diff --git a/docs/charts/accuracy_chart_from_labels_table.ipynb b/docs/charts/accuracy_chart_from_labels_table.ipynb
index 383fc03d8d..855914dbb7 100644
--- a/docs/charts/accuracy_chart_from_labels_table.ipynb
+++ b/docs/charts/accuracy_chart_from_labels_table.ipynb
@@ -1,224 +1,224 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `accuracy_chart_from_labels_table`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n",
- "\n",
- " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n",
- "\n",
- " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `accuracy_chart_from_labels_table`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n",
+ "\n",
+ " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n",
+ "\n",
+ " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.LayerChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets, splink_dataset_labels\n",
+ "import logging, sys\n",
+ "\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "\n",
+ "df_labels = splink_dataset_labels.fake_1000_labels\n",
+ "labels_table = linker.table_management.register_labels_table(df_labels)\n",
+ "\n",
+ "linker.evaluation.accuracy_analysis_from_labels_table(\n",
+ " labels_table, output_type=\"accuracy\", add_metrics=[\"f1\"]\n",
+ ")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. For all possible match weight thresholds, this chart shows various accuracy metrics comparing the Splink scores against clerical labels. \n",
+ "\n",
+ "**Precision** and **recall** are shown by default, but various additional metrics can be added: specificity, negative predictive value (NPV), accuracy, $F_1$, $F_2$, $F_{0.5}$, $P_4$ and $\\phi$ (Matthews correlation coefficient)."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n",
+ "\n",
+ "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n",
+ "\n",
+ "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. \n",
+ "\n",
+ "!!! info \"Confusion matrix\"\n",
+ "\n",
+ " See [threshold_selection_tool_from_labels_table](threshold_selection_tool_from_labels_table.ipynb) for a more complete visualisation of the impact of match threshold on false positives and false negatives, with reference to the confusion matrix."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.linker.clustering.cluster_pairwise_predictions_at_thresholds)."
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets, splink_dataset_labels\n",
- "import logging, sys\n",
- "\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "\n",
- "df_labels = splink_dataset_labels.fake_1000_labels\n",
- "labels_table = linker.register_labels_table(df_labels)\n",
- "\n",
- "linker.accuracy_analysis_from_labels_table(\n",
- " labels_table, output_type=\"accuracy\", add_metrics=[\"f1\"]\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. For all possible match weight thresholds, this chart shows various accuracy metrics comparing the Splink scores against clerical labels. \n",
- "\n",
- "**Precision** and **recall** are shown by default, but various additional metrics can be added: specificity, negative predictive value (NPV), accuracy, $F_1$, $F_2$, $F_{0.5}$, $P_4$ and $\\phi$ (Matthews correlation coefficient)."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n",
- "\n",
- "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n",
- "\n",
- "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. \n",
- "\n",
- "!!! info \"Confusion matrix\"\n",
- "\n",
- " See [threshold_selection_tool_from_labels_table](threshold_selection_tool_from_labels_table.ipynb) for a more complete visualisation of the impact of match threshold on false positives and false negatives, with reference to the confusion matrix."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.Linker.cluster_pairwise_predictions_at_thresholds)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.6"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.6"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/cluster_studio_dashboard.ipynb b/docs/charts/cluster_studio_dashboard.ipynb
index 09e2acd4aa..c83dffba4a 100644
--- a/docs/charts/cluster_studio_dashboard.ipynb
+++ b/docs/charts/cluster_studio_dashboard.ipynb
@@ -1,132 +1,132 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "!!! warning \"Work in Progress\"\n",
- " This page is currently under construction. \n",
- "\n",
- "# `cluster_studio_dashboard`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** \n",
- "\n",
- " **API Documentation:** [cluster_studio_dashboard()](../linker.md#splink.linker.Linker.cluster_studio_dashboard)\n",
- "\n",
- " **What is needed to generate the chart?** "
- ]
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "!!! warning \"Work in Progress\"\n",
+ " This page is currently under construction. \n",
+ "\n",
+ "# `cluster_studio_dashboard`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** \n",
+ "\n",
+ " **API Documentation:** [cluster_studio_dashboard()](../linker.md#splink.linker.linker.visualisations.cluster_studio_dashboard)\n",
+ "\n",
+ " **What is needed to generate the chart?** "
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ " \"retain_matching_columns\":True,\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n",
+ "df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predictions, threshold_match_probability=0.5)\n",
+ "\n",
+ "linker.visualisations.cluster_studio_dashboard(df_predictions, df_clusters, \"img/cluster_studio.html\", sampling_method=\"by_cluster_size\", overwrite=True)\n",
+ "\n",
+ "# You can view the scv.html file in your browser, or inline in a notbook as follows\n",
+ "from IPython.display import IFrame\n",
+ "IFrame(\n",
+ " src=\"./img/cluster_studio.html\", width=\"100%\", height=1200\n",
+ ")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- " \"retain_matching_columns\":True,\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "df_predictions = linker.predict(threshold_match_probability=0.2)\n",
- "df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predictions, threshold_match_probability=0.5)\n",
- "\n",
- "linker.cluster_studio_dashboard(df_predictions, df_clusters, \"img/cluster_studio.html\", sampling_method=\"by_cluster_size\", overwrite=True)\n",
- "\n",
- "# You can view the scv.html file in your browser, or inline in a notbook as follows\n",
- "from IPython.display import IFrame\n",
- "IFrame(\n",
- " src=\"./img/cluster_studio.html\", width=\"100%\", height=1200\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
- },
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/comparison_viewer_dashboard.ipynb b/docs/charts/comparison_viewer_dashboard.ipynb
index 4b70fb52df..1f7381b794 100644
--- a/docs/charts/comparison_viewer_dashboard.ipynb
+++ b/docs/charts/comparison_viewer_dashboard.ipynb
@@ -1,168 +1,168 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "!!! warning \"Work in Progress\"\n",
- " This page is currently under construction. \n",
- "\n",
- "# `comparison_viewer_dashboard`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** \n",
- "\n",
- " **API Documentation:** [comparison_viewer_dashboard()](../linker.md#splink.linker.Linker.comparison_viewer_dashboard)\n",
- "\n",
- " **What is needed to generate the chart?** "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4007ece5fbbb449f92d734eb3e7e7bba",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "!!! warning \"Work in Progress\"\n",
+ " This page is currently under construction. \n",
+ "\n",
+ "# `comparison_viewer_dashboard`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** \n",
+ "\n",
+ " **API Documentation:** [comparison_viewer_dashboard()](../linker.md#splink.linker.linker.visualisations.comparison_viewer_dashboard)\n",
+ "\n",
+ " **What is needed to generate the chart?** "
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- " \n",
- " "
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4007ece5fbbb449f92d734eb3e7e7bba",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- ""
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ " \"retain_matching_columns\":True,\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n",
+ "\n",
+ "linker.visualisations.comparison_viewer_dashboard(df_predictions, \"img/scv.html\", overwrite=True)\n",
+ "\n",
+ "# You can view the scv.html file in your browser, or inline in a notbook as follows\n",
+ "from IPython.display import IFrame\n",
+ "IFrame(\n",
+ " src=\"./img/scv.html\", width=\"100%\", height=1200\n",
+ ") \n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- " \"retain_matching_columns\":True,\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "df_predictions = linker.predict(threshold_match_probability=0.2)\n",
- "\n",
- "linker.comparison_viewer_dashboard(df_predictions, \"img/scv.html\", overwrite=True)\n",
- "\n",
- "# You can view the scv.html file in your browser, or inline in a notbook as follows\n",
- "from IPython.display import IFrame\n",
- "IFrame(\n",
- " src=\"./img/scv.html\", width=\"100%\", height=1200\n",
- ") \n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/m_u_parameters_chart.ipynb b/docs/charts/m_u_parameters_chart.ipynb
index f40e677db5..22a194894b 100644
--- a/docs/charts/m_u_parameters_chart.ipynb
+++ b/docs/charts/m_u_parameters_chart.ipynb
@@ -1,280 +1,280 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `m_u_parameters_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at the m and u values generated by a Splink model.\n",
- "\n",
- " **API Documentation:** [m_u_parameters_chart()](../linker.md#splink.linker.Linker.m_u_parameters_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained Splink model."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "db5b87e6c45e482bbbf40d69cbe58b93",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `m_u_parameters_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at the m and u values generated by a Splink model.\n",
+ "\n",
+ " **API Documentation:** [m_u_parameters_chart()](../linker.md#splink.linker.Linker.m_u_parameters_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained Splink model."
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "db5b87e6c45e482bbbf40d69cbe58b93",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.HConcatChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "linker.visualisations.m_u_parameters_chart()"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The `m_u_parameters_chart` shows the results of a trained Splink model:\n",
+ "\n",
+ "- The left chart shows the estimated m probabilities from the Splink model \n",
+ "- The right chart shows the estimated u probabilities from the Splink model.\n",
+ "\n",
+ "Each comparison within a model is represented in trained m and u values that have been estimated during the Splink model training for each comparison level.\n",
+ "\n",
+ "??? note \"What the chart tooltip shows\"\n",
+ "\n",
+ " #### Estimated m probability tooltip\n",
+ "\n",
+ " ![](./img/m_u_parameters_chart_tooltip_1.png)\n",
+ "\n",
+ " The tooltip of the left chart shows information based on the comparison level bar that the user is hovering over, including:\n",
+ "\n",
+ " - An explanation of the m probability for the comparison level.\n",
+ " - The name of the comparison and comparison level.\n",
+ " - The comparison level condition as an SQL statement.\n",
+ " - The m and u proability for the comparison level.\n",
+ " - The resulting bayes factor and match weight for the comparison level.\n",
+ "\n",
+ " #### Estimated u probability tooltip\n",
+ "\n",
+ " ![](./img/m_u_parameters_chart_tooltip_2.png)\n",
+ "\n",
+ " The tooltip of the right chart shows information based on the comparison level bar that the user is hovering over, including:\n",
+ "\n",
+ " - An explanation of the u probability from the comparison level.\n",
+ " - The name of the comparison and comparison level.\n",
+ " - The comparison level condition as an SQL statement.\n",
+ " - The m and u proability for the comparison level.\n",
+ " - The resulting bayes factor and match weight for the comparison level."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "Each bar of the left chart shows the probability of a given comparison level when two records are a match. This can also be interpreted as the proportion of matching records which are allocated to the comparison level (as stated in the x axis label).\n",
+ "\n",
+ "Similarly, each bar of the right chart shows the probability of a given comparison level when two records are not a match. This can also be interpreted as the proportion of non-matching records which are allocated to the comparison level (as stated in the x axis label).\n",
+ "\n",
+ "!!! note \"Further Reading\"\n",
+ "\n",
+ " For a more comprehensive introduction to m and u probabilities, check out the [Fellegi Sunter model topic guide.](../topic_guides/theory/fellegi_sunter.md#parameters-of-the-fellegi-sunter-model)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "As with the `match_weights_chart`, one of the most effective methods to assess a Splink model is to walk through each of the comparison levels of the `m_u_parameters_chart` and sense check the m and u probabilities that have been allocated by the model.\n",
+ "\n",
+ "For example, for all non-matching pairwise comparisons (which form the vast majority of all pairwise comparisons), it makes sense that the exact match and fuzzy levels occur very rarely. Furthermore, `dob` and `city` are lower cardinality features (i.e. have fewer possible values) than names so \"All other comparisons\" is less likely.\n",
+ "\n",
+ "If there are any m or u values that appear unusual, check out the values generated for each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Related Charts\n",
+ "\n",
+ "::cards::\n",
+ "[\n",
+ " {\n",
+ " \"title\": \"`match weights chart`\",\n",
+ " \"image\": \"./img/match_weights_chart.png\",\n",
+ " \"url\": \"./match_weights_chart.ipynb\"\n",
+ " },\n",
+ " {\n",
+ " \"title\": \"`parameter estimate comparisons chart`\",\n",
+ " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n",
+ " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n",
+ " },\n",
+ "]\n",
+ "::/cards::"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "linker.m_u_parameters_chart()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The `m_u_parameters_chart` shows the results of a trained Splink model:\n",
- "\n",
- "- The left chart shows the estimated m probabilities from the Splink model \n",
- "- The right chart shows the estimated u probabilities from the Splink model.\n",
- "\n",
- "Each comparison within a model is represented in trained m and u values that have been estimated during the Splink model training for each comparison level.\n",
- "\n",
- "??? note \"What the chart tooltip shows\"\n",
- "\n",
- " #### Estimated m probability tooltip\n",
- "\n",
- " ![](./img/m_u_parameters_chart_tooltip_1.png)\n",
- "\n",
- " The tooltip of the left chart shows information based on the comparison level bar that the user is hovering over, including:\n",
- "\n",
- " - An explanation of the m probability for the comparison level.\n",
- " - The name of the comparison and comparison level.\n",
- " - The comparison level condition as an SQL statement.\n",
- " - The m and u proability for the comparison level.\n",
- " - The resulting bayes factor and match weight for the comparison level.\n",
- "\n",
- " #### Estimated u probability tooltip\n",
- "\n",
- " ![](./img/m_u_parameters_chart_tooltip_2.png)\n",
- "\n",
- " The tooltip of the right chart shows information based on the comparison level bar that the user is hovering over, including:\n",
- "\n",
- " - An explanation of the u probability from the comparison level.\n",
- " - The name of the comparison and comparison level.\n",
- " - The comparison level condition as an SQL statement.\n",
- " - The m and u proability for the comparison level.\n",
- " - The resulting bayes factor and match weight for the comparison level."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "Each bar of the left chart shows the probability of a given comparison level when two records are a match. This can also be interpreted as the proportion of matching records which are allocated to the comparison level (as stated in the x axis label).\n",
- "\n",
- "Similarly, each bar of the right chart shows the probability of a given comparison level when two records are not a match. This can also be interpreted as the proportion of non-matching records which are allocated to the comparison level (as stated in the x axis label).\n",
- "\n",
- "!!! note \"Further Reading\"\n",
- "\n",
- " For a more comprehensive introduction to m and u probabilities, check out the [Fellegi Sunter model topic guide.](../topic_guides/theory/fellegi_sunter.md#parameters-of-the-fellegi-sunter-model)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "As with the `match_weights_chart`, one of the most effective methods to assess a Splink model is to walk through each of the comparison levels of the `m_u_parameters_chart` and sense check the m and u probabilities that have been allocated by the model.\n",
- "\n",
- "For example, for all non-matching pairwise comparisons (which form the vast majority of all pairwise comparisons), it makes sense that the exact match and fuzzy levels occur very rarely. Furthermore, `dob` and `city` are lower cardinality features (i.e. have fewer possible values) than names so \"All other comparisons\" is less likely.\n",
- "\n",
- "If there are any m or u values that appear unusual, check out the values generated for each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Related Charts\n",
- "\n",
- "::cards::\n",
- "[\n",
- " {\n",
- " \"title\": \"`match weights chart`\",\n",
- " \"image\": \"./img/match_weights_chart.png\",\n",
- " \"url\": \"./match_weights_chart.ipynb\"\n",
- " },\n",
- " {\n",
- " \"title\": \"`parameter estimate comparisons chart`\",\n",
- " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n",
- " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n",
- " },\n",
- "]\n",
- "::/cards::"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/match_weights_chart.ipynb b/docs/charts/match_weights_chart.ipynb
index 01434b4a12..ca4ccbb82b 100644
--- a/docs/charts/match_weights_chart.ipynb
+++ b/docs/charts/match_weights_chart.ipynb
@@ -1,285 +1,285 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `match_weights_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at the whole Splink model definition.\n",
- "\n",
- " **API Documentation:** [match_weights_chart()](../linker.md#splink.linker.Linker.match_weights_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained Splink model."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "44f1c3ab2d0e4991a710c9946a80afae",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `match_weights_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at the whole Splink model definition.\n",
+ "\n",
+ " **API Documentation:** [match_weights_chart()](../linker.md#splink.linker.linker.visualisations.match_weights_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained Splink model."
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "44f1c3ab2d0e4991a710c9946a80afae",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.VConcatChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "linker.visualisations.match_weights_chart()"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The `match_weights_chart` show the results of a trained Splink model. Each comparison within a model is represented in a bar chart, with a bar showing the evidence for two records being a match (i.e. match weight) for each comparison level.\n",
+ "\n",
+ "??? note \"What the chart tooltip shows\"\n",
+ "\n",
+ " ![](./img/match_weights_chart_tooltip.png)\n",
+ "\n",
+ " The tooltip shows information based on the comparison level bar that the user is hovering over, including:\n",
+ "\n",
+ " - The name of the comparison and comaprison level.\n",
+ " - The comparison level condition as an SQL statement.\n",
+ " - The m and u proability for the comparison level.\n",
+ " - The resulting bayes factor and match weight for the comparison level."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "Each bar in the `match_weights_chart` shows the evidence of a match provided by each level in a Splink model (i.e. match weight). As such, the match weight chart provides a summary for the entire Splink model, as it shows the match weights for every type of comparison defined within the model.\n",
+ "\n",
+ "Any Splink score generated to compare two records will add up the evidence (i.e. match weights) for each comparison to come up with a final match weight score, which can then be converted into a probability of a match.\n",
+ "\n",
+ "The first bar chart is the Prior Match Weight, which is the . This can be thought of in the same way as the y-intercept of a simple regression model\n",
+ "\n",
+ "This chart is an aggregation of the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb). The match weight for a comparison level is simply $log_2(\\frac{m}{u})$."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "Some heuristics to help assess Splink models with the `match_weights_chart`:\n",
+ "\n",
+ "#### Match weights gradually reducing within a comparison\n",
+ "\n",
+ "Comparison levels are order dependent, therefore they are constructed that the most \"similar\" levels come first and get gradually less \"similar\". As a result, we would generally expect that match weight will reduce as we go down the levels in a comparison. \n",
+ "\n",
+ "#### Very similar comparison levels\n",
+ "\n",
+ "Comparisons are broken up into comparison levels to show different levels of similarity between records. As these levels are associated with different levels of similarity, we expect the amount of evidence (i.e. match weight) to vary between comparison levels. Two levels with the same match weight does not provide the model with any additional information which could make it perform better. \n",
+ "\n",
+ "Therefore, if two levels of a comparison return the same match weight, these should be combined into a single level.\n",
+ "\n",
+ "#### Very different comparison levels\n",
+ "\n",
+ "Levels that have a large variation between comparison levels have a significant impact on the model results. For example, looking at the `email` comparison in the chart above, the difference in match weight between an exact/fuzzy match and \"All other comparisons\" is > 13, which is quite extreme. This generally happens with highly predictive features (e.g. email, national insurance number, social security number).\n",
+ "\n",
+ "If there are a number of highly predictive features, it is worth looking at simplifying your model using these more predictive features. In some cases, similar results may be obtained with a [deterministic](../topic_guides/theory/probabilistic_vs_deterministic.md) rather than a probabilistic linkage model.\n",
+ "\n",
+ "#### Logical Walk-through\n",
+ "\n",
+ "One of the most effective methods to assess a splink model is to walk through each of the comparison levels of the `match_weights_chart` and sense check the amount of evidence (i.e. match weight) that has been allocated by the model.\n",
+ "\n",
+ "For example, in the chart above, we would expect records with the same `dob` to provide more evidence of a match that `first_name` or `surname`. Conversely, given how people can move location, we would expect that `city` would be less predictive than people's fixed, personally identifying characteristics like `surname`, `dob` etc.\n",
+ "\n",
+ "#### Anything look strange?\n",
+ "\n",
+ "If anything still looks unusual, check out:\n",
+ "\n",
+ "- the underlying m and u values in the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb)\n",
+ "- the values from each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Related Charts\n",
+ "\n",
+ "::cards::\n",
+ "[\n",
+ " {\n",
+ " \"title\": \"`m u parameters chart`\",\n",
+ " \"image\": \"./img/m_u_parameters_chart.png\",\n",
+ " \"url\": \"./m_u_parameters_chart.ipynb\"\n",
+ " },\n",
+ " {\n",
+ " \"title\": \"`parameter estimate comparisons chart`\",\n",
+ " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n",
+ " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n",
+ " },\n",
+ "]\n",
+ "::/cards::"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "linker.match_weights_chart()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The `match_weights_chart` show the results of a trained Splink model. Each comparison within a model is represented in a bar chart, with a bar showing the evidence for two records being a match (i.e. match weight) for each comparison level.\n",
- "\n",
- "??? note \"What the chart tooltip shows\"\n",
- "\n",
- " ![](./img/match_weights_chart_tooltip.png)\n",
- "\n",
- " The tooltip shows information based on the comparison level bar that the user is hovering over, including:\n",
- "\n",
- " - The name of the comparison and comaprison level.\n",
- " - The comparison level condition as an SQL statement.\n",
- " - The m and u proability for the comparison level.\n",
- " - The resulting bayes factor and match weight for the comparison level."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "Each bar in the `match_weights_chart` shows the evidence of a match provided by each level in a Splink model (i.e. match weight). As such, the match weight chart provides a summary for the entire Splink model, as it shows the match weights for every type of comparison defined within the model.\n",
- "\n",
- "Any Splink score generated to compare two records will add up the evidence (i.e. match weights) for each comparison to come up with a final match weight score, which can then be converted into a probability of a match.\n",
- "\n",
- "The first bar chart is the Prior Match Weight, which is the . This can be thought of in the same way as the y-intercept of a simple regression model\n",
- "\n",
- "This chart is an aggregation of the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb). The match weight for a comparison level is simply $log_2(\\frac{m}{u})$."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "Some heuristics to help assess Splink models with the `match_weights_chart`:\n",
- "\n",
- "#### Match weights gradually reducing within a comparison\n",
- "\n",
- "Comparison levels are order dependent, therefore they are constructed that the most \"similar\" levels come first and get gradually less \"similar\". As a result, we would generally expect that match weight will reduce as we go down the levels in a comparison. \n",
- "\n",
- "#### Very similar comparison levels\n",
- "\n",
- "Comparisons are broken up into comparison levels to show different levels of similarity between records. As these levels are associated with different levels of similarity, we expect the amount of evidence (i.e. match weight) to vary between comparison levels. Two levels with the same match weight does not provide the model with any additional information which could make it perform better. \n",
- "\n",
- "Therefore, if two levels of a comparison return the same match weight, these should be combined into a single level.\n",
- "\n",
- "#### Very different comparison levels\n",
- "\n",
- "Levels that have a large variation between comparison levels have a significant impact on the model results. For example, looking at the `email` comparison in the chart above, the difference in match weight between an exact/fuzzy match and \"All other comparisons\" is > 13, which is quite extreme. This generally happens with highly predictive features (e.g. email, national insurance number, social security number).\n",
- "\n",
- "If there are a number of highly predictive features, it is worth looking at simplifying your model using these more predictive features. In some cases, similar results may be obtained with a [deterministic](../topic_guides/theory/probabilistic_vs_deterministic.md) rather than a probabilistic linkage model.\n",
- "\n",
- "#### Logical Walk-through\n",
- "\n",
- "One of the most effective methods to assess a splink model is to walk through each of the comparison levels of the `match_weights_chart` and sense check the amount of evidence (i.e. match weight) that has been allocated by the model.\n",
- "\n",
- "For example, in the chart above, we would expect records with the same `dob` to provide more evidence of a match that `first_name` or `surname`. Conversely, given how people can move location, we would expect that `city` would be less predictive than people's fixed, personally identifying characteristics like `surname`, `dob` etc.\n",
- "\n",
- "#### Anything look strange?\n",
- "\n",
- "If anything still looks unusual, check out:\n",
- "\n",
- "- the underlying m and u values in the [`m_u_parameters_chart`](./m_u_parameters_chart.ipynb)\n",
- "- the values from each training session in the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Related Charts\n",
- "\n",
- "::cards::\n",
- "[\n",
- " {\n",
- " \"title\": \"`m u parameters chart`\",\n",
- " \"image\": \"./img/m_u_parameters_chart.png\",\n",
- " \"url\": \"./m_u_parameters_chart.ipynb\"\n",
- " },\n",
- " {\n",
- " \"title\": \"`parameter estimate comparisons chart`\",\n",
- " \"image\": \"./img/parameter_estimate_comparisons_chart.png\",\n",
- " \"url\": \"./parameter_estimate_comparisons_chart.ipynb\"\n",
- " },\n",
- "]\n",
- "::/cards::"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/parameter_estimate_comparisons_chart.ipynb b/docs/charts/parameter_estimate_comparisons_chart.ipynb
index 4f75178e8b..ca5581d0b0 100644
--- a/docs/charts/parameter_estimate_comparisons_chart.ipynb
+++ b/docs/charts/parameter_estimate_comparisons_chart.ipynb
@@ -1,241 +1,241 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "!!! warning \"Work in Progress\"\n",
- " This page is currently under construction. \n",
- "\n",
- "# `parameter_estimate_comparisons_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at the m and u value estimates across multiple Splink model training sessions.\n",
- "\n",
- " **API Documentation:** [parameter_estimate_comparisons_chart()](../linker.md#splink.linker.Linker.parameter_estimate_comparisons_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained Splink model."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4ecdcdd3060d4d37b6c9bc3ffe0eff3d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "!!! warning \"Work in Progress\"\n",
+ " This page is currently under construction. \n",
+ "\n",
+ "# `parameter_estimate_comparisons_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at the m and u value estimates across multiple Splink model training sessions.\n",
+ "\n",
+ " **API Documentation:** [parameter_estimate_comparisons_chart()](../linker.md#splink.linker.Linker.parameter_estimate_comparisons_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained Splink model."
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4ecdcdd3060d4d37b6c9bc3ffe0eff3d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"email\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "\n",
+ "linker.parameter_estimate_comparisons_chart()"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Related Charts\n",
+ "\n",
+ "::cards::\n",
+ "[\n",
+ " {\n",
+ " \"title\": \"`m u parameters chart`\",\n",
+ " \"image\": \"./img/m_u_parameters_chart.png\",\n",
+ " \"url\": \"./m_u_parameters_chart.ipynb\"\n",
+ " },\n",
+ " {\n",
+ " \"title\": \"`match weights chart`\",\n",
+ " \"image\": \"./img/match_weights_chart.png\",\n",
+ " \"url\": \"./match_weights_chart.ipynb\"\n",
+ " },\n",
+ "]\n",
+ "::/cards::"
]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"email\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "\n",
- "linker.parameter_estimate_comparisons_chart()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Related Charts\n",
- "\n",
- "::cards::\n",
- "[\n",
- " {\n",
- " \"title\": \"`m u parameters chart`\",\n",
- " \"image\": \"./img/m_u_parameters_chart.png\",\n",
- " \"url\": \"./m_u_parameters_chart.ipynb\"\n",
- " },\n",
- " {\n",
- " \"title\": \"`match weights chart`\",\n",
- " \"image\": \"./img/match_weights_chart.png\",\n",
- " \"url\": \"./match_weights_chart.ipynb\"\n",
- " },\n",
- "]\n",
- "::/cards::"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/precision_recall_chart_from_labels_table.ipynb b/docs/charts/precision_recall_chart_from_labels_table.ipynb
index 080f71a599..cbea00e984 100644
--- a/docs/charts/precision_recall_chart_from_labels_table.ipynb
+++ b/docs/charts/precision_recall_chart_from_labels_table.ipynb
@@ -1,218 +1,218 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "!!! warning \"Work in Progress\"\n",
- " This page is currently under construction. \n",
- "\n",
- "# `precision_recall_chart_from_labels_table`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** \n",
- "\n",
- " **API Documentation:** [precision_recall_chart_from_labels_table()](../linker.md#splink.linker.Linker.precision_recall_chart_from_labels_table)\n",
- "\n",
- " **What is needed to generate the chart?** "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c2fee12e933d46ed84aebe7b4bce1e33",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "!!! warning \"Work in Progress\"\n",
+ " This page is currently under construction. \n",
+ "\n",
+ "# `precision_recall_chart_from_labels_table`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** \n",
+ "\n",
+ " **API Documentation:** [precision_recall_chart_from_labels_table()](../linker.md#splink.linker.Linker.precision_recall_chart_from_labels_table)\n",
+ "\n",
+ " **What is needed to generate the chart?** "
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c2fee12e933d46ed84aebe7b4bce1e33",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets, splink_dataset_labels\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "\n",
+ "df_labels = splink_dataset_labels.fake_1000_labels\n",
+ "labels_table = linker.table_management.register_labels_table(df_labels)\n",
+ "\n",
+ "linker.precision_recall_chart_from_labels_table(labels_table)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets, splink_dataset_labels\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "\n",
- "df_labels = splink_dataset_labels.fake_1000_labels\n",
- "labels_table = linker.register_labels_table(df_labels)\n",
- "\n",
- "linker.precision_recall_chart_from_labels_table(labels_table)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/roc_chart_from_labels_table.ipynb b/docs/charts/roc_chart_from_labels_table.ipynb
index c5e4d48821..9bbbeedbf7 100644
--- a/docs/charts/roc_chart_from_labels_table.ipynb
+++ b/docs/charts/roc_chart_from_labels_table.ipynb
@@ -1,242 +1,242 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `roc_chart_from_labels_table_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Assessing the relationship between True and False Positive Rates.\n",
- "\n",
- " **API Documentation:** [roc_chart_from_labels_table_chart()](../linker.md#splink.linker.Linker.roc_chart_from_labels_table_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained `linker` and a corresponding labelled dataset."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3c1c24580878443eac6e491fa20dc47b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `roc_chart_from_labels_table_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Assessing the relationship between True and False Positive Rates.\n",
+ "\n",
+ " **API Documentation:** [roc_chart_from_labels_table_chart()](../linker.md#splink.linker.Linker.roc_chart_from_labels_table_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained `linker` and a corresponding labelled dataset."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "3c1c24580878443eac6e491fa20dc47b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets, splink_dataset_labels\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "\n",
+ "df_labels = splink_dataset_labels.fake_1000_labels\n",
+ "labels_table = linker.table_management.register_labels_table(df_labels)\n",
+ "\n",
+ "linker.roc_chart_from_labels_table(labels_table)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The chart plots the True Positive Rate against False Positive Rate for clerically reviewed records. Each point on the curve reflects the choice of a match weight threshold for a match and the subsequent True/False Positive Rates.\n",
+ "\n",
+ "??? note \"What the chart tooltip shows\"\n",
+ " ![](./img/roc_chart_from_labels_table_tooltip.png)\n",
+ "\n",
+ " The tooltip shows information based on the point on the curve that the user is hoverng over, including:\n",
+ "\n",
+ " - The match weight and match probability threshold\n",
+ " - The False and True Positive Rate\n",
+ " - The count of True Positives, True Negatives, False Positives and False Negatives\n",
+ " - Precision, Recall and F1 score\n",
+ "\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "A ROC chart shows how the number of False Positives and False Negatives varies depending on the match threshold chosen. The match threshold is the match weight chosen as a cutoff for which pairwise comparisons to accept as matches.\n",
+ "\n",
+ "\n",
+ "For a perfect classifier, we should be able to get 100% of True Positives without gaining any False Positives (see \"ideal class descriminator\" in the chart below).\n",
+ "\n",
+ "On the other hand, for a random classifier we would expect False Positives and False Negatives to be roughly equal (see \"no predictive value\" in the chart below).\n",
+ "\n",
+ "In reality, most models sit somethere between these two extremes.\n",
+ "\n",
+ "![](./img/roc_curve_explainer.png)\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "If the ROC curve resembles the \"No predictive value\" example above, your model is not performing very well. In this case, it is worth reassessing your modesl (comparisons, comparison levels, blocking rules etc.) to see if there is a better solution.\n",
+ "\n",
+ "It is also worth considering the impact of your labelled data on this chart. For labels, it is important to consider a variety of pairwise comparisons (which includes True/False Positives and True/False Negatives). For example, it you only label pairwise comparisons that are true matches, this chart will not give any insights (as there will be no False Positives). "
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets, splink_dataset_labels\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "\n",
- "df_labels = splink_dataset_labels.fake_1000_labels\n",
- "labels_table = linker.register_labels_table(df_labels)\n",
- "\n",
- "linker.roc_chart_from_labels_table(labels_table)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The chart plots the True Positive Rate against False Positive Rate for clerically reviewed records. Each point on the curve reflects the choice of a match weight threshold for a match and the subsequent True/False Positive Rates.\n",
- "\n",
- "??? note \"What the chart tooltip shows\"\n",
- " ![](./img/roc_chart_from_labels_table_tooltip.png)\n",
- "\n",
- " The tooltip shows information based on the point on the curve that the user is hoverng over, including:\n",
- "\n",
- " - The match weight and match probability threshold\n",
- " - The False and True Positive Rate\n",
- " - The count of True Positives, True Negatives, False Positives and False Negatives\n",
- " - Precision, Recall and F1 score\n",
- "\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "A ROC chart shows how the number of False Positives and False Negatives varies depending on the match threshold chosen. The match threshold is the match weight chosen as a cutoff for which pairwise comparisons to accept as matches.\n",
- "\n",
- "\n",
- "For a perfect classifier, we should be able to get 100% of True Positives without gaining any False Positives (see \"ideal class descriminator\" in the chart below).\n",
- "\n",
- "On the other hand, for a random classifier we would expect False Positives and False Negatives to be roughly equal (see \"no predictive value\" in the chart below).\n",
- "\n",
- "In reality, most models sit somethere between these two extremes.\n",
- "\n",
- "![](./img/roc_curve_explainer.png)\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "If the ROC curve resembles the \"No predictive value\" example above, your model is not performing very well. In this case, it is worth reassessing your modesl (comparisons, comparison levels, blocking rules etc.) to see if there is a better solution.\n",
- "\n",
- "It is also worth considering the impact of your labelled data on this chart. For labels, it is important to consider a variety of pairwise comparisons (which includes True/False Positives and True/False Negatives). For example, it you only label pairwise comparisons that are true matches, this chart will not give any insights (as there will be no False Positives). "
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/template.ipynb b/docs/charts/template.ipynb
index ce74c180bf..b360eb96fc 100644
--- a/docs/charts/template.ipynb
+++ b/docs/charts/template.ipynb
@@ -1,127 +1,127 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `XXXXX_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** \n",
- "\n",
- " **API Documentation:** [XXXXXX_chart()](../linker.md#splink.linker.Linker.XXXXX_chart)\n",
- "\n",
- " **What is needed to generate the chart?** "
- ]
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `XXXXX_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** \n",
+ "\n",
+ " **API Documentation:** [XXXXXX_chart()](../linker.md#splink.linker.Linker.XXXXX_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** "
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "??? note \"What the chart tooltip shows\"\n",
+ "\n",
+ " ![]()"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "??? note \"What the chart tooltip shows\"\n",
- "\n",
- " ![]()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
- },
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/tf_adjustment_chart.ipynb b/docs/charts/tf_adjustment_chart.ipynb
index ecca7b1ced..a52fb48a23 100644
--- a/docs/charts/tf_adjustment_chart.ipynb
+++ b/docs/charts/tf_adjustment_chart.ipynb
@@ -1,273 +1,273 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `tf_adjustment_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at the impact of Term Frequency Adjustments on Match Weights.\n",
- "\n",
- " **API Documentation:** [tf_adjustment_chart()](../linker.md#splink.linker.Linker.tf_adjustment_chart)\n",
- "\n",
- " **What is needed to generate the chart?:** A trained Splink model, including comparisons with term frequency adjustments."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "68e5fef12fa147d1b229c1d97de97638",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `tf_adjustment_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at the impact of Term Frequency Adjustments on Match Weights.\n",
+ "\n",
+ " **API Documentation:** [tf_adjustment_chart()](../linker.md#splink.linker.Linker.tf_adjustment_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?:** A trained Splink model, including comparisons with term frequency adjustments."
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rosskennedy/splink/splink/linker.py:3126: UserWarning: Values ['Robert', 'Grace'] from `vals_to_include` were not found in the dataset so are not included in the chart.\n",
- " return tf_adjustment_chart(\n"
- ]
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "68e5fef12fa147d1b229c1d97de97638",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/rosskennedy/splink/splink/linker.py:3126: UserWarning: Values ['Robert', 'Grace'] from `vals_to_include` were not found in the dataset so are not included in the chart.\n",
+ " return tf_adjustment_chart(\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.HConcatChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\", term_frequency_adjustments = True),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "linker.tf_adjustment_chart(\"first_name\", vals_to_include = [\"Robert\", \"Grace\"])\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The `tf_adjustment_chart` shows the impact of Term Frequency Adjustments on the Match Weight of a comparison. It is made up of two charts for each selected comparison:\n",
+ "\n",
+ "- The left chart shows the match weight for two records with a matching `first_name` including a term frequency adjustment. The black horizontal line represents the base match weight (i.e. with no term frequency adjustment applied). By default this chart contains the 10 most frequent and 10 least frequent values in a comparison as well as any values assigned in the `vals_to_include` parameter.\n",
+ "- The right chart shows the distribution of match weights across all of the values of `first_name`."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "??? note \"What the tooltip shows\"\n",
+ "\n",
+ " #### Left chart\n",
+ "\n",
+ " ![](./img/tf_adjustment_chart_tooltip_1.png)\n",
+ "\n",
+ " The tooltip shows a number of statistics based on the column value of the point theat the user is hovering over, including:\n",
+ "\n",
+ " - The column value\n",
+ " - The base match weight (i.e. with no term frequency adjustment) for a match on the column.\n",
+ " - The term frequency adjustment for the column value.\n",
+ " - The final match weight (i.e. the combined base match weight and term frequency adjustment)\n",
+ "\n",
+ " #### Right chart\n",
+ "\n",
+ " ![](./img/tf_adjustment_chart_tooltip_2.png)\n",
+ "\n",
+ " The tooltip shows a number of statistics based on the bar that the user is hovering over, including:\n",
+ "\n",
+ " - The final match weight bucket (in steps of 0.5).\n",
+ " - The number of records with a final match weight in the final match weight bucket."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "The most common terms (on the left of the first chart) will have a negative term frequency adjustment and the values on the chart and represent the lowest match weight for a match for the selected comparison. Conversely, the least common terms (on the right of the first chart) will have a positive term frequency adjustment and the values on the chart represent the highest match weight for a match for the selected comparison.\n",
+ "\n",
+ "Given that the first chart only shows the most and least frequently occuring values, the second chart is provided to show the distribution of final match weights (including term frequency adjustments) across all values in the dataset."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "There are no direct actions that need to be taken as a result of this chart. It is intended to give the user an indication of the size of the impact of Term Frequency Adjustments on comparisons, as seen in the Waterfall Chart."
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\", term_frequency_adjustments = True),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "linker.tf_adjustment_chart(\"first_name\", vals_to_include = [\"Robert\", \"Grace\"])\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The `tf_adjustment_chart` shows the impact of Term Frequency Adjustments on the Match Weight of a comparison. It is made up of two charts for each selected comparison:\n",
- "\n",
- "- The left chart shows the match weight for two records with a matching `first_name` including a term frequency adjustment. The black horizontal line represents the base match weight (i.e. with no term frequency adjustment applied). By default this chart contains the 10 most frequent and 10 least frequent values in a comparison as well as any values assigned in the `vals_to_include` parameter.\n",
- "- The right chart shows the distribution of match weights across all of the values of `first_name`."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "??? note \"What the tooltip shows\"\n",
- "\n",
- " #### Left chart\n",
- "\n",
- " ![](./img/tf_adjustment_chart_tooltip_1.png)\n",
- "\n",
- " The tooltip shows a number of statistics based on the column value of the point theat the user is hovering over, including:\n",
- "\n",
- " - The column value\n",
- " - The base match weight (i.e. with no term frequency adjustment) for a match on the column.\n",
- " - The term frequency adjustment for the column value.\n",
- " - The final match weight (i.e. the combined base match weight and term frequency adjustment)\n",
- "\n",
- " #### Right chart\n",
- "\n",
- " ![](./img/tf_adjustment_chart_tooltip_2.png)\n",
- "\n",
- " The tooltip shows a number of statistics based on the bar that the user is hovering over, including:\n",
- "\n",
- " - The final match weight bucket (in steps of 0.5).\n",
- " - The number of records with a final match weight in the final match weight bucket."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "The most common terms (on the left of the first chart) will have a negative term frequency adjustment and the values on the chart and represent the lowest match weight for a match for the selected comparison. Conversely, the least common terms (on the right of the first chart) will have a positive term frequency adjustment and the values on the chart represent the highest match weight for a match for the selected comparison.\n",
- "\n",
- "Given that the first chart only shows the most and least frequently occuring values, the second chart is provided to show the distribution of final match weights (including term frequency adjustments) across all values in the dataset."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "There are no direct actions that need to be taken as a result of this chart. It is intended to give the user an indication of the size of the impact of Term Frequency Adjustments on comparisons, as seen in the Waterfall Chart."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/threshold_selection_tool_from_labels_table.ipynb b/docs/charts/threshold_selection_tool_from_labels_table.ipynb
index b4bedeb42b..d002c7df5f 100644
--- a/docs/charts/threshold_selection_tool_from_labels_table.ipynb
+++ b/docs/charts/threshold_selection_tool_from_labels_table.ipynb
@@ -1,225 +1,225 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `threshold_selection_tool_from_labels_table`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n",
- "\n",
- " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n",
- "\n",
- " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `threshold_selection_tool_from_labels_table`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Selecting an optimal match weight threshold for generating linked clusters.\n",
+ "\n",
+ " **API Documentation:** [accuracy_chart_from_labels_table()](../linker.md#splink.linker.Linker.accuracy_chart_from_labels_table)\n",
+ "\n",
+ " **What is needed to generate the chart?** A `linker` with some data and a corresponding labelled dataset"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.HConcatChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets, splink_dataset_labels\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "\n",
+ "df_labels = splink_dataset_labels.fake_1000_labels\n",
+ "labels_table = linker.table_management.register_labels_table(df_labels)\n",
+ "\n",
+ "linker.evaluation.accuracy_analysis_from_labels_table(labels_table, add_metrics=['f1'])"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. Lowering the threshold to the extreme ensures many more matches are generated - this maximises the True Positives (high recall) but at the expense of some False Positives (low precision).\n",
+ "\n",
+ "You can then see the effect on the confusion matrix of raising the match threshold. As more predicted matches become non-matches at the higher threshold, True Positives become False Negatives, but False Positives become True Negatives.\n",
+ "\n",
+ "This demonstrates the trade-off between Type 1 (FP) and Type 2 (FN) errors when selecting a match threshold, or precision vs recall.\n",
+ "\n",
+ "This chart adds further context to [accuracy_chart_from_labels_table](accuracy_chart_from_labels_table.ipynb) showing:\n",
+ "\n",
+ "- the relationship between match weight and match probability\n",
+ "- various accuracy metrics comparing the Splink scores against clerical labels\n",
+ "- the confusion matrix of the predictions and the labels"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n",
+ "\n",
+ "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n",
+ "\n",
+ "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. "
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.linker.clustering.cluster_pairwise_predictions_at_thresholds)."
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets, splink_dataset_labels\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "\n",
- "df_labels = splink_dataset_labels.fake_1000_labels\n",
- "labels_table = linker.register_labels_table(df_labels)\n",
- "\n",
- "linker.accuracy_analysis_from_labels_table(labels_table, add_metrics=['f1'])"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "For a given match weight threshold, a record pair with a score above this threshold will be labelled a match and below the threshold will be labelled a non-match. Lowering the threshold to the extreme ensures many more matches are generated - this maximises the True Positives (high recall) but at the expense of some False Positives (low precision).\n",
- "\n",
- "You can then see the effect on the confusion matrix of raising the match threshold. As more predicted matches become non-matches at the higher threshold, True Positives become False Negatives, but False Positives become True Negatives.\n",
- "\n",
- "This demonstrates the trade-off between Type 1 (FP) and Type 2 (FN) errors when selecting a match threshold, or precision vs recall.\n",
- "\n",
- "This chart adds further context to [accuracy_chart_from_labels_table](accuracy_chart_from_labels_table.ipynb) showing:\n",
- "\n",
- "- the relationship between match weight and match probability\n",
- "- various accuracy metrics comparing the Splink scores against clerical labels\n",
- "- the confusion matrix of the predictions and the labels"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "**Precision** can be maximised by **increasing** the match threshold (reducing false positives).\n",
- "\n",
- "**Recall** can be maximised by **decreasing** the match threshold (reducing false negatives). \n",
- "\n",
- "Additional metrics can be used to find the optimal compromise between these two, looking for the threshold at which peak accuracy is achieved. "
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "Having identified an optimal match weight threshold, this can be applied when generating linked clusters using [cluster_pairwise_predictions_at_thresholds()](../linker.md#splink.linker.Linker.cluster_pairwise_predictions_at_thresholds)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.6"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.6"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/unlinkables_chart.ipynb b/docs/charts/unlinkables_chart.ipynb
index 048fe7b366..2ff9453c1b 100644
--- a/docs/charts/unlinkables_chart.ipynb
+++ b/docs/charts/unlinkables_chart.ipynb
@@ -1,251 +1,251 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `unlinkables_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at how many records have insufficient information to be linked to themselves.\n",
- "\n",
- " **API Documentation:** [unlinkables_chart()](../linker.md#splink.linker.Linker.unlinkables_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained Splink model"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "256d9c064596491c952798167c08db35",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `unlinkables_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at how many records have insufficient information to be linked to themselves.\n",
+ "\n",
+ " **API Documentation:** [unlinkables_chart()](../linker.md#splink.linker.Linker.unlinkables_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained Splink model"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "256d9c064596491c952798167c08db35",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.LayerChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\"),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "linker.evaluation.unlinkables_chart()\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The `unlinkables_chart` shows the proportion of records with insufficient information to be matched to themselves at differing match thresholds.\n",
+ "\n",
+ "??? note \"What the chart tooltip shows\"\n",
+ "\n",
+ " ![](./img/unlinkables_chart_tooltip.png)\n",
+ "\n",
+ " This tooltip shows a number of statistics based on the match weight of the selected point of the line, including:\n",
+ "\n",
+ " - The chosen match weight and corresponding match probability.\n",
+ " - The proportion of records of records that cannot be linked to themselves given the chosen match weight threshold for a match."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "This chart gives an indication of both data quality and/or model predictiveness within a Splink model. If a high proportion of records are not linkable to themselves at a low match threshold (e.g. 0 match weight/50% probability) we can conclude that either/or:\n",
+ "\n",
+ "- the data quality is low enough such that a significant proportion of records are unable to be linked to themselves\n",
+ "- the parameters of the Splink model are such that features have not been assigned enough weight, and therefore will not perform well\n",
+ "\n",
+ "This chart also gives an indication of the number of False Negatives (i.e. missed links) at a given threshold, assuming sufficient data quality. For example:\n",
+ "\n",
+ "- we know that a record should be linked to itself, so seeing that a match weight $\\approx$ 10 gives 16% of records unable to link to themselves\n",
+ "- exact matches generally provide the strongest matches, therefore, we can expect that any \"fuzzy\" matches to have lower match scores. As a result, we can deduce that the propoertion of False Negatives will be higher than 16%.\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "If the level of unlinkable records is extremely high at low match weight thresholds, you have a poorly performing model. This may be an issue that can be resolved by tweaking the models comparisons, but if the poor performance is primarily down to poor data quality, there is very little that can be done to improve the model.\n",
+ "\n",
+ "When interpretted as an indicator of False Negatives, this chart can be used to establish an upper bound for match weight, depending on the propensity for False Negatives in the particular use case."
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\"),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "linker.unlinkables_chart()\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The `unlinkables_chart` shows the proportion of records with insufficient information to be matched to themselves at differing match thresholds.\n",
- "\n",
- "??? note \"What the chart tooltip shows\"\n",
- "\n",
- " ![](./img/unlinkables_chart_tooltip.png)\n",
- "\n",
- " This tooltip shows a number of statistics based on the match weight of the selected point of the line, including:\n",
- "\n",
- " - The chosen match weight and corresponding match probability.\n",
- " - The proportion of records of records that cannot be linked to themselves given the chosen match weight threshold for a match."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "This chart gives an indication of both data quality and/or model predictiveness within a Splink model. If a high proportion of records are not linkable to themselves at a low match threshold (e.g. 0 match weight/50% probability) we can conclude that either/or:\n",
- "\n",
- "- the data quality is low enough such that a significant proportion of records are unable to be linked to themselves\n",
- "- the parameters of the Splink model are such that features have not been assigned enough weight, and therefore will not perform well\n",
- "\n",
- "This chart also gives an indication of the number of False Negatives (i.e. missed links) at a given threshold, assuming sufficient data quality. For example:\n",
- "\n",
- "- we know that a record should be linked to itself, so seeing that a match weight $\\approx$ 10 gives 16% of records unable to link to themselves\n",
- "- exact matches generally provide the strongest matches, therefore, we can expect that any \"fuzzy\" matches to have lower match scores. As a result, we can deduce that the propoertion of False Negatives will be higher than 16%.\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "If the level of unlinkable records is extremely high at low match weight thresholds, you have a poorly performing model. This may be an issue that can be resolved by tweaking the models comparisons, but if the poor performance is primarily down to poor data quality, there is very little that can be done to improve the model.\n",
- "\n",
- "When interpretted as an indicator of False Negatives, this chart can be used to establish an upper bound for match weight, depending on the propensity for False Negatives in the particular use case."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/charts/waterfall_chart.ipynb b/docs/charts/waterfall_chart.ipynb
index 75d8ea07e6..b5497c0fd3 100644
--- a/docs/charts/waterfall_chart.ipynb
+++ b/docs/charts/waterfall_chart.ipynb
@@ -1,268 +1,268 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# `waterfall_chart`\n",
- "\n",
- "!!! info \"At a glance\"\n",
- " **Useful for:** Looking at the breakdown of the match weight for a pair of records.\n",
- "\n",
- " **API Documentation:** [waterfall_chart()](../linker.md#splink.linker.Linker.waterfall_chart)\n",
- "\n",
- " **What is needed to generate the chart?** A trained Splink model"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Worked Example"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c61587e20b704f6791a7c55073340e6d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `waterfall_chart`\n",
+ "\n",
+ "!!! info \"At a glance\"\n",
+ " **Useful for:** Looking at the breakdown of the match weight for a pair of records.\n",
+ "\n",
+ " **API Documentation:** [waterfall_chart()](../linker.md#splink.linker.linker.visualisations.waterfall_chart)\n",
+ "\n",
+ " **What is needed to generate the chart?** A trained Splink model"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Worked Example"
]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c61587e20b704f6791a7c55073340e6d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.LayerChart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.datasets import splink_datasets\n",
+ "import logging, sys\n",
+ "logging.disable(sys.maxsize)\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\"),\n",
+ " block_on(\"surname\"),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\", term_frequency_adjustments=True),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\"),\n",
+ " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ " \"retain_matching_columns\":True,\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "\n",
+ "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "blocking_rule_for_training = block_on(\"dob\")\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
+ "\n",
+ "df_predictions = linker.inference.predict(threshold_match_probability=0.2)\n",
+ "records_to_view = df_predictions.as_record_dict(limit=5)\n",
+ "\n",
+ "linker.visualisations.waterfall_chart(records_to_view, filter_nulls=False)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What the chart shows\n",
+ "\n",
+ "The `waterfall_chart` shows the amount of evidence of a match that is provided by each comparison for a pair of records. Each bar represents a comparison and the corresponding amount of evidence (i.e. match weight) of a match for the pair of values displayed above the bar.\n",
+ "\n",
+ "??? note \"What the chart tooltip shows\"\n",
+ "\n",
+ " ![](./img/waterfall_chart_tooltip.png)\n",
+ "\n",
+ " The tooltip contains information based on the bar that the user is hovering over, including:\n",
+ "\n",
+ " - The comparison column (or columns)\n",
+ " - The column values from the pair of records being compared\n",
+ " - The comparison level as a label, SQL statement and the corresponding comparison vector value\n",
+ " - The bayes factor (i.e. how many times more likely is a match based on this evidence)\n",
+ " - The match weight for the comparison level\n",
+ " - The cumulative match probability from the chosen comparison and all of the previous comparisons."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### How to interpret the chart\n",
+ "\n",
+ "The first bar (labelled \"Prior\") is the match weight if no additional knowledge of features is taken into account, and can be thought of as similar to the y-intercept in a simple regression.\n",
+ "\n",
+ "Each subsequent bar shows the match weight for a comparison. These bars can be positive or negative depending on whether the given comparison gives positive or negative evidence for the two records being a match.\n",
+ "\n",
+ "Additional bars are added for comparisons with term frequency adjustments. For example, the chart above has term frequency adjustments for `first_name` so there is an extra `tf_first_name` bar showing how the frequency of a given name impacts the amount of evidence for the two records being a match.\n",
+ "\n",
+ "The final bar represents total match weight for the pair of records. This match weight can also be translated into a final match probablility, and the corresponding match probability is shown on the right axis (note the logarithmic scale)."
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Actions to take as a result of the chart\n",
+ "\n",
+ "This chart is useful for spot checking pairs of records to see if the Splink model is behaving as expected.\n",
+ "\n",
+ "If a pair of records look like they are incorrectly being assigned as a match/non-match, it is a sign that the Splink model is not working optimally. If this is the case, it is worth revisiting the model training step. \n",
+ "\n",
+ "Some common scenarios include:\n",
+ "\n",
+ "- If a comparison isn't capturing a specific edge case (e.g. fuzzy match), add a comparison level to capture this case and retrain the model.\n",
+ "\n",
+ "- If the match weight for a comparison is looking unusual, refer to the [`match_weights_chart`](./match_weights_chart.ipynb) to see the match weight in context with the rest of the comparison levels within that comparison. If it is still looking unusual, you can dig deeper with the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb) to see if the model training runs are consistent. If there is a lot of variation between model training sessions, this can suggest some instability in the model. In this case, try some different model training rules and/or comparison levels.\n",
+ "\n",
+ "- If the \"Prior\" match weight is too small or large compared to the match weight provided by the comparisons, try some different determininstic rules and recall inputs to the [`estimate_probability_two_records_match` function](../linker.md#splink.linker.linker.training.estimate_probability_two_random_records_match).\n",
+ "\n",
+ "- If you are working with a model with term frequency adjustments and want to dig deeper into the impact of term frequency on the model as a whole (i.e. not just for a single pairwise comparison), check out the [`tf_adjustment_chart`](./tf_adjustment_chart.ipynb).\n"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "from splink.duckdb.linker import DuckDBLinker\n",
- "import splink.duckdb.comparison_library as cl\n",
- "import splink.duckdb.comparison_template_library as ctl\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.datasets import splink_datasets\n",
- "import logging, sys\n",
- "logging.disable(sys.maxsize)\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\"),\n",
- " block_on(\"surname\"),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.name_comparison(\"first_name\", term_frequency_adjustments=True),\n",
- " ctl.name_comparison(\"surname\"),\n",
- " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " cl.exact_match(\"city\"),\n",
- " ctl.email_comparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- " \"retain_matching_columns\":True,\n",
- "}\n",
- "\n",
- "linker = DuckDBLinker(df, settings)\n",
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)\n",
- "\n",
- "blocking_rule_for_training = block_on([\"first_name\", \"surname\"])\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "blocking_rule_for_training = block_on(\"dob\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(blocking_rule_for_training)\n",
- "\n",
- "df_predictions = linker.predict(threshold_match_probability=0.2)\n",
- "records_to_view = df_predictions.as_record_dict(limit=5)\n",
- "\n",
- "linker.waterfall_chart(records_to_view, filter_nulls=False)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What the chart shows\n",
- "\n",
- "The `waterfall_chart` shows the amount of evidence of a match that is provided by each comparison for a pair of records. Each bar represents a comparison and the corresponding amount of evidence (i.e. match weight) of a match for the pair of values displayed above the bar.\n",
- "\n",
- "??? note \"What the chart tooltip shows\"\n",
- "\n",
- " ![](./img/waterfall_chart_tooltip.png)\n",
- "\n",
- " The tooltip contains information based on the bar that the user is hovering over, including:\n",
- "\n",
- " - The comparison column (or columns)\n",
- " - The column values from the pair of records being compared\n",
- " - The comparison level as a label, SQL statement and the corresponding comparison vector value\n",
- " - The bayes factor (i.e. how many times more likely is a match based on this evidence)\n",
- " - The match weight for the comparison level\n",
- " - The cumulative match probability from the chosen comparison and all of the previous comparisons."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### How to interpret the chart\n",
- "\n",
- "The first bar (labelled \"Prior\") is the match weight if no additional knowledge of features is taken into account, and can be thought of as similar to the y-intercept in a simple regression.\n",
- "\n",
- "Each subsequent bar shows the match weight for a comparison. These bars can be positive or negative depending on whether the given comparison gives positive or negative evidence for the two records being a match.\n",
- "\n",
- "Additional bars are added for comparisons with term frequency adjustments. For example, the chart above has term frequency adjustments for `first_name` so there is an extra `tf_first_name` bar showing how the frequency of a given name impacts the amount of evidence for the two records being a match.\n",
- "\n",
- "The final bar represents total match weight for the pair of records. This match weight can also be translated into a final match probablility, and the corresponding match probability is shown on the right axis (note the logarithmic scale)."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Actions to take as a result of the chart\n",
- "\n",
- "This chart is useful for spot checking pairs of records to see if the Splink model is behaving as expected.\n",
- "\n",
- "If a pair of records look like they are incorrectly being assigned as a match/non-match, it is a sign that the Splink model is not working optimally. If this is the case, it is worth revisiting the model training step. \n",
- "\n",
- "Some common scenarios include:\n",
- "\n",
- "- If a comparison isn't capturing a specific edge case (e.g. fuzzy match), add a comparison level to capture this case and retrain the model.\n",
- "\n",
- "- If the match weight for a comparison is looking unusual, refer to the [`match_weights_chart`](./match_weights_chart.ipynb) to see the match weight in context with the rest of the comparison levels within that comparison. If it is still looking unusual, you can dig deeper with the [`parameter_estimate_comparisons_chart`](./parameter_estimate_comparisons_chart.ipynb) to see if the model training runs are consistent. If there is a lot of variation between model training sessions, this can suggest some instability in the model. In this case, try some different model training rules and/or comparison levels.\n",
- "\n",
- "- If the \"Prior\" match weight is too small or large compared to the match weight provided by the comparisons, try some different determininstic rules and recall inputs to the [`estimate_probability_two_records_match` function](../linker.md#splink.linker.Linker.estimate_probability_two_random_records_match).\n",
- "\n",
- "- If you are working with a model with term frequency adjustments and want to dig deeper into the impact of term frequency on the model as a whole (i.e. not just for a single pairwise comparison), check out the [`tf_adjustment_chart`](./tf_adjustment_chart.ipynb).\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb
index c3a953df26..3dd987d4a0 100644
--- a/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb
+++ b/docs/demos/examples/athena/deduplicate_50k_synthetic.ipynb
@@ -1,109096 +1,109096 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "8f18ba38-4271-490e-a3f1-7c05bcba65e7",
- "metadata": {},
- "source": [
- "## Linking a dataset of real historical persons\n",
- "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "04cc1e16-42ed-4104-8445-93980b46e42c",
- "metadata": {},
- "outputs": [],
- "source": [
- "from splink.athena.athena_linker import AthenaLinker\n",
- "import altair as alt\n",
- "alt.renderers.enable('mimetype')\n",
- "\n",
- "import pandas as pd\n",
- "pd.options.display.max_rows = 1000\n",
- "df = pd.read_parquet(\"./data/historical_figures_with_errors_50k.parquet\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "8b53cd2f-c007-4997-9ecd-c27930bbcc3a",
- "metadata": {},
- "source": [
- "Create a boto3 session to be used within the linker"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "b77a3a3c-5c7f-4e18-8482-95c090b18b79",
- "metadata": {},
- "outputs": [],
- "source": [
- "import boto3\n",
- "my_session = boto3.Session(region_name=\"eu-west-1\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "bb51efc3-a538-488a-a525-64b7e7155f0f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Simple settings dictionary will be used for exploratory analysis\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " \"l.first_name = r.first_name and l.surname = r.surname\",\n",
- " \"l.surname = r.surname and l.dob = r.dob\",\n",
- " \"l.first_name = r.first_name and l.dob = r.dob\",\n",
- " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n",
- " ],\n",
- "}"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "d1aa6941-e7f4-4ac3-a166-ae7357c79198",
- "metadata": {},
- "source": [
- "## AthenaLinker Setup\n",
- "\n",
- "To work nicely with Athena, you need to outline various filepaths, buckets and the database(s) you wish to interact with.\n",
- "
\n",
- "\n",
- "**The AthenaLinker has three required inputs:**\n",
- "* input_table_or_tables - the input table to use for linking. This can either be a table in a database or a pandas dataframe\n",
- "* output_database - the database to output all of your splink tables to.\n",
- "* output_bucket - the s3 bucket you wish any parquet files produced by splink to be output to.\n",
- "\n",
- "**and two optional inputs:**\n",
- "* output_filepath - the s3 filepath to output files to. This is an extension of output_bucket and dictate the full filepath your files will be output to.\n",
- "* input_table_aliases - the name of your table within your database, should you choose to use a pandas df as an input."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "023f3947-9cb9-44db-a7f9-f7dab41def34",
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
- "config": {
- "view": {
- "continuousHeight": 300,
- "continuousWidth": 400
- }
- },
- "vconcat": [
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "8f18ba38-4271-490e-a3f1-7c05bcba65e7",
+ "metadata": {},
+ "source": [
+ "## Linking a dataset of real historical persons\n",
+ "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "04cc1e16-42ed-4104-8445-93980b46e42c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from splink.athena.athena_linker import AthenaLinker\n",
+ "import altair as alt\n",
+ "alt.renderers.enable('mimetype')\n",
+ "\n",
+ "import pandas as pd\n",
+ "pd.options.display.max_rows = 1000\n",
+ "df = pd.read_parquet(\"./data/historical_figures_with_errors_50k.parquet\")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "8b53cd2f-c007-4997-9ecd-c27930bbcc3a",
+ "metadata": {},
+ "source": [
+ "Create a boto3 session to be used within the linker"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "b77a3a3c-5c7f-4e18-8482-95c090b18b79",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import boto3\n",
+ "my_session = boto3.Session(region_name=\"eu-west-1\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "bb51efc3-a538-488a-a525-64b7e7155f0f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Simple settings dictionary will be used for exploratory analysis\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " \"l.first_name = r.first_name and l.surname = r.surname\",\n",
+ " \"l.surname = r.surname and l.dob = r.dob\",\n",
+ " \"l.first_name = r.first_name and l.dob = r.dob\",\n",
+ " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n",
+ " ],\n",
+ "}"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "d1aa6941-e7f4-4ac3-a166-ae7357c79198",
+ "metadata": {},
+ "source": [
+ "## AthenaLinker Setup\n",
+ "\n",
+ "To work nicely with Athena, you need to outline various filepaths, buckets and the database(s) you wish to interact with.\n",
+ "
\n",
+ "\n",
+ "**The AthenaLinker has three required inputs:**\n",
+ "* input_table_or_tables - the input table to use for linking. This can either be a table in a database or a pandas dataframe\n",
+ "* output_database - the database to output all of your splink tables to.\n",
+ "* output_bucket - the s3 bucket you wish any parquet files produced by splink to be output to.\n",
+ "\n",
+ "**and two optional inputs:**\n",
+ "* output_filepath - the s3 filepath to output files to. This is an extension of output_bucket and dictate the full filepath your files will be output to.\n",
+ "* input_table_aliases - the name of your table within your database, should you choose to use a pandas df as an input."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "023f3947-9cb9-44db-a7f9-f7dab41def34",
+ "metadata": {},
+ "outputs": [
{
- "hconcat": [
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.9449624834194532,
- "percentile_inc_nulls": 0.9450353908814109,
- "sum_tokens_in_value_count_group": 2780,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 2780
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.8907960642236344,
- "percentile_inc_nulls": 0.8909407252164973,
- "sum_tokens_in_value_count_group": 2736,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 2736
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.8621290411989467,
- "percentile_inc_nulls": 0.8623116770137214,
- "sum_tokens_in_value_count_group": 1448,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1448
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.8341153412128052,
- "percentile_inc_nulls": 0.8343350864012021,
- "sum_tokens_in_value_count_group": 1415,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1415
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.8082595870206489,
- "percentile_inc_nulls": 0.8085135829807426,
- "sum_tokens_in_value_count_group": 1306,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1306
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.7832155372097167,
- "percentile_inc_nulls": 0.7835027086875717,
- "sum_tokens_in_value_count_group": 1265,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1265
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.7582308804022886,
- "percentile_inc_nulls": 0.7585511487207877,
- "sum_tokens_in_value_count_group": 1262,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1262
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.7341569163152581,
- "percentile_inc_nulls": 0.7345090750919372,
- "sum_tokens_in_value_count_group": 1216,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1216
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.7161212409178199,
- "percentile_inc_nulls": 0.7164972913124283,
- "sum_tokens_in_value_count_group": 911,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 911
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6986201025519194,
- "percentile_inc_nulls": 0.6990193364704022,
- "sum_tokens_in_value_count_group": 884,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 884
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6826631822771277,
- "percentile_inc_nulls": 0.6830835541144371,
- "sum_tokens_in_value_count_group": 806,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 806
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.669715507513215,
- "percentile_inc_nulls": 0.6701530309620785,
- "sum_tokens_in_value_count_group": 654,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 654
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6573221674486746,
- "percentile_inc_nulls": 0.6577761081893314,
- "sum_tokens_in_value_count_group": 626,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 626
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6471857615172933,
- "percentile_inc_nulls": 0.647653129819289,
- "sum_tokens_in_value_count_group": 512,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 512
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6370691532537467,
- "percentile_inc_nulls": 0.6375499228913757,
- "sum_tokens_in_value_count_group": 511,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 511
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6269921403258696,
- "percentile_inc_nulls": 0.6274862588477204,
- "sum_tokens_in_value_count_group": 509,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 509
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6171329017441745,
- "percentile_inc_nulls": 0.6176400806674839,
- "sum_tokens_in_value_count_group": 498,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 498
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.6079269862010255,
- "percentile_inc_nulls": 0.6084463600775041,
- "sum_tokens_in_value_count_group": 465,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 465
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5987408683257112,
- "percentile_inc_nulls": 0.5992724109296532,
- "sum_tokens_in_value_count_group": 464,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 464
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5904456455029597,
- "percentile_inc_nulls": 0.5909881766776068,
- "sum_tokens_in_value_count_group": 419,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 419
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5831403060719447,
- "percentile_inc_nulls": 0.58369251453201,
- "sum_tokens_in_value_count_group": 369,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 369
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5762309199976243,
- "percentile_inc_nulls": 0.5767922812289928,
- "sum_tokens_in_value_count_group": 349,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 349
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.569816475619172,
- "percentile_inc_nulls": 0.5703863339792005,
- "sum_tokens_in_value_count_group": 324,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 324
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5634812219120587,
- "percentile_inc_nulls": 0.564059472497924,
- "sum_tokens_in_value_count_group": 320,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 320
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5573043495476233,
- "percentile_inc_nulls": 0.5578907825536794,
- "sum_tokens_in_value_count_group": 312,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 312
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5513848468650393,
- "percentile_inc_nulls": 0.5519791213571118,
- "sum_tokens_in_value_count_group": 299,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 299
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.545702916196472,
- "percentile_inc_nulls": 0.546304717466092,
- "sum_tokens_in_value_count_group": 287,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 287
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5401991645384174,
- "percentile_inc_nulls": 0.5408082565542331,
- "sum_tokens_in_value_count_group": 278,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 278
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5348537942230405,
- "percentile_inc_nulls": 0.5354699671794061,
- "sum_tokens_in_value_count_group": 270,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 270
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5298251865930194,
- "percentile_inc_nulls": 0.5304480208786428,
- "sum_tokens_in_value_count_group": 254,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 254
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5250935439805191,
- "percentile_inc_nulls": 0.5257226462098146,
- "sum_tokens_in_value_count_group": 239,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 239
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5204806873750272,
- "percentile_inc_nulls": 0.5211159001937602,
- "sum_tokens_in_value_count_group": 233,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 233
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.516481558472412,
- "percentile_inc_nulls": 0.5171220688837044,
- "sum_tokens_in_value_count_group": 202,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 202
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5128783829264912,
- "percentile_inc_nulls": 0.5135236664162284,
- "sum_tokens_in_value_count_group": 182,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 182
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5092950050484053,
- "percentile_inc_nulls": 0.5099450353908814,
- "sum_tokens_in_value_count_group": 181,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 181
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.5058304131773277,
- "percentile_inc_nulls": 0.5064850330183084,
- "sum_tokens_in_value_count_group": 175,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 175
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.49898042010651145,
- "percentile_inc_nulls": 0.4996441140416782,
- "sum_tokens_in_value_count_group": 346,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 173
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.49563461424244226,
- "percentile_inc_nulls": 0.49630274032187904,
- "sum_tokens_in_value_count_group": 169,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 169
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.49230860604620774,
- "percentile_inc_nulls": 0.49298113804420896,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 168
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4890221931856428,
- "percentile_inc_nulls": 0.48969907865079676,
- "sum_tokens_in_value_count_group": 166,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 166
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4858743639999208,
- "percentile_inc_nulls": 0.4865554193522875,
- "sum_tokens_in_value_count_group": 159,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 159
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.482785927817703,
- "percentile_inc_nulls": 0.48347107438016534,
- "sum_tokens_in_value_count_group": 156,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 156
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.47664865078893703,
- "percentile_inc_nulls": 0.47734192732017877,
- "sum_tokens_in_value_count_group": 310,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 155
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4705509690958405,
- "percentile_inc_nulls": 0.4712523231444502,
- "sum_tokens_in_value_count_group": 308,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 154
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.46758131892063115,
- "percentile_inc_nulls": 0.4682866068251018,
- "sum_tokens_in_value_count_group": 150,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 150
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.46471065708459547,
- "percentile_inc_nulls": 0.4654197477163984,
- "sum_tokens_in_value_count_group": 145,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 145
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4619587812555681,
- "percentile_inc_nulls": 0.46267151726046896,
- "sum_tokens_in_value_count_group": 139,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 139
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4592860960978796,
- "percentile_inc_nulls": 0.46000237257305543,
- "sum_tokens_in_value_count_group": 135,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 135
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4540595117895112,
- "percentile_inc_nulls": 0.4547827118510024,
- "sum_tokens_in_value_count_group": 264,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 132
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4514858149709964,
- "percentile_inc_nulls": 0.4522124243742338,
- "sum_tokens_in_value_count_group": 130,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 130
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.44645720734097527,
- "percentile_inc_nulls": 0.4471904780734707,
- "sum_tokens_in_value_count_group": 254,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 127
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.44402209419730354,
- "percentile_inc_nulls": 0.44475859069160506,
- "sum_tokens_in_value_count_group": 123,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 123
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.441646374057136,
- "percentile_inc_nulls": 0.4423860176361264,
- "sum_tokens_in_value_count_group": 120,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 120
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.43931024925263806,
- "percentile_inc_nulls": 0.44005298746490573,
- "sum_tokens_in_value_count_group": 118,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 118
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4370335174516442,
- "percentile_inc_nulls": 0.437779271620072,
- "sum_tokens_in_value_count_group": 115,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 115
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4347765833184851,
- "percentile_inc_nulls": 0.43552532721736725,
- "sum_tokens_in_value_count_group": 114,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 114
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4325592445209955,
- "percentile_inc_nulls": 0.4333109256989205,
- "sum_tokens_in_value_count_group": 112,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 112
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.43040129872700994,
- "percentile_inc_nulls": 0.4311558385068607,
- "sum_tokens_in_value_count_group": 109,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 109
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.42836213894003283,
- "percentile_inc_nulls": 0.4291193799675749,
- "sum_tokens_in_value_count_group": 103,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 103
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4263427768208905,
- "percentile_inc_nulls": 0.427102692870418,
- "sum_tokens_in_value_count_group": 102,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 102
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4223436479182753,
- "percentile_inc_nulls": 0.4231088615603622,
- "sum_tokens_in_value_count_group": 202,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 101
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4203638811348023,
- "percentile_inc_nulls": 0.42113171734746335,
- "sum_tokens_in_value_count_group": 100,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 100
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4184435073548336,
- "percentile_inc_nulls": 0.41921388746095145,
- "sum_tokens_in_value_count_group": 97,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 97
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4165429312426996,
- "percentile_inc_nulls": 0.4173158290165685,
- "sum_tokens_in_value_count_group": 96,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 96
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.41466215279840035,
- "percentile_inc_nulls": 0.4154375420143145,
- "sum_tokens_in_value_count_group": 95,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 95
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4128011720219358,
- "percentile_inc_nulls": 0.41357902645418954,
- "sum_tokens_in_value_count_group": 94,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 94
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4055156302587555,
- "percentile_inc_nulls": 0.40630313575072163,
- "sum_tokens_in_value_count_group": 368,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 92
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.4001108669398745,
- "percentile_inc_nulls": 0.40090553204950774,
- "sum_tokens_in_value_count_group": 273,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 91
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.39832907683474883,
- "percentile_inc_nulls": 0.3991261022578987,
- "sum_tokens_in_value_count_group": 90,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 90
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.39484468729583655,
- "percentile_inc_nulls": 0.3956463284431967,
- "sum_tokens_in_value_count_group": 176,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 88
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3913998930925937,
- "percentile_inc_nulls": 0.3922060975127526,
- "sum_tokens_in_value_count_group": 174,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 87
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3897170913266417,
- "percentile_inc_nulls": 0.3905255249317885,
- "sum_tokens_in_value_count_group": 85,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 85
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.38647027380174614,
- "percentile_inc_nulls": 0.3872830084226343,
- "sum_tokens_in_value_count_group": 164,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 82
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3848666627071331,
- "percentile_inc_nulls": 0.3856815216101862,
- "sum_tokens_in_value_count_group": 81,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 81
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.38169903585357645,
- "percentile_inc_nulls": 0.382518090869548,
- "sum_tokens_in_value_count_group": 160,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 80
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.38013502009463285,
- "percentile_inc_nulls": 0.38095614694135793,
- "sum_tokens_in_value_count_group": 79,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 79
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.378590802003524,
- "percentile_inc_nulls": 0.3794139744552968,
- "sum_tokens_in_value_count_group": 78,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 78
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.37706638158024985,
- "percentile_inc_nulls": 0.3778915734113646,
- "sum_tokens_in_value_count_group": 77,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 77
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.37556175882481047,
- "percentile_inc_nulls": 0.37638894380956145,
- "sum_tokens_in_value_count_group": 76,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 76
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.37407693373720574,
- "percentile_inc_nulls": 0.37490608564988726,
- "sum_tokens_in_value_count_group": 75,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 75
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3726119063174358,
- "percentile_inc_nulls": 0.3734429989323421,
- "sum_tokens_in_value_count_group": 74,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 74
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.36972144681356534,
- "percentile_inc_nulls": 0.37055636838150974,
- "sum_tokens_in_value_count_group": 146,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 73
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.36687058264536443,
- "percentile_inc_nulls": 0.36770928071493536,
- "sum_tokens_in_value_count_group": 144,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 72
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3654649482290986,
- "percentile_inc_nulls": 0.3663055083237772,
- "sum_tokens_in_value_count_group": 71,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 71
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3640791114806676,
- "percentile_inc_nulls": 0.36492150737474793,
- "sum_tokens_in_value_count_group": 70,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 70
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3627130724000712,
- "percentile_inc_nulls": 0.36355727786784764,
- "sum_tokens_in_value_count_group": 69,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 69
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.35867434816178656,
- "percentile_inc_nulls": 0.35952390367353393,
- "sum_tokens_in_value_count_group": 204,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 68
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3573479044168597,
- "percentile_inc_nulls": 0.35819921705089164,
- "sum_tokens_in_value_count_group": 67,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 67
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3560610560076023,
- "percentile_inc_nulls": 0.35691407331250746,
- "sum_tokens_in_value_count_group": 65,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 65
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.35479400526617966,
- "percentile_inc_nulls": 0.3556487010162521,
- "sum_tokens_in_value_count_group": 64,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 64
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3522994991190038,
- "percentile_inc_nulls": 0.35315749930799956,
- "sum_tokens_in_value_count_group": 126,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 63
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3510720437132506,
- "percentile_inc_nulls": 0.3519316698960022,
- "sum_tokens_in_value_count_group": 62,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 62
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.34744907049949514,
- "percentile_inc_nulls": 0.34831349598639727,
- "sum_tokens_in_value_count_group": 183,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 61
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3427768208904991,
- "percentile_inc_nulls": 0.34364743564395583,
- "sum_tokens_in_value_count_group": 236,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 59
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.33933202668725626,
- "percentile_inc_nulls": 0.34020720471351185,
- "sum_tokens_in_value_count_group": 174,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 58
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3382035596206767,
- "percentile_inc_nulls": 0.33908023251215946,
- "sum_tokens_in_value_count_group": 57,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 57
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.33709489022193184,
- "percentile_inc_nulls": 0.337973031752936,
- "sum_tokens_in_value_count_group": 56,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 56
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3360258161588565,
- "percentile_inc_nulls": 0.3369053738779707,
- "sum_tokens_in_value_count_group": 54,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 54
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.33287798697313453,
- "percentile_inc_nulls": 0.33376171457946147,
- "sum_tokens_in_value_count_group": 159,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 53
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3287600720635109,
- "percentile_inc_nulls": 0.32964925461663175,
- "sum_tokens_in_value_count_group": 208,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 52
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.32674070994436855,
- "percentile_inc_nulls": 0.3276325675194749,
- "sum_tokens_in_value_count_group": 102,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 51
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3257508265526321,
- "percentile_inc_nulls": 0.32664399541302547,
- "sum_tokens_in_value_count_group": 50,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 50
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.32381065510482865,
- "percentile_inc_nulls": 0.3247063940843845,
- "sum_tokens_in_value_count_group": 98,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 49
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.32095979093662763,
- "percentile_inc_nulls": 0.32185930641781013,
- "sum_tokens_in_value_count_group": 144,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 48
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3200293005483954,
- "percentile_inc_nulls": 0.32093004863774766,
- "sum_tokens_in_value_count_group": 47,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 47
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3172972223872028,
- "percentile_inc_nulls": 0.3182015896239472,
- "sum_tokens_in_value_count_group": 138,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 46
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.31373364217695154,
- "percentile_inc_nulls": 0.3146427300407292,
- "sum_tokens_in_value_count_group": 180,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 45
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.30937815525331114,
- "percentile_inc_nulls": 0.31029301277235166,
- "sum_tokens_in_value_count_group": 220,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 44
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.30767555581952444,
- "percentile_inc_nulls": 0.3085926687492586,
- "sum_tokens_in_value_count_group": 86,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 43
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.30434954762329003,
- "percentile_inc_nulls": 0.3052710664715884,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 42
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.3035378432420661,
- "percentile_inc_nulls": 0.30446043734429984,
- "sum_tokens_in_value_count_group": 41,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 41
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2987864029617311,
- "percentile_inc_nulls": 0.2997152912333425,
- "sum_tokens_in_value_count_group": 240,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 40
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2956979667795133,
- "percentile_inc_nulls": 0.29663094626122033,
- "sum_tokens_in_value_count_group": 156,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 39
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.29344103264635424,
- "percentile_inc_nulls": 0.29437700185851556,
- "sum_tokens_in_value_count_group": 114,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 38
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.29124349151669937,
- "percentile_inc_nulls": 0.29218237178219775,
- "sum_tokens_in_value_count_group": 111,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 37
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2891647363940528,
- "percentile_inc_nulls": 0.29010637035865394,
- "sum_tokens_in_value_count_group": 105,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 35
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.28579913286214886,
- "percentile_inc_nulls": 0.28674522519672585,
- "sum_tokens_in_value_count_group": 170,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 34
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2818791946308725,
- "percentile_inc_nulls": 0.28283047965518604,
- "sum_tokens_in_value_count_group": 198,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 33
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2799786185187385,
- "percentile_inc_nulls": 0.2809324212108031,
- "sum_tokens_in_value_count_group": 96,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 32
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2775237077072321,
- "percentile_inc_nulls": 0.2784807623868085,
- "sum_tokens_in_value_count_group": 124,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 31
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.273366197461939,
- "percentile_inc_nulls": 0.2743287595397208,
- "sum_tokens_in_value_count_group": 210,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 30
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2704955356259032,
- "percentile_inc_nulls": 0.2714619004310175,
- "sum_tokens_in_value_count_group": 145,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 29
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2677238621290412,
- "percentile_inc_nulls": 0.268693898532959,
- "sum_tokens_in_value_count_group": 140,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 28
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2639821029082774,
- "percentile_inc_nulls": 0.26495709597058015,
- "sum_tokens_in_value_count_group": 189,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 27
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2603789273623567,
- "percentile_inc_nulls": 0.26135869350310414,
- "sum_tokens_in_value_count_group": 182,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 26
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2579042188830156,
- "percentile_inc_nulls": 0.2588872632369805,
- "sum_tokens_in_value_count_group": 125,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 25
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2541030666587476,
- "percentile_inc_nulls": 0.2550911463482146,
- "sum_tokens_in_value_count_group": 192,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 24
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2509156421373562,
- "percentile_inc_nulls": 0.2519079441654474,
- "sum_tokens_in_value_count_group": 161,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 23
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.24612460652135182,
- "percentile_inc_nulls": 0.24712325517023215,
- "sum_tokens_in_value_count_group": 242,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 22
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.24113559422700004,
- "percentile_inc_nulls": 0.2421408517537269,
- "sum_tokens_in_value_count_group": 252,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 21
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.23638415394666512,
- "percentile_inc_nulls": 0.23739570564276957,
- "sum_tokens_in_value_count_group": 240,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 20
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2299895072360476,
- "percentile_inc_nulls": 0.23100952983510614,
- "sum_tokens_in_value_count_group": 323,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 19
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.22286234681554518,
- "percentile_inc_nulls": 0.22389181066867014,
- "sum_tokens_in_value_count_group": 360,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 18
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2188236225772604,
- "percentile_inc_nulls": 0.21985843647435643,
- "sum_tokens_in_value_count_group": 204,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 17
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.20995426738730183,
- "percentile_inc_nulls": 0.21100083040056938,
- "sum_tokens_in_value_count_group": 448,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 16
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.2019362119142365,
- "percentile_inc_nulls": 0.2029933963383289,
- "sum_tokens_in_value_count_group": 405,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 15
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.19445269347270888,
- "percentile_inc_nulls": 0.1955197912135711,
- "sum_tokens_in_value_count_group": 378,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 14
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.18158420938013498,
- "percentile_inc_nulls": 0.18266835382972835,
- "sum_tokens_in_value_count_group": 650,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 13
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.17279404486151528,
- "percentile_inc_nulls": 0.1738898335244573,
- "sum_tokens_in_value_count_group": 444,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 12
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.16538971709132666,
- "percentile_inc_nulls": 0.1664953141682154,
- "sum_tokens_in_value_count_group": 374,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 11
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.1558868365306567,
- "percentile_inc_nulls": 0.15700502194630073,
- "sum_tokens_in_value_count_group": 480,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 10
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.14394884282631504,
- "percentile_inc_nulls": 0.14508284234252045,
- "sum_tokens_in_value_count_group": 603,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 9
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.13143671675476631,
- "percentile_inc_nulls": 0.1325872909169995,
- "sum_tokens_in_value_count_group": 632,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 8
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.12145869216606286,
- "percentile_inc_nulls": 0.12262248408398913,
- "sum_tokens_in_value_count_group": 504,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 7
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.11076795153530916,
- "percentile_inc_nulls": 0.11194590533433513,
- "sum_tokens_in_value_count_group": 540,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 6
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.10017619924372911,
- "percentile_inc_nulls": 0.10136818379532608,
- "sum_tokens_in_value_count_group": 535,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 5
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.08655540377343551,
- "percentile_inc_nulls": 0.0877654316105817,
- "sum_tokens_in_value_count_group": 688,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 4
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.0702817208132882,
- "percentile_inc_nulls": 0.07151330618055285,
- "sum_tokens_in_value_count_group": 822,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 3
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0.04727683078933298,
- "percentile_inc_nulls": 0.0485388904266677,
- "sum_tokens_in_value_count_group": 1162,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 2
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 0,
- "percentile_inc_nulls": 0.0013246866226422904,
- "sum_tokens_in_value_count_group": 2388,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 1
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "percentile_ex_nulls": 1,
- "percentile_inc_nulls": 1,
- "sum_tokens_in_value_count_group": 2780,
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value_count": 2780
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "percentile_ex_nulls",
- "type": "quantitative"
- },
- {
- "field": "percentile_inc_nulls",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "percentile_ex_nulls",
- "sort": "descending",
- "title": "Percentile",
- "type": "quantitative"
- },
- "y": {
- "field": "value_count",
- "title": "Count of values",
- "type": "quantitative"
- }
- },
- "mark": {
- "interpolate": "step-after",
- "type": "line"
- },
- "title": {
- "subtitle": "In this col, 67 values (0.1%) are null and there are 4413 distinct values",
- "text": "Distribution of counts of values in column first_name"
- }
- },
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "william",
- "value_count": 2780
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "john",
- "value_count": 2736
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "thomas",
- "value_count": 1448
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "george",
- "value_count": 1415
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "henry",
- "value_count": 1306
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "james",
- "value_count": 1265
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "sir",
- "value_count": 1262
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "charles",
- "value_count": 1216
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "edward",
- "value_count": 911
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "robert",
- "value_count": 884
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Top 10 values by value count"
- },
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "janette",
- "value_count": 1
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "abnayne",
- "value_count": 1
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "basier",
- "value_count": 1
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "vabe",
- "value_count": 1
- },
- {
- "distinct_value_count": 4413,
- "group_name": "first_name",
- "total_non_null_rows": 50511,
- "total_rows_inc_nulls": 50578,
- "value": "dering",
- "value_count": 1
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "scale": {
- "domain": [
- 0,
- 2780
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
+ "config": {
+ "view": {
+ "continuousHeight": 300,
+ "continuousWidth": 400
+ }
+ },
+ "vconcat": [
+ {
+ "hconcat": [
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.9449624834194532,
+ "percentile_inc_nulls": 0.9450353908814109,
+ "sum_tokens_in_value_count_group": 2780,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2780
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.8907960642236344,
+ "percentile_inc_nulls": 0.8909407252164973,
+ "sum_tokens_in_value_count_group": 2736,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2736
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.8621290411989467,
+ "percentile_inc_nulls": 0.8623116770137214,
+ "sum_tokens_in_value_count_group": 1448,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1448
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.8341153412128052,
+ "percentile_inc_nulls": 0.8343350864012021,
+ "sum_tokens_in_value_count_group": 1415,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1415
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.8082595870206489,
+ "percentile_inc_nulls": 0.8085135829807426,
+ "sum_tokens_in_value_count_group": 1306,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1306
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.7832155372097167,
+ "percentile_inc_nulls": 0.7835027086875717,
+ "sum_tokens_in_value_count_group": 1265,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1265
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.7582308804022886,
+ "percentile_inc_nulls": 0.7585511487207877,
+ "sum_tokens_in_value_count_group": 1262,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1262
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.7341569163152581,
+ "percentile_inc_nulls": 0.7345090750919372,
+ "sum_tokens_in_value_count_group": 1216,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1216
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.7161212409178199,
+ "percentile_inc_nulls": 0.7164972913124283,
+ "sum_tokens_in_value_count_group": 911,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 911
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6986201025519194,
+ "percentile_inc_nulls": 0.6990193364704022,
+ "sum_tokens_in_value_count_group": 884,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 884
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6826631822771277,
+ "percentile_inc_nulls": 0.6830835541144371,
+ "sum_tokens_in_value_count_group": 806,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 806
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.669715507513215,
+ "percentile_inc_nulls": 0.6701530309620785,
+ "sum_tokens_in_value_count_group": 654,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 654
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6573221674486746,
+ "percentile_inc_nulls": 0.6577761081893314,
+ "sum_tokens_in_value_count_group": 626,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 626
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6471857615172933,
+ "percentile_inc_nulls": 0.647653129819289,
+ "sum_tokens_in_value_count_group": 512,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 512
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6370691532537467,
+ "percentile_inc_nulls": 0.6375499228913757,
+ "sum_tokens_in_value_count_group": 511,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 511
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6269921403258696,
+ "percentile_inc_nulls": 0.6274862588477204,
+ "sum_tokens_in_value_count_group": 509,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 509
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6171329017441745,
+ "percentile_inc_nulls": 0.6176400806674839,
+ "sum_tokens_in_value_count_group": 498,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 498
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.6079269862010255,
+ "percentile_inc_nulls": 0.6084463600775041,
+ "sum_tokens_in_value_count_group": 465,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 465
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5987408683257112,
+ "percentile_inc_nulls": 0.5992724109296532,
+ "sum_tokens_in_value_count_group": 464,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 464
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5904456455029597,
+ "percentile_inc_nulls": 0.5909881766776068,
+ "sum_tokens_in_value_count_group": 419,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 419
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5831403060719447,
+ "percentile_inc_nulls": 0.58369251453201,
+ "sum_tokens_in_value_count_group": 369,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 369
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5762309199976243,
+ "percentile_inc_nulls": 0.5767922812289928,
+ "sum_tokens_in_value_count_group": 349,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 349
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.569816475619172,
+ "percentile_inc_nulls": 0.5703863339792005,
+ "sum_tokens_in_value_count_group": 324,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 324
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5634812219120587,
+ "percentile_inc_nulls": 0.564059472497924,
+ "sum_tokens_in_value_count_group": 320,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 320
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5573043495476233,
+ "percentile_inc_nulls": 0.5578907825536794,
+ "sum_tokens_in_value_count_group": 312,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 312
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5513848468650393,
+ "percentile_inc_nulls": 0.5519791213571118,
+ "sum_tokens_in_value_count_group": 299,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 299
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.545702916196472,
+ "percentile_inc_nulls": 0.546304717466092,
+ "sum_tokens_in_value_count_group": 287,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 287
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5401991645384174,
+ "percentile_inc_nulls": 0.5408082565542331,
+ "sum_tokens_in_value_count_group": 278,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 278
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5348537942230405,
+ "percentile_inc_nulls": 0.5354699671794061,
+ "sum_tokens_in_value_count_group": 270,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 270
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5298251865930194,
+ "percentile_inc_nulls": 0.5304480208786428,
+ "sum_tokens_in_value_count_group": 254,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 254
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5250935439805191,
+ "percentile_inc_nulls": 0.5257226462098146,
+ "sum_tokens_in_value_count_group": 239,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 239
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5204806873750272,
+ "percentile_inc_nulls": 0.5211159001937602,
+ "sum_tokens_in_value_count_group": 233,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 233
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.516481558472412,
+ "percentile_inc_nulls": 0.5171220688837044,
+ "sum_tokens_in_value_count_group": 202,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 202
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5128783829264912,
+ "percentile_inc_nulls": 0.5135236664162284,
+ "sum_tokens_in_value_count_group": 182,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 182
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5092950050484053,
+ "percentile_inc_nulls": 0.5099450353908814,
+ "sum_tokens_in_value_count_group": 181,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 181
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.5058304131773277,
+ "percentile_inc_nulls": 0.5064850330183084,
+ "sum_tokens_in_value_count_group": 175,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 175
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.49898042010651145,
+ "percentile_inc_nulls": 0.4996441140416782,
+ "sum_tokens_in_value_count_group": 346,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 173
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.49563461424244226,
+ "percentile_inc_nulls": 0.49630274032187904,
+ "sum_tokens_in_value_count_group": 169,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 169
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.49230860604620774,
+ "percentile_inc_nulls": 0.49298113804420896,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 168
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4890221931856428,
+ "percentile_inc_nulls": 0.48969907865079676,
+ "sum_tokens_in_value_count_group": 166,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 166
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4858743639999208,
+ "percentile_inc_nulls": 0.4865554193522875,
+ "sum_tokens_in_value_count_group": 159,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 159
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.482785927817703,
+ "percentile_inc_nulls": 0.48347107438016534,
+ "sum_tokens_in_value_count_group": 156,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 156
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.47664865078893703,
+ "percentile_inc_nulls": 0.47734192732017877,
+ "sum_tokens_in_value_count_group": 310,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 155
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4705509690958405,
+ "percentile_inc_nulls": 0.4712523231444502,
+ "sum_tokens_in_value_count_group": 308,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 154
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.46758131892063115,
+ "percentile_inc_nulls": 0.4682866068251018,
+ "sum_tokens_in_value_count_group": 150,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 150
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.46471065708459547,
+ "percentile_inc_nulls": 0.4654197477163984,
+ "sum_tokens_in_value_count_group": 145,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 145
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4619587812555681,
+ "percentile_inc_nulls": 0.46267151726046896,
+ "sum_tokens_in_value_count_group": 139,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 139
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4592860960978796,
+ "percentile_inc_nulls": 0.46000237257305543,
+ "sum_tokens_in_value_count_group": 135,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 135
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4540595117895112,
+ "percentile_inc_nulls": 0.4547827118510024,
+ "sum_tokens_in_value_count_group": 264,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 132
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4514858149709964,
+ "percentile_inc_nulls": 0.4522124243742338,
+ "sum_tokens_in_value_count_group": 130,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 130
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.44645720734097527,
+ "percentile_inc_nulls": 0.4471904780734707,
+ "sum_tokens_in_value_count_group": 254,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 127
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.44402209419730354,
+ "percentile_inc_nulls": 0.44475859069160506,
+ "sum_tokens_in_value_count_group": 123,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 123
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.441646374057136,
+ "percentile_inc_nulls": 0.4423860176361264,
+ "sum_tokens_in_value_count_group": 120,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 120
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.43931024925263806,
+ "percentile_inc_nulls": 0.44005298746490573,
+ "sum_tokens_in_value_count_group": 118,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 118
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4370335174516442,
+ "percentile_inc_nulls": 0.437779271620072,
+ "sum_tokens_in_value_count_group": 115,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 115
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4347765833184851,
+ "percentile_inc_nulls": 0.43552532721736725,
+ "sum_tokens_in_value_count_group": 114,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 114
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4325592445209955,
+ "percentile_inc_nulls": 0.4333109256989205,
+ "sum_tokens_in_value_count_group": 112,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 112
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.43040129872700994,
+ "percentile_inc_nulls": 0.4311558385068607,
+ "sum_tokens_in_value_count_group": 109,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 109
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.42836213894003283,
+ "percentile_inc_nulls": 0.4291193799675749,
+ "sum_tokens_in_value_count_group": 103,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 103
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4263427768208905,
+ "percentile_inc_nulls": 0.427102692870418,
+ "sum_tokens_in_value_count_group": 102,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 102
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4223436479182753,
+ "percentile_inc_nulls": 0.4231088615603622,
+ "sum_tokens_in_value_count_group": 202,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 101
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4203638811348023,
+ "percentile_inc_nulls": 0.42113171734746335,
+ "sum_tokens_in_value_count_group": 100,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 100
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4184435073548336,
+ "percentile_inc_nulls": 0.41921388746095145,
+ "sum_tokens_in_value_count_group": 97,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 97
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4165429312426996,
+ "percentile_inc_nulls": 0.4173158290165685,
+ "sum_tokens_in_value_count_group": 96,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 96
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.41466215279840035,
+ "percentile_inc_nulls": 0.4154375420143145,
+ "sum_tokens_in_value_count_group": 95,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 95
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4128011720219358,
+ "percentile_inc_nulls": 0.41357902645418954,
+ "sum_tokens_in_value_count_group": 94,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 94
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4055156302587555,
+ "percentile_inc_nulls": 0.40630313575072163,
+ "sum_tokens_in_value_count_group": 368,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 92
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.4001108669398745,
+ "percentile_inc_nulls": 0.40090553204950774,
+ "sum_tokens_in_value_count_group": 273,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 91
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.39832907683474883,
+ "percentile_inc_nulls": 0.3991261022578987,
+ "sum_tokens_in_value_count_group": 90,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 90
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.39484468729583655,
+ "percentile_inc_nulls": 0.3956463284431967,
+ "sum_tokens_in_value_count_group": 176,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 88
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3913998930925937,
+ "percentile_inc_nulls": 0.3922060975127526,
+ "sum_tokens_in_value_count_group": 174,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 87
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3897170913266417,
+ "percentile_inc_nulls": 0.3905255249317885,
+ "sum_tokens_in_value_count_group": 85,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 85
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.38647027380174614,
+ "percentile_inc_nulls": 0.3872830084226343,
+ "sum_tokens_in_value_count_group": 164,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 82
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3848666627071331,
+ "percentile_inc_nulls": 0.3856815216101862,
+ "sum_tokens_in_value_count_group": 81,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 81
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.38169903585357645,
+ "percentile_inc_nulls": 0.382518090869548,
+ "sum_tokens_in_value_count_group": 160,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 80
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.38013502009463285,
+ "percentile_inc_nulls": 0.38095614694135793,
+ "sum_tokens_in_value_count_group": 79,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 79
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.378590802003524,
+ "percentile_inc_nulls": 0.3794139744552968,
+ "sum_tokens_in_value_count_group": 78,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 78
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.37706638158024985,
+ "percentile_inc_nulls": 0.3778915734113646,
+ "sum_tokens_in_value_count_group": 77,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 77
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.37556175882481047,
+ "percentile_inc_nulls": 0.37638894380956145,
+ "sum_tokens_in_value_count_group": 76,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 76
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.37407693373720574,
+ "percentile_inc_nulls": 0.37490608564988726,
+ "sum_tokens_in_value_count_group": 75,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 75
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3726119063174358,
+ "percentile_inc_nulls": 0.3734429989323421,
+ "sum_tokens_in_value_count_group": 74,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 74
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.36972144681356534,
+ "percentile_inc_nulls": 0.37055636838150974,
+ "sum_tokens_in_value_count_group": 146,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 73
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.36687058264536443,
+ "percentile_inc_nulls": 0.36770928071493536,
+ "sum_tokens_in_value_count_group": 144,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 72
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3654649482290986,
+ "percentile_inc_nulls": 0.3663055083237772,
+ "sum_tokens_in_value_count_group": 71,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 71
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3640791114806676,
+ "percentile_inc_nulls": 0.36492150737474793,
+ "sum_tokens_in_value_count_group": 70,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 70
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3627130724000712,
+ "percentile_inc_nulls": 0.36355727786784764,
+ "sum_tokens_in_value_count_group": 69,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 69
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.35867434816178656,
+ "percentile_inc_nulls": 0.35952390367353393,
+ "sum_tokens_in_value_count_group": 204,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 68
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3573479044168597,
+ "percentile_inc_nulls": 0.35819921705089164,
+ "sum_tokens_in_value_count_group": 67,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 67
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3560610560076023,
+ "percentile_inc_nulls": 0.35691407331250746,
+ "sum_tokens_in_value_count_group": 65,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 65
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.35479400526617966,
+ "percentile_inc_nulls": 0.3556487010162521,
+ "sum_tokens_in_value_count_group": 64,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 64
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3522994991190038,
+ "percentile_inc_nulls": 0.35315749930799956,
+ "sum_tokens_in_value_count_group": 126,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 63
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3510720437132506,
+ "percentile_inc_nulls": 0.3519316698960022,
+ "sum_tokens_in_value_count_group": 62,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 62
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.34744907049949514,
+ "percentile_inc_nulls": 0.34831349598639727,
+ "sum_tokens_in_value_count_group": 183,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 61
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3427768208904991,
+ "percentile_inc_nulls": 0.34364743564395583,
+ "sum_tokens_in_value_count_group": 236,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 59
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.33933202668725626,
+ "percentile_inc_nulls": 0.34020720471351185,
+ "sum_tokens_in_value_count_group": 174,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 58
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3382035596206767,
+ "percentile_inc_nulls": 0.33908023251215946,
+ "sum_tokens_in_value_count_group": 57,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 57
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.33709489022193184,
+ "percentile_inc_nulls": 0.337973031752936,
+ "sum_tokens_in_value_count_group": 56,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 56
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3360258161588565,
+ "percentile_inc_nulls": 0.3369053738779707,
+ "sum_tokens_in_value_count_group": 54,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 54
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.33287798697313453,
+ "percentile_inc_nulls": 0.33376171457946147,
+ "sum_tokens_in_value_count_group": 159,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 53
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3287600720635109,
+ "percentile_inc_nulls": 0.32964925461663175,
+ "sum_tokens_in_value_count_group": 208,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 52
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.32674070994436855,
+ "percentile_inc_nulls": 0.3276325675194749,
+ "sum_tokens_in_value_count_group": 102,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 51
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3257508265526321,
+ "percentile_inc_nulls": 0.32664399541302547,
+ "sum_tokens_in_value_count_group": 50,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 50
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.32381065510482865,
+ "percentile_inc_nulls": 0.3247063940843845,
+ "sum_tokens_in_value_count_group": 98,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 49
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.32095979093662763,
+ "percentile_inc_nulls": 0.32185930641781013,
+ "sum_tokens_in_value_count_group": 144,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 48
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3200293005483954,
+ "percentile_inc_nulls": 0.32093004863774766,
+ "sum_tokens_in_value_count_group": 47,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 47
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3172972223872028,
+ "percentile_inc_nulls": 0.3182015896239472,
+ "sum_tokens_in_value_count_group": 138,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 46
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.31373364217695154,
+ "percentile_inc_nulls": 0.3146427300407292,
+ "sum_tokens_in_value_count_group": 180,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 45
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.30937815525331114,
+ "percentile_inc_nulls": 0.31029301277235166,
+ "sum_tokens_in_value_count_group": 220,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 44
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.30767555581952444,
+ "percentile_inc_nulls": 0.3085926687492586,
+ "sum_tokens_in_value_count_group": 86,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 43
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.30434954762329003,
+ "percentile_inc_nulls": 0.3052710664715884,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 42
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.3035378432420661,
+ "percentile_inc_nulls": 0.30446043734429984,
+ "sum_tokens_in_value_count_group": 41,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 41
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2987864029617311,
+ "percentile_inc_nulls": 0.2997152912333425,
+ "sum_tokens_in_value_count_group": 240,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 40
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2956979667795133,
+ "percentile_inc_nulls": 0.29663094626122033,
+ "sum_tokens_in_value_count_group": 156,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 39
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.29344103264635424,
+ "percentile_inc_nulls": 0.29437700185851556,
+ "sum_tokens_in_value_count_group": 114,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 38
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.29124349151669937,
+ "percentile_inc_nulls": 0.29218237178219775,
+ "sum_tokens_in_value_count_group": 111,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 37
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2891647363940528,
+ "percentile_inc_nulls": 0.29010637035865394,
+ "sum_tokens_in_value_count_group": 105,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 35
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.28579913286214886,
+ "percentile_inc_nulls": 0.28674522519672585,
+ "sum_tokens_in_value_count_group": 170,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 34
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2818791946308725,
+ "percentile_inc_nulls": 0.28283047965518604,
+ "sum_tokens_in_value_count_group": 198,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 33
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2799786185187385,
+ "percentile_inc_nulls": 0.2809324212108031,
+ "sum_tokens_in_value_count_group": 96,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 32
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2775237077072321,
+ "percentile_inc_nulls": 0.2784807623868085,
+ "sum_tokens_in_value_count_group": 124,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 31
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.273366197461939,
+ "percentile_inc_nulls": 0.2743287595397208,
+ "sum_tokens_in_value_count_group": 210,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 30
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2704955356259032,
+ "percentile_inc_nulls": 0.2714619004310175,
+ "sum_tokens_in_value_count_group": 145,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 29
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2677238621290412,
+ "percentile_inc_nulls": 0.268693898532959,
+ "sum_tokens_in_value_count_group": 140,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2639821029082774,
+ "percentile_inc_nulls": 0.26495709597058015,
+ "sum_tokens_in_value_count_group": 189,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 27
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2603789273623567,
+ "percentile_inc_nulls": 0.26135869350310414,
+ "sum_tokens_in_value_count_group": 182,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 26
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2579042188830156,
+ "percentile_inc_nulls": 0.2588872632369805,
+ "sum_tokens_in_value_count_group": 125,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 25
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2541030666587476,
+ "percentile_inc_nulls": 0.2550911463482146,
+ "sum_tokens_in_value_count_group": 192,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 24
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2509156421373562,
+ "percentile_inc_nulls": 0.2519079441654474,
+ "sum_tokens_in_value_count_group": 161,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 23
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.24612460652135182,
+ "percentile_inc_nulls": 0.24712325517023215,
+ "sum_tokens_in_value_count_group": 242,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 22
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.24113559422700004,
+ "percentile_inc_nulls": 0.2421408517537269,
+ "sum_tokens_in_value_count_group": 252,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 21
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.23638415394666512,
+ "percentile_inc_nulls": 0.23739570564276957,
+ "sum_tokens_in_value_count_group": 240,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 20
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2299895072360476,
+ "percentile_inc_nulls": 0.23100952983510614,
+ "sum_tokens_in_value_count_group": 323,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 19
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.22286234681554518,
+ "percentile_inc_nulls": 0.22389181066867014,
+ "sum_tokens_in_value_count_group": 360,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 18
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2188236225772604,
+ "percentile_inc_nulls": 0.21985843647435643,
+ "sum_tokens_in_value_count_group": 204,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 17
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.20995426738730183,
+ "percentile_inc_nulls": 0.21100083040056938,
+ "sum_tokens_in_value_count_group": 448,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 16
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.2019362119142365,
+ "percentile_inc_nulls": 0.2029933963383289,
+ "sum_tokens_in_value_count_group": 405,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 15
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.19445269347270888,
+ "percentile_inc_nulls": 0.1955197912135711,
+ "sum_tokens_in_value_count_group": 378,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 14
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.18158420938013498,
+ "percentile_inc_nulls": 0.18266835382972835,
+ "sum_tokens_in_value_count_group": 650,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 13
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.17279404486151528,
+ "percentile_inc_nulls": 0.1738898335244573,
+ "sum_tokens_in_value_count_group": 444,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 12
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.16538971709132666,
+ "percentile_inc_nulls": 0.1664953141682154,
+ "sum_tokens_in_value_count_group": 374,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 11
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.1558868365306567,
+ "percentile_inc_nulls": 0.15700502194630073,
+ "sum_tokens_in_value_count_group": 480,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 10
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.14394884282631504,
+ "percentile_inc_nulls": 0.14508284234252045,
+ "sum_tokens_in_value_count_group": 603,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 9
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.13143671675476631,
+ "percentile_inc_nulls": 0.1325872909169995,
+ "sum_tokens_in_value_count_group": 632,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 8
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.12145869216606286,
+ "percentile_inc_nulls": 0.12262248408398913,
+ "sum_tokens_in_value_count_group": 504,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 7
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.11076795153530916,
+ "percentile_inc_nulls": 0.11194590533433513,
+ "sum_tokens_in_value_count_group": 540,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 6
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.10017619924372911,
+ "percentile_inc_nulls": 0.10136818379532608,
+ "sum_tokens_in_value_count_group": 535,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 5
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.08655540377343551,
+ "percentile_inc_nulls": 0.0877654316105817,
+ "sum_tokens_in_value_count_group": 688,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 4
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.0702817208132882,
+ "percentile_inc_nulls": 0.07151330618055285,
+ "sum_tokens_in_value_count_group": 822,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 3
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0.04727683078933298,
+ "percentile_inc_nulls": 0.0485388904266677,
+ "sum_tokens_in_value_count_group": 1162,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 0,
+ "percentile_inc_nulls": 0.0013246866226422904,
+ "sum_tokens_in_value_count_group": 2388,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "percentile_ex_nulls": 1,
+ "percentile_inc_nulls": 1,
+ "sum_tokens_in_value_count_group": 2780,
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2780
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_ex_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_inc_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "percentile_ex_nulls",
+ "sort": "descending",
+ "title": "Percentile",
+ "type": "quantitative"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Count of values",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "interpolate": "step-after",
+ "type": "line"
+ },
+ "title": {
+ "subtitle": "In this col, 67 values (0.1%) are null and there are 4413 distinct values",
+ "text": "Distribution of counts of values in column first_name"
+ }
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "william",
+ "value_count": 2780
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "john",
+ "value_count": 2736
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "thomas",
+ "value_count": 1448
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "george",
+ "value_count": 1415
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "henry",
+ "value_count": 1306
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "james",
+ "value_count": 1265
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "sir",
+ "value_count": 1262
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "charles",
+ "value_count": 1216
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "edward",
+ "value_count": 911
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "robert",
+ "value_count": 884
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Top 10 values by value count"
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "janette",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "abnayne",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "basier",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "vabe",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 4413,
+ "group_name": "first_name",
+ "total_non_null_rows": 50511,
+ "total_rows_inc_nulls": 50578,
+ "value": "dering",
+ "value_count": 1
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "scale": {
+ "domain": [
+ 0,
+ 2780
+ ]
+ },
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Bottom 5 values by value count"
+ }
+ ]
+ },
+ {
+ "hconcat": [
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9991315897016755,
+ "percentile_inc_nulls": 0.9993277709676144,
+ "sum_tokens_in_value_count_group": 34,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 34
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9955557825909277,
+ "percentile_inc_nulls": 0.9965597690695559,
+ "sum_tokens_in_value_count_group": 140,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9941765427053535,
+ "percentile_inc_nulls": 0.9954921111945906,
+ "sum_tokens_in_value_count_group": 54,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 27
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9935380057212914,
+ "percentile_inc_nulls": 0.9949978251413658,
+ "sum_tokens_in_value_count_group": 25,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 25
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9929250102165917,
+ "percentile_inc_nulls": 0.9945233105302701,
+ "sum_tokens_in_value_count_group": 24,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 24
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.992363097670617,
+ "percentile_inc_nulls": 0.9940883388034323,
+ "sum_tokens_in_value_count_group": 22,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 22
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9912903555373928,
+ "percentile_inc_nulls": 0.9932579382340148,
+ "sum_tokens_in_value_count_group": 42,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 21
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9902686963628934,
+ "percentile_inc_nulls": 0.9924670805488552,
+ "sum_tokens_in_value_count_group": 40,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 20
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9892981201471189,
+ "percentile_inc_nulls": 0.9917157657479536,
+ "sum_tokens_in_value_count_group": 38,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 19
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9856201471189211,
+ "percentile_inc_nulls": 0.9888686780813792,
+ "sum_tokens_in_value_count_group": 144,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 18
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9830149162239477,
+ "percentile_inc_nulls": 0.9868519909842224,
+ "sum_tokens_in_value_count_group": 102,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 17
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9772936248467511,
+ "percentile_inc_nulls": 0.9824231879473289,
+ "sum_tokens_in_value_count_group": 224,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 16
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.964267470371884,
+ "percentile_inc_nulls": 0.9723397524615446,
+ "sum_tokens_in_value_count_group": 510,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 15
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9413823048630977,
+ "percentile_inc_nulls": 0.9546245403139705,
+ "sum_tokens_in_value_count_group": 896,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 14
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.9061861463015938,
+ "percentile_inc_nulls": 0.9273794930602238,
+ "sum_tokens_in_value_count_group": 1378,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 13
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.8565335104209235,
+ "percentile_inc_nulls": 0.8889438095614695,
+ "sum_tokens_in_value_count_group": 1944,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 12
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.7893849611769513,
+ "percentile_inc_nulls": 0.8369646882043577,
+ "sum_tokens_in_value_count_group": 2629,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 11
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.711738863914998,
+ "percentile_inc_nulls": 0.7768595041322314,
+ "sum_tokens_in_value_count_group": 3040,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 10
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.6372599100939926,
+ "percentile_inc_nulls": 0.7192059788840999,
+ "sum_tokens_in_value_count_group": 2916,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 9
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.5657437678790356,
+ "percentile_inc_nulls": 0.6638459409229309,
+ "sum_tokens_in_value_count_group": 2800,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 8
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.499948917041275,
+ "percentile_inc_nulls": 0.6129147059986555,
+ "sum_tokens_in_value_count_group": 2576,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 7
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.434971393543114,
+ "percentile_inc_nulls": 0.5626161572225078,
+ "sum_tokens_in_value_count_group": 2544,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 6
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.37316101348590114,
+ "percentile_inc_nulls": 0.5147692672703548,
+ "sum_tokens_in_value_count_group": 2420,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 5
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.31461994278708627,
+ "percentile_inc_nulls": 0.4694531219107122,
+ "sum_tokens_in_value_count_group": 2292,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 4
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.24496832856559048,
+ "percentile_inc_nulls": 0.41553639922495944,
+ "sum_tokens_in_value_count_group": 2727,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 3
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0.16252043318348997,
+ "percentile_inc_nulls": 0.35171418403258337,
+ "sum_tokens_in_value_count_group": 3228,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 0,
+ "percentile_inc_nulls": 0.225908497765827,
+ "sum_tokens_in_value_count_group": 6363,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "percentile_ex_nulls": 1,
+ "percentile_inc_nulls": 1,
+ "sum_tokens_in_value_count_group": 34,
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 34
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_ex_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_inc_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "percentile_ex_nulls",
+ "sort": "descending",
+ "title": "Percentile",
+ "type": "quantitative"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Count of values",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "interpolate": "step-after",
+ "type": "line"
+ },
+ "title": {
+ "subtitle": "In this col, 11,426 values (22.6%) are null and there are 12363 distinct values",
+ "text": "Distribution of counts of values in column postcode_fake"
+ }
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "se1 7sg",
+ "value_count": 34
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "sw1a 2jh",
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "sw1p 3pl",
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "l3 0ah",
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "sw1h 9aa",
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "se1 8xz",
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "pl1 3dq",
+ "value_count": 27
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "sw1a 2bj",
+ "value_count": 27
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "se1 7eh",
+ "value_count": 25
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "s8 8ly",
+ "value_count": 24
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Top 10 values by value count"
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "dyr 8rp",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "wf1 5er",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "ba3 2xu",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "rg9 0tb",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 12363,
+ "group_name": "postcode_fake",
+ "total_non_null_rows": 39152,
+ "total_rows_inc_nulls": 50578,
+ "value": "bn14 7as",
+ "value_count": 1
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "scale": {
+ "domain": [
+ 0,
+ 34
+ ]
+ },
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Bottom 5 values by value count"
+ }
+ ]
+ },
+ {
+ "hconcat": [
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.9430504148053606,
+ "percentile_inc_nulls": 0.9558899126102258,
+ "sum_tokens_in_value_count_group": 2231,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2231
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.8983024888321633,
+ "percentile_inc_nulls": 0.9212305745581083,
+ "sum_tokens_in_value_count_group": 1753,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1753
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.8536056158264199,
+ "percentile_inc_nulls": 0.8866107793902487,
+ "sum_tokens_in_value_count_group": 1751,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1751
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.8123548181238034,
+ "percentile_inc_nulls": 0.8546601289098027,
+ "sum_tokens_in_value_count_group": 1616,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1616
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.7715379706445438,
+ "percentile_inc_nulls": 0.8230455929455495,
+ "sum_tokens_in_value_count_group": 1599,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1599
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.7308487555839183,
+ "percentile_inc_nulls": 0.7915299141919412,
+ "sum_tokens_in_value_count_group": 1594,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1594
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.696081684747926,
+ "percentile_inc_nulls": 0.7646012100122583,
+ "sum_tokens_in_value_count_group": 1362,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1362
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.6629227823867263,
+ "percentile_inc_nulls": 0.7389181066867017,
+ "sum_tokens_in_value_count_group": 1299,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1299
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.6321888959795788,
+ "percentile_inc_nulls": 0.7151132903633991,
+ "sum_tokens_in_value_count_group": 1204,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1204
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.6024760689215061,
+ "percentile_inc_nulls": 0.6920993317252561,
+ "sum_tokens_in_value_count_group": 1164,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1164
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.5732482450542438,
+ "percentile_inc_nulls": 0.6694610304875638,
+ "sum_tokens_in_value_count_group": 1145,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1145
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.5462412252712189,
+ "percentile_inc_nulls": 0.6485428447150935,
+ "sum_tokens_in_value_count_group": 1058,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1058
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.5202552648372687,
+ "percentile_inc_nulls": 0.6284155166277828,
+ "sum_tokens_in_value_count_group": 1018,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1018
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.5009061901723038,
+ "percentile_inc_nulls": 0.6134287634940092,
+ "sum_tokens_in_value_count_group": 758,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 758
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4846713465220166,
+ "percentile_inc_nulls": 0.6008541262999723,
+ "sum_tokens_in_value_count_group": 636,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 636
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4693554562858966,
+ "percentile_inc_nulls": 0.5889912610225789,
+ "sum_tokens_in_value_count_group": 600,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 600
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4556732610082961,
+ "percentile_inc_nulls": 0.5783937680414409,
+ "sum_tokens_in_value_count_group": 536,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 536
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.44410976388002554,
+ "percentile_inc_nulls": 0.5694373047570089,
+ "sum_tokens_in_value_count_group": 453,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 453
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.43280153158902357,
+ "percentile_inc_nulls": 0.560678555893867,
+ "sum_tokens_in_value_count_group": 443,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 443
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4226930440331844,
+ "percentile_inc_nulls": 0.5528490648107873,
+ "sum_tokens_in_value_count_group": 396,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 396
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4129674537332483,
+ "percentile_inc_nulls": 0.5453161453596425,
+ "sum_tokens_in_value_count_group": 381,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 381
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.4039566049776643,
+ "percentile_inc_nulls": 0.5383368262881094,
+ "sum_tokens_in_value_count_group": 353,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 353
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3951499680918953,
+ "percentile_inc_nulls": 0.5315156787536083,
+ "sum_tokens_in_value_count_group": 345,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 345
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.38723675813656666,
+ "percentile_inc_nulls": 0.5253865316936217,
+ "sum_tokens_in_value_count_group": 310,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 310
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.38008934269304406,
+ "percentile_inc_nulls": 0.5198505278975049,
+ "sum_tokens_in_value_count_group": 280,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 280
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.37419272495213785,
+ "percentile_inc_nulls": 0.5152833247657085,
+ "sum_tokens_in_value_count_group": 231,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 231
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3685768985322272,
+ "percentile_inc_nulls": 0.5109336074973309,
+ "sum_tokens_in_value_count_group": 220,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 220
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3631908104658583,
+ "percentile_inc_nulls": 0.5067618332081142,
+ "sum_tokens_in_value_count_group": 211,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 211
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3581876196553925,
+ "percentile_inc_nulls": 0.5028866305508324,
+ "sum_tokens_in_value_count_group": 196,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 196
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.35328653477983407,
+ "percentile_inc_nulls": 0.49909051366206647,
+ "sum_tokens_in_value_count_group": 192,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 192
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3487428206764518,
+ "percentile_inc_nulls": 0.4955711969631065,
+ "sum_tokens_in_value_count_group": 178,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 178
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3442246330567964,
+ "percentile_inc_nulls": 0.4920716517062754,
+ "sum_tokens_in_value_count_group": 177,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 177
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3397574984045948,
+ "percentile_inc_nulls": 0.4886116493337024,
+ "sum_tokens_in_value_count_group": 175,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 175
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3309763880025527,
+ "percentile_inc_nulls": 0.4818102732413302,
+ "sum_tokens_in_value_count_group": 344,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 172
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3266113592852584,
+ "percentile_inc_nulls": 0.47842935663727315,
+ "sum_tokens_in_value_count_group": 171,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 171
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3182386726228462,
+ "percentile_inc_nulls": 0.47194432361896477,
+ "sum_tokens_in_value_count_group": 328,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 164
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.31410338225909384,
+ "percentile_inc_nulls": 0.4687413499940686,
+ "sum_tokens_in_value_count_group": 162,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 162
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.310044671346522,
+ "percentile_inc_nulls": 0.46559769069555934,
+ "sum_tokens_in_value_count_group": 159,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 159
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.306037013401404,
+ "percentile_inc_nulls": 0.4624935742813081,
+ "sum_tokens_in_value_count_group": 157,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 157
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.3020804084237396,
+ "percentile_inc_nulls": 0.45942900075131476,
+ "sum_tokens_in_value_count_group": 155,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 155
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2982769623484365,
+ "percentile_inc_nulls": 0.45648305587409543,
+ "sum_tokens_in_value_count_group": 149,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 149
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.29449904275686023,
+ "percentile_inc_nulls": 0.45355688243900505,
+ "sum_tokens_in_value_count_group": 148,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 148
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.29074664964901087,
+ "percentile_inc_nulls": 0.4506504804460437,
+ "sum_tokens_in_value_count_group": 147,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 147
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2870453095086152,
+ "percentile_inc_nulls": 0.4477836213373404,
+ "sum_tokens_in_value_count_group": 145,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 145
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.28344607530312704,
+ "percentile_inc_nulls": 0.44499584799715286,
+ "sum_tokens_in_value_count_group": 141,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 141
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.27994894703254625,
+ "percentile_inc_nulls": 0.44228716042548144,
+ "sum_tokens_in_value_count_group": 137,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 137
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.27647734524569245,
+ "percentile_inc_nulls": 0.43959824429593897,
+ "sum_tokens_in_value_count_group": 136,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 136
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.273107849393746,
+ "percentile_inc_nulls": 0.4369884139349124,
+ "sum_tokens_in_value_count_group": 132,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 132
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.26647096362476064,
+ "percentile_inc_nulls": 0.43184783898137535,
+ "sum_tokens_in_value_count_group": 260,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 130
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.26317804722399485,
+ "percentile_inc_nulls": 0.4292973229467357,
+ "sum_tokens_in_value_count_group": 129,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 129
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.25993618379068284,
+ "percentile_inc_nulls": 0.4267863497963541,
+ "sum_tokens_in_value_count_group": 127,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 127
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2569240587109126,
+ "percentile_inc_nulls": 0.42445331962513344,
+ "sum_tokens_in_value_count_group": 118,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 118
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.25398851308232295,
+ "percentile_inc_nulls": 0.42217960378029973,
+ "sum_tokens_in_value_count_group": 115,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 115
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2512827058072751,
+ "percentile_inc_nulls": 0.42008383091462687,
+ "sum_tokens_in_value_count_group": 106,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 106
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.24862795149968087,
+ "percentile_inc_nulls": 0.4180276009332121,
+ "sum_tokens_in_value_count_group": 104,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 104
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.24599872367581366,
+ "percentile_inc_nulls": 0.4159911423939262,
+ "sum_tokens_in_value_count_group": 103,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 103
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.24339502233567323,
+ "percentile_inc_nulls": 0.41397445529676935,
+ "sum_tokens_in_value_count_group": 102,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 102
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.23308232291001918,
+ "percentile_inc_nulls": 0.4059867926766578,
+ "sum_tokens_in_value_count_group": 404,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 101
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2305807275047862,
+ "percentile_inc_nulls": 0.404049191348017,
+ "sum_tokens_in_value_count_group": 98,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 98
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2281046585832801,
+ "percentile_inc_nulls": 0.40213136146150497,
+ "sum_tokens_in_value_count_group": 97,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 97
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2256796426292278,
+ "percentile_inc_nulls": 0.40025307445925107,
+ "sum_tokens_in_value_count_group": 95,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 95
