 0.4600302526614865, + "match_probability": 0.0001308146068008071, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7855319536876653, + "recall": 0.9638111468247571, + "row_count": 477830, + "tn": 93884, + "tn_rate": 0.5399697473385134, + "tp": 292961, + "tp_rate": 0.9638111468247571, + "truth_threshold": -12.9 + }, + { + "f1": 0.8655854727244255, + "fn": 11001, + "fn_rate": 0.03619214307098608, + "fp": 79985, + "fp_rate": 0.4600302526614865, + "match_probability": 0.00013264046844541213, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7855313786215126, + "recall": 0.9638078569290139, + "row_count": 477830, + "tn": 93884, + "tn_rate": 0.5399697473385134, + "tp": 292960, + "tp_rate": 0.9638078569290139, + "truth_threshold": -12.88 + }, + { + "f1": 0.8656147504653843, + "fn": 11011, + "fn_rate": 0.03622504202841812, + "fp": 79950, + "fp_rate": 0.4598289516820135, + "match_probability": 0.00013449181136006226, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7855993563958166, + "recall": 0.9637749579715819, + "row_count": 477830, + "tn": 93919, + "tn_rate": 0.5401710483179866, + "tp": 292950, + "tp_rate": 0.9637749579715819, + "truth_threshold": -12.86 + }, + { + "f1": 0.8656131621092942, + "fn": 11015, + "fn_rate": 0.036238201611390936, + "fp": 79945, + "fp_rate": 0.4598001943992316, + "match_probability": 0.00013636899105865216, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7856075904218659, + "recall": 0.9637617983886091, + "row_count": 477830, + "tn": 93924, + "tn_rate": 0.5401998056007684, + "tp": 292946, + "tp_rate": 0.9637617983886091, + "truth_threshold": -12.84 + }, + { + "f1": 0.8654820234879693, + "fn": 11094, + "fn_rate": 0.03649810337510404, + "fp": 79945, + "fp_rate": 0.4598001943992316, + "match_probability": 0.00013827236801248723, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7855621600163085, + "recall": 0.9635018966248959, + "row_count": 477830, + "tn": 93924, + "tn_rate": 0.5401998056007684, + "tp": 292867, + "tp_rate": 0.9635018966248959, + "truth_threshold": -12.82 + }, + { + "f1": 0.8654465069406067, + "fn": 11119, + "fn_rate": 0.03658035076868414, + "fp": 79939, + "fp_rate": 0.45976568565989334, + "match_probability": 0.00014020230771933477, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7855604228756294, + "recall": 0.9634196492313158, + "row_count": 477830, + "tn": 93930, + "tn_rate": 0.5402343143401066, + "tp": 292842, + "tp_rate": 0.9634196492313158, + "truth_threshold": -12.8 + }, + { + "f1": 0.8655104025347958, + "fn": 11132, + "fn_rate": 0.03662311941334579, + "fp": 79872, + "fp_rate": 0.4593803380706164, + "match_probability": 0.00014215918077343544, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7856941623446141, + "recall": 0.9633768805866542, + "row_count": 477830, + "tn": 93997, + "tn_rate": 0.5406196619293836, + "tp": 292829, + "tp_rate": 0.9633768805866542, + "truth_threshold": -12.780000000000001 + }, + { + "f1": 0.8655449764852985, + "fn": 11148, + "fn_rate": 0.036675757745237056, + "fp": 79824, + "fp_rate": 0.4591042681559105, + "match_probability": 0.0001441433629364879, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7857861672351377, + "recall": 0.963324242254763, + "row_count": 477830, + "tn": 94045, + "tn_rate": 0.5408957318440896, + "tp": 292813, + "tp_rate": 0.963324242254763, + "truth_threshold": -12.76 + }, + { + "f1": 0.8655433866891322, + "fn": 11152, + "fn_rate": 0.03668891732820987, + "fp": 79820, + "fp_rate": 0.459081262329685, + "match_probability": 0.00014615523520961874, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7857923027998358, + "recall": 0.9633110826717901, + "row_count": 477830, + "tn": 94049, + "tn_rate": 0.540918737670315, + "tp": 292809, + "tp_rate": 0.9633110826717901, + "truth_threshold": -12.74 + }, + { + "f1": 0.8655214513549546, + "fn": 11175, + "fn_rate": 0.03676458493030356, + "fp": 79807, + "fp_rate": 0.45900649339445215, + "match_probability": 0.00014819518390635442, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7858064966330554, + "recall": 0.9632354150696965, + "row_count": 477830, + "tn": 94062, + "tn_rate": 0.5409935066055479, + "tp": 292786, + "tp_rate": 0.9632354150696965, + "truth_threshold": -12.72 + }, + { + "f1": 0.8656401341115112, + "fn": 11179, + "fn_rate": 0.036777744513276374, + "fp": 79709, + "fp_rate": 0.4584428506519276, + "match_probability": 0.00015026360072660546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7860109371770057, + "recall": 0.9632222554867236, + "row_count": 477830, + "tn": 94160, + "tn_rate": 0.5415571493480724, + "tp": 292782, + "tp_rate": 0.9632222554867236, + "truth_threshold": -12.700000000000001 + }, + { + "f1": 0.865829747593488, + "fn": 11185, + "fn_rate": 0.0367974838877356, + "fp": 79553, + "fp_rate": 0.4575456234291334, + "match_probability": 0.00015236088283167914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7863368150211237, + "recall": 0.9632025161122644, + "row_count": 477830, + "tn": 94316, + "tn_rate": 0.5424543765708666, + "tp": 292776, + "tp_rate": 0.9632025161122644, + "truth_threshold": -12.68 + }, + { + "f1": 0.8659662386601948, + "fn": 11196, + "fn_rate": 0.03683367274091084, + "fp": 79433, + "fp_rate": 0.45685544864236866, + "match_probability": 0.0001544874329203339, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7865840224826571, + "recall": 0.9631663272590891, + "row_count": 477830, + "tn": 94436, + "tn_rate": 0.5431445513576313, + "tp": 292765, + "tp_rate": 0.9631663272590891, + "truth_threshold": -12.66 + }, + { + "f1": 0.8660491891540104, + "fn": 11200, + "fn_rate": 0.03684683232388366, + "fp": 79363, + "fp_rate": 0.45645284668342256, + "match_probability": 0.00015664365930589128, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.78672969225312, + "recall": 0.9631531676761164, + "row_count": 477830, + "tn": 94506, + "tn_rate": 0.5435471533165774, + "tp": 292761, + "tp_rate": 0.9631531676761164, + "truth_threshold": -12.64 + }, + { + "f1": 0.8660434570384723, + "fn": 11208, + "fn_rate": 0.03687315148982929, + "fp": 79357, + "fp_rate": 0.4564183379440843, + "match_probability": 0.00015882997599441802, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7867377925882132, + "recall": 0.9631268485101707, + "row_count": 477830, + "tn": 94512, + "tn_rate": 0.5435816620559156, + "tp": 292753, + "tp_rate": 0.9631268485101707, + "truth_threshold": -12.620000000000001 + }, + { + "f1": 0.8660450145551795, + "fn": 11217, + "fn_rate": 0.03690276055151812, + "fp": 79344, + "fp_rate": 0.4563435690088515, + "match_probability": 0.00016104680276399447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7867601212616371, + "recall": 0.9630972394484819, + "row_count": 477830, + "tn": 94525, + "tn_rate": 0.5436564309911485, + "tp": 292744, + "tp_rate": 0.9630972394484819, + "truth_threshold": -12.6 + }, + { + "f1": 0.8660566363722427, + "fn": 11220, + "fn_rate": 0.03691263023874773, + "fp": 79330, + "fp_rate": 0.4562630486170623, + "match_probability": 0.00016329456524508346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7867880055150764, + "recall": 0.9630873697612523, + "row_count": 477830, + "tn": 94539, + "tn_rate": 0.5437369513829378, + "tp": 292741, + "tp_rate": 0.9630873697612523, + "truth_threshold": -12.58 + }, + { + "f1": 0.8658711273691563, + "fn": 11397, + "fn_rate": 0.037494941785294826, + "fp": 79244, + "fp_rate": 0.4557684233532142, + "match_probability": 0.00016557369500201663, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7868684912643085, + "recall": 0.9625050582147052, + "row_count": 477830, + "tn": 94625, + "tn_rate": 0.5442315766467858, + "tp": 292564, + "tp_rate": 0.9625050582147052, + "truth_threshold": -12.56 + }, + { + "f1": 0.8658590367044435, + "fn": 11421, + "fn_rate": 0.03757389928313172, + "fp": 79222, + "fp_rate": 0.455641891308974, + "match_probability": 0.0001678846296156108, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7869012970664027, + "recall": 0.9624261007168683, + "row_count": 477830, + "tn": 94647, + "tn_rate": 0.544358108691026, + "tp": 292540, + "tp_rate": 0.9624261007168683, + "truth_threshold": -12.540000000000001 + }, + { + "f1": 0.8658546692319077, + "fn": 11432, + "fn_rate": 0.03761008813630696, + "fp": 79210, + "fp_rate": 0.45557287383029754, + "match_probability": 0.00017022781276693265, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.786920393071483, + "recall": 0.962389911863693, + "row_count": 477830, + "tn": 94659, + "tn_rate": 0.5444271261697025, + "tp": 292529, + "tp_rate": 0.962389911863693, + "truth_threshold": -12.52 + }, + { + "f1": 0.8658469443934667, + "fn": 11445, + "fn_rate": 0.03765285678096861, + "fp": 79200, + "fp_rate": 0.4555153592647338, + "match_probability": 0.00017260369432222522, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.7869341109879585, + "recall": 0.9623471432190314, + "row_count": 477830, + "tn": 94669, + "tn_rate": 0.5444846407352663, + "tp": 292516, + "tp_rate": 0.9623471432190314, + "truth_threshold": -12.5 + }, + { + "f1": 0.8825417801874866, + "fn": 11454, + "fn_rate": 0.03768246584265745, + "fp": 66407, + "fp_rate": 0.38193697553905526, + "match_probability": 0.00017501273041901525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8149779612943491, + "recall": 0.9623175341573426, + "row_count": 477830, + "tn": 107462, + "tn_rate": 0.6180630244609447, + "tp": 292507, + "tp_rate": 0.9623175341573426, + "truth_threshold": -12.48 + }, + { + "f1": 0.8829135034788776, + "fn": 11465, + "fn_rate": 0.03771865469583269, + "fp": 66113, + "fp_rate": 0.38024604731148165, + "match_probability": 0.00017745538355341462, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.81564043289488, + "recall": 0.9622813453041673, + "row_count": 477830, + "tn": 107756, + "tn_rate": 0.6197539526885184, + "tp": 292496, + "tp_rate": 0.9622813453041673, + "truth_threshold": -12.46 + }, + { + "f1": 0.8829375201881308, + "fn": 11480, + "fn_rate": 0.03776800313198075, + "fp": 66077, + "fp_rate": 0.38003899487545223, + "match_probability": 0.00017993212266863398, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.815714612419748, + "recall": 0.9622319968680193, + "row_count": 477830, + "tn": 107792, + "tn_rate": 0.6199610051245478, + "tp": 292481, + "tp_rate": 0.9622319968680193, + "truth_threshold": -12.44 + }, + { + "f1": 0.8828220062379792, + "fn": 11573, + "fn_rate": 0.03807396343609871, + "fp": 66046, + "fp_rate": 0.37986069972220465, + "match_probability": 0.00018244342324472447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8157373463454918, + "recall": 0.9619260365639013, + "row_count": 477830, + "tn": 107823, + "tn_rate": 0.6201393002777954, + "tp": 292388, + "tp_rate": 0.9619260365639013, + "truth_threshold": -12.42 + }, + { + "f1": 0.8827886947094405, + "fn": 11637, + "fn_rate": 0.03828451676366376, + "fp": 65990, + "fp_rate": 0.37953861815504775, + "match_probability": 0.00018498976738956673, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8158319239549668, + "recall": 0.9617154832363363, + "row_count": 477830, + "tn": 107879, + "tn_rate": 0.6204613818449523, + "tp": 292324, + "tp_rate": 0.9617154832363363, + "truth_threshold": -12.4 + }, + { + "f1": 0.88282002724343, + "fn": 11669, + "fn_rate": 0.038389793427446285, + "fp": 65926, + "fp_rate": 0.3791705249354399, + "match_probability": 0.00018757164393112065, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.815961230312268, + "recall": 0.9616102065725537, + "row_count": 477830, + "tn": 107943, + "tn_rate": 0.6208294750645601, + "tp": 292292, + "tp_rate": 0.9616102065725537, + "truth_threshold": -12.38 + }, + { + "f1": 0.8828979325511425, + "fn": 11690, + "fn_rate": 0.03845888123805356, + "fp": 65840, + "fp_rate": 0.3786758996715918, + "match_probability": 0.00019018954851095674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8161463903649986, + "recall": 0.9615411187619465, + "row_count": 477830, + "tn": 108029, + "tn_rate": 0.6213241003284081, + "tp": 292271, + "tp_rate": 0.9615411187619465, + "truth_threshold": -12.36 + }, + { + "f1": 0.882926210342515, + "fn": 11693, + "fn_rate": 0.03846875092528318, + "fp": 65816, + "fp_rate": 0.3785378647142389, + "match_probability": 0.0001928439836790836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8161995509433541, + "recall": 0.9615312490747169, + "row_count": 477830, + "tn": 108053, + "tn_rate": 0.6214621352857611, + "tp": 292268, + "tp_rate": 0.9615312490747169, + "truth_threshold": -12.34 + }, + { + "f1": 0.8829253408496999, + "fn": 11703, + "fn_rate": 0.03850164988271522, + "fp": 65803, + "fp_rate": 0.37846309577900605, + "match_probability": 0.0001955354589900938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8162240512091515, + "recall": 0.9614983501172848, + "row_count": 477830, + "tn": 108066, + "tn_rate": 0.621536904220994, + "tp": 292258, + "tp_rate": 0.9614983501172848, + "truth_threshold": -12.32 + }, + { + "f1": 0.8829322819896981, + "fn": 11706, + "fn_rate": 0.03851151956994483, + "fp": 65794, + "fp_rate": 0.37841133266999866, + "match_probability": 0.00019826449110064116, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8162430281888792, + "recall": 0.9614884804300552, + "row_count": 477830, + "tn": 108075, + "tn_rate": 0.6215886673300013, + "tp": 292255, + "tp_rate": 0.9614884804300552, + "truth_threshold": -12.3 + }, + { + "f1": 0.8829230857546854, + "fn": 11732, + "fn_rate": 0.038597056859268127, + "fp": 65768, + "fp_rate": 0.378261794799533, + "match_probability": 0.00020103160386827137, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8162889633153351, + "recall": 0.9614029431407318, + "row_count": 477830, + "tn": 108101, + "tn_rate": 0.621738205200467, + "tp": 292229, + "tp_rate": 0.9614029431407318, + "truth_threshold": -12.280000000000001 + }, + { + "f1": 0.8829377069786555, + "fn": 11751, + "fn_rate": 0.038659564878389, + "fp": 65733, + "fp_rate": 0.3780604938200599, + "match_probability": 0.00020383732845162376, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8163590292309111, + "recall": 0.961340435121611, + "row_count": 477830, + "tn": 108136, + "tn_rate": 0.6219395061799401, + "tp": 292210, + "tp_rate": 0.961340435121611, + "truth_threshold": -12.26 + }, + { + "f1": 0.8829215669684406, + "fn": 11774, + "fn_rate": 0.0387352324804827, + "fp": 65716, + "fp_rate": 0.37796271905860157, + "match_probability": 0.0002066822034120213, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8163860040290246, + "recall": 0.9612647675195173, + "row_count": 477830, + "tn": 108153, + "tn_rate": 0.6220372809413984, + "tp": 292187, + "tp_rate": 0.9612647675195173, + "truth_threshold": -12.24 + }, + { + "f1": 0.8829150071618085, + "fn": 11785, + "fn_rate": 0.038771421333657935, + "fp": 65708, + "fp_rate": 0.37791670740615063, + "match_probability": 0.00020956677481647222, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8163986096053469, + "recall": 0.961228578666342, + "row_count": 477830, + "tn": 108161, + "tn_rate": 0.6220832925938494, + "tp": 292176, + "tp_rate": 0.961228578666342, + "truth_threshold": -12.22 + }, + { + "f1": 0.8828395106501293, + "fn": 11840, + "fn_rate": 0.038952365599534154, + "fp": 65694, + "fp_rate": 0.3778361870143614, + "match_probability": 0.0002124915963420977, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8164023308134092, + "recall": 0.9610476344004658, + "row_count": 477830, + "tn": 108175, + "tn_rate": 0.6221638129856386, + "tp": 292121, + "tp_rate": 0.9610476344004658, + "truth_threshold": -12.200000000000001 + }, + { + "f1": 0.8827989941851327, + "fn": 11864, + "fn_rate": 0.03903132309737104, + "fp": 65694, + "fp_rate": 0.3778361870143614, + "match_probability": 0.0002154572293820086, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.816390015400052, + "recall": 0.960968676902629, + "row_count": 477830, + "tn": 108175, + "tn_rate": 0.6221638129856386, + "tp": 292097, + "tp_rate": 0.960968676902629, + "truth_threshold": -12.18 + }, + { + "f1": 0.8828153808024083, + "fn": 11878, + "fn_rate": 0.039077381637775896, + "fp": 65664, + "fp_rate": 0.3776636433176702, + "match_probability": 0.00021846424315264881, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8164512909961509, + "recall": 0.9609226183622241, + "row_count": 477830, + "tn": 108205, + "tn_rate": 0.6223363566823298, + "tp": 292083, + "tp_rate": 0.9609226183622241, + "truth_threshold": -12.16 + }, + { + "f1": 0.8827476965490556, + "fn": 11941, + "fn_rate": 0.039284645069597744, + "fp": 65636, + "fp_rate": 0.37750260253409174, + "match_probability": 0.00022151321480262968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8164828774017492, + "recall": 0.9607153549304023, + "row_count": 477830, + "tn": 108233, + "tn_rate": 0.6224973974659083, + "tp": 292020, + "tp_rate": 0.9607153549304023, + "truth_threshold": -12.14 + }, + { + "f1": 0.8827655007708818, + "fn": 11951, + "fn_rate": 0.039317544027029784, + "fp": 65609, + "fp_rate": 0.3773473132070697, + "match_probability": 0.00022460472952307015, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8165393896856711, + "recall": 0.9606824559729702, + "row_count": 477830, + "tn": 108260, + "tn_rate": 0.6226526867929303, + "tp": 292010, + "tp_rate": 0.9606824559729702, + "truth_threshold": -12.120000000000001 + }, + { + "f1": 0.8827747579977145, + "fn": 11955, + "fn_rate": 0.0393307036100026, + "fp": 65597, + "fp_rate": 0.3772782957283932, + "match_probability": 0.00022773938065946784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8165647379915717, + "recall": 0.9606692963899974, + "row_count": 477830, + "tn": 108272, + "tn_rate": 0.6227217042716068, + "tp": 292006, + "tp_rate": 0.9606692963899974, + "truth_threshold": -12.1 + }, + { + "f1": 0.8838267965349621, + "fn": 11957, + "fn_rate": 0.03933728340148901, + "fp": 64807, + "fp_rate": 0.3727346450488586, + "match_probability": 0.00023091776982511915, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8183716309194503, + "recall": 0.960662716598511, + "row_count": 477830, + "tn": 109062, + "tn_rate": 0.6272653549511413, + "tp": 292004, + "tp_rate": 0.960662716598511, + "truth_threshold": -12.08 + }, + { + "f1": 0.8837876700924818, + "fn": 12015, + "fn_rate": 0.03952809735459483, + "fp": 64764, + "fp_rate": 0.3724873324169346, + "match_probability": 0.000234140507016114, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8184407501892293, + "recall": 0.9604719026454052, + "row_count": 477830, + "tn": 109105, + "tn_rate": 0.6275126675830655, + "tp": 291946, + "tp_rate": 0.9604719026454052, + "truth_threshold": -12.06 + }, + { + "f1": 0.8837868360577811, + "fn": 12063, + "fn_rate": 0.03968601235026862, + "fp": 64703, + "fp_rate": 0.37213649356699585, + "match_probability": 0.00023740821072792089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8185563136390531, + "recall": 0.9603139876497314, + "row_count": 477830, + "tn": 109166, + "tn_rate": 0.6278635064330041, + "tp": 291898, + "tp_rate": 0.9603139876497314, + "truth_threshold": -12.040000000000001 + }, + { + "f1": 0.8838707919098074, + "fn": 12083, + "fn_rate": 0.0397518102651327, + "fp": 64616, + "fp_rate": 0.3716361168465914, + "match_probability": 0.00024072150807358944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8187458975466628, + "recall": 0.9602481897348673, + "row_count": 477830, + "tn": 109253, + "tn_rate": 0.6283638831534086, + "tp": 291878, + "tp_rate": 0.9602481897348673, + "truth_threshold": -12.02 + }, + { + "f1": 0.8838660831907451, + "fn": 12104, + "fn_rate": 0.03982089807573998, + "fp": 64593, + "fp_rate": 0.37150383334579484, + "match_probability": 0.000244081034903588, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8187880488147005, + "recall": 0.96017910192426, + "row_count": 477830, + "tn": 109276, + "tn_rate": 0.6284961666542052, + "tp": 291857, + "tp_rate": 0.96017910192426, + "truth_threshold": -12 + }, + { + "f1": 0.8839555606709515, + "fn": 12116, + "fn_rate": 0.03986037682465843, + "fp": 64510, + "fp_rate": 0.37102646245161586, + "match_probability": 0.00024748743592730506, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8189726536740048, + "recall": 0.9601396231753416, + "row_count": 477830, + "tn": 109359, + "tn_rate": 0.6289735375483841, + "tp": 291845, + "tp_rate": 0.9601396231753416, + "truth_threshold": -11.98 + }, + { + "f1": 0.8839888287109399, + "fn": 12128, + "fn_rate": 0.03989985557357687, + "fp": 64470, + "fp_rate": 0.37079640418936094, + "match_probability": 0.00025094136483622993, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8190584979638117, + "recall": 0.9601001444264231, + "row_count": 477830, + "tn": 109399, + "tn_rate": 0.629203595810639, + "tp": 291833, + "tp_rate": 0.9601001444264231, + "truth_threshold": -11.96 + }, + { + "f1": 0.8838193762651055, + "fn": 12290, + "fn_rate": 0.040432818683975906, + "fp": 64393, + "fp_rate": 0.37035354203452026, + "match_probability": 0.00025444348442884174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8191532982834546, + "recall": 0.9595671813160241, + "row_count": 477830, + "tn": 109476, + "tn_rate": 0.6296464579654798, + "tp": 291671, + "tp_rate": 0.9595671813160241, + "truth_threshold": -11.94 + }, + { + "f1": 0.8838624434827933, + "fn": 12297, + "fn_rate": 0.04045584795417833, + "fp": 64352, + "fp_rate": 0.37011773231570894, + "match_probability": 0.00025799446673722515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8192440789178015, + "recall": 0.9595441520458217, + "row_count": 477830, + "tn": 109517, + "tn_rate": 0.629882267684291, + "tp": 291664, + "tp_rate": 0.9595441520458217, + "truth_threshold": -11.92 + }, + { + "f1": 0.8838498324130699, + "fn": 12310, + "fn_rate": 0.040498616598839986, + "fp": 64344, + "fp_rate": 0.370071720663258, + "match_probability": 0.0002615949931554435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8192558884253992, + "recall": 0.95950138340116, + "row_count": 477830, + "tn": 109525, + "tn_rate": 0.629928279336742, + "tp": 291651, + "tp_rate": 0.95950138340116, + "truth_threshold": -11.9 + }, + { + "f1": 0.8838669006422205, + "fn": 12330, + "fn_rate": 0.04056441451370406, + "fp": 64307, + "fp_rate": 0.3698589167706722, + "match_probability": 0.00026524575456968495, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8193308947063814, + "recall": 0.9594355854862959, + "row_count": 477830, + "tn": 109562, + "tn_rate": 0.6301410832293278, + "tp": 291631, + "tp_rate": 0.9594355854862959, + "truth_threshold": -11.88 + }, + { + "f1": 0.8838835410503856, + "fn": 12336, + "fn_rate": 0.040584153888163284, + "fp": 64287, + "fp_rate": 0.3697438876395447, + "match_probability": 0.0002689474514902129, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8193738901750994, + "recall": 0.9594158461118367, + "row_count": 477830, + "tn": 109582, + "tn_rate": 0.6302561123604553, + "tp": 291625, + "tp_rate": 0.9594158461118367, + "truth_threshold": -11.86 + }, + { + "f1": 0.8844384188193617, + "fn": 12359, + "fn_rate": 0.04065982149025697, + "fp": 63844, + "fp_rate": 0.3671959923850715, + "match_probability": 0.00027270079418514036, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8203834056368619, + "recall": 0.9593401785097431, + "row_count": 477830, + "tn": 110025, + "tn_rate": 0.6328040076149285, + "tp": 291602, + "tp_rate": 0.9593401785097431, + "truth_threshold": -11.84 + }, + { + "f1": 0.8845240298131671, + "fn": 12375, + "fn_rate": 0.04071245982214824, + "fp": 63759, + "fp_rate": 0.3667071185777798, + "match_probability": 0.0002765065028160592, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8205715572190406, + "recall": 0.9592875401778518, + "row_count": 477830, + "tn": 110110, + "tn_rate": 0.6332928814222202, + "tp": 291586, + "tp_rate": 0.9592875401778518, + "truth_threshold": -11.82 + }, + { + "f1": 0.88455797585098, + "fn": 12393, + "fn_rate": 0.04077167794552591, + "fp": 63712, + "fp_rate": 0.3664368001196303, + "match_probability": 0.00028036530757554303, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8206710200405314, + "recall": 0.9592283220544741, + "row_count": 477830, + "tn": 110157, + "tn_rate": 0.6335631998803697, + "tp": 291568, + "tp_rate": 0.9592283220544741, + "truth_threshold": -11.8 + }, + { + "f1": 0.8846842418283994, + "fn": 12408, + "fn_rate": 0.04082102638167397, + "fp": 63599, + "fp_rate": 0.36578688552876015, + "match_probability": 0.0002842779488265541, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8209245618777312, + "recall": 0.959178973618326, + "row_count": 477830, + "tn": 110270, + "tn_rate": 0.6342131144712398, + "tp": 291553, + "tp_rate": 0.959178973618326, + "truth_threshold": -11.78 + }, + { + "f1": 0.8846807425973916, + "fn": 12418, + "fn_rate": 0.040853925339106006, + "fp": 63589, + "fp_rate": 0.3657293709631964, + "match_probability": 0.0002882451772437776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8209426354144375, + "recall": 0.959146074660894, + "row_count": 477830, + "tn": 110280, + "tn_rate": 0.6342706290368035, + "tp": 291543, + "tp_rate": 0.959146074660894, + "truth_threshold": -11.76 + }, + { + "f1": 0.8847824305498648, + "fn": 12442, + "fn_rate": 0.0409328828369429, + "fp": 63483, + "fp_rate": 0.3651197165682209, + "match_probability": 0.00029226775395691364, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8211756553484205, + "recall": 0.9590671171630571, + "row_count": 477830, + "tn": 110386, + "tn_rate": 0.634880283431779, + "tp": 291519, + "tp_rate": 0.9590671171630571, + "truth_threshold": -11.74 + }, + { + "f1": 0.8849735112406455, + "fn": 12464, + "fn_rate": 0.041005260543293384, + "fp": 63312, + "fp_rate": 0.36413621749708114, + "match_probability": 0.00029634645069594797, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8215603324605633, + "recall": 0.9589947394567067, + "row_count": 477830, + "tn": 110557, + "tn_rate": 0.6358637825029189, + "tp": 291497, + "tp_rate": 0.9589947394567067, + "truth_threshold": -11.72 + }, + { + "f1": 0.8849091036070094, + "fn": 12533, + "fn_rate": 0.04123226334957445, + "fp": 63274, + "fp_rate": 0.36391766214793897, + "match_probability": 0.0003004820499384334, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8216136362354878, + "recall": 0.9587677366504256, + "row_count": 477830, + "tn": 110595, + "tn_rate": 0.636082337852061, + "tp": 291428, + "tp_rate": 0.9587677366504256, + "truth_threshold": -11.700000000000001 + }, + { + "f1": 0.8848937029512955, + "fn": 12554, + "fn_rate": 0.041301351160181736, + "fp": 63259, + "fp_rate": 0.3638313902995934, + "match_probability": 0.00030467534505880815, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8216378226274862, + "recall": 0.9586986488398183, + "row_count": 477830, + "tn": 110610, + "tn_rate": 0.6361686097004067, + "tp": 291407, + "tp_rate": 0.9586986488398183, + "truth_threshold": -11.68 + }, + { + "f1": 0.8848993176497025, + "fn": 12561, + "fn_rate": 0.04132438043038416, + "fp": 63245, + "fp_rate": 0.36375086990780414, + "match_probability": 0.00030892714047977567, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.821666737159695, + "recall": 0.9586756195696159, + "row_count": 477830, + "tn": 110624, + "tn_rate": 0.6362491300921959, + "tp": 291400, + "tp_rate": 0.9586756195696159, + "truth_threshold": -11.66 + }, + { + "f1": 0.8849166218723712, + "fn": 12573, + "fn_rate": 0.04136385917930261, + "fp": 63218, + "fp_rate": 0.36359558058078206, + "match_probability": 0.00031323825182578204, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8217232646937728, + "recall": 0.9586361408206974, + "row_count": 477830, + "tn": 110651, + "tn_rate": 0.6364044194192179, + "tp": 291388, + "tp_rate": 0.9586361408206974, + "truth_threshold": -11.64 + }, + { + "f1": 0.8849093907450094, + "fn": 12586, + "fn_rate": 0.04140662782396426, + "fp": 63206, + "fp_rate": 0.3635265631021056, + "match_probability": 0.00031760950607860996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8217445379194035, + "recall": 0.9585933721760358, + "row_count": 477830, + "tn": 110663, + "tn_rate": 0.6364734368978944, + "tp": 291375, + "tp_rate": 0.9585933721760358, + "truth_threshold": -11.620000000000001 + }, + { + "f1": 0.8850178767250204, + "fn": 12614, + "fn_rate": 0.04149874490477397, + "fp": 63091, + "fp_rate": 0.3628651455981227, + "match_probability": 0.000322041741735126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8219970770628432, + "recall": 0.958501255095226, + "row_count": 477830, + "tn": 110778, + "tn_rate": 0.6371348544018772, + "tp": 291347, + "tp_rate": 0.958501255095226, + "truth_threshold": -11.6 + }, + { + "f1": 0.8850092501739154, + "fn": 12631, + "fn_rate": 0.04155467313240843, + "fp": 63075, + "fp_rate": 0.3627731222932208, + "match_probability": 0.0003265358089672047, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8220256486223388, + "recall": 0.9584453268675915, + "row_count": 477830, + "tn": 110794, + "tn_rate": 0.6372268777067792, + "tp": 291330, + "tp_rate": 0.9584453268675915, + "truth_threshold": -11.58 + }, + { + "f1": 0.8850078838716342, + "fn": 12658, + "fn_rate": 0.04164350031747494, + "fp": 63043, + "fp_rate": 0.3625890756834168, + "match_probability": 0.0003310925697838664, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8220863224080418, + "recall": 0.958356499682525, + "row_count": 477830, + "tn": 110826, + "tn_rate": 0.6374109243165832, + "tp": 291303, + "tp_rate": 0.958356499682525, + "truth_threshold": -11.56 + }, + { + "f1": 0.885070463619624, + "fn": 12679, + "fn_rate": 0.04171258812808222, + "fp": 62969, + "fp_rate": 0.3621634678982452, + "match_probability": 0.0003357128981956508, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8222475024770572, + "recall": 0.9582874118719178, + "row_count": 477830, + "tn": 110900, + "tn_rate": 0.6378365321017547, + "tp": 291282, + "tp_rate": 0.9582874118719178, + "truth_threshold": -11.540000000000001 + }, + { + "f1": 0.8850209367764049, + "fn": 12713, + "fn_rate": 0.041824444583351154, + "fp": 62964, + "fp_rate": 0.3621347106154634, + "match_probability": 0.00034039768038126314, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8222420471356137, + "recall": 0.9581755554166489, + "row_count": 477830, + "tn": 110905, + "tn_rate": 0.6378652893845367, + "tp": 291248, + "tp_rate": 0.9581755554166489, + "truth_threshold": -11.52 + }, + { + "f1": 0.8851094868327077, + "fn": 12729, + "fn_rate": 0.04187708291524241, + "fp": 62877, + "fp_rate": 0.36163433389505895, + "match_probability": 0.0003451478148565189, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8224360295841111, + "recall": 0.9581229170847576, + "row_count": 477830, + "tn": 110992, + "tn_rate": 0.638365666104941, + "tp": 291232, + "tp_rate": 0.9581229170847576, + "truth_threshold": -11.5 + }, + { + "f1": 0.8851341904501383, + "fn": 12743, + "fn_rate": 0.041923141455647274, + "fp": 62841, + "fp_rate": 0.3614272814590295, + "match_probability": 0.00034996421264562645, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.822512632075445, + "recall": 0.9580768585443528, + "row_count": 477830, + "tn": 111028, + "tn_rate": 0.6385727185409705, + "tp": 291218, + "tp_rate": 0.9580768585443528, + "truth_threshold": -11.48 + }, + { + "f1": 0.8850431430256669, + "fn": 12865, + "fn_rate": 0.04232450873631815, + "fp": 62756, + "fp_rate": 0.3609384076517378, + "match_probability": 0.00035484779745482883, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8226490171031957, + "recall": 0.9576754912636819, + "row_count": 477830, + "tn": 111113, + "tn_rate": 0.6390615923482622, + "tp": 291096, + "tp_rate": 0.9576754912636819, + "truth_threshold": -11.46 + }, + { + "f1": 0.8850180148679669, + "fn": 12883, + "fn_rate": 0.04238372685969582, + "fp": 62752, + "fp_rate": 0.3609154018255123, + "match_probability": 0.00035979950584844554, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8226492948591131, + "recall": 0.9576162731403042, + "row_count": 477830, + "tn": 111117, + "tn_rate": 0.6390845981744877, + "tp": 291078, + "tp_rate": 0.9576162731403042, + "truth_threshold": -11.44 + }, + { + "f1": 0.8850400308935723, + "fn": 12897, + "fn_rate": 0.04242978540010067, + "fp": 62718, + "fp_rate": 0.3607198523025956, + "match_probability": 0.00036482028742734155, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.822721336868467, + "recall": 0.9575702145998993, + "row_count": 477830, + "tn": 111151, + "tn_rate": 0.6392801476974044, + "tp": 291064, + "tp_rate": 0.9575702145998993, + "truth_threshold": -11.42 + }, + { + "f1": 0.8850483830747429, + "fn": 12927, + "fn_rate": 0.042528482272396785, + "fp": 62673, + "fp_rate": 0.36046103675755886, + "match_probability": 0.00036991110500986284, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8228109706621582, + "recall": 0.9574715177276032, + "row_count": 477830, + "tn": 111196, + "tn_rate": 0.6395389632424412, + "tp": 291034, + "tp_rate": 0.9574715177276032, + "truth_threshold": -11.4 + }, + { + "f1": 0.8851505686052064, + "fn": 12935, + "fn_rate": 0.04255480143834242, + "fp": 62588, + "fp_rate": 0.3599721629502672, + "match_probability": 0.0003750729348152639, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8230047452872341, + "recall": 0.9574451985616576, + "row_count": 477830, + "tn": 111281, + "tn_rate": 0.6400278370497329, + "tp": 291026, + "tp_rate": 0.9574451985616576, + "truth_threshold": -11.38 + }, + { + "f1": 0.8851574951638217, + "fn": 12946, + "fn_rate": 0.04259099029151766, + "fp": 62568, + "fp_rate": 0.3598571338191397, + "match_probability": 0.0003803067666496687, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8230457912286507, + "recall": 0.9574090097084823, + "row_count": 477830, + "tn": 111301, + "tn_rate": 0.6401428661808602, + "tp": 291015, + "tp_rate": 0.9574090097084823, + "truth_threshold": -11.36 + }, + { + "f1": 0.8851413637732704, + "fn": 13023, + "fn_rate": 0.04284431226374436, + "fp": 62483, + "fp_rate": 0.359368260011848, + "match_probability": 0.0003856136040945928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8232051858831252, + "recall": 0.9571556877362556, + "row_count": 477830, + "tn": 111386, + "tn_rate": 0.640631739988152, + "tp": 290938, + "tp_rate": 0.9571556877362556, + "truth_threshold": -11.34 + }, + { + "f1": 0.885192780468807, + "fn": 13030, + "fn_rate": 0.042867341533946786, + "fp": 62437, + "fp_rate": 0.35910369301025485, + "match_probability": 0.0003909944646980703, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8233088451699079, + "recall": 0.9571326584660532, + "row_count": 477830, + "tn": 111432, + "tn_rate": 0.6408963069897452, + "tp": 290931, + "tp_rate": 0.9571326584660532, + "truth_threshold": -11.32 + }, + { + "f1": 0.8852199631214133, + "fn": 13037, + "fn_rate": 0.04289037080414922, + "fp": 62408, + "fp_rate": 0.35893690077012, + "match_probability": 0.00039645038016841163, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8233729183883712, + "recall": 0.9571096291958507, + "row_count": 477830, + "tn": 111461, + "tn_rate": 0.6410630992298799, + "tp": 290924, + "tp_rate": 0.9571096291958507, + "truth_threshold": -11.3 + }, + { + "f1": 0.8850565617400991, + "fn": 13150, + "fn_rate": 0.04326212902313126, + "fp": 62387, + "fp_rate": 0.3588161201824362, + "match_probability": 0.00040198239657063386, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8233653644697875, + "recall": 0.9567378709768688, + "row_count": 477830, + "tn": 111482, + "tn_rate": 0.6411838798175638, + "tp": 290811, + "tp_rate": 0.9567378709768688, + "truth_threshold": -11.28 + }, + { + "f1": 0.8850399069750452, + "fn": 13213, + "fn_rate": 0.043469392454953105, + "fp": 62320, + "fp_rate": 0.3584307725931592, + "match_probability": 0.0004075915745255968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8234900925600734, + "recall": 0.9565306075450469, + "row_count": 477830, + "tn": 111549, + "tn_rate": 0.6415692274068407, + "tp": 290748, + "tp_rate": 0.9565306075450469, + "truth_threshold": -11.26 + }, + { + "f1": 0.8850389961460483, + "fn": 13231, + "fn_rate": 0.043528610578330774, + "fp": 62297, + "fp_rate": 0.3582984890923626, + "match_probability": 0.000413278989411887, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8235347438014656, + "recall": 0.9564713894216692, + "row_count": 477830, + "tn": 111572, + "tn_rate": 0.6417015109076374, + "tp": 290730, + "tp_rate": 0.9564713894216692, + "truth_threshold": -11.24 + }, + { + "f1": 0.885006241057022, + "fn": 13263, + "fn_rate": 0.0436338872421133, + "fp": 62282, + "fp_rate": 0.35821221724401703, + "match_probability": 0.0004190457315704786, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8235537424216669, + "recall": 0.9563661127578867, + "row_count": 477830, + "tn": 111587, + "tn_rate": 0.6417877827559829, + "tp": 290698, + "tp_rate": 0.9563661127578867, + "truth_threshold": -11.22 + }, + { + "f1": 0.8850515919048358, + "fn": 13272, + "fn_rate": 0.04366349630380213, + "fp": 62236, + "fp_rate": 0.3579476502424239, + "match_probability": 0.00042489290651221616, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8236565842601119, + "recall": 0.9563365036961978, + "row_count": 477830, + "tn": 111633, + "tn_rate": 0.6420523497575761, + "tp": 290689, + "tp_rate": 0.9563365036961978, + "truth_threshold": -11.200000000000001 + }, + { + "f1": 0.8850283173984532, + "fn": 13300, + "fn_rate": 0.04375561338461184, + "fp": 62218, + "fp_rate": 0.3578441240244092, + "match_probability": 0.00043082163512815456, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8236846057713834, + "recall": 0.9562443866153881, + "row_count": 477830, + "tn": 111651, + "tn_rate": 0.6421558759755909, + "tp": 290661, + "tp_rate": 0.9562443866153881, + "truth_threshold": -11.18 + }, + { + "f1": 0.8850657319743346, + "fn": 13324, + "fn_rate": 0.043834570882448735, + "fp": 62160, + "fp_rate": 0.3575105395441395, + "match_probability": 0.0004368330539027926, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8238080255784488, + "recall": 0.9561654291175513, + "row_count": 477830, + "tn": 111709, + "tn_rate": 0.6424894604558604, + "tp": 290637, + "tp_rate": 0.9561654291175513, + "truth_threshold": -11.16 + }, + { + "f1": 0.8851000718714597, + "fn": 13326, + "fn_rate": 0.043841150673935146, + "fp": 62132, + "fp_rate": 0.3573494987605611, + "match_probability": 0.00044292831513024784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8238724143698248, + "recall": 0.9561588493260649, + "row_count": 477830, + "tn": 111737, + "tn_rate": 0.6426505012394389, + "tp": 290635, + "tp_rate": 0.9561588493260649, + "truth_threshold": -11.14 + }, + { + "f1": 0.8850836234492884, + "fn": 13373, + "fn_rate": 0.04399577577386573, + "fp": 62086, + "fp_rate": 0.35708493175896794, + "match_probability": 0.0004491085871334007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8239564016627253, + "recall": 0.9560042242261343, + "row_count": 477830, + "tn": 111783, + "tn_rate": 0.6429150682410321, + "tp": 290588, + "tp_rate": 0.9560042242261343, + "truth_threshold": -11.120000000000001 + }, + { + "f1": 0.8850329278025185, + "fn": 13410, + "fn_rate": 0.04411750191636427, + "fp": 62077, + "fp_rate": 0.3570331686499606, + "match_probability": 0.00045537505448605916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8239589595834704, + "recall": 0.9558824980836357, + "row_count": 477830, + "tn": 111792, + "tn_rate": 0.6429668313500394, + "tp": 290551, + "tp_rate": 0.9558824980836357, + "truth_threshold": -11.1 + }, + { + "f1": 0.8850127939563787, + "fn": 13429, + "fn_rate": 0.04418000993548515, + "fp": 62067, + "fp_rate": 0.35697565408439685, + "match_probability": 0.000461728918238175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8239728416699991, + "recall": 0.9558199900645149, + "row_count": 477830, + "tn": 111802, + "tn_rate": 0.6430243459156031, + "tp": 290532, + "tp_rate": 0.9558199900645149, + "truth_threshold": -11.08 + }, + { + "f1": 0.8850064887193766, + "fn": 13447, + "fn_rate": 0.044239228058862816, + "fp": 62049, + "fp_rate": 0.35687212786638217, + "match_probability": 0.00046817139614416427, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8240059223457935, + "recall": 0.9557607719411372, + "row_count": 477830, + "tn": 111820, + "tn_rate": 0.6431278721336179, + "tp": 290514, + "tp_rate": 0.9557607719411372, + "truth_threshold": -11.06 + }, + { + "f1": 0.8850436737765401, + "fn": 13464, + "fn_rate": 0.04429515628649728, + "fp": 62000, + "fp_rate": 0.3565903064951199, + "match_probability": 0.0004747037228943636, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.824111978257971, + "recall": 0.9557048437135027, + "row_count": 477830, + "tn": 111869, + "tn_rate": 0.6434096935048801, + "tp": 290497, + "tp_rate": 0.9557048437135027, + "truth_threshold": -11.040000000000001 + }, + { + "f1": 0.8851039454480638, + "fn": 13469, + "fn_rate": 0.0443116057652133, + "fp": 61949, + "fp_rate": 0.35629698221074485, + "match_probability": 0.0004813271503496699, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8242287361572576, + "recall": 0.9556883942347867, + "row_count": 477830, + "tn": 111920, + "tn_rate": 0.6437030177892551, + "tp": 290492, + "tp_rate": 0.9556883942347867, + "truth_threshold": -11.02 + }, + { + "f1": 0.8851155761132542, + "fn": 13482, + "fn_rate": 0.04435437440987495, + "fp": 61924, + "fp_rate": 0.3561531957968356, + "match_probability": 0.0004880429477794046, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8242807240574002, + "recall": 0.955645625590125, + "row_count": 477830, + "tn": 111945, + "tn_rate": 0.6438468042031644, + "tp": 290479, + "tp_rate": 0.955645625590125, + "truth_threshold": -11 + }, + { + "f1": 0.8923439904887422, + "fn": 13495, + "fn_rate": 0.044397143054536604, + "fp": 56592, + "fp_rate": 0.32548642943825523, + "match_probability": 0.0004948524021024512, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8369379181577719, + "recall": 0.9556028569454634, + "row_count": 477830, + "tn": 117277, + "tn_rate": 0.6745135705617448, + "tp": 290466, + "tp_rate": 0.9556028569454634, + "truth_threshold": -10.98 + }, + { + "f1": 0.8926244221500934, + "fn": 13551, + "fn_rate": 0.04458137721615602, + "fp": 56318, + "fp_rate": 0.32391053034180906, + "match_probability": 0.000501756818131702, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8375729678595325, + "recall": 0.9554186227838439, + "row_count": 477830, + "tn": 117551, + "tn_rate": 0.676089469658191, + "tp": 290410, + "tp_rate": 0.9554186227838439, + "truth_threshold": -10.96 + }, + { + "f1": 0.8926113431881545, + "fn": 13574, + "fn_rate": 0.04465704481824971, + "fp": 56299, + "fp_rate": 0.32380125266723797, + "match_probability": 0.0005087575188218651, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8376080949331672, + "recall": 0.9553429551817503, + "row_count": 477830, + "tn": 117570, + "tn_rate": 0.676198747332762, + "tp": 290387, + "tp_rate": 0.9553429551817503, + "truth_threshold": -10.94 + }, + { + "f1": 0.8926780680207697, + "fn": 13588, + "fn_rate": 0.044703103358654565, + "fp": 56233, + "fp_rate": 0.3234216565345174, + "match_probability": 0.000515855845520672, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8377610312573931, + "recall": 0.9552968966413454, + "row_count": 477830, + "tn": 117636, + "tn_rate": 0.6765783434654826, + "tp": 290373, + "tp_rate": 0.9552968966413454, + "truth_threshold": -10.92 + }, + { + "f1": 0.8926147876432443, + "fn": 13655, + "fn_rate": 0.04492352637344923, + "fp": 56195, + "fp_rate": 0.3232031011853752, + "match_probability": 0.0005230531582235416, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8378215358685833, + "recall": 0.9550764736265508, + "row_count": 477830, + "tn": 117674, + "tn_rate": 0.6767968988146248, + "tp": 290306, + "tp_rate": 0.9550764736265508, + "truth_threshold": -10.9 + }, + { + "f1": 0.8926088440498996, + "fn": 13673, + "fn_rate": 0.0449827444968269, + "fp": 56178, + "fp_rate": 0.32310532642391687, + "match_probability": 0.0005303508358317331, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.83785421946165, + "recall": 0.9550172555031731, + "row_count": 477830, + "tn": 117691, + "tn_rate": 0.6768946735760831, + "tp": 290288, + "tp_rate": 0.9550172555031731, + "truth_threshold": -10.88 + }, + { + "f1": 0.8925434820044773, + "fn": 13713, + "fn_rate": 0.04511434032655505, + "fp": 56176, + "fp_rate": 0.3230938235108041, + "match_probability": 0.0005377502764140461, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8378403343879177, + "recall": 0.954885659673445, + "row_count": 477830, + "tn": 117693, + "tn_rate": 0.6769061764891959, + "tp": 290248, + "tp_rate": 0.954885659673445, + "truth_threshold": -10.86 + }, + { + "f1": 0.8925425917953134, + "fn": 13724, + "fn_rate": 0.045150529179730295, + "fp": 56163, + "fp_rate": 0.3230190545755713, + "match_probability": 0.0005452528974721083, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8378666281755196, + "recall": 0.9548494708202697, + "row_count": 477830, + "tn": 117706, + "tn_rate": 0.6769809454244288, + "tp": 290237, + "tp_rate": 0.9548494708202697, + "truth_threshold": -10.84 + }, + { + "f1": 0.8925867148911566, + "fn": 13740, + "fn_rate": 0.04520316751162156, + "fp": 56111, + "fp_rate": 0.3227199788346399, + "match_probability": 0.0005528601362093087, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8379849393067923, + "recall": 0.9547968324883784, + "row_count": 477830, + "tn": 117758, + "tn_rate": 0.6772800211653601, + "tp": 290221, + "tp_rate": 0.9547968324883784, + "truth_threshold": -10.82 + }, + { + "f1": 0.8926547937621113, + "fn": 13750, + "fn_rate": 0.04523606646905359, + "fp": 56048, + "fp_rate": 0.3223576370715884, + "match_probability": 0.0005605734498034131, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8381327272359708, + "recall": 0.9547639335309464, + "row_count": 477830, + "tn": 117821, + "tn_rate": 0.6776423629284116, + "tp": 290211, + "tp_rate": 0.9547639335309464, + "truth_threshold": -10.8 + }, + { + "f1": 0.8924540609730581, + "fn": 13917, + "fn_rate": 0.04578547905816865, + "fp": 55988, + "fp_rate": 0.32201254967820603, + "match_probability": 0.0005683943156829212, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8381999352661026, + "recall": 0.9542145209418313, + "row_count": 477830, + "tn": 117881, + "tn_rate": 0.677987450321794, + "tp": 290044, + "tp_rate": 0.9542145209418313, + "truth_threshold": -10.78 + }, + { + "f1": 0.8925214661619426, + "fn": 13954, + "fn_rate": 0.04590720520066719, + "fp": 55892, + "fp_rate": 0.3214604098487942, + "match_probability": 0.0005763242318072081, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8384152599458223, + "recall": 0.9540927947993328, + "row_count": 477830, + "tn": 117977, + "tn_rate": 0.6785395901512058, + "tp": 290007, + "tp_rate": 0.9540927947993328, + "truth_threshold": -10.76 + }, + { + "f1": 0.8926325509811466, + "fn": 13967, + "fn_rate": 0.04594997384532884, + "fp": 55795, + "fp_rate": 0.32090251856282603, + "match_probability": 0.0005843647169505126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8386443756163441, + "recall": 0.9540500261546712, + "row_count": 477830, + "tn": 118074, + "tn_rate": 0.679097481437174, + "tp": 289994, + "tp_rate": 0.9540500261546712, + "truth_threshold": -10.74 + }, + { + "f1": 0.8925929460440403, + "fn": 14012, + "fn_rate": 0.04609801915377302, + "fp": 55768, + "fp_rate": 0.32074722923580395, + "match_probability": 0.0005925173109898081, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8386888697981297, + "recall": 0.953901980846227, + "row_count": 477830, + "tn": 118101, + "tn_rate": 0.679252770764196, + "tp": 289949, + "tp_rate": 0.953901980846227, + "truth_threshold": -10.72 + }, + { + "f1": 0.8927566309281144, + "fn": 14024, + "fn_rate": 0.04613749790269146, + "fp": 55634, + "fp_rate": 0.31997653405725, + "match_probability": 0.0006007835751966225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8390084816144874, + "recall": 0.9538625020973085, + "row_count": 477830, + "tn": 118235, + "tn_rate": 0.68002346594275, + "tp": 289937, + "tp_rate": 0.9538625020973085, + "truth_threshold": -10.700000000000001 + }, + { + "f1": 0.8928893693160995, + "fn": 14030, + "fn_rate": 0.04615723727715069, + "fp": 55530, + "fp_rate": 0.3193783825753872, + "match_probability": 0.000609165092532851, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.839258266490284, + "recall": 0.9538427627228493, + "row_count": 477830, + "tn": 118339, + "tn_rate": 0.6806216174246128, + "tp": 289931, + "tp_rate": 0.9538427627228493, + "truth_threshold": -10.68 + }, + { + "f1": 0.8930468759629725, + "fn": 14153, + "fn_rate": 0.04656189445356477, + "fp": 55264, + "fp_rate": 0.317848495131392, + "match_probability": 0.0006176634679506185, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8398479157972829, + "recall": 0.9534381055464353, + "row_count": 477830, + "tn": 118605, + "tn_rate": 0.682151504868608, + "tp": 289808, + "tp_rate": 0.9534381055464353, + "truth_threshold": -10.66 + }, + { + "f1": 0.893022668162264, + "fn": 14168, + "fn_rate": 0.04661124288971283, + "fp": 55262, + "fp_rate": 0.31783699221827927, + "match_probability": 0.0006262803286962502, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8398458216806016, + "recall": 0.9533887571102871, + "row_count": 477830, + "tn": 118607, + "tn_rate": 0.6821630077817207, + "tp": 289793, + "tp_rate": 0.9533887571102871, + "truth_threshold": -10.64 + }, + { + "f1": 0.8930292758089369, + "fn": 14173, + "fn_rate": 0.04662769236842884, + "fp": 55252, + "fp_rate": 0.3177794776527155, + "match_probability": 0.0006350173246183965, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8398678414096916, + "recall": 0.9533723076315711, + "row_count": 477830, + "tn": 118617, + "tn_rate": 0.6822205223472845, + "tp": 289788, + "tp_rate": 0.9533723076315711, + "truth_threshold": -10.620000000000001 + }, + { + "f1": 0.891475787309828, + "fn": 15138, + "fn_rate": 0.049802441760620604, + "fp": 55182, + "fp_rate": 0.31737687569376943, + "match_probability": 0.0006438761284803746, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.839589540849697, + "recall": 0.9501975582393793, + "row_count": 477830, + "tn": 118687, + "tn_rate": 0.6826231243062305, + "tp": 288823, + "tp_rate": 0.9501975582393793, + "truth_threshold": -10.6 + }, + { + "f1": 0.8915326439265319, + "fn": 15149, + "fn_rate": 0.04983863061379585, + "fp": 55127, + "fp_rate": 0.31706054558316893, + "match_probability": 0.0006528584362767788, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8397186710434118, + "recall": 0.9501613693862041, + "row_count": 477830, + "tn": 118742, + "tn_rate": 0.682939454416831, + "tp": 288812, + "tp_rate": 0.9501613693862041, + "truth_threshold": -10.58 + }, + { + "f1": 0.8957581773345534, + "fn": 15182, + "fn_rate": 0.04994719717332158, + "fp": 52031, + "fp_rate": 0.2992540360846384, + "match_probability": 0.0006619659675544257, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8473313576479563, + "recall": 0.9500528028266785, + "row_count": 477830, + "tn": 121838, + "tn_rate": 0.7007459639153616, + "tp": 288779, + "tp_rate": 0.9500528028266785, + "truth_threshold": -10.56 + }, + { + "f1": 0.8957055595367724, + "fn": 15233, + "fn_rate": 0.050114981856224976, + "fp": 52005, + "fp_rate": 0.29910449821417273, + "match_probability": 0.0006712004657376785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8473731631512064, + "recall": 0.949885018143775, + "row_count": 477830, + "tn": 121864, + "tn_rate": 0.7008955017858273, + "tp": 288728, + "tp_rate": 0.949885018143775, + "truth_threshold": -10.540000000000001 + }, + { + "f1": 0.895650285430628, + "fn": 15275, + "fn_rate": 0.05025315747743954, + "fp": 51994, + "fp_rate": 0.29904123219205264, + "match_probability": 0.0006805636984582193, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8473817071738875, + "recall": 0.9497468425225605, + "row_count": 477830, + "tn": 121875, + "tn_rate": 0.7009587678079474, + "tp": 288686, + "tp_rate": 0.9497468425225605, + "truth_threshold": -10.52 + }, + { + "f1": 0.8956079246629536, + "fn": 15320, + "fn_rate": 0.05040120278588372, + "fp": 51968, + "fp_rate": 0.29889169432158696, + "match_probability": 0.000690057457889322, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8474262277273942, + "recall": 0.9495987972141163, + "row_count": 477830, + "tn": 121901, + "tn_rate": 0.7011083056784131, + "tp": 288641, + "tp_rate": 0.9495987972141163, + "truth_threshold": -10.5 + }, + { + "f1": 0.8957775329371053, + "fn": 15337, + "fn_rate": 0.05045713101351818, + "fp": 51825, + "fp_rate": 0.29806923603402563, + "match_probability": 0.0006996835610846967, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8477745565415085, + "recall": 0.9495428689864818, + "row_count": 477830, + "tn": 122044, + "tn_rate": 0.7019307639659744, + "tp": 288624, + "tp_rate": 0.9495428689864818, + "truth_threshold": -10.48 + }, + { + "f1": 0.8957162234727736, + "fn": 15389, + "fn_rate": 0.050628205592164785, + "fp": 51805, + "fp_rate": 0.29795420690289814, + "match_probability": 0.000709443850321953, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8478011146464067, + "recall": 0.9493717944078353, + "row_count": 477830, + "tn": 122064, + "tn_rate": 0.7020457930971018, + "tp": 288572, + "tp_rate": 0.9493717944078353, + "truth_threshold": -10.46 + }, + { + "f1": 0.8957102635181489, + "fn": 15416, + "fn_rate": 0.05071703277723129, + "fp": 51777, + "fp_rate": 0.2977931661193197, + "match_probability": 0.0007193401934507505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8478587925552858, + "recall": 0.9492829672227687, + "row_count": 477830, + "tn": 122092, + "tn_rate": 0.7022068338806803, + "tp": 288545, + "tp_rate": 0.9492829672227687, + "truth_threshold": -10.44 + }, + { + "f1": 0.8958743486712584, + "fn": 15459, + "fn_rate": 0.05085849829418906, + "fp": 51606, + "fp_rate": 0.29680966704817996, + "match_probability": 0.0007293744842456983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8482658449668928, + "recall": 0.9491415017058109, + "row_count": 477830, + "tn": 122263, + "tn_rate": 0.7031903329518201, + "tp": 288502, + "tp_rate": 0.9491415017058109, + "truth_threshold": -10.42 + }, + { + "f1": 0.895605385623839, + "fn": 15671, + "fn_rate": 0.051555956191748284, + "fp": 51538, + "fp_rate": 0.2964185680023466, + "match_probability": 0.0007395486427640722, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8483409254093247, + "recall": 0.9484440438082518, + "row_count": 477830, + "tn": 122331, + "tn_rate": 0.7035814319976534, + "tp": 288290, + "tp_rate": 0.9484440438082518, + "truth_threshold": -10.4 + }, + { + "f1": 0.8956330738114915, + "fn": 15680, + "fn_rate": 0.05158556525343712, + "fp": 51506, + "fp_rate": 0.29623452139254264, + "match_probability": 0.0007498646157084, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8484168022908469, + "recall": 0.9484144347465628, + "row_count": 477830, + "tn": 122363, + "tn_rate": 0.7037654786074573, + "tp": 288281, + "tp_rate": 0.9484144347465628, + "truth_threshold": -10.38 + }, + { + "f1": 0.895629288058069, + "fn": 15726, + "fn_rate": 0.051736900457624496, + "fp": 51453, + "fp_rate": 0.2959296941950549, + "match_probability": 0.0007603243767939938, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8485286498198347, + "recall": 0.9482630995423755, + "row_count": 477830, + "tn": 122416, + "tn_rate": 0.7040703058049451, + "tp": 288235, + "tp_rate": 0.9482630995423755, + "truth_threshold": -10.36 + }, + { + "f1": 0.8956503093603652, + "fn": 15747, + "fn_rate": 0.05180598826823178, + "fp": 51412, + "fp_rate": 0.2956938844762436, + "match_probability": 0.0007709299271214838, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8486217191852214, + "recall": 0.9481940117317682, + "row_count": 477830, + "tn": 122457, + "tn_rate": 0.7043061155237564, + "tp": 288214, + "tp_rate": 0.9481940117317682, + "truth_threshold": -10.34 + }, + { + "f1": 0.8956308793869122, + "fn": 15764, + "fn_rate": 0.051861916495866245, + "fp": 51404, + "fp_rate": 0.2956478728237926, + "match_probability": 0.0007816832955544318, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8486341324083262, + "recall": 0.9481380835041338, + "row_count": 477830, + "tn": 122465, + "tn_rate": 0.7043521271762073, + "tp": 288197, + "tp_rate": 0.9481380835041338, + "truth_threshold": -10.32 + }, + { + "f1": 0.8956630385459338, + "fn": 15785, + "fn_rate": 0.05193100430647353, + "fp": 51356, + "fp_rate": 0.2953718029090867, + "match_probability": 0.0007925865391020799, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8487447427635687, + "recall": 0.9480689956935264, + "row_count": 477830, + "tn": 122513, + "tn_rate": 0.7046281970909133, + "tp": 288176, + "tp_rate": 0.9480689956935264, + "truth_threshold": -10.3 + }, + { + "f1": 0.895677202972836, + "fn": 15810, + "fn_rate": 0.05201325170005362, + "fp": 51315, + "fp_rate": 0.29513599319027545, + "match_probability": 0.0008036417433073089, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8488361131895389, + "recall": 0.9479867482999463, + "row_count": 477830, + "tn": 122554, + "tn_rate": 0.7048640068097246, + "tp": 288151, + "tp_rate": 0.9479867482999463, + "truth_threshold": -10.28 + }, + { + "f1": 0.8956223304049391, + "fn": 15859, + "fn_rate": 0.05217445659147062, + "fp": 51293, + "fp_rate": 0.2950094611460352, + "match_probability": 0.0008148510226398721, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8488693115691156, + "recall": 0.9478255434085294, + "row_count": 477830, + "tn": 122576, + "tn_rate": 0.7049905388539648, + "tp": 288102, + "tp_rate": 0.9478255434085294, + "truth_threshold": -10.26 + }, + { + "f1": 0.8956557965720184, + "fn": 15876, + "fn_rate": 0.05223038481910508, + "fp": 51248, + "fp_rate": 0.29475064560099845, + "match_probability": 0.0008262165208949831, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8489743113696575, + "recall": 0.9477696151808949, + "row_count": 477830, + "tn": 122621, + "tn_rate": 0.7052493543990015, + "tp": 288085, + "tp_rate": 0.9477696151808949, + "truth_threshold": -10.24 + }, + { + "f1": 0.895669315821549, + "fn": 15903, + "fn_rate": 0.05231921200417159, + "fp": 51206, + "fp_rate": 0.2945090844256308, + "match_probability": 0.0008377404115973132, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8490673929447274, + "recall": 0.9476807879958284, + "row_count": 477830, + "tn": 122663, + "tn_rate": 0.7054909155743692, + "tp": 288058, + "tp_rate": 0.9476807879958284, + "truth_threshold": -10.22 + }, + { + "f1": 0.8957094703848354, + "fn": 15908, + "fn_rate": 0.05233566148288761, + "fp": 51170, + "fp_rate": 0.29430203198960136, + "match_probability": 0.0008494248984104829, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8491552754382811, + "recall": 0.9476643385171124, + "row_count": 477830, + "tn": 122699, + "tn_rate": 0.7056979680103986, + "tp": 288053, + "tp_rate": 0.9476643385171124, + "truth_threshold": -10.200000000000001 + }, + { + "f1": 0.8957131528617853, + "fn": 15931, + "fn_rate": 0.0524113290849813, + "fp": 51139, + "fp_rate": 0.2941237368363538, + "match_probability": 0.0008612722155521146, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8492226589104547, + "recall": 0.9475886709150187, + "row_count": 477830, + "tn": 122730, + "tn_rate": 0.7058762631636462, + "tp": 288030, + "tp_rate": 0.9475886709150187, + "truth_threshold": -10.18 + }, + { + "f1": 0.8957020681076038, + "fn": 15948, + "fn_rate": 0.05246725731261576, + "fp": 51126, + "fp_rate": 0.29404896790112095, + "match_probability": 0.000873284628214516, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8492476536169535, + "recall": 0.9475327426873842, + "row_count": 477830, + "tn": 122743, + "tn_rate": 0.705951032098879, + "tp": 288013, + "tp_rate": 0.9475327426873842, + "truth_threshold": -10.16 + }, + { + "f1": 0.8956737304083036, + "fn": 16001, + "fn_rate": 0.05264162178700557, + "fp": 51082, + "fp_rate": 0.29379590381264054, + "match_probability": 0.0008854644329910831, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.849334300765097, + "recall": 0.9473583782129944, + "row_count": 477830, + "tn": 122787, + "tn_rate": 0.7062040961873595, + "tp": 287960, + "tp_rate": 0.9473583782129944, + "truth_threshold": -10.14 + }, + { + "f1": 0.8961420545621489, + "fn": 16044, + "fn_rate": 0.05278308730396334, + "fp": 50693, + "fp_rate": 0.2915585872122115, + "match_probability": 0.0008978139583084768, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8502908951300907, + "recall": 0.9472169126960367, + "row_count": 477830, + "tn": 123176, + "tn_rate": 0.7084414127877885, + "tp": 287917, + "tp_rate": 0.9472169126960367, + "truth_threshold": -10.120000000000001 + }, + { + "f1": 0.8964068873182427, + "fn": 16062, + "fn_rate": 0.05284230542734101, + "fp": 50481, + "fp_rate": 0.2903392784222604, + "match_probability": 0.0009103355648646677, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8508156510432059, + "recall": 0.947157694572659, + "row_count": 477830, + "tn": 123388, + "tn_rate": 0.7096607215777395, + "tp": 287899, + "tp_rate": 0.947157694572659, + "truth_threshold": -10.1 + }, + { + "f1": 0.8964498239080274, + "fn": 16076, + "fn_rate": 0.05288836396774586, + "fp": 50433, + "fp_rate": 0.2900632085075545, + "match_probability": 0.0009230316460729091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8509301899396425, + "recall": 0.9471116360322541, + "row_count": 477830, + "tn": 123436, + "tn_rate": 0.7099367914924455, + "tp": 287885, + "tp_rate": 0.9471116360322541, + "truth_threshold": -10.08 + }, + { + "f1": 0.8965202577494573, + "fn": 16100, + "fn_rate": 0.05296732146558276, + "fp": 50352, + "fp_rate": 0.28959734052648833, + "match_probability": 0.0009359046285117405, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.851123404481791, + "recall": 0.9470326785344172, + "row_count": 477830, + "tn": 123517, + "tn_rate": 0.7104026594735117, + "tp": 287861, + "tp_rate": 0.9470326785344172, + "truth_threshold": -10.06 + }, + { + "f1": 0.896473644212441, + "fn": 16132, + "fn_rate": 0.05307259812936528, + "fp": 50346, + "fp_rate": 0.2895628317871501, + "match_probability": 0.0009489569723810712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8511244178310047, + "recall": 0.9469274018706347, + "row_count": 477830, + "tn": 123523, + "tn_rate": 0.7104371682128499, + "tp": 287829, + "tp_rate": 0.9469274018706347, + "truth_threshold": -10.040000000000001 + }, + { + "f1": 0.8964872770089056, + "fn": 16159, + "fn_rate": 0.053161425314431784, + "fp": 50303, + "fp_rate": 0.2893155191552261, + "match_probability": 0.0009621911719644465, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8512207746114373, + "recall": 0.9468385746855682, + "row_count": 477830, + "tn": 123566, + "tn_rate": 0.710684480844774, + "tp": 287802, + "tp_rate": 0.9468385746855682, + "truth_threshold": -10.02 + }, + { + "f1": 0.8965076753873523, + "fn": 16217, + "fn_rate": 0.05335223926753761, + "fp": 50218, + "fp_rate": 0.28882664534793434, + "match_probability": 0.000975609756097561, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8514093300430225, + "recall": 0.9466477607324624, + "row_count": 477830, + "tn": 123651, + "tn_rate": 0.7111733546520657, + "tp": 287744, + "tp_rate": 0.9466477607324624, + "truth_threshold": -10 + }, + { + "f1": 0.8965252866506057, + "fn": 16301, + "fn_rate": 0.05362859050996674, + "fp": 50101, + "fp_rate": 0.28815372493083874, + "match_probability": 0.0009892152886431212, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8516673032114425, + "recall": 0.9463714094900333, + "row_count": 477830, + "tn": 123768, + "tn_rate": 0.7118462750691613, + "tp": 287660, + "tp_rate": 0.9463714094900333, + "truth_threshold": -9.98 + }, + { + "f1": 0.8965234574673665, + "fn": 16324, + "fn_rate": 0.05370425811206043, + "fp": 50074, + "fp_rate": 0.28799843560381666, + "match_probability": 0.0010030103689721156, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8517252917435322, + "recall": 0.9462957418879395, + "row_count": 477830, + "tn": 123795, + "tn_rate": 0.7120015643961833, + "tp": 287637, + "tp_rate": 0.9462957418879395, + "truth_threshold": -9.96 + }, + { + "f1": 0.896532698248425, + "fn": 16356, + "fn_rate": 0.05380953477584295, + "fp": 50028, + "fp_rate": 0.2877338686022235, + "match_probability": 0.0010169976324515963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8518272799163589, + "recall": 0.9461904652241571, + "row_count": 477830, + "tn": 123841, + "tn_rate": 0.7122661313977765, + "tp": 287605, + "tp_rate": 0.9461904652241571, + "truth_threshold": -9.94 + }, + { + "f1": 0.9007962362021225, + "fn": 16380, + "fn_rate": 0.053888492273679846, + "fp": 46962, + "fp_rate": 0.2700999028003842, + "match_probability": 0.0010311797509390394, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8596234265849233, + "recall": 0.9461115077263201, + "row_count": 477830, + "tn": 126907, + "tn_rate": 0.7299000971996158, + "tp": 287581, + "tp_rate": 0.9461115077263201, + "truth_threshold": -9.92 + }, + { + "f1": 0.9008816783847803, + "fn": 16432, + "fn_rate": 0.05405956685232645, + "fp": 46838, + "fp_rate": 0.26938672218739396, + "match_probability": 0.0010455594332833937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8599203868802843, + "recall": 0.9459404331476735, + "row_count": 477830, + "tn": 127031, + "tn_rate": 0.730613277812606, + "tp": 287529, + "tp_rate": 0.9459404331476735, + "truth_threshold": -9.9 + }, + { + "f1": 0.9008451445708, + "fn": 16486, + "fn_rate": 0.05423722122245946, + "fp": 46799, + "fp_rate": 0.26916241538169544, + "match_probability": 0.0010601394258328775, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8599980854029927, + "recall": 0.9457627787775406, + "row_count": 477830, + "tn": 127070, + "tn_rate": 0.7308375846183046, + "tp": 287475, + "tp_rate": 0.9457627787775406, + "truth_threshold": -9.88 + }, + { + "f1": 0.9002022482479658, + "fn": 16873, + "fn_rate": 0.055510410875079366, + "fp": 46782, + "fp_rate": 0.26906464062023705, + "match_probability": 0.00107492251294963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8598795938538952, + "recall": 0.9444895891249206, + "row_count": 477830, + "tn": 127087, + "tn_rate": 0.730935359379763, + "tp": 287088, + "tp_rate": 0.9444895891249206, + "truth_threshold": -9.86 + }, + { + "f1": 0.9001737363347279, + "fn": 16919, + "fn_rate": 0.05566174607926675, + "fp": 46745, + "fp_rate": 0.2688518367276513, + "match_probability": 0.0010899115175312943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8599556004278177, + "recall": 0.9443382539207332, + "row_count": 477830, + "tn": 127124, + "tn_rate": 0.7311481632723488, + "tp": 287042, + "tp_rate": 0.9443382539207332, + "truth_threshold": -9.84 + }, + { + "f1": 0.9001263944950963, + "fn": 16962, + "fn_rate": 0.05580321159622451, + "fp": 46726, + "fp_rate": 0.2687425590530802, + "match_probability": 0.0011051093015396422, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8599865158438834, + "recall": 0.9441967884037755, + "row_count": 477830, + "tn": 127143, + "tn_rate": 0.7312574409469198, + "tp": 286999, + "tp_rate": 0.9441967884037755, + "truth_threshold": -9.82 + }, + { + "f1": 0.900108846695546, + "fn": 17009, + "fn_rate": 0.055957836696155096, + "fp": 46681, + "fp_rate": 0.26848374350804344, + "match_probability": 0.0011205187665362995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8600827855757673, + "recall": 0.9440421633038449, + "row_count": 477830, + "tn": 127188, + "tn_rate": 0.7315162564919566, + "tp": 286952, + "tp_rate": 0.9440421633038449, + "truth_threshold": -9.8 + }, + { + "f1": 0.901032475240063, + "fn": 17020, + "fn_rate": 0.05599402554933034, + "fp": 46014, + "fp_rate": 0.2646475219849427, + "match_probability": 0.0011361428542256968, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8618011442987791, + "recall": 0.9440059744506697, + "row_count": 477830, + "tn": 127855, + "tn_rate": 0.7353524780150573, + "tp": 286941, + "tp_rate": 0.9440059744506697, + "truth_threshold": -9.78 + }, + { + "f1": 0.9010464101098542, + "fn": 17048, + "fn_rate": 0.05608614263014005, + "fp": 45970, + "fp_rate": 0.26439445789646226, + "match_probability": 0.0011519845470053095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8619034315360051, + "recall": 0.94391385736986, + "row_count": 477830, + "tn": 127899, + "tn_rate": 0.7356055421035377, + "tp": 286913, + "tp_rate": 0.94391385736986, + "truth_threshold": -9.76 + }, + { + "f1": 0.901097416955626, + "fn": 17066, + "fn_rate": 0.05614536075351772, + "fp": 45913, + "fp_rate": 0.264066624872749, + "match_probability": 0.0011680468685233154, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8620435806831567, + "recall": 0.9438546392464823, + "row_count": 477830, + "tn": 127956, + "tn_rate": 0.735933375127251, + "tp": 286895, + "tp_rate": 0.9438546392464823, + "truth_threshold": -9.74 + }, + { + "f1": 0.9010880596217713, + "fn": 17169, + "fn_rate": 0.05648422001506772, + "fp": 45794, + "fp_rate": 0.26338220154254066, + "match_probability": 0.0011843328842437272, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8623092974448714, + "recall": 0.9435157799849323, + "row_count": 477830, + "tn": 128075, + "tn_rate": 0.7366177984574593, + "tp": 286792, + "tp_rate": 0.9435157799849323, + "truth_threshold": -9.72 + }, + { + "f1": 0.9011038387697838, + "fn": 17182, + "fn_rate": 0.056526988659729376, + "fp": 45766, + "fp_rate": 0.2632211607589622, + "match_probability": 0.0012008457020191263, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8623765204709137, + "recall": 0.9434730113402706, + "row_count": 477830, + "tn": 128103, + "tn_rate": 0.7367788392410378, + "tp": 286779, + "tp_rate": 0.9434730113402706, + "truth_threshold": -9.700000000000001 + }, + { + "f1": 0.9010608479241821, + "fn": 17211, + "fn_rate": 0.05662239563628228, + "fp": 45761, + "fp_rate": 0.26319240347618034, + "match_probability": 0.0012175884726710806, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8623774852561269, + "recall": 0.9433776043637178, + "row_count": 477830, + "tn": 128108, + "tn_rate": 0.7368075965238197, + "tp": 286750, + "tp_rate": 0.9433776043637178, + "truth_threshold": -9.68 + }, + { + "f1": 0.9010261003472714, + "fn": 17259, + "fn_rate": 0.05678031063195607, + "fp": 45728, + "fp_rate": 0.26300260540982, + "match_probability": 0.001234564390578344, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8624432211292603, + "recall": 0.9432196893680439, + "row_count": 477830, + "tn": 128141, + "tn_rate": 0.73699739459018, + "tp": 286702, + "tp_rate": 0.9432196893680439, + "truth_threshold": -9.66 + }, + { + "f1": 0.901102907665664, + "fn": 17267, + "fn_rate": 0.05680662979790171, + "fp": 45664, + "fp_rate": 0.26263451219021217, + "match_probability": 0.001251776694272957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.862605985112439, + "recall": 0.9431933702020983, + "row_count": 477830, + "tn": 128205, + "tn_rate": 0.7373654878097878, + "tp": 286694, + "tp_rate": 0.9431933702020983, + "truth_threshold": -9.64 + }, + { + "f1": 0.9010194170179459, + "fn": 17326, + "fn_rate": 0.057000733646750734, + "fp": 45650, + "fp_rate": 0.2625539917984229, + "match_probability": 0.0012692286670443176, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8626179334005447, + "recall": 0.9429992663532493, + "row_count": 477830, + "tn": 128219, + "tn_rate": 0.737446008201577, + "tp": 286635, + "tp_rate": 0.9429992663532493, + "truth_threshold": -9.620000000000001 + }, + { + "f1": 0.900939985538684, + "fn": 17381, + "fn_rate": 0.057181677912626946, + "fp": 45640, + "fp_rate": 0.26249647723285924, + "match_probability": 0.0012869236375513526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8626211546565529, + "recall": 0.942818322087373, + "row_count": 477830, + "tn": 128229, + "tn_rate": 0.7375035227671408, + "tp": 286580, + "tp_rate": 0.942818322087373, + "truth_threshold": -9.6 + }, + { + "f1": 0.9008831694748458, + "fn": 17427, + "fn_rate": 0.05733301311681433, + "fp": 45623, + "fp_rate": 0.2623987024714009, + "match_probability": 0.0013048649804428731, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8626462787175944, + "recall": 0.9426669868831856, + "row_count": 477830, + "tn": 128246, + "tn_rate": 0.7376012975285992, + "tp": 286534, + "tp_rate": 0.9426669868831856, + "truth_threshold": -9.58 + }, + { + "f1": 0.9007609584302874, + "fn": 17501, + "fn_rate": 0.05757646540181142, + "fp": 45619, + "fp_rate": 0.2623756966451754, + "match_probability": 0.0013230561169862418, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8626260618708199, + "recall": 0.9424235345981886, + "row_count": 477830, + "tn": 128250, + "tn_rate": 0.7376243033548247, + "tp": 286460, + "tp_rate": 0.9424235345981886, + "truth_threshold": -9.56 + }, + { + "f1": 0.9007012578616352, + "fn": 17538, + "fn_rate": 0.05769819154430996, + "fp": 45617, + "fp_rate": 0.26236419373206266, + "match_probability": 0.001341500515704429, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.862615949885556, + "recall": 0.94230180845569, + "row_count": 477830, + "tn": 128252, + "tn_rate": 0.7376358062679373, + "tp": 286423, + "tp_rate": 0.94230180845569, + "truth_threshold": -9.540000000000001 + }, + { + "f1": 0.9010514327422826, + "fn": 17560, + "fn_rate": 0.057770569250660445, + "fp": 45342, + "fp_rate": 0.2607825431790601, + "match_probability": 0.0013602016930215866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8633219088270137, + "recall": 0.9422294307493395, + "row_count": 477830, + "tn": 128527, + "tn_rate": 0.7392174568209399, + "tp": 286401, + "tp_rate": 0.9422294307493395, + "truth_threshold": -9.52 + }, + { + "f1": 0.9010053018265343, + "fn": 17608, + "fn_rate": 0.05792848424633423, + "fp": 45316, + "fp_rate": 0.2606330053085944, + "match_probability": 0.0013791632139172336, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8633698054385547, + "recall": 0.9420715157536658, + "row_count": 477830, + "tn": 128553, + "tn_rate": 0.7393669946914055, + "tp": 286353, + "tp_rate": 0.9420715157536658, + "truth_threshold": -9.5 + }, + { + "f1": 0.9009516796012009, + "fn": 17680, + "fn_rate": 0.058165356739844916, + "fp": 45266, + "fp_rate": 0.26034543248077574, + "match_probability": 0.0013983886925891824, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8634703375388708, + "recall": 0.9418346432601551, + "row_count": 477830, + "tn": 128603, + "tn_rate": 0.7396545675192242, + "tp": 286281, + "tp_rate": 0.9418346432601551, + "truth_threshold": -9.48 + }, + { + "f1": 0.9007863060612928, + "fn": 17792, + "fn_rate": 0.05853382506308375, + "fp": 45247, + "fp_rate": 0.26023615480620466, + "match_probability": 0.0014178817931252896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8634737007265793, + "recall": 0.9414661749369162, + "row_count": 477830, + "tn": 128622, + "tn_rate": 0.7397638451937953, + "tp": 286169, + "tp_rate": 0.9414661749369162, + "truth_threshold": -9.46 + }, + { + "f1": 0.9007898158145743, + "fn": 17808, + "fn_rate": 0.058586463394975016, + "fp": 45224, + "fp_rate": 0.2601038713054081, + "match_probability": 0.0014376462301841668, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8635270401989275, + "recall": 0.941413536605025, + "row_count": 477830, + "tn": 128645, + "tn_rate": 0.7398961286945919, + "tp": 286153, + "tp_rate": 0.941413536605025, + "truth_threshold": -9.44 + }, + { + "f1": 0.9009002200957842, + "fn": 17845, + "fn_rate": 0.05870818953747356, + "fp": 45102, + "fp_rate": 0.2594021936055306, + "match_probability": 0.0014576857696849406, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8638298643189681, + "recall": 0.9412918104625264, + "row_count": 477830, + "tn": 128767, + "tn_rate": 0.7405978063944694, + "tp": 286116, + "tp_rate": 0.9412918104625264, + "truth_threshold": -9.42 + }, + { + "f1": 0.9010481955791847, + "fn": 17880, + "fn_rate": 0.05882333588848569, + "fp": 44954, + "fp_rate": 0.2585509780351874, + "match_probability": 0.0014780042295062135, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8642016705182232, + "recall": 0.9411766641115143, + "row_count": 477830, + "tn": 128915, + "tn_rate": 0.7414490219648125, + "tp": 286081, + "tp_rate": 0.9411766641115143, + "truth_threshold": -9.4 + }, + { + "f1": 0.9010158600160648, + "fn": 17920, + "fn_rate": 0.05895493171821385, + "fp": 44928, + "fp_rate": 0.2584014401647217, + "match_probability": 0.0014986054801942956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8642531475757548, + "recall": 0.9410450682817861, + "row_count": 477830, + "tn": 128941, + "tn_rate": 0.7415985598352783, + "tp": 286041, + "tp_rate": 0.9410450682817861, + "truth_threshold": -9.38 + }, + { + "f1": 0.9010077526705919, + "fn": 17946, + "fn_rate": 0.05904046900753715, + "fp": 44902, + "fp_rate": 0.25825190229425604, + "match_probability": 0.0015194934456808581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8643103859880272, + "recall": 0.9409595309924629, + "row_count": 477830, + "tn": 128967, + "tn_rate": 0.741748097705744, + "tp": 286015, + "tp_rate": 0.9409595309924629, + "truth_threshold": -9.36 + }, + { + "f1": 0.9009961502353334, + "fn": 17965, + "fn_rate": 0.059102977026658024, + "fp": 44887, + "fp_rate": 0.25816563044591045, + "match_probability": 0.0015406721040101049, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8643417763983039, + "recall": 0.940897022973342, + "row_count": 477830, + "tn": 128982, + "tn_rate": 0.7418343695540895, + "tp": 285996, + "tp_rate": 0.940897022973342, + "truth_threshold": -9.34 + }, + { + "f1": 0.9009414937863931, + "fn": 18031, + "fn_rate": 0.05932011014570948, + "fp": 44846, + "fp_rate": 0.25792982072709913, + "match_probability": 0.0015621454880756095, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8644218443901613, + "recall": 0.9406798898542905, + "row_count": 477830, + "tn": 129023, + "tn_rate": 0.7420701792729009, + "tp": 285930, + "tp_rate": 0.9406798898542905, + "truth_threshold": -9.32 + }, + { + "f1": 0.9009699742852821, + "fn": 18058, + "fn_rate": 0.059408937330775985, + "fp": 44792, + "fp_rate": 0.257619242073055, + "match_probability": 0.0015839176863668995, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8645519285141898, + "recall": 0.940591062669224, + "row_count": 477830, + "tn": 129077, + "tn_rate": 0.742380757926945, + "tp": 285903, + "tp_rate": 0.940591062669224, + "truth_threshold": -9.3 + }, + { + "f1": 0.9009335543774938, + "fn": 18111, + "fn_rate": 0.05958330180516579, + "fp": 44753, + "fp_rate": 0.25739493526735646, + "match_probability": 0.0016059928437259468, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8646322023696095, + "recall": 0.9404166981948342, + "row_count": 477830, + "tn": 129116, + "tn_rate": 0.7426050647326435, + "tp": 285850, + "tp_rate": 0.9404166981948342, + "truth_threshold": -9.28 + }, + { + "f1": 0.9005851825227168, + "fn": 18326, + "fn_rate": 0.06029062938995463, + "fp": 44736, + "fp_rate": 0.2572971605058981, + "match_probability": 0.0016283751621136546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8645885988782308, + "recall": 0.9397093706100453, + "row_count": 477830, + "tn": 129133, + "tn_rate": 0.7427028394941019, + "tp": 285635, + "tp_rate": 0.9397093706100453, + "truth_threshold": -9.26 + }, + { + "f1": 0.9005543677747715, + "fn": 18379, + "fn_rate": 0.06046499386434444, + "fp": 44693, + "fp_rate": 0.25704984787397406, + "match_probability": 0.001651068901386505, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8646794338051623, + "recall": 0.9395350061356555, + "row_count": 477830, + "tn": 129176, + "tn_rate": 0.7429501521260259, + "tp": 285582, + "tp_rate": 0.9395350061356555, + "truth_threshold": -9.24 + }, + { + "f1": 0.9005011843595154, + "fn": 18458, + "fn_rate": 0.060724895628057544, + "fp": 44635, + "fp_rate": 0.25671626339370446, + "match_probability": 0.0016740783800834494, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8647989628579563, + "recall": 0.9392751043719425, + "row_count": 477830, + "tn": 129234, + "tn_rate": 0.7432837366062955, + "tp": 285503, + "tp_rate": 0.9392751043719425, + "truth_threshold": -9.22 + }, + { + "f1": 0.9005330893949909, + "fn": 18474, + "fn_rate": 0.06077753395994881, + "fp": 44593, + "fp_rate": 0.2564747022183368, + "match_probability": 0.0016974079762232014, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8649024478914202, + "recall": 0.9392224660400512, + "row_count": 477830, + "tn": 129276, + "tn_rate": 0.7435252977816632, + "tp": 285487, + "tp_rate": 0.9392224660400512, + "truth_threshold": -9.200000000000001 + }, + { + "f1": 0.9004063629881561, + "fn": 18570, + "fn_rate": 0.06109336395129639, + "fp": 44565, + "fp_rate": 0.25631366143475837, + "match_probability": 0.0017210621281120474, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8649365369928111, + "recall": 0.9389066360487036, + "row_count": 477830, + "tn": 129304, + "tn_rate": 0.7436863385652417, + "tp": 285391, + "tp_rate": 0.9389066360487036, + "truth_threshold": -9.18 + }, + { + "f1": 0.9005462618459296, + "fn": 18595, + "fn_rate": 0.06117561134487648, + "fp": 44436, + "fp_rate": 0.2555717235389863, + "match_probability": 0.0017450453351622972, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8652646133134426, + "recall": 0.9388243886551235, + "row_count": 477830, + "tn": 129433, + "tn_rate": 0.7444282764610137, + "tp": 285366, + "tp_rate": 0.9388243886551235, + "truth_threshold": -9.16 + }, + { + "f1": 0.9007595272369119, + "fn": 18622, + "fn_rate": 0.06126443852994298, + "fp": 44253, + "fp_rate": 0.25451920698917, + "match_probability": 0.001769362158721538, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8657339983980193, + "recall": 0.938735561470057, + "row_count": 477830, + "tn": 129616, + "tn_rate": 0.74548079301083, + "tp": 285339, + "tp_rate": 0.938735561470057, + "truth_threshold": -9.14 + }, + { + "f1": 0.9007293278186468, + "fn": 18673, + "fn_rate": 0.06143222321284639, + "fp": 44212, + "fp_rate": 0.2542833972703587, + "match_probability": 0.001794017222912777, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8658209408194234, + "recall": 0.9385677767871536, + "row_count": 477830, + "tn": 129657, + "tn_rate": 0.7457166027296412, + "tp": 285288, + "tp_rate": 0.9385677767871536, + "truth_threshold": -9.120000000000001 + }, + { + "f1": 0.9005902061774281, + "fn": 18772, + "fn_rate": 0.061757922891423574, + "fp": 44189, + "fp_rate": 0.2541511137695621, + "match_probability": 0.0018190152154856484, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8658410701382606, + "recall": 0.9382420771085764, + "row_count": 477830, + "tn": 129680, + "tn_rate": 0.7458488862304379, + "tp": 285189, + "tp_rate": 0.9382420771085764, + "truth_threshold": -9.1 + }, + { + "f1": 0.9006006593989616, + "fn": 18784, + "fn_rate": 0.06179740164034202, + "fp": 44167, + "fp_rate": 0.25402458172532194, + "match_probability": 0.0018443608886787883, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8658940196268947, + "recall": 0.938202598359658, + "row_count": 477830, + "tn": 129702, + "tn_rate": 0.7459754182746781, + "tp": 285177, + "tp_rate": 0.938202598359658, + "truth_threshold": -9.08 + }, + { + "f1": 0.9006791117849584, + "fn": 18815, + "fn_rate": 0.061899388408381335, + "fp": 44073, + "fp_rate": 0.25348394480902287, + "match_probability": 0.0018700590600935494, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.866128625626103, + "recall": 0.9381006115916186, + "row_count": 477830, + "tn": 129796, + "tn_rate": 0.7465160551909771, + "tp": 285146, + "tp_rate": 0.9381006115916186, + "truth_threshold": -9.06 + }, + { + "f1": 0.9007111018445685, + "fn": 18840, + "fn_rate": 0.061981635801961435, + "fp": 44021, + "fp_rate": 0.2531848690680915, + "match_probability": 0.0018961146135791532, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.866255294067606, + "recall": 0.9380183641980385, + "row_count": 477830, + "tn": 129848, + "tn_rate": 0.7468151309319085, + "tp": 285121, + "tp_rate": 0.9380183641980385, + "truth_threshold": -9.040000000000001 + }, + { + "f1": 0.9006334412763605, + "fn": 18888, + "fn_rate": 0.062139550797635223, + "fp": 44017, + "fp_rate": 0.253161863241866, + "match_probability": 0.001922532500129454, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8662463155975569, + "recall": 0.9378604492023648, + "row_count": 477830, + "tn": 129852, + "tn_rate": 0.746838136758134, + "tp": 285073, + "tp_rate": 0.9378604492023648, + "truth_threshold": -9.02 + }, + { + "f1": 0.9006325394468282, + "fn": 18909, + "fn_rate": 0.0622086386082425, + "fp": 43992, + "fp_rate": 0.2530180768279567, + "match_probability": 0.001949317738791423, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8663035946560338, + "recall": 0.9377913613917574, + "row_count": 477830, + "tn": 129877, + "tn_rate": 0.7469819231720434, + "tp": 285052, + "tp_rate": 0.9377913613917574, + "truth_threshold": -9 + }, + { + "f1": 0.9004939434256225, + "fn": 19015, + "fn_rate": 0.06255736755702211, + "fp": 43960, + "fp_rate": 0.25283403021815276, + "match_probability": 0.001976475417585539, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8663447915209816, + "recall": 0.9374426324429779, + "row_count": 477830, + "tn": 129909, + "tn_rate": 0.7471659697818472, + "tp": 284946, + "tp_rate": 0.9374426324429779, + "truth_threshold": -8.98 + }, + { + "f1": 0.9004273180105692, + "fn": 19073, + "fn_rate": 0.06274818151012794, + "fp": 43935, + "fp_rate": 0.25269024380424343, + "match_probability": 0.0020040106944381785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8663870836285783, + "recall": 0.937251818489872, + "row_count": 477830, + "tn": 129934, + "tn_rate": 0.7473097561957566, + "tp": 284888, + "tp_rate": 0.937251818489872, + "truth_threshold": -8.96 + }, + { + "f1": 0.9003701350629483, + "fn": 19110, + "fn_rate": 0.06286990765262648, + "fp": 43931, + "fp_rate": 0.25266723797801793, + "match_probability": 0.002031928798126188, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8663825878545662, + "recall": 0.9371300923473735, + "row_count": 477830, + "tn": 129938, + "tn_rate": 0.7473327620219821, + "tp": 284851, + "tp_rate": 0.9371300923473735, + "truth_threshold": -8.94 + }, + { + "f1": 0.900332877063095, + "fn": 19156, + "fn_rate": 0.06302124285681386, + "fp": 43900, + "fp_rate": 0.25248894282477036, + "match_probability": 0.0020602350292337574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.866445597115955, + "recall": 0.9369787571431861, + "row_count": 477830, + "tn": 129969, + "tn_rate": 0.7475110571752296, + "tp": 284805, + "tp_rate": 0.9369787571431861, + "truth_threshold": -8.92 + }, + { + "f1": 0.8997222503416511, + "fn": 19548, + "fn_rate": 0.0643108819881498, + "fp": 43850, + "fp_rate": 0.25220136999695175, + "match_probability": 0.0020889347611217834, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.866418085498518, + "recall": 0.9356891180118502, + "row_count": 477830, + "tn": 130019, + "tn_rate": 0.7477986300030482, + "tp": 284413, + "tp_rate": 0.9356891180118502, + "truth_threshold": -8.9 + }, + { + "f1": 0.8995947087503046, + "fn": 19627, + "fn_rate": 0.0645707837518629, + "fp": 43843, + "fp_rate": 0.2521611098010571, + "match_probability": 0.002118033440909814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.866404409815435, + "recall": 0.9354292162481371, + "row_count": 477830, + "tn": 130026, + "tn_rate": 0.7478388901989429, + "tp": 284334, + "tp_rate": 0.9354292162481371, + "truth_threshold": -8.88 + }, + { + "f1": 0.8995816958720154, + "fn": 19659, + "fn_rate": 0.06467606041564543, + "fp": 43814, + "fp_rate": 0.2519943175609223, + "match_probability": 0.0021475365904707793, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8664679564544246, + "recall": 0.9353239395843546, + "row_count": 477830, + "tn": 130055, + "tn_rate": 0.7480056824390777, + "tp": 284302, + "tp_rate": 0.9353239395843546, + "truth_threshold": -8.86 + }, + { + "f1": 0.9003246598989595, + "fn": 19715, + "fn_rate": 0.06486029457726485, + "fp": 43223, + "fp_rate": 0.2485952067361059, + "match_probability": 0.0021774498074386152, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8680088802298843, + "recall": 0.9351397054227352, + "row_count": 477830, + "tn": 130646, + "tn_rate": 0.7514047932638941, + "tp": 284246, + "tp_rate": 0.9351397054227352, + "truth_threshold": -8.84 + }, + { + "f1": 0.9003006027893659, + "fn": 19737, + "fn_rate": 0.06493267228361534, + "fp": 43214, + "fp_rate": 0.24854344362709857, + "match_probability": 0.002207778766228983, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8680238701677875, + "recall": 0.9350673277163847, + "row_count": 477830, + "tn": 130655, + "tn_rate": 0.7514565563729014, + "tp": 284224, + "tp_rate": 0.9350673277163847, + "truth_threshold": -8.82 + }, + { + "f1": 0.9003640695946439, + "fn": 19807, + "fn_rate": 0.0651629649856396, + "fp": 43083, + "fp_rate": 0.2477900028182137, + "match_probability": 0.002238529219073188, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8683431274580808, + "recall": 0.9348370350143604, + "row_count": 477830, + "tn": 130786, + "tn_rate": 0.7522099971817863, + "tp": 284154, + "tp_rate": 0.9348370350143604, + "truth_threshold": -8.8 + }, + { + "f1": 0.9003546088053265, + "fn": 19846, + "fn_rate": 0.06529127091962456, + "fp": 43043, + "fp_rate": 0.24755994455595878, + "match_probability": 0.0022697069970654916, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8684336008900898, + "recall": 0.9347087290803754, + "row_count": 477830, + "tn": 130826, + "tn_rate": 0.7524400554440412, + "tp": 284115, + "tp_rate": 0.9347087290803754, + "truth_threshold": -8.78 + }, + { + "f1": 0.8999302495165024, + "fn": 20114, + "fn_rate": 0.06617296297880321, + "fp": 43012, + "fp_rate": 0.24738164940271123, + "match_probability": 0.002301318011223944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8684080903386475, + "recall": 0.9338270370211968, + "row_count": 477830, + "tn": 130857, + "tn_rate": 0.7526183505972888, + "tp": 283847, + "tp_rate": 0.9338270370211968, + "truth_threshold": -8.76 + }, + { + "f1": 0.8999080503503599, + "fn": 20139, + "fn_rate": 0.0662552103723833, + "fp": 42998, + "fp_rate": 0.24730112901092202, + "match_probability": 0.002333368253564943, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8684352242824797, + "recall": 0.9337447896276168, + "row_count": 477830, + "tn": 130871, + "tn_rate": 0.752698870989078, + "tp": 283822, + "tp_rate": 0.9337447896276168, + "truth_threshold": -8.74 + }, + { + "f1": 0.8997897554122919, + "fn": 20215, + "fn_rate": 0.0665052424488668, + "fp": 42988, + "fp_rate": 0.24724361444535828, + "match_probability": 0.0023658637981916145, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8684312009157296, + "recall": 0.9334947575511332, + "row_count": 477830, + "tn": 130881, + "tn_rate": 0.7527563855546417, + "tp": 283746, + "tp_rate": 0.9334947575511332, + "truth_threshold": -8.72 + }, + { + "f1": 0.899750693047952, + "fn": 20293, + "fn_rate": 0.0667618543168367, + "fp": 42919, + "fp_rate": 0.24684676394296856, + "match_probability": 0.002398810802396238, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8685832565288881, + "recall": 0.9332381456831633, + "row_count": 477830, + "tn": 130950, + "tn_rate": 0.7531532360570314, + "tp": 283668, + "tp_rate": 0.9332381456831633, + "truth_threshold": -8.700000000000001 + }, + { + "f1": 0.8997354447003293, + "fn": 20323, + "fn_rate": 0.06686055118913281, + "fp": 42893, + "fp_rate": 0.24669722607250286, + "match_probability": 0.00243221550777684, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8686403434895921, + "recall": 0.9331394488108672, + "row_count": 477830, + "tn": 130976, + "tn_rate": 0.7533027739274971, + "tp": 283638, + "tp_rate": 0.9331394488108672, + "truth_threshold": -8.68 + }, + { + "f1": 0.8997328917481949, + "fn": 20340, + "fn_rate": 0.06691647941676729, + "fp": 42875, + "fp_rate": 0.24659369985448815, + "match_probability": 0.0024660842413681285, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8686813927276291, + "recall": 0.9330835205832327, + "row_count": 477830, + "tn": 130994, + "tn_rate": 0.7534063001455118, + "tp": 283621, + "tp_rate": 0.9330835205832327, + "truth_threshold": -8.66 + }, + { + "f1": 0.8997960005964524, + "fn": 20348, + "fn_rate": 0.06694279858271292, + "fp": 42821, + "fp_rate": 0.24628312120044402, + "match_probability": 0.002500423416786966, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8688218751723166, + "recall": 0.9330572014172871, + "row_count": 477830, + "tn": 131048, + "tn_rate": 0.753716878799556, + "tp": 283613, + "tp_rate": 0.9330572014172871, + "truth_threshold": -8.64 + }, + { + "f1": 0.8997096666719551, + "fn": 20413, + "fn_rate": 0.06715664180602117, + "fp": 42801, + "fp_rate": 0.24616809206931656, + "match_probability": 0.0025352395353924907, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.868848992949266, + "recall": 0.9328433581939788, + "row_count": 477830, + "tn": 131068, + "tn_rate": 0.7538319079306834, + "tp": 283548, + "tp_rate": 0.9328433581939788, + "truth_threshold": -8.620000000000001 + }, + { + "f1": 0.8996829789192088, + "fn": 20452, + "fn_rate": 0.06728494774000612, + "fp": 42772, + "fp_rate": 0.24600129982918173, + "match_probability": 0.0025705391874611093, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8689105403011514, + "recall": 0.9327150522599938, + "row_count": 477830, + "tn": 131097, + "tn_rate": 0.7539987001708183, + "tp": 283509, + "tp_rate": 0.9327150522599938, + "truth_threshold": -8.6 + }, + { + "f1": 0.8996569223298814, + "fn": 20489, + "fn_rate": 0.06740667388250467, + "fp": 42746, + "fp_rate": 0.24585176195871605, + "match_probability": 0.0026063290533764843, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8689649252953546, + "recall": 0.9325933261174953, + "row_count": 477830, + "tn": 131123, + "tn_rate": 0.754148238041284, + "tp": 283472, + "tp_rate": 0.9325933261174953, + "truth_threshold": -8.58 + }, + { + "f1": 0.8994345834298976, + "fn": 20649, + "fn_rate": 0.06793305720141729, + "fp": 42705, + "fp_rate": 0.24561595223990476, + "match_probability": 0.0026426159048347467, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8690098982568394, + "recall": 0.9320669427985827, + "row_count": 477830, + "tn": 131164, + "tn_rate": 0.7543840477600953, + "tp": 283312, + "tp_rate": 0.9320669427985827, + "truth_threshold": -8.56 + }, + { + "f1": 0.8994158359260905, + "fn": 20663, + "fn_rate": 0.06797911574182214, + "fp": 42701, + "fp_rate": 0.24559294641367926, + "match_probability": 0.0026794066060650402, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8690149356286369, + "recall": 0.9320208842581779, + "row_count": 477830, + "tn": 131168, + "tn_rate": 0.7544070535863208, + "tp": 283298, + "tp_rate": 0.9320208842581779, + "truth_threshold": -8.540000000000001 + }, + { + "f1": 0.8993408351960983, + "fn": 20719, + "fn_rate": 0.06816334990344156, + "fp": 42686, + "fp_rate": 0.24550667456533368, + "match_probability": 0.0027167081150656154, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8690324243391179, + "recall": 0.9318366500965585, + "row_count": 477830, + "tn": 131183, + "tn_rate": 0.7544933254346663, + "tp": 283242, + "tp_rate": 0.9318366500965585, + "truth_threshold": -8.52 + }, + { + "f1": 0.8993559696657901, + "fn": 20761, + "fn_rate": 0.06830152552465613, + "fp": 42623, + "fp_rate": 0.24514433280228218, + "match_probability": 0.0027545274848556306, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.869183575131283, + "recall": 0.9316984744753439, + "row_count": 477830, + "tn": 131246, + "tn_rate": 0.7548556671977178, + "tp": 283200, + "tp_rate": 0.9316984744753439, + "truth_threshold": -8.5 + }, + { + "f1": 0.8993054121951451, + "fn": 20803, + "fn_rate": 0.06843970114587068, + "fp": 42607, + "fp_rate": 0.24505230949738022, + "match_probability": 0.0027928718647428573, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8692093994136878, + "recall": 0.9315602988541293, + "row_count": 477830, + "tn": 131262, + "tn_rate": 0.7549476905026198, + "tp": 283158, + "tp_rate": 0.9315602988541293, + "truth_threshold": -8.48 + }, + { + "f1": 0.8993241054243081, + "fn": 20816, + "fn_rate": 0.06848246979053234, + "fp": 42579, + "fp_rate": 0.24489126871380176, + "match_probability": 0.0028317485016074407, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8692788986995125, + "recall": 0.9315175302094677, + "row_count": 477830, + "tn": 131290, + "tn_rate": 0.7551087312861983, + "tp": 283145, + "tp_rate": 0.9315175302094677, + "truth_threshold": -8.46 + }, + { + "f1": 0.8992496298978963, + "fn": 20897, + "fn_rate": 0.06874895134573185, + "fp": 42532, + "fp_rate": 0.24462095025565225, + "match_probability": 0.002871164741201907, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8693718596051548, + "recall": 0.9312510486542681, + "row_count": 477830, + "tn": 131337, + "tn_rate": 0.7553790497443478, + "tp": 283064, + "tp_rate": 0.9312510486542681, + "truth_threshold": -8.44 + }, + { + "f1": 0.9015675918463563, + "fn": 20940, + "fn_rate": 0.06889041686268962, + "fp": 40861, + "fp_rate": 0.23501026634995312, + "match_probability": 0.002911128029467595, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8738398552559266, + "recall": 0.9311095831373104, + "row_count": 477830, + "tn": 133008, + "tn_rate": 0.7649897336500469, + "tp": 283021, + "tp_rate": 0.9311095831373104, + "truth_threshold": -8.42 + }, + { + "f1": 0.9015463145585532, + "fn": 21017, + "fn_rate": 0.06914373883491633, + "fp": 40781, + "fp_rate": 0.23455014982544328, + "match_probability": 0.002951645913867726, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8740257934975674, + "recall": 0.9308562611650837, + "row_count": 477830, + "tn": 133088, + "tn_rate": 0.7654498501745567, + "tp": 282944, + "tp_rate": 0.9308562611650837, + "truth_threshold": -8.4 + }, + { + "f1": 0.9015002804262479, + "fn": 21063, + "fn_rate": 0.0692950740391037, + "fp": 40758, + "fp_rate": 0.23441786632464673, + "match_probability": 0.0029927260447372276, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.874070000247176, + "recall": 0.9307049259608963, + "row_count": 477830, + "tn": 133111, + "tn_rate": 0.7655821336753533, + "tp": 282898, + "tp_rate": 0.9307049259608963, + "truth_threshold": -8.38 + }, + { + "f1": 0.9014042759341654, + "fn": 21140, + "fn_rate": 0.06954839601133041, + "fp": 40731, + "fp_rate": 0.23426257699762465, + "match_probability": 0.0030343761766495666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8741129710216595, + "recall": 0.9304516039886696, + "row_count": 477830, + "tn": 133138, + "tn_rate": 0.7657374230023754, + "tp": 282821, + "tp_rate": 0.9304516039886696, + "truth_threshold": -8.36 + }, + { + "f1": 0.9013951175666243, + "fn": 21160, + "fn_rate": 0.06961419392619447, + "fp": 40713, + "fp_rate": 0.23415905077960994, + "match_probability": 0.003076604169800717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.874153823327584, + "recall": 0.9303858060738055, + "row_count": 477830, + "tn": 133156, + "tn_rate": 0.76584094922039, + "tp": 282801, + "tp_rate": 0.9303858060738055, + "truth_threshold": -8.34 + }, + { + "f1": 0.9013935905036944, + "fn": 21174, + "fn_rate": 0.06966025246659933, + "fp": 40696, + "fp_rate": 0.2340612760181516, + "match_probability": 0.003119417991410515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8741943162391841, + "recall": 0.9303397475334007, + "row_count": 477830, + "tn": 133173, + "tn_rate": 0.7659387239818484, + "tp": 282787, + "tp_rate": 0.9303397475334007, + "truth_threshold": -8.32 + }, + { + "f1": 0.9025279285030322, + "fn": 21199, + "fn_rate": 0.06974249986017943, + "fp": 39878, + "fp_rate": 0.22935658455503857, + "match_probability": 0.0031628257171415226, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8764009422266303, + "recall": 0.9302575001398206, + "row_count": 477830, + "tn": 133991, + "tn_rate": 0.7706434154449614, + "tp": 282762, + "tp_rate": 0.9302575001398206, + "truth_threshold": -8.3 + }, + { + "f1": 0.9024422943713271, + "fn": 21252, + "fn_rate": 0.06991686433456924, + "fp": 39872, + "fp_rate": 0.22932207581570033, + "match_probability": 0.0032068355325356353, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8763969359633704, + "recall": 0.9300831356654308, + "row_count": 477830, + "tn": 133997, + "tn_rate": 0.7706779241842997, + "tp": 282709, + "tp_rate": 0.9300831356654308, + "truth_threshold": -8.28 + }, + { + "f1": 0.9024541307103155, + "fn": 21288, + "fn_rate": 0.07003530058132458, + "fp": 39820, + "fp_rate": 0.22902300007476895, + "match_probability": 0.0032514557344685887, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8765244516935251, + "recall": 0.9299646994186754, + "row_count": 477830, + "tn": 134049, + "tn_rate": 0.770976999925231, + "tp": 282673, + "tp_rate": 0.9299646994186754, + "truth_threshold": -8.26 + }, + { + "f1": 0.90244774670643, + "fn": 21327, + "fn_rate": 0.07016360651530953, + "fp": 39778, + "fp_rate": 0.22878143889940128, + "match_probability": 0.0032966947326226116, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8766236988697691, + "recall": 0.9298363934846905, + "row_count": 477830, + "tn": 134091, + "tn_rate": 0.7712185611005987, + "tp": 282634, + "tp_rate": 0.9298363934846905, + "truth_threshold": -8.24 + }, + { + "f1": 0.9023776366725863, + "fn": 21441, + "fn_rate": 0.07053865463003478, + "fp": 39687, + "fp_rate": 0.22825805635277133, + "match_probability": 0.0033425610509773486, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.876827629443184, + "recall": 0.9294613453699653, + "row_count": 477830, + "tn": 134182, + "tn_rate": 0.7717419436472287, + "tp": 282520, + "tp_rate": 0.9294613453699653, + "truth_threshold": -8.22 + }, + { + "f1": 0.902302118741534, + "fn": 21526, + "fn_rate": 0.07081829576820711, + "fp": 39637, + "fp_rate": 0.2279704835249527, + "match_probability": 0.0033890633293192944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8769312451874115, + "recall": 0.9291817042317929, + "row_count": 477830, + "tn": 134232, + "tn_rate": 0.7720295164750473, + "tp": 282435, + "tp_rate": 0.9291817042317929, + "truth_threshold": -8.2 + }, + { + "f1": 0.9022837206627519, + "fn": 21548, + "fn_rate": 0.07089067347455759, + "fp": 39622, + "fp_rate": 0.2278842116766071, + "match_probability": 0.0034362103247699053, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8769636840716071, + "recall": 0.9291093265254424, + "row_count": 477830, + "tn": 134247, + "tn_rate": 0.7721157883233929, + "tp": 282413, + "tp_rate": 0.9291093265254424, + "truth_threshold": -8.18 + }, + { + "f1": 0.9021561998734654, + "fn": 21624, + "fn_rate": 0.07114070555104109, + "fp": 39618, + "fp_rate": 0.2278612058503816, + "match_probability": 0.0034840109133326283, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8769455358668137, + "recall": 0.9288592944489589, + "row_count": 477830, + "tn": 134251, + "tn_rate": 0.7721387941496184, + "tp": 282337, + "tp_rate": 0.9288592944489589, + "truth_threshold": -8.16 + }, + { + "f1": 0.9021805479653439, + "fn": 21666, + "fn_rate": 0.07127888117225566, + "fp": 39551, + "fp_rate": 0.2274758582611046, + "match_probability": 0.003532474091458984, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8771120349483915, + "recall": 0.9287211188277443, + "row_count": 477830, + "tn": 134318, + "tn_rate": 0.7725241417388954, + "tp": 282295, + "tp_rate": 0.9287211188277443, + "truth_threshold": -8.14 + }, + { + "f1": 0.9021499395868894, + "fn": 21727, + "fn_rate": 0.07147956481259109, + "fp": 39498, + "fp_rate": 0.22717103106361686, + "match_probability": 0.003581608977633939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.877233225168774, + "recall": 0.9285204351874089, + "row_count": 477830, + "tn": 134371, + "tn_rate": 0.7728289689363831, + "tp": 282234, + "tp_rate": 0.9285204351874089, + "truth_threshold": -8.120000000000001 + }, + { + "f1": 0.9015903173597917, + "fn": 22086, + "fn_rate": 0.07266063738440129, + "fp": 39449, + "fp_rate": 0.2268892096923546, + "match_probability": 0.0036314248139807737, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8772298365512691, + "recall": 0.9273393626155987, + "row_count": 477830, + "tn": 134420, + "tn_rate": 0.7731107903076454, + "tp": 281875, + "tp_rate": 0.9273393626155987, + "truth_threshold": -8.1 + }, + { + "f1": 0.9015591611111822, + "fn": 22130, + "fn_rate": 0.07280539279710226, + "fp": 39417, + "fp_rate": 0.22670516308255065, + "match_probability": 0.0036819309678855936, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8773004034266361, + "recall": 0.9271946072028977, + "row_count": 477830, + "tn": 134452, + "tn_rate": 0.7732948369174494, + "tp": 281831, + "tp_rate": 0.9271946072028977, + "truth_threshold": -8.08 + }, + { + "f1": 0.9014790145022122, + "fn": 22183, + "fn_rate": 0.07297975727149207, + "fp": 39408, + "fp_rate": 0.2266533999735433, + "match_probability": 0.0037331369336417713, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8773047393099326, + "recall": 0.9270202427285079, + "row_count": 477830, + "tn": 134461, + "tn_rate": 0.7733466000264567, + "tp": 281778, + "tp_rate": 0.9270202427285079, + "truth_threshold": -8.06 + }, + { + "f1": 0.9014750111985665, + "fn": 22214, + "fn_rate": 0.07308174403953138, + "fp": 39372, + "fp_rate": 0.2264463475375139, + "match_probability": 0.0037850523341144294, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8773912474814632, + "recall": 0.9269182559604686, + "row_count": 477830, + "tn": 134497, + "tn_rate": 0.7735536524624861, + "tp": 281747, + "tp_rate": 0.9269182559604686, + "truth_threshold": -8.040000000000001 + }, + { + "f1": 0.9014330150277771, + "fn": 22274, + "fn_rate": 0.07327913778412362, + "fp": 39329, + "fp_rate": 0.22619903490558985, + "match_probability": 0.0038376869224252233, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8774858574027463, + "recall": 0.9267208622158764, + "row_count": 477830, + "tn": 134540, + "tn_rate": 0.7738009650944102, + "tp": 281687, + "tp_rate": 0.9267208622158764, + "truth_threshold": -8.02 + }, + { + "f1": 0.9013883021621414, + "fn": 22306, + "fn_rate": 0.07338441444790615, + "fp": 39321, + "fp_rate": 0.22615302325313885, + "match_probability": 0.0038910505836575876, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8774955136832661, + "recall": 0.9266155855520939, + "row_count": 477830, + "tn": 134548, + "tn_rate": 0.7738469767468611, + "tp": 281655, + "tp_rate": 0.9266155855520939, + "truth_threshold": -8 + }, + { + "f1": 0.9013875774210586, + "fn": 22354, + "fn_rate": 0.07354232944357993, + "fp": 39263, + "fp_rate": 0.22581943877286922, + "match_probability": 0.003945153336582717, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.877635802661514, + "recall": 0.92645767055642, + "row_count": 477830, + "tn": 134606, + "tn_rate": 0.7741805612271307, + "tp": 281607, + "tp_rate": 0.92645767055642, + "truth_threshold": -7.98 + }, + { + "f1": 0.9012990671558176, + "fn": 22415, + "fn_rate": 0.07374301308391537, + "fp": 39250, + "fp_rate": 0.22574466983763639, + "match_probability": 0.004000005335406395, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8776481003503784, + "recall": 0.9262569869160846, + "row_count": 477830, + "tn": 134619, + "tn_rate": 0.7742553301623636, + "tp": 281546, + "tp_rate": 0.9262569869160846, + "truth_threshold": -7.96 + }, + { + "f1": 0.9012049195813041, + "fn": 22512, + "fn_rate": 0.07406213297100615, + "fp": 39196, + "fp_rate": 0.22543409118359226, + "match_probability": 0.004055616871536931, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8777588922328432, + "recall": 0.9259378670289938, + "row_count": 477830, + "tn": 134673, + "tn_rate": 0.7745659088164077, + "tp": 281449, + "tp_rate": 0.9259378670289938, + "truth_threshold": -7.94 + }, + { + "f1": 0.9011989854738298, + "fn": 22549, + "fn_rate": 0.0741838591135047, + "fp": 39156, + "fp_rate": 0.22520403292133734, + "match_probability": 0.004111998375374417, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.877854308602231, + "recall": 0.9258161408864953, + "row_count": 477830, + "tn": 134713, + "tn_rate": 0.7747959670786627, + "tp": 281412, + "tp_rate": 0.9258161408864953, + "truth_threshold": -7.92 + }, + { + "f1": 0.901206455352825, + "fn": 22571, + "fn_rate": 0.07425623681985517, + "fp": 39124, + "fp_rate": 0.2250199863115334, + "match_probability": 0.00416916041812146, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8779335692044653, + "recall": 0.9257437631801448, + "row_count": 477830, + "tn": 134745, + "tn_rate": 0.7749800136884666, + "tp": 281390, + "tp_rate": 0.9257437631801448, + "truth_threshold": -7.9 + }, + { + "f1": 0.901106644672571, + "fn": 22631, + "fn_rate": 0.07445363056444741, + "fp": 39119, + "fp_rate": 0.22499122902875154, + "match_probability": 0.004227113713615665, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.877924412308979, + "recall": 0.9255463694355526, + "row_count": 477830, + "tn": 134750, + "tn_rate": 0.7750087709712484, + "tp": 281330, + "tp_rate": 0.9255463694355526, + "truth_threshold": -7.88 + }, + { + "f1": 0.9011212917280708, + "fn": 22685, + "fn_rate": 0.07463128493458042, + "fp": 39044, + "fp_rate": 0.22455986978702355, + "match_probability": 0.004285869120183992, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8781093906093906, + "recall": 0.9253687150654196, + "row_count": 477830, + "tn": 134825, + "tn_rate": 0.7754401302129764, + "tp": 281276, + "tp_rate": 0.9253687150654196, + "truth_threshold": -7.86 + }, + { + "f1": 0.9010865420662563, + "fn": 22740, + "fn_rate": 0.07481222920045663, + "fp": 39001, + "fp_rate": 0.22431255715509954, + "match_probability": 0.00434543764251929, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8782063693312764, + "recall": 0.9251877707995434, + "row_count": 477830, + "tn": 134868, + "tn_rate": 0.7756874428449004, + "tp": 281221, + "tp_rate": 0.9251877707995434, + "truth_threshold": -7.84 + }, + { + "f1": 0.9010334385464567, + "fn": 22780, + "fn_rate": 0.07494382503018479, + "fp": 38988, + "fp_rate": 0.22423778821986667, + "match_probability": 0.004405830433579104, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.878226811465195, + "recall": 0.9250561749698152, + "row_count": 477830, + "tn": 134881, + "tn_rate": 0.7757622117801333, + "tp": 281181, + "tp_rate": 0.9250561749698152, + "truth_threshold": -7.82 + }, + { + "f1": 0.90098962305873, + "fn": 22818, + "fn_rate": 0.07506884106842654, + "fp": 38972, + "fp_rate": 0.2241457649149647, + "match_probability": 0.00446705879650708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8782562516595599, + "recall": 0.9249311589315734, + "row_count": 477830, + "tn": 134897, + "tn_rate": 0.7758542350850353, + "tp": 281143, + "tp_rate": 0.9249311589315734, + "truth_threshold": -7.8 + }, + { + "f1": 0.9009746763632168, + "fn": 22856, + "fn_rate": 0.07519385710666829, + "fp": 38937, + "fp_rate": 0.22394446393549167, + "match_probability": 0.004529134186577057, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8783378431580855, + "recall": 0.9248061428933317, + "row_count": 477830, + "tn": 134932, + "tn_rate": 0.7760555360645084, + "tp": 281105, + "tp_rate": 0.9248061428933317, + "truth_threshold": -7.78 + }, + { + "f1": 0.9008901297211013, + "fn": 22904, + "fn_rate": 0.07535177210234208, + "fp": 38936, + "fp_rate": 0.2239387124789353, + "match_probability": 0.004592068213160174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.8783223383011504, + "recall": 0.9246482278976579, + "row_count": 477830, + "tn": 134933, + "tn_rate": 0.7760612875210647, + "tp": 281057, + "tp_rate": 0.9246482278976579, + "truth_threshold": -7.76 + }, + { + "f1": 0.9127129240212396, + "fn": 22923, + "fn_rate": 0.07541428012146295, + "fp": 30831, + "fp_rate": 0.17732315708953292, + "match_probability": 0.004655872641715067, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9011411842792968, + "recall": 0.9245857198785371, + "row_count": 477830, + "tn": 143038, + "tn_rate": 0.822676842910467, + "tp": 281038, + "tp_rate": 0.9245857198785371, + "truth_threshold": -7.74 + }, + { + "f1": 0.9125203431619364, + "fn": 23048, + "fn_rate": 0.07582551708936344, + "fp": 30813, + "fp_rate": 0.1772196308715182, + "match_probability": 0.0047205593958014914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9011535771799594, + "recall": 0.9241744829106365, + "row_count": 477830, + "tn": 143056, + "tn_rate": 0.8227803691284817, + "tp": 280913, + "tp_rate": 0.9241744829106365, + "truth_threshold": -7.72 + }, + { + "f1": 0.9124100398018032, + "fn": 23144, + "fn_rate": 0.076141347080711, + "fp": 30772, + "fp_rate": 0.17698382115270692, + "match_probability": 0.004786140559117481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9012416998032665, + "recall": 0.923858652919289, + "row_count": 477830, + "tn": 143097, + "tn_rate": 0.8230161788472931, + "tp": 280817, + "tp_rate": 0.923858652919289, + "truth_threshold": -7.7 + }, + { + "f1": 0.9123932943175873, + "fn": 23182, + "fn_rate": 0.07626636311895275, + "fp": 30739, + "fp_rate": 0.17679402308634662, + "match_probability": 0.0048526283775603, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9013251240698772, + "recall": 0.9237336368810473, + "row_count": 477830, + "tn": 143130, + "tn_rate": 0.8232059769136534, + "tp": 280779, + "tp_rate": 0.9237336368810473, + "truth_threshold": -7.68 + }, + { + "f1": 0.9122963820023141, + "fn": 23262, + "fn_rate": 0.07652955477840907, + "fp": 30708, + "fp_rate": 0.17661572793309907, + "match_probability": 0.004920035261311362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9013894999149024, + "recall": 0.9234704452215909, + "row_count": 477830, + "tn": 143161, + "tn_rate": 0.8233842720669009, + "tp": 280699, + "tp_rate": 0.9234704452215909, + "truth_threshold": -7.66 + }, + { + "f1": 0.9122961556839125, + "fn": 23294, + "fn_rate": 0.0766348314421916, + "fp": 30671, + "fp_rate": 0.17640292404051325, + "match_probability": 0.004988373786945367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9014864873545793, + "recall": 0.9233651685578084, + "row_count": 477830, + "tn": 143198, + "tn_rate": 0.8235970759594867, + "tp": 280667, + "tp_rate": 0.9233651685578084, + "truth_threshold": -7.640000000000001 + }, + { + "f1": 0.9122040499201914, + "fn": 23357, + "fn_rate": 0.07684209487401344, + "fp": 30658, + "fp_rate": 0.1763281551052804, + "match_probability": 0.005057656699563808, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9015041990348966, + "recall": 0.9231579051259866, + "row_count": 477830, + "tn": 143211, + "tn_rate": 0.8236718448947196, + "tp": 280604, + "tp_rate": 0.9231579051259866, + "truth_threshold": -7.62 + }, + { + "f1": 0.9121003452782709, + "fn": 23419, + "fn_rate": 0.07704606841009208, + "fp": 30654, + "fp_rate": 0.1763051492790549, + "match_probability": 0.005127896914953068, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9014961631897582, + "recall": 0.9229539315899079, + "row_count": 477830, + "tn": 143215, + "tn_rate": 0.8236948507209451, + "tp": 280542, + "tp_rate": 0.9229539315899079, + "truth_threshold": -7.6000000000000005 + }, + { + "f1": 0.9119810363664742, + "fn": 23494, + "fn_rate": 0.07729281059083237, + "fp": 30644, + "fp_rate": 0.1762476347134912, + "match_probability": 0.005199107521767358, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9015013933933548, + "recall": 0.9227071894091676, + "row_count": 477830, + "tn": 143225, + "tn_rate": 0.8237523652865089, + "tp": 280467, + "tp_rate": 0.9227071894091676, + "truth_threshold": -7.58 + }, + { + "f1": 0.9121875050828712, + "fn": 23550, + "fn_rate": 0.07747704475245179, + "fp": 30439, + "fp_rate": 0.17506858611943474, + "match_probability": 0.0052713017837366085, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9020781727521312, + "recall": 0.9225229552475482, + "row_count": 477830, + "tn": 143430, + "tn_rate": 0.8249314138805652, + "tp": 280411, + "tp_rate": 0.9225229552475482, + "truth_threshold": -7.5600000000000005 + }, + { + "f1": 0.9121977088830399, + "fn": 23587, + "fn_rate": 0.07759877089495033, + "fp": 30388, + "fp_rate": 0.17477526183505973, + "match_probability": 0.005344493141899607, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9022145564773042, + "recall": 0.9224012291050496, + "row_count": 477830, + "tn": 143481, + "tn_rate": 0.8252247381649402, + "tp": 280374, + "tp_rate": 0.9224012291050496, + "truth_threshold": -7.54 + }, + { + "f1": 0.912210200927357, + "fn": 23616, + "fn_rate": 0.07769417787150325, + "fp": 30344, + "fp_rate": 0.17452219774657932, + "match_probability": 0.005418695216862511, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9023332013685711, + "recall": 0.9223058221284968, + "row_count": 477830, + "tn": 143525, + "tn_rate": 0.8254778022534207, + "tp": 280345, + "tp_rate": 0.9223058221284968, + "truth_threshold": -7.5200000000000005 + }, + { + "f1": 0.9121507493531642, + "fn": 23689, + "fn_rate": 0.07793434026075714, + "fp": 30298, + "fp_rate": 0.17425763074498618, + "match_probability": 0.005493921811082985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9024438934861706, + "recall": 0.9220656597392428, + "row_count": 477830, + "tn": 143571, + "tn_rate": 0.8257423692550139, + "tp": 280272, + "tp_rate": 0.9220656597392428, + "truth_threshold": -7.5 + }, + { + "f1": 0.9120650203269894, + "fn": 23750, + "fn_rate": 0.07813502390109257, + "fp": 30282, + "fp_rate": 0.1741656074400842, + "match_probability": 0.005570186911180121, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9024712312354868, + "recall": 0.9218649760989074, + "row_count": 477830, + "tn": 143587, + "tn_rate": 0.8258343925599158, + "tp": 280211, + "tp_rate": 0.9218649760989074, + "truth_threshold": -7.48 + }, + { + "f1": 0.9118518470284103, + "fn": 23893, + "fn_rate": 0.07860547899237073, + "fp": 30255, + "fp_rate": 0.17401031811306214, + "match_probability": 0.00564750469027039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9025048095049352, + "recall": 0.9213945210076293, + "row_count": 477830, + "tn": 143614, + "tn_rate": 0.8259896818869379, + "tp": 280068, + "tp_rate": 0.9213945210076293, + "truth_threshold": -7.46 + }, + { + "f1": 0.9119454458415155, + "fn": 23929, + "fn_rate": 0.07872391523912607, + "fp": 30150, + "fp_rate": 0.17340641517464297, + "match_probability": 0.005725889510329732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9027990018763178, + "recall": 0.921276084760874, + "row_count": 477830, + "tn": 143719, + "tn_rate": 0.826593584825357, + "tp": 280032, + "tp_rate": 0.921276084760874, + "truth_threshold": -7.44 + }, + { + "f1": 0.9119290324051903, + "fn": 24038, + "fn_rate": 0.07908251387513529, + "fp": 30031, + "fp_rate": 0.1727219918444346, + "match_probability": 0.005805355924582104, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9031114294379166, + "recall": 0.9209174861248647, + "row_count": 477830, + "tn": 143838, + "tn_rate": 0.8272780081555654, + "tp": 279923, + "tp_rate": 0.9209174861248647, + "truth_threshold": -7.42 + }, + { + "f1": 0.9118627390288643, + "fn": 24093, + "fn_rate": 0.07926345814101152, + "fp": 30009, + "fp_rate": 0.1725954598001944, + "match_probability": 0.005885918679914525, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9031583499259384, + "recall": 0.9207365418589885, + "row_count": 477830, + "tn": 143860, + "tn_rate": 0.8274045401998056, + "tp": 279868, + "tp_rate": 0.9207365418589885, + "truth_threshold": -7.4 + }, + { + "f1": 0.9117967166533065, + "fn": 24147, + "fn_rate": 0.07944111251114452, + "fp": 29990, + "fp_rate": 0.1724861821256233, + "match_probability": 0.005967592719318969, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9031968599501621, + "recall": 0.9205588874888555, + "row_count": 477830, + "tn": 143879, + "tn_rate": 0.8275138178743767, + "tp": 279814, + "tp_rate": 0.9205588874888555, + "truth_threshold": -7.38 + }, + { + "f1": 0.9117484112758677, + "fn": 24191, + "fn_rate": 0.07958586792384549, + "fp": 29969, + "fp_rate": 0.17236540153793947, + "match_probability": 0.006050393184361143, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9032443444319249, + "recall": 0.9204141320761545, + "row_count": 477830, + "tn": 143900, + "tn_rate": 0.8276345984620606, + "tp": 279770, + "tp_rate": 0.9204141320761545, + "truth_threshold": -7.36 + }, + { + "f1": 0.9115573302909298, + "fn": 24318, + "fn_rate": 0.08000368468323239, + "fp": 29946, + "fp_rate": 0.17223311803714292, + "match_probability": 0.0061343354176764545, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9032717570714722, + "recall": 0.9199963153167676, + "row_count": 477830, + "tn": 143923, + "tn_rate": 0.8277668819628571, + "tp": 279643, + "tp_rate": 0.9199963153167676, + "truth_threshold": -7.34 + }, + { + "f1": 0.9115726325742138, + "fn": 24368, + "fn_rate": 0.08016817947039258, + "fp": 29876, + "fp_rate": 0.1718305160781968, + "match_probability": 0.006219434965493263, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9034604435339242, + "recall": 0.9198318205296074, + "row_count": 477830, + "tn": 143993, + "tn_rate": 0.8281694839218032, + "tp": 279593, + "tp_rate": 0.9198318205296074, + "truth_threshold": -7.32 + }, + { + "f1": 0.9112962141571216, + "fn": 24543, + "fn_rate": 0.08074391122545327, + "fp": 29853, + "fp_rate": 0.17169823257740022, + "match_probability": 0.00630570758018367, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9034730058751063, + "recall": 0.9192560887745468, + "row_count": 477830, + "tn": 144016, + "tn_rate": 0.8283017674225998, + "tp": 279418, + "tp_rate": 0.9192560887745468, + "truth_threshold": -7.3 + }, + { + "f1": 0.9110527517698105, + "fn": 24696, + "fn_rate": 0.08124726527416345, + "fp": 29834, + "fp_rate": 0.17158895490282913, + "match_probability": 0.006393169222841944, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9034807618271169, + "recall": 0.9187527347258365, + "row_count": 477830, + "tn": 144035, + "tn_rate": 0.8284110450971709, + "tp": 279265, + "tp_rate": 0.9187527347258365, + "truth_threshold": -7.28 + }, + { + "f1": 0.9109800223822404, + "fn": 24752, + "fn_rate": 0.08143149943578289, + "fp": 29816, + "fp_rate": 0.17148542868481442, + "match_probability": 0.006481836065890851, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9035158967721059, + "recall": 0.9185685005642171, + "row_count": 477830, + "tn": 144053, + "tn_rate": 0.8285145713151856, + "tp": 279209, + "tp_rate": 0.9185685005642171, + "truth_threshold": -7.26 + }, + { + "f1": 0.9109143830475954, + "fn": 24804, + "fn_rate": 0.08160257401442948, + "fp": 29798, + "fp_rate": 0.1713819024667997, + "match_probability": 0.00657172449571595, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9035522972601188, + "recall": 0.9183974259855705, + "row_count": 477830, + "tn": 144071, + "tn_rate": 0.8286180975332003, + "tp": 279157, + "tp_rate": 0.9183974259855705, + "truth_threshold": -7.24 + }, + { + "f1": 0.9120228471346321, + "fn": 24851, + "fn_rate": 0.08175719911436007, + "fp": 28997, + "fp_rate": 0.16677498576514502, + "match_probability": 0.006662851115328145, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9058865913465127, + "recall": 0.9182428008856399, + "row_count": 477830, + "tn": 144872, + "tn_rate": 0.833225014234855, + "tp": 279110, + "tp_rate": 0.9182428008856399, + "truth_threshold": -7.22 + }, + { + "f1": 0.911998457546584, + "fn": 24884, + "fn_rate": 0.0818657656738858, + "fp": 28975, + "fp_rate": 0.1666484537209048, + "match_probability": 0.006755232747054526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9059412047316687, + "recall": 0.9181342343261142, + "row_count": 477830, + "tn": 144894, + "tn_rate": 0.8333515462790951, + "tp": 279077, + "tp_rate": 0.9181342343261142, + "truth_threshold": -7.2 + }, + { + "f1": 0.9117507657005384, + "fn": 25030, + "fn_rate": 0.08234609045239356, + "fp": 28967, + "fp_rate": 0.16660244206845384, + "match_probability": 0.006848886435257802, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9059201423848158, + "recall": 0.9176539095476064, + "row_count": 477830, + "tn": 144902, + "tn_rate": 0.8333975579315461, + "tp": 278931, + "tp_rate": 0.9176539095476064, + "truth_threshold": -7.18 + }, + { + "f1": 0.9117075945394634, + "fn": 25066, + "fn_rate": 0.0824645266991489, + "fp": 28952, + "fp_rate": 0.16651617022010826, + "match_probability": 0.006943829449084327, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9059532819874808, + "recall": 0.9175354733008511, + "row_count": 477830, + "tn": 144917, + "tn_rate": 0.8334838297798918, + "tp": 278895, + "tp_rate": 0.9175354733008511, + "truth_threshold": -7.16 + }, + { + "f1": 0.9115853558852091, + "fn": 25159, + "fn_rate": 0.08277048700326686, + "fp": 28924, + "fp_rate": 0.1663551294365298, + "match_probability": 0.007040079285241038, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060072922015039, + "recall": 0.9172295129967332, + "row_count": 477830, + "tn": 144945, + "tn_rate": 0.8336448705634703, + "tp": 278802, + "tp_rate": 0.9172295129967332, + "truth_threshold": -7.140000000000001 + }, + { + "f1": 0.9114453891432309, + "fn": 25241, + "fn_rate": 0.08304025845420959, + "fp": 28920, + "fp_rate": 0.1663321236103043, + "match_probability": 0.0071376536708013, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9059940189832272, + "recall": 0.9169597415457904, + "row_count": 477830, + "tn": 144949, + "tn_rate": 0.8336678763896956, + "tp": 278720, + "tp_rate": 0.9169597415457904, + "truth_threshold": -7.12 + }, + { + "f1": 0.9113585818942962, + "fn": 25304, + "fn_rate": 0.08324752188603143, + "fp": 28902, + "fp_rate": 0.1662285973922896, + "match_probability": 0.007236570566039904, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060277865385178, + "recall": 0.9167524781139685, + "row_count": 477830, + "tn": 144967, + "tn_rate": 0.8337714026077104, + "tp": 278657, + "tp_rate": 0.9167524781139685, + "truth_threshold": -7.1000000000000005 + }, + { + "f1": 0.9113411503049927, + "fn": 25323, + "fn_rate": 0.08331002990515231, + "fp": 28892, + "fp_rate": 0.16617108282672588, + "match_probability": 0.007336848167297341, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060514421357266, + "recall": 0.9166899700948477, + "row_count": 477830, + "tn": 144977, + "tn_rate": 0.8338289171732741, + "tp": 278638, + "tp_rate": 0.9166899700948477, + "truth_threshold": -7.08 + }, + { + "f1": 0.9111043500734445, + "fn": 25461, + "fn_rate": 0.08376403551771444, + "fp": 28886, + "fp_rate": 0.16613657408738763, + "match_probability": 0.007438504909873419, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060269498285544, + "recall": 0.9162359644822855, + "row_count": 477830, + "tn": 144983, + "tn_rate": 0.8338634259126124, + "tp": 278500, + "tp_rate": 0.9162359644822855, + "truth_threshold": -7.0600000000000005 + }, + { + "f1": 0.9109803741926196, + "fn": 25549, + "fn_rate": 0.08405354634311639, + "fp": 28864, + "fp_rate": 0.16601004204314743, + "match_probability": 0.0075415594709504815, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060649058175712, + "recall": 0.9159464536568837, + "row_count": 477830, + "tn": 145005, + "tn_rate": 0.8339899579568526, + "tp": 278412, + "tp_rate": 0.9159464536568837, + "truth_threshold": -7.04 + }, + { + "f1": 0.9109474958687152, + "fn": 25580, + "fn_rate": 0.08415553311115571, + "fp": 28849, + "fp_rate": 0.16592377019480184, + "match_probability": 0.007646030772546182, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9060996647462813, + "recall": 0.9158444668888442, + "row_count": 477830, + "tn": 145020, + "tn_rate": 0.8340762298051981, + "tp": 278381, + "tp_rate": 0.9158444668888442, + "truth_threshold": -7.0200000000000005 + }, + { + "f1": 0.9110973637869295, + "fn": 25608, + "fn_rate": 0.08424765019196542, + "fp": 28715, + "fp_rate": 0.16515307501624787, + "match_probability": 0.007751937984496124, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.906486511131085, + "recall": 0.9157523498080345, + "row_count": 477830, + "tn": 145154, + "tn_rate": 0.8348469249837521, + "tp": 278353, + "tp_rate": 0.9157523498080345, + "truth_threshold": -7 + }, + { + "f1": 0.9110687010406471, + "fn": 25645, + "fn_rate": 0.08436937633446397, + "fp": 28689, + "fp_rate": 0.16500353714578217, + "match_probability": 0.007859300527466294, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.906552010553574, + "recall": 0.915630623665536, + "row_count": 477830, + "tn": 145180, + "tn_rate": 0.8349964628542178, + "tp": 278316, + "tp_rate": 0.915630623665536, + "truth_threshold": -6.98 + }, + { + "f1": 0.9109766637856526, + "fn": 25705, + "fn_rate": 0.08456677007905619, + "fp": 28680, + "fp_rate": 0.1649517740367748, + "match_probability": 0.007968138075995553, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9065603252795371, + "recall": 0.9154332299209438, + "row_count": 477830, + "tn": 145189, + "tn_rate": 0.8350482259632251, + "tp": 278256, + "tp_rate": 0.9154332299209438, + "truth_threshold": -6.96 + }, + { + "f1": 0.9109051261230584, + "fn": 25756, + "fn_rate": 0.0847345547619596, + "fp": 28667, + "fp_rate": 0.16487700510154196, + "match_probability": 0.008078470561568152, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9065832008133684, + "recall": 0.9152654452380404, + "row_count": 477830, + "tn": 145202, + "tn_rate": 0.835122994898458, + "tp": 278205, + "tp_rate": 0.9152654452380404, + "truth_threshold": -6.94 + }, + { + "f1": 0.9108437522513377, + "fn": 25813, + "fn_rate": 0.08492207881932222, + "fp": 28639, + "fp_rate": 0.16471596431796354, + "match_probability": 0.008190318175716487, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9066485868045256, + "recall": 0.9150779211806778, + "row_count": 477830, + "tn": 145230, + "tn_rate": 0.8352840356820365, + "tp": 278148, + "tp_rate": 0.9150779211806778, + "truth_threshold": -6.92 + }, + { + "f1": 0.9106461449772849, + "fn": 25938, + "fn_rate": 0.0853333157872227, + "fp": 28622, + "fp_rate": 0.16461818955650517, + "match_probability": 0.008303701373154063, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9066607966867224, + "recall": 0.9146666842127773, + "row_count": 477830, + "tn": 145247, + "tn_rate": 0.8353818104434948, + "tp": 278023, + "tp_rate": 0.9146666842127773, + "truth_threshold": -6.9 + }, + { + "f1": 0.9104500106482316, + "fn": 26078, + "fn_rate": 0.08579390119127125, + "fp": 28586, + "fp_rate": 0.16441113712047575, + "match_probability": 0.008418640874938868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9067246605692583, + "recall": 0.9142060988087287, + "row_count": 477830, + "tn": 145283, + "tn_rate": 0.8355888628795243, + "tp": 277883, + "tp_rate": 0.9142060988087287, + "truth_threshold": -6.88 + }, + { + "f1": 0.9104362187385309, + "fn": 26125, + "fn_rate": 0.08594852629120184, + "fp": 28539, + "fp_rate": 0.16414081866232624, + "match_probability": 0.008535157671667086, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9068494492044064, + "recall": 0.9140514737087981, + "row_count": 477830, + "tn": 145330, + "tn_rate": 0.8358591813376738, + "tp": 277836, + "tp_rate": 0.9140514737087981, + "truth_threshold": -6.86 + }, + { + "f1": 0.9104528977194511, + "fn": 26180, + "fn_rate": 0.08612947055707805, + "fp": 28462, + "fp_rate": 0.16369795650748553, + "match_probability": 0.008653273026697373, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9070607328167501, + "recall": 0.9138705294429219, + "row_count": 477830, + "tn": 145407, + "tn_rate": 0.8363020434925145, + "tp": 277781, + "tp_rate": 0.9138705294429219, + "truth_threshold": -6.84 + }, + { + "f1": 0.9103947704876114, + "fn": 26256, + "fn_rate": 0.08637950263356155, + "fp": 28410, + "fp_rate": 0.16339888076655412, + "match_probability": 0.008773008479405596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9071917416657138, + "recall": 0.9136204973664385, + "row_count": 477830, + "tn": 145459, + "tn_rate": 0.8366011192334458, + "tp": 277705, + "tp_rate": 0.9136204973664385, + "truth_threshold": -6.82 + }, + { + "f1": 0.9102668354197953, + "fn": 26346, + "fn_rate": 0.08667559325044989, + "fp": 28388, + "fp_rate": 0.16327234872231391, + "match_probability": 0.008894385848470222, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9072296676829966, + "recall": 0.9133244067495501, + "row_count": 477830, + "tn": 145481, + "tn_rate": 0.8367276512776861, + "tp": 277615, + "tp_rate": 0.9133244067495501, + "truth_threshold": -6.8 + }, + { + "f1": 0.9102440496100846, + "fn": 26393, + "fn_rate": 0.08683021835038048, + "fp": 28348, + "fp_rate": 0.163042290460059, + "match_probability": 0.009017427235188254, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9073340394095111, + "recall": 0.9131697816496195, + "row_count": 477830, + "tn": 145521, + "tn_rate": 0.836957709539941, + "tp": 277568, + "tp_rate": 0.9131697816496195, + "truth_threshold": -6.78 + }, + { + "f1": 0.9101855526727523, + "fn": 26470, + "fn_rate": 0.08708354032260718, + "fp": 28294, + "fp_rate": 0.16273171180601487, + "match_probability": 0.009142155026821896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9074709354611901, + "recall": 0.9129164596773929, + "row_count": 477830, + "tn": 145575, + "tn_rate": 0.8372682881939851, + "tp": 277491, + "tp_rate": 0.9129164596773929, + "truth_threshold": -6.76 + }, + { + "f1": 0.9101099268794347, + "fn": 26524, + "fn_rate": 0.08726119469274018, + "fp": 28281, + "fp_rate": 0.16265694287078203, + "match_probability": 0.009268591899975812, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.907493179989402, + "recall": 0.9127388053072598, + "row_count": 477830, + "tn": 145588, + "tn_rate": 0.837343057129218, + "tp": 277437, + "tp_rate": 0.9127388053072598, + "truth_threshold": -6.74 + }, + { + "f1": 0.9099717492806074, + "fn": 26628, + "fn_rate": 0.08760334385003339, + "fp": 28248, + "fp_rate": 0.16246714480442173, + "match_probability": 0.009396760824005125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9075596977560778, + "recall": 0.9123966561499666, + "row_count": 477830, + "tn": 145621, + "tn_rate": 0.8375328551955783, + "tp": 277333, + "tp_rate": 0.9123966561499666, + "truth_threshold": -6.72 + }, + { + "f1": 0.9098975526839097, + "fn": 26677, + "fn_rate": 0.08776454874145038, + "fp": 28239, + "fp_rate": 0.16241538169541436, + "match_probability": 0.00952668506445404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9075716067202797, + "recall": 0.9122354512585497, + "row_count": 477830, + "tn": 145630, + "tn_rate": 0.8375846183045856, + "tp": 277284, + "tp_rate": 0.9122354512585497, + "truth_threshold": -6.7 + }, + { + "f1": 0.909801875244087, + "fn": 26738, + "fn_rate": 0.08796523238178582, + "fp": 28230, + "fp_rate": 0.16236361858640702, + "match_probability": 0.009658388186525174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9075798895411078, + "recall": 0.9120347676182142, + "row_count": 477830, + "tn": 145639, + "tn_rate": 0.837636381413593, + "tp": 277223, + "tp_rate": 0.9120347676182142, + "truth_threshold": -6.68 + }, + { + "f1": 0.9095803704506208, + "fn": 26901, + "fn_rate": 0.08850148538792806, + "fp": 28184, + "fp_rate": 0.16209905158481386, + "match_probability": 0.009791894058579487, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.90766730877593, + "recall": 0.911498514612072, + "row_count": 477830, + "tn": 145685, + "tn_rate": 0.8379009484151861, + "tp": 277060, + "tp_rate": 0.911498514612072, + "truth_threshold": -6.66 + }, + { + "f1": 0.9095448680698506, + "fn": 26920, + "fn_rate": 0.08856399340704893, + "fp": 28184, + "fp_rate": 0.16209905158481386, + "match_probability": 0.009927226855666866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9076615611434188, + "recall": 0.9114360065929511, + "row_count": 477830, + "tn": 145685, + "tn_rate": 0.8379009484151861, + "tp": 277041, + "tp_rate": 0.9114360065929511, + "truth_threshold": -6.640000000000001 + }, + { + "f1": 0.9094017037878738, + "fn": 27050, + "fn_rate": 0.08899167985366543, + "fp": 28124, + "fp_rate": 0.16175396419143148, + "match_probability": 0.010064411063087227, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9078007441768977, + "recall": 0.9110083201463346, + "row_count": 477830, + "tn": 145745, + "tn_rate": 0.8382460358085685, + "tp": 276911, + "tp_rate": 0.9110083201463346, + "truth_threshold": -6.62 + }, + { + "f1": 0.9092596181323103, + "fn": 27136, + "fn_rate": 0.08927461088758097, + "fp": 28117, + "fp_rate": 0.16171370399553686, + "match_probability": 0.010203471479982122, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9077955807989716, + "recall": 0.9107253891124191, + "row_count": 477830, + "tn": 145752, + "tn_rate": 0.8382862960044631, + "tp": 276825, + "tp_rate": 0.9107253891124191, + "truth_threshold": -6.6000000000000005 + }, + { + "f1": 0.9093181945115201, + "fn": 27180, + "fn_rate": 0.08941936630028194, + "fp": 28024, + "fp_rate": 0.1611788185357942, + "match_probability": 0.010344433222956822, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9080592509965387, + "recall": 0.9105806336997181, + "row_count": 477830, + "tn": 145845, + "tn_rate": 0.8388211814642058, + "tp": 276781, + "tp_rate": 0.9105806336997181, + "truth_threshold": -6.58 + }, + { + "f1": 0.9083698615271799, + "fn": 27723, + "fn_rate": 0.09120577968884166, + "fp": 28007, + "fp_rate": 0.16108104377433585, + "match_probability": 0.010487321729732655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.907945898864402, + "recall": 0.9087942203111583, + "row_count": 477830, + "tn": 145862, + "tn_rate": 0.8389189562256641, + "tp": 276238, + "tp_rate": 0.9087942203111583, + "truth_threshold": -6.5600000000000005 + }, + { + "f1": 0.9082552211807269, + "fn": 27806, + "fn_rate": 0.09147884103552759, + "fp": 27984, + "fp_rate": 0.16094876027353927, + "match_probability": 0.010632162762829713, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9079894390393866, + "recall": 0.9085211589644724, + "row_count": 477830, + "tn": 145885, + "tn_rate": 0.8390512397264607, + "tp": 276155, + "tp_rate": 0.9085211589644724, + "truth_threshold": -6.54 + }, + { + "f1": 0.9081725629512672, + "fn": 27872, + "fn_rate": 0.09169597415457904, + "fp": 27961, + "fp_rate": 0.1608164767727427, + "match_probability": 0.010778982413279539, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9080381516197994, + "recall": 0.9083040258454209, + "row_count": 477830, + "tn": 145908, + "tn_rate": 0.8391835232272573, + "tp": 276089, + "tp_rate": 0.9083040258454209, + "truth_threshold": -6.5200000000000005 + }, + { + "f1": 0.90816736082325, + "fn": 27909, + "fn_rate": 0.09181770029707759, + "fp": 27920, + "fp_rate": 0.1605806670539314, + "match_probability": 0.010927807104367976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9081494348163647, + "recall": 0.9081822997029224, + "row_count": 477830, + "tn": 145949, + "tn_rate": 0.8394193329460686, + "tp": 276052, + "tp_rate": 0.9081822997029224, + "truth_threshold": -6.5 + }, + { + "f1": 0.9082619826389118, + "fn": 27942, + "fn_rate": 0.09192626685660331, + "fp": 27816, + "fp_rate": 0.15998251557206863, + "match_probability": 0.011078663595407736, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9084503102012605, + "recall": 0.9080737331433967, + "row_count": 477830, + "tn": 146053, + "tn_rate": 0.8400174844279313, + "tp": 276019, + "tp_rate": 0.9080737331433967, + "truth_threshold": -6.48 + }, + { + "f1": 0.908127766715487, + "fn": 28040, + "fn_rate": 0.0922486766394373, + "fp": 27789, + "fp_rate": 0.15982722624504656, + "match_probability": 0.011231578985540796, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9085015310658193, + "recall": 0.9077513233605627, + "row_count": 477830, + "tn": 146080, + "tn_rate": 0.8401727737549535, + "tp": 275921, + "tp_rate": 0.9077513233605627, + "truth_threshold": -6.46 + }, + { + "f1": 0.9081381416966202, + "fn": 28065, + "fn_rate": 0.09233092403301739, + "fp": 27752, + "fp_rate": 0.15961442235246076, + "match_probability": 0.011386580717570208, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9086047001791548, + "recall": 0.9076690759669827, + "row_count": 477830, + "tn": 146117, + "tn_rate": 0.8403855776475393, + "tp": 275896, + "tp_rate": 0.9076690759669827, + "truth_threshold": -6.44 + }, + { + "f1": 0.9078936537986666, + "fn": 28211, + "fn_rate": 0.09281124881152517, + "fp": 27740, + "fp_rate": 0.1595454048737843, + "match_probability": 0.011543696581821352, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9085966588684965, + "recall": 0.9071887511884749, + "row_count": 477830, + "tn": 146129, + "tn_rate": 0.8404545951262157, + "tp": 275750, + "tp_rate": 0.9071887511884749, + "truth_threshold": -6.42 + }, + { + "f1": 0.9076837449488047, + "fn": 28351, + "fn_rate": 0.09327183421557371, + "fp": 27711, + "fp_rate": 0.15937861263364947, + "match_probability": 0.011702954720032218, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9086413403621906, + "recall": 0.9067281657844263, + "row_count": 477830, + "tn": 146158, + "tn_rate": 0.8406213873663505, + "tp": 275610, + "tp_rate": 0.9067281657844263, + "truth_threshold": -6.4 + }, + { + "f1": 0.9076038801693045, + "fn": 28417, + "fn_rate": 0.09348896733462517, + "fp": 27686, + "fp_rate": 0.15923482621974014, + "match_probability": 0.011864383629272682, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9086963690927679, + "recall": 0.9065110326653748, + "row_count": 477830, + "tn": 146183, + "tn_rate": 0.8407651737802598, + "tp": 275544, + "tp_rate": 0.9065110326653748, + "truth_threshold": -6.38 + }, + { + "f1": 0.9075116705815689, + "fn": 28494, + "fn_rate": 0.09374228930685187, + "fp": 27655, + "fp_rate": 0.1590565310664926, + "match_probability": 0.012028012165892355, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.908766107375908, + "recall": 0.9062577106931481, + "row_count": 477830, + "tn": 146214, + "tn_rate": 0.8409434689335075, + "tp": 275467, + "tp_rate": 0.9062577106931481, + "truth_threshold": -6.36 + }, + { + "f1": 0.9074140584070038, + "fn": 28569, + "fn_rate": 0.09398903148759216, + "fp": 27629, + "fp_rate": 0.15890699319602689, + "match_probability": 0.012193869549496904, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9088215008200752, + "recall": 0.9060109685124078, + "row_count": 477830, + "tn": 146240, + "tn_rate": 0.8410930068039731, + "tp": 275392, + "tp_rate": 0.9060109685124078, + "truth_threshold": -6.34 + }, + { + "f1": 0.90723487557385, + "fn": 28676, + "fn_rate": 0.09434105033211497, + "fp": 27621, + "fp_rate": 0.15886098154357592, + "match_probability": 0.012361985366952384, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9088132952136967, + "recall": 0.9056589496678851, + "row_count": 477830, + "tn": 146248, + "tn_rate": 0.8411390184564241, + "tp": 275285, + "tp_rate": 0.9056589496678851, + "truth_threshold": -6.32 + }, + { + "f1": 0.9069691545437464, + "fn": 28831, + "fn_rate": 0.09485098417231158, + "fp": 27611, + "fp_rate": 0.15880346697801218, + "match_probability": 0.01253238957641751, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9087966281408861, + "recall": 0.9051490158276885, + "row_count": 477830, + "tn": 146258, + "tn_rate": 0.8411965330219878, + "tp": 275130, + "tp_rate": 0.9051490158276885, + "truth_threshold": -6.3 + }, + { + "f1": 0.9072315582894932, + "fn": 28902, + "fn_rate": 0.09508456677007905, + "fp": 27350, + "fp_rate": 0.15730233681679887, + "match_probability": 0.01270511251140324, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.909559569986343, + "recall": 0.904915433229921, + "row_count": 477830, + "tn": 146519, + "tn_rate": 0.8426976631832012, + "tp": 275059, + "tp_rate": 0.904915433229921, + "truth_threshold": -6.28 + }, + { + "f1": 0.9070296056321301, + "fn": 29024, + "fn_rate": 0.09548593405074993, + "fp": 27339, + "fp_rate": 0.15723907079467875, + "match_probability": 0.012880184884859674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9095561672114226, + "recall": 0.9045140659492501, + "row_count": 477830, + "tn": 146530, + "tn_rate": 0.8427609292053212, + "tp": 274937, + "tp_rate": 0.9045140659492501, + "truth_threshold": -6.26 + }, + { + "f1": 0.9067553296812092, + "fn": 29196, + "fn_rate": 0.096051796118581, + "fp": 27315, + "fp_rate": 0.1571010358373258, + "match_probability": 0.013057637793289553, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9095769332627118, + "recall": 0.9039482038814189, + "row_count": 477830, + "tn": 146554, + "tn_rate": 0.8428989641626742, + "tp": 274765, + "tp_rate": 0.9039482038814189, + "truth_threshold": -6.24 + }, + { + "f1": 0.9065901784358641, + "fn": 29295, + "fn_rate": 0.0963774957971582, + "fp": 27306, + "fp_rate": 0.15704927272831845, + "match_probability": 0.013237502720888259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.90957439762627, + "recall": 0.9036225042028418, + "row_count": 477830, + "tn": 146563, + "tn_rate": 0.8429507272716815, + "tp": 274666, + "tp_rate": 0.9036225042028418, + "truth_threshold": -6.22 + }, + { + "f1": 0.9048066177783362, + "fn": 30295, + "fn_rate": 0.09966739154036208, + "fp": 27290, + "fp_rate": 0.1569572494234165, + "match_probability": 0.013419811543709683, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9093222929597682, + "recall": 0.9003326084596379, + "row_count": 477830, + "tn": 146579, + "tn_rate": 0.8430427505765835, + "tp": 273666, + "tp_rate": 0.9003326084596379, + "truth_threshold": -6.2 + }, + { + "f1": 0.904633396170255, + "fn": 30427, + "fn_rate": 0.100101657778465, + "fp": 27245, + "fp_rate": 0.1566984338783797, + "match_probability": 0.013604596533857708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9094185431828685, + "recall": 0.899898342221535, + "row_count": 477830, + "tn": 146624, + "tn_rate": 0.8433015661216203, + "tp": 273534, + "tp_rate": 0.899898342221535, + "truth_threshold": -6.18 + }, + { + "f1": 0.904551167559701, + "fn": 30479, + "fn_rate": 0.10027273235711161, + "fp": 27237, + "fp_rate": 0.1566524222259287, + "match_probability": 0.013791890363702633, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9094270731147682, + "recall": 0.8997272676428884, + "row_count": 477830, + "tn": 146632, + "tn_rate": 0.8433475777740713, + "tp": 273482, + "tp_rate": 0.8997272676428884, + "truth_threshold": -6.16 + }, + { + "f1": 0.9044960552790426, + "fn": 30644, + "fn_rate": 0.10081556515474024, + "fp": 27074, + "fp_rate": 0.15571493480723994, + "match_probability": 0.013981726110122288, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9098708017217559, + "recall": 0.8991844348452598, + "row_count": 477830, + "tn": 146795, + "tn_rate": 0.84428506519276, + "tp": 273317, + "tp_rate": 0.8991844348452598, + "truth_threshold": -6.140000000000001 + }, + { + "f1": 0.9044490705040161, + "fn": 30679, + "fn_rate": 0.10093071150575238, + "fp": 27064, + "fp_rate": 0.1556574202416762, + "match_probability": 0.01417413725876712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9098905928495802, + "recall": 0.8990692884942476, + "row_count": 477830, + "tn": 146805, + "tn_rate": 0.8443425797583238, + "tp": 273282, + "tp_rate": 0.8990692884942476, + "truth_threshold": -6.12 + }, + { + "f1": 0.904331388997398, + "fn": 30786, + "fn_rate": 0.1012827303502752, + "fp": 27013, + "fp_rate": 0.1553640959573012, + "match_probability": 0.014369157708348785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9100130584833505, + "recall": 0.8987172696497248, + "row_count": 477830, + "tn": 146856, + "tn_rate": 0.8446359040426988, + "tp": 273175, + "tp_rate": 0.8987172696497248, + "truth_threshold": -6.1000000000000005 + }, + { + "f1": 0.9042895548874968, + "fn": 30833, + "fn_rate": 0.10143735545020578, + "fp": 26983, + "fp_rate": 0.15519155226061, + "match_probability": 0.01456682177495178, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9100899333913118, + "recall": 0.8985626445497942, + "row_count": 477830, + "tn": 146886, + "tn_rate": 0.84480844773939, + "tp": 273128, + "tp_rate": 0.8985626445497942, + "truth_threshold": -6.08 + }, + { + "f1": 0.9040295151135795, + "fn": 30992, + "fn_rate": 0.1019604488733752, + "fp": 26965, + "fp_rate": 0.15508802604259528, + "match_probability": 0.014767164196367252, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9100968879820227, + "recall": 0.8980395511266248, + "row_count": 477830, + "tn": 146904, + "tn_rate": 0.8449119739574047, + "tp": 272969, + "tp_rate": 0.8980395511266248, + "truth_threshold": -6.0600000000000005 + }, + { + "f1": 0.9037775414674869, + "fn": 31144, + "fn_rate": 0.1024605130263422, + "fp": 26949, + "fp_rate": 0.15499600273769332, + "match_probability": 0.014970220136448715, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9100998779047658, + "recall": 0.8975394869736578, + "row_count": 477830, + "tn": 146920, + "tn_rate": 0.8450039972623067, + "tp": 272817, + "tp_rate": 0.8975394869736578, + "truth_threshold": -6.04 + }, + { + "f1": 0.9036230011199693, + "fn": 31253, + "fn_rate": 0.10281911166235141, + "fp": 26920, + "fp_rate": 0.15482921049755852, + "match_probability": 0.015176025189488596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9101552591880598, + "recall": 0.8971808883376485, + "row_count": 477830, + "tn": 146949, + "tn_rate": 0.8451707895024415, + "tp": 272708, + "tp_rate": 0.8971808883376485, + "truth_threshold": -6.0200000000000005 + }, + { + "f1": 0.9035442660436447, + "fn": 31312, + "fn_rate": 0.10301321551120045, + "fp": 26901, + "fp_rate": 0.15471993282298743, + "match_probability": 0.015384615384615385, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9101952929394092, + "recall": 0.8969867844887995, + "row_count": 477830, + "tn": 146968, + "tn_rate": 0.8452800671770125, + "tp": 272649, + "tp_rate": 0.8969867844887995, + "truth_threshold": -6 + }, + { + "f1": 0.9034882757477836, + "fn": 31356, + "fn_rate": 0.10315797092390142, + "fp": 26885, + "fp_rate": 0.15462790951808544, + "match_probability": 0.01559602719021019, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9102307255667968, + "recall": 0.8968420290760986, + "row_count": 477830, + "tn": 146984, + "tn_rate": 0.8453720904819145, + "tp": 272605, + "tp_rate": 0.8968420290760986, + "truth_threshold": -5.98 + }, + { + "f1": 0.9032984154345952, + "fn": 31472, + "fn_rate": 0.10353959883011307, + "fp": 26870, + "fp_rate": 0.15454163766973986, + "match_probability": 0.015810297518342384, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9102415494439786, + "recall": 0.8964604011698869, + "row_count": 477830, + "tn": 146999, + "tn_rate": 0.8454583623302602, + "tp": 272489, + "tp_rate": 0.8964604011698869, + "truth_threshold": -5.96 + }, + { + "f1": 0.9032842056400139, + "fn": 31535, + "fn_rate": 0.10374686226193491, + "fp": 26804, + "fp_rate": 0.15416204153701926, + "match_probability": 0.016027463729223174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9104234201116198, + "recall": 0.896253137738065, + "row_count": 477830, + "tn": 147065, + "tn_rate": 0.8458379584629807, + "tp": 272426, + "tp_rate": 0.896253137738065, + "truth_threshold": -5.94 + }, + { + "f1": 0.9031568055873369, + "fn": 31624, + "fn_rate": 0.10403966298308007, + "fp": 26781, + "fp_rate": 0.15402975803622268, + "match_probability": 0.016247563635676584, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9104667723105931, + "recall": 0.8959603370169199, + "row_count": 477830, + "tn": 147088, + "tn_rate": 0.8459702419637773, + "tp": 272337, + "tp_rate": 0.8959603370169199, + "truth_threshold": -5.92 + }, + { + "f1": 0.9030544048238967, + "fn": 31691, + "fn_rate": 0.10426008599787473, + "fp": 26768, + "fp_rate": 0.15395498910098981, + "match_probability": 0.016470635507626726, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.910486292711963, + "recall": 0.8957399140021253, + "row_count": 477830, + "tn": 147101, + "tn_rate": 0.8460450108990102, + "tp": 272270, + "tp_rate": 0.8957399140021253, + "truth_threshold": -5.9 + }, + { + "f1": 0.9024278531007817, + "fn": 32064, + "fn_rate": 0.10548721711008978, + "fp": 26733, + "fp_rate": 0.15375368812151677, + "match_probability": 0.016696718076600735, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9104811974684393, + "recall": 0.8945127828899102, + "row_count": 477830, + "tn": 147136, + "tn_rate": 0.8462463118784832, + "tp": 271897, + "tp_rate": 0.8945127828899102, + "truth_threshold": -5.88 + }, + { + "f1": 0.9023616297402706, + "fn": 32102, + "fn_rate": 0.10561223314833153, + "fp": 26730, + "fp_rate": 0.15373643375184765, + "match_probability": 0.0169258505402461, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9104789526740771, + "recall": 0.8943877668516684, + "row_count": 477830, + "tn": 147139, + "tn_rate": 0.8462635662481524, + "tp": 271859, + "tp_rate": 0.8943877668516684, + "truth_threshold": -5.86 + }, + { + "f1": 0.9022589341443009, + "fn": 32197, + "fn_rate": 0.1059247732439359, + "fp": 26684, + "fp_rate": 0.1534718667502545, + "match_probability": 0.017158072566861807, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9105907896853053, + "recall": 0.8940752267560641, + "row_count": 477830, + "tn": 147185, + "tn_rate": 0.8465281332497455, + "tp": 271764, + "tp_rate": 0.8940752267560641, + "truth_threshold": -5.84 + }, + { + "f1": 0.9021289737688912, + "fn": 32302, + "fn_rate": 0.10627021229697231, + "fp": 26643, + "fp_rate": 0.15323605703144322, + "match_probability": 0.017393424299941902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9106844741235393, + "recall": 0.8937297877030277, + "row_count": 477830, + "tn": 147226, + "tn_rate": 0.8467639429685568, + "tp": 271659, + "tp_rate": 0.8937297877030277, + "truth_threshold": -5.82 + }, + { + "f1": 0.9019897638919795, + "fn": 32380, + "fn_rate": 0.10652682416494222, + "fp": 26641, + "fp_rate": 0.15322455411833047, + "match_probability": 0.017631946362730785, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9106672210635031, + "recall": 0.8934731758350578, + "row_count": 477830, + "tn": 147228, + "tn_rate": 0.8467754458816695, + "tp": 271581, + "tp_rate": 0.8934731758350578, + "truth_threshold": -5.8 + }, + { + "f1": 0.9018548783566522, + "fn": 32463, + "fn_rate": 0.10679988551162814, + "fp": 26630, + "fp_rate": 0.15316128809621035, + "match_probability": 0.01787367986278876, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9106759512692535, + "recall": 0.8932001144883719, + "row_count": 477830, + "tn": 147239, + "tn_rate": 0.8468387119037897, + "tp": 271498, + "tp_rate": 0.8932001144883719, + "truth_threshold": -5.78 + }, + { + "f1": 0.9017574750830565, + "fn": 32532, + "fn_rate": 0.1070268883179092, + "fp": 26610, + "fp_rate": 0.15304625896508292, + "match_probability": 0.018118666396567108, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.910716382755277, + "recall": 0.8929731116820908, + "row_count": 477830, + "tn": 147259, + "tn_rate": 0.846953741034917, + "tp": 271429, + "tp_rate": 0.8929731116820908, + "truth_threshold": -5.76 + }, + { + "f1": 0.9029532354468125, + "fn": 32638, + "fn_rate": 0.10737561726668882, + "fp": 25684, + "fp_rate": 0.1477204101938816, + "match_probability": 0.018366948053991125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9135239236785665, + "recall": 0.8926243827333111, + "row_count": 477830, + "tn": 148185, + "tn_rate": 0.8522795898061184, + "tp": 271323, + "tp_rate": 0.8926243827333111, + "truth_threshold": -5.74 + }, + { + "f1": 0.9025602610201092, + "fn": 32868, + "fn_rate": 0.10813229328762572, + "fp": 25666, + "fp_rate": 0.1476168839758669, + "match_probability": 0.018618567423050236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9135123113368087, + "recall": 0.8918677067123743, + "row_count": 477830, + "tn": 148203, + "tn_rate": 0.8523831160241331, + "tp": 271093, + "tp_rate": 0.8918677067123743, + "truth_threshold": -5.72 + }, + { + "f1": 0.9024999334061427, + "fn": 32915, + "fn_rate": 0.1082869183875563, + "fp": 25650, + "fp_rate": 0.14752486067096493, + "match_probability": 0.018873567594393605, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9135478739180845, + "recall": 0.8917130816124437, + "row_count": 477830, + "tn": 148219, + "tn_rate": 0.8524751393290351, + "tp": 271046, + "tp_rate": 0.8917130816124437, + "truth_threshold": -5.7 + }, + { + "f1": 0.902293778122679, + "fn": 33050, + "fn_rate": 0.10873105431288882, + "fp": 25622, + "fp_rate": 0.14736381988738648, + "match_probability": 0.01913199216593024, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9135947769725461, + "recall": 0.8912689456871111, + "row_count": 477830, + "tn": 148247, + "tn_rate": 0.8526361801126136, + "tp": 270911, + "tp_rate": 0.8912689456871111, + "truth_threshold": -5.68 + }, + { + "f1": 0.9021919451014357, + "fn": 33132, + "fn_rate": 0.10900082576383155, + "fp": 25591, + "fp_rate": 0.14718552473413893, + "match_probability": 0.019393885247431873, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9136664192699548, + "recall": 0.8909991742361685, + "row_count": 477830, + "tn": 148278, + "tn_rate": 0.8528144752658611, + "tp": 270829, + "tp_rate": 0.8909991742361685, + "truth_threshold": -5.66 + }, + { + "f1": 0.9021412841041223, + "fn": 33186, + "fn_rate": 0.10917848013396456, + "fp": 25559, + "fp_rate": 0.14700147812433498, + "match_probability": 0.019659291465137646, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9137493503951623, + "recall": 0.8908215198660354, + "row_count": 477830, + "tn": 148310, + "tn_rate": 0.852998521875665, + "tp": 270775, + "tp_rate": 0.8908215198660354, + "truth_threshold": -5.64 + }, + { + "f1": 0.902026576744682, + "fn": 33252, + "fn_rate": 0.10939561325301601, + "fp": 25554, + "fp_rate": 0.14697272084155313, + "match_probability": 0.019928255966358603, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9137455571569855, + "recall": 0.890604386746984, + "row_count": 477830, + "tn": 148315, + "tn_rate": 0.8530272791584469, + "tp": 270709, + "tp_rate": 0.890604386746984, + "truth_threshold": -5.62 + }, + { + "f1": 0.9017208680667815, + "fn": 33424, + "fn_rate": 0.10996147532084709, + "fp": 25548, + "fp_rate": 0.1469382121022149, + "match_probability": 0.02020082442408101, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9137139672729115, + "recall": 0.8900385246791529, + "row_count": 477830, + "tn": 148321, + "tn_rate": 0.8530617878977851, + "tp": 270537, + "tp_rate": 0.8900385246791529, + "truth_threshold": -5.6000000000000005 + }, + { + "f1": 0.9016074297791201, + "fn": 33495, + "fn_rate": 0.11019505791861456, + "fp": 25537, + "fp_rate": 0.14687494608009477, + "match_probability": 0.02047704304156655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.913727225737577, + "recall": 0.8898049420813854, + "row_count": 477830, + "tn": 148332, + "tn_rate": 0.8531250539199052, + "tp": 270466, + "tp_rate": 0.8898049420813854, + "truth_threshold": -5.58 + }, + { + "f1": 0.9014607179890705, + "fn": 33594, + "fn_rate": 0.11052075759719175, + "fp": 25514, + "fp_rate": 0.14674266257929822, + "match_probability": 0.020756958556947872, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9137693870170778, + "recall": 0.8894792424028083, + "row_count": 477830, + "tn": 148355, + "tn_rate": 0.8532573374207018, + "tp": 270367, + "tp_rate": 0.8894792424028083, + "truth_threshold": -5.5600000000000005 + }, + { + "f1": 0.9014555579638862, + "fn": 33628, + "fn_rate": 0.11063261405246068, + "fp": 25477, + "fp_rate": 0.14652985868671242, + "match_probability": 0.02104061824781806, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9138737703255468, + "recall": 0.8893673859475393, + "row_count": 477830, + "tn": 148392, + "tn_rate": 0.8534701413132876, + "tp": 270333, + "tp_rate": 0.8893673859475393, + "truth_threshold": -5.54 + }, + { + "f1": 0.9012971159266091, + "fn": 33735, + "fn_rate": 0.1109846328969835, + "fp": 25451, + "fp_rate": 0.14638032081624672, + "match_probability": 0.021328069935811763, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9139229632335285, + "recall": 0.8890153671030165, + "row_count": 477830, + "tn": 148418, + "tn_rate": 0.8536196791837533, + "tp": 270226, + "tp_rate": 0.8890153671030165, + "truth_threshold": -5.5200000000000005 + }, + { + "f1": 0.9019668070018463, + "fn": 33803, + "fn_rate": 0.11120834580752136, + "fp": 24924, + "fp_rate": 0.1433493032110382, + "match_probability": 0.021619361991176866, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9155353427182953, + "recall": 0.8887916541924786, + "row_count": 477830, + "tn": 148945, + "tn_rate": 0.8566506967889618, + "tp": 270158, + "tp_rate": 0.8887916541924786, + "truth_threshold": -5.5 + }, + { + "f1": 0.9017218463429132, + "fn": 33944, + "fn_rate": 0.1116722211073131, + "fp": 24915, + "fp_rate": 0.14329754010203083, + "match_probability": 0.021914543337334162, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.915522900193943, + "recall": 0.8883277788926869, + "row_count": 477830, + "tn": 148954, + "tn_rate": 0.8567024598979691, + "tp": 270017, + "tp_rate": 0.8883277788926869, + "truth_threshold": -5.48 + }, + { + "f1": 0.9015856261503055, + "fn": 34047, + "fn_rate": 0.1120110803688631, + "fp": 24880, + "fp_rate": 0.14309623912255778, + "match_probability": 0.02221366345542378, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9156020814534895, + "recall": 0.8879889196311369, + "row_count": 477830, + "tn": 148989, + "tn_rate": 0.8569037608774422, + "tp": 269914, + "tp_rate": 0.8879889196311369, + "truth_threshold": -5.46 + }, + { + "f1": 0.9015217572872296, + "fn": 34113, + "fn_rate": 0.11222821348791456, + "fp": 24842, + "fp_rate": 0.14287768377341561, + "match_probability": 0.02251677238883578, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9157012453764973, + "recall": 0.8877717865120854, + "row_count": 477830, + "tn": 149027, + "tn_rate": 0.8571223162265844, + "tp": 269848, + "tp_rate": 0.8877717865120854, + "truth_threshold": -5.44 + }, + { + "f1": 0.9013829904537238, + "fn": 34196, + "fn_rate": 0.1125012748346005, + "fp": 24832, + "fp_rate": 0.1428201692078519, + "match_probability": 0.02282392074772345, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.915708578159316, + "recall": 0.8874987251653995, + "row_count": 477830, + "tn": 149037, + "tn_rate": 0.8571798307921481, + "tp": 269765, + "tp_rate": 0.8874987251653995, + "truth_threshold": -5.42 + }, + { + "f1": 0.9013705130818666, + "fn": 34243, + "fn_rate": 0.11265589993453108, + "fp": 24784, + "fp_rate": 0.142544099293146, + "match_probability": 0.023135159713496674, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9158443745713102, + "recall": 0.8873441000654689, + "row_count": 477830, + "tn": 149085, + "tn_rate": 0.857455900706854, + "tp": 269718, + "tp_rate": 0.8873441000654689, + "truth_threshold": -5.4 + }, + { + "f1": 0.9012921727620945, + "fn": 34307, + "fn_rate": 0.11286645326209613, + "fp": 24758, + "fp_rate": 0.14239456142268028, + "match_probability": 0.023450541043293725, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9159069603141177, + "recall": 0.8871335467379039, + "row_count": 477830, + "tn": 149111, + "tn_rate": 0.8576054385773197, + "tp": 269654, + "tp_rate": 0.8871335467379039, + "truth_threshold": -5.38 + }, + { + "f1": 0.901193711536983, + "fn": 34368, + "fn_rate": 0.11306713690243156, + "fp": 24749, + "fp_rate": 0.14234279831367294, + "match_probability": 0.023770117074428793, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9159175381019359, + "recall": 0.8869328630975685, + "row_count": 477830, + "tn": 149120, + "tn_rate": 0.8576572016863271, + "tp": 269593, + "tp_rate": 0.8869328630975685, + "truth_threshold": -5.36 + }, + { + "f1": 0.9010488236257803, + "fn": 34460, + "fn_rate": 0.11336980731080631, + "fp": 24733, + "fp_rate": 0.14225077500877098, + "match_probability": 0.024093940728813348, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9159410537191487, + "recall": 0.8866301926891936, + "row_count": 477830, + "tn": 149136, + "tn_rate": 0.8577492249912291, + "tp": 269501, + "tp_rate": 0.8866301926891936, + "truth_threshold": -5.34 + }, + { + "f1": 0.9009367235077135, + "fn": 34562, + "fn_rate": 0.11370537667661312, + "fp": 24682, + "fp_rate": 0.14195745072439594, + "match_probability": 0.024422065517348556, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9160707424145048, + "recall": 0.8862946233233869, + "row_count": 477830, + "tn": 149187, + "tn_rate": 0.8580425492756041, + "tp": 269399, + "tp_rate": 0.8862946233233869, + "truth_threshold": -5.32 + }, + { + "f1": 0.9008027829810008, + "fn": 34657, + "fn_rate": 0.1140179167722175, + "fp": 24655, + "fp_rate": 0.1418021613973739, + "match_probability": 0.024754545544286844, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9161277593133736, + "recall": 0.8859820832277825, + "row_count": 477830, + "tn": 149214, + "tn_rate": 0.8581978386026261, + "tp": 269304, + "tp_rate": 0.8859820832277825, + "truth_threshold": -5.3 + }, + { + "f1": 0.9007263031470906, + "fn": 34724, + "fn_rate": 0.11423833978701214, + "fp": 24624, + "fp_rate": 0.14162386624412632, + "match_probability": 0.0250914355115595, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9162052807279633, + "recall": 0.8857616602129879, + "row_count": 477830, + "tn": 149245, + "tn_rate": 0.8583761337558736, + "tp": 269237, + "tp_rate": 0.8857616602129879, + "truth_threshold": -5.28 + }, + { + "f1": 0.9003664842612581, + "fn": 34945, + "fn_rate": 0.11496540674626021, + "fp": 24593, + "fp_rate": 0.14144557109087877, + "match_probability": 0.02543279072306829, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9162389436291122, + "recall": 0.8850345932537398, + "row_count": 477830, + "tn": 149276, + "tn_rate": 0.8585544289091213, + "tp": 269016, + "tp_rate": 0.8850345932537398, + "truth_threshold": -5.26 + }, + { + "f1": 0.900325052473713, + "fn": 35015, + "fn_rate": 0.11519569944828448, + "fp": 24536, + "fp_rate": 0.14111773806716552, + "match_probability": 0.025778667088937956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9163969170170573, + "recall": 0.8848043005517156, + "row_count": 477830, + "tn": 149333, + "tn_rate": 0.8588822619328345, + "tp": 268946, + "tp_rate": 0.8848043005517156, + "truth_threshold": -5.24 + }, + { + "f1": 0.9002504285408185, + "fn": 35067, + "fn_rate": 0.11536677402693109, + "fp": 24522, + "fp_rate": 0.14103721767537628, + "match_probability": 