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.22088066368857695,
+ "percentile_inc_nulls": 0.39653604333900117,
+ "sum_tokens_in_value_count_group": 188,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 94
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2185067007019783,
+ "percentile_inc_nulls": 0.39469729922100516,
+ "sum_tokens_in_value_count_group": 93,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 93
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.21618379068283344,
+ "percentile_inc_nulls": 0.39289809798726716,
+ "sum_tokens_in_value_count_group": 91,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 91
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.21393746011486914,
+ "percentile_inc_nulls": 0.3911582110799162,
+ "sum_tokens_in_value_count_group": 88,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 88
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.21171665603063183,
+ "percentile_inc_nulls": 0.3894380956146941,
+ "sum_tokens_in_value_count_group": 87,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 87
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2095213784301212,
+ "percentile_inc_nulls": 0.38773775159160107,
+ "sum_tokens_in_value_count_group": 86,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 86
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.2052329291640077,
+ "percentile_inc_nulls": 0.384416149313931,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 84
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.20321633694958519,
+ "percentile_inc_nulls": 0.3828542053857409,
+ "sum_tokens_in_value_count_group": 79,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 79
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.20122527121888956,
+ "percentile_inc_nulls": 0.38131203289967974,
+ "sum_tokens_in_value_count_group": 78,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 78
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1993363114231015,
+ "percentile_inc_nulls": 0.3798489461821345,
+ "sum_tokens_in_value_count_group": 74,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 74
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.19749840459476709,
+ "percentile_inc_nulls": 0.37842540234884736,
+ "sum_tokens_in_value_count_group": 72,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 72
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.19568602425015957,
+ "percentile_inc_nulls": 0.37702162995768906,
+ "sum_tokens_in_value_count_group": 71,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 71
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.19211231652839822,
+ "percentile_inc_nulls": 0.3742536280596307,
+ "sum_tokens_in_value_count_group": 140,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 70
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.18858966177409064,
+ "percentile_inc_nulls": 0.3715251690458302,
+ "sum_tokens_in_value_count_group": 138,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 69
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1868538608806637,
+ "percentile_inc_nulls": 0.370180710981059,
+ "sum_tokens_in_value_count_group": 68,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 68
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.18343331206126356,
+ "percentile_inc_nulls": 0.3675313377357744,
+ "sum_tokens_in_value_count_group": 134,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 67
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1817485641352904,
+ "percentile_inc_nulls": 0.36622642255526117,
+ "sum_tokens_in_value_count_group": 66,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 66
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1754179961710275,
+ "percentile_inc_nulls": 0.36132310490727193,
+ "sum_tokens_in_value_count_group": 248,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 62
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.17386088066368854,
+ "percentile_inc_nulls": 0.36011704693740365,
+ "sum_tokens_in_value_count_group": 61,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 61
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1723292916400766,
+ "percentile_inc_nulls": 0.3589307604096643,
+ "sum_tokens_in_value_count_group": 60,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 60
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.16788768347160177,
+ "percentile_inc_nulls": 0.3554905294792202,
+ "sum_tokens_in_value_count_group": 174,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 58
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.164977664326739,
+ "percentile_inc_nulls": 0.35323658507651545,
+ "sum_tokens_in_value_count_group": 114,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 57
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.16216975111678367,
+ "percentile_inc_nulls": 0.3510617264423267,
+ "sum_tokens_in_value_count_group": 110,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 55
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.16079132099553284,
+ "percentile_inc_nulls": 0.34999406856736126,
+ "sum_tokens_in_value_count_group": 54,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 54
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.15808551372048496,
+ "percentile_inc_nulls": 0.3478982957016885,
+ "sum_tokens_in_value_count_group": 106,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 53
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1567581365666879,
+ "percentile_inc_nulls": 0.3468701807109811,
+ "sum_tokens_in_value_count_group": 52,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 52
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.15545628589661775,
+ "percentile_inc_nulls": 0.3458618371624026,
+ "sum_tokens_in_value_count_group": 51,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 51
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.15162731333758772,
+ "percentile_inc_nulls": 0.3428961208430543,
+ "sum_tokens_in_value_count_group": 150,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 50
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.14912571793235485,
+ "percentile_inc_nulls": 0.34095851951441336,
+ "sum_tokens_in_value_count_group": 98,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 49
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.14667517549457565,
+ "percentile_inc_nulls": 0.3390604610700304,
+ "sum_tokens_in_value_count_group": 96,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 48
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.14427568602425012,
+ "percentile_inc_nulls": 0.33720194550990545,
+ "sum_tokens_in_value_count_group": 94,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 47
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1431014677728143,
+ "percentile_inc_nulls": 0.33629245917197204,
+ "sum_tokens_in_value_count_group": 46,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 46
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.14195277600510525,
+ "percentile_inc_nulls": 0.33540274427616745,
+ "sum_tokens_in_value_count_group": 45,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 45
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1385832801531589,
+ "percentile_inc_nulls": 0.332792913915141,
+ "sum_tokens_in_value_count_group": 132,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 44
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.13638800255264838,
+ "percentile_inc_nulls": 0.33109256989204794,
+ "sum_tokens_in_value_count_group": 86,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 43
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.13317166560306315,
+ "percentile_inc_nulls": 0.3286013681837954,
+ "sum_tokens_in_value_count_group": 126,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 42
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.13107849393746007,
+ "percentile_inc_nulls": 0.3269801099292182,
+ "sum_tokens_in_value_count_group": 82,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 41
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.12903637523931077,
+ "percentile_inc_nulls": 0.3253983945588991,
+ "sum_tokens_in_value_count_group": 80,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 40
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.12704530950861515,
+ "percentile_inc_nulls": 0.32385622207283804,
+ "sum_tokens_in_value_count_group": 78,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 39
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.1251052967453733,
+ "percentile_inc_nulls": 0.3223535924710348,
+ "sum_tokens_in_value_count_group": 76,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 38
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.12038289725590301,
+ "percentile_inc_nulls": 0.31869587567717195,
+ "sum_tokens_in_value_count_group": 185,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 37
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.11946394384173575,
+ "percentile_inc_nulls": 0.3179841037605283,
+ "sum_tokens_in_value_count_group": 36,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 36
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.11499680918953414,
+ "percentile_inc_nulls": 0.3145241013879553,
+ "sum_tokens_in_value_count_group": 175,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 35
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.11152520740268024,
+ "percentile_inc_nulls": 0.3118351852584127,
+ "sum_tokens_in_value_count_group": 136,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 34
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.10899808551372048,
+ "percentile_inc_nulls": 0.3098778124876429,
+ "sum_tokens_in_value_count_group": 99,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 33
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.10409700063816207,
+ "percentile_inc_nulls": 0.306081695598877,
+ "sum_tokens_in_value_count_group": 192,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 32
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.10093171665603062,
+ "percentile_inc_nulls": 0.3036300367748823,
+ "sum_tokens_in_value_count_group": 124,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 31
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.09786853860880662,
+ "percentile_inc_nulls": 0.30125746371940365,
+ "sum_tokens_in_value_count_group": 120,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 30
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.09268666241225276,
+ "percentile_inc_nulls": 0.297243860967219,
+ "sum_tokens_in_value_count_group": 203,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 29
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.08982769623484366,
+ "percentile_inc_nulls": 0.29502945944877224,
+ "sum_tokens_in_value_count_group": 112,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 28
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.08638162093171664,
+ "percentile_inc_nulls": 0.2923603147613587,
+ "sum_tokens_in_value_count_group": 135,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 27
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.08306317804722396,
+ "percentile_inc_nulls": 0.28979002728459013,
+ "sum_tokens_in_value_count_group": 130,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 26
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.08051052967453731,
+ "percentile_inc_nulls": 0.2878128830716913,
+ "sum_tokens_in_value_count_group": 100,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 25
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.07622208040842371,
+ "percentile_inc_nulls": 0.2844912807940211,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 24
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.07328653477983404,
+ "percentile_inc_nulls": 0.28221756494918737,
+ "sum_tokens_in_value_count_group": 115,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 23
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.06935545628589657,
+ "percentile_inc_nulls": 0.2791727628613231,
+ "sum_tokens_in_value_count_group": 154,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 22
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.06506700701978307,
+ "percentile_inc_nulls": 0.275851160583653,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 21
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.060472239948947015,
+ "percentile_inc_nulls": 0.272292301000435,
+ "sum_tokens_in_value_count_group": 180,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 20
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.05465220165922147,
+ "percentile_inc_nulls": 0.26778441219502547,
+ "sum_tokens_in_value_count_group": 228,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 19
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.050976388002552664,
+ "percentile_inc_nulls": 0.2649373245284511,
+ "sum_tokens_in_value_count_group": 144,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 18
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.04533503509891512,
+ "percentile_inc_nulls": 0.2605678358179445,
+ "sum_tokens_in_value_count_group": 221,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 17
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.043292916400765824,
+ "percentile_inc_nulls": 0.2589861204476255,
+ "sum_tokens_in_value_count_group": 80,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 16
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.03793235481812385,
+ "percentile_inc_nulls": 0.25483411760053776,
+ "sum_tokens_in_value_count_group": 210,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 15
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.033643905552010245,
+ "percentile_inc_nulls": 0.25151251532286767,
+ "sum_tokens_in_value_count_group": 168,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 14
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.029329929802169752,
+ "percentile_inc_nulls": 0.24817114160306852,
+ "sum_tokens_in_value_count_group": 169,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 13
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.024735162731333804,
+ "percentile_inc_nulls": 0.24461228201985052,
+ "sum_tokens_in_value_count_group": 180,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 12
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.020804084237396325,
+ "percentile_inc_nulls": 0.24156747993198624,
+ "sum_tokens_in_value_count_group": 154,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 11
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.01850670070197835,
+ "percentile_inc_nulls": 0.23978805014037718,
+ "sum_tokens_in_value_count_group": 90,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 10
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.015749840459476694,
+ "percentile_inc_nulls": 0.23765273439044643,
+ "sum_tokens_in_value_count_group": 108,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 9
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.013707721761327396,
+ "percentile_inc_nulls": 0.23607101902012728,
+ "sum_tokens_in_value_count_group": 80,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 8
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.01084875558391829,
+ "percentile_inc_nulls": 0.23385661750168052,
+ "sum_tokens_in_value_count_group": 112,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 7
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.007938736439055516,
+ "percentile_inc_nulls": 0.23160267309897586,
+ "sum_tokens_in_value_count_group": 114,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 6
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.006024250159540556,
+ "percentile_inc_nulls": 0.23011981493930167,
+ "sum_tokens_in_value_count_group": 75,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 5
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.004084237396298707,
+ "percentile_inc_nulls": 0.22861718533749853,
+ "sum_tokens_in_value_count_group": 76,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 4
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.00255264837268665,
+ "percentile_inc_nulls": 0.2274308988097592,
+ "sum_tokens_in_value_count_group": 60,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 3
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0.001735800893426953,
+ "percentile_inc_nulls": 0.22679821266163158,
+ "sum_tokens_in_value_count_group": 32,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 0,
+ "percentile_inc_nulls": 0.22545375459686035,
+ "sum_tokens_in_value_count_group": 68,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "percentile_ex_nulls": 1,
+ "percentile_inc_nulls": 1,
+ "sum_tokens_in_value_count_group": 2231,
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value_count": 2231
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_ex_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "percentile_inc_nulls",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "percentile_ex_nulls",
+ "sort": "descending",
+ "title": "Percentile",
+ "type": "quantitative"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Count of values",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "interpolate": "step-after",
+ "type": "line"
+ },
+ "title": {
+ "subtitle": "In this col, 11,403 values (22.5%) are null and there are 537 distinct values",
+ "text": "Distribution of counts of values in column substr(dob, 1,4)"
+ }
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1862",
+ "value_count": 2231
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1860",
+ "value_count": 1753
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1861",
+ "value_count": 1751
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1859",
+ "value_count": 1616
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1857",
+ "value_count": 1599
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1858",
+ "value_count": 1594
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1856",
+ "value_count": 1362
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1855",
+ "value_count": 1299
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1851",
+ "value_count": 1204
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1850",
+ "value_count": 1164
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Top 10 values by value count"
+ },
+ {
+ "data": {
+ "values": [
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1417",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1111",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1325",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1302",
+ "value_count": 1
+ },
+ {
+ "distinct_value_count": 537,
+ "group_name": "substr_dob_1_4_",
+ "total_non_null_rows": 39175,
+ "total_rows_inc_nulls": 50578,
+ "value": "1525",
+ "value_count": 1
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "value",
+ "type": "nominal"
+ },
+ {
+ "field": "value_count",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_non_null_rows",
+ "type": "quantitative"
+ },
+ {
+ "field": "total_rows_inc_nulls",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "value",
+ "sort": "-y",
+ "title": null,
+ "type": "nominal"
+ },
+ "y": {
+ "field": "value_count",
+ "scale": {
+ "domain": [
+ 0,
+ 2231
+ ]
+ },
+ "title": "Value count",
+ "type": "quantitative"
+ }
+ },
+ "mark": "bar",
+ "title": "Bottom 5 values by value count"
+ }
+ ]
+ }
]
- },
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Bottom 5 values by value count"
- }
- ]
- },
- {
- "hconcat": [
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9991315897016755,
- "percentile_inc_nulls": 0.9993277709676144,
- "sum_tokens_in_value_count_group": 34,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 34
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9955557825909277,
- "percentile_inc_nulls": 0.9965597690695559,
- "sum_tokens_in_value_count_group": 140,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9941765427053535,
- "percentile_inc_nulls": 0.9954921111945906,
- "sum_tokens_in_value_count_group": 54,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 27
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9935380057212914,
- "percentile_inc_nulls": 0.9949978251413658,
- "sum_tokens_in_value_count_group": 25,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 25
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9929250102165917,
- "percentile_inc_nulls": 0.9945233105302701,
- "sum_tokens_in_value_count_group": 24,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 24
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.992363097670617,
- "percentile_inc_nulls": 0.9940883388034323,
- "sum_tokens_in_value_count_group": 22,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 22
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9912903555373928,
- "percentile_inc_nulls": 0.9932579382340148,
- "sum_tokens_in_value_count_group": 42,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 21
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9902686963628934,
- "percentile_inc_nulls": 0.9924670805488552,
- "sum_tokens_in_value_count_group": 40,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 20
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9892981201471189,
- "percentile_inc_nulls": 0.9917157657479536,
- "sum_tokens_in_value_count_group": 38,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 19
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9856201471189211,
- "percentile_inc_nulls": 0.9888686780813792,
- "sum_tokens_in_value_count_group": 144,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 18
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9830149162239477,
- "percentile_inc_nulls": 0.9868519909842224,
- "sum_tokens_in_value_count_group": 102,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 17
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9772936248467511,
- "percentile_inc_nulls": 0.9824231879473289,
- "sum_tokens_in_value_count_group": 224,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 16
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.964267470371884,
- "percentile_inc_nulls": 0.9723397524615446,
- "sum_tokens_in_value_count_group": 510,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 15
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9413823048630977,
- "percentile_inc_nulls": 0.9546245403139705,
- "sum_tokens_in_value_count_group": 896,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 14
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.9061861463015938,
- "percentile_inc_nulls": 0.9273794930602238,
- "sum_tokens_in_value_count_group": 1378,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 13
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.8565335104209235,
- "percentile_inc_nulls": 0.8889438095614695,
- "sum_tokens_in_value_count_group": 1944,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 12
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.7893849611769513,
- "percentile_inc_nulls": 0.8369646882043577,
- "sum_tokens_in_value_count_group": 2629,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 11
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.711738863914998,
- "percentile_inc_nulls": 0.7768595041322314,
- "sum_tokens_in_value_count_group": 3040,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 10
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.6372599100939926,
- "percentile_inc_nulls": 0.7192059788840999,
- "sum_tokens_in_value_count_group": 2916,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 9
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.5657437678790356,
- "percentile_inc_nulls": 0.6638459409229309,
- "sum_tokens_in_value_count_group": 2800,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 8
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.499948917041275,
- "percentile_inc_nulls": 0.6129147059986555,
- "sum_tokens_in_value_count_group": 2576,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 7
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.434971393543114,
- "percentile_inc_nulls": 0.5626161572225078,
- "sum_tokens_in_value_count_group": 2544,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 6
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.37316101348590114,
- "percentile_inc_nulls": 0.5147692672703548,
- "sum_tokens_in_value_count_group": 2420,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 5
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.31461994278708627,
- "percentile_inc_nulls": 0.4694531219107122,
- "sum_tokens_in_value_count_group": 2292,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 4
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.24496832856559048,
- "percentile_inc_nulls": 0.41553639922495944,
- "sum_tokens_in_value_count_group": 2727,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 3
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0.16252043318348997,
- "percentile_inc_nulls": 0.35171418403258337,
- "sum_tokens_in_value_count_group": 3228,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 2
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 0,
- "percentile_inc_nulls": 0.225908497765827,
- "sum_tokens_in_value_count_group": 6363,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 1
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "percentile_ex_nulls": 1,
- "percentile_inc_nulls": 1,
- "sum_tokens_in_value_count_group": 34,
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value_count": 34
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "percentile_ex_nulls",
- "type": "quantitative"
- },
- {
- "field": "percentile_inc_nulls",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "percentile_ex_nulls",
- "sort": "descending",
- "title": "Percentile",
- "type": "quantitative"
},
- "y": {
- "field": "value_count",
- "title": "Count of values",
- "type": "quantitative"
- }
- },
- "mark": {
- "interpolate": "step-after",
- "type": "line"
- },
- "title": {
- "subtitle": "In this col, 11,426 values (22.6%) are null and there are 12363 distinct values",
- "text": "Distribution of counts of values in column postcode_fake"
- }
- },
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "se1 7sg",
- "value_count": 34
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "sw1a 2jh",
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "sw1p 3pl",
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "l3 0ah",
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "sw1h 9aa",
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "se1 8xz",
- "value_count": 28
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "pl1 3dq",
- "value_count": 27
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "sw1a 2bj",
- "value_count": 27
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "se1 7eh",
- "value_count": 25
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "s8 8ly",
- "value_count": 24
- }
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAASjCAYAAABKRqY+AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQfYXUW1/lco0iGUAKFoiCAqIFeqf+TiJSAdVARCvZQrXgslXiFcsNKvqBAMRQTEKwIGRBTEQhXpUkWkSDDhIhBQIRBKaMn/+Q1M3N/JKfvsdc7ec3beeZ48Sb5vr9lr3rVmzbyzZs8Mmz179mxTEQJCQAgIASEgBISAEBACQkAICAEhMKAIDBOxHVDLSW0hIASEgBAQAkJACAgBISAEhIAQCAiI2MoRhIAQEAJCQAgIASEgBISAEBACQmCgERCxHWjzSXkhIASEgBAQAkJACAgBISAEhIAQELGVDwgBISAEhIAQEAJCQAgIASEgBITAQCMgYjvQ5pPyQkAICAEhIASEgBAQAkJACAgBISBiW5IPNB4+PWzYsLne/Nprr9krr7xiCy+8sC200EJuzWbNmmUzZsywBRZYwBZbbDF3fY0V9FrfIgrOnDnTXnrpJVt22WWLiA+szBtvvGHPPfecLbPMMjb//PP3pB3RR5v5Zk9e0KSSfvtoO72raG87faJNl156aXv11VeN/y+11FL9gl71CgEhIASEgBAQAkKgVgiI2JZkznXXXdfuu+++IW97//vfb6eeeqptueWW4eenn366HXTQQXb00UfbV7/61baaUdfvf/9723jjjW2dddZp+izP8N5//dd/td/97ne26aab2s0332yTJ0+2d7/73V23vPGd3ejb9ctyCOy///72gx/8wJZffnl7+umnc0iU88jf/vY3+/nPf27vfOc7bauttur5S88991z71Kc+Fep95JFHbPXVV+/JO5ZccsmwEPL666+HxZAySqOPlvHO+I4q2tuqfT/96U/tk5/8ZPj1vffeawcccIDdfffd9swzz9iIESO6huXXv/61/fWvf7VPfOIT89yiT9dgSUAICAEhIASEgBCoBQIitiWZMRLbHXfcMUxUn3rqKfvVr34V3n7OOefYf/zHf9h1111nP/7xj41n+NOunHLKKfZf//VfNnHixECGm5XHH3/cjj32WFtjjTXs8MMPn0Nsi5Khxnd2o2+vYWbCv8IKK9gSSyxh3/rWt+zTn/50r19RuL4777zTNtxww0AqICy9LmuttZY98MAD9vWvf90OPfRQGz58eE9eUQXRa/TRnjQkZyVVtLeVaptttpndeOONoU//93//t5199tmBmJ500km2+OKL52zRPx/baaed7Iorrgjk+IMf/GDX8hIQAkJACAgBISAEhMCgISBiW5LFIrHNTjQvueQS22233QI5+/vf/26/+MUvbMKECSFbs99++9kf//jHMMG97LLLbOTIkbb55puHbO71119v48aNsz//+c/2nve8x8aPHx8yt5/73OdChhDSd9ttt9mFF14Y6vqXf/kX+853vjOH2B5zzDFh0vv888+HLBEE6R3veIcdfPDB9oc//CG8c8011wxEm99B0N773vfO9U62TGb1ZWvsUUcdFdpB3bz3+OOPDxljynbbbRfewyT+f//3f0O7aWfMPjaa4sorr7TjjjvO/vSnP4XFAPRAdzKi++yzTyAC1LHtttvapEmT5rIkWdNvfvObIav5b//2b/bxj3/c9thjj/DcQw89ZIcddljIZC+yyCL2kY98JBBksqzYCHw//OEP24knnhie32uvvQwShi3An2w17bnjjjvsrrvusi222MKOPPJIm2+++cKzZMbRjawyWflWtmTbeWNppxt1Y1cKix/Uvdpqq4X/syV7hx12sDfffNMuvvhiW3HFFe2mm24KNok+cNFFFwXdwQSfHDNmTMCBDG2W6JFJbYcBtj/rrLPCogwEbP311w+2Wm+99YIuLNr86Ec/smuuuSYQK7D/zGc+M1db2T2Q9dGvfOUrQeddd93V6B/48sc+9rGwg6EZVvfff39o3+233x7a89GPfjT4Mc928sdu2kt7yJTja7fcckuwZ/SnI444IvRFdP6f//mf4OPdtAP/p27K1ltvbSwgnXbaacFG2HratGlz9W12a7TCGDKMLci+48Pf/va3Q3xoVX7yk5+09Gd8i23RtItFmmeffTbUNXbs2NBe/ITFlQ996EP2j3/8w6699tpgbxbU6KvYEt8444wzbKWVVgo6EVN+9rOfBXWIDfS75ZZbrqRIrNcIASEgBISAEBACdUVAxLYkyzYjtjHriApM8Nk+GLciM1knM8eE+Ytf/GIgqpAliOQHPvCBQEYgYGQGyfJAyJjExrLKKqsYxLDZVmSeQQ5SRoHoQIpj1giiBkGJxBuddt5557neyUQ26stEHnII2WRrMFli9KVAltE5++0m9aM/5YknngiT3myBVEMWKZAvdGVSzGQaDA455BC79NJLw7uYZEPcs4UJdtziDan97W9/G34N6WZiPnr06FAfer344ov2l7/8JdQ1ZcqUQJJ4J4QqTsDZus0z6Mp7eT+FeiDa1AWhguT853/+Z8Ce+j772c/al7/85Za2hBRkCwsc7XSjLogPhSz/1772NVt11VXnVAGx5d0//OEPA/mnfrCBWNAmFigg3LTtqquuCsSRRYZ///d/H0JssWM7DMDl85//fKiLLe5x9wFkjO+5sSftYOEEMg35JZMNycmWxq3IkEUWJChZH4F8xa26UR7csQvYQ5DYwsu/sQELEp38MUtsO7WXLe9f+tKXwqtZTKJfxkI78Q3K+eefb3vvvXcgvXnbQYb2G9/4RpDfd999g7/g0/QPFlP+7//+b66+DbFthTG/gzxiWxY/WAxrl7Vl10crf8Z34tZ32kmMoY0UYhY7T+LCFTEHO8eC/6ND9FUWQVjII66AId+HE9f4NzsQevWt+BAH03+EgBAQAkJACAiBeQYBEduSTN2M2HJ4DRk+ChNliEYkipAWJooUso4QMCbyZC7JyjZuCyaLFIkt2Tqym0wWmxHb8847L2RKyaaR4YLAQATbEVsmv43vzH5jS/YSsgzRYTJLxoxMMrofeOCB9r3vfW8OsYXwbrLJJoFMMUn+/ve/HzKb2RK3UkJiIWcQvvit4dSpU+3ll182vlGGtJJBbSy77LJLIKC8l/dDjCB7EDqyySwWROJKhnOjjTYKRIIsI4QhD7GFNFDvY489Fibn8Vvfxq3IkOF2tszqfvLJJ7fVjYxtuy206AP55w9ZbLK22APfQY/f/OY3gWTTRhYjIMGQY4hQN0SP3QP4LFk8ssFk5yB/1LP22msb+EOEWKDBbmT9wAh/zJZWxJYMIQQVXyWjC0nHftkS/W/PPfe0Cy64IGTh8blRo0YF3+rkj920NxLbL3zhC4aN0I3MKP0I/yVDCY6QUv4diW2edtAmFicghfgmerEA0IzYxr4NaW6HcTdbkSOxbeXP7O548MEHw0IBB1rtvvvuQVfiB4fcQWxZhIBQszjH4gq2J5vOIhG+QkaX/rjyyisHE1Ifsiw+sShA/KHPqQgBISAEhIAQEAJCoCgCIrZFketSrhmxjYQHMsiElqxa9vAoMrExO8frIEff/e53bfvtt29JbONBUTzf6vAoCABbjSGH8bRkDgxiYknmKmZsIUZMYtGpE7GFtLDNN5vlhDQxyY06xYwtRBJCz9ZdJv60iSxntsQMaXbrdpzsQ2T5vrYdsY14x7Zk6yaLyjvJRpFlpUSiQnYLffMQW7JsEKkXXnghnF6LHfl3s29s29myG93YktuO2HKqNtiQubz11lvt//2//xdILoSIrbkQ45hdje+lTtqdl+iRRcxmibP6Q0DPPPPMsEgSM/L8nkUXMn/4XR5ii+6QIXRl0YRMX+N2cxYnIJlx8SNbL9+qd/LHvO2ln0ZiG9/FFnC2akfiSt8lg032lWxxJLZ52pGX2Gb7NtvO22FchNi28md2XIB/NkuNzldffXVYwEKv2O+xOf2ULdWQ3BiDWGSgv+GPzUpcbOsyrOpxISAEhIAQEAJCQAjMQUDEtiRnaCS2ZGshjEyIY8YpmwHlMCS+LeU5tiKyhZbvO8kKPvnkk2GSmD08KmZss8SyFbElc8LWYkjfBhtsEEgH38JBICASbNslO3PCCSeE7Zd5iC2ZU2Qg3xAfChNlJvqxfZHYxmtW2hFbsjzoEbd2cq0P38JSyERT2hFbMt5k0n75y1+G7yL5lhaiDRm45557QraSZ9geSdlmm21CNpMML6dMMwGP2WDI4qKLLhqey25F5ttAyFUnYss3ku1smd2CybeR7XQj+9zp0CPIOt9oQgzZ6onvsBjC9nW+tyTLyHtoOxnWZsQWct4OA7a2kgmmbjK0EGkWZyDVLJLgA9iM7apkUyE8zbKurTK2ZPrIorcjtvgGmVkWJSCYZBFZgMEH6W+d/DGLY6f25iW2+DT9JhLbPO3IS2yzfZuMZzuMixDbVv4cYxfYYkN8iV0X3RJbtqRzgjcLQMQevkVmJwZ+woKHvrMtaTDSa4SAEBACQkAI1BQBEduSDBsnh5BITrHlm9H4/Rmki6xHltiy/ZKsGESWLY4c7kNWky1+ZE7IikFgyIyQbSMLSt15iC0TS0gd21YhA2wXhvTErcO8g63CbMulRGILWcq+EzIQM8yQC4gm2wohknzLGbPNkVx2Q2whEmxPRle+/4V4M5km8wNZe/jhh9sSWwgXWyvJJFMPB2KhGxlptsaiHwUcIK7xQCYWDchC8f0fhYk8743fUOYhthBntmaCI9hC0NrZMktsaVc73ThErBOxhUxBaingx7fQCy64YFhkYLGBQ5z4LpbMNYQ0bp/N1svP22FAVhJ/wOfICLNAg1+yRZb7jfkZOpDFxNdZiGGxhgOnssVDbGlXJEMcUgbRYjGEf7Pg0Mkfu2lvXmLL1mve329iG7ect8KYhSsWwsgqs32ab/BblbgVuRWxjTslsDHfoxMnKCwEseCTN2NL9ppPKliYYnGFvgleccGo8Tv7kkKzXiMEhIAQEAJCQAjUBAER25IM2XiPLYSDjCATcDJLlEhs+V6RrF3MmEYVkWGyyqFKZADZLgs5JnMLkSDD1ozYxsxjvMcWMsyklMLv+E6SU24hb3xzG0kc3+nyvkhsG98JceN3UV9OiuW7v+yWRTKE6EdpJLZMaiFIzbYiQ9Qh7HyvGEs80Ir3krGCuMTvgxvNSBYI0hoJK78HTzJqFLLWEF4IHCWLLf9nMYF2USBvfEfLIgDEF1LBYTuxbdQBSYpbkSF2EHBIGxN5tnK2s2Wj7p1060RsyYhDjrFDzGbyDrKn2D7al0w6+MSMfWO97TCgrSy0ZPGN2V9sx8JMPGSId2MrviGP31jGNkdiG300EkK+1wRDtrOyUNJsKzJ1xO++Y30cMMVhWGyx7+SP3bQXYou/xq3IkQzGrcgsNLEA0/iNbd52xG9syf6DbfYbW/yusW/zrWs7jMmOYl8Kiw1kcFuV2JZW/sxBYWTG8XOy4exoIJOOvflGlrgS405c1IlbkbEBfQACDrFl4YbFonhwHW3FT5BXEQJCQAgIASEgBISABwERWw96JciyvZOtyGzb41AcDlyJhcnt9OnTQ9YkbpXNqxITaL7TIwPYWDjplKxy3Pqb/X2nd0KqmIhTP9/JNruiJa+OPMd3wI8++qgtu+yyc52cnKcetjpCRtElfk+cxY+6yZhyrUnjqaxkcuP22uyJznneCw580xqv0UGmnS0b6wTndrrl0aHZM+hFve9617tCFrdT6YQBWVP8hcWGRh+k/ZBosqoQt3hQWqd3dvt7/Jj34MuN21m79cdO7e1Wt34/3w5j2gI2LLTwd7NC/2z1vXT2eeogDtGPuu0Lje+NNqFvUx99REUICAEhIASEgBAQAl4ERGy9CEpeCAgBIZAwAuwA4NThZoUFDrL6KkJACAgBISAEhIAQGHQERGwH3YLSXwgIASEgBISAEBACQkAICAEhMI8jIGI7jzuAmi8EhIAQEAJCQAgIASEgBISAEBh0BERsB92C0l8ICAEhIASEQKIIxOvdmqnn/V47tSbHttatXXlwnpfbngefXj7T2KfmRX/Lg+e87JO0fV71CxHbPL2ji2dwJk6F1YEoXYDW40exwdNPP20rrrhij2tuXx2HKDU7jKtUJRJ6GQdgdeoH3Hmb5xCrhJqVpCpgzeFc/TqgK8lGS6nkEYh3ardSlIP9eh0zuZKKmwa4Zo3TymPhhG5OeueUeu5N5rR+TvXuZel0Yn0v3xXr4vYATijnNHhOL6+icGMC95m3uqWgCp168U5O7edk+4033jicBp9C4cYM7qHPFk6XB3tOuM9zGODf/va3cFo+18BttdVWoSpuIODgT27D4LDOfpZbbrkl3D2fLRxY+sMf/rBnr63KJ+PtI9xCweGIVRSuVeRaR64ejFfqVaFHr9+Z10dFbBuQ565NrorppoNxr2q8R/aaa64J18g8/vjjc9kUh//Upz4V7nDsR2FyC0l46KGHwsDdrlx++eU2adKkcHLvgQceGO7d5P7Tc845Zy4xBv/dd9/dpTL30HIVC4Sz3wXbcZ0IQZ72cZ0QV41w5Qz39TaenJvVBxlO9+WqoFiYEHH/7XbbbRdOpqaANfeDcj9rXBXD7gwK7a5W6XfbO9WftQNXEHFtUvZank7yeX9///33h4lA48ryq6++ahdccMEcf+Kkak405lTqQS/cE4xv4WPZwhU39Pkrr7xyzt3A/J6ruvg510fFE6W5UocrsO6++27jijD8Kd5J3A6fsWPH2mabbRb6/V577dW2n3F1FZM1rggjXnV6vt17s7HPa79++qNXN8kXQ4BrsuLBZUyk8W/uPebQMgrxk6vmelE47f26664LBI+7x7kmjDvUKYwDvJP3c/0UhIUCyeX/vSpVENt4Ldt5553Xt7lFJ3xivK8bsY3XyTEv4GrDFEoktlyHxxjL4jBzN67347pGrtXrVO68885wnR7jC9c9Upi3XHHFFWHs+eAHP9ipCtfv4xVz9L049kGmf/GLX7jqzQpX5ZOR2D7yyCO2+uqr96w93VTEnPezn/1sWAD50pe+1I1o0s/m9VER2wYzQjyZfHcz2Wciy9Ua3EPbjthyxyNZxF6vUMcmRGILWeEe01YFHXfeeeewkrP88svbuHHjwuodesX7bZEFB05MBYu9997b5fAQw+233z5cA9TPEicwYLDSSisFMs3khVVt7t4k2BG4G6/24We0HUyyd78yKePOWggIk7Df/va3YRUO8swk6fOf//yc5jCx2mSTTcJ1Oosvvng/m1m47qwdWM174IEHAtHsdWlFbJ999tmwGvzEE0+EK6XqQmy575k+RYYKP4kle6cxGX36P9fcMJnAh66++upwZddSSy0VRLivFyLMogl+xMAEZp0m/5HYcnct8u3IMJMX+jz10186Pd/ON7Kxz+tD/fRHr26S9yPAXcwshEA2IZ0U/I+Yy4SW69D+5V/+JWQZIL/EZPx08803N65tY7We2MsCyAYbbDCXQj/+8Y/t0EMPDWMxsTlLbFmwZQE33sl+2mmnhb5K1pb7m2PhWqwddtghLFRffPHFob+yGIiO6Ebf5o5oxnomriw+QeboB/FqN94N2WDchGzyHhaRaAMxgowaMXfWrFlGZgXdyJRxdzX9nfvaKYxXP/rRj8KcAqLB4jNZmMYSiS1to0+zEMsiF+3iOq+40MpiNjGXMeyrX/1qGKuyWTPI0eGHHx7aTNsptJMFcO7M3mOPPcLzxC5iEllM4g5tayQRtLtd28GILDN3ZFOw97e+9a2mi87Ma2gLd6aTjSfDyF3Y6E9hwRDcyNCNGDEikDXuoIcwgT3j/9lnnx0W/Vj44L08Q4yFJGJf2nDJJZeExUbu1Aaf66+/PvgfhPE973mPjR8/fsiCt79HFKshEtss2Y7ZSTK3cY7VCheytSxmsvjD8yzIc788GGIX7rUHb/wRYs/iFPME/JK76+lHLOZ/8YtfDH10l112CX0CWTClHyCHrZhL4TuNhX5KX6K/tbuqspc+2ckX2vkkfRWyiL/iT//2b/8WcGi24yMSW3yQsZa4xjwUv6M9EE2uRwRXyoQJE0Kf+tznPjckgfS9730v9H/mzfHmAmxFHz/11FPDfP3II4+03/3udwFz+gMxALtliS1+u8UWW4RYEBc9Tj755NAW5sXEV+qkrhtuuCH0f2INftZsxx1XPH75y18OdRFPuLOeuET2v108JyZ20oPkEVebEr9YoMQ/mXvDy0466aS5fJQY1KyI2DagkiW2/JsBhYwKHZtJJ06YJUVMaPfdd99QCw6LUxE0yPgxsEEcGbwYiCFBGA5HRY6OfddddwUnYqBltTdbcBKcnQDF6hrOTVBnIgzZwjEJ5GSK6GR5iS1OQyCno1MI9jgQ78gWnH7q1KlhgMoWOiw60DkoBFU6HI5O9o2JBwQq6syglSVUOCoDYpzcsH2KPwSJadOmhckJgy+Thm984xtzVg/59/e///1ADAiw4N34DQEDMWSUQIEuTIRoA6v1dEgyauhC8MkW8OfnvJe2xAEfnNEDe9LxIcsxoDHhaLynl47LBADfaSwsHjBgQCSwI+9gQAHfKVOmBLJHIMFfCHpxcGBRoVmQ4TlkkAV7fI9gwEBBsMI/0JcBhskXfkQ2Py4wtCMSZA0JqvgUz3/zm98MkzV8B+yxPTsbwCS2lX6CHP2D92GvxowteoExK7UEfexCwGciRX20M+5oIKvIhBG8CJ7gASkuihf2aNYufs6kmxVOJlfgRn9o5YeNdsUGEElWz1mhzRJbJsRsSWLSFIkt2y+ZANC/s8Q29l9W07EleHCXNDgx2c4W+h/9ly1dDGhMjJlgEOjpf/g/9YMtE378Hn9juyD9jL7BYEvsiM+38idiTLNYxKQkG/uy1wahL7s84oIYvsREnQl9q36Q9cd2MaKVXzRr74477lhs9iipniPQSGyJDWwZJu4yTq6xxhphsk1h8ki8Jo5QVllllTBBZPJJ34RstPrUhDqI71lii28yMcIPGZ8h2OhDbGvMEuG7xEoWniBQcRJ+xhlnBH1YNEYHCBBxFzIUtwFnM7b0K0gncwbqoN8T7yFJxDTqY05AXehL/6BAmFnwI3YzAaafQhzo4zE2ZI0TiS0/I64yHoATYzxxNcZc/s3PeCfvZixlrIuFBYEVVlghyDLR5d2QQbCOW3KJ9fwc8hMX/4lvyBL/YsaWOUK7tjOXIiaCxTLLLBPswb+ZZzUuOhPDmIvgI4wX7MaiEE95njGXwrv5XbbtjFf4F/MsiBnv5N1xgYO5F/GIwu8hahTGMvRi/OFnzGVYBPHuXOtFp4rElnkV80rGDQgJNoqL8szpWuHCOMoYjo+DKeMedgdnfJmYCd4shPAzCuNvTHrgO8hQP++h4BOMKbFk/99sSy7zYPwdXLEj/Yx5VePOrV76ZCdfaOeTLMaxQATmzAeZL4JdsyRGJLZgQfuivzI3pZ1xnk9/Jh4wRwW7xp2WyPE5BbGPO+TZ7QiZJV4QG1kwIJ7RF/FV5gnoxHNZYosPx3lqnI/FGEBMwBbENPSBsPMu9MHG2DpbkAcDYiw7IFlEQY6+Q2xqF8+JJe30IDZl5/PZ/sgci37a6KOtdhaI2DZEmiyxjQ5KAGe1lckoq3gYPxY6Jat6ZDeZFEOi2A7CiiCORxBhtQc56oMgETiYLOJUZGJY+WKCSODMFsgfgxRkiCDAyimDDCQQJ4JsMLkkS0PQIbCzFblTxpaOhYMQlHA0dIokM74/dqpm30DF7FRcbTv22GPDBJ2VI5w3rmYxoY5ZUlZFI6Fi0g6WcdLL/5lgx4k5q0CsMkFQmYzHrBKBBecGY7aMQyzp+NmC/QgWBGbksUM2S0zbIR6ttoMT3AjKkdgycUFX6uVntIPMAXZrlsVmAsM29Li9J+pG5o6VelaCIR8QnrXWWiv4BxN6VsAYPBiYIDQEG/R83/veFyYfBH1km01oaCtBhmDFH3QAw7jFFxKEvgQHAnEnYsuKP+SHFUPkCDgESvRjwsUEhNVi/Pfcc88NkxqCKdu0WQjAnqz8M0g2ElvwpB7wYcJF/dQH4aSPMGDQfnRm4gp5wy+YlGJHfKwoXq3aRX+k3zBgMAjQBhYemvkhP8sWMjv0nZi1oL2R2ELg6Vu0GcIbiW2URx8motmMbfwuGfJGf2cBgUGMgStbGHTov0xyeA92ALvsVmTiEX0EvPBZfIxMC7Zksk3f5P9xK3KcIDf6E37XLBYxmSJ2xdiX3XZFn2HBK64QY2v+0M/b9YO4g6BVjGBy0sovmrUXX1pooYV6MZ9UHU4EGolt3A5JvyNWMBYR9xnXiHcsEDKmEY/pKxTGFsYm/L1ZJohnmhFb+iFEDsISd/GQgWXiSV/LFp6hP/OHPoi/oR+ZLmIoYy2xG+JJ/4Mg0HcYU7shtpE0EgvRBTLIgib1sABF3KPtjBXMF+hnxEom1s3GAeYQyKMnk2UIHmM0cZoxhHkCE+HYnmY7QeI30Uxomcew2MAEE2LIxJm5BZNX4hQkj0ktMQZilJfYEucZoynUR/+Mi22M2XExI7YxYkpsYDwEH8gmuLB4gF5x8YB5GlhRmCdAJPIQW8Z2xl4WTfEr5FjYSHkrcrPuGL+pjFs2W+GCj7Tbisy4FLN1cVGABSDGSogWc5xIbFkI5ufUh13ilvi4oEJ/id/xRp0jmWMuwByXeS2+zpjRmCzolU+2I7Ys0LfzSdrInAd940I+Yz2kkjiQLZE3RBzoH/SluOhDX6SfMr8CI/oYC+N8LtdYsgtL2AHZuHgBUSZpEeMZ8YJC4oeFtrgVuROxRYZ5L4QVOeYbMcnFnIv4HAuLJ8QffIAFOBahmD8wzvIeYkOreA5+eYktMZwFe7gO/CsuwmkrcsFBuJHY0iEjoYBEQagas3GNW5FxYhwOEsDkkUkhDhKJLQGBlUcMDcFigIEcZL+L5Xm2JzJ5xfkZSJiY8jzBPRsscCy2vuLonYgtekVHZesJQYVJQgxeETaIFZNLSGtjoePQtriljEEeUs7kATKLLCsvkFAGCNqR+wIrAAAgAElEQVTGZKQTsSWwsQKJTpAkAgeDMIMsiwN0PgY+AhSDHANY47ZubESWG5wILAxYrI7HQpsYuLJbiLPtayS2vJd2MnkBZwI+K/rYhUGZwRNiEwcBbAAZgUBmCzaGgLAVjUGFSQxb0yHKDEaQIYgPh//QeVl5i98706nJfmbbQd1MppgkQPYoDPR8PwleHmJLu1hMgIAzcWGCh+0gq9g9+iQTJyYdPE9QZhAl00KJW/0aiW2zrcgsijCxISOD3tQHEWNBh9VDfIm2s6oIRvhrEbxatYvMP/0mDkT0hVZ+yCCSLdgaXemPLHBFYgt+6HvppZeGgQs/zkNsY91MFJlMM3DSj7KHecR+wfY6fIXYAPFlcSBLbPFxMiEMVvRRBgsmqfShuBU5+41tK3/iAJ5msYgJBxO/+BlGFhcyyeiOvVnUof2sSNNn2/WDTsQWYtHKL4hVzdrbbqtbwWFCYgUQaCS2jBWQVzKfcUsqcZb4yiSLBRYmg5FkxBiHn/O7xoW+qFIzYsv4hK+yqEO2Kk42majSf7MlmyUirqF3zH7SrxkHYnY1yqELOrUjtvguE0LIKbGoMTMZ66K99DnGuZhB5Hf0J2Jf4/kZcUEqS/Yj1owv9P34KQP9g0k04xykvbHEg5IY04j5ZDZjho7YjhwkJFuI3/TvdsQ223biEfo1K43fCcddVjzb7HTtSJCy34UyxvN/xkbskiW2tBlC3pixxc7ggl2Zv0R8Uia2xEHaweIq+scMLfMn/s3CditcmC+2I7bE6XgIFXMgxmB8Py6wssiCjzAXiHPHmP2OpCRmQLOfHkSbk8WFDLGAE8cv5hPNvu/tlU82EtusL9Cn2/kkmUG4AGNytp8STxrHl0hsYwY2zpeRY9cb4x8cIdvHYlxq7BPYGH7Bwj42JqkEuaSvsUjFwnJWJ+RZzGJRph2xZY5MjGHRC3/J7rbK6tD4nTBZfOJ1NmbH5zvFc+JEI7HN6pHN2OLTzIVZcGAOH/ERsS0w8CLSSGyzhz1ts802YWWqkRQ1EtvsYSwMLAzSBOVIbFl1iQ7LOxlACKBMgGOJ30wwIGRXhOLPWZmMk10GNkgSK7+diG3M3mVPS4N4E8TIeFCYXDIYxq0SzaCkDTgpEwYG6phVYhBkgKezxe0onYgt74pbXgiGjYUOyAo+xDnuu+f9THAagwoBOJJ+OhoLEdmMLZMCyAiYNyuNxLbxGQgpQQ6SwkSathPksTMlkvnGb4l5hoUEvo0ggDPBYXEjEtvst65xlS777uy3M/Hn2B3iF7eKQ375hoP/Z4ltXMXOm7FlNRayx0pZXAQhgEZimw124H3vvfcG3+GdLNZQ0IOJQh5iG+uLp4lTH6QectxYyNyAcRG8WrUrEtuYEYjb1Zr5YfYbNxYvyFIyoWQLFbalsMCA/tSHj0DuWE2lXlY0Y0ahWcY2+04Gf4goWSwWtWLJkvy4HTN+4pAltvRfJnFMNOiLZFGZCGW/sW0kts38iTYwAWmMRejT6htbJkP4N9k3+j+2ZAKUtx80ZmxjjGARp5Vf4H/N2ltwKJBYjxFoJLbYkv4QM0C8jhhGVp/sImMvxJZFvviZRpzYsKjT7HMP6mhGbFl0w/+ZKJHlI2PCGML4wBb8xhKzRMQwyCDZKsYM/J2xm4VT4jn9nLGrGbFlTKfvMmbEbzmZC8StyHHxirrpX4wLLO7xcybAxCsm/8QBtvAz6c+S/Ow4wDvYaUIMyhKFmHFhTsI3qo3taWbiOP7ErYAsxPIpA5kaJtXEePQAD7BuRmzp963aDtEhbjK2EBP4po4xirby7uzhjowffLtHLINY0ccZ3yAN2ICJMUQhngMSP9+I8xjGLcgqz+Br2J5430hsGa9YFB8kYpv9xjYuHMSxF6LSDhfITztiyw6wSELizq+4WBnnIjFj24nYgilz51iwI7pjZ+xHYf6JjVsd5tYLn4zbn5v5Agu97XySxRzGcQpJGogWc9zG7fz8PhJbFrVJZMSFchammO/RP8kOIx+3Ksc+1tgf4+cL8cC7uHsiuzOBBRzsRdygNBJb4mlMvMQdTJB0+i3ElvGZ3R7EWtpDwZ/oe/SJ7K0V8fO+qAfjPPNQFq8h6/xpFc8h2+30yBLbOG8Use3RINxIbJnIxi2neYlt9lTkZsSWwZnOTWcmWOAY8UCJ2IyYWY1BAweCNDKYMEnNBgDIGBNBgngnYkv9kBEGOVbLKWxdZQCMBIkBCXLR7nQ9VrnpDLyTgR9SHSf6kM+4sstg2IzYMnFgYMKBWZmhg5EVYgWd72wjoYIcMEFm1YstS/xhMs7AxMQCwpstrJjHbxki9nHLVVw5a3cMeztiSyDCFyDObB1jxYyVMybdkBaCC4GBSVfjtpK4fZvtd8gymcIGzYgtE0AG4ZiRwFfABBtnC35DAIqZ3UZiGwkjix4EorzElgkgNmVhAOzBhDZGYps9xTgSWzIuvCdmXpiIgVUeYhvryxJbtgOCM4MQhYkeB5QwEDBpyhLbvHi1alcktnELf9wu3cwPIylFpzjRjDaJJ6GTfWZlO/oAA1ncasX2o7iy3khs8Uv6N30+Hj7GohPf2caDJnhXzJRnd1kQPxjAssQWvCDcLDqxGMDEF9x4T6uMbTN/YkCKk1D8KMYiyDoLGs0ytugZdxAwWSd20mfz9gN8vVmMYGLdyi/AuFl72eGiUj0CjcSWRQ5iJv2f7AU7HCCDFMgPE+u4LRWiSwwgzlLiN6DNWtWM2MYJGX7MwisTU/ylcdId64sLc/w/ftPG2EofI84yL2ACS1aE/sjCEwtA2YwtYyQL4cgz1tL3KZHYRvLMhJdJHeM7OtFXmSjyM4goC+lMptml0oyIZ7+xZUwFG7KU2W+MI2GL7WFiDKFsVujTxHpKzFTz75gJRU/mJ8wTKPRHFt+zGdu4bbVZ24lBTNT5G33BI15J0mzxLG5Ppz1MtLFfjIOME8y3eA8kifEU+zNOMIZhL8YL5kxsbWTMpuQltnHnEfMS3tvqsJoye1f8xhbcSIYwvjD2Mj+Ji0C0sx0uzB+J5eACPhAw/hCfGRsYK5l/MJejj5KNZRyAfMatsHmJbbOtyJH8YXc+Y2JxGF1YsGh2/V8vfDL6UTNfYOGrnU+SRMEXWNChTzPHgxhm59HRB2Lb8EmSMfgouIFzvDEhEjZksidTN/OjSMj5Xdw9EXcy8A5sjd3iHIG+yUJP9lTkuCgF8YxZY+pj3k1fid82M6dm3kNb8Q/iTuMVgrEu4hdzamxHnCZmt4vn9N92euQhto0+yqJXs6JvbBtQKUJsCZ6k89na0HgqcjNii3H5VgjySCdjYGKS2niIBQSYiTQZRhyXgMZ7mFCy2sXKMYMqzsSqDfVGYoujkumkDt6RLXROtqxCXCBNOCWdIn5nC4lhkGi1XZe66BxkjHl//G4pbhlhcOJ3OD4BgBUk2he3IkOUCMaQQFa1wDweckF7CQBMwgkcbEtjgg6uDM4cogEBBr/sAVixfaxEMYFiEIo6EqQJKKysEwRYBYNw0Xkb8WlHbMlOE+DZ0sJEhQkJ28TBjywaq8nYiAGmMQuADQkADCgQbbBmYgH5aTzEiTrAg0BB4GIyA7mh7dnSitiCKRgxaGADFi54d15iC+b4D6uqkDewZrDDzxtPMY7EFqzBgUkZExwmotivkdjGHQORdGXryxJbBjsmE3zHGcksCxa0gYllltjmxatVuxjAswtCcTW0mR/SN1oVfIwJafbwKJ6N2687bUWO2Qm+K2HywASVBQ7iSuM38Pgt5BkiAEYMjo3f2OKrDNbgQz+lT2JP/J/t+GDJwkH2G9tmxJZFq1axiAl9jH2NuMQFFX4eJ6x5+0GrGBEXv5r5BXGxWXv7fXVFmZPaQX5XJLZZMsniDnbLbm9lXCPWMqYRU7KHlND+Tqf0x8xSltghF+92jBiyKEsfbzyAkN/TFyHa6JU9JZ9FIeJSPCiHOMfkNmZjssSWmMinC3HbMuMuukdiywSUbdHIxxKzv8RC+mj2dgZwYNEtfguYlWG8I07HhUAIDvE3XmWUHa+J5XEBoZk/ZbN/MVPNcyxaEpvijiPiPG1DZ2yYvceWxa52bWe8BI94sA7jHG1li2NjYa5C/IlXNPEscw7GenCi7dlPpuIhUXHHGJP5aC/iJHOpRmLL3IVxhsUI/CZuRWaHHD7ImN54gnZVfbHVPbYQKgggftIJl+xp/fgI8xLmF/gzhXGc3QUkL9jhE0vcJs+4HbN+nTK2zYgtC0f0v3hYHLZinGn8fjy+txc+iQ+084V2PsknZywUxP6FXvg3Y3PjJwWR2GYP3KJv0r74SUBc1KYefo5ftirZHWTZnZosyLMDgUL9jOvEKz41IqmRvcc2fuLBs8QGfIS2UDd9l98Tb+K2Zn4fkzWNerH9nLkFcYBCPGOuymcB7eI5z3bSI8biOG9kDsuiQtyK3Oijra7WFLFtsBokgqBMkMVB82Rso7EIlgTmdhnbuLU5fn+Ak8XtNfH4+qgSnZ+OGAcSVpXoTPGOvuhYrAoxaOMM8R5btiXQiZp938B2Q1ad4kCBzhApiFZcCYqBvl3wjivO8RAp3k+94EFhAGXQJoPF6hErT2SGY0aMZ1iRZuLPSlE8rCN78iAdl9UtiA7fPbLyxcBGMGa/f+OhOpBE2hW/H4qTI96FHHhgV2zMNuZGfMiQEWTpTNlCYKM9MSPJgEdg5m8G1XgYVfwIP544Hesg6DBQsOWEwqIB3w5gN4JV9j5ZyB92jicOMuAykDeuTjUjtkwUeDaeSsm74oSKwYHgHu3Q6t5Q7BMPImChgechTfH7rMaMLYMikxraDqmm4FMMjs2+i8peYM72n8aMbdyNAL7x5G36CUGNSUaj3nnxatUuBmayEdlTCeP3N9F+0Q/b9YduiW28IoOMZjwpMW6RjP7KxIJJaOOx+yyYYRdiANjgs2TIsxnb6Ptx9wP2IbuPL0L2iDssFrQjttGfWsWibOyL29CzGKEPiyTxO8a8/aBdjGjlF63a285m+l31CBAjiOuMDUyO4hbIaE9iK4ugLKBA6jyHgbEVjwUjYmn2UJRuUEBf6mA3S7PsUmNdLB5TWl3ZxZjLohd9uPHTGmSJjyxksyujMXvS+C4ILH2s2bNxYaHxPI1u2g4hYv6AnZotCHTT9mh3sj7U1+xqkVgfz7IjhrkGWcrGZ6kDm7B413iYD3WAL/GOBeJuC4vwjDHYZtC+12+HC5jiX/GaKnBhXgTGLCBG38Y/mTvQZxoPT+wWy8bn8VXeyZkqrb457/SObn2ynS908kniFHM4fCxu/W2nHzENPBvPgonniWQPWurUzma/x37g18znG59nsYN5NPOFZn0NP6cP0UeIH+36N3GGuEQsJg5mn20Vz6M+nfTohEMzH22UEbHthGLO3+PAcatsTpGQNaVTZr+tbZTF2eJAlXWeOEDzjV32YJmsPJlKiHqzrXhsJ2SiQKDu9b26DEAQTlb10JM/jQGRbWgMFs2CA4EgTmKykwFk6Ez8rNVVD2DKSjLyERcwRg4S1W7wbGc3gjsdNvv9T7NBnE4OQWoWaOKEiCCOHgQ3FhOaDbY8S1viSZh5JhGN+lA/Jd6RmtcveY734nfoyrsJ5ti00+DDAgAT01b2iToQkDvdzcqzvJdgjO0aT0vMticvXt20q5UfdoNjkWchq/QhVkLb+SuTljjJbDXBJi5hEyaO9MdYiCsMEN1M7lvFom5jX95+0C5GtPKLVu0tYgfJVItAltg2XjlXrWaD9fb4iQPZnGanQA9Wa6StEBhsBMiEkgQjO8ouuMYkymC3Lg3tRWzTsEPPtWDSy1Zkts8UIUU9V6jECtm+wDeK8budsl5NgGIyHg/CKuu9eo8QEAJCoG4IsPOGre7s0mC3jEoxBCC2ZL3ZHcWZFI2nKherVVJCQAgUQYBdbXwrG3cy9joLXkSnusmI2NbNompP+KCdLZJsbS6z8M0ye/4HbbtSmRjpXUJACAgBISAEhIAQEAJCoB8IiNj2A1XVKQSEgBAQAkJACAgBISAEhIAQEAKlISBiWxrUepEQEAJCQAgIASEgBISAEBACQkAI9AMBEdt+oKo6hYAQEAJCQAgIASEgBISAEBACQqA0BGpLbLl/jbuYVISAEBACQkAIdItA4/3f3crX+XmNr3W2rtrWCwQUP+ZGUXGjF57V2zrq6Ke1JbZ7f+V/57r3s1fucMKBm7ur4vqZlB1K+vlMLPyEnw8Bn7T8r974+Vrnl/7GN75hRxxxhL8i1SAEaohA6vG3KsgVN6pCvvl76+qntSW2Ox45qW8edMWJY911p+5Q0s9nYuEn/HwI+KTlf/XGz9c6vzQT1L8ssM4/K5pdvM6zDtuuuLAkhUCCCKQef6uCTMS2KuRFbNNCvqA2Rx1/qu2xxx4FpZuLHXX29eEXIrY9hbVQZakPHNKvkFnnCAk/4edDwCeduv/5WueXZoJ60/RR7oqGDTO7/AT/QrFbEVUgBHqIgOJHczBFbHvoZD2oqq5+WtuMbT86UMwCi9j2oEc5q0i9Q0o/n4GFn/DzIeCTTt3/fK3zS4vY+jFUDfVFQPFDxHYQvLuufipi24X3RWJ74qfHdCHV/NEnn3zSVlpppTm/XHThBW30yOHuentVQeoOL/18lhZ+ws+HgE9a/ufDr2ppEduqLaD3p4xA6vGtKuz6kXCqqi11eG9d/VTEtgvv7Od3u2uvNsJ6QZi7aE7bR1N3eOnns7TwE34+BHzS8j8fflVL95rYzp5tNu3ZF3vSrJHLLt6TelSJECiKQOrxrWi7vHIitl4EeytfVz8Vse3CT4783nVdPN3+0ZkzZ9rCCy9sL8183aY8Nd1EbLuDNvUOKf26s2fj08JP+PkQ8Emn7n++1vml+0FsdzrKf+Cjvtn121Y1+BFQ/GiOoYit37d6WUNd/VTEtpde0kVd0aH++JdnjEOpRGy7AM/MUu+Q0q87e4rY+vASfvMWfr1tbfe1idh2j5kk5h0EUh//q7KEiG1VyDd/b139VMS2Ij8TsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl7ENi3kC2qTegcSsS1o2LfFUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfK2FbkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjSsMrY+4ISf8OsJAr5KUp/4pa6fD32/tIitH0PVUF8EFD+a2zb1eXl9PVLEtha2Tb0Didj63Cz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qq3IFXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDfu2WOoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UGduKPErE1gd86h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpAXsa0KeWVs00K+oDapdyAR24KGVcbWB5zwE349QcBXSeoTv9T186Hvlxax9WOoGuqLgOJHc9umPi+vr0eK2NbCtql3IBFbn5ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT7UVuSKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGHfFkt94JB+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5FOfl1eFS1XvraufKmNbkUeJ2PqAT71DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyIrZVIa+MbVrIF9Qm9Q4kYlvQsMrY+oATfsKvJwj4Kkl94pe6fj70/dIitn4MVUN9EVD8aG7b1Ofl9fVIEdta2Db1DiRi63Oz1AcO6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+qm2IlfkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjTs22KpDxzST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhXzq8/KqcKnqvXX1U2VsK/IoEVsf8Kl3SOkn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCXsS2KuSVsU0L+YLapN6BRGwLGlYZWx9wwk/49QQBXyWpT/xS18+Hvl9axNaPoWqoLwKKH81tm/q8vL4eKWLbU9u+8cYb9uKLL9rw4cO7qnfWrFn2yiuv2GKLLTZE7qWXXrJFFlnE5ptvvrb1pd6BRGy7coe5Hk594JB+sq8PAZ+0/K/e+MXWVTm+3jR9lA9kMxs2zOzyE8ba7NlmOx01qWf1uStSBULAgUDq8bfKuHHEEUc4kJVoLxFI3U+LtrWvW5FPPvlkO+uss2zjjTe2F154wSCba6655hxdf/e739mBBx5o6667bvjZzjvvbLvvvrudd955NmHCBFt55ZWNDnjBBRfYsGHDbM8997QFFljAHnvsMTv88MNtv/32a9luEduiLvGWXOoOL/1kXx8CPmn5n/DzIeCXrnp8FbH121A11BOBlMeHquOGiG06Pp+yn3pQ6huxfe2112yhhRYK2Vqyrscdd5w9/fTTNnHixDn6nnPOOfb6668HcgthpUBkF1xwQZs+fbottdRSdsghh9jIkSMDsZ0xY4Ydf/zxNm3atPAzsreLLrpo0/aL2HrcQsTWh57wE35eBHzyqQ9Y0s9n3xTGVxFbnw0lXV8EUo1vKcQNEdt0/D5VP/Ui1Ddii2LPPfecLb300vbyyy/bFltsYYceemjIyMYyfvx4++53vxsI66677hoyupQtt9zSHn300fBviPC9994biC0/R3727NlhKzLPjB49WsTW6wVN5FN3eOnnM7rwE34+BHzS8j8ffimMryK2fhuqhnoikHJ807y8nj5XpFUp+2mR9kSZvhJbXnL33Xfb/vvvb2uvvbade+65tvDCC8/R9/TTT7eVVlrJPvrRjxokd/755w/ZW0juww8/HJ47//zz7YYbbghbmXfbbTfbZZddws9XWGEFu/32223UqFF200032c033zwXDtSTepn81Ayb+IuHbPWRS9jBO7w3dXWlnxAQAkJgnkCg1aJpSo2vcnztCbE1swkHbmizzWzc2Xe4oR32dn3uilSBEHAikHL8qDJuDMK83Gn6gRJP2U+LAtlXYnvttdeG72K/853v2NixY+fSkcOhOAiKcuedd4Zn7r///rC9mMOjyNKecsop4fdkdZdcckkbN26cvfnmmyETzHblVodIaStyUZd4Sy71lRzpJ/v6EPBJy/+Enw8Bv3TV42tPiK0Oj/I7gmpIDoGUx4eq44a2Iqfjrin7qQelvhFbtgvzjew111xjG2200Rwd+eb2wQcftA033NA23XRTO/jggwOhPemkk2zq1Kl2xhlnhMOk+Hudddaxrbfe2o4++mibOXOmnXbaaXbVVVfZJZdcYnwAf+utt7Zsu4itxy1EbH3oCT/h50XAJ5/6gCX9fPZNYXwVsfXZUNL1RSDV+JZC3BCxTcfvU/VTL0J9I7aTJ0+2NdZYY4h+++67rx100EE2ZsyYsLUY0ss2ZTK0PAu5ff/732+XX3657b333kF2++23twsvvDAQ2+22284eeOCBcA3Q1VdfHU5bblVEbH2ukbrDSz/Z14eAT1r+J/x8CPikUxhfRWx9NpR0fRFIdXxIIW6I2Kbj96n6qRehvhHbVopxkBQnHXMiMoVtxc8++6yNGDFiiAjPPf/88+H042x5/PHHbcUVVwwnJ7crIrY+10jd4aWf7OtDwCct/xN+PgT6I13m+Cpi2x8bqtbBRyD18aER4TLjhohtOv49aH6aF7nSiS1X9UBYs/fZ5lW2m+dEbLtBa+5nU3d46Sf7+hDwScv/hJ8Pgf5Ilzm+itj2x4aqdfARSH18aES4zLghYpuOfw+an+ZFrnRim1cx73Mitj4EU3d46Sf7+hDwScv/hJ8PgcGWZnwVsR1sG0r7/iGQ+vjQv5a3rzn1eXlVuFT13rr6qYhtRR4VHeqPf3nGjjr7elt7tRF24qfHVKSNMra9Bj71gCH9fBYXfsLPh8BgS4vYDrb9pH1/EUh9fOhv61vXLmJbFfLN31tXPxWxrcjPRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpAXsU0L+YLapN6BRGwLGvZtsdQHDukn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCPvV5eVW4VPXeuvqpMrYVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUNq4ytDzjhJ/x6goCvktQnfqnr50PfLy1i68dQNdQXAcWP5rZNfV5eX48Usa2FbVPvQCK2PjdLfeCQfrKvDwGftPyv3vj5WueXFrH1Y6ga6otA6vG3KuRTn5dXhUtV762rn2orckUeJWLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8MrZpIV9Qm9Q7kIhtQcO+LZb6wCH9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/Vca2Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYZWx9QEn/IRfTxDwVZL6xC91/Xzo+6VFbP0Yqob6IqD40dy2qc/L6+uRIra1sG3qHUjE1udmqQ8c0k/29SHgk5b/1Rs/X2SQGRgAACAASURBVOv80iK2fgxVQ30RSD3+VoV86vPyqnCp6r119VNtRa7Io0RsfcCn3iGln+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCnkR26qQV8Y2LeQLapN6BxKxLWjYt8VSHzikn+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCvnU5+VV4VLVe+vqp8rYVuRRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNKwytj7ghJ/w6wkCvkpSn/ilrp8Pfb+0iK0fQ9VQXwQUP5rbNvV5eX09UsS2FrZNvQOJ2PrcLPWBQ/rJvj4EfNLyv3rj52udX1rE1o+haqgvAqnH36qQT31eXhUuVb23rn6qrcgVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUN+7ZY6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VQZ24o8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZVxtYHnPATfj1BwFdJ6hO/1PXzoe+XFrH1Y6ga6ouA4kdz26Y+L6+vR4rY1sK2qXcgEVufm6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPtRW5Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYd8WS33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq58qY1uRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwytj6gBN+wq8nCPgqSX3il7p+PvT90iK2fgxVQ30RUPxobtvU5+X19UgR21rYNvUOJGLrc7PUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qbYiV+RRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNOzbYqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTZWwr8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWxTQv5gtqk3oFEbAsaVhlbH3DCT/j1BAFfJalP/FLXz4e+X1rE1o+haqgvAoofzW2b+ry8vh4pYlsL26begURsfW6W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP9VW5Io8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZ9Wyz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qoxtRR4lYusDPvUOKf1kXx8CPmn5X73x87XOLy1i68dQNdQXgdTjb1XIi9hWhbwytmkhX1Cb1DuQiG1Bwypj6wNO+Am/niDgqyT1iV/q+vnQ90uL2PoxVA31RUDxo7ltU5+X19cjRWxrYdvUO5CIrc/NUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfailyRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwb4ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT5WxrcijRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpBXxjYt5Atqk3oHErEtaFhlbH3ACT/h1xMEfJWkPvFLXT8f+n5pEVs/hqqhvggofjS3berz8vp6pIhtLWybegcSsfW5WeoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UW5Er8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWx7Snyb7zxhr344os2fPjwlvXOmDHDllhiiSG/nzVrlr3yyiu22GKLDfn5Sy+9ZIsssojNN998bfVMvQOJ2PrcLPWBQ/rJvj4EfNLyv3rjF1tX5fh60/RRPpDNbNgws8tPGGuzZ5vtdNSkntXnrkgVCAEHAqnH3yrjxhFHHOFAVqK9RCB1Py3a1r5mbE8++WQ766yzbOONN7YXXnjBIJtrrrnmHF3vuusuO+CAA+xd73qXPfbYY3buuefaBhtsYOedd55NmDDBVl55ZaMDXnDBBTZs2DDbc889bYEFFgjPHn744bbffvu1bLeIbVGXeEsudYeXfrKvDwGftPxP+PkQ8EtXPb6K2PptqBrqiUDK40PVcUPENh2fT9lPPSj1jdi+9tprttBCC4VsLVnX4447zp5++mmbOHHiHH232morO+yww4y/L7300kCCf/nLX9qCCy5o06dPt6WWWsoOOeQQGzlyZCC2ZHaPP/54mzZtWvgZ2dtFF120aftFbD1uIWLrQ0/4CT8vAj751Acs6eezbwrjq4itz4aSri8Cqca3FOKGiG06fp+qn3oR6huxRbHnnnvOll56aXv55Zdtiy22sEMPPdR23333OTqvuuqqdssttxh/33PPPbbNNtvYbbfdZltuuaU9+uij4TmI8L333huILT9Hfvbs2WErMs+MHj1axNbrBU3kU3d46eczuvATfj4EfNLyPx9+KYyvIrZ+G6qGeiKQcnzTvLyePlekVSn7aZH2RJm+Eltecvfdd9v+++9va6+9dthqvPDCC8/Rd8kll7SHH344ZF8B+CMf+YhdeeWVtuuuu4afU84//3y74YYbwlbm3XbbzXbZZZfw8xVWWMFuv/12GzWq+Xc+yth63EIZRx96wk/4eRHwyac+YEk/n32jdJXjq4htb2yoWuqHQOrxrcq4oYxtOv6eup8WRaqvxPbaa68N38V+5zvfsbFjx86l42abbWannHKKrb/++nbnnXfaMcccY5MmTQrbizk8iiwtv6ewDRkiPG7cOHvzzTdDJpjtymRub7rpJrv55pvnqh+CnHqZ/NQMm/iLh2z1kUvYwTu8N3V1pZ8QEAJCYJ5AoNVuoFQaX/X42hNia2YTDtzQZpvZuLPvcEM77O363BWpAiHgRCDV+FF13BiEebnT9AMlnqqfekDsG7FluzDfyF5zzTW20UYbzdGRb24ffPBB23DDDe2LX/yiLbfccjZ+/Pjwre3iiy9uxx57rK277rp2xhln2DrrrGNbb721HX300TZz5kw77bTT7KqrrrJLLrnE+AD+1ltvbdl2ZWw9bqGMow894Sf8vAj45FNfiZV+PvumML72hNjqVGSfI0g6SQRSjW8pxA1lbNNx2VT91ItQ34jt5MmTbY011hii37777msHHXSQjRkzJmwt5hvZTTbZJDzDdUAQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDsd1uu+3sgQceCNcAXX311eG05VZFxNbnGqk7vPSTfX0I+KTlf8LPh4BPOoXxVcTWZ0NJ1xeBVMeHFOKGiG06fp+qn3oR6huxbaUYB0lx0vE555wTHuE6nyeffDIcIMXW41h47vnnnw/f32bL448/biuuuGI4ObldEbH1uUbqDi/9ZF8fAj5p+Z/w8yHQH+kyx1cR2/7YULUOPgKpjw+NCJcZN0Rs0/HvQfPTvMiVTmy5qgfCmr3PNq+y3TwnYtsNWnM/m7rDSz/Z14eAT1r+J/x8CPRHuszxVcS2PzZUrYOPQOrjQyPCZcYNEdt0/HvQ/DQvcqUT27yKeZ8TsfUhmLrDSz/Z14eAT1r+J/x8CAy2NOOriO1g21Da9w+B1MeH/rW8fc2pz8urwqWq99bVT0VsK/Ko6FB//MszdtTZ19vaq42wEz89piJtlLHtNfCpBwzp57O48BN+PgQGW1rEdrDtJ+37i0Dq40N/W9+6dhHbqpBv/t66+qmIbUV+JmLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8iG1ayBfUJvUOJGJb0LBvi6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPlbGtyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGNi3kC2qTegcSsS1oWGVsfcAJP+HXEwR8laQ+8UtdPx/6fmkRWz+GqqG+CCh+NLdt6vPy+nqkiG0tbJt6BxKx9blZ6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VRbkSvyKBFbH/Cpd0jpJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQl7EtirklbFNC/mC2qTegURsCxr2bbHUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qTK2FXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDauMrQ844Sf8eoKAr5LUJ36p6+dD3y8tYuvHUDXUFwHFj+a2TX1eXl+PFLGthW1T70Aitj43S33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq59qK3JFHiVi6wM+9Q4p/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVciL2FaFvDK2aSFfUJvUO5CIbUHDvi2W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP1XGtiKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGGVsfUBJ/yEX08Q8FWS+sQvdf186PulRWz9GKqG+iKg+NHctqnPy+vrkSK2tbBt6h1IxNbnZqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTbUWuyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGtiXy119/vW2++eZ21VVX2SOPPGJ77bWXDR8+PC1Lva1N6h1IxNbnNqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfXT3Bnb8ePH2ze/+U27/fbbbeONNw52WG+99eyuu+6qyiZt35t6BxKx9blN6h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpBPfV5eFS5VvbeufpqL2M6ePdtWXHFF22233eyVV16xc8891y688ELbc8897amnngq/S62k3oFEbH0ek3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq5/mIravvvqqLbzwwvbTn/7UPvOZz9gaa6xhZ5xxhq277rr20EMP2ZprrlmVXVq+N/UOJGLrc5nUO6T0k319CPik5X/1xs/XOr+0iK0fQ9VQXwRSj79VIZ/6vLwqXKp6b139NBexBfSxY8faxRdfHPA/++yz7cQTT7TXXnvNHn/88aps0va9qXcgEVuf26TeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0K+dTn5VXhUtV76+qnuYntM888Y2eeeaYNGzbMDjvsMNt///3t85//vG222WZV2UTEto/Ip+7w0s9nfOEn/HwI+KTlfz78qpYWsa3aAnp/ygikHt+qwk7Etirkm7+3rn6am9gCy9SpU+3WW2+10aNH27LLLmurr756WlbKaJN6B1LG1uc6qXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+mluYnvFFVfYTjvtFPA/8sgj7aabbrIPfvCDduqpp1Zlk7bvTb0Didj63Cb1Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/zU1sV111VVt++eXDvbVc97PAAgvYsccea0888YSttNJKVdml5XtT70Aitj6XSb1DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyqc/Lq8KlqvfW1U9zEdt4KvLpp59ujz32mM0///y26667hnts77//fltrrbWqsouIbZ+QT93hpZ/P8MJP+PkQ8EnL/3z4VS0tYlu1BfT+lBFIPb5VhZ2IbVXIN39vXf00F7EFEsjr3//+93BnLdlaDpNadNFF7eGHH07LUm9rk3oHUsbW5zapd0jpJ/v6EPBJy/8GC7877rjDRo0aZSNGjAiKz5w5037/+9+H3VELLbSQrzF9kBax7QOoqrI2CJQVfwcxbhxxxBG1sfOgN6QsPy0bp9zE9p577rGvfe1rxre2sfz85z+f891t2Yp3ep+IbSeE2v8+dYeXfrKvDwGftPxP+PkQeEt68uTJYXH4gAMOCH823XTT8PNHHnnEvvCFL4QDG9/1rnf14lU9rUPEtqdwqrKaIdDv8WGQ44aIbTrO3m8/raqluYltVPC5556zv/71r/bud787ZGxTLSK2Psuk7vDST/b1IeCTlv8JPx8Cb0mfdNJJ1mqit8QSSxjjLZ/+pFZEbFOziPRJCYF+jw+DHDdEbNPx1H77aVUtzU1st9hii7AVubHccssttthii1Wlf8v3itj6TJK6w0s/2deHgE9a/if8fAi8Jd0q88Lv+PyH7ckpFhHbFK0inVJBoN/jwyDHDRHbVLzUrN9+WlVLcxPbzTffPHxXS3nhhRdC1pZTkqdMmZJk5lbE1udSqTu89JN9fQj4pOV/ws+HwFDpJ5980hZZZJGQoc0WiO18883Xy1f1pC4R257AqEpqikBZ48Mgxg0R23Scviw/LbvFuYlto2LHHHOMxVOSF1544bL17vg+EduOELV9IHWHl36yrw8Bn7T8T/j5EBgqfeaZZ4YtyTNmzBjyi+eff96WXHLJXr6qJ3WJ2PYERlVSUwTKGh8GMW6I2Kbj9GX5adktzk1sp02bZrNmzQr6vfnmm/bd737XTjjhhHDIxeqrr1623h3fJ2LbESIRWx9Ewk/49REBX9WpD1jS75/2nT17drhtgLL//vvbO97xjjm//NKXvqRTkbvoCsOGmV1+wtguJPSoEOg9AmXEt0GNGyK2vfe3ojWW4adFdfPI5Sa2K6ywwpytyPGFHG7xj3/8wxZccEGPDn2RFbH1wZq6w0s/2deHgE9a/if8fAjMTWwPOugg+8pXvtKravtajzK2fYVXlQ84AmWMD5HYDlrcELFNx7nL8NMqWpub2LL1+MUXXww68s3PO9/5Ttt2221ttdVWq0Lvju8Use0IUdsHUnd46Sf7+hDwScv/hJ8PgaHSe+21V7hKj3Fr6aWXnvPLXXbZJdwbn1oRsU3NItInJQTKGh8GMW6I2KbjqWX5adkt7khsaTgrQ60KxDbVwy1S7kDRof74l2fsqLOvt7VXG2EnfnpM2fZv+b7UHV76+VxF+Ak/HwI+afnfUPya7YjiCX1j252faStyd3jp6f4gUFZ8G8S4kfK8vD/ekG6tZflp2Qh0JLbDGCnalJQH3pQ7kIitz9VT75DST/b1IeCTlv8NFn633Xabvfrqq3Mp/eEPf1gZ2y5MKWLbBVh6tG8IlBV/BzFupDwv75tDJFpxWX5advM7Ettvfetb4bCoVuULX/jCkMMuym5Aq/dpK7LPEqk7vPSTfX0I+KTlf8LPh8BQ6auuuqopseVzH21Fzo+0iG1+rPRk/xAoa3wYxLghYts/v+u25rL8tFu9vM93JLbZF7CiTIaWwvZkLoneaKONdHhUASsoY1sAtIxI6h1S+sm+PgR80vK/wcJvELcU3jR9lA9kM4tElK+ddjpqUs/qc1ekCoSAA4Gy4u8gxg0RW4dj9Vi0LD/tsdodq8tNbCdNmmSHHHLIXCcjaytyR4ybPiBiWwy3KJV6h5R+sq8PAZ+0/G+w8PvVr341J2P70ksv2UknnRQytbfffrsytl2YUhnbLsDSo31DoKz4O4hxQ8S2b27XdcVl+WnXijkFchPbd7/73TZ8+PBwb+2HPvQhe/DBB2355Zc39vjrup/urSBi2z1mWYnUO6T0k319CPik5X+DjR8Lybvvvrs98cQTttJKK/ka0wdpnYrcB1BVZW0QqCr+DkLcELFNx82r8tN+I5CL2L7++uvhO9of/ehH9rvf/c6WW245+8xnPhOu/HnuuecC4U2t6Btbn0VSd3jpJ/v6EPBJy/+Enw+BodJHHnmkvfDCC+GHs2bNMr6dw8eefvrpsICcWhGxTc0i0iclBMoaHwYxbojYpuOpZflp2S3ORWxRatVVVw3k9rOf/axxp+0nP/lJ+8EPfmB//vOfbY011mirN/ffLrbYYtbphOVsJQzur7zySpDLFrZpLbLIIh2vGBKx9blS6g4v/WRfHwI+afmf8PMhMFS68Vu5JZZYwj73uc/Z//zP/3R8TVXjq76x7WgaPTCPIlDW+DCIcUPENp1OUZaflt3i3MT2uuuuM05APv/882377be3v/71r7bjjjva5Zdf3lLnZ555xu677z7beeedw0FTjSvPZH8PPPBAW3fddUMdPMf2q/POO88mTJhgK6+8sr3xxht2wQUXBFK85557hu+NHnvsMTv88MNtv/32a/luEVufK6Xu8NJP9vUh4JOW/wk/HwJDpadPnz7nvnjGujy7oKoeX0Vse+kBqqtOCJQ1Pgxi3BCxTcfTy/LTslucm9ieffbZtvXWW4ftx5BNBtVO3/5ceumldvPNN9spp5zSdEvVOeecY2xzhtzGKw2om2926bBLLbVUOLBq5MiRgdjOmDHDjj/+eJs2bVr4GdnbRRddtClmIrY+V0rd4aWf7OtDwCct/xN+PgSGSjO2sWh84YUXhnGOBd5999237Rhb9fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzENm55GDNmjO2zzz728Y9/PNeqMg2ClDb7Vmj8+PH23e9+Nwzku+66q0FGKVtuuaU9+uij4d8TJ060e++9N9TBzxnwuWpovvnmC8+MHj1axLYPXpO6w0s/n9GFn/DzIeCTlv8NxY9v5dh2zBZkFnTZEfX+97/f/vCHP3Q8Fbmq8VXE1tcHJF1fBMqKb4MYN0Rs0/H7svy07BbnJrbXX3+9XXnllXbZZZeFQy0okEy+s11ooYXa6t1q4D399NPDivRHP/pRg+TOP//8IXsLyX344YdDnaxi33DDDeFgjd1228122WWX8HOINlchjBo1ym666aaQGW4s1JN6mfzUDJv4i4ds9ZFL2ME7vDd1daWfEBACQmCeQKDVommvG8/Oo8UXXzyMfSz0smjLpzh8+sPtA+99b/txoarxtSfE1swmHLihzTazcWff4YZ22Nv1uStSBULAiUC/48egxo1BmJc7TT9Q4v320yrAyE1so3IQztNOOy38oeS5x7bVwMvhUBwERbnzzjtt7Nixdv/994ftxRwehRzbmClkdZdcckkbN26cvfnmm7b00kuH7cpMApoVbUX2uVPqKznST/b1IeCTlv8JPx8C/5R++eWXwyGJX//61+1rX/ta+MUll1wSFnIZF9dff/22r6pqfO0JsR1mdvkJY232bLOdjprkhlT32LohVAU9QKCM8WFQ44Yytj1wsB5VUYaf9kjVrqrJTWzZ8sB1P2yRoqy33nq2//77h2t/4vexrd6cHXg5wZFV6A033NA23XRTO/jggwOh5UL6qVOn2hlnnBEOk+LvddZZJ3zXe/TRR9vMmTMDmeYaBAb9k08+2W699daWjRWx7coP5no4dYeXfrKvDwGftPxP+PkQGCrNWMiuo2233TYs7PL9LGMku5I63SZQ1fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzElq2/XPfzqU99Kqwkv+9978utKwMvh02NGDEirEDznS5bi6+55ppAjhnIuTIIcst3RZy0vPfee4f6OYGZAzUgttttt5098MAD4Rqgq6++2jbeeGMR29xW6O7B1B1e+nVnz8anhZ/w8yHgk5b/DcWPk/5POOEEu+iii8LuJMbYL33pS/aBD3ygI9BVja8ith1NowfmUQTKim+DGDdEbNPpFGX5adktzk1s77nnnpBJbbX1N6/ibJ/gpGNORKawrfjZZ58NpDdbeI5tzpx+nC2PP/64rbjiiuHk5HZl0DK2o0cOtwN3XC8vjLbayOG22MLtMchdWZMHU3d46eexroXv5FP+tkL6yb4+BHzSVfgfi7ZsSebMCj6z6fRtbbMWljm+itj6fEzS9UWgzPgxaHFDxDYdvy/TT8tsdW5i2yuluKoHwrrmmmv2qsqm9Qwase0WjBMO3NzWGb18t2K5n0/d4aVfblM2fVD4CT8fAj5p+d9Q/PjMhs9yfvWrX4Ur9dZaa61woGK8KSAv2mWOrykTW77Znfbsi3lha/vcyGUX70k9qmTeQaCs+DaIcUPENp1+UJaflt3i0oltWQ0cFGL7l6em29lX3J0blilPTbeXZr5uIrbKOOZ2miYPph7QpJ/HusrI+9ArHz8Wetm19JOf/CRkbT//+c+HGwGeeOKJjvfFe9taRJ7xNXViq8OoilhWMr1AoKzxaxDjhohtLzysN3WU5ae90TZ/LW2JLduEueKHQyzuvvvusBV5lVVWyV97hU8O1YkUXQAAIABJREFUCrHtFqIjv3ed3T/lbyK22krbresMeT71gCb9XObVVnMffKXi98Ybb4RPaziI8cwzzwyaX3DBBeGcCQ5I/NCHPuRsTe/FRWx7j6lqrA8CZYxfgxo3RGzT8fMy/LSK1rYltq+++qotvPDC9ulPf9p+9rOfhYG2cZD9xCc+0fFU5CoaVndiu8X6q9kKSy+WC9ot1htly+d8NlaYusNLv1ymb/mQ8BN+PgR80vK/ofhtttlmduONN9rHPvYxW2KJJeznP/+5LbXUUjZ58uSO98T7LFFMWsS2GG6SmjcQKCu+DWLcELFNpw+U5adlt7jjVmTu0CNb26rkuce27EbxvroT224wLbJtOXWHl37deMDczwo/4edDwCct/xuK35QpU8Kd7ZMmTQo3CHAbwOGHH24f+chHfED3SXpeI7Z8s3v6ZXf0BM2Ddt6wJ/WoknQRKCu+DWLcELFNx2/L8tOyW9yR2HLvLMR21113Dd/9/Ou//usQHfl/p3tsy25UnYnttXdNsaefeykXpNfeNdWemf5SoW3LqTu89MvlAi0fEn7Cz4eAT1r+1xy/WbNmhevs+M425TIvElt9s5uyR6alW9nxbZDihohtOr5atp+W1fKOxDYq8uSTT9riiy9ud9xxh7300ku25ZZbhvtnUy11zdh2g7fne9zUHV76deMJcz8r/ISfDwGftPzPh1/V0iK2xSwwbJjZ5SeMLSYsqYFBIPX4VhWQqc/Lq8KlqvfW1U9zE9sbbrjBdtxxx3B5fCwTJkywQw89tCqbtH1v6h2oDIcSsa3ONcuwr6d10s+DXvmn5narrezbLWJDn08dP1/r/NIitsUwFLEthtugSSl+NLdY6vPyQfMzr7519dNcxJZtDpyMzLc/X/7yl0OmduLEiSF7+/e//92WXXZZL749l0+9A5XhUCK2PXer3BWWYd/cyjR5UPp50BOx9aEn/JrhN3v2bHv88cfDgY3LLLNMkp/4RL1FbIv1ABHbYrgNmlSZ4+ugxQ1tRU7Hm8v00zJbnYvY/uMf/7DlllvOvvOd74RL5CnXXHONffSjH7XbbrvNNt544zJ1zvUuEVszEdtcrtKXh1IPGNLPZ3bhJ/x8CAyVfuSRR2ybbbYJ1wwdeeSRdv/999uee+5pu+++ey9f07O6RGyLQSliWwy3QZMqa3wYxLghYpuON5flp2W3OBexZUWIqwfWWmutcHIjGdvjjz/eLr74Yps2bZqtsMIKZevd8X0itiK2HZ2kjw+kHjCkn8/4wk/4+RAYKs3tA0xSR4wYYWPHjrW//vWvdv7559v06dPD2JtaEbEtZhER22K4DZpUWePDIMYNEdt0vLksPy27xbmILUqdeuqpNm7cuCH6sS352GOPLVvnXO8TsRWxzeUofXoo9YAh/XyGF37Cz4fAP6XjffGnnXaa/d///Z/NP//84RaC9dZbL9xI8MEPfrBXr+pZPSK2xaAUsS2G26BJlTE+DGrcELFNx5vL8NMqWpub2KIcg+5ll11mL7zwgu28884hg5tqEbEVsa3SN1MPGNLP5x3CT/j5EBgqveSSS9oHPvABGz58uL3jHe+w+eabz6666irjM6AFF1ywl6/qSV0itsVgFLEthtugSZU1Pgxi3BCxTceby/LTslvcFbEtWznP+0RsRWw9/uOVTT1gSD+fhYWf8PMhMFT6oosusv/8z/8ccusAu6HYFZViEbEtZhUR22K4DZpUWePDIMYNEdt0vLksPy27xSK2ZSP+9vvKcCgdHlWRcU2nvnqRL6N/eHSUfh701D+aocfWwuuvv96mTJli6667rm2yySY+kPsoLWJbDFwR22K4DZpUmePDoMUNEdt0vLlMPy2z1SK2ZaKdeVcZDhWJbd4mrr3aCDvx02PC42Xol1evZs9JPw96sq8PPeEn/LwIDJU/5phjwic+jeW4444L1/+kVkRsi1lExLYYboMmVdb8ZBDjhohtOt5clp+W3eLcxPbf//3f7VOf+pRtttlmQUdObdxnn33sxz/+sU5FLmC1MhxKxLaAYXokUoZ9PapKPw96IrY+9IRfI37cLMA98Y3l+eefN76jS62I2BazSCS2s2eb7XXcz96uZHaxyt6WuvArn3DJS7j3CJQ1vg5i3BCx7b2/Fa2xLD8tql9RuY7E9gc/+IFNnDgxnM64yiqr2PLLLx/exSAMueVwCy6TT63oG9v8FvnjX56xo86+3pSxzY9ZpydTDxjSr5MF2/9e+Ak/HwJDpRlHZ82aFX748ssv2+GHH25Tp061W2+9NZySnFoRsS1mkSyx3emoScUqyUgpA+yGsC8VlDU+DGLcELHti8sVqrQsPy2knEOoI7H94Q9/GK76aSS2vHPLLbc0BrgUi4htfquI2ObHKu+TqQcM6ZfXks2fE37Cz4dAe2nusGWX1OTJk+3d7353P19VqG4R20KwmYhtMdwGTaqq8WEQ4oaIbTreXJWf9huBjsQ2KvDVr37VPvaxjxkXQg9CEbHNb6VIbFdYejHbYv3VguBzzz1nSy+9dNNKFlt4QRu9UvPfZQUW5bmRw/Mr0sWTqXdI6deFMZs8KvyEnw8Bn3TZ/rfpppvaU089NUdp3k+ZMWOGLb744r7G9EFaxLYYqCK2xXAbNKmy4scgxg0R23S8uSw/LbvFuYntjTfeaN/+9rfD1qhsefTRR5MdeFPuQCk5VCS2vXa+7NbmXtedEn7N2ib9fBYXfsLPh4BPumz/22qrrezpp58OSi+wwAIhS0vGdocddvA1pE/SIrbFgO0XseWb3f/9zX05lOr8Pe9+26xr1PfIE8/mqK/zI+9ZJb1P1Tpr7XuirPgxiHEj5Xm5z+qDJ12Wn5aNTG5iu9Zaa9kDDzxg6623XrhAPpZrr73WFl100bL17vg+ZWw7QjTngWeee8muuWvKEIFmGduXZr5uf3nyuY4V89yUp6YP+Wa3o1CXD6TeIaVflwZteFz4CT8fAj7p1P3P1zq/tIhtMQz7SWx7+c0uxLaX9RVDa3ClFD+a2y71efngelwxzevqp7mI7ZtvvhlWkb/2ta/Z17/+9WIIliyVegdK3aE8+jX7ZrfX5vfo12tdmtUn/XwoCz/h50PAJ12W/6266qr22muvtVQ25R1RN00f5QPZrG/fnPaamKm+YqaeVw+36nf8GOS4oYxtsb7UD6l++2k/dM5TZy5iS0X777+//f73vw/X+2S/vVx55ZVtGNErsSJi6zOIx+FFbHWdic/7hJ/w8yLgk/fEv27ezFbjN954o6XIT3/602R3RInYdmPpt55VxrZ7zAZRot/xY5DjhohtOh7dbz+tqqW5ia3uy+qtiVJ3KI9+kdhycNSBO67XEbjVRg43DqTqpnj06+Y9RZ+VfkWRe0tO+Ak/HwI+6RT874UXXgjnV8w333y+xvRBWluRi4EqYlsMt0GTqjJ+pB43RGzT8eYq/bSfKOQmthMmTAgnNDaW8ePH20ILLdRPHQvVrYxtIdjmCHkcvtvDqE44cHNbZ/Rb9yPnLR798r7D85z086AnYutDT/gNGn5/+tOf7Oijjzb+ppDF5ZRk7opfcsklvc3pubyIbTFI51Viy1buux/556nfudFrctbV+muOzC1e1YNljf+DGDdEbKvyyrnfW5aflt3i3MSWw4RmE50ayjLLpHninYitz5U8Dv+Xp6bb2Vfc3VEBDpjioCkR245Q9fwBj317rkyTCqWfD2XhN1j4bbTRRnbHHXcEpZdffnl75plnbPTo0Xb//ffbIoss4mtMH6RFbIuBOi8T23npMKqy4u8gxg0R22Kxox9SZflpP3RvV2duYqutyL01TeoOVYZ+R37vOrt/yt9EbHvrWrlqK8O+uRRp8ZD086CnjK0PvXLxe/3118NNAxdddJFddtlltsEGG9gmm2xi2267rf39738fcguBt129khexLYakiG0x3KLUoBxGVcb4NahxQ8TW1wd6KV2Gn/ZS37x15Sa2nIgctyK/+OKL4RApTma7++67tRU5L9qZ51J3qDL0E7Et4Dg9EinDvh5VpZ8HvXKJWRFNZd+hqLHdGDLLn0mTJtlhhx1mBxxwQMjYctVeakXEtphFRGyL4SZi2xy3QYwbIra+PtBL6dTH4aJtzU1sG19w3nnnhYH32WefHXJKclFFei2nrcg+RMtweBFbn4080mXYV/p5EPDJyr6DgR9X6c0///x2yimn2H/913/ZddddZ2PGjAnKsyX5iSeeCFftpVZEbItZRMS2GG4itkNxG+S4IWLr6wO9lE59nlC0rbmJ7RVXXGEzZ84M76FT/ehHP7Irr7zSpkyZYqNG+e+zK9qAVnIitj5Ey3B4EVufjTzSZdhX+nkQ8MnKvoOBH5/4jB071nbddVdbY401bLnllrM///nP4RCprbbaypZaailfQ/okLWJbDFgR22K4idgOxW2Q44aIra8P9FI69XlC0bbmJrbNvrH98Ic/bDfeeKPusS2AfuoOVYZ+IrYFHKdHImXY16Oq9POgp63IPvTKw4/PeTj5mEKGdp999rFddtnFOBQmxWt+Iq4itsU8TMS2GG4itkNxG+S4IWLr6wO9lE59nlW0rbmJ7TXXXDMnYzts2LDwfe173/veJA+2AAxlbIu6xFtyZTi8iK3PRh7pMuwr/TwI+GRl38HAj5sG/vjHP9pvfvMbY1cUC8WUVVZZJZBcrgBacMHu7vj2tTyftIhtPpwanxKxLYabiO1Q3AY5bojY+vpAL6VTnycUbWtuYssL7rvvPvvpT39qXAD9yU9+0j70oQ+F74NSLCK2PquU4fAitj4beaTLsK/08yDgk5V9BxO/m2++2Q455JBwKCPl+eef1z22XZhSxLELsJo8Oij4+VrZf+my4+8gxQ0R2/77X943lO2nefXyPpeb2J5zzjl24IEHDnkf3wVdfPHFXh36Ii9i64O1DIcXsfXZyCNdhn2lnwcBn6zsOxj4ccPADTfcEDK2XPUTtyW///3vt7322svGjx+vw6O6MOWgELPZs816ea/rvFZfFy5RyaP9jr+DHDdEbCtxyaYv7befVtXSXMT2tddeC1uPGWxPO+20cGH8scceaz/4wQ/sscces3e+851V6d/yvSK2PpOU4fAitj4beaTLsK/08yDgk5V9BwM/PuuJ5T3veU8gs+yGSvGKnyyi2opczL9EvIvhFqV0j+1bSAxy3BCx9fWBXkqnPk8o2tZcxHb69OnhSh+uJBg3blx411VXXWVbb721sQWCu/dSKyK2PouU4fAitj4beaTLsK/08yDgk5V9BwO/Nddc0/bYYw/beeed7QMf+IBP6RKlRWyLgS1iWww3EduhuA1y3BCx9fWBXkqnPk8o2tZcxJbKydiSueXi+EUXXdS+973v2bRp02zq1Kkhg5taEbH1WaQMhxex9dnII12GfaWfBwGfrOxbb/x8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZemR+jyhKA65ie1vf/tb+4//+I9wWi5liSWWsO9///vhaoIUS+odKHWHKkM/Edvqek4Z9vW0Tvp50CvnVHOPhrKvB73qZUVsi9lAxLYYbiK2PtxSkU59Xp4KTmXpkfo4XBSH3MSWF3DE+D333GN8uM724wUWWKDoe/sul3oHSt2hytBPxLbv3aDlC8qwr6d10s+DnoitD7308fO2zysvYlsMQRHbYriJ2PpwS0U69Xl5KjiVpUfq86yiOOQithMnTrQHHnjAzjzzzPCe//7v/7YxY8bYVlttVfS9fZdLvQOl7lBl6Cdi2/duIGLbJ4jL6B8e1aWfBz0R207oidh2Qqj570Vsi+EmYuvDLRXp1OflqeBUlh6pzxOK4tCR2F500UW25557BiJ77bXXhvdst9129qtf/co+85nPzCG7RRXol1zqHSh1hypDPxHbfnl/53rLsG9nLVo/If086KVPzGRfn32rlhaxLWYBEdtiuInY+nBLRTr1eXkqOJWlR+rjcFEc2hLb119/3ZZddtlwcNStt94656L4l156yXbYYQfju9snnnjCVlpppaLv75tc6h0odYcqQz8R2765f8eKy7BvRyXaPCD9POiJ2PrQSx8/b/u88iK2xRAUsS2Gm4itD7dUpFOfl6eCU1l6pD7PKopDW2LLqccjR460r3zlK3bMMccMecd5551nBxxwgN1444226aabFn1/3+RS70CpO1QZ+onY9s39O1Zchn07KiFi64Gorazs64M2dfx8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZelR13GuLbF98803wwFRq6yyij388MPhmh/KG2+8EbYjX3311fbYY4/ZO9/5zrZ24LCpxRZbbMil0lmBGTNmhFOWs2XWrFn2yiuvBLlsIVvM9ULzzTdf23em3oFSd6gy9BOxLSt8zf2eMuzraZ3086CXfsZR9vXZNytd1fh60/RR7kaI6PkgnFfx86HWf+nU4xsIVBU3dI9t//0v7xsGwU/ztiX7XMdvbLm39tvf/naQ2XbbbQMB5ftayOjWW29tv/71r1u+95lnnrH77rsvXD4/efJkW3755Yc8e9ddd4Ws77ve9a5AkM8991zbYIMNjGzwhAkTbOWVVw4k+oILLgikmG99Ido8e/jhh9t+++3X8t0itkXc4Z8yZTi8iK3PRh7pMuwr/TwI+GRl33rjR+uqHl9FbLv3sXmViM6ebbbTUZO6B6xBIuLnrqjPFaQcf6uOGyK2fXa+LqpP2U+7aMZcj3YktjNnzrQTTzxxrq3I++yzj5188sm23HLLtXz/pZdeajfffLOdcsop9vTTT89FbDlVGeLM3zx71lln2S9/+UtbcMEFbfr06bbUUkvZIYccErZDQ2wh08cff7zFLdJkb2MWuVEJEVuPW5ST8RGx9dnII516QJN+HuuW0389Gsq+HvTekq16fBWx7d6GIrbdY5aVELH14ZdC3BCx9duwVzWkPg4XbWdHYhsrfvXVV23q1KnG36NGjZpzkFSeF0NKmxFbDqW65ZZbwuFU3I+7zTbb2G233WZbbrmlPfroo6Fqrhq69957A7Hl57vvvnu4T5etyDwzevTopiqI2OaxTOtnynB4EVufjTzSZdhX+nkQ8MnKvvXGb+hkv5rxVcS2ex8Tse0eMxFbH2atpDUv7w+ug1Rr6vOEoljmJrZFX4Bcqw605JJLhm93ycgC8Ec+8hG78sorbddddw0/p5x//vl2ww032AsvvGC77bab7bLLLuHnK6ywgt1+++2BZDcrIrYei5WT8RGx9dnII516QJN+HuuW0389Gsq+HvSGylY1vorYdm9DEdvuMROx9WHWLbGdl+fl/UE63VpTH4eLIlcpsd1ss83CNuX111/f7rzzzrDdedKkSWF7MYdHMWDzewrbkOlw48aNMw61WnrppcN2ZTK3N910U9jy3FggyCrpIjDxFw/Z5Kdm2ME7vNdWHzn08LB0tZZmQkAIzAsItNoNlFrbWxHbfo+vPSG2ZjbhwA1ttpmNO/sON7TDVJ8Lw0HBz9XIkoRTjx9VxQ3Ny0tywJyvSd1PczZjyGOlE1tOYnvwwQdtww03tC9+8YvhG93x48eHb20XX3xxO/bYY23ddde1M844w9ZZZ51wQNXRRx9tfOt72mmn2VVXXWWXXHJJ+L6Xu3VbFWVsi7jDP2XKWMlRxtZnI490GfaVfh4EfLKyb73xy7YuO0Etc3ztCbEdZnb5CWOt14cLqb5i/j8oGeVirStPKvX4CxJVxQ19Y1ueH3Z60yD4aac2NPt9acSWk9hGjBgRMrNjxowJW4v5RnaTTTYJeg0fPjwQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDseWKoQceeCBcA8RVQxtvvLGIbRGr55Apw+FFbHMYok+PlGFfj+rSz4OetiL70Esfv0ZiW8X4KmLbvZcNCnFMfWGge+TLlUh9/IrEtoq4IWJbri+2e9sg+GkRtEohtlnFXn755XDS8TnnnBN+zHU+Tz75ZDhAihWkWHju+eefD9/fZsvjjz9uK664Yjg5uV1RxraIO/xTpgyHF7H12cgjXYZ9pZ8HAZ+s7Ftv/Fq1rszxVcS2ex8Tse0es6GLOG9l+FMvqcffRvzKjBsitul476D5aV7kSie2XNUDYV1zzTXz6ljoORHbQrDNESrD4UVsfTbySJdhX+nnQcAnK/vWG79WrStzfBWx7d7HRGy7x0zE1odZHuky44aIbR6LlPNM6vOEoiiUTmyLKtqtnIhtt4gNfb4Mhxex9dnII12GfaWfBwGfrOxbb/x8rfNLM76K2HaPo4ht95iJ2PowS0k69Xl5SliVoUvq84SiGIjYFkXOKZe6Q5Whn4it04kc4mXY16FeuP4r5dP6pJ/Huul/w5q6fX3o+6VFbIthKGJbDLcoFfHz1dJ/acWP5hiL2Pbf97p5Q139VMS2Gy/o4bOpO1QZ+onY9tChuqyqDPt2qdKQx6WfBz0RRx966ePnbZ9XXsS2GIIitsVwE7H14ZaKtIhtKpZ4S4/U51lF0RKxLYqcUy51hypDv0hst1h/NVth6cWaIrr2aiNsndHLz/W7MvTzmFj6edBLP+DKvrKvD4HBlhaxLWY/EdtiuInY+nBLRVrENhVLiNimZYmc2qTegTQxNovEtp1J99hiLdtzy7VFbHP6fd7H5H95kWr+nPATfj4EBltaxLaY/URsi+HWSGy5juj0y+7wVfa29EE7b/j/2TsT+M+m8o8fW1kqprKrzCRZiyQlJRmRJZKQEDGVQkqIUJJsJYRkSQuKikIla8patmpIixmSfRliUJb5v95n/s9057rf7733nHu/3/O9v895veY1M7/fPfc+53Oec87zeZ7nnNPIe7IvSX19aLzBFV+Yul1esRmdeayreqqI7ZBUNHWFGoR8l94w1d0/bXphD/x5ygNu8tQHnYhtOwo6iP6NkVzyxaCniHcceunjF9u+2PoitmEIitiG4VZEbN+331lxL3POtbVnN/X1Kxq4wBeI2AYC11K1ruqpiG1LClP22tQVatjynXnJZPfDS2/xKcqLFKQpP/XUU27jty/vSGNOsQwbvzJMJF8ZQv1/L/yEXxwCo11bxDas/0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKNWz5jNj2g7lXNDeyaxqpPmz8yhoh+coQErGNQ0j4tYnfsN8tYhvWAyK2Ybi1TWxJbf7y934bJ9z/1/7iDu/sLGGIBUjENhbBZuunbgeGtlbENhS5yHqpK9Sw5Xtg2vSeacqkMF964x0905Qju6aR6sPGr6wRkq8MIRGzOISEX5v4DfvdIrZhPSBiG4bbIIhtk6nNqa+vcb0QXlvENhy7Nmp2VU9FbNvQlgrvTF2hUpbPormK2FZQtB6PpNy/iCz5wvtW+MVhNwr4xbcw7g0itmH4idiG4SZiG4dbKrVFbFPpiZlypG5nhaIlYhuKXGS91BUqZflEbCOVbwQmtJT1bxQWBOEXN0ZSxy+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AqRtOKcsnYltxEPR5LOX+FXFU/8YjEPeG1MdHXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJ0dV1ThHbQWlQ7jupK1TK8onYxittyv0rYqv+jUcg7g2pj4+41sXXFrENw1DENgw3Eds43FKpLWKbSk/MlKOr65yI7ZD0LHWFSlk+Edt4pU25f0dhwhV+cToo/OLwG3ZtEduwHhCxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AMuwqdmTBY0ZsucN2Yo97bFcav3D4Bxqoqf6NA1H4Cb84BOJqp65/ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR1fXOUVsB6VBue+krlApy1fljtvzD91qSD07Gp6wlPsXBCVfnPoKv27jF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpidGwU0PRErENRS6yngzPcAC5x/aCq/7i5p133he8ZPLUB/3PRGz74yv9C9c/Ee847IRfPH7DfoOIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyARi4od2eOxXvhtsu9ZIrYVoJX+VQCpzyPCT/jFITDatUVsw/pPxDYMNxHbONxSqZ26XZ4KToOSI3U7JhQHRWxDkYusl7pCjap8IrbVFHNU+7da69p/SvjFYSz84vAbdm0R27AeELENw03ENg63VGqL2KbSEzPlSH0dDkVLxDYUuch6qSvUqMonYltNMUe1f6u1rv2nhF8cxsIvDr9h1xaxDesBEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1ASTDrmJH9nhMqcjt4Bf31uZqa3zEYSn8uo1fXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJkbqdEIqDIrahyEXWS12hRlU+RWyrKeao9m+11rX/lPCLw1j4xeE37NoitmE9IGIbhpuIbRxuqdQWsU2lJ2bKkfo6HIqWiG0ocpH1UleoUZVPxLaaYo5q/1ZrXftPCb84jIVfHH7Dri1iG9YDIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qA0iGXcWO7PGYUpHbwS/urc3V1viIw1L4dRu/uNbF1xaxDcNQxDYMNxHbONxSqZ26XZ4KToOSI3U7IRQHRWxDkYusl7pCjap8ithWU8xR7d9qrWv/KeEXh7Hwi8Nv2LVFbMN6QMQ2DDcR2zjcUqktYptKT8yUI/V1OBQtEdtQ5CLrpa5QoyqfiG01xRzV/q3WuvafEn5xGAu/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMu4od2eMxpSK3g1/cW5urrfERh6Xw6zZ+ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR+p2QigOitiGIhdZL3WFGlX5FLGtppij2r/VWtf+U8IvDmPhF4ffsGuL2Ib1gIhtGG5w2CnDAAAgAElEQVQitnG4pVJbxDaVnpgpR+rrcChaIrahyEXWS12hRlU+Edtqijmq/Vutde0/JfziMBZ+cfgNu7aIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyAZdhU7ssdjSkVuB7+4tzZXW+MjDkvh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKNaryKWJbTTFHtX+rta79p4RfHMbCLw6/YdcWsQ3rARHbMNxEbONwS6W2iG0qPTFTjtTX4VC0RGxDkYusl7pCjap8RmyLuuf8Q7eK7LXq1UcVv+otbPdJ4ReHr/DrNn5xrYuvLWIbhqGIbRhuIrZxuKVSW8Q2lZ4QsU2rJypKk/oAkuFZsSN7PFaWiixi2x9f6V87+hf31uZqq3/jsEwdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleoLsk3jPTkLuE3jCEi/OJQF37dxi+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMz5UjdTghFS8Q2FLnIeqkrVJfkG0Z6cpfwi1T1oOrCLwi2WZWEX7fxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMz4od2eOxOviJ2L4QxDr4xfVUWG3JF4ab1RJ+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaqdul6eC06DkSN1OCMVBEdtQ5CLrpa5QXZev7fTkruMXqf6l1YVfKUR9HxB+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaovYptITM+VI3U4IRUvENhS5yHqpK1TX5ROxneImTJgQqcXtVe+6/rWH3GgsWOrftjWg3feL2IbhK2IbhpuIbRxuqdQWsU2lJ0bDTghFS8Q2FLnIejLs4gCMxU/EVsQ2RgNj9S/m21XqSr4qKPV+JnX84loXX1vENgxDEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1AZS64dR1+URsRWwrTiWFj3V9fMRgU6Wu8KuCUrrPiNiG9Y2IbRhuIrZxuKVSO3W7PBWcBiVH6utwKA6K2IYiF1kvdYXqunwitiK2MUO46+MjBpsqdYVfFZTSfUbENqxvRGzDcBOxjcMtldoitqn0hCK2afVERWlSH0Ay7Cp2ZI/HYvETsRWxjdHAWP2L+XaVupKvCkq9n0kdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleorssnYitiGzP0uz4+YrCpUlf4VUEp3WdEbMP6RsQ2DDcR2zjcUqktYptKTyhim1ZPVJQm9QEkw65iRypiGwdUS/i1IlTmpRofcQgLv27jF9e6+NoitmEYitiG4SZiG4dbKrVTt8tTwWlQcqRuJ4TikGzE9vnnn3dPPfWUW2CBBWZr2/Tp0918883n5pxzzr5tTn0Apa5QXZdPEVtFbEMnTep1fXzEYFOlrvCrglJ7zzSxvl756NLRAoroxUEo/NLEL/X5LRS1JuaNffbZJ/TzqtcwAl3V06ES29/+9rdu0qRJ7o1vfKPvrs0339xtvfXW7rTTTnNHH320W3LJJd2zzz7rzjjjDDfHHHO4bbbZxs0999zuzjvvdHvttZfbYYcdenaziG3cCEhd4WPlE7EVsY0ZIbH6F/PtKnUlXxWUej+TOn5VWtf2+ipiW6UXZn9GRLQ+Ztkao4LfKM8fbc8bIrZxY6DJ2qOsp/1wGCqxPeWUU9wzzzzjyS2ElQKRnWeeedyjjz7qFlxwQbf77ru7xRdf3BPbxx9/3B1yyCHuvvvu8z8jejv//PMXtk/ENk79U1f4WPmM2K48YZG+QE1YfCG3wHwvmvXMum9a2i0ybvYsgqIXxMoX13vltSVfOUb9nhB+wi8OgfZrt72+itjW78NRIWYzZjj3vv3Oqt/AXI2x2t7U14d+Hdv2vCFiGz2sGnvBKOtpssR27733dieeeKInrB/84AcdZJQyceJEd/vtt/t/f/Ob33Q333yzJ7b8nIjujBkzfCoyz0yYMEHEtjE1/9+LUlf4WPmM2NaFbtLGq7oJS4ybVW08xHfeeV7wmlj56spV93nJVxex2Z8XfsIvDoH2a7e9vorY1u/DsUr0xhpRTn196Ke5bc8bIrb15422aoyyniZLbI8//ni3xBJLuPXWW88xmOaaay4fvYXk/vWvf/Vy/+AHP3BXXHGF+/e//+223HJLt8UWW/ifL7roou66665zSy+9tLvyyivdVVdd9YJ28h4VIVCEwD/ufbwvMP96+En31H+enfXM7//2kHvkif++oM5uGy/nlln8pQJZCAiBjiHQy2k6Ks1se31thNg6546etLqb4Zzb4+Q/REM7h94XhaHwi4LPGX68ZVTnj7bnDdnlcTrWdO1R1dNkiS2HQ3EQFOX66693W221lZs8ebJPL2aTOlHab3zjG/73RHVf9rKXuT322MM999xzbty4cT5dudchUkpFjlP/1D05g5bv5AtuclPumTYL1Kn3PuqmP/2M++qkdVxROvOg5avb25KvLmKzPy/8hF8cAu3Xbnt9bYTYzuHceV/dyo21iJ7aG6b/oxLxTn196Id+2/OGIrZhut9GrVHW02SJ7VprreV22203T2iPOOIId8cdd7gTTjjBHybF3yuvvLJbf/313UEHHeSefvppd9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3q2TcQ2bhikrvDDlm/fky5zk6c+KGIbp2Y9aw+7f8uaJfnKEOr/e+EXh1+V2m2vryK2VXph9mdGhZiJeNfvW2pY/6Y+v/VrXdvzhohtmG61UWuU9TRZYnvJJZe4HXfc0UdoX/e613lyu8IKK7jzzjvPbbvttl7ujTbayJ155pme2G644Ybu1ltv9dcAXXzxxW6NNdYQsW1D23WdSSmqRmzzh0tZRXR047cv79ZdbXzpu4bxQOoTmuSL0wrh1238qrSu7fVVxLZKL4jYjsWIfOrzbz/NbXveELGtP2+0VWOU9TRZYotgpBU/8sgjbuGFF55NzieffNI99thj/vTjbLnrrrvcYost5k9O7lcUsY0bCqkr/LDlM2LbD+UPrbui22biSnEd0VLtYeNX1izJV4ZQ/98Lv27jV7V1ba6vIrZVe+F/zyliWx+zbI1RwS/1+besF9qcN0Rsy9Af3O9HXU97ITXU637a7D4R2zh0U1f4Ycs3hT22T73wMClQv/SGqe7SG+9wIrbhOjjs/i2TXPKVISTiHYdQ2rVZX0Vs6/fRqBAzpSLX71tqdCEVOazl1WqlbpdXa0V3nkrdjglFWsQ2FLnIeqkrlOQL7+AzL5nsfnjpLSK24RA66V8EeNpKEAfeCOAX3cDIF4jYhgEoYhuGm9UaFfxSX7/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmfmHjVim/3xSuMXdod+7N3hL224pvo3DlDhJ/ziEBjt2iK2Yf0nYhuGm9UaFfxSXx/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmcWPGr4/XnKA26/ky93itjWw1P6Vw+v/NPCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eEbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1wKgQM0Vs4/o39fktrHXxtURs4zFs8g1d1VMR2ya1pMa7UlcoyVejMwseFbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1gIhtGG5Wa1TwS31+i+uF8NoituHYtVGzq3oqYtuGtlR4Z+oKJfkqdGKfR/LEdtFxC7h1Vxvvayyy0Pyz/h33lfDa6t9w7Kgp/IRfHAKjXVvENqz/RoWYKWIb17+prw9hrYuvJWIbj2GTb+iqnorYNqklNd6VukJJvhqdWfBonthmH0lhv636t5n+jXtLe7XVv3HYpo5fXOvia4vYhmEoYhuGm9UaFfw0fxT3s4htnP43Xbureipi27SmVHxf6gol+Sp2ZI/HDL8Hpk13l9ww1T/Fvy+98Q6Xjd5CcleesEjcxwJqq38DQMtUEX7CLw6B0a4tYhvWf6NCzBSxjevf1NeHsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4tAg/OyE5+/iH1l3RbTNxpbiPBdRW/waAJmIbB5rwawy/Yb9IxDasB0Rsw3CzWqOCX+rra1wvhNcWsQ3Hro2aXdVTEds2tKXCO1NXKMlXoRP7PFKEXzZ6C8mdPPVBJ2JbDKL0r3n9i3tjs7XVv83iOei3idiGIT4qxEwR27j+TX1+C2tdfC0R23gMm3xDV/VUxLZJLanxrtQVSvLV6MyCR8vwO/OSye6Hl97i05IXGbeAf4NFbjlcyn4WJ0Xv2mXytfXdqu+VfFWRkmMgDqnRxK+NNtd5p4htHbT+96yIbRhuVmtU8Et9/YrrhfDaIrbh2LVRs6t6KmLbhrZUeGfqCiX5KnRin0fK8DNiW/QK9tzavlsium2UMvna+Gadd0q+Omi98Fnh12384loXX1vENgzDUSFmitjG9W/q829Y6+JridjGY9jkG7qqpyK2TWpJjXelrlCSr0ZnFjxahh9pyfdPm+5rQnIpD0x70j3w6MyfWTn/0K3iBOlRu0y+Vj5a46WSrwZYAfoX9/b42urfeAyH+QYR2zD0RWzDcLNao4Jf6vNbXC+E1xaxDceujZpd1VMR2za0pcI7U1coyVehE/s8EoIf+275QyFNOVua3osbIl8cIvVqS756eOWfFn7dxi+udfG1RWzDMBwVYqaIbVz/pj7/hrUuvpaIbTyGTb6hq3oqYtukltR4V+oKJflqdGbBo7H4bbLvWbO91fbijl98ITdp41XjhHPOxcoXLUDJCyRfHMLCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eaQq//F7cBeadx01YYpz/8lcnrRMsZFPyBQsgYtsWdP696t84eFPHL6518bVFbMMwHBVipohtXP9q/ijGT8Q2TK/aqtVVPRWxbUtjZLi3imzqA7Ip+Wwv7pR7H3WnXHBTIaYh+3Cbkq+tTpZ8ccgKv27jF9e6+NoitmEYitiG4Wa1RgW/1OffuF4Iry1iG45dGzW7qqcitm1oS4V3pq5Qkq9CJ/Z5pGn8pj/9jJtyzzT/xf1Ovny2Lx/6sXf7/680fuHKQjctX+UPV3xQ8lUEqsdjwq/b+MW1Lr62iG0YhqNCzBSxjevf1OffsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4dBD45ffh1oncDkK+GAQlXwx6SkWOQy99/GLbF1tfxDYMQRHbMNys1qjgl/r6FdcL4bVFbMOxa6NmV/VUxLYNbanwztQVSvJV6MQ+jwwCv31PusxLMHnqg/7vbSau5P+ucvftIOSLQVDyxaCXPjFT/8b177Bri9iG9cCoEDNFbOP6N/X5Lax18bVEbOMxbPINXdVTEdsmtaTGu1JXKMlXozMLHh0kfvnILeKQlmwpykUtGaR8IUhKvhDU/ldH+HUbv7jWxdcWsQ3DUMQ2DDerNSr4pT7/xvVCeG0R23Ds2qjZVT0VsW1DWyq8M3WFknwVOrHPI4PEj5OTKdm7b0Vs4/qvrPYg+7dMFjkuQhDqXyf1/m2+xfXeKGJbD69RI2aK2Mb1r+aPYvxEbMP0qq1aXdVTEdu2NKbkvakrlOSLU4xh4ffnKQ/4w6VEbOP6r6z2sPq3TC77veSrilTxc6njF9e6+NoitmEYjkrEUcQ2rn81f4jYhmnQYGt1VU9FbAerR7O+lrpCSb44xRgWfkZs7b7bdd+0tFt3tfEvaMyw5KuKquSritRoEjP1b1z/Dru2iG1YD4jYhuE2ahHv1Oe3uF4Ir62IbTh2bdTsqp6K2LahLRXembpCSb4KndjnkWHhZ8TWROMgKTtUKivusOSriqrkq4qUiG0cUqOJXxttrvNOEds6aP3vWRHbMNxEbONwS6W2iG0qPTFTjtTtrFC0RGxDkYusl7pCSb64Dh4Wfnbf7aU3THWX3niHW3nCIv4PhejtIuMWGIkJbVj4Ve11yVcVqdEkjqn3bxz68bVFbMMwFLENw03ENg63VGqL2KbSEyK2afVERWlSH0CpG06Sr6Ki9Xhs2PhxoFT2MCnEnLD4Qp7YTlhinJs2bZp7x5uWnUV641rbfO1h41fWIslXhlD/3wu/OPyGXVvENqwHRGzDcBOxjcMtldqp2+Wp4DQoOVJfh0NxUMQ2FLnIeqkrlOSL6+Bh40dKMn8ol95wh3vg0el9G0RUt9d+3DgkwmoPG78yqSVfGUIitnEIpV1bxDasf0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKJfniOjgl/Kbc+6h7YNp0N+Weab5REN7JUx8sbKAdOmXpy/bQIgvNX3gIVRxKvWunhF+RlJIvrueFXxx+w64tYhvWAyK2YbiJ2MbhlkptEdtUekLENq2eqChN6gNIhl3FjuzxmPBrBj9Iru3HrfJGDqLiQKq2i/o3DmHh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKJfniOnjU8LNDpyx92VpPpJdDqPKFK4TetsKSboH5XuSI5tqhVHGo/a/2qOHXVLubeo/wi0MydfziWhdfW8Q2DEMR2zDcRGzjcEultohtKj0xU46urnMitkPSs9QVSvLFKUbX8Cs6jCqLkJ2+DMFdefzC0US3a/jFaVP92sKvPmbZGqnjF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpCRHbtHqiojSpD6DUDSfJV1HRejzWVfxIW7721rvdE0/91z0w7cnCQ6kWHbeAJ7ZEdfn3SuMXrg1mV/GrDURgBeEXCNz/V0sdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UlcoyRenGGMFPzt9mZTlP095sOfpy+97+7Ju0sarVgZ1rOBXGZCaDwq/moCN2Pwc17r42iK2YRiK2IbhJmIbh1sqtUVsU+mJmXKkbieEoiViG4pcZL3UFUryxXXwWMQPcns/e3JvmOr/Ljp52aK5nL781hWX8hHd8Ysv5Ph/toxF/OI0bvbawi8OzdTxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB1DqhpPkq6hoPR4TfjOB+flVf3OnXHBTKZj564Weeuop98pxL3MTlhjn+F0bB1SVCtXnAfVvDHrpe4pT79849ONri9iGYShiG4abiG0cbqnUTt0uTwWnQcnR1XVOEdtBaVDuO6krlOSLUwzhNzt+Fs3l9OVrb/mXj+hOvfdRx/+rFiO/2b/nn3ceN2Hxhaq+orHn1L9xUAq/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0xEw5Ul+HQ9ESsQ1FLrJe6gol+eI6WPhVwy9/vRC1ILs33DLF/WvaMz0PqMq/3cguJJcriOz/IQdXVZFc/VsFpd7PCL84/IZdW8Q2rAdEbMNwE7GNwy2V2iK2qfSEiG1aPVFRmtQHkAy7ih3Z4zHhN3bwM/Kb/RvyS8S3rNieXk5p5t/ZlOeivb1l77PfS/+qIlX8nPCLw2/YtUVsw3pAxDYMNxHbONxSqZ26XZ4KToOSI/V1OBQHRWxDkYusl7pCSb64DhZ+g8HPyO4U0pqf+q+z/xcdXFUkERFeSC97eSkW8S3b06v+HUz/xn0lvHbq/RvesmZqitiG4ShiG4abiG0cbqnUFrFNpSdmytHVdU7Edkh6lrpCSb44xRB+w8XP9vTa39mU5zp7e7MR3lmkd9wC7rmnHnNLLLGEG9Ye3zJ0pX9lCPX/fer4xbUuvraIbRiGIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qAyh1w0nyVVS0Ho8Jv7TxI8IL6Z1yzzQvKGT3iaf+W3lPb7512WuMLPprpHgY5Ff6l7b+xUk3/NoitmF9IGIbhpuIbRxuqdRO3S5PBadByZG6nRCKw8hFbKdPn+7mm28+N+ecc/Ztc+oDKHWFknyhQ2o0PGHq3/79m43wWpqzRX+pOe3f093dDz8ZpCRFJJh7fI0QZ19alhLdSwD1b1DXzKqUOn5xretdu876euWjS0eLIaIXB6HwSxO/sTZ/1Jk39tlnn7hOU+3GEOiqno4MsX3ooYfcNtts4+aee2535513ur322svtsMMOPTtYxDZO91NXeMmn/o1DIK626V/2GiOL/hoprnrAVV1JepHgbNr0tGnT3LhxM/cNFxVLq87/blDRZY3fur3e7vMh66uIbf0+ERGtj1m2xqjgl/r8FtcL/6sdMm+I2DaFfvx7uqqnI0NsDzvsMPf444+7Qw45xN13331u8cUXd3iJ5p9//sLeFbGNU/rUFV7yqX/jEIirHaJ/RSQY8muEOCvRA9OedA88Oj1OyJZqW8S5zuvzZLwX8bbTq+u8O/tsU9c7hfRvqMwp1AtZX0Vs6/fcqBCzGTOce99+Z9VvYK7GWG3vWJk/QuYNEdvoYdXYC7qqpyNDbHfeeWc3ceJEt/XWW7sZM2b4VOTbb7/dTZgwQcS2MTX/34tSV3jJF9fpwm/08OtFgovuAu5FHG0vcb71bUWX41AeXu1jJq3ec20ZnlTtfTlkfRWxrd8fY5XojTWinPr6Wl9zi2uEzBu7ffqzjXye7CLKk08/o/cFIAB+XdXTkSG2W265pePPFlts4btw0UUXddddd51beuml3ZVXXumuuuqq2bp2nnnmcc8804zCB+iMqggBISAEOoXA08/P7f7z/Ny12vTsjDnd9OdeVFon5N3Zlz727Lyl36jzwObLPul23HHHOlVG+tm66yuZUk8+GbbHfKSBkvBCoAICK664ott4440rPDnaj4TMG49Pf7qRRs81x/P+Pc/N6H/eTtWPjcX3dVVPR4bYfvnLX3Yve9nL3B577OGee+45v3/s0Ucf7XmIVOqpyJKv6nRT/JzwE35xCMTVlv4JvzgE0qpdd32tKn3T40Tvq4r8YNZN9Udcf4x6bc0bzfRg6uOomVYO7i0jQ2zPO+88d9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3oi1bSiNN0lki8OUeEn/OIQiKst/RN+cQikVbvu+lpV+qbHid5XFXkRWxBIXV/ienP4tTVvNNMH0tNmcLS3jAyxfeqpp9yGG27obr31Vse/L774YrfGGmuI2DarD7Pe1vRAa1pMyReHqPATfnEIxNWW/sXh13Ttuutr1e833c96X1XkRWxFbON0pUptzRtVUCp/JvV5rbwFaT0xMsTWYLvrrrvcYost5thD2680rShNd5vki0NU+Am/OATiakv/hF8cAmnWrrq+VpW+6XGi91VFXsRWxDZOV+rU1rxRB60XPpv6vBbXusHXHjliWxUiDpRaa621qj4+8OckXxzkqePHYWZvf/vb4xrZYu3U8ZN8cZ0v/LqNX1zrBle7aT3U++L6TvilhV+cNN2tLT2N69um8YuTZvC1O0tsBw+lvigEhIAQEAJCQAgIASEgBISAEBACw0BAxHYYqOubQkAICAEhIAQ6jMB///tf9+yzz85qIVcExZTnn3/e8cfK3HPXu3oq/21k4x1///vf3ete97oY0Xzdf/7zn442s1XqJS95SfD7eM+//vUv99a3vrXnrQ8hL2+qvTfccIO77bbb3Ic//OEQMXrWiZVvxowZ/saMXiVUX+655x537733utVWW23WqznE9B3veIebb775GsVAL2tuHBmWTY3LtvS+KfmkO/9DYEwQ2yeeeMItsMACbg5uRy8ojz/+uHvpS1/aml6wGLPJHhl6FWRgMewlY2vCOeeNhVGXr018yt5dBb/p06d7nNvUs15yVpGvrI1t/r6qfI888ogfQy9+8YvbFOcF764i37Rp0/wVZMMoVeXjurS55ppr4CJWkQ+jFlIQS35ixgBjFEN1zjmbuRdx4EAn8kH6e4MNNvAHPGaLrXEhYm6++ebu3HPPbeR96Nq73vUut//++7uzzjrL/fKXv3Srrrqqu/DCC0NE82Rqm222cb/61a/8exdaaCE3fvx4d9BBBwW97y9/+YvbYost3L///W+38847u6233tq9/vWvD3oXlZpuL4Y422yuvfZat+SSSwbLZRWbku/3v/+9mzhxon8tupYtrLv33Xdf7fnllFNO8Tdx3HHHHW6dddbxr4RAn3jiie5vf/ubd2KoNINA0+Oo6fc1rfdNy3fTTTe5N73pTS/ojKWWWsodcsghbvvtt2+mo0bgLZ0mtg888ID705/+5FgU//GPf7hFFllkti7BA/PRj37UveY1r3F33nmnO/XUU92b3/zmRrvttNNOc0cffbRfAJjAzzjjDLfwwgvP+sZf//pXx11gGFPI8LGPfcxtu+22jcrQ72Vl8mGwT5o0yROyBx980C+4O+ywQzLyHXnkkY79rBQMqvPPP9/deOON3lAZRCnD7+mnn3Y77bSTe+yxx3wfI1eowRPSnjL5/vOf/3h9xBClYEAdfPDBIZ8KqlMmn72UsbHyyit743PNNdcM+lZIpTL5LHLx2te+1j355JN+7GKIDqqUycdivNVWW/k+JmLBwodBP6hSJh+L++TJk/3cC+n+xje+0bhoZTI89NBDnpiAD3q21157DXSOa7zBQ34hRID+PP3000sPeawi6hVXXOG+9KUvuV/84he1iUnR+yHIXFOCrr361a/269oHP/hBd8/0zjMAACAASURBVMIJJziMwLrld7/7nfvEJz7hLr30Ur9+Q5aXXnpph30R8j77PgQXWb/3ve+5l7/85e6Tn/ykl3PeeeetJWLT7YXQvu1tb/MyZG2qKVOm9HXe9xK6afkgoRtttJH72c9+5iZMmODtAeZlDP+6jjOcFThomOexI60ss8wy3omh0hwCTY+jpt/XtN43Ld/dd9/t3v3ud/s5Azvuuuuuc3vssYf7/ve/75Zffnk/z73yla9srsMSflOnie1Pf/pTT3pYwO6///4XENv3vOc97nOf+5zjb5799re/7b1zTRWILKc3P/roo27BBRd0u+++u1t88cXdvvvuO+sTLITLLrusl4OUKP4N2XjRi17UlBg931NFvu9+97veo3322We7q6++2u24444OMj6IUkW+rBz77LOP96B+5jOfGYR43lFR1r/ghycZowlPL5POpptuOpDIWRX5WLAPPPBAd+aZZ3rDfpClinzIQyRvyy23dFOnTnXf+ta3BkZsq8jHfdqM6Q996EPukksucXvuuaf74x//OBAYq8j3la98xT3zzDPemYKThYgkC+ASSyzRuoxV5CObBv27/vrrfapf08S2igyHHXaYj/Dg1SaqQ38Sva1rBLcO6Ih8gCv5cH5y3zxO49jyhz/8wX3ta1/zhLGJcvnll7tzzjnHvfGNb/Rk9Ic//KH/N2v/oosuWvsTrIsnnXSSlxFHOaT5LW95i59TIUAhhTnvN7/5jV8vcIZjsGKUggUErU5WQdPtZUzlI6K0MTRjpWn5LrjgAt+n4GaFuYX/L7fccrW7A/sHp8rxxx9fu64qVEeg6XHU9Pua1vum5cP+YF7D1rTCvPbb3/7WB6c+//nPF0Z0q/fQ6DzZaWJr3UB6bxGxfdWrXuXJGn+zWBC14rmmCoY4qTG33367f+U3v/lNd/PNN3tvthWitZAjyK55hAZleFaRj70lq6yyil9YOWkNDxDG+yBKFflMDiLz73//+x1e7kE4BfhuFfnMaDfvPUTjve997yDgqyQfRgDRKgyV1Vdf3V9obylXbQtZBT9k+OxnP+vWXXddP37Ac1AR26ryISOLCY6x7bbbzjupBlGqyMcWA+Y/ojw///nPPZZkrwxiy0MV+QwnjEbkaprYVpGBdE/maSLtOJ8gDczZRHtU6iNAlg8EgoypbAlNRcaRytwEOSEzwkjdscceWzt6iTw4etgfes0113hD8Dvf+Y53ZBDZCC1EMIn+sr6TFUGGDoQopBBhJBq44ooregfBBz7wgVmRFhxoZNTUIcxNtZeILHMc5B1nUL7gdKwbTW6jP7BZiFgxrrFdCG7ccsst3n4JKUS6VlppJXfcccf599ncyfxQx8EQ8u2xVqfJcQR2Tb8PB+zJJ5/sOQPjHVukzljM92eT8kG8mTPITuDMAPSeYBnzxcYbb+zPABj0Nq5h6e+YJrbsOWPRxEPPpL322ms77uNqqkC2SB2yCOcPfvADR1oV+zas4N3mkAjSXFho2bcRagDUlbuKfHixMdaJLJPaAGmEDA2iVJHP5GARY5Ig7XdQpYp8RLjxmGHk4DwhzZEJZhDEoop8RCwwpHbddVcfETn00EN92lUq8pFJASHD6MTxNEhiWwU/0zUIGbIS5Wsy66OfLleVj+gP/fr1r3/dp+fhpBpEqSofsrRFbKvIQDYAf9hmQSFqx1xHOqlKfQQYrzhvGbNZQyr0oB0IchEped/73tdIlglEnP5m32joGQhsQyBiwlyPYxBHSagRyfxBej5OqCaLHVID+QxJkTac2K5FO/Mltj9i5cvKgx3HtiSCBfQHsr3iFa8IgpOMKyJe+YK9pqyOIEh7VmpyHPGRJt/HIWI47NjKw3z0kY98xO29995RwZQm5aO9BObILkDv3/nOd/qUfFLz0dOYffrN9nL7bxvTxJaOxyDFE4wnhugpaURNFaIlKBR7PyEKFo3Ip8ri3YUs4o2GCDdJrvu1pYp8EDMGM2m+EG6cAUXR76Ywy76ninw8//DDD3uPNgsvB3cMqlSRD+MEAwdiYUYznrQYL1/V9lWRD9LD3kb+sN+RdGT0L8TwqSqXPVdFPpwVGLYYJaThkapPSlnTe+GLZK8iH0SRtENSe9lyQDreoDIuqshH+jGkDYcUEW+ceIMqVeQzWdoitlVkYN5nXiMbhTFAH9KXisaEaQpRcpyhbF9pKuWd/WiQT/TZCkZlSHYOW32om3XQEpUrOoejCgIYvOwnzhbWe9pOpIRtSHVK6ofU0BbIN2sEay5RXKJEbOkKKU0fooODAUcy20RURgMBtqQwxlnjd9ttt1lCM48QCAo9pIuMTOwtxnzsvIHDDn5AVpttOYBDHHPMMcFnuuA0IWuEANf666/vsw5j5swm2zsamlMs5ZgjtnhISEshtYmUWggRixzpg5xK3PTBOeS4k6bIwTcoLnvd1lprrVkyYNARLSaagpebiG5MSlRdZSyTj31DyIecHKyyxhpreMN9UPsxy+SjvUTKOGCjSadEVRzL5CNKT+oKiy1XOEDUMIQGdTptmXxf/OIX/aEC6CiTIguJpc5XxSDmuTL5INlmzBKN5wAVvO+D8pSXyce+FRwX4MjiRMp0Sv3L3j8M+GGMDfSiDL+2iW0vGTDCIUrMy4xN0gwx1tkXikFMNEYlDAHmEaKfFA4XMvJJ5lLIuMXYZVzhEM7eLIAjIoTYIt8RRxzhU88vu+wy7yTDuAw9FZn1kMNZiI6QqsqeUcg9ayX77dmGUme9TP2QGvqROZiDlchyO+CAA7xxT0ZSSH80fYhOG6nDkHe2EdGnpCBjw4GBSjMIcMAh+pS/oYSgEz8PSXEn4LHCCiu4XXbZZbZMDM66Yftf3YITh0wMTsSGJ5COj00fOq9xngOOeogyqcPY/pzJgoMtJNuj6fbWxSel58cMsSXqw8mgpKYxKXGUPga87dcj0ocxw+mDTRYMSjvlmIWPAyX+/Oc/z5IBsrjhhhv6iAHEB2MrxmNTV/Yy+YjObrLJJv4eNwqpoEVpOXW/W/X5Mvl4D1FR0geJKg+6lMmHp5CJFA8yRh2OjUGemlsmH/3KZI3hxR/kI8owqFImX1YO5Npvv/0GtseWb5fJB5klTZ+9LBh1X/3qV71zYFClTD4yLlgss4XtDk3c21mljWXy2TtwnDEftxFlKZKBiBpzrqUcMwfTl0R4OQUVA1YlDAGyQDAC8wWSG7LFAdKJ8yF7KEqYZDNrkWXBWg9RZq8t2zE222wz71wma6puIS2RbAg73Ip92hBcvsFdpzhd2aNZtaR+SA0HM2HMs32KuQ7yTho/awd7/OqWpg/RaTp1mLRw7EQchDj6ISLsgQaDQWaI1cV11J7HMQLW2fUTJzG2XUgggHEOWWzy3AYCFRBa1gq7YYAoa0hhHJHSz950K2R/EdgKOeSsjfaGtCuFOmOC2PYDmkWEwcNm8JBFt0onEiUm3bhfGqClf7YlQz85q8gHRjgGQjxdVTCKlS/2GzH1q+CHoTese0SryIf3MDTdJwY76laRL/YbMfWryIeDgAV4GOmrVeSLaX9s3RTkqyIDczBjYBhzXCzGqdXHSZvdF0tEnHTdOvuWcQoyLxGBI6JDxAzDz6KfHN4Ssl5yvROOC7IZOLSRMy4gpURKQvbY4pBhv92vf/1rH1FmrYTQQvjWW289n5KNfVGnNJ1S2OQhNfQtEXTsARxCkD7ICHv5QggIuDQpXxHOROND91ATMcQ5RpTOUlDZt0uU+g1veEOdbtWzPRDAwYhDkcATY4mCg+jTn/60J6chW6MIynCeBMQxO1fUnTeYh3gX+s7YpmDP2xYDIvh15iG2JpKFRlALhxoZfTjCIPYEacCiToaHQdpUe7ugpGOe2HahE9UGISAEhIAQEAIpIICDgPReDivhtGGypThTAMO1jsGGodcvuyXkXlLDB8PykUce8Qbmj370I28AQ3BDC6nNpKtSiFiTucHeUaK29vOq724jpbDpQ2ogIBB3TmnmnmgIXkyWQ5PyNb2HmlOlIR7cVYwDZPvtt/eklsy7YTgyq+rRKD1HFBTHEMQxe36GHdZUhzhau0npN5KcxaLuvEE/c+gn18Fxg0S+1H2fba3o1T8480K2bDTV3lHSm16yith2oRfVBiEgBISAEBACCSBA6jDGIKSUKCvEjtRN9p5m98iGiEoUJ8TIzX8Lss3VcJAWK8hYh3hbPYg8UWD2k/NviwgRmQkhPm2kFDbZ3pB+K6pDJJ4TXHsVtnCF9EfTe6iRDxJPiigp8VzXxzVMIemiTWHXxfeQ9YSeMo6aKBzCRnYBDquQcdhLBrI80Uu2HzW9pYesB6LTIXrfBGZdeYeIbVd6Uu0QAkJACAgBITBkBDgsif2rREJJ2WQfGaf9czhiqCHIuyDIvJuzKjhEjnTfkEJ0kGgyB7dkryDi4LCQK4m4UYG9uk1dk9Z0SmHT7Q3BvKgOTgD2JvcqpP6GHKLT9B5q5ANDHDOQGXSaCHUTDpamsOzKe5o8pAvHFXu/OU+H6yBxtMVceQOhxfnFdT9E7jk3ZdVVVw0+dA4n3bnnnuszWaywj5stHK95zWsqdylOl0996lP+fArOw8kXDn+NdShWFiaRB0VsE+kIiSEEhIAQEAJCYNQRIAWXk0MxzojccuAbB6wQyQ0pdnoo13YsueSSfs8dBxexz41zC+oWru3gBGwOLGuiQGjZ+8sZGqTjWnQIDEJOc206pbDp9jaBWfYdTV/P0/Qeag6UY284J0ATpeUkbVJF2bfbZCSwaVxH7X1tHdIFwYVAcogbh8PiFMPRVnds8g72WnMYFVkZZBzwHg61C9kDTHtxiLEPnwMdIZ+cxVL3dHYIN9fT4ZRDprxzLvTQvlHTn6y8Iraj3HuSXQgIASEgBIRAAggUHbKCWPycyFvdQ1asSRBiomXZ6B43Gxx77LH+ZNK6BaLMNR1c88c1PVbYRxlCVCBSkNF82WCDDaJSCkmlZL8uB5pxFWFoabq9oXL0qtfG9TxN7qEmko8OcootBSJB5A8CEpqB0DSGXXhfG4d0MX5+85vfeGJ7xhln+L30XPHJPlf2xtYZ78xB6AGp0pykjj7wb5xkHBxZt6BXnK5MWjuHZJFpwDV0HLIHGa1b0EdO7EbOsV5EbMe6Bqj9QqAmAniwKSFpezU/pceFgBAYEQSaPmTFmv3EE094AsopxtxLyXUunB4aet8j+9hIJYWUZOcwDNSQQ1uQkxRV0qVJC8Q45Y7T0FPmiXhzSA2GPqmPXCkzfvx4f51OSGmjvSFy9KrT9PU87LHlWh7SMomGhUTTsrLeeOONPtUTMoN+EFVj3yY/H2spnk32e/5dTR/SRf8wfriCCvL4gQ98wJNaCoeekerOoXZVC/IRYeVAOAjud77zHX84HnuvQwrzFw42CC0p0xw4R3YLxDTkyk+7T5sTyjmAy1LlQ/eqh7QplToitqn0hOQQAv+PAOl1XFRuhQV611139QbTMAopf1zXwSLBlQl4KfGIc48fKXhEZDDoVISAEBACbSBA1IX7mCF7XDHDCbWhp/CSmosxyWm+TRT2X0JiiZZAojBM+QYpkNxtXbf87ne/8+2DSHFHNvv5SIVlf3EISWu6vXXbE/J8zCE6rE3sUyRlmJN2ibByrcoBBxxQK4LOyc+krVJIg6esvvrqfi81DhFklHM3pHd712nykC4yFXCKZclrjF7lpcbBgW0Uc9gTOoZ+sq8eZwx6uttuuwWBinONq4PyJXSvepAQiVQSsU2kIySGEDAEbN/YLrvs4jgpkEvBKaF7ymKRJSWO/XKHHnqo+/znP+9TApmMOSBmtdVW8yT3lltuif2M6gsBITDCCFi0slcT6h5iQhohaaqveMUrvOFXVLhbsm6UlStFOACIE5uZv+zu1br3W5o8EMfzzz/fnXLKKbNE5L0Q8ZVXXrl2jxJxJDqNoWv3puJAPPPMM2tFmOzDTbe3doNKKjR1iE72M3aPMvuxia4RnWcvb519lWQmsfZlS/ZUbt5ZJ5W1ady6+D72iuI4YOxbwZkecj9y03rV9PuYL3HUkZ3B3NNEAT/eyZzIeQQrrbRSLZ1vQoYU3iFim0IvSAYhkEEAYkvqmUVBd9xxR28kkVrz0pe+1B9WwH4R9vkcffTRfp8Z0QKMK6IZRCNI7+JiciKtEE9+TqoLEx57QzjYhAvCSVPBo0dKDWlbREHY94FhwHchskSKObkPzyT72jAUWHiIJGSJLR5MjDv+YEBw9xvvVxECQqD7CODsymaa5Fs8bty4WiCQ2rzHHns47ogtuj/Srt2oexpx04czkQLI3j3eSxv5P3My8yikPKS87W1v88buzTff7N+FU5NTWENK0+0NkaFfnaYO0bFvEN3HccGp1zgvWL8WXHDBKLGbPJU7SpAOV8amYMsBh7CRfm8l9LTypvWq6fcRUT7yyCP9nlpOV8beIjuvrqPOcGLutfvD+Rn/xklW9zCqLqiYiG0XelFt6BQCEFsiEWeffbaPWLC/h2gHUYutttrKG0xES0k74fdEdSGgkFgKZPJLX/qS9+5DRtnvBRlmEiWVipRi9pyQRgX55XJ0jsO3/SekX2Ec8B3IL0SW73GyKSSYC+pJ8SEVOUts+d2BBx7ov03qFmSYv9dcc81O9Y8aIwSEwAsRYI768pe/3BOa0FOC+2HNvlPSdkMOb2EOQ2aiGrGRN6KrxxxzzCxRv/jFL/o5NbSQ3kyEkauSIGkTJ04Muvqm1/cxdomE4Sgddmn6EB0MfNoHdqQjcxAP+O2zzz61UpENl6ZP5R423ql+H8c8uhC6ZzXfrqb1qun3mbw46LCTvvCFLzhSk9G3EHLLndDYcwRBLNODbWMEMjibYCwVEdux1Ntq60ggkN9ji/HB3WkQVtJLOLiC6Crkk/1YpJ4wqUFsjUhyJD0HrHCMPClTPMNBF0zOPMciT3oPUVzILr+H2E6aNMmnwTEZEiXheHsmx2wqMmS2iNgSQSYV5uMf/7jff0QK9b777uu/oSIEhEC3ESBjw/YiFrU09pTgJtFjHxuZLVz/gSGJYxDnXUxhzps6daqPlMQSRub16667zmfbWOEU55A9u5yBQF3uyLSCQ5TDa0JOX43BqKhu04fo8A36lGgVe23JIOKaHtKSQ/bENn0qd9P4deV9OJl22mknr6dNHMrVtF41/T76jawU5iGitnPPPbe3vzhPhX/XLchHXRwDONXQW2wyxkGI46/u91N6XsQ2pd6QLELAOX83IxFbSCgpvUxOkFCMRq65wNOOF98KUVwuNoewchk5RhWkFnLL/ipSezjIZJ555vGHYRBJhdjyfwqEFtLM3xh47KX9yU9+4u9oq0psSZnD6MJQ4sATK5BmIsYqQkAIdBsBrr0hSsb8xKE9+YKjLMRgaxo1zgPgHlz+Rh4yXjiFlL9DTjJu+hRjriJZd911PdHOGvikZYcQWwxb0rm33nprH8GEeGP0ppSi2OQhOhBYUjr58973vtdHa0P61fSu6VO5m9bnrrwPRw5Oe0r2kDQyw0IimLynSb1q+n0cMrfpppv6jBNOaSYdObaQ3Yftxv5wnDgEGfpl0cR+L9X6Irap9ozkGrMI5PfYGhCPPPKI37PF3iGOmmffD4sBh5cQFYXYsghjDHGiJgs65BQjjokTw4j7ENl3hKEDYebfnMTHBFhGbElfJuWOPUtFEVv2hbGfi+gvaczIx6RKpEZFCAiBbiPAtoXvfe97PtMje+estZo5h/tsh10gdJwPkD0VmcOZiOxxDVDd0vQpxpBO0pDZPtJEISLEFSUQZa4rYW1gzv/617/uXvva1zbxieh3sIeYvdJEl63UPTSId3AuBe/AYZE/cKju+7KNavJU7miwOvoC9tiS9ZEtd911l88YMyd83aY3eRgV32aLAISUE4gJLjBf2LU6dWXjXbQrtG29vvfAAw/4M1awx0L3+NdtS2rPi9im1iOSZ8wj0IvYAgz7UNjDykFSFIwTorOk1mWJLYsEhJYUZQoTMISTaO6ee+4561h4fs47IcMQW0sd/ulPf+rvViNii9ebxQWyyjcg1XYScva6H35Pypt9c8stt/TpyCFRhjGvBAJACIwoAmSHEBnEAcY2iNQKEVacgzj9OLWYiCbzKeQvpDR1ijGEjBRa0oTJwsHpyPxqUe7QU5uJpHMoIFtMmN+JikHsSV2MTZkOwStfh/Rt1hfWIhyvVs4999xaqcNE9lgbn3/+eX8+BdlDbJshHZkMKCL0dU5FNjlwMnBw11FHHdVEc/WOHgg0fepw04dREQXl2q21117bp7YzxxFJxlEWu0c/RilIZ9599917vgJ7LDTiHSPXMOuK2A4TfX1bCAQiwDUEENGyCQtDCYMpbxThLSQCzJ7dKh5HjAXSnPleGVHFMMNbzv41FSEgBMYWAqT0cogJBt/DDz/so4M4xzg5eJgGYLYXiGpAVoi2vuMd7/DbJWLmqyZOMb7pppt8unCvwu/L5vtedXFEMt/zN5k09IWlfQ5bO9lyQ180da8w9/1+7nOf88SDtY02r7jiio4U75A+Zj3jgDGcuqusssqs9XLChAnJ6POw+7CJ7zd96nAbh1GRTcH5IxQOfSLrjXlumA48bDn29zPXEozgMFAOi2Lr2qmnnuqzGFLYAtKEjlR9h4htVaT0nBAQAkJACAgBIVAJAa4MY5sEUUJOqrVtEpUqt/xQk4czIWrbpxiHwIGha3ueOVehqBB5Iqo5zELkeLvttvNR5Cbu84RocAMAKdcUInekXGPoh7yftE4O9ckXIvyhjoZh4p3qt5s+dbjpw6jI6mAPK3pFv5M2jXOInzdx2FVsvxCZhXhDZq3gcCPDjmuUxlIRsR1Lva22CgEhIASEgBBoEQEObOFqMArpvkQHufIrm2ba4udLX9304UwQdqJN+cKhfZwmP6zCnmeMWkhj0Z7nZ555xm9D4eT8kNOCY9tFZJVoPgUnCIX0YcsICj00iDvZ2f/I36RykypO+iip2CrpItD0qcNNHUbFfMahmxQ79Z1DMdkTzrghWjqM8ZPvSbaCQbQ5FZktFjhk2BoGwW96H2+6WjRTMhHb1HtI8gkBISAEhIAQGBEEOPCFdDgO3IGocMIvxILDe1JIRW76cCYMclIR2a8KgYdIYehC5LkzPBtBSa0LIbbvfOc73YILLjhw0SDWpEdbgYgS+eLnGOLoTpVtMkWCs1+TvYeQZ24SGGaq6MCBHeEPNnmKcfYwKvbV22FidfWKvbVs/epV0K0U5jXkI2rLAX6cDL7++ut7Qp7KloNBqqWI7SDR1reEgBAQAkJACIwBBO6//35/9UQqqchtHc4Egdpll1182i8GrqUoXn/99W6ZZZbxJ9dz6IxKMQLsgeWgQ647OeSQQ3xqNKm/XIMSWrj+jsO3ODSLvbCQW107F4pmu/UgoOxj5gRf5oyiwuFfIWnf7Itm7zbpwmSRkEqMo02l2wiI2Ha7f9U6ISAEhIAQEAIDQ4CoCynIXLXBXaIbbrihTw0dN27cwGQo+lBbhzNxxRl3hrNHlMKhMhxWhDHN9TqQNf6vUowApw6TJsyhVlnHQOhhWaSFEzm/4IIL/PV0hx9+uI+ck9q80EILqRsSQwDHEFcRch0YV4XlC+OJw49I/a0TwWce2mijjfzBZOyx5nRsopg4nqQHiSlBw+KI2DYMqF4nBISAEBACQmCsIsCpyJzGzhUuqaToZfvinnvucciYPTTpoosu8qcjh+6Vg7yTsshhTERuueqIvcX777+/u/nmm2sZ5GNNb3AMnHjiie673/2ubzqpyOAI4R0/fnxtOLjWjmvqDj74YPfRj37U/xvHyjHHHBN0T3FtAVShcQQOOuggH8FfdNFFK7+bbBEOeuKEdiuk3RPBTeX+5sqN0YO1EBCxrQWXHhYCQkAICAEhIARGEYFTTjnFQWI58AWyQ2E/JsSKQ5QWW2yx4GYREST9mL3EpB5DnokMhZLlYEFGsCKOAe7bJbLNHmUirKQThxSIMdfyQISIom+//fae1BIZTNHREtJG1emNABFZ9lY/9thjbscdd/QHKOHEYmziPGGc235b4dhNBERsu9mvapUQEAJCQAgIASGQQYBoHlffkNbIvk4r7IWFTKkMDwEO4eIKHQ67iT3sibs7OR2WqC93KO+www4+CqzSfQRwMLG/ulc5+eST3bzzztt9IMZwC0Vsx3Dnq+lCQAgIASEgBMYSAhxWxB/tsxtLva62jkUEOA2ZrQdWuP6qbkrzWMRt1NssYjvqPSj5hYAQEAJCQAgIASEgBISAEPAIcHgd2wK4fozy+OOPu2WXXdanKadyp7a6qh0ERGzbwVVvFQJCQAgIASEgBISAEBACQmDACFx44YV+Pz0nk7O3njtdd9ppJ7+Hm1OWVbqLgIhtd/tWLRMCQkAICAEhIASEgBAQAmMKAfZXn3HGGe7oo4/2J5QTqeUuY64V0n7rbquCiG23+1etEwJCQAgIASEgBISAEBACYwaBJ5980p+Ivdlmm7lzzjnH3XLLLY6fTZ06VRHbjmuBiG3HO1jNEwJCQAgIASEgBISAEBACYw0BDpDiSi/uS+YaKO2v7b4GiNh2v4/VQiEgBISAEBACQkAICAEhIASEQKcRELHtdPeqcUJACAgBISAEhIAQEAJCQAgIge4jIGLb/T5WC4WAEBACQkAICAEhIASEgBAQAp1GQMS2092rxgkBISAEhIAQEAJCQAgIASEgBLqPgIht9/tYLRQCQkAICAEhIASEgBAQAkJACHQaARHbTnevGicEhIAQEAJCQAgIASEgBISAEOg+AiK23e9jtVAICAEhIASEgBAQAkJACAgBIdBpBERsO929apwQEAJCQAgIASEgBISAEBACQqD7CIjYdr+P1UIhIASEgBAQAkJACAgBISAEhECnERCx7XT3qnFCQAgIASEgBISAEBACQkAICIHuIyBi2/0+9X88swAAIABJREFUVguFgBAQAkJACAgBISAEhIAQEAKdRkDEttPdq8YJASEgBISAEBACQkAICAEhIAS6j4CIbff7WC0UAkJACAgBISAEhIAQEAJCQAh0GgER2053rxonBISAEBACQkAICAEhIASEgBDoPgIitt3vY7VQCAgBISAEhIAQEAJCQAgIASHQaQREbDvdvWqcEBACQkAICAEhIASEgBAQAkKg+wiI2Ha/j9VCISAEhIAQEAJCQAgIASEgBIRApxEQse1096pxQkAICAEhIASEgBAQAkJACAiB7iMgYtv9PlYLhYAQEAJCQAgIASEgBISAEBACnUZAxLbT3avGCQEhIASEgBAQAkJACAgBISAEuo+AiG33+1gtFAJCQAgIASEgBISAEBACQkAIdBoBEdtOd68aJwSEgBAQAkJACAgBISAEhIAQ6D4CIraBfTxjxozZas4xxxyz/f/55593jz/+uJt77rndAgssEPiV2av9+9//dnx3wQUXbOR92Ze0IW9dIWnbtGnT3Pzzz+/mnXfeutVH9vm22s1783rZNkht6miZ7MNob5lMY/n3ben1WMZUbRcCQkAICAEhIAR6IyBiG6Ad559/vnvf+943W82XvvSl7sMf/rA7/PDD3cte9jL3pz/9yb3xjW9073jHO9xvf/vb0q+cdtppnoTssMMOPZ81kvKf//zH/e53v3MTJ050H/3oR92pp55a+v78Aw8++KD7+c9/7l796le797znPbXlrf3Bkgo33HCDW2eddbwzACz64dD0t8ved+GFF7p//etf7v3vf797xSteUfZ4rd+31e5vf/vb7hOf+IQ75JBD3H777VdLppiHszr6ohe9KOZVteoOq721hGzgYeaV3//+926NNdZwK6+8cgNvnP0VzAUXX3yxu/HGG92qq64a/P46en3UUUe5PffcM7lxH9x4VRQCQkAICAEhIASGgoCIbQDsRmwXWWQRt/HGG7unn37aXXvttW7KlCluwoQJ7s9//rN7+OGH3cEHH+xe97rXub322qv0K0YI8pHgbMXdd9/df+uEE05wv/nNb9x6663nCSBEsG65/vrr3eqrr+7J2jnnnOPuuuuuWvLW/V7Z85/97GfdN77xDbfddtu5ffbZx6244oplVQb2e5wY9HmssV8kcFvtPvHEE90uu+zivvKVr7gvfOELA8Mqq6NkKwyqDKu9g2qffYcxgs5885vfdLvuumvjn1933XXdZZddFq3rdfQaZ+DnP/95d/LJJ7udd9658TbphUJACAgBISAEhMDYQEDENqCfjdgaKeQV//3vf32E49Zbb3XHH3+8j4ISTV1llVXcscce60j1xfj+2c9+5v74xz+6d73rXW7SpEk+6kqk98wzz/SSbLLJJu6MM85wG220kVtyySXdWmut5Yks0VUM2SeffNIbnkZsee6Vr3ylu/TSS92yyy7rDj30UPeWt7zFk13+7Lbbbu6DH/yge+ihh9zmm2/uXvWqV7mvfvWr/ptXXXWVI9K84447+uey8iLLL37xC0+MbrnlFrfwwgt7EvzlL3/Zpwr/5Cc/8e3ccMMN3R/+8AdHhAajeN9993Xjx49/AaqkGBM5vOCCC9xjjz3mcSGaSET7iCOOcF//+tfdAw884N761rd6IobDIFsmT57s61933XU+Eg6pR2ZSlvu9+5lnnvFy8dxFF13kX0mEiH446KCDfJSYNhBdfOc73+m+973veUxwGGBkIxsYEEl++9vf7uXEefGtb33L/fSnP/WOhrXXXtuT8de+9rWNtvukk05yp59+utcF3k+hr26//XZ3zDHHuMUXX9zjTUYAJHLNNdf0OrLaaqt5XTNiu/fee5diwDt51xVXXOEWW2wxt9lmm7kDDjjAv5foftX2brDBBrN0dOrUqe5jH/uYjy5Onz7d/fKXv/R9B/lF//Pl2Wef9fgyFp544gk/hnB00K4yfazTXvoLncAxhTyMN/5NP6Pz9Cvp/oxb9LGOrpu+veY1r3ErrbSSbwsYfuYzn3Hbbrutb0c/feX3OMYgeeeee67vY3QUXb388svdHnvs4f72t7/5sU6/7rTTTn5uOPLII93f//53jyt996EPfch/67bbbnOf+9znvI7MN998Xle/9rWv+UwNCnPA/vvv7/7xj3+49ddf3910002e1PIHbIiEn3LKKT5jAb0Coze96U19Z82i8cx4Peyww7wT7ZFHHvE6sdVWW/m5KUts0W/kZc6hLYx55juchMytOAo/9alPzWpfwPStKkJACAgBISAEhEBHERCxDejYImLLazBejz76aE+K+Hc2FdnqQOT4+XHHHeeNaQgFxhsRGArkEoP6JS95yWySYbRi1FFIRcZQxVikLLXUUp5sYvBCyjAcIa9f/OIXvTyf/vSn3T333OOJMgYxhuLHP/5xb8QjAwQI0puVl2cw/invfve7PXmF3GGInn322V5eCAoFogf54feQTeTPFqLQGNSkT/M92oFBTYHkX3PNNd5gxniGxBHt4ZtWeDekkfeD38033+z/DdmDyPd79+tf//pZ+3UtGo5hjLOAdtCe7D5UjHaMesrdd9/tScOXvvQlT7pxOkAwIB0QPUgXROZHP/qR23TTTT1ZbrLdYI6Tgv795z//6e6//35PdOhjMgLQFYgvhPvlL3+5jyqDL89liR5EwfYsF2EAsV9uueU8/pAJvkX2AXoBTp/85CcrtZe2Z1ORISdGgpAZ5wjvRQf/+te/vmDkgTP40gaIIe2n3HvvvZ7U9NPHOu1F1y2ajFwQPvrXCt/n/4Y7Y7WqrjM2Detsm3n3r3/9az9m++nrCius4LMVGMuk55IJwlhhHL/hDW/wpA/9JNuCcQKmOMco9B0OLwoOJMgjY5OxQl2cBeBP+3A64OwCZ5tDcDjxLIVvMC4ZK7QDB9uvfvUr/zvmomWWWeYF/Wc/gAznxzPfw1GEPOjrD37wA/84hBrHARFbHDmQeuYWHAo4opAXJxiFuYF5DxkZcxBjFSEgBISAEBACQkAIGAIitgG60IvYEkUjogLhwQDNEkUMYww2oiKWbgfJwMhbYoklZhECIx5GEDD0IaZEkLKkwYgthiLRTCKOGMwYwfyO6E4vYgupyKci5/cEW/qtEWOMYIxoyh133OHOO+88b+xD9jBM77zzTk9YjFhlYbVvYSBDGDD8iTYRZSJqjUFrUWsihkROs4XIMJHIbbbZxkfXiEJRf+mll3bbb7+9N/J7vRvM+5G6LLEFO6KDvBPD+zvf+Y6PkOZTkSHZGNzIRPtp04tf/GIfKZtnnnlmiR7bbl4EMYfk0D9ExZEHQk/0C1wgKx/4wAe8g2CLLbbw3yaqT+TZIrZlxJY6W265pXcaUA/SDKYUDoOCWFRpL88XEVt0ApK70EILeecKeNEmc9QYYOxNh7RAYpdffnnvUIBg4fjBUcO466WPkK6q7c0SW5wmc801l3cMUCBtjEc78A180YOqup4ltugpbYSgIjfzAu/pp6+MWQg1hfEBIUVGxh4R7HwqMn1OhJkxxFhiLH7/+9/3jhaIKt82p8tzzz3nHSVgikMEBwbYoj8QRfrEtgDwzNZbb+1/RpQVHSBb47vf/a7vF+TsV/Ljmb77y1/+4ucoIvO8G0fKJZdc4uciiC1zGXoGub/yyivduHHjvKMMxwI6jzMO5wD9zLzJMypCQAgIASEgBISAEBCxjdCBXsTWIltE9DAgs8QW4oFhmo0MYegSaSLamt9ja/9/6qmnZhGzImLLOzBkKaSOEimBBBBJzBJboo8YzBYtKyO2Rt6y+0pJReT/kGYiKxjppBFCMiFAkG8IJv/OFoxmUiOzUU2ixaQb2+Fa/Ygtxjnpw0Zq6rybg3DyxNb6KR+xxfCfc845fUouxJG+wZjOE1tIL+TXCm2GIGCc15ENB0S/dvMuUnMhpqR3EkEjPRWSy8FBkBOwyeoUdUj7RSf6Eb0sBkTTLNU5Pywgeny3Snt7EVucORzARWFcEInFGZPdRw2ZJqWeUrTPvEwfIZFV25sltnlHkv3fSDbkELJfVdeN2GYdPLT9ve99r9d1cC8bC7Y/1fqCcYsuErHME1vmGHN65FOEwYN6ZFBAECn0M7qEwwxiy8FzRor5PX2CY4H54c1vfnPhLJmdc3pNo3m9Zv7DeQJRzhbGJw6b7NihvZBgslZIbYfM5kuRAy1iSldVISAEhIAQEAJCoAMIKGIb0IlFxJYoKOmcFIwy9txmie3VV1/tU4QpGPYYnBASiwr2IrZZI7+I2GbTOo2Asd8WYxHCSZQFwkt0A8O6KrFlXx9pjZA49gayl5SUTQqGL5EWjH3260Gu+hFbCByRGgxWDqmi2L46i8L2I3hGJC1SSaSHSCzvA+N+74bgWdopbSCyaie/5omtYd2P2BJJJLJLZBEiDEZElCiQKyKsVmLbzXsshZzIHQQG8kLfZiPoOBqIci266KL+03liC2nohwHOk4985CM+/Rt9pOAIAQ++yym8VdpLvaKILYSM1FhKL2LLt9j3Sd+yB5XoLnvEwZTUfghhP30k0m/Etqy9dYgtek2UsqquZyO2zAPMCUZG0XUcJf30FUcG0W3wgHiCG84MiBy6AEnNHh7FHlv6jP3LkGd0DqcRWQ/sl2Xs8wz7ZClGFCGzbINgHDJ+GcdEUolc09c4sHiWOQoZ2C/MzyH66Fm/VGS+kx/PRsAZtxBjdIJxlCW2pFIzptiyYGOdDAXwt3bgsCPVHmcVjjYVISAEhIAQEAJCQAgYAiK2AbpgxJZIHQbko48+OmvPKAYbvyeimSW2llKHUUf6KlFdjDoOlyGCY4QAkkSqcj7KmCcN2T227NvD2CSCR4HA8W6+g4y8H0OWYsQWoxeSRPofKY8Yqll5MSYxKqkPqYAYY4iSRsm+P9Jg6xj7EC/SDDG+zdhHHjPI+xHbbDSPA6doGySHf2OUl73bjGpwwjC2fYhViS1ECHJBmjlp4fQx5B6nAW0hJRkCAFEATyuQnDLZyiK2vIs9sLa/kT2vEDjDhP6h35GPPqOQPoszIHsqcj8M6FM78IuI/3333efJOvphh3VVaW8MsaWupaejIxBgoooUCBUptv30Ef2u2t46xNaun6qj6zZ22SdK1NMcHz/84Q/9AWz9dIJIPAe8QWTJuMAhARlGr4h2srebuYQoOPiQpsw4Z1yDD/MK4wxySPqyOdsgtzgw7JA6SDL7Wy3tn0O+cJwwtikQWwgzspP2S8o+uocM7DvPX3eWn0bzem3ZHrwD/aSvKURjmYvsVGQws2uMkAeHId8GD7IiGAfUgdzjBFARAkJACAgBISAEhICIbYQOFN1ji7FKai1kh6ig7VklCkFEjX2pGJ5Gqvg8e9vOOussv8fPiC8/JxpXlJZp6ZHZe2whH0S5LB3ViDJGLO83QgShhuwYsSWiDKFBTqJy/A7yY/ISOcFw5jRSK3zrxz/+sTey7fAojEuMTAgA8hWlIlMfos9+wGwqotXl92YIQ9iJLOeLRb3s57SNFFH2Qpa929KeqYuBTF/RD7QFmfLRcgxoDqWyVGQICdE2CkY9xIX+yrYF5wApw/lSJltZu3kfcpLGabphd+lyejRp5xT6DbKCTETsSSHO3mNbhgG/5zAq0yMw4rv8zSE+Vdub1VE7PKpKxJY2sE8bwoROUtAlCC0R9jJ9zN9j26+9kEuLYJelImf32FbR9WzEFj2GYFIgxugwqe5lOkGfZq9oAgccFxyeBaZE1uknxh3OHUirEVa+RX2yDijsv2XesUOhsu/i95Y5wb8Z1+gWGSUQW/YHQ6qz72Z/7YEHHjjbgWtFU2lerzlYjXR25CDTAvLK3MT7yAQhQktUmbbYeQS2jzaPB/0H6SaqryIEhIAQEAJCQAgIAUNAEdsB6wIklCgLB9RY6qiJQNoj6YAcmpI9qbdMREtb5MRcDpHKFtI6KbwzX6jH7zHyISRFhYOIiERi8CJzTOF7tJ92smfSIltV30mKLdEo2mnE3+qWvRtiRAojxDbkflUcBXyffcR2QBSppvQXJ8v2wg/5ymSr2v6i5+g/ZKvSN2UY0Bb6GqJB1DCvg1XbG9MesCJdHawhVvm+qqOPZe2NkbNX3fweW5wNOF/Qm2wp0wlSfklFZjxzSBrOMiv0E1ki7M3nDwVnGN9iXNnBV9nn6VccaETm+Ttb+BZzEsQW4p0vZAdwMjW/53tcXcb7ehUOCDO5ss/gTKNNyFhnfuMd6AN7wRn75thpo//0TiEgBISAEBACQmB0ERCxHd2+k+RCQAgkhkDR4VGJiRgtDs6FouwEezFXBGUPBov+oF4gBISAEBACQkAICIEKCIjYVgBJjwgBISAEqiBANJX0djIkOPxKRQgIASEgBISAEBACQmAwCIjYDgZnfUUICAEhIASEgBAQAkJACAgBISAEWkJAxLYlYPVaISAEhIAQEAJdRKDormlrZ93906njkz9gLnV5m5RvLLe9SRyrvCs/pro2jqpgUOWZsayTtF16Ua4lIrb/jxEKw2EzIQcLlcOsJ4aNAIftcBBP0aE2w5CNw3g4CEdlJgKk8JaNPZ7hcKOiA46EYzMIVOmHZr6kt4wqAtkT/IvawCFmTc9tnE7O/c9cA8aVV1Y4YZxrsf74xz/6O8Q5KXzixImNQmsnvXNVXNkc1dSHuZGAE8M5+Z/TxIdROIGd+6s5hZ2T9rtSOHWfu9nXWGONWVeLDbtt3NPNVXvZwgn2YM8NFBzmWFY4AJBbG7gPnpsEKBdeeKE/sJOT5Ns+dO/qq692hx122GxicnL997///TLRK/9+WDq51lpr+esuuSKPww+HUfI3PwxDhja+2YaOdobYcg8j97fWGURcL8IExz2Jl1xyib8WgxNZ84UFhut67J7QpjsXY5KTdm+77Ta/OJcVrvrYYYcd/FUoWaLGFTZc78FEWFa4N5KThe0QGCZFrrjBQOBuy6233nqWLNwzyfUakydP9lcE7b///n1PAS77tv2e60u4RocrPtosnBrMfaJcL8KkzzU2YIcjgzt+uSeWk4Dph6OOOspfBcRJtPyOCa3IQ3beeef5q5o4lXjSpElus802889BWFlcuBoJI8wKV5Z85CMfcZwYS0HXWGzK7gNtE5eyd2f1Ev3giiVOlm6jYDxyNQ5XTmUL19xwHRWLCX3BFUbbbrttGyIM7J1F47Tf+OO6JQxcDqbaYIMN/NVPdgp3r7HJ/a9HH320P0mYq6AYz+h0WbF+QB6u7OnX3/n5s+z5ft/O9nOZjGW/Z6xxgjdXmKk0jwDroBEd5jqucOJqK06Hpxx77LGFp/CHSMLp25dddpnXfwxL7rjm7nMKcy/f5PvMEXZNGGsY/2+qDIPYQta5OpB9+qz1wyis91zL1TVia1cHYidxB30KxYgt9hWY40ThDnmu71tvvfX8lXtl5frrr/f2GXbFOeec4x/HvuB6Sq5vW3XVVcteEfV7uwKSsWd2KWT6ggsuiHpvtvKwdNKILdcoLrPMMo21p86LuH5yl1128Q6Q7HWAdd6R4rNt6GhniO3OO+/sDb86xgwDfo899vBXV/QjthiHvHu55ZZrRS+MQGCM9fsGp5EyYUHeL774Yn/lB9eI4JGDaHHPJh6yG264oa+cGJGbb765v5sUI4Sy2mqreWK31157+UmQyZ9rPmg3ZBuSt/766/u7bSE43GUZWyC2vJe+a7Ng6N53332+rXa/KZ59yCftwOjnPlDIPoYE99jimWfR+/Wvfz3L+2kyoivgx3NcH4QOYeCtssoqvv8+85nP+MmcO0C5P5jJkIno7LPPntVMdG7NNdf0uveSl7ykzeYHvzurlxAd7qPlqqY2Si9iC9HFkYLzadSJbb9x2mv8QR7RU+52pf042bbaaiuvtzhRisYmd9hiUGCQQja5h5nrgLgjuqxYP+AAghy/9a1v7VklO39CMsqe7/ftbD+XyVj2e8byrbfe6s4444yyR/X7SATe9ra3uWuvvdaTTUgnBV1gbmQO5Cop5kX6BPLL2sJ8uc4663idxFuP04o5GudjvvzoRz9yn/70p/2VZhDYLLHl3mOciszTGNXHHXecX9OY21kLrXBVFHfM48hkDl5sscXclVde6WVENtYFxsjxxx/v52p0kbGD09euwuPbkA3sC9YIvsOcRBtYC4iooW9chUVkBdkY74xrDFHGMAXn6umnn+7tDYgGDlGcdflixJa2sUYQmcbhTLu4Js8coqz7rPk4y5gTWFOyUTPIEWs6bbb1h3bilOXectZfnseueOSRR3wUk/mFtuVJBO3u13YwYn7izmoK/f21r33tBVfz8TvWFtrCHdlE44kwslYiP4V1GtyI0C288MKerEH0IUxgj/Pi5JNP9vMfjg++yzOsvZBE+pc24MQmELDpppt6fC6//HKvfxDGZZdd1u29996tO9arDDEjtlmybdFJIre27vbCxRyROH94Hsc5TnQwpF+4Exy80UdsO5xTzJHoJXYK4wjH/J577unHKAcgMiaoC6aMA+rRV9w5ju7kC+OUscR465cZ16ROlulCP51krEIW0Vf0CQcwOBRlfBixRQdZ95jXsIPRO9qDfcd1eBb8wqnMmPrkJz/p7UsrJ510kh//2FLgSKGvGOPHHHOMz3Rh/WatBnPGA3MA/ZYltugt9jNzgTk9CMrQFmx05lfeybuuuOIKP/6Za9CzoqwTbH3sLN7FfIKtz7yEHdBvPmdOLJODwBHZksxfOCjRT5x12P1HHHHEC3SUOSi2dJLYsrDcfffdPlpBR6EUAMoEaYXfocDci4qC0okYgUQPWbwgLLyHxfbUU0/1xAjlhRQyeCGPKAqLaf4OUyZtJhRSpoiK4mVBOVlYiYryXu505Hss+ERr+VNGbEnxYpJB0bLEFu85A4aIL0rbj9iCC8YqXkE8T7SFiZ87dfkd96EiJ6e68jvunWSis8UKGVn8s5FGFnAWdxY9u+YD44LFHnlpM4MZXBjQRx55pL9L04gtiysDkW/wfSZPDAsmcfqMycImVaJ1NjiZjDCIMBZs4Ocj3kxeDFQGN4YE8oA9izuFv5msiEwhOxMVCyKFyR3SmY/UM0B5hkmVwsLKYAUr2oD+IBP9zP/pZ3RnhRVWmG289iP2YE7biGLihWUSxFAAY3SXvqKv+UYvfLIfIzOBhY02YhCg37QdXWCSwZgxw5TUN/4w0Zte9iO2kHreDbHBQMFQYlFl4gJzouMsokQamfDpe4wmFkJ0h4mfPrj55ptni9jaYr/UUkv5dtM3GJ28iz9E+zGceB/jk/dh4PHM4Ycf7r9NRJMxxmSJDqIzYIHRirxM4OhWUZpWr3ZxnQ0ODPqWKDzyYzRhRKFrGJLZxcz6odc47Tf+GOsYYxiwFMYSxj7tALOisckYQmcsdRJjh4WZxevlL3/5bDrYqx+oi/6xOCMD2PNd5jP6lxTF7PyJU8ie7zf/YqAzHxJdYy44+OCD/dzMfGn9nDUsICRgaVF6+pCxBYno1T9GbJkT+80rvfSgqL2bbLJJ7Frbyfp5YsuWHlKGmbeYY7iLGv2joLPoIHM7hf7GQMT4ZP6EbGCAFRXT4SyxZU7EMEInmGMh2MiDXuWjROgR6wlOYQiUGeEnnHCCl4fxjAwQIGwGxqSlAWcjtug4pJN5jHewJjPXQZKYT3gf8wPvYsyhqxTWTO6XZmxiAGNzQByY/4i0sX5lixFbfkYEjDkfnFh3IKjoNXMd/+ZnfJNvk1mFoWwFhwBrO3UxdPk2ayRYW0ou8zQ/h/xYYICUS+pmI7bMN/3azvzOHAgWzDP0B/9mrs7fnc18ggGOjhB1/8Mf/uBFxlnH86yNFPqG32XbzvqLfmHnQMz4Jt82Bwd2GXMDhd8zR1JYh5CLuZ+fMUdipxTN1YMerLbWscZjc2IrYbPQR+g5cy52Ri9cWMMgqOg4mDLH0u/gjC4zf4E36wg/o7D24binoDvU4f18h4JOYB9byf6/KCUXAoO+gyv9yDiDKHJ3erY0qZNlutBPJ3HGYceCOTYDtjzYFQUbjNjSDtpn+ooNRTuNAzCemQ9w1oFdPguTemTyMfdhL2J3QmaZL5gbcRgwnzEW0VVINDLxXJbYosOQWortObY5gDmBvmBOQx7sOL6FPPQxfZ0t1AcD5lhsVJwo1GPsMDf1m8+ZS/rJwdyUzXjMjkdsWMZpXkebyCzoJLG1RYGBTEfR4fzJRhmJfuIhYYFiMOKtJOUDrx/KxUQBKcKo5H0sLHhEIFooDsQP7xaGLZNjtmDYYdyycGEkofgoFV5a6mCcsmCwGEMqeH8VYmvfwDhksbOIrf0cIo2nuBexhbBiGJg3FoWGvEIkmUDNW8pgXH755b0hAgllYEFsUEQMTEhQ3iMHYeJ3eIjw2EEIwQ7CgKGKkQlmfJsBCs5G7PgZhACMmARpF8/yPWRgkCInMrFoM1nSlxgxDDreRT+y+OUNGlLIead5EVk0mYSYWCj0DVFp+pSFGH3h95BfJifag9ctW/g9g5EFgEGNMwRcLTUO2UgJJz2eCZOJhH7JFwwjUt8tbSj7eyYM8yBCKNBRSAiGFZ41FiUWPNLve+GTfR+6Z/pNe5Cfvap4BjGqIPxGHvg/RAVcy4gtOOHAoM2QR6Ig6ALjxxYDjCUiG3wDnaBdYIvRC3aMQybVPLHFUKRtjDFkxmDhOcYXCz9jmsWfSZlvo0N4MiGQGAL0h0U6MLAYkyzwGM84JXBcYBgzkeejmf3aZYs//csCg+ML4woyzbyCvNbOIgMpP077jT8IJOOU8ccYRV8xYDAy+XfR2CStnrGOXmPAQR4ZG9dcc80LxOnVD9lUZJwH6A+EkQgb+sd8yTjOzp+Witxr/qVvMGIhGcx7NrfQL9l+hjxbQWeIXJhXGoOeP+hnL70zYsu46zWvYGj30oOi9jLOXvziFw/a3k3+e3lia+mQGGoY1MyP9Dt9zbyNExOygpHM2KSifwbIAAAgAElEQVQwH2DwMY6KIkE8U0RsmTsgchAWiCJrBRFYDE+cFtnCM6wz/CFaSd8jn61rGPjMWxBPSAYEAT1mnqxDbI00MqcjC+MUxyPvYSwz59B25klsCcYoc1N+C4aNIeYS6iMnY5VxzFrGesVaiHMPQ9jaw7hk7cwW2xPNeGANYN7FwMROwHDGWc06ypwKycOoZbxDjKoSW+Y722bD+xgr5vhiPjZnhsllmLIes66DD3MVuLDGIZc5D1g7LCjBes68V4XYsgawRuIURa+oh2Mj5VTkogHPfAYulrLZCxd0pF8qMjajRevMKYC9xJqIPYQtYmsbTlt+zvvoF0uJN4dKUSabkTlsE+xlnCfoOvO3kR9rX1M62Y/YYrv100naSIQceS1rkLUWUsk8kC1myxgOZk9Zmj5jkXFqzlTGGEGDojU361iiH6hrzguIMvaAzWfMFxTsChxtlopcRmypA6nHNqIepJm+pGDvMD9bwa5g/kEHcMCxNrKWs+bxHeaGXvM5+FUltszhcAyCJtiE5oRTKnKfZT6bisyiwERrxiqTAil9+dS0fCoykz5KhWcVIgGBQwmM2BJVwDCjMzHMWETwPuWjhHhkMN6MSGMAQphQEgYRhiYFsgP5ZhIYBLGFmGOYMimRjmPENk+AUGoGAZMebcHowBsKSeUdyA8pyxYWEYx7BioTBsY33mwmNwgGxIMFE8MCjzqYViG2RNIx3o0YMhggEJAeJlImNhZCiDY/y+5rRT4MYha0/F5B+hWHBMaUDThrD95Ic0awSGejXOiHTQroA33HO2yhsD2PTI5MSkSy0RcWejzsEGDSxylMYuCJhzBfILMY+3i78GohD7pGZBSSj0cUYsqk0AuffL+i3xhGOB3QAyY+cIghtowB2kU7WVgx5MCAVDAWAyK4Ng7oG8ggEyXGHM9DYngeQytPbJE/n4qMzjBmKMjNRI+HDy83fcE+UvQaQw9DDmzQEdsbg1EAhngwwRadwbMJntloUb92IQMpOixyOL9YCJiozTHAxA2hsjT/fN/2c0CxYGbHn9VlwWRMUXCYYYCWjU3DlTqMXwy6bBoSmPTqhyyxxYGA04cFEuOf8UJ/YbBmt3JkiW3R/As+6LQ5megv2oWjr1cqMgeSMJboD5wN9BGONwzdXnpXhdhCDHrpAfNbUXtTOXiuzzI48F/liS3zFuSVyKdl+dj2D4wsxi7GoJEMBGZ9Rgf4Xa8tLkXElvkbnWZ9ZWyYsckay/yWLdkoEcYmclv0k/UJ3bXoqtVDFmTqR2xxvmIQMo5YK/KRSXsX7WXcMxdZBJHfodusH3kbwohtluwb1sytjEMjsOgqRjTzOaQ9X+ygJNYe1l7mAovQ4QygHut0tpARxljrR2yzbWduQL6ikt8njJFtzqui07WNIGX3hTLX83/mFfolS2xpM/NhPmJLP4ML/cq8Y/ikTGyZkyy7D/ktQstcyb9x/vfChXW9H7FlzrRDqFi3WP/QfbNvcLKgIzjszZ6x6LfZSBYBzW49yNpNkCEcODhJeC/2RtH+3qZ0Mk9ss7rAmO6nk9gN2Cc4uLLjlPkkP9cbsbUILEQTnkAhu4m1CPsqO8ZsXsqPCfoYLoBTnT4mCxRyyVjDSUXwKysT9Vkzccr0I7Y4/5ljWNvQF0t1zn8/v0+YKD7zdXbOtjpl8znzRJ7YZuXIRmxxtmOz4nCALxg+IrZ9lu08scVwZUKlQITIg89HxvLENnv4CYsHCzETrxFbFMuUkveySDBJ4p3JFhZCFiRLabXf8XMMYBSIgmGIV5OB0TaxhTyReoxcRDCJkplRgYHMRARZZcGDKBJFwQhmQcFIt8NCUEYGDwtitkAGwQGvH4YKHi+Ul/+Thku7jRAycPsRW/PQsnDiIcwvurbnBJnwWDMJMKHzTvokWyCPLLpZDz4GP4fwYJDg7Mjua8brhgcNI7zoEBSLJpsXlW/hAGHBINKTLUx2OAcgOkyMGHQsGkw6OAmMsBbtW6UfMKpom6UAGbHN7h8071/2u9k9OfZzI0xG8I0woN95Ymsp2VUitiyGEHz0iUUMTHH+GLFlXNrhJ2COF5iJkEkdUkmx08irENvs+1joIdSQVxbcfEFPaUt2b3CvE12JHrEgW+nXLr6LIUUEylIR89/uZWTyXBGx7TX+su9lMUXvGJ8sdMxPZWOT92KEMOcQ3cYQsMJc0KsfssTW0sUxbtBFoqgYX73mT8Zh0fwL4cCRY/2ebVsvYosBhj4R8UP/SRfD6OrXP72IbXZegUjxrnxBD8CU/s239wUP6wfecMzuscWZjOPKIkBAxPpLhJ25mvHLPMiYte0UZtiwRaLXeQtFxBYnFbqIocSYsLkb5xlZHfliYx+yg8zMzcwNGJms68xTzGU4UYkgFhFb1nsi0DjwbC8n49BSkYlyMmfzbuYT5kTSrfk56zzrIcY/6yVrD0Z/luSbzEZs2VvP3JolChZxwV5hj2q+PUVqaeuEpQKaU5Fxh1GN8xU5wAOsi4gtY7BX25ljsC9Yexif7KljvNFWvp3NwmDNwTHIvAKxYrxhq0Ea6AMMY9ZOcxbyDrJQKKx92A+QVZ5B1+h7bIw8scXmw7YZJWKb3WNrjgPaTVsgKv1wYU3oR2wJrhgJsew4swPMZrCIbRmxBVPWcyv0I7LTz5bhhk1EH/c6zK0JnbT05yJdwOnaTyexK3GYUgjeYNsydvPp/PzeiC2ZeNgc4IMzHccUtg7jk+iw2aK8z8ZYfjyazWAH3ln2RDYzAQcO/cW8QckTW+ZTc1JbNhEknXELsWWtJNuDuZb2UNAnxh5jAr5hBV3AmWRysOYy/+BIhqzzp9d8DifqJ0eW2JoTS8S2huGQJ7Z0okX5qhLb7KnIRcSWRY0BzIBlQqDz7dCIrKgYj6QSWFQTQs1EDlkkikcEhIKBC7lhEWyb2NoCanLa6c8Qa+RjkSTVlUGR9R4ziPH0maHAs3iN2NOYPy2YAcPiyGJsXjoMD4wIPD8YqBj8kI0iYmueJIs00YfgyOJlnnzw59sYDSxyLMzIDYElQsBEmh20RIQwQIzQkRaDMcbP8PhnPewYViyaeP1sv2mRCtJuDAoiExT6GWPDHCn8jEEMtrQb/WPiADe+CZHG+GLC4Zv5dBVzQkDIzZtOO4uIraVj5/HJ79nKH46WJ7YYfRgVyI1XDT2oQmztIDJSEEm9Q0/Axoht9hRjI7aknrGA2h5QsimItFYhttn3GbHFoQJpQi/MeYJuoG8YS1liS7+TscBCSEEGO+0bY8xKv3Zl90Zb2j1eT/OuM7bQq16nJxYR217jD31hwUQvKXagCM4Rflc0NjGEGad2WAx9SpYAjprsCau2Z6uoH7LEFnxwhhFpYb5ifIMvxnmviG3R/IuOsdDa91jgMRT4eb/DoyzjBoKADmHA9uufPLEtmlfog156gMFT1F70VmV2BPLEFocDBhnGEnMocx3rJgXyg2FtaakQXXSBTB+K7QEtwriI2JpBxpjHCYhhSt/ljW57H+TADkOzPW2sFRiJzNHMLRiwzNMQUlLuid5nI7ZEgnHOUZ/5n/WFYsTWyDMGL0YdDkpkYtxgKPIzZMAGwPhlTBYR8eweW8Ys2BClzO4xNsLG95EHwzg7h2VxxOmK/UGxSDX/tkgocpKNBHGlMDZwTmcjtpa2WtR25gMMdf5GXvBg3FLs7I6sPJaeTnuwGywLB9xJG8cW4zuQJNYS+h/Shi1Bf0GycbKR2kiUi1KV2NohY3YYZhOH1cTOC7bHFtxYzyBK2EEQJXMC0c5+uEAgISfgAj7YbvxhrmSexhbDTsCuYIwSjYWYYDNZKmxVYluUimzkj37H3sJxiiyswVmbzLBqQidNj4p0AcdXP5005yY2K2MaWwximLXtTFZrGzrJFgh0FNzA2W4WMcJGnezJ1EW6YYSc31n2hGUy8A36mn6z810Ymzh6sqcim1MK4mlRY97Hus9Ysb3NOOuwjdB79IN5J39lor2L+QsHOn3HPM2c3W8+Z/z2k6MKsc3rKFwptnR2j20VYkuKFHsveBZDt4zYMjmwHwgDnIHE4oPnJr+vk4UcxcRow/CFhLG4oSR4aSE7eEAgPnQqE7IRW5QRowsvNt8oKnX22PI9FAWvcrYwGFloWViNWCCvHf7Es0yoGMhMiER7kBkvEIrMpJAvtmDYIs/vScmmTXjzILvgB454vI0gMFFgeDMhMrAgigws+sVSK8COAY8RgPeWAY9RT1omxMVOKmYAZ9NIjMBZ+iP1mWiZxKwYCcFJAcHIHr7BN1ngIbv8DY5MhGBGP0K0mQCQJ0uGMWToJ4wjjB+MEowkordG6lnMWLjy0QVL06H9RHbBBHlpA7qVjdjyDiayPD7gki39iC3kmYUUoo0O4CSqSmyJwNFXLKp4P8EA4wqynj/F2IgtkU48u3jaGX/oAoZlEbHF8KLPSDXMv8+ILRFzdIFFBtLF4oTeQciQKUtsSU3HoEGfmfypg1PEokeGWb925Q/9wrhnjNGPkDXeT78gd1HJE9t+44+5hegR45gFhveiH+AL7kVjE3xxpNCHLNgswuhs3oPM+O/VD1liiwGEgcC3MTzRScYybc3On9lU5KL51w6foq+ZRyDrOGsYO9l+zmOWTak2I7lf/xixZQ7uNa+gG730AOdjUXubONQidsFOrb4R2yyZZN4Dw2ymDRFRHDFEIpgvs4eU0KZsKn9RG20ezxI7nrO7Ha0OOsWYLrqiDQcPRBu5zJCnHg4adMEOyoFwY9xaNCZLbDEgcbZa2jLjCtltzcMAZa6ivhWL/pKZwnjJ3twADsxJthcwWweyx3ppTjjWY+Y2u8oIWRiLjEnWVHMgFOGXjf5ZpJrncAazJlm2DUSWtiEzfZi9x5ax2q/tZGKAhx2sw9qZzVDLysWch41jVzTxLPMUUSdwou22ZYt6dkiUZS9hzFt/QSIgAXliyzzJHI8zAr2xLBqcg+gga2/+BO1hja9e99iy5kEA0ZMyXJjPaS+YoiOsydgB6DMFmwT7hbmXbBsrliZPaq1F/coitkXEFscR488Oi6OvsB/z+8ftu03oJDrQTxf66ST7tbH1bHwhF/qNrZffUmDENnvgFmOT9tmWALPLeQ8/Ry97FTvwjN/jkLLDK8k8wC6i8H7bzkd2Ig5anG+WLWhbPHiWuQEdoS28m7Fr/MbSmvk9v8sfYkp9nNys88wDFOYzbErsiH7zOc+WyWFzsUVsbeuJpSLndbSJKzA7Q2wxIpl4mUghDnnDismWiTNbUBqMFVJhMG77EVsmYgww22OAIlkKjR26ZO9GkZhIMf6YsCFqTNKQLgaGTea2j5W9CHaPLakHDJSiPQz2fjuGnwhG9kRmFAVykk27xWBk4Ocvzs4SW8iMbVLP4gMmkBwmQoxSU3gWYruzMI8nC7Qd2sDveNbeDfnAUwUBhsSwqNg9tnbiInXMWKAPIalMNnZSH5jRjxAJS0WjL+h70irzVyfwc95hqaa9UncxdjidLl/Mu83Exh/aRpolhMH6kTRPSIR5yyGJdqoz/U8/MeHzDPLhFGDitM39drqyfZsJgPczYVAwWjCUcITgeMje0UlqdC98sm3pR2yN7PE80QTIIF4+i9jiCIDo0Hf5tGnGEIslv6cQiQAjDE68wUURW56xO++ogwEJlnjm8/dP2iQIdkQiiyK2vM/21libWRzwoPLOvNz0BcTIFgQm1vzhJv3axbey9y/bCb94cCngxjNFXmp+nx+n/cafXbNlxiJY0TcsehgyvcYm86E5bzAwiNYUXSvSqx+Yw4yoGhmxaDh6SzZMfv7sR2xt/kUmI/yMZeZUFtpsP+e3cIAZ4xYHme2d7Nc/GAo2RnrNKzipeulBr/a+YHLQD3oiwBzGeGC+wDiyFEjDlqgeaxWZB6wZMQdzkYpHRJM1IXsoSp3uQV7ewbrWa9xm34dDk5I/qMmeIfrCvn3GXn6/HnUxyHEq4UzNR0/yckNg0feiZ82xYESkTpvtWeYR1jT6qcghkH9nv7ZbvxP14X1FV4tk1zmyW3DYEqXMP8s76BOM/vxhPrwDfLHBLE25TttZo1k76ZtR2zvfDxfwp3/smiowwQYCY5x8ptvoJ/YVYwYMmyzoKt8kC6vXnvOy79XVyX66UKaTzFPYL+iYpf72k485DTzz9iJ2HlhmD1oqa2fR7+k/8CvS+fzzODuIjmMDF4019JwxxBhh/ug3vplnmJeYi5kHs8/2ms9NnjI5ynAo0tGyOv1+3xliGwoCHQ+odRZESC4DL7+3Ni8DAwaFy6YHoQAs5vysl6IRhcH4ayL1DU8mhh5RnJjCxMGEinFZthDnv0N6GpMdEx2DhUkEMp+f9JgYKHa4UnYBBHM7QTI74CBh4Ixx3GsRJZ2JxTHrAY7BgrrsQ6AfWRTzExxysmj0irhT305QhjT2msBY9MEJTyrGG3+KFiEmnV74VG0nMrPQV5nY8+80o5D+pQ/oR/S7zOBAL3kWnPpNuPQxOlG2SLLYmKHcy+A02dFBFgTShfMnNmb1jkWhSruYR4j8cICHnbhdFfuy59A1DE8w7WXgFY1NyCmLcNmF8lX6gffg4cZYtUMzkDtk/kRW+j0/bqr2c93+6TWv8J5eetCrvWV9pd/3RyBLbLNbN4RbPQSYa8hEwSFbdAp0vbfpaSEgBGIQIBJKxgBrLqnyRRmNMe9X3XoIjHliWw+u9p/G6CNVkWhmFe9pmUSk9JCeWWbol71nlH8PKWcfDylI+TuHh9UuJj7IpN0pNyw59F0hIASEwKAQILuB7RlkSJCJohKGAMSWqDcZNjit86cqh71VtYSAEAhBgKwr9sqSVcc+2Kaj4CEyjeU6IrZjuffHUNs5rZMIef6y8GFBQGo3ewlGLQ1qWHjpu0JACAgBISAEhIAQEAJCoB8CIrbSDyEgBISAEBACQkAICAEhIASEgBAYaQREbEe6+yS8EBACQkAICAEhIASEgBAQAkJACIjYSgeEgBAQAkJACAgBISAEhIAQEAJCYKQRELEd6e6T8EJACAgBISAEhIAQEAJCQAgIASGQLLHlOh2uktDhOlJSISAEhIAQEAL9EdCaKQ0RAkKgLgKaN+oipudTRyBJYss9UJdddpm/m5S7Nc844wx/P+bCCy/sNthgA48px9s3eS9p6h0l+YSAEBACQkAIFCGgNVN6IQSEQF0ENG/URUzPjwICyRHb6dOnu3XWWcf9/ve/9/ittdZabu+993bLLrusO/DAA92ZZ57pSa6KEBACQkAICIGxjoDWzLGuAWq/EKiPgOaN+pipxmggkByxNdgmT57sTjvtNHf66ae72267zV111VVum222cY8//rhbffXV3eGHH+4JsIoQEAJCQAgIgbGOgNbMsa4Bar8QqI+A5o36mKlG2ggkS2z/9Kc/uW9961s+DflnP/uZmzFjhrvxxhvdrrvu6s466yx36KGHesI7xxxzuCuvvNIT32whbfld73pX2uhLOiEgBISAEEgSgQkTJiQpVy+htGaOVHdJ2BFEYNTmhCoQa96ogtJoPdNFPa3TA8kR27vvvttdf/31btNNN/XtOOCAA9xDDz3kjjnmGDfXXHP5P88995xPR77rrrvcUkstVdheIrr77LNPHSwG+uyUKVNcyson+eLUQfgJvzgE4mpL/7qNX7Z1Y2XNjOtR1RYCcQikPqfWbZ3mjbqIjcbzXdPTENSTI7bTpk1zyy23nLvpppvcYost5rbbbju39tprOwbhgw8+6E444QR39dVX+5/ffvvtPdssYhuiDv+rk/rgkHzq3/9j71zAraqq9j9ASC7eSEEwNTxqmqJ+aqil2YeSt0BLBQyjxMQsr/VPDcorAj5l3lOTTL80DE0ttc9S0EqQ1NIvJfKGSKigWKCIoILn/7xLF27O2fvstcaYc+2x937X8/B0OWvMPeZvjHl515xrLhsBmzXzj/xsBMJZN8uYGY4YSyKB/AS89/l5a8R+Iy+x+ri/0fJUQ92dsEUlzj//fLnoootkww03lF122UVuvPFGWblypQwePDhZqcW/8847T4YMGUJhq4l6BhvvjYP+ZQhiB7eQH/nZCNismX82fm2tm2HMDEuMpZFAPgLe+6x8tXn/bvYbGmq+bRoxT/MSdylsUYkVK1YkYrZXr15r1WnRokXJSm61iyu21Qh1/HfvjYP+Mb42AjZr5h/52QiEt270MTM8MZZIAtkJeO/zs9dk7TvZb2jJ+bRr1DzNQ9utsM1TiXL3UtjaCHpvHPSP8bURsFkz/8jPRsCftfcx0x8xetRMBLz3+bWKBfuNWpEv/7vMUxEK2xrlpPfko3+2xCA/8rMRsFkz/xqbn6125a05QY1BlWU2CgHvfWqtOLPfqBV5CttK5BtW2J543k/lnFO+In169fSVdR94472TpH+2tCE/8rMRsFkz/xqbn612FLYx+LHMxibgvU+tFX0K21qRp7BtKmE7/W/z5NJfPyITxwySnVr6+Mo6Ctsg8fA+yNA/W5jJj/xsBGzW3vPPVrvKwnbHfQ8PUvSQT28bpBwWQgJeCDRjn5CFPYVtFkrF3cM8bdCtyGOvvV9mz1tMYWtoS94bB/0zBFdEyI/8bARs1sw/G78Y1pigzlja31x0p04id04cYS6HBZCAJwLe+6xasaKwrRX58r/LPKWwrVlGek8++mdLDfIjPxsBmzXzr7H52WpXecWWwjYGWZbZCAS896m1YkxhWyvyFLaVyDfkO7ZcsbU3NO+dOP2zxZj8yM9GwGbN/LPxi2HNFdsYVFlmoxDw3mfVijOFba3IU9hS2PrKPW4FNcbD+yBD/2wBJj/ysxGwWXvPP1vtuGIbgx/LbGwCzdgnZIkohW0WSsXdwzzlVuTisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2Ebgx/LbGwC3vvUWtGnsK0Vea7YcsXWV+5xxdYYD++DDP2zBZj8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGecsW2uGzjim1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5qljYfvOO+/IqlWrpEePHmtlxPLly6V79+7SuXPnipky9tr7Zfa8xTJxzCDZqaVPcRmV45e8Jx/9yxHMMreSH/nZCNismX+Nza9c7SxjJsrDBHXG0v42cCLSqZPInRNHmMthASTgiYD3PlXLKkS/ceaZZ2p/nnaBCTRqnubB1Km1tbU1j0ER937ve9+T+++/X3bYYQdZunSp/PKXv5QVK1bIyJEjpUuXLjJ//nw5/fTT5ZhjjinrDoWtPUreGwf9s8WY/MjPRsBmzfyz8WtrbR0zKWzDxoOlNR4B732WhniofoPCVkM/jk0j5mleUu6ELVZkBw0aJI888khSl3322UfOOOMMmTNnjixbtkwmTJggixYtkn79+gnubbuiCxsK27xp0P5+742D/tliTH7kZyNgs2b+2ac31TkAACAASURBVPiVWocYMylsw8WDJTUmAe99Vl7qIfsNCtu89OPd32h5qiHlTtimlZg9e7Zcf/31ctNNN8lTTz2VrNAOHjxYjjrqKMEiM7Yiz507V1paWtrVm8JWkwpr23hvHPTPFmPyIz8bAZs188/Gr5y1ZcyksA0fD5bYWAS891la2iH6DQpbLf3wdo2ap3lIuRW2TzzxhFx99dXJNuTf/OY3cs0118jw4cPlyCOPTOq36aabysMPPyz9+7d/J4jCNk8KlL/Xe+Ogf7YYkx/52QjYrJl/Nn7lrC1jJoVt+HiwxMYi4L3P0tIO0W9Q2Grph7dr1DzNQ8qdsH3ppZfkr3/9qxx22GFJPc466yx57bXXkq3HG2ywgZx22mmyevVq6dWrV/L+LVZuZ8yYITNnzlxT7yff7Cuvr+omJw/ZXrbpt34eHryXBEiABEiABMruBvKIJcSYmdYryOFRInLpmIEeUdEnEjARKLdD0FRgDY1D9hvDhg2rYU34020JNFKeaqLrTtguWbJEtt9+e3n88celb9++MmrUKPnc5z6X/Pcrr7xS7r33Xrn11lvl4osvllmzZpWtM1dsNamwto33pz70zxZj8iM/GwGbNfPPxq/UOsSYifJ4KnK4mLCkxiPgvc/KSzxkv8EV27z0493faHmqIeVO2KIS559/vlx00UWy4YYbyi677CI33nijdOvWTQ455JDkECmckHzffffJnnvuSWGriXoGG++Ng/5lCGIHt5Af+dkI2KyZfzZ+ba2tYyaFbdh4sLTGI+C9z9IQD9VvUNhq6MexacQ8zUvKpbBFJSBeV65cmWw5Lr0WLFiQrN527dq1Yl25Yps3Ddrf771x0D9bjMmP/GwEbNbMPxu/ctaWMZPCNnw8WGJjEfDeZ2lph+g3KGy19MPbNWqe5iHlVtjmqUTbeylsLfTet/XeOOifLcbkR342AjZr5p+NXwxrbkWOQZVlNgoB731WrTij36CwrRX9+luUKoIUhW0RlMv8hvdOkv7ZEoP8yM9GwGbN/GtsfrbalbemsI1BlWU2CgHvfWqtOFPY1op8+d9lnopQ2NYoJ70nH/2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIVtJfIUtjXKSe+dJP2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIUtha2v3OM7rMZ4eB9k6J8twORHfjYCNmvv+WerHYVtDH4ss7EJNGOfkCWiFLZZKBV3D/OUW5GLy7Y2v+Q9+eifLTXIj/xsBGzWzL/G5merHYVtDH4ss7EJeO9Ta0WfwrZW5LliyxVbX7nHFVtjPLwPMvTPFmDyIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5yhXb4rKNK7ZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5SmFbXLZR2AZl7b3x0j9buMmP/GwEbNbe889WOwrbGPxYZmMTaMY+IUtEKWyzUCruHuYphW1x2UZhG5S198ZL/2zhJj/ysxGwWXvPP1vtKGxj8GOZjU2gGfuELBGlsM1Cqbh7mKcUtsVlG4VtUNbeGy/9s4Wb/MjPRsBm7T3/bLWjsI3Bj2U2NoFm7BOyRJTCNgul4u5hnlLYFpdtFLZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d52uDCFqk0YKveMun4/YrLqoy/5D356F/GQFa4jfzIz0bAZs38a2x+ttpR2MbgxzIbm4D3PrVW9Clsa0W+/O8yTylsa5aR3pOP/tlSg/zIz0bAZs38a2x+ttoVJ2yHjp0axNW7Jo1IymF5OpwpP501rUDAe59aqyhR2NaKPIVtJfKdWltbW32FJYw34yZcJk++2Zcrtkqc3jtx+qcM7Adm5Ed+NgI2a+afjV8Ma0xQZyztby66UyeROydSiFpAxhLyFp+a3dZ7n1Wr+FDY1oo8hS2Fra/cc//0z3snTv9sCU1+5GcjYLNm/tn4xbCmsNVTjSVEQ69Q62tIS+99Vq0iRGFbK/IUthS2vnKPwtYYD++DDP2zBZj8yM9GwGbtPf9stStvTWGrp0phq2dXL5bN2CdkiQ2FbRZKxd3DPG3Qd2yRQtyKbGtI3hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnl29WHrv82vFkcK2VuS5YssVW1+5xxVbYzy8DzL0zxZg8iM/GwGbtff8s9WOK7b1IkS5FTlGpuvKbMY+IQspCtsslIq7h3nKFdvisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2FLYRsjgxq7TO99aq3oU9jWijxXbJt2xXbTXj1l4phB0qdXT1fZ572TpH+2dCE/8rMRsFkz/xqbn612FLYUtjEyqLHL9N6n1oo+hW2tyFPYNq2wRcUhbHdq6eMq+7x3kvTPli7kR342AjZr5l9j87PVjsK2GYUtPuz4u788GyR1hnx6WwldXhDHIhbivU+NWPUOi6awrRV5CtumE7bnTfqx/KvzdvLq0uUUtop2570Tp3+KoJaYkB/52QjYrJl/Nn4xrHl4lJ5qPQhlCNFDx03VV/IDy/Q7xaHLMzsWuQDvfVbk6lcsnsK2VuQpbJtO2KKxLe01UGbPW0xhq2h33jtx+qcIKoWtDRr5kV8wAv4KorDVx4TCVs8uFcr6Eoqx9D7nKIZC+1+hsK0VeQpbCltuRc7V+rx34vQvVzjb3Ux+5GcjYLNm/tn4xbCmsNVTpbDVs6Ow1bPzYElh6yEKH/rgfWwtglan1lZsKGm8iyu2tph6bxz0j/G1EbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwrY0ChS2NcpJToxt4MmP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYUtg6yENOjG1BID/ysxGwWTP/yM9GwJ81ha0+JhS2enYUtnp2HiwpbD1EgcKWwtZBHnJibAsC+ZGfjYDNmvlHfjYC/qwpbPUxobDVs6Ow1bPzYElh6yEKFLZ1IWxXrVolb775pmy00UaqrEFjW9proMyet1gmjhkkO7X0UZUTy4gTYxtZ8iM/GwGbNfOP/GwEwluHGDNnLO1vdqxUqAwdO9VcHgqoB+EIPz3Xt7VV5NBx9nik8Q1dXpBEiViI9z5fW/UQ/caZZ56p/XnaBSbQqHmaB1On1lZ0T76uiy++WH7605/KnnvuKW+88YZApPbv31969+4tBx10UOLsdtttJ+PHj6/oOIWtLabeGwf9Y3xtBGzWzD/ysxEIax1qzKSw1cWlHoR3aCEaujwd+eKsvPf5GhKh+g0KWw39ODaNmKd5SbkTtu+8846su+66yWptz5495YILLpBXXnlFTjzxRDn77LNlypQp0qVLl6r1pLCtiqjDG7w3DvrH+NoI2KyZf+RnIxDOOuSYSWGriwuFrY4brLgVWc/OYhmy36CwtUQirK33uUnY2pYvzZ2whZtLliyRXr16yVtvvSX777+/nHrqqbLeeuvJyJEjZdmyZTJw4MBkFXfQoEEVGZUK2++P2kf22uFjRfDM/Bvek4/+ZQ5l2RvJj/xsBGzWzL/G5te2dqHGTApbXd5Q2Oq4UdjquYWwDNVvUNiGiEaYMryP/WFq2XEpLoUtXH7sscdk9OjRMmDAALnuuutk5syZyf930kknydSpU2XSpEny1FNPSSc87itzlQrbL++/o4wcPKAInpl/w3vy0b/MoaSwtaEiP/KLQMBWpPf+r1ztQoyZFLa6vKGw1XErFbbY2vzYswvzF1TmZbrdt+uXv5wqFvXYJ2SBEKLfoLDNQrqYexo1T/PQcylsp0+fnqzOXn755TJixIikPtg2sc466yT/Vq9enWxHXrBggWy++eYyY8aMRPi2vV7f8L/kyflL5aDdNpODd/e1YpsnSLyXBEiABEigWAItLS3F/qDh10KNmUGErYhcOmZgUptTJz9qqNWHppexPBNH8IP+Oy1APLCUgPh6L88ErIJxPfUJWeofqt8YNmxYlp/jPQURaLQ8zYvNnbDFWVYbbrihTJs2TfbYY4819TnnnHNk8eLFctVVV8lDDz0ko0aNkrlz51asL1Zst9j9C3Lz9H8IV2zzpoWI96c+9C9/TEstyI/8bARs1sw/G79S65BjZhBh20nkzonvP5D2fEpws/kX+rAn7+WFa2Hvl+S9z8pb35D9Blds89KPd3+j5amGlDth+9xzz8m22267Vl2+9rWvJVuPBw8enKzU4t95550nQ4YMobDVRD2DjffGQf8yBLGDW8iP/GwEbNbMPxu/UuuQYyaFrS4u3Iqs4warevl8kPc+K28EQvYbFLZ56ce7v9HyVEPKnbCtVolFixZJ3759q92WHC7FFduqmCre4L1x0D99bOvh6TPjy/jaCNisvedfntrlGTMpbPOQ/fBeClsdNwpbPbfYlnn6DQrb2NHIXn4jjV3Za732nXUnbLNWlMI2K6ny93lvHPSP8bURsFkz/8jPRsCfNcZMCltdXChsddwobPXcvFii36Cw9RKNxtsyryFLYauhFsCGE2MbRPIjPxsBmzXzj/xsBPxZU9jqY0Jhq2fHrch6dh4sKWw9ROFDH7zPTYqgRWFbBOUyv+E9+eifLTHIj/xsBGzWzL/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFbGoWmELZ77fAx+f6ofVxlHyeetnCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYdt0wnbAVr1l0vH7uco+Toxt4SA/8rMRsFkz/8jPRsCfNYWtPiYUtnp2sYQtPkd0/v/8We9YieU5x+zbcJ/7CQJGJDmole/YhqJpL8f73MRew+olNPSK7eeGfkUm3DhDKGyrJ0LbO7w3DvqXP6alFuRHfjYCNmvmn41fDGsKWz1VCls9u5jC9tBxU/WOfWCZ+ue9zzJXVFkAha0SXCQz5qlIQwvbQ4aNlnGTH6CwVTQg742D/imCWmJCfuRnI2CzZv7Z+MWwprDVU6Ww1bOjsNWz82BJYeshCh/64H1sLYIWhW0RlMv8hvfko3+2xCA/8rMRsFkz/xqbn6125a0pbPVUKWz17Chs9ew8WFLYeogChW1pFChsa5STnHjawJMf+dkI2KyZf+RnI+DPmsJWHxMKWz07Cls9Ow+WFLYeokBhS2HrIA85MbYFgfzIz0bAZs38Iz8bAX/WFLb6mFDY6tlR2OrZebCksPUQBQpbClsHeciJsS0I5Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIQ06MbUEgP/KzEbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwpbC1kEecmJsCwL5kZ+NgM2a+Ud+NgL+rCls9TGhsNWzo7DVs/NgSWHrIQoUthS2DvKQE2NbEMiP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYFi5sH3jgARk0aJDce++98uyzz8rRRx8tG220UdRsQGM7ZNhoGTf5ARmwVW+ZdPx+UX8vb+GcGOcltvb95Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNgWKmzPOOMM+dGPfiQPP/yw7Lnnnslv77bbbvK3v/0tajaUCttNe/WUn50xJOrv5S2cE+O8xChsbcTIj/xCErCVxf7Pxi+GNYWtniqFrZ4dha2enQdLClsPUaCwLUzYtra2St++fWX48OGyYsUKue6662TKlCkycuRIWbhwYfK3WFepsMVvpANPrN/LWy4ndnmJUZjZiJEf+YUkYCuL/Z+NXwxrCls9VQpbPTsKWz07D5YUth6iQGFbmLB9++23pVu3bnL77bfLCSecINtuu61cddVVsssuu8hTTz0l2223XbSMQGMbffxJ8vUf3p38BoVtPtSceObj1fZu8iM/GwGbNfOvsfnZalfemsJWT5XCVs+OwlbPzoMlha2HKFDYFiZs8UMjRoyQW265JfnNyZMny6RJk+Sdd96RBQsWRM2GtLENHTuVwlZBmhNjBbQSE/IjPxsBmzXzr7H52WpHYVsPQhRRSucv1nijvq2tIoeOe38+ZLnqRYiGrq/3PtUSU4stha2FXnhb5qlIp1bsF454vfrqq3L11VdLp06d5Lvf/a6MHj1aTjzxRNl3330j/qoIha0Nr/fGQf8YXxsBmzXzj/xsBPxZc8VWH5N6EMqhhV6zlee9z9dnr82SwtbGL7Q187QAYYugvfDCCzJr1ixpaWmRjTfeWLbZZpvQsWxXHoWtDbH3xkH/GF8bAZs184/8bAT8WVPY6mNCYatnVy8rwN77fH0EbJYUtjZ+oa2ZpwUI27vuuksOPfTQJHZjx46VGTNmyK677iqXXXZZ6HiuVR6FrQ2v98ZB/xhfGwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUPvTB+9ykCFrRtyJvscUW0qdPn+S7tfjcT5cuXWT8+PHy0ksvyWabbRatjhS2NrTeGwf9Y3xtBGzWzD/ysxHwZ01hq48Jha2eHYWtnp0HSwpbD1GgsC2NQlRhm56K/JOf/ETmz58v66yzjgwbNiz5ju3s2bNlxx13jJYRFLY2tJy4k5+NgM2a+Ud+NgI2a+/5Z6tdeWsKWz1VCls9OwpbPTsPlhS2HqJAYVuYsMUPQby+9tpryTdrsVqLw6R69OghTz/9dNRsaCtsv7z/jjJy8ICov5mncO8TJ/qXJ5rt7yU/8rMRsFkz/+qX36OPPir9+/eX3r17J5VYuXKlPPLII8mOp3XXXddWsQ6sKWz1aCls9ewobPXsSi1r2W+ceeaZYSrBUswEvI/95gpmKCDqii1+//HHH5dzzjlH8K5tev32t79d895tBh9Vt1DYqrCtMfLeOOgf42sjYLNm/pGfjUB76+eeey554Hvssccm//bZZ5/kpmeffVa+/e1vJ4cwfvzjHw/9s2vKo7DVo6Ww1bOjsNWzg6WHfoPC1hbDkNbe5yYh61qprOjCNv3hJUuWyIsvvihbb711smIb+0qF7ZRps+Xm6f8QrtjmI+69cdC/fPFsezf5kZ+NgM2a+dee3w9/+EOpNEFcf/31BWMoXueJdVHY6slS2OrZUdjq2cHSQ79BYWuLYUhr72NryLrWTNjuv//+yVbkttdDDz0kPXv2jFZHClsbWu+Ng/4xvjYCNmvmH/nZCLS3rrTygjvxSg+2J8e8KGz1dCls9ewobPXsYOmh36CwtcUwpLX3uUnIutZM2A4aNCh5rxbXG2+8kaza4pTkefPmRV25pbC1pY/3xkH/GF8bAZs184/8bAQqW7/88svSvXv3ZIW29IKw7dy5c6yfFQpbPVoKWz07Cls9u1LLWvYbFLZhYhiiFO9zkxB1rFZGYVuRU0fOP/98SU9J7tatW0X/Vq1aJW+++WbymaDSa/ny5cmgX22Ap7CtFvqO/+69cdA/xtdGwGbN/CM/G4HK1ldffXWyJXnZsmVr3fT666/LBhtsEHXMnLHUviqcChU4OnTs1CCY6kE4eq9va6vIoePs8agXIRq6vt77/Fr2GxS2Qbq5IIV4z9MglaxSSHRhu2jRInnvvfcSN1avXi3XXHONTJw4MTkQY5tttinr3sUXXyw//elPk1MgscoLkbrxxhvLyJEjk5OV8emg008/XY455piK1aOwtaWP98ZB/xhfGwGbNfOP/GwEylu3trYmXxDANXr0aPnIRz6y5sbvf//7FU9FDjVmUtjqoloPwju00Gu28jz3+bXuNyhsdf1GDCvPeRqjvuXKjC5sN9100zVbkVMHcBDGv//9b+natWs7n955551k8MZqLd7BveCCC+SVV16Rj33sY8kT7AkTJgjEcr9+/QSrt5UOoqKwtaWQ98ZB/xhfGwGbNfOP/GwEOha2J510kpx11lmZfiLkmElhmwl5u5sobHXcYFUvK8Ce+/xU2Naq36Cw1ed/aEvPeRq6rpXKiy5ssfUYIhUXtg9vueWWcvDBB8tWW21VsY54t6hXr17y1ltvCQ6fOvXUU2XatGkyePBgOeqoowSNGGXNnTtXWlpaypbTVtju1NJHJo4ZVBTXqr/jPfnoX9UQdngD+ZGfjYDNmvlXv/yOPvro5PN4GMMwDqbXkUcemexYKneFGjMpbHV5Q2Gr40Zhq+fW1rKW/QaFbbg4WkvyPvZb65fFPpqwBVwI0EoXhG1H78k+9thjyVasAQMGyHXXXSdf/epXZfjw4YLBHRdWgh9++OGKJ0W2FbawSQefLGBi3+M9+eifLQPIj/xsBGzWzL/65VdulxNqU+0d2xBjJoWtLm8obHXcKGz13Npa1rLfoLANF0drSd7Hfmv9sthHE7adsL+kg6ujQXr69OnJ+7SXX365jBgxIikFK784OOO0005L3tXFk+ylS5cm4njGjBkyc+bMdr82bNgweW7hMrni7qeSv102ZmAWJryHBEiABEigyQlU2g0UG8tf/vIXefvtt9v9zN57711xxTbUmBlE2IrIpR+MtadOfjQIrnTsZnk6nOCHZYbTAsQDMzvEt9nKA/la9QlZol7LfgNzbV5+CHjO0yIoRRO2F110USJAK13f/va31zoYI70Pq7wbbrhhsvV4jz32WGN+5513ypVXXin33nuv3HrrrYLDMmbNmlWx/HTFFjekJzNyxTZ7Snl/6kP/ssey3J3kR342AjZr5l9lfhjjyglbvMJTbityyDEziLDtJHLnxPcfSPNUZF07ibEC3GyHPYWur/c+q5b9Bldsde08hpX3PI1R57ZlRhO2pT+EQRortLgwCOOD0hCt5Q6Pwt+23Xbbtfz82te+JjjK/JBDDpE5c+bIihUr5L777ktOTa50Udja0sd746B/jK+NgM2a+Ud+NgKVrfNuKQw5ZlLY6qIaQ4iGfjAQWug1W3ne+/xa9hsUtrp+I4aV9zyNUefChe3UqVPllFNOaXcycrX3hSpVfsGCBcnnEMqJ4lIbCltb+nhvHPSP8bURsFkz/8jPRqCy9T333LNmxRYn///whz9MVmpxpkSlw6M68iXPmElhq4sqha2OG6x4KrKeXallLfsNCtswMQxRive5SYg6Visj+ort1ltvLRtttFHy3dq99tpL/vnPf0qfPn0E7wNUE6fVnO/o7xS2Fnoi3hsH/WN8bQRs1sw/8rMRyG6Nh8P4GsBLL70km222WXbDnHdizKSwzQntg9spbHXcKGz13KpZFtlvUNhWi0Zxf/c+NymCRFRh++677ybv0d50003y5z//WTbZZBM54YQTkk/+4PMEELyxLgpbG1nvjYP+Mb42AjZr5h/52QhUth47dqy88cYbyQ3vvfdecq4E8g3fc8dD4VgXha2eLIWtnh1XbPXsSi1r2W9Q2IaJYYhSvM9NQtSxWhlRhS1+fIsttkjE7Te/+c3kZOMjjjhCbrjhBnnmmWfavUtbzdk8f6ewzUOr/b3eGwf9Y3xtBGzWzD/ysxGobN32Xbn1119fvvWtb8mFF14Y6yeTcils9XgpbPXsKGz17Eota9lvUNiGiWGIUrzPTULUsVoZ0YXt/fffLzgB+cYbb5QvfOEL8uKLL8rQoUMFpxzHvMoJ28tOOVBa+sVbJc5TH+/JR//yRJMPBmy0yI/8QhOwlVfL/g+fsUu/AY/P5sXc2VRKicJWnzMUtnp2FLZ6dqWWtew3KGzDxDBEKbUcu0L4H6KM6MJ28uTJcuCBBybbj1etWpUcIhXzPaEUSjlhO3HMINmpJd5WrjwB8Z589C9PNCnMbLTIj/xCE7CVV8v+b9myZcmD4ClTpgj+O96vxZcBYo+bFLb6nKGw1bOjsNWzK7WsZb9BYRsmhiFKqeXYFcL/EGVEF7bp9oj99ttPRo0aJV/84hcLeQJdKmxPufwPMm/hUqGwzZ4y3hsH/csey3J3kh/52QjYrJl/lfnhXTlsO8YWZHzTHbucdthhB/n73/+uOhU5a6QobLOSan8fha2eHYWtnl2pZS37DQrbMDEMUYr3sTVEHauVEV3YPvDAA/K73/1O7rjjjuQADFx4Ao33bNddd91q/qn/Xipsx157v8yet5jCNgdN742D/uUIZplbyY/8bARs1sy/8vzweZ/11ltPxowZI9dcc4107txZLr300uR1HnxRYPvtt7eB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROdGFbfrjTz/9tFx55ZXJP1za79hmhUJhm5VU+fu8Nw76x/jaCNismX/kZyNQ3vqtt96Snj17yrnnnivnnHNOctOtt94qw4cPl7/+9a+y++67x/jZpEwKCYzrmQAAIABJREFUWz1aCls9OwpbPbvUstb9BoWtPYahSvA+NwlVz5oKW2yPwOd+sJ0K12677SajR49OPvuj+dh8VigUtllJUdjaSJEf+cUgYCvT++BG/yrHd5999pGZM2fKwQcfLD169JDbbrtNBg4cKA8//LDgMKlYF4WtniyFrZ4dha2eXallLfsNCtswMQxRivexNUQdq5URfcUW79jicz/HHXdc8tT5k5/8ZDWfgvydwtaG0XvjoH+Mr42AzZr5R342ApWt58+fLxMnTpSbb745OTwK4+b3v/992XnnnWP9ZFIuha0eL4Wtnh2FrZ5dqWUt+w0K2zAxDFGK97lJiDpWKyO6sH388cdll112Sd4VKvKisLXR9t446B/jayNgs2b+kZ+NQMfWc+bMSbYk4xwKfMYj5ru1qScUtvqIUtjq2VHY6tm1taxVv0FhGy6G1pK8z02s9ctiH13YZnEixj3lhO2YIbvKgJY+Lr5l6z356J8tK8mP/GwEbNbMv/rlh3MoTj75ZLnnnnuSz+TtuOOOcsYZZyQrqjEvCls9XQpbPTsKWz27Usta9hsUtmFiGKIU72N/iDpWK6OphC1gDNiqt0w6fr9qXKL/3Xvy0T9bCpAf+dkI2KyZf/XLb7vttpPevXvLr3/962TV9sQTT0y+a/vSSy9F/ZYtha0+Zyhs9ewobPXsSi1r2W9Q2IaJYYhSvI/9IepYrYwownb16tXJJ35w4MVjjz2WbEXefPPNq/kS9O+lK7aT735cnnz+1eRbthS22TB7bxz0L1scK91FfuRnI2CzZv6V57dq1Srp2rVrcrji1Vdfndz0y1/+Ur7yla/IrFmzZK+99rKB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROVGE7dtvvy3dunWT448/Xn7zm98kg3LbAflLX/pSYaciAwCE7bjJD1DYZswq742D/mUMZIXbyI/8bARs1sy/yvz23XdfefDBB+Wwww6T9ddfX37729/KhhtuKM8991z0b7/PWNrfFlgRSYUKCho6dqq5PBRQD8LRe31bW0UOHWePR70I0dD19d5n1bLfoLAN0s0FKcR7ngapZJVCoghb/Ca+t4fV2kpXkd+xpbDNn0reGwf9yx/TUgvyIz8bAZs1868yv3nz5skll1wiU6dOlVdffVW+8IUvyOmnny6f+9znbNCrWHPFVo+3HoR3aKHXbOV577Nq2W9Q2Or7jtCW3vM0dH3LlRdN2L755puJsB02bFjyjtBnP/vZtX4f/7uo79hS2OZPJe+Ng/7ljymFrY0Z+ZFfOALVS3rvvfdkxYoVyXu2RVwUtnrKFLZ6dvWyAux9zpFGoBb9BoWtPv9DW9ZLnoaud2l50YRt+iMvv/yyrLfeevLoo4/K8uXLZfDgwclH52Nfpe/YUtjmp+29cdC//DGlMLMxIz/yC0fAX0kUtvqYUNjq2VHY6tl5sGw71/bgUzP74H1uXERsogvbP/3pTzJ06NDkQ/Ppdemll8qpp54atX4Utja83hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnh2FrZ6dB0sKWw9R+NAH73OTImhFFbbYEoGTkfGe0A9+8INkpfaKK65IVm9fe+012XjjjaPVkcLWhtZ746B/jK+NgM2a+Ud+NgIdW7e2tsqCBQuSQxg/+tGPRn1tJ/WEwlYfUQpbPTsKWz27tpa16je4FTlcDK0leZ+bWOuXxT6qsP33v/8tm2yyiVx++eXJB+dxTZs2TT7/+c/LX/7yF9lzzz2z+Ki6p5Kw7dmtq+y/+1YyZsiuqnJDGXlPPvpnizT5kZ+NgM2a+Ve//J599lk56KCDBDEcO3aszJ49W0aOHClHHXWUrVJVrCls9XgpbPXsKGz17Eota9lvUNiGiWGIUryP/SHqWK2MqMIWT4/wmYIdd9wxOeURK7YTJkyQW265RRYtWiSbbrppNf/Uf68kbFGgh2/Zek8++qdOvcSQ/MjPRsBmzfyrX374ogAmqb1795YRI0bIiy++KDfeeKMsXbo0GU9jXRS2erIUtnp2FLZ6dqWWtew3KGzDxDBEKd7H/hB1rFZGVGGLH7/sssvktNNOW8sPbEseP358Nd9Mf28rbJevfFem/W2e/OzuxylsM5D13jjoX4YgdnAL+ZGfjYDNmvlXnl/6Dfgrr7xS/vWvf8k666yTfFlgt912S74ysOuu8XYaUdjqc5rCVs+OwlbPLrWsdb9BYWuPYagSvI+toerZUTnRhS1+HAP0HXfcIW+88YYcfvjhyQpu7KvcC+1PPv+qjJv8AIVtBvjeGwf9yxBEClsbJPIjv2gEKhe8wQYbyM477ywbbbSRfOQjH5HOnTvLvffeK3i1p2vXrtE8orDVo6Ww1bOjsNWzK7WsZb9BYRsmhiFK8T43DlHHamUUImyrORHj7xS2NqreGwf9Y3xtBGzWzD/ysxGobH3zzTfLN77xjbW+JIAdTtjpFPOisNXTpbDVs6Ow1bMrtaxlv0FhGyaGIUrxPjcJUcdqZVDYViMU6e/ek4/+2QJPfuRnI2CzZv7VNz9sLXzggQdk3rx5sssuu8hnPvMZW4UyWFPYZoBU4RYKWz07Cls9u7aWteo3KGzDxdBakvex31q/LPYUtlkoRbjHe/LRP1vQyY/8bARs1sy/+uV3/vnnJ6/ttL0uuOCC5PM/sS4KWz1ZCls9OwpbPbtSy1r2GxS2YWIYohTvY3+IOlYrI7qw/epXvyrHHXec7LvvvokvOOFx1KhR8qtf/arQU5Hx23zHtlo6fPh3742D/mWPZbk7yY/8bARs1sy/yvzwtQB8+73t9frrrwveo4t1UdjqyVLY6tlR2OrZlVrWst+gsA0TwxCleB9bQ9SxWhnRhO0NN9wgV1xxRXKS4+abby59+vRJfMGADXGLgzDw4flYV0fv2Lb020jGDN0t+Wl8+qcWl/fko3+2rCA/8rMRsFkz/+qXH8bG9957L6nAW2+9Jaeffrq88MILMmvWrOSU5FgXha2eLIWtnh2FrZ5dqWUt+w0K2zAxDFGK97E/RB2rlRFN2P7iF79IPvXTVtjCocGDBwsG0ZhXR8K29HfTASmmL+XK9p589M+WEeRHfjYCNmvmX+PwwzdssfPpueeek6233tpWsQ6sKWz1aCls9ewobPXsOrIsst+gsI0TQ02p3sd+TZ3y2kQTtqkjZ599thx22GGCj0cXeZUTts8vXCqT73oscWP2vMXJf1LYlo+K98ZB/2ytifzIz0bAZs38q8xvn332kYULF665AaxwLVu2TNZbbz0beArbtcb9oWOnBuFJYavHSGGrZ1dqWct+g8I2TAxDlOJ9bA1Rx2plRBe2Dz74oPz4xz9OtlGVXnPnzo0+SHfU2NIBjcKWwrZaI9H83XvnQv80Uf3QhvzIz0agsvUBBxwgr7zySnJDly5dklVarNgOGTIk1k8m5XLFVo+XwlbPjsJWz67Uspb9BoVtmBiGKMX73CREHauVEV3Y7rjjjjJnzhzZbbfdko/Np9f06dOlR48e1fxT/73cim1pYRS2HaP13jjon7ppJIbkR342AjZr5p+NXwxrCls9VQpbPTsKWz07D5bV5toefGwmH7yPrUXEIqqwXb16dfLE+ZxzzpFzzz23iPqs+Y1qjY3ClsI2ZkJ671zony365Ed+NgLtrbfYYgt55513KhZbxC6nGUv7m6uVChUU1Exbfb3Xt7VV5NBx9q3X9SJEQ9fXa5/vod/giq252wxWgNc8DVbBDAVFFbb4/dGjR8sjjzySfN6nV69ea1z62Mc+Jp3QQ3Zwvfnmm9KzZ8+q95UrgsI2Q/Q7uMV746B/jK+NgM2a+Ud+NgLtrbHVeNWqVRWLvf3226vucrKOmRS2uqhyxVbHDVb1IpS99vke+g0KW33+h7b0mqeh69lRedGFrebbWvgk0BNPPCGHH354chIkPhX09ttvS+/eveWggw5K6rPddtvJ+PHjK9aNwtaWRt4bB/1jfG0EbNbMP/KzEchn/cYbbyRnUnTu3LmsYagxk8I2X1zSuylsddwobPXcslgW1W9Q2GaJRjH3eJ+bFEEhurC99NJLk9Mc215nnHGGrLvuumXreNttt8nMmTPlkksuSQ7RgLB96qmnBCcsT5kyJdneXO2isK1GqOO/e28c9I/xtRGwWTP/yM9GoLL1P/7xDznvvPME/4kLq7g4JRnff99ggw2ijpkUtrqoUtjquFHY6rm1taxlv0FhGy6O1pK8z02s9ctiH13YLlmyRFrxskOb66Mf/WhV/7BVORW2d999t4wcOTIRyQMHDkxOcBw0aFDFMrIK25GDB7QrY//d+kufXj2r+me5wXvy0T9LdHk4k40e+ZGflYDNvpb93x577CGPPvpoUgE81MVqbEtLi8yePVu6d+/eYcWsYyaFrS5vKGx13Chs9dzaWtay36CwDRdHa0m1HLusvoeyjy5sNVuR08qVDtI4Rfmxxx6Tk046SaZOnSqTJk1KVnFxz4wZM5IV3rbXsGHDKnI6dfL7E4dy18lDtpdt+q0fijHLIQESIAESqDMCEJNFX++++27y9YCbb75Z7rjjDvnUpz4ln/nMZ+Tggw+W1157ba0vC5TzzTpmBhG2InLpmIGJex2Ns3nYXsby8uBqdy/4YXnhtA7mPVl/ACejIL7NVh741KJPyBKXWvcbHc21s/jPe8IS8JqnYWtZubTowhYnIqdbkXGwBQ6RwiluEKmVtiKn7pYO0jgtcp111kn+pactL1iwQDbffPOytau2Yjtl2ux2dtP/9oK8unS5TBwzSHZq6RM1Bt6fqtA/W/jJj/xsBGzWzL/65YftxhCz+IeHuN/97nfl2GOPTVZs8fm8ji7rmBlE2HYSuXPiiMRNnoqsy8MYK8ChTwlutvK896m17De4Yqtr5zGsvOdpjDq3LTO6sG37g9dff30ySP/nP/9Z65TkcpUtHaQhkBcvXixXXXWVPPTQQzJq1CjB5w8qXdWEbTm7sdfeL7PnLaaw5XdOzW3Pe+dC/2whJj/ysxFob40Htnhwi7MlvvOd78j9998v++23X3IjtiS/9NJLVc+XsI6ZFLa6qMYQoqEfDDSbEA1dX699vod+g8JW12/EsPKapzHqWqnM6ML2rrvukpUrVya/jwZ40003ye9+9zuZN2+e9O/f8TfzMEjj/SKchozDMwYPHpwM7PiHwzVwzDmFbZx08d446J8t7uRHfjYCNmvmX3t+eG1nxIgRgm192267rWyyySbyzDPPJIdIHXDAAbLhhhtWhW4dMylsqyIuewOFrY4brPi5Hz07WHroNyhsbTEMae19bA1Z15oJ23Lv2O69997y4IMPqr5Pu2jRIunbt29VNlyxrYqowxu8Nw76x/jaCNismX/kZyPQ3hqv6ODkY1xYocWupCOPPFJwKEylz/xk8SHPmElhm4Vo+3sobHXcKGz13FJLD/0Gha09jqFK8D43CVXPjsqJvmI7bdq0NSu2eJqMRrj99ttXPQTDWnkKWxtB742D/jG+NgI2a+Yf+dkItLfG1wOefPJJ+cMf/iDY6YSHv7hwjgRELnYpde3aNfTPrikPYyaFrQ4vha2OG4Wtnltq6aHfoLC1xzFUCd7nJqHqWVNhix9/4okn5Pbbbxd8LPqII46QvfbaK3mXKOZFYWuj671x0D/G10bAZs38Iz8bgerWOOn/lFNOSQ5axPX6669X/I5t9dKq30FhW51RpTsobPXsuBVZz66cZS36DQrbsDG0lOZ9bmKpW1bb6Cu2P/vZz2TMmDFr+YN3iG655ZasPqruo7BVYVtj5L1x0D/G10bAZs38Iz8bgfbW+GrAn/70p2TFFp/6Sbcl77DDDnL00UfLGWecUfXwKItPFLZ6ehS2enYUtnp2sPTQb1DY2mIY0tr73CRkXSuVFVXY4hM92HqMgfnKK69MPi4/fvx4ueGGG2T+/Pmy5ZZbRqujRdhmcerL++8oIwcPyHJr2Xu8Jx/9U4c2MSQ/8rMRsFkz/+qPH17VSa9PfOITiZjFDqdqn/ix1fRDawpbPUkKWz07Cls9O1h66DcobG0xDGntfewPWdeaCNulS5cmn/TB5wtOO+20xId7771XDjzwQMF2CXynL9ZFYWsj671x0D/G10bAZs38Iz8bgfbW2223nXz5y1+Www8/XHbeeefQxVctj8K2KqKKN1DY6tlR2OrZwdJDv0Fha4thSGvvc5OQda2JsMWPYsUWK7f4yHyPHj3k2muvFZzS+MILLyQruLEujbDN4suUabPl5un/EK7YZqEV7x7vjZf+2WJPfuRnI2Cz9p5/ttqVt6aw1VOlsNWzo7DVs/NgGWuu7aFu9ehDM45dbeMUdSsyfuyPf/yjfP3rX0+2ZuJaf/315ec//3nyGYOYV6zGRmEbM2rZy/beeOlf9liWu5P8yM9GwGbtPf9staOwrQchiigNHTs1SKhR39ZWkUPH2curFyEaur7N2CdkSb5Yc+0sv8172hNgnopEF7bAjuPIH3/88eQld2w/7tKlS/R8jNXYKGyjhy7TD3hvvPQvUxgr3kR+5GcjYLP2nn+22lHYUtjqM4jCVs+uES1jzbUbkVURdWrGsast16jC9oorrpA5c+bI1Vdfnfzu9773Pdlvv/3kgAMOiB7fWI2NwjZ66DL9gPfGS/8yhZHC1oaJ/JqUX4xqcyuynmo9COXQK5jNVp73MV2fvTbLWHNtm1fNa808jbhie/PNN8vIkSMTITt9+vQkyw455BC555575IQTTlgjdmOlX6zGRmEbK2L5yvXeeOlfvni2vZv8yM9GwGbtPf9stStvTWGrp0phq2dXLyvAzdgnZIlqrLl2lt/mPe0JME8jCdt3331XNt544+TgqFmzZq35qPzy5ctlyJAhyXu3L730kmy22WbR8jJWY6OwjRayXAV7b7z0L1c4291MfuRnI2Cz9p5/ttpR2NaDEEWU+I5t/kyPJZSbsU/IQj/WXDvLb/MeCttyORBlKzJOPe7Xr5+cddZZcv7556/1u9dff70ce+yx8uCDD8o+++wTLS9jNbZU2O7U0kfwL+81YKveiZ33TpL+5Y3s2veTH/nZCNismX+Nzc9WOwpbClt9BsUSjt63NnvvU/URtVnGmmvbvGpea+ZppBXb1atXJwdEbb755vL0008nn/nBtWrVqmQ78n333Sfz58+XLbfcMlr2xWpsqbDVOp5+Jsh78tE/bYTftyM/8rMRsFkz/xqbn612FLYUtvoMorDVs2tEy1hz7UZkVUSdvI/9RTCIsmILx/Hd2h//+MdJHQ4++ODkMz94v3bZsmVy4IEHyu9///uo9YvV2J58/lXBv7wXbGbPW7zm+7fek4/+5Y3w2veTH/nZCNismX+Nzc9WOwpbClt9BlHY6tk1omWsuXYjsiqiTt7H/iIYRBO2K1eulEmTJrXbijxq1Ci5+OKLZZNNNolaP2+Nre27ud6Tj/7Z0pP8yM9GwGbN/GtsfrbaUdhS2OoziMJWz64RLb3NtRuRcZ46eR/789RFe280YZs69Pbbb8sLL7wg+M/+/fuvOUhK63BWO2+NjcI2a+Sy3ee98dK/bHGsdBf5kZ+NgM3ae/7ZakdhS2GrzyAKWz27RrT0NtduRMZ56tSMY1dbPtGFbZ6AhLzXW2OjsA0ZXb7DaqXpvfOjf7YIk19j87PVjsKWwlafQRS2enaNaOltrt2IjPPUyfvYn6cu2nspbLXkctpR2OYEVuV2742X/tniTX7kZyNgs/aef7baUdhS2OoziMJWz64RLSlsfUW1GccurtjWKAcpbMOC99546Z8t3uRHfjYCNmvv+WerHYUtha0+gyhs9ewa0ZLC1ldUm3HsorCtUQ5S2IYF773x0j9bvMmP/GwEbNbe889WOwpbClt9BlHY6tk1oiWFra+oNuPYRWFboxxMhe2mvXpKn149ZcWKFdK9e3ezN/vv1l/2330rczltC/DeOOifLeTkR342AjZr5p+NXwxrTFBnLO1vLjoVPiho6Nip5vJQQDMK0dD8WltFDh1njweFbZCUbphCKGx9hdL72FoELb5jWwRlEUmFbeif+/L+O8rIwQNCFyveGwf9s4Wc/MjPRsBmzfyz8YthTWGrp1oPwpvCVhffVMh777N0tbNbUdjaGYYsgXkqQmEbMqM6KOvVJcvllSXL19yxcOFC6devn/rXp/9tnkx/7AWhsFUjjGrovXOhf7bwkx/52Qj4s6aw1ceEwlbPrl5WgL33+foI2CwpbG38QlszTylsQ+dU5vKsydf2nd3MP5zxRqt/GX9GfRv9U6NLDMmP/GwEbNbMPxu/GNYUtnqqFLZ6dhS2enYeLClsPUThQx+8j61F0OKKbRGUy/yGNfkobJ+XlpaWGkWv+s9a41v9F2x30D/ysxGwWTP/bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUK29IoUNjWKCetEzsKWwpbS+pa88/y21ls6V8WSpXvIb/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFLYesgD60TTwpbCltLGlvzz/LbWWzpXxZKFLY2SvXLL0a9KWz1VCls9ewobPXsPFhS2HqIAoUtha2DPLRO3ClsKWwtaWzNP8tvZ7Glf1ko1a8wY3xt8Y1hTWGrp0phq2dHYatn58GSwtZDFChsKWwd5KF1YpcKW3zDdnCE79i+/PLLstlmm61Faqt+G0nPbl0d0OPhR9YgWPPP+vvV7OlfNUId/538GpufrXblrSls9VQpbPXsKGz17DxYUth6iAKFLYWtgzy0TjxjfRe3IzQTxwySnVr6OKBHYWsNgjX/rL9fzZ7+VSNEYWsjVN/8YtSdwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+vEHd+xnfa3edFqsnLlSunWrVtS/ryFS2X5yneFwjY7bmt8s/+S7k76p+OWWpEf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIw3qaGI+99n6ZPW8xhW2OvKmn+OaoVmG3kp8NNfk1Nj9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeVhPE08K2/wJU0/xzV+7+BbkZ2NMfo3Nz1Y7Ctt6EKKI0tCxU4OEGvVtbRU5dJy9vHoRoqHr671PDZIoikIobBXQIpowT0X4HduICdZR0d6Tr9Q/Ctv8SVJP8c1fu/gW5GdjTH6Nzc9WOwpbClt9BlHY6tk1oiWFra+oeh/7i6DlWti++eab0rNnT+mEnvSDa/ny5dK9e3fp3Llzh3y8NzbvyUdha2t+9RRfW03jWJOfjSv5NTa/SrWzjpkzlva3gRORVPiEXnFkefrQcMVWzy7NZ+99qr6GItZ+48wzz7T8PG0DEmjkPM2KyaWwffXVV+WJJ56Qww8/XJ577jnp06ePvPbaazJy5Ejp0qWLzJ8/X04//XQ55phjKtaTwjZrCpS/j8I2HD9bSXGsvXd+9M8Wd/JrbH5taxdqzKSw1eVNPawAh96a22zlee9TNZkbqt+gsNXQj2PTiHmal5RLYXvbbbfJzJkz5ZJLLpFXXnklEbYXXnihLFu2TCZMmCCLFi2Sfv36CVZve/ToUbbOFLZ5U2Ht+ylsw/GzlRTH2nvnR/9scSe/xubXtnahxkwKW13eUNjquMGqXrY2e+9TNREI1W9Q2Grox7FpxDzNS8qlsE0rgS3IqbA97rjjZPDgwXLUUUdJa2trshV57ty50tLSQmGbN+oZ7i8nbFv6bSQ9u38kg3X4W44bsqvg99PLe+Olf7YcID/ysxGwWXvPv0q1s46ZFLa6vKGw1XGjsNVzC2lp7TcobENGw1ZWvY5dtlqvbV03wnb48OGCf0ceeWRSg0033VQefvhh6d+/v8yYMSNZ4W17DRs2LCSrpi3rirufkucWLqtp/U8esr1s02/9mvrAHycBEmgeApUemnomUDpB1YyZQYStiFw6ZmCC6dTJjwbBdRnLM3EEv1YROS1APHDiCeLbbOUhAPXYJ2RJHGu/wbl2FsrF3dOoeZqVYN0I2/PPP1822GADOe2002T16tXSq1cvWbp0acVDpLgVOWsKlL+v9KnP8wuXyvIV79gKVFpPvvtxmbdwabtv6Hp/KkX/lAH/wIz8yM9GwGbtPf8q1a50gqoZM4MI204id04ckbgY8nM1LE+f0zw8Ss+uGQ6PsvYbXLHV51doy3odu0JyqBthe+edd8qVV14p9957r9x6661y8cUXy6xZsyqyoLC1pYmXxlHpU0Ne/KtEmf41Rv4xvrY4kl8cflmErWbMpLDVxYtbkXXcYMV3bPXsQlmWCltNv0FhGyoS9nK8zz3tNaxegnthi1PbevfuLStWrJBDDjlE5syZk/z3++67T/bcc08K2+oxVt3hpXFQ2KrCV9XIS3wpfKqGSnUD46vCtsbIO7+OhK1lzKSw1eUNha2OG4WtnltISwhbS79BYRsyGray6nXsstV6bWvXwrZcRRcsWCB9+/aVrl27dsiBK7a2NPHSOChsbXGkcCS/OARspXrpX+q1feShn2fMpLDNQ/bDeylsddwobPXcYlvm6TcobGNHI3v53sfW7DXR31l3wjZrVSlss5Iqf5+XxkFha4tjvU7cveQf+TH/4hDwVyrGTApbXVwobHXcKGz13LxYep9re+FUlB/e505FcKCwLYJymd/wnnxe/KOwjZOgXuJL4cj4xiFgK9V7+7DVrrw1ha2eKoWtnh3fsdWz82BJYeshCh/60IxjV9sIUNjWKCe9J58X/1JhOwbfsd2s15povfzyy7LZZptFj96ArXqrfsMLPwpHVfiqGjG+VRF1eAP52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYpcNfCpss90d/q50wpK3ZMY3L7G17yc/8rMRsFl7zz9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeeh94uRfHf+7AAAgAElEQVTFP3zH9vmXl7SL2MqVK6Vbt27RIjl73uKkbArbaIg7LNhL/lVykv7Z8oL8bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCLH5DR07lcLWFiKTdez4mpwTEfpnI0h+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PwobG3xsVrHji/9sxKw2TO+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PxSYTty8ACVo0uWLJFevXrltu2zUQ/Zf/etctvlNYjNL68/be+nfzaC5NfY/Gy1K29NYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISeetiDE5pcKW5uX+a0HbNVbJh2/X37DnBax+eV0p93t9M9GkPwam5+tdhS29SBEEaVQ4xDq29oqcui49z9jZ7nqRYiGrq/3PtUSU4stha2FXnhb5qlIp9ZWNP/Gu7w3Nu/J1+z+TZk229Qo8q7YvrpkuUx/7AWhsH0fe7Pnnyn5yM+Kz33+mStYpgCu2Oqp1oNQDi30mq0872OSPnttlt7n2rba1Z8185TCtmZZ6z356J8tNfLye/L5V2Xc5AcobD/AnpefLVr5relffmalFuRn4xfDmsJWT5XCVs+uXlaAvfdZ+gjYLClsbfxCWzNPKWxD51Tm8rwnH/3LHMqyN+blR2G7Nsa8/GzRym9N//Izo7C1MYttTWGrJ0xhq2dHYatn58GSwtZDFD70wfvcpAha3IpcBOUyv+E9+eifLTHy8qOwpbC1ZRz5NRO/kHVNy6Kw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU7mFT5Fu0n/bMTz8qOwpTCzZRz5NRO/kHWlsLXTpLDVM6Sw1bPzYElh6yEKFLYUtg7yMK/wKdpl+mcjnpcfhS2FmS3jyK+Z+IWsK4WtnSaFrZ4hha2enQdLClsPUaCwpbB1kId5hU/RLtM/G/G8/ChsKcxsGUd+zcQvZF0pbO00KWz1DCls9ew8WFLYeogChS2FrYM8zCt8inaZ/tmI5+WXClvbr+azTidj+ayKuTsvv2K8qp/Bg/xsGeGdn6125a35jq2eKoWtnh2FrZ6dB0sKWw9RqJ+5SRG0+I5tEZTL/Ib3iRP9syVGXn4UtmvzzsvPFq381vQvP7NSC/Kz8YthTWGrp0phq2dHYatn58GSwtZDFChsS6NAYVujnOTEzgae/PT8ho6dmhhzxVbPkPmnZwdL8rPxi2FNYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQn54fha2eXWrJ/LMxJD8bvxjWFLZ6qhS2enYUtnp2HiwpbD1EgcKWwtZBHnJiZwsC+en5Udjq2VHY2tlxxTYMw9ClUNjqiVLY6tlR2OrZebCksPUQBQpbClsHeUhhZgsC+en5Udjq2VHY2tlR2IZhGLoUCls9UQpbPTsKWz07D5YUth6iQGFLYesgDynMbEEgPz0/Cls9OwpbOzsK2zAMQ5dCYasnSmGrZ0dhq2fnwZLC1kMUKGwpbB3kIYWZLQjkp+dHYatnR2FrZ0dhG4Zh6FIobPVEKWz17Chs9ew8WFLYeogChS2FrYM8pDCzBYH89PxSYTty8AB9ITksv7z/jjnufv9Wxjc3srUMyK+x+dlqV96awlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ048bUEgPz2/VNjqS8hnqfmsEOObj3Hbu8mvsfnZakdhWw9CFFEK1Vejvq2tIoeOe/9Tb5arXoRo6Pp671MtMbXYUtha6IW3ZZ6K8Du24fMqU4nek4/+ZQpjxZs885sybbYsWbJEevXqZatkFeubp/8juYPCNirmsoV7zj84TP+Kz4lqv8gV22qEKv+9HoRyaKHXbOV577P02WuzpLC18QttzTylsA2dU5nL85589C9zKCksKqCyvMvL/GP+2QjYrL3nn6125a0pbPVUKWz17OplBbgZ+4QsUaWwzUKpuHuYpxS2xWVbm1/ynnz0z5Ya5PfhNjqu2NpySWPN/NNQ+9DGOz9b7Shs60GIIkrcipw/02MJ5WbsE7LQp7DNQqm4e5inFLbFZRuFbVDW3hsv/aOwDZrwOQtj/uUEVmf9s612FLYUtvoMiiUcvW9t9t6n6iNqs6SwtfELbc08pbANnVOZy/OefPQvcyjL3kh+FLa2DLJZM/8am5+tdhS2FLb6DKKw1bNrREsKW19R9T72F0Grbg6Pevvtt6V3795y0EEHJVy22247GT9+fEVG3hub9+Sjf7bmR34UtrYMslkz/xqbX5baacbMGUv7Zym6w3tS4YObQm6lZXn60PBUZD27NJ+996n6Gq5tqek3zjzzzFA/z3KMBJolTzvCVDfC9qmnnpKzzz5bpkyZIl26dKkaegrbqog6vMF746B//uPLw6NsMbJYs31Y6Pk/tTlL7TRjJoVtFrLt76mHFWDvW329++e9T9VlbnsrTb9BYRuKvr2cZsnThhC2d999t4wcOVKWLVsmAwcOFAjXQYMGVawbha2tgXhvHPTPf3xTYbtTS5/czq5YsUK6d++eyW6rfhvJmCG7Zro31E3MPxtJ8rPxy2KtGTMpbLOQpbC9c2LzfRfXe5+ly9z2Vpp+g8I2FH17Oc2Spw0hbKdPny6PPfaYnHTSSTJ16lSZNGmS4MlSp06dZMaMGTJz5sx29Rw2bJg9S1gCCZCAisCpkx9V2eU12qbf+nLykO3zmvF+EuiQQEtLS10T0oyZQYStiFw6ZmDCLlQfcBnLM+Ui+LWKyGkB+uROH8S32cpDAOq9T8iSRJp+g3PtLGSLu6cZ8rQhhO0777wj66yzTvJv9erVyXbkBQsWyOabb162flyxtTUi70996J//+D75/KtqJxcuXCj9+vXr0P75hUvlZ3c/LgO26i2Tjt9P/VsaQ+afhtqHNuRn45fFWjNmBhG2nUSwooeL79hmiVT7e2Jsbfa+1de7f977LF2mtbfS9BtcsQ1F315Os+RpQwjbc845RxYvXixXXXWVPPTQQzJq1CiZO3duxbpR2NoaiPfGQf8YXwjncZMfoLAtkwpsH43dPrLUTjNmUthmIVuMEA39YMC7cPTun/c+VZe57a00/QaFbSj69nKaJU8bQthiBWfw4MHJSi3+nXfeeTJkyBAKW3s7KFuC98ZB/2yBbwR+FLaVc6AR4mvLcJu1d35ZaqcZMylss5ClsOU7tro8qQcrTb9BYesnso0wdllp1s2pyGlFFy1aJH379q1ab67YVkXU4Q3eGwf9Y3wpbClsba2gfvnlqXeeMZPCNg/ZD++NsXWYK7a6WMT6zq73OYeOVmWrPP0GhW1o+vrymi1Py5GqO2GbNdwUtllJlb/Pe+Ogf4wvhW39CjO2X1v7jWGNMZPCVkeWwlbHDVaxhGjorc3e+yx9BGyW3ufattrVnzXzVITCtkZ56z356J8tMcgvPj8KWwpbW5bVL78Y9aaw1VOlsNWzo7DVs/NgSWHrIQof+uB97lkELQrbIiiX+Q3vyUf/bIlBfvH5pcK2Bd+xHbqb7Qc7sMZ3cnt267rWHYyvDTf52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYmcDT37klwpbG4nq1hPHDJKdWvpQ2FZHlfkOtt/MqAq7kcJWj5rCVs+OwlbPzoMlha2HKFDYUtg6yENO7GxBID/yw3dsJ9/1mA1EB9bzFi6V5SvfFQrb8IjZfsMztZZIYasnSGGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQH/nZCFS3Hnvt/TJ73mIK2+qoct/B9psbWXQDCls9YgpbPTsKWz07D5YUth6iQGFLYesgDzmxswWB/MjPRqC6NYVtdUbaO9h+teTi2VHY6tlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCORHfjYC1a0pbKsz0t7B9qslF8+OwlbPlsJWz47CVs/OgyWFrYcoUNhS2DrIQ07sbEEgP/KzEahuTWFbnZH2DrZfLbl4dhS2erYUtnp2FLZ6dh4sKWw9RIHClsLWQR5yYmcLAvmRn41AdWsK2+qMtHew/WrJxbOjsNWzpbDVs6Ow1bPzYElh6yEKFLYUtg7ykBM7WxDIj/xsBKpbU9hWZ6S9g+1XSy6eHYWtni2FrZ4dha2enQdLClsPUaCwpbB1kIec2NmCQH7kZyNQ3ToVti39NpKe3T+ylsGKFSuke/fu1QtR3IHPC1kvtg8bQe/8bLUrb01hq6dKYatnR2GrZ+fBksLWQxQobClsHeSh94kT/bMlCfnVP79U2Npqkt86nSTnt6yfwY3twxLdOLYUtnquFLZ6dhS2enYeLClsPUShfsb+Imh1am1tbS3ih4r+De+NjRM7W0aQH/nZCFS3fn7hUlm+4p2yNy5cuFD69etXvZAcd4yb/EByN4VtDmiRbvXev8SoNoWtniqFrZ4dha2enQdL73NtD4yK9KEZx662fClsi8y4kt/ynnz0z5YY5Ed+eQkMHTuVwjYvtEj3e2+/MapNYaunSmGrZ0dhq2fnwZLC1kMUPvShGccuClsnOeg9+eifLVHIj/zyEqCwzUss3v3e22+MmlPY6qlS2OrZUdjq2XmwpLD1EAUK29IocMW2RjnpfeJE/2yJQX7kl5cAhW1eYvHu995+Y9ScwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+8TJ/pnSxLyI7+8BChs8xKLd7/39huj5hS2eqoUtnp2FLZ6dh4sKWw9RIHClsLWQR56nzjRP1uSkB/55SVAYZuXWLz7vbffGDWnsNVTpbDVs6Ow1bPzYElh6yEKFLYUtg7y0PvEif7ZkoT8yC8vgVTYTjp+v7ym7e5/+eWXZbPNNlOXM2Cr3mrbLIZsH1koFXsPha2eN4Wtnh2FrZ6dB0sKWw9RoLClsHWQh5zY2YJAfuRnI2CzjpF/qbC1eRbGOsQnhzryJAa/MDV/vxTv/oWsa1oWha2eKoWtnh2FrZ6dB0sKWw9RoLClsHWQh94nTvTPliTkR355CYy99v68JhXvX7lypXTr1i13ebPnLU5sKGyfl5aWltz86tmAwlYfPQpbPTsKWz07D5YUth6iQGFLYesgDyl8bEEgP/KzEbBZN2r+hXzPtyPCjcrPllW1taaw1fOnsNWzo7DVs/NgSWHrIQoUthS2DvKQEztbEMiP/GwEbNaNmn8Utu/nhff42rK3vDWFrZ4qha2eHYWtnp0HSwpbD1GgsKWwdZCH3idO9M+WJORHfjYCNmtt/lHYUtjaMk8kFSooJ9R74/UgHL3Xt7VV5NBxU63hXRPfZitP26eagTsvgMLWV4CYpyKdWlvRPTXe5b2xeU8++mdrE+RHfjYCNmtt/lHYUtjaMo/C1soP9jGEfLMJ0dD11fapIfLBcxne59qe2cXwjXlKYRsjrzKV6T356F+mMFa8ifzIz0bAZq3NPwpbCltb5lHYWvlR2NoIxtrarO1TbbXxb01h6ytGzFMK25plpPfko3+21CA/8rMRsFlr84/ClsLWlnkUtlZ+FLY2ghS2Nn55rSls8xKLe7927I/rVbGlcytysbzX/Jr35KN/tsQgP/KzEbBZa/MvFbYjBw+wOVDFesmSJdKrV6+ov2EpfM+tuvNzP0qAfMdWCa7EjFuR9QwpbPXsNJYUthpq8Wy0Y388j4ovmcK2eObJL3pPPvpnSwzyIz8bAZu1Nv9CHfZj87721peNGUhhqwwDha0SHIWt68OttH2qPRt8lwBh22uHA6o4me0on+OH7iZ4N3ry3Y+zvLUIZOfHPOVW5Jr1GN6Tj/7ZUoP8yM9GwGatzb8p02bbfjijtfcV271aelDYZoxl29sobJXgKGwpbO2pU3gJoT8TFvrQr2YrTzv2F544EX+QK7YR4XZUtPfko3+2xCA/8rMRsFkz/xqbn6125a1DT1DxK6F2AMTYmtts/jXbBD90fb33qTH6hCxlhu43Qset2cpjnnLFNku7jXKP9+Sjf7awkx/52QjYrJl/jc3PVjsK22YUys02wQ9dX+99aow+IUuZFLZZKLW/h++C67hlseKKbRZKEe7x3knSP1vQyY/8bARs1sy/xuZnqx2FLYWtPoNiTchDC9HQ5XnvU/URtVlS2Or4xWpHzNM6XLFdvny5dO/eXTp37txhNnk/qc178tE/XWeVWpEf+dkI2KyZf43NL0/t8oyZM5b2z1N02Xv5jq0ZocQQ3qGFXrOV571PtWfd2iXUqt9otrwKXd9my9NyeV83K7avvfaajBw5Urp06SLz58+X008/XY455piKbZnC1tbNeW8c9I/xtRGwWTP/yM9GIL61ZsyksNXFJYYQhSch31EOPYFutvK89/m6zG1vVet+o9nyKnR9myVPO8r3uhG2F154oSxbtkwmTJggixYtkn79+gmeKPXo0aNs/Shsbd2c98ZB/xhfGwGbNfOP/GwE4ltrxkwKW11cKGx13GAVa0smBYMuJrXuN0LHrdnK8z430WVlPqu6EbbHHXecDB48WI466ihpbW1NtiLPnTu34icZKGzzJULbu703DvrH+NoI2KyZf+RnIxDfWjNmUtjq4kJhq+MWRdiKyJ2TRiTfQz103FS9Yx9YpsLbe59vrugHBdS63wgdt2Yrr1nytCFWbIcPHy74d+SRRyb12XTTTeXhhx+W/v37y4wZM2TmzJlr1bNr167y7rvvhmrrLIcESIAESKBJCPTp00dGjx5d17XNO2b27Nkz2QXFiwRIoD2BHXfcUYYMGdLwaNhv1HeImyVPG0LYnn/++bLBBhvIaaedJqtXr5ZevXrJ0qVLKx4i5X3Flv7ZOg/yIz8bAZs184/8bATiW+cdM7N6FDr3WV5W8uXvIz9f/Gze1N6a/UaYGHhvl2Fq6bOUutmKfOedd8qVV14p9957r9x6661y8cUXy6xZsypSDZ1UocNH/2xEyY/8bARs1sw/8rMRiG+dd8zM6lHo3Gd5WclT2IKA93yxRbP21uw3wsSAeRqGo6aUuhG2K1askEMOOUTmzJkj+O/33Xef7LnnnhS2mqhnsAndKDP8ZK5b6F8uXO1uJj/ysxGwWTP/bPyyWOcdM7OUWQ/CInRusbysmUHhbSPlw5r9Rpg4eO83wtTSZyl1I2xTfAsWLJC+ffsK3qHt6AqdVKHDR/9sRMmP/GwEbNbMP/KzESjOOuuYmdWj0LnP8rKSp3Cshwcrtmj6sWa/YYuF937NVjvf1nUnbLPixIFS++yzT9bbC7+P/tmQe+eHw8z23ntvWyUjWnvnR/9swSe/xuZnq53NOnRusTzGIw8B7/mSpy7NdK/3uDWbf42cew0rbBs5aKwbCZAACZAACZAACZAACZAACZDAhwQobJkNJEACJEACJEAChRN47733BP/Sq0uXLoX70NEPxvTv97//fbKrZ/31189dZ7wH+eabb0rv3r3X2D7xxBOCT32ss846uctrbW1NvjZR6fISl1Dx+Ne//iUvvvii7LXXXhW/rJEbIg0qEvjPf/4js2fPlm233Vb69eunJvW3v/1NnnrqKTn66KPVZRRhiPrOmzdPdtllFwnRdlatWpWU8+yzzyYMeXVMoCmELQYAfKOvE760XeZatmyZanDJmlzojDEQwYdKF3xYb731KvqY9bc09zWCf5p6h7LJwg/fh8R9mkmM1c8s/ll/w2Kf1T8MFmhD6667ruXncttm8W/JkiXJJ8hqcWX1D59L00x6rXXK4h8G7nfeeUd69Ohh/bmy9ll8QBvt3r07J7plCD7++OOy2267tfvL5ptvLhMmTJCvfvWrueKGT/UdccQRcv/9969ll46DWQv7+9//LgcccEDF259//vkOx91KhqH8S8t/++235YwzzpC77757zU8uXrxYnnvuOcE3k/Ne4Lb//vvLLbfcIsOGDUvMIWoffvjhZB6R98I2zM9+9rMVzV544QX5+Mc/XrVYiOtvfOMbcvnll8vhhx9e9n74fcMNN1Qtq/SG0PH45z//KUceeaS88cYbctxxx8lRRx0l2223XS6feHN1AnhgArZ//etfkzz/y1/+Ij/4wQ9k/Pjx1Y3L3IEHEngYhHI+9rGPqcooNfrzn//c7tvE6INSzZD3B1Bf9GvTpk1L2iP6n1NPPVXGjRuXt6jkfoyL//3f/50wmzp1qvzv//6v7LrrroKHYrwqE2hoYfvqq68KOlp0sOUGEDz9OfbYY5MOe/78+XLdddfJpz71qaD5cv3118ull16aNEIk6S9/+cu1nrI+/fTTgu+Gde7cOfHh+OOPl6985StBfeiosGr+YcI+ZsyYRJBhIMZgcMwxx7jx70c/+pHgfVZcmLzedddd8thjjyWNv4irGr+VK1fK17/+dXn99deTGMOv8847rwjXkt+o5h8mXHjqf9BBByX3Y3DXDjqaSlXzLy0TbWOnnXZKOvTPfOYzmp9S2VTzL316vPXWW8tbb72VtF0M5EVd1fzDRGDEiBFJjPHEF+IEg2RRVzX/sEqEJ/noeyG6L7nkkuCuVfPhtddek5EjRyZ8kGenn356oX1c8ApHKPCll16S/fbbT+64446kj4CAwjflf/GLX8gnP/nJZGzYZJNNMv/ybbfdJj/96U/lN7/5jelhBsZUTERLr3fffXfN4ZLah02h/Ev9euihh+SHP/xh0jdAlGKecfvtt6snqCjj3HPPFcQFDxXOOuuspH/UClv0EwMHDhT4udVWW8mTTz6ZzI0gePGwJ+uFeECEbrjhhoIHkbjQxtMHavj7l7/85WSSnmflLnQ80vpA4CKn/+d//kc++tGPyre+9a3kQUG3bt2yVpn3dUAAAg+f6UT8kAOYT26//fZJfmke6EDQfvrTn05+sdRe+wALc0bM0XDhPx955JHkc1IPPPCAKq6oL9rln/70pzX1hb5AnmmEOHITn1/CuLjlllsm/Szy86qrrhI8VORVnkBDC1s0JogeJMUrr7zSriHhSe93v/vd5Ilv2nHiO7mhLnTiOL057ehPOeWUpDMfO3bsmp+AkP3EJz6R+IFtBvjvEBsf+chHQrlRsZws/uHJKp4S4ckwBr3Ro0cLxHgRVxb/Sv0488wzkxOzv/3tbxfhXvKgolp8wQ+dJToiPM1DR3XYYYcVsnKWxT8Is7PPPlumTJkSZMtMHvBZ/EN5WMkbPnx4srXn6quvLkzYZvEP39NGm8ZkDYPa//t//0+wilTElcW/Cy64QDDRx8MUDNyYpGIyvNlmm0V3MYt/eDKO/MMT/d133z24sM3iw4UXXpiII6w8Llq0KIknVm9jrR5HBx/hB5DbEGLox9IL2+yw4oEHn9/73vfKruhWcgUTVAg9lBnquuaaa2Ty5MnJg02Mo3joeeihh6qKD+0fBPysWbOSsQnbKKdPny5f/OIX5cc//rHgoVjeC8IWY8k555yTTHTx4ArlYwKtWbFFWfiHBxXphc8rYuV1m222yetecj8EDR4qIR5f+tKX5MQTT0xWmTVX6Hik48of//jHpN5YcMCDGzycefTRRwU7FPAgmpeNAObfeGhw7bXXJgVhDoQH02j3eR5spF6Ue5CFv2kfYJWrHfq13/72t9K/f//clceDd+Q8Htyk9cVnSSFOMTfNe0FggxV8Qp9x8803J/8dOmXTTTfNW1zT3N/QwjaNIrYglxO2W2yxRSLW8J/oyLBqhftCXZiIDx48WObOnZsUecUVV8j//d//JasT6YXVWogjiN30aVRRE88s/i1cuFD+67/+K+n08fQWT+kxeS/iyuJf6gdW5jF4YmAv4qEAfjeLf+mkHbsD8IQNQuPggw8uAl8m/7A1DqtVmNjjiT2eVg4aNMiNf3DkO9/5TjIhQvsBz6JWbLPENwWFCT9WoEaNGpU8pCriyuIfXoFA/4cVCAzWYIndK5Veywjpdxb/0t/7yU9+kvgVesU2iw/Yioh+GqtpmHhhQos+u6WlJSSOui4LE0psrcOOBLzjhQkrHsRid8eQIUMEK35ZXhFAjCFosVKCcRCMsdUuXdGDkNKslmEFCDuJ8AAWE2YIbjwMw4OKPA8oYvmHXQGY4GKCj7Ee73Zi8ovf07yekgpb9Il48IftjhD2ebdyp0n58ssvJ7uJILqxqwM8wRBiWXNhPP7CF76QPBSHcMfc4cADD0xW7DbaaKPMRcaKB8Q28g45jbzB9tF0xwEeUiKvtYI+c+Wa4EaspCL+mPNgZwe4z5kzJ1kgwYXFiLyiFA9B8QAL83asYmI+oI0V5oulYw76C+x6wLiRp9/ATp+f//znyWLHxIkTk9xCG8ecHjmM8UQzL8VDabRJtEMIXPwGHrqWPoBqgjTKXcWmFrZ45wyrjxgI0QA/97nPCb7dFepC546nqekK54033phsUfjZz3625ifQyNEAsF0ayfvMM8+oB6e8fmfxD0+GMFnHyjIaPBpn6XtCeX8zz/1Z/EvLw+QUW1Sw7beoK4t/6MAxQcAAj4cn2OaISWARwiKLf3gKiMHmpJNOSiZakyZNSg5n8OIfdlJAkKEjx4OnIoVtFn5prmFwhK8YDEPu+ugol7P6h4kv4orVIawc4SFVEVdW/+BLLGGbxQcIIPzDaxa48CQcfZ3miX0RXGv1G3jo+7vf/S6ZrO27776JcMG7l8j5rO8n/vvf/07GwEoXVlg1h63ArwcffF2t9GUAACAASURBVFCw+p5e2ImFB055Jr2x/INP2DGB7bn4z1/96ldJO8TYr7nwmhUeAGAOk16//vWvk4cMmgcDKAMPse+5557kYT/ii7KwPVdzwReMLdhhk14oE6tZeVaoY8UDAga7RfLkhoZDs9sgpzD3qXSh383zYAcPYLCVGa/T4GHJ1772teTdde2CBvKgtD/CjiY8gMq7Gopy0AdVuuCnpl9rWx4eDGFs0h461yz52NTCFh0tJqTYAoenQFg9xZaBUBdWSzDo4+k0hEL6ZKjtVlm8fwmxiA4fQjikuO6oLln8gzBDR4Ina3gajIG03Op3KGal5WTxD/dj8MPT1rxPg60+Z/EPK2RYyYCwwIUOE6sdRQyoWfyD6MFqCf7hXSh0vsi/It7fyOIfHlZgErfxxhsnW8SwxRDbxkK/C18uF7L4B6G4xx57JFt78coBnj4XteMii3+YRGPygAdSWN3RbP/StpMs/qVlxxK2WXxAv49+DbtR0AYQQ8SSWxHXjjwe2KBfQD+L3QlYve3o4KZyeYO+Gg/6MDG77777yqYWxhuMyXkutDmsNGK3BEQ2XgfAVliscODCLpQ8KzCwwam5mDynF8q76aab1A88QpYH8YkHzugLsdMm3c2Sd4UafT22ila6IBryrDQhN7A7CXMazB1gn86v8FoOHtxrD7ALsVIX67CxPLnaTPfiFQYIW7yyE+LCQ27M0bGzDO+A479jHn/ZZZepzlXBa2LYRYnXKTBHR7+P+TnaekeHvZarCx6U4OEa5iknn3zymlvQTrGYpdmKHPrQuRAxqIcymk7Y4oCXf/zjH8lggC21EETofDEg4t2U0AfnYD88nhrjYAdsxcG7bvvss88aHzChw2oxVlOwNQtPj4rcZlDNv4suuijxD35iuwWeZmESEeLpU5YGUs0/lIGVMgzOIR9KZPEN91TzD6v02DaDDh4TGwg1PHXUDu5Z/Urvq+Yf3tHCgQTI0XSylG6dz/tbmvur+YeJV3q4A1bjcbgHVnXyTlI1vmWJL94txIMLcMTuC2yZ9hRfbH3EQ7NatI0s/GIL20o+QJDhyTf65fSAEwi3W2+9NZmEabdgavPMux12HaHdYUUPO5twWBEmk9iFkkf4pFv2MNmDGGt7YesdDgCEAMpzaBH8w2selS7EtPTTONV4o9/BwzOIZGz9w8M1PIyEGNeMfaHLg/+IBbbRYg6DhzGYP2RdOU/rjxU18MYEGmeAIC4777xz8vAB4wCEYJ76VosDxkLNinKolbpK72imPPJui62WR83+d8wtBgwYkAhFvNKW7gTDKwiaB4d4cILXRrDtHnN17NDAvBp5p5kTIP+xWxIPztGW8B740KFDk/Lz5D3ijEMa0SbbfmUFD3bw/2vyPvShc82Sj00jbDEwYWDD1jQISxzzjo47fV8P731gMqPdelMpYTChTE85xtYtHNKD91dSHzDQ45AGrBhA+GCyVcTBLqm/1fzD6iwaOjoAXNgKiqdbRV3V/IMfWBXFSihWlYu+qvmXThjw1BIdLx5sFHlqbjX/EFcMFOjE8Q/+YQtaUVc1/0r9gF84Nr+od2zx29X8g5jFNn28b4gJPt6vweSwqKuaf1g1aftpDYiGor6FV82/UmGL/jjUk/1S/uV8wAQLfW665Rh9MGKJFV6IFzzA4/UhARxagskjJoHIbwgebN1Gf4H3FPNcEBdgjIfMGFtSYQxhhhN+cQALVmFwsm7WC+MUVlgwWUa8cWIq3nPTTJ7xm3ifDeM0+moIZqxQozwc5pJ3JSdGeXgXHO0a79biFGOwAj9tu0a9sKqEFeD00h6iUy2+OFMk7xVypQ55jH4Gp9RigSN9OIm5TZFjX14G9Xg/VkTLzRcx19YIUTDAYgEELfrr9JR/nK+ivSBE8RAL4yLmkKWvM+QtE1uikV84GC7EFfrQuRA+1UMZTSFsOwoEOmE8DcSL6LHeK8QAjq05HW0DTLd/xvKhIwZZ/AMjPBjQDErWhpDFP+tvWOyz+IcnjbX6jmgW/7CFTbNVxsIttc3iX4jf0ZaRxT88IMDDFe1EWusb7LL4ZynfauvBvyw+oA9GG6hFH2dlHNseD12xGwFjAB4C4OESBC7esc27++Sb3/xmsjsED5HxgBmTXIhbjMGaU30xEcUDJUxQIT7xHive28MDYhwmpbmwnRZbEvEuLLYxYwUTrwlpxWPo8nCaL74XiwcOWAnDu6w4lCrvVuSUTfq+ImKBhwJ44I5XLHDeQt5VzNDxhY8hV+qQx3i/GQ9nsEMDohkrdtjait18eVfqNPnVjDZYvcX4CNYhLrQpPFTTrISmv4/+C/mAg9PQn+GsEawAa1ZssdsEQhR+4RN26M/wgBQruXl2n5SyCX3oXAju9VBG0wvbeggSfSQBEiABEiCBWhLAbieIAZwai0OAsGU178o2VsTxACgVYDj0D9sSsRNDI2yxcoktwlgZwgoOVnpxbgAeTmBbrnYXFt61xuQW36DEyi38w6qQ9vNEocvDu8pY8cKEORUMmASDpebBDDhCGOOVlHQSjocFeQ9jDB3f0nwPsVKHhQw8UMFCAwQIREf66g0eYGDLbN4dCLVsk55/G1vc8eoQdhTgQRjei8UDJ7z2h9XxvBde48IDJghIHCSJd2Nx4eyavHma/jbeh8UKa7qrEg/asAMQr1nk3ZmB3VHYuYWdLDh4EK8wYKceXuXDgzztolXIQ+fyMq/X+yls6zVy9JsESIAESIAEIhPAazMQoHgHzXrhIEW89oMTc7ENFCtxOCwK7zljJTjvim0qVCC4sbUUk1xsJ8T/D2GLw1xCvNqDyaVlZagtN0t5oQVDqW/ghk+d4CBLze6T0PGFbxDxpat8yJm8q8ildcS74jvssEOyqoaTbHHAGHLyhBNOKPR8BGtb8m6PBwTYSYA2iFOMsasJwhbbh3EQWJ7TkFFX7HjDQxysiuJ1Azxcw+4MvPOvWWnH1yngHwQoBDj6IVzo6/D+f55V1vTgTTywKz1RGf8/cg0+43NHea6Q/W6e322EeylsGyGKrAMJkAAJkAAJRCCACSVWSLAS+qMf/Uj9HmfqGiaN3//+9wUHE+L99PSbothKrPkOK96RxJZSvB+Kz+fgtRmUi0vzaTpMwPFeLT5rBN+wCvrZz342mZxrTrOHMIMtVpWxpRvbHnGgDD79luebrim/0IIB39nEBB/v6cIvHCKF16awqpb31Gv4GDq+yD+8243VVBzwab2QHzjECvWFeMBp6CgXq/JY8edlJ4AHJHjQhNc7IGKxMp5+7QNb3NFW874Pngpb9BvIT2wdx4UHYvj+dd62CTusJqMs5Cx2pECUanaOwA+0S/iEB4B4EAMG2BWAByl4iJLn8LpUyIfsd+1RrZ8SKGzrJ1b0lARIgARIgAQKJYAJJSalWGXFYUXYfoxDniAKtIctYisoRGz6WTFso4WQxPttmq20EGfYOohJKg6KhCDFe5R5TmxOoWLLI1aT8e3JLbfcMnmHHQdaQYjCz7xlQixBGGM7Jibl2PKK9zhxkj9WqPOsjMYQDHjHELGEL3hAgPeSsSKKd3jBVbOFMmR8kX8TJkyQSy+9NDl9Hgd65Y1BoQ2GP5YQwAnD2EmB97URL7QB5BW252L7b94LgjM9pwb5hTLwqTa0o7x5ijaN/gLbmtEWkVvY2owD2bTCFqvG2I6M7c1YjUb/hn4EJ8jjkLy8V4x+N68P9Xo/hW29Ro5+kwAJkAAJkEBkAukECytcWLWF8MH3XP/whz+oVlgju2sqPt1SiC2Obbe7YqUJJwfj3eKsV7pVGuVhAo1PSuHLCJhAYzUGn/nL+05nSMFQ6h/eL8RJyOnKGsSu5hNCWdlkvS/NPzDEyje2reOgHxwUdvDBB+c+vCzr7/I+GwFsS8fnKxE/vKuOFXe8F45VTXyiSnNhKzK2yiNHjzjiiORBER50pA/I8pQJAYsHJXiAhYc3ePCE7ej4//K+ElH6uxDN+CQmyre8vtBM/W6euGW5l8I2CyXeQwIksIYADgjBlecdFOIjARKoTwKlE6y2Ezj0AZoVPc8ksEURKy5HH310sr0Rgg+nBuNAGZwSnPdQGZSD9+uwrRcTcQhaTMRPPvnkZEUr7+Q3tGDAu8jYPonTjHGIFB5gYPUc20chImp9SnDb/MNhT7/+9a+ThwR431j72RjPOUjf4hNAm8ZBUfjEE7bd45WBww47TGbOnOnigV2z9bshI05hG5ImyyKBAATQoWEbS3phGwuOode87xTAneQESTxtxRPyvffeO3mqj8NPsBUIqxj4Vi8maLxIgAQajwBWH3AAU2wBi09vQPBZhRS2F2q2M6eRw2EyeMcWh97glFMc/oLtyVhpyvseH8qEOMRWR0ykscqEdzqxUotvZ2LFsdYXxDpOrMXJsNiWjHcNcYAOTkm2fB+0bb208cV7v1j5C/F+LXzC2HXHHXckn/bC+9N4vxL5gjrj0CxezU0AOwPw7nueVwRiECuq343he63LpLCtdQT4+yTQhgCELS48QcdBJvjMAS4IzPRvRULD6YHYSjRp0qTkY/aYCGALG77ziEkHJgp4v4QXCZAACWQhgJVBiIv77rtvze046AniD32N5sLneXAoEN6v/cQnPpEcdIWDW3gVTyBGfEPVAivoOFkZK78YX8eMGZNsjcUqMA774RWOALYM4710HJjWDBfeJ8ZBUdgyjT4ID8U0B8Q1A6uYdaSwjUmXZZOAggDEK07rS1dBcSAB3snChA1b5PCtQZwqiC1kWAnA8fl44o5tWdhGh6PlcQInTrrESiuEJ/5/fJcQ27Zuvvnm5BuN6ITxlH78+PHJkfef//znk4Nh8D1InN6J34WQxUoxJqBYTcHpg/iWI961mzp16lrCFpMFvIOGf9heh8NW0u/DKTDQhARIoEEJYPIHgYE+55lnnkm296L/wCFNmgvfmsV2Wrz/iwNm8L3L4cOHr/lerqZM2ugJhI6v3pO1LdN3irHtFIf8lJ7Wi0O9MC5iXOUVhgBOREY7x66A2Ds+wnisL+Xaa69NvtGL057Tw+uQY9idgYcnvIojQGFbHGv+EglkIgBhi6PhMUnDkz8cFoKPfL/yyivJQAzhidVSrE7g73jqDAEKEYsLYvLcc89Nts1BjGLVAmIYKxg4pQ9bijEJxPtxEL8XXnhhsg0rPdAB33T74x//mPwOxC+ELH4P29IggnEi6ptvvplsRS5dscXf8K4KfhvvqUAM4z9xKAMvEiABEkgJ4PRd9C/oh3DSMh7G4QEaDqXq06dPblD4Him2DqMvSy+Uh35Ps304twM0WItA6PiGxPv/2TsX8C2Ksv8PKimgIpUimoWoYX/l9ZBIWWkiRYKar3ESMaXSzANiiqR2wmMeXkAhylfMzKCUrETLEg9RKJHHtFBf8UgmkiaKIprK//pMDi3rc9hnZ/fZ2f1957q81Oe3MzvznXvuub/3fe8Mn89MmjTJ3HHHHTblHNLFnrvrrrvatHF9s5sd2mAL3jibcJq79F4cCK18W04GgMtcq9W70aNHe3/CQHQZOeAb81YL370zRoIRpLhzNzL2Een8OErQddG7mFttn+c50Iq+ZXEvd5r3l6mOiG2ZZkt97RAIxL+xJUrLaZAQVu6G465GIh2QT4y5G2+80V40D7F1RHLKlCn2YASiIXgQeYaoCAYHz02cONGeJkkUF7LL3yG2eBbxPBLVZbPgInS+qY2mIkNmaxFbFPiKFSvsNRF8T8VGhGLnHSpCQAgIAYcA13NwtQ+EdtiwYVZHcI/obbfdlspw43s0MleImKCHMDDRcxiYFKJxSQkLUT2uJEEPc90PDkGMVb6x5aTTtAVdvWjRIptB48qpp57a8tU1pNDWK3wzGkJkLOv5TYt5rXqku+MI5qoqZJDzK9hjIbs4cFWyQ8Bd4xVvkQPUWvmWHuJ46KGHWmc/pyDHD3BjrbdClOkPNhM6B7KI852sN2drsS5bKfSPA+LIFOEuXDLqWOtk1HE4Ff1jbSYt6KDoZxrUw+nXu3dvezUX9l8r+CV9b1WeE7GtykxqHJVBwEVsIaEoaww1SCikFaXGAU4Yaq4Qxb300kut8uQET5QzpBZyy2X0eBLx9nFABtFYFCbE1h2wAqGFNPNvNny+peV7o+HDhycmttwBx111RFuOPvrotX2DNOs7t8qIpgbSwRDg+huyOeoVMj5aNShdWxxShAFHJgqnBR988MH2pOA0hegI0bd6ZfLkyTYLJkkhdRK9CTnjXAOiylz9g/OPTzzSFFISOZgJ4hQ1yjlIqpU7WZkPjFs+FUHXxuuCQ1IC78aRF1HOan7z6h/jR/445Z9IbSvXOKWRgY5YB+c7TiuyvDgEM000NIobh3thB+Fo8i047EkTxgmGQ4yzRDigjEPdiLBuuOGGLb2CDDoCENg8rHfsLPTasmXL7AnerRRkkm900T/ugDlsLHQYQQau4Uqrd1vpR1mfFbEt68yp35VFIP6NrRsop/WRzoLCIxLx05/+1HoFr7vuOrt5QGyJpGI43XLLLWbQoEGWnB5yyCHW24kRheLGALzgggssYea/MSiJsjYjthh4KGpS/GpFbDk5lGsiMADZGOgfF6jjnVURAkKgnAjgNON+Rw6Nix+EQvSkSpEDiA5ZMUSA+cSDO2YxLomCklKJszHN4VZ8zsH9q6RG+xaMXqJCZOP4Gvh5EGXf8UXr59U/5plPciAinBVBhJ4DjtJ+453lmKvUFrIKpjjKOQOE63S4NxbHPM76VgsklMhoK86gWu9g/nHsk2GG/sI+IjuNQkYatguZbq0WdAYEdO+997Z2GJ+QcV5KmiwK9A7ZBPSPq8aI/vbr1y/Tk8pbHV9ZnhexLctMqZ8dBoF6xBYA2Bz4hpXDCSh4HInOEumIElsOd4LQkm5DwRsN4SSae/LJJ9vvc93vtIkShti61OFrr73Wpgii7PEY4t2ErLr0PncScvS6H/5OCo97J4e3kI7suwl1mInXQIVAoAiwztEFvkQq0OGt0y30L2MlO4bUwoEDB9rr1/hWlyguOjRp4So0IjachUBmDY5EsHTOAFKd0xi9P/rRj6x+z+IKnCyJclJcWnkuj/5xIjdzTFYTc8D84ATG8cC5FCrZI0DWGOn8OL/BGGf84YcfnuhFHEK1cOFCuxbvvffeTA6lJEUY2wQnP2ubNc78z549O/X1hXxTTAAhWviumPFCUtNkBZCCTBYdDjU+FcvyCq5E4JfwIRHbEk6auiwESJuBiDZLO8OowriKG1CrVq0yRICJTiQxrPiGhDRn3teMqGIk4I3lGyYVISAEyo8AjrJm6z7JKF1EtN6zRDji3881ajfr9ngX0SUO7OOsASJM3GVLFIc0Yr7DbKVghBPVrlf4ezMd3uh97APMDQ4HH5KbFVHOYz4Yf1b9c1jyLTdRdBy2ZDdxpgT/Tcoo0XCVbBDgpPMrr7zSRsVZ20RrWQ/YBqwtshiSfCJAO9RxTqX4t+6k/ra6jiCyOPD5Nh/CSco7Kb6kTe+4446pAOCzCtriIM2dd97ZOsZw7qM7CEBgj7XaTzqCQ43vgTloj0/RVBojIGIrCRECQkAICAEhIAQaIkDUhEwPjEocZRy4kubEYa6CIaWOyE38BGS+H03iaIt2NOv2XNuQNCKrOAFxDvKdbSiFFF0O9yMLh5RaUsRJeWyVeOcxnrzmg75mReT/9a9/2WtoiAJCcPm0hyvvINAq2SHAGudTBrBGTqOfLSC7fL6U9J5XUnM5+Iu7hvksKlrQSa3qDVef79Vp1xWy0txBTa0igWOEbADOHnAFpxiOFNYrn2ZBpFXyRUDENl981boQEAJCQAgIgVIjwGFKRDH4JhEjkMgLnx2QXpgmksunE5CwrLI6smqPb/g4Q6BeaTWinNekc8Iy3z0TbeSwPiJiOAUw+ltJpc1rvFnNh8MvbyJPRDAkx0VectOudrk6h0htvZLmNHDa4oomzvngICpOBm5F1mv1hX5yWBTnjeDYWL58uXXWcfBTmrMDkCM+YSClmVOQIfZ8fnDDDTdYYs/6TErk8zw0rV1yUNR7RGyLQl7vFQJCQAgIASFQAgQ4oI5vErkSg+/k+G8OSOFQEw7dabXwjT6GYxrjsda7smqPKC0pivVKq+Qnr1OlMfBJlcbId/PBt7t8H9hKFL3WeIlmuhPzWx2vwy2r+XDtZUXkW5VTPZ8OAQ5R4uwOMh3GjRtnv6UlRZfUXAgbDpU0ax+5wrF26623mt/+9rf2VGsOv/zGN76Rqj2i9Q888IBNj4aAEl2GgBJhbeWTiChK9O2HP/yhbYPrpHBA8XnW888/n/jb4LwOTUs3m+WrJWJbvjlTj4WAEBACQkAItA0BIhGcsv7973/ffj/2ne98xxptaa6XodMQM05LxygdMmSIbZszA9KWrNtL249a9fI6VZo0TlLCOYWV9EZSNTndN21hbkk152BCTt7n/t60V7VlPR9ZEfm02KheOgQgdzNnzrT3urrCt8w4ysgwSFNc6vD8+fNtGjmnF/Otbprrb4ig8v0rpyBzUjPEm0PE+NY2zanItMcBUqRe+5Y8Dk3z7VNZ6ovYlmWm1E8hIASEgBAQAgUhwCEoEFpOP4dIkZbsc0InkVHupOSuyyuuuMLLQAWSrNvLEuY8TpXm218MeoxxjHKcA63evenGSNSK7xavueYae+85bXKqfdrDbvKYj6yJfJbzq7ZqI+A+W+BbZr6nf/LJJ+2p4JC/NNkA6ApkHccLEVY+G/C5G5fIKA4dThxmDXBAEzoNwpym8A04hzuRgszBnL4l60PTfPtTlvoitmWZKfVTCAgBISAEhECBCLjU1eeeey5VRMN1HRLKtWBEXThwhfu5idyeccYZa9NgWxlm1u218u4kz2Z1qnT0XeDGN4ZE04kKjxkzpuH3wY36yVyQ7ovjwhVIA98KtpLanNf80m6WRD7JnOkZfwTWrFljrxBEjrp06WIb5JqfL37xi6kaZ51zLy6OF1J+Ics4dCZOnJgqFdl1ghsiHn/8cfutrc/p4hBaHDCU6MF4vt/mcysF/7iSJo07FeAlrSRiW9KJU7eFgBAQAkJACLQDAQgt354RpeWgIlJe+bYWIzNNgdDSHpEX7mgkLTnNNRju3Vm3l2ZMjepkfegNKeCkCXOy7D777GO/MeR7Z64PSnOY19NPP22j8Keccoo17vkG0t1ZzriIkrUyP3nMR5ZEPuv5VXuNEUB/QBy32247w72uPoUsAtYT0WDSnDnUDnlzxLmVtiHen/vc52zmw0477WSvJOJKHSK3aUq9b/TTRKfd+7mvmpOWowWC70PA04ytTHVEbMs0W+qrEBACQkAICIE2I4BhxYFRU6ZMsd91chgK36IRiUl7MiknLZOKTPSFFFjufSRymOZbOeDIur0sIc760BvuXYXcYvRyMA9EdNiwYfakaQz0VgttkdpZr0yePDnRfaPR+lnOR9ZEvlV89HwYCEBgORGZf/bff38breUO57QFQvvtb3/bEuP111/fZj+Qlsxp71mkEqftl6tHv+gferEVx5Lve8teX8S27DOo/gsBISAEhIAQyBEBDoHhuzMOfuGKGYgV/00UrWfPni2/+eWXX7anmkJqMS4pRCC559GdyNtKo1m318q7kz6b5aE3tLXffvtZskkKN3cKQ3CfeOIJa6AXXbKej6yJfNH46P3pEOBAJfRDVqm4ZJzwfT9ZKBQiuAMGDLBOPB/CnG5076x155132pPPXf+yarfq7YjYVn2GNT4hIASEgBAQAh4IcAUMJ31yCAwE9wc/+IG995HDTdIUUgkvuOACM3ToUHsfZdoTUt27s24vzZga1cn60Bvedf/999tI7aGHHmqNc65TwSgPoWQ9H6ET+RAwVx+SI8AhVugwUof55pfPIj7ykY/YQ5+WLFliryRKk9KfvAfJniRToX///ubDH/7wOmncl1xySerMlmRvLvdTIrblnj/1XggIASEgBIRAWxEgZc/nuzE6m/U3k1m3lyWgeR16k2Ufs24r6/kImchnjZ3ayxcBvtMlvbdeOeKIIzKLCvuMZPny5fZb4nghuyWrqLVP/0KtK2Ib6syoX0JACAgBISAEKohA1t9MZt1eHpBneehNHv3Lss0yzEeW41VbQiAvBDgNnE9BHnnkEXuIG5kZnTp1yut1lWhXxLYS06hBCAEhIASEgBAoBwJZfzOZdXtZo5j1oTdZ9y/r9kKfj6zHq/aEQB4I8E0xn2lw8jmnP3PFEYdI8W2w7+nSefQ3lDZFbEOZCfVDCAgBISAEhEAHQCDrbyazbi/rKcBAJX2bg5345/rrr7enuoZwQE3WY6W90OcjjzGrTSGQNQJz5syxZxrgKKLwTTDXcUFsd9hhh6xfV5n2RGwrM5UaiBAQAkJACAiBciCQ9TeTWbeXJYqQWlIIuTbphBNOMH369DF33XWXeeihhyqbVhjyfGQ5t2pLCOSFwD333GOOO+44exI9kVr0CIdc8Xu3bt3yem3p2xWxLf0UagBCQAgIASEgBIRAqAj8+Mc/tqcYjxs3znz0ox81Tz31lBk1apS9d5YUQxUhIASEgEMAXXHsscfa/+WubwqnI+MI69Kli73Wi3+r1EZAxFaSIQSEgBAQAkJACAiBnBDAUP3a175mv5fjHs7TTz/d7LHHHoZDlojEqAgBISAEHAJ8uoDzq14hDVnf2NaXFxFbrSUhIASEgBAQAkJACOSIwIwZM8zdd99tzjrrLHP++eebD33oQ+aYY47J8Y1qWggIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYNVrRPwAAIABJREFUVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtoU5X7NmzTpPd+rUaZ3/f/31182rr75qNtpoI7Phhhu20HLtR9966y2zcuVKs8EGG5hu3bp5txdvIO/2k3T4jTfeMC+88IJ597vfbdZff/0kVSrxTB7jdvIZl8s8AStShooYb55Y5t32s88+a/XJ9ttvn/ercm9/2bJl5uWXX67EWHIHSy8QAkJACAgBIdBBEBCxTTjRp5xyivmf//mfdZ7u06ePOeGEE8y4cePMeuutZ7773e+a448/3kyaNMl885vfbNjyP/7xD3PdddeZ97///ebTn/50zWfvv/9+s8suu5hPfOIT5ve//71t99vf/ra58sorzec///mEPf/PY7T3pz/9yQwYMMD069fPxNtvuUHPCpdffrn50pe+ZFt55JFHgjJSr7jiCgNBPPLIIz1H+c7qeY175MiR5pprrjF/+MMfzMc//vHM+12rwSJlqIjxZg0qjrCuXbuaLbbYwkA8Wy3xNV2v/osvvmg++MEPmn322cfKSLygg+bNm2fuueces9tuuzXsxi233GIGDRpkvvCFLxhkOW1BX86YMcP85Cc/Mf/1X//VsJkpU6aYa6+91uywww6GtfnjH//YHH744ebWW281++67b9ouqJ4QEAJCQAgIASFQIQREbBNOpiO2/fv3t6QQQ/Gmm26yEZAxY8aYq666yhpZP/3pT82BBx5o/2lU7rrrLkNb//3f/21+/vOf13x06dKl5qyzzrLG3IQJE8y3vvUtc+aZZ1rDLg3hwjj86le/aqZNm2YJeLz9hFBk9thOO+1kFi9ebMn6iSeeaDbbbLPM2vZtyEU941F633apn9e4HdHDCYIzpB2lSBkqYrxZY7pq1SqbjZGW2MbXdL3+4YCbPn16XafHfvvtZ/VXEmJ78803m0996lNWB6GLWi0Q1Lvvvtucd955turChQvNRz7ykbrNOOcJD0CA//znP5vXXnvNbL755vafv/zlL6ZLly6tdkPPCwEhIASEgBAQAhVDQMQ24YQ6YutIIdWefvpp8773vc+2gLG1ZMkSM3XqVBvJwOgjKvu9733PRhpWr15toyUTJ060qcWHHXaYuf32280mm2xixo4da4466ihz7LHH2ujt8uXLzR//+Ecze/Zs29auu+5qLrnkkrXEFlL66KOPmgceeMDsvffeNpK85ZZb2ugx/bjssstM3759raEKaYQ877jjjmb8+PHm//7v/2zk5tRTT7X9ibZPeiyG8g9/+ENLOHfffXfz5S9/2fYNoveNb3zDLFiwwAwfPtzMmTPH9vOzn/2sjU6Tfh0vDz30kAE3iBaGJ++76KKLbJSa8TM+Ck6Aiy++2Gy77bbrNEFE+8ILL7TR3E9+8pPm4IMPNoceeqh9plHbGOeM9WMf+9ha45n3QcJ+8YtfmH/+85/m6KOPtpHrV155xfz617+2kXEi77wn3rdZs2aZJ554wuJK/V69etkoERH0rMf9la98xfz1r381X//6160s4EABn86dO9t+YsQzDxCDD3zgAzYy+7Wvfc0SoyjRgyw1wuA973mPlQ8cJ8w1zpPjjjtuLb7IVpLxIvNRGfrZz35mMxeGDBli7rzzTttPSNNpp532jvllHp9//nk7VpxEODYGDx5sjjnmGCsjzeSxlfGyVnGeQKB4J1FHIpOMH2cRcv3hD3/YRhC32mqrlmX9xhtvtFFESB/tIquM41//+pcdP3LCGCmTJ082v/zlL638IIOO2II/sta9e3freHJZGfXm4rbbbnvHmuY9l156qXW20ZeePXvasfBv1j3rhrWM7gF35g/M7733XktqHbFttL4csR06dKh573vfa7GkbYjqnnvu2VSjstZIJUZ/NCO2yAAY8ZkC8uSILfVOP/10+06cioxXRQgIASEgBISAEOjYCIjYJpz/WsSWqi76Rnow0dtoKjJEFWJLyhwGLtFciCCGP4TxV7/6lSUkkBlIDETMFQgzf4+mIruILc9g4D3++OP2nRBN0gshuaShQiYgpZDPESNG2D4dcsghlmRiuBIpJnL7//7f/6uZ6kz7GLu//e1vbXcw9ukjxjpkk0L7tEWBzHzuc59bB8nnnnvOkKpN/+gr38M99thjdrz0G6MaEk354he/aEn7Nttss7YNl+7ID5DN3/3ud/ZvN9xwgzV0G7W9aNEiM3DgQIs1BIKy3Xbb2fdDcEj5pP8UHAtEffgbxvnDDz9sCS4ODAqkDSKCwY5T4OSTT7ZOB4gBTgzIUrT4jpt38Q6X5kk0H2yZY1I2IV0QApwVf/vb36yx7yJnUaIHIWiEAU4XHCYUCArOB+YKGeV9yHWS8cZTkcEN/CjMEe+hXZwuOGeihWg4kWWwRBZfeuklOybmBhl2qff15LGV8TK/LorN2uI9riCTjmQhizNnzmxJ1p955hk7L4wX7Jgn2icrY+edd17r/HDRfwgsa4o1C/bu+3lkEQeDW1c4qcCl3lywruJr+sknn7SODlcYD7JywAEHWBLI35566inrFKGABc4T5ojCu1mHjdbXHXfcYSO2rj6p1MgK/cdphOMuSXHpz40itjjtGCOfULAGo8TWyR4OBPSsihAQAkJACAgBIdCxERCxTTj/9YitI3s/+MEPDGmFUWLryBS/EXXDeOZQKepgtEZTkTEWHbHF4MUYJZJWi9geccQRNqoKaeAdGKVEHj/zmc/UJbYQjnjaYpSUEP1xBqkjxpBI+o3xS7TTjfU73/mOjTyThggBg7j/6Ec/WgdJR9AcuXzzzTetYYrhTGSLqOimm25q+w7pjxvDw4YNs5Hu//3f/7URY8gz76A9DHHIX722IRlJiC2EhugokcKtt97azg8GOuQimoocjcwTQca4BnsIcfz7aN9x//3vf7d9gSRwqBbfIDPXzAXRRr5pJEqGrIDj2Wefbf+biGMrRA+SQ2oq84iTBScGzgvauvrqq9dmIjQbbz1ii9wwZxAtHAa1Um1dXeSLqDxROeSC7AbmukePHlam6sljK+N1xBbSDEn6zW9+Y8keBI4oOM4QovBgDNFqRdaRU+SVtogiIhekyjJuMiVcVL8ZsXWyRwYEkWTmFqeFywqpNRfxNX3++edb8gohJuK+11572YwK2sNpAWbMPf2EhPMb74U8O2KLLmi0voj+Qmwddu9617tsNgYOilbS4JsRW6LJrEX0DesAuY8SW/QAa9c5pBKqcj0mBISAEBACQkAIVBQBEduEE1uP2Dry+uCDD9qUvCixJUUuesgTZAWDEsMz/o2tI7buoCi6FScNLmILuYFQUj760Y/aCCLEhnTPaMQWgjJq1Cjbp2bElrRgFzHlpFuInTutmPdgqBP9JWLrIiykX5Jyyu+8K1ogSd///vdtlI5oHQUSdcEFF6w9XKsRsYXQM35HalppGwyTEFui0hAcCqSb6CckByM//o0tEW4XYeZ5yAbjI+LWSt8gGY3GTVsQLqL1zCX4UkifhfjxrTXkOVrSEFvkx0Xko205App0vPWILQSLdHeisKTWIvv8d7TMnTvXOieikXX3dyKezeQRhwpOIMhUswi1I7buXThYSD12MuDGgbMJ4uuIbRJZx6lEtoSLtDIG5oR12rt373cQW5fJEY3YRok/Kcv0C/LIfzeai3rENnqA3UEHHWSuv/56O9+QSUgifXNOI/rrMk8YA783WruQZfoWdWiR7gwRP/fcc60eSlKaEVv3SQAOGE6cBwdw4v/JYMBRwKF9FJwhWZxEn6TfekYICAEhIASEgBAIEwER24TzUovYEu3gm0+MdqIHpBc6YotRTwSDiCTRSlJpMcgofL/G77UitlEjvx6xJdWTb1Ix5rkmh7YgDURjIJu8iwgKRuYZZ5yRiNhyIqqLLEEC+N7VkW1HSpyxT3QLItiI2GLkYuy61E7GTUQZ49oZ1I0IHvWIgvNd6f7772/JC2QPAsH3gI3a5nAvCD8pzESf3Mmz9CGaigwpJRJKaURs+R6QyC6GNGmc1OFbW4xsIqzRa4p8x01fiHRiuBM9xGmBQ4CoFeQEkkLUinRX3g3BqEVs+Sa3EQbIBZFghyNRc1K0kQEixknHW4/Y8i01Ub9GxBY5wzHkUo9xqOC8gcTgAHKHidWTx2jEttl40xLbJLKOU4uMBsgVUUa+k4UgQvzIanDZCI58OUIXT0VGzoiGkuJ+0kkn2e/jiaY3mgscR9ED4VzENpom79aSc4jhWOM55od5iuoR+s06a7S+0A3IXTRS6sgzzj2cSklKM2LrHDzxtogUc8aAy27g73kc8pZkDHpGCAgBISAEhIAQCAcBEduEc+GILcYc6XF8J0qqMIUUQf4eve6Hb0ghWDzD4TSkJEJ6SXfFKIMIY9BjpFGfw58gKEmILe8kRZF2iOpB/CCAkGnaok2iKqSqUlzEFmJN9JRoEBEdDnSKpjrTJt8Kk8YIiSUdlMiZI1atEFu+VWXMFAxryKU7LAqDlAOYGhFblwYN3hyuRVol5ITxkurZqG3IGYSfArnAwUDdNMQWzMAXAgaRhXhBVCAc4EwaZ5TY+o6bPoIVBMd99wh5RJacIwHCCzmB7EJ8XfpslOjxbWcjDHBaQJ4ZEySStnE6QJIgVURLk4zXh9gyVheZRy5J5Yd8QYwgSM3ksZXx5klso44Ivp8l8g/h5IAyDnJyY4QM4kBw34vHiS2yztrE4cDcM7c4GRrNBd+WRtc0bSMbUWKLTkA3OCLLGsJBRKGPzCHvokBs+Wa20fqCaLtvbPk3sup0DeSdw6UgpW4e66nYWsTWOZgYB44/8KLw7Tr376Kb6CvONp6Jpo8nVOV6TAgIASEgBISAEKgoAiK2CSe21j22EFFSjTEOKY7YQmSJeJBGiNEJ+XHFkWCiUhhuGJVE4DCAibDVIrYu8kgEB0IaPUwJ8kG0lTYw3jE0HYnjO10ii47YYpBibEKuITB8q4vR7don9ZjfiAy6AjHEeOaAG0dsSdWk76TxQvpqpSJTn28PIaWOoGGM0h9OiaU0IrYYyBBiR4Z5Pprm2Kzt6EFbzBPfekLSIdVExnAqNIrYuutRnFHN/BDldCU+lqgYNetbs1Rk2nLvd9FMfiOyxvw6YgTxgwTRF05tJv07eo9tIwxwLLiIvus78kKUnEhp/G/1xuuIrZMhd3gUh/4gY8w9462Visx7OZkZuXIyArnDSYMjoZk8xu+xbTRe1gQnSLv1RdQfbF0qMicPs4bi39gmkXXmhdRuPj1wBQLG+oeYEgGF6FFYr/yNOeRwN2QQIgk+pAM7gsmJ1mBIqm2juYivaUgmjqgosXXOlmjqvYvs0iccNJySDSF3pyI3kmF3sBv4sabcwVusVTJY3HidTNRTsbWILenh9MFlnbi6pOLHv7ElXRqZr3WIW0K1rseEgBAQAkJACAiBCiEgYtuGySRVEeOXk0gx8l0hfQ7jnQhg9PckXSKSAUkjmuO+M3P1OKUVclLrbkf6sWLFCmtM80+tghFJyi5XrvjeLcv7iCwT1SSFMRrdTDJOIjWME6LjTo919Zq1TeSTyDjGvvtmNsk73TOk0fIODjGiPm2RisxhOXw72eibvmZ9a6Uf8WchE8hLEplphgHfh5J9ANGF3ERLK+P1GQ+yDPEET9ZIfK5akcdm4/XpZ7O6rGXGAQGLr0s+RyDVG2Lb6NRgnC6sy/jcNpqLJGvanZgOCSXjgUKbHIIGsY3rEP6eRIZdej7yw7pwhc8N+D651XtukQW+XyfLgghto+Lu3nUZIM3mR38XAkJACAgBISAEqo2AiG2151ejEwJCQAjYaCxpvmR9ENnOsxB1Js2d1Hai060UvtXlUw+i1Y0KkXSu/YoektXKe/SsEBACQkAICAEhUD0ERGyrN6cakRAQAkLgHQjwSQGHXJHanGfhzmqi0u4wulbeRYYGEe9mhVPYOdiLw9rqZZ40a0N/FwJCQAgIASEgBKqFgIhtteZToxECQkAICAEhIASEgBAQAkJACHQ4BERsO9yUa8BCQAgIASEgBNqDQKOrmNKcfdCeXqd7ixtr1caVBI2OPPYk+GT5THxNdUR5S4JnR5ZJxt5R5ULENsHq4OAXSqsHHyVoWo8EgACH+nCgTq0DdNrdPXcQUJJ0zHb3raj3gUmjA5foF4cOcZetSnMEuC+Yf5ph2rwlPSEEGiMQPV2+1pN5HPxFKjz3uPNNOen3rnDyOd+X//nPfzZ9+/a1p7YPGjQo0ylMcuJ9pi80xn5nzrfzXNXHLQ1FFE5n54q5Zld8FdE3n3dy6r/7np8r90Io3LjBJxjRwqn6YM+tBBxc2KxwaOB1111nDwjldHoKt1xwMCW3I8QPkmzWXqt/57pBriuMFg4q5YrJrEpRMsntCxx+yJ32HHpaROEWj2OOOcacc8459jrHqpSkMtohiC0LHeXPlRxJC9fScP0HgslmyCnBM2fOXKc6925yUu8jjzzS9ATPpO+NP7dgwQLzuc99zp6omqSg2PjmjKtyoqXe7/E2OVWWg1/Y9FGUFO6lnDVrluGKomHDhlnFR+GKlvPOO89ez8G1QfzOdSm+BSIDSXnooYesAZJn4SqU0aNH280LD9fkyZPtVSOceszVJSgpvF5sBIwVo4gTZkeNGlWzb7/85S8Nd/BGC3fwQiRuu+02u3FwvY07bZprerj2ZcKECbaKuwaKK1M4HTbUEpVLTqcFw7jMZdH3v/zlL/YO37iH+rXXXrMyyTxQWIecSMzJ22Us9eQG2ePaIIxWxvyZz3zGXq+FAX3aaadZuYyXKVOm2OuD6hWuyaFN7p5tpr9q4ZxW33HlFusM/eJbWtWLvu9T/XQIcB0Z10NRMKTZMz7xiU/Y088p3PfMqfNZFE7f5/ow1gqGpbvfnbY5sZx38n72dQgLBX3O/2dViiC27pozTiDnCrgiitPTVSO26FJsIewnrk0MoThiy5WL7I04dTlvgGsluQ4Q3d6s3HXXXfbKRmy2n//85/ZxDu7jqkd35VuzNnz+7q4FZO25MxIg03HbyecdRcmkI7Zp90mfMbu67io8HCDRayqzaLvINpLKaIchtng0WzG8IWpf//rXrRFWj9hCVjCw9thjj9wOMPnDH/5g77rk6plGBWXEKaR4Z7jH0nnD6v1er62TTjrJ3gv5s5/9zBJqd5oqSh3Syr2RbKD8DQMbYkgdjAoW0T//+U9vQ8URW65J2nHHHXNdR5CyY4891o7na1/7mh0bGBLNYsxgikeT+zXpFwQUTNnwuIbm3e9+9zr9Q8aI8O+1115rf+eeY+Tvvvvus3enYniBG+/ged6z2267rX0ewgH+kJ1QS1QuwRAnwJe+9KXMu1uP2CJnbIQ4nHASlJ3Y1pMbd9/uuHHjrJMFOeL+3m9+85v2DmOu7HHlxhtvtFc3Yaw3OrjJEVtkrJn+iuK85ZZbNn2+kQBgNHE/L7rCtyTVi77vUf3sEOCedk7M5p5qSCcFwom+xaBFlnfddVcbZYD8omeRl3333ddwqBjeehzNHH7GnhsvP/3pT82JJ55ocM5CYKPEFqf0UUcdtfZO9+nTp9u7wiEt0RO4uf6MO6fR4dwJ7mSePtI3iPhPfvITe2c9hit2AmSOe+7dtX28G7LBvdbsJ7wHO4IxHHLIITaihlMO+4HICn3D4ckewx7KHkFhPbMX4Fhmf8AhShQmXhyxZR9hbRGZxvnKuNADGIOUuXPnWl2J4xb9wR4VjZpBjtjfGDNjpzBODmojKICO53mIEHqBU8nRRYwtTiIYd6OxgxG6zO1xzPdFF11U8+A49l3Gwj3ZROPZjw8//PC1eyxOYHAjQkfmFWTtzDPPtDYZ2KMPcS7jJMfxwXt5BrsFkogOZAw4mLkOjbvOwQdHNPIHYeR+9VNPPbUlGzK7lbNuS47YRsm2i05G74uvhwvO0MMOO8w6f3h+7Nix9r51MGRePvaxj1m8kUfsHPaZxYsXW7n88pe/bNcRDteTTz7ZrlGCHawJ6oIp64B6zBW2aK2AEuuUtcR6a3T4X5Yy2UwWGskka5V9E3lFnrijHRxqZXw4YosMsueh17AvkTvGA9Hkij1wpWBvs6awQ52jnt+5Mo/1j/0PjhTmijV+8cUX2ysacW7//ve/t5izntEBzFuU2CK32GjoAuf0IIDDWAj4oV9pk7bmz59v1z+6BjmrldWF3Qs3oi30yeDBg61eIvrfSJ+jE5v1Y8iQIfbaQPQXdjLyibMO2/KCCy54h4yig2qVDkVsWcwAxuJkYlevXm0nM26QO8VBxAzljBF19913W+OZTQHBYdPaeOONrYcMhcuz559/vvnBD35giOTyDgQ4nuPOpgM5xGOMwJ511lk22guJQ7B5D2QOxYCCSWrAsVHzLP1D+N2GVe/3WsLARorAcs8tQsRixOAmBZtFRkGZQdAgfERV8fyBB1hyby4LGcPAFQwW2mJDYZGwSYEZi5zUJQwGFhhXfDgBjhJbvP0sFvpFYTwoQxY60U02IDYkFhibslMMRNxRnODJIqVe/G5QFBQbKps0fdtpp51sv1xECYXNHNN/7sKFRG211VbW6CHKQPtxDzlKjQ0CxRctbKoYFvybFDkMGvBDZpClaHFYspl86EMfesdUETlG4YETMnThhRfaOTruuOOs7IDnEUccYbGoh0+0UeQfwwmiwztxWKBs6QdKj/YYNxsVRhwbJtF053CpR2xRgLXml3YbrUP6wRgZE+8Do3jEln4h63h8kTmiMcwdBhnts4bd3BAlxPDEmYASZm1BitPiVW9cyAXGO+sbIw3cUMxs4vQVI5ixRJ0Ybh7qyQ19xcBCdijgggGP7EYL99/SPhtT3BnEpoyeQU+BE0YMmy3GSDP9Bf4OZwgJxi3tkEKK8cOawWjkfl6MYJxfyCVrgDRQUurBA1nBCCCqjl5hjl3BAEDnoJMpGGnoMDZOnofIoNuIMLDuWbNRvch76+kIcKmHfxJ9nZdx2hHbjRNb1jQpw8wl8sMegLFNQb5ZZy5riP0VmcX4ZE1BNjDAahXaYD1FiS1ygx5Hb2IHQLDpD3IZjxKxf6HjSIuEQDkjfMaMGbY/rC/6AAFCRiFDLg04GrFFbiGd6FLaYM2w9iBJ6CLaQwfRFv1l/6VAmLE10LkYwKwX1irk1+230XE7Ystv6EOcW+DEPoY+dLqS/+Y33sm7sVVYZ67gEGCfoy6GLu9mvwJrl5LLXsHv2CZu3yLlkrpED13EljXdaOzsMezbYIFzmPngv9l/4p98odcxwJER9BfOdsozzzxjn2f/ofBu/hYdu7u/GzsAYsY7eTcEAGKIbUAmAYW/Q9Qo6Cf6xb7Bb+genCBR4lHUGnb2KXoQBw/6Fr3PHLmgBvZWPVzYU7BPkXEwRT8z7+CMLB944IEWb/YcfqOwb2LzUZAd6rh7xPkNmUBXuxL9/1opuRAY5B1cmUfWGUQxnnGVpUw2k4VGMsneh4MIzNlnsSfBjnWCjRgtjtjyG+Nz8so+xTidHcp6Rh/grAO7eIaiCyqh+5566imbtQmZRV+gG3EYoM9Yi8gqdhB94rkosUWGnaPb2VFOB6ATmAt0Gv3BbuVd9Ic5Zq6jhfpggI7lKj8CbtRj7aCbGulzdEmjfqCbonwpuh6xvVmncRmtZUvR3w5FbDHK2DBQoCg1JvXyyy+3Sjka4WDTYbIhB5BNnkVRY6QDJF4pFAOKjvZQ/JAjBB/wSS8lSoenFRLjCgY3ipmNE6MbQuIMQsgtGwPvQIHgkUEh0JckEVv3DhYnSiX+/UK93109FBrvp88QOjZlNlQWqSOcPMuCYcNi8bhvHyEOeHUxTONRTJQWGzReURYgCpjFw4KA+LNp0FcwY9EjwGAC6YPs49XC0+3SwImqsnGhJPhvNioMVJwJzBckAMKM55b5hYBCxvkb8xUtKAXGQ98obK4sVhQPpBmFg+OD75bYNFwUFgUE4ayVxkZdnsO4YJ6RAxY0Y8WpgaLDScB4kUdwZu7jhTpE6VBA0UIbEATaYGwoA8aAB9ptNLwTZYZs18InTrqdIsZQAWvkGxyRdRwGLsUX8sE7mSMUejNiS/9rza+LsNZah8gVaeDUxWGCswLZjBNbDEo2WzydGG70i/YgfvSdjYf1Rp8xgPHWItcYt8geXs60eNUbl5NbNh7w5zmiC4wXrylOGmQdEuZS0d3c1pMbSCljx8uODLJG0D3oo2hB97A5Mb54gQgjExgryDXrBnlxqciN9Bf4xXHmedKKIcW0g45kw+EbdXDFacO8YYwzVvoMWUU3YuRj0LioFH3FCUUky3nvIeHz5s2zbbEOnHeccVCX6BBr1skf46mlI5ABPLq18EevNtPX7wBSP3ghECe2Lh2S9cIaZw9mnbAvYuSiHyFb59hnAAAgAElEQVQr7GfoPQqygMGHbqv3aVEtYouDFiLnMpHQ3URg0cfsX9HCM+hV/mFfQ3/QP9Yguo/9GYcO+xokA4LAnsgaaIXYOtKIDqMvrGn2O+f0RV8xdmwC9jM+C0DHYVhHiyO27HHUp5/sXeyTrCn2QQgsn4uw5t14amVXuW+iMWhZ3zgbWKsQQwxn9mSMV/Z+SB5GLTYDxCgpsUU/Y9BTaG/DDTdc6/RCRzpnRlQ3Mhbn6AUf9hVwYf+kX855gB4AK4qzKVxgohGxRS9DCglkIFfoLBwbIaci11qM7ptKl7JZDxdkpFEqMg4SF61zTgEcQJBeiBbXxrn9Ewcuv9Me8+JS4p1DxWW9RfvryBx7C7YSewqyzj4RzzbKSiYbEVvsvEYyyRjhAfTXBcLYl7Fp0QPR4uwphwPrg7XknD6sRdYpNhwYscZwCC9cuLCmHegcS8wDdZ3zAhuYYAN2OvoMfUHBFsbRBjHFwdyM2FIHfgBhpR42PHNJwVaKftaEDYL+QQZwwOGEwlGIrcV70A319Dn4JSW26HDsaGxv7FLnhFMqckRESP1BGTpiizcLgUJZshHVSnmNpyKjcB0BwpBiYROpcMSWKCbCwXMsIJQwChYPiysYZRBmZ8CxoBFuhAHvclSI6BcGIgKUN7FlgeJ9xvBggbPhOmLLhoWB6KKYbOIQtijR4Bk2fhY5xmv84AGMezYVNg/IJUoVYWUeSF9gflyqi8OvGbFlkbCoaGfMmDEWYhYBRiwLDAcCz0DK2cBxXsS/14VsYqi4lBA3TzgU2NggdMhGNN0YJcVCZuHHPf2O+JGWgRLD+EKps/lDvOgrhBBiAgako+HAAAe8ftHvkzH0wTV6+IkzBCALGOy0y7wgHxg3bDTgiUKFENXDh0hzXBEzR0R3KThjIEK07UNs680v42Td1FqHKHc2YxeRdCmDcWJbKxUZMgTpJ7JDv5k70heJLOKFxBsIoYEA4nBhHtPg1Uxu3YbGRoRHnXUOWWcMGJUYjWxGrjSSG7fZoieQGwqEMRo5cNEnZKrWoWOsC3SRS7lEtihRYltPf2F0xlO+o8QWHYrsgjP6Dx2G/KAjnDzheMFhxLzUSkV2ZxW4FFVIA3oCMgKZRWcyd+gW1iVrGXLTjNhioNbDn/XRTF/XMhz1W3oE4sSWuWVPZu9xKaluf8HIwhGDHnUkgzdDZnBe8TcnX/Ee1SK2yBMkBVlkHTljE0MV2Y2WaJQIfUS/XfQT3YvecNFVV4++0KdGxJa9hv0ccopuqncYJeNF72NHuAgi72F/ZU+J72OO2EbJvsMam4X15L5jRlegf5F9SHu8uIOSsEdYX0Q2XYQOnUw91n+0oHfRa42IbXTsGM/0r1aJfyeMke10Wq3TtR1Bin4XikOU/4dAMy9RYsuY0Z3xiC3zDC7ORnP4hExs0eeMg0wh+u8itOw3/Df2Sz1c0NmNiC37hTuECl2J/kX2nS2EkwUZYS90xNdFvx0pcRHQ6KcHURsLMkQQAicJ7bKX1Pq+NyuZjBPbqCywphvJJE5+bCTsXFdYp+iTeCq1I7YuAuv2N+qRjksGFEQ3usacXoqvCeYYexaHNXOMExhyyVpj/yZoE+0T9eEXOGUaEVuc0egYnF7Ii0t1jr8//p0wUXz0dVRnuzrN9Dl6Ik5so/2IRmyRaRzl8BF4g8NHxDYyQ3FiG50sFixGXdwLGie2RCgcAYL04W2OGoZ4mzDEXF44nhU24KjQQ1SJamJcRwu/QzbwVrnC4sADg5LOm9hCsFgEeKohlBjCjIXFzmE1LCz+TiECiKChzKIFMgh5xePu0obd38GNKAy4Q/T5fxY1C5wULRYqGz5ErRmxxUBBqUJKndEf7YfbkJxC4G/gxwaFZyxawBcjAS9ntK/MHWQ5erAJype+sskz/0Sk4t8fsPE6wkV7biOodagHxjpRaBQTnmXqYeS51B/GSfSSuYkWHCqMHZLsPGm04YgtmzbRDpf2FldUtQwaZA0vpEvdZc7xwIJBlNg6b3jSiG29+XXEttY6JIWXd+KUoPBNCs8nIbauPZQic8O6BmPIcbwQAWI+0+DVTG5dZMGlvcXfzYYS/VYuqdywQSKryF/02yTWKZjhwa1VMLbxeDqPLhhzKmUS/YXxUY/Y8l53qB3tYXgzFt6HkR0/JKrRN7asOTY95B7D32V+sN4gDGzeLr2tGbF1OoLoHvJeC3/WSDN9XRNM/ZgagTixJSKPU9dFgGiY7Bscx0QX0UkQWzIh0DmsaWfY4FSu901/LWKLs4xMFAwl1g97EDKHA4/9N15clAjdAxnEick+wl7I3oKuJBqCfkFn1yK27Dnsh0Ri3becEHaXiuwcwrSNgY9hj/OH3zGA0fWsP/ZW9gGM/ijJd312xJYMERylUaLgnOWsVT4hiI+n1mS6SLJLBXQOM2wi9mp0M/0AD7CuRWyJutcbO0SHLCX2L+wIvqljb2GsvDvqnEOf4HzENnCZLuynkAbmAMMYfewc3O4zHsaFHmZvhKzyDLLG3LN/xokt+wwOuTIR2+g3ts5x4PZMiEojXNg/GhFbHJGOhLiMLafj3Xe8LmLbjNiCKTaFK8wjfWeemT8KNjpzXO8wtyxk0qU/15IFHK6NZNJlNdFXnKoQLfakeDo/f3fE9tprr7WZSM7Bzf6Io4n1ie1KfZeqXM8p7ew4d+Cdy56IZibgwGG+0BuUOLFFnzpblfWBsxqSzrqF2LKfku2BrmU8FOSJtceaiN42gSzgTHL9wOmB/iETDLLOP/X0OWS7UT+ixNbZeyK2DbbbOLGNnp6alNhGT0WuRWxRzggM/+ANRnGy8WFAuYIAIjxsWkwwQovws2EQ4WDB48VlUrt37249yRjpeRNbokFsiK6wIWBMYCCS8knUA4ODwtghEGwO9ItF674x4CAJvrONR0AdwcPYRYGwKBknUSy8fGz8GOaMGc89nrVoxBbjmc2MwvMoBTxYvBcPkvNUYgjQLt5p3sm8o4xZeO7AjqiYQCRxPNAvCsYSGyGePHe4iXsew4AUSBRBvZOanYfUEQj3LS4Ewh3gQXvMKwYBhggGDbJFf1EYRO/wVOFcIOqMQyBaMM4wtPCO8XcMdzzyjti6Q5xQbvXwiac+o4ghWi7yHSe2jjC6g4ySEFvGXm9+HbGttQ6Zf97jIjgYdPQrCbF17UWJLc4aouZsZhTWHvPIhsIct4pXo3FF5ZaosEuX5jtP54RgbTFvLl2OPjWSG/qNvCOXFHdIiIsCuw3OeclrqUHml00DIk/BmKdelNjW019ElusRW4gBa44SJbbgQD33PlItMU6Jktc7PIo1webKOJFv6pDdgKziLHSRInRlLWJbS0fgVSYiVwt/nATN9HWDLUV/SoFAnNjioMQgQ/5Zi+5sCZqG/GBYu7RUiC5rF2cRxX0DWqsbtYitM8hYhzhKMEwxVuNGt2vPOdT4f/dNG3sSRiJ7IfqSdYXDF0KKMxddHY3YItM4CKmPnnHnVDhi68gzBi/rEycOfSIzAUOR39CVfI6CMY2jtRYRj35jC9kDG6KU0W+MHWFz42H9s+ZrFRxf7pR+F6nmORcJpZ+kQEJcKehX0jGjEVuXtlpr7OhADHX+TX/Bw11J4s6xiPbLpaczHgxt5o8C7uh39BDvgSRBHJh/9Dt6hPmCZOMUI7URnUdJSmxdxhB6hPfWO6wmxXJIXcV9YwtuOOshSuyZECXnBGKcjXCBQEJOwAV8IGD8Q0QQHY2dgbMG3csaxe6CmEA+XSpsUmJbKxXZkT/mHd2NDUZfcFjUurYvC5l0clRLFnB8NZJJglTIAg4d1jS2IsQQZxFrO1rc2JBJnKfIKLiBM44xiiNs/Hf0ZOpaQuEIOX9z2RMuk4F3MNfMm7O7WZs4elzEFlvdOaUgni5qTHvYs6wV920znIX9krEiH+id+DWYri30F/soc4eeRmc30ues30b9SEJs4zKKXVGrdMhvbJMQW5Q4mwhpS/FTkWsRWyaVzYM0QQga0QImisl3hc0KLxUbozPiMNJYJBiPCD4LgQUDSSSKR/qBI7b0GyKHAq+3KSX9xrZRWwgfSg3jlCgQi5BNyKW+ggf9RKggYCg6NlM8orVIIeN3AgkebNB4jlDCLAreg9JEETN2sHPEllQXPOQ4CyB/zAvjp18YSvQBjztOAjYflD5EnDaI2KHE6C8EPJ46TOSZ31yKOeQXAhs9UAPFgSKApOGEgES6Qv/xiKNU6BPzRUQa0omywpBhvNHoGh4uNgQMd9qGtGDIQBBwLri+MDaIb1xp4gBBCeHxxIPPONmIcA7ED3Gqhw9yHVfEtYgtY0KW2XwYB0SF+UpCbBvNLwZG/BRj52ACa5QkmGAoYdAiE3Fi69J3IangEW0vSmzZNJELvu1GgbPGkB3GwO/R05yT4JVUbjHSHenkncwl42D+6HNUjthI6skNMkdECILPpoF8k5rlvsdx6bnOIVJLyRM5YvNjbUImwBdjOkps6+kvNnIcRVGcXSpyPWLr3kffkX2cN9ThH9KDXfQt2lfmHR3ojFV0gktB43n+hgyiK2mT9ez0Ipt9LR2BIYoDoRb+6JNm+jq15amKNRFwxDZKJsmcwBEYTW9lLnGqOkdw9JASGo5+flLrRc7JEiV2POfudnR1cKIgG/EDHvk7+oY1TL+itwwQPUVvuINy0E8Yty4aEyW2yDRy7NKWWUv03RFbDFDsC+q74qK/6DDWSvRgQXDAWRbPVHKHK7EXOAceexP6xl1lFF1f7Bes0XolGv1zkWqexdnIfs8aJSqDfmZsvJ85jN5ji13TaOxkrYGHO1iHvZCx4oyKF7LlcAy7K5p4FrJA1AmcWOdRB7D7ltZleGDMu/liX2a/jhNbdA37A84I5MZlNuFIRF9CGuMnaBe1zOvdYwuhggAiJ81wcdcKgikyAtHFdkWeKewrZBdgp5Jp44pLk2e/dVG/ZhHbWsQWxxHrzx0Wx1xhE8UzJ917s5BJZKCRLDSSSbLq2O/c+qJfyDd7avyTAkdsowdusTYZn/skAL3n1ia/uys0a8lUNPMLm8J96gdhhYtQaB8bGH1F1iPBiOg9tu4TD55FNyAjjIW2Wbv8HX3j0pr5O3/j3/GCTY6jAz1AQZ9hPxCYaaTPebZZP5wudvae+/TEpSLHZTQaMIr2U8S2U6ea6Q8OUDwaGHXxiC2kAjLm7oFE2UKoIH/8N0ILCY1fB4Nh5ogFihQvC8KDsY2ypS4C476XgejgsYFAOaHAiIVw1CoQYpQEHqZoif/eqK0osWVDhKC7kwP5b4SLxezSuXgP/UYJsmHWOiLcLc5oZIk+gjN1ITt4hhgvBNHdY0sEGKMBXNlMITFsqODlTpbmbxSUA4qGuu77DhYx0WAivtEreHjenaxK+pc7cS6OKeMFOxeFjf6dPhC95btONydsLJBMt+gxpqJEkv5BYp3nDhnBO44BTl089JBf+gwZi5/6hmHj+kIdZAPvGiSejTd6n2wjfKLjqBexJVLgTrfkeWeYsRbYJJxc1rvHtt78QuRqEVs2V4wj5g5SRMHQQfZqfV8VvQidyF48YuvSmthA3Ym7yAPyi7ES73dSvJLIrYvqu+94HN5sRDiK4qWe3ODMYYN0BiBrIXrqNmNjQ250/x+RUmQU5xQFQkg0LKn+iuPMpuk2+loRWzZHjEN0pDsVGsOTjdcdSBb/HIN+uQiWcwQx53jH0VUUDHJIAGPBG+3kj++n6+mIeviz3pPo65pKVj9migDzjA5nj8M4cimQjtgS1SNFjiwFSB2R9rQFxxROWByi0UNRWmmP/tIGmRe1okvxtljDlHr39RJ9YY2yb8e/16Mueg2HOI7XePQk/i72a9ZZrWedY8ERkVbG7J6FELHemKdaDoFWxu7mnagP7dWyG1x7PIuuQTcQpYw/SxvMCUZ//DAf2gBf9lTsiVYLEVH2d+am0dU0rbbbjucb4QKmyJe7por+4JAAY+xLJ9vIJ3s+ayZ+6KHvGJBV3kngoN43583e0apMNpKFZjKJniJtGBlzqb+N+odOA8/oWTs8784BiR601Gyctf7O/IFfLZmPP4+zg30PG6jWWkPOWUOsEfRHo/WNnkEvoYvRg9Fn6+lz159m/WiGQy0ZjdfpEMS2GVD1/g7BYoEnXXBEQ5hsNrB6VxHwLpQNgh0XdpQnC6fWBkc9FjAeCrykSTaVRuNutS0UGzjExwWBY8PBa9NoY2qEMYsEJcGCwCiOKwyInjtdOT5uFiNedNJuIb7RgqeXcca/rY0uMJwKRD/xPmZV3KJnwcdP+MM4Y94b3TNKNAnCQnpRLUMGOWNDYDMADxQtDpRactoIn6TjdXel1nOmNGqHNdRsfmvVhziBUaN1RD0Uez2DMdouGKHUIcCNsE+KVyvjYmNzRnmjvtaTG+QfY5IsjSQbWC083aZF/XoGfSP9lRTn6LvRZWyi0ewS+sHG1AqpQL8g3zhDICb8EzewGumIevgn1ddJ14meyxaBKLF1n6Jk+4aO0Rr7I84sojm1ToHuGCholEIgDAQI8hDEwtYlVT4ehAqjl+XuhYhtieaPqA2pCPHvP9MMIcu20rw/lDqkHpGORvpGKAWSTfqb+3Y4lH6pH0JACAiBdiFABgXfrpJdQbReJR0CEFui3mQDceZHvTMi0rWuWkJACLSCANlofD7jMo+yjoK30peqPitiW9WZ1bgSI0BqKt8A+6S4JX5ZkweJZvEtU/zb2qzaVztCQAgIASEgBISAEBACQqCKCIjYVnFWNSYhIASEgBAQAkJACAgBISAEhEAHQkDEtgNNtoYqBISAEBACQkAICAEhIASEgBCoIgIitlWcVY1JCAgBISAEhIAQEAJCQAgIASHQgRAQse1Ak62hCgEhIASEgBAQAkJACAgBISAEqohA7sSW6x24iLzZyV9cXxK9yoLrGzhIhyseooWrG7hnqdl9blWcLI1JCAgBISAEhIBDQPurZEEICIFWEZDeaBUxPV8mBHIltpMnTzaXXnqpGTBggL18/fzzz6951PwNN9xgDjzwQAOZ5V5O7qybOnWqvYydBThr1iz7++jRo+1dqdxPOmHCBHuEvYoQEAJCQAgIgY6GgPbXjjbjGq8Q8EdAesMfQ7UQNgK5EdvXX3/dXp9CtJao69lnn22effZZM23atHUQeeKJJ8wZZ5xhZs+ebYntm2++aTp37mxWrFhhunfvbsaNG2d69eplie3KlSvNOeecY5YtW2Z/I3rbtWvXsBFW74SAEBACQkAIZIiA9tcMwVRTQqCDICC90UEmuoMPMzdiC64vvPCC6dGjh1m1apXZb7/9zIknnmhGjRq1FvLXXnvNDBkyxFx55ZVmm222scQWosvFxY8++qh9DiJ83333WWLL79Rfs2aNTUXmmT59+nTwKdTwhYAQEAJCoKMhoP21o824xisE/BGQ3vDHUC2EjUCuxJah33PPPWbs2LFm5513NpdffrnZaKON1iIC0d11113t3yGuENsHHnjADB8+3Dz88MP2uauuusrMnz/fpjKPGDHCDBs2zP7es2dPs2jRItO7d2+zYMECc/vtt6+D9Oabb24++clPho2+eicEhIAQEAJBIlAGp6n21yBFR50SAkEHXaQ3JKAOgTLsc63OVq7E9pZbbrHfxV5yySVm5MiR6/SNNOKNN97Y9O/f3/5+55132v+eN2+ePWjKfW87ZcoU+3fSkDfddFMzfvx4m65MJJh05XqHSPE978SJE1vFo23PP/bYY0ErPvXPTxSEn/DzQ8CvtuSv2vgxOu2vfnOs2kIgLwRC1r/SG3nNevnaDVlOfdDMjdiSLsw3sjfffLPZc8891/aRb24ffPBBs8cee5glS5as/f2DH/ygeeihhwz/Joo7Y8YM069fPzN48GAzadIks3r1ajN9+nRz0003mTlz5hg+gF+4cGHdsYvY+oiFMaELvPqn+fVDwK+25E/4+SHgV1v7qx9+qi0E8kQg1P1BeiPPWS9f26HKqS+SuRFbSOsOO+ywTv+OOOIIc/zxx5uBAwfa1OJocanI/Hvu3LlmzJgx9s9Dhw61B0tBbPked/HixfYaICK7nLZcr4jY+olG6AKv/ml+/RDwqy35E35+CPjV1v7qh59qC4E8EQh1f5DeyHPWy9d2qHLqi2RuxLZexzhIipOOZ86c2bDvPPfiiy/a04+jZenSpWbLLbe0Jyc3KiK2fqIRusCrf5pfPwT8akv+hJ8fAvnU1v6aD65qVQi0gkDo+0N8LNIbrcxudZ4tm5wmRb7txJareiCsffv2TdrHVM+J2KaCbW2l0AVe/dP8+iHgV1vyJ/z8EMintvbXfHBVq0KgFQRC3x/iY5HeaGV2q/Ns2eQ0KfJtJ7ZJO+b7nIitH4KhC7z6p/n1Q8CvtuRP+PkhUO7aoe+v5UZXvS87AqHvD0XhK71RFPK131tVORWxLUjOQhco9c9PMISf8PNDwK+25K/a+PmNzr+2DFR/DNVCdREIXf8Whbz0RlHIi9iGhXzK3oS+gEJXfOpfSsF7u5rwE35+CPjVlvxVGz+/0fnXDn1/9R+hWhAC6REIXf+mH5lfTekNP/yyrl1VOVXENmtJSdhe6AKl/iWcyDqPCT/h54eAX23JX7Xx8xudf20ZqP4YqoXqIhC6/i0KeemNopCv/d6qyqmIbUFyFrpAqX9+giH8hJ8fAn61JX/Vxs9vdP61ZaD6Y6gWqotA6Pq3KOSlN4pCXsQ2LORT9ib0BRS64lP/Ugre29WEn/DzQ8CvtuSv2vj5jc6/duj7q/8I1YIQSI9A6Po3/cj8akpv+OGXde2qyqkitllLSsL2Qhco9S/hRNZ5TPgJPz8E/GpL/qqNn9/o/GvLQPXHUC1UF4HQ9W9RyEtvFIV87fdWVU5FbAuSs9AFSv3zEwzhJ/z8EPCrLfmrNn5+o/OvLQPVH0O1UF0EQte/RSEvvVEU8iK2YSGfsjehL6DQFZ/6l1Lw3q4m/ISfHwJ+tSV/1cbPb3T+tUPfX/1HqBaEQHoEQte/6UfmV1N6ww+/rGtXVU4Vsc1aUhK2F7pAqX8JJ7LOY8JP+Pkh4Fdb8ldt/PxG519bBqo/hmqhugiErn+LQl56oyjka7+3qnIqYluQnIUuUOqfn2AIP+Hnh4BfbclftfHzG51/bRmo/hiqheoiELr+LQp56Y2ikBexDQv5lL0JfQGFrvjUv5SC93Y14Sf8/BDwqy35qzZ+fqPzrx36/uo/QrUgBNIjELr+TT8yv5rSG374ZV27qnKqiG3WkpKwvdAFSv1LOJF1HhN+ws8PAb/akr9q4+c3Ov/aMlD9MVQL1UUgdP1bFPLSG0UhX/u9VZVTEduC5Cx0gVL//ARD+Ak/PwT8akv+qo2f3+j8a8tA9cdQLVQXgdD1b1HIS28UhbyIbVjIp+zNmG9cad7//venrN242ra9NjNHHbCbV9uhKz71z2t6jfATfn4I+NWW/FUbP7/R+deWgeqPoVqoLgKh69+ikJfeKAp5EdtMkX/jjTfMyy+/bDbbbLO67T7//PPmPe95zzp/f+utt8yrr75qunXrts7vr7zyiunSpYtZb731GvbzwNOuznQc0cZ23nZzc97RA73aD13xqX9e0yti6wef8BN+ngj4VQ9d/7nRFbW/YqD+X6ed/EB+u/blpx6QSTtqRAiEgkDo+qNIvTFx4sRQpqnD9yN0OU07QbmmIk+ePNlceumlZsCAAeall14ybIZ9+/Zd29dbb73VfOUrXzG77767gbB+6UtfMgcddJC54oorzNSpU83WW29tWICzZs0ynTp1MqNHjzYbbLCBefLJJ82ECRPMkUceWXfcp59zsTn00EPT4lKz3mPPrDAzb7jXiNhmCmuqxkJfkOpfqmldW0n4CT8/BPxqhy5/jK7I/ZW9fMGK3n4gG2M6dTJm7rkjvdtRA0IgJARC1h9F6w0R23AkNWQ59UEpN2L7+uuvmw033NBGa4m6nn322ebZZ58106ZNW9vffffd15xxxhlm0KBB5ve//7056qijzF//+lfTuXNns2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xtkuGvXrjXHn0fKwwOPLTenX3abiK2PxGVUN/QFqf75TbTwE35+CPjVDl3+QthfRWz9ZEy1q4tAqPojBL0hYhuO3Icqp74I5UZs6dgLL7xgevToYVatWmX2228/c+KJJ5pRo0at7TNEFWK6/vrrm69+9as29fjUU0+1RPfRRx+1z0GE77vvPkts+Z36a9assanIPNOnTx8RW18pqFE/dIFX//wmXfgJPz8E/GpL/vzwC2F/FbH1n0O1UE0EQtZvVbPLqylB7RlVyHLqg0CuxJaO3XPPPWbs2LFm5513NpdffrnZaKON1ukvUdzjjjvOPPLII2bu3LnmxRdfNMOHDzcPP/ywfe6qq64y8+fPt6nMI0aMMMOGDbO/9+zZ0yxatMj07t3bLFiwwNx+++3vwIF2sixLnllppt3wkNm+1ybmhAN2zLJptSUEhIAQEAIBIVDPaRpQFwvdXzMhtsaYqUf1DwlS9UUIZIJAyPqjSnZ5JpPVgRsJWU7TTkuuxPaWW26x38VecsklZuTId35H89RTTxnSkT//+c8b0hMgvURtieJyeBRR2ilTptixEd3ddNNNzfjx482bb75pI8GkK9c7REqpyGlF4t/1QvfkqH+aXz8E/GpL/oSfHwL+tYveXzMhtvrG1l8Q1EJwCIS8PxStN5SKHI64hiynPijlRmxJF+Yb2Ztvvtnsueeea/vIN7cPPvig6d+/vz3ciX+Thhwtu+yyi5kxY4bp16+fGTx4sJk0aZJZvXq1mT59urnpppvMnDlz7MEZCxcurDt2EVsfsRCx9UNP+Ak/XwT86oe+Yal/fvMbwv4qYus3h6pdXQRC1W8h6A0R23DkPlQ59UUoN2K7ZMkSs8MOO6zTvyOOOMIcfz/2/AcAACAASURBVPzxZuDAgTa1mHTi5cuXr31miy22sAdMkZI8ZswY+/vQoUPN7NmzLbEdMmSIWbx4sY3qzps3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fObNh3nuN7W04/jpalS5eaLbfc0p6c3KiI2PqJRugCr/5pfv0Q8Kst+RN+fgjkU7ud+6uIbT5zqFbLj0Do+0Mc4XbqDRHbcOS7bHKaFLm2E1uu6oGwRu+zTdrZVp4TsW0FrXc+G7rAq3+aXz8E/GpL/oSfHwL51G7n/ipim88cqtXyIxD6/hBHuJ16Q8Q2HPkum5wmRa7txDZpx3yfE7H1QzB0gVf/NL9+CPjVlvwJPz8Eyl2b/VXEttxzqN7nh0Do+0N+I2/cch52eVFjqcJ7qyqnIrYtSOcDjy03p192m9l5283NeUcPbKGmIqJeYNWoHPqCVP/8Zlz4CT8/BPxqhy5/fqPzry1i64+hWqguAtIftedWxDYsma+qnIrYtiBnIrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpzmTmzfeOMN8/LLL5vNNtus7jyvXLnSbLLJJuv8/a233jKvvvqq6dat2zq/v/LKK6ZLly5mvfXWayg3bLwTJ07MVLZEbDOF06ux0Bek+uc1vUb4CT8/BPxqhy5/bnRF7q8LVvT2A9kY06mTMXPPHendjhoQAiEhELr+KFJvZG2XhzTvZetL6HKaFs9cie3kyZPNpZdeagYMGGBeeuklA9ns27fv2r7efffd5gtf+IL5wAc+YJ588klz+eWXmz322MNcccUVZurUqWbrrbc2LMBZs2aZTp06mdGjR5sNNtjAPjthwgRz5JFH1h23iG1akfh3vdAFXv3T/Poh4Fdb8if8/BDwr130/ipi6z+HaqGaCIS8PxStN0Rsw5H5kOXUB6XciO3rr79uNtxwQxutJep69tlnm2effdZMmzZtbX8//elPm1NOOcXw72uvvdaS4F//+temc+fOZsWKFaZ79+5m3LhxplevXpbYEtk955xzzLJly+xvRG+7du1ac/witj5iIWLrh57wE36+CPjVD33DUv/85jeE/VXE1m8OVbu6CISq30LQGyK24ch9qHLqi1BuxJaOvfDCC6ZHjx5m1apVZr/99jMnnniiGTVq1No+b7PNNuaOO+4w/Pvee+81n/nMZ8wf//hHM2jQIPPoo4/a5yDC9913nyW2/E79NWvW2FRknunTp4+Ira8U1KgfusCrf36TLvyEnx8CfrUlf374hbC/itj6z6FaqCYCIeu3qtnl1ZSg9owqZDn1QSBXYkvH7rnnHjN27Fiz884721TjjTbaaG1/N910U/Pwww/b6CsA77PPPuZXv/qVGT58uP2dctVVV5n58+fbVOYRI0aYYcOG2d979uxpFi1aZHr37m0WLFhgbr/99nfgQDtZliXPrDTTbnjIbN9rE3PCATtm2bTaEgJCQAgIgYAQqOc0DaiLhe6vmRBbY8zUo/qHBKn6IgQyQSBk/VEluzyTyerAjYQsp2mnJVdie8stt9jvYi+55BIzcuQ7D4jYe++9zZQpU8yHP/xhc9ddd5kzzzzTXH311Ta9mMOjiNLydwppyBDh8ePHmzfffNNGgklXrneIlFKR04rEv+uF7slR/zS/fgj41Zb8CT8/BPxrF72/ZkJsdXiUvyCoheAQCHl/KFpvKBU5HHENWU59UMqN2JIuzDeyN998s9lzzz3X9pFvbh988EHTv39/c/LJJ5v3vve95tRTT7Xf2m688cbmrLPOMrvssouZMWOG6devnxk8eLCZNGmSWb16tZk+fbq56aabzJw5cwwfwC9cuLDu2EVsfcRCxNYPPeEn/HwR8Ksf+oal/vnNbwj7q4it3xyqdnURCFW/haA3RGzDkftQ5dQXodyI7ZIlS8wOO+ywTv+OOOIIc/zxx5uBAwfa1GK+kd1rr73sM1wHBFF997vfbebOnWvGjBljfx86dKiZPXu2JbZDhgwxixcvttcAzZs3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fOtI9wnc/f//53e4AUqceu8NyLL75ov7+NlqVLl5ott9zSnpzcqIjY+olG6AKv/ml+/RDwqy35E35+CORTu537q4htPnOoVsuPQOj7QxzhduoNEdtw5LtscpoUubYTW67qgbBG77NN2tlWnhOxbQWtdz4busCrf5pfPwT8akv+hJ8fAvnUbuf+KmKbzxyq1fIjEPr+EEe4nXpDxDYc+S6bnCZFru3ENmnHfJ8TsfVDMHSBV/80v34I+NWW/Ak/PwTKXZv9VcS23HOo3ueHQOj7Q34jb9xyHnZ5UWOpwnurKqciti1I5wOPLTenX3ab2Xnbzc15Rw9soaYiol5g1agc+oJU//xmXPgJPz8E/GqHLn9+o/OvLWLrj6FaqC4C0h+151bENiyZr6qciti2IGciti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnLaF2L788sumW7duplOnTjXn+sUXXzTdu3df529vvfWWefXVV229aHnllVdMly5dzHrrrddQbth4J06cmKlsidhmCqdXY6EvSPXPa3qN8BN+fgj41Q5d/qKjK2p/XbCitx/IxhhMgrnnjvRuRw0IgZAQKIP+KEpvZG2XhzTvZetLGeQ0Daa5Etvly5eb+++/3xxyyCFmyZIlZosttlinj3/605/MueeeazbbbDPDs5MmTTL9+/c3V1xxhZk6darZeuutzRtvvGFmzZplSfHo0aPNBhtsYJ588kkzYcIEc+SRR9Yds4htGnH4T53QBV790/z6IeBXW/In/PwQ8K9d9P4qYus/h2qhmgiEvD8UrTdEbMOR+ZDl1AelXInttddea26//XYzZcoU8+yzz76D2I4dO9bsueee5itf+YqBiP7tb3+zz3bu3NmsWLHCRnHHjRtnevXqZYntypUrzTnnnGOWLVtmfyN627Vr15rjF7H1EQujiJkffMJP+Hki4Fc99A1L/fObX2oXvb+K2PrPoVqoJgIh67ei9YaIbTgyH7Kc+qCUK7F1HYOU1iK2t956qzn44IPNZz/7WXPdddeZm266yfTs2dMMGjTIPProo7b6tGnTzH333WeJLb+PGjXKrFmzxqYi80yfPn1EbH0koE7d0AVe/fObdOEn/PwQ8Kst+fPDL1q7qP1VxDa7OVRL1UIgdP0G2kXpDRHbcGS9DHKaBq1Cie23v/1tM2fOHDNy5Eibbnz00UebT33qU2b48OHm4YcftuO56qqrzPz5881LL71kRowYYYYNG2Z/hwAvWrTI9O7d2yxYsMBGhuOFdrIsS55Zaabd8JDZvtcm5oQDdsyyabUlBISAEBACASFQz2kaUBdtV+oZqHnvr5kQW2PM1KP6hwap+iMEvBEIXX8UpTeytsu9J6qDNxC6nKaZnkKJLeT0F7/4hdlrr70M0dsTTjjB3HXXXTa9mMOjWHikJlNIQ950003N+PHjzZtvvml69Ohh05XrHSKlVOQ04vCfOqF7ctQ/za8fAn61JX/Czw+B7GrXM1Dz3l8zIbY6PCo7QVBLwSAQ+v7QyCGWt95QxDYYMQ3+k7m0SLWd2HIS24MPPmgPiRoyZIj5/Oc/b9OLidiSjnzNNdeYXXbZxcyYMcP069fPDB482B4qtXr1ajN9+nSbrkyUd/LkyWbhwoV1xy1im1Yk/l0vdMWs/ml+/RDwqy35E35+CGRXO0ps27m/ithmN4dqqVoIhL4/xIltO/WGiG04sl4GOU2DVtuILSexbb755jYiO3DgQJta/Lvf/c4cfvjhNkLLaceXXXaZjd7OnTvXjBkzxo5n6NChZvbs2ZbYQoQXL15srwGaN2+eGTBggIhtmllPUCd0gVf/Ekxig0eEn/DzQ8CvtuTPD79obYhtEfuriG12c6iWqoVA6PrNEdsi9IaIbTiyXgY5TYNWW4httGOrVq2yJx3PnDnT/sxBUJyGvM0226zTf57jfltOP46WpUuXmi233NKenNyoKGKbRhz+Uyd0gVf/NL9+CPjVlvwJPz8E8qndzv1VxDafOVSr5Ucg9P0hjnA79YaIbTjyXTY5TYpc24ktV/VAWPv27Zu0j6mey5PYpupQjUrdNups+mzVw7u5/Xbvbfb78Lbe7UQbCF3g1T+/6RZ+ws8PAb/akj8//OrVbuf+miWxXbPGmH+seCUTULbo0S2TdtSIEEiLQOj6LT6uduoNEdu0UpV9vbLJaVIE2k5sk3bM97kyEFvfMbr6h+63kxk9aOesmrPthC7w6p/fdAs/4eeHgF9tyZ8ffkXXZn/NmtgedPrV3sPq9PZhVBDlL114g3d7NHD5qQdk0o4a6TgIhK7fipqJPOzyosZShfdWVU5FbAuQzldW/8vcfvfid6RZt9qVW+5+3NxyzxNGxLZV5PJ/PnSFof75yYDwE35+CJS7dhmIbZZEudyzpd63G4HQ94d24+HeJ2JbFPK131tVORWxLUjOshCo2Tf/xfzklr+K2BY0h41em8X85jks9c8PXeEn/PwQKHdtEdtyz596ny8Coe8P+Y6+fusitkUhL2IbFvIpexP6AspC8YnY9kkpHflXy2J+8+yl+ueHrvATfn4IlLu2iG2550+9zxeB0PeHfEcvYlsUvq2+t6pyqohtq5KQ0fNZCJSIrYhtWnHMQv7SvjtJPfUvCUr1nxF+1cbPb3T+tUVs/TFUC9VFIHT9WxTyoQecisKlqPdWVU5FbAuSqCwESsRWxDat+GYhf2nfnaSe+pcEJRFbP5TKi19e407arohtUqT0XEdEIPT9q6g5EbEtCvna762qnIrYFiRnWQiUiK2IbVrxzUL+0r47ST31LwlK5SVmml+/+S26toht0TOg94eMQOj6rSjsRGyLQl7ENizkU/Ym9AWUheITsRWxTbk8dJ1TWuDerpfF+vXsQsPq6p8fuqHj5zc6/9oitv4YqoXqIiD9UXtuQ7fLqyuRIraVmNvQF1AWik/EVsQ27WLNQv7SvjtJPfUvCUqK2PqhVF788hp30nZFbJMipec6IgKh719FzUnodnlRuBT13qrKqVKRC5KoLARKxFbENq34ZiF/ad+dpJ76lwSl8hIzza/f/BZdW8S26BnQ+0NGIHT9VhR2IrZFIa+IbVjIp+xN6AsoC8UnYitim3J5KBU5LXBv18ti/Xp2oWF19c8P3dDx8xudf20RW38M1UJ1EZD+qD23odvl1ZVIEdtKzG3oCygLxSdiK2KbdrFmIX9p352knvqXBCVFbP1QKi9+eY07absitkmR0nMdEYHQ96+i5iR0u7woXIp6b1XlVKnIBUlUFgIlYitim1Z8s5C/tO9OUk/9S4JSeYmZ5tdvfouuLWJb9Azo/SEjELp+Kwo7EduikFfENizkU/Ym9AWUheITsRWxTbk8lIqcFri362Wxfj270LC6+ueHbuj4+Y3Ov7aIrT+GaqG6CEh/1J7b0O3y6kqkiG0l5jb0BZSF4hOxFbFNu1izkL+0705ST/1LgpIitn4olRe/vMadtF0R26RI6bmOiEDo+1dRcxK6XV4ULkW9t6py2pZU5Jdfftl069bNdOrUqeb8Pf/882bTTTc1nTt3Xvv3t956y7z66qu2XrS88sorpkuXLma99dZrKAuhL6AsBErEVsQ2rULMQv7SvjtJPfUvCUrlJWaaX7/5jdYuan9dsKK39yAwCeaeO9KsWWPMQadfHWx73h1TAx0KgdD1G5NRlN6YOHFih5KFkAdbBjlNg1+uxHb58uXm/vvvN4cccohZsmSJ2WKLLdbp45NPPmkOO+wws8022xiePeGEE8zBBx9srrjiCjN16lSz9dZbmzfeeMPMmjXLkuLRo0ebDTbYwFBvwoQJ5sgjj6w75o5EbNNMfLzO9eeNXOen0AVe/fObdeEn/PwQ8Kst+fPDj9pF768itv5zqBaqiUDI+q1ovSFiG47MhyynPijlSmyvvfZac/vtt5spU6aYZ5999h3EFmK6//77m5EjRxqitpDgT3ziEzZyu2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xvR265du9Ycv4hta2IhYtsaXs2eDl1hqH/NZrDx34Wf8PNDwL920ftrRyO2B57mH1Fm1uN7rb8kqIXQEAh5fyhab4jYhiOtIcupD0q5ElvXMUhpLWL70Y9+1EZrf/Ob35hPfvKT5oILLjAbbrihGTRokHn00Udt9WnTppn77rvPElt+HzVqlFmzZo1NReaZPn1qp6N2BGLrM/Gurtus+/VZN5pOGjgp30kL9eNtJK3Lc1036mz69NoscZXQF6T6l3gqaz4o/ISfHwJ+tUOXv+joitpfRWzTyZiIbTrcylSrDPqjKL0hYhuOJJdBTtOgVSix7dmzp9lnn33MhRdeaAksUVoitMOHDzcPP/ywHc9VV11l5s+fb1566SUzYsQIM2zYMPs7dRctWmR69+5tFixYYCPD8UI7Ko0ROPGyO4OAaPtem5gTDtgxiL6oE0JACAiBek7T0JCpZ6Dmvb9mQmyNMVOP6m/WGGPGZ7AXcYpHHu0x51ntlRe/Pd4zf3p/JqL0rVH/ZfF79JmVmbTHXqzij0Do+qMovSG73F+2smwhdDlNM9ZCie1OO+1kLrroIpuOTPR1r732Mk888YRNL+bwKBYeacwU0pA5YGr8+PHmzTffND169LBEuN4hUorYJhOHBx5bXvPBZ555xqZ7NyvUr9dGs7r8/ZXV/zKPP7PC7Lzt5ua8owcmqWKfCd3TpP4lnsqaDwo/4eeHgF/t0OUvOrp6Bmre+2smxLZEh0dlmYqsw7L81mfotcugP4rSG4rYhiO9ZZDTNGi1ndhyEtuDDz5o+vfvb774xS/ayOu5555rfvzjH5vf/va3NkK7yy67mBkzZph+/fqZwYMHm0mTJpnVq1eb6dOnm5tuusnMmTPHTJ482SxcuLDumEVs04jDf+q0S+AhxadfdpuIrd90tVy7XfPbcsferqD+pUXu3/WEX7Xxq0ds27m/itimkzFSkUVs02FXllqh619wjBLbduoNEdtwpLgMcpoGrbYRW05i23zzzc1dd91lBg4caFOLAfXYY481f/3rX8373vc+S2Z32203M3fuXDNmzBg7nqFDh5rZs2dbYjtkyBCzePFiew3QvHnzzIABA0Rs08x6gjrtEngR2wSTkcMj7ZrftF1X/9IiJ2Lrh1w58IsT2yL2VxHbdJImYpsOtzLVCn3/csS2CL0hYhuOJJdBTtOg1RZiG+3YqlWr7He0M2fOXPvzc889Z9773veu03+ee/HFF9+RDrt06VKz5ZZbrnPnba2BK2KbRhz+U6ddAi9i6zdPaWu3a37Vv7QI+NXT/FYbv3qja+f+KmKbTsZEbNPhVqZaoevfOJbt1BsituFIctnkNClybSe2XNUDYe3bt2/SPqZ6TsQ2FWxrK7VL4EVs/eYpbe12za/6lxYBv3qa32rjV2907dxfRWzTyZiIbTrcylQrdP0bx7KdekPENhxJLpucJkWu7cQ2acd8nxOx9UOwXQIvYus3T2lrt2t+1b+0CPjV0/xWGz+/0fnXZn8VsU2Ho4htOtzKVCt0/VsUlqHb5UXhUtR7qyqnIrYFSVToAtWu/onYFiOA7ZrftKNT/9Ii9+96wq/a+PmNzr+2iG16DEVs02NXlpqh69+icBSxLQr52u+tqpyK2BYkZ6ELVLv6J2JbjAC2a37Tjk79S4uciK0fcuXAL4sx+rQhYpsePRHb9NiVpWbo+1dROIrYFoW8iG1d5G+77Taz77772it3HnnkEXPYYYeZzTbbLKyZers3oS+g0BVfu/onYlvM8mnX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pymjhie+qpp5oLL7zQLFq0aO01O7vvvru5++67i5qThu8NfQGFLlDt6p+IbTHLp13zm3Z06l9a5ERs/ZArB35ZjNGnDRHb9OiJ2KbHriw1Q9+/isIxdLu8KFyKem9V5TQRsV2zZo29YmfEiBH2DtnLL7/c3i07evRo88wzz9i/hVZCX0ChC1S7+idiW8zKadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi+9tprZqONNjI///nPzTHHHGN22GEHM2PGDLPLLruYhx56KPere9JMeugLKHSBalf/RGzTSLd/nXbNb9qeqn9pkROx9UOuHPhlMUafNkRs06MnYpseu7LUDH3/KgrH0O3yonAp6r1VldNExBbQR44caa655hqL/2WXXWbOO+888/rrr5ulS5cWNScN3xv6AgpdoNrVPxHbYpZPu+Y37ejUv7TIlYOYaX795rfo2iK26WdAxDY9dmWpGbp+KwrH0O3yonAp6r1VldPExHb58uXme9/7nunUqZM55ZRTzNixY81xxx1n9t5776LmRMQ2R+TbJfAitjlOYoOm2zW/aUen/qVFTsTWD7ly4JfFGH3aELFNj56IbXrsylIz9P2rKBxFbItCvvZ7qyqniYktsDzxxBNm4cKFpk+fPuY973mP2X777cOapUhvQl9AoQtUu/onYlvMEmrX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pympjYXn/99eaggw6y+J922mlmwYIFZrfddjMXX3xxUXPS8L2hL6DQBapd/ROxLWb5tGt+045O/UuLnIitH3LlwC+LMfq0IWKbHj0R2/TYlaVm6PtXUTiGbpcXhUtR762qnCYmtttss43ZYost7L21AwYMMBtssIE566yzzNNPP2222mqroual7ntDX0ChC1S7+idiW8zSadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi6U5G/+93vmieffNKsv/76Zvjw4YZ7bP/yl7+YnXbaqah5EbHNCfl2CbyIbU4T2KTZds1v2tGpf2mRE7H1Q64c+GUxRp82RGzToydimx67stQMff8qCkcR26KQr/3eqsppImILJJDX5557zt5ZS7SWw6S6du1qHn744bBm6u3ehL6AQheodvVPIg7ufgAAIABJREFUxLaY5dOu+U07OvUvLXLlIGaa33Xn98477zS9e/c2m2++uf3D6tWrzZ/+9CebHbXhhhv6CUMOtUVs04MqYpseu7LUbJd+K6PemDhxYlmmsfL9bJecthvIxMT23nvvNd/61rcM39q6ct1116397rbdHW/2PhHbZgg1/nu7BF7E1m+e0tZu1/yqf2kR8Kun+S0HfkuWLLHO4S984Qv2n49//OO244888og56aST7IGNH/jAB/wGk0NtEdv0oIrYpseuLDXz1r9l1hsituFIcd5yWtRIExNb18EXXnjB/O1vfzPbbbedjdgmKS+//LLp1q2bvSqoXvn73/++zre6b731lnn11VdtvWh55ZVXTJcuXcx6663X8NUitklmpv4z7RJ4EVu/eUpbu13zq/6lRcCvnua3HPhdcMEFpp6ht8kmmxj2Wz79aVSK2l8XrOjtB7IxBpNg7rkjzZo1xhx0+tXBtkfHDjzNv3+0I2LrPc3BN5C3/i2z3hCxDUd885bTokaamNjut99+NhU5Xu644453kE/3DOnK999/vznkkEMMHiYOn6pVbrjhBnPggQcayCzk94orrjBTp041W2+9tXnjjTfMrFmz7O+jR4+2adB85zthwgRz5JFH1sVNxNZPpNol8CK2fvOUtna75lf9S4uAXz3Nbznwqxd5ofd8/kN6cr1S9P4qYptOxkRs0+FWplp5698y6w0R23AkOW85LWqkiYntvvvua7+rpbz00ks2agtRffzxx+tGbq+99lpz++23mylTpphnn322JrEl1eqMM84ws2fPtsT2zTffNJ07dzYrVqww3bt3N+PGjTO9evWyxHblypXmnHPOMcuWLbO/Eb2tFzUWsfUTqXYJvIit3zylrd2u+VX/0iLgV0/zWy78yFgiE4kIbbRAbOtlJxW9v4rYppMxEdt0uJWpVrv0bxn1hohtOJLcLjlt94gTE9t4x84880zjTkneaKONGvYbUlqL2HLa8pAhQ8yVV15puE4IYgvRHTRokHn00Udtm9OmTTP33XefJbb8PmrUKLNmzRq72fNMnz59ar5bxNZPlNol8CK2fvOUtna75lf9S4uAXz3Nb7nw+973vmdTknHeRsuLL75oNt100yD3VxHbdDImYpsOtzLVapf+LaPeELENR5LbJaftHnFiYkuUFOJJIar6/e9/35x77rn2kIvtt98+1cZ74oknml133dWMHTvWElfaf+CBB+xVQu605auuusrMnz/fRolHjBhhhg0bZt/Vs2dPs2jRIpuqtWDBAhsZjhfaUQkbgSXPrDTTbnjIbN9rE3PCATuG3Vn1TggIgQ6DQD2nadYA4KjltgEKe+G73vWuta8gm6nZqcj1HMd576+ZEFtjzNSj+ps1xpjxl93pDS2neOTRHh07MYP+0c7FJRmv92R08Aby1h9l1Ruyy8NaGHnLaRGjTUxsIZIuFdl1lMMtnn/+eZs63KjU2nhJI954441N//79bVWOLee/582bZzbbbLO139uSxkzBk43nevz48ZZY9+jRw6Yr10vTUsTWT5za5clRxNZvntLWbtf8qn9pEfCrp/ktD37OQD3++OPNN77xjZY7XtT+mgmx1eFRLc93tEJeh295dUqVTTv0b1n1hiK24SyQdshpEaNNTGxJPeb0RQpk8v3vf7/Zf//9zbbbbtu039GNlzYefPBBs8cee9gDpVz54Ac/aB566CHDv4nizpgxw/Tr188MHjzYTJo0yd7rN336dHPTTTeZOXPmmMmTJ5uFCxfWfbeIbdNpafhAuwRexNZvntLWbtf8qn9pEfCrp/ktF36HHXaYvUqPfQunrStkKHFgYqNS1P4qYptOxpSKnA63MtVql/4to94QsQ1Hktslp+0ecVNiy8DxDNUrENtmV++w8RLt5fL5u+66ywwcONCmFq/refx3KjLPzp0714wZM8b+eejQofZgKYgt3+MuXrzYXgNEZJfL6+sVEVs/UWqXwDti26fXZuaoA3dP3Gl3PdQWm3U1W/RY90qoxI3k+GC78Es7BPUvLXL/rif8hJ8fAuvWrpURxRNJv7EtYn8VsU0nASK26XArU6127Q9l1BsituFIcrvktN0jbkpsG909m3TjjQ5q1apV9qTjmTNnNhwrz7Gpc/pxtCxdutR+j9Qs/VnE1k+U2iXwjtim7e2h++1kRg/aOW313Oq1C7+0A1D/0iInYuuHnPCrhd8f//hHw2GK8fKxj32sacS2qP1VxDbdSigDsSWW8ZfH/30Lhm/p16f2NY++7YZcv137axn1hohtOJLbLjlt94ibEtuLLrrIftNar5x00knrHHbRbAAcQgVh7du3b7NHvf4uYusFX9siUo89s8Jcdv09LXf27/940fzz5deNiG3L0NkKoSs09S/dvLpawq9c+PGJTS1iy+c+zVKRoyNt5/4qYptOxspCbA86/ep0A4zUct8AezdUsgbapX/LqDdEbMMR5nbJabtH3JTYRjvExgsppZCezDeye+65Z9PoabsHxftEbP1QD13gvzvnD+Y39/xdxDblNIc+v+pfyol9u5rwKxd+PimFfiNNV5v9VcQ2HXYitulwK1OtdunfMuoNEdtwJLldctruEScmtldffbVNIY6fjJzkG6B2D0rE1h/x0AVexNZvjkOfX/VP8+uHgF/tdsvfjTfeuDZiy40BF1xwgY3UcqVdKxFbv1Enry1imxyr+JMitumxK0vNdumPMuoNEdtwpLhdctruEScmttttt529hod7az/ykY/Yk4232GILQ45/s+9d2z0oEVt/xEMXeBFbvzkOfX7VP82vHwJ+tYuWPxzJo0aNMk8//bTZaqut/AaTQ20R2/Sgitimx+7/t/cl4FpV1fsLhBRQBmUUNLjmkIgmRpiaI4qCOMUkoqGJpSaShYQ2iAX6qwQM/lRiYREgkpmoaSAqCiGOpEJiIiAOiBpX8AIqcP/Pu/HAHb7hnLXPOd/6vvvu5+EB7t1rn7Xftfbw7rWHYpEsVP9RDP0Gia0dLy6UnyaNQChi+9lnn7lztH/5y1/kySeflJYtW8p3v/td9+TPhg0bHOG1lrgV2c8i1h2exLa07Wvd/6gf/c8PgerSo0aN2vVSAF4HwNk5+Nh7773nFpCtJRJbvUVIbPXYFYtkWuNDMfYbJLZ2vDgtP027xqGILZQ64IADHLm98sorBW/afvOb35S77rpLXnvtNTn44IPT1jvv90hs80KUM4N1hyexLW37Wvc/6kf/80OgunTNs3L77LOPXHXVVXLrrbfG+ZnYyiKx1UNJYqvHrlgk0xofirHfILG148Vp+WnaNQ5NbB977DHBDcjTpk1zb8u+9dZb0qdPH/fmrMVEYutnFesOHxDb047pJD2O6RSpso33aih4NzfJZB0/6udnfeJH/PwQqC5dXl6+6714PLFncRdUVY1JbPXWJ7HVY1cskmmND8XYb5DY2vHitPw07RqHJrZTpkyRnj17uu3H27Ztc5dIWTz7EwBIYuvnStYdPiC2mloe0amV3HLFqRrR0DLW8aN+oU2ZMSPxI35+CFSX3rRpk1s0njFjhuDfOF/7rW99y+wYS2Krt35dJLZ4F/exF1bpQasiicVs6ymt8aEY+w0SWzvem5afpl3j0MQ22PJw6qmnysUXXyznnXee6VVlEls/V7Lu8DMfeUZeevPjSJWs2PqZrHq3XEhs+Y5tJMfJkNl6+6B+fhZOGz+clcO2Y2xBbtasmdsRdfjhh8u///1v3oocwZTBu6kgUnG/w9pnlP+7rqhKXSW2cdsjgluknjWt/qMY+w0S29TdMesH0/LTtGscmtg+/vjj8tBDD8l9993nLrVAwqoyztnuueeeaeud93sktnkhypnBusNr9Hv5jfVyw5THSWyFxNavdRA/4ueLwG55PO+z9957y9ChQ+V3v/ud1K9fXyZMmOCO/uD1gcMOOyy+j8VUEiO2eiBJbPXYBQsX+hLSkdTMT6JqVqz9BoltVEsnlz8NP01O++wlhya2QRErVqyQSZMmuT9IfMdWZzbrDlWK+pHY7vbVUrSvriXqpIifDrdAivjtxm/z5s3SpEkTuemmm+RnP/uZ+8Xs2bOlf//+8txzz8kxxxzjB3YC0iS2elBJbPXYkdgWf79BYqv3/7glrY/D2vqGJrbY8oDnfrBFCqlr165y6aWXumd/rD4gb7kBWXeoUtSPxJbEVttR1pQrxfYRFzZhyiF+1VE64YQTZNGiRXLWWWdJ48aN5d5775Vu3brJkiVLBJdJWUsktnqLkNjqsSOxLf5+w/K8XO+ZxSlpfRzWohqa2OKMLZ77ufzyy91K8pe//GXtN1OR41ZkP5itO7xGPxJbElu/VkH8iF9cCFQvZ82aNTJ27FiZOXOmuzwKY+yNN94oRx55ZDIf9CyVxFYPIImtHjsS2+LvN0hs9f4ft6RmHh23DkmUF5rYvvjii3LUUUe58z/FkEhs/axk3eE1+pHYkpj5tQriR/ziQqB2OcuXL3dbknFnBZ7xsHi2NtCaxFbvByS2euxIbIu/3yCx1ft/3JKaeXTcOiRRXmhim8THkyyTxNYPXesOr9GPxJbEzK9VED/iFxcC1cvBnRXXXHONPPzww+5Jvc6dO8v1118vGMcsJhJbvVVIbPXYkdgWf79BYqv3/7glNfPouHVIojwS2yRQDVGmdYcqRf1IbEnMQjTNUFlKsX2EqnhMmYhfdSAPPfRQadWqlfz1r391Udurr77avWv79ttvm3zLlsRW3xBIbPXYkdgWf79BYqv3/7glrY/D2vrmJLbbt293T/zgEosXXnjBbUXu0KFD5G99/PHHbrDOdgnGhx9+KPvtt1+1cnfs2CFbtmxxclUTrjhv1KhR3i3RjNhGNlM1AesOr9GPxJbE1q9VED/iFxcCu8vZtm2bNGzY0F3E+Nvf/tb9Yvr06TJ48GBZvHixHHvssTk/WqjxdWF5R28wknp3lu/Y6kxTTPbQ1TAdKc38JKpmxdpvkNhGtXRy+dPw0+S0z15yTmL7ySefyF577SVXXHGF/P3vf3cDbc1B9vzzz896K/L69evlpZdekgsuuEBef/11ad26dTVNHnvsMbnyyivdDcsgrLiY6pxzzpGpU6e6d/zat28vaLwY5EGKBw0a5L6FizZGjBghQ4YMyVozEls/d7Lu8Br9SGxJzPxaBfEjfnEhUL2cE088UZ566ik599xzZZ999pH7779fmjVr5sbNbO/EF3p8JbHV+QIjtjrcIMWIbfH3GyS2ev+PW1Izj45bhyTKy7sVGW/oIVqbLeV6xxZPFuAJg/Hjx8t7771Xi9iecsop7ubHHj16yJNPPukeqF+2bJlbvcblGRjYhw0bJu3atXPEFrdFjhkzRtatW+d+BjKMpxEyJRJbP3ex7vAa/QJi26ZFEzntmE6RALrwtM6R8mv0i/QBz8zUzw9A4kf8/BCoLr1q1So3Ts6aNUtAWHv37u0Wb0866aSsnyn0+Epiq/MAElsdbiS2tXErxn6DxFbv/3FLWp/HaOubl9himxOIbb9+/dy5n2984xvVvoX/53vHFqQ0E7EFUQUx3WOPPeS6665zW49xYQaI7sqVK913Jk6cKEuXLnXEFj8fOHCgVFZWuq3IyFNWVkZiq7V+DjnrDq/RLyC2GrgwGYmSNPpFKd83L/XzQ5D4ET8/BDJLZzuCk+tbhRpfSWx1HkBiq8OtKrHFVvO7H1uWtyDMFfOlQT2OyJcl8u/THh+Kqd8gsY3sTokJpO2niVWkRsF5iW2Q/5133pG9995bnn32WRcpBcnMFi2tqXy2gRf5QHhBmP/73//KnDlzBBFgkOgVK1a4YnCBxoIFC2Tjxo3ubb++ffu6n+NdXTxe37FjR1m4cKGLDNdMKIeJCAQI/G/TJ7LktQ8iAfLIC++4/LcP7RZJjpmJABEobgSyLZpaq1WhxtdYiK2ITBjaTUA/hk951hvaegmVB8WujUG/YCyxXt+6pp+342UowHr/Uah+g/PyJLxNX6Z1P9XULDSxBbns06eP2w4cJJyDvfbaa/N+N1sDevPNNwXbkS+55BLBKg7O8yJqC8KMFSjIYXsWEr7btGlTGT58uOBSqxYtWrjtytne1eVW5LxmyZnB+kpOWvr1GTXL4cSIrZ8/RZVOy75R9QryUz8tcjvliJ8fflWlCzW+xkJs64nMGTtA4r7sKe7ygHcwFvhajhFbPYJJXW6l1yizpPX+DVoXqt9gxDZub9OXVwx+qqldKGILkombkXH258c//rEjntgijOjtBx98UOtG45qKVG1A2Nr8n//8x5V34YUXur+xDblqwu3LkydPli5dukjPnj1l9OjRsnXrVsFbf3PnzpXZs2fLuHHj3I2R2RKJrcYddstYd/i09COx9fMjrXRa9qV+WgT85Gjf2vhh2+TatWvdAu++++6b94hPUEKhxlcSW10bILHV4baTjCWzEKLXqPDEttj6DRLbuL1NX571cVhbs1DEFs/xtGzZUn7zm9+4R+SRHn30UTn99NPl6aeflu7du+f8PgZekGK80/fcc8/Jqaee6rYWYzsxfh4k3JqMrcnYkowbmJFwicaMGTMcse3Vq5csX77cRXXnzZuX87sktlqX2Cln3eHT0i8gtlHP4XTv1Cjr+W8/y8QjnRZ+Wm2pnxY5tl8/5AqDH47inHnmma7fHTVqlLzyyivuFQDcKZEvFWp8JbHNZ5nMvyex1eFGYlsbt2LsN0hs9f4ft6T1eZa2vqGILVaEcENx586d3dZgRGxxO/E999zjbigGQQ2bNm/e7G46vvPOO3OKIB/O2+L246oJK9pt27Z1NyfnSiS2YS2SOZ91h09LP+32M5zJtXx2IS38tF5I/bTIFYaYRdWW9q2OGF4fwCQVi78DBgyQt956y90vEbwOEBbfNMdXEtuwVqmej8RWh1uSxDbuy6jS6t+Ksd8gsdX7f9ySaflp3HrnKy8UsUUht99+uzvfWjVhW/LPf/7zfN+o9nsQYRDWQw89NJJc1MwktlERq57fusOnpd+MR1+JBOTM+TtvaiSxjQRbrcxp2VerJfXTIkfiXRO54L14HLXBvRN4JQAXrOB9d7xIcPTRR4cGO83xlcQ2tFmqZSSx1eGWNLE954ad92n4pGCrdBrjQ7H2GyS2Ph4Wr2wafhqvxuFKC01sURwG3fvuu89tI77gggtcBNdqIrH1s4x1h7eqnybCe0SnVnLLFaf6GSyitFX8gmpQv4gGrZGd+BUXfrgY8cgjj5TmzZvLF77wBXcpIu6TwDGgfLuT/Gqqk8b4SmKrw47EVocbiW1t3Iqx3yCx1ft/3JLW5wna+kYittqPFEKOxNYPdesOb1U/Els/vyOxJX7xIOBXStr9y8yZM+U73/lOtVcHsBsKu6IsJhJbvVVIbPXYJXV5VNy3aKfVfxRjv0Fiq/f/uCXT8tO49c5XHoltPoQS+r11h6J+foYPg9/Lb6yXG6Y8LozY1sY6DH5+FvKTpn7Ezw+B2tLYWvj444/LqlWrBC8DHHfccXF/IrbySGz1UJLY6rEjsS3+foPEVu//cUtan8do60tiq0XOU866Q1E/PwOHwY/ENjvGYfDzs5CfNPUjfn4IVJe++eab3RGfmukXv/iFe/7HWiKx1VuExFaPHYlt8fcbJLZ6/49b0vo8Rlvf0MT2kksukcsvv1xOPPFE9y3c2njxxRfL3XffHelWZK2iUeW4FTkqYtXzW3f4UtCPxJbE1q+VEr9Swa/m03dBvXDRIs7RWUsktnqLkNjqsSOxrY5dMfYbJLZ6/49b0vo8WlvfvMT2rrvukokTJ7rbGTt06CB4axYJ78+C3OJyCzwmby2R2PpZxLrDl4J+JLYkZn6tlPiVCn4YR3fs2OGqgyd7RowYIatXr5bFixe7W5KtJRJbvUVIbPXYkdhWx64Y+w0SW73/xy1pfR6trW9eYvvnP//ZPfVTk9jigz169BAMcBYTia2fVaw7fCnoR2JLYubXSolfqeKHN2yxS+r111+Xgw46KKlqqsslsVVDJyS2euxIbHNjVwz9Bomt3v/jlrQ+j9bWNy+xDQr+6U9/Kueee67gQehiSCS2flay7vCloB+JLYmZXyslfqWC3wknnCDvvvvuruqgf0PatGmT7L333klVU10uia0aOhJbPXRCYlsdvGLsN0hsPRpAzKLW59Ha6oYmtk899ZTcdtttbmtU1bRy5UqzA6/lBmTdoaiftkntlAuDH4ktiZmflxG/UsHvjDPOkPfee89Vp0GDBi5Ki4jt2WefnVQVvcolsdXDx4itHjsS2+rYFWO/YXlervfM4pQMM08txpqFJradO3eW5cuXS9euXd0D8kGaP3++NG7c2FzdGbH1M4l1hy8F/UhsScz8Winxq6v4JVXvsOWS2IZFqnY+Els9diS2euwsSFqfl1vAKE0drM+jtViEIrbbt293q8g/+9nP5KabbtJ+K1U56w3IukNRPz93DYNfQGzL2jWXoX26hvpg6+aNpXWLJqHy5soURj/vj3gUQP08wAu5Y8DvC37StO9O/A444AD59NNPs4JpeUfUwvKOfk4gUjRbS1HRPqNmedcXBZDY6mEksS3+foMRW73/xy1pfRzW1jcUsUXhl156qTzzzDPueZ8WLVrs+l779u2lHnobY4nE1s8g1h2+FPQLiG0US114WmcZ1OOIKCIZ85YCft4geBRA/DzAI/HeBR62Gm/bti0rmH/729/M7ogisdW1ARJbHW6QIrHdiV0x9xsktnr/j1vS+jxGW9/QxJbvZWkhzixn3aGon5+9w+D3xrvlMuWBF0J9aP2GzbK+vEJIbEPBlXimMPZNXIkcH6B+fuhbwG/jxo3u/or69ev7VSYBaW5F1oNKYqvHjsQ2P3bW+w0S2/w2TCuHhXEuibqGJrYTJkxwNzTWTNdff73sueeeSejmVSYjtl7whbr8yO8LftLWG2Tc+s149BWZOX8Zia2f28QmHbd9Y1Ps84Konx+iaeO3bNkyGT16tOBvJERxcUsy3opv2rSpX2USkCax1YNKYqvHjsS2OnbF2G+Q2Or9P27JtMe5uPXPVl5oYrthwwaprKysVc6+++6blq6RvkNiGwmuWpmtO3xd04/E1s+f45aua/5H/OJGoHp5X/va1+TZZ591P2zdurWsX79eysrK5JVXXpFGjRol+3FF6SS2CtA+FyGx1WNHYlv8/QaJrd7/45a0Po/R1jc0sfXZivzxxx9LkyZNsp7FRSR4n332qVaHHTt2yJYtW5xc1VRRUeEG+nzbs0hstS6xU866w9c1/QJie9oxnaTHMZ1CGfeITq2y5qtr+IUCLEIm4hcBrAxZid9uUD777DP30sDMmTPlvvvuk69+9aty3HHHyVlnnSUffPBBtVcIMqFeqPGVZ2x1bYDEVocbpEhsi7/fILHV+3/cktbHYW19QxNb3IgcbEXGQIpLpHCj4wsvvJB1KzJWnV966SW54IIL5PXXX3cr0VXT888/L5dddpl88YtflDVr1sgf/vAHN6hPnTpVsPUZF1NhS9b06dMdKR40aJC7nRl5R4wYIUOGDMlabxJbrUuQ2Pohlwx+AbGNohsmUNmS9Q6N+kWxdO28xK+48MN2Y5BZ/Jk1a5b88Ic/dGMjIrZ4ai9TKvT4SmKr8zESWx1uJLa1cSvGfoPEVu//cUtanydo6xua2Nb8AMgnBt7//e9/1W5Jrprv3nvvlUWLFsn48ePd4/M1iS0el8YAjr+R9/e//7384x//kIYNG0p5ebk0a9ZMhg0bJu3atXPEFsR6zJgxsm7dOvczRG+zvaFLYqt1iWSImZ82nLjPf36VPPr8qlAwvrLqfZePxDYUXKpM1gcE6qcy6y6htPDDU3p77LGHGyOvu+46eeyxx+TUU091emC8fPvtt91ibqZU6PGVxFbnYyS2OtxIbHfjVsz9Bomt3v/jlkxrnItb73zlhSa2DzzwgGzdutWVh0b1l7/8RR566CFZtWqVdOyY+z07kNJMxBYR33/9618u8vviiy/KmWeeKU8//bT06NFD8H4f0sSJE2Xp0qWO2OLnAwcOdGd9sRUZeXAOKVMisc1n+ty/t+7w1C+7/YL3Fkls/dpALmn6nx+2xG8nfjjiM2DAAOnXr58cfPDB0rJlS3nttdfcJVJY8MXibr5UqPGVxDafZTL/nsRWhxuJ7W7cirnfILHV+3/cktbHYW19QxPbTGdsjz/+eHnqqafyvmObbeDFNooVK1a46CsAPumkkxxZxiCPnyNNmzZNFixYILjCvH///tK3b99dE4IlS5Y4Ur1w4UIXGa6ZUA4TEahrCFw7ZeclNLcP7VbXqs76EoHYEMi2aBrbB0Tcoi5uPkZChPbiiy92Yxwuk8p3j0SgR6HG11iIrYhMGNpNcC3l8M/7LR986yVUHnQK+lUf/YJ+2Xp9qZ/OyoH/QTrJ/qOY+w3Oy3W+lZRUkn6alM75yg1NbB999NFdEVsMpGhYhx12WN6LLaBAtoH3xBNPdFuwjjnmGHnuuefk5ptvdueLsL0Yl0dBDr9HwjZkEOHhw4e7iHGLFi3cduVsgz8jtvlMn/v31ldyqF92+zFi6+f7YaTpf2FQyp6H+O3EBruPXn75ZfnnP/8p2BWFhWKkDh06OJKLJ4BwNCdXKtT4GguxrScyZ+wAwYML59wwy8+pErxcCIoF/aqvkozY6hHk5VHF328wYqv3/7glrY/D2vqGJrb4AC6C+tvf/uaip9/85jfl2GOPdeeD8qWqAy8unvrPf/4j3bp1kx/84Adu6xXewsVZWzxG//Of/1yOOuoomTx5snTp0kV69uzpBndsg540aZLMnTtXZs+eLePGjZPFixdn/TSJbT6rkNj6IWQXPxLbJC27s2zrAwL18/OBQuGHnUe4VwKXMiJ99NFHed+xLdT4SmKr8zESWx1ukCKxzYxdMfUbJLZ6/4+QpsMxAAAgAElEQVRbslDjXNz1qFleaGJ75513ytChQ6vJY0vBPffck1dHDLy4wbFVq1YuMovLMUCOcUYWt0AiNW/e3BFVvIs7Z84cGTx4sPt57969ZcaMGY7Y9urVS5YvX+6eAZo3b550796dxDYv+roM1h2e+mW3K4mtzuejSNH/oqBVOy/x24kJFnpx1AYRWzz1E2xLPvzww+Wiiy5yi77ZLo8KUC3U+Epiq2sDJLY63Ehsd+NWzP0Gia3e/+OWtD4Oa+sbith++umnbusxBltETfGOLCKrd911l3t658ADDwz9/c2bN7sVaRBlJDzn884777jyMUAHCfmwWo3zt1XT2rVrpW3btnm3ZzFiG9okGTNad3jqR2Lr5+F+0vQ/4ueHwE7pqmPeIYcc4sgsdkNle+In3zfTHF9JbPNZI/PvSWx1uJHY7satmPsNElu9/8ctaX0eo61vKGKLs6w404rzrjjjioQtwdgmjC0QQdQ1jBJ4qgeE9dBDDw2TXZ2HxFYNnRO07vDUj8TWz8P9pOl/xM8PgZ3SGAcvvPBC99b7kUce6V1kmuMria3OXCS2OtxIbHfjVsz9Bomt3v/jlrQ+j9HWNxSxReGIqCJyi7OwuNzpjjvucO/Jrl692kVwrSUSWz+LWHd46kdi6+fhftL0P+Lnh0BxS2N8JbHV2ZDEVocbia0eNyuS1uflVnBKSw/r8xgtDqGJ7RNPPCHf/va3XSQPaZ999pE//vGPu57f0SqQlJz1BmTdoaifn2cWEj+esfWzXRjpQtqX+oVBwC+Pdfv61c5fmsRWjyGJrR47Xh6lx86CpPV5uQWM0tShVMe50MQWYONpghdffNFdeIHtx/kutUjTQDW/Zb0BWXco6ufnvYXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4F4rYTpw40d1G/Nvf/tZh/qMf/cjdbHzGGWekaYNI37LegKw7FPWL5G61MhcSPxJbP9uFkS6kfalfGAT88li3r1/t/KVJbPUYktjqsSOx1WNnQdL6vNwCRmnqUKrjXF5iO3PmTBk0aJAjsvPnz3eY49mdhx9+WL773e/uIrtpGiPMt6w3IOsORf3CeFn2PIXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4l5PYfvbZZ7Lffvu5i6PwxmzTpk0d5hUVFXL22WcLzt2+/fbbsv/++6dpi1Dfst6ArDsU9QvlZlkzFRI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dB0vq83AJGaepQquNcTmKLW4/xjuxPfvITufnmm6vhPXXqVLnsssvkqaeekhNOOCFNW4T6lvUGZN2hqF8oNyOx9YPJJH5hqsT2EQal7HmInx9+hZYmsdVbgMRWjx2JrR47C5LW5+UWMEpTB+vjsBaLnMR2+/bt7oKoDh06yIoVK9wzP0jbtm1z25HnzZsna9askQMPPFD7/cTkrDcg6w5F/fxcs5D4MWLrZ7sw0oW0L/ULg4BfHuv29audvzSJrR5DEls9diS2euwsSFqfl1vAKE0dSnWcy3vGFu/W3nbbbQ7rs846yz3zg/O1mzZtkp49e8ojjzySph1Cf8t6A7LuUNQvtKtlzFhI/Ehs/WwXRrqQ9qV+YRDwy2Pdvn6185cmsdVjSGKrx47EVo+dBUnr83ILGKWpQ6mOc3mJ7datW+WWW26ptRX54osvlnHjxknLli3TtEPob1lvQNYdivqFdjUSWz+ozOEXpjpsH2FQyp6H+PnhV2hpElu9BUhs9diR2OqxsyBpfV5uAaM0dbA+DmuxyEtsg4I/+eQTWb16teDvjh077rpISvvhpOWsNyDrDkX9/Dy0kPgxYutnuzDShbQv9QuDgF8e6/b1q52/NImtHkMSWz12JLZ67CxIWp+XW8AoTR1KdZwLTWzTBDuOb1lvQNYdivr5eWEh8SOx9bNdGOlC2pf6hUHAL491+/rVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpHYpulFVb5l3aGon59jFBI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dBksTWghV261Cq4xyJbYH8zLpDUT8/xygkfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgiSJrQUrkNjaskIEbaw3IOsTJ+oXwdkyZC0kfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgqT1ebkFjNLUoVTHORMR248++kiaNWtWzZ47duyQLVu2SJMmTar9vKKiQho1aiT169fPaX/rDci6Q1E/v+6lkPiR2PrZLox0Ie1L/cIg4JfHun2j1C6p8XVheccoamTMWyxEBcoH/apvpUls9QgWi7+UQv+RVL8xcuRIvQNQMlYESsFPMwFSUGL7zDPPyNixY6V58+ayfv16GT16tHTr1k2mTp0qEyZMkPbt28u2bdtk+vTpUq9ePRk0aJA0aNBA1qxZIyNGjJAhQ4ZkNTKJrZ//W3d46pfdviS2fr4fRpr+Fwal7HmInx9+YaSTHl9JbMNYoXYeElsdbpAisdVjF1Yy6X6DxDasJZLPZ30c1iJQUGJ76aWXyte+9jW58sorBUT0rbfekvHjx0vDhg2lvLzcRXGHDRsm7dq1c8R206ZNMmbMGFm3bp37GaK3jRs3zlh3ElutS+yUs+7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTYksdXhRmKrxy2KZNL9BoltFGskm9f6PEZb+4IS28cee0zOO+88Offcc+X++++XuXPnSps2baRHjx6ycuVKV6eJEyfK0qVLHbHFzwcOHCiVlZVuKzLylJWVkdhqrZ9DzrrDUz8S2wTcPnSR9L/QUGXMSPz88AsjnfT4SmIbxgq185DY6nAjsdXjFkUy6X6DxDaKNZLNa30c1ta+oMT2pptuktmzZ8uAAQPcduMrrrhCTj/9dOnXr5+sWLHC1WnatGmyYMEC2bhxo/Tv31/69u3rfg4CvGTJEunYsaMsXLhQFi1aVAsDlMNEBOoaAtdOedZV+fah3epa1VlfIhAbAtkWTWP7QMIFJT2+xkJsRWTC0G5SKSLDP++3fGCpl1B50CnoV330C/pl6/WlfjorB/4H6WLtP5LuNzgv1/lWUlLF6qe58CgosQU5ve++++S4444TrBJdc8018txzz7ntxbg8ClFabE1Gwjbkpk2byvDhw2X79u3SokULt1052yVS3Irs1wysr+RQv+z25RlbP98PI03/C4NS9jzEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1BhMf5eVR0c2TlD2s+4v1/i2XJZPuNxixjd6OkpIoZj81S2x79eoll1xyidtejIgttiPfc889ctRRR8nkyZOlS5cu0rNnT3ep1NatW2XSpEluuzKivOPGjZPFixdnrRuJrV9TsO7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTbkVmQdbpAqFqJsfXzIZYGk+w0SW73/xy1ZzH5qltg+8cQTcvHFF7sILW47njJliovezpkzRwYPHuz07t27t8yYMcMRWzS45cuXu2eA5s2bJ927dyexjdvTPy/PusNTPxLbhFw/VLH0v1AwZc1E/PzwCyOd9PhKYhvGCrXzkNjqcCOx1eMWRTLpfoPENoo1ks1rfRzW1r6gW5GhNC6Cwm3IBxxwQLU6bN68WfCOFm4/rprWrl0rbdu2dTcn50qM2GpdYqecdYenfvmJbZey1lkz7du4nvzwopP9nCRBadrXD1ziV9r4ha1dkuMriW1YK1TPR2Krw43EVo9bVMkk+w0S26jWSC6/9XmCtuYFJ7ZaxfPJkdjmQyj37607PPXLT2xzWfhL7faR8cN6+TlJgtK0rx+4xK+08fOrnb80xlcSWx2OJLY63Ehs9bhZkbQ+L7eCU1p6WJ8naHEgsdUi5yln3aGon5+BC4nfy2+sz6r8G++Wy50PvigktsVr3zCaF9L/qF8YBIo7D4mt3n4ktnrseMZWj50FSRJbC1bYrYP1eYIWLRJbLXKectYdivr5GdgqfiC9N0x5nMTWz7zcqk/8PBEobnESW739SGz12JHY6rGzIElia8EKJLa2rBBBG+sNyCrxCSCmfhGcLUNWq/iR2PrZle2D+MWDQHGXQmKrtx+JrR47Els9dhYkrc/LLWCUpg5W56m+GDBi64ugUt66Q1E/pWE/F7OKH4mtn11JbIlfPAgUdykktnr7kdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQFaJDyfuEZwsR1ar9iWxLW37sv3WDfvGU0t9KSS2euxIbPXYkdjqsbMgaX1ebgGjNHWwOk/1xYARW18ElfLWHYr6KQ3LiK0fcMbxI3GMxbw8oxwPjAUrhcRWDz2JrR47Els9dhYkSWwtWGG3Dtbn+Vq0SGy1yHnKWXco6udnYKv4MWLrZ1cSW+IXDwLFXQqJrd5+JLZ67Ehs9dhZkCSxtWAFEltbVoigjfUGZJX4cOIewclyZLVqXxLb0rYv22/dsG88tdSXQmKrx47EVo8dia0eOwuS1uflFjBKUwer81RfDBix9UVQKW/doaif0rCfi1nFj8TWz64kjsQvHgSKuxQSW739SGz12JHY6rGzIElia8EKjNjaskIEbaw3IKvEhxP3CE7GiG08YGUohe3DD1riV9r4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYO1ucJWiwYsdUi5yln3aGon5+BreLHiK2fXbnwQ/ziQaC4SyGx1duPxFaPHYmtHjsLkiS2FqzAiK0tK0TQxnoDskp8OHGP4GSM2MYDFiO2sePI/sUPUuv4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYOpTrOMWKbphdV+ZZ1h6J+fo5hFT9GbP3syoUf4hcPAsVdComt3n4ktnrsSGz12FmQJLG1YAVGbG1ZIYI21huQVeLDiXsEJyviiO2+++wpZ3Y/OGMNTuvaUVq3aBIPEMpS2D6UwH0uRvxKGz+/2vlLk9jqMSSx1WNHYqvHzoKk9Xm5BYzS1MH6PEGLBSO2WuQ85aw7FPXzM7BV/IKIba7ajR16inQpa+0HgKe0Vfy48ONpWBLveAAscCkktnoDkNjqsSOx1WNnQZLE1oIVdutgfZ6lRcsEsf3www+ladOm0rBhw1312LFjh2zZskWaNKkeOaqoqJBGjRpJ/fr1c9bZegOy7lDUT9ukdspZxW/9hgp59PlVsmHDBmnRokW1Ss5/frWsL68QEtv8trdqXxLv/LYLk8O6fcPUIciT1Pi6sLxjFDUy5i0WogLl+4ya5V1fFEBiq4exWPylFPqPpPqNkSNH6h2AkrEiUAp+mgmQghLbNWvWyEUXXSQHHHCArF+/Xq655ho577zzZOrUqTJhwgRp3769bNu2TaZPny716tWTQYMGSYMGDQRyI0aMkCFDhmQ1Momtn/9bd3jqF799R93xmLyy6n0S2xDQ0v9CgJQjC/Hzwy+MdNLjK4ltGCvUzkNiq8MNUiS2euzCSibdb5DYhrVE8vmsj8NaBApKbEFMzzrrLBkwYIBgdeill16Sb3zjGy5yW15eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM9adxFbrEjvlrDs89YvfviS24TGl/4XHKlNO4ueHXxjppMdXEtswViCxnTN2gFRWipxzg3/Em8RW53NRpJLuN0hso1gj2bzWx2Ft7QtKbL/+9a+7aO0jjzwiJ598svzyl7+UPffcU3r06CErV650dZo4caIsXbrUEVv8fODAgVJZWem2IiNPWVkZia3W+jnkrDs89fMzeib8AmKbreQ0tyjTvvHb16/EeKVp33jxzFRa0uMria3OhozY6nCDFImtHruwkkn3GyS2YS2RfD7r47AWgYIS2zZt2shJJ50kv/rVrxyBRZQWEdp+/frJihUrXJ2mTZsmCxYskI0bN0r//v2lb9++7ueQXbJkiXTs2FEWLlwoixYtqoUBymEiAkQgHAITH3xVXn93U9bM15x9mHyp3T7hCmMuIlDkCGRbNC2WaiU9vsZCbEVkwtBuUikiw6c86w1tvYTKg2LXxqAfyrm9COpr3R7W9YOdi7X/SLrf4Lzcu5uLtYBi9dNcIBSU2Hbu3Fl+/etfu+3IiL4ed9xxsnr1are9GJdHIUo7fvx4pz+2IeOCqeHDh8v27dvdxTcgwtkukeJWZD/ft76SQ/3Ss28htijTvunZ1+9LOmnaV4dbFKmkx9dYiG09kWLYqgrceXlUFO/bmbdYIqxxb5W23r/lsmTS/QYjttHbUVISxeynZontt7/9bRd5HTt2rPzlL3+Rf/7zny5Ce9RRR8nkyZOlS5cu0rNnTxk9erRs3bpVJk2aJHPnzpXZs2fLuHHjZPHixVnrRmLr1xSsOzz1S8++JLa1sab/ped/fl/SSVu3b5haJT2+ktiGsULtPNyKrMOtmIhyMfcfSfcbJLZ6/49bspj91CyxBahXXXWVLFu2TDp06ODI7NFHHy1z5syRwYMHO7179+4tM2bMcMS2V69esnz5cvcM0Lx586R79+4ktnF7+uflWXd46udn+Cj4kdiS2Pp5G/GLG78w5SU9vpLYhrECiW0xROQZsd3tp0n3GyS2un4jCako88Akvp9UmQXdihxU6oMPPpCWLVtWq+PmzZvlo48+crcfV01r166Vtm3bVnvzNhM4jNj6uYx1h6d+6dmXxJbEzM/biF/c+EUpL6nxlcQ2ihV252XEVocbpIpla7P1+UkYCyTVb5DYhkE/nTyl4KeZkDJBbJMwIYmtH6rWHZ76pWdfElsSMz9vI35x41fo8jC+ktjqrEBiq8ONxFaPmxVJ6/NyKzilpYf1ebQWBxJbLXKectYdivr5GbiU8COxJTHzaw3EL278Cl0eia3eAiS2euwYsdVjZ0GSxNaCFXbrYH2eqkWLxFaLnKecdYeifn4GLiX8cr1ve0SnVnLLFaf6gZVBupTwix2cEAUSvxAg5chiHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZSpyYkdgy4ujXGohf3PgVujwSW70FSGz12JHY6rGzIGl9Xm4BozR1sD7P12LBiK0WOU856w5F/fwMXOr4vfzGerlhyuPCiK2fnyQlXer+lxRuQbnW8Uu6/vnKJ7HNh1D235PY6rEjsdVjZ0GSxNaCFRixtWWFCNpYb0DWJ07UL4KzlXjENhMSJLZvSFlZmZ+TJCjN9usHrnX8/GrnL01iq8eQxFaPHYmtHjsLktbn5RYwSlOHUh3nGLFN04uqfMu6Q1E/P8codfxIbElsfVpIqbcPH2yKQZbEVm8lEls9diS2euwsSJLYWrACI7a2rBBBG+sNiBO7CMasgxFRP3TyS/v6H4ktiW1+L8uew9f/fL4dRta6fmHqkGQeEls9uiS2euxIbPXYWZC0Pi+3gFGaOpTqOMeIbZpexIhtbGhbb5Clrh+JLYmtT2Mu9fbhg00xyJLY6q1EYqvHjsRWj50FSRJbC1ZgxNaWFSJoY70BcWIXwZiM2PqBlQB+JLYktj5Oyf7PB73Cy5LY6m1AYqvHjsRWj50FSevzcgsYpamD9XFYiwUjtlrkPOWsOxT18zNwqeNHYkti69NCSr19+GBTDLIktnorkdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQJzYRTBmAhFHv6/nly51+5LYktjmbwXZc5R6+/DBphhkSWz1ViKx1WNHYqvHzoKk9Xm5BYzS1MH6OKzFghFbLXKectYdivr5GbjU8QuIbZsWTeS0YzpVA+u0rh2ldYsmXgCWOn5e4IQQJn4hQMqRxTp+frXzlyax1WNIYqvHjsRWj50FSRJbC1bYrUOpjnMktgXyM+sORf38HKPU8QuIbSaUhp59tJTt36Lar47o1CoSoKWOXyQwFJmJnwK0KiLW8fOrnb80ia0eQxJbPXYktnrsLEiS2FqwAomtLStE0MZ6A7I+caJ+EZwtQ9ZSx2/9hgp59PlV1Wo+//nVsr68IiNwmMxFSaWOXxQsNHmJnwa10h/w/VDZLU1iq0eSxFaPHYmtHjsLktbn5RYwSlMH6/MELRaM2GqR85Sz7lDUz8/AdRG/KQ++KG+8s6EacK+set/9n8TWz5+iStdF/4uKUa781vGLs66askhsNajtlCGx1WNHYqvHzoIkia0FK5T+Aq4ZYvvOO+/I/vvvvwvxHTt2yJYtW6RJk+pn9SoqKqRRo0ZSv379nB5ivQFZnzhRP78OiPjtxK/PqFkktn6upJKm/6lg2yVkHb+otUtifF1Y3jGqGrXyFwtRqdqX+VaaxFaPYLH4S6n0H0n0GyNHjtQ7ACVjRaBU/LQmKCaI7YMPPih9+vQRkNl69erJ1KlTZcKECdK+fXvZtm2bTJ8+3f180KBB0qBBA1mzZo2MGDFChgwZktXIJLZ+/m/d4alfcdiXxNbPTlpptg8tcjvlrOMXpXZJja8ktlGssDsvia0ON0iR2OqxiyqZVL9BYhvVEsnlL6VxripKBSe2q1evlhtvvFFmzJjhiO327dulYcOGUl5eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM1qdxNavMVh3eOpXHPYlsfWzk1aa7UOLXGkR2yTHVxJbnY+R2OpwI7HV4xZVMsl+g8Q2qjWSy299nqCteUGJ7SeffCK9evWSP/3pT3LAAQc4YosG1aNHD1m5cqWr08SJE2Xp0qWO2OLnAwcOlMrKSrcVGXnKyspIbLXWzyFn3eGpn5/R08IvILaDehxRTeELT+ucswJp6adFkfppkSsO4mjdvmHQT3p8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmLYVxLhNCBSW21157rXzlK1+RSy+91BFXENuXX35Z+vXrJytWrHD6Tps2TRYsWCAbN26U/v37S9++fd3P27RpI0uWLJGOHTvKwoULZdGiRbXqh3KYiAARKBwC1055NuPHbx/arXBK8ctEIAQC2RZNQ4iayJL0+BoLsRWRCUO7SaWIDM/SV0QBs15C5UGHbH1ZFP2QF32f9fpSv6hW3Zk/8D/8u1j7j6T7Dc7Ldb6VlFSx+mkuPApGbLGNeO+995Zu3XZOcJ999ln373nz5knz5s13nbcdP368+z22ITdt2lSGDx/utiu3aNHCbVfOdokUtyL7NQPrKznUrzjsO+PRV6opOnP+Mvf/qhHc1s0by2nHdKqWj/YtDvtqtaR9tciFk0tjfI2F2NYTmTN2gFRWipxzw86L5nxSUmcwoVOw+8RHP8gyYqtHMCn7xu1/1vu3bBZIo99gxFbv/3FLFquf5sOhYMQW24lff/31Xfodcsgh8uqrrwr+RhR38uTJ0qVLF+nZs6eMHj1atm7dKpMmTZK5c+fK7NmzZdy4cbJ48eKs9SOxzWf63L+37vDUrzjtm2lyeESnVnLLFaeS2PqZlPjVIfzyVTWN8ZXENp8VMv+exFaHG6RIbPXYhZFMo98gsQ1jiXTyWJ9Ha1EoGLGtqXCwFRl/z5kzRwYPHuyy9O7d210sBWKL87jLly93zwAhstu9e3cSW63l88hZd3jq52f4QuFXNYK7fkOFzH9htZDY+tkyk3Sh7Bu2JtQvLFLx5EtifCWx1dmGxFaHG4mtHjetZBL9Bomt1hrxy1kfh7U1NkNsa1Zg8+bN8tFHH7nbj6umtWvXStu2bd3NybkSI7Zal9gpZ93hqV/x2/flN9bLDVMeJ7H1M2VGabYPP1Ct4+dXO5E4xlcSW50VSGx1uJHY6nGLSzKOfoPENi5r+JdTquOcWWLrazISWz8ErTs89St++wbEtmZNcGPysWWNTV++Qf8rfv/LVQPr9vVD318a4yuJrQ5HElsdbiS2etysSFqfl1vBKS09SnWcI7FNy4NqfMe6Q1E/P8cgfvnxy0Zsa0piImgt0b5+FiF+fvgVWprEVm8BEls9djxjq8fOgiSJrQUr7NbB+jisRYvEVoucp5x1h6J+fgYmftHxw/nb4NbkqtIkttGxpP9Fx6yqhHX8/GrnL01iq8eQxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6ArE+cqF8EZ8uQlfj54xe8G0liGx1L+l90zEhsw2NGYhseq5o5SWz12JHY6rGzIGl9Xm4BozR1sD5P0GLBiK0WOU856w5F/fwMTPz88SOx1WNI/9NjB0nr+PnVzl+axFaPIYmtHjsSWz12FiRJbC1YgRFbW1aIoI31BmR94kT9IjgbI7Z+YGXBLyC2Xcpa78oxdugpsX9LUyDbhwa14hlQrdvXD31/aRJbPYYktnrsSGz12FmQtD4vt4BRmjqU6jjHiG2aXlTlW9Ydivr5OQbx88cvILZVS7KyLZn29bdvWVmZXyEJSlu3b4JVD1U0iW0omDJmIrHVY0diq8fOgiSJrQUrFM8CsxYtElstcp5y1idO1M/PwMTPH78K2XtXIXjvFonENhyu9L9wOGXLZR0/v9r5S5PY6jEksdVjR2Krx86CJImtBSuQ2NqyQgRtrDcg6xMn6hfB2TJkJX7x4tdn1CwS2wiQ0v8igFWE7devdv7SJLZ6DEls9diR2OqxsyBpfV5uAaM0dbA+T9BiwYitFjlPOesORf38DEz84sUvILZVSy1k9Jb2jde+fqXFL23dvvHXOFqJJLbR8KrZb1VWipxzw87FOp9ULESvrtWX/Udmryax9Wnt8cuWqp+S2MbvK6FKtO5Q1C+UGbNmIn7x4kdiGw1P+l80vGrmto6fX+38pUls9RgyYqvHrliIPPsPElu9l6cnWap+SmKbng9V+5J1h6J+fo5B/JLDz8K2ZNo3OfvT7+oAACAASURBVPv6lRyPtHX7xlNLfSkktnrsSGz12JHY6rGzIMmIrQUr7NahVMc5EtsC+Zl1h6J+fo5B/JLDj8Q2P7b0v/wY5cphHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZMmQlfsnhR2KbH1v6X36MSGz1GJHY6rEjsdVjR2Krx86CpPV5uQWM0tTB+jxBiwUjtlrkPOWsOxT18zMw8UsOPxLb/NjS//JjRGKrx4jEVo8dia0eOxJbPXYWJElsLViBEVtbVoigjfUGxIlnBGMyIuoHVonhFxDbLmWtXc0uP/toKWvXPHaMipn4sH/xcwfr+PnVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpmI2H744Yey3377VbPnjh07ZMuWLdKkSZNqP6+oqJBGjRpJ/fr1c9rfegOy7lDUz697IX7J4VfzhuTTjukkbVo0kSM6tZKA7Pp9Pb807ZsfIy4M+GEUl3RS4+vC8o7eKhYLUUFFM93MrgGAxFaD2k6ZYvEX6+NDGAsk1W+MHDkyzOeZJwUESsFPM8FUUGL72GOPyZVXXildu3YVENbLL79czjnnHJk6dapMmDBB2rdvL9u2bZPp06dLvXr1ZNCgQdKgQQNZs2aNjBgxQoYMGZLV9CS2fq3CusNTv7pr35ffWO8qP+XBF2XVu+W7gADB7XFMJ2m8V8PEI7j0v7rrf341T0866fGVxFZnSxJbHW4ktnrcokgm3W+Q2EaxRrJ5rc9jtLUvKLE95ZRT5MYbb5QePXrIk08+KUOHDpVly5ZJw4YNpby8XJo1aybDhg2Tdu3aOWK7adMmGTNmjKxbt879DGS4cePGGetOYqt1iZ1y1h2e+tG+859fJe9tqBAQ3VdWvb8LEERub7niVD+A8kjT//zgJX5++IWRTnp8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmtT4Oa2tfUGILogpiuscee8h1113nth5ff/31juiuXLnS1WnixImydOlSR2zx84EDB0plZaXbiow8ZWVlJLZa6+eQs+7w1M/P6KWEHwjuo8+vkoqtn7kILrYlI3rbunlj93cSqZTwSwKffGUSv3wI+f8+6fGVxFZnIxJbHW4ktnrcokgm3W+Q2EaxRrJ5rY/D2toXlNhC6ffee0+uvvpq+e9//ytz5syRjz76SPr16ycrVqxwdZo2bZosWLBANm7cKP3795e+ffu6n7dp00aWLFkiHTt2lIULF8qiRYtqYYBymIgAEagbCLz+7iaZ+OCrtSr7pXb7yDVnH1Y3QGAtY0Mg26JpbB9IoaAkx9dYiK2ITBjaTSpFZPiUZ70RqZdQeVDs2hj0Qzm3F0F9rdvDun6wczH3H0n2G5yXe3dzsRZQzH6aDYiCEts333xTsO3hkksuEazi7LXXXi5qiyguLo9ClHb8+PFOd6wiNW3aVIYPHy7bt2+XFi1auO3K2S6R4lZkP9+3vpJD/Wjfmgis31DhIrf4e/4Lq3f9GjcmD+3T1UVwW7eofhmdFkX6nxa5nXLEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1uRA+ysujopsnKXtY9xfr/VsuSybdbzBiG70dJSVRzH6aC5OCEtsLL7xQunXr5rYhV01HHXWUTJ48Wbp06SI9e/aU0aNHy9atW2XSpEkyd+5cmT17towbN04WL16ctW4ktn5NwbrDUz/aNx8COHt7w5THa2UD0W3S6AvVblAG4cUW5k743V4N8xVNYpYXodwZ2H49AQwhnvT4SmIbwggZsnArsg43SBULUbbev+WyQNL9Bomt3v/jlixmPzVLbLGdeP36nTecIrVu3dptTcaW5MGDB7uf9e7dW2bMmOGIba9evWT58uUuqjtv3jzp3r07iW3cnv55edYdnvr5Gb4u4PfGu+Uy5YEXZP2GzbK+vCIUYMHTQcgMglu2f4uMZLcu4BcKMGUm4qcELoJY0uMriW0EY1TJSmKrw43EVo9bFMmk+w0S2yjWSDav9XFYW/uCRmxzKb1582Z33ha3H1dNa9eulbZt27qbk3MlRmy1LrFTzrrDUz/aNyoCILoVWz51tygHCduWcbMyLp3C5VOZUtUIbxDZrfdJuXQ+7OCoKqSWn+3DD2rr+PnVTiSO8ZXEVmcFElsdbiS2etzikoyj3yCxjcsa/uWU6jhnltj6mozE1g9B6w5P/WhfPwSqSwdPB+GnILhvvLMhJ9ntfkhLOejAtq4QEN9WLZok/nZulPqyfURBq3Ze6/j51c5fGuMria0ORxJbHW4ktnrcrEhan5dbwSktPUp1nCOxTcuDanzHukNRPz/HIH7Fj1/VCG+YyC5qjK3Mp3XtWO38rh8SOmn6nw63QMo6fn6185cmsdVjSGKrx45nbPXYWZAksbVghd06lOo4R2JbID+z7lDUz88xiF9p4hdEdjds2CDlW+vt2sacrbZdylrLsYe3d2d1keK8mTkXwvS/0vQ/v1rFJ01iq8eSxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6AOPGMYMwMWYkf8fNDwE+6pv+B8OKpoVdWvZ+34OBSqrFDT8mbV5uB7UOL3E456/j51c5fmsRWjyGJrR47Els9dhYkrc/LLWCUpg6lOs4xYpumF1X5lnWHon5+jkH86jZ+uKDq6eVvu7O6SJluZkY0F1uXu3RqFdv7ugHq9L/S9j+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK+zWwfo8QYsWia0WOU856w5F/fwMTPyIX00Egkupar6tC3I76LTOsZJb+l9p+59f7fylSWz1GJLY6rEjsdVjZ0GSxNaCFUhsbVkhgjbWGxAnnhGMmSEr8SN+fgj4Sfv4H6K52Lr88hvvV3tft02LJo7cBluVAw3x/yPKWke6ddlHPz9kwklTv3A4Wc1FYqu3DImtHjsSWz12FiStz8stYJSmDtbHYS0WjNhqkfOUs+5Q1M/PwMSP+OVDAOR2xqPLqpHbXDJVCS/+fWznDlm3MdP/8qGf+/fW8fOrnb80ia0eQxJbPXYktnrsLEiS2Fqwwm4dSnWcI7EtkJ9Zdyjq5+cYxI/4hUUgeEoo2KocyOH/iO6uerc8Z1FBpBfv6TZp9AW58LTO5i8/YvsI6x0285HY6u1CYqvHjsRWj50FSRJbC1YgsbVlhQjaWG9AnNhFMGaGrMSP+Pkh4Cedpv9VJbz499PL3qq1jblqbXApVYcWDeVbZ3d325otpjTx09Tfun6aOsUpQ2KrR5PEVo8dia0eOwuS1uflFjBKU4dSHecYsU3Ti6p8y7pDUT8/xyB+xM8PgfzSQaT3jXfLpWLLpzJz/rJaQiC5SEE0N/i7E6K7BSS9bB/57Ws5B4mt3joktnrsSGz12FmQJLG1YIXdOlgfh7VokdhqkfOUs+5Q1M/PwMSP+PkhEF0a25bxZ86i1wSR3VwpILjBuV0Q4MZ7NYx0QVV0DYtnQLXefn2wj0OWxFaPIomtHjsSWz12FiRJbC1YoXjGYS1aJLZa5DzlrE+cqJ+fgYkf8fNDwE967qJ/S7t27SSI5uKc7sdbPnXndfORXpDcgPAmFeFl+/Czb6GlSWz1FiCx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyBO7CIYM0NW4kf8/BDwky5W/wuIbnBuFxFe/DvfBVUBWiC6eJKobP8W7m9cXKWJ9BYrfn5eUzrSJLZ6W5LY6rEjsdVjZ0HS+rzcAkZp6mB9HNZiwYitFjlPOesORf38DEz8iJ8fAn7SGv8LSO4b72xwRDdshDfQNLiduea5Xvy+dfPGjggHSaOfHyLRpK3rF6028ecmsdVjSmKrx47EVo+dBUkSWwtW2K1DqY5zJLYF8jPrDkX9/ByD+BE/PwT8pOP2P0R6cVkVSG/V54nCRnqr1gZR3/qyXVq2aOoiv0EKCLEmAuyHVm3puPGLW79Cl0diq7cAia0eOxJbPXYWJElsLViBxNaWFUSkoqJCGjVqJPXr18+pm/UGZH3iRP38XJ/4ET8/BPyk0/S/gOgi4osURHvx7/UbNsv68gp1ZYIoMAoIzvvi38EZ4KDgmhFh9Qc/F0wTP19d45SPMr4uLO/o/eliISqoaJ9Rs7zriwJIbPUwFou/1LX+I0q/MXLkSL0DUDJWBErVT4smYvvBBx/IoEGDpEGDBrJmzRoZMWKEDBkyJKuRSWz9/N+6w1M/2tcPAT9p+l90/Kqe731+2RvSosXOaG1AiKOc9c319Vqk9/OzwIFMEBnORYat2zc6+rklNOMria3OCiS2OtwgRWKrxy4JSU2/QWKbhCV0ZZbqOFc0xPbWW2+VTZs2yZgxY2TdunXuxk+sEjVu3DijRUlsdY4eSFl3eOpH+/oh4CdN/0sWvyAKjK8EhBj/Di69Cr7uGxFGOUFUuOpN0HvX3yydDzvYr5JFJK0ZX0lsdQYmsdXhRmKrxy0pSU2/QWKblDWil2t9HhO9RjsliobYXn755dKjRw8ZOHCgVFZWuq3IK1eulLKyMhJbrfVzyFl3eOrnZ3TiR/z8EPCTTsL/apPeCnlvw+5t0EFkOAwZvubsw+SM44/yq2QRSWvGVxJbnYFJbHW4kdjqcUtKUtNvXH3N92NRZ+/GX3DlfLz5U5anQAD4JTEOK1SJXaRoiG3//v0Ff/r27etAaNOmjSxZskQ6duwoCxculEWLFlUDp2HDhvLZZ5/FDhgLJAJEgAgQgeJHYOuOBvLJjgayrbK+VGz/gvvz0ba93P/PP7hCLrvssuKvZMgaRB1fsVNq8+bNIUtnNiJQtxDo3LmznH322SVfaU2/saliayy47FFvhytne2Xu+3bCfqwulleqflo0xPbmm2+Wpk2byvDhw2X79u3ufFZ5eXnWS6Ssb0WmfmG7m8z5iB/x80PAT5r+R/z8ELAlHXV8Dat93O2E5YVFPp1xk/bws0exS7PfiMeC1ttRPLVMr5SiIbZz5syRSZMmydy5c2X27Nkybtw4Wbx4cVak4naUuE1C/fwQJX7Ezw8BP2n6H/HzQ8CWdNTxNaz2cbcTlhcWeRJbIGDdX/ysWXhp9hvx2IB+Gg+OQSlFQ2y3bNkivXr1kuXLlwv+PW/ePOnevTuJbbz+sKu0uBta3GpSPz9EiR/x80PAT5r+54df3NJRx9ew34/bziwvLPIktiS2fr4SRpr9RhiU8uex3q/lr4GtHEVDbAPY1q5dK23bthWcoc2V4naUuM1G/fwQJX7Ezw8BP2n6H/HzQ8CmdNjxNaz2cbcTlhcWeRJbEls/X4kizX4jClq181rv1/xql7500RHbsBDhQqkTTjghbPbU81E/P8it44fLzI4//ni/SiYobR0/6udnfOJX2vj51S496bj9kOX52Y742cLPT5vSlaaf+tk2bvz8tElfumSJbfpQ8otEgAgQASJABIgAESACRIAIEAEiUAgESGwLgTq/SQSIABEgAkSgBBH43//+J1u3bpX9999/V+1eeuklwdMSe+yxh6rGH330kbz22mvSrl076dChg6qMJIU2bNggH374oXt+sEGDBupPPfzww26n2T777KMuI5fg+++/716S2G+//dTlw7Z77bWXk8edJ7AHXqyII73++uuuvKD8OMqMowzr/hdHHQtZRtJ+H3fd4vDTJPrJoJ5x6Bc3ZmmWVyeI7ccffyxNmjSRevXqZcR206ZNiQ0k+OCOHTvchVfQIVuCDnvvvXdWHZN0ilLQL0l88pUdBr+KigrnB0lNWHLpGEa/fHVM8vdh9cNAgDa05557JqlOrbLD6IeJLZ4gK0QKqx8mn1pi4VOvMPpt27ZNPv30U8H7qEmkMDqgjTZq1CjrE3JJ6FVqZf72t7+Vq666yvVzQ4YMkd/85jeuigcccID85z//cWNclIQjHZdccom88cYbcvjhh8vGjRudn+A7F1xwQZSiEsn79NNPy0UXXeT0Q0K9DzvsMPn9738vRx99dORvoo0Cq2nTpknXrl0jy9cUeOCBB5w9OnXqJMcdd5y7JRg6/vCHP5Sf/vSnkcufMGGCTJ06VWCXk046SdavXy8gfXj2BU8xRk1f//rX5cknn5TPPvtMzjzzTFm6dKkrYvz48fLtb387anGx57fuf7FXuEAFxu33cVcjbj+Nu5+MW7+48Uu7vJImtuh0sVKMARArGK1bt66G7/PPPy+XXXaZfPGLX5Q1a9bIH/7wB/nqV78aqw0wCGAwaN++vWDyNn36dGnVqtWub6xYscINClhFhQ5XXHGFDB48OFYdchWWTz9M2IcOHeoGQ6z29u3b101Y0kr59PvVr37lBlkkTF4xkL/wwguqSYWmTvn0w+o2BmgM/rAxJjujR4/WfEolk0+/Tz75xPkjJhVIhx56qPz85z9XfUsjlE+/oEy0jS5dusgjjzziJmhppXz6vfrqq25ie9BBB8nmzZtd2x04cGBa6rlJZq7+5c0335QBAwY4GyOShMnyj3/8YzP64U3yV155xfW9IN2Y0Mad8mH0wQcfyKBBgxw+8LMRI0ak2sfFXd9ClQdygmgbyF7Lli3ljDPOkB/84AduzNAS2zZt2jj/RpsKFqbhL+gL8I59s2bNQlcXvnb55ZdnzY/JZtRIIfpL6Hfssce6cfzAAw+Ubt26uRcc3nvvPbdQEiVhgo8nDa+++mo58sgj5fvf/777W5sQJUe9nnrqKdfu3333XTeWox947rnnIi20YizDHOq///2vPProo/KPf/zDzWfQ72Fce/HFFyMvTKG+mFf8/e9/Fzwdg7aKBUyQ5mXLlkWKfidh3zj9T2vDuiAXp98n4Qdx+mkS/WSc+pWCv5U0sb333nsd6cFkCYNMTWKLgRcrl/gbebHKikElrgQii9ubgwF42LBhbivVqFGjdn0CRPaQQw5xemDAwL9BNr7whS/EpUbWcsLod9ddd7kB7J577pF//etfcumllwrIeBopjH5V9Rg5cqS7MRuTgTRSGP2A3zPPPCOTJ0+WyspKue++++Tcc89NJXIWRj8QM6zcz5gxI9IkIg58w+iH7yBC079/f1m1apWbpKVFbMPoh/e00aYvvPBCN9nDRP7f//53HPDkLSOMfr/4xS9cNASLKZiYYqL99ttvV9smmvdDygxh9MNuGvgfJtnHHHNM7MQ2jA633nqrYMfMmDFjZN26dc6eiN4mFT1WwmleDH6GLa6IzGIhF33L6aef7hYujjjiiMgRW0xQsQvi5ZdfdovPVdPXvvY1+eMf/+jKjZIwxn/3u9+ViRMnSvPmzauJgjxH2UYM30I9V69e7drVQw89JH/9618dOQOZR5sDsYySMEHFDbMo789//rPccsstLsrds2dP55/5XoOo+q1AP5SH9oUFLvwbCfiBlB588MGh1YM9sL0c84D58+e7srAIinENdsDPMP5GScGE/Ne//rVrdwg0IGFhANH+L33pS1GKc3O4uOybhP9Fqkwdyhyn3wO2OP0A5cXpp3H3k3HrVwpuV9LENjAQVnozEVusIqOTxt9YbUTUCvniSpiI9+jRQ1auXOmKxGCKrTaITgQJq7wYrEB2sdKNLQVpTTzD6IcV3q985Sty6qmnCm5aw3YjTN7TSGH0C/RAZP788893k6c0FgXw3TD6BZN27A5ANANE46yzzkoDvlD6Pfjggy5ahYk9Ig3YqnbKKaeY0Q+KXHfddXLaaae59gM80yK2YewbAIWFCwymF198sVukSiOF0Q9HIND/IRJ1//33OyyxeyXbsYw49Q6jX/C9//f//p/TK+6IbRgdEMVDPw1ig0k6dlagzy4rK4sTjjpRFhY+EWkbO3aswxQLe9hVg7OYwXGbKEBgsRLRvLPPPtvtJsEi8RNPPLHrLfsoRDT4LkgdooNRSVgmvaEf6os+E0T7tttuc0QeC3BYqIYvRUnBBD+IRIOcYmH08ccfd/1K1GMYiPxioQ07ETAufuMb33CLBVis1ixQT5o0yY0ROAd89913ux0qb731lptDgYhHTZADoUXCrqZgB9uf/vQndT8Vt33j9r+oGNWF/HH7PTCL0w/i9tO4+8m49St2n6vTxBaNCR0pOlackcH2l2BFMw7Dgmz169dv1wCCczMLFiyQO++8c1fxGPCxjQnbpRcvXuwuyNBMADT6htEPEWxM1hFZXrJkiRscQYbSSGH0C/TA5BSLAmmeywmjHzownCHCRAKLJ9jmiO2haRCLMPphlR1bt7/3ve/JrFmzXIQAkRYr+mEnBQgZJk1YeEqT2IbBL/A/EDLoiihfnLs+crWzsPoh4g27YtKNSRoWqdJIYfWDLkkR2zA6YDcA/iDKhoTth+jrcBEQUzQEEI3AzgVsdw2e28P/0SawiBt1qy++jotlQO6wSIEIHo4LnXjiieqIOtpDXIufWDgK9AP5xhNvOA6D3QeI5kZNWDTG4mfULczZvoPjOZhzYK6DqDeIKfooREaxXVyTQJSxyI25CspCVBrtR4sptiLDtph7ffOb3xREb7HIpL0kLE77JuF/GsxLXSZuvwdecftBnH6aRD8Zp37F7m91mthicMSEFIMQtupg4MVKblwJgx46fgwuIApBNKLmVlmsVIIs4pweiHCc5DpXXcLoB2KGyzCwMg3CjQEyU/Q7LsyqlhNGP+THbZQYpHEeuOb2siT0CsoMox8iZFhlB7EIJs3YHh91i5WmHmH0Q+ePs434g61XiIDA/7STiih6htEPixU4K48tjs8++6zbqo8tdHGfhc+kdxj9QBSxMowteogmIRqS1o6LMPph+3Ew6UTEO4iORLGTNm8Y/YKykyK2YXRAv49+DbtRgu2HsGXUaJsWp1KSQ9+BMRSRQhA+LEhh/MC9DDW3E4ept/XyMG5j2yx8BZFkRBpx/hdHEzRtjeWVNn5hfJ557CGAYAR2YeCICi5jQ5+GhIAKxtWoC1Egtpg7YCcfdngg4tq9e3d3XCBqWdAjbv3sWSCaRnWO2OKiA2wdwrZLrBKBEF1//fVumw/OssR9cc5RRx3lzldisMM5GZy7wUp2oAMmdIgWI5qCLcpYXdVs6Ylm9t258+mH1VPoBz2xnQmNDxN3zRYwjY759EOZiJRhQhHnokRYXfPphyj9lClTXBQDW7ZA1N55551UztiiDvn0+9nPfuYu74CPYls+ovPB1vmwGPjky6cfJrYgZ0iIxmNQOeecc9TRmqi65tPvRz/6kVu4AI7YfYEt05bse8cdd7hFs0K0jTD+lzSxzaYD7lVAVBb9MtomIlmIKs6ePVtwbhq7Z5iiIYBt3BgfcIdAnz593PlaXKyENgwfxM6VKMl6eahLcPYOY+TJJ5/sLmhC9BHb6jVtjuWVNn5R/L8u5c0158CRkCg7yJK4PAqLV7hZHItVILLYCYSdPdpL8RAwwlEF7BLCziAQZuzqQz+CeViU+sJP4tav2H2vzhBbRH1wMygcEsQSzwagMQXn9RDpw2Rm3333jdWmGNyCW4579+7tLunBZRiBDiCLcEoMaCA+mGxVff8vVmUyFJZPP0RnMUnBWVskbAXFLclppXz6QQ9ERdHJIKqcdsqnHy4Cw6Vh6LQQvcfCRpq35ubTD3bFWTgsVOAP9MOWurRSPv2q6gG9brjhhtTO2OLb+fQDmcU2fQxS2IqHs4VYHEgr5dMPAyjOOVZN2EIY5dIYn7rk068qsUV/DFIZd8qkAyYO6HODLcfog2FLRHjnzZvnCBpTNASwaIxzq7jVFhf/AMsbb7zRFYIFvZkzZ0ba3m29vKrEFgvT2H59zTXXuPpiFwciMlHH8oDYsrzSxC9ai6obuUFEQe4w/8UFrzW3tOO4YNSL/OK8PAr9EJ4ZRJQVcyQs1uGuHIyrGmIb7IzDRYWYtwYJP8eTZug3vvzlL4c2ftz6hf6w4Yx1gtjmwh+XMyDCAgeNukoS1q5wPGw3zrU1Kdj+mZQOuXQNox8wwsJAlFsZw+KTL18Y/fKVkeTvw+iHbdKFekc0jH7oZOO4TEWDcxj9NOXGJRNGPywQYJAqxPbVMPrFhYWmHAv6hdEBfTDaQCH6OA2uFmVAYLEzCVv1sAsEu1XQNr7zne+4hYOo7yhbLw99Oo5G4CgTjupgYQYTdOzcwKJJ1KMxLK+08bPYZi3ohEUwjJ9YdI1rHhL35VHYlfWtb33L8QQExHD7Nn6meZ8b59Jxzh1HNHDMCjwE25KxGw1bk6s+CRrGPuAvceoX5puW89R5YmvZONSNCBABIkAEiECxIIAdPoha4r1pED0knNfHMRts/46arJeHiyBB2DEhxxZkHDHChBq7S7C7KWpieaWNX1R/qEv5cQQPl6jiSGAcKc7Lo3BZGnYGBu0a97rgyAXuS9Fc9op+ArupcG8IdnoEr1L85Cc/cTsko6a49Yv6fWv5SWytWYT6EAEiQASIABEoYgRwPhbHf3ARCqKQvsl6eVXrh905uEQursTy/JC0jp9f7UpTGjtssLsj6vNWaaOBYxfYlaHdqYV64s4aRFw1N8bnq6+vfvnKt/p7ElurlqFeRIAIEAEiQASKCAGch8N2XDx1gwsag8vVEL3UnN1neTsvpyN+4RqBdX8JV4u6lwt33lRNeEUC23WxNTfqwhi29eZ6agsXNOHMbJSEy+BwKzLel8YrKrg3BUcL0S41O1HiLm/UqFHu4lsQbDwXhste0f+mfSdJFEyTzEtimyS6LJsIEAEiQASIQB1BAGdL8U4y3jrFDdN4gxpnyHCeDNvvot6mz/KIX5SmY91fotSlruT9+OOP3XZcpODv4BgD/o8z+lGJKM6p4sb7p59+2l1IVTXhoqqod9nAr3DhK87Tol+755573K4M3B0Aklro8oJL51DfESNGCC7PwhNAY8aMcW+A17VEYlvXLM76EgEiQASIABGIGQFESvCqAC5KxEUoeJMxeMbjlFNOcU8qIQoTNrE84ldK/hLW7+tivhdeeMG9tnHttdfKJZdcWpg96AAABs5JREFUInhbHMT0/PPPV8OBs/545cH3pZOgH8K2XkSW8QQgLhpEAtnF/QGHHnpoaD3jLg8fDojt//3f/7loNZ5GREI0GZHmgw46KLR+pZCRxLYUrMg6EIEUEcANhkiah8RTVJOfIgJEIGUEsHUQT1YgYvLQQw/JH//4R3cGDTeIat53ZnnEL4oLW/eXKHWpa3kRuR0+fLi7SAlRVuz88CG2ceIH4oobjK+88krBeX9sSUZ0FIt3uDQu6k6UuMsDsYVuiG6DgOPdcPS/6HexuFjzCaU4sbFYFomtRatQpzqNADqpYCsOgMAted/73vdUZzniABIRGERbTj75ZDn++OPdiuXWrVsF55lwAyje6sXWQyYiQATqNgIgr3jiBxM/RDMwUcUtpzjrdeKJJ0YGh+URvyhOY91fotSlrubFVt/+/fvLfffdJ+edd54KhmCnSCbhsrKyyFuHX331VUE0dPDgwe4pr5deekkuv/xywdlWDfmOuzwsJGJLNOqNLci33367wxA3L5911lkqDItZiMS2mK1H3UsSgeCyhGAFbtq0aa6eIJhRL1KIAyB0lF/84hcFFzrgMpiJEye6d9e+//3vu4sUQHJxfo6JCBABIkAEiAARIAKFQmD79u2Cc7R4TxqR35rRSizIN27cuFDq8bspIEBimwLI/AQRiIIAyGunTp12RUGx6nbXXXcJzqHgMoXJkyfL9OnT3bmOCRMmSNeuXd1q4gMPPCC9evWSv//97+7CAJytQKQVxBM/Hzt2rOvQZ86cKb/73e9kzZo1bgUSt+lVVFTI6aefLt27d3fvMmJQwHdBZHFOY968ee49yt/85jfyt7/9TfBG3KxZs6oRWzyrgHcY8QdX1+MSA5TPRASIABEgAkSACBCBNBDAcak2bdq496Xbtm2bxif5DUMIkNgaMgZVIQJAAMS2VatW7ua9999/X66++mrBFfXvvfeeO9MB4oloKbb84fc4VwECChKLBDJ50003yZe+9CVHRnHuCGT4V7/6lbsCHluKcV4EZ2RBfm+99Va3raZly5ZO/qqrrpInnnjCfQfkF0QW38OWG5BgXO6A8zBY+awascXvcP09vo2Hy0GG8fdxxx1HwxIBIlDiCMT9zAbLq+4wUZ8pIX628Cvx5q+uXtx+Gijy5z//WS644AJ3FMInxa2f9fJ8sLIiS2JrxRLUgwh8jkDNM7aI0v74xz92hBU33h177LEuugry+dRTT8nDDz/sLgoAsQ2I5Pjx4+W6665zK5YHH3ywy4Mr83F+BflGjhzpHkBHFBdkF78HscXNhHfccYeL6g4aNEjmzJnjztRW3YoMMpuJ2CKCXF5e7q7AX716tWALNc6g4BtMRIAIlD4CcT+zwfJ2+4zmmRLiZwu/0u8BdDWM2091WmSXils/6+XFjV/a5ZHYpo04v0cE8iAQRGxBQrGlF4QRJBSkFRey4AInPJ8RJERx8W4ZCCuuowcRBqkFucVlGnhIHO+vNWzY0EVjEUkFscX/kUBoQZrxNyK/OEv717/+Vfr16xea2C5dutSdZcGZliuuuGKXbiDNiBgzEQEiUDcQiOuZjQAtlufnN8TPFn5+2pSudNx+GjdScetnvby48UuzPBLbNNHmt4hACARqnrENRHCN+3777SeHHHKIe0bj7rvvliVLlsj999/voqIgtoikIjI7f/586dGjhyOn2I5z4YUX7rqh9Be/+IX88pe/dIQZ/8bNg4iy5iO22L7861//2p25zRSx/frXv+6uwEf0F9uYoR/eozvzzDND1JpZiAARIAJEgAgQASJABIiAHgESWz12lCQCiSCQjdjiY7ggCmdYcZEU0m233eais1j9q0pscbkTCC22KCMdeeSRjnAimvuDH/zAnc8Nfo4yQYZBbIOtw/fee6/07dvXRWxxXTy2I4Os4hsg1cFNyFWf+8Hvr7/++l3fxHXz2I5c195QS8QpWCgRIAJEgAgQASJABIhATgRIbOkgRKAIEcATPCCi+a6tX7dunXtn9sADD6z2dtvmzZvdQ944s1uvXr28COzYscNtc8b38hFVXGiFrdP77rtv3nKZgQgQASJABIgAESACRIAIxIEAiW0cKLIMIkAEiAARIAJEgAgQASJABIgAESgYAiS2BYOeHyYCRIAIEAEiQASIABEgAkSACBCBOBAgsY0DRZZBBIgAESACRIAIEAEiQASIABEgAgVDgMS2YNDzw0SACBABIkAEiAARIAJEgAgQASIQBwIktnGgyDKIABEgAkSACBABIkAEiAARIAJEoGAIkNgWDHp+mAgQASJABIgAESACRIAIEAEiQATiQOD/A/1mTZxCChSWAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Top 10 values by value count"
},
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "dyr 8rp",
- "value_count": 1
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "wf1 5er",
- "value_count": 1
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "ba3 2xu",
- "value_count": 1
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "rg9 0tb",
- "value_count": 1
- },
- {
- "distinct_value_count": 12363,
- "group_name": "postcode_fake",
- "total_non_null_rows": 39152,
- "total_rows_inc_nulls": 50578,
- "value": "bn14 7as",
- "value_count": 1
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "scale": {
- "domain": [
- 0,
- 34
- ]
- },
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Bottom 5 values by value count"
- }
- ]
- },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Set the output bucket and the additional filepath to write outputs to\n",
+ "############################################\n",
+ "# EDIT THESE BEFORE ATTEMPTING TO RUN THIS #\n",
+ "############################################\n",
+ "\n",
+ "bucket = \"my_s3_bucket\"\n",
+ "database = \"my_athena_database\"\n",
+ "filepath = \"athena_testing\" # file path inside of your bucket\n",
+ "aws_filepath = f\"s3://{bucket}/{filepath}\"\n",
+ "\n",
+ "# Sessions are generated with a unique ID...\n",
+ "linker = AthenaLinker(\n",
+ " input_table_or_tables=df,\n",
+ " boto3_session=my_session,\n",
+ " # the bucket to store splink's parquet files\n",
+ " output_bucket=bucket,\n",
+ " # the database to store splink's outputs\n",
+ " output_database=database,\n",
+ " # folder to output data to\n",
+ " output_filepath=filepath, \n",
+ " # table name within your database\n",
+ " # if blank, it will default to __splink__input_table_randomid\n",
+ " input_table_aliases=\"__splink__testings\",\n",
+ " settings_dict=settings,\n",
+ ")\n",
+ "\n",
+ "linker.profile_columns(\n",
+ " [\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"], top_n=10, bottom_n=5\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "3f8b54a9-5f4a-423b-90ec-d7e93f54f3d9",
+ "metadata": {},
+ "outputs": [
{
- "hconcat": [
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.9430504148053606,
- "percentile_inc_nulls": 0.9558899126102258,
- "sum_tokens_in_value_count_group": 2231,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 2231
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.8983024888321633,
- "percentile_inc_nulls": 0.9212305745581083,
- "sum_tokens_in_value_count_group": 1753,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1753
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.8536056158264199,
- "percentile_inc_nulls": 0.8866107793902487,
- "sum_tokens_in_value_count_group": 1751,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1751
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.8123548181238034,
- "percentile_inc_nulls": 0.8546601289098027,
- "sum_tokens_in_value_count_group": 1616,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1616
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.7715379706445438,
- "percentile_inc_nulls": 0.8230455929455495,
- "sum_tokens_in_value_count_group": 1599,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1599
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.7308487555839183,
- "percentile_inc_nulls": 0.7915299141919412,
- "sum_tokens_in_value_count_group": 1594,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1594
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.696081684747926,
- "percentile_inc_nulls": 0.7646012100122583,
- "sum_tokens_in_value_count_group": 1362,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1362
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.6629227823867263,
- "percentile_inc_nulls": 0.7389181066867017,
- "sum_tokens_in_value_count_group": 1299,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1299
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.6321888959795788,
- "percentile_inc_nulls": 0.7151132903633991,
- "sum_tokens_in_value_count_group": 1204,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1204
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.6024760689215061,
- "percentile_inc_nulls": 0.6920993317252561,
- "sum_tokens_in_value_count_group": 1164,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1164
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.5732482450542438,
- "percentile_inc_nulls": 0.6694610304875638,
- "sum_tokens_in_value_count_group": 1145,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1145
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.5462412252712189,
- "percentile_inc_nulls": 0.6485428447150935,
- "sum_tokens_in_value_count_group": 1058,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1058
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.5202552648372687,
- "percentile_inc_nulls": 0.6284155166277828,
- "sum_tokens_in_value_count_group": 1018,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1018
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.5009061901723038,
- "percentile_inc_nulls": 0.6134287634940092,
- "sum_tokens_in_value_count_group": 758,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 758
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4846713465220166,
- "percentile_inc_nulls": 0.6008541262999723,
- "sum_tokens_in_value_count_group": 636,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 636
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4693554562858966,
- "percentile_inc_nulls": 0.5889912610225789,
- "sum_tokens_in_value_count_group": 600,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 600
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4556732610082961,
- "percentile_inc_nulls": 0.5783937680414409,
- "sum_tokens_in_value_count_group": 536,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 536
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.44410976388002554,
- "percentile_inc_nulls": 0.5694373047570089,
- "sum_tokens_in_value_count_group": 453,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 453
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.43280153158902357,
- "percentile_inc_nulls": 0.560678555893867,
- "sum_tokens_in_value_count_group": 443,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 443
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4226930440331844,
- "percentile_inc_nulls": 0.5528490648107873,
- "sum_tokens_in_value_count_group": 396,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 396
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4129674537332483,
- "percentile_inc_nulls": 0.5453161453596425,
- "sum_tokens_in_value_count_group": 381,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 381
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.4039566049776643,
- "percentile_inc_nulls": 0.5383368262881094,
- "sum_tokens_in_value_count_group": 353,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 353
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3951499680918953,
- "percentile_inc_nulls": 0.5315156787536083,
- "sum_tokens_in_value_count_group": 345,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 345
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.38723675813656666,
- "percentile_inc_nulls": 0.5253865316936217,
- "sum_tokens_in_value_count_group": 310,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 310
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.38008934269304406,
- "percentile_inc_nulls": 0.5198505278975049,
- "sum_tokens_in_value_count_group": 280,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 280
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.37419272495213785,
- "percentile_inc_nulls": 0.5152833247657085,
- "sum_tokens_in_value_count_group": 231,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 231
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3685768985322272,
- "percentile_inc_nulls": 0.5109336074973309,
- "sum_tokens_in_value_count_group": 220,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 220
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3631908104658583,
- "percentile_inc_nulls": 0.5067618332081142,
- "sum_tokens_in_value_count_group": 211,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 211
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3581876196553925,
- "percentile_inc_nulls": 0.5028866305508324,
- "sum_tokens_in_value_count_group": 196,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 196
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.35328653477983407,
- "percentile_inc_nulls": 0.49909051366206647,
- "sum_tokens_in_value_count_group": 192,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 192
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3487428206764518,
- "percentile_inc_nulls": 0.4955711969631065,
- "sum_tokens_in_value_count_group": 178,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 178
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3442246330567964,
- "percentile_inc_nulls": 0.4920716517062754,
- "sum_tokens_in_value_count_group": 177,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 177
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3397574984045948,
- "percentile_inc_nulls": 0.4886116493337024,
- "sum_tokens_in_value_count_group": 175,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 175
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3309763880025527,
- "percentile_inc_nulls": 0.4818102732413302,
- "sum_tokens_in_value_count_group": 344,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 172
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3266113592852584,
- "percentile_inc_nulls": 0.47842935663727315,
- "sum_tokens_in_value_count_group": 171,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 171
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3182386726228462,
- "percentile_inc_nulls": 0.47194432361896477,
- "sum_tokens_in_value_count_group": 328,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 164
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.31410338225909384,
- "percentile_inc_nulls": 0.4687413499940686,
- "sum_tokens_in_value_count_group": 162,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 162
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.310044671346522,
- "percentile_inc_nulls": 0.46559769069555934,
- "sum_tokens_in_value_count_group": 159,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 159
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.306037013401404,
- "percentile_inc_nulls": 0.4624935742813081,
- "sum_tokens_in_value_count_group": 157,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 157
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.3020804084237396,
- "percentile_inc_nulls": 0.45942900075131476,
- "sum_tokens_in_value_count_group": 155,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 155
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2982769623484365,
- "percentile_inc_nulls": 0.45648305587409543,
- "sum_tokens_in_value_count_group": 149,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 149
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.29449904275686023,
- "percentile_inc_nulls": 0.45355688243900505,
- "sum_tokens_in_value_count_group": 148,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 148
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.29074664964901087,
- "percentile_inc_nulls": 0.4506504804460437,
- "sum_tokens_in_value_count_group": 147,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 147
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2870453095086152,
- "percentile_inc_nulls": 0.4477836213373404,
- "sum_tokens_in_value_count_group": 145,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 145
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.28344607530312704,
- "percentile_inc_nulls": 0.44499584799715286,
- "sum_tokens_in_value_count_group": 141,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 141
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.27994894703254625,
- "percentile_inc_nulls": 0.44228716042548144,
- "sum_tokens_in_value_count_group": 137,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 137
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.27647734524569245,
- "percentile_inc_nulls": 0.43959824429593897,
- "sum_tokens_in_value_count_group": 136,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 136
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.273107849393746,
- "percentile_inc_nulls": 0.4369884139349124,
- "sum_tokens_in_value_count_group": 132,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 132
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.26647096362476064,
- "percentile_inc_nulls": 0.43184783898137535,
- "sum_tokens_in_value_count_group": 260,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 130
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.26317804722399485,
- "percentile_inc_nulls": 0.4292973229467357,
- "sum_tokens_in_value_count_group": 129,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 129
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.25993618379068284,
- "percentile_inc_nulls": 0.4267863497963541,
- "sum_tokens_in_value_count_group": 127,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 127
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2569240587109126,
- "percentile_inc_nulls": 0.42445331962513344,
- "sum_tokens_in_value_count_group": 118,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 118
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.25398851308232295,
- "percentile_inc_nulls": 0.42217960378029973,
- "sum_tokens_in_value_count_group": 115,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 115
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2512827058072751,
- "percentile_inc_nulls": 0.42008383091462687,
- "sum_tokens_in_value_count_group": 106,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 106
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.24862795149968087,
- "percentile_inc_nulls": 0.4180276009332121,
- "sum_tokens_in_value_count_group": 104,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 104
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.24599872367581366,
- "percentile_inc_nulls": 0.4159911423939262,
- "sum_tokens_in_value_count_group": 103,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 103
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.24339502233567323,
- "percentile_inc_nulls": 0.41397445529676935,
- "sum_tokens_in_value_count_group": 102,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 102
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.23308232291001918,
- "percentile_inc_nulls": 0.4059867926766578,
- "sum_tokens_in_value_count_group": 404,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 101
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2305807275047862,
- "percentile_inc_nulls": 0.404049191348017,
- "sum_tokens_in_value_count_group": 98,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 98
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2281046585832801,
- "percentile_inc_nulls": 0.40213136146150497,
- "sum_tokens_in_value_count_group": 97,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 97
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2256796426292278,
- "percentile_inc_nulls": 0.40025307445925107,
- "sum_tokens_in_value_count_group": 95,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 95
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.22088066368857695,
- "percentile_inc_nulls": 0.39653604333900117,
- "sum_tokens_in_value_count_group": 188,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 94
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2185067007019783,
- "percentile_inc_nulls": 0.39469729922100516,
- "sum_tokens_in_value_count_group": 93,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 93
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.21618379068283344,
- "percentile_inc_nulls": 0.39289809798726716,
- "sum_tokens_in_value_count_group": 91,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 91
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.21393746011486914,
- "percentile_inc_nulls": 0.3911582110799162,
- "sum_tokens_in_value_count_group": 88,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 88
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.21171665603063183,
- "percentile_inc_nulls": 0.3894380956146941,
- "sum_tokens_in_value_count_group": 87,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 87
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2095213784301212,
- "percentile_inc_nulls": 0.38773775159160107,
- "sum_tokens_in_value_count_group": 86,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 86
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.2052329291640077,
- "percentile_inc_nulls": 0.384416149313931,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 84
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.20321633694958519,
- "percentile_inc_nulls": 0.3828542053857409,
- "sum_tokens_in_value_count_group": 79,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 79
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.20122527121888956,
- "percentile_inc_nulls": 0.38131203289967974,
- "sum_tokens_in_value_count_group": 78,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 78
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1993363114231015,
- "percentile_inc_nulls": 0.3798489461821345,
- "sum_tokens_in_value_count_group": 74,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 74
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.19749840459476709,
- "percentile_inc_nulls": 0.37842540234884736,
- "sum_tokens_in_value_count_group": 72,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 72
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.19568602425015957,
- "percentile_inc_nulls": 0.37702162995768906,
- "sum_tokens_in_value_count_group": 71,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 71
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.19211231652839822,
- "percentile_inc_nulls": 0.3742536280596307,
- "sum_tokens_in_value_count_group": 140,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 70
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.18858966177409064,
- "percentile_inc_nulls": 0.3715251690458302,
- "sum_tokens_in_value_count_group": 138,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 69
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1868538608806637,
- "percentile_inc_nulls": 0.370180710981059,
- "sum_tokens_in_value_count_group": 68,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 68
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.18343331206126356,
- "percentile_inc_nulls": 0.3675313377357744,
- "sum_tokens_in_value_count_group": 134,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 67
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1817485641352904,
- "percentile_inc_nulls": 0.36622642255526117,
- "sum_tokens_in_value_count_group": 66,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 66
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1754179961710275,
- "percentile_inc_nulls": 0.36132310490727193,
- "sum_tokens_in_value_count_group": 248,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 62
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.17386088066368854,
- "percentile_inc_nulls": 0.36011704693740365,
- "sum_tokens_in_value_count_group": 61,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 61
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1723292916400766,
- "percentile_inc_nulls": 0.3589307604096643,
- "sum_tokens_in_value_count_group": 60,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 60
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.16788768347160177,
- "percentile_inc_nulls": 0.3554905294792202,
- "sum_tokens_in_value_count_group": 174,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 58
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.164977664326739,
- "percentile_inc_nulls": 0.35323658507651545,
- "sum_tokens_in_value_count_group": 114,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 57
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.16216975111678367,
- "percentile_inc_nulls": 0.3510617264423267,
- "sum_tokens_in_value_count_group": 110,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 55
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.16079132099553284,
- "percentile_inc_nulls": 0.34999406856736126,
- "sum_tokens_in_value_count_group": 54,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 54
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.15808551372048496,
- "percentile_inc_nulls": 0.3478982957016885,
- "sum_tokens_in_value_count_group": 106,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 53
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1567581365666879,
- "percentile_inc_nulls": 0.3468701807109811,
- "sum_tokens_in_value_count_group": 52,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 52
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.15545628589661775,
- "percentile_inc_nulls": 0.3458618371624026,
- "sum_tokens_in_value_count_group": 51,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 51
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.15162731333758772,
- "percentile_inc_nulls": 0.3428961208430543,
- "sum_tokens_in_value_count_group": 150,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 50
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.14912571793235485,
- "percentile_inc_nulls": 0.34095851951441336,
- "sum_tokens_in_value_count_group": 98,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 49
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.14667517549457565,
- "percentile_inc_nulls": 0.3390604610700304,
- "sum_tokens_in_value_count_group": 96,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 48
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.14427568602425012,
- "percentile_inc_nulls": 0.33720194550990545,
- "sum_tokens_in_value_count_group": 94,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 47
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1431014677728143,
- "percentile_inc_nulls": 0.33629245917197204,
- "sum_tokens_in_value_count_group": 46,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 46
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.14195277600510525,
- "percentile_inc_nulls": 0.33540274427616745,
- "sum_tokens_in_value_count_group": 45,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 45
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1385832801531589,
- "percentile_inc_nulls": 0.332792913915141,
- "sum_tokens_in_value_count_group": 132,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 44
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.13638800255264838,
- "percentile_inc_nulls": 0.33109256989204794,
- "sum_tokens_in_value_count_group": 86,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 43
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.13317166560306315,
- "percentile_inc_nulls": 0.3286013681837954,
- "sum_tokens_in_value_count_group": 126,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 42
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.13107849393746007,
- "percentile_inc_nulls": 0.3269801099292182,
- "sum_tokens_in_value_count_group": 82,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 41
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.12903637523931077,
- "percentile_inc_nulls": 0.3253983945588991,
- "sum_tokens_in_value_count_group": 80,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 40
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.12704530950861515,
- "percentile_inc_nulls": 0.32385622207283804,
- "sum_tokens_in_value_count_group": 78,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 39
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.1251052967453733,
- "percentile_inc_nulls": 0.3223535924710348,
- "sum_tokens_in_value_count_group": 76,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 38
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.12038289725590301,
- "percentile_inc_nulls": 0.31869587567717195,
- "sum_tokens_in_value_count_group": 185,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 37
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.11946394384173575,
- "percentile_inc_nulls": 0.3179841037605283,
- "sum_tokens_in_value_count_group": 36,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 36
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.11499680918953414,
- "percentile_inc_nulls": 0.3145241013879553,
- "sum_tokens_in_value_count_group": 175,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 35
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.11152520740268024,
- "percentile_inc_nulls": 0.3118351852584127,
- "sum_tokens_in_value_count_group": 136,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 34
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.10899808551372048,
- "percentile_inc_nulls": 0.3098778124876429,
- "sum_tokens_in_value_count_group": 99,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 33
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.10409700063816207,
- "percentile_inc_nulls": 0.306081695598877,
- "sum_tokens_in_value_count_group": 192,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 32
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.10093171665603062,
- "percentile_inc_nulls": 0.3036300367748823,
- "sum_tokens_in_value_count_group": 124,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 31
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.09786853860880662,
- "percentile_inc_nulls": 0.30125746371940365,
- "sum_tokens_in_value_count_group": 120,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 30
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.09268666241225276,
- "percentile_inc_nulls": 0.297243860967219,
- "sum_tokens_in_value_count_group": 203,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 29
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.08982769623484366,
- "percentile_inc_nulls": 0.29502945944877224,
- "sum_tokens_in_value_count_group": 112,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 28
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.08638162093171664,
- "percentile_inc_nulls": 0.2923603147613587,
- "sum_tokens_in_value_count_group": 135,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 27
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.08306317804722396,
- "percentile_inc_nulls": 0.28979002728459013,
- "sum_tokens_in_value_count_group": 130,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 26
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.08051052967453731,
- "percentile_inc_nulls": 0.2878128830716913,
- "sum_tokens_in_value_count_group": 100,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 25
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.07622208040842371,
- "percentile_inc_nulls": 0.2844912807940211,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 24
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.07328653477983404,
- "percentile_inc_nulls": 0.28221756494918737,
- "sum_tokens_in_value_count_group": 115,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 23
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.06935545628589657,
- "percentile_inc_nulls": 0.2791727628613231,
- "sum_tokens_in_value_count_group": 154,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 22
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.06506700701978307,
- "percentile_inc_nulls": 0.275851160583653,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 21
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.060472239948947015,
- "percentile_inc_nulls": 0.272292301000435,
- "sum_tokens_in_value_count_group": 180,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 20
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.05465220165922147,
- "percentile_inc_nulls": 0.26778441219502547,
- "sum_tokens_in_value_count_group": 228,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 19
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.050976388002552664,
- "percentile_inc_nulls": 0.2649373245284511,
- "sum_tokens_in_value_count_group": 144,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 18
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.04533503509891512,
- "percentile_inc_nulls": 0.2605678358179445,
- "sum_tokens_in_value_count_group": 221,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 17
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.043292916400765824,
- "percentile_inc_nulls": 0.2589861204476255,
- "sum_tokens_in_value_count_group": 80,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 16
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.03793235481812385,
- "percentile_inc_nulls": 0.25483411760053776,
- "sum_tokens_in_value_count_group": 210,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 15
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.033643905552010245,
- "percentile_inc_nulls": 0.25151251532286767,
- "sum_tokens_in_value_count_group": 168,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 14
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.029329929802169752,
- "percentile_inc_nulls": 0.24817114160306852,
- "sum_tokens_in_value_count_group": 169,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 13
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.024735162731333804,
- "percentile_inc_nulls": 0.24461228201985052,
- "sum_tokens_in_value_count_group": 180,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 12
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.020804084237396325,
- "percentile_inc_nulls": 0.24156747993198624,
- "sum_tokens_in_value_count_group": 154,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 11
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.01850670070197835,
- "percentile_inc_nulls": 0.23978805014037718,
- "sum_tokens_in_value_count_group": 90,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 10
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.015749840459476694,
- "percentile_inc_nulls": 0.23765273439044643,
- "sum_tokens_in_value_count_group": 108,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 9
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.013707721761327396,
- "percentile_inc_nulls": 0.23607101902012728,
- "sum_tokens_in_value_count_group": 80,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 8
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.01084875558391829,
- "percentile_inc_nulls": 0.23385661750168052,
- "sum_tokens_in_value_count_group": 112,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 7
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.007938736439055516,
- "percentile_inc_nulls": 0.23160267309897586,
- "sum_tokens_in_value_count_group": 114,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 6
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.006024250159540556,
- "percentile_inc_nulls": 0.23011981493930167,
- "sum_tokens_in_value_count_group": 75,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 5
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.004084237396298707,
- "percentile_inc_nulls": 0.22861718533749853,
- "sum_tokens_in_value_count_group": 76,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 4
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.00255264837268665,
- "percentile_inc_nulls": 0.2274308988097592,
- "sum_tokens_in_value_count_group": 60,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 3
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0.001735800893426953,
- "percentile_inc_nulls": 0.22679821266163158,
- "sum_tokens_in_value_count_group": 32,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 2
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 0,
- "percentile_inc_nulls": 0.22545375459686035,
- "sum_tokens_in_value_count_group": 68,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 1
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "percentile_ex_nulls": 1,
- "percentile_inc_nulls": 1,
- "sum_tokens_in_value_count_group": 2231,
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value_count": 2231
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "percentile_ex_nulls",
- "type": "quantitative"
- },
- {
- "field": "percentile_inc_nulls",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "percentile_ex_nulls",
- "sort": "descending",
- "title": "Percentile",
- "type": "quantitative"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
+ "data": {
+ "values": [
+ {
+ "cartesian": 1279041753,
+ "cumulative_rows": 243656,
+ "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99981. This represents the reduction in the total number of comparisons due to your rule(s).",
+ "row_count": 243656,
+ "rule": "l.first_name = r.first_name and l.surname = r.surname",
+ "start": 0
+ },
+ {
+ "cartesian": 1279041753,
+ "cumulative_rows": 268697,
+ "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99979. This represents the reduction in the total number of comparisons due to your rule(s).",
+ "row_count": 25041,
+ "rule": "l.surname = r.surname and l.dob = r.dob",
+ "start": 243656
+ },
+ {
+ "cartesian": 1279041753,
+ "cumulative_rows": 298602,
+ "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.999767. This represents the reduction in the total number of comparisons due to your rule(s).",
+ "row_count": 29905,
+ "rule": "l.first_name = r.first_name and l.dob = r.dob",
+ "start": 268697
+ },
+ {
+ "cartesian": 1279041753,
+ "cumulative_rows": 307023,
+ "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99976. This represents the reduction in the total number of comparisons due to your rule(s).",
+ "row_count": 8421,
+ "rule": "l.postcode_fake = r.postcode_fake and l.first_name = r.first_name",
+ "start": 298602
+ }
+ ]
+ },
+ "encoding": {
+ "color": {
+ "field": "rule",
+ "legend": null,
+ "scale": {
+ "scheme": "category20c"
+ }
+ },
+ "order": {
+ "field": "cumulative_rows"
+ },
+ "tooltip": [
+ {
+ "field": "rule",
+ "title": "SQL Condition",
+ "type": "nominal"
+ },
+ {
+ "field": "row_count",
+ "format": ",",
+ "title": "Comparisons Generated",
+ "type": "quantitative"
+ },
+ {
+ "field": "cumulative_rows",
+ "format": ",",
+ "title": "Cumulative Comparisons",
+ "type": "quantitative"
+ },
+ {
+ "field": "cartesian",
+ "format": ",",
+ "title": "Cartesian Product of Input Data",
+ "type": "quantitative"
+ },
+ {
+ "field": "reduction_ratio",
+ "title": "Reduction Ratio (cumulative rows/cartesian product)",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "field": "start",
+ "title": "Comparisons Generated by Rule(s)",
+ "type": "quantitative"
+ },
+ "x2": {
+ "field": "cumulative_rows"
+ },
+ "y": {
+ "field": "rule",
+ "sort": [
+ "-x2"
+ ],
+ "title": "SQL Blocking Rule"
+ }
+ },
+ "height": {
+ "step": 20
+ },
+ "mark": "bar",
+ "title": {
+ "subtitle": "(Counts exclude comparisons already generated by previous rules)",
+ "text": "Count of Additional Comparisons Generated by Each Blocking Rule"
+ },
+ "width": 450
},
- "y": {
- "field": "value_count",
- "title": "Count of values",
- "type": "quantitative"
- }
- },
- "mark": {
- "interpolate": "step-after",
- "type": "line"
- },
- "title": {
- "subtitle": "In this col, 11,403 values (22.5%) are null and there are 537 distinct values",
- "text": "Distribution of counts of values in column substr(dob, 1,4)"
- }
- },
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1862",
- "value_count": 2231
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1860",
- "value_count": 1753
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1861",
- "value_count": 1751
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1859",
- "value_count": 1616
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1857",
- "value_count": 1599
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1858",
- "value_count": 1594
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1856",
- "value_count": 1362
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1855",
- "value_count": 1299
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1851",
- "value_count": 1204
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1850",
- "value_count": 1164
- }
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAACjCAYAAAA0L44AAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QX8ZUX9//EBJAQUCQUEEQQMuktSurtEurtEOqV+KCCd0kh3SKM0SHdKCAhSiiil+H88x/98PXv3nHvvud/du3fvzjwe+9jd7/eciffMmXnN5zMx2n/+85//hByyAlmBrEBWICuQFcgKZAWyAh0qMFoGyg6Vy69lBbICWYGsQFYgK5AVyApEBTJQ5oaQFcgKZAWyAlmBrEBWICswKAUyUA5KvvxyViArkBXICmQFsgJZgaxABsrcBrICWYGsQFYgK5AVyApkBQalQAbKQcmXX84KDE6Bv/3tb+Gdd94JU089dfjSl740uMhGwNuffPJJ+Mc//hEmnnjiytTTvr/RRhttmObws88+Cx9//HEYZ5xxwthjjz1U3K1+Pywz024ZP/300/Daa6+FKaaYIow77rjDMgvDNa5uatlpQT744IPwwgsvhK9//ethqqmmCmOMMUanUeX3QgjN9usO62+5leCNeSlLv91vsFVarX7/4YcfRm0mmGCCVo/W/n2Z5nW17pYOZYXLQFm7yvMLWYHBK/Dcc8+FzTffPNx5550Dka211lrh5JNPDhNOOOHgE2gRA4i96qqr4sC71FJLdZTexhtvHM4666zwjW98I7z99tulcbz11lth8sknj7/bdNNNw+mnn940LXm5+eabw8MPPxxmn332oZ4t/v6ee+4J2223XTjwwAPDfvvtFx5//PHwwAMPhHnnnTfMPPPM4YQTThji9x0Vss2X1l577XDxxRfH+lxwwQWHeuuvf/1r+OlPfxp+/etfD/xu7rnnDmeeeWaYccYZ20xlxD3WTS3rlvLVV18Nm2yySbjtttsGXv3Od74Tjj/++LDsssvWjW64P3/DDTeE119/Pay66qpNJ2JlGfnXv/4VxhxzzPirRvgwuTJJafY9tlu4zz//PIw11liVjw/2cJivfvWr4e9//3tTaE2J33TTTWHppZceKi/zzTdf+L//+7+w8MILx9+lOOV9MJPz+++/P4h7o402it9nY0iAZ3LYTKN2tS4+p++4++67h3hVfSr/0Ucf3VZ7adUXdZKvdt/JQNmuUvm5rMAwUgBkffe7340d6le+8pWw2mqrhd/+9rfhL3/5S/z5U089NagOsZ1sPvjggwHQGNQuv/zydl4Z4hl5nXTSSWP+f/nLX4YtttiiNI5f/epXYeeddx74nTKPP/74lektvvjiEQyqgLL4exapCy+8MKy44orxjw53l112Cccdd1wESfEUf1+7kDVeSJ34HXfcERZaaKEh3vz3v/8dllhiifC73/0u/vzHP/5xePTRR8PTTz8d/8+qNt1009VIrfuPdlPLOqUrfktTTjllMMlhAT777LNjNLfffntYdNFF60Q53J9daaWVwjXXXFPZxptloBlQ/vOf/wzjjTfeMAFKFulk9V9nnXWG6I9Yfk0kBxMSlLUDpgkogdUKK6wQvvjii/DSSy8NTMZ5SID0sAJKE9Uf/vCH8Ts9//zzhyrmDjvsEHhmTjzxxGHeTyegBJC8GOpB+fW3fmYy0io064tavTvY32egHKyC+f2sQE0FwNdpp50WllxyyXD11VdHl62BgqXq+eefD9dee21Yfvnlw7PPPhutWiDly1/+clhkkUUivLEqmjn7s/3224c111wzvPvuuxFMv/Wtb8VO8NJLL40WuuWWWy784Q9/CA899FAAY3vuuWcYffTRw3rrrRdnwoDQIHzMMccMVYrrrrsuHHzwwRFwuRHB50EHHRRd9Ouvv37s0L3PCnTRRReVqqBMwGmGGWaIf5977rnhJz/5ycCz8rDPPvuEF198MXaYjzzySBxoE1A2+/3LL78cACvrFLjdaaedon6g/Gc/+1m09KbfszbQGHQaDOVljjnmCFtuuWW0FBvgaMXiwOIBSJTNe5tttlnMLw333Xff+Pe3v/3taIncY4894gDerBNXH8osPgMhLQVpn3rqqWH33XcPhx9+eNP6Zn3dcccdo+XkvffeC7feemu04P785z+PdXLXXXeFOeecMw5y3/zmN2O7eOyxx8KGG24YzjvvvPDmm28GYLDXXntFUABi2oK2xZqzwAILRAgXh/yecsopMc+33HJL1HaxxRYbQktt4KSTTgqXXXZZHFy1TeWYdtppY9mq2o6Bv1nbnGaaaWL7ahZ3saGxep9xxhmxPapXbVs44IADIrSpUxqZyPjZlVdeGX8P+n1Lk0wyScv8ABh6sK6zLNLId6H9PPnkk2GbbbaJVn6D/n333Ret5BdccEH8/kwWZp111vCjH/0ofstHHXVUfFd+QMuRRx4Zv42qvMmrvoLn4qOPPortUR0KjTBWBMptt9021iO3rHrdYIMNosWWFV1/oX0IdGPhVb4f/OAHA9IWgVL9li0pYaHTbk1I33///egZ8B2IX6CNvLL40UB/J139XQLKX/ziF7GutUE6auONIQFlcfJrkub7pqP+iYaNQNmsDUqDh0b66sikY5VVVgnrrrtuaARKXgX922STTRbrYuWVVw60NsnSnqr6WW1ZUHfKqP58c6leUlssljcB5e9///sBy2vRQqstaufN+v7GvkifI11xKoNy6scGY8WtGvIyUNaEgfx4VmCwCiTI0hHpRFMorn0BiNx2OsxZZpkldkZ//OMfI7wAKYPh/vvvHwd5nTBgMKMFU9zprHRm0oJ4DNLi0qEb+MGMDld8W2+9dRzQikFnCUAFgyEo9b7BQpriBhMJpo499tihZElWUJ39IYccEoFUXGBIYEkCZgLrkvWk0hAApXWZzX5fdHkDBAO291heWSqBV9ElzjWeygleb7zxxpgWCKNBca0SWBCX8MYbb0SoAmqgQTmABU2SW6wZUMoLkKWdAb0YUp3La7P6lpdk+aSV9FNQB/IlpGUFoDgtp0gw7/cGeHUBJIAmqJloookifCVXKTciUE5BnOC1qKV2a5AUDxcjS7CB1iDZrO0of7O2qR01i7uxkQFY3wWgVpaqYDnJJZdcEr8P5QV+/m1iof6rvhX58XuAZkJgwOdNEIAI3YvpqhsQ/v3vfz8+T5NkYTJJYU3TBr3Hqq5NHnbYYZV5u+KKKwYATX5NmFKoAkq/l/b0008/0IZNLlj0gZN2BjJSn6He/bu45rQIlOq/+DvWdm0ZaJlsiY8GJouCySG4Uze+Z+2WRd6/0+Sp+K15N7l5y+oxARVtE6yqN9+v79QETygCpYlSVf+lDeqDlEOgSfIemMwD1WShBF/aDj2BMeguuryBeLO2A+KShbzYp4jPWszGkICSliaPYN44AUpT32kC2azvL/ZF0tQW9Rfyoc/1vejvtOthHTJQDmtFc3xZgRYKpA7p3nvvjZ1GWWDJ2HXXXQcGaTPyeeaZJw4QQMCA0A5QGrRYhFghDEgJGlq5vJNbLgErwE2WtVdeeSXO0IGKTopbsSzoaMEDQAEj3HECILYJyUAKcFZfffUIJAbLtJ5QObl3mv2+cQ1lo8u7uO5v7733HpiRG4B0tAYP+hio/vSnPw0MFAY3FjtWHR07Cxg9DKAsWgYbdcDS5N8GwWZAyXIMDFhzDKid1DewNjDLNwsYbbj/DOYsQQY7VkTtSbtKQCnPLLjagME41T9tTFJoDzbWWGONmC31CqIApfplkaFF4xrKBHLqlYYAiRXLACxOgFrVdljltY2qttks7rR+UF59E8nKkpYNpHadNFY/AMJkS3jmmWdiPsGEgRVYsHA1y8/3vve92DZZ4mabbbZoEWYlAoasbgkopWOyIT6woy2bhLAGmbz5Xr1TdHmbqDTLmzZjTbG2zQLPom0yKDQDSvkFlNYWs9Bqq+rUdwcuAJk2wzvBQ+CZYigCZWN73W233cIRRxwR65ierNOs/yzg4gbUvCvaRnIb+z+vgfS1r8Y+kMfkN7/5TTjnnHPiJKUYqtZQegaw+xYtoykCpW+uWRvUt5oQ05OHwvchbfGBRnVanLj5RkzshTKgrGrLJrms0PoQWpvUJEBtBpSNmgNQfaKlMXWAkidCevoOExoTVxNuQfriHZYhA+WwVDPHlRVoQ4E0QKW1fukVAxwrApe2gcCsVOeb3FNgREfOqiEUgZIVTQfYaKEEczpynQf3V5oZtwLKNKgX1zJy9fk/gDQQNgNKGwQ8wyphUDGQcBkCDxYyoMi6AXhSp65MyXorHRDT7Pd1gBJUWQ4gcBsZFGjNWiVw3yW3HlDhOuUmMqCrB4OOgRToF0M7QMmCrB4b16uyGrMYfO1rX4sW52b1zTphUEhWQPqoj7SuikucW9FgATgTUBrItTeWsbR2VVnBj0E1WTZTmTynXYKPtNnJ7xqBEmgD7hS0K3XqvVZt54knnogAV9U2m8Xd+HmpUxCTNkOZaIGnP//5zxHq6EH7+eefv/TL5DrURqvyYzNV1W5x4LPVVltF+FA3rGKCdgWQkiUzJeybpmkRKNVFs7yB0QSAQEebMSkQmrm80ya5BGPA17/1GYCEq5eVFlSZkDRuDCsCpTSLLm/LQvwfZIGVotVUvgCwsvtW0qSiUfwEZWkDTerb9BEsosWQypCgze/0dyZP2m9aRlMESm1ef1rVf/kmfTNpcllML7m8iz8rxlMGlFVtOfVnwJulsLj2vBlQ6vOVQT1qo9pAmpA2AmVj31+c3JpcVk1ih8fa7QyUbQBAfiQrMCwVSCBlINJZWldmEGKFMrj50FnsDCbFndHLLLNMHCQBmIEOKOpcPMdKZlBrBEqgAhzqAiVrFzdQ6qy5XqzjFNJmkmZAmSxiZbqxqnGLATYdsfzJJysHwKOBDty6pWa/rwOUOlVrtwQDjfVNaeBIkN24UaAIlCxNQICVwvo4LsJknWploWRBSVYXnb+4lJU1j+WKxqy+zeobTHQClGmAThMIZVX+ZG02OVCP4F8oAmURBopAqd2x4qon8K2dWJ8nAFiQ1aztsGABuLK2acBtFrdBthiSFRlo+2ZSHRuQ5QlQqi+WHWUHEICIxV2bFp/fV+XHd0Mb+WLRnmmmmWK5Lc9IP/cdJ9CXt2SVshwC3KoDlskyoARBzfJmwuBbYNUFVGki0Qwo/Y5lSv7Spjjpg0n1oy1px4Cq6DIu6trOGkoTGHGYgGjf1n2rO0AJ6NVNcnEDIs+Z9Kqbxm+tHaBsXEMp79JP7agIlL7NZm3QO6yG119/fVwDbjLgWzQRSy5v4K5eWem1I3BmclEGlFX9bFonndau8ixIr5XLu7iG0vp21unUxkwGmvX9RaDkDbKO2oRUeROMm4zweBUt/sNijMtAOSxUzHFkBWooAB7Sgu20qSWtrdNxcG9ZB2lGK4BKFj8uIQHMGBgNMN63kBxkCu0Cpc0vOmRwp4PiIioGLj0uGvFb0waaDBY6VpYN+WsGlNyxOmjWSB2awBphIDMgsyjp1NKRHzYqGRzELRg4uWSb/b4RKAGEwcogzBIEoorr/gzw3D7yDea4uAx0jeu6kuWnCJSsxjZ4sIqwwrEWyGtyMTdzeYNHg28Cca5nAwZIoYeyAuxm9c3y1glQGhSVW31KD+yBHK57dQt2uePTrl2a01EZq4CSi9SxTMpjQiPfdBa/fBqcm7UdcFoFcCZKzeLWXouhuA5XeWirXpLWCQTo7Ge08I2kjS0An5WuGVAmOAWO4rf2jFXOpo60BKIIlLQzEaK1NXHWq2nzybWclkD41qXrW6nKG+uU95TNRJTLNK2fbebyVkbfgXqVNk1smhGAhPW/QqOXJGlbBEptvNFKK19c3NouPbQbkCOY9LKe00bQB4BMgJe8E50AJQ1Sf2DSnSyjtAPJRaDUrpu1QSCp/6ST50CjiZZ+iXciraH0c5MOmlsvqZ+qA5TJuirvoE6bEeoApXXJYDpZwdNSnaq+v9gXseCnscZ3b6Lh+9b3awNpE1uN4avpoxkoh5WSOZ6sQA0FACFXcNFdZLDi9kxuWAOdzi5tVNGBGPwtNgeY1qoltxoLAUtXI1Bav2NTiDh0uKkjM2AYbEGcwZb7qhhYnkBZcW2VTsiAZlDnwgFmxU026X3WCVY4wdpEVokUkkXJYGtTR3EDiHhtxNHRJRdTs98noExWWmvX5AfYKLP4gE76PSswuLW2KgW6yYf1nY2DHOiwzlOdgPpk9fBugjR6miCAhmbnUOrIDUbFtOmuztLarGb1DebBSQKXNCFILm9uZPE0rqGUZ4O5YL2r+jPQW1N66KGHDvzcJEVbtKYQiIPsMqBMWhoogVax/ZqYsM61ajtpU05V22wWd9knpg2rR3+nYDLAlUt3SwBMgDyTQEq90Z6erfIDllia0oROGsniaB0il3URKNOJBQBF8J17Ny2PYBH1MwFgAJaqvFnTqq2pN0E6CUqqzqFUNq7WNDkDrrRO8KC9p82AvlU7fxtDq3MobbJh/fI961t84yYC+qNkDU1rmlPc+isTurJvLUF4WvNbzE/VGkr9F9jmORCKQOlbbtZ/sU77pot16nvQbuimTp1yoI34Lq0xTtb9tHnOcoW0KaeqLZtM+mZ8S4I46V91VmjalFM8fizlx/vWQPIUNev7G8+hNLG35Cctb9Fva0/+HtYhA+WwVjTHlxWooYAO3WDOApbckMXXdUisPiwEZpqNlgKQJHRyGLoByfs2NuiMy4IBTfpAL0FijeK19Wi6LUhHXTZjbvX7Rr1YuSwjqLqJRqfMMkVz6xfrBJYKWlXp1SouZQEaJg2sB43lbVXfreJPv09rKFlyAKR6bKw/dW9iMph6NbGQZ8s1GjUZbNtpFneZDuDRej/WqrIjUbR39Sdf1nnWPTZFu/G9aqetbjmSlu+GLmVuRbpbXmBds9+3yps+wjNpA0877YAe6XzGMkArQnA78ZU9Y2LKSkzPshtdlFF7d7lBslh2mlYn77Vqg5Y+0Fb+06bBTtKpegcY0sdmLpDPMsoibXkAS+NgQp2+P/UrYFS/U/f2nXbzmYGyXaXyc1mBrEBWYCRRoAiUvX5o+kgiaV9kM1kCFSatH+yLgvVoIawX5iUQiscGpaPKejTbHWcrA2XH0uUXswJZgaxAbyrAdWcJAJdcuvqyN3Oac9VNBWz8sjzC+sHG3dTdzMeolJYNipaS0J2XiXXS+tN+DBko+7FWc5myAlmBrEBWICuQFcgKdFGBDJRdFDsnlRXICmQFsgJZgaxAVqAfFchA2Y+1msuUFWihgF2ONgYUN/NYwO5GHZuDRsQC+l6uNIva627i6OXyjMp5G5XrUtltBCvbDFY8Y3FUbh/Ds+zuPHfBgLNQ+zFkoOzHWs1lygq0UMBxRNbyOA7DbkHH+BTvmXYcjYNwB7MDuCoLjsFwtEyzu5eHVwU6T9ORG+kmkXbTsYPZGXXOk+yHYLOA21zq6jC8y95p/bSbL0cJOd6m8ciddt/vleccH+aYKLuT6wRHytiw5W7yYhCPMxcdu9VrwTFEjuZKZ6WO6Pw5XsgJBOnu8jr5UQZrKR0z1I8hA2U/1mouU1agiQIGbefq6dgcH+EuXtcROujbkSjO7LNgH/S5HWJYB2cVso464LrbARQC6bJrz5rlpd+A0iRCPVfdJd/teknpdVo/7ea3X4DSxMYZjM6urRNGRqB03qUzH9PB/3XKOzyedTi7w9TPP//82tGzEDt31OTd4e/9FjJQ9luN5vJkBVoo4KYOlgiHfruxxYHX6c7n9GraIexgb4ccu9HDjQ3c4Y4ecbe1M+Zc0ejnLJkOgBavg3QNAmbhzl5j+XCQL4B0jl+6Ocfh2g7Qdng5ayiXO9D188Zz0pyp5/5dt20YTL0z++yzx9s5HJ6uc2d1cmvQXHPNFX9ud6W4nEtpIHUPuoOtE1A6MNrPXYUmOKTZnyWWWCIeii095xbakelwYoc5S9tB2aAYkLHkOsDZOZ2NoSx9VwO6Rs8ubPmml5srHAxtR7aDwp2l6EpE9yQ7YFkZBHcjyzvLonyIxzmT8ik+mjkQngUFmDn4mb5u2HAQuoHQbSluEXGAtOcuv/zyaKFmBXJ1oaUObgGyC9iEQv3Ll/MGpSsO6bByqSt5snxC+m5yEdqpz6p8FoHSbSzakTNDLTeQDxYeemtrDom2a9nvquKTH/WgHFy69JY/rkd1J07tSHBQuyOW6FkMNFJuZ/j5dhxm7lpQoSw/oKGZPlXtp6y88q2+xKnuHR6vrtx6os14R3ut0kXbVy6XACywwAKxPfNKlFkoxe+WG+84+BywOoDdla88Gqm8diw3Wueq2qRvptjuXKBQVn4TTNoqT7pX3OUEzkw0mfP9p2+5rC9SPu3WNyG4CEA7UfdV7btYx43fh8PHq+IrAqXvwpWaDgp3pu1uu+02sIO76jsYDJD2+uCWgbLXayjnLyswjBXQSaeByC0w7vht5vo0WLg9xWAGIg0yBh5wohNNd2MbiKzJBABm8M5fc2WYwckgaN2WgdjNHSwO7r91WLSbLtz+wa3lNhnuWNfDpQAUU1pA0YCmszdQyDfLhfKIU4cO9MTLtXnssceG6aefPkIC+HDQdAJKFoKdd945gong/2CZ1YcL0Hsste7SNUAZHN0q4o9B2sAMUlk7HWBcDMkS1pi+s+gMmDQAqm4iohuQohFwNUCBBVoAcemnq+scli1voNONK96VfzcviZv1wwQB8ANEN5fIC6s0yHGTEo2mnnrqAZe3eqC5gc5dw0ACJLJYu2cd1NBSOwDh4NEh0OJyywxrC0AFBYChVX3SqVk+U/3Ij7wAP2AsT66/pKnDy0GOctKrKj6HSisrCFG/yu7GEG0KrIub7gDVTSjaVtHt6+Brkyj1DLa1D+VU57Qty4/JRpU+Dravaj+N5ZUeWHStqu8q3aTlhhPpmpj5tkySqnRxg9Ntt90W277JmHoygSkDSm2KtuBNHWtfJpYmN9qPoA25qUufUQxVbVJ/UWx3JipV5fddaMvS9p61htL2x8RCe6zqi0x+fC8maYJJrTr3vVS177HHHnugCL6/Yj4dIF8VXxEItQcwCR5NiNWJ/Jp8VH0HJii+I/1X40UVw7ir73p0GSi7LnlOMCsw4hRIVzCybLHGgAXWDRBWFgycbvMAkEsttVR8RKeuszfItgJK6XkWqLC4ia/o8tYZ+7mBXIcORA3gxbMTwRKro0EFHIABg5LDga2HBJfpGkFWUNfYGZRAYAI9wAQuQGIroHSrBVgywBrU0zWHgNJgwfIqLpa6dOd64xV2Vem7lk8caSkByzA4shnKYE+HNHhPOumkERgM3kkDFhEAzTqY7k4GDQZA8AUiwYW8gXRaACDQQd9U78U1lODCulbX4hnU6QZOgSngStdvnn766fE6O2UGTECFhTq1KevKLKNoVZ/aULN8FoES4NDWZMQADbDlQ2DVNpDLT1V8oMi1d+lq0XTfuzbk3yxRoImVnXWa5bK4+Uq8LITpVhN1TwPtuCo/2kuVPr6Dqvaj/ovlpSfoMJliWQSUtNEeii7vqnxoW74THgLPsHK6ock3XwaUvmsTGkEdAi5WQm0BZGpT2iQt03Whqc8AlGVt0nKaYrtTF1Xl1w/pD7R19SE+t9jIk29ffVX1RausskolAFa17+JtRwko0/dhstAKKFlpAaG/06RUG9In8gpUfQf008c0Xks74kaFYZdyBsphp2WOKSvQ8wq479hglEDPgMlNzKKX7hBXCAMmywg3mc0zLDXJrWtAM2jqSItAmaw5yUJZ3PTBJSUeA3kRKFkWWAHBDAsRq5MBr9jZJ+hsFBcM2EzEMmAAZ9VLoMeVDT5Y0Iqh6FJttFCCKdYqZQfLCbLlEWQASjBjYGsMQGqmmWYa+HFV+n4O/riKBbCnrCzA3HXAMm0+YHUDy6y86a5uz8snd166w5jlmAXTnccgG/CwwlkPy3qcgLK4drQIlMmtDyS9w2prOQRXY7rvWl7BLosZ6xG90+Drd2CDPjRoVZ+ebyefja5BehTvDhdPupu+Kj4WTG00tQPuautG01WHrPXKIS0Tn8b2oiwmFcBVKLafqvyAryp9mrUfE4Di2jzAwc2rDpRTYDFuBMqqfJhEmHwUJzsmG9pBGVD6ntKk0TdoOQwABossnKCeTmWTT8+UtUnvFdsdy37V92M5iAmfcu+1115xGY32r7yAkpVa+yrri0yqigBISzDMQlnVvqv6BT9vBMpifKld+u7KrsIEku4Ir/oOUj+prk0m+ylkoOyn2sxlyQq0UEAnBkh0tOAhzZa5YYBLCtxLwMTvDWZFq4QOE4yBOYN1AotkyUtACQ6TC6oKKAEUS4g/IAfIWB8GBFIASixlBuo0sCoH9zVrJqsHtydItmaK1ZJVw7o6lg7B4GpgAQdFC6UBjvsJYBgwuW+BM7eetaNAUh5ZRgGT+FlruQ8Fz3ApW69YPAqkKn3WsBSP9xMocueystIuWeCAApBhfWkESnWTrCLAnfXJ+6zO4FwdgS+Th1ZAKf9u8DCpMHByFdKXdbS43g5w+L22ApjSUociUGoPrepT22snn41AyUXN4qWuBdY7bUKaVfHRT7tM7cBaW7qlXd4LLrhg1Fd9sUKyphUDDQBAOgFB/W+yySZx0lGVH5BQpU+z9gNQikAJ7FmOTfq0dXXq220Eyqp8sLKbFKTlEMoFoLlpy4CS3ukGF9+uNkFrbY2Gvg/WSpbwxgAoy9qk77kIlACz2fdjqQurujbo+7W+NQGl5Tl0LeuLWEx9x2npjomBfkFbq2rfRZhr3AwGKKviS+3ShNskxERQfyHo71gt3c9e9R0kr0aa1PfToJWBsp9qM5clK9BCAesMWQJYtFibBAOVQYd7UMecNq5wdVp7aMAFYlxVOkFruLhtDS5cUKwJwMyz3HatgNKAxuJgPaX1gTpvaYuLm5VrT3wppBm9AddAI+8rrLBCHCiUBUywCHDxGXS4CsGOtXDiZqVheRGngS8NcMoNxLhOL7vssripBDisvPLKsbwADTyADWACBA1Y4Jb1BkTKEzd72jiS8sziWJY+fZXRPcodhmx3AAAgAElEQVRgJl2RaFAycLYLlCwjBmZlBlnWiXGjcY+KAxQrL3cni6L6rbJQql/5MtirX+8azC0XAGCAhvVXe7FxgiWoCpiAdqv6tCmjnXw2AqX8qR/amVjIh7VqwKsqPoCmHoCwdaDW/2o/CShBMmhkzeZebVzTxjoIvljqTMBoaAIFKKvy4xuo0qdZ+9HGikCpjYM6cKQ+tBtrb7VHEzrl5xauyodvihWb54H1UJs1aaxaQ2mZibozebERR5l5KNJkRtuusqr5rsraJGgrtrs0Oaz6ftKSBDCcLKEJKE1yq/oiAGfyJF79k2/CJA1QVrXvtBlLuRqBMnlyyuIrtkswP9VUU8XNXdqPvkF9mMRVfQc0YL1Mk+1+GrQyUPZTbeayZAXaUMBsGrSxMAoGORbBa665ZuBt4MbdZMDmCrUTGmwIOkMdqMHX4JYW6LMsGIBbAaUF8wZL1gvWDusjWQ9BArABV0X3uzTBZ/H+W7AHxoAiK6H1fAYQLjHr+lgP5DO5j20GACNAj9sPEKTBTfzcoNbPsY7SxiBOA4Gr3gBjbaP8cTsmlzUQMXA3nt/nGKay9FktQA1IU1760p1lpgwoud4BbtGSacBkGZEngS4GW9ZU5aSvAD6ANhDkEkzl9ruiy9vkQP6T9Rdos5Ky/hkgUzoAmhVP2mXAxHJkjV2r+gRz7eSz8bw/G5BYn9W1ID8sfqxuVfFpj8pjwiDQElwmoAQBQMgkh5u3MSTLr0mDZQT0YK3zzVTlx2SkSp9m7aexvNonC7HAEq/+AJeJje9BfrVpm9/KdAE62qz3fLvaKihmoS2zUNIBWAnaKEt3Wk/KWm7CZzJQFgBlWZu0xKDY7rzb7PtJ9aHv4eIWfBdpKUhVX6Q+pWOyoB1rz74ZQFnVvovlSDql48TUe1V8xXrybQBm/ZcA2NWNvqTqOzCJMRlMVvNSQUfSH2agHEkrLmc7K9CpAjo87qDGMya5PEEEq0hxDaN00mzfIv/GI3LsXBUMOO0GHXdyCbGasijaySr+qsDSxrJp4Cve8NMsTWUCvtyiZUHawAAINQaWUWUzCDceY2TDDqhgHWUlrQpV6Rs4DfIG4ro38HgHWIBQA2njrUYsH4Ac1Kg3f6rKn/KtPuyyF7f3UrB+lObc+cCtUYcqTdupz07yqbzgQr2xYhXz0yw+ZVNPje1L/dDP8gDr9xoDK5k1iKzJ0gKoyUrq2Wb5adYu220/yqmtWHIhfe+pW20atPjm/LtZPqwxtrZY3bLkNQviNEFr/B5YRE0A0/FBjXG0apONz7db/rK8NuuL9F/0abyJpqp9t+qvquIrvgc+bbYD1Cz5KVT1a9qSdeQsp/0WMlD2W43m8mQFWijAesbqxl2rc8th5FIgDd7p/MyRK/e9k1trQVliwUeVtQhMm1CwpKdlEJYXsMaPCoGrnUYsvLRonGgmDXKbbK81sLCyvLIEtzM5ay/W3nkqA2Xv1EXOSVagawqYUbOwjYjrD7tWyD5NyHIDyxZYR3PoXAGub1ZoLvHk7i+LzZpi6+FY+rhS007ozlMeed7k0rWWkgu8aH1rLEFuk+3VKdc6K3m/frsZKNtrB/mprEBWICuQFcgKZAWyAlmBCgUyUOamkRXICmQFsgJZgaxAViArMCgFMlAOSr78clYgK5AVyApkBbICWYGsQAbK3AayAlmBrEBWICuQFcgKZAUGpUBbQOl4C9vcHSjrIFXb4Z3V1nif56Bykl/OCmQFsgJZgaxAViArkBUYKRVoCyjtgnOfruAwYYeVuqXC2VbOksshK5AVyApkBbICWYGsQFZg1FWgJVA6tNNhqO7pdLCwQ1Sdf+bO0+KdmqOuhLnkWYGsQFYgK5AVyApkBUZtBVoCpZsS3OTgGrF0s4VroNzf+8EHH7S8gWHUljeXPiuQFcgKZAWyAlmBrED/K9ASKElQvHszSeI+UNdQ5ZAVyApkBbICWYGsQFYgKzBqK9AWULon9KGHHgquqnLZ+uyzzx522GGHymuYRm1Jc+mzAlmBrEBWICuQFcgKjFoKNAXKP/7xj/HS+aowzTTThNFHH33UUiyXNiuQFcgKZAWyAlmBrEBWYAgFmgJlq8vL//a3v4WvfvWrWdKsQFYgK5AVyApkBbICWYFRWIGmQPnLX/4y2JRTFXbeeecw1lhjjcLy5aJnBbICWYGsQFYgK5AVyAq0tYbSbu4y1/dEE02UFcwKjHIKXHvttWGGGWYY5cqdC5wVyApkBbICWYGkwHe+850hxGgLKCeddNLwl7/8ZSgVs8s7N6xRUYHtrnhmVCx2LnNWICswiiiw3Q+nCt//xnjDtLT2ZDQCyDBN4P9H1k/p9HJZyvLWFlDuv//+wfWLwkcffRQuvPDC8K1vfSs8/PDD+aac4fFF5Dh7WoEMlD1dPTlzWYGswCAVyEDZWsBuwF430lDSTtLpGCgbpT3zzDPDJptsEt5///0w4YQTtlY+P5EV6CMFMlD2UWXmomQFsgJDKZCBsnWj6ATCWsc65BPdSKPrQHnNNdeETz75JJbUJp3zzjsvXHfddeHll18OU089dV2N8vNZgZFagQyUI3X15cxnBbICLRTIQNm6iXQD9rqRRteBsmwN5Q9/+MNw5513hrKjhf785z+HDz/8MHzve98bolZeffXV8MYbb4SJJ544Hjc0+eSTt661Pnni888/D7fffnuYY445wvPPPx8WWGCBPilZe8X4wx/+ENtD8Zipe+65J8w111wj3UkBGSjbq/P8VFYgKzByKpCBsnW9dQP2upFG14HylltuGbBQAkjrJ7///e9XgsD5558f7r///nDssccO1Mrrr78ed8ZefPHFcT3mVFNNFeadd96WtbbggguG3//+92GMMcZo+WwvP7DNNtvEch9yyCHh9NNPDwcddFDL7D711FPh5JNPDscdd1zLZ3v9geWWWy6W3S1LKWhHQHOyySbr9ewPkb8MlCNVdeXMZgWyAjUVyEDZWrBuwF430ugaUNrF7SxKhVpjjTUCq6QjU958883w6KOPhrPPPjuMN97QO8HKgBIY3n333cEGn6985SsRLr/44otw4403xs09RxxxRPjtb38bzjrrrPCNb3wjxu3fRx55ZFh55ZXDlVdeWVrDiy++eJhvvvkipM0555xxwxArmP8fffTR4Utf+lJwXuZGG20U9t5772g5vemmm8K0004bll9++XD44YeH6aabLlx22WVxPehhhx0WTjrppDDllFOGE044IVoU6wRLAYplYom86qqrwvrrrx++/vWvh0svvTRqcPXVVweQJe+PP/54OO2008KOO+4Y351//vlj2RdZZJH4O3ncfffdh8rGa6+9Fq/A/PKXvxxuu+224H51erEQb7vttlFvcZ1xxhlxM9VWW20VJphggvDAAw/E926++eYIdEBvs802i8C7/fbbx3pYaKGFwimnnBKtySlY7rDLLrvEKzjdkvSLX/wiTgqq6sD76pVlknXaUolWQKn+1IH8Kveaa64ZFl544WDZhbz72cwzzxyzVNR53333HaodaJtl+a1Tn2XPZqAcrIL5/axAVqCXFchA2bp2ugF73Uija0C5wQYbhHPPPXdAWVv+FTCFqmODyoCSe3OnnXaKbt999tknwh9rJwgCjyyWIOjee+8N3n/iiScisIw//vjhvffeC1VnXnLHr7feehGEQK+4F1100fDtb387wpKrIaX1zjvvhC233DI8/fTTwaYiAPXZZ5+F3/zmN/HdDTfcMILKuuuuG62oYAucAaF0veQ//vGPcPzxxw/V0rw/7rjjxp/LeyrT6quvHoH7008/DWuvvXZMA0DOM8884U9/+lO09M4666wRoO66665YZnAHHsGksh1wwAERgFP8xcRffPHFMP3008f8Wssq3rfffjuCNPijxZ577hmPagDlnlX2ccYZJ5bz1FNPjeC8xRZbxPwAaPUkTflQP55PAWgCROmBOfBnglFWByYQoB18vvvuuzE9E4dmQPnxxx/HuOigHBtvvHFgpTVBUA+AH3TPPffcQ7QdOitjYztQzrL8tu4qmj+RgXKwCub3swJZgV5WIANl69rpBux1I42uAaXBHYRwuf70pz+NVjCwAXYAHgArW0NZBpRPPvlktJABJxbDBJQsdRdddFE855KlkCUR/EiDdVH81h/6d1mQx4ceeiiC0V577RW++c1vRjAFWyx04OSoo44KDmcHtNbsbbfddhFMQCcLljIBV+l4Z7XVVotJbbrppoEVEPgJrGbiagy77rrrgKVW2VOZis8BSuBGM2VPQAnSZppppnDDDTeEtdZaK/zsZz8LK620UphlllmiJREQ3nrrraVlV8all146vPTSS/H3gJJV8Ac/+EEE92eeeSYC7pJLLhkBmrXVznyAzs2svP6AVQfXL7XUUjF/M844Y7BEAeinuMX/r3/9K2oNDMXvd/5fVgfWxwJPdSuAS9bZZkApDyye8saiu8wyy0RrdhVQFnUuy4P2Vpbf1l1FBsrBapTfzwpkBUZeBTJQtq67bsBeN9LoGlCCuQMPPDDst99+0fW92267NYW7VAV1gLK41pL1EISwinIHA9l2gPLZZ5+N1iuu5EkmmSRaw7iXWfoAJLdpAkpWzBVWWCGCJGgDsAkoVR53PphNwe/T0UiASlqNwXrSBLxlZfd8FVAW1xACR659IMdNzWrbCihZ5x577LGYJVZBmrEcAj4WUfllJQWU6VnWWhDLCsgqmIAS9IH5BNB+zqqbAmskyAbmIE8eE1A21gGrrp+l9Z8g2jKEVi5vEwsQeskll8T8geKvfe1rAxZKoAmitYti2wGUjXngli/Lb+uu4n9PmACZZBTDn767Up0o8rNZgaxAVmCkUiADZevq6gbsdSONrgLlz3/+8+g65UYFYWVXMDZKX4Qqgz6rF2HKLJQJCqw9NHAfeuihcd3gqquuGi1gwAH0cF+WhTKQYHmUX1DFigWSWOZYRpsBJTA855xzwgUXXBB3oy+77LLhkUceGdh8xHVrHWlj4KZPLvli2Yu73VsBJRgGXayTXM/gGhDSHNSUBRbKMqBcZ511ojsbYLJaLrHEEmHzzTdvCZSsoyCWBZduLIr0SIFVF7Bbr8gq+7vf/a4SKFk7lYWV1bpV8Va5vLUpzwBHwHj99dfHegfyINF6TksTtCPrMS0RaAco6VOWX6CqLlliTRLuu+++uBTBpIAl3WREu6oK2eXdurPNT2QFsgIjrwIZKFvXXTdgrxtpdBUouRwNsKxaNm0Ur04CflWbcoDEMcccEy1ZoNGavjKgTM+JmzUROBrkuditoQNF3NFcwq2AkqURQIAS7l0bSsYaa6wIpKAybS5qtFCywkpj6623jhZLVjfPWi/JfV4nAMpUphNPPDFCsp9VAeWDDz4Y4cU7wI/VlDWVlRYYs7Jx5e+xxx5DZaMKKO+4445oUaY9HazBvOKKK2L5WDOrLJSsgSDW2lgw7D2glYL1lUA/5Yu7HnTSO1kHUx2AUjvbbcSxaQgsspw2WiiV34aopJO4pCsNz3Lh26DE2iwO7YOlHFAmneWvOLFIeVD2svwCShZQ0Kys4k3rgbUNQG4dbAbKOi0/P5sVyAr0iwIZKFvXZDdgrxtpdA0oWYPAXVWoAsrWVVH+hF3fL7zwQoQoIChI/5///GeEjMYAbqt2YYvrrbfeimsqxeFgdtDYTvDe2GOP3fVbgJSTy53rOa1NlXc/A0+NwXrD5J5u/B2LLPjitk6wVLbetUyPV155Ja5jLLMKyyMtWWT9m1Uv1VVZXFzYwLbKwlz2jg04dnQDvRSkJZ2qtbRV9Vo3v+20j2yhbEel/ExWICswsiqQgbJ1zXUD9rqRRteAsrWk3XmCddNaw8bAcgq++j2wWD733HNDFdMmJhbZHLqrQAbK7uqdU8sKZAW6q0AGytZ6dwP2upHGKAeUras2P5EV6J4CGSi7p3VOKSuQFei+AhkoW2veDdjrRhoZKFvXdX4iKzDcFMhAOdykzRFnBbICPaBABsrWldAN2OtGGhkoW9d1fiIrMNwUyEA53KTNEWcFsgI9oEAGytaV0A3Y60YaXQdKx8nYhd0YXJHozEfH7eSQFRhVFMhAOarUdC5nVmDUVCADZet67wbsdSONrgOlI1ns1i0LjhVyfA24zCErMCoo8H//93+ld6sP67J3ozPpRhqddlid6NlP5emnsnSrDWTNOvlqQjwmr3gkYGexNH+rG2l0q511K51e1qwsb6P9p42TylkhXRXoPEDHtuywww7BvdbOA3T491VXXRUPsc4hKzAqKJCBsn4t93LHWL80eQDOmg1/AOsWtHQrndwH1P9qelmzjoDSOYhjjjlmPLw63Zri0PEjjzwyusGd83jsscfGA8FzyAqMCgpkoKxfy73cMdYvTQbKrFl/A+XTb34U/vbP6jOoO6n/Ou9MNfGXwxQTjl3nlYFn+6mv6eWydASUaskB588//3xYa6214q0n7pp2g4rbUNwo8sQTT8S7oXPICowKCmSgrF/Lvdwx1i9NBsqsWQbKTtpAu+9koPyvUr3cb3YMlO43dqf3xRdfHAu54oorBtcVPvrooxEmXfM3+uijt9tW8nNZgZFagQyU9auvlzvG+qXpTkefNatfM1mz+pqVgUu2ULbWsRttrRtpdAquHQNlkvbTTz8Nn3/+edtXGLaukvxEVmDkUyADZf066+WOsX5pMlBmzbKFspM20O472ULZxxbKO++8M66ZvPfee4doDy+99FIpXLrrmfWSWzyH/lDA9Y+gYM455xwoUDv17MpMSybc590Y/vrXv8YTAuaaa67hKlJZ3osJKpfQ7i7HDJT1qysDZdasG22gG2l0atGp3wK6M3HJFspOaqY7ddPL7bljC+WMM84Ynn766TDHHHOEscYaa0D9W2+9NYw77rhD1carr74allpqqdL7pzuruvzWiFbgvvvuC4cffni48sorB7LSTj0vt9xy4ZBDDgmzzz77UEUAm/vvv3+4/vrrh2vxyvJeTPCoo44KX3zxRbDZrJ2QgbIdlYZ8ppc7xvqlyYNJ1ixbKDtpA+2+ky2U/1Wql/vNjoDy3//+dzwqyMB/wAEHtNUeqkBj3333jUcPObPSxh4wusceewyszVxttdXC8ccfH04//fToWv/Nb34TjjjiiPC73/0uPPjgg+H111+P/3eM0d133x323HPP8PLLL4c111wzgILXXnstbLXVVmGCCSYIDzzwQDze6Oabbw7ABdRsttlm4YUXXghbbLFFtIytt9564eCDD47lqxNAEuvr448/Hi699NL4KivYjjvuGG688cYw//zzx3LecsstgRa77rpreP/998OPf/zjcMMNN4Ti+zY1AfN2ygfmrrnmmgjqdtgrnx32LIXnnXdemHvuucN1110XHERvdz69xV8Mf/7zn8O2224b9ZPPM844I3z00UcxLhuubrvttvgOi/Rbb70VNtlkk5ie8joqqh2gPOWUU2I9sUwqv7w5DWDTTTcNd9xxR1hwwQVjuo6icjrAxBNPHNPYfvvtwz777FOnKsKbb74Z864tzTzzzPEoK6Eq79rF5ptvHtvNhhtuGI4++uioobqSB8H/l19++cp8ZKCsVUU93zHWL013OvpeHkyyZhkoO2kD7b6TgbJPgVKxNt544whoF154YZhwwgkH2sQUU0wRRhtttKHaSBlQ3n///RFOuM3PP//8uJkHQKyzzjrhsccei3EAEEB26KGHRsg66aSTBoCB2x10AcennnoqzDPPPBGcllhiibDIIouE0047LUw00URh+umnD2eeeWYYZ5xxInieeuqpYcopp4wQCWDWWGONCFLeAxZ2qm+wwQYDZQCz77333hBlWmWVVWLeUvjWt74VZp111nDYYYdFiBHkVZmA6+677x7z9M9//jMCLLh6++23o2tXHorvP/TQQxGI2ikfK3GqC5AGfNQLiARWJ554YlAn6glkrr322uHhhx8O00033UDeQbhJAnDzb27elVdeOepm09XUU08dtZVfFkmgvMsuu4SddtopOMS+FVC+8847Ydpppw2XX355ePfdd2MdyMPVV18dy77XXnvFyckPfvCDsOSSS8a0QPnkk08elllmmWAZxde//vW260Nbk2cTEzqKR5DnsryDWcC8wAILRC2POeaYqCFI/O1vfxvbok1m2lhVyEDZ7rDwv+cyHGXNutEGupGGmuz3dPKmnNbfazfaQDfS6LQ9d2ShlFjVTTl/+9vfStfGlQGlm3aADYsUgAFcYKsKKLnXWRtZ+sAoYGOVsxbPWexg5fbbb49WJcB2wQUXROjzHmsgKJxsssmipdMfFiyA529xcd2DVvH5fwonnHDCUEAJQmeYYYYhgBJ8FI9KYnl0rBLIdcj7LLPMEiG3CijT+3XKB9aAGVjzh5Xv2muvjeVgUdx7770jHPtbUBYWOxqnADTp9swzz0SwB3Ust0svvXSEOQHksTJ677LLLovlBKn+tAJKzwPTiy66KMYFLgGjNFic1ZE6oxV4B3fJMijvThBgcW63PrQ1UA8exxhjjIH3pNOYd3oBWbAs+D9IZz1lsTzuuOPiz7X3Rx55JP68LGSgbN3ZNj7Ryx1j/dJ0ByiyZvVrJmtWX7MyoMhA2VrHbrS1bqTRdaD81a9+VXqXN3gae+yhDx+tcnkbvMHGueeeG92+22yzzRBACe64kVkoAc7qq68egdJ7oBEQjjfeeHG9G2sfQHVTDzBgFQQR3mFlAl9ACDx8/PHHESS5zFkrWTlTcA+5OFIAgHazF8NUU001BDizMHKjA9ZiAHaAiztfnkBOAkrQxCqaLJTp/TrlU6akhXT88X4CSi7c/fbbL4J4CosvvniE2xToBCg9++yzz0Y9wV7SzXOseCx3iy22WDx/VDlZQQFyK6AEseJNcGYTj/cWXXTRAeuj36e6ZVmUf4EVWX5ZVtutj7K2pn187WtfGyrvljeIO1kfAa1/q0+gzXoq+L91l6y9d911V1we0BjoOLxDNzqTbqTRaYfVib79VJ5+Kku32kDWrJOvZugJUgbK1jp2o611I41Ov82OLZStpR3yieIgDx4M7ly7BmawCBpXXXXVuJ6OxeiNN96Ia+1YmliKWgGl9XEgB2CyRoJElrpWQMmyyVUNwmabbbYIX6xQW2+99UABVlhhhQiBxQCSwGAKRaBkPZVvVivwxDrpeeC38MILRyvgFVdcEaGKO7wdoKwqXyugBOrKxfrIWgfanB9a3JlNI8sAQCNLZHL9NwIlIATeQNBSBUsD1FMVUKZ6ZrWmATfyhx9+GMA4l7e1itJihbRUAGyzRAJIllHrWE0StJEiqLeqj2Jb0x4AorWkbnZqzLt6ELc0tBlWUhALmpXLWl3LFvw8WU3L2n62UNbtEbpj0eu0Y6xfmu6Up5cHk6xZXkPZSRto9528hvK/SvVyH1ALKLmJDbrW2rHkgJzGUHVsUHGQNzhzq3KfAgZrG20YsaPWGjbr3rhHpcWCCNAApfV0NumUWfCAITc0cBKs/wOWrILNLJTec++49XWCvIBam0LqBEBpPSfXKKuqPHPHAybWQLAE7sAq6x9rJJCV3wSU6f065QN2VRZKwAaqDzrooAivwI772FrL4jpXlkdrBOXb8oCbbropAi+oTmtZwSagZKllyQRq6sf6RK72FMrq2bpUlmfp2uRjMsFVrj35nXr67LPP4uYf8apjQX6TG7xOXRTzYKIi70CWhbEs764PtSRAHqwftWmLXieffHJslz4SFubiutrG/GSgrFNDvd8x1i9Ndzr6Xh5MsmYZKDtpA+2+k4Gy9/vNWkBpcOV2BjEgrHGjiuLacVx2bFBVo+GKZP2bZppphjh+CACUnVPYqvHZsWzHOGsciCtuGGr2rrLZEW4zx7C84Qcg2Rxj3WAR4sCSned1Q6flo6ed21VrAEEdmFZ3aR1s2eYq+aWV9a9VcVWVyTvqVDrFAAC5kos764GrPBc349TVquz5qryDSUshQHJjPWlL448/ftPkM1DWr50MR1mzbrSBbqShJvs9nezybv29dqMNdCONTttzLaAsyulIlaLL10DNbcrCyAqVQ1ZgVFIgA2X92u7ljrF+aboDFFmz+jWTNauvWRlQZKBsrWM32lo30ug6UHLxchPvvPPO8Xgbmz64Xqt2ebeuivxEVmDkVSADZf266+WOsX5pMlBmzbLLu5M20O472eX9X6V6ud/s2ELpAHBHvtjsYD2gYIe3TSZ1DwVvt0Hl57ICvapABsr6NdPLHWP90nSno8+a1a+ZrFl9zbKFctho1lkszd/q5fbcMVA6CNt5hjZ+WLNol2zxsOzhIWSOMyvQqwpkoKxfM73cMdYvTQbKrFm2UHbSBtp9J1so+9BCaces3csp2EUrfPe7342bLe655554jmEOWYFRSYEMlPVrOwNl1qwbbaAbaZRZ9OrXbntvjKjy5DWUreunG3XTjTQ6bc+1LZTOCLRzuSo4kLrOLu/WVZSfyAr0vgIZKOvXUS93jPVLky2UWbP+tlB2Ur+t3sl9QCuFhv59L2tWGyiLxbMJx5mCLJKOs3HDTA5ZgVFRgQyU9Wu9lzvG+qXJQJk1y0BZtw3kPqCuYt3pZ7pmoUzFP/7448P2228f3D/t5pMZZ5wxbsoxsOaQFRjVFMhAWb/G82CSNetGG+hGGp0OwPVbQG8DRd3y1KmbY299KZx1z6t1kxjuz0803ljhll0WjOnUKU+nGetGGp2WpWMLpev6HDp96aWXRgvltttuG2+CcRVf3QOvOxU2v5cV6BUFMlDWr4le7hjrlyYPJlmzbKGs2wbq9AEZKP+rbh3N6tZH8flO0ukIKB1iPuaYY8azJ0866aSYB/dT/+QnPwn33ntvmG+++QZTjvxuVmCkUyADZf0q66TDqp9Kb3fAdcuTNaurWH/Vf68DRd3aqdOeM1D2KVAq1sILLxwPNJDuilsAACAASURBVF955ZXDV77ylXgVo6sEX3zxxTD22GPXbVf5+azASK1ABsr61VdnMKkf+//e6Kd0+qks3YKjrFlnX083dKuTRgbKPgbKl19+OZ5BedFFF8V7nZdffvl4LuUiiyxS2nqfeeaZMPHEE8czK4vhwQcfjBt73n333TDrrLOOUtc2ulXorrvuiofDK/8MM8zQ2Zc/Er7lnnWdyZxzzjmQ+08++SQ8+uijTS3cDtG33KLsnve//vWvcUIz11xzdV2RDJT1Ja8zmNSPPQNl1qz3B+BO6qifvps6ZclA2fvtuSOXd/EjMIgDo29/+9tNv40tttgiLL300mH11VcfeA6MHnnkkeGss84Kl19+edh6660jdDYLTz31VDj55JPDcccd18m32FPvTDvttGHLLbcMSy65ZFAuSwZaBdddrr/++mH22Wdv9WhP//6+++4Lhx9+eLjyyisH8vnqq6+GpZZaKjz33HOVeV9uueXibUxl5Qeb+++/f7j++uu7XvYMlPUlrzOY1I89A2XWrPcH4E7qqJ++mzplyUDZ++25Y6D04h577BEuueSSWEpQtM8++0RXeFloBErw4JB0MHreeefFNZgsnqeffnr4/PPP47WOoGPXXXcNN954Y5h//vkjeLKAOkwdjOy+++5DJfXaa6+FHXbYIVo6b7vttghpoNWxRjYOudFHXGeccUaYaKKJgnM1Z5tttnDxxReHNdZYI4w22mgxL6uttlo48cQTw0cffTSwm32hhRYKp5xySkvobczUQQcdNFAmsORqSuDj5z/60Y+ibvK1ySabxLw7x3PmmWcO7ks/7LDDYh6U94svvgjrrLNOmHLKKcNjjz0W898YAJqzQFl+X3/99XDEEUeEddddN8a/5557BpblNddcMxx11FER5q655poIcA6rl/axxx4bWArVCcvpCy+8ENQdy5/rNg8++OAhrtYs01V+y+rgrbfeimWUnnW2//jHP9oCSporB8ukdiNvNn5tuumm4Y477ojtSH3+6U9/ChtttFGsH2k4hYC23QgZKOurXGcwqR97BsqsWe8PwJ3UUT99N3XKkoGy99tzx0C51lprRZj09/jjjz8AlqCh7GDzRqB0dSOA5C7/+c9/HuaYY45w3XXXhUMPPTQCkc0+L730UnjiiSeiRQo8gslJJ500HHDAAeGmm24qTQf4TD/99BEQp5566jDPPPOEt99+O6YlTYABrL7zne9EWBUfqylLIbDcfPPNo+ueK1ba1157bbz9R5ryATjPPPPMgX5APh555JEh+gXvLrHEEgM/U/ZUJhY4AUxNPvnkEXyAs7Lvu+++Mc9A3TuWAMiD/G+88cbh4YcfDiuuuGLYcccdA0udvDQG0A3mrG8FlcCR9ZMOjnWSLzqedtppwTmi4n3ggQcipIFJ/5aXN998M5x66qkRsgG492iz3XbbhQ022GAgWVo26mpdbVkdgGKublbWnXbaKa69bWWhfOeddwJLLgu2ZQHgmA5XX311BMi99torwvkPfvCDOKlRTicP0HaZZZaJbchpBCmYsLz33ntDyLbKKqtEWB1MyEBZX706g0n92DNQZs16fwDupI766bupU5YMlL3fnjsCSlDAOsZatffee8dSXnHFFdGqZ7Avc0eWuby5rgEoWHOOZQJKcGkH+Q033BCBFQittNJKYZZZZonAA2IAWlkAlFzrQEIAGCxcgOP2228P1nKyQIIPgAMopSPPoCJZ5li9WDZBHmuh/LH4nX322QNxi1+eH3rooSGywrK37LLLDgGUqUzFB60DBIvST0ApLfqOPvroYd555w2TTTZZdHGDIwC2wgorRLhmLS0LgPL++++PQM7qKI3//Oc/EcaUH8Cy9l1wwQUBrAEzsOYPKx+Apq2yX3bZZRHaxTXWWGPFn4sv7eyXPmtmo66bbbZZaR2wropzpplmChdeeGH80wooPW9yYHmEAC4BozRYsdWZMmknYJFFOrnMgS8AZ5FN4YQTThgKKEHzYNevZqCsPzTWGUzqx56BMmvW+wNwJ3XUT99NnbJkoOz99twRUKZjg4COQXyMMcaIcMb69/zzz0frVGOoA5TFtZYgBnQAOcDjEPVWQMniyCUsAEPrLcEL8Nlwww3Ds88+G8/OTEDp/xNOOGGERrvVp5tuuvgeqPrxj38cd7JzPwsAizUzBZa8999/f4jigu3iWZxlZfdCGVAW1xCy3gIplmDgCYaBdSugZHkEja7IVE6uchtVlAvo0lEcgDI9S2N/AGkCSlZM7nVWzhTchlSEZfE06gr2GuvgmGOOCYsttlhsHyAZQIu/FVACQPWT1syy/npv0UUXHbA++r305J11N0026G5Jw9prrz2Qfy78Tz/9dIj60qbKNvlUdfaWD9hM1RjKlmB0MmA0e6dOB9xp2t1IQ95yOvVrKGuWNeunNlCnLBko+xQoFcv6NWAisJyxhrESJUtSFVAusMAC4cMPP4yWpSoLZQJKrkwAAaKABfgBhFymZQO6NFkoy4CSdYwLFyiyWnLhsiqxUDYDShYywMHVy5rHOnbOOecMFI8bvPh/v7COD/SmUARKadnVDqqaASWABOw2mHBtA17vikv5rb0sC6CqEShZgaUHMMEvSGSJbAWU0uZ2F6flAPvtt18EZZunUlCPjbpyjZfVATAFgtZR0tMh+FVAmXSyxlb9s0xrN+qCFdwSBnXICmmdKasuSySAZJ22ThVEgz9lT4GFF1QWg7bFMsyKa1JhwmQZgnWe4nnyySej21xbqQrZQpkH+jqDY321en8w6aRMWbP6qnVDs25N+OqUJQNl7/cBHVkoFevjjz+OMAAgDfqADVACn7IAhLhtwY1Bntu5Cig9x30OIkADVzdgcBOP3eTTTDNNXDvHGtUYqoDS5o1f/vKXEeK4n9PaR67uKqAEQGAZxCqjDSjeq3tweyq7MtGIux10tbJQAkrpKbN8ct0feOCBcbMQa2XZppwyoOTy5tb1jsCCDCyBXZWFErCBThZbACuMM844cRNMcSc+y2OjrpY/gM5GKzHLIC2BLai1zpGrPYXiLu+iTttss01cimCjFRhnbbZxi4bK8dlnn8UNWOKlsaC+khu8nS5b22IJNmnwrnT8rY5AqPbdbBd+Bsp2VB7ymTqDSf3Y//dGP6XTT2XpRWjJ7ay7302d9pyBso+BcjAfXp13QQK3srVzaRMKC5KfAc7GYN1hck83/g58gCJu6wQLZRtbyvL3yiuvREuX97sZQJYD4wFOCix18sN93BicBwq8ygIgdg6oJQoAvQr+G9+lt93zNgxZ2zkYXcXFlV/3ek7vgLtG/ekzxRRTDLHzHLjSqLgZZ3jXWQbK+grXGUzqx97dgTHDUWc11I020I00ulX//ZZOnbrJQNmHQAnWWISqAnejXd/DOwCisvMKrROcZJJJhnfyIzx+IAUQGwPrqw00OXRXgQyU9fWuM5jUjz0DZdas9wfgTuqon76bOmXJQNn77bm2y5v7j5WpKnBhlh0b1MmHk9/JCowsCmSgrF9TdQaT+rFnoMya9f4A3Ekd9dN3U6csGSh7vz3XBsrGD4C10qYF6/KsN8whKzAqKpCBsn6t1xlM6seegTJr1vsDcCd11E/fTZ2yZKDs/fZcGyhttHCUjh2xDgC3KcP5jILzAotn/nXyseR3sgIjowIZKOvXWp3BpH7sGSizZr0/AHdSR/303dQpSwbK3m/PtYHSsSx21H73u98d2BTiiBjH69jw4bibHLICo5oCGSjr13idwaR+7Bkos2a9PwB3Ukf99N3UKUsGyt5vz7WB0q5odyT/6le/ijuP0/mODgl39qJd2VW7jDv5ePI7WYGRQYEMlPVrqc5gUj/2DJRZs94fgDupo376bvqpLOqyG+XpRhqdlqUjoHT3tltxHGrtHmSDqTMSXZeYjuPp5EPJ72QFRlYFMlDWr7le7hjrlyYPJlmzP4bvfOc7nchQ651++m76qSydQlityu8StHZalo6A0hpKfxyMPf/888cDpl2l547nDJR1m0d+vh8UyEBZvxbzYJI160Yb6EYanQ7A9VtAdyYu3SpPP9TNJ5//O1zw6BttVeXkXx0nLPO9b7T1bNVDvaxZR0DZTI0MlINqK/nlkVSBDJT1K66XO8b6penOQJ81q18zWbP6mmWgbF+zDJT/06o2ULr2zlV+VcEub/cf55AVGJUUyEBZv7bzQJ8160Yb6EYa3QKwfkunH+omA+UggLJ+F5jfyAr0vwIZKOvXcT8MJsVSd6M83UgjQ0v9ttxvmnWrPP3QnjNQjkCgvOeee8Jcc83Vc9cD3nLLLWGJJZao3ZM8+OCDcbe7Kx8bwxtvvBHcK92Nhdq1Mz6cXhhVdcxAWb9B9cNgkoGyfr1nzXpfswyU7ddRBsoRCJTuAv/DH/4QJptssvZrrMWT5513Xvj888/Dxhtv3HGcjkNq5sovi/iiiy4KRx55ZDjrrLPCDDPMMNQjp512Wrxve7/99us4X918MevYudoZKOtrl4Eya9aNNtCNNLoFYP2WTj/UTQbK4QCUd999d7j55pvjWZRjjz12ZU9ZBpR2ivtz/vnnh6WWWiqceuqpYcwxx4w38fz6178O00wzTTyWaL755gtu6vFzfwPIzTbbLPzwhz8MH3/8cXCP+Pjjjx823XTT8Mknn8TzMnfaaafwwAMPxJ3oL7/8cthwww3D0UcfHeFxl112CVdeeWVYaaWVwoknnhh/9sILL4QtttgivPjii2G99dYLBx98cOma0FdffTUsuOCCcVc7EJt44olj2aVhHelRRx0VElDuu+++Yddddw0TTTRR2HvvvcNhhx0Wd8RPOeWU4YQTTghzzDFHrZHFjvobb7wxPPzww+GII44ICyywQHw/6zikjtpkY52o71tvvTWwLLvhiX7rrrtuLf3LHs5AWV/CfhhMsrWtfr1nzXpfs26Baz/0ARkohwNQstT99Kc/bXlsUBlQsg4eeOCBYcsttwzrr79+2GGHHcK4444b9thjj3DOOefEI4muv/76CAJrrbVWWHXVVSPMuaEHhF5wwQXRtXzAAQeExRZbLMLbLLPMEhZddNHw0EMPhdVWWy385Cc/ieAFQl0X+d5774WDDjoonH766REIASCgXGONNSKYcX+D0O222y5ssMEGQ/UA//73vyOY/uUvfwnO5VxooYXCz372s/jeIossEmES9LJQOuz90UcfDVdddVV47rnnIsC4phKA0w2cjj766DGNZ599Nj5XDJNMMkmE5BSUWXnOPvvsqMF4440Xf5V1/J+O9JhnnnmGqpOnn346tq8777wzQqV6f+qppwbXw4cQz2LdfffdBx1Pqwi60QF3I41uDVj9lk6um1ZfyNC/z5rV16xb300/1E0Gyh4ESmD29a9/PXAj33HHHdHS6HrHBFKTTjppHPgBAMDceuutw4orrhimmGKKCGUskttss034/ve/P3D940svvRTGGGOMMO+88w787Iwzzgig4rPPPotuaoex/+lPfwpTTTVVBD8gy3o41lhjRYD96le/Gv9fFk4++eTw1ltvRZB1t/ntt98egZHVC+S++eab8QB4ZQON0mCdZDkDuYLyvfbaawFoC8roGstGoFS2IlBeffXVUatiAJRZx//qKJTVyTvvvBPuv//+WKd///vfY/3WXepQ1hYyUNYftPphMCmWuhvl6UYa3YKJbqWTNav/bea6aV+zDJQ9CJSAkKuctZA7F/Cx5LmJRzDwc0NPMMEE4dJLLw2AipUPDAIr73NdszCCOuGDDz6ILmhWz2SFYpH0b++5NtLznuOO5gLlhgatKQDUZZddtrR1JaDcf//940YjG3M8C1pZqwDl8ccfH28Usmb02GOPjdDr56yYKWy00UZhwgknjP/lQpe3YhhnnHGG2PTDQgmKxNcIlFnH/+oIEsvqBFCaUIB+EwjW3bpAedddd8VJQWPIFsr2O+FuDVj9lk6Go3ptrN/qv9/K0w/tOQPlIICSu5C7tzHYaONPq4PNk8vbIP7hhx9G2GJZYw0EWW7gmX322QOLpEHb2sn77rsvghgX8uKLLx7OPffc8M1vfjPC4Nprrx0tfB999FGwVnHyyScPBnzWQBbI3//+92HOOeeMcYFFLnNrJN9+++34HNc0iyC4lKdZZ501brKZbbbZ4mYa6bCGloUElH4PGAHK+++/H9O59tprIzhyeVvnyZIq//LKjc+CaRc4AH3kkUcGdr3fdNNNce1nMdAIQKdQBErxZx2H1lH9ltVJFVB6nkVzxhlnDP/6179im7Nm15mqTz75ZLSea5NVIVso80DfjcGxG2lkaKnflvtNs26Vpx/acwbKQQAl+GsW2gFKa9dAHMgDR+K05hGMfeMb3wi33XZbtFByB4MtlkMHqoNHgGlTDuBjjeNmvvfee6ML+YorrgiAwcYX77P8Wd8I4NLPHOFj7SL4sw4R5AFAm3GAmfWLNusILIPc7zbcNANKLm9w+8wzz8THpp9++lgWllEucaB7+OGHx3WgN9xwQ8yXtZ0+JhbMbbfdtlYPRjMbjawFtZko61iuY1mduC60zEJpknLJJZdEcNeGHQWV2vIKK6wQJxzaSwbKWk216cP9MJgUC9iN8nQjjW7BRLfSyZp19s12Q7dupDG821kGykEAJbdzswDY0gaTdpsxoHTsj/V/LILFwMpncLe2MQUbamzCKT5rl7d1j9ZMgklWpuI7fsYKBR6LUMxKyKpZzLN3WRKnnnrq+HPWU27xYrDGc5lllhniZ6yFgFgePJ/c2GU6AE0u/mbPtKtfei7rOLRideqkrt7F57OFsr56/TCYZKCsX+9Zs97XbHhDWFKgH/qADJSDAEqvAi7uYjuSgd3MM88c3dWsb3ZZF0GunU8HCIkTiPViePzxx6NFsxjAINd8L4Ws44irjQyU9bXvh8Ekw1H9es+a9b5mGSjbr6MMlIMAShtGrEO0xqwY7Mh+/vnng3WFjv+pE1pZ8+rENSo/m3UccbWfgbK+9hkos2bdaAPdSKNbANZv6fRD3WSgHARQOnjcGkSHdy+55JJxo4Ids9bxfeUrX4lrB21kyCErMCopkIGyfm33w2CSrW316z1r1vuadQtc+6EPyEDZIVDaBWu3q/Mf065jax8drWOXtTWQ3OB2JeeQFRiVFMhAWb+2+2EwyXBUv96zZr2vWQbK9usoA2WHQGl3rGNVGncm2/hgTSVXOEtlugqw/SrJT2YFRm4FMlDWr78MlFmzbrSBbqTRLQDrt3T6oW4yUHYIlOkgaOc7Ovrny1/+cozJDmpHtFxzzTXxmJxm5/XV70LzG1mB3lcgA2X9OuqHwSRb2+rXe9as9zXrFrjmPqB+W+hlzcryNtp/mlwd4r7qX/ziF1GF5ZdfPh4e7SxIETlf8cwzz6yvUH4jKzCSK3DccccNdRLASF6knP2sQFYgK5AVyAq0rQAPtnObi6EpUDreB1DutddeQ7y05557xptlHAaeQ1ZgVFOgWxbKbqTTjTS0j5xO/a8ka5Y166c20E9l6VafNrJp1hQo0+fMiOkGG9cwslJmkKzf0eU3+keBke0jb6Z8P5WlW518t9LJdVO/z8ia1dcst+es2bD6bpoC5V//+tdw4IEHxvuxbcJhmTzqqKPiDTGuU1xwwQU7q4n8VlZgJFZgWH18rSToRjrdSKNbA1a/pZPrptUXMvTvs2b1NevWd5Prpn7djGyaNQXKDTbYILj3WKGmmWaaCJWuW7SGcqGFFop3X+eQFRjVFBjZPvJsoRz2LbQbbaAbaXQLJrqVTtass7beDd26kUa32lm30hnZNKsESru5J5lkknio+YknnhjA5cUXXxzvyL7tttvCuuuuG9555534TA5ZgVFJAcdmdcM63410upGGtpHTqf+FZM2yZv3UBvqpLN3q00Y2zSqB8pVXXolWSRC56qqrhokmmiieS3nvvffGg85XXnnl8Mwzz8SDznPICmQFsgJZgaxAViArkBUYdRVo6vJ2C863v/3taI3Zf//947WL66yzTjwyyF3e7vrOISuQFcgKZAWyAlmBrEBWYNRWoClQnnTSSWGbbbaJCrm7+8knnwy/+c1v4uacfffdNxx00EGjtnq59KO0Al988UX4+OOPw3jjjddTOrz55pvhm9/85kCePv300zDaaKOFscYaqzSfVeX4xz/+ES80GH300Yd47+9//3vsD4Z3kM74448f814MrdIvy3fdMg6rsn3yySdhjDHGCGOOOeZAlC6NEMYdd9xa5aqqxzI9WtV5p+X78MMPw1e/+tUhXn/vvffiz4plbJV+VX3UKWOnZfCeI/FcIfy1r31tiGg6Tb9Om2ulTSfl+uCDD2IdaGvFoJx+5xrlFKq+6/T7Ot/K8OgDq+qmrD9oJ/06ddNKm7p1I3/yPcEEEwxVL2Xtr1X6VW2nThnrlqHO8y2PDbJmkh9/3nnnDVNOOWW455574j3eXN6NHX2dhPOzWYGRWQGH+v/qV78KU0wxRRyczj///CE67RFVtmuvvTasuOKKQUfmmK+dd945PPLII/Hfc8wxR3AoexEQy8rhu/7xj38cvvSlL4VXX3017LbbbtEr8dBDD4VNNtkkei38/Ne//nWYa665hnlRDYCbb755hFbrtN3M1U767777bmm+65RxWBVGB//EE08El0OoA8uGPv/881gO2tncqE5o+NRTTzXVVfsqq0f12lgfs802W8s676SML774Yvj9738fT/mQX0E51ltvvfCtb30rjgnbb799POi4kzY34YQTtl3GwbY5ZTjllFPimAaQbXyYdtppO0q/TpurKmPjhK1O/bz22mth7bXXjn2P79U3vs8++wxEseuuu8Z2eNNNN4WqvBbTq/OtDI8+sKxunCpT1h+0Sr9O3VT1eXXqovHZyy+/PBre1IlJl3Y288wzx2+osf1NPPHEpX1XirOqD3j//ffb7vOKk4rBlKvZuy2BcnglnOPNCoysCvi4WWMcq2XmucMOO4TJJ588Wu5HZLDuee+9945eBEBpvfNOO+0UHnjggZgtS1jOOOOM8MMf/jD+v6ocOlez6kMOOSRer6psAGmVVVYJP/3pT8NSSy0Vjw3TKRqohnU466yzwvXXXx/Xb5vAbrzxxuG5556L6TZL//DDDx8q33/7299iHTXWVVUZG62GnZbtscceC2effXa46qqrwi9/+csIlE7FcEmECbqw2GKLRQ/Qaaed1rRcNCirR0e6NepxwAEHNK3zTstDW2Dy6KOPDgAlOF522WUj0BgwH3/88TD22GN31OYWWWSRtss4mDZns6k8sg7xLBx88MFxo6lNpu1qXEy/TpurKmP6HjupG/k3UdEWWMN5FN54443oobDX4eSTT47fuTyX5dV3ndp8nf6g6rsaTB9YVTeOLWzsD0xqWvXBdepmePQHTsX5+c9/HvtdSwa1ucMOO6y0/TFMlPW5qW6q+oA777yz7T5vMHXTbtvMQNmuUvm5rMD/V+Dll18OSyyxRHjppZfiT1j9DLSsTSMqcIUst9xyEWJYjAAlq+ndd98dLF0RAOHqq68e1l9//fj/qnLoXJXPemmXGrCgKKsBUccmftaxZZZZJg7Gwzr8+c9/DixtP/rRjyJ8GehZWqTbLP3NNttsqHz/7ne/i1a8xrqqKiPL4bAMrKuseIDSgG3Q58Zn3WOtsIwIUDQr13nnnVdaj+C08b0jjzyyaZ0PpmyAEXglC+X8888f6+SGG24Iiy66aFxj/+CDD3bU5sB1WVstK+Ng2xwLOGuhpQeLL7542HHHHWPddJJ+nTZXVcb0PXZSN5bcaMsuGzF52WWXXQJrsm97q622itZK0Akoy/Lqu0htvk5/UPVdDbYPLKsb/U5jf7Daaqu17IPr1M3w6g+U54QTTojfhu9kgQUWiEsQGtvfLbfcUtrnprqp6gN4DRr76uFVN+20zwyU7aiUn8kKFBQwsDpOi9VMcFarD/v0008fYToZFHW6rHk6R0AJJJ3EAHiFTTfdNFrFfvKTn8T/V5WDG9DsGgwJk046abj//vvDLLPMEsvMYuksWh398NiYZ/AzyG6xxRYxXWs/ufKtEWuWvjw35htg06axrqrKOPXUUw/TOiwCZYr4oosuii481kQA0Kpcjm0rq0fWzUY9WCGa1flgCtcIlNqFNuB6Xm2MFZh7r5M2V/VeWRmHRZt7+OGH47cy00wzxYkgy327GhfTr9PmWmnTad2w7LF8mUxceeWVEVp858qlTrQz31RZXn1fqc3X6Q+qvqth0Qc21g3LfmN/cOihh7bsg+vUzfDqD8AjmORtAbjJSthYRscylvW5qW6q+gBW6Hb7vGFRN63aaAbKVgrl32cFGhRgFeCKAG3g7eijj45PWDs2IgK3FavX3HPPHZP/wx/+EP+t0z322GOj60tYaaWVwn777Tew7rGqHFwvIIdl0Do/s2kDEyuUsnJBsUTZlJfiHpblNtA7jmz33XeP7hx5YZUCZ83Sl5/GfLN20qaxrqrKOJj1bGUaNAKlOmE5NgkBGMLCCy/ctFwsDtZdNdYjGG3Uw8/Knh3susM0ASlaKB0jx53P7c3SBWTAcrP0q9rc7LPP3nYZB9vmbr311rjuzLfBXS/U0biYfp02V1XGwdQNizegMOkC9SZ74HHppZeOfQDXtBNZTM64Vcu+69Tm6/QHVd/VYPvAsrop6w9Y+K3lbtYH16mbYd0f6DctZaE7fdXJ1ltvHb+TsjKW5VWfm+qmqn1aCtBunzfYummnj89A2Y5K+ZmsQIMCs846azzwn9tS520NkzV+IyJwS3NzpfDd7343PPvss8FCby4Tna/F2wY01hUAqgO1tqesHAap448/PnaCl1xySRzorcfkdnaRgY0m1u4BNWuEhnUAKSygXEXybvOEdWEAsyz9++67L1pPuY3K8l2njMO6LEWgfPrpp6PlyABf3PVZpSuLGZi3VsyZTqbLhwAADXVJREFUwI31aBBq1MMkoOzZxl2mnZSz0ULJ4s1KCZK55G688ca4Ua0s/VZtziSl3TIOps35VmihrcwzzzwDMlgDWif9TtpcVRkHUzennnpqtN4XIZcr3/ciWIrj+/Uds4qVfR9OheikPxjWfWBV3VT1B/Rs7INNanw3YJomI7I/kD+WY+OCtayWp7DslrW/qry26gN4xtotYzfGpwyUnfSs+Z1RXgEdQHIdL7/88nEjTK+cepBc3v7eY489YqdrwNDxbLvttnHQZ8VkKSsrB6C0HhMAsVrcfPPNEeqSFUrlO24FZLrwYFgH1kg71VlBBFZVLuKq9JVTXrmHyvJdp4zDuiyAUjuxftVmI9aWYuBqZaE0EDbqyqJMB2Uvq8cqPcqeHRblagRK0M8lbU2lE0C0M5OWTtpcVVsd1m3OxGv66acfQo4NN9ww1k0djTtpc1VlHEzdaE/yXgwmLKmMNuRZR2ly6Fsu+z467Q+GdR9YVTd2R5f1B2XpO4nC2msu7Krydqs/uOKKK+LE25IEO9XBP5gsa3+WJ5XVTas+oE4ZuzE+ZaAczNec3x2lFWAJ4FLiZurl4PgMLrF0fqCOG0zaeShUlYM1c7LJJhvifEGbF1g0bMYY3h2UdBx1UTzfsCx9biXrx9LZmGX5rlPGEVGXZeVi9aO/RfdCYz36WVV9lD07vMolrcYreDttc3XKODzK0276g2lz3aybMo0av4/B9Afd7APL+oPG9P3fqRvF9YIjsj/gkndSRvFc4GbttjGv7fQB4qtTxuHx3aQ4M1AOT3Vz3FmBHlTAkTaseYNxtfVSsbh9bA7pt+BIEDvAh/W6zhGhU25zI0L19tLsp7oBbyb5lvP0QxjZ+oAMlP3Q6nIZsgJZgaxAViArkBXICoxABTJQjkDxc9JZgaxAViArkBXICmQF+kGBDJT9UIu5DFmBrEBWICuQFcgKZAVGoAIZKEeg+DnprEBWICuQFcgKZAWyAv2gQAbKfqjFXIasQFagZxRIOzsdFfKlL32pZ/IlIw5cdk2nXf8jOm927drBbyd/Dt1X4C9/+Uu8V7psc57TAxzb5QSLEd1Ouq9MTrFTBTJQdqpcfi8rkBXICjQo4OYat9WksNFGG8UD2t2s1AvhuuuuCyussEK47LLLgvuQR0RwwLOr9JxjKbiByYHsK6+88ojITkzziSeeiGeyugLPkVjtBDeZOHhe3tNtWd5TrmmnnTZeubfbbru1E9VQzzjiy9mxxeC8TGd9NmtLv/3tb+N5hu71doZhVXDWqyOpHEZfduC1sxOVwdmczq7NISvQjgIZKNtRKT+TFcgKZAVaKOAgY5DmkG8gefnll8cD190o0417dNupIDdvnHPOOfHqQbc8dTu8/vrrA8Dmhh0H5KcrNp3P6HanEREuuOCCqMndd989cMh8q3wkoNx+++3jNY4pOIx9uummCw7kdqtUJwFQfvnLX47t6PPPPw8mAg4sd+tNsyv0ElC607sZoMuz+6VZiccYY4zSLLqJyS01r732WqynHLICrRTIQNlKofz7rEBWICvQhgKu8nMDkXvOXbvGvcz6Azzuv//+eMCxm2XcywsWNtlkk3gf+gcffBCthm4jciYg69G+++4brUduOAEGLFNuLHIYvas+WdPcuOEmjvnmmy8O+g50dnuRO44322yzeI8wqLnmmmui1QpkOADeVY+HH354tAwefPDB8ZB7Lk4WLb937iWwAi7K4ypP+XHjzx133BHTdIXkDTfcEK1le+21V7zJRL6V59JLL415cMOPP8UAsH7xi18MAUbKCLhZLcXjoG3llS/nCbrJxb3nfm85gSAftHV/tTz4P0swbZXLvwXlptddd90VNVlooYWG0snB8e4jB2zScR+5UJYHV5q6k9lEwe1Hbj+pAkpleeeddwLXsrT33HPP4C50h1Dffvvt0d0vDkHdFAOgdJ+9m26E2267LSy++OJhq622inXhPbCpPalf11G63k8dpLrWpoCyn7u2U/15zpIH16YCee2gqt5MPmaYYYZYxsZ6bONzyI+MggpkoBwFKz0XOSuQFRi2CgAdlh639QDIssPI11tvvXhFp4EcmHBLshLNP//80WrnXdAEZAQgyYIE6q6//vrgvmm/F7g/3Qtsnaa1btySwIEF69Zbb40WLZDJ7erKTQFQrLPOOgMub+vnQAcIlP8DDjggAsiaa645cLPHdtttFwHRtYusi662ky95BTfStAYSBHKPSk8crLPuj3755ZfjIfopgCJwBFYAk3iTa9e94Cx7YBWwAdrTTjstQpkyup7S80BNAFLSUgb5cQj8MsssE4ELRLrWcooppojPutMetNK7USfubtD661//OtYN6F199dVL86AO1RurM3iXzyqglK54ALMyyrt35Y8G7g73h27ufG4ESmsb1YmJCT1NMNRFuhPclYoAMV3p6YB/d6YnoGRVBNfA0wTG9X4Akk7A2n3m6kOZq+pNuwTcZ5555rD9YHJsfalABsq+rNZcqKxAVqCbCnBL2ugCXLg8G8NHH30UoWettdaKFjB38LKsgTPAZ+C23s7ADpAAoThZJQECN7WrLgElqAAqrImshcDG1YegA3T6vXV8wJIbXvzJlVtcQ5mAB5Sy0MmLtK1xBCLAa8stt4zvLrjggtGty/LoOVfCgSu/Z8GS7oEHHhifYdUCKvIKfopwnay41uix0IlX/EKyvoFAVtcll1wyWhzdFsKVC3zef//9aOEDy/LC2sqyS1d/WDTBD/h97rnn4v+XX375aAG0uQT4lunESpdc3gC4LA+0XHXVVSOgSQOQyWMVUAJigG9CoNxc/GCdZdk6W0DNiswqPcssswwFlI1rKFmKWSxZtIFoK6CUP3VPN5Md6c8999xh7bXXju3GHezqascdd6ysN/UD5svadDe/r5zWyKFABsqRo55yLrMCWYEeV8AmBiDnjwFfYMkCBkDLjtm0npKLeaKJJorAde6550agTICwxhprxE0z//nPf6J1i7XNMwJIS+vjWDJZJrlzuZFZv0AM4GC1KgLlhx9+GIG2CJRc3Cx8ANfPBfGAML+TJqvmI488El3BrGHAB1CymIJQMAVaACVoYQW79tprByDxvvvui8CXgvKzHHJRs5KBFfkHg4BSeiCGFY2lMgUQBGBZVUGV99yPDCitu+R2B4SAPgUbbEAYVzOYEriKy3QqAiXdy/Kw8MILRzd72oST1kpWAWVyKT/55JNxvSpLMOskizTgnX322SOoAbvGUHR5g29WTBt/TBZAIZhO8XPvsyQ3Wij93ITEc+BdMPHQ9gBlAllXFVbVGxBWtxkoe7zz6ZHsZaDskYrI2cgKZAVGbgXSwA5iDPDWybFqAQEQwtIInoAgVyk35ymnnBJ/XgcowRarEgAFVqx24BTEAlFWQy5VFirwCfhYSMcbb7whgJLbWRzyyEopXlDGNcz9zJK23377RWscCAM+LHxVQMmdbq0eELVm1JrOxvV3IGa22WaLcAt+5Rtsg3BAecghh0RApCHwvPDCC2Nc0ufOLgNKkAe65V3ZbSRhjVRulsYE6loXUCvTyTpH73vHxiqwWpYHZVdG1mEudy70KqCkqbzQ1x+WyrnmmitqIp8J4MFdM6D0O+UHw/LHqskaLn9gkWb0awRKa3mtkWX1Nknwb3GwPqtrSxJMXuhXVm/g3yShlzaVjdw9RP/nPgNl/9dxLmFWICvQBQVYfljxWKJS4OLkrh5nnHHiZh3uV/AicJca1MGeneEJfFjr/LzKQsla+PDDD8c4QKyNGaABXKR4WaZsWOH2LQNKbl+WQ+sRU1zitS5zpplmGliXl8qR3PE2A4EqLmiABxqlw4r16KOPxrWdrG+CsgKuxmNuxMESmVy68kA7VjeWMqBm7WDKF3jjIp511lkHgNIGJxZfFkrQZvMR9zJtwSqQ5lJuBMoqndQFy588KQeXelke0i5q5fvRj34UwZ0GxxxzzECdp2ODWHOtmxTAqnYA0OxmT2dvArmpppqqFChnnHHGuJxBsAwBBCZ3e1r36HcsvZYFsPpqS+nYIBZe+liHKsgPbaWtTpLFVBnK6k2dyhuw33jjjbvwBeUkRnYFMlCO7DWY858VyAr0lAKffPJJ3IzCvdh4aLcNFiCCtZAVsE6wbpHLG2SwTrHWiScFrm6WOUBVJ6T8yG8xKIffsda1G6fysWKyuDY7L9EmoFdeeSVaI8sO1pYPUCdP7Z7hKW3vSLvZYdxVOlmzCshYMdNROmV5+Oc//xmtwiYBrQINPc8Sm4LlB961TtSShk6DvFpXW2wDZXGl/IJrzwussNzY4NnPyuotLakwQUibmzrNa35v1FAgA+WoUc+5lFmBrMBIrkARKMFIDiOfAmntp5xba8qKOyICyzULbloL25gHcG09qqOtbLbKISvQjgIZKNtRKT+TFcgKZAVGsAKOELLBw0aJfND0CK6MDpO3u5/b3FrKMld3h9F29BpLsuOEyqyPLKvW2HK7W6+ZQ1agHQUyULajUn4mK5AVyApkBbICWYGsQFagUoEMlLlxZAWyAlmBrEBWICuQFcgKDEqBDJSDki+/nBXICmQFsgJZgaxAViAr8P8AWylwx8gBGAIAAAAASUVORK5CYII=",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Top 10 values by value count"
},
- {
- "data": {
- "values": [
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1417",
- "value_count": 1
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1111",
- "value_count": 1
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1325",
- "value_count": 1
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1302",
- "value_count": 1
- },
- {
- "distinct_value_count": 537,
- "group_name": "substr_dob_1_4_",
- "total_non_null_rows": 39175,
- "total_rows_inc_nulls": 50578,
- "value": "1525",
- "value_count": 1
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "value",
- "type": "nominal"
- },
- {
- "field": "value_count",
- "type": "quantitative"
- },
- {
- "field": "total_non_null_rows",
- "type": "quantitative"
- },
- {
- "field": "total_rows_inc_nulls",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "value",
- "sort": "-y",
- "title": null,
- "type": "nominal"
- },
- "y": {
- "field": "value_count",
- "scale": {
- "domain": [
- 0,
- 2231
- ]
- },
- "title": "Value count",
- "type": "quantitative"
- }
- },
- "mark": "bar",
- "title": "Bottom 5 values by value count"
- }
- ]
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ]
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAASjCAYAAABKRqY+AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQfYXUW1/lco0iGUAKFoiCAqIFeqf+TiJSAdVARCvZQrXgslXiFcsNKvqBAMRQTEKwIGRBTEQhXpUkWkSDDhIhBQIRBKaMn/+Q1M3N/JKfvsdc7ec3beeZ48Sb5vr9lr3rVmzbyzZs8Mmz179mxTEQJCQAgIASEgBISAEBACQkAICAEhMKAIDBOxHVDLSW0hIASEgBAQAkJACAgBISAEhIAQCAiI2MoRhIAQEAJCQAgIASEgBISAEBACQmCgERCxHWjzSXkhIASEgBAQAkJACAgBISAEhIAQELGVDwgBISAEhIAQEAJCQAgIASEgBITAQCMgYjvQ5pPyQkAICAEhIASEgBAQAkJACAgBISBiW5IPNB4+PWzYsLne/Nprr9krr7xiCy+8sC200EJuzWbNmmUzZsywBRZYwBZbbDF3fY0V9FrfIgrOnDnTXnrpJVt22WWLiA+szBtvvGHPPfecLbPMMjb//PP3pB3RR5v5Zk9e0KSSfvtoO72raG87faJNl156aXv11VeN/y+11FL9gl71CgEhIASEgBAQAkKgVgiI2JZkznXXXdfuu+++IW97//vfb6eeeqptueWW4eenn366HXTQQXb00UfbV7/61baaUdfvf/9723jjjW2dddZp+izP8N5//dd/td/97ne26aab2s0332yTJ0+2d7/73V23vPGd3ejb9ctyCOy///72gx/8wJZffnl7+umnc0iU88jf/vY3+/nPf27vfOc7bauttur5S88991z71Kc+Fep95JFHbPXVV+/JO5ZccsmwEPL666+HxZAySqOPlvHO+I4q2tuqfT/96U/tk5/8ZPj1vffeawcccIDdfffd9swzz9iIESO6huXXv/61/fWvf7VPfOIT89yiT9dgSUAICAEhIASEgBCoBQIitiWZMRLbHXfcMUxUn3rqKfvVr34V3n7OOefYf/zHf9h1111nP/7xj41n+NOunHLKKfZf//VfNnHixECGm5XHH3/cjj32WFtjjTXs8MMPn0Nsi5Khxnd2o2+vYWbCv8IKK9gSSyxh3/rWt+zTn/50r19RuL4777zTNtxww0AqICy9LmuttZY98MAD9vWvf90OPfRQGz58eE9eUQXRa/TRnjQkZyVVtLeVaptttpndeOONoU//93//t5199tmBmJ500km2+OKL52zRPx/baaed7Iorrgjk+IMf/GDX8hIQAkJACAgBISAEhMCgISBiW5LFIrHNTjQvueQS22233QI5+/vf/26/+MUvbMKECSFbs99++9kf//jHMMG97LLLbOTIkbb55puHbO71119v48aNsz//+c/2nve8x8aPHx8yt5/73OdChhDSd9ttt9mFF14Y6vqXf/kX+853vjOH2B5zzDFh0vv888+HLBEE6R3veIcdfPDB9oc//CG8c8011wxEm99B0N773vfO9U62TGb1ZWvsUUcdFdpB3bz3+OOPDxljynbbbRfewyT+f//3f0O7aWfMPjaa4sorr7TjjjvO/vSnP4XFAPRAdzKi++yzTyAC1LHtttvapEmT5rIkWdNvfvObIav5b//2b/bxj3/c9thjj/DcQw89ZIcddljIZC+yyCL2kY98JBBksqzYCHw//OEP24knnhie32uvvQwShi3An2w17bnjjjvsrrvusi222MKOPPJIm2+++cKzZMbRjawyWflWtmTbeWNppxt1Y1cKix/Uvdpqq4X/syV7hx12sDfffNMuvvhiW3HFFe2mm24KNok+cNFFFwXdwQSfHDNmTMCBDG2W6JFJbYcBtj/rrLPCogwEbP311w+2Wm+99YIuLNr86Ec/smuuuSYQK7D/zGc+M1db2T2Q9dGvfOUrQeddd93V6B/48sc+9rGwg6EZVvfff39o3+233x7a89GPfjT4Mc928sdu2kt7yJTja7fcckuwZ/SnI444IvRFdP6f//mf4OPdtAP/p27K1ltvbSwgnXbaacFG2HratGlz9W12a7TCGDKMLci+48Pf/va3Q3xoVX7yk5+09Gd8i23RtItFmmeffTbUNXbs2NBe/ITFlQ996EP2j3/8w6699tpgbxbU6KvYEt8444wzbKWVVgo6EVN+9rOfBXWIDfS75ZZbrqRIrNcIASEgBISAEBACdUVAxLYkyzYjtjHriApM8Nk+GLciM1knM8eE+Ytf/GIgqpAliOQHPvCBQEYgYGQGyfJAyJjExrLKKqsYxLDZVmSeQQ5SRoHoQIpj1giiBkGJxBuddt5557neyUQ26stEHnII2WRrMFli9KVAltE5++0m9aM/5YknngiT3myBVEMWKZAvdGVSzGQaDA455BC79NJLw7uYZEPcs4UJdtziDan97W9/G34N6WZiPnr06FAfer344ov2l7/8JdQ1ZcqUQJJ4J4QqTsDZus0z6Mp7eT+FeiDa1AWhguT853/+Z8Ce+j772c/al7/85Za2hBRkCwsc7XSjLogPhSz/1772NVt11VXnVAGx5d0//OEPA/mnfrCBWNAmFigg3LTtqquuCsSRRYZ///d/H0JssWM7DMDl85//fKiLLe5x9wFkjO+5sSftYOEEMg35JZMNycmWxq3IkEUWJChZH4F8xa26UR7csQvYQ5DYwsu/sQELEp38MUtsO7WXLe9f+tKXwqtZTKJfxkI78Q3K+eefb3vvvXcgvXnbQYb2G9/4RpDfd999g7/g0/QPFlP+7//+b66+DbFthTG/gzxiWxY/WAxrl7Vl10crf8Z34tZ32kmMoY0UYhY7T+LCFTEHO8eC/6ND9FUWQVjII66AId+HE9f4NzsQevWt+BAH03+EgBAQAkJACAiBeQYBEduSTN2M2HJ4DRk+ChNliEYkipAWJooUso4QMCbyZC7JyjZuCyaLFIkt2Tqym0wWmxHb8847L2RKyaaR4YLAQATbEVsmv43vzH5jS/YSsgzRYTJLxoxMMrofeOCB9r3vfW8OsYXwbrLJJoFMMUn+/ve/HzKb2RK3UkJiIWcQvvit4dSpU+3ll182vlGGtJJBbSy77LJLIKC8l/dDjCB7EDqyySwWROJKhnOjjTYKRIIsI4QhD7GFNFDvY489Fibn8Vvfxq3IkOF2tszqfvLJJ7fVjYxtuy206AP55w9ZbLK22APfQY/f/OY3gWTTRhYjIMGQY4hQN0SP3QP4LFk8ssFk5yB/1LP22msb+EOEWKDBbmT9wAh/zJZWxJYMIQQVXyWjC0nHftkS/W/PPfe0Cy64IGTh8blRo0YF3+rkj920NxLbL3zhC4aN0I3MKP0I/yVDCY6QUv4diW2edtAmFicghfgmerEA0IzYxr4NaW6HcTdbkSOxbeXP7O548MEHw0IBB1rtvvvuQVfiB4fcQWxZhIBQszjH4gq2J5vOIhG+QkaX/rjyyisHE1Ifsiw+sShA/KHPqQgBISAEhIAQEAJCoCgCIrZFketSrhmxjYQHMsiElqxa9vAoMrExO8frIEff/e53bfvtt29JbONBUTzf6vAoCABbjSGH8bRkDgxiYknmKmZsIUZMYtGpE7GFtLDNN5vlhDQxyY06xYwtRBJCz9ZdJv60iSxntsQMaXbrdpzsQ2T5vrYdsY14x7Zk6yaLyjvJRpFlpUSiQnYLffMQW7JsEKkXXnghnF6LHfl3s29s29myG93YktuO2HKqNtiQubz11lvt//2//xdILoSIrbkQ45hdje+lTtqdl+iRRcxmibP6Q0DPPPPMsEgSM/L8nkUXMn/4XR5ii+6QIXRl0YRMX+N2cxYnIJlx8SNbL9+qd/LHvO2ln0ZiG9/FFnC2akfiSt8lg032lWxxJLZ52pGX2Gb7NtvO22FchNi28md2XIB/NkuNzldffXVYwEKv2O+xOf2ULdWQ3BiDWGSgv+GPzUpcbOsyrOpxISAEhIAQEAJCQAjMQUDEtiRnaCS2ZGshjEyIY8YpmwHlMCS+LeU5tiKyhZbvO8kKPvnkk2GSmD08KmZss8SyFbElc8LWYkjfBhtsEEgH38JBICASbNslO3PCCSeE7Zd5iC2ZU2Qg3xAfChNlJvqxfZHYxmtW2hFbsjzoEbd2cq0P38JSyERT2hFbMt5k0n75y1+G7yL5lhaiDRm45557QraSZ9geSdlmm21CNpMML6dMMwGP2WDI4qKLLhqey25F5ttAyFUnYss3ku1smd2CybeR7XQj+9zp0CPIOt9oQgzZ6onvsBjC9nW+tyTLyHtoOxnWZsQWct4OA7a2kgmmbjK0EGkWZyDVLJLgA9iM7apkUyE8zbKurTK2ZPrIorcjtvgGmVkWJSCYZBFZgMEH6W+d/DGLY6f25iW2+DT9JhLbPO3IS2yzfZuMZzuMixDbVv4cYxfYYkN8iV0X3RJbtqRzgjcLQMQevkVmJwZ+woKHvrMtaTDSa4SAEBACQkAI1BQBEduSDBsnh5BITrHlm9H4/Rmki6xHltiy/ZKsGESWLY4c7kNWky1+ZE7IikFgyIyQbSMLSt15iC0TS0gd21YhA2wXhvTErcO8g63CbMulRGILWcq+EzIQM8yQC4gm2wohknzLGbPNkVx2Q2whEmxPRle+/4V4M5km8wNZe/jhh9sSWwgXWyvJJFMPB2KhGxlptsaiHwUcIK7xQCYWDchC8f0fhYk8743fUOYhthBntmaCI9hC0NrZMktsaVc73ThErBOxhUxBaingx7fQCy64YFhkYLGBQ5z4LpbMNYQ0bp/N1svP22FAVhJ/wOfICLNAg1+yRZb7jfkZOpDFxNdZiGGxhgOnssVDbGlXJEMcUgbRYjGEf7Pg0Mkfu2lvXmLL1mve329iG7ect8KYhSsWwsgqs32ab/BblbgVuRWxjTslsDHfoxMnKCwEseCTN2NL9ppPKliYYnGFvgleccGo8Tv7kkKzXiMEhIAQEAJCQAjUBAER25IM2XiPLYSDjCATcDJLlEhs+V6RrF3MmEYVkWGyyqFKZADZLgs5JnMLkSDD1ozYxsxjvMcWMsyklMLv+E6SU24hb3xzG0kc3+nyvkhsG98JceN3UV9OiuW7v+yWRTKE6EdpJLZMaiFIzbYiQ9Qh7HyvGEs80Ir3krGCuMTvgxvNSBYI0hoJK78HTzJqFLLWEF4IHCWLLf9nMYF2USBvfEfLIgDEF1LBYTuxbdQBSYpbkSF2EHBIGxN5tnK2s2Wj7p1060RsyYhDjrFDzGbyDrKn2D7al0w6+MSMfWO97TCgrSy0ZPGN2V9sx8JMPGSId2MrviGP31jGNkdiG300EkK+1wRDtrOyUNJsKzJ1xO++Y30cMMVhWGyx7+SP3bQXYou/xq3IkQzGrcgsNLEA0/iNbd52xG9syf6DbfYbW/yusW/zrWs7jMmOYl8Kiw1kcFuV2JZW/sxBYWTG8XOy4exoIJOOvflGlrgS405c1IlbkbEBfQACDrFl4YbFonhwHW3FT5BXEQJCQAgIASEgBISABwERWw96JciyvZOtyGzb41AcDlyJhcnt9OnTQ9YkbpXNqxITaL7TIwPYWDjplKxy3Pqb/X2nd0KqmIhTP9/JNruiJa+OPMd3wI8++qgtu+yyc52cnKcetjpCRtElfk+cxY+6yZhyrUnjqaxkcuP22uyJznneCw580xqv0UGmnS0b6wTndrrl0aHZM+hFve9617tCFrdT6YQBWVP8hcWGRh+k/ZBosqoQt3hQWqd3dvt7/Jj34MuN21m79cdO7e1Wt34/3w5j2gI2LLTwd7NC/2z1vXT2eeogDtGPuu0Lje+NNqFvUx99REUICAEhIASEgBAQAl4ERGy9CEpeCAgBIZAwAuwA4NThZoUFDrL6KkJACAgBISAEhIAQGHQERGwH3YLSXwgIASEgBISAEBACQkAICAEhMI8jIGI7jzuAmi8EhIAQEAJCQAgIASEgBISAEBh0BERsB92C0l8ICAEhIASEQKIIxOvdmqnn/V47tSbHttatXXlwnpfbngefXj7T2KfmRX/Lg+e87JO0fV71CxHbPL2ji2dwJk6F1YEoXYDW40exwdNPP20rrrhij2tuXx2HKDU7jKtUJRJ6GQdgdeoH3Hmb5xCrhJqVpCpgzeFc/TqgK8lGS6nkEYh3ardSlIP9eh0zuZKKmwa4Zo3TymPhhG5OeueUeu5N5rR+TvXuZel0Yn0v3xXr4vYATijnNHhOL6+icGMC95m3uqWgCp168U5O7edk+4033jicBp9C4cYM7qHPFk6XB3tOuM9zGODf/va3cFo+18BttdVWoSpuIODgT27D4LDOfpZbbrkl3D2fLRxY+sMf/rBnr63KJ+PtI9xCweGIVRSuVeRaR64ejFfqVaFHr9+Z10dFbBuQ565NrorppoNxr2q8R/aaa64J18g8/vjjc9kUh//Upz4V7nDsR2FyC0l46KGHwsDdrlx++eU2adKkcHLvgQceGO7d5P7Tc845Zy4xBv/dd9/dpTL30HIVC4Sz3wXbcZ0IQZ72cZ0QV41w5Qz39TaenJvVBxlO9+WqoFiYEHH/7XbbbRdOpqaANfeDcj9rXBXD7gwK7a5W6XfbO9WftQNXEHFtUvZank7yeX9///33h4lA48ryq6++ahdccMEcf+Kkak405lTqQS/cE4xv4WPZwhU39Pkrr7xyzt3A/J6ruvg510fFE6W5UocrsO6++27jijD8Kd5J3A6fsWPH2mabbRb6/V577dW2n3F1FZM1rggjXnV6vt17s7HPa79++qNXN8kXQ4BrsuLBZUyk8W/uPebQMgrxk6vmelE47f26664LBI+7x7kmjDvUKYwDvJP3c/0UhIUCyeX/vSpVENt4Ldt5553Xt7lFJ3xivK8bsY3XyTEv4GrDFEoktlyHxxjL4jBzN67347pGrtXrVO68885wnR7jC9c9Upi3XHHFFWHs+eAHP9ipCtfv4xVz9L049kGmf/GLX7jqzQpX5ZOR2D7yyCO2+uqr96w93VTEnPezn/1sWAD50pe+1I1o0s/m9VER2wYzQjyZfHcz2Wciy9Ua3EPbjthyxyNZxF6vUMcmRGILWeEe01YFHXfeeeewkrP88svbuHHjwuodesX7bZEFB05MBYu9997b5fAQw+233z5cA9TPEicwYLDSSisFMs3khVVt7t4k2BG4G6/24We0HUyyd78yKePOWggIk7Df/va3YRUO8swk6fOf//yc5jCx2mSTTcJ1Oosvvng/m1m47qwdWM174IEHAtHsdWlFbJ999tmwGvzEE0+EK6XqQmy575k+RYYKP4kle6cxGX36P9fcMJnAh66++upwZddSSy0VRLivFyLMogl+xMAEZp0m/5HYcnct8u3IMJMX+jz10186Pd/ON7Kxz+tD/fRHr26S9yPAXcwshEA2IZ0U/I+Yy4SW69D+5V/+JWQZIL/EZPx08803N65tY7We2MsCyAYbbDCXQj/+8Y/t0EMPDWMxsTlLbFmwZQE33sl+2mmnhb5K1pb7m2PhWqwddtghLFRffPHFob+yGIiO6Ebf5o5oxnomriw+QeboB/FqN94N2WDchGzyHhaRaAMxgowaMXfWrFlGZgXdyJRxdzX9nfvaKYxXP/rRj8KcAqLB4jNZmMYSiS1to0+zEMsiF+3iOq+40MpiNjGXMeyrX/1qGKuyWTPI0eGHHx7aTNsptJMFcO7M3mOPPcLzxC5iEllM4g5tayQRtLtd28GILDN3ZFOw97e+9a2mi87Ma2gLd6aTjSfDyF3Y6E9hwRDcyNCNGDEikDXuoIcwgT3j/9lnnx0W/Vj44L08Q4yFJGJf2nDJJZeExUbu1Aaf66+/PvgfhPE973mPjR8/fsiCt79HFKshEtss2Y7ZSTK3cY7VCheytSxmsvjD8yzIc788GGIX7rUHb/wRYs/iFPME/JK76+lHLOZ/8YtfDH10l112CX0CWTClHyCHrZhL4TuNhX5KX6K/tbuqspc+2ckX2vkkfRWyiL/iT//2b/8WcGi24yMSW3yQsZa4xjwUv6M9EE2uRwRXyoQJE0Kf+tznPjckgfS9730v9H/mzfHmAmxFHz/11FPDfP3II4+03/3udwFz+gMxALtliS1+u8UWW4RYEBc9Tj755NAW5sXEV+qkrhtuuCH0f2INftZsxx1XPH75y18OdRFPuLOeuET2v108JyZ20oPkEVebEr9YoMQ/mXvDy0466aS5fJQY1KyI2DagkiW2/JsBhYwKHZtJJ06YJUVMaPfdd99QCw6LUxE0yPgxsEEcGbwYiCFBGA5HRY6OfddddwUnYqBltTdbcBKcnQDF6hrOTVBnIgzZwjEJ5GSK6GR5iS1OQyCno1MI9jgQ78gWnH7q1KlhgMoWOiw60DkoBFU6HI5O9o2JBwQq6syglSVUOCoDYpzcsH2KPwSJadOmhckJgy+Thm984xtzVg/59/e///1ADAiw4N34DQEDMWSUQIEuTIRoA6v1dEgyauhC8MkW8OfnvJe2xAEfnNEDe9LxIcsxoDHhaLynl47LBADfaSwsHjBgQCSwI+9gQAHfKVOmBLJHIMFfCHpxcGBRoVmQ4TlkkAV7fI9gwEBBsMI/0JcBhskXfkQ2Py4wtCMSZA0JqvgUz3/zm98MkzV8B+yxPTsbwCS2lX6CHP2D92GvxowteoExK7UEfexCwGciRX20M+5oIKvIhBG8CJ7gASkuihf2aNYufs6kmxVOJlfgRn9o5YeNdsUGEElWz1mhzRJbJsRsSWLSFIkt2y+ZANC/s8Q29l9W07EleHCXNDgx2c4W+h/9ly1dDGhMjJlgEOjpf/g/9YMtE378Hn9juyD9jL7BYEvsiM+38idiTLNYxKQkG/uy1wahL7s84oIYvsREnQl9q36Q9cd2MaKVXzRr74477lhs9iipniPQSGyJDWwZJu4yTq6xxhphsk1h8ki8Jo5QVllllTBBZPJJ34RstPrUhDqI71lii28yMcIPGZ8h2OhDbGvMEuG7xEoWniBQcRJ+xhlnBH1YNEYHCBBxFzIUtwFnM7b0K0gncwbqoN8T7yFJxDTqY05AXehL/6BAmFnwI3YzAaafQhzo4zE2ZI0TiS0/I64yHoATYzxxNcZc/s3PeCfvZixlrIuFBYEVVlghyDLR5d2QQbCOW3KJ9fwc8hMX/4lvyBL/YsaWOUK7tjOXIiaCxTLLLBPswb+ZZzUuOhPDmIvgI4wX7MaiEE95njGXwrv5XbbtjFf4F/MsiBnv5N1xgYO5F/GIwu8hahTGMvRi/OFnzGVYBPHuXOtFp4rElnkV80rGDQgJNoqL8szpWuHCOMoYjo+DKeMedgdnfJmYCd4shPAzCuNvTHrgO8hQP++h4BOMKbFk/99sSy7zYPwdXLEj/Yx5VePOrV76ZCdfaOeTLMaxQATmzAeZL4JdsyRGJLZgQfuivzI3pZ1xnk9/Jh4wRwW7xp2WyPE5BbGPO+TZ7QiZJV4QG1kwIJ7RF/FV5gnoxHNZYosPx3lqnI/FGEBMwBbENPSBsPMu9MHG2DpbkAcDYiw7IFlEQY6+Q2xqF8+JJe30IDZl5/PZ/sgci37a6KOtdhaI2DZEmiyxjQ5KAGe1lckoq3gYPxY6Jat6ZDeZFEOi2A7CiiCORxBhtQc56oMgETiYLOJUZGJY+WKCSODMFsgfgxRkiCDAyimDDCQQJ4JsMLkkS0PQIbCzFblTxpaOhYMQlHA0dIokM74/dqpm30DF7FRcbTv22GPDBJ2VI5w3rmYxoY5ZUlZFI6Fi0g6WcdLL/5lgx4k5q0CsMkFQmYzHrBKBBecGY7aMQyzp+NmC/QgWBGbksUM2S0zbIR6ttoMT3AjKkdgycUFX6uVntIPMAXZrlsVmAsM29Li9J+pG5o6VelaCIR8QnrXWWiv4BxN6VsAYPBiYIDQEG/R83/veFyYfBH1km01oaCtBhmDFH3QAw7jFFxKEvgQHAnEnYsuKP+SHFUPkCDgESvRjwsUEhNVi/Pfcc88NkxqCKdu0WQjAnqz8M0g2ElvwpB7wYcJF/dQH4aSPMGDQfnRm4gp5wy+YlGJHfKwoXq3aRX+k3zBgMAjQBhYemvkhP8sWMjv0nZi1oL2R2ELg6Vu0GcIbiW2URx8motmMbfwuGfJGf2cBgUGMgStbGHTov0xyeA92ALvsVmTiEX0EvPBZfIxMC7Zksk3f5P9xK3KcIDf6E37XLBYxmSJ2xdiX3XZFn2HBK64QY2v+0M/b9YO4g6BVjGBy0sovmrUXX1pooYV6MZ9UHU4EGolt3A5JvyNWMBYR9xnXiHcsEDKmEY/pKxTGFsYm/L1ZJohnmhFb+iFEDsISd/GQgWXiSV/LFp6hP/OHPoi/oR+ZLmIoYy2xG+JJ/4Mg0HcYU7shtpE0EgvRBTLIgib1sABF3KPtjBXMF+hnxEom1s3GAeYQyKMnk2UIHmM0cZoxhHkCE+HYnmY7QeI30Uxomcew2MAEE2LIxJm5BZNX4hQkj0ktMQZilJfYEucZoynUR/+Mi22M2XExI7YxYkpsYDwEH8gmuLB4gF5x8YB5GlhRmCdAJPIQW8Z2xl4WTfEr5FjYSHkrcrPuGL+pjFs2W+GCj7Tbisy4FLN1cVGABSDGSogWc5xIbFkI5ufUh13ilvi4oEJ/id/xRp0jmWMuwByXeS2+zpjRmCzolU+2I7Ys0LfzSdrInAd940I+Yz2kkjiQLZE3RBzoH/SluOhDX6SfMr8CI/oYC+N8LtdYsgtL2AHZuHgBUSZpEeMZ8YJC4oeFtrgVuROxRYZ5L4QVOeYbMcnFnIv4HAuLJ8QffIAFOBahmD8wzvIeYkOreA5+eYktMZwFe7gO/CsuwmkrcsFBuJHY0iEjoYBEQagas3GNW5FxYhwOEsDkkUkhDhKJLQGBlUcMDcFigIEcZL+L5Xm2JzJ5xfkZSJiY8jzBPRsscCy2vuLonYgtekVHZesJQYVJQgxeETaIFZNLSGtjoePQtriljEEeUs7kATKLLCsvkFAGCNqR+wIrAAAgAElEQVTGZKQTsSWwsQKJTpAkAgeDMIMsiwN0PgY+AhSDHANY47ZubESWG5wILAxYrI7HQpsYuLJbiLPtayS2vJd2MnkBZwI+K/rYhUGZwRNiEwcBbAAZgUBmCzaGgLAVjUGFSQxb0yHKDEaQIYgPh//QeVl5i98706nJfmbbQd1MppgkQPYoDPR8PwleHmJLu1hMgIAzcWGCh+0gq9g9+iQTJyYdPE9QZhAl00KJW/0aiW2zrcgsijCxISOD3tQHEWNBh9VDfIm2s6oIRvhrEbxatYvMP/0mDkT0hVZ+yCCSLdgaXemPLHBFYgt+6HvppZeGgQs/zkNsY91MFJlMM3DSj7KHecR+wfY6fIXYAPFlcSBLbPFxMiEMVvRRBgsmqfShuBU5+41tK3/iAJ5msYgJBxO/+BlGFhcyyeiOvVnUof2sSNNn2/WDTsQWYtHKL4hVzdrbbqtbwWFCYgUQaCS2jBWQVzKfcUsqcZb4yiSLBRYmg5FkxBiHn/O7xoW+qFIzYsv4hK+yqEO2Kk42majSf7MlmyUirqF3zH7SrxkHYnY1yqELOrUjtvguE0LIKbGoMTMZ66K99DnGuZhB5Hf0J2Jf4/kZcUEqS/Yj1owv9P34KQP9g0k04xykvbHEg5IY04j5ZDZjho7YjhwkJFuI3/TvdsQ223biEfo1K43fCcddVjzb7HTtSJCy34UyxvN/xkbskiW2tBlC3pixxc7ggl2Zv0R8Uia2xEHaweIq+scMLfMn/s3CditcmC+2I7bE6XgIFXMgxmB8Py6wssiCjzAXiHPHmP2OpCRmQLOfHkSbk8WFDLGAE8cv5hPNvu/tlU82EtusL9Cn2/kkmUG4AGNytp8STxrHl0hsYwY2zpeRY9cb4x8cIdvHYlxq7BPYGH7Bwj42JqkEuaSvsUjFwnJWJ+RZzGJRph2xZY5MjGHRC3/J7rbK6tD4nTBZfOJ1NmbH5zvFc+JEI7HN6pHN2OLTzIVZcGAOH/ERsS0w8CLSSGyzhz1ts802YWWqkRQ1EtvsYSwMLAzSBOVIbFl1iQ7LOxlACKBMgGOJ30wwIGRXhOLPWZmMk10GNkgSK7+diG3M3mVPS4N4E8TIeFCYXDIYxq0SzaCkDTgpEwYG6phVYhBkgKezxe0onYgt74pbXgiGjYUOyAo+xDnuu+f9THAagwoBOJJ+OhoLEdmMLZMCyAiYNyuNxLbxGQgpQQ6SwkSathPksTMlkvnGb4l5hoUEvo0ggDPBYXEjEtvst65xlS777uy3M/Hn2B3iF7eKQ375hoP/Z4ltXMXOm7FlNRayx0pZXAQhgEZimw124H3vvfcG3+GdLNZQ0IOJQh5iG+uLp4lTH6QectxYyNyAcRG8WrUrEtuYEYjb1Zr5YfYbNxYvyFIyoWQLFbalsMCA/tSHj0DuWE2lXlY0Y0ahWcY2+04Gf4goWSwWtWLJkvy4HTN+4pAltvRfJnFMNOiLZFGZCGW/sW0kts38iTYwAWmMRejT6htbJkP4N9k3+j+2ZAKUtx80ZmxjjGARp5Vf4H/N2ltwKJBYjxFoJLbYkv4QM0C8jhhGVp/sImMvxJZFvviZRpzYsKjT7HMP6mhGbFl0w/+ZKJHlI2PCGML4wBb8xhKzRMQwyCDZKsYM/J2xm4VT4jn9nLGrGbFlTKfvMmbEbzmZC8StyHHxirrpX4wLLO7xcybAxCsm/8QBtvAz6c+S/Ow4wDvYaUIMyhKFmHFhTsI3qo3taWbiOP7ErYAsxPIpA5kaJtXEePQAD7BuRmzp963aDtEhbjK2EBP4po4xirby7uzhjowffLtHLINY0ccZ3yAN2ICJMUQhngMSP9+I8xjGLcgqz+Br2J5430hsGa9YFB8kYpv9xjYuHMSxF6LSDhfITztiyw6wSELizq+4WBnnIjFj24nYgilz51iwI7pjZ+xHYf6JjVsd5tYLn4zbn5v5Agu97XySxRzGcQpJGogWc9zG7fz8PhJbFrVJZMSFchammO/RP8kOIx+3Ksc+1tgf4+cL8cC7uHsiuzOBBRzsRdygNBJb4mlMvMQdTJB0+i3ElvGZ3R7EWtpDwZ/oe/SJ7K0V8fO+qAfjPPNQFq8h6/xpFc8h2+30yBLbOG8Use3RINxIbJnIxi2neYlt9lTkZsSWwZnOTWcmWOAY8UCJ2IyYWY1BAweCNDKYMEnNBgDIGBNBgngnYkv9kBEGOVbLKWxdZQCMBIkBCXLR7nQ9VrnpDLyTgR9SHSf6kM+4sstg2IzYMnFgYMKBWZmhg5EVYgWd72wjoYIcMEFm1YstS/xhMs7AxMQCwpstrJjHbxki9nHLVVw5a3cMeztiSyDCFyDObB1jxYyVMybdkBaCC4GBSVfjtpK4fZvtd8gymcIGzYgtE0AG4ZiRwFfABBtnC35DAIqZ3UZiGwkjix4EorzElgkgNmVhAOzBhDZGYps9xTgSWzIuvCdmXpiIgVUeYhvryxJbtgOCM4MQhYkeB5QwEDBpyhLbvHi1alcktnELf9wu3cwPIylFpzjRjDaJJ6GTfWZlO/oAA1ncasX2o7iy3khs8Uv6N30+Hj7GohPf2caDJnhXzJRnd1kQPxjAssQWvCDcLDqxGMDEF9x4T6uMbTN/YkCKk1D8KMYiyDoLGs0ytugZdxAwWSd20mfz9gN8vVmMYGLdyi/AuFl72eGiUj0CjcSWRQ5iJv2f7AU7HCCDFMgPE+u4LRWiSwwgzlLiN6DNWtWM2MYJGX7MwisTU/ylcdId64sLc/w/ftPG2EofI84yL2ACS1aE/sjCEwtA2YwtYyQL4cgz1tL3KZHYRvLMhJdJHeM7OtFXmSjyM4goC+lMptml0oyIZ7+xZUwFG7KU2W+MI2GL7WFiDKFsVujTxHpKzFTz75gJRU/mJ8wTKPRHFt+zGdu4bbVZ24lBTNT5G33BI15J0mzxLG5Ppz1MtLFfjIOME8y3eA8kifEU+zNOMIZhL8YL5kxsbWTMpuQltnHnEfMS3tvqsJoye1f8xhbcSIYwvjD2Mj+Ji0C0sx0uzB+J5eACPhAw/hCfGRsYK5l/MJejj5KNZRyAfMatsHmJbbOtyJH8YXc+Y2JxGF1YsGh2/V8vfDL6UTNfYOGrnU+SRMEXWNChTzPHgxhm59HRB2Lb8EmSMfgouIFzvDEhEjZksidTN/OjSMj5Xdw9EXcy8A5sjd3iHIG+yUJP9lTkuCgF8YxZY+pj3k1fid82M6dm3kNb8Q/iTuMVgrEu4hdzamxHnCZmt4vn9N92euQhto0+yqJXs6JvbBtQKUJsCZ6k89na0HgqcjNii3H5VgjySCdjYGKS2niIBQSYiTQZRhyXgMZ7mFCy2sXKMYMqzsSqDfVGYoujkumkDt6RLXROtqxCXCBNOCWdIn5nC4lhkGi1XZe66BxkjHl//G4pbhlhcOJ3OD4BgBUk2he3IkOUCMaQQFa1wDweckF7CQBMwgkcbEtjgg6uDM4cogEBBr/sAVixfaxEMYFiEIo6EqQJKKysEwRYBYNw0Xkb8WlHbMlOE+DZ0sJEhQkJ28TBjywaq8nYiAGmMQuADQkADCgQbbBmYgH5aTzEiTrAg0BB4GIyA7mh7dnSitiCKRgxaGADFi54d15iC+b4D6uqkDewZrDDzxtPMY7EFqzBgUkZExwmotivkdjGHQORdGXryxJbBjsmE3zHGcksCxa0gYllltjmxatVuxjAswtCcTW0mR/SN1oVfIwJafbwKJ6N2687bUWO2Qm+K2HywASVBQ7iSuM38Pgt5BkiAEYMjo3f2OKrDNbgQz+lT2JP/J/t+GDJwkH2G9tmxJZFq1axiAl9jH2NuMQFFX4eJ6x5+0GrGBEXv5r5BXGxWXv7fXVFmZPaQX5XJLZZMsniDnbLbm9lXCPWMqYRU7KHlND+Tqf0x8xSltghF+92jBiyKEsfbzyAkN/TFyHa6JU9JZ9FIeJSPCiHOMfkNmZjssSWmMinC3HbMuMuukdiywSUbdHIxxKzv8RC+mj2dgZwYNEtfguYlWG8I07HhUAIDvE3XmWUHa+J5XEBoZk/ZbN/MVPNcyxaEpvijiPiPG1DZ2yYvceWxa52bWe8BI94sA7jHG1li2NjYa5C/IlXNPEscw7GenCi7dlPpuIhUXHHGJP5aC/iJHOpRmLL3IVxhsUI/CZuRWaHHD7ImN54gnZVfbHVPbYQKgggftIJl+xp/fgI8xLmF/gzhXGc3QUkL9jhE0vcJs+4HbN+nTK2zYgtC0f0v3hYHLZinGn8fjy+txc+iQ+084V2PsknZywUxP6FXvg3Y3PjJwWR2GYP3KJv0r74SUBc1KYefo5ftirZHWTZnZosyLMDgUL9jOvEKz41IqmRvcc2fuLBs8QGfIS2UDd9l98Tb+K2Zn4fkzWNerH9nLkFcYBCPGOuymcB7eI5z3bSI8biOG9kDsuiQtyK3Oijra7WFLFtsBokgqBMkMVB82Rso7EIlgTmdhnbuLU5fn+Ak8XtNfH4+qgSnZ+OGAcSVpXoTPGOvuhYrAoxaOMM8R5btiXQiZp938B2Q1ad4kCBzhApiFZcCYqBvl3wjivO8RAp3k+94EFhAGXQJoPF6hErT2SGY0aMZ1iRZuLPSlE8rCN78iAdl9UtiA7fPbLyxcBGMGa/f+OhOpBE2hW/H4qTI96FHHhgV2zMNuZGfMiQEWTpTNlCYKM9MSPJgEdg5m8G1XgYVfwIP544Hesg6DBQsOWEwqIB3w5gN4JV9j5ZyB92jicOMuAykDeuTjUjtkwUeDaeSsm74oSKwYHgHu3Q6t5Q7BMPImChgechTfH7rMaMLYMikxraDqmm4FMMjs2+i8peYM72n8aMbdyNAL7x5G36CUGNSUaj3nnxatUuBmayEdlTCeP3N9F+0Q/b9YduiW28IoOMZjwpMW6RjP7KxIJJaOOx+yyYYRdiANjgs2TIsxnb6Ptx9wP2IbuPL0L2iDssFrQjttGfWsWibOyL29CzGKEPiyTxO8a8/aBdjGjlF63a285m+l31CBAjiOuMDUyO4hbIaE9iK4ugLKBA6jyHgbEVjwUjYmn2UJRuUEBf6mA3S7PsUmNdLB5TWl3ZxZjLohd9uPHTGmSJjyxksyujMXvS+C4ILH2s2bNxYaHxPI1u2g4hYv6AnZotCHTT9mh3sj7U1+xqkVgfz7IjhrkGWcrGZ6kDm7B413iYD3WAL/GOBeJuC4vwjDHYZtC+12+HC5jiX/GaKnBhXgTGLCBG38Y/mTvQZxoPT+wWy8bn8VXeyZkqrb457/SObn2ynS908kniFHM4fCxu/W2nHzENPBvPgonniWQPWurUzma/x37g18znG59nsYN5NPOFZn0NP6cP0UeIH+36N3GGuEQsJg5mn20Vz6M+nfTohEMzH22UEbHthGLO3+PAcatsTpGQNaVTZr+tbZTF2eJAlXWeOEDzjV32YJmsPJlKiHqzrXhsJ2SiQKDu9b26DEAQTlb10JM/jQGRbWgMFs2CA4EgTmKykwFk6Ez8rNVVD2DKSjLyERcwRg4S1W7wbGc3gjsdNvv9T7NBnE4OQWoWaOKEiCCOHgQ3FhOaDbY8S1viSZh5JhGN+lA/Jd6RmtcveY734nfoyrsJ5ti00+DDAgAT01b2iToQkDvdzcqzvJdgjO0aT0vMticvXt20q5UfdoNjkWchq/QhVkLb+SuTljjJbDXBJi5hEyaO9MdYiCsMEN1M7lvFom5jX95+0C5GtPKLVu0tYgfJVItAltg2XjlXrWaD9fb4iQPZnGanQA9Wa6StEBhsBMiEkgQjO8ouuMYkymC3Lg3tRWzTsEPPtWDSy1Zkts8UIUU9V6jECtm+wDeK8budsl5NgGIyHg/CKuu9eo8QEAJCoG4IsPOGre7s0mC3jEoxBCC2ZL3ZHcWZFI2nKherVVJCQAgUQYBdbXwrG3cy9joLXkSnusmI2NbNompP+KCdLZJsbS6z8M0ye/4HbbtSmRjpXUJACAgBISAEhIAQEAJCoB8IiNj2A1XVKQSEgBAQAkJACAgBISAEhIAQEAKlISBiWxrUepEQEAJCQAgIASEgBISAEBACQkAI9AMBEdt+oKo6hYAQEAJCQAgIASEgBISAEBACQqA0BGpLbLl/jbuYVISAEBACQkAIdItA4/3f3crX+XmNr3W2rtrWCwQUP+ZGUXGjF57V2zrq6Ke1JbZ7f+V/57r3s1fucMKBm7ur4vqZlB1K+vlMLPyEnw8Bn7T8r974+Vrnl/7GN75hRxxxhL8i1SAEaohA6vG3KsgVN6pCvvl76+qntSW2Ox45qW8edMWJY911p+5Q0s9nYuEn/HwI+KTlf/XGz9c6vzQT1L8ssM4/K5pdvM6zDtuuuLAkhUCCCKQef6uCTMS2KuRFbNNCvqA2Rx1/qu2xxx4FpZuLHXX29eEXIrY9hbVQZakPHNKvkFnnCAk/4edDwCeduv/5WueXZoJ60/RR7oqGDTO7/AT/QrFbEVUgBHqIgOJHczBFbHvoZD2oqq5+WtuMbT86UMwCi9j2oEc5q0i9Q0o/n4GFn/DzIeCTTt3/fK3zS4vY+jFUDfVFQPFDxHYQvLuufipi24X3RWJ74qfHdCHV/NEnn3zSVlpppTm/XHThBW30yOHuentVQeoOL/18lhZ+ws+HgE9a/ufDr2ppEduqLaD3p4xA6vGtKuz6kXCqqi11eG9d/VTEtgvv7Od3u2uvNsJ6QZi7aE7bR1N3eOnns7TwE34+BHzS8j8fflVL95rYzp5tNu3ZF3vSrJHLLt6TelSJECiKQOrxrWi7vHIitl4EeytfVz8Vse3CT4783nVdPN3+0ZkzZ9rCCy9sL8183aY8Nd1EbLuDNvUOKf26s2fj08JP+PkQ8Emn7n++1vml+0FsdzrKf+Cjvtn121Y1+BFQ/GiOoYit37d6WUNd/VTEtpde0kVd0aH++JdnjEOpRGy7AM/MUu+Q0q87e4rY+vASfvMWfr1tbfe1idh2j5kk5h0EUh//q7KEiG1VyDd/b139VMS2Ij8TsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl7ENi3kC2qTegcSsS1o2LfFUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfK2FbkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjSsMrY+4ISf8OsJAr5KUp/4pa6fD32/tIitH0PVUF8EFD+a2zb1eXl9PVLEtha2Tb0Didj63Cz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qq3IFXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDfu2WOoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UGduKPErE1gd86h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpAXsa0KeWVs00K+oDapdyAR24KGVcbWB5zwE349QcBXSeoTv9T186Hvlxax9WOoGuqLgOJHc9umPi+vr0eK2NbCtql3IBFbn5ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT7UVuSKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGHfFkt94JB+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5FOfl1eFS1XvraufKmNbkUeJ2PqAT71DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyIrZVIa+MbVrIF9Qm9Q4kYlvQsMrY+oATfsKvJwj4Kkl94pe6fj70/dIitn4MVUN9EVD8aG7b1Ofl9fVIEdta2Db1DiRi63Oz1AcO6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+qm2IlfkUSK2PuBT75DST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhbyIbVXIK2ObFvIFtUm9A4nYFjTs22KpDxzST/b1IeCTlv/VGz9f6/zSIrZ+DFVDfRFIPf5WhXzq8/KqcKnqvXX1U2VsK/IoEVsf8Kl3SOkn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCXsS2KuSVsU0L+YLapN6BRGwLGlYZWx9wwk/49QQBXyWpT/xS18+Hvl9axNaPoWqoLwKKH81tm/q8vL4eKWLbU9u+8cYb9uKLL9rw4cO7qnfWrFn2yiuv2GKLLTZE7qWXXrJFFlnE5ptvvrb1pd6BRGy7coe5Hk594JB+sq8PAZ+0/K/e+MXWVTm+3jR9lA9kMxs2zOzyE8ba7NlmOx01qWf1uStSBULAgUDq8bfKuHHEEUc4kJVoLxFI3U+LtrWvW5FPPvlkO+uss2zjjTe2F154wSCba6655hxdf/e739mBBx5o6667bvjZzjvvbLvvvrudd955NmHCBFt55ZWNDnjBBRfYsGHDbM8997QFFljAHnvsMTv88MNtv/32a9luEduiLvGWXOoOL/1kXx8CPmn5n/DzIeCXrnp8FbH121A11BOBlMeHquOGiG06Pp+yn3pQ6huxfe2112yhhRYK2Vqyrscdd5w9/fTTNnHixDn6nnPOOfb6668HcgthpUBkF1xwQZs+fbottdRSdsghh9jIkSMDsZ0xY4Ydf/zxNm3atPAzsreLLrpo0/aL2HrcQsTWh57wE35eBHzyqQ9Y0s9n3xTGVxFbnw0lXV8EUo1vKcQNEdt0/D5VP/Ui1Ddii2LPPfecLb300vbyyy/bFltsYYceemjIyMYyfvx4++53vxsI66677hoyupQtt9zSHn300fBviPC9994biC0/R3727NlhKzLPjB49WsTW6wVN5FN3eOnnM7rwE34+BHzS8j8ffimMryK2fhuqhnoikHJ807y8nj5XpFUp+2mR9kSZvhJbXnL33Xfb/vvvb2uvvbade+65tvDCC8/R9/TTT7eVVlrJPvrRjxokd/755w/ZW0juww8/HJ47//zz7YYbbghbmXfbbTfbZZddws9XWGEFu/32223UqFF200032c033zwXDtSTepn81Ayb+IuHbPWRS9jBO7w3dXWlnxAQAkJgnkCg1aJpSo2vcnztCbE1swkHbmizzWzc2Xe4oR32dn3uilSBEHAikHL8qDJuDMK83Gn6gRJP2U+LAtlXYnvttdeG72K/853v2NixY+fSkcOhOAiKcuedd4Zn7r///rC9mMOjyNKecsop4fdkdZdcckkbN26cvfnmmyETzHblVodIaStyUZd4Sy71lRzpJ/v6EPBJy/+Enw8Bv3TV42tPiK0Oj/I7gmpIDoGUx4eq44a2Iqfjrin7qQelvhFbtgvzjew111xjG2200Rwd+eb2wQcftA033NA23XRTO/jggwOhPemkk2zq1Kl2xhlnhMOk+Hudddaxrbfe2o4++mibOXOmnXbaaXbVVVfZJZdcYnwAf+utt7Zsu4itxy1EbH3oCT/h50XAJ5/6gCX9fPZNYXwVsfXZUNL1RSDV+JZC3BCxTcfvU/VTL0J9I7aTJ0+2NdZYY4h+++67rx100EE2ZsyYsLUY0ss2ZTK0PAu5ff/732+XX3657b333kF2++23twsvvDAQ2+22284eeOCBcA3Q1VdfHU5bblVEbH2ukbrDSz/Z14eAT1r+J/x8CPikUxhfRWx9NpR0fRFIdXxIIW6I2Kbj96n6qRehvhHbVopxkBQnHXMiMoVtxc8++6yNGDFiiAjPPf/88+H042x5/PHHbcUVVwwnJ7crIrY+10jd4aWf7OtDwCct/xN+PgT6I13m+Cpi2x8bqtbBRyD18aER4TLjhohtOv49aH6aF7nSiS1X9UBYs/fZ5lW2m+dEbLtBa+5nU3d46Sf7+hDwScv/hJ8Pgf5Ilzm+itj2x4aqdfARSH18aES4zLghYpuOfw+an+ZFrnRim1cx73Mitj4EU3d46Sf7+hDwScv/hJ8PgcGWZnwVsR1sG0r7/iGQ+vjQv5a3rzn1eXlVuFT13rr6qYhtRR4VHeqPf3nGjjr7elt7tRF24qfHVKSNMra9Bj71gCH9fBYXfsLPh8BgS4vYDrb9pH1/EUh9fOhv61vXLmJbFfLN31tXPxWxrcjPRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpAXsU0L+YLapN6BRGwLGvZtsdQHDukn+/oQ8EnL/+qNn691fmkRWz+GqqG+CKQef6tCPvV5eVW4VPXeuvqpMrYVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUNq4ytDzjhJ/x6goCvktQnfqnr50PfLy1i68dQNdQXAcWP5rZNfV5eX48Usa2FbVPvQCK2PjdLfeCQfrKvDwGftPyv3vj5WueXFrH1Y6ga6otA6vG3KuRTn5dXhUtV762rn2orckUeJWLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8MrZpIV9Qm9Q7kIhtQcO+LZb6wCH9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/Vca2Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYZWx9QEn/IRfTxDwVZL6xC91/Xzo+6VFbP0Yqob6IqD40dy2qc/L6+uRIra1sG3qHUjE1udmqQ8c0k/29SHgk5b/1Rs/X2SQGRgAACAASURBVOv80iK2fgxVQ30RSD3+VoV86vPyqnCp6r119VNtRa7Io0RsfcCn3iGln+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCnkR26qQV8Y2LeQLapN6BxKxLWjYt8VSHzikn+zrQ8AnLf+rN36+1vmlRWz9GKqG+iKQevytCvnU5+VV4VLVe+vqp8rYVuRRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNKwytj7ghJ/w6wkCvkpSn/ilrp8Pfb+0iK0fQ9VQXwQUP5rbNvV5eX09UsS2FrZNvQOJ2PrcLPWBQ/rJvj4EfNLyv3rj52udX1rE1o+haqgvAqnH36qQT31eXhUuVb23rn6qrcgVeZSIrQ/41Duk9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSEvYlsV8srYpoV8QW1S70AitgUN+7ZY6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VQZ24o8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZVxtYHnPATfj1BwFdJ6hO/1PXzoe+XFrH1Y6ga6ouA4kdz26Y+L6+vR4rY1sK2qXcgEVufm6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPtRW5Io8SsfUBn3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkRWyrQl4Z27SQL6hN6h1IxLagYd8WS33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq58qY1uRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwytj6gBN+wq8nCPgqSX3il7p+PvT90iK2fgxVQ30RUPxobtvU5+X19UgR21rYNvUOJGLrc7PUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qbYiV+RRIrY+4FPvkNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFvIhtVcgrY5sW8gW1Sb0DidgWNOzbYqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTZWwr8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWxTQv5gtqk3oFEbAsaVhlbH3DCT/j1BAFfJalP/FLXz4e+X1rE1o+haqgvAoofzW2b+ry8vh4pYlsL26begURsfW6W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP9VW5Io8SsTWB3zqHVL6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkBexrQp5ZWzTQr6gNql3IBHbgoZ9Wyz1gUP6yb4+BHzS8r964+drnV9axNaPoWqoLwKpx9+qkE99Xl4VLlW9t65+qoxtRR4lYusDPvUOKf1kXx8CPmn5X73x87XOLy1i68dQNdQXgdTjb1XIi9hWhbwytmkhX1Cb1DuQiG1Bwypj6wNO+Am/niDgqyT1iV/q+vnQ90uL2PoxVA31RUDxo7ltU5+X19cjRWxrYdvUO5CIrc/NUh84pJ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQr51OflVeFS1Xvr6qfailyRR4nY+oBPvUNKP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfIitlUhr4xtWsgX1Cb1DiRiW9Cwb4ulPnBIP9nXh4BPWv5Xb/x8rfNLi9j6MVQN9UUg9fhbFfKpz8urwqWq99bVT5WxrcijRGx9wKfeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0KeRHbqpBXxjYt5Atqk3oHErEtaFhlbH3ACT/h1xMEfJWkPvFLXT8f+n5pEVs/hqqhvggofjS3berz8vp6pIhtLWybegcSsfW5WeoDh/STfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1Uhn/q8vCpcqnpvXf1UW5Er8igRWx/wqXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0JexLYq5JWx7Snyb7zxhr344os2fPjwlvXOmDHDllhiiSG/nzVrlr3yyiu22GKLDfn5Sy+9ZIsssojNN998bfVMvQOJ2PrcLPWBQ/rJvj4EfNLyv3rjF1tX5fh60/RRPpDNbNgws8tPGGuzZ5vtdNSkntXnrkgVCAEHAqnH3yrjxhFHHOFAVqK9RCB1Py3a1r5mbE8++WQ766yzbOONN7YXXnjBIJtrrrnmHF3vuusuO+CAA+xd73qXPfbYY3buuefaBhtsYOedd55NmDDBVl55ZaMDXnDBBTZs2DDbc889bYEFFgjPHn744bbffvu1bLeIbVGXeEsudYeXfrKvDwGftPxP+PkQ8EtXPb6K2PptqBrqiUDK40PVcUPENh2fT9lPPSj1jdi+9tprttBCC4VsLVnX4447zp5++mmbOHHiHH232morO+yww4y/L7300kCCf/nLX9qCCy5o06dPt6WWWsoOOeQQGzlyZCC2ZHaPP/54mzZtWvgZ2dtFF120aftFbD1uIWLrQ0/4CT8vAj751Acs6eezbwrjq4itz4aSri8Cqca3FOKGiG06fp+qn3oR6huxRbHnnnvOll56aXv55Zdtiy22sEMPPdR23333OTqvuuqqdssttxh/33PPPbbNNtvYbbfdZltuuaU9+uij4TmI8L333huILT9Hfvbs2WErMs+MHj1axNbrBU3kU3d46eczuvATfj4EfNLyPx9+KYyvIrZ+G6qGeiKQcnzTvLyePlekVSn7aZH2RJm+Eltecvfdd9v+++9va6+9dthqvPDCC8/Rd8kll7SHH344ZF8B+CMf+YhdeeWVtuuuu4afU84//3y74YYbwlbm3XbbzXbZZZfw8xVWWMFuv/12GzWq+Xc+yth63EIZRx96wk/4eRHwyac+YEk/n32jdJXjq4htb2yoWuqHQOrxrcq4oYxtOv6eup8WRaqvxPbaa68N38V+5zvfsbFjx86l42abbWannHKKrb/++nbnnXfaMcccY5MmTQrbizk8iiwtv6ewDRkiPG7cOHvzzTdDJpjtymRub7rpJrv55pvnqh+CnHqZ/NQMm/iLh2z1kUvYwTu8N3V1pZ8QEAJCYJ5AoNVuoFQaX/X42hNia2YTDtzQZpvZuLPvcEM77O363BWpAiHgRCDV+FF13BiEebnT9AMlnqqfekDsG7FluzDfyF5zzTW20UYbzdGRb24ffPBB23DDDe2LX/yiLbfccjZ+/Pjwre3iiy9uxx57rK277rp2xhln2DrrrGNbb721HX300TZz5kw77bTT7KqrrrJLLrnE+AD+1ltvbdl2ZWw9bqGMow894Sf8vAj45FNfiZV+PvumML72hNjqVGSfI0g6SQRSjW8pxA1lbNNx2VT91ItQ34jt5MmTbY011hii37777msHHXSQjRkzJmwt5hvZTTbZJDzDdUAQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDsd1uu+3sgQceCNcAXX311eG05VZFxNbnGqk7vPSTfX0I+KTlf8LPh4BPOoXxVcTWZ0NJ1xeBVMeHFOKGiG06fp+qn3oR6huxbaUYB0lx0vE555wTHuE6nyeffDIcIMXW41h47vnnnw/f32bL448/biuuuGI4ObldEbH1uUbqDi/9ZF8fAj5p+Z/w8yHQH+kyx1cR2/7YULUOPgKpjw+NCJcZN0Rs0/HvQfPTvMiVTmy5qgfCmr3PNq+y3TwnYtsNWnM/m7rDSz/Z14eAT1r+J/x8CPRHuszxVcS2PzZUrYOPQOrjQyPCZcYNEdt0/HvQ/DQvcqUT27yKeZ8TsfUhmLrDSz/Z14eAT1r+J/x8CAy2NOOriO1g21Da9w+B1MeH/rW8fc2pz8urwqWq99bVT0VsK/Ko6FB//MszdtTZ19vaq42wEz89piJtlLHtNfCpBwzp57O48BN+PgQGW1rEdrDtJ+37i0Dq40N/W9+6dhHbqpBv/t66+qmIbUV+JmLrAz71Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyIvYVoW8iG1ayBfUJvUOJGJb0LBvi6U+cEg/2deHgE9a/ldv/Hyt80uL2PoxVA31RSD1+FsV8qnPy6vCpar31tVPlbGtyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGNi3kC2qTegcSsS1oWGVsfcAJP+HXEwR8laQ+8UtdPx/6fmkRWz+GqqG+CCh+NLdt6vPy+nqkiG0tbJt6BxKx9blZ6gOH9JN9fQj4pOV/9cbP1zq/tIitH0PVUF8EUo+/VSGf+ry8Klyqem9d/VRbkSvyKBFbH/Cpd0jpJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQl7EtirklbFNC/mC2qTegURsCxr2bbHUBw7pJ/v6EPBJy//qjZ+vdX5pEVs/hqqhvgikHn+rQj71eXlVuFT13rr6qTK2FXmUiK0P+NQ7pPSTfX0I+KTlf/XGz9c6v7SIrR9D1VBfBFKPv1UhL2JbFfLK2KaFfEFtUu9AIrYFDauMrQ844Sf8eoKAr5LUJ36p6+dD3y8tYuvHUDXUFwHFj+a2TX1eXl+PFLGthW1T70Aitj43S33gkH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq59qK3JFHiVi6wM+9Q4p/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVciL2FaFvDK2aSFfUJvUO5CIbUHDvi2W+sAh/WRfHwI+aflfvfHztc4vLWLrx1A11BeB1ONvVcinPi+vCpeq3ltXP1XGtiKPErH1AZ96h5R+sq8PAZ+0/K/e+Pla55cWsfVjqBrqi0Dq8bcq5EVsq0JeGdu0kC+oTeodSMS2oGGVsfUBJ/yEX08Q8FWS+sQvdf186PulRWz9GKqG+iKg+NHctqnPy+vrkSK2tbBt6h1IxNbnZqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfVTbUWuyKNEbH3Ap94hpZ/s60PAJy3/qzd+vtb5pUVs/RiqhvoikHr8rQp5EduqkFfGtiXy119/vW2++eZ21VVX2SOPPGJ77bWXDR8+PC1Lva1N6h1IxNbnNqkPHNJP9vUh4JOW/9UbP1/r/NIitn4MVUN9EUg9/laFfOrz8qpwqeq9dfXT3Bnb8ePH2ze/+U27/fbbbeONNw52WG+99eyuu+6qyiZt35t6BxKx9blN6h1S+sm+PgR80vK/euPna51fWsTWj6FqqC8CqcffqpBPfV5eFS5VvbeufpqL2M6ePdtWXHFF22233eyVV16xc8891y688ELbc8897amnngq/S62k3oFEbH0ek3qHlH6yrw8Bn7T8r974+Vrnlxax9WOoGuqLQOrxtyrkU5+XV4VLVe+tq5/mIravvvqqLbzwwvbTn/7UPvOZz9gaa6xhZ5xxhq277rr20EMP2ZprrlmVXVq+N/UOJGLrc5nUO6T0k319CPik5X/1xs/XOr+0iK0fQ9VQXwRSj79VIZ/6vLwqXKp6b139NBexBfSxY8faxRdfHPA/++yz7cQTT7TXXnvNHn/88aps0va9qXcgEVuf26TeIaWf7OtDwCct/6s3fr7W+aVFbP0Yqob6IpB6/K0K+dTn5VXhUtV76+qnuYntM888Y2eeeaYNGzbMDjvsMNt///3t85//vG222WZV2UTEto/Ip+7w0s9nfOEn/HwI+KTlfz78qpYWsa3aAnp/ygikHt+qwk7Etirkm7+3rn6am9gCy9SpU+3WW2+10aNH27LLLmurr756WlbKaJN6B1LG1uc6qXdI6Sf7+hDwScv/6o2fr3V+aRFbP4aqob4IpB5/q0I+9Xl5VbhU9d66+mluYnvFFVfYTjvtFPA/8sgj7aabbrIPfvCDduqpp1Zlk7bvTb0Didj63Cb1Din9ZF8fAj5p+V+98fO1zi8tYuvHUDXUF4HU429VyKc+L68Kl6reW1c/zU1sV111VVt++eXDvbVc97PAAgvYsccea0888YSttNJKVdml5XtT70Aitj6XSb1DSj/Z14eAT1r+V2/8fK3zS4vY+jFUDfVFIPX4WxXyqc/Lq8KlqvfW1U9zEdt4KvLpp59ujz32mM0///y26667hnts77//fltrrbWqsouIbZ+QT93hpZ/P8MJP+PkQ8EnL/3z4VS0tYlu1BfT+lBFIPb5VhZ2IbVXIN39vXf00F7EFEsjr3//+93BnLdlaDpNadNFF7eGHH07LUm9rk3oHUsbW5zapd0jpJ/v6EPBJy/8GC7877rjDRo0aZSNGjAiKz5w5037/+9+H3VELLbSQrzF9kBax7QOoqrI2CJQVfwcxbhxxxBG1sfOgN6QsPy0bp9zE9p577rGvfe1rxre2sfz85z+f891t2Yp3ep+IbSeE2v8+dYeXfrKvDwGftPxP+PkQeEt68uTJYXH4gAMOCH823XTT8PNHHnnEvvCFL4QDG9/1rnf14lU9rUPEtqdwqrKaIdDv8WGQ44aIbTrO3m8/raqluYltVPC5556zv/71r/bud787ZGxTLSK2Psuk7vDST/b1IeCTlv8JPx8Cb0mfdNJJ1mqit8QSSxjjLZ/+pFZEbFOziPRJCYF+jw+DHDdEbNPx1H77aVUtzU1st9hii7AVubHccssttthii1Wlf8v3itj6TJK6w0s/2deHgE9a/if8fAi8Jd0q88Lv+PyH7ckpFhHbFK0inVJBoN/jwyDHDRHbVLzUrN9+WlVLcxPbzTffPHxXS3nhhRdC1pZTkqdMmZJk5lbE1udSqTu89JN9fQj4pOV/ws+HwFDpJ5980hZZZJGQoc0WiO18883Xy1f1pC4R257AqEpqikBZ48Mgxg0R23Scviw/LbvFuYlto2LHHHOMxVOSF1544bL17vg+EduOELV9IHWHl36yrw8Bn7T8T/j5EBgqfeaZZ4YtyTNmzBjyi+eff96WXHLJXr6qJ3WJ2PYERlVSUwTKGh8GMW6I2Kbj9GX5adktzk1sp02bZrNmzQr6vfnmm/bd737XTjjhhHDIxeqrr1623h3fJ2LbESIRWx9Ewk/49REBX9WpD1jS75/2nT17drhtgLL//vvbO97xjjm//NKXvqRTkbvoCsOGmV1+wtguJPSoEOg9AmXEt0GNGyK2vfe3ojWW4adFdfPI5Sa2K6ywwpytyPGFHG7xj3/8wxZccEGPDn2RFbH1wZq6w0s/2deHgE9a/if8fAjMTWwPOugg+8pXvtKravtajzK2fYVXlQ84AmWMD5HYDlrcELFNx7nL8NMqWpub2LL1+MUXXww68s3PO9/5Ttt2221ttdVWq0Lvju8Use0IUdsHUnd46Sf7+hDwScv/hJ8PgaHSe+21V7hKj3Fr6aWXnvPLXXbZJdwbn1oRsU3NItInJQTKGh8GMW6I2KbjqWX5adkt7khsaTgrQ60KxDbVwy1S7kDRof74l2fsqLOvt7VXG2EnfnpM2fZv+b7UHV76+VxF+Ak/HwI+afnfUPya7YjiCX1j252faStyd3jp6f4gUFZ8G8S4kfK8vD/ekG6tZflp2Qh0JLbDGCnalJQH3pQ7kIitz9VT75DST/b1IeCTlv8NFn633Xabvfrqq3Mp/eEPf1gZ2y5MKWLbBVh6tG8IlBV/BzFupDwv75tDJFpxWX5advM7Ettvfetb4bCoVuULX/jCkMMuym5Aq/dpK7LPEqk7vPSTfX0I+KTlf8LPh8BQ6auuuqopseVzH21Fzo+0iG1+rPRk/xAoa3wYxLghYts/v+u25rL8tFu9vM93JLbZF7CiTIaWwvZkLoneaKONdHhUASsoY1sAtIxI6h1S+sm+PgR80vK/wcJvELcU3jR9lA9kM4tElK+ddjpqUs/qc1ekCoSAA4Gy4u8gxg0RW4dj9Vi0LD/tsdodq8tNbCdNmmSHHHLIXCcjaytyR4ybPiBiWwy3KJV6h5R+sq8PAZ+0/G+w8PvVr341J2P70ksv2UknnRQytbfffrsytl2YUhnbLsDSo31DoKz4O4hxQ8S2b27XdcVl+WnXijkFchPbd7/73TZ8+PBwb+2HPvQhe/DBB2355Zc39vjrup/urSBi2z1mWYnUO6T0k319CPik5X+DjR8Lybvvvrs98cQTttJKK/ka0wdpnYrcB1BVZW0QqCr+DkLcELFNx82r8tN+I5CL2L7++uvhO9of/ehH9rvf/c6WW245+8xnPhOu/HnuuecC4U2t6Btbn0VSd3jpJ/v6EPBJy/+Enw+BodJHHnmkvfDCC+GHs2bNMr6dw8eefvrpsICcWhGxTc0i0iclBMoaHwYxbojYpuOpZflp2S3ORWxRatVVVw3k9rOf/axxp+0nP/lJ+8EPfmB//vOfbY011mirN/ffLrbYYtbphOVsJQzur7zySpDLFrZpLbLIIh2vGBKx9blS6g4v/WRfHwI+afmf8PMhMFS68Vu5JZZYwj73uc/Z//zP/3R8TVXjq76x7WgaPTCPIlDW+DCIcUPENp1OUZaflt3i3MT2uuuuM05APv/882377be3v/71r7bjjjva5Zdf3lLnZ555xu677z7beeedw0FTjSvPZH8PPPBAW3fddUMdPMf2q/POO88mTJhgK6+8sr3xxht2wQUXBFK85557hu+NHnvsMTv88MNtv/32a/luEVufK6Xu8NJP9vUh4JOW/wk/HwJDpadPnz7nvnjGujy7oKoeX0Vse+kBqqtOCJQ1Pgxi3BCxTcfTy/LTslucm9ieffbZtvXWW4ftx5BNBtVO3/5ceumldvPNN9spp5zSdEvVOeecY2xzhtzGKw2om2926bBLLbVUOLBq5MiRgdjOmDHDjj/+eJs2bVr4GdnbRRddtClmIrY+V0rd4aWf7OtDwCct/xN+PgSGSjO2sWh84YUXhnGOBd5999237Rhb9fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzENm55GDNmjO2zzz728Y9/PNeqMg2ClDb7Vmj8+PH23e9+Nwzku+66q0FGKVtuuaU9+uij4d8TJ060e++9N9TBzxnwuWpovvnmC8+MHj1axLYPXpO6w0s/n9GFn/DzIeCTlv8NxY9v5dh2zBZkFnTZEfX+97/f/vCHP3Q8Fbmq8VXE1tcHJF1fBMqKb4MYN0Rs0/H7svy07BbnJrbXX3+9XXnllXbZZZeFQy0okEy+s11ooYXa6t1q4D399NPDivRHP/pRg+TOP//8IXsLyX344YdDnaxi33DDDeFgjd1228122WWX8HOINlchjBo1ym666aaQGW4s1JN6mfzUDJv4i4ds9ZFL2ME7vDd1daWfEBACQmCeQKDVommvG8/Oo8UXXzyMfSz0smjLpzh8+sPtA+99b/txoarxtSfE1swmHLihzTazcWff4YZ22Nv1uStSBULAiUC/48egxo1BmJc7TT9Q4v320yrAyE1so3IQztNOOy38oeS5x7bVwMvhUBwERbnzzjtt7Nixdv/994ftxRwehRzbmClkdZdcckkbN26cvfnmm7b00kuH7cpMApoVbUX2uVPqKznST/b1IeCTlv8JPx8C/5R++eWXwyGJX//61+1rX/ta+MUll1wSFnIZF9dff/22r6pqfO0JsR1mdvkJY232bLOdjprkhlT32LohVAU9QKCM8WFQ44Yytj1wsB5VUYaf9kjVrqrJTWzZ8sB1P2yRoqy33nq2//77h2t/4vexrd6cHXg5wZFV6A033NA23XRTO/jggwOh5UL6qVOn2hlnnBEOk+LvddZZJ3zXe/TRR9vMmTMDmeYaBAb9k08+2W699daWjRWx7coP5no4dYeXfrKvDwGftPxP+PkQGCrNWMiuo2233TYs7PL9LGMku5I63SZQ1fgqYttLD1BddUKgrPFhEOOGiG06nl6Wn5bd4tzElq2/XPfzqU99Kqwkv+9978utKwMvh02NGDEirEDznS5bi6+55ppAjhnIuTIIcst3RZy0vPfee4f6OYGZAzUgttttt5098MAD4Rqgq6++2jbeeGMR29xW6O7B1B1e+nVnz8anhZ/w8yHgk5b/DcWPk/5POOEEu+iii8LuJMbYL33pS/aBD3ygI9BVja8ith1NowfmUQTKim+DGDdEbNPpFGX5adktzk1s77nnnpBJbbX1N6/ibJ/gpGNORKawrfjZZ58NpDdbeI5tzpx+nC2PP/64rbjiiuHk5HZl0DK2o0cOtwN3XC8vjLbayOG22MLtMchdWZMHU3d46eexroXv5FP+tkL6yb4+BHzSVfgfi7ZsSebMCj6z6fRtbbMWljm+itj6fEzS9UWgzPgxaHFDxDYdvy/TT8tsdW5i2yuluKoHwrrmmmv2qsqm9Qwase0WjBMO3NzWGb18t2K5n0/d4aVfblM2fVD4CT8fAj5p+d9Q/PjMhs9yfvWrX4Ur9dZaa61woGK8KSAv2mWOrykTW77Znfbsi3lha/vcyGUX70k9qmTeQaCs+DaIcUPENp1+UJaflt3i0oltWQ0cFGL7l6em29lX3J0blilPTbeXZr5uIrbKOOZ2miYPph7QpJ/HusrI+9ArHz8Wetm19JOf/CRkbT//+c+HGwGeeOKJjvfFe9taRJ7xNXViq8OoilhWMr1AoKzxaxDjhohtLzysN3WU5ae90TZ/LW2JLduEueKHQyzuvvvusBV5lVVWyV97hU8O1YkUXQAAIABJREFUCrHtFqIjv3ed3T/lbyK22krbresMeT71gCb9XObVVnMffKXi98Ybb4RPaziI8cwzzwyaX3DBBeGcCQ5I/NCHPuRsTe/FRWx7j6lqrA8CZYxfgxo3RGzT8fMy/LSK1rYltq+++qotvPDC9ulPf9p+9rOfhYG2cZD9xCc+0fFU5CoaVndiu8X6q9kKSy+WC9ot1htly+d8NlaYusNLv1ymb/mQ8BN+PgR80vK/ofhtttlmduONN9rHPvYxW2KJJeznP/+5LbXUUjZ58uSO98T7LFFMWsS2GG6SmjcQKCu+DWLcELFNpw+U5adlt7jjVmTu0CNb26rkuce27EbxvroT224wLbJtOXWHl37deMDczwo/4edDwCct/xuK35QpU8Kd7ZMmTQo3CHAbwOGHH24f+chHfED3SXpeI7Z8s3v6ZXf0BM2Ddt6wJ/WoknQRKCu+DWLcELFNx2/L8tOyW9yR2HLvLMR21113Dd/9/Ou//usQHfl/p3tsy25UnYnttXdNsaefeykXpNfeNdWemf5SoW3LqTu89MvlAi0fEn7Cz4eAT1r+1xy/WbNmhevs+M425TIvElt9s5uyR6alW9nxbZDihohtOr5atp+W1fKOxDYq8uSTT9riiy9ud9xxh7300ku25ZZbhvtnUy11zdh2g7fne9zUHV76deMJcz8r/ISfDwGftPzPh1/V0iK2xSwwbJjZ5SeMLSYsqYFBIPX4VhWQqc/Lq8KlqvfW1U9zE9sbbrjBdtxxx3B5fCwTJkywQw89tCqbtH1v6h2oDIcSsa3ONcuwr6d10s+DXvmn5narrezbLWJDn08dP1/r/NIitsUwFLEthtugSSl+NLdY6vPyQfMzr7519dNcxJZtDpyMzLc/X/7yl0OmduLEiSF7+/e//92WXXZZL749l0+9A5XhUCK2PXer3BWWYd/cyjR5UPp50BOx9aEn/JrhN3v2bHv88cfDgY3LLLNMkp/4RL1FbIv1ABHbYrgNmlSZ4+ugxQ1tRU7Hm8v00zJbnYvY/uMf/7DlllvOvvOd74RL5CnXXHONffSjH7XbbrvNNt544zJ1zvUuEVszEdtcrtKXh1IPGNLPZ3bhJ/x8CAyVfuSRR2ybbbYJ1wwdeeSRdv/999uee+5pu+++ey9f07O6RGyLQSliWwy3QZMqa3wYxLghYpuON5flp2W3OBexZUWIqwfWWmutcHIjGdvjjz/eLr74Yps2bZqtsMIKZevd8X0itiK2HZ2kjw+kHjCkn8/4wk/4+RAYKs3tA0xSR4wYYWPHjrW//vWvdv7559v06dPD2JtaEbEtZhER22K4DZpUWePDIMYNEdt0vLksPy27xbmILUqdeuqpNm7cuCH6sS352GOPLVvnXO8TsRWxzeUofXoo9YAh/XyGF37Cz4fAP6XjffGnnXaa/d///Z/NP//84RaC9dZbL9xI8MEPfrBXr+pZPSK2xaAUsS2G26BJlTE+DGrcELFNx5vL8NMqWpub2KIcg+5ll11mL7zwgu28884hg5tqEbEVsa3SN1MPGNLP5x3CT/j5EBgqveSSS9oHPvABGz58uL3jHe+w+eabz6666irjM6AFF1ywl6/qSV0itsVgFLEthtugSZU1Pgxi3BCxTceby/LTslvcFbEtWznP+0RsRWw9/uOVTT1gSD+fhYWf8PMhMFT6oosusv/8z/8ccusAu6HYFZViEbEtZhUR22K4DZpUWePDIMYNEdt0vLksPy27xSK2ZSP+9vvKcCgdHlWRcU2nvnqRL6N/eHSUfh701D+aocfWwuuvv96mTJli6667rm2yySY+kPsoLWJbDFwR22K4DZpUmePDoMUNEdt0vLlMPy2z1SK2ZaKdeVcZDhWJbd4mrr3aCDvx02PC42Xol1evZs9JPw96sq8PPeEn/LwIDJU/5phjwic+jeW4444L1/+kVkRsi1lExLYYboMmVdb8ZBDjhohtOt5clp+W3eLcxPbf//3f7VOf+pRtttlmQUdObdxnn33sxz/+sU5FLmC1MhxKxLaAYXokUoZ9PapKPw96IrY+9IRfI37cLMA98Y3l+eefN76jS62I2BazSCS2s2eb7XXcz96uZHaxyt6WuvArn3DJS7j3CJQ1vg5i3BCx7b2/Fa2xLD8tql9RuY7E9gc/+IFNnDgxnM64yiqr2PLLLx/exSAMueVwCy6TT63oG9v8FvnjX56xo86+3pSxzY9ZpydTDxjSr5MF2/9e+Ak/HwJDpRlHZ82aFX748ssv2+GHH25Tp061W2+9NZySnFoRsS1mkSyx3emoScUqyUgpA+yGsC8VlDU+DGLcELHti8sVqrQsPy2knEOoI7H94Q9/GK76aSS2vHPLLbc0BrgUi4htfquI2ObHKu+TqQcM6ZfXks2fE37Cz4dAe2nusGWX1OTJk+3d7353P19VqG4R20KwmYhtMdwGTaqq8WEQ4oaIbTreXJWf9huBjsQ2KvDVr37VPvaxjxkXQg9CEbHNb6VIbFdYejHbYv3VguBzzz1nSy+9dNNKFlt4QRu9UvPfZQUW5bmRw/Mr0sWTqXdI6deFMZs8KvyEnw8Bn3TZ/rfpppvaU089NUdp3k+ZMWOGLb744r7G9EFaxLYYqCK2xXAbNKmy4scgxg0R23S8uSw/LbvFuYntjTfeaN/+9rfD1qhsefTRR5MdeFPuQCk5VCS2vXa+7NbmXtedEn7N2ib9fBYXfsLPh4BPumz/22qrrezpp58OSi+wwAIhS0vGdocddvA1pE/SIrbFgO0XseWb3f/9zX05lOr8Pe9+26xr1PfIE8/mqK/zI+9ZJb1P1Tpr7XuirPgxiHEj5Xm5z+qDJ12Wn5aNTG5iu9Zaa9kDDzxg6623XrhAPpZrr73WFl100bL17vg+ZWw7QjTngWeee8muuWvKEIFmGduXZr5uf3nyuY4V89yUp6YP+Wa3o1CXD6TeIaVflwZteFz4CT8fAj7p1P3P1zq/tIhtMQz7SWx7+c0uxLaX9RVDa3ClFD+a2y71efngelwxzevqp7mI7ZtvvhlWkb/2ta/Z17/+9WIIliyVegdK3aE8+jX7ZrfX5vfo12tdmtUn/XwoCz/h50PAJ12W/6266qr22muvtVQ25R1RN00f5QPZrG/fnPaamKm+YqaeVw+36nf8GOS4oYxtsb7UD6l++2k/dM5TZy5iS0X777+//f73vw/X+2S/vVx55ZVtGNErsSJi6zOIx+FFbHWdic/7hJ/w8yLgk/fEv27ezFbjN954o6XIT3/602R3RInYdmPpt55VxrZ7zAZRot/xY5DjhohtOh7dbz+tqqW5ia3uy+qtiVJ3KI9+kdhycNSBO67XEbjVRg43DqTqpnj06+Y9RZ+VfkWRe0tO+Ak/HwI+6RT874UXXgjnV8w333y+xvRBWluRi4EqYlsMt0GTqjJ+pB43RGzT8eYq/bSfKOQmthMmTAgnNDaW8ePH20ILLdRPHQvVrYxtIdjmCHkcvtvDqE44cHNbZ/Rb9yPnLR798r7D85z086AnYutDT/gNGn5/+tOf7Oijjzb+ppDF5ZRk7opfcsklvc3pubyIbTFI51Viy1buux/556nfudFrctbV+muOzC1e1YNljf+DGDdEbKvyyrnfW5aflt3i3MSWw4RmE50ayjLLpHninYitz5U8Dv+Xp6bb2Vfc3VEBDpjioCkR245Q9fwBj317rkyTCqWfD2XhN1j4bbTRRnbHHXcEpZdffnl75plnbPTo0Xb//ffbIoss4mtMH6RFbIuBOi8T23npMKqy4u8gxg0R22Kxox9SZflpP3RvV2duYqutyL01TeoOVYZ+R37vOrt/yt9EbHvrWrlqK8O+uRRp8ZD086CnjK0PvXLxe/3118NNAxdddJFddtlltsEGG9gmm2xi2267rf39738fcguBt129khexLYakiG0x3KLUoBxGVcb4NahxQ8TW1wd6KV2Gn/ZS37x15Sa2nIgctyK/+OKL4RApTma7++67tRU5L9qZ51J3qDL0E7Et4Dg9EinDvh5VpZ8HvXKJWRFNZd+hqLHdGDLLn0mTJtlhhx1mBxxwQMjYctVeakXEtphFRGyL4SZi2xy3QYwbIra+PtBL6dTH4aJtzU1sG19w3nnnhYH32WefHXJKclFFei2nrcg+RMtweBFbn4080mXYV/p5EPDJyr6DgR9X6c0///x2yimn2H/913/ZddddZ2PGjAnKsyX5iSeeCFftpVZEbItZRMS2GG4itkNxG+S4IWLr6wO9lE59nlC0rbmJ7RVXXGEzZ84M76FT/ehHP7Irr7zSpkyZYqNG+e+zK9qAVnIitj5Ey3B4EVufjTzSZdhX+nkQ8MnKvoOBH5/4jB071nbddVdbY401bLnllrM///nP4RCprbbaypZaailfQ/okLWJbDFgR22K4idgOxW2Q44aIra8P9FI69XlC0bbmJrbNvrH98Ic/bDfeeKPusS2AfuoOVYZ+IrYFHKdHImXY16Oq9POgp63IPvTKw4/PeTj5mEKGdp999rFddtnFOBQmxWt+Iq4itsU8TMS2GG4itkNxG+S4IWLr6wO9lE59nlW0rbmJ7TXXXDMnYzts2LDwfe173/veJA+2AAxlbIu6xFtyZTi8iK3PRh7pMuwr/TwI+GRl38HAj5sG/vjHP9pvfvMbY1cUC8WUVVZZJZBcrgBacMHu7vj2tTyftIhtPpwanxKxLYabiO1Q3AY5bojY+vpAL6VTnycUbWtuYssL7rvvPvvpT39qXAD9yU9+0j70oQ+F74NSLCK2PquU4fAitj4beaTLsK/08yDgk5V9BxO/m2++2Q455JBwKCPl+eef1z22XZhSxLELsJo8Oij4+VrZf+my4+8gxQ0R2/77X943lO2nefXyPpeb2J5zzjl24IEHDnkf3wVdfPHFXh36Ii9i64O1DIcXsfXZyCNdhn2lnwcBn6zsOxj4ccPADTfcEDK2XPUTtyW///3vt7322svGjx+vw6O6MOWgELPZs816ea/rvFZfFy5RyaP9jr+DHDdEbCtxyaYv7befVtXSXMT2tddeC1uPGWxPO+20cGH8scceaz/4wQ/sscces3e+851V6d/yvSK2PpOU4fAitj4beaTLsK/08yDgk5V9BwM/PuuJ5T3veU8gs+yGSvGKnyyi2opczL9EvIvhFqV0j+1bSAxy3BCx9fWBXkqnPk8o2tZcxHb69OnhSh+uJBg3blx411VXXWVbb721sQWCu/dSKyK2PouU4fAitj4beaTLsK/08yDgk5V9BwO/Nddc0/bYYw/beeed7QMf+IBP6RKlRWyLgS1iWww3EduhuA1y3BCx9fWBXkqnPk8o2tZcxJbKydiSueXi+EUXXdS+973v2bRp02zq1Kkhg5taEbH1WaQMhxex9dnII12GfaWfBwGfrOxbb/x8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZemR+jyhKA65ie1vf/tb+4//+I9wWi5liSWWsO9///vhaoIUS+odKHWHKkM/Edvqek4Z9vW0Tvp50CvnVHOPhrKvB73qZUVsi9lAxLYYbiK2PtxSkU59Xp4KTmXpkfo4XBSH3MSWF3DE+D333GN8uM724wUWWKDoe/sul3oHSt2hytBPxLbv3aDlC8qwr6d10s+DnoitD7308fO2zysvYlsMQRHbYriJ2PpwS0U69Xl5KjiVpUfq86yiOOQithMnTrQHHnjAzjzzzPCe//7v/7YxY8bYVlttVfS9fZdLvQOl7lBl6Cdi2/duIGLbJ4jL6B8e1aWfBz0R207oidh2Qqj570Vsi+EmYuvDLRXp1OflqeBUlh6pzxOK4tCR2F500UW25557BiJ77bXXhvdst9129qtf/co+85nPzCG7RRXol1zqHSh1hypDPxHbfnl/53rLsG9nLVo/If086KVPzGRfn32rlhaxLWYBEdtiuInY+nBLRTr1eXkqOJWlR+rjcFEc2hLb119/3ZZddtlwcNStt94656L4l156yXbYYQfju9snnnjCVlpppaLv75tc6h0odYcqQz8R2765f8eKy7BvRyXaPCD9POiJ2PrQSx8/b/u88iK2xRAUsS2Gm4itD7dUpFOfl6eCU1l6pD7PKopDW2LLqccjR460r3zlK3bMMccMecd5551nBxxwgN1444226aabFn1/3+RS70CpO1QZ+onY9s39O1Zchn07KiFi64Gorazs64M2dfx8rfNLi9gWw1DEthhuIrY+3FKRTn1engpOZelR13GuLbF98803wwFRq6yyij388MPhmh/KG2+8EbYjX3311fbYY4/ZO9/5zrZ24LCpxRZbbMil0lmBGTNmhFOWs2XWrFn2yiuvBLlsIVvM9ULzzTdf23em3oFSd6gy9BOxLSt8zf2eMuzraZ3086CXfsZR9vXZNytd1fh60/RR7kaI6PkgnFfx86HWf+nU4xsIVBU3dI9t//0v7xsGwU/ztiX7XMdvbLm39tvf/naQ2XbbbQMB5ftayOjWW29tv/71r1u+95lnnrH77rsvXD4/efJkW3755Yc8e9ddd4Ws77ve9a5AkM8991zbYIMNjGzwhAkTbOWVVw4k+oILLgikmG99Ido8e/jhh9t+++3X8t0itkXc4Z8yZTi8iK3PRh7pMuwr/TwI+GRl33rjR+uqHl9FbLv3sXmViM6ebbbTUZO6B6xBIuLnrqjPFaQcf6uOGyK2fXa+LqpP2U+7aMZcj3YktjNnzrQTTzxxrq3I++yzj5188sm23HLLtXz/pZdeajfffLOdcsop9vTTT89FbDlVGeLM3zx71lln2S9/+UtbcMEFbfr06bbUUkvZIYccErZDQ2wh08cff7zFLdJkb2MWuVEJEVuPW5ST8RGx9dnII516QJN+HuuW0389Gsq+HvTekq16fBWx7d6GIrbdY5aVELH14ZdC3BCx9duwVzWkPg4XbWdHYhsrfvXVV23q1KnG36NGjZpzkFSeF0NKmxFbDqW65ZZbwuFU3I+7zTbb2G233WZbbrmlPfroo6Fqrhq69957A7Hl57vvvnu4T5etyDwzevTopiqI2OaxTOtnynB4EVufjTzSZdhX+nkQ8MnKvvXGb+hkv5rxVcS2ex8Tse0eMxFbH2atpDUv7w+ug1Rr6vOEoljmJrZFX4Bcqw605JJLhm93ycgC8Ec+8hG78sorbddddw0/p5x//vl2ww032AsvvGC77bab7bLLLuHnK6ywgt1+++2BZDcrIrYei5WT8RGx9dnII516QJN+HuuW0389Gsq+HvSGylY1vorYdm9DEdvuMROx9WHWLbGdl+fl/UE63VpTH4eLIlcpsd1ss83CNuX111/f7rzzzrDdedKkSWF7MYdHMWDzewrbkOlw48aNMw61WnrppcN2ZTK3N910U9jy3FggyCrpIjDxFw/Z5Kdm2ME7vNdWHzn08LB0tZZmQkAIzAsItNoNlFrbWxHbfo+vPSG2ZjbhwA1ttpmNO/sON7TDVJ8Lw0HBz9XIkoRTjx9VxQ3Ny0tywJyvSd1PczZjyGOlE1tOYnvwwQdtww03tC9+8YvhG93x48eHb20XX3xxO/bYY23ddde1M844w9ZZZ51wQNXRRx9tfOt72mmn2VVXXWWXXHJJ+L6Xu3VbFWVsi7jDP2XKWMlRxtZnI490GfaVfh4EfLKyb73xy7YuO0Etc3ztCbEdZnb5CWOt14cLqb5i/j8oGeVirStPKvX4CxJVxQ19Y1ueH3Z60yD4aac2NPt9acSWk9hGjBgRMrNjxowJW4v5RnaTTTYJeg0fPjwQ1WWWWcYuv/xy23vvvcPPt99+e7vwwgsDseWKoQceeCBcA8RVQxtvvLGIbRGr55Apw+FFbHMYok+PlGFfj+rSz4OetiL70Esfv0ZiW8X4KmLbvZcNCnFMfWGge+TLlUh9/IrEtoq4IWJbri+2e9sg+GkRtEohtlnFXn755XDS8TnnnBN+zHU+Tz75ZDhAihWkWHju+eefD9/fZsvjjz9uK664Yjg5uV1RxraIO/xTpgyHF7H12cgjXYZ9pZ8HAZ+s7Ftv/Fq1rszxVcS2ex8Tse0es6GLOG9l+FMvqcffRvzKjBsitul476D5aV7kSie2XNUDYV1zzTXz6ljoORHbQrDNESrD4UVsfTbySJdhX+nnQcAnK/vWG79WrStzfBWx7d7HRGy7x0zE1odZHuky44aIbR6LlPNM6vOEoiiUTmyLKtqtnIhtt4gNfb4Mhxex9dnII12GfaWfBwGfrOxbb/x8rfNLM76K2HaPo4ht95iJ2PowS0k69Xl5SliVoUvq84SiGIjYFkXOKZe6Q5Whn4it04kc4mXY16FeuP4r5dP6pJ/Huul/w5q6fX3o+6VFbIthKGJbDLcoFfHz1dJ/acWP5hiL2Pbf97p5Q139VMS2Gy/o4bOpO1QZ+onY9tChuqyqDPt2qdKQx6WfBz0RRx966ePnbZ9XXsS2GIIitsVwE7H14ZaKtIhtKpZ4S4/U51lF0RKxLYqcUy51hypDv0hst1h/NVth6cWaIrr2aiNsndHLz/W7MvTzmFj6edBLP+DKvrKvD4HBlhaxLWY/EdtiuInY+nBLRVrENhVLiNimZYmc2qTegTQxNovEtp1J99hiLdtzy7VFbHP6fd7H5H95kWr+nPATfj4EBltaxLaY/URsi+HWSGy5juj0y+7wVfa29EE7b/j/2TsT+M+m8o8fW1kqprKrzCRZiyQlJRmRJZKQEDGVQkqIUJJsJYRkSQuKikIla8patmpIixmSfRliUJb5v95n/s9057rf7733nHu