0.02612912112972733, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9164258254491916, + "recall": 0.8846332259730689, + "row_count": 477830, + "tn": 149347, + "tn_rate": 0.8589627823246238, + "tp": 268894, + "tp_rate": 0.8846332259730689, + "truth_threshold": -5.22 + }, + { + "f1": 0.9000622831808623, + "fn": 35170, + "fn_rate": 0.11570563328848109, + "fp": 24520, + "fp_rate": 0.14102571476226355, + "match_probability": 0.026484209980595738, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9164027261166475, + "recall": 0.884294366711519, + "row_count": 477830, + "tn": 149349, + "tn_rate": 0.8589742852377364, + "tp": 268791, + "tp_rate": 0.884294366711519, + "truth_threshold": -5.2 + }, + { + "f1": 0.9154485174357192, + "fn": 35297, + "fn_rate": 0.11612345004786798, + "fp": 14331, + "fp_rate": 0.08242412390938005, + "match_probability": 0.026843991395422352, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.949359529320306, + "recall": 0.883876549952132, + "row_count": 477830, + "tn": 159538, + "tn_rate": 0.91757587609062, + "tp": 268664, + "tp_rate": 0.883876549952132, + "truth_threshold": -5.18 + }, + { + "f1": 0.9153844843156298, + "fn": 35346, + "fn_rate": 0.11628465493928497, + "fp": 14315, + "fp_rate": 0.08233210060447808, + "match_probability": 0.027208523750875003, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9494044463294808, + "recall": 0.883715345060715, + "row_count": 477830, + "tn": 159554, + "tn_rate": 0.917667899395522, + "tp": 268615, + "tp_rate": 0.883715345060715, + "truth_threshold": -5.16 + }, + { + "f1": 0.915198778426133, + "fn": 35449, + "fn_rate": 0.11662351420083497, + "fp": 14311, + "fp_rate": 0.08230909477825259, + "match_probability": 0.0275778660504259, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9493994477111126, + "recall": 0.8833764857991651, + "row_count": 477830, + "tn": 159558, + "tn_rate": 0.9176909052217475, + "tp": 268512, + "tp_rate": 0.8833764857991651, + "truth_threshold": -5.14 + }, + { + "f1": 0.9150951757615424, + "fn": 35516, + "fn_rate": 0.11684393721562963, + "fp": 14298, + "fp_rate": 0.08223432584301975, + "match_probability": 0.027952077928310608, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9494311088161334, + "recall": 0.8831560627843703, + "row_count": 477830, + "tn": 159571, + "tn_rate": 0.9177656741569803, + "tp": 268445, + "tp_rate": 0.8831560627843703, + "truth_threshold": -5.12 + }, + { + "f1": 0.9150014830674608, + "fn": 35581, + "fn_rate": 0.11705778043893789, + "fp": 14282, + "fp_rate": 0.08214230253811777, + "match_probability": 0.028331219653427598, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9494732224352761, + "recall": 0.8829422195610621, + "row_count": 477830, + "tn": 159587, + "tn_rate": 0.9178576974618822, + "tp": 268380, + "tp_rate": 0.8829422195610621, + "truth_threshold": -5.1000000000000005 + }, + { + "f1": 0.9148984052401687, + "fn": 35646, + "fn_rate": 0.11727162366224614, + "fp": 14271, + "fp_rate": 0.08207903651599768, + "match_probability": 0.02871535213317462, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9494985597304891, + "recall": 0.8827283763377538, + "row_count": 477830, + "tn": 159598, + "tn_rate": 0.9179209634840023, + "tp": 268315, + "tp_rate": 0.8827283763377538, + "truth_threshold": -5.08 + }, + { + "f1": 0.9147601702545634, + "fn": 35746, + "fn_rate": 0.11760061323656654, + "fp": 14241, + "fp_rate": 0.0819064928193065, + "match_probability": 0.029104536917218708, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.949581527742374, + "recall": 0.8823993867634334, + "row_count": 477830, + "tn": 159628, + "tn_rate": 0.9180935071806935, + "tp": 268215, + "tp_rate": 0.8823993867634334, + "truth_threshold": -5.0600000000000005 + }, + { + "f1": 0.9183632925960432, + "fn": 35843, + "fn_rate": 0.1179197331236573, + "fp": 11826, + "fp_rate": 0.06801672523566593, + "match_probability": 0.029498836201196473, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.957755836881662, + "recall": 0.8820802668763427, + "row_count": 477830, + "tn": 162043, + "tn_rate": 0.9319832747643341, + "tp": 268118, + "tp_rate": 0.8820802668763427, + "truth_threshold": -5.04 + }, + { + "f1": 0.918295828637396, + "fn": 35893, + "fn_rate": 0.1180842279108175, + "fp": 11809, + "fp_rate": 0.0679189504742076, + "match_probability": 0.02989831283034073, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9578064649828317, + "recall": 0.8819157720891825, + "row_count": 477830, + "tn": 162060, + "tn_rate": 0.9320810495257924, + "tp": 268068, + "tp_rate": 0.8819157720891825, + "truth_threshold": -5.0200000000000005 + }, + { + "f1": 0.918101705600592, + "fn": 36002, + "fn_rate": 0.11844282654682674, + "fp": 11804, + "fp_rate": 0.06789019319142572, + "match_probability": 0.030303030303030304, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9578071439039473, + "recall": 0.8815571734531733, + "row_count": 477830, + "tn": 162065, + "tn_rate": 0.9321098068085742, + "tp": 267959, + "tp_rate": 0.8815571734531733, + "truth_threshold": -5 + }, + { + "f1": 0.9180090255862006, + "fn": 36052, + "fn_rate": 0.11860732133398692, + "fp": 11804, + "fp_rate": 0.06789019319142572, + "match_probability": 0.03071305277425868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9577996017346352, + "recall": 0.8813926786660131, + "row_count": 477830, + "tn": 162065, + "tn_rate": 0.9321098068085742, + "tp": 267909, + "tp_rate": 0.8813926786660131, + "truth_threshold": -4.98 + }, + { + "f1": 0.9178362963953126, + "fn": 36174, + "fn_rate": 0.1190086886146578, + "fp": 11771, + "fp_rate": 0.06770039512506543, + "match_probability": 0.031128445059018316, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9578942473475988, + "recall": 0.8809913113853421, + "row_count": 477830, + "tn": 162098, + "tn_rate": 0.9322996048749346, + "tp": 267787, + "tp_rate": 0.8809913113853421, + "truth_threshold": -4.96 + }, + { + "f1": 0.9177450150311764, + "fn": 36230, + "fn_rate": 0.11919292277627722, + "fp": 11762, + "fp_rate": 0.06764863201605807, + "match_probability": 0.03154927263559596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9579166562311042, + "recall": 0.8808070772237228, + "row_count": 477830, + "tn": 162107, + "tn_rate": 0.9323513679839419, + "tp": 267731, + "tp_rate": 0.8808070772237228, + "truth_threshold": -4.94 + }, + { + "f1": 0.9176560126983692, + "fn": 36289, + "fn_rate": 0.11938702662512625, + "fp": 11749, + "fp_rate": 0.06757386308082522, + "match_probability": 0.03197560164877564, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9579523371543298, + "recall": 0.8806129733748738, + "row_count": 477830, + "tn": 162120, + "tn_rate": 0.9324261369191748, + "tp": 267672, + "tp_rate": 0.8806129733748738, + "truth_threshold": -4.92 + }, + { + "f1": 0.9172094235630233, + "fn": 36533, + "fn_rate": 0.120189761186468, + "fp": 11745, + "fp_rate": 0.06755085725459972, + "match_probability": 0.03240749891294454, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9579293126484295, + "recall": 0.879810238813532, + "row_count": 477830, + "tn": 162124, + "tn_rate": 0.9324491427454003, + "tp": 267428, + "tp_rate": 0.879810238813532, + "truth_threshold": -4.9 + }, + { + "f1": 0.9169782839891591, + "fn": 36671, + "fn_rate": 0.12064376679903013, + "fp": 11730, + "fp_rate": 0.06746458540625414, + "match_probability": 0.032845031915098126, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.957960002867178, + "recall": 0.8793562332009699, + "row_count": 477830, + "tn": 162139, + "tn_rate": 0.9325354145937459, + "tp": 267290, + "tp_rate": 0.8793562332009699, + "truth_threshold": -4.88 + }, + { + "f1": 0.9171430924552, + "fn": 36700, + "fn_rate": 0.12073917377558305, + "fp": 11591, + "fp_rate": 0.0666651329449183, + "match_probability": 0.0332882688177396, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9584331473326352, + "recall": 0.8792608262244169, + "row_count": 477830, + "tn": 162278, + "tn_rate": 0.9333348670550817, + "tp": 267261, + "tp_rate": 0.8792608262244169, + "truth_threshold": -4.86 + }, + { + "f1": 0.9170513555348863, + "fn": 36768, + "fn_rate": 0.12096288668612092, + "fp": 11568, + "fp_rate": 0.06653284944412173, + "match_probability": 0.03373727846166985, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9585020860163366, + "recall": 0.8790371133138791, + "row_count": 477830, + "tn": 162301, + "tn_rate": 0.9334671505558783, + "tp": 267193, + "tp_rate": 0.8790371133138791, + "truth_threshold": -4.84 + }, + { + "f1": 0.9169018049004868, + "fn": 36851, + "fn_rate": 0.12123594803280684, + "fp": 11565, + "fp_rate": 0.06651559507445261, + "match_probability": 0.034192130368662726, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.958500044855118, + "recall": 0.8787640519671932, + "row_count": 477830, + "tn": 162304, + "tn_rate": 0.9334844049255474, + "tp": 267110, + "tp_rate": 0.8787640519671932, + "truth_threshold": -4.82 + }, + { + "f1": 0.9168097173775714, + "fn": 36920, + "fn_rate": 0.12146295083908791, + "fp": 11543, + "fp_rate": 0.0663890630302124, + "match_probability": 0.034652894744021626, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9585654596100278, + "recall": 0.8785370491609121, + "row_count": 477830, + "tn": 162326, + "tn_rate": 0.9336109369697876, + "tp": 267041, + "tp_rate": 0.8785370491609121, + "truth_threshold": -4.8 + }, + { + "f1": 0.9164600262393274, + "fn": 37119, + "fn_rate": 0.12211764009198549, + "fp": 11530, + "fp_rate": 0.06631429409497955, + "match_probability": 0.03511964247901206, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9585806043711292, + "recall": 0.8778823599080146, + "row_count": 477830, + "tn": 162339, + "tn_rate": 0.9336857059050204, + "tp": 266842, + "tp_rate": 0.8778823599080146, + "truth_threshold": -4.78 + }, + { + "f1": 0.9164339663468969, + "fn": 37144, + "fn_rate": 0.12219988748556558, + "fp": 11516, + "fp_rate": 0.06623377370319034, + "match_probability": 0.0355924451531659, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9586251001498205, + "recall": 0.8778001125144345, + "row_count": 477830, + "tn": 162353, + "tn_rate": 0.9337662262968097, + "tp": 266817, + "tp_rate": 0.8778001125144345, + "truth_threshold": -4.76 + }, + { + "f1": 0.9162882093069593, + "fn": 37235, + "fn_rate": 0.12249926799819713, + "fp": 11501, + "fp_rate": 0.06614750185484473, + "match_probability": 0.03607137503645171, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9586632497924357, + "recall": 0.8775007320018029, + "row_count": 477830, + "tn": 162368, + "tn_rate": 0.9338524981451553, + "tp": 266726, + "tp_rate": 0.8775007320018029, + "truth_threshold": -4.74 + }, + { + "f1": 0.9161020326823436, + "fn": 37335, + "fn_rate": 0.12282825757251753, + "fp": 11501, + "fp_rate": 0.06614750185484473, + "match_probability": 0.036556505091306896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9586483872475524, + "recall": 0.8771717424274825, + "row_count": 477830, + "tn": 162368, + "tn_rate": 0.9338524981451553, + "tp": 266626, + "tp_rate": 0.8771717424274825, + "truth_threshold": -4.72 + }, + { + "f1": 0.9160752641979552, + "fn": 37406, + "fn_rate": 0.123061840170285, + "fp": 11435, + "fp_rate": 0.06576790572212413, + "match_probability": 0.03704790897452556, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9588654268139142, + "recall": 0.876938159829715, + "row_count": 477830, + "tn": 162434, + "tn_rate": 0.9342320942778759, + "tp": 266555, + "tp_rate": 0.876938159829715, + "truth_threshold": -4.7 + }, + { + "f1": 0.9160147926146909, + "fn": 37441, + "fn_rate": 0.12317698652129715, + "fp": 11432, + "fp_rate": 0.065750651352455, + "match_probability": 0.037545661038997695, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9588705963619618, + "recall": 0.8768230134787028, + "row_count": 477830, + "tn": 162437, + "tn_rate": 0.9342493486475449, + "tp": 266520, + "tp_rate": 0.8768230134787028, + "truth_threshold": -4.68 + }, + { + "f1": 0.9158714662853371, + "fn": 37523, + "fn_rate": 0.12344675797223986, + "fp": 11425, + "fp_rate": 0.0657103911565604, + "match_probability": 0.0380498363352935, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9588826148137751, + "recall": 0.8765532420277602, + "row_count": 477830, + "tn": 162444, + "tn_rate": 0.9342896088434396, + "tp": 266438, + "tp_rate": 0.8765532420277602, + "truth_threshold": -4.66 + }, + { + "f1": 0.9157968563059532, + "fn": 37585, + "fn_rate": 0.1236507315083185, + "fp": 11400, + "fp_rate": 0.06556660474265108, + "match_probability": 0.03856051061308806, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.958959737342319, + "recall": 0.8763492684916815, + "row_count": 477830, + "tn": 162469, + "tn_rate": 0.9344333952573489, + "tp": 266376, + "tp_rate": 0.8763492684916815, + "truth_threshold": -4.64 + }, + { + "f1": 0.9158113778633831, + "fn": 37698, + "fn_rate": 0.12402248972730054, + "fp": 11257, + "fp_rate": 0.06474414645508975, + "match_probability": 0.03907776032242, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9594371576823292, + "recall": 0.8759775102726994, + "row_count": 477830, + "tn": 162612, + "tn_rate": 0.9352558535449103, + "tp": 266263, + "tp_rate": 0.8759775102726994, + "truth_threshold": -4.62 + }, + { + "f1": 0.9156960544872897, + "fn": 37759, + "fn_rate": 0.12422317336763598, + "fp": 11257, + "fp_rate": 0.06474414645508975, + "match_probability": 0.039601662614779175, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9594282398480496, + "recall": 0.875776826632364, + "row_count": 477830, + "tn": 162612, + "tn_rate": 0.9352558535449103, + "tp": 266202, + "tp_rate": 0.875776826632364, + "truth_threshold": -4.6000000000000005 + }, + { + "f1": 0.9155255226324989, + "fn": 37869, + "fn_rate": 0.12458506189938841, + "fp": 11235, + "fp_rate": 0.06461761441084955, + "match_probability": 0.0401322953440168, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.959488257544343, + "recall": 0.8754149381006116, + "row_count": 477830, + "tn": 162634, + "tn_rate": 0.9353823855891504, + "tp": 266092, + "tp_rate": 0.8754149381006116, + "truth_threshold": -4.58 + }, + { + "f1": 0.915386283004649, + "fn": 37947, + "fn_rate": 0.12484167376735832, + "fp": 11231, + "fp_rate": 0.06459460858462406, + "match_probability": 0.04066973706707255, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9594907031686776, + "recall": 0.8751583262326417, + "row_count": 477830, + "tn": 162638, + "tn_rate": 0.9354053914153759, + "tp": 266014, + "tp_rate": 0.8751583262326417, + "truth_threshold": -4.5600000000000005 + }, + { + "f1": 0.9152329459218547, + "fn": 38030, + "fn_rate": 0.12511473511404422, + "fp": 11230, + "fp_rate": 0.06458885712806768, + "match_probability": 0.041214067044512546, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9594820339080895, + "recall": 0.8748852648859557, + "row_count": 477830, + "tn": 162639, + "tn_rate": 0.9354111428719323, + "tp": 265931, + "tp_rate": 0.8748852648859557, + "truth_threshold": -4.54 + }, + { + "f1": 0.9151507433044089, + "fn": 38085, + "fn_rate": 0.12529567937992045, + "fp": 11217, + "fp_rate": 0.06451408819283483, + "match_probability": 0.041765365240871495, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9595190062542179, + "recall": 0.8747043206200795, + "row_count": 477830, + "tn": 162652, + "tn_rate": 0.9354859118071651, + "tp": 265876, + "tp_rate": 0.8747043206200795, + "truth_threshold": -4.5200000000000005 + }, + { + "f1": 0.9150260422942005, + "fn": 38156, + "fn_rate": 0.12552926197768793, + "fp": 11212, + "fp_rate": 0.06448533091005297, + "match_probability": 0.04232371232479359, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9595259496709588, + "recall": 0.8744707380223121, + "row_count": 477830, + "tn": 162657, + "tn_rate": 0.9355146690899471, + "tp": 265805, + "tp_rate": 0.8744707380223121, + "truth_threshold": -4.5 + }, + { + "f1": 0.9150009295536077, + "fn": 38188, + "fn_rate": 0.12563453864147045, + "fp": 11191, + "fp_rate": 0.06436455032236914, + "match_probability": 0.04288918966896465, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9595940266605046, + "recall": 0.8743654613585295, + "row_count": 477830, + "tn": 162678, + "tn_rate": 0.9356354496776309, + "tp": 265773, + "tp_rate": 0.8743654613585295, + "truth_threshold": -4.48 + }, + { + "f1": 0.9148813090097722, + "fn": 38263, + "fn_rate": 0.12588128082221076, + "fp": 11177, + "fp_rate": 0.06428402993057993, + "match_probability": 0.0434618793498302, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9596316027088037, + "recall": 0.8741187191777893, + "row_count": 477830, + "tn": 162692, + "tn_rate": 0.9357159700694201, + "tp": 265698, + "tp_rate": 0.8741187191777893, + "truth_threshold": -4.46 + }, + { + "f1": 0.9148259878367117, + "fn": 38312, + "fn_rate": 0.12604248571362772, + "fp": 11155, + "fp_rate": 0.06415749788633972, + "match_probability": 0.04404186414709147, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9597007268681088, + "recall": 0.8739575142863723, + "row_count": 477830, + "tn": 162714, + "tn_rate": 0.9358425021136603, + "tp": 265649, + "tp_rate": 0.8739575142863723, + "truth_threshold": -4.44 + }, + { + "f1": 0.9147340757146253, + "fn": 38389, + "fn_rate": 0.12629580768585444, + "fp": 11122, + "fp_rate": 0.0639676998199794, + "match_probability": 0.04462922754297395, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9598039711739322, + "recall": 0.8737041923141455, + "row_count": 477830, + "tn": 162747, + "tn_rate": 0.9360323001800206, + "tp": 265572, + "tp_rate": 0.8737041923141455, + "truth_threshold": -4.42 + }, + { + "f1": 0.9177388022039558, + "fn": 38461, + "fn_rate": 0.12653268017936511, + "fp": 9135, + "fp_rate": 0.05253955564246646, + "match_probability": 0.04522405372126023, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9667376699983614, + "recall": 0.8734673198206349, + "row_count": 477830, + "tn": 164734, + "tn_rate": 0.9474604443575335, + "tp": 265500, + "tp_rate": 0.8734673198206349, + "truth_threshold": -4.4 + }, + { + "f1": 0.917671258923787, + "fn": 38520, + "fn_rate": 0.12672678402821413, + "fp": 9109, + "fp_rate": 0.05239001777200076, + "match_probability": 0.04582642756608153, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9668220724822437, + "recall": 0.8732732159717859, + "row_count": 477830, + "tn": 164760, + "tn_rate": 0.9476099822279992, + "tp": 265441, + "tp_rate": 0.8732732159717859, + "truth_threshold": -4.38 + }, + { + "f1": 0.9174874121617883, + "fn": 38653, + "fn_rate": 0.12716434016206027, + "fp": 9068, + "fp_rate": 0.05215420805318947, + "match_probability": 0.046436434660459415, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9669504621395457, + "recall": 0.8728356598379398, + "row_count": 477830, + "tn": 164801, + "tn_rate": 0.9478457919468105, + "tp": 265308, + "tp_rate": 0.8728356598379398, + "truth_threshold": -4.36 + }, + { + "f1": 0.9173886427541269, + "fn": 38710, + "fn_rate": 0.12735186421942288, + "fp": 9062, + "fp_rate": 0.052119699313851235, + "match_probability": 0.047054161284591715, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9669647446530059, + "recall": 0.8726481357805771, + "row_count": 477830, + "tn": 164807, + "tn_rate": 0.9478803006861488, + "tp": 265251, + "tp_rate": 0.8726481357805771, + "truth_threshold": -4.34 + }, + { + "f1": 0.9172677175977335, + "fn": 38800, + "fn_rate": 0.12764795483631125, + "fp": 9033, + "fp_rate": 0.05195290707371642, + "match_probability": 0.04767969441387431, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9670561719074816, + "recall": 0.8723520451636888, + "row_count": 477830, + "tn": 164836, + "tn_rate": 0.9480470929262835, + "tp": 265161, + "tp_rate": 0.8723520451636888, + "truth_threshold": -4.32 + }, + { + "f1": 0.9171885488101087, + "fn": 38877, + "fn_rate": 0.12790127680853794, + "fp": 8992, + "fp_rate": 0.05171709735490513, + "match_probability": 0.04831312171665215, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9671915818969921, + "recall": 0.8720987231914621, + "row_count": 477830, + "tn": 164877, + "tn_rate": 0.9482829026450948, + "tp": 265084, + "tp_rate": 0.8720987231914621, + "truth_threshold": -4.3 + }, + { + "f1": 0.9170052395157774, + "fn": 38985, + "fn_rate": 0.12825658554880395, + "fp": 8980, + "fp_rate": 0.05164807987622865, + "match_probability": 0.04895453155169113, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9672210135934237, + "recall": 0.8717434144511961, + "row_count": 477830, + "tn": 164889, + "tn_rate": 0.9483519201237713, + "tp": 264976, + "tp_rate": 0.8717434144511961, + "truth_threshold": -4.28 + }, + { + "f1": 0.9169527896995708, + "fn": 39035, + "fn_rate": 0.12842108033596417, + "fp": 8953, + "fp_rate": 0.05149279054920659, + "match_probability": 0.04960401296536411, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9673103815918709, + "recall": 0.8715789196640359, + "row_count": 477830, + "tn": 164916, + "tn_rate": 0.9485072094507934, + "tp": 264926, + "tp_rate": 0.8715789196640359, + "truth_threshold": -4.26 + }, + { + "f1": 0.9168642627445144, + "fn": 39089, + "fn_rate": 0.12859873470609717, + "fp": 8945, + "fp_rate": 0.051446778896755606, + "match_probability": 0.05026165568854217, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9673321963209005, + "recall": 0.8714012652939028, + "row_count": 477830, + "tn": 164924, + "tn_rate": 0.9485532211032444, + "tp": 264872, + "tp_rate": 0.8714012652939028, + "truth_threshold": -4.24 + }, + { + "f1": 0.9166721489139956, + "fn": 39216, + "fn_rate": 0.12901655146548405, + "fp": 8916, + "fp_rate": 0.05127998665662079, + "match_probability": 0.05092755013318443, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9674195446190725, + "recall": 0.8709834485345159, + "row_count": 477830, + "tn": 164953, + "tn_rate": 0.9487200133433792, + "tp": 264745, + "tp_rate": 0.8709834485345159, + "truth_threshold": -4.22 + }, + { + "f1": 0.9164704089548931, + "fn": 39343, + "fn_rate": 0.12943436822487095, + "fp": 8893, + "fp_rate": 0.05114770315582421, + "match_probability": 0.05160178738861727, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9674857683968835, + "recall": 0.870565631775129, + "row_count": 477830, + "tn": 164976, + "tn_rate": 0.9488522968441758, + "tp": 264618, + "tp_rate": 0.870565631775129, + "truth_threshold": -4.2 + }, + { + "f1": 0.9160418543413484, + "fn": 39573, + "fn_rate": 0.13019104424580785, + "fp": 8892, + "fp_rate": 0.05114195169926784, + "match_probability": 0.052284459217495936, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.967461943793911, + "recall": 0.8698089557541921, + "row_count": 477830, + "tn": 164977, + "tn_rate": 0.9488580483007322, + "tp": 264388, + "tp_rate": 0.8698089557541921, + "truth_threshold": -4.18 + }, + { + "f1": 0.9159089333980179, + "fn": 39648, + "fn_rate": 0.13043778642654813, + "fp": 8886, + "fp_rate": 0.051107442959929604, + "match_probability": 0.05297565805143919, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9674742586905516, + "recall": 0.8695622135734519, + "row_count": 477830, + "tn": 164983, + "tn_rate": 0.9488925570400704, + "tp": 264313, + "tp_rate": 0.8695622135734519, + "truth_threshold": -4.16 + }, + { + "f1": 0.9157313496987806, + "fn": 39778, + "fn_rate": 0.13086547287316466, + "fp": 8845, + "fp_rate": 0.05087163324111831, + "match_probability": 0.05367547698633007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9676040552617314, + "recall": 0.8691345271268354, + "row_count": 477830, + "tn": 165024, + "tn_rate": 0.9491283667588817, + "tp": 264183, + "tp_rate": 0.8691345271268354, + "truth_threshold": -4.14 + }, + { + "f1": 0.9156017943935602, + "fn": 39852, + "fn_rate": 0.13110892515816175, + "fp": 8839, + "fp_rate": 0.05083712450178007, + "match_probability": 0.05438400977727288, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9676165423450621, + "recall": 0.8688910748418383, + "row_count": 477830, + "tn": 165030, + "tn_rate": 0.9491628754982199, + "tp": 264109, + "tp_rate": 0.8688910748418383, + "truth_threshold": -4.12 + }, + { + "f1": 0.9151909270627406, + "fn": 40084, + "fn_rate": 0.13187218097058503, + "fp": 8823, + "fp_rate": 0.05074510119687811, + "match_probability": 0.05510135083319928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9676457645764577, + "recall": 0.8681278190294149, + "row_count": 477830, + "tn": 165046, + "tn_rate": 0.9492548988031219, + "tp": 263877, + "tp_rate": 0.8681278190294149, + "truth_threshold": -4.1 + }, + { + "f1": 0.9151564131290604, + "fn": 40115, + "fn_rate": 0.13197416773862436, + "fp": 8808, + "fp_rate": 0.05065882934853252, + "match_probability": 0.05582759521111378, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9676953208095241, + "recall": 0.8680258322613756, + "row_count": 477830, + "tn": 165061, + "tn_rate": 0.9493411706514675, + "tp": 263846, + "tp_rate": 0.8680258322613756, + "truth_threshold": -4.08 + }, + { + "f1": 0.9150295053303868, + "fn": 40201, + "fn_rate": 0.1322570987725399, + "fp": 8785, + "fp_rate": 0.050526545847735936, + "match_probability": 0.05656283860997083, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9677667908051881, + "recall": 0.8677429012274601, + "row_count": 477830, + "tn": 165084, + "tn_rate": 0.949473454152264, + "tp": 263760, + "tp_rate": 0.8677429012274601, + "truth_threshold": -4.0600000000000005 + }, + { + "f1": 0.9147861933992872, + "fn": 40337, + "fn_rate": 0.13270452459361562, + "fp": 8777, + "fp_rate": 0.050480534195284955, + "match_probability": 0.05730717736417426, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9677791197535985, + "recall": 0.8672954754063844, + "row_count": 477830, + "tn": 165092, + "tn_rate": 0.949519465804715, + "tp": 263624, + "tp_rate": 0.8672954754063844, + "truth_threshold": -4.04 + }, + { + "f1": 0.9146731265118572, + "fn": 40408, + "fn_rate": 0.1329381071913831, + "fp": 8765, + "fp_rate": 0.050411516716608484, + "match_probability": 0.0580607084366901, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9678133652567954, + "recall": 0.8670618928086169, + "row_count": 477830, + "tn": 165104, + "tn_rate": 0.9495884832833915, + "tp": 263553, + "tp_rate": 0.8670618928086169, + "truth_threshold": -4.0200000000000005 + }, + { + "f1": 0.9145849169903402, + "fn": 40470, + "fn_rate": 0.13314208072746175, + "fp": 8747, + "fp_rate": 0.05030799049859377, + "match_probability": 0.058823529411764705, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9678700254924, + "recall": 0.8668579192725383, + "row_count": 477830, + "tn": 165122, + "tn_rate": 0.9496920095014062, + "tp": 263491, + "tp_rate": 0.8668579192725383, + "truth_threshold": -4 + }, + { + "f1": 0.9142976182209569, + "fn": 40625, + "fn_rate": 0.13365201456765835, + "fp": 8743, + "fp_rate": 0.05028498467236828, + "match_probability": 0.059595738487237926, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9678659506981429, + "recall": 0.8663479854323416, + "row_count": 477830, + "tn": 165126, + "tn_rate": 0.9497150153276317, + "tp": 263336, + "tp_rate": 0.8663479854323416, + "truth_threshold": -3.98 + }, + { + "f1": 0.9142021799292339, + "fn": 40679, + "fn_rate": 0.13382966893779136, + "fp": 8740, + "fp_rate": 0.05026773030269916, + "match_probability": 0.06037743446644346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9678702457889435, + "recall": 0.8661703310622086, + "row_count": 477830, + "tn": 165129, + "tn_rate": 0.9497322696973008, + "tp": 263282, + "tp_rate": 0.8661703310622086, + "truth_threshold": -3.96 + }, + { + "f1": 0.9141457112792712, + "fn": 40730, + "fn_rate": 0.13399745362069476, + "fp": 8714, + "fp_rate": 0.05011819243223346, + "match_probability": 0.061168716749686526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9679567559616834, + "recall": 0.8660025463793053, + "row_count": 477830, + "tn": 165155, + "tn_rate": 0.9498818075677665, + "tp": 263231, + "tp_rate": 0.8660025463793053, + "truth_threshold": -3.94 + }, + { + "f1": 0.9138592261677309, + "fn": 40892, + "fn_rate": 0.13453041673109378, + "fp": 8703, + "fp_rate": 0.05005492641011336, + "match_probability": 0.061969685325289826, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9679768335222172, + "recall": 0.8654695832689062, + "row_count": 477830, + "tn": 165166, + "tn_rate": 0.9499450735898867, + "tp": 263069, + "tp_rate": 0.8654695832689062, + "truth_threshold": -3.92 + }, + { + "f1": 0.913809037404543, + "fn": 40943, + "fn_rate": 0.1346982014139972, + "fp": 8673, + "fp_rate": 0.04988238271342217, + "match_probability": 0.06278044076019877, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9680777059232731, + "recall": 0.8653017985860028, + "row_count": 477830, + "tn": 165196, + "tn_rate": 0.9501176172865778, + "tp": 263018, + "tp_rate": 0.8653017985860028, + "truth_threshold": -3.9 + }, + { + "f1": 0.9136257649311431, + "fn": 41046, + "fn_rate": 0.1350370606755472, + "fp": 8666, + "fp_rate": 0.049842122517527565, + "match_probability": 0.06360108419013638, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9680905512535855, + "recall": 0.8649629393244528, + "row_count": 477830, + "tn": 165203, + "tn_rate": 0.9501578774824725, + "tp": 262915, + "tp_rate": 0.8649629393244528, + "truth_threshold": -3.88 + }, + { + "f1": 0.913567503883728, + "fn": 41092, + "fn_rate": 0.13518839587973458, + "fp": 8648, + "fp_rate": 0.049738596299512855, + "match_probability": 0.06443171730929868, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.968149323983397, + "recall": 0.8648116041202655, + "row_count": 477830, + "tn": 165221, + "tn_rate": 0.9502614037004872, + "tp": 262869, + "tp_rate": 0.8648116041202655, + "truth_threshold": -3.86 + }, + { + "f1": 0.9134674212297339, + "fn": 41182, + "fn_rate": 0.13548448649662292, + "fp": 8605, + "fp_rate": 0.049491283667588815, + "match_probability": 0.06527244235958121, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9682921616602306, + "recall": 0.8645155135033771, + "row_count": 477830, + "tn": 165264, + "tn_rate": 0.9505087163324112, + "tp": 262779, + "tp_rate": 0.8645155135033771, + "truth_threshold": -3.84 + }, + { + "f1": 0.9134024704405839, + "fn": 41229, + "fn_rate": 0.1356391115965535, + "fp": 8589, + "fp_rate": 0.04939926036268685, + "match_probability": 0.06612336211932712, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.96834376992566, + "recall": 0.8643608884034465, + "row_count": 477830, + "tn": 165280, + "tn_rate": 0.9506007396373132, + "tp": 262732, + "tp_rate": 0.8643608884034465, + "truth_threshold": -3.8200000000000003 + }, + { + "f1": 0.9132785579922045, + "fn": 41303, + "fn_rate": 0.1358825638815506, + "fp": 8580, + "fp_rate": 0.04934749725367949, + "match_probability": 0.06698457989158756, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.968367264173899, + "recall": 0.8641174361184494, + "row_count": 477830, + "tn": 165289, + "tn_rate": 0.9506525027463205, + "tp": 262658, + "tp_rate": 0.8641174361184494, + "truth_threshold": -3.8000000000000003 + }, + { + "f1": 0.9129412501260838, + "fn": 41484, + "fn_rate": 0.1364780350110705, + "fp": 8576, + "fp_rate": 0.049324491427454, + "match_probability": 0.06785619949188462, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9683604313547535, + "recall": 0.8635219649889295, + "row_count": 477830, + "tn": 165293, + "tn_rate": 0.950675508572546, + "tp": 262477, + "tp_rate": 0.8635219649889295, + "truth_threshold": -3.7800000000000002 + }, + { + "f1": 0.9128452015291658, + "fn": 41539, + "fn_rate": 0.1366589792769467, + "fp": 8571, + "fp_rate": 0.049295734144672136, + "match_probability": 0.0687383252354679, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9683718767643444, + "recall": 0.8633410207230533, + "row_count": 477830, + "tn": 165298, + "tn_rate": 0.9507042658553279, + "tp": 262422, + "tp_rate": 0.8633410207230533, + "truth_threshold": -3.7600000000000002 + }, + { + "f1": 0.9128060938647254, + "fn": 41647, + "fn_rate": 0.13701428801721274, + "fp": 8467, + "fp_rate": 0.04869758266280936, + "match_probability": 0.06963106192405447, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687311886727651, + "recall": 0.8629857119827873, + "row_count": 477830, + "tn": 165402, + "tn_rate": 0.9513024173371907, + "tp": 262314, + "tp_rate": 0.8629857119827873, + "truth_threshold": -3.74 + }, + { + "f1": 0.9125554294783886, + "fn": 41782, + "fn_rate": 0.13745842394254526, + "fp": 8464, + "fp_rate": 0.048680328293140236, + "match_probability": 0.07053451483204333, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687263295189604, + "recall": 0.8625415760574547, + "row_count": 477830, + "tn": 165405, + "tn_rate": 0.9513196717068597, + "tp": 262179, + "tp_rate": 0.8625415760574547, + "truth_threshold": -3.72 + }, + { + "f1": 0.9123473380773998, + "fn": 41902, + "fn_rate": 0.13785321143172974, + "fp": 8452, + "fp_rate": 0.048611310814463765, + "match_probability": 0.07144878969219468, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687554295389097, + "recall": 0.8621467885682703, + "row_count": 477830, + "tn": 165417, + "tn_rate": 0.9513886891855362, + "tp": 262059, + "tp_rate": 0.8621467885682703, + "truth_threshold": -3.7 + }, + { + "f1": 0.9120020338298339, + "fn": 42086, + "fn_rate": 0.13845855224847925, + "fp": 8451, + "fp_rate": 0.04860555935790739, + "match_probability": 0.07237399268076448, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687377462767177, + "recall": 0.8615414477515208, + "row_count": 477830, + "tn": 165418, + "tn_rate": 0.9513944406420927, + "tp": 261875, + "tp_rate": 0.8615414477515208, + "truth_threshold": -3.68 + }, + { + "f1": 0.9118457396229175, + "fn": 42171, + "fn_rate": 0.13873819338665158, + "fp": 8447, + "fp_rate": 0.0485825535316819, + "match_probability": 0.07331023040208501, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687422521712423, + "recall": 0.8612618066133484, + "row_count": 477830, + "tn": 165422, + "tn_rate": 0.951417446468318, + "tp": 261790, + "tp_rate": 0.8612618066133484, + "truth_threshold": -3.66 + }, + { + "f1": 0.9117621444620556, + "fn": 42226, + "fn_rate": 0.13891913765252778, + "fp": 8434, + "fp_rate": 0.04850778459644905, + "match_probability": 0.07425760987258186, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687825028038006, + "recall": 0.8610808623474722, + "row_count": 477830, + "tn": 165435, + "tn_rate": 0.951492215403551, + "tp": 261735, + "tp_rate": 0.8610808623474722, + "truth_threshold": -3.64 + }, + { + "f1": 0.9114190034463653, + "fn": 42412, + "fn_rate": 0.13953105826076373, + "fp": 8428, + "fp_rate": 0.048473275857110816, + "match_probability": 0.0752162385042182, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9687825259188746, + "recall": 0.8604689417392363, + "row_count": 477830, + "tn": 165441, + "tn_rate": 0.9515267241428892, + "tp": 261549, + "tp_rate": 0.8604689417392363, + "truth_threshold": -3.62 + }, + { + "f1": 0.9113274225251976, + "fn": 42472, + "fn_rate": 0.13972845200535594, + "fp": 8415, + "fp_rate": 0.048398506921877964, + "match_probability": 0.0761862240873569, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9688222479103681, + "recall": 0.860271547994644, + "row_count": 477830, + "tn": 165454, + "tn_rate": 0.951601493078122, + "tp": 261489, + "tp_rate": 0.860271547994644, + "truth_threshold": -3.6 + }, + { + "f1": 0.9111207185094277, + "fn": 42637, + "fn_rate": 0.1402712848029846, + "fp": 8347, + "fp_rate": 0.04800740787604461, + "match_probability": 0.07716767477303127, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9690474689529093, + "recall": 0.8597287151970154, + "row_count": 477830, + "tn": 165522, + "tn_rate": 0.9519925921239554, + "tp": 261324, + "tp_rate": 0.8597287151970154, + "truth_threshold": -3.58 + }, + { + "f1": 0.9109888308871477, + "fn": 42714, + "fn_rate": 0.14052460677521128, + "fp": 8338, + "fp_rate": 0.04795564476703725, + "match_probability": 0.07816069905461534, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9690709794684422, + "recall": 0.8594753932247887, + "row_count": 477830, + "tn": 165531, + "tn_rate": 0.9520443552329627, + "tp": 261247, + "tp_rate": 0.8594753932247887, + "truth_threshold": -3.56 + }, + { + "f1": 0.9105073841612967, + "fn": 42985, + "fn_rate": 0.14141616852161956, + "fp": 8318, + "fp_rate": 0.04784061563590979, + "match_probability": 0.07916540574888453, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9691118257369269, + "recall": 0.8585838314783805, + "row_count": 477830, + "tn": 165551, + "tn_rate": 0.9521593843640902, + "tp": 260976, + "tp_rate": 0.8585838314783805, + "truth_threshold": -3.54 + }, + { + "f1": 0.9104476570323923, + "fn": 43044, + "fn_rate": 0.14161027237046858, + "fp": 8285, + "fp_rate": 0.04765081756954949, + "match_probability": 0.08018190397645779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9692238542061352, + "recall": 0.8583897276295315, + "row_count": 477830, + "tn": 165584, + "tn_rate": 0.9523491824304505, + "tp": 260917, + "tp_rate": 0.8583897276295315, + "truth_threshold": -3.52 + }, + { + "f1": 0.9102902374670184, + "fn": 43141, + "fn_rate": 0.14192939225755935, + "fp": 8267, + "fp_rate": 0.04754729135153478, + "match_probability": 0.08121030314161229, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9692775942353217, + "recall": 0.8580706077424406, + "row_count": 477830, + "tn": 165602, + "tn_rate": 0.9524527086484652, + "tp": 260820, + "tp_rate": 0.8580706077424406, + "truth_threshold": -3.5 + }, + { + "f1": 0.9101888373067123, + "fn": 43201, + "fn_rate": 0.1421267860021516, + "fp": 8260, + "fp_rate": 0.047507031155640166, + "match_probability": 0.08225071291146206, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9692959631254182, + "recall": 0.8578732139978484, + "row_count": 477830, + "tn": 165609, + "tn_rate": 0.9524929688443599, + "tp": 260760, + "tp_rate": 0.8578732139978484, + "truth_threshold": -3.48 + }, + { + "f1": 0.9096655456491599, + "fn": 43481, + "fn_rate": 0.14304795681024868, + "fp": 8253, + "fp_rate": 0.04746677095974555, + "match_probability": 0.08330324319449184, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9692892201553215, + "recall": 0.8569520431897513, + "row_count": 477830, + "tn": 165616, + "tn_rate": 0.9525332290402544, + "tp": 260480, + "tp_rate": 0.8569520431897513, + "truth_threshold": -3.46 + }, + { + "f1": 0.9095227450542082, + "fn": 43561, + "fn_rate": 0.143311148469705, + "fp": 8247, + "fp_rate": 0.04743226222040732, + "match_probability": 0.08436800411843749, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693017230789847, + "recall": 0.8566888515302951, + "row_count": 477830, + "tn": 165622, + "tn_rate": 0.9525677377795927, + "tp": 260400, + "tp_rate": 0.8566888515302951, + "truth_threshold": -3.44 + }, + { + "f1": 0.9093252935442963, + "fn": 43673, + "fn_rate": 0.14367961679294383, + "fp": 8238, + "fp_rate": 0.047380499111399965, + "match_probability": 0.08544510600750539, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.969321406493226, + "recall": 0.8563203832070562, + "row_count": 477830, + "tn": 165631, + "tn_rate": 0.9526195008886, + "tp": 260288, + "tp_rate": 0.8563203832070562, + "truth_threshold": -3.42 + }, + { + "f1": 0.9092633741405333, + "fn": 43708, + "fn_rate": 0.14379476314395598, + "fp": 8234, + "fp_rate": 0.04735749328517447, + "match_probability": 0.08653465935892166, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693318484693858, + "recall": 0.856205236856044, + "row_count": 477830, + "tn": 165635, + "tn_rate": 0.9526425067148255, + "tp": 260253, + "tp_rate": 0.856205236856044, + "truth_threshold": -3.4 + }, + { + "f1": 0.9091382406999742, + "fn": 43782, + "fn_rate": 0.14403821542895306, + "fp": 8224, + "fp_rate": 0.04729997871961074, + "match_probability": 0.08763677481880414, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.969359507904159, + "recall": 0.855961784571047, + "row_count": 477830, + "tn": 165645, + "tn_rate": 0.9527000212803892, + "tp": 260179, + "tp_rate": 0.855961784571047, + "truth_threshold": -3.38 + }, + { + "f1": 0.9085579034220426, + "fn": 44088, + "fn_rate": 0.14504492352637344, + "fp": 8223, + "fp_rate": 0.04729422726305437, + "match_probability": 0.08875156315734896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693281511100501, + "recall": 0.8549550764736266, + "row_count": 477830, + "tn": 165646, + "tn_rate": 0.9527057727369457, + "tp": 259873, + "tp_rate": 0.8549550764736266, + "truth_threshold": -3.36 + }, + { + "f1": 0.9081844285659325, + "fn": 44292, + "fn_rate": 0.14571606225798706, + "fp": 8213, + "fp_rate": 0.04723671269749064, + "match_probability": 0.08987913524332442, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693409784905294, + "recall": 0.8542839377420129, + "row_count": 477830, + "tn": 165656, + "tn_rate": 0.9527632873025094, + "tp": 259669, + "tp_rate": 0.8542839377420129, + "truth_threshold": -3.34 + }, + { + "f1": 0.9078733766233766, + "fn": 44469, + "fn_rate": 0.14629837380453414, + "fp": 8195, + "fp_rate": 0.047133186479475925, + "match_probability": 0.0910196020178644, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693858872489138, + "recall": 0.8537016261954659, + "row_count": 477830, + "tn": 165674, + "tn_rate": 0.952866813520524, + "tp": 259492, + "tp_rate": 0.8537016261954659, + "truth_threshold": -3.3200000000000003 + }, + { + "f1": 0.9076583906356621, + "fn": 44584, + "fn_rate": 0.14667671181500258, + "fp": 8193, + "fp_rate": 0.04712168356636318, + "match_probability": 0.09217307446755524, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9693799753335576, + "recall": 0.8533232881849974, + "row_count": 477830, + "tn": 165676, + "tn_rate": 0.9528783164336369, + "tp": 259377, + "tp_rate": 0.8533232881849974, + "truth_threshold": -3.3000000000000003 + }, + { + "f1": 0.9075790239941764, + "fn": 44633, + "fn_rate": 0.14683791670641957, + "fp": 8184, + "fp_rate": 0.04706992045735583, + "match_probability": 0.0933396635968081, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9694069798738001, + "recall": 0.8531620832935805, + "row_count": 477830, + "tn": 165685, + "tn_rate": 0.9529300795426442, + "tp": 259328, + "tp_rate": 0.8531620832935805, + "truth_threshold": -3.2800000000000002 + }, + { + "f1": 0.9070909867577958, + "fn": 44894, + "fn_rate": 0.1476965794953958, + "fp": 8176, + "fp_rate": 0.04702390880490484, + "match_probability": 0.09451948039951134, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9694061210209435, + "recall": 0.8523034205046042, + "row_count": 477830, + "tn": 165693, + "tn_rate": 0.9529760911950952, + "tp": 259067, + "tp_rate": 0.8523034205046042, + "truth_threshold": -3.2600000000000002 + }, + { + "f1": 0.907007283933324, + "fn": 44956, + "fn_rate": 0.14790055303147442, + "fp": 8154, + "fp_rate": 0.04689737676066464, + "match_probability": 0.09571263582995625, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9694788496737897, + "recall": 0.8520994469685256, + "row_count": 477830, + "tn": 165715, + "tn_rate": 0.9531026232393354, + "tp": 259005, + "tp_rate": 0.8520994469685256, + "truth_threshold": -3.24 + }, + { + "f1": 0.9067806702908704, + "fn": 45086, + "fn_rate": 0.14832823947809093, + "fp": 8141, + "fp_rate": 0.04682260782543179, + "match_probability": 0.09691924077303016, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9695111903406537, + "recall": 0.8516717605219091, + "row_count": 477830, + "tn": 165728, + "tn_rate": 0.9531773921745682, + "tp": 258875, + "tp_rate": 0.8516717605219091, + "truth_threshold": -3.22 + }, + { + "f1": 0.9064288142066738, + "fn": 45278, + "fn_rate": 0.14895989946078608, + "fp": 8130, + "fp_rate": 0.04675934180331169, + "match_probability": 0.09813940601367187, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.969529220840064, + "recall": 0.8510401005392139, + "row_count": 477830, + "tn": 165739, + "tn_rate": 0.9532406581966884, + "tp": 258683, + "tp_rate": 0.8510401005392139, + "truth_threshold": -3.2 + }, + { + "f1": 0.9062016998159993, + "fn": 45399, + "fn_rate": 0.14935797684571375, + "fp": 8128, + "fp_rate": 0.04674783889019894, + "match_probability": 0.09937324220558363, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9695226667666579, + "recall": 0.8506420231542863, + "row_count": 477830, + "tn": 165741, + "tn_rate": 0.953252161109801, + "tp": 258562, + "tp_rate": 0.8506420231542863, + "truth_threshold": -3.18 + }, + { + "f1": 0.9057720492843668, + "fn": 45633, + "fn_rate": 0.15012781244962348, + "fp": 8116, + "fp_rate": 0.04667882141152247, + "match_probability": 0.10062085983919537, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9695395655372235, + "recall": 0.8498721875503765, + "row_count": 477830, + "tn": 165753, + "tn_rate": 0.9533211785884775, + "tp": 258328, + "tp_rate": 0.8498721875503765, + "truth_threshold": -3.16 + }, + { + "f1": 0.905689688425999, + "fn": 45690, + "fn_rate": 0.15031533650698609, + "fp": 8099, + "fp_rate": 0.04658104665006413, + "match_probability": 0.10188236920887628, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.969594924353343, + "recall": 0.8496846634930139, + "row_count": 477830, + "tn": 165770, + "tn_rate": 0.9534189533499359, + "tp": 258271, + "tp_rate": 0.8496846634930139, + "truth_threshold": -3.14 + }, + { + "f1": 0.9055577379031693, + "fn": 45772, + "fn_rate": 0.15058510795792882, + "fp": 8083, + "fp_rate": 0.04648902334516216, + "match_probability": 0.10315788037939025, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9696438228578296, + "recall": 0.8494148920420712, + "row_count": 477830, + "tn": 165786, + "tn_rate": 0.9535109766548379, + "tp": 258189, + "tp_rate": 0.8494148920420712, + "truth_threshold": -3.12 + }, + { + "f1": 0.9054527597032463, + "fn": 45830, + "fn_rate": 0.15077592191103464, + "fp": 8078, + "fp_rate": 0.046460266062380295, + "match_probability": 0.10444750315159104, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9696554211164912, + "recall": 0.8492240780889654, + "row_count": 477830, + "tn": 165791, + "tn_rate": 0.9535397339376197, + "tp": 258131, + "tp_rate": 0.8492240780889654, + "truth_threshold": -3.1 + }, + { + "f1": 0.9053773399567792, + "fn": 45885, + "fn_rate": 0.15095686617691084, + "fp": 8060, + "fp_rate": 0.046356739844365585, + "match_probability": 0.1057513470273544, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9697147323173114, + "recall": 0.8490431338230892, + "row_count": 477830, + "tn": 165809, + "tn_rate": 0.9536432601556344, + "tp": 258076, + "tp_rate": 0.8490431338230892, + "truth_threshold": -3.08 + }, + { + "f1": 0.9052960266643277, + "fn": 45929, + "fn_rate": 0.15110162158961182, + "fp": 8057, + "fp_rate": 0.04633948547469647, + "match_probability": 0.10706952117374435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9697206573740365, + "recall": 0.8488983784103882, + "row_count": 477830, + "tn": 165812, + "tn_rate": 0.9536605145253035, + "tp": 258032, + "tp_rate": 0.8488983784103882, + "truth_threshold": -3.06 + }, + { + "f1": 0.9046201376211206, + "fn": 46289, + "fn_rate": 0.15228598405716523, + "fp": 8047, + "fp_rate": 0.04628197090913274, + "match_probability": 0.10840213438641137, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9697161286923404, + "recall": 0.8477140159428348, + "row_count": 477830, + "tn": 165822, + "tn_rate": 0.9537180290908672, + "tp": 257672, + "tp_rate": 0.8477140159428348, + "truth_threshold": -3.04 + }, + { + "f1": 0.9044988992391232, + "fn": 46357, + "fn_rate": 0.15250969696770308, + "fp": 8042, + "fp_rate": 0.046253213626350875, + "match_probability": 0.10974929505222096, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9697266286712392, + "recall": 0.8474903030322969, + "row_count": 477830, + "tn": 165827, + "tn_rate": 0.9537467863736492, + "tp": 257604, + "tp_rate": 0.8474903030322969, + "truth_threshold": -3.02 + }, + { + "f1": 0.9042198612696462, + "fn": 46507, + "fn_rate": 0.15300318132918367, + "fp": 8035, + "fp_rate": 0.04621295343045626, + "match_probability": 0.1111111111111111, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9697350926027067, + "recall": 0.8469968186708163, + "row_count": 477830, + "tn": 165834, + "tn_rate": 0.9537870465695437, + "tp": 257454, + "tp_rate": 0.8469968186708163, + "truth_threshold": -3 + }, + { + "f1": 0.9041225814610294, + "fn": 46579, + "fn_rate": 0.15324005382269437, + "fp": 8010, + "fp_rate": 0.04606916701654694, + "match_probability": 0.11248769001717858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9698182311448725, + "recall": 0.8467599461773057, + "row_count": 477830, + "tn": 165859, + "tn_rate": 0.953930832983453, + "tp": 257382, + "tp_rate": 0.8467599461773057, + "truth_threshold": -2.98 + }, + { + "f1": 0.9040247895557836, + "fn": 46643, + "fn_rate": 0.1534506071502594, + "fp": 7993, + "fp_rate": 0.0459713922550886, + "match_probability": 0.11387913869899342, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9698730923331487, + "recall": 0.8465493928497406, + "row_count": 477830, + "tn": 165876, + "tn_rate": 0.9540286077449114, + "tp": 257318, + "tp_rate": 0.8465493928497406, + "truth_threshold": -2.96 + }, + { + "f1": 0.9040885034123576, + "fn": 46699, + "fn_rate": 0.15363484131187882, + "fp": 7886, + "fp_rate": 0.0453559864035567, + "match_probability": 0.11528556351914263, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9702581199933622, + "recall": 0.8463651586881211, + "row_count": 477830, + "tn": 165983, + "tn_rate": 0.9546440135964434, + "tp": 257262, + "tp_rate": 0.8463651586881211, + "truth_threshold": -2.94 + }, + { + "f1": 0.903720812503955, + "fn": 46894, + "fn_rate": 0.15427637098180358, + "fp": 7880, + "fp_rate": 0.045321477664218464, + "match_probability": 0.1167070702330039, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.970258202583913, + "recall": 0.8457236290181964, + "row_count": 477830, + "tn": 165989, + "tn_rate": 0.9546785223357815, + "tp": 257067, + "tp_rate": 0.8457236290181964, + "truth_threshold": -2.92 + }, + { + "f1": 0.9035727722476362, + "fn": 46984, + "fn_rate": 0.15457246159869192, + "fp": 7865, + "fp_rate": 0.04523520581587287, + "match_probability": 0.1181437639467516, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9703030486101147, + "recall": 0.845427538401308, + "row_count": 477830, + "tn": 166004, + "tn_rate": 0.9547647941841272, + "tp": 256977, + "tp_rate": 0.845427538401308, + "truth_threshold": -2.9 + }, + { + "f1": 0.903302160525307, + "fn": 47126, + "fn_rate": 0.1550396267942269, + "fp": 7862, + "fp_rate": 0.045217951446203754, + "match_probability": 0.11959574907459691, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9702981144478403, + "recall": 0.8449603732057731, + "row_count": 477830, + "tn": 166007, + "tn_rate": 0.9547820485537962, + "tp": 256835, + "tp_rate": 0.8449603732057731, + "truth_threshold": -2.88 + }, + { + "f1": 0.9031290123999648, + "fn": 47224, + "fn_rate": 0.15536203657706088, + "fp": 7853, + "fp_rate": 0.04516618833719639, + "match_probability": 0.12106312929526573, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9703201179182886, + "recall": 0.8446379634229392, + "row_count": 477830, + "tn": 166016, + "tn_rate": 0.9548338116628036, + "tp": 256737, + "tp_rate": 0.8446379634229392, + "truth_threshold": -2.86 + }, + { + "f1": 0.9030156942782743, + "fn": 47342, + "fn_rate": 0.15575024427475892, + "fp": 7781, + "fp_rate": 0.044752083465137545, + "match_probability": 0.12254600750771812, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.970571104387292, + "recall": 0.8442497557252411, + "row_count": 477830, + "tn": 166088, + "tn_rate": 0.9552479165348624, + "tp": 256619, + "tp_rate": 0.8442497557252411, + "truth_threshold": -2.84 + }, + { + "f1": 0.9029367774630044, + "fn": 47387, + "fn_rate": 0.15589828958320312, + "fp": 7776, + "fp_rate": 0.04472332618235568, + "match_probability": 0.12404448578611339, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9705844524304899, + "recall": 0.8441017104167969, + "row_count": 477830, + "tn": 166093, + "tn_rate": 0.9552766738176444, + "tp": 256574, + "tp_rate": 0.8441017104167969, + "truth_threshold": -2.82 + }, + { + "f1": 0.9028361455451608, + "fn": 47449, + "fn_rate": 0.15610226311928174, + "fp": 7764, + "fp_rate": 0.04465430870367921, + "match_probability": 0.12555866533402688, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9706216228488399, + "recall": 0.8438977368807182, + "row_count": 477830, + "tn": 166105, + "tn_rate": 0.9553456912963207, + "tp": 256512, + "tp_rate": 0.8438977368807182, + "truth_threshold": -2.8000000000000003 + }, + { + "f1": 0.902552383903327, + "fn": 47628, + "fn_rate": 0.15669115445731524, + "fp": 7724, + "fp_rate": 0.04442425044142429, + "match_probability": 0.12708864643792386, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.97074873985541, + "recall": 0.8433088455426847, + "row_count": 477830, + "tn": 166145, + "tn_rate": 0.9555757495585757, + "tp": 256333, + "tp_rate": 0.8433088455426847, + "truth_threshold": -2.7800000000000002 + }, + { + "f1": 0.9023971939413362, + "fn": 47719, + "fn_rate": 0.1569905349699468, + "fp": 7711, + "fp_rate": 0.044349481506191446, + "match_probability": 0.12863452841989784, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9707864657723155, + "recall": 0.8430094650300533, + "row_count": 477830, + "tn": 166158, + "tn_rate": 0.9556505184938086, + "tp": 256242, + "tp_rate": 0.8430094650300533, + "truth_threshold": -2.7600000000000002 + }, + { + "f1": 0.9021658716682285, + "fn": 47874, + "fn_rate": 0.1575004688101434, + "fp": 7669, + "fp_rate": 0.04410792033082378, + "match_probability": 0.13019640958968035, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9709238841959993, + "recall": 0.8424995311898565, + "row_count": 477830, + "tn": 166200, + "tn_rate": 0.9558920796691762, + "tp": 256087, + "tp_rate": 0.8424995311898565, + "truth_threshold": -2.74 + }, + { + "f1": 0.9020104664070622, + "fn": 48002, + "fn_rate": 0.1579215754652735, + "fp": 7611, + "fp_rate": 0.04377433585055415, + "match_probability": 0.13177438719593176, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9711234207231475, + "recall": 0.8420784245347265, + "row_count": 477830, + "tn": 166258, + "tn_rate": 0.9562256641494459, + "tp": 255959, + "tp_rate": 0.8420784245347265, + "truth_threshold": -2.72 + }, + { + "f1": 0.901949795926999, + "fn": 48058, + "fn_rate": 0.1581058096268929, + "fp": 7581, + "fp_rate": 0.043601792153862964, + "match_probability": 0.13336855737682143, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9712278544427745, + "recall": 0.8418941903731071, + "row_count": 477830, + "tn": 166288, + "tn_rate": 0.956398207846137, + "tp": 255903, + "tp_rate": 0.8418941903731071, + "truth_threshold": -2.7 + }, + { + "f1": 0.901677143673075, + "fn": 48212, + "fn_rate": 0.15861245357134632, + "fp": 7564, + "fp_rate": 0.04350401739240463, + "match_probability": 0.13497901510990773, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9712737312627937, + "recall": 0.8413875464286537, + "row_count": 477830, + "tn": 166305, + "tn_rate": 0.9564959826075954, + "tp": 255749, + "tp_rate": 0.8413875464286537, + "truth_threshold": -2.68 + }, + { + "f1": 0.9015782458763214, + "fn": 48268, + "fn_rate": 0.15879668773296574, + "fp": 7559, + "fp_rate": 0.043475260109622764, + "match_probability": 0.13660585416132934, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9712860681020468, + "recall": 0.8412033122670343, + "row_count": 477830, + "tn": 166310, + "tn_rate": 0.9565247398903772, + "tp": 255693, + "tp_rate": 0.8412033122670343, + "truth_threshold": -2.66 + }, + { + "f1": 0.9014705363754981, + "fn": 48331, + "fn_rate": 0.15900395116478758, + "fp": 7550, + "fp_rate": 0.04342349700061541, + "match_probability": 0.1382491670343198, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9713124097575804, + "recall": 0.8409960488352124, + "row_count": 477830, + "tn": 166319, + "tn_rate": 0.9565765029993846, + "tp": 255630, + "tp_rate": 0.8409960488352124, + "truth_threshold": -2.64 + }, + { + "f1": 0.901073197578426, + "fn": 48550, + "fn_rate": 0.15972443833254923, + "fp": 7533, + "fp_rate": 0.043325722239157066, + "match_probability": 0.1399090449170576, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9713513143483024, + "recall": 0.8402755616674508, + "row_count": 477830, + "tn": 166336, + "tn_rate": 0.9566742777608429, + "tp": 255411, + "tp_rate": 0.8402755616674508, + "truth_threshold": -2.62 + }, + { + "f1": 0.9009572264777382, + "fn": 48609, + "fn_rate": 0.15991854218139828, + "fp": 7533, + "fp_rate": 0.043325722239157066, + "match_probability": 0.14158557762986687, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9713448846453773, + "recall": 0.8400814578186018, + "row_count": 477830, + "tn": 166336, + "tn_rate": 0.9566742777608429, + "tp": 255352, + "tp_rate": 0.8400814578186018, + "truth_threshold": -2.6 + }, + { + "f1": 0.9003279683964146, + "fn": 48935, + "fn_rate": 0.16099104819368273, + "fp": 7531, + "fp_rate": 0.04331421932604432, + "match_probability": 0.14327885357178247, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9713167045631996, + "recall": 0.8390089518063173, + "row_count": 477830, + "tn": 166338, + "tn_rate": 0.9566857806739557, + "tp": 255026, + "tp_rate": 0.8390089518063173, + "truth_threshold": -2.58 + }, + { + "f1": 0.9002047950284241, + "fn": 49014, + "fn_rate": 0.16125094995739586, + "fp": 7512, + "fp_rate": 0.04320494165147323, + "match_probability": 0.14498895966649594, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9713783867194495, + "recall": 0.8387490500426041, + "row_count": 477830, + "tn": 166357, + "tn_rate": 0.9567950583485267, + "tp": 254947, + "tp_rate": 0.8387490500426041, + "truth_threshold": -2.56 + }, + { + "f1": 0.9000723985096502, + "fn": 49101, + "fn_rate": 0.16153717088705458, + "fp": 7489, + "fp_rate": 0.04307265815067666, + "match_probability": 0.14671598130769928, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9714540554757213, + "recall": 0.8384628291129455, + "row_count": 477830, + "tn": 166380, + "tn_rate": 0.9569273418493234, + "tp": 254860, + "tp_rate": 0.8384628291129455, + "truth_threshold": -2.54 + }, + { + "f1": 0.8999650326185624, + "fn": 49162, + "fn_rate": 0.16173785452739003, + "fp": 7483, + "fp_rate": 0.04303814941133842, + "match_probability": 0.14846000230384404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9714696395482725, + "recall": 0.83826214547261, + "row_count": 477830, + "tn": 166386, + "tn_rate": 0.9569618505886616, + "tp": 254799, + "tp_rate": 0.83826214547261, + "truth_threshold": -2.52 + }, + { + "f1": 0.8998728274692667, + "fn": 49225, + "fn_rate": 0.16194511795921188, + "fp": 7463, + "fp_rate": 0.04292312028021096, + "match_probability": 0.15022110482233483, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9715368861055915, + "recall": 0.8380548820407882, + "row_count": 477830, + "tn": 166406, + "tn_rate": 0.957076879719789, + "tp": 254736, + "tp_rate": 0.8380548820407882, + "truth_threshold": -2.5 + }, + { + "f1": 0.9041257869674987, + "fn": 49342, + "fn_rate": 0.16233003576116672, + "fp": 4659, + "fp_rate": 0.026796036096141347, + "match_probability": 0.15199936933317765, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.982030870339944, + "recall": 0.8376699642388332, + "row_count": 477830, + "tn": 169210, + "tn_rate": 0.9732039639038587, + "tp": 254619, + "tp_rate": 0.8376699642388332, + "truth_threshold": -2.48 + }, + { + "f1": 0.9038026392909791, + "fn": 49527, + "fn_rate": 0.16293866647365945, + "fp": 4636, + "fp_rate": 0.026663752595344772, + "match_probability": 0.15379487455210342, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9821052225267303, + "recall": 0.8370613335263406, + "row_count": 477830, + "tn": 169233, + "tn_rate": 0.9733362474046552, + "tp": 254434, + "tp_rate": 0.8370613335263406, + "truth_threshold": -2.46 + }, + { + "f1": 0.9037096510611691, + "fn": 49583, + "fn_rate": 0.16312290063527887, + "fp": 4626, + "fp_rate": 0.026606238029781043, + "match_probability": 0.15560769738318947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9821392719803556, + "recall": 0.8368770993647211, + "row_count": 477830, + "tn": 169243, + "tn_rate": 0.973393761970219, + "tp": 254378, + "tp_rate": 0.8368770993647211, + "truth_threshold": -2.44 + }, + { + "f1": 0.9034670968704804, + "fn": 49710, + "fn_rate": 0.16354071739466577, + "fp": 4623, + "fp_rate": 0.026588983660111924, + "match_probability": 0.1574379128610021, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9821418914220817, + "recall": 0.8364592826053342, + "row_count": 477830, + "tn": 169246, + "tn_rate": 0.973411016339888, + "tp": 254251, + "tp_rate": 0.8364592826053342, + "truth_threshold": -2.42 + }, + { + "f1": 0.9029682272761209, + "fn": 49975, + "fn_rate": 0.1644125397666148, + "fp": 4612, + "fp_rate": 0.02652571763799182, + "match_probability": 0.15928559409228404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9821653686416755, + "recall": 0.8355874602333851, + "row_count": 477830, + "tn": 169257, + "tn_rate": 0.9734742823620082, + "tp": 253986, + "tp_rate": 0.8355874602333851, + "truth_threshold": -2.4 + }, + { + "f1": 0.9027746663679713, + "fn": 50080, + "fn_rate": 0.1647579788196512, + "fp": 4605, + "fp_rate": 0.02648545744209721, + "match_probability": 0.16115081219721364, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9821847218031151, + "recall": 0.8352420211803488, + "row_count": 477830, + "tn": 169264, + "tn_rate": 0.9735145425579028, + "tp": 253881, + "tp_rate": 0.8352420211803488, + "truth_threshold": -2.38 + }, + { + "f1": 0.9026530104200007, + "fn": 50144, + "fn_rate": 0.16496853214721627, + "fp": 4602, + "fp_rate": 0.026468203072428094, + "match_probability": 0.16303363625026068, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.982191711909728, + "recall": 0.8350314678527837, + "row_count": 477830, + "tn": 169267, + "tn_rate": 0.9735317969275719, + "tp": 253817, + "tp_rate": 0.8350314678527837, + "truth_threshold": -2.36 + }, + { + "f1": 0.9025282057848535, + "fn": 50217, + "fn_rate": 0.16520869453647014, + "fp": 4592, + "fp_rate": 0.026410688506864365, + "match_probability": 0.1649341332206679, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.982224699616004, + "recall": 0.8347913054635299, + "row_count": 477830, + "tn": 169277, + "tn_rate": 0.9735893114931357, + "tp": 253744, + "tp_rate": 0.8347913054635299, + "truth_threshold": -2.34 + }, + { + "f1": 0.9023955546701576, + "fn": 50294, + "fn_rate": 0.16546201650869685, + "fp": 4580, + "fp_rate": 0.02634167102818789, + "match_probability": 0.16685236791258687, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9822650408330009, + "recall": 0.8345379834913031, + "row_count": 477830, + "tn": 169289, + "tn_rate": 0.9736583289718121, + "tp": 253667, + "tp_rate": 0.8345379834913031, + "truth_threshold": -2.32 + }, + { + "f1": 0.9022489779798691, + "fn": 50374, + "fn_rate": 0.16572520816815314, + "fp": 4574, + "fp_rate": 0.02630716228884965, + "match_probability": 0.1687884029048976, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9822823741773544, + "recall": 0.8342747918318468, + "row_count": 477830, + "tn": 169295, + "tn_rate": 0.9736928377111503, + "tp": 253587, + "tp_rate": 0.8342747918318468, + "truth_threshold": -2.3000000000000003 + }, + { + "f1": 0.9018597284262604, + "fn": 50579, + "fn_rate": 0.16639963679550995, + "fp": 4568, + "fp_rate": 0.026272653549511412, + "match_probability": 0.17074229849074432, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9822911416941268, + "recall": 0.83360036320449, + "row_count": 477830, + "tn": 169301, + "tn_rate": 0.9737273464504886, + "tp": 253382, + "tp_rate": 0.83360036320449, + "truth_threshold": -2.2800000000000002 + }, + { + "f1": 0.9016148900265588, + "fn": 50710, + "fn_rate": 0.16683061313786965, + "fp": 4561, + "fp_rate": 0.026232393353616802, + "match_probability": 0.17271411261681832, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9823088141746699, + "recall": 0.8331693868621304, + "row_count": 477830, + "tn": 169308, + "tn_rate": 0.9737676066463832, + "tp": 253251, + "tp_rate": 0.8331693868621304, + "truth_threshold": -2.2600000000000002 + }, + { + "f1": 0.9013250905413249, + "fn": 50859, + "fn_rate": 0.16732080760360704, + "fp": 4560, + "fp_rate": 0.02622664189706043, + "match_probability": 0.1747039008224231, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9823023961624143, + "recall": 0.832679192396393, + "row_count": 477830, + "tn": 169309, + "tn_rate": 0.9737733581029395, + "tp": 253102, + "tp_rate": 0.832679192396393, + "truth_threshold": -2.24 + }, + { + "f1": 0.9004348290979078, + "fn": 51326, + "fn_rate": 0.16885718891568327, + "fp": 4545, + "fp_rate": 0.026140370048714837, + "match_probability": 0.17671171617835496, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9823275526868341, + "recall": 0.8311428110843168, + "row_count": 477830, + "tn": 169324, + "tn_rate": 0.9738596299512852, + "tp": 252635, + "tp_rate": 0.8311428110843168, + "truth_threshold": -2.22 + }, + { + "f1": 0.900186101564394, + "fn": 51466, + "fn_rate": 0.1693177743197318, + "fp": 4528, + "fp_rate": 0.026042595287256498, + "match_probability": 0.17873760922563603, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.982382899584862, + "recall": 0.8306822256802682, + "row_count": 477830, + "tn": 169341, + "tn_rate": 0.9739574047127435, + "tp": 252495, + "tp_rate": 0.8306822256802682, + "truth_threshold": -2.2 + }, + { + "f1": 0.9000852174471135, + "fn": 51524, + "fn_rate": 0.16950858827283763, + "fp": 4521, + "fp_rate": 0.026002335091361888, + "match_probability": 0.18078162791413613, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9824056849757548, + "recall": 0.8304914117271623, + "row_count": 477830, + "tn": 169348, + "tn_rate": 0.9739976649086381, + "tp": 252437, + "tp_rate": 0.8304914117271623, + "truth_threshold": -2.18 + }, + { + "f1": 0.8998134720939274, + "fn": 51665, + "fn_rate": 0.16997246357262938, + "fp": 4517, + "fp_rate": 0.025979329265136394, + "match_probability": 0.18284381754112208, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9824113265294202, + "recall": 0.8300275364273706, + "row_count": 477830, + "tn": 169352, + "tn_rate": 0.9740206707348636, + "tp": 252296, + "tp_rate": 0.8300275364273706, + "truth_threshold": -2.16 + }, + { + "f1": 0.8996989327093202, + "fn": 51743, + "fn_rate": 0.1702290754405993, + "fp": 4494, + "fp_rate": 0.02584704576433982, + "match_probability": 0.18492422068977335, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9824940010595531, + "recall": 0.8297709245594007, + "row_count": 477830, + "tn": 169375, + "tn_rate": 0.9741529542356602, + "tp": 252218, + "tp_rate": 0.8297709245594007, + "truth_threshold": -2.14 + }, + { + "f1": 0.8994862280576567, + "fn": 51853, + "fn_rate": 0.1705909639723517, + "fp": 4492, + "fp_rate": 0.025835542851227074, + "match_probability": 0.187022877167705, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9824941543257989, + "recall": 0.8294090360276483, + "row_count": 477830, + "tn": 169377, + "tn_rate": 0.974164457148773, + "tp": 252108, + "tp_rate": 0.8294090360276483, + "truth_threshold": -2.12 + }, + { + "f1": 0.8993248595836396, + "fn": 51936, + "fn_rate": 0.17086402531903763, + "fp": 4490, + "fp_rate": 0.025824039938114326, + "match_probability": 0.18913982394553902, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9824961503225932, + "recall": 0.8291359746809623, + "row_count": 477830, + "tn": 169379, + "tn_rate": 0.9741759600618857, + "tp": 252025, + "tp_rate": 0.8291359746809623, + "truth_threshold": -2.1 + }, + { + "f1": 0.8991662919263081, + "fn": 52020, + "fn_rate": 0.17114037656146677, + "fp": 4486, + "fp_rate": 0.025801034111888835, + "match_probability": 0.19127509509556725, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9825057423750229, + "recall": 0.8288596234385333, + "row_count": 477830, + "tn": 169383, + "tn_rate": 0.9741989658881112, + "tp": 251941, + "tp_rate": 0.8288596234385333, + "truth_threshold": -2.08 + }, + { + "f1": 0.8990546975960474, + "fn": 52116, + "fn_rate": 0.17145620655281435, + "fp": 4439, + "fp_rate": 0.025530715653739308, + "match_probability": 0.1934287217305493, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9826793713224392, + "recall": 0.8285437934471857, + "row_count": 477830, + "tn": 169430, + "tn_rate": 0.9744692843462607, + "tp": 251845, + "tp_rate": 0.8285437934471857, + "truth_threshold": -2.06 + }, + { + "f1": 0.899107704177859, + "fn": 52254, + "fn_rate": 0.17191021216537647, + "fp": 4236, + "fp_rate": 0.024363169972795612, + "match_probability": 0.19560073194269076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.983449439914356, + "recall": 0.8280897878346235, + "row_count": 477830, + "tn": 169633, + "tn_rate": 0.9756368300272044, + "tp": 251707, + "tp_rate": 0.8280897878346235, + "truth_threshold": -2.04 + }, + { + "f1": 0.8989031013291411, + "fn": 52376, + "fn_rate": 0.17231157944604736, + "fp": 4215, + "fp_rate": 0.02424238938511178, + "match_probability": 0.19779115074284692, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.98352228303362, + "recall": 0.8276884205539526, + "row_count": 477830, + "tn": 169654, + "tn_rate": 0.9757576106148882, + "tp": 251585, + "tp_rate": 0.8276884205539526, + "truth_threshold": -2.02 + }, + { + "f1": 0.8987417315574869, + "fn": 52467, + "fn_rate": 0.17261095995867892, + "fp": 4203, + "fp_rate": 0.024173371906435304, + "match_probability": 0.2, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9835625760177085, + "recall": 0.8273890400413211, + "row_count": 477830, + "tn": 169666, + "tn_rate": 0.9758266280935647, + "tp": 251494, + "tp_rate": 0.8273890400413211, + "truth_threshold": -2 + }, + { + "f1": 0.8986154198058586, + "fn": 52532, + "fn_rate": 0.17282480318198717, + "fp": 4202, + "fp_rate": 0.024167620449878933, + "match_probability": 0.20222729838105732, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9835622440157884, + "recall": 0.8271751968180129, + "row_count": 477830, + "tn": 169667, + "tn_rate": 0.975832379550121, + "tp": 251429, + "tp_rate": 0.8271751968180129, + "truth_threshold": -1.98 + }, + { + "f1": 0.8983612535123656, + "fn": 52666, + "fn_rate": 0.17326564921157647, + "fp": 4197, + "fp_rate": 0.02413886316709707, + "match_probability": 0.2044730612910191, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9835728711662205, + "recall": 0.8267343507884235, + "row_count": 477830, + "tn": 169672, + "tn_rate": 0.975861136832903, + "tp": 251295, + "tp_rate": 0.8267343507884235, + "truth_threshold": -1.96 + }, + { + "f1": 0.8981363616859991, + "fn": 52781, + "fn_rate": 0.17364398722204494, + "fp": 4195, + "fp_rate": 0.02412736025398432, + "match_probability": 0.2067373008135667, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.98357317670093, + "recall": 0.8263560127779551, + "row_count": 477830, + "tn": 169674, + "tn_rate": 0.9758726397460157, + "tp": 251180, + "tp_rate": 0.8263560127779551, + "truth_threshold": -1.94 + }, + { + "f1": 0.898156195790189, + "fn": 52850, + "fn_rate": 0.173870990028326, + "fp": 4099, + "fp_rate": 0.023575220424572524, + "match_probability": 0.2090200256521214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9839387171349085, + "recall": 0.826129009971674, + "row_count": 477830, + "tn": 169770, + "tn_rate": 0.9764247795754275, + "tp": 251111, + "tp_rate": 0.826129009971674, + "truth_threshold": -1.92 + }, + { + "f1": 0.897931147974972, + "fn": 52965, + "fn_rate": 0.17424932803879445, + "fp": 4098, + "fp_rate": 0.02356946896801615, + "match_probability": 0.21132124107142602, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9839353336417164, + "recall": 0.8257506719612056, + "row_count": 477830, + "tn": 169771, + "tn_rate": 0.9764305310319839, + "tp": 250996, + "tp_rate": 0.8257506719612056, + "truth_threshold": -1.9000000000000001 + }, + { + "f1": 0.8978024101213647, + "fn": 53036, + "fn_rate": 0.17448291063656193, + "fp": 4091, + "fp_rate": 0.02352920877212154, + "match_probability": 0.213640948839702, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9839578693101609, + "recall": 0.825517089363438, + "row_count": 477830, + "tn": 169778, + "tn_rate": 0.9764707912278785, + "tp": 250925, + "tp_rate": 0.825517089363438, + "truth_threshold": -1.8800000000000001 + }, + { + "f1": 0.8976642821612995, + "fn": 53115, + "fn_rate": 0.17474281240027503, + "fp": 4080, + "fp_rate": 0.02346594275000144, + "match_probability": 0.2159791471714348, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9839953555149338, + "recall": 0.825257187599725, + "row_count": 477830, + "tn": 169789, + "tn_rate": 0.9765340572499985, + "tp": 250846, + "tp_rate": 0.825257187599725, + "truth_threshold": -1.86 + }, + { + "f1": 0.8985604393240947, + "fn": 53286, + "fn_rate": 0.17530538457236292, + "fp": 3313, + "fp_rate": 0.019054575571263423, + "match_probability": 0.21833583067084317, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9869560766650393, + "recall": 0.8246946154276371, + "row_count": 477830, + "tn": 170556, + "tn_rate": 0.9809454244287366, + "tp": 250675, + "tp_rate": 0.8246946154276371, + "truth_threshold": -1.84 + }, + { + "f1": 0.8984164656028508, + "fn": 53363, + "fn_rate": 0.1755587065445896, + "fp": 3307, + "fp_rate": 0.019020066831925184, + "match_probability": 0.2207109902760858, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9869754435714145, + "recall": 0.8244412934554104, + "row_count": 477830, + "tn": 170562, + "tn_rate": 0.9809799331680749, + "tp": 250598, + "tp_rate": 0.8244412934554104, + "truth_threshold": -1.82 + }, + { + "f1": 0.8982591390716603, + "fn": 53450, + "fn_rate": 0.17584492747424835, + "fp": 3298, + "fp_rate": 0.01896830372291783, + "match_probability": 0.22310461320426225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.987005976935412, + "recall": 0.8241550725257517, + "row_count": 477830, + "tn": 170571, + "tn_rate": 0.9810316962770822, + "tp": 250511, + "tp_rate": 0.8241550725257517, + "truth_threshold": -1.8 + }, + { + "f1": 0.89802806191986, + "fn": 53580, + "fn_rate": 0.17627261392086485, + "fp": 3282, + "fp_rate": 0.018876280418015864, + "match_probability": 0.225516682897264, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9870615738203837, + "recall": 0.8237273860791352, + "row_count": 477830, + "tn": 170587, + "tn_rate": 0.9811237195819842, + "tp": 250381, + "tp_rate": 0.8237273860791352, + "truth_threshold": -1.78 + }, + { + "f1": 0.8978935889341675, + "fn": 53657, + "fn_rate": 0.17652593589309154, + "fp": 3272, + "fp_rate": 0.018818765852452134, + "match_probability": 0.22794717896853242, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9870965706533741, + "recall": 0.8234740641069085, + "row_count": 477830, + "tn": 170597, + "tn_rate": 0.9811812341475479, + "tp": 250304, + "tp_rate": 0.8234740641069085, + "truth_threshold": -1.76 + }, + { + "f1": 0.8975640740395174, + "fn": 53844, + "fn_rate": 0.17714114639707068, + "fp": 3247, + "fp_rate": 0.01867497943854281, + "match_probability": 0.2303960771507819, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9871844460933676, + "recall": 0.8228588536029293, + "row_count": 477830, + "tn": 170622, + "tn_rate": 0.9813250205614572, + "tp": 250117, + "tp_rate": 0.8228588536029293, + "truth_threshold": -1.74 + }, + { + "f1": 0.8974936020990141, + "fn": 53913, + "fn_rate": 0.17736814920335175, + "fp": 3206, + "fp_rate": 0.018439169719731523, + "match_probability": 0.23286334924474508, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9873407725050739, + "recall": 0.8226318507966482, + "row_count": 477830, + "tn": 170663, + "tn_rate": 0.9815608302802685, + "tp": 250048, + "tp_rate": 0.8226318507966482, + "truth_threshold": -1.72 + }, + { + "f1": 0.8979181261338938, + "fn": 54021, + "fn_rate": 0.17772345794361777, + "fp": 2810, + "fp_rate": 0.016161592923407853, + "match_probability": 0.2353489630689996, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9888822947576656, + "recall": 0.8222765420563822, + "row_count": 477830, + "tn": 171059, + "tn_rate": 0.9838384070765921, + "tp": 249940, + "tp_rate": 0.8222765420563822, + "truth_threshold": -1.7 + }, + { + "f1": 0.897744912038634, + "fn": 54115, + "fn_rate": 0.17803270814347893, + "fp": 2802, + "fp_rate": 0.01611558127095687, + "match_probability": 0.2378528824109348, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9889094708843925, + "recall": 0.8219672918565211, + "row_count": 477830, + "tn": 171067, + "tn_rate": 0.9838844187290431, + "tp": 249846, + "tp_rate": 0.8219672918565211, + "truth_threshold": -1.68 + }, + { + "f1": 0.8974855697003242, + "fn": 54250, + "fn_rate": 0.17847684406881145, + "fp": 2796, + "fp_rate": 0.016081072531618633, + "match_probability": 0.24037506697891697, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9889270396464257, + "recall": 0.8215231559311885, + "row_count": 477830, + "tn": 171073, + "tn_rate": 0.9839189274683814, + "tp": 249711, + "tp_rate": 0.8215231559311885, + "truth_threshold": -1.6600000000000001 + }, + { + "f1": 0.897396174058072, + "fn": 54300, + "fn_rate": 0.17864133885597167, + "fp": 2790, + "fp_rate": 0.016046563792280394, + "match_probability": 0.2429154723557138, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9889483503729437, + "recall": 0.8213586611440283, + "row_count": 477830, + "tn": 171079, + "tn_rate": 0.9839534362077196, + "tp": 249661, + "tp_rate": 0.8213586611440283, + "truth_threshold": -1.6400000000000001 + }, + { + "f1": 0.8971211614587266, + "fn": 54442, + "fn_rate": 0.1791085040515066, + "fp": 2786, + "fp_rate": 0.016023557966054904, + "match_probability": 0.2454740499532359, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9889578090010107, + "recall": 0.8208914959484934, + "row_count": 477830, + "tn": 171083, + "tn_rate": 0.9839764420339451, + "tp": 249519, + "tp_rate": 0.8208914959484934, + "truth_threshold": -1.62 + }, + { + "f1": 0.8969559667008289, + "fn": 54531, + "fn_rate": 0.17940130477265176, + "fp": 2780, + "fp_rate": 0.015989049226716665, + "match_probability": 0.2480507469686566, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9889774394353912, + "recall": 0.8205986952273483, + "row_count": 477830, + "tn": 171089, + "tn_rate": 0.9840109507732834, + "tp": 249430, + "tp_rate": 0.8205986952273483, + "truth_threshold": -1.6 + }, + { + "f1": 0.8967427272465687, + "fn": 54645, + "fn_rate": 0.179776352887377, + "fp": 2772, + "fp_rate": 0.015943037574265684, + "match_probability": 0.25064550634196875, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9890038399289137, + "recall": 0.820223647112623, + "row_count": 477830, + "tn": 171097, + "tn_rate": 0.9840569624257344, + "tp": 249316, + "tp_rate": 0.820223647112623, + "truth_threshold": -1.58 + }, + { + "f1": 0.8966464972048148, + "fn": 54713, + "fn_rate": 0.18000006579791486, + "fp": 2748, + "fp_rate": 0.015805002616912735, + "match_probability": 0.2532582667150385, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9890950650010317, + "recall": 0.8199999342020852, + "row_count": 477830, + "tn": 171121, + "tn_rate": 0.9841949973830872, + "tp": 249248, + "tp_rate": 0.8199999342020852, + "truth_threshold": -1.56 + }, + { + "f1": 0.8964667362285468, + "fn": 54806, + "fn_rate": 0.18030602610203283, + "fp": 2745, + "fp_rate": 0.015787748247243615, + "match_probability": 0.2558889623922157, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9891028185788011, + "recall": 0.8196939738979672, + "row_count": 477830, + "tn": 171124, + "tn_rate": 0.9842122517527564, + "tp": 249155, + "tp_rate": 0.8196939738979672, + "truth_threshold": -1.54 + }, + { + "f1": 0.8964321056514151, + "fn": 54847, + "fn_rate": 0.18044091182750419, + "fp": 2715, + "fp_rate": 0.015615204550552427, + "match_probability": 0.2585375233025599, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9892188747126026, + "recall": 0.8195590881724958, + "row_count": 477830, + "tn": 171154, + "tn_rate": 0.9843847954494476, + "tp": 249114, + "tp_rate": 0.8195590881724958, + "truth_threshold": -1.52 + }, + { + "f1": 0.8961788758350611, + "fn": 54981, + "fn_rate": 0.1808817578570935, + "fp": 2707, + "fp_rate": 0.015569192898101445, + "match_probability": 0.2612038749637415, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9892445775904198, + "recall": 0.8191182421429065, + "row_count": 477830, + "tn": 171162, + "tn_rate": 0.9844308071018986, + "tp": 248980, + "tp_rate": 0.8191182421429065, + "truth_threshold": -1.5 + }, + { + "f1": 0.8954549711478197, + "fn": 55363, + "fn_rate": 0.1821384980309974, + "fp": 2686, + "fp_rate": 0.015448412310417613, + "match_probability": 0.2638879384476761, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9893108992215979, + "recall": 0.8178615019690026, + "row_count": 477830, + "tn": 171183, + "tn_rate": 0.9845515876895824, + "tp": 248598, + "tp_rate": 0.8178615019690026, + "truth_threshold": -1.48 + }, + { + "f1": 0.8950641750924251, + "fn": 55561, + "fn_rate": 0.18278989738815177, + "fp": 2683, + "fp_rate": 0.015431157940748494, + "match_probability": 0.26658963034795197, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9893142904935818, + "recall": 0.8172101026118482, + "row_count": 477830, + "tn": 171186, + "tn_rate": 0.9845688420592515, + "tp": 248400, + "tp_rate": 0.8172101026118482, + "truth_threshold": -1.46 + }, + { + "f1": 0.8949485193687541, + "fn": 55628, + "fn_rate": 0.18301032040294643, + "fp": 2672, + "fp_rate": 0.015367891918628392, + "match_probability": 0.26930886274910526, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9893547937292085, + "recall": 0.8169896795970536, + "row_count": 477830, + "tn": 171197, + "tn_rate": 0.9846321080813716, + "tp": 248333, + "tp_rate": 0.8169896795970536, + "truth_threshold": -1.44 + }, + { + "f1": 0.8946924474435505, + "fn": 55759, + "fn_rate": 0.18344129674530615, + "fp": 2669, + "fp_rate": 0.015350637548959274, + "match_probability": 0.2720455431978043, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9893610660458961, + "recall": 0.8165587032546938, + "row_count": 477830, + "tn": 171200, + "tn_rate": 0.9846493624510407, + "tp": 248202, + "tp_rate": 0.8165587032546938, + "truth_threshold": -1.42 + }, + { + "f1": 0.894573850219375, + "fn": 55825, + "fn_rate": 0.1836584298643576, + "fp": 2662, + "fp_rate": 0.015310377353064664, + "match_probability": 0.2747995746759952, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9893858802701776, + "recall": 0.8163415701356423, + "row_count": 477830, + "tn": 171207, + "tn_rate": 0.9846896226469354, + "tp": 248136, + "tp_rate": 0.8163415701356423, + "truth_threshold": -1.4000000000000001 + }, + { + "f1": 0.8943859282203656, + "fn": 55929, + "fn_rate": 0.18400057902165082, + "fp": 2650, + "fp_rate": 0.015241359874388188, + "match_probability": 0.27757085557606836, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9894288381295825, + "recall": 0.8159994209783492, + "row_count": 477830, + "tn": 171219, + "tn_rate": 0.9847586401256118, + "tp": 248032, + "tp_rate": 0.8159994209783492, + "truth_threshold": -1.3800000000000001 + }, + { + "f1": 0.8942869508764336, + "fn": 56011, + "fn_rate": 0.18427035047259352, + "fp": 2609, + "fp_rate": 0.0150055501555769, + "match_probability": 0.2803592796780973, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9895872828355796, + "recall": 0.8157296495274065, + "row_count": 477830, + "tn": 171260, + "tn_rate": 0.9849944498444231, + "tp": 247950, + "tp_rate": 0.8157296495274065, + "truth_threshold": -1.36 + }, + { + "f1": 0.8941741304120421, + "fn": 56070, + "fn_rate": 0.18446445432144257, + "fp": 2607, + "fp_rate": 0.014994047242464155, + "match_probability": 0.28316473612920606, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9895927312792917, + "recall": 0.8155355456785575, + "row_count": 477830, + "tn": 171262, + "tn_rate": 0.9850059527575359, + "tp": 247891, + "tp_rate": 0.8155355456785575, + "truth_threshold": -1.34 + }, + { + "f1": 0.893929226017809, + "fn": 56196, + "fn_rate": 0.18487898118508625, + "fp": 2602, + "fp_rate": 0.01496528995968229, + "match_probability": 0.2859871094251169, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9896072565473885, + "recall": 0.8151210188149137, + "row_count": 477830, + "tn": 171267, + "tn_rate": 0.9850347100403177, + "tp": 247765, + "tp_rate": 0.8151210188149137, + "truth_threshold": -1.32 + }, + { + "f1": 0.8937478573104058, + "fn": 56299, + "fn_rate": 0.18521784044663625, + "fp": 2587, + "fp_rate": 0.014879018111336696, + "match_probability": 0.2888262793939301, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9896622963528325, + "recall": 0.8147821595533637, + "row_count": 477830, + "tn": 171282, + "tn_rate": 0.9851209818886633, + "tp": 247662, + "tp_rate": 0.8147821595533637, + "truth_threshold": -1.3 + }, + { + "f1": 0.8935986658773589, + "fn": 56402, + "fn_rate": 0.18555669970818625, + "fp": 2552, + "fp_rate": 0.014677717131863645, + "match_probability": 0.29168212118218634, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9897965303405288, + "recall": 0.8144433002918138, + "row_count": 477830, + "tn": 171317, + "tn_rate": 0.9853222828681364, + "tp": 247559, + "tp_rate": 0.8144433002918138, + "truth_threshold": -1.28 + }, + { + "f1": 0.8934971912140598, + "fn": 56473, + "fn_rate": 0.18579028230595374, + "fp": 2528, + "fp_rate": 0.014539682174510694, + "match_probability": 0.29455450524326093, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9898886471265839, + "recall": 0.8142097176940463, + "row_count": 477830, + "tn": 171341, + "tn_rate": 0.9854603178254893, + "tp": 247488, + "tp_rate": 0.8142097176940463, + "truth_threshold": -1.26 + }, + { + "f1": 0.8933603425988113, + "fn": 56552, + "fn_rate": 0.18605018406966684, + "fp": 2515, + "fp_rate": 0.014464913239277847, + "match_probability": 0.2974432973281369, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9899369408300123, + "recall": 0.8139498159303332, + "row_count": 477830, + "tn": 171354, + "tn_rate": 0.9855350867607221, + "tp": 247409, + "tp_rate": 0.8139498159303332, + "truth_threshold": -1.24 + }, + { + "f1": 0.8931315079476873, + "fn": 56677, + "fn_rate": 0.18646142103756733, + "fp": 2501, + "fp_rate": 0.014384392847488627, + "match_probability": 0.300348358478604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.989987389154673, + "recall": 0.8135385789624326, + "row_count": 477830, + "tn": 171368, + "tn_rate": 0.9856156071525114, + "tp": 247284, + "tp_rate": 0.8135385789624326, + "truth_threshold": -1.22 + }, + { + "f1": 0.8929477129377424, + "fn": 56777, + "fn_rate": 0.1867904106118877, + "fp": 2491, + "fp_rate": 0.014326878281924898, + "match_probability": 0.30326954502292763, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9900230299389206, + "recall": 0.8132095893881123, + "row_count": 477830, + "tn": 171378, + "tn_rate": 0.9856731217180751, + "tp": 247184, + "tp_rate": 0.8132095893881123, + "truth_threshold": -1.2 + }, + { + "f1": 0.892855207102516, + "fn": 56866, + "fn_rate": 0.18708321133303285, + "fp": 2438, + "fp_rate": 0.014022051084437133, + "match_probability": 0.3062067085740297, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9902297491714522, + "recall": 0.8129167886669671, + "row_count": 477830, + "tn": 171431, + "tn_rate": 0.9859779489155629, + "tp": 247095, + "tp_rate": 0.8129167886669671, + "truth_threshold": -1.18 + }, + { + "f1": 0.8925480925632739, + "fn": 57034, + "fn_rate": 0.1876359138178911, + "fp": 2421, + "fp_rate": 0.013924276322978794, + "match_probability": 0.309159696030225, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9902906780884547, + "recall": 0.8123640861821089, + "row_count": 477830, + "tn": 171448, + "tn_rate": 0.9860757236770212, + "tp": 246927, + "tp_rate": 0.8123640861821089, + "truth_threshold": -1.16 + }, + { + "f1": 0.8923995719698066, + "fn": 57109, + "fn_rate": 0.1878826559986314, + "fp": 2419, + "fp_rate": 0.013912773409866049, + "match_probability": 0.3121283495785485, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9902957022678129, + "recall": 0.8121173440013686, + "row_count": 477830, + "tn": 171450, + "tn_rate": 0.9860872265901339, + "tp": 246852, + "tp_rate": 0.8121173440013686, + "truth_threshold": -1.1400000000000001 + }, + { + "f1": 0.8920747539181438, + "fn": 57272, + "fn_rate": 0.18841890900477365, + "fp": 2419, + "fp_rate": 0.013912773409866049, + "match_probability": 0.3151125067007146, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9902893524093968, + "recall": 0.8115810909952264, + "row_count": 477830, + "tn": 171450, + "tn_rate": 0.9860872265901339, + "tp": 246689, + "tp_rate": 0.8115810909952264, + "truth_threshold": -1.12 + }, + { + "f1": 0.8917927589337713, + "fn": 57424, + "fn_rate": 0.18891897315774064, + "fp": 2405, + "fp_rate": 0.013832253018076827, + "match_probability": 0.3181120001817404, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9903391151352524, + "recall": 0.8110810268422594, + "row_count": 477830, + "tn": 171464, + "tn_rate": 0.9861677469819232, + "tp": 246537, + "tp_rate": 0.8110810268422594, + "truth_threshold": -1.1 + }, + { + "f1": 0.8916581947373943, + "fn": 57504, + "fn_rate": 0.18918216481719694, + "fp": 2388, + "fp_rate": 0.013734478256618488, + "match_probability": 0.32112665812126734, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9904036649319857, + "recall": 0.810817835182803, + "row_count": 477830, + "tn": 171481, + "tn_rate": 0.9862655217433816, + "tp": 246457, + "tp_rate": 0.810817835182803, + "truth_threshold": -1.08 + }, + { + "f1": 0.8916610571877329, + "fn": 57579, + "fn_rate": 0.18942890699793724, + "fp": 2294, + "fp_rate": 0.013193841340319435, + "match_probability": 0.3241563039476125, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.990775145168814, + "recall": 0.8105710930020628, + "row_count": 477830, + "tn": 171575, + "tn_rate": 0.9868061586596806, + "tp": 246382, + "tp_rate": 0.8105710930020628, + "truth_threshold": -1.06 + }, + { + "f1": 0.8915106632497937, + "fn": 57658, + "fn_rate": 0.18968880876165034, + "fp": 2288, + "fp_rate": 0.013159332600981198, + "match_probability": 0.32720075643457636, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.990796126971612, + "recall": 0.8103111912383496, + "row_count": 477830, + "tn": 171581, + "tn_rate": 0.9868406673990188, + "tp": 246303, + "tp_rate": 0.8103111912383496, + "truth_threshold": -1.04 + }, + { + "f1": 0.8913433830024472, + "fn": 57747, + "fn_rate": 0.1899816094827955, + "fp": 2282, + "fp_rate": 0.01312482386164296, + "match_probability": 0.33025982972103385, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.990816753589595, + "recall": 0.8100183905172045, + "row_count": 477830, + "tn": 171587, + "tn_rate": 0.9868751761383571, + "tp": 246214, + "tp_rate": 0.8100183905172045, + "truth_threshold": -1.02 + }, + { + "f1": 0.8910571637564547, + "fn": 57892, + "fn_rate": 0.19045864436556006, + "fp": 2278, + "fp_rate": 0.013101818035417469, + "match_probability": 0.3333333333333333, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9908273504411167, + "recall": 0.80954135563444, + "row_count": 477830, + "tn": 171591, + "tn_rate": 0.9868981819645826, + "tp": 246069, + "tp_rate": 0.80954135563444, + "truth_threshold": -1 + }, + { + "f1": 0.8909588048890901, + "fn": 57945, + "fn_rate": 0.19063300883994985, + "fp": 2274, + "fp_rate": 0.013078812209191978, + "match_probability": 0.33642107221052214, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9908413548672923, + "recall": 0.8093669911600502, + "row_count": 477830, + "tn": 171595, + "tn_rate": 0.9869211877908081, + "tp": 246016, + "tp_rate": 0.8093669911600502, + "truth_threshold": -0.98 + }, + { + "f1": 0.8907664388250763, + "fn": 58048, + "fn_rate": 0.19097186810149985, + "fp": 2265, + "fp_rate": 0.013027049100184622, + "match_probability": 0.339522846732419, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9908734859657181, + "recall": 0.8090281318985001, + "row_count": 477830, + "tn": 171604, + "tn_rate": 0.9869729508998154, + "tp": 245913, + "tp_rate": 0.8090281318985001, + "truth_threshold": -0.96 + }, + { + "f1": 0.8905932433656372, + "fn": 58135, + "fn_rate": 0.1912580890311586, + "fp": 2263, + "fp_rate": 0.013015546187071876, + "match_probability": 0.3426384527505482, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9908782735228083, + "recall": 0.8087419109688414, + "row_count": 477830, + "tn": 171606, + "tn_rate": 0.9869844538129281, + "tp": 245826, + "tp_rate": 0.8087419109688414, + "truth_threshold": -0.9400000000000001 + }, + { + "f1": 0.8904260484531376, + "fn": 58223, + "fn_rate": 0.19154759985656056, + "fp": 2258, + "fp_rate": 0.012986788904290012, + "match_probability": 0.34576768162194854, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9908950144357167, + "recall": 0.8084524001434394, + "row_count": 477830, + "tn": 171611, + "tn_rate": 0.9870132110957099, + "tp": 245738, + "tp_rate": 0.8084524001434394, + "truth_threshold": -0.92 + }, + { + "f1": 0.8902117265024173, + "fn": 58332, + "fn_rate": 0.19190619849256976, + "fp": 2254, + "fp_rate": 0.01296378307806452, + "match_probability": 0.34891032024586677, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909070004800652, + "recall": 0.8080938015074303, + "row_count": 477830, + "tn": 171615, + "tn_rate": 0.9870362169219354, + "tp": 245629, + "tp_rate": 0.8080938015074303, + "truth_threshold": -0.9 + }, + { + "f1": 0.8898266985715322, + "fn": 58529, + "fn_rate": 0.19255430795398093, + "fp": 2247, + "fp_rate": 0.01292352288216991, + "match_probability": 0.3520661511033437, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909277734486978, + "recall": 0.807445692046019, + "row_count": 477830, + "tn": 171622, + "tn_rate": 0.9870764771178301, + "tp": 245432, + "tp_rate": 0.807445692046019, + "truth_threshold": -0.88 + }, + { + "f1": 0.8896491705194453, + "fn": 58618, + "fn_rate": 0.19284710867512608, + "fp": 2246, + "fp_rate": 0.012917771425613537, + "match_probability": 0.3552349522996959, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909285145947518, + "recall": 0.8071528913248739, + "row_count": 477830, + "tn": 171623, + "tn_rate": 0.9870822285743864, + "tp": 245343, + "tp_rate": 0.8071528913248739, + "truth_threshold": -0.86 + }, + { + "f1": 0.8894792388233459, + "fn": 58704, + "fn_rate": 0.19313003970904163, + "fp": 2244, + "fp_rate": 0.01290626851250079, + "match_probability": 0.3584164976098956, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.990933369966182, + "recall": 0.8068699602909584, + "row_count": 477830, + "tn": 171625, + "tn_rate": 0.9870937314874992, + "tp": 245257, + "tp_rate": 0.8068699602909584, + "truth_threshold": -0.84 + }, + { + "f1": 0.8893217406444172, + "fn": 58783, + "fn_rate": 0.19338994147275473, + "fp": 2243, + "fp_rate": 0.012900517055944418, + "match_probability": 0.36161055652684515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909344800966773, + "recall": 0.8066100585272453, + "row_count": 477830, + "tn": 171626, + "tn_rate": 0.9870994829440556, + "tp": 245178, + "tp_rate": 0.8066100585272453, + "truth_threshold": -0.8200000000000001 + }, + { + "f1": 0.8890823864048645, + "fn": 58905, + "fn_rate": 0.1937913087534256, + "fp": 2240, + "fp_rate": 0.0128832626862753, + "match_probability": 0.36481689431254416, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909420289855072, + "recall": 0.8062086912465743, + "row_count": 477830, + "tn": 171629, + "tn_rate": 0.9871167373137247, + "tp": 245056, + "tp_rate": 0.8062086912465743, + "truth_threshold": -0.8 + }, + { + "f1": 0.8889009844584027, + "fn": 58995, + "fn_rate": 0.19408739937031397, + "fp": 2239, + "fp_rate": 0.012877511229718926, + "match_probability": 0.36803527205213776, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909427398313141, + "recall": 0.8059126006296861, + "row_count": 477830, + "tn": 171630, + "tn_rate": 0.9871224887702811, + "tp": 244966, + "tp_rate": 0.8059126006296861, + "truth_threshold": -0.78 + }, + { + "f1": 0.8886739449194988, + "fn": 59110, + "fn_rate": 0.1944657373807824, + "fp": 2237, + "fp_rate": 0.01286600831660618, + "match_probability": 0.37126544671083744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909465453603574, + "recall": 0.8055342626192176, + "row_count": 477830, + "tn": 171632, + "tn_rate": 0.9871339916833938, + "tp": 244851, + "tp_rate": 0.8055342626192176, + "truth_threshold": -0.76 + }, + { + "f1": 0.8885049042740876, + "fn": 59201, + "fn_rate": 0.19476511789341397, + "fp": 2228, + "fp_rate": 0.012814245207598824, + "match_probability": 0.37450717119369914, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909793188333036, + "recall": 0.805234882106586, + "row_count": 477830, + "tn": 171641, + "tn_rate": 0.9871857547924012, + "tp": 244760, + "tp_rate": 0.805234882106586, + "truth_threshold": -0.74 + }, + { + "f1": 0.888297466768814, + "fn": 59307, + "fn_rate": 0.19511384684219357, + "fp": 2224, + "fp_rate": 0.012791239381373333, + "match_probability": 0.3777601944082411, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909915018754203, + "recall": 0.8048861531578064, + "row_count": 477830, + "tn": 171645, + "tn_rate": 0.9872087606186266, + "tp": 244654, + "tp_rate": 0.8048861531578064, + "truth_threshold": -0.72 + }, + { + "f1": 0.8881480997305561, + "fn": 59381, + "fn_rate": 0.19535729912719066, + "fp": 2224, + "fp_rate": 0.012791239381373333, + "match_probability": 0.3810242613298804, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909888008298082, + "recall": 0.8046427008728093, + "row_count": 477830, + "tn": 171645, + "tn_rate": 0.9872087606186266, + "tp": 244580, + "tp_rate": 0.8046427008728093, + "truth_threshold": -0.7000000000000001 + }, + { + "f1": 0.88792640051139, + "fn": 59490, + "fn_rate": 0.1957158977631999, + "fp": 2224, + "fp_rate": 0.012791239381373333, + "match_probability": 0.38429911307016507, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9909848193112953, + "recall": 0.8042841022368001, + "row_count": 477830, + "tn": 171645, + "tn_rate": 0.9872087606186266, + "tp": 244471, + "tp_rate": 0.8042841022368001, + "truth_threshold": -0.68 + }, + { + "f1": 0.8878128519016311, + "fn": 59555, + "fn_rate": 0.19592974098650814, + "fp": 2213, + "fp_rate": 0.012727973359253231, + "match_probability": 0.38758448694777375, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910266443380275, + "recall": 0.8040702590134918, + "row_count": 477830, + "tn": 171656, + "tn_rate": 0.9872720266407468, + "tp": 244406, + "tp_rate": 0.8040702590134918, + "truth_threshold": -0.66 + }, + { + "f1": 0.8875505510197408, + "fn": 59692, + "fn_rate": 0.19638045670332707, + "fp": 2205, + "fp_rate": 0.012681961706802247, + "match_probability": 0.3908801165622518, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910538231213029, + "recall": 0.803619543296673, + "row_count": 477830, + "tn": 171664, + "tn_rate": 0.9873180382931978, + "tp": 244269, + "tp_rate": 0.803619543296673, + "truth_threshold": -0.64 + }, + { + "f1": 0.8874167372257734, + "fn": 59759, + "fn_rate": 0.19660087971812173, + "fp": 2203, + "fp_rate": 0.012670458793689502, + "match_probability": 0.3941857318704517, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910594346705627, + "recall": 0.8033991202818783, + "row_count": 477830, + "tn": 171666, + "tn_rate": 0.9873295412063104, + "tp": 244202, + "tp_rate": 0.8033991202818783, + "truth_threshold": -0.62 + }, + { + "f1": 0.8870972432243805, + "fn": 59917, + "fn_rate": 0.19712068324554796, + "fp": 2203, + "fp_rate": 0.012670458793689502, + "match_probability": 0.39750105926563917, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910536981161192, + "recall": 0.802879316754452, + "row_count": 477830, + "tn": 171666, + "tn_rate": 0.9873295412063104, + "tp": 244044, + "tp_rate": 0.802879316754452, + "truth_threshold": -0.6 + }, + { + "f1": 0.886909825992743, + "fn": 60020, + "fn_rate": 0.19745954250709796, + "fp": 2191, + "fp_rate": 0.012601441315013027, + "match_probability": 0.4008258216592253, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910982724716818, + "recall": 0.802540457492902, + "row_count": 477830, + "tn": 171678, + "tn_rate": 0.9873985586849869, + "tp": 243941, + "tp_rate": 0.802540457492902, + "truth_threshold": -0.58 + }, + { + "f1": 0.8866665454479336, + "fn": 60141, + "fn_rate": 0.19785761989202563, + "fp": 2190, + "fp_rate": 0.012595689858456655, + "match_probability": 0.4041597385650814, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9910979228486647, + "recall": 0.8021423801079743, + "row_count": 477830, + "tn": 171679, + "tn_rate": 0.9874043101415434, + "tp": 243820, + "tp_rate": 0.8021423801079743, + "truth_threshold": -0.56 + }, + { + "f1": 0.8864534949277445, + "fn": 60251, + "fn_rate": 0.19821950842377806, + "fp": 2184, + "fp_rate": 0.012561181119118416, + "match_probability": 0.4075025261863895, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911181240697211, + "recall": 0.801780491576222, + "row_count": 477830, + "tn": 171685, + "tn_rate": 0.9874388188808816, + "tp": 243710, + "tp_rate": 0.801780491576222, + "truth_threshold": -0.54 + }, + { + "f1": 0.8863684313910937, + "fn": 60293, + "fn_rate": 0.19835768404499263, + "fp": 2184, + "fp_rate": 0.012561181119118416, + "match_probability": 0.4108538975049788, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911166067390137, + "recall": 0.8016423159550073, + "row_count": 477830, + "tn": 171685, + "tn_rate": 0.9874388188808816, + "tp": 243668, + "tp_rate": 0.8016423159550073, + "truth_threshold": -0.52 + }, + { + "f1": 0.8861897468174823, + "fn": 60382, + "fn_rate": 0.19865048476613775, + "fp": 2182, + "fp_rate": 0.01254967820600567, + "match_probability": 0.4142135623730951, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911214553977238, + "recall": 0.8013495152338622, + "row_count": 477830, + "tn": 171687, + "tn_rate": 0.9874503217939943, + "tp": 243579, + "tp_rate": 0.8013495152338622, + "truth_threshold": -0.5 + }, + { + "f1": 0.8860498795584051, + "fn": 60455, + "fn_rate": 0.19889064715539165, + "fp": 2177, + "fp_rate": 0.012520920923223806, + "match_probability": 0.41758122760754685, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911389880455709, + "recall": 0.8011093528446084, + "row_count": 477830, + "tn": 171692, + "tn_rate": 0.9874790790767762, + "tp": 243506, + "tp_rate": 0.8011093528446084, + "truth_threshold": -0.48 + }, + { + "f1": 0.8858548692921066, + "fn": 60552, + "fn_rate": 0.19920976704248242, + "fp": 2176, + "fp_rate": 0.012515169466667433, + "match_probability": 0.4209565970861701, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911395239937293, + "recall": 0.8007902329575176, + "row_count": 477830, + "tn": 171693, + "tn_rate": 0.9874848305333326, + "tp": 243409, + "tp_rate": 0.8007902329575176, + "truth_threshold": -0.46 + }, + { + "f1": 0.8857428841814079, + "fn": 60612, + "fn_rate": 0.19940716078707466, + "fp": 2170, + "fp_rate": 0.012480660727329196, + "match_probability": 0.42433937184654724, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9911615801628387, + "recall": 0.8005928392129253, + "row_count": 477830, + "tn": 171699, + "tn_rate": 0.9875193392726708, + "tp": 243349, + "tp_rate": 0.8005928392129253, + "truth_threshold": -0.44 + }, + { + "f1": 0.885595503327363, + "fn": 60695, + "fn_rate": 0.19968022213376058, + "fp": 2158, + "fp_rate": 0.012411643248652722, + "match_probability": 0.4277292501869187, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912070539148575, + "recall": 0.8003197778662394, + "row_count": 477830, + "tn": 171711, + "tn_rate": 0.9875883567513473, + "tp": 243266, + "tp_rate": 0.8003197778662394, + "truth_threshold": -0.42 + }, + { + "f1": 0.8854336198767172, + "fn": 60774, + "fn_rate": 0.19994012389747368, + "fp": 2158, + "fp_rate": 0.012411643248652722, + "match_probability": 0.43112592776921604, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912042226252827, + "recall": 0.8000598761025263, + "row_count": 477830, + "tn": 171711, + "tn_rate": 0.9875883567513473, + "tp": 243187, + "tp_rate": 0.8000598761025263, + "truth_threshold": -0.4 + }, + { + "f1": 0.8852285887005732, + "fn": 60879, + "fn_rate": 0.2002855629505101, + "fp": 2153, + "fp_rate": 0.012382885965870857, + "match_probability": 0.434529097724148, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912206658918996, + "recall": 0.7997144370494899, + "row_count": 477830, + "tn": 171716, + "tn_rate": 0.9876171140341291, + "tp": 243082, + "tp_rate": 0.7997144370494899, + "truth_threshold": -0.38 + }, + { + "f1": 0.8850694027105482, + "fn": 60959, + "fn_rate": 0.2005487546099664, + "fp": 2152, + "fp_rate": 0.012377134509314484, + "match_probability": 0.4379384507582655, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912218442285258, + "recall": 0.7994512453900335, + "row_count": 477830, + "tn": 171717, + "tn_rate": 0.9876228654906856, + "tp": 243002, + "tp_rate": 0.7994512453900335, + "truth_threshold": -0.36 + }, + { + "f1": 0.8848866351926328, + "fn": 61049, + "fn_rate": 0.20084484522685475, + "fp": 2151, + "fp_rate": 0.012371383052758112, + "match_probability": 0.4413536752629294, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912226651922159, + "recall": 0.7991551547731452, + "row_count": 477830, + "tn": 171718, + "tn_rate": 0.9876286169472419, + "tp": 242912, + "tp_rate": 0.7991551547731452, + "truth_threshold": -0.34 + }, + { + "f1": 0.8846159451974931, + "fn": 61187, + "fn_rate": 0.2012988508394169, + "fp": 2145, + "fp_rate": 0.012336874313419873, + "match_probability": 0.4447744574251037, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912420024579555, + "recall": 0.7987011491605831, + "row_count": 477830, + "tn": 171724, + "tn_rate": 0.9876631256865801, + "tp": 242774, + "tp_rate": 0.7987011491605831, + "truth_threshold": -0.32 + }, + { + "f1": 0.884481244328473, + "fn": 61262, + "fn_rate": 0.2015455930201572, + "fp": 2134, + "fp_rate": 0.01227360829129977, + "match_probability": 0.44820048133989093, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9912838547091283, + "recall": 0.7984544069798428, + "row_count": 477830, + "tn": 171735, + "tn_rate": 0.9877263917087002, + "tp": 242699, + "tp_rate": 0.7984544069798428, + "truth_threshold": -0.3 + }, + { + "f1": 0.8842969783795015, + "fn": 61378, + "fn_rate": 0.20192722092636883, + "fp": 2103, + "fp_rate": 0.012095313138052212, + "match_probability": 0.45163142912472937, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9914053112969274, + "recall": 0.7980727790736312, + "row_count": 477830, + "tn": 171766, + "tn_rate": 0.9879046868619478, + "tp": 242583, + "tp_rate": 0.7980727790736312, + "truth_threshold": -0.28 + }, + { + "f1": 0.8841942928392523, + "fn": 61438, + "fn_rate": 0.20212461467096107, + "fp": 2090, + "fp_rate": 0.012020544202819365, + "match_probability": 0.4550669810351646, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.991455891551144, + "recall": 0.7978753853290389, + "row_count": 477830, + "tn": 171779, + "tn_rate": 0.9879794557971806, + "tp": 242523, + "tp_rate": 0.7978753853290389, + "truth_threshold": -0.26 + }, + { + "f1": 0.884033870861869, + "fn": 61543, + "fn_rate": 0.20247005372399748, + "fp": 2057, + "fp_rate": 0.011830746136459059, + "match_probability": 0.4585068155821077, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9915860517435321, + "recall": 0.7975299462760025, + "row_count": 477830, + "tn": 171812, + "tn_rate": 0.9881692538635409, + "tp": 242418, + "tp_rate": 0.7975299462760025, + "truth_threshold": -0.24 + }, + { + "f1": 0.8837217785916747, + "fn": 61709, + "fn_rate": 0.20301617641736933, + "fp": 2042, + "fp_rate": 0.011744474288113465, + "match_probability": 0.46195060965049234, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916412191867177, + "recall": 0.7969838235826306, + "row_count": 477830, + "tn": 171827, + "tn_rate": 0.9882555257118866, + "tp": 242252, + "tp_rate": 0.7969838235826306, + "truth_threshold": -0.22 + }, + { + "f1": 0.8835751629933124, + "fn": 61781, + "fn_rate": 0.20325304891088, + "fp": 2041, + "fp_rate": 0.011738722831557092, + "match_probability": 0.46539803861923645, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.991642815318912, + "recall": 0.79674695108912, + "row_count": 477830, + "tn": 171828, + "tn_rate": 0.9882612771684429, + "tp": 242180, + "tp_rate": 0.79674695108912, + "truth_threshold": -0.2 + }, + { + "f1": 0.883143237768491, + "fn": 61993, + "fn_rate": 0.20395050680843924, + "fp": 2041, + "fp_rate": 0.011738722831557092, + "match_probability": 0.4688487764824174, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916355544262712, + "recall": 0.7960494931915607, + "row_count": 477830, + "tn": 171828, + "tn_rate": 0.9882612771684429, + "tp": 241968, + "tp_rate": 0.7960494931915607, + "truth_threshold": -0.18 + }, + { + "f1": 0.882881435752905, + "fn": 62123, + "fn_rate": 0.20437819325505574, + "fp": 2039, + "fp_rate": 0.011727219918444345, + "match_probability": 0.47230249597156454, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916392279714774, + "recall": 0.7956218067449442, + "row_count": 477830, + "tn": 171830, + "tn_rate": 0.9882727800815556, + "tp": 241838, + "tp_rate": 0.7956218067449442, + "truth_threshold": -0.16 + }, + { + "f1": 0.8825638890714813, + "fn": 62285, + "fn_rate": 0.2049111563654548, + "fp": 2031, + "fp_rate": 0.011681208265993363, + "match_probability": 0.47575886867897205, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916662221438038, + "recall": 0.7950888436345452, + "row_count": 477830, + "tn": 171838, + "tn_rate": 0.9883187917340066, + "tp": 241676, + "tp_rate": 0.7950888436345452, + "truth_threshold": -0.14 + }, + { + "f1": 0.8823944073516735, + "fn": 62372, + "fn_rate": 0.20519737729511353, + "fp": 2027, + "fp_rate": 0.011658202439767871, + "match_probability": 0.4792175651819362, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916795284381978, + "recall": 0.7948026227048864, + "row_count": 477830, + "tn": 171842, + "tn_rate": 0.9883417975602321, + "tp": 241589, + "tp_rate": 0.7948026227048864, + "truth_threshold": -0.12 + }, + { + "f1": 0.8821676993219546, + "fn": 62487, + "fn_rate": 0.20557571530558197, + "fp": 2022, + "fp_rate": 0.011629445156986006, + "match_probability": 0.48267825516781476, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9916959621513289, + "recall": 0.7944242846944181, + "row_count": 477830, + "tn": 171847, + "tn_rate": 0.988370554843014, + "tp": 241474, + "tp_rate": 0.7944242846944181, + "truth_threshold": -0.1 + }, + { + "f1": 0.8819249812727239, + "fn": 62609, + "fn_rate": 0.20597708258625283, + "fp": 2018, + "fp_rate": 0.011606439330760516, + "match_probability": 0.4861406075598103, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.991708098779636, + "recall": 0.7940229174137472, + "row_count": 477830, + "tn": 171851, + "tn_rate": 0.9883935606692394, + "tp": 241352, + "tp_rate": 0.7940229174137472, + "truth_threshold": -0.08 + }, + { + "f1": 0.8816685916460767, + "fn": 62740, + "fn_rate": 0.20640805892861255, + "fp": 2010, + "fp_rate": 0.011560427678309532, + "match_probability": 0.48960429064337574, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917362507246198, + "recall": 0.7935919410713874, + "row_count": 477830, + "tn": 171859, + "tn_rate": 0.9884395723216904, + "tp": 241221, + "tp_rate": 0.7935919410713874, + "truth_threshold": -0.06 + }, + { + "f1": 0.8814751449481988, + "fn": 62837, + "fn_rate": 0.20672717881570332, + "fp": 2007, + "fp_rate": 0.011543173308640414, + "match_probability": 0.49306897219313867, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917451908641843, + "recall": 0.7932728211842967, + "row_count": 477830, + "tn": 171862, + "tn_rate": 0.9884568266913596, + "tp": 241124, + "tp_rate": 0.7932728211842967, + "truth_threshold": -0.04 + }, + { + "f1": 0.8812207019109118, + "fn": 62963, + "fn_rate": 0.20714170567934703, + "fp": 2006, + "fp_rate": 0.01153742185208404, + "match_probability": 0.4965343196002423, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.991744991851986, + "recall": 0.792858294320653, + "row_count": 477830, + "tn": 171863, + "tn_rate": 0.9884625781479159, + "tp": 240998, + "tp_rate": 0.792858294320653, + "truth_threshold": -0.02 + }, + { + "f1": 0.8808845525125343, + "fn": 63141, + "fn_rate": 0.2077273071216373, + "fp": 2003, + "fp_rate": 0.011520167482414922, + "match_probability": 0.5, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917531291172595, + "recall": 0.7923116394424015, + "row_count": 477830, + "tn": 171870, + "tn_rate": 0.9885028383438106, + "tp": 240877, + "tp_rate": 0.7924602169357253, + "truth_threshold": 0 + }, + { + "f1": 0.8807299531621919, + "fn": 63237, + "fn_rate": 0.2080431371129849, + "fp": 2003, + "fp_rate": 0.011520167482414922, + "match_probability": 0.5, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917531291172595, + "recall": 0.7920615295579947, + "row_count": 477830, + "tn": 171867, + "tn_rate": 0.9884855839741414, + "tp": 240877, + "tp_rate": 0.7924602169357253, + "truth_threshold": 0 + }, + { + "f1": 0.8805545290564298, + "fn": 63294, + "fn_rate": 0.20823066117034753, + "fp": 1998, + "fp_rate": 0.011491410199633057, + "match_probability": 0.5034656803997578, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917664269672182, + "recall": 0.7917693388296525, + "row_count": 477830, + "tn": 171871, + "tn_rate": 0.9885085898003669, + "tp": 240667, + "tp_rate": 0.7917693388296525, + "truth_threshold": 0.02 + }, + { + "f1": 0.8804281401518617, + "fn": 63362, + "fn_rate": 0.20845437408088538, + "fp": 1991, + "fp_rate": 0.011451150003738447, + "match_probability": 0.5069310278068614, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9917927367162702, + "recall": 0.7915456259191146, + "row_count": 477830, + "tn": 171878, + "tn_rate": 0.9885488499962616, + "tp": 240599, + "tp_rate": 0.7915456259191146, + "truth_threshold": 0.04 + }, + { + "f1": 0.8802589825893135, + "fn": 63454, + "fn_rate": 0.20875704448926014, + "fp": 1978, + "fp_rate": 0.011376381068505598, + "match_probability": 0.5103957093566241, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9918427943996536, + "recall": 0.7912429555107399, + "row_count": 477830, + "tn": 171891, + "tn_rate": 0.9886236189314944, + "tp": 240507, + "tp_rate": 0.7912429555107399, + "truth_threshold": 0.06 + }, + { + "f1": 0.8799802310043748, + "fn": 63590, + "fn_rate": 0.20920447031033587, + "fp": 1978, + "fp_rate": 0.011376381068505598, + "match_probability": 0.5138593924401896, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9918382167865352, + "recall": 0.7907955296896642, + "row_count": 477830, + "tn": 171891, + "tn_rate": 0.9886236189314944, + "tp": 240371, + "tp_rate": 0.7907955296896642, + "truth_threshold": 0.08 + }, + { + "f1": 0.8797621314428837, + "fn": 63705, + "fn_rate": 0.2095828083208043, + "fp": 1968, + "fp_rate": 0.01131886650294187, + "match_probability": 0.5173217448321853, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9918752889887047, + "recall": 0.7904171916791957, + "row_count": 477830, + "tn": 171901, + "tn_rate": 0.9886811334970581, + "tp": 240256, + "tp_rate": 0.7904171916791957, + "truth_threshold": 0.1 + }, + { + "f1": 0.8796176594458992, + "fn": 63777, + "fn_rate": 0.20981968081431498, + "fp": 1965, + "fp_rate": 0.011301612133272751, + "match_probability": 0.5207824348180637, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9918851616153691, + "recall": 0.790180319185685, + "row_count": 477830, + "tn": 171904, + "tn_rate": 0.9886983878667273, + "tp": 240184, + "tp_rate": 0.790180319185685, + "truth_threshold": 0.12 + }, + { + "f1": 0.8794379240113118, + "fn": 63885, + "fn_rate": 0.21017498955458103, + "fp": 1940, + "fp_rate": 0.01115782571936343, + "match_probability": 0.5242411313210279, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9919840010577813, + "recall": 0.789825010445419, + "row_count": 477830, + "tn": 171929, + "tn_rate": 0.9888421742806366, + "tp": 240076, + "tp_rate": 0.789825010445419, + "truth_threshold": 0.14 + }, + { + "f1": 0.8792805929356249, + "fn": 63964, + "fn_rate": 0.21043489131829413, + "fp": 1937, + "fp_rate": 0.01114057134969431, + "match_probability": 0.5276975040284355, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9919936842279299, + "recall": 0.7895651086817059, + "row_count": 477830, + "tn": 171932, + "tn_rate": 0.9888594286503057, + "tp": 239997, + "tp_rate": 0.7895651086817059, + "truth_threshold": 0.16 + }, + { + "f1": 0.8789650180498799, + "fn": 64131, + "fn_rate": 0.2109843039074092, + "fp": 1919, + "fp_rate": 0.011037045131679598, + "match_probability": 0.5311512235175825, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920620147342906, + "recall": 0.7890156960925908, + "row_count": 477830, + "tn": 171950, + "tn_rate": 0.9889629548683204, + "tp": 239830, + "tp_rate": 0.7890156960925908, + "truth_threshold": 0.18 + }, + { + "f1": 0.8787257830971975, + "fn": 64249, + "fn_rate": 0.21137251160510723, + "fp": 1918, + "fp_rate": 0.011031293675123226, + "match_probability": 0.5346019613807635, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920622439266648, + "recall": 0.7886274883948927, + "row_count": 477830, + "tn": 171951, + "tn_rate": 0.9889687063248768, + "tp": 239712, + "tp_rate": 0.7886274883948927, + "truth_threshold": 0.2 + }, + { + "f1": 0.878524341328562, + "fn": 64347, + "fn_rate": 0.21169492138794122, + "fp": 1918, + "fp_rate": 0.011031293675123226, + "match_probability": 0.5380493903495076, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920590232350165, + "recall": 0.7883050786120588, + "row_count": 477830, + "tn": 171951, + "tn_rate": 0.9889687063248768, + "tp": 239614, + "tp_rate": 0.7883050786120588, + "truth_threshold": 0.22 + }, + { + "f1": 0.8782981469868826, + "fn": 64457, + "fn_rate": 0.21205680991969364, + "fp": 1917, + "fp_rate": 0.011025542218566851, + "match_probability": 0.5414931844178922, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920595142924601, + "recall": 0.7879431900803063, + "row_count": 477830, + "tn": 171952, + "tn_rate": 0.9889744577814331, + "tp": 239504, + "tp_rate": 0.7879431900803063, + "truth_threshold": 0.24 + }, + { + "f1": 0.8779873152587386, + "fn": 64612, + "fn_rate": 0.21256674375989024, + "fp": 1912, + "fp_rate": 0.010996784935784987, + "match_probability": 0.5449330189648354, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920749727473566, + "recall": 0.7874332562401097, + "row_count": 477830, + "tn": 171957, + "tn_rate": 0.989003215064215, + "tp": 239349, + "tp_rate": 0.7874332562401097, + "truth_threshold": 0.26 + }, + { + "f1": 0.8769322279092652, + "fn": 65125, + "fn_rate": 0.21425446027615386, + "fp": 1912, + "fp_rate": 0.010996784935784987, + "match_probability": 0.5483685708752706, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9920580856331102, + "recall": 0.7857455397238462, + "row_count": 477830, + "tn": 171957, + "tn_rate": 0.989003215064215, + "tp": 238836, + "tp_rate": 0.7857455397238462, + "truth_threshold": 0.28 + }, + { + "f1": 0.8767457831281055, + "fn": 65224, + "fn_rate": 0.21458015995473104, + "fp": 1900, + "fp_rate": 0.010927767457108512, + "match_probability": 0.5517995186601091, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.992104289863986, + "recall": 0.785419840045269, + "row_count": 477830, + "tn": 171969, + "tn_rate": 0.9890722325428914, + "tp": 238737, + "tp_rate": 0.785419840045269, + "truth_threshold": 0.3 + }, + { + "f1": 0.8765225312587238, + "fn": 65333, + "fn_rate": 0.21493875859074027, + "fp": 1900, + "fp_rate": 0.010927767457108512, + "match_probability": 0.5552255425748963, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.992100711767445, + "recall": 0.7850612414092597, + "row_count": 477830, + "tn": 171969, + "tn_rate": 0.9890722325428914, + "tp": 238628, + "tp_rate": 0.7850612414092597, + "truth_threshold": 0.32 + }, + { + "f1": 0.8763395628901127, + "fn": 65424, + "fn_rate": 0.2152381391033718, + "fp": 1896, + "fp_rate": 0.010904761630883022, + "match_probability": 0.5586463247370707, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921142272483394, + "recall": 0.7847618608966281, + "row_count": 477830, + "tn": 171973, + "tn_rate": 0.989095238369117, + "tp": 238537, + "tp_rate": 0.7847618608966281, + "truth_threshold": 0.34 + }, + { + "f1": 0.8758880496903542, + "fn": 65645, + "fn_rate": 0.21596520606261987, + "fp": 1894, + "fp_rate": 0.010893258717770275, + "match_probability": 0.5620615492417346, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921152325048915, + "recall": 0.7840347939373801, + "row_count": 477830, + "tn": 171975, + "tn_rate": 0.9891067412822298, + "tp": 238316, + "tp_rate": 0.7840347939373801, + "truth_threshold": 0.36 + }, + { + "f1": 0.8757595250785716, + "fn": 65715, + "fn_rate": 0.21619549876464414, + "fp": 1884, + "fp_rate": 0.010835744152206546, + "match_probability": 0.5654709022758521, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921542497813685, + "recall": 0.7838045012353558, + "row_count": 477830, + "tn": 171985, + "tn_rate": 0.9891642558477934, + "tp": 238246, + "tp_rate": 0.7838045012353558, + "truth_threshold": 0.38 + }, + { + "f1": 0.8755675655802496, + "fn": 65811, + "fn_rate": 0.21651132875599172, + "fp": 1879, + "fp_rate": 0.010806986869424683, + "match_probability": 0.5688740722307839, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921717792433414, + "recall": 0.7834886712440082, + "row_count": 477830, + "tn": 171990, + "tn_rate": 0.9891930131305753, + "tp": 238150, + "tp_rate": 0.7834886712440082, + "truth_threshold": 0.4 + }, + { + "f1": 0.8753429090454442, + "fn": 65922, + "fn_rate": 0.21687650718348736, + "fp": 1877, + "fp_rate": 0.010795483956311936, + "match_probability": 0.5722707498130813, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921764284166125, + "recall": 0.7831234928165126, + "row_count": 477830, + "tn": 171992, + "tn_rate": 0.9892045160436881, + "tp": 238039, + "tp_rate": 0.7831234928165126, + "truth_threshold": 0.42 + }, + { + "f1": 0.8747677511690625, + "fn": 66200, + "fn_rate": 0.21779109820009804, + "fp": 1877, + "fp_rate": 0.010795483956311936, + "match_probability": 0.5756606281534528, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921673524232384, + "recall": 0.782208901799902, + "row_count": 477830, + "tn": 171992, + "tn_rate": 0.9892045160436881, + "tp": 237761, + "tp_rate": 0.782208901799902, + "truth_threshold": 0.44 + }, + { + "f1": 0.874631116475203, + "fn": 66266, + "fn_rate": 0.2180082313191495, + "fp": 1877, + "fp_rate": 0.010795483956311936, + "match_probability": 0.57904340291383, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921651945970313, + "recall": 0.7819917686808505, + "row_count": 477830, + "tn": 171992, + "tn_rate": 0.9892045160436881, + "tp": 237695, + "tp_rate": 0.7819917686808505, + "truth_threshold": 0.46 + }, + { + "f1": 0.8743687891056312, + "fn": 66395, + "fn_rate": 0.2184326278700228, + "fp": 1873, + "fp_rate": 0.010772478130086444, + "match_probability": 0.5824187723924531, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921775483526075, + "recall": 0.7815673721299772, + "row_count": 477830, + "tn": 171996, + "tn_rate": 0.9892275218699136, + "tp": 237566, + "tp_rate": 0.7815673721299772, + "truth_threshold": 0.48 + }, + { + "f1": 0.8741648229884889, + "fn": 66495, + "fn_rate": 0.2187616174443432, + "fp": 1872, + "fp_rate": 0.010766726673530071, + "match_probability": 0.5857864376269051, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9921784254903108, + "recall": 0.7812383825556568, + "row_count": 477830, + "tn": 171997, + "tn_rate": 0.9892332733264699, + "tp": 237466, + "tp_rate": 0.7812383825556568, + "truth_threshold": 0.5 + }, + { + "f1": 0.8743323190722827, + "fn": 66613, + "fn_rate": 0.21914982514204126, + "fp": 1616, + "fp_rate": 0.009294353795098608, + "match_probability": 0.5891461024950211, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.993237475100852, + "recall": 0.7808501748579587, + "row_count": 477830, + "tn": 172253, + "tn_rate": 0.9907056462049014, + "tp": 237348, + "tp_rate": 0.7808501748579587, + "truth_threshold": 0.52 + }, + { + "f1": 0.8738787543762668, + "fn": 66834, + "fn_rate": 0.2198768921012893, + "fp": 1612, + "fp_rate": 0.009271347968873116, + "match_probability": 0.5924974738136106, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.993247856445742, + "recall": 0.7801231078987106, + "row_count": 477830, + "tn": 172257, + "tn_rate": 0.9907286520311269, + "tp": 237127, + "tp_rate": 0.7801231078987106, + "truth_threshold": 0.54 + }, + { + "f1": 0.8736485913649918, + "fn": 66948, + "fn_rate": 0.22025194021601455, + "fp": 1608, + "fp_rate": 0.009248342142647626, + "match_probability": 0.5958402614349186, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9932612804405312, + "recall": 0.7797480597839854, + "row_count": 477830, + "tn": 172261, + "tn_rate": 0.9907516578573524, + "tp": 237013, + "tp_rate": 0.7797480597839854, + "truth_threshold": 0.56 + }, + { + "f1": 0.8733906528824458, + "fn": 67073, + "fn_rate": 0.22066317718391504, + "fp": 1607, + "fp_rate": 0.009242590686091253, + "match_probability": 0.5991741783407747, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9932619132476572, + "recall": 0.779336822816085, + "row_count": 477830, + "tn": 172262, + "tn_rate": 0.9907574093139088, + "tp": 236888, + "tp_rate": 0.779336822816085, + "truth_threshold": 0.58 + }, + { + "f1": 0.8732572503180368, + "fn": 67138, + "fn_rate": 0.2208770204072233, + "fp": 1607, + "fp_rate": 0.009242590686091253, + "match_probability": 0.6024989407343608, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9932600763326762, + "recall": 0.7791229795927767, + "row_count": 477830, + "tn": 172262, + "tn_rate": 0.9907574093139088, + "tp": 236823, + "tp_rate": 0.7791229795927767, + "truth_threshold": 0.6 + }, + { + "f1": 0.8729214925417177, + "fn": 67305, + "fn_rate": 0.22142643299633835, + "fp": 1599, + "fp_rate": 0.00919657903364027, + "match_probability": 0.6058142681295483, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9932887032800991, + "recall": 0.7785735670036616, + "row_count": 477830, + "tn": 172270, + "tn_rate": 0.9908034209663598, + "tp": 236656, + "tp_rate": 0.7785735670036616, + "truth_threshold": 0.62 + }, + { + "f1": 0.8728260789363005, + "fn": 67378, + "fn_rate": 0.22166659538559222, + "fp": 1564, + "fp_rate": 0.008995278054167218, + "match_probability": 0.6091198834377483, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9934326277467279, + "recall": 0.7783334046144078, + "row_count": 477830, + "tn": 172305, + "tn_rate": 0.9910047219458328, + "tp": 236583, + "tp_rate": 0.7783334046144078, + "truth_threshold": 0.64 + }, + { + "f1": 0.8725180047323561, + "fn": 67595, + "fn_rate": 0.22238050276186747, + "fp": 1475, + "fp_rate": 0.00848339842065003, + "match_probability": 0.6124155130522262, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9937983779079301, + "recall": 0.7776194972381325, + "row_count": 477830, + "tn": 172394, + "tn_rate": 0.99151660157935, + "tp": 236366, + "tp_rate": 0.7776194972381325, + "truth_threshold": 0.66 + }, + { + "f1": 0.8722834715442952, + "fn": 67710, + "fn_rate": 0.22275884077233593, + "fp": 1472, + "fp_rate": 0.00846614405098091, + "match_probability": 0.6157008869298349, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938079193010353, + "recall": 0.7772411592276641, + "row_count": 477830, + "tn": 172397, + "tn_rate": 0.9915338559490191, + "tp": 236251, + "tp_rate": 0.7772411592276641, + "truth_threshold": 0.68 + }, + { + "f1": 0.8720247877420332, + "fn": 67835, + "fn_rate": 0.22317007774023642, + "fp": 1471, + "fp_rate": 0.008460392594424538, + "match_probability": 0.6189757386701197, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938088443877658, + "recall": 0.7768299222597636, + "row_count": 477830, + "tn": 172398, + "tn_rate": 0.9915396074055755, + "tp": 236126, + "tp_rate": 0.7768299222597636, + "truth_threshold": 0.7000000000000001 + }, + { + "f1": 0.8715014649970996, + "fn": 68090, + "fn_rate": 0.22400900115475342, + "fp": 1466, + "fp_rate": 0.008431635311642673, + "match_probability": 0.622239805591759, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938231291370498, + "recall": 0.7759909988452466, + "row_count": 477830, + "tn": 172403, + "tn_rate": 0.9915683646883573, + "tp": 235871, + "tp_rate": 0.7759909988452466, + "truth_threshold": 0.72 + }, + { + "f1": 0.8712697116290758, + "fn": 68205, + "fn_rate": 0.22438733916522186, + "fp": 1461, + "fp_rate": 0.008402878028860809, + "match_probability": 0.6254928288063007, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938410822158614, + "recall": 0.7756126608347782, + "row_count": 477830, + "tn": 172408, + "tn_rate": 0.9915971219711391, + "tp": 235756, + "tp_rate": 0.7756126608347782, + "truth_threshold": 0.74 + }, + { + "f1": 0.8709604678500927, + "fn": 68354, + "fn_rate": 0.22487753363095925, + "fp": 1460, + "fp_rate": 0.008397126572304436, + "match_probability": 0.6287345532891625, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938414034850908, + "recall": 0.7751224663690408, + "row_count": 477830, + "tn": 172409, + "tn_rate": 0.9916028734276956, + "tp": 235607, + "tp_rate": 0.7751224663690408, + "truth_threshold": 0.76 + }, + { + "f1": 0.8707450545387317, + "fn": 68468, + "fn_rate": 0.22525258174568447, + "fp": 1446, + "fp_rate": 0.008316606180515216, + "match_probability": 0.6319647279478622, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.993897163404927, + "recall": 0.7747474182543155, + "row_count": 477830, + "tn": 172423, + "tn_rate": 0.9916833938194848, + "tp": 235493, + "tp_rate": 0.7747474182543155, + "truth_threshold": 0.78 + }, + { + "f1": 0.8702683707252113, + "fn": 68697, + "fn_rate": 0.22600596787087818, + "fp": 1445, + "fp_rate": 0.008310854723958842, + "match_probability": 0.6351831056874558, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938954581363615, + "recall": 0.7739940321291219, + "row_count": 477830, + "tn": 172424, + "tn_rate": 0.9916891452760411, + "tp": 235264, + "tp_rate": 0.7739940321291219, + "truth_threshold": 0.8 + }, + { + "f1": 0.87001291286958, + "fn": 68820, + "fn_rate": 0.22641062504729226, + "fp": 1445, + "fp_rate": 0.008310854723958842, + "match_probability": 0.6383894434731548, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938922844124335, + "recall": 0.7735893749527077, + "row_count": 477830, + "tn": 172424, + "tn_rate": 0.9916891452760411, + "tp": 235141, + "tp_rate": 0.7735893749527077, + "truth_threshold": 0.8200000000000001 + }, + { + "f1": 0.8697071417732856, + "fn": 68967, + "fn_rate": 0.2268942397215432, + "fp": 1444, + "fp_rate": 0.00830510326740247, + "match_probability": 0.6415835023901045, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9938926906842386, + "recall": 0.7731057602784568, + "row_count": 477830, + "tn": 172425, + "tn_rate": 0.9916948967325975, + "tp": 234994, + "tp_rate": 0.7731057602784568, + "truth_threshold": 0.84 + }, + { + "f1": 0.8703466980869913, + "fn": 69064, + "fn_rate": 0.227213359608634, + "fp": 920, + "fp_rate": 0.00529134003186307, + "match_probability": 0.6447650477003041, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9960986697311899, + "recall": 0.772786640391366, + "row_count": 477830, + "tn": 172949, + "tn_rate": 0.994708659968137, + "tp": 234897, + "tp_rate": 0.772786640391366, + "truth_threshold": 0.86 + }, + { + "f1": 0.8701766999214338, + "fn": 69156, + "fn_rate": 0.22751603001700876, + "fp": 907, + "fp_rate": 0.005216571096630222, + "match_probability": 0.6479338488966562, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9961520838989953, + "recall": 0.7724839699829913, + "row_count": 477830, + "tn": 172962, + "tn_rate": 0.9947834289033698, + "tp": 234805, + "tp_rate": 0.7724839699829913, + "truth_threshold": 0.88 + }, + { + "f1": 0.8698588750783101, + "fn": 69307, + "fn_rate": 0.22801280427423254, + "fp": 907, + "fp_rate": 0.005216571096630222, + "match_probability": 0.6510896797541332, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9961496172965814, + "recall": 0.7719871957257675, + "row_count": 477830, + "tn": 172962, + "tn_rate": 0.9947834289033698, + "tp": 234654, + "tp_rate": 0.7719871957257675, + "truth_threshold": 0.9 + }, + { + "f1": 0.8696832176543869, + "fn": 69397, + "fn_rate": 0.2283088948911209, + "fp": 899, + "fp_rate": 0.0051705594441792384, + "match_probability": 0.6542323183780514, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9961819903764073, + "recall": 0.7716911051088791, + "row_count": 477830, + "tn": 172970, + "tn_rate": 0.9948294405558208, + "tp": 234564, + "tp_rate": 0.7716911051088791, + "truth_threshold": 0.92 + }, + { + "f1": 0.869085863944266, + "fn": 69685, + "fn_rate": 0.22925638486516361, + "fp": 896, + "fp_rate": 0.00515330507451012, + "match_probability": 0.6573615472494517, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9961900226217407, + "recall": 0.7707436151348364, + "row_count": 477830, + "tn": 172973, + "tn_rate": 0.9948466949254898, + "tp": 234276, + "tp_rate": 0.7707436151348364, + "truth_threshold": 0.9400000000000001 + }, + { + "f1": 0.8688912058595446, + "fn": 69787, + "fn_rate": 0.22959195423097042, + "fp": 884, + "fp_rate": 0.005084287595833645, + "match_probability": 0.660477153267581, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962392260633546, + "recall": 0.7704080457690295, + "row_count": 477830, + "tn": 172985, + "tn_rate": 0.9949157124041663, + "tp": 234174, + "tp_rate": 0.7704080457690295, + "truth_threshold": 0.96 + }, + { + "f1": 0.8686714615481678, + "fn": 69894, + "fn_rate": 0.22994397307549325, + "fp": 881, + "fp_rate": 0.005067033226164526, + "match_probability": 0.6635789277894779, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962502340943528, + "recall": 0.7700560269245068, + "row_count": 477830, + "tn": 172988, + "tn_rate": 0.9949329667738355, + "tp": 234067, + "tp_rate": 0.7700560269245068, + "truth_threshold": 0.98 + }, + { + "f1": 0.8684325793064537, + "fn": 70007, + "fn_rate": 0.23031573129447527, + "fp": 881, + "fp_rate": 0.005067033226164526, + "match_probability": 0.6666666666666666, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962484297485469, + "recall": 0.7696842687055248, + "row_count": 477830, + "tn": 172988, + "tn_rate": 0.9949329667738355, + "tp": 233954, + "tp_rate": 0.7696842687055248, + "truth_threshold": 1 + }, + { + "f1": 0.8680917583804898, + "fn": 70170, + "fn_rate": 0.2308519843006175, + "fp": 881, + "fp_rate": 0.005067033226164526, + "match_probability": 0.6697401702789662, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962458239585464, + "recall": 0.7691480156993825, + "row_count": 477830, + "tn": 172988, + "tn_rate": 0.9949329667738355, + "tp": 233791, + "tp_rate": 0.7691480156993825, + "truth_threshold": 1.02 + }, + { + "f1": 0.8676661231069822, + "fn": 70374, + "fn_rate": 0.2315231230322311, + "fp": 879, + "fp_rate": 0.005055530313051781, + "match_probability": 0.6727992435654236, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962510555901495, + "recall": 0.7684768769677689, + "row_count": 477830, + "tn": 172990, + "tn_rate": 0.9949444696869483, + "tp": 233587, + "tp_rate": 0.7684768769677689, + "truth_threshold": 1.04 + }, + { + "f1": 0.8675572462368307, + "fn": 70425, + "fn_rate": 0.2316909077151345, + "fp": 879, + "fp_rate": 0.005055530313051781, + "match_probability": 0.6758436960523875, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962502399590469, + "recall": 0.7683090922848655, + "row_count": 477830, + "tn": 172990, + "tn_rate": 0.9949444696869483, + "tp": 233536, + "tp_rate": 0.7683090922848655, + "truth_threshold": 1.06 + }, + { + "f1": 0.8671321914473757, + "fn": 70627, + "fn_rate": 0.2323554666552617, + "fp": 879, + "fp_rate": 0.005055530313051781, + "match_probability": 0.6788733418787326, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962470059304992, + "recall": 0.7676445333447383, + "row_count": 477830, + "tn": 172990, + "tn_rate": 0.9949444696869483, + "tp": 233334, + "tp_rate": 0.7676445333447383, + "truth_threshold": 1.08 + }, + { + "f1": 0.8668837444429576, + "fn": 70745, + "fn_rate": 0.23274367435295976, + "fp": 879, + "fp_rate": 0.005055530313051781, + "match_probability": 0.6818879998182596, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962451141630535, + "recall": 0.7672563256470403, + "row_count": 477830, + "tn": 172990, + "tn_rate": 0.9949444696869483, + "tp": 233216, + "tp_rate": 0.7672563256470403, + "truth_threshold": 1.1 + }, + { + "f1": 0.8665796606766389, + "fn": 70897, + "fn_rate": 0.23324373850592675, + "fp": 869, + "fp_rate": 0.004998015747488051, + "match_probability": 0.6848874932992853, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962852611645214, + "recall": 0.7667562614940733, + "row_count": 477830, + "tn": 173000, + "tn_rate": 0.995001984252512, + "tp": 233064, + "tp_rate": 0.7667562614940733, + "truth_threshold": 1.12 + }, + { + "f1": 0.8663842795409412, + "fn": 70992, + "fn_rate": 0.2335562786015311, + "fp": 867, + "fp_rate": 0.004986512834375305, + "match_probability": 0.6878716504214515, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962922732171265, + "recall": 0.7664437213984688, + "row_count": 477830, + "tn": 173002, + "tn_rate": 0.9950134871656247, + "tp": 232969, + "tp_rate": 0.7664437213984688, + "truth_threshold": 1.1400000000000001 + }, + { + "f1": 0.866113907146816, + "fn": 71121, + "fn_rate": 0.23398067515240442, + "fp": 866, + "fp_rate": 0.004980761377818933, + "match_probability": 0.690840303969775, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962944896579463, + "recall": 0.7660193248475956, + "row_count": 477830, + "tn": 173003, + "tn_rate": 0.9950192386221811, + "tp": 232840, + "tp_rate": 0.7660193248475956, + "truth_threshold": 1.16 + }, + { + "f1": 0.8656999114365879, + "fn": 71318, + "fn_rate": 0.2346287846138156, + "fp": 864, + "fp_rate": 0.0049692584647061866, + "match_probability": 0.6937932914259702, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9962998967911026, + "recall": 0.7653712153861845, + "row_count": 477830, + "tn": 173005, + "tn_rate": 0.9950307415352938, + "tp": 232643, + "tp_rate": 0.7653712153861845, + "truth_threshold": 1.18 + }, + { + "f1": 0.8655382118904595, + "fn": 71403, + "fn_rate": 0.23490842575198792, + "fp": 854, + "fp_rate": 0.004911743899142458, + "match_probability": 0.6967304549770723, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9963412335269823, + "recall": 0.7650915742480121, + "row_count": 477830, + "tn": 173015, + "tn_rate": 0.9950882561008575, + "tp": 232558, + "tp_rate": 0.7650915742480121, + "truth_threshold": 1.2 + }, + { + "f1": 0.8651523500327635, + "fn": 71588, + "fn_rate": 0.23551705646448065, + "fp": 851, + "fp_rate": 0.0048944895294733394, + "match_probability": 0.6996516415213959, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9963511473947793, + "recall": 0.7644829435355194, + "row_count": 477830, + "tn": 173018, + "tn_rate": 0.9951055104705266, + "tp": 232373, + "tp_rate": 0.7644829435355194, + "truth_threshold": 1.22 + }, + { + "f1": 0.8647963174007285, + "fn": 71758, + "fn_rate": 0.23607633874082531, + "fp": 848, + "fp_rate": 0.004877235159804221, + "match_probability": 0.7025567026718631, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9963613114725961, + "recall": 0.7639236612591747, + "row_count": 477830, + "tn": 173021, + "tn_rate": 0.9951227648401958, + "tp": 232203, + "tp_rate": 0.7639236612591747, + "truth_threshold": 1.24 + }, + { + "f1": 0.8644691646859842, + "fn": 71915, + "fn_rate": 0.23659285237250832, + "fp": 845, + "fp_rate": 0.004859980790135101, + "match_probability": 0.705445494756739, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9963716931955292, + "recall": 0.7634071476274917, + "row_count": 477830, + "tn": 173024, + "tn_rate": 0.995140019209865, + "tp": 232046, + "tp_rate": 0.7634071476274917, + "truth_threshold": 1.26 + }, + { + "f1": 0.8642322167157283, + "fn": 72027, + "fn_rate": 0.23696132069574716, + "fp": 845, + "fp_rate": 0.004859980790135101, + "match_probability": 0.7083178788178136, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9963699474608964, + "recall": 0.7630386793042528, + "row_count": 477830, + "tn": 173024, + "tn_rate": 0.995140019209865, + "tp": 231934, + "tp_rate": 0.7630386793042528, + "truth_threshold": 1.28 + }, + { + "f1": 0.8639953486118513, + "fn": 72145, + "fn_rate": 0.23734952839344522, + "fp": 837, + "fp_rate": 0.004813969137684119, + "match_probability": 0.7111737206060699, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9964023674743072, + "recall": 0.7626504716065547, + "row_count": 477830, + "tn": 173032, + "tn_rate": 0.9951860308623158, + "tp": 231816, + "tp_rate": 0.7626504716065547, + "truth_threshold": 1.3 + }, + { + "f1": 0.8637100772824032, + "fn": 72282, + "fn_rate": 0.23780024411026415, + "fp": 835, + "fp_rate": 0.004802466224571373, + "match_probability": 0.714012890574883, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9964088183937311, + "recall": 0.7621997558897359, + "row_count": 477830, + "tn": 173034, + "tn_rate": 0.9951975337754286, + "tp": 231679, + "tp_rate": 0.7621997558897359, + "truth_threshold": 1.32 + }, + { + "f1": 0.863561786859572, + "fn": 72371, + "fn_rate": 0.2380930448314093, + "fp": 809, + "fp_rate": 0.004652928354105678, + "match_probability": 0.7168352638707939, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9965189178955159, + "recall": 0.7619069551685907, + "row_count": 477830, + "tn": 173060, + "tn_rate": 0.9953470716458943, + "tp": 231590, + "tp_rate": 0.7619069551685907, + "truth_threshold": 1.34 + }, + { + "f1": 0.8630732327848304, + "fn": 72603, + "fn_rate": 0.2388563006438326, + "fp": 807, + "fp_rate": 0.004641425440992932, + "match_probability": 0.7196407203219027, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9965240238623393, + "recall": 0.7611436993561674, + "row_count": 477830, + "tn": 173062, + "tn_rate": 0.9953585745590071, + "tp": 231358, + "tp_rate": 0.7611436993561674, + "truth_threshold": 1.36 + }, + { + "f1": 0.8628463541861003, + "fn": 72713, + "fn_rate": 0.23921818917558502, + "fp": 804, + "fp_rate": 0.004624171071323813, + "match_probability": 0.7224291444239316, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9965352593384241, + "recall": 0.760781810824415, + "row_count": 477830, + "tn": 173065, + "tn_rate": 0.9953758289286762, + "tp": 231248, + "tp_rate": 0.760781810824415, + "truth_threshold": 1.3800000000000001 + }, + { + "f1": 0.862551971754238, + "fn": 72854, + "fn_rate": 0.23968206447537677, + "fp": 801, + "fp_rate": 0.004606916701654694, + "match_probability": 0.7252004253240049, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9965460441209445, + "recall": 0.7603179355246232, + "row_count": 477830, + "tn": 173068, + "tn_rate": 0.9953930832983453, + "tp": 231107, + "tp_rate": 0.7603179355246232, + "truth_threshold": 1.4000000000000001 + }, + { + "f1": 0.8622490694522742, + "fn": 73005, + "fn_rate": 0.24017883873260057, + "fp": 789, + "fp_rate": 0.004537899222978219, + "match_probability": 0.7279544568021957, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9965953958014196, + "recall": 0.7598211612673994, + "row_count": 477830, + "tn": 173080, + "tn_rate": 0.9954621007770218, + "tp": 230956, + "tp_rate": 0.7598211612673994, + "truth_threshold": 1.42 + }, + { + "f1": 0.8619922175500967, + "fn": 73135, + "fn_rate": 0.24060652517921707, + "fp": 778, + "fp_rate": 0.004474633200858117, + "match_probability": 0.7306911372508947, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9966408179478765, + "recall": 0.7593934748207829, + "row_count": 477830, + "tn": 173091, + "tn_rate": 0.9955253667991418, + "tp": 230826, + "tp_rate": 0.7593934748207829, + "truth_threshold": 1.44 + }, + { + "f1": 0.8616606401099722, + "fn": 73291, + "fn_rate": 0.2411197489151569, + "fp": 778, + "fp_rate": 0.004474633200858117, + "match_probability": 0.7334103696520481, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9966385538004217, + "recall": 0.7588802510848431, + "row_count": 477830, + "tn": 173091, + "tn_rate": 0.9955253667991418, + "tp": 230670, + "tp_rate": 0.7588802510848431, + "truth_threshold": 1.46 + }, + { + "f1": 0.8613293875431104, + "fn": 73446, + "fn_rate": 0.2416296827553535, + "fp": 778, + "fp_rate": 0.004474633200858117, + "match_probability": 0.7361120615523239, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9966363011418418, + "recall": 0.7583703172446465, + "row_count": 477830, + "tn": 173091, + "tn_rate": 0.9955253667991418, + "tp": 230515, + "tp_rate": 0.7583703172446465, + "truth_threshold": 1.48 + }, + { + "f1": 0.8611603304549362, + "fn": 73592, + "fn_rate": 0.24211000753386125, + "fp": 690, + "fp_rate": 0.003968505023897302, + "match_probability": 0.7387961250362586, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9970137497349162, + "recall": 0.7578899924661388, + "row_count": 477830, + "tn": 173179, + "tn_rate": 0.9960314949761027, + "tp": 230369, + "tp_rate": 0.7578899924661388, + "truth_threshold": 1.5 + }, + { + "f1": 0.86088520458718, + "fn": 73725, + "fn_rate": 0.24254756366770738, + "fp": 685, + "fp_rate": 0.003939747741115438, + "match_probability": 0.74146247669744, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9970336175575196, + "recall": 0.7574524363322926, + "row_count": 477830, + "tn": 173184, + "tn_rate": 0.9960602522588846, + "tp": 230236, + "tp_rate": 0.7574524363322926, + "truth_threshold": 1.52 + }, + { + "f1": 0.8605374876101064, + "fn": 73892, + "fn_rate": 0.24309697625682242, + "fp": 681, + "fp_rate": 0.0039167419148899455, + "match_probability": 0.7441110376077843, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9970487540628385, + "recall": 0.7569030237431775, + "row_count": 477830, + "tn": 173188, + "tn_rate": 0.99608325808511, + "tp": 230069, + "tp_rate": 0.7569030237431775, + "truth_threshold": 1.54 + }, + { + "f1": 0.8600850146680237, + "fn": 74105, + "fn_rate": 0.24379772405012484, + "fp": 680, + "fp_rate": 0.003910990458333573, + "match_probability": 0.7467417332849615, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9970503522226464, + "recall": 0.7562022759498751, + "row_count": 477830, + "tn": 173189, + "tn_rate": 0.9960890095416665, + "tp": 229856, + "tp_rate": 0.7562022759498751, + "truth_threshold": 1.56 + }, + { + "f1": 0.8597180736781429, + "fn": 74277, + "fn_rate": 0.24436358611795592, + "fp": 679, + "fp_rate": 0.0039052390017772, + "match_probability": 0.7493544936580313, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9970524780455194, + "recall": 0.7556364138820441, + "row_count": 477830, + "tn": 173190, + "tn_rate": 0.9960947609982228, + "tp": 229684, + "tp_rate": 0.7556364138820441, + "truth_threshold": 1.58 + }, + { + "f1": 0.8595324737559339, + "fn": 74373, + "fn_rate": 0.2446794161093035, + "fp": 667, + "fp_rate": 0.0038362215231007254, + "match_probability": 0.7519492530313435, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.9971032116566415, + "recall": 0.7553205838906965, + "row_count": 477830, + "tn": 173202, + "tn_rate": 0.9961637784768993, + "tp": 229588, + "tp_rate": 0.7553205838906965, + "truth_threshold": 1.6 + }, + { + "f1": 0.8592720191731575, + "fn": 74501, + "fn_rate": 0.2451005227644336, + "fp": 660, + "fp_rate": 0.003795961327206115, + "match_probability": 0.754525950046764, + "n": 173869, + "n_rate": 0.36387208839964, + "p": 303961, + "p_rate": 0, + "precision": 0.997131931166348, + "recall": 0.7548994772355664, + "row_count": 477830, + "tn": 173209, + "tn_rate": 0.9962040386727938, + "tp": 229460, + "tp_rate": 0.7548994772355664, + "truth_threshold": 1.62 + } + ] + }, + "encoding": { + "tooltip": [ + { + "field": "truth_threshold", + "format": ".4f", + "type": "quantitative" + }, + { + "field": "match_probability", + "format": ".4%", + "type": "quantitative" + }, + { + "field": "fp_rate", + "format": ".4f", + "title": "FP_rate", + "type": "quantitative" + }, + { + "field": "tp_rate", + "format": ".4f", + "title": "TP_rate", + "type": "quantitative" + }, + { + "field": "tp", + "format": ",.0f", + "title": "TP", + "type": "quantitative" + }, + { + "field": "tn", + "format": ",.0f", + "title": "TN", + "type": "quantitative" + }, + { + "field": "fp", + "format": ",.0f", + "title": "FP", + "type": "quantitative" + }, + { + "field": "fn", + "format": ",.0f", + "title": "FN", + "type": "quantitative" + }, + { + "field": "precision", + "format": ".4f", + "type": "quantitative" + }, + { + "field": "recall", + "format": ".4f", + "type": "quantitative" + }, + { + "field": "f1", + "format": ".4f", + "title": "F1", + "type": "quantitative" + } + ], + "x": { + "field": "fp_rate", + "sort": [ + "truth_threshold" + ], + "title": "False Positive Rate amongst clerically reviewed records", + "type": "quantitative" + }, + "y": { + "field": "tp_rate", + "sort": [ + "truth_threshold" + ], + "title": "True Positive Rate amongst clerically reviewed records", + "type": "quantitative" + } + }, + "height": 400, + "mark": { + "clip": true, + "point": true, + "type": "line" + }, + "selection": { + "selector076": { + "bind": "scales", + "encodings": [ + "x" + ], + "type": "interval" + } + }, + "title": "Receiver operating characteristic curve", + "width": 400 