/3/O9v895veY1M7/fPfc+53Oec87zeZ7nnNPIe7IvSX19aLzBFV+Yul1esRmdeayreqqI7ZBUNHWFGoR8l94w1d0/bXphD/x5ygNu8tQHnYhtOwo6iP6NkVzyxaCniHcceunjF9u+2PoitmEIitiG4VZEbN+331lxL3POtbVnN/X1Kxq4wBeI2AYC11K1ruqpiG1LClP22tQVatjynXnJZPfDS2/xKcqLFKQpP/XUU27jty/vSGNOsQwbvzJMJF8ZQv1/L/yEXxwCo11bxDas/0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKNWz5jNj2g7lXNDeyaxqpPmz8yhoh+coQErGNQ0j4tYnfsN8tYhvWAyK2Ybi1TWxJbf7y934bJ9z/1/7iDu/sLGGIBUjENhbBZuunbgeGtlbENhS5yHqpK9Sw5Xtg2vSeacqkMF964x0905Qju6aR6sPGr6wRkq8MIRGzOISEX5v4DfvdIrZhPSBiG4bbIIhtk6nNqa+vcb0QXlvENhy7Nmp2VU9FbNvQlgrvTF2hUpbPormK2FZQtB6PpNy/iCz5wvtW+MVhNwr4xbcw7g0itmH4idiG4SZiG4dbKrVFbFPpiZlypG5nhaIlYhuKXGS91BUqZflEbCOVbwQmtJT1bxQWBOEXN0ZSxy+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AqRtOKcsnYltxEPR5LOX+FXFU/8YjEPeG1MdHXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJ0dV1ThHbQWlQ7jupK1TK8onYxittyv0rYqv+jUcg7g2pj4+41sXXFrENw1DENgw3Eds43FKpLWKbSk/MlKOr65yI7ZD0LHWFSlk+Edt4pU25f0dhwhV+cToo/OLwG3ZtEduwHhCxDcNNxDYOt1Rqi9im0hMitmn1REVpUh9AMuwqdmTBY0ZsucN2Yo97bFcav3D4Bxqoqf6NA1H4Cb84BOJqp65/ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR1fXOUVsB6VBue+krlApy1fljtvzD91qSD07Gp6wlPsXBCVfnPoKv27jF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpidGwU0PRErENRS6yngzPcAC5x/aCq/7i5p133he8ZPLUB/3PRGz74yv9C9c/Ee847IRfPH7DfoOIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyARi4od2eOxXvhtsu9ZIrYVoJX+VQCpzyPCT/jFITDatUVsw/pPxDYMNxHbONxSqZ26XZ4KToOSI3U7JhQHRWxDkYusl7pCjap8IrbVFHNU+7da69p/SvjFYSz84vAbdm0R27AeELENw03ENg63VGqL2KbSEzPlSH0dDkVLxDYUuch6qSvUqMonYltNMUe1f6u1rv2nhF8cxsIvDr9h1xaxDesBEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1ASTDrmJH9nhMqcjt4Bf31uZqa3zEYSn8uo1fXOvia4vYhmEoYhuGm4htHG6p1E7dLk8Fp0HJkbqdEIqDIrahyEXWS12hRlU+RWyrKeao9m+11rX/lPCLw1j4xeE37NoitmE9IGIbhpuIbRxuqdQWsU2lJ2bKkfo6HIqWiG0ocpH1UleoUZVPxLaaYo5q/1ZrXftPCb84jIVfHH7Dri1iG9YDIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qA0iGXcWO7PGYUpHbwS/urc3V1viIw1L4dRu/uNbF1xaxDcNQxDYMNxHbONxSqZ26XZ4KToOSI3U7IRQHRWxDkYusl7pCjap8ithWU8xR7d9qrWv/KeEXh7Hwi8Nv2LVFbMN6QMQ2DDcR2zjcUqktYptKT8yUI/V1OBQtEdtQ5CLrpa5QoyqfiG01xRzV/q3WuvafEn5xGAu/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMu4od2eMxpSK3g1/cW5urrfERh6Xw6zZ+ca2Lry1iG4ahiG0YbiK2cbilUjt1uzwVnAYlR+p2QigOitiGIhdZL3WFGlX5FLGtppij2r/VWtf+U8IvDmPhF4ffsGuL2Ib1gIhtGG5w2CnDAAAgAElEQVQitnG4pVJbxDaVnpgpR+rrcChaIrahyEXWS12hRlU+Edtqijmq/Vutde0/JfziMBZ+cfgNu7aIbVgPiNiG4SZiG4dbKrVFbFPpCRHbtHqiojSpDyAZdhU7ssdjSkVuB7+4tzZXW+MjDkvh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKNaryKWJbTTFHtX+rta79p4RfHMbCLw6/YdcWsQ3rARHbMNxEbONwS6W2iG0qPTFTjtTX4VC0RGxDkYusl7pCjap8RmyLuuf8Q7eK7LXq1UcVv+otbPdJ4ReHr/DrNn5xrYuvLWIbhqGIbRhuIrZxuKVSW8Q2lZ4QsU2rJypKk/oAkuFZsSN7PFaWiixi2x9f6V87+hf31uZqq3/jsEwdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleoLsk3jPTkLuE3jCEi/OJQF37dxi+udfG1RWzDMBSxDcNNxDYOt1Rqi9im0hMz5UjdTghFS8Q2FLnIeqkrVJfkG0Z6cpfwi1T1oOrCLwi2WZWEX7fxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB5AMz4od2eOxOviJ2L4QxDr4xfVUWG3JF4ab1RJ+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaqdul6eC06DkSN1OCMVBEdtQ5CLrpa5QXZev7fTkruMXqf6l1YVfKUR9HxB+3cYvrnXxtUVswzAUsQ3DTcQ2DrdUaovYptITM+VI3U4IRUvENhS5yHqpK1TX5ROxneImTJgQqcXtVe+6/rWH3GgsWOrftjWg3feL2IbhK2IbhpuIbRxuqdQWsU2lJ0bDTghFS8Q2FLnIejLs4gCMxU/EVsQ2RgNj9S/m21XqSr4qKPV+JnX84loXX1vENgxDEdsw3ERs43BLpbaIbSo9IWKbVk9UlCb1AZS64dR1+URsRWwrTiWFj3V9fMRgU6Wu8KuCUrrPiNiG9Y2IbRhuIrZxuKVSO3W7PBWcBiVH6utwKA6K2IYiF1kvdYXqunwitiK2MUO46+MjBpsqdYVfFZTSfUbENqxvRGzDcBOxjcMtldoitqn0hCK2afVERWlSH0Ay7Cp2ZI/HYvETsRWxjdHAWP2L+XaVupKvCkq9n0kdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UleorssnYitiGzP0uz4+YrCpUlf4VUEp3WdEbMP6RsQ2DDcR2zjcUqktYptKTyhim1ZPVJQm9QEkw65iRypiGwdUS/i1IlTmpRofcQgLv27jF9e6+NoitmEYitiG4SZiG4dbKrVTt8tTwWlQcqRuJ4TikGzE9vnnn3dPPfWUW2CBBWZr2/Tp0918883n5pxzzr5tTn0Apa5QXZdPEVtFbEMnTep1fXzEYFOlrvCrglJ7zzSxvl756NLRAoroxUEo/NLEL/X5LRS1JuaNffbZJ/TzqtcwAl3V06ES29/+9rdu0qRJ7o1vfKPvrs0339xtvfXW7rTTTnNHH320W3LJJd2zzz7rzjjjDDfHHHO4bbbZxs0999zuzjvvdHvttZfbYYcdenaziG3cCEhd4WPlE7EVsY0ZIbH6F/PtKnUlXxWUej+TOn5VWtf2+ipiW6UXZn9GRLQ+Ztkao4LfKM8fbc8bIrZxY6DJ2qOsp/1wGCqxPeWUU9wzzzzjyS2ElQKRnWeeedyjjz7qFlxwQbf77ru7xRdf3BPbxx9/3B1yyCHuvvvu8z8jejv//PMXtk/ENk79U1f4WPmM2K48YZG+QE1YfCG3wHwvmvXMum9a2i0ybvYsgqIXxMoX13vltSVfOUb9nhB+wi8OgfZrt72+itjW78NRIWYzZjj3vv3Oqt/AXI2x2t7U14d+Hdv2vCFiGz2sGnvBKOtpssR27733dieeeKInrB/84AcdZJQyceJEd/vtt/t/f/Ob33Q333yzJ7b8nIjujBkzfCoyz0yYMEHEtjE1/9+LUlf4WPmM2NaFbtLGq7oJS4ybVW08xHfeeV7wmlj56spV93nJVxex2Z8XfsIvDoH2a7e9vorY1u/DsUr0xhpRTn196Ke5bc8bIrb15422aoyyniZLbI8//ni3xBJLuPXWW88xmOaaay4fvYXk/vWvf/Vy/+AHP3BXXHGF+/e//+223HJLt8UWW/ifL7roou66665zSy+9tLvyyivdVVdd9YJ28h4VIVCEwD/ufbwvMP96+En31H+enfXM7//2kHvkif++oM5uGy/nlln8pQJZCAiBjiHQy2k6Ks1se31thNg6546etLqb4Zzb4+Q/REM7h94XhaHwi4LPGX68ZVTnj7bnDdnlcTrWdO1R1dNkiS2HQ3EQFOX66693W221lZs8ebJPL2aTOlHab3zjG/73RHVf9rKXuT322MM999xzbty4cT5dudchUkpFjlP/1D05g5bv5AtuclPumTYL1Kn3PuqmP/2M++qkdVxROvOg5avb25KvLmKzPy/8hF8cAu3Xbnt9bYTYzuHceV/dyo21iJ7aG6b/oxLxTn196Id+2/OGIrZhut9GrVHW02SJ7VprreV22203T2iPOOIId8cdd7gTTjjBHybF3yuvvLJbf/313UEHHeSefvppd9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3q2TcQ2bhikrvDDlm/fky5zk6c+KGIbp2Y9aw+7f8uaJfnKEOr/e+EXh1+V2m2vryK2VXph9mdGhZiJeNfvW2pY/6Y+v/VrXdvzhohtmG61UWuU9TRZYnvJJZe4HXfc0UdoX/e613lyu8IKK7jzzjvPbbvttl7ujTbayJ155pme2G644Ybu1ltv9dcAXXzxxW6NNdYQsW1D23WdSSmqRmzzh0tZRXR047cv79ZdbXzpu4bxQOoTmuSL0wrh1238qrSu7fVVxLZKL4jYjsWIfOrzbz/NbXveELGtP2+0VWOU9TRZYotgpBU/8sgjbuGFF55NzieffNI99thj/vTjbLnrrrvcYost5k9O7lcUsY0bCqkr/LDlM2LbD+UPrbui22biSnEd0VLtYeNX1izJV4ZQ/98Lv27jV7V1ba6vIrZVe+F/zyliWx+zbI1RwS/1+besF9qcN0Rsy9Af3O9HXU97ITXU637a7D4R2zh0U1f4Ycs3hT22T73wMClQv/SGqe7SG+9wIrbhOjjs/i2TXPKVISTiHYdQ2rVZX0Vs6/fRqBAzpSLX71tqdCEVOazl1WqlbpdXa0V3nkrdjglFWsQ2FLnIeqkrlOQL7+AzL5nsfnjpLSK24RA66V8EeNpKEAfeCOAX3cDIF4jYhgEoYhuGm9UaFfxSX7/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmfmHjVim/3xSuMXdod+7N3hL224pvo3DlDhJ/ziEBjt2iK2Yf0nYhuGm9UaFfxSXx/ieiG8tohtOHZt1OyqnorYtqEtFd6ZukJJvgqd2OMREdtw7Kym9C8OQ+HXbfziWhdfW8Q2DMNRIWaK2Mb1b+rzb1jr4muJ2MZj2OQbuqqnIrZNakmNd6WuUJKvRmcWPGr4/XnKA26/ky93itjWw1P6Vw+v/NPCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eEbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1wKgQM0Vs4/o39fktrHXxtURs4zFs8g1d1VMR2ya1pMa7UlcoyVejMwseFbFtBr+4t7RXW+MjDlvhF4ffsGuL2Ib1gIhtGG5Wa1TwS31+i+uF8NoituHYtVGzq3oqYtuGtlR4Z+oKJfkqdGKfR/LEdtFxC7h1Vxvvayyy0Pyz/h33lfDa6t9w7Kgp/IRfHAKjXVvENqz/RoWYKWIb17+prw9hrYuvJWIbj2GTb+iqnorYNqklNd6VukJJvhqdWfBonthmH0lhv636t5n+jXtLe7XVv3HYpo5fXOvia4vYhmEoYhuGm9UaFfw0fxT3s4htnP43Xbureipi27SmVHxf6gol+Sp2ZI/HDL8Hpk13l9ww1T/Fvy+98Q6Xjd5CcleesEjcxwJqq38DQMtUEX7CLw6B0a4tYhvWf6NCzBSxjevf1NeHsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4tAg/OyE5+/iH1l3RbTNxpbiPBdRW/waAJmIbB5rwawy/Yb9IxDasB0Rsw3CzWqOCX+rra1wvhNcWsQ3Hro2aXdVTEds2tKXCO1NXKMlXoRP7PFKEXzZ6C8mdPPVBJ2JbDKL0r3n9i3tjs7XVv83iOei3idiGIT4qxEwR27j+TX1+C2tdfC0R23gMm3xDV/VUxLZJLanxrtQVSvLV6MyCR8vwO/OSye6Hl97i05IXGbeAf4NFbjlcyn4WJ0Xv2mXytfXdqu+VfFWRkmMgDqnRxK+NNtd5p4htHbT+96yIbRhuVmtU8Et9/YrrhfDaIrbh2LVRs6t6KmLbhrZUeGfqCiX5KnRin0fK8DNiW/QK9tzavlsium2UMvna+Gadd0q+Omi98Fnh12384loXX1vENgzDUSFmitjG9W/q829Y6+JridjGY9jkG7qqpyK2TWpJjXelrlCSr0ZnFjxahh9pyfdPm+5rQnIpD0x70j3w6MyfWTn/0K3iBOlRu0y+Vj5a46WSrwZYAfoX9/b42urfeAyH+QYR2zD0RWzDcLNao4Jf6vNbXC+E1xaxDceujZpd1VMR2za0pcI7U1coyVehE/s8EoIf+275QyFNOVua3osbIl8cIvVqS756eOWfFn7dxi+udfG1RWzDMBwVYqaIbVz/pj7/hrUuvpaIbTyGTb6hq3oqYtukltR4V+oKJflqdGbBo7H4bbLvWbO91fbijl98ITdp41XjhHPOxcoXLUDJCyRfHMLCr9v4xbUuvraIbRiGIrZhuFmtUcEv9fk3rhfCa4vYhmPXRs2u6qmIbRvaUuGdqSuU5KvQiX0eaQq//F7cBeadx01YYpz/8lcnrRMsZFPyBQsgYtsWdP696t84eFPHL6518bVFbMMwHBVipohtXP9q/ijGT8Q2TK/aqtVVPRWxbUtjZLi3imzqA7Ip+Wwv7pR7H3WnXHBTIaYh+3Cbkq+tTpZ8ccgKv27jF9e6+NoitmEYitiG4Wa1RgW/1OffuF4Iry1iG45dGzW7qqcitm1oS4V3pq5Qkq9CJ/Z5pGn8pj/9jJtyzzT/xf1Ovny2Lx/6sXf7/680fuHKQjctX+UPV3xQ8lUEqsdjwq/b+MW1Lr62iG0YhqNCzBSxjevf1OffsNbF1xKxjcewyTd0VU9FbJvUkhrvSl2hJF+Nzix4dBD45ffh1oncDkK+GAQlXwx6SkWOQy99/GLbF1tfxDYMQRHbMNys1qjgl/r6FdcL4bVFbMOxa6NmV/VUxLYNbanwztQVSvJV6MQ+jwwCv31PusxLMHnqg/7vbSau5P+ucvftIOSLQVDyxaCXPjFT/8b177Bri9iG9cCoEDNFbOP6N/X5Lax18bVEbOMxbPINXdVTEdsmtaTGu1JXKMlXozMLHh0kfvnILeKQlmwpykUtGaR8IUhKvhDU/ldH+HUbv7jWxdcWsQ3DUMQ2DDerNSr4pT7/xvVCeG0R23Ds2qjZVT0VsW1DWyq8M3WFknwVOrHPI4PEj5OTKdm7b0Vs4/qvrPYg+7dMFjkuQhDqXyf1/m2+xfXeKGJbD69RI2aK2Mb1r+aPYvxEbMP0qq1aXdVTEdu2NKbkvakrlOSLU4xh4ffnKQ/4w6VEbOP6r6z2sPq3TC77veSrilTxc6njF9e6+NoitmEYjkrEUcQ2rn81f4jYhmnQYGt1VU9FbAerR7O+lrpCSb44xRgWfkZs7b7bdd+0tFt3tfEvaMyw5KuKquSritRoEjP1b1z/Dru2iG1YD4jYhuE2ahHv1Oe3uF4Ir62IbTh2bdTsqp6K2LahLRXembpCSb4KndjnkWHhZ8TWROMgKTtUKivusOSriqrkq4qUiG0cUqOJXxttrvNOEds6aP3vWRHbMNxEbONwS6W2iG0qPTFTjtTtrFC0RGxDkYusl7pCSb64Dh4Wfnbf7aU3THWX3niHW3nCIv4PhejtIuMWGIkJbVj4Ve11yVcVqdEkjqn3bxz68bVFbMMwFLENw03ENg63VGqL2KbSEyK2afVERWlSH0CpG06Sr6Ki9Xhs2PhxoFT2MCnEnLD4Qp7YTlhinJs2bZp7x5uWnUV641rbfO1h41fWIslXhlD/3wu/OPyGXVvENqwHRGzDcBOxjcMtldqp2+Wp4DQoOVJfh0NxUMQ2FLnIeqkrlOSL6+Bh40dKMn8ol95wh3vg0el9G0RUt9d+3DgkwmoPG78yqSVfGUIitnEIpV1bxDasf0Rsw3ATsY3DLZXaIrap9MRMOVK3Y0LRErENRS6yXuoKJfniOjgl/Kbc+6h7YNp0N+Weab5REN7JUx8sbKAdOmXpy/bQIgvNX3gIVRxKvWunhF+RlJIvrueFXxx+w64tYhvWAyK2YbiJ2MbhlkptEdtUekLENq2eqChN6gNIhl3FjuzxmPBrBj9Iru3HrfJGDqLiQKq2i/o3DmHh12384loXX1vENgxDEdsw3ERs43BLpXbqdnkqOA1KjtTthFAcFLENRS6yXuoKJfniOnjU8LNDpyx92VpPpJdDqPKFK4TetsKSboH5XuSI5tqhVHGo/a/2qOHXVLubeo/wi0MydfziWhdfW8Q2DEMR2zDcRGzjcEultohtKj0xU46urnMitkPSs9QVSvLFKUbX8Cs6jCqLkJ2+DMFdefzC0US3a/jFaVP92sKvPmbZGqnjF9e6+NoitmEYitiG4SZiG4dbKrVFbFPpCRHbtHqiojSpD6DUDSfJV1HRejzWVfxIW7721rvdE0/91z0w7cnCQ6kWHbeAJ7ZEdfn3SuMXrg1mV/GrDURgBeEXCNz/V0sdv7jWxdcWsQ3DUMQ2DDcR2zjcUqmdul2eCk6DkqOr65witoPSoNx3UlcoyRenGGMFPzt9mZTlP095sOfpy+97+7Ju0sarVgZ1rOBXGZCaDwq/moCN2Pwc17r42iK2YRiK2IbhJmIbh1sqtUVsU+mJmXKkbieEoiViG4pcZL3UFUryxXXwWMQPcns/e3JvmOr/Ljp52aK5nL781hWX8hHd8Ysv5Ph/toxF/OI0bvbawi8OzdTxi2tdfG0R2zAMRWzDcBOxjcMtldoitqn0hIhtWj1RUZrUB1DqhpPkq6hoPR4TfjOB+flVf3OnXHBTKZj564Weeuop98pxL3MTlhjn+F0bB1SVCtXnAfVvDHrpe4pT79849ONri9iGYShiG4abiG0cbqnUTt0uTwWnQcnR1XVOEdtBaVDuO6krlOSLUwzhNzt+Fs3l9OVrb/mXj+hOvfdRx/+rFiO/2b/nn3ceN2Hxhaq+orHn1L9xUAq/OPyGXVvENqwHRGzDcBOxjcMtldoitqn0xEw5Ul+HQ9ESsQ1FLrJe6gol+eI6WPhVwy9/vRC1ILs33DLF/WvaMz0PqMq/3cguJJcriOz/IQdXVZFc/VsFpd7PCL84/IZdW8Q2rAdEbMNwE7GNwy2V2iK2qfSEiG1aPVFRmtQHkAy7ih3Z4zHhN3bwM/Kb/RvyS8S3rNieXk5p5t/ZlOeivb1l77PfS/+qIlX8nPCLw2/YtUVsw3pAxDYMNxHbONxSqZ26XZ4KToOSI/V1OBQHRWxDkYusl7pCSb64DhZ+g8HPyO4U0pqf+q+z/xcdXFUkERFeSC97eSkW8S3b06v+HUz/xn0lvHbq/RvesmZqitiG4ShiG4abiG0cbqnUFrFNpSdmytHVdU7Edkh6lrpCSb44xRB+w8XP9vTa39mU5zp7e7MR3lmkd9wC7rmnHnNLLLGEG9Ye3zJ0pX9lCPX/fer4xbUuvraIbRiGIrZhuInYxuGWSm0R21R6QsQ2rZ6oKE3qAyh1w0nyVVS0Ho8Jv7TxI8IL6Z1yzzQvKGT3iaf+W3lPb7512WuMLPprpHgY5Ff6l7b+xUk3/NoitmF9IGIbhpuIbRxuqdRO3S5PBadByZG6nRCKw8hFbKdPn+7mm28+N+ecc/Ztc+oDKHWFknyhQ2o0PGHq3/79m43wWpqzRX+pOe3f093dDz8ZpCRFJJh7fI0QZ19alhLdSwD1b1DXzKqUOn5xretdu876euWjS0eLIaIXB6HwSxO/sTZ/1Jk39tlnn7hOU+3GEOiqno4MsX3ooYfcNtts4+aee2535513ur322svtsMMOPTtYxDZO91NXeMmn/o1DIK626V/2GiOL/hoprnrAVV1JepHgbNr0tGnT3LhxM/cNFxVLq87/blDRZY3fur3e7vMh66uIbf0+ERGtj1m2xqjgl/r8FtcL/6sdMm+I2DaFfvx7uqqnI0NsDzvsMPf444+7Qw45xN13331u8cUXd3iJ5p9//sLeFbGNU/rUFV7yqX/jEIirHaJ/RSQY8muEOCvRA9OedA88Oj1OyJZqW8S5zuvzZLwX8bbTq+u8O/tsU9c7hfRvqMwp1AtZX0Vs6/fcqBCzGTOce99+Z9VvYK7GWG3vWJk/QuYNEdvoYdXYC7qqpyNDbHfeeWc3ceJEt/XWW7sZM2b4VOTbb7/dTZgwQcS2MTX/34tSV3jJF9fpwm/08OtFgovuAu5FHG0vcb71bUWX41AeXu1jJq3ec20ZnlTtfTlkfRWxrd8fY5XojTWinPr6Wl9zi2uEzBu7ffqzjXye7CLKk08/o/cFIAB+XdXTkSG2W265pePPFlts4btw0UUXddddd51beuml3ZVXXumuuuqq2bp2nnnmcc8804zCB+iMqggBISAEOoXA08/P7f7z/Ny12vTsjDnd9OdeVFon5N3Zlz727Lyl36jzwObLPul23HHHOlVG+tm66yuZUk8+GbbHfKSBkvBCoAICK664ott4440rPDnaj4TMG49Pf7qRRs81x/P+Pc/N6H/eTtWPjcX3dVVPR4bYfvnLX3Yve9nL3B577OGee+45v3/s0Ucf7XmIVOqpyJKv6nRT/JzwE35xCMTVlv4JvzgE0qpdd32tKn3T40Tvq4r8YNZN9Udcf4x6bc0bzfRg6uOomVYO7i0jQ2zPO+88d9xxx7mLLrrI/fjHP3ZHHXWUu+aaa3oi1bSiNN0lki8OUeEn/OIQiKst/RN+cQikVbvu+lpV+qbHid5XFXkRWxBIXV/ienP4tTVvNNMH0tNmcLS3jAyxfeqpp9yGG27obr31Vse/L774YrfGGmuI2DarD7Pe1vRAa1pMyReHqPATfnEIxNWW/sXh13Ttuutr1e833c96X1XkRWxFbON0pUptzRtVUCp/JvV5rbwFaT0xMsTWYLvrrrvcYost5thD2680rShNd5vki0NU+Am/OATiakv/hF8cAmnWrrq+VpW+6XGi91VFXsRWxDZOV+rU1rxRB60XPpv6vBbXusHXHjliWxUiDpRaa621qj4+8OckXxzkqePHYWZvf/vb4xrZYu3U8ZN8cZ0v/LqNX1zrBle7aT3U++L6TvilhV+cNN2tLT2N69um8YuTZvC1O0tsBw+lvigEhIAQEAJCQAgIASEgBISAEBACw0BAxHYYqOubQkAICAEhIAQ6jMB///tf9+yzz85qIVcExZTnn3/e8cfK3HPXu3oq/21k4x1///vf3ete97oY0Xzdf/7zn442s1XqJS95SfD7eM+//vUv99a3vrXnrQ8hL2+qvTfccIO77bbb3Ic//OEQMXrWiZVvxowZ/saMXiVUX+655x537733utVWW23WqznE9B3veIebb775GsVAL2tuHBmWTY3LtvS+KfmkO/9DYEwQ2yeeeMItsMACbg5uRy8ojz/+uHvpS1/aml6wGLPJHhl6FWRgMewlY2vCOeeNhVGXr018yt5dBb/p06d7nNvUs15yVpGvrI1t/r6qfI888ogfQy9+8YvbFOcF764i37Rp0/wVZMMoVeXjurS55ppr4CJWkQ+jFlIQS35ixgBjFEN1zjmbuRdx4EAn8kH6e4MNNvAHPGaLrXEhYm6++ebu3HPPbeR96Nq73vUut//++7uzzjrL/fKXv3Srrrqqu/DCC0NE82Rqm222cb/61a/8exdaaCE3fvx4d9BBBwW97y9/+YvbYost3L///W+38847u6233tq9/vWvD3oXlZpuL4Y422yuvfZat+SSSwbLZRWbku/3v/+9mzhxon8tupYtrLv33Xdf7fnllFNO8Tdx3HHHHW6dddbxr4RAn3jiie5vf/ubd2KoNINA0+Oo6fc1rfdNy3fTTTe5N73pTS/ojKWWWsodcsghbvvtt2+mo0bgLZ0mtg888ID705/+5FgU//GPf7hFFllkti7BA/PRj37UveY1r3F33nmnO/XUU92b3/zmRrvttNNOc0cffbRfAJjAzzjjDLfwwgvP+sZf//pXx11gGFPI8LGPfcxtu+22jcrQ72Vl8mGwT5o0yROyBx980C+4O+ywQzLyHXnkkY79rBQMqvPPP9/deOON3lAZRCnD7+mnn3Y77bSTe+yxx3wfI1eowRPSnjL5/vOf/3h9xBClYEAdfPDBIZ8KqlMmn72UsbHyyit743PNNdcM+lZIpTL5LHLx2te+1j355JN+7GKIDqqUycdivNVWW/k+JmLBwodBP6hSJh+L++TJk/3cC+n+xje+0bhoZTI89NBDnpiAD3q21157DXSOa7zBQ34hRID+PP3000sPeawi6hVXXOG+9KUvuV/84he1iUnR+yHIXFOCrr361a/269oHP/hBd8/0zjMAACAASURBVMIJJziMwLrld7/7nfvEJz7hLr30Ur9+Q5aXXnpph30R8j77PgQXWb/3ve+5l7/85e6Tn/ykl3PeeeetJWLT7YXQvu1tb/MyZG2qKVOm9HXe9xK6afkgoRtttJH72c9+5iZMmODtAeZlDP+6jjOcFThomOexI60ss8wy3omh0hwCTY+jpt/XtN43Ld/dd9/t3v3ud/s5Azvuuuuuc3vssYf7/ve/75Zffnk/z73yla9srsMSflOnie1Pf/pTT3pYwO6///4XENv3vOc97nOf+5zjb5799re/7b1zTRWILKc3P/roo27BBRd0u+++u1t88cXdvvvuO+sTLITLLrusl4OUKP4N2XjRi17UlBg931NFvu9+97veo3322We7q6++2u24444OMj6IUkW+rBz77LOP96B+5jOfGYR43lFR1r/ghycZowlPL5POpptuOpDIWRX5WLAPPPBAd+aZZ3rDfpClinzIQyRvyy23dFOnTnXf+ta3BkZsq8jHfdqM6Q996EPukksucXvuuaf74x//OBAYq8j3la98xT3zzDPemYKThYgkC+ASSyzRuoxV5CObBv27/vrrfapf08S2igyHHXaYj/Dg1SaqQ38Sva1rBLcO6Ih8gCv5cH5y3zxO49jyhz/8wX3ta1/zhLGJcvnll7tzzjnHvfGNb/Rk9Ic//KH/N2v/oosuWvsTrIsnnXSSlxFHOaT5LW95i59TIUAhhTnvN7/5jV8vcIZjsGKUggUErU5WQdPtZUzlI6K0MTRjpWn5LrjgAt+n4GaFuYX/L7fccrW7A/sHp8rxxx9fu64qVEeg6XHU9Pua1vum5cP+YF7D1rTCvPbb3/7WB6c+//nPF0Z0q/fQ6DzZaWJr3UB6bxGxfdWrXuXJGn+zWBC14rmmCoY4qTG33367f+U3v/lNd/PNN3tvthWitZAjyK55hAZleFaRj70lq6yyil9YOWkNDxDG+yBKFflMDiLz73//+x1e7kE4BfhuFfnMaDfvPUTjve997yDgqyQfRgDRKgyV1Vdf3V9obylXbQtZBT9k+OxnP+vWXXddP37Ac1AR26ryISOLCY6x7bbbzjupBlGqyMcWA+Y/ojw///nPPZZkrwxiy0MV+QwnjEbkaprYVpGBdE/maSLtOJ8gDczZRHtU6iNAlg8EgoypbAlNRcaRytwEOSEzwkjdscceWzt6iTw4etgfes0113hD8Dvf+Y53ZBDZCC1EMIn+sr6TFUGGDoQopBBhJBq44ooregfBBz7wgVmRFhxoZNTUIcxNtZeILHMc5B1nUL7gdKwbTW6jP7BZiFgxrrFdCG7ccsst3n4JKUS6VlppJXfcccf599ncyfxQx8EQ8u2xVqfJcQR2Tb8PB+zJJ5/sOQPjHVukzljM92eT8kG8mTPITuDMAPSeYBnzxcYbb+zPABj0Nq5h6e+YJrbsOWPRxEPPpL322ms77uNqqkC2SB2yCOcPfvADR1oV+zas4N3mkAjSXFho2bcRagDUlbuKfHixMdaJLJPaAGmEDA2iVJHP5GARY5Ig7XdQpYp8RLjxmGHk4DwhzZEJZhDEoop8RCwwpHbddVcfETn00EN92lUq8pFJASHD6MTxNEhiWwU/0zUIGbIS5Wsy66OfLleVj+gP/fr1r3/dp+fhpBpEqSofsrRFbKvIQDYAf9hmQSFqx1xHOqlKfQQYrzhvGbNZQyr0oB0IchEped/73tdIlglEnP5m32joGQhsQyBiwlyPYxBHSagRyfxBej5OqCaLHVID+QxJkTac2K5FO/Mltj9i5cvKgx3HtiSCBfQHsr3iFa8IgpOMKyJe+YK9pqyOIEh7VmpyHPGRJt/HIWI47NjKw3z0kY98xO29995RwZQm5aO9BObILkDv3/nOd/qUfFLz0dOYffrN9nL7bxvTxJaOxyDFE4wnhugpaURNFaIlKBR7PyEKFo3Ip8ri3YUs4o2GCDdJrvu1pYp8EDMGM2m+EG6cAUXR76Ywy76ninw8//DDD3uPNgsvB3cMqlSRD+MEAwdiYUYznrQYL1/V9lWRD9LD3kb+sN+RdGT0L8TwqSqXPVdFPpwVGLYYJaThkapPSlnTe+GLZK8iH0SRtENSe9lyQDreoDIuqshH+jGkDYcUEW+ceIMqVeQzWdoitlVkYN5nXiMbhTFAH9KXisaEaQpRcpyhbF9pKuWd/WiQT/TZCkZlSHYOW32om3XQEpUrOoejCgIYvOwnzhbWe9pOpIRtSHVK6ofU0BbIN2sEay5RXKJEbOkKKU0fooODAUcy20RURgMBtqQwxlnjd9ttt1lCM48QCAo9pIuMTOwtxnzsvIHDDn5AVpttOYBDHHPMMcFnuuA0IWuEANf666/vsw5j5swm2zsamlMs5ZgjtnhISEshtYmUWggRixzpg5xK3PTBOeS4k6bIwTcoLnvd1lprrVkyYNARLSaagpebiG5MSlRdZSyTj31DyIecHKyyxhpreMN9UPsxy+SjvUTKOGCjSadEVRzL5CNKT+oKiy1XOEDUMIQGdTptmXxf/OIX/aEC6CiTIguJpc5XxSDmuTL5INlmzBKN5wAVvO+D8pSXyce+FRwX4MjiRMp0Sv3L3j8M+GGMDfSiDL+2iW0vGTDCIUrMy4xN0gwx1tkXikFMNEYlDAHmEaKfFA4XMvJJ5lLIuMXYZVzhEM7eLIAjIoTYIt8RRxzhU88vu+wy7yTDuAw9FZn1kMNZiI6QqsqeUcg9ayX77dmGUme9TP2QGvqROZiDlchyO+CAA7xxT0ZSSH80fYhOG6nDkHe2EdGnpCBjw4GBSjMIcMAh+pS/oYSgEz8PSXEn4LHCCiu4XXbZZbZMDM66Yftf3YITh0wMTsSGJ5COj00fOq9xngOOeogyqcPY/pzJgoMtJNuj6fbWxSel58cMsSXqw8mgpKYxKXGUPga87dcj0ocxw+mDTRYMSjvlmIWPAyX+/Oc/z5IBsrjhhhv6iAHEB2MrxmNTV/Yy+YjObrLJJv4eNwqpoEVpOXW/W/X5Mvl4D1FR0geJKg+6lMmHp5CJFA8yRh2OjUGemlsmH/3KZI3hxR/kI8owqFImX1YO5Npvv/0GtseWb5fJB5klTZ+9LBh1X/3qV71zYFClTD4yLlgss4XtDk3c21mljWXy2TtwnDEftxFlKZKBiBpzrqUcMwfTl0R4OQUVA1YlDAGyQDAC8wWSG7LFAdKJ8yF7KEqYZDNrkWXBWg9RZq8t2zE222wz71wma6puIS2RbAg73Ip92hBcvsFdpzhd2aNZtaR+SA0HM2HMs32KuQ7yTho/awd7/OqWpg/RaTp1mLRw7EQchDj6ISLsgQaDQWaI1cV11J7HMQLW2fUTJzG2XUgggHEOWWzy3AYCFRBa1gq7YYAoa0hhHJHSz950K2R/EdgKOeSsjfaGtCuFOmOC2PYDmkWEwcNm8JBFt0onEiUm3bhfGqClf7YlQz85q8gHRjgGQjxdVTCKlS/2GzH1q+CHoTese0SryIf3MDTdJwY76laRL/YbMfWryIeDgAV4GOmrVeSLaX9s3RTkqyIDczBjYBhzXCzGqdXHSZvdF0tEnHTdOvuWcQoyLxGBI6JDxAzDz6KfHN4Ssl5yvROOC7IZOLSRMy4gpURKQvbY4pBhv92vf/1rH1FmrYTQQvjWW289n5KNfVGnNJ1S2OQhNfQtEXTsARxCkD7ICHv5QggIuDQpXxHOROND91ATMcQ5RpTOUlDZt0uU+g1veEOdbtWzPRDAwYhDkcATY4mCg+jTn/60J6chW6MIynCeBMQxO1fUnTeYh3gX+s7YpmDP2xYDIvh15iG2JpKFRlALhxoZfTjCIPYEacCiToaHQdpUe7ugpGOe2HahE9UGISAEhIAQEAIpIICDgPReDivhtGGypThTAMO1jsGGodcvuyXkXlLDB8PykUce8Qbmj370I28AQ3BDC6nNpKtSiFiTucHeUaK29vOq724jpbDpQ2ogIBB3TmnmnmgIXkyWQ5PyNb2HmlOlIR7cVYwDZPvtt/eklsy7YTgyq+rRKD1HFBTHEMQxe36GHdZUhzhau0npN5KcxaLuvEE/c+gn18Fxg0S+1H2fba3o1T8480K2bDTV3lHSm16yith2oRfVBiEgBISAEBACCSBA6jDGIKSUKCvEjtRN9p5m98iGiEoUJ8TIzX8Lss3VcJAWK8hYh3hbPYg8UWD2k/NviwgRmQkhPm2kFDbZ3pB+K6pDJJ4TXHsVtnCF9EfTe6iRDxJPiigp8VzXxzVMIemiTWHXxfeQ9YSeMo6aKBzCRnYBDquQcdhLBrI80Uu2HzW9pYesB6LTIXrfBGZdeYeIbVd6Uu0QAkJACAgBITBkBDgsif2rREJJ2WQfGaf9czhiqCHIuyDIvJuzKjhEjnTfkEJ0kGgyB7dkryDi4LCQK4m4UYG9uk1dk9Z0SmHT7Q3BvKgOTgD2JvcqpP6GHKLT9B5q5ANDHDOQGXSaCHUTDpamsOzKe5o8pAvHFXu/OU+H6yBxtMVceQOhxfnFdT9E7jk3ZdVVVw0+dA4n3bnnnuszWaywj5stHK95zWsqdylOl0996lP+fArOw8kXDn+NdShWFiaRB0VsE+kIiSEEhIAQEAJCYNQRIAWXk0MxzojccuAbB6wQyQ0pdnoo13YsueSSfs8dBxexz41zC+oWru3gBGwOLGuiQGjZ+8sZGqTjWnQIDEJOc206pbDp9jaBWfYdTV/P0/Qeag6UY284J0ATpeUkbVJF2bfbZCSwaVxH7X1tHdIFwYVAcogbh8PiFMPRVnds8g72WnMYFVkZZBzwHg61C9kDTHtxiLEPnwMdIZ+cxVL3dHYIN9fT4ZRDprxzLvTQvlHTn6y8Iraj3HuSXQgIASEgBIRAAggUHbKCWPycyFvdQ1asSRBiomXZ6B43Gxx77LH+ZNK6BaLMNR1c88c1PVbYRxlCVCBSkNF82WCDDaJSCkmlZL8uB5pxFWFoabq9oXL0qtfG9TxN7qEmko8OcootBSJB5A8CEpqB0DSGXXhfG4d0MX5+85vfeGJ7xhln+L30XPHJPlf2xtYZ78xB6AGp0pykjj7wb5xkHBxZt6BXnK5MWjuHZJFpwDV0HLIHGa1b0EdO7EbOsV5EbMe6Bqj9QqAmAniwKSFpezU/pceFgBAYEQSaPmTFmv3EE094AsopxtxLyXUunB4aet8j+9hIJYWUZOcwDNSQQ1uQkxRV0qVJC8Q45Y7T0FPmiXhzSA2GPqmPXCkzfvx4f51OSGmjvSFy9KrT9PU87LHlWh7SMomGhUTTsrLeeOONPtUTMoN+EFVj3yY/H2spnk32e/5dTR/SRf8wfriCCvL4gQ98wJNaCoeekerOoXZVC/IRYeVAOAjud77zHX84HnuvQwrzFw42CC0p0xw4R3YLxDTkyk+7T5sTyjmAy1LlQ/eqh7QplToitqn0hOQQAv+PAOl1XFRuhQV611139QbTMAopf1zXwSLBlQl4KfGIc48fKXhEZDDoVISAEBACbSBA1IX7mCF7XDHDCbWhp/CSmosxyWm+TRT2X0JiiZZAojBM+QYpkNxtXbf87ne/8+2DSHFHNvv5SIVlf3EISWu6vXXbE/J8zCE6rE3sUyRlmJN2ibByrcoBBxxQK4LOyc+krVJIg6esvvrqfi81DhFklHM3pHd712nykC4yFXCKZclrjF7lpcbBgW0Uc9gTOoZ+sq8eZwx6uttuuwWBinONq4PyJXSvepAQiVQSsU2kIySGEDAEbN/YLrvs4jgpkEvBKaF7ymKRJSWO/XKHHnqo+/znP+9TApmMOSBmtdVW8yT3lltuif2M6gsBITDCCFi0slcT6h5iQhohaaqveMUrvOFXVLhbsm6UlStFOACIE5uZv+zu1br3W5o8EMfzzz/fnXLKKbNE5L0Q8ZVXXrl2jxJxJDqNoWv3puJAPPPMM2tFmOzDTbe3doNKKjR1iE72M3aPMvuxia4RnWcvb519lWQmsfZlS/ZUbt5ZJ5W1ady6+D72iuI4YOxbwZkecj9y03rV9PuYL3HUkZ3B3NNEAT/eyZzIeQQrrbRSLZ1vQoYU3iFim0IvSAYhkEEAYkvqmUVBd9xxR28kkVrz0pe+1B9WwH4R9vkcffTRfp8Z0QKMK6IZRCNI7+JiciKtEE9+TqoLEx57QzjYhAvCSVPBo0dKDWlbREHY94FhwHchskSKObkPzyT72jAUWHiIJGSJLR5MjDv+YEBw9xvvVxECQqD7CODsymaa5Fs8bty4WiCQ2rzHHns47ogtuj/Srt2oexpx04czkQLI3j3eSxv5P3My8yikPKS87W1v88buzTff7N+FU5NTWENK0+0NkaFfnaYO0bFvEN3HccGp1zgvWL8WXHDBKLGbPJU7SpAOV8amYMsBh7CRfm8l9LTypvWq6fcRUT7yyCP9nlpOV8beIjuvrqPOcGLutfvD+Rn/xklW9zCqLqiYiG0XelFt6BQCEFsiEWeffbaPWLC/h2gHUYutttrKG0xES0k74fdEdSGgkFgKZPJLX/qS9+5DRtnvBRlmEiWVipRi9pyQRgX55XJ0jsO3/SekX2Ec8B3IL0SW73GyKSSYC+pJ8SEVOUts+d2BBx7ov03qFmSYv9dcc81O9Y8aIwSEwAsRYI768pe/3BOa0FOC+2HNvlPSdkMOb2EOQ2aiGrGRN6KrxxxzzCxRv/jFL/o5NbSQ3kyEkauSIGkTJ04Muvqm1/cxdomE4Sgddmn6EB0MfNoHdqQjcxAP+O2zzz61UpENl6ZP5R423ql+H8c8uhC6ZzXfrqb1qun3mbw46LCTvvCFLzhSk9G3EHLLndDYcwRBLNODbWMEMjibYCwVEdux1Ntq60ggkN9ji/HB3WkQVtJLOLiC6Crkk/1YpJ4wqUFsjUhyJD0HrHCMPClTPMNBF0zOPMciT3oPUVzILr+H2E6aNMmnwTEZEiXheHsmx2wqMmS2iNgSQSYV5uMf/7jff0QK9b777uu/oSIEhEC3ESBjw/YiFrU09pTgJtFjHxuZLVz/gSGJYxDnXUxhzps6daqPlMQSRub16667zmfbWOEU55A9u5yBQF3uyLSCQ5TDa0JOX43BqKhu04fo8A36lGgVe23JIOKaHtKSQ/bENn0qd9P4deV9OJl22mknr6dNHMrVtF41/T76jawU5iGitnPPPbe3vzhPhX/XLchHXRwDONXQW2wyxkGI46/u91N6XsQ2pd6QLELAOX83IxFbSCgpvUxOkFCMRq65wNOOF98KUVwuNoewchk5RhWkFnLL/ipSezjIZJ555vGHYRBJhdjyfwqEFtLM3xh47KX9yU9+4u9oq0psSZnD6MJQ4sATK5BmIsYqQkAIdBsBrr0hSsb8xKE9+YKjLMRgaxo1zgPgHlz+Rh4yXjiFlL9DTjJu+hRjriJZd911PdHOGvikZYcQWwxb0rm33nprH8GEeGP0ppSi2OQhOhBYUjr58973vtdHa0P61fSu6VO5m9bnrrwPRw5Oe0r2kDQyw0IimLynSb1q+n0cMrfpppv6jBNOaSYdObaQ3Yftxv5wnDgEGfpl0cR+L9X6Irap9ozkGrMI5PfYGhCPPPKI37PF3iGOmmffD4sBh5cQFYXYsghjDHGiJgs65BQjjokTw4j7ENl3hKEDYebfnMTHBFhGbElfJuWOPUtFEVv2hbGfi+gvaczIx6RKpEZFCAiBbiPAtoXvfe97PtMje+estZo5h/tsh10gdJwPkD0VmcOZiOxxDVDd0vQpxpBO0pDZPtJEISLEFSUQZa4rYW1gzv/617/uXvva1zbxieh3sIeYvdJEl63UPTSId3AuBe/AYZE/cKju+7KNavJU7miwOvoC9tiS9ZEtd911l88YMyd83aY3eRgV32aLAISUE4gJLjBf2LU6dWXjXbQrtG29vvfAAw/4M1awx0L3+NdtS2rPi9im1iOSZ8wj0IvYAgz7UNjDykFSFIwTorOk1mWJLYsEhJYUZQoTMISTaO6ee+4561h4fs47IcMQW0sd/ulPf+rvViNii9ebxQWyyjcg1XYScva6H35Pypt9c8stt/TpyCFRhjGvBAJACIwoAmSHEBnEAcY2iNQKEVacgzj9OLWYiCbzKeQvpDR1ijGEjBRa0oTJwsHpyPxqUe7QU5uJpHMoIFtMmN+JikHsSV2MTZkOwStfh/Rt1hfWIhyvVs4999xaqcNE9lgbn3/+eX8+BdlDbJshHZkMKCL0dU5FNjlwMnBw11FHHdVEc/WOHgg0fepw04dREQXl2q21117bp7YzxxFJxlEWu0c/RilIZ9599917vgJ7LDTiHSPXMOuK2A4TfX1bCAQiwDUEENGyCQtDCYMpbxThLSQCzJ7dKh5HjAXSnPleGVHFMMNbzv41FSEgBMYWAqT0cogJBt/DDz/so4M4xzg5eJgGYLYXiGpAVoi2vuMd7/DbJWLmqyZOMb7pppt8unCvwu/L5vtedXFEMt/zN5k09IWlfQ5bO9lyQ180da8w9/1+7nOf88SDtY02r7jiio4U75A+Zj3jgDGcuqusssqs9XLChAnJ6POw+7CJ7zd96nAbh1GRTcH5IxQOfSLrjXlumA48bDn29zPXEozgMFAOi2Lr2qmnnuqzGFLYAtKEjlR9h4htVaT0nBAQAkJACAgBIVAJAa4MY5sEUUJOqrVtEpUqt/xQk4czIWrbpxiHwIGha3ueOVehqBB5Iqo5zELkeLvttvNR5Cbu84RocAMAKdcUInekXGPoh7yftE4O9ckXIvyhjoZh4p3qt5s+dbjpw6jI6mAPK3pFv5M2jXOInzdx2FVsvxCZhXhDZq3gcCPDjmuUxlIRsR1Lva22CgEhIASEgBBoEQEObOFqMArpvkQHufIrm2ba4udLX9304UwQdqJN+cKhfZwmP6zCnmeMWkhj0Z7nZ555xm9D4eT8kNOCY9tFZJVoPgUnCIX0YcsICj00iDvZ2f/I36RykypO+iip2CrpItD0qcNNHUbFfMahmxQ79Z1DMdkTzrghWjqM8ZPvSbaCQbQ5FZktFjhk2BoGwW96H2+6WjRTMhHb1HtI8gkBISAEhIAQGBEEOPCFdDgO3IGocMIvxILDe1JIRW76cCYMclIR2a8KgYdIYehC5LkzPBtBSa0LIbbvfOc73YILLjhw0SDWpEdbgYgS+eLnGOLoTpVtMkWCs1+TvYeQZ24SGGaq6MCBHeEPNnmKcfYwKvbV22FidfWKvbVs/epV0K0U5jXkI2rLAX6cDL7++ut7Qp7KloNBqqWI7SDR1reEgBAQAkJACIwBBO6//35/9UQqqchtHc4Egdpll1182i8GrqUoXn/99W6ZZZbxJ9dz6IxKMQLsgeWgQ647OeSQQ3xqNKm/XIMSWrj+jsO3ODSLvbCQW107F4pmu/UgoOxj5gRf5oyiwuFfIWnf7Itm7zbpwmSRkEqMo02l2wiI2Ha7f9U6ISAEhIAQEAIDQ4CoCynIXLXBXaIbbrihTw0dN27cwGQo+lBbhzNxxRl3hrNHlMKhMhxWhDHN9TqQNf6vUowApw6TJsyhVlnHQOhhWaSFEzm/4IIL/PV0hx9+uI+ck9q80EILqRsSQwDHEFcRch0YV4XlC+OJw49I/a0TwWce2mijjfzBZOyx5nRsopg4nqQHiSlBw+KI2DYMqF4nBISAEBACQmCsIsCpyJzGzhUuqaToZfvinnvucciYPTTpoosu8qcjh+6Vg7yTsshhTERuueqIvcX777+/u/nmm2sZ5GNNb3AMnHjiie673/2ubzqpyOAI4R0/fnxtOLjWjmvqDj74YPfRj37U/xvHyjHHHBN0T3FtAVShcQQOOuggH8FfdNFFK7+bbBEOeuKEdiuk3RPBTeX+5sqN0YO1EBCxrQWXHhYCQkAICAEhIARGEYFTTjnFQWI58AWyQ2E/JsSKQ5QWW2yx4GYREST9mL3EpB5DnokMhZLlYEFGsCKOAe7bJbLNHmUirKQThxSIMdfyQISIom+//fae1BIZTNHREtJG1emNABFZ9lY/9thjbscdd/QHKOHEYmziPGGc235b4dhNBERsu9mvapUQEAJCQAgIASGQQYBoHlffkNbIvk4r7IWFTKkMDwEO4eIKHQ67iT3sibs7OR2WqC93KO+www4+CqzSfQRwMLG/ulc5+eST3bzzztt9IMZwC0Vsx3Dnq+lCQAgIASEgBMYSAhxWxB/tsxtLva62jkUEOA2ZrQdWuP6qbkrzWMRt1NssYjvqPSj5hYAQEAJCQAgIASEgBISAEPAIcHgd2wK4fozy+OOPu2WXXdanKadyp7a6qh0ERGzbwVVvFQJCQAgIASEgBISAEBACQmDACFx44YV+Pz0nk7O3njtdd9ppJ7+Hm1OWVbqLgIhtd/tWLRMCQkAICAEhIASEgBAQAmMKAfZXn3HGGe7oo4/2J5QTqeUuY64V0n7rbquCiG23+1etEwJCQAgIASEgBISAEBACYwaBJ5980p+Ivdlmm7lzzjnH3XLLLY6fTZ06VRHbjmuBiG3HO1jNEwJCQAgIASEgBISAEBACYw0BDpDiSi/uS+YaKO2v7b4GiNh2v4/VQiEgBISAEBACQkAICAEhIASEQKcRELHtdPeqcUJACAgBISAEhIAQEAJCQAgIge4jIGLb/T5WC4WAEBACQkAICAEhIASEgBAQAp1GQMS2092rxgkBISAEhIAQEAJCQAgIASEgBLqPgIht9/tYLRQCQkAICAEhIASEgBAQAkJACHQaARHbTnevGicEhIAQEAJCQAgIASEgBISAEOg+AiK23e9jtVAICAEhIASEgBAQAkJACAgBIdBpBERsO929apwQEAJCQAgIASEgBISAEBACQqD7CIjYdr+P1UIhIASEgBAQAkJACAgBISAEhECnERCx7XT3qnFCQAgIASEgBISAEBACQkAICIHuIyBi2/0+9X88swAAIABJREFUVguFgBAQAkJACAgBISAEhIAQEAKdRkDEttPdq8YJASEgBISAEBACQkAICAEhIAS6j4CIbff7WC0UAkJACAgBISAEhIAQEAJCQAh0GgER2053rxonBISAEBACQkAICAEhIASEgBDoPgIitt3vY7VQCAgBISAEhIAQEAJCQAgIASHQaQREbDvdvWqcEBACQkAICAEhIASEgBAQAkKg+wiI2Ha/j9VCISAEhIAQEAJCQAgIASEgBIRApxEQse1096pxQkAICAEhIASEgBAQAkJACAiB7iMgYtv9PlYLhYAQEAJCQAgIASEgBISAEBACnUZAxLbT3avGCQEhIASEgBAQAkJACAgBISAEuo+AiG33+1gtFAJCQAgIASEgBISAEBACQkAIdBoBEdtOd68aJwSEgBAQAkJACAgBISAEhIAQ6D4CIraBfTxjxozZas4xxxyz/f/55593jz/+uJt77rndAgssEPiV2av9+9//dnx3wQUXbOR92Ze0IW9dIWnbtGnT3Pzzz+/mnXfeutVH9vm22s1783rZNkht6miZ7MNob5lMY/n3ben1WMZUbRcCQkAICAEhIAR6IyBiG6Ad559/vnvf+943W82XvvSl7sMf/rA7/PDD3cte9jL3pz/9yb3xjW9073jHO9xvf/vb0q+cdtppnoTssMMOPZ81kvKf//zH/e53v3MTJ050H/3oR92pp55a+v78Aw8++KD7+c9/7l796le797znPbXlrf3Bkgo33HCDW2eddbwzACz64dD0t8ved+GFF7p//etf7v3vf797xSteUfZ4rd+31e5vf/vb7hOf+IQ75JBD3H777VdLppiHszr6ohe9KOZVteoOq721hGzgYeaV3//+926NNdZwK6+8cgNvnP0VzAUXX3yxu/HGG92qq64a/P46en3UUUe5PffcM7lxH9x4VRQCQkAICAEhIASGgoCIbQDsRmwXWWQRt/HGG7unn37aXXvttW7KlCluwoQJ7s9//rN7+OGH3cEHH+xe97rXub322qv0K0YI8pHgbMXdd9/df+uEE05wv/nNb9x6663nCSBEsG65/vrr3eqrr+7J2jnnnOPuuuuuWvLW/V7Z85/97GfdN77xDbfddtu5ffbZx6244oplVQb2e5wY9HmssV8kcFvtPvHEE90uu+zivvKVr7gvfOELA8Mqq6NkKwyqDKu9g2qffYcxgs5885vfdLvuumvjn1933XXdZZddFq3rdfQaZ+DnP/95d/LJJ7udd9658TbphUJACAgBISAEhMDYQEDENqCfjdgaKeQV//3vf32E49Zbb3XHH3+8j4ISTV1llVXcscce60j1xfj+2c9+5v74xz+6d73rXW7SpEk+6kqk98wzz/SSbLLJJu6MM85wG220kVtyySXdWmut5Yks0VUM2SeffNIbnkZsee6Vr3ylu/TSS92yyy7rDj30UPeWt7zFk13+7Lbbbu6DH/yge+ihh9zmm2/uXvWqV7mvfvWr/ptXXXWVI9K84447+uey8iLLL37xC0+MbrnlFrfwwgt7EvzlL3/Zpwr/5Cc/8e3ccMMN3R/+8AdHhAajeN9993Xjx49/AaqkGBM5vOCCC9xjjz3mcSGaSET7iCOOcF//+tfdAw884N761rd6IobDIFsmT57s61933XU+Eg6pR2ZSlvu9+5lnnvFy8dxFF13kX0mEiH446KCDfJSYNhBdfOc73+m+973veUxwGGBkIxsYEEl++9vf7uXEefGtb33L/fSnP/WOhrXXXtuT8de+9rWNtvukk05yp59+utcF3k+hr26//XZ3zDHHuMUXX9zjTUYAJHLNNdf0OrLaaqt5XTNiu/fee5diwDt51xVXXOEWW2wxt9lmm7kDDjjAv5foftX2brDBBrN0dOrUqe5jH/uYjy5Onz7d/fKXv/R9B/lF//Pl2Wef9fgyFp544gk/hnB00K4yfazTXvoLncAxhTyMN/5NP6Pz9Cvp/oxb9LGOrpu+veY1r3ErrbSSbwsYfuYzn3Hbbrutb0c/feX3OMYgeeeee67vY3QUXb388svdHnvs4f72t7/5sU6/7rTTTn5uOPLII93f//53jyt996EPfch/67bbbnOf+9znvI7MN998Xle/9rWv+UwNCnPA/vvv7/7xj3+49ddf3910002e1PIHbIiEn3LKKT5jAb0Coze96U19Z82i8cx4Peyww7wT7ZFHHvE6sdVWW/m5KUts0W/kZc6hLYx55juchMytOAo/9alPzWpfwPStKkJACAgBISAEhEBHERCxDejYImLLazBejz76aE+K+Hc2FdnqQOT4+XHHHeeNaQgFxhsRGArkEoP6JS95yWySYbRi1FFIRcZQxVikLLXUUp5sYvBCyjAcIa9f/OIXvTyf/vSn3T333OOJMgYxhuLHP/5xb8QjAwQI0puVl2cw/invfve7PXmF3GGInn322V5eCAoFogf54feQTeTPFqLQGNSkT/M92oFBTYHkX3PNNd5gxniGxBHt4ZtWeDekkfeD38033+z/DdmDyPd79+tf//pZ+3UtGo5hjLOAdtCe7D5UjHaMesrdd9/tScOXvvQlT7pxOkAwIB0QPUgXROZHP/qR23TTTT1ZbrLdYI6Tgv795z//6e6//35PdOhjMgLQFYgvhPvlL3+5jyqDL89liR5EwfYsF2EAsV9uueU8/pAJvkX2AXoBTp/85CcrtZe2Z1ORISdGgpAZ5wjvRQf/+te/vmDkgTP40gaIIe2n3HvvvZ7U9NPHOu1F1y2ajFwQPvrXCt/n/4Y7Y7WqrjM2Detsm3n3r3/9az9m++nrCius4LMVGMuk55IJwlhhHL/hDW/wpA/9JNuCcQKmOMco9B0OLwoOJMgjY5OxQl2cBeBP+3A64OwCZ5tDcDjxLIVvMC4ZK7QDB9uvfvUr/zvmomWWWeYF/Wc/gAznxzPfw1GEPOjrD37wA/84hBrHARFbHDmQeuYWHAo4opAXJxiFuYF5DxkZcxBjFSEgBISAEBACQkAIGAIitgG60IvYEkUjogLhwQDNEkUMYww2oiKWbgfJwMhbYoklZhECIx5GEDD0IaZEkLKkwYgthiLRTCKOGMwYwfyO6E4vYgupyKci5/cEW/qtEWOMYIxoyh133OHOO+88b+xD9jBM77zzTk9YjFhlYbVvYSBDGDD8iTYRZSJqjUFrUWsihkROs4XIMJHIbbbZxkfXiEJRf+mll3bbb7+9N/J7vRvM+5G6LLEFO6KDvBPD+zvf+Y6PkOZTkSHZGNzIRPtp04tf/GIfKZtnnnlmiR7bbl4EMYfk0D9ExZEHQk/0C1wgKx/4wAe8g2CLLbbw3yaqT+TZIrZlxJY6W265pXcaUA/SDKYUDoOCWFRpL88XEVt0ApK70EILeecKeNEmc9QYYOxNh7RAYpdffnnvUIBg4fjBUcO466WPkK6q7c0SW5wmc801l3cMUCBtjEc78A180YOqup4ltugpbYSgIjfzAu/pp6+MWQg1hfEBIUVGxh4R7HwqMn1OhJkxxFhiLH7/+9/3jhaIKt82p8tzzz3nHSVgikMEBwbYoj8QRfrEtgDwzNZbb+1/RpQVHSBb47vf/a7vF+TsV/Ljmb77y1/+4ucoIvO8G0fKJZdc4uciiC1zGXoGub/yyivduHHjvKMMxwI6jzMO5wD9zLzJMypCQAgIASEgBISAEBCxjdCBXsTWIltE9DAgs8QW4oFhmo0MYegSaSLamt9ja/9/6qmnZhGzImLLOzBkKaSOEimBBBBJzBJboo8YzBYtKyO2Rt6y+0pJReT/kGYiKxjppBFCMiFAkG8IJv/OFoxmUiOzUU2ixaQb2+Fa/Ygtxjnpw0Zq6rybg3DyxNb6KR+xxfCfc845fUouxJG+wZjOE1tIL+TXCm2GIGCc15ENB0S/dvMuUnMhpqR3EkEjPRWSy8FBkBOwyeoUdUj7RSf6Eb0sBkTTLNU5Pywgeny3Snt7EVucORzARWFcEInFGZPdRw2ZJqWeUrTPvEwfIZFV25sltnlHkv3fSDbkELJfVdeN2GYdPLT9ve99r9d1cC8bC7Y/1fqCcYsuErHME1vmGHN65FOEwYN6ZFBAECn0M7qEwwxiy8FzRor5PX2CY4H54c1vfnPhLJmdc3pNo3m9Zv7DeQJRzhbGJw6b7NihvZBgslZIbYfM5kuRAy1iSldVISAEhIAQEAJCoAMIKGIb0IlFxJYoKOmcFIwy9txmie3VV1/tU4QpGPYYnBASiwr2IrZZI7+I2GbTOo2Asd8WYxHCSZQFwkt0A8O6KrFlXx9pjZA49gayl5SUTQqGL5EWjH3260Gu+hFbCByRGgxWDqmi2L46i8L2I3hGJC1SSaSHSCzvA+N+74bgWdopbSCyaie/5omtYd2P2BJJJLJLZBEiDEZElCiQKyKsVmLbzXsshZzIHQQG8kLfZiPoOBqIci266KL+03liC2nohwHOk4985CM+/Rt9pOAIAQ++yym8VdpLvaKILYSM1FhKL2LLt9j3Sd+yB5XoLnvEwZTUfghhP30k0m/Etqy9dYgtek2UsqquZyO2zAPMCUZG0XUcJf30FUcG0W3wgHiCG84MiBy6AEnNHh7FHlv6jP3LkGd0DqcRWQ/sl2Xs8wz7ZClGFCGzbINgHDJ+GcdEUolc09c4sHiWOQoZ2C/MzyH66Fm/VGS+kx/PRsAZtxBjdIJxlCW2pFIzptiyYGOdDAXwt3bgsCPVHmcVjjYVISAEhIAQEAJCQAgYAiK2AbpgxJZIHQbko48+OmvPKAYbvyeimSW2llKHUUf6KlFdjDoOlyGCY4QAkkSqcj7KmCcN2T227NvD2CSCR4HA8W6+g4y8H0OWYsQWoxeSRPofKY8Yqll5MSYxKqkPqYAYY4iSRsm+P9Jg6xj7EC/SDDG+zdhHHjPI+xHbbDSPA6doGySHf2OUl73bjGpwwjC2fYhViS1ECHJBmjlp4fQx5B6nAW0hJRkCAFEATyuQnDLZyiK2vIs9sLa/kT2vEDjDhP6h35GPPqOQPoszIHsqcj8M6FM78IuI/3333efJOvphh3VVaW8MsaWupaejIxBgoooUCBUptv30Ef2u2t46xNaun6qj6zZ22SdK1NMcHz/84Q/9AWz9dIJIPAe8QWTJuMAhARlGr4h2srebuYQoOPiQpsw4Z1yDD/MK4wxySPqyOdsgtzgw7JA6SDL7Wy3tn0O+cJwwtikQWwgzspP2S8o+uocM7DvPX3eWn0bzem3ZHrwD/aSvKURjmYvsVGQws2uMkAeHId8GD7IiGAfUgdzjBFARAkJACAgBISAEhICIbYQOFN1ji7FKai1kh6ig7VklCkFEjX2pGJ5Gqvg8e9vOOussv8fPiC8/JxpXlJZp6ZHZe2whH0S5LB3ViDJGLO83QgShhuwYsSWiDKFBTqJy/A7yY/ISOcFw5jRSK3zrxz/+sTey7fAojEuMTAgA8hWlIlMfos9+wGwqotXl92YIQ9iJLOeLRb3s57SNFFH2Qpa929KeqYuBTF/RD7QFmfLRcgxoDqWyVGQICdE2CkY9xIX+yrYF5wApw/lSJltZu3kfcpLGabphd+lyejRp5xT6DbKCTETsSSHO3mNbhgG/5zAq0yMw4rv8zSE+Vdub1VE7PKpKxJY2sE8bwoROUtAlCC0R9jJ9zN9j26+9kEuLYJelImf32FbR9WzEFj2GYFIgxugwqe5lOkGfZq9oAgccFxyeBaZE1uknxh3OHUirEVa+RX2yDijsv2XesUOhsu/i95Y5wb8Z1+gWGSUQW/YHQ6qz72Z/7YEHHjjbgWtFU2lerzlYjXR25CDTAvLK3MT7yAQhQktUmbbYeQS2jzaPB/0H6SaqryIEhIAQEAJCQAgIAUNAEdsB6wIklCgLB9RY6qiJQNoj6YAcmpI9qbdMREtb5MRcDpHKFtI6KbwzX6jH7zHyISRFhYOIiERi8CJzTOF7tJ92smfSIltV30mKLdEo2mnE3+qWvRtiRAojxDbkflUcBXyffcR2QBSppvQXJ8v2wg/5ymSr2v6i5+g/ZKvSN2UY0Bb6GqJB1DCvg1XbG9MesCJdHawhVvm+qqOPZe2NkbNX3fweW5wNOF/Qm2wp0wlSfklFZjxzSBrOMiv0E1ki7M3nDwVnGN9iXNnBV9nn6VccaETm+Ttb+BZzEsQW4p0vZAdwMjW/53tcXcb7ehUOCDO5ss/gTKNNyFhnfuMd6AN7wRn75thpo//0TiEgBISAEBACQmB0ERCxHd2+k+RCQAgkhkDR4VGJiRgtDs6FouwEezFXBGUPBov+oF4gBISAEBACQkAICIEKCIjYVgBJjwgBISAEqiBANJX0djIkOPxKRQgIASEgBISAEBACQmAwCIjYDgZnfUUICAEhIASEgBAQAkJACAgBISAEWkJAxLYlYPVaISAEhIAQEAJdRKDormlrZ93906njkz9gLnV5m5RvLLe9SRyrvCs/pro2jqpgUOWZsayTtF16Ua4lIrb/jxEKw2EzIQcLlcOsJ4aNAIftcBBP0aE2w5CNw3g4CEdlJgKk8JaNPZ7hcKOiA46EYzMIVOmHZr6kt4wqAtkT/IvawCFmTc9tnE7O/c9cA8aVV1Y4YZxrsf74xz/6O8Q5KXzixImNQmsnvXNVXNkc1dSHuZGAE8M5+Z/TxIdROIGd+6s5hZ2T9rtSOHWfu9nXWGONWVeLDbtt3NPNVXvZwgn2YM8NFBzmWFY4AJBbG7gPnpsEKBdeeKE/sJOT5Ns+dO/qq692hx122GxicnL997///TLRK/9+WDq51lpr+esuuSKPww+HUfI3PwxDhja+2YaOdobYcg8j97fWGURcL8IExz2Jl1xyib8WgxNZ84UFhut67J7QpjsXY5KTdm+77Ta/OJcVrvrYYYcd/FUoWaLGFTZc78FEWFa4N5KThe0QGCZFrrjBQOBuy6233nqWLNwzyfUakydP9lcE7b///n1PAS77tv2e60u4RocrPtosnBrMfaJcL8KkzzU2YIcjgzt+uSeWk4Dph6OOOspfBcRJtPyOCa3IQ3beeef5q5o4lXjSpElus802889BWFlcuBoJI8wKV5Z85CMfcZwYS0HXWGzK7gNtE5eyd2f1Ev3giiVOlm6jYDxyNQ5XTmUL19xwHRWLCX3BFUbbbrttGyIM7J1F47Tf+OO6JQxcDqbaYIMN/NVPdgp3r7HJ/a9HH320P0mYq6AYz+h0WbF+QB6u7OnX3/n5s+z5ft/O9nOZjGW/Z6xxgjdXmKk0jwDroBEd5jqucOJqK06Hpxx77LGFp/CHSMLp25dddpnXfwxL7rjm7nMKcy/f5PvMEXZNGGsY/2+qDIPYQta5OpB9+qz1wyis91zL1TVia1cHYidxB30KxYgt9hWY40ThDnmu71tvvfX8lXtl5frrr/f2GXbFOeec4x/HvuB6Sq5vW3XVVcteEfV7uwKSsWd2KWT6ggsuiHpvtvKwdNKILdcoLrPMMo21p86LuH5yl1128Q6Q7HWAdd6R4rNt6GhniO3OO+/sDb86xgwDfo899vBXV/QjthiHvHu55ZZrRS+MQGCM9fsGp5EyYUHeL774Yn/lB9eI4JGDaHHPJh6yG264oa+cGJGbb765v5sUI4Sy2mqreWK31157+UmQyZ9rPmg3ZBuSt/766/u7bSE43GUZWyC2vJe+a7Ng6N53332+rXa/KZ59yCftwOjnPlDIPoYE99jimWfR+/Wvfz3L+2kyoivgx3NcH4QOYeCtssoqvv8+85nP+MmcO0C5P5jJkIno7LPPntVMdG7NNdf0uveSl7ykzeYHvzurlxAd7qPlqqY2Si9iC9HFkYLzadSJbb9x2mv8QR7RU+52pf042bbaaiuvtzhRisYmd9hiUGCQQja5h5nrgLgjuqxYP+AAghy/9a1v7VklO39CMsqe7/ftbD+XyVj2e8byrbfe6s4444yyR/X7SATe9ra3uWuvvdaTTUgnBV1gbmQO5Cop5kX6BPLL2sJ8uc4663idxFuP04o5GudjvvzoRz9yn/70p/2VZhDYLLHl3mOciszTGNXHHXecX9OY21kLrXBVFHfM48hkDl5sscXclVde6WVENtYFxsjxxx/v52p0kbGD09euwuPbkA3sC9YIvsOcRBtYC4iooW9chUVkBdkY74xrDFHGMAXn6umnn+7tDYgGDlGcdflixJa2sUYQmcbhTLu4Js8coqz7rPk4y5gTWFOyUTPIEWs6bbb1h3bilOXectZfnseueOSRR3wUk/mFtuVJBO3u13YwYn7izmoK/f21r33tBVfz8TvWFtrCHdlE44kwslYiP4V1GtyI0C288MKerEH0IUxgj/Pi5JNP9vMfjg++yzOsvZBE+pc24MQmELDpppt6fC6//HKvfxDGZZdd1u29996tO9arDDEjtlmybdFJIre27vbCxRyROH94Hsc5TnQwpF+4Exy80UdsO5xTzJHoJXYK4wjH/J577unHKAcgMiaoC6aMA+rRV9w5ju7kC+OUscR465cZ16ROlulCP51krEIW0Vf0CQcwOBRlfBixRQdZ95jXsIPRO9qDfcd1eBb8wqnMmPrkJz/p7UsrJ510kh//2FLgSKGvGOPHHHOMz3Rh/WatBnPGA3MA/ZYltugt9jNzgTk9CMrQFmx05lfeybuuuOIKP/6Za9CzoqwTbH3sLN7FfIKtz7yEHdBvPmdOLJODwBHZksxfOCjRT5x12P1HHHHEC3SUOSi2dJLYsrDcfffdPlpBR6EUAMoEaYXfocDci4qC0okYgUQPWbwgLLyHxfbUU0/1xAjlhRQyeCGPKAqLaf4OUyZtJhRSpoiK4mVBOVlYiYryXu505Hss+ERr+VNGbEnxYpJB0bLEFu85A4aIL0rbj9iCC8YqXkE8T7SFiZ87dfkd96EiJ6e68jvunWSis8UKGVn8s5FGFnAWdxY9u+YD44LFHnlpM4MZXBjQRx55pL9L04gtiysDkW/wfSZPDAsmcfqMycImVaJ1NjiZjDCIMBZs4Ocj3kxeDFQGN4YE8oA9izuFv5msiEwhOxMVCyKFyR3SmY/UM0B5hkmVwsLKYAUr2oD+IBP9zP/pZ3RnhRVWmG289iP2YE7biGLihWUSxFAAY3SXvqKv+UYvfLIfIzOBhY02YhCg37QdXWCSwZgxw5TUN/4w0Zte9iO2kHreDbHBQMFQYlFl4gJzouMsokQamfDpe4wmFkJ0h4mfPrj55ptni9jaYr/UUkv5dtM3GJ28iz9E+zGceB/jk/dh4PHM4Ycf7r9NRJMxxmSJDqIzYIHRirxM4OhWUZpWr3ZxnQ0ODPqWKDzyYzRhRKFrGJLZxcz6odc47Tf+GOsYYxiwFMYSxj7tALOisckYQmcsdRJjh4WZxevlL3/5bDrYqx+oi/6xOCMD2PNd5jP6lxTF7PyJU8ie7zf/YqAzHxJdYy44+OCD/dzMfGn9nDUsICRgaVF6+pCxBYno1T9GbJkT+80rvfSgqL2bbLJJ7Frbyfp5YsuWHlKGmbeYY7iLGv2joLPoIHM7hf7GQMT4ZP6EbGCAFRXT4SyxZU7EMEInmGMh2MiDXuWjROgR6wlOYQiUGeEnnHCCl4fxjAwQIGwGxqSlAWcjtug4pJN5jHewJjPXQZKYT3gf8wPvYsyhqxTWTO6XZmxiAGNzQByY/4i0sX5lixFbfkYEjDkfnFh3IKjoNXMd/+ZnfJNvk1mFoWwFhwBrO3UxdPk2ayRYW0ou8zQ/h/xYYICUS+pmI7bMN/3azvzOHAgWzDP0B/9mrs7fnc18ggGOjhB1/8Mf/uBFxlnH86yNFPqG32XbzvqLfmHnQMz4Jt82Bwd2GXMDhd8zR1JYh5CLuZ+fMUdipxTN1YMerLbWscZjc2IrYbPQR+g5cy52Ri9cWMMgqOg4mDLH0u/gjC4zf4E36wg/o7D24binoDvU4f18h4JOYB9byf6/KCUXAoO+gyv9yDiDKHJ3erY0qZNlutBPJ3HGYceCOTYDtjzYFQUbjNjSDtpn+ooNRTuNAzCemQ9w1oFdPguTemTyMfdhL2J3QmaZL5gbcRgwnzEW0VVINDLxXJbYosOQWortObY5gDmBvmBOQx7sOL6FPPQxfZ0t1AcD5lhsVJwo1GPsMDf1m8+ZS/rJwdyUzXjMjkdsWMZpXkebyCzoJLG1RYGBTEfR4fzJRhmJfuIhYYFiMOKtJOUDrx/KxUQBKcKo5H0sLHhEIFooDsQP7xaGLZNjtmDYYdyycGEkofgoFV5a6mCcsmCwGEMqeH8VYmvfwDhksbOIrf0cIo2nuBexhbBiGJg3FoWGvEIkmUDNW8pgXH755b0hAgllYEFsUEQMTEhQ3iMHYeJ3eIjw2EEIwQ7CgKGKkQlmfJsBCs5G7PgZhACMmARpF8/yPWRgkCInMrFoM1nSlxgxDDreRT+y+OUNGlLIead5EVk0mYSYWCj0DVFp+pSFGH3h95BfJifag9ctW/g9g5EFgEGNMwRcLTUO2UgJJz2eCZOJhH7JFwwjUt8tbSj7eyYM8yBCKNBRSAiGFZ41FiUWPNLve+GTfR+6Z/pNe5Cfvap4BjGqIPxGHvg/RAVcy4gtOOHAoM2QR6Ig6ALjxxYDjCUiG3wDnaBdYIvRC3aMQybVPLHFUKRtjDFkxmDhOcYXCz9jmsWfSZlvo0N4MiGQGAL0h0U6MLAYkyzwGM84JXBcYBgzkeejmf3aZYs//csCg+ML4woyzbyCvNbOIgMpP077jT8IJOOU8ccYRV8xYDAy+XfR2CStnrGOXmPAQR4ZG9dcc80LxOnVD9lUZJwH6A+EkQgb+sd8yTjOzp+Witxr/qVvMGIhGcx7NrfQL9l+hjxbQWeIXJhXGoOeP+hnL70zYsu46zWvYGj30oOi9jLOXvziFw/a3k3+e3lia+mQGGoY1MyP9Dt9zbyNExOygpHM2KSifwbIAAAgAElEQVQwH2DwMY6KIkE8U0RsmTsgchAWiCJrBRFYDE+cFtnCM6wz/CFaSd8jn61rGPjMWxBPSAYEAT1mnqxDbI00MqcjC+MUxyPvYSwz59B25klsCcYoc1N+C4aNIeYS6iMnY5VxzFrGesVaiHMPQ9jaw7hk7cwW2xPNeGANYN7FwMROwHDGWc06ypwKycOoZbxDjKoSW+Y722bD+xgr5vhiPjZnhsllmLIes66DD3MVuLDGIZc5D1g7LCjBes68V4XYsgawRuIURa+oh2Mj5VTkogHPfAYulrLZCxd0pF8qMjajRevMKYC9xJqIPYQtYmsbTlt+zvvoF0uJN4dKUSabkTlsE+xlnCfoOvO3kR9rX1M62Y/YYrv100naSIQceS1rkLUWUsk8kC1myxgOZk9Zmj5jkXFqzlTGGEGDojU361iiH6hrzguIMvaAzWfMFxTsChxtlopcRmypA6nHNqIepJm+pGDvMD9bwa5g/kEHcMCxNrKWs+bxHeaGXvM5+FUltszhcAyCJtiE5oRTKnKfZT6bisyiwERrxiqTAil9+dS0fCoykz5KhWcVIgGBQwmM2BJVwDCjMzHMWETwPuWjhHhkMN6MSGMAQphQEgYRhiYFsgP5ZhIYBLGFmGOYMimRjmPENk+AUGoGAZMebcHowBsKSeUdyA8pyxYWEYx7BioTBsY33mwmNwgGxIMFE8MCjzqYViG2RNIx3o0YMhggEJAeJlImNhZCiDY/y+5rRT4MYha0/F5B+hWHBMaUDThrD95Ic0awSGejXOiHTQroA33HO2yhsD2PTI5MSkSy0RcWejzsEGDSxylMYuCJhzBfILMY+3i78GohD7pGZBSSj0cUYsqk0AuffL+i3xhGOB3QAyY+cIghtowB2kU7WVgx5MCAVDAWAyK4Ng7oG8ggEyXGHM9DYngeQytPbJE/n4qMzjBmKMjNRI+HDy83fcE+UvQaQw9DDmzQEdsbg1EAhngwwRadwbMJntloUb92IQMpOixyOL9YCJiozTHAxA2hsjT/fN/2c0CxYGbHn9VlwWRMUXCYYYCWjU3DlTqMXwy6bBoSmPTqhyyxxYGA04cFEuOf8UJ/YbBmt3JkiW3R/As+6LQ5megv2oWjr1cqMgeSMJboD5wN9BGONwzdXnpXhdhCDHrpAfNbUXtTOXiuzzI48F/liS3zFuSVyKdl+dj2D4wsxi7GoJEMBGZ9Rgf4Xa8tLkXElvkbnWZ9ZWyYsckay/yWLdkoEcYmclv0k/UJ3bXoqtVDFmTqR2xxvmIQMo5YK/KRSXsX7WXcMxdZBJHfodusH3kbwohtluwb1sytjEMjsOgqRjTzOaQ9X+ygJNYe1l7mAovQ4QygHut0tpARxljrR2yzbWduQL6ikt8njJFtzqui07WNIGX3hTLX83/mFfolS2xpM/NhPmJLP4ML/cq8Y/ikTGyZkyy7D/ktQstcyb9x/vfChXW9H7FlzrRDqFi3WP/QfbNvcLKgIzjszZ6x6LfZSBYBzW49yNpNkCEcODhJeC/2RtH+3qZ0Mk9ss7rAmO6nk9gN2Cc4uLLjlPkkP9cbsbUILEQTnkAhu4m1CPsqO8ZsXsqPCfoYLoBTnT4mCxRyyVjDSUXwKysT9Vkzccr0I7Y4/5ljWNvQF0t1zn8/v0+YKD7zdXbOtjpl8znzRJ7YZuXIRmxxtmOz4nCALxg+IrZ9lu08scVwZUKlQITIg89HxvLENnv4CYsHCzETrxFbFMuUkveySDBJ4p3JFhZCFiRLabXf8XMMYBSIgmGIV5OB0TaxhTyReoxcRDCJkplRgYHMRARZZcGDKBJFwQhmQcFIt8NCUEYGDwtitkAGwQGvH4YKHi+Ul/+Thku7jRAycPsRW/PQsnDiIcwvurbnBJnwWDMJMKHzTvokWyCPLLpZDz4GP4fwYJDg7Mjua8brhgcNI7zoEBSLJpsXlW/hAGHBINKTLUx2OAcgOkyMGHQsGkw6OAmMsBbtW6UfMKpom6UAGbHN7h8071/2u9k9OfZzI0xG8I0woN95Ymsp2VUitiyGEHz0iUUMTHH+GLFlXNrhJ2COF5iJkEkdUkmx08irENvs+1joIdSQVxbcfEFPaUt2b3CvE12JHrEgW+nXLr6LIUUEylIR89/uZWTyXBGx7TX+su9lMUXvGJ8sdMxPZWOT92KEMOcQ3cYQsMJc0KsfssTW0sUxbtBFoqgYX73mT8Zh0fwL4cCRY/2ebVsvYosBhj4R8UP/SRfD6OrXP72IbXZegUjxrnxBD8CU/s239wUP6wfecMzuscWZjOPKIkBAxPpLhJ25mvHLPMiYte0UZtiwRaLXeQtFxBYnFbqIocSYsLkb5xlZHfliYx+yg8zMzcwNGJms68xTzGU4UYkgFhFb1nsi0DjwbC8n49BSkYlyMmfzbuYT5kTSrfk56zzrIcY/6yVrD0Z/luSbzEZs2VvP3JolChZxwV5hj2q+PUVqaeuEpQKaU5Fxh1GN8xU5wAOsi4gtY7BX25ljsC9Yexif7KljvNFWvp3NwmDNwTHIvAKxYrxhq0Ea6AMMY9ZOcxbyDrJQKKx92A+QVZ5B1+h7bIw8scXmw7YZJWKb3WNrjgPaTVsgKv1wYU3oR2wJrhgJsew4swPMZrCIbRmxBVPWcyv0I7LTz5bhhk1EH/c6zK0JnbT05yJdwOnaTyexK3GYUgjeYNsydvPp/PzeiC2ZeNgc4IMzHccUtg7jk+iw2aK8z8ZYfjyazWAH3ln2RDYzAQcO/cW8QckTW+ZTc1JbNhEknXELsWWtJNuDuZb2UNAnxh5jAr5hBV3AmWRysOYy/+BIhqzzp9d8DifqJ0eW2JoTS8S2huGQJ7Z0okX5qhLb7KnIRcSWRY0BzIBlQqDz7dCIrKgYj6QSWFQTQs1EDlkkikcEhIKBC7lhEWyb2NoCanLa6c8Qa+RjkSTVlUGR9R4ziPH0maHAs3iN2NOYPy2YAcPiyGJsXjoMD4wIPD8YqBj8kI0iYmueJIs00YfgyOJlnnzw59sYDSxyLMzIDYElQsBEmh20RIQwQIzQkRaDMcbP8PhnPewYViyaeP1sv2mRCtJuDAoiExT6GWPDHCn8jEEMtrQb/WPiADe+CZHG+GLC4Zv5dBVzQkDIzZtOO4uIraVj5/HJ79nKH46WJ7YYfRgVyI1XDT2oQmztIDJSEEm9Q0/Axoht9hRjI7aknrGA2h5QsimItFYhttn3GbHFoQJpQi/MeYJuoG8YS1liS7+TscBCSEEGO+0bY8xKv3Zl90Zb2j1eT/OuM7bQq16nJxYR217jD31hwUQvKXagCM4Rflc0NjGEGad2WAx9SpYAjprsCau2Z6uoH7LEFnxwhhFpYb5ifIMvxnmviG3R/IuOsdDa91jgMRT4eb/DoyzjBoKADmHA9uufPLEtmlfog156gMFT1F70VmV2BPLEFocDBhnGEnMocx3rJgXyg2FtaakQXXSBTB+K7QEtwriI2JpBxpjHCYhhSt/ljW57H+TADkOzPW2sFRiJzNHMLRiwzNMQUlLuid5nI7ZEgnHOUZ/5n/WFYsTWyDMGL0YdDkpkYtxgKPIzZMAGwPhlTBYR8eweW8Ys2BClzO4xNsLG95EHwzg7h2VxxOmK/UGxSDX/tkgocpKNBHGlMDZwTmcjtpa2WtR25gMMdf5GXvBg3FLs7I6sPJaeTnuwGywLB9xJG8cW4zuQJNYS+h/Shi1Bf0GycbKR2kiUi1KV2NohY3YYZhOH1cTOC7bHFtxYzyBK2EEQJXMC0c5+uEAgISfgAj7YbvxhrmSexhbDTsCuYIwSjYWYYDNZKmxVYluUimzkj37H3sJxiiyswVmbzLBqQidNj4p0AcdXP5005yY2K2MaWwximLXtTFZrGzrJFgh0FNzA2W4WMcJGnezJ1EW6YYSc31n2hGUy8A36mn6z810Ymzh6sqcim1MK4mlRY97Hus9Ysb3NOOuwjdB79IN5J39lor2L+QsHOn3HPM2c3W8+Z/z2k6MKsc3rKFwptnR2j20VYkuKFHsveBZDt4zYMjmwHwgDnIHE4oPnJr+vk4UcxcRow/CFhLG4oSR4aSE7eEAgPnQqE7IRW5QRowsvNt8oKnX22PI9FAWvcrYwGFloWViNWCCvHf7Es0yoGMhMiER7kBkvEIrMpJAvtmDYIs/vScmmTXjzILvgB454vI0gMFFgeDMhMrAgigws+sVSK8COAY8RgPeWAY9RT1omxMVOKmYAZ9NIjMBZ+iP1mWiZxKwYCcFJAcHIHr7BN1ngIbv8DY5MhGBGP0K0mQCQJ0uGMWToJ4wjjB+MEowkordG6lnMWLjy0QVL06H9RHbBBHlpA7qVjdjyDiayPD7gki39iC3kmYUUoo0O4CSqSmyJwNFXLKp4P8EA4wqynj/F2IgtkU48u3jaGX/oAoZlEbHF8KLPSDXMv8+ILRFzdIFFBtLF4oTeQciQKUtsSU3HoEGfmfypg1PEokeGWb925Q/9wrhnjNGPkDXeT78gd1HJE9t+44+5hegR45gFhveiH+AL7kVjE3xxpNCHLNgswuhs3oPM+O/VD1liiwGEgcC3MTzRScYybc3On9lU5KL51w6foq+ZRyDrOGsYO9l+zmOWTak2I7lf/xixZQ7uNa+gG730AOdjUXubONQidsFOrb4R2yyZZN4Dw2ymDRFRHDFEIpgvs4eU0KZsKn9RG20ezxI7nrO7Ha0OOsWYLrqiDQcPRBu5zJCnHg4adMEOyoFwY9xaNCZLbDEgcbZa2jLjCtltzcMAZa6ivhWL/pKZwnjJ3twADsxJthcwWweyx3ppTjjWY+Y2u8oIWRiLjEnWVHMgFOGXjf5ZpJrncAazJlm2DUSWtiEzfZi9x5ax2q/tZGKAhx2sw9qZzVDLysWch41jVzTxLPMUUSdwou22ZYt6dkiUZS9hzFt/QSIgAXliyzzJHI8zAr2xLBqcg+gga2/+BO1hja9e99iy5kEA0ZMyXJjPaS+YoiOsydgB6DMFmwT7hbmXbBsrliZPaq1F/coitkXEFscR488Oi6OvsB/z+8ftu03oJDrQTxf66ST7tbH1bHwhF/qNrZffUmDENnvgFmOT9tmWALPLeQ8/Ry97FTvwjN/jkLLDK8k8wC6i8H7bzkd2Ig5anG+WLWhbPHiWuQEdoS28m7Fr/MbSmvk9v8sfYkp9nNys88wDFOYzbErsiH7zOc+WyWFzsUVsbeuJpSLndbSJKzA7Q2wxIpl4mUghDnnDismWiTNbUBqMFVJhMG77EVsmYgww22OAIlkKjR26ZO9GkZhIMf6YsCFqTNKQLgaGTea2j5W9CHaPLakHDJSiPQz2fjuGnwhG9kRmFAVykk27xWBk4Ocvzs4SW8iMbVLP4gMmkBwmQoxSU3gWYruzMI8nC7Qd2sDveNbeDfnAUwUBhsSwqNg9tnbiInXMWKAPIalMNnZSH5jRjxAJS0WjL+h70irzVyfwc95hqaa9UncxdjidLl/Mu83Exh/aRpolhMH6kTRPSIR5yyGJdqoz/U8/MeHzDPLhFGDitM39drqyfZsJgPczYVAwWjCUcITgeMje0UlqdC98sm3pR2yN7PE80QTIIF4+i9jiCIDo0Hf5tGnGEIslv6cQiQAjDE68wUURW56xO++ogwEJlnjm8/dP2iQIdkQiiyK2vM/21libWRzwoPLOvNz0BcTIFgQm1vzhJv3axbey9y/bCb94cCngxjNFXmp+nx+n/cafXbNlxiJY0TcsehgyvcYm86E5bzAwiNYUXSvSqx+Yw4yoGhmxaDh6SzZMfv7sR2xt/kUmI/yMZeZUFtpsP+e3cIAZ4xYHme2d7Nc/GAo2RnrNKzipeulBr/a+YHLQD3oiwBzGeGC+wDiyFEjDlqgeaxWZB6wZMQdzkYpHRJM1IXsoSp3uQV7ewbrWa9xm34dDk5I/qMmeIfrCvn3GXn6/HnUxyHEq4UzNR0/yckNg0feiZ82xYESkTpvtWeYR1jT6qcghkH9nv7ZbvxP14X1FV4tk1zmyW3DYEqXMP8s76BOM/vxhPrwDfLHBLE25TttZo1k76ZtR2zvfDxfwp3/smiowwQYCY5x8ptvoJ/YVYwYMmyzoKt8kC6vXnvOy79XVyX66UKaTzFPYL+iYpf72k485DTzz9iJ2HlhmD1oqa2fR7+k/8CvS+fzzODuIjmMDF4019JwxxBhh/ug3vplnmJeYi5kHs8/2ms9NnjI5ynAo0tGyOv1+3xliGwoCHQ+odRZESC4DL7+3Ni8DAwaFy6YHoQAs5vysl6IRhcH4ayL1DU8mhh5RnJjCxMGEinFZthDnv0N6GpMdEx2DhUkEMp+f9JgYKHa4UnYBBHM7QTI74CBh4Ixx3GsRJZ2JxTHrAY7BgrrsQ6AfWRTzExxysmj0irhT305QhjT2msBY9MEJTyrGG3+KFiEmnV74VG0nMrPQV5nY8+80o5D+pQ/oR/S7zOBAL3kWnPpNuPQxOlG2SLLYmKHcy+A02dFBFgTShfMnNmb1jkWhSruYR4j8cICHnbhdFfuy59A1DE8w7WXgFY1NyCmLcNmF8lX6gffg4cZYtUMzkDtk/kRW+j0/bqr2c93+6TWv8J5eetCrvWV9pd/3RyBLbLNbN4RbPQSYa8hEwSFbdAp0vbfpaSEgBGIQIBJKxgBrLqnyRRmNMe9X3XoIjHliWw+u9p/G6CNVkWhmFe9pmUSk9JCeWWbol71nlH8PKWcfDylI+TuHh9UuJj7IpN0pNyw59F0hIASEwKAQILuB7RlkSJCJohKGAMSWqDcZNjit86cqh71VtYSAEAhBgKwr9sqSVcc+2Kaj4CEyjeU6IrZjuffHUNs5rZMIef6y8GFBQGo3ewlGLQ1qWHjpu0JACAgBISAEhIAQEAJCoB8CIrbSDyEgBISAEBACQkAICAEhIASEgBAYaQREbEe6+yS8EBACQkAICAEhIASEgBAQAkJACIjYSgeEgBAQAkJACAgBISAEhIAQEAJCYKQRELEd6e6T8EJACAgBISAEhIAQEAJCQAgIASGQLLHlOh2uktDhOlJSISAEhIAQEAL9EdCaKQ0RAkKgLgKaN+oipudTRyBJYss9UJdddpm/m5S7Nc844wx/P+bCCy/sNthgA48px9s3eS9p6h0l+YSAEBACQkAIFCGgNVN6IQSEQF0ENG/URUzPjwICyRHb6dOnu3XWWcf9/ve/9/ittdZabu+993bLLrusO/DAA92ZZ57pSa6KEBACQkAICIGxjoDWzLGuAWq/EKiPgOaN+pipxmggkByxNdgmT57sTjvtNHf66ae72267zV111VVum222cY8//rhbffXV3eGHH+4JsIoQEAJCQAgIgbGOgNbMsa4Bar8QqI+A5o36mKlG2ggkS2z/9Kc/uW9961s+DflnP/uZmzFjhrvxxhvdrrvu6s466yx36KGHesI7xxxzuCuvvNIT32whbfld73pX2uhLOiEgBISAEEgSgQkTJiQpVy+htGaOVHdJ2BFEYNTmhCoQa96ogtJoPdNFPa3TA8kR27vvvttdf/31btNNN/XtOOCAA9xDDz3kjjnmGDfXXHP5P88995xPR77rrrvcUkstVdheIrr77LNPHSwG+uyUKVNcyson+eLUQfgJvzgE4mpL/7qNX7Z1Y2XNjOtR1RYCcQikPqfWbZ3mjbqIjcbzXdPTENSTI7bTpk1zyy23nLvpppvcYost5rbbbju39tprOwbhgw8+6E444QR39dVX+5/ffvvtPdssYhuiDv+rk/rgkHzq3/9j71zAraqq9j9ASC7eSEEwNTxqmqJ+aqil2YeSt0BLBQyjxMQsr/VPDcorAj5l3lOTTL80DE0ttc9S0EqQ1NIvJfKGSKigWKCIoILn/7xLF27O2fvstcaYc+2x937X8/B0OWvMPeZvjHl515xrLhsBmzXzj/xsBMJZN8uYGY4YSyKB/AS89/l5a8R+Iy+x+ri/0fJUQ92dsEUlzj//fLnoootkww03lF122UVuvPFGWblypQwePDhZqcW/8847T4YMGUJhq4l6BhvvjYP+ZQhiB7eQH/nZCNismX82fm2tm2HMDEuMpZFAPgLe+6x8tXn/bvYbGmq+bRoxT/MSdylsUYkVK1YkYrZXr15r1WnRokXJSm61iyu21Qh1/HfvjYP+Mb42AjZr5h/52QiEt270MTM8MZZIAtkJeO/zs9dk7TvZb2jJ+bRr1DzNQ9utsM1TiXL3UtjaCHpvHPSP8bURsFkz/8jPRsCftfcx0x8xetRMBLz3+bWKBfuNWpEv/7vMUxEK2xrlpPfko3+2xCA/8rMRsFkz/xqbn6125a05QY1BlWU2CgHvfWqtOLPfqBV5CttK5BtW2J543k/lnFO+In169fSVdR94472TpH+2tCE/8rMRsFkz/xqbn612FLYx+LHMxibgvU+tFX0K21qRp7BtKmE7/W/z5NJfPyITxwySnVr6+Mo6Ctsg8fA+yNA/W5jJj/xsBGzW3vPPVrvKwnbHfQ8PUvSQT28bpBwWQgJeCDRjn5CFPYVtFkrF3cM8bdCtyGOvvV9mz1tMYWtoS94bB/0zBFdEyI/8bARs1sw/G78Y1pigzlja31x0p04id04cYS6HBZCAJwLe+6xasaKwrRX58r/LPKWwrVlGek8++mdLDfIjPxsBmzXzr7H52WpXecWWwjYGWZbZCAS896m1YkxhWyvyFLaVyDfkO7ZcsbU3NO+dOP2zxZj8yM9GwGbN/LPxi2HNFdsYVFlmoxDw3mfVijOFba3IU9hS2PrKPW4FNcbD+yBD/2wBJj/ysxGwWXvPP1vtuGIbgx/LbGwCzdgnZIkohW0WSsXdwzzlVuTisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2Ebgx/LbGwC3vvUWtGnsK0Vea7YcsXWV+5xxdYYD++DDP2zBZj8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGecsW2uGzjim1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5imFbXHZRmEblLX3xkv/bOEmP/KzEbBZe88/W+0obGPwY5mNTaAZ+4QsEaWwzUKpuHuYpxS2xWUbhW1Q1t4bL/2zhZv8yM9GwGbtPf9staOwjcGPZTY2gWbsE7JElMI2C6Xi7mGeUtgWl20UtkFZe2+89M8WbvIjPxsBm7X3/LPVjsI2Bj+W2dgEmrFPyBJRCtsslIq7h3lKYVtctlHYBmXtvfHSP1u4yY/8bARs1t7zz1Y7CtsY/FhmYxNoxj4hS0QpbLNQKu4e5qljYfvOO+/IqlWrpEePHmtlxPLly6V79+7SuXPnipky9tr7Zfa8xTJxzCDZqaVPcRmV45e8Jx/9yxHMMreSH/nZCNismX+Nza9c7SxjJsrDBHXG0v42cCLSqZPInRNHmMthASTgiYD3PlXLKkS/ceaZZ2p/nnaBCTRqnubB1Km1tbU1j0ER937ve9+T+++/X3bYYQdZunSp/PKXv5QVK1bIyJEjpUuXLjJ//nw5/fTT5ZhjjinrDoWtPUreGwf9s8WY/MjPRsBmzfyz8WtrbR0zKWzDxoOlNR4B732WhniofoPCVkM/jk0j5mleUu6ELVZkBw0aJI888khSl3322UfOOOMMmTNnjixbtkwmTJggixYtkn79+gnubbuiCxsK27xp0P5+742D/tliTH7kZyNgs2b+2ac31TkAACAASURBVPiVWocYMylsw8WDJTUmAe99Vl7qIfsNCtu89OPd32h5qiHlTtimlZg9e7Zcf/31ctNNN8lTTz2VrNAOHjxYjjrqKMEiM7Yiz507V1paWtrVm8JWkwpr23hvHPTPFmPyIz8bAZs188/Gr5y1ZcyksA0fD5bYWAS891la2iH6DQpbLf3wdo2ap3lIuRW2TzzxhFx99dXJNuTf/OY3cs0118jw4cPlyCOPTOq36aabysMPPyz9+7d/J4jCNk8KlL/Xe+Ogf7YYkx/52QjYrJl/Nn7lrC1jJoVt+HiwxMYi4L3P0tIO0W9Q2Grph7dr1DzNQ8qdsH3ppZfkr3/9qxx22GFJPc466yx57bXXkq3HG2ywgZx22mmyevVq6dWrV/L+LVZuZ8yYITNnzlxT7yff7Cuvr+omJw/ZXrbpt34eHryXBEiABEiABMruBvKIJcSYmdYryOFRInLpmIEeUdEnEjARKLdD0FRgDY1D9hvDhg2rYU34020JNFKeaqLrTtguWbJEtt9+e3n88celb9++MmrUKPnc5z6X/Pcrr7xS7r33Xrn11lvl4osvllmzZpWtM1dsNamwto33pz70zxZj8iM/GwGbNfPPxq/UOsSYifJ4KnK4mLCkxiPgvc/KSzxkv8EV27z0493faHmqIeVO2KIS559/vlx00UWy4YYbyi677CI33nijdOvWTQ455JDkECmckHzffffJnnvuSWGriXoGG++Ng/5lCGIHt5Af+dkI2KyZfzZ+ba2tYyaFbdh4sLTGI+C9z9IQD9VvUNhq6MexacQ8zUvKpbBFJSBeV65cmWw5Lr0WLFiQrN527dq1Yl25Yps3Ddrf771x0D9bjMmP/GwEbNbMPxu/ctaWMZPCNnw8WGJjEfDeZ2lph+g3KGy19MPbNWqe5iHlVtjmqUTbeylsLfTet/XeOOifLcbkR342AjZr5p+NXwxrbkWOQZVlNgoB731WrTij36CwrRX9+luUKoIUhW0RlMv8hvdOkv7ZEoP8yM9GwGbN/GtsfrbalbemsI1BlWU2CgHvfWqtOFPY1op8+d9lnopQ2NYoJ70nH/2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIVtJfIUtjXKSe+dJP2zJQb5kZ+NgM2a+dfY/Gy1o7CNwY9lNjYB731qrehT2NaKPIUtha2v3OM7rMZ4eB9k6J8twORHfjYCNmvv+WerHYVtDH4ss7EJNGOfkCWiFLZZKBV3D/OUW5GLy7Y2v+Q9+eifLTXIj/xsBGzWzL/G5merHYVtDH4ss7EJeO9Ta0WfwrZW5LliyxVbX7nHFVtjPLwPMvTPFmDyIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5yhXb4rKNK7ZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d5SmFbXLZR2AZl7b3x0j9buMmP/GwEbNbe889WOwrbGPxYZmMTaMY+IUtEKWyzUCruHuYphW1x2UZhG5S198ZL/2zhJj/ysxGwWXvPP1vtKGxj8GOZjU2gGfuELBGlsM1Cqbh7mKcUtsVlG4VtUNbeGy/9s4Wb/MjPRsBm7T3/bLWjsI3Bj2U2NoFm7BOyRJTCNgul4u5hnlLYFpdtFLZBWXtvvPTPFm7yIz8bAZu19/yz1Y7CNgY/ltnYBJqxT8gSUQrbLJSKu4d52uDCFqk0YKveMun4/YrLqoy/5D356F/GQFa4jfzIz0bAZs38a2x+ttpR2MbgxzIbm4D3PrVW9Clsa0W+/O8yTylsa5aR3pOP/tlSg/zIz0bAZs38a2x+ttoVJ2yHjp0axNW7Jo1IymF5OpwpP501rUDAe59aqyhR2NaKPIVtJfKdWltbW32FJYw34yZcJk++2Zcrtkqc3jtx+qcM7Adm5Ed+NgI2a+afjV8Ma0xQZyztby66UyeROydSiFpAxhLyFp+a3dZ7n1Wr+FDY1oo8hS2Fra/cc//0z3snTv9sCU1+5GcjYLNm/tn4xbCmsNVTjSVEQ69Q62tIS+99Vq0iRGFbK/IUthS2vnKPwtYYD++DDP2zBZj8yM9GwGbtPf9stStvTWGrp0phq2dXL5bN2CdkiQ2FbRZKxd3DPG3Qd2yRQtyKbGtI3hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnl29WHrv82vFkcK2VuS5YssVW1+5xxVbYzy8DzL0zxZg8iM/GwGbtff8s9WOK7b1IkS5FTlGpuvKbMY+IQspCtsslIq7h3nKFdvisq3NL3lPPvpnSw3yIz8bAZs186+x+dlqR2FLYRsjgxq7TO99aq3oU9jWijxXbJt2xXbTXj1l4phB0qdXT1fZ572TpH+2dCE/8rMRsFkz/xqbn612FLYUtjEyqLHL9N6n1oo+hW2tyFPYNq2wRcUhbHdq6eMq+7x3kvTPli7kR342AjZr5l9j87PVjsK2GYUtPuz4u788GyR1hnx6WwldXhDHIhbivU+NWPUOi6awrRV5CtumE7bnTfqx/KvzdvLq0uUUtop2570Tp3+KoJaYkB/52QjYrJl/Nn4xrHl4lJ5qPQhlCNFDx03VV/IDy/Q7xaHLMzsWuQDvfVbk6lcsnsK2VuQpbJtO2KKxLe01UGbPW0xhq2h33jtx+qcIKoWtDRr5kV8wAv4KorDVx4TCVs8uFcr6Eoqx9D7nKIZC+1+hsK0VeQpbCltuRc7V+rx34vQvVzjb3Ux+5GcjYLNm/tn4xbCmsNVTpbDVs6Ow1bPzYElh6yEKH/rgfWwtglan1lZsKGm8iyu2tph6bxz0j/G1EbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwrY0ChS2NcpJToxt4MmP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYUtg6yENOjG1BID/ysxGwWTP/yM9GwJ81ha0+JhS2enYUtnp2HiwpbD1EgcKWwtZBHnJibAsC+ZGfjYDNmvlHfjYC/qwpbPUxobDVs6Ow1bPzYElh6yEKFLZ1IWxXrVolb775pmy00UaqrEFjW9proMyet1gmjhkkO7X0UZUTy4gTYxtZ8iM/GwGbNfOP/GwEwluHGDNnLO1vdqxUqAwdO9VcHgqoB+EIPz3Xt7VV5NBx9nik8Q1dXpBEiViI9z5fW/UQ/caZZ56p/XnaBSbQqHmaB1On1lZ0T76uiy++WH7605/KnnvuKW+88YZApPbv31969+4tBx10UOLsdtttJ+PHj6/oOIWtLabeGwf9Y3xtBGzWzD/ysxEIax1qzKSw1cWlHoR3aCEaujwd+eKsvPf5GhKh+g0KWw39ODaNmKd5SbkTtu+8846su+66yWptz5495YILLpBXXnlFTjzxRDn77LNlypQp0qVLl6r1pLCtiqjDG7w3DvrH+NoI2KyZf+RnIxDOOuSYSWGriwuFrY4brLgVWc/OYhmy36CwtUQirK33uUnY2pYvzZ2whZtLliyRXr16yVtvvSX777+/nHrqqbLeeuvJyJEjZdmyZTJw4MBkFXfQoEEVGZUK2++P2kf22uFjRfDM/Bvek4/+ZQ5l2RvJj/xsBGzWzL/G5te2dqHGTApbXd5Q2Oq4UdjquYWwDNVvUNiGiEaYMryP/WFq2XEpLoUtXH7sscdk9OjRMmDAALnuuutk5syZyf930kknydSpU2XSpEny1FNPSSc87itzlQrbL++/o4wcPKAInpl/w3vy0b/MoaSwtaEiP/KLQMBWpPf+r1ztQoyZFLa6vKGw1XErFbbY2vzYswvzF1TmZbrdt+uXv5wqFvXYJ2SBEKLfoLDNQrqYexo1T/PQcylsp0+fnqzOXn755TJixIikPtg2sc466yT/Vq9enWxHXrBggWy++eYyY8aMRPi2vV7f8L/kyflL5aDdNpODd/e1YpsnSLyXBEiABEigWAItLS3F/qDh10KNmUGErYhcOmZgUptTJz9qqNWHppexPBNH8IP+Oy1APLCUgPh6L88ErIJxPfUJWeofqt8YNmxYlp/jPQURaLQ8zYvNnbDFWVYbbrihTJs2TfbYY4819TnnnHNk8eLFctVVV8lDDz0ko0aNkrlz51asL1Zst9j9C3Lz9H8IV2zzpoWI96c+9C9/TEstyI/8bARs1sw/G79S65BjZhBh20nkzonvP5D2fEpws/kX+rAn7+WFa2Hvl+S9z8pb35D9Blds89KPd3+j5amGlDth+9xzz8m22267Vl2+9rWvJVuPBw8enKzU4t95550nQ4YMobDVRD2DjffGQf8yBLGDW8iP/GwEbNbMPxu/UuuQYyaFrS4u3Iqs4warevl8kPc+K28EQvYbFLZ56ce7v9HyVEPKnbCtVolFixZJ3759q92WHC7FFduqmCre4L1x0D99bOvh6TPjy/jaCNisvedfntrlGTMpbPOQ/fBeClsdNwpbPbfYlnn6DQrb2NHIXn4jjV3Za732nXUnbLNWlMI2K6ny93lvHPSP8bURsFkz/8jPRsCfNcZMCltdXChsddwobPXcvFii36Cw9RKNxtsyryFLYauhFsCGE2MbRPIjPxsBmzXzj/xsBPxZU9jqY0Jhq2fHrch6dh4sKWw9ROFDH7zPTYqgRWFbBOUyv+E9+eifLTHIj/xsBGzWzL/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFbGoWmELZ77fAx+f6ofVxlHyeetnCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYdt0wnbAVr1l0vH7uco+Toxt4SA/8rMRsFkz/8jPRsCfNYWtPiYUtnp2sYQtPkd0/v/8We9YieU5x+zbcJ/7CQJGJDmole/YhqJpL8f73MRew+olNPSK7eeGfkUm3DhDKGyrJ0LbO7w3DvqXP6alFuRHfjYCNmvmn41fDGsKWz1VCls9u5jC9tBxU/WOfWCZ+ue9zzJXVFkAha0SXCQz5qlIQwvbQ4aNlnGTH6CwVTQg742D/imCWmJCfuRnI2CzZv7Z+MWwprDVU6Ww1bOjsNWz82BJYeshCh/64H1sLYIWhW0RlMv8hvfko3+2xCA/8rMRsFkz/xqbn6125a0pbPVUKWz17Chs9ew8WFLYeogChW1pFChsa5STnHjawJMf+dkI2KyZf+RnI+DPmsJWHxMKWz07Cls9Ow+WFLYeokBhS2HrIA85MbYFgfzIz0bAZs38Iz8bAX/WFLb6mFDY6tlR2OrZebCksPUQBQpbClsHeciJsS0I5Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIQ06MbUEgP/KzEbBZM//Iz0bAnzWFrT4mFLZ6dhS2enYeLClsPUSBwpbC1kEecmJsCwL5kZ+NgM2a+Ud+NgL+rCls9TGhsNWzo7DVs/NgSWHrIQoUthS2DvKQE2NbEMiP/GwEbNbMP/KzEfBnTWGrjwmFrZ4dha2enQdLClsPUaCwpbB1kIecGNuCQH7kZyNgs2b+kZ+NgD9rClt9TChs9ewobPXsPFhS2HqIAoUtha2DPOTE2BYE8iM/GwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUKGwpbB3kISfGtiCQH/nZCNismX/kZyPgz5rCVh8TCls9OwpbPTsPlhS2HqJAYUth6yAPOTG2BYH8yM9GwGbN/CM/GwF/1hS2+phQ2OrZUdjq2XmwpLD1EAUKWwpbB3nIibEtCORHfjYCNmvmH/nZCPizprDVx4TCVs+OwlbPzoMlha2HKFDYFi5sH3jgARk0aJDce++98uyzz8rRRx8tG220UdRsQGM7ZNhoGTf5ARmwVW+ZdPx+UX8vb+GcGOcltvb95Ed+NgI2a+Yf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNgWKmzPOOMM+dGPfiQPP/yw7Lnnnslv77bbbvK3v/0tajaUCttNe/WUn50xJOrv5S2cE+O8xChsbcTIj/xCErCVxf7Pxi+GNYWtniqFrZ4dha2enQdLClsPUaCwLUzYtra2St++fWX48OGyYsUKue6662TKlCkycuRIWbhwYfK3WFepsMVvpANPrN/LWy4ndnmJUZjZiJEf+YUkYCuL/Z+NXwxrCls9VQpbPTsKWz07D5YUth6iQGFbmLB9++23pVu3bnL77bfLCSecINtuu61cddVVsssuu8hTTz0l2223XbSMQGMbffxJ8vUf3p38BoVtPtSceObj1fZu8iM/GwGbNfOvsfnZalfemsJWT5XCVs+OwlbPzoMlha2HKFDYFiZs8UMjRoyQW265JfnNyZMny6RJk+Sdd96RBQsWRM2GtLENHTuVwlZBmhNjBbQSE/IjPxsBmzXzr7H52WpHYVsPQhRRSucv1nijvq2tIoeOe38+ZLnqRYiGrq/3PtUSU4stha2FXnhb5qlIp1bsF454vfrqq3L11VdLp06d5Lvf/a6MHj1aTjzxRNl3330j/qoIha0Nr/fGQf8YXxsBmzXzj/xsBPxZc8VWH5N6EMqhhV6zlee9z9dnr82SwtbGL7Q187QAYYugvfDCCzJr1ixpaWmRjTfeWLbZZpvQsWxXHoWtDbH3xkH/GF8bAZs184/8bAT8WVPY6mNCYatnVy8rwN77fH0EbJYUtjZ+oa2ZpwUI27vuuksOPfTQJHZjx46VGTNmyK677iqXXXZZ6HiuVR6FrQ2v98ZB/xhfGwGbNfOP/GwE/FlT2OpjQmGrZ0dhq2fnwZLC1kMUPvTB+9ykCFrRtyJvscUW0qdPn+S7tfjcT5cuXWT8+PHy0ksvyWabbRatjhS2NrTeGwf9Y3xtBGzWzD/ysxHwZ01hq48Jha2eHYWtnp0HSwpbD1GgsC2NQlRhm56K/JOf/ETmz58v66yzjgwbNiz5ju3s2bNlxx13jJYRFLY2tJy4k5+NgM2a+Ud+NgI2a+/5Z6tdeWsKWz1VCls9OwpbPTsPlhS2HqJAYVuYsMUPQby+9tpryTdrsVqLw6R69OghTz/9dNRsaCtsv7z/jjJy8ICov5mncO8TJ/qXJ5rt7yU/8rMRsFkz/+qX36OPPir9+/eX3r17J5VYuXKlPPLII8mOp3XXXddWsQ6sKWz1aCls9ewobPXsSi1r2W+ceeaZYSrBUswEvI/95gpmKCDqii1+//HHH5dzzjlH8K5tev32t79d895tBh9Vt1DYqrCtMfLeOOgf42sjYLNm/pGfjUB76+eeey554Hvssccm//bZZ5/kpmeffVa+/e1vJ4cwfvzjHw/9s2vKo7DVo6Ww1bOjsNWzg6WHfoPC1hbDkNbe5yYh61qprOjCNv3hJUuWyIsvvihbb711smIb+0qF7ZRps+Xm6f8QrtjmI+69cdC/fPFsezf5kZ+NgM2a+dee3w9/+EOpNEFcf/31BWMoXueJdVHY6slS2OrZUdjq2cHSQ79BYWuLYUhr72NryLrWTNjuv//+yVbkttdDDz0kPXv2jFZHClsbWu+Ng/4xvjYCNmvmH/nZCLS3rrTygjvxSg+2J8e8KGz1dCls9ewobPXsYOmh36CwtcUwpLX3uUnIutZM2A4aNCh5rxbXG2+8kaza4pTkefPmRV25pbC1pY/3xkH/GF8bAZs184/8bAQqW7/88svSvXv3ZIW29IKw7dy5c6yfFQpbPVoKWz07Cls9u1LLWvYbFLZhYhiiFO9zkxB1rFZGYVuRU0fOP/98SU9J7tatW0X/Vq1aJW+++WbymaDSa/ny5cmgX22Ap7CtFvqO/+69cdA/xtdGwGbN/CM/G4HK1ldffXWyJXnZsmVr3fT666/LBhtsEHXMnLHUviqcChU4OnTs1CCY6kE4eq9va6vIoePs8agXIRq6vt77/Fr2GxS2Qbq5IIV4z9MglaxSSHRhu2jRInnvvfcSN1avXi3XXHONTJw4MTkQY5tttinr3sUXXyw//elPk1MgscoLkbrxxhvLyJEjk5OV8emg008/XY455piK1aOwtaWP98ZB/xhfGwGbNfOP/GwEylu3trYmXxDANXr0aPnIRz6y5sbvf//7FU9FDjVmUtjqoloPwju00Gu28jz3+bXuNyhsdf1GDCvPeRqjvuXKjC5sN9100zVbkVMHcBDGv//9b+natWs7n955551k8MZqLd7BveCCC+SVV16Rj33sY8kT7AkTJgjEcr9+/QSrt5UOoqKwtaWQ98ZB/xhfGwGbNfOP/GwEOha2J510kpx11lmZfiLkmElhmwl5u5sobHXcYFUvK8Ce+/xU2Naq36Cw1ed/aEvPeRq6rpXKiy5ssfUYIhUXtg9vueWWcvDBB8tWW21VsY54t6hXr17y1ltvCQ6fOvXUU2XatGkyePBgOeqoowSNGGXNnTtXWlpaypbTVtju1NJHJo4ZVBTXqr/jPfnoX9UQdngD+ZGfjYDNmvlXv/yOPvro5PN4GMMwDqbXkUcemexYKneFGjMpbHV5Q2Gr40Zhq+fW1rKW/QaFbbg4WkvyPvZb65fFPpqwBVwI0EoXhG1H78k+9thjyVasAQMGyHXXXSdf/epXZfjw4YLBHRdWgh9++OGKJ0W2FbawSQefLGBi3+M9+eifLQPIj/xsBGzWzL/65VdulxNqU+0d2xBjJoWtLm8obHXcKGz13Npa1rLfoLANF0drSd7Hfmv9sthHE7adsL+kg6ujQXr69OnJ+7SXX365jBgxIikFK784OOO0005L3tXFk+ylS5cm4njGjBkyc+bMdr82bNgweW7hMrni7qeSv102ZmAWJryHBEiABEigyQlU2g0UG8tf/vIXefvtt9v9zN57711xxTbUmBlE2IrIpR+MtadOfjQIrnTsZnk6nOCHZYbTAsQDMzvEt9nKA/la9QlZol7LfgNzbV5+CHjO0yIoRRO2F110USJAK13f/va31zoYI70Pq7wbbrhhsvV4jz32WGN+5513ypVXXin33nuv3HrrrYLDMmbNmlWx/HTFFjekJzNyxTZ7Snl/6kP/ssey3J3kR342AjZr5l9lfhjjyglbvMJTbityyDEziLDtJHLnxPcfSPNUZF07ibEC3GyHPYWur/c+q5b9Bldsde08hpX3PI1R57ZlRhO2pT+EQRortLgwCOOD0hCt5Q6Pwt+23Xbbtfz82te+JjjK/JBDDpE5c+bIihUr5L777ktOTa50Udja0sd746B/jK+NgM2a+Ud+NgKVrfNuKQw5ZlLY6qIaQ4iGfjAQWug1W3ne+/xa9hsUtrp+I4aV9zyNUefChe3UqVPllFNOaXcycrX3hSpVfsGCBcnnEMqJ4lIbCltb+nhvHPSP8bURsFkz/8jPRqCy9T333LNmxRYn///whz9MVmpxpkSlw6M68iXPmElhq4sqha2OG6x4KrKeXallLfsNCtswMQxRive5SYg6Visj+ort1ltvLRtttFHy3dq99tpL/vnPf0qfPn0E7wNUE6fVnO/o7xS2Fnoi3hsH/WN8bQRs1sw/8rMRyG6Nh8P4GsBLL70km222WXbDnHdizKSwzQntg9spbHXcKGz13KpZFtlvUNhWi0Zxf/c+NymCRFRh++677ybv0d50003y5z//WTbZZBM54YQTkk/+4PMEELyxLgpbG1nvjYP+Mb42AjZr5h/52QhUth47dqy88cYbyQ3vvfdecq4E8g3fc8dD4VgXha2eLIWtnh1XbPXsSi1r2W9Q2IaJYYhSvM9NQtSxWhlRhS1+fIsttkjE7Te/+c3kZOMjjjhCbrjhBnnmmWfavUtbzdk8f6ewzUOr/b3eGwf9Y3xtBGzWzD/ysxGobN32Xbn1119fvvWtb8mFF14Y6yeTcils9XgpbPXsKGz17Eota9lvUNiGiWGIUrzPTULUsVoZ0YXt/fffLzgB+cYbb5QvfOEL8uKLL8rQoUMFpxzHvMoJ28tOOVBa+sVbJc5TH+/JR//yRJMPBmy0yI/8QhOwlVfL/g+fsUu/AY/P5sXc2VRKicJWnzMUtnp2FLZ6dqWWtew3KGzDxDBEKbUcu0L4H6KM6MJ28uTJcuCBBybbj1etWpUcIhXzPaEUSjlhO3HMINmpJd5WrjwB8Z589C9PNCnMbLTIj/xCE7CVV8v+b9myZcmD4ClTpgj+O96vxZcBYo+bFLb6nKGw1bOjsNWzK7WsZb9BYRsmhiFKqeXYFcL/EGVEF7bp9oj99ttPRo0aJV/84hcLeQJdKmxPufwPMm/hUqGwzZ4y3hsH/csey3J3kh/52QjYrJl/lfnhXTlsO8YWZHzTHbucdthhB/n73/+uOhU5a6QobLOSan8fha2eHYWtnl2pZS37DQrbMDEMUYr3sTVEHauVEV3YPvDAA/K73/1O7rjjjuQADFx4Ao33bNddd91q/qn/Xipsx157v8yet5jCNgdN742D/uUIZplbyY/8bARs1sy/8vzweZ/11ltPxowZI9dcc4107txZLr300uR1HnxRYPvtt7eB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROdGFbfrjTz/9tFx55ZXJP1za79hmhUJhm5VU+fu8Nw76x/jaCNismX/kZyNQ3vqtt96Snj17yrnnnivnnHNOctOtt94qw4cPl7/+9a+y++67x/jZpEwKCYzrmQAAIABJREFUWz1aCls9OwpbPbvUstb9BoWtPYahSvA+NwlVz5oKW2yPwOd+sJ0K12677SajR49OPvuj+dh8VigUtllJUdjaSJEf+cUgYCvT++BG/yrHd5999pGZM2fKwQcfLD169JDbbrtNBg4cKA8//LDgMKlYF4WtniyFrZ4dha2eXallLfsNCtswMQxRivexNUQdq5URfcUW79jicz/HHXdc8tT5k5/8ZDWfgvydwtaG0XvjoH+Mr42AzZr5R342ApWt58+fLxMnTpSbb745OTwK4+b3v/992XnnnWP9ZFIuha0eL4Wtnh2FrZ5dqWUt+w0K2zAxDFGK97lJiDpWKyO6sH388cdll112Sd4VKvKisLXR9t446B/jayNgs2b+kZ+NQMfWc+bMSbYk4xwKfMYj5ru1qScUtvqIUtjq2VHY6tm1taxVv0FhGy6G1pK8z02s9ctiH13YZnEixj3lhO2YIbvKgJY+Lr5l6z356J8tK8mP/GwEbNbMv/rlh3MoTj75ZLnnnnuSz+TtuOOOcsYZZyQrqjEvCls9XQpbPTsKWz27Usta9hsUtmFiGKIU72N/iDpWK6OphC1gDNiqt0w6fr9qXKL/3Xvy0T9bCpAf+dkI2KyZf/XLb7vttpPevXvLr3/962TV9sQTT0y+a/vSSy9F/ZYtha0+Zyhs9ewobPXsSi1r2W9Q2IaJYYhSvI/9IepYrYwownb16tXJJ35w4MVjjz2WbEXefPPNq/kS9O+lK7aT735cnnz+1eRbthS22TB7bxz0L1scK91FfuRnI2CzZv6V57dq1Srp2rVrcrji1Vdfndz0y1/+Ur7yla/IrFmzZK+99rKB78CawlaPlsJWz47CVs8utax1v0Fha49hqBK8j62h6tlROVGE7dtvvy3dunWT448/Xn7zm98kg3LbAflLX/pSYaciAwCE7bjJD1DYZswq742D/mUMZIXbyI/8bARs1sy/yvz23XdfefDBB+Wwww6T9ddfX37729/KhhtuKM8991z0b7/PWNrfFlgRSYUKCho6dqq5PBRQD8LRe31bW0UOHWePR70I0dD19d5n1bLfoLAN0s0FKcR7ngapZJVCoghb/Ca+t4fV2kpXkd+xpbDNn0reGwf9yx/TUgvyIz8bAZs1868yv3nz5skll1wiU6dOlVdffVW+8IUvyOmnny6f+9znbNCrWHPFVo+3HoR3aKHXbOV577Nq2W9Q2Or7jtCW3vM0dH3LlRdN2L755puJsB02bFjyjtBnP/vZtX4f/7uo79hS2OZPJe+Ng/7ljymFrY0Z+ZFfOALVS3rvvfdkxYoVyXu2RVwUtnrKFLZ6dvWyAux9zpFGoBb9BoWtPv9DW9ZLnoaud2l50YRt+iMvv/yyrLfeevLoo4/K8uXLZfDgwclH52Nfpe/YUtjmp+29cdC//DGlMLMxIz/yC0fAX0kUtvqYUNjq2VHY6tl5sGw71/bgUzP74H1uXERsogvbP/3pTzJ06NDkQ/Ppdemll8qpp54atX4Utja83hsH/WN8bQRs1sw/8rMR8GdNYauPCYWtnh2FrZ6dB0sKWw9R+NAH73OTImhFFbbYEoGTkfGe0A9+8INkpfaKK65IVm9fe+012XjjjaPVkcLWhtZ746B/jK+NgM2a+Ud+NgIdW7e2tsqCBQuSQxg/+tGPRn1tJ/WEwlYfUQpbPTsKWz27tpa16je4FTlcDK0leZ+bWOuXxT6qsP33v/8tm2yyiVx++eXJB+dxTZs2TT7/+c/LX/7yF9lzzz2z+Ki6p5Kw7dmtq+y/+1YyZsiuqnJDGXlPPvpnizT5kZ+NgM2a+Ve//J599lk56KCDBDEcO3aszJ49W0aOHClHHXWUrVJVrCls9XgpbPXsKGz17Eota9lvUNiGiWGIUryP/SHqWK2MqMIWT4/wmYIdd9wxOeURK7YTJkyQW265RRYtWiSbbrppNf/Uf68kbFGgh2/Zek8++qdOvcSQ/MjPRsBmzfyrX374ogAmqb1795YRI0bIiy++KDfeeKMsXbo0GU9jXRS2erIUtnp2FLZ6dqWWtew3KGzDxDBEKd7H/hB1rFZGVGGLH7/sssvktNNOW8sPbEseP358Nd9Mf28rbJevfFem/W2e/OzuxylsM5D13jjoX4YgdnAL+ZGfjYDNmvlXnl/6Dfgrr7xS/vWvf8k666yTfFlgt912S74ysOuu8XYaUdjqc5rCVs+OwlbPLrWsdb9BYWuPYagSvI+toerZUTnRhS1+HAP0HXfcIW+88YYcfvjhyQpu7KvcC+1PPv+qjJv8AIVtBvjeGwf9yxBEClsbJPIjv2gEKhe8wQYbyM477ywbbbSRfOQjH5HOnTvLvffeK3i1p2vXrtE8orDVo6Ww1bOjsNWzK7WsZb9BYRsmhiFK8T43DlHHamUUImyrORHj7xS2NqreGwf9Y3xtBGzWzD/ysxGobH3zzTfLN77xjbW+JIAdTtjpFPOisNXTpbDVs6Ow1bMrtaxlv0FhGyaGIUrxPjcJUcdqZVDYViMU6e/ek4/+2QJPfuRnI2CzZv7VNz9sLXzggQdk3rx5sssuu8hnPvMZW4UyWFPYZoBU4RYKWz07Cls9u7aWteo3KGzDxdBakvex31q/LPYUtlkoRbjHe/LRP1vQyY/8bARs1sy/+uV3/vnnJ6/ttL0uuOCC5PM/sS4KWz1ZCls9OwpbPbtSy1r2GxS2YWIYohTvY3+IOlYrI7qw/epXvyrHHXec7LvvvokvOOFx1KhR8qtf/arQU5Hx23zHtlo6fPh3742D/mWPZbk7yY/8bARs1sy/yvzwtQB8+73t9frrrwveo4t1UdjqyVLY6tlR2OrZlVrWst+gsA0TwxCleB9bQ9SxWhnRhO0NN9wgV1xxRXKS4+abby59+vRJfMGADXGLgzDw4flYV0fv2Lb020jGDN0t+Wl8+qcWl/fko3+2rCA/8rMRsFkz/+qXH8bG9957L6nAW2+9Jaeffrq88MILMmvWrOSU5FgXha2eLIWtnh2FrZ5dqWUt+w0K2zAxDFGK97E/RB2rlRFN2P7iF79IPvXTVtjCocGDBwsG0ZhXR8K29HfTASmmL+XK9p589M+WEeRHfjYCNmvmX+PwwzdssfPpueeek6233tpWsQ6sKWz1aCls9ewobPXsOrIsst+gsI0TQ02p3sd+TZ3y2kQTtqkjZ599thx22GGCj0cXeZUTts8vXCqT73oscWP2vMXJf1LYlo+K98ZB/2ytifzIz0bAZs38q8xvn332kYULF665AaxwLVu2TNZbbz0beArbtcb9oWOnBuFJYavHSGGrZ1dqWct+g8I2TAxDlOJ9bA1Rx2plRBe2Dz74oPz4xz9OtlGVXnPnzo0+SHfU2NIBjcKWwrZaI9H83XvnQv80Uf3QhvzIz0agsvUBBxwgr7zySnJDly5dklVarNgOGTIk1k8m5XLFVo+XwlbPjsJWz67Uspb9BoVtmBiGKMX73CREHauVEV3Y7rjjjjJnzhzZbbfdko/Np9f06dOlR48e1fxT/73cim1pYRS2HaP13jjon7ppJIbkR342AjZr5p+NXwxrCls9VQpbPTsKWz07D5bV5toefGwmH7yPrUXEIqqwXb16dfLE+ZxzzpFzzz23iPqs+Y1qjY3ClsI2ZkJ671zony365Ed+NgLtrbfYYgt55513KhZbxC6nGUv7m6uVChUU1Exbfb3Xt7VV5NBx9q3X9SJEQ9fXa5/vod/giq252wxWgNc8DVbBDAVFFbb4/dGjR8sjjzySfN6nV69ea1z62Mc+Jp3QQ3Zwvfnmm9KzZ8+q95UrgsI2Q/Q7uMV746B/jK+NgM2a+Ud+NgLtrbHVeNWqVRWLvf3226vucrKOmRS2uqhyxVbHDVb1IpS99vke+g0KW33+h7b0mqeh69lRedGFrebbWvgk0BNPPCGHH354chIkPhX09ttvS+/eveWggw5K6rPddtvJ+PHjK9aNwtaWRt4bB/1jfG0EbNbMP/KzEchn/cYbbyRnUnTu3LmsYagxk8I2X1zSuylsddwobPXcslgW1W9Q2GaJRjH3eJ+bFEEhurC99NJLk9Mc215nnHGGrLvuumXreNttt8nMmTPlkksuSQ7RgLB96qmnBCcsT5kyJdneXO2isK1GqOO/e28c9I/xtRGwWTP/yM9GoLL1P/7xDznvvPME/4kLq7g4JRnff99ggw2ijpkUtrqoUtjquFHY6rm1taxlv0FhGy6O1pK8z02s9ctiH13YLlmyRFrxskOb66Mf/WhV/7BVORW2d999t4wcOTIRyQMHDkxOcBw0aFDFMrIK25GDB7QrY//d+kufXj2r+me5wXvy0T9LdHk4k40e+ZGflYDNvpb93x577CGPPvpoUgE81MVqbEtLi8yePVu6d+/eYcWsYyaFrS5vKGx13Chs9dzaWtay36CwDRdHa0m1HLusvoeyjy5sNVuR08qVDtI4Rfmxxx6Tk046SaZOnSqTJk1KVnFxz4wZM5IV3rbXsGHDKnI6dfL7E4dy18lDtpdt+q0fijHLIQESIAESqDMCEJNFX++++27y9YCbb75Z7rjjDvnUpz4ln/nMZ+Tggw+W1157ba0vC5TzzTpmBhG2InLpmIGJex2Ns3nYXsby8uBqdy/4YXnhtA7mPVl/ACejIL7NVh741KJPyBKXWvcbHc21s/jPe8IS8JqnYWtZubTowhYnIqdbkXGwBQ6RwiluEKmVtiKn7pYO0jgtcp111kn+pactL1iwQDbffPOytau2Yjtl2ux2dtP/9oK8unS5TBwzSHZq6RM1Bt6fqtA/W/jJj/xsBGzWzL/65YftxhCz+IeHuN/97nfl2GOPTVZs8fm8ji7rmBlE2HYSuXPiiMRNnoqsy8MYK8ChTwlutvK896m17De4Yqtr5zGsvOdpjDq3LTO6sG37g9dff30ySP/nP/9Z65TkcpUtHaQhkBcvXixXXXWVPPTQQzJq1CjB5w8qXdWEbTm7sdfeL7PnLaaw5XdOzW3Pe+dC/2whJj/ysxFob40Htnhwi7MlvvOd78j9998v++23X3IjtiS/9NJLVc+XsI6ZFLa6qMYQoqEfDDSbEA1dX699vod+g8JW12/EsPKapzHqWqnM6ML2rrvukpUrVya/jwZ40003ye9+9zuZN2+e9O/f8TfzMEjj/SKchozDMwYPHpwM7PiHwzVwzDmFbZx08d446J8t7uRHfjYCNmvmX3t+eG1nxIgRgm192267rWyyySbyzDPPJIdIHXDAAbLhhhtWhW4dMylsqyIuewOFrY4brPi5Hz07WHroNyhsbTEMae19bA1Z15oJ23Lv2O69997y4IMPqr5Pu2jRIunbt29VNlyxrYqowxu8Nw76x/jaCNismX/kZyPQ3hqv6ODkY1xYocWupCOPPFJwKEylz/xk8SHPmElhm4Vo+3sobHXcKGz13FJLD/0Gha09jqFK8D43CVXPjsqJvmI7bdq0NSu2eJqMRrj99ttXPQTDWnkKWxtB742D/jG+NgI2a+Yf+dkItLfG1wOefPJJ+cMf/iDY6YSHv7hwjgRELnYpde3aNfTPrikPYyaFrQ4vha2OG4Wtnltq6aHfoLC1xzFUCd7nJqHqWVNhix9/4okn5Pbbbxd8LPqII46QvfbaK3mXKOZFYWuj671x0D/G10bAZs38Iz8bgerWOOn/lFNOSQ5axPX6669X/I5t9dKq30FhW51RpTsobPXsuBVZz66cZS36DQrbsDG0lOZ9bmKpW1bb6Cu2P/vZz2TMmDFr+YN3iG655ZasPqruo7BVYVtj5L1x0D/G10bAZs38Iz8bgfbW+GrAn/70p2TFFp/6Sbcl77DDDnL00UfLGWecUfXwKItPFLZ6ehS2enYUtnp2sPTQb1DY2mIY0tr73CRkXSuVFVXY4hM92HqMgfnKK69MPi4/fvx4ueGGG2T+/Pmy5ZZbRqujRdhmcerL++8oIwcPyHJr2Xu8Jx/9U4c2MSQ/8rMRsFkz/+qPH17VSa9PfOITiZjFDqdqn/ix1fRDawpbPUkKWz07Cls9O1h66DcobG0xDGntfewPWdeaCNulS5cmn/TB5wtOO+20xId7771XDjzwQMF2CXynL9ZFYWsj671x0D/G10bAZs38Iz8bgfbW2223nXz5y1+Www8/XHbeeefQxVctj8K2KqKKN1DY6tlR2OrZwdJDv0Fha4thSGvvc5OQda2JsMWPYsUWK7f4yHyPHj3k2muvFZzS+MILLyQruLEujbDN4suUabPl5un/EK7YZqEV7x7vjZf+2WJPfuRnI2Cz9p5/ttqVt6aw1VOlsNWzo7DVs/NgGWuu7aFu9ehDM45dbeMUdSsyfuyPf/yjfP3rX0+2ZuJaf/315ec//3nyGYOYV6zGRmEbM2rZy/beeOlf9liWu5P8yM9GwGbtPf9staOwrQchiigNHTs1SKhR39ZWkUPH2curFyEaur7N2CdkSb5Yc+0sv8172hNgnopEF7bAjuPIH3/88eQld2w/7tKlS/R8jNXYKGyjhy7TD3hvvPQvUxgr3kR+5GcjYLP2nn+22lHYUtjqM4jCVs+uES1jzbUbkVURdWrGsast16jC9oorrpA5c+bI1Vdfnfzu9773Pdlvv/3kgAMOiB7fWI2NwjZ66DL9gPfGS/8yhZHC1oaJ/JqUX4xqcyuynmo9COXQK5jNVp73MV2fvTbLWHNtm1fNa808jbhie/PNN8vIkSMTITt9+vQkyw455BC555575IQTTlgjdmOlX6zGRmEbK2L5yvXeeOlfvni2vZv8yM9GwGbtPf9stStvTWGrp0phq2dXLyvAzdgnZIlqrLl2lt/mPe0JME8jCdt3331XNt544+TgqFmzZq35qPzy5ctlyJAhyXu3L730kmy22WbR8jJWY6OwjRayXAV7b7z0L1c4291MfuRnI2Cz9p5/ttpR2NaDEEWU+I5t/kyPJZSbsU/IQj/WXDvLb/MeCttyORBlKzJOPe7Xr5+cddZZcv7556/1u9dff70ce+yx8uCDD8o+++wTLS9jNbZU2O7U0kfwL+81YKveiZ33TpL+5Y3s2veTH/nZCNismX+Nzc9WOwpbClt9BsUSjt63NnvvU/URtVnGmmvbvGpea+ZppBXb1atXJwdEbb755vL0008nn/nBtWrVqmQ78n333Sfz58+XLbfcMlr2xWpsqbDVOp5+Jsh78tE/bYTftyM/8rMRsFkz/xqbn612FLYUtvoMorDVs2tEy1hz7UZkVUSdvI/9RTCIsmILx/Hd2h//+MdJHQ4++ODkMz94v3bZsmVy4IEHyu9///uo9YvV2J58/lXBv7wXbGbPW7zm+7fek4/+5Y3w2veTH/nZCNismX+Nzc9WOwpbClt9BlHY6tk1omWsuXYjsiqiTt7H/iIYRBO2K1eulEmTJrXbijxq1Ci5+OKLZZNNNolaP2+Nre27ud6Tj/7Z0pP8yM9GwGbN/GtsfrbaUdhS2OoziMJWz64RLb3NtRuRcZ46eR/789RFe280YZs69Pbbb8sLL7wg+M/+/fuvOUhK63BWO2+NjcI2a+Sy3ee98dK/bHGsdBf5kZ+NgM3ae/7ZakdhS2GrzyAKWz27RrT0NtduRMZ56tSMY1dbPtGFbZ6AhLzXW2OjsA0ZXb7DaqXpvfOjf7YIk19j87PVjsKWwlafQRS2enaNaOltrt2IjPPUyfvYn6cu2nspbLXkctpR2OYEVuV2742X/tniTX7kZyNgs/aef7baUdhS2OoziMJWz64RLSlsfUW1GccurtjWKAcpbMOC99546Z8t3uRHfjYCNmvv+WerHYUtha0+gyhs9ewa0ZLC1ldUm3HsorCtUQ5S2IYF773x0j9bvMmP/GwEbNbe889WOwpbClt9BlHY6tk1oiWFra+oNuPYRWFboxxMhe2mvXpKn149ZcWKFdK9e3ezN/vv1l/2330rczltC/DeOOifLeTkR342AjZr5p+NXwxrTFBnLO1vLjoVPiho6Nip5vJQQDMK0dD8WltFDh1njweFbZCUbphCKGx9hdL72FoELb5jWwRlEUmFbeif+/L+O8rIwQNCFyveGwf9s4Wc/MjPRsBmzfyz8YthTWGrp1oPwpvCVhffVMh777N0tbNbUdjaGYYsgXkqQmEbMqM6KOvVJcvllSXL19yxcOFC6devn/rXp/9tnkx/7AWhsFUjjGrovXOhf7bwkx/52Qj4s6aw1ceEwlbPrl5WgL33+foI2CwpbG38QlszTylsQ+dU5vKsydf2nd3MP5zxRqt/GX9GfRv9U6NLDMmP/GwEbNbMPxu/GNYUtnqqFLZ6dhS2enYeLClsPUThQx+8j61F0OKKbRGUy/yGNfkobJ+XlpaWGkWv+s9a41v9F2x30D/ysxGwWTP/bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUK29IoUNjWKCetEzsKWwpbS+pa88/y21ls6V8WSpXvIb/G5merXXlrCls9VQpbPTsKWz07D5YUth6iQGFLYesgD60TTwpbCltLGlvzz/LbWWzpXxZKFLY2SvXLL0a9KWz1VCls9ewobPXsPFhS2HqIAoUtha2DPLRO3ClsKWwtaWzNP8tvZ7Glf1ko1a8wY3xt8Y1hTWGrp0phq2dHYatn58GSwtZDFChsKWwd5KF1YpcKW3zDdnCE79i+/PLLstlmm61Faqt+G0nPbl0d0OPhR9YgWPPP+vvV7OlfNUId/538GpufrXblrSls9VQpbPXsKGz17DxYUth6iAKFLYWtgzy0TjxjfRe3IzQTxwySnVr6OKBHYWsNgjX/rL9fzZ7+VSNEYWsjVN/8YtSdwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+vEHd+xnfa3edFqsnLlSunWrVtS/ryFS2X5yneFwjY7bmt8s/+S7k76p+OWWpEf+dkI+LOmsNXHhMJWz47CVs/OgyWFrYcoUNhS2DrIw3qaGI+99n6ZPW8xhW2OvKmn+OaoVmG3kp8NNfk1Nj9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeVhPE08K2/wJU0/xzV+7+BbkZ2NMfo3Nz1Y7Ctt6EKKI0tCxU4OEGvVtbRU5dJy9vHoRoqHr671PDZIoikIobBXQIpowT0X4HduICdZR0d6Tr9Q/Ctv8SVJP8c1fu/gW5GdjTH6Nzc9WOwpbClt9BlHY6tk1oiWFra+oeh/7i6DlWti++eab0rNnT+mEnvSDa/ny5dK9e3fp3Llzh3y8NzbvyUdha2t+9RRfW03jWJOfjSv5NTa/SrWzjpkzlva3gRORVPiEXnFkefrQcMVWzy7NZ+99qr6GItZ+48wzz7T8PG0DEmjkPM2KyaWwffXVV+WJJ56Qww8/XJ577jnp06ePvPbaazJy5Ejp0qWLzJ8/X04//XQ55phjKtaTwjZrCpS/j8I2HD9bSXGsvXd+9M8Wd/JrbH5taxdqzKSw1eVNPawAh96a22zlee9TNZkbqt+gsNXQj2PTiHmal5RLYXvbbbfJzJkz5ZJLLpFXXnklEbYXXnihLFu2TCZMmCCLFi2Sfv36CVZve/ToUbbOFLZ5U2Ht+ylsw/GzlRTH2nvnR/9scSe/xubXtnahxkwKW13eUNjquMGqXrY2e+9TNREI1W9Q2Grox7FpxDzNS8qlsE0rgS3IqbA97rjjZPDgwXLUUUdJa2trshV57ty50tLSQmGbN+oZ7i8nbFv6bSQ9u38kg3X4W44bsqvg99PLe+Olf7YcID/ysxGwWXvPv0q1s46ZFLa6vKGw1XGjsNVzC2lp7TcobENGw1ZWvY5dtlqvbV03wnb48OGCf0ceeWRSg0033VQefvhh6d+/v8yYMSNZ4W17DRs2LCSrpi3rirufkucWLqtp/U8esr1s02/9mvrAHycBEmgeApUemnomUDpB1YyZQYStiFw6ZmCC6dTJjwbBdRnLM3EEv1YROS1APHDiCeLbbOUhAPXYJ2RJHGu/wbl2FsrF3dOoeZqVYN0I2/PPP1822GADOe2002T16tXSq1cvWbp0acVDpLgVOWsKlL+v9KnP8wuXyvIV79gKVFpPvvtxmbdwabtv6Hp/KkX/lAH/wIz8yM9GwGbtPf8q1a50gqoZM4MI204id04ckbgY8nM1LE+f0zw8Ss+uGQ6PsvYbXLHV51doy3odu0JyqBthe+edd8qVV14p9957r9x6661y8cUXy6xZsyqyoLC1pYmXxlHpU0Ne/KtEmf41Rv4xvrY4kl8cflmErWbMpLDVxYtbkXXcYMV3bPXsQlmWCltNv0FhGyoS9nK8zz3tNaxegnthi1PbevfuLStWrJBDDjlE5syZk/z3++67T/bcc08K2+oxVt3hpXFQ2KrCV9XIS3wpfKqGSnUD46vCtsbIO7+OhK1lzKSw1eUNha2OG4WtnltISwhbS79BYRsyGray6nXsstV6bWvXwrZcRRcsWCB9+/aVrl27dsiBK7a2NPHSOChsbXGkcCS/OARspXrpX+q1feShn2fMpLDNQ/bDeylsddwobPXcYlvm6TcobGNHI3v53sfW7DXR31l3wjZrVSlss5Iqf5+XxkFha4tjvU7cveQf+TH/4hDwVyrGTApbXVwobHXcKGz13LxYep9re+FUlB/e505FcKCwLYJymd/wnnxe/KOwjZOgXuJL4cj4xiFgK9V7+7DVrrw1ha2eKoWtnh3fsdWz82BJYeshCh/60IxjV9sIUNjWKCe9J58X/1JhOwbfsd2s15povfzyy7LZZptFj96ArXqrfsMLPwpHVfiqGjG+VRF1eAP52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYpcNfCpss90d/q50wpK3ZMY3L7G17yc/8rMRsFl7zz9b7cpbU9jqqVLY6tlR2OrZebCksPUQBQpbClsHeeh94uRfHf+7AAAgAElEQVTFP3zH9vmXl7SL2MqVK6Vbt27RIjl73uKkbArbaIg7LNhL/lVykv7Z8oL8bPxiWFPY6qlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCLH5DR07lcLWFiKTdez4mpwTEfpnI0h+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PwobG3xsVrHji/9sxKw2TO+Nn4xrCls9VQpbPXsKGz17DxYUth6iAKFLYWtgzzkxM4WhNj8KGxt8bFax44v/bMSsNkzvjZ+MawpbPVUKWz17Chs9ew8WFLYeogChS2FrYM85MTOFoTY/ChsbfGxWseOL/2zErDZM742fjGsKWz1VCls9ewobPXsPFhS2HqIAoUtha2DPOTEzhaE2PxSYTty8ACVo0uWLJFevXrltu2zUQ/Zf/etctvlNYjNL68/be+nfzaC5NfY/Gy1K29NYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISeetiDE5pcKW5uX+a0HbNVbJh2/X37DnBax+eV0p93t9M9GkPwam5+tdhS29SBEEaVQ4xDq29oqcui49z9jZ7nqRYiGrq/3PtUSU4stha2FXnhb5qlIp9ZWNP/Gu7w3Nu/J1+z+TZk229Qo8q7YvrpkuUx/7AWhsH0fe7Pnnyn5yM+Kz33+mStYpgCu2Oqp1oNQDi30mq0872OSPnttlt7n2rba1Z8185TCtmZZ6z356J8tNfLye/L5V2Xc5AcobD/AnpefLVr5relffmalFuRn4xfDmsJWT5XCVs+uXlaAvfdZ+gjYLClsbfxCWzNPKWxD51Tm8rwnH/3LHMqyN+blR2G7Nsa8/GzRym9N//Izo7C1MYttTWGrJ0xhq2dHYatn58GSwtZDFD70wfvcpAha3IpcBOUyv+E9+eifLTHy8qOwpbC1ZRz5NRO/kHVNy6Kw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU7mFT5Fu0n/bMTz8qOwpTCzZRz5NRO/kHWlsLXTpLDVM6Sw1bPzYElh6yEKFLYUtg7yMK/wKdpl+mcjnpcfhS2FmS3jyK+Z+IWsK4WtnSaFrZ4hha2enQdLClsPUaCwpbB1kId5hU/RLtM/G/G8/ChsKcxsGUd+zcQvZF0pbO00KWz1DCls9ew8WFLYeogChS2FrYM8zCt8inaZ/tmI5+WXClvbr+azTidj+ayKuTsvv2K8qp/Bg/xsGeGdn6125a35jq2eKoWtnh2FrZ6dB0sKWw9RqJ+5SRG0+I5tEZTL/Ib3iRP9syVGXn4UtmvzzsvPFq381vQvP7NSC/Kz8YthTWGrp0phq2dHYatn58GSwtZDFChsS6NAYVujnOTEzgae/PT8ho6dmhhzxVbPkPmnZwdL8rPxi2FNYaunSmGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQn54fha2eXWrJ/LMxJD8bvxjWFLZ6qhS2enYUtnp2HiwpbD1EgcKWwtZBHnJiZwsC+en5Udjq2VHY2tlxxTYMw9ClUNjqiVLY6tlR2OrZebCksPUQBQpbClsHeUhhZgsC+en5Udjq2VHY2tlR2IZhGLoUCls9UQpbPTsKWz07D5YUth6iQGFLYesgDynMbEEgPz0/Cls9OwpbOzsK2zAMQ5dCYasnSmGrZ0dhq2fnwZLC1kMUKGwpbB3kIYWZLQjkp+dHYatnR2FrZ0dhG4Zh6FIobPVEKWz17Chs9ew8WFLYeogChS2FrYM8pDCzBYH89PxSYTty8AB9ITksv7z/jjnufv9Wxjc3srUMyK+x+dlqV96awlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ048bUEgPz2/VNjqS8hnqfmsEOObj3Hbu8mvsfnZakdhWw9CFFEK1Vejvq2tIoeOe/9Tb5arXoRo6Pp671MtMbXYUtha6IW3ZZ6K8Du24fMqU4nek4/+ZQpjxZs885sybbYsWbJEevXqZatkFeubp/8juYPCNirmsoV7zj84TP+Kz4lqv8gV22qEKv+9HoRyaKHXbOV577P02WuzpLC18QttzTylsA2dU5nL85589C9zKCksKqCyvMvL/GP+2QjYrL3nn6125a0pbPVUKWz17OplBbgZ+4QsUaWwzUKpuHuYpxS2xWVbm1/ynnz0z5Ya5PfhNjqu2NpySWPN/NNQ+9DGOz9b7Shs60GIIkrcipw/02MJ5WbsE7LQp7DNQqm4e5inFLbFZRuFbVDW3hsv/aOwDZrwOQtj/uUEVmf9s612FLYUtvoMiiUcvW9t9t6n6iNqs6SwtfELbc08pbANnVOZy/OefPQvcyjL3kh+FLa2DLJZM/8am5+tdhS2FLb6DKKw1bNrREsKW19R9T72F0Grbg6Pevvtt6V3795y0EEHJVy22247GT9+fEVG3hub9+Sjf7bmR34UtrYMslkz/xqbX5baacbMGUv7Zym6w3tS4YObQm6lZXn60PBUZD27NJ+996n6Gq5tqek3zjzzzFA/z3KMBJolTzvCVDfC9qmnnpKzzz5bpkyZIl26dKkaegrbqog6vMF746B//uPLw6NsMbJYs31Y6Pk/tTlL7TRjJoVtFrLt76mHFWDvW329++e9T9VlbnsrTb9BYRuKvr2cZsnThhC2d999t4wcOVKWLVsmAwcOFAjXQYMGVawbha2tgXhvHPTPf3xTYbtTS5/czq5YsUK6d++eyW6rfhvJmCG7Zro31E3MPxtJ8rPxy2KtGTMpbLOQpbC9c2LzfRfXe5+ly9z2Vpp+g8I2FH17Oc2Spw0hbKdPny6PPfaYnHTSSTJ16lSZNGmS4MlSp06dZMaMGTJz5sx29Rw2bJg9S1gCCZCAisCpkx9V2eU12qbf+nLykO3zmvF+EuiQQEtLS10T0oyZQYStiFw6ZmDCLlQfcBnLM+Ui+LWKyGkB+uROH8S32cpDAOq9T8iSRJp+g3PtLGSLu6cZ8rQhhO0777wj66yzTvJv9erVyXbkBQsWyOabb162flyxtTUi70996J//+D75/KtqJxcuXCj9+vXr0P75hUvlZ3c/LgO26i2Tjt9P/VsaQ+afhtqHNuRn45fFWjNmBhG2nUSwooeL79hmiVT7e2Jsbfa+1de7f977LF2mtbfS9BtcsQ1F315Os+RpQwjbc845RxYvXixXXXWVPPTQQzJq1CiZO3duxbpR2NoaiPfGQf8YXwjncZMfoLAtkwpsH43dPrLUTjNmUthmIVuMEA39YMC7cPTun/c+VZe57a00/QaFbSj69nKaJU8bQthiBWfw4MHJSi3+nXfeeTJkyBAKW3s7KFuC98ZB/2yBbwR+FLaVc6AR4mvLcJu1d35ZaqcZMylss5ClsOU7tro8qQcrTb9BYesnso0wdllp1s2pyGlFFy1aJH379q1ab67YVkXU4Q3eGwf9Y3wpbClsba2gfvnlqXeeMZPCNg/ZD++NsXWYK7a6WMT6zq73OYeOVmWrPP0GhW1o+vrymi1Py5GqO2GbNdwUtllJlb/Pe+Ogf4wvhW39CjO2X1v7jWGNMZPCVkeWwlbHDVaxhGjorc3e+yx9BGyW3ufattrVnzXzVITCtkZ56z356J8tMcgvPj8KWwpbW5bVL78Y9aaw1VOlsNWzo7DVs/NgSWHrIQof+uB97lkELQrbIiiX+Q3vyUf/bIlBfvH5pcK2Bd+xHbqb7Qc7sMZ3cnt267rWHYyvDTf52fjFsKaw1VOlsNWzo7DVs/NgSWHrIQoUtqVRoLCtUU5yYmcDT37klwpbG4nq1hPHDJKdWvpQ2FZHlfkOtt/MqAq7kcJWj5rCVs+OwlbPzoMlha2HKFDYUtg6yENO7GxBID/yw3dsJ9/1mA1EB9bzFi6V5SvfFQrb8IjZfsMztZZIYasnSGGrZ0dhq2fnwZLC1kMUKGwpbB3kISd2tiCQH/nZCFS3Hnvt/TJ73mIK2+qoct/B9psbWXQDCls9YgpbPTsKWz07D5YUth6iQGFLYesgDzmxswWB/MjPRqC6NYVtdUbaO9h+teTi2VHY6tlS2OrZUdjq2XmwpLD1EAUKWwpbB3nIiZ0tCORHfjYC1a0pbKsz0t7B9qslF8+OwlbPlsJWz47CVs/OgyWFrYcoUNhS2DrIQ07sbEEgP/KzEahuTWFbnZH2DrZfLbl4dhS2erYUtnp2FLZ6dh4sKWw9RIHClsLWQR5yYmcLAvmRn41AdWsK2+qMtHew/WrJxbOjsNWzpbDVs6Ow1bPzYElh6yEKFLYUtg7ykBM7WxDIj/xsBKpbU9hWZ6S9g+1XSy6eHYWtni2FrZ4dha2enQdLClsPUaCwpbB1kIec2NmCQH7kZyNQ3ToVti39NpKe3T+ylsGKFSuke/fu1QtR3IHPC1kvtg8bQe/8bLUrb01hq6dKYatnR2GrZ+fBksLWQxQobClsHeSh94kT/bMlCfnVP79U2Npqkt86nSTnt6yfwY3twxLdOLYUtnquFLZ6dhS2enYeLClsPUShfsb+Imh1am1tbS3ih4r+De+NjRM7W0aQH/nZCFS3fn7hUlm+4p2yNy5cuFD69etXvZAcd4yb/EByN4VtDmiRbvXev8SoNoWtniqFrZ4dha2enQdL73NtD4yK9KEZx662fClsi8y4kt/ynnz0z5YY5Ed+eQkMHTuVwjYvtEj3e2+/MapNYaunSmGrZ0dhq2fnwZLC1kMUPvShGccuClsnOeg9+eifLVHIj/zyEqCwzUss3v3e22+MmlPY6qlS2OrZUdjq2XmwpLD1EAUK29IocMW2RjnpfeJE/2yJQX7kl5cAhW1eYvHu995+Y9ScwlZPlcJWz47CVs/OgyWFrYcoUNhS2DrIQ+8TJ/pnSxLyI7+8BChs8xKLd7/39huj5hS2eqoUtnp2FLZ6dh4sKWw9RIHClsLWQR56nzjRP1uSkB/55SVAYZuXWLz7vbffGDWnsNVTpbDVs6Ow1bPzYElh6yEKFLYUtg7y0PvEif7ZkoT8yC8vgVTYTjp+v7ym7e5/+eWXZbPNNlOXM2Cr3mrbLIZsH1koFXsPha2eN4Wtnh2FrZ6dB0sKWw9RoLClsHWQh5zY2YJAfuRnI2CzjpF/qbC1eRbGOsQnhzryJAa/MDV/vxTv/oWsa1oWha2eKoWtnh2FrZ6dB0sKWw9RoLClsHWQh94nTvTPliTkR355CYy99v68JhXvX7lypXTr1i13ebPnLU5sKGyfl5aWltz86tmAwlYfPQpbPTsKWz07D5YUth6iQGFLYesgDyl8bEEgP/KzEbBZN2r+hXzPtyPCjcrPllW1taaw1fOnsNWzo7DVs/NgSWHrIQoUthS2DvKQEztbEMiP/GwEbNaNmn8Utu/nhff42rK3vDWFrZ4qha2eHYWtnp0HSwpbD1GgsKWwdZCH3idO9M+WJORHfjYCNmtt/lHYUtjaMk8kFSooJ9R74/UgHL3Xt7VV5NBxU63hXRPfZitP26eagTsvgMLWV4CYpyKdWlvRPTXe5b2xeU8++mdrE+RHfjYCNmtt/lHYUtjaMo/C1soP9jGEfLMJ0dD11fapIfLBcxne59qe2cXwjXlKYRsjrzKV6T356F+mMFa8ifzIz0bAZq3NPwpbCltb5lHYWvlR2NoIxtrarO1TbbXxb01h6ytGzFMK25plpPfko3+21CA/8rMRsFlr84/ClsLWlnkUtlZ+FLY2ghS2Nn55rSls8xKLe7927I/rVbGlcytysbzX/Jr35KN/tsQgP/KzEbBZa/MvFbYjBw+wOVDFesmSJdKrV6+ov2EpfM+tuvNzP0qAfMdWCa7EjFuR9QwpbPXsNJYUthpq8Wy0Y388j4ovmcK2eObJL3pPPvpnSwzyIz8bAZu1Nv9CHfZj87721peNGUhhqwwDha0SHIWt68OttH2qPRt8lwBh22uHA6o4me0on+OH7iZ4N3ry3Y+zvLUIZOfHPOVW5Jr1GN6Tj/7ZUoP8yM9GwGatzb8p02bbfjijtfcV271aelDYZoxl29sobJXgKGwpbO2pU3gJoT8TFvrQr2YrTzv2F544EX+QK7YR4XZUtPfko3+2xCA/8rMRsFkz/xqbn6125a1DT1DxK6F2AMTYmtts/jXbBD90fb33qTH6hCxlhu43Qset2cpjnnLFNku7jXKP9+Sjf7awkx/52QjYrJl/jc3PVjsK22YUys02wQ9dX+99aow+IUuZFLZZKLW/h++C67hlseKKbRZKEe7x3knSP1vQyY/8bARs1sy/xuZnqx2FLYWtPoNiTchDC9HQ5XnvU/URtVlS2Or4xWpHzNM6XLFdvny5dO/eXTp37txhNnk/qc178tE/XWeVWpEf+dkI2KyZf43NL0/t8oyZM5b2z1N02Xv5jq0ZocQQ3qGFXrOV571PtWfd2iXUqt9otrwKXd9my9NyeV83K7avvfaajBw5Urp06SLz58+X008/XY455piKbZnC1tbNeW8c9I/xtRGwWTP/yM9GIL61ZsyksNXFJYYQhSch31EOPYFutvK89/m6zG1vVet+o9nyKnR9myVPO8r3uhG2F154oSxbtkwmTJggixYtkn79+gmeKPXo0aNs/Shsbd2c98ZB/xhfGwGbNfOP/GwE4ltrxkwKW11cKGx13GAVa0smBYMuJrXuN0LHrdnK8z430WVlPqu6EbbHHXecDB48WI466ihpbW1NtiLPnTu34icZKGzzJULbu703DvrH+NoI2KyZf+RnIxDfWjNmUtjq4kJhq+MWRdiKyJ2TRiTfQz103FS9Yx9YpsLbe59vrugHBdS63wgdt2Yrr1nytCFWbIcPHy74d+SRRyb12XTTTeXhhx+W/v37y4wZM2TmzJlr1bNr167y7rvvhmrrLIcESIAESKBJCPTp00dGjx5d17XNO2b27Nkz2QXFiwRIoD2BHXfcUYYMGdLwaNhv1HeImyVPG0LYnn/++bLBBhvIaaedJqtXr5ZevXrJ0qVLKx4i5X3Flv7ZOg/yIz8bAZs184/8bATiW+cdM7N6FDr3WV5W8uXvIz9f/Gze1N6a/UaYGHhvl2Fq6bOUutmKfOedd8qVV14p9957r9x6661y8cUXy6xZsypSDZ1UocNH/2xEyY/8bARs1sw/8rMRiG+dd8zM6lHo3Gd5WclT2IKA93yxRbP21uw3wsSAeRqGo6aUuhG2K1askEMOOUTmzJkj+O/33Xef7LnnnhS2mqhnsAndKDP8ZK5b6F8uXO1uJj/ysxGwWTP/bPyyWOcdM7OUWQ/CInRusbysmUHhbSPlw5r9Rpg4eO83wtTSZyl1I2xTfAsWLJC+ffsK3qHt6AqdVKHDR/9sRMmP/GwEbNbMP/KzESjOOuuYmdWj0LnP8rKSp3Cshwcrtmj6sWa/YYuF937NVjvf1nUnbLPixIFS++yzT9bbC7+P/tmQe+eHw8z23ntvWyUjWnvnR/9swSe/xuZnq53NOnRusTzGIw8B7/mSpy7NdK/3uDWbf42cew0rbBs5aKwbCZAACZAACZAACZAACZAACZDAhwQobJkNJEACJEACJEAChRN47733BP/Sq0uXLoX70NEPxvTv97//fbKrZ/31189dZ7wH+eabb0rv3r3X2D7xxBOCT32ss846uctrbW1NvjZR6fISl1Dx+Ne//iUvvvii7LXXXhW/rJEbIg0qEvjPf/4js2fPlm233Vb69eunJvW3v/1NnnrqKTn66KPVZRRhiPrOmzdPdtllFwnRdlatWpWU8+yzzyYMeXVMoCmELQYAfKOvE760XeZatmyZanDJmlzojDEQwYdKF3xYb731KvqY9bc09zWCf5p6h7LJwg/fh8R9mkmM1c8s/ll/w2Kf1T8MFmhD6667ruXncttm8W/JkiXJJ8hqcWX1D59L00x6rXXK4h8G7nfeeUd69Ohh/bmy9ll8QBvt3r07J7plCD7++OOy2267tfvL5ptvLhMmTJCvfvWrueKGT/UdccQRcv/9969ll46DWQv7+9//LgcccEDF259//vkOx91KhqH8S8t/++235YwzzpC77757zU8uXrxYnnvuOcE3k/Ne4Lb//vvLLbfcIsOGDUvMIWoffvjhZB6R98I2zM9+9rMVzV544QX5+Mc/XrVYiOtvfOMbcvnll8vhhx9e9n74fcMNN1Qtq/SG0PH45z//KUceeaS88cYbctxxx8lRRx0l2223XS6feHN1AnhgArZ//etfkzz/y1/+Ij/4wQ9k/Pjx1Y3L3IEHEngYhHI+9rGPqcooNfrzn//c7tvE6INSzZD3B1Bf9GvTpk1L2iP6n1NPPVXGjRuXt6jkfoyL//3f/50wmzp1qvzv//6v7LrrroKHYrwqE2hoYfvqq68KOlp0sOUGEDz9OfbYY5MOe/78+XLdddfJpz71qaD5cv3118ull16aNEIk6S9/+cu1nrI+/fTTgu+Gde7cOfHh+OOPl6985StBfeiosGr+YcI+ZsyYRJBhIMZgcMwxx7jx70c/+pHgfVZcmLzedddd8thjjyWNv4irGr+VK1fK17/+dXn99deTGMOv8847rwjXkt+o5h8mXHjqf9BBByX3Y3DXDjqaSlXzLy0TbWOnnXZKOvTPfOYzmp9S2VTzL316vPXWW8tbb72VtF0M5EVd1fzDRGDEiBFJjPHEF+IEg2RRVzX/sEqEJ/noeyG6L7nkkuCuVfPhtddek5EjRyZ8kGenn356oX1c8ApHKPCll16S/fbbT+64446kj4CAwjflf/GLX8gnP/nJZGzYZJNNMv/ybbfdJj/96U/lN7/5jelhBsZUTERLr3fffXfN4ZLah02h/Ev9euihh+SHP/xh0jdAlGKecfvtt6snqCjj3HPPFcQFDxXOOuuspH/UClv0EwMHDhT4udVWW8mTTz6ZzI0gePGwJ+uFeECEbrjhhoIHkbjQxtMHavj7l7/85WSSnmflLnQ80vpA4CKn/+d//kc++tGPyre+9a3kQUG3bt2yVpn3dUAAAg+f6UT8kAOYT26//fZJfmke6EDQfvrTn05+sdRe+wALc0bM0XDhPx955JHkc1IPPPCAKq6oL9rln/70pzX1hb5AnmmEOHITn1/CuLjlllsm/Szy86qrrhI8VORVnkBDC1s0JogeJMUrr7zSriHhSe93v/vd5Ilv2nHiO7mhLnTiOL057ehPOeWUpDMfO3bsmp+AkP3EJz6R+IFtBvjvEBsf+chHQrlRsZws/uHJKp4S4ckwBr3Ro0cLxHgRVxb/Sv0488wzkxOzv/3tbxfhXvKgolp8wQ+dJToiPM1DR3XYYYcVsnKWxT8Is7PPPlumTJkSZMtMHvBZ/EN5WMkbPnx4srXn6quvLkzYZvEP39NGm8ZkDYPa//t//0+wilTElcW/Cy64QDDRx8MUDNyYpGIyvNlmm0V3MYt/eDKO/MMT/d133z24sM3iw4UXXpiII6w8Llq0KIknVm9jrR5HBx/hB5DbEGLox9IL2+yw4oEHn9/73vfKruhWcgUTVAg9lBnquuaaa2Ty5MnJg02Mo3joeeihh6qKD+0fBPysWbOSsQnbKKdPny5f/OIX5cc//rHgoVjeC8IWY8k555yTTHTx4ArlYwKtWbFFWfiHBxXphc8rYuV1m222yetecj8EDR4qIR5f+tKX5MQTT0xWmTVX6Hik48of//jHpN5YcMCDGzycefTRRwU7FPAgmpeNAObfeGhw7bXXJgVhDoQH02j3eR5spF6Ue5CFv2kfYJWrHfq13/72t9K/f//clceDd+Q8Htyk9cVnSSFOMTfNe0FggxV8Qp9x8803J/8dOmXTTTfNW1zT3N/QwjaNIrYglxO2W2yxRSLW8J/oyLBqhftCXZiIDx48WObOnZsUecUVV8j//d//JasT6YXVWogjiN30aVRRE88s/i1cuFD+67/+K+n08fQWT+kxeS/iyuJf6gdW5jF4YmAv4qEAfjeLf+mkHbsD8IQNQuPggw8uAl8m/7A1DqtVmNjjiT2eVg4aNMiNf3DkO9/5TjIhQvsBz6JWbLPENwWFCT9WoEaNGpU8pCriyuIfXoFA/4cVCAzWYIndK5Veywjpdxb/0t/7yU9+kvgVesU2iw/Yioh+GqtpmHhhQos+u6WlJSSOui4LE0psrcOOBLzjhQkrHsRid8eQIUMEK35ZXhFAjCFosVKCcRCMsdUuXdGDkNKslmEFCDuJ8AAWE2YIbjwMw4OKPA8oYvmHXQGY4GKCj7Ee73Zi8ovf07yekgpb9Il48IftjhD2ebdyp0n58ssvJ7uJILqxqwM8wRBiWXNhPP7CF76QPBSHcMfc4cADD0xW7DbaaKPMRcaKB8Q28g45jbzB9tF0xwEeUiKvtYI+c+Wa4EaspCL+mPNgZwe4z5kzJ1kgwYXFiLyiFA9B8QAL83asYmI+oI0V5oulYw76C+x6wLiRp9/ATp+f//znyWLHxIkTk9xCG8ecHjmM8UQzL8VDabRJtEMIXPwGHrqWPoBqgjTKXcWmFrZ45wyrjxgI0QA/97nPCb7dFepC546nqekK54033phsUfjZz3625ifQyNEAsF0ayfvMM8+oB6e8fmfxD0+GMFnHyjIaPBpn6XtCeX8zz/1Z/EvLw+QUW1Sw7beoK4t/6MAxQcAAj4cn2OaISWARwiKLf3gKiMHmpJNOSiZakyZNSg5n8OIfdlJAkKEjx4OnIoVtFn5prmFwhK8YDEPu+ugol7P6h4kv4orVIawc4SFVEVdW/+BLLGGbxQcIIPzDaxa48CQcfZ3miX0RXGv1G3jo+7vf/S6ZrO27776JcMG7l8j5rO8n/vvf/07GwEoXVlg1h63ArwcffF2t9GUAACAASURBVFCw+p5e2ImFB055Jr2x/INP2DGB7bn4z1/96ldJO8TYr7nwmhUeAGAOk16//vWvk4cMmgcDKAMPse+5557kYT/ii7KwPVdzwReMLdhhk14oE6tZeVaoY8UDAga7RfLkhoZDs9sgpzD3qXSh383zYAcPYLCVGa/T4GHJ1772teTdde2CBvKgtD/CjiY8gMq7Gopy0AdVuuCnpl9rWx4eDGFs0h461yz52NTCFh0tJqTYAoenQFg9xZaBUBdWSzDo4+k0hEL6ZKjtVlm8fwmxiA4fQjikuO6oLln8gzBDR4Ina3gajIG03Op3KGal5WTxD/dj8MPT1rxPg60+Z/EPK2RYyYCwwIUOE6sdRQyoWfyD6MFqCf7hXSh0vsi/It7fyOIfHlZgErfxxhsnW8SwxRDbxkK/C18uF7L4B6G4xx57JFt78coBnj4XteMii3+YRGPygAdSWN3RbP/StpMs/qVlxxK2WXxAv49+DbtR0AYQQ8SSWxHXjjwe2KBfQD+L3QlYve3o4KZyeYO+Gg/6MDG77777yqYWxhuMyXkutDmsNGK3BEQ2XgfAVliscODCLpQ8KzCwwam5mDynF8q76aab1A88QpYH8YkHzugLsdMm3c2Sd4UafT22ila6IBryrDQhN7A7CXMazB1gn86v8FoOHtxrD7ALsVIX67CxPLnaTPfiFQYIW7yyE+LCQ27M0bGzDO+A479jHn/ZZZepzlXBa2LYRYnXKTBHR7+P+TnaekeHvZarCx6U4OEa5iknn3zymlvQTrGYpdmKHPrQuRAxqIcymk7Y4oCXf/zjH8lggC21EETofDEg4t2U0AfnYD88nhrjYAdsxcG7bvvss88aHzChw2oxVlOwNQtPj4rcZlDNv4suuijxD35iuwWeZmESEeLpU5YGUs0/lIGVMgzOIR9KZPEN91TzD6v02DaDDh4TGwg1PHXUDu5Z/Urvq+Yf3tHCgQTI0XSylG6dz/tbmvur+YeJV3q4A1bjcbgHVnXyTlI1vmWJL94txIMLcMTuC2yZ9hRfbH3EQ7NatI0s/GIL20o+QJDhyTf65fSAEwi3W2+9NZmEabdgavPMux12HaHdYUUPO5twWBEmk9iFkkf4pFv2MNmDGGt7YesdDgCEAMpzaBH8w2selS7EtPTTONV4o9/BwzOIZGz9w8M1PIyEGNeMfaHLg/+IBbbRYg6DhzGYP2RdOU/rjxU18MYEGmeAIC4777xz8vAB4wCEYJ76VosDxkLNinKolbpK72imPPJui62WR83+d8wtBgwYkAhFvNKW7gTDKwiaB4d4cILXRrDtHnN17NDAvBp5p5kTIP+xWxIPztGW8B740KFDk/Lz5D3ijEMa0SbbfmUFD3bw/2vyPvShc82Sj00jbDEwYWDD1jQISxzzjo47fV8P731gMqPdelMpYTChTE85xtYtHNKD91dSHzDQ45AGrBhA+GCyVcTBLqm/1fzD6iwaOjoAXNgKiqdbRV3V/IMfWBXFSihWlYu+qvmXThjw1BIdLx5sFHlqbjX/EFcMFOjE8Q/+YQtaUVc1/0r9gF84Nr+od2zx29X8g5jFNn28b4gJPt6vweSwqKuaf1g1aftpDYiGor6FV82/UmGL/jjUk/1S/uV8wAQLfW665Rh9MGKJFV6IFzzA4/UhARxagskjJoHIbwgebN1Gf4H3FPNcEBdgjIfMGFtSYQxhhhN+cQALVmFwsm7WC+MUVlgwWUa8cWIq3nPTTJ7xm3ifDeM0+moIZqxQozwc5pJ3JSdGeXgXHO0a79biFGOwAj9tu0a9sKqEFeD00h6iUy2+OFMk7xVypQ55jH4Gp9RigSN9OIm5TZFjX14G9Xg/VkTLzRcx19YIUTDAYgEELfrr9JR/nK+ivSBE8RAL4yLmkKWvM+QtE1uikV84GC7EFfrQuRA+1UMZTSFsOwoEOmE8DcSL6LHeK8QAjq05HW0DTLd/xvKhIwZZ/AMjPBjQDErWhpDFP+tvWOyz+IcnjbX6jmgW/7CFTbNVxsIttc3iX4jf0ZaRxT88IMDDFe1EWusb7LL4ZynfauvBvyw+oA9GG6hFH2dlHNseD12xGwFjAB4C4OESBC7esc27++Sb3/xmsjsED5HxgBmTXIhbjMGaU30xEcUDJUxQIT7xHive28MDYhwmpbmwnRZbEvEuLLYxYwUTrwlpxWPo8nCaL74XiwcOWAnDu6w4lCrvVuSUTfq+ImKBhwJ44I5XLHDeQt5VzNDxhY8hV+qQx3i/GQ9nsEMDohkrdtjait18eVfqNPnVjDZYvcX4CNYhLrQpPFTTrISmv4/+C/mAg9PQn+GsEawAa1ZssdsEQhR+4RN26M/wgBQruXl2n5SyCX3oXAju9VBG0wvbeggSfSQBEiABEiCBWhLAbieIAZwai0OAsGU178o2VsTxACgVYDj0D9sSsRNDI2yxcoktwlgZwgoOVnpxbgAeTmBbrnYXFt61xuQW36DEyi38w6qQ9vNEocvDu8pY8cKEORUMmASDpebBDDhCGOOVlHQSjocFeQ9jDB3f0nwPsVKHhQw8UMFCAwQIREf66g0eYGDLbN4dCLVsk55/G1vc8eoQdhTgQRjei8UDJ7z2h9XxvBde48IDJghIHCSJd2Nx4eyavHma/jbeh8UKa7qrEg/asAMQr1nk3ZmB3VHYuYWdLDh4EK8wYKceXuXDgzztolXIQ+fyMq/X+yls6zVy9JsESIAESIAEIhPAazMQoHgHzXrhIEW89oMTc7ENFCtxOCwK7zljJTjvim0qVCC4sbUUk1xsJ8T/D2GLw1xCvNqDyaVlZagtN0t5oQVDqW/ghk+d4CBLze6T0PGFbxDxpat8yJm8q8ildcS74jvssEOyqoaTbHHAGHLyhBNOKPR8BGtb8m6PBwTYSYA2iFOMsasJwhbbh3EQWJ7TkFFX7HjDQxysiuJ1Azxcw+4MvPOvWWnH1yngHwQoBDj6IVzo6/D+f55V1vTgTTywKz1RGf8/cg0+43NHea6Q/W6e322EeylsGyGKrAMJkAAJkAAJRCCACSVWSLAS+qMf/Uj9HmfqGiaN3//+9wUHE+L99PSbothKrPkOK96RxJZSvB+Kz+fgtRmUi0vzaTpMwPFeLT5rBN+wCvrZz342mZxrTrOHMIMtVpWxpRvbHnGgDD79luebrim/0IIB39nEBB/v6cIvHCKF16awqpb31Gv4GDq+yD+8243VVBzwab2QHzjECvWFeMBp6CgXq/JY8edlJ4AHJHjQhNc7IGKxMp5+7QNb3NFW874Pngpb9BvIT2wdx4UHYvj+dd62CTusJqMs5Cx2pECUanaOwA+0S/iEB4B4EAMG2BWAByl4iJLn8LpUyIfsd+1RrZ8SKGzrJ1b0lARIgARIgAQKJYAJJSalWGXFYUXYfoxDniAKtIctYisoRGz6WTFso4WQxPttmq20EGfYOohJKg6KhCDFe5R5TmxOoWLLI1aT8e3JLbfcMnmHHQdaQYjCz7xlQixBGGM7Jibl2PKK9zhxkj9WqPOsjMYQDHjHELGEL3hAgPeSsSKKd3jBVbOFMmR8kX8TJkyQSy+9NDl9Hgd65Y1BoQ2GP5YQwAnD2EmB97URL7QB5BW252L7b94LgjM9pwb5hTLwqTa0o7x5ijaN/gLbmtEWkVvY2owD2bTCFqvG2I6M7c1YjUb/hn4EJ8jjkLy8V4x+N68P9Xo/hW29Ro5+kwAJkAAJkEBkAukECytcWLWF8MH3XP/whz+oVlgju2sqPt1SiC2Obbe7YqUJJwfj3eKsV7pVGuVhAo1PSuHLCJhAYzUGn/nL+05nSMFQ6h/eL8RJyOnKGsSu5hNCWdlkvS/NPzDEyje2reOgHxwUdvDBB+c+vCzr7/I+GwFsS8fnKxE/vKuOFXe8F45VTXyiSnNhKzK2yiNHjzjiiORBER50pA/I8pQJAYsHJXiAhYc3ePCE7ej4//K+ElH6uxDN+CQmyre8vtBM/W6euGW5l8I2CyXeQwIksIYADgjBlecdFOIjARKoTwKlE6y2Ezj0AZoVPc8ksEURKy5HH310sr0Rgg+nBuNAGZwSnPdQGZSD9+uwrRcTcQhaTMRPPvnkZEUr7+Q3tGDAu8jYPonTjHGIFB5gYPUc20chImp9SnDb/MNhT7/+9a+ThwR431j72RjPOUjf4hNAm8ZBUfjEE7bd45WBww47TGbOnOnigV2z9bshI05hG5ImyyKBAATQoWEbS3phGwuOode87xTAneQESTxtxRPyvffeO3mqj8NPsBUIqxj4Vi8maLxIgAQajwBWH3AAU2wBi09vQPBZhRS2F2q2M6eRw2EyeMcWh97glFMc/oLtyVhpyvseH8qEOMRWR0ykscqEdzqxUotvZ2LFsdYXxDpOrMXJsNiWjHcNcYAOTkm2fB+0bb208cV7v1j5C/F+LXzC2HXHHXckn/bC+9N4vxL5gjrj0CxezU0AOwPw7nueVwRiECuq343he63LpLCtdQT4+yTQhgCELS48QcdBJvjMAS4IzPRvRULD6YHYSjRp0qTkY/aYCGALG77ziEkHJgp4v4QXCZAACWQhgJVBiIv77rtvze046AniD32N5sLneXAoEN6v/cQnPpEcdIWDW3gVTyBGfEPVAivoOFkZK78YX8eMGZNsjcUqMA774RWOALYM4710HJjWDBfeJ8ZBUdgyjT4ID8U0B8Q1A6uYdaSwjUmXZZOAggDEK07rS1dBcSAB3snChA1b5PCtQZwqiC1kWAnA8fl44o5tWdhGh6PlcQInTrrESiuEJ/5/fJcQ27Zuvvnm5BuN6ITxlH78+PHJkfef//znk4Nh8D1InN6J34WQxUoxJqBYTcHpg/iWI961mzp16lrCFpMFvIOGf9heh8NW0u/DKTDQhARIoEEJYPIHgYE+55lnnkm296L/wCFNmgvfmsV2Wrz/iwNm8L3L4cOHr/lerqZM2ugJhI6v3pO1LdN3irHtFIf8lJ7Wi0O9MC5iXOUVhgBOREY7x66A2Ds+wnisL+Xaa69NvtGL057Tw+uQY9idgYcnvIojQGFbHGv+EglkIgBhi6PhMUnDkz8cFoKPfL/yyivJQAzhidVSrE7g73jqDAEKEYsLYvLcc89Nts1BjGLVAmIYKxg4pQ9bijEJxPtxEL8XXnhhsg0rPdAB33T74x//mPwOxC+ELH4P29IggnEi6ptvvplsRS5dscXf8K4KfhvvqUAM4z9xKAMvEiABEkgJ4PRd9C/oh3DSMh7G4QEaDqXq06dPblD4Him2DqMvSy+Uh35Ps304twM0WItA6PiGxPv/2TsX8C2Ksv8PKimgIpUimoWoYX/l9ZBIWWkiRYKar3ESMaXSzANiiqR2wmMeXkAhylfMzKCUrETLEg9RKJHHtFBf8UgmkiaKIprK//pMDi3rc9hnZ/fZ2f1957q81Oe3MzvznXvuub/3fe8Mn89MmjTJ3HHHHTblHNLFnrvrrrvatHF9s5sd2mAL3jibcJq79F4cCK18W04GgMtcq9W70aNHe3/CQHQZOeAb81YL370zRoIRpLhzNzL2Een8OErQddG7mFttn+c50Iq+ZXEvd5r3l6mOiG2ZZkt97RAIxL+xJUrLaZAQVu6G465GIh2QT4y5G2+80V40D7F1RHLKlCn2YASiIXgQeYaoCAYHz02cONGeJkkUF7LL3yG2eBbxPBLVZbPgInS+qY2mIkNmaxFbFPiKFSvsNRF8T8VGhGLnHSpCQAgIAYcA13NwtQ+EdtiwYVZHcI/obbfdlspw43s0MleImKCHMDDRcxiYFKJxSQkLUT2uJEEPc90PDkGMVb6x5aTTtAVdvWjRIptB48qpp57a8tU1pNDWK3wzGkJkLOv5TYt5rXqku+MI5qoqZJDzK9hjIbs4cFWyQ8Bd4xVvkQPUWvmWHuJ46KGHWmc/pyDHD3BjrbdClOkPNhM6B7KI852sN2drsS5bKfSPA+LIFOEuXDLqWOtk1HE4Ff1jbSYt6KDoZxrUw+nXu3dvezUX9l8r+CV9b1WeE7GtykxqHJVBwEVsIaEoaww1SCikFaXGAU4Yaq4Qxb300kut8uQET5QzpBZyy2X0eBLx9nFABtFYFCbE1h2wAqGFNPNvNny+peV7o+HDhycmttwBx111RFuOPvrotX2DNOs7t8qIpgbSwRDg+huyOeoVMj5aNShdWxxShAFHJgqnBR988MH2pOA0hegI0bd6ZfLkyTYLJkkhdRK9CTnjXAOiylz9g/OPTzzSFFISOZgJ4hQ1yjlIqpU7WZkPjFs+FUHXxuuCQ1IC78aRF1HOan7z6h/jR/445Z9IbSvXOKWRgY5YB+c7TiuyvDgEM000NIobh3thB+Fo8i047EkTxgmGQ4yzRDigjEPdiLBuuOGGLb2CDDoCENg8rHfsLPTasmXL7AnerRRkkm900T/ugDlsLHQYQQau4Uqrd1vpR1mfFbEt68yp35VFIP6NrRsop/WRzoLCIxLx05/+1HoFr7vuOrt5QGyJpGI43XLLLWbQoEGWnB5yyCHW24kRheLGALzgggssYea/MSiJsjYjthh4KGpS/GpFbDk5lGsiMADZGOgfF6jjnVURAkKgnAjgNON+Rw6Nix+EQvSkSpEDiA5ZMUSA+cSDO2YxLomCklKJszHN4VZ8zsH9q6RG+xaMXqJCZOP4Gvh5EGXf8UXr59U/5plPciAinBVBhJ4DjtJ+453lmKvUFrIKpjjKOQOE63S4NxbHPM76VgsklMhoK86gWu9g/nHsk2GG/sI+IjuNQkYatguZbq0WdAYEdO+997Z2GJ+QcV5KmiwK9A7ZBPSPq8aI/vbr1y/Tk8pbHV9ZnhexLctMqZ8dBoF6xBYA2Bz4hpXDCSh4HInOEumIElsOd4LQkm5DwRsN4SSae/LJJ9vvc93vtIkShti61OFrr73Wpgii7PEY4t2ErLr0PncScvS6H/5OCo97J4e3kI7suwl1mInXQIVAoAiwztEFvkQq0OGt0y30L2MlO4bUwoEDB9rr1/hWlyguOjRp4So0IjachUBmDY5EsHTOAFKd0xi9P/rRj6x+z+IKnCyJclJcWnkuj/5xIjdzTFYTc8D84ATG8cC5FCrZI0DWGOn8OL/BGGf84YcfnuhFHEK1cOFCuxbvvffeTA6lJEUY2wQnP2ubNc78z549O/X1hXxTTAAhWviumPFCUtNkBZCCTBYdDjU+FcvyCq5E4JfwIRHbEk6auiwESJuBiDZLO8OowriKG1CrVq0yRICJTiQxrPiGhDRn3teMqGIk4I3lGyYVISAEyo8AjrJm6z7JKF1EtN6zRDji3881ajfr9ngX0SUO7OOsASJM3GVLFIc0Yr7DbKVghBPVrlf4ezMd3uh97APMDQ4HH5KbFVHOYz4Yf1b9c1jyLTdRdBy2ZDdxpgT/Tcoo0XCVbBDgpPMrr7zSRsVZ20RrWQ/YBqwtshiSfCJAO9RxTqX4t+6k/ra6jiCyOPD5Nh/CSco7Kb6kTe+4446pAOCzCtriIM2dd97ZOsZw7qM7CEBgj7XaTzqCQ43vgTloj0/RVBojIGIrCRECQkAICAEhIAQaIkDUhEwPjEocZRy4kubEYa6CIaWOyE38BGS+H03iaIt2NOv2XNuQNCKrOAFxDvKdbSiFFF0O9yMLh5RaUsRJeWyVeOcxnrzmg75mReT/9a9/2WtoiAJCcPm0hyvvINAq2SHAGudTBrBGTqOfLSC7fL6U9J5XUnM5+Iu7hvksKlrQSa3qDVef79Vp1xWy0txBTa0igWOEbADOHnAFpxiOFNYrn2ZBpFXyRUDENl981boQEAJCQAgIgVIjwGFKRDH4JhEjkMgLnx2QXpgmksunE5CwrLI6smqPb/g4Q6BeaTWinNekc8Iy3z0TbeSwPiJiOAUw+ltJpc1rvFnNh8MvbyJPRDAkx0VectOudrk6h0htvZLmNHDa4oomzvngICpOBm5F1mv1hX5yWBTnjeDYWL58uXXWcfBTmrMDkCM+YSClmVOQIfZ8fnDDDTdYYs/6TErk8zw0rV1yUNR7RGyLQl7vFQJCQAgIASFQAgQ4oI5vErkSg+/k+G8OSOFQEw7dabXwjT6GYxrjsda7smqPKC0pivVKq+Qnr1OlMfBJlcbId/PBt7t8H9hKFL3WeIlmuhPzWx2vwy2r+XDtZUXkW5VTPZ8OAQ5R4uwOMh3GjRtnv6UlRZfUXAgbDpU0ax+5wrF26623mt/+9rf2VGsOv/zGN76Rqj2i9Q888IBNj4aAEl2GgBJhbeWTiChK9O2HP/yhbYPrpHBA8XnW888/n/jb4LwOTUs3m+WrJWJbvjlTj4WAEBACQkAItA0BIhGcsv7973/ffj/2ne98xxptaa6XodMQM05LxygdMmSIbZszA9KWrNtL249a9fI6VZo0TlLCOYWV9EZSNTndN21hbkk152BCTt7n/t60V7VlPR9ZEfm02KheOgQgdzNnzrT3urrCt8w4ysgwSFNc6vD8+fNtGjmnF/Otbprrb4ig8v0rpyBzUjPEm0PE+NY2zanItMcBUqRe+5Y8Dk3z7VNZ6ovYlmWm1E8hIASEgBAQAgUhwCEoEFpOP4dIkZbsc0InkVHupOSuyyuuuMLLQAWSrNvLEuY8TpXm218MeoxxjHKcA63evenGSNSK7xavueYae+85bXKqfdrDbvKYj6yJfJbzq7ZqI+A+W+BbZr6nf/LJJ+2p4JC/NNkA6ApkHccLEVY+G/C5G5fIKA4dThxmDXBAEzoNwpym8A04hzuRgszBnL4l60PTfPtTlvoitmWZKfVTCAgBISAEhECBCLjU1eeeey5VRMN1HRLKtWBEXThwhfu5idyeccYZa9NgWxlm1u218u4kz2Z1qnT0XeDGN4ZE04kKjxkzpuH3wY36yVyQ7ovjwhVIA98KtpLanNf80m6WRD7JnOkZfwTWrFljrxBEjrp06WIb5JqfL37xi6kaZ51zLy6OF1J+Ics4dCZOnJgqFdl1ghsiHn/8cfutrc/p4hBaHDCU6MF4vt/mcysF/7iSJo07FeAlrSRiW9KJU7eFgBAQAkJACLQDAQgt354RpeWgIlJe+bYWIzNNgdDSHpEX7mgkLTnNNRju3Vm3l2ZMjepkfegNKeCkCXOy7D777GO/MeR7Z64PSnOY19NPP22j8Keccoo17vkG0t1ZzriIkrUyP3nMR5ZEPuv5VXuNEUB/QBy32247w72uPoUsAtYT0WDSnDnUDnlzxLmVtiHen/vc52zmw0477WSvJOJKHSK3aUq9b/TTRKfd+7mvmpOWowWC70PA04ytTHVEbMs0W+qrEBACQkAICIE2I4BhxYFRU6ZMsd91chgK36IRiUl7MiknLZOKTPSFFFjufSRymOZbOeDIur0sIc760BvuXYXcYvRyMA9EdNiwYfakaQz0VgttkdpZr0yePDnRfaPR+lnOR9ZEvlV89HwYCEBgORGZf/bff38breUO57QFQvvtb3/bEuP111/fZj+Qlsxp71mkEqftl6tHv+gferEVx5Lve8teX8S27DOo/gsBISAEhIAQyBEBDoHhuzMOfuGKGYgV/00UrWfPni2/+eWXX7anmkJqMS4pRCC559GdyNtKo1m318q7kz6b5aE3tLXffvtZskkKN3cKQ3CfeOIJa6AXXbKej6yJfNH46P3pEOBAJfRDVqm4ZJzwfT9ZKBQiuAMGDLBOPB/CnG5076x155132pPPXf+yarfq7YjYVn2GNT4hIASEgBAQAh4IcAUMJ31yCAwE9wc/+IG995HDTdIUUgkvuOACM3ToUHsfZdoTUt27s24vzZga1cn60Bvedf/999tI7aGHHmqNc65TwSgPoWQ9H6ET+RAwVx+SI8AhVugwUof55pfPIj7ykY/YQ5+WLFliryRKk9KfvAfJniRToX///ubDH/7wOmncl1xySerMlmRvLvdTIrblnj/1XggIASEgBIRAWxEgZc/nuzE6m/U3k1m3lyWgeR16k2Ufs24r6/kImchnjZ3ayxcBvtMlvbdeOeKIIzKLCvuMZPny5fZb4nghuyWrqLVP/0KtK2Ib6syoX0JACAgBISAEKohA1t9MZt1eHpBneehNHv3Lss0yzEeW41VbQiAvBDgNnE9BHnnkEXuIG5kZnTp1yut1lWhXxLYS06hBCAEhIASEgBAoBwJZfzOZdXtZo5j1oTdZ9y/r9kKfj6zHq/aEQB4I8E0xn2lw8jmnP3PFEYdI8W2w7+nSefQ3lDZFbEOZCfVDCAgBISAEhEAHQCDrbyazbi/rKcBAJX2bg5345/rrr7enuoZwQE3WY6W90OcjjzGrTSGQNQJz5syxZxrgKKLwTTDXcUFsd9hhh6xfV5n2RGwrM5UaiBAQAkJACAiBciCQ9TeTWbeXJYqQWlIIuTbphBNOMH369DF33XWXeeihhyqbVhjyfGQ5t2pLCOSFwD333GOOO+44exI9kVr0CIdc8Xu3bt3yem3p2xWxLf0UagBCQAgIASEgBIRAqAj8+Mc/tqcYjxs3znz0ox81Tz31lBk1apS9d5YUQxUhIASEgEMAXXHsscfa/+WubwqnI+MI69Kli73Wi3+r1EZAxFaSIQSEgBAQAkJACAiBnBDAUP3a175mv5fjHs7TTz/d7LHHHoZDlojEqAgBISAEHAJ8uoDzq14hDVnf2NaXFxFbrSUhIASEgBAQAkJACOSIwIwZM8zdd99tzjrrLHP++eebD33oQ+aYY47J8Y1qWggIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYNVrRPwAAIABJREFUVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtuPNuUYsBISAEBACQkAICAEhIASEgBCoFAIitpWaTg1GCAgBISAEhIAQEAJCQAgIASHQ8RAQse14c64RCwEhIASEgBAQAkJACAgBISAEKoWAiG2lplODEQJCQAgIASEgBISAEBACQkAIdDwERGw73pxrxEJACAgBISAEhIAQEAJCQAgIgUohIGJbqenUYISAEBACQkAICAEhIASEgBAQAh0PARHbjjfnGrEQEAJCQAgIASEgBISAEBACQqBSCIjYVmo6NRghIASEgBAQAkJACAgBISAEhEDHQ0DEtoU5X7NmzTpPd+rUaZ3/f/31182rr75qNtpoI7Phhhu20HLtR9966y2zcuVKs8EGG5hu3bp5txdvIO/2k3T4jTfeMC+88IJ597vfbdZff/0kVSrxTB7jdvIZl8s8AStShooYb55Y5t32s88+a/XJ9ttvn/ercm9/2bJl5uWXX67EWHIHSy8QAkJACAgBIdBBEBCxTTjRp5xyivmf//mfdZ7u06ePOeGEE8y4cePMeuutZ7773e+a448/3kyaNMl885vfbNjyP/7xD3PdddeZ97///ebTn/50zWfvv/9+s8suu5hPfOIT5ve//71t99vf/ra58sorzec///mEPf/PY7T3pz/9yQwYMMD069fPxNtvuUHPCpdffrn50pe+ZFt55JFHgjJSr7jiCgNBPPLIIz1H+c7qeY175MiR5pprrjF/+MMfzMc//vHM+12rwSJlqIjxZg0qjrCuXbuaLbbYwkA8Wy3xNV2v/osvvmg++MEPmn322cfKSLygg+bNm2fuueces9tuuzXsxi233GIGDRpkvvCFLxhkOW1BX86YMcP85Cc/Mf/1X//VsJkpU6aYa6+91uywww6GtfnjH//YHH744ebWW281++67b9ouqJ4QEAJCQAgIASFQIQREbBNOpiO2/fv3t6QQQ/Gmm26yEZAxY8aYq666yhpZP/3pT82BBx5o/2lU7rrrLkNb//3f/21+/vOf13x06dKl5qyzzrLG3IQJE8y3vvUtc+aZZ1rDLg3hwjj86le/aqZNm2YJeLz9hFBk9thOO+1kFi9ebMn6iSeeaDbbbLPM2vZtyEU941F633apn9e4HdHDCYIzpB2lSBkqYrxZY7pq1SqbjZGW2MbXdL3+4YCbPn16XafHfvvtZ/VXEmJ78803m0996lNWB6GLWi0Q1Lvvvtucd955turChQvNRz7ykbrNOOcJD0CA//znP5vXXnvNbL755vafv/zlL6ZLly6tdkPPCwEhIASEgBAQAhVDQMQ24YQ6YutIIdWefvpp8773vc+2gLG1ZMkSM3XqVBvJwOgjKvu9733PRhpWr15toyUTJ060qcWHHXaYuf32280mm2xixo4da4466ihz7LHH2ujt8uXLzR//+Ecze/Zs29auu+5qLrnkkrXEFlL66KOPmgceeMDsvffeNpK85ZZb2ugx/bjssstM3759raEKaYQ877jjjmb8+PHm//7v/2zk5tRTT7X9ibZPeiyG8g9/+ENLOHfffXfz5S9/2fYNoveNb3zDLFiwwAwfPtzMmTPH9vOzn/2sjU6Tfh0vDz30kAE3iBaGJ++76KKLbJSa8TM+Ck6Aiy++2Gy77bbrNEFE+8ILL7TR3E9+8pPm4IMPNoceeqh9plHbGOeM9WMf+9ha45n3QcJ+8YtfmH/+85/m6KOPtpHrV155xfz617+2kXEi77wn3rdZs2aZJ554wuJK/V69etkoERH0rMf9la98xfz1r381X//6160s4EABn86dO9t+YsQzDxCDD3zgAzYy+7Wvfc0SoyjRgyw1wuA973mPlQ8cJ8w1zpPjjjtuLb7IVpLxIvNRGfrZz35mMxeGDBli7rzzTttPSNNpp532jvllHp9//nk7VpxEODYGDx5sjjnmGCsjzeSxlfGyVnGeQKB4J1FHIpOMH2cRcv3hD3/YRhC32mqrlmX9xhtvtFFESB/tIquM41//+pcdP3LCGCmTJ082v/zlL638IIOO2II/sta9e3freHJZGfXm4rbbbnvHmuY9l156qXW20ZeePXvasfBv1j3rhrWM7gF35g/M7733XktqHbFttL4csR06dKh573vfa7GkbYjqnnvu2VSjstZIJUZ/NCO2yAAY8ZkC8uSILfVOP/10+06cioxXRQgIASEgBISAEOjYCIjYJpz/WsSWqi76Rnow0dtoKjJEFWJLyhwGLtFciCCGP4TxV7/6lSUkkBlIDETMFQgzf4+mIruILc9g4D3++OP2nRBN0gshuaShQiYgpZDPESNG2D4dcsghlmRiuBIpJnL7//7f/6uZ6kz7GLu//e1vbXcw9ukjxjpkk0L7tEWBzHzuc59bB8nnnnvOkKpN/+gr38M99thjdrz0G6MaEk354he/aEn7Nttss7YNl+7ID5DN3/3ud/ZvN9xwgzV0G7W9aNEiM3DgQIs1BIKy3Xbb2fdDcEj5pP8UHAtEffgbxvnDDz9sCS4ODAqkDSKCwY5T4OSTT7ZOB4gBTgzIUrT4jpt38Q6X5kk0H2yZY1I2IV0QApwVf/vb36yx7yJnUaIHIWiEAU4XHCYUCArOB+YKGeV9yHWS8cZTkcEN/CjMEe+hXZwuOGeihWg4kWWwRBZfeuklOybmBhl2qff15LGV8TK/LorN2uI9riCTjmQhizNnzmxJ1p955hk7L4wX7Jgn2icrY+edd17r/HDRfwgsa4o1C/bu+3lkEQeDW1c4qcCl3lywruJr+sknn7SODlcYD7JywAEHWBLI35566inrFKGABc4T5ojCu1mHjdbXHXfcYSO2rj6p1MgK/cdphOMuSXHpz40itjjtGCOfULAGo8TWyR4OBPSsihAQAkJACAgBIdCxERCxTTj/9YitI3s/+MEPDGmFUWLryBS/EXXDeOZQKepgtEZTkTEWHbHF4MUYJZJWi9geccQRNqoKaeAdGKVEHj/zmc/UJbYQjnjaYpSUEP1xBqkjxpBI+o3xS7TTjfU73/mOjTyThggBg7j/6Ec/WgdJR9AcuXzzzTetYYrhTGSLqOimm25q+w7pjxvDw4YNs5Hu//3f/7URY8gz76A9DHHIX722IRlJiC2EhugokcKtt97azg8GOuQimoocjcwTQca4BnsIcfz7aN9x//3vf7d9gSRwqBbfIDPXzAXRRr5pJEqGrIDj2Wefbf+biGMrRA+SQ2oq84iTBScGzgvauvrqq9dmIjQbbz1ii9wwZxAtHAa1Um1dXeSLqDxROeSC7AbmukePHlam6sljK+N1xBbSDEn6zW9+Y8keBI4oOM4QovBgDNFqRdaRU+SVtogiIhekyjJuMiVcVL8ZsXWyRwYEkWTmFqeFywqpNRfxNX3++edb8gohJuK+11572YwK2sNpAWbMPf2EhPMb74U8O2KLLmi0voj+Qmwddu9617tsNgYOilbS4JsRW6LJrEX0DesAuY8SW/QAa9c5pBKqcj0mBISAEBACQkAIVBQBEduEE1uP2Dry+uCDD9qUvCixJUUuesgTZAWDEsMz/o2tI7buoCi6FScNLmILuYFQUj760Y/aCCLEhnTPaMQWgjJq1Cjbp2bElrRgFzHlpFuInTutmPdgqBP9JWLrIiykX5Jyyu+8K1ogSd///vdtlI5oHQUSdcEFF6w9XKsRsYXQM35HalppGwyTEFui0hAcCqSb6CckByM//o0tEW4XYeZ5yAbjI+LWSt8gGY3GTVsQLqL1zCX4UkifhfjxrTXkOVrSEFvkx0Xko205App0vPWILQSLdHeisKTWIvv8d7TMnTvXOieikXX3dyKezeQRhwpOIMhUswi1I7buXThYSD12MuDGgbMJ4uuIbRJZx6lEtoSLtDIG5oR12rt373cQW5fJEY3YRok/Kcv0C/LIfzeai3rENnqA3UEHHWSuv/56O9+QSUgifXNOI/rrMk8YA783WruQZfoWdWiR7gwRP/fcc60eSlKaEVv3SQAOGE6cBwdw4v/JYMBRwKF9FJwhWZxEn6TfekYICAEhIASEgBAIEwER24TzUovYEu3gm0+MdqIHpBc6YotRTwSDiCTRSlJpMcgofL/G77UitlEjvx6xJdWTb1Ix5rkmh7YgDURjIJu8iwgKRuYZZ5yRiNhyIqqLLEEC+N7VkW1HSpyxT3QLItiI2GLkYuy61E7GTUQZ49oZ1I0IHvWIgvNd6f7772/JC2QPAsH3gI3a5nAvCD8pzESf3Mmz9CGaigwpJRJKaURs+R6QyC6GNGmc1OFbW4xsIqzRa4p8x01fiHRiuBM9xGmBQ4CoFeQEkkLUinRX3g3BqEVs+Sa3EQbIBZFghyNRc1K0kQEixknHW4/Y8i01Ub9GxBY5wzHkUo9xqOC8gcTgAHKHidWTx2jEttl40xLbJLKOU4uMBsgVUUa+k4UgQvzIanDZCI58OUIXT0VGzoiGkuJ+0kkn2e/jiaY3mgscR9ED4VzENpom79aSc4jhWOM55od5iuoR+s06a7S+0A3IXTRS6sgzzj2cSklKM2LrHDzxtogUc8aAy27g73kc8pZkDHpGCAgBISAEhIAQCAcBEduEc+GILcYc6XF8J0qqMIUUQf4eve6Hb0ghWDzD4TSkJEJ6SXfFKIMIY9BjpFGfw58gKEmILe8kRZF2iOpB/CCAkGnaok2iKqSqUlzEFmJN9JRoEBEdDnSKpjrTJt8Kk8YIiSUdlMiZI1atEFu+VWXMFAxryKU7LAqDlAOYGhFblwYN3hyuRVol5ITxkurZqG3IGYSfArnAwUDdNMQWzMAXAgaRhXhBVCAc4EwaZ5TY+o6bPoIVBMd99wh5RJacIwHCCzmB7EJ8XfpslOjxbWcjDHBaQJ4ZEySStnE6QJIgVURLk4zXh9gyVheZRy5J5Yd8QYwgSM3ksZXx5klso44Ivp8l8g/h5IAyDnJyY4QM4kBw34vHiS2yztrE4cDcM7c4GRrNBd+WRtc0bSMbUWKLTkA3OCLLGsJBRKGPzCHvokBs+Wa20fqCaLtvbPk3sup0DeSdw6UgpW4e66nYWsTWOZgYB44/8KLw7Tr376Kb6CvONp6Jpo8nVOV6TAgIASEgBISAEKgoAiK2CSe21j22EFFSjTEOKY7YQmSJeJBGiNEJ+XHFkWCiUhhuGJVE4DCAibDVIrYu8kgEB0IaPUwJ8kG0lTYw3jE0HYnjO10ii47YYpBibEKuITB8q4vR7don9ZjfiAy6AjHEeOaAG0dsSdWk76TxQvpqpSJTn28PIaWOoGGM0h9OiaU0IrYYyBBiR4Z5Pprm2Kzt6EFbzBPfekLSIdVExnAqNIrYuutRnFHN/BDldCU+lqgYNetbs1Rk2nLvd9FMfiOyxvw6YgTxgwTRF05tJv07eo9tIwxwLLiIvus78kKUnEhp/G/1xuuIrZMhd3gUh/4gY8w9462Visx7OZkZuXIyArnDSYMjoZk8xu+xbTRe1gQnSLv1RdQfbF0qMicPs4bi39gmkXXmhdRuPj1wBQLG+oeYEgGF6FFYr/yNOeRwN2QQIgk+pAM7gsmJ1mBIqm2juYivaUgmjqgosXXOlmjqvYvs0iccNJySDSF3pyI3kmF3sBv4sabcwVusVTJY3HidTNRTsbWILenh9MFlnbi6pOLHv7ElXRqZr3WIW0K1rseEgBAQAkJACAiBCiEgYtuGySRVEeOXk0gx8l0hfQ7jnQhg9PckXSKSAUkjmuO+M3P1OKUVclLrbkf6sWLFCmtM80+tghFJyi5XrvjeLcv7iCwT1SSFMRrdTDJOIjWME6LjTo919Zq1TeSTyDjGvvtmNsk73TOk0fIODjGiPm2RisxhOXw72eibvmZ9a6Uf8WchE8hLEplphgHfh5J9ANGF3ERLK+P1GQ+yDPEET9ZIfK5akcdm4/XpZ7O6rGXGAQGLr0s+RyDVG2Lb6NRgnC6sy/jcNpqLJGvanZgOCSXjgUKbHIIGsY3rEP6eRIZdej7yw7pwhc8N+D651XtukQW+XyfLgghto+Lu3nUZIM3mR38XAkJACAgBISAEqo2AiG2151ejEwJCQAjYaCxpvmR9ENnOsxB1Js2d1Hai060UvtXlUw+i1Y0KkXSu/YoektXKe/SsEBACQkAICAEhUD0ERGyrN6cakRAQAkLgHQjwSQGHXJHanGfhzmqi0u4wulbeRYYGEe9mhVPYOdiLw9rqZZ40a0N/FwJCQAgIASEgBKqFgIhtteZToxECQkAICAEhIASEgBAQAkJACHQ4BERsO9yUa8BCQAgIASEgBNqDQKOrmNKcfdCeXqd7ixtr1caVBI2OPPYk+GT5THxNdUR5S4JnR5ZJxt5R5ULENsHq4OAXSqsHHyVoWo8EgACH+nCgTq0DdNrdPXcQUJJ0zHb3raj3gUmjA5foF4cOcZetSnMEuC+Yf5ph2rwlPSEEGiMQPV2+1pN5HPxFKjz3uPNNOen3rnDyOd+X//nPfzZ9+/a1p7YPGjQo0ylMcuJ9pi80xn5nzrfzXNXHLQ1FFE5n54q5Zld8FdE3n3dy6r/7np8r90Io3LjBJxjRwqn6YM+tBBxc2KxwaOB1111nDwjldHoKt1xwMCW3I8QPkmzWXqt/57pBriuMFg4q5YrJrEpRMsntCxx+yJ32HHpaROEWj2OOOcacc8459jrHqpSkMtohiC0LHeXPlRxJC9fScP0HgslmyCnBM2fOXKc6925yUu8jjzzS9ATPpO+NP7dgwQLzuc99zp6omqSg2PjmjKtyoqXe7/E2OVWWg1/Y9FGUFO6lnDVrluGKomHDhlnFR+GKlvPOO89ez8G1QfzOdSm+BSIDSXnooYesAZJn4SqU0aNH280LD9fkyZPtVSOceszVJSgpvF5sBIwVo4gTZkeNGlWzb7/85S8Nd/BGC3fwQiRuu+02u3FwvY07bZprerj2ZcKECbaKuwaKK1M4HTbUEpVLTqcFw7jMZdH3v/zlL/YO37iH+rXXXrMyyTxQWIecSMzJ22Us9eQG2ePaIIxWxvyZz3zGXq+FAX3aaadZuYyXKVOm2OuD6hWuyaFN7p5tpr9q4ZxW33HlFusM/eJbWtWLvu9T/XQIcB0Z10NRMKTZMz7xiU/Y088p3PfMqfNZFE7f5/ow1gqGpbvfnbY5sZx38n72dQgLBX3O/2dViiC27pozTiDnCrgiitPTVSO26FJsIewnrk0MoThiy5WL7I04dTlvgGsluQ4Q3d6s3HXXXfbKRmy2n//85/ZxDu7jqkd35VuzNnz+7q4FZO25MxIg03HbyecdRcmkI7Zp90mfMbu67io8HCDRayqzaLvINpLKaIchtng0WzG8IWpf//rXrRFWj9hCVjCw9thjj9wOMPnDH/5g77rk6plGBWXEKaR4Z7jH0nnD6v1er62TTjrJ3gv5s5/9zBJqd5oqSh3Syr2RbKD8DQMbYkgdjAoW0T//+U9vQ8URW65J2nHHHXNdR5CyY4891o7na1/7mh0bGBLNYsxgikeT+zXpFwQUTNnwuIbm3e9+9zr9Q8aI8O+1115rf+eeY+Tvvvvus3enYniBG+/ged6z2267rX0ewgH+kJ1QS1QuwRAnwJe+9KXMu1uP2CJnbIQ4nHASlJ3Y1pMbd9/uuHHjrJMFOeL+3m9+85v2DmOu7HHlxhtvtFc3Yaw3OrjJEVtkrJn+iuK85ZZbNn2+kQBgNHE/L7rCtyTVi77vUf3sEOCedk7M5p5qSCcFwom+xaBFlnfddVcbZYD8omeRl3333ddwqBjeehzNHH7GnhsvP/3pT82JJ55ocM5CYKPEFqf0UUcdtfZO9+nTp9u7wiEt0RO4uf6MO6fR4dwJ7mSePtI3iPhPfvITe2c9hit2AmSOe+7dtX28G7LBvdbsJ7wHO4IxHHLIITaihlMO+4HICn3D4ckewx7KHkFhPbMX4Fhmf8AhShQmXhyxZR9hbRGZxvnKuNADGIOUuXPnWl2J4xb9wR4VjZpBjtjfGDNjpzBODmojKICO53mIEHqBU8nRRYwtTiIYd6OxgxG6zO1xzPdFF11U8+A49l3Gwj3ZROPZjw8//PC1eyxOYHAjQkfmFWTtzDPPtDYZ2KMPcS7jJMfxwXt5BrsFkogOZAw4mLkOjbvOwQdHNPIHYeR+9VNPPbUlGzK7lbNuS47YRsm2i05G74uvhwvO0MMOO8w6f3h+7Nix9r51MGRePvaxj1m8kUfsHPaZxYsXW7n88pe/bNcRDteTTz7ZrlGCHawJ6oIp64B6zBW2aK2AEuuUtcR6a3T4X5Yy2UwWGskka5V9E3lFnrijHRxqZXw4YosMsueh17AvkTvGA9Hkij1wpWBvs6awQ52jnt+5Mo/1j/0PjhTmijV+8cUX2ysacW7//ve/t5izntEBzFuU2CK32GjoAuf0IIDDWAj4oV9pk7bmz59v1z+6BjmrldWF3Qs3oi30yeDBg61eIvrfSJ+jE5v1Y8iQIfbaQPQXdjLyibMO2/KCCy54h4yig2qVDkVsWcwAxuJkYlevXm0nM26QO8VBxAzljBF19913W+OZTQHBYdPaeOONrYcMhcuz559/vvnBD35giOTyDgQ4nuPOpgM5xGOMwJ511lk22guJQ7B5D2QOxYCCSWrAsVHzLP1D+N2GVe/3WsLARorAcs8tQsRixOAmBZtFRkGZQdAgfERV8fyBB1hyby4LGcPAFQwW2mJDYZGwSYEZi5zUJQwGFhhXfDgBjhJbvP0sFvpFYTwoQxY60U02IDYkFhibslMMRNxRnODJIqVe/G5QFBQbKps0fdtpp51sv1xECYXNHNN/7sKFRG211VbW6CHKQPtxDzlKjQ0CxRctbKoYFvybFDkMGvBDZpClaHFYspl86EMfesdUETlG4YETMnThhRfaOTruuOOs7IDnEUccYbGoh0+0UeQfwwmiwztxWKBs6QdKj/YYNxsVRhwbJtF053CpR2xRgLXml3YbrUP6wRgZE+8Do3jEln4h63h8kTmiMcwdBhnts4bd3BAlxPDEmYASZm1BitPiVW9cyAXGO+sbIw3cUMxs4vQVI5ixRJ0Ybh7qyQ19xcBCdijgggGP7EYL99/SPhtT3BnEpoyeQU+BE0YMmy3GSDP9Bf4OZwgJxi3tkEKK8cOawWjkfl6MYJxfyCVrgDRQUurBA1nBCCCqjl5hjl3BAEDnoJMpGGnoMDZOnofIoNuIMLDuWbNRvch76+kIcKmHfxJ9nZdx2hHbjRNb1jQpw8wl8sMegLFNQb5ZZy5riP0VmcX4ZE1BNjDAahXaYD1FiS1ygx5Hb2IHQLDpD3IZjxKxf6HjSIuEQDkjfMaMGbY/rC/6AAFCRiFDLg04GrFFbiGd6FLaYM2w9iBJ6CLaQwfRFv1l/6VAmLE10LkYwKwX1irk1+230XE7Ystv6EOcW+DEPoY+dLqS/+Y33sm7sVVYZ67gEGCfoy6GLu9mvwJrl5LLXsHv2CZu3yLlkrpED13EljXdaOzsMezbYIFzmPngv9l/4p98odcxwJER9BfOdsozzzxjn2f/ofBu/hYdu7u/GzsAYsY7eTcEAGKIbUAmAYW/Q9Qo6Cf6xb7Bb+genCBR4lHUGnb2KXoQBw/6Fr3PHLmgBvZWPVzYU7BPkXEwRT8z7+CMLB944IEWb/YcfqOwb2LzUZAd6rh7xPkNmUBXuxL9/1opuRAY5B1cmUfWGUQxnnGVpUw2k4VGMsneh4MIzNlnsSfBjnWCjRgtjtjyG+Nz8so+xTidHcp6Rh/grAO7eIaiCyqh+5566imbtQmZRV+gG3EYoM9Yi8gqdhB94rkosUWGnaPb2VFOB6ATmAt0Gv3BbuVd9Ic5Zq6jhfpggI7lKj8CbtRj7aCbGulzdEmjfqCbonwpuh6xvVmncRmtZUvR3w5FbDHK2DBQoCg1JvXyyy+3Sjka4WDTYbIhB5BNnkVRY6QDJF4pFAOKjvZQ/JAjBB/wSS8lSoenFRLjCgY3ipmNE6MbQuIMQsgtGwPvQIHgkUEh0JckEVv3DhYnSiX+/UK93109FBrvp88QOjZlNlQWqSOcPMuCYcNi8bhvHyEOeHUxTONRTJQWGzReURYgCpjFw4KA+LNp0FcwY9EjwGAC6YPs49XC0+3SwImqsnGhJPhvNioMVJwJzBckAMKM55b5hYBCxvkb8xUtKAXGQ98obK4sVhQPpBmFg+OD75bYNFwUFgUE4ayVxkZdnsO4YJ6RAxY0Y8WpgaLDScB4kUdwZu7jhTpE6VBA0UIbEATaYGwoA8aAB9ptNLwTZYZs18InTrqdIsZQAWvkGxyRdRwGLsUX8sE7mSMUejNiS/9rza+LsNZah8gVaeDUxWGCswLZjBNbDEo2WzydGG70i/YgfvSdjYf1Rp8xgPHWItcYt8geXs60eNUbl5NbNh7w5zmiC4wXrylOGmQdEuZS0d3c1pMbSCljx8uODLJG0D3oo2hB97A5Mb54gQgjExgryDXrBnlxqciN9Bf4xXHmedKKIcW0g45kw+EbdXDFacO8YYwzVvoMWUU3YuRj0LioFH3FCUUky3nvIeHz5s2zbbEOnHeccVCX6BBr1skf46mlI5ABPLq18EevNtPX7wBSP3ghECe2Lh2S9cIaZw9mnbAvYuSiHyFb59hnAAAgAElEQVQr7GfoPQqygMGHbqv3aVEtYouDFiLnMpHQ3URg0cfsX9HCM+hV/mFfQ3/QP9Yguo/9GYcO+xokA4LAnsgaaIXYOtKIDqMvrGn2O+f0RV8xdmwC9jM+C0DHYVhHiyO27HHUp5/sXeyTrCn2QQgsn4uw5t14amVXuW+iMWhZ3zgbWKsQQwxn9mSMV/Z+SB5GLTYDxCgpsUU/Y9BTaG/DDTdc6/RCRzpnRlQ3Mhbn6AUf9hVwYf+kX855gB4AK4qzKVxgohGxRS9DCglkIFfoLBwbIaci11qM7ptKl7JZDxdkpFEqMg4SF61zTgEcQJBeiBbXxrn9Ewcuv9Me8+JS4p1DxWW9RfvryBx7C7YSewqyzj4RzzbKSiYbEVvsvEYyyRjhAfTXBcLYl7Fp0QPR4uwphwPrg7XknD6sRdYpNhwYscZwCC9cuLCmHegcS8wDdZ3zAhuYYAN2OvoMfUHBFsbRBjHFwdyM2FIHfgBhpR42PHNJwVaKftaEDYL+QQZwwOGEwlGIrcV70A319Dn4JSW26HDsaGxv7FLnhFMqckRESP1BGTpiizcLgUJZshHVSnmNpyKjcB0BwpBiYROpcMSWKCbCwXMsIJQwChYPiysYZRBmZ8CxoBFuhAHvclSI6BcGIgKUN7FlgeJ9xvBggbPhOmLLhoWB6KKYbOIQtijR4Bk2fhY5xmv84AGMezYVNg/IJUoVYWUeSF9gflyqi8OvGbFlkbCoaGfMmDEWYhYBRiwLDAcCz0DK2cBxXsS/14VsYqi4lBA3TzgU2NggdMhGNN0YJcVCZuHHPf2O+JGWgRLD+EKps/lDvOgrhBBiAgako+HAAAe8ftHvkzH0wTV6+IkzBCALGOy0y7wgHxg3bDTgiUKFENXDh0hzXBEzR0R3KThjIEK07UNs680v42Td1FqHKHc2YxeRdCmDcWJbKxUZMgTpJ7JDv5k70heJLOKFxBsIoYEA4nBhHtPg1Uxu3YbGRoRHnXUOWWcMGJUYjWxGrjSSG7fZoieQGwqEMRo5cNEnZKrWoWOsC3SRS7lEtihRYltPf2F0xlO+o8QWHYrsgjP6Dx2G/KAjnDzheMFhxLzUSkV2ZxW4FFVIA3oCMgKZRWcyd+gW1iVrGXLTjNhioNbDn/XRTF/XMhz1W3oE4sSWuWVPZu9xKaluf8HIwhGDHnUkgzdDZnBe8TcnX/Ee1SK2yBMkBVlkHTljE0MV2Y2WaJQIfUS/XfQT3YvecNFVV4++0KdGxJa9hv0ccopuqncYJeNF72NHuAgi72F/ZU+J72OO2EbJvsMam4X15L5jRlegf5F9SHu8uIOSsEdYX0Q2XYQOnUw91n+0oHfRa42IbXTsGM/0r1aJfyeMke10Wq3TtR1Bin4XikOU/4dAMy9RYsuY0Z3xiC3zDC7ORnP4hExs0eeMg0wh+u8itOw3/Df2Sz1c0NmNiC37hTuECl2J/kX2nS2EkwUZYS90xNdFvx0pcRHQ6KcHURsLMkQQAicJ7bKX1Pq+NyuZjBPbqCywphvJJE5+bCTsXFdYp+iTeCq1I7YuAuv2N+qRjksGFEQ3usacXoqvCeYYexaHNXOMExhyyVpj/yZoE+0T9eEXOGUaEVuc0egYnF7Ii0t1jr8//p0wUXz0dVRnuzrN9Dl6Ik5so/2IRmyRaRzl8BF4g8NHxDYyQ3FiG50sFixGXdwLGie2RCgcAYL04W2OGoZ4mzDEXF44nhU24KjQQ1SJamJcRwu/QzbwVrnC4sADg5LOm9hCsFgEeKohlBjCjIXFzmE1LCz+TiECiKChzKIFMgh5xePu0obd38GNKAy4Q/T5fxY1C5wULRYqGz5ErRmxxUBBqUJKndEf7YfbkJxC4G/gxwaFZyxawBcjAS9ntK/MHWQ5erAJype+sskz/0Sk4t8fsPE6wkV7biOodagHxjpRaBQTnmXqYeS51B/GSfSSuYkWHCqMHZLsPGm04YgtmzbRDpf2FldUtQwaZA0vpEvdZc7xwIJBlNg6b3jSiG29+XXEttY6JIWXd+KUoPBNCs8nIbauPZQic8O6BmPIcbwQAWI+0+DVTG5dZMGlvcXfzYYS/VYuqdywQSKryF/02yTWKZjhwa1VMLbxeDqPLhhzKmUS/YXxUY/Y8l53qB3tYXgzFt6HkR0/JKrRN7asOTY95B7D32V+sN4gDGzeLr2tGbF1OoLoHvJeC3/WSDN9XRNM/ZgagTixJSKPU9dFgGiY7Bscx0QX0UkQWzIh0DmsaWfY4FSu901/LWKLs4xMFAwl1g97EDKHA4/9N15clAjdAxnEick+wl7I3oKuJBqCfkFn1yK27Dnsh0Ri3becEHaXiuwcwrSNgY9hj/OH3zGA0fWsP/ZW9gGM/ijJd312xJYMERylUaLgnOWsVT4hiI+n1mS6SLJLBXQOM2wi9mp0M/0AD7CuRWyJutcbO0SHLCX2L+wIvqljb2GsvDvqnEOf4HzENnCZLuynkAbmAMMYfewc3O4zHsaFHmZvhKzyDLLG3LN/xokt+wwOuTIR2+g3ts5x4PZMiEojXNg/GhFbHJGOhLiMLafj3Xe8LmLbjNiCKTaFK8wjfWeemT8KNjpzXO8wtyxk0qU/15IFHK6NZNJlNdFXnKoQLfakeDo/f3fE9tprr7WZSM7Bzf6Io4n1ie1KfZeqXM8p7ew4d+Cdy56IZibgwGG+0BuUOLFFnzpblfWBsxqSzrqF2LKfku2BrmU8FOSJtceaiN42gSzgTHL9wOmB/iETDLLOP/X0OWS7UT+ixNbZeyK2DbbbOLGNnp6alNhGT0WuRWxRzggM/+ANRnGy8WFAuYIAIjxsWkwwQovws2EQ4WDB48VlUrt37249yRjpeRNbokFsiK6wIWBMYCCS8knUA4ODwtghEGwO9ItF674x4CAJvrONR0AdwcPYRYGwKBknUSy8fGz8GOaMGc89nrVoxBbjmc2MwvMoBTxYvBcPkvNUYgjQLt5p3sm8o4xZeO7AjqiYQCRxPNAvCsYSGyGePHe4iXsew4AUSBRBvZOanYfUEQj3LS4Ewh3gQXvMKwYBhggGDbJFf1EYRO/wVOFcIOqMQyBaMM4wtPCO8XcMdzzyjti6Q5xQbvXwiac+o4ghWi7yHSe2jjC6g4ySEFvGXm9+HbGttQ6Zf97jIjgYdPQrCbF17UWJLc4aouZsZhTWHvPIhsIct4pXo3FF5ZaosEuX5jtP54RgbTFvLl2OPjWSG/qNvCOXFHdIiIsCuw3OeclrqUHml00DIk/BmKdelNjW019ElusRW4gBa44SJbbgQD33PlItMU6Jktc7PIo1webKOJFv6pDdgKziLHSRInRlLWJbS0fgVSYiVwt/nATN9HWDLUV/SoFAnNjioMQgQ/5Zi+5sCZqG/GBYu7RUiC5rF2cRxX0DWqsbtYitM8hYhzhKMEwxVuNGt2vPOdT4f/dNG3sSRiJ7IfqSdYXDF0KKMxddHY3YItM4CKmPnnHnVDhi68gzBi/rEycOfSIzAUOR39CVfI6CMY2jtRYRj35jC9kDG6KU0W+MHWFz42H9s+ZrFRxf7pR+F6nmORcJpZ+kQEJcKehX0jGjEVuXtlpr7OhADHX+TX/Bw11J4s6xiPbLpaczHgxt5o8C7uh39BDvgSRBHJh/9Dt6hPmCZOMUI7URnUdJSmxdxhB6hPfWO6wmxXJIXcV9YwtuOOshSuyZECXnBGKcjXCBQEJOwAV8IGD8Q0QQHY2dgbMG3csaxe6CmEA+XSpsUmJbKxXZkT/mHd2NDUZfcFjUurYvC5l0clRLFnB8NZJJglTIAg4d1jS2IsQQZxFrO1rc2JBJnKfIKLiBM44xiiNs/Hf0ZOpaQuEIOX9z2RMuk4F3MNfMm7O7WZs4elzEFlvdOaUgni5qTHvYs6wV920znIX9krEiH+id+DWYri30F/soc4eeRmc30ues30b9SEJs4zKKXVGrdMhvbJMQW5Q4mwhpS/FTkWsRWyaVzYM0QQga0QImisl3hc0KLxUbozPiMNJYJBiPCD4LgQUDSSSKR/qBI7b0GyKHAq+3KSX9xrZRWwgfSg3jlCgQi5BNyKW+ggf9RKggYCg6NlM8orVIIeN3AgkebNB4jlDCLAreg9JEETN2sHPEllQXPOQ4CyB/zAvjp18YSvQBjztOAjYflD5EnDaI2KHE6C8EPJ46TOSZ31yKOeQXAhs9UAPFgSKApOGEgES6Qv/xiKNU6BPzRUQa0omywpBhvNHoGh4uNgQMd9qGtGDIQBBwLri+MDaIb1xp4gBBCeHxxIPPONmIcA7ED3Gqhw9yHVfEtYgtY0KW2XwYB0SF+UpCbBvNLwZG/BRj52ACa5QkmGAoYdAiE3Fi69J3IangEW0vSmzZNJELvu1GgbPGkB3GwO/R05yT4JVUbjHSHenkncwl42D+6HNUjthI6skNMkdECILPpoF8k5rlvsdx6bnOIVJLyRM5YvNjbUImwBdjOkps6+kvNnIcRVGcXSpyPWLr3kffkX2cN9ThH9KDXfQt2lfmHR3ojFV0gktB43n+hgyiK2mT9ez0Ipt9LR2BIYoDoRb+6JNm+jq15amKNRFwxDZKJsmcwBEYTW9lLnGqOkdw9JASGo5+flLrRc7JEiV2POfudnR1cKIgG/EDHvk7+oY1TL+itwwQPUVvuINy0E8Yty4aEyW2yDRy7NKWWUv03RFbDFDsC+q74qK/6DDWSvRgQXDAWRbPVHKHK7EXOAceexP6xl1lFF1f7Bes0XolGv1zkWqexdnIfs8aJSqDfmZsvJ85jN5ji13TaOxkrYGHO1iHvZCx4oyKF7LlcAy7K5p4FrJA1AmcWOdRB7D7ltZleGDMu/liX2a/jhNbdA37A84I5MZlNuFIRF9CGuMnaBe1zOvdYwuhggAiJ81wcdcKgikyAtHFdkWeKewrZBdgp5Jp44pLk2e/dVG/ZhHbWsQWxxHrzx0Wx1xhE8UzJ917s5BJZKCRLDSSSbLq2O/c+qJfyDd7avyTAkdsowdusTYZn/skAL3n1ia/uys0a8lUNPMLm8J96gdhhYtQaB8bGH1F1iPBiOg9tu4TD55FNyAjjIW2Wbv8HX3j0pr5O3/j3/GCTY6jAz1AQZ9hPxCYaaTPebZZP5wudvae+/TEpSLHZTQaMIr2U8S2U6ea6Q8OUDwaGHXxiC2kAjLm7oFE2UKoIH/8N0ILCY1fB4Nh5ogFihQvC8KDsY2ypS4C476XgejgsYFAOaHAiIVw1CoQYpQEHqZoif/eqK0osWVDhKC7kwP5b4SLxezSuXgP/UYJsmHWOiLcLc5oZIk+gjN1ITt4hhgvBNHdY0sEGKMBXNlMITFsqODlTpbmbxSUA4qGuu77DhYx0WAivtEreHjenaxK+pc7cS6OKeMFOxeFjf6dPhC95btONydsLJBMt+gxpqJEkv5BYp3nDhnBO44BTl089JBf+gwZi5/6hmHj+kIdZAPvGiSejTd6n2wjfKLjqBexJVLgTrfkeWeYsRbYJJxc1rvHtt78QuRqEVs2V4wj5g5SRMHQQfZqfV8VvQidyF48YuvSmthA3Ym7yAPyi7ES73dSvJLIrYvqu+94HN5sRDiK4qWe3ODMYYN0BiBrIXrqNmNjQ250/x+RUmQU5xQFQkg0LKn+iuPMpuk2+loRWzZHjEN0pDsVGsOTjdcdSBb/HIN+uQiWcwQx53jH0VUUDHJIAGPBG+3kj++n6+mIeviz3pPo65pKVj9migDzjA5nj8M4cimQjtgS1SNFjiwFSB2R9rQFxxROWByi0UNRWmmP/tIGmRe1okvxtljDlHr39RJ9YY2yb8e/16Mueg2HOI7XePQk/i72a9ZZrWedY8ERkVbG7J6FELHemKdaDoFWxu7mnagP7dWyG1x7PIuuQTcQpYw/SxvMCUZ//DAf2gBf9lTsiVYLEVH2d+am0dU0rbbbjucb4QKmyJe7por+4JAAY+xLJ9vIJ3s+ayZ+6KHvGJBV3kngoN43583e0apMNpKFZjKJniJtGBlzqb+N+odOA8/oWTs8784BiR601Gyctf7O/IFfLZmPP4+zg30PG6jWWkPOWUOsEfRHo/WNnkEvoYvRg9Fn6+lz159m/WiGQy0ZjdfpEMS2GVD1/g7BYoEnXXBEQ5hsNrB6VxHwLpQNgh0XdpQnC6fWBkc9FjAeCrykSTaVRuNutS0UGzjExwWBY8PBa9NoY2qEMYsEJcGCwCiOKwyInjtdOT5uFiNedNJuIb7RgqeXcca/rY0uMJwKRD/xPmZV3KJnwcdP+MM4Y94b3TNKNAnCQnpRLUMGOWNDYDMADxQtDpRactoIn6TjdXel1nOmNGqHNdRsfmvVhziBUaN1RD0Uez2DMdouGKHUIcCNsE+KVyvjYmNzRnmjvtaTG+QfY5IsjSQbWC083aZF/XoGfSP9lRTn6LvRZWyi0ewS+sHG1AqpQL8g3zhDICb8EzewGumIevgn1ddJ14meyxaBKLF1n6Jk+4aO0Rr7I84sojm1ToHuGCholEIgDAQI8hDEwtYlVT4ehAqjl+XuhYhtieaPqA2pCPHvP9MMIcu20rw/lDqkHpGORvpGKAWSTfqb+3Y4lH6pH0JACAiBdiFABgXfrpJdQbReJR0CEFui3mQDceZHvTMi0rWuWkJACLSCANlofD7jMo+yjoK30peqPitiW9WZ1bgSI0BqKt8A+6S4JX5ZkweJZvEtU/zb2qzaVztCQAgIASEgBISAEBACQqCKCIjYVnFWNSYhIASEgBAQAkJACAgBISAEhEAHQkDEtgNNtoYqBISAEBACQkAICAEhIASEgBCoIgIitlWcVY1JCAgBISAEhIAQEAJCQAgIASHQgRAQse1Ak62hCgEhIASEgBAQAkJACAgBISAEqohA7sSW6x24iLzZyV9cXxK9yoLrGzhIhyseooWrG7hnqdl9blWcLI1JCAgBISAEhIBDQPurZEEICIFWEZDeaBUxPV8mBHIltpMnTzaXXnqpGTBggL18/fzzz6951PwNN9xgDjzwQAOZ5V5O7qybOnWqvYydBThr1iz7++jRo+1dqdxPOmHCBHuEvYoQEAJCQAgIgY6GgPbXjjbjGq8Q8EdAesMfQ7UQNgK5EdvXX3/dXp9CtJao69lnn22effZZM23atHUQeeKJJ8wZZ5xhZs+ebYntm2++aTp37mxWrFhhunfvbsaNG2d69eplie3KlSvNOeecY5YtW2Z/I3rbtWvXsBFW74SAEBACQkAIZIiA9tcMwVRTQqCDICC90UEmuoMPMzdiC64vvPCC6dGjh1m1apXZb7/9zIknnmhGjRq1FvLXXnvNDBkyxFx55ZVmm222scQWosvFxY8++qh9DiJ83333WWLL79Rfs2aNTUXmmT59+nTwKdTwhYAQEAJCoKMhoP21o824xisE/BGQ3vDHUC2EjUCuxJah33PPPWbs2LFm5513NpdffrnZaKON1iIC0d11113t3yGuENsHHnjADB8+3Dz88MP2uauuusrMnz/fpjKPGDHCDBs2zP7es2dPs2jRItO7d2+zYMECc/vtt6+D9Oabb24++clPho2+eicEhIAQEAJBIlAGp6n21yBFR50SAkEHXaQ3JKAOgTLsc63OVq7E9pZbbrHfxV5yySVm5MiR6/SNNOKNN97Y9O/f3/5+55132v+eN2+ePWjKfW87ZcoU+3fSkDfddFMzfvx4m65MJJh05XqHSPE978SJE1vFo23PP/bYY0ErPvXPTxSEn/DzQ8CvtuSv2vgxOu2vfnOs2kIgLwRC1r/SG3nNevnaDVlOfdDMjdiSLsw3sjfffLPZc8891/aRb24ffPBBs8cee5glS5as/f2DH/ygeeihhwz/Joo7Y8YM069fPzN48GAzadIks3r1ajN9+nRz0003mTlz5hg+gF+4cGHdsYvY+oiFMaELvPqn+fVDwK+25E/4+SHgV1v7qx9+qi0E8kQg1P1BeiPPWS9f26HKqS+SuRFbSOsOO+ywTv+OOOIIc/zxx5uBAwfa1OJocanI/Hvu3LlmzJgx9s9Dhw61B0tBbPked/HixfYaICK7nLZcr4jY+olG6AKv/ml+/RDwqy35E35+CPjV1v7qh59qC4E8EQh1f5DeyHPWy9d2qHLqi2RuxLZexzhIipOOZ86c2bDvPPfiiy/a04+jZenSpWbLLbe0Jyc3KiK2fqIRusCrf5pfPwT8akv+hJ8fAvnU1v6aD65qVQi0gkDo+0N8LNIbrcxudZ4tm5wmRb7txJareiCsffv2TdrHVM+J2KaCbW2l0AVe/dP8+iHgV1vyJ/z8EMintvbXfHBVq0KgFQRC3x/iY5HeaGV2q/Ns2eQ0KfJtJ7ZJO+b7nIitH4KhC7z6p/n1Q8CvtuRP+PkhUO7aoe+v5UZXvS87AqHvD0XhK71RFPK131tVORWxLUjOQhco9c9PMISf8PNDwK+25K/a+PmNzr+2DFR/DNVCdREIXf8Whbz0RlHIi9iGhXzK3oS+gEJXfOpfSsF7u5rwE35+CPjVlvxVGz+/0fnXDn1/9R+hWhAC6REIXf+mH5lfTekNP/yyrl1VOVXENmtJSdhe6AKl/iWcyDqPCT/h54eAX23JX7Xx8xudf20ZqP4YqoXqIhC6/i0KeemNopCv/d6qyqmIbUFyFrpAqX9+giH8hJ8fAn61JX/Vxs9vdP61ZaD6Y6gWqotA6Pq3KOSlN4pCXsQ2LORT9ib0BRS64lP/Ugre29WEn/DzQ8CvtuSv2vj5jc6/duj7q/8I1YIQSI9A6Po3/cj8akpv+OGXde2qyqkitllLSsL2Qhco9S/hRNZ5TPgJPz8E/GpL/qqNn9/o/GvLQPXHUC1UF4HQ9W9RyEtvFIV87fdWVU5FbAuSs9AFSv3zEwzhJ/z8EPCrLfmrNn5+o/OvLQPVH0O1UF0EQte/RSEvvVEU8iK2YSGfsjehL6DQFZ/6l1Lw3q4m/ISfHwJ+tSV/1cbPb3T+tUPfX/1HqBaEQHoEQte/6UfmV1N6ww+/rGtXVU4Vsc1aUhK2F7pAqX8JJ7LOY8JP+Pkh4Fdb8ldt/PxG519bBqo/hmqhugiErn+LQl56oyjka7+3qnIqYluQnIUuUOqfn2AIP+Hnh4BfbclftfHzG51/bRmo/hiqheoiELr+LQp56Y2ikBexDQv5lL0JfQGFrvjUv5SC93Y14Sf8/BDwqy35qzZ+fqPzrx36/uo/QrUgBNIjELr+TT8yv5rSG374ZV27qnKqiG3WkpKwvdAFSv1LOJF1HhN+ws8PAb/akr9q4+c3Ov/aMlD9MVQL1UUgdP1bFPLSG0UhX/u9VZVTEduC5Cx0gVL//ARD+Ak/PwT8akv+qo2f3+j8a8tA9cdQLVQXgdD1b1HIS28UhbyIbVjIp+zNmG9cad7//venrN242ra9NjNHHbCbV9uhKz71z2t6jfATfn4I+NWW/FUbP7/R+deWgeqPoVqoLgKh69+ikJfeKAp5EdtMkX/jjTfMyy+/bDbbbLO67T7//PPmPe95zzp/f+utt8yrr75qunXrts7vr7zyiunSpYtZb731GvbzwNOuznQc0cZ23nZzc97RA73aD13xqX9e0yti6wef8BN+ngj4VQ9d/7nRFbW/YqD+X6ed/EB+u/blpx6QSTtqRAiEgkDo+qNIvTFx4sRQpqnD9yN0OU07QbmmIk+ePNlceumlZsCAAeall14ybIZ9+/Zd29dbb73VfOUrXzG77767gbB+6UtfMgcddJC54oorzNSpU83WW29tWICzZs0ynTp1MqNHjzYbbLCBefLJJ82ECRPMkUceWXfcp59zsTn00EPT4lKz3mPPrDAzb7jXiNhmCmuqxkJfkOpfqmldW0n4CT8/BPxqhy5/jK7I/ZW9fMGK3n4gG2M6dTJm7rkjvdtRA0IgJARC1h9F6w0R23AkNWQ59UEpN2L7+uuvmw033NBGa4m6nn322ebZZ58106ZNW9vffffd15xxxhlm0KBB5ve//7056qijzF//+lfTuXNns2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xtkuGvXrjXHn0fKwwOPLTenX3abiK2PxGVUN/QFqf75TbTwE35+CPjVDl3+QthfRWz9ZEy1q4tAqPojBL0hYhuO3Icqp74I5UZs6dgLL7xgevToYVatWmX2228/c+KJJ5pRo0at7TNEFWK6/vrrm69+9as29fjUU0+1RPfRRx+1z0GE77vvPkts+Z36a9assanIPNOnTx8RW18pqFE/dIFX//wmXfgJPz8E/GpL/vzwC2F/FbH1n0O1UE0EQtZvVbPLqylB7RlVyHLqg0CuxJaO3XPPPWbs2LFm5513NpdffrnZaKON1ukvUdzjjjvOPPLII2bu3LnmxRdfNMOHDzcPP/ywfe6qq64y8+fPt6nMI0aMMMOGDbO/9+zZ0yxatMj07t3bLFiwwNx+++3vwIF2sixLnllppt3wkNm+1ybmhAN2zLJptSUEhIAQEAIBIVDPaRpQFwvdXzMhtsaYqUf1DwlS9UUIZIJAyPqjSnZ5JpPVgRsJWU7TTkuuxPaWW26x38VecsklZuTId35H89RTTxnSkT//+c8b0hMgvURtieJyeBRR2ilTptixEd3ddNNNzfjx482bb75pI8GkK9c7REqpyGlF4t/1QvfkqH+aXz8E/GpL/oSfHwL+tYveXzMhtvrG1l8Q1EJwCIS8PxStN5SKHI64hiynPijlRmxJF+Yb2Ztvvtnsueeea/vIN7cPPvig6d+/vz3ciX+Thhwtu+yyi5kxY4bp16+fGTx4sJk0aZJZvXq1mT59urnpppvMnDlz7MEZCxcurDt2EVsfsRCx9UNP+Ak/XwT86oe+Yal/fvMbwv4qYus3h6pdXQRC1W8h6A0R23DkPlQ59UUoN2K7ZMkSs8MOO6zTvyOOOMIcfz/2/AcAACAASURBVPzxZuDAgTa1mHTi5cuXr31miy22sAdMkZI8ZswY+/vQoUPN7NmzLbEdMmSIWbx4sY3qzps3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fObNh3nuN7W04/jpalS5eaLbfc0p6c3KiI2PqJRugCr/5pfv0Q8Kst+RN+fgjkU7ud+6uIbT5zqFbLj0Do+0Mc4XbqDRHbcOS7bHKaFLm2E1uu6oGwRu+zTdrZVp4TsW0FrXc+G7rAq3+aXz8E/GpL/oSfHwL51G7n/ipim88cqtXyIxD6/hBHuJ16Q8Q2HPkum5wmRa7txDZpx3yfE7H1QzB0gVf/NL9+CPjVlvwJPz8Eyl2b/VXEttxzqN7nh0Do+0N+I2/cch52eVFjqcJ7qyqnIrYtSOcDjy03p192m9l5283NeUcPbKGmIqJeYNWoHPqCVP/8Zlz4CT8/BPxqhy5/fqPzry1i64+hWqguAtIftedWxDYsma+qnIrYtiBnIrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpzmTmzfeOMN8/LLL5vNNtus7jyvXLnSbLLJJuv8/a233jKvvvqq6dat2zq/v/LKK6ZLly5mvfXWayg3bLwTJ07MVLZEbDOF06ux0Bek+uc1vUb4CT8/BPxqhy5/bnRF7q8LVvT2A9kY06mTMXPPHendjhoQAiEhELr+KFJvZG2XhzTvZetL6HKaFs9cie3kyZPNpZdeagYMGGBeeuklA9ns27fv2r7efffd5gtf+IL5wAc+YJ588klz+eWXmz322MNcccUVZurUqWbrrbc2LMBZs2aZTp06mdGjR5sNNtjAPjthwgRz5JFH1h23iG1akfh3vdAFXv3T/Poh4Fdb8if8/BDwr130/ipi6z+HaqGaCIS8PxStN0Rsw5H5kOXUB6XciO3rr79uNtxwQxutJep69tlnm2effdZMmzZtbX8//elPm1NOOcXw72uvvdaS4F//+temc+fOZsWKFaZ79+5m3LhxplevXpbYEtk955xzzLJly+xvRG+7du1ac/witj5iIWLrh57wE36+CPjVD33DUv/85jeE/VXE1m8OVbu6CISq30LQGyK24ch9qHLqi1BuxJaOvfDCC6ZHjx5m1apVZr/99jMnnniiGTVq1No+b7PNNuaOO+4w/Pvee+81n/nMZ8wf//hHM2jQIPPoo4/a5yDC9913nyW2/E79NWvW2FRknunTp4+Ira8U1KgfusCrf36TLvyEnx8CfrUlf374hbC/itj6z6FaqCYCIeu3qtnl1ZSg9owqZDn1QSBXYkvH7rnnHjN27Fiz884721TjjTbaaG1/N910U/Pwww/b6CsA77PPPuZXv/qVGT58uP2dctVVV5n58+fbVOYRI0aYYcOG2d979uxpFi1aZHr37m0WLFhgbr/99nfgQDtZliXPrDTTbnjIbN9rE3PCATtm2bTaEgJCQAgIgYAQqOc0DaiLhe6vmRBbY8zUo/qHBKn6IgQyQSBk/VEluzyTyerAjYQsp2mnJVdie8stt9jvYi+55BIzcuQ7D4jYe++9zZQpU8yHP/xhc9ddd5kzzzzTXH311Ta9mMOjiNLydwppyBDh8ePHmzfffNNGgklXrneIlFKR04rEv+uF7slR/zS/fgj41Zb8CT8/BPxrF72/ZkJsdXiUvyCoheAQCHl/KFpvKBU5HHENWU59UMqN2JIuzDeyN998s9lzzz3X9pFvbh988EHTv39/c/LJJ5v3vve95tRTT7Xf2m688cbmrLPOMrvssouZMWOG6devnxk8eLCZNGmSWb16tZk+fbq56aabzJw5cwwfwC9cuLDu2EVsfcRCxNYPPeEn/HwR8Ksf+oal/vnNbwj7q4it3xyqdnURCFW/haA3RGzDkftQ5dQXodyI7ZIlS8wOO+ywTv+OOOIIc/zxx5uBAwfa1GK+kd1rr73sM1wHBFF997vfbebOnWvGjBljfx86dKiZPXu2JbZDhgwxixcvttcAzZs3z562XK+I2PqJRugCr/5pfv0Q8Kst+RN+fgj41Q5hfxWx9ZtD1a4uAqHuDyHoDRHbcOQ+VDn1RSg3YluvYxwkxUnHM2fOtI9wnc/f//53e4AUqceu8NyLL75ov7+NlqVLl5ott9zSnpzcqIjY+olG6AKv/ml+/RDwqy35E35+CORTu537q4htPnOoVsuPQOj7QxzhduoNEdtw5LtscpoUubYTW67qgbBG77NN2tlWnhOxbQWtdz4busCrf5pfPwT8akv+hJ8fAvnUbuf+KmKbzxyq1fIjEPr+EEe4nXpDxDYc+S6bnCZFru3ENmnHfJ8TsfVDMHSBV/80v34I+NWW/Ak/PwTKXZv9VcS23HOo3ueHQOj7Q34jb9xyHnZ5UWOpwnurKqciti1I5wOPLTenX3ab2Xnbzc15Rw9soaYiol5g1agc+oJU//xmXPgJPz8E/GqHLn9+o/OvLWLrj6FaqC4C0h+151bENiyZr6qciti2IGciti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnIrYtiB9IrYtgJXzo6EvSPXPTwCEn/DzQ8Cvdujy5zc6/9oitv4YqoXqIiD9IWJbBumuqpyK2LYgfSK2LYCV86OhL0j1z08AhJ/w80PAr3bo8uc3Ov/aIrb+GKqF6iIg/SFiWwbprqqciti2IH0iti2AlfOjoS9I9c9PAISf8PNDwK926PLnNzr/2iK2/hiqheoiIP0hYlsG6a6qnLaF2L788sumW7duplOnTjXn+sUXXzTdu3df529vvfWWefXVV229aHnllVdMly5dzHrrrddQbth4J06cmKlsidhmCqdXY6EvSPXPa3qN8BN+fgj41Q5d/qKjK2p/XbCitx/IxhhMgrnnjvRuRw0IgZAQKIP+KEpvZG2XhzTvZetLGeQ0Daa5Etvly5eb+++/3xxyyCFmyZIlZosttlinj3/605/MueeeazbbbDPDs5MmTTL9+/c3V1xxhZk6darZeuutzRtvvGFmzZplSfHo0aPNBhtsYJ588kkzYcIEc+SRR9Yds4htGnH4T53QBV790/z6IeBXW/In/PwQ8K9d9P4qYus/h2qhmgiEvD8UrTdEbMOR+ZDl1AelXInttddea26//XYzZcoU8+yzz76D2I4dO9bsueee5itf+YqBiP7tb3+zz3bu3NmsWLHCRnHHjRtnevXqZYntypUrzTnnnGOWLVtmfyN627Vr15rjF7H1EQujiJkffMJP+Hki4Fc99A1L/fObX2oXvb+K2PrPoVqoJgIh67ei9YaIbTgyH7Kc+qCUK7F1HYOU1iK2t956qzn44IPNZz/7WXPdddeZm266yfTs2dMMGjTIPProo7b6tGnTzH333WeJLb+PGjXKrFmzxqYi80yfPn1EbH0koE7d0AVe/fObdOEn/PwQ8Kst+fPDL1q7qP1VxDa7OVRL1UIgdP0G2kXpDRHbcGS9DHKaBq1Cie23v/1tM2fOHDNy5Eibbnz00UebT33qU2b48OHm4YcftuO56qqrzPz5881LL71kRowYYYYNG2Z/hwAvWrTI9O7d2yxYsMBGhuOFdrIsS55Zaabd8JDZvtcm5oQDdsyyabUlBISAEBACASFQz2kaUBdtV+oZqHnvr5kQW2PM1KP6hwap+iMEvBEIXX8UpTeytsu9J6qDNxC6nKaZnkKJLeT0F7/4hdlrr70M0dsTTjjB3HXXXTa9mMOjWHikJlNIQ950003N+PHjzZtvvml69Ohh05XrHSKlVOQ04vCfOqF7ctQ/za8fAn61JX/Czw+B7GrXM1Dz3l8zIbY6PCo7QVBLwSAQ+v7QyCGWt95QxDYYMQ3+k7m0SLWd2HIS24MPPmgPiRoyZIj5/Oc/b9OLidiSjnzNNdeYXXbZxcyYMcP069fPDB482B4qtXr1ajN9+nSbrkyUd/LkyWbhwoV1xy1im1Yk/l0vdMWs/ml+/RDwqy35E35+CGRXO0ps27m/ithmN4dqqVoIhL4/xIltO/WGiG04sl4GOU2DVtuILSexbb755jYiO3DgQJta/Lvf/c4cfvjhNkLLaceXXXaZjd7OnTvXjBkzxo5n6NChZvbs2ZbYQoQXL15srwGaN2+eGTBggIhtmllPUCd0gVf/Ekxig0eEn/DzQ8CvtuTPD79obYhtEfuriG12c6iWqoVA6PrNEdsi9IaIbTiyXgY5TYNWW4httGOrVq2yJx3PnDnT/sxBUJyGvM0226zTf57jfltOP46WpUuXmi233NKenNyoKGKbRhz+Uyd0gVf/NL9+CPjVlvwJPz8E8qndzv1VxDafOVSr5Ucg9P0hjnA79YaIbTjyXTY5TYpc24ktV/VAWPv27Zu0j6mey5PYpupQjUrdNups+mzVw7u5/Xbvbfb78Lbe7UQbCF3g1T+/6RZ+ws8PAb/akj8//OrVbuf+miWxXbPGmH+seCUTULbo0S2TdtSIEEiLQOj6LT6uduoNEdu0UpV9vbLJaVIE2k5sk3bM97kyEFvfMbr6h+63kxk9aOesmrPthC7w6p/fdAs/4eeHgF9tyZ8ffkXXZn/NmtgedPrV3sPq9PZhVBDlL114g3d7NHD5qQdk0o4a6TgIhK7fipqJPOzyosZShfdWVU5FbAuQzldW/8vcfvfid6RZt9qVW+5+3NxyzxNGxLZV5PJ/PnSFof75yYDwE35+CJS7dhmIbZZEudyzpd63G4HQ94d24+HeJ2JbFPK131tVORWxLUjOshCo2Tf/xfzklr+K2BY0h41em8X85jks9c8PXeEn/PwQKHdtEdtyz596ny8Coe8P+Y6+fusitkUhL2IbFvIpexP6AspC8YnY9kkpHflXy2J+8+yl+ueHrvATfn4IlLu2iG2550+9zxeB0PeHfEcvYlsUvq2+t6pyqohtq5KQ0fNZCJSIrYhtWnHMQv7SvjtJPfUvCUr1nxF+1cbPb3T+tUVs/TFUC9VFIHT9WxTyoQecisKlqPdWVU5FbAuSqCwESsRWxDat+GYhf2nfnaSe+pcEJRFbP5TKi19e407arohtUqT0XEdEIPT9q6g5EbEtCvna762qnIrYFiRnWQiUiK2IbVrxzUL+0r47ST31LwlK5SVmml+/+S26toht0TOg94eMQOj6rSjsRGyLQl7ENizkU/Ym9AWUheITsRWxTbk8dJ1TWuDerpfF+vXsQsPq6p8fuqHj5zc6/9oitv4YqoXqIiD9UXtuQ7fLqyuRIraVmNvQF1AWik/EVsQ27WLNQv7SvjtJPfUvCUqK2PqhVF788hp30nZFbJMipec6IgKh719FzUnodnlRuBT13qrKqVKRC5KoLARKxFbENq34ZiF/ad+dpJ76lwSl8hIzza/f/BZdW8S26BnQ+0NGIHT9VhR2IrZFIa+IbVjIp+xN6AsoC8UnYitim3J5KBU5LXBv18ti/Xp2oWF19c8P3dDx8xudf20RW38M1UJ1EZD+qD23odvl1ZVIEdtKzG3oCygLxSdiK2KbdrFmIX9p352knvqXBCVFbP1QKi9+eY07absitkmR0nMdEYHQ96+i5iR0u7woXIp6b1XlVKnIBUlUFgIlYitim1Z8s5C/tO9OUk/9S4JSeYmZ5tdvfouuLWJb9Azo/SEjELp+Kwo7EduikFfENizkU/Ym9AWUheITsRWxTbk8lIqcFri362Wxfj270LC6+ueHbuj4+Y3Ov7aIrT+GaqG6CEh/1J7b0O3y6kqkiG0l5jb0BZSF4hOxFbFNu1izkL+0705ST/1LgpIitn4olRe/vMadtF0R26RI6bmOiEDo+1dRcxK6XV4ULkW9t6py2pZU5Jdfftl069bNdOrUqeb8Pf/882bTTTc1nTt3Xvv3t956y7z66qu2XrS88sorpkuXLma99dZrKAuhL6AsBErEVsQ2rULMQv7SvjtJPfUvCUrlJWaaX7/5jdYuan9dsKK39yAwCeaeO9KsWWPMQadfHWx73h1TAx0KgdD1G5NRlN6YOHFih5KFkAdbBjlNg1+uxHb58uXm/vvvN4cccohZsmSJ2WKLLdbp45NPPmkOO+wws8022xiePeGEE8zBBx9srrjiCjN16lSz9dZbmzfeeMPMmjXLkuLRo0ebDTbYwFBvwoQJ5sgjj6w75o5EbNNMfLzO9eeNXOen0AVe/fObdeEn/PwQ8Kst+fPDj9pF768itv5zqBaqiUDI+q1ovSFiG47MhyynPijlSmyvvfZac/vtt5spU6aYZ5999h3EFmK6//77m5EjRxqitpDgT3ziEzZyu2LFCtO9e3czbtw406tXL0tsV65cac455xyzbNky+xvR265du9Ycv4hta2IhYtsaXs2eDl1hqH/NZrDx34Wf8PNDwL920ftrRyO2B57mH1Fm1uN7rb8kqIXQEAh5fyhab4jYhiOtIcupD0q5ElvXMUhpLWL70Y9+1EZrf/Ob35hPfvKT5oILLjAbbrihGTRokHn00Udt9WnTppn77rvPElt+HzVqlFmzZo1NReaZPn1qp6N2BGLrM/Gurtus+/VZN5pOGjgp30kL9eNtJK3Lc1036mz69NoscZXQF6T6l3gqaz4o/ISfHwJ+tUOXv+joitpfRWzTyZiIbTrcylSrDPqjKL0hYhuOJJdBTtOgVSix7dmzp9lnn33MhRdeaAksUVoitMOHDzcPP/ywHc9VV11l5s+fb1566SUzYsQIM2zYMPs7dRctWmR69+5tFixYYCPD8UI7Ko0ROPGyO4OAaPtem5gTDtgxiL6oE0JACAiBek7T0JCpZ6Dmvb9mQmyNMVOP6m/WGGPGZ7AXcYpHHu0x51ntlRe/Pd4zf3p/JqL0rVH/ZfF79JmVmbTHXqzij0Do+qMovSG73F+2smwhdDlNM9ZCie1OO+1kLrroIpuOTPR1r732Mk888YRNL+bwKBYeacwU0pA5YGr8+PHmzTffND169LBEuN4hUorYJhOHBx5bXvPBZ555xqZ7NyvUr9dGs7r8/ZXV/zKPP7PC7Lzt5ua8owcmqWKfCd3TpP4lnsqaDwo/4eeHgF/t0OUvOrp6Bmre+2smxLZEh0dlmYqsw7L81mfotcugP4rSG4rYhiO9ZZDTNGi1ndhyEtuDDz5o+vfvb774xS/ayOu5555rfvzjH5vf/va3NkK7yy67mBkzZph+/fqZwYMHm0mTJpnVq1eb6dOnm5tuusnMmTPHTJ482SxcuLDumEVs04jDf+q0S+AhxadfdpuIrd90tVy7XfPbcsferqD+pUXu3/WEX7Xxq0ds27m/itimkzFSkUVs02FXllqh619wjBLbduoNEdtwpLgMcpoGrbYRW05i23zzzc1dd91lBg4caFOLAfXYY481f/3rX8373vc+S2Z32203M3fuXDNmzBg7nqFDh5rZs2dbYjtkyBCzePFiew3QvHnzzIABA0Rs08x6gjrtEngR2wSTkcMj7ZrftF1X/9IiJ2Lrh1w58IsT2yL2VxHbdJImYpsOtzLVCn3/csS2CL0hYhuOJJdBTtOg1RZiG+3YqlWr7He0M2fOXPvzc889Z9773veu03+ee/HFF9+RDrt06VKz5ZZbrnPnba2BK2KbRhz+U6ddAi9i6zdPaWu3a37Vv7QI+NXT/FYbv3qja+f+KmKbTsZEbNPhVqZaoevfOJbt1BsituFIctnkNClybSe2XNUDYe3bt2/SPqZ6TsQ2FWxrK7VL4EVs/eYpbe12za/6lxYBv3qa32rjV2907dxfRWzTyZiIbTrcylQrdP0bx7KdekPENhxJLpucJkWu7cQ2acd8nxOx9UOwXQIvYus3T2lrt2t+1b+0CPjV0/xWGz+/0fnXZn8VsU2Ho4htOtzKVCt0/VsUlqHb5UXhUtR7qyqnIrYFSVToAtWu/onYFiOA7ZrftKNT/9Ii9+96wq/a+PmNzr+2iG16DEVs02NXlpqh69+icBSxLQr52u+tqpyK2BYkZ6ELVLv6J2JbjAC2a37Tjk79S4uciK0fcuXAL4sx+rQhYpsePRHb9NiVpWbo+1dROIrYFoW8iG1d5G+77Taz77772it3HnnkEXPYYYeZzTbbLKyZers3oS+g0BVfu/onYlvM8mnX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pymjhie+qpp5oLL7zQLFq0aO01O7vvvru5++67i5qThu8NfQGFLlDt6p+IbTHLp13zm3Z06l9a5ERs/ZArB35ZjNGnDRHb9OiJ2KbHriw1Q9+/isIxdLu8KFyKem9V5TQRsV2zZo29YmfEiBH2DtnLL7/c3i07evRo88wzz9i/hVZCX0ChC1S7+idiW8zKadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi+9tprZqONNjI///nPzTHHHGN22GEHM2PGDLPLLruYhx56KPere9JMeugLKHSBalf/RGzTSLd/nXbNb9qeqn9pkROx9UOuHPhlMUafNkRs06MnYpseu7LUDH3/KgrH0O3yonAp6r1VldNExBbQR44caa655hqL/2WXXWbOO+888/rrr5ulS5cWNScN3xv6AgpdoNrVPxHbYpZPu+Y37ejUv7TIlYOYaX795rfo2iK26WdAxDY9dmWpGbp+KwrH0O3yonAp6r1VldPExHb58uXme9/7nunUqZM55ZRTzNixY81xxx1n9t5776LmRMQ2R+TbJfAitjlOYoOm2zW/aUen/qVFTsTWD7ly4JfFGH3aELFNj56IbXrsylIz9P2rKBxFbItCvvZ7qyqniYktsDzxxBNm4cKFpk+fPuY973mP2X777cOapUhvQl9AoQtUu/onYlvMEmrX/KYdnfqXFrlyEDPNr9/8Fl1bxDb9DIjYpseuLDVD129F4Ri6XV4ULkW9t6pympjYXn/99eaggw6y+J922mlmwYIFZrfddjMXX3xxUXPS8L2hL6DQBapd/ROxLWb5tGt+045O/UuLnIitH3LlwC+LMfq0IWKbHj0R2/TYlaVm6PtXUTiGbpcXhUtR762qnCYmtttss43ZYost7L21AwYMMBtssIE566yzzNNPP2222mqroual7ntDX0ChC1S7+idiW8zSadf8ph2d+pcWuXIQM82v3/wWXVvENv0MiNimx64sNUPXb0XhGLpdXhQuRb23qnKaiNi6U5G/+93vmieffNKsv/76Zvjw4YZ7bP/yl7+YnXbaqah5EbHNCfl2CbyIbU4T2KTZds1v2tGpf2mRE7H1Q64c+GUxRp82RGzToydimx67stQMff8qCkcR26KQr/3eqsppImILJJDX5557zt5ZS7SWw6S6du1qHn744bBm6u3ehL6AQheodvVPIg7ufgAAIABJREFUxLaY5dOu+U07OvUvLXLlIGaa33Xn98477zS9e/c2m2++uf3D6tWrzZ/+9CebHbXhhhv6CUMOtUVs04MqYpseu7LUbJd+K6PemDhxYlmmsfL9bJecthvIxMT23nvvNd/61rcM39q6ct1116397rbdHW/2PhHbZgg1/nu7BF7E1m+e0tZu1/yqf2kR8Kun+S0HfkuWLLHO4S984Qv2n49//OO244888og56aST7IGNH/jAB/wGk0NtEdv0oIrYpseuLDXz1r9l1hsituFIcd5yWtRIExNb18EXXnjB/O1vfzPbbbedjdgmKS+//LLp1q2bvSqoXvn73/++zre6b731lnn11VdtvWh55ZVXTJcuXcx6663X8NUitklmpv4z7RJ4EVu/eUpbu13zq/6lRcCvnua3HPhdcMEFpp6ht8kmmxj2Wz79aVSK2l8XrOjtB7IxBpNg7rkjzZo1xhx0+tXBtkfHDjzNv3+0I2LrPc3BN5C3/i2z3hCxDUd885bTokaamNjut99+NhU5Xu644453kE/3DOnK999/vznkkEMMHiYOn6pVbrjhBnPggQcayCzk94orrjBTp041W2+9tXnjjTfMrFmz7O+jR4+2adB85zthwgRz5JFH1sVNxNZPpNol8CK2fvOUtna75lf9S4uAXz3Nbznwqxd5ofd8/kN6cr1S9P4qYptOxkRs0+FWplp5698y6w0R23AkOW85LWqkiYntvvvua7+rpbz00ks2agtRffzxx+tGbq+99lpz++23mylTpphnn322JrEl1eqMM84ws2fPtsT2zTffNJ07dzYrVqww3bt3N+PGjTO9evWyxHblypXmnHPOMcuWLbO/Eb2tFzUWsfUTqXYJvIit3zylrd2u+VX/0iLgV0/zWy78yFgiE4kIbbRAbOtlJxW9v4rYppMxEdt0uJWpVrv0bxn1hohtOJLcLjlt94gTE9t4x84880zjTkneaKONGvYbUlqL2HLa8pAhQ8yVV15puE4IYgvRHTRokHn00Udtm9OmTTP33XefJbb8PmrUKLNmzRq72fNMnz59ar5bxNZPlNol8CK2fvOUtna75lf9S4uAXz3Nb7nw+973vmdTknHeRsuLL75oNt100yD3VxHbdDImYpsOtzLVapf+LaPeELENR5LbJaftHnFiYkuUFOJJIar6/e9/35x77rn2kIvtt98+1cZ74oknml133dWMHTvWElfaf+CBB+xVQu605auuusrMnz/fRolHjBhhhg0bZt/Vs2dPs2jRIpuqtWDBAhsZjhfaUQkbgSXPrDTTbnjIbN9rE3PCATuG3Vn1TggIgQ6DQD2nadYA4KjltgEKe+G73vWuta8gm6nZqcj1HMd576+ZEFtjzNSj+ps1xpjxl93pDS2neOTRHh07MYP+0c7FJRmv92R08Aby1h9l1Ruyy8NaGHnLaRGjTUxsIZIuFdl1lMMtnn/+eZs63KjU2nhJI954441N//79bVWOLee/582bZzbbbLO139uSxkzBk43nevz48ZZY9+jRw6Yr10vTUsTWT5za5clRxNZvntLWbtf8qn9pEfCrp/ktD37OQD3++OPNN77xjZY7XtT+mgmx1eFRLc93tEJeh295dUqVTTv0b1n1hiK24SyQdshpEaNNTGxJPeb0RQpk8v3vf7/Zf//9zbbbbtu039GNlzYefPBBs8cee9gDpVz54Ac/aB566CHDv4nizpgxw/Tr188MHjzYTJo0yd7rN336dHPTTTeZOXPmmMmTJ5uFCxfWfbeIbdNpafhAuwRexNZvntLWbtf8qn9pEfCrp/ktF36HHXaYvUqPfQunrStkKHFgYqNS1P4qYptOxpSKnA63MtVql/4to94QsQ1Hktslp+0ecVNiy8DxDNUrENtmV++w8RLt5fL5u+66ywwcONCmFq/refx3KjLPzp0714wZM8b+eejQofZgKYgt3+MuXrzYXgNEZJfL6+sVEVs/UWqXwDti26fXZuaoA3dP3Gl3PdQWm3U1W/RY90qoxI3k+GC78Es7BPUvLXL/rif8hJ8fAuvWrpURxRNJv7EtYn8VsU0nASK26XArU6127Q9l1BsituFIcrvktN0jbkpsG909m3TjjQ5q1apV9qTjmTNnNhwrz7Gpc/pxtCxdutR+j9Qs/VnE1k+U2iXwjtim7e2h++1kRg/aOW313Oq1C7+0A1D/0iInYuuHnPCrhd8f//hHw2GK8fKxj32sacS2qP1VxDbdSigDsSWW8ZfH/30Lhm/p16f2NY++7YZcv137axn1hohtOJLbLjlt94ibEtuLLrrIftNar5x00knrHHbRbAAcQgVh7du3b7NHvf4uYusFX9siUo89s8Jcdv09LXf27/940fzz5deNiG3L0NkKoSs09S/dvLpawq9c+PGJTS1iy+c+zVKRoyNt5/4qYptOxspCbA86/ep0A4zUct8AezdUsgbapX/LqDdEbMMR5nbJabtH3JTYRjvExgsppZCezDeye+65Z9PoabsHxftEbP1QD13gvzvnD+Y39/xdxDblNIc+v+pfyol9u5rwKxd+PimFfiNNV5v9VcQ2HXYitulwK1OtdunfMuoNEdtwJLldctruEScmtldffbVNIY6fjJzkG6B2D0rE1h/x0AVexNZvjkOfX/VP8+uHgF/tdsvfjTfeuDZiy40BF1xwgY3UcqVdKxFbv1Enry1imxyr+JMitumxK0vNdumPMuoNEdtwpLhdctruEScmttttt529hod7az/ykY/Yk4232GILQ45/s+9d2z0oEVt/xEMXeBFbvzkOfX7VP82vHwJ+tYuWPxzJo0aNMk8//bTZaqut/AaTQ20R2/Sgitimx+7/t/cl4FpV1fsLhBRQBmUUNLjmkIgmRpiaI4qCOMUkoqGJpSaShYQ2iAX6qwQM/lRiYREgkpmoaSAqCiGOpEJiIiAOiBpX8AIqcP/Pu/HAHb7hnLXPOd/6vvvu5+EB7t1rn7Xftfbw7rWHYpEsVP9RDP0Gia0dLy6UnyaNQChi+9lnn7lztH/5y1/kySeflJYtW8p3v/td9+TPhg0bHOG1lrgV2c8i1h2exLa07Wvd/6gf/c8PgerSo0aN2vVSAF4HwNk5+Nh7773nFpCtJRJbvUVIbPXYFYtkWuNDMfYbJLZ2vDgtP027xqGILZQ64IADHLm98sorBW/afvOb35S77rpLXnvtNTn44IPT1jvv90hs80KUM4N1hyexLW37Wvc/6kf/80OgunTNs3L77LOPXHXVVXLrrbfG+ZnYyiKx1UNJYqvHrlgk0xofirHfILG148Vp+WnaNQ5NbB977DHBDcjTpk1zb8u+9dZb0qdPH/fmrMVEYutnFesOHxDb047pJD2O6RSpso33aih4NzfJZB0/6udnfeJH/PwQqC5dXl6+6714PLFncRdUVY1JbPXWJ7HVY1cskmmND8XYb5DY2vHitPw07RqHJrZTpkyRnj17uu3H27Ztc5dIWTz7EwBIYuvnStYdPiC2mloe0amV3HLFqRrR0DLW8aN+oU2ZMSPxI35+CFSX3rRpk1s0njFjhuDfOF/7rW99y+wYS2Krt35dJLZ4F/exF1bpQasiicVs6ymt8aEY+w0SWzvem5afpl3j0MQ22PJw6qmnysUXXyznnXee6VVlEls/V7Lu8DMfeUZeevPjSJWs2PqZrHq3XEhs+Y5tJMfJkNl6+6B+fhZOGz+clcO2Y2xBbtasmdsRdfjhh8u///1v3oocwZTBu6kgUnG/w9pnlP+7rqhKXSW2cdsjgluknjWt/qMY+w0S29TdMesH0/LTtGscmtg+/vjj8tBDD8l9993nLrVAwqoyztnuueeeaeud93sktnkhypnBusNr9Hv5jfVyw5THSWyFxNavdRA/4ueLwG55PO+z9957y9ChQ+V3v/ud1K9fXyZMmOCO/uD1gcMOOyy+j8VUEiO2eiBJbPXYBQsX+hLSkdTMT6JqVqz9BoltVEsnlz8NP01O++wlhya2QRErVqyQSZMmuT9IfMdWZzbrDlWK+pHY7vbVUrSvriXqpIifDrdAivjtxm/z5s3SpEkTuemmm+RnP/uZ+8Xs2bOlf//+8txzz8kxxxzjB3YC0iS2elBJbPXYkdgWf79BYqv3/7glrY/D2vqGJrbY8oDnfrBFCqlr165y6aWXumd/rD4gb7kBWXeoUtSPxJbEVttR1pQrxfYRFzZhyiF+1VE64YQTZNGiRXLWWWdJ48aN5d5775Vu3brJkiVLBJdJWUsktnqLkNjqsSOxLf5+w/K8XO+ZxSlpfRzWohqa2OKMLZ77ufzyy91K8pe//GXtN1OR41ZkP5itO7xGPxJbElu/VkH8iF9cCFQvZ82aNTJ27FiZOXOmuzwKY+yNN94oRx55ZDIf9CyVxFYPIImtHjsS2+LvN0hs9f4ft6RmHh23DkmUF5rYvvjii3LUUUe58z/FkEhs/axk3eE1+pHYkpj5tQriR/ziQqB2OcuXL3dbknFnBZ7xsHi2NtCaxFbvByS2euxIbIu/3yCx1ft/3JKaeXTcOiRRXmhim8THkyyTxNYPXesOr9GPxJbEzK9VED/iFxcC1cvBnRXXXHONPPzww+5Jvc6dO8v1118vGMcsJhJbvVVIbPXYkdgWf79BYqv3/7glNfPouHVIojwS2yRQDVGmdYcqRf1IbEnMQjTNUFlKsX2EqnhMmYhfdSAPPfRQadWqlfz1r391Udurr77avWv79ttvm3zLlsRW3xBIbPXYkdgWf79BYqv3/7glrY/D2vrmJLbbt293T/zgEosXXnjBbUXu0KFD5G99/PHHbrDOdgnGhx9+KPvtt1+1cnfs2CFbtmxxclUTrjhv1KhR3i3RjNhGNlM1AesOr9GPxJbE1q9VED/iFxcCu8vZtm2bNGzY0F3E+Nvf/tb9Yvr06TJ48GBZvHixHHvssTk/WqjxdWF5R28wknp3lu/Y6kxTTPbQ1TAdKc38JKpmxdpvkNhGtXRy+dPw0+S0z15yTmL7ySefyF577SVXXHGF/P3vf3cDbc1B9vzzz896K/L69evlpZdekgsuuEBef/11ad26dTVNHnvsMbnyyivdDcsgrLiY6pxzzpGpU6e6d/zat28vaLwY5EGKBw0a5L6FizZGjBghQ4YMyVozEls/d7Lu8Br9SGxJzPxaBfEjfnEhUL2cE088UZ566ik599xzZZ999pH7779fmjVr5sbNbO/EF3p8JbHV+QIjtjrcIMWIbfH3GyS2ev+PW1Izj45bhyTKy7sVGW/oIVqbLeV6xxZPFuAJg/Hjx8t7771Xi9iecsop7ubHHj16yJNPPukeqF+2bJlbvcblGRjYhw0bJu3atXPEFrdFjhkzRtatW+d+BjKMpxEyJRJbP3ex7vAa/QJi26ZFEzntmE6RALrwtM6R8mv0i/QBz8zUzw9A4kf8/BCoLr1q1So3Ts6aNUtAWHv37u0Wb0866aSsnyn0+Epiq/MAElsdbiS2tXErxn6DxFbv/3FLWp/HaOubl9himxOIbb9+/dy5n2984xvVvoX/53vHFqQ0E7EFUQUx3WOPPeS6665zW49xYQaI7sqVK913Jk6cKEuXLnXEFj8fOHCgVFZWuq3IyFNWVkZiq7V+DjnrDq/RLyC2GrgwGYmSNPpFKd83L/XzQ5D4ET8/BDJLZzuCk+tbhRpfSWx1HkBiq8OtKrHFVvO7H1uWtyDMFfOlQT2OyJcl8u/THh+Kqd8gsY3sTokJpO2niVWkRsF5iW2Q/5133pG9995bnn32WRcpBcnMFi2tqXy2gRf5QHhBmP/73//KnDlzBBFgkOgVK1a4YnCBxoIFC2Tjxo3ubb++ffu6n+NdXTxe37FjR1m4cKGLDNdMKIeJCAQI/G/TJ7LktQ8iAfLIC++4/LcP7RZJjpmJABEobgSyLZpaq1WhxtdYiK2ITBjaTUA/hk951hvaegmVB8WujUG/YCyxXt+6pp+342UowHr/Uah+g/PyJLxNX6Z1P9XULDSxBbns06eP2w4cJJyDvfbaa/N+N1sDevPNNwXbkS+55BLBKg7O8yJqC8KMFSjIYXsWEr7btGlTGT58uOBSqxYtWrjtytne1eVW5LxmyZnB+kpOWvr1GTXL4cSIrZ8/RZVOy75R9QryUz8tcjvliJ8fflWlCzW+xkJs64nMGTtA4r7sKe7ygHcwFvhajhFbPYJJXW6l1yizpPX+DVoXqt9gxDZub9OXVwx+qqldKGILkombkXH258c//rEjntgijOjtBx98UOtG45qKVG1A2Nr8n//8x5V34YUXur+xDblqwu3LkydPli5dukjPnj1l9OjRsnXrVsFbf3PnzpXZs2fLuHHj3I2R2RKJrcYddstYd/i09COx9fMjrXRa9qV+WgT85Gjf2vhh2+TatWvdAu++++6b94hPUEKhxlcSW10bILHV4baTjCWzEKLXqPDEttj6DRLbuL1NX571cVhbs1DEFs/xtGzZUn7zm9+4R+SRHn30UTn99NPl6aeflu7du+f8PgZekGK80/fcc8/Jqaee6rYWYzsxfh4k3JqMrcnYkowbmJFwicaMGTMcse3Vq5csX77cRXXnzZuX87sktlqX2Cln3eHT0i8gtlHP4XTv1Cjr+W8/y8QjnRZ+Wm2pnxY5tl8/5AqDH47inHnmma7fHTVqlLzyyivuFQDcKZEvFWp8JbHNZ5nMvyex1eFGYlsbt2LsN0hs9f4ft6T1eZa2vqGILVaEcENx586d3dZgRGxxO/E999zjbigGQQ2bNm/e7G46vvPOO3OKIB/O2+L246oJK9pt27Z1NyfnSiS2YS2SOZ91h09LP+32M5zJtXx2IS38tF5I/bTIFYaYRdWW9q2OGF4fwCQVi78DBgyQt956y90vEbwOEBbfNMdXEtuwVqmej8RWh1uSxDbuy6jS6t+Ksd8gsdX7f9ySaflp3HrnKy8UsUUht99+uzvfWjVhW/LPf/7zfN+o9nsQYRDWQw89NJJc1MwktlERq57fusOnpd+MR1+JBOTM+TtvaiSxjQRbrcxp2VerJfXTIkfiXRO54L14HLXBvRN4JQAXrOB9d7xIcPTRR4cGO83xlcQ2tFmqZSSx1eGWNLE954ad92n4pGCrdBrjQ7H2GyS2Ph4Wr2wafhqvxuFKC01sURwG3fvuu89tI77gggtcBNdqIrH1s4x1h7eqnybCe0SnVnLLFaf6GSyitFX8gmpQv4gGrZGd+BUXfrgY8cgjj5TmzZvLF77wBXcpIu6TwDGgfLuT/Gqqk8b4SmKrw47EVocbiW1t3Iqx3yCx1ft/3JLW5wna+kYittqPFEKOxNYPdesOb1U/Els/vyOxJX7xIOBXStr9y8yZM+U73/lOtVcHsBsKu6IsJhJbvVVIbPXYJXV5VNy3aKfVfxRjv0Fiq/f/uCXT8tO49c5XHoltPoQS+r11h6J+foYPg9/Lb6yXG6Y8LozY1sY6DH5+FvKTpn7Ezw+B2tLYWvj444/LqlWrBC8DHHfccXF/IrbySGz1UJLY6rEjsS3+foPEVu//cUtan8do60tiq0XOU866Q1E/PwOHwY/ENjvGYfDzs5CfNPUjfn4IVJe++eab3RGfmukXv/iFe/7HWiKx1VuExFaPHYlt8fcbJLZ6/49b0vo8Rlvf0MT2kksukcsvv1xOPPFE9y3c2njxxRfL3XffHelWZK2iUeW4FTkqYtXzW3f4UtCPxJbE1q+VEr9Swa/m03dBvXDRIs7RWUsktnqLkNjqsSOxrY5dMfYbJLZ6/49b0vo8WlvfvMT2rrvukokTJ7rbGTt06CB4axYJ78+C3OJyCzwmby2R2PpZxLrDl4J+JLYkZn6tlPiVCn4YR3fs2OGqgyd7RowYIatXr5bFixe7W5KtJRJbvUVIbPXYkdhWx64Y+w0SW73/xy1pfR6trW9eYvvnP//ZPfVTk9jigz169BAMcBYTia2fVaw7fCnoR2JLYubXSolfqeKHN2yxS+r111+Xgw46KKlqqsslsVVDJyS2euxIbHNjVwz9Bomt3v/jlrQ+j9bWNy+xDQr+6U9/Kueee67gQehiSCS2flay7vCloB+JLYmZXyslfqWC3wknnCDvvvvuruqgf0PatGmT7L333klVU10uia0aOhJbPXRCYlsdvGLsN0hsPRpAzKLW59Ha6oYmtk899ZTcdtttbmtU1bRy5UqzA6/lBmTdoaiftkntlAuDH4ktiZmflxG/UsHvjDPOkPfee89Vp0GDBi5Ki4jt2WefnVQVvcolsdXDx4itHjsS2+rYFWO/YXlervfM4pQMM08txpqFJradO3eW5cuXS9euXd0D8kGaP3++NG7c2FzdGbH1M4l1hy8F/UhsScz8Winxq6v4JVXvsOWS2IZFqnY+Els9diS2euwsSFqfl1vAKE0drM+jtViEIrbbt293q8g/+9nP5KabbtJ+K1U56w3IukNRPz93DYNfQGzL2jWXoX26hvpg6+aNpXWLJqHy5soURj/vj3gUQP08wAu5Y8DvC37StO9O/A444AD59NNPs4JpeUfUwvKOfk4gUjRbS1HRPqNmedcXBZDY6mEksS3+foMRW73/xy1pfRzW1jcUsUXhl156qTzzzDPueZ8WLVrs+l779u2lHnobY4nE1s8g1h2+FPQLiG0US114WmcZ1OOIKCIZ85YCft4geBRA/DzAI/HeBR62Gm/bti0rmH/729/M7ogisdW1ARJbHW6QIrHdiV0x9xsktnr/j1vS+jxGW9/QxJbvZWkhzixn3aGon5+9w+D3xrvlMuWBF0J9aP2GzbK+vEJIbEPBlXimMPZNXIkcH6B+fuhbwG/jxo3u/or69ev7VSYBaW5F1oNKYqvHjsQ2P3bW+w0S2/w2TCuHhXEuibqGJrYTJkxwNzTWTNdff73sueeeSejmVSYjtl7whbr8yO8LftLWG2Tc+s149BWZOX8Zia2f28QmHbd9Y1Ps84Konx+iaeO3bNkyGT16tOBvJERxcUsy3opv2rSpX2USkCax1YNKYqvHjsS2OnbF2G+Q2Or9P27JtMe5uPXPVl5oYrthwwaprKysVc6+++6blq6RvkNiGwmuWpmtO3xd04/E1s+f45aua/5H/OJGoHp5X/va1+TZZ591P2zdurWsX79eysrK5JVXXpFGjRol+3FF6SS2CtA+FyGx1WNHYlv8/QaJrd7/45a0Po/R1jc0sfXZivzxxx9LkyZNsp7FRSR4n332qVaHHTt2yJYtW5xc1VRRUeEG+nzbs0hstS6xU866w9c1/QJie9oxnaTHMZ1CGfeITq2y5qtr+IUCLEIm4hcBrAxZid9uUD777DP30sDMmTPlvvvuk69+9aty3HHHyVlnnSUffPBBtVcIMqFeqPGVZ2x1bYDEVocbpEhsi7/fILHV+3/cktbHYW19QxNb3IgcbEXGQIpLpHCj4wsvvJB1KzJWnV966SW54IIL5PXXX3cr0VXT888/L5dddpl88YtflDVr1sgf/vAHN6hPnTpVsPUZF1NhS9b06dMdKR40aJC7nRl5R4wYIUOGDMlabxJbrUuQ2Pohlwx+AbGNohsmUNmS9Q6N+kWxdO28xK+48MN2Y5BZ/Jk1a5b88Ic/dGMjIrZ4ai9TKvT4SmKr8zESWx1uJLa1cSvGfoPEVu//cUtanydo6xua2Nb8AMgnBt7//e9/1W5Jrprv3nvvlUWLFsn48ePd4/M1iS0el8YAjr+R9/e//7384x//kIYNG0p5ebk0a9ZMhg0bJu3atXPEFsR6zJgxsm7dOvczRG+zvaFLYqt1iWSImZ82nLjPf36VPPr8qlAwvrLqfZePxDYUXKpM1gcE6qcy6y6htPDDU3p77LGHGyOvu+46eeyxx+TUU091emC8fPvtt91ibqZU6PGVxFbnYyS2OtxIbHfjVsz9Bomt3v/jlkxrnItb73zlhSa2DzzwgGzdutWVh0b1l7/8RR566CFZtWqVdOyY+z07kNJMxBYR33/9618u8vviiy/KmWeeKU8//bT06NFD8H4f0sSJE2Xp0qWO2OLnAwcOdGd9sRUZeXAOKVMisc1n+ty/t+7w1C+7/YL3Fkls/dpALmn6nx+2xG8nfjjiM2DAAOnXr58cfPDB0rJlS3nttdfcJVJY8MXibr5UqPGVxDafZTL/nsRWhxuJ7W7cirnfILHV+3/cktbHYW19QxPbTGdsjz/+eHnqqafyvmObbeDFNooVK1a46CsAPumkkxxZxiCPnyNNmzZNFixYILjCvH///tK3b99dE4IlS5Y4Ur1w4UIXGa6ZUA4TEahrCFw7ZeclNLcP7VbXqs76EoHYEMi2aBrbB0Tcoi5uPkZChPbiiy92Yxwuk8p3j0SgR6HG11iIrYhMGNpNcC3l8M/7LR986yVUHnQK+lUf/YJ+2Xp9qZ/OyoH/QTrJ/qOY+w3Oy3W+lZRUkn6alM75yg1NbB999NFdEVsMpGhYhx12WN6LLaBAtoH3xBNPdFuwjjnmGHnuuefk5ptvdueLsL0Yl0dBDr9HwjZkEOHhw4e7iHGLFi3cduVsgz8jtvlMn/v31ldyqF92+zFi6+f7YaTpf2FQyp6H+O3EBruPXn75ZfnnP/8p2BWFhWKkDh06OJKLJ4BwNCdXKtT4GguxrScyZ+wAwYML59wwy8+pErxcCIoF/aqvkozY6hHk5VHF328wYqv3/7glrY/D2vqGJrb4AC6C+tvf/uaip9/85jfl2GOPdeeD8qWqAy8unvrPf/4j3bp1kx/84Adu6xXewsVZWzxG//Of/1yOOuoomTx5snTp0kV69uzpBndsg540aZLMnTtXZs+eLePGjZPFixdn/TSJbT6rkNj6IWQXPxLbJC27s2zrAwL18/OBQuGHnUe4VwKXMiJ99NFHed+xLdT4SmKr8zESWx1ukCKxzYxdMfUbJLZ6/4+QpsMxAAAgAElEQVRbslDjXNz1qFleaGJ75513ytChQ6vJY0vBPffck1dHDLy4wbFVq1YuMovLMUCOcUYWt0AiNW/e3BFVvIs7Z84cGTx4sPt57969ZcaMGY7Y9urVS5YvX+6eAZo3b550796dxDYv+roM1h2e+mW3K4mtzuejSNH/oqBVOy/x24kJFnpx1AYRWzz1E2xLPvzww+Wiiy5yi77ZLo8KUC3U+Epiq2sDJLY63Ehsd+NWzP0Gia3e/+OWtD4Oa+sbith++umnbusxBltETfGOLCKrd911l3t658ADDwz9/c2bN7sVaRBlJDzn884777jyMUAHCfmwWo3zt1XT2rVrpW3btnm3ZzFiG9okGTNad3jqR2Lr5+F+0vQ/4ueHwE7pqmPeIYcc4sgsdkNle+In3zfTHF9JbPNZI/PvSWx1uJHY7satmPsNElu9/8ctaX0eo61vKGKLs6w404rzrjjjioQtwdgmjC0QQdQ1jBJ4qgeE9dBDDw2TXZ2HxFYNnRO07vDUj8TWz8P9pOl/xM8PgZ3SGAcvvPBC99b7kUce6V1kmuMria3OXCS2OtxIbHfjVsz9Bomt3v/jlrQ+j9HWNxSxReGIqCJyi7OwuNzpjjvucO/Jrl692kVwrSUSWz+LWHd46kdi6+fhftL0P+Lnh0BxS2N8JbHV2ZDEVocbia0eNyuS1uflVnBKSw/r8xgtDqGJ7RNPPCHf/va3XSQPaZ999pE//vGPu57f0SqQlJz1BmTdoaifn2cWEj+esfWzXRjpQtqX+oVBwC+Pdfv61c5fmsRWjyGJrR47Xh6lx86CpPV5uQWM0tShVMe50MQWYONpghdffNFdeIHtx/kutUjTQDW/Zb0BWXco6ufnvYXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4F4rYTpw40d1G/Nvf/tZh/qMf/cjdbHzGGWekaYNI37LegKw7FPWL5G61MhcSPxJbP9uFkS6kfalfGAT88li3r1/t/KVJbPUYktjqsSOx1WNnQdL6vNwCRmnqUKrjXF5iO3PmTBk0aJAjsvPnz3eY49mdhx9+WL773e/uIrtpGiPMt6w3IOsORf3CeFn2PIXEj8TWz3ZhpAtpX+oXBgG/PNbt61c7f2kSWz2GJLZ67Ehs9dhZkLQ+L7eAUZo6lOo4l5PYfvbZZ7Lffvu5i6PwxmzTpk0d5hUVFXL22WcLzt2+/fbbsv/++6dpi1Dfst6ArDsU9QvlZlkzFRI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dB0vq83AJGaepQquNcTmKLW4/xjuxPfvITufnmm6vhPXXqVLnsssvkqaeekhNOOCFNW4T6lvUGZN2hqF8oNyOx9YPJJH5hqsT2EQal7HmInx9+hZYmsdVbgMRWjx2JrR47C5LW5+UWMEpTB+vjsBaLnMR2+/bt7oKoDh06yIoVK9wzP0jbtm1z25HnzZsna9askQMPPFD7/cTkrDcg6w5F/fxcs5D4MWLrZ7sw0oW0L/ULg4BfHuv29audvzSJrR5DEls9diS2euwsSFqfl1vAKE0dSnWcy3vGFu/W3nbbbQ7rs846yz3zg/O1mzZtkp49e8ojjzySph1Cf8t6A7LuUNQvtKtlzFhI/Ehs/WwXRrqQ9qV+YRDwy2Pdvn6185cmsdVjSGKrx47EVo+dBUnr83ILGKWpQ6mOc3mJ7datW+WWW26ptRX54osvlnHjxknLli3TtEPob1lvQNYdivqFdjUSWz+ozOEXpjpsH2FQyp6H+PnhV2hpElu9BUhs9diR2OqxsyBpfV5uAaM0dbA+DmuxyEtsg4I/+eQTWb16teDvjh077rpISvvhpOWsNyDrDkX9/Dy0kPgxYutnuzDShbQv9QuDgF8e6/b1q52/NImtHkMSWz12JLZ67CxIWp+XW8AoTR1KdZwLTWzTBDuOb1lvQNYdivr5eWEh8SOx9bNdGOlC2pf6hUHAL491+/rVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpHYpulFVb5l3aGon59jFBI/Els/24WRLqR9qV8YBPzyWLevX+38pUls9RiS2OqxI7HVY2dBksTWghV261Cq4xyJbYH8zLpDUT8/xygkfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgiSJrQUrkNjaskIEbaw3IOsTJ+oXwdkyZC0kfiS2frYLI11I+1K/MAj45bFuX7/a+UuT2OoxJLHVY0diq8fOgqT1ebkFjNLUoVTHORMR248++kiaNWtWzZ47duyQLVu2SJMmTar9vKKiQho1aiT169fPaX/rDci6Q1E/v+6lkPiR2PrZLox0Ie1L/cIg4JfHun2j1C6p8XVheccoamTMWyxEBcoH/apvpUls9QgWi7+UQv+RVL8xcuRIvQNQMlYESsFPMwFSUGL7zDPPyNixY6V58+ayfv16GT16tHTr1k2mTp0qEyZMkPbt28u2bdtk+vTpUq9ePRk0aJA0aNBA1qxZIyNGjJAhQ4ZkNTKJrZ//W3d46pfdviS2fr4fRpr+Fwal7HmInx9+YaSTHl9JbMNYoXYeElsdbpAisdVjF1Yy6X6DxDasJZLPZ30c1iJQUGJ76aWXyte+9jW58sorBUT0rbfekvHjx0vDhg2lvLzcRXGHDRsm7dq1c8R206ZNMmbMGFm3bp37GaK3jRs3zlh3ElutS+yUs+7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTYksdXhRmKrxy2KZNL9BoltFGskm9f6PEZb+4IS28cee0zOO+88Offcc+X++++XuXPnSps2baRHjx6ycuVKV6eJEyfK0qVLHbHFzwcOHCiVlZVuKzLylJWVkdhqrZ9DzrrDUz8S2wTcPnSR9L/QUGXMSPz88AsjnfT4SmIbxgq185DY6nAjsdXjFkUy6X6DxDaKNZLNa30c1ta+oMT2pptuktmzZ8uAAQPcduMrrrhCTj/9dOnXr5+sWLHC1WnatGmyYMEC2bhxo/Tv31/69u3rfg4CvGTJEunYsaMsXLhQFi1aVAsDlMNEBOoaAtdOedZV+fah3epa1VlfIhAbAtkWTWP7QMIFJT2+xkJsRWTC0G5SKSLDP++3fGCpl1B50CnoV330C/pl6/WlfjorB/4H6WLtP5LuNzgv1/lWUlLF6qe58CgosQU5ve++++S4444TrBJdc8018txzz7ntxbg8ClFabE1Gwjbkpk2byvDhw2X79u3SokULt1052yVS3Irs1wysr+RQv+z25RlbP98PI03/C4NS9jzEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1BhMf5eVR0c2TlD2s+4v1/i2XJZPuNxixjd6OkpIoZj81S2x79eoll1xyidtejIgttiPfc889ctRRR8nkyZOlS5cu0rNnT3ep1NatW2XSpEluuzKivOPGjZPFixdnrRuJrV9TsO7w1I/E1s/D/aTpf8TPD4HkpZMeX0lsdTbkVmQdbpAqFqJsfXzIZYGk+w0SW73/xy1ZzH5qltg+8cQTcvHFF7sILW47njJliovezpkzRwYPHuz07t27t8yYMcMRWzS45cuXu2eA5s2bJ927dyexjdvTPy/PusNTPxLbhFw/VLH0v1AwZc1E/PzwCyOd9PhKYhvGCrXzkNjqcCOx1eMWRTLpfoPENoo1ks1rfRzW1r6gW5GhNC6Cwm3IBxxwQLU6bN68WfCOFm4/rprWrl0rbdu2dTcn50qM2GpdYqecdYenfvmJbZey1lkz7du4nvzwopP9nCRBadrXD1ziV9r4ha1dkuMriW1YK1TPR2Krw43EVo9bVMkk+w0S26jWSC6/9XmCtuYFJ7ZaxfPJkdjmQyj37607PPXLT2xzWfhL7faR8cN6+TlJgtK0rx+4xK+08fOrnb80xlcSWx2OJLY63Ehs9bhZkbQ+L7eCU1p6WJ8naHEgsdUi5yln3aGon5+BC4nfy2+sz6r8G++Wy50PvigktsVr3zCaF9L/qF8YBIo7D4mt3n4ktnrseMZWj50FSRJbC1bYrYP1eYIWLRJbLXKectYdivr5GdgqfiC9N0x5nMTWz7zcqk/8PBEobnESW739SGz12JHY6rGzIElia8EKJLa2rBBBG+sNyCrxCSCmfhGcLUNWq/iR2PrZle2D+MWDQHGXQmKrtx+JrR47Els9dhYkrc/LLWCUpg5W56m+GDBi64ugUt66Q1E/pWE/F7OKH4mtn11JbIlfPAgUdykktnr7kdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQFaJDyfuEZwsR1ar9iWxLW37sv3WDfvGU0t9KSS2euxIbPXYkdjqsbMgaX1ebgGjNHWwOk/1xYARW18ElfLWHYr6KQ3LiK0fcMbxI3GMxbw8oxwPjAUrhcRWDz2JrR47Els9dhYkSWwtWGG3Dtbn+Vq0SGy1yHnKWXco6udnYKv4MWLrZ1cSW+IXDwLFXQqJrd5+JLZ67Ehs9dhZkCSxtWAFEltbVoigjfUGZJX4cOIewclyZLVqXxLb0rYv22/dsG88tdSXQmKrx47EVo8dia0eOwuS1uflFjBKUwer81RfDBix9UVQKW/doaif0rCfi1nFj8TWz64kjsQvHgSKuxQSW739SGz12JHY6rGzIElia8EKjNjaskIEbaw3IKvEhxP3CE7GiG08YGUohe3DD1riV9r4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYO1ucJWiwYsdUi5yln3aGon5+BreLHiK2fXbnwQ/ziQaC4SyGx1duPxFaPHYmtHjsLkiS2FqzAiK0tK0TQxnoDskp8OHGP4GSM2MYDFiO2sePI/sUPUuv4+dXOX5rEVo8hia0eOxJbPXYWJK3Pyy1glKYOpTrOMWKbphdV+ZZ1h6J+fo5hFT9GbP3syoUf4hcPAsVdComt3n4ktnrsSGz12FmQJLG1YAVGbG1ZIYI21huQVeLDiXsEJyviiO2+++wpZ3Y/OGMNTuvaUVq3aBIPEMpS2D6UwH0uRvxKGz+/2vlLk9jqMSSx1WNHYqvHzoKk9Xm5BYzS1MH6PEGLBSO2WuQ85aw7FPXzM7BV/IKIba7ajR16inQpa+0HgKe0Vfy48ONpWBLveAAscCkktnoDkNjqsSOx1WNnQZLE1oIVdutgfZ6lRcsEsf3www+ladOm0rBhw1312LFjh2zZskWaNKkeOaqoqJBGjRpJ/fr1c9bZegOy7lDUT9ukdspZxW/9hgp59PlVsmHDBmnRokW1Ss5/frWsL68QEtv8trdqXxLv/LYLk8O6fcPUIciT1Pi6sLxjFDUy5i0WogLl+4ya5V1fFEBiq4exWPylFPqPpPqNkSNH6h2AkrEiUAp+mgmQghLbNWvWyEUXXSQHHHCArF+/Xq655ho577zzZOrUqTJhwgRp3769bNu2TaZPny716tWTQYMGSYMGDQRyI0aMkCFDhmQ1Momtn/9bd3jqF799R93xmLyy6n0S2xDQ0v9CgJQjC/Hzwy+MdNLjK4ltGCvUzkNiq8MNUiS2euzCSibdb5DYhrVE8vmsj8NaBApKbEFMzzrrLBkwYIBgdeill16Sb3zjGy5yW15eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM9adxFbrEjvlrDs89YvfviS24TGl/4XHKlNO4ueHXxjppMdXEtswViCxnTN2gFRWipxzg3/Em8RW53NRpJLuN0hso1gj2bzWx2Ft7QtKbL/+9a+7aO0jjzwiJ598svzyl7+UPffcU3r06CErV650dZo4caIsXbrUEVv8fODAgVJZWem2IiNPWVkZia3W+jnkrDs89fMzeib8AmKbreQ0tyjTvvHb16/EeKVp33jxzFRa0uMria3OhozY6nCDFImtHruwkkn3GyS2YS2RfD7r47AWgYIS2zZt2shJJ50kv/rVrxyBRZQWEdp+/frJihUrXJ2mTZsmCxYskI0bN0r//v2lb9++7ueQXbJkiXTs2FEWLlwoixYtqoUBymEiAkQgHAITH3xVXn93U9bM15x9mHyp3T7hCmMuIlDkCGRbNC2WaiU9vsZCbEVkwtBuUikiw6c86w1tvYTKg2LXxqAfyrm9COpr3R7W9YOdi7X/SLrf4Lzcu5uLtYBi9dNcIBSU2Hbu3Fl+/etfu+3IiL4ed9xxsnr1are9GJdHIUo7fvx4pz+2IeOCqeHDh8v27dvdxTcgwtkukeJWZD/ft76SQ/3Ss28htijTvunZ1+9LOmnaV4dbFKmkx9dYiG09kWLYqgrceXlUFO/bmbdYIqxxb5W23r/lsmTS/QYjttHbUVISxeynZontt7/9bRd5HTt2rPzlL3+Rf/7zny5Ce9RRR8nkyZOlS5cu0rNnTxk9erRs3bpVJk2aJHPnzpXZs2fLuHHjZPHixVnrRmLr1xSsOzz1S8++JLa1sab/ped/fl/SSVu3b5haJT2+ktiGsULtPNyKrMOtmIhyMfcfSfcbJLZ6/49bspj91CyxBahXXXWVLFu2TDp06ODI7NFHHy1z5syRwYMHO7179+4tM2bMcMS2V69esnz5cvcM0Lx586R79+4ktnF7+uflWXd46udn+Cj4kdiS2Pp5G/GLG78w5SU9vpLYhrECiW0xROQZsd3tp0n3GyS2un4jCako88Akvp9UmQXdihxU6oMPPpCWLVtWq+PmzZvlo48+crcfV01r166Vtm3bVnvzNhM4jNj6uYx1h6d+6dmXxJbEzM/biF/c+EUpL6nxlcQ2ihV252XEVocbpIpla7P1+UkYCyTVb5DYhkE/nTyl4KeZkDJBbJMwIYmtH6rWHZ76pWdfElsSMz9vI35x41fo8jC+ktjqrEBiq8ONxFaPmxVJ6/NyKzilpYf1ebQWBxJbLXKectYdivr5GbiU8COxJTHzaw3EL278Cl0eia3eAiS2euwYsdVjZ0GSxNaCFXbrYH2eqkWLxFaLnKecdYeifn4GLiX8cr1ve0SnVnLLFaf6gZVBupTwix2cEAUSvxAg5chiHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZSpyYkdgy4ujXGohf3PgVujwSW70FSGz12JHY6rGzIGl9Xm4BozR1sD7P12LBiK0WOU856w5F/fwMXOr4vfzGerlhyuPCiK2fnyQlXer+lxRuQbnW8Uu6/vnKJ7HNh1D235PY6rEjsdVjZ0GSxNaCFRixtWWFCNpYb0DWJ07UL4KzlXjENhMSJLZvSFlZmZ+TJCjN9usHrnX8/GrnL01iq8eQxFaPHYmtHjsLktbn5RYwSlOHUh3nGLFN04uqfMu6Q1E/P8codfxIbElsfVpIqbcPH2yKQZbEVm8lEls9diS2euwsSJLYWrACI7a2rBBBG+sNiBO7CMasgxFRP3TyS/v6H4ktiW1+L8uew9f/fL4dRta6fmHqkGQeEls9uiS2euxIbPXYWZC0Pi+3gFGaOpTqOMeIbZpexIhtbGhbb5Clrh+JLYmtT2Mu9fbhg00xyJLY6q1EYqvHjsRWj50FSRJbC1ZgxNaWFSJoY70BcWIXwZiM2PqBlQB+JLYktj5Oyf7PB73Cy5LY6m1AYqvHjsRWj50FSevzcgsYpamD9XFYiwUjtlrkPOWsOxT18zNwqeNHYkti69NCSr19+GBTDLIktnorkdjqsSOx1WNnQZLE1oIVGLG1ZYUI2lhvQJzYRTBmAhFHv6/nly51+5LYktjmbwXZc5R6+/DBphhkSWz1ViKx1WNHYqvHzoKk9Xm5BYzS1MH6OKzFghFbLXKectYdivr5GbjU8QuIbZsWTeS0YzpVA+u0rh2ldYsmXgCWOn5e4IQQJn4hQMqRxTp+frXzlyax1WNIYqvHjsRWj50FSRJbC1bYrUOpjnMktgXyM+sORf38HKPU8QuIbSaUhp59tJTt36Lar47o1CoSoKWOXyQwFJmJnwK0KiLW8fOrnb80ia0eQxJbPXYktnrsLEiS2FqwAomtLStE0MZ6A7I+caJ+EZwtQ9ZSx2/9hgp59PlV1Wo+//nVsr68IiNwmMxFSaWOXxQsNHmJnwa10h/w/VDZLU1iq0eSxFaPHYmtHjsLktbn5RYwSlMH6/MELRaM2GqR85Sz7lDUz8/AdRG/KQ++KG+8s6EacK+set/9n8TWz5+iStdF/4uKUa781vGLs66askhsNajtlCGx1WNHYqvHzoIkia0FK5T+Aq4ZYvvOO+/I/vvvvwvxHTt2yJYtW6RJk+pn9SoqKqRRo0ZSv379nB5ivQFZnzhRP78OiPjtxK/PqFkktn6upJKm/6lg2yVkHb+otUtifF1Y3jGqGrXyFwtRqdqX+VaaxFaPYLH4S6n0H0n0GyNHjtQ7ACVjRaBU/LQmKCaI7YMPPih9+vQRkNl69erJ1KlTZcKECdK+fXvZtm2bTJ8+3f180KBB0qBBA1mzZo2MGDFChgwZktXIJLZ+/m/d4alfcdiXxNbPTlpptg8tcjvlrOMXpXZJja8ktlGssDsvia0ON0iR2OqxiyqZVL9BYhvVEsnlL6VxripKBSe2q1evlhtvvFFmzJjhiO327dulYcOGUl5eLs2aNZNhw4ZJu3btHLHdtGmTjBkzRtatW+d+huht48aNM1qdxNavMVh3eOpXHPYlsfWzk1aa7UOLXGkR2yTHVxJbnY+R2OpwI7HV4xZVMsl+g8Q2qjWSy299nqCteUGJ7SeffCK9evWSP/3pT3LAAQc4YosG1aNHD1m5cqWr08SJE2Xp0qWO2OLnAwcOlMrKSrcVGXnKyspIbLXWzyFn3eGpn5/R08IvILaDehxRTeELT+ucswJp6adFkfppkSsO4mjdvmHQT3p8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmLYVxLhNCBSW21157rXzlK1+RSy+91BFXENuXX35Z+vXrJytWrHD6Tps2TRYsWCAbN26U/v37S9++fd3P27RpI0uWLJGOHTvKwoULZdGiRbXqh3KYiAARKBwC1055NuPHbx/arXBK8ctEIAQC2RZNQ4iayJL0+BoLsRWRCUO7SaWIDM/SV0QBs15C5UGHbH1ZFP2QF32f9fpSv6hW3Zk/8D/8u1j7j6T7Dc7Ldb6VlFSx+mkuPApGbLGNeO+995Zu3XZOcJ999ln373nz5knz5s13nbcdP368+z22ITdt2lSGDx/utiu3aNHCbVfOdokUtyL7NQPrKznUrzjsO+PRV6opOnP+Mvf/qhHc1s0by2nHdKqWj/YtDvtqtaR9tciFk0tjfI2F2NYTmTN2gFRWipxzw86L5nxSUmcwoVOw+8RHP8gyYqtHMCn7xu1/1vu3bBZIo99gxFbv/3FLFquf5sOhYMQW24lff/31Xfodcsgh8uqrrwr+RhR38uTJ0qVLF+nZs6eMHj1atm7dKpMmTZK5c+fK7NmzZdy4cbJ48eKs9SOxzWf63L+37vDUrzjtm2lyeESnVnLLFaeS2PqZlPjVIfzyVTWN8ZXENp8VMv+exFaHG6RIbPXYhZFMo98gsQ1jiXTyWJ9Ha1EoGLGtqXCwFRl/z5kzRwYPHuyy9O7d210sBWKL87jLly93zwAhstu9e3cSW63l88hZd3jq52f4QuFXNYK7fkOFzH9htZDY+tkyk3Sh7Bu2JtQvLFLx5EtifCWx1dmGxFaHG4mtHjetZBL9Bomt1hrxy1kfh7U1NkNsa1Zg8+bN8tFHH7nbj6umtWvXStu2bd3NybkSI7Zal9gpZ93hqV/x2/flN9bLDVMeJ7H1M2VGabYPP1Ct4+dXO5E4xlcSW50VSGx1uJHY6nGLSzKOfoPENi5r+JdTquOcWWLrazISWz8ErTs89St++wbEtmZNcGPysWWNTV++Qf8rfv/LVQPr9vVD318a4yuJrQ5HElsdbiS2etysSFqfl1vBKS09SnWcI7FNy4NqfMe6Q1E/P8cgfvnxy0Zsa0piImgt0b5+FiF+fvgVWprEVm8BEls9djxjq8fOgiSJrQUr7NbB+jisRYvEVoucp5x1h6J+fgYmftHxw/nb4NbkqtIkttGxpP9Fx6yqhHX8/GrnL01iq8eQxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6ArE+cqF8EZ8uQlfj54xe8G0liGx1L+l90zEhsw2NGYhseq5o5SWz12JHY6rGzIGl9Xm4BozR1sD5P0GLBiK0WOU856w5F/fwMTPz88SOx1WNI/9NjB0nr+PnVzl+axFaPIYmtHjsSWz12FiRJbC1YgRFbW1aIoI31BmR94kT9IjgbI7Z+YGXBLyC2Xcpa78oxdugpsX9LUyDbhwa14hlQrdvXD31/aRJbPYYktnrsSGz12FmQtD4vt4BRmjqU6jjHiG2aXlTlW9Ydivr5OQbx88cvILZVS7KyLZn29bdvWVmZXyEJSlu3b4JVD1U0iW0omDJmIrHVY0diq8fOgiSJrQUrFM8CsxYtElstcp5y1idO1M/PwMTPH78K2XtXIXjvFonENhyu9L9wOGXLZR0/v9r5S5PY6jEksdVjR2Krx86CJImtBSuQ2NqyQgRtrDcg6xMn6hfB2TJkJX7x4tdn1CwS2wiQ0v8igFWE7devdv7SJLZ6DEls9diR2OqxsyBpfV5uAaM0dbA+T9BiwYitFjlPOesORf38DEz84sUvILZVSy1k9Jb2jde+fqXFL23dvvHXOFqJJLbR8KrZb1VWipxzw87FOp9ULESvrtWX/Udmryax9Wnt8cuWqp+S2MbvK6FKtO5Q1C+UGbNmIn7x4kdiGw1P+l80vGrmto6fX+38pUls9RgyYqvHrliIPPsPElu9l6cnWap+SmKbng9V+5J1h6J+fo5B/JLDz8K2ZNo3OfvT7+oAACAASURBVPv6lRyPtHX7xlNLfSkktnrsSGz12JHY6rGzIMmIrQUr7NahVMc5EtsC+Zl1h6J+fo5B/JLDj8Q2P7b0v/wY5cphHT+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyDrEyfqF8HZMmQlfsnhR2KbH1v6X36MSGz1GJHY6rEjsdVjR2Krx86CpPV5uQWM0tTB+jxBiwUjtlrkPOWsOxT18zMw8UsOPxLb/NjS//JjRGKrx4jEVo8dia0eOxJbPXYWJElsLViBEVtbVoigjfUGxIlnBGMyIuoHVonhFxDbLmWtXc0uP/toKWvXPHaMipn4sH/xcwfr+PnVzl+axFaPIYmtHjsSWz12FiStz8stYJSmDqU6zpmI2H744Yey3377VbPnjh07ZMuWLdKkSZNqP6+oqJBGjRpJ/fr1c9rfegOy7lDUz697IX7J4VfzhuTTjukkbVo0kSM6tZKA7Pp9Pb807ZsfIy4M+GEUl3RS4+vC8o7eKhYLUUFFM93MrgGAxFaD2k6ZYvEX6+NDGAsk1W+MHDkyzOeZJwUESsFPM8FUUGL72GOPyZVXXildu3YVENbLL79czjnnHJk6dapMmDBB2rdvL9u2bZPp06dLvXr1ZNCgQdKgQQNZs2aNjBgxQoYMGZLV9CS2fq3CusNTv7pr35ffWO8qP+XBF2XVu+W7gADB7XFMJ2m8V8PEI7j0v7rrf341T0866fGVxFZnSxJbHW4ktnrcokgm3W+Q2EaxRrJ5rc9jtLUvKLE95ZRT5MYbb5QePXrIk08+KUOHDpVly5ZJw4YNpby8XJo1aybDhg2Tdu3aOWK7adMmGTNmjKxbt879DGS4cePGGetOYqt1iZ1y1h2e+tG+859fJe9tqBAQ3VdWvb8LEERub7niVD+A8kjT//zgJX5++IWRTnp8JbENY4XaeUhsdbiR2OpxiyKZdL9BYhvFGsnmtT4Oa2tfUGILogpiuscee8h1113nth5ff/31juiuXLnS1WnixImydOlSR2zx84EDB0plZaXbiow8ZWVlJLZa6+eQs+7w1M/P6KWEHwjuo8+vkoqtn7kILrYlI3rbunlj93cSqZTwSwKffGUSv3wI+f8+6fGVxFZnIxJbHW4ktnrcokgm3W+Q2EaxRrJ5rY/D2toXlNhC6ffee0+uvvpq+e9//ytz5syRjz76SPr16ycrVqxwdZo2bZosWLBANm7cKP3795e+ffu6n7dp00aWLFkiHTt2lIULF8qiRYtqYYBymIgAEagbCLz+7iaZ+OCrtSr7pXb7yDVnH1Y3QGAtY0Mg26JpbB9IoaAkx9dYiK2ITBjaTSpFZPiUZ70RqZdQeVDs2hj0Qzm3F0F9rdvDun6wczH3H0n2G5yXe3dzsRZQzH6aDYiCEts333xTsO3hkksuEazi7LXXXi5qiyguLo9ClHb8+PFOd6wiNW3aVIYPHy7bt2+XFi1auO3K2S6R4lZkP9+3vpJD/Wjfmgis31DhIrf4e/4Lq3f9GjcmD+3T1UVwW7eofhmdFkX6nxa5nXLEzw+/MNJJj6+xENt6InPGDpDKSpFzbpgVplo58yR1uRA+ysujopsnKXtY9xfr/VsuSybdbzBiG70dJSVRzH6aC5OCEtsLL7xQunXr5rYhV01HHXWUTJ48Wbp06SI9e/aU0aNHy9atW2XSpEkyd+5cmT17towbN04WL16ctW4ktn5NwbrDUz/aNx8COHt7w5THa2UD0W3S6AvVblAG4cUW5k743V4N8xVNYpYXodwZ2H49AQwhnvT4SmIbwggZsnArsg43SBULUbbev+WyQNL9Bomt3v/jlixmPzVLbLGdeP36nTecIrVu3dptTcaW5MGDB7uf9e7dW2bMmOGIba9evWT58uUuqjtv3jzp3r07iW3cnv55edYdnvr5Gb4u4PfGu+Uy5YEXZP2GzbK+vCIUYMHTQcgMglu2f4uMZLcu4BcKMGUm4qcELoJY0uMriW0EY1TJSmKrw43EVo9bFMmk+w0S2yjWSDav9XFYW/uCRmxzKb1582Z33ha3H1dNa9eulbZt27qbk3MlRmy1LrFTzrrDUz/aNyoCILoVWz51tygHCduWcbMyLp3C5VOZUtUIbxDZrfdJuXQ+7OCoKqSWn+3DD2rr+PnVTiSO8ZXEVmcFElsdbiS2etzikoyj3yCxjcsa/uWU6jhnltj6mozE1g9B6w5P/WhfPwSqSwdPB+GnILhvvLMhJ9ntfkhLOejAtq4QEN9WLZok/nZulPqyfURBq3Ze6/j51c5fGuMria0ORxJbHW4ktnrcrEhan5dbwSktPUp1nCOxTcuDanzHukNRPz/HIH7Fj1/VCG+YyC5qjK3Mp3XtWO38rh8SOmn6nw63QMo6fn6185cmsdVjSGKrx45nbPXYWZAksbVghd06lOo4R2JbID+z7lDUz88xiF9p4hdEdjds2CDlW+vt2sacrbZdylrLsYe3d2d1keK8mTkXwvS/0vQ/v1rFJ01iq8eSxFaPHYmtHjsLkiS2FqxAYmvLChG0sd6AOPGMYMwMWYkf8fNDwE+6pv+B8OKpoVdWvZ+34OBSqrFDT8mbV5uB7UOL3E456/j51c5fmsRWjyGJrR47Els9dhYkrc/LLWCUpg6lOs4xYpumF1X5lnWHon5+jkH86jZ+uKDq6eVvu7O6SJluZkY0F1uXu3RqFdv7ugHq9L/S9j+/2vlLk9jqMSSx1WNHYqvHzoIkia0FK+zWwfo8QYsWia0WOU856w5F/fwMTPyIX00Egkupar6tC3I76LTOsZJb+l9p+59f7fylSWz1GJLY6rEjsdVjZ0GSxNaCFUhsbVkhgjbWGxAnnhGMmSEr8SN+fgj4Sfv4H6K52Lr88hvvV3tft02LJo7cBluVAw3x/yPKWke6ddlHPz9kwklTv3A4Wc1FYqu3DImtHjsSWz12FiStz8stYJSmDtbHYS0WjNhqkfOUs+5Q1M/PwMSP+OVDAOR2xqPLqpHbXDJVCS/+fWznDlm3MdP/8qGf+/fW8fOrnb80ia0eQxJbPXYktnrsLEiS2Fqwwm4dSnWcI7EtkJ9Zdyjq5+cYxI/4hUUgeEoo2KocyOH/iO6uerc8Z1FBpBfv6TZp9AW58LTO5i8/YvsI6x0285HY6u1CYqvHjsRWj50FSRJbC1YgsbVlhQjaWG9AnNhFMGaGrMSP+Pkh4Cedpv9VJbz499PL3qq1jblqbXApVYcWDeVbZ3d325otpjTx09Tfun6aOsUpQ2KrR5PEVo8dia0eOwuS1uflFjBKU4dSHecYsU3Ti6p8y7pDUT8/xyB+xM8PgfzSQaT3jXfLpWLLpzJz/rJaQiC5SEE0N/i7E6K7BSS9bB/57Ws5B4mt3joktnrsSGz12FmQJLG1YIXdOlgfh7VokdhqkfOUs+5Q1M/PwMSP+PkhEF0a25bxZ86i1wSR3VwpILjBuV0Q4MZ7NYx0QVV0DYtnQLXefn2wj0OWxFaPIomtHjsSWz12FiRJbC1YoXjGYS1aJLZa5DzlrE+cqJ+fgYkf8fNDwE967qJ/S7t27SSI5uKc7sdbPnXndfORXpDcgPAmFeFl+/Czb6GlSWz1FiCx1WNHYqvHzoIkia0FK5DY2rJCBG2sNyBO7CIYM0NW4kf8/BDwky5W/wuIbnBuFxFe/DvfBVUBWiC6eJKobP8W7m9cXKWJ9BYrfn5eUzrSJLZ6W5LY6rEjsdVjZ0HS+rzcAkZp6mB9HNZiwYitFjlPOesORf38DEz8iJ8fAn7SGv8LSO4b72xwRDdshDfQNLiduea5Xvy+dfPGjggHSaOfHyLRpK3rF6028ecmsdVjSmKrx47EVo+dBUkSWwtW2K1DqY5zJLYF8jPrDkX9/ByD+BE/PwT8pOP2P0R6cVkVSG/V54nCRnqr1gZR3/qyXVq2aOoiv0EKCLEmAuyHVm3puPGLW79Cl0diq7cAia0eOxJbPXYWJElsLViBxNaWFUSkoqJCGjVqJPXr18+pm/UGZH3iRP38XJ/4ET8/BPyk0/S/gOgi4osURHvx7/UbNsv68gp1ZYIoMAoIzvvi38EZ4KDgmhFh9Qc/F0wTP19d45SPMr4uLO/o/eliISqoaJ9Rs7zriwJIbPUwFou/1LX+I0q/MXLkSL0DUDJWBErVT4smYvvBBx/IoEGDpEGDBrJmzRoZMWKEDBkyJKuRSWz9/N+6w1M/2tcPAT9p+l90/Kqe731+2RvSosXOaG1AiKOc9c319Vqk9/OzwIFMEBnORYat2zc6+rklNOMria3OCiS2OtwgRWKrxy4JSU2/QWKbhCV0ZZbqOFc0xPbWW2+VTZs2yZgxY2TdunXuxk+sEjVu3DijRUlsdY4eSFl3eOpH+/oh4CdN/0sWvyAKjK8EhBj/Di69Cr7uGxFGOUFUuOpN0HvX3yydDzvYr5JFJK0ZX0lsdQYmsdXhRmKrxy0pSU2/QWKblDWil2t9HhO9RjsliobYXn755dKjRw8ZOHCgVFZWuq3IK1eulLKyMhJbrfVzyFl3eOrnZ3TiR/z8EPCTTsL/apPeCnlvw+5t0EFkOAwZvubsw+SM44/yq2QRSWvGVxJbnYFJbHW4kdjqcUtKUtNvXH3N92NRZ+/GX3DlfLz5U5anQAD4JTEOK1SJXaRoiG3//v0Ff/r27etAaNOmjSxZskQ6duwoCxculEWLFlUDp2HDhvLZZ5/FDhgLJAJEgAgQgeJHYOuOBvLJjgayrbK+VGz/gvvz0ba93P/PP7hCLrvssuKvZMgaRB1fsVNq8+bNIUtnNiJQtxDo3LmznH322SVfaU2/saliayy47FFvhytne2Xu+3bCfqwulleqflo0xPbmm2+Wpk2byvDhw2X79u3ufFZ5eXnWS6Ssb0WmfmG7m8z5iB/x80PAT5r+R/z8ELAlHXV8Dat93O2E5YVFPp1xk/bws0exS7PfiMeC1ttRPLVMr5SiIbZz5syRSZMmydy5c2X27Nkybtw4Wbx4cVak4naUuE1C/fwQJX7Ezw8BP2n6H/HzQ8CWdNTxNaz2cbcTlhcWeRJbIGDdX/ysWXhp9hvx2IB+Gg+OQSlFQ2y3bNkivXr1kuXLlwv+PW/ePOnevTuJbbz+sKu0uBta3GpSPz9EiR/x80PAT5r+54df3NJRx9ew34/bziwvLPIktiS2fr4SRpr9RhiU8uex3q/lr4GtHEVDbAPY1q5dK23bthWcoc2V4naUuM1G/fwQJX7Ezw8BP2n6H/HzQ8CmdNjxNaz2cbcTlhcWeRJbEls/X4kizX4jClq181rv1/xql7500RHbsBDhQqkTTjghbPbU81E/P8it44fLzI4//ni/SiYobR0/6udnfOJX2vj51S496bj9kOX52Y742cLPT5vSlaaf+tk2bvz8tElfumSJbfpQ8otEgAgQASJABIgAESACRIAIEAEiUAgESGwLgTq/SQSIABEgAkSgBBH43//+J1u3bpX9999/V+1eeuklwdMSe+yxh6rGH330kbz22mvSrl076dChg6qMJIU2bNggH374oXt+sEGDBupPPfzww26n2T777KMuI5fg+++/716S2G+//dTlw7Z77bWXk8edJ7AHXqyII73++uuuvKD8OMqMowzr/hdHHQtZRtJ+H3fd4vDTJPrJoJ5x6Bc3ZmmWVyeI7ccffyxNmjSRevXqZcR206ZNiQ0k+OCOHTvchVfQIVuCDnvvvXdWHZN0ilLQL0l88pUdBr+KigrnB0lNWHLpGEa/fHVM8vdh9cNAgDa05557JqlOrbLD6IeJLZ4gK0QKqx8mn1pi4VOvMPpt27ZNPv30U8H7qEmkMDqgjTZq1CjrE3JJ6FVqZf72t7+Vq666yvVzQ4YMkd/85jeuigcccID85z//cWNclIQjHZdccom88cYbcvjhh8vGjRudn+A7F1xwQZSiEsn79NNPy0UXXeT0Q0K9DzvsMPn9738vRx99dORvoo0Cq2nTpknXrl0jy9cUeOCBB5w9OnXqJMcdd5y7JRg6/vCHP5Sf/vSnkcufMGGCTJ06VWCXk046SdavXy8gfXj2BU8xRk1f//rX5cknn5TPPvtMzjzzTFm6dKkrYvz48fLtb387anGx57fuf7FXuEAFxu33cVcjbj+Nu5+MW7+48Uu7vJImtuh0sVKMARArGK1bt66G7/PPPy+XXXaZfPGLX5Q1a9bIH/7wB/nqV78aqw0wCGAwaN++vWDyNn36dGnVqtWub6xYscINClhFhQ5XXHGFDB48OFYdchWWTz9M2IcOHeoGQ6z29u3b101Y0kr59PvVr37lBlkkTF4xkL/wwguqSYWmTvn0w+o2BmgM/rAxJjujR4/WfEolk0+/Tz75xPkjJhVIhx56qPz85z9XfUsjlE+/oEy0jS5dusgjjzziJmhppXz6vfrqq25ie9BBB8nmzZtd2x04cGBa6rlJZq7+5c0335QBAwY4GyOShMnyj3/8YzP64U3yV155xfW9IN2Y0Mad8mH0wQcfyKBBgxw+8LMRI0ak2sfFXd9ClQdygmgbyF7Lli3ljDPOkB/84AduzNAS2zZt2jj/RpsKFqbhL+gL8I59s2bNQlcXvnb55ZdnzY/JZtRIIfpL6Hfssce6cfzAAw+Ubt26uRcc3nvvPbdQEiVhgo8nDa+++mo58sgj5fvf/777W5sQJUe9nnrqKdfu3333XTeWox947rnnIi20YizDHOq///2vPProo/KPf/zDzWfQ72Fce/HFFyMvTKG+mFf8/e9/Fzwdg7aKBUyQ5mXLlkWKfidh3zj9T2vDuiAXp98n4Qdx+mkS/WSc+pWCv5U0sb333nsd6cFkCYNMTWKLgRcrl/gbebHKikElrgQii9ubgwF42LBhbivVqFGjdn0CRPaQQw5xemDAwL9BNr7whS/EpUbWcsLod9ddd7kB7J577pF//etfcumllwrIeBopjH5V9Rg5cqS7MRuTgTRSGP2A3zPPPCOTJ0+WyspKue++++Tcc89NJXIWRj8QM6zcz5gxI9IkIg58w+iH7yBC079/f1m1apWbpKVFbMPoh/e00aYvvPBCN9nDRP7f//53HPDkLSOMfr/4xS9cNASLKZiYYqL99ttvV9smmvdDygxh9MNuGvgfJtnHHHNM7MQ2jA633nqrYMfMmDFjZN26dc6eiN4mFT1WwmleDH6GLa6IzGIhF33L6aef7hYujjjiiMgRW0xQsQvi5ZdfdovPVdPXvvY1+eMf/+jKjZIwxn/3u9+ViRMnSvPmzauJgjxH2UYM30I9V69e7drVQw89JH/9618dOQOZR5sDsYySMEHFDbMo789//rPccsstLsrds2dP55/5XoOo+q1AP5SH9oUFLvwbCfiBlB588MGh1YM9sL0c84D58+e7srAIinENdsDPMP5GScGE/Ne//rVrdwg0IGFhANH+L33pS1GKc3O4uOybhP9Fqkwdyhyn3wO2OP0A5cXpp3H3k3HrVwpuV9LENjAQVnozEVusIqOTxt9YbUTUCvniSpiI9+jRQ1auXOmKxGCKrTaITgQJq7wYrEB2sdKNLQVpTTzD6IcV3q985Sty6qmnCm5aw3YjTN7TSGH0C/RAZP788893k6c0FgXw3TD6BZN27A5ANANE46yzzkoDvlD6Pfjggy5ahYk9Ig3YqnbKKaeY0Q+KXHfddXLaaae59gM80yK2YewbAIWFCwymF198sVukSiOF0Q9HIND/IRJ1//33OyyxeyXbsYw49Q6jX/C9//f//p/TK+6IbRgdEMVDPw1ig0k6dlagzy4rK4sTjjpRFhY+EWkbO3aswxQLe9hVg7OYwXGbKEBgsRLRvLPPPtvtJsEi8RNPPLHrLfsoRDT4LkgdooNRSVgmvaEf6os+E0T7tttuc0QeC3BYqIYvRUnBBD+IRIOcYmH08ccfd/1K1GMYiPxioQ07ETAufuMb33CLBVis1ixQT5o0yY0ROAd89913ux0qb731lptDgYhHTZADoUXCrqZgB9uf/vQndT8Vt33j9r+oGNWF/HH7PTCL0w/i9tO4+8m49St2n6vTxBaNCR0pOlackcH2l2BFMw7Dgmz169dv1wCCczMLFiyQO++8c1fxGPCxjQnbpRcvXuwuyNBMADT6htEPEWxM1hFZXrJkiRscQYbSSGH0C/TA5BSLAmmeywmjHzownCHCRAKLJ9jmiO2haRCLMPphlR1bt7/3ve/JrFmzXIQAkRYr+mEnBQgZJk1YeEqT2IbBL/A/EDLoiihfnLs+crWzsPoh4g27YtKNSRoWqdJIYfWDLkkR2zA6YDcA/iDKhoTth+jrcBEQUzQEEI3AzgVsdw2e28P/0SawiBt1qy++jotlQO6wSIEIHo4LnXjiieqIOtpDXIufWDgK9AP5xhNvOA6D3QeI5kZNWDTG4mfULczZvoPjOZhzYK6DqDeIKfooREaxXVyTQJSxyI25CspCVBrtR4sptiLDtph7ffOb3xREb7HIpL0kLE77JuF/GsxLXSZuvwdecftBnH6aRD8Zp37F7m91mthicMSEFIMQtupg4MVKblwJgx46fgwuIApBNKLmVlmsVIIs4pweiHCc5DpXXcLoB2KGyzCwMg3CjQEyU/Q7LsyqlhNGP+THbZQYpHEeuOb2siT0CsoMox8iZFhlB7EIJs3YHh91i5WmHmH0Q+ePs434g61XiIDA/7STiih6htEPixU4K48tjs8++6zbqo8tdHGfhc+kdxj9QBSxMowteogmIRqS1o6LMPph+3Ew6UTEO4iORLGTNm8Y/YKykyK2YXRAv49+DbtRgu2HsGXUaJsWp1KSQ9+BMRSRQhA+LEhh/MC9DDW3E4ept/XyMG5j2yx8BZFkRBpx/hdHEzRtjeWVNn5hfJ557CGAYAR2YeCICi5jQ5+GhIAKxtWoC1Egtpg7YCcfdngg4tq9e3d3XCBqWdAjbv3sWSCaRnWO2OKiA2wdwrZLrBKBEF1//fVumw/OssR9cc5RRx3lzldisMM5GZy7wUp2oAMmdIgWI5qCLcpYXdVs6Ylm9t258+mH1VPoBz2xnQmNDxN3zRYwjY759EOZiJRhQhHnokRYXfPphyj9lClTXBQDW7ZA1N55551UztiiDvn0+9nPfuYu74CPYls+ovPB1vmwGPjky6cfJrYgZ0iIxmNQOeecc9TRmqi65tPvRz/6kVu4AI7YfYEt05bse8cdd7hFs0K0jTD+lzSxzaYD7lVAVBb9MtomIlmIKs6ePVtwbhq7Z5iiIYBt3BgfcIdAnz593PlaXKyENgwfxM6VKMl6eahLcPYOY+TJJ5/sLmhC9BHb6jVtjuWVNn5R/L8u5c0158CRkCg7yJK4PAqLV7hZHItVILLYCYSdPdpL8RAwwlEF7BLCziAQZuzqQz+CeViU+sJP4tav2H2vzhBbRH1wMygcEsQSzwagMQXn9RDpw2Rm3333jdWmGNyCW4579+7tLunBZRiBDiCLcEoMaCA+mGxVff8vVmUyFJZPP0RnMUnBWVskbAXFLclppXz6QQ9ERdHJIKqcdsqnHy4Cw6Vh6LQQvcfCRpq35ubTD3bFWTgsVOAP9MOWurRSPv2q6gG9brjhhtTO2OLb+fQDmcU2fQxS2IqHs4VYHEgr5dMPAyjOOVZN2EIY5dIYn7rk068qsUV/DFIZd8qkAyYO6HODLcfog2FLRHjnzZvnCBpTNASwaIxzq7jVFhf/AMsbb7zRFYIFvZkzZ0ba3m29vKrEFgvT2H59zTXXuPpiFwciMlHH8oDYsrzSxC9ai6obuUFEQe4w/8UFrzW3tOO4YNSL/OK8PAr9EJ4ZRJQVcyQs1uGuHIyrGmIb7IzDRYWYtwYJP8eTZug3vvzlL4c2ftz6hf6w4Yx1gtjmwh+XMyDCAgeNukoS1q5wPGw3zrU1Kdj+mZQOuXQNox8wwsJAlFsZw+KTL18Y/fKVkeTvw+iHbdKFekc0jH7oZOO4TEWDcxj9NOXGJRNGPywQYJAqxPbVMPrFhYWmHAv6hdEBfTDaQCH6OA2uFmVAYLEzCVv1sAsEu1XQNr7zne+4hYOo7yhbLw99Oo5G4CgTjupgYQYTdOzcwKJJ1KMxLK+08bPYZi3ohEUwjJ9YdI1rHhL35VHYlfWtb33L8QQExHD7Nn6meZ8b59Jxzh1HNHDMCjwE25KxGw1bk6s+CRrGPuAvceoX5puW89R5YmvZONSNCBABIkAEiECxIIAdPoha4r1pED0knNfHMRts/46arJeHiyBB2DEhxxZkHDHChBq7S7C7KWpieaWNX1R/qEv5cQQPl6jiSGAcKc7Lo3BZGnYGBu0a97rgyAXuS9Fc9op+ArupcG8IdnoEr1L85Cc/cTsko6a49Yv6fWv5SWytWYT6EAEiQASIABEoYgRwPhbHf3ARCqKQvsl6eVXrh905uEQursTy/JC0jp9f7UpTGjtssLsj6vNWaaOBYxfYlaHdqYV64s4aRFw1N8bnq6+vfvnKt/p7ElurlqFeRIAIEAEiQASKCAGch8N2XDx1gwsag8vVEL3UnN1neTsvpyN+4RqBdX8JV4u6lwt33lRNeEUC23WxNTfqwhi29eZ6agsXNOHMbJSEy+BwKzLel8YrKrg3BUcL0S41O1HiLm/UqFHu4lsQbDwXhste0f+mfSdJFEyTzEtimyS6LJsIEAEiQASIQB1BAGdL8U4y3jrFDdN4gxpnyHCeDNvvot6mz/KIX5SmY91fotSlruT9+OOP3XZcpODv4BgD/o8z+lGJKM6p4sb7p59+2l1IVTXhoqqod9nAr3DhK87Tol+755573K4M3B0Aklro8oJL51DfESNGCC7PwhNAY8aMcW+A17VEYlvXLM76EgEiQASIABGIGQFESvCqAC5KxEUoeJMxeMbjlFNOcU8qIQoTNrE84ldK/hLW7+tivhdeeMG9tnHttdfKJZdcWpg96AAABs5JREFUInhbHMT0/PPPV8OBs/545cH3pZOgH8K2XkSW8QQgLhpEAtnF/QGHHnpoaD3jLg8fDojt//3f/7loNZ5GREI0GZHmgw46KLR+pZCRxLYUrMg6EIEUEcANhkiah8RTVJOfIgJEIGUEsHUQT1YgYvLQQw/JH//4R3cGDTeIat53ZnnEL4oLW/eXKHWpa3kRuR0+fLi7SAlRVuz88CG2ceIH4oobjK+88krBeX9sSUZ0FIt3uDQu6k6UuMsDsYVuiG6DgOPdcPS/6HexuFjzCaU4sbFYFomtRatQpzqNADqpYCsOgMAted/73vdUZzniABIRGERbTj75ZDn++OPdiuXWrVsF55lwAyje6sXWQyYiQATqNgIgr3jiBxM/RDMwUcUtpzjrdeKJJ0YGh+URvyhOY91fotSlrubFVt/+/fvLfffdJ+edd54KhmCnSCbhsrKyyFuHX331VUE0dPDgwe4pr5deekkuv/xywdlWDfmOuzwsJGJLNOqNLci33367wxA3L5911lkqDItZiMS2mK1H3UsSgeCyhGAFbtq0aa6eIJhRL1KIAyB0lF/84hcFFzrgMpiJEye6d9e+//3vu4sUQHJxfo6JCBABIkAEiAARIAKFQmD79u2Cc7R4TxqR35rRSizIN27cuFDq8bspIEBimwLI/AQRiIIAyGunTp12RUGx6nbXXXcJzqHgMoXJkyfL9OnT3bmOCRMmSNeuXd1q4gMPPCC9evWSv//97+7CAJytQKQVxBM/Hzt2rOvQZ86cKb/73e9kzZo1bgUSt+lVVFTI6aefLt27d3fvMmJQwHdBZHFOY968ee49yt/85jfyt7/9TfBG3KxZs6oRWzyrgHcY8QdX1+MSA5TPRASIABEgAkSACBCBNBDAcak2bdq496Xbtm2bxif5DUMIkNgaMgZVIQJAAMS2VatW7ua9999/X66++mrBFfXvvfeeO9MB4oloKbb84fc4VwECChKLBDJ50003yZe+9CVHRnHuCGT4V7/6lbsCHluKcV4EZ2RBfm+99Va3raZly5ZO/qqrrpInnnjCfQfkF0QW38OWG5BgXO6A8zBY+awascXvcP09vo2Hy0GG8fdxxx1HwxIBIlDiCMT9zAbLq+4wUZ8pIX628Cvx5q+uXtx+Gijy5z//WS644AJ3FMInxa2f9fJ8sLIiS2JrxRLUgwh8jkDNM7aI0v74xz92hBU33h177LEuugry+dRTT8nDDz/sLgoAsQ2I5Pjx4+W6665zK5YHH3ywy4Mr83F+BflGjhzpHkBHFBdkF78HscXNhHfccYeL6g4aNEjmzJnjztRW3YoMMpuJ2CKCXF5e7q7AX716tWALNc6g4BtMRIAIlD4CcT+zwfJ2+4zmmRLiZwu/0u8BdDWM2091WmSXils/6+XFjV/a5ZHYpo04v0cE8iAQRGxBQrGlF4QRJBSkFRey4AInPJ8RJERx8W4ZCCuuowcRBqkFucVlGnhIHO+vNWzY0EVjEUkFscX/kUBoQZrxNyK/OEv717/+Vfr16xea2C5dutSdZcGZliuuuGKXbiDNiBgzEQEiUDcQiOuZjQAtlufnN8TPFn5+2pSudNx+GjdScetnvby48UuzPBLbNNHmt4hACARqnrENRHCN+3777SeHHHKIe0bj7rvvliVLlsj999/voqIgtoikIjI7f/586dGjhyOn2I5z4YUX7rqh9Be/+IX88pe/dIQZ/8bNg4iy5iO22L7861//2p25zRSx/frXv+6uwEf0F9uYoR/eozvzzDND1JpZiAARIAJEgAgQASJABIiAHgESWz12lCQCiSCQjdjiY7ggCmdYcZEU0m233eais1j9q0pscbkTCC22KCMdeeSRjnAimvuDH/zAnc8Nfo4yQYZBbIOtw/fee6/07dvXRWxxXTy2I4Os4hsg1cFNyFWf+8Hvr7/++l3fxHXz2I5c195QS8QpWCgRIAJEgAgQASJABIhATgRIbOkgRKAIEcATPCCi+a6tX7dunXtn9sADD6z2dtvmzZvdQ944s1uvXr28COzYscNtc8b38hFVXGiFrdP77rtv3nKZgQgQASJABIgAESACRIAIxIEAiW0cKLIMIkAEiAARIAJEgAgQASJABIgAESgYAiS2BYOeHyYCRIAIEAEiQASIABEgAkSACBCBOBAgsY0DRZZBBIgAESACRIAIEAEiQASIABEgAgVDgMS2YNDzw0SACBABIkAEiAARIAJEgAgQASIQBwIktnGgyDKIABEgAkSACBABIkAEiAARIAJEoGAIkNgWDHp+mAgQASJABIgAESACRIAIEAEiQATiQOD/A/1mTZxCChSWAAAAAElFTkSuQmCC",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "linker.cumulative_num_comparisons_from_blocking_rules_chart()"
]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Set the output bucket and the additional filepath to write outputs to\n",
- "############################################\n",
- "# EDIT THESE BEFORE ATTEMPTING TO RUN THIS #\n",
- "############################################\n",
- "\n",
- "bucket = \"my_s3_bucket\"\n",
- "database = \"my_athena_database\"\n",
- "filepath = \"athena_testing\" # file path inside of your bucket\n",
- "aws_filepath = f\"s3://{bucket}/{filepath}\"\n",
- "\n",
- "# Sessions are generated with a unique ID...\n",
- "linker = AthenaLinker(\n",
- " input_table_or_tables=df,\n",
- " boto3_session=my_session,\n",
- " # the bucket to store splink's parquet files\n",
- " output_bucket=bucket,\n",
- " # the database to store splink's outputs\n",
- " output_database=database,\n",
- " # folder to output data to\n",
- " output_filepath=filepath, \n",
- " # table name within your database\n",
- " # if blank, it will default to __splink__input_table_randomid\n",
- " input_table_aliases=\"__splink__testings\",\n",
- " settings_dict=settings,\n",
- ")\n",
- "\n",
- "linker.profile_columns(\n",
- " [\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"], top_n=10, bottom_n=5\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "3f8b54a9-5f4a-423b-90ec-d7e93f54f3d9",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
- "data": {
- "values": [
- {
- "cartesian": 1279041753,
- "cumulative_rows": 243656,
- "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99981. This represents the reduction in the total number of comparisons due to your rule(s).",
- "row_count": 243656,
- "rule": "l.first_name = r.first_name and l.surname = r.surname",
- "start": 0
- },
- {
- "cartesian": 1279041753,
- "cumulative_rows": 268697,
- "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99979. This represents the reduction in the total number of comparisons due to your rule(s).",
- "row_count": 25041,
- "rule": "l.surname = r.surname and l.dob = r.dob",
- "start": 243656
- },
- {
- "cartesian": 1279041753,
- "cumulative_rows": 298602,
- "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.999767. This represents the reduction in the total number of comparisons due to your rule(s).",
- "row_count": 29905,
- "rule": "l.first_name = r.first_name and l.dob = r.dob",
- "start": 268697
- },
- {
- "cartesian": 1279041753,
- "cumulative_rows": 307023,
- "reduction_ratio": "The rolling reduction ratio with your given blocking rule(s) is 0.99976. This represents the reduction in the total number of comparisons due to your rule(s).",
- "row_count": 8421,
- "rule": "l.postcode_fake = r.postcode_fake and l.first_name = r.first_name",
- "start": 298602
- }
- ]
- },
- "encoding": {
- "color": {
- "field": "rule",
- "legend": null,
- "scale": {
- "scheme": "category20c"
- }
- },
- "order": {
- "field": "cumulative_rows"
- },
- "tooltip": [
- {
- "field": "rule",
- "title": "SQL Condition",
- "type": "nominal"
- },
- {
- "field": "row_count",
- "format": ",",
- "title": "Comparisons Generated",
- "type": "quantitative"
- },
- {
- "field": "cumulative_rows",
- "format": ",",
- "title": "Cumulative Comparisons",
- "type": "quantitative"
- },
- {
- "field": "cartesian",
- "format": ",",
- "title": "Cartesian Product of Input Data",
- "type": "quantitative"
- },
- {
- "field": "reduction_ratio",
- "title": "Reduction Ratio (cumulative rows/cartesian product)",
- "type": "nominal"
- }
- ],
- "x": {
- "field": "start",
- "title": "Comparisons Generated by Rule(s)",
- "type": "quantitative"
- },
- "x2": {
- "field": "cumulative_rows"
- },
- "y": {
- "field": "rule",
- "sort": [
- "-x2"
- ],
- "title": "SQL Blocking Rule"
- }
- },
- "height": {
- "step": 20
- },
- "mark": "bar",
- "title": {
- "subtitle": "(Counts exclude comparisons already generated by previous rules)",
- "text": "Count of Additional Comparisons Generated by Each Blocking Rule"
- },
- "width": 450