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAHQCAYAAAAxsWT9AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TVX7xx+Xa7rmeY4rZI4yhTJFZYq6KFSIBi9RXjJEKNKbkFK9SBGKzOJNSoq4MiURkpAMDa5Zpv6f3/Lft3PPPefstc+z9z533/Osz6dPdc961n72d629fns9ew0Z/v77779JkhAQAkJACAiBKCKQQcQvimpbblUICAEhIAQUARE/aQhCQAgIASEQdQRE/KKuyuWGhYAQEAJCQMRP2oAQEAJCQAhEHQERv3Re5YHmM2XIkMGVuz59+jTh+rlz53blemn1IpcuXaILFy5Q1qxZKUuWLGnVzTTv1/nz5+ny5csUFxdHmTJlsuQvx9bShSSzZwiI+HmmqsJztEGDBrR+/foUxoUKFaIWLVrQhAkTKH/+/OEVrGFliOxff/1FmTNn1rBIH1l27NhBmzZtojp16lDVqlXpjTfeoH/96180cuRIGj58uKs3mStXLjpz5ox6CYlk+u2332jJkiVUqlQpat68eViu3H///bRgwQJas2YNNWrUKGQZ//vf/+iXX36hdu3aqTZuxTYs58TIcwRE/DxXZdYcNsQPYle8eHHCKGTVqlV04sQJJYDoJJxKffv2pYsXL9KUKVMsv6k75ZMb5eKl4umnn6bJkycr0fv888/pgw8+oNatW6t/3EzGC0ikxW/z5s1Uq1YtJUYLFy4MC8Gbb75J27ZtU2xvuummkGW0adOGli1bRlu3bqUaNWqQFduwnBMjzxEQ8fNclVlz2BC/tWvX0u23366MIX4QPqRr166pUcHbb79N06ZNU2/Lt9xyC73wwgtUs2ZNlQdv7P/5z39o37596o373nvvpQceeED9ho599OjRtGvXLipXrhz17t07+be77rqLEG5Cnj59+tD3339Pw4YNU2/+p06dUkIQGxtLK1asUNcdPHgwwc8iRYqoazz33HNKNJ955hn65ptv6IknnlCd2GOPPUadO3dOAeKHH36gAQMG0JdffknZsmWjO+64g1555RU10kAH2K9fP2rcuDH9/vvvSvDLli1LY8aMoVtvvdX0PsANLw5gCSEHD/gP/7Zs2UI33HCD+u3ZZ59V/49r7d27l8qXL08DBw6kvHnz0sSJE6l79+70yCOPKLt169ZRQkICzZ8/X72ItG3bVo0KERoFC5SRmJhIlStXVrwWL16symrVqlWqBrBz504aMmSIyl+9enW68847FW+UZYgf6g/swPPJJ5+kp556SpUzd+5cNTJF3cK2SZMmiiPyWblvRBOuXLlC48ePpzlz5tDZs2eV3127dlXsUF+IQOTMmZO6detGkyZNov3791uqc9Qx2gdsIWgrV66k999/n1avXq3+H23m8ccfp5dfflm1X4x469evr3xavnx5Cts//vhDtUU8C3ny5FHPA2zRXvxTML4ZM2akpk2bKs4oB+nVV19VdYVRPtqbP0M8N8jbsmVLGjRokLIBD7DAfd144430/PPPqzKQGjZsqNpxgQIFrD34ktuUgIifKSJvZzDEb9asWVS3bl01EkNn99Zbb6mO7rPPPlMdOkQLHRPyo1NBQod48OBBatasmfp/CN8XX3yh/hudSYkSJejmm29W/4+HGcKDDgejnI4dOyZ3vAh7vv7660rEIADTp09Xb//33XefEoAZM2aoN3l0+rjGoUOH6KefflJiB98gop988klyRbz33nv00EMPJf8/BC0+Pl5du1q1aqrjhT065AMHDihRwL0iwWcIF/LifiFSx48f17oP44LohNGpQbQwkoHfEGcIG/yCeEBwMdLBKAUdrW/YE500BBQJLxjIi/TRRx8pJug0wRm+YqSO6yDh5aRHjx4pGiTCiRBy3A86yu3bt6v/Rsf60ksvJdcBjCAERggc4osOFdzBAeJrRAQMvv7fhkPdN+oQnTY6fXDHCwGYIGG0BqH5+OOP1W+o13//+9+W63zp0qXJYc8KFSpQsWLFVL2DGUQc9YARJkLO8AXc8IIFn1588cVkW7wYgRVYVKpUifBtGraoC7y8+KZQfFEuhA/JGFnjOUKbnTdvnmrb/gzR7tu3b6/qFu0cba9o0aKqDtBO8JKAFyK8OOXLl482btyo/hsvlxBbSfYREPGzj2WaLCnQNz84iocNnS7eNNGRQATwYELMRo0aRe+++67qQL777jvVafz3v/+lnj17qg565syZqrNERwtRQ0eL0RgECh0bOll0rr7f/CBQGAHguidPnqRHH31UXQMiitFhhw4dVIeEjhedAIQDCR0TOhGUjX+PGzeOypQpk4I13rYhrPAJb8xXr16l2rVrq/vDyACdJMQPHSXuBwkii84ZQozOWec+0NlhxIQRDuwgHrhXXAMjDeO+/cOe/t/8DPGDOIEdhAMvBRglYZQCgYCvGHGgwwMLfEcMJH5G2Q8++CDNnj2bIFAYIZYuXZpee+215DrYsGGDevlB54qRGeoQLwrgitElGGFECoEaMWKEqnuj/nTv2/i+iI66YsWKqgzUAUalGEn6hj3RwVutc9/vdmgj+H9wQvkFCxYkvGRBKDCC9Q97+tpCVJAHAoQXPDAGF7wYgiHaqJFC8cVoWlf8DIaY/GU8b6hTiC1GfmgH+EyAZwRp9+7danIUXjzxIoeXVOMFLk12NB50SsTPg5VmxWVD/BAGw0OHN010tnjTReeLN/Bgb5TojL/99lvV8eIhNcKgxvX9R2TG39F54zr+E14QskPn+tVXX9E999yjsqMTg1gYISD/e0PnhFETOulgEx0guBjJorPHfSKhPIS/0OlAVNFx4H7Q6SOhwxw7dqz6/euvv04xsgx2H8aMTYSKwQ2i65usip8hSBhpgwfEAGExjCYNMUP5/fv3V2HTQOIH0Ycf+N0IZfr6ZNQBZklCgAwuKAsjEHT6xkjfsEP4FVwMW537xkjWCM0F+r7o/80PdWO1zn0FDEKK0bcxaobv4I+XErTzUOKHFyq8KBkvS6Gep1B8Ibb+4oeQMsLL/iM/gyGuhRccRAfAAG1g0aJF6hk7d+4c1atXL6A7eGYRWZBkHwERP/tYpsmSAn3zw7cFfFMyHv7ChQurEBFGYVWqVFFhM4QG8XcIxDvvvKO+y919990qtAkBQ8eDUSBGbxgxIByHDhaihw4B3w39xQ/5MXrDCAThHCM0B0F6+OGHlUDhWkhHjhxRoSSM4BC6gvgFEmDkxajL8AGdOpIhzBixYnSLsiHKKBciYHSOU6dOVeEvnfswOnVMpIA9Rk4It/3666/qO5tV8UM4FvfnK37oEDFqQzgOLx7wFXkwSg0kfghnI9RqsMRLDSbaYFSDFwH/CS++4ofRBTpidKpgiPIxWvMXP537xgsNvpfh+hjZ4zsaOmyMRFE+OnbfkV84de4rfmibhw8fVqO1H3/8UY3YIITGC04o8YOfCBUbYU68zGC0ixCzbygT7SgUXwidseQCfmCkhu+cn376aSrx830hQHvBCA/tB6Jn+IHvfmirGHmirWOGNCImKBuCLt/97O1iRfzs5ZnmSgskfggNYnSBERHEDJ0kwn7ovCFO+GaBMCje5mNiYpT4IJyE8AzEAmEYdHbHjh1T+SEqGEmhE4dI4TsXOlV/8cPbLzotiCsSHnwsBfj555+TQ5nohFEu/EGngE4fo6JQ4rdnz57k2X8QYVwHoT0kdDTogI2QEUZUEGmE3ZDQ4aDT1LkPowMzxAoijkkuGEFDzPH/eJOH72CKSRToTDHqCfTNL5D4ffjhh8lih/LQIRujm0Dih5Gz0SniuxY6XnwvxH+jTkKJH0bVCCNjogfaCUbQqBt8n8MkJn9bs/tGuBWhQLwkQbBx70goE9dCfSJMiTz4byN8rVvnvuIHUTBepPCdDe0EI/9evXqpyVsY1WJEhZc8jJzRJn2XSSDsifaHekLYHSNG4xu470NsxtcoBy8/aFfGN3H/kZ//aBht2hhx43kDe4TrIYgIG+OFAc8c6tB4GURoWpJ9BET87GOZJksyxA8iB7FDQkdthFfwcOMNE9/sDMFAHmMEgNAOBMX3N8ySxMxMJPz30KFDk+8doorRG978jW9Avuv8DKH1n1yA0SS+exmTOzDygUDh38YoLtjIDxdHxwZxNoQVb8/o/DAbD+FSdGy+kxuMt/ouXbqY3oe/COCbHzo7o6NDR4WRI64JIT969Ki6Hu4FnS46fIgfvqVihGp888PEDIyGMPsUgoGwJ8QPnTLqA/WEFxLMiMW1goW+jG+MRiVgAgi+nWIxuL/vEGsIHjp7jN4h0HiZQcKLAerZ/5ut0XGb3TfYY8QF/5HAA6N9jIYg4sa3S3TwGNVarXND/MACPqK9YGRmJNQvJu1gVIUROe4HCS9xGGmijcAWE14wAxn1YLQXCA2iGxgR+qdQfHEPxgxcvATCB1wDbRf+BltqYnzzxLUg5MZ6W7zIYfRqTBYCQ9wjojSS7CUg4mcvT0+XBiFEx43OOnv27CnuBQ8oRlHoHNCp+iaEtDCrErPWOIvm0bliJIalCiVLlkw1U84MrmGPb5gYVRjfMg3xg0hBmOErOkj/3Vas3gdCfBB4/OOf4EtSUpLi6M8y1H3ABuFnhNPQeUI0MJMWHaohloHs4TtEDHVgJTwGYQNzzM6EyOqkUPeN8hCOhD9Y+uK7Ewt+Q0gUfzOYcesc5eG+cc9oM4hUGAkRAPiBSSaB7g0jNdiiHeD+Q+18FIovRmwI90P8rO48E4g3OIExRqR43uwoU6deoy2PiF+01XgU3q+v+GH0lJYTvj9hRGZMw4eQYHSCjhVT42V7tLRce+KblwiI+HmptsTXsAggDIfvWAhF4htQWk9YW4mwHULVEENMQsKsQ4zqJAkBIWAPARE/ezhKKUJACAgBIeAhAiJ+HqoscVUICAEhIATsISDiZw9HKUUICAEhIAQ8REDEz0OVJa4KASEgBISAPQRE/OzhKKUIASEgBISAhwg4Kn7YXd93oa0/F6ydwZou37U5HmInrgoBISAEhIBHCTgiftjZAtPLscUQ9t3DGiXfhAXT2H0BizcxrRubBMumrR5tQeK2EBACQsCDBBwRP2wjhEW62BbI2PnAlw32QsTCXew/iH0csX4Jo0ArO2F4kLW4LASEgBAQAmmEgCPiZ9wbtgsKJH44yw3nVHXq1Ent3I+wJ7ZYwrZakoSAEBACQkAIOE0gIuKHDXzxD/YuRMJO/9jhHke54BBU47Rp4+ZxUCUOH5UkBISAEBAC1gg8N/tbOn3+UiqjST2vHxidHtNTU79Jvi3cZ6CBVUTED7vbY2NbbDWFTWHz5s2rNgEONvEFu9AHO/gyLVQcNsdNy6NW8Y/XSoSf8OMR4Flz21+bIfNUhC1aU5oQP4zucH7b6tWr1ZlnOH4ER3vgJGqcgxYsifjxmi334eFd3dxa/DNnFCqH8BN+oQi0HvwhD5DHrSMmfpj5ibAlEkZ7RngThzni0EYcO4IDOOvUqSPi51Ajk86RB1b4CT8egfCsfzt1gQrmzqaOXTIiS59s+omSzl2k5rfGU96cWbUKDiZ+k55uTvEF82qVkdZfvj7bcoCmLt9G5y5epjJF89DPx04lj3YjIn5mVHFcS5EiRUzPEZORnxnJ0L9L5y38eAR41r7t78rVv+m+4R+p0yqQMhBR3crFaUiXBryLMKzTyvMx+r2vaNMPv6a6k0wZYyihUUWa+9n3KX4rWzwvTfxXc9M7DyZ+y8Z2NLXVyRBJfhA7iB7ED6lpzdLUs3VNissaS0a4N02Knw5Y5BHx0yUVOF8kG6eO5+KfDqXgebzAb9B72+jipStBb+Llx5pSxdIFeCDCtE4L/PBNDp11sJQhA1Ggz3Z33hpPBfOkPHjat4yFa3fTxctXAxbrdfH76WgSTZqfSPg3xK5nqxrU9JYyqe41WP06OuElzLaYykzEj0cyLTzcoe5A/Evf9fvAyAV09mJw4ePdvViHS8DL4ucf5uyXUIfii+YJiELEL9wWomEnnbcGpBBZhF/65tdm8IcUvXMNeXVrZt2kRmkqnC8uaLaFX/5AfwUY+WEN9tIxHcyK1/rdzec3VJgzmLMiflrVGF4mNys/HA/Fv3Co/WMj/Hj82gz5MGDIzrfUpzvUocY1SvMuFKZ1WqhfCNT9wz8KegdF8sXRsT/PpfgdE15mDmlreteBvvnNHnYv5YrLYmqrk8EtfrphTn+fRfx0ajHMPG5VfpjupZgtFm4ZTtoJPx7dtMJvzuqdlLjrCJUslJua3Vqann/3S7p61XzMlysuK80eZt6J8ygFt04r/OZ/sZtmfrIj2VF854vNlJE61C9FHVvUphUbf6RlX++jq39fo7tujaf2d1TURtLh+YXqm2vGDBlo0YsJ2nY6Gd3gZyXMKeKnU2s25XGj8jmuin8ceuSJl4esuQtRTIYMlDEmA2F2oO40eB4Zojmf7qS5n6echahbZoGc2WnGkNa62R3LJ88HD62T/MIJc4r48erTkrWTlW/JkSCZxT8eRaf4Hf79ND375ufqTf7S5asqNJg9SyxN6X835c6hF5IaMnUNfffTiVQ3iNlvT7S9he64+QbezYew/v3Ueer20rKwytcN2YVVuEUjp+rXohtBs0erf+GGOUX87Gp5GuVEa+PUQKOVJRL8MLW83bCP6Nrff6u1ZnlyZaWn2temmuWLpPLZbv/aP/cRXb4SePq5cfHFL3ZQo7hQ6aU562n9d78EzZIze2ZH18+9tWQLHTx+SquO/TPVi/DaPl9/7K7fsICEMIpG/zhhThE/u1ugNE7HiDr9cA+d9gV9f+A3JXRmexy+8mQzqlAyf4p7tdO/sbPX09c7gwuWceGc2bNQ6SK5QzLf9fNvdPWa+Tc1xyouzILz585O7z4b+XCn4b6d9RsmkpBm0eSfHWFOET8nWmGQMqOpcTqB1Ql+l69cUzuJmImdE/eTlsqsXLoAYVq7E+nQ8dN0+vxf2kXbOb1e+6IaGZ1ofxqX1c4SLf7ZFeYU8dNuWvyM0dI4+aQClxCM31ffHab/zN2QQsAwPXtMz8Z0Q+HgoyJMGQ+0tskp/50o985by5hO/ce2TgeOJgW9fNv65enRVjWccE+VefLMRer20tJUo8+YmAy05MUO9PX3v9CRE6fp5pJZqNyNZR3zg1uwPL88gnbwszPMKeLHq09L1nZUvqULWszsNf8uXblGCSOw/2PgkB6E7/G2twSkcPSPs/Tagk0WCf2TfVT3O6hGuZTf/ezk99Kcr2n9d4dD+ofZmoteMJ+OjjDuvyb+j3757bSaLJMpUwxVLJmfyhbPR7UrFqOq8YXC5qBriG+X76/aSWcuXKIKpfJTi1qpD6S2k5+uX1byiX9WaKXOy+U3bfk2WrJ+ryrYd29Onlf/WAfzT7Y3s4Ewt/JtcCFkEWnRv5fnfk3r1GQNTDjJQE1vLUN9218/XPPx8SvoyO9nnMaSqvwn772V7q6TeoRiN78nJ6ykwydOJ18fSxQ6Nq2sZnre26C85fu22z/LDpgYiH88oumV34mT5+jFWevU3pxIiFIgWmF3EvGzm6hPeem1cYaDDIucEZqseEPqTYo7Pr+QLly6EvQ73JAu9ale5RLUdsg8NTklWMoYE0MVb0g5KcXI++eZi/SrpnDiGxS+hmHE8vLjTYNeT+o3nJZg/ubNK9U+a6lfHstw+G3cdYQmzk9URxAVyhNHQx9qEHRvTp53wdfpysiPS5a8sQjayZPmcdTK8sQf6fSZi8k0Ebob/2Qzii+WV4Xlnnh1pQ2krxfxQNPK9GCzKkHLC3aES664zDR7WDvLfoTzcFu+CMNA/GPAk+eXBy8Mfr5hzrqVihM2pca6VKeSjPycIhtG5TvoSsCineocR89aR5t2HQl6O3lyZKF76pajZev3qm9CdqT2t99E3e6uHrIozPB8eOwySjp7UY3sere7hZrXCn/ChVP87OCBMsQ/Hknh5w4/t8Kc/ncj4ser35DW0fbwJJ25SF3HLLGdaLd7qlP7hjfRwLc+o90Hf09RPkT0ibY1bb+mToHRVr86TKzkEX5WaKXOmx74uRnmFPHjtTdL1umhceresHE6sk7+jBljqEOjivTxxn10+lzokV+hvNlp+sB/Fj5jMfi+X/5U+1Ri5uKjLZ2bsm92L9FUv2Yswvld+IVD7R8br/NzO8wp4sdrb5asvd44dW52wJTVtOfwHzpZk/O0qV+OeraqqWY29p6wMuCZblgTNqHHreTkN0lLTgfIHA31y2UUyl748eh6lV+kwpwifrz2Zsnaq40z1E1u33+CsmfJROVL5KO2Q+cFXXMXrIw8ObPSLL+zxj5au5t+SzpPbW8rR8UK5ko2TY/8LDUgZmbhxwMo/OznF8kwp4gfrz4tWaeHh+e9/31LC77cw9oOLCYmhl7q1ZjKl8xvuimzL+D0wM9Sg7E5s/DjARV+9vKLdJhTxI9Xn5asvf7wvDovkdZs+9nSPftnXja2Y9j2XucX9o3bZCj8eCCFnz380kqYU8SPV5+WrCPx8Ez9eDtt+O4wZc8aSx0aV6Lbq5cK6nMo/+Z9/j3N+nSnpfv1zdyoxg30TIe6YdvDMBL8rDgs/lmhlTqv8Ev//E5czOLaonWrNGWpg1ViFvK7/XAHmnH5cItqdH+jigG9DuVfsAXhZrefLXMstWlQjrrcWdUsq+nvbvMzdcgvg/hnlVjK/MIvffMbP/sL+mLncXWTbixat0pTxM8qMQv53Xq4DxxLor6TPgnoGWZNVi5dMOBvFy5coGzZsqX6DYvAffeY1L3lciXy06u9m+lmN83nFj9TR4JkEP/CJXfdTvilT35pNczpT1vEj9f+Qlo7/XCP+/+TANw8thT7XsZmjKG2DcpTQqOKtHrLAXUuXKt65Wwn6TQ/rsPiH4+g8Et//Hxnc+bLkZlGdG/s2N6cPHqytyeXX8TE78yFy/TgqIWm/mMxOI7jCZSOHj1KRYsWDfjbkKlrUv3d7UNHpXM0rd6ItT+eZzLyS4/8/Gdz3lurMFW+yf6XYjvYhYo8yMbWNhB2svPW/Sa3ZExHiglyYHco/2Z98h3N/2JX8gL0rJkz0fyR99lARb8IJ/npexE8p/jHoyj80ge/YGFOr9aviB+vXSprpypfdyuxyU/dRaWLBD/Z3Cn/bEDnKD/xzy4CvHKk/XmfX6hF616tXxE/Xrt0rPP+5bcz9MSrK0y901lf59XGaXrzLmUQfjzQws/b/MwWrXu1fkX8eO3SMfFrPXieOuU8WGrXsAJ1v+dmLe+92ji1bs6FTMKPB1n4eZOf7mxOr9avY+J37do1whT7uLi4oDV/5swZypEjh5pFGCqNGzeOBg0axGtBDlrbXfkPj11Kf56+EMTjDLRsbAdLd2O3f5YurpFZ/NOAFCKL8BN+PAKpra3szenV9ueI+M2YMYMmTpxIxYsXpytXrtDs2bOpYMF/1qDt2bOHRo0aRdgL8uDBg9SrVy/q0qVL0PqLNvELNcllYu87qWyJfJbaulcbp6WbdDCz8OPBFX7e4mcW5vS/G6/Wr+3iB7GLjY2lpKQkyp07N/Xt21dNsx88eHAyM4hd+fLlacCAAbRv3z7133/99Rdlzpw5YCuJJvHbdfA3GvTW5wE5hLsEwauNk9dl2Gct/HgshZ83+OmGOUX8gtTngQMHqFmzZrR//36VY/LkybR9+3aaPn16sgVGfRBICOLGjRupXr16dOTIESpWrFjUi1+oGZ46k1sCAZTOxxudT7heSv2GS+66nfAjshLmFPEL0t527NhBCQkJhNAm0qxZs2jt2rU0bdq0ZItdu3ZR3bp1qX379rRhwwbau3cvGd//1q9fT+vWrUtVOspMz2nWmv204+ApunT5asDbLJArKz3Xkb+PZnpmKPcmBISAdQKLNhxK3puz6g15qHOjeMqWOaP1gtKwRaDDsm0Pe2KSS/bs2QkTXhCmmzBhgkLSv3//FGhOnTpFy5cvp7JlyyqxPHz4cFB06T3s2eWFxXTq3F8hm84jd1en+26/KazmJW+2YWFLNhJ+wo9HgGftVPsLN8wpI78Q9Vm9enWaMmUKVa1alVq0aEEjR46k5s2bU2JiovobJsSgQsePH6/CoRgZzpw5MyrFT2che7jf+gygTj08vEf6H2vxj0dS+Ak/qwQ4YU4RvxC0ly5dmjx7s2XLljRnzhw1CsyVK5cSQIwM77nnHvX/v/zyi/pbsO99uEwkR35nz1+ijzfup8yZMlDLeuUoc2zqcEC4nY+O8OH+3x5wDxXLn9Nq+5aRS9jEUhqGW782Xd60GPHPFFHIDNHGz+psTjO6XuVne9jTAHX+/HlCaDPYhsrIh1BniRIl0sQ6v9VbD9DsVTvpypVrVDm+ED37YD165cONtHb7wRR1/+yDt1H9qiVT/C2cyr946QoljFhg1q4oY0wGWvyitXV96eXNzBSOSxnCqV+XXFOXEf94tKOFn11hzvTSvzgmfrzmmNLa6ZHftOVbacn6fSkuGpc1ls5dvJzqNjCCfaBp5RR/P3nyJOXNm/d6R/TryYB2/gUdOHqKzl4I/p0Pole3Ugl6tvNtbJTR8nCzQQUpQPjxyAq/yPOzM8wp4serT0vWTouf7skJlpxmZM4Sm5E+GnU/o4SUptL58FAKP+HHI8Cz5ra/uZ99T3NW71ROOHHSOtc/Hh1z62D+ReXI78hvp4koAxUvmJNemrOe1n/3izlBnxyhRn7xxfISRo1macdPJ+iDz75Ple21vs2pTNHro0i7klcbp133zy1H+PEICr/I8EPk6sVZ6+i7n04oB9BvPdisCs+ZANZerd+oEr+te4/R8zPWJm8XHZMhA137O/jm0Qg9Xr2W8vcyRfPQa31bpGgC4VZ+/9c/pR+P/JlcVo3yRWhUt8AH0nJabLj+ca5pxVb8s0IrdV7hJ/z8CUDwIHwQQLyMD+3agKrGF+KBCmLt1fYXVeJnJbyJfUfnDGtLT7y6kpLO/UXYe7ty6YI0pmfjVE2AW/mY/IJDZJ1icik6AAAgAElEQVRKXP+c8ssoV/zjERZ+ws+XgG+Ys0qZgjTsoYZa0ahwKXq1/UWN+K36Zj9NXrhZu34/GnUfZYnVEySvVr42DIczCj8eYOEn/EDArTCnP22vtr+oEb97h86nq9euaT0lVheVe7XytWC4kEn48SALP+HnZphTxI/X3ixZ2zHbM1jIE+FNbMXmm6xuIC2dj6XqtD1szLu6ubXUrzmjUDmEn7P83A5zivjx6tOSNVf8fks6T93HLQt4zaVjOtChE6dpy56jVKJgLqpdMfDJEvJwW6oyS5mlc7SES14eeLjSDb9IhTlF/GxugKGK44rfAyMX09mLgReUWx3lBfJTOm9eYxB+wo9HgGftxfYXyTCniB+vvVmy5opfsJCn1W97wZz24sNjqQIcziz8eICFX3Txi3SYM6rFD6e1Z8qkNxOS1yyvWzslfk8l1KZmNcuwXZTOh4dQ+Ak/HgGetVfaX1oJc0aV+G3bto2eeuopWrFiBd155530/fffK0F64okneK1O09op8bMj5Ilb8MrDo4nb9WzCj4dc+KV/fucoh2uL1q3S9Gr701rqUK9ePdXBP/fcc9SnTx+qWbMm7du3j/78809XRoAiflabY8r8Xm2cvLu2z1r48VgKPx6/KR+to5VbjqhC3Fi0btVbr9avqfhdvHiRsmXLRjijb+LEibRz507avHkzlSpVir799luqVq2aVVaW83PE741F39D/Nv2U6pp2fe+TkZ/l6kxl4NWHh3/n9pQg/Hgc0yq/tBrmjKqwZ4UKFahixYq0ZMkS6tWrlzqjD6eznz17luLi4ngtT8OaI37BDowV8dMA71KWtNr5GLcv/vEagvCzzs93Nme2zBnpuYdvd2xvTuvepY/IkunID7c5c+ZMevjhh9UdY7TXoEEDat26Nc2ePZvLTcueI37BZnrmz52N3n22jdb1zTLJw21GKPTvwk/48QjwrNNa+/Ofzdnl9pJU+aZyvJt00Dqt8dMdmWqJHwrDga0ZM2akXLly0datW9V3P7eSmfj9fuo8DXzrc0o6e5EyZ4qhtg0qqOM7nnh1Bf3y25mAbr43uC3ly5XVllvwauXbcvM2FCL8eBCFX/rgFyzMKfXrTP2GFL+SJUvSpUuXgl55//79lCNHDp5nGtZm4td2yLxURxM9fFc1mvnJd/R3gCOLcELD0jEdNa6sl0Uapx6nYLmEn/DjEeBZp4X2F2rRelrwLxRhr/oXUvxatWqlxA8ihxvMmTMnlSlThnbs2EHx8fFq8gsmwzidQonf4ROn6ckJKy25cFftstS73a2WbNJj5dsGgFmQVx8e5m3bZi78eCgjzc9s0Xqk/TOj61X/tMKelStXptq1a9Nbb71FWbJkoTfffJOefPJJOn36tBJEp1Mo8Xv6jVW075eTqVzAhBaM8K75HUaLjHat7zMu6tXKd7redMsXfrqkAucTft7kpzubU+rXmfo1FT/s5hIbG0tt27alBQsWqO9+48ePpwEDBqhvfzVq1OB5pmEdSvwSRiwgHAbrnzJljKF+CXXolQ82pPgpW5ZMNO/5+zSuqp9FGqc+q0A5hZ/w4xHgWUei/VnZmzMS/lkh6lX/TMUPENq0aUPLli1TozyEOU+cOEG1atWijRs3Eo4EcjoFEr8rV6/RwLdWBxz1wZ+ShXPSlH730PYfj9PU5dvowl+XqVrZwtTv/tq2u+vVyrcdRJgFCr8wwf2/mfDzFj+zMKf/3Uj9OlO/WuJ36tQpmj9/Pi1fvpwOHz5M9913H3Xt2pUwIcaN5C9+P/16kp6avCrkpdvdfhN1v7u6G+7J9mZMyvJw8wAKP2/w0w1zivjx6lOXn6n4Iez5+uuvU5UqVahZs2b2eqVZmr/4BVu751uc3d/1QrkqnY9mRQbJJvyEH48Az9qN9mclzKnbefPu2j5rN/hxvA3mn6n44aKY8AIR3LVrl/rm53byFb9uLy2h309dDOkCTpxYNNre73oifs7VulcfHueIWCtZ+Fnj5ba4WA1zuu0fj553N/bXEr/OnTvTnDlzqGHDhmoEiJmUSJj4kjWrPQvFQ1WAr/gF264sUqM+XFc6H97jI/yEH48Az9qp9hdumFPEj1efuvy0xK9w4cJqkot/wrdA7PjidPIVv1Ahz2IFctKkPs0pa2b3zhoU8ePXvlOdD9+z6yWIfzyS0ciPE+bU7bx5tWKftVfrV0v8zp8/r3ZKOXPmDP31119UoEABRc6NTa1xHR3xmzqgJRXJ7/xuM4GajFcr377mzytJ+Ak/HgGetd3tjxvmFPHj1acuPy3xQ+N49tln1YxPJBxoO2zYMLr99tvt9TJIaYb4dRu3jH5POh8wl5sTXHThugJH4yJ2P9wal7SURfyzhCtVZuGXNvjZFeaU/oVXn7r8tMSvQ4cOSvjwb+zlaYjgsWPHKHv27PZ6GqA0Q/zcOJ4onJuRziccav/YCD/hxyPAs7aj/dkZ5tTtvHl3bZ+1Hfzs8yZ1SWHP9sRpDvny5aMXXniBhg4dqkpetGgRtW/fPuQOL9euXaMLFy6EDI0ijAoxNSbQBANgiF+w733Nb42nPvfVcpJfyLK9WvkRA+Z3YeHHqwnhF1l+S9fvVRtpIJUpmofG9mpCcVljeU75WEv98lCGLX7G9mZY1D5t2jS11OGll15SYc+9e/dSuXKpz5maMWOGOvW9ePHiaokEzv0rWLBg8h1AUHv27Kl2jPntt9/o/vvvp0ceeSToHZqJXyRDnnBaGqczjZNXqn3WUr88lumVH8KcE+cn0sZdRxSgNvXLU89W9m/3mF758VqVvnXY4odL9OjRg9555x11NQgWRmwIgX744YepPDDEMikpiXLnzk19+/ZVJ78PHjw4Oe+7775LK1asoHnz5tHXX39N3bp1oz179oj46denpZzy8FjClSqz8BN+/gR+OppEY2ato+Mnz6lRHvYRrlupOA9UEGtpfzysLPFD+HLx4sVK7LC8oVOnTkr88ubNm8qrAwcOqJ1gcAwS0uTJk2n79u00ffr05LxHjx6lm2++mZo0aULr1q2jfv360TPPPCPix6vjoNby8PDACj/h50vAP8w5rGsDKpQ3jgcphLW0Px5alvjh0tjdJU+ePOobHsTrpptuCugRzvpLSEhIHsnNmjWL1q5dq0KmRlq1apXaG7RXr16UmJhImTNnVvuGIq1fv14Jon9q1/5+euadzQGvOaln5L738apFrIWAEPAKgQuXrtKctQdox8/Xj1C7o0phal+vlFfcj2o/cf6sf9Ka7Ym9Pfv06UMrV66kUqVKqe3OBg4cqNbf+SeMEjEDFBNeMJFlwoQJKkv//v2TsyLMCfEcNGiQCqFiofzx48epUKFCASsI16nROIEmL/om4O/yzS90u5Y3R95zL/yEn5thTn/a0v6caX9a4lehQgU1YeWjjz5SI7/evXsTRnRHjhyhYsWKpfKsevXqNGXKFKpatSq1aNGCRo4cSc2bN1ejPPwNv6FC33jjDTp48CDVqVNHlYU9OQMliN+fuW+lXQd/T63eGTLQ0jEdeHSY1tI4eQCFn/DjEeBZm7U/t8OcIn68+tTlZyp+xgSWxx9/XJ3gjoTZm126dKENGzZQ3bp1U3m6dOlS9TtSy5Yt1b6gGAVihAcBxNKJ1q1bq/Ap0vDhw9Xsz2AJ4rfpfFm6dOlqqiwxGTLQEhG/kK3F7OG2t6lZL038s87M10L4OcPPrdmcZt5L/ZoRCv0765sfdnL56quv1GnumO25ZMkSNZPzxx9/pCxZsgS8MrZEw+QYzPQMln799Vc1osRJ8aESxG/DmXi6evVaqmxxWWLpg+fb8+gwraVx8gAKP+HHI8CzDtT+Ihnm1B258O7aPmuvPr+mIz8gwgxOfLvDbE9scI3R3L///W+644477CMYoiSI3/pTZdT+ov6pSc0bqH9C6tGnK479/0W8WvluMgp1LeHHqwnhZy+/SIc5Rfx49anLT0v8UNjPP/+s1uThG1+JEiXoxhtvtNdDE/Fbl1Q6YI52DcpT95b2Lyy1cnPS+VihlTqv8BN+PAI8a6P9pZUwp27nzbtr+6y9+vxqid+yZcuoTZs2ihYWq2MpQo0aNWjSpEn2EQxR0uAXJtHOc0UC5sBWQlXK/LN7jCsO+V3Eq5UfCVaBrin8eDUh/Pj8KFs+1xatW/VW6tcqsZT5Wd/8SpYsqZYhYJ0fZmZiVubo0aODzvbkuZrauu2QD+ja39cP0PVPkV7mAH+kcfJqXPgJPx4BnvWMpRto4YZDqhDszen0onWr3srzYZWYTeKH8/twWruxLAF7e2IRe82aNWnnzp1qzZ/TKdiG1pkyZqRFL9zv9OVNy5fGaYooZAbhJ/x4BMKzTqthTv+7kecjvPo1rFgjPwjc77//TkWKFFGjPkx6wUL2UPtx8txNaR1M/Pq0r0XNa6VeuW/ntXXKksapQyl4HuEn/HgErFv7zubMljkjPd2xnmN7c1r3Tm/kwi3XLnuvPr9a3/y2bdtGI0aMIHz7MxKWOxjfAe2CGKycYOK38IUEis0Y4/TlTcv3auWb3phLGYQfD7Tws8bPfzbnQ3eUolurV7RWiIu5pX55sMMe+WGRO7Y3q1KlCt1yyy30yy+/UNmyZV05xNa45UDilzdnVpo5pC2Pik3W0jh5IIWf8OMR0LMOFuaU9qfHL1gur/LTGvkh7AkRxObW+ObndgokfmlhoovBwauV73Y9preHR/jpEUgLz0eoRetpwb9QJMU/vXZmtX/REr/OnTurLcoaNmyoRoDGyevjx49Xk2GcTiJ+PMLy8Ag/HgGedaTbn9mi9Uj7Z0ZX/DMjFPr3sMOeKLZw4cJqkot/wvZl2K/T6STixyMsD4/w4xHgWUeq/enO5oyUf7pUxT9dUoHzscQP+3QG2loMJzy4kUT8eJTl4RF+PAI860i0Pyt7c0bCPytExT8rtFLnZYkf79J8a3/xQ9g10scY+d6VNE5eHQs/4ccjkNLaLMzpfy1pfzz6XuWn9c2Ph4Zv7S9+mWMz0oJRkV/cbtyZVyufXzP2lCD8eByF33V+umFOET9ee0sv/DwpfvlyZ6f3nm1tbw0ySpPOhwFPtofjwRN+ip+VMGd66bzZDcemArza/4UUv5kzZ6olDsFS165dTc/is4Ov/8ivaP4c9N8BLe0o2pYyvFr5tty8DYUIPx7EaOdnNcwp4sdrb+mFX0jxM5Y0BEMVqdmehfLG0fSBreytQUZp0d75MNBdf2v/6SeKj4/8NnXB7kP849WwU/zCDXOml86bVyv2WTtVv3Z5GNaEl40bN9LVq1fpxRdfpO+++44GDBhAZcqUoVdeeYXOnTtHiYmJaq9Pp5P/yK98iXw0vvedTl9Wu3yvVr72DTqcUfjxAEcjP06YU8SP197SCz/Tb34Ie8bGxtJzzz1Ho0aNUvdtnO+3b98+Vw619Re/htVK0sAHbrO3BhmlRWPnw8CVylT48WhGGz9umDO9dN68VmOftVfbn6n4AZGxkH3MmDGUI0cOmjJlCn3zzTeunefnL34tb7uRHm99i321xyzJq5XPvG3bzIUfD2W08LMrzCnix2tv6YWflvgtWLCAnnzyyRS7vEycOJGeeuopeykGKc1f/J5scwvdXe9GV66tc5Fo6Xx0WISTR/iFQ+0fm2jgZ2eYM7103rxWY5+1V9uflvgBE779rVq1ipKSkqhly5aubGtmVI+/+I3p2YSqxhe0r/aYJXm18pm3bZu58OOhTO/8PttygKYu36bW8Tlx0np658drXebWXuWnJX74tnfXXXepWXmDBw9WJ7g/+OCD1KlTJ3MyNuTwF7+FoxMoNlPkz/Ezbs2rlW9D1dhShPDjYUyv/CB2ED2IH1LTmqWpZ+uaFJc1lgfMzzq98rMVUojCvMpPS/xwjh8EsGDBgtSxY0d1pt+sWbPUKDB37tyOM/YXv7R0nBFu3quV73jFaV5A+GmCCpItPfJDmHPS/ES1eB1i17NVDWp6SxkeqCji5wiodMbPVPz++usvdWwRDrQ9dOiQOs8vISGBatasSVu3bqUaNWo4zlnEj4c4PXaOPCLWrIWfNV7+ua3y8w9z9kuoQ/FF8/CcSIcjF8eAWCzYav1aLJ6dPZh/puKHK2O2Z7Vq1ShPnjyUOXNmiomJUd///vjjj4js8CIjP2vtwauN09pdOpdb+PHY6vJzK8zJFWceDevWuvysl2yPhVf90xK/uXPn0mOPPUZnzpxJpjV69GgaNmyYPfRMSpGRHw+zVxsn767tsxZ+PJY6/NwMc4r48eozvfDTEr9du3apnV3Wrl1LBw4coOrVq9Ntt7m3yFzEj9dYdTof3hV41uJfdPNzO8yZXjpvXquxz9qrz6+W+OEkd6TWrVurZQ6NGzdWIVC3kq/4pbWz/MDAq5XvVv2ZXUf4mREK/btX+UUqzCnix2tv6YWflvhhQfvnn39OX3zxRXLos1GjRrRixQrKli2bvSQDlCbix0Ps1c6Rd9f2WQs/HstA/CIZ5kwvnTevVuyz9urzoSV+ly9fpt27d6stzWbMmEHr169X5CJxqoOM/Kw3Wq82Tut36oyF8ONx9ecX6TCniB+vPtMLPy3xK1mypFrbh2NnEPKsU6cO3XrrrXTzzTdTsGOPrl27RhcuXKC4uDg2aRn58RBK5y38eAR41kb7SythzvTSefNqxT5rr/YvWuLXoEEDNdrLmTMn4b/r1atHtWrVojvvvFOt+/NPGB0iVFq8eHF1GO7s2bPVAnkj/ec//0kePUIkcUpEqDWDvuIXkyEDLRnTwb6as6Ekr1a+DbduSxHCj4fRC/woWz7XFq1bpekFfnLepdVa/Sc/a50fijl9+rT6xjdp0iTCOX/Bwp7GEUjG7i99+/alokWLqm3RAqVBgwZRkSJFqH///kHvzlf8MmaMocUvJIRPwgFLeXh4UIVf+uY393+baEniL8l7czq9aN0qTWl/VomlzO9Vflojv169etGSJUuST3XACPDuu++m9957T+3+4puwFKJZs2a0f/9+9efJkyfT9u3bafr06akI79ixg9q1a6e+J2LxfLDkK37ZssTSvOfb82rLZmuvVr7NGMIuTviFjU4ZplV+aTXM6U87rfIz/BT/nHk+tMQPSx1uuOEGatWqlRK22rVrBz3BHYKG7c/27NmjPMYeoFgfOG3atFR38Oijj6oQao8ePZJ/Q3h13bp1KfKuSyqd/P9xWTPRmK7Ob6nGwy3WQiC6CRz54zzNXnuA8O9smTNSu3qlqE75AtENRe4+YgQChY21xA8hTPyzYcMGNeklf/78QU9wxySX7NmzE77lYTLMhAkT1A37hzWxNVqBAgXo5MmTpmsGfUd+eXJkoVlD740YxEAXljczXnUIv/TFz382Z0K94tSwVhXeTTpoLe2PB9er/LTEDxNS2rRpowjh2x1GZtjQGt//AiXsAIPT3qtWrUotWrSgkSNHUvPmzSkxMVH9DeKIA3IRNl26dKkpeV/xK5g7O73zbGtTGzczeLXy3WQU6lrCj1cTaYVfsDDn8V8Pq5fmtJrSCr9gfMQ/XsthTXjBUodChQqpERqWOWTKlImwt+eRI0eoWLFiqTyDoHXp0kX9HTvCzJkzR40CsUE2BLBixYr09NNPE8KpmPBilnzFr1De7DR9oIifGTPf3+XhsUIrdV7hZ84v1KJ14WfOT14OeYzC4Wc68jOONHrjjTfo4MGDKY40wqG2lStXDnjd8+fPq0XwmOnJTb7iVzhvHE0b2IpbpK328nDzcAo/b/MzW7Qu9evt+jXz3qv1ayp+uHEI3O+//66WJGDUd+LECRW6NCa1mMHh/u4rfsXy56S3B9zDLdJWe69Wvq0QGIUJPwa8CM721J3NKfXrzfrV9dqr9aslftu2baMRI0aoxehGwtIH4zugLqRw8/mKX+nCuWlyv7vCLcoRO69WviMwwihU+IUBzcckEvys7M0ZCf+sEBX/rNBKnder/LTEz7hdzMzENmdly5ZVIz+3kq/4VShVgF55oqlbl9a6jlcrX+vmXMgk/HiQ3eZnFub0vxu3/bNKU/yzSixlfq/yCyp+2My6RIkS6sBarNE7duxYKkJYyJ4jRw4eOQ1rX/GrUqYgje3VRMPKvSxerXz3CIW+kvDj1YRb/HTDnCJ+vPoUfu7wCyp+2KYMyxS6d++udnfBujz/hDCoGyNAX/GrfmMheqFHY3vpMEtzq/MJ103xL1xy1+2EH5GVMKd03rz2Jvzc4acV9pw6daoSwlKlStnrlWZpvuJ3a4WiNOKR2zUt3ckmnSOPs/BL2/yshjml8+bVp/Bzh5+W+GE9HmZ4NmnShLp27Ur33nuv6a4sdrrvK363VS5Og7s0sLN4dlnSefMQCr+0yS/cMKd03rz6FH7u8NMSvzVr1tDHH39MixYtUiEgpE6dOtG7775LWbJksdfTAKX5il+TW8pQ//trO35NKxeQztsKrdR5hV/a48cJc0rnzatP4ecOPy3xM1zBur7XX39d/YMUiZPc2zW8ibrfU91eOszSpPPmARR+aYsfN8wpnTevPoWfO/y0xA/7eb7//vtqmQNSzZo1qVu3bvT4448HPd3BTvd9R34dm1SiLndWtbN4dlnSefMQCr+0wc+uMKd03rz6FH7u8NMSP3zzw3l7OIKoQ4cOam9ON5Ov+HVoXJG6Nq/m5uVNryWdtymikBmEX+T52RnmlM6bV5/Czx1+WuKHHV6qVaumNrLG4bX58uVzZcRnIEghfo0qUtcWIn5WmoeIixVaqfOmd34bdx2hifMTHTtpPb3z47Uuc2vhZ84oVI5g/LTEb9++fXTXXXepyS4IgWJD6wcffFBNenEj+Ypfj3uq070Nb3LjstrXkMapjSpgRuEXOX7Tlm+jJev3KgfqVipO/RLqUFzWWJ5DftZSvzycws8Zflrid8sttxAEsGDBgtSxY0f17Q8ntOOA29y5c/M807D2Fb8n29xCd9e7UcPKvSzSOHmshZ/7/E6cPEcvzlqnFq8jPdqqBrWtX57nSBBrqV8eVuHnDD9T8TOONMIMz0OHDqU40mjr1q3qUFunk6/4PZVQi5rVTFsHY0rj5LUA4ecuP98wZ6E8cTT0oQYUXzQPz4kQ1lK/PLTCzxl+puKHy+IQWnzzw2G2mPgSExNDq1atUluexcbaGyIJdJu+4je0S0OqWzn1Abo8PDxraZzCj0eAZ22l/bkR5vS/Gyv+8UiEZy3+hcfNsPIqPy3xmzt3Lj322GN05syZZEo4yR2bXruRfMVvdPc76OZyRdy4rPY1vFr52jfocEbhxwOsw8/NMKeIH68+hZ87/EzF7+rVq7R9+3bKmTOnmvBy4MABql69Ot122232ehiiNF/xe+uZllS8gPMnSVi5OZ3Ox0p5ducV/3hEvc7P7TCndN689ib83OFnKn7Xrl2jokWLUqVKlQjbnEUi+Yrf1IEtqUheET8r9eD1ztvKvTqR18v8IhHmlM7b3lbo5fZnL4nwSmMtdXjiiSforbfeouHDhysRxDc/pHbt2rmy3s9X/GYNaUt5cmYNj4JDVtI4eWCFn/38IhnmFPHj1afwc4ef6cgPbhinOvi7FIm9PT8Y0d72dUhc1NJ58wgKP3v5RTrMKZ03rz6Fnzv8tMRv7dq1hCUP/glHHGXKlMleTwOU5jvyWza2o+PXs3oB6bytEkuZX/jZxy8thDml8+bVp/Bzh5+W+NnrivXSRPysM/O1EHFJ//xy5C3s2qJ1qzSl/VklJi+HPGJ6/ET8bKAsDzcPovDj8Vvy+Raa+9VBtTenG4vWrXor9WuVmF7nzSvVPmuv1q+Inw1twKuVb8Ot21KE8AsfY1oMc0rYLvz6DGQpzwePJ3u2Z7Nmzejuu++m7Nmz8zwJw1rCnmFA8zGRhyf98UtLsznN6Er7MyMU+nfh5ww/rZGf72zPRx55RG1u3bRpU1e2NsNti/g5U/m8Uu2zlofbGkv/2ZyPNClNDWtVsVaIi7mlfnmwhZ8z/LTE7+TJk4QZn9jPc8GCBXTixAm14wtOcu/RowdVqFCB552JtYgfD688POmHX6Aw5/FfD1N8fNra7N2XuLS/9NP+0lNYVkv8cMO//vqrEr+lS5fSokWLUjDAlmelS5fm1XAIaxE/HlrpfLzPL1SYU+rX+/Ub6g6kfp2pXy3xa968OX366afKA4z4OnfurEKfeNu84YYbaObMmdS1a1eehyJ+jvGTh4eHNtL8zBatR9o/M7rinxmh0L8LP2f4aYlfyZIlqUGDBur0dghhlixZkr354osv6MYbb6QSJUrwPBTxc4yfPDw8tJHkpzObM5L+6ZAV/3QoBc8j/JzhF1L8AP3vv/+mixcvUtasqffTLFOmTPI+n/7uYUPsCxcuUFxcXFDPz507R8iH0WSoJGFPZyqfV6p91vJwp2ZpZTan8OO1ReEXnfxCil+GDBlCUgm2t+eMGTNo4sSJVLx4cbpy5QrNnj2bChYsmFwWxBQTZWCPTbJxGvzIkSODXkvELzobJ++u7bN2u3M0C3P635nb/lklK/5ZJZYyv/Bzhl9I8XvllVcI5/kFS/3791cnu/smiB1Od09KSqLcuXNT37591ZFIgwcPTs727rvv0qZNm2jKlClqZIkJNG3btqWMGTMGvJSInzOVzyvVPmt5uP9hqRPmFPGzr+2hJGl/PJ5e5acV9gyGJlDYEzM/sSB+//79ymzy5MnqMNzp06cnF4OjkTZv3kxbtmxR3wpfeOEFtYA+WBLxi87Gybtr+6zdeLithDlF/OyrWxE/Pks3ng+Ol8H8sz3suWPHDkpISKA9e/Yof2fNmqXWCE6bNi3Z/27dutGXX35JK1asoG3bttG///1vOnToECHMun79elq3bl2Ke12X9M8yikk9a3E4iK0QSHMEvvv5JM1ee4AuXLpK+XJkpkebl6Pi+d3fSSnNgRGHhIBNBAKtg7U97IlJLvz40KIAACAASURBVNgCDRNZIGYTJkxQ7iNEaqSnn35azRgdO3as+hN2kIHoYdZooCQjP14L8OqbGe+u7bN2kl84YU4Z+dlXtzLy47N08vngexc8rK211AEO4Dw/TFBBwne6H3/8kWrXrh1wi7Pq1aur73lVq1alFi1aqMksWCKRmJio/oZdYqZOnUqrV6+mX375herVq6cW0cs3PzuqOnUZXm2cztCwXqoT/DhhThE/63UYysKJ+rXTQ/GPRzOssKdxyQ8//FBNXMG2Zr4p2GxP7ALTpUsXlbVly5Y0Z84cNQrMlSuXEkAMQVEewp4YJUIcO3XqFPQOZeTnTOXzSrXPOtoebquzOc1IRxs/Mx5Wfxd+VomlzO9Vflojv7Jly1KePHlo3759VLduXdq9ezcVKlSINm7cGHRz6/Pnz6uRImZ6BkvYMxSCGGzEZ9iJ+EVn4+TdtX3Wdj7cdoQ5ZeRnX92iJDvr117Prpcm/vGohj3yu3z5slrO8P7776tJKgUKFFAbWpcqVYogXhBFp5OIH4+wPDyR54eDZof893P66WiScubRVjWobf3yPMf+31rql4dR+EUnP62RH7Y3gwA+8cQTNGrUKLrvvvsIa/X27t1L5cqV45HTsBbx04AUIos83JHl991PJ+jFWevUSetxWWNpTK8mFF/UvpdGqd/I1i/v6ubWUr/mjELlCHvkh0I///xzNVsTyxbwDQ+TVFq3bq1OeHAjifjxKMvDEzl+cz/7nuas3qkcqFKmIA17qKESQDuT1C+PpvCLTn5aIz+g2bVrlwpxYonC999/T7fffjuPmAVrET8LsAJklYfbfX4Y5WG0h1Ef0gNNK9ODzZw5cFbq1/365V3RmrXUrzVe/rlZI7/XX3+d+vTpQytXrlTf+ipXrkwDBw6kcePG8bzStBbx0wQVJJs8PO7y8w9zDu3agKrGF+I5EcJa6peHVvhFJz+tkR9OasfG1B999JE6paF3794qBHrkyBEqVqwYj5yGtYifBiTpHHmQbOLnRphT983WMSAWCxZxsQjML7vwc4afqfgZG1Vjhuebb76pvMApDVjHt2HDBrX0wekk4scjLA+P8/zcDHOK+PHqU/gJPxAwFT9kwve9r776Sp28gLP3lixZok5swC4vvgfb2ov0n9JE/HhkRfyc5ed2mFM6b159Cj/hpy1+OKkBe3Ripxfs8oIZn9iM+o477rCXYpDSRPx4mEX8nOMXiTCndN68+hR+wk9b/AxUOqez24v1emkifjyqIn7284tkmFM6b159Cj/hF1L8sLMLztobNmyYOo7o2LFjqYjhzL4cOXLYSzJAaSJ+PMQifvbyi3SYUzpvXn0KP+EXUvww0QUnMnTv3l194/vjjz9SEVu2bJnamNrpJOLHIyziZx+/tBDmlM6bV5/CT/hphT0hgljnV6VKFXVCeySSiB+Puogfn1/hYiVdW7Ru1VupX6vEUuYXftHJT2u2Jxa1QwSxy4vZCQw8jIGtRfx4VOXh5vFbtf5bemf1/uS9OZ1etG7VW6lfq8RE/HjE0gc/LfHr3LmzOpOvYcOGagSIs/mQxo8fT1mzZrWTY8CyRPx4iKVzDJ9fWgxzStgu/PoMZCnPB4+nV/lpiV/hwoVTHWQLXMEOs+WhTG0t4scj6tXGybtrnnVams1pdidSv2aEQv8u/KKTn5b44WDav//+OxUhbHXmRhLx41GWh9saP//ZnN2blaXm9atbK8TF3FK/PNjCLzr5aYnfmTNnaMCAAbRixQp67LHH6K+//qKEhASqVq0aj5qmtYifJqgg2eTh1ucXKMx5/NfDFB8fr1+IyzmlfnnAhV908tMSvw4dOtD8+fMVocGDB1NiYiLt3LmTDh06JNubEZE8PN5/eEKFOaV+vV+/oe5A6jc669dU/IyNrUeOHEnnzp1Tsz3vvvtutd/nt99+68roT0Z+0dk4eXetb222aF06R32WgXIKP+HHI8CzDtb+TMXv6tWrlClTJurRo4ca5eEfHG80ZMgQOnnypDrg1ukk4scjLJ1PcH46szmFn7Q/HgGetbQ/Z/iZih8u+8wzz9Crr76awgMcaYQz/dxIIn48yvLwpOZnZTan8JP2xyPAs5b25ww/LfHDTM8tW7bQwoULCft51qhRg/r27evK1ma4bRE/ZyqfV6p91m4/3GZhTv87c9s/q2TFP6vEUuYXftHJL6T4vf/++4STHIKlBx54gGJjY3nkNKxF/DQghcgiD/c/cHTCnCJ+vPYm/ISfvQR4pYX1zc/YySXYpWWR+3UyIi7ONE5eqSmtrYQ5pfO2k7w8H1ya0r/wCIYlfhs3bgw58qtTp44re33KyM+ZyueVap+10w+31TCniJ99dSsvh3yWTj8fXA+96p/WNz8sd3j33XcJYpc/f3612L1Tp06unOWHihHx4zVPrzZO3l1ftw4nzCniZwf5f8qI5vZnB0nhx6MY1sjPuOQTTzxBb731Fq1cuZJKlSpFOOWhUaNG9Nlnn1FMTAzPMw1rET8NSCGyROPDwwlzivjx2pvwE372EuCVFrb4YaZnkSJF6J577qG3335bid0bb7xB/fr1o71791K5cuV4nmlYi/hpQBLxSybADXNK581rb8JP+NlLgFda2OJnLHJv0qQJrVq1Sn3jGzVqFI0YMYK2bt2qlj04nUT8eISjaeRnR5hTOm9eexN+ws9eArzSwhY/XLZbt27qmx9Szpw5CRtd169fn9atW8fzStNaxE8TVJBs0SB+doY5pfPmtTfhJ/zsJcArjSV+ONII3/sWL15MBw8epLZt21LHjh2pRIkSQb3C+sALFy6QHcceifg5U/m8Uu2z5orzT0eTaMysdXT85DmKyxpLdp+0zvXPPlKBSxL/eISFX3Ty05rtaRXNjBkzaOLEiVS8eHHCTNHZs2er/UCNhCOR8P933XWX+lOFChVo9OjRQS8j4me1BlLmT88P99L1e2nq8m3qhssUzUPDujagQnntPWcyPfPjtSw9a+GnxylYLuHnDD/bxc84BSIpKYly586ttkErWrSoOgrJSD/88AMNHz6c5syZozbNNksifmaEQv+eHh8ehDknzk+kjbuOqJtvU7889WzlzPfn9MiP16KsWQs/a7z8cws/Z/jZLn4HDhygZs2aqT1AkSZPnkzbt2+n6dOnJ9/B8uXL6cEHH1TfDmvVqkXjxo2jxo0by8iPV8dBrdPbw+Mf5uyXUIfqViruED3ZoYQLNr21Py4Pq/bCzyoxvciXlvhNmTJFiVPFihVVqTjKCMsd+vTpo0Z3vmnHjh3qlPc9e/aoP+Pkh7Vr19K0adOSs2F9IGaK/utf/6IPP/yQxo4dSxgNYjs1TKJZv359ijLXJZVO/v9JPWvxSIi1pwms3XmcFm44pO6heP7s9OidN1K+nFk8fU/ivBAQAs4SiI+PT3WBkOK3Zs0a+uSTTwjih0XtlSpVUgUcPnxYhSyPHDlCxYoVS1EoJrlkz55dbYsGMZswYYL6vX///sn5Ll26pJZM4B9jKQXKDDaBRsKevIaRHt4c3Qxz+tNOD/x4LYhnLfyEH48Azzqs2Z4vv/wyDRo0KOCVEa7ctGlTwN+qV6+uBLNq1arUokULwinwzZs3p8TERPU3hDl/++03lefrr7+mrl27JodJAxUo4udM5fNKtc/arHN0O8wp4mdf3aIks/q192rWSxP/rDPztfAqv5AjP8zKxEiuXbt21Lt3b/Utz0gIdwY79WHp0qWEw26RWrZsqUaJyJsrVy4lgDj9HWVhsgv+gTi2atUqaA2I+EVn48RduzGb04yuVx9us/ty63fhxyMt/Jzhp/XN7/Tp02rpwtChQ+n555+n3bt304ABA6hu3bpBvcLaQBx5hJmewdKxY8fU1mlmScTPjFDo37348EQyzCkjP157E37Cz14CvNLCCnsal2zTpg0tW7aMFixYQPfdd5/6M77P4TudG0nEj0fZa+IX6TCndN689ib8hJ+9BHilhS1+xro9bGqNvT0hgBj5YeYnZmhigbrTScSPR9hL4pcWwpzSefPam/ATfvYS4JUWtvhhNiZmdOKb3yuvvELY4Prhhx+m9u3b09GjR7XCljzX5Tw/Lj8viF/hYiVdW7RulacX+AWaym31Pp3KL/x4ZIWfM/y0vvnh+9748eOVBzjIFvt64iijLVu28LzStJaRnyaoINnS+sPz1Tc76b01Pyfvzen0onWrNNM6P/HPao2mzC/8opOflvjhTD+s+cOMTaz3wxKFDh06pNivk4cvtLWIH49uWn6402KYU8J2vPYm/ISfvQR4pYUd9sRlFy1aRFj24J8KFChADRo0oKxZs/K8M7EW8ePhTYvil5Zmc5rRTYv8fH0W/8xqMPTvwi86+WmN/AoXLkwnTpwISKhmzZpqOzInBVDEL301Tv/ZnA80vIHaNrmFd5MOWkvnyIMr/IQfjwDPmjXy69y5M3355Zfq2CEsSsdenFiwfuedd6q/ffrppykWwPNcTW0t4scjmpY6n0BhzrMnj5NM2Ai/jtNS/Qa6C/Ev/LqFpfBzhp/pyM9Y6oC9OV999VXlxUsvvaSOKDp37pya7Yn9O3v06MHzMIS1iB8PbVp4eEKFOdOCf6EIi3/eb39Sv7w6TI/8TMUPN41RHo4feuuttyhLlizqjL5s2bKpExuwdyfCnrfddptjdEX8eGgj3XmbLVqPtH9mdMU/M0Khfxd+wo9HgGfNCnvOnz9fjewggEg5c+ZU5/Nh2zMsfkdIVL75pT4yg1dl9llHsvPRmc0ZSf90KIt/OpSC5xF+wo9HgGfNEj9cGovdN2/erDa6rl+/PsXGxqpJMNikOnPmzDzvTKxl5MfDG4nOx8pszkj4Z4Wo+GeFVuq8wk/48QjwrFnid/z4cZo3b546kd03vf766yr86XQS8eMRdrvzMQtz+t+N2/5ZpSn+WSWWMr/wE348Ajxrlvg1bdqUPv/881Qe4NQGfA90Oon48Qi72fnohDlF/Hj1KfyEn70EeKW52b+E42nY4mectN69e3c12xPhTiPhxHY3kogfj7IbjdNKmFM6b159Cj/hZy8BXmlu9C8cD8MWP1z0nnvuURNaFi5cyPEhbFsRv7DRKUOnG6fVMKd03rz6FH7Cz14CvNKc7l943gXv/7SWOtSuXZu++eYbNcuzYMGCyb7s2LGD4uLiuL6Z2ov4mSIKmcHJxhlOmFM6b159Cj/hZy8BXmlO9i88z65bs0Z+2MT6t99+S+XHxx9/TG6EPkX8eE3AicbJCXNK582rT+En/OwlwCvNif6F51FKa5b4GUVhXR82uPYd/dnpZLCyRPx4lO1unNwwp3TevPoUfsLPXgK80uzuX3jepLZmiR+Mn332WcJidyTs6Tls2DC6/fbb7fYzYHkifjzMdjZOO8Kc0nnz6lP4CT97CfBKs7N/4XkS2Jolfgh7Qvjw7xw5ciSL4LFjxyTs6cKEEm6DsKNx2hnmlM6bW6N6YR17rxJ+aXa0v/Cvbm4p/pkzCpXDq/xMJ7ycPHmS8uXLRy+88AINHTpUMcD5fu3bt6etW7dSjRo1eOQ0rGXkpwEpRBZu40SYc9L8RMK/47LGUs9WNajpLWV4TvlYc/2zzZEgBYl/PMLCT/jxCPCswx75Gac6dO3alaZNm0YZM2ZUpzog7Ll3714qV64czzMNaxE/DUgOid9nWw7Q1OXbCCO/MkXzUL+EOhRfNA/PIT9r6Rx5OIWf8OMR4Fl7tf2ZjvyABZtav/POO4oQljtgg2uEQD/88EMeNU1rET9NUDaOXCB2ED2IH1LTmqWpZ+uaauRnd/Lqw2M3h3DLE37hkrtuJ/yik5+W+GEz68WLFyuxw5ZmnTp1UuKXN29eHjVNaxE/TVA2iZ/TYU5/N6Xzcbd+eVezbi31a52Zr4Xwc4aflvgZb0cQPqSYmBj17ypVqqgwqNNJxI9H2MrD40aYU8SPV5/CT/jZS4BXmpX+hXel8KzD/uaHy+Hw2smTJ6e6smxsfR2JVyvft0LdDHNK5x3eQxzMKj20P3uJWCtN+FnjlV6eX9ORn7GxdXx8PPXq1SvFSA+i6PRZfgAtIz9nG6fbYc708vDwasU+a+m8eSyFX3TyMxU/YKlQoQK1bNlSneoQiSTix6Me6uGORJhTxI9Xn8JP+NlLgFeaV18etMRv6tSpatRXq1YtdbqDkf73v//JInePhj0jGeaUzpvX2Qg/4WcvAV5p6Vb8/v77bypSpAidOHGCChUqlCLMuXv3brXji9NJRn48wv6NM9JhTum8efUp/ISfvQR4paVb8bt27RrlyZOHHn30UUthT9hhiYTZkUd//vmnypMlS5agNSDiZ1/jTAthTum8efUp/ISfvQR4paVb8QOWjh070s6dO2nw4MEpRKpdu3aUKVOmVORmzJhBEydOpOLFixN2iJk9e3bAkyAOHjxIVatWJYRPb7vtNhE/XhsMao3GWbhYSdcWrVu9Da8+PFbv06n8wo9HVvhFJz+tb36FCxdWYU//FGipg7EdWlJSEuXOnVstkyhatKgSTt906dIltVD+wIED9Oabb4r48dpfSOuvvtlJH2044tjenFzXpfPhERR+wo9HgGft1fanJX5r1qxR5/j5p2bNmqUa+UHM8Pf9+/er7FgfuH37dpo+fXoK86effpqaNm2qfh8+fLiIH6/9BbVGmPPtpVvowqWrju3NyXXdqw8P977tshd+PJLCLzr5aYkfvt0hlLlv3z5FCd/zMNll4cKFqSa87NixgxISEmjPnj0q76xZs2jt2rVqU2wjLViwgJYsWUIzZ86ku+66K4X4rV+/ntatW5eiNtYllU7+/0k9a/FqKkqsIXaLNhyixL2/qzuuXb4Ata9XirJldn5HnihBLLcpBISARwhgnbp/0hK/Vq1a0ccff5zKGBtc+8/2hFBmz55dCWSGDBlowoQJyq5///7J9vXq1VNh1Pz589M333xD5cuXV98Fb7311oAoZcKLtRbmP5uzbZ0S9MBdta0V4mJuefPmwRZ+wo9HgGft1fZnKn7GN7xx48bR0qVLqU2bNmqXlzlz5tDmzZuVwPmn6tWr05QpU9RklhYtWtDIkSOpefPmlJiYqP72xx9/0MWLF5UZTox48sknVbkQzUBJxE+/cQaazUkX/qRAbz76pTqb06sPj7NU9EsXfvqsAuUUftHJz1T8MIKD2GHkli1bNtq2bRu98sorVLlyZRX6vOmmm1KRg0h26dJF/R07w0AoIZK5cuVSAlixYsVkG4wqhwwZIt/8eO1PnbcX7Agiebh5cIWf8OMR4FlL+3OGn6n44bIPPfSQ+nY3d+5ceuCBB5I9CRT2NH48f/68Ov4IMz25SUZ+oQmaLVqXh4fXAoWf8OMR4FlL+3OGn5b4YabnqlWr1OzMefPm0ZYtW9TavwYNGvC80rQW8QsOSmfRujw8mg0tSDbhJ/x4BHjW0v6c4aclfrxL861F/FIztLI3pzw8vDYo/IQfjwDPWtqfM/xE/HhclbXbjdMszOl/S277ZxWp+GeVWMr8wk/48QjwrL3a/kT8ePXuuvjphDlF/GyoVJ8ivPpw20sh/NKEX/jsIvFybdVbr9avlvjhZIcPPviAvvjiC2rcuDHFxsaqXVywfZkbScKeFHI2p1kdeLVxmt2XW78LPx5p4Sf8eAR41sHan5b4jRo1ikaMGKE8wB6dxg4sEMOYmBieZxrW0S5+VsOcMvLTaFQWskjnbQFWgKzCT/jxCPCswxY/jPowwsN6PRxki6ULWNv38MMPq+3ObrzxRp5nGtbRLH7hhDlF/DQalYUs0nlbgCXix4Ml/FzjZzryu3z5sjrA9qWXXiKcvYcF740aNVI7t+BIolKlStnurH+B0Sh+VmZzmlWAdN5mhEL/LvyEH48Az1ranzP8TMUPlzX29syZM6fyAovbIYA47cGNFG3ixw1zysjP3lYpnQ+Pp/ATfjwCPOuww564LPbixAkM2OHlhx9+oLp169Jrr70WcGsznpuBraNJ/OwIc4r42dsKpfPm8RR+wo9HgGfNEj9sUo1ZnsaenCdPnqQ33niD+vTp48qMz2gRv4kfbSKIH1LTmqWpZ+uaFJc1llfzEViHaNVh6RytEkuZX/gJPx4BnrVX21/IsCfCmp988ok6oQFhzkqVKilKhw8fVptVHzlyhIoVK8Yjp2Gd3sXvxMlz9OKsdeqkdaR+99empreU0SCjl8WrjVPv7pzPJfx4jIWf8OMR4FmHNfJ7+eWXadCgQQGvXKtWLdq0aRPPK03r9Cx+G3cdoYnzE9U6vkJ54mjoQw0ovmgeTTJ62aTz0eMULJfwE348AjxraX/O8As58sOG1jictl27dtS7d2+1sN1IWP4Q6Cw/npuBrdOr+E1bvo2WrN+rbrpupeLUL6GOLWFOf4ry8PBapfATfjwCPGtpf87w05rtCQGcMWOGWteHhDP+cJbfwoULU53kznMzOsTPP8z5aKsa1LZ+eSfQqTLl4eGhFX7Cj0eAZy3tzxl+WuJnLHXwdyHUeX48d1Nap6eRnxthThn52dn65OWBS1M6bx5B4ecMP1Pxu3LlitrLc9y4cYQT2tu0aaMWumPCy+bNm10JfaYX8XMrzCnix3tYhJ/ws5cArzQRP2f4mYofQpwQu/79+1O2bNlo27Zt9Morr1DlypVV6BNbnTmdvC5+boc5pfO2t0VK58PjKfyEH48Azzqs2Z7GJR966CGaNWuWWuT+wAMPJHsiYc/rKEI93JEIc4r48R4W4Sf87CXAK01eHpzhZzryw2Ux63PVqlXUtGlTmjdvHm3ZsoU6duxIDRo04Hmlae3VkV+kwpzSeWs2LM1s0vloggqSTfgJPx4BnnXYIz+IHjawbtKkCZUuXZp+/PFHOn78OH333XfUo0cPddKD08lr4hfpMKeIn70tUjpvHk/hJ/x4BHjWYYnf6NGjafjw4erK2NQa6/wWLVqU7MmpU6coV65cPM80rL0kfmkhzCnip9GoLGSRztsCrABZhZ/w4xHgWYclfiVLllRXHThwIE2cOFF927rzzjtVuDN//vz02GOPUaZMmXieaVh7RfzSSphTxE+jUVnIIp23BVgifjxYws81fiG/+WEHl2HDhhFGgGPHjqUhQ4bQ2bNnKS4uznYHQxWY1sVv87e7adbaQ8l7czq9aN0qfOm8rRJLmV/4CT8eAZ61tD9n+JmKH4QPAjhhwgR6+umnCSe7u53SsvghzPnqhxvowqWrju3NyeUtDw+PoPATfjwCPGtpf87wMxW/mjVrqvP7tm7dShs3bqQnn3wy2ZPx48dH9YSXtBrmlLAn72ERfsLPXgK80kT8nOFnKn6hLhutE178Z3O2q1eKurepx6shB63l4eHBFX7Cj0eAZy3tzxl+IcXv119/DRnmxFl+bpzskJbCnoFmc9KFPyk+Pp5XQw5ay8PDgyv8hB+PAM9a2p8z/LQWufMuzbdOK+IXLMwpjZNXx8JP+PEI8Kyl/UUnPxE/jXo3W7QuD48GxBBZhJ/w4xHgWUv7i05+In4m9a6zaF0enuh8eHh3bZ+1tD8eS+EXnfy0xA8bWA8YMIBWrFihFrZjr8+EhASqVq1aUGo4DQKH4IZaE3jy5EnKmzevKflIhT11Z3PKw2NahSEzCD/hxyPAs5b2F538tMSvQ4cONH/+fEVo8ODBlJiYSDt37qRDhw5RlixZUpHDqe/YEaZ48eKE8wBnz55NBQsWTM73ww8/UOfOnals2bJ0/vx56tKlC3Xq1CloDbgtfmZhTn9H5eGJzoeHd9f2WUv747EUftHJz1T8jMNsR44cSefOnVNn+9199910++2307fffptq9GfkT0pKoty5c1Pfvn2paNGiSjSN9Oqrr6q/4Xik1atX0zPPPKPKCpbcFD+dMKeIH+9hEX7Cz14CvNJE/KKTn6n4Xb16Ve3fiRMcMMrDPxjFYaszhC3z5MmTgtyBAwfUBtj79+9Xf588eTJt376dpk+fnorwlClT6O2336auXbuqsGqkxU83zCmdN+9hEX7Cz14CvNJE/KKTn6n4AQtGZhit+SaEKnHArX/asWOH+h64Z88e9RPyrF27lqZNm5YqL7ZMW7BgAWXPnl2dF4i0fv16WrduXYq865JKJ///pJ61eDUVwPrPM3/RtE9/pCN/nFe/YtF6oyqFbb+OFCgEhIAQEALuEwi0DltL/LCfJw6wXbhwoRrR1ahRQ4UzIVr+CZNc8HdMeMECeAgcUv/+/ZOzLl68mGrXrk1YJI/wKCa9HDlyRP1/oORk2DOcMKe/j/LmyGvMwk/48QjwrKX9RSc/LfHr1q0btWjRglq1akU5cuQwJVW9enVCSLNq1arKDt8LmzdvribK4G+jRo1S4dMRI0bQrl271Anx2E0G3xPdFL9ww5wifqZNwFIG6Xws4UqVWfgJPx4BnrVX25+W+BUuXJhOnDihCD3yyCNqpmajRo2CnuW3dOlSNYMTqWXLljRnzhw1CsTBtxBAjCR79epF+/bto8yZM9OYMWPUd79gye6Rn9XZnGZNw6uVb3Zfbv0u/HikhZ/w4xHgWXu1/WmJ3+nTp9V3u5UrV6pvdBDCQoUKESa3BAp9AiWWMGDja8zqDJaOHj1KENaYmJiQ9O0UPzvCnDLy4z0swk/42UuAV5pXO2/eXdtn7VV+WuIHTAcPHqTPPvtMLXSHACJ57VQHu8Kc0nnb9+CgJK8+PPZSCL804Rc+O2l/PHZe5qclfg0aNFCzMJEw4sM3wI4dO6qJL24k7sjv3MXL9OKsdfTdT9dDt3aftC6dD68VCD/hxyPAs5b2F538tMQPO7E0btyYHnzwQbW4Hev+3Ewc8YPgQfgggHFZY2lo1wZUNb6Qre7Lw8PDKfyEH48Az1raX3TyCyl+mJCSP39++v333wOe2wdRNPtex8N63Tpc8Zv72fc0Z/VOVUaVMgVp2EMNlQDaneTh4REVkN65KQAAIABJREFUfsKPR4BnLe0vOvkFFb9Lly6p5QiYiYl9Oo3Znr6Y0uo3P/8w5wNNK9ODzarwajiEtTw8PLTCT/jxCPCspf1FJ7+g4odtzcaNG0d33HEHbd68We3r6Z+wJRmWKjidrIz83Ahz+t+vPDy8FiD8hB+PAM9a2l908tP65ocF6/jmV7FiRUUJe3q+8cYb1KdPH7V5tdNJV/zcCnOK+Nlb49L58HgKP+HHI8Cz9mr7Cyl+a9asoU8++UTt1oJF7ZUqVVKUDh8+rBauh9qSjIczpbWZ+Lkd5hTxs7N2ZakDl6ZXOx/ufdtlL/x4JL3KL6T4vfzyyzRo0KCAZGrVqkWbNm3iUdO0DiV+kQhzivhpVpxmNq8+PJq353g24cdDLPyik19I8cOJ7dioul27dtS7d291VJGREO7ElmVupGDiF6kwp4ifvbUunQ+Pp/ATfjwCPGuvtr+g4odTGd577z2qWbMm7d69W4mgf8L+nbGx9i8d8L+Ov/hFOswp4sd7WISf8LOXAK80r3bevLu2z9qr/Dy31GFMz8aOL1q32iy8WvlW79Op/MKPR1b4CT8eAZ61V9tfUPHDyQvY0qxUqVKEDagvX76cilC9evWCHkPEw5nS2nfkZ/zi5KJ1q757tfKt3qdT+YUfj6zwE348Ajxrr7Y/raUOQIOZn1jugBPXsfMLjjXKkycPj5qmtb/4Ob1oXdOt5GxerXyr9+lUfuHHIyv8hB+PAM/aq+1PS/wGDhxI//nPf9RZfHXq1FGk8C0Qp7u7kXzFD2FPu/fm5N6DVyufe9922Qs/HknhJ/x4BHjWXm1/puKH8GeRIkWoQ4cOatLL9OnT1Ro/bHKNcCh+czqZrfNz+vpm5Xu18s3uy63fhR+PtPATfjwCPGuvtj9T8cNyh6xZs9LChQvp8ccfp3LlyqlF79WrV6cffviBKlSowCOnYS3ipwEpRBavNk7eXdtnLfx4LIWf8OMR4FkHa3+m4ofL4uy+efPmKQ+mTp1KY8eOJWx8jZ1e3EgifjzK0vkIPx4BnrW0P+HHI8CzZokfTnR488031aJ2bGaNw2yx6B1n+7mRRPx4lKXzEX48AjxraX/Cj0eAZ80SP1x6x44dKvR5+vRpuu+++6hu3bquLHPAtUX8nKl8Xqn2WUvnyGMp/IQfjwDP2qvtTyvsOW3aNOrZs2cKQgkJCcmhUB46c2sRP3NGoXJ4tXHy7to+a+HHYyn8hB+PAM867JEfvu2VLFlSnejw+uuvU7Zs2Wj06NH07rvv0sGDB9UieKeTiB+PsHQ+wo9HgGct7U/48QjwrMMWv6SkJMqbNy9NmDCB+vXrp7zAQvcWLVqoHWBuu+02nmca1iJ+GpBCZJHOR/jxCPCspf0JPx4BnnXY4ofLYuSHESAmu2TPnp3++9//0rFjx+jnn39WI0Gnk4gfj7B0PsKPR4BnLe1P+PEI8KxZ4vfFF19Qjx49CIUg5cyZk9555x26//77eV5pWov4aYIKkk06H+HHI8CzlvYn/HgEeNYs8cOlsdPLtm3b6OzZsyrUmSlTJp5HFqxF/CzACpBVOh/hxyPAs5b2J/x4BHjWYYkfljVgcftHH32kJrxgbV/ZsmV5noRhLeIXBjQfE+l8hB+PAM9a2p/w4xHgWYclfoMHD6aXXnop+cq1atWiTZs28TwJw1rELwxoIn48aMJP+NlGgFeQvDw4wy/kOj+M8kqXLq1Gfi+//LISwuPHj1OhQoV43li0FvGzCMwvuzw8wo9HgGct7U/48QjwrMMa+WE7s5EjR9Lw4cMJk15wnt/WrVupRo0aPG8sWov4WQQm4scDJvyEn60EeIXJy4Mz/EKO/CB+7dq1o/bt29P333+vRn4Qw/j4eOUNNryOjY3leaZhLeKnASlEFnl4hB+PAM9a2p/w4xHgWYc98gt12VOnTlGuXLkCZrl27Zo6/y8uLi5oESdPnlT2GTNmDHl3In7OVD6vVPuspXPksRR+wo9HgGft1fYXcuQ3f/58gogFS9jgOtCShxkzZtDEiROpePHidOXKFZo9ezYVLFgwuZhDhw6pUSP+BnucCj9s2LCg1xHxi87Gybtr+6y9+nDbR4BXkvATfjwCPOuwRn7hXBJih1AotkXLnTs39e3bl4oWLUqYOWqkF154gS5fvqxCqBcvXlS7xBw5coSKFSsW8JIifuHUxD820vkIPx4BnrW0P+HHI8Czdk38Dhw4QM2aNaP9+/crjydPnkzbt2+n6dOnJ98BwqH4nogT4pcsWUJPP/00/fjjj+pvgZKInzOVzyvVPmvpHHkshZ/w4xHgWXu1/WkdaWQFDc79w3FHe/bsUWazZs2itWvXEo5F8k3YKxQnwo8fP54WL15MTZo0UT+vW7dObZjtm9YllU7+30k9a1lxR/IKASEgBIRAlBMwJmn6YtASP2xt9sEHHyQvd0BYE6M7hDX9E0Z12Pwa3woxksNpEEj9+/dPzopQZ4cOHShz5sxqZIiwaKgkIz9ey/Xqmxnvru2zFn48lsJP+PEI8KxZYc9Ro0bRiBEjlAf4dofRGRLW/sXExKTyrHr16jRlyhSqWrWqOvoI3/aaN29OiYmJ6m/vv/8+LV++nJYuXap1VyJ+WpiCZpLOR/jxCPCspf0JPx4BnnXY4odRH0Z4LVu2VN/oMEq76aab6OGHH6Z9+/bRjTfemMoziFqXLl3U32E3Z84cNQrEsgYIIHaLwWG4vmnv3r1Urly5gHcp4udM5fNKtc9aOkceS+En/HgEeNZebX+mYU/MykR4Egvc//zzT7Umr1GjRmpEF+ok9/PnzxPWAZqFNHWwi/jpUAqex6uNk3fX9lkLPx5L4Sf8eAR41mGP/HDZVq1a0ccff6zO8UM6c+aMEsA1a9bwvNK0FvHTBBUkm3Q+wo9HgGct7U/48QjwrFni98cff9DMmTNp7ty59MMPP1DdunXptddeU+FPN5KIH4+ydD7Cj0eAZy3tT/jxCPCsWeKHbcjw7c8/5cuXj+eVprWInyYoGfnxQAk/4ecIAV6h8vLgDD/Tb364bOHChenEiROpPAi1tyfP3ZTWIn48mvLwCD8eAZ61tD/hxyPAs2aN/LDMAd/5kM6ePavW/JUsWVIdb5QlSxaeZxrWIn4akEJkkc5H+PEI8Kyl/Qk/HgGeNUv8/C+Njau7d++uZn/mzZuX55mGtYifBiQRPx4k4Sf8HCPAK1heHpzhpxX2XLZsmdqAGunq1atqkTpmf2IfT5z07nQS8eMRlodH+PEI8Kyl/Qk/HgGeNWvkF+ibX/369emrr74Kuhk1z92U1iJ+PJrS+Qg/HgGetbQ/4ccjwLNmid/q1auTR37YqQXf+7DMAYvf3UgifjzK0vkIPx4BnrW0P+HHI8CzDlv8cD4fljS0bt1aHUobiSTix6MunY/w4xHgWUv7E348AjzrsMUPl33qqafUovZPP/2UKlasmBzqxNZlwc7g47krYU87+Unnw6Mp/IQfjwDPWtqfM/y0JrzIOr/Q8KVxOtM4eaXaZy31y2Mp/IQfjwDPOqyR37Zt29QCd2xtdu7cuVQeDBs2TNb5EZE83M40Tl6p9llL/fJYCj/hxyPAsw5L/BDSfO655wjn+UUyyTc/Hn3pfIQfjwDPWtqf8OMR4FmL+PH4hbSWh5sHV/gJPx4BnrW0v+jkF/KbH0Z+OMYISxsCpU2bNlFcXByPnIa1jPw0IIXIIg+38OMR4FlL+xN+PAI867BHfriscY6fvwu//vor5ciRg+eZhrWInwYkET8eJOEn/BwjwCtYXh6c4Wc68pNvfubgpXGaMwqVQ/gJPx4BnrW0v+jkJ+LHq3dlLQ8PD6LwE348AjxraX/RyS+k+K1cuZLi4+OpQoUKPDpMawl78gDKwy38eAR41tL+hB+PAM86rG9+vEvaZy3ix2MpnY/w4xHgWUv7E348AjxrET8ev5DW8nDz4Ao/4ccjwLOW9hed/LS2N+Oh4VvLyI/HUB5u4ccjwLOW9if8eAR41jLy4/GTkZ/wc5AAr2gRF+HHI8Cz9mr7k5Efr96VtVcr34Zbt6UI4cfDKPyEH48Az9qr7U/Ej1fvIn7CzwYCvCK82vnw7to+a+HHY+lVfiJ+vHoX8RN+NhDgFeHVzod31/ZZCz8eS6/yE/Hj1buIn/CzgQCvCK92Pry7ts9a+PFYepWfiB+v3kX8hJ8NBHhFeLXz4d21fdbCj8fSq/xE/Hj1/n/tnQeQFUUTx4cPMYCCCRUxIEZURMWcA4KKWTFizgnFjAFFxSygBNMhKoIBI2YxoaCiqIgYUCjMYgZFUAT86jdVc7U89r3ddz2774brqbrijvdmtuc/M/3v7pntUfJT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKX2bkN2/ePDNr1qyS9/3NmTPHzJ492zRs2LAk+vqSe92cnLJe+6sd6uL2h4CsJcVP8ZMhIKud60vugwYNMn369DHNmzc3ENyQIUNM06ZNq3swd+5cM2HCBDNw4EBTv35907t3byU/2fiWrK3KRwau4qf4yRCQ1db5lw1+3j0/yK5BgwZm2rRppkmTJqZLly6mWbNmplu3btU9mDFjhunevbsZO3asadu2rZKfbGwTa+viSYRIjQcZRIqf4pchArKmc/P8pkyZYtq1a2cmT55sJe7bt68ZN26c9fIKS//+/c2kSZOU/GRjm1hbyS8RIlXeMogUP8UvQwRkTedGfuPHjzedOnUyEydOtBIPHjzYjBw50lRVVaUiv1GjRpnRo0fP991R01pU/33LiZvLkNDaioAioAgoAnUKAe6lLSzew54ccuEACwde6tWrV+3Vde3aNRX5xY2IHniRzVP1/BQ/GQKy2jr/FD8ZArLauXl+iNmmTRszYMAA07p1a9OhQwfTo0cP0759ezNmzBj7f+50p4Y9ZYOatrYqn7RIxX9P8VP8ZAjIauv8ywY/754fYg4fPtx07tzZStyxY0czdOhQ6wU2btzYEmCrVq3sZ5Afe4O9evUq2Tv1/LIZfFmr/mrr4pZhqfgpfjIEZLVDnX+ZkB9Qzpw500yfPt2e9JQWJT8ZgqFOTlmv/dVW/GRYKn6KnwwBWe1cw54yUResreQnQ1SVj+InQ0BWW+ef4idDQFZbyU+GX8naurhl4Cp+ip8MAVltnX91E7/Mwp4yOOevrZ6fDE1d3IqfDAFZbZ1/ip8MAVlt9fxk+Knnp/hliICsaSUXxU+GgKx2qPNPPT/ZuNvaoQ6+h657aULxk8Go+Cl+MgRktUOdf0p+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhoqfkp9s3JX8FD8PCMiaCFX5yHrtr7biJ8MyVPyU/GTjruSn+HlAQNZEqMpH1mt/tRU/GZah4qfkJxt3JT/FzwMCsiZCVT6yXvurrfjJsAwVPyU/2bgr+Sl+HhCQNRGq8pH12l9txU+GZaj4KfnJxl3JT/HzgICsiVCVj6zX/morfjIsQ8VPyU827kp+ip8HBGRNhKp8ZL32V1vxk2EZKn5KfrJxV/JT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKn5KfbNyV/BQ/DwjImghV+ch67a+24ifDMlT8lPxk467kp/h5QEDWRKjKR9Zrf7UVPxmWoeKn5CcbdyU/xc8DArImQlU+sl77q634ybAMFT8lP9m4K/kpfh4QkDURqvKR9dpfbcVPhmWo+Cn5ycZdyU/x84CArIlQlY+s1/5qK34yLEPFT8lPNu5KfoqfBwRkTYSqfGS99ldb8ZNhGSp+Sn6ycVfyU/w8ICBrIlTlI+u1v9qKnwzLUPFT8pONu5Kf4ucBAVkToSofWa/91Vb8ZFiGip+Sn2zclfwUPw8IyJoIVfnIeu2vtuInwzJU/JT8ZOOu5Kf4eUBA1kSoykfWa3+1FT8ZlqHip+QnG3clP8XPAwKyJkJVPrJe+6ut+MmwDBU/JT/ZuCv5KX4eEJA1EarykfXaX23FT4ZlqPgp+cnGXclP8fOAgKyJUJWPrNf+ait+MixDxU/JTzbuSn6KnwcEZE2EqnxkvfZXW/GTYRkqfkp+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhopfZuQ3b948M2vWLNOoUaOiyP71119miSWWMP/73/9Kor93t4eqP3/q2kNkI5VB7VAHPwMoatSk4lcj2KorKX6KnwwBWe1Q518m5Ddo0CDTp08f07x5czNnzhwzZMgQ07Rp02qEf/nlF3P44YebRRZZxHz11Vfm/PPPN8ccc0zREVDyq5uTU9Zrf7VDXdz+EJC1pPgpfjIEZLWLzT/v5AfZNWjQwEybNs00adLEdOnSxTRr1sx069atugfXXXed+fPPP03Pnj3N1KlT7ed4gQ0bNoztpZJfNoMva9VfbVWOMiwVP8VPhoCsdqjzzzv5TZkyxbRr185MnjzZItq3b18zbtw4M3DgwGqETzjhBPudQw891Pz333827Mn3W7ZsqeQnm4extUOdnBlAUaMmFb8awaZhWRlsil/G+Hknv/Hjx5tOnTqZiRMnWtEHDx5sRo4caaqqqqq7cvDBBxt+DjroIPt/K664ohkzZoxp0aKFGTVqlBk9evR83caT/Pfffz1Boc0oAoqAIqAI1BUEVlhhBXPssccu0F3v5MchF8KXHHipV6+e6d27t31o165dqx9+5ZVXmsaNG5uzzz7bzJ071yyzzDI2TFrs4Mv1119vLrzwwlo7ViqfbGgUP8VPhoCsts6/uomfd/IDxjZt2pgBAwaY1q1bmw4dOpgePXqY9u3bW++O/3vppZdMv379zIsvvmiGDRtmevXqZd56662iI6CTs25OTlmv/dXW+SfDUvFT/GQIyGoXm3+ZkN/w4cNN586drcQdO3Y0Q4cOtV4g3p4Lb+65557mk08+sa9DjBgxwmy55ZZKfrIxVvwUv4wQkDWr5Kf4yRCQ1c6V/BB15syZZvr06fYkZ7HyzTffmJVWWsmeDi1VdPFkM/iyVv3V1vGVYan4KX4yBGS1Q51/mXh+MigXrM0hmO222853s97aU/lkUCp+ip8MAVltnX91E78gyE82NFpbEVAEFAFFQBGYHwElP50RioAioAgoAnUOgaDIL02+UDLHLLXUUpkNZBoZyHIze/bsohlrMhPOGPuKSVJO1d9//90ePqpfv36WosS2nVY+Xn+pREkjH3L99ttvNm/tYostlquYaeXLVajIw9LIRzYnvpflOi3W/zTyVQo7nptGPnTckksuaQ8R5l1qi3wzZsyw668YBmnyRgdDfkn5Qt977z1z3HHHmdVXX93mCyWjzGabbeZ1biTJwDuLEyZMsM+GWNw7jl6FKNFYknxff/21OeSQQ2yeVfKqbrrppubSSy/NSzyTJN9nn31mjjjiCLPmmmvaA1OcGCYLUF4lST4nB/OLV3aef/55s8022+QlXiJ+//zzjx3b3Xff3cq07rrrmquuuqrWyPf333+b448/3h6E453eTTbZxL4GlVdJGt8bb7yxOsEGSv6pp54y77//vpUzj5IkH0briSeeaI2Gn3/+2SYJKZUT2bfMSfKR2IR3uBlb1shJJ51Uferflyw//fSTIZHKAQccYCZNmmR4gT1ayskbHQT5pckXynuE5513nn2f8NFHHzV33HGHfY/QV0kjA9ZI9+7dzdixY03btm1zJb808l199dU2Uw4KB0XEjRrfffedWXnllX3BVLSdNPLxviengw877DD7Lui5555rPvzww8xl4wFp5ON7ePRkJyKN32233ZYb+aWRD+OB+cerRRg3eZY08t1zzz3mnXfese8Ak9bw8ccfN/vuu28uEYg08kXxIqkGJ9GjyTmyxDONfOD37LPPmocffti8+eabNmuJy6SVpWxp1wdkt84661g9/MUXX9jfMcgWXXRRb+Kh28kAhmPx448/LkB+5eSNDoL80uQLXXXVVe2E4N8PPvjAWr+A46ukkcE9q3///tYqydPzSyMf4VDCBIsvvrh58sknzTnnnGPlzCN8kkY+hx/KEePlyCOPtAspj5JWPjDbddddbc5aiCYvzy+NfE8//bS9LYWw2Oabb244gr7zzjvnAZ81BpJy+jrDkCjNKqusYjDG9thjj1ojnxMEz2L//fc3n376qVfFXaqjafD74YcfzMYbb2x22WUXmwaSDFkYiHmUNPLh9fHaGpcYvP3222brrbfOzLhGZ8WRXzl5o4MgvzT5QtnDwgrCcyAR8Y477mh4j9BXSSNDJckvrXx4Ltdee625+eabzRNPPGEXUh4lrXzIgtGAhUeaPJ/ee6l+ppEPmTAa7rvvPmtc5Ul+aeR7+eWXbZjujDPOMA899JAdZ7zBPIybNPLhqbz++uvWe8FA5SozQvG1RT43P1CgKG5CtHmVNPixFjAI8bBIFoJHhcGTR0kjH0lLttpqKxuSJGPX559/bg0x9id9l2LkVypvdKEMQZBfmnyhO+ywg1WahBsJO2KFkGnGV0kjQyXJL418hDqZHCwaPJdSCQh84ebaSSMfZLzFFlvYMCy5Xjn0kldYNo18KET2HJZbbjnz7rvv2rAOd1X63luOwz6NfBg27DXzw/4zoU8MQLysrEsa+fCaOSAEKVNIaE8Ia6211spaPHsILCnnMEL8+uuvZvnllzfsry299NKZy1XO+sB4WG+99WyeY0gFgz/O+8lC6LT4sZ8LIbNvzwUHPh2QaL+KkV85eaODID86HZcvlBffP/74Yxviwf1n0l5wwQU2VIa14XuzP0mGSpJfGozuvPNOOzF9GgXlLLQk/C666CKrHC+//HKb+o7w4vfff5/LnlAa/FjIGBAUvILTTjvN7LPPPrmd6k3CD9w4CEHYmC0AvAR3tVg541TT7ybJxw0vd911l93P/fbbb613VZvGl37j3d97770VWSNJ+N100002qsW2CgdKSAmJcZjX/m6SfMiFfESVOPTHbT5ESbIoheRXk7zRwZBfXL7Qjz76yGZ++eOPP+wid/svWGy43csuu6xX3JNkiJIf8nCAI8+SJB+WI5vm0UJoYu21185FzCT5IDxCOmyW451ec801VoHnVZLki8qx1157mYsvvji3PT+enSQfe0Lsu6EM+eFgE3LmVZLk4/ADl1sT9sQLQ748T/MmyQdOeKd4pJW4RSZJPry8vffe2zDOFMLunP7MqyTJByGTsxmPFOMGQsrqMB3kRxSG082UmuSNDob86GBSvlBOTGFJcuglq32EJBnymojFnrMwyMfiRgEVu+IqS4wXBvymTp1qTypWoqTBr5LvmaaRrxK4uWemkQ8dh9JPyomcRT/SyOdC7Vnp4DT9SpM3OijyS9Np/Y4ioAgoAoqAIpCEgJJfEkL6uSKgCCgCisBCh4CS30I3pNohRUARUAQUgSQElPySENLPFQFFQBFQBBY6BJT8Froh1Q4pAoqAIqAIJCGg5JeEkH6eGgFehKWQM7SwcEqM4/c+8/ylFky/6AUB8sLyw2sKoRVe+nd5JvN6Ly40jOqavEp+FRxxUlGRkaawkAGDF77jynPPPWffpSHNFi9YSwrvxpApwhXeISI1FsnBa1J4CZaXwEkz98wzz9ik1LwLx9F23rnkHa9bbrmlJk1X1yHp9YMPPjhfG6Ro4wV+skoUK1F5RALUwso16RuZdCCDchKH8+7bDTfcYHiVgldRyim8i9ukSRP7Hh0v47vfeSE6jwJGvPPIS+yk38q6gC/X6pCEo7YUcm6S+Lkm41db+uBTDiU/n2iW2RYJfkmNxdVC2267bXVtyM1dS1PYpCM/UoGREV9SID/Kqaeeal+cJQMHhRRF7rNy2idlGu9akgn/5JNPtoTE1TAQImmHyOghJWyuZCKrPURKNhgwfOWVV+zLv6Uy10TlqeT7R+Xgmfa7NekbRhfjUo5yhkBIqHzJJZeUna+ROUXyCeYG5Od+zysRBEmqyTZC4m+uo8q6gC+3vOR160Ka/mBQk+yctV6p90DTyJnXd5T88kI65jmO/MjUUHivGQl/UfBkquGOQpLtkv0kSn4ofDLjk18S0oFYsKS5LuaBBx4wt99+u02DxL14pHorDPdAcGussUa19e8ywOCR8hIt6btee+01G8bkrkSXtR3PixRaLOyddtrJ5lQlkwPZWMgviYJBVjIwdOzY0cpCqjLyitIW6aP69etn83jiSTzyyCP258svv7Spm3gm7fI7KeuixZGfS5iLguF+s5YtW9osPyROxkMhzRKe6GWXXWYvno3KQ4o3vpf0rLi2tt9+e3uPGv3Ac2J8GBvyaXITBfk+MSLAg7yVKHuXBxRZGAvaJQUfNy5wJyBhRDxkxhOSwPsmiTEYMJbcwoHiph3unHP3CEJCcX2L4hXtA9lfeM4GG2xgIw6O/LjZg/FkHnEHYJ8+faxBRj/JY0o4G0+NHJx854UXXrB5V7nSiXGkHQw2MvIwx8Cf64roV4cOHWx7jFcc+ZF3lPlE2jPGizYw7DBkogq6UBbmYlVVlf0BH5JkYwwyzzbaaCP7/9zthlzcHEHfSYGI50PS+7j1wbOZG9zjx7jyN94SdWkXz/HMM89c4LmMKeN21lln2fWJIctY0f9C8kvTD9qjxOHLXGeesW6Y4ySSZgwYT4gN2ekzGJJhhT6gB8jjS10MRcgPAxAMWXfoFzLF5JktpoJqt/rRSn4VHAVHfihMripxhfvYUIBMWixjsvVjdUOIXJbrJjeKhgXJJMbDuuKKK+yiZqKjOLnoEiXNImLRF6ZsgvwgOTwpckKefvrpdkGRRgmljRzU4WYAwqx8j8W22mqr2aS1yAFhnnLKKfYZztpF8UE2KH+UNjK6sCcLG9JDCffs2dOGKslwwIifAAAJAUlEQVTDyndZnCgOvF6IAsWJoo8jPxY8Sg+iRnGjlAipuiTJKEOIAowIdSGjk4frapKeBenEtYUHQTo4cEJZoOxI5bT++uubDTfc0GKEhY1R4lI7MZYoGTLj813GHUWNDMjFODMOkBDGC7KDM4QD0UBEJGsnqTGF8UapQTq0i+fu+hZNB0cfGCueyfU35FskHSDpxaLkBwmTWo4xh4SYCyhInkv6O+TkeWTNcGFPjA7wgbwwuhgD8OZvQtM8jww9zN9hw4aZ3XbbLZb89ttvP0tGGH8YgWRnYv5y71+0QMpRWQil833mPH0fMWKE/Rc5WSskRmdskIW5i3Hiwp4Qetz6aN68uTXgIEDmHXOM8SEFG99nPTBGcc+F7Ogzxh79hoRY14Xkl7YfhJXj8KUPrVq1svmM+Z18n+DFc1gDyExhnTGejDNzE/kZIwpji8HKWKIvHnvsMTtGXFvUokWLCmrEfB+t5Jcv3vM9zZEfCoOFQmGRsmiZiExKssyj4FC2kCDehiM/NvEPPPBAe6Ej1i0KlQXBvgqLAOKiPRQCi6VQoRTu+aHkuNkdj4/f8dS4GsdldKd9FhBKgsLf7A9y+zqKOhrqiYbiUETRPT8UAKREv1iYt956q7Xy3XUkfM6t0Sht9oqQxRXn+RUOG3tXhLOw2EmcjAJ3igD5scpdGJbnJj0L4ijWFp4ThM0zUe54FHwXpYR3g5d81FFHWYUDsYEFihnioa9Y2mB3//33W+wcVow1RIJyQplh0BDahYSYK05x4n3iiWDc0FaxsCeEybjffffd1kjhbxIho6BJigx5QhqMJ2QLQeF1v/HGG3YOghmyMA7MleieH0TAPHO5Yfl+o0aN7BjgyVHPtQVBQQxxnh/Kmz4wP6jHfGDcMMQKyS8qC1gwr+g7EQO8bbw0bl1nbDHAUOiQEHOBOeHI79VXX41dH3ibEAlrAAOBaAo/Rx99tO077WCcxT2X8ceAwHB0N5IUI780/cAYisOXZNGQL0Yw85DzARiSGIGMM9gx18hzTLSH70LYGJnMPz7j+dRjLoI3cwnSZ/1WIqVgpVSwkl+lkDfGKjT2/OLCnljEWKxYb1i5JKQuJD8XUoSgsHYpWN+EzFBqLFiX/4/wIcosWpznh5LAi0KhQJYscgiVmwsIH6EAUE4sDhQHCxAvAq+E0CbE67wJt89RivywOJENj4jFymKE7FjEhEwJYbrC96L3gUXDnihbR2RYvSx2Z0SgPMGBxV5IfnjBSc8ijFWsLZQO+KDwCJ3SD5QPHiFEDW6QG0SGUsYK5/46SAwZCcvxOZiBnbPYIT+IjcJenMOddpkreP6EvOiz84I4vMAcccQe3c9k/jCPGF/CbXhuzCU8VEgR8qMeShGlHr34FpwxrDBqnNEUJT9CbHgP5JmEMPCImWuQIOF66tJP9vdKkR/GA/MfXKLzoXBPirnpZOHEKaeGGQMiDK7QJ0KU1KXfhP4ISfOM6IEXDJJi68MdQGM8GTtIwe3HM/eLPZf5xnpye6h4bpB9nOeXph8YDnH4IjvRAeelsX6YP6xJxpm/ncHo1qC79shta7DeXEQIL5c1QuECWoyiulKU/Co40qXIz+3HEbJjEhOrx3plT815flh/WKlYuSgCFqkjD8JukAxKg99RBij8QvKL7vlFP+MZHG7A08OixVJ0e1ooScJUWNgQMGTJgovz/FhQkEjU80MJE46juIMqEBVhTuSnv3gEeId4v9FSuOfHvg5WMqFMPFy8LzxX2kCps9fEaxZ4Hih65IHYkp5FqLdYW5BHEvlx+AcFCHGh3CF3yAjliCVejPwgU77P5xgsGBmQJoYPmOFpgz19xftibNhTc32LKi935xskBAFBSk5Bu7AnXh5hQMYIzwHvi70iZMVzZdwgeUqU/Jh7EA3hb05PulAnxhBy0U9C3pAkBAhBFzvwQh8wKCjOkCpclszjqCwcnmIsIVvqIzfhYELmhIEhCQrhSAzMKPlhiBRbH7SBvBgxzGuMQmdUsk9b7LmQD0YVxMQpT8awmOeXph8YEnH4EoLFS2edYNAQYsfTxKMHY8gPAxTD0J0PIBLBWsD4ZU5AfkQmOA8AwTPezA3mUF3a91Pyq6Xk57wjxCMchaWKQiV84V51YFFDHlipFJQkh0kIIxGKY/+GgvIj/OMIx3W58MBLFApCZBAbyszJgGVJHRYge1sUQrYQFaQU3UdCGaEQKRzKYMFDQFizFJQ4fcKLwUugoCix0nkmyifupnn3qoNb4M4LQA7CX5AGio769BurFnywwJ08hDTTPIswWVxbKB1HfhgHWP08A2WHl+o8Zrx1rG1X2MtjXAmvISfKCWWN4mFs8fwIZeO9o7zxZFDe7PXhfbGnCek5fCB5FG4Ua/oWLeyrYiBRwMQdyIi+6sDcgBzdPEKBE3IrJBxHfngSEBmk5yIOYE3bGA0YWihZDAyiAxgmYFHqVQfmDs9nDyrumqNCWSA87u50z8cQQ5HjmbkQc5R8HPlhTLnDL3HrAyKAXJj7eEWEBDE8uT4No6fYcyEfLtQmRMzcYB5gvMV5flHyK9Ye4xWHL1424+7Ine+xFjFCXATBrQ0MZaIPjAGFfmEwEC3AOCGci7wU+ks7Ib7DWVMVruRXU+RyqEeIigUU3fOKeywWHJZe4clIPB6Ihz2dmhzvRxG7tgvf68LjwsKFaIsVng85ofTSFp5JeI+DDzV9GZlQHAqosH6hPGmeVayttP0htAiGHH5JGkfaxNMnpEW4Dhw4AYk1jlVOgdz4f8ieELUrpbDG08WL4TBDKUxplzlUjgJEkbIPjWHl5hh/442kfReQcYAgIWHmVDnPp1/gUJO7OyXrI+65hKkhQdZbuXO3WD/i8GXMGVOMINZfUuIICA58CnEFd6IQrLVyME8792v795T8avsIqXx1CgEX/o12mpAaXsXCWtxBHjxLPFktikAeCCj55YGyPkMRKAMBwp+EOfFo8PzSelBlPKJWfZVwKZ4xodOaRChqVWdUmGAQUPILZqhUUEVAEVAEFAFfCCj5+UJS21EEFAFFQBEIBgElv2CGSgVVBBQBRUAR8IXA/wEnbzwhUOZURwAAAABJRU5ErkJggg==", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] }, - { - "as": "lead", - "field": "column_name", - "op": "lead" - } - ] - }, - { - "as": "sum", - "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" - }, - { - "as": "lead", - "calculate": "datum.lead === null ? datum.column_name : datum.lead" - }, - { - "as": "previous_sum", - "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" - }, - { - "as": "top_label", - "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "bottom_label", - "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "sum_top", - "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "sum_bottom", - "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "center", - "calculate": "(datum.sum + datum.previous_sum) / 2" - }, - { - "as": "text_log2_bayes_factor", - "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" - }, - { - "as": "dy", - "calculate": "datum.sum < datum.previous_sum ? 4 : -4" - }, - { - "as": "baseline", - "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" - }, - { - "as": "prob", - "calculate": "1. / (1 + pow(2, -1.*datum.sum))" - }, - { - "as": "zero", - "calculate": "0*datum.sum" + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" } - ], - "width": { - "step": 75 - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAImCAYAAABaeXcJAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TdUXxxelUBFKA0nGkqFJUYQmNNFcpEiD0CAlUaZmDTJGCY2UoUIpqUSUkpJI0p/KGCVTiej/+a7XeR3Xve/uc9+9793z3tqfz/t43t3nnL1/e+9z93evtfcq8M8///wjlkwBU8AUMAVMAVPAFDAFTAFTwBQwBUyBNFGggIFqmrSEFcMUMAVMAVPAFDAFTAFTwBQwBUwBU0AVMFC1jmAKmAKmgClgCpgCpoApYAqYAqaAKZBWChioplVzWGFMAVPAFDAFTAFTwBQwBUwBU8AUMAUMVK0PmAKmgClgCpgCpoApYAqYAqaAKWAKpJUCBqpp1RxWGFPAFDAFTAFTwBQwBUwBU8AUMAVMAQNV6wOmgClgCoRQAf+B7QUKFMisQay/h7CKWuRNmzYJdSpevHhYq5CScv/999+yYcMGKVmypOy1114xn+H1B6+PRP4/JYWzm5oCpoApYAqYAklQwEA1CSLaLUwBU8AUyEkFxo4dK5dffrk+snHjxvLOO+/o77Nnz5bTTjtNfz/hhBPkiy++iFuskSNHChDTunXruHl5Js+eO3eunHjiiXHzJyODB1h//fWX7LPPPlnecv78+XLcccfJRRddJBMmTNgj77p16+TNN9+UcuXKyTnnnJOM4gW+B221YsUKLWOpUqUCX88Fzz33nFx//fV67ffffy+VKlWKeZ8rrrhCXnvtNZk5c6bUq1dPihUrJps3b5YdO3bI3nvv7fz8ZLd9OrSFc+UtoylgCpgCpkCuKGCgmiuy20NNAVPAFEhcAT+ochcP4h599FHp2rWr3rhmzZoCuMVLkZa2rPI3b95cQW/OnDly8sknx7t1Uj6/9dZbZdu2bTJkyJC4YPXll18qoJ933nkyefLkPZ4PYNeuXTsmyCalwHFucuGFF8qkSZNk3rx5cvzxxyf0yGOPPVYWLVokvXr1kttuu00OPPDAuKA6Y8YMqV+/fsKgmuy2T4e2SEh8u8gUMAVMAVMgxxQwUM0xqe1BpoApYAokRwEPVA844AC1jn3yySdSp04dOffcc+Xjjz/Wv3mgCsQ+8sgjamH87bff5JRTThGsbJdddpm0bNlSXnnlFS3UBRdcIC+//LJs375d7r33Xpk6daoCEBbbdu3aqRXSg5WePXvK66+/rvcDvPr27Sv77bffbpW7+OKLZf369YLF9vDDD9f7kN544w0pWLCgXrf//vvL22+/LR988IHcf//9Cl+VK1eWDh06yFVXXaX5mzRpIn/88YfmwQKIZbB79+7y3XffqVWZv2E5puw8D1AFyKpUqaJAeOSRR8rDDz+sVkfqO2vWLEG3Nm3aSP/+/WXBggXy7LPPan0OO+wwadSokfTu3VsKFy6ccH0oz3333afl4vlYMllAGDVqlDzwwAPaPli+n3jiCQXnYcOGyfDhw9XSiqWaPNTjm2++kfbt26v195dffpFPP/1U9fG3GXWgHaI9r3Tp0trWWFRdQPXXX39NuO3XrFkj99xzjz6HNjn11FOlY8eOWh/ahjpeffXVMm3aNClatKgsXbp0j7ZIzuiwu5gCpoApYArkFQUMVPNKS1o9TAFTIN8o4IHqJZdcIuPHj5fHHntMLWu4xgKgfO6BqucmWqFCBYWjF198UXUCFICcgQMH6v+vu+46/T9gCMxVq1ZN94cCT54bsQeq5G/YsKFMnz5dr33ooYcUUvwJEATMXnjhBYVGQJr07rvvKqieffbZCprdunVTd10SllBAB5AbM2aMQpbf9Rd3VeCWRP2+/vrrzEcuXrxYgZayksqWLavWQ+CXtGTJEunUqZO89dZbAsDdfPPNCmVYJ/msc+fOCoLU/amnnlI9E6kPEAmYA5a496Lf559/rq7VWKGxgvIZCwMAMYsMgDnwDNBOmTJFH4tLL/k8V26vTrRvv379NE/btm21Diw+RHseiwSuoMreVQA/0bZv1aqVvPTSS1pe9s2ySIDOa9euFb+ln3KzCEHf8rcFulgyBUwBU8AUMAX8ChioWn8wBUwBUyBkCnigessttyj4YWXDygkIAZ783QNVgOHbb7+VBg0aCAfwXHnllQpPWLbOPPPMTBAEVAC/WrVqKeQBShzSgxUS11usYsAIrr9YUO+66y61RN54440KuQCxP40bN06hGWtsjRo1FMZIWE5JWAABG+Bw0KBBcvfdd8tNN92k9QEiAR6sw35Q5TMssZQDAKYeRxxxhN4vElT//PNPBXeswoDvDz/8oJZHv+vvypUrta4kYB/N2Dt58MEH77GH1bU+gD5aHHTQQVoH6oiF1KtPpOtv1apVFZSxeAPsffr0UcAH3IB5D1SxigK+WCv9+0w3btyY5fNcQTW7bT948GDZsmWLsHiCy/mll16qurJ4MGDAALUos/hBn8Haaq6/IXvpWHFNAVPAFMgFBQxUc0F0e6QpYAqYAtlRwA+qWBmHDh2q7r3AANY7YMwDVaAByyUw5E/vvfeenHXWWbuB6sSJE6VZs2b6g4tuZPIsqljdgA0sYueff766dHqWWu8a70RarKnkBRQLFSok++67r+zatUuBFCjkWn6PTJ41zg+q1A9rIrDjHSbk7df0gyqAh+syCddT9oPyOcAauUf1jjvuyLRQkh9wRU+su/7kWh+siUD8k08+udv10UCVRYFYJ/YC40A+12HpxNLsJT+oYp3O6nmuoJrdtgfIsUpj2fWnrVu36uIJbYcFuUePHvqxgWp23gB2rSlgCpgC+UMBA9X80c5WS1PAFMhDCvhBFbdPYA/XUayLwONRRx2VCarAENYyYAH4AcAAzWig+r///U8qVqyY6eoLUGKpZd8qkIE11n+YUlagitzs98Q9mLLhSguUcR+SB1+eizAWVlxZAW/cRdkjCmT6QRU35xYtWui+TSx4v//+u5QoUULv5wdV/2FKWYEq+yoXLlyo4W9++uknPYCJvapA8qpVq/aASJf6YMHGaspCwejRo/U+nmUUC3GkRfWQQw5RuOPZ1atXV5jGSur9HVCNXDjwgyquwlk9zxVUs9P2LB5ghSZ9+OGHajml/CQ/qPpdqg1U89ALyapiCpgCpkCKFDBQTZGwdltTwBQwBVKlgB9UAUAvPAkuv1gI/aDqgRqn5uKa2aVLFy0WVkwO6fFAEPdbrJS4DwO23Au3TdxYzzjjDHn//fczD1PyTv2NB6pYFbGykQAxrH8c+ETiICHK6rnUAofsVwW8KBufkccPqkAPFksSezwph2fBcwFVbw8r+3Vx9aWuwD3PBshxq8X9mM+xQEdaO13qQ/mpI3tysSJi6ca9mf+zH5VDpoDh22+/XffMUg60B0hxlaadeDYLAp77cFagyoJDVs9zBVU09RY1grY9AEpZWZDAskr9cF8m0eeoH1r4QdU7odlrC3SxZAqYAqaAKWAK+BUwULX+YAqYAqZAyBTwQJXQLRyA5Fnf2MeIayug6h2AhAvvNddco5Y63FrZLwpMsQcSOANKAAkSp+biKoyLL/lJuO5yMi+WVs/197PPPtPneKDq7RmNlBFrJVZCElZSoBMoJHHI0THHHKO/cxgTJ/l6ib2YI0aM0P2lnvXQC8FD3YEeLICAHfDHXlX21FLmyPA0fosqulBuQNxzjY58NrAFaLF/N5H6sA8YC6p30BSHKAFt3Hf58uUK4ViFScAoiwDAsXeSL3+nbXCRBcTr1q2bpUWV/Fk9j/2+rnFUOVk50ban/dCSxEFbWJIBbhY4sJ6yB9kPqljpI9siZMPQimsKmAKmgCmQYgUMVFMssN3eFDAFTIHcVgAowLUV2PQslP4ycQIrgIUbLZ/jfgsIsp+U8CrRrkl2nbCWLlu2TEPElCpVKurtCUnDHlwvjAyuu2XKlNG8lBmLaLyEmy/7Tb1DiciPqy36cPhS+fLltd7ZTcAzkM1PZOKgJ+pbvHhx3bdLIjTM6tWr1ZpL+JagKavnBblXdtoeXakbpx67pGht4XKd5TEFTAFTwBTIHwoYqOaPdrZamgKmgCkQegVw88XN2TsUCWglYVnFamjJFDAFTAFTwBQwBfKOAgaqeactrSamgClgCuR5BdjvicssB0KxL5LDpNjvmQwraJ4XzypoCpgCpoApYAqESAED1RA1lhXVFDAFTAFTwBQwBUwBU8AUMAVMgfyggIFqfmhlq6MpYAqYAqaAKWAKmAKmgClgCpgCIVLAQDVEjWVFNQVMgfArwAEyO3fudDr4J/y1DWcNaB9SZHiasNWGg5G8w5qyU3YOSfLi1WbnPrl9bbL0yO162PNNAVPAFMgvChio5peWtnqaAnlMgfbt2+vpraNHj96tZpxQS0gWYk+mY5o2bZq0adNGfv7553QsnnOZiEm63377aVgYL46r88W5lPHHH38UQutw+FJk8teH+K2HHnqohu8JkghrQ9gbTlfObmIvLsBMfFXX5K+fVx9ObyYsTyKJ8UW8WsL5cHDV0Ucf7Xy6cuTzOFUaaCbebdWqVRMpTsxrCF308ssvy5VXXhnzxORk6JHUQtvNTAFTwBQwBeIqYKAaVyLLYAqYAumoAPEhf/vtN3n11Vf3AFWAgXiQ6ZjyCqju2rVLPv74YznppJMSCqeSG20zadIkPXjphx9+2OPx/vp07tw5IVCtVauW3HvvvVFBOGh977zzTg31MnjwYOdL/fVLBpjNmDFDGjRoINwLTwDiodavXz+hcEUeqH777bcKvMlMvAcIabRy5cqYoXGSoUcyy2z3MgVMAVPAFIivgIFqfI0shylgCqShAi6gOnHiRLnnnnvUennGGWfIoEGD1OX2wgsvlLFjx2qMUKCEcCfPPPOMYJlp2LChvPLKK3tYoUaNGiX9+vWTLVu2yNVXXy333Xef3ov4l926dVMrbuXKlaV169Zy/fXXq2Ljxo2T7t27y++//y5XXHGF9O3bV+GuZcuW0rZtW3nxxReldOnSMmzYMAW+yBTt+sKFC0u0epUtW1bvs2TJElm3bp18+OGHcvnll0vdunW1DKQnn3xSzjvvPMFiSJ2/+uor+eSTT6Rp06YyYMAAjfkZqz5Y97gXuj/++OMaDobf0QrLaq9evWTMmDF6Eu8jjzyiljiuefjhh7VcxHKl3g8++KAUKVJENTr++ONVo0WLFmlZn3rqqT3cbbHqYT1/6623pHbt2nL33XfLOeeco5reeuutqvvBBx8sXbt2lRtuuEG2bdsmp59+utx0001aX/5PHzjzzDPlrLPO0viwl1xyiS5wxKoPZUQH4rSiEXWh7+D+SvvSlmhGuuaaa/Tno48+kgceeEBoh5EjR2oZevToof3swAMPlLvuukstfiQWUtD7iy++0AUV7u2Pt8rn1157real7YDWWDp6fYYYtP76vfDCC5ntQluhA32W8pNi9WfvfqtWrZKzzz5b24a60oa03wcffCDPPfecQiHPnDp1qpx44ony/PPPazvE6j+xQNVrL+49YsQIOeCAA1Q3NORZjFv+Tp+ZN2+ePPTQQzJz5szMvgA4N2rUSKZPn67WbBaCaDf6JpZg+vv999+vAOv102h6+MderPZZsGDBHvfFmwD4po/SnkA47wks4V9++aX2d06mfumll2T+/Plq0ac9iQncuHFjzRsrbnAavnatSKaAKWAK5KgCBqo5Krc9zBQwBZKlABNRLD5Agj8BLEw0q1SpIscee6xa0AAEJqvADZPccuXKyWOPPabAUbx4cYU2IBWLUZMmTdSl2L8/ccqUKXLuuecqXBxzzDHqugsUMaEGlphAA2fLly+XVq1a6SQeK0+NGjX0GgD2tttuU1DApRQAuOiii+S6667TiSrWPMDSn7755puo159wwgkx6wUs9unTR8sFMN14440Kwv3795f33ntPJ/NYE9Fu6NChCki4YQJ11IMyxqoP98F1E5Bgos29DzvsMAVjwsUACEzK33nnHbUqAiDAEgsBQBZaACOAEm1Rr149DTEDrK9fv146deqkGrBQ4E+0EUAEXNMOACbPpN1pL9px69at0qJFC3n33Xf1vgAJ7T9w4EAFasAKgAK2gGHuA9TEqg+Aiz5oidssdbj44ovl6aefViijrCxWkPg/fY770UcATKAFmAdSH330UbVI8nfqV716dQU6ygX4cm8+u+OOOzKrvXr1au239Enuw3WxdPQu4hm0s1c/gMnTAf25B+1NuwCAsfqzdz/yoRd9FhilrJ7rL+2HNr1795Zq1apJhw4d9Cer8eD1n0iLqmfp5D703yFDhmg/ZXwBmYA8CyD0A/oq/YPP+BvtyDihbwN9EyZM0AUJxtv555+vfY3+wbMZh7H08Ic2oi9Gax/alIWtyPti8QZW6d8sWNEHaYelS5cqjLJgQV9koYIFD8b/LbfcIpdeeqkuXG3atEnfY5ZMAVPAFDAF9lTAQNV6hSlgCoRSAWCLfWmAiT8xeQVUsVwwOcdiSGJvHJDJPj4m7kAKE0bvetwmmSAz8QWw/AkLLJPd4cOH65+x8AAgTESZ9AO+RxxxhFqfAMn3339fJ8+AmDcJBeR++uknzQuoYpll4kx5mYQzYfUnrIDRrmcCHKteABnPxmpLOuSQQxSa2GuJtQerLZZNYBT4AypJTPqBEu4bqz5MuNEMSxcA4AEG0AgcsacSqxqLA5QbHYAKAAKwIaEfcIOFG92xjAI3pJNPPlnh17NG8zc0YSGBMmE1wyoHBPN82hIo4B4kIHj//fdX8EdX7xoWIbBWAkjsp/Vcfz0LX7T6AKqetZl7A0/AKOWJBarse/Vcf7HYstABhHtAC1hjWQXyAR4gmnqwoIGLb+S+Tb/rL9rE0tHfZ6K5/tIPsbRu3LhRn48OXbp0idmf/fejP7DIs3btWu3rflDlM69vA2iMK8ZjvP4TC1QZH0AmmqEVWrMowtij/rQ7/RTAZh86iyMsCqEdfdFz/cVqSR4WL4oWLar9HG8JgJt+EU0PvysyYzRa+2CJj3ZfXKOxOHvlRT/6G+OJxSLGjbePm3HCggvPoA6epixMALCWTAFTwBQwBXZXwEDVeoQpYAqEUoF4rr8cslSmTBl1/yQxoWXiihWOSTXAhJUDa1HBggXVDRXwwTLnwYUnDBABkPkTk2gmp8AtlkjcDJmYrlixQmGRiSpwC5D4ExNyoIrJPwmoxH2RPYD+BLxGu56/x6oXLsHUDbdOEuXG0ov1FrdFrH7ogEUQLZg0k4BM3GCBNyzO0erjgSowDiT6QRW3TIAGQK1QoYLev2PHjjphBzy8g63QBWiiroAqUOq5omLJxuKEZc5LCxcuVAtk5N5D7+9Yvzy3SWAcV0tgJvKQJ6AA8AQQIkE1Wn3oM7gwe4BNvSgv+gBNfosqYI4l0A+quH3SRpEJ92YswugOiJKwGgLXWAH9yQ+qWenovyYaqHqQ5J00jQ6UI1Z/9t8vK1BFSyCfxKLNnDlz1KIZazx4/ScWqHrlxAqNnrQxibKiMe3LggHj9pdfftF+BjxGgioa0H5AoD9FHv7l14MFBn+K1j4AeLT7Ms6x1nrl5T70FSymLGrQvt4iFAtjWLUjE2OTfm7JFDAFTAFTYHcFDFStR5gCpkAoFYgHqlhGmZSzB5LkgRoujVgzARHgAusme02xwjLJBTQjIQOIw3LiWf9wDWYf3HHHHSfly5dX90RcIbFYYQFk3yQAikswv5M4NZV7A7j+U39jgSr3i3Y9E+JY9WL/HlDnWX4BVSCC8kWCKqE6vHz8y15I9iXGqk8kaPhBFRdVXGRxr8XShcUWAMSay4Tdg09cZ/kcSy6T+Xbt2mUuCkQDVdoJvbAGY6HFRRpYYfIPqGA9A749oAEMgAFA1X/abVag6oGTvz7e4gblJQH+WNGxIHrPALABbhY5cOP1gyqWN6y7LBxgJSRhRcbKigst/QcL/OzZsxXA+B1rpD/5QRVrciwd/ddkdZiSH8zQPVp/pm7+lBWo+vuZB6pApmv/8Z4TechRLFBl8QgXW6z2HmgDmJGgCqCyr5X+zbimT48fP173hPv7RSxQpQ9Hax8WVaLdlzLgDuxtF6BP8A6gj/MMP6hi1WUxDJgnUUbeU+y93meffUL5HrZCmwKmgCmQSgUMVFOprt3bFDAFUqZAPFDFxRbX07fffluhCFdaIA94IGEZAx4BOPaosY+MfXJ+y4hXeCaYwAj3ApxwUcWKiEUJqycut7h74jIMhOJeCLQyscW1F9dCXFSBKKyuLqCK5Tfa9YBZrHoBPa6gChhRd9x5mfgDfrhIxqoPzyRvNLDDMk250AlXW6ycQDZgx3OwclJvrKns9cSq6QKq6I/rJ3sGgUcWE3gG7pyAG4sN3sFQtB1ghbU3FqiyUMC+YDQixaoPz6Lc1IE8WMCBEdx/0QrLKuAKAAEwHqgCevQN9vyyuEEfxOIGLOG6S9lxv0ZLFhvQ3HPLnjx58m5jhWdRTyyw7HmMpaP/Ig6c8uqHi3csMGPxJlp/jgz1FBRUOVjLtf8EBVXcazmUiLajfzGWnn32WXXxpa4sAAB9WKbpF8Aze3/Z2wvMssDhAqq0ebT2wVoc7b6UgfKwFxYYZuzj9YBLN9sO/KCK9wb9gIO3gFOuYY8rdQKqLZkCpoApYArsroCBqvUIU8AUCKUCWOuwfkQLT4MVE8DBjRdIAi4BSyxOACoJ90KAhAOWsLixRwwrGRPcyEQeQBT3PxKTTCb7gAj7XdmjxzNOPfVUtbBhJeUaJq6eGy5urcABn7mAKtbDaNcD1bHqFQ1UObAF11u/RRlQpC6e+yfWSrThZNRY9WHi7Y+D6Xel9E5VRgMSMIeVFqszE3Pcoj3dADJgxhVUcSnF6g0AA7vs86MtcMcFXvg7Ca2AQqy70UAV6yuggYs3iwgsSMSqD/CLFZeFDBIQjoWMw6M82ODvderUUSDhtF8sqvQD9KOdsWYDKcAxCfdr+qq3MIDlEB0oCwse9J1I6ASOcaHG2h1LR/81ALFXP9ygo4EZOtBvY/Vn//2w/LEPlPaN3KMaaVFFK8aEa//xnuNiUcUtFshnDAHjJPowYMzih7dXnT5BucjDgoHX5xiDWHpj6eFZ5b0y0X+jtQ9QGnlfFkiATdqJ/k9/ZOGKBQPGOtZ1//5zwNmz2NP+LA6wIGXJFDAFTAFTYE8FDFStV5gCpkCeVoDJO5PHihUrZstqgUsf+z8BIayvwK2XgBXc+Di8iHzsoeN3EjCNyydAkkiKdX126oU1mvLgykwoG8DFn7KqT6w6MBnn1GN0Bgi8hPsjlkFcG3Fx9evmqgcWTOobeT1u3JxizCKDa4gP7oWFzYPqrMrA/YFtDtfxl5s+wEKE18aR2uH6SZvzLA6/wg0YyPYn+hKWwMi9qf48aMrCBD+uOrrWL6v+7NousfIl0n9cnwk0lyxZUvsY7cOPN7Zwv8WySgKAOUCKxYVEUqz2iXVf+gOLEljJ2f+dVWLMsUcdV2bCTVkyBUwBU8AUiK6Agar1DFPAFDAF8pkCHqhi/bJkCpgCpoApYAqYAqZAOipgoJqOrWJlMgVMAVMghQqwbxZLDof0WDIFTAFTwBQwBUwBUyAdFTBQTcdWsTKZAqaAKWAKmAKmgClgCpgCpoApkI8VMFDNx41vVTcFTAFTwBQwBUwBU8AUMAVMAVMgHRUwUE3HVrEymQKmgClgCpgCpoApYAqYAqaAKZCPFTBQzceNb1U3BUwBU8AUMAXSTQFO8iXZibjp1jJWHlPAFDAFclYBA9Wc1dueZgqYAqaAKZBmChBahLAmxObs169fzNJdf/31GiOT0C55JRFzlNiqxIBNRrrnnnvkkUce0bA+0cL3xHtGy5YtNT7q/fffL/fee2/U7HfccYe2E6F4CANkyRQwBUwBUyBvKmCgmjfb1WplCpgCpoAp4KiAB6q33HKLDBgwIOZVbdq0kVGjRuUpUL3pppvkmWeekV27diUU4zZSrK5du8qjjz4qq1ev1vi2QRIxSomPWr9+fXn66afl2GOPjXo57TRo0CCNXbz33nsHeYTlNQVMAVPAFAiRArkCqlu2bNEvo8jA7wQJ5+8EN7dkCpgCpoApYAqkSoHFixcL8WQXLVokzZs3V1jzQHXWrFnSqVMn+fzzz6VKlSpy3333ydVXXy0eqGLRe+211+SYY46RwYMHS+XKlVNVzD3uS2ihnj17SuPGjWXixIn67DvvvFPq1Kkjf/75p1pGsUjye5MmTWTgwIFq2aQujz32mLzzzjty6qmnSvfu3YXv3BtvvFF++eUXOe+882Ty5MkyY8YMufvuu+V///ufnHXWWXo/gDGWJliXH3roIRk6dKgcdthhcsABB8gHH3ygoMp3+fDhw/UHN9677rpLdYyVKO+7774rpUuXlgcffFDOOeccufXWW+WTTz6RI488UrBoU14/qGLhfvHFF+Xaa6+V6667TkaPHq1l+fHHH/VZWGYNZnOse9qDTAFTIAcUiMVR3qM3b96s7+K8kHIUVPky/Prrr+Xiiy+WpUuX6peRl/hSqVGjRuaXaF4Q1+pgCpgCpoApkJ4KAKdvvvmmtG3bVkEIYAWAcCk9/PDDtdAdO3aUcePG6ffWihUr1BUViyrfXccff7xC1WWXXabQmlPppZdeklatWunjgLPnn39eywMYjhgxQm644QZp0aKFwil1ad++vVofjz76aL2mT58+CpbsA6VuwDoQ+sILLyjYlStXTuuKGzQQWK9ePZk0aVJMTdauXSsnnniiVKtWTRo2bChDhgzR51CeZ599Vnr06CG9evXSZ7z33nv6L6AcLQGYlAdo7t27twIuf3vyySfl/fffF9yUf/rpJ+nbt6/WCSi96qqrtA2Ac+5NGVq3bi1FihRRqyxuyIC3JVPAFDAFwq5AVhxF3b744gtdsGNhD67iHX7SSSeFuto5Cqrjx4/XLxK+PPly80B1+/btcvnll8uyZcv0iyXWl1iolbbCmwKmgClgCqSFAlu3bpX9999fgWbkyJEybdo0OfvA6+fLAAAgAElEQVTssxVUL7nkEoUdAAm3WL6zgDVcgufNm6eg6n1/nX/++QpP3K9o0aI5UjcPVIFMyvrEE0+oRRXYZn8oExVcmQsWLKgWyU8//VTWr1+vC8FLlixRt9ozzzxT685kxu/6y7W1a9dW4MV6PHfuXFm5cqWuzHNNNE14FjDK4nPFihVVKzQDVBs0aKBl4RnLly9XyydlBJSjpXXr1um8ACsuFlXuOWHCBPn1118VqrHyAqyvv/66gqqXPP09Sytgyt5VnkN9PvvssxxpG3uIKWAKmAKpVCAWR3nP5J3P9wH/knfYsGEyderUVBYp5ffOUVD1aoPLrx9UcaPiSxAXJb7wDFRT3u72AFPAFDAF8q0CWOWANO/wpB9++EEqVaqkoAqwXnjhhQpVWBi//PJLOeGEE9SFlHyA6oYNG+TAAw+UK664Qq2puQGqb7zxhjRr1kwtmB06dJCPP/5Yrae48/7888/atngvAXW4iQF7TFoAPoAV+OTAI1ycvT2quBJjaR47dqxceumleh/qCmTyrGiakIfrve90zz0ajbHOAp6463oJcERfF1D1rN6UkXKgvR9UuTcWBqAVDZicYbUFVAsVKqSPOOigg+S2227Lt33dKm4KmAJ5T4FIjvJqeMQRR8js2bOFf/nuYjsF7+Ywp1wHVYgf9yvcjhDUD6p88bIy608HH3ywrnZbMgVMAVPAFDAFElXgoosuUmsh1jv2VGIZxZW2S5cucvLJJ0v58uV1fyRgB/zg5guQ8Z2FqynuVAARi6z8PacSgNq5c2d1t8UqilsssMakBEsorq6sqPNdSfmw+gLZWDqxpgLnwC1QSp2wKI8ZM0brxX7XmjVrqpswcIf7LZZnvqNjaYKGuJp5muBaDLhjycWNl3LxjO+//173wAKdp59+elS5gGxAFuCmjpSFCRflZU8tVmNgmfZgzoCF+9xzzxX2Y2EVx9rMnmEOdDrqqKP0dxYeuJ8lU8AUMAXSXYHp06cLniX+xLv7tNNO2+1vsUC1WLFi8t133+l5AXig4NXiLVyme91jlS/XQbVu3br6JVuqVKnMgytefvnlmD7VnCbo329CQ1SoUCGs+ie13KaFu5ymlWnlroB7TutX4dGKQ4mAHNIZZ5yhsAqY9u/fXy13WAa9xCFA7ItkPyswiIUVSMIq6R1O5F7z4Dn9/cpz/fXKwN0AMmCMCQ4A7i3wli1bVqhn9erVtV64wvJ9S7nJD9QCqezzJHEwEi63XlgY8nE9k6RYmrB1Bwsp0EviUCcgFWstVlzAn0UAElt8AM199tknqgie6y/PB67R3Pu+BzgBVDyvmIhhRSU8DRZjIJlFBj7DekudSIAu+2ux7FraUwF7X7n3CtPKtHJXwD1nZL+KZJyY8BbhmerlYxGQ7ZUsZLJ1g4VDFiXDnHIdVCF9L7g3kwC+PPnSi7Xfx0A1dnezF6n7UDStTCt3BdxzWr8Kl1aEQ8GKB9BFJr6XOIyCg5WinZ4I8JUsWTJHTpSNBqpYFzmRmJN1OS3fn9gf+tdffymgsVfVS4AoLrnU1x9/FB0I9VK8eHHNunHjRoVerMr+E3Oz0oQDmNAj2nc39+J5fA5cYjWIlli4jqwLLr+UwfUES7QiLA7tWqZMmaSE3HHv1eHKae8r9/YyrUwrdwXccyYDVHl/L1y4UL1R8ERhuwMLhHjW4BHDol+YU66BKl/yuCb5Ey5KuGFltUfVQNVANRkDzr503FU0rUwrdwXcc1q/Skwrz6IKqGK9DFsCVHEzjpaaNm0quK5lJ1m/clfPtDKt3BVwz2n9KnGtglhUPY7iVHrcgzdt2qTnKHgMxTkKfE+wQBjmlCugmh3BDFQNVLPTf7xr7UXqrqJpZVq5K+Ce0/pVYlqtWrVKvvnmG90zykTE0u4KWL9y7xGmlWnlroB7TutXiWvlCqpZPYHFQL4n2N/PXtawJwPVsLegr/z2cnBvTNPKtHJXwD2n9SvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPaf0qca2SAaruTw9HTgPVcLSTUynt5eAkk2YyrUwrdwXcc1q/Mq3cFXDPaf3KtHJXwD1nXu5X7Ntjb3Osg7vcVcrIGUQr79yVwoULB31MWuXfuXOn7nVHQ/9e9XiFDKJVvHvl9c8T3aOa13Xx189ANQ+1tr0c3BvTtDKt3BVwz2n9yrRyV8A9p/Ur08pdAfecealfLViwQE83veaaa/QAGfblead4uysSO2csrTjRev78+Xq+Cqlly5byyiuv6AE23unZyXh+Tt3DXx9+5+wY9pQTk9k15aV+5VrnRPMZqMZXzkA1vkahyWEvB/emMq1MK3cF3HNav0oPrZhYXXLJJVqYpUuXCjG5OQH2rLPO0tNg3377bf2Mk2SbN2+uceYIT8OeHkLV+FOsz/zP8OcnXA2HXHAwkHdgIJNoLBLHHHOMu0C+nOnWrwhFw4EdxEslZIyXDjnkEDnnnHN2qyMnJy9atEj1yImUblrlRJ0TfUZe0mr06NHSokULDc10/PHHa1gOTpEmikQyUiytbrrpJo2jvGvXLvnzzz/11GriFT/99NNy7LHHJuPROXoPf30WL16s8YrRtUaNGs7lyEv9yrnSCWY0UI0vnIFqfI1Ck8NeDu5NZVqZVu4KuOe0fpW7WhFWBasKIVi6d++uhWHPD0HPZ8+erbCEW94XX3whlStX1lAqHOn/2GOP6amJnJB43nnnSdWqVTMrEvkZoU8in+Fl5r7cg7ilX331ldx+++0aHxyYY/LKTyIpXfoV4W2Iq0qdOnTooCFn+J3EggCHOzGp9RKHejz++ONq3SK+aU6kdNEqJ+qa3WckohUg2KlTp8y49/fdd59cffXVWhTgjPi2jDFiFBO3l8WgaH9n8ahnz54yYMAAPb26d+/eGm+X8fPwww9rfGJiQr766qsKmzyTcEszZszQ2LqUvVatWsLzWYRibC9ZskRjHBPr+IYbbtC4vYToIHQSoQ8Ji1SkSBG57rrrFGR5Fp83atRIn8f7AMvoBRdcsIe00bR68803tV+zMMV7g/7OIk7p0qU1HvH1118fs4mGDRumcYK5L/VHN2Jf8u7ivYHO/P/mm2/W8uDKzDtt3Lhxcthhh2nsYOI7P/DAA/o++uijj7Ru6H7kkUeq5ujG2CP0FDE1KQ86ANNem6xfv17fj0899ZS2qb8+6Ey4E+Its4AXq8zEaH755ZelcePGak0+6qijNKZxogtz2e3XYbreQDV+axmoxtcoNDkS+dIJTeWSXFDTyl1Q08q0clfAPWcq+hXWUo7qB0qZcDJBA5TatGmjgFWtWjWNEYolsEKFCmrx4BpCvtxxxx16HRM3zwrDBDTyM4DW/wx/jYcPHy6nnXaaTtAAZCaSAOucOXMUXtMRVCdPnizLli1TrXCZZE8aE97WrVvrxB+gIOwB1mjAgAnxp59+qpNe4vWRsCQNHjxYOnbsKP59ea+99preF72ZAA8ZMkTjvm7evFm1IJQC1i9Agp+rrrpKrVNMphNNqehXiZYl3a8LqhV7FokrTKKtgSbGAm0HnFaqVElj9DJ+aGsWeS666KKof2fBp1WrVgp2WOEZo6NGjdL+0q5dO3nuuecU+Bo2bCj0o2uvvVZGjhyp9yIxtrg/ngqMW6CKa/iXvlaxYsVM11/PHZfPsBICmNyTvtisWTOFaZ45dOhQ9YJg0SXytNRoWuEpwLOASiyP9HPAEmgFvAHNaIky8I5gkQzXWt5RwOd3332XqQPjj3oRE5kTXCdMmKAaoAegCdQzDp999lmt95YtW/TveDXwnvvwww/VQ4S2AYRZVKKcaHjmmWcq9AOWQDBtyQ9l99cHyPVcf7lnrDIDs08++aQ+F6AFutETGLaUtQIGqvF7iIFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZr7DI3HPPPWrhYLUf8Pr999/lyiuvFFxRgVWg7Msvv9SJ2GeffaaTwG+//Vahksk4rnxYaubNm7fbZ0wgSd4zuBeWGSaJWCSYcJcoUUL69eun1zHZw9WYyXA6giqwQXmZVDNR79q1q8IiFqoxY8ZomdFi5syZCgEkrCVApQeqkyZNEsCDibeXmHQDtUyE+ZwJMBPytm3bCsCDpYwJNO2xdu1anWgzcQZegZtEUyr7VaJlStfrgmpFewJK9BNcRAEfFm6wijLWWOxhcQNvBRaGGBN4GUT7O5bDeKAKpNGvGKOAGVZFxuy0adNk3bp1CkQkFkpef/31TNdfgMrbo4plk7GHdZU+R14spwAqllX+ZTEKmPXcXn/99dc9Yk+6uP6yyAVcs0jGc2Ml9q/26NFDw0yxWMa7hGt497AgxHYEwHf58uW6/5VxgoWYz4FW6vD++++rzgBiVqBKXGLugTcEhyIxrtm2MHXqVH23AeVYQVlgY1HK7/rLe8sD1YULF0YtM/dAP8pBebHmAt3owHMtGahmtw8YqGZXwTS6PuiXThoVPceLYlq5S25amVbuCrjnTGW/8iASSyGTLdxUgUgmZaz6Y20BVHG9AyxxW8PdjskfE24AFTjD6oCVx/8ZMOUHVSaN33//vVoSeQauh0yUcXv0DlhJd1BFE+qKyyQH0PAvVhcmsN7eUsDCszT7QZUJMP/nOn9iIoz+QOmGDRvUJRF9gRYsT+jKpJhrWUgAetkPfOmll+pkN9GUyn6VaJnS9bqgWrHgQB948cUX1d0XaKS/A154JrA4A0gBKiz6FCpUSC2r0f7OWMFNnLFBH6PdASi/RZUFDIAHyBw7dqysWbNGatasqXIypuljwHJWoMqBRtyDBRI8HhjfQCwLM7gTA6peGW655RaF31SDKu7GTzzxhI6P8uXL6zN5NpZeyoN1k3HBuGFM4EoLrFJ2FoC2b9+ulmGsv7169dKFJRbiihcvLoApdfMsqvwfyOR9hms+98Fd+JRTTtG2Y7EAaEbXrEAV6260MrN4QbkBVRbteB7eKiwOGKjGH/lmUY2vkYFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZrzxQpTRMlHF7wzURSwVWD/a5YVXBTY6/MdHDvRWoAp6Y0Hkp1mf+Z3h5qRNwB3hh7fDALqygioUEqw8TY9x+vYOm/KCK6yeTZmAiWsJ9+o033si0qPpBlck57cPCAaCMe6O3t9i9J+2eM5X9KtEypet1QbUCCBkz9G3gBjdSIAUQwvqJNZC9k5wQi8WdBR4sctH+DphijcV6jtWefkHygyruo0AX1kQORwOwWATCNZxxyvW4kWNppY8BvkAfeYFl79RfFkmAMPoa7rqMXfZbYq1NFqjihguguVhUsYwCjJQXHfBiADRXrlypFmvGFPXAPRlLMvBPeXEnZm8t7zIWwhgvjD0WxGgPwJaxyT38rr+45QO87DXlvrg8oykLDiyw0WaRFlXqw7vSs6iyeBerzHhaGKgmNsoNVOPrZqAaX6PQ5Aj6pROaiqWgoKaVu6imlWnlroB7zpzsV7iVYkH1EpYJLAz+GIueNSBybxrXZPVZZI2ZaAN2uD0mK+WkVpFlZs8qeiWzPsnSJdp9clOrVNYrFfdORCss4XgheIm9ongm0OcBVMCKhIUO918s5dH+jrs5AMkBR1jfsBoCaH5QBYwAJj7nsCNOmvbcgPkbz8CiivupdzAa4MpCFAcxAcpYczlIiH2jLJqQzj77bLXQYg0EVClnkyZNFGwBvSAWVdzjgXIS9wdUseJiZY6V8EIAtnGh9hJQCjBST/8J2YAl1mOsrwA/bUbCoo3nA67zQCbPxjMCIMUFH+8F9qjSLl7Z0AsrdMGCBdWayv7VKlWq6PjmHckzOJjJqw/719EbIGZBL1aZvT2qZlENPkoNVONrZqAaX6PQ5EjkSyc0lUtyQU0rd0FNK9PKXQH3nNavTCt3BdxzWr9KvVZY9AAk9nIDjP6Eey6LG1jI/Ys+sf6OyzD3wE3YSxzUxb5LgA5LLS6uHJrkJSyMAKH/b3wG5AJcuJ/iReFPeEtQZu/AIXeVMnJm1a+w6PJsXG+9hDWSg9QiE4tjQDQJsAMwcXX3L5qhH672WDEBcC9RB/6OXt7+cD5DJ55XqlQphVAvAarsgWXxADdqrMxem3ANFlyeEbk4F60+3j1jldlfTxuD7r3LQDW+Vgaq8TUKTQ57Obg3lWllWrkr4J7T+lV6aBU0jip7TLGuYNXBDdE/acyPcVQ5SRTXwMiEdQbrCpNyQloAI1lpFy2mbLQewn5GJtK4LGY32Rh0VzBdtfKDqnttUpszqFbANAeQRSbcbrFO5kTyQJVxmJMpqFY5WbZ0e5aBavwWMVCNr1FoctjLwb2pTCvTyl0B95zWr3JXq0TjqHJCJ65wtB974Ly9mNQmP8ZRZb+Zt2fQ36K4BXrugsAle0xjaRctpmys3oHlifviZpjdZGPQXcF01Yp90YAeYWvSJaWrVlnpAyhjkY0VJidV2oZRq1RpEe++BqrxFBIxUI2vUWhy2MvBvalMK9PKXQH3nNavclerROKo4maHxYEDWDjkhPAoHHJCyg9xVL0Ww3KMiyD71TjYhQNe2N+HGyUacegL1lMmvbhXPv/883o6aSztImPKso+NkBvcn/3CaAz48lxcDVkgMFB1Hz/JyGnvK3cVTSvTyl0B95wGqvG1MlCNr1FoctiL1L2pTCvTyl0B95zWr9JDqyBxVDkMhv1aWB84dAWA4lCX/BJH1WsxwJKQNOyXw0pKHFoOyeFEUU5MBU45cIYDVzhhFfdoDnmJ1I6TVElYZf0xZTkohniLnNTq7RMk9iX3AHYBWANV9/GTjJz2vnJX0bQyrdwVcM9poBpfKwPV+BqFJoe9SN2byrQyrdwVcM9p/So9tAoSRxVQwjpYqVIldfnlgBZcD/NLHFWvxQhhAUxySA2gSsiJAQMGqAvwZ599ptZl9qZyUiv77Ah1gUUVK6lfO+9+xKb1x5TlRFUOgsHqzUmt3AcLNvsROaGU0CcGqu7jJxk57X3lrqJpZVq5K+Ce00A1vlYGqvE1Ck0Oe5G6N5VpZVq5K+Ce0/pVemgVJI7q8ccfr6BKuAwS0OUPD5HX46h6LUZ8SSybWEo9199IUOWk0dmzZ6tFFJdgwoXE0o6x4I8p27hxYw39QRxOwn/cfPPNei2WVEKKcDqpgar7+ElGznR9X+FijuU+2h5V+h/9LqeTaeWueLpq5V6DnMtpoBpfawPV+BqFJoe9HNybyrQyrdwVcM9p/So9tXKJo5pVyfNLHFVO9cWVF4tprARY8lO4cOG4jR0ZUxYr9YYNGzSMhpci2ybuTeNksDHormC6aoV1nZ+SJUvuURnc0bt06eJeySTlNK3chUxXrdxrkHM5DVTja22gGl+j0OSwl4N7U5lWppW7Au45rV+ZVu4KuOe0fmVauSvgnjM3+tX8+fPV1ZsFEQ7VIgwSe6AXLFigBW/UqJHGQKVsXuxTFjgItYK3A+GRsLSywLF06VI9iKtly5by5ZdfypIlSzTE1AUXXOAugmNO08pRqDgxZ93vkj9yGqjGb2cD1fgahSZHbrxIQyNOREFNK/eWM61MK3cF3HNavzKt3BVwz2n9Kr21Yr8zbuatW7eWcePGKXwCrfwAmpwwzd7m7777Tity+OGHq6vvo48+qvumsai2b99eBg0aJLiTc0o3ngBFihRRd3QOBEtFyo1+ZVqloiXT654GqvHbw0A1vkahyZEbL9LQiGOgmnBTWb9yl860Mq3cFXDPaf3KtHJXwD1nbvQr4ItDtQh3BKjWrFlT3nzzTalTp45aR9esWbMbqFarVk348YMqp0mPHDlST6FmfzMW2NWrV0vFihX1fqlIppW7qsnWin7BIXfsn89ryUA1fosaqMbXKDQ5kv1yCE3FEyioaeUummllWrkr4J7T+pVp5a6Ae07rV+mtFaD67rvv6uFlWFFvueUWefrpp3XPM0CCSy+uvVhKSZGgStijU045RZYvXy5bt27Vg7+IgUxIqbwIqvlFq+bNm+uCRWRat26dHHzwwcKp4f3793fv3P/mnDJlip4wzr0vvPDCwNen+gID1fgKG6jG1yg0OewL2r2pTCvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPmRv9ClDl1Of69evrHlUveYdq4fqb1WFe7FflBwsb12BlywlLm2mV2n4FRE6aNEnatWsnhQoV0ocVKFBAHnroIXnggQekbt26CYGmB6rEfm7WrJl7JXIop4FqfKFzBVR5uXC8PZ3QS5wEyP4CXDiySp77h5cnN14e8WXNnRymhbvuppVp5a6Ae07rV6nRqnfv3tKrVy/3m1vOfKMA/aJnz56Z9bUx6N70uaEVByDhrktYqDAl08q9tRLRygNVrORFixbNfBh9hX3Hl19+uR68dfbZZ6tFnX3OK1asENzAu3btqqdEs4f59ddf1+vZv/zUU0+p9R6LajRQHTNmjAwZMkT3Qzds2FD69eune6JnzJih96IeZ511lnTr1k3DZ/E89kdPnz5d90Rfd9110qdPH+FUeJ7BMzkYjNjQlJF7E0+6atWqWhb2XkemREE1Gkf5741uBxxwgHujpXHOHAVVAobjnnHxxRfraW0EFmevwhVXXKGmfVbIaMh77703pmQGqrF7UyIvhzTumyktmmnlLq9pZVq5K+CeM0i/atOpjYx6apT7zS1nvlGgV+vW0nPkSAPVBFo8yBhM4PYJX2JxVN2lyytaeaB60UUXZVpUgdMzzjhDwxTh+tujRw8hljPJA0aA9ccff9T4zldddZXcfvvtUrBgQcFFfOzYsWoUiwaqP//8s5QrV04uu+wy/RzgxZoLXPJ3oJR7Pffcc1KvXj15++239XRpYkMDsYsXL1Z34tdee01OO+00KVOmjJarQoUKMnz4cAVYytapUyd59tlnBRdm9lFTHn8KCqrROMp/vy+++EIB+sgjj1RdKP9JJ53k3qHSMGeOgur48eNl1qxZumqxdu1aBVVM+sRaY8V827ZtukqxcuVKXdWIlgxUDVSTMY7S9Qs6GXVL9j1MK3dFTavUaDV9+XThJ7+khuUbCj9eCtSvpk8X4Se/pIYNRfj5NwXSKr9oFKOe6aqVxVF175h5RSsPVLFsApok4PG8887bA1SxrD7zzDMyevRoadGihUycOFFhEgspMIjFc+bMmeqFc/LJJ0cF1VWrVmXCJS7B7IsGRAH/2rVry4gRI/T5c+fOVSZp0KCB7qsGnl999VW14GK55VrgFlClrFhugUn+zwFhWIC98uCGzAFg2QHVaBzlvx/1uPPOO7U+5B02bJhMnTrVvUOlYc4cBVWv/rj8eqBKY/N/NtKzOnHHHXeotdXvFuzXzUDVQDUZ4yhdv6CTUbdk38O0clfUtEqNVgaq/9OVeqdkoOqulZOgeTdTbryvLI6qe3/KT1rFcv1lW2CkRRVX34cfflhPjcYiCqhyuBZWVw7W4uRntgNkBaq0wkcffaQWR9yDgcumTZvKTTfdJBzshDWWk6mxvFKGQw45RA499FBp27atWkz//vtvLdeJJ56o7r2A6T333KN7ajHIAc5YWokL7CW8R6tXr54tUI3GUf4bEm8Y6zL/ElsYMIa3wpxyHVQRjxhYdLonnnhCVyMw9ZPw9abBIxNmdy/lxos2XRvctHBvGdPKtHJXwD2n9avUaGWgaqAas2eZRdV90EXkzI33lcUGdW+u/KRVdkEVaypuuQsXLpQXXnhBwxkBq+wVjeb6i5UTiMSbEysp1lDcc7Gecl4OsAvoAr/8n/tyH7gECypuvXALFsvzzz9fQZVti/fff7/89ttvUqpUKalSpYpaZinbnDlz1Bh32GGHxQXVyB7iQa//736Dn//vlJU9tzyH8Y0lGNgOc8p1UMXdl07CqW0DBw7coxEjxTWLauzulhtfOmHt/KaVe8uZVqaVuwLuOYP0KwNVA1UDVfex5ZozyBh0vWe8fBZHNZ5C/32en7SKB6rsFwUE2aPqWS5xbcXqiUWVvZ9YQjlEiEONsJKy3xU34WjhaQiNdOWVV+oeU1LZsmXl8ccf1zNzHnzwwcyzcjiQCJddrKO4AQO0WF9JuPVieeUAKD+o8hknGAO68+bN07wY4vAYjUxB96h618cC1dNPP123V2LppbzslUWfMKdcB1X8zCdPnuwspIGqgWoyBlxufEEno9y5cQ/Tyl110yo1WhmoGqjmBqju3LlTCJfCQjqHPea1lBvvK4uj6t6LTCt3rcjJWCWuLm66rmn9+vUKmhw+5E+c5IuFtXz58ruNfd4JHFIEGLs8hwNjgWv/Scb+5yQDVIk/jMWXvbWdO3fW53Xp0kX3qhICCitvmFOugSorEpz0y2blUaN2P81xyZIlUrly5ai6GqgaqCZjwOXGF3Qyyp0b9zCt3FU3rVKjlYGqgWqqQJUxW7FiRenbt6/cdddduz3mrbfeUrc+LDdEK4hMgwcPlgMPPFAPYfHyYsnhIJPsJg6BYeLNPsVUpdx4X1kcVffWNK3ctQprzuyAqsdRRFPBPXjTpk3yww8/yKmnnqpy8G765JNPdC9tmFOugGp2BDNQNVDNTv/xrs2NL+hklDs37mFauatuWqVGKwNVA9VUgSoTu0qVKumeNqwQ/vTtt9/qfjdOFq1Ro8YeReDAkmOOOUZP1cS9jhNACWPBoSzZTbjusTUKS0mqUm68ryyOqntrmlbuWoU1Z6KgmlV9OeiJU415P8U6mDZMehmohqm14pQ1N750wiqfaeXecqaVaeWugHvOIP3KQNVANdWgesEFF6irH1aK66+/XvfBEeICV7pHHnlEdu3aJd26ddN9by+99JLuT+vfv7+wh429Z8SAB1RbtWqVeQgk13EqaaxEeL533nlH2FdGyAv26RF3kTiOflCdMWOGxm5kzNSqVUvuu+8+qV+/vsahZ+8eh06S/+abbxbqwSmlnEzKDxEVsBRfffXVexQjyBh0H9l5M6dp5TTMRkoAACAASURBVN6uplXiWkUa49zvlHdzGqjmoba1l4N7Y5pWppW7Au45rV+lRisDVQPVVIMq9ye0BdZRDmTBnQ4Q9Fx/2ZvGwY8k4iMCp4Sq4HRNTgFlnxugyqEs/P3JJ5/U+xAnPtb+VoCY8BjElCd+JAe7XHvttbodygPVb775Ri2+JIDzscce0/th7eU55G3durWGpCCGJJYUDlPp0aOHHuYCxL733nv6r+cS6Glp76vUvK/c75o3c1q/cm/XVFhU3Z8ejpwGquFoJ6dS2svBSSbNZFqZVu4KuOe0fpUarQxUDVRTDapYMoHLzz//XNgfSjxEQlREgipWUi9EXjTXXw6I5KRR7/wN9o1hdY2WPFAFMInRyLPY60p8eU4ZxfUXUGWf2bRp09TiO2jQIL0Vh70AxZx0insycSTZzwpEY6HlUBliQvL3F198MfOkVH857H2VmveV+13zZk7rV+7taqAaXysD1fgahSaHvRzcm8q0Mq3cFXDPaf0qNVoZqBqophpUgU8gFDBkPyphHXDnjQRVQlU0adJEi5PVHtX27dvL008/rcBYvHjxLEF17dq1alXFYku4C07x5HAUQBVLKfEYSR06dFCLL9ZRYiPy/I4dO2poP9x9+RvwSgxH7nfjjTdmPpcTQXEtThRUOSQqP6c1a9boYoKl6AoQEsZL9j3o3ksMVONrZaAaX6PQ5LCXg3tTmVamlbsC7jmtX6VGKwNVA9VUgypgRxzF119/XX+wrAKQkaDqP9UXUCxWrJiG2FuwYMFuhykFAdV27dqpqy+WWNyPx40bl+n6y4nDHNjE/bCQArC4FAOz7JPFRRkrK27DWGNx/eWE4k8//VTjPy5atEjGjBmj4O0BdiJAcVvX22TAowPcB7jlzDcK9Lr1VunZv7+BagItbqAaXzQD1fgahSaHTZLdm8q0Mq3cFXDPaf0qNVoZqBqopgpUGbOEp8HNF+gjccov7rQcdASoTpgwQThJE4unH1Q5JZg9oxywxD5R9qh6Flesn+xddbGo4q4LWOIizDPZS+oPT+O5BPM55cSiOm/ePAVp/wnDACvPBU4pG+BKoty4/xIP1p+CvK/adGojM2fNdB/gIc9ZskhJ4cdLLAzEioW5R1V/+02En3yS6tavLz1HjjRQTaC9DVTji2agGl+j0OQI8qUTmkqlqKCmlbuwppVp5a6Ae84g/cpA1UA1VaDqvy+utgBJkLiDXMOJwLEg5vvvv5cff/xxj+JjwR0wYIAepvTPP//oQUjElo918BKWUq6J/JxYqxz6VKZMmT3KwJ7WvfbaK2Z9bAzGfl81LN9Q+PFSEK1k+nTRn/ySGjYU4effFEir/KJRjHoaqMbvAAaq8TUKTQ57Obg3lWllWrkr4J7T+lVqtDJQNVDNCVB1773uOTngaPHixXtcgNvwiBEjMkHV/Y7JyxnkfWVj0MZgWMdg8kZM8u9koBpfUwPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVzZJTqNJMnFBOdxnxw6RRYtE3n5bZNeu3Ru+XTsR/wFCa9aIPP+8SIUKxIARKVxYZN06kXHjRNavd+800XKG2JrDwU1YSs8555zsaZDg1TYGYwtnFtUAnSrEYzBALVOS1UA1vqwGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVNMEVOvUEeHEW8CUn733zgDVzz7bveF79BD55x+Rv/7K+Pvq1SIvvyzSvbtIwYIiv/8uUqKEyE8/iYwY4d5p8hioZq/i2b/axmCIQfWUU0RY4Bg7ViSKxV4Yqw0aiOy1l8iyZSJTpmSMOxKLSLfeKjJ/vsjEidnvSAaqCWtooBpfOgPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVwaqaQKq114rctRRIkOGiOzcKXLLLRmW0cGD/2t4Duzp1k1kzhyRmTNFtmzJ+KxGjQxr6rx5IhzyU7t2xt8//dS90xioZk+riKttDIYQVMuUETnrLJHy5UUKFBCZMEHk30PAMmsDiHbqlPHfP/8UKVKE4PEir7wigkdExYoZi0wA7pgx2e9TBqoJa2igGl86A9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXBqppAqpFi4rsu6/Ihg0iTZuKYNX57juR0aP/a/hy5USuu+6//zNRfv11kWOOETn++AzAxcqzebPI5MkZ12cn2SQ5YfVsDIYQVGvVyhh7LAjhnTB+vMiCBbtXxPN8mDVL5L33RO69NwNqH3tM5PbbM8ZfoUIGqgmPnORdaKAaX0sD1fgahSZHkC+d0FQqRQU1rdyFNa1MK3cF3HMG6VcGqjkIqoccQjyTPRuScBu475L4vFo1kb//Fhk2LMOq6qVKlUQuukhk7doMV8MTThD59VeRVasyrKp//JEBp0ArsPrEE+6dJlrONAVVTvtdtmzZbvtPn332WY2VGplmz56tIWlyOtkYDCGoekW+4oqMxZ9ooArE7rdfxvg6/PCMhaOtWzNAleR5N5hFNaeH3B7PM1CN3wQGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVHMQVLGIXnPNng25caPIoEEiHTuKlCqVAaHETuTv/sTeU35WrBDZvj1jX6q3l/W880Q++EBkxgyRLl1EsND26bPnYUzu3SgjLEYahsb4888/hR9/qJsnn3xS7rjjjj1q17dvX417mtPJxmCagqrLYlFWoOpVC8tq48YZ/5s0KcPt3kA1p4dZls8zUI3fHAaq8TUKTY4gXzqhqVSKCmpauQtrWplW7gq45wzSrwxUcxBUs2pCDm/B8of7LtYYDkzCWsqhLK1biyxfLvLzzyIAKaDK/+vVy7CucuovMLZpk8jcuSKNGmX83q+fe6eJljMHQXXy5MlqJd2xY4fsv//+QgzTIkWKSOvWrQWr6IJ/XTAbNWqk8Uvp49WrV5e33npL/v77b/n999+lW7duMmrUKP0/96hZs6ZMmDBBLa9r167VmKikli1b6j2JwUqcVsLZNG/eXKZNmyZLly7VeK/kOQSoSTDZGExTUM1qsWjgwIxCxwPVZs0yvBY4nfvVV0WWLv2vsmZRTXDEJP8yA9X4mhqoxtcoNDmCfOmEplIpKqhp5S6saWVauSvgnjNIvzJQTRNQ7dBB5OCDd29kXHlfeknkxhv/O1ipfXuR0qUz8gG1fM7Jo82bixx3XMbfgVwOgoncX+fehTJy5iCojhs3TkqUKCEnnniiDB06VLp27SrPPPOMNG3aVNavXy///POPLFmyRAH2hBNOkO+++07h9Mwzz5QjjzxSHnzwQbWoDhw4UOrVqyf77bef1KhRQ7C0tm3bVl577TW5+eab5euvv5YffvhBdu7cKYcffri6BT/66KPSoUMHGTRokDRu3Fg/3759u7Ro0SKoYpn5bQymKai6tGgkqJYs+d9iEQeUMR5JuNkDqyTCQZEMVF0UzpE8BqrxZTZQja9RaHIE+dIJTaVSVFDTyl1Y08q0clfAPWeQfmWgmiag6t68GW69QC2WVWDVS/wdKyB/9ybQQe4bmTeHQbVatWpSrlw5GTFihNx66636LyAKZNapU0ctnWvWrMkEVaykl112mZQuXVpB9bbbblOr6W+//SazZs3SPavDhw+XK664Qt5//3257rrrZP78+QqiWFJ5Hj+AKp+NHDlSmjRpIps3b1arLc9MNNkYDDGoevvEvT2q7EX1Fos44ZeDziJTr14Zf6leXeTSS+0wpUQHThKvM1CNL6aBanyNQpMjyJdOaCqVooKaVu7CmlamlbsC7jmD9CsD1RCCqntXyF7ONAHVt99+WwoXLqygumXLFnXlBTaBzHfeeUf22Wcfta7eddddalHFZffXX39VC+rgwYPllFNOkcWLF6tLMJbSyy+/XGbOnLkbqN59993y8ssvy9atW/Vel1xyiVQk1EiCycZgiEE1wTZPyWU5OAZTUv5cvKmBanzxDVTjaxSaHEG+dEJTqRQV1LRyF9a0Mq3cFXDPGaRfGagaqMbsWWk0SQZQvb2r+xLG598EeOIW7P0NS+mGDRukFIdSCWdJ7dKfvffeWyEUl+CsEs8BfPnJTrIxaKCanf6TeW0ajcGk1CcHb2KgGl9sA9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXyQbV4oWLS+taraVY4WKy+a/N8vFPH8vcVXN3K3yBAgWkccXGcvyhxwu/f732a5m8ZLL+Hu3v7jWPn7Nh+YbCj5eCaCXTp4v+5Jdkk+SEWzpIv0r2GEy40Dl0oY3BAELbGAwg1u5ZDVTjS2egGl+j0OQI8qUTmkqlqKCmlbuwplXOaoXlhf1nxYoVc39wCHMG6VfJniTfdNJNctj+h8nGvzZKsX2LqbXrwRkPys5//ttLedyhx0nzo5vLXzv/koJSUArtVUgmfjdRdv2zK+rf563+N/RDEtrCJskBREzSJJlQMhx+xCm97AONFu80QKkys65YsUL7F6f2kvidPakNGzbcI86q6/3ZF3vNNdeoBTarhMtxpUqV9IeEWzEnDl9//fX6/9wcg651za18NgYDKJ+kMRjgiXkmq4Fq/KY0UI2vUWhyBPnSCU2lUlRQ08pdWNMqdVoRzmLixIk66WQiO3fuXDnjjDMUVAmBEW8i6l6y9MsZpF8lG1Q71ekkf//ztwycM1CuP+F6KVusrLz09Uuy9Lf/QjjccMINUqZYGXnmi2fkzx1/ym11bpOfN/4sBQsUjPr35758Lmki2yQ5gJRJmiT/8ssv8vrrr+vpuwMGDIga7zRAqTKzfvTRR3p6L+PaA9UnnnhCT/CNjLPqen9OCb7lllukUKFCWV7CKcXeYUxeRsC5bNmyBqpxxLYx6Nobc/bk7QClCkVWA9X4zWSgGl+j0OQIMvELTaVSVFDTyl1Y0yp1Wo0ePVrDS3D6JyEo+vTpIz179tTDVpjI4maaV1OQfpVsUPU0BVKB0R07d8hDMx/aTWoPYJ+f/7wU3buoXHbsZbJl+xb5fdvvCraRf3989uNJayqbJAeQMgaoYj3s16+feiYQLubSSy9Va+abb76phxUBcGeffbY8/vjjUrBgQSlfvrweZnTllVfKK6+8ovtHAUwOLCJEDIkQNCwsbdy4UY466iiNa0peFpa457XXXqtxT4l/SsJqilWT+zCe2aNKGQDVCy64QC2afBYZKxVgXr58ue5BvemmmzQOqz++KlZRDmEiVI2/fhzO5H82C2FcB9ASHufcc89Vay6nFBMTlnoTizWyTtHUT9UYDNDSOZrVxmAAuZO0WBTgiXkmq4Fq/KbMFVDlIAAOC/BPwjhAgMDZvDizShzRzsl3Xgoy2YkvR7hzmBbu7WdamVbuCrjnDNKvyEv8ReIuEnMRV0MgFctO/fr1dYJblFAeUdKYMWNkyJAh6qrIZJgJOZPpCy+8UCfYuC5iObn44ot1otusWTOdpBJ/8eOPP1bXP+7PAS6kGTNm6CmlADLPfPrpp3USzMS8QYMG8tRTT6l19/zzz9fTSQmfQdiN++67T959912ZOnWqPoMy8V4HwIkzyQT86quvlvvvv38P63AQrVI1Se5ct7McsO8B8o/8I/0+6Seb/tqUqXbFkhWlVc1Wu6n/x44/ZPy346P+ve+svu4dJU5OmyQHkDILUO3bt69069ZN+zzzDsLGYNkkvAx9mrEBqJIHyPMsqg8//LB0795dF5CYmxAOhsS4AzaB2ilTpmh4mnnz5umY+eSTTzS+KuOXE3lr1aolBx10UCaMRlpUGYuMX5I/VirvAcYPYAs4M+7ee++93eKrLlu2TP/PuPfXb9u2bbs9e86cOVK8eHEFcuZOnTt3lv79++t7hxOF+ftnn322R504ECoypWoMBmjpHM2anTHYu00bGebFLM3RUufSwzg4zHewF4svhE5ySYxLxlh+Saeffrp8+OGHMRkmknFi6RKNo/x5WTw74IAD8oSsOQqqvMAJZM3kaenSpRpXjIkQFgVexkxqOLq9devWMcU1UI3d74JM/PJE781GJUwrd/FMq9RoxamfvO+ee+45XXzDOsPk+IMPPlDIwwUxmuvvzz//rBNtYjMCn23atJF27dopXOI+jFsfk2besZUrV1ZIJP5imTJltCIVKlRQq8rtt9+u72MsO6RJkybpBPm0007T+zOR5rOOHTvqD2Xk/nz5tWrVSqGUBKCuWrVKPv/8cyFEB5N24Jn3OIuPlOuRRx7ZbYGR64L0q2RPki+tdqms2bJGD1Hi9+qlq+thShyW5E+lipaSeuXqycZtG/Vwo9VbVsuwucMk1t/de0rWObMzSbbDlDJOSMai6rnwAmPMP7AuMm4OPvhgwX22ffv2uiBz55136ueRrr+A3rp163SBhsTeUKCSn++//16YdPI3FnkA1mOOOUbhlGezmMO/jKVorr9+UPXHSsWiC5iymATIYg1mS4A/virWVkCVsXXHHXcobFL+KlWq7PZsxp//3n5QXbRokS6QTZ8+fbc6nXfeeRpmJzIlewwma6yk6j7ZGYO9u3eXXg/t7qGRqnLafcOlQPnjysuyL5clDKrROMqvwBdffKHvCjwoYCrmFyeddFK4RIoobY6C6vjx43WFklVAVuMBVSYwkD+BsFntPOyww3R1JZYlwUDVQDUZIy7IJDkZzwvzPUwr99YLqlWk6y+TTt6PvBOjWTUoCVDoQSeQyCQZ9z0sJ/FAlUnoG2+8oQCMxee3334TwJcJPF9sTGQBWyykTLyBXVwbgVesSdwfuMZSxeQdl0T20jKxBppfeOEFnTQz+QdsWVV/6KGHpHbt2vp3fwqiVbInyd3qd5NCBQvJrJ9nKaQeWPhAGb1gtFpXTz/ydJn540zhZOBTjzhVvlrzlexXaD+pelBVBVtStL9P+980944SJ2d2JskGqrFBlZij9G1calnQoQ/jhguoEv8UKyvxS3GFZSxGgiqWTBZ0cKXlHow7YNiLiXrggQcqmH777bdqpeQQI+Y5nvXV7/obC1QZN8AvrsSMLYD0+eef3y2+KrFUo4EqgOl/NuM7HqjiAeGvEwtk0VKyx2DSBkuKbpSdMbh69eoUlSoctwWQ+D5xSX3e7iND5w51yZon8rQ7qZ083fbphEE1Gkf5hWE+wPuMf8k7bNgwfeeFOeUoqHpC8WL0QJVVw7POOkv3hbB3A9dfgmSzIhotGagaqCZjwAWZJCfjeWG+h2nl3npBtUoEVCkNB7SwUorbLSusuPJhzQQkmRizqoq1FBj1W1TvueceBUcSnzFxBiCZWGElAlSZqOPei7UFy2mPHj2kZs2amaB677336j3Z88cXIe9tvgiZeL/44osKq4ArE27vsBesTLfddlvagOrJZU6WppWbSgEpoOVf9vsyeWH+C9KkUhOpU7aOzFkxR6YtmyZ31L1DiuxdRMv9y9ZfZMjnQ/T032h/d+8l8XNmZ5JsoJp1zFnc3QFAf5xTr0W8A8yy2hvO9Zs2bRKglMT/ORSJ7UxYP7kvn/Ov9wzuG+/go8he4d3L+7tLfFXyRj47q97mva8i6xTtGgPVALGM4w/xPJ0jyPdg7+m9pddHvfK0Hv7K9WrYS3o26JkwqEbjKP/9mQOwT51/v/zyS922AG+FOeU6qDIp4odJD4mVSVYx2QPCvhIssJHJ9qhG73JBXg5h7rTJKLtp5a6iaZU6rTxQxQKJJYP9ZvEsqrjqNWrUSHr37q3vTqykuCcyQWUVFUh89tln5bXXXtPf/aDqQWZWoHr00UfrflmgEwsNrpJ+i2o8UMVd8YEHHlCra9WqVfV33Jqpmz8F6VepmCTvVWAvPUhp1eZV8veuv2M28uEHHC5bd2xV919/ivV3994SO6eBagAV7SCXAGLtnjW3x2DCBc+BC7M1BnOgfOn8iCD9qvdHvaXXdANVrz0xxkWmevXq6XewP/kNfv6/c7ga38F4p9IOnDGB11SYU66DKqdcIiz7pdjHUaJECT0MINahSmZRjd3dgrwcwtxpk1F208pdRdMqdVrxhYJbLK6+X331lbr4AareQQnRnowFEA8UQJSECyMHwlxxxRXq1nvRRRfp3zm8hf2ugCL7WHEXjgWq3rYLLKosBGJN5TAmb88b5WHRkD2v3j2A5LFjx+5hUcUdmfsAyySssbgW4hLpT0H6VSpA1b1Vcz5ntibJ06eLWlXzSzJQTbilbQzGli5bYzDhFskbFwbpV2ZR3d1S73qYUixQZd88cwgOdmNvO4zFVoYwp1wHVQTEmoDrGJMeDjjgIJBYyUDVQDUZAy7IizQZzwvzPUwr99ZLRCvcAgFBFuz8JyXiWQLARiYsnsApB9HhDhi5F4j7cV3JkiXdCx6RExheuXKlwm2iIXLY88ceuVj3CKKVgWoAt0MD1ZhbhxIeEHn0QhuDBqqp6NpB+pVZVLMPqnzXLly4UBe9WSRmq02XLl10rypnXeBVFeaUa6DKvipO3mNvB4dwcAIdv+Oqxv4oA9Xg3SrIyyH43fPWFaaVe3uaVrmjFYt3nAwcmVgp5ZCWsKcg/cpA1UA1Zn83i2rCrwIbgwaqCXeeLC4M0q8MVBMHVY+jOI8C92C2/3DGDzHZSeyjx/CXnUXrVPSPoPfMFVCNVkh8qA899NC4Bw6YRTV2Ewd5OQTtKHktv2nl3qKmlWnlroB7ziD9ykDVQNVA1X1suea0MWig6tpXguQL0q8MVBMD1azag7BYRAfgQKVEPaKCtHeq86YNqLpW1EDVQNW1r2SVL8iLNBnPC/M9TCv31jOtUqOVgao7qPZq3VpenjTJvSHCnrNIERF+/k2JnLAbdglcy3/11VdLz56xTxzN6j42Bt3HoGt75NV8Qb4HDVSTD6p5rV8ZqOahFg3ycshD1U6oKqaVu2ymlWnlroB7ziD9yibJ7pPkXnffLb379nVvCMuZbxRgEaPnyJGZ9bUxGLvp7TClxIdFkH5lhykZqMbraQaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxU3UF16dKl7o2QB3OyjQiXN6c0Z44IP/klnXKKVGrZ0kDVob0NVB1EipElyLvdQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKm9o9fbbb8uxxx67xynB7rX7LyenAg8fPlxD4ABGjRs3DnybIP3KQNUdVAM3RB67IEi/0jA+FsrHqQfYGLQx6NRRRDR+Z4UKFZyyG6gaqMbrKAaq8RQK0edBXg4hqlZKimpauctqWuUNrYi7SnzUZJwYDKg+8cQTmSe2X3rppe4i/ZszSL+ySbL7xC9wQ+SxC4L0KwNV936VqjF4xlFnSN2ydWXN1jXy3LznovbGI4odIa1qtZKd/+yURz9+VPNg8Tz1iFOlYIGC8uPvP8pLC17SmM7JSmZRTVzJIGPQQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKne1mjx5sixbtkw4JIaYaH/99ZcUKVJEWrduLbNnz5YFCxZoARs1aiQVK1aUUaNGaZ7SpUtLs2bNBEAlTuvGjRvl8ssv13hrP/30k17TsmVLmTVrllStWlWqVKmiMa07duwob7zxhixfvlwKFiwoxx13nJQrV04mTZok++yzj7pVNm3a1EDVvVsEzmmT5MCSZV4Q6H1lFlVny1cqQHX/ffaXznU768mkG7dtlH6f9ova8OQ5YN8D5B/5RwCb8geWl9bHtZYdO3fIjl07pGihojLtf9Pk458+TrzjRFxpYzBxKYOMQQNVA9V4Pc1ANZ5CIfo8yMshRNVKSVFNK3dZTavc1WrcuHFSokQJIX7q0KFDpWvXrvLMM88oLK5fv16tCEuWLFE4rVy5sgIpnwGx27dvl23btkmTJk1k8ODBUrduXZkzZ47cfPPNQuw1Yq4BwNWrV5dq1arJY489Jtddd53Cbbt27WTKlCkKq7gMr1y5Uu9FXDbKYBZV934RNKdNkoMq9l/+QO8rA9VcBdW2J7SVQ/c7VArtVSgmqNY/sr6cedSZCqV777W3guqV1a+Uow86Wp7/6nlZs2WN1DmijqzevFoWr1+ceMcxUE2adkHGoIGqgWq8jmegGk+hEH0e5OUQomqlpKimlbusplXuagWoApFYNUeMGCG33nqr/nvmmWcqUNapU0f++OMPWbNmjcaiLly4sDRo0EA+/fRT2bBhgxQtWlT/P2zYMKlRo4YsXrxYYXT+/PkKqsRcO/roo/UZhP+65ppr5L333tM8U6dOlV27dul99tprL83HXte7777bQNW9WwTOaaAaWDKzqLpI1rChCD//piDv9mRbVCuVrCRX17xaJn43US6oeoFs2rZpD4tq4b0Ly12n3SU//PaDHLL/IVJs32IKqrfVuU1KFC4hf+/6W/YuuLes3bpWXlnwisJuspKNwcSVDNKvDFQNVOP1NAPVeAqF6PMgL4cQVSslRTWt3GU1rXJXq6xAFWgETAFV3HuByzFjxqiLbrFixXQP6XPPPaeuwsAmrr8fffSRwinWVv7/66+/yjvvvKOWWayy3bp1k5EjR+r9Nm3aJCeddJJ+BtTiosffWrRooZDM/RctWiS2R9W9j7jktEmyi0rR8wR6X5lFNdcsqnefdrf88fcfMnDOQOnZsGdUUG1Vs5WUL1Fe+s7qK+1rt88E1U51O0nxfYvLqs2rFFbLFS8nC39ZKGMXjU2845hFNWnaBRmDBqoGqvE6noFqPIVC9HmQl0OIqpWSoppW7rKaVumtFUDp7V3dd999tbAAp/c7//fyeDXZunWr7LfffpkVA1xx8eWHaz/88EO1wr766qu6R5UfrsE6u3Pnzsy87srsmTNIv0q2NSc75c6Jaw1UE1c5SL+yw5Ry5zAlXH271++ujcy+0wJSQH9ftmGZPD//+czG71qvq2BV9ef5c8efsmrLKqlYoqI8+cmT8seOP+Te0++VLdu3yOOzH0+84xioJk27IGPQQNVAZo0P2wAAIABJREFUNV7HM1CNp1CIPg/ycghRtVJSVNPKXVbTKv9phesvLsJly5aV5s2bqyU12SlIvzJQdQeKZLdT2O4XpF8ZqLr3q2SOQd4n7Dv1Ur1y9WT7zu0y4dsJwgFLpx95usz8caa+d3D3JZ1c5mTZZ6995N2l7+r/G1dqLP/b8D8F1JqH1JQFaxfI+G/HJ6272mJR4lIGGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusppWeUMri6Pq3o65ndMmyYm3QKD3lbn+5prrr7+Fcf1lf+lTnz4lTSo1kTpl68icFXNkytIpmdlw9/X2qO5VYC91BS5VtJR+zkFLQ+YOkQ1/bki840RcaWMwcSmDjEEDVQPVeD3NQDWeQiH6PMjLIUTVSklRTSt3WU2rvKGVxVF1b8fczmmT5MRbIND7ykA1LUA10dYuWaSkhqZZuXllUmOoUh4bg4m2ikiQMWigaqAar6cZqMZTKESfB3k5hKhaKSmqaeUuq2mVu1pZHFWRZLodurdm7uW0SXLi2gd6XxmohhpUE+8l8a+0MRhfo1g5goxBA1UD1Xg9zUA1nkIh+jzIyyFE1UpJUU0rd1mTqdXnn3+usTo5ZfbUU0+V7t27S/369eWBBx6QiRMn6om0nFDLabJHHnmkPP3003qibKlSpeTPP/+U4sWLS6VKleTll1+Wxo0byyuvvKIxPgmrcswxx8iMGTM0dAplrlWrltx33316f+7BfTkoiDig119/vYZbIWRLlSpV5MUXX5TDDz9cryfe6PTp06Vhw4b6+0EHHeQsVjK18h5qcVQNVFPRr5w7dcgyBtLKQNVANUb/NlBNfOAHGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusiZLK0KcEIeT1KdPH3nooYdk27ZtsnDhQmnXrp2GUeF0Wk6jPeSQQzSuJ6fPVq1aVZYsWSIHHHCAXrNs2TJ58skn9fMzzjhDBg0apNcPGTJEIZZ01113KRDvvffe8u2330rlypUVXm+44QaZMmWKrFixQq+vXr26hlnp2rWrQjPPOO2006RJkyYKucAwUO2akqWV/3kWR9VANRX9yrVPhy1fIK0MVA1UDVSTPsSDjEEDVQPVeB3QQDWeQiH6PMjLIUTVSklRTSt3WZOplQedWDnPPPNMad26tVpOsXBmBaqrV69WuCQ2aOfOnRVUly9frtceccQRUrJkSfnqq6/UWjpt2jRZt26dAiwJSyxWV0K4zJ8/X6/lHuTFCnvggQdq/FHglLii/FBOYonyTOKGArAuKZla+S2qQHW5cuVkxIgRcuutt+q/6GdxVF1aJXx5zJqTeJsFGoMGqgaqBqqJD7YYVwYZgwaqBqrxOqCBajyFQvR5kJdDiKqVkqKaVu6yJlOrn376Sd1tsRJ6VtI1a9ZIp06d5JlnnpHff/9d3XsB0hNPPDHTosrfPvvsMy20B6obN27UfEBl4cKF1W0XN15Shw4dZOrUqTJr1qxMUC1durTCKe68HTt2lHnz5qmlFQht27atVKxYUbp16yYtWrTYbfKGKzGQ65KSqZXL88hjcVRdlQpPPgPVxNsq0Bg0UDVQNVBNfLAlA1Q/6i29pvdKehnS9Ya9GvaSng16ZhYv8n3FNibmHJb+U8BANQ/1hkBf0Hmo3olUxbRyVy1ZWgGhWAXPOecc6d27t7rxssd00aJF8sYbbygk9ujRQzZs2CADBw7UPaKe6y8WUyAzK1B99dVX1ULavn17uemmm6RevXqyefNm+eOPP9TFNx6oYknF1RdQ5frHH39cXYcnTJjgLFaytHJ+YIoyWhzVFAnreFsDVUehomQLNAZTDaqXXSbC4tmOHSKLFom8/bbIrl27l7pCBZFLLhEpXFhk3TqRceNE1q8XOeEEkdNPF8GbY9UqkVGjRHbuTFwYrmzYMOPn3xREKzvQzD3mbPYaKfxXB+lXZlE1i2q8Hm+gGk+hEH0e5OUQomqlpKimlbusydSqf//+Cqi//PKLWjKBykceeUSWLl2qe0P5O26uP//8s9SuXVvef/99tZi6gCpuveeff7689dZbeu+aNWuqRRXLKYcpeaDKXlYsrvwdCyzWUiyqw4cP10OZcA32ygdAsw/WNSVTK9dnhjVfEK1skmyTZNd+HqRfSSpBtU4dkSZNMsCUn733zgDVfz1DtD4FC4p0757x7++/i5QoIfLTTyKvvCKCVeWff9i7ILLffiLffScyerSrDNHzGag662eLRc5S7ZExyBjsbRbV3bwazKK6Z78zUE18LKbdlUFeDmlX+BwukGnlLniyteJQJVyAy5Ytqyfveom/r1+/Xk/4LcjELcG0atUqhVKsoYmknTt3avnY+xr0HsnWKpHyh+WaIFoZqBqouvbrIP0qpaB67bUiRx0lMmRIhiX0llsyLKaDB/9XlRo1Mqyp8+aJvPWWSO3aGZ9hXQUq8SJ5990MmAVaH3rIVQYD1ewpZXFUs6FfkDFoFlWzqMbragaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxUDVRde1aQfpVSUC1aVGTffUU2bBBp2lTklFP2tIo2ayZy/PEZIMui3ebNIpMnixxyiAieHADse++JdOkiUqCASO/eGcCaaDKLqrNyZlF1lmqPjEHGoFlUDVTj9TQD1XgKhejzIC+HEFUrJUU1rdxlNa1MK3cF3HMG6VcGqgaqrj0rSL/KNqgClJdfvmfRfvtN5OWXM/7O59Wqifz9t8iwYRlWVS9hTcWq+scfGRALtAKr/fuLdOuW4RIMmAKppAceyLhPoslA1Vk5A1VnqbIHqtN7S6+P7DAlT0Rz/d2z36UNqHLoCXvFCngv5BhjJLIRA30pJT7uQnGlaeHeTKaVaeWugHvOIP2KA6XYF5tf099//+3sWv3X33/JXzv/yjdSXdzyYhnZb2RmfYP0q3wjUoyKBtIqu3tUy5UTueaaPUuycaMI4bE6dhQpVSpj/+nIkSL83Z9w9T3vPJEPPhCZMSPDcooltk8fkX32EalXL+PfWrUyLK6AanaSgaqzegaqzlJlD1Rtj2pCe1S9mPOxmAmmcg2rl3hL58yVuQ6qnPB5ww03qKDEPuTQE2IrxkoGqrE7RqAv6JzpX2n7FNPKvWlMq9Ro1aZTGxn11Cj3m1vOfKNA13u7ysP3P2ygmkCLB3pfZRdUsyrfOeeInHpqhlvv4sUZltFffxWZP1+EOc7y5SLvvJMBp5s2icydK9KoUcbvnPzbpo3ImjUZ1+IGzO9DhyagiO8SA1Vn/QxUnaXKHqiaRTUQqHLQ49dffy0XX3yxHkLJeRz+9MUXX2hceGLM//jjjxqf/qSTTkq8MdPgylwH1VGjRmnQ+tdee01mz54tbdq0ke9wgYmRDFQNVJMxbgJNZpLxwBDfw7Ryb7wgWo39dKx88nNGyJ38kOoeUVfqlq2bWVUOrCJckaXoCnDYmJeC9Kv8rmcgrVIJqh06iBx88O7NgYvvSy+J3HjjfwcrNW8uctxxGfmAWcJhLVgg0ratyBFHZPx9+3aRAQMImpy95jVQddbPQNVZqj0yBhmDtkc12B7V8ePHazSDfv36ydq1a/cAVcL/3XnnnRoGkLzErSemfJhTroPq6tWr5bjjjtMQEB9//LHcfvvt0rlz55iaGqgaqCZjwAV5kSbjeWG+RzprxSLXscceq6uH2U2cOowrLu8iViqJqRo0BdHK9l3avkvX/hWkX7neM6/mC6RVKkE1iMC4+7LfdcWKjJirXipWTGT//TPiqCYjGag6q2ig6ixV9kDVLKqBLKqe2Lj8RgNVohVg9OPfL7/8Upo0aaL5wpxyHVQh/VatWsmNN94oc+bMkX322Ucmc+qdiIIrKweR6W7ii/2bAn0phbmlHMpuWjiIZP3GXaQQaIUnxgknnCCVKlUKXK/ICwDVJ554Qs4991xZtGiRbkMImoKMQQNVA1XX/hWkX7neM6/mC6RVuoBqTjWGgaqz0gaqzlJlD1Rtj+oeoBopaL169TTOvD/FAtVixYqpV+phhx0mvAsbNGigcenDnHIdVHH1PfroowX4ZPMvIkdbJfBENotq7O4W6As6zL02CWU3rdxFTIVWLEYtW7ZMduzYoYeo/fXXX1KkSBHdn85q4AJc34QtW42kYsWKwhYB8rAfo1mzZrpVgMMENm7cKJdffrksXLhQY5+SWrZsqQtcVatWlSpVqsigQYOkY8eO8sYbb8jy5cs1RiteHLidTpo0SRfHWH1s2rSpgap7twic0yZ+gSXLvCAVYzDx0qT3lYG0MlDdbZKcVcvawpotrLmO/CBj0OKoBnP99dogFqiefvrp6hZ84oknyty5c6VPnz4yceJE16ZLy3y5DqqPP/64Uv/gwYN14+8pp5wiK1eujHkapIGqgWoyRlKQF2kynhfme6RCq3HjxkmJEiX0ZTp06FDp2rWrPPPMMwqL69evF6ybS5YsUTitXLmyAimfAbHbt2+Xbdu2qUsL7426deuqN8bNN9+shwz88MMPCsDVq1eXatWqyWOPPaaHCwC37dq1kylTpiis4jLMu4Z7ffLJJ1oGs6imrqcaqCaubSrGYOKlSe8rA2lloGqgGqM72/sq8XEeZAzaHtXsg+off/yhi/W1a9fWrZMHHXSQdOnSRfeqYgi4//77E2/MNLgy10EV6+kFF1wg7FX9P3vnAR5Vtf3tFToBQhGkCxfpivxBkCqgIF1BqSoqAiqocOkIIk1ERaWIUq4UrwgoRRQRFBsdQZAmSJEPKQKiUkIvCd+zNndiEpKc3z6ZM8lMfuc+eeRm1tlzzrvX2TNvdtNjyJAhZhXgxA6KKkXVH8+NTUPqj/cL5jK8YKWiqhKpvZrTp0+XHj16mP/Wr1/fCGX16tVFG99jx45JgQIFJEuWLGYIyw8//CC6Unh4eLj5/7pQQIUKFWTXrl1GRrdu3WpEVbc+0ZEa+h7aZjz++OPy9ddfmxidbhAdHW3KSZ8+vYnTua46qiMURPWRCo9IidwlZOTKxLeyKBpRVB6r+JhEXYuS11e/btKzZdmWclu+28wWYXtP7JWPf/7Yr2nLL37ucXrxDLq/mtR9phUriipFlaLq9wfa5hmkqLoXVV0BOF++fOYP9Do8ODIy0nz/qamrjYtIrly5zB/h8+TJ4/c6DmSBKS6qvps9cuSIAZ4xY8Yk75+iSlH1xwNi05D64/2CuQwvWCUlqiqNKqYqqjq8V+Xyo48+MkN0dWqAziHVJdd1qLDKpg79XbFihZFT7W3V///333/Ll19+aXpmtVd20KBBMmPGDFOeNua6XLu+po26ipn+7pFHHjGSHKxzVCsXrCzVCleT/Nnzm3QbtjzxTdT71OgjOTLnkGtyTXToVcX8FeXBcg8aJvq/dGHpZNm+ZbL20Fq/pS5F1T1KL55B91eTus+0YkVRpahSVP3+QNs8gxRVd6KaVKXpdyF1Kp3SlNg+q36vdA8LTDWiit4jRZWiiuZKUnE2Dak/3i+Yy0gJViqUvrmrmTNnNvhUOH3/1v/vi/GxPXfunGTLli0GtTbWOsRXf/Tc77//3vTCfvzxx2aOqv7oOdo7GxUVFRObnLqyYeXvOV/aI1o2b1nJnCGzhElYoqJ6d7G7pf6/6suVqCuSIX0GI6pPVnpSiuUsJnN3zJXzV85Lx//rKMfOHpPJG5O5b2MsmBRV95llk1fu3yU0zrRiRVGlqFJU/f7g2zyDFFX/i6rfKzSFC6SopnAF+PPtbRoHf75vMJZFVnithQorHfqrQ4R1f8qWLVt68pdGG1b+FlVfjfat2VeyZ8qeoKhmyZBF+tXqJ/tO7DM9rxGZI4yo/rvavyV31tzy5to35eLVizK4zmA5e/ms+f/+Oiiq7kna5JX7dwmNM61YUVQpqhRVvz/4Ns8gF1OiqDolIEXViVAQvW7TOATRbXlyqWSFY03NrLiP6o31mJSoPnbHY1I8d3EZvWa0PFv12RhR7V2jt/m3zmu9Gn1VhtUbJheuXJDX11yfv+qPg6LqnmJqfgbd35U3Z1qxoqhSVCmqfn8QbZ5BiipF1SkBKapOhILodZvGIYhuy5NLJSsca2pmxX1U7UT1hdoviPaq6jxUHR6shwpp5KVI08M6ZeMUOX/1vPSq3ktOXjwp438YjyeKQyRF1T3K1PwMur8rb860YkVRpahSVP3+INo8gxRViqpTAlJUnQgF0es2jUMQ3ZYnl0pWOFYvWHEfVZFADf2tUqiK1ClWR1YdWGWGO2vPqR53Fb5LMqXPJF/9+pVZWKlm0Zry5/k/TY9qwewFZfOxzfLZrs/wRKGo+o1V/IK8eAY9u9gULtiKFUWVokpR9fsTa/MMUlQpqk4JSFF1IhREr9s0DkF0W55cKlnhWL1gxX1UAyeqjUs2lupFqsv6w+tl6a9LYyq+V41eMUN/VVi7V+suOTLlMK/rgkrvbHjH/NdfB3tU3ZP04hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdR9U5U8Zq9MTJftnxmSPDxc8eTU0yC51JU3SP14hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdRTZ2iimeFfSRF1Z6Z7wwvnkH3V5O6z7RiRVGlqFJU/f5A2zyDFFWKqlMCUlSdCAXR6zaNQxDdlieXSlY41pRgxX1U8foJlkiKqvuaSoln0P3VpuyZVqwoqhRViqrfH1ibZ5CiSlF1SkCKqhOhIHrdpnEIotvy5FLJCscaKqzSyj6qeM0GNpKi6p53qDyD7gngZ1qxoqhSVCmq+MMFRto8gxRViqpTWlFUnQgF0es2jUMQ3ZYnl0pWOFay8oaVV6v+4lcb2EiKqnvefAZxdlasKKoUVYoq/nCBkTbPIEWVouqUVhRVJ0JB9LpN4xBEt+XJpZIVjpWsvGFFUY37AY1TTnuRfAbxOrdhNaxjR/ltyxa88GCPLFBARH/+d5w5c0Zy5Li+0rfTcezsMdGftHJUKldJZoydEXO7NnmVVhgldp82rCiqFFWn54Wi6kQoiF63aRyC6LY8uVSywrGSlTesKKoUVTSz+AyipERsWA3r1k2GT56MF87INEOga9+uMumNSRRVFzVu8wxSVCmqTilGUXUiFESv2zQOQXRbnlwqWeFYbVhNnz4dLzgEI//880/Jly8fdGe7/94tu/7aBcWGQlDZvGXl9X6v84ufi8q0eQZdFB9Sp9iw+u9//xtS9257MzbtlW3ZoRD/xBNPsL1yUZE2zyBFlaLqlGIUVSdCQfS6TeMQRLflyaWSFY7VhlXXfl1lyptT8MIZmWYIdOzZkUPpXNa2zTPo8i1C5jSywquSrMgKJ4BH2uQVRZWi6pRZFFUnQkH0uk3jEES35cmlkhWO1YbVk72elK27t+KFB3lkgewFpGCOgjF3YTPnK8hv3fryb7nlFhk6dCh7KKzJ2Q1ndVF8SJ1i016F1I27uBmywqGRlTesKKoUVafMoqg6EQqi19mQ4pVFVt6w4rxLzrtEM4vPIEqKooqTIiuysiGAx7K98oYVRZWi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rIavGC7Dlg/DCw/yyGH1hsnQuomPLHr99ddlwIABQX6X/r18iqp/eaZoaWxIcfxk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVuxRZY+qU2ZRVJ0IBdHrbEjxyiIrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96wYo8qRdUpsyiqToSC6HU2pHhlkZU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1ixR5Wi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rNijSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW7FGlqDplVqoR1XPnzkl0dLTkyJEjyWuOvyIWG49/cJGFU7qTFU7IHSuKKkUVzTG2VygpyhdOiqzIyoYAHsv2yhtW7FG1F1V1pQsXLki2bNkSrZTIyEiJiIiI87qep67l5Fl4TQcmMsVF9eLFi9K5c2c5ffq0pEuXTipVqiTDhw9P9O4pqoknBhtS/KEhK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesGKPqp2ozpgxQ8aNGyeFCxeWq1evyqxZsyRfvnwxlfPFF1+IxmTNmlUOHDgg48ePN171/vvvy6JFiyR79uyiEqsxuXPnxis1BSNTXFQV3oYNG2TixIly7do1WbhwobRo0ULSp0+fIBaKKkXVH88LP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFXtUcVFVMc2YMaOcOnVKcubMKT169JCCBQvKwIEDYyqnaNGiMn/+fKlWrZqR0Xnz5smSJUskf/788s0330iFChWkcePGpoOwTZs2eKWmYGSKi+qQIUNk48aNsmnTJilSpIiMHDlSmjRpwh5VF0nBhhSHRlbesKKoUlTRzOIziJJiLyFOiqzIyoYAHsv2yhtWFFVcVPfv3y8NGjSQffv2mcqYMGGCbNmyRaZNmxZTOXXq1JFXX31VatWqJaNHj5YpU6aYeB2pOnv2bLntttvkxx9/lK1bt0qePHnwSk3ByBQX1SeffFJWrlxpjH/z5s3Sr18/OXjwoISFhbFH1TIx2JDiwMjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKq4qG7bts30gu7evdtUxsyZM2XFihUyderUmMrR3/Xt21eaNm0qCxYskLJly5pRq7Vr1zZzVitWrCjvvvuuLFu2TKpXr45XagpGprio9u7dWzJnzmz+AqCHdk+vWbNGSpYsKatXrzb/jn8MGDAg5ldsPP6hQxb4k0RW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVG9UVTjk1bJ1B5SXUApPDzcLDyrnXljx441ob169Ypziva8qjvpUOFVq1aZocGlSpWS8+fPm7mr2ruq6wKNGTMGr9QUjExxUVX7f++998zY6cOHD0uNGjXkyJEjnKPqIinYkOLQyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqniPqtaA9ojqmj4617RRo0ZGOlVkd+zYIVWrVpV27dqZn5YtW0qnTp1EhwK3b99eChQoINu3b5dixYrJ008/bRZY6tatG16pKRiZ4qJ66dIlMyFYh/7qXwoUukJN7OBiSolnCxtS/EkiK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo2omqrtzboUMHUxnNmjUz805VQFVWdTXfpUuXSs+ePc3rt956q1npN0OGDGb135deesmsEFy8eHH56KOP4qwWjNdu4CNTXFR9t3zy5Ekzfjqx1X59cRRViqo/HhN+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ55Q0riqqdqGot6BBeHbqrK/4mdOiQ3+PHj0uhQoXivHz58mU5ceKE6V0NpiPViCoKjaJKUUVzJak4fujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeeUNK4qqvajiNREakRTV0KhHcxdsSPHKJCtvWFFUKapoZvEZREmxbcdJkRVZ2RDAY9leecNq+PLhMmzFMLzwII8cVm+YDK07NOYu4udV/M64IL9dv1w+RdUvGFNHIWxI8XogK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKoskfVKbMoqk6Eguh1NqR4ZZGVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVQpqk6ZRVF1IhREr7MhxSuLrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w4qiSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hTVxY8slgb/aiBZXsliLjY8Y7is7rRabst3m1y6eklGrBwhb65984Yb+bj1x9K8dHM5f+W8zN85X55f8rxEXYuSpyo/JaPvGy3ZMmaTvSf2Ss1pNeX0pdM4iAQiOUfVHh9F1Z5Zqj2DDSleNWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hDVzpU6S49qPeSO/HeYiwwbHmb++1n7z+SBMg8YAVVp1aPo2KJyOPJwzM30rN5TxjYaK1ejr5qfLBmySPel3WXm1plycsBJCQsLk3OXz0m2TNlkxYEVUu/9ejgIimqyWPlOpqj6BWPqKIQNKV4PZOUNK4oqRRXNLD6DKCnKF06KrMjKhgAey/bKG1b+ENUZLWZIy7ItJWfmnEYsfaIa+UKkZM+UXSJei5C3Gr4lT9/5tLy+5nV54ZsXYm7muye+k3uK3yMVJlWQy1GXZffzu+WXv36R6Zunyxv3vSFzd8yVxxc+LmcHnZXoa9GSeWRmHARFNVmsKKp+wZe6CmFDitcHWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhpU/RNV3ZUf7HJUC2QvEiGrUkCi5cOWCZH81u3St0lUmNZskC3ctlIc+fijmZvKG55UcmXLI/lP7ZXzj8aZn9vM9n8vxc8dFe2oHfjtQXlv9mvzd/2/JkzVPTNk4jbiRHPprT449qvbMUu0ZbEjxqiErb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96w8lJUo4dEy6lLpyTP63nk4dsfltmtZstX+76Sxh82vuFm5redL63KtTJzWSv/p7K8VOclaX97ezNf9d0f3xWfBGcYkcHMX3V7UFTtyVFU7Zml2jPYkOJVQ1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGHlpaheGnxJwiRMMo3MJEPqDpHh9YabIb2dF3WOuZl0Yenkl+d+kdI3lZbtfKxmAAAgAElEQVQDpw9InRl15ODpg2YRpX41+8nYH8ZK7696y7lB58z81fQj0uMgEoikqNrjo6jaM0u1Z7AhxauGrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w8pLUd3WbZtUuLmCGe5br3g9yZ0ltzT6sJGUyF1CBtcZLK+sfMX8u2/NvmZ+6qe7PpVrck32/L1HFv6yUH565ic5e/msLN6z2PSu6vDgEuNL4CAoqsli5TuZouoXjKmjEDakeD2QlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWHkpqlUKVZE1ndZIpvSZzMWvObRGak+vLeMaj5N/V/u3vL3+bbnv1vukXN5ycW7ur/N/Sb438smSR5dIk5JNzGu6InDDmQ3l+9++x0FQVJPFiqLqF3ypqxA2pHh9kJU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1j5U1QTukId2lutcDUznPf3M7/jN/G/yHzh+cyw4B8O/5Csuam+N+bQX+sqEPao2jNLtWewIcWrhqy8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecPKa1HFrzowkRRVe84UVXtmqfYMNqR41ZCVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVTjfmd4/fXXZcCAATjsNBBJUQ2hSmZDilcmWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZqUqUT1x4oRky5ZNMmfOnOh1x99jiI3HP6jIwindyQon5I4VRZWiiuYY2yuUFOULJ0VWZGVDAI9le+UNK4qqvahGR0fLhQsXjC8ldkRGRkpERMQNL1+9elVOnjwp+fLlwys0hSNTjageOHBAKlSoIF9++aXUrFmTouoiMdiQ4tDIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rCiqdqI6Y8YMGTdunBQuXFhUOmfNmhVHOr/44gvRmKxZs4p61fjx46VSpUoxldenTx/Zvn27LFu2DK/QFI5MFaJ6+fJladu2rezfv18mTZpEUXWZFGxIcXBk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRVXFRVTDNmzCinTp2SnDlzSo8ePaRgwYIycODAmMopWrSozJ8/X6pVq2aEdd68ebJkyRLz+qJFi2Ty5MlGcCmqeD6byN69e0v9+vVlwoQJMmTIEIqqJT9fOBtSHBxZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUUVF1XtzGvQoIHs27fPVIY605YtW2TatGkxlVOnTh159dVXpVatWjJ69GiZMmWKidf87dq1qwwePFhGjhxJUcXTWWTBggXy2WefyQcffCCNGzemqNrAixfLhhSHR1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGFFUcVFddu2bdKmTRvZvXu3qYyZM2fKihUrZOrUqTGVo7/r27evNG3a1PhV2bJlZeXKlXLPPfcYodXe2GHDhlFU8XQWqVGjhhw/flxuuukm+fHHH6V06dJmzHWVKlVk9erVsmbNmhuKGzBgQMzv2Hj8g4cs8MwjK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo3iiq8UnXrl3b9JDqAkrh4eGiiymFhYXJ2LFjTWivXr3inKI9r+pOOsR31apV0q5dO2nUqJFUrVpVTp8+LXv27JGnn37a9LYGw5Hic1QPHTokFy9eNKw6d+4szz77rDzwwAOmMhI6uOpv4mnFhhR/5MjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKp4j6rWQMWKFWXixIlm8VmVz+HDh4uK7I4dO4yIqpTqT8uWLaVTp06iQ4Hbt28vv//+u6lAHSo8ZswYM3e1SJEieKWmYGSKi2rse2/evLkMGjSIc1RdJgQbUhwcWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVF1U5UdUGkDh06mMpo1qyZzJ4926ziq7KqW9IsXbpUevbsaV6/9dZbzQJKGTJkiKm8DRs2mHmqXEwJz2frSPaoJo6MDSmeTmTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFFU7UdVaOH/+vBnCqyv+JnTokF+dUlmoUCG80lJxZKrqUUU4UVQpqkieOMXwQ8eJ0D+v27CiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UcVrIjQiKaqhUY/mLtiQ4pVJVt6woqhSVNHM4jOIkmLbjpMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZlFUnQgF0etsSPHKIitvWFFUKapoZvEZRElRvnBSZEVWNgTwWLZX3rCiqFJUnTKLoupEKIheZ0OKVxZZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUWVouqUWRRVJ0JB9DobUryyyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqhRVp8yiqDoRCqLX2ZDilUVW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVGlqDpllpWoXrt2zZQXFhbmVK5nr7/++usyYMCAmPLZePyDmizwtCMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqhSVJ0yy1FUDxw4IB9++KGsW7dOVq5cacq79957pXbt2nLfffdJxYoVnd7Dr69TVBPHyYYUTzWy8oYVRZWiimYWn0GUFOULJ0VWZGVDAI9le+UNK4oqRdUpsxIV1atXr8qoUaNk6NChpozKlStL4cKFRX+/adMmOX78uPl9x44dZfz48RIREeH0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKgePXpUGjRoIN26dZNWrVpJwYIF45R15swZ+f7772X06NHy8ssvyz333OP0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKhGR0eLzknVn9atW0u9evWkZ8+eCZZ3+fJlyZQpk9N7+eV1iipF1R+JxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq+8YUVRpag6ZZbjHFUtoHnz5mZ+6qFDhyRnzpxOZXr6OkWVouqPBOOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElUd1rt8+XJTVokSJWLK3LZtm2TLls3pPfz6OkWVouqPhOKHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElXtUf37779vKOvbb7+V8PBwp/fw6+sUVYqqPxKKHzo4RRtWFFWKKppZNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqJKUXXKLEhUfYVERkbKpUuXJF++fE7levY6RZWi6o/k4ocOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKoUlSdMgsSVX1AX3jhBZk3b54pT/dPHTx4sNSpU8epfL+/TlGlqPojqfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqhRVp8yCRLVt27ZGUvW/2bNnjxHWY8eOceivE+EAvs6GFIdNVt6woqhSVNHM4jOIkhIhK7LCCeCRzCuywgngkTZ5RVGlqDpllqOonjx5UvLkySMjR46UF1980ZS3cOFCeeihh+Snn36SSpUqOb0H9Lq+T0REhKRPnz7JePaoskcVSiiHIJuG1B/vF8xl2LCiqFJU0Vy3ySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UdXtQy9cuJDkYranT5++YZcW5Dy8lgMX6SiqV69elYwZM8pjjz0mU6dONSL52muvmaG/e/bskVKlSiXrag8ePCjt2rUz814zZMgglStXNmUndqRGUT1//ry59kDtJZsYGzakeCqSlTesKKoUVTSz+AyipNijipMiK7KyIYDHsr3yhhVF1U5UZ8yYIePGjZPChQuL+tmsWbPirBu0YcMGGTVqlOTKlUuOHz8uw4cPl6pVq4rTeXjtBj7SUVT1kjp37izTp083V5cjRw45c+aMGQb88ccfJ/uKtaf2ypUrBubFixcla9as8vvvv0uhQoUSLDsQovqf//xHnnnmmZj31y15VKZ1nq72+sY+fD3OPXr0kPHjxyebR3IKYEOK0yMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqjiourrODx16pTpLVXvKFiwoAwcODCmcp588km56667pFu3bqK+dPjwYRk7dqzpcEzqPLx2Ax8Jiap2MX/66adGTLU7uX379kZUc+fOnewr1rLDwsIkS5Ys8tlnn0nv3r3l119/Nb9L6AiEqE6ZMkW6du0qLVq0kFtvvVW+/PJL2blzp5HpIUOGxLksvf4RI0ZIjRo15IEHHkg2j+QUwIYUp0dW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVHFRXX//v3SoEED2bdvn6mMCRMmyJYtW2TatGkxlfPdd99Jy5Ytjb+oUy1btkzy58/veB5eu4GPhET18ccfly5dusSs8quGrkOBP/roIwMgucfly5fl1VdflbfeessI8b333ptokYEU1UWLFsn9999vFrJQYX3wwQfl2WeflUGDBpl/f/jhhzJnzhzDRsW9b9++smbNGunVq5f8+OOPUrp0aXnppZekQ4cO8s0338Q5T8vWMv15sCHFaZKVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVRxUd22bZu0adNGdu/ebSpj5syZsmLFCjMt03cMGzbMLHiro0B1WPDTTz9tdmpxOg+v3cBHJimq77//vjF2XTSpSJEicvPNN5sr1HHPKqt///23WWgpOYcO91XJ0/md+l7aje07Vq9ebcQv/jFgwICYX3nRePh6VN988025++67jTyrSPfv31+qVKlirleP6tWrm3Hf5cqVM13wY8aMiRmy/Pzzz8v8+fNFE0tZrV27Ns55n3zySZx7TQ5D37lesPDHdaXGMsgKrxUbVv4U1UcqPCIlcpeQkStHmovNmD6jdKrUSW4Ov1muXrsqK35bIWsPrb3hRtqUbyOlbyotV6KvyM4/d8qSvUsk+lq0VCtSTWoUqSHZMmaTQ5GHZOEvC+XM5TM4iAQi6xWvJ/rDZ9Aeo01e2ZceWmeQFV6fZEVWOAE8knnlDSuK6o2iGp907dq1pVatWmYBpfDwcNFFkXTUqQ7p1UM7x3yHdh7qgrc1a9YU7V3t3r27bNy40fE8vHYDH5mkqH7wwQdm3mV8UdXL1O5n7d1M7qHzQRcvXizaw4gcgexRjX09OhlZ5XLdunVGOHVBKRXm2HNUdSXkevXqyeTJk80cV5VsTbC3335bChQoEOc85F5tY9iQ4sTIyhtW/hDVygUrS7XC1SR/9uujNYYtH2b++/DtD0uZvGXkStQVI616jFk3RiIvRcbcTPUi1aVxycZGTPUnQ7oMRlS3/7Fd+tfuL9euXZMzl85Iziw55efjP8v8nfNxEAlEUlTd4+MziLMjK7LCCeCRzCuywgngkTZ5RVHFe1S1BipWrCgTJ06UChUqSKNGjcyURPWMHTt2mEWTmjZtKjoKVqdoao+qDv+dO3duguc1bNgQr9QUjISG/uq8TB3vfOedd/r9UnXir/bcxj6SWk04kKKqQ5FVPG+55RbJmzevuUTffrJLly6Vxo0bxxFVlXedp6rd8Trcd/PmzWYV45dfflnKlCljRNV3nt9BCoc82TC1aUhtyg3FWBtW/hDVlmVbStm8ZSVzhswSJmExojrw7oGSKX0meXXVq9Lo1kZyZ6E7ZfXB1fLN//smBvsT//eE/CvXv2TijxMl6lqUdL+ru/x5/k9Zvn+5tLmtjew4vkPm/zJfhtQdImcvnZW31r2VrCqjqLrHZ5NX7t8lNM4kK7weyYqscAJ4JPPKG1YUVTtR1U499Qs9mjVrJrNnz5bt27cbWY2MjJTly5ebqZna86q7kbz33numdzWh8xJbCwiv6cBEQqKqW8joqlI61lmXRB46dKiZe1m2bNnAXGWsdwmkqPrmqMa+SZ+ofvXVV6J/jYjdo6q9rNrtrlv2qNzrsGD9a4b+pUN/VFR953kBjg0pTpWsvGHlD1H1XVnfmn0le6bsMaI6tO5QM5x31KpRUqVQFWleurn88tcv8vHP/6w+Hp4xXDKnzywnL56UJiWbmOG+u//eLfN2zJM+NftIlgxZ5HLUZRPz7f5vZdWBVTiIBCIpqu7x8RnE2ZEVWeEE8EjmFVnhBPBIm7yiqNqJqtaCbompC9vGnioZu3Z05JhOOSxatGicSnM6D6/hwEZCoqorSKlwrVq1yoApWbKkma+qAps5c+aAXnEgRNW3Pc3nn38uzZs3j3N/iYlqz549zXhx7R3WXmLf0a9fPxk9enRMTyxFNaDpkuib2TSkqeOKU+4qbFh5Kqr1hsrFqxfl9dWvS4WbK0ir8q3k1xO/yofbPrwBTtvb2kr5fOXlavRVmbJpiumJ7VKpi4m7cPWCqNAeOH1AZmyekSywFFX3+Gzyyv27hMaZZIXXI1mRFU4Aj2ReecOKomovqnhNpJ7IqKgoWb9+faIXlC5dOrPuT0KHo6j69u3RHlTdhkUPHb6q46B17mqlSpUCSiIQoprcG9IFog4cOGAWVtJ9ZwN1sCHFSZOVN6y8FNWX6rwkEiby8oqXpW7xunJP8Xtk89HN8tnuz2JuRoeyPF/1ebkp/CY5dfGUzNgyQ05fPC2tyrWSCvkriO/6Bt09yMxz1Q/J5BwUVff0+Azi7MiKrHACeCTziqxwAnikTV5RVNOGqOqwZN37NalDe4JdiaqeFBERYd5Ae1WzZctmhgHrqlK636m/t1hxehSCQVSd7sGr120aB6+uIVjKJSu8pmxYeSmq3ap2k/zZ8pvhvsVzFZesGbLKzG0zJXeW3FKnWB0zjDd31txSs2hNiYqOkl1/7ZJrck3+vvC3nLt8TpqWaip/nf9LthzbIvVL1I/pncVJ3BhJUXVPzyav3L9LaJxJVng9khVZ4QTwSOaVN6woqmlDVC9duiS6k4oeOixZF53t2LGjGaGr23fq3Npkiapuu9KnT584WaqTdXVV4EAfFNXEibMhxbORrLxh5aWoFspRSDpX6izp06U3F3/w9EGZvnm6WeVXV/tdf3i9lMhTQvKF54tzc+evnJc31r4hXat0lZuz3WwWaLp09ZIs3rvYrAacnIOi6p4en0GcHVmRFU4Aj2RekRVOAI+0ySuKatoQ1djZ41toVuW0bt26MnLkSLPuUbJEVd/g6NGjsmTJEvn999/Nare6n6iOKQ70QVGlqPoj52waUn+8XzCXYcPKn6KaEDMd2lskRxE5fel0nG1pUL66mJJuTfPH2T/QU5KMo6i6x2iTV+7fJTTOJCu8HsmKrHACeCTzyhtWFNW0J6q+hZ50ZxVd36d169ZmO88//kj4e5njHFVNTd1kVlew3bt3r8lU3Wz2l19+MfuKZs+eHc9eP0RSVCmqfkgj4YcOTtGGldeiil91YCIpqu452+SV+3cJjTPJCq9HsiIrnAAeybzyhhVFNe2JqmbSbbfdJjt37jTr+Jw5c0Z69Ogh48ePTzDJIFHVlW+/+OKLGwrQwimq+MPrdSQbUpwwWXnDiqIa90MHp5z2IvkM4nVOVmSFE8AjmVdkhRPAI23yiqKaNkVVVwB+9dVXzR6wjz76qHTt2tUsQJvQ4SiqvlV/tSdT9xV94IEHJH369GaT2Y0bN0qgN4xljyp7VPHmkqwCzYqiSlFFc87mywxaZqjGkRVes2RFVjgBPJJ55Q0rimraFFU8m0QcRVWH+aqY9urVS7JmzSo6CVZXbtJuWx3+W7ZsWZv3S3YsRZXylewkEuHQXwuINh/QFFWKKppaNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqKaNkT17NmzCfaYFixYUHbv3p1kcjmKqp79+OOPy8yZM2XOnDny8MMPxxTIob/4gxuISDakOGWy8oYVRZWiimYWn0GUFP+whpMiK7KyIYDHsr3yhhVFNW2I6vnz582iSb5D5VSfqRYtWsinn36afFHV/W+WLVsm9evXl7lz58qmTZukXbt2Urt2bTxz/RTJHlX2qPojlfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVONnj3rlLbfcIiVKlJB169a5E9WLFy9KtWrVRJcPHj16tPTv318aNGiAZ6pHkRRViqo/UosfOjhFG1YUVYoqmlk2eYWWGapxZIXXLFmRFU4Aj2ReecOKopr2RFX3S9X1jT766CPZsGGDccwMGTIkmmCJDv31zU31LR18880337DC77Zt2yRbtmx49vohkqJKUfVDGnGOqgVEmw9oiipFFU0tm7xCywzVOLLCa5asyAongEcyr7xhRVFNO6L622+/yeTJk2XWrFkSEREhHTp0kGeeeUby5MnjrkdVz/rggw/M/qnLly+X0qVLS/78+eMU9uWXX0p4eDievX6IpKhSVP2QRhRVC4g2H9AUVYoqmlo2eYWWGapxZIXXLFmRFU4Aj2ReecOKopp2RLVhw4by9ddfS+XKleXUqVPme/j9999vdpRJ6oAWUxoyZIg8+OCDUqlSJTxTPYqkqFJU/ZFa/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk88obVhTVtCGqul/qHXfcIVOnTpXOnTubZOrdu7eMHTtWLly4IFmyZEk0wSBRxdPT+0iKKkXVH1nGDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNW6KqO8jokF89Bg4cKK+99pqcPn3aDAVO7KCo4s9eqo9kQ4pXEVl5w4qiSlFFM4vPIEqKW67gpMiKrGwI4LFsr7xhRVFNG6Kqq/yWLFlSDh8+LPXq1ZPIyEj56aefpGvXrjJp0qQkk4uiij97qT6SDSleRWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFNW0IaqaPTt37pTx48fLnDlzJGvWrNKxY0fp06eP6GK9SR2QqKr5jhs3Tl588UUZNmyY/PLLL9K3b1+pXr06nrl+iuTQ38RBsiHFk4ysvGFFUaWoopnFZxAlRfnCSZEVWdkQwGPZXnnDiqKadkTVl0FXr16VdOnSmR/kgET1gQcekM8//1wWLFggrVq1MuUWKVJEDh06hLyHX2MoqhRVfyQUP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjqmTNnkpyHqluhaqdoQoejqKr5ZsyYUaZMmSLLli0zsqo9quXKlZNdu3ZJmTJl8Oz1QyRFlaLqhzTi9jQWEG0+oCmqFFU0tWzyCi0zVOPICq9ZsiIrnAAeybzyhhVFNW2Iqq7sq9uc6hzVRo0ayZUrV+S7774zKwGXL19eMmfOLO+//747UY2KipJChQrJc889J2+++abce++98sQTT8hDDz0kR48elQIFCuDZ64dIiipF1Q9pRFG1gGjzAU1RpaiiqWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVM+fPy/ZsmWT6dOny5NPPmmSqWXLlrJ3717ZsWNHksnl2KOqZ+t81LfeessUtGTJEmnXrp2UKlVKNm3ahGeunyIpqhRVf6QSP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjq7t27pWzZsjJ48GDzo52gVatWNQssae9qhgwZEk0wSFSvXbsm33//vYSFhZllhSdOnCht27aVfPny4Znrp0iKKkXVH6nEDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNG6Kq00grVqxoxDT20a1bN+OUSR2QqOokWO1V1d7UZ555RnQ/nDZt2pixxf46zp07Z5YrdloFiqJKUfVHzvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVO1FNTo6WnTOpw6ltTncnmfzHknF/vXXX/Lpp58al1TX04V6dRpp9uzZky+q2ns6b948U9DAgQNl/fr18vPPP8vBgwfNBNjkHHrhjzzyiOn2PXDggPTr18/srZPYQVGlqCYn33zn8kMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCtvWFFU7UR1xowZZrvQwoULi6uLGvEAACAASURBVPZSzpo1K87o1pUrV8pTTz1lei/1UBFs3769OJ2H1677yF9//VUWLlwolStXllq1aokOB/ZdZ1KlOvao+lb9HT58uGivZ/r06aVJkyZSp04d2bp1a7J7VV977TXRHttXXnlFjh07JgULFjTvEx4enuB1U1Qpqu4fk3/O5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKo4qLq87FTp05Jzpw5pUePHsaZtAPRd0ydOtXM+VRZ9c37RM7Da9ddpI7E1emi6nt66Jan999/v/Tu3TtmDaTESnYUVZ3wqjfbuXNn03uqP/pmgwYNkpMnT0quXLncXfX/zurSpYs0aNDAGL/OhdXu4H379kmJEiUSLFffX7fL8R16js6d5SGGH1lgmUBWGCeNsmEVVTRK9CetHOkPpRf9YXtkX+M2eWVfemidQVZ4fZIVWeEE8EjmlTesLte8LFdqXcELD/LITGsySca1iTvMSy+9JAMGDEjwLvfv3298SR1JjwkTJsiWLVtk2rRpMfH9+/eXyZMnGyHUKZrauaeH03leY9WVfW+//Xb5+uuvRe+xYcOGovczc+ZM0SHJSbmLo6jqxffp00fGjBkT5z46dOhg3iC5hw4r1p/WrVubovLnz2+GFhcvXlxWr14ta9asifMWeoOJierdUVFyd3R0ci8paM5flS6drErPL8luKowfOjg1G1YqqdG3pJ1nMN3BdBRVPJXiRNrklcu3CJnTyAqvSrIiK5wAHsm8IiucAB4ZP6+GDBlyw8m1a9c2Q2W3bdtm5FOHzOqhDrZixQrRXlTf8e6775otRe+77z5RadVRsNq76nQefsXuIrVX91//+pe88cYb8ueff8rSpUuN92knqN9W/dWtaD755BNj8pUqVTJdzokNz7W5jREjRkhERIT07NnTLFecO3du0W7txBZVSnLo7/LlIvqTVo569UT0538Hh6bgFU9W3rDi0F8O/UUzi88gSkq47zOOiqzIyoIAHsr2iqxwAnhk/LyK7zixS9IFlNS7fD2QY8eONS/36tUrJkxjdGFaPTZu3Gi2E9U1hZzOw6/YXaTuo1qgQIGYob++Uu6++27RebVJHVCPqi4frN3GOjfVH3Ia+4IWLVok77zzjixbtsws2KQ9t+vWrUv0mimqsdBQVN09McIvfjbgbD6gKaoUVTS3bPIKLTNU48gKr1myIiucAB7JvCIrnAAeaSOqWqouPqTbuVSoUEEaNWokun6Q9rjq0Frdl1T/3b17dyOoo0ePlt9++83EJ3SeDr8N1BEZGWmur0yZMjFvWb58eSPZOpI22aKqhRw/ftyUoyvyKoD69evHGYLr9mbV/ps2bWr21tF/6/jlatWqUVQRoBRVhFKCMfzQwdHZsKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeKStqGrnnk691KNZs2Yye/Zs2b59uxFUlcFvvvlGnnzySdOpWKpUKSOrKoQJnRfINW10xOzmzZvNUOSEDh1Fm9gKwFCPqi6apOOgtddzwYIFRlpz5MghXbt2NeOLYxsyXj1xIw8dOmS6hWPPP02oLPaoxqJCUXWbbhweZkHO5gOaokpRRVPLJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRtqKqJesw2tOnT5sVfxM6VApPnDgRZ9sa5Dz8qu0jVaJ1peKkDp2vm9ABiaqeeOTIESOqauW6D07sQ1du0sWPAnFQVCmq/sgzfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80o2o4qWnnkhdMKls2bLmgp5++mmzB+zgwYPNok+6qJLuLtOpUyf3oqrjmHVIrh7ak/roo4+a4b+6hUyxYsXkgw8+kMceeywgRCiqFFV/JBo/dHCKNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB6ZVkT1r7/+Mj282tHZsmVLA0i3J9X9VI8dO5b87WmKFi1qxj8/8sgjZu8b3cvUdyxfvlxKliwpRYoUwWsmGZEUVYpqMtIn5lR+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATwyrYjqgQMHzMjb+++/X1544QW5dOmStGjRwqwCrL2ric1dVZLQ0F9d5Gjv3r0xm8zqOGLdx0e3lPEtg4xXS/IiKaoU1eRl0PWz+aGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqkpER+LOnTs3Dpy3337brFKc1AGJqtqvCmL8Qyfz6h6ogTwoqhRVf+QbP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAemZZEVans2rXLrEysKw43btxYbr31VkdYkKjq9jS6X8+aNWvMf3Wsse7N88MPP4guKRzIg6JKUfVHvvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrssIJ4JFpRVR1eO9HH310AxgdlVu6dGnZunWrmV6akFM6iqqu1JQpUyaZPHmyGe6rw4BHjBghN998s+iWMoGam+q7O4oqRRVvAhKP5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI9OKqCa2PY26pE4jHTRokJm3qr4Z/3AUVT1BF1LS3tSJEyfKs88+a1b7Vbi6ZU1i+/jg1WQXSVGlqNplTMLR/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk84qscAJ4ZFoRVe1RXbly5Q1gVEwLFy4sus3pPffck+Dqv5Co6mpNEyZMkD59+sjAgQNl1apVRlj1/wf6oKhSVP2Rc/zQwSnasKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeGRaEtX58+cnCkbnrOpiSwkdkKj6Trx8+bL8/PPPUqpUKbOfakocFFWKqj/yjh86OEUbVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj0wroprY0N/YpHRHGWtR9U1u1cWT+vXrJ+PHj5fDhw+bcnSJ4TZt2uC14adIiipF1R+pxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq/ICieAR6YVUdWhvzqFNLFDe1Tr1KljL6r169eX7777zqzItGfPHlNAq1atZMGCBWYxpT/++AOvDT9FUlQpqv5IJX7o4BRtWFFUKapoZtnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPDItiaonq/6q4epGrOPGjZNcuXJJ+/bt5T//+Y+89tprZq7q+fPnRZcWDuRBUaWo+iPf+KGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqp6t+qui+vLLL8vgwYOlTJky0rJlS1FRnDJlinTt2lVOnz4tEREReI34IZKiSlH1QxqZVat19WoezgRsWFFUmVfOGXU9wiav0DJDNY6s8JolK7LCCeCRzCuywgngkWlFVD1b9VdFVTdg1Z9OnTpJjRo15KmnnpIvvvhCJk2aRFHFc9GbyHr1RPTnfwcbUhwzWXnDiqJKUUUzi88gSopSj5MiK7KyIYDHsr0iK5wAHplWRDUhIrqDzPTp02XGjBlJAkty1V8V1aQO9qjiyehJJEXVNVbbDx1djezMmTPQCIKzZ89KtmzZ5MKFC2bz4gwZMri+ztRwog0riipFFc1Zm7xCywzVOLLCa5asyAongEcyr8gKJ4BHpiVRbdu2rXz55ZcxcPQ7tR66i4yO3v33v/+dILgkRVUnvia2XLCWpqv+BvpLOIf+xqpHiireGsSLTOpDR/8A884770i9evWkVq1asnHjRrn33nuNqF65ciXRnN+9e7c89NBDsnPnTvNTvnx5efXVV+WFF16Ar1NHK+hq24MGDYLP8TrQ5gOaokpRRfPRJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRaUVUdfHdAgUKyN133y0FCxY0gA4ePCg//PCDqMDqyN0WLVrYiapuSfPSSy+ZIb9VqlSRhHpXDxw4YBZa0k1aq1evjtdMMiIpqhTVZKRPzKlJfejow1OsWLEYyRwxYoQMHTpUJkyYIM8991yCz4IWPHbsWOndu7e88sorZg63buekglu3bl34kp955hmzYFl0dHSi7wMX5qdAmw9oiipFFU07m7xCywzVOLLCa5asyAongEcyr8gKJ4BHphVRPXHihPTv319GjRpldo3RY9OmTfL++++b79ZJHYn2qOqKvrp40tdff20WnVHTVRvWCbG7du0yvT7btm0zW9d88803UrRoUbxmkhFJUaWoJiN9IFFt2LChyfsiRYpIhw4dzBj648ePm78E6bCF8PDwGy5h6dKl0rFjRxOnvbA65v7JJ5+Uzp07m2dDe0gffPBB+fDDD2XRokWiD+0bb7xhyqtZs6a8+OKL5ndPP/20KaNZs2ayePHiBG9Ve3zvu+8+qVatmum51b2N9b2051aHGw8YMEAWLlxorrNRo0bmj0n6h6fmzZubc/TZ1b9u6R+ivvrqK1m2bJl5vidOnGjkeM6cOTJ58mTRP0Tp/esfq0qVKgVhp6hSVKFE4WJKKCYTxy/JOC6yIiucAB7JvCIrnAAeGeqi+ssvvxgh1e+SvuPIkSPmO+p///tf8z3TaavTJIf+aqGfffaZWThp7dq1ZuijHjqeWHuK9IvvE088IRkzZsRrJZmRFFWKajJTyPGLn4pdr169jFiqAOr/1/2EVd5UPBMa7r53714zvl6FVf861LhxYyN3w4cPl3LlypmhDXroyAPdh/iee+4x/197a/UvTBcvXpT58+dLt27dzKbIH3zwgTz22GMJ3urff/8tefPmNa89++yzsnz5ciOs+sDrc/rwww9Lz549JV26dDJmzBiZN2+eeV8VZn12tVyVUj1UULXR+PHHH2XJkiVGbnXIs0q3bj2lz77+FUyfO+SgqFJUkTyhfKGUrsfxSzLOi6zICieARzKvyAongEeGuqjqFFL9TqoLJ+m9ameNdgT5Dv1OPXXq1CSBOYqq72wdirhnzx7T46JfwPVLcEocFNVY1DlH1XUK2gz91eG8OqxX/1CTPXv2RN9Te011Tuqff/4ply5dMj2ysUVV9x/W3k49dLsnfZ60l7Z+/fpGDHW4MTL01yequgK3DhPWHlAd3689tbVr1xZtGI4ePWoEVhuHYcOGxfTs9uvXT0aPHm3+yKTzYXXOrTYaTZs2NXK8YcMGMz9XrzN9+vRGou+44w7TC4scFFWKKpInlC+UEkXVjhSl3oYX5QunRVZkhRPAI0NdVI8dOxYzJ9VHRafGaeeNjj7UBUedjiRFVYf56pfZWbNmye233y5dunSRQoUKmSGJ2hOkX4QTGgbp9KbJeZ2iSlFNTv74zk0JUdXeVu1p1UPnwep+xNqLqsKqPZ36QGtPrtMcVZ+o6lBfFWMtQxc2U1H97bffpEePHtKqVSsjmDq3Nrao6p7Iurpa69atTc+uLpamQ391iPDMmTONrKq4qqj6RkroH6f0eUcOiipFFckTiipKiaJqR4qiasOL8oXTIiuywgngkaEuqkri5MmTpkNFv/PqlFE99Dunfh/WaWy33XZbksCSFFX94vr444/HFKBzVdevX29EVYdEcnsaPBk9iWSPqmusiKhqL+ebb75pFkfyR4+qzgfV+a+nTp2SW265xfxbe1y113L27Nlm+K4OM1ZR1ZXQdD5pQkdSoqq9qVrWjh07jHTqH3ZUVvWPTDr010lUdeXikSNHml5X7fXVf9epU8dwQA6KKkUVyROKKkqJompHiqJqw4vyhdMiK7LCCeCRaUFUY9PQOas6HU3np+q968JKyZqjqsMBdcivzlPV+Wu69YYu8qL/1XHF/hRVNe6IiAgz3DCpgz2qsehQVPHWIF5kUh86OpKgYsWKRhx1GOy+ffuMqPr2R03sTXVBJJVOHfp7+fJlKVy4cJyhvz5R1fN1RWCN1YWTtDdV55rq0GDfeH6NSWxrKJ+oDhw40JShPaPaQ6o9qrp/qy6CpsOU9S9W+p4611bnzepQZJ+o6rALbSzi96jqnNU+ffrIe++9Z25Te2XfffddM6QYOSiqFFUkTyiqKCWKqh0piqoNL8oXTousyAongEe6EVX1Ml04U7/vJXbo98SbbropzsvIefiVJy9Sv3vqIks6gk+/yyZ1JNmjql9Oda6bLiSj8+emTZtmema0Z1Xh+kNUdQikbm+TL18+s0hN5cqVzZfpxA6KKkU1eY8H9sVPH+jIyEgztD32GHodUeBbVCz2dZQtW9aIoM2hD6rmv54X+w80uuK2zh3V1bXdvJfOj9Ve2/z589tcTpxYvQZdhVhle//+/eaZRw6KKkUVyROKKkoJa6/sSgvtaAoFXr9kRVY4ATySeeWeVXzHiV+S7iihI+/0u5l2qujUTPUn36G+potyqkudO3fOONsDDzxgdqJI6jz8igMfmaSo6tBBXdVXj6ioKLOAUt++feWtt94yv/OHqOrQQv1SrkMgdeVTXWn0999/N3NhEzooqhRVfzwmbhtSnc+pvf/xjzvvvFNKlizpj0uLKSOQ75XUhduwoqhSVNGHwCav0DJDNY6s8JolK7LCCeCRzCuywgngkTY9qiqmunaIdkTkzJnTrEdSsGDBOD2SuqOEju5r0KCBrFy5UnTRTZ0K5nQefsWBj3Rc9Vfnyn3//fdmj0ZdVEUP/f9q7brKqYplcg7tvtZys2TJYoYY6wqrv/76a8x7xS+bokpRTU6++c7lhw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjbURVR7epgOp0ND10SteWLVvMaFffoaPwdCSgjtJTn1LH0i0Gnc7DrzjwkY6iqpekG7PqcML4h+7lqMODVTKdDl3pSVckjX0UL17czIHT+Xy6eqn21H766admj1Y9Vq9ebfaUjH/4tvjQ38ep5OXLRfQnrRyco+q6pvmhg6OzYUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOYVWeEE8MiERDX+2epZupWLepTu8KCLXuqhC96uWLHihn1IdXGi5557Tvbu3WvWLtHRr8h5+FUHNhISVZ3rpou+JHToOGiVSSdZnT59ulnYJfbRpEkTad++vdlPR+cB6l8HtBs7qYM9qrHoUFRdPy380MHR2bCiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTziqxwAnikTY+q9o5qb6muoaIjUXWRTz10W0Pfoeue6PBf3bFFO/XUzZDz8CsOfCQkqo8++qgZ66z7L+qCR9r7qSv06v43+jtdtUm7ld0cuhWHbnej1o8cFFWKKpInTjH80HEi9M/rNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB5pI6paqu5IMXHiRKlQoYLZ2UHX99EeV52HWrVqVXn44YfNf3XYb+wjofN0i8RgOBxF1Td5V419zJgx5p50Gw1dTlhXlCpQoICxet2uxs2h+7G+//77cU7ds2ePlCpVKsHiKKoUVTd5Fv8cfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80lZUtVOvQ4cO5g10u9DZs2fL9u3bjazqThXxR8D69ilN6DzfukP41aZMpKOo6mVp76lO0J08ebJkzpzZrDSliyjp+Gg1eh36W7NmzYDcAUWVouqPROOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCNtRVVL1u0Ddd6p01TJ+Ffh9jz8bryJhER13rx5psfUt6djjhw5zCpTau9Tpkwxw4Kd5qj66/IpqhRVf+RSoD90dHj7gQMHzNyCokWLSsuWLc0q1zqfQA8dXv/xxx+b13XSvM7n1udMGxZdhly3btK/mOl+rboflg7B1+2iOnbsaEY06B+TdMGz1q1bJ7q1k1tuNqwoqhRVNM9s8gotM1TjyAqvWbIiK5wAHsm8IiucAB7pRlTx0kMjEhJVvVXdR3Xjxo1mUq5+kdY9eXSBpVy5cpmFkAJ1UFQpqv7ItUB/6MyfP98IpI480BzWTZjnzp1rNmbWldx0uXFderxdu3Zm6IbOAx88eLAZtVCmTBkjtyq2OuRD43Xpcd0iSvfIeu+998xWUbpK9tmzZ6Vx48b+QBRThg0riipFFU0+m7xCywzVOLLCa5asyAongEcyr8gKJ4BHUlSdWUGiqj2p+oVZx0Lrv3Wl3ieeeMLvPTfOlyvmSz63p/kfKa76i6RMgjGB/tBRUS1fvrz50RzWZ+jbb7+VTp06ydatW42o6vZN3bt3N6u5vf3222Yy/KxZs+Suu+4yfxDSkQ3VqlWTtWvXSv369c0CZDrSQZ9Njd2wYYP541Hz5s1dc0noRBtWFFWKKpp8NnmFlhmqcWSF1yxZkRVOAI9kXpEVTgCPpKg6s4JEVRdO0gWUdCiiDkM8fPiw+cKtX7B1CGIgD4pqLNoUVdepF+gPnfiiqn9s0eHzuliZ7iOsWzSplDqJqq60rYKqQ31PnDgh1atXl02bNlFUXWdC8k6sV7ye6I/vCHReJe/qU/ZsssL5kxVZ4QTwSOYVWeEE8EjmlXtW8R0HLyl0Ix1FVVf2zZ49uxliqIsp6by4cePGmX17fvnlFzNnLpAHRZWi6o98Sy0NqT5f2bJls7olnYuqz6H+kejKlSueD723YcUeVfaooslsk1domaEaR1Z4zZIVWeEE8EjmFVnhBPBI9qg6s3IUVV3MRb9IDxs2TIYOHWpK1CGI2gOkc1bvvPNO53fxYwRFlaLqj3Tihw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjKarOrBxFVYvQ1UZ1C5omTZpIeHi4LFiwwGwou379ejOfLpAHRZWi6o9844cOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAIymqzqwgUdVtNUaNGiVz5swxiylpb+qLL74od9xxh/M7+DmCokpR9UdK8UMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCuywgngkRRVZ1aQqPqK0UVfdPEX7VVNqYOiSlH1R+4F+kOH+6j6o9ZSXxlcTMl9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrJIUVd27UeU0sUO31NCFlgJ5UFQpqv7It0B/6HAfVX/UWuorg6Lqvk4C/Qy6v9KUP5Os8DogK7LCCeCRzCuywgngkRRVZ1ZJiqrux6g9qIkdn3zyScB7VymqFFXntHaOCPSHDvdRda6TYIygqLqvtUA/g+6vNOXPJCu8DsiKrHACeCTziqxwAngkRdWZldXQX+fivI+gqFJU/ZFlgf7Q4T6q/qi11FcGRdV9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrCiqzoxSb0S9eiL687+DDSleVamFFfdRxessNUZSVN3XSmp5Bt3fQeDOJCucNVmRFU4Aj2RekRVOAI+kqDqzoqg6M0q9ERRV13XDDx0cnQ0rrvrLVX/RzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCRF1ZkVRdWZUeqNoKi6rht+6ODobFhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySourMiqLqzCj1RlBUXdcNP3RwdDasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAeSVF1ZkVRdWaUeiMoqq7rhh86ODobVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj6SoOrOiqDozSr0RFFXXdWPzobN69WrX7xMKJx45ckQKFSoE3crmY5tl89HNUGwoBFUqWEm6t+4ecys2eRUK95+ceyArnB5ZkRVOAI9kXpEVTgCPZF65ZxV/ZxO8pNCNpKgGc91SVF3Xnk1D2mtgLxn32jjX78UTQ5dAx54dZcbYGRRVF1Vs8wy6KD6kTiErvDrJiqxwAngk84qscAJ4JHtUnVlRVJ0Zpd4IiqrrurH50Hmy15Py3bffuX6vYDsxZ+ackjNLzpjLvnjxomTJkiXYbiMg19ugQQMZOnQoRdUFbZtn0EXxIXUKWeHVSVZkhRPAI5lXZIUTwCMpqs6sKKrOjFJvBEXVdd3YfOhw3iXnXaKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1Yc+nsjO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqKaykX1xIkTki1bNsmcOXOitRy/EuM8EMuXi+hPWjkoqq5r2qYhpahSVNFEs8krtMxQjSMrvGbJiqxwAngk84qscAJ4JPPKPStEVKOjo+XChQvGlxI7zpw5Izly5IAuRGOzZ88uYWFhUHygg1LN0N8DBw5IhQoV5Msvv5SaNWtSVJFMoKgilBKMsWlIKaoUVTTRbPIKLTNU48gKr1myIiucAB7JvCIrnAAeybxyz8pJVGfMmCHjxo2TwoULy9WrV2XWrFmSL1++mDfctGmTdOrUSYoVKybqVdOmTZMqVarIyJEjjV/5thocPHiw6RQcMWKEpEuXzsQ+/fTT0qFDB/ziAxSZKkT18uXL0rZtW9m/f79MmjSJoopWPkUVJXVDnE1DSlGlqKKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiaqKacaMGeXUqVOSM2dO6dGjhxQsWFAGDhwY84YNGzaUvn37iv53wYIFMmXKFFm2bJk8+uij8sILL0i5cuUkQ4YMJl7FtHTp0iZ+79695t+XLl2STJky4TcQgMhUIaq9e/eW+vXry4QJE2TIkCEUVbTiKaooKYqqBal6xeuJ/vgOfujg8MiKrHACeCTziqxwAngk84qscAJ4JPPKPaukRFU7Nz7STgAAIABJREFU83RLvH379pk3UGfasmWL6TX1HUWLFpW1a9eK/nfz5s3SuHFj+eOPP6RixYpy7NgxM2S4S5cuMmrUKBk9erQRXxXdH374QWrUqCG///57TK8rfhfeRgZMVLdt2ya//fZbnLspXry4sfjPPvtMPvjgAwM0tqiuXr1a1qxZcwOBAQMGJPwlmnNUpUSJEt5mTIiUbtOQskeVPapo2tvkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6Vimr8o3bt2lKrVi1Rj2rTpo3s3r3bhMycOVNWrFghU6dOjTklIiLCvK49rVoPdevWlUOHDkn37t3lmWeekZtuuklatGgh/fr1k9tuu02qV68uDz30kKxbt0727Nkjvvmq+B14HxkwUZ0+fbp89dVXce6oSZMmplv6+PHjBt6PP/5oup51zLWOqU7o4GJKsaiwR9X1E2LTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z5VUj2q2hsaHh4uupiSLnw0duxY80a9evWKecM6deqY3995552yceNGMwf1008/lStXrsQsVKuvq5TqVMvTp0/L4sWL5dZbbzUSrFKb2o6AiWpiN65QLl68aF7u3LmzPPvss/LAAw+YyqCoOqQLRdX182TTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6V02JKOoR34sSJZvHZRo0ayfDhw0V7XHfs2CFVq1aVPn36SN68eaV///5m7qmu5qvTK3VxJR0mXKRIEWndurWZs/rXX3+ZXte33nrLDB/W3lkd3ZrajhQX1dhAmjdvLoMGDeIcVTRLKKooqRvibBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs3IS1UWLFsWszNusWTOZPXu2bN++3chqZGSkmb/q2zklV65cZkhvnjx5zHxUHcGqh64JpHKqW4I2bdpUdLjw4cOHZf369alufqpeb6oSVaRqOfQ3FiWKKpIyCcbYNKQUVYoqmmg2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5SSqWvL58+fNkF2dh5rQoasDHzlyxCyoFHtvVD0vKirqhv1VdWSr9rRyH1W83pKMpKhSVP2RSjYNKUWVoormnE1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI5lX7lkhooqXHhqR7FEN5npkj6rr2rNpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs+KonojO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSD+L6oULFyRjxoxy5coVCQsLkyxZsgQDBVfXaNOQUlQpqmiS2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnhVFlaKKZ08wRPpJVKOioqRJkyby9ddfy9KlS+W5556TW2+9VZYtWwZT2L59uyxatEgef/xxKVq0KHxeSgXaNKT+FtWcWXJKx4odJSJLhJy5dEZWH1wtG49sjIPimSrPSK4sueL87uKVi3Ix6mKCvx+/frzfUNYrXk/0x3fYsPLbRQRpQWSFVxxZkRVOAI9kXpEVTgCPZF6RFU4Aj4yfVxRViiqePcEQ6SdR3bhxo1StWlUee+wx0Yfk448/lly5cknHjh1hCnPmzJFHHnlE1qxZIzVr1oTPS6lAmw8df4uqSmjB7AXl9KXTEpE5Qq5duyavrHxFoq5FxeDofld3UaH1HRnSZZDLUZeN2Cb0+1GrRvkNJUXVPUqbvHL/LqFxJlnh9UhWZIUTwCOZV2SFE8AjmVfuWVFUKap49gRDpB9E9ffff5eGDRvKzp07pXz58jJlyhR59913JW/evDJhwgRp3bq13HTTTaLDgnPmzCmDBw+WESNGyPz586VYsWLy1FNPSf369U2P7J49e6Ry5cpGdEuWLJkgQZXh6Oho89rKlSvNe+v7hIeHy6RJk+Sdd96Rv/76S+rWrSvjxo2TQoUKmWvImjWrXLp0SdatWyddunSR9OnTm2stXbq0zJw508RpeXrty5cvl3r16sXcR0IXYtOQ+ltUe1XvJVevXZUJ6ydIl8pdpEhEEflw24fy64lfE2TW8f86SvFcxWX+zvny8/GfY2IS+31yU5ei6p6gTV65f5fQOJOs8HokK7LCCeCRzCuywgngkcwr96woqhRVPHuCIdIPohoZGSnDhg2TsWPHyvPPPy99+/aVe++9VwoXLmzEr0yZMkZAc+TIIaNGjZJDhw7J6NGjRXtQP/nkE5k3b55s2bLFyOa0adNkwIAB0r9/f8mTJ0+CBCtWrCjbtm2T+++/37z++eefm7Jq1aolt9xyizRq1Mi8pteiP1quDkPWhk+lWIcmHz582Ej17bffLnPnzpUXXnhBXnzxRXONWk7jxo3lpZdeMmV9+eWXCV6HTUPqb1H1XZBKauGIwnIl6ook1iNa4eYK0qp8K9l/ar/8d8t/Y+4lsd/7I20pqu4p2uSV+3cJjTPJCq9HsiIrnAAeybwiK5wAHsm8cs+KokpRxbMnGCL9IKp6mypz2iP66aefSosWLYwYxhbVo0ePGjmMiIiQf//73/L2228bUdSeVO0hvfPOO00vKjL0V0X1xIkTRngPHjxoemX79OkjL7/8spkT+9NPP8mvv/4qs2fPNtK5evVqcz3Zs2eXrVu3ypgxY0y89qyWK1fODFHu1KmTkdO2bduaH5XrGTNmmGtWEVeBjX/YNKReiWqfGn0kR+Ycck2uydh1YyXyUuQN19mnZh/JnjG7vLH2DTl/5XzM64n93h9pS1F1T9Emr9y/S2icSVZ4PZIVWeEE8EjmFVnhBPBI5pV7VhRViiqePcEQGSBR1SG/GzZsMEROnz5thuguXrzYzEfV44cffjA9nqioZs6c2ZSnAqxDdlU8VTCrVatmhg6r/A4ZMkTuuOOOGFG9+eabjZzq0F7taVWhLVWqlJHQzp07G5kdNGiQuYYSJUrE1J728KrkpiZRbV2+tRw7e8wsoqT/vv3m281iSov3LI5zmSXzlJQOd3SQw5GHZepPU2NeS+z3/kpZiqp7kvyAxtmRFVnhBPBI5hVZ4QTwSOYVWeEE8EgupuTMKuyaruQSREf8vzbEqeTly0X0J60cARJVHcarkqiHzik9cOCAmRe6fv166dGjh/znP/8xMqiSqHNMVRwT29pGe1QTEtWyZcuaob1arp7bpk2bOD2qTqKqoqtDffUannnmGXnzzTclQ4YMZnhyQofNh46/e1QH3T1IMqbLKGsOrTGSqqv7ztk+x/Su1ilWR1YdWCU/HvlRHir3kNyR/w5ZsneJbPj9+h8K9Ejs9/5Ke4qqe5I2eeX+XULjTLLC65GsyAongEcyr8gKJ4BHMq/cs2KP6o3sKKp4PqW+SD+Jqg65VclLbOhvbFH97rvv5IknnjDDavVo1qyZmSeqQ3l15eAzZ86YOasqpAkdsUX12LFjUrBgQdOjqj2f2puq5eoCSVevXpWzZ8/K/v37pUKFCuIT1YkTJ5rtc7RHVeNUkFWMp06dalYs1qHBx48fNz2tej863za1iepdhe+SJqWaSJiEmRV/df7pB1s/kMYlG0v1ItVl/eH1svTXpdKtajfJny2/TPxxohw/dzzmNhL7vb8SlKLqniQ/oHF2ZEVWOAE8knlFVjgBPJJ5RVY4ATySParOrCiqzoxSb4SfRNX2BnXfVZ1Hqvul6mq9vuPKlStGLv/4448YkY1dtsqmDudN7FBp01WIdX5sWFiY7WWZeL02nfuq16Y9qokdNh86/u5R1WtKH5beLKR05MwRuRp91dW9enUSRdU9WZu8cv8uoXEmWeH1SFZkhRPAI5lXZIUTwCOZV+5ZsUf1RnYUVTyfUl9kComqEwhd9GjXrl03hKk8ppY9Vm0aUi9E1YlhSr5OUXVP3yav3L9LaJxJVng9khVZ4QTwSOYVWeEE8EjmlXtWFFWKKp49wRCZSkU1GNDZNKQU1f8XZ4GqYKjflLpGm7xKqWtMLe9LVnhNkBVZ4QTwSOYVWeEE8EjmlXtWFNVULKrnzp2T6OjoBLcSiX3ZXEwpFg2KKt4axIu0aUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPChFVdaULFy5ItmzZEn0jXS8moa0ZdXqenud2eh1+Z/6LTPGhvxcvXjSL4ei2J+nSpZNKlSrJ8OHDE71DiipF1R/pb9OQUlQpqmjO2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnpWTqM6YMUPGjRtn1nLRRUdnzZol+fLli3nDTZs2SadOnaRYsWJmh45p06ZJlSpVzCKj27Ztk4ceesisMaNrxly6dMmc27hxY3N+mTJl5OWXX8YvPkCRKS6q77//vtlTU1dz1cV0Fi5cKC1atJD06dMniICiSlH1x7Nh05BSVCmqaM7Z5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeVVKiqmKaMWNGOXXqlOTMmdNsD6k7ZwwcODDmDXULyb59+5qtJBcsWCBTpkwR3dlD/71mzRoZO3asWfBURVXXkhkyZIjMnj07ycVH8bvxJjLFRVUhbdy4UfSvAEWKFJGRI0dKkyZNEr1biipF1R+Pgk1DSlGlqKI5Z5NXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiapu19igQQPZt2+feYMJEyaY7SC119R36KKla9euNTtfbN682fSWqpj6Dh3y6xPVxYsXyyOPPGK2ldTtJfW977nnHvziAxQZMFHVLufffvstzm0VL17c2P3KlStlyZIlBmq/fv3M9iIKc/Xq1eYvAPEP3XPTd8R5IJYvF9GftHJwjqrrmrZpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs9KZTH+Ubt2balVq5YZutumTRvZvXu3CZk5c6asWLFCpk6dGnNKRESEeV17WrUe6tatK4cOHUpQVL/99lv56aef5Pnnn5ePP/5YXn31VdPLmtrmrwZMVKdPny5fffVVHP7ac6rgM2fObADpkT9/fiOnJUuWTLCm2aMaC0sKi6r+NUbHwOvEbv3rTcuWLeWzzz4zf2jQ49FHHzXJr6/rQ6b1r5O7z58/b4Yt6PxkfQDLli0rOu5e9z3VecodO3Y0f8DQB07H0Ldu3VoKFSqEP/lApE1DSlGlqAIpZUJs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPKqkeVV1AKTw83HynVpnU78l69OrVK+YN69SpY35/5513mtGqI0aMkEWLFiUoqpcvXzbTLPUnKirKfAdXqdXRranpCJioJnbT+heB9957T7755hs5fPiw1KhRQ44cOZK65qhWqybSsKHIvHkivv1B27QRKV1a5MoVkZ07RZYsEYmOjnubel6NGiK6Mpf+RWPhQpEzZ0S6dhXJmfOf2GPHRP77X/u8SGFRnT9/vhFI3RtVH64uXbrI3LlzpVu3buYPEDo8QYcqtGvXzvwBQv8YMXjwYPNXIJ20rXKrYtuhQwcTrw/Ld999J0899ZTJiUGDBpledV2lzDfZ2x5SwmfYNKQUVYoqmnc2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5bSYUsWKFc2aPhUqVJBGjRqZxWe1w2fHjh1m+G6fPn0kb9680r9/fzNXNXv27HEWSIo99Hfo0KHy559/mvJ0uPBjjz0WM6wYvwPvI1NcVLXHTCcE69Bf/UuBQm/fvn2idx7QHtXChUUaNBApXlwkLEzkk09Etm0TqV5dRFfJUjHVnwwZrovqhg3/XHfWrCL9+4tcu3ZdTlVMf/5ZZP58kSFDrv/+0qXr8UePah++fW2nAlEtX7686I/Wi9abDiXQFce2bt1qEl6He3fv3t389eftt9+W3r17m1XK7rrrLsmVK5fMmzdPqlWrZh6S+vXrm7/86CrQKrMaqwtt6WplzZs3t+eTxBk2DSlFlaKKJp9NXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCOZV+5ZOYmqfkfWzh09mjVrZhZC2r59u5HVyMhI871bO4/00O/Y69atkzx58sRckH4X1+/Uutrv0aNHzZxX7UnVH/Uvf3/XxkkkHpniouq7tJMnT5qhnomt9uuLC6ioVqwoogs7Zcokki6dyIIFItu3izzxhMi//iUycaJIVJRI9+4if/4p8u67/5C+7TYR7XXdseMfOT17Vmc/iwwaJLJ+vciqVSL6O7dHKhNVnTusk7p1ZTIdUtC2bVsjpU6iet999xlB1fo/ceKEVK9e3SyuRVF1mxjJO69e8XqiP76DHzo4T7IiK5wAHsm8IiucAB7JvCIrnAAeybxyz8pJVLVknT6nW3rqPNSEDv0OriNTddQiMt/02LFjUqBAAfyiAxyZakQVve+Aiqrvotq1EylX7h9RDQ8XyZxZ5OTJ6yKrQ3x1cvOcOf/chvay9ukjkiWLyOXL1+O//VbkwAGRTp3+ibtw4fqQ4D17UAT/xKWwqCZ2wefOnUtyI+KEztOedZ2fqn/VuXLlimTSPw54eNg0pOxRZY8qmoo2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrlnhYgqXnpoRFJU8+cXadv2xto8cUJk1qzrv48vqr5oPa98eZGrV0WmTLneq+o7dNhwly7X/5/KqMqtSqr2oj74oIguF33qlEjlyiJ//329p9X2SKWiansbKRFv05BSVCmqaI7a5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeFUX1RnYU1VtuEXn88RvJnD79jzzGF1Wdr/r88yI33XRdNmfMENH42EerViIVKlzfLkd/dLhvxowib78tkju3yOHD13taX3zx+hzX4cPxzPZFUlTtmf3vDJuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHtiR8YXVV0BWCcr6/xUXQVYF0bSXtGtW0U6dhTR/WJVRJs2FfnrL5EtW0Tq1xe5eFHku+90BvT11zWudu3rvauTJtlfG0XVnhlF1ZEZ56g6Iko0gB/Q/7+9MwGTqrrW9mKQeRZwJDgFh2g0ETUOQa8SMBLHiLMGcIyJCIoSjSFXEPU6gBHFYCCgBHIRjWLE6/QrGCcUIxHFISoiEQWNMokmIv7Pu73Vt2mq6a+ODF1V336eftDudU7Vefc6Z+9vr7XX0dmZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe09ly1yKb66Y0s9+FtGu3ernWrEi4g9/iDjrrK9SgCm0xGto2rf/qmIwFX7vu++rYkznnvvV72mIXY6bO7fw77aRharfo1p4lxXDERaq2XvJkxmdnVmZlU5At7RfmZVOQLe0X5mVTkC3tFCtmZVTf2tm9PUsKKbEq2mImlZu7FlF7BJZRaxmaRtZqPo9qlk6rfYfY6GavY88mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lrUAqHq96jWXvfI+s0sVLOSi/BkRmdnVmalE9At7VdmpRPQLe1XZqUT0C0tVGtmZaFaM6Paa1HLhKrfo1p7XaWQb2ahWgit1W09mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lpsZKFaHRi/R7X2uozyzSxUFUr5bTyZ0dmZlVnpBHRL+5VZ6QR0S/uVWekEdEsL1ZpZWajWzKj2WtRSoVp7gf3fNytk0PHrafx6GtWnC/Er9ZylamdWes+alVnpBHRL+5VZ6QR0S/tVdlau+rsmOwtV3Z9qn6WFauY+KeRBaqFqoao6WiF+pZ6zVO3MSu9ZszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UM3cS4U8SC1ULVRVRyvEr9RzlqqdWek9a1ZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqqZe6mQB6mFqoWq6miF+JV6zlK1Myu9Z83KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kI1cy8V8iC1ULVQVR2tEL9Sz1mqdmal96xZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWH4NoXr55ZfHa6+9VgxXuV6+4/Lly6NZs2bSuRd+sjAWLV8k2ZaCUedvd46xw8dWXIoHHb1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB8msI1d79e8e4G8YVw1X6O25gAj+96Kcx8pqRFqoZuHuA1qGZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe08xWH4NoTroxkEx58M5xXCV6+Q77tJ2l9i53c4V51q0aFG0b99+nZy7FE9y4oknWqhm6FhPZnRoZmVWOgHd0n5lVjoB3dJ+ZVY6Ad3SQrVmVn49Tc2Maq/F1xCq3nfpfZeqY3uAVklFmJVZ6QR0S/uVWekEdEv7lVnpBHRL+1V2Vo6orsnOQlX3p9pnaaEq98lB2xwU/OSaH6QyOosvHZVZmVUBBHRTP6/MSiegW9qvzEonoFvar7KzslC1UNW9pxgsLVTlXrJQlVGtYehBR2dnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjckS1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtRYL1WXLlkWzZs2iTp06a+3hqp242g0xbVoEP+XSLFTlnrZQlVFZqGZHZaFaADtPZnRYZmVWOgHd0n5lVjoB3dJ+lZ2VIlRXrVoVn376aTRt2rTaD0JTNW/efLW/V3fcxx9/HK1bt5Zs9Stbd5YbveovgM4888wE9IMPPohjjz02evXqVe0VWqhWQmOhKt8JFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjzJs3L8aMGROdO3eOfMf985//jJNPPjm23377WLFiRZxyyilxwgknxDXXXBPPPvts1KtXLwnicePGRZs2bfSLWseWG12oAuD++++PO+64I5566qno3bt3vPbaaxaqSkdbqCqUko2FqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ys1iZUEaabbLJJLF68OFq2bBl9+/aNLbbYIi655JKKD+zWrVsMGDAg+Peuu+6KUaNGJY2V77iGDRum40888cR45JFH4sILL4x77703ttlmmyRQGzVqFKeddlrstttucdFFF+kXtY4tN7pQfe+992KPPfaIgw8+OJ544ono169fglVdc0S1EhkLVfl2sFCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VndXahOrcuXOja9eu8eabb6YPGDFiRMyaNStFTXOtQ4cOKejHvy+88EIceuih8cwzz6z1uJEjRyZBe+qpp8Y555wTW265ZSxcuDAaN26cjifievPNN+sXtY4tN5hQffHFF+Ptt99e7euj2t9///0E56yzzooZM2ZEgwYN4r777rNQVTraQlWhlGwsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VntTahio7q2bNnRdbp+PHjY/r06TF69OiKD2zRokX6O5FS+uHAAw+MqVOnrvW44cOHp+hrkyZN4qGHHoozzjgjidwddtghZbteeumlMXToUP2i1rHlBhOqv//97+PBBx9c7ev/8Ic/TJB32mmnGDhwYLD5F8go+fbt26cI65NPPrnGJWObay6mdFB+FjU4yrS3pwU/5dIsVLP3tAcdnZ1ZmZVOQLe0X5mVTkC3tF+ZlU5At7RfZWeFUK3aDjjggNh///1TOi5ikqJIFJ5FYNL69+9fcUiXLl3S7/fcc8+YOXNmDB48OCZNmpT3uG233Tb23nvvFEElnZiCSu+++276f6Kw8+fPT/+S9UpAcWO1DSZUq7vA6667Lql+wsps/N1nn30SqPr16+c9xKm/lbA4oirfNxaqMqo1DD3o6OzMyqx0Arql/cqsdAK6pf3KrHQCuqX9Kjurmoop7b777kGqLvtGu3fvHpdffnkgZF9++eXYa6+90tbJtm3bxsUXX5z2qvI2lSFDhkS+4x599NFgn+qvf/3rmDNnThxyyCEp87VTp04pfRjhiuCdMmVKCihurLbRhSrR08MPPzzYq0obNGhQqgJcXbNQtVDNcrNYqGah9tUxHnR0dmZlVjoB3dJ+ZVY6Ad3SfmVWOgHd0n6VnVVNQpViR1TXFk1GAAAgAElEQVTnpfXo0SMmTpwYs2fPTmJ16dKlaf/qfvvtl/7eqlWrePrpp1PF3nzHvfLKK2nb5d///ve07fLKK69MkVOE7Z133pm2Zp533nlx2WWX6Re0Hiw3ulDNXdOCBQtSiWUqU62tWahaqGa5DyxUs1CzUC2UmgdonZhZmZVOQLe0X5mVTkC3tF+ZlU5At6zqVzUJVc7Mq2SWLFmS9qHma1QHRlNRUIkU4Vyr7jgChZtttlnUrVu3wpatmJyn6vtV9Stbd5a1Rqiql2ShaqGq+kplOwvVLNQsVAul5smMTsyszEonoFvar8xKJ6Bb2q/MSiegW2YRqvrZS8PSQrWY+9F7VOXes1CVUa1h6AFaZ2dWZqUT0C3tV2alE9At7VdmpRPQLe1X2VkpEVX97KVhaaFazP1ooSr3noWqjMpCNTsq7+ctgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQnVNdhaquj/VPksLVblPLFRlVBaq2VFZqBbAzpMZHZZZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/ok08+icaNG0fdunXX2sNVO3G1G2LatAh+yqXVIqG6a/tdo0enHquRn/jixJi/dP5qv0Mw7tdhv6hbp27MWzwv/jD7D/Hll18mm3223ie6bd8tJr88OV798NV12osWqtlxetDR2ZmVWekEdEv7lVnpBHRL+5VZ6QR0S/tVdlaKUF21alV8+umnSUdV15YtWxbNmzdf7c/VHZdPf1Vny3mbNWu2mn7TrzabZZ0vcyoh2/EFHbVo0aJ48cUX45hjjok33ngj2rdvHx9++GGcdNJJUb9+/Zg3b15cdNFF0atXr2rPa6FaCU0tEqqI1L223CtWfL6i4gv+cfYfVxOq27TaJnrt0Ss+/+Lz+HzV59FkkybxyFuPxNzFc6Prdl2Dv9eJOvGnV/4ULy58sSDfqsnYQrUmQtX/3YOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqSaiOHTs2brjhhthqq61i5cqVMWHChGjXrl3FBz7//PPRp0+f6NixY9JUY8aMic6dO0e+4wgW5tNf11xzTTz77LNRr169JIjHjRuXhOmZZ56ZxO8HH3wQxx577Fq1mk6gZssNKlTvuuuuePLJJ2P48OGxcOHCJFSvvvrqQKEPHTo03n///dhiiy0Cdd+kSZO8395CtXYK1dN2Py06tuoY1z55baxctTL9VG0n7HpC7NR2p7ht1m3x/vL343sdvhfvLXsvGtZrGD/85g+jQb0GKdJ61yt3xeyFs2v23gIsLFQLgFXF1IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrNam1BFmG6yySaxePHiaNmyZfTt2zdppksuuaTiA7t16xYDBgwI/kVzjRo1Ku6///68xyE+q+qvV155JXbeeeckUBs1ahSnnXZa7LbbbkkMc5477rgjnnrqqejdu3e89tpr+oV+DcsNKlRz3xM4OaF6xhlnRNeuXeOEE05IKaCk/r755pux3XbbWajW1LG1KKJ63t7nxaZNNk3fmH4kSnr7325f7QrO/9750bpR6yRi69etHws/WRgTZ0+MJZ8tSXbH73p87Nx2ZwvVmvp9A//dg44O3KzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys1qbUJ07d27SS2gk2ogRI2LWrFkpapprHTp0SEKSf1944YU49NBD45lnnsl7HFqsqv6aPXt27LfffkmjsR2T47fffvu47LLLYo899oiDDz44nnjiiejXr19ceOGF+oV+Dct1LlQ/++yzeOihh9b4St27d4+GDRum31cWqscdd1zwQxiZttlmm8WMGTNim222sVCtqWNrkVAlpbdtk7Yxc8HM2HurvVNa77hZ4+LtxW9XXEX/fftHy4YtY8GyBUmsfqPlN+LlRS/H5DmTLVRr6uuN+HcPOjp8szIrnYBuab8yK52Abmm/MiudgG5pv8rOam1Cla2TPXv2rIhkjh8/PqZPnx6jR4+u+MAWLVqkvxNppR8OPPDAmDp1at7jli5dmld/XXHFFUnk7rDDDimCeumll6bznHrqqXHWWWcljdagQYO477779Av9GpbrXKgSkj777LPX+Eq33nprClVXFaqDBw8OwKLOv/jii2jdunUKaxNZRbWTKly1DRw4sOJXLqZ0UH4WNTjFtLenBT/rqm3betu0P3Xh8oWRS7N94b0XYsprUyo+4tTdT43tW28fw54elmwv63JZLP/38rjuqessVNdVR6yH83jQ0aGalVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWCNWq7YADDoj9998/peOyLZJCRwT82EZJ69+/f8UhXbp0Sb/fc889Y+bMmYHGmjRpUt7jSPutTn8RhZ0/f36KxhJJffTRR2OnnXYK9FfuuFxmrH612SzXuVBVvkbliOq9994bN910U4rCTp48OYYNGxZPP/10tafxHtVKaGpRRHXgAQOjUb1G8dCbD6Wqvs0bNo9bn781tmy+ZXTp2CX+Mu8vKd23+w7d462P30oC9dubfTvtRWVPKs2pv8rds+FtPOjozM3KrHQCuqX9yqx0Arql/cqsdAK6pf0qO6uaiintvvvuMXLkyLRvlEzVyy+/PBCyL7/8cuy1114pHbdt27Zx8cUXp72qVOgdMmRI5DuODNiq+osILam+pA8TOETwTpkyJUVP6debb745FWnaZ5994t13302FcNd322hClQrAbM5lheCwww6LOXPmpP9++OGHE4DqmoVq7RSqe2y+R/yo04+SGKWR8kvq76E7HBrf2/p7MeMfM5KIPXevcyv2slL9d+TMkfHxpx+nY4771nGxS7tdvEd1fd/1BZ7fg44OzKzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqBLcO+WUU9IH9OjRIyZOnBjsK0WsksrL/lX2mNJatWqVAn9t2rSJfMchVPPpL4TtnXfemQrcnnfeeWl/KtHTww8/PN5777107kGDBqUqwBuibRShmu/CCDFvvvnmqTLV2pqFau0Uqrlv1aFFh1jyryWx9F9Lq+3GNo3bpD2s7y57t+Idquvb2V31NzthDzo6O7MyK52Abmm/MiudgG5pvzIrnYBuab/KzqomocqZV6xYEUuWLEn7UPM1qgMvWLAgFVQigzXXqjsun/4ivZfzEFWt3DgvQcaatJpOoGbLWiNUa/6qX1lYqNZuoar244a2s1DNTtyDjs7OrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzUoSqfvbSsLRQLeZ+rEV7VGs7RgvV7D3kQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqoxqDUMPOjo7szIrnYBuab8yK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodVaqKt912232NM5TPoWal97VZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/o448/jhYtWkS9evXW2sNVO3G1G2LatAh+yqVZqMo9baEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOytFqK5atSo+/fTTpKOqa8uWLYvmzZuv9ufqjvvkk0+icePGUbdu3Qr7lStXBlqtVatWa3zERx99lD67YcOG+oV+Dcs6X3755Zdf4/iCDl20aFG8+OKLccwxx8Qbb7wR7du3j3feeSeOP/74aNeuXdSvXz+++93vxmWXXVbteS1UK6GxUJX9z0JVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlY1CdWxY8fGDTfcEFtttVUgJidMmJD0U649//zz0adPn+jYsWPMmzcvxowZE507d458xxEsPOmkk5L2wvaiiy6KXr16xbBhw2LUqFGxzz77xNKlS4PvtOOOO6aPwG633XaLBx54IPbbbz/9Qr+G5QYVqnfddVc8+eSTMXz48Fi4cGESqldccUV8/vnncfnll8dnn32WVP27774bW265Zd7LslC1UM3i7xaqWah9dYwHHZ2dWZmVTkC3tF+ZlU5At7RfmZVOQLe0X2VntTahijDdZJNNYvHixdGyZcvo27dvbLHFFnHJJZdUfGC3bt1iwIABwb9oLgTn/fffn/c4hCqR16FDh8b777+fzkV2a+vWrVM0lagpGg29NmLEiPj3v/8dxx13XMydOzduueWW0hSqOZLAyQlVwtf8f6NGjWLKlClxwQUXpGhr5bTgyl1uoWqhqj8C/s/SQjULNQvVQql5gNaJmZVZ6QR0S/uVWekEdEv7lVnpBHTLqn61NqGKQOzatWu8+eab6QMQj7NmzUpR01zr0KFDPPXUU8G/L7zwQhx66KHxzDPP5D0OncX5TjjhhCC5ltRfzo1Q5WfFihVxyCGHxPnnn59s0Gf8P587aNCg4hWqREUfeuihNXqpe/fuFfnMlYUqhqj0q666Kq6//vq455574uCDD662ly1ULVT1R4CFahZWVY/xAK1TNCuz0gnolvYrs9IJ6Jb2K7PSCeiW9qvsrNYmVNk62bNnz3jttdfSB4wfPz6mT58eo0ePrvhAav3wd6Kj9MOBBx4YU6dOzXscab1ESI899th0/GabbRYzZsyIbbbZJv76179G7969Y9ddd01CmHMQTLz99tuT+C1qoUpI+uyzz16jl2699dYUqqZVFqoIW0A1aNAgqXTg5toTTzyRUoWrtoEDB1b8ysWUDsrPoob7ZNrb04KfcmmOqGbvaQ86OjuzMiudgG5pvzIrnYBuab8yK52Abmm/ys4KoVq1HXDAAbH//vunAkpNmjQJiiKho9hGSevfv3/FIV26dEm/33PPPWPmzJkxePDgmDRpUt7jSPtF2Pbr1y+++OKLFEVFwz322GNp7+qNN96YagjR9t1336DO0KabbhrPPfdcdOrUKe2PZf/r+m4bdI9q7mIqC1UE7H333Rf33nuvdK2OqFbC5GJKks9gZKEqo1rD0IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqqZjS7rvvHiNHjkwFjchUpb4PQvbll1+OvfbaKy688MJo27ZtXHzxxWmvarNmzWLIkCGR7zgChTfddFPKgp08eXIqokTaMEHFRx55JPbee++KC5k/f36qI0Q7/fTT49xzz40jjjgiCeD13TaaUEWZU6mK0PK4ceNWu87XX389vvnNb+a9dgtVC9UsN4WFahZqXx3jQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWdUkVAnqnXLKKekDevToERMnTozZs2cnsUoqL3tMc9V4ebXM008/HW3atEnBwKrHITwPO+ywmDNnTorWPvzwwyliWlV//eQnP1lNp/3oRz+KSy+9tHj3qOrdk83SQtVCNYvnWKhmoWahWig1D9A6MbMyK52Abmm/MiudgG5pvzIrnYBuWUgxpdxZKXK0ZMmS1bZKVv5EqgMvWLAgFVSqXJi2uuOIlm6++eapMnBtbBslovp1QFioWqhm8R8L1SzULFQLpebJjE7MrMxKJ6Bb2q/MSiegW9qvzEonoFtmEar62UvD0kK1mPvRe1Tl3rNQlVGtYegBWmdnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZ1ZT6q5+5dCwtVIu5Ly1U5d6zUJVRWahmR+X9vAWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykK1xIXq5b17x/LXX9c9pNgtO3SI4Od/2+LFi6NVq1bSVc1fMj/mL50v2ZaCUactOsXY4WMrLsUPUr1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/cqsdAK6ZVW/slAtdaF6+unxn7//ve4htiwbAn3694kxw8ZYqGbocQ/QOjSzMiudgG5pvzIrnYBuab8yK52Abmm/ys7KQrXEhep1112ne0cJWn700UfRpk2bEryydXNJAwYMsFDNgNKDjg7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzslAtcaGqu0ZpWvrhoPerWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhWkuE6vLly6Np06ZRp06d1b7RRx99lH7fsGHDanu5aif6hvg/VGaR/eGgH1l+lvYrvc/Nyqx0Arql/cqsdAK6pf3KrHQCuqX9KjsrRaiuWrUqPv3006SXqmvLli2L5s2br/bn6o775JNPonHjxlG3bt0K+7XZ8req5/7ss8+iXr16sckmm+gXL1rW+fLLL78Ubb+22aJFi+LFF1+MY445Jt54441o3759xTnnzZsXu+22WzzwwAOx3377WahmoO2Hgw7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjoKvGjBkTnTt3jnzHESw86aSTon79+sn2oosuil69euW1RZiefvrpsWTJkiRov/Od78Tll18eiNzZs2fHxRdfHP3794+jjz5av3jRcoMK1bvuuiuefPLJGD58eCxcuLBCqP773/+O4447LubOnRu33HKLharYeVXN/HDQwZmVWekEdEv7lVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWaxOqCFMilosXL46WLVtG3759Y4sttohLLrmk4gO7desWAwYMCP5Fc40aNSruv//+vMchVIm8Dh06NN5///10LoQo5676Gfzt2WefjZEjRwbxzbvvvjuOPPLIeOmll+K2226LKVOmxHXXXVf8QjVHEjiVheoFF1wQhxxySIwYMSIGDRpkoar7+GqWfjjo4MzKrHQCuqX9yqx0Arql/cqsdAK6pf3KrHQCuqX9KjurtQlVgnldu3aNN998M30AmmnWrFkpapprHTp0iKeeeir494UXXohDDz00nnnmmbzHocU43wknnJDEJ5HSadOmpYhs1c8ggjtz5swgYrv11lvHFVdcET/84Q8rPvfYY4+Nk08+uTiEKnnKDz300Bq91L1794q9p5WFKoofJX777bcnoJWF6hNPPJEisJUbOdmEmt1MwARMwARMwARMwARMwARMoBQI5NM4BxxwQOy///5p62TPnj3jtddeS5c6fvz4mD59eowePbri0lu0aJH+TgSUBYMDDzwwpk6dmve4pUuXpmxWRCZts802S9HR888/f43P+OKLL+Lxxx9P0VkEMGnC77zzTkWtoaISqoSLzz777DX85dZbb03hZFplobrvvvsGe1c33XTTeO6556JTp04p55qcaqXVlM+tnKNUbMxC70mzMiudgG5pvzIrnYBuab8yK52Abmm/MiudgG5pv1o/rCig1KRJk6CYETqKbZQ09obmWpcuXdLv99xzzxQBHTx4cEyaNCnvcaT9Imz79esXCNHWrVvHe++9F82aNVvjM+bPn5+CjVdddVWFqCWQuMMOO6T/LyqhqnRPZaHKxROFpbFR99xzz40jjjgiQVWab4j/o2QWisd8ZWNWZqUT0LwDGrUAACAASURBVC3tV2alE9At7VdmpRPQLe1XZqUT0C3tV+uP1e677572iVJ8lkxVChoRcX355Zdjr732igsvvDDatm2bihuxVxXROWTIkMh3HNrrpptuSlmwkydPjmHDhsXTTz+d15btmr/73e/ikUceiX/84x9BkHHBggWp0m/JClWiqJUrVXGhP/rRj+LSSy9d6x7Vqt3vG8JCVX8kmJVZZSGgH+PnkVnpBHRL+5VZ6QR0S/uVWekEdEv71fpjde+998Ypp5ySPqBHjx4xceLEVHUXsUoqL3tLc29OadWqVRKebdq0iXzHIVQPO+ywmDNnTnrdzcMPPxz77LNPXluK3lK8idRfAokIZPa25hoRVb7XUUcdpV+8aLlBq/6K36kgM98QFl8FOcz/GttvdGpmZVY6Ad3SfmVWOgHd0n5lVjoB3dJ+ZVY6Ad0yi1+tWLEiVedlH2q+RnVgop0UVCKDNdeqO47M1s0333y1d6BWZ/vxxx+ndOFcJFW/0uyWRS9UKbjESoJbhFnoXmBWZqUT0C3tV2alE9At7VdmpRPQLe1XZqUT0C3tV2alE6jZsuiFas2XaAsTMAETMAETMAETMAETMAETMIFiImChWky95e9qAiZgAiZgAiaQCPAahkcffTR23XXX+P73v28qJmACJmACJUbAQrXEOtSXYwKFEmCvw7x582KXXXaJ+vXrF3q47U3ABExgvREYN25cer9f7uXy7J1q3LhxKvzBmwKocjl27Ng455xz4qc//el6+x4+sQmYwFcEvvzyy/jTn/6U3uvZq1ev2HbbbY3GBNYbAQvV9YbWJzaB2k+ASnC8g+ub3/xm/P3vf0/7nKvboF/7r8bf0ARMoNQI/M///E+MGjUq7rnnnvjrX/+a3gzwwAMPpPf2nXHGGbHTTjvFtddemypVvv322xu0yEepsfb1mEBNBEaPHp3mCRTp2XTTTeOxxx6L5557LurWrVvTof67CWQiYKGaCZsPqk0EqG72ySefJLHltnYC77zzTrz//vvpfVsMNEQqGHSoDkep8a222ipuvvlmYzSBgggQlb/gggvivvvuS2mYRMHwKTcTUAjwSoVXX301vW6havv8889j6623jpdeeil+9rOfRe/evVN0ldfZvfLKK7Hzzjun1yKQDcJL7ss1urN8+fL41a9+Ff/85z9TdDn3igqFf7nZEJX//e9/n17JAavmzZuXG4Jqr3f8+PHpXjrxxBOTDfOrKVOmROvWreOYY45Jr0MZOHBg+j3idI899khzBhc1tQutLwIWquuLrM+7QQjcddddMXjw4PRgZWJ85513On21CnlEBC+D5t9+/fqlv5588skpMrHJJpukgfqpp55Kg9AOO+yQ/uZmAjUR4L1qDRo0SGa/+MUvgpL411xzTYpu/b//9//SS8TdTEAhgMAkOppL3cV/iKIiIG688cYkwBAVv/3tb1O6IS+7nzRpUvK3Z555Jj766KMkzNiv2rFjR+UjS8oG4YXIJxUaQYHI+Nvf/laWop2FDeYDlV/LUbmzzz///Jg7d256XyTvmPzWt74VvCKknNsXX3wRF198cVx99dXxxhtvpNRetgKxEASnQYMGpQVtnvF/+MMfko/xzk7uz5tuuinNL2655ZZyRuhrX48ELFTXI1yfet0SYDBmLxIvGz7ttNOC6OChhx4aL7zwQrCazOSFh2bPnj3X7QcX6dmIUpCSM2TIkGjUqFFKm/vHP/4Rq1atSoMzkdXDDz88dt9997juuuvSSvz222+fBqByaxRlOffcc1PUBiYjR46sEGHlxmJt14vvMAHkZd/Dhg1Lq+mICu7DQw45JN56663kc8cdd1zaO4jfuZlATQRYJGvXrl1aNPvggw/ioosuSlF5ol4NGzZM2R5kgfD3CRMmpOc8YwCRHVKCGRt+/etfJ7FbDu29995L4xyiHUZEnC+55JK44YYb4o9//GNMnjw5fvOb36Soc7m1bt26xX/+53+mhQuEFQse7GfmWYUY4zmPmMWPFi5cmDKx4Nm0adNyQ7Xa9f7Hf/xHyob5+c9/nhY8brvttiRKEf2//OUv41//+lcSr3fffXdcddVVybdY1GYe0alTp8SSveNuJrCuCViormuiPt86JZDbtE+aCRNi9iMx6JACtuOOO1ZMYBYtWpT+m7937dp1nX6HYjkZAwkTFFgwoZs1a1bsv//+iReTPCLOCLFvfOMbcdhhh8VPfvKTlK7TpUuXOP7444PoNAM5g1Spt8WLF6dJHqvFTISJ6DDR7d69e5oAMskhSuj2FQEEKL5DimXLli2TPzEhPvLII9N9hzhlxf3WW2+NvffeO/0OX4KrmwmsjQDRUPyJRY1p06bFgw8+GO3btw+iPJdddlnaO88iGpNoRCm/x++OPvrotMDG8UyQS2WSzDYWIn5cb+XGIhGployJjHNEuRjrEGIIfRZque9IjWbBkQgXfMqhzZ8/P0XYBwwYkMY/Fi622WabFImfMWNG4oC4wscQVwhZnlc02LGwBrtybPgTIpN7sE2bNmnPKZkKREs/++yztGALR9pZZ52V5gr8fsSIEWmvOO3ZZ5+N7373u85mK0cH2gDXbKG6ASD7I7IRYNM+6YP16tVLgw/i4vnnn08DzNlnnx1PPvlkEl2s/DFp+fOf/xzsr7jjjjuyfWARH0VaXOfOndMqJ/+NsEe0ksrLivuBBx6Y0uqIpLJi+t///d9ptZQ9he+++25Kn2O1lP1epdpYXWdAbdWqVYqash8X38LHGIwRXjBhoohYR5SVa8OHEPLs90M04DesrCMkiHZtueWWKeUe/2FSwyLH9773vbjiiiuCSD6+B2sWAUqpUR27WbNmqYiI27ojgLDYfPPNUzEkJstsS3j99ddj+PDh8eMf/zhF8PFHJsgsKJFBw7aFUvMviHKdLJaR5UHjWU1Ei0gz+wO5z4g+57IbsEGss3jL85u94oyP/DdCvxwa/sAziWdTnz590rUT6eOVRYx/ZA0xfyBllS0LRKARsIhZIoS/+93v4v777y8HVOkaWdRGuI8ZMyaNfSwO4VMsZiP6ec4xp2IuddRRR6U0ckT+QQcdFFdeeWWaT/A3bxMqG5fZqBdqobpR8fvDKxOoGhHkQcjqMAMyk19W7BiQWVVmHxJVHllpZ4CmAiTClhW+73znOyUPtmp5+I8//jiuv/76NPCweswKKAKU/yfNCVGBwGd/DmIfMYbAYAJY6m3ZsmVpICbCgC8htpj8MQFGgJFOfuqpp6YJIGnSLH4gYlllLsfGogXRdhY+Hn/88bSIwb0IQ+4vUu2539jLhG+1bds2TWQQEbBkMsjKeymKOe6rFi1apAkxHFjo+Pa3v12OblLtNZNSidDK7V9W4bCQxjP+zDPPTBFBhAPRU/ZbEmGk+i8CBCFb6g1hxXjGIhGprNyHCHfuO7ZvcG/95S9/SQLskUceSfclz3JEGpk0PNtytRtKmVUuysyC2UknnZQiozznuX5Sw2FIqu8RRxyRMJCFxfjHghrPKVLHeW6xF7PU5w0s1OZeP8c9yvyJhVnmAXPmzEmp0AhPsopgx9jI/IHnHOKU5x7ZVxROcoXfUr6rat+1WajWvj4py2+ULyLIIMNgwkoo6YakqZLuxMDNIIzYogjC7NmzU3oYaa5UsS31lq88PEUhYMBAjbhnUkOElAgrXIiwsreQ1CgGnVLfO8gCBhEJJr5MZth/xAoy6bzspWQvGxNgRD1prURP4ca+Llbg8SNSm8qhUWQL/yENmvuN1C5YsGrOpIX7jf9HJMCVSBYTPrIXSPNFvCHy81VsLTV+FA0hVZDIAvcY++RzKaildq1Zrwc+CCaePYVUg0Z4sc+SBTUmz4gJFgGYQBMBY1GgVBuLaWQG8Vxm0QyxhW/17ds3Faph0YxnE5FDUn2pIzB06NA0/vFcyz2/SpVP1esiWspr1SiehcDknZ48w4i24z9kdPB8YmEWoUr2FRFU/JJFD/ak8lMOlWrxHfyEeQMZMqT2Mmei1geZMPAiik8klaKKMMT/WByBFcXMPvzww9QFLEq6mcCGJmChuqGJ+/MSAaIx7GFjNZPCGIjRfBFBCrLkNu2zujd9+vS4/fbbk/Di4Vlq0QxEFavDuRXgfO5CkZF85eFJC2OfCS/gZuLCSjurnwzgCDRSe8qh4SdMdBFTLGawR5c9u+zrIi2OaCoRQiY3DM6sHJNazsAMe3wKhrnV51JlRpYCExbSCikoQqQBcc/vEe+kX7IXkL1f3K+8EuS8885LgpSiLUx0iJyWWuP+2m677VL0gEZaKlxIE0TIs++WhQx8hQkzfkWhMtLsy72RVsnkl72k+E0h1aB59sF86tSpaWES7vhYKTcyYxjjyEj4wQ9+kIQCfgY3/IoxjvERkUV6Kgtr+CLPdWo2kB3CcSwOlHIjY4ioJ89mUu957vDcRoiy8MiiI89sMmFgyLvASSXnuYU/wg2ujAvlsG+e5zfjGUKcZzvPbdLoKRJIZgzPLuZVLEYi+EmRJlpPyjhvBmCugA+S0VAOGQylfO+UwrVZqJZCLxbZNey7777pGzNoICJIO0E8MABXjQjykM1t2kfMzpw5s+SLJSGwSOMikpVvkMjttalaHp6VZcQ+0QcGoYMPPjilSLMns5QbkQeiW0xyifYxQcGnSCVn4sLiBhNCBl5EO+KViQyDOSvE+CGTHNLsSr0REWWVnNRV0pyZoDCh4V/uPar3sn+X1EsmeaSLwRBbVuOJ7hCRL+VGNIb97iyI8bwhYkq0mb3MvP4KX2P/LX+nMbkj1bVci7jlfAGBT3SdZxYRGrZpMPlVq0Fzj1b3SpFS9jee1eyvpBAZ9xvpvLyGh4gpAgNRwTONKD6/43nOQuTaFjNLhReLZiwCsdeWsYy9kyyo8V5PMoaIJrNoTSMySESeqDN1GFhMo2ggz7NyaDyviRLzLM9VM2YBlmq+ROYR8ywG4T/cn9yXLIJwDGnALDIRPfWCWzl4S3Fdo4VqcfVXrf+2iCj2NPBwrK4hGFgpJhWFlF+iE4hUJsNVI4I8OBm8y2XTPgMMewPZ38UeLURrvsagk688POyZKLIaX8qNSTCiicE5F91jxZyCSExkiDYQ0WH1nMkvK8lMBkkBYyAmjY5JDAsh5dBIkSN1kr1sRGOYFJPiCwvEF4scCDHSLYk0E1Hk9TOID6IXpCbyLwsBpdx4DrHIQYSKtFX2vfHs4X4jQ4EUaCoc8zoGFkiY9LGfi4IjpR7VqtrvPMPJSCAlnOcVLLj3WNBAVJFmmSt+V101aMQp0UIWB/At3uNY7I1IMEKT7A2l5dJUEQs0Ui9ZNOM5TmSaxUdYIlZZJGIhstRbLiJIZI9xjn23CHhSWNniwrOJiCrp0jzj8T1SWvHFXCE8nm+lvvBBHQoyEBjHeL4THeWeo8GN/d5kfbCwRqYRDW6kRTNXYysVUVWyako9e6HU75lSvj4L1VLu3Y1wbaxuIpKISPAAzNdYzSNKwWopjT0kDDBUcCzViCBiG1GVT0Ay0LAyjGhHRDDgsNqZ2w+YjyHHlGN5eIQmKWBEnPEbuDFZZqKMUCU6iNhgpRhGTPSIFOaqG5M6xn7KcmiwIBpKdBQO7L1FiDLhQyDQWBzKFdvKRU+JOrPKTrYDk71SrgRd2Q/YC5mrmAoXJnPXXntt2hOY8xkKinBf8vxCsBJFJerKRJB01XJpLGDAiIU07jdEAhEvfIjnF4WPuDerqwZNpIeINM9EMiEQ+qRVF3PLLdIi0lkAYgxkQQ0WpMvzyqt8LVfxmMwPXklDBJBiZvzLFg/GhHJo+SKCFI5CmHOv4WtUheYZzmISEVXuOxYd2ULEYhqZWaW+ZSPnC2zboP4EW6hY7CC9mQUNUnthgzDF91g0QfBzv3J/8nvmXoUWOysHH/Q11k4CFqq1s1+K9lsxOUagsm+GyXF1q3Ss6jHZIYKK+CC1h8kO+0tKKSKICGCygViiOnFutZMUHCbBRGyY2BABZKDlhwkNEWkGIPYF5muct5zKwzPYkurGNbNqzESF9yYyaWEyyOSEtEOiMhT4Yd8X+5eoQkvaE37IfstSbkxCmOwyaSNtnOgDaXBEqfgdURqiEfyNbAbuPSaHuWJbCAyi0ET0Ebfl1uBC6iD3HhNe9gTuscceFZE+UsaJNL/66qvpOYXYQsRjU2rFyXgVSuU97WRqcM0wImLKMzq3L5eoDJkgVIdmMsx9SvSZMYAJMSn4VatBw5CFSc5VKq3yIi3jIPtHiTpTzZhnOddMVke+RnE3BAT+hahlwbbUsxfgUNmvWBzLFxHkmYa/MUfgeUWBPLa9kElDNgjs2LpR6o0xj2tm7sB+U3yExW2e8yx2MB7yfljGAVLEWSQi9R4fJLKKPzG3IAOk2BeFSr2vfX2rE7BQtUdIBJjwIgh4dUfVVjkimKuiyqre2t5nyoOWSBgpPER32B9Riu/E4x1tDCiIcFaDmbQxoWGPIC/UZgJH6hJ7jmBM8QIELBM9uBJ1qMyFAYmUYCaJpb5XkIgWL2FngCXSxTveiPARJYQjK8KICtKWiGyRCsweS/YxUViK1Xj2D5bKoIzIrC5VGb9hgYiIPZM4olSwQISSHoaQz72Ch0UOGHEP0hD15VRsq7oHHotJFN1ibzfCnokf4oLf41/cc0TtuWdLuTEhJpqXqwzKM4jnFX5CdJnsBCI2+ByvqSCiCjcyPFhYIz2a6DTHIFZLcdGDvaPsg8xtzWDfN9E9nldcM898FtHITiAaz/OL/fAUKMvXELUIMQRuubz6o6pfIUipX1E1IshCL4uPjJEwRvhT8KecGum71FXg2YPwZPzjGcXiIuKUxr2JEOWZT7YRcw/+ZUsCC+Rk1OTSy8uJna+1+AlYqBZ/H67XK+AByQDKBIRBFyFauSALDz4iCpUjggzQrBznXt6e7wuy/6scKsoRhcgVqCHSwCon+7UQTwy6uagWAwkTGV7RwMSPaA4pmkzy2FdIoQiOZbWUyCCT6VJLccInmLCxZ5nJHSKU1+kQYSD1i1XznBjNVZ8lKs8x/EtDfCFOS22/DRMUXhlA1CrfRJbJCwV/mOiy4MGqO9G+yq90ghn+SEoiQiQX3V+vD5AiOjnp4ogw0uWI3LAPlUUj0jB5vpGCWA6vsyC1HiHK9RPxykWauQ/xLaqu8mxioYzfYcO9SeVahD3jBFkipRQtrerGPKdZFEIokE5P6iXiNPfOZhZpEV1Emxk7uddY8MCvqu6bZCsMi5f4WW4PfRHdNvJXZeGV93aSTcXiIkV/yGCo7Ffsz60aESS6j/hiHoIQK8WFj6oQeQbxzOd9uTBi0YgUcBapcw2fos5CLruIRRP8i/kD4yV7VHOv60PUcs+y15cFODcTKCYCFqrF1Fsb4buSikNEj/1GDM4MMojVXEEW3rPI3qSqEUEGIibOrK5XjgiSLke6DkKiVNJ1YAOXfFUYiQqSeskP4pJVUQQ8ooEJDNzgymoy0UJWRxFp/D33MnOiqywYIFCJwpZigwn7cmHA9VL86KWXXkqr6xRIorE/EMGOWM29/oJ9YaT8luI7TysXJuO9wYhRIleIiKqNyR33KhMZfIyIKfcg6b5EtvBNoj5EWkmFLrVFjnVxT5DZgf/hX/DEp2BdDsVrKmfF4DdkgNBggOBCjHF/5jI+8Cee/aRdEhnjHiyV53llX+Ke4/6pGkVnHCNymouyU8CHZzdCPrdIyzjH/mUWJmkICVgxLiJMEbMIB1LtSdHE79ijWorvAkd4cW+xEEQBJIqT4TNV/YqtMDCoGhEkQs/zsBSKbZEOz4JOde+dpqgd2S8EAViExX+IhlLMjuNY6MAfebbznGf+wXyKYxDzbiZQagQsVEutR9fx9fDqDlJK2ONAlUsGEaIKlQuysIpXNSJIKiGRVvZKkKbDBJrIIPueWFmmymgpNPZmUY2RVd/qXobN5ISJH4MLEzuEKOmrRP8YlHIig9ROBqNyqx6KH/C6ASLG+BsRe0QpopxU81xknokeRWwYjMuhyEjlPW8IBviQzkXhmXyNaA5pv/gWER7EPBM8JolEq5kMW6DW/NRB0HMvl+qiUFUC7L0lC6ZyVgwpzkQMea6R3ZGLNCOmEBG5omVEbsgKqa46ec20a7cFixdwyN1PLCiSIUMaNNfNnkF+l9sLztWwOIsYZWERLiwyIiSIisGVvai8F5RxkAXOUmuMidRjYAGWrQpku+BD3FOI/lyrnMFQ2a+IMFeNCDIGsOiLuC32xlYf5gGkMOdrzJ3Y5gJDGgtFBAcY93784x+nxW0WuZk/MJfAl8iyKadibsXuA/7+hRGwUC2MV9lZU12VlWImLKSUELUhZRWhmivIUl1EkNV3UqOwQ3CUSroq18XgQVVUBgiEAaKc13rkE6uIBAYehAcDMIMtwpW0HtLsOL7cGxEKBmBWiIlIkM7EwgaTHBiRKk1BDSaApRi5ydf/lQuTcQ+RrssklwhMvoZvsUeONDle78ACCcVZ3EygMgEWL4jQE6HieU6qfL6sGCqIIkrxOyJd3JMIMl4ZVl00qBRJE8UjgwgOCAyigew5ZYGRrA9Ea+WCZKRA5xZpEaqkTpfLokdOqBMVJtJHOjSRQfyFmgG5zBc45haxy8GvKAZIDQG2Y7AQzYI92TH5FuwpjsR4CDsa2VX4HnMuFkGIyPI7hGypv36nFJ8nvqbCCVioFs6s7I7g4chDlmpxTGgQaIiIXEGWcosIcr25gitEmlltJyLBqmd1jXcxsmeEVXSEFivMrDwj4D3YfEWNoj+5SCoDMQVsSK8j2srAzv+XUyNCSnpgrjAZ0RuyGihAVl1DoBLByb2Lt5x4+VrzE8gVPeI5Q9YGGTHsI2WvKdEdFjRYSKuaFYMg4/lGxVrEGFVZWTAqtQrHNfkNEXYWfBDpTZs2TRFUhCpZQkQMud8Qo6SxsjeXllukrencpfh3BBULjIgwxkoWGImY8kxifzzPeOYTuSJv5eBX+AZp4MwDiJhyD5HWW7myds4XWNBmQZbsGdixKE5WDNWO3UygHAlYqJZjrxd4zaSE8aAlCshKPHsnSVEt14IspKYygWOFmOgyK5xMUBDu1VVszL3Oorq0zQK7pCTNKRZEejSp1ER7WInnRe7l3CrveaMgBpM//K7qqyuwYxJISli5Mytnf6l87Qgontm5CqncTyyOsd+NtHAa76CkkjjiNd8+eZ5vRIHKKSKYz3/Y203xKDiRaomAIC2YvboUQWJfOFHEcij0U9P9xV5U9jMzR4AR75RlEQSxyv54qrXn9qbWdK5S+TsLGSzww4D0b8a4tRWbpKgW2Qw0iimRKeNmAuVKwEK1XHu+gOtmVZT0VCYtvEYGMVHqr0apCQ+v+CB1l9QvoqJMYGDChKZqI/UX++r2sNb0WeX0dyY0iLDddtvNkeb/7fjcnjf+ZY8u0Ryiy7n3piI6iJaRUkYlTdLt3cqbAAKB5xKVd8l+Yd8f0Rz2+SEkXn/99VT9k/fFUtAH4UAacDnvk1+bx+SqbpN6T4YHafnUFyD6xThQiq9Wy3oHkdVBxJR0aRZoiQbyXC/3/fHMEdhKhYhnfyoRUha88zXuX2daZfVAH1dqBCxUS61H19P1kMpD6g7FlNy+IkA6HKvopMaxh5A9ghSeoiFMqV5LFIMJIaujrCy7mUChBCrveWOCQ8SU6D3igtRoMhtK7XU8hTKy/ZoE2AvPXrfcM4mFDibJVKrlndjsCUe8sn+OBRC36gnkoqjca1RbJbOIvfRu+QnwGi2q+5JSztjnLI9IcwQipSx6UNeDSClV7HONd6OyzYMK3KT7lkstBt9DJlATAQvVmgj57yZQDQHeH0gFSFZJ2XtK6iovdGcAYiJIGiY/5banyw6z7gmU8563dU+zPM5ImiGpqRTBI5qFuKIyKMKB6tqkkFMJGvHqVjMBOPJuWUe6amZlizUJMCcg7ZfXFlHjgu1CiFLemjBx4sSUgk8dCxYfSY92MwET+IqAhao9wQS+BgFeYE5Rksp7T3lFCAUj3EzABExgYxKgWBKvV2HyyyudKODCnlM3EzCBDU+AdGjSxnk3au51MkSfqQ5NoTI3EzCBNQlYqNorTMAETMAETKAECTAxpngS+1LZw+ztByXYyb4kEzABEyhhAhaqJdy5vjQTMAETMIHyJUDlX9JVeQ+2C/6Urx/4yk3ABEygWAlYqBZrz/l7m4AJmIAJmEANBNg/T8E3iuG5mYAJmIAJmEAxEbBQLabe8nc1ARMwARMwARMwARMwARMwgTIgYKFaBp3sSzQBEzABEzABEzABEzABEzCBYiJgoVpMveXvagImYAImYAImYAImYAImYAJlQMBCtQw62ZdoAiZgAiZgAiZgAiZgAiZgAsVEwEK1mHrL39UETMAETEAisGrVqqDqbfv27aN+/frSMTYyARMwARMwAROoPQQsVGtPX/ibmIAJmIAJrAMCw4cPjwsuuKDiTL169QreKdqkSZNqz7506dJo2bJlOu76669fB9/CpzABEzABEzABE/g6BCxUvw49H2sCJmACJlCrCNx9991xzDHHxNZbbx0I1D/96U8xZ86cOP3002P06NHVftclS5ZEq1aton///jFs2LBadU3+MiZgAiZgAiZQjgQsVMux133NJmACJlCiBPbee+947rnnYubMmbHnnnvGF198Ed26dYvFixfHjBkzUjrwueeeG9OmTYvGjRtHnz59YvDgwbFixYoKoTpgwIA46qijktDF9s9//nMMGTIkfvvb38aHH34Yl112WRx00EExderUaN26dQwcODCuvfbamDt3bvziF7+In/3sZ/Gb3/wmJkyYEN27d4+JEyfGt771rfiv//qv2HnnnUuUvC/LBEzABEzABNYtAQvVdcvTZzMBEzABE9hIBNiXWq9evWjevHkSpnXr1l3jm5x88slJOCIuX3311ZgyZUrccccdSczmIqp9+/aNv/jKbQAAAx5JREFUbbfdNglSBOq4ceOid+/eMX369FiwYEGceOKJ0alTp9hnn31i/Pjx6TPOOuusuOeee2LRokXx0UcfxRVXXJEis7vsskscfPDBcdNNN8U555wTt9xyy0ai4481ARMwARMwgeIiYKFaXP3lb2sCJmACJlANgc8//zwaNGgQ2223Xbz55ptrWC1fvjyJ2OOOOy4mTZoUn376adq3euSRR8Ztt91WkFAlytqjR48khomaPvDAAymaStSUz2ZPLEL17bffjo4dO0aHDh2iTZs28be//c39ZwImYAImYAImIBCwUBUg2cQETMAETKA4CGy//fbx1ltvpR+iojT2py5btixuvPHG2GKLLSr2q65cuTKJR1KEiYbmIqr9+vVL4pKo69VXX51E589//vPVIqoPPvhgisLWqVMnjj766LQX9pe//GVceeWV6bOJoCJU2fvaokWL2HHHHaNRo0YWqsXhRv6WJmACJmACtYCAhWot6AR/BRMwARMwgXVDICcqSc1FXD722GNBgSUqASNADzvssHjiiSdi5MiRqcjSVVddFaNGjYrjjz++QqgSFSUyyzkQq0OHDk3is3Lqr4Xquukvn8UETMAETMAEqiNgoWrfMAETMAETKBkCREnZV0qBpFzr2bNn3H777SmiSZElUnbZS0r7wQ9+EJMnT06R0cqvp0GgXnPNNcnm+9//fvzlL3+Jxx9/PO1RPeGEEyInVImWdu3aNUVUf/WrX6W9qRRVGjFihCOqJeNVvhATMAETMIGNQcBCdWNQ92eagAmYgAmsVwKfffZZEoxt27aNdu3arfZZVAKeN29eNG3aNDbbbLNqvwd7WhGw2LmZgAmYgAmYgAlsWAIWqhuWtz/NBEzABEzABEzABEzABEzABEygBgIWqnYREzABEzABEzABEzABEzABEzCBWkXAQrVWdYe/jAmYgAmYgAmYgAmYgAmYgAmYgIWqfcAETMAETMAETMAETMAETMAETKBWEbBQrVXd4S9jAiZgAiZgAiZgAiZgAiZgAiZgoWofMAETMAETMAETMAETMAETMAETqFUE/j/IS5E3izlewwAAAABJRU5ErkJggg==", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "linker.roc_chart_from_labels_column(\"cluster\",match_weight_round_to_nearest=0.02)" ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "records = linker.prediction_errors_from_labels_column(\n", - " \"cluster\",\n", - " threshold=0.999,\n", - " include_false_negatives=False,\n", - " include_false_positives=True,\n", - ").as_record_dict()\n", - "linker.waterfall_chart(records)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "7830d1ae-0c70-43e7-94e6-696a4332f818", - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/vnd.vegalite.v4+json": { - "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", - "config": { - "view": { - "continuousHeight": 300, - "continuousWidth": 400 - } - }, - "data": { - "values": [ - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "francis", - "value_r": "francis" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.2343746323933125, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.23 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.3037803185309872, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "francis", - "value_r": "francis" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "hall", - "value_r": "None" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 0, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1800-01-01", - "value_r": "1800-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.3330751950470222, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.00 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.5860801780265656, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1800-01-01", - "value_r": "1800-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "hu12 8rh", - "value_r": "hu6 8rf" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 0, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "kingston upon hull, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "land surveyor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 0, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.13644541400215313, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.8736041891542885, - "m_probability": null, - "record_number": 0, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "edmonds", - "value_r": "beesley" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 1, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "yo25 9dz", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "east riding of yorkshire", - "value_r": "kirkburn" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 1, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "editor", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 1, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 1, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "edmonds", - "value_r": "beesley" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 2, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "east riding of yorkshire", - "value_r": "kirkburn" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 2, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 2, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 2, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "beesley", - "value_r": "edmonds" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 3, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "yo25 9jl" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "kirkburn", - "value_r": "east riding of yorkshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 3, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "editor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 3, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 3, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "beesley", - "value_r": "edmonds" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 4, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "yo25 9dz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "kirkburn", - "value_r": "east riding of yorkshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 4, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "editor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 4, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 4, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 5, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 5, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "beesley", - "value_r": "edmonds" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 5, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "yo25 9du" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "kirkburn", - "value_r": "east riding of yorkshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 5, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 5, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 5, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 6, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 6, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "beesley", - "value_r": "edmonds" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 6, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 2.825396482123016, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 1.4984533321851021, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1788-01-01", - "value_r": "1788-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "kirkburn", - "value_r": "east riding of yorkshire" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 6, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "editor" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 6, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.08178339092164329, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.6120483083188657, - "m_probability": null, - "record_number": 6, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 7, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 7, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 7, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-01-03", - "value_r": "1855-01-03" - }, - { - "bar_sort_order": 6, - "bayes_factor": 6.828041498463956, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.771471826591518, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-01-03", - "value_r": "1855-01-03" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "sk11 7js", - "value_r": "sk17 7hp" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "ireland", - "value_r": "glaslough" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 7, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 7, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.07351497308336684, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.7658180705314352, - "m_probability": null, - "record_number": 7, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 8, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 8, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "james", - "value_r": "james" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4527666635814206, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.21 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.143160355923113, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "james", - "value_r": "james" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 8, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "montrose", - "value_r": "graham" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 8, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 8, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1612-10-25", - "value_r": "1612-10-25" - }, - { - "bar_sort_order": 6, - "bayes_factor": 13.656082996927912, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 13.66 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.771471826591518, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1612-10-25", - "value_r": "1612-10-25" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "dd10 0su" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 8, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "angus", - "value_r": "montrose" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 8, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "military officer", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 8, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.13092885152686268, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.9331450497947706, - "m_probability": null, - "record_number": 8, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 9, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 9, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "killigrew", - "value_r": "None" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 9, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1606-05-01", - "value_r": "1606-05-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 8.193649798156747, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.034506232425312, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1606-05-01", - "value_r": "1606-05-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 9, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "e4 8bu", - "value_r": "tw13 6db" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 9, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 9, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "hanworth", - "value_r": "hounslow" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 9, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "castellan", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 9, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.0868217120961546, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.5258003174226147, - "m_probability": null, - "record_number": 9, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 10, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 10, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "killigrew" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 10, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1606-05-01", - "value_r": "1606-05-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 8.193649798156747, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.034506232425312, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1606-05-01", - "value_r": "1606-05-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "tw13 6db", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "hounslow", - "value_r": "hanworth" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 10, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 10, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.5119506572397606, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.9659233276033713, - "m_probability": null, - "record_number": 10, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 11, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 11, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "hughes", - "value_r": "None" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 11, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "ng24 3wz", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "newark and sherwood", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "minister", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 11, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 11, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 12, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 12, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "hughes" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 12, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ng24 3wz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "balderton" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "minister" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 12, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 12, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 13, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 13, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "hughes" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 13, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ng24 3wz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "newark and sherwood" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "minister" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 13, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 13, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 14, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 14, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "hughes" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 14, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ng24 3wz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "newark and sherwood" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "minister" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 14, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 14, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 15, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 15, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "hughes" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 15, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ng24 3wz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "newark and sherwood" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "minister" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 15, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 15, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 16, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 16, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "hughes" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 16, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ng24 3wz" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "balderton" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "minister" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 16, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06935061799702474, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.8499474510287257, - "m_probability": null, - "record_number": 16, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 17, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 17, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4385527024735812, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1891778678878713, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 17, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "ernest", - "value_r": "dudeney" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 17, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 17, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "tn20 6pj", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "mayfield and five ashes" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 17, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.6137377823657361, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.7043056948014667, - "m_probability": null, - "record_number": 17, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 18, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 18, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4385527024735812, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1891778678878713, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 18, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "ernest", - "value_r": "dudeney" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 18, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 18, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "tn20 6pj", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "mayfield and five ashes" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "mathematician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 18, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.6137377823657361, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.7043056948014667, - "m_probability": null, - "record_number": 18, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 19, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 19, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.4385527024735812, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1891778678878713, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "henry", - "value_r": "henry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 19, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "ernest", - "value_r": "dudeney" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 19, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 19, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 6, - "bayes_factor": 10.242062247695934, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.3564343273126744, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-04-10", - "value_r": "1857-04-10" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "tn20 6pj", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "mayfield and five ashes" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "mathematician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 19, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.6137377823657361, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.7043056948014667, - "m_probability": null, - "record_number": 19, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 20, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 20, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 20, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "baronet", - "value_r": "strickland" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 20, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 20, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "sw1p 3jx", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "westminster", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 20, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.7679904380631085, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.38083974623886313, - "m_probability": null, - "record_number": 20, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.22998460945033555, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.120390775511631, - "m_probability": null, - "record_number": 20, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 21, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 21, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 21, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "strickland", - "value_r": "baronet" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 21, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 21, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sw1p 3jx" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "westminster" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 21, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.7679904380631085, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.38083974623886313, - "m_probability": null, - "record_number": 21, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.22998460945033555, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.120390775511631, - "m_probability": null, - "record_number": 21, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 22, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 22, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 22, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "strickland", - "value_r": "baronet" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 22, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 22, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "westminster" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 22, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.7679904380631085, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.38083974623886313, - "m_probability": null, - "record_number": 22, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.22998460945033555, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.120390775511631, - "m_probability": null, - "record_number": 22, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 23, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 23, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 23, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "strickland", - "value_r": "baronet" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 23, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 23, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sw1p 3jx" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 23, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.7679904380631085, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.38083974623886313, - "m_probability": null, - "record_number": 23, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.22998460945033555, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.120390775511631, - "m_probability": null, - "record_number": 23, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 24, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 24, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 24, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "strickland", - "value_r": "baronet" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 24, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 24, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sw1p 3jx" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "westminster" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 21.98341326393178, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 4.458343499220055, - "m_probability": 0.8992633138155923, - "record_number": 24, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.040906446283799566, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 0.7679904380631085, - "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.38083974623886313, - "m_probability": null, - "record_number": 24, - "sql_condition": "\"occupation_l\" = \"occupation_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "writer", - "value_r": "writer" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.22998460945033555, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.120390775511631, - "m_probability": null, - "record_number": 24, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 25, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 25, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.45384297102258087, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.1397348813239896, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "sir", - "value_r": "sir" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 25, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "strickland", - "value_r": "baronet" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 25, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 25, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "sw1p 3jx" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "westminster" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "writer", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 25, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.013622218339665128, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -6.1978945284928235, - "m_probability": null, - "record_number": 25, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 26, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 26, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "ethel", - "value_r": "ethel" - }, - { - "bar_sort_order": 2, - "bayes_factor": 9.091267133817414, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 9.09 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 3.184481390158643, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "ethel", - "value_r": "ethel" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 26, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "tweedie", - "value_r": "alec-tweedie" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 26, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 26, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1862-01-01", - "value_r": "1862-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.13747734560665684, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 7.27 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.862734193149487, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1862-01-01", - "value_r": "1862-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "se1 8tx", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 162.73433041528628, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Exact match", - "log2_bayes_factor": 7.346374823669453, - "m_probability": 0.8458306903800119, - "record_number": 26, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.005197616804158735, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 10, - "bayes_factor": 0.09770937601995389, - "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 1, - "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -3.3553591824585562, - "m_probability": null, - "record_number": 26, - "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "london", - "value_r": "london" - }, - { - "bar_sort_order": 11, - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "record_number": 26, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9590935537162004, - "value_l": "biographer", - "value_r": "writer" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.10073668618440759, - "record_number": 26, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9590935537162004, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.2852143181647854, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -1.8098816859427886, - "m_probability": null, - "record_number": 26, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 27, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 27, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 27, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "white", - "value_r": "wight" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 27, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 27, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.23410427994733563, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.0947767845196545, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 27, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "ng6 9en", - "value_r": "ng6 7al" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 27, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bulwell" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 27, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.0011356176325734825, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -9.782307129792507, - "m_probability": null, - "record_number": 27, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 28, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 28, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.20933838794974308, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2560912012273384, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "john", - "value_r": "john" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "whyte", - "value_r": "wight" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 28, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.23410427994733563, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.0947767845196545, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "ng6 9en", - "value_r": "ng6 7al" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "nottingham", - "value_r": "bulwell" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 28, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "cricketer", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 28, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.00017599212603783306, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -12.472201496029411, - "m_probability": null, - "record_number": 28, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 29, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 29, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 29, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "pease", - "value_r": "r." - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 29, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 29, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 29, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "ba5 3bt", - "value_r": "bs3 5bq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 29, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 29, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.07460671274371347, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.74455074687633, - "m_probability": null, - "record_number": 29, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 30, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 30, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 30, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "pease", - "value_r": "r." - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 30, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 30, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bs3 5bq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 30, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bristol", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 30, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 30, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06817713934473707, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.874568123293993, - "m_probability": null, - "record_number": 30, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 31, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 31, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 31, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "r.", - "value_r": "pease" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 31, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 31, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "bs3 5bq", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 31, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bristol, city of", - "value_r": "bristol" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 31, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 31, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06817713934473707, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.874568123293993, - "m_probability": null, - "record_number": 31, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 32, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 32, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 32, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "peace", - "value_r": "r." - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 32, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 32, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bs3 5bq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 32, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bristol", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 32, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 32, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.06817713934473707, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -3.874568123293993, - "m_probability": null, - "record_number": 32, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 33, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 33, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "pease" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 33, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bs3 5bq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 33, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bristol", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 33, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 33, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.9764152216839562, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.034433308907189736, - "m_probability": null, - "record_number": 33, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 34, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 34, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6287045328545522, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.6695459301434913, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "edward", - "value_r": "edward" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "r." - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 34, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 6, - "bayes_factor": 5.121031123847967, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.3564343273126744, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1857-12-23", - "value_r": "1857-12-23" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bs3 5bq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 34, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bristol", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 34, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 34, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.9764152216839562, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.034433308907189736, - "m_probability": null, - "record_number": 34, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 35, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 35, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 35, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "moore", - "value_r": "muir" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 35, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 35, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1437482420729254, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.79838378173943, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "so30 2eq", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "eastleigh", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "head teacher", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 35, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.026848940041691617, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.218991056006492, - "m_probability": null, - "record_number": 35, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 36, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 36, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 36, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "moore", - "value_r": "muir" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 36, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 36, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1437482420729254, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.79838378173943, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "so31 1by", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "eastleigh", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 36, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.026848940041691617, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.218991056006492, - "m_probability": null, - "record_number": 36, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 37, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 37, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 37, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "muir", - "value_r": "moore" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 37, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 37, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1437482420729254, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.79838378173943, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "so30 2eq" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "eastleigh" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "head teacher" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 37, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.026848940041691617, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.218991056006492, - "m_probability": null, - "record_number": 37, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 38, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 38, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.366944700311449, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.4509548799592081, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "mary", - "value_r": "mary" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 38, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "muir", - "value_r": "moore" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 38, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 38, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1437482420729254, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.79838378173943, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1860-01-01", - "value_r": "1860-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "eastleigh" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "head teacher" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 38, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.026848940041691617, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.218991056006492, - "m_probability": null, - "record_number": 38, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 39, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 39, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "arthur", - "value_r": "arthur" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.7106077288219567, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.41 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.4928747148694078, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "arthur", - "value_r": "arthur" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "finlay" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 39, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1854-01-01", - "value_r": "1854-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.2402829852831891, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.16 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.0571936017114982, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1854-01-01", - "value_r": "1854-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "tf11 9bx", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "shropshire", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "rugby union player", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 39, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.33413530765043736, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -1.5814956564203728, - "m_probability": null, - "record_number": 39, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 40, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 40, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 40, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "swan", - "value_r": "stallybrass" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 40, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 40, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 6, - "bayes_factor": 6.828041498463956, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.771471826591518, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "dl12 9bf", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 40, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "united kingdom", - "value_r": "county durham" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 40, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "publisher" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 40, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.029788668557820374, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.069092547823968, - "m_probability": null, - "record_number": 40, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 41, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 41, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 41, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "stallybrass", - "value_r": "sonnendchein" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 41, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 41, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 6, - "bayes_factor": 6.828041498463956, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.771471826591518, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ca17 4ee" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 41, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "county durham", - "value_r": "united kingdom" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 41, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "publisher", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 41, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.029788668557820374, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -5.069092547823968, - "m_probability": null, - "record_number": 41, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 42, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 42, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 9.930908563690332, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 3.311925713762501, - "m_probability": 0.020267294367821084, - "record_number": 42, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", - "term_frequency_adjustment": false, - "u_probability": 0.0020408298231566584, - "value_l": "wonnenschein", - "value_r": "sonnendchein" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 1, - "label_for_charts": "Levenshtein_distance <= 2", - "log2_bayes_factor": 0, - "m_probability": 0.020267294367821084, - "record_number": 42, - "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", - "term_frequency_adjustment": true, - "u_probability": 0.0020408298231566584, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 42, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 6, - "bayes_factor": 6.828041498463956, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 2.771471826591518, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-05-05", - "value_r": "1855-05-05" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 42, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "dl1w 0bf", - "value_r": "ca17 4ee" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 42, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 42, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "eggleston", - "value_r": "united kingdom" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 42, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "publisher", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 42, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.7185154034749656, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -0.47690900949390674, - "m_probability": null, - "record_number": 42, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 43, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 43, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "arabella", - "value_r": "arabella" - }, - { - "bar_sort_order": 2, - "bayes_factor": 33.691166437088064, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 33.69 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.07429847240822, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "arabella", - "value_r": "arabella" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "fisher", - "value_r": "buckley" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 43, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1840-01-01", - "value_r": "1840-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.671610639193176, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 1.49 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.574303010250212, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1840-01-01", - "value_r": "1840-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "bn2 1ej", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "brighton and hove", - "value_r": "brighton" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 43, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "writer", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 43, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.47914656850958903, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -1.0614610583051676, - "m_probability": null, - "record_number": 43, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 44, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 44, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.2060251185001788, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.2791078539523104, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "william", - "value_r": "william" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "charlton" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 44, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.23410427994733563, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.0947767845196545, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1855-01-01", - "value_r": "1855-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "chorley", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 44, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 0.10503322203979278, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.2510823699365705, - "m_probability": 0.10073668618440759, - "record_number": 44, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9590935537162004, - "value_l": "trade unionist", - "value_r": "politician" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.10073668618440759, - "record_number": 44, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9590935537162004, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.009913468665482506, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -6.656394348248003, - "m_probability": null, - "record_number": 44, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 45, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 45, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "harry", - "value_r": "harry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.1501000590973836, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.20175938159047846, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "harry", - "value_r": "harry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 45, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "bell", - "value_r": "purvis" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 45, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 45, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 45, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "bs4 1na", - "value_r": "bs2 0sp" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 45, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "bristol, city of", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "anthropologist", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 45, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.005854342005837653, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -7.416277255397598, - "m_probability": null, - "record_number": 45, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 46, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 46, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "harry", - "value_r": "harry" - }, - { - "bar_sort_order": 2, - "bayes_factor": 1.1501000590973836, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 0.20175938159047846, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "harry", - "value_r": "harry" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 46, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "purvis", - "value_r": "bell" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 46, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 46, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.21966889539294226, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.1865974929425636, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1851-01-01", - "value_r": "1851-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "bs2 0sp", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "bristol, city of" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "anthropologist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 46, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.034520561334653414, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -4.856400265578355, - "m_probability": null, - "record_number": 46, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 47, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 47, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "bernie", - "value_r": "bernie" - }, - { - "bar_sort_order": 2, - "bayes_factor": 30.144727864763002, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 30.14 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 4.913833800214974, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "bernie", - "value_r": "bernie" - }, - { - "bar_sort_order": 3, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "moor", - "value_r": "None" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 47, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.1692902850858832, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.56242890996192, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1850-01-01", - "value_r": "1850-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 47, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "al9 5bz", - "value_r": "kt24 6es" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 47, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 47, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "hatfield", - "value_r": "welwyn hatfield" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 47, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "ceramicist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 47, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.2624666807604501, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -1.9297938056425616, - "m_probability": null, - "record_number": 47, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 48, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 48, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "robert", - "value_r": "robert" - }, - { - "bar_sort_order": 2, - "bayes_factor": 0.6479070468670781, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.54 times less likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -0.626141245732872, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "robert", - "value_r": "robert" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 48, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "angel", - "value_r": "marshall" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 48, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 48, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1849-01-01", - "value_r": "1849-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.3939254710652282, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.54 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -1.344005390828418, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1849-01-01", - "value_r": "1849-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "bh23 4fp", - "value_r": "None" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 0.1549748092929906, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.689894366236906, - "m_probability": 0.15416930961998804, - "record_number": 48, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9948023831958412, - "value_l": "bournemouth, christchurch and poole", - "value_r": "highcliffe and walkford" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.15416930961998804, - "record_number": 48, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9948023831958412, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "None", - "value_r": "watercolorist" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 48, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.0054045748297124495, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -7.531603157024466, - "m_probability": null, - "record_number": 48, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 0, - "bayes_factor": 0.00013584539607096294, - "bayes_factor_description": null, - "column_name": "Prior", - "comparison_vector_value": null, - "label_for_charts": "Starting match weight (prior)", - "log2_bayes_factor": -12.845746707461347, - "m_probability": null, - "record_number": 49, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 1, - "bayes_factor": 48.72386745735117, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", - "column_name": "first_name", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 5.606556746606498, - "m_probability": 0.5524853353802543, - "record_number": 49, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.011339110875462712, - "value_l": "herminie", - "value_r": "herminie" - }, - { - "bar_sort_order": 2, - "bayes_factor": 63.638869936721896, - "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 63.64 times more likely to be a match", - "column_name": "tf_first_name", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": 5.991836312216247, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"first_name_l\" = \"first_name_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "herminie", - "value_r": "herminie" - }, - { - "bar_sort_order": 3, - "bayes_factor": 0.06982392104370992, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -3.840134814386803, - "m_probability": 0.06961049788217637, - "record_number": 49, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9969434091018756, - "value_l": "kavanagh", - "value_r": "templeton" - }, - { - "bar_sort_order": 4, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", - "column_name": "tf_surname", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.06961049788217637, - "record_number": 49, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9969434091018756, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 5, - "bayes_factor": 295.6533104693185, - "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", - "column_name": "dob", - "comparison_vector_value": 3, - "label_for_charts": "Exact match", - "log2_bayes_factor": 8.207762621015382, - "m_probability": 0.61837388325496, - "record_number": 49, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": false, - "u_probability": 0.002091550682362922, - "value_l": "1861-01-01", - "value_r": "1861-01-01" - }, - { - "bar_sort_order": 6, - "bayes_factor": 0.16387299596313493, - "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.10 times less likely to be a match", - "column_name": "tf_dob", - "comparison_vector_value": 3, - "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", - "log2_bayes_factor": -2.609349957349413, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"dob_l\" = \"dob_r\"", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "1861-01-01", - "value_r": "1861-01-01" - }, - { - "bar_sort_order": 7, - "bayes_factor": 0.1695900002634309, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": -2.559876989819243, - "m_probability": 0.16947053958156647, - "record_number": 49, - "sql_condition": "ELSE", - "term_frequency_adjustment": false, - "u_probability": 0.9992955912395844, - "value_l": "gu12 4nb", - "value_r": "gu11 3he" - }, - { - "bar_sort_order": 8, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", - "column_name": "tf_postcode_fake", - "comparison_vector_value": 0, - "label_for_charts": "All other comparisons", - "log2_bayes_factor": 0, - "m_probability": 0.16947053958156647, - "record_number": 49, - "sql_condition": "ELSE", - "term_frequency_adjustment": true, - "u_probability": 0.9992955912395844, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 9, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "aldershot", - "value_r": "None" - }, - { - "bar_sort_order": 10, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_birth_place", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 11, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": false, - "u_probability": null, - "value_l": "writer", - "value_r": "None" - }, - { - "bar_sort_order": 12, - "bayes_factor": 1, - "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", - "column_name": "tf_occupation", - "comparison_vector_value": -1, - "label_for_charts": "Null", - "log2_bayes_factor": 0, - "m_probability": null, - "record_number": 49, - "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", - "term_frequency_adjustment": true, - "u_probability": null, - "value_l": "", - "value_r": "" - }, - { - "bar_sort_order": 13, - "bayes_factor": 0.24165943221163722, - "bayes_factor_description": null, - "column_name": "Final score", - "comparison_vector_value": null, - "label_for_charts": "Final score", - "log2_bayes_factor": -2.0489527891786787, - "m_probability": null, - "record_number": 49, - "sql_condition": null, - "term_frequency_adjustment": null, - "u_probability": null, - "value_l": "", - "value_r": "" - } - ] - }, - "height": 450, - "layer": [ + "cell_type": "code", + "execution_count": 21, + "id": "3a7de8fb-a7e3-4322-b718-3e3cf9803e9c", + "metadata": {}, + "outputs": [ { - "layer": [ - { - "encoding": { - "color": { - "value": "black" - }, - "size": { - "value": 0.5 - }, - "y": { - "field": "zero", - "type": "quantitative" - } - }, - "mark": "rule" - }, - { - "encoding": { - "color": { - "condition": { - "test": "(datum.log2_bayes_factor < 0)", - "value": "red" - }, - "value": "green" - }, - "opacity": { - "condition": { - "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", - "value": 1 - }, - "value": 0.5 - }, - "tooltip": [ - { - "field": "column_name", - "title": "Comparison column", - "type": "nominal" - }, - { - "field": "value_l", - "title": "Value (L)", - "type": "nominal" - }, - { - "field": "value_r", - "title": "Value (R)", - "type": "nominal" - }, - { - "field": "label_for_charts", - "title": "Label", - "type": "ordinal" - }, - { - "field": "sql_condition", - "title": "SQL condition", - "type": "nominal" - }, - { - "field": "comparison_vector_value", - "title": "Comparison vector value", - "type": "nominal" - }, - { - "field": "bayes_factor", - "format": ",.4f", - "title": "Bayes factor = m/u", - "type": "quantitative" - }, - { - "field": "log2_bayes_factor", - "format": ",.4f", - "title": "Match weight = log2(m/u)", - "type": "quantitative" - }, - { - "field": "prob", - "format": ".4f", - "title": "Adjusted match score", - "type": "quantitative" - }, - { - "field": "bayes_factor_description", - "title": "Match weight description", - "type": "nominal" - } - ], - "x": { - "axis": { - "grid": true, - "labelAlign": "center", - "labelAngle": -20, - "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", - "labelPadding": 10, - "tickBand": "extent", - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "grid": false, - "orient": "left", - "title": "log2(Bayes factor)" - }, - "field": "previous_sum", - "type": "quantitative" - }, - "y2": { - "field": "sum" - } - }, - "mark": { - "type": "bar", - "width": 60 - } - }, - { - "encoding": { - "color": { - "value": "white" - }, - "text": { - "condition": { - "field": "log2_bayes_factor", - "format": ".2f", - "test": "abs(datum.log2_bayes_factor) > 1", - "type": "nominal" - }, - "value": "" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "axis": { - "orient": "left" - }, - "field": "center", - "type": "quantitative" - } - }, - "mark": { - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "black" - }, - "text": { - "field": "column_name", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -25, - "fontWeight": "bold", - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" - }, - "text": { - "field": "value_l", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -13, - "fontSize": 8, - "type": "text" - } - }, - { - "encoding": { - "color": { - "value": "grey" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", + "config": { + "view": { + "continuousHeight": 300, + "continuousWidth": 400 + } + }, + "data": { + "values": [ + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 0, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 0, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 0, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 0, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 1, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 1, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 1, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 1, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 2, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 2, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 2, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 2, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 3, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 3, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 3, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 3, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 4, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 4, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 4, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 4, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 5, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 5, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 5, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 5, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 5, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 5, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 5, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 6, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 6, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 6, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 6, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 6, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 6, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 6, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 7, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 7, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 7, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 7, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 7, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "me17 4nw", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "maidstone", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 7, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1175.0185002272876, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.198467756325595, + "m_probability": null, + "record_number": 7, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 8, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 8, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 8, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 8, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 8, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 8, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 44707.80551426446, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 15.448239112381744, + "m_probability": null, + "record_number": 8, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 9, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 9, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 2, + "bayes_factor": 13.63690070072612, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.769443890879799, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norman", + "value_r": "norman" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 9, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 2.640131796652814, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4006099514137826, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "macdougall", + "value_r": "macdougall" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 9, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 9, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "dn32 0sd" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "north east lincolnshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 9, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.43356375526865354, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.205683938471788, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "painter", + "value_r": "painter" + }, + { + "bar_sort_order": 13, + "bayes_factor": 44707.80551426446, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 15.448239112381744, + "m_probability": null, + "record_number": 9, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 10, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 7.778809222513577, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 2.9595493248441493, + "m_probability": 0.07354167451568606, + "record_number": 10, + "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", + "term_frequency_adjustment": false, + "u_probability": 0.009454104402360242, + "value_l": "william", + "value_r": "willie" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 0, + "m_probability": 0.07354167451568606, + "record_number": 10, + "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2", + "term_frequency_adjustment": true, + "u_probability": 0.009454104402360242, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 10, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.1169788370454212, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.1596018519099875, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 10, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 6, + "bayes_factor": 3.7243862718894305, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.897002708675377, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "l37 5aa", + "value_r": "sw1p 4lg" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 10, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "wales", + "value_r": "wales" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.8006442152248647, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.8485131509070939, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "wales", + "value_r": "wales" + }, + { + "bar_sort_order": 11, + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9590935537162004, + "value_l": "association football player", + "value_r": "association football manager" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.10073668618440759, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9590935537162004, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 8410.342139625365, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 13.037948776355417, + "m_probability": null, + "record_number": 10, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 11, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 0.2943290699918006, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -1.7644980549473468, + "m_probability": 0.28724905116399735, + "record_number": 11, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9759452274693747, + "value_l": "william", + "value_r": "will" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.28724905116399735, + "record_number": 11, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9759452274693747, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 11, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.1169788370454212, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.1596018519099875, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 11, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 6, + "bayes_factor": 3.7243862718894305, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.897002708675377, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sw1p 4lg" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 11, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "association football player", + "value_r": "association football player" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1.490609683099434, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.49 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.5759025366451791, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "association football player", + "value_r": "association football player" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1997.8309788652232, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 10.964218817608423, + "m_probability": null, + "record_number": 11, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 12, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 12, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 333.4770408553619, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 8.381443628293102, + "m_probability": 0.1284849300847964, + "record_number": 12, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.0003852886836084281, + "value_l": "bevan", + "value_r": "brvan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.1284849300847964, + "record_number": 12, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.0003852886836084281, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 12, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-81", + "value_r": "1852-01-81" + }, + { + "bar_sort_order": 6, + "bayes_factor": 16.387299596313493, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 4.034506232425312, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-81", + "value_r": "1852-01-81" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 12, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "ol3 7ne", + "value_r": "ch42 0ns" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 12, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 64921.415925324545, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 15.986406844718264, + "m_probability": null, + "record_number": 12, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 13, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 13, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "ed", + "value_r": "ed" + }, + { + "bar_sort_order": 2, + "bayes_factor": 6.225541624244533, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 6.23 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.638199357601547, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "ed", + "value_r": "ed" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 13, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "thomas", + "value_r": "dyer" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 13, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "None" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 13, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.8677289824782918, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.204683578355832, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 13, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 10, + "bayes_factor": 3.6012884304497295, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.8485131509070938, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 6486.8228086590925, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 12.663296315961755, + "m_probability": null, + "record_number": 13, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 14, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 14, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 14, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 14, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-07", + "value_r": "1852-01-07" + }, + { + "bar_sort_order": 6, + "bayes_factor": 16.387299596313493, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 4.034506232425312, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-07", + "value_r": "1852-01-07" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "m9 6ns", + "value_r": "ch6 5nz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "wales", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9590935537162004, + "value_l": "artist", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.10073668618440759, + "record_number": 14, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9590935537162004, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 2782.8094472485195, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.442326408235818, + "m_probability": null, + "record_number": 14, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 15, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 15, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 15, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 15, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.38109999061194166, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3917585222767863, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ch42 0ns" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 15, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "wales", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 15, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3633.189784025681, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.827021013289533, + "m_probability": null, + "record_number": 15, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 16, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 16, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 16, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 16, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.38109999061194166, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3917585222767863, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ch42 0ns" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 16, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "wales", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 16, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3633.189784025681, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.827021013289533, + "m_probability": null, + "record_number": 16, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 17, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 17, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 17, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 17, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.38109999061194166, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3917585222767863, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 17, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "wales", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 17, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3633.189784025681, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.827021013289533, + "m_probability": null, + "record_number": 17, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 18, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 18, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 18, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 18, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.38109999061194166, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.3917585222767863, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1852-01-01", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 18, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "wales", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 18, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3633.189784025681, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.827021013289533, + "m_probability": null, + "record_number": 18, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 19, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 19, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 19, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 19, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1852-01-81", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 19, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "ol3 7ne", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3303.4930368139717, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.689776588431448, + "m_probability": null, + "record_number": 19, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 20, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 20, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 2, + "bayes_factor": 35.79686433940606, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.16176131365856, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "irwin", + "value_r": "irwin" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 20, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7083280430044135, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4975104345670039, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bevan", + "value_r": "bevan" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 20, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1852-01-81", + "value_r": "1852-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 20, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "ol3 7ne", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "wirral" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "visual artist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 3303.4930368139717, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 11.689776588431448, + "m_probability": null, + "record_number": 20, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 21, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 21, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 21, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "barlow", + "value_r": "barlow" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.708320574304762, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.7725787288007404, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "barlow", + "value_r": "barlow" + }, + { + "bar_sort_order": 5, + "bayes_factor": 0.0037043486234159474, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", + "column_name": "dob", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -8.076564404852965, + "m_probability": 0.0033233936977775237, + "record_number": 21, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.8971600774208104, + "value_l": "1544-01-01", + "value_r": "1498-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.0033233936977775237, + "record_number": 21, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.8971600774208104, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 21, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "cm3 4bs", + "value_r": "cm3 4bs" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.337450159852669, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.5672536577405403, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cm3 4bs", + "value_r": "cm3 4bs" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 21, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "chelmsford", + "value_r": "chelmsford" + }, + { + "bar_sort_order": 10, + "bayes_factor": 2.140388406776726, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.0978726198438111, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "chelmsford", + "value_r": "chelmsford" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "scientist", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 5575.084648618187, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 12.444777994845623, + "m_probability": null, + "record_number": 21, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 22, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 22, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 22, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "barlow", + "value_r": "barlow" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.708320574304762, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.7725787288007404, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "barlow", + "value_r": "barlow" + }, + { + "bar_sort_order": 5, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "1498-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 22, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "cm3 4bs", + "value_r": "cm3 4bs" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.337450159852669, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.5672536577405403, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cm3 4bs", + "value_r": "cm3 4bs" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 22, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "chelmsford", + "value_r": "chelmsford" + }, + { + "bar_sort_order": 10, + "bayes_factor": 2.140388406776726, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.0978726198438111, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "chelmsford", + "value_r": "chelmsford" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "scientist", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 1505010.7901229756, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 20.52134239969859, + "m_probability": null, + "record_number": 22, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 23, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 23, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 23, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.93609665087873, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.9531509744425611, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 23, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 23, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 23, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.8677289824782918, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.204683578355832, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 23, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 10, + "bayes_factor": 3.6012884304497295, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.8485131509070938, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 357545718.6376666, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 28.41355248724083, + "m_probability": null, + "record_number": 23, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 24, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 24, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 24, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.93609665087873, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.9531509744425611, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 24, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 24, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 24, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.8677289824782918, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.204683578355832, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 24, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 10, + "bayes_factor": 3.6012884304497295, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.8485131509070938, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 357545718.6376666, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 28.41355248724083, + "m_probability": null, + "record_number": 24, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 25, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 25, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 25, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.93609665087873, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.9531509744425611, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 25, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 25, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 25, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.8677289824782918, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.204683578355832, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 25, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 10, + "bayes_factor": 3.6012884304497295, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.8485131509070938, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 357545718.6376666, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 28.41355248724083, + "m_probability": null, + "record_number": 25, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 26, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 26, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 26, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.93609665087873, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.9531509744425611, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "dyer", + "value_r": "dyer" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 26, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1850-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 26, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 26, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.8677289824782918, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.204683578355832, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "gl2 8jb", + "value_r": "gl2 8jb" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 26, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 10, + "bayes_factor": 3.6012884304497295, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.8485131509070938, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "tewkesbury", + "value_r": "tewkesbury" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 357545718.6376666, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 28.41355248724083, + "m_probability": null, + "record_number": 26, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 27, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 27, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 27, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 27, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 27, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 27, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 27, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 27, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 27, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 28, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 28, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 28, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 28, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 28, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 28, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 28, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 28, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 28, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 29, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 29, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 29, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 29, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 29, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 29, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 29, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 9498277.481511904, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 23.179234472851824, + "m_probability": null, + "record_number": 29, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 30, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 30, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 30, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 30, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 30, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 30, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 30, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 9498277.481511904, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 23.179234472851824, + "m_probability": null, + "record_number": 30, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 31, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 31, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 31, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 31, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 31, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 31, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 31, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 31, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 31, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 32, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 32, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 32, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 32, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 32, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 32, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 32, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 32, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 32, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 33, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 33, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 33, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 33, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 33, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 33, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 33, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 33, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 33, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 34, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 34, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 34, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 34, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 34, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 34, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 34, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 34, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 656549519.3217664, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 29.290328587560083, + "m_probability": null, + "record_number": 34, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 35, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 35, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 35, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 0.4683030453214949, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", + "column_name": "dob", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": -1.094485675137949, + "m_probability": 0.03711726145166532, + "record_number": 35, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", + "term_frequency_adjustment": false, + "u_probability": 0.07925906487792309, + "value_l": "1680-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 0, + "m_probability": 0.03711726145166532, + "record_number": 35, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", + "term_frequency_adjustment": true, + "u_probability": 0.07925906487792309, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 35, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 35, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 35, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 19365395.160392523, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 24.206977604778523, + "m_probability": null, + "record_number": 35, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 36, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 36, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 36, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 0.4683030453214949, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", + "column_name": "dob", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": -1.094485675137949, + "m_probability": 0.03711726145166532, + "record_number": 36, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", + "term_frequency_adjustment": false, + "u_probability": 0.07925906487792309, + "value_l": "1680-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 0, + "m_probability": 0.03711726145166532, + "record_number": 36, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2", + "term_frequency_adjustment": true, + "u_probability": 0.07925906487792309, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 36, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 36, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 36, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 19365395.160392523, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 24.206977604778523, + "m_probability": null, + "record_number": 36, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 37, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 37, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 37, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 37, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 37, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 37, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 37, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "oswestry", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 37, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 6777.620508935834, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 12.726563144676158, + "m_probability": null, + "record_number": 37, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 38, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 38, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 38, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 38, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 38, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 38, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.5061752397790036, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.982291157019384, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sy10 8ra", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 38, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "oswestry", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 38, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 6777.620508935834, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 12.726563144676158, + "m_probability": null, + "record_number": 38, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 39, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 39, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 39, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 39, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 39, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 39, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 39, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 292565.96219926194, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 18.158402407198313, + "m_probability": null, + "record_number": 39, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 40, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 40, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 40, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.7260362440795238, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4618865248362826, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "cartwright", + "value_r": "cartwright" + }, + { + "bar_sort_order": 5, + "bayes_factor": 15.876987624378211, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 3.9888653076436063, + "m_probability": 0.3411854615955972, + "record_number": 40, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": false, + "u_probability": 0.02148930701890366, + "value_l": "1600-01-01", + "value_r": "1606-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 2, + "label_for_charts": "Levenshtein_distance <= 1", + "log2_bayes_factor": 0, + "m_probability": 0.3411854615955972, + "record_number": 40, + "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1", + "term_frequency_adjustment": true, + "u_probability": 0.02148930701890366, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sy10 8ra" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 40, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.3345951242254879, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4164021382693085, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "shropshire", + "value_r": "shropshire" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 40, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 3.144325592920995, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.6527506154881986, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "actor", + "value_r": "actor" + }, + { + "bar_sort_order": 13, + "bayes_factor": 292565.96219926194, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 18.158402407198313, + "m_probability": null, + "record_number": 40, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 41, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 41, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4385527024735812, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1891778678878713, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 41, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "norfolk", + "value_r": "norfolk" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.9075453050994048, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.13995842994892027, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norfolk", + "value_r": "norfolk" + }, + { + "bar_sort_order": 5, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "1655-01-11" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 41, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "ec1m 3ln", + "value_r": "ec1m 3ln" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.674900319705338, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.5672536577405403, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "ec1m 3ln", + "value_r": "ec1m 3ln" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 41, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "camden", + "value_r": "camden" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.71122624175026, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.49161953935785924, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "camden", + "value_r": "camden" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 41, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 11437060.827131525, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 23.447213010477377, + "m_probability": null, + "record_number": 41, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 42, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 42, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4385527024735812, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1891778678878713, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 42, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "norfolk", + "value_r": "norfolk" + }, + { + "bar_sort_order": 4, + "bayes_factor": 0.9075453050994048, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.13995842994892027, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "norfolk", + "value_r": "norfolk" + }, + { + "bar_sort_order": 5, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "1655-01-11" + }, + { + "bar_sort_order": 6, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 7, + "bayes_factor": 4433.459980200162, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Exact match", + "log2_bayes_factor": 12.114217337381147, + "m_probability": 0.687813956434951, + "record_number": 42, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.00015514157328739382, + "value_l": "ec1m 3ln", + "value_r": "ec1m 3ln" + }, + { + "bar_sort_order": 8, + "bayes_factor": 0.674900319705338, + "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 2, + "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.5672536577405403, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "ec1m 3ln", + "value_r": "ec1m 3ln" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 42, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "camden", + "value_r": "camden" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.71122624175026, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.49161953935785924, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "camden", + "value_r": "camden" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 42, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.4599747087910215, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1203735565543766, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "politician", + "value_r": "politician" + }, + { + "bar_sort_order": 13, + "bayes_factor": 11437060.827131525, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 23.447213010477377, + "m_probability": null, + "record_number": 42, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 43, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 43, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1239.7644819625823, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 10.275850362551136, + "m_probability": 0.7816372776652062, + "record_number": 43, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.0006304723913592461, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1.1169788370454212, + "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.1596018519099875, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"surname_l\" = \"surname_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "owen", + "value_r": "owen" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 43, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 6, + "bayes_factor": 3.7243862718894305, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.897002708675377, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-11-20", + "value_r": "1860-11-20" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "l37 5aa", + "value_r": "sw1p 4lg" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 43, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "wales", + "value_r": "wales" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1.8006442152248647, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.8485131509070939, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "wales", + "value_r": "wales" + }, + { + "bar_sort_order": 11, + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9590935537162004, + "value_l": "association football player", + "value_r": "association football manager" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.10073668618440759, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9590935537162004, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 10853.316525050908, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": 13.405848344165456, + "m_probability": null, + "record_number": 43, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + } + ] + }, + "height": 450, + "layer": [ + { + "layer": [ + { + "encoding": { + "color": { + "value": "black" + }, + "size": { + "value": 0.5 + }, + "y": { + "field": "zero", + "type": "quantitative" + } + }, + "mark": "rule" + }, + { + "encoding": { + "color": { + "condition": { + "test": "(datum.log2_bayes_factor < 0)", + "value": "red" + }, + "value": "green" + }, + "opacity": { + "condition": { + "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", + "value": 1 + }, + "value": 0.5 + }, + "tooltip": [ + { + "field": "column_name", + "title": "Comparison column", + "type": "nominal" + }, + { + "field": "value_l", + "title": "Value (L)", + "type": "nominal" + }, + { + "field": "value_r", + "title": "Value (R)", + "type": "nominal" + }, + { + "field": "label_for_charts", + "title": "Label", + "type": "ordinal" + }, + { + "field": "sql_condition", + "title": "SQL condition", + "type": "nominal" + }, + { + "field": "comparison_vector_value", + "title": "Comparison vector value", + "type": "nominal" + }, + { + "field": "bayes_factor", + "format": ",.4f", + "title": "Bayes factor = m/u", + "type": "quantitative" + }, + { + "field": "log2_bayes_factor", + "format": ",.4f", + "title": "Match weight = log2(m/u)", + "type": "quantitative" + }, + { + "field": "prob", + "format": ".4f", + "title": "Adjusted match score", + "type": "quantitative" + }, + { + "field": "bayes_factor_description", + "title": "Match weight description", + "type": "nominal" + } + ], + "x": { + "axis": { + "grid": true, + "labelAlign": "center", + "labelAngle": -20, + "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", + "labelPadding": 10, + "tickBand": "extent", + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "grid": false, + "orient": "left", + "title": "log2(Bayes factor)" + }, + "field": "previous_sum", + "type": "quantitative" + }, + "y2": { + "field": "sum" + } + }, + "mark": { + "type": "bar", + "width": 60 + } + }, + { + "encoding": { + "color": { + "value": "white" + }, + "text": { + "condition": { + "field": "log2_bayes_factor", + "format": ".2f", + "test": "abs(datum.log2_bayes_factor) > 1", + "type": "nominal" + }, + "value": "" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "orient": "left" + }, + "field": "center", + "type": "quantitative" + } + }, + "mark": { + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "black" + }, + "text": { + "field": "column_name", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -25, + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_l", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -13, + "fontSize": 8, + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_r", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -5, + "fontSize": 8, + "type": "text" + } + } + ] + }, + { + "encoding": { + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "x2": { + "field": "lead" + }, + "y": { + "axis": { + "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", + "orient": "right", + "title": "Probability" + }, + "field": "sum", + "scale": { + "zero": false + }, + "type": "quantitative" + } + }, + "mark": { + "color": "black", + "strokeWidth": 2, + "type": "rule", + "x2Offset": 30, + "xOffset": -30 + } + } + ], + "params": [ + { + "bind": { + "input": "range", + "max": 43, + "min": 0, + "step": 1 + }, + "description": "Filter by the interation number", + "name": "record_number", + "value": 0 + } + ], + "resolve": { + "axis": { + "y": "independent" + } + }, + "title": { + "subtitle": "How each comparison contributes to the final match score", + "text": "Match weights waterfall chart" + }, + "transform": [ + { + "filter": "(datum.record_number == record_number)" + }, + { + "filter": "(datum.bayes_factor !== 1.0)" + }, + { + "frame": [ + null, + 0 + ], + "window": [ + { + "as": "sum", + "field": "log2_bayes_factor", + "op": "sum" + }, + { + "as": "lead", + "field": "column_name", + "op": "lead" + } + ] + }, + { + "as": "sum", + "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" + }, + { + "as": "lead", + "calculate": "datum.lead === null ? datum.column_name : datum.lead" + }, + { + "as": "previous_sum", + "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" + }, + { + "as": "top_label", + "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "bottom_label", + "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "sum_top", + "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "sum_bottom", + "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "center", + "calculate": "(datum.sum + datum.previous_sum) / 2" + }, + { + "as": "text_log2_bayes_factor", + "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" + }, + { + "as": "dy", + "calculate": "datum.sum < datum.previous_sum ? 4 : -4" + }, + { + "as": "baseline", + "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" + }, + { + "as": "prob", + "calculate": "1. / (1 + pow(2, -1.*datum.sum))" + }, + { + "as": "zero", + "calculate": "0*datum.sum" + } + ], + "width": { + "step": 75 + } }, - "text": { - "field": "value_r", - "type": "nominal" - }, - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "y": { - "field": "sum_top", - "type": "quantitative" - } - }, - "mark": { - "baseline": "bottom", - "dy": -5, - "fontSize": 8, - "type": "text" - } - } - ] - }, - { - "encoding": { - "x": { - "axis": { - "labelAngle": 0, - "title": "Column" - }, - "field": "column_name", - "sort": { - "field": "bar_sort_order", - "order": "ascending" - }, - "type": "nominal" - }, - "x2": { - "field": "lead" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAImCAYAAABaeXcJAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TdUXxxelUBFKA0nGkqFJUYQmNNFcpEiD0CAlUaZmDTJGCY2UoUIpqUSUkpJI0p/KGCVTiej/+a7XeR3Xve/uc9+9793z3tqfz/t43t3nnL1/e+9z93evtfcq8M8///wjlkwBU8AUMAVMAVPAFDAFTAFTwBQwBUyBNFGggIFqmrSEFcMUMAVMAVPAFDAFTAFTwBQwBUwBU0AVMFC1jmAKmAKmgClgCpgCpoApYAqYAqaAKZBWChioplVzWGFMAVPAFDAFTAFTwBQwBUwBU8AUMAUMVK0PmAKmgClgCpgCpoApYAqYAqaAKWAKpJUCBqpp1RxWGFPAFDAFTAFTwBQwBUwBU8AUMAVMAQNV6wOmgClgCoRQAf+B7QUKFMisQay/h7CKWuRNmzYJdSpevHhYq5CScv/999+yYcMGKVmypOy1114xn+H1B6+PRP4/JYWzm5oCpoApYAqYAklQwEA1CSLaLUwBU8AUyEkFxo4dK5dffrk+snHjxvLOO+/o77Nnz5bTTjtNfz/hhBPkiy++iFuskSNHChDTunXruHl5Js+eO3eunHjiiXHzJyODB1h//fWX7LPPPlnecv78+XLcccfJRRddJBMmTNgj77p16+TNN9+UcuXKyTnnnJOM4gW+B221YsUKLWOpUqUCX88Fzz33nFx//fV67ffffy+VKlWKeZ8rrrhCXnvtNZk5c6bUq1dPihUrJps3b5YdO3bI3nvv7fz8ZLd9OrSFc+UtoylgCpgCpkCuKGCgmiuy20NNAVPAFEhcAT+ochcP4h599FHp2rWr3rhmzZoCuMVLkZa2rPI3b95cQW/OnDly8sknx7t1Uj6/9dZbZdu2bTJkyJC4YPXll18qoJ933nkyefLkPZ4PYNeuXTsmyCalwHFucuGFF8qkSZNk3rx5cvzxxyf0yGOPPVYWLVokvXr1kttuu00OPPDAuKA6Y8YMqV+/fsKgmuy2T4e2SEh8u8gUMAVMAVMgxxQwUM0xqe1BpoApYAokRwEPVA844AC1jn3yySdSp04dOffcc+Xjjz/Wv3mgCsQ+8sgjamH87bff5JRTThGsbJdddpm0bNlSXnnlFS3UBRdcIC+//LJs375d7r33Xpk6daoCEBbbdu3aqRXSg5WePXvK66+/rvcDvPr27Sv77bffbpW7+OKLZf369YLF9vDDD9f7kN544w0pWLCgXrf//vvL22+/LR988IHcf//9Cl+VK1eWDh06yFVXXaX5mzRpIn/88YfmwQKIZbB79+7y3XffqVWZv2E5puw8D1AFyKpUqaJAeOSRR8rDDz+sVkfqO2vWLEG3Nm3aSP/+/WXBggXy7LPPan0OO+wwadSokfTu3VsKFy6ccH0oz3333afl4vlYMllAGDVqlDzwwAPaPli+n3jiCQXnYcOGyfDhw9XSiqWaPNTjm2++kfbt26v195dffpFPP/1U9fG3GXWgHaI9r3Tp0trWWFRdQPXXX39NuO3XrFkj99xzjz6HNjn11FOlY8eOWh/ahjpeffXVMm3aNClatKgsXbp0j7ZIzuiwu5gCpoApYArkFQUMVPNKS1o9TAFTIN8o4IHqJZdcIuPHj5fHHntMLWu4xgKgfO6BqucmWqFCBYWjF198UXUCFICcgQMH6v+vu+46/T9gCMxVq1ZN94cCT54bsQeq5G/YsKFMnz5dr33ooYcUUvwJEATMXnjhBYVGQJr07rvvKqieffbZCprdunVTd10SllBAB5AbM2aMQpbf9Rd3VeCWRP2+/vrrzEcuXrxYgZayksqWLavWQ+CXtGTJEunUqZO89dZbAsDdfPPNCmVYJ/msc+fOCoLU/amnnlI9E6kPEAmYA5a496Lf559/rq7VWKGxgvIZCwMAMYsMgDnwDNBOmTJFH4tLL/k8V26vTrRvv379NE/btm21Diw+RHseiwSuoMreVQA/0bZv1aqVvPTSS1pe9s2ySIDOa9euFb+ln3KzCEHf8rcFulgyBUwBU8AUMAX8ChioWn8wBUwBUyBkCnigessttyj4YWXDygkIAZ783QNVgOHbb7+VBg0aCAfwXHnllQpPWLbOPPPMTBAEVAC/WrVqKeQBShzSgxUS11usYsAIrr9YUO+66y61RN54440KuQCxP40bN06hGWtsjRo1FMZIWE5JWAABG+Bw0KBBcvfdd8tNN92k9QEiAR6sw35Q5TMssZQDAKYeRxxxhN4vElT//PNPBXeswoDvDz/8oJZHv+vvypUrta4kYB/N2Dt58MEH77GH1bU+gD5aHHTQQVoH6oiF1KtPpOtv1apVFZSxeAPsffr0UcAH3IB5D1SxigK+WCv9+0w3btyY5fNcQTW7bT948GDZsmWLsHiCy/mll16qurJ4MGDAALUos/hBn8Haaq6/IXvpWHFNAVPAFMgFBQxUc0F0e6QpYAqYAtlRwA+qWBmHDh2q7r3AANY7YMwDVaAByyUw5E/vvfeenHXWWbuB6sSJE6VZs2b6g4tuZPIsqljdgA0sYueff766dHqWWu8a70RarKnkBRQLFSok++67r+zatUuBFCjkWn6PTJ41zg+q1A9rIrDjHSbk7df0gyqAh+syCddT9oPyOcAauUf1jjvuyLRQkh9wRU+su/7kWh+siUD8k08+udv10UCVRYFYJ/YC40A+12HpxNLsJT+oYp3O6nmuoJrdtgfIsUpj2fWnrVu36uIJbYcFuUePHvqxgWp23gB2rSlgCpgC+UMBA9X80c5WS1PAFMhDCvhBFbdPYA/XUayLwONRRx2VCarAENYyYAH4AcAAzWig+r///U8qVqyY6eoLUGKpZd8qkIE11n+YUlagitzs98Q9mLLhSguUcR+SB1+eizAWVlxZAW/cRdkjCmT6QRU35xYtWui+TSx4v//+u5QoUULv5wdV/2FKWYEq+yoXLlyo4W9++uknPYCJvapA8qpVq/aASJf6YMHGaspCwejRo/U+nmUUC3GkRfWQQw5RuOPZ1atXV5jGSur9HVCNXDjwgyquwlk9zxVUs9P2LB5ghSZ9+OGHajml/CQ/qPpdqg1U89ALyapiCpgCpkCKFDBQTZGwdltTwBQwBVKlgB9UAUAvPAkuv1gI/aDqgRqn5uKa2aVLFy0WVkwO6fFAEPdbrJS4DwO23Au3TdxYzzjjDHn//fczD1PyTv2NB6pYFbGykQAxrH8c+ETiICHK6rnUAofsVwW8KBufkccPqkAPFksSezwph2fBcwFVbw8r+3Vx9aWuwD3PBshxq8X9mM+xQEdaO13qQ/mpI3tysSJi6ca9mf+zH5VDpoDh22+/XffMUg60B0hxlaadeDYLAp77cFagyoJDVs9zBVU09RY1grY9AEpZWZDAskr9cF8m0eeoH1r4QdU7odlrC3SxZAqYAqaAKWAK+BUwULX+YAqYAqZAyBTwQJXQLRyA5Fnf2MeIayug6h2AhAvvNddco5Y63FrZLwpMsQcSOANKAAkSp+biKoyLL/lJuO5yMi+WVs/197PPPtPneKDq7RmNlBFrJVZCElZSoBMoJHHI0THHHKO/cxgTJ/l6ib2YI0aM0P2lnvXQC8FD3YEeLICAHfDHXlX21FLmyPA0fosqulBuQNxzjY58NrAFaLF/N5H6sA8YC6p30BSHKAFt3Hf58uUK4ViFScAoiwDAsXeSL3+nbXCRBcTr1q2bpUWV/Fk9j/2+rnFUOVk50ban/dCSxEFbWJIBbhY4sJ6yB9kPqljpI9siZMPQimsKmAKmgCmQYgUMVFMssN3eFDAFTIHcVgAowLUV2PQslP4ycQIrgIUbLZ/jfgsIsp+U8CrRrkl2nbCWLlu2TEPElCpVKurtCUnDHlwvjAyuu2XKlNG8lBmLaLyEmy/7Tb1DiciPqy36cPhS+fLltd7ZTcAzkM1PZOKgJ+pbvHhx3bdLIjTM6tWr1ZpL+JagKavnBblXdtoeXakbpx67pGht4XKd5TEFTAFTwBTIHwoYqOaPdrZamgKmgCkQegVw88XN2TsUCWglYVnFamjJFDAFTAFTwBQwBfKOAgaqeactrSamgClgCuR5BdjvicssB0KxL5LDpNjvmQwraJ4XzypoCpgCpoApYAqESAED1RA1lhXVFDAFTAFTwBQwBUwBU8AUMAVMgfyggIFqfmhlq6MpYAqYAqaAKWAKmAKmgClgCpgCIVLAQDVEjWVFNQVMgfArwAEyO3fudDr4J/y1DWcNaB9SZHiasNWGg5G8w5qyU3YOSfLi1WbnPrl9bbL0yO162PNNAVPAFMgvChio5peWtnqaAnlMgfbt2+vpraNHj96tZpxQS0gWYk+mY5o2bZq0adNGfv7553QsnnOZiEm63377aVgYL46r88W5lPHHH38UQutw+FJk8teH+K2HHnqohu8JkghrQ9gbTlfObmIvLsBMfFXX5K+fVx9ObyYsTyKJ8UW8WsL5cHDV0Ucf7Xy6cuTzOFUaaCbebdWqVRMpTsxrCF308ssvy5VXXhnzxORk6JHUQtvNTAFTwBQwBeIqYKAaVyLLYAqYAumoAPEhf/vtN3n11Vf3AFWAgXiQ6ZjyCqju2rVLPv74YznppJMSCqeSG20zadIkPXjphx9+2OPx/vp07tw5IVCtVauW3HvvvVFBOGh977zzTg31MnjwYOdL/fVLBpjNmDFDGjRoINwLTwDiodavXz+hcEUeqH777bcKvMlMvAcIabRy5cqYoXGSoUcyy2z3MgVMAVPAFIivgIFqfI0shylgCqShAi6gOnHiRLnnnnvUennGGWfIoEGD1OX2wgsvlLFjx2qMUKCEcCfPPPOMYJlp2LChvPLKK3tYoUaNGiX9+vWTLVu2yNVXXy333Xef3ov4l926dVMrbuXKlaV169Zy/fXXq2Ljxo2T7t27y++//y5XXHGF9O3bV+GuZcuW0rZtW3nxxReldOnSMmzYMAW+yBTt+sKFC0u0epUtW1bvs2TJElm3bp18+OGHcvnll0vdunW1DKQnn3xSzjvvPMFiSJ2/+uor+eSTT6Rp06YyYMAAjfkZqz5Y97gXuj/++OMaDobf0QrLaq9evWTMmDF6Eu8jjzyiljiuefjhh7VcxHKl3g8++KAUKVJENTr++ONVo0WLFmlZn3rqqT3cbbHqYT1/6623pHbt2nL33XfLOeeco5reeuutqvvBBx8sXbt2lRtuuEG2bdsmp59+utx0001aX/5PHzjzzDPlrLPO0viwl1xyiS5wxKoPZUQH4rSiEXWh7+D+SvvSlmhGuuaaa/Tno48+kgceeEBoh5EjR2oZevToof3swAMPlLvuukstfiQWUtD7iy++0AUV7u2Pt8rn1157real7YDWWDp6fYYYtP76vfDCC5ntQluhA32W8pNi9WfvfqtWrZKzzz5b24a60oa03wcffCDPPfecQiHPnDp1qpx44ony/PPPazvE6j+xQNVrL+49YsQIOeCAA1Q3NORZjFv+Tp+ZN2+ePPTQQzJz5szMvgA4N2rUSKZPn67WbBaCaDf6JpZg+vv999+vAOv102h6+MderPZZsGDBHvfFmwD4po/SnkA47wks4V9++aX2d06mfumll2T+/Plq0ac9iQncuHFjzRsrbnAavnatSKaAKWAK5KgCBqo5Krc9zBQwBZKlABNRLD5Agj8BLEw0q1SpIscee6xa0AAEJqvADZPccuXKyWOPPabAUbx4cYU2IBWLUZMmTdSl2L8/ccqUKXLuuecqXBxzzDHqugsUMaEGlphAA2fLly+XVq1a6SQeK0+NGjX0GgD2tttuU1DApRQAuOiii+S6667TiSrWPMDSn7755puo159wwgkx6wUs9unTR8sFMN14440Kwv3795f33ntPJ/NYE9Fu6NChCki4YQJ11IMyxqoP98F1E5Bgos29DzvsMAVjwsUACEzK33nnHbUqAiDAEgsBQBZaACOAEm1Rr149DTEDrK9fv146deqkGrBQ4E+0EUAEXNMOACbPpN1pL9px69at0qJFC3n33Xf1vgAJ7T9w4EAFasAKgAK2gGHuA9TEqg+Aiz5oidssdbj44ovl6aefViijrCxWkPg/fY770UcATKAFmAdSH330UbVI8nfqV716dQU6ygX4cm8+u+OOOzKrvXr1au239Enuw3WxdPQu4hm0s1c/gMnTAf25B+1NuwCAsfqzdz/yoRd9FhilrJ7rL+2HNr1795Zq1apJhw4d9Cer8eD1n0iLqmfp5D703yFDhmg/ZXwBmYA8CyD0A/oq/YPP+BvtyDihbwN9EyZM0AUJxtv555+vfY3+wbMZh7H08Ic2oi9Gax/alIWtyPti8QZW6d8sWNEHaYelS5cqjLJgQV9koYIFD8b/LbfcIpdeeqkuXG3atEnfY5ZMAVPAFDAF9lTAQNV6hSlgCoRSAWCLfWmAiT8xeQVUsVwwOcdiSGJvHJDJPj4m7kAKE0bvetwmmSAz8QWw/AkLLJPd4cOH65+x8AAgTESZ9AO+RxxxhFqfAMn3339fJ8+AmDcJBeR++uknzQuoYpll4kx5mYQzYfUnrIDRrmcCHKteABnPxmpLOuSQQxSa2GuJtQerLZZNYBT4AypJTPqBEu4bqz5MuNEMSxcA4AEG0AgcsacSqxqLA5QbHYAKAAKwIaEfcIOFG92xjAI3pJNPPlnh17NG8zc0YSGBMmE1wyoHBPN82hIo4B4kIHj//fdX8EdX7xoWIbBWAkjsp/Vcfz0LX7T6AKqetZl7A0/AKOWJBarse/Vcf7HYstABhHtAC1hjWQXyAR4gmnqwoIGLb+S+Tb/rL9rE0tHfZ6K5/tIPsbRu3LhRn48OXbp0idmf/fejP7DIs3btWu3rflDlM69vA2iMK8ZjvP4TC1QZH0AmmqEVWrMowtij/rQ7/RTAZh86iyMsCqEdfdFz/cVqSR4WL4oWLar9HG8JgJt+EU0PvysyYzRa+2CJj3ZfXKOxOHvlRT/6G+OJxSLGjbePm3HCggvPoA6epixMALCWTAFTwBQwBXZXwEDVeoQpYAqEUoF4rr8cslSmTBl1/yQxoWXiihWOSTXAhJUDa1HBggXVDRXwwTLnwYUnDBABkPkTk2gmp8AtlkjcDJmYrlixQmGRiSpwC5D4ExNyoIrJPwmoxH2RPYD+BLxGu56/x6oXLsHUDbdOEuXG0ov1FrdFrH7ogEUQLZg0k4BM3GCBNyzO0erjgSowDiT6QRW3TIAGQK1QoYLev2PHjjphBzy8g63QBWiiroAqUOq5omLJxuKEZc5LCxcuVAtk5N5D7+9Yvzy3SWAcV0tgJvKQJ6AA8AQQIkE1Wn3oM7gwe4BNvSgv+gBNfosqYI4l0A+quH3SRpEJ92YswugOiJKwGgLXWAH9yQ+qWenovyYaqHqQ5J00jQ6UI1Z/9t8vK1BFSyCfxKLNnDlz1KIZazx4/ScWqHrlxAqNnrQxibKiMe3LggHj9pdfftF+BjxGgioa0H5AoD9FHv7l14MFBn+K1j4AeLT7Ms6x1nrl5T70FSymLGrQvt4iFAtjWLUjE2OTfm7JFDAFTAFTYHcFDFStR5gCpkAoFYgHqlhGmZSzB5LkgRoujVgzARHgAusme02xwjLJBTQjIQOIw3LiWf9wDWYf3HHHHSfly5dX90RcIbFYYQFk3yQAikswv5M4NZV7A7j+U39jgSr3i3Y9E+JY9WL/HlDnWX4BVSCC8kWCKqE6vHz8y15I9iXGqk8kaPhBFRdVXGRxr8XShcUWAMSay4Tdg09cZ/kcSy6T+Xbt2mUuCkQDVdoJvbAGY6HFRRpYYfIPqGA9A749oAEMgAFA1X/abVag6oGTvz7e4gblJQH+WNGxIHrPALABbhY5cOP1gyqWN6y7LBxgJSRhRcbKigst/QcL/OzZsxXA+B1rpD/5QRVrciwd/ddkdZiSH8zQPVp/pm7+lBWo+vuZB6pApmv/8Z4TechRLFBl8QgXW6z2HmgDmJGgCqCyr5X+zbimT48fP173hPv7RSxQpQ9Hax8WVaLdlzLgDuxtF6BP8A6gj/MMP6hi1WUxDJgnUUbeU+y93meffUL5HrZCmwKmgCmQSgUMVFOprt3bFDAFUqZAPFDFxRbX07fffluhCFdaIA94IGEZAx4BOPaosY+MfXJ+y4hXeCaYwAj3ApxwUcWKiEUJqycut7h74jIMhOJeCLQyscW1F9dCXFSBKKyuLqCK5Tfa9YBZrHoBPa6gChhRd9x5mfgDfrhIxqoPzyRvNLDDMk250AlXW6ycQDZgx3OwclJvrKns9cSq6QKq6I/rJ3sGgUcWE3gG7pyAG4sN3sFQtB1ghbU3FqiyUMC+YDQixaoPz6Lc1IE8WMCBEdx/0QrLKuAKAAEwHqgCevQN9vyyuEEfxOIGLOG6S9lxv0ZLFhvQ3HPLnjx58m5jhWdRTyyw7HmMpaP/Ig6c8uqHi3csMGPxJlp/jgz1FBRUOVjLtf8EBVXcazmUiLajfzGWnn32WXXxpa4sAAB9WKbpF8Aze3/Z2wvMssDhAqq0ebT2wVoc7b6UgfKwFxYYZuzj9YBLN9sO/KCK9wb9gIO3gFOuYY8rdQKqLZkCpoApYArsroCBqvUIU8AUCKUCWOuwfkQLT4MVE8DBjRdIAi4BSyxOACoJ90KAhAOWsLixRwwrGRPcyEQeQBT3PxKTTCb7gAj7XdmjxzNOPfVUtbBhJeUaJq6eGy5urcABn7mAKtbDaNcD1bHqFQ1UObAF11u/RRlQpC6e+yfWSrThZNRY9WHi7Y+D6Xel9E5VRgMSMIeVFqszE3Pcoj3dADJgxhVUcSnF6g0AA7vs86MtcMcFXvg7Ca2AQqy70UAV6yuggYs3iwgsSMSqD/CLFZeFDBIQjoWMw6M82ODvderUUSDhtF8sqvQD9KOdsWYDKcAxCfdr+qq3MIDlEB0oCwse9J1I6ASOcaHG2h1LR/81ALFXP9ygo4EZOtBvY/Vn//2w/LEPlPaN3KMaaVFFK8aEa//xnuNiUcUtFshnDAHjJPowYMzih7dXnT5BucjDgoHX5xiDWHpj6eFZ5b0y0X+jtQ9QGnlfFkiATdqJ/k9/ZOGKBQPGOtZ1//5zwNmz2NP+LA6wIGXJFDAFTAFTYE8FDFStV5gCpkCeVoDJO5PHihUrZstqgUsf+z8BIayvwK2XgBXc+Di8iHzsoeN3EjCNyydAkkiKdX126oU1mvLgykwoG8DFn7KqT6w6MBnn1GN0Bgi8hPsjlkFcG3Fx9evmqgcWTOobeT1u3JxizCKDa4gP7oWFzYPqrMrA/YFtDtfxl5s+wEKE18aR2uH6SZvzLA6/wg0YyPYn+hKWwMi9qf48aMrCBD+uOrrWL6v+7NousfIl0n9cnwk0lyxZUvsY7cOPN7Zwv8WySgKAOUCKxYVEUqz2iXVf+gOLEljJ2f+dVWLMsUcdV2bCTVkyBUwBU8AUiK6Agar1DFPAFDAF8pkCHqhi/bJkCpgCpoApYAqYAqZAOipgoJqOrWJlMgVMAVMghQqwbxZLDof0WDIFTAFTwBQwBUwBUyAdFTBQTcdWsTKZAqaAKWAKmAKmgClgCpgCpoApkI8VMFDNx41vVTcFTAFTwBQwBUwBU8AUMAVMAVMgHRUwUE3HVrEymQKmgClgCpgCpoApYAqYAqaAKZCPFTBQzceNb1U3BUwBU8AUMAXSTQFO8iXZibjp1jJWHlPAFDAFclYBA9Wc1dueZgqYAqaAKZBmChBahLAmxObs169fzNJdf/31GiOT0C55JRFzlNiqxIBNRrrnnnvkkUce0bA+0cL3xHtGy5YtNT7q/fffL/fee2/U7HfccYe2E6F4CANkyRQwBUwBUyBvKmCgmjfb1WplCpgCpoAp4KiAB6q33HKLDBgwIOZVbdq0kVGjRuUpUL3pppvkmWeekV27diUU4zZSrK5du8qjjz4qq1ev1vi2QRIxSomPWr9+fXn66afl2GOPjXo57TRo0CCNXbz33nsHeYTlNQVMAVPAFAiRArkCqlu2bNEvo8jA7wQJ5+8EN7dkCpgCpoApYAqkSoHFixcL8WQXLVokzZs3V1jzQHXWrFnSqVMn+fzzz6VKlSpy3333ydVXXy0eqGLRe+211+SYY46RwYMHS+XKlVNVzD3uS2ihnj17SuPGjWXixIn67DvvvFPq1Kkjf/75p1pGsUjye5MmTWTgwIFq2aQujz32mLzzzjty6qmnSvfu3YXv3BtvvFF++eUXOe+882Ty5MkyY8YMufvuu+V///ufnHXWWXo/gDGWJliXH3roIRk6dKgcdthhcsABB8gHH3ygoMp3+fDhw/UHN9677rpLdYyVKO+7774rpUuXlgcffFDOOeccufXWW+WTTz6RI488UrBoU14/qGLhfvHFF+Xaa6+V6667TkaPHq1l+fHHH/VZWGYNZnOse9qDTAFTIAcUiMVR3qM3b96s7+K8kHIUVPky/Prrr+Xiiy+WpUuX6peRl/hSqVGjRuaXaF4Q1+pgCpgCpoApkJ4KAKdvvvmmtG3bVkEIYAWAcCk9/PDDtdAdO3aUcePG6ffWihUr1BUViyrfXccff7xC1WWXXabQmlPppZdeklatWunjgLPnn39eywMYjhgxQm644QZp0aKFwil1ad++vVofjz76aL2mT58+CpbsA6VuwDoQ+sILLyjYlStXTuuKGzQQWK9ePZk0aVJMTdauXSsnnniiVKtWTRo2bChDhgzR51CeZ599Vnr06CG9evXSZ7z33nv6L6AcLQGYlAdo7t27twIuf3vyySfl/fffF9yUf/rpJ+nbt6/WCSi96qqrtA2Ac+5NGVq3bi1FihRRqyxuyIC3JVPAFDAFwq5AVhxF3b744gtdsGNhD67iHX7SSSeFuto5Cqrjx4/XLxK+PPly80B1+/btcvnll8uyZcv0iyXWl1iolbbCmwKmgClgCqSFAlu3bpX9999fgWbkyJEybdo0OfvA6+fLAAAgAElEQVTssxVUL7nkEoUdAAm3WL6zgDVcgufNm6eg6n1/nX/++QpP3K9o0aI5UjcPVIFMyvrEE0+oRRXYZn8oExVcmQsWLKgWyU8//VTWr1+vC8FLlixRt9ozzzxT685kxu/6y7W1a9dW4MV6PHfuXFm5cqWuzHNNNE14FjDK4nPFihVVKzQDVBs0aKBl4RnLly9XyydlBJSjpXXr1um8ACsuFlXuOWHCBPn1118VqrHyAqyvv/66gqqXPP09Sytgyt5VnkN9PvvssxxpG3uIKWAKmAKpVCAWR3nP5J3P9wH/knfYsGEyderUVBYp5ffOUVD1aoPLrx9UcaPiSxAXJb7wDFRT3u72AFPAFDAF8q0CWOWANO/wpB9++EEqVaqkoAqwXnjhhQpVWBi//PJLOeGEE9SFlHyA6oYNG+TAAw+UK664Qq2puQGqb7zxhjRr1kwtmB06dJCPP/5Yrae48/7888/atngvAXW4iQF7TFoAPoAV+OTAI1ycvT2quBJjaR47dqxceumleh/qCmTyrGiakIfrve90zz0ajbHOAp6463oJcERfF1D1rN6UkXKgvR9UuTcWBqAVDZicYbUFVAsVKqSPOOigg+S2227Lt33dKm4KmAJ5T4FIjvJqeMQRR8js2bOFf/nuYjsF7+Ywp1wHVYgf9yvcjhDUD6p88bIy608HH3ywrnZbMgVMAVPAFDAFElXgoosuUmsh1jv2VGIZxZW2S5cucvLJJ0v58uV1fyRgB/zg5guQ8Z2FqynuVAARi6z8PacSgNq5c2d1t8UqilsssMakBEsorq6sqPNdSfmw+gLZWDqxpgLnwC1QSp2wKI8ZM0brxX7XmjVrqpswcIf7LZZnvqNjaYKGuJp5muBaDLhjycWNl3LxjO+//173wAKdp59+elS5gGxAFuCmjpSFCRflZU8tVmNgmfZgzoCF+9xzzxX2Y2EVx9rMnmEOdDrqqKP0dxYeuJ8lU8AUMAXSXYHp06cLniX+xLv7tNNO2+1vsUC1WLFi8t133+l5AXig4NXiLVyme91jlS/XQbVu3br6JVuqVKnMgytefvnlmD7VnCbo329CQ1SoUCGs+ie13KaFu5ymlWnlroB7TutX4dGKQ4mAHNIZZ5yhsAqY9u/fXy13WAa9xCFA7ItkPyswiIUVSMIq6R1O5F7z4Dn9/cpz/fXKwN0AMmCMCQ4A7i3wli1bVqhn9erVtV64wvJ9S7nJD9QCqezzJHEwEi63XlgY8nE9k6RYmrB1Bwsp0EviUCcgFWstVlzAn0UAElt8AM199tknqgie6y/PB67R3Pu+BzgBVDyvmIhhRSU8DRZjIJlFBj7DekudSIAu+2ux7FraUwF7X7n3CtPKtHJXwD1nZL+KZJyY8BbhmerlYxGQ7ZUsZLJ1g4VDFiXDnHIdVCF9L7g3kwC+PPnSi7Xfx0A1dnezF6n7UDStTCt3BdxzWr8Kl1aEQ8GKB9BFJr6XOIyCg5WinZ4I8JUsWTJHTpSNBqpYFzmRmJN1OS3fn9gf+tdffymgsVfVS4AoLrnU1x9/FB0I9VK8eHHNunHjRoVerMr+E3Oz0oQDmNAj2nc39+J5fA5cYjWIlli4jqwLLr+UwfUES7QiLA7tWqZMmaSE3HHv1eHKae8r9/YyrUwrdwXccyYDVHl/L1y4UL1R8ERhuwMLhHjW4BHDol+YU66BKl/yuCb5Ey5KuGFltUfVQNVANRkDzr503FU0rUwrdwXcc1q/Skwrz6IKqGK9DFsCVHEzjpaaNm0quK5lJ1m/clfPtDKt3BVwz2n9KnGtglhUPY7iVHrcgzdt2qTnKHgMxTkKfE+wQBjmlCugmh3BDFQNVLPTf7xr7UXqrqJpZVq5K+Ce0/pVYlqtWrVKvvnmG90zykTE0u4KWL9y7xGmlWnlroB7TutXiWvlCqpZPYHFQL4n2N/PXtawJwPVsLegr/z2cnBvTNPKtHJXwD2n9SvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPaf0qca2SAaruTw9HTgPVcLSTUynt5eAkk2YyrUwrdwXcc1q/Mq3cFXDPaf3KtHJXwD1nXu5X7Ntjb3Osg7vcVcrIGUQr79yVwoULB31MWuXfuXOn7nVHQ/9e9XiFDKJVvHvl9c8T3aOa13Xx189ANQ+1tr0c3BvTtDKt3BVwz2n9yrRyV8A9p/Ur08pdAfecealfLViwQE83veaaa/QAGfblead4uysSO2csrTjRev78+Xq+Cqlly5byyiuv6AE23unZyXh+Tt3DXx9+5+wY9pQTk9k15aV+5VrnRPMZqMZXzkA1vkahyWEvB/emMq1MK3cF3HNav0oPrZhYXXLJJVqYpUuXCjG5OQH2rLPO0tNg3377bf2Mk2SbN2+uceYIT8OeHkLV+FOsz/zP8OcnXA2HXHAwkHdgIJNoLBLHHHOMu0C+nOnWrwhFw4EdxEslZIyXDjnkEDnnnHN2qyMnJy9atEj1yImUblrlRJ0TfUZe0mr06NHSokULDc10/PHHa1gOTpEmikQyUiytbrrpJo2jvGvXLvnzzz/11GriFT/99NNy7LHHJuPROXoPf30WL16s8YrRtUaNGs7lyEv9yrnSCWY0UI0vnIFqfI1Ck8NeDu5NZVqZVu4KuOe0fpW7WhFWBasKIVi6d++uhWHPD0HPZ8+erbCEW94XX3whlStX1lAqHOn/2GOP6amJnJB43nnnSdWqVTMrEvkZoU8in+Fl5r7cg7ilX331ldx+++0aHxyYY/LKTyIpXfoV4W2Iq0qdOnTooCFn+J3EggCHOzGp9RKHejz++ONq3SK+aU6kdNEqJ+qa3WckohUg2KlTp8y49/fdd59cffXVWhTgjPi2jDFiFBO3l8WgaH9n8ahnz54yYMAAPb26d+/eGm+X8fPwww9rfGJiQr766qsKmzyTcEszZszQ2LqUvVatWsLzWYRibC9ZskRjHBPr+IYbbtC4vYToIHQSoQ8Ji1SkSBG57rrrFGR5Fp83atRIn8f7AMvoBRdcsIe00bR68803tV+zMMV7g/7OIk7p0qU1HvH1118fs4mGDRumcYK5L/VHN2Jf8u7ivYHO/P/mm2/W8uDKzDtt3Lhxcthhh2nsYOI7P/DAA/o++uijj7Ru6H7kkUeq5ujG2CP0FDE1KQ86ANNem6xfv17fj0899ZS2qb8+6Ey4E+Its4AXq8zEaH755ZelcePGak0+6qijNKZxogtz2e3XYbreQDV+axmoxtcoNDkS+dIJTeWSXFDTyl1Q08q0clfAPWcq+hXWUo7qB0qZcDJBA5TatGmjgFWtWjWNEYolsEKFCmrx4BpCvtxxxx16HRM3zwrDBDTyM4DW/wx/jYcPHy6nnXaaTtAAZCaSAOucOXMUXtMRVCdPnizLli1TrXCZZE8aE97WrVvrxB+gIOwB1mjAgAnxp59+qpNe4vWRsCQNHjxYOnbsKP59ea+99preF72ZAA8ZMkTjvm7evFm1IJQC1i9Agp+rrrpKrVNMphNNqehXiZYl3a8LqhV7FokrTKKtgSbGAm0HnFaqVElj9DJ+aGsWeS666KKof2fBp1WrVgp2WOEZo6NGjdL+0q5dO3nuuecU+Bo2bCj0o2uvvVZGjhyp9yIxtrg/ngqMW6CKa/iXvlaxYsVM11/PHZfPsBICmNyTvtisWTOFaZ45dOhQ9YJg0SXytNRoWuEpwLOASiyP9HPAEmgFvAHNaIky8I5gkQzXWt5RwOd3332XqQPjj3oRE5kTXCdMmKAaoAegCdQzDp999lmt95YtW/TveDXwnvvwww/VQ4S2AYRZVKKcaHjmmWcq9AOWQDBtyQ9l99cHyPVcf7lnrDIDs08++aQ+F6AFutETGLaUtQIGqvF7iIFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZr7DI3HPPPWrhYLUf8Pr999/lyiuvFFxRgVWg7Msvv9SJ2GeffaaTwG+//Vahksk4rnxYaubNm7fbZ0wgSd4zuBeWGSaJWCSYcJcoUUL69eun1zHZw9WYyXA6giqwQXmZVDNR79q1q8IiFqoxY8ZomdFi5syZCgEkrCVApQeqkyZNEsCDibeXmHQDtUyE+ZwJMBPytm3bCsCDpYwJNO2xdu1anWgzcQZegZtEUyr7VaJlStfrgmpFewJK9BNcRAEfFm6wijLWWOxhcQNvBRaGGBN4GUT7O5bDeKAKpNGvGKOAGVZFxuy0adNk3bp1CkQkFkpef/31TNdfgMrbo4plk7GHdZU+R14spwAqllX+ZTEKmPXcXn/99dc9Yk+6uP6yyAVcs0jGc2Ml9q/26NFDw0yxWMa7hGt497AgxHYEwHf58uW6/5VxgoWYz4FW6vD++++rzgBiVqBKXGLugTcEhyIxrtm2MHXqVH23AeVYQVlgY1HK7/rLe8sD1YULF0YtM/dAP8pBebHmAt3owHMtGahmtw8YqGZXwTS6PuiXThoVPceLYlq5S25amVbuCrjnTGW/8iASSyGTLdxUgUgmZaz6Y20BVHG9AyxxW8PdjskfE24AFTjD6oCVx/8ZMOUHVSaN33//vVoSeQauh0yUcXv0DlhJd1BFE+qKyyQH0PAvVhcmsN7eUsDCszT7QZUJMP/nOn9iIoz+QOmGDRvUJRF9gRYsT+jKpJhrWUgAetkPfOmll+pkN9GUyn6VaJnS9bqgWrHgQB948cUX1d0XaKS/A154JrA4A0gBKiz6FCpUSC2r0f7OWMFNnLFBH6PdASi/RZUFDIAHyBw7dqysWbNGatasqXIypuljwHJWoMqBRtyDBRI8HhjfQCwLM7gTA6peGW655RaF31SDKu7GTzzxhI6P8uXL6zN5NpZeyoN1k3HBuGFM4EoLrFJ2FoC2b9+ulmGsv7169dKFJRbiihcvLoApdfMsqvwfyOR9hms+98Fd+JRTTtG2Y7EAaEbXrEAV6260MrN4QbkBVRbteB7eKiwOGKjGH/lmUY2vkYFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZrzxQpTRMlHF7wzURSwVWD/a5YVXBTY6/MdHDvRWoAp6Y0Hkp1mf+Z3h5qRNwB3hh7fDALqygioUEqw8TY9x+vYOm/KCK6yeTZmAiWsJ9+o033si0qPpBlck57cPCAaCMe6O3t9i9J+2eM5X9KtEypet1QbUCCBkz9G3gBjdSIAUQwvqJNZC9k5wQi8WdBR4sctH+DphijcV6jtWefkHygyruo0AX1kQORwOwWATCNZxxyvW4kWNppY8BvkAfeYFl79RfFkmAMPoa7rqMXfZbYq1NFqjihguguVhUsYwCjJQXHfBiADRXrlypFmvGFPXAPRlLMvBPeXEnZm8t7zIWwhgvjD0WxGgPwJaxyT38rr+45QO87DXlvrg8oykLDiyw0WaRFlXqw7vSs6iyeBerzHhaGKgmNsoNVOPrZqAaX6PQ5Aj6pROaiqWgoKaVu6imlWnlroB7zpzsV7iVYkH1EpYJLAz+GIueNSBybxrXZPVZZI2ZaAN2uD0mK+WkVpFlZs8qeiWzPsnSJdp9clOrVNYrFfdORCss4XgheIm9ongm0OcBVMCKhIUO918s5dH+jrs5AMkBR1jfsBoCaH5QBYwAJj7nsCNOmvbcgPkbz8CiivupdzAa4MpCFAcxAcpYczlIiH2jLJqQzj77bLXQYg0EVClnkyZNFGwBvSAWVdzjgXIS9wdUseJiZY6V8EIAtnGh9hJQCjBST/8J2YAl1mOsrwA/bUbCoo3nA67zQCbPxjMCIMUFH+8F9qjSLl7Z0AsrdMGCBdWayv7VKlWq6PjmHckzOJjJqw/719EbIGZBL1aZvT2qZlENPkoNVONrZqAaX6PQ5EjkSyc0lUtyQU0rd0FNK9PKXQH3nNavTCt3BdxzWr9KvVZY9AAk9nIDjP6Eey6LG1jI/Ys+sf6OyzD3wE3YSxzUxb5LgA5LLS6uHJrkJSyMAKH/b3wG5AJcuJ/iReFPeEtQZu/AIXeVMnJm1a+w6PJsXG+9hDWSg9QiE4tjQDQJsAMwcXX3L5qhH672WDEBcC9RB/6OXt7+cD5DJ55XqlQphVAvAarsgWXxADdqrMxem3ANFlyeEbk4F60+3j1jldlfTxuD7r3LQDW+Vgaq8TUKTQ57Obg3lWllWrkr4J7T+lV6aBU0jip7TLGuYNXBDdE/acyPcVQ5SRTXwMiEdQbrCpNyQloAI1lpFy2mbLQewn5GJtK4LGY32Rh0VzBdtfKDqnttUpszqFbANAeQRSbcbrFO5kTyQJVxmJMpqFY5WbZ0e5aBavwWMVCNr1FoctjLwb2pTCvTyl0B95zWr3JXq0TjqHJCJ65wtB974Ly9mNQmP8ZRZb+Zt2fQ36K4BXrugsAle0xjaRctpmys3oHlifviZpjdZGPQXcF01Yp90YAeYWvSJaWrVlnpAyhjkY0VJidV2oZRq1RpEe++BqrxFBIxUI2vUWhy2MvBvalMK9PKXQH3nNavclerROKo4maHxYEDWDjkhPAoHHJCyg9xVL0Ww3KMiyD71TjYhQNe2N+HGyUacegL1lMmvbhXPv/883o6aSztImPKso+NkBvcn/3CaAz48lxcDVkgMFB1Hz/JyGnvK3cVTSvTyl0B95wGqvG1MlCNr1FoctiL1L2pTCvTyl0B95zWr9JDqyBxVDkMhv1aWB84dAWA4lCX/BJH1WsxwJKQNOyXw0pKHFoOyeFEUU5MBU45cIYDVzhhFfdoDnmJ1I6TVElYZf0xZTkohniLnNTq7RMk9iX3AHYBWANV9/GTjJz2vnJX0bQyrdwVcM9poBpfKwPV+BqFJoe9SN2byrQyrdwVcM9p/So9tAoSRxVQwjpYqVIldfnlgBZcD/NLHFWvxQhhAUxySA2gSsiJAQMGqAvwZ599ptZl9qZyUiv77Ah1gUUVK6lfO+9+xKb1x5TlRFUOgsHqzUmt3AcLNvsROaGU0CcGqu7jJxk57X3lrqJpZVq5K+Ce00A1vlYGqvE1Ck0Oe5G6N5VpZVq5K+Ce0/pVemgVJI7q8ccfr6BKuAwS0OUPD5HX46h6LUZ8SSybWEo9199IUOWk0dmzZ6tFFJdgwoXE0o6x4I8p27hxYw39QRxOwn/cfPPNei2WVEKKcDqpgar7+ElGznR9X+FijuU+2h5V+h/9LqeTaeWueLpq5V6DnMtpoBpfawPV+BqFJoe9HNybyrQyrdwVcM9p/So9tXKJo5pVyfNLHFVO9cWVF4tprARY8lO4cOG4jR0ZUxYr9YYNGzSMhpci2ybuTeNksDHormC6aoV1nZ+SJUvuURnc0bt06eJeySTlNK3chUxXrdxrkHM5DVTja22gGl+j0OSwl4N7U5lWppW7Au45rV+ZVu4KuOe0fmVauSvgnjM3+tX8+fPV1ZsFEQ7VIgwSe6AXLFigBW/UqJHGQKVsXuxTFjgItYK3A+GRsLSywLF06VI9iKtly5by5ZdfypIlSzTE1AUXXOAugmNO08pRqDgxZ93vkj9yGqjGb2cD1fgahSZHbrxIQyNOREFNK/eWM61MK3cF3HNavzKt3BVwz2n9Kr21Yr8zbuatW7eWcePGKXwCrfwAmpwwzd7m7777Tity+OGHq6vvo48+qvumsai2b99eBg0aJLiTc0o3ngBFihRRd3QOBEtFyo1+ZVqloiXT654GqvHbw0A1vkahyZEbL9LQiGOgmnBTWb9yl860Mq3cFXDPaf3KtHJXwD1nbvQr4ItDtQh3BKjWrFlT3nzzTalTp45aR9esWbMbqFarVk348YMqp0mPHDlST6FmfzMW2NWrV0vFihX1fqlIppW7qsnWin7BIXfsn89ryUA1fosaqMbXKDQ5kv1yCE3FEyioaeUummllWrkr4J7T+pVp5a6Ae07rV+mtFaD67rvv6uFlWFFvueUWefrpp3XPM0CCSy+uvVhKSZGgStijU045RZYvXy5bt27Vg7+IgUxIqbwIqvlFq+bNm+uCRWRat26dHHzwwcKp4f3793fv3P/mnDJlip4wzr0vvPDCwNen+gID1fgKG6jG1yg0OewL2r2pTCvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPmRv9ClDl1Of69evrHlUveYdq4fqb1WFe7FflBwsb12BlywlLm2mV2n4FRE6aNEnatWsnhQoV0ocVKFBAHnroIXnggQekbt26CYGmB6rEfm7WrJl7JXIop4FqfKFzBVR5uXC8PZ3QS5wEyP4CXDiySp77h5cnN14e8WXNnRymhbvuppVp5a6Ae07rV6nRqnfv3tKrVy/3m1vOfKMA/aJnz56Z9bUx6N70uaEVByDhrktYqDAl08q9tRLRygNVrORFixbNfBh9hX3Hl19+uR68dfbZZ6tFnX3OK1asENzAu3btqqdEs4f59ddf1+vZv/zUU0+p9R6LajRQHTNmjAwZMkT3Qzds2FD69eune6JnzJih96IeZ511lnTr1k3DZ/E89kdPnz5d90Rfd9110qdPH+FUeJ7BMzkYjNjQlJF7E0+6atWqWhb2XkemREE1Gkf5741uBxxwgHujpXHOHAVVAobjnnHxxRfraW0EFmevwhVXXKGmfVbIaMh77703pmQGqrF7UyIvhzTumyktmmnlLq9pZVq5K+CeM0i/atOpjYx6apT7zS1nvlGgV+vW0nPkSAPVBFo8yBhM4PYJX2JxVN2lyytaeaB60UUXZVpUgdMzzjhDwxTh+tujRw8hljPJA0aA9ccff9T4zldddZXcfvvtUrBgQcFFfOzYsWoUiwaqP//8s5QrV04uu+wy/RzgxZoLXPJ3oJR7Pffcc1KvXj15++239XRpYkMDsYsXL1Z34tdee01OO+00KVOmjJarQoUKMnz4cAVYytapUyd59tlnBRdm9lFTHn8KCqrROMp/vy+++EIB+sgjj1RdKP9JJ53k3qHSMGeOgur48eNl1qxZumqxdu1aBVVM+sRaY8V827ZtukqxcuVKXdWIlgxUDVSTMY7S9Qs6GXVL9j1MK3dFTavUaDV9+XThJ7+khuUbCj9eCtSvpk8X4Se/pIYNRfj5NwXSKr9oFKOe6aqVxVF175h5RSsPVLFsApok4PG8887bA1SxrD7zzDMyevRoadGihUycOFFhEgspMIjFc+bMmeqFc/LJJ0cF1VWrVmXCJS7B7IsGRAH/2rVry4gRI/T5c+fOVSZp0KCB7qsGnl999VW14GK55VrgFlClrFhugUn+zwFhWIC98uCGzAFg2QHVaBzlvx/1uPPOO7U+5B02bJhMnTrVvUOlYc4cBVWv/rj8eqBKY/N/NtKzOnHHHXeotdXvFuzXzUDVQDUZ4yhdv6CTUbdk38O0clfUtEqNVgaq/9OVeqdkoOqulZOgeTdTbryvLI6qe3/KT1rFcv1lW2CkRRVX34cfflhPjcYiCqhyuBZWVw7W4uRntgNkBaq0wkcffaQWR9yDgcumTZvKTTfdJBzshDWWk6mxvFKGQw45RA499FBp27atWkz//vtvLdeJJ56o7r2A6T333KN7ajHIAc5YWokL7CW8R6tXr54tUI3GUf4bEm8Y6zL/ElsYMIa3wpxyHVQRjxhYdLonnnhCVyMw9ZPw9abBIxNmdy/lxos2XRvctHBvGdPKtHJXwD2n9avUaGWgaqAas2eZRdV90EXkzI33lcUGdW+u/KRVdkEVaypuuQsXLpQXXnhBwxkBq+wVjeb6i5UTiMSbEysp1lDcc7Gecl4OsAvoAr/8n/tyH7gECypuvXALFsvzzz9fQZVti/fff7/89ttvUqpUKalSpYpaZinbnDlz1Bh32GGHxQXVyB7iQa//736Dn//vlJU9tzyH8Y0lGNgOc8p1UMXdl07CqW0DBw7coxEjxTWLauzulhtfOmHt/KaVe8uZVqaVuwLuOYP0KwNVA1UDVfex5ZozyBh0vWe8fBZHNZ5C/32en7SKB6rsFwUE2aPqWS5xbcXqiUWVvZ9YQjlEiEONsJKy3xU34WjhaQiNdOWVV+oeU1LZsmXl8ccf1zNzHnzwwcyzcjiQCJddrKO4AQO0WF9JuPVieeUAKD+o8hknGAO68+bN07wY4vAYjUxB96h618cC1dNPP123V2LppbzslUWfMKdcB1X8zCdPnuwspIGqgWoyBlxufEEno9y5cQ/Tyl110yo1WhmoGqjmBqju3LlTCJfCQjqHPea1lBvvK4uj6t6LTCt3rcjJWCWuLm66rmn9+vUKmhw+5E+c5IuFtXz58ruNfd4JHFIEGLs8hwNjgWv/Scb+5yQDVIk/jMWXvbWdO3fW53Xp0kX3qhICCitvmFOugSorEpz0y2blUaN2P81xyZIlUrly5ai6GqgaqCZjwOXGF3Qyyp0b9zCt3FU3rVKjlYGqgWqqQJUxW7FiRenbt6/cdddduz3mrbfeUrc+LDdEK4hMgwcPlgMPPFAPYfHyYsnhIJPsJg6BYeLNPsVUpdx4X1kcVffWNK3ctQprzuyAqsdRRFPBPXjTpk3yww8/yKmnnqpy8G765JNPdC9tmFOugGp2BDNQNVDNTv/xrs2NL+hklDs37mFauatuWqVGKwNVA9VUgSoTu0qVKumeNqwQ/vTtt9/qfjdOFq1Ro8YeReDAkmOOOUZP1cS9jhNACWPBoSzZTbjusTUKS0mqUm68ryyOqntrmlbuWoU1Z6KgmlV9OeiJU415P8U6mDZMehmohqm14pQ1N750wiqfaeXecqaVaeWugHvOIP3KQNVANdWgesEFF6irH1aK66+/XvfBEeICV7pHHnlEdu3aJd26ddN9by+99JLuT+vfv7+wh429Z8SAB1RbtWqVeQgk13EqaaxEeL533nlH2FdGyAv26RF3kTiOflCdMWOGxm5kzNSqVUvuu+8+qV+/vsahZ+8eh06S/+abbxbqwSmlnEzKDxEVsBRfffXVexQjyBh0H9l5M6dp5TTMRkoAACAASURBVN6uplXiWkUa49zvlHdzGqjmoba1l4N7Y5pWppW7Au45rV+lRisDVQPVVIMq9ye0BdZRDmTBnQ4Q9Fx/2ZvGwY8k4iMCp4Sq4HRNTgFlnxugyqEs/P3JJ5/U+xAnPtb+VoCY8BjElCd+JAe7XHvttbodygPVb775Ri2+JIDzscce0/th7eU55G3durWGpCCGJJYUDlPp0aOHHuYCxL733nv6r+cS6Glp76vUvK/c75o3c1q/cm/XVFhU3Z8ejpwGquFoJ6dS2svBSSbNZFqZVu4KuOe0fpUarQxUDVRTDapYMoHLzz//XNgfSjxEQlREgipWUi9EXjTXXw6I5KRR7/wN9o1hdY2WPFAFMInRyLPY60p8eU4ZxfUXUGWf2bRp09TiO2jQIL0Vh70AxZx0insycSTZzwpEY6HlUBliQvL3F198MfOkVH857H2VmveV+13zZk7rV+7taqAaXysD1fgahSaHvRzcm8q0Mq3cFXDPaf0qNVoZqBqophpUgU8gFDBkPyphHXDnjQRVQlU0adJEi5PVHtX27dvL008/rcBYvHjxLEF17dq1alXFYku4C07x5HAUQBVLKfEYSR06dFCLL9ZRYiPy/I4dO2poP9x9+RvwSgxH7nfjjTdmPpcTQXEtThRUOSQqP6c1a9boYoKl6AoQEsZL9j3o3ksMVONrZaAaX6PQ5LCXg3tTmVamlbsC7jmtX6VGKwNVA9VUgypgRxzF119/XX+wrAKQkaDqP9UXUCxWrJiG2FuwYMFuhykFAdV27dqpqy+WWNyPx40bl+n6y4nDHNjE/bCQArC4FAOz7JPFRRkrK27DWGNx/eWE4k8//VTjPy5atEjGjBmj4O0BdiJAcVvX22TAowPcB7jlzDcK9Lr1VunZv7+BagItbqAaXzQD1fgahSaHTZLdm8q0Mq3cFXDPaf0qNVoZqBqopgpUGbOEp8HNF+gjccov7rQcdASoTpgwQThJE4unH1Q5JZg9oxywxD5R9qh6Flesn+xddbGo4q4LWOIizDPZS+oPT+O5BPM55cSiOm/ePAVp/wnDACvPBU4pG+BKoty4/xIP1p+CvK/adGojM2fNdB/gIc9ZskhJ4cdLLAzEioW5R1V/+02En3yS6tavLz1HjjRQTaC9DVTji2agGl+j0OQI8qUTmkqlqKCmlbuwppVp5a6Ae84g/cpA1UA1VaDqvy+utgBJkLiDXMOJwLEg5vvvv5cff/xxj+JjwR0wYIAepvTPP//oQUjElo918BKWUq6J/JxYqxz6VKZMmT3KwJ7WvfbaK2Z9bAzGfl81LN9Q+PFSEK1k+nTRn/ySGjYU4effFEir/KJRjHoaqMbvAAaq8TUKTQ57Obg3lWllWrkr4J7T+lVqtDJQNVDNCVB1773uOTngaPHixXtcgNvwiBEjMkHV/Y7JyxnkfWVj0MZgWMdg8kZM8u9koBpfUwPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVzZJTqNJMnFBOdxnxw6RRYtE3n5bZNeu3Ru+XTsR/wFCa9aIPP+8SIUKxIARKVxYZN06kXHjRNavd+800XKG2JrDwU1YSs8555zsaZDg1TYGYwtnFtUAnSrEYzBALVOS1UA1vqwGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVNMEVOvUEeHEW8CUn733zgDVzz7bveF79BD55x+Rv/7K+Pvq1SIvvyzSvbtIwYIiv/8uUqKEyE8/iYwY4d5p8hioZq/i2b/axmCIQfWUU0RY4Bg7ViSKxV4Yqw0aiOy1l8iyZSJTpmSMOxKLSLfeKjJ/vsjEidnvSAaqCWtooBpfOgPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVwaqaQKq114rctRRIkOGiOzcKXLLLRmW0cGD/2t4Duzp1k1kzhyRmTNFtmzJ+KxGjQxr6rx5IhzyU7t2xt8//dS90xioZk+riKttDIYQVMuUETnrLJHy5UUKFBCZMEHk30PAMmsDiHbqlPHfP/8UKVKE4PEir7wigkdExYoZi0wA7pgx2e9TBqoJa2igGl86A9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXBqppAqpFi4rsu6/Ihg0iTZuKYNX57juR0aP/a/hy5USuu+6//zNRfv11kWOOETn++AzAxcqzebPI5MkZ12cn2SQ5YfVsDIYQVGvVyhh7LAjhnTB+vMiCBbtXxPN8mDVL5L33RO69NwNqH3tM5PbbM8ZfoUIGqgmPnORdaKAaX0sD1fgahSZHkC+d0FQqRQU1rdyFNa1MK3cF3HMG6VcGqjkIqoccQjyTPRuScBu475L4vFo1kb//Fhk2LMOq6qVKlUQuukhk7doMV8MTThD59VeRVasyrKp//JEBp0ArsPrEE+6dJlrONAVVTvtdtmzZbvtPn332WY2VGplmz56tIWlyOtkYDCGoekW+4oqMxZ9ooArE7rdfxvg6/PCMhaOtWzNAleR5N5hFNaeH3B7PM1CN3wQGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVHMQVLGIXnPNng25caPIoEEiHTuKlCqVAaHETuTv/sTeU35WrBDZvj1jX6q3l/W880Q++EBkxgyRLl1EsND26bPnYUzu3SgjLEYahsb4888/hR9/qJsnn3xS7rjjjj1q17dvX417mtPJxmCagqrLYlFWoOpVC8tq48YZ/5s0KcPt3kA1p4dZls8zUI3fHAaq8TUKTY4gXzqhqVSKCmpauQtrWplW7gq45wzSrwxUcxBUs2pCDm/B8of7LtYYDkzCWsqhLK1biyxfLvLzzyIAKaDK/+vVy7CucuovMLZpk8jcuSKNGmX83q+fe6eJljMHQXXy5MlqJd2xY4fsv//+QgzTIkWKSOvWrQWr6IJ/XTAbNWqk8Uvp49WrV5e33npL/v77b/n999+lW7duMmrUKP0/96hZs6ZMmDBBLa9r167VmKikli1b6j2JwUqcVsLZNG/eXKZNmyZLly7VeK/kOQSoSTDZGExTUM1qsWjgwIxCxwPVZs0yvBY4nfvVV0WWLv2vsmZRTXDEJP8yA9X4mhqoxtcoNDmCfOmEplIpKqhp5S6saWVauSvgnjNIvzJQTRNQ7dBB5OCDd29kXHlfeknkxhv/O1ipfXuR0qUz8gG1fM7Jo82bixx3XMbfgVwOgoncX+fehTJy5iCojhs3TkqUKCEnnniiDB06VLp27SrPPPOMNG3aVNavXy///POPLFmyRAH2hBNOkO+++07h9Mwzz5QjjzxSHnzwQbWoDhw4UOrVqyf77bef1KhRQ7C0tm3bVl577TW5+eab5euvv5YffvhBdu7cKYcffri6BT/66KPSoUMHGTRokDRu3Fg/3759u7Ro0SKoYpn5bQymKai6tGgkqJYs+d9iEQeUMR5JuNkDqyTCQZEMVF0UzpE8BqrxZTZQja9RaHIE+dIJTaVSVFDTyl1Y08q0clfAPWeQfmWgmiag6t68GW69QC2WVWDVS/wdKyB/9ybQQe4bmTeHQbVatWpSrlw5GTFihNx66636LyAKZNapU0ctnWvWrMkEVaykl112mZQuXVpB9bbbblOr6W+//SazZs3SPavDhw+XK664Qt5//3257rrrZP78+QqiWFJ5Hj+AKp+NHDlSmjRpIps3b1arLc9MNNkYDDGoevvEvT2q7EX1Fos44ZeDziJTr14Zf6leXeTSS+0wpUQHThKvM1CNL6aBanyNQpMjyJdOaCqVooKaVu7CmlamlbsC7jmD9CsD1RCCqntXyF7ONAHVt99+WwoXLqygumXLFnXlBTaBzHfeeUf22Wcfta7eddddalHFZffXX39VC+rgwYPllFNOkcWLF6tLMJbSyy+/XGbOnLkbqN59993y8ssvy9atW/Vel1xyiVQk1EiCycZgiEE1wTZPyWU5OAZTUv5cvKmBanzxDVTjaxSaHEG+dEJTqRQV1LRyF9a0Mq3cFXDPGaRfGagaqMbsWWk0SQZQvb2r+xLG598EeOIW7P0NS+mGDRukFIdSCWdJ7dKfvffeWyEUl+CsEs8BfPnJTrIxaKCanf6TeW0ajcGk1CcHb2KgGl9sA9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXyQbV4oWLS+taraVY4WKy+a/N8vFPH8vcVXN3K3yBAgWkccXGcvyhxwu/f732a5m8ZLL+Hu3v7jWPn7Nh+YbCj5eCaCXTp4v+5Jdkk+SEWzpIv0r2GEy40Dl0oY3BAELbGAwg1u5ZDVTjS2egGl+j0OQI8qUTmkqlqKCmlbuwplXOaoXlhf1nxYoVc39wCHMG6VfJniTfdNJNctj+h8nGvzZKsX2LqbXrwRkPys5//ttLedyhx0nzo5vLXzv/koJSUArtVUgmfjdRdv2zK+rf563+N/RDEtrCJskBREzSJJlQMhx+xCm97AONFu80QKkys65YsUL7F6f2kvidPakNGzbcI86q6/3ZF3vNNdeoBTarhMtxpUqV9IeEWzEnDl9//fX6/9wcg651za18NgYDKJ+kMRjgiXkmq4Fq/KY0UI2vUWhyBPnSCU2lUlRQ08pdWNMqdVoRzmLixIk66WQiO3fuXDnjjDMUVAmBEW8i6l6y9MsZpF8lG1Q71ekkf//ztwycM1CuP+F6KVusrLz09Uuy9Lf/QjjccMINUqZYGXnmi2fkzx1/ym11bpOfN/4sBQsUjPr35758Lmki2yQ5gJRJmiT/8ssv8vrrr+vpuwMGDIga7zRAqTKzfvTRR3p6L+PaA9UnnnhCT/CNjLPqen9OCb7lllukUKFCWV7CKcXeYUxeRsC5bNmyBqpxxLYx6Nobc/bk7QClCkVWA9X4zWSgGl+j0OQIMvELTaVSVFDTyl1Y0yp1Wo0ePVrDS3D6JyEo+vTpIz179tTDVpjI4maaV1OQfpVsUPU0BVKB0R07d8hDMx/aTWoPYJ+f/7wU3buoXHbsZbJl+xb5fdvvCraRf3989uNJayqbJAeQMgaoYj3s16+feiYQLubSSy9Va+abb76phxUBcGeffbY8/vjjUrBgQSlfvrweZnTllVfKK6+8ovtHAUwOLCJEDIkQNCwsbdy4UY466iiNa0peFpa457XXXqtxT4l/SsJqilWT+zCe2aNKGQDVCy64QC2afBYZKxVgXr58ue5BvemmmzQOqz++KlZRDmEiVI2/fhzO5H82C2FcB9ASHufcc89Vay6nFBMTlnoTizWyTtHUT9UYDNDSOZrVxmAAuZO0WBTgiXkmq4Fq/KbMFVDlIAAOC/BPwjhAgMDZvDizShzRzsl3Xgoy2YkvR7hzmBbu7WdamVbuCrjnDNKvyEv8ReIuEnMRV0MgFctO/fr1dYJblFAeUdKYMWNkyJAh6qrIZJgJOZPpCy+8UCfYuC5iObn44ot1otusWTOdpBJ/8eOPP1bXP+7PAS6kGTNm6CmlADLPfPrpp3USzMS8QYMG8tRTT6l19/zzz9fTSQmfQdiN++67T959912ZOnWqPoMy8V4HwIkzyQT86quvlvvvv38P63AQrVI1Se5ct7McsO8B8o/8I/0+6Seb/tqUqXbFkhWlVc1Wu6n/x44/ZPy346P+ve+svu4dJU5OmyQHkDILUO3bt69069ZN+zzzDsLGYNkkvAx9mrEBqJIHyPMsqg8//LB0795dF5CYmxAOhsS4AzaB2ilTpmh4mnnz5umY+eSTTzS+KuOXE3lr1aolBx10UCaMRlpUGYuMX5I/VirvAcYPYAs4M+7ee++93eKrLlu2TP/PuPfXb9u2bbs9e86cOVK8eHEFcuZOnTt3lv79++t7hxOF+ftnn322R504ECoypWoMBmjpHM2anTHYu00bGebFLM3RUufSwzg4zHewF4svhE5ySYxLxlh+Saeffrp8+OGHMRkmknFi6RKNo/x5WTw74IAD8oSsOQqqvMAJZM3kaenSpRpXjIkQFgVexkxqOLq9devWMcU1UI3d74JM/PJE781GJUwrd/FMq9RoxamfvO+ee+45XXzDOsPk+IMPPlDIwwUxmuvvzz//rBNtYjMCn23atJF27dopXOI+jFsfk2besZUrV1ZIJP5imTJltCIVKlRQq8rtt9+u72MsO6RJkybpBPm0007T+zOR5rOOHTvqD2Xk/nz5tWrVSqGUBKCuWrVKPv/8cyFEB5N24Jn3OIuPlOuRRx7ZbYGR64L0q2RPki+tdqms2bJGD1Hi9+qlq+thShyW5E+lipaSeuXqycZtG/Vwo9VbVsuwucMk1t/de0rWObMzSbbDlDJOSMai6rnwAmPMP7AuMm4OPvhgwX22ffv2uiBz55136ueRrr+A3rp163SBhsTeUKCSn++//16YdPI3FnkA1mOOOUbhlGezmMO/jKVorr9+UPXHSsWiC5iymATIYg1mS4A/virWVkCVsXXHHXcobFL+KlWq7PZsxp//3n5QXbRokS6QTZ8+fbc6nXfeeRpmJzIlewwma6yk6j7ZGYO9u3eXXg/t7qGRqnLafcOlQPnjysuyL5clDKrROMqvwBdffKHvCjwoYCrmFyeddFK4RIoobY6C6vjx43WFklVAVuMBVSYwkD+BsFntPOyww3R1JZYlwUDVQDUZIy7IJDkZzwvzPUwr99YLqlWk6y+TTt6PvBOjWTUoCVDoQSeQyCQZ9z0sJ/FAlUnoG2+8oQCMxee3334TwJcJPF9sTGQBWyykTLyBXVwbgVesSdwfuMZSxeQdl0T20jKxBppfeOEFnTQz+QdsWVV/6KGHpHbt2vp3fwqiVbInyd3qd5NCBQvJrJ9nKaQeWPhAGb1gtFpXTz/ydJn540zhZOBTjzhVvlrzlexXaD+pelBVBVtStL9P+980944SJ2d2JskGqrFBlZij9G1calnQoQ/jhguoEv8UKyvxS3GFZSxGgiqWTBZ0cKXlHow7YNiLiXrggQcqmH777bdqpeQQI+Y5nvXV7/obC1QZN8AvrsSMLYD0+eef3y2+KrFUo4EqgOl/NuM7HqjiAeGvEwtk0VKyx2DSBkuKbpSdMbh69eoUlSoctwWQ+D5xSX3e7iND5w51yZon8rQ7qZ083fbphEE1Gkf5hWE+wPuMf8k7bNgwfeeFOeUoqHpC8WL0QJVVw7POOkv3hbB3A9dfgmSzIhotGagaqCZjwAWZJCfjeWG+h2nl3npBtUoEVCkNB7SwUorbLSusuPJhzQQkmRizqoq1FBj1W1TvueceBUcSnzFxBiCZWGElAlSZqOPei7UFy2mPHj2kZs2amaB677336j3Z88cXIe9tvgiZeL/44osKq4ArE27vsBesTLfddlvagOrJZU6WppWbSgEpoOVf9vsyeWH+C9KkUhOpU7aOzFkxR6YtmyZ31L1DiuxdRMv9y9ZfZMjnQ/T032h/d+8l8XNmZ5JsoJp1zFnc3QFAf5xTr0W8A8yy2hvO9Zs2bRKglMT/ORSJ7UxYP7kvn/Ov9wzuG+/go8he4d3L+7tLfFXyRj47q97mva8i6xTtGgPVALGM4w/xPJ0jyPdg7+m9pddHvfK0Hv7K9WrYS3o26JkwqEbjKP/9mQOwT51/v/zyS922AG+FOeU6qDIp4odJD4mVSVYx2QPCvhIssJHJ9qhG73JBXg5h7rTJKLtp5a6iaZU6rTxQxQKJJYP9ZvEsqrjqNWrUSHr37q3vTqykuCcyQWUVFUh89tln5bXXXtPf/aDqQWZWoHr00UfrflmgEwsNrpJ+i2o8UMVd8YEHHlCra9WqVfV33Jqpmz8F6VepmCTvVWAvPUhp1eZV8veuv2M28uEHHC5bd2xV919/ivV3994SO6eBagAV7SCXAGLtnjW3x2DCBc+BC7M1BnOgfOn8iCD9qvdHvaXXdANVrz0xxkWmevXq6XewP/kNfv6/c7ga38F4p9IOnDGB11SYU66DKqdcIiz7pdjHUaJECT0MINahSmZRjd3dgrwcwtxpk1F208pdRdMqdVrxhYJbLK6+X331lbr4AareQQnRnowFEA8UQJSECyMHwlxxxRXq1nvRRRfp3zm8hf2ugCL7WHEXjgWq3rYLLKosBGJN5TAmb88b5WHRkD2v3j2A5LFjx+5hUcUdmfsAyySssbgW4hLpT0H6VSpA1b1Vcz5ntibJ06eLWlXzSzJQTbilbQzGli5bYzDhFskbFwbpV2ZR3d1S73qYUixQZd88cwgOdmNvO4zFVoYwp1wHVQTEmoDrGJMeDjjgIJBYyUDVQDUZAy7IizQZzwvzPUwr99ZLRCvcAgFBFuz8JyXiWQLARiYsnsApB9HhDhi5F4j7cV3JkiXdCx6RExheuXKlwm2iIXLY88ceuVj3CKKVgWoAt0MD1ZhbhxIeEHn0QhuDBqqp6NpB+pVZVLMPqnzXLly4UBe9WSRmq02XLl10rypnXeBVFeaUa6DKvipO3mNvB4dwcAIdv+Oqxv4oA9Xg3SrIyyH43fPWFaaVe3uaVrmjFYt3nAwcmVgp5ZCWsKcg/cpA1UA1Zn83i2rCrwIbgwaqCXeeLC4M0q8MVBMHVY+jOI8C92C2/3DGDzHZSeyjx/CXnUXrVPSPoPfMFVCNVkh8qA899NC4Bw6YRTV2Ewd5OQTtKHktv2nl3qKmlWnlroB7ziD9ykDVQNVA1X1suea0MWig6tpXguQL0q8MVBMD1azag7BYRAfgQKVEPaKCtHeq86YNqLpW1EDVQNW1r2SVL8iLNBnPC/M9TCv31jOtUqOVgao7qPZq3VpenjTJvSHCnrNIERF+/k2JnLAbdglcy3/11VdLz56xTxzN6j42Bt3HoGt75NV8Qb4HDVSTD6p5rV8ZqOahFg3ycshD1U6oKqaVu2ymlWnlroB7ziD9yibJ7pPkXnffLb379nVvCMuZbxRgEaPnyJGZ9bUxGLvp7TClxIdFkH5lhykZqMbraQaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxU3UF16dKl7o2QB3OyjQiXN6c0Z44IP/klnXKKVGrZ0kDVob0NVB1EipElyLvdQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKm9o9fbbb8uxxx67xynB7rX7LyenAg8fPlxD4ABGjRs3DnybIP3KQNUdVAM3RB67IEi/0jA+FsrHqQfYGLQx6NRRRDR+Z4UKFZyyG6gaqMbrKAaq8RQK0edBXg4hqlZKimpauctqWuUNrYi7SnzUZJwYDKg+8cQTmSe2X3rppe4i/ZszSL+ySbL7xC9wQ+SxC4L0KwNV936VqjF4xlFnSN2ydWXN1jXy3LznovbGI4odIa1qtZKd/+yURz9+VPNg8Tz1iFOlYIGC8uPvP8pLC17SmM7JSmZRTVzJIGPQQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKne1mjx5sixbtkw4JIaYaH/99ZcUKVJEWrduLbNnz5YFCxZoARs1aiQVK1aUUaNGaZ7SpUtLs2bNBEAlTuvGjRvl8ssv13hrP/30k17TsmVLmTVrllStWlWqVKmiMa07duwob7zxhixfvlwKFiwoxx13nJQrV04mTZok++yzj7pVNm3a1EDVvVsEzmmT5MCSZV4Q6H1lFlVny1cqQHX/ffaXznU768mkG7dtlH6f9ova8OQ5YN8D5B/5RwCb8geWl9bHtZYdO3fIjl07pGihojLtf9Pk458+TrzjRFxpYzBxKYOMQQNVA9V4Pc1ANZ5CIfo8yMshRNVKSVFNK3dZTavc1WrcuHFSokQJIX7q0KFDpWvXrvLMM88oLK5fv16tCEuWLFE4rVy5sgIpnwGx27dvl23btkmTJk1k8ODBUrduXZkzZ47cfPPNQuw1Yq4BwNWrV5dq1arJY489Jtddd53Cbbt27WTKlCkKq7gMr1y5Uu9FXDbKYBZV934RNKdNkoMq9l/+QO8rA9VcBdW2J7SVQ/c7VArtVSgmqNY/sr6cedSZCqV777W3guqV1a+Uow86Wp7/6nlZs2WN1DmijqzevFoWr1+ceMcxUE2adkHGoIGqgWq8jmegGk+hEH0e5OUQomqlpKimlbusplXuagWoApFYNUeMGCG33nqr/nvmmWcqUNapU0f++OMPWbNmjcaiLly4sDRo0EA+/fRT2bBhgxQtWlT/P2zYMKlRo4YsXrxYYXT+/PkKqsRcO/roo/UZhP+65ppr5L333tM8U6dOlV27dul99tprL83HXte7777bQNW9WwTOaaAaWDKzqLpI1rChCD//piDv9mRbVCuVrCRX17xaJn43US6oeoFs2rZpD4tq4b0Ly12n3SU//PaDHLL/IVJs32IKqrfVuU1KFC4hf+/6W/YuuLes3bpWXlnwisJuspKNwcSVDNKvDFQNVOP1NAPVeAqF6PMgL4cQVSslRTWt3GU1rXJXq6xAFWgETAFV3HuByzFjxqiLbrFixXQP6XPPPaeuwsAmrr8fffSRwinWVv7/66+/yjvvvKOWWayy3bp1k5EjR+r9Nm3aJCeddJJ+BtTiosffWrRooZDM/RctWiS2R9W9j7jktEmyi0rR8wR6X5lFNdcsqnefdrf88fcfMnDOQOnZsGdUUG1Vs5WUL1Fe+s7qK+1rt88E1U51O0nxfYvLqs2rFFbLFS8nC39ZKGMXjU2845hFNWnaBRmDBqoGqvE6noFqPIVC9HmQl0OIqpWSoppW7rKaVumtFUDp7V3dd999tbAAp/c7//fyeDXZunWr7LfffpkVA1xx8eWHaz/88EO1wr766qu6R5UfrsE6u3Pnzsy87srsmTNIv0q2NSc75c6Jaw1UE1c5SL+yw5Ry5zAlXH271++ujcy+0wJSQH9ftmGZPD//+czG71qvq2BV9ef5c8efsmrLKqlYoqI8+cmT8seOP+Te0++VLdu3yOOzH0+84xioJk27IGPQQNVAZo0P2wAAIABJREFUNV7HM1CNp1CIPg/ycghRtVJSVNPKXVbTKv9phesvLsJly5aV5s2bqyU12SlIvzJQdQeKZLdT2O4XpF8ZqLr3q2SOQd4n7Dv1Ur1y9WT7zu0y4dsJwgFLpx95usz8caa+d3D3JZ1c5mTZZ6995N2l7+r/G1dqLP/b8D8F1JqH1JQFaxfI+G/HJ6272mJR4lIGGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusppWeUMri6Pq3o65ndMmyYm3QKD3lbn+5prrr7+Fcf1lf+lTnz4lTSo1kTpl68icFXNkytIpmdlw9/X2qO5VYC91BS5VtJR+zkFLQ+YOkQ1/bki840RcaWMwcSmDjEEDVQPVeD3NQDWeQiH6PMjLIUTVSklRTSt3WU2rvKGVxVF1b8fczmmT5MRbIND7ykA1LUA10dYuWaSkhqZZuXllUmOoUh4bg4m2ikiQMWigaqAar6cZqMZTKESfB3k5hKhaKSmqaeUuq2mVu1pZHFWRZLodurdm7uW0SXLi2gd6XxmohhpUE+8l8a+0MRhfo1g5goxBA1UD1Xg9zUA1nkIh+jzIyyFE1UpJUU0rd1mTqdXnn3+usTo5ZfbUU0+V7t27S/369eWBBx6QiRMn6om0nFDLabJHHnmkPP3003qibKlSpeTPP/+U4sWLS6VKleTll1+Wxo0byyuvvKIxPgmrcswxx8iMGTM0dAplrlWrltx33316f+7BfTkoiDig119/vYZbIWRLlSpV5MUXX5TDDz9cryfe6PTp06Vhw4b6+0EHHeQsVjK18h5qcVQNVFPRr5w7dcgyBtLKQNVANUb/NlBNfOAHGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusiZLK0KcEIeT1KdPH3nooYdk27ZtsnDhQmnXrp2GUeF0Wk6jPeSQQzSuJ6fPVq1aVZYsWSIHHHCAXrNs2TJ58skn9fMzzjhDBg0apNcPGTJEIZZ01113KRDvvffe8u2330rlypUVXm+44QaZMmWKrFixQq+vXr26hlnp2rWrQjPPOO2006RJkyYKucAwUO2akqWV/3kWR9VANRX9yrVPhy1fIK0MVA1UDVSTPsSDjEEDVQPVeB3QQDWeQiH6PMjLIUTVSklRTSt3WZOplQedWDnPPPNMad26tVpOsXBmBaqrV69WuCQ2aOfOnRVUly9frtceccQRUrJkSfnqq6/UWjpt2jRZt26dAiwJSyxWV0K4zJ8/X6/lHuTFCnvggQdq/FHglLii/FBOYonyTOKGArAuKZla+S2qQHW5cuVkxIgRcuutt+q/6GdxVF1aJXx5zJqTeJsFGoMGqgaqBqqJD7YYVwYZgwaqBqrxOqCBajyFQvR5kJdDiKqVkqKaVu6yJlOrn376Sd1tsRJ6VtI1a9ZIp06d5JlnnpHff/9d3XsB0hNPPDHTosrfPvvsMy20B6obN27UfEBl4cKF1W0XN15Shw4dZOrUqTJr1qxMUC1durTCKe68HTt2lHnz5qmlFQht27atVKxYUbp16yYtWrTYbfKGKzGQ65KSqZXL88hjcVRdlQpPPgPVxNsq0Bg0UDVQNVBNfLAlA1Q/6i29pvdKehnS9Ya9GvaSng16ZhYv8n3FNibmHJb+U8BANQ/1hkBf0Hmo3olUxbRyVy1ZWgGhWAXPOecc6d27t7rxssd00aJF8sYbbygk9ujRQzZs2CADBw7UPaKe6y8WUyAzK1B99dVX1ULavn17uemmm6RevXqyefNm+eOPP9TFNx6oYknF1RdQ5frHH39cXYcnTJjgLFaytHJ+YIoyWhzVFAnreFsDVUehomQLNAZTDaqXXSbC4tmOHSKLFom8/bbIrl27l7pCBZFLLhEpXFhk3TqRceNE1q8XOeEEkdNPF8GbY9UqkVGjRHbuTFwYrmzYMOPn3xREKzvQzD3mbPYaKfxXB+lXZlE1i2q8Hm+gGk+hEH0e5OUQomqlpKimlbusydSqf//+Cqi//PKLWjKBykceeUSWLl2qe0P5O26uP//8s9SuXVvef/99tZi6gCpuveeff7689dZbeu+aNWuqRRXLKYcpeaDKXlYsrvwdCyzWUiyqw4cP10OZcA32ygdAsw/WNSVTK9dnhjVfEK1skmyTZNd+HqRfSSpBtU4dkSZNMsCUn733zgDVfz1DtD4FC4p0757x7++/i5QoIfLTTyKvvCKCVeWff9i7ILLffiLffScyerSrDNHzGag662eLRc5S7ZExyBjsbRbV3bwazKK6Z78zUE18LKbdlUFeDmlX+BwukGnlLniyteJQJVyAy5Ytqyfveom/r1+/Xk/4LcjELcG0atUqhVKsoYmknTt3avnY+xr0HsnWKpHyh+WaIFoZqBqouvbrIP0qpaB67bUiRx0lMmRIhiX0llsyLKaDB/9XlRo1Mqyp8+aJvPWWSO3aGZ9hXQUq8SJ5990MmAVaH3rIVQYD1ewpZXFUs6FfkDFoFlWzqMbragaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxUDVRde1aQfpVSUC1aVGTffUU2bBBp2lTklFP2tIo2ayZy/PEZIMui3ebNIpMnixxyiAieHADse++JdOkiUqCASO/eGcCaaDKLqrNyZlF1lmqPjEHGoFlUDVTj9TQD1XgKhejzIC+HEFUrJUU1rdxlNa1MK3cF3HMG6VcGqgaqrj0rSL/KNqgClJdfvmfRfvtN5OWXM/7O59Wqifz9t8iwYRlWVS9hTcWq+scfGRALtAKr/fuLdOuW4RIMmAKppAceyLhPoslA1Vk5A1VnqbIHqtN7S6+P7DAlT0Rz/d2z36UNqHLoCXvFCngv5BhjJLIRA30pJT7uQnGlaeHeTKaVaeWugHvOIP2KA6XYF5tf099//+3sWv3X33/JXzv/yjdSXdzyYhnZb2RmfYP0q3wjUoyKBtIqu3tUy5UTueaaPUuycaMI4bE6dhQpVSpj/+nIkSL83Z9w9T3vPJEPPhCZMSPDcooltk8fkX32EalXL+PfWrUyLK6AanaSgaqzegaqzlJlD1Rtj2pCe1S9mPOxmAmmcg2rl3hL58yVuQ6qnPB5ww03qKDEPuTQE2IrxkoGqrE7RqAv6JzpX2n7FNPKvWlMq9Ro1aZTGxn11Cj3m1vOfKNA13u7ysP3P2ygmkCLB3pfZRdUsyrfOeeInHpqhlvv4sUZltFffxWZP1+EOc7y5SLvvJMBp5s2icydK9KoUcbvnPzbpo3ImjUZ1+IGzO9DhyagiO8SA1Vn/QxUnaXKHqiaRTUQqHLQ49dffy0XX3yxHkLJeRz+9MUXX2hceGLM//jjjxqf/qSTTkq8MdPgylwH1VGjRmnQ+tdee01mz54tbdq0ke9wgYmRDFQNVJMxbgJNZpLxwBDfw7Ryb7wgWo39dKx88nNGyJ38kOoeUVfqlq2bWVUOrCJckaXoCnDYmJeC9Kv8rmcgrVIJqh06iBx88O7NgYvvSy+J3HjjfwcrNW8uctxxGfmAWcJhLVgg0ratyBFHZPx9+3aRAQMImpy95jVQddbPQNVZqj0yBhmDtkc12B7V8ePHazSDfv36ydq1a/cAVcL/3XnnnRoGkLzErSemfJhTroPq6tWr5bjjjtMQEB9//LHcfvvt0rlz55iaGqgaqCZjwAV5kSbjeWG+RzprxSLXscceq6uH2U2cOowrLu8iViqJqRo0BdHK9l3avkvX/hWkX7neM6/mC6RVKkE1iMC4+7LfdcWKjJirXipWTGT//TPiqCYjGag6q2ig6ixV9kDVLKqBLKqe2Lj8RgNVohVg9OPfL7/8Upo0aaL5wpxyHVQh/VatWsmNN94oc+bMkX322Ucmc+qdiIIrKweR6W7ii/2bAn0phbmlHMpuWjiIZP3GXaQQaIUnxgknnCCVKlUKXK/ICwDVJ554Qs4991xZtGiRbkMImoKMQQNVA1XX/hWkX7neM6/mC6RVuoBqTjWGgaqz0gaqzlJlD1Rtj+oeoBopaL169TTOvD/FAtVixYqpV+phhx0mvAsbNGigcenDnHIdVHH1PfroowX4ZPMvIkdbJfBENotq7O4W6As6zL02CWU3rdxFTIVWLEYtW7ZMduzYoYeo/fXXX1KkSBHdn85q4AJc34QtW42kYsWKwhYB8rAfo1mzZrpVgMMENm7cKJdffrksXLhQY5+SWrZsqQtcVatWlSpVqsigQYOkY8eO8sYbb8jy5cs1RiteHLidTpo0SRfHWH1s2rSpgap7twic0yZ+gSXLvCAVYzDx0qT3lYG0MlDdbZKcVcvawpotrLmO/CBj0OKoBnP99dogFqiefvrp6hZ84oknyty5c6VPnz4yceJE16ZLy3y5DqqPP/64Uv/gwYN14+8pp5wiK1eujHkapIGqgWoyRlKQF2kynhfme6RCq3HjxkmJEiX0ZTp06FDp2rWrPPPMMwqL69evF6ybS5YsUTitXLmyAimfAbHbt2+Xbdu2qUsL7426deuqN8bNN9+shwz88MMPCsDVq1eXatWqyWOPPaaHCwC37dq1kylTpiis4jLMu4Z7ffLJJ1oGs6imrqcaqCaubSrGYOKlSe8rA2lloGqgGqM72/sq8XEeZAzaHtXsg+off/yhi/W1a9fWrZMHHXSQdOnSRfeqYgi4//77E2/MNLgy10EV6+kFF1wg7FX9P3vnAR5Vtf3tFToBQhGkCxfpivxBkCqgIF1BqSoqAiqocOkIIk1ERaWIUq4UrwgoRRQRFBsdQZAmSJEPKQKiUkIvCd+zNndiEpKc3z6ZM8lMfuc+eeRm1tlzzrvX2TNvdtNjyJAhZhXgxA6KKkXVH8+NTUPqj/cL5jK8YKWiqhKpvZrTp0+XHj16mP/Wr1/fCGX16tVFG99jx45JgQIFJEuWLGYIyw8//CC6Unh4eLj5/7pQQIUKFWTXrl1GRrdu3WpEVbc+0ZEa+h7aZjz++OPy9ddfmxidbhAdHW3KSZ8+vYnTua46qiMURPWRCo9IidwlZOTKxLeyKBpRVB6r+JhEXYuS11e/btKzZdmWclu+28wWYXtP7JWPf/7Yr2nLL37ucXrxDLq/mtR9phUriipFlaLq9wfa5hmkqLoXVV0BOF++fOYP9Do8ODIy0nz/qamrjYtIrly5zB/h8+TJ4/c6DmSBKS6qvps9cuSIAZ4xY8Yk75+iSlH1xwNi05D64/2CuQwvWCUlqiqNKqYqqjq8V+Xyo48+MkN0dWqAziHVJdd1qLDKpg79XbFihZFT7W3V///333/Ll19+aXpmtVd20KBBMmPGDFOeNua6XLu+po26ipn+7pFHHjGSHKxzVCsXrCzVCleT/Nnzm3QbtjzxTdT71OgjOTLnkGtyTXToVcX8FeXBcg8aJvq/dGHpZNm+ZbL20Fq/pS5F1T1KL55B91eTus+0YkVRpahSVP3+QNs8gxRVd6KaVKXpdyF1Kp3SlNg+q36vdA8LTDWiit4jRZWiiuZKUnE2Dak/3i+Yy0gJViqUvrmrmTNnNvhUOH3/1v/vi/GxPXfunGTLli0GtTbWOsRXf/Tc77//3vTCfvzxx2aOqv7oOdo7GxUVFRObnLqyYeXvOV/aI1o2b1nJnCGzhElYoqJ6d7G7pf6/6suVqCuSIX0GI6pPVnpSiuUsJnN3zJXzV85Lx//rKMfOHpPJG5O5b2MsmBRV95llk1fu3yU0zrRiRVGlqFJU/f7g2zyDFFX/i6rfKzSFC6SopnAF+PPtbRoHf75vMJZFVnithQorHfqrQ4R1f8qWLVt68pdGG1b+FlVfjfat2VeyZ8qeoKhmyZBF+tXqJ/tO7DM9rxGZI4yo/rvavyV31tzy5to35eLVizK4zmA5e/ms+f/+Oiiq7kna5JX7dwmNM61YUVQpqhRVvz/4Ns8gF1OiqDolIEXViVAQvW7TOATRbXlyqWSFY03NrLiP6o31mJSoPnbHY1I8d3EZvWa0PFv12RhR7V2jt/m3zmu9Gn1VhtUbJheuXJDX11yfv+qPg6LqnmJqfgbd35U3Z1qxoqhSVCmqfn8QbZ5BiipF1SkBKapOhILodZvGIYhuy5NLJSsca2pmxX1U7UT1hdoviPaq6jxUHR6shwpp5KVI08M6ZeMUOX/1vPSq3ktOXjwp438YjyeKQyRF1T3K1PwMur8rb860YkVRpahSVP3+INo8gxRViqpTAlJUnQgF0es2jUMQ3ZYnl0pWOFYvWHEfVZFADf2tUqiK1ClWR1YdWGWGO2vPqR53Fb5LMqXPJF/9+pVZWKlm0Zry5/k/TY9qwewFZfOxzfLZrs/wRKGo+o1V/IK8eAY9u9gULtiKFUWVokpR9fsTa/MMUlQpqk4JSFF1IhREr9s0DkF0W55cKlnhWL1gxX1UAyeqjUs2lupFqsv6w+tl6a9LYyq+V41eMUN/VVi7V+suOTLlMK/rgkrvbHjH/NdfB3tU3ZP04hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdR9U5U8Zq9MTJftnxmSPDxc8eTU0yC51JU3SP14hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdRTZ2iimeFfSRF1Z6Z7wwvnkH3V5O6z7RiRVGlqFJU/f5A2zyDFFWKqlMCUlSdCAXR6zaNQxDdlieXSlY41pRgxX1U8foJlkiKqvuaSoln0P3VpuyZVqwoqhRViqrfH1ibZ5CiSlF1SkCKqhOhIHrdpnEIotvy5FLJCscaKqzSyj6qeM0GNpKi6p53qDyD7gngZ1qxoqhSVCmq+MMFRto8gxRViqpTWlFUnQgF0es2jUMQ3ZYnl0pWOFay8oaVV6v+4lcb2EiKqnvefAZxdlasKKoUVYoq/nCBkTbPIEWVouqUVhRVJ0JB9LpN4xBEt+XJpZIVjpWsvGFFUY37AY1TTnuRfAbxOrdhNaxjR/ltyxa88GCPLFBARH/+d5w5c0Zy5Li+0rfTcezsMdGftHJUKldJZoydEXO7NnmVVhgldp82rCiqFFWn54Wi6kQoiF63aRyC6LY8uVSywrGSlTesKKoUVTSz+AyipERsWA3r1k2GT56MF87INEOga9+uMumNSRRVFzVu8wxSVCmqTilGUXUiFESv2zQOQXRbnlwqWeFYbVhNnz4dLzgEI//880/Jly8fdGe7/94tu/7aBcWGQlDZvGXl9X6v84ufi8q0eQZdFB9Sp9iw+u9//xtS9257MzbtlW3ZoRD/xBNPsL1yUZE2zyBFlaLqlGIUVSdCQfS6TeMQRLflyaWSFY7VhlXXfl1lyptT8MIZmWYIdOzZkUPpXNa2zTPo8i1C5jSywquSrMgKJ4BH2uQVRZWi6pRZFFUnQkH0uk3jEES35cmlkhWO1YbVk72elK27t+KFB3lkgewFpGCOgjF3YTPnK8hv3fryb7nlFhk6dCh7KKzJ2Q1ndVF8SJ1i016F1I27uBmywqGRlTesKKoUVafMoqg6EQqi19mQ4pVFVt6w4rxLzrtEM4vPIEqKooqTIiuysiGAx7K98oYVRZWi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rIavGC7Dlg/DCw/yyGH1hsnQuomPLHr99ddlwIABQX6X/r18iqp/eaZoaWxIcfxk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVuxRZY+qU2ZRVJ0IBdHrbEjxyiIrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96wYo8qRdUpsyiqToSC6HU2pHhlkZU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1ixR5Wi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rNijSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW7FGlqDplVqoR1XPnzkl0dLTkyJEjyWuOvyIWG49/cJGFU7qTFU7IHSuKKkUVzTG2VygpyhdOiqzIyoYAHsv2yhtW7FG1F1V1pQsXLki2bNkSrZTIyEiJiIiI87qep67l5Fl4TQcmMsVF9eLFi9K5c2c5ffq0pEuXTipVqiTDhw9P9O4pqoknBhtS/KEhK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesGKPqp2ozpgxQ8aNGyeFCxeWq1evyqxZsyRfvnwxlfPFF1+IxmTNmlUOHDgg48ePN171/vvvy6JFiyR79uyiEqsxuXPnxis1BSNTXFQV3oYNG2TixIly7do1WbhwobRo0ULSp0+fIBaKKkXVH88LP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFXtUcVFVMc2YMaOcOnVKcubMKT169JCCBQvKwIEDYyqnaNGiMn/+fKlWrZqR0Xnz5smSJUskf/788s0330iFChWkcePGpoOwTZs2eKWmYGSKi+qQIUNk48aNsmnTJilSpIiMHDlSmjRpwh5VF0nBhhSHRlbesKKoUlTRzOIziJJiLyFOiqzIyoYAHsv2yhtWFFVcVPfv3y8NGjSQffv2mcqYMGGCbNmyRaZNmxZTOXXq1JFXX31VatWqJaNHj5YpU6aYeB2pOnv2bLntttvkxx9/lK1bt0qePHnwSk3ByBQX1SeffFJWrlxpjH/z5s3Sr18/OXjwoISFhbFH1TIx2JDiwMjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKq4qG7bts30gu7evdtUxsyZM2XFihUyderUmMrR3/Xt21eaNm0qCxYskLJly5pRq7Vr1zZzVitWrCjvvvuuLFu2TKpXr45XagpGprio9u7dWzJnzmz+AqCHdk+vWbNGSpYsKatXrzb/jn8MGDAg5ldsPP6hQxb4k0RW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVG9UVTjk1bJ1B5SXUApPDzcLDyrnXljx441ob169Ypziva8qjvpUOFVq1aZocGlSpWS8+fPm7mr2ruq6wKNGTMGr9QUjExxUVX7f++998zY6cOHD0uNGjXkyJEjnKPqIinYkOLQyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqniPqtaA9ojqmj4617RRo0ZGOlVkd+zYIVWrVpV27dqZn5YtW0qnTp1EhwK3b99eChQoINu3b5dixYrJ008/bRZY6tatG16pKRiZ4qJ66dIlMyFYh/7qXwoUukJN7OBiSolnCxtS/EkiK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo2omqrtzboUMHUxnNmjUz805VQFVWdTXfpUuXSs+ePc3rt956q1npN0OGDGb135deesmsEFy8eHH56KOP4qwWjNdu4CNTXFR9t3zy5Ekzfjqx1X59cRRViqo/HhN+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ55Q0riqqdqGot6BBeHbqrK/4mdOiQ3+PHj0uhQoXivHz58mU5ceKE6V0NpiPViCoKjaJKUUVzJak4fujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeeUNK4qqvajiNREakRTV0KhHcxdsSPHKJCtvWFFUKapoZvEZREmxbcdJkRVZ2RDAY9leecNq+PLhMmzFMLzwII8cVm+YDK07NOYu4udV/M64IL9dv1w+RdUvGFNHIWxI8XogK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKoskfVKbMoqk6Eguh1NqR4ZZGVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVQpqk6ZRVF1IhREr7MhxSuLrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w4qiSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hTVxY8slgb/aiBZXsliLjY8Y7is7rRabst3m1y6eklGrBwhb65984Yb+bj1x9K8dHM5f+W8zN85X55f8rxEXYuSpyo/JaPvGy3ZMmaTvSf2Ss1pNeX0pdM4iAQiOUfVHh9F1Z5Zqj2DDSleNWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hDVzpU6S49qPeSO/HeYiwwbHmb++1n7z+SBMg8YAVVp1aPo2KJyOPJwzM30rN5TxjYaK1ejr5qfLBmySPel3WXm1plycsBJCQsLk3OXz0m2TNlkxYEVUu/9ejgIimqyWPlOpqj6BWPqKIQNKV4PZOUNK4oqRRXNLD6DKCnKF06KrMjKhgAey/bKG1b+ENUZLWZIy7ItJWfmnEYsfaIa+UKkZM+UXSJei5C3Gr4lT9/5tLy+5nV54ZsXYm7muye+k3uK3yMVJlWQy1GXZffzu+WXv36R6Zunyxv3vSFzd8yVxxc+LmcHnZXoa9GSeWRmHARFNVmsKKp+wZe6CmFDitcHWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhpU/RNV3ZUf7HJUC2QvEiGrUkCi5cOWCZH81u3St0lUmNZskC3ctlIc+fijmZvKG55UcmXLI/lP7ZXzj8aZn9vM9n8vxc8dFe2oHfjtQXlv9mvzd/2/JkzVPTNk4jbiRHPprT449qvbMUu0ZbEjxqiErb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96w8lJUo4dEy6lLpyTP63nk4dsfltmtZstX+76Sxh82vuFm5redL63KtTJzWSv/p7K8VOclaX97ezNf9d0f3xWfBGcYkcHMX3V7UFTtyVFU7Zml2jPYkOJVQ1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGHlpaheGnxJwiRMMo3MJEPqDpHh9YabIb2dF3WOuZl0Yenkl+d+kdI3lZbtfKxmAAAgAElEQVQDpw9InRl15ODpg2YRpX41+8nYH8ZK7696y7lB58z81fQj0uMgEoikqNrjo6jaM0u1Z7AhxauGrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w8pLUd3WbZtUuLmCGe5br3g9yZ0ltzT6sJGUyF1CBtcZLK+sfMX8u2/NvmZ+6qe7PpVrck32/L1HFv6yUH565ic5e/msLN6z2PSu6vDgEuNL4CAoqsli5TuZouoXjKmjEDakeD2QlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWHkpqlUKVZE1ndZIpvSZzMWvObRGak+vLeMaj5N/V/u3vL3+bbnv1vukXN5ycW7ur/N/Sb438smSR5dIk5JNzGu6InDDmQ3l+9++x0FQVJPFiqLqF3ypqxA2pHh9kJU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1j5U1QTukId2lutcDUznPf3M7/jN/G/yHzh+cyw4B8O/5Csuam+N+bQX+sqEPao2jNLtWewIcWrhqy8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecPKa1HFrzowkRRVe84UVXtmqfYMNqR41ZCVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVTjfmd4/fXXZcCAATjsNBBJUQ2hSmZDilcmWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZqUqUT1x4oRky5ZNMmfOnOh1x99jiI3HP6jIwindyQon5I4VRZWiiuYY2yuUFOULJ0VWZGVDAI9le+UNK4qqvahGR0fLhQsXjC8ldkRGRkpERMQNL1+9elVOnjwp+fLlwys0hSNTjageOHBAKlSoIF9++aXUrFmTouoiMdiQ4tDIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rCiqdqI6Y8YMGTdunBQuXFhUOmfNmhVHOr/44gvRmKxZs4p61fjx46VSpUoxldenTx/Zvn27LFu2DK/QFI5MFaJ6+fJladu2rezfv18mTZpEUXWZFGxIcXBk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRVXFRVTDNmzCinTp2SnDlzSo8ePaRgwYIycODAmMopWrSozJ8/X6pVq2aEdd68ebJkyRLz+qJFi2Ty5MlGcCmqeD6byN69e0v9+vVlwoQJMmTIEIqqJT9fOBtSHBxZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUUVF1XtzGvQoIHs27fPVIY605YtW2TatGkxlVOnTh159dVXpVatWjJ69GiZMmWKidf87dq1qwwePFhGjhxJUcXTWWTBggXy2WefyQcffCCNGzemqNrAixfLhhSHR1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGFFUcVFddu2bdKmTRvZvXu3qYyZM2fKihUrZOrUqTGVo7/r27evNG3a1PhV2bJlZeXKlXLPPfcYodXe2GHDhlFU8XQWqVGjhhw/flxuuukm+fHHH6V06dJmzHWVKlVk9erVsmbNmhuKGzBgQMzv2Hj8g4cs8MwjK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo3iiq8UnXrl3b9JDqAkrh4eGiiymFhYXJ2LFjTWivXr3inKI9r+pOOsR31apV0q5dO2nUqJFUrVpVTp8+LXv27JGnn37a9LYGw5Hic1QPHTokFy9eNKw6d+4szz77rDzwwAOmMhI6uOpv4mnFhhR/5MjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKp4j6rWQMWKFWXixIlm8VmVz+HDh4uK7I4dO4yIqpTqT8uWLaVTp06iQ4Hbt28vv//+u6lAHSo8ZswYM3e1SJEieKWmYGSKi2rse2/evLkMGjSIc1RdJgQbUhwcWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVF1U5UdUGkDh06mMpo1qyZzJ4926ziq7KqW9IsXbpUevbsaV6/9dZbzQJKGTJkiKm8DRs2mHmqXEwJz2frSPaoJo6MDSmeTmTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFFU7UdVaOH/+vBnCqyv+JnTokF+dUlmoUCG80lJxZKrqUUU4UVQpqkieOMXwQ8eJ0D+v27CiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UcVrIjQiKaqhUY/mLtiQ4pVJVt6woqhSVNHM4jOIkmLbjpMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZlFUnQgF0etsSPHKIitvWFFUKapoZvEZRElRvnBSZEVWNgTwWLZX3rCiqFJUnTKLoupEKIheZ0OKVxZZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUWVouqUWRRVJ0JB9DobUryyyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqhRVp8yiqDoRCqLX2ZDilUVW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVGlqDpllpWoXrt2zZQXFhbmVK5nr7/++usyYMCAmPLZePyDmizwtCMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqhSVJ0yy1FUDxw4IB9++KGsW7dOVq5cacq79957pXbt2nLfffdJxYoVnd7Dr69TVBPHyYYUTzWy8oYVRZWiimYWn0GUFOULJ0VWZGVDAI9le+UNK4oqRdUpsxIV1atXr8qoUaNk6NChpozKlStL4cKFRX+/adMmOX78uPl9x44dZfz48RIREeH0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKgePXpUGjRoIN26dZNWrVpJwYIF45R15swZ+f7772X06NHy8ssvyz333OP0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKhGR0eLzknVn9atW0u9evWkZ8+eCZZ3+fJlyZQpk9N7+eV1iipF1R+JxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq+8YUVRpag6ZZbjHFUtoHnz5mZ+6qFDhyRnzpxOZXr6OkWVouqPBOOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElUd1rt8+XJTVokSJWLK3LZtm2TLls3pPfz6OkWVouqPhOKHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElXtUf37779vKOvbb7+V8PBwp/fw6+sUVYqqPxKKHzo4RRtWFFWKKppZNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqJKUXXKLEhUfYVERkbKpUuXJF++fE7levY6RZWi6o/k4ocOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKoUlSdMgsSVX1AX3jhBZk3b54pT/dPHTx4sNSpU8epfL+/TlGlqPojqfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqhRVp8yCRLVt27ZGUvW/2bNnjxHWY8eOceivE+EAvs6GFIdNVt6woqhSVNHM4jOIkhIhK7LCCeCRzCuywgngkTZ5RVGlqDpllqOonjx5UvLkySMjR46UF1980ZS3cOFCeeihh+Snn36SSpUqOb0H9Lq+T0REhKRPnz7JePaoskcVSiiHIJuG1B/vF8xl2LCiqFJU0Vy3ySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UdXtQy9cuJDkYranT5++YZcW5Dy8lgMX6SiqV69elYwZM8pjjz0mU6dONSL52muvmaG/e/bskVKlSiXrag8ePCjt2rUz814zZMgglStXNmUndqRGUT1//ry59kDtJZsYGzakeCqSlTesKKoUVTSz+AyipNijipMiK7KyIYDHsr3yhhVF1U5UZ8yYIePGjZPChQuL+tmsWbPirBu0YcMGGTVqlOTKlUuOHz8uw4cPl6pVq4rTeXjtBj7SUVT1kjp37izTp083V5cjRw45c+aMGQb88ccfJ/uKtaf2ypUrBubFixcla9as8vvvv0uhQoUSLDsQovqf//xHnnnmmZj31y15VKZ1nq72+sY+fD3OPXr0kPHjxyebR3IKYEOK0yMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqjiourrODx16pTpLVXvKFiwoAwcODCmcp588km56667pFu3bqK+dPjwYRk7dqzpcEzqPLx2Ax8Jiap2MX/66adGTLU7uX379kZUc+fOnewr1rLDwsIkS5Ys8tlnn0nv3r3l119/Nb9L6AiEqE6ZMkW6du0qLVq0kFtvvVW+/PJL2blzp5HpIUOGxLksvf4RI0ZIjRo15IEHHkg2j+QUwIYUp0dW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVHFRXX//v3SoEED2bdvn6mMCRMmyJYtW2TatGkxlfPdd99Jy5Ytjb+oUy1btkzy58/veB5eu4GPhET18ccfly5dusSs8quGrkOBP/roIwMgucfly5fl1VdflbfeessI8b333ptokYEU1UWLFsn9999vFrJQYX3wwQfl2WeflUGDBpl/f/jhhzJnzhzDRsW9b9++smbNGunVq5f8+OOPUrp0aXnppZekQ4cO8s0338Q5T8vWMv15sCHFaZKVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVRxUd22bZu0adNGdu/ebSpj5syZsmLFCjMt03cMGzbMLHiro0B1WPDTTz9tdmpxOg+v3cBHJimq77//vjF2XTSpSJEicvPNN5sr1HHPKqt///23WWgpOYcO91XJ0/md+l7aje07Vq9ebcQv/jFgwICYX3nRePh6VN988025++67jTyrSPfv31+qVKlirleP6tWrm3Hf5cqVM13wY8aMiRmy/Pzzz8v8+fNFE0tZrV27Ns55n3zySZx7TQ5D37lesPDHdaXGMsgKrxUbVv4U1UcqPCIlcpeQkStHmovNmD6jdKrUSW4Ov1muXrsqK35bIWsPrb3hRtqUbyOlbyotV6KvyM4/d8qSvUsk+lq0VCtSTWoUqSHZMmaTQ5GHZOEvC+XM5TM4iAQi6xWvJ/rDZ9Aeo01e2ZceWmeQFV6fZEVWOAE8knnlDSuK6o2iGp907dq1pVatWmYBpfDwcNFFkXTUqQ7p1UM7x3yHdh7qgrc1a9YU7V3t3r27bNy40fE8vHYDH5mkqH7wwQdm3mV8UdXL1O5n7d1M7qHzQRcvXizaw4gcgexRjX09OhlZ5XLdunVGOHVBKRXm2HNUdSXkevXqyeTJk80cV5VsTbC3335bChQoEOc85F5tY9iQ4sTIyhtW/hDVygUrS7XC1SR/9uujNYYtH2b++/DtD0uZvGXkStQVI616jFk3RiIvRcbcTPUi1aVxycZGTPUnQ7oMRlS3/7Fd+tfuL9euXZMzl85Iziw55efjP8v8nfNxEAlEUlTd4+MziLMjK7LCCeCRzCuywgngkTZ5RVHFe1S1BipWrCgTJ06UChUqSKNGjcyURPWMHTt2mEWTmjZtKjoKVqdoao+qDv+dO3duguc1bNgQr9QUjISG/uq8TB3vfOedd/r9UnXir/bcxj6SWk04kKKqQ5FVPG+55RbJmzevuUTffrJLly6Vxo0bxxFVlXedp6rd8Trcd/PmzWYV45dfflnKlCljRNV3nt9BCoc82TC1aUhtyg3FWBtW/hDVlmVbStm8ZSVzhswSJmExojrw7oGSKX0meXXVq9Lo1kZyZ6E7ZfXB1fLN//smBvsT//eE/CvXv2TijxMl6lqUdL+ru/x5/k9Zvn+5tLmtjew4vkPm/zJfhtQdImcvnZW31r2VrCqjqLrHZ5NX7t8lNM4kK7weyYqscAJ4JPPKG1YUVTtR1U499Qs9mjVrJrNnz5bt27cbWY2MjJTly5ebqZna86q7kbz33numdzWh8xJbCwiv6cBEQqKqW8joqlI61lmXRB46dKiZe1m2bNnAXGWsdwmkqPrmqMa+SZ+ofvXVV6J/jYjdo6q9rNrtrlv2qNzrsGD9a4b+pUN/VFR953kBjg0pTpWsvGHlD1H1XVnfmn0le6bsMaI6tO5QM5x31KpRUqVQFWleurn88tcv8vHP/6w+Hp4xXDKnzywnL56UJiWbmOG+u//eLfN2zJM+NftIlgxZ5HLUZRPz7f5vZdWBVTiIBCIpqu7x8RnE2ZEVWeEE8EjmFVnhBPBIm7yiqNqJqtaCbompC9vGnioZu3Z05JhOOSxatGicSnM6D6/hwEZCoqorSKlwrVq1yoApWbKkma+qAps5c+aAXnEgRNW3Pc3nn38uzZs3j3N/iYlqz549zXhx7R3WXmLf0a9fPxk9enRMTyxFNaDpkuib2TSkqeOKU+4qbFh5Kqr1hsrFqxfl9dWvS4WbK0ir8q3k1xO/yofbPrwBTtvb2kr5fOXlavRVmbJpiumJ7VKpi4m7cPWCqNAeOH1AZmyekSywFFX3+Gzyyv27hMaZZIXXI1mRFU4Aj2ReecOKomovqnhNpJ7IqKgoWb9+faIXlC5dOrPuT0KHo6j69u3RHlTdhkUPHb6q46B17mqlSpUCSiIQoprcG9IFog4cOGAWVtJ9ZwN1sCHFSZOVN6y8FNWX6rwkEiby8oqXpW7xunJP8Xtk89HN8tnuz2JuRoeyPF/1ebkp/CY5dfGUzNgyQ05fPC2tyrWSCvkriO/6Bt09yMxz1Q/J5BwUVff0+Azi7MiKrHACeCTziqxwAnikTV5RVNOGqOqwZN37NalDe4JdiaqeFBERYd5Ae1WzZctmhgHrqlK636m/t1hxehSCQVSd7sGr120aB6+uIVjKJSu8pmxYeSmq3ap2k/zZ8pvhvsVzFZesGbLKzG0zJXeW3FKnWB0zjDd31txSs2hNiYqOkl1/7ZJrck3+vvC3nLt8TpqWaip/nf9LthzbIvVL1I/pncVJ3BhJUXVPzyav3L9LaJxJVng9khVZ4QTwSOaVN6woqmlDVC9duiS6k4oeOixZF53t2LGjGaGr23fq3Npkiapuu9KnT584WaqTdXVV4EAfFNXEibMhxbORrLxh5aWoFspRSDpX6izp06U3F3/w9EGZvnm6WeVXV/tdf3i9lMhTQvKF54tzc+evnJc31r4hXat0lZuz3WwWaLp09ZIs3rvYrAacnIOi6p4en0GcHVmRFU4Aj2RekRVOAI+0ySuKatoQ1djZ41toVuW0bt26MnLkSLPuUbJEVd/g6NGjsmTJEvn999/Nare6n6iOKQ70QVGlqPoj52waUn+8XzCXYcPKn6KaEDMd2lskRxE5fel0nG1pUL66mJJuTfPH2T/QU5KMo6i6x2iTV+7fJTTOJCu8HsmKrHACeCTzyhtWFNW0J6q+hZ50ZxVd36d169ZmO88//kj4e5njHFVNTd1kVlew3bt3r8lU3Wz2l19+MfuKZs+eHc9eP0RSVCmqfkgj4YcOTtGGldeiil91YCIpqu452+SV+3cJjTPJCq9HsiIrnAAeybzyhhVFNe2JqmbSbbfdJjt37jTr+Jw5c0Z69Ogh48ePTzDJIFHVlW+/+OKLGwrQwimq+MPrdSQbUpwwWXnDiqIa90MHp5z2IvkM4nVOVmSFE8AjmVdkhRPAI23yiqKaNkVVVwB+9dVXzR6wjz76qHTt2tUsQJvQ4SiqvlV/tSdT9xV94IEHJH369GaT2Y0bN0qgN4xljyp7VPHmkqwCzYqiSlFFc87mywxaZqjGkRVes2RFVjgBPJJ55Q0rimraFFU8m0QcRVWH+aqY9urVS7JmzSo6CVZXbtJuWx3+W7ZsWZv3S3YsRZXylewkEuHQXwuINh/QFFWKKppaNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqKaNkT17NmzCfaYFixYUHbv3p1kcjmKqp79+OOPy8yZM2XOnDny8MMPxxTIob/4gxuISDakOGWy8oYVRZWiimYWn0GUFP+whpMiK7KyIYDHsr3yhhVFNW2I6vnz582iSb5D5VSfqRYtWsinn36afFHV/W+WLVsm9evXl7lz58qmTZukXbt2Urt2bTxz/RTJHlX2qPojlfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVONnj3rlLbfcIiVKlJB169a5E9WLFy9KtWrVRJcPHj16tPTv318aNGiAZ6pHkRRViqo/UosfOjhFG1YUVYoqmlk2eYWWGapxZIXXLFmRFU4Aj2ReecOKopr2RFX3S9X1jT766CPZsGGDccwMGTIkmmCJDv31zU31LR18880337DC77Zt2yRbtmx49vohkqJKUfVDGnGOqgVEmw9oiipFFU0tm7xCywzVOLLCa5asyAongEcyr7xhRVFNO6L622+/yeTJk2XWrFkSEREhHTp0kGeeeUby5MnjrkdVz/rggw/M/qnLly+X0qVLS/78+eMU9uWXX0p4eDievX6IpKhSVP2QRhRVC4g2H9AUVYoqmlo2eYWWGapxZIXXLFmRFU4Aj2ReecOKopp2RLVhw4by9ddfS+XKleXUqVPme/j9999vdpRJ6oAWUxoyZIg8+OCDUqlSJTxTPYqkqFJU/ZFa/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk88obVhTVtCGqul/qHXfcIVOnTpXOnTubZOrdu7eMHTtWLly4IFmyZEk0wSBRxdPT+0iKKkXVH1nGDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNW6KqO8jokF89Bg4cKK+99pqcPn3aDAVO7KCo4s9eqo9kQ4pXEVl5w4qiSlFFM4vPIEqKW67gpMiKrGwI4LFsr7xhRVFNG6Kqq/yWLFlSDh8+LPXq1ZPIyEj56aefpGvXrjJp0qQkk4uiij97qT6SDSleRWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFNW0IaqaPTt37pTx48fLnDlzJGvWrNKxY0fp06eP6GK9SR2QqKr5jhs3Tl588UUZNmyY/PLLL9K3b1+pXr06nrl+iuTQ38RBsiHFk4ysvGFFUaWoopnFZxAlRfnCSZEVWdkQwGPZXnnDiqKadkTVl0FXr16VdOnSmR/kgET1gQcekM8//1wWLFggrVq1MuUWKVJEDh06hLyHX2MoqhRVfyQUP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjqmTNnkpyHqluhaqdoQoejqKr5ZsyYUaZMmSLLli0zsqo9quXKlZNdu3ZJmTJl8Oz1QyRFlaLqhzTi9jQWEG0+oCmqFFU0tWzyCi0zVOPICq9ZsiIrnAAeybzyhhVFNW2Iqq7sq9uc6hzVRo0ayZUrV+S7774zKwGXL19eMmfOLO+//747UY2KipJChQrJc889J2+++abce++98sQTT8hDDz0kR48elQIFCuDZ64dIiipF1Q9pRFG1gGjzAU1RpaiiqWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVM+fPy/ZsmWT6dOny5NPPmmSqWXLlrJ3717ZsWNHksnl2KOqZ+t81LfeessUtGTJEmnXrp2UKlVKNm3ahGeunyIpqhRVf6QSP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjq7t27pWzZsjJ48GDzo52gVatWNQssae9qhgwZEk0wSFSvXbsm33//vYSFhZllhSdOnCht27aVfPny4Znrp0iKKkXVH6nEDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNG6Kq00grVqxoxDT20a1bN+OUSR2QqOokWO1V1d7UZ555RnQ/nDZt2pixxf46zp07Z5YrdloFiqJKUfVHzvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVO1FNTo6WnTOpw6ltTncnmfzHknF/vXXX/Lpp58al1TX04V6dRpp9uzZky+q2ns6b948U9DAgQNl/fr18vPPP8vBgwfNBNjkHHrhjzzyiOn2PXDggPTr18/srZPYQVGlqCYn33zn8kMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCtvWFFU7UR1xowZZrvQwoULi6uLGvEAACAASURBVPZSzpo1K87o1pUrV8pTTz1lei/1UBFs3769OJ2H1677yF9//VUWLlwolStXllq1aokOB/ZdZ1KlOvao+lb9HT58uGivZ/r06aVJkyZSp04d2bp1a7J7VV977TXRHttXXnlFjh07JgULFjTvEx4enuB1U1Qpqu4fk3/O5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKo4qLq87FTp05Jzpw5pUePHsaZtAPRd0ydOtXM+VRZ9c37RM7Da9ddpI7E1emi6nt66Jan999/v/Tu3TtmDaTESnYUVZ3wqjfbuXNn03uqP/pmgwYNkpMnT0quXLncXfX/zurSpYs0aNDAGL/OhdXu4H379kmJEiUSLFffX7fL8R16js6d5SGGH1lgmUBWGCeNsmEVVTRK9CetHOkPpRf9YXtkX+M2eWVfemidQVZ4fZIVWeEE8EjmlTesLte8LFdqXcELD/LITGsySca1iTvMSy+9JAMGDEjwLvfv3298SR1JjwkTJsiWLVtk2rRpMfH9+/eXyZMnGyHUKZrauaeH03leY9WVfW+//Xb5+uuvRe+xYcOGovczc+ZM0SHJSbmLo6jqxffp00fGjBkT5z46dOhg3iC5hw4r1p/WrVubovLnz2+GFhcvXlxWr14ta9asifMWeoOJierdUVFyd3R0ci8paM5flS6drErPL8luKowfOjg1G1YqqdG3pJ1nMN3BdBRVPJXiRNrklcu3CJnTyAqvSrIiK5wAHsm8IiucAB4ZP6+GDBlyw8m1a9c2Q2W3bdtm5FOHzOqhDrZixQrRXlTf8e6775otRe+77z5RadVRsNq76nQefsXuIrVX91//+pe88cYb8ueff8rSpUuN92knqN9W/dWtaD755BNj8pUqVTJdzokNz7W5jREjRkhERIT07NnTLFecO3du0W7txBZVSnLo7/LlIvqTVo569UT0538Hh6bgFU9W3rDi0F8O/UUzi88gSkq47zOOiqzIyoIAHsr2iqxwAnhk/LyK7zixS9IFlNS7fD2QY8eONS/36tUrJkxjdGFaPTZu3Gi2E9U1hZzOw6/YXaTuo1qgQIGYob++Uu6++27RebVJHVCPqi4frN3GOjfVH3Ia+4IWLVok77zzjixbtsws2KQ9t+vWrUv0mimqsdBQVN09McIvfjbgbD6gKaoUVTS3bPIKLTNU48gKr1myIiucAB7JvCIrnAAeaSOqWqouPqTbuVSoUEEaNWokun6Q9rjq0Frdl1T/3b17dyOoo0ePlt9++83EJ3SeDr8N1BEZGWmur0yZMjFvWb58eSPZOpI22aKqhRw/ftyUoyvyKoD69evHGYLr9mbV/ps2bWr21tF/6/jlatWqUVQRoBRVhFKCMfzQwdHZsKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeKStqGrnnk691KNZs2Yye/Zs2b59uxFUlcFvvvlGnnzySdOpWKpUKSOrKoQJnRfINW10xOzmzZvNUOSEDh1Fm9gKwFCPqi6apOOgtddzwYIFRlpz5MghXbt2NeOLYxsyXj1xIw8dOmS6hWPPP02oLPaoxqJCUXWbbhweZkHO5gOaokpRRVPLJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRtqKqJesw2tOnT5sVfxM6VApPnDgRZ9sa5Dz8qu0jVaJ1peKkDp2vm9ABiaqeeOTIESOqauW6D07sQ1du0sWPAnFQVCmq/sgzfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80o2o4qWnnkhdMKls2bLmgp5++mmzB+zgwYPNok+6qJLuLtOpUyf3oqrjmHVIrh7ak/roo4+a4b+6hUyxYsXkgw8+kMceeywgRCiqFFV/JBo/dHCKNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB6ZVkT1r7/+Mj282tHZsmVLA0i3J9X9VI8dO5b87WmKFi1qxj8/8sgjZu8b3cvUdyxfvlxKliwpRYoUwWsmGZEUVYpqMtIn5lR+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATwyrYjqgQMHzMjb+++/X1544QW5dOmStGjRwqwCrL2ric1dVZLQ0F9d5Gjv3r0xm8zqOGLdx0e3lPEtg4xXS/IiKaoU1eRl0PWz+aGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqkpER+LOnTs3Dpy3337brFKc1AGJqtqvCmL8Qyfz6h6ogTwoqhRVf+QbP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAemZZEVans2rXLrEysKw43btxYbr31VkdYkKjq9jS6X8+aNWvMf3Wsse7N88MPP4guKRzIg6JKUfVHvvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrssIJ4JFpRVR1eO9HH310AxgdlVu6dGnZunWrmV6akFM6iqqu1JQpUyaZPHmyGe6rw4BHjBghN998s+iWMoGam+q7O4oqRRVvAhKP5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI9OKqCa2PY26pE4jHTRokJm3qr4Z/3AUVT1BF1LS3tSJEyfKs88+a1b7Vbi6ZU1i+/jg1WQXSVGlqNplTMLR/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk84qscAJ4ZFoRVe1RXbly5Q1gVEwLFy4sus3pPffck+Dqv5Co6mpNEyZMkD59+sjAgQNl1apVRlj1/wf6oKhSVP2Rc/zQwSnasKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeGRaEtX58+cnCkbnrOpiSwkdkKj6Trx8+bL8/PPPUqpUKbOfakocFFWKqj/yjh86OEUbVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj0wroprY0N/YpHRHGWtR9U1u1cWT+vXrJ+PHj5fDhw+bcnSJ4TZt2uC14adIiipF1R+pxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq/ICieAR6YVUdWhvzqFNLFDe1Tr1KljL6r169eX7777zqzItGfPHlNAq1atZMGCBWYxpT/++AOvDT9FUlQpqv5IJX7o4BRtWFFUKapoZtnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPDItiaonq/6q4epGrOPGjZNcuXJJ+/bt5T//+Y+89tprZq7q+fPnRZcWDuRBUaWo+iPf+KGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqp6t+qui+vLLL8vgwYOlTJky0rJlS1FRnDJlinTt2lVOnz4tEREReI34IZKiSlH1QxqZVat19WoezgRsWFFUmVfOGXU9wiav0DJDNY6s8JolK7LCCeCRzCuywgngkWlFVD1b9VdFVTdg1Z9OnTpJjRo15KmnnpIvvvhCJk2aRFHFc9GbyHr1RPTnfwcbUhwzWXnDiqJKUUUzi88gSopSj5MiK7KyIYDHsr0iK5wAHplWRDUhIrqDzPTp02XGjBlJAkty1V8V1aQO9qjiyehJJEXVNVbbDx1djezMmTPQCIKzZ89KtmzZ5MKFC2bz4gwZMri+ztRwog0riipFFc1Zm7xCywzVOLLCa5asyAongEcyr8gKJ4BHpiVRbdu2rXz55ZcxcPQ7tR66i4yO3v33v/+dILgkRVUnvia2XLCWpqv+BvpLOIf+xqpHiireGsSLTOpDR/8A884770i9evWkVq1asnHjRrn33nuNqF65ciXRnN+9e7c89NBDsnPnTvNTvnx5efXVV+WFF16Ar1NHK+hq24MGDYLP8TrQ5gOaokpRRfPRJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRaUVUdfHdAgUKyN133y0FCxY0gA4ePCg//PCDqMDqyN0WLVrYiapuSfPSSy+ZIb9VqlSRhHpXDxw4YBZa0k1aq1evjtdMMiIpqhTVZKRPzKlJfejow1OsWLEYyRwxYoQMHTpUJkyYIM8991yCz4IWPHbsWOndu7e88sorZg63buekglu3bl34kp955hmzYFl0dHSi7wMX5qdAmw9oiipFFU07m7xCywzVOLLCa5asyAongEcyr8gKJ4BHphVRPXHihPTv319GjRpldo3RY9OmTfL++++b79ZJHYn2qOqKvrp40tdff20WnVHTVRvWCbG7du0yvT7btm0zW9d88803UrRoUbxmkhFJUaWoJiN9IFFt2LChyfsiRYpIhw4dzBj648ePm78E6bCF8PDwGy5h6dKl0rFjRxOnvbA65v7JJ5+Uzp07m2dDe0gffPBB+fDDD2XRokWiD+0bb7xhyqtZs6a8+OKL5ndPP/20KaNZs2ayePHiBG9Ve3zvu+8+qVatmum51b2N9b2051aHGw8YMEAWLlxorrNRo0bmj0n6h6fmzZubc/TZ1b9u6R+ivvrqK1m2bJl5vidOnGjkeM6cOTJ58mTRP0Tp/esfq0qVKgVhp6hSVKFE4WJKKCYTxy/JOC6yIiucAB7JvCIrnAAeGeqi+ssvvxgh1e+SvuPIkSPmO+p///tf8z3TaavTJIf+aqGfffaZWThp7dq1ZuijHjqeWHuK9IvvE088IRkzZsRrJZmRFFWKajJTyPGLn4pdr169jFiqAOr/1/2EVd5UPBMa7r53714zvl6FVf861LhxYyN3w4cPl3LlypmhDXroyAPdh/iee+4x/197a/UvTBcvXpT58+dLt27dzKbIH3zwgTz22GMJ3urff/8tefPmNa89++yzsnz5ciOs+sDrc/rwww9Lz549JV26dDJmzBiZN2+eeV8VZn12tVyVUj1UULXR+PHHH2XJkiVGbnXIs0q3bj2lz77+FUyfO+SgqFJUkTyhfKGUrsfxSzLOi6zICieARzKvyAongEeGuqjqFFL9TqoLJ+m9ameNdgT5Dv1OPXXq1CSBOYqq72wdirhnzx7T46JfwPVLcEocFNVY1DlH1XUK2gz91eG8OqxX/1CTPXv2RN9Te011Tuqff/4ply5dMj2ysUVV9x/W3k49dLsnfZ60l7Z+/fpGDHW4MTL01yequgK3DhPWHlAd3689tbVr1xZtGI4ePWoEVhuHYcOGxfTs9uvXT0aPHm3+yKTzYXXOrTYaTZs2NXK8YcMGMz9XrzN9+vRGou+44w7TC4scFFWKKpInlC+UEkXVjhSl3oYX5QunRVZkhRPAI0NdVI8dOxYzJ9VHRafGaeeNjj7UBUedjiRFVYf56pfZWbNmye233y5dunSRQoUKmSGJ2hOkX4QTGgbp9KbJeZ2iSlFNTv74zk0JUdXeVu1p1UPnwep+xNqLqsKqPZ36QGtPrtMcVZ+o6lBfFWMtQxc2U1H97bffpEePHtKqVSsjmDq3Nrao6p7Iurpa69atTc+uLpamQ391iPDMmTONrKq4qqj6RkroH6f0eUcOiipFFckTiipKiaJqR4qiasOL8oXTIiuywgngkaEuqkri5MmTpkNFv/PqlFE99Dunfh/WaWy33XZbksCSFFX94vr444/HFKBzVdevX29EVYdEcnsaPBk9iWSPqmusiKhqL+ebb75pFkfyR4+qzgfV+a+nTp2SW265xfxbe1y113L27Nlm+K4OM1ZR1ZXQdD5pQkdSoqq9qVrWjh07jHTqH3ZUVvWPTDr010lUdeXikSNHml5X7fXVf9epU8dwQA6KKkUVyROKKkqJompHiqJqw4vyhdMiK7LCCeCRaUFUY9PQOas6HU3np+q968JKyZqjqsMBdcivzlPV+Wu69YYu8qL/1XHF/hRVNe6IiAgz3DCpgz2qsehQVPHWIF5kUh86OpKgYsWKRhx1GOy+ffuMqPr2R03sTXVBJJVOHfp7+fJlKVy4cJyhvz5R1fN1RWCN1YWTtDdV55rq0GDfeH6NSWxrKJ+oDhw40JShPaPaQ6o9qrp/qy6CpsOU9S9W+p4611bnzepQZJ+o6rALbSzi96jqnNU+ffrIe++9Z25Te2XfffddM6QYOSiqFFUkTyiqKCWKqh0piqoNL8oXTousyAongEe6EVX1Ml04U7/vJXbo98SbbropzsvIefiVJy9Sv3vqIks6gk+/yyZ1JNmjql9Oda6bLiSj8+emTZtmema0Z1Xh+kNUdQikbm+TL18+s0hN5cqVzZfpxA6KKkU1eY8H9sVPH+jIyEgztD32GHodUeBbVCz2dZQtW9aIoM2hD6rmv54X+w80uuK2zh3V1bXdvJfOj9Ve2/z589tcTpxYvQZdhVhle//+/eaZRw6KKkUVyROKKkoJa6/sSgvtaAoFXr9kRVY4ATySeeWeVXzHiV+S7iihI+/0u5l2qujUTPUn36G+potyqkudO3fOONsDDzxgdqJI6jz8igMfmaSo6tBBXdVXj6ioKLOAUt++feWtt94yv/OHqOrQQv1SrkMgdeVTXWn0999/N3NhEzooqhRVfzwmbhtSnc+pvf/xjzvvvFNKlizpj0uLKSOQ75XUhduwoqhSVNGHwCav0DJDNY6s8JolK7LCCeCRzCuywgngkTY9qiqmunaIdkTkzJnTrEdSsGDBOD2SuqOEju5r0KCBrFy5UnTRTZ0K5nQefsWBj3Rc9Vfnyn3//fdmj0ZdVEUP/f9q7brKqYplcg7tvtZys2TJYoYY6wqrv/76a8x7xS+bokpRTU6++c7lhw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjbURVR7epgOp0ND10SteWLVvMaFffoaPwdCSgjtJTn1LH0i0Gnc7DrzjwkY6iqpekG7PqcML4h+7lqMODVTKdDl3pSVckjX0UL17czIHT+Xy6eqn21H766admj1Y9Vq9ebfaUjH/4tvjQ38ep5OXLRfQnrRyco+q6pvmhg6OzYUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOYVWeEE8MiERDX+2epZupWLepTu8KCLXuqhC96uWLHihn1IdXGi5557Tvbu3WvWLtHRr8h5+FUHNhISVZ3rpou+JHToOGiVSSdZnT59ulnYJfbRpEkTad++vdlPR+cB6l8HtBs7qYM9qrHoUFRdPy380MHR2bCiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTziqxwAnikTY+q9o5qb6muoaIjUXWRTz10W0Pfoeue6PBf3bFFO/XUzZDz8CsOfCQkqo8++qgZ66z7L+qCR9r7qSv06v43+jtdtUm7ld0cuhWHbnej1o8cFFWKKpInTjH80HEi9M/rNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB5pI6paqu5IMXHiRKlQoYLZ2UHX99EeV52HWrVqVXn44YfNf3XYb+wjofN0i8RgOBxF1Td5V419zJgx5p50Gw1dTlhXlCpQoICxet2uxs2h+7G+//77cU7ds2ePlCpVKsHiKKoUVTd5Fv8cfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80lZUtVOvQ4cO5g10u9DZs2fL9u3bjazqThXxR8D69ilN6DzfukP41aZMpKOo6mVp76lO0J08ebJkzpzZrDSliyjp+Gg1eh36W7NmzYDcAUWVouqPROOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCNtRVVL1u0Ddd6p01TJ+Ffh9jz8bryJhER13rx5psfUt6djjhw5zCpTau9Tpkwxw4Kd5qj66/IpqhRVf+RSoD90dHj7gQMHzNyCokWLSsuWLc0q1zqfQA8dXv/xxx+b13XSvM7n1udMGxZdhly3btK/mOl+rboflg7B1+2iOnbsaEY06B+TdMGz1q1bJ7q1k1tuNqwoqhRVNM9s8gotM1TjyAqvWbIiK5wAHsm8IiucAB7pRlTx0kMjEhJVvVXdR3Xjxo1mUq5+kdY9eXSBpVy5cpmFkAJ1UFQpqv7ItUB/6MyfP98IpI480BzWTZjnzp1rNmbWldx0uXFderxdu3Zm6IbOAx88eLAZtVCmTBkjtyq2OuRD43Xpcd0iSvfIeu+998xWUbpK9tmzZ6Vx48b+QBRThg0riipFFU0+m7xCywzVOLLCa5asyAongEcyr8gKJ4BHUlSdWUGiqj2p+oVZx0Lrv3Wl3ieeeMLvPTfOlyvmSz63p/kfKa76i6RMgjGB/tBRUS1fvrz50RzWZ+jbb7+VTp06ydatW42o6vZN3bt3N6u5vf3222Yy/KxZs+Suu+4yfxDSkQ3VqlWTtWvXSv369c0CZDrSQZ9Njd2wYYP541Hz5s1dc0noRBtWFFWKKpp8NnmFlhmqcWSF1yxZkRVOAI9kXpEVTgCPpKg6s4JEVRdO0gWUdCiiDkM8fPiw+cKtX7B1CGIgD4pqLNoUVdepF+gPnfiiqn9s0eHzuliZ7iOsWzSplDqJqq60rYKqQ31PnDgh1atXl02bNlFUXWdC8k6sV7ye6I/vCHReJe/qU/ZsssL5kxVZ4QTwSOYVWeEE8EjmlXtW8R0HLyl0Ix1FVVf2zZ49uxliqIsp6by4cePGmX17fvnlFzNnLpAHRZWi6o98Sy0NqT5f2bJls7olnYuqz6H+kejKlSueD723YcUeVfaooslsk1domaEaR1Z4zZIVWeEE8EjmFVnhBPBI9qg6s3IUVV3MRb9IDxs2TIYOHWpK1CGI2gOkc1bvvPNO53fxYwRFlaLqj3Tihw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjKarOrBxFVYvQ1UZ1C5omTZpIeHi4LFiwwGwou379ejOfLpAHRZWi6o9844cOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAIymqzqwgUdVtNUaNGiVz5swxiylpb+qLL74od9xxh/M7+DmCokpR9UdK8UMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCuywgngkRRVZ1aQqPqK0UVfdPEX7VVNqYOiSlH1R+4F+kOH+6j6o9ZSXxlcTMl9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrJIUVd27UeU0sUO31NCFlgJ5UFQpqv7It0B/6HAfVX/UWuorg6Lqvk4C/Qy6v9KUP5Os8DogK7LCCeCRzCuywgngkRRVZ1ZJiqrux6g9qIkdn3zyScB7VymqFFXntHaOCPSHDvdRda6TYIygqLqvtUA/g+6vNOXPJCu8DsiKrHACeCTziqxwAngkRdWZldXQX+fivI+gqFJU/ZFlgf7Q4T6q/qi11FcGRdV9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrCiqzoxSb0S9eiL687+DDSleVamFFfdRxessNUZSVN3XSmp5Bt3fQeDOJCucNVmRFU4Aj2RekRVOAI+kqDqzoqg6M0q9ERRV13XDDx0cnQ0rrvrLVX/RzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCRF1ZkVRdWZUeqNoKi6rht+6ODobFhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySourMiqLqzCj1RlBUXdcNP3RwdDasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAeSVF1ZkVRdWaUeiMoqq7rhh86ODobVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj6SoOrOiqDozSr0RFFXXdWPzobN69WrX7xMKJx45ckQKFSoE3crmY5tl89HNUGwoBFUqWEm6t+4ecys2eRUK95+ceyArnB5ZkRVOAI9kXpEVTgCPZF65ZxV/ZxO8pNCNpKgGc91SVF3Xnk1D2mtgLxn32jjX78UTQ5dAx54dZcbYGRRVF1Vs8wy6KD6kTiErvDrJiqxwAngk84qscAJ4JHtUnVlRVJ0Zpd4IiqrrurH50Hmy15Py3bffuX6vYDsxZ+ackjNLzpjLvnjxomTJkiXYbiMg19ugQQMZOnQoRdUFbZtn0EXxIXUKWeHVSVZkhRPAI5lXZIUTwCMpqs6sKKrOjFJvBEXVdd3YfOhw3iXnXaKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1Yc+nsjO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqKaykX1xIkTki1bNsmcOXOitRy/EuM8EMuXi+hPWjkoqq5r2qYhpahSVNFEs8krtMxQjSMrvGbJiqxwAngk84qscAJ4JPPKPStEVKOjo+XChQvGlxI7zpw5Izly5IAuRGOzZ88uYWFhUHygg1LN0N8DBw5IhQoV5Msvv5SaNWtSVJFMoKgilBKMsWlIKaoUVTTRbPIKLTNU48gKr1myIiucAB7JvCIrnAAeybxyz8pJVGfMmCHjxo2TwoULy9WrV2XWrFmSL1++mDfctGmTdOrUSYoVKybqVdOmTZMqVarIyJEjjV/5thocPHiw6RQcMWKEpEuXzsQ+/fTT0qFDB/ziAxSZKkT18uXL0rZtW9m/f79MmjSJoopWPkUVJXVDnE1DSlGlqKKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiaqKacaMGeXUqVOSM2dO6dGjhxQsWFAGDhwY84YNGzaUvn37iv53wYIFMmXKFFm2bJk8+uij8sILL0i5cuUkQ4YMJl7FtHTp0iZ+79695t+XLl2STJky4TcQgMhUIaq9e/eW+vXry4QJE2TIkCEUVbTiKaooKYqqBal6xeuJ/vgOfujg8MiKrHACeCTziqxwAngk84qscAJ4JPPKPaukRFU7Nz7STgAAIABJREFU83RLvH379pk3UGfasmWL6TX1HUWLFpW1a9eK/nfz5s3SuHFj+eOPP6RixYpy7NgxM2S4S5cuMmrUKBk9erQRXxXdH374QWrUqCG///57TK8rfhfeRgZMVLdt2ya//fZbnLspXry4sfjPPvtMPvjgAwM0tqiuXr1a1qxZcwOBAQMGJPwlmnNUpUSJEt5mTIiUbtOQskeVPapo2tvkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6Vimr8o3bt2lKrVi1Rj2rTpo3s3r3bhMycOVNWrFghU6dOjTklIiLCvK49rVoPdevWlUOHDkn37t3lmWeekZtuuklatGgh/fr1k9tuu02qV68uDz30kKxbt0727Nkjvvmq+B14HxkwUZ0+fbp89dVXce6oSZMmplv6+PHjBt6PP/5oup51zLWOqU7o4GJKsaiwR9X1E2LTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z5VUj2q2hsaHh4uupiSLnw0duxY80a9evWKecM6deqY3995552yceNGMwf1008/lStXrsQsVKuvq5TqVMvTp0/L4sWL5dZbbzUSrFKb2o6AiWpiN65QLl68aF7u3LmzPPvss/LAAw+YyqCoOqQLRdX182TTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6V02JKOoR34sSJZvHZRo0ayfDhw0V7XHfs2CFVq1aVPn36SN68eaV///5m7qmu5qvTK3VxJR0mXKRIEWndurWZs/rXX3+ZXte33nrLDB/W3lkd3ZrajhQX1dhAmjdvLoMGDeIcVTRLKKooqRvibBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs3IS1UWLFsWszNusWTOZPXu2bN++3chqZGSkmb/q2zklV65cZkhvnjx5zHxUHcGqh64JpHKqW4I2bdpUdLjw4cOHZf369alufqpeb6oSVaRqOfQ3FiWKKpIyCcbYNKQUVYoqmmg2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5SSqWvL58+fNkF2dh5rQoasDHzlyxCyoFHtvVD0vKirqhv1VdWSr9rRyH1W83pKMpKhSVP2RSjYNKUWVoormnE1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI5lX7lkhooqXHhqR7FEN5npkj6rr2rNpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs+KonojO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSD+L6oULFyRjxoxy5coVCQsLkyxZsgQDBVfXaNOQUlQpqmiS2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnhVFlaKKZ08wRPpJVKOioqRJkyby9ddfy9KlS+W5556TW2+9VZYtWwZT2L59uyxatEgef/xxKVq0KHxeSgXaNKT+FtWcWXJKx4odJSJLhJy5dEZWH1wtG49sjIPimSrPSK4sueL87uKVi3Ix6mKCvx+/frzfUNYrXk/0x3fYsPLbRQRpQWSFVxxZkRVOAI9kXpEVTgCPZF6RFU4Aj4yfVxRViiqePcEQ6SdR3bhxo1StWlUee+wx0Yfk448/lly5cknHjh1hCnPmzJFHHnlE1qxZIzVr1oTPS6lAmw8df4uqSmjB7AXl9KXTEpE5Qq5duyavrHxFoq5FxeDofld3UaH1HRnSZZDLUZeN2Cb0+1GrRvkNJUXVPUqbvHL/LqFxJlnh9UhWZIUTwCOZV2SFE8AjmVfuWVFUKap49gRDpB9E9ffff5eGDRvKzp07pXz58jJlyhR59913JW/evDJhwgRp3bq13HTTTaLDgnPmzCmDBw+WESNGyPz586VYsWLy1FNPSf369U2P7J49e6Ry5cpGdEuWLJkgQZXh6Oho89rKlSvNe+v7hIeHy6RJk+Sdd96Rv/76S+rWrSvjxo2TQoUKmWvImjWrXLp0SdatWyddunSR9OnTm2stXbq0zJw508RpeXrty5cvl3r16sXcR0IXYtOQ+ltUe1XvJVevXZUJ6ydIl8pdpEhEEflw24fy64lfE2TW8f86SvFcxWX+zvny8/GfY2IS+31yU5ei6p6gTV65f5fQOJOs8HokK7LCCeCRzCuywgngkcwr96woqhRVPHuCIdIPohoZGSnDhg2TsWPHyvPPPy99+/aVe++9VwoXLmzEr0yZMkZAc+TIIaNGjZJDhw7J6NGjRXtQP/nkE5k3b55s2bLFyOa0adNkwIAB0r9/f8mTJ0+CBCtWrCjbtm2T+++/37z++eefm7Jq1aolt9xyizRq1Mi8pteiP1quDkPWhk+lWIcmHz582Ej17bffLnPnzpUXXnhBXnzxRXONWk7jxo3lpZdeMmV9+eWXCV6HTUPqb1H1XZBKauGIwnIl6ook1iNa4eYK0qp8K9l/ar/8d8t/Y+4lsd/7I20pqu4p2uSV+3cJjTPJCq9HsiIrnAAeybwiK5wAHsm8cs+KokpRxbMnGCL9IKp6mypz2iP66aefSosWLYwYxhbVo0ePGjmMiIiQf//73/L2228bUdSeVO0hvfPOO00vKjL0V0X1xIkTRngPHjxoemX79OkjL7/8spkT+9NPP8mvv/4qs2fPNtK5evVqcz3Zs2eXrVu3ypgxY0y89qyWK1fODFHu1KmTkdO2bduaH5XrGTNmmGtWEVeBjX/YNKReiWqfGn0kR+Ycck2uydh1YyXyUuQN19mnZh/JnjG7vLH2DTl/5XzM64n93h9pS1F1T9Emr9y/S2icSVZ4PZIVWeEE8EjmFVnhBPBI5pV7VhRViiqePcEQGSBR1SG/GzZsMEROnz5thuguXrzYzEfV44cffjA9nqioZs6c2ZSnAqxDdlU8VTCrVatmhg6r/A4ZMkTuuOOOGFG9+eabjZzq0F7taVWhLVWqlJHQzp07G5kdNGiQuYYSJUrE1J728KrkpiZRbV2+tRw7e8wsoqT/vv3m281iSov3LI5zmSXzlJQOd3SQw5GHZepPU2NeS+z3/kpZiqp7kvyAxtmRFVnhBPBI5hVZ4QTwSOYVWeEE8EgupuTMKuyaruQSREf8vzbEqeTly0X0J60cARJVHcarkqiHzik9cOCAmRe6fv166dGjh/znP/8xMqiSqHNMVRwT29pGe1QTEtWyZcuaob1arp7bpk2bOD2qTqKqoqtDffUannnmGXnzzTclQ4YMZnhyQofNh46/e1QH3T1IMqbLKGsOrTGSqqv7ztk+x/Su1ilWR1YdWCU/HvlRHir3kNyR/w5ZsneJbPj9+h8K9Ejs9/5Ke4qqe5I2eeX+XULjTLLC65GsyAongEcyr8gKJ4BHMq/cs2KP6o3sKKp4PqW+SD+Jqg65VclLbOhvbFH97rvv5IknnjDDavVo1qyZmSeqQ3l15eAzZ86YOasqpAkdsUX12LFjUrBgQdOjqj2f2puq5eoCSVevXpWzZ8/K/v37pUKFCuIT1YkTJ5rtc7RHVeNUkFWMp06dalYs1qHBx48fNz2tej863za1iepdhe+SJqWaSJiEmRV/df7pB1s/kMYlG0v1ItVl/eH1svTXpdKtajfJny2/TPxxohw/dzzmNhL7vb8SlKLqniQ/oHF2ZEVWOAE8knlFVjgBPJJ5RVY4ATySParOrCiqzoxSb4SfRNX2BnXfVZ1Hqvul6mq9vuPKlStGLv/4448YkY1dtsqmDudN7FBp01WIdX5sWFiY7WWZeL02nfuq16Y9qokdNh86/u5R1WtKH5beLKR05MwRuRp91dW9enUSRdU9WZu8cv8uoXEmWeH1SFZkhRPAI5lXZIUTwCOZV+5ZsUf1RnYUVTyfUl9kComqEwhd9GjXrl03hKk8ppY9Vm0aUi9E1YlhSr5OUXVP3yav3L9LaJxJVng9khVZ4QTwSOYVWeEE8EjmlXtWFFWKKp49wRCZSkU1GNDZNKQU1f8XZ4GqYKjflLpGm7xKqWtMLe9LVnhNkBVZ4QTwSOYVWeEE8EjmlXtWFNVULKrnzp2T6OjoBLcSiX3ZXEwpFg2KKt4axIu0aUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPChFVdaULFy5ItmzZEn0jXS8moa0ZdXqenud2eh1+Z/6LTPGhvxcvXjSL4ei2J+nSpZNKlSrJ8OHDE71DiipF1R/pb9OQUlQpqmjO2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnpWTqM6YMUPGjRtn1nLRRUdnzZol+fLli3nDTZs2SadOnaRYsWJmh45p06ZJlSpVzCKj27Ztk4ceesisMaNrxly6dMmc27hxY3N+mTJl5OWXX8YvPkCRKS6q77//vtlTU1dz1cV0Fi5cKC1atJD06dMniICiSlH1x7Nh05BSVCmqaM7Z5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeVVKiqmKaMWNGOXXqlOTMmdNsD6k7ZwwcODDmDXULyb59+5qtJBcsWCBTpkwR3dlD/71mzRoZO3asWfBURVXXkhkyZIjMnj07ycVH8bvxJjLFRVUhbdy4UfSvAEWKFJGRI0dKkyZNEr1biipF1R+Pgk1DSlGlqKI5Z5NXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiapu19igQQPZt2+feYMJEyaY7SC119R36KKla9euNTtfbN682fSWqpj6Dh3y6xPVxYsXyyOPPGK2ldTtJfW977nnHvziAxQZMFHVLufffvstzm0VL17c2P3KlStlyZIlBmq/fv3M9iIKc/Xq1eYvAPEP3XPTd8R5IJYvF9GftHJwjqrrmrZpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs9KZTH+Ubt2balVq5YZutumTRvZvXu3CZk5c6asWLFCpk6dGnNKRESEeV17WrUe6tatK4cOHUpQVL/99lv56aef5Pnnn5ePP/5YXn31VdPLmtrmrwZMVKdPny5fffVVHP7ac6rgM2fObADpkT9/fiOnJUuWTLCm2aMaC0sKi6r+NUbHwOvEbv3rTcuWLeWzzz4zf2jQ49FHHzXJr6/rQ6b1r5O7z58/b4Yt6PxkfQDLli0rOu5e9z3VecodO3Y0f8DQB07H0Ldu3VoKFSqEP/lApE1DSlGlqAIpZUJs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPKqkeVV1AKTw83HynVpnU78l69OrVK+YN69SpY35/5513mtGqI0aMkEWLFiUoqpcvXzbTLPUnKirKfAdXqdXRranpCJioJnbT+heB9957T7755hs5fPiw1KhRQ44cOZK65qhWqybSsKHIvHkivv1B27QRKV1a5MoVkZ07RZYsEYmOjnubel6NGiK6Mpf+RWPhQpEzZ0S6dhXJmfOf2GPHRP77X/u8SGFRnT9/vhFI3RtVH64uXbrI3LlzpVu3buYPEDo8QYcqtGvXzvwBQv8YMXjwYPNXIJ20rXKrYtuhQwcTrw/Ld999J0899ZTJiUGDBpledV2lzDfZ2x5SwmfYNKQUVYoqmnc2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5bSYUsWKFc2aPhUqVJBGjRqZxWe1w2fHjh1m+G6fPn0kb9680r9/fzNXNXv27HEWSIo99Hfo0KHy559/mvJ0uPBjjz0WM6wYvwPvI1NcVLXHTCcE69Bf/UuBQm/fvn2idx7QHtXChUUaNBApXlwkLEzkk09Etm0TqV5dRFfJUjHVnwwZrovqhg3/XHfWrCL9+4tcu3ZdTlVMf/5ZZP58kSFDrv/+0qXr8UePah++fW2nAlEtX7686I/Wi9abDiXQFce2bt1qEl6He3fv3t389eftt9+W3r17m1XK7rrrLsmVK5fMmzdPqlWrZh6S+vXrm7/86CrQKrMaqwtt6WplzZs3t+eTxBk2DSlFlaKKJp9NXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCOZV+5ZOYmqfkfWzh09mjVrZhZC2r59u5HVyMhI871bO4/00O/Y69atkzx58sRckH4X1+/Uutrv0aNHzZxX7UnVH/Uvf3/XxkkkHpniouq7tJMnT5qhnomt9uuLC6ioVqwoogs7Zcokki6dyIIFItu3izzxhMi//iUycaJIVJRI9+4if/4p8u67/5C+7TYR7XXdseMfOT17Vmc/iwwaJLJ+vciqVSL6O7dHKhNVnTusk7p1ZTIdUtC2bVsjpU6iet999xlB1fo/ceKEVK9e3SyuRVF1mxjJO69e8XqiP76DHzo4T7IiK5wAHsm8IiucAB7JvCIrnAAeybxyz8pJVLVknT6nW3rqPNSEDv0OriNTddQiMt/02LFjUqBAAfyiAxyZakQVve+Aiqrvotq1EylX7h9RDQ8XyZxZ5OTJ6yKrQ3x1cvOcOf/chvay9ukjkiWLyOXL1+O//VbkwAGRTp3+ibtw4fqQ4D17UAT/xKWwqCZ2wefOnUtyI+KEztOedZ2fqn/VuXLlimTSPw54eNg0pOxRZY8qmoo2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrlnhYgqXnpoRFJU8+cXadv2xto8cUJk1qzrv48vqr5oPa98eZGrV0WmTLneq+o7dNhwly7X/5/KqMqtSqr2oj74oIguF33qlEjlyiJ//329p9X2SKWiansbKRFv05BSVCmqaI7a5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeFUX1RnYU1VtuEXn88RvJnD79jzzGF1Wdr/r88yI33XRdNmfMENH42EerViIVKlzfLkd/dLhvxowib78tkju3yOHD13taX3zx+hzX4cPxzPZFUlTtmf3vDJuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHtiR8YXVV0BWCcr6/xUXQVYF0bSXtGtW0U6dhTR/WJVRJs2FfnrL5EtW0Tq1xe5eFHku+90BvT11zWudu3rvauTJtlfG0XVnhlF1ZEZ56g6Iko0gB/Q/7+9MwGTqrrW9mKQeRZwJDgFh2g0ETUOQa8SMBLHiLMGcIyJCIoSjSFXEPU6gBHFYCCgBHIRjWLE6/QrGCcUIxHFISoiEQWNMokmIv7Pu73Vt2mq6a+ODF1V336eftDudU7Vefc6Z+9vr7XX0dmZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe09ly1yKb66Y0s9+FtGu3ernWrEi4g9/iDjrrK9SgCm0xGto2rf/qmIwFX7vu++rYkznnvvV72mIXY6bO7fw77aRharfo1p4lxXDERaq2XvJkxmdnVmZlU5At7RfmZVOQLe0X5mVTkC3tFCtmZVTf2tm9PUsKKbEq2mImlZu7FlF7BJZRaxmaRtZqPo9qlk6rfYfY6GavY88mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lrUAqHq96jWXvfI+s0sVLOSi/BkRmdnVmalE9At7VdmpRPQLe1XZqUT0C0tVGtmZaFaM6Paa1HLhKrfo1p7XaWQb2ahWgit1W09mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lpsZKFaHRi/R7X2uozyzSxUFUr5bTyZ0dmZlVnpBHRL+5VZ6QR0S/uVWekEdEsL1ZpZWajWzKj2WtRSoVp7gf3fNytk0PHrafx6GtWnC/Er9ZylamdWes+alVnpBHRL+5VZ6QR0S/tVdlau+rsmOwtV3Z9qn6WFauY+KeRBaqFqoao6WiF+pZ6zVO3MSu9ZszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UM3cS4U8SC1ULVRVRyvEr9RzlqqdWek9a1ZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqqZe6mQB6mFqoWq6miF+JV6zlK1Myu9Z83KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kI1cy8V8iC1ULVQVR2tEL9Sz1mqdmal96xZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWH4NoXr55ZfHa6+9VgxXuV6+4/Lly6NZs2bSuRd+sjAWLV8k2ZaCUedvd46xw8dWXIoHHb1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB8msI1d79e8e4G8YVw1X6O25gAj+96Kcx8pqRFqoZuHuA1qGZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe08xWH4NoTroxkEx58M5xXCV6+Q77tJ2l9i53c4V51q0aFG0b99+nZy7FE9y4oknWqhm6FhPZnRoZmVWOgHd0n5lVjoB3dJ+ZVY6Ad3SQrVmVn49Tc2Maq/F1xCq3nfpfZeqY3uAVklFmJVZ6QR0S/uVWekEdEv7lVnpBHRL+1V2Vo6orsnOQlX3p9pnaaEq98lB2xwU/OSaH6QyOosvHZVZmVUBBHRTP6/MSiegW9qvzEonoFvar7KzslC1UNW9pxgsLVTlXrJQlVGtYehBR2dnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjckS1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtRYL1WXLlkWzZs2iTp06a+3hqp242g0xbVoEP+XSLFTlnrZQlVFZqGZHZaFaADtPZnRYZmVWOgHd0n5lVjoB3dJ+lZ2VIlRXrVoVn376aTRt2rTaD0JTNW/efLW/V3fcxx9/HK1bt5Zs9Stbd5YbveovgM4888wE9IMPPohjjz02evXqVe0VWqhWQmOhKt8JFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjzJs3L8aMGROdO3eOfMf985//jJNPPjm23377WLFiRZxyyilxwgknxDXXXBPPPvts1KtXLwnicePGRZs2bfSLWseWG12oAuD++++PO+64I5566qno3bt3vPbaaxaqSkdbqCqUko2FqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ys1iZUEaabbLJJLF68OFq2bBl9+/aNLbbYIi655JKKD+zWrVsMGDAg+Peuu+6KUaNGJY2V77iGDRum40888cR45JFH4sILL4x77703ttlmmyRQGzVqFKeddlrstttucdFFF+kXtY4tN7pQfe+992KPPfaIgw8+OJ544ono169fglVdc0S1EhkLVfl2sFCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VndXahOrcuXOja9eu8eabb6YPGDFiRMyaNStFTXOtQ4cOKejHvy+88EIceuih8cwzz6z1uJEjRyZBe+qpp8Y555wTW265ZSxcuDAaN26cjifievPNN+sXtY4tN5hQffHFF+Ptt99e7euj2t9///0E56yzzooZM2ZEgwYN4r777rNQVTraQlWhlGwsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VntTahio7q2bNnRdbp+PHjY/r06TF69OiKD2zRokX6O5FS+uHAAw+MqVOnrvW44cOHp+hrkyZN4qGHHoozzjgjidwddtghZbteeumlMXToUP2i1rHlBhOqv//97+PBBx9c7ev/8Ic/TJB32mmnGDhwYLD5F8go+fbt26cI65NPPrnGJWObay6mdFB+FjU4yrS3pwU/5dIsVLP3tAcdnZ1ZmZVOQLe0X5mVTkC3tF+ZlU5At7RfZWeFUK3aDjjggNh///1TOi5ikqJIFJ5FYNL69+9fcUiXLl3S7/fcc8+YOXNmDB48OCZNmpT3uG233Tb23nvvFEElnZiCSu+++276f6Kw8+fPT/+S9UpAcWO1DSZUq7vA6667Lql+wsps/N1nn30SqPr16+c9xKm/lbA4oirfNxaqMqo1DD3o6OzMyqx0Arql/cqsdAK6pf3KrHQCuqX9Kjurmoop7b777kGqLvtGu3fvHpdffnkgZF9++eXYa6+90tbJtm3bxsUXX5z2qvI2lSFDhkS+4x599NFgn+qvf/3rmDNnThxyyCEp87VTp04pfRjhiuCdMmVKCihurLbRhSrR08MPPzzYq0obNGhQqgJcXbNQtVDNcrNYqGah9tUxHnR0dmZlVjoB3dJ+ZVY6Ad3SfmVWOgHd0n6VnVVNQpViR1TXFk1GAAAgAElEQVTnpfXo0SMmTpwYs2fPTmJ16dKlaf/qfvvtl/7eqlWrePrpp1PF3nzHvfLKK2nb5d///ve07fLKK69MkVOE7Z133pm2Zp533nlx2WWX6Re0Hiw3ulDNXdOCBQtSiWUqU62tWahaqGa5DyxUs1CzUC2UmgdonZhZmZVOQLe0X5mVTkC3tF+ZlU5At6zqVzUJVc7Mq2SWLFmS9qHma1QHRlNRUIkU4Vyr7jgChZtttlnUrVu3wpatmJyn6vtV9Stbd5a1Rqiql2ShaqGq+kplOwvVLNQsVAul5smMTsyszEonoFvar8xKJ6Bb2q/MSiegW2YRqvrZS8PSQrWY+9F7VOXes1CVUa1h6AFaZ2dWZqUT0C3tV2alE9At7VdmpRPQLe1X2VkpEVX97KVhaaFazP1ooSr3noWqjMpCNTsq7+ctgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQnVNdhaquj/VPksLVblPLFRlVBaq2VFZqBbAzpMZHZZZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/ok08+icaNG0fdunXX2sNVO3G1G2LatAh+yqXVIqG6a/tdo0enHquRn/jixJi/dP5qv0Mw7tdhv6hbp27MWzwv/jD7D/Hll18mm3223ie6bd8tJr88OV798NV12osWqtlxetDR2ZmVWekEdEv7lVnpBHRL+5VZ6QR0S/tVdlaKUF21alV8+umnSUdV15YtWxbNmzdf7c/VHZdPf1Vny3mbNWu2mn7TrzabZZ0vcyoh2/EFHbVo0aJ48cUX45hjjok33ngj2rdvHx9++GGcdNJJUb9+/Zg3b15cdNFF0atXr2rPa6FaCU0tEqqI1L223CtWfL6i4gv+cfYfVxOq27TaJnrt0Ss+/+Lz+HzV59FkkybxyFuPxNzFc6Prdl2Dv9eJOvGnV/4ULy58sSDfqsnYQrUmQtX/3YOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqSaiOHTs2brjhhthqq61i5cqVMWHChGjXrl3FBz7//PPRp0+f6NixY9JUY8aMic6dO0e+4wgW5tNf11xzTTz77LNRr169JIjHjRuXhOmZZ56ZxO8HH3wQxx577Fq1mk6gZssNKlTvuuuuePLJJ2P48OGxcOHCJFSvvvrqQKEPHTo03n///dhiiy0Cdd+kSZO8395CtXYK1dN2Py06tuoY1z55baxctTL9VG0n7HpC7NR2p7ht1m3x/vL343sdvhfvLXsvGtZrGD/85g+jQb0GKdJ61yt3xeyFs2v23gIsLFQLgFXF1IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrNam1BFmG6yySaxePHiaNmyZfTt2zdppksuuaTiA7t16xYDBgwI/kVzjRo1Ku6///68xyE+q+qvV155JXbeeeckUBs1ahSnnXZa7LbbbkkMc5477rgjnnrqqejdu3e89tpr+oV+DcsNKlRz3xM4OaF6xhlnRNeuXeOEE05IKaCk/r755pux3XbbWajW1LG1KKJ63t7nxaZNNk3fmH4kSnr7325f7QrO/9750bpR6yRi69etHws/WRgTZ0+MJZ8tSXbH73p87Nx2ZwvVmvp9A//dg44O3KzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys1qbUJ07d27SS2gk2ogRI2LWrFkpapprHTp0SEKSf1944YU49NBD45lnnsl7HFqsqv6aPXt27LfffkmjsR2T47fffvu47LLLYo899oiDDz44nnjiiejXr19ceOGF+oV+Dct1LlQ/++yzeOihh9b4St27d4+GDRum31cWqscdd1zwQxiZttlmm8WMGTNim222sVCtqWNrkVAlpbdtk7Yxc8HM2HurvVNa77hZ4+LtxW9XXEX/fftHy4YtY8GyBUmsfqPlN+LlRS/H5DmTLVRr6uuN+HcPOjp8szIrnYBuab8yK52Abmm/MiudgG5pv8rOam1Cla2TPXv2rIhkjh8/PqZPnx6jR4+u+MAWLVqkvxNppR8OPPDAmDp1at7jli5dmld/XXHFFUnk7rDDDimCeumll6bznHrqqXHWWWcljdagQYO477779Av9GpbrXKgSkj777LPX+Eq33nprClVXFaqDBw8OwKLOv/jii2jdunUKaxNZRbWTKly1DRw4sOJXLqZ0UH4WNTjFtLenBT/rqm3betu0P3Xh8oWRS7N94b0XYsprUyo+4tTdT43tW28fw54elmwv63JZLP/38rjuqessVNdVR6yH83jQ0aGalVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWCNWq7YADDoj9998/peOyLZJCRwT82EZJ69+/f8UhXbp0Sb/fc889Y+bMmYHGmjRpUt7jSPutTn8RhZ0/f36KxhJJffTRR2OnnXYK9FfuuFxmrH612SzXuVBVvkbliOq9994bN910U4rCTp48OYYNGxZPP/10tafxHtVKaGpRRHXgAQOjUb1G8dCbD6Wqvs0bNo9bn781tmy+ZXTp2CX+Mu8vKd23+w7d462P30oC9dubfTvtRWVPKs2pv8rds+FtPOjozM3KrHQCuqX9yqx0Arql/cqsdAK6pf0qO6uaiintvvvuMXLkyLRvlEzVyy+/PBCyL7/8cuy1114pHbdt27Zx8cUXp72qVOgdMmRI5DuODNiq+osILam+pA8TOETwTpkyJUVP6debb745FWnaZ5994t13302FcNd322hClQrAbM5lheCwww6LOXPmpP9++OGHE4DqmoVq7RSqe2y+R/yo04+SGKWR8kvq76E7HBrf2/p7MeMfM5KIPXevcyv2slL9d+TMkfHxpx+nY4771nGxS7tdvEd1fd/1BZ7fg44OzKzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqBLcO+WUU9IH9OjRIyZOnBjsK0WsksrL/lX2mNJatWqVAn9t2rSJfMchVPPpL4TtnXfemQrcnnfeeWl/KtHTww8/PN5777107kGDBqUqwBuibRShmu/CCDFvvvnmqTLV2pqFau0Uqrlv1aFFh1jyryWx9F9Lq+3GNo3bpD2s7y57t+Idquvb2V31NzthDzo6O7MyK52Abmm/MiudgG5pvzIrnYBuab/KzqomocqZV6xYEUuWLEn7UPM1qgMvWLAgFVQigzXXqjsun/4ivZfzEFWt3DgvQcaatJpOoGbLWiNUa/6qX1lYqNZuoar244a2s1DNTtyDjs7OrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzUoSqfvbSsLRQLeZ+rEV7VGs7RgvV7D3kQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqoxqDUMPOjo7szIrnYBuab8yK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodVaqKt912232NM5TPoWal97VZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/o448/jhYtWkS9evXW2sNVO3G1G2LatAh+yqVZqMo9baEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOytFqK5atSo+/fTTpKOqa8uWLYvmzZuv9ufqjvvkk0+icePGUbdu3Qr7lStXBlqtVatWa3zERx99lD67YcOG+oV+Dcs6X3755Zdf4/iCDl20aFG8+OKLccwxx8Qbb7wR7du3j3feeSeOP/74aNeuXdSvXz+++93vxmWXXVbteS1UK6GxUJX9z0JVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlY1CdWxY8fGDTfcEFtttVUgJidMmJD0U649//zz0adPn+jYsWPMmzcvxowZE507d458xxEsPOmkk5L2wvaiiy6KXr16xbBhw2LUqFGxzz77xNKlS4PvtOOOO6aPwG633XaLBx54IPbbbz/9Qr+G5QYVqnfddVc8+eSTMXz48Fi4cGESqldccUV8/vnncfnll8dnn32WVP27774bW265Zd7LslC1UM3i7xaqWah9dYwHHZ2dWZmVTkC3tF+ZlU5At7RfmZVOQLe0X2VntTahijDdZJNNYvHixdGyZcvo27dvbLHFFnHJJZdUfGC3bt1iwIABwb9oLgTn/fffn/c4hCqR16FDh8b777+fzkV2a+vWrVM0lagpGg29NmLEiPj3v/8dxx13XMydOzduueWW0hSqOZLAyQlVwtf8f6NGjWLKlClxwQUXpGhr5bTgyl1uoWqhqj8C/s/SQjULNQvVQql5gNaJmZVZ6QR0S/uVWekEdEv7lVnpBHTLqn61NqGKQOzatWu8+eab6QMQj7NmzUpR01zr0KFDPPXUU8G/L7zwQhx66KHxzDPP5D0OncX5TjjhhCC5ltRfzo1Q5WfFihVxyCGHxPnnn59s0Gf8P587aNCg4hWqREUfeuihNXqpe/fuFfnMlYUqhqj0q666Kq6//vq455574uCDD662ly1ULVT1R4CFahZWVY/xAK1TNCuz0gnolvYrs9IJ6Jb2K7PSCeiW9qvsrNYmVNk62bNnz3jttdfSB4wfPz6mT58eo0ePrvhAav3wd6Kj9MOBBx4YU6dOzXscab1ESI899th0/GabbRYzZsyIbbbZJv76179G7969Y9ddd01CmHMQTLz99tuT+C1qoUpI+uyzz16jl2699dYUqqZVFqoIW0A1aNAgqXTg5toTTzyRUoWrtoEDB1b8ysWUDsrPoob7ZNrb04KfcmmOqGbvaQ86OjuzMiudgG5pvzIrnYBuab8yK52Abmm/ys4KoVq1HXDAAbH//vunAkpNmjQJiiKho9hGSevfv3/FIV26dEm/33PPPWPmzJkxePDgmDRpUt7jSPtF2Pbr1y+++OKLFEVFwz322GNp7+qNN96YagjR9t1336DO0KabbhrPPfdcdOrUKe2PZf/r+m4bdI9q7mIqC1UE7H333Rf33nuvdK2OqFbC5GJKks9gZKEqo1rD0IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqqZjS7rvvHiNHjkwFjchUpb4PQvbll1+OvfbaKy688MJo27ZtXHzxxWmvarNmzWLIkCGR7zgChTfddFPKgp08eXIqokTaMEHFRx55JPbee++KC5k/f36qI0Q7/fTT49xzz40jjjgiCeD13TaaUEWZU6mK0PK4ceNWu87XX389vvnNb+a9dgtVC9UsN4WFahZqXx3jQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWdUkVAnqnXLKKekDevToERMnTozZs2cnsUoqL3tMc9V4ebXM008/HW3atEnBwKrHITwPO+ywmDNnTorWPvzwwyliWlV//eQnP1lNp/3oRz+KSy+9tHj3qOrdk83SQtVCNYvnWKhmoWahWig1D9A6MbMyK52Abmm/MiudgG5pvzIrnYBuWUgxpdxZKXK0ZMmS1bZKVv5EqgMvWLAgFVSqXJi2uuOIlm6++eapMnBtbBslovp1QFioWqhm8R8L1SzULFQLpebJjE7MrMxKJ6Bb2q/MSiegW9qvzEonoFtmEar62UvD0kK1mPvRe1Tl3rNQlVGtYegBWmdnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZ1ZT6q5+5dCwtVIu5Ly1U5d6zUJVRWahmR+X9vAWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykK1xIXq5b17x/LXX9c9pNgtO3SI4Od/2+LFi6NVq1bSVc1fMj/mL50v2ZaCUactOsXY4WMrLsUPUr1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/cqsdAK6ZVW/slAtdaF6+unxn7//ve4htiwbAn3694kxw8ZYqGbocQ/QOjSzMiudgG5pvzIrnYBuab8yK52Abmm/ys7KQrXEhep1112ne0cJWn700UfRpk2bEryydXNJAwYMsFDNgNKDjg7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzslAtcaGqu0ZpWvrhoPerWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhWkuE6vLly6Np06ZRp06d1b7RRx99lH7fsGHDanu5aif6hvg/VGaR/eGgH1l+lvYrvc/Nyqx0Arql/cqsdAK6pf3KrHQCuqX9KjsrRaiuWrUqPv3006SXqmvLli2L5s2br/bn6o775JNPonHjxlG3bt0K+7XZ8req5/7ss8+iXr16sckmm+gXL1rW+fLLL78Ubb+22aJFi+LFF1+MY445Jt54441o3759xTnnzZsXu+22WzzwwAOx3377WahmoO2Hgw7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjoKvGjBkTnTt3jnzHESw86aSTon79+sn2oosuil69euW1RZiefvrpsWTJkiRov/Od78Tll18eiNzZs2fHxRdfHP3794+jjz5av3jRcoMK1bvuuiuefPLJGD58eCxcuLBCqP773/+O4447LubOnRu33HKLharYeVXN/HDQwZmVWekEdEv7lVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWaxOqCFMilosXL46WLVtG3759Y4sttohLLrmk4gO7desWAwYMCP5Fc40aNSruv//+vMchVIm8Dh06NN5///10LoQo5676Gfzt2WefjZEjRwbxzbvvvjuOPPLIeOmll+K2226LKVOmxHXXXVf8QjVHEjiVheoFF1wQhxxySIwYMSIGDRpkoar7+GqWfjjo4MzKrHQCuqX9yqx0Arql/cqsdAK6pf3KrHQCuqX9KjurtQlVgnldu3aNN998M30AmmnWrFkpapprHTp0iKeeeir494UXXohDDz00nnnmmbzHocU43wknnJDEJ5HSadOmpYhs1c8ggjtz5swgYrv11lvHFVdcET/84Q8rPvfYY4+Nk08+uTiEKnnKDz300Bq91L1794q9p5WFKoofJX777bcnoJWF6hNPPJEisJUbOdmEmt1MwARMwARMwARMwARMwARMoBQI5NM4BxxwQOy///5p62TPnj3jtddeS5c6fvz4mD59eowePbri0lu0aJH+TgSUBYMDDzwwpk6dmve4pUuXpmxWRCZts802S9HR888/f43P+OKLL+Lxxx9P0VkEMGnC77zzTkWtoaISqoSLzz777DX85dZbb03hZFplobrvvvsGe1c33XTTeO6556JTp04p55qcaqXVlM+tnKNUbMxC70mzMiudgG5pvzIrnYBuab8yK52Abmm/MiudgG5pv1o/rCig1KRJk6CYETqKbZQ09obmWpcuXdLv99xzzxQBHTx4cEyaNCnvcaT9Imz79esXCNHWrVvHe++9F82aNVvjM+bPn5+CjVdddVWFqCWQuMMOO6T/LyqhqnRPZaHKxROFpbFR99xzz40jjjgiQVWab4j/o2QWisd8ZWNWZqUT0LwDGrUAACAASURBVC3tV2alE9At7VdmpRPQLe1XZqUT0C3tV+uP1e677572iVJ8lkxVChoRcX355Zdjr732igsvvDDatm2bihuxVxXROWTIkMh3HNrrpptuSlmwkydPjmHDhsXTTz+d15btmr/73e/ikUceiX/84x9BkHHBggWp0m/JClWiqJUrVXGhP/rRj+LSSy9d6x7Vqt3vG8JCVX8kmJVZZSGgH+PnkVnpBHRL+5VZ6QR0S/uVWekEdEv71fpjde+998Ypp5ySPqBHjx4xceLEVHUXsUoqL3tLc29OadWqVRKebdq0iXzHIVQPO+ywmDNnTnrdzcMPPxz77LNPXluK3lK8idRfAokIZPa25hoRVb7XUUcdpV+8aLlBq/6K36kgM98QFl8FOcz/GttvdGpmZVY6Ad3SfmVWOgHd0n5lVjoB3dJ+ZVY6Ad0yi1+tWLEiVedlH2q+RnVgop0UVCKDNdeqO47M1s0333y1d6BWZ/vxxx+ndOFcJFW/0uyWRS9UKbjESoJbhFnoXmBWZqUT0C3tV2alE9At7VdmpRPQLe1XZqUT0C3tV2alE6jZsuiFas2XaAsTMAETMAETMAETMAETMAETMIFiImChWky95e9qAiZgAiZgAiaQCPAahkcffTR23XXX+P73v28qJmACJmACJUbAQrXEOtSXYwKFEmCvw7x582KXXXaJ+vXrF3q47U3ABExgvREYN25cer9f7uXy7J1q3LhxKvzBmwKocjl27Ng455xz4qc//el6+x4+sQmYwFcEvvzyy/jTn/6U3uvZq1ev2HbbbY3GBNYbAQvV9YbWJzaB2k+ASnC8g+ub3/xm/P3vf0/7nKvboF/7r8bf0ARMoNQI/M///E+MGjUq7rnnnvjrX/+a3gzwwAMPpPf2nXHGGbHTTjvFtddemypVvv322xu0yEepsfb1mEBNBEaPHp3mCRTp2XTTTeOxxx6L5557LurWrVvTof67CWQiYKGaCZsPqk0EqG72ySefJLHltnYC77zzTrz//vvpfVsMNEQqGHSoDkep8a222ipuvvlmYzSBgggQlb/gggvivvvuS2mYRMHwKTcTUAjwSoVXX301vW6havv8889j6623jpdeeil+9rOfRe/evVN0ldfZvfLKK7Hzzjun1yKQDcJL7ss1urN8+fL41a9+Ff/85z9TdDn3igqFf7nZEJX//e9/n17JAavmzZuXG4Jqr3f8+PHpXjrxxBOTDfOrKVOmROvWreOYY45Jr0MZOHBg+j3idI899khzBhc1tQutLwIWquuLrM+7QQjcddddMXjw4PRgZWJ85513On21CnlEBC+D5t9+/fqlv5588skpMrHJJpukgfqpp55Kg9AOO+yQ/uZmAjUR4L1qDRo0SGa/+MUvgpL411xzTYpu/b//9//SS8TdTEAhgMAkOppL3cV/iKIiIG688cYkwBAVv/3tb1O6IS+7nzRpUvK3Z555Jj766KMkzNiv2rFjR+UjS8oG4YXIJxUaQYHI+Nvf/laWop2FDeYDlV/LUbmzzz///Jg7d256XyTvmPzWt74VvCKknNsXX3wRF198cVx99dXxxhtvpNRetgKxEASnQYMGpQVtnvF/+MMfko/xzk7uz5tuuinNL2655ZZyRuhrX48ELFTXI1yfet0SYDBmLxIvGz7ttNOC6OChhx4aL7zwQrCazOSFh2bPnj3X7QcX6dmIUpCSM2TIkGjUqFFKm/vHP/4Rq1atSoMzkdXDDz88dt9997juuuvSSvz222+fBqByaxRlOffcc1PUBiYjR46sEGHlxmJt14vvMAHkZd/Dhg1Lq+mICu7DQw45JN56663kc8cdd1zaO4jfuZlATQRYJGvXrl1aNPvggw/ioosuSlF5ol4NGzZM2R5kgfD3CRMmpOc8YwCRHVKCGRt+/etfJ7FbDu29995L4xyiHUZEnC+55JK44YYb4o9//GNMnjw5fvOb36Soc7m1bt26xX/+53+mhQuEFQse7GfmWYUY4zmPmMWPFi5cmDKx4Nm0adNyQ7Xa9f7Hf/xHyob5+c9/nhY8brvttiRKEf2//OUv41//+lcSr3fffXdcddVVybdY1GYe0alTp8SSveNuJrCuCViormuiPt86JZDbtE+aCRNi9iMx6JACtuOOO1ZMYBYtWpT+m7937dp1nX6HYjkZAwkTFFgwoZs1a1bsv//+iReTPCLOCLFvfOMbcdhhh8VPfvKTlK7TpUuXOP7444PoNAM5g1Spt8WLF6dJHqvFTISJ6DDR7d69e5oAMskhSuj2FQEEKL5DimXLli2TPzEhPvLII9N9hzhlxf3WW2+NvffeO/0OX4KrmwmsjQDRUPyJRY1p06bFgw8+GO3btw+iPJdddlnaO88iGpNoRCm/x++OPvrotMDG8UyQS2WSzDYWIn5cb+XGIhGployJjHNEuRjrEGIIfRZque9IjWbBkQgXfMqhzZ8/P0XYBwwYkMY/Fi622WabFImfMWNG4oC4wscQVwhZnlc02LGwBrtybPgTIpN7sE2bNmnPKZkKREs/++yztGALR9pZZ52V5gr8fsSIEWmvOO3ZZ5+N7373u85mK0cH2gDXbKG6ASD7I7IRYNM+6YP16tVLgw/i4vnnn08DzNlnnx1PPvlkEl2s/DFp+fOf/xzsr7jjjjuyfWARH0VaXOfOndMqJ/+NsEe0ksrLivuBBx6Y0uqIpLJi+t///d9ptZQ9he+++25Kn2O1lP1epdpYXWdAbdWqVYqash8X38LHGIwRXjBhoohYR5SVa8OHEPLs90M04DesrCMkiHZtueWWKeUe/2FSwyLH9773vbjiiiuCSD6+B2sWAUqpUR27WbNmqYiI27ojgLDYfPPNUzEkJstsS3j99ddj+PDh8eMf/zhF8PFHJsgsKJFBw7aFUvMviHKdLJaR5UHjWU1Ei0gz+wO5z4g+57IbsEGss3jL85u94oyP/DdCvxwa/sAziWdTnz590rUT6eOVRYx/ZA0xfyBllS0LRKARsIhZIoS/+93v4v777y8HVOkaWdRGuI8ZMyaNfSwO4VMsZiP6ec4xp2IuddRRR6U0ckT+QQcdFFdeeWWaT/A3bxMqG5fZqBdqobpR8fvDKxOoGhHkQcjqMAMyk19W7BiQWVVmHxJVHllpZ4CmAiTClhW+73znOyUPtmp5+I8//jiuv/76NPCweswKKAKU/yfNCVGBwGd/DmIfMYbAYAJY6m3ZsmVpICbCgC8htpj8MQFGgJFOfuqpp6YJIGnSLH4gYlllLsfGogXRdhY+Hn/88bSIwb0IQ+4vUu2539jLhG+1bds2TWQQEbBkMsjKeymKOe6rFi1apAkxHFjo+Pa3v12OblLtNZNSidDK7V9W4bCQxjP+zDPPTBFBhAPRU/ZbEmGk+i8CBCFb6g1hxXjGIhGprNyHCHfuO7ZvcG/95S9/SQLskUceSfclz3JEGpk0PNtytRtKmVUuysyC2UknnZQiozznuX5Sw2FIqu8RRxyRMJCFxfjHghrPKVLHeW6xF7PU5w0s1OZeP8c9yvyJhVnmAXPmzEmp0AhPsopgx9jI/IHnHOKU5x7ZVxROcoXfUr6rat+1WajWvj4py2+ULyLIIMNgwkoo6YakqZLuxMDNIIzYogjC7NmzU3oYaa5UsS31lq88PEUhYMBAjbhnUkOElAgrXIiwsreQ1CgGnVLfO8gCBhEJJr5MZth/xAoy6bzspWQvGxNgRD1prURP4ca+Llbg8SNSm8qhUWQL/yENmvuN1C5YsGrOpIX7jf9HJMCVSBYTPrIXSPNFvCHy81VsLTV+FA0hVZDIAvcY++RzKaildq1Zrwc+CCaePYVUg0Z4sc+SBTUmz4gJFgGYQBMBY1GgVBuLaWQG8Vxm0QyxhW/17ds3Faph0YxnE5FDUn2pIzB06NA0/vFcyz2/SpVP1esiWspr1SiehcDknZ48w4i24z9kdPB8YmEWoUr2FRFU/JJFD/ak8lMOlWrxHfyEeQMZMqT2Mmei1geZMPAiik8klaKKMMT/WByBFcXMPvzww9QFLEq6mcCGJmChuqGJ+/MSAaIx7GFjNZPCGIjRfBFBCrLkNu2zujd9+vS4/fbbk/Di4Vlq0QxEFavDuRXgfO5CkZF85eFJC2OfCS/gZuLCSjurnwzgCDRSe8qh4SdMdBFTLGawR5c9u+zrIi2OaCoRQiY3DM6sHJNazsAMe3wKhrnV51JlRpYCExbSCikoQqQBcc/vEe+kX7IXkL1f3K+8EuS8885LgpSiLUx0iJyWWuP+2m677VL0gEZaKlxIE0TIs++WhQx8hQkzfkWhMtLsy72RVsnkl72k+E0h1aB59sF86tSpaWES7vhYKTcyYxjjyEj4wQ9+kIQCfgY3/IoxjvERkUV6Kgtr+CLPdWo2kB3CcSwOlHIjY4ioJ89mUu957vDcRoiy8MiiI89sMmFgyLvASSXnuYU/wg2ujAvlsG+e5zfjGUKcZzvPbdLoKRJIZgzPLuZVLEYi+EmRJlpPyjhvBmCugA+S0VAOGQylfO+UwrVZqJZCLxbZNey7777pGzNoICJIO0E8MABXjQjykM1t2kfMzpw5s+SLJSGwSOMikpVvkMjttalaHp6VZcQ+0QcGoYMPPjilSLMns5QbkQeiW0xyifYxQcGnSCVn4sLiBhNCBl5EO+KViQyDOSvE+CGTHNLsSr0REWWVnNRV0pyZoDCh4V/uPar3sn+X1EsmeaSLwRBbVuOJ7hCRL+VGNIb97iyI8bwhYkq0mb3MvP4KX2P/LX+nMbkj1bVci7jlfAGBT3SdZxYRGrZpMPlVq0Fzj1b3SpFS9jee1eyvpBAZ9xvpvLyGh4gpAgNRwTONKD6/43nOQuTaFjNLhReLZiwCsdeWsYy9kyyo8V5PMoaIJrNoTSMySESeqDN1GFhMo2ggz7NyaDyviRLzLM9VM2YBlmq+ROYR8ywG4T/cn9yXLIJwDGnALDIRPfWCWzl4S3Fdo4VqcfVXrf+2iCj2NPBwrK4hGFgpJhWFlF+iE4hUJsNVI4I8OBm8y2XTPgMMewPZ38UeLURrvsagk688POyZKLIaX8qNSTCiicE5F91jxZyCSExkiDYQ0WH1nMkvK8lMBkkBYyAmjY5JDAsh5dBIkSN1kr1sRGOYFJPiCwvEF4scCDHSLYk0E1Hk9TOID6IXpCbyLwsBpdx4DrHIQYSKtFX2vfHs4X4jQ4EUaCoc8zoGFkiY9LGfi4IjpR7VqtrvPMPJSCAlnOcVLLj3WNBAVJFmmSt+V101aMQp0UIWB/At3uNY7I1IMEKT7A2l5dJUEQs0Ui9ZNOM5TmSaxUdYIlZZJGIhstRbLiJIZI9xjn23CHhSWNniwrOJiCrp0jzj8T1SWvHFXCE8nm+lvvBBHQoyEBjHeL4THeWeo8GN/d5kfbCwRqYRDW6kRTNXYysVUVWyako9e6HU75lSvj4L1VLu3Y1wbaxuIpKISPAAzNdYzSNKwWopjT0kDDBUcCzViCBiG1GVT0Ay0LAyjGhHRDDgsNqZ2w+YjyHHlGN5eIQmKWBEnPEbuDFZZqKMUCU6iNhgpRhGTPSIFOaqG5M6xn7KcmiwIBpKdBQO7L1FiDLhQyDQWBzKFdvKRU+JOrPKTrYDk71SrgRd2Q/YC5mrmAoXJnPXXntt2hOY8xkKinBf8vxCsBJFJerKRJB01XJpLGDAiIU07jdEAhEvfIjnF4WPuDerqwZNpIeINM9EMiEQ+qRVF3PLLdIi0lkAYgxkQQ0WpMvzyqt8LVfxmMwPXklDBJBiZvzLFg/GhHJo+SKCFI5CmHOv4WtUheYZzmISEVXuOxYd2ULEYhqZWaW+ZSPnC2zboP4EW6hY7CC9mQUNUnthgzDF91g0QfBzv3J/8nvmXoUWOysHH/Q11k4CFqq1s1+K9lsxOUagsm+GyXF1q3Ss6jHZIYKK+CC1h8kO+0tKKSKICGCygViiOnFutZMUHCbBRGyY2BABZKDlhwkNEWkGIPYF5muct5zKwzPYkurGNbNqzESF9yYyaWEyyOSEtEOiMhT4Yd8X+5eoQkvaE37IfstSbkxCmOwyaSNtnOgDaXBEqfgdURqiEfyNbAbuPSaHuWJbCAyi0ET0Ebfl1uBC6iD3HhNe9gTuscceFZE+UsaJNL/66qvpOYXYQsRjU2rFyXgVSuU97WRqcM0wImLKMzq3L5eoDJkgVIdmMsx9SvSZMYAJMSn4VatBw5CFSc5VKq3yIi3jIPtHiTpTzZhnOddMVke+RnE3BAT+hahlwbbUsxfgUNmvWBzLFxHkmYa/MUfgeUWBPLa9kElDNgjs2LpR6o0xj2tm7sB+U3yExW2e8yx2MB7yfljGAVLEWSQi9R4fJLKKPzG3IAOk2BeFSr2vfX2rE7BQtUdIBJjwIgh4dUfVVjkimKuiyqre2t5nyoOWSBgpPER32B9Riu/E4x1tDCiIcFaDmbQxoWGPIC/UZgJH6hJ7jmBM8QIELBM9uBJ1qMyFAYmUYCaJpb5XkIgWL2FngCXSxTveiPARJYQjK8KICtKWiGyRCsweS/YxUViK1Xj2D5bKoIzIrC5VGb9hgYiIPZM4olSwQISSHoaQz72Ch0UOGHEP0hD15VRsq7oHHotJFN1ibzfCnokf4oLf41/cc0TtuWdLuTEhJpqXqwzKM4jnFX5CdJnsBCI2+ByvqSCiCjcyPFhYIz2a6DTHIFZLcdGDvaPsg8xtzWDfN9E9nldcM898FtHITiAaz/OL/fAUKMvXELUIMQRuubz6o6pfIUipX1E1IshCL4uPjJEwRvhT8KecGum71FXg2YPwZPzjGcXiIuKUxr2JEOWZT7YRcw/+ZUsCC+Rk1OTSy8uJna+1+AlYqBZ/H67XK+AByQDKBIRBFyFauSALDz4iCpUjggzQrBznXt6e7wuy/6scKsoRhcgVqCHSwCon+7UQTwy6uagWAwkTGV7RwMSPaA4pmkzy2FdIoQiOZbWUyCCT6VJLccInmLCxZ5nJHSKU1+kQYSD1i1XznBjNVZ8lKs8x/EtDfCFOS22/DRMUXhlA1CrfRJbJCwV/mOiy4MGqO9G+yq90ghn+SEoiQiQX3V+vD5AiOjnp4ogw0uWI3LAPlUUj0jB5vpGCWA6vsyC1HiHK9RPxykWauQ/xLaqu8mxioYzfYcO9SeVahD3jBFkipRQtrerGPKdZFEIokE5P6iXiNPfOZhZpEV1Emxk7uddY8MCvqu6bZCsMi5f4WW4PfRHdNvJXZeGV93aSTcXiIkV/yGCo7Ffsz60aESS6j/hiHoIQK8WFj6oQeQbxzOd9uTBi0YgUcBapcw2fos5CLruIRRP8i/kD4yV7VHOv60PUcs+y15cFODcTKCYCFqrF1Fsb4buSikNEj/1GDM4MMojVXEEW3rPI3qSqEUEGIibOrK5XjgiSLke6DkKiVNJ1YAOXfFUYiQqSeskP4pJVUQQ8ooEJDNzgymoy0UJWRxFp/D33MnOiqywYIFCJwpZigwn7cmHA9VL86KWXXkqr6xRIorE/EMGOWM29/oJ9YaT8luI7TysXJuO9wYhRIleIiKqNyR33KhMZfIyIKfcg6b5EtvBNoj5EWkmFLrVFjnVxT5DZgf/hX/DEp2BdDsVrKmfF4DdkgNBggOBCjHF/5jI+8Cee/aRdEhnjHiyV53llX+Ke4/6pGkVnHCNymouyU8CHZzdCPrdIyzjH/mUWJmkICVgxLiJMEbMIB1LtSdHE79ijWorvAkd4cW+xEEQBJIqT4TNV/YqtMDCoGhEkQs/zsBSKbZEOz4JOde+dpqgd2S8EAViExX+IhlLMjuNY6MAfebbznGf+wXyKYxDzbiZQagQsVEutR9fx9fDqDlJK2ONAlUsGEaIKlQuysIpXNSJIKiGRVvZKkKbDBJrIIPueWFmmymgpNPZmUY2RVd/qXobN5ISJH4MLEzuEKOmrRP8YlHIig9ROBqNyqx6KH/C6ASLG+BsRe0QpopxU81xknokeRWwYjMuhyEjlPW8IBviQzkXhmXyNaA5pv/gWER7EPBM8JolEq5kMW6DW/NRB0HMvl+qiUFUC7L0lC6ZyVgwpzkQMea6R3ZGLNCOmEBG5omVEbsgKqa46ec20a7cFixdwyN1PLCiSIUMaNNfNnkF+l9sLztWwOIsYZWERLiwyIiSIisGVvai8F5RxkAXOUmuMidRjYAGWrQpku+BD3FOI/lyrnMFQ2a+IMFeNCDIGsOiLuC32xlYf5gGkMOdrzJ3Y5gJDGgtFBAcY93784x+nxW0WuZk/MJfAl8iyKadibsXuA/7+hRGwUC2MV9lZU12VlWImLKSUELUhZRWhmivIUl1EkNV3UqOwQ3CUSroq18XgQVVUBgiEAaKc13rkE6uIBAYehAcDMIMtwpW0HtLsOL7cGxEKBmBWiIlIkM7EwgaTHBiRKk1BDSaApRi5ydf/lQuTcQ+RrssklwhMvoZvsUeONDle78ACCcVZ3EygMgEWL4jQE6HieU6qfL6sGCqIIkrxOyJd3JMIMl4ZVl00qBRJE8UjgwgOCAyigew5ZYGRrA9Ea+WCZKRA5xZpEaqkTpfLokdOqBMVJtJHOjSRQfyFmgG5zBc45haxy8GvKAZIDQG2Y7AQzYI92TH5FuwpjsR4CDsa2VX4HnMuFkGIyPI7hGypv36nFJ8nvqbCCVioFs6s7I7g4chDlmpxTGgQaIiIXEGWcosIcr25gitEmlltJyLBqmd1jXcxsmeEVXSEFivMrDwj4D3YfEWNoj+5SCoDMQVsSK8j2srAzv+XUyNCSnpgrjAZ0RuyGihAVl1DoBLByb2Lt5x4+VrzE8gVPeI5Q9YGGTHsI2WvKdEdFjRYSKuaFYMg4/lGxVrEGFVZWTAqtQrHNfkNEXYWfBDpTZs2TRFUhCpZQkQMud8Qo6SxsjeXllukrencpfh3BBULjIgwxkoWGImY8kxifzzPeOYTuSJv5eBX+AZp4MwDiJhyD5HWW7myds4XWNBmQZbsGdixKE5WDNWO3UygHAlYqJZjrxd4zaSE8aAlCshKPHsnSVEt14IspKYygWOFmOgyK5xMUBDu1VVszL3Oorq0zQK7pCTNKRZEejSp1ER7WInnRe7l3CrveaMgBpM//K7qqyuwYxJISli5Mytnf6l87Qgontm5CqncTyyOsd+NtHAa76CkkjjiNd8+eZ5vRIHKKSKYz3/Y203xKDiRaomAIC2YvboUQWJfOFHEcij0U9P9xV5U9jMzR4AR75RlEQSxyv54qrXn9qbWdK5S+TsLGSzww4D0b8a4tRWbpKgW2Qw0iimRKeNmAuVKwEK1XHu+gOtmVZT0VCYtvEYGMVHqr0apCQ+v+CB1l9QvoqJMYGDChKZqI/UX++r2sNb0WeX0dyY0iLDddtvNkeb/7fjcnjf+ZY8u0Ryiy7n3piI6iJaRUkYlTdLt3cqbAAKB5xKVd8l+Yd8f0Rz2+SEkXn/99VT9k/fFUtAH4UAacDnvk1+bx+SqbpN6T4YHafnUFyD6xThQiq9Wy3oHkdVBxJR0aRZoiQbyXC/3/fHMEdhKhYhnfyoRUha88zXuX2daZfVAH1dqBCxUS61H19P1kMpD6g7FlNy+IkA6HKvopMaxh5A9ghSeoiFMqV5LFIMJIaujrCy7mUChBCrveWOCQ8SU6D3igtRoMhtK7XU8hTKy/ZoE2AvPXrfcM4mFDibJVKrlndjsCUe8sn+OBRC36gnkoqjca1RbJbOIvfRu+QnwGi2q+5JSztjnLI9IcwQipSx6UNeDSClV7HONd6OyzYMK3KT7lkstBt9DJlATAQvVmgj57yZQDQHeH0gFSFZJ2XtK6iovdGcAYiJIGiY/5banyw6z7gmU8563dU+zPM5ImiGpqRTBI5qFuKIyKMKB6tqkkFMJGvHqVjMBOPJuWUe6amZlizUJMCcg7ZfXFlHjgu1CiFLemjBx4sSUgk8dCxYfSY92MwET+IqAhao9wQS+BgFeYE5Rksp7T3lFCAUj3EzABExgYxKgWBKvV2HyyyudKODCnlM3EzCBDU+AdGjSxnk3au51MkSfqQ5NoTI3EzCBNQlYqNorTMAETMAETKAECTAxpngS+1LZw+ztByXYyb4kEzABEyhhAhaqJdy5vjQTMAETMIHyJUDlX9JVeQ+2C/6Urx/4yk3ABEygWAlYqBZrz/l7m4AJmIAJmEANBNg/T8E3iuG5mYAJmIAJmEAxEbBQLabe8nc1ARMwARMwARMwARMwARMwgTIgYKFaBp3sSzQBEzABEzABEzABEzABEzCBYiJgoVpMveXvagImYAImYAImYAImYAImYAJlQMBCtQw62ZdoAiZgAiZgAiZgAiZgAiZgAsVEwEK1mHrL39UETMAETEAisGrVqqDqbfv27aN+/frSMTYyARMwARMwAROoPQQsVGtPX/ibmIAJmIAJrAMCw4cPjwsuuKDiTL169QreKdqkSZNqz7506dJo2bJlOu76669fB9/CpzABEzABEzABE/g6BCxUvw49H2sCJmACJlCrCNx9991xzDHHxNZbbx0I1D/96U8xZ86cOP3002P06NHVftclS5ZEq1aton///jFs2LBadU3+MiZgAiZgAiZQjgQsVMux133NJmACJlCiBPbee+947rnnYubMmbHnnnvGF198Ed26dYvFixfHjBkzUjrwueeeG9OmTYvGjRtHnz59YvDgwbFixYoKoTpgwIA46qijktDF9s9//nMMGTIkfvvb38aHH34Yl112WRx00EExderUaN26dQwcODCuvfbamDt3bvziF7+In/3sZ/Gb3/wmJkyYEN27d4+JEyfGt771rfiv//qv2HnnnUuUvC/LBEzABEzABNYtAQvVdcvTZzMBEzABE9hIBNiXWq9evWjevHkSpnXr1l3jm5x88slJOCIuX3311ZgyZUrccccdSczmIqp9+/aNv/jKbQAAAx5JREFUbbfdNglSBOq4ceOid+/eMX369FiwYEGceOKJ0alTp9hnn31i/Pjx6TPOOuusuOeee2LRokXx0UcfxRVXXJEis7vsskscfPDBcdNNN8U555wTt9xyy0ai4481ARMwARMwgeIiYKFaXP3lb2sCJmACJlANgc8//zwaNGgQ2223Xbz55ptrWC1fvjyJ2OOOOy4mTZoUn376adq3euSRR8Ztt91WkFAlytqjR48khomaPvDAAymaStSUz2ZPLEL17bffjo4dO0aHDh2iTZs28be//c39ZwImYAImYAImIBCwUBUg2cQETMAETKA4CGy//fbx1ltvpR+iojT2py5btixuvPHG2GKLLSr2q65cuTKJR1KEiYbmIqr9+vVL4pKo69VXX51E589//vPVIqoPPvhgisLWqVMnjj766LQX9pe//GVceeWV6bOJoCJU2fvaokWL2HHHHaNRo0YWqsXhRv6WJmACJmACtYCAhWot6AR/BRMwARMwgXVDICcqSc1FXD722GNBgSUqASNADzvssHjiiSdi5MiRqcjSVVddFaNGjYrjjz++QqgSFSUyyzkQq0OHDk3is3Lqr4Xquukvn8UETMAETMAEqiNgoWrfMAETMAETKBkCREnZV0qBpFzr2bNn3H777SmiSZElUnbZS0r7wQ9+EJMnT06R0cqvp0GgXnPNNcnm+9//fvzlL3+Jxx9/PO1RPeGEEyInVImWdu3aNUVUf/WrX6W9qRRVGjFihCOqJeNVvhATMAETMIGNQcBCdWNQ92eagAmYgAmsVwKfffZZEoxt27aNdu3arfZZVAKeN29eNG3aNDbbbLNqvwd7WhGw2LmZgAmYgAmYgAlsWAIWqhuWtz/NBEzABEzABEzABEzABEzABEygBgIWqnYREzABEzABEzABEzABEzABEzCBWkXAQrVWdYe/jAmYgAmYgAmYgAmYgAmYgAmYgIWqfcAETMAETMAETMAETMAETMAETKBWEbBQrVXd4S9jAiZgAiZgAiZgAiZgAiZgAiZgoWofMAETMAETMAETMAETMAETMAETqFUE/j/IS5E3izlewwAAAABJRU5ErkJggg==", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] }, - "y": { - "axis": { - "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", - "orient": "right", - "title": "Probability" - }, - "field": "sum", - "scale": { - "zero": false - }, - "type": "quantitative" - } - }, - "mark": { - "color": "black", - "strokeWidth": 2, - "type": "rule", - "x2Offset": 30, - "xOffset": -30 - } + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" } - ], - "params": [ - { - "bind": { - "input": "range", - "max": 49, - "min": 0, - "step": 1 - }, - "description": "Filter by the interation number", - "name": "record_number", - "value": 0 - } - ], - "resolve": { - "axis": { - "y": "independent" - } - }, - "title": { - "subtitle": "How each comparison contributes to the final match score", - "text": "Match weights waterfall chart" - }, - "transform": [ - { - "filter": "(datum.record_number == record_number)" - }, - { - "filter": "(datum.bayes_factor !