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAACjCAYAAAA0L44AAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QX8ZUX9//EBJAQUCQUEEQQMuktSurtEurtEOqV+KCCd0kh3SKM0SHdKCAhSiiil+H88x/98PXv3nHvvud/du3fvzjwe+9jd7/eciffMmXnN5zMx2n/+85//hByyAlmBrEBWICuQFcgKZAWyAh0qMFoGyg6Vy69lBbICWYGsQFYgK5AVyApEBTJQ5oaQFcgKZAWyAlmBrEBWICswKAUyUA5KvvxyViArkBXICmQFsgJZgaxABsrcBrICWYGsQFYgK5AVyApkBQalQAbKQcmXX84KDE6Bv/3tb+Gdd94JU089dfjSl740uMhGwNuffPJJ+Mc//hEmnnjiytTTvr/RRhttmObws88+Cx9//HEYZ5xxwthjjz1U3K1+Pywz024ZP/300/Daa6+FKaaYIow77rjDMgvDNa5uatlpQT744IPwwgsvhK9//ethqqmmCmOMMUanUeX3QgjN9usO62+5leCNeSlLv91vsFVarX7/4YcfRm0mmGCCVo/W/n2Z5nW17pYOZYXLQFm7yvMLWYHBK/Dcc8+FzTffPNx5550Dka211lrh5JNPDhNOOOHgE2gRA4i96qqr4sC71FJLdZTexhtvHM4666zwjW98I7z99tulcbz11lth8sknj7/bdNNNw+mnn940LXm5+eabw8MPPxxmn332oZ4t/v6ee+4J2223XTjwwAPDfvvtFx5//PHwwAMPhHnnnTfMPPPM4YQTThji9x0Vss2X1l577XDxxRfH+lxwwQWHeuuvf/1r+OlPfxp+/etfD/xu7rnnDmeeeWaYccYZ20xlxD3WTS3rlvLVV18Nm2yySbjtttsGXv3Od74Tjj/++LDsssvWjW64P3/DDTeE119/Pay66qpNJ2JlGfnXv/4VxhxzzPirRvgwuTJJafY9tlu4zz//PIw11liVjw/2cJivfvWr4e9//3tTaE2J33TTTWHppZceKi/zzTdf+L//+7+w8MILx9+lOOV9MJPz+++/P4h7o402it9nY0iAZ3LYTKN2tS4+p++4++67h3hVfSr/0Ucf3VZ7adUXdZKvdt/JQNmuUvm5rMAwUgBkffe7340d6le+8pWw2mqrhd/+9rfhL3/5S/z5U089NagOsZ1sPvjggwHQGNQuv/zydl4Z4hl5nXTSSWP+f/nLX4YtttiiNI5f/epXYeeddx74nTKPP/74lektvvjiEQyqgLL4exapCy+8MKy44orxjw53l112Cccdd1wESfEUf1+7kDVeSJ34HXfcERZaaKEh3vz3v/8dllhiifC73/0u/vzHP/5xePTRR8PTTz8d/8+qNt1009VIrfuPdlPLOqUrfktTTjllMMlhAT777LNjNLfffntYdNFF60Q53J9daaWVwjXXXFPZxptloBlQ/vOf/wzjjTfeMAFKFulk9V9nnXWG6I9Yfk0kBxMSlLUDpgkogdUKK6wQvvjii/DSSy8NTMZ5SID0sAJKE9Uf/vCH8Ts9//zzhyrmDjvsEHhmTjzxxGHeTyegBJC8GOpB+fW3fmYy0io064tavTvY32egHKyC+f2sQE0FwNdpp50WllxyyXD11VdHl62BgqXq+eefD9dee21Yfvnlw7PPPhutWiDly1/+clhkkUUivLEqmjn7s/3224c111wzvPvuuxFMv/Wtb8VO8NJLL40WuuWWWy784Q9/CA899FAAY3vuuWcYffTRw3rrrRdnwoDQIHzMMccMVYrrrrsuHHzwwRFwuRHB50EHHRRd9Ouvv37s0L3PCnTRRReVqqBMwGmGGWaIf5977rnhJz/5ycCz8rDPPvuEF198MXaYjzzySBxoE1A2+/3LL78cACvrFLjdaaedon6g/Gc/+1m09KbfszbQGHQaDOVljjnmCFtuuWW0FBvgaMXiwOIBSJTNe5tttlnMLw333Xff+Pe3v/3taIncY4894gDerBNXH8osPgMhLQVpn3rqqWH33XcPhx9+eNP6Zn3dcccdo+XkvffeC7feemu04P785z+PdXLXXXeFOeecMw5y3/zmN2O7eOyxx8KGG24YzjvvvPDmm28GYLDXXntFUABi2oK2xZqzwAILRAgXh/yecsopMc+33HJL1HaxxRYbQktt4KSTTgqXXXZZHFy1TeWYdtppY9mq2o6Bv1nbnGaaaWL7ahZ3saGxep9xxhmxPapXbVs44IADIrSpUxqZyPjZlVdeGX8P+n1Lk0wyScv8ABh6sK6zLNLId6H9PPnkk2GbbbaJVn6D/n333Ret5BdccEH8/kwWZp111vCjH/0ofstHHXVUfFd+QMuRRx4Zv42qvMmrvoLn4qOPPortUR0KjTBWBMptt9021iO3rHrdYIMNosWWFV1/oX0IdGPhVb4f/OAHA9IWgVL9li0pYaHTbk1I33///egZ8B2IX6CNvLL40UB/J139XQLKX/ziF7GutUE6auONIQFlcfJrkub7pqP+iYaNQNmsDUqDh0b66sikY5VVVgnrrrtuaARKXgX922STTRbrYuWVVw60NsnSnqr6WW1ZUHfKqP58c6leUlssljcB5e9///sBy2vRQqstaufN+v7GvkifI11xKoNy6scGY8WtGvIyUNaEgfx4VmCwCiTI0hHpRFMorn0BiNx2OsxZZpkldkZ//OMfI7wAKYPh/vvvHwd5nTBgMKMFU9zprHRm0oJ4DNLi0qEb+MGMDld8W2+9dRzQikFnCUAFgyEo9b7BQpriBhMJpo499tihZElWUJ39IYccEoFUXGBIYEkCZgLrkvWk0hAApXWZzX5fdHkDBAO291heWSqBV9ElzjWeygleb7zxxpgWCKNBca0SWBCX8MYbb0SoAmqgQTmABU2SW6wZUMoLkKWdAb0YUp3La7P6lpdk+aSV9FNQB/IlpGUFoDgtp0gw7/cGeHUBJIAmqJloookifCVXKTciUE5BnOC1qKV2a5AUDxcjS7CB1iDZrO0of7O2qR01i7uxkQFY3wWgVpaqYDnJJZdcEr8P5QV+/m1iof6rvhX58XuAZkJgwOdNEIAI3YvpqhsQ/v3vfz8+T5NkYTJJYU3TBr3Hqq5NHnbYYZV5u+KKKwYATX5NmFKoAkq/l/b0008/0IZNLlj0gZN2BjJSn6He/bu45rQIlOq/+DvWdm0ZaJlsiY8GJouCySG4Uze+Z+2WRd6/0+Sp+K15N7l5y+oxARVtE6yqN9+v79QETygCpYlSVf+lDeqDlEOgSfIemMwD1WShBF/aDj2BMeguuryBeLO2A+KShbzYp4jPWszGkICSliaPYN44AUpT32kC2azvL/ZF0tQW9Rfyoc/1vejvtOthHTJQDmtFc3xZgRYKpA7p3nvvjZ1GWWDJ2HXXXQcGaTPyeeaZJw4QQMCA0A5QGrRYhFghDEgJGlq5vJNbLgErwE2WtVdeeSXO0IGKTopbsSzoaMEDQAEj3HECILYJyUAKcFZfffUIJAbLtJ5QObl3mv2+cQ1lo8u7uO5v7733HpiRG4B0tAYP+hio/vSnPw0MFAY3FjtWHR07Cxg9DKAsWgYbdcDS5N8GwWZAyXIMDFhzDKid1DewNjDLNwsYbbj/DOYsQQY7VkTtSbtKQCnPLLjagME41T9tTFJoDzbWWGONmC31CqIApfplkaFF4xrKBHLqlYYAiRXLACxOgFrVdljltY2qttks7rR+UF59E8nKkpYNpHadNFY/AMJkS3jmmWdiPsGEgRVYsHA1y8/3vve92DZZ4mabbbZoEWYlAoasbgkopWOyIT6woy2bhLAGmbz5Xr1TdHmbqDTLmzZjTbG2zQLPom0yKDQDSvkFlNYWs9Bqq+rUdwcuAJk2wzvBQ+CZYigCZWN73W233cIRRxwR65ierNOs/yzg4gbUvCvaRnIb+z+vgfS1r8Y+kMfkN7/5TTjnnHPiJKUYqtZQegaw+xYtoykCpW+uWRvUt5oQ05OHwvchbfGBRnVanLj5RkzshTKgrGrLJrms0PoQWpvUJEBtBpSNmgNQfaKlMXWAkidCevoOExoTVxNuQfriHZYhA+WwVDPHlRVoQ4E0QKW1fukVAxwrApe2gcCsVOeb3FNgREfOqiEUgZIVTQfYaKEEczpynQf3V5oZtwLKNKgX1zJy9fk/gDQQNgNKGwQ8wyphUDGQcBkCDxYyoMi6AXhSp65MyXorHRDT7Pd1gBJUWQ4gcBsZFGjNWiVw3yW3HlDhOuUmMqCrB4OOgRToF0M7QMmCrB4b16uyGrMYfO1rX4sW52b1zTphUEhWQPqoj7SuikucW9FgATgTUBrItTeWsbR2VVnBj0E1WTZTmTynXYKPtNnJ7xqBEmgD7hS0K3XqvVZt54knnogAV9U2m8Xd+HmpUxCTNkOZaIGnP//5zxHq6EH7+eefv/TL5DrURqvyYzNV1W5x4LPVVltF+FA3rGKCdgWQkiUzJeybpmkRKNVFs7yB0QSAQEebMSkQmrm80ya5BGPA17/1GYCEq5eVFlSZkDRuDCsCpTSLLm/LQvwfZIGVotVUvgCwsvtW0qSiUfwEZWkDTerb9BEsosWQypCgze/0dyZP2m9aRlMESm1ef1rVf/kmfTNpcllML7m8iz8rxlMGlFVtOfVnwJulsLj2vBlQ6vOVQT1qo9pAmpA2AmVj31+c3JpcVk1ih8fa7QyUbQBAfiQrMCwVSCBlINJZWldmEGKFMrj50FnsDCbFndHLLLNMHCQBmIEOKOpcPMdKZlBrBEqgAhzqAiVrFzdQ6qy5XqzjFNJmkmZAmSxiZbqxqnGLATYdsfzJJysHwKOBDty6pWa/rwOUOlVrtwQDjfVNaeBIkN24UaAIlCxNQICVwvo4LsJknWploWRBSVYXnb+4lJU1j+WKxqy+zeobTHQClGmAThMIZVX+ZG02OVCP4F8oAmURBopAqd2x4qon8K2dWJ8nAFiQ1aztsGABuLK2acBtFrdBthiSFRlo+2ZSHRuQ5QlQqi+WHWUHEICIxV2bFp/fV+XHd0Mb+WLRnmmmmWK5Lc9IP/cdJ9CXt2SVshwC3KoDlskyoARBzfJmwuBbYNUFVGki0Qwo/Y5lSv7Spjjpg0n1oy1px4Cq6DIu6trOGkoTGHGYgGjf1n2rO0AJ6NVNcnEDIs+Z9Kqbxm+tHaBsXEMp79JP7agIlL7NZm3QO6yG119/fVwDbjLgWzQRSy5v4K5eWem1I3BmclEGlFX9bFonndau8ixIr5XLu7iG0vp21unUxkwGmvX9RaDkDbKO2oRUeROMm4zweBUt/sNijMtAOSxUzHFkBWooAB7Sgu20qSWtrdNxcG9ZB2lGK4BKFj8uIQHMGBgNMN63kBxkCu0Cpc0vOmRwp4PiIioGLj0uGvFb0waaDBY6VpYN+WsGlNyxOmjWSB2awBphIDMgsyjp1NKRHzYqGRzELRg4uWSb/b4RKAGEwcogzBIEoorr/gzw3D7yDea4uAx0jeu6kuWnCJSsxjZ4sIqwwrEWyGtyMTdzeYNHg28Cca5nAwZIoYeyAuxm9c3y1glQGhSVW31KD+yBHK57dQt2uePTrl2a01EZq4CSi9SxTMpjQiPfdBa/fBqcm7UdcFoFcCZKzeLWXouhuA5XeWirXpLWCQTo7Ge08I2kjS0An5WuGVAmOAWO4rf2jFXOpo60BKIIlLQzEaK1NXHWq2nzybWclkD41qXrW6nKG+uU95TNRJTLNK2fbebyVkbfgXqVNk1smhGAhPW/QqOXJGlbBEptvNFKK19c3NouPbQbkCOY9LKe00bQB4BMgJe8E50AJQ1Sf2DSnSyjtAPJRaDUrpu1QSCp/6ST50CjiZZ+iXciraH0c5MOmlsvqZ+qA5TJuirvoE6bEeoApXXJYDpZwdNSnaq+v9gXseCnscZ3b6Lh+9b3awNpE1uN4avpoxkoh5WSOZ6sQA0FACFXcNFdZLDi9kxuWAOdzi5tVNGBGPwtNgeY1qoltxoLAUtXI1Bav2NTiDh0uKkjM2AYbEGcwZb7qhhYnkBZcW2VTsiAZlDnwgFmxU026X3WCVY4wdpEVokUkkXJYGtTR3EDiHhtxNHRJRdTs98noExWWmvX5AfYKLP4gE76PSswuLW2KgW6yYf1nY2DHOiwzlOdgPpk9fBugjR6miCAhmbnUOrIDUbFtOmuztLarGb1DebBSQKXNCFILm9uZPE0rqGUZ4O5YL2r+jPQW1N66KGHDvzcJEVbtKYQiIPsMqBMWhoogVax/ZqYsM61ajtpU05V22wWd9knpg2rR3+nYDLAlUt3SwBMgDyTQEq90Z6erfIDllia0oROGsniaB0il3URKNOJBQBF8J17Ny2PYBH1MwFgAJaqvFnTqq2pN0E6CUqqzqFUNq7WNDkDrrRO8KC9p82AvlU7fxtDq3MobbJh/fI961t84yYC+qNkDU1rmlPc+isTurJvLUF4WvNbzE/VGkr9F9jmORCKQOlbbtZ/sU77pot16nvQbuimTp1yoI34Lq0xTtb9tHnOcoW0KaeqLZtM+mZ8S4I46V91VmjalFM8fizlx/vWQPIUNev7G8+hNLG35Cctb9Fva0/+HtYhA+WwVjTHlxWooYAO3WDOApbckMXXdUisPiwEZpqNlgKQJHRyGLoByfs2NuiMy4IBTfpAL0FijeK19Wi6LUhHXTZjbvX7Rr1YuSwjqLqJRqfMMkVz6xfrBJYKWlXp1SouZQEaJg2sB43lbVXfreJPv09rKFlyAKR6bKw/dW9iMph6NbGQZ8s1GjUZbNtpFneZDuDRej/WqrIjUbR39Sdf1nnWPTZFu/G9aqetbjmSlu+GLmVuRbpbXmBds9+3yps+wjNpA0877YAe6XzGMkArQnA78ZU9Y2LKSkzPshtdlFF7d7lBslh2mlYn77Vqg5Y+0Fb+06bBTtKpegcY0sdmLpDPMsoibXkAS+NgQp2+P/UrYFS/U/f2nXbzmYGyXaXyc1mBrEBWYCRRoAiUvX5o+kgiaV9kM1kCFSatH+yLgvVoIawX5iUQiscGpaPKejTbHWcrA2XH0uUXswJZgaxAbyrAdWcJAJdcuvqyN3Oac9VNBWz8sjzC+sHG3dTdzMeolJYNipaS0J2XiXXS+tN+DBko+7FWc5myAlmBrEBWICuQFcgKdFGBDJRdFDsnlRXICmQFsgJZgaxAVqAfFchA2Y+1msuUFWihgF2ONgYUN/NYwO5GHZuDRsQC+l6uNIva627i6OXyjMp5G5XrUtltBCvbDFY8Y3FUbh/Ds+zuPHfBgLNQ+zFkoOzHWs1lygq0UMBxRNbyOA7DbkHH+BTvmXYcjYNwB7MDuCoLjsFwtEyzu5eHVwU6T9ORG+kmkXbTsYPZGXXOk+yHYLOA21zq6jC8y95p/bSbL0cJOd6m8ciddt/vleccH+aYKLuT6wRHytiw5W7yYhCPMxcdu9VrwTFEjuZKZ6WO6Pw5XsgJBOnu8jr5UQZrKR0z1I8hA2U/1mouU1agiQIGbefq6dgcH+EuXtcROujbkSjO7LNgH/S5HWJYB2cVso464LrbARQC6bJrz5rlpd+A0iRCPVfdJd/teknpdVo/7ea3X4DSxMYZjM6urRNGRqB03qUzH9PB/3XKOzyedTi7w9TPP//82tGzEDt31OTd4e/9FjJQ9luN5vJkBVoo4KYOlgiHfruxxYHX6c7n9GraIexgb4ccu9HDjQ3c4Y4ecbe1M+Zc0ejnLJkOgBavg3QNAmbhzl5j+XCQL4B0jl+6Ocfh2g7Qdng5ayiXO9D188Zz0pyp5/5dt20YTL0z++yzx9s5HJ6uc2d1cmvQXHPNFX9ud6W4nEtpIHUPuoOtE1A6MNrPXYUmOKTZnyWWWCIeii095xbakelwYoc5S9tB2aAYkLHkOsDZOZ2NoSx9VwO6Rs8ubPmml5srHAxtR7aDwp2l6EpE9yQ7YFkZBHcjyzvLonyIxzmT8ik+mjkQngUFmDn4mb5u2HAQuoHQbSluEXGAtOcuv/zyaKFmBXJ1oaUObgGyC9iEQv3Ll/MGpSsO6bByqSt5snxC+m5yEdqpz6p8FoHSbSzakTNDLTeQDxYeemtrDom2a9nvquKTH/WgHFy69JY/rkd1J07tSHBQuyOW6FkMNFJuZ/j5dhxm7lpQoSw/oKGZPlXtp6y88q2+xKnuHR6vrtx6os14R3ut0kXbVy6XACywwAKxPfNKlFkoxe+WG+84+BywOoDdla88Gqm8diw3Wueq2qRvptjuXKBQVn4TTNoqT7pX3OUEzkw0mfP9p2+5rC9SPu3WNyG4CEA7UfdV7btYx43fh8PHq+IrAqXvwpWaDgp3pu1uu+02sIO76jsYDJD2+uCWgbLXayjnLyswjBXQSaeByC0w7vht5vo0WLg9xWAGIg0yBh5wohNNd2MbiKzJBABm8M5fc2WYwckgaN2WgdjNHSwO7r91WLSbLtz+wa3lNhnuWNfDpQAUU1pA0YCmszdQyDfLhfKIU4cO9MTLtXnssceG6aefPkIC+HDQdAJKFoKdd945gong/2CZ1YcL0Hsste7SNUAZHN0q4o9B2sAMUlk7HWBcDMkS1pi+s+gMmDQAqm4iohuQohFwNUCBBVoAcemnq+scli1voNONK96VfzcviZv1wwQB8ANEN5fIC6s0yHGTEo2mnnrqAZe3eqC5gc5dw0ACJLJYu2cd1NBSOwDh4NEh0OJyywxrC0AFBYChVX3SqVk+U/3Ij7wAP2AsT66/pKnDy0GOctKrKj6HSisrCFG/yu7GEG0KrIub7gDVTSjaVtHt6+Brkyj1DLa1D+VU57Qty4/JRpU+Dravaj+N5ZUeWHStqu8q3aTlhhPpmpj5tkySqnRxg9Ntt90W277JmHoygSkDSm2KtuBNHWtfJpYmN9qPoA25qUufUQxVbVJ/UWx3JipV5fddaMvS9p61htL2x8RCe6zqi0x+fC8maYJJrTr3vVS177HHHnugCL6/Yj4dIF8VXxEItQcwCR5NiNWJ/Jp8VH0HJii+I/1X40UVw7ir73p0GSi7LnlOMCsw4hRIVzCybLHGgAXWDRBWFgycbvMAkEsttVR8RKeuszfItgJK6XkWqLC4ia/o8tYZ+7mBXIcORA3gxbMTwRKro0EFHIABg5LDga2HBJfpGkFWUNfYGZRAYAI9wAQuQGIroHSrBVgywBrU0zWHgNJgwfIqLpa6dOd64xV2Vem7lk8caSkByzA4shnKYE+HNHhPOumkERgM3kkDFhEAzTqY7k4GDQZA8AUiwYW8gXRaACDQQd9U78U1lODCulbX4hnU6QZOgSngStdvnn766fE6O2UGTECFhTq1KevKLKNoVZ/aULN8FoES4NDWZMQADbDlQ2DVNpDLT1V8oMi1d+lq0XTfuzbk3yxRoImVnXWa5bK4+Uq8LITpVhN1TwPtuCo/2kuVPr6Dqvaj/ovlpSfoMJliWQSUtNEeii7vqnxoW74THgLPsHK6ock3XwaUvmsTGkEdAi5WQm0BZGpT2iQt03Whqc8AlGVt0nKaYrtTF1Xl1w/pD7R19SE+t9jIk29ffVX1RausskolAFa17+JtRwko0/dhstAKKFlpAaG/06RUG9In8gpUfQf008c0Xks74kaFYZdyBsphp2WOKSvQ8wq479hglEDPgMlNzKKX7hBXCAMmywg3mc0zLDXJrWtAM2jqSItAmaw5yUJZ3PTBJSUeA3kRKFkWWAHBDAsRq5MBr9jZJ+hsFBcM2EzEMmAAZ9VLoMeVDT5Y0Iqh6FJttFCCKdYqZQfLCbLlEWQASjBjYGsMQGqmmWYa+HFV+n4O/riKBbCnrCzA3HXAMm0+YHUDy6y86a5uz8snd166w5jlmAXTnccgG/CwwlkPy3qcgLK4drQIlMmtDyS9w2prOQRXY7rvWl7BLosZ6xG90+Drd2CDPjRoVZ+ebyefja5BehTvDhdPupu+Kj4WTG00tQPuautG01WHrPXKIS0Tn8b2oiwmFcBVKLafqvyAryp9mrUfE4Di2jzAwc2rDpRTYDFuBMqqfJhEmHwUJzsmG9pBGVD6ntKk0TdoOQwABossnKCeTmWTT8+UtUnvFdsdy37V92M5iAmfcu+1115xGY32r7yAkpVa+yrri0yqigBISzDMQlnVvqv6BT9vBMpifKld+u7KrsIEku4Ir/oOUj+prk0m+ylkoOyn2sxlyQq0UEAnBkh0tOAhzZa5YYBLCtxLwMTvDWZFq4QOE4yBOYN1AotkyUtACQ6TC6oKKAEUS4g/IAfIWB8GBFIASixlBuo0sCoH9zVrJqsHtydItmaK1ZJVw7o6lg7B4GpgAQdFC6UBjvsJYBgwuW+BM7eetaNAUh5ZRgGT+FlruQ8Fz3ApW69YPAqkKn3WsBSP9xMocueystIuWeCAApBhfWkESnWTrCLAnfXJ+6zO4FwdgS+Th1ZAKf9u8DCpMHByFdKXdbS43g5w+L22ApjSUociUGoPrepT22snn41AyUXN4qWuBdY7bUKaVfHRT7tM7cBaW7qlXd4LLrhg1Fd9sUKyphUDDQBAOgFB/W+yySZx0lGVH5BQpU+z9gNQikAJ7FmOTfq0dXXq220Eyqp8sLKbFKTlEMoFoLlpy4CS3ukGF9+uNkFrbY2Gvg/WSpbwxgAoy9qk77kIlACz2fdjqQurujbo+7W+NQGl5Tl0LeuLWEx9x2npjomBfkFbq2rfRZhr3AwGKKviS+3ShNskxERQfyHo71gt3c9e9R0kr0aa1PfToJWBsp9qM5clK9BCAesMWQJYtFibBAOVQYd7UMecNq5wdVp7aMAFYlxVOkFruLhtDS5cUKwJwMyz3HatgNKAxuJgPaX1gTpvaYuLm5VrT3wppBm9AddAI+8rrLBCHCiUBUywCHDxGXS4CsGOtXDiZqVheRGngS8NcMoNxLhOL7vssripBDisvPLKsbwADTyADWACBA1Y4Jb1BkTKEzd72jiS8sziWJY+fZXRPcodhmx3AAAgAElEQVRgJl2RaFAycLYLlCwjBmZlBlnWiXGjcY+KAxQrL3cni6L6rbJQql/5MtirX+8azC0XAGCAhvVXe7FxgiWoCpiAdqv6tCmjnXw2AqX8qR/amVjIh7VqwKsqPoCmHoCwdaDW/2o/CShBMmhkzeZebVzTxjoIvljqTMBoaAIFKKvy4xuo0qdZ+9HGikCpjYM6cKQ+tBtrb7VHEzrl5xauyodvihWb54H1UJs1aaxaQ2mZibozebERR5l5KNJkRtuusqr5rsraJGgrtrs0Oaz6ftKSBDCcLKEJKE1yq/oiAGfyJF79k2/CJA1QVrXvtBlLuRqBMnlyyuIrtkswP9VUU8XNXdqPvkF9mMRVfQc0YL1Mk+1+GrQyUPZTbeayZAXaUMBsGrSxMAoGORbBa665ZuBt4MbdZMDmCrUTGmwIOkMdqMHX4JYW6LMsGIBbAaUF8wZL1gvWDusjWQ9BArABV0X3uzTBZ/H+W7AHxoAiK6H1fAYQLjHr+lgP5DO5j20GACNAj9sPEKTBTfzcoNbPsY7SxiBOA4Gr3gBjbaP8cTsmlzUQMXA3nt/nGKay9FktQA1IU1760p1lpgwoud4BbtGSacBkGZEngS4GW9ZU5aSvAD6ANhDkEkzl9ruiy9vkQP6T9Rdos5Ky/hkgUzoAmhVP2mXAxHJkjV2r+gRz7eSz8bw/G5BYn9W1ID8sfqxuVfFpj8pjwiDQElwmoAQBQMgkh5u3MSTLr0mDZQT0YK3zzVTlx2SkSp9m7aexvNonC7HAEq/+AJeJje9BfrVpm9/KdAE62qz3fLvaKihmoS2zUNIBWAnaKEt3Wk/KWm7CZzJQFgBlWZu0xKDY7rzb7PtJ9aHv4eIWfBdpKUhVX6Q+pWOyoB1rz74ZQFnVvovlSDql48TUe1V8xXrybQBm/ZcA2NWNvqTqOzCJMRlMVvNSQUfSH2agHEkrLmc7K9CpAjo87qDGMya5PEEEq0hxDaN00mzfIv/GI3LsXBUMOO0GHXdyCbGasijaySr+qsDSxrJp4Cve8NMsTWUCvtyiZUHawAAINQaWUWUzCDceY2TDDqhgHWUlrQpV6Rs4DfIG4ro38HgHWIBQA2njrUYsH4Ac1Kg3f6rKn/KtPuyyF7f3UrB+lObc+cCtUYcqTdupz07yqbzgQr2xYhXz0yw+ZVNPje1L/dDP8gDr9xoDK5k1iKzJ0gKoyUrq2Wb5adYu220/yqmtWHIhfe+pW20atPjm/LtZPqwxtrZY3bLkNQviNEFr/B5YRE0A0/FBjXG0apONz7db/rK8NuuL9F/0abyJpqp9t+qvquIrvgc+bbYD1Cz5KVT1a9qSdeQsp/0WMlD2W43m8mQFWijAesbqxl2rc8th5FIgDd7p/MyRK/e9k1trQVliwUeVtQhMm1CwpKdlEJYXsMaPCoGrnUYsvLRonGgmDXKbbK81sLCyvLIEtzM5ay/W3nkqA2Xv1EXOSVagawqYUbOwjYjrD7tWyD5NyHIDyxZYR3PoXAGub1ZoLvHk7i+LzZpi6+FY+rhS007ozlMeed7k0rWWkgu8aH1rLEFuk+3VKdc6K3m/frsZKNtrB/mprEBWICuQFcgKZAWyAlmBCgUyUOamkRXICmQFsgJZgaxAViArMCgFMlAOSr78clYgK5AVyApkBbICWYGsQAbK3AayAlmBrEBWICuQFcgKZAUGpUBbQOl4C9vcHSjrIFXb4Z3V1nif56Bykl/OCmQFsgJZgaxAViArkBUYKRVoCyjtgnOfruAwYYeVuqXC2VbOksshK5AVyApkBbICWYGsQFZg1FWgJVA6tNNhqO7pdLCwQ1Sdf+bO0+KdmqOuhLnkWYGsQFYgK5AVyApkBUZtBVoCpZsS3OTgGrF0s4VroNzf+8EHH7S8gWHUljeXPiuQFcgKZAWyAlmBrED/K9ASKElQvHszSeI+UNdQ5ZAVyApkBbICWYGsQFYgKzBqK9AWULon9KGHHgquqnLZ+uyzzx522GGHymuYRm1Jc+mzAlmBrEBWICuQFcgKjFoKNAXKP/7xj/HS+aowzTTThNFHH33UUiyXNiuQFcgKZAWyAlmBrEBWYAgFmgJlq8vL//a3v4WvfvWrWdKsQFYgK5AVyApkBbICWYFRWIGmQPnLX/4y2JRTFXbeeecw1lhjjcLy5aJnBbICWYGsQFYgK5AVyAq0tYbSbu4y1/dEE02UFcwKjHIKXHvttWGGGWYY5cqdC5wVyApkBbICWYGkwHe+850hxGgLKCeddNLwl7/8ZSgVs8s7N6xRUYHtrnhmVCx2LnNWICswiiiw3Q+nCt//xnjDtLT2ZDQCyDBN4P9H1k/p9HJZyvLWFlDuv//+wfWLwkcffRQuvPDC8K1vfSs8/PDD+aac4fFF5Dh7WoEMlD1dPTlzWYGswCAVyEDZWsBuwF430lDSTtLpGCgbpT3zzDPDJptsEt5///0w4YQTtlY+P5EV6CMFMlD2UWXmomQFsgJDKZCBsnWj6ATCWsc65BPdSKPrQHnNNdeETz75JJbUJp3zzjsvXHfddeHll18OU089dV2N8vNZgZFagQyUI3X15cxnBbICLRTIQNm6iXQD9rqRRteBsmwN5Q9/+MNw5513hrKjhf785z+HDz/8MHzve98bolZeffXV8MYbb4SJJ544Hjc0+eSTt661Pnni888/D7fffnuYY445wvPPPx8WWGCBPilZe8X4wx/+ENtD8Zipe+65J8w111wj3UkBGSjbq/P8VFYgKzByKpCBsnW9dQP2upFG14HylltuGbBQAkjrJ7///e9XgsD5558f7r///nDssccO1Mrrr78ed8ZefPHFcT3mVFNNFeadd96WtbbggguG3//+92GMMcZo+WwvP7DNNtvEch9yyCHh9NNPDwcddFDL7D711FPh5JNPDscdd1zLZ3v9geWWWy6W3S1LKWhHQHOyySbr9ewPkb8MlCNVdeXMZgWyAjUVyEDZWrBuwF430ugaUNrF7SxKhVpjjTUCq6QjU958883w6KOPhrPPPjuMN97QO8HKgBIY3n333cEGn6985SsRLr/44otw4403xs09RxxxRPjtb38bzjrrrPCNb3wjxu3fRx55ZFh55ZXDlVdeWVrDiy++eJhvvvkipM0555xxwxArmP8fffTR4Utf+lJwXuZGG20U9t5772g5vemmm8K0004bll9++XD44YeH6aabLlx22WVxPehhhx0WTjrppDDllFOGE044IVoU6wRLAYplYom86qqrwvrrrx++/vWvh0svvTRqcPXVVweQJe+PP/54OO2008KOO+4Y351//vlj2RdZZJH4O3ncfffdh8rGa6+9Fq/A/PKXvxxuu+224H51erEQb7vttlFvcZ1xxhlxM9VWW20VJphggvDAAw/E926++eYIdEBvs802i8C7/fbbx3pYaKGFwimnnBKtySlY7rDLLrvEKzjdkvSLX/wiTgqq6sD76pVlknXaUolWQKn+1IH8Kveaa64ZFl544WDZhbz72cwzzxyzVNR53333HaodaJtl+a1Tn2XPZqAcrIL5/axAVqCXFchA2bp2ugF73Uija0C5wQYbhHPPPXdAWVv+FTCFqmODyoCSe3OnnXaKbt999tknwh9rJwgCjyyWIOjee+8N3n/iiScisIw//vjhvffeC1VnXnLHr7feehGEQK+4F1100fDtb387wpKrIaX1zjvvhC233DI8/fTTwaYiAPXZZ5+F3/zmN/HdDTfcMILKuuuuG62oYAucAaF0veQ//vGPcPzxxw/V0rw/7rjjxp/LeyrT6quvHoH7008/DWuvvXZMA0DOM8884U9/+lO09M4666wRoO66665YZnAHHsGksh1wwAERgFP8xcRffPHFMP3008f8Wssq3rfffjuCNPijxZ577hmPagDlnlX2ccYZJ5bz1FNPjeC8xRZbxPwAaPUkTflQP55PAWgCROmBOfBnglFWByYQoB18vvvuuzE9E4dmQPnxxx/HuOigHBtvvHFgpTVBUA+AH3TPPffcQ7QdOitjYztQzrL8tu4qmj+RgXKwCub3swJZgV5WIANl69rpBux1I42uAaXBHYRwuf70pz+NVjCwAXYAHgArW0NZBpRPPvlktJABJxbDBJQsdRdddFE855KlkCUR/EiDdVH81h/6d1mQx4ceeiiC0V577RW++c1vRjAFWyx04OSoo44KDmcHtNbsbbfddhFMQCcLljIBV+l4Z7XVVotJbbrppoEVEPgJrGbiagy77rrrgKVW2VOZis8BSuBGM2VPQAnSZppppnDDDTeEtdZaK/zsZz8LK620UphlllmiJREQ3nrrraVlV8all146vPTSS/H3gJJV8Ac/+EEE92eeeSYC7pJLLhkBmrXVznyAzs2svP6AVQfXL7XUUjF/M844Y7BEAeinuMX/r3/9K2oNDMXvd/5fVgfWxwJPdSuAS9bZZkApDyye8saiu8wyy0RrdhVQFnUuy4P2Vpbf1l1FBsrBapTfzwpkBUZeBTJQtq67bsBeN9LoGlCCuQMPPDDst99+0fW92267NYW7VAV1gLK41pL1EISwinIHA9l2gPLZZ5+N1iuu5EkmmSRaw7iXWfoAJLdpAkpWzBVWWCGCJGgDsAkoVR53PphNwe/T0UiASlqNwXrSBLxlZfd8FVAW1xACR659IMdNzWrbCihZ5x577LGYJVZBmrEcAj4WUfllJQWU6VnWWhDLCsgqmIAS9IH5BNB+zqqbAmskyAbmIE8eE1A21gGrrp+l9Z8g2jKEVi5vEwsQeskll8T8geKvfe1rAxZKoAmitYti2wGUjXngli/Lb+uu4n9PmACZZBTDn767Up0o8rNZgaxAVmCkUiADZevq6gbsdSONrgLlz3/+8+g65UYFYWVXMDZKX4Qqgz6rF2HKLJQJCqw9NHAfeuihcd3gqquuGi1gwAH0cF+WhTKQYHmUX1DFigWSWOZYRpsBJTA855xzwgUXXBB3oy+77LLhkUceGdh8xHVrHWlj4KZPLvli2Yu73VsBJRgGXayTXM/gGhDSHNSUBRbKMqBcZ511ojsbYLJaLrHEEmHzzTdvCZSsoyCWBZduLIr0SIFVF7Bbr8gq+7vf/a4SKFk7lYWV1bpV8Va5vLUpzwBHwHj99dfHegfyINF6TksTtCPrMS0RaAco6VOWX6CqLlliTRLuu+++uBTBpIAl3WREu6oK2eXdurPNT2QFsgIjrwIZKFvXXTdgrxtpdBUouRwNsKxaNm0Ur04CflWbcoDEMcccEy1ZoNGavjKgTM+JmzUROBrkuditoQNF3NFcwq2AkqURQIAS7l0bSsYaa6wIpKAybS5qtFCywkpj6623jhZLVjfPWi/JfV4nAMpUphNPPDFCsp9VAeWDDz4Y4cU7wI/VlDWVlRYYs7Jx5e+xxx5DZaMKKO+4445oUaY9HazBvOKKK2L5WDOrLJSsgSDW2lgw7D2glYL1lUA/5Yu7HnTSO1kHUx2AUjvbbcSxaQgsspw2WiiV34aopJO4pCsNz3Lh26DE2iwO7YOlHFAmneWvOLFIeVD2svwCShZQ0Kys4k3rgbUNQG4dbAbKOi0/P5sVyAr0iwIZKFvXZDdgrxtpdA0oWYPAXVWoAsrWVVH+hF3fL7zwQoQoIChI/5///GeEjMYAbqt2YYvrrbfeimsqxeFgdtDYTvDe2GOP3fVbgJSTy53rOa1NlXc/A0+NwXrD5J5u/B2LLPjitk6wVLbetUyPV155Ja5jLLMKyyMtWWT9m1Uv1VVZXFzYwLbKwlz2jg04dnQDvRSkJZ2qtbRV9Vo3v+20j2yhbEel/ExWICswsiqQgbJ1zXUD9rqRRteAsrWk3XmCddNaw8bAcgq++j2wWD733HNDFdMmJhbZHLqrQAbK7uqdU8sKZAW6q0AGytZ6dwP2upHGKAeUras2P5EV6J4CGSi7p3VOKSuQFei+AhkoW2veDdjrRhoZKFvXdX4iKzDcFMhAOdykzRFnBbICPaBABsrWldAN2OtGGhkoW9d1fiIrMNwUyEA53KTNEWcFsgI9oEAGytaV0A3Y60YaXQdKx8nYhd0YXJHozEfH7eSQFRhVFMhAOarUdC5nVmDUVCADZet67wbsdSONrgOlI1ns1i0LjhVyfA24zCErMCoo8H//93+ld6sP67J3ozPpRhqddlid6NlP5emnsnSrDWTNOvlqQjwmr3gkYGexNH+rG2l0q511K51e1qwsb6P9p42TylkhXRXoPEDHtuywww7BvdbOA3T491VXXRUPsc4hKzAqKJCBsn4t93LHWL80eQDOmg1/AOsWtHQrndwH1P9qelmzjoDSOYhjjjlmPLw63Zri0PEjjzwyusGd83jsscfGA8FzyAqMCgpkoKxfy73cMdYvTQbKrFl/A+XTb34U/vbP6jOoO6n/Ou9MNfGXwxQTjl3nlYFn+6mv6eWydASUaskB588//3xYa6214q0n7pp2g4rbUNwo8sQTT8S7oXPICowKCmSgrF/Lvdwx1i9NBsqsWQbKTtpAu+9koPyvUr3cb3YMlO43dqf3xRdfHAu54oorBtcVPvrooxEmXfM3+uijt9tW8nNZgZFagQyU9auvlzvG+qXpTkefNatfM1mz+pqVgUu2ULbWsRttrRtpdAquHQNlkvbTTz8Nn3/+edtXGLaukvxEVmDkUyADZf066+WOsX5pMlBmzbKFspM20O472ULZxxbKO++8M66ZvPfee4doDy+99FIpXLrrmfWSWzyH/lDA9Y+gYM455xwoUDv17MpMSybc590Y/vrXv8YTAuaaa67hKlJZ3osJKpfQ7i7HDJT1qysDZdasG22gG2l0atGp3wK6M3HJFspOaqY7ddPL7bljC+WMM84Ynn766TDHHHOEscYaa0D9W2+9NYw77rhD1carr74allpqqdL7pzuruvzWiFbgvvvuC4cffni48sorB7LSTj0vt9xy4ZBDDgmzzz77UEUAm/vvv3+4/vrrh2vxyvJeTPCoo44KX3zxRbDZrJ2QgbIdlYZ8ppc7xvqlyYNJ1ixbKDtpA+2+ky2U/1Wql/vNjoDy3//+dzwqyMB/wAEHtNUeqkBj3333jUcPObPSxh4wusceewyszVxttdXC8ccfH04//fToWv/Nb34TjjjiiPC73/0uPPjgg+H111+P/3eM0d133x323HPP8PLLL4c111wzgILXXnstbLXVVmGCCSYIDzzwQDze6Oabbw7ABdRsttlm4YUXXghbbLFFtIytt9564eCDD47lqxNAEuvr448/Hi699NL4KivYjjvuGG688cYw//zzx3LecsstgRa77rpreP/998OPf/zjcMMNN4Ti+zY1AfN2ygfmrrnmmgjqdtgrnx32LIXnnXdemHvuucN1110XHERvdz69xV8Mf/7zn8O2224b9ZPPM844I3z00UcxLhuubrvttvgOi/Rbb70VNtlkk5ie8joqqh2gPOWUU2I9sUwqv7w5DWDTTTcNd9xxR1hwwQVjuo6icjrAxBNPHNPYfvvtwz777FOnKsKbb74Z864tzTzzzPEoK6Eq79rF5ptvHtvNhhtuGI4++uioobqSB8H/l19++cp8ZKCsVUU93zHWL013OvpeHkyyZhkoO2kD7b6TgbJPgVKxNt544whoF154YZhwwgkH2sQUU0wRRhtttKHaSBlQ3n///RFOuM3PP//8uJkHQKyzzjrhsccei3EAEEB26KGHRsg66aSTBoCB2x10AcennnoqzDPPPBGcllhiibDIIouE0047LUw00URh+umnD2eeeWYYZ5xxInieeuqpYcopp4wQCWDWWGONCFLeAxZ2qm+wwQYDZQCz77333hBlWmWVVWLeUvjWt74VZp111nDYYYdFiBHkVZmA6+677x7z9M9//jMCLLh6++23o2tXHorvP/TQQxGI2ikfK3GqC5AGfNQLiARWJ554YlAn6glkrr322uHhhx8O00033UDeQbhJAnDzb27elVdeOepm09XUU08dtZVfFkmgvMsuu4SddtopOMS+FVC+8847Ydpppw2XX355ePfdd2MdyMPVV18dy77XXnvFyckPfvCDsOSSS8a0QPnkk08elllmmWAZxde//vW260Nbk2cTEzqKR5DnsryDWcC8wAILRC2POeaYqCFI/O1vfxvbok1m2lhVyEDZ7rDwv+cyHGXNutEGupGGmuz3dPKmnNbfazfaQDfS6LQ9d2ShlFjVTTl/+9vfStfGlQGlm3aADYsUgAFcYKsKKLnXWRtZ+sAoYGOVsxbPWexg5fbbb49WJcB2wQUXROjzHmsgKJxsssmipdMfFiyA529xcd2DVvH5fwonnHDCUEAJQmeYYYYhgBJ8FI9KYnl0rBLIdcj7LLPMEiG3CijT+3XKB9aAGVjzh5Xv2muvjeVgUdx7770jHPtbUBYWOxqnADTp9swzz0SwB3Ust0svvXSEOQHksTJ677LLLovlBKn+tAJKzwPTiy66KMYFLgGjNFic1ZE6oxV4B3fJMijvThBgcW63PrQ1UA8exxhjjIH3pNOYd3oBWbAs+D9IZz1lsTzuuOPiz7X3Rx55JP68LGSgbN3ZNj7Ryx1j/dJ0ByiyZvVrJmtWX7MyoMhA2VrHbrS1bqTRdaD81a9+VXqXN3gae+yhDx+tcnkbvMHGueeeG92+22yzzRBACe64kVkoAc7qq68egdJ7oBEQjjfeeHG9G2sfQHVTDzBgFQQR3mFlAl9ACDx8/PHHESS5zFkrWTlTcA+5OFIAgHazF8NUU001BDizMHKjA9ZiAHaAiztfnkBOAkrQxCqaLJTp/TrlU6akhXT88X4CSi7c/fbbL4J4CosvvniE2xToBCg9++yzz0Y9wV7SzXOseCx3iy22WDx/VDlZQQFyK6AEseJNcGYTj/cWXXTRAeuj36e6ZVmUf4EVWX5ZVtutj7K2pn187WtfGyrvljeIO1kfAa1/q0+gzXoq+L91l6y9d911V1we0BjoOLxDNzqTbqTRaYfVib79VJ5+Kku32kDWrJOvZugJUgbK1jp2o611I41Ov82OLZStpR3yieIgDx4M7ly7BmawCBpXXXXVuJ6OxeiNN96Ia+1YmliKWgGl9XEgB2CyRoJElrpWQMmyyVUNwmabbbYIX6xQW2+99UABVlhhhQiBxQCSwGAKRaBkPZVvVivwxDrpeeC38MILRyvgFVdcEaGKO7wdoKwqXyugBOrKxfrIWgfanB9a3JlNI8sAQCNLZHL9NwIlIATeQNBSBUsD1FMVUKZ6ZrWmATfyhx9+GMA4l7e1itJihbRUAGyzRAJIllHrWE0StJEiqLeqj2Jb0x4AorWkbnZqzLt6ELc0tBlWUhALmpXLWl3LFvw8WU3L2n62UNbtEbpj0eu0Y6xfmu6Up5cHk6xZXkPZSRto9528hvK/SvVyH1ALKLmJDbrW2rHkgJzGUHVsUHGQNzhzq3KfAgZrG20YsaPWGjbr3rhHpcWCCNAApfV0NumUWfCAITc0cBKs/wOWrILNLJTec++49XWCvIBam0LqBEBpPSfXKKuqPHPHAybWQLAE7sAq6x9rJJCV3wSU6f065QN2VRZKwAaqDzrooAivwI772FrL4jpXlkdrBOXb8oCbbropAi+oTmtZwSagZKllyQRq6sf6RK72FMrq2bpUlmfp2uRjMsFVrj35nXr67LPP4uYf8apjQX6TG7xOXRTzYKIi70CWhbEs764PtSRAHqwftWmLXieffHJslz4SFubiutrG/GSgrFNDvd8x1i9Ndzr6Xh5MsmYZKDtpA+2+k4Gy9/vNWkBpcOV2BjEgrHGjiuLacVx2bFBVo+GKZP2bZppphjh+CACUnVPYqvHZsWzHOGsciCtuGGr2rrLZEW4zx7C84Qcg2Rxj3WAR4sCSned1Q6flo6ed21VrAEEdmFZ3aR1s2eYq+aWV9a9VcVWVyTvqVDrFAAC5kos764GrPBc349TVquz5qryDSUshQHJjPWlL448/ftPkM1DWr50MR1mzbrSBbqShJvs9nezybv29dqMNdCONTttzLaAsyulIlaLL10DNbcrCyAqVQ1ZgVFIgA2X92u7ljrF+aboDFFmz+jWTNauvWRlQZKBsrWM32lo30ug6UHLxchPvvPPO8Xgbmz64Xqt2ebeuivxEVmDkVSADZf266+WOsX5pMlBmzbLLu5M20O472eX9X6V6ud/s2ELpAHBHvtjsYD2gYIe3TSZ1DwVvt0Hl57ICvapABsr6NdPLHWP90nSno8+a1a+ZrFl9zbKFctho1lkszd/q5fbcMVA6CNt5hjZ+WLNol2zxsOzhIWSOMyvQqwpkoKxfM73cMdYvTQbKrFm2UHbSBtp9J1so+9BCaces3csp2EUrfPe7342bLe655554jmEOWYFRSYEMlPVrOwNl1qwbbaAbaZRZ9OrXbntvjKjy5DWUreunG3XTjTQ6bc+1LZTOCLRzuSo4kLrOLu/WVZSfyAr0vgIZKOvXUS93jPVLky2UWbP+tlB2Ur+t3sl9QCuFhv59L2tWGyiLxbMJx5mCLJKOs3HDTA5ZgVFRgQyU9Wu9lzvG+qXJQJk1y0BZtw3kPqCuYt3pZ7pmoUzFP/7448P2228f3D/t5pMZZ5wxbsoxsOaQFRjVFMhAWb/G82CSNetGG+hGGp0OwPVbQG8DRd3y1KmbY299KZx1z6t1kxjuz0803ljhll0WjOnUKU+nGetGGp2WpWMLpev6HDp96aWXRgvltttuG2+CcRVf3QOvOxU2v5cV6BUFMlDWr4le7hjrlyYPJlmzbKGs2wbq9AEZKP+rbh3N6tZH8flO0ukIKB1iPuaYY8azJ0866aSYB/dT/+QnPwn33ntvmG+++QZTjvxuVmCkUyADZf0q66TDqp9Kb3fAdcuTNaurWH/Vf68DRd3aqdOeM1D2KVAq1sILLxwPNJDuilsAACAASURBVF955ZXDV77ylXgVo6sEX3zxxTD22GPXbVf5+azASK1ABsr61VdnMKkf+//e6Kd0+qks3YKjrFlnX083dKuTRgbKPgbKl19+OZ5BedFFF8V7nZdffvl4LuUiiyxS2nqfeeaZMPHEE8czK4vhwQcfjBt73n333TDrrLOOUtc2ulXorrvuiofDK/8MM8zQ2Zc/Er7lnnWdyZxzzjmQ+08++SQ8+uijTS3cDtG33KLsnve//vWvcUIz11xzdV2RDJT1Ja8zmNSPPQNl1qz3B+BO6qifvps6ZclA2fvtuSOXd/EjMIgDo29/+9tNv40tttgiLL300mH11VcfeA6MHnnkkeGss84Kl19+edh6660jdDYLTz31VDj55JPDcccd18m32FPvTDvttGHLLbcMSy65ZFAuSwZaBdddrr/++mH22Wdv9WhP//6+++4Lhx9+eLjyyisH8vnqq6+GpZZaKjz33HOVeV9uueXibUxl5Qeb+++/f7j++uu7XvYMlPUlrzOY1I89A2XWrPcH4E7qqJ++mzplyUDZ++25Y6D04h577BEuueSSWEpQtM8++0RXeFloBErw4JB0MHreeefFNZgsnqeffnr4/PPP47WOoGPXXXcNN954Y5h//vkjeLKAOkwdjOy+++5DJfXaa6+FHXbYIVo6b7vttghpoNWxRjYOudFHXGeccUaYaKKJgnM1Z5tttnDxxReHNdZYI4w22mgxL6uttlo48cQTw0cffTSwm32hhRYKp5xySkvobczUQQcdNFAmsORqSuDj5z/60Y+ibvK1ySabxLw7x3PmmWcO7ks/7LDDYh6U94svvgjrrLNOmHLKKcNjjz0W898YAJqzQFl+X3/99XDEEUeEddddN8a/5557BpblNddcMxx11FER5q655poIcA6rl/axxx4bWArVCcvpCy+8ENQdy5/rNg8++OAhrtYs01V+y+rgrbfeimWUnnW2//jHP9oCSporB8ukdiNvNn5tuumm4Y477ojtSH3+6U9/ChtttFGsH2k4hYC23QgZKOurXGcwqR97BsqsWe8PwJ3UUT99N3XKkoGy99tzx0C51lprRZj09/jjjz8AlqCh7GDzRqB0dSOA5C7/+c9/HuaYY45w3XXXhUMPPTQCkc0+L730UnjiiSeiRQo8gslJJ500HHDAAeGmm24qTQf4TD/99BEQp5566jDPPPOEt99+O6YlTYABrL7zne9EWBUfqylLIbDcfPPNo+ueK1ba1157bbz9R5ryATjPPPPMgX5APh555JEh+gXvLrHEEgM/U/ZUJhY4AUxNPvnkEXyAs7Lvu+++Mc9A3TuWAMiD/G+88cbh4YcfDiuuuGLYcccdA0udvDQG0A3mrG8FlcCR9ZMOjnWSLzqedtppwTmi4n3ggQcipIFJ/5aXN998M5x66qkRsgG492iz3XbbhQ022GAgWVo26mpdbVkdgGKublbWnXbaKa69bWWhfOeddwJLLgu2ZQHgmA5XX311BMi99torwvkPfvCDOKlRTicP0HaZZZaJbchpBCmYsLz33ntDyLbKKqtEWB1MyEBZX706g0n92DNQZs16fwDupI766bupU5YMlL3fnjsCSlDAOsZatffee8dSXnHFFdGqZ7Avc0eWuby5rgEoWHOOZQJKcGkH+Q033BCBFQittNJKYZZZZonAA2IAWlkAlFzrQEIAGCxcgOP2228P1nKyQIIPgAMopSPPoCJZ5li9WDZBHmuh/LH4nX322QNxi1+eH3rooSGywrK37LLLDgGUqUzFB60DBIvST0ApLfqOPvroYd555w2TTTZZdHGDIwC2wgorRLhmLS0LgPL++++PQM7qKI3//Oc/EcaUH8Cy9l1wwQUBrAEzsOYPKx+Apq2yX3bZZRHaxTXWWGPFn4sv7eyXPmtmo66bbbZZaR2wropzpplmChdeeGH80wooPW9yYHmEAC4BozRYsdWZMmknYJFFOrnMgS8AZ5FN4YQTThgKKEHzYNevZqCsPzTWGUzqx56BMmvW+wNwJ3XUT99NnbJkoOz99twRUKZjg4COQXyMMcaIcMb69/zzz0frVGOoA5TFtZYgBnQAOcDjEPVWQMniyCUsAEPrLcEL8Nlwww3Ds88+G8/OTEDp/xNOOGGERrvVp5tuuvgeqPrxj38cd7JzPwsAizUzBZa8999/f4jigu3iWZxlZfdCGVAW1xCy3gIplmDgCYaBdSugZHkEja7IVE6uchtVlAvo0lEcgDI9S2N/AGkCSlZM7nVWzhTchlSEZfE06gr2GuvgmGOOCYsttlhsHyAZQIu/FVACQPWT1syy/npv0UUXHbA++r305J11N0026G5Jw9prrz2Qfy78Tz/9dIj60qbKNvlUdfaWD9hM1RjKlmB0MmA0e6dOB9xp2t1IQ95yOvVrKGuWNeunNlCnLBko+xQoFcv6NWAisJyxhrESJUtSFVAusMAC4cMPP4yWpSoLZQJKrkwAAaKABfgBhFymZQO6NFkoy4CSdYwLFyiyWnLhsiqxUDYDShYywMHVy5rHOnbOOecMFI8bvPh/v7COD/SmUARKadnVDqqaASWABOw2mHBtA17vikv5rb0sC6CqEShZgaUHMMEvSGSJbAWU0uZ2F6flAPvtt18EZZunUlCPjbpyjZfVATAFgtZR0tMh+FVAmXSyxlb9s0xrN+qCFdwSBnXICmmdKasuSySAZJ22ThVEgz9lT4GFF1QWg7bFMsyKa1JhwmQZgnWe4nnyySej21xbqQrZQpkH+jqDY321en8w6aRMWbP6qnVDs25N+OqUJQNl7/cBHVkoFevjjz+OMAAgDfqADVACn7IAhLhtwY1Bntu5Cig9x30OIkADVzdgcBOP3eTTTDNNXDvHGtUYqoDS5o1f/vKXEeK4n9PaR67uKqAEQGAZxCqjDSjeq3tweyq7MtGIux10tbJQAkrpKbN8ct0feOCBcbMQa2XZppwyoOTy5tb1jsCCDCyBXZWFErCBThZbACuMM844cRNMcSc+y2OjrpY/gM5GKzHLIC2BLai1zpGrPYXiLu+iTttss01cimCjFRhnbbZxi4bK8dlnn8UNWOKlsaC+khu8nS5b22IJNmnwrnT8rY5AqPbdbBd+Bsp2VB7ymTqDSf3Y//dGP6XTT2XpRWjJ7ay7302d9pyBso+BcjAfXp13QQK3srVzaRMKC5KfAc7GYN1hck83/g58gCJu6wQLZRtbyvL3yiuvREuX97sZQJYD4wFOCix18sN93BicBwq8ygIgdg6oJQoAvQr+G9+lt93zNgxZ2zkYXcXFlV/3ek7vgLtG/ekzxRRTDLHzHLjSqLgZZ3jXWQbK+grXGUzqx97dgTHDUWc11I020I00ulX//ZZOnbrJQNmHQAnWWISqAnejXd/DOwCisvMKrROcZJJJhnfyIzx+IAUQGwPrqw00OXRXgQyU9fWuM5jUjz0DZdas9wfgTuqon76bOmXJQNn77bm2y5v7j5WpKnBhlh0b1MmHk9/JCowsCmSgrF9TdQaT+rFnoMya9f4A3Ekd9dN3U6csGSh7vz3XBsrGD4C10qYF6/KsN8whKzAqKpCBsn6t1xlM6seegTJr1vsDcCd11E/fTZ2yZKDs/fZcGyhttHCUjh2xDgC3KcP5jILzAotn/nXyseR3sgIjowIZKOvXWp3BpH7sGSizZr0/AHdSR/303dQpSwbK3m/PtYHSsSx21H73u98d2BTiiBjH69jw4bibHLICo5oCGSjr13idwaR+7Bkos2a9PwB3Ukf99N3UKUsGyt5vz7WB0q5odyT/6le/ijuP0/mODgl39qJd2VW7jDv5ePI7WYGRQYEMlPVrqc5gUj/2DJRZs94fgDupo376bvqpLOqyG+XpRhqdlqUjoHT3tltxHGrtHmSDqTMSXZeYjuPp5EPJ72QFRlYFMlDWr7le7hjrlyYPJlmzP4bvfOc7nchQ651++m76qSydQlityu8StHZalo6A0hpKfxyMPf/888cDpl2l547nDJR1m0d+vh8UyEBZvxbzYJI160Yb6EYanQ7A9VtAdyYu3SpPP9TNJ5//O1zw6BttVeXkXx0nLPO9b7T1bNVDvaxZR0DZTI0MlINqK/nlkVSBDJT1K66XO8b6penOQJ81q18zWbP6mmWgbF+zDJT/06o2ULr2zlV+VcEub/cf55AVGJUUyEBZv7bzQJ8160Yb6EYa3QKwfkunH+omA+UggLJ+F5jfyAr0vwIZKOvXcT8MJsVSd6M83UgjQ0v9ttxvmnWrPP3QnjNQjkCgvOeee8Jcc83Vc9cD3nLLLWGJJZao3ZM8+OCDcbe7Kx8bwxtvvBHcK92Nhdq1Mz6cXhhVdcxAWb9B9cNgkoGyfr1nzXpfswyU7ddRBsoRCJTuAv/DH/4QJptssvZrrMWT5513Xvj888/Dxhtv3HGcjkNq5sovi/iiiy4KRx55ZDjrrLPCDDPMMNQjp512Wrxve7/99us4X918MevYudoZKOtrl4Eya9aNNtCNNLoFYP2WTj/UTQbK4QCUd999d7j55pvjWZRjjz12ZU9ZBpR2ivtz/vnnh6WWWiqceuqpYcwxx4w38fz6178O00wzTTyWaL755gtu6vFzfwPIzTbbLPzwhz8MH3/8cXCP+Pjjjx823XTT8Mknn8TzMnfaaafwwAMPxJ3oL7/8cthwww3D0UcfHeFxl112CVdeeWVYaaWVwoknnhh/9sILL4QtttgivPjii2G99dYLBx98cOma0FdffTUsuOCCcVc7EJt44olj2aVhHelRRx0VElDuu+++Yddddw0TTTRR2HvvvcNhhx0Wd8RPOeWU4YQTTghzzDFHrZHFjvobb7wxPPzww+GII44ICyywQHw/6zikjtpkY52o71tvvTWwLLvhiX7rrrtuLf3LHs5AWV/CfhhMsrWtfr1nzXpfs26Baz/0ARkohwNQstT99Kc/bXlsUBlQsg4eeOCBYcsttwzrr79+2GGHHcK4444b9thjj3DOOefEI4muv/76CAJrrbVWWHXVVSPMuaEHhF5wwQXRtXzAAQeExRZbLMLbLLPMEhZddNHw0EMPhdVWWy385Cc/ieAFQl0X+d5774WDDjoonH766REIASCgXGONNSKYcX+D0O222y5ssMEGQ/UA//73vyOY/uUvfwnO5VxooYXCz372s/jeIossEmES9LJQOuz90UcfDVdddVV47rnnIsC4phKA0w2cjj766DGNZ599Nj5XDJNMMkmE5BSUWXnOPvvsqMF4440Xf5V1/J+O9JhnnnmGqpOnn346tq8777wzQqV6f+qppwbXw4cQz2LdfffdBx1Pqwi60QF3I41uDVj9lk6um1ZfyNC/z5rV16xb300/1E0Gyh4ESmD29a9/PXAj33HHHdHS6HrHBFKTTjppHPgBAMDceuutw4orrhimmGKKCGUskttss034/ve/P3D940svvRTGGGOMMO+88w787Iwzzgig4rPPPotuaoex/+lPfwpTTTVVBD8gy3o41lhjRYD96le/Gv9fFk4++eTw1ltvRZB1t/ntt98egZHVC+S++eab8QB4ZQON0mCdZDkDuYLyvfbaawFoC8roGstGoFS2IlBeffXVUatiAJRZx//qKJTVyTvvvBPuv//+WKd///vfY/3WXepQ1hYyUNYftPphMCmWuhvl6UYa3YKJbqWTNav/bea6aV+zDJQ9CJSAkKuctZA7F/Cx5LmJRzDwc0NPMMEE4dJLLw2AipUPDAIr73NdszCCOuGDDz6ILmhWz2SFYpH0b++5NtLznuOO5gLlhgatKQDUZZddtrR1JaDcf//940YjG3M8C1pZqwDl8ccfH28Usmb02GOPjdDr56yYKWy00UZhwgknjP/lQpe3YhhnnHGG2PTDQgmKxNcIlFnH/+oIEsvqBFCaUIB+EwjW3bpAedddd8VJQWPIFsr2O+FuDVj9lk6Go3ptrN/qv9/K0w/tOQPlIICSu5C7tzHYaONPq4PNk8vbIP7hhx9G2GJZYw0EWW7gmX322QOLpEHb2sn77rsvghgX8uKLLx7OPffc8M1vfjPC4Nprrx0tfB999FGwVnHyyScPBnzWQBbI3//+92HOOeeMcYFFLnNrJN9+++34HNc0iyC4lKdZZ501brKZbbbZ4mYa6bCGloUElH4PGAHK+++/H9O59tprIzhyeVvnyZIq//LKjc+CaRc4AH3kkUcGdr3fdNNNce1nMdAIQKdQBErxZx2H1lH9ltVJFVB6nkVzxhlnDP/6179im7Nm15mqTz75ZLSea5NVIVso80DfjcGxG2lkaKnflvtNs26Vpx/acwbKQQAl+GsW2gFKa9dAHMgDR+K05hGMfeMb3wi33XZbtFByB4MtlkMHqoNHgGlTDuBjjeNmvvfee6ML+YorrgiAwcYX77P8Wd8I4NLPHOFj7SL4sw4R5AFAm3GAmfWLNusILIPc7zbcNANKLm9w+8wzz8THpp9++lgWllEucaB7+OGHx3WgN9xwQ8yXtZ0+JhbMbbfdtlYPRjMbjawFtZko61iuY1mduC60zEJpknLJJZdEcNeGHQWV2vIKK6wQJxzaSwbKWk216cP9MJgUC9iN8nQjjW7BRLfSyZp19s12Q7dupDG821kGykEAJbdzswDY0gaTdpsxoHTsj/V/LILFwMpncLe2MQUbamzCKT5rl7d1j9ZMgklWpuI7fsYKBR6LUMxKyKpZzLN3WRKnnnrq+HPWU27xYrDGc5lllhniZ6yFgFgePJ/c2GU6AE0u/mbPtKtfei7rOLRideqkrt7F57OFsr56/TCYZKCsX+9Zs97XbHhDWFKgH/qADJSDAEqvAi7uYjuSgd3MM88c3dWsb3ZZF0GunU8HCIkTiPViePzxx6NFsxjAINd8L4Ws44irjQyU9bXvh8Ekw1H9es+a9b5mGSjbr6MMlIMAShtGrEO0xqwY7Mh+/vnng3WFjv+pE1pZ8+rENSo/m3UccbWfgbK+9hkos2bdaAPdSKNbANZv6fRD3WSgHARQOnjcGkSHdy+55JJxo4Ids9bxfeUrX4lrB21kyCErMCopkIGyfm33w2CSrW316z1r1vuadQtc+6EPyEDZIVDaBWu3q/Mf065jax8drWOXtTWQ3OB2JeeQFRiVFMhAWb+2+2EwyXBUv96zZr2vWQbK9usoA2WHQGl3rGNVGncm2/hgTSVXOEtlugqw/SrJT2YFRm4FMlDWr78MlFmzbrSBbqTRLQDrt3T6oW4yUHYIlOkgaOc7Ovrny1/+cozJDmpHtFxzzTXxmJxm5/XV70LzG1mB3lcgA2X9OuqHwSRb2+rXe9as9zXrFrjmPqB+W+hlzcryNtp/mlwd4r7qX/ziF1GF5ZdfPh4e7SxIETlf8cwzz6yvUH4jKzCSK3DccccNdRLASF6knP2sQFYgK5AVyAq0rQAPtnObi6EpUDreB1DutddeQ7y05557xptlHAaeQ1ZgVFOgWxbKbqTTjTS0j5xO/a8ka5Y166c20E9l6VafNrJp1hQo0+fMiOkGG9cwslJmkKzf0eU3+keBke0jb6Z8P5WlW518t9LJdVO/z8ia1dcst+es2bD6bpoC5V//+tdw4IEHxvuxbcJhmTzqqKPiDTGuU1xwwQU7q4n8VlZgJFZgWH18rSToRjrdSKNbA1a/pZPrptUXMvTvs2b1NevWd5Prpn7djGyaNQXKDTbYILj3WKGmmWaaCJWuW7SGcqGFFop3X+eQFRjVFBjZPvJsoRz2LbQbbaAbaXQLJrqVTtass7beDd26kUa32lm30hnZNKsESru5J5lkknio+YknnhjA5cUXXxzvyL7tttvCuuuuG9555534TA5ZgVFJAcdmdcM63410upGGtpHTqf+FZM2yZv3UBvqpLN3q00Y2zSqB8pVXXolWSRC56qqrhokmmiieS3nvvffGg85XXnnl8Mwzz8SDznPICmQFsgJZgaxAViArkBUYdRVo6vJ2C863v/3taI3Zf//947WL66yzTjwyyF3e7vrOISuQFcgKZAWyAlmBrEBWYNRWoClQnnTSSWGbbbaJCrm7+8knnwy/+c1v4uacfffdNxx00EGjtnq59KO0Al988UX4+OOPw3jjjddTOrz55pvhm9/85kCePv300zDaaKOFscYaqzSfVeX4xz/+ES80GH300Yd47+9//3vsD4Z3kM74448f814MrdIvy3fdMg6rsn3yySdhjDHGCGOOOeZAlC6NEMYdd9xa5aqqxzI9WtV5p+X78MMPw1e/+tUhXn/vvffiz4plbJV+VX3UKWOnZfCeI/FcIfy1r31tiGg6Tb9Om2ulTSfl+uCDD2IdaGvFoJx+5xrlFKq+6/T7Ot/K8OgDq+qmrD9oJ/06ddNKm7p1I3/yPcEEEwxVL2Xtr1X6VW2nThnrlqHO8y2PDbJmkh9/3nnnDVNOOWW455574j3eXN6NHX2dhPOzWYGRWQGH+v/qV78KU0wxRRyczj///CE67RFVtmuvvTasuOKKQUfmmK+dd945PPLII/Hfc8wxR3AoexEQy8rhu/7xj38cvvSlL4VXX3017LbbbtEr8dBDD4VNNtkkei38/Ne//nWYa665hnlRDYCbb755hFbrtN3M1U767777bmm+65RxWBVGB//EE08El0OoA8uGPv/881gO2tncqE5o+NRTTzXVVfsqq0f12lgfs802W8s676SML774Yvj9738fT/mQX0E51ltvvfCtb30rjgnbb799POi4kzY34YQTtl3GwbY5ZTjllFPimAaQbXyYdtppO0q/TpurKmPjhK1O/bz22mth7bXXjn2P79U3vs8++wxEseuuu8Z2eNNNN4WqvBbTq/OtDI8+sKxunCpT1h+0Sr9O3VT1eXXqovHZyy+/PBre1IlJl3Y288wzx2+osf1NPPHEpX1XirOqD3j//ffb7vOKk4rBlKvZuy2BcnglnOPNCoysCvi4WWMcq2XmucMOO4TJJ588Wu5HZLDuee+9945eBEBpvfNOO+0UHnjggZgtS1jOOOOM8MMf/jD+v6ocOlez6kMOOSRer6psAGmVVVYJP/3pT8NSSy0Vjw3TKRqohnU466yzwvXXXx/Xb5vAbrzxxuG5556L6TZL//DDDx8q33/7299iHTXWVVUZG62GnZbtscceC2effXa46qqrwi9/+csIlE7FcEmECbqw2GKLRQ/Qaaed1rRcNCirR0e6NepxwAEHNK3zTstDW2Dy6KOPDgAlOF522WUj0BgwH3/88TD22GN31OYWWWSRtss4mDZns6k8sg7xLBx88MFxo6lNpu1qXEy/TpurKmP6HjupG/k3UdEWWMN5FN54443oobDX4eSTT47fuTyX5dV3ndp8nf6g6rsaTB9YVTeOLWzsD0xqWvXBdepmePQHTsX5+c9/HvtdSwa1ucMOO6y0/TFMlPW5qW6q+oA777yz7T5vMHXTbtvMQNmuUvm5rMD/V+Dll18OSyyxRHjppZfiT1j9DLSsTSMqcIUst9xyEWJYjAAlq+ndd98dLF0RAOHqq68e1l9//fj/qnLoXJXPemmXGrCgKKsBUccmftaxZZZZJg7Gwzr8+c9/DixtP/rRjyJ8GehZWqTbLP3NNttsqHz/7ne/i1a8xrqqKiPL4bAMrKuseIDSgG3Q58Zn3WOtsIwIUDQr13nnnVdaj+C08b0jjzyyaZ0PpmyAEXglC+X8888f6+SGG24Iiy66aFxj/+CDD3bU5sB1WVstK+Ng2xwLOGuhpQeLL7542HHHHWPddJJ+nTZXVcb0PXZSN5bcaMsuGzF52WWXXQJrsm97q622itZK0Akoy/Lqu0htvk5/UPVdDbYPLKsb/U5jf7Daaqu17IPr1M3w6g+U54QTTojfhu9kgQUWiEsQGtvfLbfcUtrnprqp6gN4DRr76uFVN+20zwyU7aiUn8kKFBQwsDpOi9VMcFarD/v0008fYToZFHW6rHk6R0AJJJ3EAHiFTTfdNFrFfvKTn8T/V5WDG9DsGgwJk046abj//vvDLLPMEsvMYuksWh398NiYZ/AzyG6xxRYxXWs/ufKtEWuWvjw35htg06axrqrKOPXUUw/TOiwCZYr4oosuii481kQA0Kpcjm0rq0fWzUY9WCGa1flgCtcIlNqFNuB6Xm2MFZh7r5M2V/VeWRmHRZt7+OGH47cy00wzxYkgy327GhfTr9PmWmnTad2w7LF8mUxceeWVEVp858qlTrQz31RZXn1fqc3X6Q+qvqth0Qc21g3LfmN/cOihh7bsg+vUzfDqD8AjmORtAbjJSthYRscylvW5qW6q+gBW6Hb7vGFRN63aaAbKVgrl32cFGhRgFeCKAG3g7eijj45PWDs2IgK3FavX3HPPHZP/wx/+EP+t0z322GOj60tYaaWVwn777Tew7rGqHFwvIIdl0Do/s2kDEyuUsnJBsUTZlJfiHpblNtA7jmz33XeP7hx5YZUCZ83Sl5/GfLN20qaxrqrKOJj1bGUaNAKlOmE5NgkBGMLCCy/ctFwsDtZdNdYjGG3Uw8/Knh3susM0ASlaKB0jx53P7c3SBWTAcrP0q9rc7LPP3nYZB9vmbr311rjuzLfBXS/U0biYfp02V1XGwdQNizegMOkC9SZ74HHppZeOfQDXtBNZTM64Vcu+69Tm6/QHVd/VYPvAsrop6w9Y+K3lbtYH16mbYd0f6DctZaE7fdXJ1ltvHb+TsjKW5VWfm+qmqn1aCtBunzfYummnj89A2Y5K+ZmsQIMCs846azzwn9tS520NkzV+IyJwS3NzpfDd7343PPvss8FCby4Tna/F2wY01hUAqgO1tqesHAap448/PnaCl1xySRzorcfkdnaRgY0m1u4BNWuEhnUAKSygXEXybvOEdWEAsyz9++67L1pPuY3K8l2njMO6LEWgfPrpp6PlyABf3PVZpSuLGZi3VsyZTqbLhwAADXVJREFUwI31aBBq1MMkoOzZxl2mnZSz0ULJ4s1KCZK55G688ca4Ua0s/VZtziSl3TIOps35VmihrcwzzzwDMlgDWif9TtpcVRkHUzennnpqtN4XIZcr3/ciWIrj+/Uds4qVfR9OheikPxjWfWBV3VT1B/Rs7INNanw3YJomI7I/kD+WY+OCtayWp7DslrW/qry26gN4xtotYzfGpwyUnfSs+Z1RXgEdQHIdL7/88nEjTK+cepBc3v7eY489YqdrwNDxbLvttnHQZ8VkKSsrB6C0HhMAsVrcfPPNEeqSFUrlO24FZLrwYFgH1kg71VlBBFZVLuKq9JVTXrmHyvJdp4zDuiyAUjuxftVmI9aWYuBqZaE0EDbqyqJMB2Uvq8cqPcqeHRblagRK0M8lbU2lE0C0M5OWTtpcVVsd1m3OxGv66acfQo4NN9ww1k0djTtpc1VlHEzdaE/yXgwmLKmMNuRZR2ly6Fsu+z467Q+GdR9YVTd2R5f1B2XpO4nC2msu7Krydqs/uOKKK+LE25IEO9XBP5gsa3+WJ5XVTas+oE4ZuzE+ZaAczNec3x2lFWAJ4FLiZurl4PgMLrF0fqCOG0zaeShUlYM1c7LJJhvifEGbF1g0bMYY3h2UdBx1UTzfsCx9biXrx9LZmGX5rlPGEVGXZeVi9aO/RfdCYz36WVV9lD07vMolrcYreDttc3XKODzK0276g2lz3aybMo0av4/B9Afd7APL+oPG9P3fqRvF9YIjsj/gkndSRvFc4GbttjGv7fQB4qtTxuHx3aQ4M1AOT3Vz3FmBHlTAkTaseYNxtfVSsbh9bA7pt+BIEDvAh/W6zhGhU25zI0L19tLsp7oBbyb5lvP0QxjZ+oAMlP3Q6nIZsgJZgaxAViArkBXICoxABTJQjkDxc9JZgaxAViArkBXICmQF+kGBDJT9UIu5DFmBrEBWICuQFcgKZAVGoAIZKEeg+DnprEBWICuQFcgKZAWyAv2gQAbKfqjFXIasQFagZxRIOzsdFfKlL32pZ/IlIw5cdk2nXf8jOm927drBbyd/Dt1X4C9/+Uu8V7psc57TAxzb5QSLEd1Ouq9MTrFTBTJQdqpcfi8rkBXICjQo4OYat9WksNFGG8UD2t2s1AvhuuuuCyussEK47LLLgvuQR0RwwLOr9JxjKbiByYHsK6+88ojITkzziSeeiGeyugLPkVjtBDeZOHhe3tNtWd5TrmmnnTZeubfbbru1E9VQzzjiy9mxxeC8TGd9NmtLv/3tb+N5hu71doZhVXDWqyOpHEZfduC1sxOVwdmczq7NISvQjgIZKNtRKT+TFcgKZAVaKOAgY5DmkG8gefnll8cD190o0417dNupIDdvnHPOOfHqQbc8dTu8/vrrA8Dmhh0H5KcrNp3P6HanEREuuOCCqMndd989cMh8q3wkoNx+++3jNY4pOIx9uummCw7kdqtUJwFQfvnLX47t6PPPPw8mAg4sd+tNsyv0ElC607sZoMuz+6VZiccYY4zSLLqJyS01r732WqynHLICrRTIQNlKofz7rEBWICvQhgKu8nMDkXvOXbvGvcz6Azzuv//+eMCxm2XcywsWNtlkk3gf+gcffBCthm4jciYg69G+++4brUduOAEGLFNuLHIYvas+WdPcuOEmjvnmmy8O+g50dnuRO44322yzeI8wqLnmmmui1QpkOADeVY+HH354tAwefPDB8ZB7Lk4WLb937iWwAi7K4ypP+XHjzx133BHTdIXkDTfcEK1le+21V7zJRL6V59JLL415cMOPP8UAsH7xi18MAUbKCLhZLcXjoG3llS/nCbrJxb3nfm85gSAftHV/tTz4P0swbZXLvwXlptddd90VNVlooYWG0snB8e4jB2zScR+5UJYHV5q6k9lEwe1Hbj+pAkpleeeddwLXsrT33HPP4C50h1Dffvvt0d0vDkHdFAOgdJ+9m26E2267LSy++OJhq622inXhPbCpPalf11G63k8dpLrWpoCyn7u2U/15zpIH16YCee2gqt5MPmaYYYZYxsZ6bONzyI+MggpkoBwFKz0XOSuQFRi2CgAdlh639QDIssPI11tvvXhFp4EcmHBLshLNP//80WrnXdAEZAQgyYIE6q6//vrgvmm/F7g/3Qtsnaa1btySwIEF69Zbb40WLZDJ7erKTQFQrLPOOgMub+vnQAcIlP8DDjggAsiaa645cLPHdtttFwHRtYusi662ky95BTfStAYSBHKPSk8crLPuj3755ZfjIfopgCJwBFYAk3iTa9e94Cx7YBWwAdrTTjstQpkyup7S80BNAFLSUgb5cQj8MsssE4ELRLrWcooppojPutMetNK7USfubtD661//OtYN6F199dVL86AO1RurM3iXzyqglK54ALMyyrt35Y8G7g73h27ufG4ESmsb1YmJCT1NMNRFuhPclYoAMV3p6YB/d6YnoGRVBNfA0wTG9X4Akk7A2n3m6kOZq+pNuwTcZ5555rD9YHJsfalABsq+rNZcqKxAVqCbCnBL2ugCXLg8G8NHH30UoWettdaKFjB38LKsgTPAZ+C23s7ADpAAoThZJQECN7WrLgElqAAqrImshcDG1YegA3T6vXV8wJIbXvzJlVtcQ5mAB5Sy0MmLtK1xBCLAa8stt4zvLrjggtGty/LoOVfCgSu/Z8GS7oEHHhifYdUCKvIKfopwnay41uix0IlX/EKyvoFAVtcll1wyWhzdFsKVC3zef//9aOEDy/LC2sqyS1d/WDTBD/h97rnn4v+XX375aAG0uQT4lunESpdc3gC4LA+0XHXVVSOgSQOQyWMVUAJigG9CoNxc/GCdZdk6W0DNiswqPcssswwFlI1rKFmKWSxZtIFoK6CUP3VPN5Md6c8999xh7bXXju3GHezqascdd6ysN/UD5svadDe/r5zWyKFABsqRo55yLrMCWYEeV8AmBiDnjwFfYMkCBkDLjtm0npKLeaKJJorAde6550agTICwxhprxE0z//nPf6J1i7XNMwJIS+vjWDJZJrlzuZFZv0AM4GC1KgLlhx9+GIG2CJRc3Cx8ANfPBfGAML+TJqvmI488El3BrGHAB1CymIJQMAVaACVoYQW79tprByDxvvvui8CXgvKzHHJRs5KBFfkHg4BSeiCGFY2lMgUQBGBZVUGV99yPDCitu+R2B4SAPgUbbEAYVzOYEriKy3QqAiXdy/Kw8MILRzd72oST1kpWAWVyKT/55JNxvSpLMOskizTgnX322SOoAbvGUHR5g29WTBt/TBZAIZhO8XPvsyQ3Wij93ITEc+BdMPHQ9gBlAllXFVbVGxBWtxkoe7zz6ZHsZaDskYrI2cgKZAVGbgXSwA5iDPDWybFqAQEQwtIInoAgVyk35ymnnBJ/XgcowRarEgAFVqx24BTEAlFWQy5VFirwCfhYSMcbb7whgJLbWRzyyEopXlDGNcz9zJK23377RWscCAM+LHxVQMmdbq0eELVm1JrOxvV3IGa22WaLcAt+5Rtsg3BAecghh0RApCHwvPDCC2Nc0ufOLgNKkAe65V3ZbSRhjVRulsYE6loXUCvTyTpH73vHxiqwWpYHZVdG1mEudy70KqCkqbzQ1x+WyrnmmitqIp8J4MFdM6D0O+UHw/LHqskaLn9gkWb0awRKa3mtkWX1Nknwb3GwPqtrSxJMXuhXVm/g3yShlzaVjdw9RP/nPgNl/9dxLmFWICvQBQVYfljxWKJS4OLkrh5nnHHiZh3uV/AicJca1MGeneEJfFjr/LzKQsla+PDDD8c4QKyNGaABXKR4WaZsWOH2LQNKbl+WQ+sRU1zitS5zpplmGliXl8qR3PE2A4EqLmiABxqlw4r16KOPxrWdrG+CsgKuxmNuxMESmVy68kA7VjeWMqBm7WDKF3jjIp511lkHgNIGJxZfFkrQZvMR9zJtwSqQ5lJuBMoqndQFy588KQeXelke0i5q5fvRj34UwZ0GxxxzzECdp2ODWHOtmxTAqnYA0OxmT2dvArmpppqqFChnnHHGuJxBsAwBBCZ3e1r36HcsvZYFsPpqS+nYIBZe+liHKsgPbaWtTpLFVBnK6k2dyhuw33jjjbvwBeUkRnYFMlCO7DWY858VyAr0lAKffPJJ3IzCvdh4aLcNFiCCtZAVsE6wbpHLG2SwTrHWiScFrm6WOUBVJ6T8yG8xKIffsda1G6fysWKyuDY7L9EmoFdeeSVaI8sO1pYPUCdP7Z7hKW3vSLvZYdxVOlmzCshYMdNROmV5+Oc//xmtwiYBrQINPc8Sm4LlB961TtSShk6DvFpXW2wDZXGl/IJrzwussNzY4NnPyuotLakwQUibmzrNa35v1FAgA+WoUc+5lFmBrMBIrkARKMFIDiOfAmntp5xba8qKOyICyzULbloL25gHcG09qqOtbLbKISvQjgIZKNtRKT+TFcgKZAVGsAKOELLBw0aJfND0CK6MDpO3u5/b3FrKMld3h9F29BpLsuOEyqyPLKvW2HK7W6+ZQ1agHQUyULajUn4mK5AVyApkBbICWYGsQFagUoEMlLlxZAWyAlmBrEBWICuQFcgKDEqBDJSDki+/nBXICmQFsgJZgaxAViAr8P8AWylwx8gBGAIAAAAASUVORK5CYII=",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "cd74d358-af07-450e-bdec-70471b6c462b",
+ "metadata": {},
+ "source": [
+ "### Perform garbage collection\n",
+ "\n",
+ "To clean up your selected database and its backing data on AWS, you can use `drop_all_tables_created_by_splink`. This allows splink to automatically search for any tables prefixed with `__splink__df...` in your given database and delete them.\n",
+ "\n",
+ "Alternatively, if you want to delete splink tables from another database that you didn't select in the initialisation step, you can run `drop_splink_tables_from_database(database_name)`."
]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "linker.cumulative_num_comparisons_from_blocking_rules_chart()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "cd74d358-af07-450e-bdec-70471b6c462b",
- "metadata": {},
- "source": [
- "### Perform garbage collection\n",
- "\n",
- "To clean up your selected database and its backing data on AWS, you can use `drop_all_tables_created_by_splink`. This allows splink to automatically search for any tables prefixed with `__splink__df...` in your given database and delete them.\n",
- "\n",
- "Alternatively, if you want to delete splink tables from another database that you didn't select in the initialisation step, you can run `drop_splink_tables_from_database(database_name)`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "f61d8215-be1f-431c-ab49-8329e3f37377",
- "metadata": {},
- "outputs": [],
- "source": [
- "linker.drop_all_tables_created_by_splink(delete_s3_folders=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "29cec53c-54f0-45ea-9b40-af2f1d66c788",
- "metadata": {},
- "outputs": [],
- "source": [
- "import splink.athena.athena_comparison_library as cl\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " \"l.first_name = r.first_name and l.surname = r.surname\",\n",
- " \"l.surname = r.surname and l.dob = r.dob\",\n",
- " \"l.first_name = r.first_name and l.dob = r.dob\",\n",
- " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n",
- " ],\n",
- " \"comparisons\": [\n",
- " cl.levenshtein_at_thresholds(\"first_name\", [1,2], term_frequency_adjustments=True),\n",
- " cl.levenshtein_at_thresholds(\"surname\", [1,2], term_frequency_adjustments=True),\n",
- " cl.levenshtein_at_thresholds(\"dob\", [1,2], term_frequency_adjustments=True),\n",
- " cl.levenshtein_at_thresholds(\"postcode_fake\", 2,term_frequency_adjustments=True),\n",
- " cl.exact_match(\"birth_place\", term_frequency_adjustments=True),\n",
- " cl.exact_match(\"occupation\", term_frequency_adjustments=True),\n",
- " ],\n",
- " \"retain_matching_columns\": True,\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- " \"max_iterations\": 10,\n",
- " \"em_convergence\": 0.01\n",
- "}"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "78dd96d8-12d8-4dfb-be31-eeba2ac9a88e",
- "metadata": {},
- "source": [
- "### You can also read data directly from a database\n",
- "\n",
- "Simply add your data to your database and enter the name of the resulting table into the linker object.\n",
- "\n",
- "This can be done with either:\n",
- "> wr.catalog.create_parquet_table(...)\n",
- "\n",
- "or\n",
- "\n",
- "> wr.s3.to_parquet(...)\n",
- "\n",
- "See the [awswrangler API](https://aws-sdk-pandas.readthedocs.io/en/stable/api.html) for more info."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "19bb053c-b22a-42c6-95b0-706182354961",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Write our dataframe to s3/our backing database\n",
- "import awswrangler as wr\n",
- "wr.s3.to_parquet(\n",
- " df, # pandas dataframe\n",
- " path=f\"{aws_filepath}/historical_figures_with_errors_50k\",\n",
- " dataset=True,\n",
- " database=database,\n",
- " table=\"historical_figures_with_errors_50k\",\n",
- " mode=\"overwrite\",\n",
- " compression=\"snappy\",\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "1778b697-24a8-422d-a3af-73dad873cc3f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialise our linker with historical_figures_with_errors_50k from our database\n",
- "linker = AthenaLinker(\n",
- " input_table_or_tables=\"historical_figures_with_errors_50k\", \n",
- " settings_dict=settings,\n",
- " boto3_session=my_session,\n",
- " output_bucket=bucket, # the bucket to store splink's parquet files \n",
- " output_database=database, # the database to store splink's outputs\n",
- " output_filepath=filepath # folder to output data to\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "ca798b76-cd39-4890-b842-ba5a0e583050",
- "metadata": {},
- "outputs": [
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Probability two random records match is estimated to be 0.000136.\n",
- "This means that amongst all possible pairwise record comparisons, one in 7,362.31 are expected to match. With 1,279,041,753 total possible comparisons, we expect a total of around 173,728.33 matching pairs\n"
- ]
- }
- ],
- "source": [
- "linker.estimate_probability_two_random_records_match(\n",
- " [\n",
- " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n",
- " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n",
- " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n",
- " ],\n",
- " recall=0.6,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "3ba5c515-629c-490c-b8e4-a63ea242ea0a",
- "metadata": {},
- "outputs": [
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f61d8215-be1f-431c-ab49-8329e3f37377",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "linker.drop_all_tables_created_by_splink(delete_s3_folders=True)"
+ ]
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "----- Estimating u probabilities using random sampling -----\n",
- "\n",
- "Estimated u probabilities using random sampling\n",
- "\n",
- "Your model is not yet fully trained. Missing estimates for:\n",
- " - first_name (no m values are trained).\n",
- " - surname (no m values are trained).\n",
- " - dob (no m values are trained).\n",
- " - postcode_fake (no m values are trained).\n",
- " - birth_place (no m values are trained).\n",
- " - occupation (no m values are trained).\n"
- ]
- }
- ],
- "source": [
- "linker.estimate_u_using_random_sampling(max_pairs=5e6)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "ad8c0de1-769a-4861-849d-8b7e6655a681",
- "metadata": {},
- "outputs": [
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "29cec53c-54f0-45ea-9b40-af2f1d66c788",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import splink.athena.athena_comparison_library as cl\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " \"l.first_name = r.first_name and l.surname = r.surname\",\n",
+ " \"l.surname = r.surname and l.dob = r.dob\",\n",
+ " \"l.first_name = r.first_name and l.dob = r.dob\",\n",
+ " \"l.postcode_fake = r.postcode_fake and l.first_name = r.first_name\",\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " cl.levenshtein_at_thresholds(\"first_name\", [1,2], term_frequency_adjustments=True),\n",
+ " cl.levenshtein_at_thresholds(\"surname\", [1,2], term_frequency_adjustments=True),\n",
+ " cl.levenshtein_at_thresholds(\"dob\", [1,2], term_frequency_adjustments=True),\n",
+ " cl.levenshtein_at_thresholds(\"postcode_fake\", 2,term_frequency_adjustments=True),\n",
+ " cl.exact_match(\"birth_place\", term_frequency_adjustments=True),\n",
+ " cl.exact_match(\"occupation\", term_frequency_adjustments=True),\n",
+ " ],\n",
+ " \"retain_matching_columns\": True,\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ " \"max_iterations\": 10,\n",
+ " \"em_convergence\": 0.01\n",
+ "}"
+ ]
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "----- Starting EM training session -----\n",
- "\n",
- "Estimating the m probabilities of the model by blocking on:\n",
- "l.first_name = r.first_name and l.surname = r.surname\n",
- "\n",
- "Parameter estimates will be made for the following comparison(s):\n",
- " - dob\n",
- " - postcode_fake\n",
- " - birth_place\n",
- " - occupation\n",
- "\n",
- "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
- " - first_name\n",
- " - surname\n",
- "\n",
- "Iteration 1: Largest change in params was -0.533 in probability_two_random_records_match\n",
- "Iteration 2: Largest change in params was -0.0419 in the m_probability of birth_place, level `All other comparisons`\n",
- "Iteration 3: Largest change in params was -0.0154 in the m_probability of birth_place, level `All other comparisons`\n",
- "Iteration 4: Largest change in params was 0.00489 in the m_probability of birth_place, level `Exact match`\n",
- "\n",
- "EM converged after 4 iterations\n",
- "\n",
- "Your model is not yet fully trained. Missing estimates for:\n",
- " - first_name (no m values are trained).\n",
- " - surname (no m values are trained).\n"
- ]
- }
- ],
- "source": [
- "blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
- "training_session_names = linker.estimate_parameters_using_expectation_maximisation(blocking_rule)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "c44fc676-e57e-4e8c-b9c6-8989e720b03a",
- "metadata": {},
- "outputs": [
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "78dd96d8-12d8-4dfb-be31-eeba2ac9a88e",
+ "metadata": {},
+ "source": [
+ "### You can also read data directly from a database\n",
+ "\n",
+ "Simply add your data to your database and enter the name of the resulting table into the linker object.\n",
+ "\n",
+ "This can be done with either:\n",
+ "> wr.catalog.create_parquet_table(...)\n",
+ "\n",
+ "or\n",
+ "\n",
+ "> wr.s3.to_parquet(...)\n",
+ "\n",
+ "See the [awswrangler API](https://aws-sdk-pandas.readthedocs.io/en/stable/api.html) for more info."
+ ]
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "----- Starting EM training session -----\n",
- "\n",
- "Estimating the m probabilities of the model by blocking on:\n",
- "l.dob = r.dob\n",
- "\n",
- "Parameter estimates will be made for the following comparison(s):\n",
- " - first_name\n",
- " - surname\n",
- " - postcode_fake\n",
- " - birth_place\n",
- " - occupation\n",
- "\n",
- "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
- " - dob\n",
- "\n",
- "Iteration 1: Largest change in params was -0.356 in the m_probability of first_name, level `Exact match`\n",
- "Iteration 2: Largest change in params was 0.0401 in the m_probability of first_name, level `All other comparisons`\n",
- "Iteration 3: Largest change in params was 0.00536 in the m_probability of first_name, level `All other comparisons`\n",
- "\n",
- "EM converged after 3 iterations\n",
- "\n",
- "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
- ]
- }
- ],
- "source": [
- "blocking_rule = \"l.dob = r.dob\"\n",
- "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(blocking_rule)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "31b6440a-4353-45af-a986-ba59c0d784d3",
- "metadata": {},
- "outputs": [
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "19bb053c-b22a-42c6-95b0-706182354961",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Write our dataframe to s3/our backing database\n",
+ "import awswrangler as wr\n",
+ "wr.s3.to_parquet(\n",
+ " df, # pandas dataframe\n",
+ " path=f\"{aws_filepath}/historical_figures_with_errors_50k\",\n",
+ " dataset=True,\n",
+ " database=database,\n",
+ " table=\"historical_figures_with_errors_50k\",\n",
+ " mode=\"overwrite\",\n",
+ " compression=\"snappy\",\n",
+ ")"
+ ]
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v5.2.json",
- "config": {
- "header": {
- "title": null
- },
- "mark": {
- "tooltip": null
- },
- "title": {
- "anchor": "middle"
- },
- "view": {
- "height": 60,
- "width": 400
- }
- },
- "data": {
- "values": [
- {
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": "The probability that two random records drawn at random match is 0.000 or one in 7,362.3 records.This is equivalent to a starting match weight of -12.846.",
- "comparison_name": "probability_two_random_records_match",
- "comparison_sort_order": -1,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "m_probability_description": null,
- "max_comparison_vector_value": 0,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": null,
- "tf_adjustment_column": null,
- "tf_adjustment_weight": null,
- "u_probability": null,
- "u_probability_description": null
- },
- {
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "comparison_name": "first_name",
- "comparison_sort_order": 0,
- "comparison_vector_value": 3,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "m_probability_description": "Amongst matching record comparisons, 55.25% of records are in the exact match comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "tf_adjustment_column": "first_name",
- "tf_adjustment_weight": 1,
- "u_probability": 0.011339110875462712,
- "u_probability_description": "Amongst non-matching record comparisons, 1.13% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 26.589733743152838,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 26.59 times more likely to be a match",
- "comparison_name": "first_name",
- "comparison_sort_order": 0,
- "comparison_vector_value": 2,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 4.732797425698729,
- "m_probability": 0.0867239389400622,
- "m_probability_description": "Amongst matching record comparisons, 8.67% of records are in the levenshtein_distance <= 1 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 1",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.0032615572528023004,
- "u_probability_description": "Amongst non-matching record comparisons, 0.33% of records are in the levenshtein_distance <= 1 comparison level"
- },
- {
- "bayes_factor": 7.778809222513577,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
- "comparison_name": "first_name",
- "comparison_sort_order": 0,
- "comparison_vector_value": 1,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 2.9595493248441493,
- "m_probability": 0.07354167451568606,
- "m_probability_description": "Amongst matching record comparisons, 7.35% of records are in the levenshtein_distance <= 2 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.009454104402360242,
- "u_probability_description": "Amongst non-matching record comparisons, 0.95% of records are in the levenshtein_distance <= 2 comparison level"
- },
- {
- "bayes_factor": 0.2943290699918006,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
- "comparison_name": "first_name",
- "comparison_sort_order": 0,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -1.7644980549473468,
- "m_probability": 0.28724905116399735,
- "m_probability_description": "Amongst matching record comparisons, 28.72% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.9759452274693747,
- "u_probability_description": "Amongst non-matching record comparisons, 97.59% of records are in the all other comparisons comparison level"
- },
- {
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "comparison_name": "surname",
- "comparison_sort_order": 1,
- "comparison_vector_value": 3,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "m_probability_description": "Amongst matching record comparisons, 78.16% of records are in the exact match comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "tf_adjustment_column": "surname",
- "tf_adjustment_weight": 1,
- "u_probability": 0.0006304723913592461,
- "u_probability_description": "Amongst non-matching record comparisons, 0.06% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 333.4770408553619,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
- "comparison_name": "surname",
- "comparison_sort_order": 1,
- "comparison_vector_value": 2,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 8.381443628293102,
- "m_probability": 0.1284849300847964,
- "m_probability_description": "Amongst matching record comparisons, 12.85% of records are in the levenshtein_distance <= 1 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.0003852886836084281,
- "u_probability_description": "Amongst non-matching record comparisons, 0.04% of records are in the levenshtein_distance <= 1 comparison level"
- },
- {
- "bayes_factor": 9.930908563690332,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
- "comparison_name": "surname",
- "comparison_sort_order": 1,
- "comparison_vector_value": 1,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 3.311925713762501,
- "m_probability": 0.020267294367821084,
- "m_probability_description": "Amongst matching record comparisons, 2.03% of records are in the levenshtein_distance <= 2 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.0020408298231566584,
- "u_probability_description": "Amongst non-matching record comparisons, 0.20% of records are in the levenshtein_distance <= 2 comparison level"
- },
- {
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "comparison_name": "surname",
- "comparison_sort_order": 1,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "m_probability_description": "Amongst matching record comparisons, 6.96% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.9969434091018756,
- "u_probability_description": "Amongst non-matching record comparisons, 99.69% of records are in the all other comparisons comparison level"
- },
- {
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "comparison_name": "dob",
- "comparison_sort_order": 2,
- "comparison_vector_value": 3,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "m_probability_description": "Amongst matching record comparisons, 61.84% of records are in the exact match comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "tf_adjustment_column": "dob",
- "tf_adjustment_weight": 1,
- "u_probability": 0.002091550682362922,
- "u_probability_description": "Amongst non-matching record comparisons, 0.21% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "comparison_name": "dob",
- "comparison_sort_order": 2,
- "comparison_vector_value": 2,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "m_probability_description": "Amongst matching record comparisons, 34.12% of records are in the levenshtein_distance <= 1 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.02148930701890366,
- "u_probability_description": "Amongst non-matching record comparisons, 2.15% of records are in the levenshtein_distance <= 1 comparison level"
- },
- {
- "bayes_factor": 0.4683030453214949,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
- "comparison_name": "dob",
- "comparison_sort_order": 2,
- "comparison_vector_value": 1,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": -1.094485675137949,
- "m_probability": 0.03711726145166532,
- "m_probability_description": "Amongst matching record comparisons, 3.71% of records are in the levenshtein_distance <= 2 comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.07925906487792309,
- "u_probability_description": "Amongst non-matching record comparisons, 7.93% of records are in the levenshtein_distance <= 2 comparison level"
- },
- {
- "bayes_factor": 0.0037043486234159474,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
- "comparison_name": "dob",
- "comparison_sort_order": 2,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -8.076564404852965,
- "m_probability": 0.0033233936977775237,
- "m_probability_description": "Amongst matching record comparisons, 0.33% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 3,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.8971600774208104,
- "u_probability_description": "Amongst non-matching record comparisons, 89.72% of records are in the all other comparisons comparison level"
- },
- {
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "comparison_name": "postcode_fake",
- "comparison_sort_order": 3,
- "comparison_vector_value": 2,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "m_probability_description": "Amongst matching record comparisons, 68.78% of records are in the exact match comparison level",
- "max_comparison_vector_value": 2,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "tf_adjustment_column": "postcode_fake",
- "tf_adjustment_weight": 1,
- "u_probability": 0.00015514157328739382,
- "u_probability_description": "Amongst non-matching record comparisons, 0.02% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 259.82892721059164,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 259.83 times more likely to be a match",
- "comparison_name": "postcode_fake",
- "comparison_sort_order": 3,
- "comparison_vector_value": 1,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 8.02141824727364,
- "m_probability": 0.14271550398348254,
- "m_probability_description": "Amongst matching record comparisons, 14.27% of records are in the levenshtein_distance <= 2 comparison level",
- "max_comparison_vector_value": 2,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "levenshtein_distance(\"postcode_fake_l\", \"postcode_fake_r\") <= 2",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.0005492671871281347,
- "u_probability_description": "Amongst non-matching record comparisons, 0.05% of records are in the levenshtein_distance <= 2 comparison level"
- },
- {
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "comparison_name": "postcode_fake",
- "comparison_sort_order": 3,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "m_probability_description": "Amongst matching record comparisons, 16.95% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 2,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.9992955912395844,
- "u_probability_description": "Amongst non-matching record comparisons, 99.93% of records are in the all other comparisons comparison level"
- },
- {
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "comparison_name": "birth_place",
- "comparison_sort_order": 4,
- "comparison_vector_value": 1,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "m_probability_description": "Amongst matching record comparisons, 84.58% of records are in the exact match comparison level",
- "max_comparison_vector_value": 1,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "tf_adjustment_column": "birth_place",
- "tf_adjustment_weight": 1,
- "u_probability": 0.005197616804158735,
- "u_probability_description": "Amongst non-matching record comparisons, 0.52% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "comparison_name": "birth_place",
- "comparison_sort_order": 4,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "m_probability_description": "Amongst matching record comparisons, 15.42% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 1,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.9948023831958412,
- "u_probability_description": "Amongst non-matching record comparisons, 99.48% of records are in the all other comparisons comparison level"
- },
- {
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "comparison_name": "occupation",
- "comparison_sort_order": 5,
- "comparison_vector_value": 1,
- "has_tf_adjustments": true,
- "is_null_level": false,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "m_probability_description": "Amongst matching record comparisons, 89.93% of records are in the exact match comparison level",
- "max_comparison_vector_value": 1,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "tf_adjustment_column": "occupation",
- "tf_adjustment_weight": 1,
- "u_probability": 0.040906446283799566,
- "u_probability_description": "Amongst non-matching record comparisons, 4.09% of records are in the exact match comparison level"
- },
- {
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "comparison_name": "occupation",
- "comparison_sort_order": 5,
- "comparison_vector_value": 0,
- "has_tf_adjustments": false,
- "is_null_level": false,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "m_probability_description": "Amongst matching record comparisons, 10.07% of records are in the all other comparisons comparison level",
- "max_comparison_vector_value": 1,
- "probability_two_random_records_match": 0.00013582694460587586,
- "sql_condition": "ELSE",
- "tf_adjustment_column": null,
- "tf_adjustment_weight": 1,
- "u_probability": 0.9590935537162004,
- "u_probability_description": "Amongst non-matching record comparisons, 95.91% of records are in the all other comparisons comparison level"
- }
- ]
- },
- "resolve": {
- "axis": {
- "y": "independent"
- },
- "scale": {
- "y": "independent"
- }
- },
- "selection": {
- "zoom_selector": {
- "bind": "scales",
- "encodings": [
- "x"
- ],
- "type": "interval"
- }
- },
- "title": {
- "subtitle": "Use mousewheel to zoom",
- "text": "Model parameters (components of final match weight)"
- },
- "vconcat": [
- {
- "encoding": {
- "color": {
- "field": "log2_bayes_factor",
- "scale": {
- "domain": [
- -10,
- 0,
- 10
- ],
- "range": [
- "red",
- "orange",
- "green"
- ]
- },
- "title": "Match weight",
- "type": "quantitative"
- },
- "tooltip": [
- {
- "field": "comparison_name",
- "title": "Comparison name",
- "type": "nominal"
- },
- {
- "field": "probability_two_random_records_match",
- "format": ".4f",
- "title": "Probability two random records match",
- "type": "nominal"
- },
- {
- "field": "log2_bayes_factor",
- "format": ",.4f",
- "title": "Equivalent match weight",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor_description",
- "title": "Match weight description",
- "type": "nominal"
- }
- ],
- "x": {
- "axis": {
- "domain": false,
- "labels": false,
- "ticks": false,
- "title": ""
- },
- "field": "log2_bayes_factor",
- "scale": {
- "domain": [
- -10,
- 10
- ]
- },
- "type": "quantitative"
- },
- "y": {
- "axis": {
- "title": "Prior (starting) match weight",
- "titleAlign": "right",
- "titleAngle": 0,
- "titleFontWeight": "normal"
- },
- "field": "label_for_charts",
- "sort": {
- "field": "comparison_vector_value",
- "order": "descending"
- },
- "type": "nominal"
- }
- },
- "height": 20,
- "mark": {
- "clip": true,
- "height": 15,
- "type": "bar"
- },
- "selection": {
- "zoom_selector": {
- "bind": "scales",
- "encodings": [
- "x"
- ],
- "type": "interval"
- }
- },
- "transform": [
- {
- "filter": "(datum.comparison_name == 'probability_two_random_records_match')"
- }
- ]
- },
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "1778b697-24a8-422d-a3af-73dad873cc3f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Initialise our linker with historical_figures_with_errors_50k from our database\n",
+ "linker = AthenaLinker(\n",
+ " input_table_or_tables=\"historical_figures_with_errors_50k\", \n",
+ " settings_dict=settings,\n",
+ " boto3_session=my_session,\n",
+ " output_bucket=bucket, # the bucket to store splink's parquet files \n",
+ " output_database=database, # the database to store splink's outputs\n",
+ " output_filepath=filepath # folder to output data to\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "ca798b76-cd39-4890-b842-ba5a0e583050",
+ "metadata": {},
+ "outputs": [
{
- "encoding": {
- "color": {
- "field": "log2_bayes_factor",
- "scale": {
- "domain": [
- -10,
- 0,
- 10
- ],
- "range": [
- "red",
- "orange",
- "green"
- ]
- },
- "title": "Match weight",
- "type": "quantitative"
- },
- "row": {
- "field": "comparison_name",
- "header": {
- "labelAlign": "left",
- "labelAnchor": "middle",
- "labelAngle": 0
- },
- "sort": {
- "field": "comparison_sort_order"
- },
- "type": "nominal"
- },
- "tooltip": [
- {
- "field": "comparison_name",
- "title": "Comparison name",
- "type": "nominal"
- },
- {
- "field": "label_for_charts",
- "title": "Label",
- "type": "ordinal"
- },
- {
- "field": "sql_condition",
- "title": "SQL condition",
- "type": "nominal"
- },
- {
- "field": "m_probability",
- "format": ".4f",
- "title": "M probability",
- "type": "quantitative"
- },
- {
- "field": "u_probability",
- "format": ".4f",
- "title": "U probability",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor",
- "format": ",.4f",
- "title": "Bayes factor = m/u",
- "type": "quantitative"
- },
- {
- "field": "log2_bayes_factor",
- "format": ",.4f",
- "title": "Match weight = log2(m/u)",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor_description",
- "title": "Match weight description",
- "type": "nominal"
- }
- ],
- "x": {
- "axis": {
- "title": "Comparison level match weight = log2(m/u)"
- },
- "field": "log2_bayes_factor",
- "scale": {
- "domain": [
- -10,
- 10
- ]
- },
- "type": "quantitative"
- },
- "y": {
- "axis": {
- "title": null
- },
- "field": "label_for_charts",
- "sort": {
- "field": "comparison_vector_value",
- "order": "descending"
- },
- "type": "nominal"
- }
- },
- "height": {
- "step": 12
- },
- "mark": {
- "clip": true,
- "type": "bar"
- },
- "resolve": {
- "axis": {
- "y": "independent"
- },
- "scale": {
- "y": "independent"
- }
- },
- "selection": {
- "zoom_selector": {
- "bind": "scales",
- "encodings": [
- "x"
- ],
- "type": "interval"
- }
- },
- "transform": [
- {
- "filter": "(datum.comparison_name != 'probability_two_random_records_match')"
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.000136.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 7,362.31 are expected to match. With 1,279,041,753 total possible comparisons, we expect a total of around 173,728.33 matching pairs\n"
+ ]
}
- ]
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAHICAYAAABH1oIKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8VdP7/1fmIUoZMnzNohIZyhD1j4zJTMpckam+olBmKSH5fkuJUImSkoQMEZGpQhMyZshUKUXI1P/1fnzX/e1O55x7zl3n3LvPuZ/1et1X3Xv2Wnutz1r77Pd+9rOep8rKlStXOhUpIAWkgBSQAlJACkgBKVAJFKgi+K0Es6whSgEpIAWkgBSQAlJACpgCgl8tBCkgBaSAFJACUkAKSIFKo4Dgt9JMtQYqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVFfugUb3dVapUqVEjFR/z5da/nzRPuTrXMXc7k8//eS++eYbt8MOO7h11lmnmIcam7GxdpcsWeI22GADt956663Wrz///NM+32STTdyKFSscv1erVi24/7pm/pHw999/d7/++qtpv+666wbrGm1g2bJl7ttvv9X1lFNV1VicFRD8xnl21LecKAAkbb311iVt/fbbb3bz4AYdvYkvXrzYbtzZlsMPP9xNnDjRvfPOO26vvfZKWf29995zu+++uzvkkEPciy++mO1pYnv8rFmz3NSpU91+++3n6tevXy79PPbYY91bb73lPv/8c7f++uuXyznjfpIhQ4Y4HqrOOeecnHf17bffds2aNXM8dHCexHOMHTvWnXTSSXbeGTNmuLZt29r1sGDBArfZZpsF9WfjjTe28/7xxx9urbXWCmorXeVnn33WzZ8/351wwgmuZs2aac8zcOBAd/HFF7v//Oc/7t///nfe+hRteMCAAe6SSy5xN954o7vuuutKPafXLVVAp+h4f/zxR7fzzjtn3HapJ9cBUiDmCgh+Yz5B6l64Aonw+8Ybb7j999/fvf76665x48YlJygr/B566KFu0qRJpcLvnDlzDA6LDX7vvPNOd9lll7n+/fvbzTnfZcyYMe6UU05xPXv2dN27d8/36Qqmff82IR/RK5lf5vnMM890V155patXr94qujRp0sS9+uqrtg6uuuoqN3jwYAPJ2267zVWtWjVIw/KCXx6onnzyyVKvYwbDWu/UqZPr06ePu/zyy4PGl2llvmMeeeQR17JlS/sprZS2HhLHe+KJJ7rHH3/cvf/++65OnTqlNa/PpUBBKyD4LejpU+czUcDD70YbbWQWJG7IXbt2dbfffru74oornP+7h9+5c+e6Ll26uFdeecWsik2bNrWb3Lbbbmune+2119w111zjPvnkE3fEEUe4d999126Y/Oy5557unnvucffdd5/d/PfZZx938803u7333tulg1+sWkD0dtttZ9bhESNGmJWrc+fO7owzzrDzYn279tpr7V+OO+iggww0Nt98c7sBT5s2zV144YXu7rvvdh06dLD2unXrZuOgrQMPPNDglD499NBD7v7773dHHXWUPQTMnj3bHX/88a5169YGNx999JEBZu/evc2t4NNPP7W2Jk+e7GrVqmXH0hcs3pdeeqkdX7t2bdPz3HPPTavBRRdd5LCWYxV88803zWrM+QEmbr5bbrmlWRmxcCV7vQ54cYNGXyz6P/zwg83H888/76pXr25zcsEFF9h88eodaBs6dKjVYR7Q5rzzzjMrKboxbyeffLIbOXKkrQ80Ry/q/fzzz6aHt2QyVvq2aNEih+Vsp512cr169XL77ruvzVG6tfPxxx+7888/3yzky5cvdxMmTLD1AkT9v//3/6w+gNOjRw/r6y677GLWReaktLqnn366rRkKYPTwww873nCwFh577DH7P+uYsdDnxIK7Ag8STz31lFu6dKlr0KCBPVwcfPDBdr3ccccdNl88NF599dXumGOOKWmiffv2tpYoaI9ud911l/WZPtF2aeNGeyyb1EETHhC5BpmHdPCbzfzRv1Tn6du3r12nzD8PxIyX64R/GQPrgDUL/HMdefhlXPPmzXMzZ850DRs2tL/jihMtrA/WCusKqzLXKG+BbrrpJpt3rheurwceeMBtscUW7oYbbnDjxo2zJtCf755NN93UYV3H0sxaxPLO+mc98gaEa4L+UY9rkPnx8Mv3HOsALbn2sFQzp4njZZ74PmjXrp19f6lIgWJWQPBbzLOrsZkCHn6BM24AgCPgcfTRRxvE4OvGjQT4/euvv9yOO+5oN8E99tjDbnqfffaZASY3OY6nPmWbbbYxUOBYChCFVRlgAaiB02eeecY+46YOgKSy/EZdMKjLq2LOS3nuuecMZLfaaisDEG6g9BfY5SbIa+gjjzzSjvNl2LBhBqZALjfzGjVqmFWLcXz//fcGbEAMBV2AV18Yvz/38OHD7Xy77babnZOb9ZdffmmfcxMHkIEUxs7NH8sfOqbSgP5Hre1oiK7cvOkDMAMQ84CR7JUyN2jGcthhhxnsYuUEEDi+bt26Dt9F+gnk8pAAQAMTHsy8Rry2pv/eas/n0XEn/s6DDuMGyhLnnvmi76ytdGvnww8/tH5RonOM/nwGQAGdlBYtWthDC2sLax/HpKsLQANeFOCoX79+9oAH9ABsPFzRznHHHVcCVn6+0RAwxnLL+gC60ZNCn1jTgBK60i/m2OvAMTyA3XrrrXb82WefbQ8irVq1sjXx1VdfuYULF6btO2NnfaEJ/WNeWSes4bPOOist/GYzfzwIpToPDyOsE87LwwPr5oknnrB/0YRrnuuNwvfF6NGj7aGFwrxwfTNXfl2WXEzOuQcffNB0YV54MF577bXtY3TiYYRx88Pa5kGHtplv1jnXAv/nYWjQoEGruD3wEPbyyy/b9xD+wPSdArgCsNF9BVxzfk6nTJnicFVKHC/fTZyT7x5gXEUKFLMCgt9inl2NzRSIwi/WEaxS3Ow23HBDu/lgJfPwC0gCYB4SgOFGjRrZjRyQBICwkOHfCEwAPf4VMMecdtpp9jesNIAM1h2sjtxoqJMJ/GI9BEDoBwAIvGBNw7qGBYgbGX0BSPg/NzMPv8AoIIL1CUsa8M55gRism5RffvnF2gN+sUZh9UIHrEHANBYorI/XX3+93aB5CDj11FMNMgESLK2ALgXY5GYbdXvYddddU2oAHHj4ffTRRw2sgXFu4BSsVJwPYOImzHxFywsvvGCAAbgCsNzEsRRSHwBZc801HVZQHjSADu/DDQgDKVg2gRuOB8w8PGEx4++Mi3n0fq0eMIBmoAXoA3CxVFN4GACKmBv8JtOtHeCcPgBTWP6wUmO5BlpYMwAra5O5wDrNORknegG26eqyXhJfc2Ph5SEFaz9j4zz4umO19wDGGKZPn27jBsA4Bms71kPmAgv5vffea5piAcXyj4tDYvnXv/5l1xAPg1hqsZomwm+qcbMeGSvXEQ94vFF4+umnbf1x3aSz/GYzf1hV050n0Q3An9e7AdAXxsT1z5wDv1hKeZD+4IMP7OHLP1xG9QGWGRfrhjcbrFe/doBrHjzQmfb93gTaY66aN29uc8geAf7mfX5ZF5yLNnmjxLpnDrkeEuHXu3n5OeS64DslmZuHn7fvvvvOrNAqUqBYFRD8FuvMalwlCkThl5sN1hUggxsJ1lBuJB5+ubFhYQFEOnbsaG14MKQu8AvoAATcsCj+NTwQ4V9/J8rPzQagKA1+ozdPXpVycwU6sfBgyQNUoyURfl966aWSV+gAMjDmLUK+HuAPVAO/3rr63//+116h4ubAeP2GHqx6ACR/S1YATjT08MtrVW7EyQoa4I5AnxkTlk1fvE+p/x04ZR6wNEaL9y8GygH08ePH24NKMosmcwqUUf7++2+DQ2855m9Y29EXVwMPx4AhFj+sZLzeBvqxxAE4QCHwyzgACArr5ZZbbjELIZCTbu0AoAAsrgHMLYUHK0AKgGGuotZ7P27WBMenq8saTIRfrPZYTn0BbukvcxotPMRxTUQ1BD55de7nKRfwm2rcgCHt+7ckvm9s6kLXTOA3k/nDZSPdeaIwiMsMD5qUZD7U3u2BuUdPv67QmAfCxOKhElcSrjtciKjLGgb2WXPM8wEHHJD02uFhjOvWwy8PiDw4tmnTxh7eKTzIcj0nwq/fKOi/x/znyeDXP0RzTfDgpyIFilUBwW+xzqzGVaJAFH55pbr99tuX+PkChkCFh1+spdyMon5v/oYA8PI6EMsqoIIvHq9SeVXIK0+sQhxLm1gY8d3l71jDsKJk6vaAhYfXsx70uMFhUeZmxU0Pv0XG5K2oUcuvhwDcM/wue4AYq5S35GQDv9yk6QuvbQE/rMKUr7/+2qAAeONBImr55TypNPBuD1HQwsqEJZT2eLhAOyxkwADjjMK0BzoPoFjFsHB6NwcgF4shr4EBPayrFI7DGu43OXpI8ZbD0uAJMMMShwb0i/Hj5uABAn9lxpFu7fBgRD8BesaYCL+sJ94S+DaAFqziQPcaa6yRtm4i/LLWAHjWH28veHhinii8WcA67wsPIVgfvTWcv7PGgToPV7mA31TjBuzwreWtA28zgDOsoLmEX+aPtwbpzhOFQd7aAMB8LwC2rCP6iXb0k7aiG95Kg18gl/Gw7pgrxolV1+83YJ6YayIu8DfWI772XMfMJfM1atSoEvjleuR7jOuatzqsRf8glQi/Ht4zgV//1oY2+a5RkQLFqoDgt1hnVuNKCr/4F3o4876W/pUtvqrAGbBHAYCJq+k3EgFi+H76175sduE1I355FOAXOAQysG7igoAFlVfaWHZ4RVma5Zd2sFABSh5WgF3ipeKjzGdACRZazsvvvNb0gO4hDtcELFfcSLEAA5OAFQVXCCy9mVh+AUgs3H4TDzdtII++AXJYLRkjVnIse1jqOF8qDbzbRhR+vYUWqARcuZHz2h+90C4Kv4wZ6xg3Zm7QFF4jMw/0gVfoWOZ9RA1ABVcNIAGrLhZbzgcIoGGm8Bt1e+CcQCFwilWYwkMRv6dbO+iWDn556GHNoAO6A2yclwcLNj2mqxuFX7THv5Q1xCt7XG/oF1ZD1jd9RVtfsICjDw8IWML9gxefY/Hmb/mEXx5ogG3eCuAnz5sYYNBb93Nh+UVHrJnpzuOjHfAGBCsqOuL6wfgBS9Y2xYd7ywZ+uU5og8IbIB4qvUuOfyjgIYV1zZyxbvl+8tFMeNjiGo6GOvOwy3cAD3t8/1Ayhd/E8bLufNhA776i24gUKFYFBL/FOrMaV0r45VUwN1xe0WPpjcIvNyR2x7MD229kAyC58QBKFG8V4/9ABDFBublx88H3EnDzwMwx3orFTS1VnN/ohjdeNbP5iMINFgswFk0svVjwKNwcgVn6RqxbYIwbvIdfjgFu2dhGwTcVeAcm8R9khzg3Vu/24F/jercHNkqhjwcQXoMDVN6FAlgC/PgXqy2wyWeAGpCQSgPOC7wmuilEN+DR30TN/WQCCH7jn3+dC9QAtn6+gAagDYswFjmsZLhm+ILVmPHh8+1jNJdm+Y3Cb3RjHW2ylnxEjnRrh6ggpQFsog682uaBik2BpdUF/v0DExZDxsTfopsZgTk2KCYWfJjxCY8ei5WU+aR4+MVKzPpMLP4a4pU/c5fM5zeV5ReLOg9OfpMla5nrx7v0pIPfbOaPazXdeXjI5NwUHlZ5qMIazIOVX5OE2eOc/nrxGuHvzXdHMp9f6rJu+Zw1yn4A5tW7S0VdqHg4Z336zXVoyfrievFxfnmY4e0A/eI644EQrfDj5vvB+6snusH4jYk8HHItJ47XP5wncyHS7UQKFJsCgt9im1GNJycK4M6AhQyrI1bPRD9WLCNsyuKGwSvpxILlFR9QPicjVmnFw6+/eQKqwFlihiyslsAAP5kU4A/rNcAYWrwmWIeAnehucj4DABirH2+2GqApbg+87uWVbqosVtz8sRB7qyTjAoSBJ+qwMz8xgx59wXrGq2zvCpGtHriPAPl+UyBAygalxH6WtnZKOy9uKbRNyLfSki0ktgV8cn5Ay2uARZm/oUu6dcPrcdYXbfDgkCzMXGl9L+vnnJvrjT5GN+OVtb1U9Uo7D9cK+nPd0Q+OZ2Mkf+PBNp9JNnyf/TzwFoN5SHZOrjVcZ/iMhxYsvzxcAL+EDvQbUkvTLzpeHox4YOZBMRrKrrQ29LkUKEQFBL+FOGvqc9EpkAi/RTfAHA4I6xm+kcAI/s7lVaLwi3VNRQpUlAK8CcL9yof4A9C5Lnh45gEy2/THwD0PW/g6RzeiVtT4dF4pkG8FBL/5VljtS4EMFMAyhwUHi53AqnTB2HDE62NcLELT55Z+tn+O4DUzbiBYf/ELVZECFanAF198Ya4LwCowjEsVG3GB2GwLLjls2iQBRnQzZLbt6HgpUCgKCH4LZabUTykgBaSAFJACUkAKSIFgBQS/wRKqASkgBaSAFJACUkAKSIFCUUDwWygzpX5KASlQlAqwWS+fm7yKUjQNSgpIASkQoIDgN0A8VZUCUiBzBXw4KJ9u1dck3Br+hoRMq2yFHf1E9fBJOELHj+84IJ2YyIJ2CddHHFkiCKhIASkgBSqzAoLfyjz7GrsUKEcFUsEvcYwJzC/43SF4Njz8+iyB0QaJW8uGPRJpqEgBKSAFKrMCgt/KPPsauxQoRwUygV+ytpHogexmJEoYNGiQ7T4njinpYUmsQZzerl27WsrnxNK+fXuLrUwiD2LWkkmLXfHANTFkyfaG5ZO+kEBk3LhxFi2CBABksiPkU7NmzezvxEYmGx7RHUjywXEkOCHpBBZbEgwQF5V4usRWJXkESQpIpADQ485AkgT6zLnZiU84KpIaENqOxCMkHCDZAYlQHn30UUtlSwIDYglTkrXrY/+S5ITz0EeSbFCPguU3EX75jOx8pDAmmghjvOWWW9w999xj2pLEomfPniUZvryuJLlIDCdHHSzIqepzbhKkkGTDZ4sjCQNjoQ/MK/NBLFqiZpBs5eOPP7b5QE8VKSAFpEC+FRD85lthtS8FpIApkAn8kv2tadOmlgELdwhgkWD+wCkQCXwCnmRtI+4uABktpMcl9ilwNWPGDMt4RkYywNSDF9ndgL3p06db+lqA12fI22+//QyuvRuC7zMJMoilCsyS/YuseqS3JuQaYFurVi3Lpka4uttuu80SRRCCimQgnKNVq1aWOIHxAL6cm5TUtEviCbLSAZOMiT4DwZw7Vbs8HJDuul+/fq5OnTqWkRB4BySTwS9QzvHoBpjiAgGMc05SbqMHwN2jR49V9Hz99ddLsvr16dPHwr3RFnOSrD6WZWIw0yZ9ITMeqbRJC05dshSedNJJpodPt8w8UwBhNAbQVaSAFJAC+VRA8JtPddW2FJACJQpkAr9YZQnej/WXTHGA1r777msZ9qJphElRDaQCf4nw27x5c7OkArC0hxUY6y2QBbjyA4gCZqSqpQB/VatWNXBNBb9A9amnnmrt0UfSVWMNHjVqlCPNLckFsALTZyyeZPgjDjEwChgD5hQyaJGJa86cOWbZxud34sSJjn6T5Y7zYz199tlnU7YLeJPQAMinYI3mwQDXkWTwyzFRt4dGjRqZhdrDLu3QV+AzWaEvRx11VIlmqerju81xPs0xbQH3WIvRCvjlYYO5bdeunWmFZZk4tczx5MmTTVsVKSAFpEA+FRD85lNdtS0FpECJAt4fFWvpoYceWvJ3QBeg9D9YYRcsWGCvxUljvNdee1ka4cQCiAKeifCL6wNWTFJEU+/77783UMTi+/DDDxuIkRBg0aJFJemDOQ+B/gHsKPxyDNCGhXaLLbYwYMN1YqONNjJrK5bTK6+80qy1iWX27Nnuo48+MqjETeP555+3VNiMB/BmnCeeeKLBL6/9sZj+9ddflrIWqzVAmqpdrKe0HS30afHixRnBL0DKWI877jhrAu2Bb1LrJhbcRrDkMgbvWpGqPjDPA0nUfxvoxyKO5jxkMB8UHggYK64bHpJxN+FBRUUKSAEpkE8FBL/5VFdtSwEpsIoCWB+x2vLK3BeACDjt3bu3WVM5BqvogAEDzPcW6yCZ78aPH18CzVgosRQCjInwe8EFF5gPrIdfQBqA9fALhAKc+Bfju0oBpPFFpS7w62EUIN57770NfvHhJW0sPwA8r+1xpcDiC8xizaVwHP0H3nFz2HTTTW2TGVZPYA+XA6y/+CQzrmi0hyj8jhkzJmW7uIbwgx80ZcmSJe67774z7TKx/OLzC5BefPHFVh9tsIhj4Y0W3C+wxDIG+ozmlFT1cXU45phjrD8cC0xjZadd3FV4YPDWZeCXvvbt21fwq+8JKSAFylUBwW+5yq2TSYHKrQDAA9BOmDDBwBXfVayYpGnFzxdI5f8tWrQwwMQyCtRhKd52223NagvU8soeKySv/7OFX16zH3/88QZ0uCsAqHXr1jV/W0AXWAPi6CvpXtmUBvzic0x/6R/H4G8M1LIhj/7wyh7gxccXcKcOsIuLwLRp0xyWYMAZ/17Oh3U0MdRZFH6xkKZqF2syG+TQEYsvOqy//vpmzU0Fv8A9x7FRDz9crOCPPPKI+dhi9UXrxLTNF154oR2HZuhFAdjZtJesPjDNhjw0wEqOOwf+vVikeTgQ/Fbu61+jlwJxUUDwG5eZUD+kQCVQANjDykr0BF/YzIb7AAW/3M6dO5sl+NdffzUfXKyxbJYCiLGWUgBlXB4Sk0Pwij3R8rtw4UIDN6ybgCsb0fDfxTcV8KUAaoA11sqbbrrJ3C0oZ555pgElIMtn+B/TB4ATqzHW6Bo1apgl21sw6Tvn8a/v8T/mM3ye8QlmExtuGX7zXjLLr7dKp2qXtnhomDRpkvUT6MZSTISKVHF+AXp0BprZBAhYo6uvzyY2+u6LB/HEZQkwY3VOVR/wxyqORujLw0Pbtm3tYaY0+MX6jFVZRQpIASmQTwUEv/lUV21LASmQVAGgiNffWH/XWWedVY7BSghgYh3FcuoLPsNEDWBjWi4iAvBK/9NPPzUY9eHD/LnYeEbBwhstRGpgIx3WT+pFC5CNtZYxrbfeejmb+VTt4lKAPy59wpoMWJdW0JYxAfLA7bx580x/olJkUj/afrr6wDlzSNg5NrepSAEpIAXipIDgN06zob5IASkgBaSAFJACUkAK5FUBwW9e5VXjUkAKSAEpIAWkgBSQAnFSQPAbp9lQX6SAFJACUkAKSAEpIAXyqoDgN6/yqnEpIAWkgBSQAlJACkiBOCkg+I3TbKgvUkAKSAEpIAWkgBSQAnlVQPCbV3nVuBSQAlJACkgBKSAFpECcFBD8xmk21BcpIAWkgBSQAlJACkiBvCog+M2rvP80ThxOYoomxgwth1OnPcUPP/xgfYrGUi2vPhGzlVij2cYWzVX/SEGbmCChrG2THICYtCpSQApIASkgBbJVgHjYKv+nAAmOKGStzFeplPBLtqbEIPlkciJl6A477LCK1mPHjrVUnok577OZkE6dOlk2JDJUJSvPP/+8BcwnY1SmhaxJpGgFIqn7999/Zw2SpDhdY401LI1rLgsB7sm+RRrVVIWUsA8++KDbb7/9cnlqa4uUtFtuuaUjc1iyQiICNCNJQGIpy1yQqevKK6/M+Thy1SBJGeL85ar+hc209JN+YQqE1db6i49+r7/+umvcuLF1iMyUZ5xxhiNJjs/cSPZK0sKnKmRnrF69ujv99NNTHkN2zmOOOcY999xz7vDDDw8bfIrae+65pxkMP/zww5Ttk7CH5ESMh3FFC0mK7rrrLktB7/VIbKhSwy8ZpsjUhIikXD3ggANKUpR6oZYsWWJZm3bbbbcyTfIHH3zgTj75ZDdnzpyUcEqq0/3339/SsmZatthiC/fiiy9av959911Lb5ptWbZsmdtll12sb5tttlm21VMeTxauvffe29F+qpJP+CXrFVZdUr1mC79lmYtXDzvekVY3rmXxkiWuxiabxLV7Tv0Lm5q46zfvzBP18BUwxYLLAPGcs4yMleXhPwq/8AQp3T2soiIGvuuuuy6loGR6rFOnjsMIlKqQ0v24445zEyZMsBTx+Sj9+/c3wx6p7lMV3lyTth4jF2nbo+XLL7902223nf09lRGsUsMvYMtTDgWxhw4d6l566SXXvHlz17JlSzdx4kRbLI8//rjr16+fmzt3rjv//PPdjBkzDJYvv/xyWyitWrVy9evXd0OGDHFvvfWWTYgvXbp0MSsj/+L+cOmllzqsyZyDiSW9aLt27cy8//DDD9uxTNYrr7ziDjzwQHfbbbeZRTh6DizI9JcLGos0T2mcl2NZEK+++qpd8Cx++s9TENZdxoYFGstsnz593Pbbb+8uvPBCA+DLLrtslcWDNZMFNHPmTHtyZKws+mnTpllfsBr//PPPDqs2FwELrWvXru6UU05xjRo1suO4QNCOp7I77rjDUqiiw7nnnuuAX8bHOCn/+c9/THNfeODgqXLKlCnmlgFc0g5jv/766w36TzzxRHvqGzlypD3Z8n+s4ZyLJ0JA9oknnnDdu3d3G264obXBfGORRmf0R3P6PmLECHuIiM4Fc5RJ+avKFpkcpmOkQKVU4ItP36g08JGPCa5M8Cb9whTw8Mv9kHsdllPui7AN6cY9/ALFWEYXLVrkmjZtavff++67z+6tG220kfHADTfcYPDMcVhhjz76aNerVy/jCO7tvC1/7bXXrMO9e/e2e78vvF0/4YQT7Kdbt27uyCOPtLfTQDXsglUaNsC9YeDAgXYfhgnoB4Yz2v7999/tDTIGRO7ZjAX+gjdgiNatWxtrAeCMA6NX27ZtrY9wDvzGG37YjX4klkoNvwBP1apVHRN1++23u/POO89ErlGjhsEt0PTpp5+6QYMG2aQBVjvvvLO9Vgf+3n//fZuIffbZxxbHnXfe6Q455JBVfGibNWtmwAe0PfTQQwbIQCT1aGPSpEk20QAjIAkANmnSxM7BpAGRwHL0HFiJAVYWDwDMK34Wlgdr2mahs1iB4WHDhtkiZYz0gSe/9957z/xUec1B+1iRo4XzP/LII+6ZZ56xn2uuucbcP7COA/pYdx977DH35ptvusGDB7vZs2e7Y4891s7H/3ndQB84jgsFyGWBHnroobZIGQOWWeo++uhf3kB3AAAgAElEQVSjtsgB7WjhYqB/6623njv44IPdRRddZL8D0TzNoj8aoik6nXXWWTZf/A1NuIC5OGiff3lI4MLiAvPwy0MBYM+83nzzzavMRaY+wYLfsC9s1S5uBQS/YfMr+JV+mSrg4Rd3B+71GK4wEmHoAjiBX8Bx2223NUCENy655BL7gW+ARO6dACl1uC8CkNzb+RsMUbt2bbun83eMRX379nU//fSTYx9NdP8Q92kgnD0x/i0sb9vhHbiA/8NH3McxRMEC9Pfbb781BsK4BvDCMTAITIbh8aOPPjI3Q4xt3tAIq40bN87amjp1qvEObTKeHj16uHr16gl+UcD7/CIMgAMAs0BYDEwi8PvNN9/YIgAMgd8xY8bY5jCspvzLU8m6665rEwXY8nSDe0O04FPKsVhlsRAzKfi4stCwagKCG2ywgVkovdsD5+eJhcXBogGqqQf8Rs/h3R5wV/A+v8AvfefpjcIxQPvFF19sVmEsrTxpcU4Pv3zOAmYhJsIvY+TJj/NjBcVSzia1nXbayYCaPk+ePNkWHPDJxUX/v/vuuxK3B6y1WLx79uxpzbOYuRD23Xdfg3CAlL9hyU30wWWBA77ozA2AJ076yzg4B/OHxRzQpgCvvOagL8wd52Dc/hUOn82aNasEfj///HOz+uI/DUwz12VxexD8ZvrVrOMqowKC37BZF/xKv0wV8PCLdRXDDtwCl3Af5y0v8As0ck985513jDMwAuIXy1vWqNsDxjwMSMAmxjYAlDeoMBDwizEMgyEwjWUZN0esxr5gzKMfvJnFmAZ7ALinnXaatYvRaeuttzaOOOyww9zLL79sb605z9VXX23wy70choJRsEx7horCb5s2bcxyzB6is88+2+pj2JPbQ5JV4+E36vbgD+NvAKR/ivHwy1MPC8D/3UMkEMaTCdZErJPR4gEZdwmsmBRerWOZpV1AksmMApd3IOcVAr7IWFc9/EbPkQp+vWuBh1/cInitgWXX+wVvvPHGZrFlgQCvvEpIdCxnsfq2WIAsWKyqFA+/WK1ZdLhXYIHmyTERfhkbYOv9bniowM+6QYMGJRveuADRNhF+gV1e2QC/PHHyeoMLGOsyFxVO8Vhyo/7OzAEXCfDLax8eIPih3HPPPXaBecuvPx8XLtZ4wW+mX7E6TgpkroDgN3Otkh0p+JV+mSrg4feBBx4wOKVwrwd0uVcCv7ggYITz7gUYoXCtTIRfABUA9oZA3A8wFmLsivr88kYWuPaGQd9XIBQ2Am7hA5hpwYIFZpV94YUXzLCFKyLgjQXYF9wqgVjgFxiGdTDs0RfeDsMOUfj1Pr+8PYZT4CssvYLfHMEvT0oIiiXzpJNOciwunmLeeOMNs8omg19ODUBiOcY6jGVynXXWcVdccYVZLgE0QI4nICa0ffv2ZoVmkQGMACjtp4JfFhdPTlHLbzL4xe1ir732Mr8cdmiyU9NbfnEZYCECsdGSCfxycfDkxw/giC4efoFZHNbxuQVcOS++x2iInzPWWx/tIRX8YjH2G/F4KMElBSstMIueWHV5KkVfdMTlhDb5QVsuLGAYCy8XENZr9EkHvzzFMheMP9Miy2+mSum4yqiA4Dds1gW/0i9TBaLwi9GNeyRGLoAQNwbglzev3LN5UwuAYmiLWn4xjnGPZd1xz+Rz3ozjYwuEAqqZwO/y5cuNZyj4DQO/WJ0pvNHmc/bm4EYBT+FmyVtymAFG8W4PnA+jFW4M06dPNyDOFH4xvrG/ifMklkrt85vO8uvj0EZDnfEKgYWAHwtPMMAnT1HAL36myXb8A2xYfQFFrKssJtwOaB/fF5zKgWjvyM0ixUeVRcOxvDLAMonbQPQcuAs8+eST9lQHUHqfX3x5gGkP3ixigJvFwgLiCY8nL/8qg6cmLN0AeSL8+rZYcDyNRS2/ACZQiSUWoGSMADU+RDic4+YBmGN5BlTffvttc1HgKRM3DI7n4sPXORX80h/8fChowsXBBchFwesXnkh56uQBgfnwT4eAKxc4Ywa88Z3GCo+PElrxt2ios6jlNzoXme5kFfxm+tWs4yqjAoLfsFkX/Eq/TBWIwi9vPoFW3CwxgAG/GO94U4vVlz05gCcswj0VoxQ8wv0Rl0Lut9THJZACO8A88ADw6/mH+zlvxhMtv9Tx/rpALcYsfHm5p2OlpcAwnBPLNIXN6rCS3+MEU7CHCMMh58PFkTq4gMI5+Pzyf5hj9OjR1jYMhRsFb4axUgPe9FHwm+kqSnEciwS3CRYSr+NLK0y6jxBBQgcWGpZdHMmjAZyxigK8uEJgFebpC0jm6Qgn8sRz8cqexYYLQWkFAMVVgT7jSgH4AYP0BxjEfQFQLUvB0suiZhHiEsLTHX0Hxn/55ZeSJz98o7Hi5iOhBhBMuz6WoR8HESMAfu+LzRcAFuBUoU98vehcZKKJ4DcTlXRMZVVA8Bs284Jf6RemwOq14Qc4hvt+YqIprLLcv+EPCjzCPR5jWL6SUhFZCobw5/Q9ph+4OOJLzIZ2DFVYrdnMly4WMfWpix8ybWIAFPzmehVl0B6md3ZfZho6K4MmszqEJzheN/AqAfcGnMfxn+HvWIDTxf3L6kQxO5gHDeAeNwYsw1if8V/2/tdl6S5Wc3yjoqXLVX3L0pTqSIFKoYDgN2yaBb/SL0yBwq7Nvh8sv77gP8x9GCNeSKmUbg8hgpWlLpZEfnhyqqiC/w+b7chgh6sBmd1wN8A9IPFpq6L6mI/zYqkHVnmaJUwblt9cF1l+c62o2ismBQS/YbMp+JV+YQoUfm1cLOEX3h6zfwm3x9Ai+A1VUPUrvQKC30q/BCRAGgUEv2HLQ/Ar/cIUUO1kCgh+tS6kQKACgt9AAVW9qBUQ/IZNr+BX+oUpoNqCX60BKZAHBQS/eRBVTRaNAoLfsKkU/Eq/MAVUW/CrNSAF8qCA4DcPoqrJolFA8Bs2lYJf6RemgGoLfrUGpEAeFBD85kFUNVk0Cgh+w6ZS8Cv9MlVgvZuqZHpo0uN+u27lKn8nYhJhUaOb4gkhRkjTXGw6C+psYGX5/AYKqOpS4NXDjncHNW68ihCrfoU4l/iVVNrnvjF/XGn1/fHJjvtxyRJX/X/xoEtrJ/TzdP2IChQ9jyWbSYhXnawf/A09wr7es1+v9C+TeNrZt5ybGnHv37yzTrL0pnEtgsuwmZF+8dGv1s1h347fXfPPHeevv/5yc+bMsYyq5B4gNCqFjLBkSCU+MGBM6FSfhTVMhfKvLfgtf811xiJT4NZbb7VscnEtujmFzYz0k35hCoTV1vqTfpkqULtnGPx+dPU/8EuIUOL/k82NbGvAL7C79tprl2Ry69Spk9tyyy0tw1ohFsFvIc6a+hwrBQS/YdOhm7v0C1MgrLbWn/QLUyCsdi7X3z63VHFVIq/IVq50Wf0+/apV30kOGDDA8gEAv6Q/JlHXp59+agMm89qMGTPMOlyIRfBbiLOmPsdKAXKNk0lORQpIASkgBaRAtgrkyi3ooFvDLL9TrkwNv7NmzXKnnHKK+/DDD214w4cPd5MnT3b33XdftsONxfGC31hMgzohBaSAFJACUkAKSIGyK9C8Txj8vtAlNfyyyY2Nb2x4q1KlSokfcOfOncve4QqsKfitQPF1aikgBaSAFJACUkAK5EKBlsBvlH8TdwiX8vuTl6eGX/q35557uoEDB7r69eu7I444wt14443u8MMPz0XXy70NwW+5S64TSgEpIAWkgBSQAlIgtwqcfGeY5XdM59XhFx/fvn37WkfHjx/vzjjjDPt/ixYt3IgRI8wKXIhF8FuIs6Y+SwEpIAWkgBSQAlIgosDp/wkD0YcvTQzCubq8v/zyi1u6dKlFeijkIvgt5NlT36WAFJACUkAKSAEp4Jxr2y8Mfh/oVDr8FovQgt9imUmNQwpIASkgBaSAFKi0ClzYPwx+7+4o+K20i0cDlwJSQApIASkgBaRAoSnQeUAY/N55seC30OZc/ZUCUkAKSAEpIAWkQKVV4KqBYfDb+yLBb6VdPBq4FJACUkAKSAEpIAUKTYHrB4XB740XCH4Lbc7VXykgBaSAFJACUkAKVFoFet5TJWmYXx/eN1WYX//37h0Ev5V28WjgUkAKSAEpIAWkgBQoNAX6DE4Ov34cpeW8uPw8wW+hzbn6KwWkgBSQAlJACkiBSqtA/8Fhbg8dBb+Vdu1o4FJACkgBKSAFpIAUKDgF7r0/DH7PbyfLb8FNujosBaSAFJACUkAKSIHKqsDQB/5xeyjx8V3pHNmHE31+U31+dlvBb2VdOxq3FJACUkAKSAEpIAUKToFHhoRZfk87V/BbcJOuDksBKSAFpIAUkAJSoLIq8PjQMPg94RzBb2VdOxq3FJACUkAKSAEpIAUKToEJw8Lg9+izBb8FN+nqsBSQAlJACkgBKSAFKqsCLwK/qzj9uqx+P/QswW9lXTsatxSQAlJACkgBKSAFCk6BKcPDLL8HnSn4LbhJV4elgBSQAlJACkgBKVBZFZgWCL8NBb+Vdelo3FJACkgBKSAFpIAUKDwFZj0UZvnd4wxZfgtv1tVjKVBBCjz11FOubt26FXR2nVYKxFuBj79+JN4dLO/eFRhfbFnzIFd1/W3KW6VKdb4dd9wxJ+OdO7yKxfX1gX1X/i/Ob6a/7yr4zck8qJFKqMCsWbPcokWLVhl5rVq1CgoO58+f73766SdXp06djGbw1ltvdVdeeWVGx1bEQZ999pnL1ZdrPvqv/oWpGnf9bronzBoVpo5qhyrQqc1nrvpGO6RsJu7rrzL17/OHw6617U9f9cls+fLlbv3113drrLFG6DKKXf0qK1fybKAiBXKjwMknn+z+/vtvV79+/ZIGGzRo4E444YSgEzz00EPujz/+cOeee25QO77yQQcd5CZPnuzWXHPN1dobOnSoe//9991tt92W0bkEvxnJpJtnmEwFq5/gN08TX07NCn7zK3Qu4fzbQPjd8n/wiwGrTZs2bq211nJffPGF69q1qzvnnHPyK0Q5ty74LWfBi/10wO9pp53m+DdagNfx48e7UaNGuYkTJ7q77rrLPf74427IkCHuzjvvtIusc+fOdoF9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauUUyf4DVvVufzyD+tJ8trqX5iqgt8w/Sq6tuA3vzOQy++XxYHwW+N/8Nu7d297+8l99LvvvnNbbrmlwwq8wQYb5FeMcmxd8FuOYleGUwG9y5Ytc7vuumvJcDt06OB23nlnV69ePde9e3fXq1cv169fP3fggQe67bbbzmCV1yr77LOPW7hwoePCAzyB0nbt2rnzzz/fzZgxw61YscLdcMMNbu2117a2P/nkE7fLLrsYQK+33nqudevW7t5773XbbLON1fnqq69co0aNDJ4B5qZNm7rBgwdbP6pWrep++OEHa5c2x4wZ4+6++267wPHfBb7feust9+GHH1p/3nvvPcFvnhZwLr/889FF9S9MVcFvmH4VXVvwm98ZyOX3y/IE+OW1fjpHiMTPN/wf/GI44p6JIQvnAO7Pn376aazd57KdJcFvtorp+LQKAL81a9Z0DRs2LDnu8MMPd9tuu62bNGmSO/TQQ92pp55qFmAuKgAW6+zs2bPNKrtkyRI7ZsSIEQbQCxYsMHeHRx55xP3222/u6quvLmmXunvvvbdbvHixgSy+xRzLD0+otM/rm5deeskgFjeGkSNHuhYtWrgqVarYcddcc42rXbu2a9u2rQE3r3iA3nHjxtnP0qVLXfXq1a2tVEWW37CLIpdf/mE9keU3H/oJfvOhavm1KfjNr9a5/P77a0SYz++abf65z3GP5se/wd1iiy3svrj99tvnV4xybF3wW45iV4ZTpXJ7YOyvv/66a9y4sbk2YK0FTDfbbDPbLLbvvvuaWwIgizV47ty5bquttjIg/fPPP81imwx+TzrpJDdz5kyzGO++++7u+++/N/cI4BffY9rF6nzUUUe5Bx54wM4VhV/8mjgvP5znxx9/dERv8D6/WIKxEnv4nTJlisF6YtGGt7Kv7lx++Ze9F6lrqn9hqgp+w/Sr6NqC3/zOQE6/XwJDnbn/RXu46aab3MYbb+wuvfRS99dff7lNNtnE7o3FtPFN8JvfdV3pWgd+AUmg1BesrFxAe+21l7vkkksMQJ944gnzKcLfF8ss/sD44AK/+O5i/QWSTz/9dHfiiSe6zz//3P3888/u+uuvX8Xymw5+8VXCGgxA0y7uEICth18g+eGHHzYox10COMYCjTU5Ffwmm1BZfsOWeU6//MO6krS2+hcmquA3TL+Kri34ze8M5PT75cEwy6/7X3pj7sfsy3n++edtXwxvZd944438ClHOrQt+y1nwYj8dr0q4WKKFSA/43rIZ7YUXXjCXhuuuu84upgMOOMDcJNZZZx2z2ALAbHJjIxsb3wg3NmHCBPfyyy8bBLNJDjCm4PaQDn6x1gLjH3zwgR2PfzAQ/MorrziiPWDRZSPeRRddZH3BWvz00087rLuC3/JbqTn98s9Dt9W/MFEFv2H6VXRtwW9+ZyCn3y8PBMJv23/cHrgXH3300XYf5P/cu/fbb7/8ClHOrQt+y1lwnW5VBXBNwEKLiwNuB7g2AKUUXrPgb+sLFyGQnCw8WTpdgejNN9/c6uFTzCsczvX777+X7F5NPFc28yTLbzZqrX5sTr/8w7qStLb6Fyaq4DdMv4quLfjN7wzk9PtlcCD8nrfq3hY2jfP21G8yz68S5du64Ld89dbZilABwW/YpOb0yz+sK4LfPOgn+M2DqOXYpOA3v2Ln9PtvUCD8XlB50j4IfvO7rtV6JVBA8Bs2yTn98g/riuA3D/o990pPt+lmm+ah5dw0uWjhIvUvjZQ7bXO4MrzlZqnl//tlQCD8Xiz4zeNUq2kpUFwKCH7D5lPwW9z6TZ7Sy222aXzhdyFRZ4q0f3V3Oz9scWVQW9dvBiKlOSSn+v03EH7/LfgNm81KWpvNVCxkwmtVRCGqAVnRCCeWTfnmm28s8kI0MUU29TmWANj41OKTG9pWtufO1/GJfsGpziP4DZuBnH75h3Ul/5aZSti/gfcF3pDzoFllaHKXnVq7w5qNyPtQdf2GSZxT/fpWWTWrRWIWi9J+7yz4DZvNSlqbSAZkCyNaQEWUaPSD6PmJaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rk9Mv/7CuCH7zoJ/gNw+iZtCk4PcfkSrV98ttgQ+aVwh+M7i0dEiiAqng9+OPP7Z0u8ApcWtvvvlmC+d1yy23WOxbrLXk0CZEGH8jzS4xaQcMGGAxZ8lqBpDxOYBJtrP69eu7a6+91g0dOtQiGQwbNsw+a9asmYUPAzCJk3veeeeZJZhICWPHjrUEEol9eeaZZxx9JCwYMXbXX399y8Z2xhlnuDvuuCPlRAPNF154oVtrrbUsWQXxc8kAQ1ukJk7sH32lPcKZPfbYY3YMfdphhx0c8EwoFcKY7b///u6+++4zkGasBNsmDi/t0X/0I2scYclIXYyFls/ob6pCNAceAsjmRt10hXjChGKbPn269UHwm99rvVLdnPIgZdz1E/zmYdIzaFLwWwnht3cg/F4l+M3g0tIhmcIvUAmQkisbGCXRw4wZMyyMF5BF4gYsjMcff7xr3bq1e/TRRy2uHqBIul1S7wLOxMcl88pGG21kObf5O/FpSdRAcgZgkli2gCLQxg9hvvh9xYoVZpWm/cS+EG5s1qxZFu+W+pwfiCU2LxnTgOtkpV69ega/uHkAtKQKpm+01apVq9X6B+ASxoxUxKRKJN0w53ruuecMcklAQRpFHhA6duxoME6bhx12mNtpp50sPu+8efMsScbbb7/ttt5665K0x5zvnXfesWxu0UJa40GDBpkVF33PPPNMOy5aNt10U9euXbvVhsjDB7oLfvN7rccd3tS/sPkX/IbpV9bagt9KCL89AuH3WsFvWa+3Sl0vmeXXp9rFmos/7IsvvmiWTCAMcCQ1L762JG8g6xmpc0nmQAHIvvzyS7NqHnnkkQa8zz77rMEsQAfoYd0FPJs2bWpZ0LAU43uMNRb4xYKKFZf4ucAxiRwS+4LF1cPvEUccYf67FOD3nnvuMet0YgGq6bdPechY6tatWwK/V1111Wr9o09ke8MFgwLAAqJkeOOc/A788i+W7+7du1v8XyzDo0aNcg8++KDVw1KOdZaxYxWnAKpdu3Y1jSgktuB39OVhg2Np+7333jOrcyL8Av6JRfBbPpez4DJM57jrJ/gNm9+y1hb8VkL4vTEQfq8X/Jb1eqvU9ZLBL/6vgBzpAX3Zbbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc5B2cNy4cZZ9Bcvp8OHDLRsL7fiMZ9THwjtw4MAS+KWtZH3BuuvhN1of/9z+/fsnhV+Ox0cYyyoF2MUS6y2/jDexf7Tl4ReIB+7JHc7DAKmFPfzOnTvXElFgEccqCzTTFvUpJMUg4xufkwnOF1wm9thjD/sVlwj0Qjt09RbhpUuXOgJ3RwvuIokWYw/UiZZf/Ll5QEksWKPjWuIOR+pf2MqJu36C37D5LWttwW8lhN9rA+G3h+C3rNdb0noAB9DQsGFDt2jRIrMQFmMBTLHSvvrqqyXDW2ONNQwe8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8Awnr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy92zAfAHS1YsMllnlhk+S2fqzTu8Kb+ha0DwW+YfmWtLfithPDbPRB+ewl+y3q9Ja2HvyaAh+8mFs50G5N8A6VFKMhpB3PUGPDLGKMFtwMgD5cDClZGfFdr1qzp3nzzTbPOAoU77rijI1QZ1lkgjxsuFl6Ajb9F4RdrLhvc8LWlPTZ8AdIHH3xwUvjFxxZXCkAbCE7sy5NPPpk1/DKWIUOGmLUZeAaAzzrrLPPpBaRvvPHG1fpHtAmsyRzDQwDATj3cGth0N2bMGHMH8ZZffJTRDrcFLMtYySlYgPHfxf958ODBjoerli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPEVwWt36C37D5LWttwW8lhN+ugfB7u+C3rNfbavWwNgIphxxyiG1ewhrIRi2iCuB/ikUOy573zwSQsCBGIxSwUSyx8Nof/1l25M+fP982T7GZi/a7detmG6N4LQ+4cCyAxyt6YtBybqyB+MECTFikk0Vk4HV7rgoAhv8uG8mwPqYrvNZfd9117dV/uoL1lX4Dj/gTpytYWzkGK2k2feFY9EsswDr+xejJMcn6mqx/0di5wD5zUKNGDQN/9E43Ds4FaEfnZdmyZQb0WNMzKZw/l/PKOQW/mSgv+A1TqXD1E/zma+bTtyv4rYTw2zkwzm9fwW/Ortbly5fb63HAE0snvpi86gYCseYBolgPsQJiFeT1NRY+Xv37CAVrr732av3hdTZ1cTEAgIFcrMps0sKFAGDGdxbLIP6iQPXUqVMNdgFf/k9f8LFlA1myiAxYMit7IcTatGnTVpOB0GZY9FUEv6FrQJbfMAXjrp/gN2x+y1pb8FsJ4bdjoOW3v+C3rNdb0npsaGJTFZucPPxi8V2yZIlZItnVz9/xg+X1NRunCPOFVdDv5k9sGPglXBaRC7AIco6VK1eaTzHRA4BtrMFANL6f+HQSU5YfNlfhX4vlmPOw+z9ZFATaVpECpSkgy29pCqX/PO7wpv6Fze/kV3u6TTeLb3rjRQsXFW3/6u3WIWzyMqit6yMDkdIcklP9LgqE34GC37DZTKidDH5xdfCRArDw4u8JoBK9gE1NhLYqDX6x6AK4vDLfcMMNHa/Z8YNl5z6bxYBcNlYBv/5YXuHzAzx7+MU6nCwKAm2oSIHSFBD8lqaQ4DdMocLWb+brvYoWLhNnZuOajdxGNRrkdLpzCkc57VkltKzGXb/zAuF3sOA3p1NcGvwSGYBwXfht4n5AwgL8Y32EgmSdAV4T4Rdf2Vq1ahkME+sWoMXCWxr8shkqWRQELNHZFM7JFxUAXhGFcRMdAn/pbAquH1jPiXpQ1sLGMKz4+OyGtlXWPuS6Hm8mWLulpWIW/IYpr5t7cev34oOBN+Qwecq1dqNj3hX8lqvipZ+sUn2/nBvo8/uA4Lf0FZXFEaXBL4kU2PBGKDCsvbgtkLnMRygAjhNLMvjF7QF4JvwVhWxlACkb7FJZfsneBSCTYCJZRIYshmkxeIlQQFi3iijEpI2GOvN9KC1yBmmKCa3GBsGyFrK3EXmCUGPp2sKvmzBlpQFlWfuRi3o8ePEAhl8zm+PY2MdmzVRF8BumeqW6OYVJlbR23PUT/IZNetznV/2L0fyeGfigOVzwGzabZahNOC7cH6K79olQgGsEUJdYWrRoYTv/kxWyj5GSF8DCelda1ATfRjZREJKdNxX8JoskQQKGW265xWLVYq3t2bOnGz16tP0NX2Os1oTaArzwe2bjGZ8DmKQCxmeajYM8BDBWQp/xWbNmzSx8GoBJiDTiAUcjZxBajLjBaEoa4ZtvvtnCjNFHHhzYRIiuZIUjJB0+0akK0Ix1HEAEFJkTNjLSFg8Sif2jr7RHRjr8rDkGH2yiVQDPZJrjQYeYwYSIA6QZKw9PbJnhk9gAACAASURBVEqkPfpPn3GbwU+czY3MG5+lC6FHJjoeAmrXrm110xXaJwsd4dp4GEMPgD5VRAnBbxku+EgV3TyLWz/Bb3HPr67fGM1v60D4HSn4DZvNHNb+4osvHDCbWIDC0sJ75bAbGTWVCn6TRZKYMWOGq169usW7JRwcoE7sWsK14fc8ceJEA0XGj+UaWB0xYoSFjSOLGml8+TsWcqJjzJ4922ASazegCDjyg3b87iNn0D5wTDQMwJgYuvhK+yQX1Of8QCyRM9ioCFwnK/Xq1TP4xc0DoMU66jO8YTlN7B+AS4xfHnTYrIi/NuciOQeQiwWeFMRAeceOHQ3GaZPYyUSWID4yIezw4yYWMhsjqQegcj5SJSdmauPhiVTQ999/v+lLjF+OixZiCZNtzhceuogXzMOEfyOA/sliCFNH8JvR5ZHyIN08i1s/wW9xz6+u3xjN78mB8DsmM/jlnguzRCNxwRHcO9l/VQilykp8BVRyokAy+GUxJIskAYQBjjNnzjRfWxJQAFrEKcbdgwKQ8Qoeq+aRRx5pwEvEDGAWoAP0sO4CnoR1+/zzz81SjKsH1ljgFwsqVlwWK3CcrC9YXD38HnHEEZbYgQL84pKCdTqxANX0G4sqcYsZC5n7PPwSxi6xf/TJpzemPQAWEMXNhXP6DG/8i+WbKCBYW7EMswGS7HcULOX4gzN2Hw0EKzmuM2hEwfXFx44G8DkWsCYcHlbnRPglBXK0/P7772aF5wGEDZLEqU5VBL9hl49unsWtn+C3uOdX12+M5vf4QPgdlx4HCV2LoY03rp07d7YQtRQSXv3nP/8xgxRvYjHI8TY4zkXwm8PZSQa/vC5PFkmCV++AHYuEOMdAGQDG5jNA1hegjUWWmN4YIMOPGcspmwWPPvpoaydVemPgl7aS9QXrbrbpjTkeH2EfsQPYZeF7+CXucmL/yMzm4ReIB+5JNYxbA5E5UqU3Bpppi/oUNjaSDhmL+QUXXFCiFS4Te+yxh/2OSwSuJWiHrt4iTDY4oolECxbeqMUYrU499VR7s8A5iVPtC/7cPKAkFqzRcS26OYXNjPQL00/wG6af1p/0y1iBowPhd0J6+MVYh4slhro+ffoY/AK7WIAxhFWrVs1cJ7lnkmwszkXwm8PZAX6x0pJ4wxesolhO8XdlQx9uDkAvllJSEmPxJfUzT1K89se6SWxioJlQa1g58dFNhF9cFoCwXr16GbiyCHEfSAW/PnJGsqgW+LRmC7+84mCB41uMHy5+umTm8/ALiCb2D+su8Is1HFjE3QC9Lr/8coPZVPDLg8Kxxx5rnwOuaMF50RULL69fGHePHj3M2u0LUT7QnaQm+EiTKpr5ALijBQs2YfZ8wbLOXET/lm6ZyPIbdhHp5l7c+gl+i3t+df3GaH4PD4Tf5zNzBOAejHsi3IErIm6U/o0xBiPcOnE1jHMR/OZwdoBf/FOjBbcDIC9ZJAky3uF/y6IhXTChyrDOAnl8odx1110GbPwtCr8DBw60py98bbFa8uQFSB988MFJ4RcfWx85AwhO7Aupn7OFX8bIqw6szcAzAExGPHx6aYvNYon9I8se0R44hocALhzq4dbApjtiPeMOMnfuXNukSOQMtMNtAcsyVnIKFxf+u/g/E6MZay7JUdjQlswvF30IZ4eetM9PukI/geZo+eijj8yfOlkR/IZdRLp5Frd+gt/inl9dvzGa36aB8Dv5H/jlHo4bZbSwD8i/WY3Cb+JbYN5EY5yCfeJcBL/lNDvZRJLgtf66665bapQKrK9EVgAeS9v8h7WVY7CSZtMXjsXFIrEA6/gXE9OXY5JF1EjWP47FnxbfY2AfF4MaNWrY/3FvSDcOzgVoc5wvy5YtM//fVJEYEvvN+aP1czH9gt8wFXXzLG79BL/FPb+6fmM0v/sHwu+b/8Avboi8SY4W3kRjiKNE4dfva+J+j/GJ8LEUXA7jXAS/cZ6dGPSNEGvTpk1brSc4sxOBQUXRHkLXgG6eYQrGXT/Bb3HPb9zXX6Xq316B8Ptu9m4PrG7cKXkjjXshm+Z581taSNGwqyK8tuA3XEO1UMkVkOU3bAFUqptTmFRJa8ddv5mv9zT3pbiWRYsW5ax/G2+6nzK8xWyi43595LR/uwTC78eZwy9x9XE/pLA/xsfZJ94/YVlThQaNy/IQ/MZlJtSPglVA8Bs2dTn98g/rSkHC5Wr6ff60c8u/zoMSZWvys/Wb256GuBatv7CZkX4x0m/zQPhdkBn8Jhsxrovsv4lGRwpTJr+1Bb/51TfnrROWmbi4vGaoWbOmtU/MXXxf2TzGLksiL2RTaI+NaNGA1dnUj8uxXHw432c7/tD+C37DFNTNM8f6Ab9PHRPWaA5rf3b0Pxt641q0/sJmRvrFSL/1AuH3t7LDb5gK5V9b8Fv+mgedkfBhgCoxbomGQCEKAhnTCBmGn42PvZvuRERGIIUvkQ1I/uAjLAR1roIrL1iwwKI/+MQX5dUdwW+Y0rp55lg/wW9Wgmr9ZSXXagdLv+LWL2x08a0t+I3v3CTtGTGBsfDefffdlvqYuLWlwS8hyQgtRgGYSaLRuHFji7c7duxYi9dHKDT+37BhQ4szTLxeEkUQf5gICcTjxaeH8GJAMz49QLaPnID1GZAmLjHJJcgMR4g1ElmQlhhgZwcpkR5ITEEw7KlTp1pAbFI5s6muZ8+eFiuYUGxstCPWLq9QCJ1CRAtCp7CTlHOyk5Sdp9H+EGqOrHD0n7THZGgjEkTv3r0tIQfnIz4ycQnPPvtsa4tzvPjii2769Olu/vz5lnKZFNDJ6qdaKoLfsItIN88c6yf4zUpQrb+s5BL8hslVcPrleLixaU7wG5upKL0jpBbk9SHx94DJ//73v/ZvOvgF/ojKQHpg6rdt29Z98sknBn4rVqwwGCbrG47rxAomVi8JKABYMrYBgYQja9WqlaUiBg6BReA7upuT3Z24HQCuAC+A65NSAKRYquvUqWOZ04iXC5AToxjQJKkEfSCZB0ksODeFINnE5qWfZIsB+oFkgJ9kFiSx6NixY0l/0IZUz4As1mzSMJK9Digngx5aAfAHHnig/Q390AIAJzEJ9chMl6q+4Lf0NVqWIwQfZVHt/+ok9fmV20PGomr9ZSxV0gOlX3HrFza6+NYW/MZ3blbrGZALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEK0ysjyVc8Jufi0U3zzBdBb851i+suZzX1vURJqn0C9OvWGsLfgtoZkkZTJIHXAYANMAWmMNdIZXP76BBgwx0gUUKLg4EqOYLIQq/3ucX94bNN9/cfnCViEIu58cSSxw/0gn7ArDSJ9og2QQWYGDzX//6l2WvIyYwn1GHnOA+BTOWW+CTMfhA2R5+8V9u1qyZuSiwuY/+0g5WaTLHAfAefn1/PPxi5QXAsXaPHj3a2udfrMx8RsGFgv/TNhCMRZt+b7jhhgbgifVJo4zFGfieMmXKaquGfsW16Ms/bGYKTj+5PWQ14QU3v1mNLv8HS78wjeOuX9jo4ltb8BvfuVmlZ7g6kFoQi6n3s+U1Pm4GgGMq+CUDHBZUPsey2ahRI4sIQfpeXCJwR4huePPw26ZNG9egQQMH9JEVDmDt0aOH+fImwi8dxcIKHOOH632IAV1yfmNBxv8WWMW1IRP4xfeYvmFxBpxJG42rBpEpiCmIhRctgM5E+MU6TX9IaUysQbLPMQ4sxMArlm2s0PSFGJ+J8EuGvcT6HuyTLRf5/IZdRHH/8i+4/gl+s1qQBTe/WY0u/wdLvzCN465f2OjiW1vwG9+5WaVnwCMbsoBBX7DmYoUEJtnMBQgni/bA5jDcD4Bk4LRfv36OzWFscnv88ccdoBu1/ALDl1xyiW0mI3oCsftatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj5YnnI1vwCvh3UiBzFgAYDTx/YlafoHX559/3vyEceEA2nEVwY2DvuAfzEa7MWPGJLX8JqufaqkIfsMuorh/+Rdc/wS/WS3IgpvfrEaX/4OlX5jGcdcvbHTxrS34je/c5LRnWF1xlfCxgWkcgAQkseymKsQPxkKMO0MmBVjFFzlaiErB5jlvsS6tHXx+8T1mox7uF75/9B+rLH0hAgVuG1WrVk3ZHOfFHSPaH8AXNwisv6VloElWP9nJBL+lzWj6z+P+5V9w/RP8ZrUgC25+sxpd/g+WfmEax12/sNHFt7bgN75zU2l75uEXt45CKILfsFmK+5d/wfVP8JvVgiy4+c1qdPk/WPqFaRx3/cJGF9/agt/4zk2l7Rm+yWzsy9RSXNFCCX7DZiDuX/4F1z9Lbzw/bFJyWPuz9Q9ThrcAPQtu/QWMNR9VpV8+VC38NgW/hT+HGkEFK/Dkk0+6evXqVXAvdHopIAWkgBQoRAXinP67EPXMpM+C30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUIKSAFJACUkAKSAEpIAUyUUDwm4lKOkYKSAEpIAWkgBSQAlKgKBQQ/BbFNGoQUkAKSAEpIAWkgBSQApkoIPjNRCUdIwWkgBSQAlJACkgBKVAUCgh+i2IaNQgpIAWkgBSQAlJACkiBTBQQ/Gaiko6RAlJACkgBKSAFpIAUKAoFBL9FMY0ahBSQAlJACkgBKSAFpEAmCgh+M1FJx0gBKSAFpIAUkAJSQAoUhQKC36KYRg1CCkgBKSAFpIAUkAJSIBMFBL+ZqKRjpIAUkAJSQApIASkgBYpCAcFvUUyjBiEFpIAUkAJSQApIASmQiQKC30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUICpSgSeffNLVq1evIrugc0uB2CrwyEePxrZv6pgUqGgFTqt9qttxxx0ruhuV7vyC30o35fkd8KxZs9yiRYtWOUmtWrVc3bp183viHLY+f/5899NPP7k6depk1Oqtt97qrrzyyoyOrYiDPvvss1h/uap/Yasi7vpVuX6dsAGqthQoUgWqVKniPjnrg1h/Pxep9E7wW6wzW0HjOvnkk93ff//t6tevX9KDBg0auBNOOCGoRw899JD7448/3LnnnhvUjq980EEHucmTJ7s111xztfaGDh3q3n//fXfbbbdldC7Bb0YypTwo7vCm/oXNr+A3TD/VLl4FBL8VN7eC34rTvijPDPyedtppjn+jBXgdP368GzVqlJs4caK766673OOPP+6GDBni7rzzTrfWWmu5zp07u3POOcd9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauU8yX4DVvKgsvi1k/wGza/ql28Cgh+K25uBb8Vp31RnhnoXbZsmdt1111LxtehQwe38847m19s9+7dXa9evVy/fv3cgQce6LbbbjuD1TXWWMPts88+buHCha53794GnkBpu3bt3Pnnn+9mzJjhVqxY4W644Qa39tprW9uffPKJ22WXXQyg11tvPde6dWt37733um222cbqfPXVV65Ro0YGzwBz06ZN3eDBg60fVatWdT/88IO1S5tjxoxxd999t1u+fLm5aADfb731lvvwww+tP++9957gN08rVvAbJmzc9RP8hs2vahevAoLfiptbwW/FaV+UZwZ+a9as6Ro2bFgyvsMPP9xtu+22btKkSe7QQw91p556qlmAV65caQCLdXb27NlmlV2yZIkdM2LECAPoBQsWmLvDI4884n777Td39dVXl7RL3b333tstXrzYQBbfYo7lZ4MNNrD28T9+6aWXDGJxYxg5cqRr0aKF40uH46655hpXu3Zt17ZtWwPuL774wqB33Lhx9rN06VJXvXp1aytVkeU3bCnHHd7Uv7D5FfyG6afaxauA4Lfi5lbwW3HaF+WZU7k9MNjXX3/dNW7c2FwbsNYCpptttpltFtt3333NLQGQxRo8d+5ct9VWWxmQ/vnnn2axTQa/J510kps5c6ZZjHfffXf3/fffm3sE8IvvMe1idT7qqKPcAw88YOeKwm+bNm3svPxwnh9//NE99dRTJT6/WIKxEnv4BdSnTJmy2txpw1vZl7PgsuzaUTPu+gl+w+ZXtYtXAcFvxc2t4LfitC/KMwO/gCRQ6gsX+F9//eX22msvd8kllxiAPvHEExZRAX9fLLP4A+ODC/ziu4v1F0g+/fTT3Yknnug+//xz9/PPP7vrr79+FctvOvj97rvvzBoMQNMu7hCArYdfIPnhhx82KMddAjjGAo012W94S4TfZJMmy2/YUo47vKl/YfMr+A3TT7WLVwHBb8XNreC34rQvyjPj0sAmsmgh0gO+t2xGe+GFF8yl4brrrnNvvPGGO+CAA8xNYp111jGLLQDMJjc2srHxjXBjEyZMcC+//LJBMJvkAGMKbg/p4BdrLTD+wQcf2PH4BwPBr7zyiiPaAxZdNuJddNFF1hesxU8//bRZdgW/5bc8BZdhWsddP8Fv2PyqdvEqIPituLkV/Fac9jqzc+aagIUWFwfcDnBtAEopuCDgb+sLcAwkJwtPlk5MIHrzzTe3evgUb7LJJnau33//3YA32bmymRxZfrNRa/Vj4w5v6l/Y/Ap+w/RT7eJVQPBbcXMr+K047XXmIlFA8Bs2kYLL4tZP8Bs2v6pdvAoIfitubgW/Fae9zlwkCgh+wyZS8Fvc+vV89ha36aabhg0yj7XZeKv+lV1g6Vd27ah5WI1DleEtTMIy1Rb8lkk2VZIC/6eA4DdsNQh+i1u/oS/2ElwGTLHgMkA85yyqULqHm2P2PD/sBIG14/79Fzi82FYX/OZwathMxUImvFZFFKIakBWNcGLZlG+++cYiL0QTU2RTn2M//fRT86nFJze0rWzPna/jE/2CU51H8Bs2A3H/8lf/wub3kNurhDWg2lIgTwocsfvZ7sqjhuap9cyajfv3S2ajKLyjBL85nDMiGZAtLFkc2ByeJmVT0egH0YOIaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rE/cvf/UvbH4Fv2H6qXb+FBD85k/buLcs+M3hDKWC348//tjS7QKnxK29+eabLZzXLbfcYrFvsdb27NnTQoTxN9LsEpN2wIABFnOWrGYAGZ8DmGQ7q1+/vrv22mvd0KFDLZLBsGHD7LNmzZpZ+DAAkzi55513nlmCiZQwduxYSyCR2JdnnnnG0UfCghFjd/3117dsbGeccYa74447UioENF944YVurbXWsmQVxM/dfvvtrS1SEyf2j77SHuHMHnvsMTuGPu2www4OeN5vv/0sjNn+++/v7rvvPgNpxrrxxhtbHF7ao//oR9Y4wpKRuhgLLZ/R31SFyBE8BJDNjbrpCvGECcU2ffp064PgN4cXSZKmBJdh+sZdP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMpYJfoBIgbd68ucEoiR5mzJhhYbyALBI3YGE8/vjjXevWrd2jjz5qMXEBRdLtknoXcCY+7k033eQ22mgjd9ppp9nfiU9LogaSMwCTxLIFFIE2fgjzxe8rVqwwqzTtJ/aFcGOzZs2yeLfU5/xALLF5yZgGXCcr9erVM/jFzQOgJVUwfaOtVq1ardY/AJcwZqQiJoUw6YY513PPPWeQSwKKLbbYwh4QOnbsaDBOm4cddpjbaaedLD7vvHnzLEnG22+/7bbeeuuStMec75133rFsbtFCWuNBgwaZFRd9zzzzTDsuWvAHa9eu3WpD5OED3QW/ObxIBL85F1Pwm3NJ1WAlUUDwW0kmOskwBb85nPtk8OtT7WLNxR/2xRdfNEsmEAY4kpoXX1uSN5D1jPS5JHOgAGRffvmlWTWPPPJIA95nn33WYBagA/Sw7gKeTZs2tSxoWIrxPcYaC/xiQcWKS/xc4Ji4tol9weLq4feII44w/10K8HvPPfeYdTqxANX0G4vqGmusYWOpW7duCfxeddVVq/WPPhHaBRcMCgALiJLhjXPyO/DLv1i+u3fvbvF/sQyPGjXKPfjgg1YPSznWWcaOVZwCqHbt2tU0opDYgt/Rl4cNjqXt9957z6zOifAL+CcWwW8OL440TcUd3tS/sHUgy2+YfqqdPwUEv/nTNu4tC35zOEPJ4Bf/V0Cub9++JWfabbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc9x1111u3LhxloUMy+nw4cPd0Ucfbe34jGfUx8I7cODAEvilrWR9wbrr4TdaH//c/v37J4VfjsdHGMsqBdjFEustv4w3sX+05eEXiAfuL730UnsYILWwh9+5c+daIgos4lhlgWbaoj6FpBhkfONzMsH5gsvEHnvsYb/iEoFeaIeu3iK8dOlS99VXX60y67iLJFqMPVAnWn55OEnm0401Oq5F8BY2M9IvTD/Bb5h+qp0/BQS/+dM27i0LfnM4Q4ApVtpXX321pFWsolhO8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8AxHr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy82KzXAHS1YsMePH7/aSpDlN4cXR5qmBJdhOsddP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMAb/4p0YLbgdAHi4HFKyM+K7WrFnTvfnmm2adBQp33HFHR6gyrLNAHjc0LLwAG3+Lwi/WXDa44WtLe2z4AqQPPvjgpPCLjy2uFIA2EJzYlyeffDJr+GUsQ4YMMWsz8AwAn3XWWebTC0jfeOONq/WPaBNYkzmGhwCAnXq4NbDpbsyYMeYO4i2/+CijHW4LWJaxklOwAOO/i//z4MGDHdbcli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPiTu8qX9h8yv4DdNPtfOngOA3f9rGveUKh98lS5YYQGG1BASx1AGRbPTCIoj/aps2bczXFdjBX5SNX2yWwlrIjvz58+fb72zmwtrYrVs32xjFa3nABRcBAI9X9MSgJaIB1kD8YAGmhg0bWoSCxCgIvG7PVQHA8N9lIxnWx3SF1/rrrruuvfpPV7C+0m/gEX/idAVrK8dgJc2mLxyLfokFWMe/GD05Jllfk/UvGjsX2GcOatSoYeCP3unGwbkA7ei8LFu2zIAea3omhfPncl45p+A3E+UFv2EqFa5+gt98zbzaDVVA8BuqYOHWr3D4ZfMVkQoI9cWrcPxdASGgDqDFHxULJ6+7gVM2jFEH31ggFhcDABjIxW+WTVq4EBBZgbawDOIvitVx6tSpBruAL//HL5R22ECWLCIDlszKXgixNm3atNVkILQZERhUBL+ha0CW1TAF466f4DdsflU7fwoIfvOnbdxbrnD4xaJ76qmnGrDi18mGJYA1FfxibWSTExZiwmUBwlgE2TS1cuVKS2VI9ACsvMAz/rP4fuLTSUxZfthchX8tIE04MXb/J4uCQNsqUqA0BWT5LU2h9J/HHd7Uv7D5HfJiT7fZppuGNZLH2gsXLVL/AvQtdP2O2bNDwOjDq8b9+yV8hPFsocLhF1mAUF6t48cKmOIK4eEXiMWK6y2/hOJicxPwi0UXwMVSvOGGGzpes2MlZuc+m8VoC2sy8OuP5Tz8UN/DL7CdLAoCbahIgdIUEPyWppDgN0yhwtbvndd7me9+XAsGk/LoX9VqdVyNLQ7OWoa4w5H6l/WUrlIh7vqFjS6+tSscfolAwA59rL5sMAJSmzRpYpub2KAFmOISkQn84itbq1Ytg2F8hQFaLLylwS+boZJFQSAiQzaFc7KQAfCKKIyb6BBkdMum4PqB9ZyoB2UtbAzDnxif3dC2ytqHXNfjIYw3CqWlYhb8hikf9y9/9S9sfp8etvom1LAWC7P2AUe+IvitgKnT9VsBohfAKSscfvG9xbKLuwOwQcxaNi8RNgtfU6CUcFYefkn2QOSCZJZf3B7w3eV4CtnKAFIyoaWy/JK9C0AmwUSyiAzZzGGqDG/ZtBFyLDFpo6HOfFv4ObNREL/nZIU0xYRWY4NgWQvZ24g8wYNMuraI9kCYstKAsqz9yEU9NiaSMQ6/ZjbH4WpDprlURfAbprpuTsWtn+D3n/kV/Iat87LW1vdLWZUr7noVDr/Ii8US6yMbqKKhqghhVa1ataxngOxjpOQFsADq0qIm+BNkEwUhWadSwW+ySBIkYLjlllssVi3WWqzbo0ePtr/ha4zVGks44EUWMzae8TmASSpg4tYSI5eHAMaKywifNWvWzKJmAJiESCMeMJZgfDPX9gAAIABJREFUoj3g70xoscSoFoQZo488OLCJkIgKZIU744wzzCc6VQGasY4DiIBiixYtLJoFbfEgkdg/+kp7ZKTDz5pj6BPRKoBnMs0RH5iYwYSIA6QZK9ZXNiXSHv2/+eabLUkIGxbxFWfe+Iz+pipkouMhoHbt2lY3XaF9HhYI10Y0CvQA6FNFlBD8Zn2JrlJBN6fi1k/wK/gNW+FhtfX9EqZfsdaOBfwWi7ip4DdZJIkZM2a46tWrW7xbXD8AdWLXEq6NrG0TJ040UCTkG5ZrrLqEeCPcG1nUSOPL39944w1zESFiBjCJtRtQBBz54UGA31esWOGIm0v7wDHWdsCYGLr4SvskF9Tn/EAskTOItgFcJyv16tUz+MXNA6DFOuozvGE5TewfgEuMX+IOs1kRf23ORZg7IBcLPCmITz/9dNexY0eDcdokdjIPRsRHJoQdftzEQiajHPUAVM5HquTETG34jJMK+v777zd9ifHLcdGCvx/Z5nzhQYGHMB4m/BsB9E8WQ5g6gt+wK1g3p+LWT/Ar+A1b4WG19f0Spl+x1hb85nBmk8EvIJUskgQQBjjOnDnTfG3xbwa0iFOMWwcFIOMVPFZN3D0AXqJjALMAHaCHdRfwJKzb559/bpZiXD2wxgK/WFCx4gKIwHGyvmBx9fDLhkL8dynA7z333JM0vTFQTb+xqBK3mLHUrVu3BH5JSpHYP/rk0xvTPgALiBKdg3P6DG/8i+W7e/fuZm3FMjxq1CjLfkfBUk5sX8aOVZyClbxr166mEQXXF35HXwCfYwFrwuFhdU6EX1IgR8vvv/9uVngeQNggecghh6RcKYLfsItIN6fi1k/wK/gNW+FhtfX9EqZfsdYW/OZwZpPBL6/Lk0WS4NU7YIfVliQfQBkAhvsHIOsL0Na5c+fV0hsDZPgxYznFT/roo4+2dlKlNwZ+aStZX7DuZpvemOPxEcaySgF2scR6yy9xlxP7R2Y2D79APHBPqmHcGojMkSq9MdBMW9SnsLGRBCdYzAl75wsuE/iOU3CJwLUE7dDVW4RxpcF/PFqw8EYtxmhF+D0273FO0jj7wsPJlClTVls1WKPjWvTlHzYz0i9MP8Gv4DdsBYXV1vUbpl+x1hb85nBmgV+stCTe8AWrKH69+Ls2aNDA3ByAXiylpCTG4tuhQwfzXeW1P9ZNYhMDzYRaw8qJj240vTFpenFZAMR69epl4EqqYNwHUsEvllJgMVlUC3xas4VfXCWAQnyL8cPFT5dNih5+AdHE/mHdBX6xhgOLuBugF5n8gNlU8MuDAtFA+BxwRQvOi65YeHEZYdw9evQwa7cvRPlAd5Ka4CNNqmjmA+COFizYxIH2Bcs6cxH9W7plIstv2EWkm1Nx6yf4FfyGrfCw2vp+CdOvWGsLfnM4s8Av/qnRgtsBkJcsksSbb75p/rdAIemC2fiHdRbI44IFcgE2/haF34EDB9oGN3xtsVqy4QuQPvjgg5PCLz62uFIA2kBwYl9I/Zwt/DLGIUOGmLUZeAaAyYiHTy9tsVkssX9EmyDaA8fwEACwUw+3BjbdjRkzxnxy586da5sU8VFGO9wWsCxjJadgjcV/F/9nQuFhzW3ZsqVtaEvml4s+hLNDT9rnJ12hn0BztHz00UfmT52sCH7DLiLdnIpbP8Gv4DdshYfV1vdLmH7FWlvwW04zm00kCV7rr7vuuqVGqcD6SmQF4JFX9OkK1laOwUqaTV84FheLxAKs419MTF+OSRZRI1n/OBZ/WnyPgX1cDGrUqGH/x70h3Tg4F6DNcb4sW7bMgD5VJIbEfnP+aP1cTL/gN0xF3ZyKWz/Br+A3bIWH1db3S5h+xVpb8FusM5ujcRFijXjLiYXQZkRgUFG0h9A1oJtTmIJx10/wK/gNW+FhteN+fcS9f2Hqx7e24De+c6OeFYgCsvyGTVTcv/zVv7D5fef1nuWSPrisvSy/9MZ1leGtrJMUUE/Xb4B4RVxV8FvEk6uhlY8Cgt8wnQvq5jT93rDB5qF2ecFbWbv+WY3mtqchrqWg1l8MRZR+YZMSd/3CRhff2oLf+M5N0p6Rwpm4uERtqFmzph1DzF18X9k8RvIMIi9kU2iPjWhrr712NtVidyx+w2y2y3b8oQMR/IYpGPcv/1X6d/c+zn27apKUsNEXf+3PzvlnQ29cS0GtvxiKKP3CJiXu+oWNLr61Bb/xnZukPSN8GKBK2DKiIVCIgkDGNEKGERbMx95NNzQiI5DCl8gGJH/wERYKTI5VurtgwQKL/uATX5TXWAS/YUrH/ctf8Bs4v4LfIAEL6voIGml+Kku//Oha6K0KfgtsBokJjIX37rvvttTHxK0tDX4JSUZoMQrATBKNxo0bW7zdsWPHWjphQqHx/4YNG1qcYeL1kiiC+MNESCAe7xlnnGHhxYBmUi0D2T5yAtZnQJq4xCSXIDMcIdZIZEFaYoCdRBZEeiAxRbVq1dzUqVNdp06dLJUzm+p69uxpsYIJxcZGO2LtEkuYJB5EtCBs3J133mnnJHkFIeCi/SHUHFnh6D9pj8nQRiSI3r17W0IOzkd8ZFIkn3322dYW53jxxRfd9OnT3fz58y3lMimgk9VPtVQEv2EXUUHdnGT5zXqyZfnNWrJVKhTU9RE21LzUln55kbXgGxX8FtAULl++3F4fksYYmPzvf/9r/6aDX+CPqAykB6Z+27Zt3SeffGLgt2LFCoNhsr4RN5dYwcTqJQEFAEvGNiCQcGStWrWyVMTAIbAIfGNl9oW4vrgdAK4AL4Drk1IApFiq69SpY5nTiJcLkBOjGNAkqQR9IJkHSSw4N+X++++32Lz0s1u3bgb9QDLATzILklh07NixpD9oQ6pnQBZr9uzZsx3Z64ByMuihFQB/4IEH2t/QDy0AcBKTUI/MdKnqC37zc7EU1M1J8Jv1IhD8Zi2Z4DdMMumXQ/2KtSnBbwHNLJALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEJ06sjyVc8Jufi0Xwmx9d49Kq4DdsJgrq+ggbal5qS7+8yFrwjQp+C2gKSRlMkgdcBgA0wBaYw10hlc/voEGDDHSBRQouDmSL4wshCr/e5xf3hs0339x+cJWIQi7nxxJ7xBFHWCY5XwBW+kQbJJvAAgxs/utf/7LsdcQE5jPqPPHEEyVZ6LDcAp+MAReMKPziv9ysWTNzUWBzH/2lHazSZI4D4D38+v54+MXKC4Bj7R49erS1z79YmfmMggsF/6dtIBiLNv3ecMMNDcAT65NGGYsz8D1lypTVVg39imvRl3/YzMjnN1A/+fwGCajrN0g+u3dow2WYhsVYW/BbILOKq8Mee+xhFlPvZ8trfNwMAMdU8EsGOCyofI5ls1GjRhYRgvS9uETgjhDd8Obht02bNq5BgwYO6CMrHODao0cP8+VNhF8kxMIKHOOH632IAd3mzZubBRn/W2AV1wbamjlzprktpIJffI/pGxZnwJm00bhqEJli/PjxZuFFC6AzEX6xTtMfUhqT7pjsc4wDCzHwimUbKzR9IUxUIvySYS+xvgf7ZMtFPr9hF1FB3Zzk9pD1ZMvym7Vkq1QoqOsjbKh5qS398iJrwTcq+C2QKQQe2ZAFDPqCNRcrJDDJZi5AOFm0BzaH4X4AJAOn/fr1c2wOY5Pb448/7gDdqOUXGL7kkktsMxnRE5YuXepatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj27y5Mm28Q14JbwbKZAZCwCMJr4/Ucsv8Pr888+bnzAuHEA7riK4cdAXLAFstBszZkxSy2+y+qmWiuA37CIqqJuT4DfryRb8Zi2Z4DdMMumXQ/2KtSnBb7HObMK4sLriKuFjA/MxAAlIYtlNVYgfjIUYd4ZMCrCKL3K0EJWCzXPeYl1aO/j84nvMRj3cL3z/6D9WWfpCBArcNqpWrZqyOc6LO0a0P4AvbhBYf7EKpyvJ6ic7XvBb2oym/1zwG6Zf3GsLfsNmqKCuj7Ch5qW29MuLrAXfqOC34Kew+Abg4Re3jkIogt+wWSqom5Msv1lPtuA3a8lWqVBQ10fYUPNSW/rlRdaCb1TwW/BTWHwDwDeZjX2ZWoorWgHBb9gMFNTNafo9YYPNQ+1FCxe5TTfbNA8t56bJz2ocpg1HAVIW1PURMM58VZV++VK2sNsV/Bb2/Kn3MVDgySefdPXq1YtBT9QFKSAFpIAUKDQF4hyNotC0zLS/gt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1ACkgBSQAlJACkgBKSAFMlVA8JupUjpOCkgBKSAFpIAUkAJSoOAVEPwW/BRqAFJACkgBKSAFpIAUkAKZKiD4zVQpHScFpIAUkAJSQApIASlQ8AoIfgt+CjUAKSAFpIAUkAJSQApIgUwVEPxmqpSOkwJSQApIASkgBaSAFCh4BQS/BT+FGoAUkAJSQApIASkgBaRApgoIfjNVSsdJASkgBaSAFJACUkAKFLwCgt+Cn0INQApIASkgBaSAFJACUiBTBQS/mSql46SAFJACUkAKSAEpIAUKXgHBb8FPoQYgBaSAFJACUkAKSAEpkKkCgt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1AAqWoGnnnrK1a1bt6K7ofNLgVgqMGXeI7HslzpVORXYZbNGbouqO8Zq8DvuGK/+xEqcPHVG8JsnYStrs7NmzXKLFi1aZfi1atUqKDicP3++++mnn1ydOnUymsZbb73VXXnllRkdWxEHffbZZy7OX67qX9iqiLt+R/SpEjZA1ZYCOVTg/rZz3TY1ds1hi2FNxf36DRtdfGsLfuM7NwXZs5NPPtn9/fffrn79+iX9b9CggTvhhBOCxvPQQw+5P/74w5177rlB7fjKBx10kJs8ebJbc801V2tv6NCh7v3333e33XZbRucS/GYkU8qD4v7lr/6Fza/gN0w/1c6tAoLf3OpZqK0Jfgt15mLab+D3tNNOc/wbLcDr+PHj3ahRo9zEiRPdXXfd5R5//HE3ZMgQd+edd7q11lrLde7c2Z1zzjnu22+/Nch999133THHHOOuuOIK16RJE/frr7+6sWPHuubNm1vTX375pbvgggtctWrV3NSpU12nTp2s7WnTprmePXu69u3bu9dee81169bNzZs3z51yyimub9++rkuXLu6OO+5wxx13nBs9erS77LLL3LBhw+wc/fv3NygePny4++WXXxxW4D59+rhWrVqlVFzwG7YYBZfFrZ/gN2x+VTu3Cgh+c6tnobYm+C3UmYtpv4HeZcuWuV13/b/XSh06dHA777yzq1evnuvevbvr1auX69evnzvwwAPddtttZ7C6xhpruH322cctXLjQ9e7d28ATKG3Xrp07//zz3YwZM9yKFSvcDTfc4NZee20b/SeffOJ22WUXA+j11lvPtW7d2t17771um222sTpfffWVa9SokcEzwNy0aVM3ePBg60fVqlXdDz/8YO3S5pgxY9zdd9/tli9fbi4awPdbb73lPvzwQ+vPe++9J/jN05oT/IYJG3f9BL9h86vauVVA8JtbPQu1NcFvoc5cTPsN/NasWdM1bNiwpIeHH36423bbbd2kSZPcoYce6k499VSzAK9cudIAFuvs7NmzzSq7ZMkSO2bEiBEG0AsWLDB3h0ceecT99ttv7uqrry5pl7p77723W7x4sYEsvsUcy88GG2xg7eN//NJLLxnE4sYwcuRI16JFC1elShU77pprrnG1a9d2bdu2NeD+4osvDHrHjRtnP0uXLnXVq1e3tlIVWX7DFmPc4U39C5tfwW+YfqqdWwUEv7nVs1BbE/wW6szFtN+p3B7o7uuvv+4aN25srg1YawHTzTbbzDaL7bvvvuaWAMhiDZ47d67baqutDEj//PNPs9gmg9+TTjrJzZw50yzGu+++u/v+++/NPeL/t3cm4FZN7x9fhoQkNMhMZpHQQIgoFTJTkjkyVKRCmaVk/gk/JUlChgaKEEVmDaTMNChzoSJk/D+f13/f3+7cc849565z7tln3+96nvvcumevtd/9Xeuc89nvftf7Ar/EHjMuXue2bdu6++67z84Vht+OHTvaefnhPEuXLnVkbwhifvEE4yUO4BdQf/XVV0uprw1v5V+Qgsvya0fPqOsn+PWbX/XOrQKC39zqWayjCX6LdeYiajfwC0gCpUHDy/rXX3+5PfbYw3Xt2tUA9Mknn7SMCsT74pklHpgYXOCX2F28v0DySSed5I455hi3YMEC9/PPP7urrrpqFc9vOvj95ptvzBsMQDMu4RCAbQC/QPJDDz1kUE64BHCMBxpvcir4TSa7PL9+izHq8Cb7/OZX8Ounn3rnVgHBb271LNbRBL/FOnMRtZuQBjaRhRuZHoi9ZTPaCy+8YCENV155pXvjjTfcPvvsY2ESa621lnlsAWA2ubGRjY1vpBubOHGie+mllwyC2SQHGNMIe0gHv3hrgfEPP/zQjic+GAh++eWXHdke8OiyEe+8884zW/AWP/300+bZFfxW3AITXPppHXX9BL9+86veuVVA8JtbPYt1NMFvsc5cTOwmNAEPLSEOhB0Q2gCU0ghBIN42aMAxkJwsPVk6OYDoOnXqWD9iijfccEM71++//27Am+xc2cgrz282apU+NurwJvv85lfw66efeudWAcFvbvUs1tEEv8U6c7I7MgoIfv2mQnAZb/0Ev37zq965VUDwm1s9i3U0wW+xzpzsjowCgl+/qRD8xlu/EZP7u9q1avldZB57L2bjrewrt8LFpl+DLQ5Uhbdyz3Z8Ogp+4zOXupICKSD49RNe8Btv/d58bYCrFWG4JOtMlO1bvUpLlSf3eIvo88VDvBh3FfzmcHLZTMUbjfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/Hzp0712Jqicn1HSvbc+fr+MS44FTnEfz6zYC+nOKt38PDV/O7wErcu1adZm67nUcKfj3WgD5fPMSLcVfBbw4nl0wGVAtLlgc2h6dJOVQ4+0H4IDIaUNCBqmXJGqm+vvzyS0tRVt520003WZU1qrSlG4ssC5QPznbTWnntKk8/0rK99957btiwYWYn6djSNcFveVT+Xx99OcVbP8Fv+edX8Ft+7YKe+nzx1zCOIwh+czirqeD3008/tXK7wCl5a6+77jpL53X99ddb7lu8tf3797cUYfyNMrvkpL3rrrss5yxVzQAyXgcwqXa22267uSuuuMLdf//9lslgxIgR9lqLFi0sfRiASZ7cs846yzzBZEoYO3asFZBItOWZZ55x2EhaMHLsrrPOOlaNrVOnTu6WW25JqRDQfO6557o111zTilWQP3frrbe2sShNnGgftjIe6czGjBljx2DTNtts44Dnpk2bWhqzvffe2917770G0lzr+uuvb3l4GQ/70Y+qcaQlo3QxHlpew95UjcwR3ARQzY2+6Rr5hEnFNmPGDLNB8JvDN0mSofTl5Kdv1PUT/JZ/fgW/5ddO8OuvXZxHEPzmcHZTwS9QCZC2bNnSYJRCD7NmzbI0XkAWhRvwMB511FHuxBNPdI899pjlxAUUKbdL6V3Amfy41157ratevbrr0KGD/Z38tBRqoDgDMEkuW0ARaOOHNF/8f+XKleaVZvxEW0g3Nnv2bMt3S3/OD8SSm5eKacB1sla/fn2DX8I8AFpKBWMbY7Vv376UfQAuacwoRUwJYcoNc67nnnvOIJcCFBtvvLHdIHTr1s1gnDFbtWrltt12W8vPO3/+fCuSMXPmTLfZZpuVlD3mfG+//bZVcws3yhoPHjzYvLjoe/LJJ9tx4Ua835lnnlnqErn5QHfBbw7fJILfnIsp+M25pJEZUPDrPxVRf39E3T7/GYjmCILfHM5LMvgNSu3izSUedvLkyebJBMIAR0rzEmtL8QaqnlE+l2IONIBs4cKF5tVs06aNAe+zzz5rMAvQAXp4dwHPAw44wKqg4Skm9hhvLPCLBxUvLvlzgWPy2ibagsc1gN/WrVtb/C4N+B0yZIh5pxMbUI3deFRXX311u5ZddtmlBH4vvfTSUvZhE9XeCMGgAbCAKBXeOCf/B375jee7b9++lv8Xz/Cjjz7qHnjgAeuHpxzvLNeOV5wGqPbu3ds0olHYgv+jLzcbHMvY77//vnmdE+EX8E9sgt8cvjnSDBX1D3/Z57cO5Pktv36C3/JrF/TU+9dfwziOIPjN4awmg1/iXwG5W2+9teRMO+20kz16B+zw2l5wwQUGZQAYm88A2aABbT169DAvKKESnOPOO+90TzzxhFUhw3M6cuRId+ihh9o4QcUz+uPh/e9//1sCv4yVzBa8uwH8hvsTn3vHHXckhV+OJ0YYzyoN2MUTG3h+ud5E+xgrgF8gHri/8MIL7WaA0sIB/H700UdWiAKPOF5ZoJmx6E+jKAYV33idSnBBI2SiQYMG9l9CItAL7dA18AgvW7bMLVq0aJVZJ1wk0WMcAHWi55ebk2Qx3Xijo9r04e83M9LPTz/Bb/n1E/yWXzvBr792cR6h0sDv9OnTzVMJaCVrkyZNKjMWtKyFAJjipX3llVdKDsUriueUeNeGDRtamAPQi6e0V69e5vHt0qWLxa7y2B/v5qhRo2zTWNu2bc3LSYxuIvwSPgGIDRgwwMCVEsKED6SCXzylwOLuu+9eyhZifLOFX0IlNtlkE4stJg6XON3OnTuXwC8gmmgf3l3gF284sAjYolfPnj0NZlPBLzcKRxxxhL0OuKIF50VXPLyEjHDd/fr1M2930BYvXmzXOmjQIIuRPv/8881LDXCHG+ti/PjxpaZXnt+yVnxuXhdc+ukYdf0Ev+WfX8Fv+bUT/PprF+cRKg384hllU1myR/hMMFD2zz//eM018Et8argRdgDkEXJAw8tI7GrNmjXdm2++ad5ZoLBevXqOVGV4Z4E8vtDw8AJs/C0Mv3hz2eBGrC3jseELkN5///2Twi8xtoRSANpAcKItEyZMyBp+uZbhw4ebtxl4BoBPOeUUi+kFpK+55ppS9pFtAm8yx3ATALDTj7AGNt2NHj3awkECzy8xymhH2AKeZbzkNDzAxO8S/zx06FCHN7ddu3a2oY15TGzoM3HiRNOT8fnJpAG/zE3Ya5+sn7I9ZKJm6mOiDm+yz29+Bb/l10/wW37tBL/+2sV5hFjDL/GqbKrCs8fGMeAIDyCxoGyAAro4Bq8l0MQGMjIqkLWA14mPzVUDwIjfZSMZ3sd0jcf6VatWtUf/6RreVzIrcB3EE6dreFs5Bi9pNrZwLCEWiQ1YJ76YnL4ck8zWZPaFc+cC+8Qib7TRRgb+hDekuw7OBWhzXNCWL19uQI83PZPG+cP9M+lT1jGC37IUSv+64DLe+gl+yz+/gt/yayf49dcuziPEFn555E2GAFJpUcGHLAdsrvrxxx/Ni0h4AXGheATZhAb88igeLyuP7wFkNpJV9kaKNUJGEhupzdBXzTnBr98qEPzGWz/Bb/nnV/Bbfu0Ev/7axXmE2MIvO/rZDEaWABqgxmN1UmqR6zVIbRVkAADm2GxGHGuw+YrH3mpSoCwFBL9lKSTPr59Cxa3fm6/1j3T54OiXN26lCm8ebyDdXHuIF+OusYVfwJXY0SBDQJD2a+DAgeYFJmaUxgY4dvQDwb///rurUqWKxZayWYvYWjUpUJYCgt+yFCpueKs0X54f3eM3kSl6z1urpeDNQ9lKs/48NErXVfrlSdgiHza28EsKLjIETJs2zREXuuWWW1rYA8UlAFtifdlwRhoscsES9sCGNdKMsSGKDWZkEMimkV+XNxob0QrRiJslOwQV3bJpeLyJpyU2uryNjWHEExOz6ztWeW3IdT9CZLg5KqsUs+DXT3l9OUVEv4e3cG7FF37GJOk97+B/N/RGtWn9+c2M9Iu3fn5XF93esYVfJAds2eTGJimqqRHyQJ5bQh6AxC+++ML+RnUw4JccsWw24xgKQ9SoUSOrmUtV4S2rQTwOxoMdTnUWDIUGFJYg20KyRpliUquRt7e8jeptZJ7Aw55uLLI9kKasLKAsrx256MfGRNYEoTBsjmNjH5XmUjXBr5/q+vKMiH6CX7+JyFNvvT/8hJV+fvrFtXes4ZdJ++6778x7B5iFG95OgDic0YFUZ1QuI+43WcqsshZBKvglIwO5eoFTSvded911VoDh+uuvt9RrgDhp2Mg0wd+owAaAE7oBeFHFjI1nvM51AOxkrSBHLnlsKT9M6jNea9GihaVPAzDZvEc+YDzBZHtg8x+pxRJtIc0YNuLt7t69u90sAP+dOnWyEsupGtBMvmIAEVAkSwbZLBiLdGqJ9mEr47GRkJhsjsEmslUAz1SaIz8w2TdIEQdIc63MH1XtGA/70Y/cv2xYJD8yGRx4DXtTNSrRcRNAvDd90zXG52aBdG1ko0APgD5VRgnBb1nvjPSv68spIvoJfv0mIk+99f7wE1b6+ekX196xh9+KnLhU8AtUAqQtW7Y0GCVvLeEXwDf5bik+gSeUOGTikdmo9/zzzxsokqKNFGwDkVdqAAAgAElEQVSA88MPP2y5bamiRhlf/v7GG29YjPKcOXMMJrfffnsDRcCRH2Ce/69cudKRN5fxE20hJVlQ5IL+nB+Ipbwx1d+A62Stfv36Br+EeQC0eEeDCm94ThPtA3DJ8Uve4bfeesvS0HEuinMAuRT5IPaaG4Ru3boZjDMmuZPZsEh+5Pnz51tWDnIhU1GOfgAq5yOsJbFSG+EvlIImdR36EtLCceFGLuFgAyR/50aBmx9uJig5ja7on+qGSPDr9y7Tl1NE9BP8+k1Ennrr/eEnrPTz0y+uvQW/OZzZZPALSOFdxptLPCxp1fBkAmGAI/HGxNpSgALQIh6ZghQ0gIxH8Hg127RpY8BLWWBgFqAD9PDuAp7EKi9YsMA8xcQe440NNvnhxQUQgbhktuBxDeC3devWVtiBBvwSG52sMAhQjd14VMlbzLXssssuJfBLOrlE+7ApKG/M+AAsIPriiy/aOYMKb/zG8923b1/ztuIZJmsH6eloeMrJ7cu14xWn4SUnPR0a0aj8xv/Rl5sNjg0ye+B1ToRfQmTCjc2PeOG5ASHP8UEHHZRypQh+/d5E+nKKiH6CX7+JyFNvvT/8hJV+fvrFtbfgN4czmwx+eVwOyIWrhO2000726B2ww2tLlbT333/fYpQJxwBkgwa09ejRo1R5Y4Dsgw8+MM/pyJEjHRXsGCdVeWPgl7GS2YJ3N9vyxhxPjDCeVRqwiyc28PxyvYn2kXkjgF8gHrin1DA3A0F6OQA1qPCGRxyvLNDMWEHmDuKyKYfM6+ecc06JVoRMELdNIySC0BK0Q9fAI0w1OEokhxse3rDHGK1OOOEEu1nhnITBBO3VV1+1G5TEhjc6qk0f/n4zU2n0E/z6LZQ89a4060/65UkBDZtMAcFvDtcF8IuX9pVXXikZFa8onlPiXRs2bGhhDkAvnlJKEuPx7dKli8Wu8tgf7+aoUaMsxrRt27bm5SRGN1zemDK9hE8AYQMGDDBwpVQw4QOp4BdPKbC4++67l7KFmNZs4ZdQCaCQ2GLicInTpThIAL+AaKJ9eHeBX7zhwCJgi149e/Y0mA08v4nwy40CmTt4HXBFC86Lrnh4CRnhuvv162fe7qBR6ATdBw0aZDHSlIpmPgDucMODPX78+JI/4VlnLsJ/S7dM5Pn1exPpyz0i+gl+/SYiT731/vATVvr56RfX3oLfHM4s8Et8arixcQvII+SAhpeR2NWaNWtaqjXib4FCUgGRqgzvLJDHGxbIBdj4Wxh+yT/MBjdibRmPDV+A9P77758UfomxJZQC0AaCE22ZMGFC1vDLtQwfPty8zcAzAHzKKadYTC8gzWaxRPvINkG2B47hJgBgpx9hDWy6owgJ4SAB/BKjjHaELeBZxktOwxtL/C7xz0OHDnV4c9u1a2cb2pLF5aIPlfzQk/H5SdewE2gOt08++cTiqZM1wa/fm0hfThHRT/DrNxF56q33h5+w0s9Pv7j2FvxW0MwCYMTvspEM72O6xmP9qlWrug033DDtcXhfyawAPPKIPl3D28oxeEmzsYVjCbFIbMA68cXk9OWYZLYms49jiacl9hjYJ8Rgo402sn8T3pDuOjgXoM1xQSOHM0CfKhNDot2cP9w/F9Mv+PVTUV9OEdFP8Os3EXnqrfeHn7DSz0+/uPYW/MZ1ZnN0XaRYmz59eqnRSG1GBgY15wS/fqtAX04R0U/w6zcReeqt94efsNLPT7+49hb8xnVmdV0VpoDg109qfTlFRL8Ph/gZkqL3vKqtVOHNQ1m9PzzEc85CCFVh0E/DOPYW/MZxVnVNFapAZOH36XtMhyWLl7hatWtVqCbZnEz2ZaNW6WOjrt+8nVsKPjymWPDmIZ7g10+8GPcW/BbZ5FKFjry4ZG1g0xyNnLvEvrJ5jOIZZF7IpjEeG9GqVKmSTbfIHUvcMJvtsr1+3wuJLPwOvdS5R27wvTz1lwJeCswb+u+G3qg2waXfzEi/eOvnd3XR7S34je7cJLWM9GGAKmnLyIZAIwsCFdNIGUZasCD3brpLIzMCJXzJbBDOrVtkcqxiLqWsyf4QFL6oqGsR/FaU0jpPMSog+PWbNcGl9PNTQL2TKSD4LbJ1QU5gPLxUjKP0MZkjyoJfUpKRWowGMFNEY99997V8u2PHjrVywqRC49+NGze2PMPk66VQBPmHyZBAPt5OnTpZejGgmVLLQHaQOQHvMyBNXmKKS1AZjhRrFLIgtRvATiELMj1QmKJGjRpu2rRprnv37lbKmU11/fv3t1zBpGJjox25dsklTBEPMlqQNu62226zc1K8ghRwYXtINUdVOOyn7DEV2sgEMXDgQCvIwfnIj0yJ5FNPPdXG4hxU3ZsxY4b74osvrOQyJaCT9U+1VAS/RfYmkrkVqoDg109uwa/081NAvQW/Rb4GVqxYYY8PKWMMTN5+++32Ox38An9kZaA8MP3POOMM99lnnxn4rVy50mCYqm/kzSVXMLl6KUABwFKxDQgkHVn79u2tFDFwCCwC33iZg0ZeX8IOAFeAF8ANilIApHiqd955Z6ucRr5cgJwcxYAmRSWwgWIeFLHg3LRhw4ZZbl7s7NOnj0E/kAzwU8yCIhbdunUrsQdtKPUMyOLNnjNnjqN6HVBOBT20AuCbNWtmf0M/tADAKUxCPyrTpeov+C3yN5DML4gCgl8/2QW/0s9PAfUW/Bb5GgBygU4e61MJboMNNrD/p4NfvLcALN5TGnCLF5SiDUAtYwGKFJkgby/FJABRqqdxbBBCcNddd7nevXu7KVOm2HHhssKMC4ziDaZaGuEHeIepyhb8DS8x4DtmzBjr/8MPP5hnuG7dunYsP+T+JaYZ+MUDDJBT6a558+YGqfwQ9gHUAqk//vijeaYDe3gd+H3vvfdc06ZNbWwKWrRp08bGB76BYRpeaEom77rrrhYygo7kEabUMvmJE/vjCRf8FvkbSOYXRAHBr5/sgl/p56eAegt+i3wNUDKYIg+EDABogC0wR7hCqpjfwYMHG+gCizRCHKgWxwdqGH6DqmqEN9SpU8d+CJUIQy7nxxPbunVrqyQXNIAVmxiDYhN4gIHNLbbYwqrXkROY1+jz5JNPllShw3MLfHINhGCE4Zf45RYtWliIApv7sJdx8EpTOQ6AD+A3sCeAX7y8ADje7scff9zG5zdeZl6jEULBvxkbCMajjd3VqlUzAE/sTxllPM7A96uvvlpqJWFX5Jo2vEVuSiqjQYJfv1kX/Eo/PwXUW/BbxGuAUIcGDRqYxzSIs+UxPmEGgGMq+KUCHB5UXsez2aRJE8sIQfleQiIIRwhveAvgt2PHjq5hw4YO6KMqHODar18/i+VNhF9kxcMKHBOHG8QQA7otW7Y0DzLxt8AqoQ2M9e6771rYQir4JfYY2/A4A86UjSZUg8wU48ePNw8vWgCdifCLdxp7KGlMuWOqz3EdeIiBVzzbeKGxZcmSJaXglwp7if0DsE+2hBTzW8RvLJmedwUEv34SC36ln58C6i34LeI1ADyyIQsYDBreXLyQwCSbuQDhZNke2BxG+AGQDJwOGjTIsTmMTW7jxo1zgG7Y8wsMd+3a1TaTkT1h2bJlrl27do4MEWy4I4yAvuFGPDBeYja+EV4AePI3NpgBqWx0A0op25wJ/AKrQP7SpUvd1KlTbeMb8Ep6N0ogcy0AMJoE9oQ9v8DrpEmTLE6YEA6gnVARwjiwhfhgNtqNHj06qec3Wf9Uy0fwW8RvLJmedwUEv34SC36ln58C6i34rcRrAK8roRJBbmCkACABSTy7qRr5g/EQE86QSQNWiUUON7JSsHku8FiXNQ4xv8Qes1GP8IvAPuzHK4stZKAgbGO99dZLORznJRwjbA/gSxgE3l+8wulasv7Jjhf8ljWjer0yKyD49Zt9wa/081NAvQW/WgNFoUAAv4R1FEMT/BbDLMnGQikg+PVTXvAr/fwUUG/Br9ZAUShAbDIb+zL1FBf6oiILv08NMWmIa65VK8LljWWf1xKO+vzO26WVKrx5zLDg10M8lTf2Ey/GvVXkIsaTq0urGAUmTJjg6tevXzEn01mkgBSQAlIgVgpEufx3rIQOXYzgN64zq+uSAlJACkgBKSAFpIAUKKWA4FeLQgpIASkgBaSAFJACUqDSKCD4rTRTrQuVAlJACkgBKSAFpIAUEPxqDUgBKSAFpIAUkAJSQApUGgUEv5VmqnWhUkAKSAEpIAWkgBSQAoJfrQEpIAWkgBSQAlJACkiBSqOA4LfSTLUuVApIASkgBaSAFJACUkDwqzUgBaSAFJACUkAKSAEpUGkUEPxWmqnWhUoBKSAFpIAUkAJSQAoIfrUGpIAUkAJSQApIASkgBSqNAoLfSjPVulApIAWkgBSQAlJACkgBwa/WgBSQAlJACkgBKSAFpEClUUDwW2mmWhcqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVOtCpYAUkAJSQApIASkgBQS/WgNSQApIASkgBaSAFJAClUYBwW+lmWpdqBSQAlJACkgBKSAFpIDgV2tACkgBKSAFpIAUkAJSoNIoIPitNFOtC5UCUkAKSAEpIAWkgBQQ/GoNSAEpIAWkgBSQAlJAClQaBQS/lWaqdaFSQApIASkgBaSAFJACgl+tASngqcBTTz3ldtllF89R1F0KxFOBR95/Kp4XpquSAjlQoEP9w129evVyMJKGyEYBwW82aunYMhWYPXu2W7JkySrH1a1bt6jg8IsvvnA//fST23nnncu8Xg644YYb3CWXXJLRsYU4aN68eZH+cJV9fqsi6vqt1nMrvwtUbykQUwVWW20199l5UyL9+RxT6Z3gN64zW6DrOu6449zff//tdttttxILGjZs6I4++mgvix588EH3xx9/uNNPP91rnKDzfvvt56ZOnerWWGONUuPdf//97oMPPnA33nhjRucS/GYkU8qDog5vss9vfgW/fvqpd3wVEPwWbm4Fv4XTPpZnBn47dOjg+B1uwOv48ePdo48+6p5//nl35513unHjxrnhw4e72267za255pquR48e7rTTTnNff/21Qe4777zjDj/8cHfxxRe75s2bu19//dWNHTvWtWzZ0oZeuHChO+ecc1yNGjXctGnTXPfu3W3s6dOnu/79+7vOnTu71157zfXp08fNnz/fHX/88e7WW291vXr1crfccos78sgj3eOPP+4uuugiN2LECDvHHXfcYVA8cuRI98svvzi8wDfffLNr3759yvkS/PotZcFlvPUT/PrNr3rHVwHBb+HmVvBbOO1jeWagd/ny5W7HHXcsub4uXbq47bbbztWvX9/17dvXDRgwwA0aNMg1a9bMbbXVVgarq6++uttrr73c4sWL3cCBAw08gdIzzzzTnX322W7WrFlu5cqV7uqrr3ZVqlSxsT/77DO3/fbbG0Cvvfba7sQTT3T33HOP23zzza3PokWLXJMmTQyeAeYDDjjADR061OxYb7313Pfff2/jMubo0aPd3Xff7VasWGEhGsD3W2+95T7++GOz5/333xf85mnFCn79hI26foJfv/lV7/gqIPgt3NwKfgunfSzPDPzWrFnTNW7cuOT6DjnkELflllu6KVOmuIMPPtidcMIJ5gH+559/DGDxzs6ZM8e8sj/++KMd8/DDDxtAf/fddxbu8Mgjj7jffvvNXXbZZSXj0nfPPfd0P/zwg4EsscUcy8+6665r4xN//OKLLxrEEsYwatQod9hhhzk+dDju8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXbylHHd5kn9/8Cn799FPv+Cog+C3c3Ap+C6d9LM+cKuyBi3399dfdvvvua6ENeGsB09q1a9tmsUaNGllYAiCLN/ijjz5ym266qQHpn3/+aR7bZPB77LHHunfffdc8xrvuuqv79ttvLTwC+CX2mHHxOrdt29bdd999dq4w/Hbs2NHOyw/nWbp0qSN7QxDziycYL3EAv4D6q6++WmrutOGt/MtZcFl+7egZdf0Ev37zq97xVUDwW7i5FfwWTvtYnhn4BSSB0qDxBv/rr7/cHnvs4bp27WoA+uSTT1pGBeJ98cwSD0wMLvBL7C7eXyD5pJNOcsccc4xbsGCB+/nnn91VV121iuc3Hfx+88035g0GoBmXcAjANoBfIPmhhx4yKCdcAjjGA403ORX8Jps0eX79lnLU4U32+c2v4NdPP/WOrwKC38LNreC3cNrH8syENLCJLNzI9EDsLZvRXnjhBQtpuPLKK90bb7zh9tlnHwuTWGuttcxjCwCzyY2NbGx8I93YxIkT3UsvvWQQzCY5wJhG2EM6+MVbC4x/+OGHdjzxwUDwyy+/7Mj2gEeXjXjnnXee2YK3+OmnnzbPruC34pan4NJP66jrJ/j1m1/1jq8Cgt/Cza3gt3Da68zOWWgCHlpCHAg7ILQBKKURgkC8bdCAYyA5WXqydGIC0XXq1LF+xBRvuOGGdq7ff//dgDfZubKZHHl+s1Gr9LFRhzfZ5ze/gl8//dQ7vgoIfgs3t4LfwmmvM8dEAcGv30QKLuOtn+DXb37VO74KCH4LN7eC38JprzPHRAHBr99ECn7jrV//Cbe7WrVq+11kHnsvWbJY9nnoK/08xHPOtdp4b1V485OwXL0Fv+WSTZ2kwP8UEPz6rQbBb7z1GzllgKtdq5bfReax92Kyzsi+citcDPqdfFDfcl9fvjtG/fMv39dfqPEjDb9z5861OM2tt946K33I1frll19aEYVk7ZVXXrENTzxyyGVjMxULmfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/HBnNFTK7vWNmeO1/HEx+8/vrrlxljLPj1m4Gof/jLPr/5PeyW3H7O+lmj3pVNgeMaXOVOb3V1ZC876p8vkRXO07C8wS8VsQYPHmzlYsvbbrrpJqvc1a1bt4yHoBwtFboee+wx16ZNm6T9ABpyzAJquWxkMqBaWLI8sLk8T6qxwtkPwseQ0YCCDlQtS9ZI9cXNAinKytuCuaJKW7qxuOmgfHC2m9bKa1d5+lE2mXLG5CCm7DKpzyiGkaoJfsuj8v/6RP3DX/b5za/g108/9fZTQPDrp19ce6eEX/KfAnHTpk2zXfeUfqVSF/8/66yz3Pz5892pp55qeVrx9F1wwQXuueees9RV999/v5WSnT17tpWGPeWUUwy88EqSxmrIkCFWkYvStUHaKXKskpMVEDv33HMNOoAPcrKSG/b66683G8jVetdddxmQJGvAFYUIyAd7xRVXWIncsWPHum222cYBaE2bNjVvHvBLIQXSXHGt7PynJC4ASW7Z6667zmzIpqWC308//bTU2OjANZH7Fl369+9vKcKSXSdVzciTy+vcDFDtbLfddrPrQ2syGYwYMcJea9Gihc0BgEmeXOYKTzCZEtCBAhKJ1/nMM884bCQtGDl211lnHavG1qlTJ3fLLbeklCDZXOGlZyx0T7QPWxmPdGZjxoxJOjekMdt7773dvffea+WOuVbmizy8jIf9zA1rkbRklC4mcwOvYW+qxhrmJoBqbvRN1xifm4VrrrnGsk+gB0BPRopkTfCbzbuk9LGCy3jrJ/j1m1/19lNA8OunX1x7p4RfSs3ypQ7gkCcVmJw5c6aFCwAZhBQAtLfffrsVBuAHgKOAAeC78cYbmxd00qRJBp08kgeIAF5yuDLWokWLXN++fW1s8rny7/r16xv8EjoAJOFxY7wTTzzRvLnkigWgCG1YffXVS80L9l544YVWOAGwpqQt/QBzQIoiB8AUEN+qVSurNNayZUsDP6CRfwOMADfQnk1LBb/Jxp41a5al8SLfLdePJ/Soo45Kep2U3gXKyY977bXXuurVq7sOHTpYSV7y0wLv6I++5LIFFAFHfkjzxf9Xrlxp84GOiddJujFuVLgRoD96AbHk5qViGnCdrCWbK2xjLDynifaxDkhjxo0PJYSTzQ3rhpsPvP3oxvwzT9tuu63NJzddrDHWz2abbVZS9pjzvf3221bNLdwoa8wTiGHDhpm+J598sh0XbrVq1bJ1GTRuFAiJ4WaCYhzoiv6pwmQEv9m8SwS/fmoVn36C31zPuMbLRgHBbzZqVZ5j08IvIQRAMA34mDBhgnkWASIa3lqKAQCMFDfAC3fEEUe4Bg0aGFz26dPHTZ482SAMcCOm9LvvvjOvGscFfwNQ6P/ss8/aMXjpAFsgmBAGKnvhzaXIAQ1Q4dH0FltsUWqm3nvvPYNrvNZ4BIEkYAcYJi6V/wO/NWrUcIceeqh5oYNyuHiWCYXAZo7h/9m0ZPCbamwgjOujNC/XTPEGQCvZdeLVJIQD4EUjYBagA/Tw7nKTwA0CVdDwiBN7jNca3fGg4sXFgwnEkdc28Trxhgfw27p1a9OJBvyiD97pxAZUJ5urAH4vvfTSUvZhEwDJ/NOSzQ3wy9/x8HMzhLcVr/2jjz7qHnjgAeuHp5w1wbXjFafxNKB3796mEY0bNv6PvtzIcCxjE46D1zncgF/AP9x4EoAXnhutJ554wh100EEpl4LgN5t3Selj5fmNt36CX7/5VW8/BQS/fvrFtXda+AUw8EzSAE28vIAYAEEDrPg3oQ8AI5DA43egeMsttzT4BQgBTUIMABk8wMAP4wFZhDbwGpW6Ro0aZXGnwDANgMK7B8iwKQvACxowQ7GCxBaGX7y8gDKeYGAWuwL45W//+c9/HMfjdQW2AtBnzJ122sm1bds2q3lPBr88Lk82No/e0QOvLSEj6AiAJbvOHj16mBeUUAnOceedd5rW3HjgpR05cqSBPOMEFc8wHA/vf//73xL4RbNktnAzE8BvuD9efmK2k8EvxyebqwB+0TLRPsYK4BeITzY3ACrrgbnFIw6YAs2MFcSPUxSDim+8zo1O0AiZ4MaLRkgEeqEdugYe4WXLltkTh3DDwxv2GHOjwM0YN0Kcc5NNNik5nJuTZDHdeKOj2gSXfjMj/fz0E/z66afefgoIfv30i2vvtPALYAEZACKgA4QCAgAAEAUgED86ffp08zLizcUDB6gQD4ynEVDAywmYAF880saDi5cTjzGhBXjY2FlPfDDjE69KbCexn507dzbPH14/4BiYBErx/iXbsBaGX2AQeALYe/bsadcSwC8xv/ydx+gA5O67727xsw0bNjTgB0zxzGbTAFPGJJtE0PBgA4/Jxu7Vq5d5fLt06WJec2A92XWicSL8EprBPAwYMMDAlRLChHakgl9uZIDFZNdJTGu28EuoRLK5CuCX+U60j5sd4BdvOLCYbG6SwS83CqytIFQGLVgj6Mqa5OaF6+7Xr5+tw6AtXrzYdB80aJDFSJ9//vn2RIEbn3DDgz1+/PiSP+FZZy7Cf0u3DuT5zeZdUvpYwWW89RP8+s2vevspIPj10y+uvdPCLx5dHpPziHvo0KEWxwmc8aiZx8L16tWzGNwg9AGvGxCLJxJ4BVp5dA284KFjHGJ7J06caKEIAByP6BmLR/PEkBKDC7QCZIwBHBM7CjgDP3xR4vkEZJK1MPwS/wsUBrawsWv06NEGksSdAoS8BogvX77cYJ2GJ5D40po1a2Y178Av8anhhnccyEs29ptvvmneWaAQLfGKJ7tO/haGX7y5eNiJi8ZWwjsA6f333z8p/HKt3HAA2lxzoi2Es2QLv1xjsrkippex2CyWaB8x4niTOYYbjGRzw41S4PklRhntCFvgKQBechreWOJ3iX9mXeLNbdeunW1oSxaXiz6sOdYN4/OTrmEn0Bxun3zyicVDJ2uC36zeJqUOFvzGWz/Br9/8qrefAsftfpU7vaVSnfmpGL/eaeGXx794P6tWrWoQHDRglUfleH8D2ADceGRPbHDwN6ADD2HgoSWWl01e4cbGNUIbwpkVyB5B38SwBh53Ywt/B7AAksRGdgjAOWjYxXVstNFGBpecJ1WKM85JLDGbvZJtpvOZ/mzGDl9nunOiLZkVuMkoK20b3laOwUuajS0cyxOAxAasE1+caq44Ppl9jMf6YT1lMzeMx7mY2/Ba4aYFoE+ViSHRbs6fbRaPsuZd8FuWQulfF/zGWz/Br9/8qrefAvL8+ukX195lwi+e2yg2oBlPcmIDyMoCwSheT1RtIsUaYS2JjVhtbnTUnGVFUcxv+VeC4Lf82tEz6voJfv3mV739FJDn10+/uPZOCb94CmlhL2pcRdB1SQEfBQS/PupFH96iDpdRt2/k5P6uVu3oljdesniJ7PN4CxeDficf/G9WoCi2qL9/o6hZLmzKW4W3XBinMaRAMSgg+PWbpah/+Fe4fd/OdI6fDFvU4WPeei1tT0NUW4XPb5ZCyL4sBUs4XPr56RfX3oLfIpvZf/75x3IWk7Uh2JBH+Aexr2zeo3gGWTKyaYzHRrQqVapk0y1yxxJDTCx4ttfveyGCXz8F9eWUoB/gO7KRn6gR6j3vmH839Ea1af35zYz0i7d+flcX3d6C3+jOTVLLSB8GqJK2jGwINLIgUDGNdG5k1gjyJKe7NDIjkG+ZzAbh9GJFJscq5lJAhewPQeGLiroWwa+f0vryFPz6rSC/3lp/0s9PAb/eUV9/flcX3d6C3+jOTVLLyAmMh5cqbUGJ57Lgl5RkQbESgJliIfvuu6/l2x07dmxJ7mX+3bhxY8unTL5eCkWQf5gMCeQvpqw16cWAZqrzAdlB5gS8z4A0+ZcpLkFlOFKsUciCtHEAO0VGyPRA2jsKn1AFsHv37pYuj011lMcmrzOp2NhoR65dcgmTOo+MFqSNI/0e56R4BSngwvaQao4NmthPKWvyR5MJgvzR5KnmfKTXI7czeagZi3NQoGXGjBmOioaUXKYEdLL+qZaK4NfvTRT1D/8Kt0+eX78FlWXvCp9f2ZelAn6Ha3799Itrb8FvEc3sihUr7PEhZYyBSSru8Tsd/AJ/ZGWgPDD9yZn82WefGfitXLnSvMekrCNvLrmCyatM5gIAlhb4tOEAACAASURBVBR0QCCp4sjxTG5m4BBYBL7xMgeNvL6EHQCuAC+AGxSlAEjxVJPjmcIo5MsFyMlRDGhSVAIbKOZB9TXOTRs2bJjl5sVOqgUC/UAyaegoZkERi27dupXYgzaUegZk8WbPmTPHUvIB5VTQQysAvlmzZvY39EMLAJzCJPSjMl2q/oLf/LxZ9OUkz29+VlZmo2r9ZaZTqqOkX7z187u66PYW/EZ3bkpZBuQCnTzWp9gIOZP5fzr4xXsLwOI9pQG3eEHJkQzUMhagSAEQ0sRRTAIQpXoaxwYhBFTu6927txUj4bhwWWHGBUbxBlMtjfADvMNUZQv+hpcY8B0zZoz1p7gJnuG6devasfyQ+5eYZuAXDzBATkW/5s2bG6TyQ9gHUAukUlAFz3RgD68DvxQ6adq0qY1NQYs2bdrY+MA3MEzDC01xll133dVCRtCRPMKUwSY/cWJ/POGC3/y8WfTlKfjNz8rKbFStv8x0Evz66VSs+uXnqgs/quC38HOQsQWUDCb1HCEDABpgC8wRrpAq5nfw4MEGusAijfLSVIvjAz8Mv0FVNcIb6tSpYz+ESoQhl/PjiW3durVVkgsawIpNjEGxCTzAwOYWW2xh1evICcxr9KGaXlCCGc8t8Mk1EIIRhl/il1u0aGEhCmzuw17GwStN5TgAPoDfwJ4AfvHyAuB4ux9//HEbn994mXmNRggF/2ZsIBiPNnZXq1bNADyxP2WU8ThTrhsAT2zK85vxMi51oOBD8Fv+1ePfU+vPT0PpF2/9/K4uur0Fv9Gdm1UsI9SB8tF4TIM4Wx7jE2YAOKaCXyrA4UHldTybTZo0sYwQlO8lJIJwhPCGtwB+O3bs6Bo2bOiAPqrCAaz9+vWzWN5E+MVQPKzAMXG4ADbllAHdli1bmgeZ+FtgldCGTOCX2GNsw+MMOFM2mlANMlOMHz/ePLxoAXQmwi/eaeyhpDHVBqkIyHXgIQZc8WzjhcaWJUuWlIJfKuwl9g/APtlyUcyv35tIX56CX78V5Ndb60/6+Sng1zvq68/v6qLbW/Ab3blZxTLgkQ1ZwGDQ8ObiiQQm2cwFCCfL9sDmMMIPgGTgdNCgQY7NYQDquHHjHKAb9vwCw127drXNZGRPWLZsmWvXrp0jQwQb7ggjoG+4EQ+Ml5iNb4QXAJ78jQ1mQCob3YBSylNnAr/AKpBPSeypU6faxjfglfRuVPDjWgBgNAnsCXt+gddJkyZZnDAhHEA7oSKEcWAL8cFstBs9enRSz2+y/qmWiuDX700U9Q//CrdPG978FlSWvSt8fmVflgr4Ha759dMvrr0Fv3Gd2YTrwutKqESQG5iXAUhAEs9uqkb+YDzEhDNk0oBVYpHDjawUbJ4LPNZljUPML7HHbNQj/CKwD/vxymILGSgI21hvvfVSDsd5CccI2wP4EgaB9xevcLqWrH+y4wW/Zc1o+tf15ZSgj+DXb0Fl2VvrL0vBEg6XfvHWz+/qottb8Bvduam0lgXwS1hHMTTBr98s6ctT8Ou3gvx6a/1JPz8F/HpHff35XV10ewt+ozs3ldYyYpPZ2Jepp7jQQgl+/WYg6h/+FW4fnt9vZmQsKnHrtWrVyvj4ij5wXvVWqvDmIXqFr78sbZV9WQpWZJ5zv6uLbm/Bb3TnRpYViQITJkxw9evXLxJrZaYUkAJSQApESYEol/+Okk65tEXwm0s1NZYUkAJSQApIASkgBaRApBUQ/EZ6emScFJACUkAKSAEpIAWkQC4VEPzmUk2NJQWkgBSQAlJACkgBKRBpBQS/kZ4eGScFpIAUkAJSQApIASmQSwUEv7lUU2NJASkgBaSAFJACUkAKRFoBwW+kp0fGSQEpIAWkgBSQAlJACuRSAcFvLtXUWFJACkgBKSAFpIAUkAKRVkDwG+npkXFSQApIASkgBaSAFJACuVRA8JtLNTWWFJACUkAKSAEpIAWkQKQVEPxGenpknBSQAlJACkgBKSAFpEAuFRD85lJNjSUFpIAUkAJSQApIASkQaQUEv5GeHhknBaSAFJACUkAKSAEpkEsFBL+5VFNjSQEpIAWkgBSQAlJACkRaAcFvpKdHxkkBKSAFpIAUkAJSQArkUgHBby7V1FhSQApIASkgBaSAFJACkVZA8Bvp6ZFxUkAKSAEpIAWkgBSQArlUQPCbSzU1lhSQAlJACkgBKSAFpECkFRD8Rnp6ZJwUkAJSQApIASkgBaRALhUQ/OZSTY0lBaSAFJACUkAKSAEpEGkFBL+Rnh4ZJwWkgBSQAlJACkgBKZBLBQS/uVRTY0kBKSAFpIAUkAJSQApEWgHBb6SnR8YVgwITJkxw9evXLwZTZaMUqHAFZnz+SIWfUyeMpwKNtuoQywurV69eLK8ryhcl+I3y7BShbbNnz3ZLlixZxfK6deu6XXbZpWiu5osvvnA//fST23nnnTOy+YYbbnCXXHJJRscW4qB58+a5KH+4yj6/VRF1/U76z2p+F6jeUsA5t97aNd2Qc1b9bslEmKi/P6JuXyYaF+Mxgt9inLUI23zccce5v//+2+22224lVjZs2NAdffTRXlY/+OCD7o8//nCnn3661zhB5/32289NnTrVrbHGGqXGu//++90HH3zgbrzxxozOJfjNSKaUB0X9w1/2+c2v4NdPP/X+VwHBr1ZCLhUQ/OZSTY3lgN8OHTrY73ADXsePH+8effRR9/zzz7s777zTjRs3zg0fPtzddtttbs0113Q9evRwp512mvv6668Nct955x13+OGHu4svvtg1b97c/frrr27s2LGuZcuWNvTChQvdOeec42rUqOGmTZvmunfvbmNPnz7d9e/f33Xu3Nm99tprrk+fPm7+/Pnu+OOPd7feeqvr1auXu+WWW9yRRx7pHn/8cXfRRRe5ESNG2DnuuOMOg+KRI0e6X375xeEFvvnmm1379u1Tzq7g12/hCy7jrZ/g129+1VvwqzWQewUEv7nXtFKPCPQuX77c7bjjjiU6dOnSxW233XYWF9u3b183YMAAN2jQINesWTO31VZbGayuvvrqbq+99nKLFy92AwcONPAESs8880x39tlnu1mzZrmVK1e6q6++2lWpUsXG/uyzz9z2229vAL322mu7E0880d1zzz1u8803tz6LFi1yTZo0MXgGmA844AA3dOhQs2O99dZz33//vY3LmKNHj3Z33323W7FihYVoAN9vvfWW+/jjj82e999/X/Cbp5Ut+PUTNur6CX795le9Bb9aA7lXQPCbe00r9YjAb82aNV3jxo1LdDjkkEPclltu6aZMmeIOPvhgd8IJJ5gH+J9//jGAxTs7Z84c88r++OOPdszDDz9sAP3dd99ZuMMjjzzifvvtN3fZZZeVjEvfPffc0/3www8GssQWcyw/6667ro1P/PGLL75oEEsYw6hRo9xhhx3mVlttNTvu8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXb8lHHd5kn9/8Cn799FNvwa/WQO4VEPzmXtNKPWKqsAdEef31192+++5roQ14awHT2rVr22axRo0aWVgCIIs3+KOPPnKbbrqpAemff/5pHttk8Hvssce6d9991zzGu+66q/v2228tPAL4JfaYcfE6t23b1t133312rjD8duzY0c7LD+dZunSpe+qpp0pifvEE4yUO4BdQf/XVV0vNsTa8lX/ZCy7Lrx09o66f4NdvftVb8Ks1kHsF8ga/fCDTEneZ8/gY4KlTp07Sq8l2p32yQT788EPzPqY6R+5l1IiBAsAvIAmUBg0v619//eX22GMP17VrVwPQJ5980jIqEO+LZ5Z4YGJwgV9id/H+AsknnXSSO+aYY9yCBQvczz//7K666qpVPL/p4Pebb74xbzAAzbiEQwC2AfwCyQ899JBBOeESwDEeaLzJwYa3RPhNNtPy/Pqt/6jDm+zzm1/Br59+6i341RrIvQJ5g18eYeN5Y3NRuLGTfvfddzcQCrdg9z0bjbLZaZ9MEuI9W7duvQqA5V46jZhMAUIa2EQWbmR6IPaWzWgvvPCChTRceeWV7o033nD77LOP3aistdZa5rEFgNnkxkY2Nr6RbmzixInupZdeMghmkxxgTCPsIR384q0FxrkZohEfDAS//PLLjvWGR5eNeOedd57Zgrf46aefNs+u4Lfi1rfg0k/rqOsn+PWbX/UW/GoN5F6BvMIvoEOsJY0NTnjcrrnmGtt4BIAQcwkIATx4APl91FFHZbzTHq8doMJOfx5Xs2GJ+NIAfhmLTVNkCNhmm23cTTfd5Jo2berefPNN20jFY/Ru3bq5Cy+80H366afWD6DC23jddddZBgK1/CrADRIeWkIcCDtgToBSGnNKvG3QgGMgOVl6snRWAtE8BaAfMcUbbrihnev333834E12rmyuWp7fbNQqfWzU4U32+c2v4NdPP/UW/GoN5F6BvMIvUPDMM89YTCbpogh54FE2UIo3b/LkyQasxIEGu+95/J3pTnu8y5yDx9Z493gkPnPmzBL4BWzY5PTYY4+55557zjZN8dgbr1/Pnj1dgwYN3IEHHmh98P7hhSQrwFlnnWWP50855ZTcK64RY6eA4NdvSgWX8dZP8Os3v+ot+NUayL0CeYVfcquSN5W28cYbW95WUl0F8EtsJY+3acHuex5DZ7rTHvglRpjftG233da98sorlrqKsAc8yYDt22+/bXGlc+fOtcfuO+20k22MovE3wJvYUEAczyJQvv7669v/1aRAWQoIfstSKP3rgt946/foi/1d7Vq1/C4yj70Xs/FW9pVb4YrU76DdumRtpz5fspasUnTIK/zyCBvYpW2xxRYWbkCqqgB+w3G5YfjNNN4S6GUTFPGjwTmI2aSAAmNXrVrVwhsIawBm2dBEzDFxoEE4Bo/BebzOxrwAohkLQCZDgJoUKEsBwW9ZCgl+M1Lo3XsyOizxILKm1IowvM2r3lLltcs1s/92Erx5iCf9/MSLce+8wi8eXDYqsYOejVAAZzjsIRF+iekkNCEb+A3O8d5771mWAVJkUVSBsYkr5kvhiiuusDAHbKGgwiabbGKxwuSepaABxx166KEGxpTiBaaJQT333HMjN/Vs4sKLzaZBNorRiGmlsAQpwijasPfee2dlN+MRChIUj8iqc4QOJqvD7Nmzs75+30sQ/PopqC/3/9fvgUbOfTvTT8wI9p537FzBr8e86P3hIZ7g10+8GPfOG/yygW3w4MG2sYg3L+VjiaENw2+bNm1sBz8t2H1Padxs4JfzENsLAJILljK0bFxjbEIZyDQAFLLhjfhjKnmx4x8PNBuesKdfv36WeovNcTSqhQHEAVxGaf7JM4tWxDcT3kFj4x+FGQB8NvwFXu10dhNewoZD4qsJSeGmgY1gxdwoiMEaCBfCqIjrEfz6qawvd8Gv3wry6631J/38FPDrHfX153d10e2dN/gNLpkKWeyyD3bwp5Iicfd9+Di8eZ988kmprsTrkj8WDy0hDsHO/fCBeAMJv9hoo40s3ysZHIjrBXw5Z7gP/1+4cKHbeuutrdxuFBtebWCeeGSqkWFnWfBLQYkgNARgJtsGmwzxtJMJI8ily7+pzEYVtOrVq1vaL0oDowve806dOrlrr722JEsHkB1kxODmA5AmrptUZUOGDLGqa4SdBKnFCDtBd+K8a9SoYVk6yOlLCjQ88v3793edO3e2mxDmlc2JeOlJf8fNy7333mtZQThnjx497MYlbA/x3ITZYD9PEK6//noLi6E8MU8FOB+bGYlFP/XUU20szkGM94wZMyx+nA2SlElO1j/VehD8+r1Tov7hX2H2yfPrt5DK2bvC5lf2lVMBv26aXz/94to77/CbC+GAPOAqsbG5De9lEFeci3NFeQwKLhCbTMEHvL+33367/U4Hv8AfGwEpJ0x/yviSzg3wW7lypXmPKf5AHDY5mfHOU4QCgN1ss81KygrjUWfjIHAYZOnAyxw0UthxcwG4ArwALpsNFy1aZPODp5qcvYS/kG8XIMfDDmhSYAIb8NhzPOemDRs2zOK3sbNPnz4G/UAywL/XXntZVTdS1QX2oA2bHAFZvNmE27CxESgn0whaAfDNmjWzv6EfWgDgrCX6Efedqr/gNz/vDn05/b+ugt/8LLAyRtX685Nd+sVbP7+ri27vooDfVPLhuaSts8460VU4h5YBuXh8eaz/wAMPWA5c/p8OfvHe4sXEe0oDbvGC4kkPygUDioSEkH3j0ksvNRClCAnHBiEEd911l+vdu7ebMmWKHRdk6QguDxglZ/OOO+7oCD/gpuSII44o+RteYsB3zJgx1p/QEzzDhKZwLD944YlpBn7xAAPkX375pWvevLlBKj+EfQC1QCqbFfFMB/bwOvBL/Df5nBn75JNPthAYxge+gywfeKEJr6EkMiEj6EjFOTZGkns4sT+ecMFvDhdzaCh9eQp+87OyMhtV6y8znVIdJf3irZ/f1UW3d1HDb3RlzY9lVDYD9AkZANAAW2COcIVUMb/EXQO6QSYLQhzIdsEHVhh+g5hfwhsoCMEPoRJhyOX8QSaNcPligBWbGIONgniAgU0yfBCaQjlrXqMPsdVlVWUDfolfbtGihYUosLkPexkHr3SjRo0M4AP4DTZOBvCLlxcAx9tNtTk04jdeZl6jEULBvxk7iDHH7mrVqhmAJ/YnjzQeZzZKAuCJDbui2vTl5DczFaafPL9+E1XO3hU2v7KvnAr4ddP8+ukX196C3yKZWUIdKMqBxzSIs+UxPmEGeMBTwS+V6/Cg8jqeTcoMkxGCzBaERBCOEN7wFsBvx44dLfMF0EfMNsDKxkBieZOVjsbDChwThxvEEAO6FA3Bg0z8LbBKaEMm8EvsMbbhcQacW7VqZaEaZKagEAoeXrQAOhPhF+809lBIhRR6bOTjOvAQA654tvFCYwtpohLhl4pzif0DsE+2XBTz6/cm0peTPL9+K8ivt9af9PNTwK931Nef39VFt7fgN7pzs4plwCMbsoDBoOHNxRMJTLKZCxBOlu2BzWGEJADJwCmlptkcRqaNcePGOUA37PkFhqlwx2YysiewabFdu3aODBFsuAtn6QhsIR4YLzGx2YQXAJ78jQ1mQCob3YBSNiZmAr/AKpBPDuapU6faxjfglQwcbFjkWgBgNAnsCXt+gddJkyZZnDAhHEA7oSJBlg/ig9loR/aPZJ7fZP1TLRXBr9+bKOof/hVmnzy/fgupnL0rbH5lXzkV8Oum+fXTL669Bb9xndmE68LrSqhEOH0bAAlI4tlN1cgfjIeYcIZMGrBKLHK4sWGRzXOBx7qscQh7IPaYjXqEXwT2YT9eWWwhAwVhG+myiHBewjHC9gDhhEHg/cUrnK4l65/seMFvWTOa/nV9Of2/PoJfv4VUzt5af+UU7v+7Sb946+d3ddHtLfiN7txUWssC+CWsoxia4NdvlvTlKfj1W0F+vbX+pJ+fAn69o77+/K4uur0Fv9Gdm0prGbHJbOzL1FNcaKEEv34zEPUP/wqz790h5RIy+uWNW6nCW7lm9t9OFbb+ymmj7CuncEXiOfe7uuj2FvxGd25kWZEoMGHCBFe/fv0isVZmSgEpIAWkQJQUYA+KWsUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6dTwUeOqpp9wuu+wSj4vRVUiBHCvw1VeP5HhEDZeoQI0ajVy1attJmCJVoF69ekVqefGaLfgt3rmLpOWzZ892S5YsWcW2unXrFhUcfvHFF+6nn35yO++8c0Ya33DDDe6SSy7J6NhCHDRv3jwX5Q9X2ee3KqKu373DVvO7QPUuU4Hjjn3fbbBBYW7Ao77+ZF+Zy6dSHiD4rZTTnr+LPu6449zff//tdtttt5KTNGzY0B199NFeJ33wwQfdH3/84U4//XSvcYLO++23n5s6dapbY401So13//33uw8++MDdeOONGZ1L8JuRTCkP0pdTvPUT/PrNbya9Bb+pVdLnSyYrqPIdI/itfHOe1ysGfjt06OD4HW7A6/jx492jjz7qnn/+eXfnnXe6cePGueHDh7vbbrvNrbnmmq5Hjx7utNNOc19//bVB7jvvvOMOP/xwd/HFF7vmzZu7X3/91Y0dO9a1bNnShl64cKE755xzXI0aNdy0adNc9+7dbezp06e7/v37u86dO7vXXnvN9enTx82fP98df/zx7tZbb3W9evVyt9xyizvyyCPd448/7i666CI3YsQIO8cdd9xhUDxy5Ej3yy+/OLzAN998s2vfvn1K3QS/fktKX07x1k/w6ze/mfQW/Ap+M1knOuZ/Cgh+tRpyqgDQu3z5crfjjjuWjNulSxe33Xbbufr167u+ffu6AQMGuEGDBrlmzZq5rbbaymB19dVXd3vttZdbvHixGzhwoIEnUHrmmWe6s88+282aNcutXLnSXX311a5KlSo29meffea23357A+i1117bnXjiie6ee+5xm2++ufVZtGiRa9KkicEzwHzAAQe4oUOHmh3rrbee+/77721cxhw9erS7++673YoVKyxEA/h+66233Mcff2z2vP/++4LfnK6U/w0m+PUTNur6CX795jeT3oJfwW8m60THCH61BvKkAPBbs2ZN17hx45IzHHLIIW7LLbd0U6ZMcQcffLA74YQTzAP8zz//GMDinZ0zZ455ZX/88Uc75uGHHzaA/u677yzc4ZFHHnG//fabu+yyy0rGpe+ee+7pfvjhBwNZYos5lp91113Xxif++MUXXzSIJYxh1KhR7rDDDnOrrbaaHXf55Ze7HXbYwZ1xxhkG3J9//rlB7xNPPGE/y5YtcxtssIGNlarJ8+u3mKIOb7LPb34Fv376ZdJb8Cv4zWSd6BjBr9ZAnhRIFfbA6V5//XW37777WmgD3lrAtHbt2rZZrFGjRhaWAMjiDf7oo4/cpptuakD6559/msc2Gfwee+yx7t133zWP8a677uq+/fZbC48Afok9Zly8zm3btnX33XefnSsMvx07drTz8sN5li5d6sjeEMT84gnGSxzA76uvvmqwnti04a38C0pwWX7t6Bl1/QS/fvObSW/Br+A3k3WiYyoh/PLYGtCqU6eO5j+PCgC/gCRQGjS8rH/99ZfbY489XNeuXQ1An3zyScuoQLwvnlnigYnBBX6J3cX7CySfdNJJ7phjjnELFixwP//8s7vqqqtW8fymg99vvvnGvMEANOMSDgHYBvALJD/00EMG5YRLAMd4oPEmp4LfZNLJ8+u3oKIOb7LPb34Fv376ZdJb8Cv4zWSd6JhKAr8A7+DBg20TEzv4d999dwMwtfwpQEgDm8jCjUwPxN6yGe2FF16wkIYrr7zSvfHGG26fffaxMIm11lrLPLYAMJvc2MjGxjfSjU2cONG99NJLBsFskgOMaYQ9pINfvLXA+IcffmjHEx8MBL/88suObA94dNmId95555kteIuffvpph3dX8Ju/NZI4suDST+uo6yf49ZvfTHoLfgW/mawTHVNB8MsjaDYsBbCBZw1PHF62K664wh5vX3fddY6Y0MS/8aj60ksvdY899phZC/iQIYCd93gR8eBtsskmtit/m222cffee2+prAHALnln2bDEI3M2PAE9vXv3dsOGDbN+Q4YMcXvvvbcBFb8Zh41XxJiuv/76Wit5VoDQBDy0hDgQdsA8AaU0QhCItw0acAwkJ0tPls5MIBqPP/2IKd5www3tXL///rsBb7JzZXPZ8vxmo1bpY6MOb7LPb34Fv376ZdJb8Cv4zWSd6JgKgt9rrrnGdtyzw5/H1XjxeKS97bbbGhCTfopH4MRQJv4N+CRlFvGcNDY/Pffcc/bYnAa8AsNkACCVVbKsAa+88ort5J80aZJ594466igDWqD6gQceMC8fXsXJkye7jTfe2B6xd+vWzbyFbITyzU2rhVY5FBD8+s2z4DLe+gl+/eY3k96CX8FvJutEx1QQ/OJBDXbts9ueR+KkuWKnP/BJI5frl19+aR7e8N/w8LEZKRn8kr8VkKUfuVl5/J0sa8Ann3xiYAzcEj9KHx5vs7sfjzQN6CU8gvRXM2fOtLhQYB1PZADaWjBSIJ0Cgl+/9SH4jbd+r7za39WuVcvvIvPYezEbb4vcvrp191eFtxRrRJ8veXzzFPHQecvzS7wlxQfmzp1rG83YvU98JkBJPCVxuDQeeVO4gLjM8N+IzSRvawC/eGwJYaB/z549XYsWLcxzTGgDizsxawCPt5PBL6muGBcQpjEu4ExFMmzkkThe6lq1apkXWE0KlKWA4LcshdK/Htsvp79+d272/X7iZNCbrCl8XkW1zavRUuW1PSYntu8PD02y6Sr9slGr8hybN/hFwlNOOcWKC/D7+uuvt3hLPK5HHHGEeVkJiSDE8MOUmgAAGt9JREFUYMyYMbbRKfw3QhwoNoB3l9yrwCmwC/ySQxZAveuuuwxYW7VqlTRrwKeffmqFEtjAFHh+sYEwC2J933zzTQuHALDxABcD/HJTQXYEoJ+NYjRiWiksQegHRRuIXc6mMR6x0EHxiGz6RulYsjpwg5Tt9fteg+DXT8HYfjkBvwOr+okTg97zTpwr+PWYx9i+Pzw0yaar9MtGrcpzbF7hl5KzZ511lu2wZ3MRRQ4ILyDmlhRTNLy9eGGT/Y34YEIkCEWgzCzFB4BfvMSUw2VDFKVo2fhGeqrErAHnn3++bWojjAGw5TzkmQXACbdgTGKLKV0bhl/ihPGkRDHsAXAHVIF/7KShJdrgEWfzICEmZTWyHFDkgUpm4Wsvq1+UX6cgBvmAw4UwKsJewa+fyrH9chL82sIQ/Or94aeAX+/Yfr74yVLpe+cVfgN18dxuttlmBqxBI8frOuusU+bf8GiGsy6QBgtQZoNcsIOfMVNlDWBXP68RQxxuX331lWUSCHb7F8tKoFQwHl5K8aIrZYHLgl8KSpBajAYwk/WCmwCyJxByEuTS5d941QkNqV69um0IpDQwGpKdo1OnTu7aa681aCaWG8gO5hTvMyDNTQVzhGedqmuJ2T64CSKNGSEx3Bxxg0MKNEoc9+/f3xHPjbc+04weYXtIo8aNDvZzU8PTBnIDk+2D3MPBzRhPEE499VR7WkDWEGLCZ8yYYTdDVIEjLCZZ/1RrRPDr9+6J7ZeT4Ffw6/fW+Fe/efPkOffQUfp5iBfjrhUCv7nUL4BfvJ+VrVFtrF69elbwgeu//fbb7Xc6+AX+uFHAg05/yvgS4wz4kSkDGMazjle8V69eFqJCBg505oYlKCuMd/ztt982OAQWgW+8zEEjswdhB4ArwAvgBmEs4WwfbHok3y5AvvbaaxtokuYOG84++2wLheHctEwyehCXHdiDNoTPALJ4sylYQbo9oJxNjWgFwDdr1sz+hn5oAYCTGYR+lFhO1V/wm593XGy/nAS/gt8cvGVi+/7IgTaZDCH9MlGp8h1TdPCbzGNcWaYNyAU6eaxPZgw81/w/HfzivQVgyYdMA27xgrIZMCgXDCg+88wzFjqCVx0QpRgIxwYhBMRXkx+Z0BWOA27DLZzZg/ADvMPEdidm+yC+m/6EwuAZJu8zx/KDF56YZuA304weeKYDewBZ4Pe9995zTZs2tbFPPvlk16ZNGxufVHvAMI2c02y8pCQyISPoyNriKQNPChL74wkX/ObnnRbbLyfBr+A3B2+Z2L4/cqBNJkNIv0xUqnzHFB38Vr4p+t8VU4iDUBFCBgA0wBaYI1whVcwvFe4AXTyaNEIc2GTIB0IYfoPNfoQ3EE7CD6ESYcjl/ORWbt269Srli4PMHoxBijg8wMDmFltsUSrbB2WNy6rKBvxmmtED+A3sCeAXLy8AjrebanNoxG+8zLxGo5gJ/2bjYFDNDburVatmAJ7YnzhzQkzYPEncdWLDWx7Vpg9/v5kpt36CX8Gv39L7Vz+FPXipKP285IttZ8FvkUwtoQ4NGjQwj2kQZ8tjfMIMiN1NBb9kvCCkgdfxbFJmmIwQlHsmJIKNc+ENbwH8kmO5YcOGtrmQymgAa79+/SyWNxF+kRAPK3BMVo0ghhjQTcz2QWhDJvCbaUYPoDMRfvFOYw8FTFZbbTVLX8d14CEGXPFsE36BLaSJSoRf0u8l9g/APtlyUcyv35sotl9Ogl/Br99bQ/Ar/XKggIZIpoDgt0jWBZu32JBF+EHQ8ObiiQQm2cwFCCfL9tCjRw8LPwCSgdNBgwY5NodRMnrcuHFWTCTs+QWGyXTBZjKyJyxbtsy1a9fOkSGCDXeEEdA33IgHxkvMxjfCCwBP/paY7aNq1aoZwW+mGT3QJLAn7PkFXqnsx+ZAQjiAdkJFCONg0x3xwWy0Gz16dFLPb7L+qZaK4NfvTST49dMv6r2V7cFvhmL7/vCTJePe0i9jqSrVgYLfSjLd5DcmVCLIDcxlA8NkwcCzm6qRbQMPMeEMmTTSzxGLHG7Jsn2kGyvbjB6pxuK8hIiE7QF8CYPA+4tXOF1L1j/Z8YLfTFZG6mNi++Ukz69NuuBX7w8/Bfx6x/bzxU+WSt9b8Fvpl0D0BCi2jB6CX781FNsvJ8Gv4NfvrfGvfor59VJR+nnJF9vOgt/YTm3xXlixZfQQ/Pqttdh+OVl54+F+4mTQe8niJa5W7SiXN26lPLUZzGOqQ2L7/vDQJJuu0i8btSrPsYLfyjPXutI8KTBhwgSrXKgmBaSAFJACUiBbBdiDolaxCgh+K1ZvnS2GCrCZkOIcalJACkgBKSAFslGAlKBsOlerWAUEvxWrt84WQwWiHvYg+/wWnfSTfn4K+PXW+pN+fgqodzIFBL9aF1LAUwF9OfkJKP2kn58Cfr21/qSfnwJ+vaO+/vyuLrq9Bb/RnRtZViQKRP3DS/b5LSTpJ/38FPDrrfUn/fwUUG95frUGpEAeFNCXk5+o0k/6+Sng11vrT/r5KeDXO+rrz+/qottbnt/ozo0sKxIFqLJHqemoNtnnNzPST/r5KeDXW+tP+vkpoN7y/GoNSAEpIAWkgBSQAlJAClRqBeT5rdTTr4uXAlJACkgBKSAFpEDlUkDwW7nmW1dbIAWWL1/u1l9//VXOvmLFCrfOOuu41VdfvcKsWrZsmatRo0aFnS/bE33//femU5UqVbLtWmHHf/XVV27TTTetsPNlcyL0q1mzZjZd8n4sFRurV6+e9/OU9wRR1CzxWqK+5qL8ni30Z97PP//sqlWr5lZbbbWSaS3EZ3953x9x7Sf4jevM6roiocBnn33mpk6d6m699Vb3/vvvm01LliyxpOZrrrmm+/zzz13v3r3daaedlld7p02b5gYMGOA22GAD991337lrrrnGNW7cOK/nzGZwdDjppJMcCd+xr1u3bu6oo47KZogKOfapp55y7dq1c3///fcqX2YVcvI0J5kyZYo799xz3Z577un4Yu3cubM74ogjCmrWzJkz3RlnnOG22morW+fDhg1zjRo1KqhN4ZNHUbNk4kR1zUX9PVvozzw+x2bPnu2OOeYYx/dAnTp1CvLZH5k3XMQMEfxGbEJkTrwUGDhwoJszZ46bNWtWCfzyN7xh/fv3d998843bZJNNDFjWXXfdvF386aef7po0aWKAxO7iL774wt1xxx15O1+2AwP/bdu2de3bt3d44vjSaNGiRbbD5PX4BQsWuMsuu8xR0S9q8ItW2NayZUv38ssvu7POOst9/PHHedWjrMEPOeQQ16tXL8fvMWPGuCFDhrhJkyaV1a3CXo+iZokXH+U1F/X3bKE/81jzr732mrvtttvct99+a/BbiM/+CntDFdmJBL9FNmEyt/gUAOROPPHEEvjFKwekdOjQwf3zzz8W9jB37lyXz/rueLnwpB555JHuySefNAjZe++9IyPmPvvsY17fZ5991h144IHuxhtvdDvttFNk7Fu5cqU79NBD3YgRI8zOqMEvN1PcPK2xxhruoosucr/++qu7++67C6ofOr3++uum1zvvvOPatGljEBCVFkXNwtpEfc1F/T0blc88wh0C+C3EZ39U3m9Rs0PwG7UZkT1Fp8Bvv/2W1KPVunVrV7VqVfNihuH3hBNOcPwcd9xxdq0bb7yxe+utt9zWW2/tfe2TJ082L3K48aj5nnvucY8//rh5Vh966CF39tlnu549e3qfL9sBUtm3xx57uAMOOMDddNNN5pFeunSpu/fee7Md3vv4VPbhLW/YsKHDm8SXWaHgN5V9xCDzBXv++ee7Tz/91I0fP97CDQrZiAPF+8yTjXnz5tn8Llq0qJAmlTp31DQLG3jBBRdEYs2lmjA+t6Lwnk1l39VXXx2Jz7ww/Obzsz9Sb6wiMEbwWwSTJBOjrQCg1qVLl1JGApxsLkuE32uvvdY2dV144YXur7/+chtuuKHBXi42vuH1+/LLL1exhb8R/zlu3DjXrFkzh0eEmNogBrki1U1lH7GhN998s4U+4AXHzkJ4CZPZR6gIj8iDGOnp06fbv8m/utZaa1WkfObVTTa/ACY2nnLKKe6SSy5xa6+9doXalexkzZs3t0e+e+21l5sxY4Zj3QPlUWkLFy6MnGaBNtzArrfeepFYc6nmq379+pF4z6aD8yh85oXhN5+f/VF5XxWLHYLfYpkp2Vm0CiTCLwBw5513mrcYbyyb4d544428Xh+P7AEjQi3w/BL68Nhjj+X1nNkMfuaZZ5oHnE15Dz74oHvuuefcyJEjsxkib8cSmsKGlaDtsMMO7qOPPnL8Du/gzpsBGQzMkwWAHDiOSuPJQq1atdzFF19ssb/AXL9+/aJinj2NiZpmgTjFsOai/J5Fx6h85oXhtxCf/ZF5w0XMEMFvxCZE5sRPgUT4JR6TD+YPPvjAYjOff/5517Rp07xe+EsvveROPvlkiwsly8TQoUPNuxqVxmPx8847z7zRm2++ufvvf//rCIWIYitk2EM6Lxe7y4PG5ppCeM7D9gUefP5GlhFu8DbaaKPITCk3W1HTLJU4UVxzUX/PRuUzj7ljndWuXds+7yv6sz8yb7iIGSL4jdiEyJzKowDxj3Xr1q2wnLZ4k8jywAakqDbSwOEtVIuHAn/++acjRy1rLipe8ngoG52riPJ7NqqfeRX92R+d1RIdSwS/0ZkLWSIFpIAUkAJSQApIASmQZwUEv3kWWMNLASkgBaSAFJACUkAKREcBwW905kKWSAEpIAWkgBSQAlJACuRZAcFvngXW8FJACkgBKSAFpIAUkALRUUDwG525kCVSQApIASkgBaSAFJACeVZA8JtngTW8FJACuVFg+fLlJUVBcjNi7kYhhRFtnXXWyd2gGiknCvzxxx+OH9L8xbXx3mANkr4t00ZlylmzZrmdd97ZivEkth9++MH+FKX0dJlem46TAmUpIPgtSyG9LgWkQEEVoMAEFeBeeeUVs6NevXqWp/iggw4qqF3hk+++++4OmKCcb74agAOkUMjilltuydlpmjRp4lauXOnefffdnI3JQE8//bSN2bdv37Tjcn4q5VExLx+Ninc33nij++abb9LCYTo77rrrLstVfNJJJ5XLxFxojA333XefXUPHjh3th6qQpPMiT3irVq1c//79M7bvkUcesUIfpCqrWbNmqX7Dhw93l156qZs/f36sbxwyFkwHxkoBwW+splMXIwXipQB5YimPS6GQTp06uapVq7phw4bZRX766aduu+22i8QF33HHHQ5be/TokTd7li1bZgDGOagKmKuGvoB7rstdU/KbEt9///132hy/3Dgwr9OmTcvVJa0yDhAOWF922WVWZS5VS2cHeYrxkFKVsTzNV+MXX3zRbvYoAIMnlvfD1KlTHSWkqRJ5wgknWNXBHXfcMWPzDjnkECut/uijjybt89NPP1kZ9uuvv94gWE0KxEkBwW+cZlPXIgVipsAzzzxjFZHatWvnKA1KozQzJXP5Qj799NPdkCFDzLNHxam9997bSkcDGzfccIN74okn3AEHHGAlnffZZx93zDHHlJTYpd9+++3njjjiCAMKHo3PmDHDde7c2arNVatWzd199902Ht4xxvnPf/5jXkpsat26tUEVxz/77LPu999/N5CYPn26u+mmm+xvVNEDuvbff397LI0X9OGHH7Z/t2nTxgHNePKovgck0l5++WUHmPBa+FF9IvxyHN5AKlkdeOCB9m/OP2LECLMZbyO6jB492n6wj8p5aAEkcS177rmnaZUMfjPVDzvwrqI/AHnFFVc4HpmfffbZVtnqsMMOc0899ZRdV3Bcy5YtTYv69etbn59//tkq+gGXXDuefcAsaNdee62NMWHCBKsURxnsPn36OMY5+OCD3eGHH+66devm7r33XvtZe+21Xe/eve2G6fbbb7drpmQ2nvPrrrvOxt9kk01s/plD4JK5SmYH83DVVVe56tWrm9f96quvzvpdFtaYQjOsL+aNMBmeanB9VapUsfXKesHLf9ppp5nNt912m5s8ebLZ8PXXX1uFRqqFnXPOObY+uQbW08yZMzNe859//rnbeuutHe8v1jzvLWAae1jbW221lY2NpxvNWXsqUpL1tKtDhBUQ/EZ4cmSaFKjsCuDh7Nmzpxs8eLDDk5jY8HbhkWvcuLEB0M0332xQQ/jBueeea/2AL2CCsAkABtAEAumDtxGvHkACOK+xxhrutddeczzyBaq23HJLg1zgu2vXrvYDdG222WZmCiEYwFavXr0MnLBnp512stcAGiAtAMv777/fnXXWWfa4GuAFaoAgoBUAxJvHeWgAx6hRo1yHDh1KLjkMv4zNtey7774G0QAndvbr18+gF7DkEfi2225r3k7CD1q0aGEltfEcA3+LFy82mMJ7mAx+M9HvrbfeKvG+A5tAP3A2ZswYgzO0fOCBBwxC0RKdL7zwQvPeA20TJ04sufYzzzzTbjK4uSGsA9AM2oMPPmjzBgBzUwHcMz76AP7cUBAec+WVVxqccl7KhvOb8YKwhwULFtg8U/4ZyGNOaEuXLjUdmINEO5ibo48+2tYV64Z1ETRuwhg/sWEv6ytoYfgFKLGXGwHWC/0fe+wxuwkD2mmsE8IS8L6iETdehKZwQxCEK7DWzz//fANWwJjrzmTOWPOsS24KvvzyS9OR+WD9csPH2txll13shiDQHW1ZS2pSIC4KCH7jMpO6DikQQwUAuMsvv9zg4Pjjjy91hcAewPPee++ZF5FHtIDf22+/bY/cgV+8kHx5A4V4MwEWYAQQ+/bbbw1+ebwLIBI/iWe3bdu2BnB4IhmL/gALsIktwC9QjacO2GM84AHoxqv6ySefmLcXUMKDhycN+MQ7B2gRq4mH88033zTgA5Swk7KnCxcutOOBfgAnaGH4xYvNo25+OB+wzvUA+Y0aNTKb8PYCMYMGDXLHHnus2Qz4ERuK15GbATx/eBrTwW86/YijxRP7wgsvGEwDpTQ8kRdccEFJ2APXzTUSs4q3Hm8j4IWGaMc4gDjxpYSycIMBoAWN14FP1gIwSIgJP6eeeqpBJOdmbtCWmyQgd+TIkTbOX3/9VQK/wCs3DpwHzyc3TIRFBPCbyo5UYQ9cD57+xAbgh0MQAvjlZoGbFuYNLz064d0/8sgj7caKucFubha4AeCmiutlPdLwQnfv3r0ETrlO4n15ioGnPYDfdHOGzttvv73dhPH+4clFKvhlXrEp8UYshh81uqRKpoDgt5JNuC5XChSTAoGXC28cHlYaj2eBYiAAiAMSApgBvnj8zTF8YQO/QOncuXPNwwg8ABmAMBAAbAbwS8wroQfE1QKJPB4HLAgNwOsIZDdo0KAEfsOAFoZf4BUYAT6BYGAHqAJYA8DlOgjBGDdunNnHI/cg7hW7Nt1007Twy2NvIB+AwfscNEAQwOM314kejMf142kFEIHwoLVv394AMh38ptOPm44ddtjBhsMLyc0C3tZE+OWx+lFHHWXxqccdd5zp/uOPP7pdd93Vwh2CaweIiWvF/oEDB66yVNGYxs0IgMiccD00vJTctODRBQKDBnBjT+D55eYHjzs3PRwbzEEAv6nsSAW/hCOgbWIDqpnDoAXwy3rlvMF6BuAJueF1bhbwMI8dO9Z+80SAOQR+8e7jDQZSmfNgAx5eXNYo/+cpQgC/6eaMmzi83EGMcBCbjQaEhXAjiD1oipcd8Bb8FtOnpmzNRAHBbyYq6RgpIAUKosCKFSsM7ogd5cuffwMvNGJMgS9AFSAAqogD5ksciAKCM4VfvKYABFAGdAGNgBDnBLR4HI3nOez5xQuJ54wWwC+ePR7v49W95pprzHsJbBBugIeR0AD+VrduXYv15LE9YBHebJUJ/AJDhDlw3cALHmK8vYAT14ANtCBWGuhmRz+gireSmwps5ZE7oFZe+CW0gLATwAs7AGwe1f/yyy8W3oD3He82HmigipsHHs9z48L/ueEIX3s6+MVjG8Te4ukNQgQItcBDys0F58Kbjd5cI32AuAB+AT7CJLAHb3gwf5nAL/YSdrHNNtuUvBcAcEIDEluwGS0Rfrlewi2IM+YmBTt5WsHNEuEQhKhws4TXn5s91iXwy/uA9cf8oR3xtwA56wwdgGRu7DKBX9YNOgTZNYKnJdzccUPCOGiEboRGMI+818LXXZAPA51UCuRQAcFvDsXUUFJACuReAeIwSckEKNCAAx4Z45EiTAHwAnKDFoRI8Hc27STzggFKgEXg+WUzGA3IBtDwYBKagNeX44AOvHSM9frrr9uj+UT4DQASYABwGQtbsQOgBtjw6OGJpOHhBNTwfoYBMHjEnxj2kJjqDC8mMdHBeQjBCNK/AUWAKd5nII9GHDHgieeUFsTVpkrDlal+QegA14p2XB/nIASEeaMxT0EISzCHXDs3E+Fr/+qrryw8I5nnF1jnRifYQEdIyZQpU9ycOXNMQ9YHIS3cZNAILeDGhXho4BdvL15WbnK4WQBmuWFgfaEt4B54fhPtYFwgO/DMBmuNOWddJDbicIkfD1pYY0I+uAbmjUZYAR5xvK7ANToBmwA6nmJ04iYlvMbpx/oHjANPPrBa1pyx3rnBCMJPGIeQHuYBezgnx+Axx6sNTHNDhXZqUiBOCgh+4zSbuhYpEGMFABK8inh/2RkfbsTD8uVNrCyPv7NpeNCIFwaa+JIntjTY2Q60AQsAWTa73elH+AOAG4Yg7MKzy+YlvLMAtk8jnpXzcA2AXCaN42vVqpXT3K3MDY/zE23AA0wWjaCIAvPETQDxtpnam8k1hY9hfDRPVpyBMAGyTuA5J3QELyzrBuArqwG6hMXkolgG80bGhWCDGedGQ54SsBbZ4IaHlzAH4npZ16laEB7BOg2HWpR1PeHXWa9Bvt9gTXK9nJenC8HTlmzG1LFSIMoKCH6jPDuyTQpIgbwrEMAv8Y1q8VYArzpefG6igpaYWaJQCgDWxOIGTwawI5ziL5Vd3EjhscXTTQhDrhrgTWYQPMPc2KhJgTgpIPiN02zqWqSAFMhaAbIe4M0LNlRlPYA6FJUCeKMJy/j+++8NGsl8EJWGR5i4YAq44B1nM2AmTweAeuKWgzR7ubgeNpFy7nRe51ycR2NIgUIoIPgthOo6pxSQAlJACkgBKSAFpEBBFBD8FkR2nVQKSAEpIAWkgBSQAlKgEAoIfguhus4pBaSAFJACUkAKSAEpUBAF/g8jZSZkAL2zpAAAAABJRU5ErkJggg==",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "linker.training.estimate_probability_two_random_records_match(\n",
+ " [\n",
+ " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n",
+ " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n",
+ " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n",
+ " ],\n",
+ " recall=0.6,\n",
+ ")"
]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "linker.match_weights_chart()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "e9b076af-b956-4e85-abfa-5c45d92a3cac",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
- "config": {
- "view": {
- "continuousHeight": 300,
- "continuousWidth": 400
- }
- },
- "data": {
- "values": [
- {
- "cum_prop": 0.044465973348096204,
- "match_probability": 0.99988,
- "match_weight": 13.08,
- "prop": 0.0006920004745146111
- },
- {
- "cum_prop": 0.045513859780932614,
- "match_probability": 0.99989,
- "match_weight": 13.22,
- "prop": 0.001047886432836411
- },
- {
- "cum_prop": 0.0464233461188661,
- "match_probability": 0.9999,
- "match_weight": 13.36,
- "prop": 0.0009094863379334888
- },
- {
- "cum_prop": 0.04790620427854027,
- "match_probability": 0.99991,
- "match_weight": 13.52,
- "prop": 0.0014828581596741666
- },
- {
- "cum_prop": 0.049369290996085446,
- "match_probability": 0.99992,
- "match_weight": 13.7,
- "prop": 0.0014630867175451777
- },
- {
- "cum_prop": 0.05108940646130748,
- "match_probability": 0.99993,
- "match_weight": 13.91,
- "prop": 0.0017201154652220333
- },
- {
- "cum_prop": 0.05304677923207738,
- "match_probability": 0.99994,
- "match_weight": 14.15,
- "prop": 0.0019573727707699
- },
- {
- "cum_prop": 0.05557752382458796,
- "match_probability": 0.99995,
- "match_weight": 14.44,
- "prop": 0.0025307445925105776
- },
- {
- "cum_prop": 0.05864209735458124,
- "match_probability": 0.99996,
- "match_weight": 14.8,
- "prop": 0.0030645735299932777
- },
- {
- "cum_prop": 0.06285341452805587,
- "match_probability": 0.99997,
- "match_weight": 15.29,
- "prop": 0.004211317173474633
- },
- {
- "cum_prop": 0.07068290561113547,
- "match_probability": 0.99998,
- "match_weight": 16.02,
- "prop": 0.0078294910830796
- },
- {
- "cum_prop": 0.08849697496935445,
- "match_probability": 0.99999,
- "match_weight": 17.61,
- "prop": 0.017814069358218988
- },
- {
- "cum_prop": 0.000039542884257977775,
- "match_probability": 0.00014,
- "match_weight": -12.85,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.00009885721064494443,
- "match_probability": 0.00138,
- "match_weight": -9.5,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.00011862865277393331,
- "match_probability": 0.00289,
- "match_weight": -8.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0001384000949029222,
- "match_probability": 0.00299,
- "match_weight": -8.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00015817153703191107,
- "match_probability": 0.00427,
- "match_weight": -7.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00017794297916089996,
- "match_probability": 0.00468,
- "match_weight": -7.73,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00019771442128988884,
- "match_probability": 0.00576,
- "match_weight": -7.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00021748586341887772,
- "match_probability": 0.00736,
- "match_weight": -7.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0002372573055478666,
- "match_probability": 0.00755,
- "match_weight": -7.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0002768001898058444,
- "match_probability": 0.0081,
- "match_weight": -6.94,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.00029657163193483327,
- "match_probability": 0.01017,
- "match_weight": -6.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00031634307406382215,
- "match_probability": 0.01075,
- "match_weight": -6.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00033611451619281103,
- "match_probability": 0.01252,
- "match_weight": -6.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0003558859583217999,
- "match_probability": 0.01304,
- "match_weight": -6.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0003756574004507888,
- "match_probability": 0.01345,
- "match_weight": -6.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0003954288425797777,
- "match_probability": 0.01899,
- "match_weight": -5.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00041520028470876655,
- "match_probability": 0.02144,
- "match_weight": -5.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00043497172683775544,
- "match_probability": 0.02372,
- "match_weight": -5.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0004547431689667443,
- "match_probability": 0.0249,
- "match_weight": -5.29,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0004745146110957332,
- "match_probability": 0.02731,
- "match_weight": -5.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0004942860532247221,
- "match_probability": 0.02899,
- "match_weight": -5.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0005536003796116888,
- "match_probability": 0.03062,
- "match_weight": -4.98,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.0005733718217406777,
- "match_probability": 0.03191,
- "match_weight": -4.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0005931432638696666,
- "match_probability": 0.03218,
- "match_weight": -4.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0006129147059986556,
- "match_probability": 0.03653,
- "match_weight": -4.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0006326861481276445,
- "match_probability": 0.03661,
- "match_weight": -4.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0006722290323856223,
- "match_probability": 0.03799,
- "match_weight": -4.66,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0006920004745146112,
- "match_probability": 0.03958,
- "match_weight": -4.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0007117719166436001,
- "match_probability": 0.04044,
- "match_weight": -4.57,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0007315433587725891,
- "match_probability": 0.04419,
- "match_weight": -4.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.000751314800901578,
- "match_probability": 0.04776,
- "match_weight": -4.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0007908576851595558,
- "match_probability": 0.05002,
- "match_weight": -4.25,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0008106291272885447,
- "match_probability": 0.05328,
- "match_weight": -4.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0008304005694175337,
- "match_probability": 0.05332,
- "match_weight": -4.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0008501720115465226,
- "match_probability": 0.06221,
- "match_weight": -3.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0008699434536755115,
- "match_probability": 0.06485,
- "match_weight": -3.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0008897148958045005,
- "match_probability": 0.06675,
- "match_weight": -3.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0009094863379334894,
- "match_probability": 0.06686,
- "match_weight": -3.8,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0009292577800624783,
- "match_probability": 0.07164,
- "match_weight": -3.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0009490292221914673,
- "match_probability": 0.0732,
- "match_weight": -3.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0009688006643204562,
- "match_probability": 0.07654,
- "match_weight": -3.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001008343548578434,
- "match_probability": 0.08657,
- "match_weight": -3.4,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.001028114990707423,
- "match_probability": 0.09094,
- "match_weight": -3.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0010478864328364117,
- "match_probability": 0.097,
- "match_weight": -3.22,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0010676578749654005,
- "match_probability": 0.09885,
- "match_weight": -3.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0010874293170943894,
- "match_probability": 0.11022,
- "match_weight": -3.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0011072007592233782,
- "match_probability": 0.11388,
- "match_weight": -2.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001146743643481356,
- "match_probability": 0.11561,
- "match_weight": -2.94,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.001166515085610345,
- "match_probability": 0.13167,
- "match_weight": -2.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0011862865277393337,
- "match_probability": 0.13926,
- "match_weight": -2.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0012258294119973116,
- "match_probability": 0.14956,
- "match_weight": -2.51,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0012456008541263004,
- "match_probability": 0.15963,
- "match_weight": -2.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0012653722962552892,
- "match_probability": 0.16667,
- "match_weight": -2.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001285143738384278,
- "match_probability": 0.20132,
- "match_weight": -1.99,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0013444580647712448,
- "match_probability": 0.20174,
- "match_weight": -1.98,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.0013642295069002336,
- "match_probability": 0.21995,
- "match_weight": -1.83,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0014037723911582115,
- "match_probability": 0.22577,
- "match_weight": -1.78,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0014433152754161893,
- "match_probability": 0.22849,
- "match_weight": -1.76,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0014630867175451782,
- "match_probability": 0.24007,
- "match_weight": -1.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001482858159674167,
- "match_probability": 0.2584,
- "match_weight": -1.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0015026296018031558,
- "match_probability": 0.26376,
- "match_weight": -1.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0015224010439321446,
- "match_probability": 0.29225,
- "match_weight": -1.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0015421724860611335,
- "match_probability": 0.29476,
- "match_weight": -1.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0015619439281901223,
- "match_probability": 0.29638,
- "match_weight": -1.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0015817153703191111,
- "match_probability": 0.29739,
- "match_weight": -1.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0016014868124481,
- "match_probability": 0.30885,
- "match_weight": -1.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0016212582545770888,
- "match_probability": 0.31241,
- "match_weight": -1.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0016410296967060776,
- "match_probability": 0.32152,
- "match_weight": -1.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0016608011388350664,
- "match_probability": 0.33986,
- "match_weight": -0.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0016805725809640553,
- "match_probability": 0.34871,
- "match_weight": -0.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001700344023093044,
- "match_probability": 0.35131,
- "match_weight": -0.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001720115465222033,
- "match_probability": 0.35322,
- "match_weight": -0.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0017398869073510217,
- "match_probability": 0.35609,
- "match_weight": -0.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0017596583494800106,
- "match_probability": 0.3618,
- "match_weight": -0.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0017794297916089994,
- "match_probability": 0.3732,
- "match_weight": -0.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0017992012337379882,
- "match_probability": 0.37942,
- "match_weight": -0.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001818972675866977,
- "match_probability": 0.38254,
- "match_weight": -0.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0018387441179959659,
- "match_probability": 0.38719,
- "match_weight": -0.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0018585155601249547,
- "match_probability": 0.39491,
- "match_weight": -0.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0018782870022539435,
- "match_probability": 0.39585,
- "match_weight": -0.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0018980584443829324,
- "match_probability": 0.40582,
- "match_weight": -0.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0019178298865119212,
- "match_probability": 0.41491,
- "match_weight": -0.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00193760132864091,
- "match_probability": 0.42367,
- "match_weight": -0.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001957372770769899,
- "match_probability": 0.43094,
- "match_weight": -0.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.001977144212898888,
- "match_probability": 0.4477,
- "match_weight": -0.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0019969156550278767,
- "match_probability": 0.45241,
- "match_weight": -0.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0020166870971568655,
- "match_probability": 0.45261,
- "match_weight": -0.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0020364585392858544,
- "match_probability": 0.46716,
- "match_weight": -0.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002056229981414843,
- "match_probability": 0.47114,
- "match_weight": -0.17,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002076001423543832,
- "match_probability": 0.4762,
- "match_weight": -0.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002095772865672821,
- "match_probability": 0.47977,
- "match_weight": -0.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0021155443078018097,
- "match_probability": 0.48659,
- "match_weight": -0.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0021353157499307985,
- "match_probability": 0.4927,
- "match_weight": -0.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0021550871920597873,
- "match_probability": 0.50485,
- "match_weight": 0.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002174858634188776,
- "match_probability": 0.50816,
- "match_weight": 0.05,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002194630076317765,
- "match_probability": 0.52312,
- "match_weight": 0.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002214401518446754,
- "match_probability": 0.54292,
- "match_weight": 0.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0022341729605757426,
- "match_probability": 0.54317,
- "match_weight": 0.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0022539444027047315,
- "match_probability": 0.55731,
- "match_weight": 0.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002313258729091698,
- "match_probability": 0.55824,
- "match_weight": 0.34,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.0023330301712206868,
- "match_probability": 0.56114,
- "match_weight": 0.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0023528016133496756,
- "match_probability": 0.58298,
- "match_weight": 0.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0023923444976076532,
- "match_probability": 0.59084,
- "match_weight": 0.53,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.002412115939736642,
- "match_probability": 0.59318,
- "match_weight": 0.54,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002431887381865631,
- "match_probability": 0.6,
- "match_weight": 0.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0024516588239946197,
- "match_probability": 0.60702,
- "match_weight": 0.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0024714302661236085,
- "match_probability": 0.60788,
- "match_weight": 0.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0024912017082525974,
- "match_probability": 0.61225,
- "match_weight": 0.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002510973150381586,
- "match_probability": 0.61797,
- "match_weight": 0.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002530744592510575,
- "match_probability": 0.62072,
- "match_weight": 0.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002550516034639564,
- "match_probability": 0.62199,
- "match_weight": 0.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0025702874767685527,
- "match_probability": 0.62573,
- "match_weight": 0.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0025900589188975415,
- "match_probability": 0.63318,
- "match_weight": 0.79,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002629601803155519,
- "match_probability": 0.64007,
- "match_weight": 0.83,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.002649373245284508,
- "match_probability": 0.64653,
- "match_weight": 0.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0029261734350903524,
- "match_probability": 0.65464,
- "match_weight": 0.92,
- "prop": 0.00027680018980584444
- },
- {
- "cum_prop": 0.0029459448772193413,
- "match_probability": 0.65954,
- "match_weight": 0.95,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00296571631934833,
- "match_probability": 0.66939,
- "match_weight": 1.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.002985487761477319,
- "match_probability": 0.67887,
- "match_weight": 1.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0030052592036063077,
- "match_probability": 0.67945,
- "match_weight": 1.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0030250306457352966,
- "match_probability": 0.68099,
- "match_weight": 1.09,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0030448020878642854,
- "match_probability": 0.68445,
- "match_weight": 1.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003084344972122263,
- "match_probability": 0.68527,
- "match_weight": 1.12,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.003104116414251252,
- "match_probability": 0.68561,
- "match_weight": 1.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0031238878563802407,
- "match_probability": 0.69065,
- "match_weight": 1.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0031436592985092295,
- "match_probability": 0.69213,
- "match_weight": 1.17,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0031634307406382184,
- "match_probability": 0.69612,
- "match_weight": 1.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003183202182767207,
- "match_probability": 0.7016,
- "match_weight": 1.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003202973624896196,
- "match_probability": 0.70173,
- "match_weight": 1.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003222745067025185,
- "match_probability": 0.70567,
- "match_weight": 1.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0032425165091541737,
- "match_probability": 0.70696,
- "match_weight": 1.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0032622879512831625,
- "match_probability": 0.70932,
- "match_weight": 1.29,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0032820593934121513,
- "match_probability": 0.70989,
- "match_weight": 1.29,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00330183083554114,
- "match_probability": 0.72092,
- "match_weight": 1.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003321602277670129,
- "match_probability": 0.72923,
- "match_weight": 1.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003341373719799118,
- "match_probability": 0.73507,
- "match_weight": 1.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0033611451619281066,
- "match_probability": 0.73659,
- "match_weight": 1.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0033809166040570954,
- "match_probability": 0.73869,
- "match_weight": 1.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0034006880461860843,
- "match_probability": 0.73939,
- "match_weight": 1.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003420459488315073,
- "match_probability": 0.74069,
- "match_weight": 1.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003440230930444062,
- "match_probability": 0.74147,
- "match_weight": 1.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0034600023725730508,
- "match_probability": 0.74214,
- "match_weight": 1.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0034797738147020396,
- "match_probability": 0.74235,
- "match_weight": 1.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0034995452568310284,
- "match_probability": 0.74281,
- "match_weight": 1.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0035193166989600172,
- "match_probability": 0.74584,
- "match_weight": 1.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003539088141089006,
- "match_probability": 0.74876,
- "match_weight": 1.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003558859583217995,
- "match_probability": 0.74983,
- "match_weight": 1.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0035984024674759725,
- "match_probability": 0.75027,
- "match_weight": 1.59,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0036181739096049614,
- "match_probability": 0.75162,
- "match_weight": 1.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00363794535173395,
- "match_probability": 0.75371,
- "match_weight": 1.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003677488235991928,
- "match_probability": 0.75716,
- "match_weight": 1.64,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0036972596781209167,
- "match_probability": 0.75822,
- "match_weight": 1.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0037170311202499055,
- "match_probability": 0.7591,
- "match_weight": 1.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0037368025623788943,
- "match_probability": 0.76512,
- "match_weight": 1.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003756574004507883,
- "match_probability": 0.77503,
- "match_weight": 1.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003776345446636872,
- "match_probability": 0.77712,
- "match_weight": 1.8,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003796116888765861,
- "match_probability": 0.77885,
- "match_weight": 1.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0038158883308948496,
- "match_probability": 0.78515,
- "match_weight": 1.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0038356597730238385,
- "match_probability": 0.78533,
- "match_weight": 1.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0038554312151528273,
- "match_probability": 0.7859,
- "match_weight": 1.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003875202657281816,
- "match_probability": 0.7891,
- "match_weight": 1.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003894974099410805,
- "match_probability": 0.78988,
- "match_weight": 1.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.003934516983668783,
- "match_probability": 0.79065,
- "match_weight": 1.92,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0046067460160544044,
- "match_probability": 0.79127,
- "match_weight": 1.92,
- "prop": 0.0006722290323856222
- },
- {
- "cum_prop": 0.004626517458183393,
- "match_probability": 0.79143,
- "match_weight": 1.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004646288900312382,
- "match_probability": 0.79435,
- "match_weight": 1.95,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004666060342441371,
- "match_probability": 0.80054,
- "match_weight": 2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00468583178457036,
- "match_probability": 0.80297,
- "match_weight": 2.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004705603226699349,
- "match_probability": 0.80359,
- "match_weight": 2.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004725374668828337,
- "match_probability": 0.8049,
- "match_weight": 2.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004764917553086315,
- "match_probability": 0.80873,
- "match_weight": 2.08,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.004784688995215304,
- "match_probability": 0.80972,
- "match_weight": 2.09,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004804460437344293,
- "match_probability": 0.81227,
- "match_weight": 2.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0048242318794732815,
- "match_probability": 0.8137,
- "match_weight": 2.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00484400332160227,
- "match_probability": 0.81873,
- "match_weight": 2.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004863774763731259,
- "match_probability": 0.82443,
- "match_weight": 2.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004883546205860248,
- "match_probability": 0.82464,
- "match_weight": 2.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004903317647989237,
- "match_probability": 0.83118,
- "match_weight": 2.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004923089090118226,
- "match_probability": 0.83157,
- "match_weight": 2.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0049428605322472145,
- "match_probability": 0.83649,
- "match_weight": 2.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004962631974376203,
- "match_probability": 0.83966,
- "match_weight": 2.39,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.004982403416505192,
- "match_probability": 0.83979,
- "match_weight": 2.39,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005002174858634181,
- "match_probability": 0.84311,
- "match_weight": 2.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00502194630076317,
- "match_probability": 0.84363,
- "match_weight": 2.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005041717742892159,
- "match_probability": 0.84466,
- "match_weight": 2.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0050614891850211475,
- "match_probability": 0.84597,
- "match_weight": 2.46,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005081260627150136,
- "match_probability": 0.84627,
- "match_weight": 2.46,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005101032069279125,
- "match_probability": 0.84709,
- "match_weight": 2.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005120803511408114,
- "match_probability": 0.84721,
- "match_weight": 2.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005140574953537103,
- "match_probability": 0.85097,
- "match_weight": 2.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005160346395666092,
- "match_probability": 0.85419,
- "match_weight": 2.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00518011783779508,
- "match_probability": 0.85558,
- "match_weight": 2.57,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005199889279924069,
- "match_probability": 0.85816,
- "match_weight": 2.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005219660722053058,
- "match_probability": 0.85956,
- "match_weight": 2.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005239432164182047,
- "match_probability": 0.85989,
- "match_weight": 2.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005259203606311036,
- "match_probability": 0.8618,
- "match_weight": 2.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0052789750484400245,
- "match_probability": 0.86199,
- "match_weight": 2.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005298746490569013,
- "match_probability": 0.86278,
- "match_weight": 2.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005318517932698002,
- "match_probability": 0.86409,
- "match_weight": 2.67,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005338289374826991,
- "match_probability": 0.86522,
- "match_weight": 2.68,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00535806081695598,
- "match_probability": 0.86646,
- "match_weight": 2.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005377832259084969,
- "match_probability": 0.86776,
- "match_weight": 2.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0053976037012139575,
- "match_probability": 0.86989,
- "match_weight": 2.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005417375143342946,
- "match_probability": 0.87035,
- "match_weight": 2.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005437146585471935,
- "match_probability": 0.87067,
- "match_weight": 2.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005456918027600924,
- "match_probability": 0.87221,
- "match_weight": 2.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005476689469729913,
- "match_probability": 0.87772,
- "match_weight": 2.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005496460911858902,
- "match_probability": 0.8782,
- "match_weight": 2.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0055162323539878905,
- "match_probability": 0.87898,
- "match_weight": 2.86,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005536003796116879,
- "match_probability": 0.87964,
- "match_weight": 2.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005555775238245868,
- "match_probability": 0.8805,
- "match_weight": 2.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005575546680374857,
- "match_probability": 0.88124,
- "match_weight": 2.89,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005595318122503846,
- "match_probability": 0.88201,
- "match_weight": 2.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005615089564632835,
- "match_probability": 0.88271,
- "match_weight": 2.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005634861006761823,
- "match_probability": 0.88302,
- "match_weight": 2.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005654632448890812,
- "match_probability": 0.88768,
- "match_weight": 2.98,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00569417533314879,
- "match_probability": 0.88911,
- "match_weight": 3,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.005713946775277779,
- "match_probability": 0.88922,
- "match_weight": 3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0057337182174067676,
- "match_probability": 0.89042,
- "match_weight": 3.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005753489659535756,
- "match_probability": 0.89194,
- "match_weight": 3.05,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005773261101664745,
- "match_probability": 0.89247,
- "match_weight": 3.05,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005793032543793734,
- "match_probability": 0.89352,
- "match_weight": 3.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005812803985922723,
- "match_probability": 0.89534,
- "match_weight": 3.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005832575428051712,
- "match_probability": 0.8955,
- "match_weight": 3.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0058523468701807005,
- "match_probability": 0.89596,
- "match_weight": 3.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005872118312309689,
- "match_probability": 0.89764,
- "match_weight": 3.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005891889754438678,
- "match_probability": 0.89852,
- "match_weight": 3.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005911661196567667,
- "match_probability": 0.9006,
- "match_weight": 3.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005931432638696656,
- "match_probability": 0.90137,
- "match_weight": 3.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005951204080825645,
- "match_probability": 0.90162,
- "match_weight": 3.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0059709755229546335,
- "match_probability": 0.90296,
- "match_weight": 3.22,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.005990746965083622,
- "match_probability": 0.90409,
- "match_weight": 3.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006010518407212611,
- "match_probability": 0.90593,
- "match_weight": 3.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0060302898493416,
- "match_probability": 0.90663,
- "match_weight": 3.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006050061291470589,
- "match_probability": 0.90768,
- "match_weight": 3.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006069832733599578,
- "match_probability": 0.90861,
- "match_weight": 3.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0060896041757285664,
- "match_probability": 0.90862,
- "match_weight": 3.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006109375617857555,
- "match_probability": 0.90882,
- "match_weight": 3.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006129147059986544,
- "match_probability": 0.91009,
- "match_weight": 3.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006148918502115533,
- "match_probability": 0.91017,
- "match_weight": 3.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006168689944244522,
- "match_probability": 0.91055,
- "match_weight": 3.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006188461386373511,
- "match_probability": 0.91057,
- "match_weight": 3.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006208232828502499,
- "match_probability": 0.91075,
- "match_weight": 3.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006228004270631488,
- "match_probability": 0.91253,
- "match_weight": 3.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006247775712760477,
- "match_probability": 0.91255,
- "match_weight": 3.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006267547154889466,
- "match_probability": 0.91267,
- "match_weight": 3.39,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006287318597018455,
- "match_probability": 0.91319,
- "match_weight": 3.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0063070900391474435,
- "match_probability": 0.91426,
- "match_weight": 3.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006326861481276432,
- "match_probability": 0.91466,
- "match_weight": 3.42,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006346632923405421,
- "match_probability": 0.91537,
- "match_weight": 3.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00636640436553441,
- "match_probability": 0.91548,
- "match_weight": 3.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006386175807663399,
- "match_probability": 0.91582,
- "match_weight": 3.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006405947249792388,
- "match_probability": 0.91672,
- "match_weight": 3.46,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0064257186919213765,
- "match_probability": 0.91863,
- "match_weight": 3.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006445490134050365,
- "match_probability": 0.92036,
- "match_weight": 3.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006465261576179354,
- "match_probability": 0.92038,
- "match_weight": 3.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006485033018308343,
- "match_probability": 0.92043,
- "match_weight": 3.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006504804460437332,
- "match_probability": 0.92072,
- "match_weight": 3.54,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006524575902566321,
- "match_probability": 0.92273,
- "match_weight": 3.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0065443473446953095,
- "match_probability": 0.92286,
- "match_weight": 3.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006564118786824298,
- "match_probability": 0.92329,
- "match_weight": 3.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006583890228953287,
- "match_probability": 0.92341,
- "match_weight": 3.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006603661671082276,
- "match_probability": 0.92417,
- "match_weight": 3.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006623433113211265,
- "match_probability": 0.92448,
- "match_weight": 3.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006643204555340254,
- "match_probability": 0.92467,
- "match_weight": 3.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006662975997469242,
- "match_probability": 0.92468,
- "match_weight": 3.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006682747439598231,
- "match_probability": 0.92558,
- "match_weight": 3.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00670251888172722,
- "match_probability": 0.92577,
- "match_weight": 3.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006722290323856209,
- "match_probability": 0.9264,
- "match_weight": 3.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006742061765985198,
- "match_probability": 0.92772,
- "match_weight": 3.68,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0067618332081141866,
- "match_probability": 0.92883,
- "match_weight": 3.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006781604650243175,
- "match_probability": 0.9289,
- "match_weight": 3.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006801376092372164,
- "match_probability": 0.92978,
- "match_weight": 3.73,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006821147534501153,
- "match_probability": 0.93075,
- "match_weight": 3.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006840918976630142,
- "match_probability": 0.93146,
- "match_weight": 3.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006860690418759131,
- "match_probability": 0.93189,
- "match_weight": 3.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0068804618608881195,
- "match_probability": 0.93234,
- "match_weight": 3.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006900233303017108,
- "match_probability": 0.9333,
- "match_weight": 3.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006920004745146097,
- "match_probability": 0.93372,
- "match_weight": 3.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006939776187275086,
- "match_probability": 0.93396,
- "match_weight": 3.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006959547629404075,
- "match_probability": 0.93504,
- "match_weight": 3.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.006979319071533064,
- "match_probability": 0.93594,
- "match_weight": 3.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0069990905136620525,
- "match_probability": 0.93607,
- "match_weight": 3.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007018861955791041,
- "match_probability": 0.93675,
- "match_weight": 3.89,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00703863339792003,
- "match_probability": 0.93743,
- "match_weight": 3.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007058404840049019,
- "match_probability": 0.93777,
- "match_weight": 3.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007078176282178008,
- "match_probability": 0.93824,
- "match_weight": 3.93,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0071177191664359854,
- "match_probability": 0.94016,
- "match_weight": 3.97,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.007137490608564974,
- "match_probability": 0.9413,
- "match_weight": 4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007157262050693963,
- "match_probability": 0.94144,
- "match_weight": 4.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007177033492822952,
- "match_probability": 0.9416,
- "match_weight": 4.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00721657637708093,
- "match_probability": 0.9424,
- "match_weight": 4.03,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.007236347819209918,
- "match_probability": 0.94242,
- "match_weight": 4.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007256119261338907,
- "match_probability": 0.94328,
- "match_weight": 4.06,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007275890703467896,
- "match_probability": 0.94369,
- "match_weight": 4.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007295662145596885,
- "match_probability": 0.94377,
- "match_weight": 4.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007315433587725874,
- "match_probability": 0.9439,
- "match_weight": 4.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007354976471983851,
- "match_probability": 0.94563,
- "match_weight": 4.12,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.00737474791411284,
- "match_probability": 0.94565,
- "match_weight": 4.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007394519356241829,
- "match_probability": 0.94732,
- "match_weight": 4.17,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007414290798370818,
- "match_probability": 0.94755,
- "match_weight": 4.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007434062240499807,
- "match_probability": 0.94798,
- "match_weight": 4.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0074538336826287955,
- "match_probability": 0.94799,
- "match_weight": 4.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007473605124757784,
- "match_probability": 0.94811,
- "match_weight": 4.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007493376566886773,
- "match_probability": 0.94831,