== 1.0)" - }, + ], + "source": [ + "records = linker.evaluation.prediction_errors_from_labels_column(\n", + " \"cluster\",\n", + " threshold=0.999,\n", + " include_false_negatives=False,\n", + " include_false_positives=True,\n", + ").as_record_dict()\n", + "linker.visualisations.waterfall_chart(records)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "7830d1ae-0c70-43e7-94e6-696a4332f818", + "metadata": {}, + "outputs": [ { - "frame": [ - null, - 0 - ], - "window": [ - { - "as": "sum", - "field": "log2_bayes_factor", - "op": "sum" + "data": { + "application/vnd.vegalite.v4+json": { + "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json", + "config": { + "view": { + "continuousHeight": 300, + "continuousWidth": 400 + } + }, + "data": { + "values": [ + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "francis", + "value_r": "francis" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.2343746323933125, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.23 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.3037803185309872, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "francis", + "value_r": "francis" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "hall", + "value_r": "None" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 0, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1800-01-01", + "value_r": "1800-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.3330751950470222, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.00 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.5860801780265656, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1800-01-01", + "value_r": "1800-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "hu12 8rh", + "value_r": "hu6 8rf" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 0, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "kingston upon hull, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "land surveyor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 0, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.13644541400215313, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.8736041891542885, + "m_probability": null, + "record_number": 0, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "edmonds", + "value_r": "beesley" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 1, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "yo25 9dz", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "east riding of yorkshire", + "value_r": "kirkburn" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 1, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "editor", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 1, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 1, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "edmonds", + "value_r": "beesley" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 2, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "east riding of yorkshire", + "value_r": "kirkburn" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 2, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 2, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 2, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "beesley", + "value_r": "edmonds" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 3, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "yo25 9jl" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "kirkburn", + "value_r": "east riding of yorkshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 3, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "editor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 3, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 3, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "beesley", + "value_r": "edmonds" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 4, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "yo25 9dz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "kirkburn", + "value_r": "east riding of yorkshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 4, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "editor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 4, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 4, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 5, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 5, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "beesley", + "value_r": "edmonds" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 5, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "yo25 9du" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "kirkburn", + "value_r": "east riding of yorkshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 5, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 5, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 5, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 6, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 6, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "beesley", + "value_r": "edmonds" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 6, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 2.825396482123016, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 1.4984533321851021, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1788-01-01", + "value_r": "1788-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "kirkburn", + "value_r": "east riding of yorkshire" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 6, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "editor" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 6, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.08178339092164329, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.6120483083188657, + "m_probability": null, + "record_number": 6, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 7, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 7, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 7, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-01-03", + "value_r": "1855-01-03" + }, + { + "bar_sort_order": 6, + "bayes_factor": 6.828041498463956, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.771471826591518, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-01-03", + "value_r": "1855-01-03" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "sk11 7js", + "value_r": "sk17 7hp" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "ireland", + "value_r": "glaslough" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 7, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 7, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.07351497308336684, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.7658180705314352, + "m_probability": null, + "record_number": 7, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 8, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 8, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "james", + "value_r": "james" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4527666635814206, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.21 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.143160355923113, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "james", + "value_r": "james" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 8, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "montrose", + "value_r": "graham" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 8, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 8, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1612-10-25", + "value_r": "1612-10-25" + }, + { + "bar_sort_order": 6, + "bayes_factor": 13.656082996927912, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 13.66 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.771471826591518, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1612-10-25", + "value_r": "1612-10-25" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "dd10 0su" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 8, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "angus", + "value_r": "montrose" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 8, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "military officer", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 8, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.13092885152686268, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.9331450497947706, + "m_probability": null, + "record_number": 8, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 9, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 9, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "killigrew", + "value_r": "None" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 9, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1606-05-01", + "value_r": "1606-05-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 8.193649798156747, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.034506232425312, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1606-05-01", + "value_r": "1606-05-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 9, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "e4 8bu", + "value_r": "tw13 6db" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 9, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 9, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "hanworth", + "value_r": "hounslow" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 9, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "castellan", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 9, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.0868217120961546, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.5258003174226147, + "m_probability": null, + "record_number": 9, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 10, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 10, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "killigrew" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 10, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1606-05-01", + "value_r": "1606-05-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 8.193649798156747, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.034506232425312, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1606-05-01", + "value_r": "1606-05-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "tw13 6db", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "hounslow", + "value_r": "hanworth" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 10, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 10, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.5119506572397606, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.9659233276033713, + "m_probability": null, + "record_number": 10, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 11, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 11, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "hughes", + "value_r": "None" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 11, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "ng24 3wz", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "newark and sherwood", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "minister", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 11, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 11, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 12, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 12, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "hughes" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 12, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ng24 3wz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "balderton" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "minister" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 12, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 12, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 13, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 13, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "hughes" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 13, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ng24 3wz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "newark and sherwood" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "minister" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 13, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 13, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 14, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 14, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "hughes" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 14, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ng24 3wz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "newark and sherwood" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "minister" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 14, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 14, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 15, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 15, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "hughes" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 15, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ng24 3wz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "newark and sherwood" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "minister" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 15, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 15, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 16, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 16, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "hughes" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 16, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ng24 3wz" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "balderton" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "minister" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 16, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06935061799702474, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.8499474510287257, + "m_probability": null, + "record_number": 16, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 17, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 17, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4385527024735812, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1891778678878713, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 17, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "ernest", + "value_r": "dudeney" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 17, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 17, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "tn20 6pj", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "mayfield and five ashes" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 17, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.6137377823657361, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.7043056948014667, + "m_probability": null, + "record_number": 17, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 18, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 18, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4385527024735812, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1891778678878713, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 18, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "ernest", + "value_r": "dudeney" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 18, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 18, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "tn20 6pj", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "mayfield and five ashes" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "mathematician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 18, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.6137377823657361, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.7043056948014667, + "m_probability": null, + "record_number": 18, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 19, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 19, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.4385527024735812, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1891778678878713, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "henry", + "value_r": "henry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 19, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "ernest", + "value_r": "dudeney" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 19, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 19, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 6, + "bayes_factor": 10.242062247695934, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.3564343273126744, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-04-10", + "value_r": "1857-04-10" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "tn20 6pj", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "mayfield and five ashes" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "mathematician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 19, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.6137377823657361, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.7043056948014667, + "m_probability": null, + "record_number": 19, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 20, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 20, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 20, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "baronet", + "value_r": "strickland" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 20, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 20, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "sw1p 3jx", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "westminster", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 20, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.7679904380631085, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.38083974623886313, + "m_probability": null, + "record_number": 20, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.22998460945033555, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.120390775511631, + "m_probability": null, + "record_number": 20, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 21, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 21, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 21, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "strickland", + "value_r": "baronet" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 21, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 21, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sw1p 3jx" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "westminster" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 21, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.7679904380631085, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.38083974623886313, + "m_probability": null, + "record_number": 21, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.22998460945033555, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.120390775511631, + "m_probability": null, + "record_number": 21, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 22, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 22, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 22, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "strickland", + "value_r": "baronet" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 22, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 22, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "westminster" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 22, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.7679904380631085, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.38083974623886313, + "m_probability": null, + "record_number": 22, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.22998460945033555, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.120390775511631, + "m_probability": null, + "record_number": 22, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 23, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 23, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 23, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "strickland", + "value_r": "baronet" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 23, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 23, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sw1p 3jx" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 23, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.7679904380631085, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.38083974623886313, + "m_probability": null, + "record_number": 23, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.22998460945033555, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.120390775511631, + "m_probability": null, + "record_number": 23, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 24, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 24, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 24, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "strickland", + "value_r": "baronet" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 24, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 24, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sw1p 3jx" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "westminster" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 21.98341326393178, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 4.458343499220055, + "m_probability": 0.8992633138155923, + "record_number": 24, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.040906446283799566, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 0.7679904380631085, + "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.38083974623886313, + "m_probability": null, + "record_number": 24, + "sql_condition": "\"occupation_l\" = \"occupation_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "writer", + "value_r": "writer" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.22998460945033555, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.120390775511631, + "m_probability": null, + "record_number": 24, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 25, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 25, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.45384297102258087, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.1397348813239896, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "sir", + "value_r": "sir" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 25, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "strickland", + "value_r": "baronet" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 25, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 25, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "sw1p 3jx" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "westminster" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "writer", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 25, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.013622218339665128, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -6.1978945284928235, + "m_probability": null, + "record_number": 25, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 26, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 26, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "ethel", + "value_r": "ethel" + }, + { + "bar_sort_order": 2, + "bayes_factor": 9.091267133817414, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 9.09 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 3.184481390158643, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "ethel", + "value_r": "ethel" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 26, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "tweedie", + "value_r": "alec-tweedie" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 26, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 26, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1862-01-01", + "value_r": "1862-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.13747734560665684, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 7.27 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.862734193149487, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1862-01-01", + "value_r": "1862-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "se1 8tx", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 162.73433041528628, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Exact match", + "log2_bayes_factor": 7.346374823669453, + "m_probability": 0.8458306903800119, + "record_number": 26, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.005197616804158735, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 10, + "bayes_factor": 0.09770937601995389, + "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 1, + "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -3.3553591824585562, + "m_probability": null, + "record_number": 26, + "sql_condition": "\"birth_place_l\" = \"birth_place_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "london", + "value_r": "london" + }, + { + "bar_sort_order": 11, + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "record_number": 26, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9590935537162004, + "value_l": "biographer", + "value_r": "writer" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.10073668618440759, + "record_number": 26, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9590935537162004, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.2852143181647854, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -1.8098816859427886, + "m_probability": null, + "record_number": 26, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 27, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 27, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 27, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "white", + "value_r": "wight" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 27, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 27, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.23410427994733563, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.0947767845196545, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 27, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "ng6 9en", + "value_r": "ng6 7al" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 27, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bulwell" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 27, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.0011356176325734825, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -9.782307129792507, + "m_probability": null, + "record_number": 27, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 28, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 28, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.20933838794974308, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2560912012273384, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "john", + "value_r": "john" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "whyte", + "value_r": "wight" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 28, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.23410427994733563, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.0947767845196545, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "ng6 9en", + "value_r": "ng6 7al" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "nottingham", + "value_r": "bulwell" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 28, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "cricketer", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 28, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.00017599212603783306, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -12.472201496029411, + "m_probability": null, + "record_number": 28, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 29, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 29, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 29, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "pease", + "value_r": "r." + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 29, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 29, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 29, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "ba5 3bt", + "value_r": "bs3 5bq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 29, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 29, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.07460671274371347, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.74455074687633, + "m_probability": null, + "record_number": 29, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 30, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 30, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 30, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "pease", + "value_r": "r." + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 30, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 30, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bs3 5bq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 30, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bristol", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 30, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 30, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06817713934473707, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.874568123293993, + "m_probability": null, + "record_number": 30, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 31, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 31, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 31, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "r.", + "value_r": "pease" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 31, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 31, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "bs3 5bq", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 31, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bristol, city of", + "value_r": "bristol" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 31, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 31, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06817713934473707, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.874568123293993, + "m_probability": null, + "record_number": 31, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 32, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 32, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 32, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "peace", + "value_r": "r." + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 32, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 32, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bs3 5bq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 32, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bristol", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 32, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 32, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.06817713934473707, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -3.874568123293993, + "m_probability": null, + "record_number": 32, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 33, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 33, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "pease" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 33, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bs3 5bq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 33, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bristol", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 33, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 33, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.9764152216839562, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.034433308907189736, + "m_probability": null, + "record_number": 33, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 34, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 34, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6287045328545522, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.6695459301434913, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "edward", + "value_r": "edward" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "r." + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 34, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 6, + "bayes_factor": 5.121031123847967, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.3564343273126744, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1857-12-23", + "value_r": "1857-12-23" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bs3 5bq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 34, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bristol", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 34, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 34, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.9764152216839562, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.034433308907189736, + "m_probability": null, + "record_number": 34, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 35, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 35, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 35, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "moore", + "value_r": "muir" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 35, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 35, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1437482420729254, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.79838378173943, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "so30 2eq", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "eastleigh", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "head teacher", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 35, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.026848940041691617, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.218991056006492, + "m_probability": null, + "record_number": 35, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 36, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 36, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 36, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "moore", + "value_r": "muir" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 36, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 36, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1437482420729254, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.79838378173943, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "so31 1by", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "eastleigh", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 36, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.026848940041691617, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.218991056006492, + "m_probability": null, + "record_number": 36, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 37, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 37, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 37, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "muir", + "value_r": "moore" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 37, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 37, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1437482420729254, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.79838378173943, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "so30 2eq" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "eastleigh" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "head teacher" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 37, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.026848940041691617, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.218991056006492, + "m_probability": null, + "record_number": 37, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 38, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 38, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.366944700311449, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.4509548799592081, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "mary", + "value_r": "mary" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 38, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "muir", + "value_r": "moore" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 38, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 38, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1437482420729254, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.79838378173943, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1860-01-01", + "value_r": "1860-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "eastleigh" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "head teacher" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 38, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.026848940041691617, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.218991056006492, + "m_probability": null, + "record_number": 38, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 39, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 39, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "arthur", + "value_r": "arthur" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.7106077288219567, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.41 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.4928747148694078, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "arthur", + "value_r": "arthur" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "finlay" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 39, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1854-01-01", + "value_r": "1854-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.2402829852831891, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.16 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.0571936017114982, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1854-01-01", + "value_r": "1854-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "tf11 9bx", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "shropshire", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "rugby union player", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 39, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.33413530765043736, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -1.5814956564203728, + "m_probability": null, + "record_number": 39, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 40, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 40, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 40, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "swan", + "value_r": "stallybrass" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 40, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 40, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 6, + "bayes_factor": 6.828041498463956, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.771471826591518, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "dl12 9bf", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 40, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "united kingdom", + "value_r": "county durham" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 40, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "publisher" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 40, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.029788668557820374, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.069092547823968, + "m_probability": null, + "record_number": 40, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 41, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 41, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 41, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "stallybrass", + "value_r": "sonnendchein" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 41, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 41, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 6, + "bayes_factor": 6.828041498463956, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.771471826591518, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ca17 4ee" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 41, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "county durham", + "value_r": "united kingdom" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 41, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "publisher", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 41, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.029788668557820374, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -5.069092547823968, + "m_probability": null, + "record_number": 41, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 42, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 42, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 9.930908563690332, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 3.311925713762501, + "m_probability": 0.020267294367821084, + "record_number": 42, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", + "term_frequency_adjustment": false, + "u_probability": 0.0020408298231566584, + "value_l": "wonnenschein", + "value_r": "sonnendchein" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 1, + "label_for_charts": "Levenshtein_distance <= 2", + "log2_bayes_factor": 0, + "m_probability": 0.020267294367821084, + "record_number": 42, + "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2", + "term_frequency_adjustment": true, + "u_probability": 0.0020408298231566584, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 42, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 6, + "bayes_factor": 6.828041498463956, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 2.771471826591518, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-05-05", + "value_r": "1855-05-05" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 42, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "dl1w 0bf", + "value_r": "ca17 4ee" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 42, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 42, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "eggleston", + "value_r": "united kingdom" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 42, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "publisher", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 42, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.7185154034749656, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -0.47690900949390674, + "m_probability": null, + "record_number": 42, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 43, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 43, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "arabella", + "value_r": "arabella" + }, + { + "bar_sort_order": 2, + "bayes_factor": 33.691166437088064, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 33.69 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.07429847240822, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "arabella", + "value_r": "arabella" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "fisher", + "value_r": "buckley" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 43, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1840-01-01", + "value_r": "1840-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.671610639193176, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 1.49 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.574303010250212, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1840-01-01", + "value_r": "1840-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "bn2 1ej", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "brighton and hove", + "value_r": "brighton" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 43, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "writer", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 43, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.47914656850958903, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -1.0614610583051676, + "m_probability": null, + "record_number": 43, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 44, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 44, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.2060251185001788, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.2791078539523104, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "william", + "value_r": "william" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "charlton" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 44, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.23410427994733563, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.0947767845196545, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1855-01-01", + "value_r": "1855-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "chorley", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 44, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 0.10503322203979278, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.2510823699365705, + "m_probability": 0.10073668618440759, + "record_number": 44, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9590935537162004, + "value_l": "trade unionist", + "value_r": "politician" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.10073668618440759, + "record_number": 44, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9590935537162004, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.009913468665482506, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -6.656394348248003, + "m_probability": null, + "record_number": 44, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 45, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 45, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "harry", + "value_r": "harry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.1501000590973836, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.20175938159047846, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "harry", + "value_r": "harry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 45, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "bell", + "value_r": "purvis" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 45, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 45, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 45, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "bs4 1na", + "value_r": "bs2 0sp" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 45, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "bristol, city of", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "anthropologist", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 45, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.005854342005837653, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -7.416277255397598, + "m_probability": null, + "record_number": 45, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 46, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 46, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "harry", + "value_r": "harry" + }, + { + "bar_sort_order": 2, + "bayes_factor": 1.1501000590973836, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 0.20175938159047846, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "harry", + "value_r": "harry" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 46, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "purvis", + "value_r": "bell" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 46, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 46, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.21966889539294226, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.1865974929425636, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1851-01-01", + "value_r": "1851-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "bs2 0sp", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "bristol, city of" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "anthropologist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 46, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.034520561334653414, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -4.856400265578355, + "m_probability": null, + "record_number": 46, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 47, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 47, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "bernie", + "value_r": "bernie" + }, + { + "bar_sort_order": 2, + "bayes_factor": 30.144727864763002, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 30.14 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 4.913833800214974, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "bernie", + "value_r": "bernie" + }, + { + "bar_sort_order": 3, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "moor", + "value_r": "None" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 47, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.1692902850858832, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.56242890996192, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1850-01-01", + "value_r": "1850-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 47, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "al9 5bz", + "value_r": "kt24 6es" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 47, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 47, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "hatfield", + "value_r": "welwyn hatfield" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 47, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "ceramicist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 47, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.2624666807604501, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -1.9297938056425616, + "m_probability": null, + "record_number": 47, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 48, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 48, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "robert", + "value_r": "robert" + }, + { + "bar_sort_order": 2, + "bayes_factor": 0.6479070468670781, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.54 times less likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -0.626141245732872, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "robert", + "value_r": "robert" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 48, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "angel", + "value_r": "marshall" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 48, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 48, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1849-01-01", + "value_r": "1849-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.3939254710652282, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.54 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -1.344005390828418, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1849-01-01", + "value_r": "1849-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "bh23 4fp", + "value_r": "None" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 0.1549748092929906, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.689894366236906, + "m_probability": 0.15416930961998804, + "record_number": 48, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9948023831958412, + "value_l": "bournemouth, christchurch and poole", + "value_r": "highcliffe and walkford" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.15416930961998804, + "record_number": 48, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9948023831958412, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "None", + "value_r": "watercolorist" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 48, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.0054045748297124495, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -7.531603157024466, + "m_probability": null, + "record_number": 48, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 0, + "bayes_factor": 0.00013584539607096294, + "bayes_factor_description": null, + "column_name": "Prior", + "comparison_vector_value": null, + "label_for_charts": "Starting match weight (prior)", + "log2_bayes_factor": -12.845746707461347, + "m_probability": null, + "record_number": 49, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 1, + "bayes_factor": 48.72386745735117, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match", + "column_name": "first_name", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 5.606556746606498, + "m_probability": 0.5524853353802543, + "record_number": 49, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.011339110875462712, + "value_l": "herminie", + "value_r": "herminie" + }, + { + "bar_sort_order": 2, + "bayes_factor": 63.638869936721896, + "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 63.64 times more likely to be a match", + "column_name": "tf_first_name", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": 5.991836312216247, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"first_name_l\" = \"first_name_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "herminie", + "value_r": "herminie" + }, + { + "bar_sort_order": 3, + "bayes_factor": 0.06982392104370992, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -3.840134814386803, + "m_probability": 0.06961049788217637, + "record_number": 49, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9969434091018756, + "value_l": "kavanagh", + "value_r": "templeton" + }, + { + "bar_sort_order": 4, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match", + "column_name": "tf_surname", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.06961049788217637, + "record_number": 49, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9969434091018756, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 5, + "bayes_factor": 295.6533104693185, + "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match", + "column_name": "dob", + "comparison_vector_value": 3, + "label_for_charts": "Exact match", + "log2_bayes_factor": 8.207762621015382, + "m_probability": 0.61837388325496, + "record_number": 49, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": false, + "u_probability": 0.002091550682362922, + "value_l": "1861-01-01", + "value_r": "1861-01-01" + }, + { + "bar_sort_order": 6, + "bayes_factor": 0.16387299596313493, + "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.10 times less likely to be a match", + "column_name": "tf_dob", + "comparison_vector_value": 3, + "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}", + "log2_bayes_factor": -2.609349957349413, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"dob_l\" = \"dob_r\"", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "1861-01-01", + "value_r": "1861-01-01" + }, + { + "bar_sort_order": 7, + "bayes_factor": 0.1695900002634309, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": -2.559876989819243, + "m_probability": 0.16947053958156647, + "record_number": 49, + "sql_condition": "ELSE", + "term_frequency_adjustment": false, + "u_probability": 0.9992955912395844, + "value_l": "gu12 4nb", + "value_r": "gu11 3he" + }, + { + "bar_sort_order": 8, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match", + "column_name": "tf_postcode_fake", + "comparison_vector_value": 0, + "label_for_charts": "All other comparisons", + "log2_bayes_factor": 0, + "m_probability": 0.16947053958156647, + "record_number": 49, + "sql_condition": "ELSE", + "term_frequency_adjustment": true, + "u_probability": 0.9992955912395844, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 9, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "aldershot", + "value_r": "None" + }, + { + "bar_sort_order": 10, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_birth_place", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 11, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": false, + "u_probability": null, + "value_l": "writer", + "value_r": "None" + }, + { + "bar_sort_order": 12, + "bayes_factor": 1, + "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match", + "column_name": "tf_occupation", + "comparison_vector_value": -1, + "label_for_charts": "Null", + "log2_bayes_factor": 0, + "m_probability": null, + "record_number": 49, + "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL", + "term_frequency_adjustment": true, + "u_probability": null, + "value_l": "", + "value_r": "" + }, + { + "bar_sort_order": 13, + "bayes_factor": 0.24165943221163722, + "bayes_factor_description": null, + "column_name": "Final score", + "comparison_vector_value": null, + "label_for_charts": "Final score", + "log2_bayes_factor": -2.0489527891786787, + "m_probability": null, + "record_number": 49, + "sql_condition": null, + "term_frequency_adjustment": null, + "u_probability": null, + "value_l": "", + "value_r": "" + } + ] + }, + "height": 450, + "layer": [ + { + "layer": [ + { + "encoding": { + "color": { + "value": "black" + }, + "size": { + "value": 0.5 + }, + "y": { + "field": "zero", + "type": "quantitative" + } + }, + "mark": "rule" + }, + { + "encoding": { + "color": { + "condition": { + "test": "(datum.log2_bayes_factor < 0)", + "value": "red" + }, + "value": "green" + }, + "opacity": { + "condition": { + "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'", + "value": 1 + }, + "value": 0.5 + }, + "tooltip": [ + { + "field": "column_name", + "title": "Comparison column", + "type": "nominal" + }, + { + "field": "value_l", + "title": "Value (L)", + "type": "nominal" + }, + { + "field": "value_r", + "title": "Value (R)", + "type": "nominal" + }, + { + "field": "label_for_charts", + "title": "Label", + "type": "ordinal" + }, + { + "field": "sql_condition", + "title": "SQL condition", + "type": "nominal" + }, + { + "field": "comparison_vector_value", + "title": "Comparison vector value", + "type": "nominal" + }, + { + "field": "bayes_factor", + "format": ",.4f", + "title": "Bayes factor = m/u", + "type": "quantitative" + }, + { + "field": "log2_bayes_factor", + "format": ",.4f", + "title": "Match weight = log2(m/u)", + "type": "quantitative" + }, + { + "field": "prob", + "format": ".4f", + "title": "Adjusted match score", + "type": "quantitative" + }, + { + "field": "bayes_factor_description", + "title": "Match weight description", + "type": "nominal" + } + ], + "x": { + "axis": { + "grid": true, + "labelAlign": "center", + "labelAngle": -20, + "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value", + "labelPadding": 10, + "tickBand": "extent", + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "grid": false, + "orient": "left", + "title": "log2(Bayes factor)" + }, + "field": "previous_sum", + "type": "quantitative" + }, + "y2": { + "field": "sum" + } + }, + "mark": { + "type": "bar", + "width": 60 + } + }, + { + "encoding": { + "color": { + "value": "white" + }, + "text": { + "condition": { + "field": "log2_bayes_factor", + "format": ".2f", + "test": "abs(datum.log2_bayes_factor) > 1", + "type": "nominal" + }, + "value": "" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "axis": { + "orient": "left" + }, + "field": "center", + "type": "quantitative" + } + }, + "mark": { + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "black" + }, + "text": { + "field": "column_name", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -25, + "fontWeight": "bold", + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_l", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -13, + "fontSize": 8, + "type": "text" + } + }, + { + "encoding": { + "color": { + "value": "grey" + }, + "text": { + "field": "value_r", + "type": "nominal" + }, + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "y": { + "field": "sum_top", + "type": "quantitative" + } + }, + "mark": { + "baseline": "bottom", + "dy": -5, + "fontSize": 8, + "type": "text" + } + } + ] + }, + { + "encoding": { + "x": { + "axis": { + "labelAngle": 0, + "title": "Column" + }, + "field": "column_name", + "sort": { + "field": "bar_sort_order", + "order": "ascending" + }, + "type": "nominal" + }, + "x2": { + "field": "lead" + }, + "y": { + "axis": { + "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')", + "orient": "right", + "title": "Probability" + }, + "field": "sum", + "scale": { + "zero": false + }, + "type": "quantitative" + } + }, + "mark": { + "color": "black", + "strokeWidth": 2, + "type": "rule", + "x2Offset": 30, + "xOffset": -30 + } + } + ], + "params": [ + { + "bind": { + "input": "range", + "max": 49, + "min": 0, + "step": 1 + }, + "description": "Filter by the interation number", + "name": "record_number", + "value": 0 + } + ], + "resolve": { + "axis": { + "y": "independent" + } + }, + "title": { + "subtitle": "How each comparison contributes to the final match score", + "text": "Match weights waterfall chart" + }, + "transform": [ + { + "filter": "(datum.record_number == record_number)" + }, + { + "filter": "(datum.bayes_factor !== 1.0)" + }, + { + "frame": [ + null, + 0 + ], + "window": [ + { + "as": "sum", + "field": "log2_bayes_factor", + "op": "sum" + }, + { + "as": "lead", + "field": "column_name", + "op": "lead" + } + ] + }, + { + "as": "sum", + "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" + }, + { + "as": "lead", + "calculate": "datum.lead === null ? datum.column_name : datum.lead" + }, + { + "as": "previous_sum", + "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" + }, + { + "as": "top_label", + "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "bottom_label", + "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" + }, + { + "as": "sum_top", + "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "sum_bottom", + "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" + }, + { + "as": "center", + "calculate": "(datum.sum + datum.previous_sum) / 2" + }, + { + "as": "text_log2_bayes_factor", + "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" + }, + { + "as": "dy", + "calculate": "datum.sum < datum.previous_sum ? 4 : -4" + }, + { + "as": "baseline", + "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" + }, + { + "as": "prob", + "calculate": "1. / (1 + pow(2, -1.*datum.sum))" + }, + { + "as": "zero", + "calculate": "0*datum.sum" + } + ], + "width": { + "step": 75 + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAIuCAYAAAAhXgWXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeUVEXahj+iCiomRMCAeQ2IYVFXWCMLImbFiIphzbKCimJCEHNAF8WEoCKYVkV+dM0LghhRFkRBZcEAZgWUIBL+89R4x56he27VnZ6Z7stb58xhmK6qW/XWd6ue/irVWr58+XJTkAJSQApIASkgBaSAFEi9ArUEfqlvY1VQCkgBKSAFpIAUkAJOAYGfDEEKSAEpIAWkgBSQAiuJAgK/laShVU0pIAWkgBSQAlJACgj8ZANSQApIASkgBaSAFFhJFBD4rSQNrWrWnAKZ+6dq1apVWpBcf6+5klbuyfPmzTPq1KhRo8pllLLUS5YssZ9++snWWWcdq1OnTs7aRfYQ2Uj5/6dMFlVHCkiBGlJA4FdDwuuxK4cCTzzxhB111FGush06dLDnn3/e/T5+/Hhr06aN+33nnXe2CRMmxAoyZMgQAwq6du0aG5dn8ux3333Xdtlll9j4+YgQAcuvv/5q9evXrzDL//73v7bjjjvaYYcdZk899dQKcb/77jt75plnbOONN7b27dvno3jBedBWX375pSvjuuuuG5yeBPfff7+ddtppLu0nn3xiW2yxRc58jj76aHv88cdt7Nix1rZtW1tzzTXt559/tt9++83q1q3r/fx8t30htIV35RVRCkiBWAUEfrESKYIUSK5AJviRSwRFN9xwg11yySUu4x122MEAobhQ3hNUUfxDDz3UgdNbb71lu+66a1zWefm8W7dutmjRIhs4cGAsqLz//vsOeDt16mSjRo1a4fkAa+vWrXOCYV4KHJPJwQcfbP/3f/9n7733nu20006JHrnddtvZhx9+aFdddZX94x//sLXWWisW/F577TX761//mhj88t32hdAWicRXIikgBbIqIPCTYUiBKlQgAr811ljDeW/eeOMN23333e2AAw6wcePGub9F4AcUXn/99c4D9uOPP9puu+1meIE6d+5sxx9/vA0fPtyV9KCDDrJhw4bZ4sWL7fLLL7cXX3zRAQUexTPPPNN5yaLBv3fv3vb000+7/ACZG2+80Ro2bFimxocffrh9//33hkexWbNmLh/CiBEjrHbt2i7d6quvbs8995y9+uqrdvXVVzuY2XLLLe2cc86xY4891sXff//9bcGCBS4OHio8V5dddplNmzbNeT35G55Nys7zAD8AZ6uttnKAtckmm9h1113nvGLU9/XXXzd0O/nkk+3222+3yZMn23333efq07RpU9tnn32sT58+tuqqqyauD+W54oorXLl4Pp42gPyBBx6wfv36ufbBM3vLLbc4EL3nnnts0KBBzhOIJ5U41OODDz6ws88+23knv/32W3vzzTedPpltRh1oh2zPW3/99V1b4/HzAb8ffvghcdt//fXX1qtXL/cc2mSPPfawc88919WHtqGOXbp0sZdfftkaNGhgn3766QptUYWvjLKWAlKgihUQ+FWxwMp+5VYgAr8jjjjCnnzySbvpppuc54epUICOzyPwi6YFN9tsMwcbQ4cOdeIx8AINAwYMcP8/5ZRT3P8BLeBo2223NdbXASPRtHEEfsTfe++9bfTo0S7ttdde6wb9zABYAToPPfSQgzDAlPDCCy848Pvb3/7mwO3SSy9107MEPHWAA2D06KOPOmjJnOplehJYJFC/SZMmlT5y6tSpDhApK2HDDTd03i1gkvDxxx9b9+7d7dlnnzWA6KyzznKQg/eMzy644AIHVtT9tttuc3omqQ9QBugCakznot8777zjptLxkuKl4zNAG8AE2gFdYBRA/Pe//+0eyxQu8aKp+6hOtG///v1dnFNPPdXVAZjP9jyg2xf8WPsHMCdt+xNOOMEefvhhV17WHQLd6PzNN99YpieacgP12FZmW6CLghSQAsWrgMCveNtOJS8CBSLwO++88xxI4QXCCwdYAHL8PQI/BuCPPvrI9tprL2NDwDHHHONgBM/LfvvtVwpWDPyAVKtWrRw0AR5sGsBLxlQrXhsGd6Z68fBddNFFzlN2+umnO2gEMDPDv/71LweheAtbtmzp4IaAZ4+AhwpQALbuuOMOu/jii+2MM85w9QHKAAi8l5ngx2d4CikHQEk9NtpoI5dfefBbuHChA2G8loDk9OnTnWcsc6p31qxZrq4E4BnNWHvWuHHjFdYA+tYHcEaL9dZbz9WBOuLBi+pTfqp36623duCJRxYA7tu3rwNmQAg4jsAPrx0giTctc53e3LlzK3yeL/hVtu3vvPNO++WXX4wvIywxOPLII52uwPg///lP5/HkywQ2gzdQU71F0NGoiFIgQAGBX4BYiioFQhXIBD+8YHfffbebzmVwxbsE3ETgxyCMZw24yAwvvfSStWvXrgz4jRw50g455BD3w5Rs+RB5/PAKMXjjsTnwwAPdFF7kSYzSRDtO8fYRF/CqV6+erbLKKrZs2TIHeEAWafm9fIi8RZngR/3wdgEP0eaGaL1bJvgBTExVE5hqZD0dnwOA5df49ejRo9SDRnxAED3xPmYG3/rg7QKKb7311jLps4EfkJ1rRy5wCzSTDk8cntAoZIIf3tOKnucLfpVtewAXrymex8wwf/5892WEtsPDeeWVV7qPBX6hb73iS4HCVkDgV9jto9IVuQKZ4Mc0H/DEVCHeL2Bs0003LQU/4AJvDoMvMAHQAG7ZwO9///ufbb755qVTuwAankTW/TFo4y3M3NxREfghMevlmA6mbEydAjnkQ4hgJpoSxgPI1CUgy/Qga+yAtkzwY1r7uOOOc+ve8DDNmTPH1l57bZdfJvhlbu6oCPxYlzZlyhR3XMznn3/uNoSw1g/onD179gpQ5lMfPKx49QDvRx55xOUTee7wYJb3+DVp0sTBEs/efvvtHZzixYv+DviVB/FM8GNquKLn+YJfZdoeGMdLSvjPf/7jPHuUn5AJfplT6AK/Iu+EVHwpUE4BgZ9MQgpUoQKZ4AdQRcd5MMWLBysT/CLwYVcsU3E9e/Z0JcPLxqaBCKyYbsWLxnQxoEheTNMxbbnvvvvaK6+8Urq5I9rVGwd+eL3wAhEAG7xTbEAhsLGBskZTqMAW6/0AGcrGZ8TJBD8gAo8agTVylCPyMPmAX7QGkPWOTO1SV2CZZwO4TKMy3czneEjLe+N86kP5qSNrGvFy4YllOpv/s56PTS/A5fnnn+/WHFIOtAfwmBqnnXg2gB1NF1cEfgB8Rc/zBT80jb4khLY9QEdZAXw8f9SP6WoCNkf90CIT/KId2FFboIuCFJACxauAwK94204lLwIFIvDjqBM2ZETeIdaBMZUJ+EUbMpiyPfHEE50niWlM1tsBJ6whA3YY5BmYCeyKZWqYKV3iE5iqZectnsBoqvftt992z4nAL1pzV146vGl4sQh48YA4IIvApottttnG/c7mEHbqRoG1bIMHD3br8yLvVnRkDXUHIvBQAUrAFGv9WJNImcsf55Lp8UMXyg3YRlPh5Z8NvAAurH9MUh/WUeLhiza+sKkDCCLfmTNnOqjFa0kA7oBqYDPaqcvfaRumRAHbv/zlLxV6/Ihf0fNYL+l7jh87p5O2Pe2HlgQ2/uDpBGD5woB3jzWcmeCHF7l8WxTBq6ciSgEpkEMBgZ9MQwoUkAIMskxlAm+Zt3xERWSHJcDCtCmfM90KWLEej+NIsqXJd/Xw5s2YMcMdqZLrYGOOcGENY3TsClO1zZs3d0XxPZCYaV3W60WbJEjL1Cr6sBmkRYsWrt6VDcAo0MpP+cDGE+rLbSSseyRwlMpXX33lvI0cdxIaKnpeSF6VaXt0pW7savYJ2drCJ53iSAEpUHgKCPwKr01UIilQ9Aowrcu0drRJAwgk4PnDq6UgBaSAFJACNaOAwK9mdNdTpUDqFWC9HFOkbFBhXRmbW1gvlw8vXerFUwWlgBSQAlWkgMCvioRVtlJACkgBKSAFpIAUKDQFBH6F1iIqjxSQAlJACkgBKSAFqkgBgV8VCatsi18BFrQvXbrUbS5QKEwFaB9CrsOVC7PUK5aKjRrR5pHKlJlNG9F5iZXJp6bT5kuPmq6Hni8FClEBgV8htkrKysQhvgxIHJKbGdiByhEmnH1WiIGr0ji0+IsvvijE4nmXiTPxGjZs6I5Ric4R9E5cQxE/++wz4ygaNoOUD5n14fzADTbYwB13ExI4BoZjYtg9XdnAWkYANPOu3rg8M+sX1Yfd2RxjkyTwfnFeIsffsJHmT3/6k/fu6fLPY9c4EMp5i1xTl8/AUT9cKcgB47l2ROdDj3yWWXlJgbQpIPBLW4sWYH04n4y7Vx977LEVwI8BmPPICjGkBfy41YObKP785z8nOn6kJtqGWzXYCML1ceVDZn04dDoJ+HEA8uWXX54VLEPre+GFF7qjUbihxDdk1i8foMM1cdzxTF54qjmPjxtXkhzvE4Ef90YDkPkM9AMcAcTdy7mOksmHHvkss/KSAmlTQOCXthYtwPr4gB/3j/bq1ct51zgol4OKmWLliisOAuaMOgZ5jge59957Dc8Bh89ymG55LwmH8HI1FTcRcEUaV4yRF+evceMEXsYtt9zSOLA3ukeWWyk42JarxbhB4cYbb3SwdPzxx7vrybjflgON77nnHgdQ5UO29Fxllq1eHM5MPhyayx24XJ3FHb0cABwdjszNE1xnhkeLOk+cONEdgNyxY0f75z//6c6cy1UfvE/khe4333yzOz6F39EKzx+HDj/66KNupy23VeApIs11113nysVZgtT7mmuusdVWW81ptNNOO7mbOzjMmbJywG/56VW8Tnh3OSyaA385CJgbR9CUA6zRnevCONT573//uy1atMj23HNPdygy9eX/2AAHMnM3MR6wI444wn1hyFUfyogOnBOIRtQF22G6k/alLdGMwOHY/IwZM8b69evnDskeMmSIKwOHMGNnHETNfbp4pAh8MUHvCRMmuC8o5J153h+fn3TSSS4ubQcE5tIxshnOQMys30MPPVTaLrQVOmCzlJ+Qy56j/KKr5mgb6kob0n4c8sxtLkAWz+ROZA7JfvDBB1075LKfXOAXtRd5c2g3B12jGxryLN5b/o7NcOcyh0SPHTu21BYA0egqPbytfLGi3bBNPJXY+9VXX+2AMLLTbHpkvnu52mfy5Mkr5Iu3G5jFRmlPoJZ+Ak8tt5NgS+w850YTDkfH40x7ciZlhw4dXNxc51YWYLerIkmBnAoI/GQcVa4AHTseCQbdzAAA0HFz48R2223nPDwMuHT+wAKDxsYbb+yuymIA5xBdIAjow6Ox//77uynkTACJruFisOa2CaZqgQwGKOCDAQnY4WYGbrFgUMQLwS0ZpAEIuVqNgRdPEjctcDvFKaec4jp+vE2AWmb44IMPsqbnZopc9QK++vbt68oFgJx++ukOLLndg6u9uE0Cbxfa3X333Q44mHYDkqgHZcxVH/Jhqo6BmYGLvDlIObpejAGXQe755593Xi8GdOADsAZa0ILBHfCgLdq2beuOZAF+uTGE68vQAPDODLQRgAGs0g4AG8+k3Wkv2pHDkLkNg1sxyJcBnvbnfmIGeUAFIAFegEvyARJy1QdgRB+05AsAdeBKsbvuustBDmUF/gn8H5sjP65OA9iAAOAY6Lvhhhucx4y/Uz9uMgGQKBcgSd58xhV1UeAgZ+wWmyQf0uXSMUrDM2jnqH4ASKQD+pMH7U27AFSUNZs9R/kRD72wWeCOskZTvbQf2nDvMvfynnPOOe6novchsp/yHr/IE0c+2C9X1mGnvF9AG2DMFwrsAFvFPviMv9GOvCfYNhD11FNPOcDnfTvwwAOdrWEfPJu65tIj8yggbDFb+9CmfFEsny8eWeAP++YLIDZIO3z66acO7vgCgC0C/nyB4P3ntpwjjzzSfRHk8HT6MQUpUOwKCPyKvQWLoPzAC+t6GOgzA4MB4Mc3awY7PFoE1hYBbayDYiBk0KcDjtIzTcaAw0ACsGQGPIQMHoMGDXJ/xgPBgE7HziAKSHLnK94RwIxrqhiMAJuoUweMuB2CuIAfnkMGIsrLoMYAkBnwUmVLz4CSq14ADs/Gq0jgKjcGLNaq4Y3Aq4jnDbgDpoA0AoMogzz55qoPAxia4YlhQI0GbCAM2GBNGl4foJRyowODNAMyoEBAP2ABDyy647kDFgjcmwtMRt5S/oYmgDllwquD1wio5Pm0ZXTfMHGBytVXX92BNLpGaYB6vGkAB+sRo6neyAOVrT6AX+QNJW9gBLijPLnAj3WD0VQvHkW+OAC1ESACqnj+gGYAAiilHnxBYEq3/Lq3zKletMmlY6bNZJvqxQ7xBHI7Cc9HB+5rzmXPmflhD3xp4ro9bD0T/Pgssm2Ah/eK9zHOfnKBH+8H0IZmaIXWfMng3aP+tDt2CrAy1cxZjnzJQjtsMZrqxatGHL4MsN4PO8ebD8BiF9n0yJx65h3N1j54irPly1Q4HtGovOiHvfE+8eWL9yZaB8t7whcYnkEdIk0BfYBQQQoUswICv2JuvSIpe9xUL5s+uM6LQZzAAMFAgJeIQQoA4Vs43ozatWu7acfoHtVosI6kYFAGcDIDgxKdPbCIp4xpJTp6rs4Cvuj4GVwZ4DMDAxyQwmBKANKYrmINVWYABrOl5++56sUUMHVjGo9AufFE4l1kmgqvFDrgsUILBiEC0Ma0JzCERzRbfSLwi+7YzQQ/puEABICPK8fI/9xzz3UDIAN5tNEGXYAQ6gr4AXnR1COeVjwieI6iEN31W37tVvR3vDPRNBlwy9QacFB+0wmDLCDHgFse/LLVB5thyjoCVupFedEHCMn0+AG6eKoywY9pvugqucw2ZTobjyW6A3YEvFrAKl6qzJAJfhXpGAd+EXREO8nRgXLksmdf8ENLoJnAlyDuFcbjlut9iOwnF/hF5cRLip60MYGyojHtC4Dz3nKDC3YGjJUHP+CX9gOqMkP5zUiZegDsmSFb+wC02fLlPcebGJWXfLAVPHp8SaB9oy91mfdiZz6PdzO607pMQfQfKVBECgj8iqixirWoceCH545BjjVkhAh8mMLC28bAzmCN9421engJGTQAt/KDNlDEN/vIO8VUMOuIdtxxR3e3K9NRTH3hUcFDxbozgI4pYH4nsCuSvAHGzF29ucCP/LKlZ4DJVS/WPwFJkWcS8GNQpnzlwY+jLaJ4/MtaMtZ15apP+YE7E/yYkmRKlOlUPDF4FAEqvI0MgBHMMVXK53gaGRzPPPPMUo9YNvCjndALbyUeRKbEGfwZTBn48e4AsxEgMNAyuAJ+mbtZKwK/CEQy6xN9WaC8BEAaLy8erugZACsAy5cGpm0zwQ/PEN5HQBwvFgEvJ15ApkyxHzzE48ePd0DD73jLcoEf3s5cOsaBX6RDJuigezZ7pm6+4JdpZxH4AW2+9hM9p/ymi1zgx5cxplTxKkfgCrCVBz+Aj3WB0d3N2PSTTz7p1tRm2kUu8MOGs7UPX1Ky5UsZmP6NlodgE/QB2DjPyAQ/vI58uQSOCZSRfoq1q9wTrSAFilkBgV8xt16RlD0O/JhSZarxueeec5DB1CnQxGBMwHMDjAFErPFhHQ7rjDK/uUdS0GEzuJMXIMKUJF4uPB545ZhiZXqPKWKgjukkIJCBgqlcppKY1gRK8Ar6gB+eyWzpAZ1c9QIifMEP0KDuTN8ykAJSTInlqg/PJG42UMJzSrnQialVvHBAK6DEc/DCUW+8fayVw+vmA37oz1Qfa66AMeCcZzB9BwgB79FGFdqO6UemgHOBH+DNuko0IuSqD8+i3NSBOHhoGdyZ7kUrPH+AIEABEETgBzhhG6yZ5MsCNohHCPhgqpayM92OlsA7mkfT8KNGjSrz5vEs6omHkDVjuXTMTMQGmKh+TOnnAh2+DGWz5/JHI1U01ZsN/Njo42s/oeDHdCqbJHgu9sW7dN9997kpXeoKUANReE6xC2CUtZOsjQQO+cLgA360ebb2wZuZLV/KQHlYSwhc8u7jlWcKn2UmmeDH7AJ2wEYgYI80rBGkTjrXs0gGHhUzpwICPxlHlSuAN4lv59mOc8HLBjCw4B/oANYANTx6AB+B6SQGeDZ84BFijQ1eHAaM8oE4gB3TPQQ6bQZPBnbWC7LGiWfssccezgOEF480DATRtCvTmAy2fOYDfni3sqUHUnPVKxv4sYCcqdZMjyfgRV2i6T68aWjDzsdc9WEgyzyHLXPqLNo1jQYE4AgvIl5RBjqmwSPdABzgwBf8mELEKwtQAo+sk6ItmH4FBvg7Aa2ALLyP2cAP7yADN1P6QDmAn6s+wCReRr4YEIBaPDhsZokGb/6+++67uwGe3bx4/LAD9KOd8bYy6AObBKbbsdUItPFsoQNl4QsEtlMe4oBNpszxxubSMTMNgBnVj2nvbKCDDthtLnvOzA/PFOvoaN/ya/zKgx9a8U742k8I+DENCjTzDgG3BGwY0OTLRLTWF5ugXMQBwCOb4x3EE5lLj8hrHJUJ+83WPkBe+Xz5wgG80U7YP/bIF0EAnHcd72/m+l1ANPIo0/7ANl/wFKRAsSsg8Cv2FkxR+RkM6Yw5VLcy36qZwmH9HGCBdzDzLDMGf6Zt2ExBPNYg8TsBOGWKjwE+SciVvjL1wltKeZi65ugXQCAzVFSfXHVgcGNXMzozwEaB6S48V0xlMaWZ9Aw46ls+PdP27FIG2n2PxMBbhwcogtSK2oT8gVcW+2eWGxsA7KM2Lq8dU320Oc9iMw7TvkBrZsCW8FSVX9uXGQdNAX1+fHX0rV9F9pzETitrP77PBELXWWcdZ2O0Dz/Ru5V5wwhfTNjQAqwnCbnaJ1e+2AOQjxc31yHSUTl451jjy9Q1xzMpSIE0KCDwS0Mrqg6pVSACP7wzClJACkgBKSAFKquAwK+yCiq9FKhCBVh3iKeBTQMKUkAKSAEpIAUqq4DAr7IKKr0UkAJSQApIASkgBYpEAYFfkTSUiikFpIAUkAJSQApIgcoqIPCrrIJKLwWkgBSQAlJACkiBIlFA4FckDaViSgEpIAVyKcAO4eh4HKkkBaSAFKhIAYGf7EMKSIGiUYCjODgAmLPhuD4tV+CwZs5oK3+9XtFUtIKCcs4jh5tzTy7H5tx9993G7m8OM+YgZ5/ApiHOreOwY84tzBXIv2XLlu5AdAUpIAXSoYDALx3tqFpIgZVCgQj8uA2Ce1dzBQ7e5jDgNIIfBwlzMDiHIHOYNFf0cbsIEMchyT6Bg5M5dJqDnDkgOlfg/EMOmuZQbAUpIAXSoYDALx3tqFpIgdQqMHXqVOfR4k5h7jLmuroI/ICf7t27u5s7OKybWyO4KzYCvx49erjbObgejlsbKjqEuRgE5D5fbkHhJhducfnrX//qrokjcEMOdcwVuPGF6+U4SJnr6NAF8MPzx00m3K7BgdncxTxgwAB36DU/3KKCbtyQAlgC3D6HaheDniqjFFgZFRD4rYytrjpLgSJSANh75pln3FVv3KkKAAJ+TPVydR2Ba7iAGK6c41aGyy+/3Hn8uGoLj9ULL7zgrmoDdoo5cOMF9y0zjX3xxRc7j9/f//53d9sKU75cPZctcFtNdGMKOpKeW3LQjDzJAy8ioIeuEUTyf263adOmjbs5BuDkLl1AXEEKSIHiVEDgV5ztplJLgZVCgfnz57tr1LibmXtyX375ZXcfMODHFCXr2gCeM844w019cq8wHqn33nvPgR/XbQF/TGsyvUl+cdd0Fbqw5ad6t9tuO3ct2ttvv52z6GPGjHFaPfjgg25tIHdF9+3b14HfHXfc4bx5TKNzf3X79u3tzTfftO+//96tIeSaPe4T5to6tOTeY+5BVpACUqA4FRD4FWe7qdRSYKVQ4PPPP3f370abObjvl3tTAT8A8OCDD7ahQ4e66V3ghOnPq6++2t0LDPjhzeJ+2KOPPtp5+1ZW8ItgMdrM8dBDD9lJJ53kwA8A5M5n7tYlHH744fb000/bL7/84u6z5e5iwHDZsmVOy1122cV7E8lKYaSqpBQoMgUEfkXWYCquFFjZFNh1113ts88+s1tuucVYpwbAAX433HCDm5pk/dmVV17pPIJMCU+ZMsVuuukmB36nnHKK8wLy70EHHeR2wxZ7iCAOTx3TtoBYnMcPAF5nnXWct+4f//iHcfcz0+KA34wZM9z08bXXXuu8e2h1zDHHGM+JpnrRft68edanTx+79dZb3bpKBSkgBYpTAYFfcbabSi0FVhoFoqNHqPC+++5rr776qnXr1s1tagDu2MgRBQDmxhtvdEA0ePBg5wFk2pfNCOxMZU1csYdp06ZZ69at3Ro9dvOyNm/NNdd06x8rCnj2mOIlsClk7Nix9uSTT7rfOdKFqXICHj4033777R34sX5w7ty57nk77LCDm+bl7wpSQAoUpwICv+JsN5VaCqxUCixYsMBNRwIl5QO7VPEIstEj225TNifg7apbt25qNGOzBlOxAF+dOnVcvTjEefTo0Vnr+Je//MV5BdGQI26ijR6Zkb/66it3CPTGG2/s1vplBqZ50RGPoIIUkALFrYDAr7jbT6WXAlJACpSCHx68bIEjYIBEBSkgBaSAwE82IAWkgBSQAlJACkiBlUSBggE/Fh9nTlusJPqrmlJACkgBKSAFpEANKsBSBg4vZzlErsA610aNGpX52CddDVYr56NrHPw4roGjFho3buzW4LAYm8NXFaSAFJACUkAKSAEpUJUKcBrAbbfdZs2bN3frZIcNG+Z4JAqcj8mOd44yYp0rO9vZXBWXrirLXNm8axz8+vXrZyxURkwWaa+22mo2a9as0hP5K1tBpZcCUkAKSAEpIAWkQHkFAL169eq5w8vx5nFaQNOmTa1Xr16lUTk1gCOluK2GI6S4GYjbbeLSFbLaNQ5+uFdr1aplq666qjuDi7s1P/30U/c3BSkgBdKtAJsRuIGDwHs/btw4982bO2HpAziChW/ZbE7gWziHDHOcCzdKcLRLZsj1WeYzMuOXz5vPJk+e7GYeuNu30IK0KrQWUXmKXQHOsKSv4cBh51wfAAAgAElEQVR3AndUc0QSVxpGgf6GayMPOeQQxyjRcUZx6QpZmxoHP8ThKiAOFOWQ0BEjRpR26AwC0dlSkYh0/lw9pCAFpEDxKsANGpw7B9RxDh3hsccec+fEcQAz37A5WoR7eVu0aOE6Zm6UeOKJJ4wryvj7brvt5gAwCuU/4wiX8s+I4n7yyScr5M35eJz517JlS3eGXaEEaVUoLaFyFKMCHHHEPdOZgUPduX+aQ8y5w5t3n8AtQFxvOGjQoNLoV111let3WJLGNPDpp5/ubg2KS1fIWtU4+DG9e9RRR7lDQqFt3KwVBVytXE4ehf/973/uWiEFM2nhbwXSqma14jw5Ot3x48fbpZde6pZ73Hzzze4wZg4P3nbbbZ33jc4Z7xvvPVeMDR8+3M0KkI67ZLmyjQBAPvzww2U+o3PPfEZmjenYM/Pm4Ge+6b/11lsO+jjUOEmoCruSVklaIl1pqsKu0qXQH7Upr1V5ZsisNzOO3N3NJg1mGJjCJWTeTMNh5VxhyOHveP+4Nejdd9+NTVfI+tY4+N177702atQo76uUBH65zUmdg/+rJq0KQys8/aynYa0NN3Gwxpf1NlwZhvcfEFx77bVdhwzI4ekDAD/66CMHaRzaTKfN9DDeuszPunbt6ioZPYNdeXgA2bn3zjvvlMmbdHgIn3vuOXcIdCGBX9RS0srfZtMWU/2Vf4uGgB+5tmrVygYOHOg8/R06dHD7DehrmHlgE8cBBxxgJ554ouuT8Pgx3cu1kdnStW/f3r+gNRizxsGPjp1rlzLDxx9/7O7fzBYEfgK/fLwv6kj9VaxKrSKYYa0N0HXOOec4KGO9H0DHLn88fuyqY+E1nrrzzz/fXnnlFQeLAB/xuG2CfiTzMzrxTPDj2z1TvKwn5hmZeeN1JBQD+Ekrf9tNS8yqfAfTolFUj1Dw4/7uLl26uOSdOnVyswrMNgB/3E/NVPEJJ5zgPHys/73vvvuc9y9bumLZm1Dj4BdqdAI/gV+ozWSLr47UX8Wq1CoCP0rDt26uH2P5B4uply5d6jphvIB8EWRalxkCOmM+O+OMM9wRC1HI9VnmMzIHh/J5Fwv4SSt/201LzKp8B9OiUVLwIx1XQjIjkGupGdccsps3c02xT7pC1VbgV6gtk6Bc6hz8RZNWhakV98+uvvrqpYVj7R+bvzIPVqWD5rD3bN+uK/qsfI2z5e2vSvaY1WlX0qqyrVU86avTropHFb93sKI1fsVe16TlF/glVa4A06lz8G8UaSWt/BXwjym7klb+CvjHlF0l10rgt6J2Aj9/eyr4mOoc/JtIWhWGVmk7m64q7Upa+dts2mJWpV2lXSuBn8AvbTZepj7qHPybV1rVrFZMybI4misbL7vsMlcYOui99trLHdXCgc2su2EXLsercNQKGzduuukmt+iav7MQe+utty6tSPnPNthggxWeEUWeMGHCCnmz4eOll15yO3oLaVevtPK31bTGVH/l37Khmzv8c05PTHn80tOWOscvoC3VkfqLVRVa6Ww6f/2llb9WaY1ZFe/gyqKVPH7y+KXV1l291Dn4N6+0KgytdDadfztIK3+t0hZT/ZV/i8rjF6+VPH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpTK51N598u0spfq2KPqf7KvwUFfvFaCfziNSqaGOoc/JtKWkkrfwX8Y8qupJW/Av4xZVfJtdLmjhW1E/j521PBx1Tn4N9E0kpa+SvgH1N2Ja38FfCPKbtKrpXAT+Dnbz1FGFOdg3+jSStp5a+Af0zZlbTyV8A/puwquVYCP4Gfv/UUYUx1Dv6NJq2klb8C/jFlV9LKXwH/mLKr5FoJ/AR+/tZThDHVOfg3mrSSVv4K+MeUXUkrfwX8Y8qukmsl8BP4+VtPEcZU5+DfaNKqarS66qqr7Ndff/XPPGUx58yZY2uttVbKapWf6qy66qrWu3fv0sz0DvrrKq2SayXwE/j5W09ATO4UrVu3rtWvXz8gVf6jqnPw11RaVY1WXc/vag/e/qB/5oq50ihw1cknW+/BgwV+CVo83/1VoYxZCaSITaLjXGIlMu3qzaLRvffea2eccUbpJ5tttpkdffTRdskll9iaa65ZJsVPP/1k66yzjnXr1s1uv/32eMWrMEa+O4cqLGqNZy2t/JsgRKszLjnD/vfT//wzL/KYm629mfEThR9++MHWXXddv1r973/cs+gXNw2xNtvMLr7nHoFfgrYMeQej7A899FB75plnVnjad999Z40bN048Zv373/+2Aw44wOV98MEHJ6hN1SYR+MXrK/DLotE999xjZ555ph1yyCG2+eab2/PPP28ffvih9enTx6688soyKRYuXGh9+/a1v/zlLzX+EiTpHOJNJJ0xpJV/u4ZoNXrmaONnZQl7t9jb+IlCiFY2erS5n5Ul7LOP2V57JdNqZdEoRz2D7Or3PICy//u//3NjWb169dxfa9WqZddee63169cv8ZgVgd+IESPcGFloQeAX3yICvwrAb+TIkXbQQQcZhgQAHnbYYXb22WfbpZde6n5/+OGH7ZFHHrHTTjvNjjrqKLvwwgvt9ddft+7du9s777xjW221lV1xxRXWpUsXe/nll8ukI2/yzGdI0jnk8/nFlJe08m+tEK0Efv8zZgi8gsDPXysvQdMbKeQdjFSIwG/+/PnWoEGDUnF+/vln22+//dyY9fe//93+9re/2W677eacG19++aWdfPLJbnYLp8bFF19sTz/9tEvfoUMHu+222+yFF15wHr9s4Pfoo4/awIEDbdq0abb33ntb//79rVmzZvbaa6+5vKhHu3bt3Fi43Xbbuecxpo4ePdpWW201O+WUU5wjZe7cue4ZPHPcuHFujKWM5D1s2DDbeuutXVl23nnnFRpd4Bf/HhQM+C1ZssQWL15cxkCzFb/8Qs0kL0ScLJHH7+abb7a//vWvzsC5J7Nnz5725z//2b0whN13392GDBli22yzjXOb33rrrc7ICeeee67961//skmTJjnjHj9+fJl0Tz31lDVt2jSuKEGfV4UWQQUoosjSyr+xQrQS+An8clqWPH7+L125mCHvYHnww0kRefwYu/bdd9/S5UnMYK233nouSQRgAOBnn33mxqxjjz3Wzj//fKtdu7Yb35544glr2LBhVvD74osvbOONN7bOnTu7zwFIvI3AGn9nHCSv+++/39q2bWvPPfecHX/88TZ8+HAHhVOnTnXTx48//ri1adPGmjdv7srFF6lBgwY5IKRsOFbuu+8+Y8r6q6++cuXJDEnAb9myZQ50y+eVmS/LOFjqFWmZuDELIGGNg9/SpUvtgw8+cMZQp04d9w2holCd4JdZjtatWxuw9sYbbziAu/76652xZq7xO/zww923nLvvvtutEcT7h4H/85//tA022KBMuqpo+ySdQ1WUoxjylFb+rRSilcBP4Cfw83+3fGOGvIPlwY8xCXAjAGOdOnVaAfzw/LG2nRms4447zpiRYuzCgwdc4ZEbO3assWt/1113zQp+s2fPLoU1poDbt2/vwO6TTz4xxs/Bgwe757/77rs2a9Ys22uvvWzttdd24+Jjjz3mwAvPImmBRcCPsuJ4+fbbb93/cbbgoYzKw7Tz/vvvXynww3mD95D8cUDhUWQNZBSAYOqx0UYbuXKcd955ztOIsycKH330kbVq1cpBazGEGgc/LhrnWwfGsMsuuxQU+N1yyy0O5Pi2En0r4hsPhhoZXCb44cLGvT506FA3vfv+++87A7n66qudazozXVUYR5LOoSrKUQx5Siv/VgrRSuAn8BP4+b9bvjFD3sHy4Fd+qjdzzIo8fkztMqvFLBUeO8Bv5syZDm6OOOII22GHHdxRPBWBH88dM2aMc+IwHQwkdezY0TlB2GjC2HnkkUcankHK0KRJE+cQOfXUU51HD+hioyQcAHwBYr169XJrEiMnCp7AffAc/x7YdLn99tsnBj+eiQePY5gaNWrk6stMHM+NQteuXV09eBZeP2bxMssAGDLuA6OAbDGEGge/SKQ777zTPv3004ICv2iNX2ZDRuCHYfONJvMlwguIMW+55ZYOZvkmget6ypQp7gfwi9JVhXEk6RyqohzFkKe08m+lEK0EfgI/gZ//u+UbM+QdzBf44e1jGpax66GHHjJm24A/1tplW+MH+ABEbIJkrMNbx3Qs3j2mSIFHwBG44v/kSz6s4cPDxzQu8MlSqwMPPNCB3+WXX+4cJz/++KPbLc+6eTyHlO2tt95y42v5JVMhU70zZsxwaw6nT5/uZBswYIBNnDjRwWsU2LiJt49NnjiCbrzxRvvTn/5UBj7xOuLNLJZQ0OCHQUD65QNTrFFI8kLENU50nAs7ojBAH/Bj7QLT1A888EAZA7joooucoZQHxrgyJPm8KrRIUo5iSCOt/FspRCuBn8BP4Of/bvnGDHkHfcGPMQuwYjYr8qw9+eSTziuH04P1bnjq2AzCJgucFqwXZFo423Euy5cvt2OOOaZ0unPDDTc01snjKbvmmmvcswhrrLGGmzHDe8dMH4CId5DANC5jJV7KTPDjM8ZjwPG9995zcZmR69GjxwoSZgO/8pGYxub5eO/wcLIZhcBsHV5LPJBRwJnDtPRNN93kwBDvYPQ5z+Iz/i2mtX8FDX7ZXorqWOPn+zLmirdo0SK3OJaNHhh5dYUknUN1la3QniOt/FskRCuBn8BP4JddAcYFAjeYhIaQdzA074ricwsPoAP8+Ibvv//egdsmm2xSJgk7dfEAtmjRwl14EAXW+TNeApo+z/n8888drGbuVM58UIjHL1pXyOYOjrqJ9hiwgSQK7D4GYJnuxTO4xx572DfffOM+BpipC17JYgoCv2JqrZiy1lTnUIwSSiv/VgvRSuAn8CsE8Hv22Wftv//9rzs2JB+BAZ6lPF9//bUXnJR/ZrR7FUCIPF/l4+C9AjxYd8ZGx4pgJh91SmseIeCHBmzKYKq5ZcuWzrPJVDUeQaai2ZTCGkSAlLWGHOGG5xPPIIG1+6xH5LSPYgoFBX7QNFvGKwrF4PGrKQMIGaBrqoyF8lxp5d8SIVoJ/AR+hQB+bChgyU7kyfG39uwx2fzA2MMOVzYkhASuR8ObxdFgd911lzu/Lltgt+gdd9xhv/32WxmPGHFD3sGQsqUxbij4Ma3NZkwC086sa5w8ebKDv3nz5jntOeoGEGT6Gkjcaaed3PQ0QIhXtKavaw1tx4IBP9+CC/xyK6XOwdeK1JH6KxWmlcBP4JcE/FjzxcYBPC4MxGyQ40B8ju9gOg7PHQMyv7OQnrVWDLoclM/aKxbeMwV32WWXuY0Ap59+uhuYGchHjRqV8wDhXAfus14NDw9Hc7F5gCU7r776qgO/VVZZxa3x4odpW9ZxR+CQre6UFy/R+uuv79a6sSmQDQ4cDcZ0KIcTU95M8GNzAV6lk046yR1qzHWgHCfGlCjPwnOYOV0a8j6nPW4o+KEHcM5UdEVn6zKFHZ3uUewaCvyKvQUzyi/w829MaVU1Wgn8BH5JwI8ptBNOOMElBXYefPBBB0qAFrs42VDA+XLAHtOheGDwjkW7KzncF1BjHR1Hkpx11lluYyC7UQGlbAcIs1kg14H7rOHiWJFtt93W7eTEy0OgPBwezKkNbDTgGS+99JL7F/DMFoBHygOEMo0IMPI3ZrdeeeUVY1qadWtsAqROnKXHwclsOgB2yZsycKwIt1vgNYzOkfV/i1eemEnAb+VRp6SmAr8Utbhgxr8xpVXVaCXwE/hVBvyANs6NY8cmHj+8YqyvmzBhgttkwEHEeMzefPNNwwPDuqyPP/7YTaNyDRlwhBctc6qXtNkOEMaLR5psB+7zLOCOI8a4WpNpPwAM8GMXJ5/zDM66wzMX7YrNVnc2NACxeC3x+JEn3jvOhKO+9EUAIFejAX5RiM7fizyBnGbB2j8Al/q8/fbb/i/xShRT4Bff2AK/eI2KJoZgxr+ppFXVaCXwE/hVBvyi+1/xsJ1zzjnujDe8e0zfcvAvgRuSgCQO/weeOPcNgAIAgTk2YLArM1rjx9RxtgOEgTZuich24D7PIj2eP6CNM9o4qgvPHN5D/sb0bBQAMQ7x9QE/ysL5c5SRc2DJNxP8yJtpaiAQDQBdvIqAX3RkCFOO//jHP/xf4pUopsAvvrEFfvEaFU0MwYx/U0mrqtFK4Cfwqwz4cbYaQMPOV7xrAB/XabGODk8XGytY88Z5cUx5AmGAEVOofM7UKAcBkwZwwzPIdG22A4Q5Qy7XgfuspeOsOp6Ft48ycZ4dZeIsO/JlXSLP4jBhpprLXx0W6VDe40dZNt10U+PMPLyGrB18+eWX3dVkwB515rBj1pxxvhwQ3K9fPzcVzC5Sfgce87Vj2b8nKI6YAr/4dhL4xWtUNDEEM/5NJa2qRiuBn8CvMuDHFZfRAb3c5oS3D3ACtqLD/NlZCXRxVRebHgA+PGR4+4jP+jdgjHVyBDZq5DpAONeB+4sXL3YePDZlENhkAuzhTcTL2LNnT7c2j8AtFXgNc+3sjMAvuoUCgIsuIeDAYrx5bFYB8gA/jnPBo8kaP9Y78hneRepEAApZnwj0KqyogMAv3ioEfvEaFU0MwYx/U0mrqtFK4Fdg4Lfbbmbt25s98YTZ1KkrNvqZZ5o1avTH37/+2uzBB8123tlszz25ZsFs9myzBx4wW7rU32iyxeSO1b32Kv0k8x2MNnewpo9rudg5yxEomQFvG0dnADys9YsCYMcULECYef4dOzU5GoU7WAm5DhCu6MD9L7/80t0fm+2wYICO5/E5sMaVZdkCV36VrwtTvOzK9T3gH63wduIN5EYLDhtWyK6AwC/eMgR+8RoVTQzBjH9TSauq0UrgVyDg17y5Wbt2Zi1amAEJTz1lNmnSio1+5ZW4xMx+/bXks6++KoFErsXk7wsXmgFgXGn1yCP+RlMJ8MO7VmwB8GPqNlvgxgemdysT1F/5qyfwi9dK4BevUdHEUOfg31TSqmq0EvgVCPi1amXWsaNZ/fpmeMeAksmTyzY6n3GzxVtvmY0da/bLLyWf7713yc8bb5gx1XnZZSUQeO21/kYTCH6zZ8+2Dz74wHbddVdba621KvecFKZWf+XfqAK/eK0EfvEaFU0MdQ7+TSWtqkYrgV+BgF/UvEcfbbbNNtnBjzVip5zyhyHg3Xv6aTNupth3X7P33jN76SWznj1LvIZ9+pQAYNJQwVRv0ixXlnTqr/xbWuAXr5XAL16joomhzsG/qaRV1Wgl8KtG8GvShJ0FKzbkjz+aDRtW8veKwG+LLcwOO8yMC+fnzClZ1/fDD2Z33VXiCcRTCOhF68n69TNbssTfcMrHFPgl1k79lb90Ar94rQR+8RoVTQx1Dv5NJa2qRiuBXzWCHx67E09csSHnzjUbMCAe/NZe24yfL780W7y4ZEq3bt0Sz96qq5q1bVsyVcy0cZ06ZoBfZYLAL7F66q/8pRP4xWsl8IvXqGhiqHPwbyppVTVaCfyqEfx8mrC8x2+ddcy6djWbOdOMA5E7dSoBP/4P6OH9GzXK7OSTzdjhy05gpn35/e67fZ6YO04NgR8HPHPlW+ZO4GyFnDx5sttpu80229iyZcvcIcvz5s1zN3W0YJPM74HjXDh3j7icIZi5M9f3WaFCqr/yV0zgF6+VwC9eo6KJoc7Bv6mkVdVoJfArMPBjKnjbbf9Y49esmRk3Tnz3ndmdd5qdfbbZ+uuXGAPHtTz8sNmMGWannmq20UYlf8cb+M9//rH5w990ysasIfC7+eabrUePHhWC3zvvvOPO0+PqN344VJnzBHfbbTd77bXX7DK8ob+HIUOGWOPGjd3RKuzW5TDlKPg8K4l86q/8VRP4xWsl8IvXqGhiqHPwbyppVTVaCfwKDPx8mrlBA7PGjUs8f5ln9XEEyeqrl5zjl49QQ+B30003OUDjDEBu4Vh11VWNmzk4ZuWRRx6xfffd12bNmmVvvfWWOxQa8AMCt9tuO2vWrJndcMMN7uq01dHCzB0azcHLHBrN1W4cPzNq1CiXL9fIZT6LA6nzEdRf+aso8IvXSuAXr1HRxFDn4N9U0qpqtBL4FSH4+ZtC5WLWEPjhhTv66KNttdVWs8cee8y4Fo73nzt/77//fgeAAN5zzz3npm0BPwIHND/11FPOu0fcKAwbNsxBH7d77LTTTu7g6LFjx7rr18o/C2DMR1B/5a+iwC9eK4FfvEZFE0Odg39TSauq0UrgJ/DLaVk1CH5M9XLX7kMPPWR77rmnffLJJ3bkkUe6O325cq08+HEHL+v4jjjiCHdTRmbgrlymfufPn29cK3fQQQe5O3vJL5rqjZ513nnn+b9oFcRUf+Uvo8AvXiuBX7xGRRNDnYN/U0mrqtFK4CfwK3TwO+GEE4x1elx7xtTsKaecsgL4DRw40IEd07eEE088sfTqtxEjRhhXuZGee3PXXXddgZ9/d1LlMQV+8RIL/OI1KpoYghn/ppJWVaOVwE/gV2jgl6s8TNXW57iaBIH7fbmnt169eglShydRf+WvmcAvXiuBX7xGRRNDnYN/U0mrqtFK4CfwKxbw838Daj6m+iv/NhD4xWtVMOCHW53Ft3FnLbHD6mIuEP896IX4o5GlRbzBy278NUqilcBP4FfI4Pf888/bFlts4X4qCmzW+Oijj9wZfltvvXVp1E8//dTGjRvn1v21a9fOTfdGYcKECfb6669bt27dwl+ymBTq2/0lTQJ+nNu4cOFCa9iwof+DzNx5j0nSBT2kCiLXOPh9//33dtxxx7nDMNlif9FFF1lXDhjNEQR+ua1AnYP/GyKtqkYrgZ/Ar5DB71//+pdtu+227idXmDFjhj3++ONudy8AmOloYPwBBsePH+92A3PYcxTYOMK5f5mg6P+WVRxT/ZW/kqHgx3pPNvkA80uWLDF2bbOTOwqc48gB4K24wcbM7fA+5phj3DrRitL5l7j6Y9Y4+F1//fVut9U111xjX3/9tTVt2tQtqm3A2VJZgsBP4JeP10Qdqb+KIVoJ/AR+hQ5+n3/+uVubt8kmm9j+++/vjnQ566yz3Dl+DPx8vt5661mTJk3cLBTeQTx7v/32m9u1e/LJJ9u///1vB48//fSTffzxx25zCN5A4IHNI/kOIe9gvp9dbPmFgB/tjS3MmTPHbd7BWwuD9OrVq7TagwYNcm0P/OGgIvikK2Tdahz8TjvtNOcyh6CXL1/upnqnT59um222WVbddt11V9txxx1LP+NKHQ7MVDB3vZC08LMEaeWnE7FCtJq9ymz7qv5X/pkXecxmi5tZ01+bJuqPtp4927b6auXRalqzZvZx02Ra5ctM1llnHVu6dKnNnTvXDfA4GwA8/uUMPwAP2COwgQMHxFe/txGfEZdxio0dXN3G5+THOwIs8i+bRvIdQt7BfD+72PIrr9Xmm29exmubWR+8u/AHzEEYMGCATZw40X0ZiELPnj3t7rvvdg6qzp07uwO9CXHpClm3Ggc/zlDihzOQCLxYfPPibkTWUrBmIjNcccUVpdTN33kJo3UWey5bZhsvX17Ieue1bJ/XqmWv1a5dmmemFnl9UAozk1b+jRqi1bKNl9nSjZb6Z17kMet8Ucdqf57sHaS/+mvmTRlFrkVc8V+rU8fG1nB/dcghh9i0adNs6tSp9o9//MPuuusud/AyA/4BBxxQevMGQDBlyhTnCXz44YfdoI+HkBs78ABxI8emm27qbgOJ4h577LFuapijXvIdQt7By377zf66bFm+i1Cw+WFX1/7uiSvPBPy/d+/eK5SdG1w4yHvSpEkO5rAJwtChQ23MmDGujaPAWY14dGl7IBDox/sXl65gBTOzGge/vn37Oi/V+eef7745rb322s7tmmuTR4VTvaNHm/GzsoS99zbj5/eg6QD/hpdWVaOVpno11ZvTsmroAOfM8mSu8YvGknvvvdd59zjTj+vXWLf3xBNP2CqrrGJ4CBngo8D5fgz8xOeOXu7zxaPEeX4PPvigu/5to+iOY/9XLDZmUH911VVmffrE5pmaCNQ3A+5CpnrZmIHXlk0aOJD69+/vZOnevXupPMSJvMDvvvuuuwXmgw8+iE1XyPrWOPiNHDnS7rjjDnvxxRfdy3brrbfaG2+8kVMzgV+GNAK/xO9WUEea+CnpSBiilcBP4FfI4JerbNnO9Msc8DPTAYjRvb3V9YaHvIMm8CuzVKw8M5RvMzZtAPQtW7a0Dh06WJ8+fdydznh8W7du7X7nBhaA78Ybb7SZM2e6+NnStW/fvrpMolLPqXHw4+XCxc6VN/zO5djsjMoVBH4Cv0pZvLyjwfKFDDoCP4FfMYJf8EtRzQlC3kGBX9l3MA78cD516dLFtWinTp1s+PDhNnnyZAd8rBfk6j429OAZ3HLLLR38sbEnW7rM432q2USCHlfj4BeV9osvvrANNtgg9iR0gZ/AL8jCc0QO6kjz8cAiziNEK4GfwE/gl/+XPeQdFPiFgR+ttWDBgtINP9laj2VoP/74Y5ljXnzS5d8S8pNjwYCfb3UEfgI/X1upKF5QR5qPBxZxHiFaCfwEfgK//L/sIe+gwC8c/PLfYoWdo8CvsNun4tJpjV/i1gvqSBM/JR0JQ7QS+An8BH75f+9D3kGBn8AvzgIFfnEKFfLnAr/ErRPUkSZ+SjoShmgl8BP4Cfzy/96HvIMCP4FfnAUK/OIUKuTPBX6JWyeoI038lHQkDNFK4OcPfld17Wp3PP54OozEpxb16pnx83tg3RRHoyisqAC7SDPPnwt5BwV+Ar+4d0rgF6dQIX8u8EvcOkEdaeKnpCNhiFYCvwDwu+wy63PttekwEtUirwrwpaD3kCGleYa8gwI/gV+cMQr84hQq5M8FfolbJ6gjTfyUdCQM0Urg5w9+XPm1Mj0+SkYAACAASURBVIfPPvvM3YbhFbjBqdwtTl7pijVSmza27sEHC/x82q8SBzj7ZJ/GOAK/Ym5VgV/i1guBmcQPSUnCEK0Efv7glxLzSFyNELtyNzLpViY/rXWAc9ABzn6ipiuWwK+Y21Pgl7j1ggadxE9JR8IQrQR+Aj9fqw+xK4FfgF0J/AR+MS+hwM+3lyrEeAK/xK0SNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfwEfon7pcJPKPBL3EZBg07ip6QjYYhWAr+AATod5pG4FiF2JfALsCuBn8BP4Je4Xyr8hAK/xG0UNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfyKBfyWLFliixcvtgYNGlRY5BtuuMEuvvji0jhlOg9d5F3G4BP3yCtBwqBBZyXQo6Iqhmgl8AsYoGVX/v2V+nZ/rQR+weC3bNkyW7hwoTVs2DDrW8nnP//8szVq1KjM5zAL7BLHLYX2qtf4Xb1Lly61Dz74wO6//36rU6eO9e/fX+DnayXy+PkqtUK8EJhJ/JCUJAzRSuAn8PM1+xC7kscvwK4EfkHgN2TIELvtttusefPmDuKGDRtmjRs3LjXjp556yq644grbeeed7YcffjCcTy1btrRLLrnEXn31Vdt2221tzpw5Ll0ucPR9J6orXo2D3y+//GJXXnmlvfvuu7bLLrsI/EJaXuAXolaZuEGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfN/gBevXq1XPghjevW7du1rRpU+vVq1epXR911FF29dVX29Zbb229e/c2mKVv3762zz772Ntvv+3itW3b1nr27GkHH3xw4vehOhPWOPhFlb3zzjvt008/FfiFtL7AL0QtgV9CtUIGaIFfwACdsD3SkizErgR+AXYl8PMGvxkzZli7du1s+vTp7rUaMGCATZw40c1AZoaffvrJYJQbb7zRnn/+edtjjz3cx8xW4jF8+OGHberUqbb22msXxetZbeA3adIkmzlzZhlRWrRoYTvssIP7WzbwGzdunL3++usrCKk1fr9LIvBL/JIFDTqJn5KOhCFaCfwCBuh0mEfiWoTYlcAvwK4EfiuAX3kjxUPXpk0bg0s6d+5s06ZNc1GGDh1qY8aMsUGDBq0AfkDf448/bqeddlqpR5D0d911l5vmHTFihO27776J34fqTFht4Dd48GB74YUXytStY8eO1rVr15zgl00Ibe7IUEXgl/hdCRp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfy8PX5s6GBjBps3atWqVTrj2L17d2fX7EG477777PTTT7fatWvbiy++aGeddZa99tprbnnaIYcc4uKxBvD77793EFgModrAL04MTfXGKZTlc4FfAtFKkgQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+3uCH8bZq1coGDhzoNmx06NDB+vTp49bsTZkyxVq3bu32Hlx33XXWvn17u/vuu238+PF2++2325/+9Cd7//33bYMNNrATTjjB9tprLweIxRAKCvyYZ7/11lsr1E0eP3n88vFiBQ06+XhgEecRopXAL2CALmKbyEfRQ+xK4BdgVwK/IPAbOXKkdenSxZl0p06dbPjw4TZ58mQHf/PmzbOnn37aLrzwQnfc3Prrr2/33nuvg0E2eNx8881uUwjwyDSx1vjlo2fIkofAT+CXD9MKGnTy8cAiziNEK4FfwABdxDaRj6KH2JXAL8CuBH5B4IctL1iwwObOnet29GYLTAV//fXX1qxZszIfM1W8aNGiogG+qPAF4/Hz7UgEfgI/X1upKF7QoJOPBxZxHiFaCfwCBugitol8FD3ErgR+AXYl8AsGv3zYczHlIfArptYqX1at8UvcekGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwC/mrRT4Je62CiChwC9xIwQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+Aj+BX+J+qfATCvwSt1HQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7Kqqwe+xx8wOPJCFcWb/+pfZuedy7klZO+jWzaxHDzOuPhs/3uzEE8169zY76qgV7WXXXc0+/TSxHRn1Je/fQ3m7Kr88LPmD0pNSHr9ibkuBX+LWCxp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdVSX4nX++Wf/+ZkuWlPysuqrZeeeZ3XHHH3bA7RU//FACg7Nnm228sRmwSPwjjvgjHmkJm21mNmNGYjsS+IVLJ/AL16xwUgj8ErdF0KCT+CnpSBiilcAvYIBOh3kkrkWIXQn8AuyqKsHv1VfN9tnHrGVLs8WLzbjx4qOPzLbd9g876NzZ7PHHS36OPbYE+L76yqx58z/iXHih2U03mQ0fbnb88YltyCWUxy9YP4FfsGQFlEDgl7gxggadxE9JR8IQrQR+AQN0OswjcS1C7ErgF2BXVQl+661ntsYaJR662283Y0r3//7P7OCDy3ry8PSttZbZL7+UxL/sMrNrry2J06RJiSdw3jyzddc1W7YssQ0J/JJJJ/BLplthpBL4JW6HoEEn8VPSkTBEK4FfwACdDvNIXIsQu6py8MNLtdVWZr/9Zvbhh2bPPbcikJx5plmjRn/U9+uvzR58sGSqkilMpi6/+65k3dv33yfWxSWsTN9eWfDbYQezJ55YsfzTp5sdcEDJ36kjdf71V7Oddy7RLAqs2XvjjZL//fRTCdyNHWu2554lfyPvI48sWe+X7TmhysnjF6qYCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqUvDbfXez/fcvAT1+6tYtAb+33y5blSuvNFu+vAR2CExfDhtW4s2qXdtszhwz1rd9/rnZ4MG+MmSPV5m+vbLg16aN2csvr1gu6rXNNiVTu0DyZ5+VwBx/zwxoctxxJVOwffqUeP0aNCjRCDieP99s0SKzhg0rp1GUWuAXrKPAL1iyAkpQmc6hgKpRE0UJGnRqooAF9MwQrQR+Aj9f0w2xqyoFv5NOMtt0U7OBA0s2JLBZAc/dnXf+UZX69c0uvdTsrbdKvFfADIG1bni+3nvP7NlnzVq3Lvn7m2/6ylB44FdRyVmXx/o81veNGFECwh9/bPbQQ+ba6D//KdFowICS9X8PPFAyxQsUr7OO2UEHmY0cafbKK2bt2lVOI4FfYv0EfomlK4CEAr/EjRA06CR+SjoShmgl8BP4+Vp9iF1VKfjhjVpllZJpyY4dzXbbrQRaHnnkj6qwM/WUU/74/8KFZk8/XeIB22mnEmCsU8fs55/NRo0qSV+ZUJm+vbIev4rKzZQudc4MTGvjMX333RJv4Pbbm02cWPJvrVola/nOOqtkI8fNN5tdcEHJxo6ePSuj0B9p5fEL1lHgFyxZASWoTOdQQNWoiaIEDTo1UcACemaIVgI/gZ+v6YbYVaXBjw0F2c6Q+/HHkulaAp+zO5VdqPfcU+L1i8IWW5gddpjZN9+UeK9Y18aRJWxSwOvHmXbAHhAI/N1yi68M2eNVpm+vSvALqRXrITfZxGzSpJBU4XEFfsGaCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqNPjhseMQ4fJh7tySM+g4hJhNCEDdkCFm/D0zsHaPny+/LJnmZF1ftBawUyczjjl57bUSLxYexL59K7dbtTJ9e6GAn68hVDaewC9YQYFfsGQFlKAynUMBVaMmihI06NREAQvomSFaCfwEfr6mG2JXlQa/igrVvr3ZHnuUTNdOnVqybg1v3n//a9a1q9nMmWZffGEG4AF+/L9t2xLvH7t6gT2mM5nq5Iw7fueQ48qEyvTtAj9d2RZjewK/yrycNZ22Mp1DTZe9hp8fNOjUcFlr+vEhWgn8BH6+9hpiV1UKfuecU3K1WGZg6vbhh81OP/2PjR5nn222/volsYBEPuc8u0MPNdtxx5K/A41PPWU2ebKvDNnjVaZvF/gJ/AR+lXv/Cjp1ZTqHgq5Y1RcuaNCp+uIU9BNCtBL4Cfx8jTnErqoU/HwLTDymcYFEPH+Z99Pyd9YR8nfOAqxsqEzfLvAT+An8KvsGFnD6ynQOBVyt6iha0KBTHQUq4GeEaCXwE/j5mnKIXRUM+PlWrrLxKtO3C/wEfgK/yr6BBZy+Mp1DAVerOooWNOhUR4EK+BkhWgn8BH6+phxiVwK/ALsS+An8BH6+3VARxhP4JW60oEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gVyzg99NPP9maa65pdTgEs4Jwww032MUXX1wao0znwcnh/KwsQeCXuKWDBp3ET0lHwhCtBH4BA3Q6zCNxLULsSuAXYFcCv2DwW7ZsmS1cuNAaVnCN3A8//GDrcuRPRvBJl/gFqcKENb6r9/PPP7ejjz7aGjdubHXr1rWdd97ZLr/88pxVFvhlSCPwS/xqBA06iZ+SjoQhWgn8AgbodJhH4lqE2JXAL8CuBH5B4DdkyBC77bbbrHnz5rZkyRIbNmyY45EovPrqq3bWWWc5Npk/f76ddtppdvDBB1tcusQvRjUkrHHw69evn/3222/Wp08fW7Roka222mo2a9Ysa9asWdbqC/wEfvl4L4IGnXw8sIjzCNFK4BcwQBexTeSj6CF2JfALsCuBnzf4AXr16tWzOXPmWKNGjaxbt27WtGlT69WrV6mJ77PPPnbZZZdZu3bt7LXXXrO///3vNmXKlNh0+XhHqiqPGgc/3Ku1atWyVVdd1Z555hnr0aOHffrpp+5v2YLAT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5g9+MGTMc0E2fPt2Z9IABA2zixIl2//33l5r4zz//bA0aNHDL0OATmKVnz56x6fLxjlRVHtUGfpMmTbKZnHieEVq0aGE77LCDLV682K677jq75ZZbbMSIEbbvvvvmrK/AT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5gx9c0rlzZ5vGPctmNnToUBszZowNGjSojIl/8803ds4559gnn3xiI0eOtLlz53qly8d7UhV5VBv4DR482F544YUydejYsaMdc8wxdtRRR1n9+vUdbeNmjcK4cePs9ddfX6He2tzxuyRa45f4nQgadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8VgC/8kbatm1ba9OmjfPe4c1jkwazjP1/v2qve/fupUnYh8B074knnug2ljI76ZMu8YtRDQmrDfxy1eXee++1UaNGOYr2CfL4yePnYydxcYIGnbjMUv55iFYCv4ABOuV2E1e9ELsS+AXYlcDP2+OHjbZq1coGDhxoLVu2tA4dOrj9BoAh6/hat25txx57rPuXad7MkC1de+59LoJQ4+B38skn2wMPPFBGqo8//ti23HLLrPIJ/AR++XivggadfDywiPMI0UrgFzBAF7FN5KPoIXYl8AuwK4FfEPjhdOrSpYsz6U6dOtnw4cNt8uTJDv7mzZtnTZo0sW+//bbU5Ndff31j6jdbulx7E/LxvuQzjxoHv9DKCPwEfqE2ky1+0KCTjwcWcR4hWgn8AgboIraJfBQ9xK4EfgF2JfALAj9secGCBW7dXuZSMx8bT5rOJ++qjCPwq0p1qzpvrfFLrHDQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7ErgFwx+iY24SBMK/Iq04VyxBX6JWy9o0En8lHQkDNFK4BcwQKfDPBLXIsSuBH4BdiXwE/jFvJUCv8TdVgEkFPglboSgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMESrfIPfGvXXsEO3OdQ2XnNjm//bfHvjyzfsrS/fWkHYztt2tq3W3cp+W/abffjdh/bcJ8/ZsuXLXLzdNtzN2m/e3p6Y8oRN/X5qXhtl7xZ7Gz9RCNEqrwUpwsyCtBo92hz8rSyhMn27wE/gJ/BLcU9Rmc4hxbL4VC1o0PHJMMVxQrTKN/gdtd1Rtm3jbW3uorm2xiprWC2rZdeNu84WL11cqvjuG+5u+2+xvwM9furWruvAb9bPs6zdZu2sxVotXLqnPnrKJn0zKa8tJfBLLmeIXcnjJ49fTksDdHv3zvnl64YbbrCLL744uaGmMGWt5cuXLy+mepVvxDKdh74VlvmmU0ztWt1lDRp0qrtwBfa8EK3yDX4X7HGBrV5/des7pq8dsc0Rtv3629vjUx53Xr0onLTjSbbpWpvawHcG2tLlS+28Xc+z7xZ8Z+M+G2cdt+xo9evUt9q1atuTHz1pk7+ZnFd1BX7J5QyxK4GfwE/gl/xdK59S4Jc/Las/J3n8EmseNOgkfko6EoZolW/w22OjPdw07a9Lf3UAt+i3RXbLG7fYkmVLSsVtUK+BrVJnFftp0U/WcYuObmp32g/T7JHJj7g4R29/tG2z3jYCvwIzxxC7EvgJ/AR++XuBBX7507L6cxL4JdY8aNBJ/JR0JAzRKt/g13XHrm6qdsFvC2y1uqs5Qe977z6b/fPsFcSNpoWBwnsm3GPfzf9O4FfAJhhiVwI/gZ/AL38vc8GA308//WRrr712bM001ZshkcAv1l5yRQgadBI/JR0JQ7TKN/j13ru3LVm6xK4Ze43tucmetu+m+7p1eqzXi0KtWrXs3Nbn2roN1rU5i+bYkIlD3JrAKMjjV5h2GGJXV3XtagMef7wwK1IVpapb16xevdKcly1bZrVr1/Z60sJ582zRkj884l6JijjSXi1a2H9mzCitQXm78lnjh74LFy60hg0b5lRi0aJFVqdOHauX0S7Z/lYMUtY4+E2dOtWOP/5423zzzW3BggXWpUsXO+aYY3JqJ/AT+OXjxQoZdPLxvGLOI0SrfIPfJW0vsVXqrmKvznjVWjVpZes1WM+e/fhZW27LHQiO/Wysrb3a2saU8NJlS92uXT77YeEP9p8Z/5HHr4ANL8SurrrsMutz7bUFXBsVraYU2KdtW3t17NjE4DdkyBC77bbbrHnz5rZkyRIbNmyYNW7cuDS/+fPn2+TJk61nz57WvXt3O+ywwyzb32qq/kmeW+Pgd+utt1rTpk3t2GOPtZdfftkuuOAC++9//yvw82lNefx8VMoaJ2TQSfyQlCQM0Srf4LdLs12sw+Yd3Po+gG7WvFk26L1Bbhcvu3k52mWzdTazxg3+6KiRnanhG1+/0bVANAWszR2FZZAhdvXjjz8WVuGruTQzZ860Fi1aeD2V2bOVLeA4ikKIxw/Qw4M3Z84ca9SokXXr1s3xSK9evUrzg0cefPBBe+aZZ+zmm2924Jftb8WkeY2DXyTWwIED7Z577rETTjjBLrzwQoGfjxUJ/HxUEvglVqkkYcgAnW/wi4rebI1m9u38b8ts6qhktfKSXLt6k8sYYlfJn5KOlNLKvx1DwG/GjBnWrl07mz59unvAgAEDbOLEiXb//fev8MAjjzzSzU4CflHI9jf/ktZczGoDv0mTJhnfWjID32B22GEH96f+/fvbk08+aQ0aNLAXX3xR4OdjEwI/H5UEfolVKhzwq2QVqiy5wC+5tIIZf+2kVXKtKlrjB5d07tzZpk2b5h4wdOhQGzNmjA0aNEjg5y957piDBw+2F154oUyEjh072lprrWW77rqrNWvWzLlb2eAxa9Ys9/9x48bZ66+/vkKmmYcx6hw/3RqQxD7VkfqrFqJVVXn8/EtbvTEFfsn1DrGr5E9JR0pp5d+O2Tx+5VO3bdvW2rRp4zZ04GxicwebxHBAEVjLVz7I4+ffBrExL7nkEltllVWsd+/e9uGHH9p+++1ns2fPdrtnsgVt7shQRR6/WPvKFUEdqb90IVoJ/AKO3fBvglTGDLGrVAoQUClp5S9WyFQvubZq1cpYatayZUvr0KGD9enTxwDDKVOmWOvWrUsfLPDzb4PYmMDe6aefbp988onVr1/frr32WrfOL1cQ+An8Yo3KI4I6Ug+Rfo8SopXAT+Dna1khduWbZ1rjSSv/lg0Fv5EjR7rTRAidOnWy4cOHu128wN+8efPKgB/xDj300Ar/5l/SmotZbWv84qr41VdfWZMmTWLPKhL4CfzibMnnc3WkPiqVxAnRSuAn8PO1rBC78s0zrfGklX/LhoIfOXOU3Ny5c92O3pUhFAz4+Yot8BP4+dpKRfHUkfqrGKKVwE/g52tZIXblm2da40kr/5ZNAn7+uacjpsCvmNtRa/wSt546Un/pQrQS+An8fC0rxK5880xrPGnl37ICv3itBH7xGhVuDIFf4rZRR+ovXYhWAj+Bn69lhdiVb55pjSet/FtW4BevlcAvXqPCjSHwS9w26kj9pQvRSuAn8PO1rBC78s0zrfGklX/LCvzitRL4xWtUuDEEfonbRh2pv3QhWgn8BH6+lhViV755pjWetPJvWYFfvFYCv3iNCjeGwC9x26gj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LSvwi9dK4BevUeHGEPglbht1pP7ShWgl8BP4+VpWiF355pnWeNLKv2UFfvFaCfziNSrcGAK/xG2jjtRfuhCtBH4CP1/LCrEr3zzTGk9a+beswC9eK4FfvEaFG0Pgl7ht1JH6SxeilcBP4OdrWSF25ZtnWuNJK/+WFfjFayXwi9eocGMI/BK3jTpSf+lCtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK0EfvEaFW4MgV/itlFH6i9diFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VwC9eo8KNIfBL3DbqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1EvjFa1S4MQR+idtGHam/dCFaCfwEfr6WFWJXvnmmNZ608m9ZgV+8VgK/eI0KN4bAL3HbqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tK/CL10rgF69R4cYQ+CVuG3Wk/tKFaCXwE/j5WlaIXfnmmdZ40sq/ZQV+8VoJ/OI1KtwYAr/EbaOO1F+6EK0EfgI/X8sKsSvfPNMaT1r5t6zAL14rgV+8RoUbQ+CXuG3UkfpLF6KVwE/g52tZIXblm2da40kr/5YV+MVrJfCL16hwYwj8EreNOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yAr94rQR+8RoVbgyBX+K2UUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr1VBgd+PP/5oDRs2tFVWWSVnyW+44Qa7+OKLSz8v08ijR5vxs7IEgV/illZH6i9diFYCP4Gfr2WF2JVvnmmNJ638WzYJ+C1btswWLlzo+CNX+Pnnn22NNdbwKghxV199datVq5ZX/OqOVDDg99lnn1nLli3t+eeftz322EPg52MJAj8flbLGUUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbNhT8hgwZYrfddps1b97clixZYsOGDbPGjRuXPnDChAl2yimn2CabbGJwyv33329//vOfrV+/fo5XmjVr5uJefvnlzmnVt29fq127tot7+umnW5cuXfwLX00xCwL8Fi9ebEcddZTNmDHD7rrrLoGfb+ML/HyVWiGeOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yIeAH6NWrV8/mzJljjRo1sm7dulnTpk2tV69epQ9s3769XXjhhca/Tz75pN1zzz324osv2vHHH2+XXHKJbbPNNla3bl0XH9DbaqutXPxPPvnE/f7rr79a/fr1/StQDTELAvx69Ohh++23nw0YMMCuvPJKgZ9vwwv8fJUS+CVWyixk0BH4Cfx8TS3ErnzzTGs8aeXfsiHgh7OpXbt2Nn36dPcAGGTixInOqxeFjTbayMaPH2/8+/7779v+++9v33zzjbVq1cq+/vprN0V82mmn2bXXXms33nijPLx/pgAAIABJREFUA0nA8c0337S//OUvNmvWrFKvoH8tqjZmtYHfpEmTbObMmWVq06JFC0fFzzzzjD300ENOUIFfQIML/ALEKhtVHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEPCDSzp37mzTpk1zDxg6dKiNGTPGBg0aVPrANddc032OJ5C899prL/viiy/svPPOszPOOMPWXXddO+SQQ+yiiy6y7bbbznbffXc7/PDD7Y033rCPP/7YovV+/jWo+pjVBn6DBw+2F154oUyNOnbs6Nym3377rRPvnXfeca5R5tiZQx83bpy9/vrrK6igzR2/SyLwS/yGqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tmw38yqdu27attWnTxnnrGjRoYGzuYCNG//79XdTu3buXJtlzzz3d33fZZRd799133Rq+ESNG2G+//Va6EZXPgTyWqs2dO9dGjRplm2++uYNKILHQQrWBX66KI8qiRYvcx6eeeqqdffbZdvDBB7vGyBa0qzdDFYFf4vdJHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEI8fuTJlO3DgQLe5tEOHDtanTx8DDKdMmWKtW7e2Cy64wNZbbz3r2bOnW7vHbl2Wp7HZg2nhDTfc0I488ki35u/77793XsFbbrnFTRfjPWQ2s9BCjYNfpiAHHnigXXrppVrj52slAj9fpVaIp47UX7oQrQR+Aj9fywqxK9880xpPWvm3bCj4jRw5snTnbadOnWz48OE2efJkB3/z5s1z6/+ik0bWWmstN4W7zjrruPV8zFgS2KMA7HEk3QEHHGBMD3/55Zf21ltvFdz6PspbUODn07Ty+Mnj52MncXHUkcYp9MfnIVoJ/AR+vpYVYle+eaY1nrTyb9lQ8CPnBQsWuCla1vFlC+z+nT17ttvgkXk2H+mWLl26wvl+zGTiCdQ5fv7tVmFMgZ/ALx+mpI7UX8UQrQR+Aj9fywqxK9880xpPWvm3bBLw8889HTHl8SvmdtRUb+LWU0fqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr5XAL16jwo0h8EvcNupI/aUL0UrgJ/DztawQu/LNM63xpJV/ywr84rUS+MVrVLgxBH6J20Ydqb90IVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWQeC3fPlyl2NNLljUGr+MRhX4xVt4jhjqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/Lhp++OGH3Rbm1157zeW47777uq3Of/vb39wZONUZBH4Cv3zYmzpSfxVDtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK1ygh/bl7l7rnfv3i6XnXfe2Zo3b278fcKECe62DULXrl3t9ttvd+fWVEcQ+An88mFn6kj9VQzRSuAn8PO1rBC78s0zrfGklX/LCvzitcoJfl999ZW7vPiss86yI444YoXzbbh/7j//+Y87xPDqq6+2ffbZJ/5peYgh8BP45cGM3Onqm222WT6ySn0eIVoJ/GRXvi9EiF355pnWeNLKv2UFfvFa5QQ/7q5jTR8/XEey99572/nnn581x8WLF1v9+vXjn5aHGAI/gV8ezEjgFyBiyKAj8BP4+ZpWiF355pnWeNLKv2UFfvFaxa7xIwuuUmN9H6dRN2rUKD7XKowh8BP45cO81JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WFfjFa+UFfkzjjh492uWWOT02adIka9iwYfxT8hhD4Cfwy4c5qSP1VzFEK4GfwM/XskLsyjfPtMaTVv4tK/CL18oL/PD4/fDDDyvk9sorr1iDBg3in5LHGAI/gV8+zEkdqb+KIVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWXuAXZTNv3jz79ddfrXHjxvE5V1EMgZ/ALx+mpY7UX8UQrQR+Aj9fywqxK9880xpPWvm3rMAvXisv8EPISy65xJ544gmXI+f3XX755bbnnnvGPyHPMQR+Ar98mJQ6Un8VQ7QS+An8fC0rxK5880xrPGnl37ICv3itvMDvqKOOctDHv6uvvnopAH799dea6o3XuOpi6OaOxNqqI/WXLkQrgZ/Az9eyQuzKN8+0xpNW/i0r8IvXKhb8fvrpJ1tnnXWsX79+dtlll7kcn376aTv88MPtvffes5122in+KXmMIY+fPH75MCd1pP4qhmgl8BP4+VpWiF355pnWeNLKv2UFfvFaxYIfN3XUq1fPTjjhBBs0aJDVqVPHrr/+ejfV+/HHH9uWW24Z/5Q8xhD4CfzyYU7qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/sjj11FNt8ODBLrc11ljDuLWDad/HHnss/gl5jiHwE/jlw6TUkfqrGKKVwE/g52tZIXblm2da40kr/5YV+MVr5QV+CxcutBEjRjjQmzt3rh1zzDEO/NZee+34J+Q5hsBP4JcPk1JH6q9iiFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VF/ideOKJdtppp5Xu4v3yyy/d1O+jjz5qTZo0iX9KHmMI/AR++TAndaT+KoZoJfAT+PlaVohd+eaZ1njSyr9lk4AfV9Ti4KroQgpmOpnxzAxcV8tyuPLnGc+fP99WW201q127tn/BqzFmheD3wAMP2IABA9wmjg033NDWX399V7Rvv/3WgD8OdWbjR2VCdC7g/vvv77LZeuut7eqrr86ZpcBP4FcZe4vSqiP1VzFEK4GfwM/XskLsyjfPtMaTVv4tGwp+Q4YMsdtuu82aN2/uIG7YsGFlziqeMGGCnXLKKbbJJpvYZ599Zvfff7/9+c9/dkfcvfrqq7btttvanDlzXDrg8bjjjrO6deu6uBdddJF17drVv/DVFLNC8HvooYfs9ttvXwH8KFu7du0MCKtsmDp1ql155ZU2fPhwJ1ZcEPgJ/OJsxOdzdaQ+KpXECdFK4Cfw87WsELvyzTOt8aSVf8uGgF+0eRVwa9SokXXr1s2aNm1qvXr1Kn1g+/bt7cILLzT+ffLJJ+2ee+5xJ5twle3bb7/t4rVt29Z69uxpH374odsDcc011xjH3ZEX3r/qvuEsTi2vqV7A7JBDDrFddtklLr/gz0eNGuUIGbFat27tYBJBcwWBn8Av2MiyJFBH6q9iiFYCP4Gfr2WF2JVvnmmNJ638WzYE/GbMmOGcWNOnT3cPYIZz4sSJzqsXhY022sjGjx9v/Pv+++8bs5PffPON+/iDDz4wPIYPP/yw4cTCw0d+7INYvny5m+ol780228y/AtUQ0wv8Pv/8c0fAp59+unOH9u7d26644gr705/+5F3ESZMm2cyZM8vEb9GihX333XfOo3juuee6zSPXXXedE7BWrVpZ8xb4Cfy8ja6CiOpI/VUM0UrgJ/DztawQu/LNM63xpJV/y4aAH1zSuXNnmzZtmnvA0KFDbcyYMe7ouiisueaa7nO8d+S911572RdffOE+Jv1dd93lpnnZAHv33Xe7ja9HHnmk+5w9EG+99ZbBOoUUvMDv0EMPtWeeecbGjh3rKr/FFlu49X4A4SqrrOJVH46DeeGFF8rE7dixo/P2cTYgP0uXLnXTvYjKmsJx48bZ66+/vkL+F198cenfyjTy6NFm/KwsQTd3JG5pdaT+0oVoJfAT+PlaVohd+eaZ1njSyr9ls4Ff+dRMzbZp08atyWMals0dOJv69+/vonbv3r00CVfT8ndmPN99913r27evgz1+ZyaUgCPs+++/d3wEKJ5//vmOZzj5hGnkqtjkQf5AZa7AM3ffffesH8eCXzQHTsWoMOHf//63HXDAAXm5uQPvIV6/gQMHOncqu4Ujt2u2Esvjl6GKwM+/NygXUx2pv3QhWgn8BH6+lhViV755pjWetPJv2RCPH7m2atXK8UfLli2tQ4cO1qdPH7dmb8qUKW752QUXXGDrrbeeW8PHWj+ure3Ro4eb8WTqd4MNNnDcgieQ3++44w578cUX3dW2t956q73xxhv+hQ+IOW/ePLcusaLAdHO2EAt+JIJgeQBeP7Y7M+3L4sZPP/3UNt9884Cirhj1q6++cnPiePr4QfQDDzwwZ54CP4FfpQzu98TqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uGgt/IkSOtS5cu7gGdOnVyG00nT57s4A+4whG1xx57uM/XWmstB3KcZoIj7Oabb3ZsBDwyTbzqqqs6pxibPPAmvvTSS7bbbrv5Fz4gJiei8HwCp6wwzcwOYmZkX375ZRs9erRbZ5gY/KBWqDczQLjs+s1XYAcMtBwXBH4Cvzgb8flcHamPSiVxQrQS+An8fC0rxK5880xrPGnl37Kh4EfOCxYscJdTMFWbLTDzOXv2bLfBI3P/AXC3aNGiFS6zYLkaPMN1t9UR8DzuvPPODvbwPPbr189NP1cK/Cg4nrnnnnvOZs2a5Xa1cI5NVcxbx4kk8BP4xdmIz+fqSH1UEvjFqbR3i72NnyjIruIU++NzaSWt/BXwj5kE/PxzL8yYePyA0ltuucWtL2RzCfsjot3H5UvtNdUL1bJl+ZNPPnHpWQj50Ucf2VNPPeXmu6szCPwEfvmwNw06/iqGaCWPnzx+vpYVYle+eaY1nrTyb9mVEfxQZ7vttnNTzNwuwvF4nEnIOczZghf4sebu2WefXSE9mQv8/A0y7zG1uSOxpOpI/aUL0UrgJ/DztawQu/LNM63xpJV/y66s4McOX47DY33i8ccfb2eeeaY1a9YsGfhFu3rxtLEI8uCDD3ZHr7AAku3Muc7b82+msJjy+MnjF2Yx2WOrI/VXMUQrgZ/Az9eyQuzKN8+0xpNW/i27soKfv0JmsR4/pnUBPc614dJhFhGykwS3ItO9IYc4hxQsV1yBn8AvH3akjtRfxRCtBH4CP1/LCrEr3zzTGk9a+bfsygJ+v/zyS1aPHhtUogOpc6kWC34kPPHEE91W5UceecSOPfbY0rw01etvjFUSU1O9iWVVR+ovXYhWAj+Bn69lhdiVb55pjSet/Ft2ZQE/diJHN4SgDrBH3TlUmltEKgpe4Md5MRxIuN9++9njjz9uEyZMsKOPPtqdc1PdQR4/efzyYXPqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuLOBXXhE4beONN3b3AscdGp0T/DibhoMH2R584403ulOrOWi5poPAT+CXDxtUR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQQ/zutjv8Wjjz5qb7/9tmM2LsTIFXKCX7S2L9oazN285XfwckExN3lUZxD4CfzyYW/qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuTOA3c+ZMd2PHsGHD3A1r3EByxhlnuJtFEk/1cjMH5/dxGvRWW21lTZo0KZPX888/7y44rs4g8BP45cPe1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXZnAr3379u5aOG7tmDNnjlvjd9BBB7kTWBKDX5TwyiuvtMMOO8x22mknf/WrKKbAT+CXD9NSR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQE/zuvbYYcdbNCgQXbqqac6gXr06GH9+/d39wRzb3Cu4LW5w1/yqo8p8BP45cPK1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXdnAjxNXmOIl9OrVy66//np37zBTvwI/f7spnpg6ziVxW6kj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LbuygB+7eLfYYgvjnt69997b5s2bZ++99567seOuu+6qUDB5/Pzt6f/bOw8wqYrsbx9yjpIRQVHEgLiSg+ACEnVdERARcEBFFhVBkiCiZP8qQQkCgiAIfoioILArIoKSBmFBchQQiSo5SfyeX7G37ZnpcG5Nz0yHXz3PPOhM3dt936q+9+1Tp6rCrybFz7pNeCPVo3PDiuJH8dP2LDf9SnvOaK1HVvqWjRXxAxHszYv9eLHGMjbYiIuLk27dugkm4wYqKvGDSY4cOVJeffVVeeONN8yOHd27d5eqVavqWyNENTnU6wWS4mfdq9zeSDFdHguWBwqfO28GK6pjtjvyLDJnzhxwWr31BaTigW5YUfwoftqu6aZfac8ZrfXISt+ysSR+DhVsrZs+fXrzoykq8cP+vF999ZXMnj1bHnvsMXPeG2+8Ufbv3695jZDWofhR/ELRoQLdSJEfMXr0aBM+r1GjhtmTuk6dOkb8Ll265FfksHJ606ZNzbcw/Nx5551m0+xXXnlF/Zbnz58vP/30k/Tp00d9TEpXdPPQofhR/LT90U2/0p4zWuuRlb5lY0X8ggUisBQfgna+SlDxg0lmypRJxo8fb3bvgPwh4nfHHXfItm3b5Pbbb9e3SAhqUvwofiHoRmbaO1Y491V++eUXKVmypEfaBgwYIK+//rqMGjVKnn/+ebNQpq+C2VSYVTV48GCTZ4EQPISxdu3a6reMNZgmTJggWEfT3+uoTxaiim4eOhQ/ip+227npV9pzRms9stK3bKyIH0aUsMwecvwaNGhgghKLFy82M30RdMiSJYtMmTLFTvyuXLliNgLGA++dd94xD7KnnnrKRDYOHTokRYoU0bdICGpS/Ch+IehGAcXPWRsJUW3Mlvrwww/l6NGjcv/994u/tSv//e9/m/wK1EOUEOtftmvXzkyzL1GihIngYUmkjz/+2KyxdOzYMXn77bfN+apXr27SKPC7Dh06mHM0adJE5s2b5/NSEZF88MEHzc46iCzig4/XQmQRN4NevXrJF198YdbYxA0BaRq///67PPTQQ+YYRBSPHDkir732mnz99dfmCx32dxw7dqyRTeSLYFHQffv2metv37693HbbbSrsFD+Kn6qjiAT8DGrPESv1KH76lo4V8cNevUgpwvMJ93+Uf/7zn7Jz507ZvHlzQGBBI344Gvl82LoNZcGCBWafXjwIsGdvaheKH8UvFH0u0I0UotS1a1cjavhA4f/xTQoyBJHztRUOPmwvvfSSQAARGWzYsKH5jPTv399Ex1u0aGHeNvJiETX/+9//bv4f0cQhQ4YItkj87LPP5F//+pcsX75csHh6mzZtfF7qH3/8IQUKFDB/69Spk1lgHQIIUVuxYoU88cQT0qVLF5PvMXz4cJk1a5Z5XQgowv84LyQPBcJ38OBB+fHHH81nG7KIIW5ILJKFMTsM2zXic6cpFD+Kn6afoA5lRkuKrPSkkrJK7AxuzhXOdZFaVLZsWenbt6/5QZCuUqVK5lkQKCUJ16QSPyS2f/fddyYagIcCHhp4kBUsWDDVuVD8KH6h6HRuhnqdRTGRU5F420Lv94KoHnL6fvvtN8FUe0QMvcUP6yshGoeCFIkdO3aYKGLdunWNaGF4WTPU64jfs88+a4aFEaFr1aqViSTWrFnT7NeIaDyE8IcffjATspzIY48ePcw+joj+IZ8QNwis/N64cWMjm9jnEfmNeJ8ZMmQwUoqhA0QJNYXiR/HT9BOKn5bS9XqUZD2vWIn4IQ2vfPnyRvS8C4IHzhd7f9RU4ocHHqJ+iAjgwYSHWvPmzc0DIVTl7NmzJq8JEYlAheJH8QtFn0sL8UM0EJFAFOQRIm8WUT4IIPr94cOHTaQxWI6fI34Y2oVo4hz4PEL8sHdj586dzSQsfD6Rm+gtfvhmOHDgQGnWrJmJPOJLHYZ6MSSMhUAhfxBBiB9ye823w3TpTGRSUyh+FD9NP6HMaClR/NyRsov4wT2QJoOhU38FHuTLT5xVHNIiJxspPF9++aVxM4zwYCIu0vACBSjMPf0a7vxBCqJ7GC5CwcrQ8fHxsmnTJvPwQgJhcgqGuBCNQN4S3ji2hUOUxF+h+FH8ktPfnGM14ocoHPJaMVkDEzeSG/FDPh3yB7Gn4k033WT+G30dUbUZM2aYb24YVob4rVq1yuTj+SqBxA/RPpwLOR6QOHxeIH/PPPOMGeoNJn4YPhg0aJCJCiIqif+uVauW4aApFD+Kn6afUPy0lCh+7ki5Fz/kY+O+W7x4cUEUbfr06QlGM5HShjxnjMggnWbSpElSsWJFk4u9YcMGI1q7du0ya+chKIaRUOcLPu6h+KKdUgWvi3xu7NWL3HLcvxEFDFaCip8zqxcPKETlMPzTqFEj8zDA8E9yo36YdYLhJYQm4aC4COQd4XV8FYofxS9Yp9b8PZD4eYfQMey5e/duI37ONzt/58cEDUgchnovXrxobiTeQ72O+OF4zPhFXdw88C0SuXoYCoa4IUcPxd93Mkf88CUM50DkDhE8RPzwjRUJvpBURPHwmshVRN4hhp4d8XO+zCWO+OGzhwVAP/jgA/Me8PkeM2aMGULWFIofxU/TTyh+WkoUP3ek3Imf4zf4Mp4nTx4zWlK0aFET4HIKvqBjxBP/4l7rvcIJ8rHxbMBkOYgfVjrp16+f+fLtKxfc7bUEqu9IJu71KFhy7+GHHzYrSzhzMvwdH1T8kDCIC0BUDtE9/MBokc90/PhxyZs3b7KuBZCwThqsGg8mRBgglv4KxS/lxA+hbgzvIe8LYetAmzwnq9HD4OBgOTMI/WMNJEx2wCLMTkG02/mgeV8GkmzRf90USBei5jjO+4sOZmuhDXATsXkt3BBwIytcuLCbt5OgLt4DZhlDXvfs2eN36ZvEL0Dxo/hpO12wz6D2PLFQj6z0rewmxw/3tnr16pkv9yj4grx+/XoT1XMKRkowaQ7/rlu3zkTzIHpOwbPSET+sxIB8a9y3MdECvuJM5NNfga4mRnXuvvtuk5qDFRogprgepOwEWw4sqPjhLSACgNmB3gXLPOAFtAUhUeQfeZdSpUoZW/7+++/NGDWgIvkcD0PAXLZsmZnhmLg4CfL4fYJGXrJEBD+xUkK0cwfkHrKNDoQ8NCzdU7p0aZP7pS0bN240Eae2bduaD0i4F9sbKZjgC0/iUqFCBbNvYihLar5WoPfthhXFj+Kn/Qy46Vfac0ZrPbLSt6wv8Ut8NEYwMDQKL0F+NIZIUeA0S5culYkTJ3oOwW5N+DsigTg31mX13rzCW/y+/fZbs1/uCy+8IDNnzjQ52PgCnxL5f4hW3nzzzWZZMIwy4dmNkR8E6UI2qxcRuc8//9yYMfLwEBJFNERbsNYMhp28C2QD4BFFBCAURCkge/4eooz4eREMkfgh4opvJ1jmA3zRYRHJRY6btjgzS9F2WJcu3AtvpPoWcsOK4kfx0/YsN/1Ke85orUdW+pZ1E/HDKBc8xomQIRCFgkl2TkFaG36PL/d4VmKiG4IcTvEWP6T4YPQGP85oKSTR7WiQ5moxKoN1lBOPCmGlCATTAhVVxA/TgxEOhai5kT3Nm4dhI59o0aJFZiHaatWqmXXFmOOnoBcC8Ttw4IAJETtbjCF/ATldWCcOYW98g7jhhhvMjCfkQCBHDB0fM0mR7IolRbAcCfoGZqciyRTi6E/cIZf4kKGgc+K18TroV1gzDjl1mKmEb1VIuMXi4XgPWFMOQ5grV640ExXQP/BesXI5+hDq4Xx471jGBMsOOdfhiyRvpIr+9b8qblhR/Ch+2p7lpl9pzxmt9chK37JuxA9nxWQIzDEoV66cyYtGXjYighhKRUAEI554HmI9U+T6Ycas94QNb/HDRDpE33A+DA/jeecMI+uvQFcTqUh4f967p2HHDkhrsDQflfjhJEhCR0EUCAs442HvLPege5u+a+Fhjuihs3gsoLds2dLvKRnx80ITAvFD58FyH/hGg/A0OjZ2Z0FuF0TKWW8OExAwkQDfXjDjExE+RIAx2xs5EZA35EVgGB4fkPz58/tsQ3zIEOVFEioKElJxLoTdMdMVHzz8De8FPzgvhp3xYYZkIpyNLwjo4Mhv+PTTT82OFZhYgfeI8yAHAzkPOBd2xqD4JecT6m4NMYofxU/b2ygzWlLuPoP6s0ZnTbfih+gdUtdQsGMSJmYgdQnyh+cjxM0ZxcJIGIIP3s83iB/8CHMfsH4qgmSYF4Ef+AzWTE2Jgogi0uP8BcmwSoq/Gb4q8UNOE8a9nb16nZmI2I8U48mh2K8Xr4GxdH8X4YCj+IVW/HA2yBEidlgPCLM6IVre4ofODNlC+2B3ivfee8+IF+Qf32gQAkeUD0mtwYZ60RExaQAC6eyJi29U+AaF/oX8CExRx4cPEoc8T7wffMvCLHLkmqI+PnzYEQMfREy1h+xhpip+0B8xRR/vGR9cX2sv8aGjvxW5YUXxo/hpe5abfqU9Z7TWIyt9y7oVP5wZw6ZYUg55fL4K8ukwEon8dU2+HtZkTentbPFswyhcoOJvZQiV+OHEuGg8mGHHWHLFu2AmCSZqpEah+KW++KFzYckdFHw4MCSL2UvOxBusOYcPm1b8kNOJ80EoMUQLkYOwYd06DBVDJjHbG0uJOOKHqfKQPQzfIhIIQcSWaJA6fPmAHGKmOd7DLbfc4oGECKSvxSzT6kaKXFlwQ5TbtuAmhGWQMOSdGsUNK4ofxU/bJ930K+05o7UeWelb1kb89GcPn5qYwIHVJFCwxzueC0jFwj7uSI9CxBFBEV9FJX7OpvU4AR60Tz75pBnuxQMWeV6B9hUNNSaKX+qLH8LakC4U9AUsYom8OixtAoHBgsOQK0gXcvQgYv6WgkHEz5f4oQNjKBfnxbGYaeUd8QsmfhBHDO3iPWB3GSw4jI6P4WhfJa1upPisQHCTGyVHNDMlEoaTy4riR/HT3vPT6jOofX/hVI+s9K0RK+KHXHgMLyMQh7VbURAMQPoUIo6BIpMq8UN4E+PdeKjiwe+9WwcS6ZHIn1oPoTQRP+ygUL++CHYv2bbteg9s3lykTBmRS5dEsFfeggUi/5u04OmiOK5aNRFsA7N/vwgipVhssWNHEe8Q7eHDIh99pO/ZTs0Q5PjhVM6WXf6Ger3Fb/HixfLUU0+ZYVQU5EQgzw5Dt0g0xQwj5Pz5yy3wFj90ToTWEfFDZA7RPpwXEzbw7QULJiOajKRbR/yQNIvlZhDxQz0IJ0QT0+/RNzAU7KQi4HqQr5hcmXHfML6PQDoDJqRgGB0fWEyE1XL6AAAgAElEQVSGwXR8MMMPZoSBLXIrIdeYBIPPHj7U+HBjOSSsKYjrRcQP3+qQY4n0CHwG/V1rct+/m4cOxY/ip+1vbvqV9pzRWo+s9C0bK+KHZwRGWpETjzx3zJdAqhaeJXh+BkqbU4kfZnTu3LnTMzsF48ZY16ZLly5mtmVqllQVv+LFRerVE8Ewdrp0IogebdggUrWqCPZchejhJ2PG6+L3v+FQwwNcevbE9gvXZQ+it2mTyGefifTrd/33f/55Hd2hQ1hAyD3GEImf2xdGUiny8CAl3rO8EXqGrGExS0cMvc8NeQu00wv6FWYZQ4w0eRS+3jfeG3IH8d4CrZyeVjfSjz76yAgalgVAziTyJCF64IioKvIlkVaBIXAkFKO/IxKKCTAQXqwJhbxGbCuEvEzkZ2KBUFwrBDklihtWFD+Kn7YPuulX2nNGaz2y0rdsrIgfiGDkFYEX74Ic/BdffDEgMJX4wSbxAEpckO+Fh1dqllQVP+x5h11EsHND+vQis2eLbNwo8tRTIjffLDJ2rMiVKyKA/NtvImPG/IXirruuRwU3b/5L9s6cwdLgIn36iMTHi/zwgwh+Z1vSSPyCvV1MwoCgJC6QsXBZ4y+tbqTe4oe8RET8EMVEJB1RTExYgfhh8gx+0N8xyx2LayOMjy9cyLmE+CHlwpkog5nSWPw8JYobVhQ/ip+2D7rpV9pzRms9stK3bCyJH6jgWYvl8BAswSRHPFeCFZX4YTkX5E8hKR3/YmwZw05I6seU4dQsqSp+zoU9/rjIHXf8JX5YuDpLFhHs4AAxxJAuVv7+5JO/UCAK2K2bSNasIhcvXq//7bci+/aJeCdcnj9/fQh4xw73GMNU/NxfSOofkVY30sTih+FqfEPDZwx78CKahy9T3uKHYXAsgI6hYERVEQHEJBcMAWM4G5FU/N5fIm9y6bphRfGj+Gn7m5t+pT1ntNYjK33Lxor4YTgXe7snLhiFxXMFARik5/lytKDihwcK8orGjRtnog0Y9sUCvnjYpNSK1IGaOOTih/1MW7RI+pLHjolMn37994nFz6mN4+68U+TyZZHx469H/ZyCYWJn1iXkDrII6UOU79FHRbDX34kTIvfdJ/LHH9cjgW4Lxc8tMU/9cLqRIpcPn6scOXKYPA3vHFrvC/T1N/wOQuhryRprOIkOdMOK4kfx0/Y7N/1Ke85orUdW+paNFfHzt5wL3AxpeFjlAs8H773mHYpBxQ8VMbED0T4MSXXq1MnM5gVcDEn5W/dG30zuaoZc/G66SaRt26Rv4uTJv2Qssfgh3++FF0RuuOG6vE2ejHVOEp7jscdEkHPl7B+M4d1MmUTee08kXz4RTI5AJPDVV6/nCPbv7w4EalP83DP73xG8kerRuWFF8aP4aXuWm36lPWe01iMrfcvGivgh4udrazaIHvLkMTES+d++8uVV4ofZI9hBAbMve/fuLT/88IMRQPx/apeQi5/mAhKLH2b4Yj9a5Pchlw0TNRC1++knbG0isnfvdbFr3Fjk999F1q8XqVtX5MIFkcWLMRX2+t9Rr2bN69G/99/XvJOEdSh+7pmlsfhxHT/rJgvLAx8o9YDgxyl8QOubiazISk9AXzOWxA9bp/orED5M/vBVVOLnHIghpU2bNnkWztU3Rehqpon4OUO6zuSO558XKVgw4UWdOyfy8cdYSfH6kC8mfmDZlkKFrs8IxgzeefOuTw7p1On671Egjzhuzx73kMJE/KJdZtw3jP8juI5fKGmm/bkofvZtQPHTsyMre1aJnUF/pvCumWI7dzjJgZjMgRmD7777rmeZDkwhxiK7qV3SRPySc5GY3IGlXBDV8y7I+YM8IvIH+bMpYSJ+0S4zNk3j6xiu4xcqkuFzHoqffVtQZvTsyMqeVbSKH4Z6nd2zfNFBxK9WrVo+wQWM+GGNMSzYixkiWGwW5bHHHpPZs2ebyR1Yry21S8SJX0oCCgPxiwWZCWUTch2/UNJM+3NR/OzbgDKjZ0dW9qyiWfxSZFYvjBELAY4cOdIsM4H1xLA915tvvmly/bCxcVQv4Kzva2lTMwzEDxce7TITysblOn6hpJn256L42bcBZUbPjqzsWUWr+KXYrF6I38CBA83Gv9hbFOuGASK2nerYsaNE/QLO+r6WNjXDUPyicVHiUDYu1/ELJc20PxfFz74NKDN6dmRlzypaxS/FZvVC/LAAIH6wOGy1atXM4rHz58+X999/n+Kn74spUzNMxS/aFiVOmcb766xcxy+lCafc+Sl+9mwpM3p2ZGXPKlrFzxcRrLiCxf4nY4m5ACVgjl+w/VIZ8dN3xhSpGSbi5+vaoklmUqTtIuikbh46XMeP6/hpu7abfqU9Z7TWIyt9y8bKci4g0qJFC7Nfu1NOnz5t/hML+mO09qWXXvIJLqD4IXHwGtao81Mwqxebw6dm4eQOL9phLH6p2SdsXos3Uj01N6wofhQ/bc9y06+054zWemSlb9lYET9Mri1SpIjcf//9no00fvnlF7OVLoQQI7WPPPKIO/HDEi6vvfaaGeKtWLGiz9WfsbAzJn5gkcCqVavqWyYZNSl+4Sd+XMcvGR06Ag5189Ch+FH8tF3aTb/SnjNa65GVvmVjRfyOHTsmPXv2lCFDhphVVlDwLJ4yZYrZcCNQ8Rvxw4xdTOb45ptvzBZtMEfYJRIKt23bZjYA3rBhg1nqZdGiRVKiRAl9yySjJsUv/MSP6/glo0NHwKFuHjoUP4qftku76Vfac0ZrPbLSt2y0i9/WrVuN4LVu3doDBdvnfvHFF2aFDQTkgi21F3Tnjjlz5piJHCtWrBDv8eM6derIQw89JE899ZRkwh60qVQofuElflzHL5U6fhq+jJuHDsWP4qftqm76lfac0VqPrPQtayN+3jnp/l4J/oPcOe+iOc6pj7pnz55Ncg79lV2viRS8J554wmydi2v9+OOPTYDOKU8//bRMnDjRLuKX+Ci8aSzijAkft912m6RPn97t+/VZ/+233/asPo3X+Oqrr+S///2v/O1vf/NZn+IXXuKHdxPt6/j1799f1q1bF5L+Hoknwc0qR44cqrf++7nfBT+xUqpVqiaTR/w1g44PaH3LkxVZ6Qnoa7oVP8yARcpa8eLFzYjm9OnTpaDXlqyIriHlrWTJkiaaNmnSJJP+5us4DLM6u2l4+wxGSOfOnSs5c+YUrL+HY/Ply6e/KK+ahw8f9uT0Ob/G8nrI66tRo4Zkzpw56HkDRvwAAUu3AMTdd98tzzzzjBQrVkzmzZsnAwYMkCVLlkh2bD0WotKrVy8znNy1a1e/Z6T4hbf4ReM6fu26tpMpI6eEqJfzNNFE4IWeL8io//srn4Yyo29dsiIrPQF9TTfiB8fBiOWJEyckT5480rlzZyNV2KDCKfXr15fu3bsL/sWuZVjHeMGCBUGP8/aZwoULm5S4cuXKScOGDQVRueRseYuRtk8++cS8F6TcoTRo0MCc+8EHH5S77rorILCA4jdt2jRp27at5wTI9YuPjzfi165du5Cu44c3/+ijjwrGrwMZK8Uv/MUv2tbxG/zBYNl0dJP+zhPhNe8udLfgxynIF8GNi8U3Ae+Zc5QZfS8hK7LSE9DXdCN+e/bskXr16snu3bvNC2BSxPr1601UzymYv4BUN/yLkR/IFWbOBjousc9g1GjGjBlGyH788UczRyJ//vz6iwpQE840a9YsM/KGa9dspxtQ/Bo3biwIVyLPD4bbtGlTadKkifkXxupmHT+A2Lt3b4K3X6pUKbnnnnvM7xBNxALROK9Tli1b5nMTYpi0UxI08pIlIviJlRLGy7lE0zp+zFtj3pr2lkKZ0ZIS85BCMIElOAGyCs7IpxOImN3GEpeaNWuaYVF4CSJv27dvN1UQ7Fq6dGmCHLncuXObvyMSiHaoXbu2GQkNdFxin8Hr4Tzly5eXMWPGyMKFC0O+EgqW3sOwNPL9vCOWvsgFFD+82UOHDsnixYvN+DYsGBeEDysAuBE/rCb99ddfJ3gPjRo1kri4OPnjjz+kQIECgvAl9gQOVBjx86ITxuKn/5imTU03N1KKHx/Q2l7qpl9pzxmt9chK37JkZc8q0M4d58+fN+lqCFRg/sKIESPMC3mnm9WqVcv8vkKFCrJmzRqT5jZz5ky/xyX2mV27dpl5EVgpJVu2bILoH9xp+PDh+osKcc2A4odlOjBrF+XKlStmQgfGuocNG2Z+50b8Ar1vjJsjTInkx2CF4kfxC9ZHNH93cyOl+FH8NH0Kddz0K+05o7UeWelblqzsWQXbsg1RuLFjx5r8O+TJQcwQ9Nq8ebNUqlRJunXrZgJTWDMP/oMJGtgVw9dxTh6gt89A+DB3YePGjSaA1qFDBzN59V//+pf+okJcM+hyLhjL/u677+SVV17xLOKM/0cUsE+fPsZgk1tefvllk0PkPYTr75wUP4pfcvub2wc0xY/ip+1zfEBrSVGS9aTIKjmsgokfAk7OmnhIZUMuHiQN8ocZuMj/q169unkLGJFcuXKlyc/zdRyihr585t133zUbYmC2MFLcsCSL98xhN9cXirpBxQ8vgoUB//zzzySvBwsGnKxZs4bivajOQfGj+Kk6SpBKbh7QFD+Kn7bPuelX2nNGaz2y0rcsWdmzCiZ+ODOichjBRB6fr4LZv1gkGRM8IHdOCXac97kuXrwo2G0D0b+0LirxQzTu6NGjPt/rfffdZyZgpJb8UfxCI347d+5M676Xpq+/f/9+9W4z8QfiZfWvq9P0/abmi1e+sbK0fuCvVeH50NHTJyuy0hPQ12S/smelET/92aOjpkr8nnzySfn+++/NuHbGjBll6NChZoYK1ovB7zCLBFObU6NQ/EIjfq/0fUX+b3DS2U6p0YZ8jfAmENcljosSWzYRH9B6cGRFVnoC+ppulnPRnzW6agYVP2eBQ8xycWahvPnmm2a6MFb0R9gSM168l2FJSUQUv9CIHxYlnvtZ8Mk0KdmWqXnu7BmzS7ZMf+WjXrp0KVW3GkzNa03ua+GL3uuvv+45DR/QeqJkRVZ6Avqa7Ff2rBjxS8ouqPjhEET3sE/duHHjJEuWLGZ1a0zqwJo3mAWDoV4n+VHfPHY1KX6hET/mrTFvTfsJ5ENHS4pJ+HpSZEVWbgjo6zLiF5yVSvywKjQiepA/FGxUjDX9MOMFW4ZgGJg5fsFhh7xGMtbxo/hR/LT9keKnJUWZ0ZMiK7JyQ0Bfl+IXnJVK/HAarOOHxQux4CFWvMb+dpjwgenNmk2Bg78VXQ1G/Bjx0/WUhLUeKPWA4McplBk9RbIiKz0BfU32K7LSE9DXpPgFZ6USP0T6MKyL9W3w3y1btjQLOxcrViz4K4S4BsWP4mfTpSh+NtSuH8MHtJ4dWZGVnoC+JvuVPSvm+CVlpxI/TOTAhA4M8ebJk0d+/fVXufPOO81Gw5jlm5qF4kfxs+lvFD8bahQ/t9T4gNYTIyuy0hPQ12TELziroOKHmbvYouTZZ581kzuwbdvIkSPNXnZbt26VsmXLBn+VENag+FH8bLoTxc+GGsXPLTXKjJ4YWZGVnoC+JsUvOKug4oeVqXPkyCFvvPGGZ4kHTPZo0aKFyfnDxsWpWSh+FD+b/kbxs6FG8XNLjTKjJ0ZWZKUnoK9J8QvOKqj44RTYlg1LtjRq1EiyZ88us2fPNpsXx8fHJ9i+JPjLJb8GxY/iZ9OLKH421Ch+bqlRZvTEyIqs9AT0NSl+wVmpxG/fvn0yZMgQ+eSTT8zkDkT7Xn31VbnnnnuCv0KIa1D8KH42XYriZ0ON4ueWGmVGT4ysyEpPQF+T4heclUr8nNNgk2Hs5IGoX1oVih/Fz6bvUfxsqFH83FKjzOiJkRVZ6Qnoa1L8grMKKH4lSpQQyJ6/snv3bjPxIzULxY/iZ9PfKH421Ch+bqlRZvTEyIqs9AT0NSl+wVkFFL+HHnrIRPj8lc8//zzVo38UP4pf8G6dtAbFz4Yaxc8tNcqMnhhZkZWegL4mxS84K1dDvcFPl/I1KH4UP5teRvGzoUbxc0uNMqMnRlZkpSegr0nxC86K4hecUfjW4F696rah+KlRJanIB7SeHVmRlZ6Avib7lT0r7tyRlB3FT9+fwq8mxU/dJhQ/NSqKnz0qbm/ngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0ril8Yix/WB8QM4XTp0gVsYeb4eeGh+KnvBhQ/NSqKnz0qip8LdpQZPSyysmelEb+rV6/K+fPnzS5l/gocJVeuXAn+7O+448ePS758+VR19VcWupppPtQLQNgHGEB/++03adasmcTFxfm9Qoofxc+m+1P8bKhdP4YPHT07siIrPQF9TfYre1bBxG/y5MkycuRIKV68uFnFZPr06VKwYEHPC65du1bat28vJUuWFGxmMWnSJKlYsaL4Ou6PP/6QJ598UkqXLi3Y7rZ169bSsmVLeeutt2T16tWSIUMGI5hTpkyR/Pnz6y8qxDXTXPwAYMGCBfLpp5/KihUrpF27drJ9+3aKn6ahGfHTUDJ1KH5qVIz42aOiJLtgR5nRwyIre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frSvXt3wb/Yrnb8+PHGWXwdlyVLFnP8E088IYsWLZJu3brJ3LlzpVSpUkb4smbNKm3btpVy5cpJjx499BcV4pppLn6HDh2Se++9V+rUqSPLli2TLl26GFj+CiN+jPjZfAYofjbUGPFzS40PaD0xsiIrPQF9TTfLuezZs0fq1asn2IwCZdSoUbJ+/XoT1XMKNrJAUAr/rlu3Tho2bCirVq0KeNzYsWONILZp00Y6duwoxYoVkyNHjki2bNnM8YgIjhkzRn9RIa6ZauK3YcMG2bt3b4K3Dws+fPiwgdOhQweJj4+XzJkzy7x580w9iODy5cuTXHKvXr08v0vQyEuWiOAnVgojfuqWpvipUSWpyAe0nh1ZkZWegL4m+5U9KwSLEpeaNWtKjRo1BF7SvHlzzyjjtGnTZOnSpTJx4kTPIblz5zZ/RyQP7VC7dm2ZP39+wONGjBhhooPY3nbhwoXyzDPPGGm89dZbzehmnz59ZPDgwfqLCnHNVBO/Dz/8UL7++usEb79Ro0YGctmyZQUyh+RJQIYZFypUyOelMuLnhYXip/44UPzUqCh+9qg41OuCHWVGD4us7FkFGurF8CvkDJM0MLEUwobStWtXzwvWqlXL/L5ChQqyZs0aGTBggMycOdPncTfffLNUrlzZRPgwfIwJHgcOHDD/jyjh/v37zb8Y5UTAK61Kqomfvwt85513zM0SYU8kTlapUsWAypgxI8UvWK+g+AUj5Pk7xU+NiuJnj4ri54IdZUYPi6zsWQWb3FG+fHnB0Czy7ho0aCD9+/cXRAQ3b94slSpVMqlnBQoUkJ49e5pcP6w+MnDgQPF13OLFiwV5fq+//rps2bJF6tata0Y6y5QpY4aLIYIQyDlz5piAV1qVNBc/RPcefvhhQa4fSr9+/cwsX3+FET9G/Gw+LBQ/G2rXj+FDR8+OrMhKT0Bfk/3KnlUw8cPkC8y+RWnSpInMmDFDNm7caOTv1KlTJv+vevXq5u958+aVlStXmhm5vo7bunWrSVvbuXOnSVsbMmSIiexBFD/77DOT2vbiiy9K37599ReUAjXTXPycazp48KCZQo2ZMoEKxY/iZ/M5oPjZUKP4uaXGB7SeGFmRlZ6AvqabyR3OWbH0ysmTJ00en6+C2b9wFEzw8F5r2N9xCGQVLlxY0qdP7zkdUtlwnsTr++mvLHQ1w0b8tJdE8aP4afuKdz2Knw01ip9bapQZPTGyIis9AX1NG/HTnz06alL8IrkdmeOnbj2KnxpVkop8QOvZkRVZ6Qnoa7Jf2bMKNtSrP3P01KT4RXJbUvzUrUfxU6Oi+NmjYj6kC3aUGT0ssrJnRfFLyo7ip+9P4VeT4qduE4qfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS+Mxe/06dOSM2dOSZcuXcAWTtyICT4QS5aI4CdWCsVP3dIUPzUqip89KoqfC3aUGT0ssrJnpRG/q1evyvnz5yVHjhx+XwiOkitXrgR/93fc5cuX5eLFi5I9e3ZPfc1r6K8yeTXTXbt27VryTpG8o7dv3y4DBgyQ9OnTy759+6RDhw7SunVrvyel+HmhofipOx/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICYZs+fboULFjQ84Jr166V9u3bS8mSJY2jTJo0SSpWrCi+jsufP79s2rTJ1MmQIYOMGDHCnOett96S1atXm99BMKdMmSKom1YlzcUPolemTBnp3r277Ny50/z3n3/+KZkzZ/bJhOJH8bP5sFD8bKhdP4YPHT07siIrPQF9TfYre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frGT/Dv7NmzZfz48bJgwQKfx7344ovSr18/WbNmjVSoUMGIH2SxVKlSRviyZs0qbdu2lXLlykmPHj30FxXimmkufoj2ATxAr1q1SqpVqyYHDhyQYsWKUfyCNTYjfsEIef5O8VOjYsTPHhUl2QU7yoweFlnZswokfnv27JF69erJ7t27zQuMGjVK1q9fbyJ2TilRooSsWLFC8O+6deukYcOGxlUCHTdmzBjZtWuXEb8zZ84Ynzly5Ihky5bNHF+6dGlBnbQqqSZ+GzZskL179ya4TlhwxowZpWrVqtK0aVNZuXKl7NixQ5x8v2XLlsny5cuTsOnVq5fnd8zxe8A3iyA9asneJYKfWCkUP/uW5kNHz46syEpPQF+T/cqeFcQvcalZs6bUqFFD4CXNmzcXpJyhTJs2TZYuXSoTJ070HJI7d27zd0QC0Q61a9eW+fPnBzzOW/xwomeeecZI46233iqffvqp9OnTRwYPHqy/qBDXTDXx+/DDD+Xrr79O8PYbNWokcXFxcvLkSZk3b56xYDTC/v37/V4mh3q90DDip/44UPzUqJJU5ENHz46syEpPQF+T/cqeVaCIH4ZfMQEDEy8wsdTJyevatavnBWvVqmV+j6FbDOFilHLmzJkBj0ssfjgZooRwG/x77733Sps2bfQXFeKaqSZ+/t43AKFTDxs2zIRXYdtTp06l+GkamuKnoWTqUPzUqCh+9qg41OuCHWVGD4us7FkFm9xRvnx5GTt2rMm7a9CggfTv318QEdy8ebNUqlRJunXrJgUKFJCePXuaXD+sPjJw4EDxdRzyAFG8xQ+zexHUwnBxvnz5jEDOmTNHypYtq7+oENdMc/FD4mPjxo0F4dRff/1V4uPj/eb34doZ8WPEz+YzQPGzoXb9GD509OzIiqz0BPQ12a/sWQUTv7lz53pWEmnSpInMmDFDNm7caOTv1KlTJv+vevXq5g3kzZvXpKRhRq6v45zl6CB+OG748OHmOIjiZ599JocPHxZMAOnbt6/+glKgZpqLn3NNCIHeeOONXMfPTSMz4qemRfFTo2LEzx4VJdkFO8qMHhZZ2bMKJn4487lz50zKGfL4fBXM/j148KCZ4OG91nCw47zPhbkLOA+ifmldwkb8tCAY8fMiRfHTdhsO9apJJa3Ih44eHlmRlZ6Avib7lT0rjfjpzx4dNSl+kdyOFD916zHip0bFiJ89Kkb8XLCjzOhhkZU9K4pfUnYUP31/Cr+aFD91m1D81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUP6AJZGoAACAASURBVDUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS9MxO/MmTOSI0cOSZcunecdnT17VrJlyybp06cP2MKJGzHBB2LJEhH8xEqh+KlbmuKnRkXxs0dF8XPBjjKjh0VW9qw04nf16lU5f/688RJ/5fTp05IrV64Ef/Z3nC+f8VcX582ZM2cCH9JfrV3NdNeuXbtmd6j7o44ePSobNmyQpk2byq5du6RQoULy+++/S6tWrSRjxoyyb98+6dGjh8TFxfk9OcXPC00Yid/dhe6WJmWaJGi3GRtmyP5T+xP8DgJWvUR1SZ8uvew7sU8+3vixOF2wyo1VpH7p+jJr8yzZ9vs29x0swBEUP3ucfOjo2ZEVWekJ6GuyX9mzCiZ+kydPlpEjR0rx4sXl8uXLMn36dClYsKDnBdeuXSvt27eXkiVLGkeZNGmSVKxYUXwdh2CWL5956623ZPXq1ZIhQwYjmFOmTDGi9+yzzxqZ/O2336RZs2YB3UdPIHjNVBW/2bNny/Lly2XEiBFy5MgRI35vvvmmwHgHDx4shw8flqJFiwpsOXv27D7fPcUvPMUP0lepWCU5d+mc5w1+svGTBOJXKm8pibs3Ti5duSSXrl6S7Jmyy6KfF8meE3uk3i31BH9PJ+nk862fy4YjG4L3Xhc1KH4uYCWqyoeOnh1ZkZWegL4m+5U9q0DiB9HLlCmTnDhxQvLkySOdO3c2DtK7d2/PC9avX1+6d+8u+BcOM378eFmwYIHP4yBziX1m69atcscddxjhy5o1q7Rt21bKlStn5BLn+fTTT2XFihXSrl072b59u/5Ck1EzVcXPeZ+A44jfM888I/Xq1ZOWLVuayA+Genfv3i233HILxS9Yw4ZRxK9t+bZSMm9JeXv523L56mXzk7i0vLullC1QVj5a/5EcPnNYqpaoKodOH5IsGbJIo9saSeYMmU0kcPbW2bLxyMZgV+/q7xQ/V7gSVOZDR8+OrMhKT0Bfk/3KnlUg8duzZ4/xDzgHyqhRo2T9+vUmqueUEiVKGDHDv+vWrZOGDRvKqlWrfB4Ht0nsMxs3bpTq1asb50E6G44vXbq09O3bV+69916pU6eOLFu2TLp06SLdunXTX2gyaoZc/C5cuCALFy5M8pYaNGggWbJkMb/3Fr8WLVoIfhDmRClcuLDEx8dLqVKlKH7BGjaMxO/Fyi/KDdlvMO8YAo8o3tSfpia4gpeqviT5suYzUpgxfUY5cvaIzNg4Q05eOGnqPX7343JHgTsofsHaPZX/zoeOHjhZkZWegL4m+5U9q0Dih9Sz5s2beyJt06ZNk6VLl8rEiRM9L5g7d27zd0QC0Q61a9eW+fPn+zzu1KlTPn1m0KBBRhpvvfVWE+Hr06ePOU+bNm2kQ4cOxnkyZ84s8+bN019oMmqGXPwQMn3uueeSvKUJEyaYUGpi8RswYIAALGz3ypUrki9fPhN2ReQPFoyh4cSlV69enl9xcscDvlkE6RRL9i4R/ISqYAi3QPYCsubgGqlcvLIZxp2yforsPbHX8xJdq3WVPFnyyMHTB4383ZTnJtl8dLPM2jKL4heqhkiB8/Cho4dKVmSlJ6CvyX5lzwril7jUrFlTatSoYYZfkVaGiRcISCENDaVr166eQ2rVqmV+X6FCBVmzZo3AWWbOnOnzOAzz+vMZRAn3799vooWI9C1evFjKli0r8BnnOGckVH+1djVDLn6at+Ed8Zs7d66MHj3aRAlnzZolw4cPl5UrV/o9DXP8vNCEUcTv5nw3m/y+I2eOiDOsuu7QOpmzfY7nDbcp30ZK5ystw1cON3X71uorZy6ekXdWvEPx03xw0qgOHzp68GRFVnoC+prsV/asgk3uKF++vIwdO9bk3WFksn///gIx3Lx5s1SqVMkMvxYoUEB69uxpcv0wA3fgwIHi6ziMeCb2GUQQMbSL4WIEtiCQc+bMMdE9tOuYMWPMpJEqVarIgQMHzETXlC5pJn6Y4YvkRhh348aNZcuWLea/v/nmGwPAX6H4haf49arZS7JmyCoLdy80s3ZzZcklE9ZOkGK5ikmtkrXkh30/mOHdBrc2kJ+P/2yE757C95hcPuT0oXCoN6U/7nbn50NHz42syEpPQF+T/cqeVTDxQ/CpdevW5gWaNGkiM2bMEOTlQf4wdIv8P+TooeTNm9cEpvLnzy++joP4+fIZiOJnn31mJrC++OKLJr8P0b2HH35YDh06ZM7dr18/M8s3NUqaiJ+vC0MItEiRImamTKBC8QtP8bu3yL3yUJmHjNyhYIgXQ70Nb20oVW+sKvG/xhsp7FSpkycXELN7x64ZK8fPHzfHtLirhdxZ8E7m+KXGJ9/Fa/Cho4dFVmSlJ6CvyX5lzyqY+OHM586dk5MnT5o8Pl8Fs38PHjxoJnh4rz/s7zhfPoPhXJwHUT/vgvMiCBbMffQEgtcMG/EL/lav16D4haf4Oe+qRO4ScvLPk3Lqz1N+mzR/tvwmB/DA6QOeNfy07W9bj7N6bckJFyV2gY4PaD0ssiIrPQF9zcT9SiN++rNHR02KXyS3Yxjl+IU7RoqffQvxAa1nR1ZkpSegr8l+Zc+K4peUHcVP35/CrybFT90mFD81qiQV+dDRsyMrstIT0Ndkv7JnRfGj+Ol7TyTUpPipW4nip0ZF8bNHxWFxF+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhQ/ip++90RCTYqfupUofmpUFD97VBQ/F+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhS/MBG/y5cvy8WLFyV79uyed+Trd76aOnEjJvhALFkigp9YKRQ/dUtT/NSoKH72qCh+LthRZvSwyMqelUb8rl69KufPn5ccOXL4faHTp09Lrly5Evzd33Fnz56VbNmySfr06RPUh+ccP35cChYs6Pk9zpszZ05Jly6d/iKTWTPdtWvXriXzHOrDr1y5Ips2bZJJkyZJhgwZZMSIEeLrd4FOSPHzokPxU/c9ip8aFcXPHhXFzwU7yoweFlnZswomfpMnT5aRI0dK8eLFBWI2ffr0BGK2du1aad++vZQsWVL27dtn/KVixYri6zjIW6tWrSRjxoymbo8ePSQuLs7z5rt16yYbN26UhQsXyvbt22XAgAFGDlG3Q4cO0rp1a/2FJqNmqorfmTNnpF+/frJmzRqpUKGCET9fv6P4KVuU4qcEJULxU6Oi+Nmjovi5YEeZ0cMiK3tWgcQPopcpUyY5ceKE5MmTRzp37ixFixaV3r17e16wfv360r17d8G/s2fPlvHjx8uCBQt8HgfxQwRv8ODBcvjwYXMuRP8wujl37lwZN26ckUuIH0SvTJky5tw7d+40//3nn39K5syZ9RdrWTNVxc95j2PGjJFdu3YZ8Qv0O1/XxIgfI342fZ3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH579uyRevXqye7du80LjBo1StavX2+iek4pUaKErFixQvDvunXrpGHDhrJq1Sqfx0H8cL6WLVsKBlMRzXPO3bFjR+nbt68MGjTIiB+ifZBOSCbOV61aNTlw4IAUK1ZMf7GWNVNE/A4ePGiiet4FY9h16tQxv6L4WbZW4sMY8VODpPipUSWpyIeOnh1ZkZWegL4m+5U9q0Dit2HDBmnevLkZdkWZNm2aLF26VCZOnOh5wdy5c5u/I3qHdqhdu7bMnz/f53GnTp2SFi1aSLNmzczxhQsXlu+//94M90ImEVl84403jPht2bJFqlatKk2bNpWVK1fKjh07TLQQrpTSJUXED/bqHc3DRdx4440ybNgwV+K3bNkyWb58eRIGvXr18vyOkzse8M0iSM9ZsneJ4CdWCsXPvqX50NGzIyuy0hPQ12S/smcF8UtcatasKTVq1DATOjAMi0kaiNY53tK1a1fPIbVq1TK/R3oaAlqI1M2cOdPncRA3iGKXLl3M/IV8+fLJrFmzTJSwUqVKcvLkSSN4GObFkDH+f968eVK6dGkjkvv379dfaDJqpoj4BXs/jPgFI6T8OyN+SlDM8VOD8lGRDx09PbIiKz0BfU32K3tWwSZ3lC9fXsaOHSvlypWTBg0aSP/+/QViuHnzZiNrmJBRoEAB6dmzp8nHQ0Ru4MCB4uu4CxcuyOjRo01ED8I3fPhw+fbbb80QLgqGkfE7/G3OnDkmgoiAGKKBiDROnTpVf6HJqJlm4odxbwBwCmQw8e98XRdz/LyoUPzUXZ8RPzWqJBX50NGzIyuy0hPQ12S/smcVTPww6cKZTdukSROZMWOGmXkL+cPQLbykevXq5g3kzZvXDMvmz5/fTNZIfBzEr3HjxmYYF9HEb775RqpUqeJ586tXrzZ5fhBDzORFXUQIf/31V4mPj0+V/D68mTQRP30TJq1J8aP42fQfip8NtevH8KGjZ0dWZKUnoK/JfmXPKpj44cznzp0zw67I4/NVMBMXcxcwwcN7vT1/x2HItkiRImbyRrCCukiFi9p1/IIB0Pyd4kfx0/STxHUofjbUKH5uqfEBrSdGVmSlJ6CvmbhfacRPf/boqMmIXyS3I4d61a1H8VOjSlKRD2g9O7IiKz0BfU32K3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFxWNwFO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+IWJ+J05c0Zy5Mgh6dKl87yj48ePS+7cuSVDhgwBWzhxIyb4QCxZIoKfWCkUP3VLU/zUqCh+9qgofi7YUWb0sMjKnpVG/K5evSrnz583XuKvnD59WnLlypXgz/6OO3v2rGTLlk3Sp0/vqX/58mWB++TNmzfJSxw7dsy8dpYsWfQXmoya6a5du3YtGce7OvTo0aOyYcMGadq0qezatUsKFSokv/zyizz++ONSsGBByZgxo9x3333St29fv+el+Hmhofip+x/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICOZs+fbrxEaesXbtW2rdvLyVLlpR9+/bJpEmTpGLFiuLrOASzWrVqZVwGdXv06CFxcXEyfPhwGT9+vFSpUkVOnToleE+33367eQnUK1eunPznP/+R6tWr6y80GTVTVfxmz54ty5cvlxEjRsiRI0eM+A0aNEguXbok/fv3lwsXLhhLPnDggBQrVsznZVH8KH42/Z3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH4QvUyZMsmJEyckT5480rlzZylatKj07t3b84L169eX7t27C/6Fw0DgFixY4PM4iB8ig4MHD5bDhw+bc2E0M1++fCbah6genAf+M2rUKLl48aK0aNFC9uzZI++//350ip9DEnAc8UN4Ff+fNWtWmTNnjrz88ssmGug9DOzd5BQ/ip/+FvBXTYqfDTWKn1tqfEDriZEVWekJ6Gsm7leBxA/CVa9ePdm9e7d5AcjY+vXrTVTPKSVKlJAVK1YI/l23bp00bNhQVq1a5fM4eAvO17JlS8FgKoZ6cW6IH37OnTsndevWlZdeesnUge/g//G6/fr1i1zxQ9Ru4cKFSVqpQYMGnvFrb/FDRVjv0KFDZdiwYfLll19KnTp1/LYyxY/ip78FUPxsWCU+hg9oPUWyIis9AX1N9it7VoHED6lnzZs3l+3bt5sXmDZtmixdulQmTpzoeUHMPcDfEb1DO9SuXVvmz5/v8zgM4yKC16xZM3N84cKFJT4+XkqVKiX//e9/pV27dnL33XcbscQ5EOyaOnWqkcmIFj+ETJ977rkkrTRhwgQTSkXxFj+IIkBlzpzZWC/gOmXZsmVmaDhx6dWrl+dXnNzxgG8WQT4nS/YuEfzESmHEz76l+dDRsyMrstIT0Ndkv7JnBfFLXGrWrCk1atQwEzqyZ88umKQBL0EaGkrXrl09h9SqVcv8vkKFCrJmzRoZMGCAzJw50+dxGOaFKHbp0kWuXLlionxwou+++87k/r333ntmTgNKtWrVBPMebrjhBvnxxx+lTJkyJr8Q+YMpXVI1x8+5GG/xgxDOmzdP5s6dq7pWRvy8MHFyh6rPoBLFT40qSUU+dPTsyIqs9AT0Ndmv7FkFm9xRvnx5GTt2rJlggZFJzDeAGG7evFkqVaok3bp1kwIFCkjPnj1Nrl/OnDll4MCB4us4BLJGjx5tRj1nzZplJnVgmBhBr0WLFknlypU9F7J//34zrwHl6aeflk6dOsk//vEPI5QpXdJM/GC6mDmD0OeUKVMSXOeOHTvktttu83ntFD+Kn82HguJnQ+36MXzo6NmRFVnpCehrsl/Zswomfgg6tW7d2rxAkyZNZMaMGbJx40Yjfxi6RY6eM9sWS7GsXLlS8ufPb4JViY+DyDVu3Fi2bNlioonffPONiegl9pmnnnoqgfc89NBD0qdPn8jN8dM3j11Nih/Fz6bnUPxsqFH83FLjA1pPjKzISk9AX9PN5A7nrJh0cfLkyQSpZt6viNm/Bw8eNBM8vCee+jsO0bwiRYqYmb/hWNIk4pccEBQ/ip9N/6H42VCj+LmlRpnREyMrstIT0Ne0ET/92aOjJsUvktuROX7q1qP4qVElqcgHtJ4dWZGVnoC+JvuVPatgQ736M0dPTYpfJLclxU/dehQ/NSqKnz0q5kO6YEeZ0cMiK3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4kfx0/eeSKhJ8VO3EsVPjYriZ4+K4ueCHWVGD4us7FlR/Ch++t4TCTUpfupWovipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4hfl4vdWx44iu3fre0ik1yxdWuSWWzxXcezYMcmfP7/qqn4+/rPsPh47rErnKy3jho7zsOGNVNVNTCWyIis9AX1N9iuy0hPQ10zcryh+YSJ+Z86ckRw5cki6dOk87+j48eOSL1++oK2buBG9G7l/u3byxpQpQc/BCrFHIK5LnEweMZniZ9H0fEDroZEVWekJ6GuyX9mz0ojf1atX5fz588ZL/JXTp09Lrly5EvzZ33Fnz56VbNmySfr06RPU9+c+uXPnlgwZMugvMpk10127du1aMs+hPvzo0aOyYcMGadq0qezatUsKFSok27ZtkyeffFJKly4t586dk9atW0vLli39njOg+PXvb84Rq+XEiROSN2/eWL38gNedPXt2ef311yl+Fr2DDx09NLIiKz0BfU32K3tWwcRv8uTJMnLkSClevLhcvnxZpk+fLgULFvS84Nq1a6V9+/ZSsmRJ2bdvn0yaNEkqVqwovo5DMKtVq1aSMWNGU7dHjx4SFxcnvtznl19+kccff9y8Furfd9990rdvX/2FJqNmqorf7NmzZfny5TJixAg5cuSIEb/hw4dL0aJF5YknnpBFixZJt27d5KeffrISv2RwiIpDeXPQNyNZkZWegL4m+xVZ6Qnoa7Jf2bMKJH4QvUyZMgmCJnny5JHOnTsbH+ndu7fnBevXry/du3cX/AuHGT9+vCxYsMDncRA/RAYHDx4shw8fNudC9O/f//53EvcZNGiQXLp0Sfr37y8XLlwwEcIDBw5IsWLF9BdrWTNVxc95j4DjiJ/zu7Fjxxqgbdq0MZD9lUARP0sGUXMYbw76piQrstIT0NdkvyIrPQF9TfYre1aBxG/Pnj1Sr1492f2/uQGjRo2S9evXm6ieU0qUKCErVqwQ/Ltu3Tpp2LChrFq1yudxcBucD6OWGEzFUC/Ofcv/cvG93QdDy/j/rFmzypw5c+Tll182I6HeKXD6q3ZXM+TiB3NduHBhknfRoEEDyZIli/m9L/FDFBA2jSE5X8c7J6T4+W9g3hz0nZ+syEpPQF+T/Yqs9AT0Ndmv7FkFEj+knjVv3ly2b99uXmDatGmydOlSmThxoucFkX+HvyN6h3aoXbu2zJ8/3+dxp06dkhYtWkizZs3M8YULF5b4+HgpVaqUT/e5ePGiDB06VIYNGyZffvml1KlTR3+hyagZcvFDyPS5555L8pYmTJhgQqmJxQ8XW7lyZRPexLGY4OGEO5ctW2bCo4lLr169PL/iB+IvOmSh/ySQFVnpCehrsl+RlZ6Avib7lT0riF/iUrNmTalRo4aZ0IFgEyZpICCFABRK165dPYfUqlXL/L5ChQqyZs0aGTBggMycOdPncRjmhSh26dJFrly5YnwGXuNM8vAOeiFIBknMnDmzINIIsUytEnLx07xx74t/5ZVXTCQQifdbtmyRunXrysGDB/3OcGHEzz9h3hw0ve96HbIiKz0BfU32K7LSE9DXZL+yZxVsckf58uUFqWblypUTjEwi5w5iuHnzZqlUqZKZd1CgQAHp2bOnSUPLmTOnDBw4UHwdB5kbPXq0GbWcNWuWmcOwcuVKz5v3dh8Ew+bNmydz587VX1yIaqaZ+GGWC2azQPY6dOggO3fuNOY7ZMgQk+fnr1D8KH6h6Pu8keopkhVZ6Qnoa7JfkZWegL5m4n4VTPwgXlhNBKVJkyYyY8YM2bhxo5E/DN0iR6969erm71g1AyKH9XJ9HQfxa9y4sfEaRBO/+eYbqVKlSgLxc9ynXbt2MiXR8nM7duyQ2267TX+xljXTRPx8vddDhw6Z8fDE694krkvxo/hZ9vUEh/Gho6dIVmSlJ6CvyX5FVnoC+ppuxQ9nxjJwJ0+e9Dvcitm/GInEBA/vyRf+jtu/f78UKVLEzPwNxxI24qeFQ/Gj+Gn7SqB6fOjoKZIVWekJ6GuyX5GVnoC+po346c8eHTUpftHRjuYqeCPVNyZZkZWegL4m+xVZ6Qnoa7Jf2bMKNtSrP3P01KT4RU9bUvxctCVvpHpYZEVWegL6muxXZKUnoK/JiF9wVhS/4IwipgZvpPqmIiuy0hPQ12S/Iis9AX1N9it7Voz4JWVH8dP3p7CvyZuDvonIiqz0BPQ12a/ISk9AX5P9yp4VxY/ip+89EViTNwd9o5EVWekJ6GuyX5GVnoC+JvuVPSuKH8VP33sisCZvDvpGIyuy0hPQ12S/Iis9AX1N9it7VhQ/ip++90RgTd4c9I1GVmSlJ6CvyX5FVnoC+prsV/asKH4UP33vicCavDnoG42syEpPQF+T/Yqs9AT0Ndmv7FlR/Ch++t4TgTV5c9A3GlmRlZ6Avib7FVnpCehrsl/Zs6L4Ufz0vScCa/LmoG80siIrPQF9pB02ZwAAGxpJREFUTfYrstIT0Ndkv7JnRfGj+Ol7TwTW5M1B32hkRVZ6Avqa7FdkpSegr8l+Zc+K4kfx0/eeCKzJm4O+0ciKrPQE9DXZr8hKT0Bfk/3KnhXFj+Kn7z0RWJM3B32jkRVZ6Qnoa7JfkZWegL4m+5U9K4ofxU/feyKwJm8O+kYjK7LSE9DXZL8iKz0BfU32K3tWFD+Kn773RGBN3hz0jUZWZKUnoK/JfkVWegL6muxX9qwofhQ/fe+JwJq8OegbjazISk9AX5P9iqz0BPQ12a/sWVH8KH763hOBNXlz0DcaWZGVnoC+JvsVWekJ6GuyX9mzovhR/PS9JwJr8uagbzSyIis9AX1N9iuy0hPQ12S/smdF8aP46XtPBNbkzUHfaGRFVnoC+prsV2SlJ6CvyX5lz4riFybid+bMGcmRI4ekS5cuwTs6duyY+X2WLFn8tnLiRuQH4i9UZGF/c9AfGXs12a/0bU5WZKUnoK/JfmXPSiN+V69elfPnzxv/8FdOnz4tuXLlSvBnf8edPXtWsmXLJunTp/fUD1QXf0t87gsXLkiGDBkkU6ZM+otX1kx37dq1a8q6ya529OhR2bBhgzRt2lR27dolhQoV8pxz3759Uq5cOfnPf/4j1atXp/hZ0ObNQQ+NrMhKT0Bfk/2KrPQE9DXZr+xZBRO/yZMny8iRI6V48eJy+fJlmT59uhQsWNDzgmvXrpX27dtLyZIlBZ4yadIkqVixovg6DsGsVq1aScaMGU3dHj16SFxcnM+6EL2nn35aTp48aQTxb3/7m/Tv318gjRs3bpSePXtK165d5dFHH9VfvLJmqorf7NmzZfny5TJixAg5cuSIR/wuXrwoLVq0kD179sj7779P8VM2XuJqvDnowZEVWekJ6GuyX5GVnoC+JvuVPatA4gfRQ0TtxIkTkidPHuncubMULVpUevfu7XnB+vXrS/fu3QX/wmHGjx8vCxYs8HkcxA+RwcGDB8vhw4fNuSB2OHfi18DfVq9eLWPHjhXE37744gt55JFHZNOmTfLRRx/JnDlz5J133ol88XNIAo63+L388stSt25dGTVqlPTr14/ip+/jCWry5qAHR1ZkpSegr8l+RVZ6Avqa7Ff2rAKJH4JN9erVk927d5sXgIOsX7/eRPWcUqJECVmxYoXg33Xr1knDhg1l1apVPo+D2+B8LVu2NDKHSN6SJUtMxDDxayDCuGbNGkFE8cYbb5RBgwZJo0aNPK/brFkzefLJJyND/DAuvXDhwiSt1KBBA0/unrf4waBhtlOnTjVAvcVv2bJlJkLoXbJnzy7nzp3T9wLWJAESIAESIAESiEkCvpyhZs2aUqNGDZN61rx5c9m+fbthM23aNFm6dKlMnDjRwyp37tzm74jQQcBr164t8+fP93ncqVOnzOglpA2lcOHCJnr30ksvJXmNK1euyPfff2+ihxBKDAv/8ssvnrkPESV+CGc+99xzSTrYhAkTTLgTxVv8qlWrJsj9u+GGG+THH3+UMmXKmDF2jKFrSrDxe805oqUOWehbkqzISk9AX5P9iqz0BPQ12a9ShhUmdEAMMbkCXoI0NBTk1jmlVq1a5vcVKlQwEboBAwbIzJkzfR6HYV6IYpcuXQRily9fPjl06JDkzJkzyWvs37/fBMOGDh3qkUQEum699Vbz/xElfprm8RY/XDyihChIdOzUqZP84x//MFA1hR+IvyiRhabHXK9DVmSlJ6CvyX5FVnoC+prsVynHqnz58ibPDpNLMTKJCRaICG7evFkqVaok3bp1kwIFCpjJFsj1g8QNHDhQfB0Hlxk9erQZ9Zw1a5YMHz5cVq5c6bMu0t0++OADWbRokfz666+CINjBgwfNTN6oFT9E+bxnzuBCH3roIenTp0/AHL/Ezc8PBMVPf0sgK7KyIaA/hvcjstIT0Ndkv0o5VnPnzpXWrVubF2jSpInMmDHDzKqF/GHoFrl5zkojefPmNSKXP39+8XUcxK9x48ayZcsWszzMN998I1WqVPFZF5NaMZkEQ70IdEE4kRvoFET88L7++c9/6i9eWTNVZ/Uq35OravxAUGZcdZj/VWa/0VMjK7LSE9DXZL8iKz0BfU2bfoV5A5h9izw+XwWzfxGNwwQP7/WH/R2HkcwiRYokWIPPX93jx4+b4WEn0qe/UvuaES9+mAACM2cRIQt9LyArstIT0NdkvyIrPQF9TfYrstITCF4z4sUv+CWyBgmQAAmQAAmQAAmQAAhQ/NgPSIAESIAESCBMCGDpkMWLF8vdd98t999/f5i8K76NaCJA8Yum1uS1kIAFAeS2YHuhO++802w1xEICJJCyBKZMmWLWeHMW7EX+F/Z2xWQArG6BmaTYEqxjx47yr3/9K2XfDM8ecwQofjHX5LxgEviLAGamYc2q2267TXbu3GnyRP0lOJMbCZBAaAj8+9//Nlt/ffnll/Lf//7XrGaBfeoxk/OZZ56RsmXLyttvv21mg+7duzdVE/9Dc4U8SzgToPiFc+vwvakIYLYVNraGvLAEJoCV4bGHJNanwuw0RB0ge5ithqUEsI3QmDFjiJEESCCZBLAMyLZt28wSIYnLpUuXzDZd2Jf1+eefl3bt2pnoH5Y027p1q9xxxx1mKQ9E4LFw8M0335zMd8PDSeAvAhQ/9oaIJoAt/7CSOm6QkJfPPvuMw5WJWhRDuViMFP9iRXkU7AGJKAM2KMdwEvaibNq0qVk1Hn9jIQESSB4BCBuid85Q7bfffmuifLly5ZL33ntPXnvtNbPW27hx48zWYVhAGDtCvPXWW2Yv2GPHjpn145DvV7JkyeS9GR5NAl4EKH7sDhFDAHkwyHvBYpdt27Y1+xpif2fsc3jmzBlz48Sq6dh7kUXMwqPYBhGrzGfNmtUMKWGFeGxPdNddd5nI38MPP2xWlX/nnXfkjz/+kNKlS5tFS1lIAFEpfDFgsSOAL1LYpABfrH777TezFyty+z788EOzVRci7Ii84+/YphT3LtzXevXqZYaAcb97/fXXjTyykEAoCVD8QkmT5wo5gWvXrsnnn39uFs/EN2bkviABGsMjt99+u+fmiZ1gcCPF3+vVqxfy9xEJJ/zzzz/NNkFggYfJ+vXrzUbk4IUHDCKiGFq66aabzOryTz31lFkDE3tRPv7444LoKbYlQnI5S2wTmDdvnukP+KKFggVsOfFH3ycQrcNnDl+4lixZIl9//bUUKlTI7N/at29fk0+LL1qYuQvJw+8feeQRefTRR82XMByPyR74YSGBUBOg+IWaKM8XMgITJ040ex5iRXPIzIkTJ2Tt2rUmJ+25554TbGgNifnoo4/MDfOrr76SadOmyaeffhqy9xApJ8KQUcWKFU2OEP4bogwJxNAtIgy1a9c2Q06I9L3wwgvy//7f/5OPP/5Y8IA/cOCAGVrCrF7kFkVDwSxl7Kl5ww03RMPlpPo1YLN55HvOmTPHfInARvP4F8OQLDoCiNhh9wZMzsAWX0it2LFjh4wYMUIee+wxs0UXhnixzRciexi1QIQV0UAWEkhJAhS/lKTLc7sikDhiBYFD0jOGJjFsed9995lvwunTpzc5L5jxhm/NiP5hNhxEETPj/va3v7l63Uis7ERC8eCIi4sTbPszbNgwmTRpkokYIH8IQof/x5Ad8iAhzC+99JKRZ0yGwUMcD59oLLh+bIOE4TWkAuDLwz333BONl2p9TfjihMk9+HKAgqgT9hjFfqSIDmPYEdEo1CtWrJj5YoChSmcJEusXjsADMRSLFJLMmTO7evf4soX71rPPPmvSKLAvKzg/8cQTsmfPHsHsXnzZghiykEBqEaD4pRZpvk5AAr4iVhC5fPnymUhfnjx5zLBkv379pH79+kZkIC/YlxEbamPoBMOaeJBFewEXSBxm5SKi9d1335mNw8GgRYsWRpYRWcCDGhFAcEEEEPW7d+8uQ4YMMUNQ0VwwmQU5Vg888IBhgXxQZxgtmq/bzbVh9jYio/gCgC8OGP7H5w1fDLB5PIYq27RpI0eOHDGnnTBhgskLxWcw1gr6Uvv27c3nCZOkXn75ZRMtx1AtZBii7Kv88MMP0rt3b/N5BedBgwaZLyAQSczqTc39WWOtzXi9/glQ/Ng70oTArl27TD4ZhjmQ1Ay58xWxwkKmuNlipimiV0uXLpWpU6cakfn999+jLoqD6CYeKP/4xz/8tgseNEgABwNEP++9916zBMuMGTPMwxoRQCwFsWjRIvN7SOErr7xiEs2jqYDDLbfcYnIUUTC0hl0PSpUqZQQGsyrxRQA8ISzI/8QEFyfCFU0s3F6LE0XHlylEht99910jyJh1irQKMEKkFLNK4+PjDVMM+yJfDUOVsVQuXrxo8h0R/cSsW3yWkPMIkcNae8g9RkqKrwLO6J/z5883X17RRzE5jYUE0pIAxS8t6cfoa1erVs1cOW6cmHiA4SXknOGhnThihbX5Ro0aZYZwIYdr1qyJ+skbmLSCIVhENn0NAYEDxAazb7E0BMQZES4McUOeEUmALNepU8cMiWPoLhoLchiR14kvAugXiOhVqVLFPISxrA9EZvXq1ebvKMgLxXBdLEz+wXCiv2iSwwp9A8O4mHiALwn4YoChcRRE+jCbFEOT+BsW+UYe2uDBg80kqlgp+HKBtAF8DpFWgVQTpJXUrVtXfv75ZzNrHvcsfEH1FUVHSgYi7SwkEE4EKH7h1BpR8F4gJYgU/P3vf/d7NfjGjGgdhiwxxIuoDKQPy44kjlhhvSt8u46VteUwrIZJGsglwkMXEuirIEfIiYQimlWmTBkzJAf2eEghuhXNBf0FXxgwBIeht1atWpk+Ai4QFQx346EMLhjmhfwiZ+2f//ynOSZaC/JksUQPeCDy66sgmgwBhty9+uqrsn//fiMzQ4cOFQxNYvauM7SJCR4QQMgeIqj4MhHNBfcl8EDeHT6D6DcY+sYCykgbwHCvM8EMQ9+VK1c2bDB6AT4okD1ESfHFBJM13nzzzWhGxmuLQAIUvwhstHB+yxh+hHQgEoOZpL4KvjkjOoMJGyidOnUyN1rMZovWiBXkFcPbvoQMw0B46EKCMTSLSA0iCpi44m8dNRzjRELBEJEtJJHHwpIbyI9CjhUiePiygJncGHLDMGXVqlVNn8LEDvBDP4MAIsqHSBc4Ycgt2gqivxAV9CGIP3L2/EV6Ib+I7CH3E9KMek7eGiJaOB7pAWCVI0cOM7kKKQXRXhDdQ3/Cly18sUDuLKKi+OziM4mJGPicYtgX/Qz5eriHQfDACkPkiC7jc47hXXBGZJ6FBMKNAMUv3Fokwt/P999/b4TvwQcfNDkx/vJZsKwIbrSI8GG4CWtb4UaLHSSiKWKFGbXIx8NwEGYfI1qAgocpZAWRGUQSkCeEJTTwg7wqREwRRfA3gxLnxaznWImEen8sMASOhHkwQorABx98YPIcnegKJv0g9w/bZaE/4YGMLxaoE62TWhDpRCQPi5ij/2C/ZXyuChQokOSOgn6FoWB8ycISIkgXgLAgCujkqmFhdLczWMP91oVFlL3zXBEdR/9Af0JED/cdJwcUE1gQQccyR5BBsEUkGfc1yB4iq1jjEGLXoUMHM8kK/Q1fXrm9Wrj3BL4/ih/7gIoAHhCIBmDdvMTFO2KFpUSQ+4K8oUDr6SFBHEMqw4cPN0MjSKCOxvWrvvjiC/OAhdRiPS88MBAVRcQFD1w8PDBEhMkYYIwHMoQQDxlwxQPZmwuSwzEEjAcUZufGYoFEY005DDtichAWucVDF79HZA9sMBnBWXw4Fhhh0W2s14g+gWgfIniIgPoq6GfIhYTw4IsImN1///0B0zMinSHSAjAEjhUA8GUUnyt8BpGbB06YAIRZ8Pj8IbqJiB/6GKLq+PKF1AFEmnEM5A9Ls7CQQKQSoPhFasul0vtG/hiicbj5YfjH2doLa1DhJoi19BBJ8Y5YYbkCrPvlLFzq663iwYSbbLSvX4WIAqIneOggaoBhIuQGIVKA4SFEPDE0hAcwojPIscJDB1EsbKWGBwwmtmA5CByLYSes8A/piYVhXV99B5NZ8KDG0BvYIY8PsoydSNAPMbkFs1VjqeBLAqJ+EGBENSG++Oz6i7gjCoroHmbvOsPj0cxr69atRuzQVxDpc6LGTZo0MV+4sNg3Pm8QZ/wOdZAj+dNPPxmmuPchMs9oXjT3kti5Nopf7LS11ZViNh8iTk7iN4ZoIX/IRYPANGjQwOTBJI5YIWkcUQV8U/aOWOGBgxmXeCD5Sz63eqNpeBDYgIuvJViQf4bkbvxA1jAEByF+8cUXjUyDG2QPy9Rg27Q33njDPIjxdye3CtE/PMQhfIgSxnpBhBisMJMZIoyoDB7qEL5YLugz+KLQpUsXE/3EDyZtJC7IsUV/gvxEc/EeicD9CFF3FPQXrCyAHD3k0jpRdnx+cT/DZBZEBDGbN1ruUdHczrw29wQofu6ZxdQRWHIFQyFYeR6zI7FgKaIp+HaMBzCKr4gVZu4iEojlH/AgwvAkIlfIscEDKVp210AeELZlQv6Qr3wq8MFDBA8dDD3ioQKxw2xJDHcj6gJ5gWBjAWbkC0XzrNNQfngQdQZzyvB1qshHw4QXRKkQicesefyLgvQCpF5g/2bMGocQot9Ga0GeJ0YevEciEAXF5Cp8VhFRd6LG+AKBCWbIT0a0HZOBEIn3N6M+WpnxumKHAMUvdtra6kqxnhyiULhZ4qYIQcEQJcQPDxbcIP1FrJy1xFAPuYHRMjyJ60LEAGsQIh8IEgfJ/fzzz33KH4a1sbI/Hr54qCCSABFEQjiGoHA8CwkklwC+iKEfIsIO4UNkD1G9kSNHmrw/fOFCZDoaC/LvsJsPlpPCPQoC7GskAsuxQPKcJW+Q+4ehXiwbhSFeFhKIBQIUv1ho5WReI4ZrMVMX66DhZgrhQfQO2z0hahVrEStcrzOxAJFQLOeA6AKGwP0VzL7Funt4+GL4CBEHRAshxFzgNZkdlId7CGAIF8vYRKvgORfqTMLAZweRcoxCIA8PuXqYLIUoO75sJc6dRR4kPrOY2YyJHYcOHTL5ttE625sfDRLwRYDix34RlACGS5APgygVvlUj9wxDkvjW7CxPEvQkUVQBD1Y8PH799VcT/cTyDkj8hgj7W+/MWVYEa3uxkAAJ2BGA2OI+hPQRFEQ28QUKM5qxfBQKtp/D7HfIoK/cWXxmsbwPUwTs2oBHRT4Bil/kt2GKXwEiXBiOxA0Ty64gVy1WlxJxYGMdPQzVbtq0yUTt8JABE2ffWO9GwVAv6vvLAUzxBuQLkEAUEMBQNj5rmFmLEQcMZSOSjglUmOyDLfqwtA/WdkQuI76sMnc2ChqelxByAhS/kCONzhNisWUkhWNyB8t1AhgqwnZzGDZCHiPy95y10yB6mI2LiAQeRsgrwtIZLCRAAvYEkB+LlQGczxnSUDAzF2s3Yp1RzJKHDI4bN87s2sJCAiSQlADFj72CBCwJYK0vrNGHCTDI3Xv//felT58+ZlcJPISwXAt+mD9kCZiHkUAiApiBi2VXMNEM61gi9QRb8OGLFVYgQPoFZixDBllIgAR8E6D4sWeQQDIIfPzxxyah3Dt3D/umYq9YFhIggdATwOQNLMuCHTSwHeKSJUtMzh4LCZCAjgDFT8eJtUiABEiABMKAABaPx2QO5PVhzUumUIRBo/AtRBQBil9ENRffLAmQAAnENgHM7MXWa1hbNBr3947t1uXVpwYBil9qUOZrkAAJkAAJhIwAcmoxqQoTzlhIgATcEaD4uePF2iRAAiRAAiRAAiQQsQQofhHbdHzjJEACJEACJEACJOCOAMXPHS/WJgESIAESIAESIIGIJUDxi9im4xsnARIgARIgARIgAXcEKH7ueLE2CZBAiAlg72fM1CxUqJBZlJeFBEiABEgg5QhQ/FKOLc9MAiQQhMCIESPk5Zdf9tSKi4sTrNOWPXt2v0digWzs1oDjhg0bRsYkQAIkQAIuCFD8XMBiVRIggdAR+OKLL8wCvDfeeKNA+D7//HPZsmWLPP3002bvY3/l5MmTkjdvXunatasMHz48dG+IZyIBEiCBGCBA8YuBRuYlkkA4EqhcubL8+OOPsmbNGsE2XFeuXJH69evLiRMnJD4+3gz/Yg9WbMmVLVs2ad++vdmb9dy5cx7x6969u9kuD+KIul999ZUMHDhQxo0bJ7///rv07dtXHnjgAZk/f77ky5fPbPH19ttvy549e+SVV16R559/Xt59912ZPn26NGjQQGbMmCF33XWX/N///R+3AQvHTsP3RAIkkGwCFL9kI+QJSIAE3BJAXl+GDBkkV65cRvTSp0+f5BRPPvmkETHI2rZt22TOnDny6aefGjl0In6dO3eWm2++2QgehG/KlCnSrl07Wbp0qRw8eFCeeOIJs8tDlSpVZNq0aeY1OnToIF9++aUcPXpUjh07JoMGDTKRwzvvvFPq1Kkjo0ePlo4dO8r777/v9rJYnwRIgATCngDFL+ybiG+QBKKPwKVLlyRz5sxyyy23yO7du5Nc4JkzZ4wUYoeGmTNnyvnz503e3yOPPCIfffSRK/FDFLBJkyZGLhHV+89//mOifYjq4bWRUwjx27t3r5QsWVJKlCgh+fPnl59++in6wPOKSIAEYp4AxS/muwABkEDaEChdurT8/PPP5gdROxTk950+fVree+89KVq0qCff7/Lly0bGMCSMaJ0T8evSpYuRNUQF33zzTSNxL7zwQoKI39dff22ihOnSpZNHH33U5BK++uqrMmTIEPPaiPBB/JA7mDt3brn99tsla9asFL+06RZ8VRIggRQmQPFLYcA8PQmQgG8CjqRhKBay9t133wkmfGCmL4SucePGsmzZMhk7dqyZ9DF06FAZP368PP744x7xQ9QOkUOcA/I3ePBgI3PeQ70UP/ZAEiABEviLAMWPvYEESCBNCCCKh7w8TNhwSvPmzWXq1Kkm4oZJHxiiRS4eyoMPPiizZs0ykTvv5VwgfG+99Zapc//998sPP/wg33//vcnxa9mypTjih2hevXr1TMTvtddeM7l9mOQxatQoRvzSpAfwRUmABNKCAMUvLajzNUmABDwELly4YASsQIECUrBgwQRkMNN33759kiNHDilcuLBfasgJhBCiHgsJkAAJkIB/AhQ/9g4SIAESIAESIAESiBECFL8YaWheJgmQAAmQAAmQAAlQ/NgHSIAESIAESIAESCBGCFD8YqSheZkkQAIkQAIkQAIkQPFjHyABEiABEiABEiCBGCFA8YuRhuZlkgAJkAAJkAAJkMD/BzVXvkBuM/j+AAAAAElFTkSuQmCC", + "text/plain": [ + "\n", + "\n", + "If you see this message, it means the renderer has not been properly enabled\n", + "for the frontend that you are using. For more information, see\n", + "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ] }, - { - "as": "lead", - "field": "column_name", - "op": "lead" - } - ] - }, - { - "as": "sum", - "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum" - }, - { - "as": "lead", - "calculate": "datum.lead === null ? datum.column_name : datum.lead" - }, - { - "as": "previous_sum", - "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor" - }, - { - "as": "top_label", - "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "bottom_label", - "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\"" - }, - { - "as": "sum_top", - "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "sum_bottom", - "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum" - }, - { - "as": "center", - "calculate": "(datum.sum + datum.previous_sum) / 2" - }, - { - "as": "text_log2_bayes_factor", - "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor" - }, - { - "as": "dy", - "calculate": "datum.sum < datum.previous_sum ? 4 : -4" - }, - { - "as": "baseline", - "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\"" - }, - { - "as": "prob", - "calculate": "1. / (1 + pow(2, -1.*datum.sum))" - }, - { - "as": "zero", - "calculate": "0*datum.sum" + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" } - ], - "width": { - "step": 75 - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAIuCAYAAAAhXgWXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeUVEXahj+iCiomRMCAeQ2IYVFXWCMLImbFiIphzbKCimJCEHNAF8WEoCKYVkV+dM0LghhRFkRBZcEAZgWUIBL+89R4x56he27VnZ6Z7stb58xhmK6qW/XWd6ue/irVWr58+XJTkAJSQApIASkgBaSAFEi9ArUEfqlvY1VQCkgBKSAFpIAUkAJOAYGfDEEKSAEpIAWkgBSQAiuJAgK/laShVU0pIAWkgBSQAlJACgj8ZANSQApIASkgBaSAFFhJFBD4rSQNrWrWnAKZ+6dq1apVWpBcf6+5klbuyfPmzTPq1KhRo8pllLLUS5YssZ9++snWWWcdq1OnTs7aRfYQ2Uj5/6dMFlVHCkiBGlJA4FdDwuuxK4cCTzzxhB111FGush06dLDnn3/e/T5+/Hhr06aN+33nnXe2CRMmxAoyZMgQAwq6du0aG5dn8ux3333Xdtlll9j4+YgQAcuvv/5q9evXrzDL//73v7bjjjvaYYcdZk899dQKcb/77jt75plnbOONN7b27dvno3jBedBWX375pSvjuuuuG5yeBPfff7+ddtppLu0nn3xiW2yxRc58jj76aHv88cdt7Nix1rZtW1tzzTXt559/tt9++83q1q3r/fx8t30htIV35RVRCkiBWAUEfrESKYIUSK5AJviRSwRFN9xwg11yySUu4x122MEAobhQ3hNUUfxDDz3UgdNbb71lu+66a1zWefm8W7dutmjRIhs4cGAsqLz//vsOeDt16mSjRo1a4fkAa+vWrXOCYV4KHJPJwQcfbP/3f/9n7733nu20006JHrnddtvZhx9+aFdddZX94x//sLXWWisW/F577TX761//mhj88t32hdAWicRXIikgBbIqIPCTYUiBKlQgAr811ljDeW/eeOMN23333e2AAw6wcePGub9F4AcUXn/99c4D9uOPP9puu+1meIE6d+5sxx9/vA0fPtyV9KCDDrJhw4bZ4sWL7fLLL7cXX3zRAQUexTPPPNN5yaLBv3fv3vb000+7/ACZG2+80Ro2bFimxocffrh9//33hkexWbNmLh/CiBEjrHbt2i7d6quvbs8995y9+uqrdvXVVzuY2XLLLe2cc86xY4891sXff//9bcGCBS4OHio8V5dddplNmzbNeT35G55Nys7zAD8AZ6uttnKAtckmm9h1113nvGLU9/XXXzd0O/nkk+3222+3yZMn23333efq07RpU9tnn32sT58+tuqqqyauD+W54oorXLl4Pp42gPyBBx6wfv36ufbBM3vLLbc4EL3nnnts0KBBzhOIJ5U41OODDz6ws88+23knv/32W3vzzTedPpltRh1oh2zPW3/99V1b4/HzAb8ffvghcdt//fXX1qtXL/cc2mSPPfawc88919WHtqGOXbp0sZdfftkaNGhgn3766QptUYWvjLKWAlKgihUQ+FWxwMp+5VYgAr8jjjjCnnzySbvpppuc54epUICOzyPwi6YFN9tsMwcbQ4cOdeIx8AINAwYMcP8/5ZRT3P8BLeBo2223NdbXASPRtHEEfsTfe++9bfTo0S7ttdde6wb9zABYAToPPfSQgzDAlPDCCy848Pvb3/7mwO3SSy9107MEPHWAA2D06KOPOmjJnOplehJYJFC/SZMmlT5y6tSpDhApK2HDDTd03i1gkvDxxx9b9+7d7dlnnzWA6KyzznKQg/eMzy644AIHVtT9tttuc3omqQ9QBugCakznot8777zjptLxkuKl4zNAG8AE2gFdYBRA/Pe//+0eyxQu8aKp+6hOtG///v1dnFNPPdXVAZjP9jyg2xf8WPsHMCdt+xNOOMEefvhhV17WHQLd6PzNN99YpieacgP12FZmW6CLghSQAsWrgMCveNtOJS8CBSLwO++88xxI4QXCCwdYAHL8PQI/BuCPPvrI9tprL2NDwDHHHONgBM/LfvvtVwpWDPyAVKtWrRw0AR5sGsBLxlQrXhsGd6Z68fBddNFFzlN2+umnO2gEMDPDv/71LweheAtbtmzp4IaAZ4+AhwpQALbuuOMOu/jii+2MM85w9QHKAAi8l5ngx2d4CikHQEk9NtpoI5dfefBbuHChA2G8loDk9OnTnWcsc6p31qxZrq4E4BnNWHvWuHHjFdYA+tYHcEaL9dZbz9WBOuLBi+pTfqp36623duCJRxYA7tu3rwNmQAg4jsAPrx0giTctc53e3LlzK3yeL/hVtu3vvPNO++WXX4wvIywxOPLII52uwPg///lP5/HkywQ2gzdQU71F0NGoiFIgQAGBX4BYiioFQhXIBD+8YHfffbebzmVwxbsE3ETgxyCMZw24yAwvvfSStWvXrgz4jRw50g455BD3w5Rs+RB5/PAKMXjjsTnwwAPdFF7kSYzSRDtO8fYRF/CqV6+erbLKKrZs2TIHeEAWafm9fIi8RZngR/3wdgEP0eaGaL1bJvgBTExVE5hqZD0dnwOA5df49ejRo9SDRnxAED3xPmYG3/rg7QKKb7311jLps4EfkJ1rRy5wCzSTDk8cntAoZIIf3tOKnucLfpVtewAXrymex8wwf/5892WEtsPDeeWVV7qPBX6hb73iS4HCVkDgV9jto9IVuQKZ4Mc0H/DEVCHeL2Bs0003LQU/4AJvDoMvMAHQAG7ZwO9///ufbb755qVTuwAankTW/TFo4y3M3NxREfghMevlmA6mbEydAjnkQ4hgJpoSxgPI1CUgy/Qga+yAtkzwY1r7uOOOc+ve8DDNmTPH1l57bZdfJvhlbu6oCPxYlzZlyhR3XMznn3/uNoSw1g/onD179gpQ5lMfPKx49QDvRx55xOUTee7wYJb3+DVp0sTBEs/efvvtHZzixYv+DviVB/FM8GNquKLn+YJfZdoeGMdLSvjPf/7jPHuUn5AJfplT6AK/Iu+EVHwpUE4BgZ9MQgpUoQKZ4AdQRcd5MMWLBysT/CLwYVcsU3E9e/Z0JcPLxqaBCKyYbsWLxnQxoEheTNMxbbnvvvvaK6+8Urq5I9rVGwd+eL3wAhEAG7xTbEAhsLGBskZTqMAW6/0AGcrGZ8TJBD8gAo8agTVylCPyMPmAX7QGkPWOTO1SV2CZZwO4TKMy3czneEjLe+N86kP5qSNrGvFy4YllOpv/s56PTS/A5fnnn+/WHFIOtAfwmBqnnXg2gB1NF1cEfgB8Rc/zBT80jb4khLY9QEdZAXw8f9SP6WoCNkf90CIT/KId2FFboIuCFJACxauAwK94204lLwIFIvDjqBM2ZETeIdaBMZUJ+EUbMpiyPfHEE50niWlM1tsBJ6whA3YY5BmYCeyKZWqYKV3iE5iqZectnsBoqvftt992z4nAL1pzV146vGl4sQh48YA4IIvApottttnG/c7mEHbqRoG1bIMHD3br8yLvVnRkDXUHIvBQAUrAFGv9WJNImcsf55Lp8UMXyg3YRlPh5Z8NvAAurH9MUh/WUeLhiza+sKkDCCLfmTNnOqjFa0kA7oBqYDPaqcvfaRumRAHbv/zlLxV6/Ihf0fNYL+l7jh87p5O2Pe2HlgQ2/uDpBGD5woB3jzWcmeCHF7l8WxTBq6ciSgEpkEMBgZ9MQwoUkAIMskxlAm+Zt3xERWSHJcDCtCmfM90KWLEej+NIsqXJd/Xw5s2YMcMdqZLrYGOOcGENY3TsClO1zZs3d0XxPZCYaV3W60WbJEjL1Cr6sBmkRYsWrt6VDcAo0MpP+cDGE+rLbSSseyRwlMpXX33lvI0cdxIaKnpeSF6VaXt0pW7savYJ2drCJ53iSAEpUHgKCPwKr01UIilQ9Aowrcu0drRJAwgk4PnDq6UgBaSAFJACNaOAwK9mdNdTpUDqFWC9HFOkbFBhXRmbW1gvlw8vXerFUwWlgBSQAlWkgMCvioRVtlJACkgBKSAFpIAUKDQFBH6F1iIqjxSQAlJACkgBKSAFqkgBgV8VCatsi18BFrQvXbrUbS5QKEwFaB9CrsOVC7PUK5aKjRrR5pHKlJlNG9F5iZXJp6bT5kuPmq6Hni8FClEBgV8htkrKysQhvgxIHJKbGdiByhEmnH1WiIGr0ji0+IsvvijE4nmXiTPxGjZs6I5Ric4R9E5cQxE/++wz4ygaNoOUD5n14fzADTbYwB13ExI4BoZjYtg9XdnAWkYANPOu3rg8M+sX1Yfd2RxjkyTwfnFeIsffsJHmT3/6k/fu6fLPY9c4EMp5i1xTl8/AUT9cKcgB47l2ROdDj3yWWXlJgbQpIPBLW4sWYH04n4y7Vx977LEVwI8BmPPICjGkBfy41YObKP785z8nOn6kJtqGWzXYCML1ceVDZn04dDoJ+HEA8uWXX54VLEPre+GFF7qjUbihxDdk1i8foMM1cdzxTF54qjmPjxtXkhzvE4Ef90YDkPkM9AMcAcTdy7mOksmHHvkss/KSAmlTQOCXthYtwPr4gB/3j/bq1ct51zgol4OKmWLliisOAuaMOgZ5jge59957Dc8Bh89ymG55LwmH8HI1FTcRcEUaV4yRF+evceMEXsYtt9zSOLA3ukeWWyk42JarxbhB4cYbb3SwdPzxx7vrybjflgON77nnHgdQ5UO29Fxllq1eHM5MPhyayx24XJ3FHb0cABwdjszNE1xnhkeLOk+cONEdgNyxY0f75z//6c6cy1UfvE/khe4333yzOz6F39EKzx+HDj/66KNupy23VeApIs11113nysVZgtT7mmuusdVWW81ptNNOO7mbOzjMmbJywG/56VW8Tnh3OSyaA385CJgbR9CUA6zRnevCONT573//uy1atMj23HNPdygy9eX/2AAHMnM3MR6wI444wn1hyFUfyogOnBOIRtQF22G6k/alLdGMwOHY/IwZM8b69evnDskeMmSIKwOHMGNnHETNfbp4pAh8MUHvCRMmuC8o5J153h+fn3TSSS4ubQcE5tIxshnOQMys30MPPVTaLrQVOmCzlJ+Qy56j/KKr5mgb6kob0n4c8sxtLkAWz+ROZA7JfvDBB1075LKfXOAXtRd5c2g3B12jGxryLN5b/o7NcOcyh0SPHTu21BYA0egqPbytfLGi3bBNPJXY+9VXX+2AMLLTbHpkvnu52mfy5Mkr5Iu3G5jFRmlPoJZ+Ak8tt5NgS+w850YTDkfH40x7ciZlhw4dXNxc51YWYLerIkmBnAoI/GQcVa4AHTseCQbdzAAA0HFz48R2223nPDwMuHT+wAKDxsYbb+yuymIA5xBdIAjow6Ox//77uynkTACJruFisOa2CaZqgQwGKOCDAQnY4WYGbrFgUMQLwS0ZpAEIuVqNgRdPEjctcDvFKaec4jp+vE2AWmb44IMPsqbnZopc9QK++vbt68oFgJx++ukOLLndg6u9uE0Cbxfa3X333Q44mHYDkqgHZcxVH/Jhqo6BmYGLvDlIObpejAGXQe755593Xi8GdOADsAZa0ILBHfCgLdq2beuOZAF+uTGE68vQAPDODLQRgAGs0g4AG8+k3Wkv2pHDkLkNg1sxyJcBnvbnfmIGeUAFIAFegEvyARJy1QdgRB+05AsAdeBKsbvuustBDmUF/gn8H5sjP65OA9iAAOAY6Lvhhhucx4y/Uz9uMgGQKBcgSd58xhV1UeAgZ+wWmyQf0uXSMUrDM2jnqH4ASKQD+pMH7U27AFSUNZs9R/kRD72wWeCOskZTvbQf2nDvMvfynnPOOe6novchsp/yHr/IE0c+2C9X1mGnvF9AG2DMFwrsAFvFPviMv9GOvCfYNhD11FNPOcDnfTvwwAOdrWEfPJu65tIj8yggbDFb+9CmfFEsny8eWeAP++YLIDZIO3z66acO7vgCgC0C/nyB4P3ntpwjjzzSfRHk8HT6MQUpUOwKCPyKvQWLoPzAC+t6GOgzA4MB4Mc3awY7PFoE1hYBbayDYiBk0KcDjtIzTcaAw0ACsGQGPIQMHoMGDXJ/xgPBgE7HziAKSHLnK94RwIxrqhiMAJuoUweMuB2CuIAfnkMGIsrLoMYAkBnwUmVLz4CSq14ADs/Gq0jgKjcGLNaq4Y3Aq4jnDbgDpoA0AoMogzz55qoPAxia4YlhQI0GbCAM2GBNGl4foJRyowODNAMyoEBAP2ABDyy647kDFgjcmwtMRt5S/oYmgDllwquD1wio5Pm0ZXTfMHGBytVXX92BNLpGaYB6vGkAB+sRo6neyAOVrT6AX+QNJW9gBLijPLnAj3WD0VQvHkW+OAC1ESACqnj+gGYAAiilHnxBYEq3/Lq3zKletMmlY6bNZJvqxQ7xBHI7Cc9HB+5rzmXPmflhD3xp4ro9bD0T/Pgssm2Ah/eK9zHOfnKBH+8H0IZmaIXWfMng3aP+tDt2CrAy1cxZjnzJQjtsMZrqxatGHL4MsN4PO8ebD8BiF9n0yJx65h3N1j54irPly1Q4HtGovOiHvfE+8eWL9yZaB8t7whcYnkEdIk0BfYBQQQoUswICv2JuvSIpe9xUL5s+uM6LQZzAAMFAgJeIQQoA4Vs43ozatWu7acfoHtVosI6kYFAGcDIDgxKdPbCIp4xpJTp6rs4Cvuj4GVwZ4DMDAxyQwmBKANKYrmINVWYABrOl5++56sUUMHVjGo9AufFE4l1kmgqvFDrgsUILBiEC0Ma0JzCERzRbfSLwi+7YzQQ/puEABICPK8fI/9xzz3UDIAN5tNEGXYAQ6gr4AXnR1COeVjwieI6iEN31W37tVvR3vDPRNBlwy9QacFB+0wmDLCDHgFse/LLVB5thyjoCVupFedEHCMn0+AG6eKoywY9pvugqucw2ZTobjyW6A3YEvFrAKl6qzJAJfhXpGAd+EXREO8nRgXLksmdf8ENLoJnAlyDuFcbjlut9iOwnF/hF5cRLip60MYGyojHtC4Dz3nKDC3YGjJUHP+CX9gOqMkP5zUiZegDsmSFb+wC02fLlPcebGJWXfLAVPHp8SaB9oy91mfdiZz6PdzO607pMQfQfKVBECgj8iqixirWoceCH545BjjVkhAh8mMLC28bAzmCN9421engJGTQAt/KDNlDEN/vIO8VUMOuIdtxxR3e3K9NRTH3hUcFDxbozgI4pYH4nsCuSvAHGzF29ucCP/LKlZ4DJVS/WPwFJkWcS8GNQpnzlwY+jLaJ4/MtaMtZ15apP+YE7E/yYkmRKlOlUPDF4FAEqvI0MgBHMMVXK53gaGRzPPPPMUo9YNvCjndALbyUeRKbEGfwZTBn48e4AsxEgMNAyuAJ+mbtZKwK/CEQy6xN9WaC8BEAaLy8erugZACsAy5cGpm0zwQ/PEN5HQBwvFgEvJ15ApkyxHzzE48ePd0DD73jLcoEf3s5cOsaBX6RDJuigezZ7pm6+4JdpZxH4AW2+9hM9p/ymi1zgx5cxplTxKkfgCrCVBz+Aj3WB0d3N2PSTTz7p1tRm2kUu8MOGs7UPX1Ky5UsZmP6NlodgE/QB2DjPyAQ/vI58uQSOCZSRfoq1q9wTrSAFilkBgV8xt16RlD0O/JhSZarxueeec5DB1CnQxGBMwHMDjAFErPFhHQ7rjDK/uUdS0GEzuJMXIMKUJF4uPB545ZhiZXqPKWKgjukkIJCBgqlcppKY1gRK8Ar6gB+eyWzpAZ1c9QIifMEP0KDuTN8ykAJSTInlqg/PJG42UMJzSrnQialVvHBAK6DEc/DCUW+8fayVw+vmA37oz1Qfa66AMeCcZzB9BwgB79FGFdqO6UemgHOBH+DNuko0IuSqD8+i3NSBOHhoGdyZ7kUrPH+AIEABEETgBzhhG6yZ5MsCNohHCPhgqpayM92OlsA7mkfT8KNGjSrz5vEs6omHkDVjuXTMTMQGmKh+TOnnAh2+DGWz5/JHI1U01ZsN/Njo42s/oeDHdCqbJHgu9sW7dN9997kpXeoKUANReE6xC2CUtZOsjQQO+cLgA360ebb2wZuZLV/KQHlYSwhc8u7jlWcKn2UmmeDH7AJ2wEYgYI80rBGkTjrXs0gGHhUzpwICPxlHlSuAN4lv59mOc8HLBjCw4B/oANYANTx6AB+B6SQGeDZ84BFijQ1eHAaM8oE4gB3TPQQ6bQZPBnbWC7LGiWfssccezgOEF480DATRtCvTmAy2fOYDfni3sqUHUnPVKxv4sYCcqdZMjyfgRV2i6T68aWjDzsdc9WEgyzyHLXPqLNo1jQYE4AgvIl5RBjqmwSPdABzgwBf8mELEKwtQAo+sk6ItmH4FBvg7Aa2ALLyP2cAP7yADN1P6QDmAn6s+wCReRr4YEIBaPDhsZokGb/6+++67uwGe3bx4/LAD9KOd8bYy6AObBKbbsdUItPFsoQNl4QsEtlMe4oBNpszxxubSMTMNgBnVj2nvbKCDDthtLnvOzA/PFOvoaN/ya/zKgx9a8U742k8I+DENCjTzDgG3BGwY0OTLRLTWF5ugXMQBwCOb4x3EE5lLj8hrHJUJ+83WPkBe+Xz5wgG80U7YP/bIF0EAnHcd72/m+l1ANPIo0/7ANl/wFKRAsSsg8Cv2FkxR+RkM6Yw5VLcy36qZwmH9HGCBdzDzLDMGf6Zt2ExBPNYg8TsBOGWKjwE+SciVvjL1wltKeZi65ugXQCAzVFSfXHVgcGNXMzozwEaB6S48V0xlMaWZ9Aw46ls+PdP27FIG2n2PxMBbhwcogtSK2oT8gVcW+2eWGxsA7KM2Lq8dU320Oc9iMw7TvkBrZsCW8FSVX9uXGQdNAX1+fHX0rV9F9pzETitrP77PBELXWWcdZ2O0Dz/Ru5V5wwhfTNjQAqwnCbnaJ1e+2AOQjxc31yHSUTl451jjy9Q1xzMpSIE0KCDwS0Mrqg6pVSACP7wzClJACkgBKSAFKquAwK+yCiq9FKhCBVh3iKeBTQMKUkAKSAEpIAUqq4DAr7IKKr0UkAJSQApIASkgBYpEAYFfkTSUiikFpIAUkAJSQApIgcoqIPCrrIJKLwWkgBSQAlJACkiBIlFA4FckDaViSgEpIAVyKcAO4eh4HKkkBaSAFKhIAYGf7EMKSIGiUYCjODgAmLPhuD4tV+CwZs5oK3+9XtFUtIKCcs4jh5tzTy7H5tx9993G7m8OM+YgZ5/ApiHOreOwY84tzBXIv2XLlu5AdAUpIAXSoYDALx3tqFpIgZVCgQj8uA2Ce1dzBQ7e5jDgNIIfBwlzMDiHIHOYNFf0cbsIEMchyT6Bg5M5dJqDnDkgOlfg/EMOmuZQbAUpIAXSoYDALx3tqFpIgdQqMHXqVOfR4k5h7jLmuroI/ICf7t27u5s7OKybWyO4KzYCvx49erjbObgejlsbKjqEuRgE5D5fbkHhJhducfnrX//qrokjcEMOdcwVuPGF6+U4SJnr6NAF8MPzx00m3K7BgdncxTxgwAB36DU/3KKCbtyQAlgC3D6HaheDniqjFFgZFRD4rYytrjpLgSJSANh75pln3FVv3KkKAAJ+TPVydR2Ba7iAGK6c41aGyy+/3Hn8uGoLj9ULL7zgrmoDdoo5cOMF9y0zjX3xxRc7j9/f//53d9sKU75cPZctcFtNdGMKOpKeW3LQjDzJAy8ioIeuEUTyf263adOmjbs5BuDkLl1AXEEKSIHiVEDgV5ztplJLgZVCgfnz57tr1LibmXtyX375ZXcfMODHFCXr2gCeM844w019cq8wHqn33nvPgR/XbQF/TGsyvUl+cdd0Fbqw5ad6t9tuO3ct2ttvv52z6GPGjHFaPfjgg25tIHdF9+3b14HfHXfc4bx5TKNzf3X79u3tzTfftO+//96tIeSaPe4T5to6tOTeY+5BVpACUqA4FRD4FWe7qdRSYKVQ4PPPP3f370abObjvl3tTAT8A8OCDD7ahQ4e66V3ghOnPq6++2t0LDPjhzeJ+2KOPPtp5+1ZW8ItgMdrM8dBDD9lJJ53kwA8A5M5n7tYlHH744fb000/bL7/84u6z5e5iwHDZsmVOy1122cV7E8lKYaSqpBQoMgUEfkXWYCquFFjZFNh1113ts88+s1tuucVYpwbAAX433HCDm5pk/dmVV17pPIJMCU+ZMsVuuukmB36nnHKK8wLy70EHHeR2wxZ7iCAOTx3TtoBYnMcPAF5nnXWct+4f//iHcfcz0+KA34wZM9z08bXXXuu8e2h1zDHHGM+JpnrRft68edanTx+79dZb3bpKBSkgBYpTAYFfcbabSi0FVhoFoqNHqPC+++5rr776qnXr1s1tagDu2MgRBQDmxhtvdEA0ePBg5wFk2pfNCOxMZU1csYdp06ZZ69at3Ro9dvOyNm/NNdd06x8rCnj2mOIlsClk7Nix9uSTT7rfOdKFqXICHj4033777R34sX5w7ty57nk77LCDm+bl7wpSQAoUpwICv+JsN5VaCqxUCixYsMBNRwIl5QO7VPEIstEj225TNifg7apbt25qNGOzBlOxAF+dOnVcvTjEefTo0Vnr+Je//MV5BdGQI26ijR6Zkb/66it3CPTGG2/s1vplBqZ50RGPoIIUkALFrYDAr7jbT6WXAlJACpSCHx68bIEjYIBEBSkgBaSAwE82IAWkgBSQAlJACkiBlUSBggE/Fh9nTlusJPqrmlJACkgBKSAFpEANKsBSBg4vZzlErsA610aNGpX52CddDVYr56NrHPw4roGjFho3buzW4LAYm8NXFaSAFJACUkAKSAEpUJUKcBrAbbfdZs2bN3frZIcNG+Z4JAqcj8mOd44yYp0rO9vZXBWXrirLXNm8axz8+vXrZyxURkwWaa+22mo2a9as0hP5K1tBpZcCUkAKSAEpIAWkQHkFAL169eq5w8vx5nFaQNOmTa1Xr16lUTk1gCOluK2GI6S4GYjbbeLSFbLaNQ5+uFdr1aplq666qjuDi7s1P/30U/c3BSkgBdKtAJsRuIGDwHs/btw4982bO2HpAziChW/ZbE7gWziHDHOcCzdKcLRLZsj1WeYzMuOXz5vPJk+e7GYeuNu30IK0KrQWUXmKXQHOsKSv4cBh51wfAAAgAElEQVR3AndUc0QSVxpGgf6GayMPOeQQxyjRcUZx6QpZmxoHP8ThKiAOFOWQ0BEjRpR26AwC0dlSkYh0/lw9pCAFpEDxKsANGpw7B9RxDh3hsccec+fEcQAz37A5WoR7eVu0aOE6Zm6UeOKJJ4wryvj7brvt5gAwCuU/4wiX8s+I4n7yyScr5M35eJz517JlS3eGXaEEaVUoLaFyFKMCHHHEPdOZgUPduX+aQ8y5w5t3n8AtQFxvOGjQoNLoV111let3WJLGNPDpp5/ubg2KS1fIWtU4+DG9e9RRR7lDQqFt3KwVBVytXE4ehf/973/uWiEFM2nhbwXSqma14jw5Ot3x48fbpZde6pZ73Hzzze4wZg4P3nbbbZ33jc4Z7xvvPVeMDR8+3M0KkI67ZLmyjQBAPvzww2U+o3PPfEZmjenYM/Pm4Ge+6b/11lsO+jjUOEmoCruSVklaIl1pqsKu0qXQH7Upr1V5ZsisNzOO3N3NJg1mGJjCJWTeTMNh5VxhyOHveP+4Nejdd9+NTVfI+tY4+N177702atQo76uUBH65zUmdg/+rJq0KQys8/aynYa0NN3Gwxpf1NlwZhvcfEFx77bVdhwzI4ekDAD/66CMHaRzaTKfN9DDeuszPunbt6ioZPYNdeXgA2bn3zjvvlMmbdHgIn3vuOXcIdCGBX9RS0srfZtMWU/2Vf4uGgB+5tmrVygYOHOg8/R06dHD7DehrmHlgE8cBBxxgJ554ouuT8Pgx3cu1kdnStW/f3r+gNRizxsGPjp1rlzLDxx9/7O7fzBYEfgK/fLwv6kj9VaxKrSKYYa0N0HXOOec4KGO9H0DHLn88fuyqY+E1nrrzzz/fXnnlFQeLAB/xuG2CfiTzMzrxTPDj2z1TvKwn5hmZeeN1JBQD+Ekrf9tNS8yqfAfTolFUj1Dw4/7uLl26uOSdOnVyswrMNgB/3E/NVPEJJ5zgPHys/73vvvuc9y9bumLZm1Dj4BdqdAI/gV+ozWSLr47UX8Wq1CoCP0rDt26uH2P5B4uply5d6jphvIB8EWRalxkCOmM+O+OMM9wRC1HI9VnmMzIHh/J5Fwv4SSt/201LzKp8B9OiUVLwIx1XQjIjkGupGdccsps3c02xT7pC1VbgV6gtk6Bc6hz8RZNWhakV98+uvvrqpYVj7R+bvzIPVqWD5rD3bN+uK/qsfI2z5e2vSvaY1WlX0qqyrVU86avTropHFb93sKI1fsVe16TlF/glVa4A06lz8G8UaSWt/BXwjym7klb+CvjHlF0l10rgt6J2Aj9/eyr4mOoc/JtIWhWGVmk7m64q7Upa+dts2mJWpV2lXSuBn8AvbTZepj7qHPybV1rVrFZMybI4misbL7vsMlcYOui99trLHdXCgc2su2EXLsercNQKGzduuukmt+iav7MQe+utty6tSPnPNthggxWeEUWeMGHCCnmz4eOll15yO3oLaVevtPK31bTGVH/l37Khmzv8c05PTHn80tOWOscvoC3VkfqLVRVa6Ww6f/2llb9WaY1ZFe/gyqKVPH7y+KXV1l291Dn4N6+0KgytdDadfztIK3+t0hZT/ZV/i8rjF6+VPH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpTK51N598u0spfq2KPqf7KvwUFfvFaCfziNSqaGOoc/JtKWkkrfwX8Y8qupJW/Av4xZVfJtdLmjhW1E/j521PBx1Tn4N9E0kpa+SvgH1N2Ja38FfCPKbtKrpXAT+Dnbz1FGFOdg3+jSStp5a+Af0zZlbTyV8A/puwquVYCP4Gfv/UUYUx1Dv6NJq2klb8C/jFlV9LKXwH/mLKr5FoJ/AR+/tZThDHVOfg3mrSSVv4K+MeUXUkrfwX8Y8qukmsl8BP4+VtPEcZU5+DfaNKqarS66qqr7Ndff/XPPGUx58yZY2uttVbKapWf6qy66qrWu3fv0sz0DvrrKq2SayXwE/j5W09ATO4UrVu3rtWvXz8gVf6jqnPw11RaVY1WXc/vag/e/qB/5oq50ihw1cknW+/BgwV+CVo83/1VoYxZCaSITaLjXGIlMu3qzaLRvffea2eccUbpJ5tttpkdffTRdskll9iaa65ZJsVPP/1k66yzjnXr1s1uv/32eMWrMEa+O4cqLGqNZy2t/JsgRKszLjnD/vfT//wzL/KYm629mfEThR9++MHWXXddv1r973/cs+gXNw2xNtvMLr7nHoFfgrYMeQej7A899FB75plnVnjad999Z40bN048Zv373/+2Aw44wOV98MEHJ6hN1SYR+MXrK/DLotE999xjZ555ph1yyCG2+eab2/PPP28ffvih9enTx6688soyKRYuXGh9+/a1v/zlLzX+EiTpHOJNJJ0xpJV/u4ZoNXrmaONnZQl7t9jb+IlCiFY2erS5n5Ul7LOP2V57JdNqZdEoRz2D7Or3PICy//u//3NjWb169dxfa9WqZddee63169cv8ZgVgd+IESPcGFloQeAX3yICvwrAb+TIkXbQQQcZhgQAHnbYYXb22WfbpZde6n5/+OGH7ZFHHrHTTjvNjjrqKLvwwgvt9ddft+7du9s777xjW221lV1xxRXWpUsXe/nll8ukI2/yzGdI0jnk8/nFlJe08m+tEK0Efv8zZgi8gsDPXysvQdMbKeQdjFSIwG/+/PnWoEGDUnF+/vln22+//dyY9fe//93+9re/2W677eacG19++aWdfPLJbnYLp8bFF19sTz/9tEvfoUMHu+222+yFF15wHr9s4Pfoo4/awIEDbdq0abb33ntb//79rVmzZvbaa6+5vKhHu3bt3Fi43Xbbuecxpo4ePdpWW201O+WUU5wjZe7cue4ZPHPcuHFujKWM5D1s2DDbeuutXVl23nnnFRpd4Bf/HhQM+C1ZssQWL15cxkCzFb/8Qs0kL0ScLJHH7+abb7a//vWvzsC5J7Nnz5725z//2b0whN13392GDBli22yzjXOb33rrrc7ICeeee67961//skmTJjnjHj9+fJl0Tz31lDVt2jSuKEGfV4UWQQUoosjSyr+xQrQS+An8clqWPH7+L125mCHvYHnww0kRefwYu/bdd9/S5UnMYK233nouSQRgAOBnn33mxqxjjz3Wzj//fKtdu7Yb35544glr2LBhVvD74osvbOONN7bOnTu7zwFIvI3AGn9nHCSv+++/39q2bWvPPfecHX/88TZ8+HAHhVOnTnXTx48//ri1adPGmjdv7srFF6lBgwY5IKRsOFbuu+8+Y8r6q6++cuXJDEnAb9myZQ50y+eVmS/LOFjqFWmZuDELIGGNg9/SpUvtgw8+cMZQp04d9w2holCd4JdZjtatWxuw9sYbbziAu/76652xZq7xO/zww923nLvvvtutEcT7h4H/85//tA022KBMuqpo+ySdQ1WUoxjylFb+rRSilcBP4Cfw83+3fGOGvIPlwY8xCXAjAGOdOnVaAfzw/LG2nRms4447zpiRYuzCgwdc4ZEbO3assWt/1113zQp+s2fPLoU1poDbt2/vwO6TTz4xxs/Bgwe757/77rs2a9Ys22uvvWzttdd24+Jjjz3mwAvPImmBRcCPsuJ4+fbbb93/cbbgoYzKw7Tz/vvvXynww3mD95D8cUDhUWQNZBSAYOqx0UYbuXKcd955ztOIsycKH330kbVq1cpBazGEGgc/LhrnWwfGsMsuuxQU+N1yyy0O5Pi2En0r4hsPhhoZXCb44cLGvT506FA3vfv+++87A7n66qudazozXVUYR5LOoSrKUQx5Siv/VgrRSuAn8BP4+b9bvjFD3sHy4Fd+qjdzzIo8fkztMqvFLBUeO8Bv5syZDm6OOOII22GHHdxRPBWBH88dM2aMc+IwHQwkdezY0TlB2GjC2HnkkUcankHK0KRJE+cQOfXUU51HD+hioyQcAHwBYr169XJrEiMnCp7AffAc/x7YdLn99tsnBj+eiQePY5gaNWrk6stMHM+NQteuXV09eBZeP2bxMssAGDLuA6OAbDGEGge/SKQ777zTPv3004ICv2iNX2ZDRuCHYfONJvMlwguIMW+55ZYOZvkmget6ypQp7gfwi9JVhXEk6RyqohzFkKe08m+lEK0EfgI/gZ//u+UbM+QdzBf44e1jGpax66GHHjJm24A/1tplW+MH+ABEbIJkrMNbx3Qs3j2mSIFHwBG44v/kSz6s4cPDxzQu8MlSqwMPPNCB3+WXX+4cJz/++KPbLc+6eTyHlO2tt95y42v5JVMhU70zZsxwaw6nT5/uZBswYIBNnDjRwWsU2LiJt49NnjiCbrzxRvvTn/5UBj7xOuLNLJZQ0OCHQUD65QNTrFFI8kLENU50nAs7ojBAH/Bj7QLT1A888EAZA7joooucoZQHxrgyJPm8KrRIUo5iSCOt/FspRCuBn8BP4Of/bvnGDHkHfcGPMQuwYjYr8qw9+eSTziuH04P1bnjq2AzCJgucFqwXZFo423Euy5cvt2OOOaZ0unPDDTc01snjKbvmmmvcswhrrLGGmzHDe8dMH4CId5DANC5jJV7KTPDjM8ZjwPG9995zcZmR69GjxwoSZgO/8pGYxub5eO/wcLIZhcBsHV5LPJBRwJnDtPRNN93kwBDvYPQ5z+Iz/i2mtX8FDX7ZXorqWOPn+zLmirdo0SK3OJaNHhh5dYUknUN1la3QniOt/FskRCuBn8BP4JddAcYFAjeYhIaQdzA074ricwsPoAP8+Ibvv//egdsmm2xSJgk7dfEAtmjRwl14EAXW+TNeApo+z/n8888drGbuVM58UIjHL1pXyOYOjrqJ9hiwgSQK7D4GYJnuxTO4xx572DfffOM+BpipC17JYgoCv2JqrZiy1lTnUIwSSiv/VgvRSuAn8CsE8Hv22Wftv//9rzs2JB+BAZ6lPF9//bUXnJR/ZrR7FUCIPF/l4+C9AjxYd8ZGx4pgJh91SmseIeCHBmzKYKq5ZcuWzrPJVDUeQaai2ZTCGkSAlLWGHOGG5xPPIIG1+6xH5LSPYgoFBX7QNFvGKwrF4PGrKQMIGaBrqoyF8lxp5d8SIVoJ/AR+hQB+bChgyU7kyfG39uwx2fzA2MMOVzYkhASuR8ObxdFgd911lzu/Lltgt+gdd9xhv/32WxmPGHFD3sGQsqUxbij4Ma3NZkwC086sa5w8ebKDv3nz5jntOeoGEGT6Gkjcaaed3PQ0QIhXtKavaw1tx4IBP9+CC/xyK6XOwdeK1JH6KxWmlcBP4JcE/FjzxcYBPC4MxGyQ40B8ju9gOg7PHQMyv7OQnrVWDLoclM/aKxbeMwV32WWXuY0Ap59+uhuYGchHjRqV8wDhXAfus14NDw9Hc7F5gCU7r776qgO/VVZZxa3x4odpW9ZxR+CQre6UFy/R+uuv79a6sSmQDQ4cDcZ0KIcTU95M8GNzAV6lk046yR1qzHWgHCfGlCjPwnOYOV0a8j6nPW4o+KEHcM5UdEVn6zKFHZ3uUewaCvyKvQUzyi/w829MaVU1Wgn8BH5JwI8ptBNOOMElBXYefPBBB0qAFrs42VDA+XLAHtOheGDwjkW7KzncF1BjHR1Hkpx11lluYyC7UQGlbAcIs1kg14H7rOHiWJFtt93W7eTEy0OgPBwezKkNbDTgGS+99JL7F/DMFoBHygOEMo0IMPI3ZrdeeeUVY1qadWtsAqROnKXHwclsOgB2yZsycKwIt1vgNYzOkfV/i1eemEnAb+VRp6SmAr8Utbhgxr8xpVXVaCXwE/hVBvyANs6NY8cmHj+8YqyvmzBhgttkwEHEeMzefPNNwwPDuqyPP/7YTaNyDRlwhBctc6qXtNkOEMaLR5psB+7zLOCOI8a4WpNpPwAM8GMXJ5/zDM66wzMX7YrNVnc2NACxeC3x+JEn3jvOhKO+9EUAIFejAX5RiM7fizyBnGbB2j8Al/q8/fbb/i/xShRT4Bff2AK/eI2KJoZgxr+ppFXVaCXwE/hVBvyi+1/xsJ1zzjnujDe8e0zfcvAvgRuSgCQO/weeOPcNgAIAgTk2YLArM1rjx9RxtgOEgTZuich24D7PIj2eP6CNM9o4qgvPHN5D/sb0bBQAMQ7x9QE/ysL5c5SRc2DJNxP8yJtpaiAQDQBdvIqAX3RkCFOO//jHP/xf4pUopsAvvrEFfvEaFU0MwYx/U0mrqtFK4Cfwqwz4cbYaQMPOV7xrAB/XabGODk8XGytY88Z5cUx5AmGAEVOofM7UKAcBkwZwwzPIdG22A4Q5Qy7XgfuspeOsOp6Ft48ycZ4dZeIsO/JlXSLP4jBhpprLXx0W6VDe40dZNt10U+PMPLyGrB18+eWX3dVkwB515rBj1pxxvhwQ3K9fPzcVzC5Sfgce87Vj2b8nKI6YAr/4dhL4xWtUNDEEM/5NJa2qRiuBn8CvMuDHFZfRAb3c5oS3D3ACtqLD/NlZCXRxVRebHgA+PGR4+4jP+jdgjHVyBDZq5DpAONeB+4sXL3YePDZlENhkAuzhTcTL2LNnT7c2j8AtFXgNc+3sjMAvuoUCgIsuIeDAYrx5bFYB8gA/jnPBo8kaP9Y78hneRepEAApZnwj0KqyogMAv3ioEfvEaFU0MwYx/U0mrqtFK4Fdg4Lfbbmbt25s98YTZ1KkrNvqZZ5o1avTH37/+2uzBB8123tlszz25ZsFs9myzBx4wW7rU32iyxeSO1b32Kv0k8x2MNnewpo9rudg5yxEomQFvG0dnADys9YsCYMcULECYef4dOzU5GoU7WAm5DhCu6MD9L7/80t0fm+2wYICO5/E5sMaVZdkCV36VrwtTvOzK9T3gH63wduIN5EYLDhtWyK6AwC/eMgR+8RoVTQzBjH9TSauq0UrgVyDg17y5Wbt2Zi1amAEJTz1lNmnSio1+5ZW4xMx+/bXks6++KoFErsXk7wsXmgFgXGn1yCP+RlMJ8MO7VmwB8GPqNlvgxgemdysT1F/5qyfwi9dK4BevUdHEUOfg31TSqmq0EvgVCPi1amXWsaNZ/fpmeMeAksmTyzY6n3GzxVtvmY0da/bLLyWf7713yc8bb5gx1XnZZSUQeO21/kYTCH6zZ8+2Dz74wHbddVdba621KvecFKZWf+XfqAK/eK0EfvEaFU0MdQ7+TSWtqkYrgV+BgF/UvEcfbbbNNtnBjzVip5zyhyHg3Xv6aTNupth3X7P33jN76SWznj1LvIZ9+pQAYNJQwVRv0ixXlnTqr/xbWuAXr5XAL16joomhzsG/qaRV1Wgl8KtG8GvShJ0FKzbkjz+aDRtW8veKwG+LLcwOO8yMC+fnzClZ1/fDD2Z33VXiCcRTCOhF68n69TNbssTfcMrHFPgl1k79lb90Ar94rQR+8RoVTQx1Dv5NJa2qRiuBXzWCHx67E09csSHnzjUbMCAe/NZe24yfL780W7y4ZEq3bt0Sz96qq5q1bVsyVcy0cZ06ZoBfZYLAL7F66q/8pRP4xWsl8IvXqGhiqHPwbyppVTVaCfyqEfx8mrC8x2+ddcy6djWbOdOMA5E7dSoBP/4P6OH9GzXK7OSTzdjhy05gpn35/e67fZ6YO04NgR8HPHPlW+ZO4GyFnDx5sttpu80229iyZcvcIcvz5s1zN3W0YJPM74HjXDh3j7icIZi5M9f3WaFCqr/yV0zgF6+VwC9eo6KJoc7Bv6mkVdVoJfArMPBjKnjbbf9Y49esmRk3Tnz3ndmdd5qdfbbZ+uuXGAPHtTz8sNmMGWannmq20UYlf8cb+M9//rH5w990ysasIfC7+eabrUePHhWC3zvvvOPO0+PqN344VJnzBHfbbTd77bXX7DK8ob+HIUOGWOPGjd3RKuzW5TDlKPg8K4l86q/8VRP4xWsl8IvXqGhiqHPwbyppVTVaCfwKDPx8mrlBA7PGjUs8f5ln9XEEyeqrl5zjl49QQ+B30003OUDjDEBu4Vh11VWNmzk4ZuWRRx6xfffd12bNmmVvvfWWOxQa8AMCt9tuO2vWrJndcMMN7uq01dHCzB0azcHLHBrN1W4cPzNq1CiXL9fIZT6LA6nzEdRf+aso8IvXSuAXr1HRxFDn4N9U0qpqtBL4FSH4+ZtC5WLWEPjhhTv66KNttdVWs8cee8y4Fo73nzt/77//fgeAAN5zzz3npm0BPwIHND/11FPOu0fcKAwbNsxBH7d77LTTTu7g6LFjx7rr18o/C2DMR1B/5a+iwC9eK4FfvEZFE0Odg39TSauq0UrgJ/DLaVk1CH5M9XLX7kMPPWR77rmnffLJJ3bkkUe6O325cq08+HEHL+v4jjjiCHdTRmbgrlymfufPn29cK3fQQQe5O3vJL5rqjZ513nnn+b9oFcRUf+Uvo8AvXiuBX7xGRRNDnYN/U0mrqtFK4CfwK3TwO+GEE4x1elx7xtTsKaecsgL4DRw40IEd07eEE088sfTqtxEjRhhXuZGee3PXXXddgZ9/d1LlMQV+8RIL/OI1KpoYghn/ppJWVaOVwE/gV2jgl6s8TNXW57iaBIH7fbmnt169eglShydRf+WvmcAvXiuBX7xGRRNDnYN/U0mrqtFK4CfwKxbw838Daj6m+iv/NhD4xWtVMOCHW53Ft3FnLbHD6mIuEP896IX4o5GlRbzBy278NUqilcBP4FfI4Pf888/bFlts4X4qCmzW+Oijj9wZfltvvXVp1E8//dTGjRvn1v21a9fOTfdGYcKECfb6669bt27dwl+ymBTq2/0lTQJ+nNu4cOFCa9iwof+DzNx5j0nSBT2kCiLXOPh9//33dtxxx7nDMNlif9FFF1lXDhjNEQR+ua1AnYP/GyKtqkYrgZ/Ar5DB71//+pdtu+227idXmDFjhj3++ONudy8AmOloYPwBBsePH+92A3PYcxTYOMK5f5mg6P+WVRxT/ZW/kqHgx3pPNvkA80uWLDF2bbOTOwqc48gB4K24wcbM7fA+5phj3DrRitL5l7j6Y9Y4+F1//fVut9U111xjX3/9tTVt2tQtqm3A2VJZgsBP4JeP10Qdqb+KIVoJ/AR+hQ5+n3/+uVubt8kmm9j+++/vjnQ566yz3Dl+DPx8vt5661mTJk3cLBTeQTx7v/32m9u1e/LJJ9u///1vB48//fSTffzxx25zCN5A4IHNI/kOIe9gvp9dbPmFgB/tjS3MmTPHbd7BWwuD9OrVq7TagwYNcm0P/OGgIvikK2Tdahz8TjvtNOcyh6CXL1/upnqnT59um222WVbddt11V9txxx1LP+NKHQ7MVDB3vZC08LMEaeWnE7FCtJq9ymz7qv5X/pkXecxmi5tZ01+bJuqPtp4927b6auXRalqzZvZx02Ra5ctM1llnHVu6dKnNnTvXDfA4GwA8/uUMPwAP2COwgQMHxFe/txGfEZdxio0dXN3G5+THOwIs8i+bRvIdQt7BfD+72PIrr9Xmm29exmubWR+8u/AHzEEYMGCATZw40X0ZiELPnj3t7rvvdg6qzp07uwO9CXHpClm3Ggc/zlDihzOQCLxYfPPibkTWUrBmIjNcccUVpdTN33kJo3UWey5bZhsvX17Ieue1bJ/XqmWv1a5dmmemFnl9UAozk1b+jRqi1bKNl9nSjZb6Z17kMet8Ucdqf57sHaS/+mvmTRlFrkVc8V+rU8fG1nB/dcghh9i0adNs6tSp9o9//MPuuusud/AyA/4BBxxQevMGQDBlyhTnCXz44YfdoI+HkBs78ABxI8emm27qbgOJ4h577LFuapijXvIdQt7By377zf66bFm+i1Cw+WFX1/7uiSvPBPy/d+/eK5SdG1w4yHvSpEkO5rAJwtChQ23MmDGujaPAWY14dGl7IBDox/sXl65gBTOzGge/vn37Oi/V+eef7745rb322s7tmmuTR4VTvaNHm/GzsoS99zbj5/eg6QD/hpdWVaOVpno11ZvTsmroAOfM8mSu8YvGknvvvdd59zjTj+vXWLf3xBNP2CqrrGJ4CBngo8D5fgz8xOeOXu7zxaPEeX4PPvigu/5to+iOY/9XLDZmUH911VVmffrE5pmaCNQ3A+5CpnrZmIHXlk0aOJD69+/vZOnevXupPMSJvMDvvvuuuwXmgw8+iE1XyPrWOPiNHDnS7rjjDnvxxRfdy3brrbfaG2+8kVMzgV+GNAK/xO9WUEea+CnpSBiilcBP4FfI4JerbNnO9Msc8DPTAYjRvb3V9YaHvIMm8CuzVKw8M5RvMzZtAPQtW7a0Dh06WJ8+fdydznh8W7du7X7nBhaA78Ybb7SZM2e6+NnStW/fvrpMolLPqXHw4+XCxc6VN/zO5djsjMoVBH4Cv0pZvLyjwfKFDDoCP4FfMYJf8EtRzQlC3kGBX9l3MA78cD516dLFtWinTp1s+PDhNnnyZAd8rBfk6j429OAZ3HLLLR38sbEnW7rM432q2USCHlfj4BeV9osvvrANNtgg9iR0gZ/AL8jCc0QO6kjz8cAiziNEK4GfwE/gl/+XPeQdFPiFgR+ttWDBgtINP9laj2VoP/74Y5ljXnzS5d8S8pNjwYCfb3UEfgI/X1upKF5QR5qPBxZxHiFaCfwEfgK//L/sIe+gwC8c/PLfYoWdo8CvsNun4tJpjV/i1gvqSBM/JR0JQ7QS+An8BH75f+9D3kGBn8AvzgIFfnEKFfLnAr/ErRPUkSZ+SjoShmgl8BP4Cfzy/96HvIMCP4FfnAUK/OIUKuTPBX6JWyeoI038lHQkDNFK4OcPfld17Wp3PP54OozEpxb16pnx83tg3RRHoyisqAC7SDPPnwt5BwV+Ar+4d0rgF6dQIX8u8EvcOkEdaeKnpCNhiFYCvwDwu+wy63PttekwEtUirwrwpaD3kCGleYa8gwI/gV+cMQr84hQq5M8FfolbJ6gjTfyUdCQM0Urg5w9+XPm1Mj0+SkYAACAASURBVIfPPvvM3YbhFbjBqdwtTl7pijVSmza27sEHC/x82q8SBzj7ZJ/GOAK/Ym5VgV/i1guBmcQPSUnCEK0Efv7glxLzSFyNELtyNzLpViY/rXWAc9ABzn6ipiuWwK+Y21Pgl7j1ggadxE9JR8IQrQR+Aj9fqw+xK4FfgF0J/AR+MS+hwM+3lyrEeAK/xK0SNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfwEfon7pcJPKPBL3EZBg07ip6QjYYhWAr+AATod5pG4FiF2JfALsCuBn8BP4Je4Xyr8hAK/xG0UNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfyKBfyWLFliixcvtgYNGlRY5BtuuMEuvvji0jhlOg9d5F3G4BP3yCtBwqBBZyXQo6Iqhmgl8AsYoGVX/v2V+nZ/rQR+weC3bNkyW7hwoTVs2DDrW8nnP//8szVq1KjM5zAL7BLHLYX2qtf4Xb1Lly61Dz74wO6//36rU6eO9e/fX+DnayXy+PkqtUK8EJhJ/JCUJAzRSuAn8PM1+xC7kscvwK4EfkHgN2TIELvtttusefPmDuKGDRtmjRs3LjXjp556yq644grbeeed7YcffjCcTy1btrRLLrnEXn31Vdt2221tzpw5Ll0ucPR9J6orXo2D3y+//GJXXnmlvfvuu7bLLrsI/EJaXuAXolaZuEGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfN/gBevXq1XPghjevW7du1rRpU+vVq1epXR911FF29dVX29Zbb229e/c2mKVv3762zz772Ntvv+3itW3b1nr27GkHH3xw4vehOhPWOPhFlb3zzjvt008/FfiFtL7AL0QtgV9CtUIGaIFfwACdsD3SkizErgR+AXYl8PMGvxkzZli7du1s+vTp7rUaMGCATZw40c1AZoaffvrJYJQbb7zRnn/+edtjjz3cx8xW4jF8+OGHberUqbb22msXxetZbeA3adIkmzlzZhlRWrRoYTvssIP7WzbwGzdunL3++usrCKk1fr9LIvBL/JIFDTqJn5KOhCFaCfwCBuh0mEfiWoTYlcAvwK4EfiuAX3kjxUPXpk0bg0s6d+5s06ZNc1GGDh1qY8aMsUGDBq0AfkDf448/bqeddlqpR5D0d911l5vmHTFihO27776J34fqTFht4Dd48GB74YUXytStY8eO1rVr15zgl00Ibe7IUEXgl/hdCRp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfy8PX5s6GBjBps3atWqVTrj2L17d2fX7EG477777PTTT7fatWvbiy++aGeddZa99tprbnnaIYcc4uKxBvD77793EFgModrAL04MTfXGKZTlc4FfAtFKkgQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+3uCH8bZq1coGDhzoNmx06NDB+vTp49bsTZkyxVq3bu32Hlx33XXWvn17u/vuu238+PF2++2325/+9Cd7//33bYMNNrATTjjB9tprLweIxRAKCvyYZ7/11lsr1E0eP3n88vFiBQ06+XhgEecRopXAL2CALmKbyEfRQ+xK4BdgVwK/IPAbOXKkdenSxZl0p06dbPjw4TZ58mQHf/PmzbOnn37aLrzwQnfc3Prrr2/33nuvg0E2eNx8881uUwjwyDSx1vjlo2fIkofAT+CXD9MKGnTy8cAiziNEK4FfwABdxDaRj6KH2JXAL8CuBH5B4IctL1iwwObOnet29GYLTAV//fXX1qxZszIfM1W8aNGiogG+qPAF4/Hz7UgEfgI/X1upKF7QoJOPBxZxHiFaCfwCBugitol8FD3ErgR+AXYl8AsGv3zYczHlIfArptYqX1at8UvcekGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwC/mrRT4Je62CiChwC9xIwQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+Aj+BX+J+qfATCvwSt1HQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7Kqqwe+xx8wOPJCFcWb/+pfZuedy7klZO+jWzaxHDzOuPhs/3uzEE8169zY76qgV7WXXXc0+/TSxHRn1Je/fQ3m7Kr88LPmD0pNSHr9ibkuBX+LWCxp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdVSX4nX++Wf/+ZkuWlPysuqrZeeeZ3XHHH3bA7RU//FACg7Nnm228sRmwSPwjjvgjHmkJm21mNmNGYjsS+IVLJ/AL16xwUgj8ErdF0KCT+CnpSBiilcAvYIBOh3kkrkWIXQn8AuyqKsHv1VfN9tnHrGVLs8WLzbjx4qOPzLbd9g876NzZ7PHHS36OPbYE+L76yqx58z/iXHih2U03mQ0fbnb88YltyCWUxy9YP4FfsGQFlEDgl7gxggadxE9JR8IQrQR+AQN0OswjcS1C7ErgF2BXVQl+661ntsYaJR662283Y0r3//7P7OCDy3ry8PSttZbZL7+UxL/sMrNrry2J06RJiSdw3jyzddc1W7YssQ0J/JJJJ/BLplthpBL4JW6HoEEn8VPSkTBEK4FfwACdDvNIXIsQu6py8MNLtdVWZr/9Zvbhh2bPPbcikJx5plmjRn/U9+uvzR58sGSqkilMpi6/+65k3dv33yfWxSWsTN9eWfDbYQezJ55YsfzTp5sdcEDJ36kjdf71V7Oddy7RLAqs2XvjjZL//fRTCdyNHWu2554lfyPvI48sWe+X7TmhysnjF6qYCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqUvDbfXez/fcvAT1+6tYtAb+33y5blSuvNFu+vAR2CExfDhtW4s2qXdtszhwz1rd9/rnZ4MG+MmSPV5m+vbLg16aN2csvr1gu6rXNNiVTu0DyZ5+VwBx/zwxoctxxJVOwffqUeP0aNCjRCDieP99s0SKzhg0rp1GUWuAXrKPAL1iyAkpQmc6hgKpRE0UJGnRqooAF9MwQrQR+Aj9f0w2xqyoFv5NOMtt0U7OBA0s2JLBZAc/dnXf+UZX69c0uvdTsrbdKvFfADIG1bni+3nvP7NlnzVq3Lvn7m2/6ylB44FdRyVmXx/o81veNGFECwh9/bPbQQ+ba6D//KdFowICS9X8PPFAyxQsUr7OO2UEHmY0cafbKK2bt2lVOI4FfYv0EfomlK4CEAr/EjRA06CR+SjoShmgl8BP4+Vp9iF1VKfjhjVpllZJpyY4dzXbbrQRaHnnkj6qwM/WUU/74/8KFZk8/XeIB22mnEmCsU8fs55/NRo0qSV+ZUJm+vbIev4rKzZQudc4MTGvjMX333RJv4Pbbm02cWPJvrVola/nOOqtkI8fNN5tdcEHJxo6ePSuj0B9p5fEL1lHgFyxZASWoTOdQQNWoiaIEDTo1UcACemaIVgI/gZ+v6YbYVaXBjw0F2c6Q+/HHkulaAp+zO5VdqPfcU+L1i8IWW5gddpjZN9+UeK9Y18aRJWxSwOvHmXbAHhAI/N1yi68M2eNVpm+vSvALqRXrITfZxGzSpJBU4XEFfsGaCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqNPjhseMQ4fJh7tySM+g4hJhNCEDdkCFm/D0zsHaPny+/LJnmZF1ftBawUyczjjl57bUSLxYexL59K7dbtTJ9e6GAn68hVDaewC9YQYFfsGQFlKAynUMBVaMmihI06NREAQvomSFaCfwEfr6mG2JXlQa/igrVvr3ZHnuUTNdOnVqybg1v3n//a9a1q9nMmWZffGEG4AF+/L9t2xLvH7t6gT2mM5nq5Iw7fueQ48qEyvTtAj9d2RZjewK/yrycNZ22Mp1DTZe9hp8fNOjUcFlr+vEhWgn8BH6+9hpiV1UKfuecU3K1WGZg6vbhh81OP/2PjR5nn222/volsYBEPuc8u0MPNdtxx5K/A41PPWU2ebKvDNnjVaZvF/gJ/AR+lXv/Cjp1ZTqHgq5Y1RcuaNCp+uIU9BNCtBL4Cfx8jTnErqoU/HwLTDymcYFEPH+Z99Pyd9YR8nfOAqxsqEzfLvAT+An8KvsGFnD6ynQOBVyt6iha0KBTHQUq4GeEaCXwE/j5mnKIXRUM+PlWrrLxKtO3C/wEfgK/yr6BBZy+Mp1DAVerOooWNOhUR4EK+BkhWgn8BH6+phxiVwK/ALsS+An8BH6+3VARxhP4JW60oEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gVyzg99NPP9maa65pdTgEs4Jwww032MUXX1wao0znwcnh/KwsQeCXuKWDBp3ET0lHwhCtBH4BA3Q6zCNxLULsSuAXYFcCv2DwW7ZsmS1cuNAaVnCN3A8//GDrcuRPRvBJl/gFqcKENb6r9/PPP7ejjz7aGjdubHXr1rWdd97ZLr/88pxVFvhlSCPwS/xqBA06iZ+SjoQhWgn8AgbodJhH4lqE2JXAL8CuBH5B4DdkyBC77bbbrHnz5rZkyRIbNmyY45EovPrqq3bWWWc5Npk/f76ddtppdvDBB1tcusQvRjUkrHHw69evn/3222/Wp08fW7Roka222mo2a9Ysa9asWdbqC/wEfvl4L4IGnXw8sIjzCNFK4BcwQBexTeSj6CF2JfALsCuBnzf4AXr16tWzOXPmWKNGjaxbt27WtGlT69WrV6mJ77PPPnbZZZdZu3bt7LXXXrO///3vNmXKlNh0+XhHqiqPGgc/3Ku1atWyVVdd1Z555hnr0aOHffrpp+5v2YLAT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5g9+MGTMc0E2fPt2Z9IABA2zixIl2//33l5r4zz//bA0aNHDL0OATmKVnz56x6fLxjlRVHtUGfpMmTbKZnHieEVq0aGE77LCDLV682K677jq75ZZbbMSIEbbvvvvmrK/AT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5gx9c0rlzZ5vGPctmNnToUBszZowNGjSojIl/8803ds4559gnn3xiI0eOtLlz53qly8d7UhV5VBv4DR482F544YUydejYsaMdc8wxdtRRR1n9+vUdbeNmjcK4cePs9ddfX6He2tzxuyRa45f4nQgadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8VgC/8kbatm1ba9OmjfPe4c1jkwazjP1/v2qve/fupUnYh8B074knnug2ljI76