- "match_weight": 4.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007513148009015762,
- "match_probability": 0.94833,
- "match_weight": 4.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007532919451144751,
- "match_probability": 0.9484,
- "match_weight": 4.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00755269089327374,
- "match_probability": 0.94856,
- "match_weight": 4.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007592233777531717,
- "match_probability": 0.94963,
- "match_weight": 4.24,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.007612005219660706,
- "match_probability": 0.94968,
- "match_weight": 4.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007631776661789695,
- "match_probability": 0.94993,
- "match_weight": 4.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007671319546047673,
- "match_probability": 0.95005,
- "match_weight": 4.25,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.007691090988176661,
- "match_probability": 0.9504,
- "match_weight": 4.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00771086243030565,
- "match_probability": 0.95075,
- "match_weight": 4.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007730633872434639,
- "match_probability": 0.95097,
- "match_weight": 4.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007750405314563628,
- "match_probability": 0.95155,
- "match_weight": 4.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007770176756692617,
- "match_probability": 0.9529,
- "match_weight": 4.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0077899481988216055,
- "match_probability": 0.953,
- "match_weight": 4.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007809719640950594,
- "match_probability": 0.9535,
- "match_weight": 4.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007829491083079584,
- "match_probability": 0.95376,
- "match_weight": 4.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007849262525208574,
- "match_probability": 0.95464,
- "match_weight": 4.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007869033967337563,
- "match_probability": 0.95468,
- "match_weight": 4.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007888805409466553,
- "match_probability": 0.95489,
- "match_weight": 4.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007908576851595543,
- "match_probability": 0.95615,
- "match_weight": 4.45,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007928348293724533,
- "match_probability": 0.95628,
- "match_weight": 4.45,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007948119735853522,
- "match_probability": 0.95695,
- "match_weight": 4.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.007967891177982512,
- "match_probability": 0.95709,
- "match_weight": 4.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00800743406224049,
- "match_probability": 0.95717,
- "match_weight": 4.48,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.00802720550436948,
- "match_probability": 0.95754,
- "match_weight": 4.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008046976946498469,
- "match_probability": 0.9583,
- "match_weight": 4.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008066748388627459,
- "match_probability": 0.95894,
- "match_weight": 4.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008086519830756448,
- "match_probability": 0.95978,
- "match_weight": 4.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008106291272885438,
- "match_probability": 0.95981,
- "match_weight": 4.58,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008126062715014428,
- "match_probability": 0.96005,
- "match_weight": 4.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008145834157143417,
- "match_probability": 0.96008,
- "match_weight": 4.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008165605599272407,
- "match_probability": 0.96036,
- "match_weight": 4.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008205148483530385,
- "match_probability": 0.9606,
- "match_weight": 4.61,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.008224919925659374,
- "match_probability": 0.9607,
- "match_weight": 4.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008244691367788364,
- "match_probability": 0.96107,
- "match_weight": 4.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008264462809917354,
- "match_probability": 0.96146,
- "match_weight": 4.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008284234252046344,
- "match_probability": 0.96162,
- "match_weight": 4.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008304005694175333,
- "match_probability": 0.96179,
- "match_weight": 4.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008323777136304323,
- "match_probability": 0.96207,
- "match_weight": 4.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008343548578433313,
- "match_probability": 0.96238,
- "match_weight": 4.68,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008363320020562302,
- "match_probability": 0.96272,
- "match_weight": 4.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008383091462691292,
- "match_probability": 0.96289,
- "match_weight": 4.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008402862904820282,
- "match_probability": 0.96299,
- "match_weight": 4.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008422634346949271,
- "match_probability": 0.96321,
- "match_weight": 4.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008442405789078261,
- "match_probability": 0.96341,
- "match_weight": 4.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008481948673336239,
- "match_probability": 0.96385,
- "match_weight": 4.74,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.008501720115465228,
- "match_probability": 0.96439,
- "match_weight": 4.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008521491557594218,
- "match_probability": 0.96447,
- "match_weight": 4.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008541262999723208,
- "match_probability": 0.96492,
- "match_weight": 4.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008561034441852198,
- "match_probability": 0.96519,
- "match_weight": 4.79,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008580805883981187,
- "match_probability": 0.9654,
- "match_weight": 4.8,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008600577326110177,
- "match_probability": 0.96554,
- "match_weight": 4.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008620348768239167,
- "match_probability": 0.96559,
- "match_weight": 4.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008640120210368156,
- "match_probability": 0.96566,
- "match_weight": 4.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008659891652497146,
- "match_probability": 0.96572,
- "match_weight": 4.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008679663094626136,
- "match_probability": 0.96578,
- "match_weight": 4.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008699434536755125,
- "match_probability": 0.96615,
- "match_weight": 4.83,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008719205978884115,
- "match_probability": 0.96653,
- "match_weight": 4.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008738977421013105,
- "match_probability": 0.96726,
- "match_weight": 4.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008778520305271082,
- "match_probability": 0.96747,
- "match_weight": 4.89,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.008798291747400072,
- "match_probability": 0.96777,
- "match_weight": 4.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008818063189529062,
- "match_probability": 0.96784,
- "match_weight": 4.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008837834631658052,
- "match_probability": 0.96789,
- "match_weight": 4.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00887737751591603,
- "match_probability": 0.96822,
- "match_weight": 4.93,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.008897148958045019,
- "match_probability": 0.96858,
- "match_weight": 4.95,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008916920400174009,
- "match_probability": 0.96897,
- "match_weight": 4.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008936691842302998,
- "match_probability": 0.96898,
- "match_weight": 4.97,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008956463284431988,
- "match_probability": 0.96918,
- "match_weight": 4.97,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008976234726560978,
- "match_probability": 0.9697,
- "match_weight": 5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.008996006168689967,
- "match_probability": 0.96971,
- "match_weight": 5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009015777610818957,
- "match_probability": 0.96974,
- "match_weight": 5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009035549052947947,
- "match_probability": 0.96987,
- "match_weight": 5.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009055320495076936,
- "match_probability": 0.97015,
- "match_weight": 5.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009075091937205926,
- "match_probability": 0.97023,
- "match_weight": 5.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009114634821463904,
- "match_probability": 0.97025,
- "match_weight": 5.03,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.009134406263592893,
- "match_probability": 0.97035,
- "match_weight": 5.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009154177705721883,
- "match_probability": 0.97112,
- "match_weight": 5.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009173949147850873,
- "match_probability": 0.97156,
- "match_weight": 5.09,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009193720589979863,
- "match_probability": 0.97193,
- "match_weight": 5.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009213492032108852,
- "match_probability": 0.97204,
- "match_weight": 5.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009233263474237842,
- "match_probability": 0.97228,
- "match_weight": 5.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00927280635849582,
- "match_probability": 0.9723,
- "match_weight": 5.13,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.00929257780062481,
- "match_probability": 0.97241,
- "match_weight": 5.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009312349242753799,
- "match_probability": 0.97287,
- "match_weight": 5.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009391435011269754,
- "match_probability": 0.97307,
- "match_weight": 5.18,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.009411206453398744,
- "match_probability": 0.9733,
- "match_weight": 5.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009430977895527734,
- "match_probability": 0.97346,
- "match_weight": 5.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009450749337656723,
- "match_probability": 0.97348,
- "match_weight": 5.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009470520779785713,
- "match_probability": 0.97417,
- "match_weight": 5.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009490292221914703,
- "match_probability": 0.97453,
- "match_weight": 5.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009510063664043692,
- "match_probability": 0.97455,
- "match_weight": 5.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009529835106172682,
- "match_probability": 0.97462,
- "match_weight": 5.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009549606548301672,
- "match_probability": 0.97475,
- "match_weight": 5.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009569377990430662,
- "match_probability": 0.97539,
- "match_weight": 5.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009589149432559651,
- "match_probability": 0.97547,
- "match_weight": 5.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009608920874688641,
- "match_probability": 0.97551,
- "match_weight": 5.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00962869231681763,
- "match_probability": 0.97568,
- "match_weight": 5.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00964846375894662,
- "match_probability": 0.9764,
- "match_weight": 5.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.00966823520107561,
- "match_probability": 0.97656,
- "match_weight": 5.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009707778085333588,
- "match_probability": 0.9766,
- "match_weight": 5.38,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.009727549527462577,
- "match_probability": 0.97679,
- "match_weight": 5.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009767092411720555,
- "match_probability": 0.97681,
- "match_weight": 5.4,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.009786863853849545,
- "match_probability": 0.97686,
- "match_weight": 5.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009806635295978534,
- "match_probability": 0.97703,
- "match_weight": 5.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009826406738107524,
- "match_probability": 0.97738,
- "match_weight": 5.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009846178180236514,
- "match_probability": 0.97741,
- "match_weight": 5.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009865949622365503,
- "match_probability": 0.97744,
- "match_weight": 5.44,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009885721064494493,
- "match_probability": 0.97774,
- "match_weight": 5.46,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009905492506623483,
- "match_probability": 0.97793,
- "match_weight": 5.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009925263948752473,
- "match_probability": 0.97799,
- "match_weight": 5.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009945035390881462,
- "match_probability": 0.97807,
- "match_weight": 5.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009964806833010452,
- "match_probability": 0.97813,
- "match_weight": 5.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.009984578275139442,
- "match_probability": 0.97816,
- "match_weight": 5.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010004349717268431,
- "match_probability": 0.97818,
- "match_weight": 5.49,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010043892601526409,
- "match_probability": 0.9782,
- "match_weight": 5.49,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.010063664043655399,
- "match_probability": 0.97827,
- "match_weight": 5.49,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010083435485784388,
- "match_probability": 0.97853,
- "match_weight": 5.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010103206927913378,
- "match_probability": 0.97867,
- "match_weight": 5.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010122978370042368,
- "match_probability": 0.97869,
- "match_weight": 5.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010142749812171357,
- "match_probability": 0.97877,
- "match_weight": 5.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010162521254300347,
- "match_probability": 0.97908,
- "match_weight": 5.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010182292696429337,
- "match_probability": 0.97933,
- "match_weight": 5.57,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010202064138558327,
- "match_probability": 0.97963,
- "match_weight": 5.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010221835580687316,
- "match_probability": 0.9798,
- "match_weight": 5.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010241607022816306,
- "match_probability": 0.97984,
- "match_weight": 5.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010261378464945296,
- "match_probability": 0.9799,
- "match_weight": 5.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010300921349203273,
- "match_probability": 0.98004,
- "match_weight": 5.62,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.010320692791332263,
- "match_probability": 0.98009,
- "match_weight": 5.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010340464233461253,
- "match_probability": 0.98023,
- "match_weight": 5.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010498635770493163,
- "match_probability": 0.98035,
- "match_weight": 5.64,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.010518407212622153,
- "match_probability": 0.98045,
- "match_weight": 5.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010538178654751143,
- "match_probability": 0.98049,
- "match_weight": 5.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010557950096880132,
- "match_probability": 0.98067,
- "match_weight": 5.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010577721539009122,
- "match_probability": 0.98076,
- "match_weight": 5.67,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0106172644232671,
- "match_probability": 0.98082,
- "match_weight": 5.68,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01063703586539609,
- "match_probability": 0.98113,
- "match_weight": 5.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010656807307525079,
- "match_probability": 0.98116,
- "match_weight": 5.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010676578749654069,
- "match_probability": 0.98119,
- "match_weight": 5.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010696350191783058,
- "match_probability": 0.9813,
- "match_weight": 5.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010716121633912048,
- "match_probability": 0.98137,
- "match_weight": 5.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010735893076041038,
- "match_probability": 0.98159,
- "match_weight": 5.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010755664518170028,
- "match_probability": 0.98165,
- "match_weight": 5.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010775435960299017,
- "match_probability": 0.98184,
- "match_weight": 5.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010795207402428007,
- "match_probability": 0.98214,
- "match_weight": 5.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010814978844556997,
- "match_probability": 0.98222,
- "match_weight": 5.79,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010834750286685986,
- "match_probability": 0.98267,
- "match_weight": 5.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010854521728814976,
- "match_probability": 0.98278,
- "match_weight": 5.83,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010874293170943966,
- "match_probability": 0.98279,
- "match_weight": 5.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010894064613072955,
- "match_probability": 0.98289,
- "match_weight": 5.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010913836055201945,
- "match_probability": 0.983,
- "match_weight": 5.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010933607497330935,
- "match_probability": 0.9831,
- "match_weight": 5.86,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010953378939459925,
- "match_probability": 0.98314,
- "match_weight": 5.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010973150381588914,
- "match_probability": 0.98317,
- "match_weight": 5.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.010992921823717904,
- "match_probability": 0.98331,
- "match_weight": 5.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011012693265846894,
- "match_probability": 0.98343,
- "match_weight": 5.89,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011032464707975883,
- "match_probability": 0.98351,
- "match_weight": 5.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011052236150104873,
- "match_probability": 0.98356,
- "match_weight": 5.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011072007592233863,
- "match_probability": 0.98366,
- "match_weight": 5.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01111155047649184,
- "match_probability": 0.98368,
- "match_weight": 5.91,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01113132191862083,
- "match_probability": 0.98373,
- "match_weight": 5.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01115109336074982,
- "match_probability": 0.98379,
- "match_weight": 5.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01117086480287881,
- "match_probability": 0.98383,
- "match_weight": 5.93,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011190636245007799,
- "match_probability": 0.98396,
- "match_weight": 5.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011210407687136789,
- "match_probability": 0.98397,
- "match_weight": 5.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011230179129265778,
- "match_probability": 0.98399,
- "match_weight": 5.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011249950571394768,
- "match_probability": 0.98408,
- "match_weight": 5.95,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011269722013523758,
- "match_probability": 0.98415,
- "match_weight": 5.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011289493455652748,
- "match_probability": 0.98416,
- "match_weight": 5.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011309264897781737,
- "match_probability": 0.98421,
- "match_weight": 5.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011329036339910727,
- "match_probability": 0.98424,
- "match_weight": 5.97,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011368579224168705,
- "match_probability": 0.98425,
- "match_weight": 5.97,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.011388350666297694,
- "match_probability": 0.98438,
- "match_weight": 5.98,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011408122108426684,
- "match_probability": 0.98442,
- "match_weight": 5.98,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011427893550555674,
- "match_probability": 0.98448,
- "match_weight": 5.99,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011447664992684663,
- "match_probability": 0.98462,
- "match_weight": 6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011467436434813653,
- "match_probability": 0.98476,
- "match_weight": 6.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011487207876942643,
- "match_probability": 0.98478,
- "match_weight": 6.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011506979319071632,
- "match_probability": 0.98485,
- "match_weight": 6.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011526750761200622,
- "match_probability": 0.98495,
- "match_weight": 6.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0115662936454586,
- "match_probability": 0.98498,
- "match_weight": 6.04,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01158606508758759,
- "match_probability": 0.98506,
- "match_weight": 6.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01160583652971658,
- "match_probability": 0.98511,
- "match_weight": 6.05,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011645379413974557,
- "match_probability": 0.98513,
- "match_weight": 6.05,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.011665150856103547,
- "match_probability": 0.98522,
- "match_weight": 6.06,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011704693740361524,
- "match_probability": 0.98533,
- "match_weight": 6.07,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.011724465182490514,
- "match_probability": 0.9854,
- "match_weight": 6.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011744236624619504,
- "match_probability": 0.98548,
- "match_weight": 6.09,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011764008066748493,
- "match_probability": 0.98558,
- "match_weight": 6.09,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011783779508877483,
- "match_probability": 0.98584,
- "match_weight": 6.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011803550951006473,
- "match_probability": 0.9859,
- "match_weight": 6.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011823322393135462,
- "match_probability": 0.98594,
- "match_weight": 6.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011843093835264452,
- "match_probability": 0.98597,
- "match_weight": 6.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011862865277393442,
- "match_probability": 0.98601,
- "match_weight": 6.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011882636719522431,
- "match_probability": 0.98618,
- "match_weight": 6.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.011902408161651421,
- "match_probability": 0.98619,
- "match_weight": 6.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01192217960378041,
- "match_probability": 0.98625,
- "match_weight": 6.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0119419510459094,
- "match_probability": 0.98634,
- "match_weight": 6.17,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01196172248803839,
- "match_probability": 0.98638,
- "match_weight": 6.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01198149393016738,
- "match_probability": 0.98647,
- "match_weight": 6.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012021036814425358,
- "match_probability": 0.98656,
- "match_weight": 6.2,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.012040808256554347,
- "match_probability": 0.98658,
- "match_weight": 6.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012060579698683337,
- "match_probability": 0.98673,
- "match_weight": 6.22,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012080351140812327,
- "match_probability": 0.98683,
- "match_weight": 6.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012100122582941316,
- "match_probability": 0.98691,
- "match_weight": 6.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012119894025070306,
- "match_probability": 0.98696,
- "match_weight": 6.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012139665467199296,
- "match_probability": 0.98697,
- "match_weight": 6.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012159436909328285,
- "match_probability": 0.98698,
- "match_weight": 6.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012198979793586263,
- "match_probability": 0.98714,
- "match_weight": 6.26,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.012218751235715253,
- "match_probability": 0.98719,
- "match_weight": 6.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012238522677844242,
- "match_probability": 0.9872,
- "match_weight": 6.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012258294119973232,
- "match_probability": 0.98738,
- "match_weight": 6.29,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012278065562102222,
- "match_probability": 0.98746,
- "match_weight": 6.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012297837004231212,
- "match_probability": 0.98752,
- "match_weight": 6.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012317608446360201,
- "match_probability": 0.98753,
- "match_weight": 6.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012337379888489191,
- "match_probability": 0.98754,
- "match_weight": 6.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01235715133061818,
- "match_probability": 0.98764,
- "match_weight": 6.32,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01237692277274717,
- "match_probability": 0.98774,
- "match_weight": 6.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01239669421487616,
- "match_probability": 0.98777,
- "match_weight": 6.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01241646565700515,
- "match_probability": 0.98787,
- "match_weight": 6.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012456008541263127,
- "match_probability": 0.98788,
- "match_weight": 6.35,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.012475779983392117,
- "match_probability": 0.98795,
- "match_weight": 6.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012495551425521107,
- "match_probability": 0.98796,
- "match_weight": 6.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012515322867650096,
- "match_probability": 0.98798,
- "match_weight": 6.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012535094309779086,
- "match_probability": 0.98809,
- "match_weight": 6.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012574637194037064,
- "match_probability": 0.98823,
- "match_weight": 6.39,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.012594408636166054,
- "match_probability": 0.98828,
- "match_weight": 6.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012614180078295043,
- "match_probability": 0.9883,
- "match_weight": 6.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012633951520424033,
- "match_probability": 0.98835,
- "match_weight": 6.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012653722962553023,
- "match_probability": 0.98841,
- "match_weight": 6.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012673494404682012,
- "match_probability": 0.98846,
- "match_weight": 6.42,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012693265846811002,
- "match_probability": 0.98853,
- "match_weight": 6.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012713037288939992,
- "match_probability": 0.98876,
- "match_weight": 6.46,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01275258017319797,
- "match_probability": 0.98881,
- "match_weight": 6.47,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.012772351615326959,
- "match_probability": 0.98883,
- "match_weight": 6.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012792123057455949,
- "match_probability": 0.98889,
- "match_weight": 6.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012811894499584938,
- "match_probability": 0.98891,
- "match_weight": 6.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012831665941713928,
- "match_probability": 0.98899,
- "match_weight": 6.49,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012851437383842918,
- "match_probability": 0.98904,
- "match_weight": 6.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012871208825971907,
- "match_probability": 0.98913,
- "match_weight": 6.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012890980268100897,
- "match_probability": 0.98915,
- "match_weight": 6.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012910751710229887,
- "match_probability": 0.98916,
- "match_weight": 6.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012930523152358877,
- "match_probability": 0.98919,
- "match_weight": 6.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012950294594487866,
- "match_probability": 0.9892,
- "match_weight": 6.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012970066036616856,
- "match_probability": 0.98921,
- "match_weight": 6.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.012989837478745846,
- "match_probability": 0.98923,
- "match_weight": 6.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013009608920874835,
- "match_probability": 0.98928,
- "match_weight": 6.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013029380363003825,
- "match_probability": 0.98942,
- "match_weight": 6.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013049151805132815,
- "match_probability": 0.98944,
- "match_weight": 6.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013068923247261804,
- "match_probability": 0.9895,
- "match_weight": 6.56,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013088694689390794,
- "match_probability": 0.98952,
- "match_weight": 6.56,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013108466131519784,
- "match_probability": 0.98954,
- "match_weight": 6.56,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013128237573648774,
- "match_probability": 0.9897,
- "match_weight": 6.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01318755190003574,
- "match_probability": 0.98974,
- "match_weight": 6.59,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01320732334216473,
- "match_probability": 0.98979,
- "match_weight": 6.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01322709478429372,
- "match_probability": 0.9898,
- "match_weight": 6.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01324686622642271,
- "match_probability": 0.98982,
- "match_weight": 6.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0132666376685517,
- "match_probability": 0.98984,
- "match_weight": 6.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01328640911068069,
- "match_probability": 0.98995,
- "match_weight": 6.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013306180552809679,
- "match_probability": 0.99001,
- "match_weight": 6.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013345723437067657,
- "match_probability": 0.99002,
- "match_weight": 6.63,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.013405037763454624,
- "match_probability": 0.99009,
- "match_weight": 6.64,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.013444580647712602,
- "match_probability": 0.9901,
- "match_weight": 6.64,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.013464352089841591,
- "match_probability": 0.99011,
- "match_weight": 6.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013484123531970581,
- "match_probability": 0.99013,
- "match_weight": 6.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01350389497409957,
- "match_probability": 0.99016,
- "match_weight": 6.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01352366641622856,
- "match_probability": 0.99017,
- "match_weight": 6.65,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01354343785835755,
- "match_probability": 0.99018,
- "match_weight": 6.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013582980742615528,
- "match_probability": 0.99036,
- "match_weight": 6.68,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.013602752184744517,
- "match_probability": 0.99047,
- "match_weight": 6.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013622523626873507,
- "match_probability": 0.99048,
- "match_weight": 6.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013642295069002497,
- "match_probability": 0.99057,
- "match_weight": 6.71,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013701609395389464,
- "match_probability": 0.99066,
- "match_weight": 6.73,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.013721380837518454,
- "match_probability": 0.99067,
- "match_weight": 6.73,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013741152279647444,
- "match_probability": 0.99075,
- "match_weight": 6.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013780695163905421,
- "match_probability": 0.99082,
- "match_weight": 6.75,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.013800466606034411,
- "match_probability": 0.99083,
- "match_weight": 6.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0138202380481634,
- "match_probability": 0.99087,
- "match_weight": 6.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01384000949029239,
- "match_probability": 0.9909,
- "match_weight": 6.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01385978093242138,
- "match_probability": 0.99092,
- "match_weight": 6.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01387955237455037,
- "match_probability": 0.99094,
- "match_weight": 6.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01389932381667936,
- "match_probability": 0.99098,
- "match_weight": 6.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01391909525880835,
- "match_probability": 0.99099,
- "match_weight": 6.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.013958638143066327,
- "match_probability": 0.99107,
- "match_weight": 6.79,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.013998181027324304,
- "match_probability": 0.99117,
- "match_weight": 6.81,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014017952469453294,
- "match_probability": 0.99118,
- "match_weight": 6.81,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014037723911582284,
- "match_probability": 0.99126,
- "match_weight": 6.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014057495353711274,
- "match_probability": 0.99128,
- "match_weight": 6.83,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014077266795840263,
- "match_probability": 0.99133,
- "match_weight": 6.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014097038237969253,
- "match_probability": 0.99135,
- "match_weight": 6.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014116809680098243,
- "match_probability": 0.99137,
- "match_weight": 6.84,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014136581122227232,
- "match_probability": 0.99142,
- "match_weight": 6.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014156352564356222,
- "match_probability": 0.99145,
- "match_weight": 6.86,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014176124006485212,
- "match_probability": 0.99152,
- "match_weight": 6.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014195895448614201,
- "match_probability": 0.99157,
- "match_weight": 6.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014235438332872179,
- "match_probability": 0.99161,
- "match_weight": 6.89,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014255209775001169,
- "match_probability": 0.99164,
- "match_weight": 6.89,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014274981217130158,
- "match_probability": 0.99172,
- "match_weight": 6.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014294752659259148,
- "match_probability": 0.99176,
- "match_weight": 6.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014314524101388138,
- "match_probability": 0.99186,
- "match_weight": 6.93,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014334295543517128,
- "match_probability": 0.9919,
- "match_weight": 6.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014354066985646117,
- "match_probability": 0.99192,
- "match_weight": 6.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014373838427775107,
- "match_probability": 0.99193,
- "match_weight": 6.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014393609869904097,
- "match_probability": 0.99195,
- "match_weight": 6.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014413381312033086,
- "match_probability": 0.99201,
- "match_weight": 6.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014433152754162076,
- "match_probability": 0.99205,
- "match_weight": 6.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014472695638420054,
- "match_probability": 0.99206,
- "match_weight": 6.97,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014492467080549043,
- "match_probability": 0.99209,
- "match_weight": 6.97,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014512238522678033,
- "match_probability": 0.99213,
- "match_weight": 6.98,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01455178140693601,
- "match_probability": 0.99215,
- "match_weight": 6.98,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014571552849065,
- "match_probability": 0.99224,
- "match_weight": 7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01459132429119399,
- "match_probability": 0.99225,
- "match_weight": 7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01461109573332298,
- "match_probability": 0.9923,
- "match_weight": 7.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014650638617580957,
- "match_probability": 0.99232,
- "match_weight": 7.01,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014670410059709947,
- "match_probability": 0.99234,
- "match_weight": 7.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014690181501838937,
- "match_probability": 0.99235,
- "match_weight": 7.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014709952943967926,
- "match_probability": 0.99243,
- "match_weight": 7.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014729724386096916,
- "match_probability": 0.99245,
- "match_weight": 7.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014749495828225906,
- "match_probability": 0.99248,
- "match_weight": 7.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014769267270354896,
- "match_probability": 0.99251,
- "match_weight": 7.05,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014789038712483885,
- "match_probability": 0.99257,
- "match_weight": 7.06,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014808810154612875,
- "match_probability": 0.9926,
- "match_weight": 7.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014828581596741865,
- "match_probability": 0.99262,
- "match_weight": 7.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014868124480999842,
- "match_probability": 0.99264,
- "match_weight": 7.08,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.014887895923128832,
- "match_probability": 0.99267,
- "match_weight": 7.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014907667365257822,
- "match_probability": 0.99275,
- "match_weight": 7.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014927438807386811,
- "match_probability": 0.99279,
- "match_weight": 7.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014947210249515801,
- "match_probability": 0.99283,
- "match_weight": 7.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.014986753133773779,
- "match_probability": 0.99284,
- "match_weight": 7.12,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015006524575902768,
- "match_probability": 0.99293,
- "match_weight": 7.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015026296018031758,
- "match_probability": 0.99299,
- "match_weight": 7.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015065838902289736,
- "match_probability": 0.99302,
- "match_weight": 7.15,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015085610344418725,
- "match_probability": 0.99304,
- "match_weight": 7.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015105381786547715,
- "match_probability": 0.99315,
- "match_weight": 7.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015125153228676705,
- "match_probability": 0.99317,
- "match_weight": 7.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015144924670805695,
- "match_probability": 0.99326,
- "match_weight": 7.2,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015164696112934684,
- "match_probability": 0.99327,
- "match_weight": 7.21,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015204238997192662,
- "match_probability": 0.9933,
- "match_weight": 7.21,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015224010439321652,
- "match_probability": 0.99331,
- "match_weight": 7.21,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01526355332357963,
- "match_probability": 0.99332,
- "match_weight": 7.22,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015283324765708619,
- "match_probability": 0.99341,
- "match_weight": 7.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015303096207837609,
- "match_probability": 0.99344,
- "match_weight": 7.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015322867649966598,
- "match_probability": 0.99345,
- "match_weight": 7.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015342639092095588,
- "match_probability": 0.99348,
- "match_weight": 7.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015362410534224578,
- "match_probability": 0.99349,
- "match_weight": 7.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015382181976353567,
- "match_probability": 0.99353,
- "match_weight": 7.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015421724860611545,
- "match_probability": 0.99356,
- "match_weight": 7.27,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015441496302740535,
- "match_probability": 0.99357,
- "match_weight": 7.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015461267744869524,
- "match_probability": 0.99359,
- "match_weight": 7.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015481039186998514,
- "match_probability": 0.99361,
- "match_weight": 7.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015500810629127504,
- "match_probability": 0.99364,
- "match_weight": 7.29,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015520582071256494,
- "match_probability": 0.99373,
- "match_weight": 7.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015540353513385483,
- "match_probability": 0.99374,
- "match_weight": 7.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015560124955514473,
- "match_probability": 0.99375,
- "match_weight": 7.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01559966783977245,
- "match_probability": 0.99377,
- "match_weight": 7.32,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01561943928190144,
- "match_probability": 0.99382,
- "match_weight": 7.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01563921072403043,
- "match_probability": 0.99383,
- "match_weight": 7.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01567875360828841,
- "match_probability": 0.99387,
- "match_weight": 7.34,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015698525050417397,
- "match_probability": 0.99391,
- "match_weight": 7.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015718296492546385,
- "match_probability": 0.99393,
- "match_weight": 7.35,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015738067934675373,
- "match_probability": 0.99394,
- "match_weight": 7.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01575783937680436,
- "match_probability": 0.99396,
- "match_weight": 7.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01581715370319133,
- "match_probability": 0.99397,
- "match_weight": 7.37,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.015856696587449308,
- "match_probability": 0.99398,
- "match_weight": 7.37,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.015876468029578296,
- "match_probability": 0.99403,
- "match_weight": 7.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015896239471707284,
- "match_probability": 0.99405,
- "match_weight": 7.38,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.015935782355965263,
- "match_probability": 0.99406,
- "match_weight": 7.39,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01599509668235223,
- "match_probability": 0.99407,
- "match_weight": 7.39,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01601486812448122,
- "match_probability": 0.9941,
- "match_weight": 7.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016034639566610207,
- "match_probability": 0.99412,
- "match_weight": 7.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016074182450868186,
- "match_probability": 0.99413,
- "match_weight": 7.4,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016093953892997174,
- "match_probability": 0.99414,
- "match_weight": 7.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016113725335126162,
- "match_probability": 0.99416,
- "match_weight": 7.41,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01613349677725515,
- "match_probability": 0.99422,
- "match_weight": 7.43,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01617303966151313,
- "match_probability": 0.99423,
- "match_weight": 7.43,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016192811103642117,
- "match_probability": 0.99431,
- "match_weight": 7.45,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016212582545771105,
- "match_probability": 0.99438,
- "match_weight": 7.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016252125430029084,
- "match_probability": 0.99443,
- "match_weight": 7.48,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016271896872158072,
- "match_probability": 0.99446,
- "match_weight": 7.49,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01629166831428706,
- "match_probability": 0.99452,
- "match_weight": 7.5,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01631143975641605,
- "match_probability": 0.99454,
- "match_weight": 7.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016331211198545036,
- "match_probability": 0.99462,
- "match_weight": 7.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016350982640674024,
- "match_probability": 0.99464,
- "match_weight": 7.53,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016370754082803012,
- "match_probability": 0.99468,
- "match_weight": 7.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016390525524932,
- "match_probability": 0.99469,
- "match_weight": 7.55,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01643006840918998,
- "match_probability": 0.99476,
- "match_weight": 7.57,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01646961129344796,
- "match_probability": 0.99483,
- "match_weight": 7.59,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016489382735576947,
- "match_probability": 0.99484,
- "match_weight": 7.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016528925619834926,
- "match_probability": 0.99488,
- "match_weight": 7.6,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016548697061963914,
- "match_probability": 0.99489,
- "match_weight": 7.6,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016568468504092902,
- "match_probability": 0.99494,
- "match_weight": 7.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01658823994622189,
- "match_probability": 0.99495,
- "match_weight": 7.62,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016608011388350878,
- "match_probability": 0.99497,
- "match_weight": 7.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016627782830479866,
- "match_probability": 0.99498,
- "match_weight": 7.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016667325714737845,
- "match_probability": 0.99507,
- "match_weight": 7.66,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016706868598995825,
- "match_probability": 0.99514,
- "match_weight": 7.68,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.016726640041124813,
- "match_probability": 0.99515,
- "match_weight": 7.68,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016766182925382792,
- "match_probability": 0.99517,
- "match_weight": 7.69,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01678595436751178,
- "match_probability": 0.99519,
- "match_weight": 7.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016805725809640768,
- "match_probability": 0.99523,
- "match_weight": 7.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016825497251769756,
- "match_probability": 0.99529,
- "match_weight": 7.72,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.016845268693898744,
- "match_probability": 0.99534,
- "match_weight": 7.74,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01690458302028571,
- "match_probability": 0.99535,
- "match_weight": 7.74,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01694412590454369,
- "match_probability": 0.99536,
- "match_weight": 7.74,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01696389734667268,
- "match_probability": 0.99538,
- "match_weight": 7.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017003440230930658,
- "match_probability": 0.99539,
- "match_weight": 7.76,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.017023211673059646,
- "match_probability": 0.99541,
- "match_weight": 7.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017042983115188634,
- "match_probability": 0.99542,
- "match_weight": 7.76,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017062754557317622,
- "match_probability": 0.99543,
- "match_weight": 7.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01708252599944661,
- "match_probability": 0.99545,
- "match_weight": 7.77,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017102297441575598,
- "match_probability": 0.99546,
- "match_weight": 7.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017122068883704586,
- "match_probability": 0.99548,
- "match_weight": 7.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017161611767962565,
- "match_probability": 0.99551,
- "match_weight": 7.79,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.017181383210091553,
- "match_probability": 0.99553,
- "match_weight": 7.8,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01724069753647852,
- "match_probability": 0.99556,
- "match_weight": 7.81,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01726046897860751,
- "match_probability": 0.99558,
- "match_weight": 7.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017280240420736497,
- "match_probability": 0.99559,
- "match_weight": 7.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017300011862865484,
- "match_probability": 0.9956,
- "match_weight": 7.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017319783304994472,
- "match_probability": 0.99561,
- "match_weight": 7.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017359326189252452,
- "match_probability": 0.99562,
- "match_weight": 7.83,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01741864051563942,
- "match_probability": 0.99566,
- "match_weight": 7.84,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.017438411957768407,
- "match_probability": 0.99568,
- "match_weight": 7.85,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017477954842026387,
- "match_probability": 0.9957,
- "match_weight": 7.86,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.017497726284155374,
- "match_probability": 0.99573,
- "match_weight": 7.87,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017517497726284362,
- "match_probability": 0.99581,
- "match_weight": 7.89,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01753726916841335,
- "match_probability": 0.99583,
- "match_weight": 7.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01755704061054234,
- "match_probability": 0.99586,
- "match_weight": 7.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017576812052671326,
- "match_probability": 0.99587,
- "match_weight": 7.91,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017596583494800314,
- "match_probability": 0.99588,
- "match_weight": 7.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01765589782118728,
- "match_probability": 0.99591,
- "match_weight": 7.93,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01769544070544526,
- "match_probability": 0.99592,
- "match_weight": 7.93,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01771521214757425,
- "match_probability": 0.99594,
- "match_weight": 7.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017734983589703237,
- "match_probability": 0.99596,
- "match_weight": 7.94,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017774526473961216,
- "match_probability": 0.99598,
- "match_weight": 7.95,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.017794297916090204,
- "match_probability": 0.99606,
- "match_weight": 7.98,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017814069358219192,
- "match_probability": 0.99608,
- "match_weight": 7.99,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01783384080034818,
- "match_probability": 0.99609,
- "match_weight": 7.99,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017853612242477168,
- "match_probability": 0.99612,
- "match_weight": 8,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017873383684606156,
- "match_probability": 0.99613,
- "match_weight": 8.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.017912926568864136,
- "match_probability": 0.99614,
- "match_weight": 8.01,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.017932698010993123,
- "match_probability": 0.99615,
- "match_weight": 8.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01795246945312211,
- "match_probability": 0.99616,
- "match_weight": 8.02,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0179722408952511,
- "match_probability": 0.99619,
- "match_weight": 8.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01801178377950908,
- "match_probability": 0.9962,
- "match_weight": 8.04,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.018031555221638067,
- "match_probability": 0.99623,
- "match_weight": 8.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018071098105896046,
- "match_probability": 0.99626,
- "match_weight": 8.06,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.018110640990154026,
- "match_probability": 0.99627,
- "match_weight": 8.06,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.018130412432283013,
- "match_probability": 0.99628,
- "match_weight": 8.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018150183874412,
- "match_probability": 0.9963,
- "match_weight": 8.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01816995531654099,
- "match_probability": 0.99631,
- "match_weight": 8.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018229269642927957,
- "match_probability": 0.99632,
- "match_weight": 8.08,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.018249041085056945,
- "match_probability": 0.99633,
- "match_weight": 8.08,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018268812527185933,
- "match_probability": 0.99636,
- "match_weight": 8.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01828858396931492,
- "match_probability": 0.99637,
- "match_weight": 8.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01830835541144391,
- "match_probability": 0.99639,
- "match_weight": 8.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018367669737830876,
- "match_probability": 0.9964,
- "match_weight": 8.11,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.018387441179959864,
- "match_probability": 0.99641,
- "match_weight": 8.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018407212622088852,
- "match_probability": 0.99642,
- "match_weight": 8.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01842698406421784,
- "match_probability": 0.99645,
- "match_weight": 8.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018446755506346828,
- "match_probability": 0.99648,
- "match_weight": 8.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018466526948475816,
- "match_probability": 0.99649,
- "match_weight": 8.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018486298390604804,
- "match_probability": 0.9965,
- "match_weight": 8.15,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01850606983273379,
- "match_probability": 0.99654,
- "match_weight": 8.17,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01852584127486278,
- "match_probability": 0.99656,
- "match_weight": 8.18,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018545612716991768,
- "match_probability": 0.99659,
- "match_weight": 8.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018565384159120756,
- "match_probability": 0.9966,
- "match_weight": 8.19,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018624698485507723,
- "match_probability": 0.99663,
- "match_weight": 8.21,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.01864446992763671,
- "match_probability": 0.99664,
- "match_weight": 8.21,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0186642413697657,
- "match_probability": 0.99666,
- "match_weight": 8.22,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018684012811894687,
- "match_probability": 0.99667,
- "match_weight": 8.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018703784254023675,
- "match_probability": 0.99668,
- "match_weight": 8.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018723555696152663,
- "match_probability": 0.99671,
- "match_weight": 8.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01874332713828165,
- "match_probability": 0.99672,
- "match_weight": 8.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01876309858041064,
- "match_probability": 0.99673,
- "match_weight": 8.25,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018802641464668618,
- "match_probability": 0.99674,
- "match_weight": 8.26,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.018822412906797606,
- "match_probability": 0.99675,
- "match_weight": 8.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018842184348926594,
- "match_probability": 0.99676,
- "match_weight": 8.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.018861955791055582,
- "match_probability": 0.99677,
- "match_weight": 8.27,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01888172723318457,
- "match_probability": 0.9968,
- "match_weight": 8.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01892127011744255,
- "match_probability": 0.99681,
- "match_weight": 8.29,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.018941041559571537,
- "match_probability": 0.99683,
- "match_weight": 8.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019000355885958504,
- "match_probability": 0.99687,
- "match_weight": 8.31,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.019020127328087492,
- "match_probability": 0.9969,
- "match_weight": 8.33,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01907944165447446,
- "match_probability": 0.99691,
- "match_weight": 8.33,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.019099213096603448,
- "match_probability": 0.99692,
- "match_weight": 8.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019118984538732436,
- "match_probability": 0.99693,
- "match_weight": 8.34,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019158527422990415,
- "match_probability": 0.99694,
- "match_weight": 8.35,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019178298865119403,
- "match_probability": 0.99696,
- "match_weight": 8.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01919807030724839,
- "match_probability": 0.99698,
- "match_weight": 8.36,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01921784174937738,
- "match_probability": 0.99699,
- "match_weight": 8.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01925738463363536,
- "match_probability": 0.99701,
- "match_weight": 8.38,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019296927517893338,
- "match_probability": 0.99704,
- "match_weight": 8.4,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019316698960022326,
- "match_probability": 0.99705,
- "match_weight": 8.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019336470402151314,
- "match_probability": 0.99708,
- "match_weight": 8.42,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0193562418442803,
- "match_probability": 0.99709,
- "match_weight": 8.42,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01937601328640929,
- "match_probability": 0.99714,
- "match_weight": 8.45,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019395784728538278,
- "match_probability": 0.99718,
- "match_weight": 8.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019415556170667266,
- "match_probability": 0.99719,
- "match_weight": 8.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019435327612796253,
- "match_probability": 0.9972,
- "match_weight": 8.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01945509905492524,
- "match_probability": 0.99721,
- "match_weight": 8.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.01949464193918322,
- "match_probability": 0.99722,
- "match_weight": 8.49,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.0195341848234412,
- "match_probability": 0.99725,
- "match_weight": 8.5,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019553956265570188,
- "match_probability": 0.99726,
- "match_weight": 8.51,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019593499149828168,
- "match_probability": 0.99727,
- "match_weight": 8.51,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019633042034086147,
- "match_probability": 0.99728,
- "match_weight": 8.52,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019672584918344126,
- "match_probability": 0.99729,
- "match_weight": 8.52,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019712127802602106,
- "match_probability": 0.9973,
- "match_weight": 8.53,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01979121357111806,
- "match_probability": 0.99733,
- "match_weight": 8.55,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.01981098501324705,
- "match_probability": 0.99735,
- "match_weight": 8.56,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019830756455376037,
- "match_probability": 0.99736,
- "match_weight": 8.56,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019870299339634016,
- "match_probability": 0.99737,
- "match_weight": 8.57,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.019890070781763004,
- "match_probability": 0.99738,
- "match_weight": 8.57,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.019929613666020984,
- "match_probability": 0.99743,
- "match_weight": 8.6,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.01994938510814997,
- "match_probability": 0.99745,
- "match_weight": 8.61,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020028470876665927,
- "match_probability": 0.99746,
- "match_weight": 8.62,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.020068013760923906,
- "match_probability": 0.99748,
- "match_weight": 8.63,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020087785203052894,
- "match_probability": 0.99749,
- "match_weight": 8.63,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020107556645181882,
- "match_probability": 0.9975,
- "match_weight": 8.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02012732808731087,
- "match_probability": 0.99751,
- "match_weight": 8.64,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020147099529439858,
- "match_probability": 0.99753,
- "match_weight": 8.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020166870971568846,
- "match_probability": 0.99754,
- "match_weight": 8.66,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020186642413697834,
- "match_probability": 0.99758,
- "match_weight": 8.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020206413855826822,
- "match_probability": 0.99761,
- "match_weight": 8.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02022618529795581,
- "match_probability": 0.99765,
- "match_weight": 8.73,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02026572818221379,
- "match_probability": 0.99766,
- "match_weight": 8.74,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020285499624342777,
- "match_probability": 0.99769,
- "match_weight": 8.75,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020325042508600757,
- "match_probability": 0.99771,
- "match_weight": 8.77,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020364585392858736,
- "match_probability": 0.99772,
- "match_weight": 8.77,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020384356834987724,
- "match_probability": 0.99773,
- "match_weight": 8.78,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02046344260350368,
- "match_probability": 0.99775,
- "match_weight": 8.79,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02050298548776166,
- "match_probability": 0.99776,
- "match_weight": 8.8,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020522756929890647,
- "match_probability": 0.99779,
- "match_weight": 8.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020542528372019635,
- "match_probability": 0.9978,
- "match_weight": 8.82,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020562299814148623,
- "match_probability": 0.99781,
- "match_weight": 8.83,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020601842698406602,
- "match_probability": 0.99782,
- "match_weight": 8.84,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02064138558266458,
- "match_probability": 0.99784,
- "match_weight": 8.85,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020720471351180537,
- "match_probability": 0.99787,
- "match_weight": 8.87,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.020740242793309525,
- "match_probability": 0.99788,
- "match_weight": 8.88,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02081932856182548,
- "match_probability": 0.99789,
- "match_weight": 8.89,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02085887144608346,
- "match_probability": 0.9979,
- "match_weight": 8.89,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.020878642888212447,
- "match_probability": 0.99792,
- "match_weight": 8.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.020937957214599415,
- "match_probability": 0.99793,
- "match_weight": 8.92,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.020957728656728403,
- "match_probability": 0.99794,
- "match_weight": 8.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02097750009885739,
- "match_probability": 0.99795,
- "match_weight": 8.92,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021056585867373346,
- "match_probability": 0.99797,
- "match_weight": 8.94,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.021115900193760313,
- "match_probability": 0.99798,
- "match_weight": 8.95,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.0211356716358893,
- "match_probability": 0.99799,
- "match_weight": 8.96,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02117521452014728,
- "match_probability": 0.998,
- "match_weight": 8.97,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.021254300288663236,
- "match_probability": 0.99801,
- "match_weight": 8.97,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.021293843172921215,
- "match_probability": 0.99802,
- "match_weight": 8.98,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.021353157499308183,
- "match_probability": 0.99803,
- "match_weight": 8.99,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02137292894143717,
- "match_probability": 0.99804,
- "match_weight": 8.99,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02139270038356616,
- "match_probability": 0.99806,
- "match_weight": 9.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021412471825695147,
- "match_probability": 0.99807,
- "match_weight": 9.01,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021491557594211102,
- "match_probability": 0.99808,
- "match_weight": 9.02,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02151132903634009,
- "match_probability": 0.99809,
- "match_weight": 9.03,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021570643362727057,
- "match_probability": 0.9981,
- "match_weight": 9.04,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.021590414804856045,
- "match_probability": 0.99811,
- "match_weight": 9.04,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021610186246985033,
- "match_probability": 0.99814,
- "match_weight": 9.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02162995768911402,
- "match_probability": 0.99815,
- "match_weight": 9.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021669500573372,
- "match_probability": 0.99816,
- "match_weight": 9.09,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02170904345762998,
- "match_probability": 0.99817,
- "match_weight": 9.09,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.021728814899758968,
- "match_probability": 0.99818,
- "match_weight": 9.1,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021748586341887956,
- "match_probability": 0.99819,
- "match_weight": 9.11,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021768357784016944,
- "match_probability": 0.9982,
- "match_weight": 9.12,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.0218474435525329,
- "match_probability": 0.99822,
- "match_weight": 9.13,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.021867214994661887,
- "match_probability": 0.99823,
- "match_weight": 9.14,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.021946300763177842,
- "match_probability": 0.99824,
- "match_weight": 9.15,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02196607220530683,
- "match_probability": 0.99825,
- "match_weight": 9.16,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02200561508956481,
- "match_probability": 0.99826,
- "match_weight": 9.17,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02204515797382279,
- "match_probability": 0.99827,
- "match_weight": 9.17,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02208470085808077,
- "match_probability": 0.99828,
- "match_weight": 9.18,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022124243742338748,
- "match_probability": 0.99829,
- "match_weight": 9.19,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022163786626596727,
- "match_probability": 0.9983,
- "match_weight": 9.2,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022183558068725715,
- "match_probability": 0.99831,
- "match_weight": 9.21,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022223100952983695,
- "match_probability": 0.99832,
- "match_weight": 9.21,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022242872395112682,
- "match_probability": 0.99833,
- "match_weight": 9.23,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022282415279370662,
- "match_probability": 0.99834,
- "match_weight": 9.23,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02230218672149965,
- "match_probability": 0.99835,
- "match_weight": 9.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02234172960575763,
- "match_probability": 0.99836,
- "match_weight": 9.25,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022361501047886617,
- "match_probability": 0.99837,
- "match_weight": 9.26,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022381272490015605,
- "match_probability": 0.99839,
- "match_weight": 9.28,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022420815374273585,
- "match_probability": 0.9984,
- "match_weight": 9.28,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022440586816402572,
- "match_probability": 0.99842,
- "match_weight": 9.3,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02246035825853156,
- "match_probability": 0.99843,
- "match_weight": 9.31,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02249990114278954,
- "match_probability": 0.99845,
- "match_weight": 9.33,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022618529795563475,
- "match_probability": 0.99846,
- "match_weight": 9.34,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.022658072679821454,
- "match_probability": 0.99847,
- "match_weight": 9.35,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.022677844121950442,
- "match_probability": 0.99849,
- "match_weight": 9.37,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022756929890466397,
- "match_probability": 0.99852,
- "match_weight": 9.4,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.022776701332595385,
- "match_probability": 0.99853,
- "match_weight": 9.4,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.022934872869627296,
- "match_probability": 0.99854,
- "match_weight": 9.42,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.022994187196014263,
- "match_probability": 0.99856,
- "match_weight": 9.44,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02305350152240123,
- "match_probability": 0.99857,
- "match_weight": 9.45,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.023112815848788198,
- "match_probability": 0.99858,
- "match_weight": 9.46,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.023132587290917186,
- "match_probability": 0.99859,
- "match_weight": 9.47,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023152358733046174,
- "match_probability": 0.9986,
- "match_weight": 9.48,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023191901617304153,
- "match_probability": 0.99861,
- "match_weight": 9.49,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02327098738582011,
- "match_probability": 0.99862,
- "match_weight": 9.5,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.023290758827949096,
- "match_probability": 0.99864,
- "match_weight": 9.52,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023350073154336064,
- "match_probability": 0.99865,
- "match_weight": 9.53,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02336984459646505,
- "match_probability": 0.99866,
- "match_weight": 9.54,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023488473249238986,
- "match_probability": 0.99867,
- "match_weight": 9.56,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.02356755901775494,
- "match_probability": 0.99868,
- "match_weight": 9.57,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.023646644786270897,
- "match_probability": 0.99869,
- "match_weight": 9.57,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.023666416228399885,
- "match_probability": 0.9987,
- "match_weight": 9.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023686187670528873,
- "match_probability": 0.99871,
- "match_weight": 9.59,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.023785044881173816,
- "match_probability": 0.99872,
- "match_weight": 9.61,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.023844359207560784,
- "match_probability": 0.99873,
- "match_weight": 9.62,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02390367353394775,
- "match_probability": 0.99874,
- "match_weight": 9.64,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02394321641820573,
- "match_probability": 0.99875,
- "match_weight": 9.65,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.024042073628850674,
- "match_probability": 0.99876,
- "match_weight": 9.66,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.024081616513108653,
- "match_probability": 0.99877,
- "match_weight": 9.67,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02410138795523764,
- "match_probability": 0.99878,
- "match_weight": 9.67,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02412115939736663,
- "match_probability": 0.99879,
- "match_weight": 9.69,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.024140930839495617,
- "match_probability": 0.9988,
- "match_weight": 9.7,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02425955949226955,
- "match_probability": 0.99881,
- "match_weight": 9.72,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.02429910237652753,
- "match_probability": 0.99882,
- "match_weight": 9.73,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.024358416702914498,
- "match_probability": 0.99883,
- "match_weight": 9.74,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.024437502471430454,
- "match_probability": 0.99884,
- "match_weight": 9.76,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02449681679781742,
- "match_probability": 0.99885,
- "match_weight": 9.77,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.024575902566333376,
- "match_probability": 0.99886,
- "match_weight": 9.78,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.0247143026612363,
- "match_probability": 0.99887,
- "match_weight": 9.79,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.024793388429752254,
- "match_probability": 0.99888,
- "match_weight": 9.81,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.024832931314010234,
- "match_probability": 0.99889,
- "match_weight": 9.81,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.024951559966784168,
- "match_probability": 0.9989,
- "match_weight": 9.83,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.024991102851042148,
- "match_probability": 0.99891,
- "match_weight": 9.84,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.025030645735300127,
- "match_probability": 0.99892,
- "match_weight": 9.85,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02514927438807406,
- "match_probability": 0.99894,
- "match_weight": 9.89,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.025287674482976984,
- "match_probability": 0.99895,
- "match_weight": 9.9,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.025307445925105972,
- "match_probability": 0.99896,
- "match_weight": 9.9,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02536676025149294,
- "match_probability": 0.99897,
- "match_weight": 9.93,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02540630313575092,
- "match_probability": 0.99898,
- "match_weight": 9.93,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.025465617462137886,
- "match_probability": 0.99899,
- "match_weight": 9.96,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.025485388904266874,
- "match_probability": 0.999,
- "match_weight": 9.97,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02554470323065384,
- "match_probability": 0.99901,
- "match_weight": 9.98,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02558424611491182,
- "match_probability": 0.99902,
- "match_weight": 9.99,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02574241765194373,
- "match_probability": 0.99903,
- "match_weight": 10.01,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.025841274862588675,
- "match_probability": 0.99904,
- "match_weight": 10.03,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.025880817746846654,
- "match_probability": 0.99905,
- "match_weight": 10.04,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.02594013207323362,
- "match_probability": 0.99906,
- "match_weight": 10.06,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.02595990351536261,
- "match_probability": 0.99907,
- "match_weight": 10.07,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.02611807505239452,
- "match_probability": 0.99908,
- "match_weight": 10.09,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.026197160820910476,
- "match_probability": 0.99909,
- "match_weight": 10.11,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.026236703705168455,
- "match_probability": 0.9991,
- "match_weight": 10.12,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.026256475147297443,
- "match_probability": 0.99911,
- "match_weight": 10.13,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.026335560915813398,
- "match_probability": 0.99912,
- "match_weight": 10.16,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.026414646684329354,
- "match_probability": 0.99913,
- "match_weight": 10.17,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02649373245284531,
- "match_probability": 0.99914,
- "match_weight": 10.19,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02663213254774823,
- "match_probability": 0.99915,
- "match_weight": 10.2,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.0266914468741352,
- "match_probability": 0.99916,
- "match_weight": 10.22,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.026711218316264187,
- "match_probability": 0.99917,
- "match_weight": 10.24,
- "prop": 0.000019771442128988888
- },
- {
- "cum_prop": 0.026770532642651154,
- "match_probability": 0.99918,
- "match_weight": 10.25,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.026869389853296097,
- "match_probability": 0.99919,
- "match_weight": 10.28,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02700778994819902,
- "match_probability": 0.9992,
- "match_weight": 10.3,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.02716596148523093,
- "match_probability": 0.99921,
- "match_weight": 10.31,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.02720550436948891,
- "match_probability": 0.99922,
- "match_weight": 10.32,
- "prop": 0.000039542884257977775
- },
- {
- "cum_prop": 0.027304361580133853,
- "match_probability": 0.99923,
- "match_weight": 10.34,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02736367590652082,
- "match_probability": 0.99924,
- "match_weight": 10.36,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.027462533117165764,
- "match_probability": 0.99925,
- "match_weight": 10.38,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02752184744355273,
- "match_probability": 0.99926,
- "match_weight": 10.41,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.027620704654197675,
- "match_probability": 0.99927,
- "match_weight": 10.43,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02769979042271363,
- "match_probability": 0.99928,
- "match_weight": 10.44,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.027798647633358573,
- "match_probability": 0.99929,
- "match_weight": 10.46,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02785796195974554,
- "match_probability": 0.9993,
- "match_weight": 10.48,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.027937047728261496,
- "match_probability": 0.99931,
- "match_weight": 10.51,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.02801613349677745,
- "match_probability": 0.99933,
- "match_weight": 10.55,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.028114990707422394,
- "match_probability": 0.99934,
- "match_weight": 10.57,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.028253390802325317,
- "match_probability": 0.99935,
- "match_weight": 10.6,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.028312705128712284,
- "match_probability": 0.99936,
- "match_weight": 10.62,
- "prop": 0.00005931432638696666
- },
- {
- "cum_prop": 0.028530190992131162,
- "match_probability": 0.99937,
- "match_weight": 10.64,
- "prop": 0.00021748586341887777
- },
- {
- "cum_prop": 0.028629048202776106,
- "match_probability": 0.99938,
- "match_weight": 10.66,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02870813397129206,
- "match_probability": 0.99939,
- "match_weight": 10.69,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.028826762624065996,
- "match_probability": 0.9994,
- "match_weight": 10.7,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.02894539127683993,
- "match_probability": 0.99941,
- "match_weight": 10.73,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.02910356281387184,
- "match_probability": 0.99942,
- "match_weight": 10.76,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.029202420024516784,
- "match_probability": 0.99943,
- "match_weight": 10.78,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.029340820119419707,
- "match_probability": 0.99944,
- "match_weight": 10.8,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.029419905887935662,
- "match_probability": 0.99945,
- "match_weight": 10.83,
- "prop": 0.00007908576851595555
- },
- {
- "cum_prop": 0.029518763098580605,
- "match_probability": 0.99946,
- "match_weight": 10.87,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.02963739175135454,
- "match_probability": 0.99947,
- "match_weight": 10.89,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.029775791846257463,
- "match_probability": 0.99948,
- "match_weight": 10.92,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.02995373482541836,
- "match_probability": 0.99949,
- "match_weight": 10.95,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.030072363478192296,
- "match_probability": 0.9995,
- "match_weight": 10.98,
- "prop": 0.00011862865277393333
- },
- {
- "cum_prop": 0.030230535015224207,
- "match_probability": 0.99951,
- "match_weight": 11.01,
- "prop": 0.0001581715370319111
- },
- {
- "cum_prop": 0.03036893511012713,
- "match_probability": 0.99952,
- "match_weight": 11.04,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.030606192415674995,
- "match_probability": 0.99953,
- "match_weight": 11.07,
- "prop": 0.00023725730554786665
- },
- {
- "cum_prop": 0.030784135394835894,
- "match_probability": 0.99954,
- "match_weight": 11.1,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.030882992605480837,
- "match_probability": 0.99955,
- "match_weight": 11.12,
- "prop": 0.00009885721064494445
- },
- {
- "cum_prop": 0.03117956423741567,
- "match_probability": 0.99956,
- "match_weight": 11.17,
- "prop": 0.0002965716319348333
- },
- {
- "cum_prop": 0.03131796433231859,
- "match_probability": 0.99957,
- "match_weight": 11.2,
- "prop": 0.00013840009490292222
- },
- {
- "cum_prop": 0.03149590731147949,
- "match_probability": 0.99958,
- "match_weight": 11.22,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.03175293605915635,
- "match_probability": 0.99959,
- "match_weight": 11.27,
- "prop": 0.00025702874767685556
- },
- {
- "cum_prop": 0.03199019336470422,
- "match_probability": 0.9996,
- "match_weight": 11.3,
- "prop": 0.00023725730554786665
- },
- {
- "cum_prop": 0.03232630788089703,
- "match_probability": 0.99961,
- "match_weight": 11.34,
- "prop": 0.0003361145161928111
- },
- {
- "cum_prop": 0.03260310807070287,
- "match_probability": 0.99962,
- "match_weight": 11.38,
- "prop": 0.00027680018980584444
- },
- {
- "cum_prop": 0.03278105104986377,
- "match_probability": 0.99963,
- "match_weight": 11.42,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.03301830835541164,
- "match_probability": 0.99964,
- "match_weight": 11.45,
- "prop": 0.00023725730554786665
- },
- {
- "cum_prop": 0.03333465142947546,
- "match_probability": 0.99965,
- "match_weight": 11.5,
- "prop": 0.0003163430740638222
- },
- {
- "cum_prop": 0.03357190873502333,
- "match_probability": 0.99966,
- "match_weight": 11.54,
- "prop": 0.00023725730554786665
- },
- {
- "cum_prop": 0.03374985171418423,
- "match_probability": 0.99967,
- "match_weight": 11.59,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.034026651903990075,
- "match_probability": 0.99968,
- "match_weight": 11.63,
- "prop": 0.00027680018980584444
- },
- {
- "cum_prop": 0.034204594883150974,
- "match_probability": 0.99969,
- "match_weight": 11.68,
- "prop": 0.00017794297916089998
- },
- {
- "cum_prop": 0.03450116651508581,
- "match_probability": 0.9997,
- "match_weight": 11.72,
- "prop": 0.0002965716319348333
- },
- {
- "cum_prop": 0.034698880936375694,
- "match_probability": 0.99971,
- "match_weight": 11.78,
- "prop": 0.0001977144212898889
- },
- {
- "cum_prop": 0.035015224010439515,
- "match_probability": 0.99972,
- "match_weight": 11.82,
- "prop": 0.0003163430740638222
- },
- {
- "cum_prop": 0.03543042429514828,
- "match_probability": 0.99973,
- "match_weight": 11.88,
- "prop": 0.00041520028470876666
- },
- {
- "cum_prop": 0.03594448179050199,
- "match_probability": 0.99974,
- "match_weight": 11.94,
- "prop": 0.0005140574953537111
- },
- {
- "cum_prop": 0.03633991063308177,
- "match_probability": 0.99975,
- "match_weight": 11.99,
- "prop": 0.0003954288425797778
- },
- {
- "cum_prop": 0.03665625370714559,
- "match_probability": 0.99976,
- "match_weight": 12.05,
- "prop": 0.0003163430740638222
- },
- {
- "cum_prop": 0.037110996876112336,
- "match_probability": 0.99977,
- "match_weight": 12.12,
- "prop": 0.0004547431689667444
- },
- {
- "cum_prop": 0.037664597255724026,
- "match_probability": 0.99978,
- "match_weight": 12.18,
- "prop": 0.0005536003796116889
- },
- {
- "cum_prop": 0.03837636917236763,
- "match_probability": 0.99979,
- "match_weight": 12.25,
- "prop": 0.0007117719166435999
- },
- {
- "cum_prop": 0.03867294080430246,
- "match_probability": 0.9998,
- "match_weight": 12.32,
- "prop": 0.0002965716319348333
- },
- {
- "cum_prop": 0.03914745541539819,
- "match_probability": 0.99981,
- "match_weight": 12.4,
- "prop": 0.0004745146110957333
- },
- {
- "cum_prop": 0.03964174146862291,
- "match_probability": 0.99982,
- "match_weight": 12.47,
- "prop": 0.0004942860532247222
- },
- {
- "cum_prop": 0.040175570406105615,
- "match_probability": 0.99983,
- "match_weight": 12.56,
- "prop": 0.0005338289374827
- },
- {
- "cum_prop": 0.0412629997232,
- "match_probability": 0.99984,
- "match_weight": 12.65,
- "prop": 0.001087429317094389
- },
- {
- "cum_prop": 0.04185614298706967,
- "match_probability": 0.99985,
- "match_weight": 12.75,
- "prop": 0.0005931432638696666
- },
- {
- "cum_prop": 0.04266677211435821,
- "match_probability": 0.99986,
- "match_weight": 12.85,
- "prop": 0.0008106291272885444
- },
- {
- "cum_prop": 0.04377397287358159,
- "match_probability": 0.99987,
- "match_weight": 12.97,
- "prop": 0.0011072007592233778
- }
- ]
- },
- "height": 400,
- "layer": [
- {
- "encoding": {
- "x": {
- "axis": {
- "format": "+",
- "title": "Threshold match weight"
- },
- "field": "match_weight",
- "type": "quantitative"
- },
- "y": {
- "axis": {
- "format": "%",
- "title": "Percentage of unlinkable records"
- },
- "field": "cum_prop",
- "type": "quantitative"
- }
- },
- "mark": "line"
- },
- {
- "encoding": {
- "opacity": {
- "value": 0
- },
- "tooltip": [
- {
- "field": "match_weight",
- "format": "+.5",
- "title": "Match weight",
- "type": "quantitative"
- },
- {
- "field": "match_probability",
- "format": ".5",
- "title": "Match probability",
- "type": "quantitative"
- },
- {
- "field": "cum_prop",
- "format": ".3%",
- "title": "Proportion of unlinkable records",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "match_weight",
- "type": "quantitative"
- },
- "y": {
- "field": "cum_prop",
- "type": "quantitative"
- }
- },
- "mark": "point",
- "selection": {
- "selector112": {
- "empty": "none",
- "fields": [
- "match_weight",
- "cum_prop"
- ],
- "nearest": true,
- "on": "mouseover",
- "type": "single"
- }
- }
- },
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "3ba5c515-629c-490c-b8e4-a63ea242ea0a",
+ "metadata": {},
+ "outputs": [
{
- "encoding": {
- "opacity": {
- "condition": {
- "selection": "selector112",
- "value": 1
- },
- "value": 0
- },
- "x": {
- "axis": {
- "title": "Threshold match weight"
- },
- "field": "match_weight",
- "type": "quantitative"
- },
- "y": {
- "axis": {
- "format": "%",
- "title": "Percentage of unlinkable records"
- },
- "field": "cum_prop",
- "type": "quantitative"
- }
- },
- "mark": "point"
- },
- {
- "encoding": {
- "x": {
- "field": "match_weight",
- "type": "quantitative"
- }
- },
- "mark": {
- "color": "gray",
- "type": "rule"
- },
- "transform": [
- {
- "filter": {
- "selection": "selector112"
- }
- }
- ]
- },
- {
- "encoding": {
- "y": {
- "field": "cum_prop",
- "type": "quantitative"
- }
- },
- "mark": {
- "color": "gray",
- "type": "rule"
- },
- "transform": [
- {
- "filter": {
- "selection": "selector112"
- }
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n",
+ "\n",
+ "Estimated u probabilities using random sampling\n",
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - dob (no m values are trained).\n",
+ " - postcode_fake (no m values are trained).\n",
+ " - birth_place (no m values are trained).\n",
+ " - occupation (no m values are trained).\n"
+ ]
}
- ],
- "title": {
- "subtitle": "Records with insufficient information to exceed a given match threshold",
- "text": "Unlinkable records"
- },
- "width": 400
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHeCAYAAAAM+duYAAAAAXNSR0IArs4c6QAAIABJREFUeF7sfQmYVbX5/ocssokzVQZxK4yKlkULVMEOVmGm4gL414ICAsWytYiIglA3FhXQqShQlaJSFxYXFGVRq4Va6IwCdaBW0IIKorgA6gjKIuv/eePvjHcu996TsyQn5+bL8/jIzOQk+d73S96TnORLlUOHDh0iTowAI8AIMAKMgGUIVGEBtIxxNpcRYAQYAUZAIMACyI7ACDACjAAjYCUCLIBW0s5GMwKMACPACLAAsg8wAowAI8AIWIkAC6CVtNtlNPZ5ValSpZLRzt6v5N+nQyaxjF27dtG+ffuoTp06VK1atcjA9GpDZA3lihkBQxFgATSUGG5WOAiMGDGCJk2aRLfffjvdcccdolAIGMQL6auvvqKf/OQnGSubPn06/f73v6fx48fTLbfcQl27dqXnn3+eXn/9dbrgggsyPrtixQpq27Yt9e3blx577DFPRrVr145KS0vpgw8+oFNOOeWwZ6+66ip69tln6V//+hchb5zThAkT6NZbb6UHHniArr322jibwm2PEQIsgDEii5vqHQFHAG+77Ta68847DxPAL7/8ko455piMBf/lL3+hP/zhD3TXXXeJQXratGm0evVquvHGG+mMM87I+Owbb7xBBQUF1LNnT5o9e7YnAxwBfP/99+nUU09NK4DLli2j8847z1PZpmXGywU4mjp1Kl133XWmNY/bk6UIsABmKbFs1g8IyAggZnIPPvggXXLJJfTvf/+bysrKqLCwkG6++WZq3LgxJQsgZpNLly6lKVOmUN26dWngwIHUpk0b2rlzJ7388st01lln0dChQ8XsMFkAZ8yYQc888wwdd9xx9Mgjj9CaNWvE7BR1/vSnPxUzuT/+8Y+Ul5cn/o0ZIGauCxcupO3bt9NvfvMbGjt2LNWoUYOcGaAjgP/4xz+EyL/77rt02mmniZlUjx49DnMFCDFmtb169aLFixdTgwYN6M9//jNleh7txOwXM1rY9+tf/1oIVc2aNam8vFz8bdGiRaKNP//5z8Vs2RHlX/3qV3TCCScIex566CGaP3++eA4vEG+++SY1a9ZM2Dtz5swKAXznnXcEPi+88AI1bNiQ2rdvT+PGjRPPcWIEwkKABTAsJLkcIxGQEcA5c+YIwULKz8+nbdu20bfffisGeMxIkgUwcQn06KOPplatWolnjzrqKKpfvz5t2LCBmjRpQuvWraskgP/v//0/uvLKK0U+CAnyHH/88bR161a6/PLLafPmzUKAneVSRwBR9tlnny3+hgSxHjx4cCUBrFevnhAepEsvvZQgirDh6aefFvkS0z333CNE1kn9+vUTtqZ7vkOHDmIJFuVB1P7zn/+If48aNYomTpxI559/vliGhYhBeCHaSG+//TadeeaZh31//d///kdXXHGFEGpgAQxhOxLwxmwborh+/XoaPnw4LV++XJQ5efJkuv766430M25UPBFgAYwnb9xqSQS8CGDnzp3pueeeo02bNglxwoC+ZcsWKQFE3rVr11JOTo6Y7UDUMIBDTLEEeuKJJ1YM8o4w4PsjZoTHHnusyDNr1iyxzIp/l5SUVMwA8e0QoojZGmZeEKQlS5ZUEkB8C8T3M4jSoEGD6NVXXxVC4pSVSgCbNm0qZlm//OUvhQCmex6zyCFDhlQs40LARo4cSY0aNaI+ffoIcYaQwWbM0PC3P/3pTzRgwAB6+OGHKwQQMzgIGGaTEHdghpcEzKIdzCCAEEfghYRyIKLAES8XF154oSTznI0RcEeABdAdI84RYwSwNIdZCmYS9957r7Dk66+/rvjuhyW7J554QswAMTPC4L1jxw4xK8Ggjn/LzAA7duxIf/vb30T555xzjpitYaBH+RChxLRq1Spq2bIlHTx4kG666Sa67777Kv09WQAhOKeffnqlzTvYhXr11VeLTTCY7WHJEaKXnBwRTyWAEKTRo0eLP1100UVpn8dSKdqYagaGGSYE8rLLLqMXX3xRlPXSSy9Rp06dxGwRbXN22u7evVsIJIS+d+/elb6LYjn0/vvvr1gCdX522g1BBA+Y3XJiBMJCgAUwLCS5HCMRcAZofI/Dtz4kfL/DzxhUP/nkE/H9CwIIgYRQ+hFADMz4BpZOACFEEAnMuDBjwrcvfC/s0qWLmOE89dRT9Nlnn4kZXrIAYscpZkX4TviLX/yi4u+J3wD/+te/0uOPPy6+J2JJEwKJ2SsEp3Xr1pW4cZZAEwXtmmuuSfs8liox08Ps8u677xYzWWAG/PA9EEugDpaoyCnf2fjjCKBzbMMRSNiN2TASlofxbRAzwG7duonZNPJ//PHHAld8CwSGwKhq1apG+ho3Kn4IsADGjzNusQcEPvzww4odlBApfMuCKGK5DkLx6KOPahFAiAHEDzM5CAg2oZx00kli4w2OSeCbHMQF37vwMwTS+QaImSjaiuVZPItlQSztJgogxA7CAZHArPeVV14RMzrMpHAMJNUMMFEAUXa651EelmmRMNP8+9//Tv/85z/Fv/HCgKVUfPe8+OKLxa5YzOSQIPD4XbIAYtMMNvzgOyKWnWvVqiVmskgQQHwPBTawZcyYMeKsJZZ18X0Wy8osgB46AGfNiAALIDtI1iMAMcA3NIiekzDYY8ZUu3btCgGEUEAwMDBjU4mzBJruHCBEAPmwCSbdDBBlnXvuuWLHJXY5YjaHTTQoG4M5lg9RDhLaiDbhbx999JGYHWLzB5ZXneVNzFznzZtHubm5FQLonAN0ztI5NkJIMDPEd8nEVFxcLGZzyUuamZ6HqAEbJ2E3KpaOcZ4SOzZhE+xxkoMlfk4WQPwO3zMxqwU+SBBC7HTFzBLfG5PbAkwwC8TuXE6MQFgIsACGhSSXYzwCmD198803YkZo0nZ6tAtCiv/SJSzL4pgFjgRkSsizceNGkc/tfGOqcjI9j79hpoeynRmhUwaWK2EH2olZtgy+33//vRB6bKY58sgjD2sOvp9iCRRHPtLlMd7puIFGI8ACaDQ93DhGgBFgBBgBVQiwAKpClstlBBgBRoARMBoBFkCj6eHGMQKMACPACKhCgAVQFbJcLiPACDACjIDRCLAAaqJn//79Wq7OQT1HHHGE+C+qhA0R2MDg7D7ETj9sdY/y6iAvWMStvV5si2teBA3Af3HxoahwPnDggKjay1ER9Fc8pwrbsMekMMvLSgFMRSa2UWMLObZ+4zyRzoSIIC1atBAHe8NKOCPWv39/sXUe28NxqBi77/B7XN2DbfeZUuLzYbUJ5SDGJc68IRoKDnfj/BbCYWGrPLawz507lxAcOVXC1nhEN8GZNj8JuwoR6Ll79+7ieENikrU3sb3Nmzf30wxfzyD82sqVK8VZvKA4JDcg0T98Nc6AhxAF5rXXXhNHQMJMztVY6W7cCLOuoGXhjCjGtuTIQonl4tzkp59+Ks63ZkrJ/oZACAgKoSLJjkmJdeMYzHvvvSeODiUnnH/FGBLGtVlZLYCJgy3iLiI8E7ZTI46izqRCAHEdD24UwJZ0ROPAVTIYPGWdLfH5MLFALEvcgIDoHeis2MKOs2yIN4kOjIPSyefSnPpxQBqxIXEQ3E9yQpxhAECQ6cQkYy+ipyS2108b/D6DM3DDhg0jHNwPikNyGxL9w2/7on5OlQBiVom4q4iwk/zSFLXNyfUj+AHCySEYerokK4CJ/oYXLtMEEEEWEIEo1RViLIAununMAEFs4sFZXCuDaBx409m7d6+IgwiRxICMmIyYOSBhtoJAwv/973/FAWdcMYOzY3gjQRR+hKRyIl7gbQyDKwjDlTiIc4jwToisgRiUWIpA8GKEh8IMEH/D2w0OZyNEFTo2ooMkJoSFgkMidBZmUYiOgTBeOFuFGQriNsI2RBGBqEB0EIoKQZNxVQ4GPDgP/sNsDCG+kpdE8PaE54EP3qZQLuI97tmzR1wDhNklEtqNw9R4U0Ye3IeHKCWIWrJgwQKRBwKHg9KIVoIZKTrpDTfcIHDE7AMHxXEFEDow4k+ifcAHZeFcHhwah7PxogBs8Jafjh+0L117cWUODpVjNgx8EDzZSTL24mB2YnshiDJ8w6fAAfjEmzdCnUHMEEEFMwuEWYOtSAj3hUPiEHoEdgaOsLWoqEicscMBc0SFcXCAL8OPcBgf+TBDhq/hcHkm3hy7ERot0T+AUarysESdnHAoH7x+9913YkUBZYE3BM3GgX5co4SycDsE/BThy1L1my+++EIEwQY34B4+hVioSJj1wi+ABw78oz6cX4Qwod/hpg5EjUGwbCyrp5oBog3od1gaQ39FpJxkfweOwBT5fvaznwmOkAd+ivBzqAcrJxgDnNUT5EU/xSCcrp3gBS9cOHuJGSp8AAECEn0PdiKfExwdfRm3giBAguMX6HtOnNNU9qCv/fa3vxWY4RlE4AGvuJsSZzKBOwIIQAAxPiFAAfBGezCLSjwTirYm+hvshl+h/yIvIvCgvXgpwJiC/LARS6T4fSq/wN/SjW14KU83JsEujDcYkzFOwrcwliUKIMYIBGvHizVepHHeFIEXeAaYRggdAURnRZxCCA8CCmNQx4CPO8kwyED80BkxuMO54JiYfaDDYbaIwRydCQ6Bty6IIJYyMbAhMgfug8Nt3ei8GIxwgwCEFB0KM00MfHBA/A5RSNAOOD3ahCgdWI7F9yYnhqRjDhwRMxE4NxwTnRMig7IgghAWOC3ywSEgZGg/BmuIJ/LCUTEgwEkQ+zJ52RFOiechPugsaDuicCAkFW4ogIjBoRGNBIM2Dizj3jsIC2bT+LezZILYjrAVDgpcsYSJDo0ZGV4QEHoMkT5wtx4wxw3swBHCjutzMDhicMWM1lkCTccPllbTtReBlzGIYpDEYAIMnSRjL4JUO+2FOEFIZfgG1+Ac4gU8MRCBb/CLBDEEVvAjhPjCixdeluBHuPYHnR2+hPwYcIGbgwPEFYMdBkW0Bb+HX2LQSIdD4iF0+Gaif0DgU5XnXBbs4IV24DlwBMHACxlud0CwcAxm8GNEhsG/0RfgX6n6DdoPW/GSiWex+gLRxywXS9bgHIMbBjS8BOEgPXiEz8DH8MIE4Yc/oM8kCyD6AgZzLLMjOg5WQfBSibyJCTMeYAffxlgADpzwdMAR4oRxASIOIUPCywL+w4tfunZCcPBijXYiJBz6G/5zgow7bXDy4fcY4GEb/AG8O6HlMPtPZw/GJfgRMMMLLXDEuIIXD2CJ4OJ4gYI4oT3wLbxkQODRfqwQOQnjXbK/wX+B2e9+9zvxEoIXEIyHzkXF6FeIHoQX0FR+AbvSjW1OSL/kMQnCDf+HXXjxgA9C7BDZCC8rzgwQ4o67KjFGQNTBIYSSBdBFAFP9GYKFgRhvf3jbcd72EOwXnRSxC0Ewol5gSQRvP+hcEC38DR0U3xORELkDpMKhMQA43xHw1oTBzAn0C7LQySGA+E6HvCAY5WOAwqCemND50WHwN7xlo3x0VgzOmBXijRqR9iFgGJiSl0Ah8uiQSBBNOJAzo0snCHAwdHYnDBhmu+iMeFNFZ0Ob4ZB4s8UbfyoBRAdG58P3BTgpOisGY/we311hCwQQgytEGgMdEkQVET9OPvlkMUh9/vnnafnB4IkBK1V7MaDgTTfVEmiyAKZ6Hn7htBcDoizfzjVFjs+AF3CHpTUMJPA1vITgmyI6MGaauN4HWGH1APmSl6QcAYRvYPBxBAozTHCL8tPhkHxLfaJ/pCsv+fsPXnyAp/MtCasAeFlEveAOeMIv8aIArh3BTO43EDbMJNCP8KKAPgAxgdigTsyGwT1mtCgbbQf/EEv4mhPHFJghJQsg/BQCAJHFzAACiJcf9J/EhD6Aly0nnBtecHHjBwTaEUDn6iq8gEB00U6IJWxL1068pEIoHF+G8MD/k5fu0B70I3CNhL6AF1ZnxgaMUCfGp3T2JC6BgkfY4AgtRB8CjDoS68GLA3BObk+yv0EAMdMHFrAXL3IY6yCAeAkCJ9hYl8kv0o1t8JVUYxIEG9hhRQkJWONlC/hhbMZ4g1m4c3k06sZLPV6g8ULIAugigBhsnRkgOhmm2BhY8CaBJZXkhMEeeTB7QWdMTBA6OALeEBNFBB0cIoNOB4dBwtsYxBQzKiRsDMEbHDo/nBNihhkClmHQAZKveIHA4dsell3g5Bj0MQuDI8FJMCg5A3oqAXQ2x6BuOB4Gj2RnSRaExE0AGIwgchiwMZhjSQeij7rgeBjMEwUQbcPAIiuAmE1jcHXwcfB0Nn9AFNLxg5cLdNJU7cXsSlYAUz2PwdcRQLyVy/KdvGkFLztYEnKCQuNFCVcF4QUGy1Z4+8aLBgQEs6ZMAohnMRjgxQcJ/oMZD4QmHQ4QvMSUKIDpykveoIVl+cTYnijPiY2Kf0P4gJEjbOgfqfoN+iD6VXKCcKAv4eUwOeHFCysbEF30LyTMerDCkCyAGNyxJAiMnBdTzHCTBRCCg/KcvuYssSUKIAZw8IFVH6yAoG1YTnTuSkzVTtiHsQV+iYSXBPT35HaiPRjYMUNDAr7o15h1wV6sNqBOiHA6exIFEDzixQOCn5iS68GL9ltvvXVYe9K9cKEs+CNesOETyd/iMvlFurEteQOaMybhpQH93LkODPZjUoD24moxCCAE3nkpghAiYYICHlkAD+s6P/wi3TdAvA2BXCzZ4BJOrD873wjRkfCm7qxF4/sPBjFcv4LvHRhEIEZ4O0M+OAfeIEEU6ksUQLyhYxB37kfD2xdmmlg+AKkoC9+7IATIgzfX6tWrHzZogXi0Ad/1ILJwJCx14u0skwAm7gKVFUC8jWEGhOQIIEQcMRrxHwZ5LO0535OwDOfs1oSQYcYrK4CYBWG50cEHd+cBAwxgeEFBW9Lxg80tGPhTtdeLAKZ6PlEA0R5ZvpM3EWDABJ9Ox3YEEN+w8DKCDo7b1yEaWN7OJICYlSd+74Bw4IUDA2w6HDIJYLrynLsMHSd0lrOcGQb8Hi9m8EPwhRkI+IIfON+o8fKY3G8wYGIGi2cdgUIfgNDgOfRFJxg4nkW/wIshysLg7twAjxeuL7/88rCBHEt8+A6OVROUCbHFslqyAELcIIyYdSGBI8z0EgUQM0RnBgeu8K0dPo8X5nTthEAk7rrMJICJ+YAL8uKTRaIAYmk7nT2JAogVGSy5O/jAH7CCAmFLrEdWABM3wWQSwHR+gZfldGMbfC7VmASfwos2PlUhOThgnMQLD8rDzBb9By8i2EuAhH6OsZwF0KMA4s0bb4FYmgSRcBgMQhA5dFI4Ojo01qbhnBAbdBq8maCjYHaBt0PMivD2CyFCJ8IUPlEAMcChA2OgwncbzPiQH8RiWQfr9sjvRMTH4JC8A825yBUDHpwHb7CYNSIv/p0ogBiUMEBgrT95F2gQAcTAhOUQtBdij2MkGJQwq8Ygi5kgll3wM2yTFUDYCnxQNkQHswkMSJgROUt/6fjBi0S6gR8DIL4DYRDFIJiYkme8bgLoiKkM37ICiM6Ot3b4H/wGS6z4Tgn/wXdUfH/B4AXcHRzgs3iBwgAPfDD7g4iCb1kBTPSPdOXhO0xiQl/A92BcaQThQn3YKIPVAHxbAp7wBSydYcCEaKXqNxjI4PPAEd+J0Q/wYgGOYCv6HfwIzyMPXgrxe7xUYfkLm6ewlA5/wQw6eWaFsvDihvx4qYKPwhYsLycm9FkMsCgP2GNQxnfpZAHEi6sz0DpL6fgmmK6dWJoOUwDxspPOHgz6mHHDBqwuAB+8nGM1AAKEGTt+JyOAyf4mK4Dp/AIz23RjG/p3KgFEHwdf8DH4E8QfqwKYmCTOPLH0iWVP2AxfwayZvwGmEb/EGSCm5Og4TnJuooYTYbkSIoQ3fSSACsfCmzs6BTo8EjomyMVAj86JN0IMCFjCwmCGQQsDAKblzhIovvvgTRTOiYTlK4ghZo2YKeGtFUuAEFZ8+IdzJCdnqQuDJZZH8I0SzoE3IaTEZQVHLDFgYYCTnQFiqRTtTDWQol4ILb5NOLMztAPOiTcy2IvBDFgAYwwujgBiSQjLtPimgdmjIzbON0BHjJzlIAxEaDtwdAZ+ZwduMj+YJaRrL9rnfHBP/g7o4JXJXohxYntl+ZYRQPCPt34sLWGZCwlvsFgGw0sYBnIIC2bdqNfBAS88GHyBh+OP2DSFGXImHBL9KdE/UH+q8uCPiQmbETDDwLdSp168qUOMsQyOPoQXQrwwQsDBP8QxVb9Bv3J2WKMszEow2CHhBdOZKaMNeNmCP+GbE8QeswAk9FUsTzuzBaetECdnmRQDMPwSgyNeNhJnwigPoogZBerBbA//AevkpWTwBBFKnBWna2fysQO8OGOGnNzO5HyoA30fY0PizAcDfDp7nFUJZ1aKFyiIPvogZoIQ4+R6gDXyJLcHL/2J/pZOAJPP46XzC0wm0o1t6V7KMRvH5AAvd7ABL1iYwWJ1IbFeZ3zFmAvusJ8AL8I8A8wggjJ/wgdVfHTGYIK368SEnVJYBkm+fgYOAEcECW7nhrBzEp3WWbt2yscbKMqAqIYVfQFlYpbmJQKEDEZ4+4aAYWaVbAcGZ7yZJe62lCnTyYPdpGhvunOBmfjJVA+WVtDeMJIXvmXqw0sQXhSwIQTcw8eAHzo/7MVLkbNU6JSHJXYIDvJhZurcrydTX6LPOf4hWx7aiu9W8AHsEpapN12/ca5ZwjefZG7wQoDl9ORrqoAHsMKydzImibajfRjQgSnaiPLgl4l9ARt34GeoAy85EG7MmrCsKJvStVP2edl8mezBS7bzWQLlYRyBKPjpg+n8za2dmfzCz9gG7iBuWKZONx7Cr/BijTzJn4vc2pvp71l5ED4IIPwsI8AIZB8CmGXg2ACWR/FSg5USzFyTl8qzz3K2iAWQfYARYASsRgCfJfCtCd9XMQPFdyV8n+dkNwI8A7Sbf7aeEWAEGAFrEWABtJZ6NpwRYAQYAbsRYAG0m3+2nhFgBBgBaxFgAbSWejacEWAEGAG7EVAqgNjaiiMGmbZP4wA1trWGvX3fblrZekaAEWAEGAE3BJQIIOJo4tApgqfiHBEOx+LgIk7349wTzs/hwCaEEXEzcRDY7UydmyH8d0aAEWAEGAFGwAsCSgQQgoeDszhkiqDD+DeCOCP6A0IZ4RAqIivgECcOwOJnTowAI8AIMAKMgE4ElAggZn9Y1nQCuyLmG0JTIbwTzuBA+BCZAbNChFYKKxqKTuC4LkaAEWAEGIF4I6BEABG/D9f/IGgvoi0gSCu+ByLckxPVG3E5ERsSy6W4FgP3f+EZJMR+g0AmJsT5Q+BUTowAI8AIMAKMgFcEEL4yOSkRQFSCb30I2ovYbYgan3jhJuK64eYCBHXFRZMQPwRGxT1a6TbMIMgsbiTO5oSYm6lIyiab2cbsYZO5zA4ubeZRiQAiwjpAhbjhxgREOH/yyScrvAVR0BHpHd//8Dfcd4erTiCA6ZZDWQC5s8UFARsGFHBhg51sY1x6XeZ2puNRiQBi5yeuJcG1OfjeB2FDRHckRFTHJZu45w5X22ADDC6AxK5QXPmTLrEAZrcjZod1P1hhw6Bpi502cGmzjUoE0BnMsOyJa4YSlzWdO/Mgjl4SC6AXtMzNa3NnM5cVfy1jLv3hZtpTNvOoVADDJJoFMEw0oyvL5s4WHepqamYu1eCqu1SbeWQB1O1tGeqz2RENoiFwU2zgkZdAA7uJMQXo9tcNn39DGz//hlo0rk95uXW04KD1G6AKi3gGqAJV/WXq7mz6LeRvgFFgrqpO9tfwkZ2zeA09tWQt9ShsRj2LmodfQYoSWQC1wBysEu5swfAz5WkbeOQZoCneFrwduv315of/QWs2bqNbe7ejtk1PCG6ARAksgBIgRZ1FtyNGYS/bGAXqaupkLtXgqrtU3Tx2vvkZYeLTY66gOjWrazGXBVALzMEq0e2IwVrr72m20R9uJj7FXJrIivc26eTxnQ1b6ZZHXqfGDXNo6tCO3hvr8wkWQJ/A6XxMpyPqtCuxLrYxKuTDr5e5DB/TKErUyeP80vX06KLVVNiqEQ3r1kabuSyA2qD2X5FOR/TfymBPso3B8DPpaebSJDb8t0Unj+NnltDydz+lYV3PocLWjf032uOTLIAeAYsiu05HjMI+1Mk2RoV8+PUyl+FjGkWJOnnsPm4e7dyzj2aM7KTtCESmcYfPAUbhcWnq1OmIUZnNNkaFfPj1MpfhYxpFibp43Fq+k/oVLxIbX7ABRmfiGaBOtH3WpcsRfTYvlMfYxlBgNKIQ5tIIGgI3QhePS8o20uTnVoqjDzgCoTOxAOpE22dduhzRZ/NCeYxtDAVGIwphLo2gIXAjdPE4ee4KWrLqI+rfqSVdVtAkcLu9FMAC6AWtiPLqcsSIzBPVso1Roh9u3cxluHhGVZouHq+f+iohDNqEAe2pRX6eVnNZALXC7a8yXY7or3XhPMU2hoOjCaUwlyawELwNOnjExhdsgEFaOPGq4I32WAILoEfAosiuwxGjsCuxTrYxagbCq5+5DA/LKEvSwaNzAL554/o0cWAH7eayAGqH3HuFOhzRe6vCfYJtDBfPKEtjLqNEP7y6dfAYRQBsmRdvPgYRnh8FLkmHIwZuZMAC2MaAABr0OHNpEBkBmqKDxygCYLMABnCKKB7V4YhR2CXjiFG3K8z6beAReNlgJ9sYTs+IIgC2zLjDM8Bw+A2lFO5socAYeSE28MgCGLmbhdYA1f6KnZ/YAZqXU4dmjOoUWru9FMTfAL2gFVFe1Y4YkVmVqmUbTWAhnDYwl+HgGHUpqnmMKgA2zwCj9iyP9at2RI/NUZKdbVQCaySFMpeRwB56pap5jCoANgtg6K6itkDVjqi29XKls41yOMUhF3MZB5bc26iax/7Fi2hL+U6aMrQj5TfMcW+Qghy8BKoA1LCLVO2IYbfXT3lsox/UzHyGuTSTF6+tUsljlAGweQbo1RMizq/SESM2raJ6ttEUJoK3g7kMjqEJJajkMcoA2CyAJniXhzaodEQPzVCalW3h0NNzAAAgAElEQVRUCq/WwplLrXArq0wlj48sWk0LStdTj8Jm1LOouTIb3ArmJVA3hAz4u0pHNMA80QS20RQmgreDuQyOoQklqOQxygDYPAM0wbs8tEGlI3pohtKsbKNSeLUWzlxqhVtZZap4jDoANgugMpdRU7AqR1TTWn+lso3+cDPxKebSRFa8t0kVj1EHwGYB9O4LkT6hyhEjNSqpcrbRJDaCtYW5DIafKU+r4tEJgN2loAkN6NQyUnP5G2Ck8MtVrsoR5WrXk4tt1IOzjlqYSx0oq69DFY9RB8DmGaB63wm1BlWOGGojAxbGNgYE0KDHmUuDyAjQFFU84gJcfAd8eswVVKdm9QAtDP4ozwCDY6i8BFWOqLzhHipgGz2AZXhW5tJwgiSbp4JHEwJg8wxQ0gFMyabCEU2xzWkH22gaI/7bw1z6x86kJ1XwaEIAbBZAk7xMoi0qHFGiWq1Z2EatcCutjLlUCq+2wlXwOHnuClqy6iPq36klXVbQRJst6SriJdDIKXBvgApHdK9Vbw62US/eKmtjLlWiq69sFTyaEAA78hngt99+S3Xr1qUqVaqkZXPPnj1UvXp1qlq1akbG77nnHho1apQ+r4igJhWOGIEZGatkG01jxH97mEv/2Jn0ZNg8mhIAOzIBLC8vpwEDBtBRRx1F27Zto65du1Lfvn1p/PjxtH37dqpduzaNGTNGCGPv3r1p+vTp4neZEgugSV3Gf1vC7mz+W6LuSRtsBHo22Mk2eu8ny9/9lHAHYPPG9WniwA7eC1DwhNYl0Mcff5xefvllevbZZ+mNN96ga665hl555RUaMWIEzZs3T4jh8OHDafPmzbRlyxbxs1tiAXRDKB5/5wElHjzJtJK5lEHJ/Dxh82hKAOzIZoCff/45/fznP6cOHTpQSUkJDRs2TAhe+/btKTc3VwhfaWkp9erVi2bPnk3VqlVz9RIWQFeIYpEh7M5motE22MgzQBM9z1+bwvZXUwJgRyaAr732mljaHDhwIK1YsYJq1KhBixYtogMHDlBZWRm1atWKZs2aRQ0aNKB169bRsmXLaOTIkdS2bVvRZogmBDI5devWzR/D/BQjwAgwAoyAFgSuf+Tfop4pA87WUp9sJfn5+YdlrXLo0KFDsgXI5sOS5xlnnCE2rWAjTL169cRSZ15enihi165dNGjQIBoyZAhNmjRJiN/gwYOFWKbbMMMzQFn0zc4X9tumidbaYCPPAE30PH9tCtNfnQDYjRvm0NShHf01SMFTWr8B3nvvveID+YMPPkibNm2iNm3a0Kefflqx1FlcXExFRUVCFJcuXUpjx46lgoICIYDplkNZABV4RQRFhtnZImi+VJU22MgCKOUKscgUpr+aFAA7EXytAghh69y5M+FbINLo0aPFrlAk7ArFz9OmTaN9+/aJDTDLly8Xu0L79OmT1mFYAGPRl1wbGWZnc60sogw22MgCGJFzKag2TH81KQB2ZALoVPzZZ59R/fr1xTk/J+3YsUP8E8uiXhILoBe0zM0bZmcz1UobbGQBNNX7vLcrTH91AmDPGNmJ8nLreG+Moie0zgBV2MACqAJV/WWG2dn0t16uRhtsZAGU84U45ArLX00LgB35DDBM8lkAw0QzurLC6mzRWeBesw02sgC6+0FccoTlr0vKNtLk51ZSYatGNKxbG6PM5xmgUXSkbkxYjmiyqWyjyex4axtz6Q0vU3OHxaNpAbB5Bmiqx6VpV1iOaLLZbKPJ7HhrG3PpDS9Tc4fFo2kBsFkATfU4FsCYMeOtuWENKN5q1Z/bBjvZRjm/ws3v2ACDm99xA7xpiZdATWMkRXu4s8WAJIkm2sAjYLDBTrZRwuGJyMQA2DwDlOPOmFzc2YyhIlBDbOCRBTCQixj1cBj+amIAbBZAo9zMvTFhOKJ7LdHmYBujxT/M2pnLMNGMrqwweHQOwE8Y0J5a5P8Q8tKkxEugJrGRpi1hOKLpZrKNpjMk3z7mUh4rk3OGwWPnm58RJuL7H74DmpZYAE1jJEV7wnBE081kG01nSL59zKU8VibnDMqjqQGwEzFnATTZA/+vbUEdMQYm8saJOJAk2Ub2V0mgDM8WlEdTA2CzABrueMnNC+qIcTCXbYwDS3JtZC7lcDI9V1Aex88sEbtAh3U9hwpbNzbSXJ4BGklL5UYFdcQYmMgzwDiQJNlG9ldJoAzPFpRHUwNg8wzQcMfjGWDMCJJsbtABRbKayLPZYCfbmNnNTA6AzQIY+RDhrQHc2bzhZWpuG3gE9jbYyTZm7mVOAOy2TU+gW3u3M7VLpvXVKocOHTpkbKsTGsa3QcSBJfc28oDijlFccjCXcWHKZRa3YQPl5+f7MsbkANg8A/RFaXQP8YASHfZh1mwDjzwDDNNjoi0riL9eP/VVwjLolKEdKb9hTrSGZKidN8EYS82PDQviiDEwTzSRbYwLU+7tZC7dMYpDDr88OgGwYePCiVcZbSoLoNH0/NA4v44YA9Mqmsg2xoktdUtncUGB/TU9U6YHwOYl0Lj0sv9rJ3e2mBGWprk28MgvbNnhq0F4dA7A9yhsRj2LmhsNCM8AjaaHZ4AxoEe6iSyA0lAZn9EGLv3aaHoAbJ4BGt+9KjfQryPGyUy2MU5s8RIo+2t6HzA9ADYLYMzGGu5sMSOMl0B9b5+PC9PcJ1MzFYcA2CyAcell/A0wZkzxzCjIt6M4kc0CmJqt+aXr6dFFq6mwVSMa1q2N8ZTyN0DjKeJdoDGgSKqJNgyaLIBSrhCLTH78NQ4BsHkGGAv3+7GRfhwxZibyUY+4EZahveyv2UGmHx7jEACbBTBm/unHEWNmIgtg3AhjAeTvnEk+sLV8J/UrXiRufscN8HFIvAQaA5ZYAGNAkkQTbeCRl0AlHCEmWbz6a1wCYPMMMCYO6DTTqyPGzDzRXLYxjqylbjNzmR1ceuUxLgGwWQBj5p9eHTFm5rEAxpEwXgLlJdAkH3ACYE8Y0J5a5OfFwqt5CTQGNLEAxoAkiSbawCPP5iUcISZZvPhrnAJg8wwwJg7IS6AxI8qluV4GlDhbboOdbGNlD41TAGwWwJiNLtzZYkZYmubawCPPALPDV73yGKcA2CyAMfNRGwZOtjFmTsnfAPkbYIIPOAGwb+3djto2PSE2zszfAGNAFYtDDEiSaKINPHqdOUjAZmQWG7j0YmOcAmDHYga4Z88eql69OlWtWjVjB7jnnnto1KhRRnaSsBrlxRHDqlN3OWyjbsTV1cdcqsNWZ8myPG74/BvCDtDGDXNo6tCOOpsYuC6tM8A//elPVFpaKhp98OBBWrhwIa1atYpefvll2r59O9WuXZvGjBlDVapUod69e9P06dPF7zIlFsDAPmBEAbKdzYjG+myEDTbyDNCncxj4mKy/xi0AthEzQMzajjvuOLrssstoxIgRNG/ePOrbty8NHz6cNm/eTFu2bBE/uyUWQDeE4vF32c4WD2tSt9IGG1kA4+yhldsu669xC4AduQD+97//pcsvv5zee+89qlGjBrVv355yc3OF8GGG2KtXL5o9ezZVq1bN1ZtYAF0hikUG2c4WC2PSNNIGG1kA4+yh/gQwbgGwIxfA/v3707nnnkv9+vUTbTlw4ACVlZVRq1ataNasWdSgQQNat24dLVu2jEaOHElt27ZN61UsgNnR4WwQBxtsZAHMjv4oy6MTADsvpw7NGNUpdsZr/QYIdL766is69thjqby8nHJycioBtmvXLho0aBANGTKEJk2aJMRv8ODBtGLFCvFdsKSkpOIbYuKD3bp1ix3w3GBGgBFgBOKOwIr1X9KcpRupxU9zqP+Fp8XSnPz8/MPaXeXQoUOHVFjz/PPP0xNPPEELFiw4rPji4mIqKioS3/+WLl1KY8eOpYKCAiGA6ZZDeQaogiX9ZdowO7LBRtmZg34PC7dGG7iUsTGOAbAjXQK98cYbxRJn8tGFbdu20ejRo2natGm0b98+sQFm+fLlYldonz59eAk0xVtKuF062tJkOlu0LQxeuw02sgAG9xNTSpDx1/7Fi2hL+U6aMrQj5TesvKJnih2Z2qF9CTRdY3bs2CH+VK9ePU+48QzQE1zGZpbpbMY2XrJhNtjIAijpDDHI5uavcbwANxl2YwTQrz+wAPpFzqzn3DqbWa311xobbGQB9OcbJj7l5q9xvACXBdBET3Npk5sjxtCkw5rMNmYDiz/YwFxmB5duPD6yaDUtKF1PPQqbUc+i5rE0mmeAMaDNzRFjYIJrE9lGV4hik4G5jA1VGRvqxmMcL8DlGWAMfdPNEWNoEs8As4G0NDawv2YHuZl4jOsFuCyAMfRNHlBiSFqKJtvAIy+BZoevuvEY1wtwWQBj6J82DJxsYwwdk2eA2UOaxxe2bPj+l0nklR2ED9tjeBdo2IhGUx4LYDS4q6iVuVSBqv4yM/GYDd//WAD1+5SvGnlA8QWbcQ/ZwKPb0plxpPhskA1cZrLRuQB34cSrfCJoxmO8C9QMHjK2wvbOFgOKpJpoA48sgFKuEItM6fz1nQ1b6ZZHXo/lBbj8DTAWrle5kTYMnGxjDB2TvwFmD2kevgHOWbyGnlqylroUNKEBnVrGGgOeAcaAPhaHGJAk0UQbeOQZoIQjxCRLOn+9+eF/0JqN2+jW3u2obdMTYmJN6mayAMaAPhsGTrYxBo4o2UTmUhIow7Ol49H5/vf0mCuoTs3qhluRuXksgDGgjweUGJAk0UQbeOQZoIQjxCRLKn/Npu9/mXyVj0EY5KQ2DJxso0EOF7ApzGVAAA15PBWP2fT9jwXQEEdzawYPKG4IxePvNvDIM8B4+KJMK1P56/iZJYQoMMO6nkOFrRvLFGN0Hl4CNZqeHxpnw8DJNsbAESWbyFxKAmV4tlQ8dh83jxAHdMbITpSXW8dwC9ybxwLojlHkOXhAiZyCUBpgA4/8whaKqxhRSLK/bvj8G0IEmLycOjRjVCcj2hi0ESyAQRHU8LwNAyfbqMGRNFXBXGoCWnE1yTzOL11Pjy5aTYWtGtGwbm0U166neBZAPTgHqoUHlEDwGfOwDTzyDNAYdwvckGR/zbbvf5l8lXeBBnaf8AqwYeBkG8Pzl6hLYi6jZiCc+pN5zLbvf6EL4P79+6latWrhoC9ZCt8GIQmU4dl40DScIA/NYy49gGVw1kQet5bvpH7Fi8TBdxyAz5YUaAl09erVdP3119PLL79Mv/71r2nt2rUEQfrDH/6gDR8WQG1QK62IB02l8GotnLnUCreyyhJ5XFK2kSY/t1KEPkMItGxJgQTw3HPPFVv0b7/9drruuuuoVatW9P7779PXX3+tbSbIApgdrsiDZnbwyN8As5PHyXNX0JJVH1H/Ti3psoImWWOkbwHcs2cP1apVixYsWECTJ0+mNWvW0FtvvUUnn3wyvf3223TmmWdqAYkFUAvMyithAVQOsbYKmEttUCutKJHH/sWLaEv5TpoytCPlN8xRWq/Own0LIBp5+umn089+9jOaP38+DRw4kBo2bEjjxo2j7777jurU0XNIkgVQp7uoq4sHTXXY6i6ZudSNuJr6HB6z9ftfptUKqV2gTz75JP32t78V6GPW165dO+rcuTPNnj1bDSMpSmUB1Aa10op40FQKr9bCmUutcCurzOExW7//BRZAFFBeXk5Vq1alevXq0apVq8R3QJ2JBVAn2urq4kFTHba6S2YudSOupj6Hx0cWraYFpeupR2Ez6lnUXE1lEZXqawm0f//+tHfv3rRNnj59uvg+qCOxAOpAWX0dPGiqx1hXDcylLqTV1uPwiPBnCIM2YUB7apGfp7ZSzaX7EsAqVapkbOaOHTvoqKOO0mIKC6AWmJVXwoOmcoi1VcBcaoNaaUXgsW5ug6w8/+cA50sADx48KJ7v2rUrbd26laZOnUo//elPxXGIpUuX0n/+8x+qXl3PTcEsgEr7gLbCedDUBrXyiphL5RBrqQA8vvP5/qyL/5kIni8BRAGI+gKRw/k/CCDS3Llz6corr+RjECG7Jw8oIQMaUXE28AhobbDTFhufKv0sq+7/S+76vgUQBTVr1ozeffdduvzyy8UmmHnz5olvfx9++CHVrVtXyzDDM0AtMCuvxJYBJT8/XzmWUVfAXEbNQDj1r/3f+/THJ1aJwhD+DGHQsi0FEkCEPpswYQItXLiQvv32W+rQoQPddttt1L59e204sQBqg1ppRTxoKoVXa+HMpVa4lVU2/x9l9OjfP6DmjevTxIEdlNUTZcG+BRBLoA888AA1b96cLrjgAsLGl5/85CfabWEB1A65kgp50FQCaySFMpeRwB56pXc+toRWrv8y68KfJQLlWwCdJVAIIZZBcRYwisQCGAXq4dfJg2b4mEZVInMZFfLh1nvlmOdo994DWRf+LDQBvPrqq2nOnDl03nnniZmgczxi0qRJVLNmzXDZSFMaC6AWmJVXwoOmcoi1VcBcaoNaWUU494fzf3k5dWjGqE7K6om64EAzwAYNGohjEMlp+/btYlNMurRz507CUYpMZwURbBu7TN1mliyAUbtQOPXzoBkOjiaUwlyawEKwNjjRX7oUNKEBnVoGK8zgpwMJ4K5du+jQoUOHmZcuEDZErV+/fgSBPOKII6hly5YiePb48ePF72rXrk1jxowRM8nevXsTIsrgd5kSC6DB3uWhaTxoegDL8KzMpeEESTTPif6Cu/9wB2C2pkACiJ2fM2fOFMug+Hf37t1FcOzjjz8+JV6PP/44rVy5kh566CEhnC+88AK1aNGCRo0aJY5Q9O3bl4YPH06bN2+mLVu2iJ/dEgugG0Lx+DsPmvHgSaaVzKUMSubmcW5/qFWjKj07rqu5DQ2hZYEE8Oabb6a7775bLGUeffTRQriaNm0qDsJXq1btsOaNHj1a3BlYVlZGJ554It1111108cUXi2MTubm54vnS0lLq1auXuFEiVRnJhbIAhuAFBhTBg6YBJITUBOYyJCAjKmZ+6XoR/aXFT3Nowu87RtQKPdX6FkB8x8Nh9wEDBtBf/vIXsaSJi3FvuOEGeu+99+iMM844zIJrrrmGli1bRi+//DKtXr2abrrpJvr444/F90CIIm6SmDVrFuHb4rp160TekSNHUtu2bUVZJSUlQiCTU7du3fSgxbUwAowAI5DlCDz62vv0zqZvqOf5jalNk2Oz3FqiVMEpXO8DxPc/fOsbO3as+G6H5IRCwyyvdevWhwF344030pFHHkkTJ04Uf4PQQdBOPfVU8TPKHDRoEA0ZMoSwkxTiN3jwYFqxYkXFDlOeAWanP/KsIXt4ZS7jy+XOPfuo+7h5woC7f9uKmp1xWnyNkWi57xkgysYFuBAwLGNis8rzzz9PZ599dlrBwvfCRx55hBYvXiyWO88991z67LPPKnZ6FhcXU1FRkfj+h6DaENeCggJRXrrlUF4ClWA5Bll40IwBSZJNZC4lgTIw2/J3P6XxM0uoccMcGtbptJSzIwOb7btJgQRw06ZNIhTaU089JTbBIBD2rbfeSmeeeWbKBn3//fc0dOhQsQQKwcQOUGycQdq2bRvhG+G0adNo3759YgPM8uXLxeyyT58+aQ1kAfTNvVEP8qBpFB2BGsNcBoIv0ocnz11BS1Z9JKK/tGhYjQXQjQ2IGo434OgCRE1m4wpukcc5wcQzfgilhpTp/GCqtrAAujEUj7/zoBkPnmRayVzKoGRmHix/Yhl0ytCORLu/ZgHMRNOSJUvETA3LmieffLLYzYkZ3BVXXKGNXRZAbVArrYgHTaXwai2cudQKd2iVJUd/sZlH100wQB3fAN9//316/fXXRSDsjh070n//+1/65ptvxLEIHYkFUAfK6uuwubOpR1dvDcylXrzDqi05+ovNPLoKoHMhLq4/uvPOOwUHr7zyCl1yySXi212bNm3C4iVjOSyAWmBWXonNnU05uJorYC41Ax5SdcnRX2zm0VUAgfkpp5wibn/G+T+cCcQuzvXr14sNLcceq+f8CAtgSN4fcTE2d7aIoQ+9euYydEiVF+hEf8Glt7j8FslmHqUEEN8AcU4Pouck3BF47bXXKifMqYAFUBvUSiuyubMpBTaCwpnLCEAPWKUT/QVxPxH/kwUwVZTrFCAjG87sYWfnhRdeKA7H60wsgDrRVlcXD5rqsNVdMnOpG/Hg9eHsH84ADut6DhW2bswCeEhCALEB5qKLLhJTZcQFXbNmDfXs2bPibF9wWtxLYAF0xygOOXjQjANLcm1kLuVwMiVXYvQXLH9iGZRngBICiHBnEMH69evTVVddJaK7INoL7wIN17V5QAkXz6hKs4FH2wfOqHwrSL1O9JfmjevTxIEdKoqywV99R4LBAXjc+o5vfghojUPtCEqNgNarVq0Sd/3pSDwD1IGy+jps7mzq0dVbA3OpF++gtSVGf7msoAkLIBFJbYJB1BaEPcvJyaEaNWqIGyFee+01+uqrr8Rt7joSC6AOlNXXwYOmeox11cBc6kI6nHqc6C8zRnaivNwf93DYzKOUACIGKG5vQBxQJ+FMIM4G6kosgLqQVluPzZ1NLbL6S2cu9WPut8bk6C+J5djMo6sAHjhwgP7zn/+Iy3AB1MaNG+mss86iX/7yl3658PUcC6Av2Ix7yObOZhwZARvEXAYEUOPjydFfWAB/QMBVAHGJbcOGDcUN8AiFFlViAYwK+XDr5UEzXDyjLI25jBJ9b3X3L15EW8p30oQB7alFfl6lh23m0VUAgdQf/vAHcRs8rjGCEOIbINLll18udSuEN6pS52YBDAPF6MuwubNFj364LWAuw8VTVWmpor/wDFByBohsuNF969ath/Gzfft2z9ca+SWZBdAvcmY9x4OmWXwEaQ1zGQQ9fc860V8KWzWiYd0Oj91sM49SM0BEgMFxiOTUoUMHngGG6Mc2O2KIMEZelA08AmQb7MwGG29++B+0ZuO2StFfeAboYQYY+YhCRDwDNIGF4G3IhgHFDQUbbGQBdPMCM/6eLvoLCyALoBkemtAKGwZOttE4t/PdIObSN3TaHkwX/YUFkAVQmxPKVsQDiixSZuezgUeeAZrtg07r0kV/YQH0IIAIF/r000/TP//5T2rfvr2I/lJUVKTtNng0lZdA49Hh3FppgzjYYCMLoJunm/F3J/rLlKEdKb9hTspG2eCv6WyU2gRzxx130JgxYwR4uA2ipKRE/BuC6ByJUE03C6BqhPWUb3Nn04OwvlqYS31Y+6kpU/QXngFKzgAx+zv66KPp0ksvFUGxcSj+jDPOoN/+9rfihohTTz3VDzeen2EB9AyZkQ/woGkkLb4axVz6gk3bQ3MWr6GnlqylLgVNaECn9JcW2Myj6wxw3759IgD23XffTV9//bW4DeKCCy6gjh070qZNm+jkk0/WQigLoBaYlVdic2dTDq7mCphLzYB7rO76qa8SZoG4+R03wKdLNvPoKoAArVOnTvTSSy+JeKBICIoNEdQZGo0F0KP3G5rd5s5mKCW+m8Vc+oZO+YNO9BdUtHDiVRnrs5lHKQHEtUdPPvkk4VaI//3vf9S2bVuaOnWqWArVlVgAdSGtth6bO5taZPWXzlzqx1y2xiVlG2nycyvFzA8zwEzJZh4zCiCAyXRhfOPGjXkTjKxHSuSz2REl4IlNFht4BBk22BlXG8fPLCGcARzW9RwqbN2YBXDDBsrPzz8Mh4wCWKVKlYzAcSzQcMfkuHY2LyiwjV7QMjsvc2kuP+kuv03VYpt5zCiA9957L+E+wHTphhtuEBtkdCReAtWBsvo6bO5s6tHVWwNzqRdv2dqc6C+NG+bQ1KEdXR+zmUepb4BA8LvvvhObXnA/IDbA4GiEzsQCqBNtdXXZ3NnUoRpNycxlNLi71SoT/SWxDJt5lBJARIHp0aNHJdxHjRoljkboSiyAupBWW4/NnU0tsvpLZy71Yy5To5flT5RnM4+uAogl0NzcXHH04YknnhBLnlOmTKHly5fTp59+Sscff7wMJ4HzsAAGhtCIAmzubEYQEGIjmMsQwQypqHc2bKVbHnmd8nLq0IxRnaRKtZlHVwF0IsFcffXVNG3aNAHowoULqUuXLiyAUu4ln8lmR5RHyfycNvBo+8zBVC98ZNFqWlC63jX6Cy+B/oBARgF87bXXxCaYBx98UByEnzlzprgA97777iOcDVy3bh1fiBtiT7Bh4GQbQ3SYiItiLiMmIEX1/YsX0ZbynZQp+HXyYzbzyMcgDPJhmx3RIBoCN8UGHnkGGNhNQi9ANvg1C+CPCGQUQMz6Mh2DuOSSS3gGGKIb2zBwso0hOkzERTGXEROQVL2f5U/bX2RcvwECoN27d9Njjz0mbn9AwlGI9957j+bNm0d169YN5AV79uwR9wsiyHamxJtgAsFszMM8aBpDReCGMJeBIQy1ANng1zwDlJwBOtmcYNjJwGFnaCoB/P7776l+/fp00UUXiUdOP/10uvPOO2n8+PGE6DG1a9cW9wsi0kzv3r1p+vTp4ncsgKnD9YTaSyIujAfNiAkIsXrmMkQwAxblBL+uU7M6PT3mCk+l2cyj6wxw//79YoaGGdiCBQvE7k/M1ubMmUNvvfWWELHkhIDZo0ePFnmwacaZZo8YMULMGvv27UvDhw+nzZs305YtW8TPbolngG4IxePvNne2eDAk30rmUh4r1Tnnl66nRxetpsJWjWhYtzaeqrOZR1cBxHInBA9hz2rVqkWrV68mhEhr1qyZWAZNdSPEokWLqGfPnuLs4Nlnny3Es3379uI/nCmE8JWWllKvXr1o9uzZUt8RWQA9+bSxmW3ubMaS4rNhzKVP4BQ85nf505mcpAoUraCZkRWZzlddBRAt7tOnjzgCgeuQEiPCpFsCXbJkCa1atYqGDBlCzzzzDE2cOFFcowQxLSsro1atWtGsWbOoQYMG4ijFsmXLaOTIkeKapXSJBTAy3wm1Yh40Q4Uz0sKYy0jhr6g88e4/LH9iGdRLsplHKQHENz2cCSwsLKRnn31WiNhVVylCE5EAACAASURBVF1F7dqlvmdq7969YtaI/7CLFMugn3zyCZ144omCl127dtGgQYOEQE6aNEmI3+DBg2nFihViSbWkpETMEJNTt27dvPDKeRkBRoARyHoEVqz/kuYs3UgtfppD/S88Levt9Wug5+uQnIqweQWxP53veR999JEQrb/+9a8pN8Fgg8u2bdvooYceojfeeENsdPnwww8r2l1cXExFRUXi+9/SpUtp7NixVFBQIATQqSPZSJ4B+qXdrOdsfts0i4ngrWEug2MYRgle7v5LVZ/NPErNAE866STxLW/GjBlC1G677TaBY7r7AD///HMhcBAz/Ddu3DjCTlIkCCM2yCCs2r59+8QGGMQVhWhiqTVdYgEMo6tEX4bNnS169MNtAXMZLp5+Stu5Zx8h+DWSn+VPPGczj1ICiODXw4YNq+CnSZMmIhzapZdempGzL774go477rhKeXbs2CF+rlevnie+WQA9wWVsZps7m7Gk+GwYc+kTuBAfW1K2kSY/t5Jk7/7jGWBlBDIKYHl5eUXu5557jgYOHEh5eXniG2CdOnXEjk5diQVQF9Jq6+FBUy2+OktnLnWinbour3f/sQB6EMBUZ/wSH0+3BKrCLVgAVaCqv0weNPVjrqpG5lIVsvLler37jwXQgwAiegt2dKZL+BZ45JFHyrMVICcLYADwDHqUB02DyAjYFOYyIIABH1/+7qeEDTBBlj/RBJt5lPoGCJBwFAIX4CamRo0a0RFHHBGQRrnHWQDlcDI9l82dzXRuvLaPufSKWLj5w1j+ZAHEjbcuCTs2cQwCB98TEy+BuiHn7e88oHjDy9TcNvBo+8Bpgu85y59e7v5L1W4b/NV3JBjoo7OT85prrqEaNWpUYHjrrbfyEmiIPcFmRwwRxsiLsoFHFsBo3czv3X8sgJURcF0CdQQQUVtuv/32yFjnJdDIoA+1YhvEwQYbWQBD7RaeC5uzeA09tWQtdSloQgM6tfT8fOIDNvir7xkggLr66qtp4cKFIqh14tGHrl27SgWyDsTO/z3MAhgGitGXYXNnix79cFvAXIaLp5fSbn74H7Rm4za6tXc7atv0BC+PHpbXZh5dZ4BAC0Grt27dehhw/A0wkN+xI4YLnzGl2TCg8AwwOncLI/oLzwB/QEBKABGqDLtAkxPid6aL3Rm2e/AMMGxEoynPBnGwwUYWwGj6D2p1jj80b1yfJg7sELghNvir5yVQXF30xBNPiKuLcO/f7t27DwMa9/nhslwdiQVQB8rq67C5s6lHV28NzKVevJ3awjr+4JRnM49pZ4A4AI9D7hMmTKDJkyfzEqgGX7fZETXAq60KG3jkGaA2dzqsov7Fi2hL+U4KevyBBTDDEih2f+JOvpNPPplwuwNubkhO5557rrjzT0fiGaAOlNXXYYM42GAjC6D6vpKqBmf5My+nDs0Y9cMNO0GTDf7qeQkUoOLWdiyFpku4HZ6XQIO634/P2+yI4aEYfUk28MgCGI2fOXf/9e/Uki4raBJKI2zwV18CyMGwQ/Ev6UJsdkRpkGKQ0QYeWQD1O+LW8p3Ur3iRqNjv3X+pWm2Dv/oSQOz+zDQDbNOmDS+BhtgPbHbEEGGMvCgbeGQB1O9m80vX06OLVlNhq0Y0rFub0Bpgg7/6EsBEhFevXk1r1qypBHr37t15CTQ0N7Q7KnuIMEZelA0DCgugfje7fuqrhBBoYRx+T2y9Df4aSAD79+9PM2bMOIxxPggfbiew2RHDRTLa0mzgkQVQr485y591alYXy59hJhv81bcAHjhwQBx2x6F3BL9O3PRywQUX8EH4ED3RZkcMEcbIi7KBRxZAvW72yKLVtKB0fejLn7bzKBUJplmzZnTxxRfTvffeq5f1hNr4GERk0IdasQ3iYIONtg+coXYKicKcs39hL3/azqOUAHbp0kUEw+7WrRsdc8wxFXTdf//9VLNmTQn6gmdhAQyOoQkl2CAONtho+8Cpsy85Vx+pWP60nUcpAeRg2Hrc3YaBk23U40s6amEudaBM5IQ+C+Pqo1QttplHKQHcv38/pbo4XtcheJDGM0A9nU11LTZ3NtXY6i6fuVSPeOLNDzNGdqK83DqhV2ozj1ICeMcdd9COHTsOA/6uu+7iJdAQ3dFmRwwRxsiLsoFH25fOdDnZkrKNNPm5leLOP3z/U5Fs8Fffu0ABOC+BqnC7w8u02RH1IKynFht4ZAHU40tO6LNhXc+hwtaNlVRqg78GEsCvvvqqIiLMrl276KabbqKPPvqI3nzzTY4EE6JL2uyIIcIYeVE28MgCqMfNuo+bR1gGVbX8aTuPUkugyVTPnDmT+vTpQx988AGdcsopWjyBvwFqgVl5JTaIgw022j5wKu8oRPTOhq10yyOvU+OGOTR1aEdlVdrgr4FmgO3atRNXIjkJhSF9++23VLduXWXEJBbMAqgFZuWV2NzZlIOruQLmUi3gcxavoaeWrCVVuz8Tx/P8/Hy1xkRceiABvPDCC2nLli3CBESFwawPM8BOncK5j0oGGxZAGZTMz8ODpvkcybaQuZRFyl8+VbE/k1tjM4++lkD90RnsKRbAYPiZ8rTNnc0UDsJqB3MZFpKHl6My9icL4I8IsACq82HPJfOA4hkyIx+wgUcAb4OdUdmo6uqjVB0mKht1dt5AS6A6G5quLp4BmsBC8DbY3NmCo2dWCcylOj50LX/a/iKTdgaIWyBeeuklOvvss2nVqlV01lln0YknnqiOcZeSWQAjgz7UinnQDBXOSAtjLtXAnxj7c8aozoQYoCqTzTymFcDvv/9eRHkZOHAgvfjii9SrVy9q27ZtJR4uv/xyvg4pRM+02RFDhDHyomzg0faZg0onUx37k78BSn4DbN26tZj9pUt8IW643cCGgZNtDNdnoiyNuVSDfuebnxEFqzz8nthym3nMuAnmu+++EwKIa5CuvfZaOu+88yoxjp9xLEJH4iVQHSirr8PmzqYeXb01MJfh463r8DsL4A8ISO0C/eyzz8SB93//+9+0c+dOKioqotq1a0ux//XXX1OdOnXoyCOPTJl/z5494pb5qlWrZiyPBVAKbuMz8aBpPEXSDWQupaGSzqhz96fTKJt5lBLApUuXUufOnUXkFydNnjyZrr/++ozEbtq0iVq0aEF/+9vf6Je//CWNHz+esGwK8RwzZgxVqVKFevfuTdOnT3cVVBZA6T5kdEabO5vRxPhoHHPpAzSXR5zvfyqDXyc3wWYeXQXw4MGDYifo1q1b6bbbbhNC9ec//1nMBr/88stKN8QnArt371668soraePGjTRt2jQ67rjjaMSIETRv3jzq27cvDR8+nDZv3iwizOBnt8QC6IZQPP5uc2eLB0PyrWQu5bGSzdm/eBFtKd9JU4Z2pPyGObKPBcpnM4+uAoibII499liaOnUqXXfddQLoxYsX069//Wtavnw5tWnTJiX4N954IxUWFgqxHD16tJgBtm/fnnJzc4XwlZaWip2ls2fPlvqOyAIYyMeNedjmzmYMCSE1hLkMCcj/K0Zn9JfEltvMo6sA4ib4o48+mpo1a0b333+/mAFiKfPZZ5+lL774QtwVmJyef/55mj9/Pj355JN00UUXVQggzhaWlZVRq1ataNasWeLZdevW0bJly2jkyJEVxyxKSkqEQCYnbMbhxAgwAoxANiIwe+lGWrn+SzqnybF09flq7v7LRtxkbUoV8NtVAFH4lClTaNiwYZXqwXLonXfembLuc889VyyZHnPMMWKptEmTJmKm94tf/ELkx52CgwYNoiFDhtCkSZOE+A0ePJhWrFghvgumSjwDlKXZ7Hw2v22azYz31jGX3jFL9wTu/Ot3z0Lld/+lqt9mHqUEEKB9/PHH9MILL9COHTvoiiuuEDPCdOmTTz4h7O5E6tevnxC3Ll26VGx0KS4uFjtJ8f0PG2zGjh1LBQUFQgDTHatgAQyvs0VZks2dLUrcVdTNXIaH6pKyjTT5uZXUvHF9mjiwQ3gFS5RkM4/SAiiBY8osuDLplltuEd8AkbZt2yaWRLExZt++fWIDDL4lYlcorlhKl1gA/TJg1nM2dzazmAjeGuYyOIZOCbj4FmcAde7+dOq2mUflApjsIphBItWrV8+T97AAeoLL2Mw2dzZjSfHZMObSJ3BJjyVuftER+zO51TbzqF0A/boMC6Bf5Mx6zubOZhYTwVvDXAbHECU4Z/8KWzWiYd1S76oPp6bUpdjMo5QA4gA8zvC9/PLLYvMKAmVjR+aZZ56pkpdKZbMAaoNaaUU2dzalwEZQOHMZHHTn5geUpCv2J88Af0RASgBxoH3u3LniqZtvvllsVlmzZo3YGJMuxFlw16hcAgtg2IhGUx4PmtHgrqJW5jI4qrpvfkjVYpt5dBXA/fv3i1id48aNE3FAEbPz4osvpl/96lf09ttva5sFsgAG72wmlGBzZzMB/zDbwFwGRzOKyC88A/QwA8ThdRxNwHEGzPbwX/369cXOzvLycsrJ0ROuhwUweGczoQQeNE1gIZw2MJfBcIwq8gsLoAcBRFbE7bzvvvsq4YYwZjNnzgzmAR6eZgH0AJbBWXnQNJgcj01jLj0ClpTdOfvXtukJdGvvdsEKC/C0zTy6LoECV4RDQwgzBLL+8MMPqWXLljR06FDXGxwCcHLYoyyAYaIZXVk2d7boUFdTM3MZDNfxM0to+bufUv9OLemygibBCgvwtM08SgkgIsBg52dyQpDsdu3aUc2aNQPAL/coC6AcTqbnsrmzmc6N1/Yxl14Rq5y/+7h5kYQ+S261zTxKCSCCViO2Z6qEwNYIXK1aBFkAg3U2U562ubOZwkFY7WAu/SOJmR9mgHk5dWjGqE7+CwrhSZt5lBLAq6++WtzYgODX2BAzceJEEckFVyLhd3//+99FbE+ViQVQJbr6yra5s+lDWU9NzKV/nE1Z/oQFNvPoKoDOMYgbbrihYiPM3XffLc4D4lgELrrFNUnYJaoysQCqRFdf2TZ3Nn0o66mJufSHc9Shz3gJ9EcEXAUQWTHbQzSYv/zlL+IYBDbA1KpVS+wC7dixo1gCdYJd+3MJ96dYAN0xikMOHjTjwJJcG5lLOZySc5lw+D2xTTbzKCWAiAKDGR5EEOmoo46iGTNmiKuRpk+fLpZH+Rugv87AjhgcN9NKsGFAsX3pLIjPOZtfpgztSPkN9ZyjztReG/w1nY1SAgjwcCD+rbfeot27d4u7+xAdBhtjcBC+Ro0aQfxB6lmeAUrBZHwmmzub8eR4bCBz6REwfG/7/Bu6fuqrRmx+cVpvM49SAgjRe+yxx+j9998XmB08eJDee+89cS6wbt263r3AxxMsgD5AM/ARmzubgXQEahJz6R2+RxatpgWl66lLQRMa0Kml9wIUPGEzj1ICiEttX3rppcOgx5IoC2B4HmmzI4aHYvQl2cAjL4H68zMn9ueEAe2pRX6ev0JCfsoGf/W9BOrsAsUMbMGCBdSlSxcREHvOnDliSbRKlSoh05G6OJ4BaoFZeSU2dzbl4GqugLn0BriJy5+2v8i4zgCx3AnBwzEI7PxcvXo13XvvvdSsWTOxDHrGGWd48wKfuVkAfQJn2GM8aBpGSIDmMJfewDNx+ZMFEIE+XVKfPn3EkYennnqKevToUZGbl0DdkPP2dx5QvOFlam4beLR94PTqezv37KN+9ywUoc9M2f3p2GCDv/peAgVIOPC+ZMkSEe3l2WefFYGxu3btSueff75XP/Cdn2eAvqEz6kGbO5tRRITQGOZSHkTn7F/zxvVp4sAO8g9qyGkzjxmXQBEAGztAW7duTWPHjqXOnTsLOtauXSuCYG/atIlOPvlkDRQRsQBqgVl5JTZ3NuXgaq6AuZQDPHH2N2NkJ8rLrSP3oKZcNvOYUQCLi4tp1KhRaWnAzLB27dpaaGIB1AKz8kps7mzKwdVcAXMpB7jJsz/bl7IzCuDrr79Or776Kj300EN0wQUXUNOmTSsYb9OmDV1++eVyHhBCLhbAEEA0oAgeNA0gIaQmMJfuQJo++2MBlNgEs3DhQjrrrLO0LXemcisWQPfOFoccPGjGgSW5NjKX7jiZPvtjAZQQwH/96180adIkevPNNysxjtvh+SC8eyeQzcEDiixSZuezgUfbB04ZD3RufUBeE7/9OTbY4K+BdoHizN+7775LuPw2Me4ndobyN0CZriCXx2ZHlEMoHrls4JEF0N0X5yxeQ08tWUuFrRrRsG5t3B+IKIcN/upbABEEG5fgjhkzRuwEjSrxEmhUyIdbr82dLVwkoy+NuczMgRP27Nbe7aht0xOiJyxNC2zm0TUSDDC75ppraOXKlfT0009Tbm5uBYwnnHACh0IL0a1tdsQQYYy8KBt45BlgZjdb/u6nhFvf69SsTk+PuSJyn8zUABv81fcMEMA1aNBAXH2UnLZv3y4uy9WReAaoA2X1ddjc2dSjq7cG5jI93rc88jq9s2ErDet6DhW2bqyXGI+12cyj1Axw8uTJFZfhJmI7cuRIcUO8jsQCqANl9XXY3NnUo6u3BuYyNd44+oBLb5Ew+8Ms0ORkM49SAgjyPvroI7ELND8/n4455hg69dRTtXLKAqgVbmWV2dzZlIEaUcHMZWrgl5RtpMnPrRTf/fD9z/RkM49SAohzgLgGCenmm2+mkpISatmyJU2ZMkUbtyyA2qBWWpHNnU0psBEUzlymBj1Oy5+wwGYepQTwpJNOory8PMrJySFEgMGu0DvvvJM+/fRTOv7447V0PRZALTArr8TmzqYcXM0VMJeHA+7c+YdlzxmjOhu//MkC6HIQHgGxa9asSQ8++KAIfo27Abt16ybOBK5Zs0bcC6gjsQDqQFl9HTxoqsdYVw3M5eFIm3rnXyafsJlHqRkgRO7LL7+k4447Tsz+sCMUB+DXrVunq6/xbRDakFZbkc2dTS2y+ktnLitjnrj5xeTIL8meYjOPUgKIW+BxEB7fAp00f/78iu+C6bpeeXl5pXODqfLt2bOHqlevLmaWmRLPAPUPcCpqtLmzqcAzyjKZy8roO5Ff4rL5xWm9zTxKCSCAQii0KlWq0DfffEO1atWin//852n73v/+9z+6+uqr6ZRTTqFdu3ZRr169qHv37jR+/HjC2UHMHiGoKK937940ffp015BqLIBRDnXh1W1zZwsPRTNKYi4r84CjD5gFThjQnlrk55lBkkQrbOZRSgAfeOABuu666+iVV14RN0JgSRRnACFKqdJ9991HDRs2pB49etDixYtp+PDh9MILL9CIESNo3rx51LdvX/G7zZs305YtW8TPbokF0A2hePzd5s4WD4bkW8lc/oiVE/mlccMcmjq0ozyIBuS0mUcpATz99NOpfv369Nxzz1GdOnXo2muvpZkzZ7ruAsU9gpjdYZYH8Wvfvr1YEoXwlZaWipnh7NmzxXdFt8QC6IZQPP5uc2eLB0PyrWQuf8TKOfrQv1NLuqygiTyIBuS0mUdXAdy/f7/4Rvf73/+epk2bJuiCaEG8cDC+bdu2aSm8//776fnnnxfLm6+99hohsHZZWZnYQTpr1iwRYg0baZYtWyZmlJnKYgE0oKeE0ASbO1sI8BlVBHP5Ax3Owfc4HX1IdCSbeXQVQAD1q1/9inAn4GWXXUZHHXUUYQPM0UcfTR988EHKUGgvvvginXPOOeKMIL4ZYtaXeGYQ3wUHDRpEQ4YMEfcMQvwGDx5MK1asEN8FcdAeM8TkhOMXnBgBRoARMAmBcU//l77+9nvqeX5jatPkWJOaxm1JQABRzJKTlABu3LiRMJt75plnxBGISy+9lG666SY6//zzUwL8xz/+UQgjNrpg80xhYSF99tlnFTs9i4uLqaioSHz/W7p0qbhmqaCgQAhguuVQngFmhy/b/LaZHQz+aAVzSTS/dD09umg15eXUoRmjOsWSYpt5dBVALIFiE0zz5s2pQ4cOtHv3bvEdMFOC6A0cOJDef/99cYHuhAkTxHdApG3bttHo0aPFcuq+ffvEBpjly5cLsezTp0/aYlkAY9m3Dmu0zZ0tOxhkAXQQcKK+4GfT7/zL5Hs290lXAQRw2PUJIYSwuZ3XSwT6888/F9/5jjjiiIpf79ixQ/zb6zVKLIDZMXza3Nmyg0EWQAeByXNX0JJVHxl/47ub39ncJ6UEEGf65syZQ+edd56YCeI7HRK+3yFMmo7EAqgDZfV12NzZ1KOrtwabuUyc/cUp6ksqD7GZRykB5Atx9QwsNjuiHoT11GIDj0DSBjvT2egceyhs1YiGdWujx7EU1WIzj1ICiF2bqWJmu30LDJMvngGGiWZ0Zdnc2aJDXU3NtnIZtwtv3di3lUfgIiWA3377rTjI/vLLL4vjC7ghAkcSzjzzTDdsQ/s7C2BoUEZakM2dLVLgFVRuK5fOt7+4xfxM5wK28igtgFdeeSXNnTtX4IcLcXFcAVchffzxxynPASroa3wbhApQIyjT5s4WAdxKq7SRS+e6IwAb929/jnPYyKNju+sM0IkEM27cONq5c6fYBXrxxReLw/Fvv/22tlkgzwCVjmXaCre5s2kDWVNFtnG5tXwn9SteJNAd1vUcKmzdWBPSaquxjcdENF0FEOHLcDi9X79+YraH/xAX9JZbbiFcd4Rb4nUkFkAdKKuvw+bOph5dvTXYxuX1U18l7P7Mho0viZ5iG4+eBBCZcXMDbnhITIgFioDYuhILoC6k1dZjc2dTi6z+0m3i0rnrDxFfJg5sT3m5mYOB6GfDf4028ZiMkusMEA9gByiCWOMqow8//JBatmxJQ4cOdb3Dzz8lhz/JAhgmmtGVZXNniw51NTXbxKUz+4tzxJd0XmATj54EEFFbnn32WXENUtOmTcU1SLjkNorEAhgF6uHXaXNnCx/NaEu0hcuN5VVo8nMrKa63Pbh5iS08eg6GjR2fd999dwV+Z599Nq1cudINTyV/ZwFUAqv2Qm3ubNrBVlyhLVxe/8i/BZI9CptRz6LmilHVX7wtPHoWQMz2GjVqJGaAuMEBYogbHPLy8rSzxAKoHXIlFdrc2ZQAGmGhNnD51wVv0gtvfhzr2x7cXMQGHtPZmPEbIGJ+4vgDbm/45z//KW50X7VqlfgGqDuxAOpGXE19Nnc2NYhGV2q2c5l47CEbv/05npPtPMJO3wJ4+eWX0xVXXEFr164VM0AIojOVvOqqq8Rt8ToSC6AOlNXXYXNnU4+u3hqynctsiveZyTOyncdAApgJuO3bt3u+1shvF2UB9IucWc/Z3NnMYiJ4a7KZS+e2h1o1qtLdvy+i/IZ6zjsHZ8V7CdnMo9ssN+MSKMKfHTx4MC2iv/nNb9Le4O6dhsxPsACGjWg05dnc2aJBXF2t2colgl3f8vA/xKH385s3oBFXX6AORANKzlYeE6H1tQRqADcVTWABNIkN/22xubP5R83MJ7OVS+fQO449jPh/P6NfnPUzMwkIqVXZyiMLYEgOoqsYmx1RF8Y66rGBR+CYjXZi9tfvnoWE//fv1JJaNKxWsedBh+9EUUc28piMI88Ao/Asj3Xa7IgeoTI6uw08ZqsAOrO/5o3r08SBHbJS5GXFwehO5rFxLIAeAYsiuw0DJ9sYhWepqTMbuUwOeZaNNrIA/oiAVCxQNd3HW6n8DdAbXqbm5gHFVGa8tyvbuHxnw1bC0YfEkGfZZmMqlm22kQXQe79X9oTNjqgM1AgKtoHHbFsCxTe/7uPmCW9JDHlmA5c228gCGMEAma5Kmx3RIBoCN8UGHrNNABOvO5p6fUcxC8w2G3ncyT8MAhbAwMNdeAXYMHCyjeH5S9QlZQuXzqF34Jkc8ixbbMzkKzbbyAIY9SiSUL/NjmgQDYGbYgOP2TQ7ml+6nh5dtDplwGsbuLTZRhbAwMNdeAXY7IjhoRh9STbwmC0CmDj7G9b1HCps3biSA9nApc02sgBGP15WtMBmRzSIhsBNsYHHbBFAJ+B126YniOXP5GQDlzbbyAIYeLgLrwCbHTE8FKMvyQYes0EAl7/7KY2fWSI2vEwd2pHycuuwAEbffZS0IF2fZAFUAre/Qm0YONlGf75h4lNx5hJn/qY8t5K2lO+kLgVNaECn1HecxtlGWZ+x2UYWQFkv0ZDPZkfUAK+2KmzgMc4zQFx0O3TqqyLeZ15OHZoxqlNa37CBS5ttZAHUNiy6V2SzI7qjE58cNvAYZwGcPHcFLVn1UcalT8fbbODSZhtZAA0aV212RINoCNwUG3iMqwAm7vqcMKA9tcjPy8i3DVzabCMLYODhLrwCbHbE8FCMviQbeIyjAEL8cNEtlj4LWzWiYd3auDqLDVzabCMLoGsX0JfBZkfUh7L6mmzgMY4CiB2f2PmJ736J4c4yeYQNXNpsIwug+vFQugabHVEapBhktIHHuAkgNr70K14kvCc53BkL4AZrL/1lATRoQLVh4GQbDXK4gE2JE5fO7M+56FbW9DjZKGtTcj6bbVQqgOXl5VSvXj2qWrVqWm727NlD1atXz5gHD/N9gH7d26znbO5sZjERvDVx4TJx9jdjZKeUB97ToREXG4OwabONSgTw448/pquuuorq169P1apVo1atWtFtt91G48ePp+3bt1Pt2rVpzJgxVKVKFerduzdNnz5d/C5TYgEM4uLmPGtzZzOHhXBaEgcuseEFt7y7HXhnATz8qqBwvMSMUtL5qhIBvOuuu2jfvn00btw4wgyvVq1a9MYbb9Cf/vQnmjdvHvXt25eGDx9Omzdvpi1btoif3RILoBtC8fh7HAbNoEjaYGMcvgFiw8uC0vWEqC/Y+DJxYHtPs7842BjUV223UYkA7t69W8zuatasSfPnz6cbb7yRPvjgA+rQoQPl5uYK4SstLaVevXrR7NmzxSzRLbEAuiEUj7/bIA422Gj6wJkY7QVtlTnzl6oH2cClzTYqEUA40t69e2nixIk0adIkevHFF4X4HThwgMrKysSS6KxZs6hBgwa0bt06WrZsGY0cOZLatm0rfLCk6Ef3WgAAIABJREFUpEQIZHLq1q1bPEZ5biUjwAhEikDxvLX06Ve76Cd1a9B1nc6gnxx1ZKTt4cqjRyA/X9ON8Fj2vPLKK6lGjRr05z//mRo2bFjJ+l27dtGgQYNoyJAhQiAhfoMHD6YVK1aImWOqxDPA6B0ojBbY/LYZBn4mlWEql1jyxDVHuOVhwsAOlN8wxzdsptro26AUD9pso5IZ4MMPP0yLFi2iBQsWpOSpuLiYioqKxPe/pUuX0tixY6mgoEAIYLrlUBbAMF0+urJs7mzRoa6mZhO5XFK2kSY/t1IYLBvtJRM6JtoYNps226hEAK+55hp6/PHHK/G0fv16Ou2002jbtm00evRomjZtmtgogw0wy5cvF7tC+/Tpk5ZbFsCw3T6a8mzubNEgrq5W07hMjPOJ8343dGvjedNLMlqm2aiCTZttVCKAmUjasWOH+DPOB3pJLIBe0DI3r82dzVxW/LXMJC5x3AFxPiGCjRvmiAtuw0gm2RiGPanKsNlG7QLol0QWQL/ImfWczZ3NLCaCt8YkLh9ZtFocecB3P4Q6c7vlQdZ6k2yUbbPXfDbbyALo1VsU5rfZERXCqr1oG3gEqKbYiW9++PaHNKzrOVTYunFonJtiY2gGpSjIZhtZAFV6lseybXZEj1AZnd0GHk0RwMTvfv07taTLCpqE6hs2cGmzjSyAoXaXYIXZ7IjBkDPraRt4NEUAcdzBifQyY1Sn0B3BBi5ttpEFMPQu479Amx3RP2rmPWkDjyYIYOLS55ShHQOd90vnRTZwabONLIAGjZ82O6JBNARuig08Ri2Aief9ehQ2o55FzQPzlqoAG7i02UYWQCXdxl+hNjuiP8TMfMoGHqMUwMQ4n2Ecds/kRTZwabONLIAGjaE2O6JBNARuig08RimAztJnmOf9eAmUr0MK3PFVFsDnAFWiq69sG8TBBhujEkAnzifq93vDgxdvt4FLm23kGaCX3qA4r82OqBharcXbwGMUAoj7/SbPXUGI+oID70+PuUI5rzZwabONLIDKu5B8BTY7ojxK5ue0gUfdAoiZ3/iZJUL8sPQ5cWAHIYKqkw1c2mwjC6DqHuShfJsd0QNMxme1gUedAvjootW0uGyjED/c7D71+o5axE+njVE6tQ3+ms5GFsAoPS+pbpsd0SAaAjfFBh51iQNEr/u4eYIT7PjEcYe83DqBOZItwAYubbaRBVC2J2jIZ7MjaoBXWxU28KhLAJ3zfpj5qYj04uYUNnBps40sgG49QOPfbXZEjTArr8oGHnUIIOJ84oojzAJVxPmUcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MCjDgG8fuqr4n4/3d/9Ep3EBi5ttpEFUMuQKFeJzY4oh1A8ctnAo2oBdIJcY6fnhIEdlMT5lPEmG7i02UYWQJleoCmPzY6oCWIt1djAo0oBdMQPdUS19Ok4ig1c2mwjC6CWIVGuEpsdUQ6heOSygUdVAujc7I7yw77c1o/32MClzTayAPrpFYqesdkRFUEaSbE28KhCABPDnHUpaEIDOrWMhD/+Bhg57KE3gM8Bhg5p+AXaMHCyjeH7TVQlhsll4o7PqI48pMIxTBuj4smtXptt5Bmgm3do/LvNjqgRZuVV2cBjmDNAHHPAjs8t5Tu1hjmTcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MBjmALoXG+EHZ9Th3bUGunFzSFs4NJmG1kA3XqAxr/b7IgaYVZelQ08hiWApm16SXYOG7i02UYWQOXDoXwFNjuiPErm57SBxzAEEDe748gDlj57FDYTcT5NSzZwabONLIAG9TibHdEgGgI3xQYewxBAXG+EO/6w6WXiwPZGLX06TmADlzbbyAIYeLgLrwCbHTE8FKMvyQYegwrg/NL1hGuOkKI+7J7JY2zg0mYbWQCjHy8rWmCzIxpEQ+Cm2MBjEAF8aslamrN4jcDZlPN+6Ui3gUubbWQBDDzchVeAzY4YHorRl2QDj34FEEueWPqMg/j5tTF6D/TWAhv8NZ2NLIDefEVpbpsdUSmwmgu3gUc/4pAofs0b16eJAztoZsZ7dTZwabONLIDe+4SyJ2x2RGWgRlCwDTx6FUCEOcPMD4feIX639TmPcO7P9GQDlzbbyAJoUA+02RENoiFwU2zg0YsAIswZIr0gRXm3nx9ibeDSZhtZAP30CkXP2OyIiiCNpFgbeJQVQMz4cKs7RDBOMz/HcWzg0mYbWQAjGSJTV2qzIxpEQ+Cm2MCjrAA6kV5MDHMmQ7QNXNpsIwugTC/QlMdmR9QEsZZqbOBRRgATrzcy+axfJqewgUubbVQqgPv376e9e/dS7dq10/rYnj17qHr16lS1atWMg9M999xDo0aN0jKARVWJzY4YFeYq6rWBx0wCiGXPyXNXiCgvSHHZ8ZnKF2zg0mYblQjggQMHaM2aNTRjxgwhbPfff7/wrfHjx9P27duFII4ZM4aqVKlCvXv3punTp2cUSTzLAqhiqNZfps2dTT/aamtMxyXie2L2h1TYqhEN6NwqFjs+WQDV+kuUpWs9B/jdd9/R6NGj6a233qLWrVsLAUQDRowYQfPmzaO+ffvS8OHDafPmzbRlyxbxs1tiAXRDKB5/ZwGMB08yrUzFpbPsiW9+t/ZuRy3y82SKMjYP+6ux1HhqmFYBdFr24IMP0gcffFAxA2zfvj3l5uYK4SstLaVevXrR7NmzqVq1aq7GsAC6QhSLDDygxIImqUYmc5kY37Nt0xOEAMY9sb/GncEf2m+EAGJptKysjFq1akWzZs2iBg0a0Lp162jZsmU0cuRIatu2bVq0WQCz2xGzw7rMnS2bbEweVJaUbSRcbIsE8RvWrU1slz0TeWIBzA6vNUIAHSh37dpFgwYNoiFDhtCkSZOE+A0ePJhWrFghvguWlJSIGWJy6tatW3awwVYwAlmEwN9WfUavlP2w4eWEY2rTyCuaZZF1bEq2IJCfn3+YKUo2wTi1JC+BOr8vLi6moqIi8f1v6dKlNHbsWCooKBACmG45lGeA2eGG/EadHTzCitdK36Y/L/pfhUGNG+bQbb3bGXmvn1/U2V/9ImfWc5HNAD/88EO67777KtDYtm2b2CAzbdo02rdvn9gAs3z5crErtE+fPmlRYwE0y6H8toYHFL/ImfUcrjR6Ydl7tHvvARHerLB1IyNvdA+KGvtrUATNeD4SAUxl+o4dO8Sv69Wr5wkZFkBPcBmbmQcUY6mRbhgussWGFyTM+nCrQxwCW0sbmJCR/dUPauY9Y4wA+oWGBdAvcmY9xwOKWXx4ac3W8p1io4tzxq/FT3Nowu87eikidnnZX2NHWcoGswDGgEfubDEgSaKJ2cgjgllPmFlCW8p3CgQQ2qxFw2qUamOBBESxyZKNXCaDb7ONSjfBhOnlPAMME83oyrK5s0WHerCaF5SupzmL14i7/LDUOWFgB8pvmJP2bFWw2sx6mv3VLD78toZngH6R0/gcdzaNYCusKlt4hODhNgec8UNKvs4oW+zM5Apso8KOorFoFkCNYPutijubX+TMei7uPEL4nlq8pmKjC9DFZpepQyt/74u7nTJewzbKoGR+HhZA8zniJaUYcCTTxDgPmvjWhwtsIYJIWPJEVBdEd0lOcbZThkfkYRtlkTI7Hwug2fyI1nFniwFJEk2MK4843oArjJyNLsO6nkOFrRuntTiudkpQWJGFbfSClrl5WQDN5YY7Wwy48dLEuA2amPVB/JzjDYkbXTLZHTc7vXDo5GUb/aBm3jMsgOZxwktKMeDETxPjMmjiXN/4mSUEAXRSj8JmdFm706UOtsfFTj8csgAGQc28Z1kAzeOEBTAGnPhpounCkLy7EzbiG1+PoubieINsMt1OWTt4lrvB2vOcfA4wjF4SUhk8oIQEZMTFmMzjklUf0YKSdRWzPhxtuKFbG18BrE22MywXYBvDQjLacngGGC3+UrVzZ5OCyfhMJvKI5U6c6cMmFye5bXJxA9pEO93a7PXvbKNXxMzMzwJoJi+VWsWdLQYkSTTRNB4x68NhdmeTC77ztW12oqflzlRmm2anBDWes7CNniEz8gEWQCNpqdwo7mwxIEmiiSbwiO98ED2EMXOONWB3J77zXVbQRMIK9ywm2OneymA52MZg+JnyNAugKUxkaAd3thiQJNHEKHnEUuc7G7fRIwtXVTrM3qWgifTuTgkTRZYo7ZRtY9B8bGNQBM14ngXQDB4ytoI7WwxIkmhiFDymCl+Gi2q7tGtCRa0bSx1rkDCtUpYo7PTaxqD52cagCJrxPAugGTywAG6wd8u1ChfEdz3czr7hs/KKGR/idiKCS1hLnenazeKgglH9ZdrMIx+D0O9vaWu02RENoiFwU1TyiJkednIuX7uZNn7+TcX3PTQaRxpwiD1V3M7ARqUoQKWdKtrrp0y20Q9q5j3DM0DzODmsRdzZYkCSRBNV8ChE7/+EzwlU7TQFMz4ErPZyiF3CDNcsKux0rVRzBrZRM+CKqmMBVARsmMVyZwsTzejKUsHjzQ//g9Zs3CaMwre9wtaNqEV+HjXIrePrEHsY6KiwM4x2hVkG2xgmmtGVxQIYHfbSNXNnk4bK6IwqeHQEsH+nlsq/7cmCq8JO2bp15WMbdSGtth4WQLX4hlI6d7ZQYIy8EBU8OgI4YUB7MfMzIamw0wS7EtvANprGiL/2sAD6w03rU9zZtMKtrLKweMQtDSve/VREcHF2ebIAKqMtZcFhcam31d5qs9lG3gXqzVeU5rbZEZUCq7nwMHjE0YY5i9dUajm+/U29vqOSM31+IArDTj/16nyGbdSJtrq6eAaoDtvQSubOFhqUkRbkl0eELcOsT0Rz2bBV2ICjDT2Lmke62SUdmH7tjJQcj5WzjR4BMzQ7C6ChxCQ2iztbDEiSaKIXHiF2c5asFef6ko83eLmcVqJZoWfxYmfolWsqkG3UBLTialgAFQMcRvHc2cJAMfoyZHnsX7yo0kF2LHG2bXaCOMge5fEGWQRl7ZQtz8R8bKOJrHhvEwugd8y0P8GdTTvkSip04xHXE2HGh4PtuKEBB9kheAM6tzLm+54MMG52ypRheh620XSG5NrHAiiHU6S5uLNFCn9olSfy6IQuw1IndnImXkiLCoNeShtao30UxP7qAzQDH7GZR94FapBD2uyIBtHguynYwLJmw1Z6/6PP6Ktdh2jn7r1iU0tywqwP1xPhPJ8pZ/r8GM3+6gc1856xmUcWQIP80WZHNIgG16Y4d+45szrM8pxdm+kexoYWLHNC8PJy67jWEYcM7K9xYMm9jTbzyALo7h/actjsiNpA9liRE38Ty5cQueQbGBKLw8wOG1iq0176VevTxZ/q1KqhPUi1RxN9Z2d/9Q2dUQ/azCMLoEGuaLMjRkUDZnHYlOIkJ+JKuuVLIWo1q4uZnLN5BTO6xF2bNvAIHGywk22MqmeGWy9vggkXTyWlcWcLDisEbes3uyoKcpYmkwXNbcnSKQAiB8HLPz5XLF2e2/QE1yVMG3hkAQzuq6aUYIO/sgCa4m0Z2mGzI8rQk7gc6RwaT7wJPfHfMuU5szksWzrf5SB0EDykxH/LlmeLMNhiJ/dJL55vbl4WQHO5+XH5bcMGys/Pj0FL/TcxlSM6woZSMTNLnp15ETbnXJ3TwkQRS95xqeqwuQ2DJgug/z5g2pM2+GskArhz506qVasWHXHEEWk537NnD1WvXp2qVq2a0S/uueceGjVqlGm+E2p7stkRMWPDBpJlZetoc/k+gRuWK7eU75TGEHExk2dmYczYpBsgmTGbeUyEwAY72UZJpzc8m1YB/PLLL6lnz55UrVo12rRpE910003Ut29fGj9+PG3fvp1q165NY8aMoSpVqlDv3r1p+vTp4neZEgugPg/D2bVde34QKSdBqCBYTpKZlXn9zpYobonCpmqmpgpRGwZNngGq8h795drgr1oF8O6776Zvv/1WCN4XX3xBDRs2pDVr1tDtt99O8+bNE2I4fPhw2rx5M23ZskX87JZUC2Dy5gm39oTx92QRKS8vp9zc3DCKdj2X5kXIwmiQszR5TJ0j6LRGx1ccDYibuMlgYcOAwgIo4wnxyGODv2oVwP79+1NRURF1796dDh06JJZAP/zwQ+rXr58Y4CF8paWl1KtXL5o9e7aYKbol1QKIu9dwBxsnIgRlzsutPCNPFioZ4UoV5cTmzpZtvsVcZgejNvOo5BzglVdeSfiva9euwkMaNGhAK1asoJNOOonKysqoVatWNGvWLPH7devW0bJly2jkyJHUtm1bkb+kpEQIZGLCd8J9+yovy4Xpflv21qWte+uGWaRrWXWq7qVqVQ665vOTQbZs2Xx+2sDPMAKMACNgAgL169en3/3ud4c1RYkA3nHHHVSvXj0aNmwYHThwQMz6vvnmm4rNMLt27aJBgwbRkCFDaNKkSUL8Bg8eLEQS3wVTJdUzQBNIYhtNYCF4G2zgESjZYCfbGLw/mFBCOh6VCOCCBQvogQceoNdee43mzp1L9913H7355psVOBQXF4slUnz/W7p0KY0dO5YKCgqEAKZbDmVHNMGNgreBeQyOoSklMJemMBGsHTbzqEQAd+/eTZdccgm9++67hH///e9/pzZt2giWtm3bRqNHj6Zp06aJJU1sgFm+fLnYFdqnT5+0TNpMUjD3Nutp5tEsPoK0hrkMgp45z9rMoxIBdKj95JNP6LjjjhPn/Jy0Y8cO8U8skXpJNpPkBSfT8zKPpjMk3z7mUh4rk3PazKNSAQyTdGyMadeuXZhFGlcW22gcJb4aZAOPAMYGO9lGX13AuIfS8RgbATQOUW4QI8AIMAKMQKwRYAGMNX3ceEaAEWAEGAG/CGSVAOL7otdvi36BU/Hc/v37ae/evZXCwh08eFBsJKpTJztuEVeBm8llysTDNbn9trftu+++E30v8XjW999/L36uUaNGVsCDeMyIxZy4VyNOhmHcBE85OTmVmi3T97JCAD/44ANxnALHLdau/SGaC5wUhx8vuugi8fPpp59Od955p5G84qwkQsXNmDFDOOL9998v2vnYY4/R5MmT6YQTTiCQjKg5sCnuKU7c+MU6XTxcv+X9//bOLFSnKIrj+w0hGaJkzJB5yJAkY6bMV7rdPIiiEEIyPyhReCISkksZM+WaQikiQ8ZCFFIoRXn2ot+q/bWdzuS79/u+M6xVwr3nnL3W2ufs/15r7/1fSb1vwoQJpkWLFoXjSydOnDCNGjVKqrqx9frx44d59eqVqaqqMowvbdu2lW9w9erV5vnz53K+GUKPffv2hZL9x26wAhcCEK9fv5Zz2Ng1Z84c0SJNfcqYD5c0pwwIgNjQ07p1a18uaj8XZwIA4R6lI1+8eFEAwHfv3slxi5MnT8aiWqvA+1doktkLuj59+tQMGTJEAJCPjRkZBAIMMCtXrhRO1Y0bN1ZS1QZpO019E9dgBsnz588XKpb48eEy4ESRvsdtrxLXeW1Eh27dupkPHz4I5WFURZdK6By3zZ07dwp7FfYg9CVsVHyLnFcGAB88eCDkHo8fPy5Mqo8ePSpnmNMgV65cEbCeNm2aqPvy5UtTW1trLl++bPbs2VMAwCT3Kcfmjh07JvqTLWOyZaP07du3S18RMHi5qIO+vUwAIM5gtlZTU1MAwLq6OpkF4Ihhw4bJzGDcuHGJfk/3798vs00+uk+fPglZAByqCDNNAJ4oMe2Sxr6J8jmTFz7AS5cuyaVBfLhprvfotRHy9latWpnmzZvLJG3Tpk1m6dKlUa5K5O9nzpwphBxEda6Q6rQACH0joMgZZmT27Nlm7ty5UtEmDcK4AgCuWrXqH3WhrJw/f74AYNL7lCUue5QOI2wBAdjFiFyx7fbt275c1H7fXmoAkDw1zDJemTx5sswCvAB4584d8+zZM6FbO3PmjGGGR+QRRLVWjhf427dvEuW50qxZMzN+/Hj5kQuA2DNv3jzhSkVILZHmPXLkSDlUbZA2sOHz58//PKtLly5ChpC0vinWYNun9NPp06eF0IE+PXjwoC8fLvanTYJs7Nmzp1AZkr348uWLGTRokBDdMwNPizBOEB1s27ZNJsw9evQwQ4cONe3btxcTXAA8cOCAefv2rUxGEcj9mVRD6p9ksd/hxYsXRU2AjvdwwIAB8n8XAOm/pPWpO/bPmjVLIlbEjv2MJQsXLjT9+vWTAAFCFT8uar9vLzUASCoQ/lCvHDp0SGafXgAkPCYlwx/y9VCscTC/Q4cOFXtXYbyx63tWCfThhfMCIBtfSJexCYaP0N5Hrj4tQnro5s2b/6g7depUGWiS1jfF+tT2KWt+rOOOHTtW3jHeyTA+3GLbq8R9QTaSVSH1aTdPEEXRt1SBSYusWbPGfP361dy9e1cG0DZt2hh+ZpmrXADkGtacoHpEsBfwBzCTLPY75P1kHOzVq5fhO7Rl6FwAZOklaX3qjv1nz54VcEMY+wkoeOf27t1rqqur5edRXNRuX6UGAKNeMC8AMhMn0mDWRu6eNIVNJ0Y9q1K/dyNAdBg4cKDo379/f5ntMEudNGlSpdRrsHbT2DdRxnvTg1F8uFHPS+LvvTaSaiLlRGqepYbevXtLZJ+mCND6OU4K9OfPn6Zr165S5PvXr19m8ODBMqlmspMGiZMCTXqfuilQgBrfo/Pw4cMLXfA/315mAfD79++SB2bGwx/AY/r06Yl+TwFAQJpZJkJH2vQKC9ds6KlkCrehnJfGvomy3QsOYXy4Uc9K6u+9NjIAkU4jLUjksGTJksImoKTaEKRXGACyI9Tuvt6wYYNMSgF8CP+XL1+eGlPDAJBxhjXNpPepC4DslyBl7cqCBQtkjTaIi9rbWZkBwKC3kIr08JGmVVjc/f37t+wAzZqkvW/i9IcfH26c+9J0DZGRexQiTboXoyvpbs4ApvnMcZTdWejTON9e5gEwqqP19+oB9YB6QD2QTw8oAOaz39Vq9YB6QD2Qew8oAOb+FVAHqAfUA+qBfHpAATCf/a5WqwfUA+qB3HtAATD3r4A6QD2gHlAP5NMDCoD57He1Wj1QUQ9wTARp0qRJRfXQxvPtAQXAfPd/pqyHKQh2CK9AZAwbBudAYaZpaDIBDkXDQL9161ZhoYgrEJtDms22eu53hYO9UHTZ6iZxnxl1HWdNKRsD92OQFGtPVNvu7yF5gOLKUv353RumB0eDOIcH805ayKj/xz96bXk8oABYHj9rK2XwwKlTp8zDhw+FjxLeQ4iNGRxbtmwpVTbgEbx27ZrQQDWkcGYKCi0OScM5G1e4HjoxGIu43xX0heU+DCDituNe17FjR2Fs8ePVtdcVa8//6AOfpi0vFHRfmB5wj3bu3Fn8jR9V1APFeEABsBiv6T2J9gDUdwAf7P7QriGw6gCAUOLB6I8QfUE4DghRKgb2CKo5AKKAKYTW0F7BkkEtSZj0qfhAXUYGb9hD4HGFkR4AA1iJ5rhn0aJFZseOHcLcQ72yXbt2mY8fP5oRI0ZI5ALAuQAInya0YtevXxfdnzx5IlywXgCEt5G0ITUV0ZOqE/Cq0gbk1JCmQ+QMGwbtoM+YMWOkriRE6viD6g3wXeIfex3RGPajMzy6YfbYziei5kD4hQsXhBPzxo0bQjwPtybPpy3qcMKcgs/4N3owMaEfaIfrieYgrQeUiehgI2ncuLHw3wbpATXgrVu3hHcVHkhbyy7RL6YqlzgPKAAmrktUofp6IAwAGTBh8YduDjqrP3/+SDFQwAIB7AAVBmLIggEbQAKwhCyZQZ80JyTlAAhAOXHixEIER0kgQPTNmzdSNw6wIeKiJBf3UncNVh+AzQVAAIJac1DeAbQAMoDmBUBqtQGkixcvFrAk2u3Tp4/oBlEwz1y2bJnp1KmT8MfOmDFDwIU/UF0BFLQPKMGO3717dwERwJyf7d69W5j1bUTqtQc7rOAn2PdJVQLs79+/F39QHxBAZCIANRW+wMeHDx+WaBcqvNGjRxciXHyybt06eQaMMqSpAUkAMUgPJjG2iCuTk759+9b3tdH7c+gBBcAcdnrWTQ4DQNYIAQ8GeQprUluMQR4AZFAdOXKkWbFihfx//fr1El0RFTHwAy7Uf2NNkWiPiBJQ4xkM1LDSA2THjx+XgR+AIpIDDGDiZ5AmZUd7kEYT/dgUKJEoQEHtOdjvSdsGASDllihmCoivXbtWIkFAlrU9Ik90BzxoA75EOGSJKu/fv2/cFCgRFpEawAWnIvo2bdpU9AyyZ8qUKYXXh6KxRKSUgaICBOV1qMmGHYAcz4MYG2BjkkA1hXv37snPN2/eXADAUaNGyfWAPRMLypu5AOjnV0BfU6BZ/5JLb58CYOl9rC2U2QNhAGjXAImSiOwAmy1btghoAGREbGySIb0GANpSPwACxMdEOADX1atXxSo3YrJrgPweQKAt6s2RJqXAMREX7QCw1Hbk9xYAqSwAt6Td9NKuXTsBNL8IEAAG9NjQQmQH0AFg6E50Cyk15XxsqhEABpy8AAj4AYLU+yMqhNQaewFfd03TtcddP7XFUwE49GaiQJRHZRbSn4Ae4Ab4usWoKVvDBMGucdrojWeQWqbILvbYCNDPr9yjAFjmDyuDzSkAZrBT825SsQDIgEwExG5O1vpYt2Pdin9bpnzAkg02gBADu61FFgQYDOYABNcRLTGYA7qsk/EsC4CAJGlW/mb3J6AVFAFGASDtEeWyHshaGtGlGwECtHV1dZJKpWIKv6+qqjI1NTWShkWvOADIe0Yqk6iO1CoTBtpGqCEIiLG7FTvYhUuk+OjRIyloSuRsAZAUJvYSUdMuaVU3AgwDQNLUpFC9u2jz/g2o/fE8oAAYz096VYo8YAGQElgMrIjdBEP6jTQe0RxrXm4EaAGQtUFSi0QzCNETa3KU1WJNjYgLYZCura2V6ImBm2MNREHnzp2Top1EeLRFtMmGGius1QE67jEIok/AhDU9AI40J+2FRYDojx3oA8hwDxEgaVZ041n8nKg4dBk5AAABOklEQVQK24hCWbckagWwACSAz0az2Il/SEEG2ePdQWvX7/gbXVgzJRIlOiR9jN9o0/oMgCfyZBMQG2+I+lgXRCd8RKqZtDFFW9ElSA+iS45SkG5NW1miFH1KmVdVATDzXawGFusBSlGxwYN1LLcOI5s7iBS9RxfC2mGnI3XlSNuxc9JPACoiQ9oD/Ooj7KS0z/LWkAR4WGtjlylCWSp2lbJxplT1Jjm2gL9sm65trCUCzmyq4TqAjQjW70ynex82MHHgmUE+rY8P9d7se0ABMPt9rBaqBxLtAdb62LHqCmukRMQq6oFSekABsJTe1WerB9QDsTzAoXeOjZA2JQJkE5CKeqDUHlAALLWH9fnqAfWAekA9kEgPKAAmsltUKfWAekA9oB4otQcUAEvtYX2+ekA9oB5QDyTSA38Bc5fX6UWaUGEAAAAASUVORK5CYII=",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "linker.training.estimate_u_using_random_sampling(max_pairs=5e6)"
]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "linker.unlinkables_chart()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "4624c6a0-a1a8-4762-9003-b3da5aa45a77",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " match_weight | \n",
- " match_probability | \n",
- " unique_id_l | \n",
- " unique_id_r | \n",
- " first_name_l | \n",
- " first_name_r | \n",
- " gamma_first_name | \n",
- " tf_first_name_l | \n",
- " tf_first_name_r | \n",
- " bf_first_name | \n",
- " ... | \n",
- " bf_birth_place | \n",
- " bf_tf_adj_birth_place | \n",
- " occupation_l | \n",
- " occupation_r | \n",
- " gamma_occupation | \n",
- " tf_occupation_l | \n",
- " tf_occupation_r | \n",
- " bf_occupation | \n",
- " bf_tf_adj_occupation | \n",
- " match_key | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 19.465751 | \n",
- " 0.999999 | \n",
- " Q5536981-1 | \n",
- " Q5536981-4 | \n",
- " george | \n",
- " george | \n",
- " 3 | \n",
- " 0.028014 | \n",
- " 0.028014 | \n",
- " 48.723867 | \n",
- " ... | \n",
- " 162.73433 | \n",
- " 0.097709 | \n",
- " politician | \n",
- " politician | \n",
- " 1 | \n",
- " 0.088932 | \n",
- " 0.088932 | \n",
- " 21.983413 | \n",
- " 0.459975 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 33.572592 | \n",
- " 1.000000 | \n",
- " Q5536981-1 | \n",
- " Q5536981-5 | \n",
- " george | \n",
- " george | \n",
- " 3 | \n",
- " 0.028014 | \n",
- " 0.028014 | \n",
- " 48.723867 | \n",
- " ... | \n",
- " 162.73433 | \n",
- " 0.097709 | \n",
- " politician | \n",
- " politician | \n",
- " 1 | \n",
- " 0.088932 | \n",
- " 0.088932 | \n",
- " 21.983413 | \n",
- " 0.459975 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 33.572592 | \n",
- " 1.000000 | \n",
- " Q5536981-1 | \n",
- " Q5536981-6 | \n",
- " george | \n",
- " george | \n",
- " 3 | \n",
- " 0.028014 | \n",
- " 0.028014 | \n",
- " 48.723867 | \n",
- " ... | \n",
- " 162.73433 | \n",
- " 0.097709 | \n",
- " politician | \n",
- " politician | \n",
- " 1 | \n",
- " 0.088932 | \n",
- " 0.088932 | \n",
- " 21.983413 | \n",
- " 0.459975 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 33.572592 | \n",
- " 1.000000 | \n",
- " Q5536981-1 | \n",
- " Q5536981-7 | \n",
- " george | \n",
- " george | \n",
- " 3 | \n",
- " 0.028014 | \n",
- " 0.028014 | \n",
- " 48.723867 | \n",
- " ... | \n",
- " 162.73433 | \n",
- " 0.097709 | \n",
- " politician | \n",
- " politician | \n",
- " 1 | \n",
- " 0.088932 | \n",
- " 0.088932 | \n",
- " 21.983413 | \n",
- " 0.459975 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 22.025628 | \n",
- " 1.000000 | \n",
- " Q5536981-1 | \n",
- " Q5536981-8 | \n",
- " george | \n",
- " george | \n",
- " 3 | \n",
- " 0.028014 | \n",
- " 0.028014 | \n",
- " 48.723867 | \n",
- " ... | \n",
- " 162.73433 | \n",
- " 0.097709 | \n",
- " politician | \n",
- " politician | \n",
- " 1 | \n",
- " 0.088932 | \n",
- " 0.088932 | \n",
- " 21.983413 | \n",
- " 0.459975 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 47 columns
\n",
- "
"
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "ad8c0de1-769a-4861-849d-8b7e6655a681",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n",
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.first_name = r.first_name and l.surname = r.surname\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - dob\n",
+ " - postcode_fake\n",
+ " - birth_place\n",
+ " - occupation\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - first_name\n",
+ " - surname\n",
+ "\n",
+ "Iteration 1: Largest change in params was -0.533 in probability_two_random_records_match\n",
+ "Iteration 2: Largest change in params was -0.0419 in the m_probability of birth_place, level `All other comparisons`\n",
+ "Iteration 3: Largest change in params was -0.0154 in the m_probability of birth_place, level `All other comparisons`\n",
+ "Iteration 4: Largest change in params was 0.00489 in the m_probability of birth_place, level `Exact match`\n",
+ "\n",
+ "EM converged after 4 iterations\n",
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n"
+ ]
+ }
],
- "text/plain": [
- " match_weight match_probability unique_id_l unique_id_r first_name_l \\\n",
- "0 19.465751 0.999999 Q5536981-1 Q5536981-4 george \n",
- "1 33.572592 1.000000 Q5536981-1 Q5536981-5 george \n",
- "2 33.572592 1.000000 Q5536981-1 Q5536981-6 george \n",
- "3 33.572592 1.000000 Q5536981-1 Q5536981-7 george \n",
- "4 22.025628 1.000000 Q5536981-1 Q5536981-8 george \n",
- "\n",
- " first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n",
- "0 george 3 0.028014 0.028014 \n",
- "1 george 3 0.028014 0.028014 \n",
- "2 george 3 0.028014 0.028014 \n",
- "3 george 3 0.028014 0.028014 \n",
- "4 george 3 0.028014 0.028014 \n",
- "\n",
- " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n",
- "0 48.723867 ... 162.73433 0.097709 politician \n",
- "1 48.723867 ... 162.73433 0.097709 politician \n",
- "2 48.723867 ... 162.73433 0.097709 politician \n",
- "3 48.723867 ... 162.73433 0.097709 politician \n",
- "4 48.723867 ... 162.73433 0.097709 politician \n",
- "\n",
- " occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n",
- "0 politician 1 0.088932 0.088932 \n",
- "1 politician 1 0.088932 0.088932 \n",
- "2 politician 1 0.088932 0.088932 \n",
- "3 politician 1 0.088932 0.088932 \n",
- "4 politician 1 0.088932 0.088932 \n",
- "\n",
- " bf_occupation bf_tf_adj_occupation match_key \n",
- "0 21.983413 0.459975 0 \n",
- "1 21.983413 0.459975 0 \n",
- "2 21.983413 0.459975 0 \n",
- "3 21.983413 0.459975 0 \n",
- "4 21.983413 0.459975 0 \n",
- "\n",
- "[5 rows x 47 columns]"
+ "source": [
+ "blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
+ "training_session_names = linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)"
]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_predict = linker.predict()\n",
- "df_e = df_predict.as_pandas_dataframe(limit=5)\n",
- "df_e"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "cf6b3c45-1031-4ab0-9398-94d731117e2c",
- "metadata": {},
- "source": [
- "You can also view rows in this dataset as a waterfall chart as follows:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "c2f47ebb-3181-4db6-89ba-1ef60df3bba7",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
- "config": {
- "view": {
- "continuousHeight": 300,
- "continuousWidth": 400
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "c44fc676-e57e-4e8c-b9c6-8989e720b03a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n",
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.dob = r.dob\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ " - postcode_fake\n",
+ " - birth_place\n",
+ " - occupation\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - dob\n",
+ "\n",
+ "Iteration 1: Largest change in params was -0.356 in the m_probability of first_name, level `Exact match`\n",
+ "Iteration 2: Largest change in params was 0.0401 in the m_probability of first_name, level `All other comparisons`\n",
+ "Iteration 3: Largest change in params was 0.00536 in the m_probability of first_name, level `All other comparisons`\n",
+ "\n",
+ "EM converged after 3 iterations\n",
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
}
- },
- "data": {
- "values": [
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4047701974773831,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3048250240606851,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 0,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 0,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "sw1e 5la",
- "value_r": "sw1v 1an"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 0,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 724060.5742920743,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 19.46575087143477,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4047701974773831,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3048250240606851,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 1,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 1,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 1,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.674900319705338,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.5672536577405403,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 1,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 12774887550.161978,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 33.57259154089463,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4047701974773831,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3048250240606851,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 2,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 2,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 2,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.674900319705338,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.5672536577405403,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 2,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 12774887550.161978,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 33.57259154089463,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4047701974773831,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3048250240606851,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 3,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 3,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 3,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.674900319705338,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.5672536577405403,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sw1e 5la",
- "value_r": "sw1e 5la"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 3,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 12774887550.161978,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 33.57259154089463,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4047701974773831,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3048250240606851,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "george",
- "value_r": "george"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 4,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "lucan",
- "value_r": "lucan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 4,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-12-13",
- "value_r": "1860-12-13"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "sw1e 5la",
- "value_r": ""
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 4,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 4269476.815657544,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 22.025627861254016,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- }
- ]
- },
- "height": 450,
- "layer": [
+ ],
+ "source": [
+ "blocking_rule = \"l.dob = r.dob\"\n",
+ "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "31b6440a-4353-45af-a986-ba59c0d784d3",
+ "metadata": {},
+ "outputs": [
{
- "layer": [
- {
- "encoding": {
- "color": {
- "value": "black"
- },
- "size": {
- "value": 0.5
- },
- "y": {
- "field": "zero",
- "type": "quantitative"
- }
- },
- "mark": "rule"
- },
- {
- "encoding": {
- "color": {
- "condition": {
- "test": "(datum.log2_bayes_factor < 0)",
- "value": "red"
- },
- "value": "green"
- },
- "opacity": {
- "condition": {
- "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
- "value": 1
- },
- "value": 0.5
- },
- "tooltip": [
- {
- "field": "column_name",
- "title": "Comparison column",
- "type": "nominal"
- },
- {
- "field": "value_l",
- "title": "Value (L)",
- "type": "nominal"
- },
- {
- "field": "value_r",
- "title": "Value (R)",
- "type": "nominal"
- },
- {
- "field": "label_for_charts",
- "title": "Label",
- "type": "ordinal"
- },
- {
- "field": "sql_condition",
- "title": "SQL condition",
- "type": "nominal"
- },
- {
- "field": "comparison_vector_value",
- "title": "Comparison vector value",
- "type": "nominal"
- },
- {
- "field": "bayes_factor",
- "format": ",.4f",
- "title": "Bayes factor = m/u",
- "type": "quantitative"
- },
- {
- "field": "log2_bayes_factor",
- "format": ",.4f",
- "title": "Match weight = log2(m/u)",
- "type": "quantitative"
- },
- {
- "field": "prob",
- "format": ".4f",
- "title": "Adjusted match score",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor_description",
- "title": "Match weight description",
- "type": "nominal"
- }
- ],
- "x": {
- "axis": {
- "grid": true,
- "labelAlign": "center",
- "labelAngle": -20,
- "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
- "labelPadding": 10,
- "tickBand": "extent",
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "grid": false,
- "orient": "left",
- "title": "log2(Bayes factor)"
- },
- "field": "previous_sum",
- "type": "quantitative"
- },
- "y2": {
- "field": "sum"
- }
- },
- "mark": {
- "type": "bar",
- "width": 60
- }
- },
- {
- "encoding": {
- "color": {
- "value": "white"
- },
- "text": {
- "condition": {
- "field": "log2_bayes_factor",
- "format": ".2f",
- "test": "abs(datum.log2_bayes_factor) > 1",
- "type": "nominal"
- },
- "value": ""
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "orient": "left"
- },
- "field": "center",
- "type": "quantitative"
- }
- },
- "mark": {
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "black"
- },
- "text": {
- "field": "column_name",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -25,
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
- },
- "text": {
- "field": "value_l",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -13,
- "fontSize": 8,
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
- },
- "text": {
- "field": "value_r",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v5.2.json",
+ "config": {
+ "header": {
+ "title": null
+ },
+ "mark": {
+ "tooltip": null
+ },
+ "title": {
+ "anchor": "middle"
+ },
+ "view": {
+ "height": 60,
+ "width": 400
+ }
+ },
+ "data": {
+ "values": [
+ {
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": "The probability that two random records drawn at random match is 0.000 or one in 7,362.3 records.This is equivalent to a starting match weight of -12.846.",
+ "comparison_name": "probability_two_random_records_match",
+ "comparison_sort_order": -1,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "m_probability_description": null,
+ "max_comparison_vector_value": 0,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": null,
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": null,
+ "u_probability": null,
+ "u_probability_description": null
+ },
+ {
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "comparison_name": "first_name",
+ "comparison_sort_order": 0,
+ "comparison_vector_value": 3,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "m_probability_description": "Amongst matching record comparisons, 55.25% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "tf_adjustment_column": "first_name",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.011339110875462712,
+ "u_probability_description": "Amongst non-matching record comparisons, 1.13% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 26.589733743152838,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 26.59 times more likely to be a match",
+ "comparison_name": "first_name",
+ "comparison_sort_order": 0,
+ "comparison_vector_value": 2,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 4.732797425698729,
+ "m_probability": 0.0867239389400622,
+ "m_probability_description": "Amongst matching record comparisons, 8.67% of records are in the levenshtein_distance <= 1 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 1",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.0032615572528023004,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.33% of records are in the levenshtein_distance <= 1 comparison level"
+ },
+ {
+ "bayes_factor": 7.778809222513577,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
+ "comparison_name": "first_name",
+ "comparison_sort_order": 0,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 2.9595493248441493,
+ "m_probability": 0.07354167451568606,
+ "m_probability_description": "Amongst matching record comparisons, 7.35% of records are in the levenshtein_distance <= 2 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.009454104402360242,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.95% of records are in the levenshtein_distance <= 2 comparison level"
+ },
+ {
+ "bayes_factor": 0.2943290699918006,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
+ "comparison_name": "first_name",
+ "comparison_sort_order": 0,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -1.7644980549473468,
+ "m_probability": 0.28724905116399735,
+ "m_probability_description": "Amongst matching record comparisons, 28.72% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.9759452274693747,
+ "u_probability_description": "Amongst non-matching record comparisons, 97.59% of records are in the all other comparisons comparison level"
+ },
+ {
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "comparison_name": "surname",
+ "comparison_sort_order": 1,
+ "comparison_vector_value": 3,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "m_probability_description": "Amongst matching record comparisons, 78.16% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "tf_adjustment_column": "surname",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.0006304723913592461,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.06% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 333.4770408553619,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
+ "comparison_name": "surname",
+ "comparison_sort_order": 1,
+ "comparison_vector_value": 2,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 8.381443628293102,
+ "m_probability": 0.1284849300847964,
+ "m_probability_description": "Amongst matching record comparisons, 12.85% of records are in the levenshtein_distance <= 1 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.0003852886836084281,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.04% of records are in the levenshtein_distance <= 1 comparison level"
+ },
+ {
+ "bayes_factor": 9.930908563690332,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
+ "comparison_name": "surname",
+ "comparison_sort_order": 1,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 3.311925713762501,
+ "m_probability": 0.020267294367821084,
+ "m_probability_description": "Amongst matching record comparisons, 2.03% of records are in the levenshtein_distance <= 2 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.0020408298231566584,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.20% of records are in the levenshtein_distance <= 2 comparison level"
+ },
+ {
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "comparison_name": "surname",
+ "comparison_sort_order": 1,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "m_probability_description": "Amongst matching record comparisons, 6.96% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.9969434091018756,
+ "u_probability_description": "Amongst non-matching record comparisons, 99.69% of records are in the all other comparisons comparison level"
+ },
+ {
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "comparison_name": "dob",
+ "comparison_sort_order": 2,
+ "comparison_vector_value": 3,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "m_probability_description": "Amongst matching record comparisons, 61.84% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "tf_adjustment_column": "dob",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.002091550682362922,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.21% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "comparison_name": "dob",
+ "comparison_sort_order": 2,
+ "comparison_vector_value": 2,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "m_probability_description": "Amongst matching record comparisons, 34.12% of records are in the levenshtein_distance <= 1 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.02148930701890366,
+ "u_probability_description": "Amongst non-matching record comparisons, 2.15% of records are in the levenshtein_distance <= 1 comparison level"
+ },
+ {
+ "bayes_factor": 0.4683030453214949,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
+ "comparison_name": "dob",
+ "comparison_sort_order": 2,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": -1.094485675137949,
+ "m_probability": 0.03711726145166532,
+ "m_probability_description": "Amongst matching record comparisons, 3.71% of records are in the levenshtein_distance <= 2 comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.07925906487792309,
+ "u_probability_description": "Amongst non-matching record comparisons, 7.93% of records are in the levenshtein_distance <= 2 comparison level"
+ },
+ {
+ "bayes_factor": 0.0037043486234159474,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
+ "comparison_name": "dob",
+ "comparison_sort_order": 2,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -8.076564404852965,
+ "m_probability": 0.0033233936977775237,
+ "m_probability_description": "Amongst matching record comparisons, 0.33% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 3,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.8971600774208104,
+ "u_probability_description": "Amongst non-matching record comparisons, 89.72% of records are in the all other comparisons comparison level"
+ },
+ {
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "comparison_name": "postcode_fake",
+ "comparison_sort_order": 3,
+ "comparison_vector_value": 2,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "m_probability_description": "Amongst matching record comparisons, 68.78% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 2,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "tf_adjustment_column": "postcode_fake",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.00015514157328739382,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.02% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 259.82892721059164,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 259.83 times more likely to be a match",
+ "comparison_name": "postcode_fake",
+ "comparison_sort_order": 3,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 8.02141824727364,
+ "m_probability": 0.14271550398348254,
+ "m_probability_description": "Amongst matching record comparisons, 14.27% of records are in the levenshtein_distance <= 2 comparison level",
+ "max_comparison_vector_value": 2,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "levenshtein_distance(\"postcode_fake_l\", \"postcode_fake_r\") <= 2",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.0005492671871281347,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.05% of records are in the levenshtein_distance <= 2 comparison level"
+ },
+ {
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "comparison_name": "postcode_fake",
+ "comparison_sort_order": 3,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "m_probability_description": "Amongst matching record comparisons, 16.95% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 2,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.9992955912395844,
+ "u_probability_description": "Amongst non-matching record comparisons, 99.93% of records are in the all other comparisons comparison level"
+ },
+ {
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "comparison_name": "birth_place",
+ "comparison_sort_order": 4,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "m_probability_description": "Amongst matching record comparisons, 84.58% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 1,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "tf_adjustment_column": "birth_place",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.005197616804158735,
+ "u_probability_description": "Amongst non-matching record comparisons, 0.52% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "comparison_name": "birth_place",
+ "comparison_sort_order": 4,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "m_probability_description": "Amongst matching record comparisons, 15.42% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 1,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.9948023831958412,
+ "u_probability_description": "Amongst non-matching record comparisons, 99.48% of records are in the all other comparisons comparison level"
+ },
+ {
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "comparison_name": "occupation",
+ "comparison_sort_order": 5,
+ "comparison_vector_value": 1,
+ "has_tf_adjustments": true,
+ "is_null_level": false,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "m_probability_description": "Amongst matching record comparisons, 89.93% of records are in the exact match comparison level",
+ "max_comparison_vector_value": 1,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "tf_adjustment_column": "occupation",
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.040906446283799566,
+ "u_probability_description": "Amongst non-matching record comparisons, 4.09% of records are in the exact match comparison level"
+ },
+ {
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "comparison_name": "occupation",
+ "comparison_sort_order": 5,
+ "comparison_vector_value": 0,
+ "has_tf_adjustments": false,
+ "is_null_level": false,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "m_probability_description": "Amongst matching record comparisons, 10.07% of records are in the all other comparisons comparison level",
+ "max_comparison_vector_value": 1,
+ "probability_two_random_records_match": 0.00013582694460587586,
+ "sql_condition": "ELSE",
+ "tf_adjustment_column": null,
+ "tf_adjustment_weight": 1,
+ "u_probability": 0.9590935537162004,
+ "u_probability_description": "Amongst non-matching record comparisons, 95.91% of records are in the all other comparisons comparison level"
+ }
+ ]
+ },
+ "resolve": {
+ "axis": {
+ "y": "independent"
+ },
+ "scale": {
+ "y": "independent"
+ }
+ },
+ "selection": {
+ "zoom_selector": {
+ "bind": "scales",
+ "encodings": [
+ "x"
+ ],
+ "type": "interval"
+ }
+ },
+ "title": {
+ "subtitle": "Use mousewheel to zoom",
+ "text": "Model parameters (components of final match weight)"
+ },
+ "vconcat": [
+ {
+ "encoding": {
+ "color": {
+ "field": "log2_bayes_factor",
+ "scale": {
+ "domain": [
+ -10,
+ 0,
+ 10
+ ],
+ "range": [
+ "red",
+ "orange",
+ "green"
+ ]
+ },
+ "title": "Match weight",
+ "type": "quantitative"
+ },
+ "tooltip": [
+ {
+ "field": "comparison_name",
+ "title": "Comparison name",
+ "type": "nominal"
+ },
+ {
+ "field": "probability_two_random_records_match",
+ "format": ".4f",
+ "title": "Probability two random records match",
+ "type": "nominal"
+ },
+ {
+ "field": "log2_bayes_factor",
+ "format": ",.4f",
+ "title": "Equivalent match weight",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor_description",
+ "title": "Match weight description",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "axis": {
+ "domain": false,
+ "labels": false,
+ "ticks": false,
+ "title": ""
+ },
+ "field": "log2_bayes_factor",
+ "scale": {
+ "domain": [
+ -10,
+ 10
+ ]
+ },
+ "type": "quantitative"
+ },
+ "y": {
+ "axis": {
+ "title": "Prior (starting) match weight",
+ "titleAlign": "right",
+ "titleAngle": 0,
+ "titleFontWeight": "normal"
+ },
+ "field": "label_for_charts",
+ "sort": {
+ "field": "comparison_vector_value",
+ "order": "descending"
+ },
+ "type": "nominal"
+ }
+ },
+ "height": 20,
+ "mark": {
+ "clip": true,
+ "height": 15,
+ "type": "bar"
+ },
+ "selection": {
+ "zoom_selector": {
+ "bind": "scales",
+ "encodings": [
+ "x"
+ ],
+ "type": "interval"
+ }
+ },
+ "transform": [
+ {
+ "filter": "(datum.comparison_name == 'probability_two_random_records_match')"
+ }
+ ]
+ },
+ {
+ "encoding": {
+ "color": {
+ "field": "log2_bayes_factor",
+ "scale": {
+ "domain": [
+ -10,
+ 0,
+ 10
+ ],
+ "range": [
+ "red",
+ "orange",
+ "green"
+ ]
+ },
+ "title": "Match weight",
+ "type": "quantitative"
+ },
+ "row": {
+ "field": "comparison_name",
+ "header": {
+ "labelAlign": "left",
+ "labelAnchor": "middle",
+ "labelAngle": 0
+ },
+ "sort": {
+ "field": "comparison_sort_order"
+ },
+ "type": "nominal"
+ },
+ "tooltip": [
+ {
+ "field": "comparison_name",
+ "title": "Comparison name",
+ "type": "nominal"
+ },
+ {
+ "field": "label_for_charts",
+ "title": "Label",
+ "type": "ordinal"
+ },
+ {
+ "field": "sql_condition",
+ "title": "SQL condition",
+ "type": "nominal"
+ },
+ {
+ "field": "m_probability",
+ "format": ".4f",
+ "title": "M probability",
+ "type": "quantitative"
+ },
+ {
+ "field": "u_probability",
+ "format": ".4f",
+ "title": "U probability",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor",
+ "format": ",.4f",
+ "title": "Bayes factor = m/u",
+ "type": "quantitative"
+ },
+ {
+ "field": "log2_bayes_factor",
+ "format": ",.4f",
+ "title": "Match weight = log2(m/u)",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor_description",
+ "title": "Match weight description",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "axis": {
+ "title": "Comparison level match weight = log2(m/u)"
+ },
+ "field": "log2_bayes_factor",
+ "scale": {
+ "domain": [
+ -10,
+ 10
+ ]
+ },
+ "type": "quantitative"
+ },
+ "y": {
+ "axis": {
+ "title": null
+ },
+ "field": "label_for_charts",
+ "sort": {
+ "field": "comparison_vector_value",
+ "order": "descending"
+ },
+ "type": "nominal"
+ }
+ },
+ "height": {
+ "step": 12
+ },
+ "mark": {
+ "clip": true,
+ "type": "bar"
+ },
+ "resolve": {
+ "axis": {
+ "y": "independent"
+ },
+ "scale": {
+ "y": "independent"
+ }
+ },
+ "selection": {
+ "zoom_selector": {
+ "bind": "scales",
+ "encodings": [
+ "x"
+ ],
+ "type": "interval"
+ }
+ },
+ "transform": [
+ {
+ "filter": "(datum.comparison_name != 'probability_two_random_records_match')"
+ }
+ ]
+ }
+ ]
},
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -5,
- "fontSize": 8,
- "type": "text"
- }
- }
- ]
- },
- {
- "encoding": {
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "x2": {