ZMu8YtRDQmrDfxy1eXee++1UaNGOYr2CfL4yePnYydxcYIGnbjMUv55iFYCv4ABOuV2E1e9ELsS+AXYlcDP2+OHjbZq1coGDhxoLVu2tA4dOrj9BoAh6/hat25txx57rPuXad7MkC1de+59LoJQ4+B38skn2wMPPFBGqo8//ti23HLLrPIJ/AR++XivggadfDywiPMI0UrgFzBAF7FN5KPoIXYl8AuwK4FfEPjhdOrSpYsz6U6dOtnw4cNt8uTJDv7mzZtnTZo0sW+//bbU5Ndff31j6jdbulx7E/LxvuQzjxoHv9DKCPwEfqE2ky1+0KCTjwcWcR4hWgn8AgboIraJfBQ9xK4EfgF2JfALAj9secGCBW7dXuZSMx8bT5rOJ++qjCPwq0p1qzpvrfFLrHDQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7ErgFwx+iY24SBMK/Iq04VyxBX6JWy9o0En8lHQkDNFK4BcwQKfDPBLXIsSuBH4BdiXwE/jFvJUCv8TdVgEkFPglboSgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMESrfIPfGvXXsEO3OdQ2XnNjm//bfHvjyzfsrS/fWkHYztt2tq3W3cp+W/abffjdh/bcJ8/ZsuXLXLzdNtzN2m/e3p6Y8oRN/X5qXhtl7xZ7Gz9RCNEqrwUpwsyCtBo92hz8rSyhMn27wE/gJ/BLcU9Rmc4hxbL4VC1o0PHJMMVxQrTKN/gdtd1Rtm3jbW3uorm2xiprWC2rZdeNu84WL11cqvjuG+5u+2+xvwM9furWruvAb9bPs6zdZu2sxVotXLqnPnrKJn0zKa8tJfBLLmeIXcnjJ49fTksDdHv3zvnl64YbbrCLL744uaGmMGWt5cuXLy+mepVvxDKdh74VlvmmU0ztWt1lDRp0qrtwBfa8EK3yDX4X7HGBrV5/des7pq8dsc0Rtv3629vjUx53Xr0onLTjSbbpWpvawHcG2tLlS+28Xc+z7xZ8Z+M+G2cdt+xo9evUt9q1atuTHz1pk7+ZnFd1BX7J5QyxK4GfwE/gl/xdK59S4Jc/Las/J3n8EmseNOgkfko6EoZolW/w22OjPdw07a9Lf3UAt+i3RXbLG7fYkmVLSsVtUK+BrVJnFftp0U/WcYuObmp32g/T7JHJj7g4R29/tG2z3jYCvwIzxxC7EvgJ/AR++XuBBX7507L6cxL4JdY8aNBJ/JR0JAzRKt/g13XHrm6qdsFvC2y1uqs5Qe977z6b/fPsFcSNpoWBwnsm3GPfzf9O4FfAJhhiVwI/gZ/AL38vc8GA308//WRrr712bM001ZshkcAv1l5yRQgadBI/JR0JQ7TKN/j13ru3LVm6xK4Ze43tucmetu+m+7p1eqzXi0KtWrXs3Nbn2roN1rU5i+bYkIlD3JrAKMjjV5h2GGJXV3XtagMef7wwK1IVpapb16xevdKcly1bZrVr1/Z60sJ582zRkj884l6JijjSXi1a2H9mzCitQXm78lnjh74LFy60hg0b5lRi0aJFVqdOHauX0S7Z/lYMUtY4+E2dOtWOP/5423zzzW3BggXWpUsXO+aYY3JqJ/AT+OXjxQoZdPLxvGLOI0SrfIPfJW0vsVXqrmKvznjVWjVpZes1WM+e/fhZW27LHQiO/Wysrb3a2saU8NJlS92uXT77YeEP9p8Z/5HHr4ANL8SurrrsMutz7bUFXBsVraYU2KdtW3t17NjE4DdkyBC77bbbrHnz5rZkyRIbNmyYNW7cuDS/+fPn2+TJk61nz57WvXt3O+ywwyzb32qq/kmeW+Pgd+utt1rTpk3t2GOPtZdfftkuuOAC++9//yvw82lNefx8VMoaJ2TQSfyQlCQM0Srf4LdLs12sw+Yd3Po+gG7WvFk26L1Bbhcvu3k52mWzdTazxg3+6KiRnanhG1+/0bVANAWszR2FZZAhdvXjjz8WVuGruTQzZ860Fi1aeD2V2bOVLeA4ikKIxw/Qw4M3Z84ca9SokXXr1s3xSK9evUrzg0cefPBBe+aZZ+zmm2924Jftb8WkeY2DXyTWwIED7Z577rETTjjBLrzwQoGfjxUJ/HxUEvglVqkkYcgAnW/wi4rebI1m9u38b8ts6qhktfKSXLt6k8sYYlfJn5KOlNLKvx1DwG/GjBnWrl07mz59unvAgAEDbOLEiXb//fev8MAjjzzSzU4CflHI9jf/ktZczGoDv0mTJhnfWjID32B22GEH96f+/fvbk08+aQ0aNLAXX3xR4OdjEwI/H5UEfolVKhzwq2QVqiy5wC+5tIIZf+2kVXKtKlrjB5d07tzZpk2b5h4wdOhQGzNmjA0aNEjg5y957piDBw+2F154oUyEjh072lprrWW77rqrNWvWzLlb2eAxa9Ys9/9x48bZ66+/vkKmmYcx6hw/3RqQxD7VkfqrFqJVVXn8/EtbvTEFfsn1DrGr5E9JR0pp5d+O2Tx+5VO3bdvW2rRp4zZ04GxicwebxHBAEVjLVz7I4+ffBrExL7nkEltllVWsd+/e9uGHH9p+++1ns2fPdrtnsgVt7shQRR6/WPvKFUEdqb90IVoJ/AKO3fBvglTGDLGrVAoQUClp5S9WyFQvubZq1cpYatayZUvr0KGD9enTxwDDKVOmWOvWrUsfLPDzb4PYmMDe6aefbp988onVr1/frr32WrfOL1cQ+An8Yo3KI4I6Ug+Rfo8SopXAT+Dna1khduWbZ1rjSSv/lg0Fv5EjR7rTRAidOnWy4cOHu128wN+8efPKgB/xDj300Ar/5l/SmotZbWv84qr41VdfWZMmTWLPKhL4CfzibMnnc3WkPiqVxAnRSuAn8PO1rBC78s0zrfGklX/LhoIfOXOU3Ny5c92O3pUhFAz4+Yot8BP4+dpKRfHUkfqrGKKVwE/g52tZIXblm2da40kr/5ZNAn7+uacjpsCvmNtRa/wSt546Un/pQrQS+An8fC0rxK5880xrPGnl37ICv3itBH7xGhVuDIFf4rZRR+ovXYhWAj+Bn69lhdiVb55pjSet/FtW4BevlcAvXqPCjSHwS9w26kj9pQvRSuAn8PO1rBC78s0zrfGklX/LCvzitRL4xWtUuDEEfonbRh2pv3QhWgn8BH6+lhViV755pjWetPJvWYFfvFYCv3iNCjeGwC9x26gj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LSvwi9dK4BevUeHGEPglbht1pP7ShWgl8BP4+VpWiF355pnWeNLKv2UFfvFaCfziNSrcGAK/xG2jjtRfuhCtBH4CP1/LCrEr3zzTGk9a+beswC9eK4FfvEaFG0Pgl7ht1JH6SxeilcBP4OdrWSF25ZtnWuNJK/+WFfjFayXwi9eocGMI/BK3jTpSf+lCtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK0EfvEaFW4MgV/itlFH6i9diFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VwC9eo8KNIfBL3DbqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1EvjFa1S4MQR+idtGHam/dCFaCfwEfr6WFWJXvnmmNZ608m9ZgV+8VgK/eI0KN4bAL3HbqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tK/CL10rgF69R4cYQ+CVuG3Wk/tKFaCXwE/j5WlaIXfnmmdZ40sq/ZQV+8VoJ/OI1KtwYAr/EbaOO1F+6EK0EfgI/X8sKsSvfPNMaT1r5t6zAL14rgV+8RoUbQ+CXuG3UkfpLF6KVwE/g52tZIXblm2da40kr/5YV+MVrJfCL16hwYwj8EreNOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yAr94rQR+8RoVbgyBX+K2UUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr1VBgd+PP/5oDRs2tFVWWSVnyW+44Qa7+OKLSz8v08ijR5vxs7IEgV/illZH6i9diFYCP4Gfr2WF2JVvnmmNJ638WzYJ+C1btswWLlzo+CNX+Pnnn22NNdbwKghxV199datVq5ZX/OqOVDDg99lnn1nLli3t+eeftz322EPg52MJAj8flbLGUUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbNhT8hgwZYrfddps1b97clixZYsOGDbPGjRuXPnDChAl2yimn2CabbGJwyv33329//vOfrV+/fo5XmjVr5uJefvnlzmnVt29fq127tot7+umnW5cuXfwLX00xCwL8Fi9ebEcddZTNmDHD7rrrLoGfb+ML/HyVWiGeOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yIeAH6NWrV8/mzJljjRo1sm7dulnTpk2tV69epQ9s3769XXjhhca/Tz75pN1zzz324osv2vHHH2+XXHKJbbPNNla3bl0XH9DbaqutXPxPPvnE/f7rr79a/fr1/StQDTELAvx69Ohh++23nw0YMMCuvPJKgZ9vwwv8fJUS+CVWyixk0BH4Cfx8TS3ErnzzTGs8aeXfsiHgh7OpXbt2Nn36dPcAGGTixInOqxeFjTbayMaPH2/8+/7779v+++9v33zzjbVq1cq+/vprN0V82mmn2bXXXms33nijPLx/pgAAIABJREFUA0nA8c0337S//OUvNmvWrFKvoH8tqjZmtYHfpEmTbObMmWVq06JFC0fFzzzzjD300ENOUIFfQIML/ALEKhtVHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEPCDSzp37mzTpk1zDxg6dKiNGTPGBg0aVPrANddc032OJ5C899prL/viiy/svPPOszPOOMPWXXddO+SQQ+yiiy6y7bbbznbffXc7/PDD7Y033rCPP/7YovV+/jWo+pjVBn6DBw+2F154oUyNOnbs6Nym3377rRPvnXfeca5R5tiZQx83bpy9/vrrK6igzR2/SyLwS/yGqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tmw38yqdu27attWnTxnnrGjRoYGzuYCNG//79XdTu3buXJtlzzz3d33fZZRd799133Rq+ESNG2G+//Va6EZXPgTyWqs2dO9dGjRplm2++uYNKILHQQrWBX66KI8qiRYvcx6eeeqqdffbZdvDBB7vGyBa0qzdDFYFf4vdJHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEI8fuTJlO3DgQLe5tEOHDtanTx8DDKdMmWKtW7e2Cy64wNZbbz3r2bOnW7vHbl2Wp7HZg2nhDTfc0I488ki35u/77793XsFbbrnFTRfjPWQ2s9BCjYNfpiAHHnigXXrppVrj52slAj9fpVaIp47UX7oQrQR+Aj9fywqxK9880xpPWvm3bCj4jRw5snTnbadOnWz48OE2efJkB3/z5s1z6/+ik0bWWmstN4W7zjrruPV8zFgS2KMA7HEk3QEHHGBMD3/55Zf21ltvFdz6PspbUODn07Ty+Mnj52MncXHUkcYp9MfnIVoJ/AR+vpYVYle+eaY1nrTyb9lQ8CPnBQsWuCla1vFlC+z+nT17ttvgkXk2H+mWLl26wvl+zGTiCdQ5fv7tVmFMgZ/ALx+mpI7UX8UQrQR+Aj9fywqxK9880xpPWvm3bBLw8889HTHl8SvmdtRUb+LWU0fqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr5XAL16jwo0h8EvcNupI/aUL0UrgJ/DztawQu/LNM63xpJV/ywr84rUS+MVrVLgxBH6J20Ydqb90IVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWQeC3fPlyl2NNLljUGr+MRhX4xVt4jhjqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/Lhp++OGH3Rbm1157zeW47777uq3Of/vb39wZONUZBH4Cv3zYmzpSfxVDtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK1ygh/bl7l7rnfv3i6XnXfe2Zo3b278fcKECe62DULXrl3t9ttvd+fWVEcQ+An88mFn6kj9VQzRSuAn8PO1rBC78s0zrfGklX/LCvzitcoJfl999ZW7vPiss86yI444YoXzbbh/7j//+Y87xPDqq6+2ffbZJ/5peYgh8BP45cGM3Onqm222WT6ySn0eIVoJ/GRXvi9EiF355pnWeNLKv2UFfvFa5QQ/7q5jTR8/XEey99572/nnn581x8WLF1v9+vXjn5aHGAI/gV8ezEjgFyBiyKAj8BP4+ZpWiF355pnWeNLKv2UFfvFaxa7xIwuuUmN9H6dRN2rUKD7XKowh8BP45cO81JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WFfjFa+UFfkzjjh492uWWOT02adIka9iwYfxT8hhD4Cfwy4c5qSP1VzFEK4GfwM/XskLsyjfPtMaTVv4tK/CL18oL/PD4/fDDDyvk9sorr1iDBg3in5LHGAI/gV8+zEkdqb+KIVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWXuAXZTNv3jz79ddfrXHjxvE5V1EMgZ/ALx+mpY7UX8UQrQR+Aj9fywqxK9880xpPWvm3rMAvXisv8EPISy65xJ544gmXI+f3XX755bbnnnvGPyHPMQR+Ar98mJQ6Un8VQ7QS+An8fC0rxK5880xrPGnl37ICv3itvMDvqKOOctDHv6uvvnopAH799dea6o3XuOpi6OaOxNqqI/WXLkQrgZ/Az9eyQuzKN8+0xpNW/i0r8IvXKhb8fvrpJ1tnnXWsX79+dtlll7kcn376aTv88MPtvffes5122in+KXmMIY+fPH75MCd1pP4qhmgl8BP4+VpWiF355pnWeNLKv2UFfvFaxYIfN3XUq1fPTjjhBBs0aJDVqVPHrr/+ejfV+/HHH9uWW24Z/5Q8xhD4CfzyYU7qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/sjj11FNt8ODBLrc11ljDuLWDad/HHnss/gl5jiHwE/jlw6TUkfqrGKKVwE/g52tZIXblm2da40kr/5YV+MVr5QV+CxcutBEjRjjQmzt3rh1zzDEO/NZee+34J+Q5hsBP4JcPk1JH6q9iiFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VF/ideOKJdtppp5Xu4v3yyy/d1O+jjz5qTZo0iX9KHmMI/AR++TAndaT+KoZoJfAT+PlaVohd+eaZ1njSyr9lk4AfV9Ti4KroQgpmOpnxzAxcV8tyuPLnGc+fP99WW201q127tn/BqzFmheD3wAMP2IABA9wmjg033NDWX399V7Rvv/3WgD8OdWbjR2VCdC7g/vvv77LZeuut7eqrr86ZpcBP4FcZe4vSqiP1VzFEK4GfwM/XskLsyjfPtMaTVv4tGwp+Q4YMsdtuu82aN2/uIG7YsGFlziqeMGGCnXLKKbbJJpvYZ599Zvfff7/9+c9/dkfcvfrqq7btttvanDlzXDrg8bjjjrO6deu6uBdddJF17drVv/DVFLNC8HvooYfs9ttvXwH8KFu7du0MCKtsmDp1ql155ZU2fPhwJ1ZcEPgJ/OJsxOdzdaQ+KpXECdFK4Cfw87WsELvyzTOt8aSVf8uGgF+0eRVwa9SokXXr1s2aNm1qvXr1Kn1g+/bt7cILLzT+ffLJJ+2ee+5xJ5twle3bb7/t4rVt29Z69uxpH374odsDcc011xjH3ZEX3r/qvuEsTi2vqV7A7JBDDrFddtklLr/gz0eNGuUIGbFat27tYBJBcwWBn8Av2MiyJFBH6q9iiFYCP4Gfr2WF2JVvnmmNJ638WzYE/GbMmOGcWNOnT3cPYIZz4sSJzqsXhY022sjGjx9v/Pv+++8bs5PffPON+/iDDz4wPIYPP/yw4cTCw0d+7INYvny5m+ol780228y/AtUQ0wv8Pv/8c0fAp59+unOH9u7d26644gr705/+5F3ESZMm2cyZM8vEb9GihX333XfOo3juuee6zSPXXXedE7BWrVpZ8xb4Cfy8ja6CiOpI/VUM0UrgJ/DztawQu/LNM63xpJV/y4aAH1zSuXNnmzZtmnvA0KFDbcyYMe7ouiisueaa7nO8d+S911572RdffOE+Jv1dd93lpnnZAHv33Xe7ja9HHnmk+5w9EG+99ZbBOoUUvMDv0EMPtWeeecbGjh3rKr/FFlu49X4A4SqrrOJVH46DeeGFF8rE7dixo/P2cTYgP0uXLnXTvYjKmsJx48bZ66+/vkL+F198cenfyjTy6NFm/KwsQTd3JG5pdaT+0oVoJfAT+PlaVohd+eaZ1njSyr9ls4Ff+dRMzbZp08atyWMals0dOJv69+/vonbv3r00CVfT8ndmPN99913r27evgz1+ZyaUgCPs+++/d3wEKJ5//vmOZzj5hGnkqtjkQf5AZa7AM3ffffesH8eCXzQHTsWoMOHf//63HXDAAXm5uQPvIV6/gQMHOncqu4Ujt2u2Esvjl6GKwM+/NygXUx2pv3QhWgn8BH6+lhViV755pjWetPJv2RCPH7m2atXK8UfLli2tQ4cO1qdPH7dmb8qUKW752QUXXGDrrbeeW8PHWj+ure3Ro4eb8WTqd4MNNnDcgieQ3++44w578cUX3dW2t956q73xxhv+hQ+IOW/ePLcusaLAdHO2EAt+JIJgeQBeP7Y7M+3L4sZPP/3UNt9884Cirhj1q6++cnPiePr4QfQDDzwwZ54CP4FfpQzu98TqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uGgt/IkSOtS5cu7gGdOnVyG00nT57s4A+4whG1xx57uM/XWmstB3KcZoIj7Oabb3ZsBDwyTbzqqqs6pxibPPAmvvTSS7bbbrv5Fz4gJiei8HwCp6wwzcwOYmZkX375ZRs9erRbZ5gY/KBWqDczQLjs+s1XYAcMtBwXBH4Cvzgb8flcHamPSiVxQrQS+An8fC0rxK5880xrPGnl37Kh4EfOCxYscJdTMFWbLTDzOXv2bLfBI3P/AXC3aNGiFS6zYLkaPMN1t9UR8DzuvPPODvbwPPbr189NP1cK/Cg4nrnnnnvOZs2a5Xa1cI5NVcxbx4kk8BP4xdmIz+fqSH1UEvjFqbR3i72NnyjIruIU++NzaSWt/BXwj5kE/PxzL8yYePyA0ltuucWtL2RzCfsjot3H5UvtNdUL1bJl+ZNPPnHpWQj50Ucf2VNPPeXmu6szCPwEfvmwNw06/iqGaCWPnzx+vpYVYle+eaY1nrTyb9mVEfxQZ7vttnNTzNwuwvF4nEnIOczZghf4sebu2WefXSE9mQv8/A0y7zG1uSOxpOpI/aUL0UrgJ/DztawQu/LNM63xpJV/y66s4McOX47DY33i8ccfb2eeeaY1a9YsGfhFu3rxtLEI8uCDD3ZHr7AAku3Muc7b82+msJjy+MnjF2Yx2WOrI/VXMUQrgZ/Az9eyQuzKN8+0xpNW/i27soKfv0JmsR4/pnUBPc614dJhFhGykwS3ItO9IYc4hxQsV1yBn8AvH3akjtRfxRCtBH4CP1/LCrEr3zzTGk9a+bfsygJ+v/zyS1aPHhtUogOpc6kWC34kPPHEE91W5UceecSOPfbY0rw01etvjFUSU1O9iWVVR+ovXYhWAj+Bn69lhdiVb55pjSet/Ft2ZQE/diJHN4SgDrBH3TlUmltEKgpe4Md5MRxIuN9++9njjz9uEyZMsKOPPtqdc1PdQR4/efzyYXPqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuLOBXXhE4beONN3b3AscdGp0T/DibhoMH2R584403ulOrOWi5poPAT+CXDxtUR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQQ/zutjv8Wjjz5qb7/9tmM2LsTIFXKCX7S2L9oazN285XfwckExN3lUZxD4CfzyYW/qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuTOA3c+ZMd2PHsGHD3A1r3EByxhlnuJtFEk/1cjMH5/dxGvRWW21lTZo0KZPX888/7y44rs4g8BP45cPe1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXZnAr3379u5aOG7tmDNnjlvjd9BBB7kTWBKDX5TwyiuvtMMOO8x22mknf/WrKKbAT+CXD9NSR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQE/zuvbYYcdbNCgQXbqqac6gXr06GH9+/d39wRzb3Cu4LW5w1/yqo8p8BP45cPK1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXdnAjxNXmOIl9OrVy66//np37zBTvwI/f7spnpg6ziVxW6kj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LbuygB+7eLfYYgvjnt69997b5s2bZ++99567seOuu+6qUDB5/Pzt6f/bOw8wqYrsbx9yjpIRQVHEgLiSg+ACEnVdERARcEBFFhVBkiCiZP8qQQkCgiAIfoioILArIoKSBmFBchQQiSo5SfyeX7G37ZnpcG5Nz0yHXz3PPOhM3dt936q+9+1Tp6rCrybFz7pNeCPVo3PDiuJH8dP2LDf9SnvOaK1HVvqWjRXxAxHszYv9eLHGMjbYiIuLk27dugkm4wYqKvGDSY4cOVJeffVVeeONN8yOHd27d5eqVavqWyNENTnU6wWS4mfdq9zeSDFdHguWBwqfO28GK6pjtjvyLDJnzhxwWr31BaTigW5YUfwoftqu6aZfac8ZrfXISt+ysSR+DhVsrZs+fXrzoykq8cP+vF999ZXMnj1bHnvsMXPeG2+8Ufbv3695jZDWofhR/ELRoQLdSJEfMXr0aBM+r1GjhtmTuk6dOkb8Ll265FfksHJ606ZNzbcw/Nx5551m0+xXXnlF/Zbnz58vP/30k/Tp00d9TEpXdPPQofhR/LT90U2/0p4zWuuRlb5lY0X8ggUisBQfgna+SlDxg0lmypRJxo8fb3bvgPwh4nfHHXfItm3b5Pbbb9e3SAhqUvwofiHoRmbaO1Y491V++eUXKVmypEfaBgwYIK+//rqMGjVKnn/+ebNQpq+C2VSYVTV48GCTZ4EQPISxdu3a6reMNZgmTJggWEfT3+uoTxaiim4eOhQ/ip+227npV9pzRms9stK3bKyIH0aUsMwecvwaNGhgghKLFy82M30RdMiSJYtMmTLFTvyuXLliNgLGA++dd94xD7KnnnrKRDYOHTokRYoU0bdICGpS/Ch+IehGAcXPWRsJUW3Mlvrwww/l6NGjcv/994u/tSv//e9/m/wK1EOUEOtftmvXzkyzL1GihIngYUmkjz/+2KyxdOzYMXn77bfN+apXr27SKPC7Dh06mHM0adJE5s2b5/NSEZF88MEHzc46iCzig4/XQmQRN4NevXrJF198YdbYxA0BaRq///67PPTQQ+YYRBSPHDkir732mnz99dfmCx32dxw7dqyRTeSLYFHQffv2metv37693HbbbSrsFD+Kn6qjiAT8DGrPESv1KH76lo4V8cNevUgpwvMJ93+Uf/7zn7Jz507ZvHlzQGBBI344Gvl82LoNZcGCBWafXjwIsGdvaheKH8UvFH0u0I0UotS1a1cjavhA4f/xTQoyBJHztRUOPmwvvfSSQAARGWzYsKH5jPTv399Ex1u0aGHeNvJiETX/+9//bv4f0cQhQ4YItkj87LPP5F//+pcsX75csHh6mzZtfF7qH3/8IQUKFDB/69Spk1lgHQIIUVuxYoU88cQT0qVLF5PvMXz4cJk1a5Z5XQgowv84LyQPBcJ38OBB+fHHH81nG7KIIW5ILJKFMTsM2zXic6cpFD+Kn6afoA5lRkuKrPSkkrJK7AxuzhXOdZFaVLZsWenbt6/5QZCuUqVK5lkQKCUJ16QSPyS2f/fddyYagIcCHhp4kBUsWDDVuVD8KH6h6HRuhnqdRTGRU5F420Lv94KoHnL6fvvtN8FUe0QMvcUP6yshGoeCFIkdO3aYKGLdunWNaGF4WTPU64jfs88+a4aFEaFr1aqViSTWrFnT7NeIaDyE8IcffjATspzIY48ePcw+joj+IZ8QNwis/N64cWMjm9jnEfmNeJ8ZMmQwUoqhA0QJNYXiR/HT9BOKn5bS9XqUZD2vWIn4IQ2vfPnyRvS8C4IHzhd7f9RU4ocHHqJ+iAjgwYSHWvPmzc0DIVTl7NmzJq8JEYlAheJH8QtFn0sL8UM0EJFAFOQRIm8WUT4IIPr94cOHTaQxWI6fI34Y2oVo4hz4PEL8sHdj586dzSQsfD6Rm+gtfvhmOHDgQGnWrJmJPOJLHYZ6MSSMhUAhfxBBiB9ye823w3TpTGRSUyh+FD9NP6HMaClR/NyRsov4wT2QJoOhU38FHuTLT5xVHNIiJxspPF9++aVxM4zwYCIu0vACBSjMPf0a7vxBCqJ7GC5CwcrQ8fHxsmnTJvPwQgJhcgqGuBCNQN4S3ji2hUOUxF+h+FH8ktPfnGM14ocoHPJaMVkDEzeSG/FDPh3yB7Gn4k033WT+G30dUbUZM2aYb24YVob4rVq1yuTj+SqBxA/RPpwLOR6QOHxeIH/PPPOMGeoNJn4YPhg0aJCJCiIqif+uVauW4aApFD+Kn6afUPy0lCh+7ki5Fz/kY+O+W7x4cUEUbfr06QlGM5HShjxnjMggnWbSpElSsWJFk4u9YcMGI1q7du0ya+chKIaRUOcLPu6h+KKdUgWvi3xu7NWL3HLcvxEFDFaCip8zqxcPKETlMPzTqFEj8zDA8E9yo36YdYLhJYQm4aC4COQd4XV8FYofxS9Yp9b8PZD4eYfQMey5e/duI37ONzt/58cEDUgchnovXrxobiTeQ72O+OF4zPhFXdw88C0SuXoYCoa4IUcPxd93Mkf88CUM50DkDhE8RPzwjRUJvpBURPHwmshVRN4hhp4d8XO+zCWO+OGzhwVAP/jgA/Me8PkeM2aMGULWFIofxU/TTyh+WkoUP3ek3Imf4zf4Mp4nTx4zWlK0aFET4HIKvqBjxBP/4l7rvcIJ8rHxbMBkOYgfVjrp16+f+fLtKxfc7bUEqu9IJu71KFhy7+GHHzYrSzhzMvwdH1T8kDCIC0BUDtE9/MBokc90/PhxyZs3b7KuBZCwThqsGg8mRBgglv4KxS/lxA+hbgzvIe8LYetAmzwnq9HD4OBgOTMI/WMNJEx2wCLMTkG02/mgeV8GkmzRf90USBei5jjO+4sOZmuhDXATsXkt3BBwIytcuLCbt5OgLt4DZhlDXvfs2eN36ZvEL0Dxo/hpO12wz6D2PLFQj6z0rewmxw/3tnr16pkv9yj4grx+/XoT1XMKRkowaQ7/rlu3zkTzIHpOwbPSET+sxIB8a9y3MdECvuJM5NNfga4mRnXuvvtuk5qDFRogprgepOwEWw4sqPjhLSACgNmB3gXLPOAFtAUhUeQfeZdSpUoZW/7+++/NGDWgIvkcD0PAXLZsmZnhmLg4CfL4fYJGXrJEBD+xUkK0cwfkHrKNDoQ8NCzdU7p0aZP7pS0bN240Eae2bduaD0i4F9sbKZjgC0/iUqFCBbNvYihLar5WoPfthhXFj+Kn/Qy46Vfac0ZrPbLSt6wv8Ut8NEYwMDQKL0F+NIZIUeA0S5culYkTJ3oOwW5N+DsigTg31mX13rzCW/y+/fZbs1/uCy+8IDNnzjQ52PgCnxL5f4hW3nzzzWZZMIwy4dmNkR8E6UI2qxcRuc8//9yYMfLwEBJFNERbsNYMhp28C2QD4BFFBCAURCkge/4eooz4eREMkfgh4opvJ1jmA3zRYRHJRY6btjgzS9F2WJcu3AtvpPoWcsOK4kfx0/YsN/1Ke85orUdW+pZ1E/HDKBc8xomQIRCFgkl2TkFaG36PL/d4VmKiG4IcTvEWP6T4YPQGP85oKSTR7WiQ5moxKoN1lBOPCmGlCATTAhVVxA/TgxEOhai5kT3Nm4dhI59o0aJFZiHaatWqmXXFmOOnoBcC8Ttw4IAJETtbjCF/ATldWCcOYW98g7jhhhvMjCfkQCBHDB0fM0mR7IolRbAcCfoGZqciyRTi6E/cIZf4kKGgc+K18TroV1gzDjl1mKmEb1VIuMXi4XgPWFMOQ5grV640ExXQP/BesXI5+hDq4Xx471jGBMsOOdfhiyRvpIr+9b8qblhR/Ch+2p7lpl9pzxmt9chK37JuxA9nxWQIzDEoV66cyYtGXjYighhKRUAEI554HmI9U+T6Ycas94QNb/HDRDpE33A+DA/jeecMI+uvQFcTqUh4f967p2HHDkhrsDQflfjhJEhCR0EUCAs442HvLPege5u+a+Fhjuihs3gsoLds2dLvKRnx80ITAvFD58FyH/hGg/A0OjZ2Z0FuF0TKWW8OExAwkQDfXjDjExE+RIAx2xs5EZA35EVgGB4fkPz58/tsQ3zIEOVFEioKElJxLoTdMdMVHzz8De8FPzgvhp3xYYZkIpyNLwjo4Mhv+PTTT82OFZhYgfeI8yAHAzkPOBd2xqD4JecT6m4NMYofxU/b2ygzWlLuPoP6s0ZnTbfih+gdUtdQsGMSJmYgdQnyh+cjxM0ZxcJIGIIP3s83iB/8CHMfsH4qgmSYF4Ef+AzWTE2Jgogi0uP8BcmwSoq/Gb4q8UNOE8a9nb16nZmI2I8U48mh2K8Xr4GxdH8X4YCj+IVW/HA2yBEidlgPCLM6IVre4ofODNlC+2B3ivfee8+IF+Qf32gQAkeUD0mtwYZ60RExaQAC6eyJi29U+AaF/oX8CExRx4cPEoc8T7wffMvCLHLkmqI+PnzYEQMfREy1h+xhpip+0B8xRR/vGR9cX2sv8aGjvxW5YUXxo/hpe5abfqU9Z7TWIyt9y7oVP5wZw6ZYUg55fL4K8ukwEon8dU2+HtZkTentbPFswyhcoOJvZQiV+OHEuGg8mGHHWHLFu2AmCSZqpEah+KW++KFzYckdFHw4MCSL2UvOxBusOYcPm1b8kNOJ80EoMUQLkYOwYd06DBVDJjHbG0uJOOKHqfKQPQzfIhIIQcSWaJA6fPmAHGKmOd7DLbfc4oGECKSvxSzT6kaKXFlwQ5TbtuAmhGWQMOSdGsUNK4ofxU/bJ930K+05o7UeWelb1kb89GcPn5qYwIHVJFCwxzueC0jFwj7uSI9CxBFBEV9FJX7OpvU4AR60Tz75pBnuxQMWeV6B9hUNNSaKX+qLH8LakC4U9AUsYom8OixtAoHBgsOQK0gXcvQgYv6WgkHEz5f4oQNjKBfnxbGYaeUd8QsmfhBHDO3iPWB3GSw4jI6P4WhfJa1upPisQHCTGyVHNDMlEoaTy4riR/HT3vPT6jOofX/hVI+s9K0RK+KHXHgMLyMQh7VbURAMQPoUIo6BIpMq8UN4E+PdeKjiwe+9WwcS6ZHIn1oPoTQRP+ygUL++CHYv2bbteg9s3lykTBmRS5dEsFfeggUi/5u04OmiOK5aNRFsA7N/vwgipVhssWNHEe8Q7eHDIh99pO/ZTs0Q5PjhVM6WXf6Ger3Fb/HixfLUU0+ZYVQU5EQgzw5Dt0g0xQwj5Pz5yy3wFj90ToTWEfFDZA7RPpwXEzbw7QULJiOajKRbR/yQNIvlZhDxQz0IJ0QT0+/RNzAU7KQi4HqQr5hcmXHfML6PQDoDJqRgGB0fWEyE1XL6AAAgAElEQVSGwXR8MMMPZoSBLXIrIdeYBIPPHj7U+HBjOSSsKYjrRcQP3+qQY4n0CHwG/V1rct+/m4cOxY/ip+1vbvqV9pzRWo+s9C0bK+KHZwRGWpETjzx3zJdAqhaeJXh+BkqbU4kfZnTu3LnTMzsF48ZY16ZLly5mtmVqllQVv+LFRerVE8Ewdrp0IogebdggUrWqCPZchejhJ2PG6+L3v+FQwwNcevbE9gvXZQ+it2mTyGefifTrd/33f/55Hd2hQ1hAyD3GEImf2xdGUiny8CAl3rO8EXqGrGExS0cMvc8NeQu00wv6FWYZQ4w0eRS+3jfeG3IH8d4CrZyeVjfSjz76yAgalgVAziTyJCF64IioKvIlkVaBIXAkFKO/IxKKCTAQXqwJhbxGbCuEvEzkZ2KBUFwrBDklihtWFD+Kn7YPuulX2nNGaz2y0rdsrIgfiGDkFYEX74Ic/BdffDEgMJX4wSbxAEpckO+Fh1dqllQVP+x5h11EsHND+vQis2eLbNwo8tRTIjffLDJ2rMiVKyKA/NtvImPG/IXirruuRwU3b/5L9s6cwdLgIn36iMTHi/zwgwh+Z1vSSPyCvV1MwoCgJC6QsXBZ4y+tbqTe4oe8RET8EMVEJB1RTExYgfhh8gx+0N8xyx2LayOMjy9cyLmE+CHlwpkog5nSWPw8JYobVhQ/ip+2D7rpV9pzRms9stK3bCyJH6jgWYvl8BAswSRHPFeCFZX4YTkX5E8hKR3/YmwZw05I6seU4dQsqSp+zoU9/rjIHXf8JX5YuDpLFhHs4AAxxJAuVv7+5JO/UCAK2K2bSNasIhcvXq//7bci+/aJeCdcnj9/fQh4xw73GMNU/NxfSOofkVY30sTih+FqfEPDZwx78CKahy9T3uKHYXAsgI6hYERVEQHEJBcMAWM4G5FU/N5fIm9y6bphRfGj+Gn7m5t+pT1ntNYjK33Lxor4YTgXe7snLhiFxXMFARik5/lytKDihwcK8orGjRtnog0Y9sUCvnjYpNSK1IGaOOTih/1MW7RI+pLHjolMn37994nFz6mN4+68U+TyZZHx469H/ZyCYWJn1iXkDrII6UOU79FHRbDX34kTIvfdJ/LHH9cjgW4Lxc8tMU/9cLqRIpcPn6scOXKYPA3vHFrvC/T1N/wOQuhryRprOIkOdMOK4kfx0/Y7N/1Ke85orUdW+paNFfHzt5wL3AxpeFjlAs8H773mHYpBxQ8VMbED0T4MSXXq1MnM5gVcDEn5W/dG30zuaoZc/G66SaRt26Rv4uTJv2Qssfgh3++FF0RuuOG6vE2ejHVOEp7jscdEkHPl7B+M4d1MmUTee08kXz4RTI5AJPDVV6/nCPbv7w4EalP83DP73xG8kerRuWFF8aP4aXuWm36lPWe01iMrfcvGivgh4udrazaIHvLkMTES+d++8uVV4ofZI9hBAbMve/fuLT/88IMRQPx/apeQi5/mAhKLH2b4Yj9a5Pchlw0TNRC1++knbG0isnfvdbFr3Fjk999F1q8XqVtX5MIFkcWLMRX2+t9Rr2bN69G/99/XvJOEdSh+7pmlsfhxHT/rJgvLAx8o9YDgxyl8QOubiazISk9AXzOWxA9bp/orED5M/vBVVOLnHIghpU2bNnkWztU3Rehqpon4OUO6zuSO558XKVgw4UWdOyfy8cdYSfH6kC8mfmDZlkKFrs8IxgzeefOuTw7p1On671Egjzhuzx73kMJE/KJdZtw3jP8juI5fKGmm/bkofvZtQPHTsyMre1aJnUF/pvCumWI7dzjJgZjMgRmD7777rmeZDkwhxiK7qV3SRPySc5GY3IGlXBDV8y7I+YM8IvIH+bMpYSJ+0S4zNk3j6xiu4xcqkuFzHoqffVtQZvTsyMqeVbSKH4Z6nd2zfNFBxK9WrVo+wQWM+GGNMSzYixkiWGwW5bHHHpPZs2ebyR1Yry21S8SJX0oCCgPxiwWZCWUTch2/UNJM+3NR/OzbgDKjZ0dW9qyiWfxSZFYvjBELAY4cOdIsM4H1xLA915tvvmly/bCxcVQv4Kzva2lTMwzEDxce7TITysblOn6hpJn256L42bcBZUbPjqzsWUWr+KXYrF6I38CBA83Gv9hbFOuGASK2nerYsaNE/QLO+r6WNjXDUPyicVHiUDYu1/ELJc20PxfFz74NKDN6dmRlzypaxS/FZvVC/LAAIH6wOGy1atXM4rHz58+X999/n+Kn74spUzNMxS/aFiVOmcb766xcxy+lCafc+Sl+9mwpM3p2ZGXPKlrFzxcRrLiCxf4nY4m5ACVgjl+w/VIZ8dN3xhSpGSbi5+vaoklmUqTtIuikbh46XMeP6/hpu7abfqU9Z7TWIyt9y8bKci4g0qJFC7Nfu1NOnz5t/hML+mO09qWXXvIJLqD4IXHwGtao81Mwqxebw6dm4eQOL9phLH6p2SdsXos3Uj01N6wofhQ/bc9y06+054zWemSlb9lYET9Mri1SpIjcf//9no00fvnlF7OVLoQQI7WPPPKIO/HDEi6vvfaaGeKtWLGiz9WfsbAzJn5gkcCqVavqWyYZNSl+4Sd+XMcvGR06Ag5189Ch+FH8tF3aTb/SnjNa65GVvmVjRfyOHTsmPXv2lCFDhphVVlDwLJ4yZYrZcCNQ8Rvxw4xdTOb45ptvzBZtMEfYJRIKt23bZjYA3rBhg1nqZdGiRVKiRAl9yySjJsUv/MSP6/glo0NHwKFuHjoUP4qftku76Vfac0ZrPbLSt2y0i9/WrVuN4LVu3doDBdvnfvHFF2aFDQTkgi21F3Tnjjlz5piJHCtWrBDv8eM6derIQw89JE899ZRkwh60qVQofuElflzHL5U6fhq+jJuHDsWP4qftqm76lfac0VqPrPQtayN+3jnp/l4J/oPcOe+iOc6pj7pnz55Ncg79lV2viRS8J554wmydi2v9+OOPTYDOKU8//bRMnDjRLuKX+Ci8aSzijAkft912m6RPn97t+/VZ/+233/asPo3X+Oqrr+S///2v/O1vf/NZn+IXXuKHdxPt6/j1799f1q1bF5L+Hoknwc0qR44cqrf++7nfBT+xUqpVqiaTR/w1g44PaH3LkxVZ6Qnoa7oVP8yARcpa8eLFzYjm9OnTpaDXlqyIriHlrWTJkiaaNmnSJJP+5us4DLM6u2l4+wxGSOfOnSs5c+YUrL+HY/Ply6e/KK+ahw8f9uT0Ob/G8nrI66tRo4Zkzpw56HkDRvwAAUu3AMTdd98tzzzzjBQrVkzmzZsnAwYMkCVLlkh2bD0WotKrVy8znNy1a1e/Z6T4hbf4ReM6fu26tpMpI6eEqJfzNNFE4IWeL8io//srn4Yyo29dsiIrPQF9TTfiB8fBiOWJEyckT5480rlzZyNV2KDCKfXr15fu3bsL/sWuZVjHeMGCBUGP8/aZwoULm5S4cuXKScOGDQVRueRseYuRtk8++cS8F6TcoTRo0MCc+8EHH5S77rorILCA4jdt2jRp27at5wTI9YuPjzfi165du5Cu44c3/+ijjwrGrwMZK8Uv/MUv2tbxG/zBYNl0dJP+zhPhNe8udLfgxynIF8GNi8U3Ae+Zc5QZfS8hK7LSE9DXdCN+e/bskXr16snu3bvNC2BSxPr1601UzymYv4BUN/yLkR/IFWbOBjousc9g1GjGjBlGyH788UczRyJ//vz6iwpQE840a9YsM/KGa9dspxtQ/Bo3biwIVyLPD4bbtGlTadKkifkXxupmHT+A2Lt3b4K3X6pUKbnnnnvM7xBNxALROK9Tli1b5nMTYpi0UxI08pIlIviJlRLGy7lE0zp+zFtj3pr2lkKZ0ZIS85BCMIElOAGyCs7IpxOImN3GEpeaNWuaYVF4CSJv27dvN1UQ7Fq6dGmCHLncuXObvyMSiHaoXbu2GQkNdFxin8Hr4Tzly5eXMWPGyMKFC0O+EgqW3sOwNPL9vCOWvsgFFD+82UOHDsnixYvN+DYsGBeEDysAuBE/rCb99ddfJ3gPjRo1kri4OPnjjz+kQIECgvAl9gQOVBjx86ITxuKn/5imTU03N1KKHx/Q2l7qpl9pzxmt9chK37JkZc8q0M4d58+fN+lqCFRg/sKIESPMC3mnm9WqVcv8vkKFCrJmzRqT5jZz5ky/xyX2mV27dpl5EVgpJVu2bILoH9xp+PDh+osKcc2A4odlOjBrF+XKlStmQgfGuocNG2Z+50b8Ar1vjJsjTInkx2CF4kfxC9ZHNH93cyOl+FH8NH0Kddz0K+05o7UeWelblqzsWQXbsg1RuLFjx5r8O+TJQcwQ9Nq8ebNUqlRJunXrZgJTWDMP/oMJGtgVw9dxTh6gt89A+DB3YePGjSaA1qFDBzN59V//+pf+okJcM+hyLhjL/u677+SVV17xLOKM/0cUsE+fPsZgk1tefvllk0PkPYTr75wUP4pfcvub2wc0xY/ip+1zfEBrSVGS9aTIKjmsgokfAk7OmnhIZUMuHiQN8ocZuMj/q169unkLGJFcuXKlyc/zdRyihr585t133zUbYmC2MFLcsCSL98xhN9cXirpBxQ8vgoUB//zzzySvBwsGnKxZs4bivajOQfGj+Kk6SpBKbh7QFD+Kn7bPuelX2nNGaz2y0rcsWdmzCiZ+ODOichjBRB6fr4LZv1gkGRM8IHdOCXac97kuXrwo2G0D0b+0LirxQzTu6NGjPt/rfffdZyZgpJb8UfxCI347d+5M676Xpq+/f/9+9W4z8QfiZfWvq9P0/abmi1e+sbK0fuCvVeH50NHTJyuy0hPQ12S/smelET/92aOjpkr8nnzySfn+++/NuHbGjBll6NChZoYK1ovB7zCLBFObU6NQ/EIjfq/0fUX+b3DS2U6p0YZ8jfAmENcljosSWzYRH9B6cGRFVnoC+ppulnPRnzW6agYVP2eBQ8xycWahvPnmm2a6MFb0R9gSM168l2FJSUQUv9CIHxYlnvtZ8Mk0KdmWqXnu7BmzS7ZMf+WjXrp0KVW3GkzNa03ua+GL3uuvv+45DR/QeqJkRVZ6Avqa7Ff2rBjxS8ouqPjhEET3sE/duHHjJEuWLGZ1a0zqwJo3mAWDoV4n+VHfPHY1KX6hET/mrTFvTfsJ5ENHS4pJ+HpSZEVWbgjo6zLiF5yVSvywKjQiepA/FGxUjDX9MOMFW4ZgGJg5fsFhh7xGMtbxo/hR/LT9keKnJUWZ0ZMiK7JyQ0Bfl+IXnJVK/HAarOOHxQux4CFWvMb+dpjwgenNmk2Bg78VXQ1G/Bjx0/WUhLUeKPWA4McplBk9RbIiKz0BfU32K7LSE9DXpPgFZ6USP0T6MKyL9W3w3y1btjQLOxcrViz4K4S4BsWP4mfTpSh+NtSuH8MHtJ4dWZGVnoC+JvuVPSvm+CVlpxI/TOTAhA4M8ebJk0d+/fVXufPOO81Gw5jlm5qF4kfxs+lvFD8bahQ/t9T4gNYTIyuy0hPQ12TELziroOKHmbvYouTZZ581kzuwbdvIkSPNXnZbt26VsmXLBn+VENag+FH8bLoTxc+GGsXPLTXKjJ4YWZGVnoC+JsUvOKug4oeVqXPkyCFvvPGGZ4kHTPZo0aKFyfnDxsWpWSh+FD+b/kbxs6FG8XNLjTKjJ0ZWZKUnoK9J8QvOKqj44RTYlg1LtjRq1EiyZ88us2fPNpsXx8fHJ9i+JPjLJb8GxY/iZ9OLKH421Ch+bqlRZvTEyIqs9AT0NSl+wVmpxG/fvn0yZMgQ+eSTT8zkDkT7Xn31VbnnnnuCv0KIa1D8KH42XYriZ0ON4ueWGmVGT4ysyEpPQF+T4heclUr8nNNgk2Hs5IGoX1oVih/Fz6bvUfxsqFH83FKjzOiJkRVZ6Qnoa1L8grMKKH4lSpQQyJ6/snv3bjPxIzULxY/iZ9PfKH421Ch+bqlRZvTEyIqs9AT0NSl+wVkFFL+HHnrIRPj8lc8//zzVo38UP4pf8G6dtAbFz4Yaxc8tNcqMnhhZkZWegL4mxS84K1dDvcFPl/I1KH4UP5teRvGzoUbxc0uNMqMnRlZkpSegr0nxC86K4hecUfjW4F696rah+KlRJanIB7SeHVmRlZ6Avib7lT0r7tyRlB3FT9+fwq8mxU/dJhQ/NSqKnz0qbm/ngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0ril8Yix/WB8QM4XTp0gVsYeb4eeGh+KnvBhQ/NSqKnz0qip8LdpQZPSyysmelEb+rV6/K+fPnzS5l/gocJVeuXAn+7O+448ePS758+VR19VcWupppPtQLQNgHGEB/++03adasmcTFxfm9Qoofxc+m+1P8bKhdP4YPHT07siIrPQF9TfYre1bBxG/y5MkycuRIKV68uFnFZPr06VKwYEHPC65du1bat28vJUuWFGxmMWnSJKlYsaL4Ou6PP/6QJ598UkqXLi3Y7rZ169bSsmVLeeutt2T16tWSIUMGI5hTpkyR/Pnz6y8qxDXTXPwAYMGCBfLpp5/KihUrpF27drJ9+3aKn6ahGfHTUDJ1KH5qVIz42aOiJLtgR5nRwyIre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frSvXt3wb/Yrnb8+PHGWXwdlyVLFnP8E088IYsWLZJu3brJ3LlzpVSpUkb4smbNKm3btpVy5cpJjx499BcV4pppLn6HDh2Se++9V+rUqSPLli2TLl26GFj+CiN+jPjZfAYofjbUGPFzS40PaD0xsiIrPQF9TTfLuezZs0fq1asn2IwCZdSoUbJ+/XoT1XMKNrJAUAr/rlu3Tho2bCirVq0KeNzYsWONILZp00Y6duwoxYoVkyNHjki2bNnM8YgIjhkzRn9RIa6ZauK3YcMG2bt3b4K3Dws+fPiwgdOhQweJj4+XzJkzy7x580w9iODy5cuTXHKvXr08v0vQyEuWiOAnVgojfuqWpvipUSWpyAe0nh1ZkZWegL4m+5U9KwSLEpeaNWtKjRo1BF7SvHlzzyjjtGnTZOnSpTJx4kTPIblz5zZ/RyQP7VC7dm2ZP39+wONGjBhhooPY3nbhwoXyzDPPGGm89dZbzehmnz59ZPDgwfqLCnHNVBO/Dz/8UL7++usEb79Ro0YGctmyZQUyh+RJQIYZFypUyOelMuLnhYXip/44UPzUqCh+9qg41OuCHWVGD4us7FkFGurF8CvkDJM0MLEUwobStWtXzwvWqlXL/L5ChQqyZs0aGTBggMycOdPncTfffLNUrlzZRPgwfIwJHgcOHDD/jyjh/v37zb8Y5UTAK61Kqomfvwt85513zM0SYU8kTlapUsWAypgxI8UvWK+g+AUj5Pk7xU+NiuJnj4ri54IdZUYPi6zsWQWb3FG+fHnB0Czy7ho0aCD9+/cXRAQ3b94slSpVMqlnBQoUkJ49e5pcP6w+MnDgQPF13OLFiwV5fq+//rps2bJF6tata0Y6y5QpY4aLIYIQyDlz5piAV1qVNBc/RPcefvhhQa4fSr9+/cwsX3+FET9G/Gw+LBQ/G2rXj+FDR8+OrMhKT0Bfk/3KnlUw8cPkC8y+RWnSpInMmDFDNm7caOTv1KlTJv+vevXq5u958+aVlStXmhm5vo7bunWrSVvbuXOnSVsbMmSIiexBFD/77DOT2vbiiy9K37599ReUAjXTXPycazp48KCZQo2ZMoEKxY/iZ/M5oPjZUKP4uaXGB7SeGFmRlZ6AvqabyR3OWbH0ysmTJ00en6+C2b9wFEzw8F5r2N9xCGQVLlxY0qdP7zkdUtlwnsTr++mvLHQ1w0b8tJdE8aP4afuKdz2Knw01ip9bapQZPTGyIis9AX1NG/HTnz06alL8IrkdmeOnbj2KnxpVkop8QOvZkRVZ6Qnoa7Jf2bMKNtSrP3P01KT4RXJbUvzUrUfxU6Oi+NmjYj6kC3aUGT0ssrJnRfFLyo7ip+9P4VeT4qduE4qfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS+Mxe/06dOSM2dOSZcuXcAWTtyICT4QS5aI4CdWCsVP3dIUPzUqip89KoqfC3aUGT0ssrJnpRG/q1evyvnz5yVHjhx+XwiOkitXrgR/93fc5cuX5eLFi5I9e3ZPfc1r6K8yeTXTXbt27VryTpG8o7dv3y4DBgyQ9OnTy759+6RDhw7SunVrvyel+HmhofipOx/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICYZs+fboULFjQ84Jr166V9u3bS8mSJY2jTJo0SSpWrCi+jsufP79s2rTJ1MmQIYOMGDHCnOett96S1atXm99BMKdMmSKom1YlzcUPolemTBnp3r277Ny50/z3n3/+KZkzZ/bJhOJH8bP5sFD8bKhdP4YPHT07siIrPQF9TfYre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frGT/Dv7NmzZfz48bJgwQKfx7344ovSr18/WbNmjVSoUMGIH2SxVKlSRviyZs0qbdu2lXLlykmPHj30FxXimmkufoj2ATxAr1q1SqpVqyYHDhyQYsWKUfyCNTYjfsEIef5O8VOjYsTPHhUl2QU7yoweFlnZswokfnv27JF69erJ7t27zQuMGjVK1q9fbyJ2TilRooSsWLFC8O+6deukYcOGxlUCHTdmzBjZtWuXEb8zZ84Ynzly5Ihky5bNHF+6dGlBnbQqqSZ+GzZskL179ya4TlhwxowZpWrVqtK0aVNZuXKl7NixQ5x8v2XLlsny5cuTsOnVq5fnd8zxe8A3iyA9asneJYKfWCkUP/uW5kNHz46syEpPQF+T/cqeFcQvcalZs6bUqFFD4CXNmzcXpJyhTJs2TZYuXSoTJ070HJI7d27zd0QC0Q61a9eW+fPnBzzOW/xwomeeecZI46233iqffvqp9OnTRwYPHqy/qBDXTDXx+/DDD+Xrr79O8PYbNWokcXFxcvLkSZk3b56xYDTC/v37/V4mh3q90DDip/44UPzUqJJU5ENHz46syEpPQF+T/cqeVaCIH4ZfMQEDEy8wsdTJyevatavnBWvVqmV+j6FbDOFilHLmzJkBj0ssfjgZooRwG/x77733Sps2bfQXFeKaqSZ+/t43AKFTDxs2zIRXYdtTp06l+GkamuKnoWTqUPzUqCh+9qg41OuCHWVGD4us7FkFm9xRvnx5GTt2rMm7a9CggfTv318QEdy8ebNUqlRJunXrJgUKFJCePXuaXD+sPjJw4EDxdRzyAFG8xQ+zexHUwnBxvnz5jEDOmTNHypYtq7+oENdMc/FD4mPjxo0F4dRff/1V4uPj/eb34doZ8WPEz+YzQPGzoXb9GD509OzIiqz0BPQ12a/sWQUTv7lz53pWEmnSpInMmDFDNm7caOTv1KlTJv+vevXq5g3kzZvXpKRhRq6v45zl6CB+OG748OHmOIjiZ599JocPHxZMAOnbt6/+glKgZpqLn3NNCIHeeOONXMfPTSMz4qemRfFTo2LEzx4VJdkFO8qMHhZZ2bMKJn4487lz50zKGfL4fBXM/j148KCZ4OG91nCw47zPhbkLOA+ifmldwkb8tCAY8fMiRfHTdhsO9apJJa3Ih44eHlmRlZ6Avib7lT0rjfjpzx4dNSl+kdyOFD916zHip0bFiJ89Kkb8XLCjzOhhkZU9K4pfUnYUP31/Cr+aFD91m1D81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUP6AJZGoAACAASURBVDUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS9MxO/MmTOSI0cOSZcunecdnT17VrJlyybp06cP2MKJGzHBB2LJEhH8xEqh+KlbmuKnRkXxs0dF8XPBjjKjh0VW9qw04nf16lU5f/688RJ/5fTp05IrV64Ef/Z3nC+f8VcX582ZM2cCH9JfrV3NdNeuXbtmd6j7o44ePSobNmyQpk2byq5du6RQoULy+++/S6tWrSRjxoyyb98+6dGjh8TFxfk9OcXPC00Yid/dhe6WJmWaJGi3GRtmyP5T+xP8DgJWvUR1SZ8uvew7sU8+3vixOF2wyo1VpH7p+jJr8yzZ9vs29x0swBEUP3ucfOjo2ZEVWekJ6GuyX9mzCiZ+kydPlpEjR0rx4sXl8uXLMn36dClYsKDnBdeuXSvt27eXkiVLGkeZNGmSVKxYUXwdh2CWL5956623ZPXq1ZIhQwYjmFOmTDGi9+yzzxqZ/O2336RZs2YB3UdPIHjNVBW/2bNny/Lly2XEiBFy5MgRI35vvvmmwHgHDx4shw8flqJFiwpsOXv27D7fPcUvPMUP0lepWCU5d+mc5w1+svGTBOJXKm8pibs3Ti5duSSXrl6S7Jmyy6KfF8meE3uk3i31BH9PJ+nk862fy4YjG4L3Xhc1KH4uYCWqyoeOnh1ZkZWegL4m+5U9q0DiB9HLlCmTnDhxQvLkySOdO3c2DtK7d2/PC9avX1+6d+8u+BcOM378eFmwYIHP4yBziX1m69atcscddxjhy5o1q7Rt21bKlStn5BLn+fTTT2XFihXSrl072b59u/5Ck1EzVcXPeZ+A44jfM888I/Xq1ZOWLVuayA+Genfv3i233HILxS9Yw4ZRxK9t+bZSMm9JeXv523L56mXzk7i0vLullC1QVj5a/5EcPnNYqpaoKodOH5IsGbJIo9saSeYMmU0kcPbW2bLxyMZgV+/q7xQ/V7gSVOZDR8+OrMhKT0Bfk/3KnlUg8duzZ4/xDzgHyqhRo2T9+vUmqueUEiVKGDHDv+vWrZOGDRvKqlWrfB4Ht0nsMxs3bpTq1asb50E6G44vXbq09O3bV+69916pU6eOLFu2TLp06SLdunXTX2gyaoZc/C5cuCALFy5M8pYaNGggWbJkMb/3Fr8WLVoIfhDmRClcuLDEx8dLqVKlKH7BGjaMxO/Fyi/KDdlvMO8YAo8o3tSfpia4gpeqviT5suYzUpgxfUY5cvaIzNg4Q05eOGnqPX7343JHgTsofsHaPZX/zoeOHjhZkZWegL4m+5U9q0Dih9Sz5s2beyJt06ZNk6VLl8rEiRM9L5g7d27zd0QC0Q61a9eW+fPn+zzu1KlTPn1m0KBBRhpvvfVWE+Hr06ePOU+bNm2kQ4cOxnkyZ84s8+bN019oMmqGXPwQMn3uueeSvKUJEyaYUGpi8RswYIAALGz3ypUrki9fPhN2ReQPFoyh4cSlV69enl9xcscDvlkE6RRL9i4R/ISqYAi3QPYCsubgGqlcvLIZxp2yforsPbHX8xJdq3WVPFnyyMHTB4383ZTnJtl8dLPM2jKL4heqhkiB8/Cho4dKVmSlJ6CvyX5lzwril7jUrFlTatSoYYZfkVaGiRcISCENDaVr166eQ2rVqmV+X6FCBVmzZo3AWWbOnOnzOAzz+vMZRAn3799vooWI9C1evFjKli0r8BnnOGckVH+1djVDLn6at+Ed8Zs7d66MHj3aRAlnzZolw4cPl5UrV/o9DXP8vNCEUcTv5nw3m/y+I2eOiDOsuu7QOpmzfY7nDbcp30ZK5ystw1cON3X71uorZy6ekXdWvEPx03xw0qgOHzp68GRFVnoC+prsV/asgk3uKF++vIwdO9bk3WFksn///gIx3Lx5s1SqVMkMvxYoUEB69uxpcv0wA3fgwIHi6ziMeCb2GUQQMbSL4WIEtiCQc+bMMdE9tOuYMWPMpJEqVarIgQMHzETXlC5pJn6Y4YvkRhh348aNZcuWLea/v/nmGwPAX6H4haf49arZS7JmyCoLdy80s3ZzZcklE9ZOkGK5ikmtkrXkh30/mOHdBrc2kJ+P/2yE757C95hcPuT0oXCoN6U/7nbn50NHz42syEpPQF+T/cqeVTDxQ/CpdevW5gWaNGkiM2bMEOTlQf4wdIv8P+TooeTNm9cEpvLnzy++joP4+fIZiOJnn31mJrC++OKLJr8P0b2HH35YDh06ZM7dr18/M8s3NUqaiJ+vC0MItEiRImamTKBC8QtP8bu3yL3yUJmHjNyhYIgXQ70Nb20oVW+sKvG/xhsp7FSpkycXELN7x64ZK8fPHzfHtLirhdxZ8E7m+KXGJ9/Fa/Cho4dFVmSlJ6CvyX5lzyqY+OHM586dk5MnT5o8Pl8Fs38PHjxoJnh4rz/s7zhfPoPhXJwHUT/vgvMiCBbMffQEgtcMG/EL/lav16D4haf4Oe+qRO4ScvLPk3Lqz1N+mzR/tvwmB/DA6QOeNfy07W9bj7N6bckJFyV2gY4PaD0ssiIrPQF9zcT9SiN++rNHR02KXyS3Yxjl+IU7RoqffQvxAa1nR1ZkpSegr8l+Zc+K4peUHcVP35/CrybFT90mFD81qiQV+dDRsyMrstIT0Ndkv7JnRfGj+Ol7TyTUpPipW4nip0ZF8bNHxWFxF+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhQ/ip++90RCTYqfupUofmpUFD97VBQ/F+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhS/MBG/y5cvy8WLFyV79uyed+Trd76aOnEjJvhALFkigp9YKRQ/dUtT/NSoKH72qCh+LthRZvSwyMqelUb8rl69KufPn5ccOXL4faHTp09Lrly5Evzd33Fnz56VbNmySfr06RPUh+ccP35cChYs6Pk9zpszZ05Jly6d/iKTWTPdtWvXriXzHOrDr1y5Ips2bZJJkyZJhgwZZMSIEeLrd4FOSPHzokPxU/c9ip8aFcXPHhXFzwU7yoweFlnZswomfpMnT5aRI0dK8eLFBWI2ffr0BGK2du1aad++vZQsWVL27dtn/KVixYri6zjIW6tWrSRjxoymbo8ePSQuLs7z5rt16yYbN26UhQsXyvbt22XAgAFGDlG3Q4cO0rp1a/2FJqNmqorfmTNnpF+/frJmzRqpUKGCET9fv6P4KVuU4qcEJULxU6Oi+Nmjovi5YEeZ0cMiK3tWgcQPopcpUyY5ceKE5MmTRzp37ixFixaV3r17e16wfv360r17d8G/s2fPlvHjx8uCBQt8HgfxQwRv8ODBcvjwYXMuRP8wujl37lwZN26ckUuIH0SvTJky5tw7d+40//3nn39K5syZ9RdrWTNVxc95j2PGjJFdu3YZ8Qv0O1/XxIgfI342fZ3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH579uyRevXqye7du80LjBo1StavX2+iek4pUaKErFixQvDvunXrpGHDhrJq1Sqfx0H8cL6WLVsKBlMRzXPO3bFjR+nbt68MGjTIiB+ifZBOSCbOV61aNTlw4IAUK1ZMf7GWNVNE/A4ePGiiet4FY9h16tQxv6L4WbZW4sMY8VODpPipUSWpyIeOnh1ZkZWegL4m+5U9q0Dit2HDBmnevLkZdkWZNm2aLF26VCZOnOh5wdy5c5u/I3qHdqhdu7bMnz/f53GnTp2SFi1aSLNmzczxhQsXlu+//94M90ImEVl84403jPht2bJFqlatKk2bNpWVK1fKjh07TLQQrpTSJUXED/bqHc3DRdx4440ybNgwV+K3bNkyWb58eRIGvXr18vyOkzse8M0iSM9ZsneJ4CdWCsXPvqX50NGzIyuy0hPQ12S/smcF8UtcatasKTVq1DATOjAMi0kaiNY53tK1a1fPIbVq1TK/R3oaAlqI1M2cOdPncRA3iGKXLl3M/IV8+fLJrFmzTJSwUqVKcvLkSSN4GObFkDH+f968eVK6dGkjkvv379dfaDJqpoj4BXs/jPgFI6T8OyN+SlDM8VOD8lGRDx09PbIiKz0BfU32K3tWwSZ3lC9fXsaOHSvlypWTBg0aSP/+/QViuHnzZiNrmJBRoEAB6dmzp8nHQ0Ru4MCB4uu4CxcuyOjRo01ED8I3fPhw+fbbb80QLgqGkfE7/G3OnDkmgoiAGKKBiDROnTpVf6HJqJlm4odxbwBwCmQw8e98XRdz/LyoUPzUXZ8RPzWqJBX50NGzIyuy0hPQ12S/smcVTPww6cKZTdukSROZMWOGmXkL+cPQLbykevXq5g3kzZvXDMvmz5/fTNZIfBzEr3HjxmYYF9HEb775RqpUqeJ586tXrzZ5fhBDzORFXUQIf/31V4mPj0+V/D68mTQRP30TJq1J8aP42fQfip8NtevH8KGjZ0dWZKUnoK/JfmXPKpj44cznzp0zw67I4/NVMBMXcxcwwcN7vT1/x2HItkiRImbyRrCCukiFi9p1/IIB0Pyd4kfx0/STxHUofjbUKH5uqfEBrSdGVmSlJ6CvmbhfacRPf/boqMmIXyS3I4d61a1H8VOjSlKRD2g9O7IiKz0BfU32K3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFxWNwFO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+IWJ+J05c0Zy5Mgh6dKl87yj48ePS+7cuSVDhgwBWzhxIyb4QCxZIoKfWCkUP3VLU/zUqCh+9qgofi7YUWb0sMjKnpVG/K5evSrnz583XuKvnD59WnLlypXgz/6OO3v2rGTLlk3Sp0/vqX/58mWB++TNmzfJSxw7dsy8dpYsWfQXmoya6a5du3YtGce7OvTo0aOyYcMGadq0qezatUsKFSokv/zyizz++ONSsGBByZgxo9x3333St29fv+el+Hmhofip+x/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICOZs+fbrxEaesXbtW2rdvLyVLlpR9+/bJpEmTpGLFiuLrOASzWrVqZVwGdXv06CFxcXEyfPhwGT9+vFSpUkVOnToleE+33367eQnUK1eunPznP/+R6tWr6y80GTVTVfxmz54ty5cvlxEjRsiRI0eM+A0aNEguXbok/fv3lwsXLhhLPnDggBQrVsznZVH8KH42/Z3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH4QvUyZMsmJEyckT5480rlzZylatKj07t3b84L169eX7t27C/6Fw0DgFixY4PM4iB8ig4MHD5bDhw+bc2E0M1++fCbah6genAf+M2rUKLl48aK0aNFC9uzZI++//350ip9DEnAc8UN4Ff+fNWtWmTNnjrz88ssmGug9DOzd5BQ/ip/+FvBXTYqfDTWKn1tqfEDriZEVWekJ6Gsm7leBxA/CVa9ePdm9e7d5AcjY+vXrTVTPKSVKlJAVK1YI/l23bp00bNhQVq1a5fM4eAvO17JlS8FgKoZ6cW6IH37OnTsndevWlZdeesnUge/g//G6/fr1i1zxQ9Ru4cKFSVqpQYMGnvFrb/FDRVjv0KFDZdiwYfLll19KnTp1/LYyxY/ip78FUPxsWCU+hg9oPUWyIis9AX1N9it7VoHED6lnzZs3l+3bt5sXmDZtmixdulQmTpzoeUHMPcDfEb1DO9SuXVvmz5/v8zgM4yKC16xZM3N84cKFJT4+XkqVKiX//e9/pV27dnL33XcbscQ5EOyaOnWqkcmIFj+ETJ977rkkrTRhwgQTSkXxFj+IIkBlzpzZWC/gOmXZsmVmaDhx6dWrl+dXnNzxgG8WQT4nS/YuEfzESmHEz76l+dDRsyMrstIT0Ndkv7JnBfFLXGrWrCk1atQwEzqyZ88umKQBL0EaGkrXrl09h9SqVcv8vkKFCrJmzRoZMGCAzJw50+dxGOaFKHbp0kWuXLlionxwou+++87k/r333ntmTgNKtWrVBPMebrjhBvnxxx+lTJkyJr8Q+YMpXVI1x8+5GG/xgxDOmzdP5s6dq7pWRvy8MHFyh6rPoBLFT40qSUU+dPTsyIqs9AT0Ndmv7FkFm9xRvnx5GTt2rJlggZFJzDeAGG7evFkqVaok3bp1kwIFCkjPnj1Nrl/OnDll4MCB4us4BLJGjx5tRj1nzZplJnVgmBhBr0WLFknlypU9F7J//34zrwHl6aeflk6dOsk//vEPI5QpXdJM/GC6mDmD0OeUKVMSXOeOHTvktttu83ntFD+Kn82HguJnQ+36MXzo6NmRFVnpCehrsl/Zswomfgg6tW7d2rxAkyZNZMaMGbJx40Yjfxi6RY6eM9sWS7GsXLlS8ufPb4JViY+DyDVu3Fi2bNlioonffPONiegl9pmnnnoqgfc89NBD0qdPn8jN8dM3j11Nih/Fz6bnUPxsqFH83FLjA1pPjKzISk9AX9PN5A7nrJh0cfLkyQSpZt6viNm/Bw8eNBM8vCee+jsO0bwiRYqYmb/hWNIk4pccEBQ/ip9N/6H42VCj+LmlRpnREyMrstIT0Ne0ET/92aOjJsUvktuROX7q1qP4qVElqcgHtJ4dWZGVnoC+JvuVPatgQ736M0dPTYpfJLclxU/dehQ/NSqKnz0q5kO6YEeZ0cMiK3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4kfx0/eeSKhJ8VO3EsVPjYriZ4+K4ueCHWVGD4us7FlR/Ch++t4TCTUpfupWovipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4hfl4vdWx44iu3fre0ik1yxdWuSWWzxXcezYMcmfP7/qqn4+/rPsPh47rErnKy3jho7zsOGNVNVNTCWyIis9AX1N9iuy0hPQ10zcryh+YSJ+Z86ckRw5cki6dOk87+j48eOSL1++oK2buBG9G7l/u3byxpQpQc/BCrFHIK5LnEweMZniZ9H0fEDroZEVWekJ6GuyX9mz0ojf1atX5fz588ZL/JXTp09Lrly5EvzZ33Fnz56VbNmySfr06RPU9+c+uXPnlgwZMugvMpk10127du1aMs+hPvzo0aOyYcMGadq0qezatUsKFSok27ZtkyeffFJKly4t586dk9atW0vLli39njOg+PXvb84Rq+XEiROSN2/eWL38gNedPXt2ef311yl+Fr2DDx09NLIiKz0BfU32K3tWwcRv8uTJMnLkSClevLhcvnxZpk+fLgULFvS84Nq1a6V9+/ZSsmRJ2bdvn0yaNEkqVqwovo5DMKtVq1aSMWNGU7dHjx4SFxcnvtznl19+kccff9y8Furfd9990rdvX/2FJqNmqorf7NmzZfny5TJixAg5cuSIEb/hw4dL0aJF5YknnpBFixZJt27d5KeffrISv2RwiIpDeXPQNyNZkZWegL4m+xVZ6Qnoa7Jf2bMKJH4QvUyZMgmCJnny5JHOnTsbH+ndu7fnBevXry/du3cX/AuHGT9+vCxYsMDncRA/RAYHDx4shw8fNudC9O/f//53EvcZNGiQXLp0Sfr37y8XLlwwEcIDBw5IsWLF9BdrWTNVxc95j4DjiJ/zu7Fjxxqgbdq0MZD9lUARP0sGUXMYbw76piQrstIT0NdkvyIrPQF9TfYre1aBxG/Pnj1Sr1492f2/uQGjRo2S9evXm6ieU0qUKCErVqwQ/Ltu3Tpp2LChrFq1yudxcBucD6OWGEzFUC/Ofcv/cvG93QdDy/j/rFmzypw5c+Tll182I6HeKXD6q3ZXM+TiB3NduHBhknfRoEEDyZIli/m9L/FDFBA2jSE5X8c7J6T4+W9g3hz0nZ+syEpPQF+T/Yqs9AT0Ndmv7FkFEj+knjVv3ly2b99uXmDatGmydOlSmThxoucFkX+HvyN6h3aoXbu2zJ8/3+dxp06dkhYtWkizZs3M8YULF5b4+HgpVaqUT/e5ePGiDB06VIYNGyZffvml1KlTR3+hyagZcvFDyPS5555L8pYmTJhgQqmJxQ8XW7lyZRPexLGY4OGEO5ctW2bCo4lLr169PL/iB+IvOmSh/ySQFVnpCehrsl+RlZ6Avib7lT0riF/iUrNmTalRo4aZ0IFgEyZpICCFABRK165dPYfUqlXL/L5ChQqyZs0aGTBggMycOdPncRjmhSh26dJFrly5YnwGXuNM8vAOeiFIBknMnDmzINIIsUytEnLx07xx74t/5ZVXTCQQifdbtmyRunXrysGDB/3OcGHEzz9h3hw0ve96HbIiKz0BfU32K7LSE9DXZL+yZxVsckf58uUFqWblypUTjEwi5w5iuHnzZqlUqZKZd1CgQAHp2bOnSUPLmTOnDBw4UHwdB5kbPXq0GbWcNWuWmcOwcuVKz5v3dh8Ew+bNmydz587VX1yIaqaZ+GGWC2azQPY6dOggO3fuNOY7ZMgQk+fnr1D8KH6h6Pu8keopkhVZ6Qnoa7JfkZWegL5m4n4VTPwgXlhNBKVJkyYyY8YM2bhxo5E/DN0iR6969erm71g1AyKH9XJ9HQfxa9y4sfEaRBO/+eYbqVKlSgLxc9ynXbt2MiXR8nM7duyQ2267TX+xljXTRPx8vddDhw6Z8fDE694krkvxo/hZ9vUEh/Gho6dIVmSlJ6CvyX5FVnoC+ppuxQ9nxjJwJ0+e9Dvcitm/GInEBA/vyRf+jtu/f78UKVLEzPwNxxI24qeFQ/Gj+Gn7SqB6fOjoKZIVWekJ6GuyX5GVnoC+po346c8eHTUpftHRjuYqeCPVNyZZkZWegL4m+xVZ6Qnoa7Jf2bMKNtSrP3P01KT4RU9bUvxctCVvpHpYZEVWegL6muxXZKUnoK/JiF9wVhS/4IwipgZvpPqmIiuy0hPQ12S/Iis9AX1N9it7Voz4JWVH8dP3p7CvyZuDvonIiqz0BPQ12a/ISk9AX5P9yp4VxY/ip+89EViTNwd9o5EVWekJ6GuyX5GVnoC+JvuVPSuKH8VP33sisCZvDvpGIyuy0hPQ12S/Iis9AX1N9it7VhQ/ip++90RgTd4c9I1GVmSlJ6CvyX5FVnoC+prsV/asKH4UP33vicCavDnoG42syEpPQF+T/Yqs9AT0Ndmv7FlR/Ch++t4TgTV5c9A3GlmRlZ6Avib7FVnpCehrsl/Zs6L4Ufz0vScCa/LmoG80siIrPQF9pB02ZwAAGxpJREFUTfYrstIT0Ndkv7JnRfGj+Ol7TwTW5M1B32hkRVZ6Avqa7FdkpSegr8l+Zc+K4kfx0/eeCKzJm4O+0ciKrPQE9DXZr8hKT0Bfk/3KnhXFj+Kn7z0RWJM3B32jkRVZ6Qnoa7JfkZWegL4m+5U9K4ofxU/feyKwJm8O+kYjK7LSE9DXZL8iKz0BfU32K3tWFD+Kn773RGBN3hz0jUZWZKUnoK/JfkVWegL6muxX9qwofhQ/fe+JwJq8OegbjazISk9AX5P9iqz0BPQ12a/sWVH8KH763hOBNXlz0DcaWZGVnoC+JvsVWekJ6GuyX9mzovhR/PS9JwJr8uagbzSyIis9AX1N9iuy0hPQ12S/smdF8aP46XtPBNbkzUHfaGRFVnoC+prsV2SlJ6CvyX5lz4riFybid+bMGcmRI4ekS5cuwTs6duyY+X2WLFn8tnLiRuQH4i9UZGF/c9AfGXs12a/0bU5WZKUnoK/JfmXPSiN+V69elfPnzxv/8FdOnz4tuXLlSvBnf8edPXtWsmXLJunTp/fUD1QXf0t87gsXLkiGDBkkU6ZM+otX1kx37dq1a8q6ya529OhR2bBhgzRt2lR27dolhQoV8pxz3759Uq5cOfnPf/4j1atXp/hZ0ObNQQ+NrMhKT0Bfk/2KrPQE9DXZr+xZBRO/yZMny8iRI6V48eJy+fJlmT59uhQsWNDzgmvXrpX27dtLyZIlBZ4yadIkqVixovg6DsGsVq1aScaMGU3dHj16SFxcnM+6EL2nn35aTp48aQTxb3/7m/Tv318gjRs3bpSePXtK165d5dFHH9VfvLJmqorf7NmzZfny5TJixAg5cuSIR/wuXrwoLVq0kD179sj7779P8VM2XuJqvDnowZEVWekJ6GuyX5GVnoC+JvuVPatA4gfRQ0TtxIkTkidPHuncubMULVpUevfu7XnB+vXrS/fu3QX/wmHGjx8vCxYs8HkcxA+RwcGDB8vhw4fNuSB2OHfi18DfVq9eLWPHjhXE37744gt55JFHZNOmTfLRRx/JnDlz5J133ol88XNIAo63+L388stSt25dGTVqlPTr14/ip+/jCWry5qAHR1ZkpSegr8l+RVZ6Avqa7Ff2rAKJH4JN9erVk927d5sXgIOsX7/eRPWcUqJECVmxYoXg33Xr1knDhg1l1apVPo+D2+B8LVu2NDKHSN6SJUtMxDDxayDCuGbNGkFE8cYbb5RBgwZJo0aNPK/brFkzefLJJyND/DAuvXDhwiSt1KBBA0/unrf4waBhtlOnTjVAvcVv2bJlJkLoXbJnzy7nzp3T9wLWJAESIAESIAESiEkCvpyhZs2aUqNGDZN61rx5c9m+fbthM23aNFm6dKlMnDjRwyp37tzm74jQQcBr164t8+fP93ncqVOnzOglpA2lcOHCJnr30ksvJXmNK1euyPfff2+ihxBKDAv/8ssvnrkPESV+CGc+99xzSTrYhAkTTLgTxVv8qlWrJsj9u+GGG+THH3+UMmXKmDF2jKFrSrDxe805oqUOWehbkqzISk9AX5P9iqz0BPQ12a9ShhUmdEAMMbkCXoI0NBTk1jmlVq1a5vcVKlQwEboBAwbIzJkzfR6HYV6IYpcuXQRily9fPjl06JDkzJkzyWvs37/fBMOGDh3qkUQEum699Vbz/xElfprm8RY/XDyihChIdOzUqZP84x//MFA1hR+IvyiRhabHXK9DVmSlJ6CvyX5FVnoC+prsVynHqnz58ibPDpNLMTKJCRaICG7evFkqVaok3bp1kwIFCpjJFsj1g8QNHDhQfB0Hlxk9erQZ9Zw1a5YMHz5cVq5c6bMu0t0++OADWbRokfz666+CINjBgwfNTN6oFT9E+bxnzuBCH3roIenTp0/AHL/Ezc8PBMVPf0sgK7KyIaA/hvcjstIT0Ndkv0o5VnPnzpXWrVubF2jSpInMmDHDzKqF/GHoFrl5zkojefPmNSKXP39+8XUcxK9x48ayZcsWszzMN998I1WqVPFZF5NaMZkEQ70IdEE4kRvoFET88L7++c9/6i9eWTNVZ/Uq35OravxAUGZcdZj/VWa/0VMjK7LSE9DXZL8iKz0BfU2bfoV5A5h9izw+XwWzfxGNwwQP7/WH/R2HkcwiRYokWIPPX93jx4+b4WEn0qe/UvuaES9+mAACM2cRIQt9LyArstIT0NdkvyIrPQF9TfYrstITCF4z4sUv+CWyBgmQAAmQAAmQAAmQAAhQ/NgPSIAESIAESCBMCGDpkMWLF8vdd98t999/f5i8K76NaCJA8Yum1uS1kIAFAeS2YHuhO++802w1xEICJJCyBKZMmWLWeHMW7EX+F/Z2xWQArG6BmaTYEqxjx47yr3/9K2XfDM8ecwQofjHX5LxgEviLAGamYc2q2267TXbu3GnyRP0lOJMbCZBAaAj8+9//Nlt/ffnll/Lf//7XrGaBfeoxk/OZZ56RsmXLyttvv21mg+7duzdVE/9Dc4U8SzgToPiFc+vwvakIYLYVNraGvLAEJoCV4bGHJNanwuw0RB0ge5ithqUEsI3QmDFjiJEESCCZBLAMyLZt28wSIYnLpUuXzDZd2Jf1+eefl3bt2pnoH5Y027p1q9xxxx1mKQ9E4LFw8M0335zMd8PDSeAvAhQ/9oaIJoAt/7CSOm6QkJfPPvuMw5WJWhRDuViMFP9iRXkU7AGJKAM2KMdwEvaibNq0qVk1Hn9jIQESSB4BCBuid85Q7bfffmuifLly5ZL33ntPXnvtNbPW27hx48zWYVhAGDtCvPXWW2Yv2GPHjpn145DvV7JkyeS9GR5NAl4EKH7sDhFDAHkwyHvBYpdt27Y1+xpif2fsc3jmzBlz48Sq6dh7kUXMwqPYBhGrzGfNmtUMKWGFeGxPdNddd5nI38MPP2xWlX/nnXfkjz/+kNKlS5tFS1lIAFEpfDFgsSOAL1LYpABfrH777TezFyty+z788EOzVRci7Ii84+/YphT3LtzXevXqZYaAcb97/fXXjTyykEAoCVD8QkmT5wo5gWvXrsnnn39uFs/EN2bkviABGsMjt99+u+fmiZ1gcCPF3+vVqxfy9xEJJ/zzzz/NNkFggYfJ+vXrzUbk4IUHDCKiGFq66aabzOryTz31lFkDE3tRPv7444LoKbYlQnI5S2wTmDdvnukP+KKFggVsOfFH3ycQrcNnDl+4lixZIl9//bUUKlTI7N/at29fk0+LL1qYuQvJw+8feeQRefTRR82XMByPyR74YSGBUBOg+IWaKM8XMgITJ040ex5iRXPIzIkTJ2Tt2rUmJ+25554TbGgNifnoo4/MDfOrr76SadOmyaeffhqy9xApJ8KQUcWKFU2OEP4bogwJxNAtIgy1a9c2Q06I9L3wwgvy//7f/5OPP/5Y8IA/cOCAGVrCrF7kFkVDwSxl7Kl5ww03RMPlpPo1YLN55HvOmTPHfInARvP4F8OQLDoCiNhh9wZMzsAWX0it2LFjh4wYMUIee+wxs0UXhnixzRciexi1QIQV0UAWEkhJAhS/lKTLc7sikDhiBYFD0jOGJjFsed9995lvwunTpzc5L5jxhm/NiP5hNhxEETPj/va3v7l63Uis7ERC8eCIi4sTbPszbNgwmTRpkokYIH8IQof/x5Ad8iAhzC+99JKRZ0yGwUMcD59oLLh+bIOE4TWkAuDLwz333BONl2p9TfjihMk9+HKAgqgT9hjFfqSIDmPYEdEo1CtWrJj5YoChSmcJEusXjsADMRSLFJLMmTO7evf4soX71rPPPmvSKLAvKzg/8cQTsmfPHsHsXnzZghiykEBqEaD4pRZpvk5AAr4iVhC5fPnymUhfnjx5zLBkv379pH79+kZkIC/YlxEbamPoBMOaeJBFewEXSBxm5SKi9d1335mNw8GgRYsWRpYRWcCDGhFAcEEEEPW7d+8uQ4YMMUNQ0VwwmQU5Vg888IBhgXxQZxgtmq/bzbVh9jYio/gCgC8OGP7H5w1fDLB5PIYq27RpI0eOHDGnnTBhgskLxWcw1gr6Uvv27c3nCZOkXn75ZRMtx1AtZBii7Kv88MMP0rt3b/N5BedBgwaZLyAQSczqTc39WWOtzXi9/glQ/Ng70oTArl27TD4ZhjmQ1Ay58xWxwkKmuNlipimiV0uXLpWpU6cakfn999+jLoqD6CYeKP/4xz/8tgseNEgABwNEP++9916zBMuMGTPMwxoRQCwFsWjRIvN7SOErr7xiEs2jqYDDLbfcYnIUUTC0hl0PSpUqZQQGsyrxRQA8ISzI/8QEFyfCFU0s3F6LE0XHlylEht99910jyJh1irQKMEKkFLNK4+PjDVMM+yJfDUOVsVQuXrxo8h0R/cSsW3yWkPMIkcNae8g9RkqKrwLO6J/z5883X17RRzE5jYUE0pIAxS8t6cfoa1erVs1cOW6cmHiA4SXknOGhnThihbX5Ro0aZYZwIYdr1qyJ+skbmLSCIVhENn0NAYEDxAazb7E0BMQZES4McUOeEUmALNepU8cMiWPoLhoLchiR14kvAugXiOhVqVLFPISxrA9EZvXq1ebvKMgLxXBdLEz+wXCiv2iSwwp9A8O4mHiALwn4YoChcRRE+jCbFEOT+BsW+UYe2uDBg80kqlgp+HKBtAF8DpFWgVQTpJXUrVtXfv75ZzNrHvcsfEH1FUVHSgYi7SwkEE4EKH7h1BpR8F4gJYgU/P3vf/d7NfjGjGgdhiwxxIuoDKQPy44kjlhhvSt8u46VteUwrIZJGsglwkMXEuirIEfIiYQimlWmTBkzJAf2eEghuhXNBf0FXxgwBIeht1atWpk+Ai4QFQx346EMLhjmhfwiZ+2f//ynOSZaC/JksUQPeCDy66sgmgwBhty9+uqrsn//fiMzQ4cOFQxNYvauM7SJCR4QQMgeIqj4MhHNBfcl8EDeHT6D6DcY+sYCykgbwHCvM8EMQ9+VK1c2bDB6AT4okD1ESfHFBJM13nzzzWhGxmuLQAIUvwhstHB+yxh+hHQgEoOZpL4KvjkjOoMJGyidOnUyN1rMZovWiBXkFcPbvoQMw0B46EKCMTSLSA0iCpi44m8dNRzjRELBEJEtJJHHwpIbyI9CjhUiePiygJncGHLDMGXVqlVNn8LEDvBDP4MAIsqHSBc4Ycgt2gqivxAV9CGIP3L2/EV6Ib+I7CH3E9KMek7eGiJaOB7pAWCVI0cOM7kKKQXRXhDdQ3/Cly18sUDuLKKi+OziM4mJGPicYtgX/Qz5eriHQfDACkPkiC7jc47hXXBGZJ6FBMKNAMUv3Fokwt/P999/b4TvwQcfNDkx/vJZsKwIbrSI8GG4CWtb4UaLHSSiKWKFGbXIx8NwEGYfI1qAgocpZAWRGUQSkCeEJTTwg7wqREwRRfA3gxLnxaznWImEen8sMASOhHkwQorABx98YPIcnegKJv0g9w/bZaE/4YGMLxaoE62TWhDpRCQPi5ij/2C/ZXyuChQokOSOgn6FoWB8ycISIkgXgLAgCujkqmFhdLczWMP91oVFlL3zXBEdR/9Af0JED/cdJwcUE1gQQccyR5BBsEUkGfc1yB4iq1jjEGLXoUMHM8kK/Q1fXrm9Wrj3BL4/ih/7gIoAHhCIBmDdvMTFO2KFpUSQ+4K8oUDr6SFBHEMqw4cPN0MjSKCOxvWrvvjiC/OAhdRiPS88MBAVRcQFD1w8PDBEhMkYYIwHMoQQDxlwxQPZmwuSwzEEjAcUZufGYoFEY005DDtichAWucVDF79HZA9sMBnBWXw4Fhhh0W2s14g+gWgfIniIgPoq6GfIhYTw4IsImN1///0B0zMinSHSAjAEjhUA8GUUnyt8BpGbB06YAIRZ8Pj8IbqJiB/6GKLq+PKF1AFEmnEM5A9Ls7CQQKQSoPhFasul0vtG/hiicbj5YfjH2doLa1DhJoi19BBJ8Y5YYbkCrPvlLFzq663iwYSbbLSvX4WIAqIneOggaoBhIuQGIVKA4SFEPDE0hAcwojPIscJDB1EsbKWGBwwmtmA5CByLYSes8A/piYVhXV99B5NZ8KDG0BvYIY8PsoydSNAPMbkFs1VjqeBLAqJ+EGBENSG++Oz6i7gjCoroHmbvOsPj0cxr69atRuzQVxDpc6LGTZo0MV+4sNg3Pm8QZ/wOdZAj+dNPPxmmuPchMs9oXjT3kti5Nopf7LS11ZViNh8iTk7iN4ZoIX/IRYPANGjQwOTBJI5YIWkcUQV8U/aOWOGBgxmXeCD5Sz63eqNpeBDYgIuvJViQf4bkbvxA1jAEByF+8cUXjUyDG2QPy9Rg27Q33njDPIjxdye3CtE/PMQhfIgSxnpBhBisMJMZIoyoDB7qEL5YLugz+KLQpUsXE/3EDyZtJC7IsUV/gvxEc/EeicD9CFF3FPQXrCyAHD3k0jpRdnx+cT/DZBZEBDGbN1ruUdHczrw29wQofu6ZxdQRWHIFQyFYeR6zI7FgKaIp+HaMBzCKr4gVZu4iEojlH/AgwvAkIlfIscEDKVp210AeELZlQv6Qr3wq8MFDBA8dDD3ioQKxw2xJDHcj6gJ5gWBjAWbkC0XzrNNQfngQdQZzyvB1qshHw4QXRKkQicesefyLgvQCpF5g/2bMGocQot9Ga0GeJ0YevEciEAXF5Cp8VhFRd6LG+AKBCWbIT0a0HZOBEIn3N6M+WpnxumKHAMUvdtra6kqxnhyiULhZ4qYIQcEQJcQPDxbcIP1FrJy1xFAPuYHRMjyJ60LEAGsQIh8IEgfJ/fzzz33KH4a1sbI/Hr54qCCSABFEQjiGoHA8CwkklwC+iKEfIsIO4UNkD1G9kSNHmrw/fOFCZDoaC/LvsJsPlpPCPQoC7GskAsuxQPKcJW+Q+4ehXiwbhSFeFhKIBQIUv1ho5WReI4ZrMVMX66DhZgrhQfQO2z0hahVrEStcrzOxAJFQLOeA6AKGwP0VzL7Funt4+GL4CBEHRAshxFzgNZkdlId7CGAIF8vYRKvgORfqTMLAZweRcoxCIA8PuXqYLIUoO75sJc6dRR4kPrOY2YyJHYcOHTL5ttE625sfDRLwRYDix34RlACGS5APgygVvlUj9wxDkvjW7CxPEvQkUVQBD1Y8PH799VcT/cTyDkj8hgj7W+/MWVYEa3uxkAAJ2BGA2OI+hPQRFEQ28QUKM5qxfBQKtp/D7HfIoK/cWXxmsbwPUwTs2oBHRT4Bil/kt2GKXwEiXBiOxA0Ty64gVy1WlxJxYGMdPQzVbtq0yUTt8JABE2ffWO9GwVAv6vvLAUzxBuQLkEAUEMBQNj5rmFmLEQcMZSOSjglUmOyDLfqwtA/WdkQuI76sMnc2ChqelxByAhS/kCONzhNisWUkhWNyB8t1AhgqwnZzGDZCHiPy95y10yB6mI2LiAQeRsgrwtIZLCRAAvYEkB+LlQGczxnSUDAzF2s3Yp1RzJKHDI4bN87s2sJCAiSQlADFj72CBCwJYK0vrNGHCTDI3Xv//felT58+ZlcJPISwXAt+mD9kCZiHkUAiApiBi2VXMNEM61gi9QRb8OGLFVYgQPoFZixDBllIgAR8E6D4sWeQQDIIfPzxxyah3Dt3D/umYq9YFhIggdATwOQNLMuCHTSwHeKSJUtMzh4LCZCAjgDFT8eJtUiABEiABMKAABaPx2QO5PVhzUumUIRBo/AtRBQBil9ENRffLAmQAAnENgHM7MXWa1hbNBr3947t1uXVpwYBil9qUOZrkAAJkAAJhIwAcmoxqQoTzlhIgATcEaD4uePF2iRAAiRAAiRAAiQQsQQofhHbdHzjJEACJEACJEACJOCOAMXPHS/WJgESIAESIAESIIGIJUDxi9im4xsnARIgARIgARIgAXcEKH7ueLE2CZBAiAlg72fM1CxUqJBZlJeFBEiABEgg5QhQ/FKOLc9MAiQQhMCIESPk5Zdf9tSKi4sTrNOWPXt2v0digWzs1oDjhg0bRsYkQAIkQAIuCFD8XMBiVRIggdAR+OKLL8wCvDfeeKNA+D7//HPZsmWLPP3002bvY3/l5MmTkjdvXunatasMHz48dG+IZyIBEiCBGCBA8YuBRuYlkkA4EqhcubL8+OOPsmbNGsE2XFeuXJH69evLiRMnJD4+3gz/Yg9WbMmVLVs2ad++vdmb9dy5cx7x6969u9kuD+KIul999ZUMHDhQxo0bJ7///rv07dtXHnjgAZk/f77ky5fPbPH19ttvy549e+SVV16R559/Xt59912ZPn26NGjQQGbMmCF33XWX/N///R+3AQvHTsP3RAIkkGwCFL9kI+QJSIAE3BJAXl+GDBkkV65cRvTSp0+f5BRPPvmkETHI2rZt22TOnDny6aefGjl0In6dO3eWm2++2QgehG/KlCnSrl07Wbp0qRw8eFCeeOIJs8tDlSpVZNq0aeY1OnToIF9++aUcPXpUjh07JoMGDTKRwzvvvFPq1Kkjo0ePlo4dO8r777/v9rJYnwRIgATCngDFL+ybiG+QBKKPwKVLlyRz5sxyyy23yO7du5Nc4JkzZ4wUYoeGmTNnyvnz503e3yOPPCIfffSRK/FDFLBJkyZGLhHV+89//mOifYjq4bWRUwjx27t3r5QsWVJKlCgh+fPnl59++in6wPOKSIAEYp4AxS/muwABkEDaEChdurT8/PPP5gdROxTk950+fVree+89KVq0qCff7/Lly0bGMCSMaJ0T8evSpYuRNUQF33zzTSNxL7zwQoKI39dff22ihOnSpZNHH33U5BK++uqrMmTIEPPaiPBB/JA7mDt3brn99tsla9asFL+06RZ8VRIggRQmQPFLYcA8PQmQgG8CjqRhKBay9t133wkmfGCmL4SucePGsmzZMhk7dqyZ9DF06FAZP368PP744x7xQ9QOkUOcA/I3ePBgI3PeQ70UP/ZAEiABEviLAMWPvYEESCBNCCCKh7w8TNhwSvPmzWXq1Kkm4oZJHxiiRS4eyoMPPiizZs0ykTvv5VwgfG+99Zapc//998sPP/wg33//vcnxa9mypTjih2hevXr1TMTvtddeM7l9mOQxatQoRvzSpAfwRUmABNKCAMUvLajzNUmABDwELly4YASsQIECUrBgwQRkMNN33759kiNHDilcuLBfasgJhBCiHgsJkAAJkIB/AhQ/9g4SIAESIAESIAESiBECFL8YaWheJgmQAAmQAAmQAAlQ/NgHSIAESIAESIAESCBGCFD8YqSheZkkQAIkQAIkQAIkQPFjHyABEiABEiABEiCBGCFA8YuRhuZlkgAJkAAJkAAJkMD/BzVXvkBuM/j+AAAAAElFTkSuQmCC", - "text/plain": [ - "\n", - "\n", - "If you see this message, it means the renderer has not been properly enabled\n", - "for the frontend that you are using. For more information, see\n", - "https://altair-viz.github.io/user_guide/troubleshooting.html\n" + ], + "source": [ + "# Some of the false negatives will be because they weren't detected by the blocking rules\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\n", + " \"cluster\",\n", + " threshold=0.5,\n", + " include_false_negatives=True,\n", + " include_false_positives=False,\n", + ").as_record_dict(limit=50)\n", + "\n", + "linker.visualisations.waterfall_chart(records)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "21701784-228a-40a6-abfc-6b91dea426fc", + "metadata": {}, + "source": [ + "**And finally, clean up all tables except `df_predict`**" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "0c876741-3052-4595-a377-1eca2acffb69", + "metadata": {}, + "outputs": [], + "source": [ + "linker.drop_tables_in_current_splink_run(tables_to_exclude=df_predict)" ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "# Some of the false negatives will be because they weren't detected by the blocking rules\n", - "records = linker.prediction_errors_from_labels_column(\n", - " \"cluster\",\n", - " threshold=0.5,\n", - " include_false_negatives=True,\n", - " include_false_positives=False,\n", - ").as_record_dict(limit=50)\n", - "\n", - "linker.waterfall_chart(records)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "21701784-228a-40a6-abfc-6b91dea426fc", - "metadata": {}, - "source": [ - "**And finally, clean up all tables except `df_predict`**" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "0c876741-3052-4595-a377-1eca2acffb69", - "metadata": {}, - "outputs": [], - "source": [ - "linker.drop_tables_in_current_splink_run(tables_to_exclude=df_predict)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "athena_dev", - "language": "python", - "name": "athena_dev" + ], + "metadata": { + "kernelspec": { + "display_name": "athena_dev", + "language": "python", + "name": "athena_dev" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.4" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb b/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb index 59f2b6a9eb..2575f82b77 100644 --- a/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb +++ b/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb @@ -23,48 +23,115 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:53.238834Z", - "iopub.status.busy": "2024-03-27T15:10:53.238466Z", - "iopub.status.idle": "2024-03-27T15:10:53.243675Z", - "shell.execute_reply": "2024-03-27T15:10:53.243004Z" + "iopub.execute_input": "2024-06-07T09:09:16.264709Z", + "iopub.status.busy": "2024-06-07T09:09:16.264397Z", + "iopub.status.idle": "2024-06-07T09:09:16.269613Z", + "shell.execute_reply": "2024-06-07T09:09:16.268968Z" } }, + "outputs": [], "source": [ "# Uncomment and run this cell if you're running in Google Colab.\n", "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:53.247564Z", - "iopub.status.busy": "2024-03-27T15:10:53.247269Z", - "iopub.status.idle": "2024-03-27T15:10:55.196205Z", - "shell.execute_reply": "2024-03-27T15:10:55.195428Z" + "iopub.execute_input": "2024-06-07T09:09:16.273849Z", + "iopub.status.busy": "2024-06-07T09:09:16.273306Z", + "iopub.status.idle": "2024-06-07T09:09:17.467426Z", + "shell.execute_reply": "2024-06-07T09:09:17.466787Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_idfirst_namesurnamedobcityemailcluster
00RobertAlan1971-06-24NaNrobert255@smith.net0
11RobertAllen1971-05-24NaNroberta25@smith.net0
\n", + "
" + ], + "text/plain": [ + " unique_id first_name surname dob city email cluster\n", + "0 0 Robert Alan 1971-06-24 NaN robert255@smith.net 0\n", + "1 1 Robert Allen 1971-05-24 NaN roberta25@smith.net 0" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import splink_datasets\n", "\n", "df = splink_datasets.fake_1000\n", "df.head(2)" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:55.242600Z", - "iopub.status.busy": "2024-03-27T15:10:55.242267Z", - "iopub.status.idle": "2024-03-27T15:10:55.601924Z", - "shell.execute_reply": "2024-03-27T15:10:55.601113Z" + "iopub.execute_input": "2024-06-07T09:09:17.501913Z", + "iopub.status.busy": "2024-06-07T09:09:17.501641Z", + "iopub.status.idle": "2024-06-07T09:09:17.581434Z", + "shell.execute_reply": "2024-06-07T09:09:17.580667Z" } }, + "outputs": [], "source": [ "from splink import SettingsCreator, Linker, block_on, DuckDBAPI\n", "import splink.comparison_template_library as ctl\n", @@ -90,20 +157,29 @@ " ],\n", " retain_intermediate_calculation_columns=True,\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:55.606354Z", - "iopub.status.busy": "2024-03-27T15:10:55.606011Z", - "iopub.status.idle": "2024-03-27T15:10:55.966147Z", - "shell.execute_reply": "2024-03-27T15:10:55.965434Z" + "iopub.execute_input": "2024-06-07T09:09:17.585114Z", + "iopub.status.busy": "2024-06-07T09:09:17.584837Z", + "iopub.status.idle": "2024-06-07T09:09:17.847471Z", + "shell.execute_reply": "2024-06-07T09:09:17.846845Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.00333.\n", + "This means that amongst all possible pairwise record comparisons, one in 300.13 are expected to match. With 499,500 total possible comparisons, we expect a total of around 1,664.29 matching pairs\n" + ] + } + ], "source": [ "db_api = DuckDBAPI()\n", "linker = Linker(df, settings, database_api=db_api)\n", @@ -114,138 +190,1127 @@ " \"l.email = r.email\",\n", "]\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" - ], - "outputs": [] + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" + ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:55.970182Z", - "iopub.status.busy": "2024-03-27T15:10:55.969667Z", - "iopub.status.idle": "2024-03-27T15:10:57.008471Z", - "shell.execute_reply": "2024-03-27T15:10:57.007360Z" + "iopub.execute_input": "2024-06-07T09:09:17.850459Z", + "iopub.status.busy": "2024-06-07T09:09:17.850216Z", + "iopub.status.idle": "2024-06-07T09:09:18.931010Z", + "shell.execute_reply": "2024-06-07T09:09:18.930397Z" } }, - "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=5)" + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - dob (no m values are trained).\n", + " - city (no m values are trained).\n", + " - email (no m values are trained).\n" + ] + } ], - "outputs": [] + "source": [ + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=5)" + ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:57.012299Z", - "iopub.status.busy": "2024-03-27T15:10:57.012041Z", - "iopub.status.idle": "2024-03-27T15:10:58.591902Z", - "shell.execute_reply": "2024-03-27T15:10:58.591381Z" + "iopub.execute_input": "2024-06-07T09:09:18.934824Z", + "iopub.status.busy": "2024-06-07T09:09:18.934551Z", + "iopub.status.idle": "2024-06-07T09:09:20.495494Z", + "shell.execute_reply": "2024-06-07T09:09:20.494833Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"dob\" = r.\"dob\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + " - city\n", + " - email\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - dob\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.417 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.121 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.0354 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.0127 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.00539 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.0025 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was 0.0012 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.000599 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was 0.000313 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 0.000186 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was 0.000147 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 12: Largest change in params was 0.000158 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 13: Largest change in params was 0.000184 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 14: Largest change in params was 0.000195 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 15: Largest change in params was 0.000179 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 16: Largest change in params was 0.000144 in the m_probability of first_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 17: Largest change in params was 0.000105 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 18: Largest change in params was 7.27e-05 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 18 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - dob (no m values are trained).\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"email\" = r.\"email\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + " - dob\n", + " - city\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - email\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.466 in the m_probability of dob, level `Exact match on dob`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.0884 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.0193 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.00688 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.00294 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.00138 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was 0.000681 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.000346 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was 0.000178 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 9.26e-05 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 10 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] + } + ], "source": [ - "session_dob = linker.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n", - "session_email = linker.estimate_parameters_using_expectation_maximisation(\n", + "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n", + "session_email = linker.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"email\")\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:58.594711Z", - "iopub.status.busy": "2024-03-27T15:10:58.594499Z", - "iopub.status.idle": "2024-03-27T15:10:58.945354Z", - "shell.execute_reply": "2024-03-27T15:10:58.944711Z" + "iopub.execute_input": "2024-06-07T09:09:20.498372Z", + "iopub.status.busy": "2024-06-07T09:09:20.498155Z", + "iopub.status.idle": "2024-06-07T09:09:20.768827Z", + "shell.execute_reply": "2024-06-07T09:09:20.768326Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
truth_thresholdmatch_probabilitytotal_clerical_labelspntptnfpfnP_rate...precisionrecallspecificitynpvaccuracyf1f2f0_5p4phi
0-19.30.000002499500.02031.0497469.01027.0495147.02322.01004.00.004066...0.3066590.5056620.9953320.9979760.9933410.3817840.4475730.3328580.5520840.390667
1-19.20.000002499500.02031.0497469.01027.0495383.02086.01004.00.004066...0.3299070.5056620.9958070.9979770.9938140.3993000.4569730.3545540.5702070.405492
2-18.00.000004499500.02031.0497469.01027.0495584.01885.01004.00.004066...0.3526790.5056620.9962110.9979780.9942160.4155370.4652950.3753930.5866070.419506
3-17.10.000007499500.02031.0497469.01027.0495836.01633.01004.00.004066...0.3860900.5056620.9967170.9979790.9947210.4378600.4761680.4052560.6085510.439259
4-17.00.000008499500.02031.0497469.01027.0495957.01512.01004.00.004066...0.4044900.5056620.9969610.9979800.9949630.4494530.4815720.4213510.6196820.449767
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " truth_threshold match_probability total_clerical_labels p \\\n", + "0 -19.3 0.000002 499500.0 2031.0 \n", + "1 -19.2 0.000002 499500.0 2031.0 \n", + "2 -18.0 0.000004 499500.0 2031.0 \n", + "3 -17.1 0.000007 499500.0 2031.0 \n", + "4 -17.0 0.000008 499500.0 2031.0 \n", + "\n", + " n tp tn fp fn P_rate ... precision \\\n", + "0 497469.0 1027.0 495147.0 2322.0 1004.0 0.004066 ... 0.306659 \n", + "1 497469.0 1027.0 495383.0 2086.0 1004.0 0.004066 ... 0.329907 \n", + "2 497469.0 1027.0 495584.0 1885.0 1004.0 0.004066 ... 0.352679 \n", + "3 497469.0 1027.0 495836.0 1633.0 1004.0 0.004066 ... 0.386090 \n", + "4 497469.0 1027.0 495957.0 1512.0 1004.0 0.004066 ... 0.404490 \n", + "\n", + " recall specificity npv accuracy f1 f2 f0_5 \\\n", + "0 0.505662 0.995332 0.997976 0.993341 0.381784 0.447573 0.332858 \n", + "1 0.505662 0.995807 0.997977 0.993814 0.399300 0.456973 0.354554 \n", + "2 0.505662 0.996211 0.997978 0.994216 0.415537 0.465295 0.375393 \n", + "3 0.505662 0.996717 0.997979 0.994721 0.437860 0.476168 0.405256 \n", + "4 0.505662 0.996961 0.997980 0.994963 0.449453 0.481572 0.421351 \n", + "\n", + " p4 phi \n", + "0 0.552084 0.390667 \n", + "1 0.570207 0.405492 \n", + "2 0.586607 0.419506 \n", + "3 0.608551 0.439259 \n", + "4 0.619682 0.449767 \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.accuracy_analysis_from_labels_column(\n", + "linker.evaluation.accuracy_analysis_from_labels_column(\n", " \"cluster\", output_type=\"table\"\n", ").as_pandas_dataframe(limit=5)" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:10:58.948920Z", - "iopub.status.busy": "2024-03-27T15:10:58.948640Z", - "iopub.status.idle": "2024-03-27T15:11:01.154581Z", - "shell.execute_reply": "2024-03-27T15:11:01.153881Z" + "iopub.execute_input": "2024-06-07T09:09:20.771736Z", + "iopub.status.busy": "2024-06-07T09:09:20.771453Z", + "iopub.status.idle": "2024-06-07T09:09:21.322647Z", + "shell.execute_reply": "2024-06-07T09:09:21.322088Z" } }, - "source": [ - "linker.accuracy_analysis_from_labels_column(\"cluster\", output_type=\"roc\")" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker.evaluation.accuracy_analysis_from_labels_column(\"cluster\", output_type=\"roc\")" + ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:11:01.168311Z", - "iopub.status.busy": "2024-03-27T15:11:01.167847Z", - "iopub.status.idle": "2024-03-27T15:11:03.812090Z", - "shell.execute_reply": "2024-03-27T15:11:03.811329Z" + "iopub.execute_input": "2024-06-07T09:09:21.327370Z", + "iopub.status.busy": "2024-06-07T09:09:21.327111Z", + "iopub.status.idle": "2024-06-07T09:09:22.635682Z", + "shell.execute_reply": "2024-06-07T09:09:22.635098Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.accuracy_analysis_from_labels_column(\n", + "linker.evaluation.accuracy_analysis_from_labels_column(\n", " \"cluster\",\n", " output_type=\"threshold_selection\",\n", " threshold_actual=0.5,\n", " add_metrics=[\"f1\"],\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:11:03.822254Z", - "iopub.status.busy": "2024-03-27T15:11:03.821939Z", - "iopub.status.idle": "2024-03-27T15:11:04.205976Z", - "shell.execute_reply": "2024-03-27T15:11:04.205179Z" + "iopub.execute_input": "2024-06-07T09:09:22.638822Z", + "iopub.status.busy": "2024-06-07T09:09:22.638569Z", + "iopub.status.idle": "2024-06-07T09:09:22.853941Z", + "shell.execute_reply": "2024-06-07T09:09:22.853250Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
clerical_match_scorefound_by_blocking_rulesmatch_weightmatch_probabilityunique_id_lunique_id_rfirst_name_lfirst_name_rgamma_first_namebf_first_name...tf_city_rbf_citybf_tf_adj_cityemail_lemail_rgamma_emailbf_emailcluster_lcluster_rmatch_key
01.0False-24.1659145.312940e-08417418FlorenceBrown00.213986...0.001230.4278451.0fb@reose.cemf@b@reese.com00.0010231081082
11.0False-21.9415062.482839e-07796797TaylorNone-11.000000...0.007380.4278451.0jt40o@combs.netjt40@cotbs.nm00.0010232012012
21.0False-19.5172771.332642e-06452454NoneDavies-11.000000...0.015990.4278451.0rd@lewis.comidlewrs.cocm00.0010231151152
31.0False-17.9783643.872323e-06717718MiaJones00.213986...0.006150.4278451.0mia.j63@martinez.bizNone-11.0000001821822
41.0True-15.5186902.130097e-05594595GraceGrace385.794621...0.001230.4278451.0gk@frey-robinson.orgrgk@frey-robinon.org00.0010231461460
\n", + "

5 rows × 32 columns

\n", + "
" + ], + "text/plain": [ + " clerical_match_score found_by_blocking_rules match_weight \\\n", + "0 1.0 False -24.165914 \n", + "1 1.0 False -21.941506 \n", + "2 1.0 False -19.517277 \n", + "3 1.0 False -17.978364 \n", + "4 1.0 True -15.518690 \n", + "\n", + " match_probability unique_id_l unique_id_r first_name_l first_name_r \\\n", + "0 5.312940e-08 417 418 Florence Brown \n", + "1 2.482839e-07 796 797 Taylor None \n", + "2 1.332642e-06 452 454 None Davies \n", + "3 3.872323e-06 717 718 Mia Jones \n", + "4 2.130097e-05 594 595 Grace Grace \n", + "\n", + " gamma_first_name bf_first_name ... tf_city_r bf_city bf_tf_adj_city \\\n", + "0 0 0.213986 ... 0.00123 0.427845 1.0 \n", + "1 -1 1.000000 ... 0.00738 0.427845 1.0 \n", + "2 -1 1.000000 ... 0.01599 0.427845 1.0 \n", + "3 0 0.213986 ... 0.00615 0.427845 1.0 \n", + "4 3 85.794621 ... 0.00123 0.427845 1.0 \n", + "\n", + " email_l email_r gamma_email bf_email \\\n", + "0 fb@reose.cem f@b@reese.com 0 0.001023 \n", + "1 jt40o@combs.net jt40@cotbs.nm 0 0.001023 \n", + "2 rd@lewis.com idlewrs.cocm 0 0.001023 \n", + "3 mia.j63@martinez.biz None -1 1.000000 \n", + "4 gk@frey-robinson.org rgk@frey-robinon.org 0 0.001023 \n", + "\n", + " cluster_l cluster_r match_key \n", + "0 108 108 2 \n", + "1 201 201 2 \n", + "2 115 115 2 \n", + "3 182 182 2 \n", + "4 146 146 0 \n", + "\n", + "[5 rows x 32 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Plot some false positives\n", - "linker.prediction_errors_from_labels_column(\n", + "linker.evaluation.prediction_errors_from_labels_column(\n", " \"cluster\", include_false_negatives=True, include_false_positives=True\n", ").as_pandas_dataframe(limit=5)" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:11:04.209998Z", - "iopub.status.busy": "2024-03-27T15:11:04.209676Z", - "iopub.status.idle": "2024-03-27T15:11:05.510086Z", - "shell.execute_reply": "2024-03-27T15:11:05.509348Z" + "iopub.execute_input": "2024-06-07T09:09:22.857193Z", + "iopub.status.busy": "2024-06-07T09:09:22.856931Z", + "iopub.status.idle": "2024-06-07T09:09:23.602967Z", + "shell.execute_reply": "2024-06-07T09:09:23.602410Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "records = linker.prediction_errors_from_labels_column(\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\n", " \"cluster\", include_false_negatives=True, include_false_positives=True\n", ").as_record_dict(limit=5)\n", "\n", - "linker.waterfall_chart(records)" - ], - "outputs": [] + "linker.visualisations.waterfall_chart(records)" + ] } ], "metadata": { diff --git a/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb index 639f273d0d..3e30041105 100644 --- a/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb +++ b/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb @@ -24,10 +24,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:03.040913Z", - "iopub.status.busy": "2024-05-15T16:07:03.040529Z", - "iopub.status.idle": "2024-05-15T16:07:03.045834Z", - "shell.execute_reply": "2024-05-15T16:07:03.045063Z" + "iopub.execute_input": "2024-06-07T09:09:25.613571Z", + "iopub.status.busy": "2024-06-07T09:09:25.613270Z", + "iopub.status.idle": "2024-06-07T09:09:25.618664Z", + "shell.execute_reply": "2024-06-07T09:09:25.617985Z" } }, "outputs": [], @@ -41,13 +41,228 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:03.049635Z", - "iopub.status.busy": "2024-05-15T16:07:03.049337Z", - "iopub.status.idle": "2024-05-15T16:07:04.275040Z", - "shell.execute_reply": "2024-05-15T16:07:04.274317Z" + "iopub.execute_input": "2024-06-07T09:09:25.622132Z", + "iopub.status.busy": "2024-06-07T09:09:25.621861Z", + "iopub.status.idle": "2024-06-07T09:09:28.057830Z", + "shell.execute_reply": "2024-06-07T09:09:28.057112Z" } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/historical_figures_with_errors_50k.parquet\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " download progress: 0 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 2 %\t(..........)\r", + " download progress: 2 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 5 %\t(..........)\r", + " download progress: 5 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 7 %\t(..........)\r", + " download progress: 7 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 9 %\t(..........)\r", + " download progress: 9 %\t(..........)\r", + " download progress: 10 %\t(..........)\r", + " download progress: 10 %\t(=.........)\r", + " download progress: 11 %\t(=.........)\r", + " download progress: 11 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 14 %\t(=.........)\r", + " download progress: 14 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 16 %\t(=.........)\r", + " download progress: 16 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 18 %\t(=.........)\r", + " download progress: 18 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 20 %\t(=.........)\r", + " download progress: 20 %\t(==........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 23 %\t(==........)\r", + " download progress: 23 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 25 %\t(==........)\r", + " download progress: 25 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 27 %\t(==........)\r", + " download progress: 27 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 29 %\t(==........)\r", + " download progress: 29 %\t(==........)\r", + " download progress: 30 %\t(==........)\r", + " download progress: 30 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 32 %\t(===.......)\r", + " download progress: 32 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 34 %\t(===.......)\r", + " download progress: 34 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 36 %\t(===.......)\r", + " download progress: 36 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 39 %\t(===.......)\r", + " download progress: 39 %\t(===.......)\r", + " download progress: 40 %\t(===.......)\r", + " download progress: 40 %\t(====......)\r", + " download progress: 41 %\t(====......)\r", + " download progress: 41 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 43 %\t(====......)\r", + " download progress: 43 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 45 %\t(====......)\r", + " download progress: 45 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 47 %\t(====......)\r", + " download progress: 47 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 50 %\t(====......)\r", + " download progress: 50 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 52 %\t(=====.....)\r", + " download progress: 52 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 54 %\t(=====.....)\r", + " download progress: 54 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 59 %\t(=====.....)\r", + " download progress: 59 %\t(=====.....)\r", + " download progress: 60 %\t(=====.....)\r", + " download progress: 60 %\t(======....)\r", + " download progress: 61 %\t(======....)\r", + " download progress: 61 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 63 %\t(======....)\r", + " download progress: 63 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 66 %\t(======....)\r", + " download progress: 66 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 68 %\t(======....)\r", + " download progress: 68 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 70 %\t(======....)\r", + " download progress: 70 %\t(=======...)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 75 %\t(=======...)\r", + " download progress: 75 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 77 %\t(=======...)\r", + " download progress: 77 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 79 %\t(=======...)\r", + " download progress: 79 %\t(=======...)\r", + " download progress: 80 %\t(=======...)\r", + " download progress: 80 %\t(========..)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 82 %\t(========..)\r", + " download progress: 82 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 84 %\t(========..)\r", + " download progress: 84 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 86 %\t(========..)\r", + " download progress: 86 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 88 %\t(========..)\r", + " download progress: 88 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 90 %\t(========..)\r", + " download progress: 90 %\t(=========.)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 93 %\t(=========.)\r", + " download progress: 93 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 95 %\t(=========.)\r", + " download progress: 95 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 97 %\t(=========.)\r", + " download progress: 97 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 100 %\t(=========.)\r", + " download progress: 100 %\t(==========)\n" + ] + }, { "data": { "text/html": [ @@ -197,10 +412,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:04.316719Z", - "iopub.status.busy": "2024-05-15T16:07:04.315783Z", - "iopub.status.idle": "2024-05-15T16:07:05.112833Z", - "shell.execute_reply": "2024-05-15T16:07:05.112087Z" + "iopub.execute_input": "2024-06-07T09:09:28.061677Z", + "iopub.status.busy": "2024-06-07T09:09:28.061319Z", + "iopub.status.idle": "2024-06-07T09:09:28.892623Z", + "shell.execute_reply": "2024-06-07T09:09:28.891638Z" } }, "outputs": [ @@ -209,23 +424,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -296,10 +511,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:05.117580Z", - "iopub.status.busy": "2024-05-15T16:07:05.117224Z", - "iopub.status.idle": "2024-05-15T16:07:05.620193Z", - "shell.execute_reply": "2024-05-15T16:07:05.619557Z" + "iopub.execute_input": "2024-06-07T09:09:28.898009Z", + "iopub.status.busy": "2024-06-07T09:09:28.897643Z", + "iopub.status.idle": "2024-06-07T09:09:29.356811Z", + "shell.execute_reply": "2024-06-07T09:09:29.356107Z" } }, "outputs": [ @@ -308,23 +523,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -882,7 +1090,7 @@ } ], "source": [ - "linker.match_weights_chart()" + "linker.visualisations.match_weights_chart()" ] }, { @@ -890,10 +1098,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:26.367083Z", - "iopub.status.busy": "2024-05-15T16:07:26.366860Z", - "iopub.status.idle": "2024-05-15T16:07:28.387226Z", - "shell.execute_reply": "2024-05-15T16:07:28.386186Z" + "iopub.execute_input": "2024-06-07T09:09:50.110966Z", + "iopub.status.busy": "2024-06-07T09:09:50.110700Z", + "iopub.status.idle": "2024-06-07T09:09:52.080683Z", + "shell.execute_reply": "2024-06-07T09:09:52.080017Z" } }, "outputs": [ @@ -902,23 +1110,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -977,7 +1185,7 @@ } ], "source": [ - "linker.unlinkables_chart()" + "linker.evaluation.unlinkables_chart()" ] }, { @@ -985,10 +1193,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:28.393039Z", - "iopub.status.busy": "2024-05-15T16:07:28.392726Z", - "iopub.status.idle": "2024-05-15T16:07:30.731337Z", - "shell.execute_reply": "2024-05-15T16:07:30.730612Z" + "iopub.execute_input": "2024-06-07T09:09:52.085817Z", + "iopub.status.busy": "2024-06-07T09:09:52.085551Z", + "iopub.status.idle": "2024-06-07T09:09:54.516650Z", + "shell.execute_reply": "2024-06-07T09:09:54.515921Z" } }, "outputs": [ @@ -1039,121 +1247,121 @@ " \n", " \n", " 0\n", - " -15.840427\n", + " -15.829333\n", " 0.000017\n", - " Q5971253-3\n", - " Q75867928-4\n", + " Q7528564-9\n", + " Q75867928-1\n", " sir\n", " sir\n", " 3\n", " 0.024985\n", " 0.024985\n", - " 44.906565\n", + " 38.34881\n", " ...\n", - " 0.156756\n", + " 0.157016\n", " 1.0\n", - " naval officer\n", + " historian\n", " military officer\n", " 0\n", - " 0.009451\n", + " 0.012456\n", " 0.010756\n", - " 0.104989\n", + " 0.105028\n", " 1.0\n", " 0\n", " \n", " \n", " 1\n", - " -15.840427\n", + " -15.829333\n", " 0.000017\n", - " Q5971253-3\n", - " Q75867928-7\n", + " Q7528564-9\n", + " Q75867928-2\n", " sir\n", " sir\n", " 3\n", " 0.024985\n", " 0.024985\n", - " 44.906565\n", + " 38.34881\n", " ...\n", - " 0.156756\n", + " 0.157016\n", " 1.0\n", - " naval officer\n", + " historian\n", " military officer\n", " 0\n", - " 0.009451\n", + " 0.012456\n", " 0.010756\n", - " 0.104989\n", + " 0.105028\n", " 1.0\n", " 0\n", " \n", " \n", " 2\n", - " -15.840427\n", + " -15.829333\n", " 0.000017\n", - " Q5971253-2\n", - " Q75867928-4\n", + " Q7528564-9\n", + " Q75867928-3\n", " sir\n", " sir\n", " 3\n", " 0.024985\n", " 0.024985\n", - " 44.906565\n", + " 38.34881\n", " ...\n", - " 0.156756\n", + " 0.157016\n", " 1.0\n", - " naval officer\n", + " historian\n", " military officer\n", " 0\n", - " 0.009451\n", + " 0.012456\n", " 0.010756\n", - " 0.104989\n", + " 0.105028\n", " 1.0\n", " 0\n", " \n", " \n", " 3\n", - " -15.840427\n", + " -15.829333\n", " 0.000017\n", - " Q5971253-2\n", - " Q75867928-7\n", + " Q7528564-9\n", + " Q75867928-4\n", " sir\n", " sir\n", " 3\n", " 0.024985\n", " 0.024985\n", - " 44.906565\n", + " 38.34881\n", " ...\n", - " 0.156756\n", + " 0.157016\n", " 1.0\n", - " naval officer\n", + " historian\n", " military officer\n", " 0\n", - " 0.009451\n", + " 0.012456\n", " 0.010756\n", - " 0.104989\n", + " 0.105028\n", " 1.0\n", " 0\n", " \n", " \n", " 4\n", - " -15.840427\n", + " -15.829333\n", " 0.000017\n", - " Q5971253-1\n", - " Q75867928-4\n", + " Q7528564-9\n", + " Q75867928-6\n", " sir\n", " sir\n", " 3\n", " 0.024985\n", " 0.024985\n", - " 44.906565\n", + " 38.34881\n", " ...\n", - " 0.156756\n", + " 0.157016\n", " 1.0\n", - " naval officer\n", + " historian\n", " military officer\n", " 0\n", - " 0.009451\n", + " 0.012456\n", " 0.010756\n", - " 0.104989\n", + " 0.105028\n", " 1.0\n", " 0\n", " \n", @@ -1164,11 +1372,11 @@ ], "text/plain": [ " match_weight match_probability unique_id_l unique_id_r first_name_l \\\n", - "0 -15.840427 0.000017 Q5971253-3 Q75867928-4 sir \n", - "1 -15.840427 0.000017 Q5971253-3 Q75867928-7 sir \n", - "2 -15.840427 0.000017 Q5971253-2 Q75867928-4 sir \n", - "3 -15.840427 0.000017 Q5971253-2 Q75867928-7 sir \n", - "4 -15.840427 0.000017 Q5971253-1 Q75867928-4 sir \n", + "0 -15.829333 0.000017 Q7528564-9 Q75867928-1 sir \n", + "1 -15.829333 0.000017 Q7528564-9 Q75867928-2 sir \n", + "2 -15.829333 0.000017 Q7528564-9 Q75867928-3 sir \n", + "3 -15.829333 0.000017 Q7528564-9 Q75867928-4 sir \n", + "4 -15.829333 0.000017 Q7528564-9 Q75867928-6 sir \n", "\n", " first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n", "0 sir 3 0.024985 0.024985 \n", @@ -1177,26 +1385,26 @@ "3 sir 3 0.024985 0.024985 \n", "4 sir 3 0.024985 0.024985 \n", "\n", - " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n", - "0 44.906565 ... 0.156756 1.0 naval officer \n", - "1 44.906565 ... 0.156756 1.0 naval officer \n", - "2 44.906565 ... 0.156756 1.0 naval officer \n", - "3 44.906565 ... 0.156756 1.0 naval officer \n", - "4 44.906565 ... 0.156756 1.0 naval officer \n", + " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n", + "0 38.34881 ... 0.157016 1.0 historian \n", + "1 38.34881 ... 0.157016 1.0 historian \n", + "2 38.34881 ... 0.157016 1.0 historian \n", + "3 38.34881 ... 0.157016 1.0 historian \n", + "4 38.34881 ... 0.157016 1.0 historian \n", "\n", " occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n", - "0 military officer 0 0.009451 0.010756 \n", - "1 military officer 0 0.009451 0.010756 \n", - "2 military officer 0 0.009451 0.010756 \n", - "3 military officer 0 0.009451 0.010756 \n", - "4 military officer 0 0.009451 0.010756 \n", + "0 military officer 0 0.012456 0.010756 \n", + "1 military officer 0 0.012456 0.010756 \n", + "2 military officer 0 0.012456 0.010756 \n", + "3 military officer 0 0.012456 0.010756 \n", + "4 military officer 0 0.012456 0.010756 \n", "\n", " bf_occupation bf_tf_adj_occupation match_key \n", - "0 0.104989 1.0 0 \n", - "1 0.104989 1.0 0 \n", - "2 0.104989 1.0 0 \n", - "3 0.104989 1.0 0 \n", - "4 0.104989 1.0 0 \n", + "0 0.105028 1.0 0 \n", + "1 0.105028 1.0 0 \n", + "2 0.105028 1.0 0 \n", + "3 0.105028 1.0 0 \n", + "4 0.105028 1.0 0 \n", "\n", "[5 rows x 41 columns]" ] @@ -1207,7 +1415,7 @@ } ], "source": [ - "df_predict = linker.predict()\n", + "df_predict = linker.inference.predict()\n", "df_e = df_predict.as_pandas_dataframe(limit=5)\n", "df_e" ] @@ -1225,10 +1433,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:30.735380Z", - "iopub.status.busy": "2024-05-15T16:07:30.735079Z", - "iopub.status.idle": "2024-05-15T16:07:31.361460Z", - "shell.execute_reply": "2024-05-15T16:07:31.360879Z" + "iopub.execute_input": "2024-06-07T09:09:54.520577Z", + "iopub.status.busy": "2024-06-07T09:09:54.520273Z", + "iopub.status.idle": "2024-06-07T09:09:55.151653Z", + "shell.execute_reply": "2024-06-07T09:09:55.150935Z" } }, "outputs": [ @@ -1237,23 +1445,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -1314,7 +1522,7 @@ "source": [ "\n", "records_to_plot = df_e.to_dict(orient=\"records\")\n", - "linker.waterfall_chart(records_to_plot, filter_nulls=False)" + "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)" ] }, { @@ -1322,10 +1530,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:31.364481Z", - "iopub.status.busy": "2024-05-15T16:07:31.364255Z", - "iopub.status.idle": "2024-05-15T16:07:31.746356Z", - "shell.execute_reply": "2024-05-15T16:07:31.745671Z" + "iopub.execute_input": "2024-06-07T09:09:55.155050Z", + "iopub.status.busy": "2024-06-07T09:09:55.154811Z", + "iopub.status.idle": "2024-06-07T09:09:55.525689Z", + "shell.execute_reply": "2024-06-07T09:09:55.524936Z" } }, "outputs": [ @@ -1333,21 +1541,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "Completed iteration 1, root rows count 625\n" + "Completed iteration 1, root rows count 623\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Completed iteration 2, root rows count 93\n" + "Completed iteration 2, root rows count 100\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Completed iteration 3, root rows count 19\n" + "Completed iteration 3, root rows count 22\n" ] }, { @@ -1366,7 +1574,7 @@ } ], "source": [ - "clusters = linker.cluster_pairwise_predictions_at_threshold(\n", + "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n", " df_predict, threshold_match_probability=0.95\n", ")" ] @@ -1376,10 +1584,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:31.749625Z", - "iopub.status.busy": "2024-05-15T16:07:31.749370Z", - "iopub.status.idle": "2024-05-15T16:07:31.898014Z", - "shell.execute_reply": "2024-05-15T16:07:31.897301Z" + "iopub.execute_input": "2024-06-07T09:09:55.528997Z", + "iopub.status.busy": "2024-06-07T09:09:55.528732Z", + "iopub.status.idle": "2024-06-07T09:09:55.705059Z", + "shell.execute_reply": "2024-06-07T09:09:55.704305Z" } }, "outputs": [ @@ -1398,7 +1606,7 @@ " " ], "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -1409,7 +1617,7 @@ "source": [ "from IPython.display import IFrame\n", "\n", - "linker.cluster_studio_dashboard(\n", + "linker.visualisations.cluster_studio_dashboard(\n", " df_predict,\n", " clusters,\n", " \"dashboards/50k_cluster.html\",\n", @@ -1426,10 +1634,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:31.901400Z", - "iopub.status.busy": "2024-05-15T16:07:31.901154Z", - "iopub.status.idle": "2024-05-15T16:07:44.228710Z", - "shell.execute_reply": "2024-05-15T16:07:44.227315Z" + "iopub.execute_input": "2024-06-07T09:09:55.708587Z", + "iopub.status.busy": "2024-06-07T09:09:55.708313Z", + "iopub.status.idle": "2024-06-07T09:10:07.358895Z", + "shell.execute_reply": "2024-06-07T09:10:07.358097Z" } }, "outputs": [ @@ -1438,23 +1646,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -1513,7 +1721,7 @@ } ], "source": [ - "linker.accuracy_analysis_from_labels_column(\n", + "linker.evaluation.accuracy_analysis_from_labels_column(\n", " \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n", ")" ] @@ -1523,10 +1731,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:44.268428Z", - "iopub.status.busy": "2024-05-15T16:07:44.268099Z", - "iopub.status.idle": "2024-05-15T16:07:47.826572Z", - "shell.execute_reply": "2024-05-15T16:07:47.826055Z" + "iopub.execute_input": "2024-06-07T09:10:07.391167Z", + "iopub.status.busy": "2024-06-07T09:10:07.390901Z", + "iopub.status.idle": "2024-06-07T09:10:10.809464Z", + "shell.execute_reply": "2024-06-07T09:10:10.808740Z" } }, "outputs": [ @@ -1535,23 +1743,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -1610,13 +1818,13 @@ } ], "source": [ - "records = linker.prediction_errors_from_labels_column(\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\n", " \"cluster\",\n", " threshold=0.999,\n", " include_false_negatives=False,\n", " include_false_positives=True,\n", ").as_record_dict()\n", - "linker.waterfall_chart(records)" + "linker.visualisations.waterfall_chart(records)" ] }, { @@ -1624,10 +1832,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T16:07:47.834324Z", - "iopub.status.busy": "2024-05-15T16:07:47.834092Z", - "iopub.status.idle": "2024-05-15T16:07:51.080047Z", - "shell.execute_reply": "2024-05-15T16:07:51.079464Z" + "iopub.execute_input": "2024-06-07T09:10:10.819376Z", + "iopub.status.busy": "2024-06-07T09:10:10.818967Z", + "iopub.status.idle": "2024-06-07T09:10:13.601958Z", + "shell.execute_reply": "2024-06-07T09:10:13.601341Z" } }, "outputs": [ @@ -1636,23 +1844,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ @@ -1712,14 +1920,14 @@ ], "source": [ "# Some of the false negatives will be because they weren't detected by the blocking rules\n", - "records = linker.prediction_errors_from_labels_column(\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\n", " \"cluster\",\n", " threshold=0.5,\n", " include_false_negatives=True,\n", " include_false_positives=False,\n", ").as_record_dict(limit=50)\n", "\n", - "linker.waterfall_chart(records)" + "linker.visualisations.waterfall_chart(records)" ] } ], diff --git a/docs/demos/examples/duckdb/deterministic_dedupe.ipynb b/docs/demos/examples/duckdb/deterministic_dedupe.ipynb index c84fdac562..0065baeda9 100644 --- a/docs/demos/examples/duckdb/deterministic_dedupe.ipynb +++ b/docs/demos/examples/duckdb/deterministic_dedupe.ipynb @@ -28,29 +28,167 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:50.508953Z", - "iopub.status.busy": "2024-05-15T15:43:50.508620Z", - "iopub.status.idle": "2024-05-15T15:43:50.514416Z", - "shell.execute_reply": "2024-05-15T15:43:50.513604Z" + "iopub.execute_input": "2024-06-07T09:10:59.567669Z", + "iopub.status.busy": "2024-06-07T09:10:59.567311Z", + "iopub.status.idle": "2024-06-07T09:10:59.591784Z", + "shell.execute_reply": "2024-06-07T09:10:59.590923Z" } }, + "outputs": [], "source": [ "# Uncomment and run this cell if you're running in Google Colab.\n", "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:50.519532Z", - "iopub.status.busy": "2024-05-15T15:43:50.519159Z", - "iopub.status.idle": "2024-05-15T15:43:53.171104Z", - "shell.execute_reply": "2024-05-15T15:43:53.170070Z" + "iopub.execute_input": "2024-06-07T09:10:59.595969Z", + "iopub.status.busy": "2024-06-07T09:10:59.595667Z", + "iopub.status.idle": "2024-06-07T09:11:01.007136Z", + "shell.execute_reply": "2024-06-07T09:11:01.006553Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_idclusterfull_namefirst_and_surnamefirst_namesurnamedobbirth_placepostcode_fakegenderoccupation
0Q2296770-1Q2296770thomas clifford, 1st baron clifford of chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfmalepolitician
1Q2296770-2Q2296770thomas of chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfmalepolitician
2Q2296770-3Q2296770tom 1st baron clifford of chudleightom chudleightomchudleigh1630-08-01devontq13 8dfmalepolitician
3Q2296770-4Q2296770thomas 1st chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8huNonepolitician
4Q2296770-5Q2296770thomas clifford, 1st baron chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfNonepolitician
\n", + "
" + ], + "text/plain": [ + " unique_id cluster full_name \\\n", + "0 Q2296770-1 Q2296770 thomas clifford, 1st baron clifford of chudleigh \n", + "1 Q2296770-2 Q2296770 thomas of chudleigh \n", + "2 Q2296770-3 Q2296770 tom 1st baron clifford of chudleigh \n", + "3 Q2296770-4 Q2296770 thomas 1st chudleigh \n", + "4 Q2296770-5 Q2296770 thomas clifford, 1st baron chudleigh \n", + "\n", + " first_and_surname first_name surname dob birth_place \\\n", + "0 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "1 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "2 tom chudleigh tom chudleigh 1630-08-01 devon \n", + "3 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "4 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "\n", + " postcode_fake gender occupation \n", + "0 tq13 8df male politician \n", + "1 tq13 8df male politician \n", + "2 tq13 8df male politician \n", + "3 tq13 8hu None politician \n", + "4 tq13 8df None politician " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "\n", @@ -59,8 +197,7 @@ "pd.options.display.max_rows = 1000\n", "df = splink_datasets.historical_50k\n", "df.head()" - ], - "outputs": [] + ] }, { "attachments": {}, @@ -85,12 +222,92 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:53.273619Z", - "iopub.status.busy": "2024-05-15T15:43:53.271060Z", - "iopub.status.idle": "2024-05-15T15:43:54.139302Z", - "shell.execute_reply": "2024-05-15T15:43:54.138451Z" + "iopub.execute_input": "2024-06-07T09:11:01.050336Z", + "iopub.status.busy": "2024-06-07T09:11:01.049679Z", + "iopub.status.idle": "2024-06-07T09:11:01.602823Z", + "shell.execute_reply": "2024-06-07T09:11:01.601902Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import DuckDBAPI, block_on\n", "from splink.blocking_analysis import (\n", @@ -108,20 +325,20 @@ " db_api=db_api,\n", " link_type=\"dedupe_only\",\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:54.144031Z", - "iopub.status.busy": "2024-05-15T15:43:54.143555Z", - "iopub.status.idle": "2024-05-15T15:43:54.254120Z", - "shell.execute_reply": "2024-05-15T15:43:54.252360Z" + "iopub.execute_input": "2024-06-07T09:11:01.606853Z", + "iopub.status.busy": "2024-06-07T09:11:01.606539Z", + "iopub.status.idle": "2024-06-07T09:11:01.691839Z", + "shell.execute_reply": "2024-06-07T09:11:01.690988Z" } }, + "outputs": [], "source": [ "from splink import Linker, SettingsCreator\n", "\n", @@ -136,8 +353,7 @@ ")\n", "\n", "linker = Linker(df, settings, database_api=db_api)\n" - ], - "outputs": [] + ] }, { "attachments": {}, @@ -152,17 +368,166 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:54.259538Z", - "iopub.status.busy": "2024-05-15T15:43:54.258905Z", - "iopub.status.idle": "2024-05-15T15:43:54.922593Z", - "shell.execute_reply": "2024-05-15T15:43:54.921796Z" + "iopub.execute_input": "2024-06-07T09:11:01.695906Z", + "iopub.status.busy": "2024-06-07T09:11:01.695600Z", + "iopub.status.idle": "2024-06-07T09:11:01.995020Z", + "shell.execute_reply": "2024-06-07T09:11:01.994289Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_id_lunique_id_roccupation_loccupation_rfirst_name_lfirst_name_rdob_ldob_rsurname_lsurname_rpostcode_fake_lpostcode_fake_rmatch_key
0Q55455287-12Q55455287-2Nonewriterjaidojaido1836-01-011836-01-01moratamoratata4 2ugta4 2uu0
1Q55455287-12Q55455287-3Nonewriterjaidojaido1836-01-011836-01-01moratamoratata4 2ugta4 2uu0
2Q55455287-12Q55455287-4Nonewriterjaidojaido1836-01-011836-01-01moratamoratata4 2ugta4 2sz0
3Q55455287-12Q55455287-5NoneNonejaidojaido1836-01-011836-01-01moratamoratata4 2ugta4 2ug0
4Q55455287-12Q55455287-6Nonewriterjaidojaido1836-01-011836-01-01moratamoratata4 2ugNone0
\n", + "
" + ], + "text/plain": [ + " unique_id_l unique_id_r occupation_l occupation_r first_name_l \\\n", + "0 Q55455287-12 Q55455287-2 None writer jaido \n", + "1 Q55455287-12 Q55455287-3 None writer jaido \n", + "2 Q55455287-12 Q55455287-4 None writer jaido \n", + "3 Q55455287-12 Q55455287-5 None None jaido \n", + "4 Q55455287-12 Q55455287-6 None writer jaido \n", + "\n", + " first_name_r dob_l dob_r surname_l surname_r postcode_fake_l \\\n", + "0 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n", + "1 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n", + "2 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n", + "3 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n", + "4 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n", + "\n", + " postcode_fake_r match_key \n", + "0 ta4 2uu 0 \n", + "1 ta4 2uu 0 \n", + "2 ta4 2sz 0 \n", + "3 ta4 2ug 0 \n", + "4 None 0 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "df_predict = linker.deterministic_link()\n", + "df_predict = linker.inference.deterministic_link()\n", "df_predict.as_pandas_dataframe().head()" - ], - "outputs": [] + ] }, { "attachments": {}, @@ -179,34 +544,205 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:54.928175Z", - "iopub.status.busy": "2024-05-15T15:43:54.927807Z", - "iopub.status.idle": "2024-05-15T15:43:55.547697Z", - "shell.execute_reply": "2024-05-15T15:43:55.543024Z" + "iopub.execute_input": "2024-06-07T09:11:01.998965Z", + "iopub.status.busy": "2024-06-07T09:11:01.998665Z", + "iopub.status.idle": "2024-06-07T09:11:02.348788Z", + "shell.execute_reply": "2024-06-07T09:11:02.348039Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 1, root rows count 94\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 2, root rows count 10\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 3, root rows count 0\n" + ] + } + ], "source": [ - "clusters = linker.cluster_pairwise_predictions_at_threshold(\n", + "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n", " df_predict, threshold_match_probability=1\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:55.555934Z", - "iopub.status.busy": "2024-05-15T15:43:55.554006Z", - "iopub.status.idle": "2024-05-15T15:43:55.592918Z", - "shell.execute_reply": "2024-05-15T15:43:55.589688Z" + "iopub.execute_input": "2024-06-07T09:11:02.352872Z", + "iopub.status.busy": "2024-06-07T09:11:02.352366Z", + "iopub.status.idle": "2024-06-07T09:11:02.367858Z", + "shell.execute_reply": "2024-06-07T09:11:02.367179Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cluster_idunique_idclusterfull_namefirst_and_surnamefirst_namesurnamedobbirth_placepostcode_fakegenderoccupation__splink_salt
0Q16025107-1Q5497940-9Q5497940frederick hallfrederick hallfrederickhall1855-01-01bristol, city ofbs11 9pnNoneNone0.002739
1Q1149445-1Q1149445-9Q1149445earl egertonearl egertonearlegerton1800-01-01westminsterw1d 2hfNoneNone0.991459
2Q20664532-1Q21466387-2Q21466387harry brookerharry brookerharrybrooker1848-01-01plymouthpl4 9hxmalepainter0.506127
3Q1124636-1Q1124636-12Q1124636tom stapletontom stapletontomstapleton1535-01-01Nonebn6 9namaletheologian0.612694
4Q18508292-1Q21466711-4Q21466711harry s0enceharry s0enceharrys0ence1860-01-01londonse1 7pbmalepainter0.488917
\n", + "
" + ], + "text/plain": [ + " cluster_id unique_id cluster full_name first_and_surname \\\n", + "0 Q16025107-1 Q5497940-9 Q5497940 frederick hall frederick hall \n", + "1 Q1149445-1 Q1149445-9 Q1149445 earl egerton earl egerton \n", + "2 Q20664532-1 Q21466387-2 Q21466387 harry brooker harry brooker \n", + "3 Q1124636-1 Q1124636-12 Q1124636 tom stapleton tom stapleton \n", + "4 Q18508292-1 Q21466711-4 Q21466711 harry s0ence harry s0ence \n", + "\n", + " first_name surname dob birth_place postcode_fake gender \\\n", + "0 frederick hall 1855-01-01 bristol, city of bs11 9pn None \n", + "1 earl egerton 1800-01-01 westminster w1d 2hf None \n", + "2 harry brooker 1848-01-01 plymouth pl4 9hx male \n", + "3 tom stapleton 1535-01-01 None bn6 9na male \n", + "4 harry s0ence 1860-01-01 london se1 7pb male \n", + "\n", + " occupation __splink_salt \n", + "0 None 0.002739 \n", + "1 None 0.991459 \n", + "2 painter 0.506127 \n", + "3 theologian 0.612694 \n", + "4 painter 0.488917 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "clusters.as_pandas_dataframe(limit=5)" - ], - "outputs": [] + ] }, { "attachments": {}, @@ -221,14 +757,38 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:43:55.600959Z", - "iopub.status.busy": "2024-05-15T15:43:55.600358Z", - "iopub.status.idle": "2024-05-15T15:43:55.761150Z", - "shell.execute_reply": "2024-05-15T15:43:55.759988Z" + "iopub.execute_input": "2024-06-07T09:11:02.371850Z", + "iopub.status.busy": "2024-06-07T09:11:02.371545Z", + "iopub.status.idle": "2024-06-07T09:11:02.462645Z", + "shell.execute_reply": "2024-06-07T09:11:02.461886Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.cluster_studio_dashboard(\n", + "linker.visualisations.cluster_studio_dashboard(\n", " df_predict,\n", " clusters,\n", " \"dashboards/50k_deterministic_cluster.html\",\n", @@ -239,8 +799,7 @@ "from IPython.display import IFrame\n", "\n", "IFrame(src=\"./dashboards/50k_deterministic_cluster.html\", width=\"100%\", height=1200)" - ], - "outputs": [] + ] } ], "metadata": { diff --git a/docs/demos/examples/duckdb/febrl3.ipynb b/docs/demos/examples/duckdb/febrl3.ipynb index 16353c6acc..9a102d4519 100644 --- a/docs/demos/examples/duckdb/febrl3.ipynb +++ b/docs/demos/examples/duckdb/febrl3.ipynb @@ -23,10 +23,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:53.970752Z", - "iopub.status.busy": "2024-05-15T15:50:53.970419Z", - "iopub.status.idle": "2024-05-15T15:50:53.975673Z", - "shell.execute_reply": "2024-05-15T15:50:53.974958Z" + "iopub.execute_input": "2024-06-07T09:11:24.420657Z", + "iopub.status.busy": "2024-06-07T09:11:24.420336Z", + "iopub.status.idle": "2024-06-07T09:11:24.443364Z", + "shell.execute_reply": "2024-06-07T09:11:24.442120Z" } }, "outputs": [], @@ -40,13 +40,176 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:53.979321Z", - "iopub.status.busy": "2024-05-15T15:50:53.979040Z", - "iopub.status.idle": "2024-05-15T15:50:55.403280Z", - "shell.execute_reply": "2024-05-15T15:50:55.402512Z" + "iopub.execute_input": "2024-06-07T09:11:24.447798Z", + "iopub.status.busy": "2024-06-07T09:11:24.447495Z", + "iopub.status.idle": "2024-06-07T09:11:26.149918Z", + "shell.execute_reply": "2024-06-07T09:11:26.149230Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/febrl/dataset3.csv\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " download progress: 0 %\t(..........)\r", + " download progress: 2 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 5 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 10 %\t(..........)\r", + " download progress: 11 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 14 %\t(=.........)\r", + " download progress: 16 %\t(=.........)\r", + " download progress: 18 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 25 %\t(==........)\r", + " download progress: 27 %\t(==........)\r", + " download progress: 29 %\t(==........)\r", + " download progress: 30 %\t(===.......)\r", + " download progress: 32 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 40 %\t(===.......)\r", + " download progress: 41 %\t(====......)\r", + " download progress: 43 %\t(====......)\r", + " download progress: 45 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 54 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 59 %\t(=====.....)\r", + " download progress: 61 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 70 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 75 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 80 %\t(=======...)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 84 %\t(========..)\r", + " download progress: 86 %\t(========..)\r", + " download progress: 88 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 97 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 100 %\t(==========)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rec_idgiven_namesurnamestreet_numberaddress_1address_2suburbpostcodestatedate_of_birthsoc_sec_idcluster
0rec-1496-orgmitchellgreen7wallaby placedelmarcleveland2119sa195604091804974rec-1496
1rec-552-dup-3harleymccarthy177pridhamstreetmiltonmarsden3165nsw190804196089216rec-552
\n", + "
" + ], + "text/plain": [ + " rec_id given_name surname street_number address_1 \\\n", + "0 rec-1496-org mitchell green 7 wallaby place \n", + "1 rec-552-dup-3 harley mccarthy 177 pridhamstreet \n", + "\n", + " address_2 suburb postcode state date_of_birth soc_sec_id cluster \n", + "0 delmar cleveland 2119 sa 19560409 1804974 rec-1496 \n", + "1 milton marsden 3165 nsw 19080419 6089216 rec-552 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.datasets import splink_datasets\n", "\n", @@ -66,10 +229,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:55.445888Z", - "iopub.status.busy": "2024-05-15T15:50:55.445564Z", - "iopub.status.idle": "2024-05-15T15:50:55.453559Z", - "shell.execute_reply": "2024-05-15T15:50:55.452728Z" + "iopub.execute_input": "2024-06-07T09:11:26.153666Z", + "iopub.status.busy": "2024-06-07T09:11:26.153378Z", + "iopub.status.idle": "2024-06-07T09:11:26.160666Z", + "shell.execute_reply": "2024-06-07T09:11:26.159911Z" } }, "outputs": [], @@ -83,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:55.457023Z", - "iopub.status.busy": "2024-05-15T15:50:55.456741Z", - "iopub.status.idle": "2024-05-15T15:50:55.464209Z", - "shell.execute_reply": "2024-05-15T15:50:55.463386Z" + "iopub.execute_input": "2024-06-07T09:11:26.164000Z", + "iopub.status.busy": "2024-06-07T09:11:26.163726Z", + "iopub.status.idle": "2024-06-07T09:11:26.170794Z", + "shell.execute_reply": "2024-06-07T09:11:26.170146Z" } }, "outputs": [], @@ -100,10 +263,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:55.467779Z", - "iopub.status.busy": "2024-05-15T15:50:55.467486Z", - "iopub.status.idle": "2024-05-15T15:50:55.617978Z", - "shell.execute_reply": "2024-05-15T15:50:55.617331Z" + "iopub.execute_input": "2024-06-07T09:11:26.174301Z", + "iopub.status.busy": "2024-06-07T09:11:26.174024Z", + "iopub.status.idle": "2024-06-07T09:11:26.331196Z", + "shell.execute_reply": "2024-06-07T09:11:26.330465Z" } }, "outputs": [], @@ -131,13 +294,92 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:55.621604Z", - "iopub.status.busy": "2024-05-15T15:50:55.621314Z", - "iopub.status.idle": "2024-05-15T15:50:55.930689Z", - "shell.execute_reply": "2024-05-15T15:50:55.929809Z" + "iopub.execute_input": "2024-06-07T09:11:26.334644Z", + "iopub.status.busy": "2024-06-07T09:11:26.334398Z", + "iopub.status.idle": "2024-06-07T09:11:26.630134Z", + "shell.execute_reply": "2024-06-07T09:11:26.629629Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import completeness_chart\n", "\n", @@ -149,13 +391,92 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:55.933815Z", - "iopub.status.busy": "2024-05-15T15:50:55.933588Z", - "iopub.status.idle": "2024-05-15T15:50:56.393881Z", - "shell.execute_reply": "2024-05-15T15:50:56.393363Z" + "iopub.execute_input": "2024-06-07T09:11:26.633200Z", + "iopub.status.busy": "2024-06-07T09:11:26.632979Z", + "iopub.status.idle": "2024-06-07T09:11:27.047469Z", + "shell.execute_reply": "2024-06-07T09:11:27.046951Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import profile_columns\n", "\n", @@ -167,13 +488,92 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:56.397337Z", - "iopub.status.busy": "2024-05-15T15:50:56.396993Z", - "iopub.status.idle": "2024-05-15T15:50:56.749566Z", - "shell.execute_reply": "2024-05-15T15:50:56.748922Z" + "iopub.execute_input": "2024-06-07T09:11:27.050491Z", + "iopub.status.busy": "2024-06-07T09:11:27.050266Z", + "iopub.status.idle": "2024-06-07T09:11:27.428593Z", + "shell.execute_reply": "2024-06-07T09:11:27.428055Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import DuckDBAPI, block_on\n", "from splink.blocking_analysis import (\n", @@ -203,10 +603,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:56.752854Z", - "iopub.status.busy": "2024-05-15T15:50:56.752596Z", - "iopub.status.idle": "2024-05-15T15:50:56.907514Z", - "shell.execute_reply": "2024-05-15T15:50:56.906772Z" + "iopub.execute_input": "2024-06-07T09:11:27.431702Z", + "iopub.status.busy": "2024-06-07T09:11:27.431466Z", + "iopub.status.idle": "2024-06-07T09:11:27.591229Z", + "shell.execute_reply": "2024-06-07T09:11:27.590491Z" } }, "outputs": [], @@ -245,13 +645,22 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:56.910709Z", - "iopub.status.busy": "2024-05-15T15:50:56.910470Z", - "iopub.status.idle": "2024-05-15T15:50:57.119744Z", - "shell.execute_reply": "2024-05-15T15:50:57.119133Z" + "iopub.execute_input": "2024-06-07T09:11:27.594493Z", + "iopub.status.busy": "2024-06-07T09:11:27.594264Z", + "iopub.status.idle": "2024-06-07T09:11:27.787352Z", + "shell.execute_reply": "2024-06-07T09:11:27.786769Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.000528.\n", + "This means that amongst all possible pairwise record comparisons, one in 1,893.56 are expected to match. With 12,497,500 total possible comparisons, we expect a total of around 6,600.00 matching pairs\n" + ] + } + ], "source": [ "from splink import block_on\n", "\n", @@ -261,7 +670,7 @@ " \"l.given_name = r.surname and l.surname = r.given_name and l.date_of_birth = r.date_of_birth\",\n", "]\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.9)" + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.9)" ] }, { @@ -269,15 +678,73 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:50:57.122905Z", - "iopub.status.busy": "2024-05-15T15:50:57.122623Z", - "iopub.status.idle": "2024-05-15T15:51:01.161828Z", - "shell.execute_reply": "2024-05-15T15:51:01.161251Z" + "iopub.execute_input": "2024-06-07T09:11:27.790368Z", + "iopub.status.busy": "2024-06-07T09:11:27.790145Z", + "iopub.status.idle": "2024-06-07T09:11:35.433199Z", + "shell.execute_reply": "2024-06-07T09:11:35.431006Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - given_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n", + " - soc_sec_id (no m values are trained).\n", + " - street_number (no m values are trained).\n", + " - postcode (no m values are trained).\n" + ] + } + ], "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6)" + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)" ] }, { @@ -285,16 +752,96 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:01.165539Z", - "iopub.status.busy": "2024-05-15T15:51:01.165298Z", - "iopub.status.idle": "2024-05-15T15:51:01.704281Z", - "shell.execute_reply": "2024-05-15T15:51:01.703690Z" + "iopub.execute_input": "2024-06-07T09:11:35.446472Z", + "iopub.status.busy": "2024-06-07T09:11:35.440198Z", + "iopub.status.idle": "2024-06-07T09:11:36.895235Z", + "shell.execute_reply": "2024-06-07T09:11:36.894603Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"date_of_birth\" = r.\"date_of_birth\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - given_name\n", + " - surname\n", + " - soc_sec_id\n", + " - street_number\n", + " - postcode\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - date_of_birth\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.376 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.0158 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was -0.000688 in the m_probability of postcode, level `Exact match on postcode`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 3.65e-05 in the m_probability of postcode, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 4 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n" + ] + } + ], "source": [ "em_blocking_rule_1 = block_on(\"date_of_birth\")\n", - "session_dob = linker.estimate_parameters_using_expectation_maximisation(\n", + "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n", " em_blocking_rule_1\n", ")" ] @@ -304,16 +851,137 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:01.707325Z", - "iopub.status.busy": "2024-05-15T15:51:01.707114Z", - "iopub.status.idle": "2024-05-15T15:51:02.290513Z", - "shell.execute_reply": "2024-05-15T15:51:02.290020Z" + "iopub.execute_input": "2024-06-07T09:11:36.898638Z", + "iopub.status.busy": "2024-06-07T09:11:36.898156Z", + "iopub.status.idle": "2024-06-07T09:11:37.517318Z", + "shell.execute_reply": "2024-06-07T09:11:37.516459Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"postcode\" = r.\"postcode\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - given_name\n", + " - surname\n", + " - date_of_birth\n", + " - soc_sec_id\n", + " - street_number\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - postcode\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was 0.0627 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was -0.00188 in the m_probability of date_of_birth, level `Exact match on date_of_birth`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 5.26e-05 in the m_probability of soc_sec_id, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 3 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - date_of_birth (some u values are not trained, some m values are not trained).\n" + ] + } + ], "source": [ "em_blocking_rule_2 = block_on(\"postcode\")\n", - "session_postcode = linker.estimate_parameters_using_expectation_maximisation(\n", + "session_postcode = linker.training.estimate_parameters_using_expectation_maximisation(\n", " em_blocking_rule_2\n", ")" ] @@ -323,15 +991,94 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:02.294783Z", - "iopub.status.busy": "2024-05-15T15:51:02.294498Z", - "iopub.status.idle": "2024-05-15T15:51:02.665651Z", - "shell.execute_reply": "2024-05-15T15:51:02.665073Z" + "iopub.execute_input": "2024-06-07T09:11:37.523135Z", + "iopub.status.busy": "2024-06-07T09:11:37.522810Z", + "iopub.status.idle": "2024-06-07T09:11:37.957335Z", + "shell.execute_reply": "2024-06-07T09:11:37.956712Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.match_weights_chart()" + "linker.visualisations.match_weights_chart()" ] }, { @@ -339,15 +1086,29 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:02.668752Z", - "iopub.status.busy": "2024-05-15T15:51:02.668512Z", - "iopub.status.idle": "2024-05-15T15:51:09.240685Z", - "shell.execute_reply": "2024-05-15T15:51:09.240109Z" + "iopub.execute_input": "2024-06-07T09:11:37.960629Z", + "iopub.status.busy": "2024-06-07T09:11:37.960358Z", + "iopub.status.idle": "2024-06-07T09:11:44.496784Z", + "shell.execute_reply": "2024-06-07T09:11:44.496254Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + } + ], "source": [ - "results = linker.predict(threshold_match_probability=0.2)" + "results = linker.inference.predict(threshold_match_probability=0.2)" ] }, { @@ -355,15 +1116,107 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:09.243955Z", - "iopub.status.busy": "2024-05-15T15:51:09.243667Z", - "iopub.status.idle": "2024-05-15T15:51:11.811265Z", - "shell.execute_reply": "2024-05-15T15:51:11.810638Z" + "iopub.execute_input": "2024-06-07T09:11:44.499943Z", + "iopub.status.busy": "2024-06-07T09:11:44.499693Z", + "iopub.status.idle": "2024-06-07T09:11:47.310831Z", + "shell.execute_reply": "2024-06-07T09:11:47.310208Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.accuracy_analysis_from_labels_column(\n", + "linker.evaluation.accuracy_analysis_from_labels_column(\n", " \"cluster\", match_weight_round_to_nearest=0.1, output_type=\"roc\"\n", ")" ] @@ -373,15 +1226,242 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:11.820946Z", - "iopub.status.busy": "2024-05-15T15:51:11.820644Z", - "iopub.status.idle": "2024-05-15T15:51:12.084284Z", - "shell.execute_reply": "2024-05-15T15:51:12.083443Z" + "iopub.execute_input": "2024-06-07T09:11:47.319625Z", + "iopub.status.busy": "2024-06-07T09:11:47.319347Z", + "iopub.status.idle": "2024-06-07T09:11:47.588558Z", + "shell.execute_reply": "2024-06-07T09:11:47.587940Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
clerical_match_scorefound_by_blocking_rulesmatch_weightmatch_probabilityrec_id_lrec_id_rgiven_name_lgiven_name_rgamma_given_nametf_given_name_l...postcode_lpostcode_rgamma_postcodetf_postcode_ltf_postcode_rbf_postcodebf_tf_adj_postcodecluster_lcluster_rmatch_key
01.0False-27.4482155.460897e-09rec-993-dup-1rec-993-dup-3westbrookjake00.0004...2704207400.00020.00140.2300371.0rec-993rec-9935
11.0False-27.4482155.460897e-09rec-829-dup-0rec-829-dup-2wildekyra00.0002...3859359500.00040.00060.2300371.0rec-829rec-8295
21.0False-19.3621991.483873e-06rec-829-dup-0rec-829-dup-1wildekyra00.0002...3859388900.00040.00020.2300371.0rec-829rec-8295
31.0True-15.2331222.596344e-05rec-721-dup-0rec-721-dup-1mikhailielly00.0008...4806486000.00080.00140.2300371.0rec-721rec-7212
41.0True-12.6003281.610102e-04rec-401-dup-1rec-401-dup-3whitbealexa-ose00.0002...3040304100.00200.00040.2300371.0rec-401rec-4010
\n", + "

5 rows × 45 columns

\n", + "
" + ], + "text/plain": [ + " clerical_match_score found_by_blocking_rules match_weight \\\n", + "0 1.0 False -27.448215 \n", + "1 1.0 False -27.448215 \n", + "2 1.0 False -19.362199 \n", + "3 1.0 True -15.233122 \n", + "4 1.0 True -12.600328 \n", + "\n", + " match_probability rec_id_l rec_id_r given_name_l given_name_r \\\n", + "0 5.460897e-09 rec-993-dup-1 rec-993-dup-3 westbrook jake \n", + "1 5.460897e-09 rec-829-dup-0 rec-829-dup-2 wilde kyra \n", + "2 1.483873e-06 rec-829-dup-0 rec-829-dup-1 wilde kyra \n", + "3 2.596344e-05 rec-721-dup-0 rec-721-dup-1 mikhaili elly \n", + "4 1.610102e-04 rec-401-dup-1 rec-401-dup-3 whitbe alexa-ose \n", + "\n", + " gamma_given_name tf_given_name_l ... postcode_l postcode_r \\\n", + "0 0 0.0004 ... 2704 2074 \n", + "1 0 0.0002 ... 3859 3595 \n", + "2 0 0.0002 ... 3859 3889 \n", + "3 0 0.0008 ... 4806 4860 \n", + "4 0 0.0002 ... 3040 3041 \n", + "\n", + " gamma_postcode tf_postcode_l tf_postcode_r bf_postcode \\\n", + "0 0 0.0002 0.0014 0.230037 \n", + "1 0 0.0004 0.0006 0.230037 \n", + "2 0 0.0004 0.0002 0.230037 \n", + "3 0 0.0008 0.0014 0.230037 \n", + "4 0 0.0020 0.0004 0.230037 \n", + "\n", + " bf_tf_adj_postcode cluster_l cluster_r match_key \n", + "0 1.0 rec-993 rec-993 5 \n", + "1 1.0 rec-829 rec-829 5 \n", + "2 1.0 rec-829 rec-829 5 \n", + "3 1.0 rec-721 rec-721 2 \n", + "4 1.0 rec-401 rec-401 0 \n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "pred_errors_df = linker.prediction_errors_from_labels_column(\n", + "pred_errors_df = linker.evaluation.prediction_errors_from_labels_column(\n", " \"cluster\"\n", ").as_pandas_dataframe()\n", "len(pred_errors_df)\n", @@ -393,18 +1473,110 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:51:12.087291Z", - "iopub.status.busy": "2024-05-15T15:51:12.087021Z", - "iopub.status.idle": "2024-05-15T15:51:13.092062Z", - "shell.execute_reply": "2024-05-15T15:51:13.091503Z" + "iopub.execute_input": "2024-06-07T09:11:47.591674Z", + "iopub.status.busy": "2024-06-07T09:11:47.591437Z", + "iopub.status.idle": "2024-06-07T09:11:48.630581Z", + "shell.execute_reply": "2024-06-07T09:11:48.629955Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "records = linker.prediction_errors_from_labels_column(\"cluster\").as_record_dict(\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\"cluster\").as_record_dict(\n", " limit=10\n", ")\n", - "linker.waterfall_chart(records)" + "linker.visualisations.waterfall_chart(records)" ] } ], diff --git a/docs/demos/examples/duckdb/febrl4.ipynb b/docs/demos/examples/duckdb/febrl4.ipynb index 1a162201ff..a7cf929e46 100644 --- a/docs/demos/examples/duckdb/febrl4.ipynb +++ b/docs/demos/examples/duckdb/febrl4.ipynb @@ -30,17 +30,17 @@ "id": "9c2be649", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:42.115992Z", - "iopub.status.busy": "2024-05-15T15:56:42.115623Z", - "iopub.status.idle": "2024-05-15T15:56:42.138818Z", - "shell.execute_reply": "2024-05-15T15:56:42.137554Z" + "iopub.execute_input": "2024-06-07T09:16:39.973571Z", + "iopub.status.busy": "2024-06-07T09:16:39.973235Z", + "iopub.status.idle": "2024-06-07T09:16:39.993885Z", + "shell.execute_reply": "2024-06-07T09:16:39.992799Z" } }, + "outputs": [], "source": [ "# Uncomment and run this cell if you're running in Google Colab.\n", "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -64,12 +64,184 @@ "id": "832113c9-13b2-43b7-86d0-6051a9db79e8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:42.144735Z", - "iopub.status.busy": "2024-05-15T15:56:42.144299Z", - "iopub.status.idle": "2024-05-15T15:56:44.123585Z", - "shell.execute_reply": "2024-05-15T15:56:44.122726Z" + "iopub.execute_input": "2024-06-07T09:16:39.999281Z", + "iopub.status.busy": "2024-06-07T09:16:39.998928Z", + "iopub.status.idle": "2024-06-07T09:16:41.957056Z", + "shell.execute_reply": "2024-06-07T09:16:41.956423Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rec_idgiven_namesurnamestreet_numberaddress_1address_2suburbpostcodestatedate_of_birthsoc_sec_idcluster
0rec-1070-orgmichaelaneumann8stanley streetmiamiwinston hills4223nsw191511115304218rec-1070
1rec-1016-orgcourtneypainter12pinkerton circuitbega flatsrichlands4560vic191612144066625rec-1016
\n", + "
" + ], + "text/plain": [ + " rec_id given_name surname street_number address_1 \\\n", + "0 rec-1070-org michaela neumann 8 stanley street \n", + "1 rec-1016-org courtney painter 12 pinkerton circuit \n", + "\n", + " address_2 suburb postcode state date_of_birth soc_sec_id \\\n", + "0 miami winston hills 4223 nsw 19151111 5304218 \n", + "1 bega flats richlands 4560 vic 19161214 4066625 \n", + "\n", + " cluster \n", + "0 rec-1070 \n", + "1 rec-1016 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rec_idgiven_namesurnamestreet_numberaddress_1address_2suburbpostcodestatedate_of_birthsoc_sec_idcluster
0rec-561-dup-0elton3light setreetpinehillwindermere3212vic196510131551941rec-561
1rec-2642-dup-0mitchellmaxon47edkins streetlochaoairnorth ryde3355nsw193902128859999rec-2642
\n", + "
" + ], + "text/plain": [ + " rec_id given_name surname street_number address_1 \\\n", + "0 rec-561-dup-0 elton 3 light setreet \n", + "1 rec-2642-dup-0 mitchell maxon 47 edkins street \n", + "\n", + " address_2 suburb postcode state date_of_birth soc_sec_id cluster \n", + "0 pinehill windermere 3212 vic 19651013 1551941 rec-561 \n", + "1 lochaoair north ryde 3355 nsw 19390212 8859999 rec-2642 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from splink import splink_datasets\n", "\n", @@ -90,8 +262,7 @@ "\n", "display(dfs[0].head(2))\n", "display(dfs[1].head(2))" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -107,12 +278,13 @@ "id": "3233c3e1-3e6b-4abc-8bed-c26e8b463c2a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:44.128064Z", - "iopub.status.busy": "2024-05-15T15:56:44.127470Z", - "iopub.status.idle": "2024-05-15T15:56:44.412449Z", - "shell.execute_reply": "2024-05-15T15:56:44.410927Z" + "iopub.execute_input": "2024-06-07T09:16:41.960684Z", + "iopub.status.busy": "2024-06-07T09:16:41.960330Z", + "iopub.status.idle": "2024-06-07T09:16:42.175342Z", + "shell.execute_reply": "2024-06-07T09:16:42.174611Z" } }, + "outputs": [], "source": [ "from splink import DuckDBAPI, Linker, SettingsCreator\n", "\n", @@ -127,8 +299,7 @@ ")\n", "\n", "linker = Linker(dfs, basic_settings, database_api=DuckDBAPI())" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -144,18 +315,97 @@ "id": "319ffdbc-7853-40a9-b331-e635d96b6fdc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:44.418048Z", - "iopub.status.busy": "2024-05-15T15:56:44.417174Z", - "iopub.status.idle": "2024-05-15T15:56:45.018140Z", - "shell.execute_reply": "2024-05-15T15:56:45.017233Z" + "iopub.execute_input": "2024-06-07T09:16:42.178669Z", + "iopub.status.busy": "2024-06-07T09:16:42.178397Z", + "iopub.status.idle": "2024-06-07T09:16:42.558301Z", + "shell.execute_reply": "2024-06-07T09:16:42.557736Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import completeness_chart\n", "\n", "completeness_chart(dfs, db_api=DuckDBAPI())" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -163,18 +413,97 @@ "id": "dff8dfca-57c8-42bf-878c-da9dd23d2682", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:45.022368Z", - "iopub.status.busy": "2024-05-15T15:56:45.021805Z", - "iopub.status.idle": "2024-05-15T15:56:45.760354Z", - "shell.execute_reply": "2024-05-15T15:56:45.759671Z" + "iopub.execute_input": "2024-06-07T09:16:42.561536Z", + "iopub.status.busy": "2024-06-07T09:16:42.561314Z", + "iopub.status.idle": "2024-06-07T09:16:43.066015Z", + "shell.execute_reply": "2024-06-07T09:16:43.065469Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import profile_columns\n", "\n", "profile_columns(dfs, db_api=DuckDBAPI(), column_expressions=[\"given_name\", \"surname\"])" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -192,12 +521,92 @@ "id": "e745280e-fe2f-4563-bd7e-6e4c70d0c9de", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:45.764541Z", - "iopub.status.busy": "2024-05-15T15:56:45.764220Z", - "iopub.status.idle": "2024-05-15T15:56:46.595508Z", - "shell.execute_reply": "2024-05-15T15:56:46.594573Z" + "iopub.execute_input": "2024-06-07T09:16:43.069224Z", + "iopub.status.busy": "2024-06-07T09:16:43.068982Z", + "iopub.status.idle": "2024-06-07T09:16:43.684745Z", + "shell.execute_reply": "2024-06-07T09:16:43.684041Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import DuckDBAPI, block_on\n", "from splink.blocking_analysis import (\n", @@ -225,8 +634,7 @@ " unique_id_column_name=\"rec_id\",\n", " source_dataset_column_name=\"source_dataset\",\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -253,12 +661,13 @@ "id": "f6360b69-2d52-4f1a-9199-2edf2339ec63", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:46.600071Z", - "iopub.status.busy": "2024-05-15T15:56:46.599766Z", - "iopub.status.idle": "2024-05-15T15:56:47.112399Z", - "shell.execute_reply": "2024-05-15T15:56:47.111220Z" + "iopub.execute_input": "2024-06-07T09:16:43.687914Z", + "iopub.status.busy": "2024-06-07T09:16:43.687640Z", + "iopub.status.idle": "2024-06-07T09:16:44.021204Z", + "shell.execute_reply": "2024-06-07T09:16:44.020435Z" } }, + "outputs": [], "source": [ "import splink.comparison_level_library as cll\n", "import splink.comparison_library as cl\n", @@ -307,8 +716,7 @@ "\n", "linker_simple = Linker(dfs, simple_model_settings, database_api=DuckDBAPI())\n", "linker_detailed = Linker(dfs, detailed_model_settings, database_api=DuckDBAPI())" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -342,23 +750,32 @@ "id": "7ad48419-4eda-4fe5-b00f-2ec9f798e0e8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:47.118143Z", - "iopub.status.busy": "2024-05-15T15:56:47.117804Z", - "iopub.status.idle": "2024-05-15T15:56:47.491169Z", - "shell.execute_reply": "2024-05-15T15:56:47.489974Z" + "iopub.execute_input": "2024-06-07T09:16:44.024887Z", + "iopub.status.busy": "2024-06-07T09:16:44.024650Z", + "iopub.status.idle": "2024-06-07T09:16:44.225016Z", + "shell.execute_reply": "2024-06-07T09:16:44.224395Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.000239.\n", + "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n" + ] + } + ], "source": [ "deterministic_rules = [\n", " block_on(\"soc_sec_id\"),\n", " block_on(\"given_name\", \"surname\", \"date_of_birth\"),\n", "]\n", "\n", - "linker_detailed.estimate_probability_two_random_records_match(\n", + "linker_detailed.training.estimate_probability_two_random_records_match(\n", " deterministic_rules, recall=0.8\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -382,18 +799,76 @@ "id": "e40ee288-0c42-4cda-aaf1-3ffb2ea02383", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:47.497349Z", - "iopub.status.busy": "2024-05-15T15:56:47.496965Z", - "iopub.status.idle": "2024-05-15T15:56:59.095072Z", - "shell.execute_reply": "2024-05-15T15:56:59.094337Z" + "iopub.execute_input": "2024-06-07T09:16:44.228813Z", + "iopub.status.busy": "2024-06-07T09:16:44.228526Z", + "iopub.status.idle": "2024-06-07T09:16:50.708588Z", + "shell.execute_reply": "2024-06-07T09:16:50.707955Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - given_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n", + " - soc_sec_id (no m values are trained).\n", + " - street_number (no m values are trained).\n", + " - postcode (no m values are trained).\n" + ] + } + ], "source": [ "# We generally recommend setting max pairs higher (e.g. 1e7 or more)\n", "# But this will run faster for the purpose of this demo\n", - "linker_detailed.estimate_u_using_random_sampling(max_pairs=1e6)" - ], - "outputs": [] + "linker_detailed.training.estimate_u_using_random_sampling(max_pairs=1e6)" + ] }, { "cell_type": "markdown", @@ -411,21 +886,214 @@ "id": "9ee0f49b-084c-45aa-8c6b-ec5da11c2cc4", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:56:59.100504Z", - "iopub.status.busy": "2024-05-15T15:56:59.100174Z", - "iopub.status.idle": "2024-05-15T15:57:01.059609Z", - "shell.execute_reply": "2024-05-15T15:57:01.058521Z" + "iopub.execute_input": "2024-06-07T09:16:50.712950Z", + "iopub.status.busy": "2024-06-07T09:16:50.712681Z", + "iopub.status.idle": "2024-06-07T09:16:52.276811Z", + "shell.execute_reply": "2024-06-07T09:16:52.276216Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"date_of_birth\" = r.\"date_of_birth\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - given_name\n", + " - surname\n", + " - soc_sec_id\n", + " - street_number\n", + " - postcode\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - date_of_birth\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.316 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.00365 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 8.84e-05 in the m_probability of soc_sec_id, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 3 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"postcode\" = r.\"postcode\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - given_name\n", + " - surname\n", + " - date_of_birth\n", + " - soc_sec_id\n", + " - street_number\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - postcode\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was 0.0374 in the m_probability of date_of_birth, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.000489 in the m_probability of date_of_birth, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 9.4e-06 in the m_probability of soc_sec_id, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 3 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - date_of_birth (some u values are not trained, some m values are not trained).\n" + ] + } + ], "source": [ - "session_dob = linker_detailed.estimate_parameters_using_expectation_maximisation(\n", + "session_dob = linker_detailed.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"date_of_birth\"), estimate_without_term_frequencies=True\n", ")\n", - "session_pc = linker_detailed.estimate_parameters_using_expectation_maximisation(\n", + "session_pc = linker_detailed.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"postcode\"), estimate_without_term_frequencies=True\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -441,16 +1109,95 @@ "id": "31ef6844-6be8-4f01-9ff7-5dfebcf12ae1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:01.065654Z", - "iopub.status.busy": "2024-05-15T15:57:01.065325Z", - "iopub.status.idle": "2024-05-15T15:57:01.389061Z", - "shell.execute_reply": "2024-05-15T15:57:01.388339Z" + "iopub.execute_input": "2024-06-07T09:16:52.281563Z", + "iopub.status.busy": "2024-06-07T09:16:52.281303Z", + "iopub.status.idle": "2024-06-07T09:16:52.513958Z", + "shell.execute_reply": "2024-06-07T09:16:52.513314Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "session_dob.m_u_values_interactive_history_chart()" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -466,16 +1213,95 @@ "id": "8d260a60-a4fa-4c0d-9853-8b8256a24257", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:01.393145Z", - "iopub.status.busy": "2024-05-15T15:57:01.392842Z", - "iopub.status.idle": "2024-05-15T15:57:01.561233Z", - "shell.execute_reply": "2024-05-15T15:57:01.560475Z" + "iopub.execute_input": "2024-06-07T09:16:52.517168Z", + "iopub.status.busy": "2024-06-07T09:16:52.516948Z", + "iopub.status.idle": "2024-06-07T09:16:52.637604Z", + "shell.execute_reply": "2024-06-07T09:16:52.636662Z" } }, - "source": [ - "linker_detailed.parameter_estimate_comparisons_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_detailed.visualisations.parameter_estimate_comparisons_chart()" + ] }, { "cell_type": "markdown", @@ -491,26 +1317,577 @@ "id": "71f2f166-05cd-4038-a289-a053a1f0b5c5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:01.565611Z", - "iopub.status.busy": "2024-05-15T15:57:01.565220Z", - "iopub.status.idle": "2024-05-15T15:57:04.177024Z", - "shell.execute_reply": "2024-05-15T15:57:04.176371Z" + "iopub.execute_input": "2024-06-07T09:16:52.640970Z", + "iopub.status.busy": "2024-06-07T09:16:52.640725Z", + "iopub.status.idle": "2024-06-07T09:16:54.701590Z", + "shell.execute_reply": "2024-06-07T09:16:54.701058Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.000239.\n", + "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - given_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - street_number (no m values are trained).\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"given_name\" = r.\"given_name\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - surname\n", + " - street_number\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - given_name\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.0816 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.0263 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was -0.0249 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.0229 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was -0.02 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was -0.0165 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was -0.0132 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.0102 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was -0.00772 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 0.00577 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was -0.00428 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 12: Largest change in params was 0.00316 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 13: Largest change in params was -0.00233 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 14: Largest change in params was -0.00172 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 15: Largest change in params was 0.00127 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 16: Largest change in params was 0.000936 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 17: Largest change in params was -0.000691 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 18: Largest change in params was -0.000511 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 19: Largest change in params was 0.000378 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 20: Largest change in params was -0.00028 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 21: Largest change in params was 0.000208 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 22: Largest change in params was -0.000154 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 23: Largest change in params was 0.000114 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 24: Largest change in params was -8.48e-05 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 24 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - given_name (no m values are trained).\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"street_number\" = r.\"street_number\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - given_name\n", + " - surname\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - street_number\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was 0.0445 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.0288 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was -0.0278 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.0269 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was -0.0245 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.0209 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was -0.0169 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.0132 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was -0.00995 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 0.00738 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was -0.00541 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 12: Largest change in params was -0.00396 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 13: Largest change in params was -0.0029 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 14: Largest change in params was 0.00213 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 15: Largest change in params was -0.00158 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 16: Largest change in params was 0.00118 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 17: Largest change in params was -0.000894 in the m_probability of given_name, level `Exact match on given_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 18: Largest change in params was 0.000683 in the m_probability of given_name, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 19: Largest change in params was -0.000561 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 20: Largest change in params was 0.000469 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 21: Largest change in params was -0.000389 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 22: Largest change in params was -0.000321 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 23: Largest change in params was 0.000264 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 24: Largest change in params was 0.000217 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 25: Largest change in params was 0.000177 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 25 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker_simple.estimate_probability_two_random_records_match(\n", + "linker_simple.training.estimate_probability_two_random_records_match(\n", " deterministic_rules, recall=0.8\n", ")\n", - "linker_simple.estimate_u_using_random_sampling(max_pairs=1e7)\n", - "session_ssid = linker_simple.estimate_parameters_using_expectation_maximisation(\n", + "linker_simple.training.estimate_u_using_random_sampling(max_pairs=1e7)\n", + "session_ssid = linker_simple.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"given_name\"), estimate_without_term_frequencies=True\n", ")\n", - "session_pc = linker_simple.estimate_parameters_using_expectation_maximisation(\n", + "session_pc = linker_simple.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"street_number\"), estimate_without_term_frequencies=True\n", ")\n", - "linker_simple.parameter_estimate_comparisons_chart()" - ], - "outputs": [] + "linker_simple.visualisations.parameter_estimate_comparisons_chart()" + ] }, { "cell_type": "code", @@ -518,12 +1895,13 @@ "id": "3a87cb78-0e97-40a3-b757-6c99bb19d7b1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:04.180496Z", - "iopub.status.busy": "2024-05-15T15:57:04.180247Z", - "iopub.status.idle": "2024-05-15T15:57:04.183145Z", - "shell.execute_reply": "2024-05-15T15:57:04.182523Z" + "iopub.execute_input": "2024-06-07T09:16:54.704569Z", + "iopub.status.busy": "2024-06-07T09:16:54.704327Z", + "iopub.status.idle": "2024-06-07T09:16:54.707573Z", + "shell.execute_reply": "2024-06-07T09:16:54.707000Z" } }, + "outputs": [], "source": [ "# import json\n", "# we can have a look at the full settings if we wish, including the values of our estimated parameters:\n", @@ -531,8 +1909,7 @@ "# we can also get a handy summary of of the model in an easily readable format if we wish:\n", "# print(linker_detailed._settings_obj.human_readable_description)\n", "# (we suppress output here for brevity)" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -550,16 +1927,95 @@ "id": "b17b131c-c83e-4c32-bfad-c12021d2c3b7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:04.186220Z", - "iopub.status.busy": "2024-05-15T15:57:04.185782Z", - "iopub.status.idle": "2024-05-15T15:57:04.541188Z", - "shell.execute_reply": "2024-05-15T15:57:04.540169Z" + "iopub.execute_input": "2024-06-07T09:16:54.710434Z", + "iopub.status.busy": "2024-06-07T09:16:54.710226Z", + "iopub.status.idle": "2024-06-07T09:16:54.974408Z", + "shell.execute_reply": "2024-06-07T09:16:54.973855Z" } }, - "source": [ - "linker_simple.match_weights_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_simple.visualisations.match_weights_chart()" + ] }, { "cell_type": "code", @@ -567,16 +2023,95 @@ "id": "c095ff2b-405b-427c-849f-1468f6ca98e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:04.545921Z", - "iopub.status.busy": "2024-05-15T15:57:04.545071Z", - "iopub.status.idle": "2024-05-15T15:57:04.888788Z", - "shell.execute_reply": "2024-05-15T15:57:04.887944Z" + "iopub.execute_input": "2024-06-07T09:16:54.977562Z", + "iopub.status.busy": "2024-06-07T09:16:54.977352Z", + "iopub.status.idle": "2024-06-07T09:16:55.252915Z", + "shell.execute_reply": "2024-06-07T09:16:55.251950Z" } }, - "source": [ - "linker_detailed.match_weights_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_detailed.visualisations.match_weights_chart()" + ] }, { "cell_type": "markdown", @@ -594,17 +2129,96 @@ "id": "26e5dbe5-a621-44ab-bdb4-0bcd53b220b6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:04.893722Z", - "iopub.status.busy": "2024-05-15T15:57:04.893207Z", - "iopub.status.idle": "2024-05-15T15:57:05.067224Z", - "shell.execute_reply": "2024-05-15T15:57:05.066686Z" + "iopub.execute_input": "2024-06-07T09:16:55.256437Z", + "iopub.status.busy": "2024-06-07T09:16:55.256148Z", + "iopub.status.idle": "2024-06-07T09:16:55.408274Z", + "shell.execute_reply": "2024-06-07T09:16:55.407631Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# linker_simple.m_u_parameters_chart()\n", - "linker_detailed.m_u_parameters_chart()" - ], - "outputs": [] + "linker_detailed.visualisations.m_u_parameters_chart()" + ] }, { "cell_type": "markdown", @@ -622,16 +2236,95 @@ "id": "149962d6-a2ad-412f-aa05-8697beb12ed0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:05.070283Z", - "iopub.status.busy": "2024-05-15T15:57:05.070040Z", - "iopub.status.idle": "2024-05-15T15:57:06.960773Z", - "shell.execute_reply": "2024-05-15T15:57:06.959848Z" + "iopub.execute_input": "2024-06-07T09:16:55.411718Z", + "iopub.status.busy": "2024-06-07T09:16:55.411484Z", + "iopub.status.idle": "2024-06-07T09:16:57.179378Z", + "shell.execute_reply": "2024-06-07T09:16:57.178861Z" } }, - "source": [ - "linker_simple.unlinkables_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_simple.evaluation.unlinkables_chart()" + ] }, { "cell_type": "code", @@ -639,16 +2332,95 @@ "id": "cac493dd-ea43-4550-8fd4-f758ae90ed75", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:06.965159Z", - "iopub.status.busy": "2024-05-15T15:57:06.964863Z", - "iopub.status.idle": "2024-05-15T15:57:07.337075Z", - "shell.execute_reply": "2024-05-15T15:57:07.336337Z" + "iopub.execute_input": "2024-06-07T09:16:57.182832Z", + "iopub.status.busy": "2024-06-07T09:16:57.182595Z", + "iopub.status.idle": "2024-06-07T09:16:57.517285Z", + "shell.execute_reply": "2024-06-07T09:16:57.516677Z" } }, - "source": [ - "linker_detailed.unlinkables_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_detailed.evaluation.unlinkables_chart()" + ] }, { "cell_type": "markdown", @@ -676,18 +2448,252 @@ "id": "03348477-c3c1-42e7-a8af-8f678acc9d58", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:07.340733Z", - "iopub.status.busy": "2024-05-15T15:57:07.340494Z", - "iopub.status.idle": "2024-05-15T15:57:12.239689Z", - "shell.execute_reply": "2024-05-15T15:57:12.238900Z" + "iopub.execute_input": "2024-06-07T09:16:57.520557Z", + "iopub.status.busy": "2024-06-07T09:16:57.520288Z", + "iopub.status.idle": "2024-06-07T09:17:01.939499Z", + "shell.execute_reply": "2024-06-07T09:17:01.938793Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
match_weightmatch_probabilitysource_dataset_lsource_dataset_rrec_id_lrec_id_rgiven_name_lgiven_name_rgamma_given_nametf_given_name_l...gamma_postcodetf_postcode_ltf_postcode_rbf_postcodebf_tf_adj_postcodeaddress_1_laddress_1_rstate_lstate_rmatch_key
0-1.8250030.220115__splink__input_table_0__splink__input_table_1rec-760-orgrec-3951-dup-0lachlanlachlan30.0113...30.00070.0007718.8240031.672690bushby closetemplestoew avenuenswvic0
1-1.6373660.243251__splink__input_table_0__splink__input_table_1rec-4980-orgrec-4980-dup-0isabellactercteko00.0069...30.00040.0004718.8240032.927207sturt avenuesturta venuevicvic2
2-1.0914450.319400__splink__input_table_0__splink__input_table_1rec-585-orgrec-585-dup-0dannystephenson00.0001...20.00160.001211.3956081.000000o'shanassy streeto'shanassy streettastas1
3-0.9421480.342303__splink__input_table_0__splink__input_table_1rec-1250-orgrec-1250-dup-0lukegazzola00.0055...20.00150.000211.3956081.000000newman morris circuitnewman morr is circuitnswnsw1
4-0.1864990.467727__splink__input_table_0__splink__input_table_1rec-4763-orgrec-4763-dup-0maxalisha00.0021...10.00040.00160.0444691.000000duffy streetduffy s treetnswnsw2
\n", + "

5 rows × 47 columns

\n", + "
" + ], + "text/plain": [ + " match_weight match_probability source_dataset_l \\\n", + "0 -1.825003 0.220115 __splink__input_table_0 \n", + "1 -1.637366 0.243251 __splink__input_table_0 \n", + "2 -1.091445 0.319400 __splink__input_table_0 \n", + "3 -0.942148 0.342303 __splink__input_table_0 \n", + "4 -0.186499 0.467727 __splink__input_table_0 \n", + "\n", + " source_dataset_r rec_id_l rec_id_r given_name_l \\\n", + "0 __splink__input_table_1 rec-760-org rec-3951-dup-0 lachlan \n", + "1 __splink__input_table_1 rec-4980-org rec-4980-dup-0 isabella \n", + "2 __splink__input_table_1 rec-585-org rec-585-dup-0 danny \n", + "3 __splink__input_table_1 rec-1250-org rec-1250-dup-0 luke \n", + "4 __splink__input_table_1 rec-4763-org rec-4763-dup-0 max \n", + "\n", + " given_name_r gamma_given_name tf_given_name_l ... gamma_postcode \\\n", + "0 lachlan 3 0.0113 ... 3 \n", + "1 ctercteko 0 0.0069 ... 3 \n", + "2 stephenson 0 0.0001 ... 2 \n", + "3 gazzola 0 0.0055 ... 2 \n", + "4 alisha 0 0.0021 ... 1 \n", + "\n", + " tf_postcode_l tf_postcode_r bf_postcode bf_tf_adj_postcode \\\n", + "0 0.0007 0.0007 718.824003 1.672690 \n", + "1 0.0004 0.0004 718.824003 2.927207 \n", + "2 0.0016 0.0012 11.395608 1.000000 \n", + "3 0.0015 0.0002 11.395608 1.000000 \n", + "4 0.0004 0.0016 0.044469 1.000000 \n", + "\n", + " address_1_l address_1_r state_l state_r \\\n", + "0 bushby close templestoew avenue nsw vic \n", + "1 sturt avenue sturta venue vic vic \n", + "2 o'shanassy street o'shanassy street tas tas \n", + "3 newman morris circuit newman morr is circuit nsw nsw \n", + "4 duffy street duffy s treet nsw nsw \n", + "\n", + " match_key \n", + "0 0 \n", + "1 2 \n", + "2 1 \n", + "3 1 \n", + "4 2 \n", + "\n", + "[5 rows x 47 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "predictions = linker_detailed.predict(threshold_match_probability=0.2)\n", + "predictions = linker_detailed.inference.predict(threshold_match_probability=0.2)\n", "df_predictions = predictions.as_pandas_dataframe()\n", "df_predictions.head(5)" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -703,18 +2709,110 @@ "id": "ce8d409c-7ef5-4485-9ec0-8b539fdecb1f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:12.244377Z", - "iopub.status.busy": "2024-05-15T15:57:12.243938Z", - "iopub.status.idle": "2024-05-15T15:57:15.174716Z", - "shell.execute_reply": "2024-05-15T15:57:15.173769Z" + "iopub.execute_input": "2024-06-07T09:17:01.942896Z", + "iopub.status.busy": "2024-06-07T09:17:01.942661Z", + "iopub.status.idle": "2024-06-07T09:17:04.159161Z", + "shell.execute_reply": "2024-06-07T09:17:04.158614Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker_detailed.accuracy_analysis_from_labels_column(\n", + "linker_detailed.evaluation.accuracy_analysis_from_labels_column(\n", " \"cluster\", output_type=\"precision_recall\"\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -730,20 +2828,40 @@ "id": "ade53248-212f-4776-8d7d-4632b1749425", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:15.183049Z", - "iopub.status.busy": "2024-05-15T15:57:15.182695Z", - "iopub.status.idle": "2024-05-15T15:57:15.493444Z", - "shell.execute_reply": "2024-05-15T15:57:15.492713Z" + "iopub.execute_input": "2024-06-07T09:17:04.165374Z", + "iopub.status.busy": "2024-06-07T09:17:04.165099Z", + "iopub.status.idle": "2024-06-07T09:17:04.301694Z", + "shell.execute_reply": "2024-06-07T09:17:04.301045Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 1, root rows count 0\n" + ] + }, + { + "data": { + "text/plain": [ + "2 4958\n", + "1 84\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "clusters = linker_detailed.cluster_pairwise_predictions_at_threshold(\n", + "clusters = linker_detailed.clustering.cluster_pairwise_predictions_at_threshold(\n", " predictions, threshold_match_probability=0.99\n", ")\n", "df_clusters = clusters.as_pandas_dataframe().sort_values(\"cluster_id\")\n", "df_clusters.groupby(\"cluster_id\").size().value_counts()" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -763,12 +2881,13 @@ "id": "ef77a8b1-1119-4cb0-b299-343a4022d65e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:15.500107Z", - "iopub.status.busy": "2024-05-15T15:57:15.499499Z", - "iopub.status.idle": "2024-05-15T15:57:15.523366Z", - "shell.execute_reply": "2024-05-15T15:57:15.522625Z" + "iopub.execute_input": "2024-06-07T09:17:04.305169Z", + "iopub.status.busy": "2024-06-07T09:17:04.304886Z", + "iopub.status.idle": "2024-06-07T09:17:04.322035Z", + "shell.execute_reply": "2024-06-07T09:17:04.321351Z" } }, + "outputs": [], "source": [ "df_predictions[\"cluster_l\"] = df_predictions[\"rec_id_l\"].apply(\n", " lambda x: \"-\".join(x.split(\"-\")[:2])\n", @@ -779,8 +2898,7 @@ "df_true_links = df_predictions[\n", " df_predictions[\"cluster_l\"] == df_predictions[\"cluster_r\"]\n", "].sort_values(\"match_probability\")" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -788,19 +2906,98 @@ "id": "bc531ca3-fe0d-480d-b059-a7125474fb22", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:15.527453Z", - "iopub.status.busy": "2024-05-15T15:57:15.527121Z", - "iopub.status.idle": "2024-05-15T15:57:16.507088Z", - "shell.execute_reply": "2024-05-15T15:57:16.506251Z" + "iopub.execute_input": "2024-06-07T09:17:04.325739Z", + "iopub.status.busy": "2024-06-07T09:17:04.325483Z", + "iopub.status.idle": "2024-06-07T09:17:04.966790Z", + "shell.execute_reply": "2024-06-07T09:17:04.966182Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "records_to_view = 3\n", - "linker_detailed.waterfall_chart(\n", + "linker_detailed.visualisations.waterfall_chart(\n", " df_true_links.head(records_to_view).to_dict(orient=\"records\")\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -808,21 +3005,100 @@ "id": "aacd9042-5672-4bc4-aa98-940d1f5fd28a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:16.510992Z", - "iopub.status.busy": "2024-05-15T15:57:16.510681Z", - "iopub.status.idle": "2024-05-15T15:57:17.322254Z", - "shell.execute_reply": "2024-05-15T15:57:17.321456Z" + "iopub.execute_input": "2024-06-07T09:17:04.969789Z", + "iopub.status.busy": "2024-06-07T09:17:04.969553Z", + "iopub.status.idle": "2024-06-07T09:17:05.445307Z", + "shell.execute_reply": "2024-06-07T09:17:05.444530Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df_non_links = df_predictions[\n", " df_predictions[\"cluster_l\"] != df_predictions[\"cluster_r\"]\n", "].sort_values(\"match_probability\", ascending=False)\n", - "linker_detailed.waterfall_chart(\n", + "linker_detailed.visualisations.waterfall_chart(\n", " df_non_links.head(records_to_view).to_dict(orient=\"records\")\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -848,12 +3124,13 @@ "id": "2a7229da-9f79-4151-a6b1-018d17205f5f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:17.327035Z", - "iopub.status.busy": "2024-05-15T15:57:17.326665Z", - "iopub.status.idle": "2024-05-15T15:57:17.342204Z", - "shell.execute_reply": "2024-05-15T15:57:17.341227Z" + "iopub.execute_input": "2024-06-07T09:17:05.448836Z", + "iopub.status.busy": "2024-06-07T09:17:05.448543Z", + "iopub.status.idle": "2024-06-07T09:17:05.460100Z", + "shell.execute_reply": "2024-06-07T09:17:05.459191Z" } }, + "outputs": [], "source": [ "# we need to append a full name column to our source data frames\n", "# so that we can use it for term frequency adjustments\n", @@ -945,8 +3222,7 @@ " ],\n", " \"retain_intermediate_calculation_columns\": True,\n", "}" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -954,25 +3230,83 @@ "id": "1581eeeb-246b-46de-be88-ba4dc821fce7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:57:17.346493Z", - "iopub.status.busy": "2024-05-15T15:57:17.346091Z", - "iopub.status.idle": "2024-05-15T15:58:52.238122Z", - "shell.execute_reply": "2024-05-15T15:58:52.237374Z" + "iopub.execute_input": "2024-06-07T09:17:05.463764Z", + "iopub.status.busy": "2024-06-07T09:17:05.463499Z", + "iopub.status.idle": "2024-06-07T09:18:25.606071Z", + "shell.execute_reply": "2024-06-07T09:18:25.605371Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.000239.\n", + "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - Full name (no m values are trained).\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n", + " - Social security ID (no m values are trained).\n", + " - Street number (no m values are trained).\n", + " - Postcode (no m values are trained).\n" + ] + } + ], "source": [ "# train\n", "linker_advanced = Linker(dfs, extended_model_settings, database_api=DuckDBAPI())\n", - "linker_advanced.estimate_probability_two_random_records_match(\n", + "linker_advanced.training.estimate_probability_two_random_records_match(\n", " deterministic_rules, recall=0.8\n", ")\n", "# We recommend increasing target rows to 1e8 improve accuracy for u\n", "# values in full name comparison, as we have subdivided the data more finely\n", "\n", "# Here, 1e7 for speed\n", - "linker_advanced.estimate_u_using_random_sampling(max_pairs=1e7)" - ], - "outputs": [] + "linker_advanced.training.estimate_u_using_random_sampling(max_pairs=1e7)" + ] }, { "cell_type": "code", @@ -980,18 +3314,107 @@ "id": "265f0651", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:58:52.244579Z", - "iopub.status.busy": "2024-05-15T15:58:52.244307Z", - "iopub.status.idle": "2024-05-15T15:58:53.189566Z", - "shell.execute_reply": "2024-05-15T15:58:53.188815Z" + "iopub.execute_input": "2024-06-07T09:18:25.610698Z", + "iopub.status.busy": "2024-06-07T09:18:25.610416Z", + "iopub.status.idle": "2024-06-07T09:18:26.522700Z", + "shell.execute_reply": "2024-06-07T09:18:26.522017Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.date_of_birth = r.date_of_birth\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - Full name\n", + " - Social security ID\n", + " - Street number\n", + " - Postcode\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - date_of_birth\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level single name cross-matches on comparison Full name not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.465 in the m_probability of Full name, level `Exact match on full_name`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.00249 in the m_probability of Social security ID, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 4.89e-05 in the m_probability of Social security ID, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 3 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for Full name - single name cross-matches (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - Full name (some m values are not trained).\n", + " - date_of_birth (some u values are not trained, no m values are trained).\n" + ] + } + ], "source": [ - "session_dob = linker_advanced.estimate_parameters_using_expectation_maximisation(\n", + "session_dob = linker_advanced.training.estimate_parameters_using_expectation_maximisation(\n", " \"l.date_of_birth = r.date_of_birth\", estimate_without_term_frequencies=True\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -999,18 +3422,155 @@ "id": "ebcb15c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:58:53.193304Z", - "iopub.status.busy": "2024-05-15T15:58:53.193012Z", - "iopub.status.idle": "2024-05-15T15:58:54.287492Z", - "shell.execute_reply": "2024-05-15T15:58:54.286732Z" + "iopub.execute_input": "2024-06-07T09:18:26.526171Z", + "iopub.status.busy": "2024-06-07T09:18:26.525914Z", + "iopub.status.idle": "2024-06-07T09:18:27.518982Z", + "shell.execute_reply": "2024-06-07T09:18:27.518364Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.postcode = r.postcode\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - Full name\n", + " - date_of_birth\n", + " - Social security ID\n", + " - Street number\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - Postcode\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level single name cross-matches on comparison Full name not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:\n", + "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was 0.0375 in the m_probability of date_of_birth, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.000645 in the m_probability of date_of_birth, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 1.72e-05 in the m_probability of Social security ID, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 3 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for Full name - single name cross-matches (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - Full name (some m values are not trained).\n", + " - date_of_birth (some u values are not trained, some m values are not trained).\n" + ] + } + ], "source": [ - "session_pc = linker_advanced.estimate_parameters_using_expectation_maximisation(\n", + "session_pc = linker_advanced.training.estimate_parameters_using_expectation_maximisation(\n", " \"l.postcode = r.postcode\", estimate_without_term_frequencies=True\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", @@ -1018,16 +3578,95 @@ "id": "d9d21e85-b89b-435a-8b75-142166ac3f31", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:58:54.292571Z", - "iopub.status.busy": "2024-05-15T15:58:54.292308Z", - "iopub.status.idle": "2024-05-15T15:58:54.443712Z", - "shell.execute_reply": "2024-05-15T15:58:54.443023Z" + "iopub.execute_input": "2024-06-07T09:18:27.523341Z", + "iopub.status.busy": "2024-06-07T09:18:27.523109Z", + "iopub.status.idle": "2024-06-07T09:18:27.711081Z", + "shell.execute_reply": "2024-06-07T09:18:27.710381Z" } }, - "source": [ - "linker_advanced.parameter_estimate_comparisons_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_advanced.visualisations.parameter_estimate_comparisons_chart()" + ] }, { "cell_type": "code", @@ -1035,16 +3674,95 @@ "id": "4a857c18-b0d5-48dc-b7f1-1f6389db5089", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:58:54.447134Z", - "iopub.status.busy": "2024-05-15T15:58:54.446857Z", - "iopub.status.idle": "2024-05-15T15:58:54.770678Z", - "shell.execute_reply": "2024-05-15T15:58:54.770024Z" + "iopub.execute_input": "2024-06-07T09:18:27.746299Z", + "iopub.status.busy": "2024-06-07T09:18:27.744495Z", + "iopub.status.idle": "2024-06-07T09:18:28.388134Z", + "shell.execute_reply": "2024-06-07T09:18:28.387392Z" } }, - "source": [ - "linker_advanced.match_weights_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker_advanced.visualisations.match_weights_chart()" + ] }, { "cell_type": "code", @@ -1052,22 +3770,57 @@ "id": "e1ee24d9-1def-4b8d-bb85-1c63b595e75e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T15:58:54.773893Z", - "iopub.status.busy": "2024-05-15T15:58:54.773655Z", - "iopub.status.idle": "2024-05-15T15:58:56.607253Z", - "shell.execute_reply": "2024-05-15T15:58:56.606584Z" + "iopub.execute_input": "2024-06-07T09:18:28.392069Z", + "iopub.status.busy": "2024-06-07T09:18:28.391745Z", + "iopub.status.idle": "2024-06-07T09:18:30.289569Z", + "shell.execute_reply": "2024-06-07T09:18:30.288893Z" } }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'Full name':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " m values not fully trained\n", + "Comparison: 'date_of_birth':\n", + " u values not fully trained\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 1, root rows count 0\n" + ] + }, + { + "data": { + "text/plain": [ + "2 4960\n", + "1 80\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "predictions_adv = linker_advanced.predict()\n", + "predictions_adv = linker_advanced.inference.predict()\n", "df_predictions_adv = predictions_adv.as_pandas_dataframe()\n", - "clusters_adv = linker_advanced.cluster_pairwise_predictions_at_threshold(\n", + "clusters_adv = linker_advanced.clustering.cluster_pairwise_predictions_at_threshold(\n", " predictions_adv, threshold_match_probability=0.99\n", ")\n", "df_clusters_adv = clusters_adv.as_pandas_dataframe().sort_values(\"cluster_id\")\n", "df_clusters_adv.groupby(\"cluster_id\").size().value_counts()" - ], - "outputs": [] + ] }, { "cell_type": "markdown", diff --git a/docs/demos/examples/duckdb/link_only.ipynb b/docs/demos/examples/duckdb/link_only.ipynb index 1e6bb2dd85..dba266abe1 100644 --- a/docs/demos/examples/duckdb/link_only.ipynb +++ b/docs/demos/examples/duckdb/link_only.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:43.284619Z", - "iopub.status.busy": "2024-03-27T15:14:43.284336Z", - "iopub.status.idle": "2024-03-27T15:14:43.289588Z", - "shell.execute_reply": "2024-03-27T15:14:43.288971Z" + "iopub.execute_input": "2024-06-07T09:18:42.926356Z", + "iopub.status.busy": "2024-06-07T09:18:42.925982Z", + "iopub.status.idle": "2024-06-07T09:18:42.943456Z", + "shell.execute_reply": "2024-06-07T09:18:42.942569Z" } }, "outputs": [], @@ -43,13 +43,83 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:43.293314Z", - "iopub.status.busy": "2024-03-27T15:14:43.293026Z", - "iopub.status.idle": "2024-03-27T15:14:45.144216Z", - "shell.execute_reply": "2024-03-27T15:14:45.143259Z" + "iopub.execute_input": "2024-06-07T09:18:42.947959Z", + "iopub.status.busy": "2024-06-07T09:18:42.947640Z", + "iopub.status.idle": "2024-06-07T09:18:44.652788Z", + "shell.execute_reply": "2024-06-07T09:18:44.652024Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_idfirst_namesurnamedobcityemailcluster
930930LukeRobinnso1981-10-18Coventrylrobinson@wolf.org233
385385LottieDavis1972-06-12NaNlottie.d7@morgan-pierce.com100
\n", + "
" + ], + "text/plain": [ + " unique_id first_name surname dob city \\\n", + "930 930 Luke Robinnso 1981-10-18 Coventry \n", + "385 385 Lottie Davis 1972-06-12 NaN \n", + "\n", + " email cluster \n", + "930 lrobinson@wolf.org 233 \n", + "385 lottie.d7@morgan-pierce.com 100 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import splink_datasets\n", "\n", @@ -67,10 +137,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:45.149667Z", - "iopub.status.busy": "2024-03-27T15:14:45.149322Z", - "iopub.status.idle": "2024-03-27T15:14:45.584636Z", - "shell.execute_reply": "2024-03-27T15:14:45.583909Z" + "iopub.execute_input": "2024-06-07T09:18:44.695716Z", + "iopub.status.busy": "2024-06-07T09:18:44.695390Z", + "iopub.status.idle": "2024-06-07T09:18:44.942598Z", + "shell.execute_reply": "2024-06-07T09:18:44.942052Z" } }, "outputs": [], @@ -115,13 +185,92 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:45.588957Z", - "iopub.status.busy": "2024-03-27T15:14:45.588354Z", - "iopub.status.idle": "2024-03-27T15:14:46.120692Z", - "shell.execute_reply": "2024-03-27T15:14:46.119623Z" + "iopub.execute_input": "2024-06-07T09:18:44.946395Z", + "iopub.status.busy": "2024-06-07T09:18:44.946113Z", + "iopub.status.idle": "2024-06-07T09:18:45.188705Z", + "shell.execute_reply": "2024-06-07T09:18:45.188192Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import completeness_chart\n", "\n", @@ -138,13 +287,22 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:46.124880Z", - "iopub.status.busy": "2024-03-27T15:14:46.124449Z", - "iopub.status.idle": "2024-03-27T15:14:46.333422Z", - "shell.execute_reply": "2024-03-27T15:14:46.332477Z" + "iopub.execute_input": "2024-06-07T09:18:45.192584Z", + "iopub.status.busy": "2024-06-07T09:18:45.192253Z", + "iopub.status.idle": "2024-06-07T09:18:45.341533Z", + "shell.execute_reply": "2024-06-07T09:18:45.340965Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Probability two random records match is estimated to be 0.00346.\n", + "This means that amongst all possible pairwise record comparisons, one in 288.78 are expected to match. With 250,000 total possible comparisons, we expect a total of around 865.71 matching pairs\n" + ] + } + ], "source": [ "\n", "deterministic_rules = [\n", @@ -155,7 +313,7 @@ "]\n", "\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" ] }, { @@ -163,15 +321,51 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:46.337604Z", - "iopub.status.busy": "2024-03-27T15:14:46.337231Z", - "iopub.status.idle": "2024-03-27T15:14:47.729876Z", - "shell.execute_reply": "2024-03-27T15:14:47.728440Z" + "iopub.execute_input": "2024-06-07T09:18:45.344512Z", + "iopub.status.busy": "2024-06-07T09:18:45.344289Z", + "iopub.status.idle": "2024-06-07T09:18:46.142225Z", + "shell.execute_reply": "2024-06-07T09:18:46.141712Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - dob (no m values are trained).\n", + " - city (no m values are trained).\n", + " - email (no m values are trained).\n" + ] + } + ], "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)" + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)" ] }, { @@ -179,19 +373,350 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:47.735185Z", - "iopub.status.busy": "2024-03-27T15:14:47.734598Z", - "iopub.status.idle": "2024-03-27T15:14:49.944190Z", - "shell.execute_reply": "2024-03-27T15:14:49.943452Z" + "iopub.execute_input": "2024-06-07T09:18:46.145662Z", + "iopub.status.busy": "2024-06-07T09:18:46.145393Z", + "iopub.status.idle": "2024-06-07T09:18:47.814138Z", + "shell.execute_reply": "2024-06-07T09:18:47.813573Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"dob\" = r.\"dob\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + " - city\n", + " - email\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - dob\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.387 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.113 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.0347 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.0122 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.00504 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.00226 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was 0.00105 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.000497 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was 0.000237 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 0.000114 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was 5.46e-05 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 11 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - dob (no m values are trained).\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"email\" = r.\"email\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + " - dob\n", + " - city\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - email\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.453 in the m_probability of dob, level `Exact match on dob`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was 0.0816 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.0173 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.00584 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.00237 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.00106 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was 0.000497 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.000238 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was 0.000115 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 5.6e-05 in probability_two_random_records_match\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 10 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"first_name\" = r.\"first_name\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - surname\n", + " - dob\n", + " - city\n", + " - email\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - first_name\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was 0.182 in the m_probability of surname, level `Exact match on surname`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was -0.0082 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was -0.00119 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was -0.000228 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was -4.89e-05 in the m_probability of surname, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 5 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] + } + ], "source": [ - "session_dob = linker.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n", - "session_email = linker.estimate_parameters_using_expectation_maximisation(\n", + "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n", + "session_email = linker.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"email\")\n", ")\n", - "session_first_name = linker.estimate_parameters_using_expectation_maximisation(\n", + "session_first_name = linker.training.estimate_parameters_using_expectation_maximisation(\n", " block_on(\"first_name\")\n", ")" ] @@ -201,15 +726,15 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:49.948346Z", - "iopub.status.busy": "2024-03-27T15:14:49.948058Z", - "iopub.status.idle": "2024-03-27T15:14:50.272696Z", - "shell.execute_reply": "2024-03-27T15:14:50.271981Z" + "iopub.execute_input": "2024-06-07T09:18:47.817058Z", + "iopub.status.busy": "2024-06-07T09:18:47.816828Z", + "iopub.status.idle": "2024-06-07T09:18:48.064527Z", + "shell.execute_reply": "2024-06-07T09:18:48.063844Z" } }, "outputs": [], "source": [ - "results = linker.predict(threshold_match_probability=0.9)" + "results = linker.inference.predict(threshold_match_probability=0.9)" ] }, { @@ -217,13 +742,227 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:50.276802Z", - "iopub.status.busy": "2024-03-27T15:14:50.276415Z", - "iopub.status.idle": "2024-03-27T15:14:50.299341Z", - "shell.execute_reply": "2024-03-27T15:14:50.298407Z" + "iopub.execute_input": "2024-06-07T09:18:48.067845Z", + "iopub.status.busy": "2024-06-07T09:18:48.067582Z", + "iopub.status.idle": "2024-06-07T09:18:48.084784Z", + "shell.execute_reply": "2024-06-07T09:18:48.084179Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
match_weightmatch_probabilitysource_dataset_lsource_dataset_runique_id_lunique_id_rfirst_name_lfirst_name_rgamma_first_namesurname_l...dob_ldob_rgamma_dobcity_lcity_rgamma_cityemail_lemail_rgamma_emailmatch_key
03.201620.90196df_leftdf_right445444JacobJacob3Campbell...1988-06-051997-05-041LononLondon0j.c65@ortiz.comNone-10
13.201620.90196df_leftdf_right774778ArmstrongArmstrong3Eva...2027-04-212017-04-231PeterborouhgPeterbotrough0e.armstrong16odonnell.infoNone-10
23.201620.90196df_leftdf_right239242FreyaFreya3Shah...1972-01-171970-12-171LondonLonnod0f.s@flynn.comNone-10
33.201620.90196df_leftdf_right833834MasonMason3Smith...1983-03-161993-03-131Kingston-uponH-ullKingston-upon-Hull0masons52@reed.comNone-10
43.201620.90196df_leftdf_right439444JacobJacob3Campbell...1987-06-061997-05-041LonnodLondon0NoneNone-10
\n", + "

5 rows × 22 columns

\n", + "
" + ], + "text/plain": [ + " match_weight match_probability source_dataset_l source_dataset_r \\\n", + "0 3.20162 0.90196 df_left df_right \n", + "1 3.20162 0.90196 df_left df_right \n", + "2 3.20162 0.90196 df_left df_right \n", + "3 3.20162 0.90196 df_left df_right \n", + "4 3.20162 0.90196 df_left df_right \n", + "\n", + " unique_id_l unique_id_r first_name_l first_name_r gamma_first_name \\\n", + "0 445 444 Jacob Jacob 3 \n", + "1 774 778 Armstrong Armstrong 3 \n", + "2 239 242 Freya Freya 3 \n", + "3 833 834 Mason Mason 3 \n", + "4 439 444 Jacob Jacob 3 \n", + "\n", + " surname_l ... dob_l dob_r gamma_dob city_l \\\n", + "0 Campbell ... 1988-06-05 1997-05-04 1 Lonon \n", + "1 Eva ... 2027-04-21 2017-04-23 1 Peterborouhg \n", + "2 Shah ... 1972-01-17 1970-12-17 1 London \n", + "3 Smith ... 1983-03-16 1993-03-13 1 Kingston-uponH-ull \n", + "4 Campbell ... 1987-06-06 1997-05-04 1 Lonnod \n", + "\n", + " city_r gamma_city email_l email_r \\\n", + "0 London 0 j.c65@ortiz.com None \n", + "1 Peterbotrough 0 e.armstrong16odonnell.info None \n", + "2 Lonnod 0 f.s@flynn.com None \n", + "3 Kingston-upon-Hull 0 masons52@reed.com None \n", + "4 London 0 None None \n", + "\n", + " gamma_email match_key \n", + "0 -1 0 \n", + "1 -1 0 \n", + "2 -1 0 \n", + "3 -1 0 \n", + "4 -1 0 \n", + "\n", + "[5 rows x 22 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results.as_pandas_dataframe(limit=5)" ] diff --git a/docs/demos/examples/duckdb/pairwise_labels.ipynb b/docs/demos/examples/duckdb/pairwise_labels.ipynb index f4f9d1f513..f99d3a566c 100644 --- a/docs/demos/examples/duckdb/pairwise_labels.ipynb +++ b/docs/demos/examples/duckdb/pairwise_labels.ipynb @@ -35,10 +35,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:53.117258Z", - "iopub.status.busy": "2024-03-27T15:14:53.116906Z", - "iopub.status.idle": "2024-03-27T15:14:53.122096Z", - "shell.execute_reply": "2024-03-27T15:14:53.121308Z" + "iopub.execute_input": "2024-06-07T09:20:22.461384Z", + "iopub.status.busy": "2024-06-07T09:20:22.461075Z", + "iopub.status.idle": "2024-06-07T09:20:22.466162Z", + "shell.execute_reply": "2024-06-07T09:20:22.465529Z" } }, "outputs": [], @@ -52,13 +52,170 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:53.126249Z", - "iopub.status.busy": "2024-03-27T15:14:53.125905Z", - "iopub.status.idle": "2024-03-27T15:14:54.649822Z", - "shell.execute_reply": "2024-03-27T15:14:54.649099Z" + "iopub.execute_input": "2024-06-07T09:20:22.470034Z", + "iopub.status.busy": "2024-06-07T09:20:22.469740Z", + "iopub.status.idle": "2024-06-07T09:20:24.546756Z", + "shell.execute_reply": "2024-06-07T09:20:24.546033Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_id_lsource_dataset_lunique_id_rsource_dataset_rclerical_match_score
00fake_10001fake_10001.0
10fake_10002fake_10001.0
20fake_10003fake_10001.0
491fake_10002fake_10001.0
501fake_10003fake_10001.0
..................