- "field": "lead"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAHICAYAAABH1oIKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8VdP7/1fmIUoZMnzNohIZyhD1j4zJTMpckam+olBmKSH5fkuJUImSkoQMEZGpQhMyZshUKUXI1P/1fnzX/e1O55x7zl3n3LvPuZ/1et1X3Xv2Wnutz1r77Pd+9rOep8rKlStXOhUpIAWkgBSQAlJACkgBKVAJFKgi+K0Es6whSgEpIAWkgBSQAlJACpgCgl8tBCkgBaSAFJACUkAKSIFKo4Dgt9JMtQYqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVFfugUb3dVapUqVEjFR/z5da/nzRPuTrXMXc7k8//eS++eYbt8MOO7h11lmnmIcam7GxdpcsWeI22GADt956663Wrz///NM+32STTdyKFSscv1erVi24/7pm/pHw999/d7/++qtpv+666wbrGm1g2bJl7ttvv9X1lFNV1VicFRD8xnl21LecKAAkbb311iVt/fbbb3bz4AYdvYkvXrzYbtzZlsMPP9xNnDjRvfPOO26vvfZKWf29995zu+++uzvkkEPciy++mO1pYnv8rFmz3NSpU91+++3n6tevXy79PPbYY91bb73lPv/8c7f++uuXyznjfpIhQ4Y4HqrOOeecnHf17bffds2aNXM8dHCexHOMHTvWnXTSSXbeGTNmuLZt29r1sGDBArfZZpsF9WfjjTe28/7xxx9urbXWCmorXeVnn33WzZ8/351wwgmuZs2aac8zcOBAd/HFF7v//Oc/7t///nfe+hRteMCAAe6SSy5xN954o7vuuutKPafXLVVAp+h4f/zxR7fzzjtn3HapJ9cBUiDmCgh+Yz5B6l64Aonw+8Ybb7j999/fvf76665x48YlJygr/B566KFu0qRJpcLvnDlzDA6LDX7vvPNOd9lll7n+/fvbzTnfZcyYMe6UU05xPXv2dN27d8/36Qqmff82IR/RK5lf5vnMM890V155patXr94qujRp0sS9+uqrtg6uuuoqN3jwYAPJ2267zVWtWjVIw/KCXx6onnzyyVKvYwbDWu/UqZPr06ePu/zyy4PGl2llvmMeeeQR17JlS/sprZS2HhLHe+KJJ7rHH3/cvf/++65OnTqlNa/PpUBBKyD4LejpU+czUcDD70YbbWQWJG7IXbt2dbfffru74oornP+7h9+5c+e6Ll26uFdeecWsik2bNrWb3Lbbbmune+2119w111zjPvnkE3fEEUe4d999126Y/Oy5557unnvucffdd5/d/PfZZx938803u7333tulg1+sWkD0dtttZ9bhESNGmJWrc+fO7owzzrDzYn279tpr7V+OO+iggww0Nt98c7sBT5s2zV144YXu7rvvdh06dLD2unXrZuOgrQMPPNDglD499NBD7v7773dHHXWUPQTMnj3bHX/88a5169YGNx999JEBZu/evc2t4NNPP7W2Jk+e7GrVqmXH0hcs3pdeeqkdX7t2bdPz3HPPTavBRRdd5LCWYxV88803zWrM+QEmbr5bbrmlWRmxcCV7vQ54cYNGXyz6P/zwg83H888/76pXr25zcsEFF9h88eodaBs6dKjVYR7Q5rzzzjMrKboxbyeffLIbOXKkrQ80Ry/q/fzzz6aHt2QyVvq2aNEih+Vsp512cr169XL77ruvzVG6tfPxxx+7888/3yzky5cvdxMmTLD1AkT9v//3/6w+gNOjRw/r6y677GLWReaktLqnn366rRkKYPTwww873nCwFh577DH7P+uYsdDnxIK7Ag8STz31lFu6dKlr0KCBPVwcfPDBdr3ccccdNl88NF599dXumGOOKWmiffv2tpYoaI9ud911l/WZPtF2aeNGeyyb1EETHhC5BpmHdPCbzfzRv1Tn6du3r12nzD8PxIyX64R/GQPrgDUL/HMdefhlXPPmzXMzZ850DRs2tL/jihMtrA/WCusKqzLXKG+BbrrpJpt3rheurwceeMBtscUW7oYbbnDjxo2zJtCf755NN93UYV3H0sxaxPLO+mc98gaEa4L+UY9rkPnx8Mv3HOsALbn2sFQzp4njZZ74PmjXrp19f6lIgWJWQPBbzLOrsZkCHn6BM24AgCPgcfTRRxvE4OvGjQT4/euvv9yOO+5oN8E99tjDbnqfffaZASY3OY6nPmWbbbYxUOBYChCFVRlgAaiB02eeecY+46YOgKSy/EZdMKjLq2LOS3nuuecMZLfaaisDEG6g9BfY5SbIa+gjjzzSjvNl2LBhBqZALjfzGjVqmFWLcXz//fcGbEAMBV2AV18Yvz/38OHD7Xy77babnZOb9ZdffmmfcxMHkIEUxs7NH8sfOqbSgP5Hre1oiK7cvOkDMAMQ84CR7JUyN2jGcthhhxnsYuUEEDi+bt26Dt9F+gnk8pAAQAMTHsy8Rry2pv/eas/n0XEn/s6DDuMGyhLnnvmi76ytdGvnww8/tH5RonOM/nwGQAGdlBYtWthDC2sLax/HpKsLQANeFOCoX79+9oAH9ABsPFzRznHHHVcCVn6+0RAwxnLL+gC60ZNCn1jTgBK60i/m2OvAMTyA3XrrrXb82WefbQ8irVq1sjXx1VdfuYULF6btO2NnfaEJ/WNeWSes4bPOOist/GYzfzwIpToPDyOsE87LwwPr5oknnrB/0YRrnuuNwvfF6NGj7aGFwrxwfTNXfl2WXEzOuQcffNB0YV54MF577bXtY3TiYYRx88Pa5kGHtplv1jnXAv/nYWjQoEGruD3wEPbyyy/b9xD+wPSdArgCsNF9BVxzfk6nTJnicFVKHC/fTZyT7x5gXEUKFLMCgt9inl2NzRSIwi/WEaxS3Ow23HBDu/lgJfPwC0gCYB4SgOFGjRrZjRyQBICwkOHfCEwAPf4VMMecdtpp9jesNIAM1h2sjtxoqJMJ/GI9BEDoBwAIvGBNw7qGBYgbGX0BSPg/NzMPv8AoIIL1CUsa8M55gRism5RffvnF2gN+sUZh9UIHrEHANBYorI/XX3+93aB5CDj11FMNMgESLK2ALgXY5GYbdXvYddddU2oAHHj4ffTRRw2sgXFu4BSsVJwPYOImzHxFywsvvGCAAbgCsNzEsRRSHwBZc801HVZQHjSADu/DDQgDKVg2gRuOB8w8PGEx4++Mi3n0fq0eMIBmoAXoA3CxVFN4GACKmBv8JtOtHeCcPgBTWP6wUmO5BlpYMwAra5O5wDrNORknegG26eqyXhJfc2Ph5SEFaz9j4zz4umO19wDGGKZPn27jBsA4Bms71kPmAgv5vffea5piAcXyj4tDYvnXv/5l1xAPg1hqsZomwm+qcbMeGSvXEQ94vFF4+umnbf1x3aSz/GYzf1hV050n0Q3An9e7AdAXxsT1z5wDv1hKeZD+4IMP7OHLP1xG9QGWGRfrhjcbrFe/doBrHjzQmfb93gTaY66aN29uc8geAf7mfX5ZF5yLNnmjxLpnDrkeEuHXu3n5OeS64DslmZuHn7fvvvvOrNAqUqBYFRD8FuvMalwlCkThl5sN1hUggxsJ1lBuJB5+ubFhYQFEOnbsaG14MKQu8AvoAATcsCj+NTwQ4V9/J8rPzQagKA1+ozdPXpVycwU6sfBgyQNUoyURfl966aWSV+gAMjDmLUK+HuAPVAO/3rr63//+116h4ubAeP2GHqx6ACR/S1YATjT08MtrVW7EyQoa4I5AnxkTlk1fvE+p/x04ZR6wNEaL9y8GygH08ePH24NKMosmcwqUUf7++2+DQ2855m9Y29EXVwMPx4AhFj+sZLzeBvqxxAE4QCHwyzgACArr5ZZbbjELIZCTbu0AoAAsrgHMLYUHK0AKgGGuotZ7P27WBMenq8saTIRfrPZYTn0BbukvcxotPMRxTUQ1BD55de7nKRfwm2rcgCHt+7ckvm9s6kLXTOA3k/nDZSPdeaIwiMsMD5qUZD7U3u2BuUdPv67QmAfCxOKhElcSrjtciKjLGgb2WXPM8wEHHJD02uFhjOvWwy8PiDw4tmnTxh7eKTzIcj0nwq/fKOi/x/znyeDXP0RzTfDgpyIFilUBwW+xzqzGVaJAFH55pbr99tuX+PkChkCFh1+spdyMon5v/oYA8PI6EMsqoIIvHq9SeVXIK0+sQhxLm1gY8d3l71jDsKJk6vaAhYfXsx70uMFhUeZmxU0Pv0XG5K2oUcuvhwDcM/wue4AYq5S35GQDv9yk6QuvbQE/rMKUr7/+2qAAeONBImr55TypNPBuD1HQwsqEJZT2eLhAOyxkwADjjMK0BzoPoFjFsHB6NwcgF4shr4EBPayrFI7DGu43OXpI8ZbD0uAJMMMShwb0i/Hj5uABAn9lxpFu7fBgRD8BesaYCL+sJ94S+DaAFqziQPcaa6yRtm4i/LLWAHjWH28veHhinii8WcA67wsPIVgfvTWcv7PGgToPV7mA31TjBuzwreWtA28zgDOsoLmEX+aPtwbpzhOFQd7aAMB8LwC2rCP6iXb0k7aiG95Kg18gl/Gw7pgrxolV1+83YJ6YayIu8DfWI772XMfMJfM1atSoEvjleuR7jOuatzqsRf8glQi/Ht4zgV//1oY2+a5RkQLFqoDgt1hnVuNKCr/4F3o4876W/pUtvqrAGbBHAYCJq+k3EgFi+H76175sduE1I355FOAXOAQysG7igoAFlVfaWHZ4RVma5Zd2sFABSh5WgF3ipeKjzGdACRZazsvvvNb0gO4hDtcELFfcSLEAA5OAFQVXCCy9mVh+AUgs3H4TDzdtII++AXJYLRkjVnIse1jqOF8qDbzbRhR+vYUWqARcuZHz2h+90C4Kv4wZ6xg3Zm7QFF4jMw/0gVfoWOZ9RA1ABVcNIAGrLhZbzgcIoGGm8Bt1e+CcQCFwilWYwkMRv6dbO+iWDn556GHNoAO6A2yclwcLNj2mqxuFX7THv5Q1xCt7XG/oF1ZD1jd9RVtfsICjDw8IWML9gxefY/Hmb/mEXx5ogG3eCuAnz5sYYNBb93Nh+UVHrJnpzuOjHfAGBCsqOuL6wfgBS9Y2xYd7ywZ+uU5og8IbIB4qvUuOfyjgIYV1zZyxbvl+8tFMeNjiGo6GOvOwy3cAD3t8/1Ayhd/E8bLufNhA776i24gUKFYFBL/FOrMaV0r45VUwN1xe0WPpjcIvNyR2x7MD229kAyC58QBKFG8V4/9ABDFBublx88H3EnDzwMwx3orFTS1VnN/ohjdeNbP5iMINFgswFk0svVjwKNwcgVn6RqxbYIwbvIdfjgFu2dhGwTcVeAcm8R9khzg3Vu/24F/jercHNkqhjwcQXoMDVN6FAlgC/PgXqy2wyWeAGpCQSgPOC7wmuilEN+DR30TN/WQCCH7jn3+dC9QAtn6+gAagDYswFjmsZLhm+ILVmPHh8+1jNJdm+Y3Cb3RjHW2ylnxEjnRrh6ggpQFsog682uaBik2BpdUF/v0DExZDxsTfopsZgTk2KCYWfJjxCY8ei5WU+aR4+MVKzPpMLP4a4pU/c5fM5zeV5ReLOg9OfpMla5nrx7v0pIPfbOaPazXdeXjI5NwUHlZ5qMIazIOVX5OE2eOc/nrxGuHvzXdHMp9f6rJu+Zw1yn4A5tW7S0VdqHg4Z336zXVoyfrievFxfnmY4e0A/eI644EQrfDj5vvB+6snusH4jYk8HHItJ47XP5wncyHS7UQKFJsCgt9im1GNJycK4M6AhQyrI1bPRD9WLCNsyuKGwSvpxILlFR9QPicjVmnFw6+/eQKqwFlihiyslsAAP5kU4A/rNcAYWrwmWIeAnehucj4DABirH2+2GqApbg+87uWVbqosVtz8sRB7qyTjAoSBJ+qwMz8xgx59wXrGq2zvCpGtHriPAPl+UyBAygalxH6WtnZKOy9uKbRNyLfSki0ktgV8cn5Ay2uARZm/oUu6dcPrcdYXbfDgkCzMXGl9L+vnnJvrjT5GN+OVtb1U9Uo7D9cK+nPd0Q+OZ2Mkf+PBNp9JNnyf/TzwFoN5SHZOrjVcZ/iMhxYsvzxcAL+EDvQbUkvTLzpeHox4YOZBMRrKrrQ29LkUKEQFBL+FOGvqc9EpkAi/RTfAHA4I6xm+kcAI/s7lVaLwi3VNRQpUlAK8CcL9yof4A9C5Lnh45gEy2/THwD0PW/g6RzeiVtT4dF4pkG8FBL/5VljtS4EMFMAyhwUHi53AqnTB2HDE62NcLELT55Z+tn+O4DUzbiBYf/ELVZECFanAF198Ya4LwCowjEsVG3GB2GwLLjls2iQBRnQzZLbt6HgpUCgKCH4LZabUTykgBaSAFJACUkAKSIFgBQS/wRKqASkgBaSAFJACUkAKSIFCUUDwWygzpX5KASlQlAqwWS+fm7yKUjQNSgpIASkQoIDgN0A8VZUCUiBzBXw4KJ9u1dck3Br+hoRMq2yFHf1E9fBJOELHj+84IJ2YyIJ2CddHHFkiCKhIASkgBSqzAoLfyjz7GrsUKEcFUsEvcYwJzC/43SF4Njz8+iyB0QaJW8uGPRJpqEgBKSAFKrMCgt/KPPsauxQoRwUygV+ytpHogexmJEoYNGiQ7T4njinpYUmsQZzerl27WsrnxNK+fXuLrUwiD2LWkkmLXfHANTFkyfaG5ZO+kEBk3LhxFi2CBABksiPkU7NmzezvxEYmGx7RHUjywXEkOCHpBBZbEgwQF5V4usRWJXkESQpIpADQ485AkgT6zLnZiU84KpIaENqOxCMkHCDZAYlQHn30UUtlSwIDYglTkrXrY/+S5ITz0EeSbFCPguU3EX75jOx8pDAmmghjvOWWW9w999xj2pLEomfPniUZvryuJLlIDCdHHSzIqepzbhKkkGTDZ4sjCQNjoQ/MK/NBLFqiZpBs5eOPP7b5QE8VKSAFpEC+FRD85lthtS8FpIApkAn8kv2tadOmlgELdwhgkWD+wCkQCXwCnmRtI+4uABktpMcl9ilwNWPGDMt4RkYywNSDF9ndgL3p06db+lqA12fI22+//QyuvRuC7zMJMoilCsyS/YuseqS3JuQaYFurVi3Lpka4uttuu80SRRCCimQgnKNVq1aWOIHxAL6cm5TUtEviCbLSAZOMiT4DwZw7Vbs8HJDuul+/fq5OnTqWkRB4BySTwS9QzvHoBpjiAgGMc05SbqMHwN2jR49V9Hz99ddLsvr16dPHwr3RFnOSrD6WZWIw0yZ9ITMeqbRJC05dshSedNJJpodPt8w8UwBhNAbQVaSAFJAC+VRA8JtPddW2FJACJQpkAr9YZQnej/WXTHGA1r777msZ9qJphElRDaQCf4nw27x5c7OkArC0hxUY6y2QBbjyA4gCZqSqpQB/VatWNXBNBb9A9amnnmrt0UfSVWMNHjVqlCPNLckFsALTZyyeZPgjDjEwChgD5hQyaJGJa86cOWbZxud34sSJjn6T5Y7zYz199tlnU7YLeJPQAMinYI3mwQDXkWTwyzFRt4dGjRqZhdrDLu3QV+AzWaEvRx11VIlmqerju81xPs0xbQH3WIvRCvjlYYO5bdeunWmFZZk4tczx5MmTTVsVKSAFpEA+FRD85lNdtS0FpECJAt4fFWvpoYceWvJ3QBeg9D9YYRcsWGCvxUljvNdee1ka4cQCiAKeifCL6wNWTFJEU+/77783UMTi+/DDDxuIkRBg0aJFJemDOQ+B/gHsKPxyDNCGhXaLLbYwYMN1YqONNjJrK5bTK6+80qy1iWX27Nnuo48+MqjETeP555+3VNiMB/BmnCeeeKLBL6/9sZj+9ddflrIWqzVAmqpdrKe0HS30afHixRnBL0DKWI877jhrAu2Bb1LrJhbcRrDkMgbvWpGqPjDPA0nUfxvoxyKO5jxkMB8UHggYK64bHpJxN+FBRUUKSAEpkE8FBL/5VFdtSwEpsIoCWB+x2vLK3BeACDjt3bu3WVM5BqvogAEDzPcW6yCZ78aPH18CzVgosRQCjInwe8EFF5gPrIdfQBqA9fALhAKc+Bfju0oBpPFFpS7w62EUIN57770NfvHhJW0sPwA8r+1xpcDiC8xizaVwHP0H3nFz2HTTTW2TGVZPYA+XA6y/+CQzrmi0hyj8jhkzJmW7uIbwgx80ZcmSJe67774z7TKx/OLzC5BefPHFVh9tsIhj4Y0W3C+wxDIG+ozmlFT1cXU45phjrD8cC0xjZadd3FV4YPDWZeCXvvbt21fwq+8JKSAFylUBwW+5yq2TSYHKrQDAA9BOmDDBwBXfVayYpGnFzxdI5f8tWrQwwMQyCtRhKd52223NagvU8soeKySv/7OFX16zH3/88QZ0uCsAqHXr1jV/W0AXWAPi6CvpXtmUBvzic0x/6R/H4G8M1LIhj/7wyh7gxccXcKcOsIuLwLRp0xyWYMAZ/17Oh3U0MdRZFH6xkKZqF2syG+TQEYsvOqy//vpmzU0Fv8A9x7FRDz9crOCPPPKI+dhi9UXrxLTNF154oR2HZuhFAdjZtJesPjDNhjw0wEqOOwf+vVikeTgQ/Fbu61+jlwJxUUDwG5eZUD+kQCVQANjDykr0BF/YzIb7AAW/3M6dO5sl+NdffzUfXKyxbJYCiLGWUgBlXB4Sk0Pwij3R8rtw4UIDN6ybgCsb0fDfxTcV8KUAaoA11sqbbrrJ3C0oZ555pgElIMtn+B/TB4ATqzHW6Bo1apgl21sw6Tvn8a/v8T/mM3ye8QlmExtuGX7zXjLLr7dKp2qXtnhomDRpkvUT6MZSTISKVHF+AXp0BprZBAhYo6uvzyY2+u6LB/HEZQkwY3VOVR/wxyqORujLw0Pbtm3tYaY0+MX6jFVZRQpIASmQTwUEv/lUV21LASmQVAGgiNffWH/XWWedVY7BSghgYh3FcuoLPsNEDWBjWi4iAvBK/9NPPzUY9eHD/LnYeEbBwhstRGpgIx3WT+pFC5CNtZYxrbfeejmb+VTt4lKAPy59wpoMWJdW0JYxAfLA7bx580x/olJkUj/afrr6wDlzSNg5NrepSAEpIAXipIDgN06zob5IASkgBaSAFJACUkAK5FUBwW9e5VXjUkAKSAEpIAWkgBSQAnFSQPAbp9lQX6SAFJACUkAKSAEpIAXyqoDgN6/yqnEpIAWkgBSQAlJACkiBOCkg+I3TbKgvUkAKSAEpIAWkgBSQAnlVQPCbV3nVuBSQAlJACkgBKSAFpECcFBD8xmk21BcpIAWkgBSQAlJACkiBvCog+M2rvP80ThxOYoomxgwth1OnPcUPP/xgfYrGUi2vPhGzlVij2cYWzVX/SEGbmCChrG2THICYtCpSQApIASkgBbJVgHjYKv+nAAmOKGStzFeplPBLtqbEIPlkciJl6A477LCK1mPHjrVUnok577OZkE6dOlk2JDJUJSvPP/+8BcwnY1SmhaxJpGgFIqn7999/Zw2SpDhdY401LI1rLgsB7sm+RRrVVIWUsA8++KDbb7/9cnlqa4uUtFtuuaUjc1iyQiICNCNJQGIpy1yQqevKK6/M+Thy1SBJGeL85ar+hc209JN+YQqE1db6i49+r7/+umvcuLF1iMyUZ5xxhiNJjs/cSPZK0sKnKmRnrF69ujv99NNTHkN2zmOOOcY999xz7vDDDw8bfIrae+65pxkMP/zww5Ttk7CH5ESMh3FFC0mK7rrrLktB7/VIbKhSwy8ZpsjUhIikXD3ggANKUpR6oZYsWWJZm3bbbbcyTfIHH3zgTj75ZDdnzpyUcEqq0/3339/SsmZatthiC/fiiy9av959911Lb5ptWbZsmdtll12sb5tttlm21VMeTxauvffe29F+qpJP+CXrFVZdUr1mC79lmYtXDzvekVY3rmXxkiWuxiabxLV7Tv0Lm5q46zfvzBP18BUwxYLLAPGcs4yMleXhPwq/8AQp3T2soiIGvuuuuy6loGR6rFOnjsMIlKqQ0v24445zEyZMsBTx+Sj9+/c3wx6p7lMV3lyTth4jF2nbo+XLL7902223nf09lRGsUsMvYMtTDgWxhw4d6l566SXXvHlz17JlSzdx4kRbLI8//rjr16+fmzt3rjv//PPdjBkzDJYvv/xyWyitWrVy9evXd0OGDHFvvfWWTYgvXbp0MSsj/+L+cOmllzqsyZyDiSW9aLt27cy8//DDD9uxTNYrr7ziDjzwQHfbbbeZRTh6DizI9JcLGos0T2mcl2NZEK+++qpd8Cx++s9TENZdxoYFGstsnz593Pbbb+8uvPBCA+DLLrtslcWDNZMFNHPmTHtyZKws+mnTpllfsBr//PPPDqs2FwELrWvXru6UU05xjRo1suO4QNCOp7I77rjDUqiiw7nnnuuAX8bHOCn/+c9/THNfeODgqXLKlCnmlgFc0g5jv/766w36TzzxRHvqGzlypD3Z8n+s4ZyLJ0JA9oknnnDdu3d3G264obXBfGORRmf0R3P6PmLECHuIiM4Fc5RJ+avKFpkcpmOkQKVU4ItP36g08JGPCa5M8Cb9whTw8Mv9kHsdllPui7AN6cY9/ALFWEYXLVrkmjZtavff++67z+6tG220kfHADTfcYPDMcVhhjz76aNerVy/jCO7tvC1/7bXXrMO9e/e2e78vvF0/4YQT7Kdbt27uyCOPtLfTQDXsglUaNsC9YeDAgXYfhgnoB4Yz2v7999/tDTIGRO7ZjAX+gjdgiNatWxtrAeCMA6NX27ZtrY9wDvzGG37YjX4klkoNvwBP1apVHRN1++23u/POO89ErlGjhsEt0PTpp5+6QYMG2aQBVjvvvLO9Vgf+3n//fZuIffbZxxbHnXfe6Q455JBVfGibNWtmwAe0PfTQQwbIQCT1aGPSpEk20QAjIAkANmnSxM7BpAGRwHL0HFiJAVYWDwDMK34Wlgdr2mahs1iB4WHDhtkiZYz0gSe/9957z/xUec1B+1iRo4XzP/LII+6ZZ56xn2uuucbcP7COA/pYdx977DH35ptvusGDB7vZs2e7Y4891s7H/3ndQB84jgsFyGWBHnroobZIGQOWWeo++uhf3kB3AAAgAElEQVSjtsgB7WjhYqB/6623njv44IPdRRddZL8D0TzNoj8aoik6nXXWWTZf/A1NuIC5OGiff3lI4MLiAvPwy0MBYM+83nzzzavMRaY+wYLfsC9s1S5uBQS/YfMr+JV+mSrg4Rd3B+71GK4wEmHoAjiBX8Bx2223NUCENy655BL7gW+ARO6dACl1uC8CkNzb+RsMUbt2bbun83eMRX379nU//fSTYx9NdP8Q92kgnD0x/i0sb9vhHbiA/8NH3McxRMEC9Pfbb781BsK4BvDCMTAITIbh8aOPPjI3Q4xt3tAIq40bN87amjp1qvEObTKeHj16uHr16gl+UcD7/CIMgAMAs0BYDEwi8PvNN9/YIgAMgd8xY8bY5jCspvzLU8m6665rEwXY8nSDe0O04FPKsVhlsRAzKfi4stCwagKCG2ywgVkovdsD5+eJhcXBogGqqQf8Rs/h3R5wV/A+v8AvfefpjcIxQPvFF19sVmEsrTxpcU4Pv3zOAmYhJsIvY+TJj/NjBcVSzia1nXbayYCaPk+ePNkWHPDJxUX/v/vuuxK3B6y1WLx79uxpzbOYuRD23Xdfg3CAlL9hyU30wWWBA77ozA2AJ076yzg4B/OHxRzQpgCvvOagL8wd52Dc/hUOn82aNasEfj///HOz+uI/DUwz12VxexD8ZvrVrOMqowKC37BZF/xKv0wV8PCLdRXDDtwCl3Af5y0v8As0ck985513jDMwAuIXy1vWqNsDxjwMSMAmxjYAlDeoMBDwizEMgyEwjWUZN0esxr5gzKMfvJnFmAZ7ALinnXaatYvRaeuttzaOOOyww9zLL79sb605z9VXX23wy70choJRsEx7horCb5s2bcxyzB6is88+2+pj2JPbQ5JV4+E36vbgD+NvAKR/ivHwy1MPC8D/3UMkEMaTCdZErJPR4gEZdwmsmBRerWOZpV1AksmMApd3IOcVAr7IWFc9/EbPkQp+vWuBh1/cInitgWXX+wVvvPHGZrFlgQCvvEpIdCxnsfq2WIAsWKyqFA+/WK1ZdLhXYIHmyTERfhkbYOv9bniowM+6QYMGJRveuADRNhF+gV1e2QC/PHHyeoMLGOsyFxVO8Vhyo/7OzAEXCfDLax8eIPih3HPPPXaBecuvPx8XLtZ4wW+mX7E6TgpkroDgN3Otkh0p+JV+mSrg4feBBx4wOKVwrwd0uVcCv7ggYITz7gUYoXCtTIRfABUA9oZA3A8wFmLsivr88kYWuPaGQd9XIBQ2Am7hA5hpwYIFZpV94YUXzLCFKyLgjQXYF9wqgVjgFxiGdTDs0RfeDsMOUfj1Pr+8PYZT4CssvYLfHMEvT0oIiiXzpJNOciwunmLeeOMNs8omg19ODUBiOcY6jGVynXXWcVdccYVZLgE0QI4nICa0ffv2ZoVmkQGMACjtp4JfFhdPTlHLbzL4xe1ir732Mr8cdmiyU9NbfnEZYCECsdGSCfxycfDkxw/giC4efoFZHNbxuQVcOS++x2iInzPWWx/tIRX8YjH2G/F4KMElBSstMIueWHV5KkVfdMTlhDb5QVsuLGAYCy8XENZr9EkHvzzFMheMP9Miy2+mSum4yqiA4Dds1gW/0i9TBaLwi9GNeyRGLoAQNwbglzev3LN5UwuAYmiLWn4xjnGPZd1xz+Rz3ozjYwuEAqqZwO/y5cuNZyj4DQO/WJ0pvNHmc/bm4EYBT+FmyVtymAFG8W4PnA+jFW4M06dPNyDOFH4xvrG/ifMklkrt85vO8uvj0EZDnfEKgYWAHwtPMMAnT1HAL36myXb8A2xYfQFFrKssJtwOaB/fF5zKgWjvyM0ixUeVRcOxvDLAMonbQPQcuAs8+eST9lQHUHqfX3x5gGkP3ixigJvFwgLiCY8nL/8qg6cmLN0AeSL8+rZYcDyNRS2/ACZQiSUWoGSMADU+RDic4+YBmGN5BlTffvttc1HgKRM3DI7n4sPXORX80h/8fChowsXBBchFwesXnkh56uQBgfnwT4eAKxc4Ywa88Z3GCo+PElrxt2ios6jlNzoXme5kFfxm+tWs4yqjAoLfsFkX/Eq/TBWIwi9vPoFW3CwxgAG/GO94U4vVlz05gCcswj0VoxQ8wv0Rl0Lut9THJZACO8A88ADw6/mH+zlvxhMtv9Tx/rpALcYsfHm5p2OlpcAwnBPLNIXN6rCS3+MEU7CHCMMh58PFkTq4gMI5+Pzyf5hj9OjR1jYMhRsFb4axUgPe9FHwm+kqSnEciwS3CRYSr+NLK0y6jxBBQgcWGpZdHMmjAZyxigK8uEJgFebpC0jm6Qgn8sRz8cqexYYLQWkFAMVVgT7jSgH4AYP0BxjEfQFQLUvB0suiZhHiEsLTHX0Hxn/55ZeSJz98o7Hi5iOhBhBMuz6WoR8HESMAfu+LzRcAFuBUoU98vehcZKKJ4DcTlXRMZVVA8Bs284Jf6RemwOq14Qc4hvt+YqIprLLcv+EPCjzCPR5jWL6SUhFZCobw5/Q9ph+4OOJLzIZ2DFVYrdnMly4WMfWpix8ybWIAFPzmehVl0B6md3ZfZho6K4MmszqEJzheN/AqAfcGnMfxn+HvWIDTxf3L6kQxO5gHDeAeNwYsw1if8V/2/tdl6S5Wc3yjoqXLVX3L0pTqSIFKoYDgN2yaBb/SL0yBwq7Nvh8sv77gP8x9GCNeSKmUbg8hgpWlLpZEfnhyqqiC/w+b7chgh6sBmd1wN8A9IPFpq6L6mI/zYqkHVnmaJUwblt9cF1l+c62o2ismBQS/YbMp+JV+YQoUfm1cLOEX3h6zfwm3x9Ai+A1VUPUrvQKC30q/BCRAGgUEv2HLQ/Ar/cIUUO1kCgh+tS6kQKACgt9AAVW9qBUQ/IZNr+BX+oUpoNqCX60BKZAHBQS/eRBVTRaNAoLfsKkU/Eq/MAVUW/CrNSAF8qCA4DcPoqrJolFA8Bs2lYJf6RemgGoLfrUGpEAeFBD85kFUNVk0Cgh+w6ZS8Cv9MlVgvZuqZHpo0uN+u27lKn8nYhJhUaOb4gkhRkjTXGw6C+psYGX5/AYKqOpS4NXDjncHNW68ihCrfoU4l/iVVNrnvjF/XGn1/fHJjvtxyRJX/X/xoEtrJ/TzdP2IChQ9jyWbSYhXnawf/A09wr7es1+v9C+TeNrZt5ybGnHv37yzTrL0pnEtgsuwmZF+8dGv1s1h347fXfPPHeevv/5yc+bMsYyq5B4gNCqFjLBkSCU+MGBM6FSfhTVMhfKvLfgtf811xiJT4NZbb7VscnEtujmFzYz0k35hCoTV1vqTfpkqULtnGPx+dPU/8EuIUOL/k82NbGvAL7C79tprl2Ry69Spk9tyyy0tw1ohFsFvIc6a+hwrBQS/YdOhm7v0C1MgrLbWn/QLUyCsdi7X3z63VHFVIq/IVq50Wf0+/apV30kOGDDA8gEAv6Q/JlHXp59+agMm89qMGTPMOlyIRfBbiLOmPsdKAXKNk0lORQpIASkgBaRAtgrkyi3ooFvDLL9TrkwNv7NmzXKnnHKK+/DDD214w4cPd5MnT3b33XdftsONxfGC31hMgzohBaSAFJACUkAKSIGyK9C8Txj8vtAlNfyyyY2Nb2x4q1KlSokfcOfOncve4QqsKfitQPF1aikgBaSAFJACUkAK5EKBlsBvlH8TdwiX8vuTl6eGX/q35557uoEDB7r69eu7I444wt14443u8MMPz0XXy70NwW+5S64TSgEpIAWkgBSQAlIgtwqcfGeY5XdM59XhFx/fvn37WkfHjx/vzjjjDPt/ixYt3IgRI8wKXIhF8FuIs6Y+SwEpIAWkgBSQAlIgosDp/wkD0YcvTQzCubq8v/zyi1u6dKlFeijkIvgt5NlT36WAFJACUkAKSAEp4Jxr2y8Mfh/oVDr8FovQgt9imUmNQwpIASkgBaSAFKi0ClzYPwx+7+4o+K20i0cDlwJSQApIASkgBaRAoSnQeUAY/N55seC30OZc/ZUCUkAKSAEpIAWkQKVV4KqBYfDb+yLBb6VdPBq4FJACUkAKSAEpIAUKTYHrB4XB740XCH4Lbc7VXykgBaSAFJACUkAKVFoFet5TJWmYXx/eN1WYX//37h0Ev5V28WjgUkAKSAEpIAWkgBQoNAX6DE4Ov34cpeW8uPw8wW+hzbn6KwWkgBSQAlJACkiBSqtA/8Fhbg8dBb+Vdu1o4FJACkgBKSAFpIAUKDgF7r0/DH7PbyfLb8FNujosBaSAFJACUkAKSIHKqsDQB/5xeyjx8V3pHNmHE31+U31+dlvBb2VdOxq3FJACUkAKSAEpIAUKToFHhoRZfk87V/BbcJOuDksBKSAFpIAUkAJSoLIq8PjQMPg94RzBb2VdOxq3FJACUkAKSAEpIAUKToEJw8Lg9+izBb8FN+nqsBSQAlJACkgBKSAFKqsCLwK/qzj9uqx+P/QswW9lXTsatxSQAlJACkgBKSAFCk6BKcPDLL8HnSn4LbhJV4elgBSQAlJACkgBKVBZFZgWCL8NBb+Vdelo3FJACkgBKSAFpIAUKDwFZj0UZvnd4wxZfgtv1tVjKVBBCjz11FOubt26FXR2nVYKxFuBj79+JN4dLO/eFRhfbFnzIFd1/W3KW6VKdb4dd9wxJ+OdO7yKxfX1gX1X/i/Ob6a/7yr4zck8qJFKqMCsWbPcokWLVhl5rVq1CgoO58+f73766SdXp06djGbw1ltvdVdeeWVGx1bEQZ999pnL1ZdrPvqv/oWpGnf9bronzBoVpo5qhyrQqc1nrvpGO6RsJu7rrzL17/OHw6617U9f9cls+fLlbv3113drrLFG6DKKXf0qK1fybKAiBXKjwMknn+z+/vtvV79+/ZIGGzRo4E444YSgEzz00EPujz/+cOeee25QO77yQQcd5CZPnuzWXHPN1dobOnSoe//9991tt92W0bkEvxnJpJtnmEwFq5/gN08TX07NCn7zK3Qu4fzbQPjd8n/wiwGrTZs2bq211nJffPGF69q1qzvnnHPyK0Q5ty74LWfBi/10wO9pp53m+DdagNfx48e7UaNGuYkTJ7q77rrLPf74427IkCHuzjvvtIusc+fOdoF9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauUUyf4DVvVufzyD+tJ8trqX5iqgt8w/Sq6tuA3vzOQy++XxYHwW+N/8Nu7d297+8l99LvvvnNbbrmlwwq8wQYb5FeMcmxd8FuOYleGUwG9y5Ytc7vuumvJcDt06OB23nlnV69ePde9e3fXq1cv169fP3fggQe67bbbzmCV1yr77LOPW7hwoePCAzyB0nbt2rnzzz/fzZgxw61YscLdcMMNbu2117a2P/nkE7fLLrsYQK+33nqudevW7t5773XbbLON1fnqq69co0aNDJ4B5qZNm7rBgwdbP6pWrep++OEHa5c2x4wZ4+6++267wPHfBb7feust9+GHH1p/3nvvPcFvnhZwLr/889FF9S9MVcFvmH4VXVvwm98ZyOX3y/IE+OW1fjpHiMTPN/wf/GI44p6JIQvnAO7Pn376aazd57KdJcFvtorp+LQKAL81a9Z0DRs2LDnu8MMPd9tuu62bNGmSO/TQQ92pp55qFmAuKgAW6+zs2bPNKrtkyRI7ZsSIEQbQCxYsMHeHRx55xP3222/u6quvLmmXunvvvbdbvHixgSy+xRzLD0+otM/rm5deeskgFjeGkSNHuhYtWrgqVarYcddcc42rXbu2a9u2rQE3r3iA3nHjxtnP0qVLXfXq1a2tVEWW37CLIpdf/mE9keU3H/oJfvOhavm1KfjNr9a5/P77a0SYz++abf65z3GP5se/wd1iiy3svrj99tvnV4xybF3wW45iV4ZTpXJ7YOyvv/66a9y4sbk2YK0FTDfbbDPbLLbvvvuaWwIgizV47ty5bquttjIg/fPPP81imwx+TzrpJDdz5kyzGO++++7u+++/N/cI4BffY9rF6nzUUUe5Bx54wM4VhV/8mjgvP5znxx9/dERv8D6/WIKxEnv4nTJlisF6YtGGt7Kv7lx++Ze9F6lrqn9hqgp+w/Sr6NqC3/zOQE6/XwJDnbn/RXu46aab3MYbb+wuvfRS99dff7lNNtnE7o3FtPFN8JvfdV3pWgd+AUmg1BesrFxAe+21l7vkkksMQJ944gnzKcLfF8ss/sD44AK/+O5i/QWSTz/9dHfiiSe6zz//3P3888/u+uuvX8Xymw5+8VXCGgxA0y7uEICth18g+eGHHzYox10COMYCjTU5Ffwmm1BZfsOWeU6//MO6krS2+hcmquA3TL+Kri34ze8M5PT75cEwy6/7X3pj7sfsy3n++edtXwxvZd944438ClHOrQt+y1nwYj8dr0q4WKKFSA/43rIZ7YUXXjCXhuuuu84upgMOOMDcJNZZZx2z2ALAbHJjIxsb3wg3NmHCBPfyyy8bBLNJDjCm4PaQDn6x1gLjH3zwgR2PfzAQ/MorrziiPWDRZSPeRRddZH3BWvz00087rLuC3/JbqTn98s9Dt9W/MFEFv2H6VXRtwW9+ZyCn3y8PBMJv23/cHrgXH3300XYf5P/cu/fbb7/8ClHOrQt+y1lwnW5VBXBNwEKLiwNuB7g2AKUUXrPgb+sLFyGQnCw8WTpdgejNN9/c6uFTzCsczvX777+X7F5NPFc28yTLbzZqrX5sTr/8w7qStLb6Fyaq4DdMv4quLfjN7wzk9PtlcCD8nrfq3hY2jfP21G8yz68S5du64Ld89dbZilABwW/YpOb0yz+sK4LfPOgn+M2DqOXYpOA3v2Ln9PtvUCD8XlB50j4IfvO7rtV6JVBA8Bs2yTn98g/riuA3D/o990pPt+lmm+ah5dw0uWjhIvUvjZQ7bXO4MrzlZqnl//tlQCD8Xiz4zeNUq2kpUFwKCH7D5lPwW9z6TZ7Sy222aXzhdyFRZ4q0f3V3Oz9scWVQW9dvBiKlOSSn+v03EH7/LfgNm81KWpvNVCxkwmtVRCGqAVnRCCeWTfnmm28s8kI0MUU29TmWANj41OKTG9pWtufO1/GJfsGpziP4DZuBnH75h3Ul/5aZSti/gfcF3pDzoFllaHKXnVq7w5qNyPtQdf2GSZxT/fpWWTWrRWIWi9J+7yz4DZvNSlqbSAZkCyNaQEWUaPSD6PmJaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rk9Mv/7CuCH7zoJ/gNw+iZtCk4PcfkSrV98ttgQ+aVwh+M7i0dEiiAqng9+OPP7Z0u8ApcWtvvvlmC+d1yy23WOxbrLXk0CZEGH8jzS4xaQcMGGAxZ8lqBpDxOYBJtrP69eu7a6+91g0dOtQiGQwbNsw+a9asmYUPAzCJk3veeeeZJZhICWPHjrUEEol9eeaZZxx9JCwYMXbXX399y8Z2xhlnuDvuuCPlRAPNF154oVtrrbUsWQXxc8kAQ1ukJk7sH32lPcKZPfbYY3YMfdphhx0c8EwoFcKY7b///u6+++4zkGasBNsmDi/t0X/0I2scYclIXYyFls/ob6pCNAceAsjmRt10hXjChGKbPn269UHwm99rvVLdnPIgZdz1E/zmYdIzaFLwWwnht3cg/F4l+M3g0tIhmcIvUAmQkisbGCXRw4wZMyyMF5BF4gYsjMcff7xr3bq1e/TRRy2uHqBIul1S7wLOxMcl88pGG21kObf5O/FpSdRAcgZgkli2gCLQxg9hvvh9xYoVZpWm/cS+EG5s1qxZFu+W+pwfiCU2LxnTgOtkpV69ega/uHkAtKQKpm+01apVq9X6B+ASxoxUxKRKJN0w53ruuecMcklAQRpFHhA6duxoME6bhx12mNtpp50sPu+8efMsScbbb7/ttt5665K0x5zvnXfesWxu0UJa40GDBpkVF33PPPNMOy5aNt10U9euXbvVhsjDB7oLfvN7rccd3tS/sPkX/IbpV9bagt9KCL89AuH3WsFvWa+3Sl0vmeXXp9rFmos/7IsvvmiWTCAMcCQ1L762JG8g6xmpc0nmQAHIvvzyS7NqHnnkkQa8zz77rMEsQAfoYd0FPJs2bWpZ0LAU43uMNRb4xYKKFZf4ucAxiRwS+4LF1cPvEUccYf67FOD3nnvuMet0YgGq6bdPechY6tatWwK/V1111Wr9o09ke8MFgwLAAqJkeOOc/A788i+W7+7du1v8XyzDo0aNcg8++KDVw1KOdZaxYxWnAKpdu3Y1jSgktuB39OVhg2Np+7333jOrcyL8Av6JRfBbPpez4DJM57jrJ/gNm9+y1hb8VkL4vTEQfq8X/Jb1eqvU9ZLBL/6vgBzpAX3Zbbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc5B2cNy4cZZ9Bcvp8OHDLRsL7fiMZ9THwjtw4MAS+KWtZH3BuuvhN1of/9z+/fsnhV+Ox0cYyyoF2MUS6y2/jDexf7Tl4ReIB+7JHc7DAKmFPfzOnTvXElFgEccqCzTTFvUpJMUg4xufkwnOF1wm9thjD/sVlwj0Qjt09RbhpUuXOgJ3RwvuIokWYw/UiZZf/Ll5QEksWKPjWuIOR+pf2MqJu36C37D5LWttwW8lhN9rA+G3h+C3rNdb0noAB9DQsGFDt2jRIrMQFmMBTLHSvvrqqyXDW2ONNQwe8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8Awnr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy92zAfAHS1YsMllnlhk+S2fqzTu8Kb+ha0DwW+YfmWtLfithPDbPRB+ewl+y3q9Ja2HvyaAh+8mFs50G5N8A6VFKMhpB3PUGPDLGKMFtwMgD5cDClZGfFdr1qzp3nzzTbPOAoU77rijI1QZ1lkgjxsuFl6Ajb9F4RdrLhvc8LWlPTZ8AdIHH3xwUvjFxxZXCkAbCE7sy5NPPpk1/DKWIUOGmLUZeAaAzzrrLPPpBaRvvPHG1fpHtAmsyRzDQwDATj3cGth0N2bMGHMH8ZZffJTRDrcFLMtYySlYgPHfxf958ODBjoerli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPEVwWt36C37D5LWttwW8lhN+ugfB7u+C3rNfbavWwNgIphxxyiG1ewhrIRi2iCuB/ikUOy573zwSQsCBGIxSwUSyx8Nof/1l25M+fP982T7GZi/a7detmG6N4LQ+4cCyAxyt6YtBybqyB+MECTFikk0Vk4HV7rgoAhv8uG8mwPqYrvNZfd9117dV/uoL1lX4Dj/gTpytYWzkGK2k2feFY9EsswDr+xejJMcn6mqx/0di5wD5zUKNGDQN/9E43Ds4FaEfnZdmyZQb0WNMzKZw/l/PKOQW/mSgv+A1TqXD1E/zma+bTtyv4rYTw2zkwzm9fwW/Ortbly5fb63HAE0snvpi86gYCseYBolgPsQJiFeT1NRY+Xv37CAVrr732av3hdTZ1cTEAgIFcrMps0sKFAGDGdxbLIP6iQPXUqVMNdgFf/k9f8LFlA1myiAxYMit7IcTatGnTVpOB0GZY9FUEv6FrQJbfMAXjrp/gN2x+y1pb8FsJ4bdjoOW3v+C3rNdb0npsaGJTFZucPPxi8V2yZIlZItnVz9/xg+X1NRunCPOFVdDv5k9sGPglXBaRC7AIco6VK1eaTzHRA4BtrMFANL6f+HQSU5YfNlfhX4vlmPOw+z9ZFATaVpECpSkgy29pCqX/PO7wpv6Fze/kV3u6TTeLb3rjRQsXFW3/6u3WIWzyMqit6yMDkdIcklP9LgqE34GC37DZTKidDH5xdfCRArDw4u8JoBK9gE1NhLYqDX6x6AK4vDLfcMMNHa/Z8YNl5z6bxYBcNlYBv/5YXuHzAzx7+MU6nCwKAm2oSIHSFBD8lqaQ4DdMocLWb+brvYoWLhNnZuOajdxGNRrkdLpzCkc57VkltKzGXb/zAuF3sOA3p1NcGvwSGYBwXfht4n5AwgL8Y32EgmSdAV4T4Rdf2Vq1ahkME+sWoMXCWxr8shkqWRQELNHZFM7JFxUAXhGFcRMdAn/pbAquH1jPiXpQ1sLGMKz4+OyGtlXWPuS6Hm8mWLulpWIW/IYpr5t7cev34oOBN+Qwecq1dqNj3hX8lqvipZ+sUn2/nBvo8/uA4Lf0FZXFEaXBL4kU2PBGKDCsvbgtkLnMRygAjhNLMvjF7QF4JvwVhWxlACkb7FJZfsneBSCTYCJZRIYshmkxeIlQQFi3iijEpI2GOvN9KC1yBmmKCa3GBsGyFrK3EXmCUGPp2sKvmzBlpQFlWfuRi3o8ePEAhl8zm+PY2MdmzVRF8BumeqW6OYVJlbR23PUT/IZNetznV/2L0fyeGfigOVzwGzabZahNOC7cH6K79olQgGsEUJdYWrRoYTv/kxWyj5GSF8DCelda1ATfRjZREJKdNxX8JoskQQKGW265xWLVYq3t2bOnGz16tP0NX2Os1oTaArzwe2bjGZ8DmKQCxmeajYM8BDBWQp/xWbNmzSx8GoBJiDTiAUcjZxBajLjBaEoa4ZtvvtnCjNFHHhzYRIiuZIUjJB0+0akK0Ix1HEAEFJkTNjLSFg8Sif2jr7RHRjr8rDkGH2yiVQDPZJrjQYeYwYSIA6QZKw9PbJnhk9gAACAASURBVEqkPfpPn3GbwU+czY3MG5+lC6FHJjoeAmrXrm110xXaJwsd4dp4GEMPgD5VRAnBbxku+EgV3TyLWz/Bb3HPr67fGM1v60D4HSn4DZvNHNb+4osvHDCbWIDC0sJ75bAbGTWVCn6TRZKYMWOGq169usW7JRwcoE7sWsK14fc8ceJEA0XGj+UaWB0xYoSFjSOLGml8+TsWcqJjzJ4922ASazegCDjyg3b87iNn0D5wTDQMwJgYuvhK+yQX1Of8QCyRM9ioCFwnK/Xq1TP4xc0DoMU66jO8YTlN7B+AS4xfHnTYrIi/NuciOQeQiwWeFMRAeceOHQ3GaZPYyUSWID4yIezw4yYWMhsjqQegcj5SJSdmauPhiVTQ999/v+lLjF+OixZiCZNtzhceuogXzMOEfyOA/sliCFNH8JvR5ZHyIN08i1s/wW9xz6+u3xjN78mB8DsmM/jlnguzRCNxwRHcO9l/VQilykp8BVRyokAy+GUxJIskAYQBjjNnzjRfWxJQAFrEKcbdgwKQ8Qoeq+aRRx5pwEvEDGAWoAP0sO4CnoR1+/zzz81SjKsH1ljgFwsqVlwWK3CcrC9YXD38HnHEEZbYgQL84pKCdTqxANX0G4sqcYsZC5n7PPwSxi6xf/TJpzemPQAWEMXNhXP6DG/8i+WbKCBYW7EMswGS7HcULOX4gzN2Hw0EKzmuM2hEwfXFx44G8DkWsCYcHlbnRPglBXK0/P7772aF5wGEDZLEqU5VBL9hl49unsWtn+C3uOdX12+M5vf4QPgdlx4HCV2LoY03rp07d7YQtRQSXv3nP/8xgxRvYjHI8TY4zkXwm8PZSQa/vC5PFkmCV++AHYuEOMdAGQDG5jNA1hegjUWWmN4YIMOPGcspmwWPPvpoaydVemPgl7aS9QXrbrbpjTkeH2EfsQPYZeF7+CXucmL/yMzm4ReIB+5JNYxbA5E5UqU3Bpppi/oUNjaSDhmL+QUXXFCiFS4Te+yxh/2OSwSuJWiHrt4iTDY4oolECxbeqMUYrU499VR7s8A5iVPtC/7cPKAkFqzRcS26OYXNjPQL00/wG6af1p/0y1iBowPhd0J6+MVYh4slhro+ffoY/AK7WIAxhFWrVs1cJ7lnkmwszkXwm8PZAX6x0pJ4wxesolhO8XdlQx9uDkAvllJSEmPxJfUzT1K89se6SWxioJlQa1g58dFNhF9cFoCwXr16GbiyCHEfSAW/PnJGsqgW+LRmC7+84mCB41uMHy5+umTm8/ALiCb2D+su8Is1HFjE3QC9Lr/8coPZVPDLg8Kxxx5rnwOuaMF50RULL69fGHePHj3M2u0LUT7QnaQm+EiTKpr5ALijBQs2YfZ8wbLOXET/lm6ZyPIbdhHp5l7c+gl+i3t+df3GaH4PD4Tf5zNzBOAejHsi3IErIm6U/o0xBiPcOnE1jHMR/OZwdoBf/FOjBbcDIC9ZJAky3uF/y6IhXTChyrDOAnl8odx1110GbPwtCr8DBw60py98bbFa8uQFSB988MFJ4RcfWx85AwhO7Aupn7OFX8bIqw6szcAzAExGPHx6aYvNYon9I8se0R44hocALhzq4dbApjtiPeMOMnfuXNukSOQMtMNtAcsyVnIKFxf+u/g/E6MZay7JUdjQlswvF30IZ4eetM9PukI/geZo+eijj8yfOlkR/IZdRLp5Frd+gt/inl9dvzGa36aB8Dv5H/jlHo4bZbSwD8i/WY3Cb+JbYN5EY5yCfeJcBL/lNDvZRJLgtf66665bapQKrK9EVgAeS9v8h7WVY7CSZtMXjsXFIrEA6/gXE9OXY5JF1EjWP47FnxbfY2AfF4MaNWrY/3FvSDcOzgVoc5wvy5YtM//fVJEYEvvN+aP1czH9gt8wFXXzLG79BL/FPb+6fmM0v/sHwu+b/8Avboi8SY4W3kRjiKNE4dfva+J+j/GJ8LEUXA7jXAS/cZ6dGPSNEGvTpk1brSc4sxOBQUXRHkLXgG6eYQrGXT/Bb3HPb9zXX6Xq316B8Ptu9m4PrG7cKXkjjXshm+Z581taSNGwqyK8tuA3XEO1UMkVkOU3bAFUqptTmFRJa8ddv5mv9zT3pbiWRYsW5ax/G2+6nzK8xWyi43595LR/uwTC78eZwy9x9XE/pLA/xsfZJ94/YVlThQaNy/IQ/MZlJtSPglVA8Bs2dTn98g/rSkHC5Wr6ff60c8u/zoMSZWvys/Wb256GuBatv7CZkX4x0m/zQPhdkBn8Jhsxrovsv4lGRwpTJr+1Bb/51TfnrROWmbi4vGaoWbOmtU/MXXxf2TzGLksiL2RTaI+NaNGA1dnUj8uxXHw432c7/tD+C37DFNTNM8f6Ab9PHRPWaA5rf3b0Pxt641q0/sJmRvrFSL/1AuH3t7LDb5gK5V9b8Fv+mgedkfBhgCoxbomGQCEKAhnTCBmGn42PvZvuRERGIIUvkQ1I/uAjLAR1roIrL1iwwKI/+MQX5dUdwW+Y0rp55lg/wW9Wgmr9ZSXXagdLv+LWL2x08a0t+I3v3CTtGTGBsfDefffdlvqYuLWlwS8hyQgtRgGYSaLRuHFji7c7duxYi9dHKDT+37BhQ4szTLxeEkUQf5gICcTjxaeH8GJAMz49QLaPnID1GZAmLjHJJcgMR4g1ElmQlhhgZwcpkR5ITEEw7KlTp1pAbFI5s6muZ8+eFiuYUGxstCPWLq9QCJ1CRAtCp7CTlHOyk5Sdp9H+EGqOrHD0n7THZGgjEkTv3r0tIQfnIz4ycQnPPvtsa4tzvPjii2769Olu/vz5lnKZFNDJ6qdaKoLfsItIN88c6yf4zUpQrb+s5BL8hslVcPrleLixaU7wG5upKL0jpBbk9SHx94DJ//73v/ZvOvgF/ojKQHpg6rdt29Z98sknBn4rVqwwGCbrG47rxAomVi8JKABYMrYBgYQja9WqlaUiBg6BReA7upuT3Z24HQCuAC+A65NSAKRYquvUqWOZ04iXC5AToxjQJKkEfSCZB0ksODeFINnE5qWfZIsB+oFkgJ9kFiSx6NixY0l/0IZUz4As1mzSMJK9Digngx5aAfAHHnig/Q390AIAJzEJ9chMl6q+4Lf0NVqWIwQfZVHt/+ok9fmV20PGomr9ZSxV0gOlX3HrFza6+NYW/MZ3blbrGZALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEK0ysjyVc8Jufi0U3zzBdBb851i+suZzX1vURJqn0C9OvWGsLfgtoZkkZTJIHXAYANMAWmMNdIZXP76BBgwx0gUUKLg4EqOYLIQq/3ucX94bNN9/cfnCViEIu58cSSxw/0gn7ArDSJ9og2QQWYGDzX//6l2WvIyYwn1GHnOA+BTOWW+CTMfhA2R5+8V9u1qyZuSiwuY/+0g5WaTLHAfAefn1/PPxi5QXAsXaPHj3a2udfrMx8RsGFgv/TNhCMRZt+b7jhhgbgifVJo4zFGfieMmXKaquGfsW16Ms/bGYKTj+5PWQ14QU3v1mNLv8HS78wjeOuX9jo4ltb8BvfuVmlZ7g6kFoQi6n3s+U1Pm4GgGMq+CUDHBZUPsey2ahRI4sIQfpeXCJwR4huePPw26ZNG9egQQMH9JEVDmDt0aOH+fImwi8dxcIKHOOH632IAV1yfmNBxv8WWMW1IRP4xfeYvmFxBpxJG42rBpEpiCmIhRctgM5E+MU6TX9IaUysQbLPMQ4sxMArlm2s0PSFGJ+J8EuGvcT6HuyTLRf5/IZdRHH/8i+4/gl+s1qQBTe/WY0u/wdLvzCN465f2OjiW1vwG9+5WaVnwCMbsoBBX7DmYoUEJtnMBQgni/bA5jDcD4Bk4LRfv36OzWFscnv88ccdoBu1/ALDl1xyiW0mI3oCsftatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj5YnnI1vwCvh3UiBzFgAYDTx/YlafoHX559/3vyEceEA2nEVwY2DvuAfzEa7MWPGJLX8JqufaqkIfsMuorh/+Rdc/wS/WS3IgpvfrEaX/4OlX5jGcdcvbHTxrS34je/c5LRnWF1xlfCxgWkcgAQkseymKsQPxkKMO0MmBVjFFzlaiErB5jlvsS6tHXx+8T1mox7uF75/9B+rLH0hAgVuG1WrVk3ZHOfFHSPaH8AXNwisv6VloElWP9nJBL+lzWj6z+P+5V9w/RP8ZrUgC25+sxpd/g+WfmEax12/sNHFt7bgN75zU2l75uEXt45CKILfsFmK+5d/wfVP8JvVgiy4+c1qdPk/WPqFaRx3/cJGF9/agt/4zk2l7Rm+yWzsy9RSXNFCCX7DZiDuX/4F1z9Lbzw/bFJyWPuz9Q9ThrcAPQtu/QWMNR9VpV8+VC38NgW/hT+HGkEFK/Dkk0+6evXqVXAvdHopIAWkgBQoRAXinP67EPXMpM+C30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUIKSAFJACUkAKSAEpIAUyUUDwm4lKOkYKSAEpIAWkgBSQAlKgKBQQ/BbFNGoQUkAKSAEpIAWkgBSQApkoIPjNRCUdIwWkgBSQAlJACkgBKVAUCgh+i2IaNQgpIAWkgBSQAlJACkiBTBQQ/Gaiko6RAlJACkgBKSAFpIAUKAoFBL9FMY0ahBSQAlJACkgBKSAFpEAmCgh+M1FJx0gBKSAFpIAUkAJSQAoUhQKC36KYRg1CCkgBKSAFpIAUkAJSIBMFBL+ZqKRjpIAUkAJSQApIASkgBYpCAcFvUUyjBiEFpIAUkAJSQApIASmQiQKC30xU0jFSQApIASkgBaSAFJACRaGA4LcoplGDkAJSQApIASkgBaSAFMhEAcFvJirpGCkgBaSAFJACUkAKSIGiUEDwWxTTqEFIASkgBaSAFJACUkAKZKKA4DcTlXSMFJACUkAKSAEpIAWkQFEoIPgtimnUICpSgSeffNLVq1evIrugc0uB2CrwyEePxrZv6pgUqGgFTqt9qttxxx0ruhuV7vyC30o35fkd8KxZs9yiRYtWOUmtWrVc3bp183viHLY+f/5899NPP7k6depk1Oqtt97qrrzyyoyOrYiDPvvss1h/uap/Yasi7vpVuX6dsAGqthQoUgWqVKniPjnrg1h/Pxep9E7wW6wzW0HjOvnkk93ff//t6tevX9KDBg0auBNOOCGoRw899JD7448/3LnnnhvUjq980EEHucmTJ7s111xztfaGDh3q3n//fXfbbbdldC7Bb0YypTwo7vCm/oXNr+A3TD/VLl4FBL8VN7eC34rTvijPDPyedtppjn+jBXgdP368GzVqlJs4caK766673OOPP+6GDBni7rzzTrfWWmu5zp07u3POOcd9++23BrnvvvuuO+aYY9wVV1zhmjRp4n799Vc3duxY17x5c2v6yy+/dBdccIGrVq2amzp1quvUqZO1PW3aNNezZ0/Xvn1799prr7lu3bq5efPmuVNOOcX17dvXdenSxd1xxx3uuOOOc6NHj3aXXXaZGzZsmJ2jf//+BsXDhw93v/zyi8MK3KdPH9eqVauU8yX4DVvKgsvi1k/wGza/ql28Cgh+K25uBb8Vp31RnhnoXbZsmdt1111LxtehQwe38847m19s9+7dXa9evVy/fv3cgQce6LbbbjuD1TXWWMPts88+buHCha53794GnkBpu3bt3Pnnn+9mzJjhVqxY4W644Qa39tprW9uffPKJ22WXXQyg11tvPde6dWt37733um222cbqfPXVV65Ro0YGzwBz06ZN3eDBg60fVatWdT/88IO1S5tjxoxxd999t1u+fLm5aADfb731lvvwww+tP++9957gN08rVvAbJmzc9RP8hs2vahevAoLfiptbwW/FaV+UZwZ+a9as6Ro2bFgyvsMPP9xtu+22btKkSe7QQw91p556qlmAV65caQCLdXb27NlmlV2yZIkdM2LECAPoBQsWmLvDI4884n777Td39dVXl7RL3b333tstXrzYQBbfYo7lZ4MNNrD28T9+6aWXDGJxYxg5cqRr0aKF40uH46655hpXu3Zt17ZtWwPuL774wqB33Lhx9rN06VJXvXp1aytVkeU3bCnHHd7Uv7D5FfyG6afaxauA4Lfi5lbwW3HaF+WZU7k9MNjXX3/dNW7c2FwbsNYCpptttpltFtt3333NLQGQxRo8d+5ct9VWWxmQ/vnnn2axTQa/J510kps5c6ZZjHfffXf3/fffm3sE8IvvMe1idT7qqKPcAw88YOeKwm+bNm3svPxwnh9//NE99dRTJT6/WIKxEnv4BdSnTJmy2txpw1vZl7PgsuzaUTPu+gl+w+ZXtYtXAcFvxc2t4LfitC/KMwO/gCRQ6gsX+F9//eX22msvd8kllxiAPvHEExZRAX9fLLP4A+ODC/ziu4v1F0g+/fTT3Yknnug+//xz9/PPP7vrr79+FctvOvj97rvvzBoMQNMu7hCArYdfIPnhhx82KMddAjjGAo012W94S4TfZJMmy2/YUo47vKl/YfMr+A3TT7WLVwHBb8XNreC34rQvyjPj0sAmsmgh0gO+t2xGe+GFF8yl4brrrnNvvPGGO+CAA8xNYp111jGLLQDMJjc2srHxjXBjEyZMcC+//LJBMJvkAGMKbg/p4BdrLTD+wQcf2PH4BwPBr7zyiiPaAxZdNuJddNFF1hesxU8//bRZdgW/5bc8BZdhWsddP8Fv2PyqdvEqIPituLkV/Fac9jqzc+aagIUWFwfcDnBtAEopuCDgb+sLcAwkJwtPlk5MIHrzzTe3evgUb7LJJnau33//3YA32bmymRxZfrNRa/Vj4w5v6l/Y/Ap+w/RT7eJVQPBbcXMr+K047XXmIlFA8Bs2kYLL4tZP8Bs2v6pdvAoIfitubgW/Fae9zlwkCgh+wyZS8Fvc+vV89ha36aabhg0yj7XZeKv+lV1g6Vd27ah5WI1DleEtTMIy1Rb8lkk2VZIC/6eA4DdsNQh+i1u/oS/2ElwGTLHgMkA85yyqULqHm2P2PD/sBIG14/79Fzi82FYX/OZwathMxUImvFZFFKIakBWNcGLZlG+++cYiL0QTU2RTn2M//fRT86nFJze0rWzPna/jE/2CU51H8Bs2A3H/8lf/wub3kNurhDWg2lIgTwocsfvZ7sqjhuap9cyajfv3S2ajKLyjBL85nDMiGZAtLFkc2ByeJmVT0egH0YOIaEBCB7KWJSuE+vr6668tRFlZy+23325Z1sjSlq4toiyQPjjbTWtl7VdZ6hGWbc6cOe7++++3fhKOLV0R/JZF5f+rE/cvf/UvbH4Fv2H6qXb+FBD85k/buLcs+M3hDKWC348//tjS7QKnxK29+eabLZzXLbfcYrFvsdb27NnTQoTxN9LsEpN2wIABFnOWrGYAGZ8DmGQ7q1+/vrv22mvd0KFDLZLBsGHD7LNmzZpZ+DAAkzi55513nlmCiZQwduxYSyCR2JdnnnnG0UfCghFjd/3117dsbGeccYa74447UioENF944YVurbXWsmQVxM/dfvvtrS1SEyf2j77SHuHMHnvsMTuGPu2www4OeN5vv/0sjNn+++/v7rvvPgNpxrrxxhtbHF7ao//oR9Y4wpKRuhgLLZ/R31SFyBE8BJDNjbrpCvGECcU2ffp064PgN4cXSZKmBJdh+sZdP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMpYJfoBIgbd68ucEoiR5mzJhhYbyALBI3YGE8/vjjXevWrd2jjz5qMXEBRdLtknoXcCY+7k033eQ22mgjd9ppp9nfiU9LogaSMwCTxLIFFIE2fgjzxe8rVqwwqzTtJ/aFcGOzZs2yeLfU5/xALLF5yZgGXCcr9erVM/jFzQOgJVUwfaOtVq1ardY/AJcwZqQiJoUw6YY513PPPWeQSwKKLbbYwh4QOnbsaDBOm4cddpjbaaedLD7vvHnzLEnG22+/7bbeeuuStMec75133rFsbtFCWuNBgwaZFRd9zzzzTDsuWvAHa9eu3WpD5OED3QW/ObxIBL85F1Pwm3NJ1WAlUUDwW0kmOskwBb85nPtk8OtT7WLNxR/2xRdfNEsmEAY4kpoXX1uSN5D1jPS5JHOgAGRffvmlWTWPPPJIA95nn33WYBagA/Sw7gKeTZs2tSxoWIrxPcYaC/xiQcWKS/xc4Ji4tol9weLq4feII44w/10K8HvPPfeYdTqxANX0G4vqGmusYWOpW7duCfxeddVVq/WPPhHaBRcMCgALiJLhjXPyO/DLv1i+u3fvbvF/sQyPGjXKPfjgg1YPSznWWcaOVZwCqHbt2tU0opDYgt/Rl4cNjqXt9957z6zOifAL+CcWwW8OL440TcUd3tS/sHUgy2+YfqqdPwUEv/nTNu4tC35zOEPJ4Bf/V0Cub9++JWfabbfd7NU7YIfV9t///rdBGQDG5jNA1hegrXPnzmYFxVWCc9x1111u3LhxloUMy+nw4cPd0Ucfbe34jGfUx8I7cODAEvilrWR9wbrr4TdaH//c/v37J4VfjsdHGMsqBdjFEustv4w3sX+05eEXiAfuL730UnsYILWwh9+5c+daIgos4lhlgWbaoj6FpBhkfONzMsH5gsvEHnvsYb/iEoFeaIeu3iK8dOlS99VXX60y67iLJFqMPVAnWn55OEnm0401Oq5F8BY2M9IvTD/Bb5h+qp0/BQS/+dM27i0LfnM4Q4ApVtpXX321pFWsolhO8Xdt0KCBuTkAvVhKu3TpYhbfDh06mO8qr/2xbo4cOdI2jR111FFm5cRHNxF+cZ8AxHr16mXgSgph3AdSwS+WUmBxzz33XK0v+PhmC7+4Smy55ZbmW4wfLn667du3L4FfQDSxf1h3gV+s4cAiYItel19+ucFsKvjlQeHYY4+1zwFXtOC86IqFF5cRxt2jRw+zdvuycOFCG2u/fv3MR/riiy82KzXAHS1YsMePH7/aSpDlN4cXR5qmBJdhOsddP8Fv2Pyqdv4UEPzmT9u4tyz4zeEMAb/4p0YLbgdAHi4HFKyM+K7WrFnTvfnmm2adBQp33HFHR6gyrLNAHjc0LLwAG3+Lwi/WXDa44WtLe2z4AqQPPvjgpPCLjy2uFIA2EJzYlyeffDJr+GUsQ4YMMWsz8AwAn3XWWebTC0jfeOONq/WPaBNYkzmGhwCAnXq4NbDpbsyYMeYO4i2/+CijHW4LWJaxklOwAOO/i//z4MGDHdbcli1b2oY24DqxoM+ECRNMT9rnJ5MC/DI3Uat9snqK9pCJmqmPiTu8qX9h8yv4DdNPtfOngOA3f9rGveUKh98lS5YYQGG1BASx1AGRbPTCIoj/aps2bczXFdjBX5SNX2yWwlrIjvz58+fb72zmwtrYrVs32xjFa3nABRcBAI9X9MSgJaIB1kD8YAGmhg0bWoSCxCgIvG7PVQHA8N9lIxnWx3SF1/rrrruuvfpPV7C+0m/gEX/idAVrK8dgJc2mLxyLfokFWMe/GD05Jllfk/UvGjsX2GcOatSoYeCP3unGwbkA7ei8LFu2zIAea3omhfPncl45p+A3E+UFv2EqFa5+gt98zbzaDVVA8BuqYOHWr3D4ZfMVkQoI9cWrcPxdASGgDqDFHxULJ6+7gVM2jFEH31ggFhcDABjIxW+WTVq4EBBZgbawDOIvitVx6tSpBruAL//HL5R22ECWLCIDlszKXgixNm3atNVkILQZERhUBL+ha0CW1TAF466f4DdsflU7fwoIfvOnbdxbrnD4xaJ76qmnGrDi18mGJYA1FfxibWSTExZiwmUBwlgE2TS1cuVKS2VI9ACsvMAz/rP4fuLTSUxZfthchX8tIE04MXb/J4uCQNsqUqA0BWT5LU2h9J/HHd7Uv7D5HfJiT7fZppuGNZLH2gsXLVL/AvQtdP2O2bNDwOjDq8b9+yV8hPFsocLhF1mAUF6t48cKmOIK4eEXiMWK6y2/hOJicxPwi0UXwMVSvOGGGzpes2MlZuc+m8VoC2sy8OuP5Tz8UN/DL7CdLAoCbahIgdIUEPyWppDgN0yhwtbvndd7me9+XAsGk/LoX9VqdVyNLQ7OWoa4w5H6l/WUrlIh7vqFjS6+tSscfolAwA59rL5sMAJSmzRpYpub2KAFmOISkQn84itbq1Ytg2F8hQFaLLylwS+boZJFQSAiQzaFc7KQAfCKKIyb6BBkdMum4PqB9ZyoB2UtbAzDnxif3dC2ytqHXNfjIYw3CqWlYhb8hikf9y9/9S9sfp8etvom1LAWC7P2AUe+IvitgKnT9VsBohfAKSscfvG9xbKLuwOwQcxaNi8RNgtfU6CUcFYefkn2QOSCZJZf3B7w3eV4CtnKAFIyoaWy/JK9C0AmwUSyiAzZzGGqDG/ZtBFyLDFpo6HOfFv4ObNREL/nZIU0xYRWY4NgWQvZ24g8wYNMuraI9kCYstKAsqz9yEU9NiaSMQ6/ZjbH4WpDprlURfAbprpuTsWtn+D3n/kV/Iat87LW1vdLWZUr7noVDr/Ii8US6yMbqKKhqghhVa1ataxngOxjpOQFsADq0qIm+BNkEwUhWadSwW+ySBIkYLjlllssVi3WWqzbo0ePtr/ha4zVGks44EUWMzae8TmASSpg4tYSI5eHAMaKywifNWvWzKJmAJiESCMeMJZgfDPX9gAAIABJREFUoj3g70xoscSoFoQZo488OLCJkIgKZIU744wzzCc6VQGasY4DiIBiixYtLJoFbfEgkdg/+kp7ZKTDz5pj6BPRKoBnMs0RH5iYwYSIA6QZK9ZXNiXSHv2/+eabLUkIGxbxFWfe+Iz+pipkouMhoHbt2lY3XaF9HhYI10Y0CvQA6FNFlBD8Zn2JrlJBN6fi1k/wK/gNW+FhtfX9EqZfsdaOBfwWi7ip4DdZJIkZM2a46tWrW7xbXD8AdWLXEq6NrG0TJ040UCTkG5ZrrLqEeCPcG1nUSOPL39944w1zESFiBjCJtRtQBBz54UGA31esWOGIm0v7wDHWdsCYGLr4SvskF9Tn/EAskTOItgFcJyv16tUz+MXNA6DFOuozvGE5TewfgEuMX+IOs1kRf23ORZg7IBcLPCmITz/9dNexY0eDcdokdjIPRsRHJoQdftzEQiajHPUAVM5HquTETG34jJMK+v777zd9ifHLcdGCvx/Z5nzhQYGHMB4m/BsB9E8WQ5g6gt+wK1g3p+LWT/Ar+A1b4WG19f0Spl+x1hb85nBmk8EvIJUskgQQBjjOnDnTfG3xbwa0iFOMWwcFIOMVPFZN3D0AXqJjALMAHaCHdRfwJKzb559/bpZiXD2wxgK/WFCx4gKIwHGyvmBx9fDLhkL8dynA7z333JM0vTFQTb+xqBK3mLHUrVu3BH5JSpHYP/rk0xvTPgALiBKdg3P6DG/8i+W7e/fuZm3FMjxq1CjLfkfBUk5sX8aOVZyClbxr166mEQXXF35HXwCfYwFrwuFhdU6EX1IgR8vvv/9uVngeQNggecghh6RcKYLfsItIN6fi1k/wK/gNW+FhtfX9EqZfsdYW/OZwZpPBL6/Lk0WS4NU7YIfVliQfQBkAhvsHIOsL0Na5c+fV0hsDZPgxYznFT/roo4+2dlKlNwZ+aStZX7DuZpvemOPxEcaySgF2scR6yy9xlxP7R2Y2D79APHBPqmHcGojMkSq9MdBMW9SnsLGRBCdYzAl75wsuE/iOU3CJwLUE7dDVW4RxpcF/PFqw8EYtxmhF+D0273FO0jj7wsPJlClTVls1WKPjWvTlHzYz0i9MP8Gv4DdsBYXV1vUbpl+x1hb85nBmgV+stCTe8AWrKH69+Ls2aNDA3ByAXiylpCTG4tuhQwfzXeW1P9ZNYhMDzYRaw8qJj240vTFpenFZAMR69epl4EqqYNwHUsEvllJgMVlUC3xas4VfXCWAQnyL8cPFT5dNih5+AdHE/mHdBX6xhgOLuBugF5n8gNlU8MuDAtFA+BxwRQvOi65YeHEZYdw9evQwa7cvRPlAd5Ka4CNNqmjmA+COFizYxIH2Bcs6cxH9W7plIstv2EWkm1Nx6yf4FfyGrfCw2vp+CdOvWGsLfnM4s8Av/qnRgtsBkJcsksSbb75p/rdAIemC2fiHdRbI44IFcgE2/haF34EDB9oGN3xtsVqy4QuQPvjgg5PCLz62uFIA2kBwYl9I/Zwt/DLGIUOGmLUZeAaAyYiHTy9tsVkssX9EmyDaA8fwEACwUw+3BjbdjRkzxnxy586da5sU8VFGO9wWsCxjJadgjcV/F/9nQuFhzW3ZsqVtaEvml4s+hLNDT9rnJ12hn0BztHz00UfmT52sCH7DLiLdnIpbP8Gv4DdshYfV1vdLmH7FWlvwW04zm00kCV7rr7vuuqVGqcD6SmQF4JFX9OkK1laOwUqaTV84FheLxAKs419MTF+OSRZRI1n/OBZ/WnyPgX1cDGrUqGH/x70h3Tg4F6DNcb4sW7bMgD5VJIbEfnP+aP1cTL/gN0xF3ZyKWz/Br+A3bIWH1db3S5h+xVpb8FusM5ujcRFijXjLiYXQZkRgUFG0h9A1oJtTmIJx10/wK/gNW+FhteN+fcS9f2Hqx7e24De+c6OeFYgCsvyGTVTcv/zVv7D5fef1nuWSPrisvSy/9MZ1leGtrJMUUE/Xb4B4RVxV8FvEk6uhlY8Cgt8wnQvq5jT93rDB5qF2ecFbWbv+WY3mtqchrqWg1l8MRZR+YZMSd/3CRhff2oLf+M5N0p6Rwpm4uERtqFmzph1DzF18X9k8RvIMIi9kU2iPjWhrr712NtVidyx+w2y2y3b8oQMR/IYpGPcv/1X6d/c+zn27apKUsNEXf+3PzvlnQ29cS0GtvxiKKP3CJiXu+oWNLr61Bb/xnZukPSN8GKBK2DKiIVCIgkDGNEKGERbMx95NNzQiI5DCl8gGJH/wERYKTI5VurtgwQKL/uATX5TXWAS/YUrH/ctf8Bs4v4LfIAEL6voIGml+Kku//Oha6K0KfgtsBokJjIX37rvvttTHxK0tDX4JSUZoMQrATBKNxo0bW7zdsWPHWjphQqHx/4YNG1qcYeL1kiiC+MNESCAe7xlnnGHhxYBmUi0D2T5yAtZnQJq4xCSXIDMcIdZIZEFaYoCdRBZEeiAxRbVq1dzUqVNdp06dLJUzm+p69uxpsYIJxcZGO2LtEkuYJB5EtCBs3J133mnnJHkFIeCi/SHUHFnh6D9pj8nQRiSI3r17W0IOzkd8ZFIkn3322dYW53jxxRfd9OnT3fz58y3lMimgk9VPtVQEv2EXUUHdnGT5zXqyZfnNWrJVKhTU9RE21LzUln55kbXgGxX8FtAULl++3F4fksYYmPzvf/9r/6aDX+CPqAykB6Z+27Zt3SeffGLgt2LFCoNhsr4RN5dYwcTqJQEFAEvGNiCQcGStWrWyVMTAIbAIfGNl9oW4vrgdAK4AL4Drk1IApFiq69SpY5nTiJcLkBOjGNAkqQR9IJkHSSw4N+X++++32Lz0s1u3bgb9QDLATzILklh07NixpD9oQ6pnQBZr9uzZsx3Z64ByMuihFQB/4IEH2t/QDy0AcBKTUI/MdKnqC37zc7EU1M1J8Jv1IhD8Zi2Z4DdMMumXQ/2KtSnBbwHNLJALdPJan0xw1atXt9/TwS/WWwAW6ykFuMUKStIGoJa2AEWSTBC3l2QSgCjZ0zjWuxAMGDDAde3a1U2aNMmOi6YVpl1gFGsw2dJwP8A6TFY2/zesxIDvY489ZvUXL15sluFatWrZsfwQ+xefZuAXCzBATqa7Jk2aGKTyg9sHUAukLlmyxCzTvj98DvzOmTPH7bffftY2CS2OPPJIax/4BoYpWKFJmbz77rubywg6EkeYVMvEJ06sjyVc8Jufi0Xwmx9d49Kq4DdsJgrq+ggbal5qS7+8yFrwjQp+C2gKSRlMkgdcBgA0wBaYw10hlc/voEGDDHSBRQouDmSL4wshCr/e5xf3hs0339x+cJWIQi7nxxJ7xBFHWCY5XwBW+kQbJJvAAgxs/utf/7LsdcQE5jPqPPHEEyVZ6LDcAp+MAReMKPziv9ysWTNzUWBzH/2lHazSZI4D4D38+v54+MXKC4Bj7R49erS1z79YmfmMggsF/6dtIBiLNv3ecMMNDcAT65NGGYsz8D1lypTVVg39imvRl3/YzMjnN1A/+fwGCajrN0g+u3dow2WYhsVYW/BbILOKq8Mee+xhFlPvZ8trfNwMAMdU8EsGOCyofI5ls1GjRhYRgvS9uETgjhDd8Obht02bNq5BgwYO6CMrHODao0cP8+VNhF8kxMIKHOOH632IAd3mzZubBRn/W2AV1wbamjlzprktpIJffI/pGxZnwJm00bhqEJli/PjxZuFFC6AzEX6xTtMfUhqT7pjsc4wDCzHwimUbKzR9IUxUIvySYS+xvgf7ZMtFPr9hF1FB3Zzk9pD1ZMvym7Vkq1QoqOsjbKh5qS398iJrwTcq+C2QKQQe2ZAFDPqCNRcrJDDJZi5AOFm0BzaH4X4AJAOn/fr1c2wOY5Pb448/7gDdqOUXGL7kkktsMxnRE5YuXepatmzpiBDBhjvcCKgbLfgDYyVm4xvuBYAnf2ODGZDKRjeglLTNmcAvsArk//jjj27y5Mm28Q14JbwbKZAZCwCMJr4/Ucsv8Pr888+bnzAuHEA7riK4cdAXLAFstBszZkxSy2+y+qmWiuA37CIqqJuT4DfryRb8Zi2Z4DdMMumXQ/2KtSnBb7HObMK4sLriKuFjA/MxAAlIYtlNVYgfjIUYd4ZMCrCKL3K0EJWCzXPeYl1aO/j84nvMRj3cL3z/6D9WWfpCBArcNqpWrZqyOc6LO0a0P4AvbhBYf7EKpyvJ6ic7XvBb2oym/1zwG6Zf3GsLfsNmqKCuj7Ch5qW29MuLrAXfqOC34Kew+Abg4Re3jkIogt+wWSqom5Msv1lPtuA3a8lWqVBQ10fYUPNSW/rlRdaCb1TwW/BTWHwDwDeZjX2ZWoorWgHBb9gMFNTNafo9YYPNQ+1FCxe5TTfbNA8t56bJz2ocpg1HAVIW1PURMM58VZV++VK2sNsV/Bb2/Kn3MVDgySefdPXq1YtBT9QFKSAFpIAUKDQF4hyNotC0zLS/gt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1ACkgBSQAlJACkgBKSAFMlVA8JupUjpOCkgBKSAFpIAUkAJSoOAVEPwW/BRqAFJACkgBKSAFpIAUkAKZKiD4zVQpHScFpIAUkAJSQApIASlQ8AoIfgt+CjUAKSAFpIAUkAJSQApIgUwVEPxmqpSOkwJSQApIASkgBaSAFCh4BQS/BT+FGoAUkAJSQApIASkgBaRApgoIfjNVSsdJASkgBaSAFJACUkAKFLwCgt+Cn0INQApIASkgBaSAFJACUiBTBQS/mSql46SAFJACUkAKSAEpIAUKXgHBb8FPoQYgBaSAFJACUkAKSAEpkKkCgt9MldJxUkAKSAEpIAWkgBSQAgWvgOC34KdQA5ACUkAKSAEpIAWkgBTIVAHBb6ZK6TgpIAWkgBSQAlJACkiBgldA8FvwU6gBSAEpIAWkgBSQAlJACmSqgOA3U6V0nBSQAlJACkgBKSAFpEDBKyD4Lfgp1AAqWoGnnnrK1a1bt6K7ofNLgVgqMGXeI7HslzpVORXYZbNGbouqO8Zq8DvuGK/+xEqcPHVG8JsnYStrs7NmzXKLFi1aZfi1atUqKDicP3++++mnn1ydOnUymsZbb73VXXnllRkdWxEHffbZZy7OX67qX9iqiLt+R/SpEjZA1ZYCOVTg/rZz3TY1ds1hi2FNxf36DRtdfGsLfuM7NwXZs5NPPtn9/fffrn79+iX9b9CggTvhhBOCxvPQQw+5P/74w5177rlB7fjKBx10kJs8ebJbc801V2tv6NCh7v3333e33XZbRucS/GYkU8qD4v7lr/6Fza/gN0w/1c6tAoLf3OpZqK0Jfgt15mLab+D3tNNOc/wbLcDr+PHj3ahRo9zEiRPdXXfd5R5//HE3ZMgQd+edd7q11lrLde7c2Z1zzjnu22+/Nch999133THHHOOuuOIK16RJE/frr7+6sWPHuubNm1vTX375pbvgggtctWrV3NSpU12nTp2s7WnTprmePXu69u3bu9dee81169bNzZs3z51yyimub9++rkuXLu6OO+5wxx13nBs9erS77LLL3LBhw+wc/fv3NygePny4++WXXxxW4D59+rhWrVqlVFzwG7YYBZfFrZ/gN2x+VTu3Cgh+c6tnobYm+C3UmYtpv4HeZcuWuV13/b/XSh06dHA777yzq1evnuvevbvr1auX69evnzvwwAPddtttZ7C6xhpruH322cctXLjQ9e7d28ATKG3Xrp07//zz3YwZM9yKFSvcDTfc4NZee20b/SeffOJ22WUXA+j11lvPtW7d2t17771um222sTpfffWVa9SokcEzwNy0aVM3ePBg60fVqlXdDz/8YO3S5pgxY9zdd9/tli9fbi4awPdbb73lPvzwQ+vPe++9J/jN05oT/IYJG3f9BL9h86vauVVA8JtbPQu1NcFvoc5cTPsN/NasWdM1bNiwpIeHH36423bbbd2kSZPcoYce6k499VSzAK9cudIAFuvs7NmzzSq7ZMkSO2bEiBEG0AsWLDB3h0ceecT99ttv7uqrry5pl7p77723W7x4sYEsvsUcy88GG2xg7eN//NJLLxnE4sYwcuRI16JFC1elShU77pprrnG1a9d2bdu2NeD+4osvDHrHjRtnP0uXLnXVq1e3tlIVWX7DFmPc4U39C5tfwW+YfqqdWwUEv7nVs1BbE/wW6szFtN+p3B7o7uuvv+4aN25srg1YawHTzTbbzDaL7bvvvuaWAMhiDZ47d67baqutDEj//PNPs9gmg9+TTjrJzZw50yzGu+++u/v+++/NPeL/t3cm4FZN7x9fhoQkNMhMZpHQQIgoFTJTkjkyVKRCmaVk/gk/JUlChgaKEEVmDaTMNChzoSJk/D+f13/f3+7cc849565z7tln3+96nvvcumevtd/9Xeuc89nvftf7Ar/EHjMuXue2bdu6++67z84Vht+OHTvaefnhPEuXLnVkbwhifvEE4yUO4BdQf/XVV0uprw1v5V+Qgsvya0fPqOsn+PWbX/XOrQKC39zqWayjCX6LdeYiajfwC0gCpUHDy/rXX3+5PfbYw3Xt2tUA9Mknn7SMCsT74pklHpgYXOCX2F28v0DySSed5I455hi3YMEC9/PPP7urrrpqFc9vOvj95ptvzBsMQDMu4RCAbQC/QPJDDz1kUE64BHCMBxpvcir4TSa7PL9+izHq8Cb7/OZX8Ounn3rnVgHBb271LNbRBL/FOnMRtZuQBjaRhRuZHoi9ZTPaCy+8YCENV155pXvjjTfcPvvsY2ESa621lnlsAWA2ubGRjY1vpBubOHGie+mllwyC2SQHGNMIe0gHv3hrgfEPP/zQjic+GAh++eWXHdke8OiyEe+8884zW/AWP/300+bZFfxW3AITXPppHXX9BL9+86veuVVA8JtbPYt1NMFvsc5cTOwmNAEPLSEOhB0Q2gCU0ghBIN42aMAxkJwsPVk6OYDoOnXqWD9iijfccEM71++//27Am+xc2cgrz282apU+NurwJvv85lfw66efeudWAcFvbvUs1tEEv8U6c7I7MgoIfv2mQnAZb/0Ev37zq965VUDwm1s9i3U0wW+xzpzsjowCgl+/qRD8xlu/EZP7u9q1avldZB57L2bjrewrt8LFpl+DLQ5Uhbdyz3Z8Ogp+4zOXupICKSD49RNe8Btv/d58bYCrFWG4JOtMlO1bvUpLlSf3eIvo88VDvBh3FfzmcHLZTMUbjfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/Hzp0712Jqicn1HSvbc+fr+MS44FTnEfz6zYC+nOKt38PDV/O7wErcu1adZm67nUcKfj3WgD5fPMSLcVfBbw4nl0wGVAtLlgc2h6dJOVQ4+0H4IDIaUNCBqmXJGqm+vvzyS0tRVt520003WZU1qrSlG4ssC5QPznbTWnntKk8/0rK99957btiwYWYn6djSNcFveVT+Xx99OcVbP8Fv+edX8Ft+7YKe+nzx1zCOIwh+czirqeD3008/tXK7wCl5a6+77jpL53X99ddb7lu8tf3797cUYfyNMrvkpL3rrrss5yxVzQAyXgcwqXa22267uSuuuMLdf//9lslgxIgR9lqLFi0sfRiASZ7cs846yzzBZEoYO3asFZBItOWZZ55x2EhaMHLsrrPOOlaNrVOnTu6WW25JqRDQfO6557o111zTilWQP3frrbe2sShNnGgftjIe6czGjBljx2DTNtts44Dnpk2bWhqzvffe2917770G0lzr+uuvb3l4GQ/70Y+qcaQlo3QxHlpew95UjcwR3ARQzY2+6Rr5hEnFNmPGDLNB8JvDN0mSofTl5Kdv1PUT/JZ/fgW/5ddO8OuvXZxHEPzmcHZTwS9QCZC2bNnSYJRCD7NmzbI0XkAWhRvwMB511FHuxBNPdI899pjlxAUUKbdL6V3Amfy41157ratevbrr0KGD/Z38tBRqoDgDMEkuW0ARaOOHNF/8f+XKleaVZvxEW0g3Nnv2bMt3S3/OD8SSm5eKacB1sla/fn2DX8I8AFpKBWMbY7Vv376UfQAuacwoRUwJYcoNc67nnnvOIJcCFBtvvLHdIHTr1s1gnDFbtWrltt12W8vPO3/+fCuSMXPmTLfZZpuVlD3mfG+//bZVcws3yhoPHjzYvLjoe/LJJ9tx4Ua835lnnlnqErn5QHfBbw7fJILfnIsp+M25pJEZUPDrPxVRf39E3T7/GYjmCILfHM5LMvgNSu3izSUedvLkyebJBMIAR0rzEmtL8QaqnlE+l2IONIBs4cKF5tVs06aNAe+zzz5rMAvQAXp4dwHPAw44wKqg4Skm9hhvLPCLBxUvLvlzgWPy2ibagsc1gN/WrVtb/C4N+B0yZIh5pxMbUI3deFRXX311u5ZddtmlBH4vvfTSUvZhE9XeCMGgAbCAKBXeOCf/B375jee7b9++lv8Xz/Cjjz7qHnjgAeuHpxzvLNeOV5wGqPbu3ds0olHYgv+jLzcbHMvY77//vnmdE+EX8E9sgt8cvjnSDBX1D3/Z57cO5Pktv36C3/JrF/TU+9dfwziOIPjN4awmg1/iXwG5W2+9teRMO+20kz16B+zw2l5wwQUGZQAYm88A2aABbT169DAvKKESnOPOO+90TzzxhFUhw3M6cuRId+ihh9o4QcUz+uPh/e9//1sCv4yVzBa8uwH8hvsTn3vHHXckhV+OJ0YYzyoN2MUTG3h+ud5E+xgrgF8gHri/8MIL7WaA0sIB/H700UdWiAKPOF5ZoJmx6E+jKAYV33idSnBBI2SiQYMG9l9CItAL7dA18AgvW7bMLVq0aJVZJ1wk0WMcAHWi55ebk2Qx3Xijo9r04e83M9LPTz/Bb/n1E/yWXzvBr792cR6h0sDv9OnTzVMJaCVrkyZNKjMWtKyFAJjipX3llVdKDsUriueUeNeGDRtamAPQi6e0V69e5vHt0qWLxa7y2B/v5qhRo2zTWNu2bc3LSYxuIvwSPgGIDRgwwMCVEsKED6SCXzylwOLuu+9eyhZifLOFX0IlNtlkE4stJg6XON3OnTuXwC8gmmgf3l3gF284sAjYolfPnj0NZlPBLzcKRxxxhL0OuKIF50VXPLyEjHDd/fr1M2930BYvXmzXOmjQIIuRPv/8881LDXCHG+ti/PjxpaZXnt+yVnxuXhdc+ukYdf0Ev+WfX8Fv+bUT/PprF+cRKg384hllU1myR/hMMFD2zz//eM018Et8argRdgDkEXJAw8tI7GrNmjXdm2++ad5ZoLBevXqOVGV4Z4E8vtDw8AJs/C0Mv3hz2eBGrC3jseELkN5///2Twi8xtoRSANpAcKItEyZMyBp+uZbhw4ebtxl4BoBPOeUUi+kFpK+55ppS9pFtAm8yx3ATALDTj7AGNt2NHj3awkECzy8xymhH2AKeZbzkNDzAxO8S/zx06FCHN7ddu3a2oY15TGzoM3HiRNOT8fnJpAG/zE3Ya5+sn7I9ZKJm6mOiDm+yz29+Bb/l10/wW37tBL/+2sV5hFjDL/GqbKrCs8fGMeAIDyCxoGyAAro4Bq8l0MQGMjIqkLWA14mPzVUDwIjfZSMZ3sd0jcf6VatWtUf/6RreVzIrcB3EE6dreFs5Bi9pNrZwLCEWiQ1YJ76YnL4ck8zWZPaFc+cC+8Qib7TRRgb+hDekuw7OBWhzXNCWL19uQI83PZPG+cP9M+lT1jGC37IUSv+64DLe+gl+yz+/gt/yayf49dcuziPEFn555E2GAFJpUcGHLAdsrvrxxx/Ni0h4AXGheATZhAb88igeLyuP7wFkNpJV9kaKNUJGEhupzdBXzTnBr98qEPzGWz/Bb/nnV/Bbfu0Ev/7axXmE2MIvO/rZDEaWABqgxmN1UmqR6zVIbRVkAADm2GxGHGuw+YrH3mpSoCwFBL9lKSTPr59Cxa3fm6/1j3T54OiXN26lCm8ebyDdXHuIF+OusYVfwJXY0SBDQJD2a+DAgeYFJmaUxgY4dvQDwb///rurUqWKxZayWYvYWjUpUJYCgt+yFCpueKs0X54f3eM3kSl6z1urpeDNQ9lKs/48NErXVfrlSdgiHza28EsKLjIETJs2zREXuuWWW1rYA8UlAFtifdlwRhoscsES9sCGNdKMsSGKDWZkEMimkV+XNxob0QrRiJslOwQV3bJpeLyJpyU2uryNjWHEExOz6ztWeW3IdT9CZLg5KqsUs+DXT3l9OUVEv4e3cG7FF37GJOk97+B/N/RGtWn9+c2M9Iu3fn5XF93esYVfJAds2eTGJimqqRHyQJ5bQh6AxC+++ML+RnUw4JccsWw24xgKQ9SoUSOrmUtV4S2rQTwOxoMdTnUWDIUGFJYg20KyRpliUquRt7e8jeptZJ7Aw55uLLI9kKasLKAsrx256MfGRNYEoTBsjmNjH5XmUjXBr5/q+vKMiH6CX7+JyFNvvT/8hJV+fvrFtXes4ZdJ++6778x7B5iFG95OgDic0YFUZ1QuI+43WcqsshZBKvglIwO5eoFTSvded911VoDh+uuvt9RrgDhp2Mg0wd+owAaAE7oBeFHFjI1nvM51AOxkrSBHLnlsKT9M6jNea9GihaVPAzDZvEc+YDzBZHtg8x+pxRJtIc0YNuLt7t69u90sAP+dOnWyEsupGtBMvmIAEVAkSwbZLBiLdGqJ9mEr47GRkJhsjsEmslUAz1SaIz8w2TdIEQdIc63MH1XtGA/70Y/cv2xYJD8yGRx4DXtTNSrRcRNAvDd90zXG52aBdG1ko0APgD5VRgnBb1nvjPSv68spIvoJfv0mIk+99f7wE1b6+ekX196xh9+KnLhU8AtUAqQtW7Y0GCVvLeEXwDf5bik+gSeUOGTikdmo9/zzzxsokqKNFGwDkVdqAAAgAElEQVSA88MPP2y5bamiRhlf/v7GG29YjPKcOXMMJrfffnsDRcCRH2Ce/69cudKRN5fxE20hJVlQ5IL+nB+Ipbwx1d+A62Stfv36Br+EeQC0eEeDCm94ThPtA3DJ8Uve4bfeesvS0HEuinMAuRT5IPaaG4Ru3boZjDMmuZPZsEh+5Pnz51tWDnIhU1GOfgAq5yOsJbFSG+EvlIImdR36EtLCceFGLuFgAyR/50aBmx9uJig5ja7on+qGSPDr9y7Tl1NE9BP8+k1Ennrr/eEnrPTz0y+uvQW/OZzZZPALSOFdxptLPCxp1fBkAmGAI/HGxNpSgALQIh6ZghQ0gIxH8Hg127RpY8BLWWBgFqAD9PDuAp7EKi9YsMA8xcQe440NNvnhxQUQgbhktuBxDeC3devWVtiBBvwSG52sMAhQjd14VMlbzLXssssuJfBLOrlE+7ApKG/M+AAsIPriiy/aOYMKb/zG8923b1/ztuIZJmsH6eloeMrJ7cu14xWn4SUnPR0a0aj8xv/Rl5sNjg0ye+B1ToRfQmTCjc2PeOG5ASHP8UEHHZRypQh+/d5E+nKKiH6CX7+JyFNvvT/8hJV+fvrFtbfgN4czmwx+eVwOyIWrhO2000726B2ww2tLlbT333/fYpQJxwBkgwa09ejRo1R5Y4Dsgw8+MM/pyJEjHRXsGCdVeWPgl7GS2YJ3N9vyxhxPjDCeVRqwiyc28PxyvYn2kXkjgF8gHrin1DA3A0F6OQA1qPCGRxyvLNDMWEHmDuKyKYfM6+ecc06JVoRMELdNIySC0BK0Q9fAI0w1OEokhxse3rDHGK1OOOEEu1nhnITBBO3VV1+1G5TEhjc6qk0f/n4zU2n0E/z6LZQ89a4060/65UkBDZtMAcFvDtcF8IuX9pVXXikZFa8onlPiXRs2bGhhDkAvnlJKEuPx7dKli8Wu8tgf7+aoUaMsxrRt27bm5SRGN1zemDK9hE8AYQMGDDBwpVQw4QOp4BdPKbC4++67l7KFmNZs4ZdQCaCQ2GLicInTpThIAL+AaKJ9eHeBX7zhwCJgi149e/Y0mA08v4nwy40CmTt4HXBFC86Lrnh4CRnhuvv162fe7qBR6ATdBw0aZDHSlIpmPgDucMODPX78+JI/4VlnLsJ/S7dM5Pn1exPpyz0i+gl+/SYiT731/vATVvr56RfX3oLfHM4s8Et8arixcQvII+SAhpeR2NWaNWtaqjXib4FCUgGRqgzvLJDHGxbIBdj4Wxh+yT/MBjdibRmPDV+A9P77758UfomxJZQC0AaCE22ZMGFC1vDLtQwfPty8zcAzAHzKKadYTC8gzWaxRPvINkG2B47hJgBgpx9hDWy6owgJ4SAB/BKjjHaELeBZxktOwxtL/C7xz0OHDnV4c9u1a2cb2pLF5aIPlfzQk/H5SdewE2gOt08++cTiqZM1wa/fm0hfThHRT/DrNxF56q33h5+w0s9Pv7j2FvxW0MwCYMTvspEM72O6xmP9qlWrug033DDtcXhfyawAPPKIPl3D28oxeEmzsYVjCbFIbMA68cXk9OWYZLYms49jiacl9hjYJ8Rgo402sn8T3pDuOjgXoM1xQSOHM0CfKhNDot2cP9w/F9Mv+PVTUV9OEdFP8Os3EXnqrfeHn7DSz0+/uPYW/MZ1ZnN0XaRYmz59eqnRSG1GBgY15wS/fqtAX04R0U/w6zcReeqt94efsNLPT7+49hb8xnVmdV0VpoDg109qfTlFRL8Ph/gZkqL3vKqtVOHNQ1m9PzzEc85CCFVh0E/DOPYW/MZxVnVNFapAZOH36XtMhyWLl7hatWtVqCbZnEz2ZaNW6WOjrt+8nVsKPjymWPDmIZ7g10+8GPcW/BbZ5FKFjry4ZG1g0xyNnLvEvrJ5jOIZZF7IpjEeG9GqVKmSTbfIHUvcMJvtsr1+3wuJLPwOvdS5R27wvTz1lwJeCswb+u+G3qg2waXfzEi/eOvnd3XR7S34je7cJLWM9GGAKmnLyIZAIwsCFdNIGUZasCD3brpLIzMCJXzJbBDOrVtkcqxiLqWsyf4QFL6oqGsR/FaU0jpPMSog+PWbNcGl9PNTQL2TKSD4LbJ1QU5gPLxUjKP0MZkjyoJfUpKRWowGMFNEY99997V8u2PHjrVywqRC49+NGze2PMPk66VQBPmHyZBAPt5OnTpZejGgmVLLQHaQOQHvMyBNXmKKS1AZjhRrFLIgtRvATiELMj1QmKJGjRpu2rRprnv37lbKmU11/fv3t1zBpGJjox25dsklTBEPMlqQNu62226zc1K8ghRwYXtINUdVOOyn7DEV2sgEMXDgQCvIwfnIj0yJ5FNPPdXG4hxU3ZsxY4b74osvrOQyJaCT9U+1VAS/RfYmkrkVqoDg109uwa/081NAvQW/Rb4GVqxYYY8PKWMMTN5+++32Ox38An9kZaA8MP3POOMM99lnnxn4rVy50mCYqm/kzSVXMLl6KUABwFKxDQgkHVn79u2tFDFwCCwC33iZg0ZeX8IOAFeAF8ANilIApHiqd955Z6ucRr5cgJwcxYAmRSWwgWIeFLHg3LRhw4ZZbl7s7NOnj0E/kAzwU8yCIhbdunUrsQdtKPUMyOLNnjNnjqN6HVBOBT20AuCbNWtmf0M/tADAKUxCPyrTpeov+C3yN5DML4gCgl8/2QW/0s9PAfUW/Bb5GgBygU4e61MJboMNNrD/p4NfvLcALN5TGnCLF5SiDUAtYwGKFJkgby/FJABRqqdxbBBCcNddd7nevXu7KVOm2HHhssKMC4ziDaZaGuEHeIepyhb8DS8x4DtmzBjr/8MPP5hnuG7dunYsP+T+JaYZ+MUDDJBT6a558+YGqfwQ9gHUAqk//vijeaYDe3gd+H3vvfdc06ZNbWwKWrRp08bGB76BYRpeaEom77rrrhYygo7kEabUMvmJE/vjCRf8FvkbSOYXRAHBr5/sgl/p56eAegt+i3wNUDKYIg+EDABogC0wR7hCqpjfwYMHG+gCizRCHKgWxwdqGH6DqmqEN9SpU8d+CJUIQy7nxxPbunVrqyQXNIAVmxiDYhN4gIHNLbbYwqrXkROY1+jz5JNPllShw3MLfHINhGCE4Zf45RYtWliIApv7sJdx8EpTOQ6AD+A3sCeAX7y8ADje7scff9zG5zdeZl6jEULBvxkbCMajjd3VqlUzAE/sTxllPM7A96uvvlpqJWFX5Jo2vEVuSiqjQYJfv1kX/Eo/PwXUW/BbxGuAUIcGDRqYxzSIs+UxPmEGgGMq+KUCHB5UXsez2aRJE8sIQfleQiIIRwhveAvgt2PHjq5hw4YO6KMqHODar18/i+VNhF9kxcMKHBOHG8QQA7otW7Y0DzLxt8AqoQ2M9e6771rYQir4JfYY2/A4A86UjSZUg8wU48ePNw8vWgCdifCLdxp7KGlMuWOqz3EdeIiBVzzbeKGxZcmSJaXglwp7if0DsE+2hBTzW8RvLJmedwUEv34SC36ln58C6i34LeI1ADyyIQsYDBreXLyQwCSbuQDhZNke2BxG+AGQDJwOGjTIsTmMTW7jxo1zgG7Y8wsMd+3a1TaTkT1h2bJlrl27do4MEWy4I4yAvuFGPDBeYja+EV4AePI3NpgBqWx0A0op25wJ/AKrQP7SpUvd1KlTbeMb8Ep6N0ogcy0AMJoE9oQ9v8DrpEmTLE6YEA6gnVARwjiwhfhgNtqNHj06qec3Wf9Uy0fwW8RvLJmedwUEv34SC36ln58C6i34rcRrAK8roRJBbmCkACABSTy7qRr5g/EQE86QSQNWiUUON7JSsHku8FiXNQ4xv8Qes1GP8IvAPuzHK4stZKAgbGO99dZLORznJRwjbA/gSxgE3l+8wulasv7Jjhf8ljWjer0yKyD49Zt9wa/081NAvQW/WgNFoUAAv4R1FEMT/BbDLMnGQikg+PVTXvAr/fwUUG/Br9ZAUShAbDIb+zL1FBf6oiILv08NMWmIa65VK8LljWWf1xKO+vzO26WVKrx5zLDg10M8lTf2Ey/GvVXkIsaTq0urGAUmTJjg6tevXzEn01mkgBSQAlIgVgpEufx3rIQOXYzgN64zq+uSAlJACkgBKSAFpIAUKKWA4FeLQgpIASkgBaSAFJACUqDSKCD4rTRTrQuVAlJACkgBKSAFpIAUEPxqDUgBKSAFpIAUkAJSQApUGgUEv5VmqnWhUkAKSAEpIAWkgBSQAoJfrQEpIAWkgBSQAlJACkiBSqOA4LfSTLUuVApIASkgBaSAFJACUkDwqzUgBaSAFJACUkAKSAEpUGkUEPxWmqnWhUoBKSAFpIAUkAJSQAoIfrUGpIAUkAJSQApIASkgBSqNAoLfSjPVulApIAWkgBSQAlJACkgBwa/WgBSQAlJACkgBKSAFpEClUUDwW2mmWhcqBaSAFJACUkAKSAEpIPjVGpACUkAKSAEpIAWkgBSoNAoIfivNVOtCpYAUkAJSQApIASkgBQS/WgNSQApIASkgBaSAFJAClUYBwW+lmWpdqBSQAlJACkgBKSAFpIDgV2tACkgBKSAFpIAUkAJSoNIoIPitNFOtC5UCUkAKSAEpIAWkgBQQ/GoNSAEpIAWkgBSQAlJAClQaBQS/lWaqdaFSQApIASkgBaSAFJACgl+tASngqcBTTz3ldtllF89R1F0KxFOBR95/Kp4XpquSAjlQoEP9w129evVyMJKGyEYBwW82aunYMhWYPXu2W7JkySrH1a1bt6jg8IsvvnA//fST23nnncu8Xg644YYb3CWXXJLRsYU4aN68eZH+cJV9fqsi6vqt1nMrvwtUbykQUwVWW20199l5UyL9+RxT6Z3gN64zW6DrOu6449zff//tdttttxILGjZs6I4++mgvix588EH3xx9/uNNPP91rnKDzfvvt56ZOnerWWGONUuPdf//97oMPPnA33nhjRucS/GYkU8qDog5vss9vfgW/fvqpd3wVEPwWbm4Fv4XTPpZnBn47dOjg+B1uwOv48ePdo48+6p5//nl35513unHjxrnhw4e72267za255pquR48e7rTTTnNff/21Qe4777zjDj/8cHfxxRe75s2bu19//dWNHTvWtWzZ0oZeuHChO+ecc1yNGjXctGnTXPfu3W3s6dOnu/79+7vOnTu71157zfXp08fNnz/fHX/88e7WW291vXr1crfccos78sgj3eOPP+4uuugiN2LECDvHHXfcYVA8cuRI98svvzi8wDfffLNr3759yvkS/PotZcFlvPUT/PrNr3rHVwHBb+HmVvBbOO1jeWagd/ny5W7HHXcsub4uXbq47bbbztWvX9/17dvXDRgwwA0aNMg1a9bMbbXVVgarq6++uttrr73c4sWL3cCBAw08gdIzzzzTnX322W7WrFlu5cqV7uqrr3ZVqlSxsT/77DO3/fbbG0Cvvfba7sQTT3T33HOP23zzza3PokWLXJMmTQyeAeYDDjjADR061OxYb7313Pfff2/jMubo0aPd3Xff7VasWGEhGsD3W2+95T7++GOz5/333xf85mnFCn79hI26foJfv/lV7/gqIPgt3NwKfgunfSzPDPzWrFnTNW7cuOT6DjnkELflllu6KVOmuIMPPtidcMIJ5gH+559/DGDxzs6ZM8e8sj/++KMd8/DDDxtAf/fddxbu8Mgjj7jffvvNXXbZZSXj0nfPPfd0P/zwg4EsscUcy8+6665r4xN//OKLLxrEEsYwatQod9hhhzk+dDju8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXbylHHd5kn9/8Cn799FPv+Cog+C3c3Ap+C6d9LM+cKuyBi3399dfdvvvua6ENeGsB09q1a9tmsUaNGllYAiCLN/ijjz5ym266qQHpn3/+aR7bZPB77LHHunfffdc8xrvuuqv79ttvLTwC+CX2mHHxOrdt29bdd999dq4w/Hbs2NHOyw/nWbp0qSN7QxDziycYL3EAv4D6q6++WmrutOGt/MtZcFl+7egZdf0Ev37zq97xVUDwW7i5FfwWTvtYnhn4BSSB0qDxBv/rr7/cHnvs4bp27WoA+uSTT1pGBeJ98cwSD0wMLvBL7C7eXyD5pJNOcsccc4xbsGCB+/nnn91VV121iuc3Hfx+88035g0GoBmXcAjANoBfIPmhhx4yKCdcAjjGA403ORX8Jps0eX79lnLU4U32+c2v4NdPP/WOrwKC38LNreC3cNrH8syENLCJLNzI9EDsLZvRXnjhBQtpuPLKK90bb7zh9tlnHwuTWGuttcxjCwCzyY2NbGx8I93YxIkT3UsvvWQQzCY5wJhG2EM6+MVbC4x/+OGHdjzxwUDwyy+/7Mj2gEeXjXjnnXee2YK3+OmnnzbPruC34pan4NJP66jrJ/j1m1/1jq8Cgt/Cza3gt3Da68zOWWgCHlpCHAg7ILQBKKURgkC8bdCAYyA5WXqydGIC0XXq1LF+xBRvuOGGdq7ff//dgDfZubKZHHl+s1Gr9LFRhzfZ5ze/gl8//dQ7vgoIfgs3t4LfwmmvM8dEAcGv30QKLuOtn+DXb37VO74KCH4LN7eC38JprzPHRAHBr99ECn7jrV//Cbe7WrVq+11kHnsvWbJY9nnoK/08xHPOtdp4b1V485OwXL0Fv+WSTZ2kwP8UEPz6rQbBb7z1GzllgKtdq5bfReax92Kyzsi+citcDPqdfFDfcl9fvjtG/fMv39dfqPEjDb9z5861OM2tt946K33I1frll19aEYVk7ZVXXrENTzxyyGVjMxULmfRahWhkNaAqGunEsmlfffWVZV4IF6bIpj/HBnNFTK7vWNmeO1/HEx+8/vrrlxljLPj1m4Gof/jLPr/5PeyW3H7O+lmj3pVNgeMaXOVOb3V1ZC876p8vkRXO07C8wS8VsQYPHmzlYsvbbrrpJqvc1a1bt4yHoBwtFboee+wx16ZNm6T9ABpyzAJquWxkMqBaWLI8sLk8T6qxwtkPwseQ0YCCDlQtS9ZI9cXNAinKytuCuaJKW7qxuOmgfHC2m9bKa1d5+lE2mXLG5CCm7DKpzyiGkaoJfsuj8v/6RP3DX/b5za/g108/9fZTQPDrp19ce6eEX/KfAnHTpk2zXfeUfqVSF/8/66yz3Pz5892pp55qeVrx9F1wwQXuueees9RV999/v5WSnT17tpWGPeWUUwy88EqSxmrIkCFWkYvStUHaKXKskpMVEDv33HMNOoAPcrKSG/b66683G8jVetdddxmQJGvAFYUIyAd7xRVXWIncsWPHum222cYBaE2bNjVvHvBLIQXSXHGt7PynJC4ASW7Z6667zmzIpqWC308//bTU2OjANZH7Fl369+9vKcKSXSdVzciTy+vcDFDtbLfddrPrQ2syGYwYMcJea9Gihc0BgEmeXOYKTzCZEtCBAhKJ1/nMM884bCQtGDl211lnHavG1qlTJ3fLLbeklCDZXOGlZyx0T7QPWxmPdGZjxoxJOjekMdt7773dvffea+WOuVbmizy8jIf9zA1rkbRklC4mcwOvYW+qxhrmJoBqbvRN1xifm4VrrrnGsk+gB0BPRopkTfCbzbuk9LGCy3jrJ/j1m1/19lNA8OunX1x7p4RfSs3ypQ7gkCcVmJw5c6aFCwAZhBQAtLfffrsVBuAHgKOAAeC78cYbmxd00qRJBp08kgeIAF5yuDLWokWLXN++fW1s8rny7/r16xv8EjoAJOFxY7wTTzzRvLnkigWgCG1YffXVS80L9l544YVWOAGwpqQt/QBzQIoiB8AUEN+qVSurNNayZUsDP6CRfwOMADfQnk1LBb/Jxp41a5al8SLfLdePJ/Soo45Kep2U3gXKyY977bXXuurVq7sOHTpYSV7y0wLv6I++5LIFFAFHfkjzxf9Xrlxp84GOiddJujFuVLgRoD96AbHk5qViGnCdrCWbK2xjLDynifaxDkhjxo0PJYSTzQ3rhpsPvP3oxvwzT9tuu63NJzddrDHWz2abbVZS9pjzvf3221bNLdwoa8wTiGHDhpm+J598sh0XbrVq1bJ1GTRuFAiJ4WaCYhzoiv6pwmQEv9m8SwS/fmoVn36C31zPuMbLRgHBbzZqVZ5j08IvIQRAMA34mDBhgnkWASIa3lqKAQCMFDfAC3fEEUe4Bg0aGFz26dPHTZ482SAMcCOm9LvvvjOvGscFfwNQ6P/ss8/aMXjpAFsgmBAGKnvhzaXIAQ1Q4dH0FltsUWqm3nvvPYNrvNZ4BIEkYAcYJi6V/wO/NWrUcIceeqh5oYNyuHiWCYXAZo7h/9m0ZPCbamwgjOujNC/XTPEGQCvZdeLVJIQD4EUjYBagA/Tw7nKTwA0CVdDwiBN7jNca3fGg4sXFgwnEkdc28Trxhgfw27p1a9OJBvyiD97pxAZUJ5urAH4vvfTSUvZhEwDJ/NOSzQ3wy9/x8HMzhLcVr/2jjz7qHnjgAeuHp5w1wbXjFafxNKB3796mEY0bNv6PvtzIcCxjE46D1zncgF/AP9x4EoAXnhutJ554wh100EEpl4LgN5t3Selj5fmNt36CX7/5VW8/BQS/fvrFtXda+AUw8EzSAE28vIAYAEEDrPg3oQ8AI5DA43egeMsttzT4BQgBTUIMABk8wMAP4wFZhDbwGpW6Ro0aZXGnwDANgMK7B8iwKQvACxowQ7GCxBaGX7y8gDKeYGAWuwL45W//+c9/HMfjdQW2AtBnzJ122sm1bds2q3lPBr88Lk82No/e0QOvLSEj6AiAJbvOHj16mBeUUAnOceedd5rW3HjgpR05cqSBPOMEFc8wHA/vf//73xL4RbNktnAzE8BvuD9efmK2k8EvxyebqwB+0TLRPsYK4BeITzY3ACrrgbnFIw6YAs2MFcSPUxSDim+8zo1O0AiZ4MaLRkgEeqEdugYe4WXLltkTh3DDwxv2GHOjwM0YN0Kcc5NNNik5nJuTZDHdeKOj2gSXfjMj/fz0E/z66afefgoIfv30i2vvtPALYAEZACKgA4QCAgAAEAUgED86ffp08zLizcUDB6gQD4ynEVDAywmYAF880saDi5cTjzGhBXjY2FlPfDDjE69KbCexn507dzbPH14/4BiYBErx/iXbsBaGX2AQeALYe/bsadcSwC8xv/ydx+gA5O67727xsw0bNjTgB0zxzGbTAFPGJJtE0PBgA4/Jxu7Vq5d5fLt06WJec2A92XWicSL8EprBPAwYMMDAlRLChHakgl9uZIDFZNdJTGu28EuoRLK5CuCX+U60j5sd4BdvOLCYbG6SwS83CqytIFQGLVgj6Mqa5OaF6+7Xr5+tw6AtXrzYdB80aJDFSJ9//vn2RIEbn3DDgz1+/PiSP+FZZy7Cf0u3DuT5zeZdUvpYwWW89RP8+s2vevspIPj10y+uvdPCLx5dHpPziHvo0KEWxwmc8aiZx8L16tWzGNwg9AGvGxCLJxJ4BVp5dA284KFjHGJ7J06caKEIAByP6BmLR/PEkBKDC7QCZIwBHBM7CjgDP3xR4vkEZJK1MPwS/wsUBrawsWv06NEGksSdAoS8BogvX77cYJ2GJ5D40po1a2Y178Av8anhhnccyEs29ptvvmneWaAQLfGKJ7tO/haGX7y5eNiJi8ZWwjsA6f333z8p/HKt3HAA2lxzoi2Es2QLv1xjsrkippex2CyWaB8x4niTOYYbjGRzw41S4PklRhntCFvgKQBechreWOJ3iX9mXeLNbdeunW1oSxaXiz6sOdYN4/OTrmEn0Bxun3zyicVDJ2uC36zeJqUOFvzGWz/Br9/8qrefAsftfpU7vaVSnfmpGL/eaeGXx794P6tWrWoQHDRglUfleH8D2ADceGRPbHDwN6ADD2HgoSWWl01e4cbGNUIbwpkVyB5B38SwBh53Ywt/B7AAksRGdgjAOWjYxXVstNFGBpecJ1WKM85JLDGbvZJtpvOZ/mzGDl9nunOiLZkVuMkoK20b3laOwUuajS0cyxOAxAasE1+caq44Ppl9jMf6YT1lMzeMx7mY2/Ba4aYFoE+ViSHRbs6fbRaPsuZd8FuWQulfF/zGWz/Br9/8qrefAvL8+ukX195lwi+e2yg2oBlPcmIDyMoCwSheT1RtIsUaYS2JjVhtbnTUnGVFUcxv+VeC4Lf82tEz6voJfv3mV739FJDn10+/uPZOCb94CmlhL2pcRdB1SQEfBQS/PupFH96iDpdRt2/k5P6uVu3oljdesniJ7PN4CxeDficf/G9WoCi2qL9/o6hZLmzKW4W3XBinMaRAMSgg+PWbpah/+Fe4fd/OdI6fDFvU4WPeei1tT0NUW4XPb5ZCyL4sBUs4XPr56RfX3oLfIpvZf/75x3IWk7Uh2JBH+Aexr2zeo3gGWTKyaYzHRrQqVapk0y1yxxJDTCx4ttfveyGCXz8F9eWUoB/gO7KRn6gR6j3vmH839Ea1af35zYz0i7d+flcX3d6C3+jOTVLLSB8GqJK2jGwINLIgUDGNdG5k1gjyJKe7NDIjkG+ZzAbh9GJFJscq5lJAhewPQeGLiroWwa+f0vryFPz6rSC/3lp/0s9PAb/eUV9/flcX3d6C3+jOTVLLyAmMh5cqbUGJ57Lgl5RkQbESgJliIfvuu6/l2x07dmxJ7mX+3bhxY8unTL5eCkWQf5gMCeQvpqw16cWAZqrzAdlB5gS8z4A0+ZcpLkFlOFKsUciCtHEAO0VGyPRA2jsKn1AFsHv37pYuj011lMcmrzOp2NhoR65dcgmTOo+MFqSNI/0e56R4BSngwvaQao4NmthPKWvyR5MJgvzR5KnmfKTXI7czeagZi3NQoGXGjBmOioaUXKYEdLL+qZaK4NfvTRT1D/8Kt0+eX78FlWXvCp9f2ZelAn6Ha3799Itrb8FvEc3sihUr7PEhZYyBSSru8Tsd/AJ/ZGWgPDD9yZn82WefGfitXLnSvMekrCNvLrmCyatM5gIAlhb4tOEAACAASURBVBR0QCCp4sjxTG5m4BBYBL7xMgeNvL6EHQCuAC+AGxSlAEjxVJPjmcIo5MsFyMlRDGhSVAIbKOZB9TXOTRs2bJjl5sVOqgUC/UAyaegoZkERi27dupXYgzaUegZk8WbPmTPHUvIB5VTQQysAvlmzZvY39EMLAJzCJPSjMl2q/oLf/LxZ9OUkz29+VlZmo2r9ZaZTqqOkX7z187u66PYW/EZ3bkpZBuQCnTzWp9gIOZP5fzr4xXsLwOI9pQG3eEHJkQzUMhagSAEQ0sRRTAIQpXoaxwYhBFTu6927txUj4bhwWWHGBUbxBlMtjfADvMNUZQv+hpcY8B0zZoz1p7gJnuG6devasfyQ+5eYZuAXDzBATkW/5s2bG6TyQ9gHUAukUlAFz3RgD68DvxQ6adq0qY1NQYs2bdrY+MA3MEzDC01xll133dVCRtCRPMKUwSY/cWJ/POGC3/y8WfTlKfjNz8rKbFStv8x0Evz66VSs+uXnqgs/quC38HOQsQWUDCb1HCEDABpgC8wRrpAq5nfw4MEGusAijfLSVIvjAz8Mv0FVNcIb6tSpYz+ESoQhl/PjiW3durVVkgsawIpNjEGxCTzAwOYWW2xh1evICcxr9KGaXlCCGc8t8Mk1EIIRhl/il1u0aGEhCmzuw17GwStN5TgAPoDfwJ4AfvHyAuB4ux9//HEbn994mXmNRggF/2ZsIBiPNnZXq1bNADyxP2WU8ThTrhsAT2zK85vxMi51oOBD8Fv+1ePfU+vPT0PpF2/9/K4uur0Fv9Gdm1UsI9SB8tF4TIM4Wx7jE2YAOKaCXyrA4UHldTybTZo0sYwQlO8lJIJwhPCGtwB+O3bs6Bo2bOiAPqrCAaz9+vWzWN5E+MVQPKzAMXG4ADbllAHdli1bmgeZ+FtgldCGTOCX2GNsw+MMOFM2mlANMlOMHz/ePLxoAXQmwi/eaeyhpDHVBqkIyHXgIQZc8WzjhcaWJUuWlIJfKuwl9g/APtlyUcyv35tIX56CX78V5Ndb60/6+Sng1zvq68/v6qLbW/Ab3blZxTLgkQ1ZwGDQ8ObiiQQm2cwFCCfL9sDmMMIPgGTgdNCgQY7NYQDquHHjHKAb9vwCw127drXNZGRPWLZsmWvXrp0jQwQb7ggjoG+4EQ+Ml5iNb4QXAJ78jQ1mQCob3YBSylNnAr/AKpBPSeypU6faxjfglfRuVPDjWgBgNAnsCXt+gddJkyZZnDAhHEA7oSKEcWAL8cFstBs9enRSz2+y/qmWiuDX700U9Q//CrdPG978FlSWvSt8fmVflgr4Ha759dMvrr0Fv3Gd2YTrwutKqESQG5iXAUhAEs9uqkb+YDzEhDNk0oBVYpHDjawUbJ4LPNZljUPML7HHbNQj/CKwD/vxymILGSgI21hvvfVSDsd5CccI2wP4EgaB9xevcLqWrH+y4wW/Zc1o+tf15ZSgj+DXb0Fl2VvrL0vBEg6XfvHWz+/qottb8Bvduam0lgXwS1hHMTTBr98s6ctT8Ou3gvx6a/1JPz8F/HpHff35XV10ewt+ozs3ldYyYpPZ2Jepp7jQQgl+/WYg6h/+FW4fnt9vZmQsKnHrtWrVyvj4ij5wXvVWqvDmIXqFr78sbZV9WQpWZJ5zv6uLbm/Bb3TnRpYViQITJkxw9evXLxJrZaYUkAJSQApESYEol/+Okk65tEXwm0s1NZYUkAJSQApIASkgBaRApBUQ/EZ6emScFJACUkAKSAEpIAWkQC4VEPzmUk2NJQWkgBSQAlJACkgBKRBpBQS/kZ4eGScFpIAUkAJSQApIASmQSwUEv7lUU2NJASkgBaSAFJACUkAKRFoBwW+kp0fGSQEpIAWkgBSQAlJACuRSAcFvLtXUWFJACkgBKSAFpIAUkAKRVkDwG+npkXFSQApIASkgBaSAFJACuVRA8JtLNTWWFJACUkAKSAEpIAWkQKQVEPxGenpknBSQAlJACkgBKSAFpEAuFRD85lJNjSUFpIAUkAJSQApIASkQaQUEv5GeHhknBaSAFJACUkAKSAEpkEsFBL+5VFNjSQEpIAWkgBSQAlJACkRaAcFvpKdHxkkBKSAFpIAUkAJSQArkUgHBby7V1FhSQApIASkgBaSAFJACkVZA8Bvp6ZFxUkAKSAEpIAWkgBSQArlUQPCbSzU1lhSQAlJACkgBKSAFpECkFRD8Rnp6ZJwUkAJSQApIASkgBaRALhUQ/OZSTY0lBaSAFJACUkAKSAEpEGkFBL+Rnh4ZJwWkgBSQAlJACkgBKZBLBQS/uVRTY0kBKSAFpIAUkAJSQApEWgHBb6SnR8YVgwITJkxw9evXLwZTZaMUqHAFZnz+SIWfUyeMpwKNtuoQywurV69eLK8ryhcl+I3y7BShbbNnz3ZLlixZxfK6deu6XXbZpWiu5osvvnA//fST23nnnTOy+YYbbnCXXHJJRscW4qB58+a5KH+4yj6/VRF1/U76z2p+F6jeUsA5t97aNd2Qc1b9bslEmKi/P6JuXyYaF+Mxgt9inLUI23zccce5v//+2+22224lVjZs2NAdffTRXlY/+OCD7o8//nCnn3661zhB5/32289NnTrVrbHGGqXGu//++90HH3zgbrzxxozOJfjNSKaUB0X9w1/2+c2v4NdPP/X+VwHBr1ZCLhUQ/OZSTY3lgN8OHTrY73ADXsePH+8effRR9/zzz7s777zTjRs3zg0fPtzddtttbs0113Q9evRwp512mvv6668Nct955x13+OGHu4svvtg1b97c/frrr27s2LGuZcuWNvTChQvdOeec42rUqOGmTZvmunfvbmNPnz7d9e/f33Xu3Nm99tprrk+fPm7+/Pnu+OOPd7feeqvr1auXu+WWW9yRRx7pHn/8cXfRRRe5ESNG2DnuuOMOg+KRI0e6X375xeEFvvnmm1379u1Tzq7g12/hCy7jrZ/g129+1VvwqzWQewUEv7nXtFKPCPQuX77c7bjjjiU6dOnSxW233XYWF9u3b183YMAAN2jQINesWTO31VZbGayuvvrqbq+99nKLFy92AwcONPAESs8880x39tlnu1mzZrmVK1e6q6++2lWpUsXG/uyzz9z2229vAL322mu7E0880d1zzz1u8803tz6LFi1yTZo0MXgGmA844AA3dOhQs2O99dZz33//vY3LmKNHj3Z33323W7FihYVoAN9vvfWW+/jjj82e999/X/Cbp5Ut+PUTNur6CX795le9Bb9aA7lXQPCbe00r9YjAb82aNV3jxo1LdDjkkEPclltu6aZMmeIOPvhgd8IJJ5gH+J9//jGAxTs7Z84c88r++OOPdszDDz9sAP3dd99ZuMMjjzzifvvtN3fZZZeVjEvfPffc0/3www8GssQWcyw/6667ro1P/PGLL75oEEsYw6hRo9xhhx3mVlttNTvu8ssvdzvssIM744wzDLg///xzg94nnnjCfpYtW+Y22GADGytVk+fXb8lHHd5kn9/8Cn799FNvwa/WQO4VEPzmXtNKPWKqsAdEef31192+++5roQ14awHT2rVr22axRo0aWVgCIIs3+KOPPnKbbrqpAemff/5pHttk8Hvssce6d9991zzGu+66q/v2228tPAL4JfaYcfE6t23b1t133312rjD8duzY0c7LD+dZunSpe+qpp0pifvEE4yUO4BdQf/XVV0vNsTa8lX/ZCy7Lrx09o66f4NdvftVb8Ks1kHsF8ga/fCDTEneZ8/gY4KlTp07Sq8l2p32yQT788EPzPqY6R+5l1IiBAsAvIAmUBg0v619//eX22GMP17VrVwPQJ5980jIqEO+LZ5Z4YGJwgV9id/H+AsknnXSSO+aYY9yCBQvczz//7K666qpVPL/p4Pebb74xbzAAzbiEQwC2AfwCyQ899JBBOeESwDEeaLzJwYa3RPhNNtPy/Pqt/6jDm+zzm1/Br59+6i341RrIvQJ5g18eYeN5Y3NRuLGTfvfddzcQCrdg9z0bjbLZaZ9MEuI9W7duvQqA5V46jZhMAUIa2EQWbmR6IPaWzWgvvPCChTRceeWV7o033nD77LOP3aistdZa5rEFgNnkxkY2Nr6RbmzixInupZdeMghmkxxgTCPsIR384q0FxrkZohEfDAS//PLLjvWGR5eNeOedd57Zgrf46aefNs+u4Lfi1rfg0k/rqOsn+PWbX/UW/GoN5F6BvMIvoEOsJY0NTnjcrrnmGtt4BIAQcwkIATx4APl91FFHZbzTHq8doMJOfx5Xs2GJ+NIAfhmLTVNkCNhmm23cTTfd5Jo2berefPNN20jFY/Ru3bq5Cy+80H366afWD6DC23jddddZBgK1/CrADRIeWkIcCDtgToBSGnNKvG3QgGMgOVl6snRWAtE8BaAfMcUbbrihnev333834E12rmyuWp7fbNQqfWzU4U32+c2v4NdPP/UW/GoN5F6BvMIvUPDMM89YTCbpogh54FE2UIo3b/LkyQasxIEGu+95/J3pTnu8y5yDx9Z493gkPnPmzBL4BWzY5PTYY4+55557zjZN8dgbr1/Pnj1dgwYN3IEHHmh98P7hhSQrwFlnnWWP50855ZTcK64RY6eA4NdvSgWX8dZP8Os3v+ot+NUayL0CeYVfcquSN5W28cYbW95WUl0F8EtsJY+3acHuex5DZ7rTHvglRpjftG233da98sorlrqKsAc8yYDt22+/bXGlc+fOtcfuO+20k22MovE3wJvYUEAczyJQvv7669v/1aRAWQoIfstSKP3rgt946/foi/1d7Vq1/C4yj70Xs/FW9pVb4YrU76DdumRtpz5fspasUnTIK/zyCBvYpW2xxRYWbkCqqgB+w3G5YfjNNN4S6GUTFPGjwTmI2aSAAmNXrVrVwhsIawBm2dBEzDFxoEE4Bo/BebzOxrwAohkLQCZDgJoUKEsBwW9ZCgl+M1Lo3XsyOizxILKm1IowvM2r3lLltcs1s/92Erx5iCf9/MSLce+8wi8eXDYqsYOejVAAZzjsIRF+iekkNCEb+A3O8d5771mWAVJkUVSBsYkr5kvhiiuusDAHbKGgwiabbGKxwuSepaABxx166KEGxpTiBaaJQT333HMjN/Vs4sKLzaZBNorRiGmlsAQpwijasPfee2dlN+MRChIUj8iqc4QOJqvD7Nmzs75+30sQ/PopqC/3/9fvgUbOfTvTT8wI9p537FzBr8e86P3hIZ7g10+8GPfOG/yygW3w4MG2sYg3L+VjiaENw2+bNm1sBz8t2H1Padxs4JfzENsLAJILljK0bFxjbEIZyDQAFLLhjfhjKnmx4x8PNBuesKdfv36WeovNcTSqhQHEAVxGaf7JM4tWxDcT3kFj4x+FGQB8NvwFXu10dhNewoZD4qsJSeGmgY1gxdwoiMEaCBfCqIjrEfz6qawvd8Gv3wry6631J/38FPDrHfX153d10e2dN/gNLpkKWeyyD3bwp5Iicfd9+Di8eZ988kmprsTrkj8WDy0hDsHO/fCBeAMJv9hoo40s3ysZHIjrBXw5Z7gP/1+4cKHbeuutrdxuFBtebWCeeGSqkWFnWfBLQYkgNARgJtsGmwzxtJMJI8ily7+pzEYVtOrVq1vaL0oDowve806dOrlrr722JEsHkB1kxODmA5AmrptUZUOGDLGqa4SdBKnFCDtBd+K8a9SoYVk6yOlLCjQ88v3793edO3e2mxDmlc2JeOlJf8fNy7333mtZQThnjx497MYlbA/x3ITZYD9PEK6//noLi6E8MU8FOB+bGYlFP/XUU20szkGM94wZMyx+nA2SlElO1j/VehD8+r1Tov7hX2H2yfPrt5DK2bvC5lf2lVMBv26aXz/94to77/CbC+GAPOAqsbG5De9lEFeci3NFeQwKLhCbTMEHvL+33367/U4Hv8AfGwEpJ0x/yviSzg3wW7lypXmPKf5AHDY5mfHOU4QCgN1ss81KygrjUWfjIHAYZOnAyxw0UthxcwG4ArwALpsNFy1aZPODp5qcvYS/kG8XIMfDDmhSYAIb8NhzPOemDRs2zOK3sbNPnz4G/UAywL/XXntZVTdS1QX2oA2bHAFZvNmE27CxESgn0whaAfDNmjWzv6EfWgDgrCX6Efedqr/gNz/vDn05/b+ugt/8LLAyRtX685Nd+sVbP7+ri27vooDfVPLhuaSts8460VU4h5YBuXh8eaz/wAMPWA5c/p8OfvHe4sXEe0oDbvGC4kkPygUDioSEkH3j0ksvNRClCAnHBiEEd911l+vdu7ebMmWKHRdk6QguDxglZ/OOO+7oCD/gpuSII44o+RteYsB3zJgx1p/QEzzDhKZwLD944YlpBn7xAAPkX375pWvevLlBKj+EfQC1QCqbFfFMB/bwOvBL/Df5nBn75JNPthAYxge+gywfeKEJr6EkMiEj6EjFOTZGkns4sT+ecMFvDhdzaCh9eQp+87OyMhtV6y8znVIdJf3irZ/f1UW3d1HDb3RlzY9lVDYD9AkZANAAW2COcIVUMb/EXQO6QSYLQhzIdsEHVhh+g5hfwhsoCMEPoRJhyOX8QSaNcPligBWbGIONgniAgU0yfBCaQjlrXqMPsdVlVWUDfolfbtGihYUosLkPexkHr3SjRo0M4AP4DTZOBvCLlxcAx9tNtTk04jdeZl6jEULBvxk7iDHH7mrVqhmAJ/YnjzQeZzZKAuCJDbui2vTl5DczFaafPL9+E1XO3hU2v7KvnAr4ddP8+ukX196C3yKZWUIdKMqBxzSIs+UxPmEGeMBTwS+V6/Cg8jqeTcoMkxGCzBaERBCOEN7wFsBvx44dLfMF0EfMNsDKxkBieZOVjsbDChwThxvEEAO6FA3Bg0z8LbBKaEMm8EvsMbbhcQacW7VqZaEaZKagEAoeXrQAOhPhF+809lBIhRR6bOTjOvAQA654tvFCYwtpohLhl4pzif0DsE+2XBTz6/cm0peTPL9+K8ivt9af9PNTwK931Nef39VFt7fgN7pzs4plwCMbsoDBoOHNxRMJTLKZCxBOlu2BzWGEJADJwCmlptkcRqaNcePGOUA37PkFhqlwx2YysiewabFdu3aODBFsuAtn6QhsIR4YLzGx2YQXAJ78jQ1mQCob3YBSNiZmAr/AKpBPDuapU6faxjfglQwcbFjkWgBgNAnsCXt+gddJkyZZnDAhHEA7oSJBlg/ig9loR/aPZJ7fZP1TLRXBr9+bKOof/hVmnzy/fgupnL0rbH5lXzkV8Oum+fXTL669Bb9xndmE68LrSqhEOH0bAAlI4tlN1cgfjIeYcIZMGrBKLHK4sWGRzXOBx7qscQh7IPaYjXqEXwT2YT9eWWwhAwVhG+myiHBewjHC9gDhhEHg/cUrnK4l65/seMFvWTOa/nV9Of2/PoJfv4VUzt5af+UU7v+7Sb946+d3ddHtLfiN7txUWssC+CWsoxia4NdvlvTlKfj1W0F+vbX+pJ+fAn69o77+/K4uur0Fv9Gdm0prGbHJbOzL1FNcaKEEv34zEPUP/wqz790h5RIy+uWNW6nCW7lm9t9OFbb+ymmj7CuncEXiOfe7uuj2FvxGd25kWZEoMGHCBFe/fv0isVZmSgEpIAWkQJQUYA+KWsUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6tRSQAlJACkgBKSAFpEDFKiD4rVi9dTYpIAWkgBSQAlJACkiBAiog+C2g+Dq1FJACUkAKSAEpIAWkQMUqIPitWL11NikgBaSAFJACUkAKSIECKiD4LaD4OrUUkAJSQApIASkgBaRAxSog+K1YvXU2KSAFpIAUkAJSQApIgQIqIPgtoPg6dTwUeOqpp9wuu+wSj4vRVUiBHCvw1VeP5HhEDZeoQI0ajVy1attJmCJVoF69ekVqefGaLfgt3rmLpOWzZ892S5YsWcW2unXrFhUcfvHFF+6nn35yO++8c0Ya33DDDe6SSy7J6NhCHDRv3jwX5Q9X2ee3KqKu373DVvO7QPUuU4Hjjn3fbbBBYW7Ao77+ZF+Zy6dSHiD4rZTTnr+LPu6449zff//tdtttt5KTNGzY0B199NFeJ33wwQfdH3/84U4//XSvcYLO++23n5s6dapbY401So13//33uw8++MDdeOONGZ1L8JuRTCkP0pdTvPUT/PrNbya9Bb+pVdLnSyYrqPIdI/itfHOe1ysGfjt06OD4HW7A6/jx492jjz7qnn/+eXfnnXe6cePGueHDh7vbbrvNrbnmmq5Hjx7utNNOc19//bVB7jvvvOMOP/xwd/HFF7vmzZu7X3/91Y0dO9a1bNnShl64cKE755xzXI0aNdy0adNc9+7dbezp06e7/v37u86dO7vXXnvN9enTx82fP98df/zx7tZbb3W9evVyt9xyizvyyCPd448/7i666CI3YsQIO8cdd9xhUDxy5Ej3yy+/OLzAN998s2vfvn1K3QS/fktKX07x1k/w6ze/mfQW/Ap+M1knOuZ/Cgh+tRpyqgDQu3z5crfjjjuWjNulSxe33Xbbufr167u+ffu6AQMGuEGDBrlmzZq5rbbaymB19dVXd3vttZdbvHixGzhwoIEnUHrmmWe6s88+282aNcutXLnSXX311a5KlSo29meffea23357A+i1117bnXjiie6ee+5xm2++ufVZtGiRa9KkicEzwHzAAQe4oUOHmh3rrbee+/77721cxhw9erS7++673YoVKyxEA/h+66233Mcff2z2vP/++4LfnK6U/w0m+PUTNur6CX795jeT3oJfwW8m60THCH61BvKkAPBbs2ZN17hx45IzHHLIIW7LLbd0U6ZMcQcffLA74YQTzAP8zz//GMDinZ0zZ455ZX/88Uc75uGHHzaA/u677yzc4ZFHHnG//fabu+yyy0rGpe+ee+7pfvjhBwNZYos5lp91113Xxif++MUXXzSIJYxh1KhR7rDDDnOrrbaaHXf55Ze7HXbYwZ1xxhkG3J9//rlB7xNPPGE/y5YtcxtssIGNlarJ8+u3mKIOb7LPb34Fv376ZdJb8Cv4zWSd6BjBr9ZAnhRIFfbA6V5//XW37777WmgD3lrAtHbt2rZZrFGjRhaWAMjiDf7oo4/cpptuakD6559/msc2Gfwee+yx7t133zWP8a677uq+/fZbC48Afok9Zly8zm3btnX33XefnSsMvx07drTz8sN5li5d6sjeEMT84gnGSxzA76uvvmqwnti04a38C0pwWX7t6Bl1/QS/fvObSW/Br+A3k3WiYyoh/PLYGtCqU6eO5j+PCgC/gCRQGjS8rH/99ZfbY489XNeuXQ1An3zyScuoQLwvnlnigYnBBX6J3cX7CySfdNJJ7phjjnELFixwP//8s7vqqqtW8fymg99vvvnGvMEANOMSDgHYBvALJD/00EMG5YRLAMd4oPEmp4LfZNLJ8+u3oKIOb7LPb34Fv376ZdJb8Cv4zWSd6JhKAr8A7+DBg20TEzv4d999dwMwtfwpQEgDm8jCjUwPxN6yGe2FF16wkIYrr7zSvfHGG26fffaxMIm11lrLPLYAMJvc2MjGxjfSjU2cONG99NJLBsFskgOMaYQ9pINfvLXA+IcffmjHEx8MBL/88suObA94dNmId95555kteIuffvpph3dX8Ju/NZI4suDST+uo6yf49ZvfTHoLfgW/mawTHVNB8MsjaDYsBbCBZw1PHF62K664wh5vX3fddY6Y0MS/8aj60ksvdY899phZC/iQIYCd93gR8eBtsskmtit/m222cffee2+prAHALnln2bDEI3M2PAE9vXv3dsOGDbN+Q4YMcXvvvbcBFb8Zh41XxJiuv/76Wit5VoDQBDy0hDgQdsA8AaU0QhCItw0acAwkJ0tPls5MIBqPP/2IKd5www3tXL///rsBb7JzZXPZ8vxmo1bpY6MOb7LPb34Fv376ZdJb8Cv4zWSd6JgKgt9rrrnGdtyzw5/H1XjxeKS97bbbGhCTfopH4MRQJv4N+CRlFvGcNDY/Pffcc/bYnAa8AsNkACCVVbKsAa+88ort5J80aZJ594466igDWqD6gQceMC8fXsXJkye7jTfe2B6xd+vWzbyFbITyzU2rhVY5FBD8+s2z4DLe+gl+/eY3k96CX8FvJutEx1QQ/OJBDXbts9ueR+KkuWKnP/BJI5frl19+aR7e8N/w8LEZKRn8kr8VkKUfuVl5/J0sa8Ann3xiYAzcEj9KHx5vs7sfjzQN6CU8gvRXM2fOtLhQYB1PZADaWjBSIJ0Cgl+/9SH4jbd+r7za39WuVcvvIvPYezEbb4vcvrp191eFtxRrRJ8veXzzFPHQecvzS7wlxQfmzp1rG83YvU98JkBJPCVxuDQeeVO4gLjM8N+IzSRvawC/eGwJYaB/z549XYsWLcxzTGgDizsxawCPt5PBL6muGBcQpjEu4ExFMmzkkThe6lq1apkXWE0KlKWA4LcshdK/Htsvp79+d272/X7iZNCbrCl8XkW1zavRUuW1PSYntu8PD02y6Sr9slGr8hybN/hFwlNOOcWKC/D7+uuvt3hLPK5HHHGEeVkJiSDE8MOUmgAAGt9JREFUYMyYMbbRKfw3QhwoNoB3l9yrwCmwC/ySQxZAveuuuwxYW7VqlTRrwKeffmqFEtjAFHh+sYEwC2J933zzTQuHALDxABcD/HJTQXYEoJ+NYjRiWiksQegHRRuIXc6mMR6x0EHxiGz6RulYsjpwg5Tt9fteg+DXT8HYfjkBvwOr+okTg97zTpwr+PWYx9i+Pzw0yaar9MtGrcpzbF7hl5KzZ511lu2wZ3MRRQ4ILyDmlhRTNLy9eGGT/Y34YEIkCEWgzCzFB4BfvMSUw2VDFKVo2fhGeqrErAHnn3++bWojjAGw5TzkmQXACbdgTGKLKV0bhl/ihPGkRDHsAXAHVIF/7KShJdrgEWfzICEmZTWyHFDkgUpm4Wsvq1+UX6cgBvmAw4UwKsJewa+fyrH9chL82sIQ/Or94aeAX+/Yfr74yVLpe+cVfgN18dxuttlmBqxBI8frOuusU+bf8GiGsy6QBgtQZoNcsIOfMVNlDWBXP68RQxxuX331lWUSCHb7F8tKoFQwHl5K8aIrZYHLgl8KSpBajAYwk/WCmwCyJxByEuTS5d941QkNqV69um0IpDQwGpKdo1OnTu7aa681aCaWG8gO5hTvMyDNTQVzhGedqmuJ2T64CSKNGSEx3Bxxg0MKNEoc9+/f3xHPjbc+04weYXtIo8aNDvZzU8PTBnIDk+2D3MPBzRhPEE499VR7WkDWEGLCZ8yYYTdDVIEjLCZZ/1RrRPDr9+6J7ZeT4Ffw6/fW+Fe/efPkOffQUfp5iBfjrhUCv7nUL4BfvJ+VrVFtrF69elbwgeu//fbb7Xc6+AX+uFHAg05/yvgS4wz4kSkDGMazjle8V69eFqJCBg505oYlKCuMd/ztt982OAQWgW+8zEEjswdhB4ArwAvgBmEs4WwfbHok3y5AvvbaaxtokuYOG84++2wLheHctEwyehCXHdiDNoTPALJ4sylYQbo9oJxNjWgFwDdr1sz+hn5oAYCTGYR+lFhO1V/wm593XGy/nAS/gt8cvGVi+/7IgTaZDCH9MlGp8h1TdPCbzGNcWaYNyAU6eaxPZgw81/w/HfzivQVgyYdMA27xgrIZMCgXDCg+88wzFjqCVx0QpRgIxwYhBMRXkx+Z0BWOA27DLZzZg/ADvMPEdidm+yC+m/6EwuAZJu8zx/KDF56YZuA304weeKYDewBZ4Pe9995zTZs2tbFPPvlk16ZNGxufVHvAMI2c02y8pCQyISPoyNriKQNPChL74wkX/ObnnRbbLyfBr+A3B2+Z2L4/cqBNJkNIv0xUqnzHFB38Vr4p+t8VU4iDUBFCBgA0wBaYI1whVcwvFe4AXTyaNEIc2GTIB0IYfoPNfoQ3EE7CD6ESYcjl/ORWbt269Srli4PMHoxBijg8wMDmFltsUSrbB2WNy6rKBvxmmtED+A3sCeAXLy8AjrebanNoxG+8zLxGo5gJ/2bjYFDNDburVatmAJ7YnzhzQkzYPEncdWLDWx7Vpg9/v5kpt36CX8Gv39L7Vz+FPXipKP285IttZ8FvkUwtoQ4NGjQwj2kQZ8tjfMIMiN1NBb9kvCCkgdfxbFJmmIwQlHsmJIKNc+ENbwH8kmO5YcOGtrmQymgAa79+/SyWNxF+kRAPK3BMVo0ghhjQTcz2QWhDJvCbaUYPoDMRfvFOYw8FTFZbbTVLX8d14CEGXPFsE36BLaSJSoRf0u8l9g/APtlyUcyv35sotl9Ogl/Br99bQ/Ar/XKggIZIpoDgt0jWBZu32JBF+EHQ8ObiiQQm2cwFCCfL9tCjRw8LPwCSgdNBgwY5NodRMnrcuHFWTCTs+QWGyXTBZjKyJyxbtsy1a9fOkSGCDXeEEdA33IgHxkvMxjfCCwBP/paY7aNq1aoZwW+mGT3QJLAn7PkFXqnsx+ZAQjiAdkJFCONg0x3xwWy0Gz16dFLPb7L+qZaK4NfvTST49dMv6r2V7cFvhmL7/vCTJePe0i9jqSrVgYLfSjLd5DcmVCLIDcxlA8NkwcCzm6qRbQMPMeEMmTTSzxGLHG7Jsn2kGyvbjB6pxuK8hIiE7QF8CYPA+4tXOF1L1j/Z8YLfTFZG6mNi++Ukz69NuuBX7w8/Bfx6x/bzxU+WSt9b8Fvpl0D0BCi2jB6CX781FNsvJ8Gv4NfvrfGvfor59VJR+nnJF9vOgt/YTm3xXlixZfQQ/Pqttdh+OVl54+F+4mTQe8niJa5W7SiXN26lPLUZzGOqQ2L7/vDQJJuu0i8btSrPsYLfyjPXutI8KTBhwgSrXKgmBaSAFJACUiBbBdiDolaxCgh+K1ZvnS2GCrCZkOIcalJACkgBKSAFslGAlKBsOlerWAUEvxWrt84WQwWiHvYg+/wWnfSTfn4K+PXW+pN+fgqodzIFBL9aF1LAUwF9OfkJKP2kn58Cfr21/qSfnwJ+vaO+/vyuLrq9Bb/RnRtZViQKRP3DS/b5LSTpJ/38FPDrrfUn/fwUUG95frUGpEAeFNCXk5+o0k/6+Sng11vrT/r5KeDXO+rrz+/qottbnt/ozo0sKxIFqLJHqemoNtnnNzPST/r5KeDXW+tP+vkpoN7y/GoNSAEpIAWkgBSQAlJAClRqBeT5rdTTr4uXAlJACkgBKSAFpEDlUkDwW7nmW1dbIAWWL1/u1l9//VXOvmLFCrfOOuu41VdfvcKsWrZsmatRo0aFnS/bE33//femU5UqVbLtWmHHf/XVV27TTTetsPNlcyL0q1mzZjZd8n4sFRurV6+e9/OU9wRR1CzxWqK+5qL8ni30Z97PP//sqlWr5lZbbbWSaS3EZ3953x9x7Sf4jevM6roiocBnn33mpk6d6m699Vb3/vvvm01LliyxpOZrrrmm+/zzz13v3r3daaedlld7p02b5gYMGOA22GAD991337lrrrnGNW7cOK/nzGZwdDjppJMcCd+xr1u3bu6oo47KZogKOfapp55y7dq1c3///fcqX2YVcvI0J5kyZYo799xz3Z577un4Yu3cubM74ogjCmrWzJkz3RlnnOG22morW+fDhg1zjRo1KqhN4ZNHUbNk4kR1zUX9PVvozzw+x2bPnu2OOeYYx/dAnTp1CvLZH5k3XMQMEfxGbEJkTrwUGDhwoJszZ46bNWtWCfzyN7xh/fv3d998843bZJNNDFjWXXfdvF386aef7po0aWKAxO7iL774wt1xxx15O1+2AwP/bdu2de3bt3d44vjSaNGiRbbD5PX4BQsWuMsuu8xR0S9q8ItW2NayZUv38ssvu7POOst9/PHHedWjrMEPOeQQ16tXL8fvMWPGuCFDhrhJkyaV1a3CXo+iZokXH+U1F/X3bKE/81jzr732mrvtttvct99+a/BbiM/+CntDFdmJBL9FNmEyt/gUAOROPPHEEvjFKwekdOjQwf3zzz8W9jB37lyXz/rueLnwpB555JHuySefNAjZe++9IyPmPvvsY17fZ5991h144IHuxhtvdDvttFNk7Fu5cqU79NBD3YgRI8zOqMEvN1PcPK2xxhruoosucr/++qu7++67C6ofOr3++uum1zvvvOPatGljEBCVFkXNwtpEfc1F/T0blc88wh0C+C3EZ39U3m9Rs0PwG7UZkT1Fp8Bvv/2W1KPVunVrV7VqVfNihuH3hBNOcPwcd9xxdq0bb7yxe+utt9zWW2/tfe2TJ082L3K48aj5nnvucY8//rh5Vh966CF39tlnu549e3qfL9sBUtm3xx57uAMOOMDddNNN5pFeunSpu/fee7Md3vv4VPbhLW/YsKHDm8SXWaHgN5V9xCDzBXv++ee7Tz/91I0fP97CDQrZiAPF+8yTjXnz5tn8Llq0qJAmlTp31DQLG3jBBRdEYs2lmjA+t6Lwnk1l39VXXx2Jz7ww/Obzsz9Sb6wiMEbwWwSTJBOjrQCg1qVLl1JGApxsLkuE32uvvdY2dV144YXur7/+chtuuKHBXi42vuH1+/LLL1exhb8R/zlu3DjXrFkzh0eEmNogBrki1U1lH7GhN998s4U+4AXHzkJ4CZPZR6gIj8iDGOnp06fbv8m/utZaa1WkfObVTTa/ACY2nnLKKe6SSy5xa6+9doXalexkzZs3t0e+e+21l5sxY4Zj3QPlUWkLFy6MnGaBNtzArrfeepFYc6nmq379+pF4z6aD8yh85oXhN5+f/VF5XxWLHYLfYpkp2Vm0CiTCLwBw5513mrcYbyyb4d544428Xh+P7AEjQi3w/BL68Nhjj+X1nNkMfuaZZ5oHnE15Dz74oHvuuefcyJEjsxkib8cSmsKGlaDtsMMO7qOPPnL8Du/gzpsBGQzMkwWAHDiOSuPJQq1atdzFF19ssb/AXL9+/aJinj2NiZpmgTjFsOai/J5Fx6h85oXhtxCf/ZF5w0XMEMFvxCZE5sRPgUT4JR6TD+YPPvjAYjOff/5517Rp07xe+EsvveROPvlkiwsly8TQoUPNuxqVxmPx8847z7zRm2++ufvvf//rCIWIYitk2EM6Lxe7y4PG5ppCeM7D9gUefP5GlhFu8DbaaKPITCk3W1HTLJU4UVxzUX/PRuUzj7ljndWuXds+7yv6sz8yb7iIGSL4jdiEyJzKowDxj3Xr1q2wnLZ4k8jywAakqDbSwOEtVIuHAn/++acjRy1rLipe8ngoG52riPJ7NqqfeRX92R+d1RIdSwS/0ZkLWSIFpIAUkAJSQApIASmQZwUEv3kWWMNLASkgBaSAFJACUkAKREcBwW905kKWSAEpIAWkgBSQAlJACuRZAcFvngXW8FJACkgBKSAFpIAUkALRUUDwG525kCVSQApIASkgBaSAFJACeVZA8JtngTW8FJACuVFg+fLlJUVBcjNi7kYhhRFtnXXWyd2gGiknCvzxxx+OH9L8xbXx3mANkr4t00ZlylmzZrmdd97ZivEkth9++MH+FKX0dJlem46TAmUpIPgtSyG9LgWkQEEVoMAEFeBeeeUVs6NevXqWp/iggw4qqF3hk+++++4OmKCcb74agAOkUMjilltuydlpmjRp4lauXOnefffdnI3JQE8//bSN2bdv37Tjcn4q5VExLx+Ninc33nij++abb9LCYTo77rrrLstVfNJJJ5XLxFxojA333XefXUPHjh3th6qQpPMiT3irVq1c//79M7bvkUcesUIfpCqrWbNmqX7Dhw93l156qZs/f36sbxwyFkwHxkoBwW+splMXIwXipQB5YimPS6GQTp06uapVq7phw4bZRX766aduu+22i8QF33HHHQ5be/TokTd7li1bZgDGOagKmKuGvoB7rstdU/KbEt9///132hy/3Dgwr9OmTcvVJa0yDhAOWF922WVWZS5VS2cHeYrxkFKVsTzNV+MXX3zRbvYoAIMnlvfD1KlTHSWkqRJ5wgknWNXBHXfcMWPzDjnkECut/uijjybt89NPP1kZ9uuvv94gWE0KxEkBwW+cZlPXIgVipsAzzzxjFZHatWvnKA1KozQzJXP5Qj799NPdkCFDzLNHxam9997bSkcDGzfccIN74okn3AEHHGAlnffZZx93zDHHlJTYpd9+++3njjjiCAMKHo3PmDHDde7c2arNVatWzd199902Ht4xxvnPf/5jXkpsat26tUEVxz/77LPu999/N5CYPn26u+mmm+xvVNEDuvbff397LI0X9OGHH7Z/t2nTxgHNePKovgck0l5++WUHmPBa+FF9IvxyHN5AKlkdeOCB9m/OP2LECLMZbyO6jB492n6wj8p5aAEkcS177rmnaZUMfjPVDzvwrqI/AHnFFVc4HpmfffbZVtnqsMMOc0899ZRdV3Bcy5YtTYv69etbn59//tkq+gGXXDuefcAsaNdee62NMWHCBKsURxnsPn36OMY5+OCD3eGHH+66devm7r33XvtZe+21Xe/eve2G6fbbb7drpmQ2nvPrrrvOxt9kk01s/plD4JK5SmYH83DVVVe56tWrm9f96quvzvpdFtaYQjOsL+aNMBmeanB9VapUsfXKesHLf9ppp5nNt912m5s8ebLZ8PXXX1uFRqqFnXPOObY+uQbW08yZMzNe859//rnbeuutHe8v1jzvLWAae1jbW221lY2NpxvNWXsqUpL1tKtDhBUQ/EZ4cmSaFKjsCuDh7Nmzpxs8eLDDk5jY8HbhkWvcuLEB0M0332xQQ/jBueeea/2AL2CCsAkABtAEAumDtxGvHkACOK+xxhrutddeczzyBaq23HJLg1zgu2vXrvYDdG222WZmCiEYwFavXr0MnLBnp512stcAGiAtAMv777/fnXXWWfa4GuAFaoAgoBUAxJvHeWgAx6hRo1yHDh1KLjkMv4zNtey7774G0QAndvbr18+gF7DkEfi2225r3k7CD1q0aGEltfEcA3+LFy82mMJ7mAx+M9HvrbfeKvG+A5tAP3A2ZswYgzO0fOCBBwxC0RKdL7zwQvPeA20TJ04sufYzzzzTbjK4uSGsA9AM2oMPPmjzBgBzUwHcMz76AP7cUBAec+WVVxqccl7KhvOb8YKwhwULFtg8U/4ZyGNOaEuXLjUdmINEO5ibo48+2tYV64Z1ETRuwhg/sWEv6ytoYfgFKLGXGwHWC/0fe+wxuwkD2mmsE8IS8L6iETdehKZwQxCEK7DWzz//fANWwJjrzmTOWPOsS24KvvzyS9OR+WD9csPH2txll13shiDQHW1ZS2pSIC4KCH7jMpO6DikQQwUAuMsvv9zg4Pjjjy91hcAewPPee++ZF5FHtIDf22+/bY/cgV+8kHx5A4V4MwEWYAQQ+/bbbw1+ebwLIBI/iWe3bdu2BnB4IhmL/gALsIktwC9QjacO2GM84AHoxqv6ySefmLcXUMKDhycN+MQ7B2gRq4mH88033zTgA5Swk7KnCxcutOOBfgAnaGH4xYvNo25+OB+wzvUA+Y0aNTKb8PYCMYMGDXLHHnus2Qz4ERuK15GbATx/eBrTwW86/YijxRP7wgsvGEwDpTQ8kRdccEFJ2APXzTUSs4q3Hm8j4IWGaMc4gDjxpYSycIMBoAWN14FP1gIwSIgJP6eeeqpBJOdmbtCWmyQgd+TIkTbOX3/9VQK/wCs3DpwHzyc3TIRFBPCbyo5UYQ9cD57+xAbgh0MQAvjlZoGbFuYNLz064d0/8sgj7caKucFubha4AeCmiutlPdLwQnfv3r0ETrlO4n15ioGnPYDfdHOGzttvv73dhPH+4clFKvhlXrEp8UYshh81uqRKpoDgt5JNuC5XChSTAoGXC28cHlYaj2eBYiAAiAMSApgBvnj8zTF8YQO/QOncuXPNwwg8ABmAMBAAbAbwS8wroQfE1QKJPB4HLAgNwOsIZDdo0KAEfsOAFoZf4BUYAT6BYGAHqAJYA8DlOgjBGDdunNnHI/cg7hW7Nt1007Twy2NvIB+AwfscNEAQwOM314kejMf142kFEIHwoLVv394AMh38ptOPm44ddtjBhsMLyc0C3tZE+OWx+lFHHWXxqccdd5zp/uOPP7pdd93Vwh2CaweIiWvF/oEDB66yVNGYxs0IgMiccD00vJTctODRBQKDBnBjT+D55eYHjzs3PRwbzEEAv6nsSAW/hCOgbWIDqpnDoAXwy3rlvMF6BuAJueF1bhbwMI8dO9Z+80SAOQR+8e7jDQZSmfNgAx5eXNYo/+cpQgC/6eaMmzi83EGMcBCbjQaEhXAjiD1oipcd8Bb8FtOnpmzNRAHBbyYq6RgpIAUKosCKFSsM7ogd5cuffwMvNGJMgS9AFSAAqogD5ksciAKCM4VfvKYABFAGdAGNgBDnBLR4HI3nOez5xQuJ54wWwC+ePR7v49W95pprzHsJbBBugIeR0AD+VrduXYv15LE9YBHebJUJ/AJDhDlw3cALHmK8vYAT14ANtCBWGuhmRz+gireSmwps5ZE7oFZe+CW0gLATwAs7AGwe1f/yyy8W3oD3He82HmigipsHHs9z48L/ueEIX3s6+MVjG8Te4ukNQgQItcBDys0F58Kbjd5cI32AuAB+AT7CJLAHb3gwf5nAL/YSdrHNNtuUvBcAcEIDEluwGS0Rfrlewi2IM+YmBTt5WsHNEuEQhKhws4TXn5s91iXwy/uA9cf8oR3xtwA56wwdgGRu7DKBX9YNOgTZNYKnJdzccUPCOGiEboRGMI+818LXXZAPA51UCuRQAcFvDsXUUFJACuReAeIwSckEKNCAAx4Z45EiTAHwAnKDFoRI8Hc27STzggFKgEXg+WUzGA3IBtDwYBKagNeX44AOvHSM9frrr9uj+UT4DQASYABwGQtbsQOgBtjw6OGJpOHhBNTwfoYBMHjEnxj2kJjqDC8mMdHBeQjBCNK/AUWAKd5nII9GHDHgieeUFsTVpkrDlal+QegA14p2XB/nIASEeaMxT0EISzCHXDs3E+Fr/+qrryw8I5nnF1jnRifYQEdIyZQpU9ycOXNMQ9YHIS3cZNAILeDGhXho4BdvL15WbnK4WQBmuWFgfaEt4B54fhPtYFwgO/DMBmuNOWddJDbicIkfD1pYY0I+uAbmjUZYAR5xvK7ANToBmwA6nmJ04iYlvMbpx/oHjANPPrBa1pyx3rnBCMJPGIeQHuYBezgnx+Axx6sNTHNDhXZqUiBOCgh+4zSbuhYpEGMFABK8inh/2RkfbsTD8uVNrCyPv7NpeNCIFwaa+JIntjTY2Q60AQsAWTa73elH+AOAG4Yg7MKzy+YlvLMAtk8jnpXzcA2AXCaN42vVqpXT3K3MDY/zE23AA0wWjaCIAvPETQDxtpnam8k1hY9hfDRPVpyBMAGyTuA5J3QELyzrBuArqwG6hMXkolgG80bGhWCDGedGQ54SsBbZ4IaHlzAH4npZ16laEB7BOg2HWpR1PeHXWa9Bvt9gTXK9nJenC8HTlmzG1LFSIMoKCH6jPDuyTQpIgbwrEMAv8Y1q8VYArzpefG6igpaYWaJQCgDWxOIGTwawI5ziL5Vd3EjhscXTTQhDrhrgTWYQPMPc2KhJgTgpIPiN02zqWqSAFMhaAbIe4M0LNlRlPYA6FJUCeKMJy/j+++8NGsl8EJWGR5i4YAq44B1nM2AmTweAeuKWgzR7ubgeNpFy7nRe51ycR2NIgUIoIPgthOo6pxSQAlJACkgBKSAFpEBBFBD8FkR2nVQKSAEpIAWkgBSQAlKgEAoIfguhus4pBaSAFJACUkAKSAEpUBAF/g8jZSZkAL2zpAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
},
- "y": {
- "axis": {
- "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
- "orient": "right",
- "title": "Probability"
- },
- "field": "sum",
- "scale": {
- "zero": false
- },
- "type": "quantitative"
- }
- },
- "mark": {
- "color": "black",
- "strokeWidth": 2,
- "type": "rule",
- "x2Offset": 30,
- "xOffset": -30
- }
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "params": [
+ ],
+ "source": [
+ "linker.visualisations.match_weights_chart()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "e9b076af-b956-4e85-abfa-5c45d92a3cac",
+ "metadata": {},
+ "outputs": [
{
- "bind": {
- "input": "range",
- "max": 4,
- "min": 0,
- "step": 1
- },
- "description": "Filter by the interation number",
- "name": "record_number",
- "value": 0
- }
- ],
- "resolve": {
- "axis": {
- "y": "independent"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
+ "config": {
+ "view": {
+ "continuousHeight": 300,
+ "continuousWidth": 400
+ }
+ },
+ "data": {
+ "values": [
+ {
+ "cum_prop": 0.044465973348096204,
+ "match_probability": 0.99988,
+ "match_weight": 13.08,
+ "prop": 0.0006920004745146111
+ },
+ {
+ "cum_prop": 0.045513859780932614,
+ "match_probability": 0.99989,
+ "match_weight": 13.22,
+ "prop": 0.001047886432836411
+ },
+ {
+ "cum_prop": 0.0464233461188661,
+ "match_probability": 0.9999,
+ "match_weight": 13.36,
+ "prop": 0.0009094863379334888
+ },
+ {
+ "cum_prop": 0.04790620427854027,
+ "match_probability": 0.99991,
+ "match_weight": 13.52,
+ "prop": 0.0014828581596741666
+ },
+ {
+ "cum_prop": 0.049369290996085446,
+ "match_probability": 0.99992,
+ "match_weight": 13.7,
+ "prop": 0.0014630867175451777
+ },
+ {
+ "cum_prop": 0.05108940646130748,
+ "match_probability": 0.99993,
+ "match_weight": 13.91,
+ "prop": 0.0017201154652220333
+ },
+ {
+ "cum_prop": 0.05304677923207738,
+ "match_probability": 0.99994,
+ "match_weight": 14.15,
+ "prop": 0.0019573727707699
+ },
+ {
+ "cum_prop": 0.05557752382458796,
+ "match_probability": 0.99995,
+ "match_weight": 14.44,
+ "prop": 0.0025307445925105776
+ },
+ {
+ "cum_prop": 0.05864209735458124,
+ "match_probability": 0.99996,
+ "match_weight": 14.8,
+ "prop": 0.0030645735299932777
+ },
+ {
+ "cum_prop": 0.06285341452805587,
+ "match_probability": 0.99997,
+ "match_weight": 15.29,
+ "prop": 0.004211317173474633
+ },
+ {
+ "cum_prop": 0.07068290561113547,
+ "match_probability": 0.99998,
+ "match_weight": 16.02,
+ "prop": 0.0078294910830796
+ },
+ {
+ "cum_prop": 0.08849697496935445,
+ "match_probability": 0.99999,
+ "match_weight": 17.61,
+ "prop": 0.017814069358218988
+ },
+ {
+ "cum_prop": 0.000039542884257977775,
+ "match_probability": 0.00014,
+ "match_weight": -12.85,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.00009885721064494443,
+ "match_probability": 0.00138,
+ "match_weight": -9.5,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.00011862865277393331,
+ "match_probability": 0.00289,
+ "match_weight": -8.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0001384000949029222,
+ "match_probability": 0.00299,
+ "match_weight": -8.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00015817153703191107,
+ "match_probability": 0.00427,
+ "match_weight": -7.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00017794297916089996,
+ "match_probability": 0.00468,
+ "match_weight": -7.73,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00019771442128988884,
+ "match_probability": 0.00576,
+ "match_weight": -7.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00021748586341887772,
+ "match_probability": 0.00736,
+ "match_weight": -7.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0002372573055478666,
+ "match_probability": 0.00755,
+ "match_weight": -7.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0002768001898058444,
+ "match_probability": 0.0081,
+ "match_weight": -6.94,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.00029657163193483327,
+ "match_probability": 0.01017,
+ "match_weight": -6.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00031634307406382215,
+ "match_probability": 0.01075,
+ "match_weight": -6.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00033611451619281103,
+ "match_probability": 0.01252,
+ "match_weight": -6.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0003558859583217999,
+ "match_probability": 0.01304,
+ "match_weight": -6.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0003756574004507888,
+ "match_probability": 0.01345,
+ "match_weight": -6.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0003954288425797777,
+ "match_probability": 0.01899,
+ "match_weight": -5.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00041520028470876655,
+ "match_probability": 0.02144,
+ "match_weight": -5.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00043497172683775544,
+ "match_probability": 0.02372,
+ "match_weight": -5.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0004547431689667443,
+ "match_probability": 0.0249,
+ "match_weight": -5.29,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0004745146110957332,
+ "match_probability": 0.02731,
+ "match_weight": -5.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0004942860532247221,
+ "match_probability": 0.02899,
+ "match_weight": -5.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0005536003796116888,
+ "match_probability": 0.03062,
+ "match_weight": -4.98,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.0005733718217406777,
+ "match_probability": 0.03191,
+ "match_weight": -4.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0005931432638696666,
+ "match_probability": 0.03218,
+ "match_weight": -4.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0006129147059986556,
+ "match_probability": 0.03653,
+ "match_weight": -4.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0006326861481276445,
+ "match_probability": 0.03661,
+ "match_weight": -4.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0006722290323856223,
+ "match_probability": 0.03799,
+ "match_weight": -4.66,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0006920004745146112,
+ "match_probability": 0.03958,
+ "match_weight": -4.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0007117719166436001,
+ "match_probability": 0.04044,
+ "match_weight": -4.57,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0007315433587725891,
+ "match_probability": 0.04419,
+ "match_weight": -4.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.000751314800901578,
+ "match_probability": 0.04776,
+ "match_weight": -4.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0007908576851595558,
+ "match_probability": 0.05002,
+ "match_weight": -4.25,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0008106291272885447,
+ "match_probability": 0.05328,
+ "match_weight": -4.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0008304005694175337,
+ "match_probability": 0.05332,
+ "match_weight": -4.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0008501720115465226,
+ "match_probability": 0.06221,
+ "match_weight": -3.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0008699434536755115,
+ "match_probability": 0.06485,
+ "match_weight": -3.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0008897148958045005,
+ "match_probability": 0.06675,
+ "match_weight": -3.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0009094863379334894,
+ "match_probability": 0.06686,
+ "match_weight": -3.8,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0009292577800624783,
+ "match_probability": 0.07164,
+ "match_weight": -3.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0009490292221914673,
+ "match_probability": 0.0732,
+ "match_weight": -3.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0009688006643204562,
+ "match_probability": 0.07654,
+ "match_weight": -3.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001008343548578434,
+ "match_probability": 0.08657,
+ "match_weight": -3.4,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.001028114990707423,
+ "match_probability": 0.09094,
+ "match_weight": -3.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0010478864328364117,
+ "match_probability": 0.097,
+ "match_weight": -3.22,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0010676578749654005,
+ "match_probability": 0.09885,
+ "match_weight": -3.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0010874293170943894,
+ "match_probability": 0.11022,
+ "match_weight": -3.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0011072007592233782,
+ "match_probability": 0.11388,
+ "match_weight": -2.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001146743643481356,
+ "match_probability": 0.11561,
+ "match_weight": -2.94,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.001166515085610345,
+ "match_probability": 0.13167,
+ "match_weight": -2.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0011862865277393337,
+ "match_probability": 0.13926,
+ "match_weight": -2.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0012258294119973116,
+ "match_probability": 0.14956,
+ "match_weight": -2.51,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0012456008541263004,
+ "match_probability": 0.15963,
+ "match_weight": -2.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0012653722962552892,
+ "match_probability": 0.16667,
+ "match_weight": -2.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001285143738384278,
+ "match_probability": 0.20132,
+ "match_weight": -1.99,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0013444580647712448,
+ "match_probability": 0.20174,
+ "match_weight": -1.98,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.0013642295069002336,
+ "match_probability": 0.21995,
+ "match_weight": -1.83,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0014037723911582115,
+ "match_probability": 0.22577,
+ "match_weight": -1.78,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0014433152754161893,
+ "match_probability": 0.22849,
+ "match_weight": -1.76,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0014630867175451782,
+ "match_probability": 0.24007,
+ "match_weight": -1.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001482858159674167,
+ "match_probability": 0.2584,
+ "match_weight": -1.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0015026296018031558,
+ "match_probability": 0.26376,
+ "match_weight": -1.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0015224010439321446,
+ "match_probability": 0.29225,
+ "match_weight": -1.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0015421724860611335,
+ "match_probability": 0.29476,
+ "match_weight": -1.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0015619439281901223,
+ "match_probability": 0.29638,
+ "match_weight": -1.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0015817153703191111,
+ "match_probability": 0.29739,
+ "match_weight": -1.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0016014868124481,
+ "match_probability": 0.30885,
+ "match_weight": -1.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0016212582545770888,
+ "match_probability": 0.31241,
+ "match_weight": -1.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0016410296967060776,
+ "match_probability": 0.32152,
+ "match_weight": -1.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0016608011388350664,
+ "match_probability": 0.33986,
+ "match_weight": -0.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0016805725809640553,
+ "match_probability": 0.34871,
+ "match_weight": -0.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001700344023093044,
+ "match_probability": 0.35131,
+ "match_weight": -0.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001720115465222033,
+ "match_probability": 0.35322,
+ "match_weight": -0.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0017398869073510217,
+ "match_probability": 0.35609,
+ "match_weight": -0.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0017596583494800106,
+ "match_probability": 0.3618,
+ "match_weight": -0.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0017794297916089994,
+ "match_probability": 0.3732,
+ "match_weight": -0.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0017992012337379882,
+ "match_probability": 0.37942,
+ "match_weight": -0.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001818972675866977,
+ "match_probability": 0.38254,
+ "match_weight": -0.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0018387441179959659,
+ "match_probability": 0.38719,
+ "match_weight": -0.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0018585155601249547,
+ "match_probability": 0.39491,
+ "match_weight": -0.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0018782870022539435,
+ "match_probability": 0.39585,
+ "match_weight": -0.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0018980584443829324,
+ "match_probability": 0.40582,
+ "match_weight": -0.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0019178298865119212,
+ "match_probability": 0.41491,
+ "match_weight": -0.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00193760132864091,
+ "match_probability": 0.42367,
+ "match_weight": -0.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001957372770769899,
+ "match_probability": 0.43094,
+ "match_weight": -0.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.001977144212898888,
+ "match_probability": 0.4477,
+ "match_weight": -0.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0019969156550278767,
+ "match_probability": 0.45241,
+ "match_weight": -0.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0020166870971568655,
+ "match_probability": 0.45261,
+ "match_weight": -0.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0020364585392858544,
+ "match_probability": 0.46716,
+ "match_weight": -0.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002056229981414843,
+ "match_probability": 0.47114,
+ "match_weight": -0.17,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002076001423543832,
+ "match_probability": 0.4762,
+ "match_weight": -0.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002095772865672821,
+ "match_probability": 0.47977,
+ "match_weight": -0.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0021155443078018097,
+ "match_probability": 0.48659,
+ "match_weight": -0.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0021353157499307985,
+ "match_probability": 0.4927,
+ "match_weight": -0.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0021550871920597873,
+ "match_probability": 0.50485,
+ "match_weight": 0.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002174858634188776,
+ "match_probability": 0.50816,
+ "match_weight": 0.05,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002194630076317765,
+ "match_probability": 0.52312,
+ "match_weight": 0.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002214401518446754,
+ "match_probability": 0.54292,
+ "match_weight": 0.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0022341729605757426,
+ "match_probability": 0.54317,
+ "match_weight": 0.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0022539444027047315,
+ "match_probability": 0.55731,
+ "match_weight": 0.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002313258729091698,
+ "match_probability": 0.55824,
+ "match_weight": 0.34,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.0023330301712206868,
+ "match_probability": 0.56114,
+ "match_weight": 0.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0023528016133496756,
+ "match_probability": 0.58298,
+ "match_weight": 0.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0023923444976076532,
+ "match_probability": 0.59084,
+ "match_weight": 0.53,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.002412115939736642,
+ "match_probability": 0.59318,
+ "match_weight": 0.54,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002431887381865631,
+ "match_probability": 0.6,
+ "match_weight": 0.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0024516588239946197,
+ "match_probability": 0.60702,
+ "match_weight": 0.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0024714302661236085,
+ "match_probability": 0.60788,
+ "match_weight": 0.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0024912017082525974,
+ "match_probability": 0.61225,
+ "match_weight": 0.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002510973150381586,
+ "match_probability": 0.61797,
+ "match_weight": 0.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002530744592510575,
+ "match_probability": 0.62072,
+ "match_weight": 0.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002550516034639564,
+ "match_probability": 0.62199,
+ "match_weight": 0.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0025702874767685527,
+ "match_probability": 0.62573,
+ "match_weight": 0.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0025900589188975415,
+ "match_probability": 0.63318,
+ "match_weight": 0.79,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002629601803155519,
+ "match_probability": 0.64007,
+ "match_weight": 0.83,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.002649373245284508,
+ "match_probability": 0.64653,
+ "match_weight": 0.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0029261734350903524,
+ "match_probability": 0.65464,
+ "match_weight": 0.92,
+ "prop": 0.00027680018980584444
+ },
+ {
+ "cum_prop": 0.0029459448772193413,
+ "match_probability": 0.65954,
+ "match_weight": 0.95,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00296571631934833,
+ "match_probability": 0.66939,
+ "match_weight": 1.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.002985487761477319,
+ "match_probability": 0.67887,
+ "match_weight": 1.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0030052592036063077,
+ "match_probability": 0.67945,
+ "match_weight": 1.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0030250306457352966,
+ "match_probability": 0.68099,
+ "match_weight": 1.09,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0030448020878642854,
+ "match_probability": 0.68445,
+ "match_weight": 1.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003084344972122263,
+ "match_probability": 0.68527,
+ "match_weight": 1.12,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.003104116414251252,
+ "match_probability": 0.68561,
+ "match_weight": 1.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0031238878563802407,
+ "match_probability": 0.69065,
+ "match_weight": 1.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0031436592985092295,
+ "match_probability": 0.69213,
+ "match_weight": 1.17,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0031634307406382184,
+ "match_probability": 0.69612,
+ "match_weight": 1.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003183202182767207,
+ "match_probability": 0.7016,
+ "match_weight": 1.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003202973624896196,
+ "match_probability": 0.70173,
+ "match_weight": 1.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003222745067025185,
+ "match_probability": 0.70567,
+ "match_weight": 1.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0032425165091541737,
+ "match_probability": 0.70696,
+ "match_weight": 1.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0032622879512831625,
+ "match_probability": 0.70932,
+ "match_weight": 1.29,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0032820593934121513,
+ "match_probability": 0.70989,
+ "match_weight": 1.29,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00330183083554114,
+ "match_probability": 0.72092,
+ "match_weight": 1.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003321602277670129,
+ "match_probability": 0.72923,
+ "match_weight": 1.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003341373719799118,
+ "match_probability": 0.73507,
+ "match_weight": 1.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0033611451619281066,
+ "match_probability": 0.73659,
+ "match_weight": 1.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0033809166040570954,
+ "match_probability": 0.73869,
+ "match_weight": 1.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0034006880461860843,
+ "match_probability": 0.73939,
+ "match_weight": 1.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003420459488315073,
+ "match_probability": 0.74069,
+ "match_weight": 1.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003440230930444062,
+ "match_probability": 0.74147,
+ "match_weight": 1.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0034600023725730508,
+ "match_probability": 0.74214,
+ "match_weight": 1.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0034797738147020396,
+ "match_probability": 0.74235,
+ "match_weight": 1.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0034995452568310284,
+ "match_probability": 0.74281,
+ "match_weight": 1.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0035193166989600172,
+ "match_probability": 0.74584,
+ "match_weight": 1.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003539088141089006,
+ "match_probability": 0.74876,
+ "match_weight": 1.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003558859583217995,
+ "match_probability": 0.74983,
+ "match_weight": 1.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0035984024674759725,
+ "match_probability": 0.75027,
+ "match_weight": 1.59,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0036181739096049614,
+ "match_probability": 0.75162,
+ "match_weight": 1.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00363794535173395,
+ "match_probability": 0.75371,
+ "match_weight": 1.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003677488235991928,
+ "match_probability": 0.75716,
+ "match_weight": 1.64,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0036972596781209167,
+ "match_probability": 0.75822,
+ "match_weight": 1.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0037170311202499055,
+ "match_probability": 0.7591,
+ "match_weight": 1.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0037368025623788943,
+ "match_probability": 0.76512,
+ "match_weight": 1.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003756574004507883,
+ "match_probability": 0.77503,
+ "match_weight": 1.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003776345446636872,
+ "match_probability": 0.77712,
+ "match_weight": 1.8,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003796116888765861,
+ "match_probability": 0.77885,
+ "match_weight": 1.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0038158883308948496,
+ "match_probability": 0.78515,
+ "match_weight": 1.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0038356597730238385,
+ "match_probability": 0.78533,
+ "match_weight": 1.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0038554312151528273,
+ "match_probability": 0.7859,
+ "match_weight": 1.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003875202657281816,
+ "match_probability": 0.7891,
+ "match_weight": 1.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003894974099410805,
+ "match_probability": 0.78988,
+ "match_weight": 1.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.003934516983668783,
+ "match_probability": 0.79065,
+ "match_weight": 1.92,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0046067460160544044,
+ "match_probability": 0.79127,
+ "match_weight": 1.92,
+ "prop": 0.0006722290323856222
+ },
+ {
+ "cum_prop": 0.004626517458183393,
+ "match_probability": 0.79143,
+ "match_weight": 1.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004646288900312382,
+ "match_probability": 0.79435,
+ "match_weight": 1.95,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004666060342441371,
+ "match_probability": 0.80054,
+ "match_weight": 2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00468583178457036,
+ "match_probability": 0.80297,
+ "match_weight": 2.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004705603226699349,
+ "match_probability": 0.80359,
+ "match_weight": 2.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004725374668828337,
+ "match_probability": 0.8049,
+ "match_weight": 2.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004764917553086315,
+ "match_probability": 0.80873,
+ "match_weight": 2.08,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.004784688995215304,
+ "match_probability": 0.80972,
+ "match_weight": 2.09,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004804460437344293,
+ "match_probability": 0.81227,
+ "match_weight": 2.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0048242318794732815,
+ "match_probability": 0.8137,
+ "match_weight": 2.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00484400332160227,
+ "match_probability": 0.81873,
+ "match_weight": 2.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004863774763731259,
+ "match_probability": 0.82443,
+ "match_weight": 2.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004883546205860248,
+ "match_probability": 0.82464,
+ "match_weight": 2.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004903317647989237,
+ "match_probability": 0.83118,
+ "match_weight": 2.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004923089090118226,
+ "match_probability": 0.83157,
+ "match_weight": 2.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0049428605322472145,
+ "match_probability": 0.83649,
+ "match_weight": 2.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004962631974376203,
+ "match_probability": 0.83966,
+ "match_weight": 2.39,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.004982403416505192,
+ "match_probability": 0.83979,
+ "match_weight": 2.39,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005002174858634181,
+ "match_probability": 0.84311,
+ "match_weight": 2.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00502194630076317,
+ "match_probability": 0.84363,
+ "match_weight": 2.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005041717742892159,
+ "match_probability": 0.84466,
+ "match_weight": 2.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0050614891850211475,
+ "match_probability": 0.84597,
+ "match_weight": 2.46,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005081260627150136,
+ "match_probability": 0.84627,
+ "match_weight": 2.46,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005101032069279125,
+ "match_probability": 0.84709,
+ "match_weight": 2.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005120803511408114,
+ "match_probability": 0.84721,
+ "match_weight": 2.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005140574953537103,
+ "match_probability": 0.85097,
+ "match_weight": 2.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005160346395666092,
+ "match_probability": 0.85419,
+ "match_weight": 2.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00518011783779508,
+ "match_probability": 0.85558,
+ "match_weight": 2.57,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005199889279924069,
+ "match_probability": 0.85816,
+ "match_weight": 2.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005219660722053058,
+ "match_probability": 0.85956,
+ "match_weight": 2.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005239432164182047,
+ "match_probability": 0.85989,
+ "match_weight": 2.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005259203606311036,
+ "match_probability": 0.8618,
+ "match_weight": 2.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0052789750484400245,
+ "match_probability": 0.86199,
+ "match_weight": 2.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005298746490569013,
+ "match_probability": 0.86278,
+ "match_weight": 2.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005318517932698002,
+ "match_probability": 0.86409,
+ "match_weight": 2.67,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005338289374826991,
+ "match_probability": 0.86522,
+ "match_weight": 2.68,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00535806081695598,
+ "match_probability": 0.86646,
+ "match_weight": 2.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005377832259084969,
+ "match_probability": 0.86776,
+ "match_weight": 2.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0053976037012139575,
+ "match_probability": 0.86989,
+ "match_weight": 2.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005417375143342946,
+ "match_probability": 0.87035,
+ "match_weight": 2.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005437146585471935,
+ "match_probability": 0.87067,
+ "match_weight": 2.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005456918027600924,
+ "match_probability": 0.87221,
+ "match_weight": 2.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005476689469729913,
+ "match_probability": 0.87772,
+ "match_weight": 2.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005496460911858902,
+ "match_probability": 0.8782,
+ "match_weight": 2.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0055162323539878905,
+ "match_probability": 0.87898,
+ "match_weight": 2.86,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005536003796116879,
+ "match_probability": 0.87964,
+ "match_weight": 2.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005555775238245868,
+ "match_probability": 0.8805,
+ "match_weight": 2.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005575546680374857,
+ "match_probability": 0.88124,
+ "match_weight": 2.89,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005595318122503846,
+ "match_probability": 0.88201,
+ "match_weight": 2.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005615089564632835,
+ "match_probability": 0.88271,
+ "match_weight": 2.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005634861006761823,
+ "match_probability": 0.88302,
+ "match_weight": 2.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005654632448890812,
+ "match_probability": 0.88768,
+ "match_weight": 2.98,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00569417533314879,
+ "match_probability": 0.88911,
+ "match_weight": 3,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.005713946775277779,
+ "match_probability": 0.88922,
+ "match_weight": 3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0057337182174067676,
+ "match_probability": 0.89042,
+ "match_weight": 3.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005753489659535756,
+ "match_probability": 0.89194,
+ "match_weight": 3.05,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005773261101664745,
+ "match_probability": 0.89247,
+ "match_weight": 3.05,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005793032543793734,
+ "match_probability": 0.89352,
+ "match_weight": 3.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005812803985922723,
+ "match_probability": 0.89534,
+ "match_weight": 3.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005832575428051712,
+ "match_probability": 0.8955,
+ "match_weight": 3.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0058523468701807005,
+ "match_probability": 0.89596,
+ "match_weight": 3.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005872118312309689,
+ "match_probability": 0.89764,
+ "match_weight": 3.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005891889754438678,
+ "match_probability": 0.89852,
+ "match_weight": 3.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005911661196567667,
+ "match_probability": 0.9006,
+ "match_weight": 3.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005931432638696656,
+ "match_probability": 0.90137,
+ "match_weight": 3.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005951204080825645,
+ "match_probability": 0.90162,
+ "match_weight": 3.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0059709755229546335,
+ "match_probability": 0.90296,
+ "match_weight": 3.22,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.005990746965083622,
+ "match_probability": 0.90409,
+ "match_weight": 3.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006010518407212611,
+ "match_probability": 0.90593,
+ "match_weight": 3.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0060302898493416,
+ "match_probability": 0.90663,
+ "match_weight": 3.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006050061291470589,
+ "match_probability": 0.90768,
+ "match_weight": 3.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006069832733599578,
+ "match_probability": 0.90861,
+ "match_weight": 3.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0060896041757285664,
+ "match_probability": 0.90862,
+ "match_weight": 3.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006109375617857555,
+ "match_probability": 0.90882,
+ "match_weight": 3.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006129147059986544,
+ "match_probability": 0.91009,
+ "match_weight": 3.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006148918502115533,
+ "match_probability": 0.91017,
+ "match_weight": 3.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006168689944244522,
+ "match_probability": 0.91055,
+ "match_weight": 3.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006188461386373511,
+ "match_probability": 0.91057,
+ "match_weight": 3.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006208232828502499,
+ "match_probability": 0.91075,
+ "match_weight": 3.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006228004270631488,
+ "match_probability": 0.91253,
+ "match_weight": 3.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006247775712760477,
+ "match_probability": 0.91255,
+ "match_weight": 3.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006267547154889466,
+ "match_probability": 0.91267,
+ "match_weight": 3.39,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006287318597018455,
+ "match_probability": 0.91319,
+ "match_weight": 3.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0063070900391474435,
+ "match_probability": 0.91426,
+ "match_weight": 3.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006326861481276432,
+ "match_probability": 0.91466,
+ "match_weight": 3.42,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006346632923405421,
+ "match_probability": 0.91537,
+ "match_weight": 3.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00636640436553441,
+ "match_probability": 0.91548,
+ "match_weight": 3.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006386175807663399,
+ "match_probability": 0.91582,
+ "match_weight": 3.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006405947249792388,
+ "match_probability": 0.91672,
+ "match_weight": 3.46,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0064257186919213765,
+ "match_probability": 0.91863,
+ "match_weight": 3.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006445490134050365,
+ "match_probability": 0.92036,
+ "match_weight": 3.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006465261576179354,
+ "match_probability": 0.92038,
+ "match_weight": 3.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006485033018308343,
+ "match_probability": 0.92043,
+ "match_weight": 3.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006504804460437332,
+ "match_probability": 0.92072,
+ "match_weight": 3.54,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006524575902566321,
+ "match_probability": 0.92273,
+ "match_weight": 3.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0065443473446953095,
+ "match_probability": 0.92286,
+ "match_weight": 3.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006564118786824298,
+ "match_probability": 0.92329,
+ "match_weight": 3.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006583890228953287,
+ "match_probability": 0.92341,
+ "match_weight": 3.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006603661671082276,
+ "match_probability": 0.92417,
+ "match_weight": 3.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006623433113211265,
+ "match_probability": 0.92448,
+ "match_weight": 3.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006643204555340254,
+ "match_probability": 0.92467,
+ "match_weight": 3.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006662975997469242,
+ "match_probability": 0.92468,
+ "match_weight": 3.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006682747439598231,
+ "match_probability": 0.92558,
+ "match_weight": 3.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00670251888172722,
+ "match_probability": 0.92577,
+ "match_weight": 3.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006722290323856209,
+ "match_probability": 0.9264,
+ "match_weight": 3.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006742061765985198,
+ "match_probability": 0.92772,
+ "match_weight": 3.68,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0067618332081141866,
+ "match_probability": 0.92883,
+ "match_weight": 3.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006781604650243175,
+ "match_probability": 0.9289,
+ "match_weight": 3.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006801376092372164,
+ "match_probability": 0.92978,
+ "match_weight": 3.73,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006821147534501153,
+ "match_probability": 0.93075,
+ "match_weight": 3.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006840918976630142,
+ "match_probability": 0.93146,
+ "match_weight": 3.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006860690418759131,
+ "match_probability": 0.93189,
+ "match_weight": 3.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0068804618608881195,
+ "match_probability": 0.93234,
+ "match_weight": 3.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006900233303017108,
+ "match_probability": 0.9333,
+ "match_weight": 3.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006920004745146097,
+ "match_probability": 0.93372,
+ "match_weight": 3.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006939776187275086,
+ "match_probability": 0.93396,
+ "match_weight": 3.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006959547629404075,
+ "match_probability": 0.93504,
+ "match_weight": 3.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.006979319071533064,
+ "match_probability": 0.93594,
+ "match_weight": 3.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0069990905136620525,
+ "match_probability": 0.93607,
+ "match_weight": 3.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007018861955791041,
+ "match_probability": 0.93675,
+ "match_weight": 3.89,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00703863339792003,
+ "match_probability": 0.93743,
+ "match_weight": 3.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007058404840049019,
+ "match_probability": 0.93777,
+ "match_weight": 3.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007078176282178008,
+ "match_probability": 0.93824,
+ "match_weight": 3.93,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0071177191664359854,
+ "match_probability": 0.94016,
+ "match_weight": 3.97,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.007137490608564974,
+ "match_probability": 0.9413,
+ "match_weight": 4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007157262050693963,
+ "match_probability": 0.94144,
+ "match_weight": 4.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007177033492822952,
+ "match_probability": 0.9416,
+ "match_weight": 4.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00721657637708093,
+ "match_probability": 0.9424,
+ "match_weight": 4.03,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.007236347819209918,
+ "match_probability": 0.94242,
+ "match_weight": 4.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007256119261338907,
+ "match_probability": 0.94328,
+ "match_weight": 4.06,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007275890703467896,
+ "match_probability": 0.94369,
+ "match_weight": 4.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007295662145596885,
+ "match_probability": 0.94377,
+ "match_weight": 4.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007315433587725874,
+ "match_probability": 0.9439,
+ "match_weight": 4.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007354976471983851,
+ "match_probability": 0.94563,
+ "match_weight": 4.12,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.00737474791411284,
+ "match_probability": 0.94565,
+ "match_weight": 4.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007394519356241829,
+ "match_probability": 0.94732,
+ "match_weight": 4.17,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007414290798370818,
+ "match_probability": 0.94755,
+ "match_weight": 4.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007434062240499807,
+ "match_probability": 0.94798,
+ "match_weight": 4.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0074538336826287955,
+ "match_probability": 0.94799,
+ "match_weight": 4.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007473605124757784,
+ "match_probability": 0.94811,
+ "match_weight": 4.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007493376566886773,
+ "match_probability": 0.94831,
+ "match_weight": 4.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007513148009015762,
+ "match_probability": 0.94833,
+ "match_weight": 4.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007532919451144751,
+ "match_probability": 0.9484,
+ "match_weight": 4.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00755269089327374,
+ "match_probability": 0.94856,
+ "match_weight": 4.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007592233777531717,
+ "match_probability": 0.94963,
+ "match_weight": 4.24,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.007612005219660706,
+ "match_probability": 0.94968,
+ "match_weight": 4.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007631776661789695,
+ "match_probability": 0.94993,
+ "match_weight": 4.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007671319546047673,
+ "match_probability": 0.95005,
+ "match_weight": 4.25,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.007691090988176661,
+ "match_probability": 0.9504,
+ "match_weight": 4.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00771086243030565,
+ "match_probability": 0.95075,
+ "match_weight": 4.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007730633872434639,
+ "match_probability": 0.95097,
+ "match_weight": 4.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007750405314563628,
+ "match_probability": 0.95155,
+ "match_weight": 4.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007770176756692617,
+ "match_probability": 0.9529,
+ "match_weight": 4.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0077899481988216055,
+ "match_probability": 0.953,
+ "match_weight": 4.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007809719640950594,
+ "match_probability": 0.9535,
+ "match_weight": 4.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007829491083079584,
+ "match_probability": 0.95376,
+ "match_weight": 4.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007849262525208574,
+ "match_probability": 0.95464,
+ "match_weight": 4.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007869033967337563,
+ "match_probability": 0.95468,
+ "match_weight": 4.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007888805409466553,
+ "match_probability": 0.95489,
+ "match_weight": 4.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007908576851595543,
+ "match_probability": 0.95615,
+ "match_weight": 4.45,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007928348293724533,
+ "match_probability": 0.95628,
+ "match_weight": 4.45,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007948119735853522,
+ "match_probability": 0.95695,
+ "match_weight": 4.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.007967891177982512,
+ "match_probability": 0.95709,
+ "match_weight": 4.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00800743406224049,
+ "match_probability": 0.95717,
+ "match_weight": 4.48,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.00802720550436948,
+ "match_probability": 0.95754,
+ "match_weight": 4.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008046976946498469,
+ "match_probability": 0.9583,
+ "match_weight": 4.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008066748388627459,
+ "match_probability": 0.95894,
+ "match_weight": 4.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008086519830756448,
+ "match_probability": 0.95978,
+ "match_weight": 4.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008106291272885438,
+ "match_probability": 0.95981,
+ "match_weight": 4.58,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008126062715014428,
+ "match_probability": 0.96005,
+ "match_weight": 4.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008145834157143417,
+ "match_probability": 0.96008,
+ "match_weight": 4.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008165605599272407,
+ "match_probability": 0.96036,
+ "match_weight": 4.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008205148483530385,
+ "match_probability": 0.9606,
+ "match_weight": 4.61,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.008224919925659374,
+ "match_probability": 0.9607,
+ "match_weight": 4.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008244691367788364,
+ "match_probability": 0.96107,
+ "match_weight": 4.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008264462809917354,
+ "match_probability": 0.96146,
+ "match_weight": 4.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008284234252046344,
+ "match_probability": 0.96162,
+ "match_weight": 4.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008304005694175333,
+ "match_probability": 0.96179,
+ "match_weight": 4.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008323777136304323,
+ "match_probability": 0.96207,
+ "match_weight": 4.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008343548578433313,
+ "match_probability": 0.96238,
+ "match_weight": 4.68,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008363320020562302,
+ "match_probability": 0.96272,
+ "match_weight": 4.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008383091462691292,
+ "match_probability": 0.96289,
+ "match_weight": 4.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008402862904820282,
+ "match_probability": 0.96299,
+ "match_weight": 4.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008422634346949271,
+ "match_probability": 0.96321,
+ "match_weight": 4.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008442405789078261,
+ "match_probability": 0.96341,
+ "match_weight": 4.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008481948673336239,
+ "match_probability": 0.96385,
+ "match_weight": 4.74,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.008501720115465228,
+ "match_probability": 0.96439,
+ "match_weight": 4.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008521491557594218,
+ "match_probability": 0.96447,
+ "match_weight": 4.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008541262999723208,
+ "match_probability": 0.96492,
+ "match_weight": 4.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008561034441852198,
+ "match_probability": 0.96519,
+ "match_weight": 4.79,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008580805883981187,
+ "match_probability": 0.9654,
+ "match_weight": 4.8,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008600577326110177,
+ "match_probability": 0.96554,
+ "match_weight": 4.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008620348768239167,
+ "match_probability": 0.96559,
+ "match_weight": 4.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008640120210368156,
+ "match_probability": 0.96566,
+ "match_weight": 4.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008659891652497146,
+ "match_probability": 0.96572,
+ "match_weight": 4.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008679663094626136,
+ "match_probability": 0.96578,
+ "match_weight": 4.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008699434536755125,
+ "match_probability": 0.96615,
+ "match_weight": 4.83,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008719205978884115,
+ "match_probability": 0.96653,
+ "match_weight": 4.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008738977421013105,
+ "match_probability": 0.96726,
+ "match_weight": 4.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008778520305271082,
+ "match_probability": 0.96747,
+ "match_weight": 4.89,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.008798291747400072,
+ "match_probability": 0.96777,
+ "match_weight": 4.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008818063189529062,
+ "match_probability": 0.96784,
+ "match_weight": 4.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008837834631658052,
+ "match_probability": 0.96789,
+ "match_weight": 4.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00887737751591603,
+ "match_probability": 0.96822,
+ "match_weight": 4.93,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.008897148958045019,
+ "match_probability": 0.96858,
+ "match_weight": 4.95,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008916920400174009,
+ "match_probability": 0.96897,
+ "match_weight": 4.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008936691842302998,
+ "match_probability": 0.96898,
+ "match_weight": 4.97,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008956463284431988,
+ "match_probability": 0.96918,
+ "match_weight": 4.97,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008976234726560978,
+ "match_probability": 0.9697,
+ "match_weight": 5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.008996006168689967,
+ "match_probability": 0.96971,
+ "match_weight": 5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009015777610818957,
+ "match_probability": 0.96974,
+ "match_weight": 5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009035549052947947,
+ "match_probability": 0.96987,
+ "match_weight": 5.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009055320495076936,
+ "match_probability": 0.97015,
+ "match_weight": 5.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009075091937205926,
+ "match_probability": 0.97023,
+ "match_weight": 5.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009114634821463904,
+ "match_probability": 0.97025,
+ "match_weight": 5.03,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.009134406263592893,
+ "match_probability": 0.97035,
+ "match_weight": 5.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009154177705721883,
+ "match_probability": 0.97112,
+ "match_weight": 5.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009173949147850873,
+ "match_probability": 0.97156,
+ "match_weight": 5.09,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009193720589979863,
+ "match_probability": 0.97193,
+ "match_weight": 5.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009213492032108852,
+ "match_probability": 0.97204,
+ "match_weight": 5.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009233263474237842,
+ "match_probability": 0.97228,
+ "match_weight": 5.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00927280635849582,
+ "match_probability": 0.9723,
+ "match_weight": 5.13,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.00929257780062481,
+ "match_probability": 0.97241,
+ "match_weight": 5.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009312349242753799,
+ "match_probability": 0.97287,
+ "match_weight": 5.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009391435011269754,
+ "match_probability": 0.97307,
+ "match_weight": 5.18,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.009411206453398744,
+ "match_probability": 0.9733,
+ "match_weight": 5.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009430977895527734,
+ "match_probability": 0.97346,
+ "match_weight": 5.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009450749337656723,
+ "match_probability": 0.97348,
+ "match_weight": 5.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009470520779785713,
+ "match_probability": 0.97417,
+ "match_weight": 5.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009490292221914703,
+ "match_probability": 0.97453,
+ "match_weight": 5.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009510063664043692,
+ "match_probability": 0.97455,
+ "match_weight": 5.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009529835106172682,
+ "match_probability": 0.97462,
+ "match_weight": 5.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009549606548301672,
+ "match_probability": 0.97475,
+ "match_weight": 5.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009569377990430662,
+ "match_probability": 0.97539,
+ "match_weight": 5.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009589149432559651,
+ "match_probability": 0.97547,
+ "match_weight": 5.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009608920874688641,
+ "match_probability": 0.97551,
+ "match_weight": 5.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00962869231681763,
+ "match_probability": 0.97568,
+ "match_weight": 5.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00964846375894662,
+ "match_probability": 0.9764,
+ "match_weight": 5.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.00966823520107561,
+ "match_probability": 0.97656,
+ "match_weight": 5.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009707778085333588,
+ "match_probability": 0.9766,
+ "match_weight": 5.38,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.009727549527462577,
+ "match_probability": 0.97679,
+ "match_weight": 5.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009767092411720555,
+ "match_probability": 0.97681,
+ "match_weight": 5.4,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.009786863853849545,
+ "match_probability": 0.97686,
+ "match_weight": 5.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009806635295978534,
+ "match_probability": 0.97703,
+ "match_weight": 5.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009826406738107524,
+ "match_probability": 0.97738,
+ "match_weight": 5.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009846178180236514,
+ "match_probability": 0.97741,
+ "match_weight": 5.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009865949622365503,
+ "match_probability": 0.97744,
+ "match_weight": 5.44,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009885721064494493,
+ "match_probability": 0.97774,
+ "match_weight": 5.46,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009905492506623483,
+ "match_probability": 0.97793,
+ "match_weight": 5.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009925263948752473,
+ "match_probability": 0.97799,
+ "match_weight": 5.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009945035390881462,
+ "match_probability": 0.97807,
+ "match_weight": 5.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009964806833010452,
+ "match_probability": 0.97813,
+ "match_weight": 5.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.009984578275139442,
+ "match_probability": 0.97816,
+ "match_weight": 5.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010004349717268431,
+ "match_probability": 0.97818,
+ "match_weight": 5.49,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010043892601526409,
+ "match_probability": 0.9782,
+ "match_weight": 5.49,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.010063664043655399,
+ "match_probability": 0.97827,
+ "match_weight": 5.49,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010083435485784388,
+ "match_probability": 0.97853,
+ "match_weight": 5.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010103206927913378,
+ "match_probability": 0.97867,
+ "match_weight": 5.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010122978370042368,
+ "match_probability": 0.97869,
+ "match_weight": 5.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010142749812171357,
+ "match_probability": 0.97877,
+ "match_weight": 5.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010162521254300347,
+ "match_probability": 0.97908,
+ "match_weight": 5.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010182292696429337,
+ "match_probability": 0.97933,
+ "match_weight": 5.57,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010202064138558327,
+ "match_probability": 0.97963,
+ "match_weight": 5.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010221835580687316,
+ "match_probability": 0.9798,
+ "match_weight": 5.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010241607022816306,
+ "match_probability": 0.97984,
+ "match_weight": 5.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010261378464945296,
+ "match_probability": 0.9799,
+ "match_weight": 5.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010300921349203273,
+ "match_probability": 0.98004,
+ "match_weight": 5.62,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.010320692791332263,
+ "match_probability": 0.98009,
+ "match_weight": 5.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010340464233461253,
+ "match_probability": 0.98023,
+ "match_weight": 5.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010498635770493163,
+ "match_probability": 0.98035,
+ "match_weight": 5.64,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.010518407212622153,
+ "match_probability": 0.98045,
+ "match_weight": 5.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010538178654751143,
+ "match_probability": 0.98049,
+ "match_weight": 5.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010557950096880132,
+ "match_probability": 0.98067,
+ "match_weight": 5.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010577721539009122,
+ "match_probability": 0.98076,
+ "match_weight": 5.67,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0106172644232671,
+ "match_probability": 0.98082,
+ "match_weight": 5.68,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01063703586539609,
+ "match_probability": 0.98113,
+ "match_weight": 5.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010656807307525079,
+ "match_probability": 0.98116,
+ "match_weight": 5.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010676578749654069,
+ "match_probability": 0.98119,
+ "match_weight": 5.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010696350191783058,
+ "match_probability": 0.9813,
+ "match_weight": 5.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010716121633912048,
+ "match_probability": 0.98137,
+ "match_weight": 5.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010735893076041038,
+ "match_probability": 0.98159,
+ "match_weight": 5.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010755664518170028,
+ "match_probability": 0.98165,
+ "match_weight": 5.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010775435960299017,
+ "match_probability": 0.98184,
+ "match_weight": 5.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010795207402428007,
+ "match_probability": 0.98214,
+ "match_weight": 5.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010814978844556997,
+ "match_probability": 0.98222,
+ "match_weight": 5.79,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010834750286685986,
+ "match_probability": 0.98267,
+ "match_weight": 5.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010854521728814976,
+ "match_probability": 0.98278,
+ "match_weight": 5.83,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010874293170943966,
+ "match_probability": 0.98279,
+ "match_weight": 5.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010894064613072955,
+ "match_probability": 0.98289,
+ "match_weight": 5.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010913836055201945,
+ "match_probability": 0.983,
+ "match_weight": 5.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010933607497330935,
+ "match_probability": 0.9831,
+ "match_weight": 5.86,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010953378939459925,
+ "match_probability": 0.98314,
+ "match_weight": 5.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010973150381588914,
+ "match_probability": 0.98317,
+ "match_weight": 5.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.010992921823717904,
+ "match_probability": 0.98331,
+ "match_weight": 5.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011012693265846894,
+ "match_probability": 0.98343,
+ "match_weight": 5.89,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011032464707975883,
+ "match_probability": 0.98351,
+ "match_weight": 5.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011052236150104873,
+ "match_probability": 0.98356,
+ "match_weight": 5.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011072007592233863,
+ "match_probability": 0.98366,
+ "match_weight": 5.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01111155047649184,
+ "match_probability": 0.98368,
+ "match_weight": 5.91,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01113132191862083,
+ "match_probability": 0.98373,
+ "match_weight": 5.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01115109336074982,
+ "match_probability": 0.98379,
+ "match_weight": 5.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01117086480287881,
+ "match_probability": 0.98383,
+ "match_weight": 5.93,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011190636245007799,
+ "match_probability": 0.98396,
+ "match_weight": 5.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011210407687136789,
+ "match_probability": 0.98397,
+ "match_weight": 5.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011230179129265778,
+ "match_probability": 0.98399,
+ "match_weight": 5.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011249950571394768,
+ "match_probability": 0.98408,
+ "match_weight": 5.95,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011269722013523758,
+ "match_probability": 0.98415,
+ "match_weight": 5.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011289493455652748,
+ "match_probability": 0.98416,
+ "match_weight": 5.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011309264897781737,
+ "match_probability": 0.98421,
+ "match_weight": 5.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011329036339910727,
+ "match_probability": 0.98424,
+ "match_weight": 5.97,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011368579224168705,
+ "match_probability": 0.98425,
+ "match_weight": 5.97,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.011388350666297694,
+ "match_probability": 0.98438,
+ "match_weight": 5.98,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011408122108426684,
+ "match_probability": 0.98442,
+ "match_weight": 5.98,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011427893550555674,
+ "match_probability": 0.98448,
+ "match_weight": 5.99,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011447664992684663,
+ "match_probability": 0.98462,
+ "match_weight": 6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011467436434813653,
+ "match_probability": 0.98476,
+ "match_weight": 6.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011487207876942643,
+ "match_probability": 0.98478,
+ "match_weight": 6.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011506979319071632,
+ "match_probability": 0.98485,
+ "match_weight": 6.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011526750761200622,
+ "match_probability": 0.98495,
+ "match_weight": 6.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0115662936454586,
+ "match_probability": 0.98498,
+ "match_weight": 6.04,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01158606508758759,
+ "match_probability": 0.98506,
+ "match_weight": 6.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01160583652971658,
+ "match_probability": 0.98511,
+ "match_weight": 6.05,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011645379413974557,
+ "match_probability": 0.98513,
+ "match_weight": 6.05,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.011665150856103547,
+ "match_probability": 0.98522,
+ "match_weight": 6.06,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011704693740361524,
+ "match_probability": 0.98533,
+ "match_weight": 6.07,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.011724465182490514,
+ "match_probability": 0.9854,
+ "match_weight": 6.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011744236624619504,
+ "match_probability": 0.98548,
+ "match_weight": 6.09,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011764008066748493,
+ "match_probability": 0.98558,
+ "match_weight": 6.09,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011783779508877483,
+ "match_probability": 0.98584,
+ "match_weight": 6.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011803550951006473,
+ "match_probability": 0.9859,
+ "match_weight": 6.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011823322393135462,
+ "match_probability": 0.98594,
+ "match_weight": 6.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011843093835264452,
+ "match_probability": 0.98597,
+ "match_weight": 6.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011862865277393442,
+ "match_probability": 0.98601,
+ "match_weight": 6.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011882636719522431,
+ "match_probability": 0.98618,
+ "match_weight": 6.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.011902408161651421,
+ "match_probability": 0.98619,
+ "match_weight": 6.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01192217960378041,
+ "match_probability": 0.98625,
+ "match_weight": 6.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0119419510459094,
+ "match_probability": 0.98634,
+ "match_weight": 6.17,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01196172248803839,
+ "match_probability": 0.98638,
+ "match_weight": 6.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01198149393016738,
+ "match_probability": 0.98647,
+ "match_weight": 6.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012021036814425358,
+ "match_probability": 0.98656,
+ "match_weight": 6.2,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.012040808256554347,
+ "match_probability": 0.98658,
+ "match_weight": 6.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012060579698683337,
+ "match_probability": 0.98673,
+ "match_weight": 6.22,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012080351140812327,
+ "match_probability": 0.98683,
+ "match_weight": 6.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012100122582941316,
+ "match_probability": 0.98691,
+ "match_weight": 6.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012119894025070306,
+ "match_probability": 0.98696,
+ "match_weight": 6.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012139665467199296,
+ "match_probability": 0.98697,
+ "match_weight": 6.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012159436909328285,
+ "match_probability": 0.98698,
+ "match_weight": 6.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012198979793586263,
+ "match_probability": 0.98714,
+ "match_weight": 6.26,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.012218751235715253,
+ "match_probability": 0.98719,
+ "match_weight": 6.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012238522677844242,
+ "match_probability": 0.9872,
+ "match_weight": 6.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012258294119973232,
+ "match_probability": 0.98738,
+ "match_weight": 6.29,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012278065562102222,
+ "match_probability": 0.98746,
+ "match_weight": 6.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012297837004231212,
+ "match_probability": 0.98752,
+ "match_weight": 6.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012317608446360201,
+ "match_probability": 0.98753,
+ "match_weight": 6.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012337379888489191,
+ "match_probability": 0.98754,
+ "match_weight": 6.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01235715133061818,
+ "match_probability": 0.98764,
+ "match_weight": 6.32,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01237692277274717,
+ "match_probability": 0.98774,
+ "match_weight": 6.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01239669421487616,
+ "match_probability": 0.98777,
+ "match_weight": 6.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01241646565700515,
+ "match_probability": 0.98787,
+ "match_weight": 6.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012456008541263127,
+ "match_probability": 0.98788,
+ "match_weight": 6.35,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.012475779983392117,
+ "match_probability": 0.98795,
+ "match_weight": 6.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012495551425521107,
+ "match_probability": 0.98796,
+ "match_weight": 6.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012515322867650096,
+ "match_probability": 0.98798,
+ "match_weight": 6.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012535094309779086,
+ "match_probability": 0.98809,
+ "match_weight": 6.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012574637194037064,
+ "match_probability": 0.98823,
+ "match_weight": 6.39,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.012594408636166054,
+ "match_probability": 0.98828,
+ "match_weight": 6.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012614180078295043,
+ "match_probability": 0.9883,
+ "match_weight": 6.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012633951520424033,
+ "match_probability": 0.98835,
+ "match_weight": 6.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012653722962553023,
+ "match_probability": 0.98841,
+ "match_weight": 6.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012673494404682012,
+ "match_probability": 0.98846,
+ "match_weight": 6.42,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012693265846811002,
+ "match_probability": 0.98853,
+ "match_weight": 6.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012713037288939992,
+ "match_probability": 0.98876,
+ "match_weight": 6.46,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01275258017319797,
+ "match_probability": 0.98881,
+ "match_weight": 6.47,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.012772351615326959,
+ "match_probability": 0.98883,
+ "match_weight": 6.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012792123057455949,
+ "match_probability": 0.98889,
+ "match_weight": 6.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012811894499584938,
+ "match_probability": 0.98891,
+ "match_weight": 6.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012831665941713928,
+ "match_probability": 0.98899,
+ "match_weight": 6.49,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012851437383842918,
+ "match_probability": 0.98904,
+ "match_weight": 6.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012871208825971907,
+ "match_probability": 0.98913,
+ "match_weight": 6.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012890980268100897,
+ "match_probability": 0.98915,
+ "match_weight": 6.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012910751710229887,
+ "match_probability": 0.98916,
+ "match_weight": 6.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012930523152358877,
+ "match_probability": 0.98919,
+ "match_weight": 6.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012950294594487866,
+ "match_probability": 0.9892,
+ "match_weight": 6.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012970066036616856,
+ "match_probability": 0.98921,
+ "match_weight": 6.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.012989837478745846,
+ "match_probability": 0.98923,
+ "match_weight": 6.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013009608920874835,
+ "match_probability": 0.98928,
+ "match_weight": 6.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013029380363003825,
+ "match_probability": 0.98942,
+ "match_weight": 6.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013049151805132815,
+ "match_probability": 0.98944,
+ "match_weight": 6.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013068923247261804,
+ "match_probability": 0.9895,
+ "match_weight": 6.56,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013088694689390794,
+ "match_probability": 0.98952,
+ "match_weight": 6.56,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013108466131519784,
+ "match_probability": 0.98954,
+ "match_weight": 6.56,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013128237573648774,
+ "match_probability": 0.9897,
+ "match_weight": 6.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01318755190003574,
+ "match_probability": 0.98974,
+ "match_weight": 6.59,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01320732334216473,
+ "match_probability": 0.98979,
+ "match_weight": 6.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01322709478429372,
+ "match_probability": 0.9898,
+ "match_weight": 6.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01324686622642271,
+ "match_probability": 0.98982,
+ "match_weight": 6.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0132666376685517,
+ "match_probability": 0.98984,
+ "match_weight": 6.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01328640911068069,
+ "match_probability": 0.98995,
+ "match_weight": 6.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013306180552809679,
+ "match_probability": 0.99001,
+ "match_weight": 6.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013345723437067657,
+ "match_probability": 0.99002,
+ "match_weight": 6.63,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.013405037763454624,
+ "match_probability": 0.99009,
+ "match_weight": 6.64,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.013444580647712602,
+ "match_probability": 0.9901,
+ "match_weight": 6.64,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.013464352089841591,
+ "match_probability": 0.99011,
+ "match_weight": 6.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013484123531970581,
+ "match_probability": 0.99013,
+ "match_weight": 6.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01350389497409957,
+ "match_probability": 0.99016,
+ "match_weight": 6.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01352366641622856,
+ "match_probability": 0.99017,
+ "match_weight": 6.65,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01354343785835755,
+ "match_probability": 0.99018,
+ "match_weight": 6.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013582980742615528,
+ "match_probability": 0.99036,
+ "match_weight": 6.68,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.013602752184744517,
+ "match_probability": 0.99047,
+ "match_weight": 6.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013622523626873507,
+ "match_probability": 0.99048,
+ "match_weight": 6.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013642295069002497,
+ "match_probability": 0.99057,
+ "match_weight": 6.71,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013701609395389464,
+ "match_probability": 0.99066,
+ "match_weight": 6.73,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.013721380837518454,
+ "match_probability": 0.99067,
+ "match_weight": 6.73,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013741152279647444,
+ "match_probability": 0.99075,
+ "match_weight": 6.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013780695163905421,
+ "match_probability": 0.99082,
+ "match_weight": 6.75,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.013800466606034411,
+ "match_probability": 0.99083,
+ "match_weight": 6.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0138202380481634,
+ "match_probability": 0.99087,
+ "match_weight": 6.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01384000949029239,
+ "match_probability": 0.9909,
+ "match_weight": 6.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01385978093242138,
+ "match_probability": 0.99092,
+ "match_weight": 6.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01387955237455037,
+ "match_probability": 0.99094,
+ "match_weight": 6.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01389932381667936,
+ "match_probability": 0.99098,
+ "match_weight": 6.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01391909525880835,
+ "match_probability": 0.99099,
+ "match_weight": 6.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.013958638143066327,
+ "match_probability": 0.99107,
+ "match_weight": 6.79,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.013998181027324304,
+ "match_probability": 0.99117,
+ "match_weight": 6.81,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014017952469453294,
+ "match_probability": 0.99118,
+ "match_weight": 6.81,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014037723911582284,
+ "match_probability": 0.99126,
+ "match_weight": 6.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014057495353711274,
+ "match_probability": 0.99128,
+ "match_weight": 6.83,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014077266795840263,
+ "match_probability": 0.99133,
+ "match_weight": 6.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014097038237969253,
+ "match_probability": 0.99135,
+ "match_weight": 6.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014116809680098243,
+ "match_probability": 0.99137,
+ "match_weight": 6.84,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014136581122227232,
+ "match_probability": 0.99142,
+ "match_weight": 6.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014156352564356222,
+ "match_probability": 0.99145,
+ "match_weight": 6.86,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014176124006485212,
+ "match_probability": 0.99152,
+ "match_weight": 6.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014195895448614201,
+ "match_probability": 0.99157,
+ "match_weight": 6.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014235438332872179,
+ "match_probability": 0.99161,
+ "match_weight": 6.89,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014255209775001169,
+ "match_probability": 0.99164,
+ "match_weight": 6.89,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014274981217130158,
+ "match_probability": 0.99172,
+ "match_weight": 6.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014294752659259148,
+ "match_probability": 0.99176,
+ "match_weight": 6.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014314524101388138,
+ "match_probability": 0.99186,
+ "match_weight": 6.93,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014334295543517128,
+ "match_probability": 0.9919,
+ "match_weight": 6.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014354066985646117,
+ "match_probability": 0.99192,
+ "match_weight": 6.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014373838427775107,
+ "match_probability": 0.99193,
+ "match_weight": 6.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014393609869904097,
+ "match_probability": 0.99195,
+ "match_weight": 6.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014413381312033086,
+ "match_probability": 0.99201,
+ "match_weight": 6.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014433152754162076,
+ "match_probability": 0.99205,
+ "match_weight": 6.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014472695638420054,
+ "match_probability": 0.99206,
+ "match_weight": 6.97,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014492467080549043,
+ "match_probability": 0.99209,
+ "match_weight": 6.97,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014512238522678033,
+ "match_probability": 0.99213,
+ "match_weight": 6.98,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01455178140693601,
+ "match_probability": 0.99215,
+ "match_weight": 6.98,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014571552849065,
+ "match_probability": 0.99224,
+ "match_weight": 7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01459132429119399,
+ "match_probability": 0.99225,
+ "match_weight": 7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01461109573332298,
+ "match_probability": 0.9923,
+ "match_weight": 7.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014650638617580957,
+ "match_probability": 0.99232,
+ "match_weight": 7.01,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014670410059709947,
+ "match_probability": 0.99234,
+ "match_weight": 7.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014690181501838937,
+ "match_probability": 0.99235,
+ "match_weight": 7.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014709952943967926,
+ "match_probability": 0.99243,
+ "match_weight": 7.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014729724386096916,
+ "match_probability": 0.99245,
+ "match_weight": 7.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014749495828225906,
+ "match_probability": 0.99248,
+ "match_weight": 7.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014769267270354896,
+ "match_probability": 0.99251,
+ "match_weight": 7.05,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014789038712483885,
+ "match_probability": 0.99257,
+ "match_weight": 7.06,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014808810154612875,
+ "match_probability": 0.9926,
+ "match_weight": 7.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014828581596741865,
+ "match_probability": 0.99262,
+ "match_weight": 7.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014868124480999842,
+ "match_probability": 0.99264,
+ "match_weight": 7.08,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.014887895923128832,
+ "match_probability": 0.99267,
+ "match_weight": 7.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014907667365257822,
+ "match_probability": 0.99275,
+ "match_weight": 7.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014927438807386811,
+ "match_probability": 0.99279,
+ "match_weight": 7.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014947210249515801,
+ "match_probability": 0.99283,
+ "match_weight": 7.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.014986753133773779,
+ "match_probability": 0.99284,
+ "match_weight": 7.12,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015006524575902768,
+ "match_probability": 0.99293,
+ "match_weight": 7.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015026296018031758,
+ "match_probability": 0.99299,
+ "match_weight": 7.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015065838902289736,
+ "match_probability": 0.99302,
+ "match_weight": 7.15,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015085610344418725,
+ "match_probability": 0.99304,
+ "match_weight": 7.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015105381786547715,
+ "match_probability": 0.99315,
+ "match_weight": 7.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015125153228676705,
+ "match_probability": 0.99317,
+ "match_weight": 7.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015144924670805695,
+ "match_probability": 0.99326,
+ "match_weight": 7.2,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015164696112934684,
+ "match_probability": 0.99327,
+ "match_weight": 7.21,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015204238997192662,
+ "match_probability": 0.9933,
+ "match_weight": 7.21,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015224010439321652,
+ "match_probability": 0.99331,
+ "match_weight": 7.21,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01526355332357963,
+ "match_probability": 0.99332,
+ "match_weight": 7.22,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015283324765708619,
+ "match_probability": 0.99341,
+ "match_weight": 7.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015303096207837609,
+ "match_probability": 0.99344,
+ "match_weight": 7.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015322867649966598,
+ "match_probability": 0.99345,
+ "match_weight": 7.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015342639092095588,
+ "match_probability": 0.99348,
+ "match_weight": 7.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015362410534224578,
+ "match_probability": 0.99349,
+ "match_weight": 7.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015382181976353567,
+ "match_probability": 0.99353,
+ "match_weight": 7.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015421724860611545,
+ "match_probability": 0.99356,
+ "match_weight": 7.27,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015441496302740535,
+ "match_probability": 0.99357,
+ "match_weight": 7.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015461267744869524,
+ "match_probability": 0.99359,
+ "match_weight": 7.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015481039186998514,
+ "match_probability": 0.99361,
+ "match_weight": 7.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015500810629127504,
+ "match_probability": 0.99364,
+ "match_weight": 7.29,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015520582071256494,
+ "match_probability": 0.99373,
+ "match_weight": 7.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015540353513385483,
+ "match_probability": 0.99374,
+ "match_weight": 7.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015560124955514473,
+ "match_probability": 0.99375,
+ "match_weight": 7.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01559966783977245,
+ "match_probability": 0.99377,
+ "match_weight": 7.32,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01561943928190144,
+ "match_probability": 0.99382,
+ "match_weight": 7.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01563921072403043,
+ "match_probability": 0.99383,
+ "match_weight": 7.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01567875360828841,
+ "match_probability": 0.99387,
+ "match_weight": 7.34,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015698525050417397,
+ "match_probability": 0.99391,
+ "match_weight": 7.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015718296492546385,
+ "match_probability": 0.99393,
+ "match_weight": 7.35,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015738067934675373,
+ "match_probability": 0.99394,
+ "match_weight": 7.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01575783937680436,
+ "match_probability": 0.99396,
+ "match_weight": 7.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01581715370319133,
+ "match_probability": 0.99397,
+ "match_weight": 7.37,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.015856696587449308,
+ "match_probability": 0.99398,
+ "match_weight": 7.37,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.015876468029578296,
+ "match_probability": 0.99403,
+ "match_weight": 7.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015896239471707284,
+ "match_probability": 0.99405,
+ "match_weight": 7.38,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.015935782355965263,
+ "match_probability": 0.99406,
+ "match_weight": 7.39,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01599509668235223,
+ "match_probability": 0.99407,
+ "match_weight": 7.39,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01601486812448122,
+ "match_probability": 0.9941,
+ "match_weight": 7.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016034639566610207,
+ "match_probability": 0.99412,
+ "match_weight": 7.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016074182450868186,
+ "match_probability": 0.99413,
+ "match_weight": 7.4,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016093953892997174,
+ "match_probability": 0.99414,
+ "match_weight": 7.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016113725335126162,
+ "match_probability": 0.99416,
+ "match_weight": 7.41,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01613349677725515,
+ "match_probability": 0.99422,
+ "match_weight": 7.43,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01617303966151313,
+ "match_probability": 0.99423,
+ "match_weight": 7.43,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016192811103642117,
+ "match_probability": 0.99431,
+ "match_weight": 7.45,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016212582545771105,
+ "match_probability": 0.99438,
+ "match_weight": 7.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016252125430029084,
+ "match_probability": 0.99443,
+ "match_weight": 7.48,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016271896872158072,
+ "match_probability": 0.99446,
+ "match_weight": 7.49,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01629166831428706,
+ "match_probability": 0.99452,
+ "match_weight": 7.5,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01631143975641605,
+ "match_probability": 0.99454,
+ "match_weight": 7.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016331211198545036,
+ "match_probability": 0.99462,
+ "match_weight": 7.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016350982640674024,
+ "match_probability": 0.99464,
+ "match_weight": 7.53,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016370754082803012,
+ "match_probability": 0.99468,
+ "match_weight": 7.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016390525524932,
+ "match_probability": 0.99469,
+ "match_weight": 7.55,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01643006840918998,
+ "match_probability": 0.99476,
+ "match_weight": 7.57,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01646961129344796,
+ "match_probability": 0.99483,
+ "match_weight": 7.59,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016489382735576947,
+ "match_probability": 0.99484,
+ "match_weight": 7.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016528925619834926,
+ "match_probability": 0.99488,
+ "match_weight": 7.6,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016548697061963914,
+ "match_probability": 0.99489,
+ "match_weight": 7.6,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016568468504092902,
+ "match_probability": 0.99494,
+ "match_weight": 7.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01658823994622189,
+ "match_probability": 0.99495,
+ "match_weight": 7.62,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016608011388350878,
+ "match_probability": 0.99497,
+ "match_weight": 7.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016627782830479866,
+ "match_probability": 0.99498,
+ "match_weight": 7.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016667325714737845,
+ "match_probability": 0.99507,
+ "match_weight": 7.66,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016706868598995825,
+ "match_probability": 0.99514,
+ "match_weight": 7.68,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.016726640041124813,
+ "match_probability": 0.99515,
+ "match_weight": 7.68,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016766182925382792,
+ "match_probability": 0.99517,
+ "match_weight": 7.69,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01678595436751178,
+ "match_probability": 0.99519,
+ "match_weight": 7.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016805725809640768,
+ "match_probability": 0.99523,
+ "match_weight": 7.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016825497251769756,
+ "match_probability": 0.99529,
+ "match_weight": 7.72,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.016845268693898744,
+ "match_probability": 0.99534,
+ "match_weight": 7.74,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01690458302028571,
+ "match_probability": 0.99535,
+ "match_weight": 7.74,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01694412590454369,
+ "match_probability": 0.99536,
+ "match_weight": 7.74,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01696389734667268,
+ "match_probability": 0.99538,
+ "match_weight": 7.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017003440230930658,
+ "match_probability": 0.99539,
+ "match_weight": 7.76,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.017023211673059646,
+ "match_probability": 0.99541,
+ "match_weight": 7.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017042983115188634,
+ "match_probability": 0.99542,
+ "match_weight": 7.76,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017062754557317622,
+ "match_probability": 0.99543,
+ "match_weight": 7.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01708252599944661,
+ "match_probability": 0.99545,
+ "match_weight": 7.77,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017102297441575598,
+ "match_probability": 0.99546,
+ "match_weight": 7.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017122068883704586,
+ "match_probability": 0.99548,
+ "match_weight": 7.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017161611767962565,
+ "match_probability": 0.99551,
+ "match_weight": 7.79,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.017181383210091553,
+ "match_probability": 0.99553,
+ "match_weight": 7.8,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01724069753647852,
+ "match_probability": 0.99556,
+ "match_weight": 7.81,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01726046897860751,
+ "match_probability": 0.99558,
+ "match_weight": 7.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017280240420736497,
+ "match_probability": 0.99559,
+ "match_weight": 7.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017300011862865484,
+ "match_probability": 0.9956,
+ "match_weight": 7.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017319783304994472,
+ "match_probability": 0.99561,
+ "match_weight": 7.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017359326189252452,
+ "match_probability": 0.99562,
+ "match_weight": 7.83,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01741864051563942,
+ "match_probability": 0.99566,
+ "match_weight": 7.84,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.017438411957768407,
+ "match_probability": 0.99568,
+ "match_weight": 7.85,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017477954842026387,
+ "match_probability": 0.9957,
+ "match_weight": 7.86,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.017497726284155374,
+ "match_probability": 0.99573,
+ "match_weight": 7.87,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017517497726284362,
+ "match_probability": 0.99581,
+ "match_weight": 7.89,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01753726916841335,
+ "match_probability": 0.99583,
+ "match_weight": 7.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01755704061054234,
+ "match_probability": 0.99586,
+ "match_weight": 7.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017576812052671326,
+ "match_probability": 0.99587,
+ "match_weight": 7.91,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017596583494800314,
+ "match_probability": 0.99588,
+ "match_weight": 7.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01765589782118728,
+ "match_probability": 0.99591,
+ "match_weight": 7.93,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01769544070544526,
+ "match_probability": 0.99592,
+ "match_weight": 7.93,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01771521214757425,
+ "match_probability": 0.99594,
+ "match_weight": 7.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017734983589703237,
+ "match_probability": 0.99596,
+ "match_weight": 7.94,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017774526473961216,
+ "match_probability": 0.99598,
+ "match_weight": 7.95,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.017794297916090204,
+ "match_probability": 0.99606,
+ "match_weight": 7.98,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017814069358219192,
+ "match_probability": 0.99608,
+ "match_weight": 7.99,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01783384080034818,
+ "match_probability": 0.99609,
+ "match_weight": 7.99,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017853612242477168,
+ "match_probability": 0.99612,
+ "match_weight": 8,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017873383684606156,
+ "match_probability": 0.99613,
+ "match_weight": 8.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.017912926568864136,
+ "match_probability": 0.99614,
+ "match_weight": 8.01,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.017932698010993123,
+ "match_probability": 0.99615,
+ "match_weight": 8.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01795246945312211,
+ "match_probability": 0.99616,
+ "match_weight": 8.02,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0179722408952511,
+ "match_probability": 0.99619,
+ "match_weight": 8.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01801178377950908,
+ "match_probability": 0.9962,
+ "match_weight": 8.04,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.018031555221638067,
+ "match_probability": 0.99623,
+ "match_weight": 8.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018071098105896046,
+ "match_probability": 0.99626,
+ "match_weight": 8.06,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.018110640990154026,
+ "match_probability": 0.99627,
+ "match_weight": 8.06,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.018130412432283013,