3171994fake_1000996fake_10001.0
3172995fake_1000996fake_10001.0
3173997fake_1000998fake_10001.0
3174997fake_1000999fake_10001.0
3175998fake_1000999fake_10001.0
\n", + "

2031 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " unique_id_l source_dataset_l unique_id_r source_dataset_r \\\n", + "0 0 fake_1000 1 fake_1000 \n", + "1 0 fake_1000 2 fake_1000 \n", + "2 0 fake_1000 3 fake_1000 \n", + "49 1 fake_1000 2 fake_1000 \n", + "50 1 fake_1000 3 fake_1000 \n", + "... ... ... ... ... \n", + "3171 994 fake_1000 996 fake_1000 \n", + "3172 995 fake_1000 996 fake_1000 \n", + "3173 997 fake_1000 998 fake_1000 \n", + "3174 997 fake_1000 999 fake_1000 \n", + "3175 998 fake_1000 999 fake_1000 \n", + "\n", + " clerical_match_score \n", + "0 1.0 \n", + "1 1.0 \n", + "2 1.0 \n", + "49 1.0 \n", + "50 1.0 \n", + "... ... \n", + "3171 1.0 \n", + "3172 1.0 \n", + "3173 1.0 \n", + "3174 1.0 \n", + "3175 1.0 \n", + "\n", + "[2031 rows x 5 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.datasets import splink_dataset_labels\n", "\n", @@ -82,13 +239,79 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:54.653768Z", - "iopub.status.busy": "2024-03-27T15:14:54.653468Z", - "iopub.status.idle": "2024-03-27T15:14:54.668003Z", - "shell.execute_reply": "2024-03-27T15:14:54.667271Z" + "iopub.execute_input": "2024-06-07T09:20:24.588843Z", + "iopub.status.busy": "2024-06-07T09:20:24.588530Z", + "iopub.status.idle": "2024-06-07T09:20:24.602952Z", + "shell.execute_reply": "2024-06-07T09:20:24.602047Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_idfirst_namesurnamedobcityemailcluster
00RobertAlan1971-06-24NaNrobert255@smith.net0
11RobertAllen1971-05-24NaNroberta25@smith.net0
\n", + "
" + ], + "text/plain": [ + " unique_id first_name surname dob city email cluster\n", + "0 0 Robert Alan 1971-06-24 NaN robert255@smith.net 0\n", + "1 1 Robert Allen 1971-05-24 NaN roberta25@smith.net 0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import splink_datasets\n", "\n", @@ -101,10 +324,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:54.671717Z", - "iopub.status.busy": "2024-03-27T15:14:54.671406Z", - "iopub.status.idle": "2024-03-27T15:14:54.912700Z", - "shell.execute_reply": "2024-03-27T15:14:54.911624Z" + "iopub.execute_input": "2024-06-07T09:20:24.607247Z", + "iopub.status.busy": "2024-06-07T09:20:24.606935Z", + "iopub.status.idle": "2024-06-07T09:20:24.711369Z", + "shell.execute_reply": "2024-06-07T09:20:24.710531Z" } }, "outputs": [], @@ -142,10 +365,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:54.917049Z", - "iopub.status.busy": "2024-03-27T15:14:54.916681Z", - "iopub.status.idle": "2024-03-27T15:14:55.221629Z", - "shell.execute_reply": "2024-03-27T15:14:55.220884Z" + "iopub.execute_input": "2024-06-07T09:20:24.715481Z", + "iopub.status.busy": "2024-06-07T09:20:24.715162Z", + "iopub.status.idle": "2024-06-07T09:20:25.100461Z", + "shell.execute_reply": "2024-06-07T09:20:25.099741Z" } }, "outputs": [], @@ -158,7 +381,7 @@ " \"l.email = r.email\",\n", "]\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" ] }, { @@ -166,15 +389,23 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:55.224831Z", - "iopub.status.busy": "2024-03-27T15:14:55.224593Z", - "iopub.status.idle": "2024-03-27T15:14:57.430946Z", - "shell.execute_reply": "2024-03-27T15:14:57.430131Z" + "iopub.execute_input": "2024-06-07T09:20:25.104541Z", + "iopub.status.busy": "2024-06-07T09:20:25.104116Z", + "iopub.status.idle": "2024-06-07T09:20:26.866642Z", + "shell.execute_reply": "2024-06-07T09:20:26.866007Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + } + ], "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6)" + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)" ] }, { @@ -182,21 +413,21 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:57.434534Z", - "iopub.status.busy": "2024-03-27T15:14:57.434260Z", - "iopub.status.idle": "2024-03-27T15:14:57.657154Z", - "shell.execute_reply": "2024-03-27T15:14:57.656336Z" + "iopub.execute_input": "2024-06-07T09:20:26.871363Z", + "iopub.status.busy": "2024-06-07T09:20:26.871016Z", + "iopub.status.idle": "2024-06-07T09:20:27.051023Z", + "shell.execute_reply": "2024-06-07T09:20:27.050407Z" } }, "outputs": [], "source": [ "# Register the pairwise labels table with the database, and then use it to estimate the m values\n", - "labels_df = linker.register_labels_table(pairwise_labels, overwrite=True)\n", - "linker.estimate_m_from_pairwise_labels(labels_df)\n", + "labels_df = linker.table_management.register_labels_table(pairwise_labels, overwrite=True)\n", + "linker.training.estimate_m_from_pairwise_labels(labels_df)\n", "\n", "\n", "# If the labels table already existing in the dataset you could run\n", - "# linker.estimate_m_from_pairwise_labels(\"labels_tablename_here\")" + "# linker.training.estimate_m_from_pairwise_labels(\"labels_tablename_here\")" ] }, { @@ -204,16 +435,27 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:57.662065Z", - "iopub.status.busy": "2024-03-27T15:14:57.661552Z", - "iopub.status.idle": "2024-03-27T15:14:58.144518Z", - "shell.execute_reply": "2024-03-27T15:14:58.143799Z" + "iopub.execute_input": "2024-06-07T09:20:27.054211Z", + "iopub.status.busy": "2024-06-07T09:20:27.053972Z", + "iopub.status.idle": "2024-06-07T09:20:27.489093Z", + "shell.execute_reply": "2024-06-07T09:20:27.488564Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "training_blocking_rule = block_on(\"first_name\")\n", - "linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)" + "linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)" ] }, { @@ -221,15 +463,94 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:58.149118Z", - "iopub.status.busy": "2024-03-27T15:14:58.148820Z", - "iopub.status.idle": "2024-03-27T15:14:58.295802Z", - "shell.execute_reply": "2024-03-27T15:14:58.294855Z" + "iopub.execute_input": "2024-06-07T09:20:27.492742Z", + "iopub.status.busy": "2024-06-07T09:20:27.492510Z", + "iopub.status.idle": "2024-06-07T09:20:27.624619Z", + "shell.execute_reply": "2024-06-07T09:20:27.624114Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.parameter_estimate_comparisons_chart()" + "linker.visualisations.parameter_estimate_comparisons_chart()" ] }, { @@ -237,30 +558,95 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:14:58.299160Z", - "iopub.status.busy": "2024-03-27T15:14:58.298915Z", - "iopub.status.idle": "2024-03-27T15:14:58.605413Z", - "shell.execute_reply": "2024-03-27T15:14:58.604766Z" + "iopub.execute_input": "2024-06-07T09:20:27.628602Z", + "iopub.status.busy": "2024-06-07T09:20:27.628256Z", + "iopub.status.idle": "2024-06-07T09:20:27.933374Z", + "shell.execute_reply": "2024-06-07T09:20:27.932702Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.match_weights_chart()" + "linker.visualisations.match_weights_chart()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb b/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb index 4c1b054a3e..12bc1af90b 100644 --- a/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb +++ b/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb @@ -26,48 +26,186 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:01.166130Z", - "iopub.status.busy": "2024-03-27T15:15:01.165782Z", - "iopub.status.idle": "2024-03-27T15:15:01.171295Z", - "shell.execute_reply": "2024-03-27T15:15:01.170553Z" + "iopub.execute_input": "2024-06-07T09:20:37.624889Z", + "iopub.status.busy": "2024-06-07T09:20:37.624517Z", + "iopub.status.idle": "2024-06-07T09:20:37.644289Z", + "shell.execute_reply": "2024-06-07T09:20:37.643404Z" } }, + "outputs": [], "source": [ "# Uncomment and run this cell if you're running in Google Colab.\n", "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:01.174969Z", - "iopub.status.busy": "2024-03-27T15:15:01.174678Z", - "iopub.status.idle": "2024-03-27T15:15:02.750516Z", - "shell.execute_reply": "2024-03-27T15:15:02.749785Z" + "iopub.execute_input": "2024-06-07T09:20:37.648712Z", + "iopub.status.busy": "2024-06-07T09:20:37.648404Z", + "iopub.status.idle": "2024-06-07T09:20:39.278642Z", + "shell.execute_reply": "2024-06-07T09:20:39.277984Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unique_idclusterfull_namefirst_and_surnamefirst_namesurnamedobbirth_placepostcode_fakegenderoccupation
0Q2296770-1Q2296770thomas clifford, 1st baron clifford of chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfmalepolitician
1Q2296770-2Q2296770thomas of chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfmalepolitician
2Q2296770-3Q2296770tom 1st baron clifford of chudleightom chudleightomchudleigh1630-08-01devontq13 8dfmalepolitician
3Q2296770-4Q2296770thomas 1st chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8huNonepolitician
4Q2296770-5Q2296770thomas clifford, 1st baron chudleighthomas chudleighthomaschudleigh1630-08-01devontq13 8dfNonepolitician
\n", + "
" + ], + "text/plain": [ + " unique_id cluster full_name \\\n", + "0 Q2296770-1 Q2296770 thomas clifford, 1st baron clifford of chudleigh \n", + "1 Q2296770-2 Q2296770 thomas of chudleigh \n", + "2 Q2296770-3 Q2296770 tom 1st baron clifford of chudleigh \n", + "3 Q2296770-4 Q2296770 thomas 1st chudleigh \n", + "4 Q2296770-5 Q2296770 thomas clifford, 1st baron chudleigh \n", + "\n", + " first_and_surname first_name surname dob birth_place \\\n", + "0 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "1 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "2 tom chudleigh tom chudleigh 1630-08-01 devon \n", + "3 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "4 thomas chudleigh thomas chudleigh 1630-08-01 devon \n", + "\n", + " postcode_fake gender occupation \n", + "0 tq13 8df male politician \n", + "1 tq13 8df male politician \n", + "2 tq13 8df male politician \n", + "3 tq13 8hu None politician \n", + "4 tq13 8df None politician " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.datasets import splink_datasets\n", "\n", "df = splink_datasets.historical_50k\n", "df.head(5)" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:02.754599Z", - "iopub.status.busy": "2024-03-27T15:15:02.754204Z", - "iopub.status.idle": "2024-03-27T15:15:02.762053Z", - "shell.execute_reply": "2024-03-27T15:15:02.761258Z" + "iopub.execute_input": "2024-06-07T09:20:39.330739Z", + "iopub.status.busy": "2024-06-07T09:20:39.330384Z", + "iopub.status.idle": "2024-06-07T09:20:39.345331Z", + "shell.execute_reply": "2024-06-07T09:20:39.344598Z" } }, + "outputs": [], "source": [ "from splink import block_on, SettingsCreator\n", "import splink.comparison_library as cl\n", @@ -99,20 +237,20 @@ " cl.ExactMatch(\"occupation\").configure(term_frequency_adjustments=True),\n", " ],\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:02.766456Z", - "iopub.status.busy": "2024-03-27T15:15:02.766123Z", - "iopub.status.idle": "2024-03-27T15:15:03.425993Z", - "shell.execute_reply": "2024-03-27T15:15:03.424984Z" + "iopub.execute_input": "2024-06-07T09:20:39.349123Z", + "iopub.status.busy": "2024-06-07T09:20:39.348832Z", + "iopub.status.idle": "2024-06-07T09:20:39.807802Z", + "shell.execute_reply": "2024-06-07T09:20:39.807089Z" } }, + "outputs": [], "source": [ "from splink import Linker, DuckDBAPI\n", "\n", @@ -123,57 +261,281 @@ " \"l.postcode_fake = r.postcode_fake and l.dob = r.dob\",\n", "]\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)" - ], - "outputs": [] + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)" + ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:03.430749Z", - "iopub.status.busy": "2024-03-27T15:15:03.430387Z", - "iopub.status.idle": "2024-03-27T15:15:07.041399Z", - "shell.execute_reply": "2024-03-27T15:15:07.040743Z" + "iopub.execute_input": "2024-06-07T09:20:39.811242Z", + "iopub.status.busy": "2024-06-07T09:20:39.810994Z", + "iopub.status.idle": "2024-06-07T09:20:42.328241Z", + "shell.execute_reply": "2024-06-07T09:20:42.327675Z" } }, + "outputs": [], "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=2e6)" - ], - "outputs": [] + "linker.training.estimate_u_using_random_sampling(max_pairs=2e6)" + ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:07.045995Z", - "iopub.status.busy": "2024-03-27T15:15:07.045404Z", - "iopub.status.idle": "2024-03-27T15:15:09.400752Z", - "shell.execute_reply": "2024-03-27T15:15:09.400029Z" + "iopub.execute_input": "2024-06-07T09:20:42.331754Z", + "iopub.status.busy": "2024-06-07T09:20:42.331463Z", + "iopub.status.idle": "2024-06-07T09:20:44.521913Z", + "shell.execute_reply": "2024-06-07T09:20:44.521209Z" } }, - "source": [ - "results = linker.predict(threshold_match_probability=0.9)" + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " -- WARNING --\n", + "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n", + "Comparison: 'full_name':\n", + " m values not fully trained\n", + "Comparison: 'dob':\n", + " m values not fully trained\n", + "Comparison: 'postcode_fake':\n", + " m values not fully trained\n", + "Comparison: 'birth_place':\n", + " m values not fully trained\n", + "Comparison: 'occupation':\n", + " m values not fully trained\n" + ] + } ], - "outputs": [] + "source": [ + "results = linker.inference.predict(threshold_match_probability=0.9)" + ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:15:09.404703Z", - "iopub.status.busy": "2024-03-27T15:15:09.404377Z", - "iopub.status.idle": "2024-03-27T15:15:09.428537Z", - "shell.execute_reply": "2024-03-27T15:15:09.427244Z" + "iopub.execute_input": "2024-06-07T09:20:44.525778Z", + "iopub.status.busy": "2024-06-07T09:20:44.525492Z", + "iopub.status.idle": "2024-06-07T09:20:44.543212Z", + "shell.execute_reply": "2024-06-07T09:20:44.542595Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
match_weightmatch_probabilityunique_id_lunique_id_rfull_name_lfull_name_rgamma_full_namedob_ldob_rgamma_dobpostcode_fake_lpostcode_fake_rgamma_postcode_fakebirth_place_lbirth_place_rgamma_birth_placeoccupation_loccupation_rgamma_occupationmatch_key
03.1722460.900145Q16198727-6Q16198727-8henry juppjupp01802-08-061802-08-065Nonee4 9re-1waltham forestwaltham forest2cricketercricketer12
13.1724230.900156Q16220644-12Q16220644-71st bt.1st bt.31840-11-211810-11-214NoneNone-1liverpoolliverpool2Nonephysician-10
23.1732560.900208Q6180874-12Q6180874-19richard slaterslater01854-01-011854-01-015al5 2ayal3 7rq0st albansst albans2hymnwriterhymnwriter12
33.1741820.900265Q7519167-10Q7519167-8simeon langtonsimeon langton31150-01-811152-01-010NoneNone-1wealdenwealden2priestNone-10
43.1785670.900538Q15980561-12Q15980561-8harry roslinghenry rosling11828-01-111858-01-010tn27 0sytn27 0sy2ashfordashford2photographerNone-13
\n", + "
" + ], + "text/plain": [ + " match_weight match_probability unique_id_l unique_id_r full_name_l \\\n", + "0 3.172246 0.900145 Q16198727-6 Q16198727-8 henry jupp \n", + "1 3.172423 0.900156 Q16220644-12 Q16220644-7 1st bt. \n", + "2 3.173256 0.900208 Q6180874-12 Q6180874-19 richard slater \n", + "3 3.174182 0.900265 Q7519167-10 Q7519167-8 simeon langton \n", + "4 3.178567 0.900538 Q15980561-12 Q15980561-8 harry rosling \n", + "\n", + " full_name_r gamma_full_name dob_l dob_r gamma_dob \\\n", + "0 jupp 0 1802-08-06 1802-08-06 5 \n", + "1 1st bt. 3 1840-11-21 1810-11-21 4 \n", + "2 slater 0 1854-01-01 1854-01-01 5 \n", + "3 simeon langton 3 1150-01-81 1152-01-01 0 \n", + "4 henry rosling 1 1828-01-11 1858-01-01 0 \n", + "\n", + " postcode_fake_l postcode_fake_r gamma_postcode_fake birth_place_l \\\n", + "0 None e4 9re -1 waltham forest \n", + "1 None None -1 liverpool \n", + "2 al5 2ay al3 7rq 0 st albans \n", + "3 None None -1 wealden \n", + "4 tn27 0sy tn27 0sy 2 ashford \n", + "\n", + " birth_place_r gamma_birth_place occupation_l occupation_r \\\n", + "0 waltham forest 2 cricketer cricketer \n", + "1 liverpool 2 None physician \n", + "2 st albans 2 hymnwriter hymnwriter \n", + "3 wealden 2 priest None \n", + "4 ashford 2 photographer None \n", + "\n", + " gamma_occupation match_key \n", + "0 1 2 \n", + "1 -1 0 \n", + "2 1 2 \n", + "3 -1 0 \n", + "4 -1 3 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results.as_pandas_dataframe(limit=5)" - ], - "outputs": [] + ] } ], "metadata": { diff --git a/docs/demos/examples/duckdb/real_time_record_linkage.ipynb b/docs/demos/examples/duckdb/real_time_record_linkage.ipynb index 516b5a045b..63bbe23d56 100644 --- a/docs/demos/examples/duckdb/real_time_record_linkage.ipynb +++ b/docs/demos/examples/duckdb/real_time_record_linkage.ipynb @@ -1,2488 +1,2488 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Real time linkage\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically:\n", - "\n", - "- the `linker.compare_two_records` function, that allows you to interactively explore the results of a linkage model; and\n", - "- the `linker.find_matches_to_new_records` that allows you to incrementally find matches to a small number of new records\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \"Open\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:11.870063Z", - "iopub.status.busy": "2024-03-27T15:15:11.869757Z", - "iopub.status.idle": "2024-03-27T15:15:11.890661Z", - "shell.execute_reply": "2024-03-27T15:15:11.889929Z" - } - }, - "source": [ - "# Uncomment and run this cell if you're running in Google Colab.\n", - "# !pip install ipywidgets\n", - "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", - "# !jupyter nbextension enable --py widgetsnbextension" - ], - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 1: Load a pre-trained linkage model\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:11.894528Z", - "iopub.status.busy": "2024-03-27T15:15:11.894247Z", - "iopub.status.idle": "2024-03-27T15:15:13.841789Z", - "shell.execute_reply": "2024-03-27T15:15:13.841226Z" - } - }, - "source": [ - "import urllib.request\n", - "import json\n", - "from pathlib import Path\n", - "from splink import Linker, DuckDBAPI, block_on, SettingsCreator, splink_datasets\n", - "\n", - "df = splink_datasets.fake_1000\n", - "\n", - "url = \"https://raw.githubusercontent.com/moj-analytical-services/splink_demos/master/demo_settings/real_time_settings.json\"\n", - "\n", - "with urllib.request.urlopen(url) as u:\n", - " settings = json.loads(u.read().decode())\n", - "\n", - "\n", - "linker = Linker(df, settings, database_api=DuckDBAPI())" - ], - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:13.845679Z", - "iopub.status.busy": "2024-03-27T15:15:13.845274Z", - "iopub.status.idle": "2024-03-27T15:15:14.721033Z", - "shell.execute_reply": "2024-03-27T15:15:14.720417Z" - } - }, - "source": [ - "linker.waterfall_chart(linker.predict().as_record_dict(limit=2))" - ], - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step Comparing two records\n", - "\n", - "It's now possible to compute a match weight for any two records using `linker.compare_two_records()`\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:14.724585Z", - "iopub.status.busy": "2024-03-27T15:15:14.724327Z", - "iopub.status.idle": "2024-03-27T15:15:14.962647Z", - "shell.execute_reply": "2024-03-27T15:15:14.961740Z" - } - }, - "source": [ - "record_1 = {\n", - " \"unique_id\": 1,\n", - " \"first_name\": \"Lucas\",\n", - " \"surname\": \"Smith\",\n", - " \"dob\": \"1984-01-02\",\n", - " \"city\": \"London\",\n", - " \"email\": \"lucas.smith@hotmail.com\",\n", - "}\n", - "\n", - "record_2 = {\n", - " \"unique_id\": 2,\n", - " \"first_name\": \"Lucas\",\n", - " \"surname\": \"Smith\",\n", - " \"dob\": \"1983-02-12\",\n", - " \"city\": \"Machester\",\n", - " \"email\": \"lucas.smith@hotmail.com\",\n", - "}\n", - "\n", - "linker._settings_obj._retain_intermediate_calculation_columns = True\n", - "\n", - "\n", - "\n", - "# To `compare_two_records` the linker needs to compute term frequency tables\n", - "# If you have precomputed tables, you can linker.register_term_frequency_lookup()\n", - "linker.compute_tf_table(\"first_name\")\n", - "linker.compute_tf_table(\"surname\")\n", - "linker.compute_tf_table(\"dob\")\n", - "linker.compute_tf_table(\"city\")\n", - "linker.compute_tf_table(\"email\")\n", - "\n", - "\n", - "df_two = linker.compare_two_records(record_1, record_2)\n", - "df_two.as_pandas_dataframe()" - ], - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 3: Interactive comparisons\n", - "\n", - "One interesting applicatin of `compare_two_records` is to create a simple interface that allows the user to input two records interactively, and get real time feedback.\n", - "\n", - "In the following cell we use `ipywidets` for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:14.968237Z", - "iopub.status.busy": "2024-03-27T15:15:14.967899Z", - "iopub.status.idle": "2024-03-27T15:15:15.926984Z", - "shell.execute_reply": "2024-03-27T15:15:15.925656Z" - } - }, - "source": [ - "import ipywidgets as widgets\n", - "from IPython.display import display\n", - "\n", - "\n", - "fields = [\"unique_id\", \"first_name\", \"surname\", \"dob\", \"email\", \"city\"]\n", - "\n", - "left_text_boxes = []\n", - "right_text_boxes = []\n", - "\n", - "inputs_to_interactive_output = {}\n", - "\n", - "for f in fields:\n", - " wl = widgets.Text(description=f, value=str(record_1[f]))\n", - " left_text_boxes.append(wl)\n", - " inputs_to_interactive_output[f\"{f}_l\"] = wl\n", - " wr = widgets.Text(description=f, value=str(record_2[f]))\n", - " right_text_boxes.append(wr)\n", - " inputs_to_interactive_output[f\"{f}_r\"] = wr\n", - "\n", - "b1 = widgets.VBox(left_text_boxes)\n", - "b2 = widgets.VBox(right_text_boxes)\n", - "ui = widgets.HBox([b1, b2])\n", - "\n", - "\n", - "def myfn(**kwargs):\n", - " my_args = dict(kwargs)\n", - "\n", - " record_left = {}\n", - " record_right = {}\n", - "\n", - " for key, value in my_args.items():\n", - " if value == \"\":\n", - " value = None\n", - " if key.endswith(\"_l\"):\n", - " record_left[key[:-2]] = value\n", - " elif key.endswith(\"_r\"):\n", - " record_right[key[:-2]] = value\n", - "\n", - " # Assuming 'linker' is defined earlier in your code\n", - " linker._settings_obj._retain_intermediate_calculation_columns = True\n", - "\n", - " df_two = linker.compare_two_records(record_left, record_right)\n", - "\n", - " recs = df_two.as_pandas_dataframe().to_dict(orient=\"records\")\n", - " from splink.charts import waterfall_chart\n", - "\n", - " display(linker.waterfall_chart(recs, filter_nulls=False))\n", - "\n", - "\n", - "out = widgets.interactive_output(myfn, inputs_to_interactive_output)\n", - "\n", - "display(ui, out)" - ], - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Finding matching records interactively\n", - "\n", - "It is also possible to search the records in the input dataset rapidly using the `linker.find_matches_to_new_records()` function\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:15.937800Z", - "iopub.status.busy": "2024-03-27T15:15:15.935943Z", - "iopub.status.idle": "2024-03-27T15:15:16.477834Z", - "shell.execute_reply": "2024-03-27T15:15:16.474896Z" - } - }, - "source": [ - "record = {\n", - " \"unique_id\": 123987,\n", - " \"first_name\": \"Robert\",\n", - " \"surname\": \"Alan\",\n", - " \"dob\": \"1971-05-24\",\n", - " \"city\": \"London\",\n", - " \"email\": \"robert255@smith.net\",\n", - "}\n", - "\n", - "\n", - "df_inc = linker.find_matches_to_new_records(\n", - " [record], blocking_rules=[]\n", - ").as_pandas_dataframe()\n", - "df_inc.sort_values(\"match_weight\", ascending=False)" - ], - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interactive interface for finding records\n", - "\n", - "Again, we can use `ipywidgets` to build an interactive interface for the `linker.find_matches_to_new_records` function\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:16.486337Z", - "iopub.status.busy": "2024-03-27T15:15:16.484941Z", - "iopub.status.idle": "2024-03-27T15:15:17.549243Z", - "shell.execute_reply": "2024-03-27T15:15:17.548423Z" - } - }, - "source": [ - "@widgets.interact(\n", - " first_name=\"Robert\",\n", - " surname=\"Alan\",\n", - " dob=\"1971-05-24\",\n", - " city=\"London\",\n", - " email=\"robert255@smith.net\",\n", - ")\n", - "def interactive_link(first_name, surname, dob, city, email):\n", - "\n", - " record = {\n", - " \"unique_id\": 123987,\n", - " \"first_name\": first_name,\n", - " \"surname\": surname,\n", - " \"dob\": dob,\n", - " \"city\": city,\n", - " \"email\": email,\n", - " \"group\": 0,\n", - " }\n", - "\n", - " for key in record.keys():\n", - " if type(record[key]) == str:\n", - " if record[key].strip() == \"\":\n", - " record[key] = None\n", - "\n", - " df_inc = linker.find_matches_to_new_records(\n", - " [record], blocking_rules=[f\"(true)\"]\n", - " ).as_pandas_dataframe()\n", - " df_inc = df_inc.sort_values(\"match_weight\", ascending=False)\n", - " recs = df_inc.to_dict(orient=\"records\")\n", - "\n", - " display(linker.waterfall_chart(recs, filter_nulls=False))" - ], - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-27T15:15:17.555875Z", - "iopub.status.busy": "2024-03-27T15:15:17.555576Z", - "iopub.status.idle": "2024-03-27T15:15:17.884897Z", - "shell.execute_reply": "2024-03-27T15:15:17.884033Z" - } - }, - "source": [ - "linker.match_weights_chart()" - ], - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "04ba5b27fff046cdbcff86aeb938daf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "first_name", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_5d4a7365a34746fe9ed2319c19ad0d58", - "placeholder": "​", - "style": "IPY_MODEL_2fe5902f30274f95a26e4c0897b2a011", - "tabbable": null, - "tooltip": null, - "value": "Lucas" - } - }, - "086fdaefbddf4915be8385c98d46c358": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "unique_id", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_658f48614d3d4c63bbdc946d44b9f734", - "placeholder": "​", - "style": "IPY_MODEL_80683606961c4187965cc00e4944fbe1", - "tabbable": null, - "tooltip": null, - "value": "2" - } - }, - "0908dba9a7fa4e22b818b1bb31bd415a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11bbe083b862406d814c35e47d773ade": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1b024ddb36284e4b85b5054092f531bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1fa9c4a8c62846f591a1fb4e4d91d3ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "dob", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_cb0b167a052745fd9204729f961b7ad6", - "placeholder": "​", - "style": "IPY_MODEL_ca1c754b37a640a69908cb2b34cb7b3c", - "tabbable": null, - "tooltip": null, - "value": "1984-01-02" - } - }, - "2191036959a444558a7e6663f51f60d4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "21ae049d073b458b902a65f9d4b1e0f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_968249064f3446ee806ef5e750085fe4", - "IPY_MODEL_272d325448674ae4882758a7af3d6354" - ], - "layout": "IPY_MODEL_ecb562219597492fae7b4bf881ea113f", - "tabbable": null, - "tooltip": null - } - }, - "23d4adc30abf4b8c845e3a22a7929ada": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "24f94cd7e9f84e2098d97f75d6f01a8d": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_f3de223015854925895cbd794a7ee8c2", - "msg_id": "", - "outputs": [ - { - "data": { - "text/html": "\n\n
\n", - "text/plain": "alt.LayerChart(...)" - }, - "metadata": {}, - "output_type": "display_data" + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Real time linkage\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically:\n", + "\n", + "- the `linker.compare_two_records` function, that allows you to interactively explore the results of a linkage model; and\n", + "- the `linker.find_matches_to_new_records` that allows you to incrementally find matches to a small number of new records\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + " \"Open\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:11.870063Z", + "iopub.status.busy": "2024-03-27T15:15:11.869757Z", + "iopub.status.idle": "2024-03-27T15:15:11.890661Z", + "shell.execute_reply": "2024-03-27T15:15:11.889929Z" } - ], - "tabbable": null, - "tooltip": null - } - }, - "250e8abe119446478ca7513778aed39a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "272d325448674ae4882758a7af3d6354": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "VBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "VBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_086fdaefbddf4915be8385c98d46c358", - "IPY_MODEL_04ba5b27fff046cdbcff86aeb938daf6", - "IPY_MODEL_3ce34f18f65c440f94f803b75b882788", - "IPY_MODEL_4c51a67113a44ddfaff9108a85c37ec9", - "IPY_MODEL_42f888b0586648a3b2cfc3394f083e26", - "IPY_MODEL_c651dbf1a60b4f219d31355ec3d9d1cd" - ], - "layout": "IPY_MODEL_ffdf7e9a14d04f6b9a448df89e8ffbec", - "tabbable": null, - "tooltip": null - } - }, - "27e26efe54ab4971bbc5da3a355071b4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2a595765a0184d0db511726d83d67110": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2fe5902f30274f95a26e4c0897b2a011": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "329729744d0c4e839c0503ab0259b18c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "email", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_c71b8b6aa86343a7b0093f15313677f7", - "placeholder": "​", - "style": "IPY_MODEL_8456ddacbc5542c2a9d668d042a6abe6", - "tabbable": null, - "tooltip": null, - "value": "lucas.smith@hotmail.com" - } - }, - "3b9b6f02a8f7491585ed99976548eb03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "_dom_classes": [ - "widget-interact" - ], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "VBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "VBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73f2384489da4b748209c462724a3961", - "IPY_MODEL_d27918510cb3494c930c545563fed3ca", - "IPY_MODEL_b571fbb3f6a14611974779e927914d23", - "IPY_MODEL_cc0ddc91bbfb4c6d891c202e279d4c74", - "IPY_MODEL_b50d412867114f2eb000fc969b677c9c", - "IPY_MODEL_24f94cd7e9f84e2098d97f75d6f01a8d" - ], - "layout": "IPY_MODEL_43db6d5bd49c46da8203977961927fed", - "tabbable": null, - "tooltip": null - } - }, - "3ce34f18f65c440f94f803b75b882788": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "surname", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_de296f36c45e4161a6c3d091dfea2892", - "placeholder": "​", - "style": "IPY_MODEL_a2c309f444944797824589147aede89d", - "tabbable": null, - "tooltip": null, - "value": "Smith" - } - }, - "3e98708a97934bb095b2be73187fcec0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "42f888b0586648a3b2cfc3394f083e26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "email", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_2191036959a444558a7e6663f51f60d4", - "placeholder": "​", - "style": "IPY_MODEL_0908dba9a7fa4e22b818b1bb31bd415a", - "tabbable": null, - "tooltip": null, - "value": "lucas.smith@hotmail.com" - } - }, - "43db6d5bd49c46da8203977961927fed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "440256de4ff2405e95431f2fd9490436": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4baf8bf6cf784f5ca98feee93978b3af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c51a67113a44ddfaff9108a85c37ec9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "dob", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_27e26efe54ab4971bbc5da3a355071b4", - "placeholder": "​", - "style": "IPY_MODEL_7c52d046223c4607b35759a148cc8515", - "tabbable": null, - "tooltip": null, - "value": "1983-02-12" - } - }, - "4ccb8090b4a549829a1ac4a82a39ceac": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_2a595765a0184d0db511726d83d67110", - "msg_id": "", - "outputs": [ - { - "data": { - "text/html": "\n\n
\n", - "text/plain": "alt.LayerChart(...)" - }, - "metadata": {}, - "output_type": "display_data" + }, + "outputs": [], + "source": [ + "# Uncomment and run this cell if you're running in Google Colab.\n", + "# !pip install ipywidgets\n", + "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", + "# !jupyter nbextension enable --py widgetsnbextension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 1: Load a pre-trained linkage model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:11.894528Z", + "iopub.status.busy": "2024-03-27T15:15:11.894247Z", + "iopub.status.idle": "2024-03-27T15:15:13.841789Z", + "shell.execute_reply": "2024-03-27T15:15:13.841226Z" } - ], - "tabbable": null, - "tooltip": null - } - }, - "4f0444bd007f4fb1a2e35bd299cf1989": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f4d5437f9574de4a3b98769f2f94d13": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5831fd1d9a4a4699a1ac8b3f35c67bc3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5d4a7365a34746fe9ed2319c19ad0d58": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "658f48614d3d4c63bbdc946d44b9f734": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "68972985dae04505b33533980fc0b970": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "71ef6ceee3034d95a7a718dda4457629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "first_name", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_4baf8bf6cf784f5ca98feee93978b3af", - "placeholder": "​", - "style": "IPY_MODEL_9fc84fac4de14d3abe25a8eeb06fadea", - "tabbable": null, - "tooltip": null, - "value": "Lucas" - } - }, - "73f2384489da4b748209c462724a3961": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "first_name", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_773e45ebabda4dc0aafd521d3aa3e6a8", - "placeholder": "​", - "style": "IPY_MODEL_c8a47b61ac8e41c3b0c85fbbf31a4c24", - "tabbable": null, - "tooltip": null, - "value": "Robert" - } - }, - "773e45ebabda4dc0aafd521d3aa3e6a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7c52d046223c4607b35759a148cc8515": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "80683606961c4187965cc00e4944fbe1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8456ddacbc5542c2a9d668d042a6abe6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "968249064f3446ee806ef5e750085fe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "VBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "VBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7d7652b464b413283dd5a057dd68aaf", - "IPY_MODEL_71ef6ceee3034d95a7a718dda4457629", - "IPY_MODEL_c1d56f96db3a492b88776c47754d6cf1", - "IPY_MODEL_1fa9c4a8c62846f591a1fb4e4d91d3ed", - "IPY_MODEL_329729744d0c4e839c0503ab0259b18c", - "IPY_MODEL_e9b46eb9fbcb4aa8a569749fa50fcff3" - ], - "layout": "IPY_MODEL_e3c8bdbb08184f979824e4993cec1f63", - "tabbable": null, - "tooltip": null - } - }, - "9fc84fac4de14d3abe25a8eeb06fadea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2c309f444944797824589147aede89d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa3e943234ac46ca8d4530ab22443b0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ab457eac76f942508d6f75ff109bbd61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b50d412867114f2eb000fc969b677c9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "email", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_440256de4ff2405e95431f2fd9490436", - "placeholder": "​", - "style": "IPY_MODEL_aa3e943234ac46ca8d4530ab22443b0e", - "tabbable": null, - "tooltip": null, - "value": "robert255@smith.net" - } - }, - "b571fbb3f6a14611974779e927914d23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "dob", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_3e98708a97934bb095b2be73187fcec0", - "placeholder": "​", - "style": "IPY_MODEL_fdd25b8bb828465e83f7a3c452ccbfc1", - "tabbable": null, - "tooltip": null, - "value": "1971-05-24" - } - }, - "b7e0ec811eba4e59804eca1852402423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c1d56f96db3a492b88776c47754d6cf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "surname", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_68972985dae04505b33533980fc0b970", - "placeholder": "​", - "style": "IPY_MODEL_11bbe083b862406d814c35e47d773ade", - "tabbable": null, - "tooltip": null, - "value": "Smith" - } - }, - "c2e6efd78b2148f3a026c6179fdbf683": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c651dbf1a60b4f219d31355ec3d9d1cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "city", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_5831fd1d9a4a4699a1ac8b3f35c67bc3", - "placeholder": "​", - "style": "IPY_MODEL_b7e0ec811eba4e59804eca1852402423", - "tabbable": null, - "tooltip": null, - "value": "Machester" - } - }, - "c71b8b6aa86343a7b0093f15313677f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c8a47b61ac8e41c3b0c85fbbf31a4c24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ca1c754b37a640a69908cb2b34cb7b3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cb0b167a052745fd9204729f961b7ad6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc0ddc91bbfb4c6d891c202e279d4c74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "city", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_e460aba5b4c34695a30ea7008b5b7cfd", - "placeholder": "​", - "style": "IPY_MODEL_ab457eac76f942508d6f75ff109bbd61", - "tabbable": null, - "tooltip": null, - "value": "London" - } - }, - "d27918510cb3494c930c545563fed3ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "surname", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_23d4adc30abf4b8c845e3a22a7929ada", - "placeholder": "​", - "style": "IPY_MODEL_c2e6efd78b2148f3a026c6179fdbf683", - "tabbable": null, - "tooltip": null, - "value": "Alan" - } - }, - "de296f36c45e4161a6c3d091dfea2892": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e3c8bdbb08184f979824e4993cec1f63": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e460aba5b4c34695a30ea7008b5b7cfd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e7d7652b464b413283dd5a057dd68aaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "unique_id", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_4f4d5437f9574de4a3b98769f2f94d13", - "placeholder": "​", - "style": "IPY_MODEL_1b024ddb36284e4b85b5054092f531bc", - "tabbable": null, - "tooltip": null, - "value": "1" - } - }, - "e9b46eb9fbcb4aa8a569749fa50fcff3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "TextView", - "continuous_update": true, - "description": "city", - "description_allow_html": false, - "disabled": false, - "layout": "IPY_MODEL_250e8abe119446478ca7513778aed39a", - "placeholder": "​", - "style": "IPY_MODEL_4f0444bd007f4fb1a2e35bd299cf1989", - "tabbable": null, - "tooltip": null, - "value": "London" - } - }, - "ecb562219597492fae7b4bf881ea113f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f3de223015854925895cbd794a7ee8c2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fdd25b8bb828465e83f7a3c452ccbfc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "TextStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ffdf7e9a14d04f6b9a448df89e8ffbec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } + }, + "outputs": [], + "source": [ + "import urllib.request\n", + "import json\n", + "from pathlib import Path\n", + "from splink import Linker, DuckDBAPI, block_on, SettingsCreator, splink_datasets\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "url = \"https://raw.githubusercontent.com/moj-analytical-services/splink_demos/master/demo_settings/real_time_settings.json\"\n", + "\n", + "with urllib.request.urlopen(url) as u:\n", + " settings = json.loads(u.read().decode())\n", + "\n", + "\n", + "linker = Linker(df, settings, database_api=DuckDBAPI())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:13.845679Z", + "iopub.status.busy": "2024-03-27T15:15:13.845274Z", + "iopub.status.idle": "2024-03-27T15:15:14.721033Z", + "shell.execute_reply": "2024-03-27T15:15:14.720417Z" + } + }, + "outputs": [], + "source": [ + "linker.visualisations.waterfall_chart(linker.inference.predict().as_record_dict(limit=2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step Comparing two records\n", + "\n", + "It's now possible to compute a match weight for any two records using `linker.compare_two_records()`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:14.724585Z", + "iopub.status.busy": "2024-03-27T15:15:14.724327Z", + "iopub.status.idle": "2024-03-27T15:15:14.962647Z", + "shell.execute_reply": "2024-03-27T15:15:14.961740Z" + } + }, + "outputs": [], + "source": [ + "record_1 = {\n", + " \"unique_id\": 1,\n", + " \"first_name\": \"Lucas\",\n", + " \"surname\": \"Smith\",\n", + " \"dob\": \"1984-01-02\",\n", + " \"city\": \"London\",\n", + " \"email\": \"lucas.smith@hotmail.com\",\n", + "}\n", + "\n", + "record_2 = {\n", + " \"unique_id\": 2,\n", + " \"first_name\": \"Lucas\",\n", + " \"surname\": \"Smith\",\n", + " \"dob\": \"1983-02-12\",\n", + " \"city\": \"Machester\",\n", + " \"email\": \"lucas.smith@hotmail.com\",\n", + "}\n", + "\n", + "linker._settings_obj._retain_intermediate_calculation_columns = True\n", + "\n", + "\n", + "\n", + "# To `compare_two_records` the linker needs to compute term frequency tables\n", + "# If you have precomputed tables, you can linker.register_term_frequency_lookup()\n", + "linker.table_management.compute_tf_table(\"first_name\")\n", + "linker.table_management.compute_tf_table(\"surname\")\n", + "linker.table_management.compute_tf_table(\"dob\")\n", + "linker.table_management.compute_tf_table(\"city\")\n", + "linker.table_management.compute_tf_table(\"email\")\n", + "\n", + "\n", + "df_two = linker.inference.compare_two_records(record_1, record_2)\n", + "df_two.as_pandas_dataframe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Interactive comparisons\n", + "\n", + "One interesting applicatin of `compare_two_records` is to create a simple interface that allows the user to input two records interactively, and get real time feedback.\n", + "\n", + "In the following cell we use `ipywidets` for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:14.968237Z", + "iopub.status.busy": "2024-03-27T15:15:14.967899Z", + "iopub.status.idle": "2024-03-27T15:15:15.926984Z", + "shell.execute_reply": "2024-03-27T15:15:15.925656Z" + } + }, + "outputs": [], + "source": [ + "import ipywidgets as widgets\n", + "from IPython.display import display\n", + "\n", + "\n", + "fields = [\"unique_id\", \"first_name\", \"surname\", \"dob\", \"email\", \"city\"]\n", + "\n", + "left_text_boxes = []\n", + "right_text_boxes = []\n", + "\n", + "inputs_to_interactive_output = {}\n", + "\n", + "for f in fields:\n", + " wl = widgets.Text(description=f, value=str(record_1[f]))\n", + " left_text_boxes.append(wl)\n", + " inputs_to_interactive_output[f\"{f}_l\"] = wl\n", + " wr = widgets.Text(description=f, value=str(record_2[f]))\n", + " right_text_boxes.append(wr)\n", + " inputs_to_interactive_output[f\"{f}_r\"] = wr\n", + "\n", + "b1 = widgets.VBox(left_text_boxes)\n", + "b2 = widgets.VBox(right_text_boxes)\n", + "ui = widgets.HBox([b1, b2])\n", + "\n", + "\n", + "def myfn(**kwargs):\n", + " my_args = dict(kwargs)\n", + "\n", + " record_left = {}\n", + " record_right = {}\n", + "\n", + " for key, value in my_args.items():\n", + " if value == \"\":\n", + " value = None\n", + " if key.endswith(\"_l\"):\n", + " record_left[key[:-2]] = value\n", + " elif key.endswith(\"_r\"):\n", + " record_right[key[:-2]] = value\n", + "\n", + " # Assuming 'linker' is defined earlier in your code\n", + " linker._settings_obj._retain_intermediate_calculation_columns = True\n", + "\n", + " df_two = linker.inference.compare_two_records(record_left, record_right)\n", + "\n", + " recs = df_two.as_pandas_dataframe().to_dict(orient=\"records\")\n", + " from splink.charts import waterfall_chart\n", + "\n", + " display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))\n", + "\n", + "\n", + "out = widgets.interactive_output(myfn, inputs_to_interactive_output)\n", + "\n", + "display(ui, out)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Finding matching records interactively\n", + "\n", + "It is also possible to search the records in the input dataset rapidly using the `linker.find_matches_to_new_records()` function\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:15.937800Z", + "iopub.status.busy": "2024-03-27T15:15:15.935943Z", + "iopub.status.idle": "2024-03-27T15:15:16.477834Z", + "shell.execute_reply": "2024-03-27T15:15:16.474896Z" + } + }, + "outputs": [], + "source": [ + "record = {\n", + " \"unique_id\": 123987,\n", + " \"first_name\": \"Robert\",\n", + " \"surname\": \"Alan\",\n", + " \"dob\": \"1971-05-24\",\n", + " \"city\": \"London\",\n", + " \"email\": \"robert255@smith.net\",\n", + "}\n", + "\n", + "\n", + "df_inc = linker.inference.find_matches_to_new_records(\n", + " [record], blocking_rules=[]\n", + ").as_pandas_dataframe()\n", + "df_inc.sort_values(\"match_weight\", ascending=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interactive interface for finding records\n", + "\n", + "Again, we can use `ipywidgets` to build an interactive interface for the `linker.find_matches_to_new_records` function\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:16.486337Z", + "iopub.status.busy": "2024-03-27T15:15:16.484941Z", + "iopub.status.idle": "2024-03-27T15:15:17.549243Z", + "shell.execute_reply": "2024-03-27T15:15:17.548423Z" + } + }, + "outputs": [], + "source": [ + "@widgets.interact(\n", + " first_name=\"Robert\",\n", + " surname=\"Alan\",\n", + " dob=\"1971-05-24\",\n", + " city=\"London\",\n", + " email=\"robert255@smith.net\",\n", + ")\n", + "def interactive_link(first_name, surname, dob, city, email):\n", + "\n", + " record = {\n", + " \"unique_id\": 123987,\n", + " \"first_name\": first_name,\n", + " \"surname\": surname,\n", + " \"dob\": dob,\n", + " \"city\": city,\n", + " \"email\": email,\n", + " \"group\": 0,\n", + " }\n", + "\n", + " for key in record.keys():\n", + " if type(record[key]) == str:\n", + " if record[key].strip() == \"\":\n", + " record[key] = None\n", + "\n", + " df_inc = linker.inference.find_matches_to_new_records(\n", + " [record], blocking_rules=[f\"(true)\"]\n", + " ).as_pandas_dataframe()\n", + " df_inc = df_inc.sort_values(\"match_weight\", ascending=False)\n", + " recs = df_inc.to_dict(orient=\"records\")\n", + "\n", + " display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))" + ] }, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-27T15:15:17.555875Z", + "iopub.status.busy": "2024-03-27T15:15:17.555576Z", + "iopub.status.idle": "2024-03-27T15:15:17.884897Z", + "shell.execute_reply": "2024-03-27T15:15:17.884033Z" + } + }, + "outputs": [], + "source": [ + "linker.visualisations.match_weights_chart()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "04ba5b27fff046cdbcff86aeb938daf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "first_name", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_5d4a7365a34746fe9ed2319c19ad0d58", + "placeholder": "​", + "style": "IPY_MODEL_2fe5902f30274f95a26e4c0897b2a011", + "tabbable": null, + "tooltip": null, + "value": "Lucas" + } + }, + "086fdaefbddf4915be8385c98d46c358": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "unique_id", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_658f48614d3d4c63bbdc946d44b9f734", + "placeholder": "​", + "style": "IPY_MODEL_80683606961c4187965cc00e4944fbe1", + "tabbable": null, + "tooltip": null, + "value": "2" + } + }, + "0908dba9a7fa4e22b818b1bb31bd415a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11bbe083b862406d814c35e47d773ade": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b024ddb36284e4b85b5054092f531bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1fa9c4a8c62846f591a1fb4e4d91d3ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "dob", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_cb0b167a052745fd9204729f961b7ad6", + "placeholder": "​", + "style": "IPY_MODEL_ca1c754b37a640a69908cb2b34cb7b3c", + "tabbable": null, + "tooltip": null, + "value": "1984-01-02" + } + }, + "2191036959a444558a7e6663f51f60d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21ae049d073b458b902a65f9d4b1e0f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_968249064f3446ee806ef5e750085fe4", + "IPY_MODEL_272d325448674ae4882758a7af3d6354" + ], + "layout": "IPY_MODEL_ecb562219597492fae7b4bf881ea113f", + "tabbable": null, + "tooltip": null + } + }, + "23d4adc30abf4b8c845e3a22a7929ada": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24f94cd7e9f84e2098d97f75d6f01a8d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f3de223015854925895cbd794a7ee8c2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "\n\n
\n", + "text/plain": "alt.LayerChart(...)" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "250e8abe119446478ca7513778aed39a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "272d325448674ae4882758a7af3d6354": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_086fdaefbddf4915be8385c98d46c358", + "IPY_MODEL_04ba5b27fff046cdbcff86aeb938daf6", + "IPY_MODEL_3ce34f18f65c440f94f803b75b882788", + "IPY_MODEL_4c51a67113a44ddfaff9108a85c37ec9", + "IPY_MODEL_42f888b0586648a3b2cfc3394f083e26", + "IPY_MODEL_c651dbf1a60b4f219d31355ec3d9d1cd" + ], + "layout": "IPY_MODEL_ffdf7e9a14d04f6b9a448df89e8ffbec", + "tabbable": null, + "tooltip": null + } + }, + "27e26efe54ab4971bbc5da3a355071b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a595765a0184d0db511726d83d67110": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fe5902f30274f95a26e4c0897b2a011": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "329729744d0c4e839c0503ab0259b18c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "email", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_c71b8b6aa86343a7b0093f15313677f7", + "placeholder": "​", + "style": "IPY_MODEL_8456ddacbc5542c2a9d668d042a6abe6", + "tabbable": null, + "tooltip": null, + "value": "lucas.smith@hotmail.com" + } + }, + "3b9b6f02a8f7491585ed99976548eb03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "_dom_classes": [ + "widget-interact" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73f2384489da4b748209c462724a3961", + "IPY_MODEL_d27918510cb3494c930c545563fed3ca", + "IPY_MODEL_b571fbb3f6a14611974779e927914d23", + "IPY_MODEL_cc0ddc91bbfb4c6d891c202e279d4c74", + "IPY_MODEL_b50d412867114f2eb000fc969b677c9c", + "IPY_MODEL_24f94cd7e9f84e2098d97f75d6f01a8d" + ], + "layout": "IPY_MODEL_43db6d5bd49c46da8203977961927fed", + "tabbable": null, + "tooltip": null + } + }, + "3ce34f18f65c440f94f803b75b882788": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "surname", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_de296f36c45e4161a6c3d091dfea2892", + "placeholder": "​", + "style": "IPY_MODEL_a2c309f444944797824589147aede89d", + "tabbable": null, + "tooltip": null, + "value": "Smith" + } + }, + "3e98708a97934bb095b2be73187fcec0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42f888b0586648a3b2cfc3394f083e26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "email", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_2191036959a444558a7e6663f51f60d4", + "placeholder": "​", + "style": "IPY_MODEL_0908dba9a7fa4e22b818b1bb31bd415a", + "tabbable": null, + "tooltip": null, + "value": "lucas.smith@hotmail.com" + } + }, + "43db6d5bd49c46da8203977961927fed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "440256de4ff2405e95431f2fd9490436": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4baf8bf6cf784f5ca98feee93978b3af": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c51a67113a44ddfaff9108a85c37ec9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "dob", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_27e26efe54ab4971bbc5da3a355071b4", + "placeholder": "​", + "style": "IPY_MODEL_7c52d046223c4607b35759a148cc8515", + "tabbable": null, + "tooltip": null, + "value": "1983-02-12" + } + }, + "4ccb8090b4a549829a1ac4a82a39ceac": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2a595765a0184d0db511726d83d67110", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "\n\n
\n", + "text/plain": "alt.LayerChart(...)" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "4f0444bd007f4fb1a2e35bd299cf1989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f4d5437f9574de4a3b98769f2f94d13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5831fd1d9a4a4699a1ac8b3f35c67bc3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d4a7365a34746fe9ed2319c19ad0d58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "658f48614d3d4c63bbdc946d44b9f734": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68972985dae04505b33533980fc0b970": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71ef6ceee3034d95a7a718dda4457629": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "first_name", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_4baf8bf6cf784f5ca98feee93978b3af", + "placeholder": "​", + "style": "IPY_MODEL_9fc84fac4de14d3abe25a8eeb06fadea", + "tabbable": null, + "tooltip": null, + "value": "Lucas" + } + }, + "73f2384489da4b748209c462724a3961": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "first_name", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_773e45ebabda4dc0aafd521d3aa3e6a8", + "placeholder": "​", + "style": "IPY_MODEL_c8a47b61ac8e41c3b0c85fbbf31a4c24", + "tabbable": null, + "tooltip": null, + "value": "Robert" + } + }, + "773e45ebabda4dc0aafd521d3aa3e6a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c52d046223c4607b35759a148cc8515": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80683606961c4187965cc00e4944fbe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8456ddacbc5542c2a9d668d042a6abe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "968249064f3446ee806ef5e750085fe4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e7d7652b464b413283dd5a057dd68aaf", + "IPY_MODEL_71ef6ceee3034d95a7a718dda4457629", + "IPY_MODEL_c1d56f96db3a492b88776c47754d6cf1", + "IPY_MODEL_1fa9c4a8c62846f591a1fb4e4d91d3ed", + "IPY_MODEL_329729744d0c4e839c0503ab0259b18c", + "IPY_MODEL_e9b46eb9fbcb4aa8a569749fa50fcff3" + ], + "layout": "IPY_MODEL_e3c8bdbb08184f979824e4993cec1f63", + "tabbable": null, + "tooltip": null + } + }, + "9fc84fac4de14d3abe25a8eeb06fadea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2c309f444944797824589147aede89d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa3e943234ac46ca8d4530ab22443b0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab457eac76f942508d6f75ff109bbd61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b50d412867114f2eb000fc969b677c9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "email", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_440256de4ff2405e95431f2fd9490436", + "placeholder": "​", + "style": "IPY_MODEL_aa3e943234ac46ca8d4530ab22443b0e", + "tabbable": null, + "tooltip": null, + "value": "robert255@smith.net" + } + }, + "b571fbb3f6a14611974779e927914d23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "dob", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_3e98708a97934bb095b2be73187fcec0", + "placeholder": "​", + "style": "IPY_MODEL_fdd25b8bb828465e83f7a3c452ccbfc1", + "tabbable": null, + "tooltip": null, + "value": "1971-05-24" + } + }, + "b7e0ec811eba4e59804eca1852402423": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c1d56f96db3a492b88776c47754d6cf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "surname", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_68972985dae04505b33533980fc0b970", + "placeholder": "​", + "style": "IPY_MODEL_11bbe083b862406d814c35e47d773ade", + "tabbable": null, + "tooltip": null, + "value": "Smith" + } + }, + "c2e6efd78b2148f3a026c6179fdbf683": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c651dbf1a60b4f219d31355ec3d9d1cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "city", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_5831fd1d9a4a4699a1ac8b3f35c67bc3", + "placeholder": "​", + "style": "IPY_MODEL_b7e0ec811eba4e59804eca1852402423", + "tabbable": null, + "tooltip": null, + "value": "Machester" + } + }, + "c71b8b6aa86343a7b0093f15313677f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8a47b61ac8e41c3b0c85fbbf31a4c24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ca1c754b37a640a69908cb2b34cb7b3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cb0b167a052745fd9204729f961b7ad6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc0ddc91bbfb4c6d891c202e279d4c74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "city", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_e460aba5b4c34695a30ea7008b5b7cfd", + "placeholder": "​", + "style": "IPY_MODEL_ab457eac76f942508d6f75ff109bbd61", + "tabbable": null, + "tooltip": null, + "value": "London" + } + }, + "d27918510cb3494c930c545563fed3ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "surname", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_23d4adc30abf4b8c845e3a22a7929ada", + "placeholder": "​", + "style": "IPY_MODEL_c2e6efd78b2148f3a026c6179fdbf683", + "tabbable": null, + "tooltip": null, + "value": "Alan" + } + }, + "de296f36c45e4161a6c3d091dfea2892": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e3c8bdbb08184f979824e4993cec1f63": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e460aba5b4c34695a30ea7008b5b7cfd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e7d7652b464b413283dd5a057dd68aaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "unique_id", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_4f4d5437f9574de4a3b98769f2f94d13", + "placeholder": "​", + "style": "IPY_MODEL_1b024ddb36284e4b85b5054092f531bc", + "tabbable": null, + "tooltip": null, + "value": "1" + } + }, + "e9b46eb9fbcb4aa8a569749fa50fcff3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TextView", + "continuous_update": true, + "description": "city", + "description_allow_html": false, + "disabled": false, + "layout": "IPY_MODEL_250e8abe119446478ca7513778aed39a", + "placeholder": "​", + "style": "IPY_MODEL_4f0444bd007f4fb1a2e35bd299cf1989", + "tabbable": null, + "tooltip": null, + "value": "London" + } + }, + "ecb562219597492fae7b4bf881ea113f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3de223015854925895cbd794a7ee8c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fdd25b8bb828465e83f7a3c452ccbfc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TextStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TextStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ffdf7e9a14d04f6b9a448df89e8ffbec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/demos/examples/duckdb/transactions.ipynb b/docs/demos/examples/duckdb/transactions.ipynb index 243d162827..472e477116 100644 --- a/docs/demos/examples/duckdb/transactions.ipynb +++ b/docs/demos/examples/duckdb/transactions.ipynb @@ -32,29 +32,483 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:14.252200Z", - "iopub.status.busy": "2024-05-16T12:13:14.251497Z", - "iopub.status.idle": "2024-05-16T12:13:14.257616Z", - "shell.execute_reply": "2024-05-16T12:13:14.256908Z" + "iopub.execute_input": "2024-06-07T09:22:27.648457Z", + "iopub.status.busy": "2024-06-07T09:22:27.648128Z", + "iopub.status.idle": "2024-06-07T09:22:27.653498Z", + "shell.execute_reply": "2024-06-07T09:22:27.652626Z" } }, + "outputs": [], "source": [ "# Uncomment and run this cell if you're running in Google Colab.\n", "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:14.261383Z", - "iopub.status.busy": "2024-05-16T12:13:14.261079Z", - "iopub.status.idle": "2024-05-16T12:13:16.084252Z", - "shell.execute_reply": "2024-05-16T12:13:16.083429Z" + "iopub.execute_input": "2024-06-07T09:22:27.657230Z", + "iopub.status.busy": "2024-06-07T09:22:27.656926Z", + "iopub.status.idle": "2024-06-07T09:22:31.983888Z", + "shell.execute_reply": "2024-06-07T09:22:31.983040Z" } }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/transactions_origin.parquet\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " download progress: 0 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 2 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 5 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 7 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 9 %\t(..........)\r", + " download progress: 10 %\t(..........)\r", + " download progress: 10 %\t(=.........)\r", + " download progress: 11 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 14 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 16 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 18 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 20 %\t(=.........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 23 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 25 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 27 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 29 %\t(==........)\r", + " download progress: 30 %\t(==........)\r", + " download progress: 30 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 32 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 34 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 36 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 39 %\t(===.......)\r", + " download progress: 39 %\t(===.......)\r", + " download progress: 40 %\t(===.......)\r", + " download progress: 40 %\t(====......)\r", + " download progress: 41 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 43 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 45 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 47 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 50 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 52 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 54 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 59 %\t(=====.....)\r", + " download progress: 60 %\t(=====.....)\r", + " download progress: 60 %\t(======....)\r", + " download progress: 61 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 63 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 66 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 68 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 70 %\t(======....)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 75 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 77 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 79 %\t(=======...)\r", + " download progress: 80 %\t(=======...)\r", + " download progress: 80 %\t(========..)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 82 %\t(========..)\r", + " download progress: 82 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 84 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 86 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 88 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 90 %\t(========..)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 93 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 95 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 97 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 100 %\t(=========.)\r", + " download progress: 100 %\t(==========)\n", + "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/transactions_destination.parquet\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " download progress: 0 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 1 %\t(..........)\r", + " download progress: 2 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 3 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 4 %\t(..........)\r", + " download progress: 5 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 6 %\t(..........)\r", + " download progress: 7 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 8 %\t(..........)\r", + " download progress: 9 %\t(..........)\r", + " download progress: 10 %\t(..........)\r", + " download progress: 10 %\t(=.........)\r", + " download progress: 11 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 12 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 13 %\t(=.........)\r", + " download progress: 14 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 15 %\t(=.........)\r", + " download progress: 16 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 17 %\t(=.........)\r", + " download progress: 18 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 19 %\t(=.........)\r", + " download progress: 20 %\t(=.........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 21 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 22 %\t(==........)\r", + " download progress: 23 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 24 %\t(==........)\r", + " download progress: 25 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 26 %\t(==........)\r", + " download progress: 27 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 28 %\t(==........)\r", + " download progress: 29 %\t(==........)\r", + " download progress: 30 %\t(==........)\r", + " download progress: 30 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 31 %\t(===.......)\r", + " download progress: 32 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 33 %\t(===.......)\r", + " download progress: 34 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 35 %\t(===.......)\r", + " download progress: 36 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 37 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 38 %\t(===.......)\r", + " download progress: 39 %\t(===.......)\r", + " download progress: 40 %\t(===.......)\r", + " download progress: 40 %\t(====......)\r", + " download progress: 41 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 42 %\t(====......)\r", + " download progress: 43 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 44 %\t(====......)\r", + " download progress: 45 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 46 %\t(====......)\r", + " download progress: 47 %\t(====......)\r", + " download progress: 47 %\t(====......)\r", + " download progress: 48 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 49 %\t(====......)\r", + " download progress: 50 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 51 %\t(=====.....)\r", + " download progress: 52 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 53 %\t(=====.....)\r", + " download progress: 54 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 55 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 56 %\t(=====.....)\r", + " download progress: 57 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 58 %\t(=====.....)\r", + " download progress: 59 %\t(=====.....)\r", + " download progress: 60 %\t(=====.....)\r", + " download progress: 60 %\t(======....)\r", + " download progress: 61 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 62 %\t(======....)\r", + " download progress: 63 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 64 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 65 %\t(======....)\r", + " download progress: 66 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 67 %\t(======....)\r", + " download progress: 68 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 69 %\t(======....)\r", + " download progress: 70 %\t(======....)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 71 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 72 %\t(=======...)\r", + " download progress: 73 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 74 %\t(=======...)\r", + " download progress: 75 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 76 %\t(=======...)\r", + " download progress: 77 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 78 %\t(=======...)\r", + " download progress: 79 %\t(=======...)\r", + " download progress: 80 %\t(=======...)\r", + " download progress: 80 %\t(========..)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 81 %\t(========..)\r", + " download progress: 82 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 83 %\t(========..)\r", + " download progress: 84 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 85 %\t(========..)\r", + " download progress: 86 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 87 %\t(========..)\r", + " download progress: 88 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 89 %\t(========..)\r", + " download progress: 90 %\t(========..)\r", + " download progress: 90 %\t(=========.)\r", + " download progress: 91 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 92 %\t(=========.)\r", + " download progress: 93 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 94 %\t(=========.)\r", + " download progress: 95 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 96 %\t(=========.)\r", + " download progress: 97 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 98 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 99 %\t(=========.)\r", + " download progress: 100 %\t(==========)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ground_truthmemotransaction_dateamountunique_id
00MATTHIAS C paym2022-03-2836.360
11M CORVINUS dona2022-02-14221.911
\n", + "
" + ], + "text/plain": [ + " ground_truth memo transaction_date amount unique_id\n", + "0 0 MATTHIAS C paym 2022-03-28 36.36 0\n", + "1 1 M CORVINUS dona 2022-02-14 221.91 1" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ground_truthmemotransaction_dateamountunique_id
00MATTHIAS C payment BGC2022-03-2936.360
11M CORVINUS BGC2022-02-16221.911
\n", + "
" + ], + "text/plain": [ + " ground_truth memo transaction_date amount unique_id\n", + "0 0 MATTHIAS C payment BGC 2022-03-29 36.36 0\n", + "1 1 M CORVINUS BGC 2022-02-16 221.91 1" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from splink import DuckDBAPI, Linker, SettingsCreator, block_on, splink_datasets\n", "\n", @@ -63,8 +517,7 @@ "\n", "display(df_origin.head(2))\n", "display(df_destination.head(2))" - ], - "outputs": [] + ] }, { "attachments": {}, @@ -83,12 +536,92 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:16.143823Z", - "iopub.status.busy": "2024-05-16T12:13:16.143431Z", - "iopub.status.idle": "2024-05-16T12:13:16.849535Z", - "shell.execute_reply": "2024-05-16T12:13:16.848871Z" + "iopub.execute_input": "2024-06-07T09:22:31.987843Z", + "iopub.status.busy": "2024-06-07T09:22:31.987459Z", + "iopub.status.idle": "2024-06-07T09:22:32.720064Z", + "shell.execute_reply": "2024-06-07T09:22:32.719389Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink.exploratory import profile_columns\n", "\n", @@ -102,20 +635,99 @@ " \"amount\",\n", " ],\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:16.852855Z", - "iopub.status.busy": "2024-05-16T12:13:16.852594Z", - "iopub.status.idle": "2024-05-16T12:13:18.407824Z", - "shell.execute_reply": "2024-05-16T12:13:18.407265Z" + "iopub.execute_input": "2024-06-07T09:22:32.724189Z", + "iopub.status.busy": "2024-06-07T09:22:32.723901Z", + "iopub.status.idle": "2024-06-07T09:22:33.500975Z", + "shell.execute_reply": "2024-06-07T09:22:33.500399Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from splink import DuckDBAPI, block_on\n", "from splink.blocking_analysis import (\n", @@ -167,20 +779,20 @@ " db_api=db_api,\n", " link_type=\"link_only\"\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:18.411066Z", - "iopub.status.busy": "2024-05-16T12:13:18.410832Z", - "iopub.status.idle": "2024-05-16T12:13:18.418094Z", - "shell.execute_reply": "2024-05-16T12:13:18.416984Z" + "iopub.execute_input": "2024-06-07T09:22:33.504001Z", + "iopub.status.busy": "2024-06-07T09:22:33.503779Z", + "iopub.status.idle": "2024-06-07T09:22:33.511675Z", + "shell.execute_reply": "2024-06-07T09:22:33.511212Z" } }, + "outputs": [], "source": [ "# Full settings for linking model\n", "import splink.comparison_level_library as cll\n", @@ -248,20 +860,20 @@ " ],\n", " retain_intermediate_calculation_columns=True,\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:18.421517Z", - "iopub.status.busy": "2024-05-16T12:13:18.421286Z", - "iopub.status.idle": "2024-05-16T12:13:18.552970Z", - "shell.execute_reply": "2024-05-16T12:13:18.552184Z" + "iopub.execute_input": "2024-06-07T09:22:33.514381Z", + "iopub.status.busy": "2024-06-07T09:22:33.514150Z", + "iopub.status.idle": "2024-06-07T09:22:33.621746Z", + "shell.execute_reply": "2024-06-07T09:22:33.621038Z" } }, + "outputs": [], "source": [ "linker = Linker(\n", " [df_origin, df_destination],\n", @@ -269,102 +881,646 @@ " input_table_aliases=[\"__ori\", \"_dest\"],\n", " database_api=db_api,\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:18.556284Z", - "iopub.status.busy": "2024-05-16T12:13:18.556053Z", - "iopub.status.idle": "2024-05-16T12:13:20.529952Z", - "shell.execute_reply": "2024-05-16T12:13:20.529065Z" + "iopub.execute_input": "2024-06-07T09:22:33.625044Z", + "iopub.status.busy": "2024-06-07T09:22:33.624807Z", + "iopub.status.idle": "2024-06-07T09:22:35.145751Z", + "shell.execute_reply": "2024-06-07T09:22:35.145280Z" } }, - "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6)" + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "----- Estimating u probabilities using random sampling -----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Estimated u probabilities using random sampling\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - amount (no m values are trained).\n", + " - memo (no m values are trained).\n", + " - transaction_date (no m values are trained).\n" + ] + } ], - "outputs": [] + "source": [ + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)" + ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:20.532832Z", - "iopub.status.busy": "2024-05-16T12:13:20.532606Z", - "iopub.status.idle": "2024-05-16T12:13:21.867808Z", - "shell.execute_reply": "2024-05-16T12:13:21.867084Z" + "iopub.execute_input": "2024-06-07T09:22:35.148614Z", + "iopub.status.busy": "2024-06-07T09:22:35.148331Z", + "iopub.status.idle": "2024-06-07T09:22:36.323460Z", + "shell.execute_reply": "2024-06-07T09:22:36.322736Z" } }, - "source": [ - "linker.estimate_parameters_using_expectation_maximisation(block_on(\"memo\"))" + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"memo\" = r.\"memo\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - amount\n", + " - transaction_date\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - memo\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.596 in the m_probability of amount, level `Exact match on amount`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was -0.167 in the m_probability of transaction_date, level `1 day`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.00961 in the m_probability of amount, level `Percentage difference of 'amount' within 10.00%`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was 0.00211 in the m_probability of transaction_date, level `<=30 days`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.000367 in the m_probability of transaction_date, level `<=30 days`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was -0.000315 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was -0.000282 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was -0.000254 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was -0.00023 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was -0.000209 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was -0.00019 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 12: Largest change in params was -0.000174 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 13: Largest change in params was -0.000159 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 14: Largest change in params was -0.000147 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 15: Largest change in params was -0.000135 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 16: Largest change in params was -0.000125 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 17: Largest change in params was -0.000116 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 18: Largest change in params was -0.000108 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 19: Largest change in params was -0.0001 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 20: Largest change in params was -9.33e-05 in the m_probability of amount, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 20 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - memo (no m values are trained).\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"memo\"))" + ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:21.871283Z", - "iopub.status.busy": "2024-05-16T12:13:21.871004Z", - "iopub.status.idle": "2024-05-16T12:13:23.094606Z", - "shell.execute_reply": "2024-05-16T12:13:23.093838Z" + "iopub.execute_input": "2024-06-07T09:22:36.326561Z", + "iopub.status.busy": "2024-06-07T09:22:36.326344Z", + "iopub.status.idle": "2024-06-07T09:22:37.563023Z", + "shell.execute_reply": "2024-06-07T09:22:37.562461Z" } }, - "source": [ - "session = linker.estimate_parameters_using_expectation_maximisation(block_on(\"amount\"))" + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "----- Starting EM training session -----\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Estimating the m probabilities of the model by blocking on:\n", + "l.\"amount\" = r.\"amount\"\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - memo\n", + " - transaction_date\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - amount\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 1: Largest change in params was -0.378 in the m_probability of memo, level `Exact match on memo`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 2: Largest change in params was -0.104 in the m_probability of memo, level `Exact match on memo`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 3: Largest change in params was 0.0215 in the m_probability of memo, level `Levenshtein distance of memo <= 10`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 4: Largest change in params was -0.00538 in the m_probability of memo, level `Exact match on memo`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 5: Largest change in params was 0.00474 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 6: Largest change in params was 0.00502 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 7: Largest change in params was 0.00499 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 8: Largest change in params was 0.00466 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 9: Largest change in params was 0.00413 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 10: Largest change in params was 0.00348 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 11: Largest change in params was 0.00283 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 12: Largest change in params was 0.00223 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 13: Largest change in params was 0.00171 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 14: Largest change in params was 0.00129 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 15: Largest change in params was 0.000959 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 16: Largest change in params was 0.000706 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 17: Largest change in params was 0.000516 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 18: Largest change in params was 0.000375 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 19: Largest change in params was 0.000272 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 20: Largest change in params was 0.000196 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 21: Largest change in params was 0.000141 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 22: Largest change in params was 0.000102 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Iteration 23: Largest change in params was 7.32e-05 in the m_probability of memo, level `All other comparisons`\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "EM converged after 23 iterations\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n" + ] + } ], - "outputs": [] + "source": [ + "session = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"amount\"))" + ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:23.097922Z", - "iopub.status.busy": "2024-05-16T12:13:23.097670Z", - "iopub.status.idle": "2024-05-16T12:13:23.382589Z", - "shell.execute_reply": "2024-05-16T12:13:23.382014Z" + "iopub.execute_input": "2024-06-07T09:22:37.565956Z", + "iopub.status.busy": "2024-06-07T09:22:37.565738Z", + "iopub.status.idle": "2024-06-07T09:22:37.832159Z", + "shell.execute_reply": "2024-06-07T09:22:37.831506Z" } }, - "source": [ - "linker.match_weights_chart()" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.VConcatChart(...)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } ], - "outputs": [] + "source": [ + "linker.visualisations.match_weights_chart()" + ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:23.385651Z", - "iopub.status.busy": "2024-05-16T12:13:23.385430Z", - "iopub.status.idle": "2024-05-16T12:13:47.966948Z", - "shell.execute_reply": "2024-05-16T12:13:47.966113Z" + "iopub.execute_input": "2024-06-07T09:22:37.835082Z", + "iopub.status.busy": "2024-06-07T09:22:37.834871Z", + "iopub.status.idle": "2024-06-07T09:22:58.616771Z", + "shell.execute_reply": "2024-06-07T09:22:58.615862Z" } }, + "outputs": [], "source": [ - "df_predict = linker.predict(threshold_match_probability=0.001)" - ], - "outputs": [] + "df_predict = linker.inference.predict(threshold_match_probability=0.001)" + ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:47.970901Z", - "iopub.status.busy": "2024-05-16T12:13:47.970603Z", - "iopub.status.idle": "2024-05-16T12:13:48.365220Z", - "shell.execute_reply": "2024-05-16T12:13:48.364442Z" + "iopub.execute_input": "2024-06-07T09:22:58.620828Z", + "iopub.status.busy": "2024-06-07T09:22:58.620523Z", + "iopub.status.idle": "2024-06-07T09:22:59.018555Z", + "shell.execute_reply": "2024-06-07T09:22:59.017917Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.comparison_viewer_dashboard(\n", + "linker.visualisations.comparison_viewer_dashboard(\n", " df_predict, \"dashboards/comparison_viewer_transactions.html\", overwrite=True\n", ")\n", "from IPython.display import IFrame\n", @@ -372,46 +1528,203 @@ "IFrame(\n", " src=\"./dashboards/comparison_viewer_transactions.html\", width=\"100%\", height=1200\n", ")" - ], - "outputs": [] + ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:48.369330Z", - "iopub.status.busy": "2024-05-16T12:13:48.369001Z", - "iopub.status.idle": "2024-05-16T12:13:54.043730Z", - "shell.execute_reply": "2024-05-16T12:13:54.043073Z" + "iopub.execute_input": "2024-06-07T09:22:59.022067Z", + "iopub.status.busy": "2024-06-07T09:22:59.021794Z", + "iopub.status.idle": "2024-06-07T09:23:04.254280Z", + "shell.execute_reply": "2024-06-07T09:23:04.253648Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "pred_errors = linker.prediction_errors_from_labels_column(\n", + "pred_errors = linker.evaluation.prediction_errors_from_labels_column(\n", " \"ground_truth\", include_false_positives=True, include_false_negatives=False\n", ")\n", - "linker.waterfall_chart(pred_errors.as_record_dict(limit=5))" - ], - "outputs": [] + "linker.visualisations.waterfall_chart(pred_errors.as_record_dict(limit=5))" + ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-16T12:13:54.047308Z", - "iopub.status.busy": "2024-05-16T12:13:54.047030Z", - "iopub.status.idle": "2024-05-16T12:13:54.884355Z", - "shell.execute_reply": "2024-05-16T12:13:54.883814Z" + "iopub.execute_input": "2024-06-07T09:23:04.257242Z", + "iopub.status.busy": "2024-06-07T09:23:04.257017Z", + "iopub.status.idle": "2024-06-07T09:23:05.029715Z", + "shell.execute_reply": "2024-06-07T09:23:05.029153Z" } }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "pred_errors = linker.prediction_errors_from_labels_column(\n", + "pred_errors = linker.evaluation.prediction_errors_from_labels_column(\n", " \"ground_truth\", include_false_positives=False, include_false_negatives=True\n", ")\n", - "linker.waterfall_chart(pred_errors.as_record_dict(limit=5))" - ], - "outputs": [] + "linker.visualisations.waterfall_chart(pred_errors.as_record_dict(limit=5))" + ] } ], "metadata": { diff --git a/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb b/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb index 1c4b5a0c45..2809cb8a5b 100644 --- a/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb +++ b/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb @@ -1,275 +1,275 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Linking in Spark\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \"Open\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:29:57.518197Z", - "iopub.status.busy": "2024-03-13T12:29:57.517750Z", - "iopub.status.idle": "2024-03-13T12:29:57.523242Z", - "shell.execute_reply": "2024-03-13T12:29:57.522525Z" - } - }, - "outputs": [], - "source": [ - "# Uncomment and run this cell if you're running in Google Colab.\n", - "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", - "# !pip install pyspark" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:29:57.527366Z", - "iopub.status.busy": "2024-03-13T12:29:57.527045Z", - "iopub.status.idle": "2024-03-13T12:30:42.348824Z", - "shell.execute_reply": "2024-03-13T12:30:42.347900Z" - } - }, - "outputs": [], - "source": [ - "from pyspark import SparkConf, SparkContext\n", - "from pyspark.sql import SparkSession\n", - "\n", - "from splink.backends.spark import similarity_jar_location\n", - "\n", - "conf = SparkConf()\n", - "# This parallelism setting is only suitable for a small toy example\n", - "conf.set(\"spark.driver.memory\", \"12g\")\n", - "conf.set(\"spark.default.parallelism\", \"16\")\n", - "\n", - "\n", - "# Add custom similarity functions, which are bundled with Splink\n", - "# documented here: https://github.com/moj-analytical-services/splink_scalaudfs\n", - "path = similarity_jar_location()\n", - "conf.set(\"spark.jars\", path)\n", - "\n", - "sc = SparkContext.getOrCreate(conf=conf)\n", - "\n", - "spark = SparkSession(sc)\n", - "spark.sparkContext.setCheckpointDir(\"./tmp_checkpoints\")" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:30:42.353970Z", - "iopub.status.busy": "2024-03-13T12:30:42.353260Z", - "iopub.status.idle": "2024-03-13T12:30:42.358982Z", - "shell.execute_reply": "2024-03-13T12:30:42.358209Z" - } - }, - "outputs": [], - "source": [ - "# Disable warnings for pyspark - you don't need to include this\n", - "import warnings\n", - "\n", - "spark.sparkContext.setLogLevel(\"ERROR\")\n", - "warnings.simplefilter(\"ignore\", UserWarning)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:30:42.363648Z", - "iopub.status.busy": "2024-03-13T12:30:42.363227Z", - "iopub.status.idle": "2024-03-13T12:30:45.734688Z", - "shell.execute_reply": "2024-03-13T12:30:45.733419Z" - } - }, - "outputs": [], - "source": [ - "from splink import splink_datasets\n", - "\n", - "pandas_df = splink_datasets.fake_1000\n", - "\n", - "df = spark.createDataFrame(pandas_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:30:45.740685Z", - "iopub.status.busy": "2024-03-13T12:30:45.740314Z", - "iopub.status.idle": "2024-03-13T12:30:45.773778Z", - "shell.execute_reply": "2024-03-13T12:30:45.772855Z" - } - }, - "outputs": [], - "source": [ - "import splink.comparison_library as cl\n", - "import splink.comparison_template_library as ctl\n", - "from splink import Linker, SettingsCreator, SparkAPI, block_on\n", - "\n", - "settings = SettingsCreator(\n", - " link_type=\"dedupe_only\",\n", - " comparisons=[\n", - " ctl.NameComparison(\"first_name\"),\n", - " ctl.NameComparison(\"surname\"),\n", - " # ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", - " # TOD=Fix date comparison\n", - " ctl.DateComparison(\n", - " \"dob\",\n", - " input_is_string=True,\n", - " datetime_metrics=[\"month\", \"year\", \"year\"],\n", - " datetime_thresholds=[1, 1, 10],\n", - " datetime_format=\"%Y%m%d\",\n", - " ),\n", - " cl.ExactMatch(\"city\").configure(term_frequency_adjustments=True),\n", - " ctl.EmailComparison(\"email\", include_username_fuzzy_level=False),\n", - " ],\n", - " blocking_rules_to_generate_predictions=[\n", - " block_on(\"first_name\"),\n", - " \"l.surname = r.surname\", # alternatively, you can write BRs in their SQL form\n", - " ],\n", - " retain_intermediate_calculation_columns=True,\n", - " em_convergence=0.01,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:30:45.779194Z", - "iopub.status.busy": "2024-03-13T12:30:45.778688Z", - "iopub.status.idle": "2024-03-13T12:30:57.746806Z", - "shell.execute_reply": "2024-03-13T12:30:57.744480Z" - } - }, - "outputs": [], - "source": [ - "linker = Linker(df, settings, database_api=SparkAPI(spark_session=spark))\n", - "deterministic_rules = [\n", - " \"l.first_name = r.first_name and levenshtein(r.dob, l.dob) <= 1\",\n", - " \"l.surname = r.surname and levenshtein(r.dob, l.dob) <= 1\",\n", - " \"l.first_name = r.first_name and levenshtein(r.surname, l.surname) <= 2\",\n", - " \"l.email = r.email\",\n", - "]\n", - "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:30:57.757986Z", - "iopub.status.busy": "2024-03-13T12:30:57.757315Z", - "iopub.status.idle": "2024-03-13T12:31:17.080600Z", - "shell.execute_reply": "2024-03-13T12:31:17.079503Z" - } - }, - "outputs": [], - "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=5e5)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:31:17.085610Z", - "iopub.status.busy": "2024-03-13T12:31:17.085246Z", - "iopub.status.idle": "2024-03-13T12:31:36.217869Z", - "shell.execute_reply": "2024-03-13T12:31:36.217063Z" - } - }, - "outputs": [], - "source": [ - "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", - "training_session_fname_sname = (\n", - " linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n", - ")\n", - "\n", - "training_blocking_rule = \"l.dob = r.dob\"\n", - "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n", - " training_blocking_rule\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:31:36.223120Z", - "iopub.status.busy": "2024-03-13T12:31:36.222561Z", - "iopub.status.idle": "2024-03-13T12:31:44.599133Z", - "shell.execute_reply": "2024-03-13T12:31:44.597894Z" + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linking in Spark\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + " \"Open\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:29:57.518197Z", + "iopub.status.busy": "2024-03-13T12:29:57.517750Z", + "iopub.status.idle": "2024-03-13T12:29:57.523242Z", + "shell.execute_reply": "2024-03-13T12:29:57.522525Z" + } + }, + "outputs": [], + "source": [ + "# Uncomment and run this cell if you're running in Google Colab.\n", + "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", + "# !pip install pyspark" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:29:57.527366Z", + "iopub.status.busy": "2024-03-13T12:29:57.527045Z", + "iopub.status.idle": "2024-03-13T12:30:42.348824Z", + "shell.execute_reply": "2024-03-13T12:30:42.347900Z" + } + }, + "outputs": [], + "source": [ + "from pyspark import SparkConf, SparkContext\n", + "from pyspark.sql import SparkSession\n", + "\n", + "from splink.backends.spark import similarity_jar_location\n", + "\n", + "conf = SparkConf()\n", + "# This parallelism setting is only suitable for a small toy example\n", + "conf.set(\"spark.driver.memory\", \"12g\")\n", + "conf.set(\"spark.default.parallelism\", \"16\")\n", + "\n", + "\n", + "# Add custom similarity functions, which are bundled with Splink\n", + "# documented here: https://github.com/moj-analytical-services/splink_scalaudfs\n", + "path = similarity_jar_location()\n", + "conf.set(\"spark.jars\", path)\n", + "\n", + "sc = SparkContext.getOrCreate(conf=conf)\n", + "\n", + "spark = SparkSession(sc)\n", + "spark.sparkContext.setCheckpointDir(\"./tmp_checkpoints\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:30:42.353970Z", + "iopub.status.busy": "2024-03-13T12:30:42.353260Z", + "iopub.status.idle": "2024-03-13T12:30:42.358982Z", + "shell.execute_reply": "2024-03-13T12:30:42.358209Z" + } + }, + "outputs": [], + "source": [ + "# Disable warnings for pyspark - you don't need to include this\n", + "import warnings\n", + "\n", + "spark.sparkContext.setLogLevel(\"ERROR\")\n", + "warnings.simplefilter(\"ignore\", UserWarning)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:30:42.363648Z", + "iopub.status.busy": "2024-03-13T12:30:42.363227Z", + "iopub.status.idle": "2024-03-13T12:30:45.734688Z", + "shell.execute_reply": "2024-03-13T12:30:45.733419Z" + } + }, + "outputs": [], + "source": [ + "from splink import splink_datasets\n", + "\n", + "pandas_df = splink_datasets.fake_1000\n", + "\n", + "df = spark.createDataFrame(pandas_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:30:45.740685Z", + "iopub.status.busy": "2024-03-13T12:30:45.740314Z", + "iopub.status.idle": "2024-03-13T12:30:45.773778Z", + "shell.execute_reply": "2024-03-13T12:30:45.772855Z" + } + }, + "outputs": [], + "source": [ + "import splink.comparison_library as cl\n", + "import splink.comparison_template_library as ctl\n", + "from splink import Linker, SettingsCreator, SparkAPI, block_on\n", + "\n", + "settings = SettingsCreator(\n", + " link_type=\"dedupe_only\",\n", + " comparisons=[\n", + " ctl.NameComparison(\"first_name\"),\n", + " ctl.NameComparison(\"surname\"),\n", + " # ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " # TOD=Fix date comparison\n", + " ctl.DateComparison(\n", + " \"dob\",\n", + " input_is_string=True,\n", + " datetime_metrics=[\"month\", \"year\", \"year\"],\n", + " datetime_thresholds=[1, 1, 10],\n", + " datetime_format=\"%Y%m%d\",\n", + " ),\n", + " cl.ExactMatch(\"city\").configure(term_frequency_adjustments=True),\n", + " ctl.EmailComparison(\"email\", include_username_fuzzy_level=False),\n", + " ],\n", + " blocking_rules_to_generate_predictions=[\n", + " block_on(\"first_name\"),\n", + " \"l.surname = r.surname\", # alternatively, you can write BRs in their SQL form\n", + " ],\n", + " retain_intermediate_calculation_columns=True,\n", + " em_convergence=0.01,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:30:45.779194Z", + "iopub.status.busy": "2024-03-13T12:30:45.778688Z", + "iopub.status.idle": "2024-03-13T12:30:57.746806Z", + "shell.execute_reply": "2024-03-13T12:30:57.744480Z" + } + }, + "outputs": [], + "source": [ + "linker = Linker(df, settings, database_api=SparkAPI(spark_session=spark))\n", + "deterministic_rules = [\n", + " \"l.first_name = r.first_name and levenshtein(r.dob, l.dob) <= 1\",\n", + " \"l.surname = r.surname and levenshtein(r.dob, l.dob) <= 1\",\n", + " \"l.first_name = r.first_name and levenshtein(r.surname, l.surname) <= 2\",\n", + " \"l.email = r.email\",\n", + "]\n", + "\n", + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:30:57.757986Z", + "iopub.status.busy": "2024-03-13T12:30:57.757315Z", + "iopub.status.idle": "2024-03-13T12:31:17.080600Z", + "shell.execute_reply": "2024-03-13T12:31:17.079503Z" + } + }, + "outputs": [], + "source": [ + "linker.training.estimate_u_using_random_sampling(max_pairs=5e5)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:31:17.085610Z", + "iopub.status.busy": "2024-03-13T12:31:17.085246Z", + "iopub.status.idle": "2024-03-13T12:31:36.217869Z", + "shell.execute_reply": "2024-03-13T12:31:36.217063Z" + } + }, + "outputs": [], + "source": [ + "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", + "training_session_fname_sname = (\n", + " linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n", + ")\n", + "\n", + "training_blocking_rule = \"l.dob = r.dob\"\n", + "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n", + " training_blocking_rule\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:31:36.223120Z", + "iopub.status.busy": "2024-03-13T12:31:36.222561Z", + "iopub.status.idle": "2024-03-13T12:31:44.599133Z", + "shell.execute_reply": "2024-03-13T12:31:44.597894Z" + } + }, + "outputs": [], + "source": [ + "results = linker.inference.predict(threshold_match_probability=0.9)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-13T12:31:44.605970Z", + "iopub.status.busy": "2024-03-13T12:31:44.605505Z", + "iopub.status.idle": "2024-03-13T12:31:44.750590Z", + "shell.execute_reply": "2024-03-13T12:31:44.749429Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "results.as_pandas_dataframe(limit=5)" + ] } - }, - "outputs": [], - "source": [ - "results = linker.predict(threshold_match_probability=0.9)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-13T12:31:44.605970Z", - "iopub.status.busy": "2024-03-13T12:31:44.605505Z", - "iopub.status.idle": "2024-03-13T12:31:44.750590Z", - "shell.execute_reply": "2024-03-13T12:31:44.749429Z" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "tags": [] - }, - "outputs": [], - "source": [ - "results.as_pandas_dataframe(limit=5)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb index ce68a7b9a6..3eea1b0b3e 100644 --- a/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb +++ b/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb @@ -1,461 +1,461 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Linking a dataset of real historical persons\n", - "\n", - "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced.\n", - "\n", - "Note, as explained in the [backends topic guide](https://moj-analytical-services.github.io/splink/topic_guides/backends.html#sqlite), SQLite does not natively support string fuzzy matching functions such as `damareau-levenshtein` and `jaro-winkler` (as used in this example). Instead, these have been imported as python User Defined Functions (UDFs). One drawback of python UDFs is that they are considerably slower than native-SQL comparisons. As such, if you are hitting issues with large run times, consider switching to DuckDB (or some other backend).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \"Open\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:30.610213Z", - "iopub.status.busy": "2024-05-15T18:41:30.609846Z", - "iopub.status.idle": "2024-05-15T18:41:30.615335Z", - "shell.execute_reply": "2024-05-15T18:41:30.614566Z" - } - }, - "outputs": [], - "source": [ - "# Uncomment and run this cell if you're running in Google Colab.\n", - "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", - "# !pip install rapidfuzz" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:30.619046Z", - "iopub.status.busy": "2024-05-15T18:41:30.618760Z", - "iopub.status.idle": "2024-05-15T18:41:31.933775Z", - "shell.execute_reply": "2024-05-15T18:41:31.932989Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from splink import splink_datasets\n", - "\n", - "pd.options.display.max_rows = 1000\n", - "# reduce size of dataset to make things run faster\n", - "df = splink_datasets.historical_50k.sample(5000)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:31.938051Z", - "iopub.status.busy": "2024-05-15T18:41:31.937677Z", - "iopub.status.idle": "2024-05-15T18:41:32.856954Z", - "shell.execute_reply": "2024-05-15T18:41:32.856284Z" - } - }, - "outputs": [], - "source": [ - "from splink.backends.sqlite import SQLiteAPI\n", - "from splink.exploratory import profile_columns\n", - "\n", - "db_api = SQLiteAPI()\n", - "profile_columns(\n", - " df, db_api, column_expressions=[\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:32.900620Z", - "iopub.status.busy": "2024-05-15T18:41:32.900280Z", - "iopub.status.idle": "2024-05-15T18:41:33.193607Z", - "shell.execute_reply": "2024-05-15T18:41:33.192963Z" - } - }, - "outputs": [], - "source": [ - "from splink import block_on\n", - "from splink.blocking_analysis import (\n", - " cumulative_comparisons_to_be_scored_from_blocking_rules_chart,\n", - ")\n", - "\n", - "blocking_rules = [block_on(\"first_name\", \"surname\"),\n", - " block_on(\"surname\", \"dob\"),\n", - " block_on(\"first_name\", \"dob\"),\n", - " block_on(\"postcode_fake\", \"first_name\")]\n", - "\n", - "db_api = SQLiteAPI()\n", - "\n", - "cumulative_comparisons_to_be_scored_from_blocking_rules_chart(\n", - " table_or_tables=df,\n", - " blocking_rules=blocking_rules,\n", - " db_api=db_api,\n", - " link_type=\"dedupe_only\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:33.197015Z", - "iopub.status.busy": "2024-05-15T18:41:33.196743Z", - "iopub.status.idle": "2024-05-15T18:41:33.330331Z", - "shell.execute_reply": "2024-05-15T18:41:33.329671Z" + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linking a dataset of real historical persons\n", + "\n", + "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced.\n", + "\n", + "Note, as explained in the [backends topic guide](https://moj-analytical-services.github.io/splink/topic_guides/backends.html#sqlite), SQLite does not natively support string fuzzy matching functions such as `damareau-levenshtein` and `jaro-winkler` (as used in this example). Instead, these have been imported as python User Defined Functions (UDFs). One drawback of python UDFs is that they are considerably slower than native-SQL comparisons. As such, if you are hitting issues with large run times, consider switching to DuckDB (or some other backend).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + " \"Open\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:30.610213Z", + "iopub.status.busy": "2024-05-15T18:41:30.609846Z", + "iopub.status.idle": "2024-05-15T18:41:30.615335Z", + "shell.execute_reply": "2024-05-15T18:41:30.614566Z" + } + }, + "outputs": [], + "source": [ + "# Uncomment and run this cell if you're running in Google Colab.\n", + "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n", + "# !pip install rapidfuzz" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:30.619046Z", + "iopub.status.busy": "2024-05-15T18:41:30.618760Z", + "iopub.status.idle": "2024-05-15T18:41:31.933775Z", + "shell.execute_reply": "2024-05-15T18:41:31.932989Z" + } + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from splink import splink_datasets\n", + "\n", + "pd.options.display.max_rows = 1000\n", + "# reduce size of dataset to make things run faster\n", + "df = splink_datasets.historical_50k.sample(5000)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:31.938051Z", + "iopub.status.busy": "2024-05-15T18:41:31.937677Z", + "iopub.status.idle": "2024-05-15T18:41:32.856954Z", + "shell.execute_reply": "2024-05-15T18:41:32.856284Z" + } + }, + "outputs": [], + "source": [ + "from splink.backends.sqlite import SQLiteAPI\n", + "from splink.exploratory import profile_columns\n", + "\n", + "db_api = SQLiteAPI()\n", + "profile_columns(\n", + " df, db_api, column_expressions=[\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:32.900620Z", + "iopub.status.busy": "2024-05-15T18:41:32.900280Z", + "iopub.status.idle": "2024-05-15T18:41:33.193607Z", + "shell.execute_reply": "2024-05-15T18:41:33.192963Z" + } + }, + "outputs": [], + "source": [ + "from splink import block_on\n", + "from splink.blocking_analysis import (\n", + " cumulative_comparisons_to_be_scored_from_blocking_rules_chart,\n", + ")\n", + "\n", + "blocking_rules = [block_on(\"first_name\", \"surname\"),\n", + " block_on(\"surname\", \"dob\"),\n", + " block_on(\"first_name\", \"dob\"),\n", + " block_on(\"postcode_fake\", \"first_name\")]\n", + "\n", + "db_api = SQLiteAPI()\n", + "\n", + "cumulative_comparisons_to_be_scored_from_blocking_rules_chart(\n", + " table_or_tables=df,\n", + " blocking_rules=blocking_rules,\n", + " db_api=db_api,\n", + " link_type=\"dedupe_only\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:33.197015Z", + "iopub.status.busy": "2024-05-15T18:41:33.196743Z", + "iopub.status.idle": "2024-05-15T18:41:33.330331Z", + "shell.execute_reply": "2024-05-15T18:41:33.329671Z" + } + }, + "outputs": [], + "source": [ + "import splink.comparison_library as cl\n", + "import splink.comparison_template_library as ctl\n", + "from splink import Linker\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on(\"first_name\", \"surname\"),\n", + " block_on(\"surname\", \"dob\"),\n", + " block_on(\"first_name\", \"dob\"),\n", + " block_on(\"postcode_fake\", \"first_name\"),\n", + "\n", + " ],\n", + " \"comparisons\": [\n", + " ctl.NameComparison(\"first_name\", fuzzy_thresholds=[0.9]).configure(\n", + " term_frequency_adjustments=True\n", + " ),\n", + " ctl.NameComparison(\"surname\", fuzzy_thresholds=[0.9]).configure(\n", + " term_frequency_adjustments=True\n", + " ),\n", + " cl.DamerauLevenshteinAtThresholds(\"dob\", [1, 2]).configure(\n", + " term_frequency_adjustments=True\n", + " ),\n", + " cl.DamerauLevenshteinAtThresholds(\"postcode_fake\", [1, 2]),\n", + " cl.ExactMatch(\"birth_place\").configure(term_frequency_adjustments=True),\n", + " cl.ExactMatch(\n", + " \"occupation\",\n", + " ).configure(term_frequency_adjustments=True),\n", + " ],\n", + " \"retain_matching_columns\": True,\n", + " \"retain_intermediate_calculation_columns\": True,\n", + " \"max_iterations\": 10,\n", + " \"em_convergence\": 0.01,\n", + "}\n", + "\n", + "linker = Linker(df, settings, database_api=db_api)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:33.334300Z", + "iopub.status.busy": "2024-05-15T18:41:33.333988Z", + "iopub.status.idle": "2024-05-15T18:41:33.488238Z", + "shell.execute_reply": "2024-05-15T18:41:33.487555Z" + } + }, + "outputs": [], + "source": [ + "linker.training.estimate_probability_two_random_records_match(\n", + " [\n", + " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n", + " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n", + " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n", + " ],\n", + " recall=0.6,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:33.491551Z", + "iopub.status.busy": "2024-05-15T18:41:33.491328Z", + "iopub.status.idle": "2024-05-15T18:41:41.469753Z", + "shell.execute_reply": "2024-05-15T18:41:41.469157Z" + } + }, + "outputs": [], + "source": [ + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:41.473301Z", + "iopub.status.busy": "2024-05-15T18:41:41.473009Z", + "iopub.status.idle": "2024-05-15T18:41:41.683463Z", + "shell.execute_reply": "2024-05-15T18:41:41.682843Z" + } + }, + "outputs": [], + "source": [ + "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", + "training_session_names = linker.training.estimate_parameters_using_expectation_maximisation(\n", + " training_blocking_rule, estimate_without_term_frequencies=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:41.686951Z", + "iopub.status.busy": "2024-05-15T18:41:41.686683Z", + "iopub.status.idle": "2024-05-15T18:41:41.926273Z", + "shell.execute_reply": "2024-05-15T18:41:41.925689Z" + } + }, + "outputs": [], + "source": [ + "training_blocking_rule = \"l.dob = r.dob\"\n", + "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n", + " training_blocking_rule, estimate_without_term_frequencies=True\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The final match weights can be viewed in the match weights chart:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:41.929306Z", + "iopub.status.busy": "2024-05-15T18:41:41.929078Z", + "iopub.status.idle": "2024-05-15T18:41:42.230106Z", + "shell.execute_reply": "2024-05-15T18:41:42.229484Z" + } + }, + "outputs": [], + "source": [ + "linker.visualisations.match_weights_chart()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:42.233172Z", + "iopub.status.busy": "2024-05-15T18:41:42.232933Z", + "iopub.status.idle": "2024-05-15T18:41:42.813828Z", + "shell.execute_reply": "2024-05-15T18:41:42.813043Z" + } + }, + "outputs": [], + "source": [ + "linker.evaluation.unlinkables_chart()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:42.817975Z", + "iopub.status.busy": "2024-05-15T18:41:42.817397Z", + "iopub.status.idle": "2024-05-15T18:41:43.292311Z", + "shell.execute_reply": "2024-05-15T18:41:43.291620Z" + } + }, + "outputs": [], + "source": [ + "df_predict = linker.inference.predict()\n", + "df_e = df_predict.as_pandas_dataframe(limit=5)\n", + "df_e" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also view rows in this dataset as a waterfall chart as follows:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:43.296030Z", + "iopub.status.busy": "2024-05-15T18:41:43.295753Z", + "iopub.status.idle": "2024-05-15T18:41:43.969119Z", + "shell.execute_reply": "2024-05-15T18:41:43.968521Z" + } + }, + "outputs": [], + "source": [ + "\n", + "records_to_plot = df_e.to_dict(orient=\"records\")\n", + "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:43.972219Z", + "iopub.status.busy": "2024-05-15T18:41:43.971787Z", + "iopub.status.idle": "2024-05-15T18:41:44.116709Z", + "shell.execute_reply": "2024-05-15T18:41:44.115993Z" + } + }, + "outputs": [], + "source": [ + "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n", + " df_predict, threshold_match_probability=0.95\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:44.120162Z", + "iopub.status.busy": "2024-05-15T18:41:44.119922Z", + "iopub.status.idle": "2024-05-15T18:41:44.180152Z", + "shell.execute_reply": "2024-05-15T18:41:44.179445Z" + } + }, + "outputs": [], + "source": [ + "linker.visualisations.cluster_studio_dashboard(\n", + " df_predict,\n", + " clusters,\n", + " \"dashboards/50k_cluster.html\",\n", + " sampling_method=\"by_cluster_size\",\n", + " overwrite=True,\n", + ")\n", + "\n", + "from IPython.display import IFrame\n", + "\n", + "IFrame(src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:44.184020Z", + "iopub.status.busy": "2024-05-15T18:41:44.183710Z", + "iopub.status.idle": "2024-05-15T18:41:46.543532Z", + "shell.execute_reply": "2024-05-15T18:41:46.542614Z" + } + }, + "outputs": [], + "source": [ + "linker.evaluation.accuracy_analysis_from_labels_column(\n", + " \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:46.557696Z", + "iopub.status.busy": "2024-05-15T18:41:46.557395Z", + "iopub.status.idle": "2024-05-15T18:41:47.295019Z", + "shell.execute_reply": "2024-05-15T18:41:47.294474Z" + } + }, + "outputs": [], + "source": [ + "records = linker.evaluation.prediction_errors_from_labels_column(\n", + " \"cluster\",\n", + " threshold=0.999,\n", + " include_false_negatives=False,\n", + " include_false_positives=True,\n", + ").as_record_dict()\n", + "linker.visualisations.waterfall_chart(records)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-15T18:41:47.298555Z", + "iopub.status.busy": "2024-05-15T18:41:47.298310Z", + "iopub.status.idle": "2024-05-15T18:41:50.039196Z", + "shell.execute_reply": "2024-05-15T18:41:50.038400Z" + } + }, + "outputs": [], + "source": [ + "# Some of the false negatives will be because they weren't detected by the blocking rules\n", + "records = linker.evaluation.prediction_errors_from_labels_column(\n", + " \"cluster\",\n", + " threshold=0.5,\n", + " include_false_negatives=True,\n", + " include_false_positives=False,\n", + ").as_record_dict(limit=50)\n", + "\n", + "linker.visualisations.waterfall_chart(records)" + ] } - }, - "outputs": [], - "source": [ - "import splink.comparison_library as cl\n", - "import splink.comparison_template_library as ctl\n", - "from splink import Linker\n", - "\n", - "settings = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on(\"first_name\", \"surname\"),\n", - " block_on(\"surname\", \"dob\"),\n", - " block_on(\"first_name\", \"dob\"),\n", - " block_on(\"postcode_fake\", \"first_name\"),\n", - "\n", - " ],\n", - " \"comparisons\": [\n", - " ctl.NameComparison(\"first_name\", fuzzy_thresholds=[0.9]).configure(\n", - " term_frequency_adjustments=True\n", - " ),\n", - " ctl.NameComparison(\"surname\", fuzzy_thresholds=[0.9]).configure(\n", - " term_frequency_adjustments=True\n", - " ),\n", - " cl.DamerauLevenshteinAtThresholds(\"dob\", [1, 2]).configure(\n", - " term_frequency_adjustments=True\n", - " ),\n", - " cl.DamerauLevenshteinAtThresholds(\"postcode_fake\", [1, 2]),\n", - " cl.ExactMatch(\"birth_place\").configure(term_frequency_adjustments=True),\n", - " cl.ExactMatch(\n", - " \"occupation\",\n", - " ).configure(term_frequency_adjustments=True),\n", - " ],\n", - " \"retain_matching_columns\": True,\n", - " \"retain_intermediate_calculation_columns\": True,\n", - " \"max_iterations\": 10,\n", - " \"em_convergence\": 0.01,\n", - "}\n", - "\n", - "linker = Linker(df, settings, database_api=db_api)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:33.334300Z", - "iopub.status.busy": "2024-05-15T18:41:33.333988Z", - "iopub.status.idle": "2024-05-15T18:41:33.488238Z", - "shell.execute_reply": "2024-05-15T18:41:33.487555Z" - } - }, - "outputs": [], - "source": [ - "linker.estimate_probability_two_random_records_match(\n", - " [\n", - " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n", - " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n", - " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n", - " ],\n", - " recall=0.6,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:33.491551Z", - "iopub.status.busy": "2024-05-15T18:41:33.491328Z", - "iopub.status.idle": "2024-05-15T18:41:41.469753Z", - "shell.execute_reply": "2024-05-15T18:41:41.469157Z" - } - }, - "outputs": [], - "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:41.473301Z", - "iopub.status.busy": "2024-05-15T18:41:41.473009Z", - "iopub.status.idle": "2024-05-15T18:41:41.683463Z", - "shell.execute_reply": "2024-05-15T18:41:41.682843Z" - } - }, - "outputs": [], - "source": [ - "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n", - "training_session_names = linker.estimate_parameters_using_expectation_maximisation(\n", - " training_blocking_rule, estimate_without_term_frequencies=True\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:41.686951Z", - "iopub.status.busy": "2024-05-15T18:41:41.686683Z", - "iopub.status.idle": "2024-05-15T18:41:41.926273Z", - "shell.execute_reply": "2024-05-15T18:41:41.925689Z" - } - }, - "outputs": [], - "source": [ - "training_blocking_rule = \"l.dob = r.dob\"\n", - "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n", - " training_blocking_rule, estimate_without_term_frequencies=True\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The final match weights can be viewed in the match weights chart:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:41.929306Z", - "iopub.status.busy": "2024-05-15T18:41:41.929078Z", - "iopub.status.idle": "2024-05-15T18:41:42.230106Z", - "shell.execute_reply": "2024-05-15T18:41:42.229484Z" - } - }, - "outputs": [], - "source": [ - "linker.match_weights_chart()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:42.233172Z", - "iopub.status.busy": "2024-05-15T18:41:42.232933Z", - "iopub.status.idle": "2024-05-15T18:41:42.813828Z", - "shell.execute_reply": "2024-05-15T18:41:42.813043Z" - } - }, - "outputs": [], - "source": [ - "linker.unlinkables_chart()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:42.817975Z", - "iopub.status.busy": "2024-05-15T18:41:42.817397Z", - "iopub.status.idle": "2024-05-15T18:41:43.292311Z", - "shell.execute_reply": "2024-05-15T18:41:43.291620Z" - } - }, - "outputs": [], - "source": [ - "df_predict = linker.predict()\n", - "df_e = df_predict.as_pandas_dataframe(limit=5)\n", - "df_e" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also view rows in this dataset as a waterfall chart as follows:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:43.296030Z", - "iopub.status.busy": "2024-05-15T18:41:43.295753Z", - "iopub.status.idle": "2024-05-15T18:41:43.969119Z", - "shell.execute_reply": "2024-05-15T18:41:43.968521Z" - } - }, - "outputs": [], - "source": [ - "\n", - "records_to_plot = df_e.to_dict(orient=\"records\")\n", - "linker.waterfall_chart(records_to_plot, filter_nulls=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:43.972219Z", - "iopub.status.busy": "2024-05-15T18:41:43.971787Z", - "iopub.status.idle": "2024-05-15T18:41:44.116709Z", - "shell.execute_reply": "2024-05-15T18:41:44.115993Z" - } - }, - "outputs": [], - "source": [ - "clusters = linker.cluster_pairwise_predictions_at_threshold(\n", - " df_predict, threshold_match_probability=0.95\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:44.120162Z", - "iopub.status.busy": "2024-05-15T18:41:44.119922Z", - "iopub.status.idle": "2024-05-15T18:41:44.180152Z", - "shell.execute_reply": "2024-05-15T18:41:44.179445Z" - } - }, - "outputs": [], - "source": [ - "linker.cluster_studio_dashboard(\n", - " df_predict,\n", - " clusters,\n", - " \"dashboards/50k_cluster.html\",\n", - " sampling_method=\"by_cluster_size\",\n", - " overwrite=True,\n", - ")\n", - "\n", - "from IPython.display import IFrame\n", - "\n", - "IFrame(src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:44.184020Z", - "iopub.status.busy": "2024-05-15T18:41:44.183710Z", - "iopub.status.idle": "2024-05-15T18:41:46.543532Z", - "shell.execute_reply": "2024-05-15T18:41:46.542614Z" - } - }, - "outputs": [], - "source": [ - "linker.accuracy_analysis_from_labels_column(\n", - " \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:46.557696Z", - "iopub.status.busy": "2024-05-15T18:41:46.557395Z", - "iopub.status.idle": "2024-05-15T18:41:47.295019Z", - "shell.execute_reply": "2024-05-15T18:41:47.294474Z" - } - }, - "outputs": [], - "source": [ - "records = linker.prediction_errors_from_labels_column(\n", - " \"cluster\",\n", - " threshold=0.999,\n", - " include_false_negatives=False,\n", - " include_false_positives=True,\n", - ").as_record_dict()\n", - "linker.waterfall_chart(records)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-15T18:41:47.298555Z", - "iopub.status.busy": "2024-05-15T18:41:47.298310Z", - "iopub.status.idle": "2024-05-15T18:41:50.039196Z", - "shell.execute_reply": "2024-05-15T18:41:50.038400Z" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" } - }, - "outputs": [], - "source": [ - "# Some of the false negatives will be because they weren't detected by the blocking rules\n", - "records = linker.prediction_errors_from_labels_column(\n", - " \"cluster\",\n", - " threshold=0.5,\n", - " include_false_negatives=True,\n", - " include_false_positives=False,\n", - ").as_record_dict(limit=50)\n", - "\n", - "linker.waterfall_chart(records)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/docs/demos/tutorials/02_Exploratory_analysis.ipynb b/docs/demos/tutorials/02_Exploratory_analysis.ipynb index 96ca8b46ca..8639b0d256 100644 --- a/docs/demos/tutorials/02_Exploratory_analysis.ipynb +++ b/docs/demos/tutorials/02_Exploratory_analysis.ipynb @@ -38,10 +38,10 @@ "id": "09c3966a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:43:17.689119Z", - "iopub.status.busy": "2024-05-20T18:43:17.688731Z", - "iopub.status.idle": "2024-05-20T18:43:17.695621Z", - "shell.execute_reply": "2024-05-20T18:43:17.694607Z" + "iopub.execute_input": "2024-06-07T09:02:36.670538Z", + "iopub.status.busy": "2024-06-07T09:02:36.670013Z", + "iopub.status.idle": "2024-06-07T09:02:36.690046Z", + "shell.execute_reply": "2024-06-07T09:02:36.689361Z" } }, "outputs": [], @@ -56,10 +56,10 @@ "id": "ffceed65", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:43:17.700435Z", - "iopub.status.busy": "2024-05-20T18:43:17.700005Z", - "iopub.status.idle": "2024-05-20T18:43:21.396008Z", - "shell.execute_reply": "2024-05-20T18:43:21.394398Z" + "iopub.execute_input": "2024-06-07T09:02:36.693770Z", + "iopub.status.busy": "2024-06-07T09:02:36.693489Z", + "iopub.status.idle": "2024-06-07T09:02:38.568880Z", + "shell.execute_reply": "2024-06-07T09:02:38.568146Z" } }, "outputs": [ @@ -171,7 +171,7 @@ "source": [ "### Instantiate the linker\n", "\n", - "Most of Splink's core functionality can be accessed as methods on a linker object. For example, to make predictions, you would call `linker.predict()`.\n", + "Most of Splink's core functionality can be accessed as methods on a linker object. For example, to make predictions, you would call `linker.inference.predict()`.\n", "\n", "We therefore begin by instantiating the linker, passing in the data we wish to deduplicate.\n" ] @@ -182,10 +182,10 @@ "id": "8a1aa029", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:43:21.401790Z", - "iopub.status.busy": "2024-05-20T18:43:21.401303Z", - "iopub.status.idle": "2024-05-20T18:43:21.520430Z", - "shell.execute_reply": "2024-05-20T18:43:21.519221Z" + "iopub.execute_input": "2024-06-07T09:02:38.572909Z", + "iopub.status.busy": "2024-06-07T09:02:38.572612Z", + "iopub.status.idle": "2024-06-07T09:02:38.646815Z", + "shell.execute_reply": "2024-06-07T09:02:38.646283Z" } }, "outputs": [], @@ -220,10 +220,10 @@ "id": "6dae307c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:43:21.526661Z", - "iopub.status.busy": "2024-05-20T18:43:21.526244Z", - "iopub.status.idle": "2024-05-20T18:43:21.827456Z", - "shell.execute_reply": "2024-05-20T18:43:21.826651Z" + "iopub.execute_input": "2024-06-07T09:02:38.650279Z", + "iopub.status.busy": "2024-06-07T09:02:38.650040Z", + "iopub.status.idle": "2024-06-07T09:02:38.861459Z", + "shell.execute_reply": "2024-06-07T09:02:38.860952Z" } }, "outputs": [ @@ -232,23 +232,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ diff --git a/docs/demos/tutorials/03_Blocking.ipynb b/docs/demos/tutorials/03_Blocking.ipynb index d7854f0950..2ec90b9bd2 100644 --- a/docs/demos/tutorials/03_Blocking.ipynb +++ b/docs/demos/tutorials/03_Blocking.ipynb @@ -124,10 +124,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:45:37.145082Z", - "iopub.status.busy": "2024-05-20T18:45:37.144746Z", - "iopub.status.idle": "2024-05-20T18:45:37.161836Z", - "shell.execute_reply": "2024-05-20T18:45:37.160951Z" + "iopub.execute_input": "2024-06-07T09:02:41.813986Z", + "iopub.status.busy": "2024-06-07T09:02:41.813675Z", + "iopub.status.idle": "2024-06-07T09:02:41.818787Z", + "shell.execute_reply": "2024-06-07T09:02:41.818177Z" } }, "outputs": [], @@ -141,10 +141,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:45:37.167030Z", - "iopub.status.busy": "2024-05-20T18:45:37.166460Z", - "iopub.status.idle": "2024-05-20T18:45:39.143681Z", - "shell.execute_reply": "2024-05-20T18:45:39.143036Z" + "iopub.execute_input": "2024-06-07T09:02:41.821999Z", + "iopub.status.busy": "2024-06-07T09:02:41.821754Z", + "iopub.status.idle": "2024-06-07T09:02:43.323143Z", + "shell.execute_reply": "2024-06-07T09:02:43.322444Z" }, "tags": [] }, @@ -171,10 +171,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:45:39.147367Z", - "iopub.status.busy": "2024-05-20T18:45:39.146950Z", - "iopub.status.idle": "2024-05-20T18:45:39.458766Z", - "shell.execute_reply": "2024-05-20T18:45:39.457589Z" + "iopub.execute_input": "2024-06-07T09:02:43.327040Z", + "iopub.status.busy": "2024-06-07T09:02:43.326745Z", + "iopub.status.idle": "2024-06-07T09:02:43.595484Z", + "shell.execute_reply": "2024-06-07T09:02:43.594829Z" }, "tags": [] }, @@ -247,10 +247,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T18:45:39.504502Z", - "iopub.status.busy": "2024-05-20T18:45:39.504167Z", - "iopub.status.idle": "2024-05-20T18:45:39.756687Z", - "shell.execute_reply": "2024-05-20T18:45:39.756039Z" + "iopub.execute_input": "2024-06-07T09:02:43.600028Z", + "iopub.status.busy": "2024-06-07T09:02:43.599628Z", + "iopub.status.idle": "2024-06-07T09:02:43.828432Z", + "shell.execute_reply": "2024-06-07T09:02:43.827890Z" }, "tags": [] }, @@ -260,23 +260,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" ], "text/plain": [ diff --git a/docs/demos/tutorials/04_Estimating_model_parameters.ipynb b/docs/demos/tutorials/04_Estimating_model_parameters.ipynb index 7d09bf5da9..49a92fa897 100644 --- a/docs/demos/tutorials/04_Estimating_model_parameters.ipynb +++ b/docs/demos/tutorials/04_Estimating_model_parameters.ipynb @@ -106,10 +106,10 @@ "id": "9ceef6f1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:05.342047Z", - "iopub.status.busy": "2024-05-20T19:07:05.341702Z", - "iopub.status.idle": "2024-05-20T19:07:05.361927Z", - "shell.execute_reply": "2024-05-20T19:07:05.360830Z" + "iopub.execute_input": "2024-06-07T09:02:46.239817Z", + "iopub.status.busy": "2024-06-07T09:02:46.239448Z", + "iopub.status.idle": "2024-06-07T09:02:46.244716Z", + "shell.execute_reply": "2024-06-07T09:02:46.244029Z" } }, "outputs": [], @@ -124,10 +124,10 @@ "id": "aa6a9e30", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:05.367071Z", - "iopub.status.busy": "2024-05-20T19:07:05.366710Z", - "iopub.status.idle": "2024-05-20T19:07:07.120254Z", - "shell.execute_reply": "2024-05-20T19:07:07.119460Z" + "iopub.execute_input": "2024-06-07T09:02:46.248398Z", + "iopub.status.busy": "2024-06-07T09:02:46.248108Z", + "iopub.status.idle": "2024-06-07T09:02:47.649177Z", + "shell.execute_reply": "2024-06-07T09:02:47.648453Z" }, "tags": [] }, @@ -157,10 +157,10 @@ "id": "4b7159fb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.124601Z", - "iopub.status.busy": "2024-05-20T19:07:07.124275Z", - "iopub.status.idle": "2024-05-20T19:07:07.140860Z", - "shell.execute_reply": "2024-05-20T19:07:07.139974Z" + "iopub.execute_input": "2024-06-07T09:02:47.653241Z", + "iopub.status.busy": "2024-06-07T09:02:47.652946Z", + "iopub.status.idle": "2024-06-07T09:02:47.667819Z", + "shell.execute_reply": "2024-06-07T09:02:47.667228Z" }, "tags": [] }, @@ -200,10 +200,10 @@ "id": "bd6143e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.144985Z", - "iopub.status.busy": "2024-05-20T19:07:07.144681Z", - "iopub.status.idle": "2024-05-20T19:07:07.175908Z", - "shell.execute_reply": "2024-05-20T19:07:07.175137Z" + "iopub.execute_input": "2024-06-07T09:02:47.671318Z", + "iopub.status.busy": "2024-06-07T09:02:47.671046Z", + "iopub.status.idle": "2024-06-07T09:02:47.707750Z", + "shell.execute_reply": "2024-06-07T09:02:47.707104Z" }, "tags": [] }, @@ -246,10 +246,10 @@ "id": "0fa0611a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.179680Z", - "iopub.status.busy": "2024-05-20T19:07:07.179398Z", - "iopub.status.idle": "2024-05-20T19:07:07.297459Z", - "shell.execute_reply": "2024-05-20T19:07:07.296785Z" + "iopub.execute_input": "2024-06-07T09:02:47.711774Z", + "iopub.status.busy": "2024-06-07T09:02:47.711447Z", + "iopub.status.idle": "2024-06-07T09:02:47.834384Z", + "shell.execute_reply": "2024-06-07T09:02:47.833818Z" }, "tags": [] }, @@ -332,10 +332,10 @@ "id": "cbf92120", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.301055Z", - "iopub.status.busy": "2024-05-20T19:07:07.300814Z", - "iopub.status.idle": "2024-05-20T19:07:07.441083Z", - "shell.execute_reply": "2024-05-20T19:07:07.440589Z" + "iopub.execute_input": "2024-06-07T09:02:47.837910Z", + "iopub.status.busy": "2024-06-07T09:02:47.837638Z", + "iopub.status.idle": "2024-06-07T09:02:47.986455Z", + "shell.execute_reply": "2024-06-07T09:02:47.985936Z" }, "tags": [] }, @@ -357,7 +357,7 @@ " \"l.email = r.email\",\n", "]\n", "\n", - "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" + "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)" ] }, { @@ -386,10 +386,10 @@ "id": "b8d49e7a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.444298Z", - "iopub.status.busy": "2024-05-20T19:07:07.444048Z", - "iopub.status.idle": "2024-05-20T19:07:07.830875Z", - "shell.execute_reply": "2024-05-20T19:07:07.830279Z" + "iopub.execute_input": "2024-06-07T09:02:47.989645Z", + "iopub.status.busy": "2024-06-07T09:02:47.989414Z", + "iopub.status.idle": "2024-06-07T09:02:48.397955Z", + "shell.execute_reply": "2024-06-07T09:02:48.396948Z" } }, "outputs": [ @@ -430,7 +430,7 @@ } ], "source": [ - "linker.estimate_u_using_random_sampling(max_pairs=1e6)" + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)" ] }, { @@ -481,10 +481,10 @@ "id": "098f0a40", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:07.833995Z", - "iopub.status.busy": "2024-05-20T19:07:07.833766Z", - "iopub.status.idle": "2024-05-20T19:07:08.412952Z", - "shell.execute_reply": "2024-05-20T19:07:08.412392Z" + "iopub.execute_input": "2024-06-07T09:02:48.401693Z", + "iopub.status.busy": "2024-06-07T09:02:48.401466Z", + "iopub.status.idle": "2024-06-07T09:02:48.931826Z", + "shell.execute_reply": "2024-06-07T09:02:48.931336Z" } }, "outputs": [ @@ -627,7 +627,7 @@ "source": [ "training_blocking_rule = block_on(\"first_name\", \"surname\")\n", "training_session_fname_sname = (\n", - " linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n", + " linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n", ")" ] }, @@ -647,10 +647,10 @@ "id": "ac8d3264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:08.415856Z", - "iopub.status.busy": "2024-05-20T19:07:08.415632Z", - "iopub.status.idle": "2024-05-20T19:07:09.376153Z", - "shell.execute_reply": "2024-05-20T19:07:09.375519Z" + "iopub.execute_input": "2024-06-07T09:02:48.934774Z", + "iopub.status.busy": "2024-06-07T09:02:48.934564Z", + "iopub.status.idle": "2024-06-07T09:02:49.904132Z", + "shell.execute_reply": "2024-06-07T09:02:49.903556Z" } }, "outputs": [ @@ -832,7 +832,7 @@ ], "source": [ "training_blocking_rule = block_on(\"dob\")\n", - "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n", + "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n", " training_blocking_rule\n", ")" ] @@ -863,10 +863,10 @@ "id": "3a1e15cc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-20T19:07:09.379360Z", - "iopub.status.busy": "2024-05-20T19:07:09.379104Z", - "iopub.status.idle": "2024-05-20T19:07:09.667771Z", - "shell.execute_reply": "2024-05-20T19:07:09.667214Z" + "iopub.execute_input": "2024-06-07T09:02:49.907368Z", + "iopub.status.busy": "2024-06-07T09:02:49.907142Z", + "iopub.status.idle": "2024-06-07T09:02:50.194366Z", + "shell.execute_reply": "2024-06-07T09:02:50.193774Z" } }, "outputs": [ @@ -875,23 +875,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "records_to_view = df_predictions.as_record_dict(limit=5)\n", - "linker.waterfall_chart(records_to_view, filter_nulls=False)" - ], - "outputs": [] + "linker.visualisations.waterfall_chart(records_to_view, filter_nulls=False)" + ] }, { "cell_type": "markdown", @@ -138,22 +229,45 @@ "id": "da85169c", "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:09:23.291425Z", - "iopub.status.busy": "2024-03-27T15:09:23.291204Z", - "iopub.status.idle": "2024-03-27T15:09:23.402967Z", - "shell.execute_reply": "2024-03-27T15:09:23.402274Z" + "iopub.execute_input": "2024-06-07T09:03:00.084660Z", + "iopub.status.busy": "2024-06-07T09:03:00.084445Z", + "iopub.status.idle": "2024-06-07T09:03:00.178870Z", + "shell.execute_reply": "2024-06-07T09:03:00.178202Z" }, "tags": [] }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "linker.comparison_viewer_dashboard(df_predictions, \"scv.html\", overwrite=True)\n", + "linker.visualisations.comparison_viewer_dashboard(df_predictions, \"scv.html\", overwrite=True)\n", "\n", "# You can view the scv.html file in your browser, or inline in a notbook as follows\n", "from IPython.display import IFrame\n", "\n", "IFrame(src=\"./scv.html\", width=\"100%\", height=1200)" - ], - "outputs": [] + ] }, { "cell_type": "markdown", @@ -173,19 +287,64 @@ "id": "e2153d91", "metadata": { "execution": { - "iopub.execute_input": "2024-03-27T15:09:23.406978Z", - "iopub.status.busy": "2024-03-27T15:09:23.406680Z", - "iopub.status.idle": "2024-03-27T15:09:23.546021Z", - "shell.execute_reply": "2024-03-27T15:09:23.545342Z" + "iopub.execute_input": "2024-06-07T09:03:00.182711Z", + "iopub.status.busy": "2024-06-07T09:03:00.182424Z", + "iopub.status.idle": "2024-06-07T09:03:00.304287Z", + "shell.execute_reply": "2024-06-07T09:03:00.303577Z" }, "tags": [] }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 1, root rows count 11\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 2, root rows count 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Completed iteration 3, root rows count 0\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "df_clusters = linker.cluster_pairwise_predictions_at_threshold(\n", + "df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n", " df_predictions, threshold_match_probability=0.5\n", ")\n", "\n", - "linker.cluster_studio_dashboard(\n", + "linker.visualisations.cluster_studio_dashboard(\n", " df_predictions,\n", " df_clusters,\n", " \"cluster_studio.html\",\n", @@ -197,8 +356,7 @@ "from IPython.display import IFrame\n", "\n", "IFrame(src=\"./cluster_studio.html\", width=\"100%\", height=1200)" - ], - "outputs": [] + ] }, { "cell_type": "markdown", diff --git a/docs/demos/tutorials/07_Evaluation.ipynb b/docs/demos/tutorials/07_Evaluation.ipynb index c76e54771d..5ff268f28e 100644 --- a/docs/demos/tutorials/07_Evaluation.ipynb +++ b/docs/demos/tutorials/07_Evaluation.ipynb @@ -25,10 +25,10 @@ "id": "e08e61e5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-21T07:21:55.640839Z", - "iopub.status.busy": "2024-05-21T07:21:55.640514Z", - "iopub.status.idle": "2024-05-21T07:21:55.645741Z", - "shell.execute_reply": "2024-05-21T07:21:55.645048Z" + "iopub.execute_input": "2024-06-07T09:03:02.636698Z", + "iopub.status.busy": "2024-06-07T09:03:02.636146Z", + "iopub.status.idle": "2024-06-07T09:03:02.641116Z", + "shell.execute_reply": "2024-06-07T09:03:02.640495Z" } }, "outputs": [], @@ -43,10 +43,10 @@ "id": "fb29d421", "metadata": { "execution": { - "iopub.execute_input": "2024-05-21T07:21:55.649770Z", - "iopub.status.busy": "2024-05-21T07:21:55.649454Z", - "iopub.status.idle": "2024-05-21T07:21:56.892270Z", - "shell.execute_reply": "2024-05-21T07:21:56.891356Z" + "iopub.execute_input": "2024-06-07T09:03:02.644758Z", + "iopub.status.busy": "2024-06-07T09:03:02.644471Z", + "iopub.status.idle": "2024-06-07T09:03:04.108590Z", + "shell.execute_reply": "2024-06-07T09:03:04.107484Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "id": "f88cc1c1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-21T07:21:56.896214Z", - "iopub.status.busy": "2024-05-21T07:21:56.895903Z", - "iopub.status.idle": "2024-05-21T07:21:57.351010Z", - "shell.execute_reply": "2024-05-21T07:21:57.349962Z" + "iopub.execute_input": "2024-06-07T09:03:04.112617Z", + "iopub.status.busy": "2024-06-07T09:03:04.112305Z", + "iopub.status.idle": "2024-06-07T09:03:04.739121Z", + "shell.execute_reply": "2024-06-07T09:03:04.738560Z" } }, "outputs": [], @@ -94,7 +94,7 @@ "\n", "\n", "linker = Linker(df, \"../demo_settings/saved_model_from_demo.json\", database_api=DuckDBAPI())\n", - "df_predictions = linker.predict(threshold_match_probability=0.1)\n", + "df_predictions = linker.inference.predict(threshold_match_probability=0.1)\n", "\n", "\n" ] @@ -117,10 +117,10 @@ "id": "bbfdc70c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-21T07:21:57.356084Z", - "iopub.status.busy": "2024-05-21T07:21:57.355734Z", - "iopub.status.idle": "2024-05-21T07:21:57.384328Z", - "shell.execute_reply": "2024-05-21T07:21:57.383470Z" + "iopub.execute_input": "2024-06-07T09:03:04.742455Z", + "iopub.status.busy": "2024-06-07T09:03:04.742207Z", + "iopub.status.idle": "2024-06-07T09:03:04.766096Z", + "shell.execute_reply": "2024-06-07T09:03:04.765427Z" } }, "outputs": [ @@ -222,7 +222,7 @@ "from splink.datasets import splink_dataset_labels\n", "\n", "df_labels = splink_dataset_labels.fake_1000_labels\n", - "labels_table = linker.register_labels_table(df_labels)\n", + "labels_table = linker.table_management.register_labels_table(df_labels)\n", "df_labels.head(5)" ] }, @@ -242,10 +242,10 @@ "id": "e83d9645", "metadata": { "execution": { - "iopub.execute_input": "2024-05-21T07:21:57.388865Z", - "iopub.status.busy": "2024-05-21T07:21:57.388508Z", - "iopub.status.idle": "2024-05-21T07:21:59.126981Z", - "shell.execute_reply": "2024-05-21T07:21:59.126236Z" + "iopub.execute_input": "2024-06-07T09:03:04.769834Z", + "iopub.status.busy": "2024-06-07T09:03:04.769551Z", + "iopub.status.idle": "2024-06-07T09:03:06.065158Z", + "shell.execute_reply": "2024-06-07T09:03:06.064618Z" } }, "outputs": [ @@ -254,23 +254,23 @@ "text/html": [ "\n", "\n", - "
\n", + "
\n", "" + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dff4221dc36c464c978c1877320e69a8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "from splink.duckdb.linker import DuckDBLinker\n", + "import splink.duckdb.comparison_library as cl\n", + "import splink.duckdb.comparison_template_library as ctl\n", + "\n", + "import logging\n", + "logging.getLogger(\"splink\").setLevel(logging.WARNING)\n", + "from splink.datasets import splink_datasets\n", + "\n", + "df = splink_datasets.fake_1000\n", + "\n", + "settings = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"comparisons\": [\n", + " ctl.name_comparison(\"first_name\", ),\n", + " ctl.name_comparison(\"surname\"),\n", + " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n", + " cl.exact_match(\"city\", term_frequency_adjustments=True),\n", + " cl.levenshtein_at_thresholds(\"email\", 2),\n", + " ],\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " \"l.first_name = r.first_name\",\n", + " \"l.surname = r.surname\",\n", + " ],\n", + " \"retain_matching_columns\": True,\n", + " \"retain_intermediate_calculation_columns\": True,\n", + "}\n", + "\n", + "linker = DuckDBLinker(df, settings, set_up_basic_logging=False)\n", + "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n", + "for rule in [\"l.first_name = r.first_name\", \"l.email = r.email\"]:\n", + " linker.training.estimate_parameters_using_expectation_maximisation(rule)" ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "import altair as alt\n", - "\n", - "df = pd.DataFrame(records)\n", - "\n", - "# Need a unique name for each comparison level - easier to create in pandas than altair\n", - "df[\"cl_id\"] = df[\"comparison_name\"] + \"_\" + \\\n", - " df[\"comparison_vector_value\"].astype(\"str\")\n", - "\n", - "# Simple start - bar chart with x, y and color encodings\n", - "alt.Chart(df).mark_bar().encode(\n", - " y=\"cl_id\",\n", - " x=\"log2_bayes_factor\",\n", - " color=\"comparison_name\"\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sort bars, edit axes/titles\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate data for chart" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Take linker object and extract complete settings dict\n", + "records = linker._settings_obj._parameters_as_detailed_records\n", + "\n", + "cols_to_keep = [\n", + " \"comparison_name\",\n", + " \"sql_condition\",\n", + " \"label_for_charts\",\n", + " \"m_probability\",\n", + " \"u_probability\",\n", + " \"bayes_factor\",\n", + " \"log2_bayes_factor\",\n", + " \"comparison_vector_value\"\n", + "]\n", + "\n", + "# Keep useful information for a match weights chart\n", + "records = [{k: r[k] for k in cols_to_keep}\n", + " for r in records \n", + " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "??? note \"records\"\n", + " ```py \n", + " [\n", + " {'comparison_name': 'first_name',\n", + " 'sql_condition': '\"first_name_l\" = \"first_name_r\"',\n", + " 'label_for_charts': 'Exact match first_name',\n", + " 'm_probability': 0.5018941916173814,\n", + " 'u_probability': 0.0057935713975033705,\n", + " 'bayes_factor': 86.62949969575988,\n", + " 'log2_bayes_factor': 6.436786480320881,\n", + " 'comparison_vector_value': 4},\n", + " {'comparison_name': 'first_name',\n", + " 'sql_condition': 'damerau_levenshtein(\"first_name_l\", \"first_name_r\") <= 1',\n", + " 'label_for_charts': 'Damerau_levenshtein <= 1',\n", + " 'm_probability': 0.19595791797531015,\n", + " 'u_probability': 0.00236614327345483,\n", + " 'bayes_factor': 82.81743551783742,\n", + " 'log2_bayes_factor': 6.371862624533329,\n", + " 'comparison_vector_value': 3},\n", + " {'comparison_name': 'first_name',\n", + " 'sql_condition': 'jaro_winkler_similarity(\"first_name_l\", \"first_name_r\") >= 0.9',\n", + " 'label_for_charts': 'Jaro_winkler_similarity >= 0.9',\n", + " 'm_probability': 0.045985303626033085,\n", + " 'u_probability': 0.001296159366708712,\n", + " 'bayes_factor': 35.47812468678278,\n", + " 'log2_bayes_factor': 5.148857848140163,\n", + " 'comparison_vector_value': 2},\n", + " {'comparison_name': 'first_name',\n", + " 'sql_condition': 'jaro_winkler_similarity(\"first_name_l\", \"first_name_r\") >= 0.8',\n", + " 'label_for_charts': 'Jaro_winkler_similarity >= 0.8',\n", + " 'm_probability': 0.06396730257493154,\n", + " 'u_probability': 0.005677583982137938,\n", + " 'bayes_factor': 11.266641370022352,\n", + " 'log2_bayes_factor': 3.493985601438375,\n", + " 'comparison_vector_value': 1},\n", + " {'comparison_name': 'first_name',\n", + " 'sql_condition': 'ELSE',\n", + " 'label_for_charts': 'All other comparisons',\n", + " 'm_probability': 0.19219528420634394,\n", + " 'u_probability': 0.9848665419801952,\n", + " 'bayes_factor': 0.19514855669673956,\n", + " 'log2_bayes_factor': -2.357355302129234,\n", + " 'comparison_vector_value': 0},\n", + " {'comparison_name': 'surname',\n", + " 'sql_condition': '\"surname_l\" = \"surname_r\"',\n", + " 'label_for_charts': 'Exact match surname',\n", + " 'm_probability': 0.5527050424941531,\n", + " 'u_probability': 0.004889975550122249,\n", + " 'bayes_factor': 113.02818119005431,\n", + " 'log2_bayes_factor': 6.820538712806792,\n", + " 'comparison_vector_value': 4},\n", + " {'comparison_name': 'surname',\n", + " 'sql_condition': 'damerau_levenshtein(\"surname_l\", \"surname_r\") <= 1',\n", + " 'label_for_charts': 'Damerau_levenshtein <= 1',\n", + " 'm_probability': 0.22212752320956386,\n", + " 'u_probability': 0.0027554624131641246,\n", + " 'bayes_factor': 80.61351958508214,\n", + " 'log2_bayes_factor': 6.332949906378981,\n", + " 'comparison_vector_value': 3},\n", + " {'comparison_name': 'surname',\n", + " 'sql_condition': 'jaro_winkler_similarity(\"surname_l\", \"surname_r\") >= 0.9',\n", + " 'label_for_charts': 'Jaro_winkler_similarity >= 0.9',\n", + " 'm_probability': 0.0490149338194711,\n", + " 'u_probability': 0.0010090425738347498,\n", + " 'bayes_factor': 48.57568460485815,\n", + " 'log2_bayes_factor': 5.602162423566203,\n", + " 'comparison_vector_value': 2},\n", + " {'comparison_name': 'surname',\n", + " 'sql_condition': 'jaro_winkler_similarity(\"surname_l\", \"surname_r\") >= 0.8',\n", + " 'label_for_charts': 'Jaro_winkler_similarity >= 0.8',\n", + " 'm_probability': 0.05001678986356945,\n", + " 'u_probability': 0.003710768991942586,\n", + " 'bayes_factor': 13.478820689774516,\n", + " 'log2_bayes_factor': 3.752622370380284,\n", + " 'comparison_vector_value': 1},\n", + " {'comparison_name': 'surname',\n", + " 'sql_condition': 'ELSE',\n", + " 'label_for_charts': 'All other comparisons',\n", + " 'm_probability': 0.1261357106132424,\n", + " 'u_probability': 0.9876347504709363,\n", + " 'bayes_factor': 0.1277149376863226,\n", + " 'log2_bayes_factor': -2.969000820703079,\n", + " 'comparison_vector_value': 0},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': '\"dob_l\" = \"dob_r\"',\n", + " 'label_for_charts': 'Exact match',\n", + " 'm_probability': 0.41383785481447766,\n", + " 'u_probability': 0.0017477477477477479,\n", + " 'bayes_factor': 236.78351486807742,\n", + " 'log2_bayes_factor': 7.887424832202931,\n", + " 'comparison_vector_value': 5},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': 'damerau_levenshtein(\"dob_l\", \"dob_r\") <= 1',\n", + " 'label_for_charts': 'Damerau_levenshtein <= 1',\n", + " 'm_probability': 0.10806341031654734,\n", + " 'u_probability': 0.0016436436436436436,\n", + " 'bayes_factor': 65.74625268345359,\n", + " 'log2_bayes_factor': 6.038836762842662,\n", + " 'comparison_vector_value': 4},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': '\\n abs(date_diff(\\'month\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 1\\n ',\n", + " 'label_for_charts': 'Within 1 month',\n", + " 'm_probability': 0.11300938544779224,\n", + " 'u_probability': 0.003833833833833834,\n", + " 'bayes_factor': 29.476860590690453,\n", + " 'log2_bayes_factor': 4.881510974428093,\n", + " 'comparison_vector_value': 3},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': '\\n abs(date_diff(\\'year\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 1\\n ',\n", + " 'label_for_charts': 'Within 1 year',\n", + " 'm_probability': 0.17200656922328977,\n", + " 'u_probability': 0.05062662662662663,\n", + " 'bayes_factor': 3.397551460259144,\n", + " 'log2_bayes_factor': 1.7644954026183992,\n", + " 'comparison_vector_value': 2},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': '\\n abs(date_diff(\\'year\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 10\\n ',\n", + " 'label_for_charts': 'Within 10 years',\n", + " 'm_probability': 0.19035523041792068,\n", + " 'u_probability': 0.3037037037037037,\n", + " 'bayes_factor': 0.6267794172297388,\n", + " 'log2_bayes_factor': -0.6739702908716182,\n", + " 'comparison_vector_value': 1},\n", + " {'comparison_name': 'dob',\n", + " 'sql_condition': 'ELSE',\n", + " 'label_for_charts': 'All other comparisons',\n", + " 'm_probability': 0.002727549779972325,\n", + " 'u_probability': 0.6384444444444445,\n", + " 'bayes_factor': 0.004272180302776005,\n", + " 'log2_bayes_factor': -7.870811748958801,\n", + " 'comparison_vector_value': 0},\n", + " {'comparison_name': 'city',\n", + " 'sql_condition': '\"city_l\" = \"city_r\"',\n", + " 'label_for_charts': 'Exact match',\n", + " 'm_probability': 0.6013808934279701,\n", + " 'u_probability': 0.0551475711801453,\n", + " 'bayes_factor': 10.904938885948333,\n", + " 'log2_bayes_factor': 3.4469097796586596,\n", + " 'comparison_vector_value': 1},\n", + " {'comparison_name': 'city',\n", + " 'sql_condition': 'ELSE',\n", + " 'label_for_charts': 'All other comparisons',\n", + " 'm_probability': 0.3986191065720299,\n", + " 'u_probability': 0.9448524288198547,\n", + " 'bayes_factor': 0.42188504195296994,\n", + " 'log2_bayes_factor': -1.2450781575619725,\n", + " 'comparison_vector_value': 0},\n", + " {'comparison_name': 'email',\n", + " 'sql_condition': '\"email_l\" = \"email_r\"',\n", + " 'label_for_charts': 'Exact match',\n", + " 'm_probability': 0.5914840252879943,\n", + " 'u_probability': 0.0021938713143283602,\n", + " 'bayes_factor': 269.6074384240141,\n", + " 'log2_bayes_factor': 8.07471649055784,\n", + " 'comparison_vector_value': 2},\n", + " {'comparison_name': 'email',\n", + " 'sql_condition': 'levenshtein(\"email_l\", \"email_r\") <= 2',\n", + " 'label_for_charts': 'Levenshtein <= 2',\n", + " 'm_probability': 0.3019669634613132,\n", + " 'u_probability': 0.0013542812658830492,\n", + " 'bayes_factor': 222.9721189153553,\n", + " 'log2_bayes_factor': 7.800719512398763,\n", + " 'comparison_vector_value': 1},\n", + " {'comparison_name': 'email',\n", + " 'sql_condition': 'ELSE',\n", + " 'label_for_charts': 'All other comparisons',\n", + " 'm_probability': 0.10654901125069259,\n", + " 'u_probability': 0.9964518474197885,\n", + " 'bayes_factor': 0.10692840956298139,\n", + " 'log2_bayes_factor': -3.225282884575804,\n", + " 'comparison_vector_value': 0}\n", + " ]\n", + " ```" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a chart template\n", + "\n", + "### Build prototype chart in Altair" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "import pandas as pd\n", + "import altair as alt\n", + "\n", + "df = pd.DataFrame(records)\n", + "\n", + "# Need a unique name for each comparison level - easier to create in pandas than altair\n", + "df[\"cl_id\"] = df[\"comparison_name\"] + \"_\" + \\\n", + " df[\"comparison_vector_value\"].astype(\"str\")\n", + "\n", + "# Simple start - bar chart with x, y and color encodings\n", + "alt.Chart(df).mark_bar().encode(\n", + " y=\"cl_id\",\n", + " x=\"log2_bayes_factor\",\n", + " color=\"comparison_name\"\n", + ")" ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "alt.Chart(df).mark_bar().encode(\n", - " y=alt.Y(\"cl_id\", \n", - " sort=\"-x\", \n", - " title=\"Comparison level\"\n", - " ),\n", - " x=alt.X(\"log2_bayes_factor\", \n", - " title=\"Comparison level match weight = log2(m/u)\", \n", - " scale=alt.Scale(domain=[-10,10])\n", - " ),\n", - " color=\"comparison_name\"\n", - ").properties(\n", - " title=\"New Chart - WOO!\"\n", - ").configure_view(\n", - " step=15\n", - ")\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Add tooltip" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Sort bars, edit axes/titles\n" + ] + }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.Chart(...)" + "source": [ + "alt.Chart(df).mark_bar().encode(\n", + " y=alt.Y(\"cl_id\", \n", + " sort=\"-x\", \n", + " title=\"Comparison level\"\n", + " ),\n", + " x=alt.X(\"log2_bayes_factor\", \n", + " title=\"Comparison level match weight = log2(m/u)\", \n", + " scale=alt.Scale(domain=[-10,10])\n", + " ),\n", + " color=\"comparison_name\"\n", + ").properties(\n", + " title=\"New Chart - WOO!\"\n", + ").configure_view(\n", + " step=15\n", + ")\n" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "alt.Chart(df).mark_bar().encode(\n", - " y=alt.Y(\"cl_id\",\n", - " sort=\"-x\",\n", - " title=\"Comparison level\"\n", - " ),\n", - " x=alt.X(\"log2_bayes_factor\",\n", - " title=\"Comparison level match weight = log2(m/u)\",\n", - " scale=alt.Scale(domain=[-10, 10])\n", - " ),\n", - " color=\"comparison_name\",\n", - " tooltip=[\n", - " \"comparison_name\", \n", - " \"label_for_charts\", \n", - " \"sql_condition\",\n", - " \"m_probability\",\n", - " \"u_probability\",\n", - " \"bayes_factor\",\n", - " \"log2_bayes_factor\"\n", - " ]\n", - ").properties(\n", - " title=\"New Chart - WOO!\"\n", - ").configure_view(\n", - " step=15\n", - ")\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Add text layer\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Add tooltip" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.Chart(...)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.LayerChart(...)" + "source": [ + "alt.Chart(df).mark_bar().encode(\n", + " y=alt.Y(\"cl_id\",\n", + " sort=\"-x\",\n", + " title=\"Comparison level\"\n", + " ),\n", + " x=alt.X(\"log2_bayes_factor\",\n", + " title=\"Comparison level match weight = log2(m/u)\",\n", + " scale=alt.Scale(domain=[-10, 10])\n", + " ),\n", + " color=\"comparison_name\",\n", + " tooltip=[\n", + " \"comparison_name\", \n", + " \"label_for_charts\", \n", + " \"sql_condition\",\n", + " \"m_probability\",\n", + " \"u_probability\",\n", + " \"bayes_factor\",\n", + " \"log2_bayes_factor\"\n", + " ]\n", + ").properties(\n", + " title=\"New Chart - WOO!\"\n", + ").configure_view(\n", + " step=15\n", + ")\n" ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Create base chart with shared data and encodings (mark type not specified)\n", - "base = alt.Chart(df).encode(\n", - " y=alt.Y(\"cl_id\",\n", - " sort=\"-x\",\n", - " title=\"Comparison level\"\n", - " ),\n", - " x=alt.X(\"log2_bayes_factor\",\n", - " title=\"Comparison level match weight = log2(m/u)\",\n", - " scale=alt.Scale(domain=[-10, 10])\n", - " ),\n", - " tooltip=[\n", - " \"comparison_name\",\n", - " \"label_for_charts\",\n", - " \"sql_condition\",\n", - " \"m_probability\",\n", - " \"u_probability\",\n", - " \"bayes_factor\",\n", - " \"log2_bayes_factor\"\n", - " ]\n", - ")\n", - "\n", - "# Build bar chart from base (color legend made redundant by text labels)\n", - "bar = base.mark_bar().encode(\n", - " color=alt.Color(\"comparison_name\", legend=None)\n", - ")\n", - "\n", - "# Build text layer from base\n", - "text = base.mark_text(dx=0, align=\"right\").encode(\n", - " text=\"comparison_name\"\n", - ")\n", - "\n", - "# Final layered chart\n", - "chart = bar + text\n", - "\n", - "# Add global config\n", - "chart.resolve_axis(\n", - " y=\"shared\", \n", - " x=\"shared\"\n", - ").properties(\n", - " title=\"New Chart - WOO!\"\n", - ").configure_view(\n", - " step=15\n", - ")\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sometimes things go wrong in Altair and it's not clear why or how to fix it. If the docs and Stack Overflow don't have a solution, the answer is usually that Altair is making decisions under the hood about the Vega-Lite schema that are out of your control.\n", - "\n", - "In this example, the sorting of the y-axis is broken when layering charts. If we show `bar` and `text` side-by-side, you can see they work as expected, but the sorting is broken in the layering process." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Add text layer\n" + ] + }, { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "" + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.LayerChart(...)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "alt.HConcatChart(...)" + "source": [ + "# Create base chart with shared data and encodings (mark type not specified)\n", + "base = alt.Chart(df).encode(\n", + " y=alt.Y(\"cl_id\",\n", + " sort=\"-x\",\n", + " title=\"Comparison level\"\n", + " ),\n", + " x=alt.X(\"log2_bayes_factor\",\n", + " title=\"Comparison level match weight = log2(m/u)\",\n", + " scale=alt.Scale(domain=[-10, 10])\n", + " ),\n", + " tooltip=[\n", + " \"comparison_name\",\n", + " \"label_for_charts\",\n", + " \"sql_condition\",\n", + " \"m_probability\",\n", + " \"u_probability\",\n", + " \"bayes_factor\",\n", + " \"log2_bayes_factor\"\n", + " ]\n", + ")\n", + "\n", + "# Build bar chart from base (color legend made redundant by text labels)\n", + "bar = base.mark_bar().encode(\n", + " color=alt.Color(\"comparison_name\", legend=None)\n", + ")\n", + "\n", + "# Build text layer from base\n", + "text = base.mark_text(dx=0, align=\"right\").encode(\n", + " text=\"comparison_name\"\n", + ")\n", + "\n", + "# Final layered chart\n", + "chart = bar + text\n", + "\n", + "# Add global config\n", + "chart.resolve_axis(\n", + " y=\"shared\", \n", + " x=\"shared\"\n", + ").properties(\n", + " title=\"New Chart - WOO!\"\n", + ").configure_view(\n", + " step=15\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sometimes things go wrong in Altair and it's not clear why or how to fix it. If the docs and Stack Overflow don't have a solution, the answer is usually that Altair is making decisions under the hood about the Vega-Lite schema that are out of your control.\n", + "\n", + "In this example, the sorting of the y-axis is broken when layering charts. If we show `bar` and `text` side-by-side, you can see they work as expected, but the sorting is broken in the layering process." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "" + ], + "text/plain": [ + "alt.HConcatChart(...)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bar | text" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once we get to this stage (or whenever you're comfortable), we can switch to Vega-Lite by exporting the JSON from our `chart` object, or opening the chart in the Vega-Lite editor.\n", + "\n", + "```py\n", + "chart.to_json()\n", + "```" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "??? note \"Chart JSON\"\n", + " ```json\n", + " {\n", + " \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.8.0.json\",\n", + " \"config\": {\n", + " \"view\": {\n", + " \"continuousHeight\": 300,\n", + " \"continuousWidth\": 300\n", + " }\n", + " },\n", + " \"data\": {\n", + " \"name\": \"data-3901c03d78701611834aa82ab7374cce\"\n", + " },\n", + " \"datasets\": {\n", + " \"data-3901c03d78701611834aa82ab7374cce\": [\n", + " {\n", + " \"bayes_factor\": 86.62949969575988,\n", + " \"cl_id\": \"first_name_4\",\n", + " \"comparison_name\": \"first_name\",\n", + " \"comparison_vector_value\": 4,\n", + " \"label_for_charts\": \"Exact match first_name\",\n", + " \"log2_bayes_factor\": 6.436786480320881,\n", + " \"m_probability\": 0.5018941916173814,\n", + " \"sql_condition\": \"\\\"first_name_l\\\" = \\\"first_name_r\\\"\",\n", + " \"u_probability\": 0.0057935713975033705\n", + " },\n", + " {\n", + " \"bayes_factor\": 82.81743551783742,\n", + " \"cl_id\": \"first_name_3\",\n", + " \"comparison_name\": \"first_name\",\n", + " \"comparison_vector_value\": 3,\n", + " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", + " \"log2_bayes_factor\": 6.371862624533329,\n", + " \"m_probability\": 0.19595791797531015,\n", + " \"sql_condition\": \"damerau_levenshtein(\\\"first_name_l\\\", \\\"first_name_r\\\") <= 1\",\n", + " \"u_probability\": 0.00236614327345483\n", + " },\n", + " {\n", + " \"bayes_factor\": 35.47812468678278,\n", + " \"cl_id\": \"first_name_2\",\n", + " \"comparison_name\": \"first_name\",\n", + " \"comparison_vector_value\": 2,\n", + " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n", + " \"log2_bayes_factor\": 5.148857848140163,\n", + " \"m_probability\": 0.045985303626033085,\n", + " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.9\",\n", + " \"u_probability\": 0.001296159366708712\n", + " },\n", + " {\n", + " \"bayes_factor\": 11.266641370022352,\n", + " \"cl_id\": \"first_name_1\",\n", + " \"comparison_name\": \"first_name\",\n", + " \"comparison_vector_value\": 1,\n", + " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n", + " \"log2_bayes_factor\": 3.493985601438375,\n", + " \"m_probability\": 0.06396730257493154,\n", + " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.8\",\n", + " \"u_probability\": 0.005677583982137938\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.19514855669673956,\n", + " \"cl_id\": \"first_name_0\",\n", + " \"comparison_name\": \"first_name\",\n", + " \"comparison_vector_value\": 0,\n", + " \"label_for_charts\": \"All other comparisons\",\n", + " \"log2_bayes_factor\": -2.357355302129234,\n", + " \"m_probability\": 0.19219528420634394,\n", + " \"sql_condition\": \"ELSE\",\n", + " \"u_probability\": 0.9848665419801952\n", + " },\n", + " {\n", + " \"bayes_factor\": 113.02818119005431,\n", + " \"cl_id\": \"surname_4\",\n", + " \"comparison_name\": \"surname\",\n", + " \"comparison_vector_value\": 4,\n", + " \"label_for_charts\": \"Exact match surname\",\n", + " \"log2_bayes_factor\": 6.820538712806792,\n", + " \"m_probability\": 0.5527050424941531,\n", + " \"sql_condition\": \"\\\"surname_l\\\" = \\\"surname_r\\\"\",\n", + " \"u_probability\": 0.004889975550122249\n", + " },\n", + " {\n", + " \"bayes_factor\": 80.61351958508214,\n", + " \"cl_id\": \"surname_3\",\n", + " \"comparison_name\": \"surname\",\n", + " \"comparison_vector_value\": 3,\n", + " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", + " \"log2_bayes_factor\": 6.332949906378981,\n", + " \"m_probability\": 0.22212752320956386,\n", + " \"sql_condition\": \"damerau_levenshtein(\\\"surname_l\\\", \\\"surname_r\\\") <= 1\",\n", + " \"u_probability\": 0.0027554624131641246\n", + " },\n", + " {\n", + " \"bayes_factor\": 48.57568460485815,\n", + " \"cl_id\": \"surname_2\",\n", + " \"comparison_name\": \"surname\",\n", + " \"comparison_vector_value\": 2,\n", + " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n", + " \"log2_bayes_factor\": 5.602162423566203,\n", + " \"m_probability\": 0.0490149338194711,\n", + " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.9\",\n", + " \"u_probability\": 0.0010090425738347498\n", + " },\n", + " {\n", + " \"bayes_factor\": 13.478820689774516,\n", + " \"cl_id\": \"surname_1\",\n", + " \"comparison_name\": \"surname\",\n", + " \"comparison_vector_value\": 1,\n", + " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n", + " \"log2_bayes_factor\": 3.752622370380284,\n", + " \"m_probability\": 0.05001678986356945,\n", + " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.8\",\n", + " \"u_probability\": 0.003710768991942586\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.1277149376863226,\n", + " \"cl_id\": \"surname_0\",\n", + " \"comparison_name\": \"surname\",\n", + " \"comparison_vector_value\": 0,\n", + " \"label_for_charts\": \"All other comparisons\",\n", + " \"log2_bayes_factor\": -2.969000820703079,\n", + " \"m_probability\": 0.1261357106132424,\n", + " \"sql_condition\": \"ELSE\",\n", + " \"u_probability\": 0.9876347504709363\n", + " },\n", + " {\n", + " \"bayes_factor\": 236.78351486807742,\n", + " \"cl_id\": \"dob_5\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 5,\n", + " \"label_for_charts\": \"Exact match\",\n", + " \"log2_bayes_factor\": 7.887424832202931,\n", + " \"m_probability\": 0.41383785481447766,\n", + " \"sql_condition\": \"\\\"dob_l\\\" = \\\"dob_r\\\"\",\n", + " \"u_probability\": 0.0017477477477477479\n", + " },\n", + " {\n", + " \"bayes_factor\": 65.74625268345359,\n", + " \"cl_id\": \"dob_4\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 4,\n", + " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", + " \"log2_bayes_factor\": 6.038836762842662,\n", + " \"m_probability\": 0.10806341031654734,\n", + " \"sql_condition\": \"damerau_levenshtein(\\\"dob_l\\\", \\\"dob_r\\\") <= 1\",\n", + " \"u_probability\": 0.0016436436436436436\n", + " },\n", + " {\n", + " \"bayes_factor\": 29.476860590690453,\n", + " \"cl_id\": \"dob_3\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 3,\n", + " \"label_for_charts\": \"Within 1 month\",\n", + " \"log2_bayes_factor\": 4.881510974428093,\n", + " \"m_probability\": 0.11300938544779224,\n", + " \"sql_condition\": \"\\n abs(date_diff('month',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n", + " \"u_probability\": 0.003833833833833834\n", + " },\n", + " {\n", + " \"bayes_factor\": 3.397551460259144,\n", + " \"cl_id\": \"dob_2\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 2,\n", + " \"label_for_charts\": \"Within 1 year\",\n", + " \"log2_bayes_factor\": 1.7644954026183992,\n", + " \"m_probability\": 0.17200656922328977,\n", + " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n", + " \"u_probability\": 0.05062662662662663\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.6267794172297388,\n", + " \"cl_id\": \"dob_1\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 1,\n", + " \"label_for_charts\": \"Within 10 years\",\n", + " \"log2_bayes_factor\": -0.6739702908716182,\n", + " \"m_probability\": 0.19035523041792068,\n", + " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 10\\n \",\n", + " \"u_probability\": 0.3037037037037037\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.004272180302776005,\n", + " \"cl_id\": \"dob_0\",\n", + " \"comparison_name\": \"dob\",\n", + " \"comparison_vector_value\": 0,\n", + " \"label_for_charts\": \"All other comparisons\",\n", + " \"log2_bayes_factor\": -7.870811748958801,\n", + " \"m_probability\": 0.002727549779972325,\n", + " \"sql_condition\": \"ELSE\",\n", + " \"u_probability\": 0.6384444444444445\n", + " },\n", + " {\n", + " \"bayes_factor\": 10.904938885948333,\n", + " \"cl_id\": \"city_1\",\n", + " \"comparison_name\": \"city\",\n", + " \"comparison_vector_value\": 1,\n", + " \"label_for_charts\": \"Exact match\",\n", + " \"log2_bayes_factor\": 3.4469097796586596,\n", + " \"m_probability\": 0.6013808934279701,\n", + " \"sql_condition\": \"\\\"city_l\\\" = \\\"city_r\\\"\",\n", + " \"u_probability\": 0.0551475711801453\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.42188504195296994,\n", + " \"cl_id\": \"city_0\",\n", + " \"comparison_name\": \"city\",\n", + " \"comparison_vector_value\": 0,\n", + " \"label_for_charts\": \"All other comparisons\",\n", + " \"log2_bayes_factor\": -1.2450781575619725,\n", + " \"m_probability\": 0.3986191065720299,\n", + " \"sql_condition\": \"ELSE\",\n", + " \"u_probability\": 0.9448524288198547\n", + " },\n", + " {\n", + " \"bayes_factor\": 269.6074384240141,\n", + " \"cl_id\": \"email_2\",\n", + " \"comparison_name\": \"email\",\n", + " \"comparison_vector_value\": 2,\n", + " \"label_for_charts\": \"Exact match\",\n", + " \"log2_bayes_factor\": 8.07471649055784,\n", + " \"m_probability\": 0.5914840252879943,\n", + " \"sql_condition\": \"\\\"email_l\\\" = \\\"email_r\\\"\",\n", + " \"u_probability\": 0.0021938713143283602\n", + " },\n", + " {\n", + " \"bayes_factor\": 222.9721189153553,\n", + " \"cl_id\": \"email_1\",\n", + " \"comparison_name\": \"email\",\n", + " \"comparison_vector_value\": 1,\n", + " \"label_for_charts\": \"Levenshtein <= 2\",\n", + " \"log2_bayes_factor\": 7.800719512398763,\n", + " \"m_probability\": 0.3019669634613132,\n", + " \"sql_condition\": \"levenshtein(\\\"email_l\\\", \\\"email_r\\\") <= 2\",\n", + " \"u_probability\": 0.0013542812658830492\n", + " },\n", + " {\n", + " \"bayes_factor\": 0.10692840956298139,\n", + " \"cl_id\": \"email_0\",\n", + " \"comparison_name\": \"email\",\n", + " \"comparison_vector_value\": 0,\n", + " \"label_for_charts\": \"All other comparisons\",\n", + " \"log2_bayes_factor\": -3.225282884575804,\n", + " \"m_probability\": 0.10654901125069259,\n", + " \"sql_condition\": \"ELSE\",\n", + " \"u_probability\": 0.9964518474197885\n", + " }\n", + " ]\n", + " },\n", + " \"layer\": [\n", + " {\n", + " \"encoding\": {\n", + " \"color\": {\n", + " \"field\": \"comparison_name\",\n", + " \"legend\": null,\n", + " \"type\": \"nominal\"\n", + " },\n", + " \"tooltip\": [\n", + " {\n", + " \"field\": \"comparison_name\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"label_for_charts\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"sql_condition\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"m_probability\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"u_probability\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"bayes_factor\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"log2_bayes_factor\",\n", + " \"type\": \"quantitative\"\n", + " }\n", + " ],\n", + " \"x\": {\n", + " \"field\": \"log2_bayes_factor\",\n", + " \"scale\": {\n", + " \"domain\": [\n", + " -10,\n", + " 10\n", + " ]\n", + " },\n", + " \"title\": \"Comparison level match weight = log2(m/u)\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " \"y\": {\n", + " \"field\": \"cl_id\",\n", + " \"sort\": \"-x\",\n", + " \"title\": \"Comparison level\",\n", + " \"type\": \"nominal\"\n", + " }\n", + " },\n", + " \"mark\": {\n", + " \"type\": \"bar\"\n", + " }\n", + " },\n", + " {\n", + " \"encoding\": {\n", + " \"text\": {\n", + " \"field\": \"comparison_name\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " \"tooltip\": [\n", + " {\n", + " \"field\": \"comparison_name\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"label_for_charts\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"sql_condition\",\n", + " \"type\": \"nominal\"\n", + " },\n", + " {\n", + " \"field\": \"m_probability\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"u_probability\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"bayes_factor\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " {\n", + " \"field\": \"log2_bayes_factor\",\n", + " \"type\": \"quantitative\"\n", + " }\n", + " ],\n", + " \"x\": {\n", + " \"field\": \"log2_bayes_factor\",\n", + " \"scale\": {\n", + " \"domain\": [\n", + " -10,\n", + " 10\n", + " ]\n", + " },\n", + " \"title\": \"Comparison level match weight = log2(m/u)\",\n", + " \"type\": \"quantitative\"\n", + " },\n", + " \"y\": {\n", + " \"field\": \"cl_id\",\n", + " \"sort\": \"-x\",\n", + " \"title\": \"Comparison level\",\n", + " \"type\": \"nominal\"\n", + " }\n", + " },\n", + " \"mark\": {\n", + " \"align\": \"right\",\n", + " \"dx\": 0,\n", + " \"type\": \"text\"\n", + " }\n", + " }\n", + " ]\n", + " }\n", + " ```\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Edit in Vega-Lite\n", + "\n", + "Opening the JSON from the above chart in [Vega-Lite editor](https://vega.github.io/editor/#/url/vega-lite/N4IgJAzgxgFgpgWwIYgFwhgF0wBwqgegIDc4BzJAOjIEtMYBXAI0poHsDp5kTykBaADZ04JAKyUAHJQAMlAFYQ2AOxAAaEFBUAzGmTShiNOAHcDmlZhrKGbBhAAScPVjQBmGTI1blVm3YgAdRoAE3p3TwBfSI0QpEwUVFBlJAQ4NBA4hP4kADYoSQAWJABOKG0ARiQZKAB2JAAmKBCPKCgqmTgmiorJMRAYzPikCDhMCHMsgTyC4rLK6rrG5tb26q723v7UAG1QJiQATzgIAH1tJChMNgAnNElcylyGksKSktySsVqxEslJbyCU6hDK6G4QTCnFJpU6FdQWBA4JA3GhKZRQ1LpdBgiEYtLwrSI5GolSnUhXW5kpCCBhYwoaQRIJhwIHaSmwZHjDIAUQAHpdMAACZCYWCCnGQ6HpBlsMgNU4HY5nC4Uu6oR6FNy5WoPQqSGRuBoyf4VDQIU44G5sA5MGjCTCHNByMQyXqvColCq5Cq1NySCr0kAQACOQJ8ITo7FU6AAOiAJXi4KdBHHBQBeQVxhNS043OPwhgWq02u10R2oOSeb4lNzfCpuEo-A1uWoyMQxfZHE7nAW3e4NKQ+zViMQ+yQtwoNQHAkKgmjgyWY05uAlsIkotGJucLrfeNdIjek8nXG5UmlYtwMpks87smCciboAAimJuSELgjgpGUECwzmUgoADwZhU8KCLK8qKt2Konmgjwtr0zzPIUYhuGhLxmkW1pMqWDpOpQHq-NWPqNqhFSumIGghmGKgRlYKgZHEaRvh+X5wD+f7WAAFFm864jmKbqJm8Z8YuMJ5iAACUQEgQWWElva5aVjIDRat6moNL6KF6m4HYgFByq9mqtaUIUOoVA0hS5A8OqaQCmhAiC2KiYmpwNKu64kuiUrbvxmIeQeXlknAqpnrSaBTiAjLMqyd4PhkABSyJsKcJjWAA1p+p4QDQCB2sSDqCgAfBmcglGBEEKl2hmqmgEgBv83xFP6hSurkl4gOalrYbain4TIKF-KhBpIc2xqUUGoanOGkYMeg8jJalGVZacOV5YyKIOjxIk7gJcZqMJ2ZLhJ0klYKZVyd1Cllv1rovN6vxqa2ki1BZekGT2tWoD0lANLk-2FPWrYqapYiRVAjmzs5u1LqBe6eZuPnQ35+Lw4Fm7HpSxDUuF31XjFt6nhyNxcugSVWktyiZXA2W5flm2HMVpVSBVcpVUqn2wagbimTWQ25K6mrjj8mFXThfUVrI7UfL6KnfG8bgVGIgbUdNtGzdGIALRTaVUyta302W21HTCgkHbxMPiXGp3M5Il3FuLN2S1W2o-OOfwNEDNaSO91Wc32kuEQ1I7-TLDZiLk05OTtKNJjIAXEoj-nI2J0oIujR4hSeYVYl4UXXrFRP3iTj4gAAgoIgiCmw9A04KhIZz+rOQX7MEB-wA61r6I4eJ7LyqYGXUO71TtyB6ntfA0RRGu1mqvFRU0zfRmvcgAMgAyty9s9bhSmUH8er-crHr6oRDS+xzbdqj0PMqf6-oelWmqmg5M4ZBADA3DmcJo4npJI0GT+Plf6HnRJjU82NzxoEDNFG8bIi7xXQHyAUwp4hig-l-fyMo2YfSvnBKQRpUIvQsvqbUJRIpDx3hLZ0YNWwuknG8QGZEF40WUHRKMGQ4wYL2iAdMwluHHXzBoQsYsR54WdgNf47wfgjjug0SyJQL7QSMvcOQ3payET6MaT2gYIZv3QAImEK4QFBQAYYtODc-5gKzljHGF58ZwLiiXDIL5mLvmTGxDimB-wyUFHDKKlVcEqPVJQdCrx3gyHajqP4L9KHXXEXIeRfcfiqSNF8dqDwWFqzYRrRir53Gfm-L+bx3EuFAKXGbfh5SrZSV8f4kRw9d63U0iOKyll6xekBpZXISiapcz1JQb4EcigCz1GIf0E09HR3MW5BOoCtwGOqRY-cVjgqhUgbjSKsDC7TWLqTEA5MUq62prTdaBVGZnQutglul9gkSAFp7ZCoN-pGg6nEx2CTZBvEFjWP0HozI9CyUvDh81FrHP1nTDaRsymYNNvtKpsKkwnSZudfe294l708ORGQJQBoNG+H6NwZk3g+zUJ2W5X16ymR1JIGekhGy1BQl6KOUNAGItOP4yx8yzFLLmUFcBOc0Av22YTXZiCDlguWjTVakLzkorkHba57NlFfR5ik54qlWx+jvoPeSHzMUujatEh4tZPgoSBerZeGRtZHKlacw2W0YU8PNmynMyLLks2EXqsRmKDSvRkLUay7x-n4oeL0-2aox6aVegrQNJr5GR1ftMpZpx44mKTviRZiK+UYxsRAuxToHE7OJvsiuVca7wBuPXFZoCJhKqCV9Du+9PieG0QGg0AaSii0adQgif16x1kifWSylkLU5KtUgjeW8vWiKaZLP4gaiVNjMjirUukyX6VbsE1SjwdQaMPvqWojLwaQ0YtaU4-R03-2Tpka0ObM7rILagCaIr4FiucUg-kVxUGihgM3ZVfSA61CkC9Bh455EqRrLE71c65CA0JTqZWLUzKBsTarYFc0QBxhCOewSfDsPnokui-Vt0hxHpQxR8jtRFEbobVzXIEhGXPDBtZIlqFfgsrPUwWE97vI3pw0wXjazs4bLpEW0VJbS6uJpgUzxxSfHAT8f+ujAdHgGn+FqQNU9JwvO7VQ0eBFjSRKJeRRWDGzJErHewzDTEZOsSKZxZQ20BPJnhQR7jyLFP1Jg72rFuRNT+a1AF4LWpw14NQC8al1kBa-EibilCHUpmspc8Y9OqyAECaEwK0T7hxNvskxkYI9BrB+OFJYP99at1fUKCBpW5FGyFEnPqGsemMX4Rvp4b2ysUPkNHZNVh1nNYxgAoKUbY3xuCiZBALiWQkwRm0NoLiAByBA5WltqAhDcHAVg0jOdw-tYbE2jtjaWwAUgAJr8FOwgK7IQluSQ25gLbO24B7Y8wdkbx2Jtncu9d2793JLSS84d47xGfW3UJZD8cUOiVheCTzBsMiAwPN+AGXRp70Aufclevjmbb2CZx8J2xUCIt5acfsorMASsVEFMcZEymqtcwqJQQNjWvitX7e7chrWSOB1qEaSJEdeuGnpUeqzuTYyfa+5Npg03ZunHm4tpbdObjrc29t3Kr33OufUCD6XJ2LtXZu6du7D31cvbe7mD7+vxs-aN-9wHQOQJ64m2D2DsgXRIS939L367yUqq5mov6R73T85eL6f4nHMfns5TW0x-G72E+y0+4VBcJN7NLpT6nMhadwGRHWgJODGftzUb6RskHjSvW9LSnn4PA64trGDDwgNqN0vFxOrDUuvtTZm-EObNAFvLZV2rp7Gvdva7Ni7-Xdu-sm-u4957mvLcSTUFP6XM-jem8B3UmQa-Rtu97R4FsfqT-H5bHDr6ylJz896B26NAs2xR-x6moTGXE9pfmcnknedX3k9LmW6uWuKtLlLyAvcCIvClLmfgYDF6Y0HoRlelcZU+Wvd3TwTSFpN4EPRsVJCadDS1EFEANeTeA-AzDJRrcgig8g9sWjYva+MqAab2RqV4aHRLDHTQMsDlV-G9KAG6JPPNQVPGfOAmfLDPHkL9IUEUWABnSAgOHmRrFtBlD4cZBjD4FA3tAWesfUelIlTScvF+PA8dAguMHgh0HXfDdg0wojGdHtAzNsUcMyOsW-AMVCC-QPUyT2RqAaM+D4d4dHfRCww4F-QnABEwx0Pgx9b-MnBBD9cuSuQAytatBGFQMAwJWgtAfgZnSyF0cyIZb0bAiad5OvOQBsB4D0ciBjfnSDLtfrbJQbHkKdEgz5V4MZEdE0IaMyVwgOP6EoJ4ANIWBhQWF+JLDIRAJAO0WZYIm9UYu0LLfgnLUnIQxxaI-ZZBb9SQirQvG5APAOaQPoqvb5EcHUXVWdXtVHPUDnMGF6XwjqAwuo2MEAaYoEPDDMOMR4q3EARo31CeP0V6RWDSccB5TotUJJfeG-N0JWRvVg-wt42PJI3HLEB45AGY8IkTFPKI99fZVeOTRzXxbHTYgDCNNAGAzwV6L4CyEoxdNQgzDwD0UOWedRYddvAgwpdieTUpREsYp4tzDk8YzzDMPEhpfTT5LFWsJrCyBjDTBg8+GgmQyNQzT4bTHFCOF4f0BsJ-N4tND-ePPHR42YiI3GH-NPEQ8VAAitOuEAtEFIiA7YtUfgHmeRS4qeIoIZfUY4mwz5co5WXFHofFOLfFao24iXQgho6woUved4fzUcIoRlD0GldsAAXUGEZGODVD2AeOUC0AjGUH0CSAsHAjVFAF0BZFZQtOvVRiinIHYihhsErg0AdBwAROUDXGsGpAGDrLYDYEECsBwDQDTKLMEBLLjwzTTnrMbObJSEEDbMLOMAHIyF-2WIL1HIyCbLygnKnJEmLPfkXnwIYjrMOAbOXPHNbL0n7NZUKKaT3IPPQGDAYCQF8DoHiBoFIHXNPIyEFLa0vIRJvLvKsASCsGfJPJnNZRUzuE-IyG-PvL-KfPSEAs3PQHAK2MA1ApACXOvNvMgsfIAvjI0F5HMFfPgtSNlPhGgGpCxFABwyROjB2AyK8HIkTLrLoE-AyAAGEhyVBBQWSq51jBQTBnAyAsA+EEKuIEACAGBJJ4RUKQAILfzMKYKNByxpy4Kk1ZwqJbhMAMh+BcKGLMAmL0BWK4SOK2JJywL0AVyWzJzogzRkR0pzBJKDg7hLLQB2JMzrAczQBvFeR1Lcz8KtThyJL9yxzVzjz2zOzuzezFLZz0BSz4T-KryQAzK1zYLIrFji1RCTL4qjyLKN0fLAyrV0qErgqIqzyfNeCUKArwL0KZL-y5Kiq3ySq8J0rpKHzqqXygKMgQLYqvzKrmroLWqlKEKCS8FGruqoKsKcK8K2qCLrSkLiKoBSLJg1wxiqKaK1A6LBhfzdKQB9LG5DLSAuK0EYAeK+KBKMwhKRKxLOqKqfyeqAL5KJqlLhjVKSYNKtKULGKETtqrFdqWRLrTLMqBhBhkAbgbLczqQ9BNYUR+L1LYhcKKx0qPL1LohEygA), it is now behaving as intended, with both bar and text layers sorted by match weight.\n", + "\n", + "If the chart is working as intended, there is only one step required before saving the JSON file - removing data from the template schema.\n", + "\n", + "The data appears as follows with a dictionary of all included `datasets` by name, and then each chart referencing the `data` it uses by name:\n", + "\n", + "```\n", + "\"data\": {\"name\": \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\"},\n", + "\"datasets\": {\n", + " \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\": [\n", + "\n", + " ...\n", + "\n", + " ]\n", + "},\n", + "```\n", + "\n", + "Where only one dataset is required, this is equivalent to:\n", + "```\n", + "\"data\": {\"values\": [...]}\n", + "```\n", + "\n", + "After removing the data references, the template can be saved in Splink as `splink/files/chart_defs/my_new_chart.json`" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Combine the chart dataset and template\n", + "\n", + "Putting all of the above together, Splink needs definitions for the methods that generate the chart and the data behind it (these can be separate or performed by the same function if relatively simple).\n", + "\n", + "### Chart definition\n", + "\n", + "In [`splink/charts.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/charts.py) we can add a new function to populate the chart definition with the provided data:\n", + "\n", + "```python\n", + "def my_new_chart(records, as_dict=False):\n", + " chart_path = \"my_new_chart.json\"\n", + " chart = load_chart_definition(chart_path)\n", + "\n", + " chart[\"data\"][\"values\"] = records\n", + " return altair_or_json(chart, as_dict=as_dict)\n", + "```\n", + "\n", + ">**Note** - only the data is being added to a fixed chart definition here. Other elements of the chart spec can be changed by editing the `chart` dictionary in the same way. \n", + ">\n", + "> For example, if you wanted to add a `color_scheme` argument to replace the default scheme (\"tableau10\"), this function could include the line: `chart[\"layer\"][0][\"encoding\"][\"color\"][\"scale\"][\"scheme\"] = color_scheme`\n", + "\n", + "### Chart method\n", + "\n", + "Then we can add a method to the linker in [`splink/linker.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/linker.py) so the chart can be generated by `linker.my_new_chart()`:\n", + "\n", + "```python\n", + "from .charts import my_new_chart\n", + "\n", + "...\n", + "\n", + "class Linker:\n", + "\n", + " ...\n", + "\n", + " def my_new_chart(self):\n", + " \n", + " # Take linker object and extract complete settings dict\n", + " records = self._settings_obj._parameters_as_detailed_records\n", + "\n", + " cols_to_keep = [\n", + " \"comparison_name\",\n", + " \"sql_condition\",\n", + " \"label_for_charts\",\n", + " \"m_probability\",\n", + " \"u_probability\",\n", + " \"bayes_factor\",\n", + " \"log2_bayes_factor\",\n", + " \"comparison_vector_value\"\n", + " ]\n", + "\n", + " # Keep useful information for a match weights chart\n", + " records = [{k: r[k] for k in cols_to_keep}\n", + " for r in records \n", + " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n", + "\n", + " return my_new_chart(records)\n", + "\n", + "```\n", + "\n", + "\n", + "## Previous new chart PRs\n", + "\n", + "Real-life Splink chart additions, for reference:\n", + "\n", + "- [Term frequency adjustment chart](https://github.com/moj-analytical-services/splink/pull/1226)\n", + "- [Completeness (multi-dataset) chart](https://github.com/moj-analytical-services/splink/pull/669)\n", + "- [Cumulative blocking rule chart](https://github.com/moj-analytical-services/splink/pull/660)\n", + "- [Unlinkables chart](https://github.com/moj-analytical-services/splink/pull/277)\n", + "- [Missingness chart](https://github.com/moj-analytical-services/splink/pull/277)\n", + "- [Waterfall chart](https://github.com/moj-analytical-services/splink/pull/181)" ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "bar | text" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once we get to this stage (or whenever you're comfortable), we can switch to Vega-Lite by exporting the JSON from our `chart` object, or opening the chart in the Vega-Lite editor.\n", - "\n", - "```py\n", - "chart.to_json()\n", - "```" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "??? note \"Chart JSON\"\n", - " ```json\n", - " {\n", - " \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.8.0.json\",\n", - " \"config\": {\n", - " \"view\": {\n", - " \"continuousHeight\": 300,\n", - " \"continuousWidth\": 300\n", - " }\n", - " },\n", - " \"data\": {\n", - " \"name\": \"data-3901c03d78701611834aa82ab7374cce\"\n", - " },\n", - " \"datasets\": {\n", - " \"data-3901c03d78701611834aa82ab7374cce\": [\n", - " {\n", - " \"bayes_factor\": 86.62949969575988,\n", - " \"cl_id\": \"first_name_4\",\n", - " \"comparison_name\": \"first_name\",\n", - " \"comparison_vector_value\": 4,\n", - " \"label_for_charts\": \"Exact match first_name\",\n", - " \"log2_bayes_factor\": 6.436786480320881,\n", - " \"m_probability\": 0.5018941916173814,\n", - " \"sql_condition\": \"\\\"first_name_l\\\" = \\\"first_name_r\\\"\",\n", - " \"u_probability\": 0.0057935713975033705\n", - " },\n", - " {\n", - " \"bayes_factor\": 82.81743551783742,\n", - " \"cl_id\": \"first_name_3\",\n", - " \"comparison_name\": \"first_name\",\n", - " \"comparison_vector_value\": 3,\n", - " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", - " \"log2_bayes_factor\": 6.371862624533329,\n", - " \"m_probability\": 0.19595791797531015,\n", - " \"sql_condition\": \"damerau_levenshtein(\\\"first_name_l\\\", \\\"first_name_r\\\") <= 1\",\n", - " \"u_probability\": 0.00236614327345483\n", - " },\n", - " {\n", - " \"bayes_factor\": 35.47812468678278,\n", - " \"cl_id\": \"first_name_2\",\n", - " \"comparison_name\": \"first_name\",\n", - " \"comparison_vector_value\": 2,\n", - " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n", - " \"log2_bayes_factor\": 5.148857848140163,\n", - " \"m_probability\": 0.045985303626033085,\n", - " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.9\",\n", - " \"u_probability\": 0.001296159366708712\n", - " },\n", - " {\n", - " \"bayes_factor\": 11.266641370022352,\n", - " \"cl_id\": \"first_name_1\",\n", - " \"comparison_name\": \"first_name\",\n", - " \"comparison_vector_value\": 1,\n", - " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n", - " \"log2_bayes_factor\": 3.493985601438375,\n", - " \"m_probability\": 0.06396730257493154,\n", - " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.8\",\n", - " \"u_probability\": 0.005677583982137938\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.19514855669673956,\n", - " \"cl_id\": \"first_name_0\",\n", - " \"comparison_name\": \"first_name\",\n", - " \"comparison_vector_value\": 0,\n", - " \"label_for_charts\": \"All other comparisons\",\n", - " \"log2_bayes_factor\": -2.357355302129234,\n", - " \"m_probability\": 0.19219528420634394,\n", - " \"sql_condition\": \"ELSE\",\n", - " \"u_probability\": 0.9848665419801952\n", - " },\n", - " {\n", - " \"bayes_factor\": 113.02818119005431,\n", - " \"cl_id\": \"surname_4\",\n", - " \"comparison_name\": \"surname\",\n", - " \"comparison_vector_value\": 4,\n", - " \"label_for_charts\": \"Exact match surname\",\n", - " \"log2_bayes_factor\": 6.820538712806792,\n", - " \"m_probability\": 0.5527050424941531,\n", - " \"sql_condition\": \"\\\"surname_l\\\" = \\\"surname_r\\\"\",\n", - " \"u_probability\": 0.004889975550122249\n", - " },\n", - " {\n", - " \"bayes_factor\": 80.61351958508214,\n", - " \"cl_id\": \"surname_3\",\n", - " \"comparison_name\": \"surname\",\n", - " \"comparison_vector_value\": 3,\n", - " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", - " \"log2_bayes_factor\": 6.332949906378981,\n", - " \"m_probability\": 0.22212752320956386,\n", - " \"sql_condition\": \"damerau_levenshtein(\\\"surname_l\\\", \\\"surname_r\\\") <= 1\",\n", - " \"u_probability\": 0.0027554624131641246\n", - " },\n", - " {\n", - " \"bayes_factor\": 48.57568460485815,\n", - " \"cl_id\": \"surname_2\",\n", - " \"comparison_name\": \"surname\",\n", - " \"comparison_vector_value\": 2,\n", - " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n", - " \"log2_bayes_factor\": 5.602162423566203,\n", - " \"m_probability\": 0.0490149338194711,\n", - " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.9\",\n", - " \"u_probability\": 0.0010090425738347498\n", - " },\n", - " {\n", - " \"bayes_factor\": 13.478820689774516,\n", - " \"cl_id\": \"surname_1\",\n", - " \"comparison_name\": \"surname\",\n", - " \"comparison_vector_value\": 1,\n", - " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n", - " \"log2_bayes_factor\": 3.752622370380284,\n", - " \"m_probability\": 0.05001678986356945,\n", - " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.8\",\n", - " \"u_probability\": 0.003710768991942586\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.1277149376863226,\n", - " \"cl_id\": \"surname_0\",\n", - " \"comparison_name\": \"surname\",\n", - " \"comparison_vector_value\": 0,\n", - " \"label_for_charts\": \"All other comparisons\",\n", - " \"log2_bayes_factor\": -2.969000820703079,\n", - " \"m_probability\": 0.1261357106132424,\n", - " \"sql_condition\": \"ELSE\",\n", - " \"u_probability\": 0.9876347504709363\n", - " },\n", - " {\n", - " \"bayes_factor\": 236.78351486807742,\n", - " \"cl_id\": \"dob_5\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 5,\n", - " \"label_for_charts\": \"Exact match\",\n", - " \"log2_bayes_factor\": 7.887424832202931,\n", - " \"m_probability\": 0.41383785481447766,\n", - " \"sql_condition\": \"\\\"dob_l\\\" = \\\"dob_r\\\"\",\n", - " \"u_probability\": 0.0017477477477477479\n", - " },\n", - " {\n", - " \"bayes_factor\": 65.74625268345359,\n", - " \"cl_id\": \"dob_4\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 4,\n", - " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n", - " \"log2_bayes_factor\": 6.038836762842662,\n", - " \"m_probability\": 0.10806341031654734,\n", - " \"sql_condition\": \"damerau_levenshtein(\\\"dob_l\\\", \\\"dob_r\\\") <= 1\",\n", - " \"u_probability\": 0.0016436436436436436\n", - " },\n", - " {\n", - " \"bayes_factor\": 29.476860590690453,\n", - " \"cl_id\": \"dob_3\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 3,\n", - " \"label_for_charts\": \"Within 1 month\",\n", - " \"log2_bayes_factor\": 4.881510974428093,\n", - " \"m_probability\": 0.11300938544779224,\n", - " \"sql_condition\": \"\\n abs(date_diff('month',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n", - " \"u_probability\": 0.003833833833833834\n", - " },\n", - " {\n", - " \"bayes_factor\": 3.397551460259144,\n", - " \"cl_id\": \"dob_2\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 2,\n", - " \"label_for_charts\": \"Within 1 year\",\n", - " \"log2_bayes_factor\": 1.7644954026183992,\n", - " \"m_probability\": 0.17200656922328977,\n", - " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n", - " \"u_probability\": 0.05062662662662663\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.6267794172297388,\n", - " \"cl_id\": \"dob_1\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 1,\n", - " \"label_for_charts\": \"Within 10 years\",\n", - " \"log2_bayes_factor\": -0.6739702908716182,\n", - " \"m_probability\": 0.19035523041792068,\n", - " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 10\\n \",\n", - " \"u_probability\": 0.3037037037037037\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.004272180302776005,\n", - " \"cl_id\": \"dob_0\",\n", - " \"comparison_name\": \"dob\",\n", - " \"comparison_vector_value\": 0,\n", - " \"label_for_charts\": \"All other comparisons\",\n", - " \"log2_bayes_factor\": -7.870811748958801,\n", - " \"m_probability\": 0.002727549779972325,\n", - " \"sql_condition\": \"ELSE\",\n", - " \"u_probability\": 0.6384444444444445\n", - " },\n", - " {\n", - " \"bayes_factor\": 10.904938885948333,\n", - " \"cl_id\": \"city_1\",\n", - " \"comparison_name\": \"city\",\n", - " \"comparison_vector_value\": 1,\n", - " \"label_for_charts\": \"Exact match\",\n", - " \"log2_bayes_factor\": 3.4469097796586596,\n", - " \"m_probability\": 0.6013808934279701,\n", - " \"sql_condition\": \"\\\"city_l\\\" = \\\"city_r\\\"\",\n", - " \"u_probability\": 0.0551475711801453\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.42188504195296994,\n", - " \"cl_id\": \"city_0\",\n", - " \"comparison_name\": \"city\",\n", - " \"comparison_vector_value\": 0,\n", - " \"label_for_charts\": \"All other comparisons\",\n", - " \"log2_bayes_factor\": -1.2450781575619725,\n", - " \"m_probability\": 0.3986191065720299,\n", - " \"sql_condition\": \"ELSE\",\n", - " \"u_probability\": 0.9448524288198547\n", - " },\n", - " {\n", - " \"bayes_factor\": 269.6074384240141,\n", - " \"cl_id\": \"email_2\",\n", - " \"comparison_name\": \"email\",\n", - " \"comparison_vector_value\": 2,\n", - " \"label_for_charts\": \"Exact match\",\n", - " \"log2_bayes_factor\": 8.07471649055784,\n", - " \"m_probability\": 0.5914840252879943,\n", - " \"sql_condition\": \"\\\"email_l\\\" = \\\"email_r\\\"\",\n", - " \"u_probability\": 0.0021938713143283602\n", - " },\n", - " {\n", - " \"bayes_factor\": 222.9721189153553,\n", - " \"cl_id\": \"email_1\",\n", - " \"comparison_name\": \"email\",\n", - " \"comparison_vector_value\": 1,\n", - " \"label_for_charts\": \"Levenshtein <= 2\",\n", - " \"log2_bayes_factor\": 7.800719512398763,\n", - " \"m_probability\": 0.3019669634613132,\n", - " \"sql_condition\": \"levenshtein(\\\"email_l\\\", \\\"email_r\\\") <= 2\",\n", - " \"u_probability\": 0.0013542812658830492\n", - " },\n", - " {\n", - " \"bayes_factor\": 0.10692840956298139,\n", - " \"cl_id\": \"email_0\",\n", - " \"comparison_name\": \"email\",\n", - " \"comparison_vector_value\": 0,\n", - " \"label_for_charts\": \"All other comparisons\",\n", - " \"log2_bayes_factor\": -3.225282884575804,\n", - " \"m_probability\": 0.10654901125069259,\n", - " \"sql_condition\": \"ELSE\",\n", - " \"u_probability\": 0.9964518474197885\n", - " }\n", - " ]\n", - " },\n", - " \"layer\": [\n", - " {\n", - " \"encoding\": {\n", - " \"color\": {\n", - " \"field\": \"comparison_name\",\n", - " \"legend\": null,\n", - " \"type\": \"nominal\"\n", - " },\n", - " \"tooltip\": [\n", - " {\n", - " \"field\": \"comparison_name\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"label_for_charts\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"sql_condition\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"m_probability\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"u_probability\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"bayes_factor\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"log2_bayes_factor\",\n", - " \"type\": \"quantitative\"\n", - " }\n", - " ],\n", - " \"x\": {\n", - " \"field\": \"log2_bayes_factor\",\n", - " \"scale\": {\n", - " \"domain\": [\n", - " -10,\n", - " 10\n", - " ]\n", - " },\n", - " \"title\": \"Comparison level match weight = log2(m/u)\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " \"y\": {\n", - " \"field\": \"cl_id\",\n", - " \"sort\": \"-x\",\n", - " \"title\": \"Comparison level\",\n", - " \"type\": \"nominal\"\n", - " }\n", - " },\n", - " \"mark\": {\n", - " \"type\": \"bar\"\n", - " }\n", - " },\n", - " {\n", - " \"encoding\": {\n", - " \"text\": {\n", - " \"field\": \"comparison_name\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " \"tooltip\": [\n", - " {\n", - " \"field\": \"comparison_name\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"label_for_charts\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"sql_condition\",\n", - " \"type\": \"nominal\"\n", - " },\n", - " {\n", - " \"field\": \"m_probability\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"u_probability\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"bayes_factor\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " {\n", - " \"field\": \"log2_bayes_factor\",\n", - " \"type\": \"quantitative\"\n", - " }\n", - " ],\n", - " \"x\": {\n", - " \"field\": \"log2_bayes_factor\",\n", - " \"scale\": {\n", - " \"domain\": [\n", - " -10,\n", - " 10\n", - " ]\n", - " },\n", - " \"title\": \"Comparison level match weight = log2(m/u)\",\n", - " \"type\": \"quantitative\"\n", - " },\n", - " \"y\": {\n", - " \"field\": \"cl_id\",\n", - " \"sort\": \"-x\",\n", - " \"title\": \"Comparison level\",\n", - " \"type\": \"nominal\"\n", - " }\n", - " },\n", - " \"mark\": {\n", - " \"align\": \"right\",\n", - " \"dx\": 0,\n", - " \"type\": \"text\"\n", - " }\n", - " }\n", - " ]\n", - " }\n", - " ```\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Edit in Vega-Lite\n", - "\n", - "Opening the JSON from the above chart in [Vega-Lite editor](https://vega.github.io/editor/#/url/vega-lite/N4IgJAzgxgFgpgWwIYgFwhgF0wBwqgegIDc4BzJAOjIEtMYBXAI0poHsDp5kTykBaADZ04JAKyUAHJQAMlAFYQ2AOxAAaEFBUAzGmTShiNOAHcDmlZhrKGbBhAAScPVjQBmGTI1blVm3YgAdRoAE3p3TwBfSI0QpEwUVFBlJAQ4NBA4hP4kADYoSQAWJABOKG0ARiQZKAB2JAAmKBCPKCgqmTgmiorJMRAYzPikCDhMCHMsgTyC4rLK6rrG5tb26q723v7UAG1QJiQATzgIAH1tJChMNgAnNElcylyGksKSktySsVqxEslJbyCU6hDK6G4QTCnFJpU6FdQWBA4JA3GhKZRQ1LpdBgiEYtLwrSI5GolSnUhXW5kpCCBhYwoaQRIJhwIHaSmwZHjDIAUQAHpdMAACZCYWCCnGQ6HpBlsMgNU4HY5nC4Uu6oR6FNy5WoPQqSGRuBoyf4VDQIU44G5sA5MGjCTCHNByMQyXqvColCq5Cq1NySCr0kAQACOQJ8ITo7FU6AAOiAJXi4KdBHHBQBeQVxhNS043OPwhgWq02u10R2oOSeb4lNzfCpuEo-A1uWoyMQxfZHE7nAW3e4NKQ+zViMQ+yQtwoNQHAkKgmjgyWY05uAlsIkotGJucLrfeNdIjek8nXG5UmlYtwMpks87smCciboAAimJuSELgjgpGUECwzmUgoADwZhU8KCLK8qKt2Konmgjwtr0zzPIUYhuGhLxmkW1pMqWDpOpQHq-NWPqNqhFSumIGghmGKgRlYKgZHEaRvh+X5wD+f7WAAFFm864jmKbqJm8Z8YuMJ5iAACUQEgQWWElva5aVjIDRat6moNL6KF6m4HYgFByq9mqtaUIUOoVA0hS5A8OqaQCmhAiC2KiYmpwNKu64kuiUrbvxmIeQeXlknAqpnrSaBTiAjLMqyd4PhkABSyJsKcJjWAA1p+p4QDQCB2sSDqCgAfBmcglGBEEKl2hmqmgEgBv83xFP6hSurkl4gOalrYbain4TIKF-KhBpIc2xqUUGoanOGkYMeg8jJalGVZacOV5YyKIOjxIk7gJcZqMJ2ZLhJ0klYKZVyd1Cllv1rovN6vxqa2ki1BZekGT2tWoD0lANLk-2FPWrYqapYiRVAjmzs5u1LqBe6eZuPnQ35+Lw4Fm7HpSxDUuF31XjFt6nhyNxcugSVWktyiZXA2W5flm2HMVpVSBVcpVUqn2wagbimTWQ25K6mrjj8mFXThfUVrI7UfL6KnfG8bgVGIgbUdNtGzdGIALRTaVUyta302W21HTCgkHbxMPiXGp3M5Il3FuLN2S1W2o-OOfwNEDNaSO91Wc32kuEQ1I7-TLDZiLk05OTtKNJjIAXEoj-nI2J0oIujR4hSeYVYl4UXXrFRP3iTj4gAAgoIgiCmw9A04KhIZz+rOQX7MEB-wA61r6I4eJ7LyqYGXUO71TtyB6ntfA0RRGu1mqvFRU0zfRmvcgAMgAyty9s9bhSmUH8er-crHr6oRDS+xzbdqj0PMqf6-oelWmqmg5M4ZBADA3DmcJo4npJI0GT+Plf6HnRJjU82NzxoEDNFG8bIi7xXQHyAUwp4hig-l-fyMo2YfSvnBKQRpUIvQsvqbUJRIpDx3hLZ0YNWwuknG8QGZEF40WUHRKMGQ4wYL2iAdMwluHHXzBoQsYsR54WdgNf47wfgjjug0SyJQL7QSMvcOQ3payET6MaT2gYIZv3QAImEK4QFBQAYYtODc-5gKzljHGF58ZwLiiXDIL5mLvmTGxDimB-wyUFHDKKlVcEqPVJQdCrx3gyHajqP4L9KHXXEXIeRfcfiqSNF8dqDwWFqzYRrRir53Gfm-L+bx3EuFAKXGbfh5SrZSV8f4kRw9d63U0iOKyll6xekBpZXISiapcz1JQb4EcigCz1GIf0E09HR3MW5BOoCtwGOqRY-cVjgqhUgbjSKsDC7TWLqTEA5MUq62prTdaBVGZnQutglul9gkSAFp7ZCoN-pGg6nEx2CTZBvEFjWP0HozI9CyUvDh81FrHP1nTDaRsymYNNvtKpsKkwnSZudfe294l708ORGQJQBoNG+H6NwZk3g+zUJ2W5X16ymR1JIGekhGy1BQl6KOUNAGItOP4yx8yzFLLmUFcBOc0Av22YTXZiCDlguWjTVakLzkorkHba57NlFfR5ik54qlWx+jvoPeSHzMUujatEh4tZPgoSBerZeGRtZHKlacw2W0YU8PNmynMyLLks2EXqsRmKDSvRkLUay7x-n4oeL0-2aox6aVegrQNJr5GR1ftMpZpx44mKTviRZiK+UYxsRAuxToHE7OJvsiuVca7wBuPXFZoCJhKqCV9Du+9PieG0QGg0AaSii0adQgif16x1kifWSylkLU5KtUgjeW8vWiKaZLP4gaiVNjMjirUukyX6VbsE1SjwdQaMPvqWojLwaQ0YtaU4-R03-2Tpka0ObM7rILagCaIr4FiucUg-kVxUGihgM3ZVfSA61CkC9Bh455EqRrLE71c65CA0JTqZWLUzKBsTarYFc0QBxhCOewSfDsPnokui-Vt0hxHpQxR8jtRFEbobVzXIEhGXPDBtZIlqFfgsrPUwWE97vI3pw0wXjazs4bLpEW0VJbS6uJpgUzxxSfHAT8f+ujAdHgGn+FqQNU9JwvO7VQ0eBFjSRKJeRRWDGzJErHewzDTEZOsSKZxZQ20BPJnhQR7jyLFP1Jg72rFuRNT+a1AF4LWpw14NQC8al1kBa-EibilCHUpmspc8Y9OqyAECaEwK0T7hxNvskxkYI9BrB+OFJYP99at1fUKCBpW5FGyFEnPqGsemMX4Rvp4b2ysUPkNHZNVh1nNYxgAoKUbY3xuCiZBALiWQkwRm0NoLiAByBA5WltqAhDcHAVg0jOdw-tYbE2jtjaWwAUgAJr8FOwgK7IQluSQ25gLbO24B7Y8wdkbx2Jtncu9d2793JLSS84d47xGfW3UJZD8cUOiVheCTzBsMiAwPN+AGXRp70Aufclevjmbb2CZx8J2xUCIt5acfsorMASsVEFMcZEymqtcwqJQQNjWvitX7e7chrWSOB1qEaSJEdeuGnpUeqzuTYyfa+5Npg03ZunHm4tpbdObjrc29t3Kr33OufUCD6XJ2LtXZu6du7D31cvbe7mD7+vxs-aN-9wHQOQJ64m2D2DsgXRIS939L367yUqq5mov6R73T85eL6f4nHMfns5TW0x-G72E+y0+4VBcJN7NLpT6nMhadwGRHWgJODGftzUb6RskHjSvW9LSnn4PA64trGDDwgNqN0vFxOrDUuvtTZm-EObNAFvLZV2rp7Gvdva7Ni7-Xdu-sm-u4957mvLcSTUFP6XM-jem8B3UmQa-Rtu97R4FsfqT-H5bHDr6ylJz896B26NAs2xR-x6moTGXE9pfmcnknedX3k9LmW6uWuKtLlLyAvcCIvClLmfgYDF6Y0HoRlelcZU+Wvd3TwTSFpN4EPRsVJCadDS1EFEANeTeA-AzDJRrcgig8g9sWjYva+MqAab2RqV4aHRLDHTQMsDlV-G9KAG6JPPNQVPGfOAmfLDPHkL9IUEUWABnSAgOHmRrFtBlD4cZBjD4FA3tAWesfUelIlTScvF+PA8dAguMHgh0HXfDdg0wojGdHtAzNsUcMyOsW-AMVCC-QPUyT2RqAaM+D4d4dHfRCww4F-QnABEwx0Pgx9b-MnBBD9cuSuQAytatBGFQMAwJWgtAfgZnSyF0cyIZb0bAiad5OvOQBsB4D0ciBjfnSDLtfrbJQbHkKdEgz5V4MZEdE0IaMyVwgOP6EoJ4ANIWBhQWF+JLDIRAJAO0WZYIm9UYu0LLfgnLUnIQxxaI-ZZBb9SQirQvG5APAOaQPoqvb5EcHUXVWdXtVHPUDnMGF6XwjqAwuo2MEAaYoEPDDMOMR4q3EARo31CeP0V6RWDSccB5TotUJJfeG-N0JWRvVg-wt42PJI3HLEB45AGY8IkTFPKI99fZVeOTRzXxbHTYgDCNNAGAzwV6L4CyEoxdNQgzDwD0UOWedRYddvAgwpdieTUpREsYp4tzDk8YzzDMPEhpfTT5LFWsJrCyBjDTBg8+GgmQyNQzT4bTHFCOF4f0BsJ-N4tND-ePPHR42YiI3GH-NPEQ8VAAitOuEAtEFIiA7YtUfgHmeRS4qeIoIZfUY4mwz5co5WXFHofFOLfFao24iXQgho6woUved4fzUcIoRlD0GldsAAXUGEZGODVD2AeOUC0AjGUH0CSAsHAjVFAF0BZFZQtOvVRiinIHYihhsErg0AdBwAROUDXGsGpAGDrLYDYEECsBwDQDTKLMEBLLjwzTTnrMbObJSEEDbMLOMAHIyF-2WIL1HIyCbLygnKnJEmLPfkXnwIYjrMOAbOXPHNbL0n7NZUKKaT3IPPQGDAYCQF8DoHiBoFIHXNPIyEFLa0vIRJvLvKsASCsGfJPJnNZRUzuE-IyG-PvL-KfPSEAs3PQHAK2MA1ApACXOvNvMgsfIAvjI0F5HMFfPgtSNlPhGgGpCxFABwyROjB2AyK8HIkTLrLoE-AyAAGEhyVBBQWSq51jBQTBnAyAsA+EEKuIEACAGBJJ4RUKQAILfzMKYKNByxpy4Kk1ZwqJbhMAMh+BcKGLMAmL0BWK4SOK2JJywL0AVyWzJzogzRkR0pzBJKDg7hLLQB2JMzrAczQBvFeR1Lcz8KtThyJL9yxzVzjz2zOzuzezFLZz0BSz4T-KryQAzK1zYLIrFji1RCTL4qjyLKN0fLAyrV0qErgqIqzyfNeCUKArwL0KZL-y5Kiq3ySq8J0rpKHzqqXygKMgQLYqvzKrmroLWqlKEKCS8FGruqoKsKcK8K2qCLrSkLiKoBSLJg1wxiqKaK1A6LBhfzdKQB9LG5DLSAuK0EYAeK+KBKMwhKRKxLOqKqfyeqAL5KJqlLhjVKSYNKtKULGKETtqrFdqWRLrTLMqBhBhkAbgbLczqQ9BNYUR+L1LYhcKKx0qPL1LohEygA), it is now behaving as intended, with both bar and text layers sorted by match weight.\n", - "\n", - "If the chart is working as intended, there is only one step required before saving the JSON file - removing data from the template schema.\n", - "\n", - "The data appears as follows with a dictionary of all included `datasets` by name, and then each chart referencing the `data` it uses by name:\n", - "\n", - "```\n", - "\"data\": {\"name\": \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\"},\n", - "\"datasets\": {\n", - " \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\": [\n", - "\n", - " ...\n", - "\n", - " ]\n", - "},\n", - "```\n", - "\n", - "Where only one dataset is required, this is equivalent to:\n", - "```\n", - "\"data\": {\"values\": [...]}\n", - "```\n", - "\n", - "After removing the data references, the template can be saved in Splink as `splink/files/chart_defs/my_new_chart.json`" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Combine the chart dataset and template\n", - "\n", - "Putting all of the above together, Splink needs definitions for the methods that generate the chart and the data behind it (these can be separate or performed by the same function if relatively simple).\n", - "\n", - "### Chart definition\n", - "\n", - "In [`splink/charts.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/charts.py) we can add a new function to populate the chart definition with the provided data:\n", - "\n", - "```python\n", - "def my_new_chart(records, as_dict=False):\n", - " chart_path = \"my_new_chart.json\"\n", - " chart = load_chart_definition(chart_path)\n", - "\n", - " chart[\"data\"][\"values\"] = records\n", - " return altair_or_json(chart, as_dict=as_dict)\n", - "```\n", - "\n", - ">**Note** - only the data is being added to a fixed chart definition here. Other elements of the chart spec can be changed by editing the `chart` dictionary in the same way. \n", - ">\n", - "> For example, if you wanted to add a `color_scheme` argument to replace the default scheme (\"tableau10\"), this function could include the line: `chart[\"layer\"][0][\"encoding\"][\"color\"][\"scale\"][\"scheme\"] = color_scheme`\n", - "\n", - "### Chart method\n", - "\n", - "Then we can add a method to the linker in [`splink/linker.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/linker.py) so the chart can be generated by `linker.my_new_chart()`:\n", - "\n", - "```python\n", - "from .charts import my_new_chart\n", - "\n", - "...\n", - "\n", - "class Linker:\n", - "\n", - " ...\n", - "\n", - " def my_new_chart(self):\n", - " \n", - " # Take linker object and extract complete settings dict\n", - " records = self._settings_obj._parameters_as_detailed_records\n", - "\n", - " cols_to_keep = [\n", - " \"comparison_name\",\n", - " \"sql_condition\",\n", - " \"label_for_charts\",\n", - " \"m_probability\",\n", - " \"u_probability\",\n", - " \"bayes_factor\",\n", - " \"log2_bayes_factor\",\n", - " \"comparison_vector_value\"\n", - " ]\n", - "\n", - " # Keep useful information for a match weights chart\n", - " records = [{k: r[k] for k in cols_to_keep}\n", - " for r in records \n", - " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n", - "\n", - " return my_new_chart(records)\n", - "\n", - "```\n", - "\n", - "\n", - "## Previous new chart PRs\n", - "\n", - "Real-life Splink chart additions, for reference:\n", - "\n", - "- [Term frequency adjustment chart](https://github.com/moj-analytical-services/splink/pull/1226)\n", - "- [Completeness (multi-dataset) chart](https://github.com/moj-analytical-services/splink/pull/669)\n", - "- [Cumulative blocking rule chart](https://github.com/moj-analytical-services/splink/pull/660)\n", - "- [Unlinkables chart](https://github.com/moj-analytical-services/splink/pull/277)\n", - "- [Missingness chart](https://github.com/moj-analytical-services/splink/pull/277)\n", - "- [Waterfall chart](https://github.com/moj-analytical-services/splink/pull/181)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb b/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb index 549e04bf26..6a5042413c 100644 --- a/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb +++ b/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb @@ -1,378 +1,378 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# How to compute graph metrics with Splink" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction to the `compute_graph_metrics()` method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To enable users to calculate a variety of graph metrics for their linked data, Splink provides the `compute_graph_metrics()` method.\n", - "\n", - "The method is called on the `linker` like so:\n", - "\n", - "```\n", - "linker.computer_graph_metrics(df_predict, df_clustered, threshold_match_probability=0.95)\n", - "```\n", - "with arguments\n", - "\n", - " Args:\n", - " df_predict (SplinkDataFrame): The results of `linker.predict()`\n", - " df_clustered (SplinkDataFrame): The outputs of\n", - " `linker.cluster_pairwise_predictions_at_threshold()`\n", - " threshold_match_probability (float): Filter the pairwise match predictions\n", - " to include only pairwise comparisons with a match_probability at or\n", - " above this threshold.\n", - "\n", - "!!! warning\n", - "\n", - " `threshold_match_probability` should be the same as the clustering threshold passed to `cluster_pairwise_predictions_at_threshold()`. If this information is available to Splink then it will be passed automatically, otherwise the user will have to provide it themselves and take care to ensure that threshold values align.\n", - "\n", - "The method generates tables containing graph metrics (for nodes, edges and clusters), and returns a data class of [Splink dataframes](../../../SplinkDataFrame.md). The individual Splink dataframes containing node, edge and cluster metrics can be accessed as follows:\n", - "\n", - "```\n", - "compute_graph_metrics.nodes for node metrics\n", - "compute_graph_metrics.edges for edge metrics\n", - "compute_graph_metrics.clusters for cluster metrics\n", - "```\n", - "\n", - "The metrics computed by `compute_graph_metrics()` include all those mentioned in the [Graph metrics](./graph_metrics.md) chapter, namely:\n", - "\n", - "* Node degree\n", - "* 'Is bridge'\n", - "* Cluster size\n", - "* Cluster density\n", - "* Cluster centrality\n", - "\n", - "All of these metrics are calculated by default. If you are unable to install the `igraph` package required for 'is bridge', this metric won't be calculated, however all other metrics will still be generated.\n", - "\n", - "This topic guide is a work in progress and we welcome any feedback." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Full code example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This code snippet computes graph metrics for a simple Splink dedupe model. A pandas dataframe of cluster metrics is displayed as the final output." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# How to compute graph metrics with Splink" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to the `compute_graph_metrics()` method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To enable users to calculate a variety of graph metrics for their linked data, Splink provides the `compute_graph_metrics()` method.\n", + "\n", + "The method is called on the `linker` like so:\n", + "\n", + "```\n", + "linker.computer_graph_metrics(df_predict, df_clustered, threshold_match_probability=0.95)\n", + "```\n", + "with arguments\n", + "\n", + " Args:\n", + " df_predict (SplinkDataFrame): The results of `linker.inference.predict()`\n", + " df_clustered (SplinkDataFrame): The outputs of\n", + " `linker.clustering.cluster_pairwise_predictions_at_threshold()`\n", + " threshold_match_probability (float): Filter the pairwise match predictions\n", + " to include only pairwise comparisons with a match_probability at or\n", + " above this threshold.\n", + "\n", + "!!! warning\n", + "\n", + " `threshold_match_probability` should be the same as the clustering threshold passed to `cluster_pairwise_predictions_at_threshold()`. If this information is available to Splink then it will be passed automatically, otherwise the user will have to provide it themselves and take care to ensure that threshold values align.\n", + "\n", + "The method generates tables containing graph metrics (for nodes, edges and clusters), and returns a data class of [Splink dataframes](../../../SplinkDataFrame.md). The individual Splink dataframes containing node, edge and cluster metrics can be accessed as follows:\n", + "\n", + "```\n", + "compute_graph_metrics.nodes for node metrics\n", + "compute_graph_metrics.edges for edge metrics\n", + "compute_graph_metrics.clusters for cluster metrics\n", + "```\n", + "\n", + "The metrics computed by `compute_graph_metrics()` include all those mentioned in the [Graph metrics](./graph_metrics.md) chapter, namely:\n", + "\n", + "* Node degree\n", + "* 'Is bridge'\n", + "* Cluster size\n", + "* Cluster density\n", + "* Cluster centrality\n", + "\n", + "All of these metrics are calculated by default. If you are unable to install the `igraph` package required for 'is bridge', this metric won't be calculated, however all other metrics will still be generated.\n", + "\n", + "This topic guide is a work in progress and we welcome any feedback." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Full code example" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/nd/c3xr518x3txg5kcqp1h7zwc80000gp/T/ipykernel_13654/2355919473.py:39: SplinkDeprecated: target_rows is deprecated; use max_pairs\n", - " linker.estimate_u_using_random_sampling(target_rows=1e6)\n", - "----- Estimating u probabilities using random sampling -----\n", - "\n", - "Estimated u probabilities using random sampling\n", - "\n", - "Your model is not yet fully trained. Missing estimates for:\n", - " - first_name (no m values are trained).\n", - " - surname (no m values are trained).\n", - " - postcode_fake (no m values are trained).\n", - "\n", - "----- Starting EM training session -----\n", - "\n", - "Estimating the m probabilities of the model by blocking on:\n", - "(l.\"first_name\" = r.\"first_name\") AND (l.\"surname\" = r.\"surname\")\n", - "\n", - "Parameter estimates will be made for the following comparison(s):\n", - " - postcode_fake\n", - "\n", - "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", - " - first_name\n", - " - surname\n", - "\n", - "Iteration 1: Largest change in params was -0.352 in probability_two_random_records_match\n", - "Iteration 2: Largest change in params was 0.108 in the m_probability of postcode_fake, level `All other comparisons`\n", - "Iteration 3: Largest change in params was 0.019 in the m_probability of postcode_fake, level `All other comparisons`\n", - "Iteration 4: Largest change in params was 0.00276 in the m_probability of postcode_fake, level `All other comparisons`\n", - "Iteration 5: Largest change in params was 0.000388 in the m_probability of postcode_fake, level `All other comparisons`\n", - "Iteration 6: Largest change in params was 5.44e-05 in the m_probability of postcode_fake, level `All other comparisons`\n", - "\n", - "EM converged after 6 iterations\n", - "\n", - "Your model is not yet fully trained. Missing estimates for:\n", - " - first_name (no m values are trained).\n", - " - surname (no m values are trained).\n", - "\n", - "----- Starting EM training session -----\n", - "\n", - "Estimating the m probabilities of the model by blocking on:\n", - "(l.\"dob\" = r.\"dob\") AND (SUBSTR(l.\"postcode_fake\", 1, 3) = SUBSTR(r.\"postcode_fake\", 1, 3))\n", - "\n", - "Parameter estimates will be made for the following comparison(s):\n", - " - first_name\n", - " - surname\n", - "\n", - "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", - " - postcode_fake\n", - "\n", - "Iteration 1: Largest change in params was 0.508 in probability_two_random_records_match\n", - "Iteration 2: Largest change in params was 0.0868 in probability_two_random_records_match\n", - "Iteration 3: Largest change in params was 0.0212 in probability_two_random_records_match\n", - "Iteration 4: Largest change in params was 0.00704 in probability_two_random_records_match\n", - "Iteration 5: Largest change in params was 0.00306 in probability_two_random_records_match\n", - "Iteration 6: Largest change in params was 0.00149 in probability_two_random_records_match\n", - "Iteration 7: Largest change in params was 0.000761 in probability_two_random_records_match\n", - "Iteration 8: Largest change in params was 0.000395 in probability_two_random_records_match\n", - "Iteration 9: Largest change in params was 0.000206 in probability_two_random_records_match\n", - "Iteration 10: Largest change in params was 0.000108 in probability_two_random_records_match\n", - "Iteration 11: Largest change in params was 5.66e-05 in probability_two_random_records_match\n", - "\n", - "EM converged after 11 iterations\n", - "\n", - "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n", - "Completed iteration 1, root rows count 316\n", - "Completed iteration 2, root rows count 63\n", - "Completed iteration 3, root rows count 12\n", - "Completed iteration 4, root rows count 0\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This code snippet computes graph metrics for a simple Splink dedupe model. A pandas dataframe of cluster metrics is displayed as the final output." + ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cluster_idn_nodesn_edgesdensitycluster_centralisation
0Q98761652-158.00.8000000.333333
1Q10307857-11135.00.6363640.200000
2Q18910925-120172.00.9052630.105263
3Q13530025-11132.00.5818180.266667
4Q15966633-1133.01.0000000.000000
..................
21530Q5006750-710.0NaNNaN
21531Q5166888-1310.0NaNNaN
21532Q5546247-810.0NaNNaN
21533Q6698372-510.0NaNNaN
21534Q7794499-610.0NaNNaN
\n", - "

21535 rows × 5 columns

\n", - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/nd/c3xr518x3txg5kcqp1h7zwc80000gp/T/ipykernel_13654/2355919473.py:39: SplinkDeprecated: target_rows is deprecated; use max_pairs\n", + " linker.training.estimate_u_using_random_sampling(target_rows=1e6)\n", + "----- Estimating u probabilities using random sampling -----\n", + "\n", + "Estimated u probabilities using random sampling\n", + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + " - postcode_fake (no m values are trained).\n", + "\n", + "----- Starting EM training session -----\n", + "\n", + "Estimating the m probabilities of the model by blocking on:\n", + "(l.\"first_name\" = r.\"first_name\") AND (l.\"surname\" = r.\"surname\")\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - postcode_fake\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - first_name\n", + " - surname\n", + "\n", + "Iteration 1: Largest change in params was -0.352 in probability_two_random_records_match\n", + "Iteration 2: Largest change in params was 0.108 in the m_probability of postcode_fake, level `All other comparisons`\n", + "Iteration 3: Largest change in params was 0.019 in the m_probability of postcode_fake, level `All other comparisons`\n", + "Iteration 4: Largest change in params was 0.00276 in the m_probability of postcode_fake, level `All other comparisons`\n", + "Iteration 5: Largest change in params was 0.000388 in the m_probability of postcode_fake, level `All other comparisons`\n", + "Iteration 6: Largest change in params was 5.44e-05 in the m_probability of postcode_fake, level `All other comparisons`\n", + "\n", + "EM converged after 6 iterations\n", + "\n", + "Your model is not yet fully trained. Missing estimates for:\n", + " - first_name (no m values are trained).\n", + " - surname (no m values are trained).\n", + "\n", + "----- Starting EM training session -----\n", + "\n", + "Estimating the m probabilities of the model by blocking on:\n", + "(l.\"dob\" = r.\"dob\") AND (SUBSTR(l.\"postcode_fake\", 1, 3) = SUBSTR(r.\"postcode_fake\", 1, 3))\n", + "\n", + "Parameter estimates will be made for the following comparison(s):\n", + " - first_name\n", + " - surname\n", + "\n", + "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n", + " - postcode_fake\n", + "\n", + "Iteration 1: Largest change in params was 0.508 in probability_two_random_records_match\n", + "Iteration 2: Largest change in params was 0.0868 in probability_two_random_records_match\n", + "Iteration 3: Largest change in params was 0.0212 in probability_two_random_records_match\n", + "Iteration 4: Largest change in params was 0.00704 in probability_two_random_records_match\n", + "Iteration 5: Largest change in params was 0.00306 in probability_two_random_records_match\n", + "Iteration 6: Largest change in params was 0.00149 in probability_two_random_records_match\n", + "Iteration 7: Largest change in params was 0.000761 in probability_two_random_records_match\n", + "Iteration 8: Largest change in params was 0.000395 in probability_two_random_records_match\n", + "Iteration 9: Largest change in params was 0.000206 in probability_two_random_records_match\n", + "Iteration 10: Largest change in params was 0.000108 in probability_two_random_records_match\n", + "Iteration 11: Largest change in params was 5.66e-05 in probability_two_random_records_match\n", + "\n", + "EM converged after 11 iterations\n", + "\n", + "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n", + "Completed iteration 1, root rows count 316\n", + "Completed iteration 2, root rows count 63\n", + "Completed iteration 3, root rows count 12\n", + "Completed iteration 4, root rows count 0\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cluster_idn_nodesn_edgesdensitycluster_centralisation
0Q98761652-158.00.8000000.333333
1Q10307857-11135.00.6363640.200000
2Q18910925-120172.00.9052630.105263
3Q13530025-11132.00.5818180.266667
4Q15966633-1133.01.0000000.000000
..................
21530Q5006750-710.0NaNNaN
21531Q5166888-1310.0NaNNaN
21532Q5546247-810.0NaNNaN
21533Q6698372-510.0NaNNaN
21534Q7794499-610.0NaNNaN
\n", + "

21535 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " cluster_id n_nodes n_edges density cluster_centralisation\n", + "0 Q98761652-1 5 8.0 0.800000 0.333333\n", + "1 Q10307857-1 11 35.0 0.636364 0.200000\n", + "2 Q18910925-1 20 172.0 0.905263 0.105263\n", + "3 Q13530025-1 11 32.0 0.581818 0.266667\n", + "4 Q15966633-11 3 3.0 1.000000 0.000000\n", + "... ... ... ... ... ...\n", + "21530 Q5006750-7 1 0.0 NaN NaN\n", + "21531 Q5166888-13 1 0.0 NaN NaN\n", + "21532 Q5546247-8 1 0.0 NaN NaN\n", + "21533 Q6698372-5 1 0.0 NaN NaN\n", + "21534 Q7794499-6 1 0.0 NaN NaN\n", + "\n", + "[21535 rows x 5 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - " cluster_id n_nodes n_edges density cluster_centralisation\n", - "0 Q98761652-1 5 8.0 0.800000 0.333333\n", - "1 Q10307857-1 11 35.0 0.636364 0.200000\n", - "2 Q18910925-1 20 172.0 0.905263 0.105263\n", - "3 Q13530025-1 11 32.0 0.581818 0.266667\n", - "4 Q15966633-11 3 3.0 1.000000 0.000000\n", - "... ... ... ... ... ...\n", - "21530 Q5006750-7 1 0.0 NaN NaN\n", - "21531 Q5166888-13 1 0.0 NaN NaN\n", - "21532 Q5546247-8 1 0.0 NaN NaN\n", - "21533 Q6698372-5 1 0.0 NaN NaN\n", - "21534 Q7794499-6 1 0.0 NaN NaN\n", - "\n", - "[21535 rows x 5 columns]" + "source": [ + "import splink.duckdb.comparison_library as cl\n", + "from splink.datasets import splink_datasets\n", + "from splink.duckdb.blocking_rule_library import block_on\n", + "from splink.duckdb.linker import DuckDBLinker\n", + "\n", + "import ssl\n", + "\n", + "ssl._create_default_https_context = ssl._create_unverified_context\n", + "\n", + "df = splink_datasets.historical_50k\n", + "\n", + "settings_dict = {\n", + " \"link_type\": \"dedupe_only\",\n", + " \"blocking_rules_to_generate_predictions\": [\n", + " block_on([\"postcode_fake\", \"first_name\"]),\n", + " block_on([\"first_name\", \"surname\"]),\n", + " block_on([\"dob\", \"substr(postcode_fake,1,2)\"]),\n", + " block_on([\"postcode_fake\", \"substr(dob,1,3)\"]),\n", + " block_on([\"postcode_fake\", \"substr(dob,4,5)\"]),\n", + " ],\n", + " \"comparisons\": [\n", + " cl.exact_match(\n", + " \"first_name\",\n", + " term_frequency_adjustments=True,\n", + " ),\n", + " cl.jaro_winkler_at_thresholds(\n", + " \"surname\", distance_threshold_or_thresholds=[0.9, 0.8]\n", + " ),\n", + " cl.levenshtein_at_thresholds(\n", + " \"postcode_fake\", distance_threshold_or_thresholds=[1, 2]\n", + " ),\n", + " ],\n", + " \"retain_intermediate_calculation_columns\": True,\n", + "}\n", + "\n", + "\n", + "linker = DuckDBLinker(df, settings_dict)\n", + "\n", + "linker.training.estimate_u_using_random_sampling(target_rows=1e6)\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(\n", + " block_on([\"first_name\", \"surname\"])\n", + ")\n", + "\n", + "linker.training.estimate_parameters_using_expectation_maximisation(\n", + " block_on([\"dob\", \"substr(postcode_fake, 1,3)\"])\n", + ")\n", + "\n", + "df_predict = linker.inference.predict()\n", + "df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, 0.95)\n", + "\n", + "graph_metrics = linker.compute_graph_metrics(df_predict, df_clustered)\n", + "\n", + "graph_metrics.clusters.as_pandas_dataframe()" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "import splink.duckdb.comparison_library as cl\n", - "from splink.datasets import splink_datasets\n", - "from splink.duckdb.blocking_rule_library import block_on\n", - "from splink.duckdb.linker import DuckDBLinker\n", - "\n", - "import ssl\n", - "\n", - "ssl._create_default_https_context = ssl._create_unverified_context\n", - "\n", - "df = splink_datasets.historical_50k\n", - "\n", - "settings_dict = {\n", - " \"link_type\": \"dedupe_only\",\n", - " \"blocking_rules_to_generate_predictions\": [\n", - " block_on([\"postcode_fake\", \"first_name\"]),\n", - " block_on([\"first_name\", \"surname\"]),\n", - " block_on([\"dob\", \"substr(postcode_fake,1,2)\"]),\n", - " block_on([\"postcode_fake\", \"substr(dob,1,3)\"]),\n", - " block_on([\"postcode_fake\", \"substr(dob,4,5)\"]),\n", - " ],\n", - " \"comparisons\": [\n", - " cl.exact_match(\n", - " \"first_name\",\n", - " term_frequency_adjustments=True,\n", - " ),\n", - " cl.jaro_winkler_at_thresholds(\n", - " \"surname\", distance_threshold_or_thresholds=[0.9, 0.8]\n", - " ),\n", - " cl.levenshtein_at_thresholds(\n", - " \"postcode_fake\", distance_threshold_or_thresholds=[1, 2]\n", - " ),\n", - " ],\n", - " \"retain_intermediate_calculation_columns\": True,\n", - "}\n", - "\n", - "\n", - "linker = DuckDBLinker(df, settings_dict)\n", - "\n", - "linker.estimate_u_using_random_sampling(target_rows=1e6)\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(\n", - " block_on([\"first_name\", \"surname\"])\n", - ")\n", - "\n", - "linker.estimate_parameters_using_expectation_maximisation(\n", - " block_on([\"dob\", \"substr(postcode_fake, 1,3)\"])\n", - ")\n", - "\n", - "df_predict = linker.predict()\n", - "df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.95)\n", - "\n", - "graph_metrics = linker.compute_graph_metrics(df_predict, df_clustered)\n", - "\n", - "graph_metrics.clusters.as_pandas_dataframe()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "splink-bxsLLt4m", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "splink-bxsLLt4m", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/splink/internals/accuracy.py b/splink/internals/accuracy.py index ab43e2f4e7..96d36d7f4f 100644 --- a/splink/internals/accuracy.py +++ b/splink/internals/accuracy.py @@ -1,7 +1,7 @@ from __future__ import annotations from copy import deepcopy -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional from splink.internals.block_from_labels import block_from_labels from splink.internals.blocking import BlockingRule @@ -307,8 +307,11 @@ def _select_found_by_blocking_rules(linker: "Linker") -> str: def truth_space_table_from_labels_table( - linker, labels_tablename, threshold_actual=0.5, match_weight_round_to_nearest=None -): + linker: Linker, + labels_tablename: str, + threshold_actual: float = 0.5, + match_weight_round_to_nearest: Optional[float] = None, +) -> SplinkDataFrame: pipeline = CTEPipeline() nodes_with_tf = compute_df_concat_with_tf(linker, pipeline) @@ -323,7 +326,7 @@ def truth_space_table_from_labels_table( ) pipeline.enqueue_list_of_sqls(sqls) - df_truth_space_table = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_truth_space_table = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_truth_space_table @@ -356,7 +359,7 @@ def truth_space_table_from_labels_column( """ pipeline.enqueue_sql(sql, "__splink__cartesian_product") - cartesian_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + cartesian_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) row_count_df = cartesian_count.as_record_dict() cartesian_count.drop_table_from_database_and_remove_from_cache() @@ -393,7 +396,7 @@ def truth_space_table_from_labels_column( ) pipeline.enqueue_list_of_sqls(sqls) - df_truth_space_table = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_truth_space_table = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_truth_space_table @@ -439,12 +442,12 @@ def predictions_from_sample_of_pairwise_labels_sql(linker, labels_tablename): def prediction_errors_from_labels_table( - linker, - labels_tablename, - include_false_positives=True, - include_false_negatives=True, - threshold=0.5, -): + linker: Linker, + labels_tablename: str, + include_false_positives: bool = True, + include_false_negatives: bool = True, + threshold: float = 0.5, +) -> SplinkDataFrame: pipeline = CTEPipeline() nodes_with_tf = compute_df_concat_with_tf(linker, pipeline) pipeline = CTEPipeline([nodes_with_tf]) @@ -486,7 +489,7 @@ def prediction_errors_from_labels_table( pipeline.enqueue_sql(sql, "__splink__labels_with_fp_fn_status") - return linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + return linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) def _predict_from_label_column_sql(linker, label_colname): @@ -509,18 +512,18 @@ def _predict_from_label_column_sql(linker, label_colname): settings._additional_column_names_to_retain.append(label_colname) # Now we want to create predictions - df_predict = linker.predict() + df_predict = linker.inference.predict() return df_predict def prediction_errors_from_label_column( - linker, - label_colname, - include_false_positives=True, - include_false_negatives=True, - threshold=0.5, -): + linker: Linker, + label_colname: str, + include_false_positives: bool = True, + include_false_negatives: bool = True, + threshold: float = 0.5, +) -> SplinkDataFrame: df_predict = _predict_from_label_column_sql( linker, label_colname, @@ -577,6 +580,6 @@ def prediction_errors_from_label_column( pipeline.enqueue_sql(sql, "__splink__predictions_from_label_column_fp_fn_only") - predictions = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + predictions = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return predictions diff --git a/splink/internals/cluster_studio.py b/splink/internals/cluster_studio.py index b53b114b69..76d4da678f 100644 --- a/splink/internals/cluster_studio.py +++ b/splink/internals/cluster_studio.py @@ -63,7 +63,7 @@ def df_clusters_as_records( sql = _clusters_sql(df_clustered_nodes, cluster_ids) pipeline = CTEPipeline() pipeline.enqueue_sql(sql, "__splink__scs_clusters") - df_clusters = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_clusters = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_clusters.as_record_dict() @@ -107,7 +107,7 @@ def create_df_nodes( pipeline = CTEPipeline() sql = _nodes_sql(df_clustered_nodes, cluster_ids) pipeline.enqueue_sql(sql, "__splink__scs_nodes") - df_nodes = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_nodes = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_nodes @@ -151,7 +151,7 @@ def df_edges_as_records( sql = _edges_sql(linker, df_predicted_edges, df_nodes) pipeline = CTEPipeline() pipeline.enqueue_sql(sql, "__splink__scs_edges") - df_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_edges.as_record_dict() @@ -168,7 +168,7 @@ def _get_random_cluster_ids( """ pipeline = CTEPipeline() pipeline.enqueue_sql(sql, "__splink__cluster_count") - df_cluster_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_cluster_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) cluster_count = df_cluster_count.as_record_dict()[0]["count"] df_cluster_count.drop_table_from_database_and_remove_from_cache() @@ -192,7 +192,7 @@ def _get_random_cluster_ids( """ pipeline = CTEPipeline() pipeline.enqueue_sql(sql, "__splink__df_concat_with_tf_sample") - df_sample = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_sample = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return [r["cluster_id"] for r in df_sample.as_record_dict()] @@ -234,7 +234,7 @@ def _get_cluster_id_of_each_size( """ pipeline.enqueue_sql(sql, "__splink__cluster_count_row_numbered") - df_cluster_sample_with_size = linker.db_api.sql_pipeline_to_splink_dataframe( + df_cluster_sample_with_size = linker._db_api.sql_pipeline_to_splink_dataframe( pipeline ) @@ -285,7 +285,7 @@ def _get_lowest_density_clusters( """ pipeline.enqueue_sql(sql, "__splink__lowest_density_clusters") - df_lowest_density_clusters = linker.db_api.sql_pipeline_to_splink_dataframe( + df_lowest_density_clusters = linker._db_api.sql_pipeline_to_splink_dataframe( pipeline ) diff --git a/splink/internals/connected_components.py b/splink/internals/connected_components.py index 69a3bae3a0..50319418ce 100644 --- a/splink/internals/connected_components.py +++ b/splink/internals/connected_components.py @@ -355,7 +355,7 @@ def _cc_create_unique_id_cols( """ pipeline = CTEPipeline() pipeline.enqueue_sql(sql, "__splink__df_connected_components_df") - return linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + return linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) def _exit_query( @@ -453,7 +453,7 @@ def solve_connected_components( pipeline.enqueue_sql(sql, "nodes") sql = _cc_generate_neighbours_representation() pipeline.enqueue_sql(sql, "__splink__df_neighbours") - neighbours = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + neighbours = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) # Create our initial representatives table pipeline = CTEPipeline([neighbours]) @@ -465,7 +465,7 @@ def solve_connected_components( # Execute if we have no batching, otherwise add it to our batched process pipeline.enqueue_sql(sql, "__splink__df_representatives") - representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) prev_representatives_table = representatives # Loop while our representative table still has unsettled nodes @@ -500,7 +500,7 @@ def solve_connected_components( repr_name, ) - representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) pipeline = CTEPipeline() # Update table reference @@ -512,7 +512,7 @@ def solve_connected_components( pipeline.enqueue_sql(sql, "__splink__df_root_rows") - root_rows_df = linker.db_api.sql_pipeline_to_splink_dataframe( + root_rows_df = linker._db_api.sql_pipeline_to_splink_dataframe( pipeline, use_cache=False ) @@ -540,6 +540,6 @@ def solve_connected_components( ) pipeline = CTEPipeline([representatives]) pipeline.enqueue_sql(exit_query, "__splink__df_representatives") - representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return representatives diff --git a/splink/internals/edge_metrics.py b/splink/internals/edge_metrics.py index da9ee248c9..34f97707b4 100644 --- a/splink/internals/edge_metrics.py +++ b/splink/internals/edge_metrics.py @@ -68,7 +68,7 @@ def compute_basic_edge_metrics( ) pipeline.enqueue_sql(**sql_info) - df_truncated_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_truncated_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_truncated_edges @@ -96,13 +96,13 @@ def compute_igraph_metrics( # this is how igraph deals with nodes sql_infos = _node_mapping_table_sql(df_node_metrics) pipeline.enqueue_list_of_sqls(sql_infos) - df_node_mappings = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_node_mappings = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) # we keep only edges at or above relevant threshold pipeline = CTEPipeline() sql_info = _truncated_edges_sql(df_predict, threshold_match_probability) pipeline.enqueue_sql(**sql_info) - df_truncated_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_truncated_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) # we map the truncated edges to the integer encoding for nodes above, # keeping only the list of endpoints @@ -114,7 +114,7 @@ def compute_igraph_metrics( composite_uid_edges_r, ) pipeline.enqueue_sql(**sql_info) - edges_for_igraph = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + edges_for_igraph = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) # we will need to manually register a table, so we use the hash from this table igraph_edges_hash = edges_for_igraph.physical_name[-9:] # NB: for large data we may have to revise this and process in chunks @@ -124,7 +124,7 @@ def compute_igraph_metrics( igraph_df = ig.Graph.DataFrame(df_edges_for_igraph, directed=False) bridges_indices = igraph_df.bridges() df_bridges_pd = df_edges_for_igraph.iloc[bridges_indices, :] - df_bridges = linker.register_table( + df_bridges = linker.table_management.register_table( df_bridges_pd, f"__splink__bridges_{igraph_edges_hash}" ) # map our bridge edges back to the original node labelling @@ -139,5 +139,5 @@ def compute_igraph_metrics( composite_uid_edges_r, ) pipeline.enqueue_sql(**sql_info) - df_edge_metrics = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_edge_metrics = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_edge_metrics diff --git a/splink/internals/estimate_u.py b/splink/internals/estimate_u.py index 50b3391131..4d24235ac2 100644 --- a/splink/internals/estimate_u.py +++ b/splink/internals/estimate_u.py @@ -74,7 +74,7 @@ def estimate_u_values(linker: Linker, max_pairs: float, seed: int = None) -> Non settings_obj._retain_matching_columns = False settings_obj._retain_intermediate_calculation_columns = False - db_api = training_linker.db_api + db_api = training_linker._db_api for cc in settings_obj.comparisons: for cl in cc.comparison_levels: @@ -211,6 +211,7 @@ def estimate_u_values(linker: Linker, max_pairs: float, seed: int = None) -> Non ] m_u_records_lookup = m_u_records_to_lookup_dict(m_u_records) + for c in original_settings_obj.comparisons: for cl in c._comparison_levels_excluding_null: append_u_probability_to_comparison_level_trained_probabilities( diff --git a/splink/internals/find_brs_with_comparison_counts_below_threshold.py b/splink/internals/find_brs_with_comparison_counts_below_threshold.py index b49bf76aee..f7594705de 100644 --- a/splink/internals/find_brs_with_comparison_counts_below_threshold.py +++ b/splink/internals/find_brs_with_comparison_counts_below_threshold.py @@ -158,13 +158,13 @@ def _search_tree_for_blocking_rules_below_threshold_count( if len(current_combination) == len(all_columns): return results # All fields included, meaning we're at a leaf so exit recursion - br = _generate_blocking_rule(linker.db_api, current_combination) + br = _generate_blocking_rule(linker._db_api, current_combination) comparison_count = _count_comparisons_generated_from_blocking_rule( splink_df_dict=linker._input_tables_dict, blocking_rule=br, link_type=linker._settings_obj._link_type, - db_api=linker.db_api, + db_api=linker._db_api, compute_post_filter_count=False, source_dataset_input_column=linker._settings_obj.column_info_settings.source_dataset_input_column, unique_id_input_column=linker._settings_obj.column_info_settings.unique_id_input_column, diff --git a/splink/internals/labelling_tool.py b/splink/internals/labelling_tool.py index 9113e1a270..e0f46b5d70 100644 --- a/splink/internals/labelling_tool.py +++ b/splink/internals/labelling_tool.py @@ -50,9 +50,9 @@ def generate_labelling_tool_comparisons( """ pipeline.enqueue_sql(sql, "__splink__df_labelling_tool_record") - splink_df = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + splink_df = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) - matches = linker.find_matches_to_new_records( + matches = linker.inference.find_matches_to_new_records( splink_df.physical_name, match_weight_threshold=match_weight_threshold ) diff --git a/splink/internals/linker.py b/splink/internals/linker.py index 79bc2fd3bb..cfb50a0088 100644 --- a/splink/internals/linker.py +++ b/splink/internals/linker.py @@ -1,88 +1,37 @@ from __future__ import annotations -import json import logging -import os from copy import copy, deepcopy from pathlib import Path from statistics import median -from typing import Any, Dict, List, Literal, Optional, Sequence, Union +from typing import Any, Dict, List, Optional, Sequence -from splink.internals.accuracy import ( - prediction_errors_from_label_column, - prediction_errors_from_labels_table, - truth_space_table_from_labels_column, - truth_space_table_from_labels_table, -) from splink.internals.blocking import ( BlockingRule, - SaltedBlockingRule, block_using_rules_sqls, - blocking_rule_to_obj, - materialise_exploded_id_tables, -) -from splink.internals.blocking_analysis import ( - _cumulative_comparisons_to_be_scored_from_blocking_rules, ) -from splink.internals.blocking_rule_creator import BlockingRuleCreator -from splink.internals.blocking_rule_creator_utils import to_blocking_rule_creator from splink.internals.cache_dict_with_logging import CacheDictWithLogging -from splink.internals.charts import ( - ChartReturnType, - accuracy_chart, - match_weights_histogram, - parameter_estimate_comparisons, - precision_recall_chart, - roc_chart, - threshold_selection_tool, - unlinkables_chart, - waterfall_chart, -) -from splink.internals.cluster_studio import ( - SamplingMethods, - render_splink_cluster_studio_html, -) -from splink.internals.comparison import Comparison -from splink.internals.comparison_level import ComparisonLevel -from splink.internals.comparison_vector_distribution import ( - comparison_vector_distribution_sql, -) from splink.internals.comparison_vector_values import ( compute_comparison_vector_values_sql, ) -from splink.internals.connected_components import ( - _cc_create_unique_id_cols, - solve_connected_components, -) from splink.internals.database_api import AcceptableInputTableType, DatabaseAPISubClass from splink.internals.dialects import SplinkDialect -from splink.internals.edge_metrics import compute_edge_metrics from splink.internals.em_training_session import EMTrainingSession -from splink.internals.estimate_u import estimate_u_values from splink.internals.exceptions import SplinkException from splink.internals.find_brs_with_comparison_counts_below_threshold import ( find_blocking_rules_below_threshold_comparison_count, ) -from splink.internals.find_matches_to_new_records import ( - add_unique_id_and_source_dataset_cols_if_needed, -) -from splink.internals.graph_metrics import ( - GraphMetricsResults, - _node_degree_sql, - _size_density_centralisation_sql, -) from splink.internals.input_column import InputColumn -from splink.internals.labelling_tool import ( - generate_labelling_tool_comparisons, - render_labelling_tool_html, -) -from splink.internals.m_from_labels import estimate_m_from_pairwise_labels -from splink.internals.m_training import estimate_m_values_from_label_column -from splink.internals.match_weights_histogram import histogram_data +from splink.internals.linker_components.clustering import LinkerClustering +from splink.internals.linker_components.evaluation import LinkerEvalution +from splink.internals.linker_components.inference import LinkerInference +from splink.internals.linker_components.misc import LinkerMisc +from splink.internals.linker_components.table_management import LinkerTableManagement +from splink.internals.linker_components.training import LinkerTraining +from splink.internals.linker_components.visualisations import LinkerVisualisations from splink.internals.misc import ( ascii_uid, bayes_factor_to_prob, - ensure_is_iterable, ensure_is_list, prob_to_bayes_factor, ) @@ -90,7 +39,6 @@ from splink.internals.pipeline import CTEPipeline from splink.internals.predict import ( predict_from_comparison_vectors_sqls, - predict_from_comparison_vectors_sqls_using_settings, ) from splink.internals.settings_creator import SettingsCreator from splink.internals.settings_validation.log_invalid_columns import ( @@ -100,27 +48,12 @@ from splink.internals.settings_validation.valid_types import ( _validate_dialect, ) -from splink.internals.splink_comparison_viewer import ( - comparison_viewer_table_sqls, - render_splink_comparison_viewer_html, -) from splink.internals.splink_dataframe import SplinkDataFrame -from splink.internals.term_frequencies import ( - _join_new_table_to_df_concat_with_tf_sql, - colname_to_tf_tablename, - term_frequencies_for_single_column_sql, - tf_adjustment_chart, -) from splink.internals.unique_id_concat import ( _composite_unique_id_from_edges_sql, - _composite_unique_id_from_nodes_sql, ) -from splink.internals.unlinkables import unlinkables_data from splink.internals.vertically_concatenate import ( compute_df_concat_with_tf, - enqueue_df_concat, - enqueue_df_concat_with_tf, - split_df_concat_with_tf_into_two_tables_sqls, ) logger = logging.getLogger(__name__) @@ -200,11 +133,11 @@ def __init__( splink_logger = logging.getLogger("splink") splink_logger.setLevel(logging.INFO) - self.db_api = database_api + self._db_api = database_api # TODO: temp hack for compat self._intermediate_table_cache: CacheDictWithLogging = ( - self.db_api._intermediate_table_cache + self._db_api._intermediate_table_cache ) # Turn into a creator @@ -237,7 +170,15 @@ def __init__( self._validate_settings(validate_settings) self._em_training_sessions: list[EMTrainingSession] = [] - self.debug_mode = False + self._debug_mode = False + + self.clustering: "LinkerClustering" = LinkerClustering(self) + self.evaluation: "LinkerEvalution" = LinkerEvalution(self) + self.inference: "LinkerInference" = LinkerInference(self) + self.misc: "LinkerMisc" = LinkerMisc(self) + self.table_management: "LinkerTableManagement" = LinkerTableManagement(self) + self.training: "LinkerTraining" = LinkerTraining(self) + self.visualisations: "LinkerVisualisations" = LinkerVisualisations(self) def _input_columns( self, @@ -333,21 +274,21 @@ def _two_dataset_link_only(self): # convenience wrappers: @property - def debug_mode(self) -> bool: - return self.db_api.debug_mode + def _debug_mode(self) -> bool: + return self._db_api.debug_mode - @debug_mode.setter - def debug_mode(self, value: bool) -> None: - self.db_api.debug_mode = value + @_debug_mode.setter + def _debug_mode(self, value: bool) -> None: + self._db_api.debug_mode = value # TODO: rename these! @property def _sql_dialect(self) -> str: - return self.db_api.sql_dialect.name + return self._db_api.sql_dialect.name @property def _sql_dialect_object(self) -> SplinkDialect: - return self.db_api.sql_dialect + return self._db_api.sql_dialect @property def _infinity_expression(self): @@ -374,7 +315,7 @@ def _register_input_tables( input_table_aliases = ensure_is_list(input_aliases) overwrite = False - return self.db_api.register_multiple_tables( + return self._db_api.register_multiple_tables( input_tables, input_table_aliases, overwrite ) @@ -413,80 +354,7 @@ def _table_to_splink_dataframe( templated_name (str): The purpose of the table to Splink physical_name (str): The name of the table in the underlying databse """ - return self.db_api.table_to_splink_dataframe(templated_name, physical_name) - - def register_table( - self, - input_table: AcceptableInputTableType, - table_name: str, - overwrite: bool = False, - ) -> SplinkDataFrame: - """ - Register a table to your backend database, to be used in one of the - splink methods, or simply to allow querying. - - Tables can be of type: dictionary, record level dictionary, - pandas dataframe, pyarrow table and in the spark case, a spark df. - - Examples: - ```py - test_dict = {"a": [666,777,888],"b": [4,5,6]} - linker.register_table(test_dict, "test_dict") - linker.query_sql("select * from test_dict") - ``` - - Args: - input: The data you wish to register. This can be either a dictionary, - pandas dataframe, pyarrow table or a spark dataframe. - table_name (str): The name you wish to assign to the table. - overwrite (bool): Overwrite the table in the underlying database if it - exists - - Returns: - SplinkDataFrame: An abstraction representing the table created by the sql - pipeline - """ - - return self.db_api.register_table(input_table, table_name, overwrite) - - def query_sql(self, sql, output_type="pandas"): - """ - Run a SQL query against your backend database and return - the resulting output. - - Examples: - ```py - linker = Linker(df, settings, db_api) - df_predict = linker.predict() - linker.query_sql(f"select * from {df_predict.physical_name} limit 10") - ``` - - Args: - sql (str): The SQL to be queried. - output_type (str): One of splink_df/splinkdf or pandas. - This determines the type of table that your results are output in. - """ - - output_tablename_templated = "__splink__df_sql_query" - - pipeline = CTEPipeline() - pipeline.enqueue_sql(sql, output_tablename_templated) - splink_dataframe = self.db_api.sql_pipeline_to_splink_dataframe( - pipeline, use_cache=False - ) - - if output_type in ("splink_df", "splinkdf"): - return splink_dataframe - elif output_type == "pandas": - out = splink_dataframe.as_pandas_dataframe() - # If pandas, drop the table to cleanup the db - splink_dataframe.drop_table_from_database_and_remove_from_cache() - return out - else: - raise ValueError( - f"output_type '{output_type}' is not supported.", - "Must be one of 'splink_df'/'splinkdf' or 'pandas'", - ) + return self._db_api.table_to_splink_dataframe(templated_name, physical_name) def __deepcopy__(self, memo): """When we do EM training, we need a copy of the linker which is independent @@ -495,8 +363,18 @@ def __deepcopy__(self, memo): """ new_linker = copy(self) new_linker._em_training_sessions = [] + new_settings = deepcopy(self._settings_obj) new_linker._settings_obj = new_settings + + new_linker.clustering = LinkerClustering(new_linker) + new_linker.evaluation = LinkerEvalution(new_linker) + new_linker.inference = LinkerInference(new_linker) + new_linker.misc = LinkerMisc(new_linker) + new_linker.table_management = LinkerTableManagement(new_linker) + new_linker.training = LinkerTraining(new_linker) + new_linker.visualisations = LinkerVisualisations(new_linker) + return new_linker def _predict_warning(self): @@ -616,9 +494,6 @@ def _populate_m_u_from_trained_values(self): if cl._has_estimated_m_values: cl.m_probability = cl._trained_m_median - def delete_tables_created_by_splink_from_db(self): - self.db_api.delete_tables_created_by_splink_from_db() - def _raise_error_if_necessary_waterfall_columns_not_computed(self): ricc = self._settings_obj._retain_intermediate_calculation_columns rmc = self._settings_obj._retain_matching_columns @@ -643,1094 +518,69 @@ def _raise_error_if_necessary_accuracy_columns_not_computed(self): "Please re-run your linkage with it set to True." ) - def compute_tf_table(self, column_name: str) -> SplinkDataFrame: - """Compute a term frequency table for a given column and persist to the database - - This method is useful if you want to pre-compute term frequency tables e.g. - so that real time linkage executes faster, or so that you can estimate - various models without having to recompute term frequency tables each time - - Examples: - - Real time linkage - ```py - linker = Linker(df, db_api) - linker.load_settings("saved_settings.json") - linker.compute_tf_table("surname") - linker.compare_two_records(record_left, record_right) - ``` - Pre-computed term frequency tables - ```py - linker = Linker(df, db_api) - df_first_name_tf = linker.compute_tf_table("first_name") - df_first_name_tf.write.parquet("folder/first_name_tf") - >>> - # On subsequent data linking job, read this table rather than recompute - df_first_name_tf = pd.read_parquet("folder/first_name_tf") - df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name") - ``` - - - Args: - column_name (str): The column name in the input table - - Returns: - SplinkDataFrame: The resultant table as a splink data frame - """ - - input_col = InputColumn( - column_name, - column_info_settings=self._settings_obj.column_info_settings, - sql_dialect=self._settings_obj._sql_dialect, - ) - tf_tablename = colname_to_tf_tablename(input_col) - cache = self._intermediate_table_cache - - if tf_tablename in cache: - tf_df = cache.get_with_logging(tf_tablename) - else: - pipeline = CTEPipeline() - pipeline = enqueue_df_concat(self, pipeline) - sql = term_frequencies_for_single_column_sql(input_col) - pipeline.enqueue_sql(sql, tf_tablename) - tf_df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - self._intermediate_table_cache[tf_tablename] = tf_df - - return tf_df - - def deterministic_link(self) -> SplinkDataFrame: - """Uses the blocking rules specified by - `blocking_rules_to_generate_predictions` in the settings dictionary to - generate pairwise record comparisons. - - For deterministic linkage, this should be a list of blocking rules which - are strict enough to generate only true links. - - Deterministic linkage, however, is likely to result in missed links - (false negatives). - - Examples: - - ```py - from splink.linker import Linker - from splink.duckdb.database_api import DuckDBAPI - - db_api = DuckDBAPI() - - settings = { - "link_type": "dedupe_only", - "blocking_rules_to_generate_predictions": [ - "l.first_name = r.first_name", - "l.surname = r.surname", - ], - "comparisons": [] - } - >>> - linker = Linker(df, settings, db_api) - df = linker.deterministic_link() - ``` - - - Returns: - SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This - represents a table materialised in the database. Methods on the - SplinkDataFrame allow you to access the underlying data. - """ - pipeline = CTEPipeline() - # Allows clustering during a deterministic linkage. - # This is used in `cluster_pairwise_predictions_at_threshold` - # to set the cluster threshold to 1 - - df_concat_with_tf = compute_df_concat_with_tf(self, pipeline) - pipeline = CTEPipeline([df_concat_with_tf]) - link_type = self._settings_obj._link_type - - blocking_input_tablename_l = "__splink__df_concat_with_tf" - blocking_input_tablename_r = "__splink__df_concat_with_tf" - - link_type = self._settings_obj._link_type - if ( - len(self._input_tables_dict) == 2 - and self._settings_obj._link_type == "link_only" - ): - sqls = split_df_concat_with_tf_into_two_tables_sqls( - "__splink__df_concat_with_tf", - self._settings_obj.column_info_settings.source_dataset_column_name, - ) - pipeline.enqueue_list_of_sqls(sqls) - - blocking_input_tablename_l = "__splink__df_concat_with_tf_left" - blocking_input_tablename_r = "__splink__df_concat_with_tf_right" - link_type = "two_dataset_link_only" - - exploding_br_with_id_tables = materialise_exploded_id_tables( - link_type=link_type, - blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions, - db_api=self.db_api, - splink_df_dict=self._input_tables_dict, - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, - ) - - columns_to_select = self._settings_obj._columns_to_select_for_blocking - sql_select_expr = ", ".join(columns_to_select) - - sqls = block_using_rules_sqls( - input_tablename_l=blocking_input_tablename_l, - input_tablename_r=blocking_input_tablename_r, - blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions, - link_type=link_type, - columns_to_select_sql=sql_select_expr, - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, - ) - pipeline.enqueue_list_of_sqls(sqls) - - deterministic_link_df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - deterministic_link_df.metadata["is_deterministic_link"] = True - - [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables] - - return deterministic_link_df - - def estimate_u_using_random_sampling( - self, max_pairs: float = 1e6, seed: int = None - ) -> None: - """Estimate the u parameters of the linkage model using random sampling. - - The u parameters represent the proportion of record comparisons that fall - into each comparison level amongst truly non-matching records. - - This procedure takes a sample of the data and generates the cartesian - product of pairwise record comparisons amongst the sampled records. - The validity of the u values rests on the assumption that the resultant - pairwise comparisons are non-matches (or at least, they are very unlikely to be - matches). For large datasets, this is typically true. - - The results of estimate_u_using_random_sampling, and therefore an entire splink - model, can be made reproducible by setting the seed parameter. Setting the seed - will have performance implications as additional processing is required. - - Args: - max_pairs (int): The maximum number of pairwise record comparisons to - sample. Larger will give more accurate estimates - but lead to longer runtimes. In our experience at least 1e9 (one billion) - gives best results but can take a long time to compute. 1e7 (ten million) - is often adequate whilst testing different model specifications, before - the final model is estimated. - seed (int): Seed for random sampling. Assign to get reproducible u - probabilities. Note, seed for random sampling is only supported for - DuckDB and Spark, for Athena and SQLite set to None. - - Examples: - ```py - linker.estimate_u_using_random_sampling(1e8) - ``` - - Returns: - None: Updates the estimated u parameters within the linker object - and returns nothing. - """ - if max_pairs == 1e6: - # keep default value small so as not to take too long, but warn users - logger.warning( - "You are using the default value for `max_pairs`, " - "which may be too small and thus lead to inaccurate estimates for your " - "model's u-parameters. Consider increasing to 1e8 or 1e9, which will " - "result in more accurate estimates, but with a longer run time." - ) - estimate_u_values(self, max_pairs, seed) - self._populate_m_u_from_trained_values() - - self._settings_obj._columns_without_estimated_parameters_message() - - def estimate_m_from_label_column(self, label_colname: str) -> None: - """Estimate the m parameters of the linkage model from a label (ground truth) - column in the input dataframe(s). - - The m parameters represent the proportion of record comparisons that fall - into each comparison level amongst truly matching records. - - The ground truth column is used to generate pairwise record comparisons - which are then assumed to be matches. - - For example, if the entity being matched is persons, and your input dataset(s) - contain social security number, this could be used to estimate the m values - for the model. - - Note that this column does not need to be fully populated. A common case is - where a unique identifier such as social security number is only partially - populated. - - Args: - label_colname (str): The name of the column containing the ground truth - label in the input data. - - Examples: - ```py - linker.estimate_m_from_label_column("social_security_number") - ``` - - Returns: - Updates the estimated m parameters within the linker object - and returns nothing. - """ - - # Ensure this has been run on the main linker so that it can be used by - # training linker when it checks the cache - pipeline = CTEPipeline() - compute_df_concat_with_tf(self, pipeline) - - estimate_m_values_from_label_column( - self, - self._input_tables_dict, - label_colname, - ) - self._populate_m_u_from_trained_values() - - self._settings_obj._columns_without_estimated_parameters_message() - - def estimate_parameters_using_expectation_maximisation( - self, - blocking_rule: Union[str, BlockingRuleCreator], - comparisons_to_deactivate: list[Comparison] = None, - comparison_levels_to_reverse_blocking_rule: list[ComparisonLevel] = None, - estimate_without_term_frequencies: bool = False, - fix_probability_two_random_records_match: bool = False, - fix_m_probabilities: bool = False, - fix_u_probabilities: bool = True, - populate_probability_two_random_records_match_from_trained_values: bool = False, - ) -> EMTrainingSession: - """Estimate the parameters of the linkage model using expectation maximisation. - - By default, the m probabilities are estimated, but not the u probabilities, - because good estimates for the u probabilities can be obtained from - `linker.estimate_u_using_random_sampling()`. You can change this by setting - `fix_u_probabilities` to False. - - The blocking rule provided is used to generate pairwise record comparisons. - Usually, this should be a blocking rule that results in a dataframe where - matches are between about 1% and 99% of the comparisons. - - By default, m parameters are estimated for all comparisons except those which - are included in the blocking rule. - - For example, if the blocking rule is `l.first_name = r.first_name`, then - parameter esimates will be made for all comparison except those which use - `first_name` in their sql_condition - - By default, the probability two random records match is estimated for the - blocked data, and then the m and u parameters for the columns specified in the - blocking rules are used to estiamte the global probability two random records - match. - - To control which comparisons should have their parameter estimated, and the - process of 'reversing out' the global probability two random records match, the - user may specify `comparisons_to_deactivate` and - `comparison_levels_to_reverse_blocking_rule`. This is useful, for example - if you block on the dmetaphone of a column but match on the original column. - - Examples: - Default behaviour - ```py - br_training = "l.first_name = r.first_name and l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(br_training) - ``` - Specify which comparisons to deactivate - ```py - br_training = "l.dmeta_first_name = r.dmeta_first_name" - settings_obj = linker._settings_obj - comp = settings_obj._get_comparison_by_output_column_name("first_name") - dmeta_level = comp._get_comparison_level_by_comparison_vector_value(1) - linker.estimate_parameters_using_expectation_maximisation( - br_training, - comparisons_to_deactivate=["first_name"], - comparison_levels_to_reverse_blocking_rule=[dmeta_level], - ) - ``` - - Args: - blocking_rule (BlockingRuleCreator | str): The blocking rule used to - generate pairwise record comparisons. - comparisons_to_deactivate (list, optional): By default, splink will - analyse the blocking rule provided and estimate the m parameters for - all comaprisons except those included in the blocking rule. If - comparisons_to_deactivate are provided, spink will instead - estimate m parameters for all comparison except those specified - in the comparisons_to_deactivate list. This list can either contain - the output_column_name of the Comparison as a string, or Comparison - objects. Defaults to None. - comparison_levels_to_reverse_blocking_rule (list, optional): By default, - splink will analyse the blocking rule provided and adjust the - global probability two random records match to account for the matches - specified in the blocking rule. If provided, this argument will overrule - this default behaviour. The user must provide a list of ComparisonLevel - objects. Defaults to None. - estimate_without_term_frequencies (bool, optional): If True, the iterations - of the EM algorithm ignore any term frequency adjustments and only - depend on the comparison vectors. This allows the EM algorithm to run - much faster, but the estimation of the parameters will change slightly. - fix_probability_two_random_records_match (bool, optional): If True, do not - update the probability two random records match after each iteration. - Defaults to False. - fix_m_probabilities (bool, optional): If True, do not update the m - probabilities after each iteration. Defaults to False. - fix_u_probabilities (bool, optional): If True, do not update the u - probabilities after each iteration. Defaults to True. - populate_probability_two_random_records_match_from_trained_values - (bool, optional): If True, derive this parameter from - the blocked value. Defaults to False. - - Examples: - ```py - blocking_rule = "l.first_name = r.first_name and l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) - ``` - or using pre-built rules - ```py - from splink.duckdb.blocking_rule_library import block_on - blocking_rule = block_on(["first_name", "surname"]) - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) - ``` + def _self_link(self) -> SplinkDataFrame: + """Use the linkage model to compare and score all records in our input df with + themselves. Returns: - EMTrainingSession: An object containing information about the training - session such as how parameters changed during the iteration history - + SplinkDataFrame: Scored pairwise comparisons of the input records to + themselves. """ - # Ensure this has been run on the main linker so that it's in the cache - # to be used by the training linkers - pipeline = CTEPipeline() - compute_df_concat_with_tf(self, pipeline) - - blocking_rule_obj = to_blocking_rule_creator(blocking_rule).get_blocking_rule( - self._sql_dialect - ) - - if type(blocking_rule_obj) not in (BlockingRule, SaltedBlockingRule): - # TODO: seems a mismatch between message and type re: SaltedBlockingRule - raise TypeError( - "EM blocking rules must be plain blocking rules, not " - "salted or exploding blocking rules" - ) - if comparisons_to_deactivate: - # If user provided a string, convert to Comparison object - comparisons_to_deactivate = [ - ( - self._settings_obj._get_comparison_by_output_column_name(n) - if isinstance(n, str) - else n - ) - for n in comparisons_to_deactivate - ] - if comparison_levels_to_reverse_blocking_rule is None: - logger.warning( - "\nWARNING: \n" - "You have provided comparisons_to_deactivate but not " - "comparison_levels_to_reverse_blocking_rule.\n" - "If comparisons_to_deactivate is provided, then " - "you usually need to provide corresponding " - "comparison_levels_to_reverse_blocking_rule " - "because each comparison to deactivate is effectively treated " - "as an exact match." - ) + # Block on uid i.e. create pairwise record comparisons where the uid matches + settings = self._settings_obj + uid_cols = settings.column_info_settings.unique_id_input_columns + uid_l = _composite_unique_id_from_edges_sql(uid_cols, None, "l") + uid_r = _composite_unique_id_from_edges_sql(uid_cols, None, "r") - em_training_session = EMTrainingSession( - self, - db_api=self.db_api, - blocking_rule_for_training=blocking_rule_obj, - core_model_settings=self._settings_obj.core_model_settings, - training_settings=self._settings_obj.training_settings, - unique_id_input_columns=self._settings_obj.column_info_settings.unique_id_input_columns, - fix_u_probabilities=fix_u_probabilities, - fix_m_probabilities=fix_m_probabilities, - fix_probability_two_random_records_match=fix_probability_two_random_records_match, # noqa 501 - comparisons_to_deactivate=comparisons_to_deactivate, - comparison_levels_to_reverse_blocking_rule=comparison_levels_to_reverse_blocking_rule, # noqa 501 - estimate_without_term_frequencies=estimate_without_term_frequencies, + blocking_rule = BlockingRule( + f"{uid_l} = {uid_r}", sqlglot_dialect=self._sql_dialect ) - core_model_settings = em_training_session._train() - # overwrite with the newly trained values in our linker settings - self._settings_obj.core_model_settings = core_model_settings - self._em_training_sessions.append(em_training_session) - - self._populate_m_u_from_trained_values() - - if populate_probability_two_random_records_match_from_trained_values: - self._populate_probability_two_random_records_match_from_trained_values() - - self._settings_obj._columns_without_estimated_parameters_message() - - return em_training_session - - def predict( - self, - threshold_match_probability: float = None, - threshold_match_weight: float = None, - materialise_after_computing_term_frequencies: bool = True, - ) -> SplinkDataFrame: - """Create a dataframe of scored pairwise comparisons using the parameters - of the linkage model. - - Uses the blocking rules specified in the - `blocking_rules_to_generate_predictions` of the settings dictionary to - generate the pairwise comparisons. - - Args: - threshold_match_probability (float, optional): If specified, - filter the results to include only pairwise comparisons with a - match_probability above this threshold. Defaults to None. - threshold_match_weight (float, optional): If specified, - filter the results to include only pairwise comparisons with a - match_weight above this threshold. Defaults to None. - materialise_after_computing_term_frequencies (bool): If true, Splink - will materialise the table containing the input nodes (rows) - joined to any term frequencies which have been asked - for in the settings object. If False, this will be - computed as part of one possibly gigantic CTE - pipeline. Defaults to True - - Examples: - ```py - linker = DuckDBLinker(df) - linker.load_settings("saved_settings.json") - df = linker.predict(threshold_match_probability=0.95) - df.as_pandas_dataframe(limit=5) - ``` - Returns: - SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This - represents a table materialised in the database. Methods on the - SplinkDataFrame allow you to access the underlying data. - - """ - pipeline = CTEPipeline() + nodes_with_tf = compute_df_concat_with_tf(self, pipeline) - # If materialise_after_computing_term_frequencies=False and the user only - # calls predict, it runs as a single pipeline with no materialisation - # of anything. - - # In duckdb, calls to random() in a CTE pipeline cause problems: - # https://gist.github.com/RobinL/d329e7004998503ce91b68479aa41139 - if ( - materialise_after_computing_term_frequencies - or self._sql_dialect == "duckdb" - ): - df_concat_with_tf = compute_df_concat_with_tf(self, pipeline) - pipeline = CTEPipeline([df_concat_with_tf]) - else: - pipeline = enqueue_df_concat_with_tf(self, pipeline) - - blocking_input_tablename_l = "__splink__df_concat_with_tf" - blocking_input_tablename_r = "__splink__df_concat_with_tf" - - link_type = self._settings_obj._link_type - if ( - len(self._input_tables_dict) == 2 - and self._settings_obj._link_type == "link_only" - ): - sqls = split_df_concat_with_tf_into_two_tables_sqls( - "__splink__df_concat_with_tf", - self._settings_obj.column_info_settings.source_dataset_column_name, - ) - pipeline.enqueue_list_of_sqls(sqls) - - blocking_input_tablename_l = "__splink__df_concat_with_tf_left" - blocking_input_tablename_r = "__splink__df_concat_with_tf_right" - link_type = "two_dataset_link_only" - - # If exploded blocking rules exist, we need to materialise - # the tables of ID pairs - - exploding_br_with_id_tables = materialise_exploded_id_tables( - link_type=link_type, - blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions, - db_api=self.db_api, - splink_df_dict=self._input_tables_dict, - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, - ) - - columns_to_select = self._settings_obj._columns_to_select_for_blocking - sql_select_expr = ", ".join(columns_to_select) + pipeline = CTEPipeline([nodes_with_tf]) sqls = block_using_rules_sqls( - input_tablename_l=blocking_input_tablename_l, - input_tablename_r=blocking_input_tablename_r, - blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions, - link_type=link_type, - columns_to_select_sql=sql_select_expr, - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, + input_tablename_l="__splink__df_concat_with_tf", + input_tablename_r="__splink__df_concat_with_tf", + blocking_rules=[blocking_rule], + link_type="self_link", + columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking), + source_dataset_input_column=settings.column_info_settings.source_dataset_input_column, + unique_id_input_column=settings.column_info_settings.unique_id_input_column, ) - pipeline.enqueue_list_of_sqls(sqls) - repartition_after_blocking = getattr(self, "repartition_after_blocking", False) - - # repartition after blocking only exists on the SparkLinker - if repartition_after_blocking: - pipeline = pipeline.break_lineage(self.db_api) - sql = compute_comparison_vector_values_sql( self._settings_obj._columns_to_select_for_comparison_vector_values ) + pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") - sqls = predict_from_comparison_vectors_sqls_using_settings( - self._settings_obj, - threshold_match_probability, - threshold_match_weight, + sql_infos = predict_from_comparison_vectors_sqls( + unique_id_input_columns=uid_cols, + core_model_settings=self._settings_obj.core_model_settings, + sql_dialect=self._sql_dialect, sql_infinity_expression=self._infinity_expression, ) - pipeline.enqueue_list_of_sqls(sqls) - - predictions = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - self._predict_warning() + for sql_info in sql_infos: + output_table_name = sql_info["output_table_name"] + output_table_name = output_table_name.replace("predict", "self_link") + pipeline.enqueue_sql(sql_info["sql"], output_table_name) - [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables] + predictions = self._db_api.sql_pipeline_to_splink_dataframe(pipeline) return predictions - def find_matches_to_new_records( - self, - records_or_tablename: AcceptableInputTableType | str, - blocking_rules: list[BlockingRuleCreator | dict[str, Any] | str] - | BlockingRuleCreator - | dict[str, Any] - | str = [], - match_weight_threshold: float = -4, - ) -> SplinkDataFrame: - """Given one or more records, find records in the input dataset(s) which match - and return in order of the Splink prediction score. - - This effectively provides a way of searching the input datasets - for given record(s) - - Args: - records_or_tablename (List[dict]): Input search record(s) as list of dict, - or a table registered to the database. - blocking_rules (list, optional): Blocking rules to select - which records to find and score. If [], do not use a blocking - rule - meaning the input records will be compared to all records - provided to the linker when it was instantiated. Defaults to []. - match_weight_threshold (int, optional): Return matches with a match weight - above this threshold. Defaults to -4. - - Examples: - ```py - linker = DuckDBLinker(df) - linker.load_settings("saved_settings.json") - # Pre-compute tf tables for any tables with - # term frequency adjustments - linker.compute_tf_table("first_name") - record = {'unique_id': 1, - 'first_name': "John", - 'surname': "Smith", - 'dob': "1971-05-24", - 'city': "London", - 'email': "john@smith.net" - } - df = linker.find_matches_to_new_records([record], blocking_rules=[]) - ``` - - Returns: - SplinkDataFrame: The pairwise comparisons. - """ - - original_blocking_rules = ( - self._settings_obj._blocking_rules_to_generate_predictions - ) - original_link_type = self._settings_obj._link_type - - blocking_rule_list = ensure_is_list(blocking_rules) - - if not isinstance(records_or_tablename, str): - uid = ascii_uid(8) - new_records_tablename = f"__splink__df_new_records_{uid}" - self.register_table( - records_or_tablename, new_records_tablename, overwrite=True - ) - - else: - new_records_tablename = records_or_tablename - - new_records_df = self.db_api.table_to_splink_dataframe( - "__splink__df_new_records", new_records_tablename - ) - - pipeline = CTEPipeline() - nodes_with_tf = compute_df_concat_with_tf(self, pipeline) - - pipeline = CTEPipeline([nodes_with_tf, new_records_df]) - if len(blocking_rule_list) == 0: - blocking_rule_list = [BlockingRule("1=1")] - blocking_rule_list = [blocking_rule_to_obj(br) for br in blocking_rule_list] - for n, br in enumerate(blocking_rule_list): - br.add_preceding_rules(blocking_rule_list[:n]) - - self._settings_obj._blocking_rules_to_generate_predictions = blocking_rule_list - - for tf_col in self._settings_obj._term_frequency_columns: - tf_table_name = colname_to_tf_tablename(tf_col) - if tf_table_name in self._intermediate_table_cache: - tf_table = self._intermediate_table_cache.get_with_logging( - tf_table_name - ) - pipeline.append_input_dataframe(tf_table) - - sql = _join_new_table_to_df_concat_with_tf_sql(self, "__splink__df_new_records") - pipeline.enqueue_sql(sql, "__splink__df_new_records_with_tf_before_uid_fix") - - pipeline = add_unique_id_and_source_dataset_cols_if_needed( - self, new_records_df, pipeline - ) - settings = self._settings_obj - sqls = block_using_rules_sqls( - input_tablename_l="__splink__df_concat_with_tf", - input_tablename_r="__splink__df_new_records_with_tf", - blocking_rules=blocking_rule_list, - link_type="two_dataset_link_only", - columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking), - source_dataset_input_column=settings.column_info_settings.source_dataset_input_column, - unique_id_input_column=settings.column_info_settings.unique_id_input_column, - ) - pipeline.enqueue_list_of_sqls(sqls) - - sql = compute_comparison_vector_values_sql( - self._settings_obj._columns_to_select_for_comparison_vector_values - ) - pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") - - sqls = predict_from_comparison_vectors_sqls_using_settings( - self._settings_obj, - sql_infinity_expression=self._infinity_expression, - ) - pipeline.enqueue_list_of_sqls(sqls) - - sql = f""" - select * from __splink__df_predict - where match_weight > {match_weight_threshold} - """ - - pipeline.enqueue_sql(sql, "__splink__find_matches_predictions") - - predictions = self.db_api.sql_pipeline_to_splink_dataframe( - pipeline, use_cache=False - ) - - self._settings_obj._blocking_rules_to_generate_predictions = ( - original_blocking_rules - ) - self._settings_obj._link_type = original_link_type - - return predictions - - def compare_two_records( - self, record_1: dict[str, Any], record_2: dict[str, Any] - ) -> SplinkDataFrame: - """Use the linkage model to compare and score a pairwise record comparison - based on the two input records provided - - Args: - record_1 (dict): dictionary representing the first record. Columns names - and data types must be the same as the columns in the settings object - record_2 (dict): dictionary representing the second record. Columns names - and data types must be the same as the columns in the settings object - - Examples: - ```py - linker = DuckDBLinker(df) - linker.load_settings("saved_settings.json") - linker.compare_two_records(record_left, record_right) - ``` - - Returns: - SplinkDataFrame: Pairwise comparison with scored prediction - """ - - cache = self._intermediate_table_cache - - uid = ascii_uid(8) - df_records_left = self.register_table( - [record_1], f"__splink__compare_two_records_left_{uid}", overwrite=True - ) - df_records_left.templated_name = "__splink__compare_two_records_left" - - df_records_right = self.register_table( - [record_2], f"__splink__compare_two_records_right_{uid}", overwrite=True - ) - df_records_right.templated_name = "__splink__compare_two_records_right" - - pipeline = CTEPipeline([df_records_left, df_records_right]) - - if "__splink__df_concat_with_tf" in cache: - nodes_with_tf = cache.get_with_logging("__splink__df_concat_with_tf") - pipeline.append_input_dataframe(nodes_with_tf) - - for tf_col in self._settings_obj._term_frequency_columns: - tf_table_name = colname_to_tf_tablename(tf_col) - if tf_table_name in cache: - tf_table = cache.get_with_logging(tf_table_name) - pipeline.append_input_dataframe(tf_table) - else: - if "__splink__df_concat_with_tf" not in cache: - logger.warning( - f"No term frequencies found for column {tf_col.name}.\n" - "To apply term frequency adjustments, you need to register" - " a lookup using `linker.register_term_frequency_lookup`." - ) - - sql_join_tf = _join_new_table_to_df_concat_with_tf_sql( - self, "__splink__compare_two_records_left" - ) - - pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_left_with_tf") - - sql_join_tf = _join_new_table_to_df_concat_with_tf_sql( - self, "__splink__compare_two_records_right" - ) - - pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_right_with_tf") - - sqls = block_using_rules_sqls( - input_tablename_l="__splink__compare_two_records_left_with_tf", - input_tablename_r="__splink__compare_two_records_right_with_tf", - blocking_rules=[BlockingRule("1=1")], - link_type=self._settings_obj._link_type, - columns_to_select_sql=", ".join( - self._settings_obj._columns_to_select_for_blocking - ), - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, - ) - pipeline.enqueue_list_of_sqls(sqls) - - sql = compute_comparison_vector_values_sql( - self._settings_obj._columns_to_select_for_comparison_vector_values - ) - pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") - - sqls = predict_from_comparison_vectors_sqls_using_settings( - self._settings_obj, - sql_infinity_expression=self._infinity_expression, - ) - pipeline.enqueue_list_of_sqls(sqls) - - predictions = self.db_api.sql_pipeline_to_splink_dataframe( - pipeline, use_cache=False - ) - - return predictions - - def _self_link(self) -> SplinkDataFrame: - """Use the linkage model to compare and score all records in our input df with - themselves. - - Returns: - SplinkDataFrame: Scored pairwise comparisons of the input records to - themselves. - """ - - # Block on uid i.e. create pairwise record comparisons where the uid matches - settings = self._settings_obj - uid_cols = settings.column_info_settings.unique_id_input_columns - uid_l = _composite_unique_id_from_edges_sql(uid_cols, None, "l") - uid_r = _composite_unique_id_from_edges_sql(uid_cols, None, "r") - - blocking_rule = BlockingRule( - f"{uid_l} = {uid_r}", sqlglot_dialect=self._sql_dialect - ) - - pipeline = CTEPipeline() - nodes_with_tf = compute_df_concat_with_tf(self, pipeline) - - pipeline = CTEPipeline([nodes_with_tf]) - - sqls = block_using_rules_sqls( - input_tablename_l="__splink__df_concat_with_tf", - input_tablename_r="__splink__df_concat_with_tf", - blocking_rules=[blocking_rule], - link_type="self_link", - columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking), - source_dataset_input_column=settings.column_info_settings.source_dataset_input_column, - unique_id_input_column=settings.column_info_settings.unique_id_input_column, - ) - pipeline.enqueue_list_of_sqls(sqls) - - sql = compute_comparison_vector_values_sql( - self._settings_obj._columns_to_select_for_comparison_vector_values - ) - - pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") - - sql_infos = predict_from_comparison_vectors_sqls( - unique_id_input_columns=uid_cols, - core_model_settings=self._settings_obj.core_model_settings, - sql_dialect=self._sql_dialect, - sql_infinity_expression=self._infinity_expression, - ) - for sql_info in sql_infos: - output_table_name = sql_info["output_table_name"] - output_table_name = output_table_name.replace("predict", "self_link") - pipeline.enqueue_sql(sql_info["sql"], output_table_name) - - predictions = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - - return predictions - - def cluster_pairwise_predictions_at_threshold( - self, - df_predict: SplinkDataFrame, - threshold_match_probability: Optional[float] = None, - pairwise_formatting: bool = False, - filter_pairwise_format_for_clusters: bool = True, - ) -> SplinkDataFrame: - """Clusters the pairwise match predictions that result from `linker.predict()` - into groups of connected record using the connected components graph clustering - algorithm - - Records with an estimated `match_probability` at or above - `threshold_match_probability` are considered to be a match (i.e. they represent - the same entity). - - Args: - df_predict (SplinkDataFrame): The results of `linker.predict()` - threshold_match_probability (float): Filter the pairwise match predictions - to include only pairwise comparisons with a match_probability at or - above this threshold. This dataframe is then fed into the clustering - algorithm. - pairwise_formatting (bool): Whether to output the pairwise match predictions - from linker.predict() with cluster IDs. - If this is set to false, the output will be a list of all IDs, clustered - into groups based on the desired match threshold. - filter_pairwise_format_for_clusters (bool): If pairwise formatting has been - selected, whether to output all columns found within linker.predict(), - or just return clusters. - - Returns: - SplinkDataFrame: A SplinkDataFrame containing a list of all IDs, clustered - into groups based on the desired match threshold. - - """ - - # Feeding in df_predict forces materiailisation, if it exists in your database - pipeline = CTEPipeline() - nodes_with_tf = compute_df_concat_with_tf(self, pipeline) - - edges_table = _cc_create_unique_id_cols( - self, - nodes_with_tf.physical_name, - df_predict, - threshold_match_probability, - ) - - cc = solve_connected_components( - self, - edges_table, - df_predict, - nodes_with_tf, - pairwise_formatting, - filter_pairwise_format_for_clusters, - ) - cc.metadata["threshold_match_probability"] = threshold_match_probability - - return cc - - def _compute_metrics_nodes( - self, - df_predict: SplinkDataFrame, - df_clustered: SplinkDataFrame, - threshold_match_probability: float, - ) -> SplinkDataFrame: - """ - Internal function for computing node-level metrics. - - Accepts outputs of `linker.predict()` and - `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold - and produces a table of node metrics. - - Node metrics produced: - * node_degree (absolute number of neighbouring nodes) - - Output table has a single row per input node, along with the cluster id (as - assigned in `linker.cluster_pairwise_at_threshold()`) and the metric - node_degree: - |-------------------------------------------------| - | composite_unique_id | cluster_id | node_degree | - |---------------------|-------------|-------------| - | s1-__-10001 | s1-__-10001 | 6 | - | s1-__-10002 | s1-__-10001 | 4 | - | s1-__-10003 | s1-__-10003 | 2 | - ... - """ - uid_cols = self._settings_obj.column_info_settings.unique_id_input_columns - # need composite unique ids - composite_uid_edges_l = _composite_unique_id_from_edges_sql(uid_cols, "l") - composite_uid_edges_r = _composite_unique_id_from_edges_sql(uid_cols, "r") - composite_uid_clusters = _composite_unique_id_from_nodes_sql(uid_cols) - - pipeline = CTEPipeline() - sqls = _node_degree_sql( - df_predict, - df_clustered, - composite_uid_edges_l, - composite_uid_edges_r, - composite_uid_clusters, - threshold_match_probability, - ) - pipeline.enqueue_list_of_sqls(sqls) - - df_node_metrics = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - - df_node_metrics.metadata["threshold_match_probability"] = ( - threshold_match_probability - ) - return df_node_metrics - - def _compute_metrics_edges( - self, - df_node_metrics: SplinkDataFrame, - df_predict: SplinkDataFrame, - df_clustered: SplinkDataFrame, - threshold_match_probability: float, - ) -> SplinkDataFrame: - """ - Internal function for computing edge-level metrics. - - Accepts outputs of `linker._compute_node_metrics()`, `linker.predict()` and - `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold - and produces a table of edge metrics. - - Uses `igraph` under-the-hood for calculations - - Edge metrics produced: - * is_bridge (is the edge a bridge?) - - Output table has a single row per edge, and the metric is_bridge: - |-------------------------------------------------------------| - | composite_unique_id_l | composite_unique_id_r | is_bridge | - |-----------------------|-------------------------|-----------| - | s1-__-10001 | s1-__-10003 | True | - | s1-__-10001 | s1-__-10005 | False | - | s1-__-10005 | s1-__-10009 | False | - | s1-__-10021 | s1-__-10024 | True | - ... - """ - df_edge_metrics = compute_edge_metrics( - self, df_node_metrics, df_predict, df_clustered, threshold_match_probability - ) - df_edge_metrics.metadata["threshold_match_probability"] = ( - threshold_match_probability - ) - return df_edge_metrics - - def _compute_metrics_clusters( - self, - df_node_metrics: SplinkDataFrame, - ) -> SplinkDataFrame: - """ - Internal function for computing cluster-level metrics. - - Accepts output of `linker._compute_node_metrics()` (which has the relevant - information from `linker.predict() and - `linker.cluster_pairwise_at_threshold()`), produces a table of cluster metrics. - - Cluster metrics produced: - * n_nodes (aka cluster size, number of nodes in cluster) - * n_edges (number of edges in cluster) - * density (number of edges normalised wrt maximum possible number) - * cluster_centralisation (average absolute deviation from maximum node_degree - normalised wrt maximum possible value) - - Output table has a single row per cluster, along with the cluster metrics - listed above - |--------------------------------------------------------------------| - | cluster_id | n_nodes | n_edges | density | cluster_centralisation | - |-------------|---------|---------|---------|------------------------| - | s1-__-10006 | 4 | 4 | 0.66667 | 0.6666 | - | s1-__-10008 | 6 | 5 | 0.33333 | 0.4 | - | s1-__-10013 | 11 | 19 | 0.34545 | 0.3111 | - ... - """ - pipeline = CTEPipeline() - sqls = _size_density_centralisation_sql( - df_node_metrics, - ) - pipeline.enqueue_list_of_sqls(sqls) - - df_cluster_metrics = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - df_cluster_metrics.metadata["threshold_match_probability"] = ( - df_node_metrics.metadata["threshold_match_probability"] - ) - return df_cluster_metrics - - def compute_graph_metrics( - self, - df_predict: SplinkDataFrame, - df_clustered: SplinkDataFrame, - *, - threshold_match_probability: float = None, - ) -> GraphMetricsResults: - """ - Generates tables containing graph metrics (for nodes, edges and clusters), - and returns a data class of Splink dataframes - - Args: - df_predict (SplinkDataFrame): The results of `linker.predict()` - df_clustered (SplinkDataFrame): The outputs of - `linker.cluster_pairwise_predictions_at_threshold()` - threshold_match_probability (float, optional): Filter the pairwise match - predictions to include only pairwise comparisons with a - match_probability at or above this threshold. If not provided, the value - will be taken from metadata on `df_clustered`. If no such metadata is - available, this value _must_ be provided. - - Returns: - GraphMetricsResult: A data class containing SplinkDataFrames - of cluster IDs and selected node, edge or cluster metrics. - attribute "nodes" for nodes metrics table - attribute "edges" for edge metrics table - attribute "clusters" for cluster metrics table - - """ - if threshold_match_probability is None: - threshold_match_probability = df_clustered.metadata.get( - "threshold_match_probability", None - ) - # we may not have metadata if clusters have been manually registered, or - # read in from a format that does not include it - if threshold_match_probability is None: - raise TypeError( - "As `df_clustered` has no threshold metadata associated to it, " - "to compute graph metrics you must provide " - "`threshold_match_probability` manually" - ) - df_node_metrics = self._compute_metrics_nodes( - df_predict, df_clustered, threshold_match_probability - ) - df_edge_metrics = self._compute_metrics_edges( - df_node_metrics, - df_predict, - df_clustered, - threshold_match_probability, - ) - # don't need edges as information is baked into node metrics - df_cluster_metrics = self._compute_metrics_clusters(df_node_metrics) - - return GraphMetricsResults( - nodes=df_node_metrics, edges=df_edge_metrics, clusters=df_cluster_metrics - ) - - def _get_labels_tablename_from_input( - self, labels_splinkdataframe_or_table_name: str | SplinkDataFrame - ) -> str: - if isinstance(labels_splinkdataframe_or_table_name, SplinkDataFrame): - labels_tablename = labels_splinkdataframe_or_table_name.physical_name - elif isinstance(labels_splinkdataframe_or_table_name, str): - labels_tablename = labels_splinkdataframe_or_table_name + def _get_labels_tablename_from_input( + self, labels_splinkdataframe_or_table_name: str | SplinkDataFrame + ) -> str: + if isinstance(labels_splinkdataframe_or_table_name, SplinkDataFrame): + labels_tablename = labels_splinkdataframe_or_table_name.physical_name + elif isinstance(labels_splinkdataframe_or_table_name, str): + labels_tablename = labels_splinkdataframe_or_table_name else: raise ValueError( "The 'labels_splinkdataframe_or_table_name' argument" @@ -1739,932 +589,6 @@ def _get_labels_tablename_from_input( ) return labels_tablename - def estimate_m_from_pairwise_labels(self, labels_splinkdataframe_or_table_name): - """Estimate the m parameters of the linkage model from a dataframe of pairwise - labels. - - The table of labels should be in the following format, and should - be registered with your database: - |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r| - |----------------|-----------|----------------|-----------| - |df_1 |1 |df_2 |2 | - |df_1 |1 |df_2 |3 | - - Note that `source_dataset` and `unique_id` should correspond to the - values specified in the settings dict, and the `input_table_aliases` - passed to the `linker` object. Note that at the moment, this method does - not respect values in a `clerical_match_score` column. If provided, these - are ignored and it is assumed that every row in the table of labels is a score - of 1, i.e. a perfect match. - - Args: - labels_splinkdataframe_or_table_name (str): Name of table containing labels - in the database or SplinkDataframe - - Examples: - ```py - pairwise_labels = pd.read_csv("./data/pairwise_labels_to_estimate_m.csv") - linker.register_table(pairwise_labels, "labels", overwrite=True) - linker.estimate_m_from_pairwise_labels("labels") - ``` - """ - labels_tablename = self._get_labels_tablename_from_input( - labels_splinkdataframe_or_table_name - ) - estimate_m_from_pairwise_labels(self, labels_tablename) - - def prediction_errors_from_labels_table( - self, - labels_splinkdataframe_or_table_name, - include_false_positives=True, - include_false_negatives=True, - threshold=0.5, - ): - """Generate a dataframe containing false positives and false negatives - based on the comparison between the clerical_match_score in the labels - table compared with the splink predicted match probability - - Args: - labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table - containing labels in the database - include_false_positives (bool, optional): Defaults to True. - include_false_negatives (bool, optional): Defaults to True. - threshold (float, optional): Threshold above which a score is considered - to be a match. Defaults to 0.5. - - Returns: - SplinkDataFrame: Table containing false positives and negatives - """ - labels_tablename = self._get_labels_tablename_from_input( - labels_splinkdataframe_or_table_name - ) - return prediction_errors_from_labels_table( - self, - labels_tablename, - include_false_positives, - include_false_negatives, - threshold, - ) - - def accuracy_analysis_from_labels_column( - self, - labels_column_name: str, - *, - threshold_actual: float = 0.5, - match_weight_round_to_nearest: float = 0.1, - output_type: Literal[ - "threshold_selection", "roc", "precision_recall", "table", "accuracy" - ] = "threshold_selection", - add_metrics: List[ - Literal[ - "specificity", - "npv", - "accuracy", - "f1", - "f2", - "f0_5", - "p4", - "phi", - ] - ] = [], - positives_not_captured_by_blocking_rules_scored_as_zero: bool = True, - ) -> Union[ChartReturnType, SplinkDataFrame]: - """Generate an accuracy chart or table from ground truth data, where the ground - truth is in a column in the input dataset called `labels_column_name` - - Args: - labels_column_name (str): Column name containing labels in the input table - threshold_actual (float, optional): Where the `clerical_match_score` - provided by the user is a probability rather than binary, this value - is used as the threshold to classify `clerical_match_score`s as binary - matches or non matches. Defaults to 0.5. - match_weight_round_to_nearest (float, optional): When provided, thresholds - are rounded. When large numbers of labels are provided, this is - sometimes necessary to reduce the size of the ROC table, and therefore - the number of points plotted on the chart. Defaults to None. - add_metrics (list(str), optional): Precision and recall metrics are always - included. Where provided, `add_metrics` specifies additional metrics - to show, with the following options: - - - `"specificity"`: specificity, selectivity, true negative rate (TNR) - - `"npv"`: negative predictive value (NPV) - - `"accuracy"`: overall accuracy (TP+TN)/(P+N) - - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2 - (emphasis on recall) and \u03b2=0.5 (emphasis on precision) - - `"p4"` - an extended F1 score with specificity and NPV included - - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC) - Examples: - ```py - linker.accuracy_analysis_from_labels_column("ground_truth", add_metrics=["f1"]) - ``` - - Returns: - altair.Chart: An altair chart - """ # noqa: E501 - - allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"] - - if not isinstance(add_metrics, list): - raise Exception( - "add_metrics must be a list containing one or more of the following:", - allowed, - ) - - if not all(metric in allowed for metric in add_metrics): - raise ValueError( - "Invalid metric. " f"Allowed metrics are: {', '.join(allowed)}." - ) - - df_truth_space = truth_space_table_from_labels_column( - self, - labels_column_name, - threshold_actual=threshold_actual, - match_weight_round_to_nearest=match_weight_round_to_nearest, - positives_not_captured_by_blocking_rules_scored_as_zero=positives_not_captured_by_blocking_rules_scored_as_zero, - ) - recs = df_truth_space.as_record_dict() - - if output_type == "threshold_selection": - return threshold_selection_tool(recs, add_metrics=add_metrics) - elif output_type == "accuracy": - return accuracy_chart(recs, add_metrics=add_metrics) - elif output_type == "roc": - return roc_chart(recs) - elif output_type == "precision_recall": - return precision_recall_chart(recs) - elif output_type == "table": - return df_truth_space - else: - raise ValueError( - "Invalid chart_type. Allowed chart types are: " - "'threshold_selection', 'roc', 'precision_recall', 'accuracy." - ) - - def accuracy_analysis_from_labels_table( - self, - labels_splinkdataframe_or_table_name: str | SplinkDataFrame, - *, - threshold_actual: float = 0.5, - match_weight_round_to_nearest: float = 0.1, - output_type: Literal[ - "threshold_selection", "roc", "precision_recall", "table", "accuracy" - ] = "threshold_selection", - add_metrics: List[ - Literal[ - "specificity", - "npv", - "accuracy", - "f1", - "f2", - "f0_5", - "p4", - "phi", - ] - ] = [], - ) -> Union[ChartReturnType, SplinkDataFrame]: - """Generate an accuracy chart or table from labelled (ground truth) data. - - The table of labels should be in the following format, and should be registered - as a table with your database using - `labels_table = linker.register_labels_table(my_df)` - - |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|clerical_match_score| - |----------------|-----------|----------------|-----------|--------------------| - |df_1 |1 |df_2 |2 |0.99 | - |df_1 |1 |df_2 |3 |0.2 | - - Note that `source_dataset` and `unique_id` should correspond to the values - specified in the settings dict, and the `input_table_aliases` passed to the - `linker` object. - - For `dedupe_only` links, the `source_dataset` columns can be ommitted. - - Args: - labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table - containing labels in the database - threshold_actual (float, optional): Where the `clerical_match_score` - provided by the user is a probability rather than binary, this value - is used as the threshold to classify `clerical_match_score`s as binary - matches or non matches. Defaults to 0.5. - match_weight_round_to_nearest (float, optional): When provided, thresholds - are rounded. When large numbers of labels are provided, this is - sometimes necessary to reduce the size of the ROC table, and therefore - the number of points plotted on the chart. Defaults to None. - add_metrics (list(str), optional): Precision and recall metrics are always - included. Where provided, `add_metrics` specifies additional metrics - to show, with the following options: - - - `"specificity"`: specificity, selectivity, true negative rate (TNR) - - `"npv"`: negative predictive value (NPV) - - `"accuracy"`: overall accuracy (TP+TN)/(P+N) - - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2 - (emphasis on recall) and \u03b2=0.5 (emphasis on precision) - - `"p4"` - an extended F1 score with specificity and NPV included - - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC) - Examples: - ```py - linker.accuracy_analysis_from_labels_table("ground_truth", add_metrics=["f1"]) - ``` - - Returns: - altair.Chart: An altair chart - """ # noqa: E501 - - allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"] - - if not isinstance(add_metrics, list): - raise Exception( - "add_metrics must be a list containing one or more of the following:", - allowed, - ) - - if not all(metric in allowed for metric in add_metrics): - raise ValueError( - f"Invalid metric. Allowed metrics are: {', '.join(allowed)}." - ) - - labels_tablename = self._get_labels_tablename_from_input( - labels_splinkdataframe_or_table_name - ) - self._raise_error_if_necessary_accuracy_columns_not_computed() - df_truth_space = truth_space_table_from_labels_table( - self, - labels_tablename, - threshold_actual=threshold_actual, - match_weight_round_to_nearest=match_weight_round_to_nearest, - ) - recs = df_truth_space.as_record_dict() - - if output_type == "threshold_selection": - return threshold_selection_tool(recs, add_metrics=add_metrics) - elif output_type == "accuracy": - return accuracy_chart(recs, add_metrics=add_metrics) - elif output_type == "roc": - return roc_chart(recs) - elif output_type == "precision_recall": - return precision_recall_chart(recs) - elif output_type == "table": - return df_truth_space - else: - raise ValueError( - "Invalid chart_type. Allowed chart types are: " - "'threshold_selection', 'roc', 'precision_recall', 'accuracy." - ) - - def prediction_errors_from_labels_column( - self, - label_colname, - include_false_positives=True, - include_false_negatives=True, - threshold=0.5, - ): - """Generate a dataframe containing false positives and false negatives - based on the comparison between the splink match probability and the - labels column. A label column is a column in the input dataset that contains - the 'ground truth' cluster to which the record belongs - - Args: - label_colname (str): Name of labels column in input data - include_false_positives (bool, optional): Defaults to True. - include_false_negatives (bool, optional): Defaults to True. - threshold (float, optional): Threshold above which a score is considered - to be a match. Defaults to 0.5. - - Returns: - SplinkDataFrame: Table containing false positives and negatives - """ - return prediction_errors_from_label_column( - self, - label_colname, - include_false_positives, - include_false_negatives, - threshold, - ) - - def match_weights_histogram( - self, - df_predict: SplinkDataFrame, - target_bins: int = 30, - width: int = 600, - height: int = 250, - ) -> ChartReturnType: - """Generate a histogram that shows the distribution of match weights in - `df_predict` - - Args: - df_predict (SplinkDataFrame): Output of `linker.predict()` - target_bins (int, optional): Target number of bins in histogram. Defaults to - 30. - width (int, optional): Width of output. Defaults to 600. - height (int, optional): Height of output chart. Defaults to 250. - - - Returns: - altair.Chart: An altair chart - - """ - df = histogram_data(self, df_predict, target_bins) - recs = df.as_record_dict() - return match_weights_histogram(recs, width=width, height=height) - - def waterfall_chart( - self, - records: list[dict[str, Any]], - filter_nulls: bool = True, - remove_sensitive_data: bool = False, - ) -> ChartReturnType: - """Visualise how the final match weight is computed for the provided pairwise - record comparisons. - - Records must be provided as a list of dictionaries. This would usually be - obtained from `df.as_record_dict(limit=n)` where `df` is a SplinkDataFrame. - - Examples: - ```py - df = linker.predict(threshold_match_weight=2) - records = df.as_record_dict(limit=10) - linker.waterfall_chart(records) - ``` - - Args: - records (List[dict]): Usually be obtained from `df.as_record_dict(limit=n)` - where `df` is a SplinkDataFrame. - filter_nulls (bool, optional): Whether the visualiation shows null - comparisons, which have no effect on final match weight. Defaults to - True. - remove_sensitive_data (bool, optional): When True, The waterfall chart will - contain match weights only, and all of the (potentially sensitive) data - from the input tables will be removed prior to the chart being created. - - - Returns: - altair.Chart: An altair chart - - """ - self._raise_error_if_necessary_waterfall_columns_not_computed() - - return waterfall_chart( - records, self._settings_obj, filter_nulls, remove_sensitive_data - ) - - def unlinkables_chart( - self, - x_col: str = "match_weight", - name_of_data_in_title: str | None = None, - as_dict: bool = False, - ) -> ChartReturnType: - """Generate an interactive chart displaying the proportion of records that - are "unlinkable" for a given splink score threshold and model parameters. - - Unlinkable records are those that, even when compared with themselves, do not - contain enough information to confirm a match. - - Args: - x_col (str, optional): Column to use for the x-axis. - Defaults to "match_weight". - name_of_data_in_title (str, optional): Name of the source dataset to use for - the title of the output chart. - as_dict (bool, optional): If True, return a dict version of the chart. - - Examples: - For the simplest code pipeline, load a pre-trained model - and run this against the test data. - ```py - from splink.datasets import splink_datasets - df = splink_datasets.fake_1000 - linker = DuckDBLinker(df) - linker.load_settings("saved_settings.json") - linker.unlinkables_chart() - ``` - For more complex code pipelines, you can run an entire pipeline - that estimates your m and u values, before `unlinkables_chart(). - - Returns: - altair.Chart: An altair chart - """ - - # Link our initial df on itself and calculate the % of unlinkable entries - records = unlinkables_data(self) - return unlinkables_chart(records, x_col, name_of_data_in_title, as_dict) - - def comparison_viewer_dashboard( - self, - df_predict: SplinkDataFrame, - out_path: str, - overwrite: bool = False, - num_example_rows: int = 2, - return_html_as_string: bool = False, - ) -> str | None: - """Generate an interactive html visualization of the linker's predictions and - save to `out_path`. For more information see - [this video](https://www.youtube.com/watch?v=DNvCMqjipis) - - - Args: - df_predict (SplinkDataFrame): The outputs of `linker.predict()` - out_path (str): The path (including filename) to save the html file to. - overwrite (bool, optional): Overwrite the html file if it already exists? - Defaults to False. - num_example_rows (int, optional): Number of example rows per comparison - vector. Defaults to 2. - return_html_as_string: If True, return the html as a string - - Examples: - ```py - df_predictions = linker.predict() - linker.comparison_viewer_dashboard(df_predictions, "scv.html", True, 2) - ``` - - Optionally, in Jupyter, you can display the results inline - Otherwise you can just load the html file in your browser - ```py - from IPython.display import IFrame - IFrame(src="./scv.html", width="100%", height=1200) - ``` - - """ - self._raise_error_if_necessary_waterfall_columns_not_computed() - pipeline = CTEPipeline([df_predict]) - sql = comparison_vector_distribution_sql(self) - pipeline.enqueue_sql(sql, "__splink__df_comparison_vector_distribution") - - sqls = comparison_viewer_table_sqls(self, num_example_rows) - pipeline.enqueue_list_of_sqls(sqls) - - df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline) - - rendered = render_splink_comparison_viewer_html( - df.as_record_dict(), - self._settings_obj._as_completed_dict(), - out_path, - overwrite, - ) - if return_html_as_string: - return rendered - return None - - def parameter_estimate_comparisons_chart( - self, include_m: bool = True, include_u: bool = False - ) -> ChartReturnType: - """Show a chart that shows how parameter estimates have differed across - the different estimation methods you have used. - - For example, if you have run two EM estimation sessions, blocking on - different variables, and both result in parameter estimates for - first_name, this chart will enable easy comparison of the different - estimates - - Args: - include_m (bool, optional): Show different estimates of m values. Defaults - to True. - include_u (bool, optional): Show different estimates of u values. Defaults - to False. - - """ - records = self._settings_obj._parameter_estimates_as_records - - to_retain = [] - if include_m: - to_retain.append("m") - if include_u: - to_retain.append("u") - - records = [r for r in records if r["m_or_u"] in to_retain] - - return parameter_estimate_comparisons(records) - - def match_weights_chart(self): - """Display a chart of the (partial) match weights of the linkage model - - Examples: - ```py - linker.match_weights_chart() - ``` - To view offline (if you don't have an internet connection): - ```py - from splink.charts import save_offline_chart - c = linker.match_weights_chart() - save_offline_chart(c.to_dict(), "test_chart.html") - ``` - View resultant html file in Jupyter (or just load it in your browser) - ```py - from IPython.display import IFrame - IFrame(src="./test_chart.html", width=1000, height=500) - ``` - - Returns: - altair.Chart: An altair chart - """ - return self._settings_obj.match_weights_chart() - - def tf_adjustment_chart( - self, - output_column_name: str, - n_most_freq: int = 10, - n_least_freq: int = 10, - vals_to_include: str | list[str] | None = None, - as_dict: bool = False, - ) -> ChartReturnType: - """Display a chart showing the impact of term frequency adjustments on a - specific comparison level. - Each value - - Args: - output_column_name (str): Name of an output column for which term frequency - adjustment has been applied. - n_most_freq (int, optional): Number of most frequent values to show. If this - or `n_least_freq` set to None, all values will be shown. - Default to 10. - n_least_freq (int, optional): Number of least frequent values to show. If - this or `n_most_freq` set to None, all values will be shown. - Default to 10. - vals_to_include (list, optional): Specific values for which to show term - sfrequency adjustments. - Defaults to None. - - Returns: - altair.Chart: An altair chart - """ - - # Comparisons with TF adjustments - tf_comparisons = [ - c.output_column_name - for c in self._settings_obj.comparisons - if any([cl._has_tf_adjustments for cl in c.comparison_levels]) - ] - if output_column_name not in tf_comparisons: - raise ValueError( - f"{output_column_name} is not a valid comparison column, or does not" - f" have term frequency adjustment activated" - ) - - vals_to_include = ( - [] if vals_to_include is None else ensure_is_list(vals_to_include) - ) - - return tf_adjustment_chart( - self, - output_column_name, - n_most_freq, - n_least_freq, - vals_to_include, - as_dict, - ) - - def m_u_parameters_chart(self): - """Display a chart of the m and u parameters of the linkage model - - Examples: - ```py - linker.m_u_parameters_chart() - ``` - To view offline (if you don't have an internet connection): - ```py - from splink.charts import save_offline_chart - c = linker.match_weights_chart() - save_offline_chart(c.to_dict(), "test_chart.html") - ``` - View resultant html file in Jupyter (or just load it in your browser) - ```py - from IPython.display import IFrame - IFrame(src="./test_chart.html", width=1000, height=500) - ``` - - Returns: - altair.Chart: An altair chart - """ - - return self._settings_obj.m_u_parameters_chart() - - def cluster_studio_dashboard( - self, - df_predict: SplinkDataFrame, - df_clustered: SplinkDataFrame, - out_path: str, - sampling_method: SamplingMethods = "random", - sample_size: int = 10, - cluster_ids: list[str] = None, - cluster_names: list[str] = None, - overwrite: bool = False, - return_html_as_string: bool = False, - _df_cluster_metrics: SplinkDataFrame = None, - ) -> str | None: - """Generate an interactive html visualization of the predicted cluster and - save to `out_path`. - - Args: - df_predict (SplinkDataFrame): The outputs of `linker.predict()` - df_clustered (SplinkDataFrame): The outputs of - `linker.cluster_pairwise_predictions_at_threshold()` - out_path (str): The path (including filename) to save the html file to. - sampling_method (str, optional): `random`, `by_cluster_size` or - `lowest_density_clusters`. Defaults to `random`. - sample_size (int, optional): Number of clusters to show in the dahboard. - Defaults to 10. - cluster_ids (list): The IDs of the clusters that will be displayed in the - dashboard. If provided, ignore the `sampling_method` and `sample_size` - arguments. Defaults to None. - overwrite (bool, optional): Overwrite the html file if it already exists? - Defaults to False. - cluster_names (list, optional): If provided, the dashboard will display - these names in the selection box. Ony works in conjunction with - `cluster_ids`. Defaults to None. - return_html_as_string: If True, return the html as a string - - Examples: - ```py - df_p = linker.predict() - df_c = linker.cluster_pairwise_predictions_at_threshold(df_p, 0.5) - linker.cluster_studio_dashboard( - df_p, df_c, [0, 4, 7], "cluster_studio.html" - ) - ``` - Optionally, in Jupyter, you can display the results inline - Otherwise you can just load the html file in your browser - ```py - from IPython.display import IFrame - IFrame(src="./cluster_studio.html", width="100%", height=1200) - ``` - """ - self._raise_error_if_necessary_waterfall_columns_not_computed() - - rendered = render_splink_cluster_studio_html( - self, - df_predict, - df_clustered, - out_path, - sampling_method=sampling_method, - sample_size=sample_size, - cluster_ids=cluster_ids, - overwrite=overwrite, - cluster_names=cluster_names, - _df_cluster_metrics=_df_cluster_metrics, - ) - - if return_html_as_string: - return rendered - return None - - def save_model_to_json( - self, out_path: str | None = None, overwrite: bool = False - ) -> dict[str, Any]: - """Save the configuration and parameters of the linkage model to a `.json` file. - - The model can later be loaded back in using `linker.load_model()`. - The settings dict is also returned in case you want to save it a different way. - - Examples: - ```py - linker.save_model_to_json("my_settings.json", overwrite=True) - ``` - Args: - out_path (str, optional): File path for json file. If None, don't save to - file. Defaults to None. - overwrite (bool, optional): Overwrite if already exists? Defaults to False. - - Returns: - dict: The settings as a dictionary. - """ - model_dict = self._settings_obj.as_dict() - if out_path: - if os.path.isfile(out_path) and not overwrite: - raise ValueError( - f"The path {out_path} already exists. Please provide a different " - "path or set overwrite=True" - ) - with open(out_path, "w", encoding="utf-8") as f: - json.dump(model_dict, f, indent=4) - return model_dict - - def estimate_probability_two_random_records_match( - self, - deterministic_matching_rules: List[Union[str, BlockingRuleCreator]], - recall: float, - max_rows_limit: int = int(1e9), - ) -> None: - """Estimate the model parameter `probability_two_random_records_match` using - a direct estimation approach. - - See [here](https://github.com/moj-analytical-services/splink/issues/462) - for discussion of methodology - - Args: - deterministic_matching_rules (list): A list of deterministic matching - rules that should be designed to admit very few (none if possible) - false positives - recall (float): A guess at the recall the deterministic matching rules - will attain. i.e. what proportion of true matches will be recovered - by these deterministic rules - """ - - if (recall > 1) or (recall <= 0): - raise ValueError( - f"Estimated recall must be greater than 0 " - f"and no more than 1. Supplied value {recall}." - ) from None - - deterministic_matching_rules = ensure_is_iterable(deterministic_matching_rules) - blocking_rules: List[BlockingRule] = [] - for br in deterministic_matching_rules: - blocking_rules.append( - to_blocking_rule_creator(br).get_blocking_rule( - self.db_api.sql_dialect.name - ) - ) - - pd_df = _cumulative_comparisons_to_be_scored_from_blocking_rules( - splink_df_dict=self._input_tables_dict, - blocking_rules=blocking_rules, - link_type=self._settings_obj._link_type, - db_api=self.db_api, - max_rows_limit=max_rows_limit, - unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column, - source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column, - ) - - records = pd_df.to_dict(orient="records") - - summary_record = records[-1] - num_observed_matches = summary_record["cumulative_rows"] - num_total_comparisons = summary_record["cartesian"] - - if num_observed_matches > num_total_comparisons * recall: - raise ValueError( - f"Deterministic matching rules led to more " - f"observed matches than is consistent with supplied recall. " - f"With these rules, recall must be at least " - f"{num_observed_matches/num_total_comparisons:,.2f}." - ) - - num_expected_matches = num_observed_matches / recall - prob = num_expected_matches / num_total_comparisons - - # warn about boundary values, as these will usually be in error - if num_observed_matches == 0: - logger.warning( - f"WARNING: Deterministic matching rules led to no observed matches! " - f"This means that no possible record pairs are matches, " - f"and no records are linked to one another.\n" - f"If this is truly the case then you do not need " - f"to run the linkage model.\n" - f"However this is usually in error; " - f"expected rules to have recall of {100*recall:,.0f}%. " - f"Consider revising rules as they may have an error." - ) - if prob == 1: - logger.warning( - "WARNING: Probability two random records match is estimated to be 1.\n" - "This means that all possible record pairs are matches, " - "and all records are linked to one another.\n" - "If this is truly the case then you do not need " - "to run the linkage model.\n" - "However, it is more likely that this estimate is faulty. " - "Perhaps your deterministic matching rules include " - "too many false positives?" - ) - - self._settings_obj._probability_two_random_records_match = prob - - reciprocal_prob = "Infinity" if prob == 0 else f"{1/prob:,.2f}" - logger.info( - f"Probability two random records match is estimated to be {prob:.3g}.\n" - f"This means that amongst all possible pairwise record comparisons, one in " - f"{reciprocal_prob} are expected to match. " - f"With {num_total_comparisons:,.0f} total" - " possible comparisons, we expect a total of around " - f"{num_expected_matches:,.2f} matching pairs" - ) - - def invalidate_cache(self): - """Invalidate the Splink cache. Any previously-computed tables - will be recomputed. - This is useful, for example, if the input data tables have changed. - """ - - # Nothing to delete - if len(self._intermediate_table_cache) == 0: - return - - # Before Splink executes a SQL command, it checks the cache to see - # whether a table already exists with the name of the output table - - # This function has the effect of changing the names of the output tables - # to include a different unique id - - # As a result, any previously cached tables will not be found - self._cache_uid = ascii_uid(8) - - # Drop any existing splink tables from the database - # Note, this is not actually necessary, it's just good housekeeping - self.delete_tables_created_by_splink_from_db() - - # As a result, any previously cached tables will not be found - self._intermediate_table_cache.invalidate_cache() - - def register_table_input_nodes_concat_with_tf(self, input_data, overwrite=False): - """Register a pre-computed version of the input_nodes_concat_with_tf table that - you want to re-use e.g. that you created in a previous run - - This method allowed you to register this table in the Splink cache - so it will be used rather than Splink computing this table anew. - - Args: - input_data: The data you wish to register. This can be either a dictionary, - pandas dataframe, pyarrow table or a spark dataframe. - overwrite (bool): Overwrite the table in the underlying database if it - exists - """ - - table_name_physical = "__splink__df_concat_with_tf_" + self._cache_uid - splink_dataframe = self.register_table( - input_data, table_name_physical, overwrite=overwrite - ) - splink_dataframe.templated_name = "__splink__df_concat_with_tf" - - self._intermediate_table_cache["__splink__df_concat_with_tf"] = splink_dataframe - return splink_dataframe - - def register_table_predict(self, input_data, overwrite=False): - table_name_physical = "__splink__df_predict_" + self._cache_uid - splink_dataframe = self.register_table( - input_data, table_name_physical, overwrite=overwrite - ) - self._intermediate_table_cache["__splink__df_predict"] = splink_dataframe - splink_dataframe.templated_name = "__splink__df_predict" - return splink_dataframe - - def register_term_frequency_lookup(self, input_data, col_name, overwrite=False): - input_col = InputColumn( - col_name, - column_info_settings=self._settings_obj.column_info_settings, - sql_dialect=self._settings_obj._sql_dialect, - ) - table_name_templated = colname_to_tf_tablename(input_col) - table_name_physical = f"{table_name_templated}_{self._cache_uid}" - splink_dataframe = self.register_table( - input_data, table_name_physical, overwrite=overwrite - ) - self._intermediate_table_cache[table_name_templated] = splink_dataframe - splink_dataframe.templated_name = table_name_templated - return splink_dataframe - - def register_labels_table(self, input_data, overwrite=False): - table_name_physical = "__splink__df_labels_" + ascii_uid(8) - splink_dataframe = self.register_table( - input_data, table_name_physical, overwrite=overwrite - ) - splink_dataframe.templated_name = "__splink__df_labels" - return splink_dataframe - - def labelling_tool_for_specific_record( - self, - unique_id, - source_dataset=None, - out_path="labelling_tool.html", - overwrite=False, - match_weight_threshold=-4, - view_in_jupyter=False, - show_splink_predictions_in_interface=True, - ): - """Create a standalone, offline labelling dashboard for a specific record - as identified by its unique id - - Args: - unique_id (str): The unique id of the record for which to create the - labelling tool - source_dataset (str, optional): If there are multiple datasets, to - identify the record you must also specify the source_dataset. Defaults - to None. - out_path (str, optional): The output path for the labelling tool. Defaults - to "labelling_tool.html". - overwrite (bool, optional): If true, overwrite files at the output - path if they exist. Defaults to False. - match_weight_threshold (int, optional): Include possible matches in the - output which score above this threshold. Defaults to -4. - view_in_jupyter (bool, optional): If you're viewing in the Jupyter - html viewer, set this to True to extract your labels. Defaults to False. - show_splink_predictions_in_interface (bool, optional): Whether to - show information about the Splink model's predictions that could - potentially bias the decision of the clerical labeller. Defaults to - True. - """ - - df_comparisons = generate_labelling_tool_comparisons( - self, - unique_id, - source_dataset, - match_weight_threshold=match_weight_threshold, - ) - - render_labelling_tool_html( - self, - df_comparisons, - show_splink_predictions_in_interface=show_splink_predictions_in_interface, - out_path=out_path, - view_in_jupyter=view_in_jupyter, - overwrite=overwrite, - ) - def _find_blocking_rules_below_threshold( self, max_comparisons_per_rule, blocking_expressions=None ): diff --git a/splink/internals/linker_components/clustering.py b/splink/internals/linker_components/clustering.py new file mode 100644 index 0000000000..f4802030fd --- /dev/null +++ b/splink/internals/linker_components/clustering.py @@ -0,0 +1,284 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Optional + +from splink.internals.connected_components import ( + _cc_create_unique_id_cols, + solve_connected_components, +) +from splink.internals.edge_metrics import compute_edge_metrics +from splink.internals.graph_metrics import ( + GraphMetricsResults, + _node_degree_sql, + _size_density_centralisation_sql, +) +from splink.internals.pipeline import CTEPipeline +from splink.internals.splink_dataframe import SplinkDataFrame +from splink.internals.unique_id_concat import ( + _composite_unique_id_from_edges_sql, + _composite_unique_id_from_nodes_sql, +) +from splink.internals.vertically_concatenate import ( + compute_df_concat_with_tf, +) + +if TYPE_CHECKING: + from splink.internals.linker import Linker + + +class LinkerClustering: + def __init__(self, linker: Linker): + self._linker = linker + + def cluster_pairwise_predictions_at_threshold( + self, + df_predict: SplinkDataFrame, + threshold_match_probability: Optional[float] = None, + pairwise_formatting: bool = False, + filter_pairwise_format_for_clusters: bool = True, + ) -> SplinkDataFrame: + """Clusters the pairwise match predictions that result from `linker.predict()` + into groups of connected record using the connected components graph clustering + algorithm + + Records with an estimated `match_probability` at or above + `threshold_match_probability` are considered to be a match (i.e. they represent + the same entity). + + Args: + df_predict (SplinkDataFrame): The results of `linker.predict()` + threshold_match_probability (float): Filter the pairwise match predictions + to include only pairwise comparisons with a match_probability at or + above this threshold. This dataframe is then fed into the clustering + algorithm. + pairwise_formatting (bool): Whether to output the pairwise match predictions + from linker.predict() with cluster IDs. + If this is set to false, the output will be a list of all IDs, clustered + into groups based on the desired match threshold. + filter_pairwise_format_for_clusters (bool): If pairwise formatting has been + selected, whether to output all columns found within linker.predict(), + or just return clusters. + + Returns: + SplinkDataFrame: A SplinkDataFrame containing a list of all IDs, clustered + into groups based on the desired match threshold. + + """ + + # Feeding in df_predict forces materiailisation, if it exists in your database + pipeline = CTEPipeline() + nodes_with_tf = compute_df_concat_with_tf(self._linker, pipeline) + + edges_table = _cc_create_unique_id_cols( + self._linker, + nodes_with_tf.physical_name, + df_predict, + threshold_match_probability, + ) + + cc = solve_connected_components( + self._linker, + edges_table, + df_predict, + nodes_with_tf, + pairwise_formatting, + filter_pairwise_format_for_clusters, + ) + cc.metadata["threshold_match_probability"] = threshold_match_probability + + return cc + + def _compute_metrics_nodes( + self, + df_predict: SplinkDataFrame, + df_clustered: SplinkDataFrame, + threshold_match_probability: float, + ) -> SplinkDataFrame: + """ + Internal function for computing node-level metrics. + + Accepts outputs of `linker.predict()` and + `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold + and produces a table of node metrics. + + Node metrics produced: + * node_degree (absolute number of neighbouring nodes) + + Output table has a single row per input node, along with the cluster id (as + assigned in `linker.cluster_pairwise_at_threshold()`) and the metric + node_degree: + |-------------------------------------------------| + | composite_unique_id | cluster_id | node_degree | + |---------------------|-------------|-------------| + | s1-__-10001 | s1-__-10001 | 6 | + | s1-__-10002 | s1-__-10001 | 4 | + | s1-__-10003 | s1-__-10003 | 2 | + ... + """ + uid_cols = ( + self._linker._settings_obj.column_info_settings.unique_id_input_columns + ) + # need composite unique ids + composite_uid_edges_l = _composite_unique_id_from_edges_sql(uid_cols, "l") + composite_uid_edges_r = _composite_unique_id_from_edges_sql(uid_cols, "r") + composite_uid_clusters = _composite_unique_id_from_nodes_sql(uid_cols) + + pipeline = CTEPipeline() + sqls = _node_degree_sql( + df_predict, + df_clustered, + composite_uid_edges_l, + composite_uid_edges_r, + composite_uid_clusters, + threshold_match_probability, + ) + pipeline.enqueue_list_of_sqls(sqls) + + df_node_metrics = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline + ) + + df_node_metrics.metadata["threshold_match_probability"] = ( + threshold_match_probability + ) + return df_node_metrics + + def _compute_metrics_edges( + self, + df_node_metrics: SplinkDataFrame, + df_predict: SplinkDataFrame, + df_clustered: SplinkDataFrame, + threshold_match_probability: float, + ) -> SplinkDataFrame: + """ + Internal function for computing edge-level metrics. + + Accepts outputs of `linker._compute_node_metrics()`, `linker.predict()` and + `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold + and produces a table of edge metrics. + + Uses `igraph` under-the-hood for calculations + + Edge metrics produced: + * is_bridge (is the edge a bridge?) + + Output table has a single row per edge, and the metric is_bridge: + |-------------------------------------------------------------| + | composite_unique_id_l | composite_unique_id_r | is_bridge | + |-----------------------|-------------------------|-----------| + | s1-__-10001 | s1-__-10003 | True | + | s1-__-10001 | s1-__-10005 | False | + | s1-__-10005 | s1-__-10009 | False | + | s1-__-10021 | s1-__-10024 | True | + ... + """ + df_edge_metrics = compute_edge_metrics( + self._linker, + df_node_metrics, + df_predict, + df_clustered, + threshold_match_probability, + ) + df_edge_metrics.metadata["threshold_match_probability"] = ( + threshold_match_probability + ) + return df_edge_metrics + + def _compute_metrics_clusters( + self, + df_node_metrics: SplinkDataFrame, + ) -> SplinkDataFrame: + """ + Internal function for computing cluster-level metrics. + + Accepts output of `linker._compute_node_metrics()` (which has the relevant + information from `linker.predict() and + `linker.cluster_pairwise_at_threshold()`), produces a table of cluster metrics. + + Cluster metrics produced: + * n_nodes (aka cluster size, number of nodes in cluster) + * n_edges (number of edges in cluster) + * density (number of edges normalised wrt maximum possible number) + * cluster_centralisation (average absolute deviation from maximum node_degree + normalised wrt maximum possible value) + + Output table has a single row per cluster, along with the cluster metrics + listed above + |--------------------------------------------------------------------| + | cluster_id | n_nodes | n_edges | density | cluster_centralisation | + |-------------|---------|---------|---------|------------------------| + | s1-__-10006 | 4 | 4 | 0.66667 | 0.6666 | + | s1-__-10008 | 6 | 5 | 0.33333 | 0.4 | + | s1-__-10013 | 11 | 19 | 0.34545 | 0.3111 | + ... + """ + pipeline = CTEPipeline() + sqls = _size_density_centralisation_sql( + df_node_metrics, + ) + pipeline.enqueue_list_of_sqls(sqls) + + df_cluster_metrics = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline + ) + df_cluster_metrics.metadata["threshold_match_probability"] = ( + df_node_metrics.metadata["threshold_match_probability"] + ) + return df_cluster_metrics + + def compute_graph_metrics( + self, + df_predict: SplinkDataFrame, + df_clustered: SplinkDataFrame, + *, + threshold_match_probability: float = None, + ) -> GraphMetricsResults: + """ + Generates tables containing graph metrics (for nodes, edges and clusters), + and returns a data class of Splink dataframes + + Args: + df_predict (SplinkDataFrame): The results of `linker.predict()` + df_clustered (SplinkDataFrame): The outputs of + `linker.cluster_pairwise_predictions_at_threshold()` + threshold_match_probability (float, optional): Filter the pairwise match + predictions to include only pairwise comparisons with a + match_probability at or above this threshold. If not provided, the value + will be taken from metadata on `df_clustered`. If no such metadata is + available, this value _must_ be provided. + + Returns: + GraphMetricsResult: A data class containing SplinkDataFrames + of cluster IDs and selected node, edge or cluster metrics. + attribute "nodes" for nodes metrics table + attribute "edges" for edge metrics table + attribute "clusters" for cluster metrics table + + """ + if threshold_match_probability is None: + threshold_match_probability = df_clustered.metadata.get( + "threshold_match_probability", None + ) + # we may not have metadata if clusters have been manually registered, or + # read in from a format that does not include it + if threshold_match_probability is None: + raise TypeError( + "As `df_clustered` has no threshold metadata associated to it, " + "to compute graph metrics you must provide " + "`threshold_match_probability` manually" + ) + df_node_metrics = self._compute_metrics_nodes( + df_predict, df_clustered, threshold_match_probability + ) + df_edge_metrics = self._compute_metrics_edges( + df_node_metrics, + df_predict, + df_clustered, + threshold_match_probability, + ) + # don't need edges as information is baked into node metrics + df_cluster_metrics = self._compute_metrics_clusters(df_node_metrics) + + return GraphMetricsResults( + nodes=df_node_metrics, edges=df_edge_metrics, clusters=df_cluster_metrics + ) diff --git a/splink/internals/linker_components/evaluation.py b/splink/internals/linker_components/evaluation.py new file mode 100644 index 0000000000..2018a30ffa --- /dev/null +++ b/splink/internals/linker_components/evaluation.py @@ -0,0 +1,389 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, List, Literal, Union + +from splink.internals.accuracy import ( + prediction_errors_from_label_column, + prediction_errors_from_labels_table, + truth_space_table_from_labels_column, + truth_space_table_from_labels_table, +) +from splink.internals.charts import ( + ChartReturnType, + accuracy_chart, + precision_recall_chart, + roc_chart, + threshold_selection_tool, + unlinkables_chart, +) +from splink.internals.labelling_tool import ( + generate_labelling_tool_comparisons, + render_labelling_tool_html, +) +from splink.internals.splink_dataframe import SplinkDataFrame +from splink.internals.unlinkables import unlinkables_data + +if TYPE_CHECKING: + from splink.internals.linker import Linker + + +class LinkerEvalution: + def __init__(self, linker: Linker): + self._linker = linker + + def prediction_errors_from_labels_table( + self, + labels_splinkdataframe_or_table_name, + include_false_positives=True, + include_false_negatives=True, + threshold=0.5, + ): + """Generate a dataframe containing false positives and false negatives + based on the comparison between the clerical_match_score in the labels + table compared with the splink predicted match probability + + Args: + labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table + containing labels in the database + include_false_positives (bool, optional): Defaults to True. + include_false_negatives (bool, optional): Defaults to True. + threshold (float, optional): Threshold above which a score is considered + to be a match. Defaults to 0.5. + + Returns: + SplinkDataFrame: Table containing false positives and negatives + """ + labels_tablename = self._linker._get_labels_tablename_from_input( + labels_splinkdataframe_or_table_name + ) + return prediction_errors_from_labels_table( + self._linker, + labels_tablename, + include_false_positives, + include_false_negatives, + threshold, + ) + + def accuracy_analysis_from_labels_column( + self, + labels_column_name: str, + *, + threshold_actual: float = 0.5, + match_weight_round_to_nearest: float = 0.1, + output_type: Literal[ + "threshold_selection", "roc", "precision_recall", "table", "accuracy" + ] = "threshold_selection", + add_metrics: List[ + Literal[ + "specificity", + "npv", + "accuracy", + "f1", + "f2", + "f0_5", + "p4", + "phi", + ] + ] = [], + positives_not_captured_by_blocking_rules_scored_as_zero: bool = True, + ) -> Union[ChartReturnType, SplinkDataFrame]: + """Generate an accuracy chart or table from ground truth data, where the ground + truth is in a column in the input dataset called `labels_column_name` + + Args: + labels_column_name (str): Column name containing labels in the input table + threshold_actual (float, optional): Where the `clerical_match_score` + provided by the user is a probability rather than binary, this value + is used as the threshold to classify `clerical_match_score`s as binary + matches or non matches. Defaults to 0.5. + match_weight_round_to_nearest (float, optional): When provided, thresholds + are rounded. When large numbers of labels are provided, this is + sometimes necessary to reduce the size of the ROC table, and therefore + the number of points plotted on the chart. Defaults to None. + add_metrics (list(str), optional): Precision and recall metrics are always + included. Where provided, `add_metrics` specifies additional metrics + to show, with the following options: + + - `"specificity"`: specificity, selectivity, true negative rate (TNR) + - `"npv"`: negative predictive value (NPV) + - `"accuracy"`: overall accuracy (TP+TN)/(P+N) + - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2 + (emphasis on recall) and \u03b2=0.5 (emphasis on precision) + - `"p4"` - an extended F1 score with specificity and NPV included + - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC) + Examples: + ```py + linker.evaluation.accuracy_analysis_from_labels_column("ground_truth", add_metrics=["f1"]) + ``` + + Returns: + altair.Chart: An altair chart + """ # noqa: E501 + + allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"] + + if not isinstance(add_metrics, list): + raise Exception( + "add_metrics must be a list containing one or more of the following:", + allowed, + ) + + if not all(metric in allowed for metric in add_metrics): + raise ValueError( + "Invalid metric. " f"Allowed metrics are: {', '.join(allowed)}." + ) + + df_truth_space = truth_space_table_from_labels_column( + self._linker, + labels_column_name, + threshold_actual=threshold_actual, + match_weight_round_to_nearest=match_weight_round_to_nearest, + positives_not_captured_by_blocking_rules_scored_as_zero=positives_not_captured_by_blocking_rules_scored_as_zero, + ) + recs = df_truth_space.as_record_dict() + + if output_type == "threshold_selection": + return threshold_selection_tool(recs, add_metrics=add_metrics) + elif output_type == "accuracy": + return accuracy_chart(recs, add_metrics=add_metrics) + elif output_type == "roc": + return roc_chart(recs) + elif output_type == "precision_recall": + return precision_recall_chart(recs) + elif output_type == "table": + return df_truth_space + else: + raise ValueError( + "Invalid chart_type. Allowed chart types are: " + "'threshold_selection', 'roc', 'precision_recall', 'accuracy." + ) + + def accuracy_analysis_from_labels_table( + self, + labels_splinkdataframe_or_table_name: str | SplinkDataFrame, + *, + threshold_actual: float = 0.5, + match_weight_round_to_nearest: float = 0.1, + output_type: Literal[ + "threshold_selection", "roc", "precision_recall", "table", "accuracy" + ] = "threshold_selection", + add_metrics: List[ + Literal[ + "specificity", + "npv", + "accuracy", + "f1", + "f2", + "f0_5", + "p4", + "phi", + ] + ] = [], + ) -> Union[ChartReturnType, SplinkDataFrame]: + """Generate an accuracy chart or table from labelled (ground truth) data. + + The table of labels should be in the following format, and should be registered + as a table with your database using + `labels_table = linker.register_labels_table(my_df)` + + |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|clerical_match_score| + |----------------|-----------|----------------|-----------|--------------------| + |df_1 |1 |df_2 |2 |0.99 | + |df_1 |1 |df_2 |3 |0.2 | + + Note that `source_dataset` and `unique_id` should correspond to the values + specified in the settings dict, and the `input_table_aliases` passed to the + `linker` object. + + For `dedupe_only` links, the `source_dataset` columns can be ommitted. + + Args: + labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table + containing labels in the database + threshold_actual (float, optional): Where the `clerical_match_score` + provided by the user is a probability rather than binary, this value + is used as the threshold to classify `clerical_match_score`s as binary + matches or non matches. Defaults to 0.5. + match_weight_round_to_nearest (float, optional): When provided, thresholds + are rounded. When large numbers of labels are provided, this is + sometimes necessary to reduce the size of the ROC table, and therefore + the number of points plotted on the chart. Defaults to None. + add_metrics (list(str), optional): Precision and recall metrics are always + included. Where provided, `add_metrics` specifies additional metrics + to show, with the following options: + + - `"specificity"`: specificity, selectivity, true negative rate (TNR) + - `"npv"`: negative predictive value (NPV) + - `"accuracy"`: overall accuracy (TP+TN)/(P+N) + - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2 + (emphasis on recall) and \u03b2=0.5 (emphasis on precision) + - `"p4"` - an extended F1 score with specificity and NPV included + - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC) + Examples: + ```py + linker.accuracy_analysis_from_labels_table("ground_truth", add_metrics=["f1"]) + ``` + + Returns: + altair.Chart: An altair chart + """ # noqa: E501 + + allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"] + + if not isinstance(add_metrics, list): + raise Exception( + "add_metrics must be a list containing one or more of the following:", + allowed, + ) + + if not all(metric in allowed for metric in add_metrics): + raise ValueError( + f"Invalid metric. Allowed metrics are: {', '.join(allowed)}." + ) + + labels_tablename = self._linker._get_labels_tablename_from_input( + labels_splinkdataframe_or_table_name + ) + self._linker._raise_error_if_necessary_accuracy_columns_not_computed() + df_truth_space = truth_space_table_from_labels_table( + self._linker, + labels_tablename, + threshold_actual=threshold_actual, + match_weight_round_to_nearest=match_weight_round_to_nearest, + ) + recs = df_truth_space.as_record_dict() + + if output_type == "threshold_selection": + return threshold_selection_tool(recs, add_metrics=add_metrics) + elif output_type == "accuracy": + return accuracy_chart(recs, add_metrics=add_metrics) + elif output_type == "roc": + return roc_chart(recs) + elif output_type == "precision_recall": + return precision_recall_chart(recs) + elif output_type == "table": + return df_truth_space + else: + raise ValueError( + "Invalid chart_type. Allowed chart types are: " + "'threshold_selection', 'roc', 'precision_recall', 'accuracy." + ) + + def prediction_errors_from_labels_column( + self, + label_colname, + include_false_positives=True, + include_false_negatives=True, + threshold=0.5, + ): + """Generate a dataframe containing false positives and false negatives + based on the comparison between the splink match probability and the + labels column. A label column is a column in the input dataset that contains + the 'ground truth' cluster to which the record belongs + + Args: + label_colname (str): Name of labels column in input data + include_false_positives (bool, optional): Defaults to True. + include_false_negatives (bool, optional): Defaults to True. + threshold (float, optional): Threshold above which a score is considered + to be a match. Defaults to 0.5. + + Returns: + SplinkDataFrame: Table containing false positives and negatives + """ + return prediction_errors_from_label_column( + self._linker, + label_colname, + include_false_positives, + include_false_negatives, + threshold, + ) + + def unlinkables_chart( + self, + x_col: str = "match_weight", + name_of_data_in_title: str | None = None, + as_dict: bool = False, + ) -> ChartReturnType: + """Generate an interactive chart displaying the proportion of records that + are "unlinkable" for a given splink score threshold and model parameters. + + Unlinkable records are those that, even when compared with themselves, do not + contain enough information to confirm a match. + + Args: + x_col (str, optional): Column to use for the x-axis. + Defaults to "match_weight". + name_of_data_in_title (str, optional): Name of the source dataset to use for + the title of the output chart. + as_dict (bool, optional): If True, return a dict version of the chart. + + Examples: + For the simplest code pipeline, load a pre-trained model + and run this against the test data. + ```py + from splink.datasets import splink_datasets + df = splink_datasets.fake_1000 + linker = DuckDBLinker(df) + linker.load_settings("saved_settings.json") + linker.unlinkables_chart() + ``` + For more complex code pipelines, you can run an entire pipeline + that estimates your m and u values, before `unlinkables_chart(). + + Returns: + altair.Chart: An altair chart + """ + + # Link our initial df on itself and calculate the % of unlinkable entries + records = unlinkables_data(self._linker) + return unlinkables_chart(records, x_col, name_of_data_in_title, as_dict) + + def labelling_tool_for_specific_record( + self, + unique_id, + source_dataset=None, + out_path="labelling_tool.html", + overwrite=False, + match_weight_threshold=-4, + view_in_jupyter=False, + show_splink_predictions_in_interface=True, + ): + """Create a standalone, offline labelling dashboard for a specific record + as identified by its unique id + + Args: + unique_id (str): The unique id of the record for which to create the + labelling tool + source_dataset (str, optional): If there are multiple datasets, to + identify the record you must also specify the source_dataset. Defaults + to None. + out_path (str, optional): The output path for the labelling tool. Defaults + to "labelling_tool.html". + overwrite (bool, optional): If true, overwrite files at the output + path if they exist. Defaults to False. + match_weight_threshold (int, optional): Include possible matches in the + output which score above this threshold. Defaults to -4. + view_in_jupyter (bool, optional): If you're viewing in the Jupyter + html viewer, set this to True to extract your labels. Defaults to False. + show_splink_predictions_in_interface (bool, optional): Whether to + show information about the Splink model's predictions that could + potentially bias the decision of the clerical labeller. Defaults to + True. + """ + + df_comparisons = generate_labelling_tool_comparisons( + self._linker, + unique_id, + source_dataset, + match_weight_threshold=match_weight_threshold, + ) + + render_labelling_tool_html( + self._linker, + df_comparisons, + show_splink_predictions_in_interface=show_splink_predictions_in_interface, + out_path=out_path, + view_in_jupyter=view_in_jupyter, + overwrite=overwrite, + ) diff --git a/splink/internals/linker_components/inference.py b/splink/internals/linker_components/inference.py new file mode 100644 index 0000000000..16c2ca7899 --- /dev/null +++ b/splink/internals/linker_components/inference.py @@ -0,0 +1,513 @@ +from __future__ import annotations + +import logging +from typing import TYPE_CHECKING, Any + +from splink.internals.blocking import ( + BlockingRule, + block_using_rules_sqls, + blocking_rule_to_obj, + materialise_exploded_id_tables, +) +from splink.internals.blocking_rule_creator import BlockingRuleCreator +from splink.internals.comparison_vector_values import ( + compute_comparison_vector_values_sql, +) +from splink.internals.database_api import AcceptableInputTableType +from splink.internals.find_matches_to_new_records import ( + add_unique_id_and_source_dataset_cols_if_needed, +) +from splink.internals.misc import ( + ascii_uid, + ensure_is_list, +) +from splink.internals.pipeline import CTEPipeline +from splink.internals.predict import ( + predict_from_comparison_vectors_sqls_using_settings, +) +from splink.internals.splink_dataframe import SplinkDataFrame +from splink.internals.term_frequencies import ( + _join_new_table_to_df_concat_with_tf_sql, + colname_to_tf_tablename, +) +from splink.internals.vertically_concatenate import ( + compute_df_concat_with_tf, + enqueue_df_concat_with_tf, + split_df_concat_with_tf_into_two_tables_sqls, +) + +if TYPE_CHECKING: + from splink.internals.linker import Linker + +logger = logging.getLogger(__name__) + + +class LinkerInference: + def __init__(self, linker: Linker): + self._linker = linker + + def deterministic_link(self) -> SplinkDataFrame: + """Uses the blocking rules specified by + `blocking_rules_to_generate_predictions` in the settings dictionary to + generate pairwise record comparisons. + + For deterministic linkage, this should be a list of blocking rules which + are strict enough to generate only true links. + + Deterministic linkage, however, is likely to result in missed links + (false negatives). + + Examples: + + ```py + from splink.linker import Linker + from splink.duckdb.database_api import DuckDBAPI + + db_api = DuckDBAPI() + + settings = { + "link_type": "dedupe_only", + "blocking_rules_to_generate_predictions": [ + "l.first_name = r.first_name", + "l.surname = r.surname", + ], + "comparisons": [] + } + >>> + linker = Linker(df, settings, db_api) + df = linker.deterministic_link() + ``` + + + Returns: + SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This + represents a table materialised in the database. Methods on the + SplinkDataFrame allow you to access the underlying data. + """ + pipeline = CTEPipeline() + # Allows clustering during a deterministic linkage. + # This is used in `cluster_pairwise_predictions_at_threshold` + # to set the cluster threshold to 1 + + df_concat_with_tf = compute_df_concat_with_tf(self._linker, pipeline) + pipeline = CTEPipeline([df_concat_with_tf]) + link_type = self._linker._settings_obj._link_type + + blocking_input_tablename_l = "__splink__df_concat_with_tf" + blocking_input_tablename_r = "__splink__df_concat_with_tf" + + link_type = self._linker._settings_obj._link_type + if ( + len(self._linker._input_tables_dict) == 2 + and self._linker._settings_obj._link_type == "link_only" + ): + sqls = split_df_concat_with_tf_into_two_tables_sqls( + "__splink__df_concat_with_tf", + self._linker._settings_obj.column_info_settings.source_dataset_column_name, + ) + pipeline.enqueue_list_of_sqls(sqls) + + blocking_input_tablename_l = "__splink__df_concat_with_tf_left" + blocking_input_tablename_r = "__splink__df_concat_with_tf_right" + link_type = "two_dataset_link_only" + + exploding_br_with_id_tables = materialise_exploded_id_tables( + link_type=link_type, + blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions, + db_api=self._linker._db_api, + splink_df_dict=self._linker._input_tables_dict, + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + ) + + columns_to_select = self._linker._settings_obj._columns_to_select_for_blocking + sql_select_expr = ", ".join(columns_to_select) + + sqls = block_using_rules_sqls( + input_tablename_l=blocking_input_tablename_l, + input_tablename_r=blocking_input_tablename_r, + blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions, + link_type=link_type, + columns_to_select_sql=sql_select_expr, + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + ) + pipeline.enqueue_list_of_sqls(sqls) + + deterministic_link_df = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline + ) + deterministic_link_df.metadata["is_deterministic_link"] = True + + [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables] + + return deterministic_link_df + + def predict( + self, + threshold_match_probability: float = None, + threshold_match_weight: float = None, + materialise_after_computing_term_frequencies: bool = True, + ) -> SplinkDataFrame: + """Create a dataframe of scored pairwise comparisons using the parameters + of the linkage model. + + Uses the blocking rules specified in the + `blocking_rules_to_generate_predictions` of the settings dictionary to + generate the pairwise comparisons. + + Args: + threshold_match_probability (float, optional): If specified, + filter the results to include only pairwise comparisons with a + match_probability above this threshold. Defaults to None. + threshold_match_weight (float, optional): If specified, + filter the results to include only pairwise comparisons with a + match_weight above this threshold. Defaults to None. + materialise_after_computing_term_frequencies (bool): If true, Splink + will materialise the table containing the input nodes (rows) + joined to any term frequencies which have been asked + for in the settings object. If False, this will be + computed as part of one possibly gigantic CTE + pipeline. Defaults to True + + Examples: + ```py + linker = DuckDBLinker(df) + linker.load_settings("saved_settings.json") + df = linker.predict(threshold_match_probability=0.95) + df.as_pandas_dataframe(limit=5) + ``` + Returns: + SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This + represents a table materialised in the database. Methods on the + SplinkDataFrame allow you to access the underlying data. + + """ + + pipeline = CTEPipeline() + + # If materialise_after_computing_term_frequencies=False and the user only + # calls predict, it runs as a single pipeline with no materialisation + # of anything. + + # In duckdb, calls to random() in a CTE pipeline cause problems: + # https://gist.github.com/RobinL/d329e7004998503ce91b68479aa41139 + if ( + materialise_after_computing_term_frequencies + or self._linker._sql_dialect == "duckdb" + ): + df_concat_with_tf = compute_df_concat_with_tf(self._linker, pipeline) + pipeline = CTEPipeline([df_concat_with_tf]) + else: + pipeline = enqueue_df_concat_with_tf(self._linker, pipeline) + + blocking_input_tablename_l = "__splink__df_concat_with_tf" + blocking_input_tablename_r = "__splink__df_concat_with_tf" + + link_type = self._linker._settings_obj._link_type + if ( + len(self._linker._input_tables_dict) == 2 + and self._linker._settings_obj._link_type == "link_only" + ): + sqls = split_df_concat_with_tf_into_two_tables_sqls( + "__splink__df_concat_with_tf", + self._linker._settings_obj.column_info_settings.source_dataset_column_name, + ) + pipeline.enqueue_list_of_sqls(sqls) + + blocking_input_tablename_l = "__splink__df_concat_with_tf_left" + blocking_input_tablename_r = "__splink__df_concat_with_tf_right" + link_type = "two_dataset_link_only" + + # If exploded blocking rules exist, we need to materialise + # the tables of ID pairs + + exploding_br_with_id_tables = materialise_exploded_id_tables( + link_type=link_type, + blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions, + db_api=self._linker._db_api, + splink_df_dict=self._linker._input_tables_dict, + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + ) + + columns_to_select = self._linker._settings_obj._columns_to_select_for_blocking + sql_select_expr = ", ".join(columns_to_select) + + sqls = block_using_rules_sqls( + input_tablename_l=blocking_input_tablename_l, + input_tablename_r=blocking_input_tablename_r, + blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions, + link_type=link_type, + columns_to_select_sql=sql_select_expr, + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + ) + + pipeline.enqueue_list_of_sqls(sqls) + + repartition_after_blocking = getattr( + self._linker, "repartition_after_blocking", False + ) + + # repartition after blocking only exists on the SparkLinker + if repartition_after_blocking: + pipeline = pipeline.break_lineage(self._linker._db_api) + + sql = compute_comparison_vector_values_sql( + self._linker._settings_obj._columns_to_select_for_comparison_vector_values + ) + pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") + + sqls = predict_from_comparison_vectors_sqls_using_settings( + self._linker._settings_obj, + threshold_match_probability, + threshold_match_weight, + sql_infinity_expression=self._linker._infinity_expression, + ) + pipeline.enqueue_list_of_sqls(sqls) + + predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) + self._linker._predict_warning() + + [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables] + + return predictions + + def find_matches_to_new_records( + self, + records_or_tablename: AcceptableInputTableType | str, + blocking_rules: list[BlockingRuleCreator | dict[str, Any] | str] + | BlockingRuleCreator + | dict[str, Any] + | str = [], + match_weight_threshold: float = -4, + ) -> SplinkDataFrame: + """Given one or more records, find records in the input dataset(s) which match + and return in order of the Splink prediction score. + + This effectively provides a way of searching the input datasets + for given record(s) + + Args: + records_or_tablename (List[dict]): Input search record(s) as list of dict, + or a table registered to the database. + blocking_rules (list, optional): Blocking rules to select + which records to find and score. If [], do not use a blocking + rule - meaning the input records will be compared to all records + provided to the linker when it was instantiated. Defaults to []. + match_weight_threshold (int, optional): Return matches with a match weight + above this threshold. Defaults to -4. + + Examples: + ```py + linker = DuckDBLinker(df) + linker.load_settings("saved_settings.json") + # Pre-compute tf tables for any tables with + # term frequency adjustments + linker.table_management.compute_tf_table("first_name") + record = {'unique_id': 1, + 'first_name': "John", + 'surname': "Smith", + 'dob': "1971-05-24", + 'city': "London", + 'email': "john@smith.net" + } + df = linker.inference.find_matches_to_new_records( + [record], blocking_rules=[] + ) + ``` + + Returns: + SplinkDataFrame: The pairwise comparisons. + """ + + original_blocking_rules = ( + self._linker._settings_obj._blocking_rules_to_generate_predictions + ) + original_link_type = self._linker._settings_obj._link_type + + blocking_rule_list = ensure_is_list(blocking_rules) + + if not isinstance(records_or_tablename, str): + uid = ascii_uid(8) + new_records_tablename = f"__splink__df_new_records_{uid}" + self._linker.table_management.register_table( + records_or_tablename, new_records_tablename, overwrite=True + ) + + else: + new_records_tablename = records_or_tablename + + new_records_df = self._linker._db_api.table_to_splink_dataframe( + "__splink__df_new_records", new_records_tablename + ) + + pipeline = CTEPipeline() + nodes_with_tf = compute_df_concat_with_tf(self._linker, pipeline) + + pipeline = CTEPipeline([nodes_with_tf, new_records_df]) + if len(blocking_rule_list) == 0: + blocking_rule_list = [BlockingRule("1=1")] + blocking_rule_list = [blocking_rule_to_obj(br) for br in blocking_rule_list] + for n, br in enumerate(blocking_rule_list): + br.add_preceding_rules(blocking_rule_list[:n]) + + self._linker._settings_obj._blocking_rules_to_generate_predictions = ( + blocking_rule_list + ) + + for tf_col in self._linker._settings_obj._term_frequency_columns: + tf_table_name = colname_to_tf_tablename(tf_col) + if tf_table_name in self._linker._intermediate_table_cache: + tf_table = self._linker._intermediate_table_cache.get_with_logging( + tf_table_name + ) + pipeline.append_input_dataframe(tf_table) + + sql = _join_new_table_to_df_concat_with_tf_sql( + self._linker, "__splink__df_new_records" + ) + pipeline.enqueue_sql(sql, "__splink__df_new_records_with_tf_before_uid_fix") + + pipeline = add_unique_id_and_source_dataset_cols_if_needed( + self._linker, new_records_df, pipeline + ) + settings = self._linker._settings_obj + sqls = block_using_rules_sqls( + input_tablename_l="__splink__df_concat_with_tf", + input_tablename_r="__splink__df_new_records_with_tf", + blocking_rules=blocking_rule_list, + link_type="two_dataset_link_only", + columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking), + source_dataset_input_column=settings.column_info_settings.source_dataset_input_column, + unique_id_input_column=settings.column_info_settings.unique_id_input_column, + ) + pipeline.enqueue_list_of_sqls(sqls) + + sql = compute_comparison_vector_values_sql( + self._linker._settings_obj._columns_to_select_for_comparison_vector_values + ) + pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") + + sqls = predict_from_comparison_vectors_sqls_using_settings( + self._linker._settings_obj, + sql_infinity_expression=self._linker._infinity_expression, + ) + pipeline.enqueue_list_of_sqls(sqls) + + sql = f""" + select * from __splink__df_predict + where match_weight > {match_weight_threshold} + """ + + pipeline.enqueue_sql(sql, "__splink__find_matches_predictions") + + predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline, use_cache=False + ) + + self._linker._settings_obj._blocking_rules_to_generate_predictions = ( + original_blocking_rules + ) + self._linker._settings_obj._link_type = original_link_type + + return predictions + + def compare_two_records( + self, record_1: dict[str, Any], record_2: dict[str, Any] + ) -> SplinkDataFrame: + """Use the linkage model to compare and score a pairwise record comparison + based on the two input records provided + + Args: + record_1 (dict): dictionary representing the first record. Columns names + and data types must be the same as the columns in the settings object + record_2 (dict): dictionary representing the second record. Columns names + and data types must be the same as the columns in the settings object + + Examples: + ```py + linker = DuckDBLinker(df) + linker.load_settings("saved_settings.json") + linker.compare_two_records(record_left, record_right) + ``` + + Returns: + SplinkDataFrame: Pairwise comparison with scored prediction + """ + + cache = self._linker._intermediate_table_cache + + uid = ascii_uid(8) + df_records_left = self._linker.table_management.register_table( + [record_1], f"__splink__compare_two_records_left_{uid}", overwrite=True + ) + df_records_left.templated_name = "__splink__compare_two_records_left" + + df_records_right = self._linker.table_management.register_table( + [record_2], f"__splink__compare_two_records_right_{uid}", overwrite=True + ) + df_records_right.templated_name = "__splink__compare_two_records_right" + + pipeline = CTEPipeline([df_records_left, df_records_right]) + + if "__splink__df_concat_with_tf" in cache: + nodes_with_tf = cache.get_with_logging("__splink__df_concat_with_tf") + pipeline.append_input_dataframe(nodes_with_tf) + + for tf_col in self._linker._settings_obj._term_frequency_columns: + tf_table_name = colname_to_tf_tablename(tf_col) + if tf_table_name in cache: + tf_table = cache.get_with_logging(tf_table_name) + pipeline.append_input_dataframe(tf_table) + else: + if "__splink__df_concat_with_tf" not in cache: + logger.warning( + f"No term frequencies found for column {tf_col.name}.\n" + "To apply term frequency adjustments, you need to register" + " a lookup using " + "`linker.table_management.register_term_frequency_lookup`." + ) + + sql_join_tf = _join_new_table_to_df_concat_with_tf_sql( + self._linker, "__splink__compare_two_records_left" + ) + + pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_left_with_tf") + + sql_join_tf = _join_new_table_to_df_concat_with_tf_sql( + self._linker, "__splink__compare_two_records_right" + ) + + pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_right_with_tf") + + sqls = block_using_rules_sqls( + input_tablename_l="__splink__compare_two_records_left_with_tf", + input_tablename_r="__splink__compare_two_records_right_with_tf", + blocking_rules=[BlockingRule("1=1")], + link_type=self._linker._settings_obj._link_type, + columns_to_select_sql=", ".join( + self._linker._settings_obj._columns_to_select_for_blocking + ), + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + ) + pipeline.enqueue_list_of_sqls(sqls) + + sql = compute_comparison_vector_values_sql( + self._linker._settings_obj._columns_to_select_for_comparison_vector_values + ) + pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors") + + sqls = predict_from_comparison_vectors_sqls_using_settings( + self._linker._settings_obj, + sql_infinity_expression=self._linker._infinity_expression, + ) + pipeline.enqueue_list_of_sqls(sqls) + + predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline, use_cache=False + ) + + return predictions diff --git a/splink/internals/linker_components/misc.py b/splink/internals/linker_components/misc.py new file mode 100644 index 0000000000..7cda97c9c3 --- /dev/null +++ b/splink/internals/linker_components/misc.py @@ -0,0 +1,85 @@ +from __future__ import annotations + +import json +import os +from typing import TYPE_CHECKING, Any + +from splink.internals.pipeline import CTEPipeline + +if TYPE_CHECKING: + from splink.internals.linker import Linker + + +class LinkerMisc: + def __init__(self, linker: Linker): + self._linker = linker + + def save_model_to_json( + self, out_path: str | None = None, overwrite: bool = False + ) -> dict[str, Any]: + """Save the configuration and parameters of the linkage model to a `.json` file. + + The model can later be loaded back in using `linker.load_model()`. + The settings dict is also returned in case you want to save it a different way. + + Examples: + ```py + linker.save_model_to_json("my_settings.json", overwrite=True) + ``` + Args: + out_path (str, optional): File path for json file. If None, don't save to + file. Defaults to None. + overwrite (bool, optional): Overwrite if already exists? Defaults to False. + + Returns: + dict: The settings as a dictionary. + """ + model_dict = self._linker._settings_obj.as_dict() + if out_path: + if os.path.isfile(out_path) and not overwrite: + raise ValueError( + f"The path {out_path} already exists. Please provide a different " + "path or set overwrite=True" + ) + with open(out_path, "w", encoding="utf-8") as f: + json.dump(model_dict, f, indent=4) + return model_dict + + def query_sql(self, sql, output_type="pandas"): + """ + Run a SQL query against your backend database and return + the resulting output. + + Examples: + ```py + linker = Linker(df, settings, db_api) + df_predict = linker.predict() + linker.query_sql(f"select * from {df_predict.physical_name} limit 10") + ``` + + Args: + sql (str): The SQL to be queried. + output_type (str): One of splink_df/splinkdf or pandas. + This determines the type of table that your results are output in. + """ + + output_tablename_templated = "__splink__df_sql_query" + + pipeline = CTEPipeline() + pipeline.enqueue_sql(sql, output_tablename_templated) + splink_dataframe = self._linker._db_api.sql_pipeline_to_splink_dataframe( + pipeline, use_cache=False + ) + + if output_type in ("splink_df", "splinkdf"): + return splink_dataframe + elif output_type == "pandas": + out = splink_dataframe.as_pandas_dataframe() + # If pandas, drop the table to cleanup the db + splink_dataframe.drop_table_from_database_and_remove_from_cache() + return out + else: + raise ValueError( + f"output_type '{output_type}' is not supported.", + "Must be one of 'splink_df'/'splinkdf' or 'pandas'", + ) diff --git a/splink/internals/linker_components/table_management.py b/splink/internals/linker_components/table_management.py new file mode 100644 index 0000000000..5e5dcdb553 --- /dev/null +++ b/splink/internals/linker_components/table_management.py @@ -0,0 +1,206 @@ +from __future__ import annotations + +import logging +from typing import TYPE_CHECKING + +from splink.internals.database_api import AcceptableInputTableType +from splink.internals.input_column import InputColumn +from splink.internals.misc import ( + ascii_uid, +) +from splink.internals.pipeline import CTEPipeline +from splink.internals.splink_dataframe import SplinkDataFrame +from splink.internals.term_frequencies import ( + colname_to_tf_tablename, + term_frequencies_for_single_column_sql, +) +from splink.internals.vertically_concatenate import ( + enqueue_df_concat, +) + +if TYPE_CHECKING: + from splink.internals.linker import Linker + +logger = logging.getLogger(__name__) + + +class LinkerTableManagement: + def __init__(self, linker: Linker): + self._linker = linker + + def compute_tf_table(self, column_name: str) -> SplinkDataFrame: + """Compute a term frequency table for a given column and persist to the database + + This method is useful if you want to pre-compute term frequency tables e.g. + so that real time linkage executes faster, or so that you can estimate + various models without having to recompute term frequency tables each time + + Examples: + + Real time linkage + ```py + linker = Linker(df, db_api) + linker.load_settings("saved_settings.json") + linker.table_management.compute_tf_table("surname") + linker.compare_two_records(record_left, record_right) + ``` + Pre-computed term frequency tables + ```py + linker = Linker(df, db_api) + df_first_name_tf = linker.table_management.compute_tf_table("first_name") + df_first_name_tf.write.parquet("folder/first_name_tf") + >>> + # On subsequent data linking job, read this table rather than recompute + df_first_name_tf = pd.read_parquet("folder/first_name_tf") + df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name") + ``` + + + Args: + column_name (str): The column name in the input table + + Returns: + SplinkDataFrame: The resultant table as a splink data frame + """ + + input_col = InputColumn( + column_name, + column_info_settings=self._linker._settings_obj.column_info_settings, + sql_dialect=self._linker._settings_obj._sql_dialect, + ) + tf_tablename = colname_to_tf_tablename(input_col) + cache = self._linker._intermediate_table_cache + + if tf_tablename in cache: + tf_df = cache.get_with_logging(tf_tablename) + else: + pipeline = CTEPipeline() + pipeline = enqueue_df_concat(self._linker, pipeline) + sql = term_frequencies_for_single_column_sql(input_col) + pipeline.enqueue_sql(sql, tf_tablename) + tf_df = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) + self._linker._intermediate_table_cache[tf_tablename] = tf_df + + return tf_df + + def invalidate_cache(self): + """Invalidate the Splink cache. Any previously-computed tables + will be recomputed. + This is useful, for example, if the input data tables have changed. + """ + + # Nothing to delete + if len(self._linker._intermediate_table_cache) == 0: + return + + # Before Splink executes a SQL command, it checks the cache to see + # whether a table already exists with the name of the output table + + # This function has the effect of changing the names of the output tables + # to include a different unique id + + # As a result, any previously cached tables will not be found + self._linker._cache_uid = ascii_uid(8) + + # Drop any existing splink tables from the database + # Note, this is not actually necessary, it's just good housekeeping + self.delete_tables_created_by_splink_from_db() + + # As a result, any previously cached tables will not be found + self._linker._intermediate_table_cache.invalidate_cache() + + def register_table_input_nodes_concat_with_tf(self, input_data, overwrite=False): + """Register a pre-computed version of the input_nodes_concat_with_tf table that + you want to re-use e.g. that you created in a previous run + + This method allowed you to register this table in the Splink cache + so it will be used rather than Splink computing this table anew. + + Args: + input_data: The data you wish to register. This can be either a dictionary, + pandas dataframe, pyarrow table or a spark dataframe. + overwrite (bool): Overwrite the table in the underlying database if it + exists + """ + + table_name_physical = "__splink__df_concat_with_tf_" + self._linker._cache_uid + splink_dataframe = self.register_table( + input_data, table_name_physical, overwrite=overwrite + ) + splink_dataframe.templated_name = "__splink__df_concat_with_tf" + + self._linker._intermediate_table_cache["__splink__df_concat_with_tf"] = ( + splink_dataframe + ) + return splink_dataframe + + def register_table_predict(self, input_data, overwrite=False): + table_name_physical = "__splink__df_predict_" + self._linker._cache_uid + splink_dataframe = self.register_table( + input_data, table_name_physical, overwrite=overwrite + ) + self._linker._intermediate_table_cache["__splink__df_predict"] = ( + splink_dataframe + ) + splink_dataframe.templated_name = "__splink__df_predict" + return splink_dataframe + + def register_term_frequency_lookup(self, input_data, col_name, overwrite=False): + input_col = InputColumn( + col_name, + column_info_settings=self._linker._settings_obj.column_info_settings, + sql_dialect=self._linker._settings_obj._sql_dialect, + ) + table_name_templated = colname_to_tf_tablename(input_col) + table_name_physical = f"{table_name_templated}_{self._linker._cache_uid}" + splink_dataframe = self.register_table( + input_data, table_name_physical, overwrite=overwrite + ) + self._linker._intermediate_table_cache[table_name_templated] = splink_dataframe + splink_dataframe.templated_name = table_name_templated + return splink_dataframe + + def register_labels_table(self, input_data, overwrite=False): + table_name_physical = "__splink__df_labels_" + ascii_uid(8) + splink_dataframe = self.register_table( + input_data, table_name_physical, overwrite=overwrite + ) + splink_dataframe.templated_name = "__splink__df_labels" + return splink_dataframe + + def delete_tables_created_by_splink_from_db(self): + self._linker._db_api.delete_tables_created_by_splink_from_db() + + def register_table( + self, + input_table: AcceptableInputTableType, + table_name: str, + overwrite: bool = False, + ) -> SplinkDataFrame: + """ + Register a table to your backend database, to be used in one of the + splink methods, or simply to allow querying. + + Tables can be of type: dictionary, record level dictionary, + pandas dataframe, pyarrow table and in the spark case, a spark df. + + Examples: + ```py + test_dict = {"a": [666,777,888],"b": [4,5,6]} + linker.table_management.register_table(test_dict, "test_dict") + linker.query_sql("select * from test_dict") + ``` + + Args: + input: The data you wish to register. This can be either a dictionary, + pandas dataframe, pyarrow table or a spark dataframe. + table_name (str): The name you wish to assign to the table. + overwrite (bool): Overwrite the table in the underlying database if it + exists + + Returns: + SplinkDataFrame: An abstraction representing the table created by the sql + pipeline + """ + + return self._linker._db_api.register_table(input_table, table_name, overwrite) diff --git a/splink/internals/linker_components/training.py b/splink/internals/linker_components/training.py new file mode 100644 index 0000000000..069450d52c --- /dev/null +++ b/splink/internals/linker_components/training.py @@ -0,0 +1,444 @@ +from __future__ import annotations + +import logging +from typing import TYPE_CHECKING, List, Union + +from splink.internals.blocking import ( + BlockingRule, + SaltedBlockingRule, +) +from splink.internals.blocking_analysis import ( + _cumulative_comparisons_to_be_scored_from_blocking_rules, +) +from splink.internals.blocking_rule_creator import BlockingRuleCreator +from splink.internals.blocking_rule_creator_utils import to_blocking_rule_creator +from splink.internals.comparison import Comparison +from splink.internals.comparison_level import ComparisonLevel +from splink.internals.em_training_session import EMTrainingSession +from splink.internals.estimate_u import estimate_u_values +from splink.internals.m_from_labels import estimate_m_from_pairwise_labels +from splink.internals.m_training import estimate_m_values_from_label_column +from splink.internals.misc import ( + ensure_is_iterable, +) +from splink.internals.pipeline import CTEPipeline +from splink.internals.vertically_concatenate import ( + compute_df_concat_with_tf, +) + +if TYPE_CHECKING: + from splink.internals.linker import Linker + +logger = logging.getLogger(__name__) + + +class LinkerTraining: + def __init__(self, linker: Linker): + self._linker = linker + + def estimate_probability_two_random_records_match( + self, + deterministic_matching_rules: List[Union[str, BlockingRuleCreator]], + recall: float, + max_rows_limit: int = int(1e9), + ) -> None: + """Estimate the model parameter `probability_two_random_records_match` using + a direct estimation approach. + + See [here](https://github.com/moj-analytical-services/splink/issues/462) + for discussion of methodology + + Args: + deterministic_matching_rules (list): A list of deterministic matching + rules that should be designed to admit very few (none if possible) + false positives + recall (float): A guess at the recall the deterministic matching rules + will attain. i.e. what proportion of true matches will be recovered + by these deterministic rules + """ + + if (recall > 1) or (recall <= 0): + raise ValueError( + f"Estimated recall must be greater than 0 " + f"and no more than 1. Supplied value {recall}." + ) from None + + deterministic_matching_rules = ensure_is_iterable(deterministic_matching_rules) + blocking_rules: List[BlockingRule] = [] + for br in deterministic_matching_rules: + blocking_rules.append( + to_blocking_rule_creator(br).get_blocking_rule( + self._linker._db_api.sql_dialect.name + ) + ) + + pd_df = _cumulative_comparisons_to_be_scored_from_blocking_rules( + splink_df_dict=self._linker._input_tables_dict, + blocking_rules=blocking_rules, + link_type=self._linker._settings_obj._link_type, + db_api=self._linker._db_api, + max_rows_limit=max_rows_limit, + unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column, + source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column, + ) + + records = pd_df.to_dict(orient="records") + + summary_record = records[-1] + num_observed_matches = summary_record["cumulative_rows"] + num_total_comparisons = summary_record["cartesian"] + + if num_observed_matches > num_total_comparisons * recall: + raise ValueError( + f"Deterministic matching rules led to more " + f"observed matches than is consistent with supplied recall. " + f"With these rules, recall must be at least " + f"{num_observed_matches/num_total_comparisons:,.2f}." + ) + + num_expected_matches = num_observed_matches / recall + prob = num_expected_matches / num_total_comparisons + + # warn about boundary values, as these will usually be in error + if num_observed_matches == 0: + logger.warning( + f"WARNING: Deterministic matching rules led to no observed matches! " + f"This means that no possible record pairs are matches, " + f"and no records are linked to one another.\n" + f"If this is truly the case then you do not need " + f"to run the linkage model.\n" + f"However this is usually in error; " + f"expected rules to have recall of {100*recall:,.0f}%. " + f"Consider revising rules as they may have an error." + ) + if prob == 1: + logger.warning( + "WARNING: Probability two random records match is estimated to be 1.\n" + "This means that all possible record pairs are matches, " + "and all records are linked to one another.\n" + "If this is truly the case then you do not need " + "to run the linkage model.\n" + "However, it is more likely that this estimate is faulty. " + "Perhaps your deterministic matching rules include " + "too many false positives?" + ) + + self._linker._settings_obj._probability_two_random_records_match = prob + + reciprocal_prob = "Infinity" if prob == 0 else f"{1/prob:,.2f}" + logger.info( + f"Probability two random records match is estimated to be {prob:.3g}.\n" + f"This means that amongst all possible pairwise record comparisons, one in " + f"{reciprocal_prob} are expected to match. " + f"With {num_total_comparisons:,.0f} total" + " possible comparisons, we expect a total of around " + f"{num_expected_matches:,.2f} matching pairs" + ) + + def estimate_u_using_random_sampling( + self, max_pairs: float = 1e6, seed: int = None + ) -> None: + """Estimate the u parameters of the linkage model using random sampling. + + The u parameters represent the proportion of record comparisons that fall + into each comparison level amongst truly non-matching records. + + This procedure takes a sample of the data and generates the cartesian + product of pairwise record comparisons amongst the sampled records. + The validity of the u values rests on the assumption that the resultant + pairwise comparisons are non-matches (or at least, they are very unlikely to be + matches). For large datasets, this is typically true. + + The results of estimate_u_using_random_sampling, and therefore an entire splink + model, can be made reproducible by setting the seed parameter. Setting the seed + will have performance implications as additional processing is required. + + Args: + max_pairs (int): The maximum number of pairwise record comparisons to + sample. Larger will give more accurate estimates + but lead to longer runtimes. In our experience at least 1e9 (one billion) + gives best results but can take a long time to compute. 1e7 (ten million) + is often adequate whilst testing different model specifications, before + the final model is estimated. + seed (int): Seed for random sampling. Assign to get reproducible u + probabilities. Note, seed for random sampling is only supported for + DuckDB and Spark, for Athena and SQLite set to None. + + Examples: + ```py + linker.estimate_u_using_random_sampling(1e8) + ``` + + Returns: + None: Updates the estimated u parameters within the linker object + and returns nothing. + """ + if max_pairs == 1e6: + # keep default value small so as not to take too long, but warn users + logger.warning( + "You are using the default value for `max_pairs`, " + "which may be too small and thus lead to inaccurate estimates for your " + "model's u-parameters. Consider increasing to 1e8 or 1e9, which will " + "result in more accurate estimates, but with a longer run time." + ) + + estimate_u_values(self._linker, max_pairs, seed) + self._linker._populate_m_u_from_trained_values() + + self._linker._settings_obj._columns_without_estimated_parameters_message() + + def estimate_parameters_using_expectation_maximisation( + self, + blocking_rule: Union[str, BlockingRuleCreator], + comparisons_to_deactivate: list[Comparison] = None, + comparison_levels_to_reverse_blocking_rule: list[ComparisonLevel] = None, + estimate_without_term_frequencies: bool = False, + fix_probability_two_random_records_match: bool = False, + fix_m_probabilities: bool = False, + fix_u_probabilities: bool = True, + populate_probability_two_random_records_match_from_trained_values: bool = False, + ) -> EMTrainingSession: + """Estimate the parameters of the linkage model using expectation maximisation. + + By default, the m probabilities are estimated, but not the u probabilities, + because good estimates for the u probabilities can be obtained from + `linker.estimate_u_using_random_sampling()`. You can change this by setting + `fix_u_probabilities` to False. + + The blocking rule provided is used to generate pairwise record comparisons. + Usually, this should be a blocking rule that results in a dataframe where + matches are between about 1% and 99% of the comparisons. + + By default, m parameters are estimated for all comparisons except those which + are included in the blocking rule. + + For example, if the blocking rule is `l.first_name = r.first_name`, then + parameter esimates will be made for all comparison except those which use + `first_name` in their sql_condition + + By default, the probability two random records match is estimated for the + blocked data, and then the m and u parameters for the columns specified in the + blocking rules are used to estiamte the global probability two random records + match. + + To control which comparisons should have their parameter estimated, and the + process of 'reversing out' the global probability two random records match, the + user may specify `comparisons_to_deactivate` and + `comparison_levels_to_reverse_blocking_rule`. This is useful, for example + if you block on the dmetaphone of a column but match on the original column. + + Examples: + Default behaviour + ```py + br_training = "l.first_name = r.first_name and l.dob = r.dob" + linker.training.estimate_parameters_using_expectation_maximisation(br_training) + ``` + Specify which comparisons to deactivate + ```py + br_training = "l.dmeta_first_name = r.dmeta_first_name" + settings_obj = linker._settings_obj + comp = settings_obj._get_comparison_by_output_column_name("first_name") + dmeta_level = comp._get_comparison_level_by_comparison_vector_value(1) + linker.training.estimate_parameters_using_expectation_maximisation( + br_training, + comparisons_to_deactivate=["first_name"], + comparison_levels_to_reverse_blocking_rule=[dmeta_level], + ) + ``` + + Args: + blocking_rule (BlockingRuleCreator | str): The blocking rule used to + generate pairwise record comparisons. + comparisons_to_deactivate (list, optional): By default, splink will + analyse the blocking rule provided and estimate the m parameters for + all comaprisons except those included in the blocking rule. If + comparisons_to_deactivate are provided, spink will instead + estimate m parameters for all comparison except those specified + in the comparisons_to_deactivate list. This list can either contain + the output_column_name of the Comparison as a string, or Comparison + objects. Defaults to None. + comparison_levels_to_reverse_blocking_rule (list, optional): By default, + splink will analyse the blocking rule provided and adjust the + global probability two random records match to account for the matches + specified in the blocking rule. If provided, this argument will overrule + this default behaviour. The user must provide a list of ComparisonLevel + objects. Defaults to None. + estimate_without_term_frequencies (bool, optional): If True, the iterations + of the EM algorithm ignore any term frequency adjustments and only + depend on the comparison vectors. This allows the EM algorithm to run + much faster, but the estimation of the parameters will change slightly. + fix_probability_two_random_records_match (bool, optional): If True, do not + update the probability two random records match after each iteration. + Defaults to False. + fix_m_probabilities (bool, optional): If True, do not update the m + probabilities after each iteration. Defaults to False. + fix_u_probabilities (bool, optional): If True, do not update the u + probabilities after each iteration. Defaults to True. + populate_probability_two_random_records_match_from_trained_values + (bool, optional): If True, derive this parameter from + the blocked value. Defaults to False. + + Examples: + ```py + blocking_rule = "l.first_name = r.first_name and l.dob = r.dob" + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) + ``` + or using pre-built rules + ```py + from splink.duckdb.blocking_rule_library import block_on + blocking_rule = block_on(["first_name", "surname"]) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) + ``` + + Returns: + EMTrainingSession: An object containing information about the training + session such as how parameters changed during the iteration history + + """ + # Ensure this has been run on the main linker so that it's in the cache + # to be used by the training linkers + pipeline = CTEPipeline() + compute_df_concat_with_tf(self._linker, pipeline) + + blocking_rule_obj = to_blocking_rule_creator(blocking_rule).get_blocking_rule( + self._linker._sql_dialect + ) + + if type(blocking_rule_obj) not in (BlockingRule, SaltedBlockingRule): + # TODO: seems a mismatch between message and type re: SaltedBlockingRule + raise TypeError( + "EM blocking rules must be plain blocking rules, not " + "salted or exploding blocking rules" + ) + + if comparisons_to_deactivate: + # If user provided a string, convert to Comparison object + comparisons_to_deactivate = [ + ( + self._linker._settings_obj._get_comparison_by_output_column_name(n) + if isinstance(n, str) + else n + ) + for n in comparisons_to_deactivate + ] + if comparison_levels_to_reverse_blocking_rule is None: + logger.warning( + "\nWARNING: \n" + "You have provided comparisons_to_deactivate but not " + "comparison_levels_to_reverse_blocking_rule.\n" + "If comparisons_to_deactivate is provided, then " + "you usually need to provide corresponding " + "comparison_levels_to_reverse_blocking_rule " + "because each comparison to deactivate is effectively treated " + "as an exact match." + ) + + em_training_session = EMTrainingSession( + self._linker, + db_api=self._linker._db_api, + blocking_rule_for_training=blocking_rule_obj, + core_model_settings=self._linker._settings_obj.core_model_settings, + training_settings=self._linker._settings_obj.training_settings, + unique_id_input_columns=self._linker._settings_obj.column_info_settings.unique_id_input_columns, + fix_u_probabilities=fix_u_probabilities, + fix_m_probabilities=fix_m_probabilities, + fix_probability_two_random_records_match=fix_probability_two_random_records_match, # noqa 501 + comparisons_to_deactivate=comparisons_to_deactivate, + comparison_levels_to_reverse_blocking_rule=comparison_levels_to_reverse_blocking_rule, # noqa 501 + estimate_without_term_frequencies=estimate_without_term_frequencies, + ) + + core_model_settings = em_training_session._train() + # overwrite with the newly trained values in our linker settings + self._linker._settings_obj.core_model_settings = core_model_settings + self._linker._em_training_sessions.append(em_training_session) + + self._linker._populate_m_u_from_trained_values() + + if populate_probability_two_random_records_match_from_trained_values: + self._linker._populate_probability_two_random_records_match_from_trained_values() + + self._linker._settings_obj._columns_without_estimated_parameters_message() + + return em_training_session + + def estimate_m_from_pairwise_labels(self, labels_splinkdataframe_or_table_name): + """Estimate the m parameters of the linkage model from a dataframe of pairwise + labels. + + The table of labels should be in the following format, and should + be registered with your database: + |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r| + |----------------|-----------|----------------|-----------| + |df_1 |1 |df_2 |2 | + |df_1 |1 |df_2 |3 | + + Note that `source_dataset` and `unique_id` should correspond to the + values specified in the settings dict, and the `input_table_aliases` + passed to the `linker` object. Note that at the moment, this method does + not respect values in a `clerical_match_score` column. If provided, these + are ignored and it is assumed that every row in the table of labels is a score + of 1, i.e. a perfect match. + + Args: + labels_splinkdataframe_or_table_name (str): Name of table containing labels + in the database or SplinkDataframe + + Examples: + ```py + pairwise_labels = pd.read_csv("./data/pairwise_labels_to_estimate_m.csv") + linker.table_management.register_table( + pairwise_labels, "labels", overwrite=True + ) + linker.estimate_m_from_pairwise_labels("labels") + ``` + """ + labels_tablename = self._linker._get_labels_tablename_from_input( + labels_splinkdataframe_or_table_name + ) + estimate_m_from_pairwise_labels(self._linker, labels_tablename) + + def estimate_m_from_label_column(self, label_colname: str) -> None: + """Estimate the m parameters of the linkage model from a label (ground truth) + column in the input dataframe(s). + + The m parameters represent the proportion of record comparisons that fall + into each comparison level amongst truly matching records. + + The ground truth column is used to generate pairwise record comparisons + which are then assumed to be matches. + + For example, if the entity being matched is persons, and your input dataset(s) + contain social security number, this could be used to estimate the m values + for the model. + + Note that this column does not need to be fully populated. A common case is + where a unique identifier such as social security number is only partially + populated. + + Args: + label_colname (str): The name of the column containing the ground truth + label in the input data. + + Examples: + ```py + linker.training.estimate_m_from_label_column("social_security_number") + ``` + + Returns: + Updates the estimated m parameters within the linker object + and returns nothing. + """ + + # Ensure this has been run on the main linker so that it can be used by + # training linker when it checks the cache + pipeline = CTEPipeline() + compute_df_concat_with_tf(self._linker, pipeline) + + estimate_m_values_from_label_column( + self._linker, + label_colname, + ) + self._linker._populate_m_u_from_trained_values() + + self._linker._settings_obj._columns_without_estimated_parameters_message() diff --git a/splink/internals/linker_components/visualisations.py b/splink/internals/linker_components/visualisations.py new file mode 100644 index 0000000000..1ea2604f6d --- /dev/null +++ b/splink/internals/linker_components/visualisations.py @@ -0,0 +1,360 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any + +from splink.internals.charts import ( + ChartReturnType, + match_weights_histogram, + parameter_estimate_comparisons, + waterfall_chart, +) +from splink.internals.cluster_studio import ( + SamplingMethods, + render_splink_cluster_studio_html, +) +from splink.internals.comparison_vector_distribution import ( + comparison_vector_distribution_sql, +) +from splink.internals.match_weights_histogram import histogram_data +from splink.internals.misc import ensure_is_list +from splink.internals.pipeline import CTEPipeline +from splink.internals.splink_comparison_viewer import ( + comparison_viewer_table_sqls, + render_splink_comparison_viewer_html, +) +from splink.internals.splink_dataframe import SplinkDataFrame +from splink.internals.term_frequencies import ( + tf_adjustment_chart, +) + +if TYPE_CHECKING: + from splink.internals.linker import Linker + + +class LinkerVisualisations: + def __init__(self, linker: Linker): + self._linker = linker + + def match_weights_chart(self): + """Display a chart of the (partial) match weights of the linkage model + + Examples: + ```py + linker.match_weights_chart() + ``` + To view offline (if you don't have an internet connection): + ```py + from splink.charts import save_offline_chart + c = linker.match_weights_chart() + save_offline_chart(c.to_dict(), "test_chart.html") + ``` + View resultant html file in Jupyter (or just load it in your browser) + ```py + from IPython.display import IFrame + IFrame(src="./test_chart.html", width=1000, height=500) + ``` + + Returns: + altair.Chart: An altair chart + """ + return self._linker._settings_obj.match_weights_chart() + + def m_u_parameters_chart(self): + """Display a chart of the m and u parameters of the linkage model + + Examples: + ```py + linker.m_u_parameters_chart() + ``` + To view offline (if you don't have an internet connection): + ```py + from splink.charts import save_offline_chart + c = linker.match_weights_chart() + save_offline_chart(c.to_dict(), "test_chart.html") + ``` + View resultant html file in Jupyter (or just load it in your browser) + ```py + from IPython.display import IFrame + IFrame(src="./test_chart.html", width=1000, height=500) + ``` + + Returns: + altair.Chart: An altair chart + """ + + return self._linker._settings_obj.m_u_parameters_chart() + + def match_weights_histogram( + self, + df_predict: SplinkDataFrame, + target_bins: int = 30, + width: int = 600, + height: int = 250, + ) -> ChartReturnType: + """Generate a histogram that shows the distribution of match weights in + `df_predict` + + Args: + df_predict (SplinkDataFrame): Output of `linker.predict()` + target_bins (int, optional): Target number of bins in histogram. Defaults to + 30. + width (int, optional): Width of output. Defaults to 600. + height (int, optional): Height of output chart. Defaults to 250. + + + Returns: + altair.Chart: An altair chart + + """ + df = histogram_data(self._linker, df_predict, target_bins) + recs = df.as_record_dict() + return match_weights_histogram(recs, width=width, height=height) + + def parameter_estimate_comparisons_chart( + self, include_m: bool = True, include_u: bool = False + ) -> ChartReturnType: + """Show a chart that shows how parameter estimates have differed across + the different estimation methods you have used. + + For example, if you have run two EM estimation sessions, blocking on + different variables, and both result in parameter estimates for + first_name, this chart will enable easy comparison of the different + estimates + + Args: + include_m (bool, optional): Show different estimates of m values. Defaults + to True. + include_u (bool, optional): Show different estimates of u values. Defaults + to False. + + """ + records = self._linker._settings_obj._parameter_estimates_as_records + + to_retain = [] + if include_m: + to_retain.append("m") + if include_u: + to_retain.append("u") + + records = [r for r in records if r["m_or_u"] in to_retain] + + return parameter_estimate_comparisons(records) + + def tf_adjustment_chart( + self, + output_column_name: str, + n_most_freq: int = 10, + n_least_freq: int = 10, + vals_to_include: str | list[str] | None = None, + as_dict: bool = False, + ) -> ChartReturnType: + """Display a chart showing the impact of term frequency adjustments on a + specific comparison level. + Each value + + Args: + output_column_name (str): Name of an output column for which term frequency + adjustment has been applied. + n_most_freq (int, optional): Number of most frequent values to show. If this + or `n_least_freq` set to None, all values will be shown. + Default to 10. + n_least_freq (int, optional): Number of least frequent values to show. If + this or `n_most_freq` set to None, all values will be shown. + Default to 10. + vals_to_include (list, optional): Specific values for which to show term + sfrequency adjustments. + Defaults to None. + + Returns: + altair.Chart: An altair chart + """ + + # Comparisons with TF adjustments + tf_comparisons = [ + c.output_column_name + for c in self._linker._settings_obj.comparisons + if any([cl._has_tf_adjustments for cl in c.comparison_levels]) + ] + if output_column_name not in tf_comparisons: + raise ValueError( + f"{output_column_name} is not a valid comparison column, or does not" + f" have term frequency adjustment activated" + ) + + vals_to_include = ( + [] if vals_to_include is None else ensure_is_list(vals_to_include) + ) + + return tf_adjustment_chart( + self._linker, + output_column_name, + n_most_freq, + n_least_freq, + vals_to_include, + as_dict, + ) + + def waterfall_chart( + self, + records: list[dict[str, Any]], + filter_nulls: bool = True, + remove_sensitive_data: bool = False, + ) -> ChartReturnType: + """Visualise how the final match weight is computed for the provided pairwise + record comparisons. + + Records must be provided as a list of dictionaries. This would usually be + obtained from `df.as_record_dict(limit=n)` where `df` is a SplinkDataFrame. + + Examples: + ```py + df = linker.predict(threshold_match_weight=2) + records = df.as_record_dict(limit=10) + linker.waterfall_chart(records) + ``` + + Args: + records (List[dict]): Usually be obtained from `df.as_record_dict(limit=n)` + where `df` is a SplinkDataFrame. + filter_nulls (bool, optional): Whether the visualiation shows null + comparisons, which have no effect on final match weight. Defaults to + True. + remove_sensitive_data (bool, optional): When True, The waterfall chart will + contain match weights only, and all of the (potentially sensitive) data + from the input tables will be removed prior to the chart being created. + + + Returns: + altair.Chart: An altair chart + + """ + self._linker._raise_error_if_necessary_waterfall_columns_not_computed() + + return waterfall_chart( + records, self._linker._settings_obj, filter_nulls, remove_sensitive_data + ) + + def comparison_viewer_dashboard( + self, + df_predict: SplinkDataFrame, + out_path: str, + overwrite: bool = False, + num_example_rows: int = 2, + return_html_as_string: bool = False, + ) -> str | None: + """Generate an interactive html visualization of the linker's predictions and + save to `out_path`. For more information see + [this video](https://www.youtube.com/watch?v=DNvCMqjipis) + + + Args: + df_predict (SplinkDataFrame): The outputs of `linker.predict()` + out_path (str): The path (including filename) to save the html file to. + overwrite (bool, optional): Overwrite the html file if it already exists? + Defaults to False. + num_example_rows (int, optional): Number of example rows per comparison + vector. Defaults to 2. + return_html_as_string: If True, return the html as a string + + Examples: + ```py + df_predictions = linker.predict() + linker.comparison_viewer_dashboard(df_predictions, "scv.html", True, 2) + ``` + + Optionally, in Jupyter, you can display the results inline + Otherwise you can just load the html file in your browser + ```py + from IPython.display import IFrame + IFrame(src="./scv.html", width="100%", height=1200) + ``` + + """ + self._linker._raise_error_if_necessary_waterfall_columns_not_computed() + pipeline = CTEPipeline([df_predict]) + sql = comparison_vector_distribution_sql(self._linker) + pipeline.enqueue_sql(sql, "__splink__df_comparison_vector_distribution") + + sqls = comparison_viewer_table_sqls(self._linker, num_example_rows) + pipeline.enqueue_list_of_sqls(sqls) + + df = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) + + rendered = render_splink_comparison_viewer_html( + df.as_record_dict(), + self._linker._settings_obj._as_completed_dict(), + out_path, + overwrite, + ) + if return_html_as_string: + return rendered + return None + + def cluster_studio_dashboard( + self, + df_predict: SplinkDataFrame, + df_clustered: SplinkDataFrame, + out_path: str, + sampling_method: SamplingMethods = "random", + sample_size: int = 10, + cluster_ids: list[str] = None, + cluster_names: list[str] = None, + overwrite: bool = False, + return_html_as_string: bool = False, + _df_cluster_metrics: SplinkDataFrame = None, + ) -> str | None: + """Generate an interactive html visualization of the predicted cluster and + save to `out_path`. + + Args: + df_predict (SplinkDataFrame): The outputs of `linker.predict()` + df_clustered (SplinkDataFrame): The outputs of + `linker.cluster_pairwise_predictions_at_threshold()` + out_path (str): The path (including filename) to save the html file to. + sampling_method (str, optional): `random`, `by_cluster_size` or + `lowest_density_clusters`. Defaults to `random`. + sample_size (int, optional): Number of clusters to show in the dahboard. + Defaults to 10. + cluster_ids (list): The IDs of the clusters that will be displayed in the + dashboard. If provided, ignore the `sampling_method` and `sample_size` + arguments. Defaults to None. + overwrite (bool, optional): Overwrite the html file if it already exists? + Defaults to False. + cluster_names (list, optional): If provided, the dashboard will display + these names in the selection box. Ony works in conjunction with + `cluster_ids`. Defaults to None. + return_html_as_string: If True, return the html as a string + + Examples: + ```py + df_p = linker.predict() + df_c = linker.cluster_pairwise_predictions_at_threshold(df_p, 0.5) + linker.cluster_studio_dashboard( + df_p, df_c, [0, 4, 7], "cluster_studio.html" + ) + ``` + Optionally, in Jupyter, you can display the results inline + Otherwise you can just load the html file in your browser + ```py + from IPython.display import IFrame + IFrame(src="./cluster_studio.html", width="100%", height=1200) + ``` + """ + self._linker._raise_error_if_necessary_waterfall_columns_not_computed() + + rendered = render_splink_cluster_studio_html( + self._linker, + df_predict, + df_clustered, + out_path, + sampling_method=sampling_method, + sample_size=sample_size, + cluster_ids=cluster_ids, + overwrite=overwrite, + cluster_names=cluster_names, + _df_cluster_metrics=_df_cluster_metrics, + ) + + if return_html_as_string: + return rendered + return None diff --git a/splink/internals/m_from_labels.py b/splink/internals/m_from_labels.py index 1454974ac0..aadd816d85 100644 --- a/splink/internals/m_from_labels.py +++ b/splink/internals/m_from_labels.py @@ -1,4 +1,5 @@ import logging +from typing import TYPE_CHECKING from splink.internals.block_from_labels import block_from_labels from splink.internals.comparison_vector_values import ( @@ -16,10 +17,12 @@ m_u_records_to_lookup_dict, ) +if TYPE_CHECKING: + from splink.internals.linker import Linker logger = logging.getLogger(__name__) -def estimate_m_from_pairwise_labels(linker, table_name): +def estimate_m_from_pairwise_labels(linker: "Linker", table_name: str) -> None: pipeline = CTEPipeline() nodes_with_tf = compute_df_concat_with_tf(linker, pipeline) pipeline = CTEPipeline([nodes_with_tf]) @@ -45,7 +48,7 @@ def estimate_m_from_pairwise_labels(linker, table_name): ) pipeline.enqueue_sql(sql, "__splink__m_u_counts") - df_params = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_params = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) param_records = df_params.as_pandas_dataframe() param_records = compute_proportions_for_new_parameters(param_records) diff --git a/splink/internals/m_training.py b/splink/internals/m_training.py index e1ce5a41f4..1c07a62a88 100644 --- a/splink/internals/m_training.py +++ b/splink/internals/m_training.py @@ -1,5 +1,6 @@ import logging from copy import deepcopy +from typing import TYPE_CHECKING from splink.internals.blocking import BlockingRule, block_using_rules_sqls from splink.internals.comparison_vector_values import ( @@ -17,10 +18,12 @@ m_u_records_to_lookup_dict, ) +if TYPE_CHECKING: + from splink.internals.linker import Linker logger = logging.getLogger(__name__) -def estimate_m_values_from_label_column(linker, df_dict, label_colname): +def estimate_m_values_from_label_column(linker: "Linker", label_colname: str) -> None: msg = f" Estimating m probabilities using from column {label_colname} " logger.info(f"{msg:-^70}") @@ -68,7 +71,7 @@ def estimate_m_values_from_label_column(linker, df_dict, label_colname): ) pipeline.enqueue_sql(sql, "__splink__m_u_counts") - df_params = training_linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_params = training_linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) param_records = df_params.as_pandas_dataframe() param_records = compute_proportions_for_new_parameters(param_records) diff --git a/splink/internals/match_weights_histogram.py b/splink/internals/match_weights_histogram.py index 43993f790e..6198ffebbc 100644 --- a/splink/internals/match_weights_histogram.py +++ b/splink/internals/match_weights_histogram.py @@ -1,6 +1,11 @@ from math import floor +from typing import TYPE_CHECKING from splink.internals.pipeline import CTEPipeline +from splink.internals.splink_dataframe import SplinkDataFrame + +if TYPE_CHECKING: + from splink.internals.linker import Linker def _bins(min, max, num_bins): @@ -58,7 +63,9 @@ def _hist_sql(bin_width): return sqls -def histogram_data(linker, df_predict, num_bins=100): +def histogram_data( + linker: "Linker", df_predict: SplinkDataFrame, num_bins: int = 100 +) -> SplinkDataFrame: sql = """ select min(match_weight) as min_weight, max(match_weight) as max_weight from __splink__df_predict @@ -66,7 +73,7 @@ def histogram_data(linker, df_predict, num_bins=100): pipeline = CTEPipeline([df_predict]) pipeline.enqueue_sql(sql, "__splink__df_min_max") - df_min_max = linker.db_api.sql_pipeline_to_splink_dataframe( + df_min_max = linker._db_api.sql_pipeline_to_splink_dataframe( pipeline ).as_record_dict() @@ -79,6 +86,6 @@ def histogram_data(linker, df_predict, num_bins=100): sqls = _hist_sql(binwidth) pipeline.enqueue_list_of_sqls(sqls) - df_hist = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_hist = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) return df_hist diff --git a/splink/internals/optimise_cost_of_brs.py b/splink/internals/optimise_cost_of_brs.py index 0e842fd6fd..65e89a4651 100644 --- a/splink/internals/optimise_cost_of_brs.py +++ b/splink/internals/optimise_cost_of_brs.py @@ -113,9 +113,8 @@ def get_em_training_string(br_rows): training_statements = [] for block_on_str in block_on_strings: - statement = ( - f"linker.estimate_parameters_using_expectation_maximisation({block_on_str})" - ) + m_name = "linker.training.estimate_parameters_using_expectation_maximisation" + statement = f"{m_name}({block_on_str})" training_statements.append(statement) return " \n".join(training_statements) diff --git a/splink/internals/term_frequencies.py b/splink/internals/term_frequencies.py index 50987f9b45..973c0e7965 100644 --- a/splink/internals/term_frequencies.py +++ b/splink/internals/term_frequencies.py @@ -84,7 +84,7 @@ def _join_new_table_to_df_concat_with_tf_sql(linker: Linker, new_tablename: str) Joins any required tf columns onto new_tablename This is needed e.g. when using linker.compare_two_records - or linker.find_matches_to_new_records in which the user provides + or linker.inference.find_matches_to_new_records in which the user provides new records which need tf adjustments computed """ @@ -241,7 +241,7 @@ def tf_adjustment_chart( dict( cl, **{ - "df_tf": linker.compute_tf_table( + "df_tf": linker.table_management.compute_tf_table( cl["tf_adjustment_column"] ).as_pandas_dataframe() }, diff --git a/splink/internals/unlinkables.py b/splink/internals/unlinkables.py index 48c1d6975c..f2c500a693 100644 --- a/splink/internals/unlinkables.py +++ b/splink/internals/unlinkables.py @@ -51,7 +51,7 @@ def unlinkables_data(linker: Linker) -> dict[str, Any]: where match_probability < 1 """ pipeline.enqueue_sql(sql, "__splink__df_unlinkables_proportions_cumulative") - data = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline, use_cache=False) + data = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline, use_cache=False) unlinkables_dict = data.as_record_dict() data.drop_table_from_database_and_remove_from_cache() diff --git a/splink/internals/vertically_concatenate.py b/splink/internals/vertically_concatenate.py index 7577c35e22..c2fcfd0d34 100644 --- a/splink/internals/vertically_concatenate.py +++ b/splink/internals/vertically_concatenate.py @@ -106,7 +106,7 @@ def enqueue_df_concat_with_tf(linker: Linker, pipeline: CTEPipeline) -> CTEPipel def compute_df_concat_with_tf(linker: Linker, pipeline: CTEPipeline) -> SplinkDataFrame: cache = linker._intermediate_table_cache - db_api = linker.db_api + db_api = linker._db_api if "__splink__df_concat_with_tf" in cache: return cache.get_with_logging("__splink__df_concat_with_tf") @@ -158,7 +158,7 @@ def enqueue_df_concat(linker: Linker, pipeline: CTEPipeline) -> CTEPipeline: def compute_df_concat(linker: Linker, pipeline: CTEPipeline) -> SplinkDataFrame: cache = linker._intermediate_table_cache - db_api = linker.db_api + db_api = linker._db_api if "__splink__df_concat" in cache: return cache.get_with_logging("__splink__df_concat") diff --git a/tests/cc_testing_utils.py b/tests/cc_testing_utils.py index 30009ea623..beab85a622 100644 --- a/tests/cc_testing_utils.py +++ b/tests/cc_testing_utils.py @@ -42,10 +42,10 @@ def register_cc_df(G): ) # re-register under our required name to run the CC function - linker.register_table(df_concat, table_name, overwrite=True) + linker.table_management.register_table(df_concat, table_name, overwrite=True) df_nodes = pd.DataFrame({"unique_id": G.nodes}) - linker.register_table_input_nodes_concat_with_tf(df_nodes) + linker.table_management.register_table_input_nodes_concat_with_tf(df_nodes) # add our prediction df to our list of created tables predict_df = DuckDBDataFrame(table_name, table_name, db_api) diff --git a/tests/helpers.py b/tests/helpers.py index d5f3d7bd20..38dedf172b 100644 --- a/tests/helpers.py +++ b/tests/helpers.py @@ -15,7 +15,7 @@ class TestHelper(ABC): @property - def Linker(self): + def Linker(self) -> Linker: return Linker @property diff --git a/tests/linker_utils.py b/tests/linker_utils.py index 2aa21497a8..8d0fa7ad00 100644 --- a/tests/linker_utils.py +++ b/tests/linker_utils.py @@ -12,22 +12,26 @@ def _test_table_registration( # Standard pandas df... a = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) - linker.register_table(a, "__splink__df_pd") - pd_df = linker.query_sql("select * from __splink__df_pd", output_type="splinkdf") + linker.table_management.register_table(a, "__splink__df_pd") + pd_df = linker.misc.query_sql( + "select * from __splink__df_pd", output_type="splinkdf" + ) assert sum(pd_df.as_pandas_dataframe().a) == sum(a.a) # Standard dictionary test_dict = {"a": [666, 777, 888], "b": [4, 5, 6]} - t_dict = linker.register_table(test_dict, "__splink__df_test_dict") + t_dict = linker.table_management.register_table(test_dict, "__splink__df_test_dict") test_dict_df = pd.DataFrame(test_dict) assert sum(t_dict.as_pandas_dataframe().b) == sum(test_dict_df.b) # Duplicate table name (check for error) with pytest.raises(ValueError): - linker.register_table(test_dict, "__splink__df_pd") + linker.table_management.register_table(test_dict, "__splink__df_pd") # Test overwriting works - linker.register_table(test_dict_df, "__splink__df_pd", overwrite=True) - out = linker.query_sql("select * from __splink__df_pd", output_type="pandas") + linker.table_management.register_table( + test_dict_df, "__splink__df_pd", overwrite=True + ) + out = linker.misc.query_sql("select * from __splink__df_pd", output_type="pandas") assert sum(out.a) == sum(test_dict_df.a) # Record level dictionary @@ -37,20 +41,22 @@ def _test_table_registration( {"a": 3, "b": 44, "c": 555}, ] - linker.register_table(b, "__splink__df_record_df") - record_df = linker.query_sql( + linker.table_management.register_table(b, "__splink__df_record_df") + record_df = linker.misc.query_sql( "select * from __splink__df_record_df", output_type="pandas" ) assert sum(record_df.b) == sum(record["b"] for record in b) with pytest.raises(ValueError): - linker.query_sql("select * from __splink__df_test_dict", output_type="testing") - df = linker.query_sql( + linker.misc.query_sql( + "select * from __splink__df_test_dict", output_type="testing" + ) + df = linker.misc.query_sql( "select * from __splink__df_test_dict", output_type="splinkdf" ).as_pandas_dataframe() assert sum(df.b) == sum(test_dict_df.b) - r_dict = linker.query_sql( + r_dict = linker.misc.query_sql( "select * from __splink__df_record_df", output_type="splinkdf" ).as_record_dict() assert sum(pd.DataFrame.from_records(r_dict).a) == sum(record["a"] for record in b) @@ -58,7 +64,7 @@ def _test_table_registration( # Test registration on additional data types for specific linkers if additional_tables_to_register: for table in additional_tables_to_register: - linker.register_table(table, "test_table", overwrite=True) + linker.table_management.register_table(table, "test_table", overwrite=True) def register_roc_data(linker): @@ -83,7 +89,7 @@ def register_roc_data(linker): axis=1, ) - linker.register_table(df_labels, "labels") + linker.table_management.register_table(df_labels, "labels") def _test_write_functionality(linker, read_csv_func): @@ -93,18 +99,18 @@ def _test_write_functionality(linker, read_csv_func): shutil.rmtree(root) parquet_f = f"{root}/tmp_files/test.parquet" - linker.predict().to_parquet(parquet_f) + linker.inference.predict().to_parquet(parquet_f) assert len(pd.read_parquet(parquet_f)) == 3167 # Duplicate table name (check for error) with pytest.raises(FileExistsError): - linker.predict().to_parquet(parquet_f) + linker.inference.predict().to_parquet(parquet_f) csv_f = f"{root}/tmp_files/test.csv" - linker.predict().to_csv(csv_f) + linker.inference.predict().to_csv(csv_f) assert len(read_csv_func(csv_f)) == 3167 # Duplicate table name (check for error) with pytest.raises(FileExistsError): - linker.predict().to_csv(csv_f) + linker.inference.predict().to_csv(csv_f) # delete the folder and its contents shutil.rmtree(root) diff --git a/tests/test_accuracy.py b/tests/test_accuracy.py index 61f22f9950..e9fb9025c0 100644 --- a/tests/test_accuracy.py +++ b/tests/test_accuracy.py @@ -56,12 +56,12 @@ def test_scored_labels_table(): concat_with_tf = compute_df_concat_with_tf(linker, pipeline) pipeline = CTEPipeline([concat_with_tf]) - linker.register_table(df_labels, "labels") + linker.table_management.register_table(df_labels, "labels") sqls = predictions_from_sample_of_pairwise_labels_sql(linker, "labels") pipeline.enqueue_list_of_sqls(sqls) - df_scores_labels = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_scores_labels = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) df_scores_labels = df_scores_labels.as_pandas_dataframe() df_scores_labels.sort_values(["unique_id_l", "unique_id_r"], inplace=True) @@ -69,7 +69,7 @@ def test_scored_labels_table(): assert len(df_scores_labels) == 6 # Check predictions are the same as the labels - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() f1 = df_predict["unique_id_l"] == 1 f2 = df_predict["unique_id_r"] == 2 @@ -139,12 +139,14 @@ def test_truth_space_table(): ] labels_with_predictions = pd.DataFrame(labels_with_predictions) - linker.register_table(labels_with_predictions, "__splink__labels_with_predictions") + linker.table_management.register_table( + labels_with_predictions, "__splink__labels_with_predictions" + ) pipeline = CTEPipeline() sqls = truth_space_table_from_labels_with_predictions_sqls(0.5) pipeline.enqueue_list_of_sqls(sqls) - df_roc = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + df_roc = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) df_roc = df_roc.as_pandas_dataframe() @@ -195,9 +197,9 @@ def test_roc_chart_dedupe_only(): linker = Linker(df, settings_dict, database_api=db_api) - labels_sdf = linker.register_table(df_labels, "labels") + labels_sdf = linker.table_management.register_table(df_labels, "labels") - linker.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc") + linker.evaluation.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc") def test_roc_chart_link_and_dedupe(): @@ -228,9 +230,9 @@ def test_roc_chart_link_and_dedupe(): df, settings_dict, input_table_aliases="fake_data_1", database_api=db_api ) - labels_sdf = linker.register_table(df_labels, "labels") + labels_sdf = linker.table_management.register_table(df_labels, "labels") - linker.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc") + linker.evaluation.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc") def test_prediction_errors_from_labels_table(): @@ -290,12 +292,14 @@ def test_prediction_errors_from_labels_table(): linker = Linker(df, settings, database_api=db_api) - linker.register_table(df_labels, "labels") + linker.table_management.register_table(df_labels, "labels") pipeline = CTEPipeline() compute_df_concat_with_tf(linker, pipeline) - df_res = linker.prediction_errors_from_labels_table("labels").as_pandas_dataframe() + df_res = linker.evaluation.prediction_errors_from_labels_table( + "labels" + ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] records = list(df_res.to_records(index=False)) records = [tuple(p) for p in records] @@ -309,12 +313,12 @@ def test_prediction_errors_from_labels_table(): linker = Linker(df, settings, database_api=db_api) - linker.register_table(df_labels, "labels") + linker.table_management.register_table(df_labels, "labels") pipeline = CTEPipeline() compute_df_concat_with_tf(linker, pipeline) - df_res = linker.prediction_errors_from_labels_table( + df_res = linker.evaluation.prediction_errors_from_labels_table( "labels", include_false_negatives=False ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] @@ -329,12 +333,12 @@ def test_prediction_errors_from_labels_table(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.register_table(df_labels, "labels") + linker.table_management.register_table(df_labels, "labels") pipeline = CTEPipeline() compute_df_concat_with_tf(linker, pipeline) - df_res = linker.prediction_errors_from_labels_table( + df_res = linker.evaluation.prediction_errors_from_labels_table( "labels", include_false_positives=False ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] @@ -393,7 +397,7 @@ def test_prediction_errors_from_labels_column(): linker = Linker(df, settings, database_api=db_api) - df_res = linker.prediction_errors_from_labels_column( + df_res = linker.evaluation.prediction_errors_from_labels_column( "cluster" ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] @@ -410,7 +414,7 @@ def test_prediction_errors_from_labels_column(): linker = Linker(df, settings, database_api=db_api) - df_res = linker.prediction_errors_from_labels_column( + df_res = linker.evaluation.prediction_errors_from_labels_column( "cluster", include_false_positives=False ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] @@ -427,7 +431,7 @@ def test_prediction_errors_from_labels_column(): linker = Linker(df, settings, database_api=db_api) - df_res = linker.prediction_errors_from_labels_column( + df_res = linker.evaluation.prediction_errors_from_labels_column( "cluster", include_false_negatives=False ).as_pandas_dataframe() df_res = df_res[["unique_id_l", "unique_id_r"]] @@ -489,7 +493,7 @@ def test_truth_space_table_from_labels_column_dedupe_only(): linker = Linker(df, settings, database_api=db_api) - tt = linker.accuracy_analysis_from_labels_column( + tt = linker.evaluation.accuracy_analysis_from_labels_column( "cluster", output_type="table" ).as_record_dict() # Truth threshold -3.17, meaning all comparisons get classified as positive @@ -560,7 +564,7 @@ def test_truth_space_table_from_labels_column_link_only(): linker = Linker([df_left, df_right], settings, database_api=db_api) - tt = linker.accuracy_analysis_from_labels_column( + tt = linker.evaluation.accuracy_analysis_from_labels_column( "ground_truth", output_type="table" ).as_record_dict() # Truth threshold -3.17, meaning all comparisons get classified as positive @@ -609,7 +613,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked(): ) linker_for_predictions = Linker(df, settings, database_api=DuckDBAPI()) - df_predictions_raw = linker_for_predictions.predict() + df_predictions_raw = linker_for_predictions.inference.predict() # Score all of the positive labels even if not captured by the blocking rules # but not score any negative pairwise comaprisons not captured by the blocking rules @@ -630,7 +634,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked(): match_key from {df_predictions_raw.physical_name} """ - df_predictions = linker_for_predictions.query_sql(sql) + df_predictions = linker_for_predictions.misc.query_sql(sql) settings = SettingsCreator( link_type="dedupe_only", @@ -644,11 +648,13 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked(): ) linker_for_splink_answer = Linker(df, settings, database_api=DuckDBAPI()) - df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_column( - "cluster", - output_type="table", - positives_not_captured_by_blocking_rules_scored_as_zero=False, - ).as_pandas_dataframe() + df_from_splink = ( + linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_column( + "cluster", + output_type="table", + positives_not_captured_by_blocking_rules_scored_as_zero=False, + ).as_pandas_dataframe() + ) for _, splink_row in df_from_splink.iterrows(): threshold = splink_row["truth_threshold"] @@ -683,7 +689,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked(): ) linker_for_predictions = Linker([df_1, df_2], settings, database_api=DuckDBAPI()) - df_predictions_raw = linker_for_predictions.predict() + df_predictions_raw = linker_for_predictions.inference.predict() # When match_key = 1, the record is not really recovered by the blocking rules # so its score must be zero. Want @@ -698,7 +704,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked(): match_key from {df_predictions_raw.physical_name} """ - df_predictions = linker_for_predictions.query_sql(sql) + df_predictions = linker_for_predictions.misc.query_sql(sql) settings = SettingsCreator( link_type="link_only", @@ -713,11 +719,13 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked(): ) linker_for_splink_answer = Linker([df_1, df_2], settings, database_api=DuckDBAPI()) - df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_column( - "cluster", - output_type="table", - positives_not_captured_by_blocking_rules_scored_as_zero=True, - ).as_pandas_dataframe() + df_from_splink = ( + linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_column( + "cluster", + output_type="table", + positives_not_captured_by_blocking_rules_scored_as_zero=True, + ).as_pandas_dataframe() + ) for _, splink_row in df_from_splink.iterrows(): threshold = splink_row["truth_threshold"] @@ -759,13 +767,17 @@ def test_truth_space_table_from_table_vs_pandas_cartesian(): ) linker_for_predictions = Linker(df_first_50, settings, database_api=DuckDBAPI()) - df_predictions = linker_for_predictions.predict().as_pandas_dataframe() + df_predictions = linker_for_predictions.inference.predict().as_pandas_dataframe() linker_for_splink_answer = Linker(df, settings, database_api=DuckDBAPI()) - labels_input = linker_for_splink_answer.register_labels_table(labels_table) - df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_table( - labels_input, output_type="table" - ).as_pandas_dataframe() + labels_input = linker_for_splink_answer.table_management.register_labels_table( + labels_table + ) + df_from_splink = ( + linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_table( + labels_input, output_type="table" + ).as_pandas_dataframe() + ) for _, splink_row in df_from_splink.iterrows(): threshold = splink_row["truth_threshold"] @@ -816,7 +828,7 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking(): linker_for_predictions = Linker( [df_1_first_50, df_2_first_50], settings, database_api=DuckDBAPI() ) - df_predictions_raw = linker_for_predictions.predict() + df_predictions_raw = linker_for_predictions.inference.predict() df_predictions_raw.as_pandas_dataframe() sql = f""" select @@ -830,7 +842,7 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking(): cluster_r, from {df_predictions_raw.physical_name} """ - df_predictions = linker_for_predictions.query_sql(sql) + df_predictions = linker_for_predictions.misc.query_sql(sql) settings = SettingsCreator( link_type="link_only", @@ -844,10 +856,14 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking(): ) linker_for_splink_answer = Linker([df_1, df_2], settings, database_api=DuckDBAPI()) - labels_input = linker_for_splink_answer.register_labels_table(labels_table) - df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_table( - labels_input, output_type="table" - ).as_pandas_dataframe() + labels_input = linker_for_splink_answer.table_management.register_labels_table( + labels_table + ) + df_from_splink = ( + linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_table( + labels_input, output_type="table" + ).as_pandas_dataframe() + ) for _, splink_row in df_from_splink.iterrows(): threshold = splink_row["truth_threshold"] diff --git a/tests/test_array_based_blocking.py b/tests/test_array_based_blocking.py index 3d0c728b03..d22fa1d28b 100644 --- a/tests/test_array_based_blocking.py +++ b/tests/test_array_based_blocking.py @@ -38,7 +38,7 @@ def test_simple_example_link_only(test_helpers, dialect): ## the additional pairs returned by the second blocking rule are (1,4),(3,5) linker = helper.Linker([data_l, data_r], settings, **helper.extra_linker_args()) linker.debug_mode = False - returned_triples = linker.predict().as_pandas_dataframe()[ + returned_triples = linker.inference.predict().as_pandas_dataframe()[ ["unique_id_l", "unique_id_r", "match_key"] ] returned_triples = { @@ -110,7 +110,7 @@ def test_array_based_blocking_with_random_data_dedupe(test_helpers, dialect): } linker = helper.Linker(input_data, settings, **helper.extra_linker_args()) linker.debug_mode = False - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() ## check that there are no duplicates in the output assert ( df_predict.drop_duplicates(["unique_id_l", "unique_id_r"]).shape[0] @@ -159,7 +159,7 @@ def test_array_based_blocking_with_random_data_link_only(test_helpers, dialect): [input_data_l, input_data_r], settings, **helper.extra_linker_args() ) linker.debug_mode = False - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() ## check that we get no within-dataset links within_dataset_links = df_predict[ @@ -232,7 +232,7 @@ def test_link_only_unique_id_ambiguity(test_helpers, dialect): input_table_aliases=["a_", "b_", "c_"], **helper.extra_linker_args(), ) - returned_triples = linker.predict().as_pandas_dataframe()[ + returned_triples = linker.inference.predict().as_pandas_dataframe()[ [ "source_dataset_l", "unique_id_l", diff --git a/tests/test_blocking.py b/tests/test_blocking.py index c497493d7f..aac6fa2c69 100644 --- a/tests/test_blocking.py +++ b/tests/test_blocking.py @@ -65,11 +65,11 @@ def test_simple_end_to_end(test_helpers, dialect): linker = Linker(df, settings, **helper.extra_linker_args()) - linker.estimate_u_using_random_sampling(max_pairs=1e3) + linker.training.estimate_u_using_random_sampling(max_pairs=1e3) blocking_rule = block_on("first_name", "surname") - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - linker.estimate_parameters_using_expectation_maximisation(block_on("dob")) + linker.training.estimate_parameters_using_expectation_maximisation(block_on("dob")) - linker.predict() + linker.inference.predict() diff --git a/tests/test_caching.py b/tests/test_caching.py index a9a5933076..ded0f702c0 100644 --- a/tests/test_caching.py +++ b/tests/test_caching.py @@ -38,7 +38,7 @@ def test_cache_id(tmp_path): prior = linker._settings_obj._cache_uid path = os.path.join(tmp_path, "model.json") - linker.save_model_to_json(path, overwrite=True) + linker.misc.save_model_to_json(path, overwrite=True) db_api = DuckDBAPI() @@ -83,7 +83,7 @@ def test_cache_access_df_concat(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: @@ -115,16 +115,16 @@ def test_cache_access_compute_tf_table(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("first_name") mockexecute_sql_pipeline.assert_called() # reset the call counter on the mock mockexecute_sql_pipeline.reset_mock() - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("first_name") mockexecute_sql_pipeline.assert_not_called() @@ -135,7 +135,7 @@ def test_invalidate_cache(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) @@ -151,14 +151,14 @@ def test_invalidate_cache(debug_mode): mockexecute_sql_pipeline.assert_not_called() # create this: - linker.compute_tf_table("surname") + linker.table_management.compute_tf_table("surname") mockexecute_sql_pipeline.assert_called() mockexecute_sql_pipeline.reset_mock() # then check the cache - linker.compute_tf_table("surname") + linker.table_management.compute_tf_table("surname") mockexecute_sql_pipeline.assert_not_called() - linker.invalidate_cache() + linker.table_management.invalidate_cache() # now we _SHOULD_ compute afresh: pipeline = CTEPipeline() @@ -170,11 +170,11 @@ def test_invalidate_cache(debug_mode): compute_df_concat_with_tf(linker, pipeline) mockexecute_sql_pipeline.assert_not_called() # and should compute this again: - linker.compute_tf_table("surname") + linker.table_management.compute_tf_table("surname") mockexecute_sql_pipeline.assert_called() mockexecute_sql_pipeline.reset_mock() # then check the cache - linker.compute_tf_table("surname") + linker.table_management.compute_tf_table("surname") mockexecute_sql_pipeline.assert_not_called() @@ -185,7 +185,7 @@ def test_cache_invalidates_with_new_linker(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: @@ -202,7 +202,7 @@ def test_cache_invalidates_with_new_linker(debug_mode): db_api = DuckDBAPI() new_linker = Linker(df, settings, database_api=db_api) - new_linker.debug_mode = debug_mode + new_linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: @@ -233,14 +233,14 @@ def test_cache_register_compute_concat_with_tf_table(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: # can actually register frame, as that part not cached # don't need function so use any frame - linker.register_table_input_nodes_concat_with_tf(df) + linker.table_management.register_table_input_nodes_concat_with_tf(df) # now this should be cached, as I have manually registered pipeline = CTEPipeline() compute_df_concat_with_tf(linker, pipeline) @@ -254,14 +254,14 @@ def test_cache_register_compute_tf_table(debug_mode): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = debug_mode + linker._debug_mode = debug_mode with patch.object( db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api) ) as mockexecute_sql_pipeline: # can actually register frame, as that part not cached # don't need function so use any frame - linker.register_term_frequency_lookup(df, "first_name") + linker.table_management.register_term_frequency_lookup(df, "first_name") # now this should be cached, as I have manually registered - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("first_name") mockexecute_sql_pipeline.assert_not_called() diff --git a/tests/test_caching_tables.py b/tests/test_caching_tables.py index f7b8b35db3..66a5cba21d 100644 --- a/tests/test_caching_tables.py +++ b/tests/test_caching_tables.py @@ -32,11 +32,11 @@ def test_cache_tracking_works(): cache = linker._intermediate_table_cache assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False - linker.predict() + linker.inference.predict() assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is True - linker.predict() + linker.inference.predict() assert ( cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True ) @@ -48,18 +48,18 @@ def test_cache_tracking_works(): assert ( cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is False ) - linker.predict() + linker.inference.predict() assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False assert ( cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True ) - linker.invalidate_cache() + linker.table_management.invalidate_cache() cache.reset_executed_queries_tracker() cache.reset_queries_retrieved_from_cache_tracker() - linker.predict() + linker.inference.predict() # Triggers adding to queries retrieved from cache - linker.predict() + linker.inference.predict() assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is True assert ( cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True @@ -95,8 +95,10 @@ def test_cache_used_when_registering_nodes_table(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.register_table_input_nodes_concat_with_tf(splink__df_concat_with_tf) - linker.predict() + linker.table_management.register_table_input_nodes_concat_with_tf( + splink__df_concat_with_tf + ) + linker.inference.predict() assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False assert ( cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True @@ -147,7 +149,7 @@ def test_cache_used_when_registering_tf_tables(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.predict() + linker.inference.predict() assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name") assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname") @@ -157,8 +159,8 @@ def test_cache_used_when_registering_tf_tables(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.register_term_frequency_lookup(surname_tf_table, "surname") - linker.predict() + linker.table_management.register_term_frequency_lookup(surname_tf_table, "surname") + linker.inference.predict() assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name") assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname") @@ -168,9 +170,11 @@ def test_cache_used_when_registering_tf_tables(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.register_term_frequency_lookup(surname_tf_table, "surname") - linker.register_term_frequency_lookup(first_name_tf_table, "first_name") - linker.predict() + linker.table_management.register_term_frequency_lookup(surname_tf_table, "surname") + linker.table_management.register_term_frequency_lookup( + first_name_tf_table, "first_name" + ) + linker.inference.predict() assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name") assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname") @@ -195,9 +199,9 @@ def test_cache_invalidation(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.compute_tf_table("name") + linker.table_management.compute_tf_table("name") len_before = len(cache.executed_queries) - linker.compute_tf_table("name") + linker.table_management.compute_tf_table("name") len_after = len(cache.executed_queries) # If cache not invalidated, cache should be used @@ -209,10 +213,10 @@ def test_cache_invalidation(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - linker.compute_tf_table("name") + linker.table_management.compute_tf_table("name") len_before = len(cache.executed_queries) - linker.invalidate_cache() - linker.compute_tf_table("name") + linker.table_management.invalidate_cache() + linker.table_management.compute_tf_table("name") len_after = len(cache.executed_queries) # If cache is invalidated, an additional query should have been executed assert len_before + 1 == len_after @@ -243,11 +247,11 @@ def test_table_deletions(): table_names_before = set(get_duckdb_table_names_as_list(db_api._con)) - linker.compute_tf_table("name") - linker.estimate_u_using_random_sampling(max_pairs=1e4) + linker.table_management.compute_tf_table("name") + linker.training.estimate_u_using_random_sampling(max_pairs=1e4) # # The database should be empty except for the original non-splink table - linker.delete_tables_created_by_splink_from_db() + linker.table_management.delete_tables_created_by_splink_from_db() table_names_after = set(get_duckdb_table_names_as_list(db_api._con)) assert table_names_before == table_names_after @@ -290,18 +294,20 @@ def test_table_deletions_with_preregistered(): db_api = DuckDBAPI(connection=con) linker = Linker("my_data_table", settings, database_api=db_api) - linker.register_table_input_nodes_concat_with_tf("my_nodes_with_tf_table") + linker.table_management.register_table_input_nodes_concat_with_tf( + "my_nodes_with_tf_table" + ) table_names_before = set(get_duckdb_table_names_as_list(db_api._con)) - linker.compute_tf_table("name") - linker.estimate_u_using_random_sampling(max_pairs=1e4) + linker.table_management.compute_tf_table("name") + linker.training.estimate_u_using_random_sampling(max_pairs=1e4) # Note we shouldn't have executed a __splink__df_concat_with_tf query cache = linker._intermediate_table_cache assert not cache.is_in_executed_queries("__splink__df_concat_with_tf") - linker.delete_tables_created_by_splink_from_db() + linker.table_management.delete_tables_created_by_splink_from_db() table_names_after = set(get_duckdb_table_names_as_list(db_api._con)) @@ -327,7 +333,7 @@ def test_single_deletion(): linker = Linker(df, settings, database_api=db_api) cache = linker._intermediate_table_cache - tf_table = linker.compute_tf_table("name") + tf_table = linker.table_management.compute_tf_table("name") table_name = tf_table.physical_name # Check it is in the cache and database assert table_name in get_duckdb_table_names_as_list(db_api._con) diff --git a/tests/test_charts.py b/tests/test_charts.py index e919480065..8bc79b2a92 100644 --- a/tests/test_charts.py +++ b/tests/test_charts.py @@ -132,11 +132,11 @@ def test_m_u_charts(): linker = Linker(df, settings, database_api=db_api) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.true_match_id = r.true_match_id"], recall=1.0 ) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_parameters_using_expectation_maximisation( "l.surname = r.surname", fix_u_probabilities=False, fix_probability_two_random_records_match=True, @@ -144,7 +144,7 @@ def test_m_u_charts(): assert linker._settings_obj.comparisons[1].comparison_levels[1].u_probability == 0.0 - linker.match_weights_chart() + linker.visualisations.match_weights_chart() def test_parameter_estimate_charts(): @@ -160,16 +160,16 @@ def test_parameter_estimate_charts(): linker = Linker(df, settings, database_api=db_api) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.true_match_id = r.true_match_id"], recall=1.0 ) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_parameters_using_expectation_maximisation( "l.surname = r.surname", fix_u_probabilities=False, fix_probability_two_random_records_match=True, ) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_parameters_using_expectation_maximisation( "l.first_name = r.first_name", fix_u_probabilities=False, fix_probability_two_random_records_match=True, @@ -183,7 +183,7 @@ def test_parameter_estimate_charts(): ] assert 1.0 in exact_gender_m_estimates - linker.parameter_estimate_comparisons_chart() + linker.visualisations.parameter_estimate_comparisons_chart() settings = { "link_type": "dedupe_only", @@ -196,9 +196,9 @@ def test_parameter_estimate_charts(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.estimate_u_using_random_sampling(1e6) + linker.training.estimate_u_using_random_sampling(1e6) - linker.parameter_estimate_comparisons_chart() + linker.visualisations.parameter_estimate_comparisons_chart() def test_tf_adjustment_chart(): @@ -215,8 +215,8 @@ def test_tf_adjustment_chart(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.tf_adjustment_chart("gender") - linker.tf_adjustment_chart("first_name") + linker.visualisations.tf_adjustment_chart("gender") + linker.visualisations.tf_adjustment_chart("first_name") with pytest.raises(ValueError): - linker.tf_adjustment_chart("surname") + linker.visualisations.tf_adjustment_chart("surname") diff --git a/tests/test_cluster_studio.py b/tests/test_cluster_studio.py index e906b4b8de..b115345ce3 100644 --- a/tests/test_cluster_studio.py +++ b/tests/test_cluster_studio.py @@ -34,7 +34,7 @@ def test_density_sample(): ) # Convert to Splink dataframe - df_cluster_metrics = linker.register_table( + df_cluster_metrics = linker.table_management.register_table( pd_metrics, "df_cluster_metrics", overwrite=True ) result = _get_lowest_density_clusters( diff --git a/tests/test_columns_selected.py b/tests/test_columns_selected.py index 88297dbc4a..d0a612f10f 100644 --- a/tests/test_columns_selected.py +++ b/tests/test_columns_selected.py @@ -64,7 +64,7 @@ def test_regression(tmp_path): linker = Linker(df.copy(), settings_dict, database_api=db_api) - linker.predict() + linker.inference.predict() def test_discussion_example(tmp_path): @@ -125,4 +125,4 @@ def test_discussion_example(tmp_path): linker = Linker(df.copy(), settings_dict, database_api=db_api) - linker.predict() + linker.inference.predict() diff --git a/tests/test_compare_splink2.py b/tests/test_compare_splink2.py index 15a2c1437c..eea7e40469 100644 --- a/tests/test_compare_splink2.py +++ b/tests/test_compare_splink2.py @@ -19,7 +19,7 @@ def test_splink_2_predict(): expected_record = pd.read_csv("tests/datasets/splink2_479_vs_481.csv") - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() f1 = df_e["unique_id_l"] == 479 f2 = df_e["unique_id_r"] == 481 @@ -37,7 +37,7 @@ def test_splink_2_predict_spark(df_spark, spark_api): settings_dict = get_settings_dict() linker = Linker(df_spark, settings_dict, spark_api) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() f1 = df_e["unique_id_l"] == "479" f2 = df_e["unique_id_r"] == "481" actual_record = df_e[f1 & f2] @@ -64,7 +64,7 @@ def test_splink_2_predict_sqlite(): db_api = SQLiteAPI(con) linker = Linker("fake_data_1", settings_dict, database_api=db_api) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() f1 = df_e["unique_id_l"] == 479 f2 = df_e["unique_id_r"] == 481 @@ -76,7 +76,7 @@ def test_splink_2_predict_sqlite(): assert expected_match_weight == pytest.approx(actual_match_weight) - linker.estimate_parameters_using_expectation_maximisation("l.dob=r.dob") + linker.training.estimate_parameters_using_expectation_maximisation("l.dob=r.dob") def test_splink_2_em_fixed_u(): @@ -91,8 +91,10 @@ def test_splink_2_em_fixed_u(): "tests/datasets/splink2_proportion_of_matches_history_fixed_u.csv" ) - training_session = linker.estimate_parameters_using_expectation_maximisation( - "l.surname = r.surname" + training_session = ( + linker.training.estimate_parameters_using_expectation_maximisation( + "l.surname = r.surname" + ) ) actual_prop_history = pd.DataFrame(training_session._lambda_history_records) @@ -137,8 +139,10 @@ def test_splink_2_em_no_fix(): "tests/datasets/splink2_proportion_of_matches_history_no_fix.csv" ) - training_session = linker.estimate_parameters_using_expectation_maximisation( - "l.surname = r.surname", fix_u_probabilities=False + training_session = ( + linker.training.estimate_parameters_using_expectation_maximisation( + "l.surname = r.surname", fix_u_probabilities=False + ) ) actual_prop_history = pd.DataFrame(training_session._lambda_history_records) @@ -188,14 +192,16 @@ def test_lambda(): linker = Linker(df, settings_dict, database_api=db_api) - ma = linker.predict().as_pandas_dataframe() + ma = linker.inference.predict().as_pandas_dataframe() f1 = ma["unique_id_l"] == 924 f2 = ma["unique_id_r"] == 925 ma[f1 & f2] # actual_record ma["match_probability"].mean() - training_session = linker.estimate_parameters_using_expectation_maximisation( - "l.dob = r.dob", fix_u_probabilities=False + training_session = ( + linker.training.estimate_parameters_using_expectation_maximisation( + "l.dob = r.dob", fix_u_probabilities=False + ) ) pd.DataFrame(training_session._lambda_history_records) @@ -229,10 +235,12 @@ def test_lambda(): linker._settings_obj._probability_two_random_records_match = glo - training_session = linker.estimate_parameters_using_expectation_maximisation( - "l.first_name = r.first_name and l.surname = r.surname", - fix_u_probabilities=False, - populate_probability_two_random_records_match_from_trained_values=True, + training_session = ( + linker.training.estimate_parameters_using_expectation_maximisation( + "l.first_name = r.first_name and l.surname = r.surname", + fix_u_probabilities=False, + populate_probability_two_random_records_match_from_trained_values=True, + ) ) # linker._settings_obj.match_weights_chart() diff --git a/tests/test_comparison_level_composition.py b/tests/test_comparison_level_composition.py index acddee31af..10dfcce978 100644 --- a/tests/test_comparison_level_composition.py +++ b/tests/test_comparison_level_composition.py @@ -190,7 +190,7 @@ def test_composition_outputs(test_helpers, dialect): linker = helper.Linker(df, settings, **helper.extra_linker_args()) - pred = linker.predict() + pred = linker.inference.predict() out = pred.as_pandas_dataframe().sort_values(by=["unique_id_l", "unique_id_r"]) # Check individual IDs are assigned to the correct gamma values diff --git a/tests/test_comparison_level_lib.py b/tests/test_comparison_level_lib.py index 60c2a4c09e..b991e28ed4 100644 --- a/tests/test_comparison_level_lib.py +++ b/tests/test_comparison_level_lib.py @@ -39,7 +39,7 @@ def test_column_reversal(test_helpers, dialect): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0]) assert row["gamma_full_name"] == 1 @@ -85,7 +85,7 @@ def test_perc_difference(test_helpers, dialect): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0]) # 16.66% assert row["gamma_amount"] == 3 @@ -168,7 +168,7 @@ def gamma_lev_from_distance(dist): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() for id_r, lev_dist in id_distance_from_1.items(): expected_gamma_lev = gamma_lev_from_distance(lev_dist) @@ -248,7 +248,7 @@ def gamma_lev_from_distance(dist): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() for id_r, lev_dist in id_distance_from_1.items(): expected_gamma_lev = gamma_lev_from_distance(lev_dist) diff --git a/tests/test_comparison_lib.py b/tests/test_comparison_lib.py index c91c21d7ed..3ae143d606 100644 --- a/tests/test_comparison_lib.py +++ b/tests/test_comparison_lib.py @@ -33,7 +33,7 @@ def test_distance_function_comparison(): linker = Linker(df, settings, database_api=db_api) - df_pred = linker.predict().as_pandas_dataframe() + df_pred = linker.inference.predict().as_pandas_dataframe() expected_gamma_counts = { "forename": { @@ -85,7 +85,7 @@ def test_set_to_lowercase(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0]) assert row["gamma_forename"] == 1 diff --git a/tests/test_comparison_template_lib.py b/tests/test_comparison_template_lib.py index 69e297b78b..623a5c9ffa 100644 --- a/tests/test_comparison_template_lib.py +++ b/tests/test_comparison_template_lib.py @@ -68,7 +68,7 @@ def test_name_comparison_levels(dialect, test_helpers): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_output = linker.predict().as_pandas_dataframe() + linker_output = linker.inference.predict().as_pandas_dataframe() # # Dict key: {gamma_level value: size} size_gamma_lookup = {0: 6, 1: 6, 2: 0, 3: 2, 4: 1} @@ -161,7 +161,7 @@ def test_forename_surname_comparison_levels(dialect, test_helpers): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_output = linker.predict().as_pandas_dataframe() + linker_output = linker.inference.predict().as_pandas_dataframe() # # Dict key: {gamma_level value: size} size_gamma_lookup = {0: 8, 1: 3, 2: 3, 3: 2, 4: 2, 5: 2, 6: 1} @@ -273,7 +273,7 @@ def test_postcode_comparison_levels(dialect, test_helpers, test_gamma_assert): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_output = linker.predict().as_pandas_dataframe() + linker_output = linker.inference.predict().as_pandas_dataframe() # Check individual IDs are assigned to the correct gamma values # Dict key: {gamma_level: tuple of ID pairs} @@ -326,7 +326,7 @@ def test_email_comparison_levels(dialect, test_helpers, test_gamma_assert): df = helper.convert_frame(df) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_output = linker.predict().as_pandas_dataframe() + linker_output = linker.inference.predict().as_pandas_dataframe() # Check individual IDs are assigned to the correct gamma values # Dict key: {gamma_level: tuple of ID pairs} diff --git a/tests/test_compound_comparison_levels.py b/tests/test_compound_comparison_levels.py index e487e91126..60772e5e2f 100644 --- a/tests/test_compound_comparison_levels.py +++ b/tests/test_compound_comparison_levels.py @@ -129,7 +129,9 @@ def col_is_null(col): "surname", } - linker.estimate_parameters_using_expectation_maximisation("l.city = r.city") + linker.training.estimate_parameters_using_expectation_maximisation( + "l.city = r.city" + ) def test_complex_compound_comparison_level(): @@ -218,4 +220,4 @@ def test_complex_compound_comparison_level(): linker = Linker(df, settings, database_api=db_api) - linker.estimate_parameters_using_expectation_maximisation("1=1") + linker.training.estimate_parameters_using_expectation_maximisation("1=1") diff --git a/tests/test_correctness_of_convergence.py b/tests/test_correctness_of_convergence.py index db165d8cf6..57839ebffc 100644 --- a/tests/test_correctness_of_convergence.py +++ b/tests/test_correctness_of_convergence.py @@ -105,7 +105,7 @@ def test_splink_converges_to_known_params(): linker._populate_probability_two_random_records_match_from_trained_values() - linker.match_weights_chart() + linker.visualisations.match_weights_chart() cv = DuckDBDataFrame( "__splink__df_comparison_vectors", @@ -120,7 +120,7 @@ def test_splink_converges_to_known_params(): ) pipeline.enqueue_list_of_sqls(sqls) - predictions = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + predictions = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) predictions_df = predictions.as_pandas_dataframe() from pandas.testing import assert_series_equal diff --git a/tests/test_disable_tf_exact_match_detection.py b/tests/test_disable_tf_exact_match_detection.py index 5b4ab37f9c..7222c9bbee 100644 --- a/tests/test_disable_tf_exact_match_detection.py +++ b/tests/test_disable_tf_exact_match_detection.py @@ -150,16 +150,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): {"surname": "Taylor", "tf_surname": 0.4}, {"surname": "Kirk", "tf_surname": 0.2}, ] - linker.register_term_frequency_lookup(tf_lookup, "surname") + linker.table_management.register_term_frequency_lookup(tf_lookup, "surname") - df_predict = linker.predict() + df_predict = linker.inference.predict() sql = f""" select * from {df_predict.physical_name} where unique_id_l = 835 and unique_id_r = 836 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Exact match, normal tf adjustement, Kirk assert res["bf_surname"] == pytest.approx(8.0) @@ -172,7 +172,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): where unique_id_l = 147 and unique_id_r = 975 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Levenshtein match, normal tf adustments, Taylor # Splink makes the tf adjustment based on on the exact match level # Lev match level has bf of 0.9/0.3 @@ -192,16 +192,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): {"surname": "Taylor", "tf_surname": 0.4}, {"surname": "Kirk", "tf_surname": 0.2}, ] - linker.register_term_frequency_lookup(tf_lookup, "surname") + linker.table_management.register_term_frequency_lookup(tf_lookup, "surname") - df_predict = linker.predict() + df_predict = linker.inference.predict() sql = f""" select * from {df_predict.physical_name} where unique_id_l = 835 and unique_id_r = 836 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Exact match, normal tf adjustement, Kirk assert res["bf_surname"] == pytest.approx(8.0) # Overall BF should be m/u = 0.8/0.2 = 4 @@ -212,7 +212,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): where unique_id_l = 147 and unique_id_r = 975 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Levenshtein match, tf exact match detection disabled, Taylor # Splink makes the tf adjustment based on on the exact match level # Lev match level has bf of 0.9/0.3 @@ -231,7 +231,10 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): ) linker_base = Linker(df, settings_disabled_with_min_tf, DuckDBAPI()) - linkers = [linker_base, Linker(df, linker_base.save_model_to_json(), DuckDBAPI())] + linkers = [ + linker_base, + Linker(df, linker_base.misc.save_model_to_json(), DuckDBAPI()), + ] # This ensures we're checking that serialisation and deserialisation # works on the disable_tf_exact_match_detection and tf_minimum_u_value settings @@ -240,16 +243,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): {"surname": "Taylor", "tf_surname": 0.001}, {"surname": "Kirk", "tf_surname": 0.2}, ] - linker.register_term_frequency_lookup(tf_lookup, "surname") + linker.table_management.register_term_frequency_lookup(tf_lookup, "surname") - df_predict = linker.predict() + df_predict = linker.inference.predict() sql = f""" select * from {df_predict.physical_name} where unique_id_l = 835 and unique_id_r = 836 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Exact match, normal tf adjustement, Kirk assert res["bf_surname"] == pytest.approx(8.0) # Overall BF should be m/u = 0.8/0.2 = 4 @@ -260,7 +263,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None): where unique_id_l = 147 and unique_id_r = 975 """ - res = linker.query_sql(sql).to_dict(orient="records")[0] + res = linker.misc.query_sql(sql).to_dict(orient="records")[0] # Levenshtein match, tf exact match detection disabled, Taylor # Splink makes the tf adjustment based on on the exact match level # Lev match level has bf of 0.9/0.3 diff --git a/tests/test_estimate_prob_two_rr_match.py b/tests/test_estimate_prob_two_rr_match.py index 46c7537a46..4faa104b88 100644 --- a/tests/test_estimate_prob_two_rr_match.py +++ b/tests/test_estimate_prob_two_rr_match.py @@ -34,7 +34,7 @@ def test_prob_rr_match_dedupe(test_helpers, dialect): # Test dedupe only linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=1.0 ) @@ -44,7 +44,7 @@ def test_prob_rr_match_dedupe(test_helpers, dialect): # Test recall works deterministic_rules = ["l.first_name = r.first_name and l.surname = r.surname"] - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=0.9 ) @@ -87,7 +87,7 @@ def test_prob_rr_match_link_only(test_helpers, dialect): # Test dedupe only linker = helper.Linker([df_1, df_2], settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=1.0 ) @@ -127,7 +127,7 @@ def test_prob_rr_match_link_and_dedupe(test_helpers, dialect): # Test dedupe only linker = helper.Linker([df_1, df_2], settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=1.0 ) @@ -196,7 +196,7 @@ def test_prob_rr_match_link_only_multitable(test_helpers, dialect): deterministic_rules = ["l.first_name = r.first_name", "l.surname = r.surname"] linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=1.0 ) @@ -207,7 +207,7 @@ def test_prob_rr_match_link_only_multitable(test_helpers, dialect): # if we define all record pairs to be a match, then the probability should be 1 linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.city = r.city"], recall=1.0 ) prob = linker._settings_obj._probability_two_random_records_match @@ -274,7 +274,7 @@ def test_prob_rr_match_link_and_dedupe_multitable(test_helpers, dialect): deterministic_rules = ["l.first_name = r.first_name", "l.surname = r.surname"] linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( deterministic_rules, recall=1.0 ) @@ -285,7 +285,7 @@ def test_prob_rr_match_link_and_dedupe_multitable(test_helpers, dialect): assert pytest.approx(prob) == 10 / 171 linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.city = r.city"], recall=1.0 ) prob = linker._settings_obj._probability_two_random_records_match @@ -352,7 +352,7 @@ def check_range(p): with pytest.raises(ValueError): # all comparisons matches using this rule, so we must have perfect recall # using recall = 80% is inconsistent, so should get an error - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name"], recall=0.8 ) check_range(linker._settings_obj._probability_two_random_records_match) @@ -360,10 +360,10 @@ def check_range(p): # matching on city gives 6 matches out of 15, so recall must be at least 6/15 recall_min_city = 6 / 15 with pytest.raises(ValueError): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.city = r.city"], recall=(recall_min_city - 1e-6) ) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.city = r.city"], recall=recall_min_city ) check_range(linker._settings_obj._probability_two_random_records_match) @@ -372,7 +372,7 @@ def check_range(p): # this gives a linkage model that always predicts match_probability as 0, # so should give a warning at this stage with caplog.at_level(logging.WARNING): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.surname = r.surname"], recall=0.7 ) assert "WARNING:" in caplog.text @@ -381,7 +381,7 @@ def check_range(p): # this gives prob as 1, so again should get a warning # as we have a trivial linkage model with caplog.at_level(logging.WARNING): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name"], recall=1.0 ) assert "WARNING:" in caplog.text @@ -389,14 +389,14 @@ def check_range(p): # check we get errors if we pass bogus values for recall with pytest.raises(ValueError): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name"], recall=0.0 ) with pytest.raises(ValueError): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name"], recall=1.2 ) with pytest.raises(ValueError): - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name"], recall=-0.4 ) diff --git a/tests/test_expectation_maximisation.py b/tests/test_expectation_maximisation.py index c3c31c7c26..e2e4a393a7 100644 --- a/tests/test_expectation_maximisation.py +++ b/tests/test_expectation_maximisation.py @@ -30,12 +30,14 @@ def test_clear_error_when_empty_block(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=1e6) - linker.estimate_parameters_using_expectation_maximisation("l.name = r.name") + linker._debug_mode = True + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) + linker.training.estimate_parameters_using_expectation_maximisation( + "l.name = r.name" + ) # No record pairs for which surname matches, so we should get a nice handled error with pytest.raises(EMTrainingException): - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_parameters_using_expectation_maximisation( "l.surname = r.surname" ) @@ -63,7 +65,7 @@ def test_em_manual_deactivate(): db_api = DuckDBAPI() linker = Linker(df, settings, database_api=db_api) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_parameters_using_expectation_maximisation( "l.name = r.name", comparisons_to_deactivate=["name"] ) @@ -88,11 +90,11 @@ def test_estimate_without_term_frequencies(): linker_1 = Linker(df, settings, database_api=db_api) - session_fast = linker_0.estimate_parameters_using_expectation_maximisation( + session_fast = linker_0.training.estimate_parameters_using_expectation_maximisation( blocking_rule="l.email = r.email", estimate_without_term_frequencies=True, ) - session_slow = linker_1.estimate_parameters_using_expectation_maximisation( + session_slow = linker_1.training.estimate_parameters_using_expectation_maximisation( blocking_rule="l.email = r.email", estimate_without_term_frequencies=False, ) diff --git a/tests/test_find_new_matches.py b/tests/test_find_new_matches.py index 97423e29f5..09646540d1 100644 --- a/tests/test_find_new_matches.py +++ b/tests/test_find_new_matches.py @@ -60,10 +60,10 @@ def test_tf_tables_init_works(test_helpers, dialect): # 1. Does nothing if term frequencies are not used # 2. Should use the cache and not break if tf adj is requested for fn # 3. Use both the cache and also create surname in our final example - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("first_name") # Running without _df_concat_with_tf - linker.__deepcopy__(None).find_matches_to_new_records( + linker.__deepcopy__(None).inference.find_matches_to_new_records( [record], blocking_rules=[], match_weight_threshold=-10000 ) @@ -71,7 +71,7 @@ def test_tf_tables_init_works(test_helpers, dialect): pipeline = CTEPipeline() compute_df_concat_with_tf(linker, pipeline) - linker.find_matches_to_new_records( + linker.inference.find_matches_to_new_records( [record], blocking_rules=[], match_weight_threshold=-10000 ) @@ -86,25 +86,29 @@ def test_matches_work(test_helpers, dialect): linker = Linker(df, get_settings_dict(), **helper.extra_linker_args()) # Train our model to get more reasonable outputs... - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) + linker.visualisations.match_weights_chart().save("mwc.html") blocking_rule = block_on("first_name", "surname") - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) + # linker.visualisations.match_weights_chart().save("mwc.html") brs = ["l.surname = r.surname"] - matches = linker.find_matches_to_new_records( + matches = linker.inference.find_matches_to_new_records( [record], blocking_rules=brs, match_weight_threshold=-10000 ) matches = matches.as_pandas_dataframe() assert len(matches) == 10 - matches = linker.find_matches_to_new_records( - [record], blocking_rules=brs, match_weight_threshold=0 + # linker.visualisations.match_weights_chart().save("mwc.html") + + matches = linker.inference.find_matches_to_new_records( + [record], blocking_rules=brs, match_weight_threshold=0.1 ) matches = matches.as_pandas_dataframe() diff --git a/tests/test_full_example_athena.py b/tests/test_full_example_athena.py index 37e798cff9..141aee7612 100644 --- a/tests/test_full_example_athena.py +++ b/tests/test_full_example_athena.py @@ -119,33 +119,36 @@ # ["surname", "city"], # ] # ) -# linker.compute_tf_table("city") -# linker.compute_tf_table("first_name") +# linker.table_management.compute_tf_table("city") +# linker.table_management.compute_tf_table("first_name") -# linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=None) +# linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=None) # blocking_rule = "l.first_name = r.first_name and l.surname = r.surname" -# linker.estimate_parameters_using_expectation_maximisation(blocking_rule) +# linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) # blocking_rule = "l.dob = r.dob" -# linker.estimate_parameters_using_expectation_maximisation(blocking_rule) +# linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) -# df_predict = linker.predict() +# df_predict = linker.inference.predict() -# linker.comparison_viewer_dashboard(df_predict, "test_scv_athena.html", True, 2) +# linker.visualisations.comparison_viewer_dashboard( +# df_predict, "test_scv_athena.html", True, 2 +# ) # df_predict.as_pandas_dataframe() -# df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1) +# df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold( +# df_predict, 0.1) -# linker.cluster_studio_dashboard( +# linker.visualisations.cluster_studio_dashboard( # df_predict, # df_clusters, # sampling_method="by_cluster_size", # out_path=os.path.join(tmp_path, "test_cluster_studio.html"), # ) -# linker.unlinkables_chart(source_dataset="Testing") +# linker.evaluation.unlinkables_chart(source_dataset="Testing") # _test_table_registration(linker) @@ -183,7 +186,7 @@ # ] # ) -# predict = linker.predict() +# predict = linker.inference.predict() # return linker, path, predict @@ -277,7 +280,7 @@ # input_table_aliases=table_aliases, # ) -# df_predict = linker.predict() +# df_predict = linker.inference.predict() # df_predict.as_pandas_dataframe() # linker.drop_all_tables_created_by_splink(delete_s3_folders=True) diff --git a/tests/test_full_example_deterministic_link.py b/tests/test_full_example_deterministic_link.py index 2d85a3e0ab..7ee4e056f2 100644 --- a/tests/test_full_example_deterministic_link.py +++ b/tests/test_full_example_deterministic_link.py @@ -40,11 +40,11 @@ def test_deterministic_link_full_example(dialect, tmp_path, test_helpers): linker = Linker(df, settings, **helper.extra_linker_args()) - df_predict = linker.deterministic_link() + df_predict = linker.inference.deterministic_link() - clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict) + clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict) - linker.cluster_studio_dashboard( + linker.visualisations.cluster_studio_dashboard( df_predict, clusters, out_path=os.path.join(tmp_path, "test_cluster_studio.html"), diff --git a/tests/test_full_example_duckdb.py b/tests/test_full_example_duckdb.py index fa186ed0ff..5388a90ae7 100644 --- a/tests/test_full_example_duckdb.py +++ b/tests/test_full_example_duckdb.py @@ -69,44 +69,46 @@ def test_full_example_duckdb(tmp_path): ) completeness_chart(df, db_api) - linker.compute_tf_table("city") - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("city") + linker.table_management.compute_tf_table("first_name") - linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1) + linker.training.estimate_probability_two_random_records_match( ["l.email = r.email"], recall=0.3 ) blocking_rule = 'l.first_name = r.first_name and l."SUR name" = r."SUR name"' - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - df_predict = linker.predict() + df_predict = linker.inference.predict() - linker.comparison_viewer_dashboard( + linker.visualisations.comparison_viewer_dashboard( df_predict, os.path.join(tmp_path, "test_scv_duckdb.html"), True, 2 ) df_e = df_predict.as_pandas_dataframe(limit=5) records = df_e.to_dict(orient="records") - linker.waterfall_chart(records) + linker.visualisations.waterfall_chart(records) register_roc_data(linker) - linker.accuracy_analysis_from_labels_table("labels") + linker.evaluation.accuracy_analysis_from_labels_table("labels") - df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1) + df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.1 + ) - linker.cluster_studio_dashboard( + linker.visualisations.cluster_studio_dashboard( df_predict, df_clusters, sampling_method="by_cluster_size", out_path=os.path.join(tmp_path, "test_cluster_studio.html"), ) - linker.unlinkables_chart(name_of_data_in_title="Testing") + linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing") _test_table_registration(linker) @@ -120,13 +122,13 @@ def test_full_example_duckdb(tmp_path): "cluster": 10000, } - linker.find_matches_to_new_records( + linker.inference.find_matches_to_new_records( [record], blocking_rules=[], match_weight_threshold=-10000 ) # Test saving and loading path = os.path.join(tmp_path, "model.json") - linker.save_model_to_json(path) + linker.misc.save_model_to_json(path) db_api = DuckDBAPI() linker_2 = Linker(df, settings=simple_settings, database_api=db_api) @@ -181,7 +183,7 @@ def test_link_only(input, source_l, source_r): db_api = DuckDBAPI() linker = Linker(input, settings, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == 7257 assert set(df_predict.source_dataset_l.values) == source_l @@ -227,7 +229,7 @@ def test_duckdb_load_from_file(df): database_api=db_api, ) - assert len(linker.predict().as_pandas_dataframe()) == 3167 + assert len(linker.inference.predict().as_pandas_dataframe()) == 3167 settings["link_type"] = "link_only" @@ -239,7 +241,7 @@ def test_duckdb_load_from_file(df): input_table_aliases=["testing1", "testing2"], ) - assert len(linker.predict().as_pandas_dataframe()) == 7257 + assert len(linker.inference.predict().as_pandas_dataframe()) == 7257 @mark_with_dialects_including("duckdb") @@ -269,7 +271,7 @@ def test_duckdb_arrow_array(): }, database_api=db_api, ) - df = linker.deterministic_link().as_pandas_dataframe() + df = linker.inference.deterministic_link().as_pandas_dataframe() assert len(df) == 2 @@ -314,11 +316,11 @@ def test_small_example_duckdb(tmp_path): db_api = DuckDBAPI() linker = Linker(df, settings_dict, database_api=db_api) - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) blocking_rule = "l.full_name = r.full_name" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - linker.predict() + linker.inference.predict() diff --git a/tests/test_full_example_postgres.py b/tests/test_full_example_postgres.py index 1a9f1a3599..0a61d13073 100644 --- a/tests/test_full_example_postgres.py +++ b/tests/test_full_example_postgres.py @@ -60,44 +60,46 @@ def test_full_example_postgres(tmp_path, pg_engine): completeness_chart(df, db_api=db_api) - linker.compute_tf_table("city") - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("city") + linker.table_management.compute_tf_table("first_name") - linker.estimate_u_using_random_sampling(max_pairs=1e6) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) + linker.training.estimate_probability_two_random_records_match( ["l.email = r.email"], recall=0.3 ) blocking_rule = 'l.first_name = r.first_name and l."surname" = r."surname"' - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - df_predict = linker.predict() + df_predict = linker.inference.predict() - linker.comparison_viewer_dashboard( + linker.visualisations.comparison_viewer_dashboard( df_predict, os.path.join(tmp_path, "test_scv_postgres.html"), True, 2 ) df_e = df_predict.as_pandas_dataframe(limit=5) records = df_e.to_dict(orient="records") - linker.waterfall_chart(records) + linker.visualisations.waterfall_chart(records) register_roc_data(linker) - linker.accuracy_analysis_from_labels_table("labels") + linker.evaluation.accuracy_analysis_from_labels_table("labels") - df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1) + df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.1 + ) - linker.cluster_studio_dashboard( + linker.visualisations.cluster_studio_dashboard( df_predict, df_clusters, sampling_method="by_cluster_size", out_path=os.path.join(tmp_path, "test_cluster_studio.html"), ) - linker.unlinkables_chart(name_of_data_in_title="Testing") + linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing") _test_table_registration(linker) @@ -111,13 +113,13 @@ def test_full_example_postgres(tmp_path, pg_engine): "cluster": 10000, } - linker.find_matches_to_new_records( + linker.inference.find_matches_to_new_records( [record], blocking_rules=[], match_weight_threshold=-10000 ) # Test saving and loading path = os.path.join(tmp_path, "model.json") - linker.save_model_to_json(path) + linker.misc.save_model_to_json(path) Linker(df, path, database_api=db_api) @@ -137,4 +139,4 @@ def test_postgres_use_existing_table(tmp_path, pg_engine): database_api=db_api, settings=settings_dict, ) - linker.predict() + linker.inference.predict() diff --git a/tests/test_full_example_spark.py b/tests/test_full_example_spark.py index a8aa5c3b98..571c707bf6 100644 --- a/tests/test_full_example_spark.py +++ b/tests/test_full_example_spark.py @@ -25,7 +25,7 @@ def test_full_example_spark(spark, df_spark, tmp_path, spark_api): # Test that writing to files works as expected def spark_csv_read(x): - return linker.db_api.spark.read.csv(x, header=True).toPandas() + return linker._db_api.spark.read.csv(x, header=True).toPandas() _test_write_functionality(linker, spark_csv_read) @@ -81,29 +81,31 @@ def spark_csv_read(x): ), ) - linker.compute_tf_table("city") - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("city") + linker.table_management.compute_tf_table("first_name") - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.email = r.email"], recall=0.3 ) - linker.estimate_u_using_random_sampling(max_pairs=1e5, seed=1) + linker.training.estimate_u_using_random_sampling(max_pairs=1e5, seed=1) blocking_rule = "l.first_name = r.first_name and l.surname = r.surname" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - df_predict = linker.predict() + df_predict = linker.inference.predict() - linker.comparison_viewer_dashboard( + linker.visualisations.comparison_viewer_dashboard( df_predict, os.path.join(tmp_path, "test_scv_spark.html"), True, 2 ) - df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.2) + df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.2 + ) - linker.cluster_studio_dashboard( + linker.visualisations.cluster_studio_dashboard( df_predict, df_clusters, cluster_ids=[0, 4], @@ -111,7 +113,7 @@ def spark_csv_read(x): out_path=os.path.join(tmp_path, "test_cluster_studio.html"), ) - linker.unlinkables_chart(name_of_data_in_title="Testing") + linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing") # Test that writing to files works as expected # spark_csv_read = lambda x: linker.spark.read.csv(x, header=True).toPandas() # _test_write_functionality(linker, spark_csv_read) @@ -125,7 +127,7 @@ def spark_csv_read(x): ) register_roc_data(linker) - linker.accuracy_analysis_from_labels_table("labels") + linker.evaluation.accuracy_analysis_from_labels_table("labels") record = { "unique_id": 1, @@ -137,7 +139,7 @@ def spark_csv_read(x): "cluster": 10000, } - linker.find_matches_to_new_records( + linker.inference.find_matches_to_new_records( [record], blocking_rules=[], match_weight_threshold=-10000 ) @@ -156,7 +158,7 @@ def spark_csv_read(x): # Test saving and loading path = os.path.join(tmp_path, "model.json") - linker.save_model_to_json(path) + linker.misc.save_model_to_json(path) Linker(df_spark, settings=path, database_api=spark_api) @@ -178,7 +180,7 @@ def test_link_only(spark, df_spark, spark_api): num_partitions_on_repartition=2, ), ) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == 7257 assert set(df_predict.source_dataset_l.values) == {"my_left_ds"} @@ -204,4 +206,4 @@ def test_spark_load_from_file(df, spark, spark_api): spark_api, ) - assert len(linker.predict().as_pandas_dataframe()) == 3167 + assert len(linker.inference.predict().as_pandas_dataframe()) == 3167 diff --git a/tests/test_full_example_sqlite.py b/tests/test_full_example_sqlite.py index 20a21d59b8..50968cf92a 100644 --- a/tests/test_full_example_sqlite.py +++ b/tests/test_full_example_sqlite.py @@ -33,36 +33,36 @@ def test_full_example_sqlite(tmp_path): profile_columns(df, db_api, ["first_name", "surname", "first_name || surname"]) - linker.compute_tf_table("city") - linker.compute_tf_table("first_name") + linker.table_management.compute_tf_table("city") + linker.table_management.compute_tf_table("first_name") - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.email = r.email"], recall=0.3 ) - linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1) + linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1) blocking_rule = "l.first_name = r.first_name and l.surname = r.surname" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.dob = r.dob" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - df_predict = linker.predict() + df_predict = linker.inference.predict() - linker.comparison_viewer_dashboard( + linker.visualisations.comparison_viewer_dashboard( df_predict, os.path.join(tmp_path, "test_scv_sqlite.html"), True, 2 ) - linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.5) + linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, 0.5) - linker.unlinkables_chart(name_of_data_in_title="Testing") + linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing") _test_table_registration(linker) register_roc_data(linker) - linker.accuracy_analysis_from_labels_table("labels") + linker.evaluation.accuracy_analysis_from_labels_table("labels") @mark_with_dialects_including("sqlite") @@ -84,7 +84,7 @@ def test_small_link_example_sqlite(): input_table_aliases=["fake_data_1", "fake_data_2"], ) - linker.predict() + linker.inference.predict() @mark_with_dialects_including("sqlite") @@ -96,4 +96,4 @@ def test_default_conn_sqlite(tmp_path): db_api = SQLiteAPI() linker = Linker(df, settings_dict, db_api) - linker.predict() + linker.inference.predict() diff --git a/tests/test_graph_metrics.py b/tests/test_graph_metrics.py index 0f92a48bfe..ba9c94e2de 100644 --- a/tests/test_graph_metrics.py +++ b/tests/test_graph_metrics.py @@ -39,10 +39,12 @@ def test_size_density_dedupe(): linker = Linker(df_1, settings, database_api=db_api) - df_predict = linker.predict() - df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9) + df_predict = linker.inference.predict() + df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.9 + ) - df_result = linker.compute_graph_metrics( + df_result = linker.clustering.compute_graph_metrics( df_predict, df_clustered ).clusters.as_pandas_dataframe() # not testing this here - it's not relevant for small clusters anyhow @@ -76,11 +78,13 @@ def test_size_density_link(): database_api=db_api, ) - df_predict = linker.predict() - df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9) + df_predict = linker.inference.predict() + df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.9 + ) df_result = ( - linker.compute_graph_metrics( + linker.clustering.compute_graph_metrics( df_predict, df_clustered, threshold_match_probability=0.99 ) .clusters.as_pandas_dataframe() @@ -230,10 +234,14 @@ def test_metrics(dialect, test_helpers): {"link_type": "dedupe_only"}, **helper.extra_linker_args(), ) - df_predict = linker.register_table(helper.convert_frame(df_e), "predict") - df_clustered = linker.register_table(helper.convert_frame(df_c), "clusters") + df_predict = linker.table_management.register_table( + helper.convert_frame(df_e), "predict" + ) + df_clustered = linker.table_management.register_table( + helper.convert_frame(df_c), "clusters" + ) - cm = linker.compute_graph_metrics( + cm = linker.clustering.compute_graph_metrics( df_predict, df_clustered, threshold_match_probability=0.95 ) df_cm = cm.clusters.as_pandas_dataframe() @@ -342,11 +350,15 @@ def test_is_bridge(dialect, test_helpers): {"link_type": "dedupe_only"}, **helper.extra_linker_args(), ) - df_predict = linker.register_table(helper.convert_frame(df_e), "br_predict") - df_clustered = linker.register_table(helper.convert_frame(df_c), "br_clusters") + df_predict = linker.table_management.register_table( + helper.convert_frame(df_e), "br_predict" + ) + df_clustered = linker.table_management.register_table( + helper.convert_frame(df_c), "br_clusters" + ) # linker.debug_mode = True - cm = linker.compute_graph_metrics( + cm = linker.clustering.compute_graph_metrics( df_predict, df_clustered, threshold_match_probability=0.95 ) df_em = cm.edges.as_pandas_dataframe() @@ -392,12 +404,14 @@ def test_edges_without_igraph(): } linker = Linker(df_1, settings, DuckDBAPI()) - df_predict = linker.predict() - df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9) + df_predict = linker.inference.predict() + df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.9 + ) # pretend we don't have igraph installed with patch("builtins.__import__", side_effect=mock_no_igraph_installed): - graph_metrics = linker.compute_graph_metrics( + graph_metrics = linker.clustering.compute_graph_metrics( df_predict, df_clustered, threshold_match_probability=0.9 ) df_edge_metrics = graph_metrics.edges.as_pandas_dataframe() @@ -428,12 +442,12 @@ def test_no_threshold_provided(): settings = {"link_type": "dedupe_only"} linker = Linker(df_1, settings, DuckDBAPI()) - df_predict = linker.register_table(df_e, "predict") - df_clustered = linker.register_table(df_c, "clusters") + df_predict = linker.table_management.register_table(df_e, "predict") + df_clustered = linker.table_management.register_table(df_c, "clusters") with raises(TypeError): # no threshold_match_probability, no metadata - _ = linker.compute_graph_metrics(df_predict, df_clustered) + _ = linker.clustering.compute_graph_metrics(df_predict, df_clustered) def test_override_metadata_threshold(): @@ -450,12 +464,12 @@ def test_override_metadata_threshold(): settings = {"link_type": "dedupe_only"} linker = Linker(df_1, settings, DuckDBAPI()) # linker.debug_mode = True - df_predict = linker.register_table(df_e, "predict") - df_clustered = linker.register_table(df_c, "clusters") + df_predict = linker.table_management.register_table(df_e, "predict") + df_clustered = linker.table_management.register_table(df_c, "clusters") df_clustered.metadata["threshold_match_probability"] = 0.95 - gm_results_95 = linker.compute_graph_metrics(df_predict, df_clustered) - gm_results_9 = linker.compute_graph_metrics( + gm_results_95 = linker.clustering.compute_graph_metrics(df_predict, df_clustered) + gm_results_9 = linker.clustering.compute_graph_metrics( df_predict, df_clustered, threshold_match_probability=0.9 ) df_expected_95 = pd.DataFrame( diff --git a/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py b/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py index d9d92b7cfa..c90ad586a1 100644 --- a/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py +++ b/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py @@ -122,7 +122,7 @@ def test_dedupe_only(): ) logging.getLogger("splink").setLevel(1) - linker.estimate_u_using_random_sampling(max_pairs=1000) + linker.training.estimate_u_using_random_sampling(max_pairs=1000) all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -133,7 +133,7 @@ def test_dedupe_only(): handler.log_list.clear() - linker.predict() + linker.inference.predict() all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -177,7 +177,7 @@ def test_link_and_dedupe(): handler.log_list.clear() logging.getLogger("splink").setLevel(1) - linker.estimate_u_using_random_sampling(max_pairs=1000) + linker.training.estimate_u_using_random_sampling(max_pairs=1000) all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -188,7 +188,7 @@ def test_link_and_dedupe(): log_list.clear() - linker.predict() + linker.inference.predict() all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -233,7 +233,7 @@ def test_link_only_two(): log_list.clear() logging.getLogger("splink").setLevel(1) - linker.estimate_u_using_random_sampling(max_pairs=1000) + linker.training.estimate_u_using_random_sampling(max_pairs=1000) all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -244,7 +244,7 @@ def test_link_only_two(): log_list.clear() - linker.predict() + linker.inference.predict() all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -290,7 +290,7 @@ def test_link_only_three(): log_list.clear() logging.getLogger("splink").setLevel(1) - linker.estimate_u_using_random_sampling(max_pairs=1000) + linker.training.estimate_u_using_random_sampling(max_pairs=1000) all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) @@ -301,7 +301,7 @@ def test_link_only_three(): log_list.clear() - linker.predict() + linker.inference.predict() all_log_messages = "\n".join(log_list) all_log_messages = re.sub(r"\s+", " ", all_log_messages) diff --git a/tests/test_km_distance_level.py b/tests/test_km_distance_level.py index fbfae2cc90..2ad2734007 100644 --- a/tests/test_km_distance_level.py +++ b/tests/test_km_distance_level.py @@ -125,9 +125,9 @@ def test_km_distance_levels(dialect, test_helpers): df = helper.convert_frame(df) linker = helper.Linker(df, settings_cl, **helper.extra_linker_args()) - cl_df_e = linker.predict().as_pandas_dataframe() + cl_df_e = linker.inference.predict().as_pandas_dataframe() linker = helper.Linker(df, settings_cll, **helper.extra_linker_args()) - cll_df_e = linker.predict().as_pandas_dataframe() + cll_df_e = linker.inference.predict().as_pandas_dataframe() linker_outputs = { "cl": cl_df_e, @@ -227,7 +227,7 @@ def test_haversine_level(): db_api = DuckDBAPI() linker = Linker(df, settings, input_table_aliases="test", database_api=db_api) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0]) assert row["gamma_lat_long"] == 3 diff --git a/tests/test_linker_variants.py b/tests/test_linker_variants.py index c5ec84b900..dfb7b85797 100644 --- a/tests/test_linker_variants.py +++ b/tests/test_linker_variants.py @@ -70,7 +70,7 @@ def test_dedupe_only_join_condition(): linker = Linker(df.copy(), s, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == (6 * 5) / 2 @@ -95,7 +95,7 @@ def test_link_only_two_join_condition(): linker = Linker([sds_d_only, sds_b_only], s, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == 4 @@ -124,7 +124,7 @@ def test_link_only_three_join_condition(): linker = Linker([sds_d_only, sds_b_only, sds_c_only], s, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == 12 @@ -153,7 +153,7 @@ def test_link_and_dedupe_two_join_condition(): linker = Linker([sds_d_only, sds_b_only], s, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == (4 * 3) / 2 @@ -182,7 +182,7 @@ def test_link_and_dedupe_three_join_condition(): linker = Linker([sds_d_only, sds_b_only, sds_c_only], s, database_api=db_api) - df_predict = linker.predict().as_pandas_dataframe() + df_predict = linker.inference.predict().as_pandas_dataframe() assert len(df_predict) == (6 * 5) / 2 diff --git a/tests/test_m_train.py b/tests/test_m_train.py index 7e4b407dd2..ac331373ba 100644 --- a/tests/test_m_train.py +++ b/tests/test_m_train.py @@ -26,7 +26,7 @@ def test_m_train(): linker = Linker(df, settings, database_api=db_api) - linker.estimate_m_from_label_column("cluster") + linker.training.estimate_m_from_label_column("cluster") cc_name = linker._settings_obj.comparisons[0] cl_exact = cc_name._get_comparison_level_by_comparison_vector_value(2) @@ -57,8 +57,8 @@ def test_m_train(): linker_pairwise = Linker(df, settings, database_api=db_api) - linker_pairwise.register_table(df_labels, "labels") - linker_pairwise.estimate_m_from_pairwise_labels("labels") + linker_pairwise.table_management.register_table(df_labels, "labels") + linker_pairwise.training.estimate_m_from_pairwise_labels("labels") cc_name = linker_pairwise._settings_obj.comparisons[0] cl_exact = cc_name._get_comparison_level_by_comparison_vector_value(2) diff --git a/tests/test_new_comparison_levels.py b/tests/test_new_comparison_levels.py index a6dc045fd4..6564d4410d 100644 --- a/tests/test_new_comparison_levels.py +++ b/tests/test_new_comparison_levels.py @@ -76,7 +76,7 @@ def test_cll_creators_run_predict(dialect, test_helpers): df = helper.load_frame_from_csv("./tests/datasets/fake_1000_from_splink_demos.csv") linker = helper.Linker(df, cll_settings, **helper.extra_linker_args()) - linker.predict() + linker.inference.predict() @mark_with_dialects_excluding() @@ -172,7 +172,7 @@ def test_cl_creators_run_predict(dialect, test_helpers): linker = helper.Linker(df, cl_settings, **helper.extra_linker_args()) - linker.predict() + linker.inference.predict() @mark_with_dialects_excluding("sqlite") @@ -201,7 +201,7 @@ def test_regex_fall_through(dialect, test_helpers): } linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() # only entry should be in Else level assert df_e["gamma_name"][0] == 0 @@ -231,7 +231,7 @@ def test_null_pattern_match(dialect, test_helpers): } linker = helper.Linker(df, settings, **helper.extra_linker_args()) - df_e = linker.predict().as_pandas_dataframe() + df_e = linker.inference.predict().as_pandas_dataframe() # only entry should be in Null level assert df_e["gamma_name"][0] == -1 @@ -285,7 +285,7 @@ def test_ctl_creators_run_predict(dialect, test_helpers): df = helper.load_frame_from_csv("./tests/datasets/fake_1000_from_splink_demos.csv") linker = helper.Linker(df, ctl_settings, **helper.extra_linker_args()) - linker.predict() + linker.inference.predict() def test_custom_dialect_no_string_lookup(): diff --git a/tests/test_new_db_api.py b/tests/test_new_db_api.py index 356c3e3a2a..c88a2bc2ef 100644 --- a/tests/test_new_db_api.py +++ b/tests/test_new_db_api.py @@ -69,7 +69,7 @@ def test_run_predict(dialect, test_helpers): cl_settings, db_api, ) - linker.predict() + linker.inference.predict() @mark_with_dialects_excluding() @@ -83,25 +83,27 @@ def test_full_run(dialect, test_helpers, tmp_path): cl_settings, db_api, ) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name AND l.surname = r.surname"], 0.6, ) - linker.estimate_u_using_random_sampling(500) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_u_using_random_sampling(500) + linker.training.estimate_parameters_using_expectation_maximisation( "l.first_name = r.first_name" ) - linker.estimate_parameters_using_expectation_maximisation("l.surname = r.surname") - df_e = linker.predict() - df_c = linker.cluster_pairwise_predictions_at_threshold(df_e, 0.99) + linker.training.estimate_parameters_using_expectation_maximisation( + "l.surname = r.surname" + ) + df_e = linker.inference.predict() + df_c = linker.clustering.cluster_pairwise_predictions_at_threshold(df_e, 0.99) - linker.comparison_viewer_dashboard( + linker.visualisations.comparison_viewer_dashboard( df_e, os.path.join(tmp_path, "test_cvd_duckdb.html"), overwrite=True, num_example_rows=2, ) - linker.cluster_studio_dashboard( + linker.visualisations.cluster_studio_dashboard( df_e, df_c, os.path.join(tmp_path, "test_csd_duckdb.html"), @@ -126,18 +128,20 @@ def test_charts(dialect, test_helpers, tmp_path): linker = Linker(df, cl_settings, db_api) - linker.estimate_probability_two_random_records_match( + linker.training.estimate_probability_two_random_records_match( ["l.first_name = r.first_name AND l.surname = r.surname"], 0.6, ) - linker.estimate_u_using_random_sampling(500) - linker.estimate_parameters_using_expectation_maximisation( + linker.training.estimate_u_using_random_sampling(500) + linker.training.estimate_parameters_using_expectation_maximisation( "l.first_name = r.first_name" ) - linker.estimate_parameters_using_expectation_maximisation("l.surname = r.surname") + linker.training.estimate_parameters_using_expectation_maximisation( + "l.surname = r.surname" + ) - linker.match_weights_chart() - linker.m_u_parameters_chart() + linker.visualisations.match_weights_chart() + linker.visualisations.m_u_parameters_chart() @mark_with_dialects_excluding() diff --git a/tests/test_regex_param.py b/tests/test_regex_param.py index a9d02642b4..774fe5a5fd 100644 --- a/tests/test_regex_param.py +++ b/tests/test_regex_param.py @@ -131,7 +131,7 @@ def test_regex(dialect, test_helpers, level_set, record_pairs_gamma): df = helper.convert_frame(df_pandas) linker = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_output = linker.predict().as_pandas_dataframe() + linker_output = linker.inference.predict().as_pandas_dataframe() for gamma, id_pairs in record_pairs_gamma.items(): for left, right in id_pairs: diff --git a/tests/test_salting_len.py b/tests/test_salting_len.py index 5a13966a68..fde8a4f850 100644 --- a/tests/test_salting_len.py +++ b/tests/test_salting_len.py @@ -39,7 +39,7 @@ def generate_linker_output( linker = Linker(df, settings, spark_api) - df_predict = linker.predict() + df_predict = linker.inference.predict() df_predict = df_predict.as_pandas_dataframe() return df_predict.sort_values(by=["unique_id_l", "unique_id_r"], ignore_index=True) diff --git a/tests/test_settings_options.py b/tests/test_settings_options.py index d6f35f5ac9..4953cc21e5 100644 --- a/tests/test_settings_options.py +++ b/tests/test_settings_options.py @@ -4,6 +4,7 @@ import splink.internals.comparison_library as cl from splink import block_on +from splink.internals.linker import Linker from .decorator import mark_with_dialects_excluding @@ -56,14 +57,20 @@ def test_model_heavily_customised_settings(test_helpers, dialect, tmp_path): "term_frequency_adjustment_column_prefix": "term_freq__", "comparison_vector_value_column_prefix": "cvv__", } - linker = helper.Linker([df_l, df_r], settings, **helper.extra_linker_args()) + linker = Linker([df_l, df_r], settings, **helper.extra_linker_args()) # run through a few common operations to check functioning - linker.estimate_probability_two_random_records_match(["l.dob = r.dob"], 0.5) - linker.estimate_u_using_random_sampling(2e4) - linker.estimate_parameters_using_expectation_maximisation("l.dob = r.dob") - df_predict = linker.predict(0.1) - df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1) - linker.comparison_viewer_dashboard(df_predict, os.path.join(tmp_path, "csv.html")) - linker.cluster_studio_dashboard( + linker.training.estimate_probability_two_random_records_match( + ["l.dob = r.dob"], 0.5 + ) + linker.training.estimate_u_using_random_sampling(2e4) + linker.training.estimate_parameters_using_expectation_maximisation("l.dob = r.dob") + df_predict = linker.inference.predict(0.1) + df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold( + df_predict, 0.1 + ) + linker.visualisations.comparison_viewer_dashboard( + df_predict, os.path.join(tmp_path, "csv.html") + ) + linker.visualisations.cluster_studio_dashboard( df_predict, df_clusters, os.path.join(tmp_path, "csd.html") ) diff --git a/tests/test_spark_udfs.py b/tests/test_spark_udfs.py index 955952106b..a65a82457a 100644 --- a/tests/test_spark_udfs.py +++ b/tests/test_spark_udfs.py @@ -65,13 +65,13 @@ def test_udf_registration(spark_api): settings, spark_api, ) - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) blocking_rule = "l.first_name = r.first_name" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) blocking_rule = "l.surname = r.surname" - linker.estimate_parameters_using_expectation_maximisation(blocking_rule) + linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule) - linker.predict() + linker.inference.predict() @mark_with_dialects_including("spark") @@ -105,7 +105,7 @@ def test_damerau_levenshtein(spark_api): where l.id < r.id """ - udf_out = linker.query_sql(sql) + udf_out = linker.misc.query_sql(sql) # Set accuracy level decimals = 4 @@ -192,7 +192,7 @@ def test_jaro(spark_api): where l.id < r.id """ - udf_out = linker.query_sql(sql) + udf_out = linker.misc.query_sql(sql) # Set accuracy level decimals = 4 @@ -274,7 +274,7 @@ def test_jaro_winkler(spark_api): where l.id < r.id """ - udf_out = linker.query_sql(sql) + udf_out = linker.misc.query_sql(sql) # Set accuracy level decimals = 4 diff --git a/tests/test_splink_datasets.py b/tests/test_splink_datasets.py index 60fd5b108e..5bc920d33e 100644 --- a/tests/test_splink_datasets.py +++ b/tests/test_splink_datasets.py @@ -16,4 +16,4 @@ def test_datasets_basic_link(test_helpers): }, **helper.extra_linker_args(), ) - linker.predict() + linker.inference.predict() diff --git a/tests/test_term_frequencies.py b/tests/test_term_frequencies.py index e458e6afa8..29cd2f574f 100644 --- a/tests/test_term_frequencies.py +++ b/tests/test_term_frequencies.py @@ -82,7 +82,7 @@ def test_tf_basic(): db_api = DuckDBAPI(connection=":memory:") linker = Linker(data, settings, database_api=db_api) - df_predict = linker.predict() + df_predict = linker.inference.predict() results = filter_results(df_predict) bf_no_adj = results["London"]["bf_city"] @@ -119,7 +119,7 @@ def test_tf_clamp(): db_api = DuckDBAPI(connection=":memory:") linker = Linker(data, settings, database_api=db_api) - df_predict = linker.predict() + df_predict = linker.inference.predict() results = filter_results(df_predict) bf_no_adj = results["London"]["bf_city"] @@ -157,7 +157,7 @@ def test_weight(): db_api = DuckDBAPI(connection=":memory:") linker = Linker(data, settings, database_api=db_api) - df_predict = linker.predict() + df_predict = linker.inference.predict() results = filter_results(df_predict) bf_no_adj = results["London"]["bf_city"] @@ -208,7 +208,7 @@ def test_weightand_clamp(): db_api = DuckDBAPI(connection=":memory:") linker = Linker(data, settings, database_api=db_api) - df_predict = linker.predict() + df_predict = linker.inference.predict() results = filter_results(df_predict) bf_no_adj = results["London"]["bf_city"] diff --git a/tests/test_train_vs_predict.py b/tests/test_train_vs_predict.py index 08f3cbb0aa..779a20750a 100644 --- a/tests/test_train_vs_predict.py +++ b/tests/test_train_vs_predict.py @@ -22,14 +22,16 @@ def test_train_vs_predict(test_helpers, dialect): settings_dict["blocking_rules_to_generate_predictions"] = ["l.surname = r.surname"] linker = helper.Linker(df, settings_dict, **helper.extra_linker_args()) - training_session = linker.estimate_parameters_using_expectation_maximisation( - "l.surname = r.surname", fix_u_probabilities=False + training_session = ( + linker.training.estimate_parameters_using_expectation_maximisation( + "l.surname = r.surname", fix_u_probabilities=False + ) ) expected = training_session.core_model_settings.probability_two_random_records_match # We expect the probability_two_random_records_match to be the same as for a predict - df = linker.predict().as_pandas_dataframe() + df = linker.inference.predict().as_pandas_dataframe() actual = df["match_probability"].mean() # Will not be exactly equal because expected represents the diff --git a/tests/test_u_train.py b/tests/test_u_train.py index b1d87fa79d..e9fc85d6d1 100644 --- a/tests/test_u_train.py +++ b/tests/test_u_train.py @@ -30,8 +30,8 @@ def test_u_train(test_helpers, dialect): df_linker = helper.convert_frame(df) linker = helper.Linker(df_linker, settings, **helper.extra_linker_args()) - linker.debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker._debug_mode = True + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) cc_name = linker._settings_obj.comparisons[0] denom = (6 * 5) / 2 # n(n-1) / 2 @@ -79,8 +79,8 @@ def test_u_train_link_only(test_helpers, dialect): df_r = helper.convert_frame(df_r) linker = helper.Linker([df_l, df_r], settings, **helper.extra_linker_args()) - linker.debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker._debug_mode = True + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) cc_name = linker._settings_obj.comparisons[0] check_blocking_sql = """ @@ -90,7 +90,7 @@ def test_u_train_link_only(test_helpers, dialect): pipeline = CTEPipeline() pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count") - self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) result = self_table_count.as_record_dict() self_table_count.drop_table_from_database_and_remove_from_cache() @@ -141,9 +141,9 @@ def test_u_train_link_only_sample(test_helpers, dialect): input_table_aliases=["_a", "_b"], **helper.extra_linker_args(), ) - linker.debug_mode = True + linker._debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=max_pairs) + linker.training.estimate_u_using_random_sampling(max_pairs=max_pairs) # count how many pairs we _actually_ generated in random sampling check_blocking_sql = """ @@ -152,7 +152,7 @@ def test_u_train_link_only_sample(test_helpers, dialect): pipeline = CTEPipeline() pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count") - self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) result = self_table_count.as_record_dict() self_table_count.drop_table_from_database_and_remove_from_cache() @@ -266,8 +266,8 @@ def test_u_train_multilink(test_helpers, dialect): } linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker._debug_mode = True + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) cc_name = linker._settings_obj.comparisons[0] check_blocking_sql = """ @@ -277,7 +277,7 @@ def test_u_train_multilink(test_helpers, dialect): pipeline = CTEPipeline() pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count") - self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) result = self_table_count.as_record_dict() self_table_count.drop_table_from_database_and_remove_from_cache() @@ -298,8 +298,8 @@ def test_u_train_multilink(test_helpers, dialect): # also check the numbers on a link + dedupe with same inputs settings["link_type"] = "link_and_dedupe" linker = helper.Linker(dfs, settings, **helper.extra_linker_args()) - linker.debug_mode = True - linker.estimate_u_using_random_sampling(max_pairs=1e6) + linker._debug_mode = True + linker.training.estimate_u_using_random_sampling(max_pairs=1e6) cc_name = linker._settings_obj.comparisons[0] check_blocking_sql = """ @@ -309,7 +309,7 @@ def test_u_train_multilink(test_helpers, dialect): pipeline = CTEPipeline() pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count") - self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline) + self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline) result = self_table_count.as_record_dict() self_table_count.drop_table_from_database_and_remove_from_cache() @@ -343,9 +343,9 @@ def test_seed_u_outputs(test_helpers, dialect): linker_2 = helper.Linker(df, settings, **helper.extra_linker_args()) linker_3 = helper.Linker(df, settings, **helper.extra_linker_args()) - linker_1.estimate_u_using_random_sampling(max_pairs=1e3, seed=1) - linker_2.estimate_u_using_random_sampling(max_pairs=1e3, seed=1) - linker_3.estimate_u_using_random_sampling(max_pairs=1e3, seed=2) + linker_1.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=1) + linker_2.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=1) + linker_3.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=2) assert ( linker_1._settings_obj._parameter_estimates_as_records