+ "match_probability": 0.99628,
+ "match_weight": 8.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018150183874412,
+ "match_probability": 0.9963,
+ "match_weight": 8.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01816995531654099,
+ "match_probability": 0.99631,
+ "match_weight": 8.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018229269642927957,
+ "match_probability": 0.99632,
+ "match_weight": 8.08,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.018249041085056945,
+ "match_probability": 0.99633,
+ "match_weight": 8.08,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018268812527185933,
+ "match_probability": 0.99636,
+ "match_weight": 8.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01828858396931492,
+ "match_probability": 0.99637,
+ "match_weight": 8.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01830835541144391,
+ "match_probability": 0.99639,
+ "match_weight": 8.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018367669737830876,
+ "match_probability": 0.9964,
+ "match_weight": 8.11,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.018387441179959864,
+ "match_probability": 0.99641,
+ "match_weight": 8.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018407212622088852,
+ "match_probability": 0.99642,
+ "match_weight": 8.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01842698406421784,
+ "match_probability": 0.99645,
+ "match_weight": 8.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018446755506346828,
+ "match_probability": 0.99648,
+ "match_weight": 8.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018466526948475816,
+ "match_probability": 0.99649,
+ "match_weight": 8.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018486298390604804,
+ "match_probability": 0.9965,
+ "match_weight": 8.15,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01850606983273379,
+ "match_probability": 0.99654,
+ "match_weight": 8.17,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01852584127486278,
+ "match_probability": 0.99656,
+ "match_weight": 8.18,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018545612716991768,
+ "match_probability": 0.99659,
+ "match_weight": 8.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018565384159120756,
+ "match_probability": 0.9966,
+ "match_weight": 8.19,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018624698485507723,
+ "match_probability": 0.99663,
+ "match_weight": 8.21,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.01864446992763671,
+ "match_probability": 0.99664,
+ "match_weight": 8.21,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0186642413697657,
+ "match_probability": 0.99666,
+ "match_weight": 8.22,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018684012811894687,
+ "match_probability": 0.99667,
+ "match_weight": 8.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018703784254023675,
+ "match_probability": 0.99668,
+ "match_weight": 8.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018723555696152663,
+ "match_probability": 0.99671,
+ "match_weight": 8.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01874332713828165,
+ "match_probability": 0.99672,
+ "match_weight": 8.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01876309858041064,
+ "match_probability": 0.99673,
+ "match_weight": 8.25,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018802641464668618,
+ "match_probability": 0.99674,
+ "match_weight": 8.26,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.018822412906797606,
+ "match_probability": 0.99675,
+ "match_weight": 8.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018842184348926594,
+ "match_probability": 0.99676,
+ "match_weight": 8.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.018861955791055582,
+ "match_probability": 0.99677,
+ "match_weight": 8.27,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01888172723318457,
+ "match_probability": 0.9968,
+ "match_weight": 8.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01892127011744255,
+ "match_probability": 0.99681,
+ "match_weight": 8.29,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.018941041559571537,
+ "match_probability": 0.99683,
+ "match_weight": 8.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019000355885958504,
+ "match_probability": 0.99687,
+ "match_weight": 8.31,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.019020127328087492,
+ "match_probability": 0.9969,
+ "match_weight": 8.33,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01907944165447446,
+ "match_probability": 0.99691,
+ "match_weight": 8.33,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.019099213096603448,
+ "match_probability": 0.99692,
+ "match_weight": 8.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019118984538732436,
+ "match_probability": 0.99693,
+ "match_weight": 8.34,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019158527422990415,
+ "match_probability": 0.99694,
+ "match_weight": 8.35,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019178298865119403,
+ "match_probability": 0.99696,
+ "match_weight": 8.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01919807030724839,
+ "match_probability": 0.99698,
+ "match_weight": 8.36,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01921784174937738,
+ "match_probability": 0.99699,
+ "match_weight": 8.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01925738463363536,
+ "match_probability": 0.99701,
+ "match_weight": 8.38,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019296927517893338,
+ "match_probability": 0.99704,
+ "match_weight": 8.4,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019316698960022326,
+ "match_probability": 0.99705,
+ "match_weight": 8.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019336470402151314,
+ "match_probability": 0.99708,
+ "match_weight": 8.42,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0193562418442803,
+ "match_probability": 0.99709,
+ "match_weight": 8.42,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01937601328640929,
+ "match_probability": 0.99714,
+ "match_weight": 8.45,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019395784728538278,
+ "match_probability": 0.99718,
+ "match_weight": 8.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019415556170667266,
+ "match_probability": 0.99719,
+ "match_weight": 8.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019435327612796253,
+ "match_probability": 0.9972,
+ "match_weight": 8.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01945509905492524,
+ "match_probability": 0.99721,
+ "match_weight": 8.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.01949464193918322,
+ "match_probability": 0.99722,
+ "match_weight": 8.49,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.0195341848234412,
+ "match_probability": 0.99725,
+ "match_weight": 8.5,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019553956265570188,
+ "match_probability": 0.99726,
+ "match_weight": 8.51,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019593499149828168,
+ "match_probability": 0.99727,
+ "match_weight": 8.51,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019633042034086147,
+ "match_probability": 0.99728,
+ "match_weight": 8.52,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019672584918344126,
+ "match_probability": 0.99729,
+ "match_weight": 8.52,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019712127802602106,
+ "match_probability": 0.9973,
+ "match_weight": 8.53,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01979121357111806,
+ "match_probability": 0.99733,
+ "match_weight": 8.55,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.01981098501324705,
+ "match_probability": 0.99735,
+ "match_weight": 8.56,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019830756455376037,
+ "match_probability": 0.99736,
+ "match_weight": 8.56,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019870299339634016,
+ "match_probability": 0.99737,
+ "match_weight": 8.57,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.019890070781763004,
+ "match_probability": 0.99738,
+ "match_weight": 8.57,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.019929613666020984,
+ "match_probability": 0.99743,
+ "match_weight": 8.6,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.01994938510814997,
+ "match_probability": 0.99745,
+ "match_weight": 8.61,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020028470876665927,
+ "match_probability": 0.99746,
+ "match_weight": 8.62,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.020068013760923906,
+ "match_probability": 0.99748,
+ "match_weight": 8.63,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020087785203052894,
+ "match_probability": 0.99749,
+ "match_weight": 8.63,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020107556645181882,
+ "match_probability": 0.9975,
+ "match_weight": 8.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02012732808731087,
+ "match_probability": 0.99751,
+ "match_weight": 8.64,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020147099529439858,
+ "match_probability": 0.99753,
+ "match_weight": 8.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020166870971568846,
+ "match_probability": 0.99754,
+ "match_weight": 8.66,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020186642413697834,
+ "match_probability": 0.99758,
+ "match_weight": 8.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020206413855826822,
+ "match_probability": 0.99761,
+ "match_weight": 8.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02022618529795581,
+ "match_probability": 0.99765,
+ "match_weight": 8.73,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02026572818221379,
+ "match_probability": 0.99766,
+ "match_weight": 8.74,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020285499624342777,
+ "match_probability": 0.99769,
+ "match_weight": 8.75,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020325042508600757,
+ "match_probability": 0.99771,
+ "match_weight": 8.77,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020364585392858736,
+ "match_probability": 0.99772,
+ "match_weight": 8.77,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020384356834987724,
+ "match_probability": 0.99773,
+ "match_weight": 8.78,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02046344260350368,
+ "match_probability": 0.99775,
+ "match_weight": 8.79,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02050298548776166,
+ "match_probability": 0.99776,
+ "match_weight": 8.8,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020522756929890647,
+ "match_probability": 0.99779,
+ "match_weight": 8.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020542528372019635,
+ "match_probability": 0.9978,
+ "match_weight": 8.82,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020562299814148623,
+ "match_probability": 0.99781,
+ "match_weight": 8.83,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020601842698406602,
+ "match_probability": 0.99782,
+ "match_weight": 8.84,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02064138558266458,
+ "match_probability": 0.99784,
+ "match_weight": 8.85,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020720471351180537,
+ "match_probability": 0.99787,
+ "match_weight": 8.87,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.020740242793309525,
+ "match_probability": 0.99788,
+ "match_weight": 8.88,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02081932856182548,
+ "match_probability": 0.99789,
+ "match_weight": 8.89,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02085887144608346,
+ "match_probability": 0.9979,
+ "match_weight": 8.89,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.020878642888212447,
+ "match_probability": 0.99792,
+ "match_weight": 8.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.020937957214599415,
+ "match_probability": 0.99793,
+ "match_weight": 8.92,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.020957728656728403,
+ "match_probability": 0.99794,
+ "match_weight": 8.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02097750009885739,
+ "match_probability": 0.99795,
+ "match_weight": 8.92,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021056585867373346,
+ "match_probability": 0.99797,
+ "match_weight": 8.94,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.021115900193760313,
+ "match_probability": 0.99798,
+ "match_weight": 8.95,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.0211356716358893,
+ "match_probability": 0.99799,
+ "match_weight": 8.96,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02117521452014728,
+ "match_probability": 0.998,
+ "match_weight": 8.97,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.021254300288663236,
+ "match_probability": 0.99801,
+ "match_weight": 8.97,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.021293843172921215,
+ "match_probability": 0.99802,
+ "match_weight": 8.98,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.021353157499308183,
+ "match_probability": 0.99803,
+ "match_weight": 8.99,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02137292894143717,
+ "match_probability": 0.99804,
+ "match_weight": 8.99,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02139270038356616,
+ "match_probability": 0.99806,
+ "match_weight": 9.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021412471825695147,
+ "match_probability": 0.99807,
+ "match_weight": 9.01,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021491557594211102,
+ "match_probability": 0.99808,
+ "match_weight": 9.02,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02151132903634009,
+ "match_probability": 0.99809,
+ "match_weight": 9.03,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021570643362727057,
+ "match_probability": 0.9981,
+ "match_weight": 9.04,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.021590414804856045,
+ "match_probability": 0.99811,
+ "match_weight": 9.04,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021610186246985033,
+ "match_probability": 0.99814,
+ "match_weight": 9.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02162995768911402,
+ "match_probability": 0.99815,
+ "match_weight": 9.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021669500573372,
+ "match_probability": 0.99816,
+ "match_weight": 9.09,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02170904345762998,
+ "match_probability": 0.99817,
+ "match_weight": 9.09,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.021728814899758968,
+ "match_probability": 0.99818,
+ "match_weight": 9.1,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021748586341887956,
+ "match_probability": 0.99819,
+ "match_weight": 9.11,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021768357784016944,
+ "match_probability": 0.9982,
+ "match_weight": 9.12,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.0218474435525329,
+ "match_probability": 0.99822,
+ "match_weight": 9.13,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.021867214994661887,
+ "match_probability": 0.99823,
+ "match_weight": 9.14,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.021946300763177842,
+ "match_probability": 0.99824,
+ "match_weight": 9.15,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02196607220530683,
+ "match_probability": 0.99825,
+ "match_weight": 9.16,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02200561508956481,
+ "match_probability": 0.99826,
+ "match_weight": 9.17,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02204515797382279,
+ "match_probability": 0.99827,
+ "match_weight": 9.17,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02208470085808077,
+ "match_probability": 0.99828,
+ "match_weight": 9.18,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022124243742338748,
+ "match_probability": 0.99829,
+ "match_weight": 9.19,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022163786626596727,
+ "match_probability": 0.9983,
+ "match_weight": 9.2,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022183558068725715,
+ "match_probability": 0.99831,
+ "match_weight": 9.21,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022223100952983695,
+ "match_probability": 0.99832,
+ "match_weight": 9.21,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022242872395112682,
+ "match_probability": 0.99833,
+ "match_weight": 9.23,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022282415279370662,
+ "match_probability": 0.99834,
+ "match_weight": 9.23,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02230218672149965,
+ "match_probability": 0.99835,
+ "match_weight": 9.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02234172960575763,
+ "match_probability": 0.99836,
+ "match_weight": 9.25,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022361501047886617,
+ "match_probability": 0.99837,
+ "match_weight": 9.26,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022381272490015605,
+ "match_probability": 0.99839,
+ "match_weight": 9.28,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022420815374273585,
+ "match_probability": 0.9984,
+ "match_weight": 9.28,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022440586816402572,
+ "match_probability": 0.99842,
+ "match_weight": 9.3,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02246035825853156,
+ "match_probability": 0.99843,
+ "match_weight": 9.31,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02249990114278954,
+ "match_probability": 0.99845,
+ "match_weight": 9.33,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022618529795563475,
+ "match_probability": 0.99846,
+ "match_weight": 9.34,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.022658072679821454,
+ "match_probability": 0.99847,
+ "match_weight": 9.35,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.022677844121950442,
+ "match_probability": 0.99849,
+ "match_weight": 9.37,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022756929890466397,
+ "match_probability": 0.99852,
+ "match_weight": 9.4,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.022776701332595385,
+ "match_probability": 0.99853,
+ "match_weight": 9.4,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.022934872869627296,
+ "match_probability": 0.99854,
+ "match_weight": 9.42,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.022994187196014263,
+ "match_probability": 0.99856,
+ "match_weight": 9.44,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02305350152240123,
+ "match_probability": 0.99857,
+ "match_weight": 9.45,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.023112815848788198,
+ "match_probability": 0.99858,
+ "match_weight": 9.46,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.023132587290917186,
+ "match_probability": 0.99859,
+ "match_weight": 9.47,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023152358733046174,
+ "match_probability": 0.9986,
+ "match_weight": 9.48,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023191901617304153,
+ "match_probability": 0.99861,
+ "match_weight": 9.49,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02327098738582011,
+ "match_probability": 0.99862,
+ "match_weight": 9.5,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.023290758827949096,
+ "match_probability": 0.99864,
+ "match_weight": 9.52,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023350073154336064,
+ "match_probability": 0.99865,
+ "match_weight": 9.53,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02336984459646505,
+ "match_probability": 0.99866,
+ "match_weight": 9.54,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023488473249238986,
+ "match_probability": 0.99867,
+ "match_weight": 9.56,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.02356755901775494,
+ "match_probability": 0.99868,
+ "match_weight": 9.57,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.023646644786270897,
+ "match_probability": 0.99869,
+ "match_weight": 9.57,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.023666416228399885,
+ "match_probability": 0.9987,
+ "match_weight": 9.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023686187670528873,
+ "match_probability": 0.99871,
+ "match_weight": 9.59,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.023785044881173816,
+ "match_probability": 0.99872,
+ "match_weight": 9.61,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.023844359207560784,
+ "match_probability": 0.99873,
+ "match_weight": 9.62,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02390367353394775,
+ "match_probability": 0.99874,
+ "match_weight": 9.64,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02394321641820573,
+ "match_probability": 0.99875,
+ "match_weight": 9.65,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.024042073628850674,
+ "match_probability": 0.99876,
+ "match_weight": 9.66,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.024081616513108653,
+ "match_probability": 0.99877,
+ "match_weight": 9.67,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02410138795523764,
+ "match_probability": 0.99878,
+ "match_weight": 9.67,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02412115939736663,
+ "match_probability": 0.99879,
+ "match_weight": 9.69,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.024140930839495617,
+ "match_probability": 0.9988,
+ "match_weight": 9.7,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02425955949226955,
+ "match_probability": 0.99881,
+ "match_weight": 9.72,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.02429910237652753,
+ "match_probability": 0.99882,
+ "match_weight": 9.73,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.024358416702914498,
+ "match_probability": 0.99883,
+ "match_weight": 9.74,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.024437502471430454,
+ "match_probability": 0.99884,
+ "match_weight": 9.76,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02449681679781742,
+ "match_probability": 0.99885,
+ "match_weight": 9.77,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.024575902566333376,
+ "match_probability": 0.99886,
+ "match_weight": 9.78,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.0247143026612363,
+ "match_probability": 0.99887,
+ "match_weight": 9.79,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.024793388429752254,
+ "match_probability": 0.99888,
+ "match_weight": 9.81,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.024832931314010234,
+ "match_probability": 0.99889,
+ "match_weight": 9.81,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.024951559966784168,
+ "match_probability": 0.9989,
+ "match_weight": 9.83,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.024991102851042148,
+ "match_probability": 0.99891,
+ "match_weight": 9.84,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.025030645735300127,
+ "match_probability": 0.99892,
+ "match_weight": 9.85,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02514927438807406,
+ "match_probability": 0.99894,
+ "match_weight": 9.89,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.025287674482976984,
+ "match_probability": 0.99895,
+ "match_weight": 9.9,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.025307445925105972,
+ "match_probability": 0.99896,
+ "match_weight": 9.9,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02536676025149294,
+ "match_probability": 0.99897,
+ "match_weight": 9.93,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02540630313575092,
+ "match_probability": 0.99898,
+ "match_weight": 9.93,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.025465617462137886,
+ "match_probability": 0.99899,
+ "match_weight": 9.96,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.025485388904266874,
+ "match_probability": 0.999,
+ "match_weight": 9.97,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02554470323065384,
+ "match_probability": 0.99901,
+ "match_weight": 9.98,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02558424611491182,
+ "match_probability": 0.99902,
+ "match_weight": 9.99,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02574241765194373,
+ "match_probability": 0.99903,
+ "match_weight": 10.01,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.025841274862588675,
+ "match_probability": 0.99904,
+ "match_weight": 10.03,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.025880817746846654,
+ "match_probability": 0.99905,
+ "match_weight": 10.04,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.02594013207323362,
+ "match_probability": 0.99906,
+ "match_weight": 10.06,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.02595990351536261,
+ "match_probability": 0.99907,
+ "match_weight": 10.07,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.02611807505239452,
+ "match_probability": 0.99908,
+ "match_weight": 10.09,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.026197160820910476,
+ "match_probability": 0.99909,
+ "match_weight": 10.11,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.026236703705168455,
+ "match_probability": 0.9991,
+ "match_weight": 10.12,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.026256475147297443,
+ "match_probability": 0.99911,
+ "match_weight": 10.13,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.026335560915813398,
+ "match_probability": 0.99912,
+ "match_weight": 10.16,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.026414646684329354,
+ "match_probability": 0.99913,
+ "match_weight": 10.17,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02649373245284531,
+ "match_probability": 0.99914,
+ "match_weight": 10.19,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02663213254774823,
+ "match_probability": 0.99915,
+ "match_weight": 10.2,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.0266914468741352,
+ "match_probability": 0.99916,
+ "match_weight": 10.22,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.026711218316264187,
+ "match_probability": 0.99917,
+ "match_weight": 10.24,
+ "prop": 0.000019771442128988888
+ },
+ {
+ "cum_prop": 0.026770532642651154,
+ "match_probability": 0.99918,
+ "match_weight": 10.25,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.026869389853296097,
+ "match_probability": 0.99919,
+ "match_weight": 10.28,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02700778994819902,
+ "match_probability": 0.9992,
+ "match_weight": 10.3,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.02716596148523093,
+ "match_probability": 0.99921,
+ "match_weight": 10.31,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.02720550436948891,
+ "match_probability": 0.99922,
+ "match_weight": 10.32,
+ "prop": 0.000039542884257977775
+ },
+ {
+ "cum_prop": 0.027304361580133853,
+ "match_probability": 0.99923,
+ "match_weight": 10.34,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02736367590652082,
+ "match_probability": 0.99924,
+ "match_weight": 10.36,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.027462533117165764,
+ "match_probability": 0.99925,
+ "match_weight": 10.38,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02752184744355273,
+ "match_probability": 0.99926,
+ "match_weight": 10.41,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.027620704654197675,
+ "match_probability": 0.99927,
+ "match_weight": 10.43,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02769979042271363,
+ "match_probability": 0.99928,
+ "match_weight": 10.44,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.027798647633358573,
+ "match_probability": 0.99929,
+ "match_weight": 10.46,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02785796195974554,
+ "match_probability": 0.9993,
+ "match_weight": 10.48,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.027937047728261496,
+ "match_probability": 0.99931,
+ "match_weight": 10.51,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.02801613349677745,
+ "match_probability": 0.99933,
+ "match_weight": 10.55,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.028114990707422394,
+ "match_probability": 0.99934,
+ "match_weight": 10.57,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.028253390802325317,
+ "match_probability": 0.99935,
+ "match_weight": 10.6,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.028312705128712284,
+ "match_probability": 0.99936,
+ "match_weight": 10.62,
+ "prop": 0.00005931432638696666
+ },
+ {
+ "cum_prop": 0.028530190992131162,
+ "match_probability": 0.99937,
+ "match_weight": 10.64,
+ "prop": 0.00021748586341887777
+ },
+ {
+ "cum_prop": 0.028629048202776106,
+ "match_probability": 0.99938,
+ "match_weight": 10.66,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02870813397129206,
+ "match_probability": 0.99939,
+ "match_weight": 10.69,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.028826762624065996,
+ "match_probability": 0.9994,
+ "match_weight": 10.7,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.02894539127683993,
+ "match_probability": 0.99941,
+ "match_weight": 10.73,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.02910356281387184,
+ "match_probability": 0.99942,
+ "match_weight": 10.76,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.029202420024516784,
+ "match_probability": 0.99943,
+ "match_weight": 10.78,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.029340820119419707,
+ "match_probability": 0.99944,
+ "match_weight": 10.8,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.029419905887935662,
+ "match_probability": 0.99945,
+ "match_weight": 10.83,
+ "prop": 0.00007908576851595555
+ },
+ {
+ "cum_prop": 0.029518763098580605,
+ "match_probability": 0.99946,
+ "match_weight": 10.87,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.02963739175135454,
+ "match_probability": 0.99947,
+ "match_weight": 10.89,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.029775791846257463,
+ "match_probability": 0.99948,
+ "match_weight": 10.92,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.02995373482541836,
+ "match_probability": 0.99949,
+ "match_weight": 10.95,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.030072363478192296,
+ "match_probability": 0.9995,
+ "match_weight": 10.98,
+ "prop": 0.00011862865277393333
+ },
+ {
+ "cum_prop": 0.030230535015224207,
+ "match_probability": 0.99951,
+ "match_weight": 11.01,
+ "prop": 0.0001581715370319111
+ },
+ {
+ "cum_prop": 0.03036893511012713,
+ "match_probability": 0.99952,
+ "match_weight": 11.04,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.030606192415674995,
+ "match_probability": 0.99953,
+ "match_weight": 11.07,
+ "prop": 0.00023725730554786665
+ },
+ {
+ "cum_prop": 0.030784135394835894,
+ "match_probability": 0.99954,
+ "match_weight": 11.1,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.030882992605480837,
+ "match_probability": 0.99955,
+ "match_weight": 11.12,
+ "prop": 0.00009885721064494445
+ },
+ {
+ "cum_prop": 0.03117956423741567,
+ "match_probability": 0.99956,
+ "match_weight": 11.17,
+ "prop": 0.0002965716319348333
+ },
+ {
+ "cum_prop": 0.03131796433231859,
+ "match_probability": 0.99957,
+ "match_weight": 11.2,
+ "prop": 0.00013840009490292222
+ },
+ {
+ "cum_prop": 0.03149590731147949,
+ "match_probability": 0.99958,
+ "match_weight": 11.22,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.03175293605915635,
+ "match_probability": 0.99959,
+ "match_weight": 11.27,
+ "prop": 0.00025702874767685556
+ },
+ {
+ "cum_prop": 0.03199019336470422,
+ "match_probability": 0.9996,
+ "match_weight": 11.3,
+ "prop": 0.00023725730554786665
+ },
+ {
+ "cum_prop": 0.03232630788089703,
+ "match_probability": 0.99961,
+ "match_weight": 11.34,
+ "prop": 0.0003361145161928111
+ },
+ {
+ "cum_prop": 0.03260310807070287,
+ "match_probability": 0.99962,
+ "match_weight": 11.38,
+ "prop": 0.00027680018980584444
+ },
+ {
+ "cum_prop": 0.03278105104986377,
+ "match_probability": 0.99963,
+ "match_weight": 11.42,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.03301830835541164,
+ "match_probability": 0.99964,
+ "match_weight": 11.45,
+ "prop": 0.00023725730554786665
+ },
+ {
+ "cum_prop": 0.03333465142947546,
+ "match_probability": 0.99965,
+ "match_weight": 11.5,
+ "prop": 0.0003163430740638222
+ },
+ {
+ "cum_prop": 0.03357190873502333,
+ "match_probability": 0.99966,
+ "match_weight": 11.54,
+ "prop": 0.00023725730554786665
+ },
+ {
+ "cum_prop": 0.03374985171418423,
+ "match_probability": 0.99967,
+ "match_weight": 11.59,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.034026651903990075,
+ "match_probability": 0.99968,
+ "match_weight": 11.63,
+ "prop": 0.00027680018980584444
+ },
+ {
+ "cum_prop": 0.034204594883150974,
+ "match_probability": 0.99969,
+ "match_weight": 11.68,
+ "prop": 0.00017794297916089998
+ },
+ {
+ "cum_prop": 0.03450116651508581,
+ "match_probability": 0.9997,
+ "match_weight": 11.72,
+ "prop": 0.0002965716319348333
+ },
+ {
+ "cum_prop": 0.034698880936375694,
+ "match_probability": 0.99971,
+ "match_weight": 11.78,
+ "prop": 0.0001977144212898889
+ },
+ {
+ "cum_prop": 0.035015224010439515,
+ "match_probability": 0.99972,
+ "match_weight": 11.82,
+ "prop": 0.0003163430740638222
+ },
+ {
+ "cum_prop": 0.03543042429514828,
+ "match_probability": 0.99973,
+ "match_weight": 11.88,
+ "prop": 0.00041520028470876666
+ },
+ {
+ "cum_prop": 0.03594448179050199,
+ "match_probability": 0.99974,
+ "match_weight": 11.94,
+ "prop": 0.0005140574953537111
+ },
+ {
+ "cum_prop": 0.03633991063308177,
+ "match_probability": 0.99975,
+ "match_weight": 11.99,
+ "prop": 0.0003954288425797778
+ },
+ {
+ "cum_prop": 0.03665625370714559,
+ "match_probability": 0.99976,
+ "match_weight": 12.05,
+ "prop": 0.0003163430740638222
+ },
+ {
+ "cum_prop": 0.037110996876112336,
+ "match_probability": 0.99977,
+ "match_weight": 12.12,
+ "prop": 0.0004547431689667444
+ },
+ {
+ "cum_prop": 0.037664597255724026,
+ "match_probability": 0.99978,
+ "match_weight": 12.18,
+ "prop": 0.0005536003796116889
+ },
+ {
+ "cum_prop": 0.03837636917236763,
+ "match_probability": 0.99979,
+ "match_weight": 12.25,
+ "prop": 0.0007117719166435999
+ },
+ {
+ "cum_prop": 0.03867294080430246,
+ "match_probability": 0.9998,
+ "match_weight": 12.32,
+ "prop": 0.0002965716319348333
+ },
+ {
+ "cum_prop": 0.03914745541539819,
+ "match_probability": 0.99981,
+ "match_weight": 12.4,
+ "prop": 0.0004745146110957333
+ },
+ {
+ "cum_prop": 0.03964174146862291,
+ "match_probability": 0.99982,
+ "match_weight": 12.47,
+ "prop": 0.0004942860532247222
+ },
+ {
+ "cum_prop": 0.040175570406105615,
+ "match_probability": 0.99983,
+ "match_weight": 12.56,
+ "prop": 0.0005338289374827
+ },
+ {
+ "cum_prop": 0.0412629997232,
+ "match_probability": 0.99984,
+ "match_weight": 12.65,
+ "prop": 0.001087429317094389
+ },
+ {
+ "cum_prop": 0.04185614298706967,
+ "match_probability": 0.99985,
+ "match_weight": 12.75,
+ "prop": 0.0005931432638696666
+ },
+ {
+ "cum_prop": 0.04266677211435821,
+ "match_probability": 0.99986,
+ "match_weight": 12.85,
+ "prop": 0.0008106291272885444
+ },
+ {
+ "cum_prop": 0.04377397287358159,
+ "match_probability": 0.99987,
+ "match_weight": 12.97,
+ "prop": 0.0011072007592233778
+ }
+ ]
+ },
+ "height": 400,
+ "layer": [
+ {
+ "encoding": {
+ "x": {
+ "axis": {
+ "format": "+",
+ "title": "Threshold match weight"
+ },
+ "field": "match_weight",
+ "type": "quantitative"
+ },
+ "y": {
+ "axis": {
+ "format": "%",
+ "title": "Percentage of unlinkable records"
+ },
+ "field": "cum_prop",
+ "type": "quantitative"
+ }
+ },
+ "mark": "line"
+ },
+ {
+ "encoding": {
+ "opacity": {
+ "value": 0
+ },
+ "tooltip": [
+ {
+ "field": "match_weight",
+ "format": "+.5",
+ "title": "Match weight",
+ "type": "quantitative"
+ },
+ {
+ "field": "match_probability",
+ "format": ".5",
+ "title": "Match probability",
+ "type": "quantitative"
+ },
+ {
+ "field": "cum_prop",
+ "format": ".3%",
+ "title": "Proportion of unlinkable records",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "match_weight",
+ "type": "quantitative"
+ },
+ "y": {
+ "field": "cum_prop",
+ "type": "quantitative"
+ }
+ },
+ "mark": "point",
+ "selection": {
+ "selector112": {
+ "empty": "none",
+ "fields": [
+ "match_weight",
+ "cum_prop"
+ ],
+ "nearest": true,
+ "on": "mouseover",
+ "type": "single"
+ }
+ }
+ },
+ {
+ "encoding": {
+ "opacity": {
+ "condition": {
+ "selection": "selector112",
+ "value": 1
+ },
+ "value": 0
+ },
+ "x": {
+ "axis": {
+ "title": "Threshold match weight"
+ },
+ "field": "match_weight",
+ "type": "quantitative"
+ },
+ "y": {
+ "axis": {
+ "format": "%",
+ "title": "Percentage of unlinkable records"
+ },
+ "field": "cum_prop",
+ "type": "quantitative"
+ }
+ },
+ "mark": "point"
+ },
+ {
+ "encoding": {
+ "x": {
+ "field": "match_weight",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "color": "gray",
+ "type": "rule"
+ },
+ "transform": [
+ {
+ "filter": {
+ "selection": "selector112"
+ }
+ }
+ ]
+ },
+ {
+ "encoding": {
+ "y": {
+ "field": "cum_prop",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "color": "gray",
+ "type": "rule"
+ },
+ "transform": [
+ {
+ "filter": {
+ "selection": "selector112"
+ }
+ }
+ ]
+ }
+ ],
+ "title": {
+ "subtitle": "Records with insufficient information to exceed a given match threshold",
+ "text": "Unlinkable records"
+ },
+ "width": 400
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAHeCAYAAAAM+duYAAAAAXNSR0IArs4c6QAAIABJREFUeF7sfQmYVbX5/ocssokzVQZxK4yKlkULVMEOVmGm4gL414ICAsWytYiIglA3FhXQqShQlaJSFxYXFGVRq4Va6IwCdaBW0IIKorgA6gjKIuv/eePvjHcu996TsyQn5+bL8/jIzOQk+d73S96TnORLlUOHDh0iTowAI8AIMAKMgGUIVGEBtIxxNpcRYAQYAUZAIMACyI7ACDACjAAjYCUCLIBW0s5GMwKMACPACLAAsg8wAowAI8AIWIkAC6CVtNtlNPZ5ValSpZLRzt6v5N+nQyaxjF27dtG+ffuoTp06VK1atcjA9GpDZA3lihkBQxFgATSUGG5WOAiMGDGCJk2aRLfffjvdcccdolAIGMQL6auvvqKf/OQnGSubPn06/f73v6fx48fTLbfcQl27dqXnn3+eXn/9dbrgggsyPrtixQpq27Yt9e3blx577DFPRrVr145KS0vpgw8+oFNOOeWwZ6+66ip69tln6V//+hchb5zThAkT6NZbb6UHHniArr322jibwm2PEQIsgDEii5vqHQFHAG+77Ta68847DxPAL7/8ko455piMBf/lL3+hP/zhD3TXXXeJQXratGm0evVquvHGG+mMM87I+Owbb7xBBQUF1LNnT5o9e7YnAxwBfP/99+nUU09NK4DLli2j8847z1PZpmXGywU4mjp1Kl133XWmNY/bk6UIsABmKbFs1g8IyAggZnIPPvggXXLJJfTvf/+bysrKqLCwkG6++WZq3LgxJQsgZpNLly6lKVOmUN26dWngwIHUpk0b2rlzJ7388st01lln0dChQ8XsMFkAZ8yYQc888wwdd9xx9Mgjj9CaNWvE7BR1/vSnPxUzuT/+8Y+Ul5cn/o0ZIGauCxcupO3bt9NvfvMbGjt2LNWoUYOcGaAjgP/4xz+EyL/77rt02mmniZlUjx49DnMFCDFmtb169aLFixdTgwYN6M9//jNleh7txOwXM1rY9+tf/1oIVc2aNam8vFz8bdGiRaKNP//5z8Vs2RHlX/3qV3TCCScIex566CGaP3++eA4vEG+++SY1a9ZM2Dtz5swKAXznnXcEPi+88AI1bNiQ2rdvT+PGjRPPcWIEwkKABTAsJLkcIxGQEcA5c+YIwULKz8+nbdu20bfffisGeMxIkgUwcQn06KOPplatWolnjzrqKKpfvz5t2LCBmjRpQuvWraskgP/v//0/uvLKK0U+CAnyHH/88bR161a6/PLLafPmzUKAneVSRwBR9tlnny3+hgSxHjx4cCUBrFevnhAepEsvvZQgirDh6aefFvkS0z333CNE1kn9+vUTtqZ7vkOHDmIJFuVB1P7zn/+If48aNYomTpxI559/vliGhYhBeCHaSG+//TadeeaZh31//d///kdXXHGFEGpgAQxhOxLwxmwborh+/XoaPnw4LV++XJQ5efJkuv766430M25UPBFgAYwnb9xqSQS8CGDnzp3pueeeo02bNglxwoC+ZcsWKQFE3rVr11JOTo6Y7UDUMIBDTLEEeuKJJ1YM8o4w4PsjZoTHHnusyDNr1iyxzIp/l5SUVMwA8e0QoojZGmZeEKQlS5ZUEkB8C8T3M4jSoEGD6NVXXxVC4pSVSgCbNm0qZlm//OUvhQCmex6zyCFDhlQs40LARo4cSY0aNaI+ffoIcYaQwWbM0PC3P/3pTzRgwAB6+OGHKwQQMzgIGGaTEHdghpcEzKIdzCCAEEfghYRyIKLAES8XF154oSTznI0RcEeABdAdI84RYwSwNIdZCmYS9957r7Dk66+/rvjuhyW7J554QswAMTPC4L1jxw4xK8Ggjn/LzAA7duxIf/vb30T555xzjpitYaBH+RChxLRq1Spq2bIlHTx4kG666Sa67777Kv09WQAhOKeffnqlzTvYhXr11VeLTTCY7WHJEaKXnBwRTyWAEKTRo0eLP1100UVpn8dSKdqYagaGGSYE8rLLLqMXX3xRlPXSSy9Rp06dxGwRbXN22u7evVsIJIS+d+/elb6LYjn0/vvvr1gCdX522g1BBA+Y3XJiBMJCgAUwLCS5HCMRcAZofI/Dtz4kfL/DzxhUP/nkE/H9CwIIgYRQ+hFADMz4BpZOACFEEAnMuDBjwrcvfC/s0qWLmOE89dRT9Nlnn4kZXrIAYscpZkX4TviLX/yi4u+J3wD/+te/0uOPPy6+J2JJEwKJ2SsEp3Xr1pW4cZZAEwXtmmuuSfs8liox08Ps8u677xYzWWAG/PA9EEugDpaoyCnf2fjjCKBzbMMRSNiN2TASlofxbRAzwG7duonZNPJ//PHHAld8CwSGwKhq1apG+ho3Kn4IsADGjzNusQcEPvzww4odlBApfMuCKGK5DkLx6KOPahFAiAHEDzM5CAg2oZx00kli4w2OSeCbHMQF37vwMwTS+QaImSjaiuVZPItlQSztJgogxA7CAZHArPeVV14RMzrMpHAMJNUMMFEAUXa651EelmmRMNP8+9//Tv/85z/Fv/HCgKVUfPe8+OKLxa5YzOSQIPD4XbIAYtMMNvzgOyKWnWvVqiVmskgQQHwPBTawZcyYMeKsJZZ18X0Wy8osgB46AGfNiAALIDtI1iMAMcA3NIiekzDYY8ZUu3btCgGEUEAwMDBjU4mzBJruHCBEAPmwCSbdDBBlnXvuuWLHJXY5YjaHTTQoG4M5lg9RDhLaiDbhbx999JGYHWLzB5ZXneVNzFznzZtHubm5FQLonAN0ztI5NkJIMDPEd8nEVFxcLGZzyUuamZ6HqAEbJ2E3KpaOcZ4SOzZhE+xxkoMlfk4WQPwO3zMxqwU+SBBC7HTFzBLfG5PbAkwwC8TuXE6MQFgIsACGhSSXYzwCmD198803YkZo0nZ6tAtCiv/SJSzL4pgFjgRkSsizceNGkc/tfGOqcjI9j79hpoeynRmhUwaWK2EH2olZtgy+33//vRB6bKY58sgjD2sOvp9iCRRHPtLlMd7puIFGI8ACaDQ93DhGgBFgBBgBVQiwAKpClstlBBgBRoARMBoBFkCj6eHGMQKMACPACKhCgAVQFbJcLiPACDACjIDRCLAAaqJn//79Wq7OQT1HHHGE+C+qhA0R2MDg7D7ETj9sdY/y6iAvWMStvV5si2teBA3Af3HxoahwPnDggKjay1ER9Fc8pwrbsMekMMvLSgFMRSa2UWMLObZ+4zyRzoSIIC1atBAHe8NKOCPWv39/sXUe28NxqBi77/B7XN2DbfeZUuLzYbUJ5SDGJc68IRoKDnfj/BbCYWGrPLawz507lxAcOVXC1nhEN8GZNj8JuwoR6Ll79+7ieENikrU3sb3Nmzf30wxfzyD82sqVK8VZvKA4JDcg0T98Nc6AhxAF5rXXXhNHQMJMztVY6W7cCLOuoGXhjCjGtuTIQonl4tzkp59+Ks63ZkrJ/oZACAgKoSLJjkmJdeMYzHvvvSeODiUnnH/FGBLGtVlZLYCJgy3iLiI8E7ZTI46izqRCAHEdD24UwJZ0ROPAVTIYPGWdLfH5MLFALEvcgIDoHeis2MKOs2yIN4kOjIPSyefSnPpxQBqxIXEQ3E9yQpxhAECQ6cQkYy+ipyS2108b/D6DM3DDhg0jHNwPikNyGxL9w2/7on5OlQBiVom4q4iwk/zSFLXNyfUj+AHCySEYerokK4CJ/oYXLtMEEEEWEIEo1RViLIAununMAEFs4sFZXCuDaBx409m7d6+IgwiRxICMmIyYOSBhtoJAwv/973/FAWdcMYOzY3gjQRR+hKRyIl7gbQyDKwjDlTiIc4jwToisgRiUWIpA8GKEh8IMEH/D2w0OZyNEFTo2ooMkJoSFgkMidBZmUYiOgTBeOFuFGQriNsI2RBGBqEB0EIoKQZNxVQ4GPDgP/sNsDCG+kpdE8PaE54EP3qZQLuI97tmzR1wDhNklEtqNw9R4U0Ye3IeHKCWIWrJgwQKRBwKHg9KIVoIZKTrpDTfcIHDE7AMHxXEFEDow4k+ifcAHZeFcHhwah7PxogBs8Jafjh+0L117cWUODpVjNgx8EDzZSTL24mB2YnshiDJ8w6fAAfjEmzdCnUHMEEEFMwuEWYOtSAj3hUPiEHoEdgaOsLWoqEicscMBc0SFcXCAL8OPcBgf+TBDhq/hcHkm3hy7ERot0T+AUarysESdnHAoH7x+9913YkUBZYE3BM3GgX5co4SycDsE/BThy1L1my+++EIEwQY34B4+hVioSJj1wi+ABw78oz6cX4Qwod/hpg5EjUGwbCyrp5oBog3od1gaQ39FpJxkfweOwBT5fvaznwmOkAd+ivBzqAcrJxgDnNUT5EU/xSCcrp3gBS9cOHuJGSp8AAECEn0PdiKfExwdfRm3giBAguMX6HtOnNNU9qCv/fa3vxWY4RlE4AGvuJsSZzKBOwIIQAAxPiFAAfBGezCLSjwTirYm+hvshl+h/yIvIvCgvXgpwJiC/LARS6T4fSq/wN/SjW14KU83JsEujDcYkzFOwrcwliUKIMYIBGvHizVepHHeFIEXeAaYRggdAURnRZxCCA8CCmNQx4CPO8kwyED80BkxuMO54JiYfaDDYbaIwRydCQ6Bty6IIJYyMbAhMgfug8Nt3ei8GIxwgwCEFB0KM00MfHBA/A5RSNAOOD3ahCgdWI7F9yYnhqRjDhwRMxE4NxwTnRMig7IgghAWOC3ywSEgZGg/BmuIJ/LCUTEgwEkQ+zJ52RFOiechPugsaDuicCAkFW4ogIjBoRGNBIM2Dizj3jsIC2bT+LezZILYjrAVDgpcsYSJDo0ZGV4QEHoMkT5wtx4wxw3swBHCjutzMDhicMWM1lkCTccPllbTtReBlzGIYpDEYAIMnSRjL4JUO+2FOEFIZfgG1+Ac4gU8MRCBb/CLBDEEVvAjhPjCixdeluBHuPYHnR2+hPwYcIGbgwPEFYMdBkW0Bb+HX2LQSIdD4iF0+Gaif0DgU5XnXBbs4IV24DlwBMHACxlud0CwcAxm8GNEhsG/0RfgX6n6DdoPW/GSiWex+gLRxywXS9bgHIMbBjS8BOEgPXiEz8DH8MIE4Yc/oM8kCyD6AgZzLLMjOg5WQfBSibyJCTMeYAffxlgADpzwdMAR4oRxASIOIUPCywL+w4tfunZCcPBijXYiJBz6G/5zgow7bXDy4fcY4GEb/AG8O6HlMPtPZw/GJfgRMMMLLXDEuIIXD2CJ4OJ4gYI4oT3wLbxkQODRfqwQOQnjXbK/wX+B2e9+9zvxEoIXEIyHzkXF6FeIHoQX0FR+AbvSjW1OSL/kMQnCDf+HXXjxgA9C7BDZCC8rzgwQ4o67KjFGQNTBIYSSBdBFAFP9GYKFgRhvf3jbcd72EOwXnRSxC0Ewol5gSQRvP+hcEC38DR0U3xORELkDpMKhMQA43xHw1oTBzAn0C7LQySGA+E6HvCAY5WOAwqCemND50WHwN7xlo3x0VgzOmBXijRqR9iFgGJiSl0Ah8uiQSBBNOJAzo0snCHAwdHYnDBhmu+iMeFNFZ0Ob4ZB4s8UbfyoBRAdG58P3BTgpOisGY/we311hCwQQgytEGgMdEkQVET9OPvlkMUh9/vnnafnB4IkBK1V7MaDgTTfVEmiyAKZ6Hn7htBcDoizfzjVFjs+AF3CHpTUMJPA1vITgmyI6MGaauN4HWGH1APmSl6QcAYRvYPBxBAozTHCL8tPhkHxLfaJ/pCsv+fsPXnyAp/MtCasAeFlEveAOeMIv8aIArh3BTO43EDbMJNCP8KKAPgAxgdigTsyGwT1mtCgbbQf/EEv4mhPHFJghJQsg/BQCAJHFzAACiJcf9J/EhD6Aly0nnBtecHHjBwTaEUDn6iq8gEB00U6IJWxL1068pEIoHF+G8MD/k5fu0B70I3CNhL6AF1ZnxgaMUCfGp3T2JC6BgkfY4AgtRB8CjDoS68GLA3BObk+yv0EAMdMHFrAXL3IY6yCAeAkCJ9hYl8kv0o1t8JVUYxIEG9hhRQkJWONlC/hhbMZ4g1m4c3k06sZLPV6g8ULIAugigBhsnRkgOhmm2BhY8CaBJZXkhMEeeTB7QWdMTBA6OALeEBNFBB0cIoNOB4dBwtsYxBQzKiRsDMEbHDo/nBNihhkClmHQAZKveIHA4dsell3g5Bj0MQuDI8FJMCg5A3oqAXQ2x6BuOB4Gj2RnSRaExE0AGIwgchiwMZhjSQeij7rgeBjMEwUQbcPAIiuAmE1jcHXwcfB0Nn9AFNLxg5cLdNJU7cXsSlYAUz2PwdcRQLyVy/KdvGkFLztYEnKCQuNFCVcF4QUGy1Z4+8aLBgQEs6ZMAohnMRjgxQcJ/oMZD4QmHQ4QvMSUKIDpykveoIVl+cTYnijPiY2Kf0P4gJEjbOgfqfoN+iD6VXKCcKAv4eUwOeHFCysbEF30LyTMerDCkCyAGNyxJAiMnBdTzHCTBRCCg/KcvuYssSUKIAZw8IFVH6yAoG1YTnTuSkzVTtiHsQV+iYSXBPT35HaiPRjYMUNDAr7o15h1wV6sNqBOiHA6exIFEDzixQOCn5iS68GL9ltvvXVYe9K9cKEs+CNesOETyd/iMvlFurEteQOaMybhpQH93LkODPZjUoD24moxCCAE3nkpghAiYYICHlkAD+s6P/wi3TdAvA2BXCzZ4BJOrD873wjRkfCm7qxF4/sPBjFcv4LvHRhEIEZ4O0M+OAfeIEEU6ksUQLyhYxB37kfD2xdmmlg+AKkoC9+7IATIgzfX6tWrHzZogXi0Ad/1ILJwJCx14u0skwAm7gKVFUC8jWEGhOQIIEQcMRrxHwZ5LO0535OwDOfs1oSQYcYrK4CYBWG50cEHd+cBAwxgeEFBW9Lxg80tGPhTtdeLAKZ6PlEA0R5ZvpM3EWDABJ9Ox3YEEN+w8DKCDo7b1yEaWN7OJICYlSd+74Bw4IUDA2w6HDIJYLrynLsMHSd0lrOcGQb8Hi9m8EPwhRkI+IIfON+o8fKY3G8wYGIGi2cdgUIfgNDgOfRFJxg4nkW/wIshysLg7twAjxeuL7/88rCBHEt8+A6OVROUCbHFslqyAELcIIyYdSGBI8z0EgUQM0RnBgeu8K0dPo8X5nTthEAk7rrMJICJ+YAL8uKTRaIAYmk7nT2JAogVGSy5O/jAH7CCAmFLrEdWABM3wWQSwHR+gZfldGMbfC7VmASfwos2PlUhOThgnMQLD8rDzBb9By8i2EuAhH6OsZwF0KMA4s0bb4FYmgSRcBgMQhA5dFI4Ojo01qbhnBAbdBq8maCjYHaBt0PMivD2CyFCJ8IUPlEAMcChA2OgwncbzPiQH8RiWQfr9sjvRMTH4JC8A825yBUDHpwHb7CYNSIv/p0ogBiUMEBgrT95F2gQAcTAhOUQtBdij2MkGJQwq8Ygi5kgll3wM2yTFUDYCnxQNkQHswkMSJgROUt/6fjBi0S6gR8DIL4DYRDFIJiYkme8bgLoiKkM37ICiM6Ot3b4H/wGS6z4Tgn/wXdUfH/B4AXcHRzgs3iBwgAPfDD7g4iCb1kBTPSPdOXhO0xiQl/A92BcaQThQn3YKIPVAHxbAp7wBSydYcCEaKXqNxjI4PPAEd+J0Q/wYgGOYCv6HfwIzyMPXgrxe7xUYfkLm6ewlA5/wQw6eWaFsvDihvx4qYKPwhYsLycm9FkMsCgP2GNQxnfpZAHEi6sz0DpL6fgmmK6dWJoOUwDxspPOHgz6mHHDBqwuAB+8nGM1AAKEGTt+JyOAyf4mK4Dp/AIz23RjG/p3KgFEHwdf8DH4E8QfqwKYmCTOPLH0iWVP2AxfwayZvwGmEb/EGSCm5Og4TnJuooYTYbkSIoQ3fSSACsfCmzs6BTo8EjomyMVAj86JN0IMCFjCwmCGQQsDAKblzhIovvvgTRTOiYTlK4ghZo2YKeGtFUuAEFZ8+IdzJCdnqQuDJZZH8I0SzoE3IaTEZQVHLDFgYYCTnQFiqRTtTDWQol4ILb5NOLMztAPOiTcy2IvBDFgAYwwujgBiSQjLtPimgdmjIzbON0BHjJzlIAxEaDtwdAZ+ZwduMj+YJaRrL9rnfHBP/g7o4JXJXohxYntl+ZYRQPCPt34sLWGZCwlvsFgGw0sYBnIIC2bdqNfBAS88GHyBh+OP2DSFGXImHBL9KdE/UH+q8uCPiQmbETDDwLdSp168qUOMsQyOPoQXQrwwQsDBP8QxVb9Bv3J2WKMszEow2CHhBdOZKaMNeNmCP+GbE8QeswAk9FUsTzuzBaetECdnmRQDMPwSgyNeNhJnwigPoogZBerBbA//AevkpWTwBBFKnBWna2fysQO8OGOGnNzO5HyoA30fY0PizAcDfDp7nFUJZ1aKFyiIPvogZoIQ4+R6gDXyJLcHL/2J/pZOAJPP46XzC0wm0o1t6V7KMRvH5AAvd7ABL1iYwWJ1IbFeZ3zFmAvusJ8AL8I8A8wggjJ/wgdVfHTGYIK368SEnVJYBkm+fgYOAEcECW7nhrBzEp3WWbt2yscbKMqAqIYVfQFlYpbmJQKEDEZ4+4aAYWaVbAcGZ7yZJe62lCnTyYPdpGhvunOBmfjJVA+WVtDeMJIXvmXqw0sQXhSwIQTcw8eAHzo/7MVLkbNU6JSHJXYIDvJhZurcrydTX6LPOf4hWx7aiu9W8AHsEpapN12/ca5ZwjefZG7wQoDl9ORrqoAHsMKydzImibajfRjQgSnaiPLgl4l9ARt34GeoAy85EG7MmrCsKJvStVP2edl8mezBS7bzWQLlYRyBKPjpg+n8za2dmfzCz9gG7iBuWKZONx7Cr/BijTzJn4vc2pvp71l5ED4IIPwsI8AIZB8CmGXg2ACWR/FSg5USzFyTl8qzz3K2iAWQfYARYASsRgCfJfCtCd9XMQPFdyV8n+dkNwI8A7Sbf7aeEWAEGAFrEWABtJZ6NpwRYAQYAbsRYAG0m3+2nhFgBBgBaxFgAbSWejacEWAEGAG7EVAqgNjaiiMGmbZP4wA1trWGvX3fblrZekaAEWAEGAE3BJQIIOJo4tApgqfiHBEOx+LgIk7349wTzs/hwCaEEXEzcRDY7UydmyH8d0aAEWAEGAFGwAsCSgQQgoeDszhkiqDD+DeCOCP6A0IZ4RAqIivgECcOwOJnTowAI8AIMAKMgE4ElAggZn9Y1nQCuyLmG0JTIbwTzuBA+BCZAbNChFYKKxqKTuC4LkaAEWAEGIF4I6BEABG/D9f/IGgvoi0gSCu+ByLckxPVG3E5ERsSy6W4FgP3f+EZJMR+g0AmJsT5Q+BUTowAI8AIMAKMgFcEEL4yOSkRQFSCb30I2ovYbYgan3jhJuK64eYCBHXFRZMQPwRGxT1a6TbMIMgsbiTO5oSYm6lIyiab2cbsYZO5zA4ubeZRiQAiwjpAhbjhxgREOH/yyScrvAVR0BHpHd//8Dfcd4erTiCA6ZZDWQC5s8UFARsGFHBhg51sY1x6XeZ2puNRiQBi5yeuJcG1OfjeB2FDRHckRFTHJZu45w5X22ADDC6AxK5QXPmTLrEAZrcjZod1P1hhw6Bpi502cGmzjUoE0BnMsOyJa4YSlzWdO/Mgjl4SC6AXtMzNa3NnM5cVfy1jLv3hZtpTNvOoVADDJJoFMEw0oyvL5s4WHepqamYu1eCqu1SbeWQB1O1tGeqz2RENoiFwU2zgkZdAA7uJMQXo9tcNn39DGz//hlo0rk95uXW04KD1G6AKi3gGqAJV/WXq7mz6LeRvgFFgrqpO9tfwkZ2zeA09tWQt9ShsRj2LmodfQYoSWQC1wBysEu5swfAz5WkbeOQZoCneFrwduv315of/QWs2bqNbe7ejtk1PCG6ARAksgBIgRZ1FtyNGYS/bGAXqaupkLtXgqrtU3Tx2vvkZYeLTY66gOjWrazGXBVALzMEq0e2IwVrr72m20R9uJj7FXJrIivc26eTxnQ1b6ZZHXqfGDXNo6tCO3hvr8wkWQJ/A6XxMpyPqtCuxLrYxKuTDr5e5DB/TKErUyeP80vX06KLVVNiqEQ3r1kabuSyA2qD2X5FOR/TfymBPso3B8DPpaebSJDb8t0Unj+NnltDydz+lYV3PocLWjf032uOTLIAeAYsiu05HjMI+1Mk2RoV8+PUyl+FjGkWJOnnsPm4e7dyzj2aM7KTtCESmcYfPAUbhcWnq1OmIUZnNNkaFfPj1MpfhYxpFibp43Fq+k/oVLxIbX7ABRmfiGaBOtH3WpcsRfTYvlMfYxlBgNKIQ5tIIGgI3QhePS8o20uTnVoqjDzgCoTOxAOpE22dduhzRZ/NCeYxtDAVGIwphLo2gIXAjdPE4ee4KWrLqI+rfqSVdVtAkcLu9FMAC6AWtiPLqcsSIzBPVso1Roh9u3cxluHhGVZouHq+f+iohDNqEAe2pRX6eVnNZALXC7a8yXY7or3XhPMU2hoOjCaUwlyawELwNOnjExhdsgEFaOPGq4I32WAILoEfAosiuwxGjsCuxTrYxagbCq5+5DA/LKEvSwaNzAL554/o0cWAH7eayAGqH3HuFOhzRe6vCfYJtDBfPKEtjLqNEP7y6dfAYRQBsmRdvPgYRnh8FLkmHIwZuZMAC2MaAABr0OHNpEBkBmqKDxygCYLMABnCKKB7V4YhR2CXjiFG3K8z6beAReNlgJ9sYTs+IIgC2zLjDM8Bw+A2lFO5socAYeSE28MgCGLmbhdYA1f6KnZ/YAZqXU4dmjOoUWru9FMTfAL2gFVFe1Y4YkVmVqmUbTWAhnDYwl+HgGHUpqnmMKgA2zwCj9iyP9at2RI/NUZKdbVQCaySFMpeRwB56pap5jCoANgtg6K6itkDVjqi29XKls41yOMUhF3MZB5bc26iax/7Fi2hL+U6aMrQj5TfMcW+Qghy8BKoA1LCLVO2IYbfXT3lsox/UzHyGuTSTF6+tUsljlAGweQbo1RMizq/SESM2raJ6ttEUJoK3g7kMjqEJJajkMcoA2CyAJniXhzaodEQPzVCalW3h0NNzAAAgAElEQVRUCq/WwplLrXArq0wlj48sWk0LStdTj8Jm1LOouTIb3ArmJVA3hAz4u0pHNMA80QS20RQmgreDuQyOoQklqOQxygDYPAM0wbs8tEGlI3pohtKsbKNSeLUWzlxqhVtZZap4jDoANgugMpdRU7AqR1TTWn+lso3+cDPxKebSRFa8t0kVj1EHwGYB9O4LkT6hyhEjNSqpcrbRJDaCtYW5DIafKU+r4tEJgN2loAkN6NQyUnP5G2Ck8MtVrsoR5WrXk4tt1IOzjlqYSx0oq69DFY9RB8DmGaB63wm1BlWOGGojAxbGNgYE0KDHmUuDyAjQFFU84gJcfAd8eswVVKdm9QAtDP4ozwCDY6i8BFWOqLzhHipgGz2AZXhW5tJwgiSbp4JHEwJg8wxQ0gFMyabCEU2xzWkH22gaI/7bw1z6x86kJ1XwaEIAbBZAk7xMoi0qHFGiWq1Z2EatcCutjLlUCq+2wlXwOHnuClqy6iPq36klXVbQRJst6SriJdDIKXBvgApHdK9Vbw62US/eKmtjLlWiq69sFTyaEAA78hngt99+S3Xr1qUqVaqkZXPPnj1UvXp1qlq1akbG77nnHho1apQ+r4igJhWOGIEZGatkG01jxH97mEv/2Jn0ZNg8mhIAOzIBLC8vpwEDBtBRRx1F27Zto65du1Lfvn1p/PjxtH37dqpduzaNGTNGCGPv3r1p+vTp4neZEgugSV3Gf1vC7mz+W6LuSRtsBHo22Mk2eu8ny9/9lHAHYPPG9WniwA7eC1DwhNYl0Mcff5xefvllevbZZ+mNN96ga665hl555RUaMWIEzZs3T4jh8OHDafPmzbRlyxbxs1tiAXRDKB5/5wElHjzJtJK5lEHJ/Dxh82hKAOzIZoCff/45/fznP6cOHTpQSUkJDRs2TAhe+/btKTc3VwhfaWkp9erVi2bPnk3VqlVz9RIWQFeIYpEh7M5motE22MgzQBM9z1+bwvZXUwJgRyaAr732mljaHDhwIK1YsYJq1KhBixYtogMHDlBZWRm1atWKZs2aRQ0aNKB169bRsmXLaOTIkdS2bVvRZogmBDI5devWzR/D/BQjwAgwAoyAFgSuf+Tfop4pA87WUp9sJfn5+YdlrXLo0KFDsgXI5sOS5xlnnCE2rWAjTL169cRSZ15enihi165dNGjQIBoyZAhNmjRJiN/gwYOFWKbbMMMzQFn0zc4X9tumidbaYCPPAE30PH9tCtNfnQDYjRvm0NShHf01SMFTWr8B3nvvveID+YMPPkibNm2iNm3a0Kefflqx1FlcXExFRUVCFJcuXUpjx46lgoICIYDplkNZABV4RQRFhtnZImi+VJU22MgCKOUKscgUpr+aFAA7EXytAghh69y5M+FbINLo0aPFrlAk7ArFz9OmTaN9+/aJDTDLly8Xu0L79OmT1mFYAGPRl1wbGWZnc60sogw22MgCGJFzKag2TH81KQB2ZALoVPzZZ59R/fr1xTk/J+3YsUP8E8uiXhILoBe0zM0bZmcz1UobbGQBNNX7vLcrTH91AmDPGNmJ8nLreG+Moie0zgBV2MACqAJV/WWG2dn0t16uRhtsZAGU84U45ArLX00LgB35DDBM8lkAw0QzurLC6mzRWeBesw02sgC6+0FccoTlr0vKNtLk51ZSYatGNKxbG6PM5xmgUXSkbkxYjmiyqWyjyex4axtz6Q0vU3OHxaNpAbB5Bmiqx6VpV1iOaLLZbKPJ7HhrG3PpDS9Tc4fFo2kBsFkATfU4FsCYMeOtuWENKN5q1Z/bBjvZRjm/ws3v2ACDm99xA7xpiZdATWMkRXu4s8WAJIkm2sAjYLDBTrZRwuGJyMQA2DwDlOPOmFzc2YyhIlBDbOCRBTCQixj1cBj+amIAbBZAo9zMvTFhOKJ7LdHmYBujxT/M2pnLMNGMrqwweHQOwE8Y0J5a5P8Q8tKkxEugJrGRpi1hOKLpZrKNpjMk3z7mUh4rk3OGwWPnm58RJuL7H74DmpZYAE1jJEV7wnBE081kG01nSL59zKU8VibnDMqjqQGwEzFnATTZA/+vbUEdMQYm8saJOJAk2Ub2V0mgDM8WlEdTA2CzABrueMnNC+qIcTCXbYwDS3JtZC7lcDI9V1Aex88sEbtAh3U9hwpbNzbSXJ4BGklL5UYFdcQYmMgzwDiQJNlG9ldJoAzPFpRHUwNg8wzQcMfjGWDMCJJsbtABRbKayLPZYCfbmNnNTA6AzQIY+RDhrQHc2bzhZWpuG3gE9jbYyTZm7mVOAOy2TU+gW3u3M7VLpvXVKocOHTpkbKsTGsa3QcSBJfc28oDijlFccjCXcWHKZRa3YQPl5+f7MsbkANg8A/RFaXQP8YASHfZh1mwDjzwDDNNjoi0riL9eP/VVwjLolKEdKb9hTrSGZKidN8EYS82PDQviiDEwTzSRbYwLU+7tZC7dMYpDDr88OgGwYePCiVcZbSoLoNH0/NA4v44YA9Mqmsg2xoktdUtncUGB/TU9U6YHwOYl0Lj0sv9rJ3e2mBGWprk28MgvbNnhq0F4dA7A9yhsRj2LmhsNCM8AjaaHZ4AxoEe6iSyA0lAZn9EGLv3aaHoAbJ4BGt+9KjfQryPGyUy2MU5s8RIo+2t6HzA9ADYLYMzGGu5sMSOMl0B9b5+PC9PcJ1MzFYcA2CyAcell/A0wZkzxzCjIt6M4kc0CmJqt+aXr6dFFq6mwVSMa1q2N8ZTyN0DjKeJdoDGgSKqJNgyaLIBSrhCLTH78NQ4BsHkGGAv3+7GRfhwxZibyUY+4EZahveyv2UGmHx7jEACbBTBm/unHEWNmIgtg3AhjAeTvnEk+sLV8J/UrXiRufscN8HFIvAQaA5ZYAGNAkkQTbeCRl0AlHCEmWbz6a1wCYPMMMCYO6DTTqyPGzDzRXLYxjqylbjNzmR1ceuUxLgGwWQBj5p9eHTFm5rEAxpEwXgLlJdAkH3ACYE8Y0J5a5OfFwqt5CTQGNLEAxoAkiSbawCPP5iUcISZZvPhrnAJg8wwwJg7IS6AxI8qluV4GlDhbboOdbGNlD41TAGwWwJiNLtzZYkZYmubawCPPALPDV73yGKcA2CyAMfNRGwZOtjFmTsnfAPkbYIIPOAGwb+3djto2PSE2zszfAGNAFYtDDEiSaKINPHqdOUjAZmQWG7j0YmOcAmDHYga4Z88eql69OlWtWjVjB7jnnnto1KhRRnaSsBrlxRHDqlN3OWyjbsTV1cdcqsNWZ8myPG74/BvCDtDGDXNo6tCOOpsYuC6tM8A//elPVFpaKhp98OBBWrhwIa1atYpefvll2r59O9WuXZvGjBlDVapUod69e9P06dPF7zIlFsDAPmBEAbKdzYjG+myEDTbyDNCncxj4mKy/xi0AthEzQMzajjvuOLrssstoxIgRNG/ePOrbty8NHz6cNm/eTFu2bBE/uyUWQDeE4vF32c4WD2tSt9IGG1kA4+yhldsu669xC4AduQD+97//pcsvv5zee+89qlGjBrVv355yc3OF8GGG2KtXL5o9ezZVq1bN1ZtYAF0hikUG2c4WC2PSNNIGG1kA4+yh/gQwbgGwIxfA/v3707nnnkv9+vUTbTlw4ACVlZVRq1ataNasWdSgQQNat24dLVu2jEaOHElt27ZN61UsgNnR4WwQBxtsZAHMjv4oy6MTADsvpw7NGNUpdsZr/QYIdL766is69thjqby8nHJycioBtmvXLho0aBANGTKEJk2aJMRv8ODBtGLFCvFdsKSkpOIbYuKD3bp1ix3w3GBGgBFgBOKOwIr1X9KcpRupxU9zqP+Fp8XSnPz8/MPaXeXQoUOHVFjz/PPP0xNPPEELFiw4rPji4mIqKioS3/+WLl1KY8eOpYKCAiGA6ZZDeQaogiX9ZdowO7LBRtmZg34PC7dGG7iUsTGOAbAjXQK98cYbxRJn8tGFbdu20ejRo2natGm0b98+sQFm+fLlYldonz59eAk0xVtKuF062tJkOlu0LQxeuw02sgAG9xNTSpDx1/7Fi2hL+U6aMrQj5TesvKJnih2Z2qF9CTRdY3bs2CH+VK9ePU+48QzQE1zGZpbpbMY2XrJhNtjIAijpDDHI5uavcbwANxl2YwTQrz+wAPpFzqzn3DqbWa311xobbGQB9OcbJj7l5q9xvACXBdBET3Npk5sjxtCkw5rMNmYDiz/YwFxmB5duPD6yaDUtKF1PPQqbUc+i5rE0mmeAMaDNzRFjYIJrE9lGV4hik4G5jA1VGRvqxmMcL8DlGWAMfdPNEWNoEs8As4G0NDawv2YHuZl4jOsFuCyAMfRNHlBiSFqKJtvAIy+BZoevuvEY1wtwWQBj6J82DJxsYwwdk2eA2UOaxxe2bPj+l0nklR2ED9tjeBdo2IhGUx4LYDS4q6iVuVSBqv4yM/GYDd//WAD1+5SvGnlA8QWbcQ/ZwKPb0plxpPhskA1cZrLRuQB34cSrfCJoxmO8C9QMHjK2wvbOFgOKpJpoA48sgFKuEItM6fz1nQ1b6ZZHXo/lBbj8DTAWrle5kTYMnGxjDB2TvwFmD2kevgHOWbyGnlqylroUNKEBnVrGGgOeAcaAPhaHGJAk0UQbeOQZoIQjxCRLOn+9+eF/0JqN2+jW3u2obdMTYmJN6mayAMaAPhsGTrYxBo4o2UTmUhIow7Ol49H5/vf0mCuoTs3qhluRuXksgDGgjweUGJAk0UQbeOQZoIQjxCRLKn/Npu9/mXyVj0EY5KQ2DJxso0EOF7ApzGVAAA15PBWP2fT9jwXQEEdzawYPKG4IxePvNvDIM8B4+KJMK1P56/iZJYQoMMO6nkOFrRvLFGN0Hl4CNZqeHxpnw8DJNsbAESWbyFxKAmV4tlQ8dh83jxAHdMbITpSXW8dwC9ybxwLojlHkOXhAiZyCUBpgA4/8whaKqxhRSLK/bvj8G0IEmLycOjRjVCcj2hi0ESyAQRHU8LwNAyfbqMGRNFXBXGoCWnE1yTzOL11Pjy5aTYWtGtGwbm0U166neBZAPTgHqoUHlEDwGfOwDTzyDNAYdwvckGR/zbbvf5l8lXeBBnaf8AqwYeBkG8Pzl6hLYi6jZiCc+pN5zLbvf6EL4P79+6latWrhoC9ZCt8GIQmU4dl40DScIA/NYy49gGVw1kQet5bvpH7Fi8TBdxyAz5YUaAl09erVdP3119PLL79Mv/71r2nt2rUEQfrDH/6gDR8WQG1QK62IB02l8GotnLnUCreyyhJ5XFK2kSY/t1KEPkMItGxJgQTw3HPPFVv0b7/9drruuuuoVatW9P7779PXX3+tbSbIApgdrsiDZnbwyN8As5PHyXNX0JJVH1H/Ti3psoImWWOkbwHcs2cP1apVixYsWECTJ0+mNWvW0FtvvUUnn3wyvf3223TmmWdqAYkFUAvMyithAVQOsbYKmEttUCutKJHH/sWLaEv5TpoytCPlN8xRWq/Own0LIBp5+umn089+9jOaP38+DRw4kBo2bEjjxo2j7777jurU0XNIkgVQp7uoq4sHTXXY6i6ZudSNuJr6HB6z9ftfptUKqV2gTz75JP32t78V6GPW165dO+rcuTPNnj1bDSMpSmUB1Aa10op40FQKr9bCmUutcCurzOExW7//BRZAFFBeXk5Vq1alevXq0apVq8R3QJ2JBVAn2urq4kFTHba6S2YudSOupj6Hx0cWraYFpeupR2Ez6lnUXE1lEZXqawm0f//+tHfv3rRNnj59uvg+qCOxAOpAWX0dPGiqx1hXDcylLqTV1uPwiPBnCIM2YUB7apGfp7ZSzaX7EsAqVapkbOaOHTvoqKOO0mIKC6AWmJVXwoOmcoi1VcBcaoNaaUXgsW5ug6w8/+cA50sADx48KJ7v2rUrbd26laZOnUo//elPxXGIpUuX0n/+8x+qXl3PTcEsgEr7gLbCedDUBrXyiphL5RBrqQA8vvP5/qyL/5kIni8BRAGI+gKRw/k/CCDS3Llz6corr+RjECG7Jw8oIQMaUXE28AhobbDTFhufKv0sq+7/S+76vgUQBTVr1ozeffdduvzyy8UmmHnz5olvfx9++CHVrVtXyzDDM0AtMCuvxJYBJT8/XzmWUVfAXEbNQDj1r/3f+/THJ1aJwhD+DGHQsi0FEkCEPpswYQItXLiQvv32W+rQoQPddttt1L59e204sQBqg1ppRTxoKoVXa+HMpVa4lVU2/x9l9OjfP6DmjevTxIEdlNUTZcG+BRBLoA888AA1b96cLrjgAsLGl5/85CfabWEB1A65kgp50FQCaySFMpeRwB56pXc+toRWrv8y68KfJQLlWwCdJVAIIZZBcRYwisQCGAXq4dfJg2b4mEZVInMZFfLh1nvlmOdo994DWRf+LDQBvPrqq2nOnDl03nnniZmgczxi0qRJVLNmzXDZSFMaC6AWmJVXwoOmcoi1VcBcaoNaWUU494fzf3k5dWjGqE7K6om64EAzwAYNGohjEMlp+/btYlNMurRz507CUYpMZwURbBu7TN1mliyAUbtQOPXzoBkOjiaUwlyawEKwNjjRX7oUNKEBnVoGK8zgpwMJ4K5du+jQoUOHmZcuEDZErV+/fgSBPOKII6hly5YiePb48ePF72rXrk1jxowRM8nevXsTIsrgd5kSC6DB3uWhaTxoegDL8KzMpeEESTTPif6Cu/9wB2C2pkACiJ2fM2fOFMug+Hf37t1FcOzjjz8+JV6PP/44rVy5kh566CEhnC+88AK1aNGCRo0aJY5Q9O3bl4YPH06bN2+mLVu2iJ/dEgugG0Lx+DsPmvHgSaaVzKUMSubmcW5/qFWjKj07rqu5DQ2hZYEE8Oabb6a7775bLGUeffTRQriaNm0qDsJXq1btsOaNHj1a3BlYVlZGJ554It1111108cUXi2MTubm54vnS0lLq1auXuFEiVRnJhbIAhuAFBhTBg6YBJITUBOYyJCAjKmZ+6XoR/aXFT3Nowu87RtQKPdX6FkB8x8Nh9wEDBtBf/vIXsaSJi3FvuOEGeu+99+iMM844zIJrrrmGli1bRi+//DKtXr2abrrpJvr444/F90CIIm6SmDVrFuHb4rp160TekSNHUtu2bUVZJSUlQiCTU7du3fSgxbUwAowAI5DlCDz62vv0zqZvqOf5jalNk2Oz3FqiVMEpXO8DxPc/fOsbO3as+G6H5IRCwyyvdevWhwF344030pFHHkkTJ04Uf4PQQdBOPfVU8TPKHDRoEA0ZMoSwkxTiN3jwYFqxYkXFDlOeAWanP/KsIXt4ZS7jy+XOPfuo+7h5woC7f9uKmp1xWnyNkWi57xkgysYFuBAwLGNis8rzzz9PZ599dlrBwvfCRx55hBYvXiyWO88991z67LPPKnZ6FhcXU1FRkfj+h6DaENeCggJRXrrlUF4ClWA5Bll40IwBSZJNZC4lgTIw2/J3P6XxM0uoccMcGtbptJSzIwOb7btJgQRw06ZNIhTaU089JTbBIBD2rbfeSmeeeWbKBn3//fc0dOhQsQQKwcQOUGycQdq2bRvhG+G0adNo3759YgPM8uXLxeyyT58+aQ1kAfTNvVEP8qBpFB2BGsNcBoIv0ocnz11BS1Z9JKK/tGhYjQXQjQ2IGo434OgCRE1m4wpukcc5wcQzfgilhpTp/GCqtrAAujEUj7/zoBkPnmRayVzKoGRmHix/Yhl0ytCORLu/ZgHMRNOSJUvETA3LmieffLLYzYkZ3BVXXKGNXRZAbVArrYgHTaXwai2cudQKd2iVJUd/sZlH100wQB3fAN9//316/fXXRSDsjh070n//+1/65ptvxLEIHYkFUAfK6uuwubOpR1dvDcylXrzDqi05+ovNPLoKoHMhLq4/uvPOOwUHr7zyCl1yySXi212bNm3C4iVjOSyAWmBWXonNnU05uJorYC41Ax5SdcnRX2zm0VUAgfkpp5wibn/G+T+cCcQuzvXr14sNLcceq+f8CAtgSN4fcTE2d7aIoQ+9euYydEiVF+hEf8Glt7j8FslmHqUEEN8AcU4Pouck3BF47bXXKifMqYAFUBvUSiuyubMpBTaCwpnLCEAPWKUT/QVxPxH/kwUwVZTrFCAjG87sYWfnhRdeKA7H60wsgDrRVlcXD5rqsNVdMnOpG/Hg9eHsH84ADut6DhW2bswCeEhCALEB5qKLLhJTZcQFXbNmDfXs2bPibF9wWtxLYAF0xygOOXjQjANLcm1kLuVwMiVXYvQXLH9iGZRngBICiHBnEMH69evTVVddJaK7INoL7wIN17V5QAkXz6hKs4FH2wfOqHwrSL1O9JfmjevTxIEdKoqywV99R4LBAXjc+o5vfghojUPtCEqNgNarVq0Sd/3pSDwD1IGy+jps7mzq0dVbA3OpF++gtSVGf7msoAkLIBFJbYJB1BaEPcvJyaEaNWqIGyFee+01+uqrr8Rt7joSC6AOlNXXwYOmeox11cBc6kI6nHqc6C8zRnaivNwf93DYzKOUACIGKG5vQBxQJ+FMIM4G6kosgLqQVluPzZ1NLbL6S2cu9WPut8bk6C+J5djMo6sAHjhwgP7zn/+Iy3AB1MaNG+mss86iX/7yl3658PUcC6Av2Ix7yObOZhwZARvEXAYEUOPjydFfWAB/QMBVAHGJbcOGDcUN8AiFFlViAYwK+XDr5UEzXDyjLI25jBJ9b3X3L15EW8p30oQB7alFfl6lh23m0VUAgdQf/vAHcRs8rjGCEOIbINLll18udSuEN6pS52YBDAPF6MuwubNFj364LWAuw8VTVWmpor/wDFByBohsuNF969ath/Gzfft2z9ca+SWZBdAvcmY9x4OmWXwEaQ1zGQQ9fc860V8KWzWiYd0Oj91sM49SM0BEgMFxiOTUoUMHngGG6Mc2O2KIMEZelA08AmQb7MwGG29++B+0ZuO2StFfeAboYQYY+YhCRDwDNIGF4G3IhgHFDQUbbGQBdPMCM/6eLvoLCyALoBkemtAKGwZOttE4t/PdIObSN3TaHkwX/YUFkAVQmxPKVsQDiixSZuezgUeeAZrtg07r0kV/YQH0IIAIF/r000/TP//5T2rfvr2I/lJUVKTtNng0lZdA49Hh3FppgzjYYCMLoJunm/F3J/rLlKEdKb9hTspG2eCv6WyU2gRzxx130JgxYwR4uA2ipKRE/BuC6ByJUE03C6BqhPWUb3Nn04OwvlqYS31Y+6kpU/QXngFKzgAx+zv66KPp0ksvFUGxcSj+jDPOoN/+9rfihohTTz3VDzeen2EB9AyZkQ/woGkkLb4axVz6gk3bQ3MWr6GnlqylLgVNaECn9JcW2Myj6wxw3759IgD23XffTV9//bW4DeKCCy6gjh070qZNm+jkk0/WQigLoBaYlVdic2dTDq7mCphLzYB7rO76qa8SZoG4+R03wKdLNvPoKoAArVOnTvTSSy+JeKBICIoNEdQZGo0F0KP3G5rd5s5mKCW+m8Vc+oZO+YNO9BdUtHDiVRnrs5lHKQHEtUdPPvkk4VaI//3vf9S2bVuaOnWqWArVlVgAdSGtth6bO5taZPWXzlzqx1y2xiVlG2nycyvFzA8zwEzJZh4zCiCAyXRhfOPGjXkTjKxHSuSz2REl4IlNFht4BBk22BlXG8fPLCGcARzW9RwqbN2YBXDDBsrPzz8Mh4wCWKVKlYzAcSzQcMfkuHY2LyiwjV7QMjsvc2kuP+kuv03VYpt5zCiA9957L+E+wHTphhtuEBtkdCReAtWBsvo6bO5s6tHVWwNzqRdv2dqc6C+NG+bQ1KEdXR+zmUepb4BA8LvvvhObXnA/IDbA4GiEzsQCqBNtdXXZ3NnUoRpNycxlNLi71SoT/SWxDJt5lBJARIHp0aNHJdxHjRoljkboSiyAupBWW4/NnU0tsvpLZy71Yy5To5flT5RnM4+uAogl0NzcXHH04YknnhBLnlOmTKHly5fTp59+Sscff7wMJ4HzsAAGhtCIAmzubEYQEGIjmMsQwQypqHc2bKVbHnmd8nLq0IxRnaRKtZlHVwF0IsFcffXVNG3aNAHowoULqUuXLiyAUu4ln8lmR5RHyfycNvBo+8zBVC98ZNFqWlC63jX6Cy+B/oBARgF87bXXxCaYBx98UByEnzlzprgA97777iOcDVy3bh1fiBtiT7Bh4GQbQ3SYiItiLiMmIEX1/YsX0ZbynZQp+HXyYzbzyMcgDPJhmx3RIBoCN8UGHnkGGNhNQi9ANvg1C+CPCGQUQMz6Mh2DuOSSS3gGGKIb2zBwso0hOkzERTGXEROQVL2f5U/bX2RcvwECoN27d9Njjz0mbn9AwlGI9957j+bNm0d169YN5AV79uwR9wsiyHamxJtgAsFszMM8aBpDReCGMJeBIQy1ANng1zwDlJwBOtmcYNjJwGFnaCoB/P7776l+/fp00UUXiUdOP/10uvPOO2n8+PGE6DG1a9cW9wsi0kzv3r1p+vTp4ncsgKnD9YTaSyIujAfNiAkIsXrmMkQwAxblBL+uU7M6PT3mCk+l2cyj6wxw//79YoaGGdiCBQvE7k/M1ubMmUNvvfWWELHkhIDZo0ePFnmwacaZZo8YMULMGvv27UvDhw+nzZs305YtW8TPbolngG4IxePvNne2eDAk30rmUh4r1Tnnl66nRxetpsJWjWhYtzaeqrOZR1cBxHInBA9hz2rVqkWrV68mhEhr1qyZWAZNdSPEokWLqGfPnuLs4Nlnny3Es3379uI/nCmE8JWWllKvXr1o9uzZUt8RWQA9+bSxmW3ubMaS4rNhzKVP4BQ85nf505mcpAoUraCZkRWZzlddBRAt7tOnjzgCgeuQEiPCpFsCXbJkCa1atYqGDBlCzzzzDE2cOFFcowQxLSsro1atWtGsWbOoQYMG4ijFsmXLaOTIkeKapXSJBTAy3wm1Yh40Q4Uz0sKYy0jhr6g88e4/LH9iGdRLsplHKQHENz2cCSwsLKRnn31WiNhVVylCE5EAACAASURBVF1F7dqlvmdq7969YtaI/7CLFMugn3zyCZ144omCl127dtGgQYOEQE6aNEmI3+DBg2nFihViSbWkpETMEJNTt27dvPDKeRkBRoARyHoEVqz/kuYs3UgtfppD/S88Levt9Wug5+uQnIqweQWxP53veR999JEQrb/+9a8pN8Fgg8u2bdvooYceojfeeENsdPnwww8r2l1cXExFRUXi+9/SpUtp7NixVFBQIATQqSPZSJ4B+qXdrOdsfts0i4ngrWEug2MYRgle7v5LVZ/NPErNAE866STxLW/GjBlC1G677TaBY7r7AD///HMhcBAz/Ddu3DjCTlIkCCM2yCCs2r59+8QGGMQVhWhiqTVdYgEMo6tEX4bNnS169MNtAXMZLp5+Stu5Zx8h+DWSn+VPPGczj1ICiODXw4YNq+CnSZMmIhzapZdempGzL774go477rhKeXbs2CF+rlevnie+WQA9wWVsZps7m7Gk+GwYc+kTuBAfW1K2kSY/t5Jk7/7jGWBlBDIKYHl5eUXu5557jgYOHEh5eXniG2CdOnXEjk5diQVQF9Jq6+FBUy2+OktnLnWinbour3f/sQB6EMBUZ/wSH0+3BKrCLVgAVaCqv0weNPVjrqpG5lIVsvLler37jwXQgwAiegt2dKZL+BZ45JFHyrMVICcLYADwDHqUB02DyAjYFOYyIIABH1/+7qeEDTBBlj/RBJt5lPoGCJBwFAIX4CamRo0a0RFHHBGQRrnHWQDlcDI9l82dzXRuvLaPufSKWLj5w1j+ZAHEjbcuCTs2cQwCB98TEy+BuiHn7e88oHjDy9TcNvBo+8Bpgu85y59e7v5L1W4b/NV3JBjoo7OT85prrqEaNWpUYHjrrbfyEmiIPcFmRwwRxsiLsoFHFsBo3czv3X8sgJURcF0CdQQQUVtuv/32yFjnJdDIoA+1YhvEwQYbWQBD7RaeC5uzeA09tWQtdSloQgM6tfT8fOIDNvir7xkggLr66qtp4cKFIqh14tGHrl27SgWyDsTO/z3MAhgGitGXYXNnix79cFvAXIaLp5fSbn74H7Rm4za6tXc7atv0BC+PHpbXZh5dZ4BAC0Grt27dehhw/A0wkN+xI4YLnzGl2TCg8AwwOncLI/oLzwB/QEBKABGqDLtAkxPid6aL3Rm2e/AMMGxEoynPBnGwwUYWwGj6D2p1jj80b1yfJg7sELghNvir5yVQXF30xBNPiKuLcO/f7t27DwMa9/nhslwdiQVQB8rq67C5s6lHV28NzKVevJ3awjr+4JRnM49pZ4A4AI9D7hMmTKDJkyfzEqgGX7fZETXAq60KG3jkGaA2dzqsov7Fi2hL+U4KevyBBTDDEih2f+JOvpNPPplwuwNubkhO5557rrjzT0fiGaAOlNXXYYM42GAjC6D6vpKqBmf5My+nDs0Y9cMNO0GTDf7qeQkUoOLWdiyFpku4HZ6XQIO634/P2+yI4aEYfUk28MgCGI2fOXf/9e/Uki4raBJKI2zwV18CyMGwQ/Ev6UJsdkRpkGKQ0QYeWQD1O+LW8p3Ur3iRqNjv3X+pWm2Dv/oSQOz+zDQDbNOmDS+BhtgPbHbEEGGMvCgbeGQB1O9m80vX06OLVlNhq0Y0rFub0Bpgg7/6EsBEhFevXk1r1qypBHr37t15CTQ0N7Q7KnuIMEZelA0DCgugfje7fuqrhBBoYRx+T2y9Df4aSAD79+9PM2bMOIxxPggfbiew2RHDRTLa0mzgkQVQr485y591alYXy59hJhv81bcAHjhwQBx2x6F3BL9O3PRywQUX8EH4ED3RZkcMEcbIi7KBRxZAvW72yKLVtKB0fejLn7bzKBUJplmzZnTxxRfTvffeq5f1hNr4GERk0IdasQ3iYIONtg+coXYKicKcs39hL3/azqOUAHbp0kUEw+7WrRsdc8wxFXTdf//9VLNmTQn6gmdhAQyOoQkl2CAONtho+8Cpsy85Vx+pWP60nUcpAeRg2Hrc3YaBk23U40s6amEudaBM5IQ+C+Pqo1QttplHKQHcv38/pbo4XtcheJDGM0A9nU11LTZ3NtXY6i6fuVSPeOLNDzNGdqK83DqhV2ozj1ICeMcdd9COHTsOA/6uu+7iJdAQ3dFmRwwRxsiLsoFH25fOdDnZkrKNNPm5leLOP3z/U5Fs8Fffu0ABOC+BqnC7w8u02RH1IKynFht4ZAHU40tO6LNhXc+hwtaNlVRqg78GEsCvvvqqIiLMrl276KabbqKPPvqI3nzzTY4EE6JL2uyIIcIYeVE28MgCqMfNuo+bR1gGVbX8aTuPUkugyVTPnDmT+vTpQx988AGdcsopWjyBvwFqgVl5JTaIgw022j5wKu8oRPTOhq10yyOvU+OGOTR1aEdlVdrgr4FmgO3atRNXIjkJhSF9++23VLduXWXEJBbMAqgFZuWV2NzZlIOruQLmUi3gcxavoaeWrCVVuz8Tx/P8/Hy1xkRceiABvPDCC2nLli3CBESFwawPM8BOncK5j0oGGxZAGZTMz8ODpvkcybaQuZRFyl8+VbE/k1tjM4++lkD90RnsKRbAYPiZ8rTNnc0UDsJqB3MZFpKHl6My9icL4I8IsACq82HPJfOA4hkyIx+wgUcAb4OdUdmo6uqjVB0mKht1dt5AS6A6G5quLp4BmsBC8DbY3NmCo2dWCcylOj50LX/a/iKTdgaIWyBeeuklOvvss2nVqlV01lln0YknnqiOcZeSWQAjgz7UinnQDBXOSAtjLtXAnxj7c8aozoQYoCqTzTymFcDvv/9eRHkZOHAgvfjii9SrVy9q27ZtJR4uv/xyvg4pRM+02RFDhDHyomzg0faZg0onUx37k78BSn4DbN26tZj9pUt8IW643cCGgZNtDNdnoiyNuVSDfuebnxEFqzz8nthym3nMuAnmu+++EwKIa5CuvfZaOu+88yoxjp9xLEJH4iVQHSirr8PmzqYeXb01MJfh463r8DsL4A8ISO0C/eyzz8SB93//+9+0c+dOKioqotq1a0ux//XXX1OdOnXoyCOPTJl/z5494pb5qlWrZiyPBVAKbuMz8aBpPEXSDWQupaGSzqhz96fTKJt5lBLApUuXUufOnUXkFydNnjyZrr/++ozEbtq0iVq0aEF/+9vf6Je//CWNHz+esGwK8RwzZgxVqVKFevfuTdOnT3cVVBZA6T5kdEabO5vRxPhoHHPpAzSXR5zvfyqDXyc3wWYeXQXw4MGDYifo1q1b6bbbbhNC9ec//1nMBr/88stKN8QnArt371668soraePGjTRt2jQ67rjjaMSIETRv3jzq27cvDR8+nDZv3iwizOBnt8QC6IZQPP5uc2eLB0PyrWQu5bGSzdm/eBFtKd9JU4Z2pPyGObKPBcpnM4+uAoibII499liaOnUqXXfddQLoxYsX069//Wtavnw5tWnTJiX4N954IxUWFgqxHD16tJgBtm/fnnJzc4XwlZaWip2ls2fPlvqOyAIYyMeNedjmzmYMCSE1hLkMCcj/K0Zn9JfEltvMo6sA4ib4o48+mpo1a0b333+/mAFiKfPZZ5+lL774QtwVmJyef/55mj9/Pj355JN00UUXVQggzhaWlZVRq1ataNasWeLZdevW0bJly2jkyJEVxyxKSkqEQCYnbMbhxAgwAoxANiIwe+lGWrn+SzqnybF09flq7v7LRtxkbUoV8NtVAFH4lClTaNiwYZXqwXLonXfembLuc889VyyZHnPMMWKptEmTJmKm94tf/ELkx52CgwYNoiFDhtCkSZOE+A0ePJhWrFghvgumSjwDlKXZ7Hw2v22azYz31jGX3jFL9wTu/Ot3z0Lld/+lqt9mHqUEEKB9/PHH9MILL9COHTvoiiuuEDPCdOmTTz4h7O5E6tevnxC3Ll26VGx0KS4uFjtJ8f0PG2zGjh1LBQUFQgDTHatgAQyvs0VZks2dLUrcVdTNXIaH6pKyjTT5uZXUvHF9mjiwQ3gFS5RkM4/SAiiBY8osuDLplltuEd8AkbZt2yaWRLExZt++fWIDDL4lYlcorlhKl1gA/TJg1nM2dzazmAjeGuYyOIZOCbj4FmcAde7+dOq2mUflApjsIphBItWrV8+T97AAeoLL2Mw2dzZjSfHZMObSJ3BJjyVuftER+zO51TbzqF0A/boMC6Bf5Mx6zubOZhYTwVvDXAbHECU4Z/8KWzWiYd1S76oPp6bUpdjMo5QA4gA8zvC9/PLLYvMKAmVjR+aZZ56pkpdKZbMAaoNaaUU2dzalwEZQOHMZHHTn5geUpCv2J88Af0RASgBxoH3u3LniqZtvvllsVlmzZo3YGJMuxFlw16hcAgtg2IhGUx4PmtHgrqJW5jI4qrpvfkjVYpt5dBXA/fv3i1id48aNE3FAEbPz4osvpl/96lf09ttva5sFsgAG72wmlGBzZzMB/zDbwFwGRzOKyC88A/QwA8ThdRxNwHEGzPbwX/369cXOzvLycsrJ0ROuhwUweGczoQQeNE1gIZw2MJfBcIwq8gsLoAcBRFbE7bzvvvsq4YYwZjNnzgzmAR6eZgH0AJbBWXnQNJgcj01jLj0ClpTdOfvXtukJdGvvdsEKC/C0zTy6LoECV4RDQwgzBLL+8MMPqWXLljR06FDXGxwCcHLYoyyAYaIZXVk2d7boUFdTM3MZDNfxM0to+bufUv9OLemygibBCgvwtM08SgkgIsBg52dyQpDsdu3aUc2aNQPAL/coC6AcTqbnsrmzmc6N1/Yxl14Rq5y/+7h5kYQ+S261zTxKCSCCViO2Z6qEwNYIXK1aBFkAg3U2U562ubOZwkFY7WAu/SOJmR9mgHk5dWjGqE7+CwrhSZt5lBLAq6++WtzYgODX2BAzceJEEckFVyLhd3//+99FbE+ViQVQJbr6yra5s+lDWU9NzKV/nE1Z/oQFNvPoKoDOMYgbbrihYiPM3XffLc4D4lgELrrFNUnYJaoysQCqRFdf2TZ3Nn0o66mJufSHc9Shz3gJ9EcEXAUQWTHbQzSYv/zlL+IYBDbA1KpVS+wC7dixo1gCdYJd+3MJ96dYAN0xikMOHjTjwJJcG5lLOZySc5lw+D2xTTbzKCWAiAKDGR5EEOmoo46iGTNmiKuRpk+fLpZH+Rugv87AjhgcN9NKsGFAsX3pLIjPOZtfpgztSPkN9ZyjztReG/w1nY1SAgjwcCD+rbfeot27d4u7+xAdBhtjcBC+Ro0aQfxB6lmeAUrBZHwmmzub8eR4bCBz6REwfG/7/Bu6fuqrRmx+cVpvM49SAgjRe+yxx+j9998XmB08eJDee+89cS6wbt263r3AxxMsgD5AM/ARmzubgXQEahJz6R2+RxatpgWl66lLQRMa0Kml9wIUPGEzj1ICiEttX3rppcOgx5IoC2B4HmmzI4aHYvQl2cAjL4H68zMn9ueEAe2pRX6ev0JCfsoGf/W9BOrsAsUMbMGCBdSlSxcREHvOnDliSbRKlSoh05G6OJ4BaoFZeSU2dzbl4GqugLn0BriJy5+2v8i4zgCx3AnBwzEI7PxcvXo13XvvvdSsWTOxDHrGGWd48wKfuVkAfQJn2GM8aBpGSIDmMJfewDNx+ZMFEIE+XVKfPn3EkYennnqKevToUZGbl0DdkPP2dx5QvOFlam4beLR94PTqezv37KN+9ywUoc9M2f3p2GCDv/peAgVIOPC+ZMkSEe3l2WefFYGxu3btSueff75XP/Cdn2eAvqEz6kGbO5tRRITQGOZSHkTn7F/zxvVp4sAO8g9qyGkzjxmXQBEAGztAW7duTWPHjqXOnTsLOtauXSuCYG/atIlOPvlkDRQRsQBqgVl5JTZ3NuXgaq6AuZQDPHH2N2NkJ8rLrSP3oKZcNvOYUQCLi4tp1KhRaWnAzLB27dpaaGIB1AKz8kps7mzKwdVcAXMpB7jJsz/bl7IzCuDrr79Or776Kj300EN0wQUXUNOmTSsYb9OmDV1++eVyHhBCLhbAEEA0oAgeNA0gIaQmMJfuQJo++2MBlNgEs3DhQjrrrLO0LXemcisWQPfOFoccPGjGgSW5NjKX7jiZPvtjAZQQwH/96180adIkevPNNysxjtvh+SC8eyeQzcEDiixSZuezgUfbB04ZD3RufUBeE7/9OTbY4K+BdoHizN+7775LuPw2Me4ndobyN0CZriCXx2ZHlEMoHrls4JEF0N0X5yxeQ08tWUuFrRrRsG5t3B+IKIcN/upbABEEG5fgjhkzRuwEjSrxEmhUyIdbr82dLVwkoy+NuczMgRP27Nbe7aht0xOiJyxNC2zm0TUSDDC75ppraOXKlfT0009Tbm5uBYwnnHACh0IL0a1tdsQQYYy8KBt45BlgZjdb/u6nhFvf69SsTk+PuSJyn8zUABv81fcMEMA1aNBAXH2UnLZv3y4uy9WReAaoA2X1ddjc2dSjq7cG5jI93rc88jq9s2ErDet6DhW2bqyXGI+12cyj1Axw8uTJFZfhJmI7cuRIcUO8jsQCqANl9XXY3NnUo6u3BuYyNd44+oBLb5Ew+8Ms0ORkM49SAgjyPvroI7ELND8/n4455hg69dRTtXLKAqgVbmWV2dzZlIEaUcHMZWrgl5RtpMnPrRTf/fD9z/RkM49SAohzgLgGCenmm2+mkpISatmyJU2ZMkUbtyyA2qBWWpHNnU0psBEUzlymBj1Oy5+wwGYepQTwpJNOory8PMrJySFEgMGu0DvvvJM+/fRTOv7447V0PRZALTArr8TmzqYcXM0VMJeHA+7c+YdlzxmjOhu//MkC6HIQHgGxa9asSQ8++KAIfo27Abt16ybOBK5Zs0bcC6gjsQDqQFl9HTxoqsdYVw3M5eFIm3rnXyafsJlHqRkgRO7LL7+k4447Tsz+sCMUB+DXrVunq6/xbRDakFZbkc2dTS2y+ktnLitjnrj5xeTIL8meYjOPUgKIW+BxEB7fAp00f/78iu+C6bpeeXl5pXODqfLt2bOHqlevLmaWmRLPAPUPcCpqtLmzqcAzyjKZy8roO5Ff4rL5xWm9zTxKCSCAQii0KlWq0DfffEO1atWin//852n73v/+9z+6+uqr6ZRTTqFdu3ZRr169qHv37jR+/HjC2UHMHiGoKK937940ffp015BqLIBRDnXh1W1zZwsPRTNKYi4r84CjD5gFThjQnlrk55lBkkQrbOZRSgAfeOABuu666+iVV14RN0JgSRRnACFKqdJ9991HDRs2pB49etDixYtp+PDh9MILL9CIESNo3rx51LdvX/G7zZs305YtW8TPbokF0A2hePzd5s4WD4bkW8lc/oiVE/mlccMcmjq0ozyIBuS0mUcpATz99NOpfv369Nxzz1GdOnXo2muvpZkzZ7ruAsU9gpjdYZYH8Wvfvr1YEoXwlZaWipnh7NmzxXdFt8QC6IZQPP5uc2eLB0PyrWQuf8TKOfrQv1NLuqygiTyIBuS0mUdXAdy/f7/4Rvf73/+epk2bJuiCaEG8cDC+bdu2aSm8//776fnnnxfLm6+99hohsHZZWZnYQTpr1iwRYg0baZYtWyZmlJnKYgE0oKeE0ASbO1sI8BlVBHP5Ax3Owfc4HX1IdCSbeXQVQAD1q1/9inAn4GWXXUZHHXUUYQPM0UcfTR988EHKUGgvvvginXPOOeKMIL4ZYtaXeGYQ3wUHDRpEQ4YMEfcMQvwGDx5MK1asEN8FcdAeM8TkhOMXnBgBRoARMAmBcU//l77+9nvqeX5jatPkWJOaxm1JQABRzJKTlABu3LiRMJt75plnxBGISy+9lG666SY6//zzUwL8xz/+UQgjNrpg80xhYSF99tlnFTs9i4uLqaioSHz/W7p0qbhmqaCgQAhguuVQngFmhy/b/LaZHQz+aAVzSTS/dD09umg15eXUoRmjOsWSYpt5dBVALIFiE0zz5s2pQ4cOtHv3bvEdMFOC6A0cOJDef/99cYHuhAkTxHdApG3bttHo0aPFcuq+ffvEBpjly5cLsezTp0/aYlkAY9m3Dmu0zZ0tOxhkAXQQcKK+4GfT7/zL5Hs290lXAQRw2PUJIYSwuZ3XSwT6888/F9/5jjjiiIpf79ixQ/zb6zVKLIDZMXza3Nmyg0EWQAeByXNX0JJVHxl/47ub39ncJ6UEEGf65syZQ+edd56YCeI7HRK+3yFMmo7EAqgDZfV12NzZ1KOrtwabuUyc/cUp6ksqD7GZRykB5Atx9QwsNjuiHoT11GIDj0DSBjvT2egceyhs1YiGdWujx7EU1WIzj1ICiF2bqWJmu30LDJMvngGGiWZ0Zdnc2aJDXU3NtnIZtwtv3di3lUfgIiWA3377rTjI/vLLL4vjC7ghAkcSzjzzTDdsQ/s7C2BoUEZakM2dLVLgFVRuK5fOt7+4xfxM5wK28igtgFdeeSXNnTtX4IcLcXFcAVchffzxxynPASroa3wbhApQIyjT5s4WAdxKq7SRS+e6IwAb929/jnPYyKNju+sM0IkEM27cONq5c6fYBXrxxReLw/Fvv/22tlkgzwCVjmXaCre5s2kDWVNFtnG5tXwn9SteJNAd1vUcKmzdWBPSaquxjcdENF0FEOHLcDi9X79+YraH/xAX9JZbbiFcd4Rb4nUkFkAdKKuvw+bOph5dvTXYxuX1U18l7P7Mho0viZ5iG4+eBBCZcXMDbnhITIgFioDYuhILoC6k1dZjc2dTi6z+0m3i0rnrDxFfJg5sT3m5mYOB6GfDf4028ZiMkusMEA9gByiCWOMqow8//JBatmxJQ4cOdb3Dzz8lhz/JAhgmmtGVZXNniw51NTXbxKUz+4tzxJd0XmATj54EEFFbnn32WXENUtOmTcU1SLjkNorEAhgF6uHXaXNnCx/NaEu0hcuN5VVo8nMrKa63Pbh5iS08eg6GjR2fd999dwV+Z599Nq1cudINTyV/ZwFUAqv2Qm3ubNrBVlyhLVxe/8i/BZI9CptRz6LmilHVX7wtPHoWQMz2GjVqJGaAuMEBYogbHPLy8rSzxAKoHXIlFdrc2ZQAGmGhNnD51wVv0gtvfhzr2x7cXMQGHtPZmPEbIGJ+4vgDbm/45z//KW50X7VqlfgGqDuxAOpGXE19Nnc2NYhGV2q2c5l47CEbv/05npPtPMJO3wJ4+eWX0xVXXEFr164VM0AIojOVvOqqq8Rt8ToSC6AOlNXXYXNnU4+u3hqynctsiveZyTOyncdAApgJuO3bt3u+1shvF2UB9IucWc/Z3NnMYiJ4a7KZS+e2h1o1qtLdvy+i/IZ6zjsHZ8V7CdnMo9ssN+MSKMKfHTx4MC2iv/nNb9Le4O6dhsxPsACGjWg05dnc2aJBXF2t2colgl3f8vA/xKH385s3oBFXX6AORANKzlYeE6H1tQRqADcVTWABNIkN/22xubP5R83MJ7OVS+fQO449jPh/P6NfnPUzMwkIqVXZyiMLYEgOoqsYmx1RF8Y66rGBR+CYjXZi9tfvnoWE//fv1JJaNKxWsedBh+9EUUc28piMI88Ao/Asj3Xa7IgeoTI6uw08ZqsAOrO/5o3r08SBHbJS5GXFwehO5rFxLIAeAYsiuw0DJ9sYhWepqTMbuUwOeZaNNrIA/oiAVCxQNd3HW6n8DdAbXqbm5gHFVGa8tyvbuHxnw1bC0YfEkGfZZmMqlm22kQXQe79X9oTNjqgM1AgKtoHHbFsCxTe/7uPmCW9JDHlmA5c228gCGMEAma5Kmx3RIBoCN8UGHrNNABOvO5p6fUcxC8w2G3ncyT8MAhbAwMNdeAXYMHCyjeH5S9QlZQuXzqF34Jkc8ixbbMzkKzbbyAIY9SiSUL/NjmgQDYGbYgOP2TQ7ml+6nh5dtDplwGsbuLTZRhbAwMNdeAXY7IjhoRh9STbwmC0CmDj7G9b1HCps3biSA9nApc02sgBGP15WtMBmRzSIhsBNsYHHbBFAJ+B126YniOXP5GQDlzbbyAIYeLgLrwCbHTE8FKMvyQYes0EAl7/7KY2fWSI2vEwd2pHycuuwAEbffZS0IF2fZAFUAre/Qm0YONlGf75h4lNx5hJn/qY8t5K2lO+kLgVNaECn1HecxtlGWZ+x2UYWQFkv0ZDPZkfUAK+2KmzgMc4zQFx0O3TqqyLeZ15OHZoxqlNa37CBS5ttZAHUNiy6V2SzI7qjE58cNvAYZwGcPHcFLVn1UcalT8fbbODSZhtZAA0aV212RINoCNwUG3iMqwAm7vqcMKA9tcjPy8i3DVzabCMLYODhLrwCbHbE8FCMviQbeIyjAEL8cNEtlj4LWzWiYd3auDqLDVzabCMLoGsX0JfBZkfUh7L6mmzgMY4CiB2f2PmJ736J4c4yeYQNXNpsIwug+vFQugabHVEapBhktIHHuAkgNr70K14kvCc53BkL4AZrL/1lATRoQLVh4GQbDXK4gE2JE5fO7M+56FbW9DjZKGtTcj6bbVQqgOXl5VSvXj2qWrVqWm727NlD1atXz5gHD/N9gH7d26znbO5sZjERvDVx4TJx9jdjZKeUB97ToREXG4OwabONSgTw448/pquuuorq169P1apVo1atWtFtt91G48ePp+3bt1Pt2rVpzJgxVKVKFerduzdNnz5d/C5TYgEM4uLmPGtzZzOHhXBaEgcuseEFt7y7HXhnATz8qqBwvMSMUtL5qhIBvOuuu2jfvn00btw4wgyvVq1a9MYbb9Cf/vQnmjdvHvXt25eGDx9Omzdvpi1btoif3RILoBtC8fh7HAbNoEjaYGMcvgFiw8uC0vWEqC/Y+DJxYHtPs7842BjUV223UYkA7t69W8zuatasSfPnz6cbb7yRPvjgA+rQoQPl5uYK4SstLaVevXrR7NmzxSzRLbEAuiEUj7/bIA422Gj6wJkY7QVtlTnzl6oH2cClzTYqEUA40t69e2nixIk0adIkevHFF4X4HThwgMrKysSS6KxZs6hBgwa0bt06WrZsGY0cOZLatm0rfLCk6Ef3WgAAIABJREFUpEQIZHLq1q1bPEZ5biUjwAhEikDxvLX06Ve76Cd1a9B1nc6gnxx1ZKTt4cqjRyA/X9ON8Fj2vPLKK6lGjRr05z//mRo2bFjJ+l27dtGgQYNoyJAhQiAhfoMHD6YVK1aImWOqxDPA6B0ojBbY/LYZBn4mlWEql1jyxDVHuOVhwsAOlN8wxzdsptro26AUD9pso5IZ4MMPP0yLFi2iBQsWpOSpuLiYioqKxPe/pUuX0tixY6mgoEAIYLrlUBbAMF0+urJs7mzRoa6mZhO5XFK2kSY/t1IYLBvtJRM6JtoYNps226hEAK+55hp6/PHHK/G0fv16Ou2002jbtm00evRomjZtmtgogw0wy5cvF7tC+/Tpk5ZbFsCw3T6a8mzubNEgrq5W07hMjPOJ8343dGvjedNLMlqm2aiCTZttVCKAmUjasWOH+DPOB3pJLIBe0DI3r82dzVxW/LXMJC5x3AFxPiGCjRvmiAtuw0gm2RiGPanKsNlG7QLol0QWQL/ImfWczZ3NLCaCt8YkLh9ZtFocecB3P4Q6c7vlQdZ6k2yUbbPXfDbbyALo1VsU5rfZERXCqr1oG3gEqKbYiW9++PaHNKzrOVTYunFonJtiY2gGpSjIZhtZAFV6lseybXZEj1AZnd0GHk0RwMTvfv07taTLCpqE6hs2cGmzjSyAoXaXYIXZ7IjBkDPraRt4NEUAcdzBifQyY1Sn0B3BBi5ttpEFMPQu479Amx3RP2rmPWkDjyYIYOLS55ShHQOd90vnRTZwabONLIAGjZ82O6JBNARuig08Ri2Aief9ehQ2o55FzQPzlqoAG7i02UYWQCXdxl+hNjuiP8TMfMoGHqMUwMQ4n2Ecds/kRTZwabONLIAGjaE2O6JBNARuig08RimAztJnmOf9eAmUr0MK3PFVFsDnAFWiq69sG8TBBhujEkAnzifq93vDgxdvt4FLm23kGaCX3qA4r82OqBharcXbwGMUAoj7/SbPXUGI+oID70+PuUI5rzZwabONLIDKu5B8BTY7ojxK5ue0gUfdAoiZ3/iZJUL8sPQ5cWAHIYKqkw1c2mwjC6DqHuShfJsd0QNMxme1gUedAvjootW0uGyjED/c7D71+o5axE+njVE6tQ3+ms5GFsAoPS+pbpsd0SAaAjfFBh51iQNEr/u4eYIT7PjEcYe83DqBOZItwAYubbaRBVC2J2jIZ7MjaoBXWxU28KhLAJ3zfpj5qYj04uYUNnBps40sgG49QOPfbXZEjTArr8oGHnUIIOJ84oojzAJVxPmUcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MCjDgG8fuqr4n4/3d/9Ep3EBi5ttpEFUMuQKFeJzY4oh1A8ctnAo2oBdIJcY6fnhIEdlMT5lPEmG7i02UYWQJleoCmPzY6oCWIt1djAo0oBdMQPdUS19Ok4ig1c2mwjC6CWIVGuEpsdUQ6heOSygUdVAujc7I7yw77c1o/32MClzTayAPrpFYqesdkRFUEaSbE28KhCABPDnHUpaEIDOrWMhD/+Bhg57KE3gM8Bhg5p+AXaMHCyjeH7TVQlhsll4o7PqI48pMIxTBuj4smtXptt5Bmgm3do/LvNjqgRZuVV2cBjmDNAHHPAjs8t5Tu1hjmTcQQbuLTZRhZAmV6gKY/NjqgJYi3V2MBjmALoXG+EHZ9Th3bUGunFzSFs4NJmG1kA3XqAxr/b7IgaYVZelQ08hiWApm16SXYOG7i02UYWQOXDoXwFNjuiPErm57SBxzAEEDe748gDlj57FDYTcT5NSzZwabONLIAG9TibHdEgGgI3xQYewxBAXG+EO/6w6WXiwPZGLX06TmADlzbbyAIYeLgLrwCbHTE8FKMvyQYegwrg/NL1hGuOkKI+7J7JY2zg0mYbWQCjHy8rWmCzIxpEQ+Cm2MBjEAF8aslamrN4jcDZlPN+6Ui3gUubbWQBDDzchVeAzY4YHorRl2QDj34FEEueWPqMg/j5tTF6D/TWAhv8NZ2NLIDefEVpbpsdUSmwmgu3gUc/4pAofs0b16eJAztoZsZ7dTZwabONLIDe+4SyJ2x2RGWgRlCwDTx6FUCEOcPMD4feIX639TmPcO7P9GQDlzbbyAJoUA+02RENoiFwU2zg0YsAIswZIr0gRXm3nx9ibeDSZhtZAP30CkXP2OyIiiCNpFgbeJQVQMz4cKs7RDBOMz/HcWzg0mYbWQAjGSJTV2qzIxpEQ+Cm2MCjrAA6kV5MDHMmQ7QNXNpsIwugTC/QlMdmR9QEsZZqbOBRRgATrzcy+axfJqewgUubbVQqgPv376e9e/dS7dq10/rYnj17qHr16lS1atWMg9M999xDo0aN0jKARVWJzY4YFeYq6rWBx0wCiGXPyXNXiCgvSHHZ8ZnKF2zg0mYblQjggQMHaM2aNTRjxgwhbPfff7/wrfHjx9P27duFII4ZM4aqVKlCvXv3punTp2cUSTzLAqhiqNZfps2dTT/aamtMxyXie2L2h1TYqhEN6NwqFjs+WQDV+kuUpWs9B/jdd9/R6NGj6a233qLWrVsLAUQDRowYQfPmzaO+ffvS8OHDafPmzbRlyxbxs1tiAXRDKB5/ZwGMB08yrUzFpbPsiW9+t/ZuRy3y82SKMjYP+6ux1HhqmFYBdFr24IMP0gcffFAxA2zfvj3l5uYK4SstLaVevXrR7NmzqVq1aq7GsAC6QhSLDDygxIImqUYmc5kY37Nt0xOEAMY9sb/GncEf2m+EAGJptKysjFq1akWzZs2iBg0a0Lp162jZsmU0cuRIatu2bVq0WQCz2xGzw7rMnS2bbEweVJaUbSRcbIsE8RvWrU1slz0TeWIBzA6vNUIAHSh37dpFgwYNoiFDhtCkSZOE+A0ePJhWrFghvguWlJSIGWJy6tatW3awwVYwAlmEwN9WfUavlP2w4eWEY2rTyCuaZZF1bEq2IJCfn3+YKUo2wTi1JC+BOr8vLi6moqIi8f1v6dKlNHbsWCooKBACmG45lGeA2eGG/EadHTzCitdK36Y/L/pfhUGNG+bQbb3bGXmvn1/U2V/9ImfWc5HNAD/88EO67777KtDYtm2b2CAzbdo02rdvn9gAs3z5crErtE+fPmlRYwE0y6H8toYHFL/ImfUcrjR6Ydl7tHvvARHerLB1IyNvdA+KGvtrUATNeD4SAUxl+o4dO8Sv69Wr5wkZFkBPcBmbmQcUY6mRbhgussWGFyTM+nCrQxwCW0sbmJCR/dUPauY9Y4wA+oWGBdAvcmY9xwOKWXx4ac3W8p1io4tzxq/FT3Nowu87eikidnnZX2NHWcoGswDGgEfubDEgSaKJ2cgjgllPmFlCW8p3CgQQ2qxFw2qUamOBBESxyZKNXCaDb7ONSjfBhOnlPAMME83oyrK5s0WHerCaF5SupzmL14i7/LDUOWFgB8pvmJP2bFWw2sx6mv3VLD78toZngH6R0/gcdzaNYCusKlt4hODhNgec8UNKvs4oW+zM5Apso8KOorFoFkCNYPutijubX+TMei7uPEL4nlq8pmKjC9DFZpepQyt/74u7nTJewzbKoGR+HhZA8zniJaUYcCTTxDgPmvjWhwtsIYJIWPJEVBdEd0lOcbZThkfkYRtlkTI7Hwug2fyI1nFniwFJEk2MK4843oArjJyNLsO6nkOFrRuntTiudkpQWJGFbfSClrl5WQDN5YY7Wwy48dLEuA2amPVB/JzjDYkbXTLZHTc7vXDo5GUb/aBm3jMsgOZxwktKMeDETxPjMmjiXN/4mSUEAXRSj8JmdFm706UOtsfFTj8csgAGQc28Z1kAzeOEBTAGnPhpounCkLy7EzbiG1+PoubieINsMt1OWTt4lrvB2vOcfA4wjF4SUhk8oIQEZMTFmMzjklUf0YKSdRWzPhxtuKFbG18BrE22MywXYBvDQjLacngGGC3+UrVzZ5OCyfhMJvKI5U6c6cMmFye5bXJxA9pEO93a7PXvbKNXxMzMzwJoJi+VWsWdLQYkSTTRNB4x68NhdmeTC77ztW12oqflzlRmm2anBDWes7CNniEz8gEWQCNpqdwo7mwxIEmiiSbwiO98ED2EMXOONWB3J77zXVbQRMIK9ywm2OneymA52MZg+JnyNAugKUxkaAd3thiQJNHEKHnEUuc7G7fRIwtXVTrM3qWgifTuTgkTRZYo7ZRtY9B8bGNQBM14ngXQDB4ytoI7WwxIkmhiFDymCl+Gi2q7tGtCRa0bSx1rkDCtUpYo7PTaxqD52cagCJrxPAugGTywAG6wd8u1ChfEdz3czr7hs/KKGR/idiKCS1hLnenazeKgglH9ZdrMIx+D0O9vaWu02RENoiFwU1TyiJkednIuX7uZNn7+TcX3PTQaRxpwiD1V3M7ARqUoQKWdKtrrp0y20Q9q5j3DM0DzODmsRdzZYkCSRBNV8ChE7/+EzwlU7TQFMz4ErPZyiF3CDNcsKux0rVRzBrZRM+CKqmMBVARsmMVyZwsTzejKUsHjzQ//g9Zs3CaMwre9wtaNqEV+HjXIrePrEHsY6KiwM4x2hVkG2xgmmtGVxQIYHfbSNXNnk4bK6IwqeHQEsH+nlsq/7cmCq8JO2bp15WMbdSGtth4WQLX4hlI6d7ZQYIy8EBU8OgI4YUB7MfMzIamw0wS7EtvANprGiL/2sAD6w03rU9zZtMKtrLKweMQtDSve/VREcHF2ebIAKqMtZcFhcam31d5qs9lG3gXqzVeU5rbZEZUCq7nwMHjE0YY5i9dUajm+/U29vqOSM31+IArDTj/16nyGbdSJtrq6eAaoDtvQSubOFhqUkRbkl0eELcOsT0Rz2bBV2ICjDT2Lmke62SUdmH7tjJQcj5WzjR4BMzQ7C6ChxCQ2iztbDEiSaKIXHiF2c5asFef6ko83eLmcVqJZoWfxYmfolWsqkG3UBLTialgAFQMcRvHc2cJAMfoyZHnsX7yo0kF2LHG2bXaCOMge5fEGWQRl7ZQtz8R8bKOJrHhvEwugd8y0P8GdTTvkSip04xHXE2HGh4PtuKEBB9kheAM6tzLm+54MMG52ypRheh620XSG5NrHAiiHU6S5uLNFCn9olSfy6IQuw1IndnImXkiLCoNeShtao30UxP7qAzQDH7GZR94FapBD2uyIBtHguynYwLJmw1Z6/6PP6Ktdh2jn7r1iU0tywqwP1xPhPJ8pZ/r8GM3+6gc1856xmUcWQIP80WZHNIgG16Y4d+45szrM8pxdm+kexoYWLHNC8PJy67jWEYcM7K9xYMm9jTbzyALo7h/actjsiNpA9liRE38Ty5cQueQbGBKLw8wOG1iq0176VevTxZ/q1KqhPUi1RxN9Z2d/9Q2dUQ/azCMLoEGuaLMjRkUDZnHYlOIkJ+JKuuVLIWo1q4uZnLN5BTO6xF2bNvAIHGywk22MqmeGWy9vggkXTyWlcWcLDisEbes3uyoKcpYmkwXNbcnSKQAiB8HLPz5XLF2e2/QE1yVMG3hkAQzuq6aUYIO/sgCa4m0Z2mGzI8rQk7gc6RwaT7wJPfHfMuU5szksWzrf5SB0EDykxH/LlmeLMNhiJ/dJL55vbl4WQHO5+XH5bcMGys/Pj0FL/TcxlSM6woZSMTNLnp15ETbnXJ3TwkQRS95xqeqwuQ2DJgug/z5g2pM2+GskArhz506qVasWHXHEEWk537NnD1WvXp2qVq2a0S/uueceGjVqlGm+E2p7stkRMWPDBpJlZetoc/k+gRuWK7eU75TGEHExk2dmYczYpBsgmTGbeUyEwAY72UZJpzc8m1YB/PLLL6lnz55UrVo12rRpE910003Ut29fGj9+PG3fvp1q165NY8aMoSpVqlDv3r1p+vTp4neZEgugPg/D2bVde34QKSdBqCBYTpKZlXn9zpYobonCpmqmpgpRGwZNngGq8h795drgr1oF8O6776Zvv/1WCN4XX3xBDRs2pDVr1tDtt99O8+bNE2I4fPhw2rx5M23ZskX87JZUC2Dy5gm39oTx92QRKS8vp9zc3DCKdj2X5kXIwmiQszR5TJ0j6LRGx1ccDYibuMlgYcOAwgIo4wnxyGODv2oVwP79+1NRURF1796dDh06JJZAP/zwQ+rXr58Y4CF8paWl1KtXL5o9e7aYKbol1QKIu9dwBxsnIgRlzsutPCNPFioZ4UoV5cTmzpZtvsVcZgejNvOo5BzglVdeSfiva9euwkMaNGhAK1asoJNOOonKysqoVatWNGvWLPH7devW0bJly2jkyJHUtm1bkb+kpEQIZGLCd8J9+yovy4Xpflv21qWte+uGWaRrWXWq7qVqVQ665vOTQbZs2Xx+2sDPMAKMACNgAgL169en3/3ud4c1RYkA3nHHHVSvXj0aNmwYHThwQMz6vvnmm4rNMLt27aJBgwbRkCFDaNKkSUL8Bg8eLEQS3wVTJdUzQBNIYhtNYCF4G2zgESjZYCfbGLw/mFBCOh6VCOCCBQvogQceoNdee43mzp1L9913H7355psVOBQXF4slUnz/W7p0KY0dO5YKCgqEAKZbDmVHNMGNgreBeQyOoSklMJemMBGsHTbzqEQAd+/eTZdccgm9++67hH///e9/pzZt2giWtm3bRqNHj6Zp06aJJU1sgFm+fLnYFdqnT5+0TNpMUjD3Nutp5tEsPoK0hrkMgp45z9rMoxIBdKj95JNP6LjjjhPn/Jy0Y8cO8U8skXpJNpPkBSfT8zKPpjMk3z7mUh4rk3PazKNSAQyTdGyMadeuXZhFGlcW22gcJb4aZAOPAMYGO9lGX13AuIfS8RgbATQOUW4QI8AIMAKMQKwRYAGMNX3ceEaAEWAEGAG/CGSVAOL7otdvi36BU/Hc/v37ae/evZXCwh08eFBsJKpTJztuEVeBm8llysTDNbn9trftu+++E30v8XjW999/L36uUaNGVsCDeMyIxZy4VyNOhmHcBE85OTmVmi3T97JCAD/44ANxnALHLdau/SGaC5wUhx8vuugi8fPpp59Od955p5G84qwkQsXNmDFDOOL9998v2vnYY4/R5MmT6YQTTiCQjKg5sCnuKU7c+MU6XTxcv+X9//bOLFSnKIrj+w0hGaJkzJB5yJAkY6bMV7rdPIiiEEIyPyhReCISkksZM+WaQikiQ8ZCFFIoRXn2ot+q/bWdzuS79/u+M6xVwr3nnL3W2ufs/15r7/1fSb1vwoQJpkWLFoXjSydOnDCNGjVKqrqx9frx44d59eqVqaqqMowvbdu2lW9w9erV5vnz53K+GUKPffv2hZL9x26wAhcCEK9fv5Zz2Ng1Z84c0SJNfcqYD5c0pwwIgNjQ07p1a18uaj8XZwIA4R6lI1+8eFEAwHfv3slxi5MnT8aiWqvA+1doktkLuj59+tQMGTJEAJCPjRkZBAIMMCtXrhRO1Y0bN1ZS1QZpO019E9dgBsnz588XKpb48eEy4ESRvsdtrxLXeW1Eh27dupkPHz4I5WFURZdK6By3zZ07dwp7FfYg9CVsVHyLnFcGAB88eCDkHo8fPy5Mqo8ePSpnmNMgV65cEbCeNm2aqPvy5UtTW1trLl++bPbs2VMAwCT3Kcfmjh07JvqTLWOyZaP07du3S18RMHi5qIO+vUwAIM5gtlZTU1MAwLq6OpkF4Ihhw4bJzGDcuHGJfk/3798vs00+uk+fPglZAByqCDNNAJ4oMe2Sxr6J8jmTFz7AS5cuyaVBfLhprvfotRHy9latWpnmzZvLJG3Tpk1m6dKlUa5K5O9nzpwphBxEda6Q6rQACH0joMgZZmT27Nlm7ty5UtEmDcK4AgCuWrXqH3WhrJw/f74AYNL7lCUue5QOI2wBAdjFiFyx7fbt275c1H7fXmoAkDw1zDJemTx5sswCvAB4584d8+zZM6FbO3PmjGGGR+QRRLVWjhf427dvEuW50qxZMzN+/Hj5kQuA2DNv3jzhSkVILZHmPXLkSDlUbZA2sOHz58//PKtLly5ChpC0vinWYNun9NPp06eF0IE+PXjwoC8fLvanTYJs7Nmzp1AZkr348uWLGTRokBDdMwNPizBOEB1s27ZNJsw9evQwQ4cONe3btxcTXAA8cOCAefv2rUxGEcj9mVRD6p9ksd/hxYsXRU2AjvdwwIAB8n8XAOm/pPWpO/bPmjVLIlbEjv2MJQsXLjT9+vWTAAFCFT8uar9vLzUASCoQ/lCvHDp0SGafXgAkPCYlwx/y9VCscTC/Q4cOFXtXYbyx63tWCfThhfMCIBtfSJexCYaP0N5Hrj4tQnro5s2b/6g7depUGWiS1jfF+tT2KWt+rOOOHTtW3jHeyTA+3GLbq8R9QTaSVSH1aTdPEEXRt1SBSYusWbPGfP361dy9e1cG0DZt2hh+ZpmrXADkGtacoHpEsBfwBzCTLPY75P1kHOzVq5fhO7Rl6FwAZOklaX3qjv1nz54VcEMY+wkoeOf27t1rqqur5edRXNRuX6UGAKNeMC8AMhMn0mDWRu6eNIVNJ0Y9q1K/dyNAdBg4cKDo379/f5ntMEudNGlSpdRrsHbT2DdRxnvTg1F8uFHPS+LvvTaSaiLlRGqepYbevXtLZJ+mCND6OU4K9OfPn6Zr165S5PvXr19m8ODBMqlmspMGiZMCTXqfuilQgBrfo/Pw4cMLXfA/315mAfD79++SB2bGwx/AY/r06Yl+TwFAQJpZJkJH2vQKC9ds6KlkCrehnJfGvomy3QsOYXy4Uc9K6u+9NjIAkU4jLUjksGTJksImoKTaEKRXGACyI9Tuvt6wYYNMSgF8CP+XL1+eGlPDAJBxhjXNpPepC4DslyBl7cqCBQtkjTaIi9rbWZkBwKC3kIr08JGmVVjc/f37t+wAzZqkvW/i9IcfH26c+9J0DZGRexQiTboXoyvpbs4ApvnMcZTdWejTON9e5gEwqqP19+oB9YB6QD2QTw8oAOaz39Vq9YB6QD2Qew8oAOb+FVAHqAfUA+qBfHpAATCf/a5WqwfUA+qB3HtAATD3r4A6QD2gHlAP5NMDCoD57He1Wj1QUQ9wTARp0qRJRfXQxvPtAQXAfPd/pqyHKQh2CK9AZAwbBudAYaZpaDIBDkXDQL9161ZhoYgrEJtDms22eu53hYO9UHTZ6iZxnxl1HWdNKRsD92OQFGtPVNvu7yF5gOLKUv353RumB0eDOIcH805ayKj/xz96bXk8oABYHj9rK2XwwKlTp8zDhw+FjxLeQ4iNGRxbtmwpVTbgEbx27ZrQQDWkcGYKCi0OScM5G1e4HjoxGIu43xX0heU+DCDituNe17FjR2Fs8ePVtdcVa8//6AOfpi0vFHRfmB5wj3bu3Fn8jR9V1APFeEABsBiv6T2J9gDUdwAf7P7QriGw6gCAUOLB6I8QfUE4DghRKgb2CKo5AKKAKYTW0F7BkkEtSZj0qfhAXUYGb9hD4HGFkR4AA1iJ5rhn0aJFZseOHcLcQ72yXbt2mY8fP5oRI0ZI5ALAuQAInya0YtevXxfdnzx5IlywXgCEt5G0ITUV0ZOqE/Cq0gbk1JCmQ+QMGwbtoM+YMWOkriRE6viD6g3wXeIfex3RGPajMzy6YfbYziei5kD4hQsXhBPzxo0bQjwPtybPpy3qcMKcgs/4N3owMaEfaIfrieYgrQeUiehgI2ncuLHw3wbpATXgrVu3hHcVHkhbyy7RL6YqlzgPKAAmrktUofp6IAwAGTBh8YduDjqrP3/+SDFQwAIB7AAVBmLIggEbQAKwhCyZQZ80JyTlAAhAOXHixEIER0kgQPTNmzdSNw6wIeKiJBf3UncNVh+AzQVAAIJac1DeAbQAMoDmBUBqtQGkixcvFrAk2u3Tp4/oBlEwz1y2bJnp1KmT8MfOmDFDwIU/UF0BFLQPKMGO3717dwERwJyf7d69W5j1bUTqtQc7rOAn2PdJVQLs79+/F39QHxBAZCIANRW+wMeHDx+WaBcqvNGjRxciXHyybt06eQaMMqSpAUkAMUgPJjG2iCuTk759+9b3tdH7c+gBBcAcdnrWTQ4DQNYIAQ8GeQprUluMQR4AZFAdOXKkWbFihfx//fr1El0RFTHwAy7Uf2NNkWiPiBJQ4xkM1LDSA2THjx+XgR+AIpIDDGDiZ5AmZUd7kEYT/dgUKJEoQEHtOdjvSdsGASDllihmCoivXbtWIkFAlrU9Ik90BzxoA75EOGSJKu/fv2/cFCgRFpEawAWnIvo2bdpU9AyyZ8qUKYXXh6KxRKSUgaICBOV1qMmGHYAcz4MYG2BjkkA1hXv37snPN2/eXADAUaNGyfWAPRMLypu5AOjnV0BfU6BZ/5JLb58CYOl9rC2U2QNhAGjXAImSiOwAmy1btghoAGREbGySIb0GANpSPwACxMdEOADX1atXxSo3YrJrgPweQKAt6s2RJqXAMREX7QCw1Hbk9xYAqSwAt6Td9NKuXTsBNL8IEAAG9NjQQmQH0AFg6E50Cyk15XxsqhEABpy8AAj4AYLU+yMqhNQaewFfd03TtcddP7XFUwE49GaiQJRHZRbSn4Ae4Ab4usWoKVvDBMGucdrojWeQWqbILvbYCNDPr9yjAFjmDyuDzSkAZrBT825SsQDIgEwExG5O1vpYt2Pdin9bpnzAkg02gBADu61FFgQYDOYABNcRLTGYA7qsk/EsC4CAJGlW/mb3J6AVFAFGASDtEeWyHshaGtGlGwECtHV1dZJKpWIKv6+qqjI1NTWShkWvOADIe0Yqk6iO1CoTBtpGqCEIiLG7FTvYhUuk+OjRIyloSuRsAZAUJvYSUdMuaVU3AgwDQNLUpFC9u2jz/g2o/fE8oAAYz096VYo8YAGQElgMrIjdBEP6jTQe0RxrXm4EaAGQtUFSi0QzCNETa3KU1WJNjYgLYZCura2V6ImBm2MNREHnzp2Top1EeLRFtMmGGius1QE67jEIok/AhDU9AI40J+2FRYDojx3oA8hwDxEgaVZ041n8nKg4dBk5AAABOklEQVQK24hCWbckagWwACSAz0az2Il/SEEG2ePdQWvX7/gbXVgzJRIlOiR9jN9o0/oMgCfyZBMQG2+I+lgXRCd8RKqZtDFFW9ElSA+iS45SkG5NW1miFH1KmVdVATDzXawGFusBSlGxwYN1LLcOI5s7iBS9RxfC2mGnI3XlSNuxc9JPACoiQ9oD/Ooj7KS0z/LWkAR4WGtjlylCWSp2lbJxplT1Jjm2gL9sm65trCUCzmyq4TqAjQjW70ynex82MHHgmUE+rY8P9d7se0ABMPt9rBaqBxLtAdb62LHqCmukRMQq6oFSekABsJTe1WerB9QDsTzAoXeOjZA2JQJkE5CKeqDUHlAALLWH9fnqAfWAekA9kEgPKAAmsltUKfWAekA9oB4otQcUAEvtYX2+ekA9oB5QDyTSA38Bc5fX6UWaUGEAAAAASUVORK5CYII=",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
}
- },
- "title": {
- "subtitle": "How each comparison contributes to the final match score",
- "text": "Match weights waterfall chart"
- },
- "transform": [
- {
- "filter": "(datum.record_number == record_number)"
- },
+ ],
+ "source": [
+ "linker.evaluation.unlinkables_chart()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "4624c6a0-a1a8-4762-9003-b3da5aa45a77",
+ "metadata": {},
+ "outputs": [
{
- "frame": [
- null,
- 0
- ],
- "window": [
- {
- "as": "sum",
- "field": "log2_bayes_factor",
- "op": "sum"
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " unique_id_l | \n",
+ " unique_id_r | \n",
+ " first_name_l | \n",
+ " first_name_r | \n",
+ " gamma_first_name | \n",
+ " tf_first_name_l | \n",
+ " tf_first_name_r | \n",
+ " bf_first_name | \n",
+ " ... | \n",
+ " bf_birth_place | \n",
+ " bf_tf_adj_birth_place | \n",
+ " occupation_l | \n",
+ " occupation_r | \n",
+ " gamma_occupation | \n",
+ " tf_occupation_l | \n",
+ " tf_occupation_r | \n",
+ " bf_occupation | \n",
+ " bf_tf_adj_occupation | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 19.465751 | \n",
+ " 0.999999 | \n",
+ " Q5536981-1 | \n",
+ " Q5536981-4 | \n",
+ " george | \n",
+ " george | \n",
+ " 3 | \n",
+ " 0.028014 | \n",
+ " 0.028014 | \n",
+ " 48.723867 | \n",
+ " ... | \n",
+ " 162.73433 | \n",
+ " 0.097709 | \n",
+ " politician | \n",
+ " politician | \n",
+ " 1 | \n",
+ " 0.088932 | \n",
+ " 0.088932 | \n",
+ " 21.983413 | \n",
+ " 0.459975 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 33.572592 | \n",
+ " 1.000000 | \n",
+ " Q5536981-1 | \n",
+ " Q5536981-5 | \n",
+ " george | \n",
+ " george | \n",
+ " 3 | \n",
+ " 0.028014 | \n",
+ " 0.028014 | \n",
+ " 48.723867 | \n",
+ " ... | \n",
+ " 162.73433 | \n",
+ " 0.097709 | \n",
+ " politician | \n",
+ " politician | \n",
+ " 1 | \n",
+ " 0.088932 | \n",
+ " 0.088932 | \n",
+ " 21.983413 | \n",
+ " 0.459975 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 33.572592 | \n",
+ " 1.000000 | \n",
+ " Q5536981-1 | \n",
+ " Q5536981-6 | \n",
+ " george | \n",
+ " george | \n",
+ " 3 | \n",
+ " 0.028014 | \n",
+ " 0.028014 | \n",
+ " 48.723867 | \n",
+ " ... | \n",
+ " 162.73433 | \n",
+ " 0.097709 | \n",
+ " politician | \n",
+ " politician | \n",
+ " 1 | \n",
+ " 0.088932 | \n",
+ " 0.088932 | \n",
+ " 21.983413 | \n",
+ " 0.459975 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 33.572592 | \n",
+ " 1.000000 | \n",
+ " Q5536981-1 | \n",
+ " Q5536981-7 | \n",
+ " george | \n",
+ " george | \n",
+ " 3 | \n",
+ " 0.028014 | \n",
+ " 0.028014 | \n",
+ " 48.723867 | \n",
+ " ... | \n",
+ " 162.73433 | \n",
+ " 0.097709 | \n",
+ " politician | \n",
+ " politician | \n",
+ " 1 | \n",
+ " 0.088932 | \n",
+ " 0.088932 | \n",
+ " 21.983413 | \n",
+ " 0.459975 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 22.025628 | \n",
+ " 1.000000 | \n",
+ " Q5536981-1 | \n",
+ " Q5536981-8 | \n",
+ " george | \n",
+ " george | \n",
+ " 3 | \n",
+ " 0.028014 | \n",
+ " 0.028014 | \n",
+ " 48.723867 | \n",
+ " ... | \n",
+ " 162.73433 | \n",
+ " 0.097709 | \n",
+ " politician | \n",
+ " politician | \n",
+ " 1 | \n",
+ " 0.088932 | \n",
+ " 0.088932 | \n",
+ " 21.983413 | \n",
+ " 0.459975 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 47 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " match_weight match_probability unique_id_l unique_id_r first_name_l \\\n",
+ "0 19.465751 0.999999 Q5536981-1 Q5536981-4 george \n",
+ "1 33.572592 1.000000 Q5536981-1 Q5536981-5 george \n",
+ "2 33.572592 1.000000 Q5536981-1 Q5536981-6 george \n",
+ "3 33.572592 1.000000 Q5536981-1 Q5536981-7 george \n",
+ "4 22.025628 1.000000 Q5536981-1 Q5536981-8 george \n",
+ "\n",
+ " first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n",
+ "0 george 3 0.028014 0.028014 \n",
+ "1 george 3 0.028014 0.028014 \n",
+ "2 george 3 0.028014 0.028014 \n",
+ "3 george 3 0.028014 0.028014 \n",
+ "4 george 3 0.028014 0.028014 \n",
+ "\n",
+ " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n",
+ "0 48.723867 ... 162.73433 0.097709 politician \n",
+ "1 48.723867 ... 162.73433 0.097709 politician \n",
+ "2 48.723867 ... 162.73433 0.097709 politician \n",
+ "3 48.723867 ... 162.73433 0.097709 politician \n",
+ "4 48.723867 ... 162.73433 0.097709 politician \n",
+ "\n",
+ " occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n",
+ "0 politician 1 0.088932 0.088932 \n",
+ "1 politician 1 0.088932 0.088932 \n",
+ "2 politician 1 0.088932 0.088932 \n",
+ "3 politician 1 0.088932 0.088932 \n",
+ "4 politician 1 0.088932 0.088932 \n",
+ "\n",
+ " bf_occupation bf_tf_adj_occupation match_key \n",
+ "0 21.983413 0.459975 0 \n",
+ "1 21.983413 0.459975 0 \n",
+ "2 21.983413 0.459975 0 \n",
+ "3 21.983413 0.459975 0 \n",
+ "4 21.983413 0.459975 0 \n",
+ "\n",
+ "[5 rows x 47 columns]"
+ ]
},
- {
- "as": "lead",
- "field": "column_name",
- "op": "lead"
- }
- ]
- },
- {
- "as": "sum",
- "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
- },
- {
- "as": "lead",
- "calculate": "datum.lead === null ? datum.column_name : datum.lead"
- },
- {
- "as": "previous_sum",
- "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
- },
- {
- "as": "top_label",
- "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "bottom_label",
- "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "sum_top",
- "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "sum_bottom",
- "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "center",
- "calculate": "(datum.sum + datum.previous_sum) / 2"
- },
- {
- "as": "text_log2_bayes_factor",
- "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
- },
- {
- "as": "dy",
- "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
- },
- {
- "as": "baseline",
- "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
- },
- {
- "as": "prob",
- "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
- },
- {
- "as": "zero",
- "calculate": "0*datum.sum"
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "width": {
- "step": 75
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAIlCAYAAABVSXjKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQnYjVX3h5cMkVmKBmVojmYRiiJp0jyXqeH7mtOkGc2apEGfUtIsaZ5pkCEKlaL0qUiDUuYhJP/r3v7P+x3HOe9Zzzs55/Xb1/VeOGc9z7P3vdez2T9rrV1m9erVq01NBERABERABERABERABERABERABERABERABMysjMQi+YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBEQGKRfEEEREAEREAEREAEREAEREAEREAEREAERCCPgMQiOYMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIDEIvmACIiACIiACIiACIiACIiACIiACIiACIjAugQUWSSvEAEREAEREIESJpB4tkSZMmXynp7u8xLuXpE9bsWKFbZs2TKrWLGibbzxxkV239Jwo4ULF4ZhVKtWLd/hRD4R+Ql/TvSZ0sBCYxABERABERABEcg+AhKLsm9O1CMREAEREIFSTmDHHXe0b7/9NoxyzJgx1qJFi/D79u3b2/Dhw8PvX3/9dTv88MPzJTF58mT75JNPrFmzZtakSZN8bb/44gvbY4897JhjjrEXX3yxRAg/+OCDdsEFF1jv3r3thhtuyPjME0880YYOHWoTJkywvffeex37t99+23766acwhk033TTj/YraYM6cOfbKK6/YNttsE+aqIG3BggV2wAEHGHPXuXNne/zxx9PeZsqUKda4cWM76KCD7L333rMBAwbYv//9b7vlllvsmmuucT++OOZ+fc+Fe/AyFAEREAEREAERKBABiUUFwqaLREAEREAERKDgBBLFoj59+tiVV15py5cvDxE4UXvttdfsiCOOyPchffv2tUsvvdTuv//+IMrk1z777DPba6+9ggCFEFUS7f3337fnnnvOjjzyyPCTqR199NFBjBk/frztu+++65h37NjR4DJp0iTbc889M92uyL9HxGratGmhBLeXX345XM99br755nxFp6+++iqIgJFY9J///MfOPffccN21117rHl9xzP36ngv34GUoAiIgAiIgAiJQIAISiwqETReJgAiIgAiIQMEJRGJR1apVrVWrVvbmm2/auHHjbL/99jM+W7RoURBFEIsmTpxo119/ffh12223DfZXXXVV+PMll1wSIpR22GGHIDideeaZQWy588477b///a+1adPGEGBOOeUUiwSD/fffP9hzf+532223Wdu2bdcazFtvvRU+P/DAA0NU0COPPGJPPvmkHXvsseGZDzzwgD3//PPh9wcffLD16tXLEEFo3P+uu+6y2rVrhwime++917p162ZdunQJKWmIHPSxSpUqdvHFF4fIGu7BGCOxqGfPnvbSSy/Z3LlzDVHijjvuMKKUEElg07JlS7v77ruD4IKAwrOJnmG8Z599trVr167A40FMu/3220PfeT5RWyeddFIQr0477bQQCcYcde3a1fr162ffffedXX311TZy5EirW7duGANjKVeunF122WX26aefBoHnoYcesubNm4exM2cNGza0s846K4h9qZ53wgknWFyxqDBz/+yzzwbG+M3uu+8eBKrLL788jINIqK222ir4Xv/+/YNfMp7EuYCTmgiIgAiIgAiIQOkhILGo9MylRiICIiACIpAjBCKxCEGAtCtq+yA8XHHFFSHqBKEEMefQQw+1Lbfc0n7//ffwOSlYiA8IL506dQqbeaJsEE0QHTbbbLM8oQTh5MMPPwxEiCTiPkQW0bbeeutQK2fq1Knhz4sXL7bKlSvn0UMA2W677WzzzTe33377zQ477DBDQELs+Pjjj4NogGiCmIGYxBgQoGrVqhVEL37PvRFyEtPQbrrpppCOhtiyxRZb5KXinX766UGMisQiOpLY/1tvvdVq1KgRRClYEKXEc+GBmIRAhcCBiEWf6T9iVNTijIf+I+Ig5iBK0S8a46Ufb7zxRngGAhDztdNOO4V+0N8ff/zRvv/++/AdokqHDh3snXfeyesHotIHH3wQGO22224hpaxChQopnzd9+vQgrnkji0hTi0SyuHNP/xkH83LUUUfZu+++GzgPHjw4+FlyjSTYIywlzsX6iPTKkddd3RQBERABERCBnCQgsSgnp02dFgEREAERyGUCkVh033332UUXXRTSrm688Ub79ddfQ3rVo48+GsQiIo34PVE6CBdPPfVUiK7h96NHj7bkNLTjjz/ehg0bZg8//HCIsHnhhRfsiSeeCAIAQlEkFiFCIFIgwBAdgpiCOJLYoj7OnDkz1M3Bjka0DaIQghP9JuKE9vXXX4ci1ggWCCaIF3yWKBYh6FCr55tvvjHuf+GFFwaBJ1ksIpIIIYaIpnPOOSdEJsEhOfUJdqTgHXLIIUFwoVEAGj6IY3HHM2vWrMCdfrdu3dr+/vtvO/nkk4MYNGLECKtevfpaaWiIZNRZQqxCWPnzzz/D9zQKWCMGIhbxK+mGDRo0yBsTwtl1112X7/Pq1KnjFosKM/fMLf3cddddAzcioxDFiPBCoIvEIkQiosHgoDS0XF6B1HcREAEREAERyExAYlFmRrIQAREQAREQgSIlEAkxFKcmvYk0JFLLEEgQYyKxiIgePrvnnnvWen46sSgSY0hRi4Sh6MIoDY2ULyJHaBSRJjIpEm8SH0J/EDgopkzqGBFBCFqkuNEnIpkQQRC0UrVBgwbZkiVL8sQiom2IyCF6JToJjAgqUtuSxaKo6DeCBSlP0ffJAgWpZxSaJsIlameccUaIaNpkk03W6pZnPKS2cU8EoKgAeXQTCo8jriXWLELU6tGjR8rxk86FUIYIQzQR0T60SACLxKL8nkdamzeyqDBzz7yQYkf0WGJjzhGIIrEoOtkOG4lFRbok6GYiIAIiIAIikHUEJBZl3ZSoQyIgAiIgAqWdQCQWEUmE+MAJWUR3UHuHyJZILCJKhk05KUvUlPnll19CfZ90YhE1ix577LFQA4kUto8++ihEiFBzJkpDSyxwnZ9YRA0eBI6ohhLP5h7RnylezalgpKvxGQIV0Up//PGH/fXXXyFyaMiQIXliEdEq2BJ1RKQOEUmc6EVtpGSxKCpwnUksGjt2bBDXaKTnIRIhHMGAmkKJzTMeajRFogsRSwhP8EK8SiUWEbXFiWbU9+GZtJ9//jlENyECki6HWJQo3iWLRfk9L45YVJi5p08IZaQ3Erk2cODAEFGULBYxrqhJLCrtq5TGJwIiIAIisKETkFi0oXuAxi8CIiACIlDiBBLFIurYRMenIx6RmhSJRWXLlg31gqgVRGQMEUjUu4lqB5HCRSoXaVhEgHC0OwIFNYMQSxABEGdGjRoVahIln4aWn1hEHSXSymhch+AR2SMOIQrRP4Qs6hMhNPDc6Eh3RBMihxLT0IhQou4PKWykPEX1fLxiEVFI3JPC2t27dw9RTjBA1GHcjBdR55lnnglFvRObZzyIXdEYqTlELScKh9PoKzWhYEHKHs/m96SW0RBZZs+eHfrD54hXzF0msSi/5yHOeSOLqEtV0LknCowoMmooUY+KKDDES3yRCKgosihRLEqeC4RDNREQAREQAREQgdJDQGJR6ZlLjUQEREAERCBHCERiEeIC0TNEhSBAUDuI2juIRWz+EYGIJIoKVSPIICwh1syYMSPUOCKqhWga0sJIGeNeiCVRQ5xBkEp1fHp+YhHXcwpYdOpZVB+JX0899VR7+umnwyOmTZsWxBrEERp9oyg0dZIogoxYRPoakUVEASFEcE+EpT322CP8nnEhWEQFrknPI+Iqiizi/kTxEF3Fs2mc/IVQhSgW8eHz4447LkQ0IWQlN894iO6iqDNiCaIWYg3pWUTawJF+UXeJZ5NCRh+pqRSlwu2yyy6h4De/RgWuU0UWIS4hnuX3POoQUS+KOaYG1IABA4KgwzxHolw0RqK5Cjr3sMLXEBZpMMaHogi2VGJR8lwQaaQmAiIgAiIgAiJQeghILCo9c6mRiIAIiIAIlFICpG1xehk/yY0izPPnzw81eqI6PUT9kDbWqFGjtU45Ky48RJzQx6VLl4Znctx6qoaIsnz58iCAEaWDWEK0FClQiF2eRt0caiFRZLl8+fLhEp5NVBWROBSFLmwjComTzRhL8klgjHXevHlhjNF8MAcIfZUqVbJ69eqtc02m/uT3vEzXJn9f0LlnXIxh2223zeOa6dmp5iLTNfpeBERABERABEQgNwhILMqNeVIvRUAEREAERCDnCVADh7QmCipTLDoqIk2RbR29nvPTqwGIgAiIgAiIgAiUIgISi0rRZGooIiACIiACIpDNBIg84oh5Cm9T02jnnXcOqVMUg1YTAREQAREQAREQARHIHgISi7JnLtQTERABERABERABERABERABERABERABEVjvBCQWrfcpUAdEQAREQAREQAREQAREQAREQAREQAREIHsISCzKnrlQT0RABERABHKAAMWMN9poo/Cjlp0EVq5c6S7SnJ0jMFu1alXoWqpT3eL0mYLi3Csqfh7n2myyLSoe2TQm9UUEREAEREAEspmAxKJsnh31TQREQARKKQHq1XAs+VdffWW77rpr3ijvv/9++89//mNTpkzJ2pG3atUqHF9++umnZ20fPR3jKPgZM2bY448/7jHPCpuXXnopHFnPKWXJLRoPR9JzIhkndVWsWNHd75kzZ9onn3xiJ5xwgvuadIYINE8//bSdfPLJsUSaxPH17Nkz1HUaOHBggfvz6KOPWvfu3e2uu+6y0aNH24477hhOoCtIu/XWW+3rr7+2J598siCX53vNuHHjgqDVsmXLtHZFwaPIO64bioAIiIAIiEApJiCxqBRProYmAiIgAtlKgKPO2dAni0X9+vWzhx9+WGJRCUzcDz/8EI6x32mnnUrgaUXziN13392uu+66lIJONJ4qVaoUSCx67bXX7JJLLgnHxxe2zZ071zbddNMg9my55Zbu2yWOryjEkQMPPNA6dOhgPXr0CEIP0UXbbrutuz+JhrfccotNnTo1iGBF3S6//PIg7j344IMSi4oaru4nAiIgAiIgAgUkILGogOB0mQiIgAiIQMEJeMSi+fPn20UXXWQvv/yybbbZZnbVVVfZ2WefbUQ4IHL07t07bIA7d+5sDzzwQDhR65FHHrEff/wxHM+e2GbPnm0XX3yxffjhh8aGvE+fPnlHtb/yyit2991327Rp06x9+/Z2++2321ZbbWXz5s2z8847z9544w1r2rRp2HDzPZFF3IONMz+nnnpqiNxIThdKd326cf311192wAEH2GmnnWaPPfaYVa1a1ThqftCgQfb+++/bQQcdFD5ftGiRHX/88XbsscfaQw89FIZJ/4844ojw+3Tj4T4IKggY5cqVC7zgQqQJES333XefTZw40Y4++ujAs1q1aoEvDPgcUalv374h+oMIHJ5JVBjMN99887DRb968+TpO8cILL4RnMO6TTjrJ7rjjjhDx8+qrr9rVV19ts2bNCmPjmUSbDRgwIPSRvr777ru29957hxPU6B9RQ9gwFq5LNR78ASESdkSp1ahRw2677bbAa+zYsWF+eTZtzJgxYUx33nmntWvXzr7//ns77rjjjD4zRkQM/OKQQw4JdghAzCtRTM8995zVrl073O/II49ca9yINPgaUVAjRoywP/74IyXHxIuuv/76tcY3atSowL1y5crhXnAgqoc+5OfP0T0Z8zXXXGMNGzYM48NXt9lmGzvxxBODn/3rX/+ye+65x/A75uGss87K13/SiUXM17fffmtz5syxDz74INx/v/32y4tg4hmHH354uDd9euqpp4xUTj6jX8wFc0bDTy677LLAAd+G77nnnmsXXHCBIZ6l45HIMd388MxU9yWiiX4xjhUrVoT3j7FWqlTJzj///OD3rEH0kUgx/Gro0KHBr6644orwmZoIiIAIiIAIlEYCEotK46xqTCIgAiKQ5QQisYhIjrp16+b1duTIkUY6EGlobNomTJgQNpRLliwJosw777xjv/32W9isEwGCUHHOOeeEDTtiDlEUiB2kiUVt9erV1qxZs7C5u/LKK+29994L9mwqibSIhAVs2FwjgCAMIGwgRiCKvPXWWzZkyJCwKW7dunUQGdhcsgFlQ0m/2YAntnTXd+rUKeW4EKEQBnbZZZcwvv79+weRAIGMjTXjQqBArKHPCFiwQVAhfe/PP/80xppuPGyAicpB+IAV92Z8bOYR455//nmrWbNm2KyzMWZc2223nTVp0iRwgT2RX9OnT7fJkyfbwQcfbMccc0wQQegvNZw++uijtRgQOcb1CD3bb799EOwQRfbaa6/Amflns424h5iEQMK9brzxxiAGwoJ+8APPww47LPSNZ8I/1XgQEyM+iA9s9Em1Y6yIX/gLQhMNIRBB8ssvvwxju/fee8NcIxbilxdeeGEQ5hC4Fi5cGMaHMIgABM+333479AHBZeONN84bO3MC5xdffDGIUIwjFUdEtqghSiWOjzmFA+z33HPPkE6GwMOY0vkzPh61//73v8Fn+IEfYusOO+xgl156afAzfs8zmHfS1YjsYQ7z859UkUWIOPQTEQUhD76MC57Dhw8Pfsa7CmNYEDmIn5Huh5iHwIgfIADDlvcTEebZZ58N7+gZZ5wRRDzmMBUP+Ce2dPPD9anuy1zi8whGzBHrTpcuXYJPtm3bNgi1jAnhEE4IRYjNS5cuDb6IQNamTZssX3HVPREQAREQARGIT0BiUXxmukIEREAERKCQBCKxCOGDCJaosakk6uXjjz+26tWrB4GCaB4amzhSjBAb2ND++uuvQfxBWNpiiy3CxpwN+zfffBNqs0SNaIR99tkniAX169cPggpCAGJMFAFC1AmREWxGP/vsM3vzzTfD89koYoMoxKYU8QDRgk0kYgaNiA+iH6LIDD5DWEh1PZvQnXfeOeW4EKjYxLN55f5EkSAscS+ijDp27BiigbgH44cRG23Gg6hDtE3jxo3D5jx5PNSrQdxAtIEbogCbfJgQbUFqEsIB9yaFCuGA7w499NC85zMu5gqRBnEJsYgoJ+YE0YSIEvqa2IhYQViLRCTGRuQXghObbMZAY87gglDIhpzvomsQS/ic9KfENK1044nEIoQKxIl//vknCIXwJSUslViE3yWmoSEaIRLS1zJlyoToIiJMYIeIQI0dop0QvBgf4ldiAenENDSEtXQcTznllLV4JaehIZwwdzTEHkQuxJ50/kxUVGJDwERsRHDBlxLFosi3mcMoigyRJz//SScWJfazTp06QcyLIoHoKxE7zDniD0IX7z9iESIodolpaPg4UXKITzQEJcQ2npGKR3JaHMJYqvlB0El1X56NsBdFI1Ijincb1ryHRGPxbuFHRA/yXkb1ymCKb/FeqYmACIiACIhAaSMgsai0zajGIwIiIAI5QCBTGhrRDggfpO+QdkNjU4mQQ9oKYhBRNWwMEX0QUti0I+REUSMRBiIBEDKSG2kuXbt2DWIJURBsmomMQDhBEOH5qWrOEAGEMISwQmNDiThDX6KGgJXq+ujzVOMiagixiIgQxB/6TZRNVOybMSBOnHnmmUEsSrwHESn7779/EBJSjScSixI3+5FY9MQTTwRhhE0zjQ08wgpiApvgxGLjjJ1IG8aGeEeUF430LoQ/hKvExnwgQCBEJX9O9A5RTTTEKcQWIsmYX0QaNug0ojjGjx8fxMBksSjVeCKxaPHixYEnDcER4YjIkUSxiJQ9mCWLRYiCpMUlN6JjEAeIhsLfSPEi4oc0qcSWKBYhQqXjSERNYksWixDJogLkjAs+CEzp/Dkxoo775icWRX6GHYLY559/HgQxr/9E/caPEvvJu0nkHlFn8CIVj/lFjCUqCrEF8ZNGRE+yWIRwhWCYXGg8+TkRD/wisbG2pJqfdPflc/p01FFHhdsgSOEr+DLvNvdCcPvll19CxFlyYy6IOlQTAREQAREQgdJGQGJRaZtRjUcEREAEcoBAJrHo008/DRv9L774Imw2aWzKiOIhhQphA1GIlCHSl4gsInIAYQnxKLFFKUHUeYk2qYgMiEKIKAg9bML32GOPIBI988wzIVIGW6KSiBohqoD7IpTwk3gaWiqxCKEi1fUIMQgMqcaFQMGYSblp0KBBRrEoMVKKKCZSpYjqSDWe/MQihCEiPhCgEH3YlPN7Up6IxOA7IirYPPMc2JCCg9AWCXPpxCIitSZNmhRSwWjMK3OPAIU4QW0gWiQqkM6FCJB4ClhBxSL6hvhHgwsbekQLRL5I5ELEIoooWSwieo2oNqJsaCtXrgzF2En9IxWR+SHtD7GJNDb8icioqCWKRUTUpOPYokWLtXw1vwLXkTiC7xEJk8qfifhKbPmJRZGfYR+JRXzm9Z/oOcmFuBGLmDPS3xLFIqLMiPhBFOXdi8TPZLGIPhMhRcoiDTGI6B5Et0S/SCcWMU+p5gd/TnVfUtN4pyOxFxGZecXPebcR5xCHSYUlig4xk89p+BjvBuKumgiIgAiIgAiUNgISi0rbjGo8IiACIpADBDKJRYgJbDYpcEvUC1E/pKKQnoRgxEaO1J7of/VJByE6gI0lEQ2JjQgcNtFEIrGxJz2JzTubSgQBohgQb9jgc88KFSqE9CiilbiO6BcKQCMgINAgSmUSi3h+uuvZmKYaF2JDHLGIzTdiDJtv0owyjSe5QHEUWUR0C2NCvEHIitKHGDPiG9yIZoIbkUJwQkTxiEWIcBSvRtQjaoUIH0QxBECeSbof0UqMhTlnI54sPiSKRcw9kUFs/NONJ4osIkURPoh/3bp1C0IRQg+CDDWm8CfqTyFQIRZRvwg7BAmiqhBksItqQ1HAm++YP/qPP+CXMEIQo65Q1BAwqcvDnJD6lY4jKZeJLXF8yRwicYSaP+n8mcizwohFRNWkex/SFbj2ikVwQ8RBoIMX84/vMUek2PFuIeghXlIEe9iwYUGgIYqNeeMzj1jEupFqfvDZVPfFB0ll4z1CXCSqCMGMviWKRXClcDfCFaIykUb4CH6AT6qJgAiIgAiIQGkjILGotM2oxiMCIiACOUCATR8bMzbTiRtc0sHYDCMckOaDeMOGnIZgwSaN/8mPInfYwFMfhVPC+J5oj1q1aq1DgE1o4qlFbLwRKNjwkb5FigyN6AJSaHgOokJUl4e+EoFCZALihkcsInUq1fXpxkWB30xiERtnBA0if4h4YtNNBBP1lBBH8hsPohkFnhHVaIlpPYhupL2RMkaaFSlgRL3AlxQrnsE8ICTwfGoPecQiIrKYlyiVilPDSDGkthQFy9mgc29OniJyhHo1qcQiIpKIQqJ+EYWIuQdpVKnGQxoVfBAjosggUsqYW2pPkbKH8MVzEbKIfkEsgh2CD+OnRhEpUlGaHFwouIw9giW/RlFqsKPOTXLDT5hrfB3hLRXH5GsSx8e7kSyOMN9wSOfPyfcjSgchgxo7yTWLkiOLEEwRMdO9D8n+Ez0rlVhElBtpXYkRYwhvCEY0xC7mgXlBpEQ8RsCFEeIL733k20QYUU8olXgW8Ugcd7r5+f3331PelwgtRB9qS9EQB19//fXwLiAW4af4MA0bogPpLw1hmrkoX758Dqy66qIIiIAIiIAIxCMgsSgeL1mLgAiIgAiUIIEo6oOC1FHtooI+nigFoheoO0LUR9RIr0IsoPg1kR4LFiwI0UUIGIgLiAiID6TqxG3pri/MuKKoLKJX6Csbb/rqGU9+/afuDIWIObUssfEcnknUUWIR5zgsEPEQ+RJP6+J62CJCNWrUKLD3NCKbSIfjfpkaaULMNelDiQ2BAFGReU5szBcRSJEQhIhIyhppRhUrVswzpZD3jBkzQr+jukip+kIKX+RrXo7e8aXz50xMMn2f3/uQ6dpM3yOIMue8a7xP8GUemEuYIiJGp8rhcwg2yXOU6Rl8n9/8pLrvqlWrwtrAszK96/gIqYX4VJTm6OmTbERABERABEQg1whILMq1GVN/RUAEREAENmgCkViEUJR4ktwGDUWDFwEREAEREAEREAERKFICEouKFKduJgIiIAIiIALFS4BIHIptcwpXQaIuird3ursIiIAIiIAIiIAIiEBpICCxqDTMosYgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkVEQGJREYHUbURABERABERABERABERABERABERABESgNBCQWFQaZlFjEAEREAEREAEREAEREAEREAEREAEREIEiIiCxqIhA6jYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUBoIlLhYxJGjixcvXuf43NIAU2MQAREQAREQAREQAREQAREQAREQAREonQTQMipXrmxlypRJOUAOIqlatWqpGHyJikX33HOPDRgwwJo1a2YLFy60Pn36WP369W2zzTazDh06BKA77rij3XTTTaUCrgYhAiIgAiIgAiIgAiIgAiIgAiIgAiKQ2wR+//13mzx5sh177LE2ffp023zzzdca0MSJE61bt2627bbb2syZM+3RRx+1ffbZJ6cHXWJi0YoVK2zjjTcOUUUocTfffLP99ttvdv7559sNN9xgzzzzjJUrVy6nYarzIiACIiACIiACIiACIiACIiACIiACpYvAsGHDbMyYMda3b9+gYySLRe3bt7fLL7/c+BVbgmTefffdnIZQYmIRlObNm2c1a9a0pUuXWtu2be3iiy+2KlWq2KmnnmqEazVt2jREGx144IE5DVWdFwEREAEREAEREAEREAEREAEREAERKF0ESD9LJRbVq1fPxo4da/z62Wefhcwp7HK5lahYBKhJkyZZ165drXHjxiE0C3WOzy644AIbMmSI3XbbbfbNN9+EHMDRo0eH7xMbKWtt2rTJZebquwiIgAiIgAiIgAiIgAiIgAiIgAiIQJYQGDlypJFqlthatmxprVq1WuuzdGJRtWrVbNq0abbFFlvY999/b61bt7ZZs2ZlyegK1o0SFYvee++9EEV033332UknnRR6THpa2bJlw8+qVatCKhpQt95665QjIvKoR48eed8xEQ3B1eRhAAAgAElEQVQbNizY6EvZVWLhn1CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWyX6VrDOku1M6seiAAw4IKWp77723TZgwwW688UZ79dVX/R3KQssSE4tWr15t1atXtxEjRti+++6bh6Jnz542Z84c69+/fwjbOuOMM+y7775Li0piUXov0kLqf8PESqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/BbFoVYRHmdKVOmhHI6l112mdWuXduuvPLKULuIcju5fnBXiYlFVAzffvvt15q9zp07h7Szdu3ahYgifnr37m1HHHGExCK/n+dZaiH1QxMrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG9ZGLGIdDXK43A6GmlqnPROwEuLFi1CB2rUqGEff/yx1apVy9+hLLQsMbEo09hnz55tdevWzWQWCmArDS01Ji2kGd1HwpofkViJVQEI+C/ReiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+VXBW3jS0/J7w999/2y+//BKKXJOulusta8QiL0iJRelJaXHwepGFomOqdeXjJVY+TliJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C0LGlnkf0LuW0osyv05zBuBFlL/ZIqVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUWJSZlcSizIxyxkILqX+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW0osysxKYlFmRjljoYXUP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn4lVn4Cfkv5lVj5CfgtJRZlZiWxKDOjnLHQQuqfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JYSizKzkliUmVHOWGgh9U+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S4lFmVlJLMrMKGcstJD6p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Eis/Ab+lxKLMrCQWZWaUMxZaSP1TJVZi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31JiUWZWEosyM8oZCy2k/qkSK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKbEoMyuJRZkZ5YyFFlL/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVYQWDp0qVWrlw5q1Chgh9IPpZx/Oqvv/4Kd6pYsWKRPHt93WTVqlW2fPnywBCW3haHlfeepdVOYlHmmZVYlJlRzlhocfBPlViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX22YrL788kt79dVXrVOnTlalShWrVauWXXTRRdavXz8/kAKIRW+88YZ98cUXds0114SrTzvtNHvmmWfspptusuuuu65Inl2SN0kcD78/4ogjbNiwYXbssce6u6F30I3KJBZlZiWxKDOjnLHQ4uCfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pv9owWT377LN26qmn2pgxY2zPPfe0G2+80fbbbz/r2LGjH0gBxKJ//etf9vDDD9s///xjy5Yts8qVK9v+++9vDz30kO26665F8uySvEnieL755ht74oknAtcmTZq4u6F30I1KYpEDlcQiB6RcMdHi4J8psRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kl5WiDHdu3e3Tz/91HbYYQe7/vrr7fTTTw8PRSB54IEHjDSsww47zG699VarWrVqys9Hjx5tPXv2tPvuu8+aN29uvXv3NiJZPv74Y7vtttvs7bfftgMOOMCGDBkSBB+euc0229hHH31kPXr0CJvs3XffPTx/q622skMPPdS+/fZb22uvveyxxx6zs88+20488US7/PLL7aeffrLzzjvPPvzwQ6tUqZJ169YtiEk8i+8PPPDA8LxNNtkkRAgdeeSR60BM5VevvPKKnXPOOfb777/b4Ycfbn///be98847tvnmm9stt9xiZ511VtrJGDBggN1xxx1hHIwfbnvvvbf9+OOPdskllwTRiz+fe+65oT+k1V177bX2wgsv2BZbbGEnnHCCXXHFFXbzzTeHiKqRI0eGscF92223DczhRoTVypUrbcKECaE/cEDQiubqjz/+sNatW9u9994b5jRxPHC+7LLL7Pbbb7eDDjrI0vWZ6K2nn37aDjnkkBBV1aBBA7v//vtt55139jvjBmqpyKLMEy+xKDOjnLHQX9D+qRIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8qviY0UNmy233DI84IILLgjCxeTJk4MYg0C03Xbb2dZbbx1Eiv79+9udd95pxxxzTMrP69ata2eccUYQV9q3b29du3a1xx9/PAgb//73v+3RRx8NokubNm3s+eeft86dO9ugQYPCvWgIJdyfWjpjx44NAhLX8CuCR6NGjfLS0KLUML4jWgaRh3tuvPHGdtRRRwVBi2f+5z//sc0228ymT59uZcqUWQtkKr+aOnVqeBbCDhE4S5YsCeIOwhHiF2JPqkYfEFKaNm0a0rzuuuuuIABNmzYtj0OXLl3CuH799Vf75Zdf7MUXXwwM4IHYg7A2btw4e+SRR8K4Fy9eHD6vU6eO7bLLLvbBBx9YvXr1wtwgRpUtWzb0E4Zt27YNwhviDkIUc8kPfU8cD0JTlIbGPdP1GUHpnnvuCc9FVEL4gieClFr+BCQWZfYQiUWZGeWMhf6C9k+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfFR8rolcQKxBVSFdCfGjVqlWIDiKq5tJLLw3RPdtvv7299dZbQbyYOHFiys+JoMkkFiGUICohWCCOEF3z2Wef2YgRI2zOnDlBlKCR/vXSSy/lpaEhakQ1i4jwQQwiyogoJWyJIEIkIsKIX5966qlQayhKwfrzzz/D9YktnV8lpm0RpYPARXQSz03XqGd0ww032FdffRVS1Yik4prx48dbu3bt7Oijjw7i04wZM0I9JMQeIqX4HuGIMbz33nuBMyJNfmJRtWrVwj1Wr14dClUTgUUNonfffdcmTZoUhDGigVq2bGlEeyWO580338wTi6ZMmZKyz9wDfvSD/hLVhPAFB56rJrGosD4gsaiwBLPoev0F7Z8MsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kj5Wr732WogaevLJJ0PqGcINaV+IH3PnzrW+ffsGMQOx4Ouvv7by5cuHCKNUn5PyRC0cBAkEjOOPPz6IGImRRb/99lsQHRB6hg4darNnz7bddtstDPD8888PggeCVX5iEUWmuceZZ55pAwcODKIWQhBRP6S2IRZFfbjwwguDAFXcYhGpb3fffbf98MMPVr9+/fBMnk3EE/0hyoc0rnnz5tmsWbNCWheCEX0n+mjFihUhQoooqF69eoWaSfPnz7fq1asb4hBjiyKL+DNCDzWVatSoEe5D6lqzZs3C3CHYIVzBNT+xiCinVH1GQKTfiEULFiwIz2/YsGEQ6CQWZX4XFVmUmZHEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KjxWiDGlORLQgMJDShFCAGEEUEFEx1NLh5KxTTjkl1N4hKijV54hDRCWRpkZBaKKSaIliEalMCB9E1Rx33HFB5CBqiLo7RMBw/aJFi0LE0csvvxzEJ4QXbBGsotPQqOODEIJwReoYkTzU3yFqqajEIlLCEEk8kUVECCHa0F84XHXVVUHs+fnnn0PkFql9jINUOSKqEODoL6lt1Foi5Y96UKSmIRoRlcR8IC4hMnGPxDS0Bx98MIhO1B7ivqTfwRTRr2LFimHOkiOLGA+RUlEaGnWh0vWZ9D6JRf73LtFSYlFmbhKLMjPKGQv9Be2fKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvypeVtQVor5Q1KgdRKFmol0QiRA3aESqkIpWu3btlJ/XrFkzFGOm6DRRKETPIJIkikWIE4gWfE8B6hYtWuSlpPEZzyCyiFQoUsuoAYR4RBFsimMjVhHVRHFn6ghRiJp28MEHh0glomIQi+hnhw4dgriE2BInsui5554LwhiN+yMWEc1EtFW6RkoYghfpfFFDGEK0YZxEWkUNcYcoKqKQEN3wbxqRXRTynjlzZhB6eDY1gxCF4ECaGjWLmJeob/AiGmujjTYKUUXUM6JIORFL1DziGRTLjsbz+uuvB96IUqTGpetzVLNIkUX+dy+ylFiUmZnEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KnxWRLYgUFLtGtElspIotX748FFBOLBKd7nPS17gHKWtR49Qu6vAgqhCxRLoVhayjRqQNokziZ3yH0IToQSoUBZ0TG8W56XNUBNpPaY1lfn5FZBPPJg0sakTlfP755+s8hrpBCFk0xBVEHur88HnU4EdNJ6J5EMGixhj4HF6IcFGDE8/bdNNNgxAUNcQiaiIh4JHSR7RVNCdcQyQTz0gu5p1qPNE90/U5caB6B/3eJbEoMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXus0oUi/yjKV7LuH6FoDVq1Kh1OkUKGFE6JdEisYhopZJscVmVZN+y7VkSizLPiMSizIxyxkKLg3+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8KvdZcUoYYkv79u39gylmy1z0K8QqIpOo+1SSLRdZlSSfxGdJLMpMXmJRZkY5Y6HFwT9VYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+tH1akspDmQtpLchqPv0fZaxnHr0inolHkN26j2DOtUqVKcS/NGvs4rLKm0+upI2LlB1/UrEiLY61KTNXz9ya7LSUWZZ4fiUWZGeWMRVEvDjkz8AJ0VKz80MRKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7Bv1KhRKDxMAeLERv2S6IQjChInN05O4ojt0047LdQ6wfadd94pkiiPfffdNwhVxXmkdjpWjIXncnIUjfE988wzoRAxBYlTtaeeeiocLf7xxx+Hk6AS2+677x5OpeIo8+RGXRcKE3MqFcWHGTcbXU7kKmxbuHBhqI3D6WEcZV6YFtevCvOsXL9WrPwzWBBWpOZxsl5ymzNnTqhZFZ1s5+/FGkuKl1NInXt37Ngx7uXFbi+xKDNiiUWZGeWMRUEWh5wZXBF3VKz8QMVKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7777jvbbrvtrE+fPnbllVeu9aCvv/7annjiiXBsd5MmTdbpBHVOOJ6cU5M4GSnxaHF/j1Nbkg6DwMJR68XV0rHiqPWHH37Y/vnnHyMqiELHHNn+0EMPhSLAqRqcOnfunFIs4tQsTpHq3r37OpdShJiixRzRzrHoCEvUqvnkk08KPWyEKMQ8nstx5YVpcf2qMM/K9WvFyj+DBWGFkPPaa6/Zv//977xi5xTevvXWW+3mm2+2/fbbr0BiTyQWvfzyy2Ety7YmsSjzjEgsyswoZywKsjjkzOCKuKNi5QcqVmLlJ+C3lF+JlZ+A31J+JVZ+An7LuH4ViUVHHnmk8T/znLhE0eCrr746FN3lqOvbb789CCdE2hxzzDFGFA1Hivfr1y+ctkTkCsdrs8EiuoYjymlcxxHf6RobOwrqcuLTkCFDwgYPYYPTsRLFIo4379GjRzhlCjHl+uuvD+INQgtHnvM87M8991xjHPPmzbOBAweGH9LGiJji+PDklooVUQXnnHNO4MAR6og8REtxotYtt9wS2OQnFnXp0sXGjh0bnsvmlXvAhGPJGSOiHBtdIhjYlCLmDB8+3Lbeemu77777rFevXuGUrj333DOIcNTieeSRR4zj49M1uNWqVSucssXR7/SRo8vpe6JYhNhFFBOnYbVu3druvffecEpZIl+OXGeeEcWmT59u/fv3t6effjoIWhzfzjyv78Yx8AiY+CFjhTcRWY8//vg68wODVJ8X5xjivoPF2ZfSyCoSi5YsWbLWCXCLFi2ytm3b2oknnmhnn312WKOaNWtmU6dOtZ9++sm6du0aBFkEYNaTl156KVx/yCGHhHeB9zx6L5PFoueeey68C0QHEgXYt2/ffN8dnsc7+OGHH4b0027dutmNN94YTrXjGTyT6EH8lz5G79mOO+4Y+pLqPZNYlPlNkViUmVHOWGTTQprt0MTKP0NiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM61eRWMQTjjvuuCBQsOmaPHlyEGOiNDTqF7EJo5FmhUB05plnhiO22eiwcWODhejB50SycB8EjHT1jqKTrBBi2IA9//zzITqHzX0kFlHAmMgnGqLPnXfeGe5H1BPPwTYSaDg6nWLHbORuuOGGILwgJCHG8GuLFi3WApmKFRtLxCLsiRZiXIhQiD69e/dOWwA4iiziAXBiLAhpHPfOZhABiI3mhRdeGAQbGgIW40QgQ4QjzQ0RBPaMDVEH8YoUMnina0R4sTllXjgGnr4PGjQo3DMSiyIRjk0qgtoFF1wQfhCoEOe4HuGNY+hbtWplb775ph144IFho821CE2IcDAm0mp9NnwLjhzxjr+RQklUHGPgz8kt3efFNYa472Bx9YP7lkZWkViEf5cvXz7g45076KCDgmhKGhrvf+3atcN3kWiDL8+cOTOIi6ecckrw94022igwGjp0aPDrVGLRrFmzwjuC8M33iE5ENbHupXt3otRVRKlvvvkmvMesCaSabrXVVqFfDRs2DII2IlL0niEMI9qnes8kFmV+UyQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/pVJBZFqUqffvppiNIgKma33XZbRywiWogNEC1VGhrpW/yvPhsqhBzq5iCapGqRWMTGqG7duuFZ1Avif/7ZVJGGhlhEHaARI0aETVQktPA/9AgD1C9BqJkxY0aoM4RgQqTS/PnzjXQyPn/yySdDpBRjSmyeNDQEG8Qsom2ILErXIrGIaAX6xAaUqCyiB9i8JotFkXiVKg1t9uzZYbP4ww8/BKEsVd8T+8E8VKtWLYx/9erVoebRoYceas8++2yeWETfEQInTZoUIoaowQRjohiaNm1qRKAwZ0Qm/fzzzyGyiWgieBKhQQQYvkGqTocOHfwOGdMSfswZ4iRRFghbbLThRGMTjl8h4A0ePDgIWy+++KIREYXIxiY+ugccIkERERIBDaERgQCBEVERbtTGOv7440OkSFG0uO9gQZ+5obKKxCIEZuaShu8i6CaLRaxFrEm8CwixpMviM0QK8Y4R+UMEJcIy614qsQgBOhJ4EMSJ9sMP//vf/6Z8d4jaIxIQAYtoQtYzIpi4FoGJe9FXIguJYOTP0XsW9SfVeyaxKPObIrEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3j+lUkFiEAIQQhzlCfiP/tJhUiObIocROTX80i/jefaBREG4os5ycWESGCIMPmiv/h50QjNnSIRUQB7LDDDuHy888/PwgeCC38bz/PJzqGmkBEvfAZAtKmm24a7keEUNQQRJKL1haHWEREDkINKVsIGmz+iApKFosiES2/mkWINownmpt0XhCJRdR3Il2QaCI2n7CMIotOPvnkEOHEnJIWR+QFYiDRWohb2CKYwBCWiHGIbghKRBjxGRvgk046yRo3bux3yJiWpJY1aNAg1J0h6ok+kbYHS8Qg/BURjT+z8UaQI7IIxqRFIhogDOArRHQwftLo8AWuJ/Lq/fffD4ImURyIgAh6zE9RiWBx38GYiPLMN1RW6dLQ8NFksYi0M+qBvfDCCyEyCLEIMRIBl0hK3oGePXvmKxYBfOTIkSHqjlQ1BB7eccToVO9OnTp1gviNUEnkEKmQ9IsoQnwRcSgSgFnLWOui9yya3FTvmcSizG+KxKLMjHLGoqQW0pwBIrGoSKZKfuXHKFZi5Sfgt5RfiZWfgN9SflV8rCKxCHHlrrvuClEZ/BBFgoiTLBYlnnYWiRSvv/66ffnll2sVuI4jFhENwkaKDTwbODZ2URrasGHDQhFt7sfmjI0V6W0ISkS8IAAQbUSKB1FJRAFwctu4ceNCFAzpHUQRIH4liwGZxCLuQapInMgiNn0IWKSUIbwQmYTwkSwW8WfSXiKxiEgX+JNKExW4jiMWkWrF6XQ8E9EPJqS5RWLRLrvsEvgSZUU9JTbO9BVGRNewaSa6gk00fybaAtENoY6oI6IzSP0jyofUw+JqCCDUpUKwJDqLtLnx48eHmi9ETuGvbPbTiUWIS6QdErVG2h9CJRt0olAQHqlpg2DARh4WiEwUE0cAwNeLopXUerWhsiqsWMR6QGQd4ioRgdQRQzBCTE0VWYTgi2BKGiqCNlFBRDnyfqZ6d7gv90GERNBkDUKwGjBgQPAxxCJOVWSNIE018T2jb/h7qvdMYlHmt1NiUWZGOWNRUgtpzgCRWFQkUyW/8mMUK7HyE/Bbyq/Eyk/Abym/Kj5WsG3UqFEQCxBeaKRrsIki9YjNDWk+/O84G6VEsYg6MdQQonYIYgdpFlHkEZEdbJQ8kUVEwSDMkK7GM6ktREoI6UEIBFF6Gt/TT/43nnQqxCz+hz9qCCQ8l80ZfUM8otFvhAHSkhJbOr9iw0ZNExoiAmJRtLlLNxPcv1OnTiFyh77Rov4kFuuOahZFYhFcEUfoM/aIMpFYFKW/eCKLKKAd9RdGRGBRWBexBEGECAv6hqiEAMRz6QNROqRjMT4ajJlDhCQiehCQovFkqp3k99L0lggg1JVhE84x6EREEdFBfxkjc4n4kygWISoROYboQ6QR4ha21MtCIENEQ2BAJOK+bNDxuYkTJ+a8WLQhssokFlGLCH+mZlEUwYPojJCIDyDSEhGE6IwYyZrGGoavIPIg1CRGIZLaiR8iSNOI9kPYJfqH9M5U7w7pnIhKrB80hG2i96iBligW8Z33PZNYlHmFkViUmVHOWOgffv6pEiux8hPwW8qvxMpPwG8pvxIrPwG/pfyqZFiR9kXEDikT3sY1pD5RkyNVo64HG9rkhgBDmhFCAJsx6ocgDqQrho1wwjXJ3yMoEZ3DBiy5D/zvP2lH6caTn1/BAbEhMYWOKKHPP/98nbEgQpGyFTUEMj5LxyT5BvAjLQ37ZEErsiXagM1tcttpp51C5BKnlyGOIaAR+cNR4skNzkRDwCr5e9LO4FW/fv11GMOXZ/OM4m6IRYyHNJ7EQtpsstMV1oYfP4m+gV8guiU2PqPGDXbMbTrWhR1jSa1XYlXwmcIXeE9JGfM23n/8kFpeiS3du0PdLdY+/NbzHN4zBK5064bEoswzJbEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C2zza+IDKJ2THIjhY0IkEgs8o+w6CzjskKwIj0ruSFKEKlQnI1IIWqyJDeilkiRQcghKqu4WlxWBe0HtWFIO0QYzNUmVv6ZKylW/h5lr6XEosxzI7EoM6OcsdDi4J8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq9KJyuKaSPAcLrQ+milxa8QsIhGQDgqrpZNrBAZSZUksobaRNQiIm2RU9L4c2IjfS3V58XFifuKlZ9uNrHy93r9WEosysxdYlFmRjljocXBP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn6Vm6yoUUTtJ1LuqB/DaWjUqKIeE39Obuk+948+nmU2+ZVYxZu7bLaWWJR5diQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgtywpv+IkPk47o97LjjvuaEceeWQoOEw9F9ppp50WIoUocD148OBwOh4F2Nu1axcKtHOyXnQPahJx6hn2nTt3tkGDBoV6RdQtoiA7hb0peE39Goofb7nlln4g+ViKlR9jSbHy9yh7LSUWZZ4biUWZGeWMhRYH/1SJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/lV9rEitaxBgwahyDUF0BFxOC0KcQgx6LvvvgsnuCWehkZkESe+9evXz7p27WrPPvtsOBWPWlk1atQIp6edc8454XoKnr///vvh5KtHHnnErrnmmnDEOSfDdejQwQ8kC8QisSqS6cqZm0gsyjxVEosyM8oZC/0F7Z8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+ymxWnbA0cODBswOO0N998MxRmTj5dKM49CmO7PvxKrPKfMQSQ3Xff3Zo0aWKkUHG0OSfBdevWzSiWjlhE5FE6sQhxafjw4aF20bRp08JpdohFbdq0CbWN2rZtG45PJ+LoySefDCLTJ598Eo44P+KIIwrjTnnXlpRfiVWRTFfO3ERiUeapkliUmVHOWJTUQpozQLLgfyjEqjQQ8I9B76BY+Qn4LeVXYuUn4LeUX2U3KwSQu+++2y6//HJ/R83s+eeft7322su22267WNcVlfH68CuxyiwWcdw46WGbbbaZnXzyyeHEPApVr1ixwk488cQg/iSKRYhKTZs2DaLPZZddFk7Zw3blypVBwHzwwQetY8eOQSTivnPnzrXmzZvbxIkTc14sEquiWg2y/z4SizLPkcSizIxyxmJ9/AWdM3CSOipW/pkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSACh6DAbeVJ6qlSpEqJB+vfvbxwtv2jRIv/qJmMAACAASURBVNt///1tl112CSIRNgsWLAib/ylTpqxVk4YIEDbB//zzj9WrV6/YjqUXq+zzK6JlSEGrW7euVa5cOa+DS5YsWevPiT3HT/ihHlHUqEOE3yU2PqNeEXYISdQ0Ko5WUn4lVsUxe9l7T4lFmedGYlFmRjljUVILac4AyaejYuWfRbESKz8Bv6X8Sqz8BPyW8iux8hPwW64Pv4rEohYtWgQRqH379jZ06NCQYkaqGSk/FCweMmSINW7c2JYtWxbqwxDxgTBAmlFiTRpsKTbM/fr06WM9evTwA4hhKVZ+WCXFauTIkbbzzjvb5ptv7u9cllmKlX9CSoqVv0fZaymxKPPcSCzKzChnLLQ4+KdKrMTKT8BvKb8SKz8Bv6X8Sqz8BPyW8qvsZhWJRdSZ2WSTTUIEEdFDCEOIRdSFITKEU6m23357q1SpkrVu3doGDBgQatNQiDixJg1RIkQg8VNaxSKx8vt0rllqvfLPmFgVnFVxro3+XmWXpcSi7JqPQvVGi4Mfn1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVX2c0qEouoD4MgVLFiRStTpkwoMkw9mUSxqFOnTqEGDYLRvHnzQhoa0SSJNWlGjRpV6sUisfL7dK5Zar3yz5hYFZyVxKJ12Uks8vtT1ltqcfBPkViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXucUqv/oy0UiiukbRnz3X+Cn4LLPBrzzjFivffGaLVTb4VbawyNQPscpE6H/fKw0tMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsHruuef8Ny6Flr///ntO11wq7inhhLuo6R3005ZYlJmVxKLMjHLGQouDf6rESqz8BPyW8iux8hPwW8qvxMpPwG8pv8puVqShDRw4MBxTHqdRz4gi2Ntuu22cy4rMdn341YbA6vwrz7f+d/YvsnnSjUoPgV7nnWc9H3xQYlEBplRiUWZoEosyM8oZi/XxF3TOwEnqqFj5Z06sxMpPwG8pvxIrPwG/pfxKrPwE/Jbrw6+imkWXX365v6NmoQj2XnvtZdttt12s64rKWKz8JOOw6tq9q02YPMF/8xy33Lzy5sZP1JLTBvMd3u+/m/GzgbSd9tnHeg4aJLGoAPMtsSgzNIlFmRnljEWcv3RyZlDF1FGx8oMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSCy68MIL7emnn7Zos8wJZ/3797eNN97YFi1aFE5J44QzRCJsFixYEApcT5kyxX788ccwyNNOO83Gjh1rM2fONE5Fq1evnh199NF+ADEsxcoPKw6rD2d8aPxsKK1N/TbGT9TisLIPP7TwU5ytWTOz9u3Nhg41++ab1E+qXt3soovMvvjC7NVX19g0b27WurVZ2bJmP/xg9tZbZvPnF66nbdqY8fP/LRarwj0556+WWJR5CktcLOJkBv4yq1Gjxlq9oxgdpzhstNFG+fY6uUq5Xoj/4RKLzA6vhdTPSKzEKj4B/xVar8TKT8BvKb8SKz8Bv+X68KtILGrRokX4d3P79u1t6NChIcWMVLMzzzzTVq1aZUOGDLHGjRvbsmXLrEOHDvbggw/afvvtZ+PHj7dzzz3XJk+ebN99912w3XLLLY37FeeJP2JVPH4lseh7a9iwoQ9ucYpFW21l1q6dWf36ZmXKmL34otnkyWv3q1w5sxNOMGvUyIzfIyZRcwrxqHv3NbbLlplVqmT2/fdmTzzhG1c6K4lFBeZXULGINbly5crhhMpUDSG/atWqBe5XNl1YomIRR30OGDDAmjVrZgsXLgx/WW266aZ26qmnWrly5cL/eFxxxRXWpUuXtIwkFqV3n/XxF3Q2OXOcvoiVn5ZYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3Xh19FYlGTJk1sk002CRFERA8hDCEWXXrppcZ/tD7++OO2/fbbh/9wbd26dfh3Ntd88803RhTSF198EcQiIoqIQOKntIpFpZmVxKIsEYt2393s0EPNKlQwI8Bh2DCzL79cezGpWNHskkvWRA+VL/8/sYioog4dzMaMMRs+3Oy669YITjfd5F+MUllKLCowv7hiEYXWEeCPPfZYmz59+jpF1ydOnBjWXWrGoWs8+uijts8++xS4f9lwYYmJRStWrAghs5ESd/PNN9tvv/1mW221VQijveWWW2z27Nm2xRZbhL/8+IsxVZNYJLGoKF6c9fEPv6Lo9/q4h1j5qYuVWPkJ+C3lV2LlJ+C3lF9lN6tILKLANYJQxYoVw/9in3XWWcZ/viaKRZ06dQqbEgSjefPmhTS0kSNHGtH8/PubP48aNarUi0WlmZXEoiwRi6Jl46STzHbeObVYFNk0aWJ23HH/E4sQmCpXNlu0yGzLLc26dTNbssTszjv9i5HEosKxSro6rlg0bNgwGzNmjPXt2zfoGJtv/r+6WtyaCFDqzPErtoj37777bpH2uaRvVmJiEQPjL7CaNWva0qVLrW3btnbxxRfbiBEjrF27dsaRf/zFSBoa/wOSLtRQYpHEoqJ4SfSPZD9FsRIrPwG/pfxKrPwE/JbyK7HyE/BbZoNf8R+ppD3k15KLAHuu8VPwWYqVjxNWcVhJLCpBsahOHbMTT1x3IufONXv66TWfF0Qsiu5IhNEhh6z502uvmU2a5HeaVJaKLCowv7hiUfQghPtUYhH14KgPx6+fffZZSA3GLpdbiYpFgJo0aZJ17do1hNHyvyD8bwj/43H88ccHjnXq1Al51vXr17fRo0cH9S659ejRI++jOAttLk+Up+9i4aG0xkasxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+Kh5XEohIUi7bZxqxTp3UncsECs/vvX/N5QcWio44y23NPs5UrzYYMMZs+3e8w6SwlFhWYYSqxKPlmLVu2tFatWq31cTqxqFq1ajZt2rSQKcW9SQ2eNWtWgfuXDReWqFj03nvvhfpE9913n53ES2ZmN954owH2kksuCcX3iDyaP39+2kLXiixK7zb6C9r/SomVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsJJYVIJikWcKk8WiWrXMqLk7Y8aaote05DQ0Us/OOWfNd9OmrRGMaC+84HliehuJRQXmV9SRRQcccEBIUdt7771twoQJQed4NToJr8C9XL8XlphYRIpZ9erVQ9rZvvvumzdqAD7wwAMhn49THsjD/vjjj9NSkVgksagoXhn9Y8ZPUazEyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRVkmFpGmtssu/6tZFAlBc+aYPfjgGido3NiMzJnoNDQKYzdrtq6D9Orld5pUlhKLCsyvKMQiyutMmTLFmjZtapdddpnVrl3brrzyylC7qEqVKnZTYQuYF3h0RXNhiYlFVAzntIbE1rlzZ3vooYfssMMOs6lTp4ZjP4cPHx5OS0vXJBZJLCoK14/zF3RRPC+X7yFW/tkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Kp4WEksyjKxyD/NxW8psajAjAsjFnEy2mabbRZORyNNjZPeqbvcokWL0J8aNWqEAJhaRJ3lcCsxsSgTI/L56tata+U5YjCfJrFIYlEmX/J8r3/MeCitsRErsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWcfxKYpHEorSeJbHI/9IlWRZULMrvgZxC+csvv4Qi19Q2yvWWNWKRF6TEIolFXl/Jzy7OX9BF8bxcvodY+WdPrMTKT8BvKb8SKz8Bv6X8qnhY9e7d2/r16+e/eSmz/Oeff9LWHS1lQ409HE6B7tmzZ951cd5BiUV+sah31642auTI2POTsxfUrGnGz/83MnUqVarkGg4+uIDC3RtI22233eyDDz5I+w4m6wwbCJZ8hymxqBR5QZy/dErRsAs0FLHyYxMrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv+ravas9fu/j/pvLcoMh0KtLF+s5aJDEIseMt6nfxviJWpx3sPcll1ivDViwdeDdYE3q71HffvjsB4lFMTxAYlEMWNluGmchzfaxFHf/xMpPWKzEyk/Abym/Eis/Ab+l/Eqs/AT8lnH86rUvXrMxP47x3zzHLVtu09JabfO/Y6VnzJhh9evX941q9GizMRsOK2vZ0moeeWSBBBBFFvkjizh9e0Nuv/76azi63dPuGHaHvfvdux7TUmHTvmF7e+ehdyQWxZhNiUUxYGW7aZx/zGT7WIq7f2LlJyxWYuUn4LeUX4mVn4DfUn4lVn4Cfss4fqVNvX9Tbx9+aOFnQ2mFqC0jv4rhVxuKP6UZZ5z1qvfI3tbrw0KexpZDvHu17mU926RPBVUa2rqTKbEohxw8U1fjLA6Z7lXavxcr/wyLlVj5Cfgt5Vdi5Sfgt5RfiZWfgN8yjl9pUx9jUy+xyBo2bOhyRPlVDL9yES29RnHWK4lFa/uVxCKJRaV3ZdCpVbHmNs5CGuvGpdBYrPyTKlZi5Sfgt5RfiZWfgN9SflU8rLSpj7Gpl1gksSjNa1iYmkX+N7t0WsZZ2yUWSSzK9BYosigToRz6Ps7ikEPDKpauipUfq1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeP4lcQiiUVpPUtpaO6XTmKRG9U6hnHWK4lFEosyeZrEokyEcuj7OItDDg2rWLoqVn6sYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3jONXEoskFkks8r9b6SwlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRRKL/O+WxKLCs0q+Q5z1SmKRxKJMHiixKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRbkkFh3U4CDbb+v9bPaS2fbopEdTdr1etXp2xu5n2KrVq6zP6D7BhsifFvVa2EZlNrKZ82faU18+ZatXr/a/VBksFVlUcJRx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilhUpUIVu2y/y6xMmTK24K8F1ndc35Rdx6bqxlVtta223h/2tvo16luXPbrYylUrbeU/K22T8pvYiO9H2OgfR/tfKolFRcYq+UZx1iuJRRKLMjmixKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilh05l5nWt3Kda182fJpxaL9t93f2jZoG4ShcmXLBbHo5MYn2061d7LBnw+22YtnW/N6ze3XRb/aN39843+pJBYVGSuJRX6UvVr3sp5teuZdkLy29+nTx3r06OG/4QZgKbGoFE1ynH/MlKJhF2goYuXHJlZi5Sfgt5RfiZWfgN9SfiVWfgJ+yzh+JbFIYlEuiEXb1drOTt/tdHt12qt25I5H2sK/Fq4TWVSxXEW7ouUV9t3c76xOlTpWbeNqQSy6uPnFVrNiTfv7n7+t3Ebl7Lclv9kzXz4TBKeiakpDKzjJOOuVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWCSxKBfEoh4te9jSv5fa/ePvD5EWqcSiM3Y7w+rXrG93jLnDzmt6Xp5Y1H2/7lZ94+r2y6JfgmC0TfVtbMrvU2zo1KH+lyqDpcSigqOMs15JLJJYlMnTJBZlIpRD38dZHHJoWMXSVbHyYxUrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv5JYJLEo28Ui0s6u3f/a0E3qEJWxMuH3P8z7wQZ/MTiv+1e1usqILkq0WbZymf2y+BdrVLOR3fPxPbZ05VK77oDrbPGKxXbX2Lv8L5XEoiJjlXyjOOsVkWK9RvYqtr5k242VhhZ/RiQWxWeWtVfEWRyydhAl1DGx8oMWK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJRFYlHnzmbbbGO2fLnZ1Klmr7++7qS3bWvWrJlZmTJmP/5oNmyY2dKlZg0bmh13nFnFimZz5pi98ILZH3/4nSaVZZs2Zvz8f1tffkVBa+oQRa3VNq1sxaoV9uLXLxpFrw/Y9gAbNXNUKHxN6hlt3632tQplK9g7098Jfz5ku0Ps+3nfB5Fotzq72Ze/fWnDvh5WOD4JVyuyqOAo4/iVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJQlYhEi0P77m/31l1m5cmt+Bg82++GH/038lluanXOO2apVawSlTTYxmzjR7I03zK691myjjczmzzerWXONkPTYY36nyWKxKLlrpKFRb+jecfdah+06WPOtm9v4n8bbW9PfyjMl9SyqWVS2TNmQlrbpJpuG7yl+3X9Cf5u3bF7h+EgsKhJ+cdYriUUSizI5ncSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM41cSi7JELDr5ZLNGjczuvtts333NDjrI7PPPzV5++X8Tz+cHH7xGHPr+e7NLL10jDr333pqookmT1nzXtOmaa8aN8ztNDolFBR1UrUq1bJPym9jPi3621atXF/Q2Ka9TZFHBccZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVXYuUn4LeUX4mVn4DfMo5fSSzKErEomt6OHc12331NlNDDD5v9+uu6E7/PPmvEJCKLRoww23RTsz33XBNxVLas2aJFa1LYpk3zO80GIBYVDkb+V0ssKjjdOOuVxCKJRZk8TWJRJkI59H2cxSGHhlUsXRUrP1axEis/Ab+l/Cr7Wf3999+2fPlyq1y5sr+z69lyQ/Orv0ixMcqqVIxNfkNjFRtQwgVxWEksKkGxqE4dsxNPXHdq5841e/rpNZ+fccaa+kPUJCJK6NNP17WnjlCrVmtS1aZPN1u2zKxJkzW1ixCIEI4QjIhSKkzLkppFhRlCSV0rsajgpOOsVxKLJBZl8jSJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvKr7GL15Zdf2quvvmqdOnWyevXq2X/+8x8799xzrU2bNvbBBx+4OvvWW2/ZYYcdZi+++KIdc8wxaa/h/k2aNLE333zTdd84RsXpV2+88YZ98cUXds0118TpUlrbq6++2m6//XabPXu21WHTG7Oddtpp9swzz9hNN91k1113XcqrL730Uuvbt68h/JUlQiKhFSermEPJevM4rCQWlaBYRPHqTp3W9Z8FC8ymTDGrWtXslVfMdt7Z7KSTzP780+z++/9njyDEd++8Y7ZypdkVV5iRTvXWW2aHH272/vtmH31kduWVa6KObrzR7J9/Cu6vEovc7CQWuVGtYxhnvZJYJLEok6dJLMpEKIe+j7M45NCwiqWrYuXHKlZi5Sfgt5RfZRerZ5991k499VQbM2aMtWjRwg444AD7/PPPg/DTrl07V2cRU4444gh74YUX7DjqfaRpCCN77rmnvf322677xjEqTr/617/+ZQ8//LD9888/4ZSgwrarrrrK+vTpY7/++qvVrVs31u2WLl0aIr72339/e+ihh2zXXXdNef2FF15oDzzwgK1cudLKETUhsSgW58g4jl9JLCpBsSi/2TzzTLN69cy++sqsQgWzHXYwmzzZ7MMPzbp0MZsxw+z3381Y3zjtDHEJMQehacCANQLRwoVmEyaYHXjgmt/37Vsg/8m7SGKRm5/EIjcqiUUxUPVq3cso6J5ubefv5B49esS4Y+k3lVhUiuY4zj9mStGwCzQUsfJjEyux8hPwW8qvsocVc3HooYfat99+a3vttVcQIPr16xc6eN5559mDDz6YtrOvvfaaIXqQDrXPPvvY888/H8QiIoyIwCHyZdmyZdahQwe7//77QwQNP7Vr17btt9/eJk6cGMSo++67z6oSBVDIluhXRDr17NnTDjnkkBA1xfMuv/xya968eehTuv59+umndueddwYxC+Hs2muvtblz59o555xjv//+ux1++OH2+uuv20cffRT+UckzGQP3Q7RBcOvevbtxnx122MGuv/56O/3000MB2FtvvTVEbW2xxRZhvO+//34QizbeeGMbOHBg+CGl7IorrgjXpGvwfOedd2zzzTe3W265xdq3b28XXXSRffzxx7btttvaWWedFfqbKBY9+uij9uSTT1rnzp2tW7duYY4RA2fOnBmeRYRSsqBUyOkoNZfHWa8kFmWJWLTFFmYIRpFISlQRp6FVqbLmBDQEokceYZEzq1Fjja+Sdvbqq2bffGN29NFme+yx5nOijV580ezLLwvn0xKL3PwkFrlRrWMYZ71SZJEiizJ5msSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VX2sJo3b14QJxATED8QSM4++2yrUKFCEDYQR1I1olU2pRCssSc7M1y/aNGiIBZxT+5BtBLiEKlQkfDEnxFdWrZsaXPmzAkiVf/+/UPaW2Fbol899dRTdgb1SsyCQDJ48OAgriDOPPbYYyn7RxTOTjvtFK658cYbg7iDEMaY6B9C0BNPPBHElW222cZ++uknu+SSS8LYW7VqZYhnW3Ict5ldcMEF4brJkycHu99++8323ntv22WXXUJ6H2Om0Z9HHnnEbrjhBuvVq1d4xvDhw/OivFIxidIEmZvevXsHkYnP7rnnHnvvvfeMKK8ff/zR7rjjjhBZROTYKaecYieccEIQ8HgGfejSpYtVqlQpRCeREqf/UU3tgXHWK4lFWSIWRVNJ1N7ixWt+0rXq1ddEHyEgJTZSz0gR/emnNWlqhW0Si9wEJRa5Ua1jGGe9klgksSiTp0ksykQoh76Pszjk0LCKpati5ccqVmLlJ+C3lF9lF6vkNDQiZEhz+uSTT9J2dOTIkUFwQISh1hFRPAgsCCQIFEQNzZ8/3zbaaKMQ+TJu3Dj7448/Qk0k0q4+++wzW7FiRRBwiPZ59913/VDSWKYSi6K0uLvvvjtEFhF9Q72gdP2jnhICFhFWbdu2DYIK0TqJaWhc27Rp0yA6de3a1SZMmGA///xziBbiGoQb7BFlEJGInIIFgtD06dOtUaNG4XO+Ryxq3bp1+J5rZsyYESKA6CNiVaqGyAY3opmILOKeRAn9+eefgT8cEI1eeumlMBdRW7JkiW2yySZ5EUeIQ9Qy4jmMJ7/5LvTk5PAN4qxXEouyTCzKJr+TWOSeDYlFblQSi2KgUhpaDFj/byqxKD6zrL0izj9msnYQJdQxsfKDFiux8hPwW8qvsotVQcSi6JqooDURN0TwIFYgGpG6NWvWrDDQY489NggXixcvtoYNG9rWW28dxBrq/9SoUSNE3HgLaedHLpVY9PLLL9tRRx0VInnOP/98Gz16dIhyStc/BJcBAwaEcSAaIQBRhJrUsqhmEWltRx99tA0dOtSOP/74ME6iqRB6eBZiD9FHCGKk9pHihQ3XE2GE0IPI9Pjjj4cIIKKU+IzUsagh3nTk2O8ULVksoi+vvPJK6CP94L6JYhH3JpoL4QgGiHdELyEWlS9fPjyB1MCLL77Y75gbkGWc9UpikcSitK+GxCL3qiGxyI1KYlEMVBKLYsCSWBQfVrZfEecfM9k+luLun1j5CYuVWPkJ+C3lV9nFKhJ+EBNIKUO8yRRZhChRq1atEBWEyHDbbbeFlCtElh9++CGkthGxQhQRNXJOPvnkkA4VpaER6bNw4cKQRkX6FEJHYVsqsYh0N/rHiWFE8SAS3XvvvSn7RzoWwg1iCv2i/6RtTZ06NVyD2EOEFKlk1apVs9122y2kjlEviD8TYcT4qI9EFNGgQYOCiDNlypRQG4haTrAgqog+kbZHnzg9jvtSZ4lnPffcc0FwozaRRyzi2Q0aNLBhw4aF6CRqIY0YMcIQyphTxkxfFyxYYNOmTQvC2c033xzS1HbcccfwewSnojrprbDzmG3Xx1mvJBZJLJJYVPg3WGJRwRnGWa+UhqY0tEyepsiiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VV2sUJAIJIF8YJT0Kg1hABBylZ+DUGD9DMaaVujRo0KggW/RwAhzYpGJBFCSOPGjYOYQj0khAueh4hBClpBjo9P7lsqsYjInkmTJgVTinUTVURkTrr+UfgZkYhIHKKKsKeeDwIOdX9oFKsm/Ss6sh47xocwRVQPUUNRQzRDlCHljkghClPTENkQiIhaIprpyiuvDLWGaCeeeGKIToJTqhZFFvF8opa4f1Rv6OCDDw5RQxQUZ14Ri/7+++8Q2UXNIqK/+I4oJsZEYw6ot4RQprYugTjrlcQiiUVp3yFFFrmXF4lFblTrGMZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVX2ceKgtWkiSESUceGhsjwIUdNp2j77bdfiD4iagXxJCp2nWhK1Mzy5cuDCEHtosRGChqCTNxj4/Mjl0osQvDiVDJOHKO/nv4xHtLDELkiFlzHkfVwqk5BXOOU7QVBeKpfv/5aJ4lRFJtIIopdJ5/yRrFrIrKoHZTcuBfP43sP+8TrifTiNDPvqXKwgj3zt9VWW1mZMmX8TrmBWcZZryQWSSxK+3pILHKvHBKL3KjWMYyzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvcoMVggWRQqnaoYceGoSlbGrpxCKieHKtFTd7vYN+j4jDSmKRxCKJRf53K52lxKKCM4yzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvxMpPwG+Z6Fe//PKLffXVV7bvvvuGItpqaxPQO+j3iDisJBZJLJJY5H+3JBYVnlXyHeKsVxKLJBZl8kCJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TK2vnv7QAAIABJREFUT8BvGcevJBZJLJJY5H+3JBYVnpXEIj9DnYbmZxVZSiyKzyxrr4jzj5msHUQJdUys/KDFSqz8BPyW8iux8hPwW8qvxMpPwG8Zx68kFkkskljkf7ckFhWelcQiP0OJRX5WEovis8r6K+L8YybrB1PMHRQrP2CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRRKLJBb53y2JRYVnJbHIz1BikZ+VxKL4rLL+ijj/mMn6wRRzB8XKD1isxMpPwG8pv8oOVhSvPu6440Jnpk+fbqNHjw4nY7Vr1y6cjjVq1Cj7+uuvrXXr1rbjjjvarFmz7P3337d69erZQQcdtM4gvvzyy3Ai184772ycdvbKK6/YwoULw/WcGJbcEp8/efJk++STT8LJae3bt/cDSrDMRr9KZJLfoN577z2jzhKtVatW9t133wUWnORWHC0bWRXHOIvinnFYSSySWCSxqPBvnQpcF5xhnPVKNYtUsyiTpykNLROhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61fllx5Purr74ajoe/9tprQ2f69OkTRJ2xY8caJ51VrFjRnn/+edt///2DaNSjRw+78847g5DBcfSHH354EJCi9umnn9rw4cODPT+ISpMmTbJmzZrZRx99lPcc7JOfz3H0PJ97T5gwwY455hhr1KiRH9L/W2abXyUzyW9Affv2tb322iuY7LLLLkG4g8Fuu+0Wm4Pngmxj5enz+rKJw0pikcQiiUWFf1MlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61flnNnTvXiORBGLrmmmsMseauu+6yrl272ltvvRXECuaodu3aVqdOHatUqZJVq1bNnn76abv00kvDdX/88Yd17NgxbyAIQ+PHj7fGjRsHsQjhaNddd7Utt9wyCEHnn3++ValSJdgnP3/+/Pnh5LIWLVrY4MGDwz2aNm3qh1TCYtEbb7wRooCIviIKCmZnn3223XHHHdalSxf74osvQoTWihUr1mICM0Q6xLIGDRrY0UcfnTdGhLg2bdqEaCKYv/TSS0Esgg3RSbQDDzwwzE1RNL2DfopxWEksklgkscj/bqWzlFhUcIZx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5VXawuu222+zqq6+2v//+2/r16xdEIcSJk08+OQggpJJtv/32Qaw44ogjQppY586dQ2oawhBCEDakpFWoUMHefPNNq1q1ahCLaHPmzLEXX3zRNttsM2vbtm2ISKpcuXLe99HzIxpDhgwJ6XAnnnhieG7cVlJ+de+994aoqrp161rDhg3tkUceCZFWpN0RHQSff//737bxxhuvxeS5554Ln5GSB9+LLrooCGiISgMHDrQ999zTiEZq2bJliPpCLFq1apWtXr3avv32W1u+fHngXxStpFgVRV/X9z3isCpKsahsmbJ2ecvL1xn+jPkzbMhXQ9b6vPMenW2batvY8lXLbeqcqfb6t69b+bLl7dL9Ll3L7pOfP7EPfvigyJAWZlP/+cCBZhMmFFlfsv5G++xjxs//t59//jmIyp424ZcJxs+G0vbZch8767Cz8oYb5x3cUBilG2ccVhKLJBZlel8kFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvsoNVJNb88MMPQdQg+gexAsGGNLQoDYoUKQQkxJxLLrnEqK+DwMRGB7GIaBdqFSWKRVOnTrURI0aEmkjYLVu2zP773/+G+0Z1eKLns2nCJxCZxo0bF35/6qmn+iH9v2VJ+RXiGdFYY8aMsX333ddmz54dmB188MFhzIhu5557buhVIpPHHnssCGz8wAKBCR7UdZo5c6Y1adIkpOFRrwjxDf7vvPOONW/e3JYuXRqeI7EotlsU+oI4flWUYlG5jcrZVa2uyus/4hHRbD8t/MkGThqY93nbhm1t/232t7/+/su4hp/Bnw+2VatXWbc9u9mKVSvs73/+DvaIRfSxqFphxKJeXbpY78GDi6oruk8pItDlki42qO8giUUFmNM461XvD3tbr5G9CvCU3LxEBa7jz5vEovjMsvaKOItD1g6ihDomVn7QYiVWfgJ+S/lVdrBKjOzp37+/lS1b1v7666+QHoVYMXTo0BAJU6tWLTvhhBPs4YcfDsIG0S7/+te/rEaNGmsNJFEY4X5LliwJYgitU6dOVr169bXsEyObHnroIStfvnyInjn22GNDEe24raT86tFHHw1dY3xEXNHvQYMG2XXXXWdEHVGnieggWiITRLnXXnst2MP3zDPPDDYIbvfff3+IykJUY/yIZohFCFIwRCxavHixde/ePVxb2FZSrArbz2y4Pg6rohSLEseOUHRFyytCtFC/cf1s4fKFeV+f3Phka1Szkd398d2271b72kENDrLPZ39uvyz6xQ7b/jB77LPHbM6SObbs72VFjrNQYlGvXiEab0NtrHWsr2rrEuDvoJ49e+Z9Eecd3NB5xmGlyCJFFmV6XyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq+ykxViRFRXKOoh4gWRMlGj3g71i4hwKOqW6vlxnlGSfvXnn39azZo1baONNorTxSAMIbglC23cBPGJNL3kFnEpys1lSbKKBSgLjeOwKi6x6IRdT7BdN9vV3p7+to37aVxKSh137Gi719k9+OTDEx62vbfc20jnidq8ZfNCRNKSlUuKjHJhxKIi60SO3iiOX+XoEIus22LlRxmHlSKLJBZl8iyJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TKT8BvGcevikMsqlSukl3Z6kpbvGKx3T327rQdP2P3M6xhjYZByH3j2zesRqUatmfdPUMNoy2qbmFbVd0q1L2hnlFRNYlFBScZx68K/pTScaVY+ecxDitFFkksyuRZEosyEcqh7+MsDjk0rGLpqlj5sYqVWPkJ+C3lV9nBatiwYaGmEI2aOxzXTn2hdu3ahQ3nqFGjQrHm1q1bh4LOs2bNsvfffz+kiFHUOrlRy4faRTvvvHOIoCHFhCgarqeoc3JLfD6ns1FAm9PAOGGsIC3b/CqRR6bxJLLIZFsU32cbq6IYU3HdIw6r4hCLjtrpqCD6fDDjAxs5Y+Q6wyTtrGqFqvbKtFds5812tpN2Pcn+XPqnDft6mJXfqLzNXDDTalSsYZc0v8Tm/TUvpLEVVZNYVHCScfyq4E8pHVeKlX8e47BSZJHEokyeJbEoE6Ec+j7O4pBDwyqWroqVH6tYiZWfgN9SfrV+WZFKxhHunLh17bXXhs5wvD2iztixY+3QQw8NdXKef/75UHQa0ahHjx7G8e6tWrUKp5pRnBkBKWoUxh4+fHiw5wdRadKkSaF+z0cffZT3HOyTn0+xaJ7PvSnwfMwxx4R6PXFbNvlVMo90Y0k1F3HHXRD7bGJVkP6X5DVxWBWHWNR9v+5WfePqdvvo20MRaxrpZQdse4CNmjnKdquzm9WrXs+++v0rq1C2gu2w6Q42+bfJVrlC5VDLaPzP423zTTa3BjUb2NhZY+3d794tMnwSiwqOMo5fFfwppeNKsfLPYxxWiiySWJTJsyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/WL6u5c+cakTwIQ9dcc0042euuu+6yrl27hiPdOd2MOapdu7bVqVMn1CyiTtHTTz9tl156abjujz/+sI4dO+YNBGFo/Pjx1rhx4yAWIRztuuuu4eQvhCBOWovqISU/f/78+fbVV19ZixYtbPDgweEeTZs29UP6f8vi9iuipR5//PFwEhxjQSybM2dO4PXss8/+H3vnAWZFkX3xS84MIkiSIGJAFFdEYREBERUUFRGRRRFQWQyoBBFFBcyIKGJGUTBgAGEVsyIqYEBBV1Aw4N8l5yA58/9OsW92GGamT73pnpn35tR+88nOu13d/avT9eadd+uWM9RQBLxLly4uIyvGA7ucvfzyy3bDDTc47ih0feGFF7qrTs8Cv3v11Vdt06ZNtnPnTrf7Gcw27JaG8yOrC8Vfs9uiZpXd68tLx/uwisIsurPZnQ7HPdPuScXSuk5ra3x4Y5u5ZKYrZn1Vg6vcLmhoa7etdbuhFSxQ0Ho27GlYxoa2dddWe3zm46EWupZZFL9SfXQV/1mS40ix4sfRh5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WrvMEq7W5kI0eOdKYQjJtOnTo50wjmxFFHHWVYToVdv7BMDOZFzAiBEYQYLEnDDl1pd/7CHcJImTRpklWsWNHOPPNMl5GEAs4wk9DS7saG///GG2+45XAdO3Z05/VtUesKBaixaxkyoHAfRxxxhNsF7eijj3aMsKQPDG666SZ36Wl5PPbYY9ahQwe3NA8mG5b7pW1pWcAcKlmypON18skn27Jly5zpBjMNxhtMqey2qFll9/ry0vE+rKIwi1gWlUtXdnWN8JO2VShZwQoVLGQrN69ku6LjZBbRqA4K9NFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5Su8garmEGBTBcYG8j+wfIpGDZYhoalYPXr17cRI0Y4AwlmTu/eve3TTz912TUwPGAWIbMGtYrSmiPz5s2zKVOmOAMFcdhV7ffff3f9wlxBi51/6dKlLpMJJhK2jMe/O3fuzEP6b2TUusKuZFi6h2wgbGnfo0cPe+WVVxwDXPvnn3/usqLOOeecg8yi2bNnu+wpmHExMykjswgZRU899ZSr24RsLdR/glkExviRWeQti2wf4KOr3DSLsn2jcXQgsygOaDk0X8V/ZXnvSJ9nMO9dfc5ekQ8rmUUyi4LUmStmEf7Ywjdy8Wy7m/6PJJ8HIghGor8uFvwIipVY8QT4SOlKrHgCfGSUukqbzQKDolChQrZ9+3a3zAmZQhMmTLBixYpZ+fLl7ZJLLnFLrFCwes+ePdazZ8+Dtn9PaxahP2TiwBxCu+KKKywlJeWAG0+b2fT0009bkSJFDNvDt2/f3i238m1RssK14NqQWYSleWvXrrVrr73WLRH77bffnHGE+4HhhuV7aGl5wFC67777nAmEOk7pW4wF+CMLKXaOcuXKuSWAMot81RBevI+uZBYd+OErvFFIvp58dJV8d+93R2LF8/JhJbMoPrMoyMvAlz5lypThBy0PR+aoWbRq1Sq3Vh9/BOJby8MOO8z94YX09NatWztMWP9/zz3/W5Odnp3MoszV5DM55GFN5siliRWPWazEiifAR0pXeZMV/gCK1RWKXSEygrA8LdZQkBnmRTxf+ATddUbnDzom7es5oSuYPuvXr7dDDz3U59K8YnEOcMcXa/g7CYZd2C3GCuYUWszUC/s8idAfdIf7R3ZcRs1HVzKLZBaxmvfRFdtnssaJFT+yPqxkFvmZRRl5GWlHBhnEV155pdWsWdPVGXz++eetYcOG/ODlwcgcNYuwLSzStpHOvnLlSmcW/fLLLzZo0CBXzDGzN+m03GQWySwK4znymUjDOF8i9yFW/OiJlVjxBPhI6UqseAJZRz755JMuG+yyyy5zS/3uvPNO9/cXvqS74447wjpNlv2kvYYwTnjqqae6DLaff/7Zuzt8+/u3v/3Nsfjiiy+sWbNmGfaB+ln4QaZYUJNZJLMoSCOx1zW3s6TMPaO1a9fmD8jHkT6sZBb5mUUZeRlppYbM4ZtvvtllECN21KhR9vHH4e0+mRuyzlGzKHaD+DYyZha9++67ri4B3rCx8wnMoDPOOCNTFjKLZBaF8aD4TKRhnC+R+xArfvTESqx4AnykdCVWPIGsI7G0DzWQ8McrzJXYznVYAoid63Kipb2GMM6HAuDIDPr111+9u/vss89ccfbrrrvOBg8e7L7EzKjhQyqKmaNWV1CTWaQP9UEakVnEEvpfnN4HeWY+rGQW+ZlFGXkZaUcG72/YLRb//eGHH9zKKXgeidxy3SzCGy8KOPbq1csVzsSafWQbZZbeLrNIZlEYD5zPRBrG+RK5D7HiR0+sxIonwEdKV2LFE8g88u6773aGCOoo9O3b12CUoN4SDBLUUrr66qszPPjee++1Dz/80GXd4O807OTWp08fq1Gjhi1ZssQZLSjsjaWKSL/HeVB76vXXX3eFumHitGjRwmWVjx49+oBrGDJkiMGoeuKJJ1ytrHPPPdfuv/9+d434RnbYsGEuo6Bx48YuBsYQlkGiQDh26zvttNNcQXbsHIfzoMQBzjlu3DhX1uDRRx+1Bg0aZHhf6LdNmzau3hSKuD/33HPuGrDTHF478cQTXeYVCpfHzCKYbDfccIMrqfDII4+4Wl7pz7ex/EaDYZRfmgpcxz/Smtt5dmIVDSuZReGaRViij/eiKlWquPeR5s2b2+LFi/nBy4ORuW4W7dy50xXUxA8KZmIpGqAefvjhNmPGDLdsLX1Lu2WsJg+57vE8V9INT02sxIonwEdKV2LFE+AjpavMWeHLuYsuusj9EQuD4+uvv3ZmyHnnnWd33XWXM2IyajCRUHcBphJMn/Hjx1vXrl1t7NixbjkblrHh7zJ80ff222+712HuwExCUXQYQN27d7drrrnGOnTocMA11KpVy+rUqeP+5oMJhet66KGHrG3bti4DChnn+Pfw4cPddeOP8JEjR7od+XDdBQsWtHfeecftrofXkJmOXfhgZsH8Wb16tS1fvtzVfkrfUHcKZRBgQsE8wzH4wx6tf//+7jrwN+n8+fPdNSKzCNlXKHCOAuQwjTI63/hvxts3q77hRZvgkTKL4h9AzVc8O7GKhpXMooPNovSk8aVE06ZND/h12lVSaV/Alyr4YgTvp7NmzXJfnkyePJkfvDwYmetmEb7lwps5/kBA2laXLl3sjz/+yBSVMosyV5EmUv4JEyux4gnwkdKVWPEE+EgfXaH4Yn5uKCiJwpJqGRPAH7CxZWj4QxZmzMCBA11mUWYtZhbBdKlcubIzb9577z33txs2KOnYsaPLOEJBbmT4XHjhhe5vumrVqrku8f9RvwHGEnbDS7sMDX9Uw6hBdg9qAiFbCMYO6gfByPnpp5+cQYOsc1wnMtERD0MIqf0bNmywQw45xJlFyJTCOWFUnXXWWS7bafr06a7P2CYq6e/xrbfecubVRx995I6BgTZlyhR3bzCR0HBf2Inuzz//dP8fccgwWrZsWYbne3Dsg7a15tZ8I0GZRfEPtc/cHv9ZkuNIseLH0YeVzKLsZxZt3brVLevG+2m/fv3cbqi33HKLq12EDUOy2riLH9Xci8w1swh/0OKPDPzx0apVK/ftDX7w7Rb+EMmsySySWRTG4+IzkYZxvkTuQ6z40RMrseIJ8JE+urp90O12/z33850rMt8QGDJwoI1+6aW4zaJYrUmYQxMmTLBFixa57KGrrrrKLS/bvXu3W5YFQwrGDQwfZCTBiMHffFjyhQLRac0iGD8wjGC8IHMIWTxYwvbMM8/Yww8/7AwaZB/BuEEmD/qE6YRU/1hB60qVKrmi3S+88IL79hffAqetfXnppZe62kwZtbRmUaNGjZzphHb99dc7QwjZ7WnNImRX4V5gWuEDQkbnq316bVtYdGG+0ZXMoviH2mduj/8syXGkWPHj6MNKZlH8ZlHMy8CyZLwXbNy40SW8NGnSxA0W3pfwBQTeFxO55YpZlBGwFStWuG+sgprMIplFQRphXveZSJn+kjlGrPjRFSux4gnwkT666t6nu014cYLZPjMrYPv/m90W6ye7/aXvJ4T+ihQsYkULFU29Qyxnx7J2qu3cabZrFxWaDEHXXXKJjZ4yxRkt2Fxk7dq1XplFWEYGI6hHjx528cUX25tvvumWmKFkADKJkO2DDCDUGoLpAsMGXwDCXMKSMWTr4I9pmEWxa4C28YUhlqu1b9/e/vGPf7glZp06dXIZQtgABUvXbr31VpdFtHTpUrd0bujQoc5Mwi5oyEDC+fBH+aGHHur+DeMINZNmzpzplsbBiMqopTWLYHwh6wo1mHr27On++MfmKzCFkN2EpXK4zxNOOMFdG5a/4UvP9Ocb8MQAm7t1bjJIhroHmUUUpgyDfOb2+M+SHEeKFT+OPqxkFsVnFmU1GvjiBF+A4L0usxrM/GjmfmSeMYtYFDKLZBaxWskqzmciDeN8idyHWPGjJ1ZixRPgI310pZ2YPHZi+vxzM/zkl9aihd3y/vuuFg+WXmFZF9Lm77jjjizT5GPL0GCQfPPNN674NApe49tTLGWDERRb/oglWsg6ghkEwwf1i9BgtKDuELJ8kJ4fuwYYOjCJsKwNDYWmsWwM5g5MG2QYxRr6gqmEbCPUhUBxbWT6IM0fmemoWQQDB0WzkfmDBkMJ2UuZtbRmEZbKxZbY4R5xLcgsQl8wx2K7oSHDCZlOY8aMceZU+vM1aN9ABa61xTk1q/jM7VSHSRwkVvzg+rCSWRS+WcSPVGJEyixKjHGirtJncqA6TOIgseIHV6zEiifAR0pX0bCSWSSzKFNltWhh1qKF2/Fr7969hoxu7PKF9vvvvxvqPaVvMGNQzBnLyfbt2+dKByCbBuZMrCGbC8ei1hCWhKVta9ascdk/6etIxa4BNY7QcC07duxwy9rSfhOLnc9gROH4okX/l0GGb26RZYQaRWmvJXZuLJFD3Qj0n9W9wRBK3/CNMO47bb9B81Xa8+kZ9HgG+WkwKSODdJWUNx3nTYkVD86HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjIvKSrWJFcLH9B/ZTMWizDAh+ac7L5sNIHVY8PqvkwswhmUayl1dWPP/7odjNL35BGjyVdMbMoJ3Uf1rmyurdYbYmgc+kZzJyQlqEFqSfz1310Ff9ZkuNIseLH0YeVzCKZRUHKklkURCiBXveZHBLotiK5VLHisYqVWPEE+Mi8pKuYWYTlJciiyKxh+29sFy6ziB/nqCOz9UFVZlFqZlFW44QdyZBtg2Va+bX5zFcybD0M2/wqqP/et4+u8jkqEyteAT6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq6QRXHttde6orzt2rWzZ5991u22BLMIdUr69Olj3333nStei4K6l19+ucXMItRAQf0UFMN98skn3ZbfUTYfVvqg6vFBVWYRZRZFqe1E6VvPYOYjlS3DNlEEENF1+ugqoktImG7Fih8qH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI3NbVzCIsEsStv3GLkowjWAWYRla1apV3Y306tXL7fiEbVFRTBeFgJFZhHomJ510ktsSHAV3Y0V8+bv3i/RhJbNIZlGm6vpvzaLY6z668lNs8kX7sNIz6PEMJp9UvO7IR1deHSdhsFjxg+rDSmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4AnxkbuoKBXexg1K3bt3cjkZTpkwx7OIEswi7HrVo0cLtwoTts5FlhC20kXGEXZFgFq1cudIZRrGdk9BfrFAvT4CP9GGlD6oeH1SVWaTMIvIx1DOYOShlFpEiyiDMR1fxnyU5jhQrfhx9WMksklkUpCyZRUGEEuh1n8khgW4rkksVKx6rWIkVT4CPzE1dYeci7K4UK2j9xx9/WJ06dZxZBNPoggsusJdfftktPfvhhx+sQYMGbmtxxMEsWr9+vZUrV85tA46sIplF/LiHHZmtD6oyi2QWkYL0ma9k2HoYtiT/ZA3z0VWyMmDvS6xYUuZV3+muz++yIV8M4TtP8MghzYfY4BaDU+8iva4efPBBGzBgQILfZbiXL7MoXJ652psmUh6/WIkVT4CPlK4Sh9Wpp57qtvt++OGH7Z133nGmD8wi/KGA7b9Rh2jQoEEu8wjL1X7++Wd76KGHnFl05ZVXumwj/Pf888+3yZMn8zceR6SPrvRB1eODatRm0SWXmB19tNmuXWbz5pm9/77Z3r0HKuCaa8xSUv73uxUrzF580Qxb2l98sVnx4marV5u9+abZmjVxqCfNIVqGFjc/PYOZo8uWYRv3iCTHgT66So47jv8uxIpn58NKmUXKLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq4++OADO/fcc90Ft2zZ0qZOnWo33nijjRw50hlCKGYda/3797dhw4a5+kbYRhyZRliSVqZMGfvwww+N3X6bp3NgpA8rmUV5xCxq3Nisdev95hB+ChfebxZ9++2BgztokNm+fWY7duz//fLlZuPGmd1+u1nBgmYbNpgdcojZokVmL7wQr4T2HyezKG5+egZlFsUtniwO9NFVFOdPpD7Fih8tH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj8wLutq6dautW7fODj/88IMufPv27S7zCMWuYQqlb6tWrbLy5ctbYZgAETcfVjKL8ohZ1LWr2RFHmD31lNmePWY33LA/Q+jJJ/+nlqJFzQYONJs502z6dLPNm/e/dsIJ+7OKvv/e7L33zE45Zf/vv/kme0qTWRQ3Pz2DMoviFo/MolDQ+TyDoZwwgTvxYaXMIplFQVKXWRREKIFe95kcEui2IrlUseKxipVY8QT4SOkqGlYyi/KIWVSypFmxYmbr15u1aWPWqJHZr7+avfba/wa+Rg2zK6/83//fts3sX/8yq1vX7KST9ptMhQqZbdpk9u67+4/PTpNZFDc9n/lKz6DHMxj3iCTHgT66So47jv8uxIpn58NKmUUyi4KUJbMoiFACve4zOSTQbUVyqWLFYxUrseIJ8JHSVTSs9EHV44NqdmsWVapk1rHjwQO5bt3+pWRoeP2448x27zYbNWp/dlGs1aljdtFFZitX7l9u1qCB2dq1ZsuW7c8u2rp1v0EE4wiG0cMP86LJKFJmUdz8fOYrPYMez2DcI5IcB/roKjnuOP67ECuenQ8rZRbJLApSlsw00wCqAAAgAElEQVSiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdKV9GwCvuDakrxFOt2YjcrW7ysbdqxyWYsmmGzls066OK7/q2r1Shbw3bs2WHzVs+zd39718Wg+G2T6k2sYIGCtnDDQntl7iu2DzV6QmrZKq6bXbMImUFXXHHwnfz1l9kTT5j16mV26KH7jaAxY8zw+7QNtYjws2SJ2c6d++sUxWobnXee2dSpZtOmmd1yixkyle6+++AC2T4cZRb50Dog1me+CvsZjPuic+jAbD2DOXSNefU0PrrKq/eQU9clVjxpH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5SuomEV9gfVng17WpXSVeyvHX9Z2WJlndFz37T7bM++Pak3cGbtM+30Gqfb9t3brXDBwu7nxX+/aPtsn3X7WzfbtWeX7dq7y0oWKWlT/m+KM5zCatn6oJpdsyirmzj7bLMmTfYvJfvll/1FrJE19OOPZt26mf3nP2aLF5vBFIJZhP/ftOn+LCPshgaDaONGs1mzzM44Y/+/R4zIHjaZRXHz85mvwn4G477oHDowW89gDl1jXj2Nj67y6j3k1HWJFU/ah5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WraFiF/UG1T+M+tnvfbnt85uN2dYOr7fCyh9src16xBesWpN5Ap+M72ZGHHGkPf/2wnVrtVGt5REv794p/W/HCxe3YCsc642jF5hXWuHpjW75puf2y5hf+5gMis/VBNUqz6PrrzSpWPPDqsazslVfM/vnP/xW7vu46s8MO2x8HYwmv//mnWbt2Zn/72/7fw2iaNMls7tzscZNZFDc/n/kq7Gcw7ovOoQOz9Qzm0DXm1dP46Cqv3kNOXZdY8aR9WCmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdTZw40S7GblJmtmDBApsxY4ZVq1bNWrVqZQUKFLDp06fb/PnzrXnz5nbMMcfY4sWLberUqVa9enVr2bLlQTcxd+5ct+tZ3bp1be/evfb222/bxo0b3fG1atU6KD7t+efMmWPffvut1ahRw85GtkkczYdVVB9UYRRVK1vNZQndP/3+DO/igmMusBMrnWgFCxa0Z2c9ax2P72iHFD/Edu/d7bKNVm5Zaa/OfdX+2p5uOVYcTGKHZOuDapRmkc89YYkZjCVkGMEwijX8HnWR8Ptdu3x6zDhWZlHcDPPCMxj3xUd8YLaewYivLa9376OrvH4vUV+fWPGEfVgps0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXf311182efJkW7Rokd2O+i9m9uCDDzpT56uvvrI2bdpY8eLFbfz48Xb66ac702jAgAH20EMPWdOmTe3rr7+28847zxlIsfbdd9/ZJ5984uLxA1Pp+++/t0aNGtm0adNSz4P49OfftWuXOz/6njVrll100UV25JFH8pD+G+nDKiqzqN/f+1mZYmXc0rIRX4+wjTs2HnQfXU7sYrXL1XaG3Hu/vWdNaza1lGIptmzTMmcY1UipYT+v+tkmzJvgzSCzA7L1QTWvmEWh0QjoSGZR3KTzwjMY98VHfGC2nsGIry2vd++jq7x+L1Ffn1jxhH1YKbNIZlGQsmQWBRFKoNd9JocEuq1ILlWseKxiJVY8AT4yCl2tW7fOkMkDY2jgwIEGs2b48OHWvXt3++CDD+y4444znLdChQpWqVIlK1GihJUtW9bGjRtnffv2dcetWbPGLrjggtQbgTE0c+ZMO/74451ZBOOoXr16VrVqVWcEXX/99Va6dGkXn/78GzZssJ9++smaNGliL774ouvjlFNO4SHlAbOow3Ed3BIy1BnCv48/7HhX4DpWwBqXiGVnZYqWsbd/fdvqVqxrl9a71NZuXWsbdmxwy9Me+foR27prq93R7A7bvHOzDf9quDcDmUUhIJNZFDdEn/kqKsM27ouP+ECZRfED9tFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj4xSVw888IDddttttnv3bhs5cqQzhWDcdOrUyZlGWEp21FFHGZaXtW3b1i0T69q1q1uaBmMIRhBisCStaNGi9v7771uZMmWcWYS2evVqmzRpklWsWNHOPPNMl5FUqlSp1Ndj54/ReOONN9xyuI4dO7rz+jYfVmF/UB14+kArUrCIfbn4S2cUlStezl6b+5rLMmpWs5lNXzjd6leqb9VTqttPq36yooWK2tGHHm1zVs5x9YnOqXOO/d/6/3MmEeLmrpxrE+dP9EWQaXy2Pqgqs8hq164d2lgkc0e5+Qzmda7Zegbz+s1FfH0+uor4UvJ892LFD5EPK2UWySwKUpbMoiBCCfS6z+SQQLcVyaWKFY9VrMSKJ8BHRqmrmFnz559/OqMH2T9YTgbDBsvQsBSsfv36NmLECGcgwczp3bu3ffrpp85gQn0jmEXIREKtorRm0bx582zKlCmuJhLitm3bZr///rvr9+ijj3YAYudfunSpy2SCyfTNN9+4f3fu3JmH9N9IH1Zhm0UoWN3mqDZWwAq4ndD+3PCnvfTjS9a6TmtrfHhjm7lkpitmfVWDq1xdIrS129a6otZbdm6x6065zg4teaj7PeodPTXrKVu/bb03g8wOyNYHVZlFMotIJebmM0heYq6FZesZzLWrzhsn9tFV3rji3LsKseLZ+7BSZpHMoiBlySwKIpRAr/tMDgl0W5FcqljxWMVKrHgCfGSUukqb2fPUU09ZoUKFbPv27dauXTuXKTRhwgQrVqyYlS9f3i655BJ79tlnXcHqPXv2WM+ePa1cuXIH3Ehaswj9bdmyxZlDaFdccYWlpKQcEJ82s+npp5+2IkWK2I4dO6x9+/auiLZv82EVtlmEay1UoJArbh2rPZTZ9VcuXdllEOEnbStforyVLFLSlm5a6gynMFu2PqjKLJJZRIoxt59B8jJzJSxbz2CuXHHeOamPrvLOVefOlYgVz92HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjInNTV5s2bU+sKxa4QGUFYnhZrKE6N+kUozhx2y+j8PufwYRWFWeRzrTkdm60PqjKLZBaRgtUzmDmobD2DJP9kDfPRVbIyYO9LrFhS5rKY2SXGMotkFgUpS2ZREKEEet1nckig24rkUsWKxypWYsUT4COlq2hYySzi/0g2mUX0BwperckZ6TNf6Rn0eAaTUy70Xfnoiu40SQPFih9YH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6PU1cSJE11NITTUKZoxY4arL9SqVSuXOTR9+nRXzLp58+Z2zDHH2OLFi23q1KluiRiKWqdvKISN2kV169Z1tYzefvttt2wNx9eqVeug+LTnx+5sKKBdo0YNO/vss3lAaSJ9WOmDqscHVZlFMovIJ1LPYOaglFlEiiiDMB9dxX+W5DhSrPhx9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXWEp2eTJk23RokV2++23u4vB9vYwdb766itr06aNqzU0fvx4V3QaptGAAQPsoYcesqZNm7pdzc477zxnIMUaCmN/8sknLh4/MJW+//57a9SokU2bNi31PIhPf/5du3a586PvWbNm2UUXXeSKa/s2H1Yyi2QWZaqvFi3M8PPf5qMrX80mW7wPKz2DHs9gsgnF8358dOXZddKFixU/pD6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdGoat169YZMnlgDA0cONBg1gwfPty6d+9uH3zwgdvdDOetUKGCVapUydUsQp2icePGWd++fd1xa9assQsuuCD1RmAMzZw5044//nhnFsE4qlevnlWtWtUZQdhprXTp0i4+/fk3bNhgP/30kzVp0sRefPFF18cpp5zCQ4rjQ70+qPIfVD8YNsxszhzv8UjYA+rXNzvhhNTLX7FihVWuXJm6HZid+a01bNgwLlZzV861Oavyj67qH1bfbul2i0zIOB6QKN4H47iMhDhErPhh8mEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXdjWzkyJHOFIJx06lTJ2caYSnZUUcdZVhe1rZtW7dMrGvXrm5pGowhGEGIwZI07J6Wdjc03OHq1att0qRJVrFiRTvzzDNdRlKpUqWcmYSWdjc2/P833njDLYfr2LGjO69v82Els4g3i+7q3t2GjB3rOxyKFwERSEOgW+9uNmbEGJlFcajCZ26Po/ukOkSs+OH0YSWzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdxcyaP//80xk9yP7BcjIYNliGhqVg9evXtxEjRjgDCWZO79697dNPP7Xdu3e7+kYwi5CJhFpFac2iefPm2ZQpU1xNJMRhV7Xff//d9Xv00UcfYBYtXbrUZTLBRPrmm2/cvzt37sxD+m+kDyuZRR5m0V13OXMwv7atW7dayZIlqduHxrHMMr+0cuXKWZ06dVJv14dVfmEUu08syR08eLDMojgG3mduj6P7pDpErPjh9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXN7HnqqaesUKFCtn37dmvXrp3LFJowYYIVK1bMypcvb5dccok9++yzrmD1nj17rGfPnoYPimlbWrMI/W3ZssWZQ2hXXHGFpaSkHBCfNrPp6aeftiJFitiOHTusffv2roi2b/NhJbOIN4t8xyHZ4n10lWz37ns/YsUTEyux4gnwkdJVNKxkFsksClKWzKIgQgn0uiZSfrDESqx4AnykdJU3WW3evDm1rlDsCpERhOVpsYasCdQvwm5pYbeMzu9zDh9dySySWcRqy0dXbJ/JGidW/MiKlVjxBPhI6SoaVjKLZBYFKUtmURChBHpdEyk/WGIlVjwBPlK6EiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldRcNKZpHMoiBlySwKIpRAr2si5QdLrMSKJ8BHSldixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpatoWMksklkUpCyZRUGEEuh1TaT8YImVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ2ruz6/y4Z8MYTvPMEjhzQfYoNbZF6Q/8EHH7QBAwYk+F2Ge/kyi8Llmau9aSLl8YuVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ0rZRYpsyhIWTKLgggl0OuaSPnBEiux4gnwkdJVNKwmTpzId5yEkStXrrRKlSpRd/bz6p/t51U/U7HJEFTvsHo26JpBqbeiZ5AfVbESK54AHyldiRVPgI+UrqJhpcwimUVBypJZFEQogV7XRMoPlliJFU+Aj5SuomHV65Ze9uRDT/KdKzLfEOjWu5uNGTFGZlEcI675iocmVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj6669+luM7+fyXee4JEVS1a0iqUqpt7Fli1brFSpUgl+V9Fc/gknnGCDB2defyCasyZHrz7PYHLccfx3IVY8O7ESK54AHyldRcNKmUUyi4KUJbMoiFACva6JlB8ssRIrngAfKV1Fw0p1eFSHh1WWnkGWlJlYiRVPgI+UrsSKJ8BHSlfRsFJmkcyiIGXJLAoilECvayLlB0usxIonwEdKV9Gwklkks4hVlp5BlpTMIp6UWImVDwE+VvOVWPEE+EgfXSmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+0kdXMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAf6aMrZRbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEf66EpmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dKXMIplFQcqSWRREKIFe95kcEui2IrlUseKxipVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+ulFkksyhIWTKLgggl0Os+k0MC3VYklypWPFaxEiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldiRVPgI/00ZUyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klkksyhIWbliFm3evNlKlSplBQoUSL2+LVu2WIkSJaxgwYJZXvODDz5oAwYMSI3xeSCCYCT662LBj6BYiRVPgI+UrqJhJbNIZhGrLD2DLCkzsRIrngAfKV2JFU+Aj5SuomElsyg+sygjLyPtCG3atMnKlCnDD1oejsxRs2jVqlU2Z84ca9++vS1YsMAOO+wwW7NmjXXu3NkKFy5sCxcutP79+1u3bt0yRSazKHM1aSLlnzSxEiueAB8pXUXDSmaRzCJWWXoGWVIyi3hSYiVWPgT4WM1XYsUT4CN9dCWzyM8sysjLSDsys2fPtiuvvNJq1qzpfI3nn3/eGjZsyA9eHozMUbNo4sSJ9uWXX9qIESNs5cqVziwaOnSowX277777bMWKFValShVDllHJkiUzxCWzSGZRGM+Rz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZ5GcWZeRlpB2Zs88+226++WbDfxE7atQo+/jjj/nBy4OROWoWxe4fy89iZtHVV19trVq1sk6dOtm+ffvcMrQ//vjDateuLbPIUzA+k4Nn10kXLlb8kIqVWPEE+EgfXcksklnEKstHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrsI0i97t/K61OqKVFb+vuLvYKqWr2FPnPWVt6rSxv3b8ZQOmDLCx/x6b4Y38/fC/2yddPrGde3da+QfL2zNtn7GO9ToeFHvqc6fagnULeBjpIoc0H2KDWwxO/W16VumTUjI7UVovI21M9erV7auvvjL894cffrDWrVs7zyORW66bRR07djT8dOjQwXGsVKmSzZw502rVqiWzyFNZPpODZ9dJFy5W/JCKlVjxBPhIH13JLJJZxCrLR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj67CMIuuOukqu7HRjVa/Un13kQXu2l+T+J1/vGNtj25ryzYts8qlK7vfHfnYkfafDf856GaW9l1qVctU3Z84cndBe6X9K3Zx3YtT44oX3m9A1R5Z2/7c8CcPI11k1GZR2bJl7ddff3UrpTAOzZs3t8WLF8d9vXnhwFw3i+6++24D2N69e9uePXvskEMOsQ0bNrgMoxkzZrhla+mbClxnLB2fySEviC83r0GsePpiJVY8AT7SR1cyi2QWscry0RXbZ7LGiRU/smIlVjwBPlK6EiueAB/po6swzKIxF46xdse2s5RiKW7zqphZtGXgFitcsLAVu7eYDWo+yO5qcZfd9ultNnTG0ANuZuDpA+2+lvfZ1l1brUThEs4sSttubnKzPXTWQ/bq3FftskmX8SAyiGTMovSHnXbaada0adMDfp1ZZlGzZs1cuZ2TTz7ZZs2aZfA5Jk+enK1rzu2Dc90sAsAnnnjCreebMGGCPfLII/b1119nykU1izKXjM/kkNvCy+3zixU/AmIlVjwBPtJHVzKLZBaxyvLRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjqzDMotiVLe+33GUQxcyizbdttqKFilr5YeXthQtfsEuOu8Qmzp9oHcbvX02EBoNpdf/V9vH/fewykw4vc/gBZlGlUpVsWb9ltnHHRjt02KG2d99eHkScZlHapJTMTpbWLNq6dav9/PPPdsopp1i/fv2sQoUKdsstt7jaRaVLl7Z77rknW9ec2wfnmlmEauIVK1a0bdu22bnnnmvz5s1z//7kk0+sUaNGMoviUIbP5BBH90l1iFjxwylWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+uorSLBrVdpT98+R/uqVlMFfQPlzwobUZ1yb1Zj66/CM7o9YZVuGhCvbTdT8dZBZNuGSCdTiug3Wc0NEmzJvAQ8gkksksYs2imJeBnd6RebRx40ZXd7lJkybu7OXKlXMJMOXLl8/2dedmB7liFmV0w1jPV7lyZStSpEiWPJRZlDken8khN0WXF84tVvwoiJVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+uojSLcMVnH3m2dT2xq1uOhoLVD8x4wAZ+OjD1ZtYPWG/lipc7wFBat22dyyJCnSIsZdu+e7uVur8UDyCLyLDMoqwuZvfu3bZs2TJX5DpmkoVy8bnUSZ4xi9j7l1kks4jVSlZxPhNpGOdL5D7Eih89sYqGlcwimUWssvQMsqS0HTxPSqzEyocAH6v5Sqx4Anykj66iNIu+7fGtnVjpROv3cT9D3aGaKTWt0ehG1qBKA7uj2R1237T7rFDBQnZ42cPdzV1/yvVWumhp6/tRXxvxzQg7/+jzbfI/Jtunf35qrV5qxQPIZbMolAvNQ53ILMpDg5HdS/GZHLJ7rkQ/Xqz4ERQrseIJ8JE+upJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXUVpFmF5GZaZFSm0f9XQqNmj7Jp3r7FHWz9qNzW6yR6b+Zjd9OFNqTe2qM+iA5ahDT97uPX7ez976KuH7JZPbuEByCwKhVWsE5lFoeLM3c58JofcvdLcP7tY8WMgVmLFE+AjfXQls0hmEassH12xfSZrnFjxIytWYsUT4COlK7HiCfCRProK0yzK7ApbHtHSvl36rW3euZm/iYgic2IZWkSXnmvdyizKNfThn9hncgj/7InVo1jx4yVWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+usoJs4i/8ugjZRb5M/Yyi1DNHC03izWpZlHmg+wzOfhLJbmOECt+PMVKrHgCfKSPrmQWySxileWjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDvz7Kr3PwFNP3shAs2jhwoX2yiuvuK3fpk2b5ki0bNnSbRF31lln2YknnpijdGQWySwKQ3A+E2kY50vkPsSKHz2xioaVzCKZRayy9AyypFS0mSclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStTswjbvt1///02ePBg10eDBg2sWrVqht/Pnj3bVq1a5X7frVs3GzlypJUtWzboXKG8LrNIZlEYQvKZSMM4XyL3IVb86IlVNKxkFsksYpWlZ5AlJQOEJyVWYuVDgI/VfCVWPAE+0kdXMotkFgUpK1OzaPny5daqVSu79tpr7eKLL7YqVaoc0NemTZvss88+s2HDhtk999xjZ5xxRtC5QnldZpHMojCE5DORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFsksClJWpmbR3r17DTWK8NOhQwdr0aKF9e7dO8P+du7caUWLFg06VyivyyySWRSGkHwm0jDOl8h9iBU/emIVDSuZRTKLWGXpGWRJyQDhSYmVWPkQ4GM1X4kVT4CP9NGVzCKZRUHKCqxZhA7atm3r6hUtXrzYUlJSgvqM9HWZRTKLwhCYz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZJLMoSFmUWYQlZp9//rnrq3bt2ql9zpkzx0qVKhV0jlBfl1kksygMQflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFyCxau3btQX19+umnVrJkyaBzhPq6zCKZRWEIymciDeN8idyHWPGjJ1bRsJJZJLOIVZaeQZaUDBCelFiJlQ8BPlbzlVjxBPhIH13JLJJZFKQsyiyKdbJx40bbsWOHVaxYMajfyF6XWSSzKAxx+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJKSAcKTEiux8iHAx2q+EiueAB/poyuZRTKLgpRFmUUQ3a233moTJkxw/Z111ll2xx13WLNmzYL6D/11mUUyi8IQlc9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZlFnUsWNHZxThv6VLl041jVasWKFlaEGEc/B1n8khBy8rT55KrPhhESux4gnwkT66klkks4hVlo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySySWRSkrECzaP369Va+fHm799577fbbb3f9/etf/7L27dvb999/byeddFLQOUJ9XZlFmeP0mRxCHZQE7Eys+EETK7HiCfCRPrqSWSSziFWWj67YPpM1Tqz4kRUrseIJ8JHSlVjxBPhIH13JLJJZFKSsQLNo9+7dVqRIEevSpYuNHj3aChUqZEOHDnXL0H777Tc76qijgs4R6usyi2QWhSEon4k0jPMlch9ixY+eWEXDSmaRzCJWWXoGWVJaWsWTEiux8iHAx2q+EiueAB/poyuZRTKLgpQVaBahg6uuuspeeOEF11eZMmVs06ZNbknaG2+8EdR/6K/LLJJZFIaofCbSMM6XyH2IFT96YhUNK5lFMotYZekZZEcluVcAACAASURBVEnJAOFJiZVY+RDgYzVfiRVPgI/00ZXMIplFQcqizKJt27bZW2+95cyhv/76yzp16uTMokMOOSSo/9Bfl1kksygMUflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFV1xxhV199dWpu58tWbLELUt7/fXXrVKlSkHnCPV1mUUyi8IQlM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZWZpFY8eOtccff9wVsj788MPtsMMOc/2tWrXKYBitXbvWFb/OySazSGZRGHrzmUjDOF8i9yFW/OiJVTSsZBbJLGKVpWeQJSUDhCclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStLs+ill16ykSNHHmQWodNWrVoZjJucbjKLZBaFoTmfiTSM8yVyH2LFj55YRcNKZpHMIlZZegZZUjJAeFJiJVY+BPhYzVdixRPgI310JbNIZlGQsqhlaIMGDbILL7zQTj755KD+In9dZpHMojBE5jORhnG+RO5DrPjRE6toWIVtFpUpWsba1W1nNcrWsC27ttjXS762mUtmHnTxlxx3iR196NG2a+8um7d6nr3/+/u2d99eF9fo8EZ29pFn24SfJ9gva37hb5yIbFGrheEn1qQrAtp/Q8RKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFixYtsttuu83++c9/WrVq1Wzw4MF255132rHHHhvUf+ivyyySWRSGqHwm0jDOl8h9iBU/emIVDauwzaKO9TracRWPs7+2/2VlipWxAlbAHpjxgO3cszP1Bhof3tha12ntzCH8FC5Y2JlFSzcttVa1W1mtcrXccZPmT7I5K+fwN05EyiwiIGUSomeQZydWYsUT4COlK7HiCfCR0lU0rGQWySwKUhZlFrVr187efvttmz59ulWpUsXq1Knj6hfBRCpWrFjQOUJ9XWaRzKIwBKU3HZ6iWIkVT4CP9NFV2GZRvyb9rHTR0nb3F3fbxXUvtuMPO97G/zzeZQ/FWte/dbUjyh1hT333lO3Zt8duOPUGW711tc1YOMPaHNXGihYqagULFLSJ8yfa3JVz+RsnImUWEZBkFsUP6b9H+jyD2T5ZgncgVvwAipVY8QT4SOkqGlYyi/KHWbRnzx6bOfPgDPqYqgoWLGiNGzfOUGSBZtHu3butSJEiLpPo7rvvdp188MEHdu6557paRieddBKv3hAiZRbJLApBRqY3HZ6iWIkVT4CP9NFV2GZRk+pN3BKyHXt2ONNn+67t9vDXD9vuvbtTb6BkkZJWrFAxW799vbWp08YtO/t17a/22tzXXMylx19qdSvUlVnED3mORProKkcuKA+fRKz4wRErseIJ8JHSlVjxBPhIH13JLMofZtHGjRstJSUlSxHt27cvPrMIR5UtW9adANlFpUqVckvS/vWvf9mCBQvsyCOP5NUbQqTMIplFIchIZpEHRJ83HY9ukzJUrPhh9WEVtlnU7W/d3DKyrbu2WonCJdxFP/f9c7Zs07KDbiC2ZA1G0qjZo2z1ltUyi/hhzvFIH13l+MXlsROKFT8gYiVWPAE+UroSK54AH+mjK5lF+cMs2rFjhw0fPtyJCDvaP/PMM9atWze3WmzKlCn2+eefW7bMokceecT69et3gEq7dOli2C0tp5vMIplFYWjOZyIN43yJ3IdY8aMnVtGwCtssGtxisO3es9vum36fNavZzFoe0dLVHUL9oVgrUKCA9Tqllx1a8lDbsH2Djfn3GFfjKNaUWcSPdU5G6hnkaYuVWPEE+EjpSqx4AnykdBUNK5lF+cMsSqueH374wRo0aOAMoubNm9u9997rVpBlyyzCCZYvX27vv/++LV261Fq3bm0NGzY0rG/L6SazSGZRGJrTmw5PUazEiifAR/roKmyz6Namt1qxwsVs6p9T7cRKJ1qFkhXsvd/es322z5lH0xdOt0NKHGJYrrZn7x632xleW7ttrX3252fuJmUW8WOdk5E+usrJ68qL5xIrflTESqx4AnykdCVWPAE+0kdXMovyn1mEzKLq1avbww8/bL1797YOHTrYl19+aStXrsxQZIE1i3DUtm3bbMyYMfb777+7Tvbu3Wvz58+3SZMmWenSpXn1hhAps0hmUQgy0jI0D4g+bzoe3SZlqFjxw+rDKmyz6OSqJ9s5R57j6hXBBFq6camN/n602/0Mu6DNXDLTapevbRVLVjzghrBsbdiXw9zvYsvTVOCaH/OciPTRVU5cT14+h1jxoyNWYsUT4COlK7HiCfCRPrqSWZT/zCIoqV69ejZv3jwrU6aMbdq0yW688UYbOXJk/GZR27Zt7b333juoA3Qus4h/eKOO9Jkcor6WvN6/WPEjJFZixRPgI310FbZZFLvKqmWq2qotqw4obM3fQXSR2g0tfrY+uor/LMlxpFjx4yhWYsUT4COlK7HiCfCRPrqSWZQ/zSLsjPbAAw/Y3Llz7bLLLrNrrrnGqlatGp9ZFNsNDRk9kydPtgsuuMAKFSpkr776qs2aNctQ1yEnmzKLMqftMznk5JjlxXOJFT8qYiVWPAE+0kdXUZlF/NXmbKTMovh5++gq/rMkx5FixY+jWIkVT4CPlK7EiifAR/roSmZR/jSLeDWZBS5Dw5IzmEN9+vSxEiVKGIoioZo20pewFO3YY4/1OV+2Y2UWySzKtojMtAzNA6LPm45Ht0kZKlb8sPqwkll04B8zPOX8F+mjq/xH58A7FiteAWIlVjwBPlK6EiueAB/poyuZRfnDLNq8eXOGmUNVqlSxX3/9NUtxBZpFOPqKK66wl19+2V577TX7xz/+kdqhlqHxD25ORPpMDjlxPXn5HGLFj45YiRVPgI/00ZXMIplFrLJ8dMX2maxxYsWPrFiJFU+Aj5SuxIonwEf66EpmUf4wi7Zu3eoKWccaDCLo5MILL7S33nor+2bRjh077OOPP7YzzzzTxo8fb7Nnz7ZLL73UmjZtyis3pEhlFmUO0mdyCGk4ErYbseKHTqzEiifAR/roSmaRzCJWWT66YvtM1jix4kdWrMSKJ8BHSldixRPgI310JbMof5hF6dUDb6dGjRpWu3Zt+/rrr+Mzi7Zv326NGjVy26oNGzbMbrnlFmvVqhWv1IgiZRbJLApDWj4TaRjnS+Q+xIofPbGKhpXMIplFrLL0DLKktBybJyVWYuVDgI/VfCVWPAE+0kdXMovyn1m0b98+V3P69ddft2+//db5PIULF85UYJkuQ4vVKoptqXbYYYcdtPPZnDlzrFSpUrx6Q4iUWSSzKAQZqWaRB0SfNx2PbpMyVKz4YfVhJbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klmUf8yi//znP/bMM8/YuHHjrGzZsnb55Zdbz549rXz58lmKK8uaRS+99JKNGTPGPv/8czv66KOtUqVKB3T24YcfWsmSJXn1hhAps0hmUQgyklnkAdHnTcej26QMDYMVHH/Ug8NEnszNh5XMIplF7LPgoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KPWXT22WfbJ598Yg0aNLANGza4z8Lnn3++2+0+q0YVuB40aJBddNFFdtJJJ/FKjShSZpHMojCk5TORhnG+RO5DrPjR82U1d+5cN0ljE4Hq1avbrFmzrGXLls4s2rVrV5ZpofxV5c1IH1Yyi2QWsSr20RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLnjfr169vo0aPtqquucmLq27evjRgxwrZt22bFixfPVGCUWcTLM/pImUUyi8JQmc9EGsb5ErkPseJHz5cVdpjs3Lmzffnll9akSRO7++67bfDgwfb444/b9ddf79YUJ2vzYSWzSGYR+xz46IrtM1njxIofWbESK54AHyldiRVPgI/00ZXMovxlFmF3eyw/Q7vtttts6NCh9tdff2W5mkFmEf/s5flIn8khz99MxBcoVjxgsYqGFbi2adPGfvvtN5cS2qNHD2cUrVq1yk4//XTLapkvitI99dRThq0vW7Ro4b4ZqFq1ql1wwQV26KGHuuXDS5Yssfbt27v1yNga89xzz7VzzjnHZsyYYVdffbXrH7Xp0KZNm2ZIT4VJhaXFTz/9tD3xxBO2Zs0aa968uT366KMuy6lt27Zu44Mff/zRVq5caXfeead99NFHbrdMnAPXBIMLJhjWRS9cuNC9Kd1zzz0HZUn56Epmkcwi9in00RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLuZ3Xq1HGfDfC5YePGjfb999/bNddc4/7mz6rJLOKfvTwf6TM55PmbifgCxYoHLFbRsFq/fr3179/fnn/+eRswYIC1a9fObr/9dps6daozWpAmmtHuBIsXL3bbXV5yySXOAOrevXvqZI+lbIcffrjbBnPBggV21FFHOaPmyiuvtGrVqrkbwTaZSEPt3bu3YZMCrFdGe+edd5zJc9ppp7n+YSzhtV69erkfXCP6x6YHXbp0ccYQGkyiZcuW2XfffWfvv/++M5vwRtStWzcrUaKEexPCNxc4Pm3z0ZXMIplF7FPooyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KHWQT1zJs3z0aOHOn+1sff5/g7vV+/foZNzLJtFsF9wjfL+CAzZMgQmz9/vt18883WuHFjXrkhRWoZWuYgfSaHkIYjYbsRK37oxCo6VumXocXWD6NmUenSpTM8MYyZmPEDowYZQZdddpmlpKQ4Mycrs+i8886zt956y5lQJ554oq1bt85gPi1atMhq1qzp3jRgLiFTCN84wHB69dVXnYGEbCb0D4ML22wiy+i9995ztZVQMA/GFTZFwDacyEqCOVSoUCG7//777ZRTTnG/l1nEaalFrRaGn1jTM8hxQ5RYiRVPgI+UrsSKJ8BHSldixRPgI310JbMo/5hFMQXt3r3bChYs6H6YRmUWYWkDvnWeOHGiXXzxxa5ffCDBh4ycbjKLZBaFoTmfiTSM8yVyH2LFj54vq3jMIlzNF1984TKSsAQMy9awnA1ZPTBz8A3B7NmzXdYQDKG0mUVYnwzzBg2vFStWzJk4y5cvd8vYYBZ17NjRLTXD0jhkEGGDAxTFi5lFd9xxh+uzQ4cO7j0Bu7fBXEImEtZCwzCCeQSzqEiRIu5cFSpUsJtuuukAkD6slFmkzCL2KfTRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjK5lF+cMsCtplGasGkByUUQs0i+A+4Q/+UaNGuQ8E+HCAzKK6devaL7/8Yscccwyv3hAiZRbJLApBRvr22QOiz5uOR7dJGerLKmYWIRMHy84GDhzo6g9llVn0+eef2xlnnGF33XWXM3aQLbR69Wo3yce2xXzuueds/PjxzrRJaxbFjJ6szKJjjz3W1U+C8YPdEbDcLW1mUZBZhDpK9957r8s+wvsD/o0ldri3tM2HlcwimUXshOGjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZhB3Pjj76aFezCF/uYlUAyl7gy+DjjjvOfXk8duzY+MyiPXv2uG+csTPP8OHD3bbOXbt2dYVT8W105cqVefWGECmzSGZRCDKSWeQB0edNx6PbpAz1ZQVjBUu0YA79+9//thdffNGZRZs3b7ZSpUplyAiZPJ06dXJmEBqyPDE3X3rppW6J2UUXXeR+j7kabwQwa1DXCEvXMjOLVqxYYVWqVHGZRcgIQlYR3lDwxoIvDHA92LENNZBifcComjBhwkGZRVgah35gWKHhjQiZqaiDJLOIk72WoXGcMoryfQbjP1PiHylW/BiKlVjxBPhI6UqseAJ8pI+uZBblD7No69at7nPFCy+84D4ToOGL3N9//91+/vnnLMUVmFmEo1Gf6OGHH3YdYakDPpTgQwOWOuR0k1mUOXGfySGnxy2vnU+s+BERq2hZwd2HGVO2bFlX4yfWZs6c6Uyk9A2ZPzCIsFPZli1bXK2htA394bjy5cvzF54uEobU0qVLncGE3c3iaXhjQk2kzPrw0ZUyi5RZxGrQR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj65kFuUPswhfTuPzA77wxQ+SgfBlNYpe43NDRhvqxBRHmUX44PDZZ5+5Dw3Y5Qa74OBb5YoVK/LKDSlSZpHMojCk5DORhnG+RO5DrPjRC5MVlv1ix7T07eSTT3bbXyZ682Els0hmEat3H12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCKsEkCtUphDadu1116burtxZgqjzCJ8S43sImQV9ezZ03bs2OHqWGB5QU43mUUyi8LQnM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywp7RzHkxIrsfIhwMdqvhIrngAf6aMrmUX+ZtHevXsNNYAyKxeBkUIdUawYyEsNKxJQrgJ+DnZCwwZmKCuU2e7LsWunzKJYbQochN10sDzip59+ctstoyBSdhqMJ2QotW7d2nWDgqgoyJpZk1kksyg7eosd6zORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFvmZRWPGjLFHH33UlVhAts64ceMOWGn13nvvGWJKlChhCxcutJEjR9qhhx5qN954Y+oAYqMwZPnEao/yI5u9yAULFti//vUvV5cUG9dgaRquI6gFmkWx3dCw8w7qY6CmBrZpbtasmf3444/Zzi7CjmrYmvnVV1/Ncr1c7EZkFsksChI187rPRMr0l8wxYsWPrlhFw0pmkcwiVll6BllSMkB4UmIlVj4E+FjNV2LFE+AjfXQls4g3i2KeyIYNGywlJcUZQNgcBok0sVa9enV78803rVGjRs40wkYwyOSJNRhIyOjBzsaHHHIIP6jZjIwl58RqoWLjmfPPP9/69u2bWpc6s1MEmkUogISiR9jWGVlE+EEmELZBRj2NcuXKZevy3333XevcubMryIpCSzCDsC10Zk1mkcyibAnuvwf7TKRhnC+R+xArfvTEKhpWMotkFrHK0jPIkpIBwpMSK7HyIcDHar4SK54AH+mjK5lFvFn0559/WqtWreyPP/5wg/H444+7nYyff/751MFBMs0DDzzgMneGDRtmo0aNSo1HEDYJw2qq2I5k/KhmLxI7nh1//PH2ySef2J133mlnn3224X5efvllw7K6rDazCTSLcGnYBvmRRx454Covv/xyd4Lstk8//dS+//5769Wrl73xxhsOMLKNcNEzZsxw2zWnb9jaOdZ8HojsXmteP14s+BESK7HiCfCRua2rKVOmuC3qseV9Xm8+rGQWySxi9eyjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDjaL0pOG8dO0aVObM2eOq9mM5Vto8EG++OILGz16dOoh+B3qPJ977rk2ceJEtwPZt99+617HuDRv3tz9t0iRIvyAhhCJrKgjjjjCHnroIVu9erV98MEH1qFDB5cMFNpuaLNnz7ZJkyY5d+ykk05yqVclS5bM9uXv3LnTLW3DTyyLafHixW5r6IyaMosyR+4zOWR74BK8A7HiB1CsEocV1iIfeeSR2V4ezN9x/JE+upJZJLOIVZqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXcks4jOLUNQa3kcsE2fEiBFuUPr06XPA4CBjB8kuMGimT5+emnmE5WpYrZVVbWZ+lP0it27dapUrV3YrudK2008/3aZNm5ZlZ1RmEbZVQ9oVahWFYRClvaLBgwc7h+upp56yr776yrp06XJAulb6q5dZJLPI7/HIONpnIg3jfInch1jxo5fbrGJmESb+6667zrCuGsX2sEnB2LFj3U6Whx12mF144YVuLTXetLAjQrdu3Qxveti5ATH4tqFq1ar8jccR6cNKZpHMIlZiPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjfXQls4g3izACKAgNz+KEE06wc845x1DTGVlHWOaFcjpYZoafdu3a2ZVXXulqPOO/aNjECwWxGzZsyA9mSJHYnQ3Xh2uIteOOO84ZXZUqVcq+WYROVq1a5TrChwpAOPPMM0NJoVq+fLkzovChBT+A3rZt20wvWmaRzKIwnhufiTSM8yVyH2LFj15us4qZRR999JFbPrx27VqXEYo3tb/++ssZ/jDl69Wr53a0REbn1KlTrUePHvbcc8+5WnRY/rt58+bUHSr5u/eL9GEls0hmEasuH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWeRnFk2ePNlQigftvPPOcxt0zZ071xlGMGSwvKt3797udWT6Ix7+BnwU+Cn4QrZo0aL8YIYUidVbP/zwg/u7P6OGL44z2xmNyixCIWusyfv444/d+jvccJkyZeyaa65xa93SulTx3tOKFStcelRQk1kksyhII8zrPhMp018yx4TJ6rvvvnPrZT/88ENr0qSJ3X777YYUyHvvvddNqJhnsN0k1vrWrFnTnn76aZflgm0nkf6J3Qfq1KnjnHk4+pikYXxgXqhbt65LpURNM1wzJj0UcUP/6AP9YpL++uuv7eqrr3YTJgrPob4P1hgjkwbHP/nkk26XghYtWrh/V6hQgR7eMFnRJ00TmNYswpsVrgf3UqtWLStevLhbK/3NN9+4Ny5wgOkP7pjHwQC7ImBtNeb4rEz7eK4t/TE+rGQWySxiNeejK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL/MwijAKWdOELWOyEllHD8jP8HR11hj6vCHNGFj5DZdX27duX4cuUWYQjly1b5swifLDAB5K0DWvz8GEkJ5rMIplFYejMZyIN43yJ3EdYrDAJodAb2t13323333+/bd++3aVuwnjGbgLIaClVqpRz35Ee+dlnnzkz+rfffnMGNY7BfIOC+3i9ZcuW9sQTT7jjkRYKIwmtf//+zpSCKTJ//nw76qijnHGCDBq4/kuWLHHHY2eA8ePH26233uqMK5wDheywUwGMJhhSMLbYFhYr9nzp42JmEeZrFOCDOYY3h06dOtlLL73kvs3AUjOkwGIux7/XrVtnjRs3NtSlk1kUL/lwj2tRq4XhJ9ZyW1fh3l20vYkVz1esxIonwEdKV2LFE+AjpatoWMks8jeL+JHIO5EoYh37DPbPf/7T1VO644477KyzznJfqOPzUmy5XPqrpswibK+GrdbQ8GHqsssuc0vRateu7b79x4cQ1BrKiSazKHPKmkh5BYpV7rCKGT/I9kFWC5a1Yg5Bpk9WZhGWq8LggbkR253xP//5jzu2evXqVr58ebd9JbJlsCMY6qDBREJDRhKyj0qXLm0//vijM5rQB2KRjVSuXDk3QcIgQm0f/OA6UdMH54Qbj3mPaXlJV9g8IH2qK8yjYsWKuVvBv5F2ijcIvInkdFqsDytlFimziHn+EOOjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZtGbNGqtYsaJL+EE9JTR89nrnnXcMq7uwC31mjTKL8GEMa/E6d+5sMI5iHzbQKZY44Nv8zHYv46XNRcosklnEKSXrKJ+JNIzzJXIfYbJatGiRW/r15ptvpmYLYZJCgbVnn33WFWRGJgxMoZNPPjk1swi/i209GTOLkAKKOBg7WGKFJWSxLeOvv/56lwmJ3QhiZhEKO8MgwtKyXr162ffff+8yjmAEYRkW1hajZg/mORjhsYZlbTCamBYmK+Z8iRzjw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dCWzKH+YRQsXLnSrwM4//3y3mgJfGGOzG+yOhiyjzGoZQXWUWYQPW7///nvqLmVYToIlDqiJgTogOdlkFsksCkNvPhNpGOdL5D7CYgUjqEaNGs5wRiF7LClDzaF58+bZW2+95YyaQYMGGWqkPf74465mUGwZGjKHYPSgZWYWvfHGGy5TCLuA9ezZ0xncmASxthjLzYLMImQUYdkZzCIcP3z4cJd1gwLRbAuLFXu+9HHIqgLjmGkWbz85cZwPK5lFMotYTfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWQT1YFYbSG2nbY489ZjfccEOW4qLMIjhQMGnSt9g3+7x8sx8ps0hmUfZVpKUKPgx93nSC+h05cqQziWJF8mHsDB061BYsWOBqBeH3qCW0ePFit8Xjp59+6jKHGLMIS8xQlBlbxSNbqH79+i6zCBlEWI8bM4tQ2wiZR/g9TBVkDSGzaPTo0W6ewzK12PXBxEJdJLaFyYo9Z9q4WM0i3Htebz6sZBbJLGL17KMrts9kjRMrfmTFSqx4AnykdCVWPAE+0kdXMovyj1kEBf3yyy+uXAeWnaH8BlZVBDXKLEKxWXzjjg9e+C/WvaFeCHbVQc2LnGwyi2QWhaE3n4k0jPMlch9hs0JmIpajYelq2rRH/B5zC3Y+y868guLOMIaQFRRPw/aSuD4sv/XtI2xWvtcfM4uwJA9GHLK5YJ4ha2rs2LEu7RRskHqKmky4P7BG7agRI0a4ZX2IgbkW9S4OPqxkFsksYp8FH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCIsNXv99dcPEhFWiOGLc3zhjpUVGX3+CjSLYoVPn3nmGbf0DEvSsJMRPnDg2/+cqlUUuzuZRTKL+OlSrMQqDAJ8Hz5v0HyvfGTMLProo4/ccr21a9e6ZXQnnHCC2+azTZs29tVXX7mC3z/99JMz66ZOnep2iXvuuefcUsAZM2a4XenwjUOUzYeVzCKZRawWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BH+uhKZlH+MIuwWQ/qv6Zv8HNQVgh//+PL4ow2uwk0i9Apan8gqwjLN/BtNYq/Qoj4Br9KlSq8ekOIlFkkUH+44QAAIABJREFUAyQEGWnHHA+IPm86Ht0mZWhus0prFmHyx/VgEwIUtUMR8ObNm7uMUGQUoQYUdqSbPHmyW4b38ssvW9++fV0hcSzDw5K+KJsPK5lFMotYLfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWIbMIqw7SN5hD1apVsz///NPOOOOMDHdFo8wiVNBGwVl8U33bbbfZ9OnTnWmE/5/TTWaRzKIwNOczkYZxvkTuQ6z40cttVjGzCEY+MkHxLQG+SejUqZO99NJL7hsDLDVr2LChM4nw73Xr1lnjxo1t9uzZMov4oY40skWtFoafWMttXUV6syF3LlY8ULESK54AHyldiRVPgI+UrqJhJbMo/5hF2Ik6s4YaRiiAnVGjzKLYgTt37nRLF2LbTfOyDS9SZpHMojDUpDcdnqJYJSYrzNfp00lhHhUrVszdEP6NtcnIMootN+bvNPuRPrpSZpEyi1jF+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZltgwtrapQO9bbLIoVO0LR2f79+xt2MlqyZInrB1uvXXLJJbxyQ4qUWSSzKAwp+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJLSrqA8KbESKx8CfKzmK7HiCfCRPrqSWZQ/zCIsQ0NJocwaMouaNWvmbxahngWKn6JK9m+//eY6uPjii23ixImuwPXKlSt55YYUKbNIZlEYUvKZSMM4XyL3kdussMVjjRo13DyU11tus8rrfNJenw8rmUUyi1ht++iK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YxZFshsaXKYbbrjBHn30UStXrpyre/Hss8/a0KFDXe2irVu3GrZcy8kms0hmURh685lIwzhfIveR26xidXjq16+f5zHmNqs8DyjNBfqwklkks4jVto+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySzKH2ZRZLuhwSy655577I477rBjjjnG2rVrZzBrRo0aZddcc43bihkFUnOyySySWRSG3nwm0jDOl8h95DarmFmEKv4orL9hwwZ77733rGPHjjZ27FhXeweZjhdeeKGNGTPG1eBBLZ5u3brZiBEj3ByFmA4dOljVqlUjHYrcZhXpzYXcuQ8rmUUyi1j5+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZFthsazKLOnTu7nyuvvNL+/ve/W48ePdwHtaefflpmEf/c5kikz+SQIxeUh08iVvzg5DartNvBYwfGtWvX2qRJk+yEE05wc1CbNm3sq6++snr16rkC/IUKFXLLZzFXPffcczZw4ECbMWOGbd682Vq3bs3feByRuc0qjkvOtUN8WMksklnECtVHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrmQW5Q+zKCP1YHf7F154wX3RnlXLcjc0mEVZNWUW7aeD5XjIZki/8xD/WIcT6TM5hHPGxO1FrPixy21Wac2i3r17G67n888/t1q1alnx4sWtefPm9s0337hn8OuvvzbUWsO28FdddZW9/PLLeXY7+LvuustlbqoFE9hn+yyzXRqCj068iK43drUxI/735p3bz2AiERQrfrTESqx4AnykdCVWPAE+UrqKhpXMovxjFmFFxocffpgqpE2bNrl/lylTxn0euemmmzIUWZZmEQohZfUHOnZDwwe0nGw5sQwNdZl69uyZelu1a9e2Sy+91G699daDlt2tX7/eypcvbzfeeKPbLS43myZSnr5YJQ6rmFm0bNky+/XXX92SspSUFFdD7aWXXnImLZaaNWzY0JlE+Pe6deuscePGNnv27DxrFnXv093GPjqWHwhF5hsCgwcPtiFDhqTer+YrfujFSqx4AnykdCVWPAE+UroSK54AH+mjK5lF+cMswqZklStXttNPP92qVKnixLRo0SL3ZTtMJKwiQzmPjFqmZtGaNWvszjvvdMvP8CEsoyyjhQsXuuLXMFLwwSwnWk6YRbGaTIB25JFHOhdu3rx5hkyAQYMGHXCb27Zts7vvvtst0bvgggtyAkGm5/CZHHL1QvPAycWKH4S8xGrnzp0HZfDBPCpWrJi7Ifwb9YpgYu/atSvHs/18WE39Y6p9sfALfiASPLJ5zebWvFZzGSDkOGI5Zaz56IrsPmnDxIofWrESK54AHyldiRVPgI+UrqJhJbMof5hF+BL9lltusfvvv9/VeUXDF+qo/fr4449nKa5MzSIsrUJB608++cSQWQPjBI4UCiT98ssv9uOPP9qcOXPcdtbY2rp69eq8irMRmZNmEbIUzj//fLfsBabRRRdd5ArsogYK/v3KK6/Ya6+9ZldffbVz5W6++Wb78ssvrU+fPvbdd985NjDcLr/8csco7XHoG32G2TSR8jTFSqx4Anykj65Uh0d1eFhl+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK6iYSWzKLnNovnz5ztTCF5ErGGlBlZtvPjii4bEH2QdZdWyXIaGA99++21XzBoFZNOubWvZsqW1bdvWunbtakWKFOEVnM3InDSLhg8f7tK13nrrLXvggQecI4csKxhDaMimQlGounXrumVojzzySOpuS7169bI333zTGWpLlixx/NIehwK9sTSwbCJJPVwTKU9SrBKHFYzWGjVqOPM1rzcfXUVlFnU+obPVPqS23Tvt3kxxVS9b3bqc2MX27NtjD8540MW1O7ad1atYz2WR/r7ud3vjpzdCxd2iVgvDT6z5sAr1QhKwM7HiB02sxIonwEdKV2LFE+AjpSux4gnwkT66klmU3GYRSgr94x//MBSzhi6Q6IJEoFhDfdfRo0dnKa5Asyh29N69e+23335zHySOOuoot9QjN1pOmkVp7++UU05xOzChgC5Mn6FDh9qAAQMsbc2i9u3bW4sWLeyZZ55xNY+QZdS0aVN77LHHXFZW2uOiYOczOURx/kTqU6z40cptVrGaRfXr1+cvOpcifViFbRY1qNLAGlVrZJVKV3J3P+Tz/9W8SY+j39/7WZliZVA22u76/C47sdKJdlHdi1yNOvyvYIGC9vEfH9tXi78KjaTMovhR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWZTcZtGKFSsOSk655pprnCdx2mmnUeU6sjSLsOTsvffes3Hjxtnxxx/vlltVrVrV3n33XVenBzsSlSxZkldvCJE5aRY9/PDDzvxBVkOFChXc1U+YMMEB/uCDD9w23GnNolatWrm6RdiBCeleP/zwgzVo0MBVGD/mmGMOOC4EFAd1oYmUpypWicMqZhZNmzbNLQPdsGGDm5fwHGKtLeoUYf0tlsoi0w/1imBmd+vWzUaMGOEKXiOmQ4cOqZl//N37RfroKmyzCJlBx1Y41ooVLmYFrECmZtHpNU+3M48403bt2WWFCxV2ZlH3k7pbzZSaNv7n8bZ111br9rdutmLzCntm1jN+ALKIllkUP0ofXcV/luQ4Uqz4cRQrseIJ8JHSlVjxBPhI6SoaVjKLktssgmrgVaBsDmoyY8UT2jnnnON8jLPOOsvq1auXpbiyNItgelxxxRWpHaB20cyZM51Z1L17d/vrr78O2h2Ml3J8kTlpFsVqFqW90phZ9NFHH9nZZ599gFmEbKNKlSq5zCsUwsYHVyzj+/nnn90PPtzGjovv7rM+ShMpT1WsEodVzCzCs9OvXz9bu3aty/I74YQT3BzUpk0bt8wTk91PP/1kKAw8depU69Gjhz333HOuVtiMGTNs8+bNbmKMsvnoKmyzKHZfNze52UoXLZ2hWVS8cHHrf1p/+2PdHy4DqWyxss4suqnRTXZIiUNs+FfDbfvu7XZHszts887N7v+H1WQWxU/SR1fxnyU5jhQrfhzFSqx4AnykdCVWPAE+UrqKhpXMouQ3i9IqBzWM4GWgXhGeKXzZnq2aReeee65h+RkMj/fff9+wzOq8885z/8Uat2Q1i5599lm3jOydd95xdZkYs6h3794uiwGZDjDSYq1///42bNiw1IwkmUX8ZBdlpN50eLq5zSqtWYTnDNeDrMZatWpZ8eLFrXnz5m7rR2QUYZnomWeeaTB6MUfB8O7bt699++23tmrVqoOeZ54CF+nDKjfMoi71u1itQ2rZsC+H2XWnXJdqFvX9e1/3b9Q52r13tw1pMcS27dpmD365v55RGE1mUfwUfXQV/1mS40ix4sdRrMSKJ8BHSldixRPgI6WraFjJLMpfZlFMRSg7gcLXqF902223ZSmuLDOLUG9n+fLl7lv6mjVr2vPPP++WoiHDCA9tsppF/OOYceT27dtddXEs2StTpkx2u6OP10RKo3L6hY7VggnkNquYWYTq/b/++qtbUpaSkmKdOnWyl156ya23xVIzFJ+HSYR/Y4tIFKDHRCiz6H9jfGvTWw3ZRahLhKVqaDCFNu7Y6DKNRs0aZVt3b7U+jfvY+u3rbeQ3I4MFQkbILCJBZRCW289g/Fee80eKFc9crMSKJ8BHSldixRPgI6WraFjlO7OoxRAb3HxwKsz0ukq/gomnnryRWZpF+CCG3c7Q9uzZ4+qAYHt41PJBk1mUt4ShiZQfD7FKTFY7d+48qBgbzKNixYq5G8K/MU8hy2jXrl1U4TaeRHCkj65yKrOoYdWG1qxmM5u+cLrboAAZRGinVjvVihYqah8t+MgVu25SvYmt3rraZRZVKV3Ffljxg739y9vBN01GyCwiQcksih+Umb4I8KDnM195dJuUoWLFD6tYiRVPgI+UrqJhle/MouZDbHALmUW8mswCd0PD8o7PPvvMbr31VvdBAw3/H9lGqAVSokQJn/NlOzYnahZl+yJzqQNNpDx4sRIrngAf6aOrnDKLWtdpbY0Pb2wzl8y0DxZ8kHozff7eJ3UZGkyjGxrdYGWK7s+ERJHrJ759wv03rCazKH6SPrqK/yzJcaRY8eMoVmLFE+AjpSux4gnwkdJVNKxkFuXPZWi8mgizCJ1hGQi+sU/fsEMYlqqhbkhONZlFmZPWRMqrUKzEiifAR/roKiqziL/agyMrlqrolqet2rIqO91keKzMoviR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWSSzKEhZgZlF6AA7fKE4bEYNW8N/+eWXOWYYySySWRQkauZ1vekwlPbHiFU0rPKiWcTfqX+kzCJ/ZrEj9Azy7MRKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFl112mU2bNs3uueceVwvkgQcecEVkzzrrLPc7VNJu1apV0LlCeV1mkcyiMITkM5GGcb5E7kOs+NHzYSWzSEXmWWX56IrtM1njxIofWbESK54AHyldiRVPgI+UrqJhJbNIZlGQsgLNot27d1uRIkWsT58+9sgjj7j+hg4d6rZZ27Jli1WuXNltGY9tqnOiySySWRSGzvSmw1P0YYUsw/zcsGMbdkFkGgpI/7D8ByY0KWJOqnKS9bq4V+q9+OgqKQBk4ybEiocnVmLFE+AjpSux4gnwkdKVWPEE+EgfXcksklkUpKxAswgdIIto06ZN9swzz7hdh2688UZX2Prll1+2c845xy1Da9KkSdC5QnldZpHMojCE5DORhnG+RO7Dh1Xf2/raiKEjEvl2de0REejWu5uNGTFGZlEcfH2ewTi6T6pDxIofTrESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizaMKECS5zCIYRWpkyZez555+3jRs32qhRo9wStZwqci2zSGZRkKiZ1/Wmw1DaH+PDqnuf7vbplE/5zhM8MqVYiqUUT0m9i+3bt+fYXJho6LBsefDgzLcrTbT7ycnr9XkGc/K68uK5xIofFbESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizCJ3s2bPHZs2aZdu2bbPTTjvNLU1D0ety5cpZ0aJFg84T2usyi2QWhSEmvenwFH1YqQ6P6vCwyvLRFdtnssaJFT+yYiVWPAE+UroSK54AHyldiRVPgI/00ZXMIplFQcqizCJkFGHJ2auvvuqyizp16mRdu3ala3MEXYTP6zKLZBb56CWzWJ+JNIzzJXIfPqxkFsksYrXuoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFKGaNotZYfpaSkmJLliyx4447zn788Ue3O1pONplFMovC0JvPRBrG+RK5Dx9WMotkFrFa99EV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBygo0i7DjWenSpa1Hjx6uwHXBggXt0UcfdbujzZ8/34499tigc4T6uswimUVhCMpnIg3jfInchw8rmUUyi1it++iK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK7EiifAR/roSmaRzKIgZQWaRVu3brVSpUrZkCFDUouTouB1x44dXQ2jk08+Oegcob4us0hmURiC8plIwzhfIvfhw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZgWYROmjatKl9+eWX1qZNGytZsqRNnDjRTjnlFJs5c6YVKFAg6Byhvi6zSGZRGILymUjDOF8i9+HDSmaRzCJW6z66YvtM1jix4kdWrMSKJ8BHSldixRPgI6UrseIJ8JE+usp3ZlGLITa4eeY786b3GXjqyRtJmUULFy60+++/31577TVX4BpZRbfffrvVr18/x8nILJJZFIbofCbSMM6XyH34sJJZJLOI1bqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFimzKEhZlFkU62Tnzp22e/dul12UW01mkcyiMLTnM5GGcb5E7sOHlcwimUWs1n10xfaZrHFixY+sWIkVT4CPlK7EiifAR0pXYsUT4CN9dCWzSGZRkLKyNIuqV69uMIgya3/88Ycrfp2TTWaRzKIw9OYzkYZxvkTuw4eVzCKZRazWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BHSldixRPgI310le/MouZDbHALLUPj1WSWpVnUtm1bl0mUWZs0aVKOZxnJLJJZ5CPwzGJ9JtIwzpfIffiwklkks4jVuo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SOlKrHgCfKSPrmQWKbMoSFley9CCOsuJ12UWySwKQ2c+E2kY50vkPnxYySySWcRq3UdXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pHQlVjwBPtJHVzKLZBYFKUtmURChBHrdZ3JIoNuK5FLFisfqw0pmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZMouCCCXQ6z6TQwLdViSXKlY8Vh9WMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rH6sJJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFsksClJWnjGLtmzZYiVKlLCCBQtmec2qWZQ5Hp/JIUgYyf66WPEj7MNKZpHMIlZZPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjpSux4gnwkT66klnkbxbt3bvXtm3bZqVKleIHxcziPc7rJBEE57pZtGbNGuvcubMVLlzYFi5caP3797du3bpleqsyi2QWhfEc+EykYZwvkfvwYSWzSGYRq3UfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JHSlVjxBPhIH13JLPIzi8aMGWOPPvqoVatWze0YP27cOKtYsWLq4EybNs169OhhJ554ovtd+/btrVOnThZ0HD+6OR+Z62bR0KFDbdOmTXbffffZihUrrEqVKoYso5IlS2ZIQ2aRzKIwHhOfiTSM8yVyHz6sZBbJLGK17qMrts9kjRMrfmTFSqx4AnykdCVWPAE+UroSK54AH+mjK5lFvFkEc6hIkSK2YcMGS0lJsRtvvNH5Frfddlvq4IwePdp27drlDCMkwqAxx/Gjm/OR/8/emYDbNd3v/xtDRIIIYh7SGEoqVUWNNc90JKiZmqooNeRHa64ai9as1VBDqzHU2BbtP2qqMYgQLUWNMSYSkYjI//ms2x03N+dmv3vfm9xz9nnX89wn3Pueffb+rO9ee613fdfaXW4W7bfffrH55psn123q1KlpGdqLL74Y/fv3r0lj0UUXjYUWWmja36gQKs4lUnCahRYJZqVxQlWE1YRFJwQ/zVJ6vt0z+MlKEVbNwqi96zQrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRczRpW7w18L95d9V394A2uXOSZRWLhEQu322/fZ599YvDgwTWv8qWXXkqeBT4F5YILLognn3wyrrjiimn6Y445Ji699NKUCDNo0KAgyYWS97l6xtrlZtFOO+0U/Oy4446J02KLLRYPP/xw9OvXL+6///544IEHpuPX2r1rC3bjiFiunml38rm9EhHDOvmYPpwJdIhAv4ipy03t0CEa6cPdXukW8XIjnbHP1QRMwARMwARMwARMwAQiol8TUphJv/3000+fAcj6668fG2ywQTz99NPJAHr++eeT5uqrr4577703yCbKykUXXRRLLrlkbLHFFoFxNOecc6Yso7zP1XMtdLlZdMopp8QCCywQhx9+eEyZMiX69OmT0rva2+h6psvQhg2L4KdZysYbR/Dzv1Ik7bBZELV3nWalR0ARVl6G5mVoamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks2rrM7Q+Eptas00OG1V369YtzjvvvPTnI444YpoMDS/sojz22GOx8847xzPPPJP7Of2MZ7+yy82iW2+9NS688MK46667YujQoXHuuefGQw891C4Jm0Wt0NgsKn3HuCHV0RVhZbPIZpEaWUXiSj1mVXVmpdesWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsZmYWcVQ2rr744otj4MCBsdVWW8XJJ5+cso5GjhwZa621VvrvQw89NJlEZ511Vrz88stJX+tzW265pX6iXajscrMIB27bbbeNZ599Nr2G7u677461117bZpESFDaLFEo1NW5IdXRFWNksslmkRlaRuFKPWVWdWek1a1ZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8qzyziCSX3XffPX3BdtttF9ddd12MGDEimUQffvhh3HPPPcG+R2QgrbjiiskwGjBgQNT6HNlJjVC63CzKIL366qux+OKL527Q7MyiVmFls6j0PeaGVEdXhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8ozizjyhAkTYuzYselNaLUK2+q8//770bdv3+n+nPc5/axnr7JuzCL1sm0W2SxSY2VmOjekOsUirGwW2SxSI6tIXKnHrKrOrPSaNSuz0gnoSseVWekEdKXjyqx0ArrScVWelWIW6UevhtJmUSPXozOLSteeG1IdXRFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZtGM7GwW6fFUf0qbRaXrxA2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVkz1WyAAAgAElEQVRnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirDqTLNo14G7Rv8+/eNn//hZOtm555w79l1931i056Lx6dRP496X740HX31whgsZNGBQrLTwSjH5s8nx7DvPxp3/vjM+m/pZrL302rHu0utGr7l7xasfvho3P3dzjPtknA6ihnLjfhsHP1kpwqpDX1yBD5uVXolmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCvbxpXNIptFevQ0gtJmUela8kNHR1eEVWeYRV9d4qux9lJrx2LzLZZO8qRhJ6V/v7fq9+KLi3wxJk+ZnIwjyrkPnRsfTvpw2sWss/Q6sfUKWydziJ+55pgrmUUjRo+IYzY4JqZOnRrjJo2L3j16xzNvPxM3PHuDDsJmUYdYtf1wkbjq1C9uwIOZlV5pZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ2iwqXUtuSHV0RVh1hln07ZW/HSsvsnLMM9c80S26TTOLjv36sdF9zu5x+n2nx1bLbxVrLLlG3P/f++Oe/9wz7WL2+spe8YUFvxAXP3pxTJk6JQ792qHxzoR3YthLw2LQlwbFyLdHxg3P3RAnbHRCjJ80Pn7x0C90EDaLOsTKZlF5fEXuwfLfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOrMon1W3qUy1N1Bp6/hNV8nDhkXw0yzFZlHpmvZDR0dXhFVnmEXZmR213lExX/f5pplFJ250Ylpa9vP7fh5rLrlmbL/S9vHcu8/F9c9cP+1ies7dM+aZc574YOIHsc0K26SlZ8+/93wMHTk0jlzvyOgxV4/4ZMonSfO3l/4W971ynw7CZlGHWNksKo+vyD1Y/luq8Umz0uvRrMxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhc2i0nXjh46OrgirWWoWbXxiTPx0Ypx5/5kxcNGBscOAHeKF91+Ia56+ZoaL2elLO8WAvgPi088+jcsevyxlJO23+n5J9/GnHwem0itjX4khw4foIGwWdYiVzaLy+Ircg+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLCpdN37o6OiKsJqVZtHxGx4f0S3i1HtPjY36bRSb9Nskhr85PG55/pZpF9OtW7c4ZK1DYuGeC8eYiWNiyJNDYuzEsbHDKjvEwMUGRnZ+x339uLTv0cnDTtZB2CzqECubReXxFbkHy39LNT5pVno9mpVZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEb1q7BZVLpu/NDR0RVhNSvNoh+s9YNYrNdiaelZvwX7xbxzzRtXP3119OnRJzZcbsO0pKzPvH1ivWXWiymfTYlR746KqTE13vv4vfjok49i2xW3jXcnvBtPvvVkbNZ/s2lZSjqJGZV+G1p5ekXiqvy3VOOTZqXXo1mZlU5AVzquzEonoCsdV2alE9CVjqvyrLzB9YzsbBbp8VR/SptFpevEDamOrgirWWkWLTn/kvH91b8fc84xZzr5/479b/x2+G/T2894C9rDrz0c/RfqH3179p3u4iZMnhBnP3h2HLTmQbFor0XTptmTPp0Ut//79vSWtI4Um0Xl6RWJq/LfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUNosKl1Lbkh1dEVYdaZZVOsMWWa29PxLx9hJY+PDSR/qF/E/JRtc9+7RO0aPH134s7U+YLOoPMYicVX+W6rxSbPS69GszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4Iq1ltFulnPXuUNovKcy4SV+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoLRZVLqW3JDq6Iqwsln0n+jfv78Ot4mVReKqiTGlSzcrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRclWdls8hmkR49jaC0WVS6ltyQ6uiKsLJZZLNIjawicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk42iz7++OOYe+65Y/LkycHeMD169GgECqXOsWhDOnXq1Bg3blwssMACud83fvz46NWrV8Cze/fuMddcc+V+pp4FRVjZLLJZpMZykbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhpBGUnmUVTpkyJbbbZJu6+++7485//HD/84Q9j+eWXj7vuukumMGLEiLj11ltjzz33jGWWWUb+XFcJZ9aQjh07Ni688MLYeOONY/3114/HHnssNt1002QWYaS1Z/48//zz8d3vfjeeffbZ9DNgwIA4/fTT4//+7//ky7zjjjviqaeeiuOOO07+zKwWFnno2CyyWaTGY5G4Uo9ZVZ1Z6TVrVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5lFmCFrrbVW7LHHHsFNcv3118eCCy4Ye++9t0zh97//fey6667xwAMPxHrrrSd/rquEM2tI//vf/8Zyyy03zeg55ZRT4sQTT4wLLrggGWlkXdUq5513Xvz4xz+O0047LQ466KD45S9/mUymjTbaSL7MAw88MC6//PL47LPP2v0e+WCdJCzy0LFZZLNIDbsicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk4wi15//fXYcsstp2XCXHbZZXHRRRfFIossksyRHXfcMRZeeOG0pKp3797x05/+NDBPbrjhhmSo7L///rHZZpulzKR//etf8dWvfjWZTSussEJNghhSGCGUf/zjH+m7+Z6ePXvGJZdckjJ63n333WSwnH/++bHkkkumc5h33nlj0qRJ8dBDD8V+++0Xc845Z3CuK620Ulx99dVJx/E492HDhqWsoOw6ap3IzBpSzoksq6WXXjp23333+O1vfxtvv/12fP3rX4+//OUv6VzbFjKyMNfQkY00ZMiQ2GeffeL73/9+yrQiU+g73/lOXHPNNSkD6/3334+zzz47HQ9z7Sc/+Un63QEHHJCOsd1228Xtt99ekyGZT1tssUWsvfbaqd5ee+219F1kMFFPgwcPjptvvjmd51ZbbZU4wnT77bdPnyFzafTo0XH88cfHX//615RB9q1vfSsuvvjiZFBh/F166aXxyiuvpOvfd999Y8UVV5TuCJtFNoukQPGmzSqmpHPHT8dlVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5hFH374YZx00klBVswhhxwSRx11VMqGWWqppZL58sUvfjGZQPPPP3/8/Oc/j1dffTXOOuusZCjcdNNNMXTo0HjyySeT4XPFFVcko+KYY46JhRZaqCbB1VZbLZ5++un4xje+kf5+2223pWNhsCy77LLJ3OBvnAs/HJclcTR8GFOYMpgjLPFaddVV449//GMySTBbOEeOs/XWWycjhGNhxhQ1izBXjjjiiGTuYMLw/3//+9+TgYL5U2sZ2r///e/40Y9+lM6Pc+YcMFhOPvnkWGWVVWKnnXZKp7HOOuvEjTfeGJtsskn6f4w3uE6cODEZcD/4wQ9Sdtbvfve7lOlVq7z33nvJzKMcfPDByRzDNMLcefDBB+N73/teHH744THHHHPEueeem+qI78W0ghHHxRiiYBK98cYb8eijj8add96ZDCaMNowvDDoMPOqTxlMpNotsFilxgsadGZWUWemkzMqsihDQtW6vzEonoCsdV2alE9CVjqvyrGwWzciu21R27m2g0rYSp7shhg2L4KdZSieYRaDCUCEz6E9/+lMyDzBnWptFb775ZjJo2NwZQ+RXv/pVMmvIKMJ4WGONNVI2kbIMDbOIDBpMp2y515FHHhmnnnpqynB54okn4oUXXojrrrsuGT/3339/Op/55psvZcRgfqAnwwgThuVyZL5gzmDI8IPBRWYP54wZhkHSthRZhsbSMsw09iziPNorZA+xR9E777yTsqDITGptFp1xxhnJTKNkJhzZSnDEnCFTS1mGlplFmGcsWcuWAJKxtMEGG8Qf/vCHoM4wke67775kBmYZTkcffXQy+8gyYn8k9mAii2rbbbdNBtUjjzySsrs4T7K3MLK+/OUvJ/ZKsVlks0iJE5tFKqUWnTt+Oi+zMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPIyhnk1nE8jNMBApLoMg2YYkUGTCUf/7zn2kwo5pF88wzTzoehgbLxzB/MHlYIsUyNgyoE044IZkUmVm06KKLJoOIpWVkHGEqkbmDEYQRgqGEWcM59O/ff1rtYXrUMni6wiwi6whTi4JRxjI6somyzK233norZTTl7VmUmUVkVGFOcYxBgwal5W0vv/xyHHbYYbHDDjskfuy11NosYhkhxhxL+8hwwivGpCMLi+V8GEaYR3DjzXgUlqaRAaUUm0U2i5Q4sQGiUrJZVIyUjbUivDyg0GmZlVnpBHSl48qsdAK60nFVnpViFrGdCtt+8Obr9goJBm2TFT755JP49NNPZ9jO5KOPPkqrOVgRUo+lyzOLyMDo27fvtEE0GRcMZtsrzixqRWY2mUUsKcOoobCfD8udMBYefvjhZExgbmDIYNSQlYJ506NHj5pVSGZRLbNo5ZVXTsvMOC6fxfxonVmUZxZhNmF4cA5k55xzzjlpuRhL5WoVxSwi24fjsGF1Z2QWsT8Q/MaMGZOW3PHfZB6RvUMmFUvJWPIGTww4zLNaZWZmEVlFHGvkyJHJ+OF+wTBinyeWoeWZRbzR7Wc/+1nKPuJe5L833HDDxEEpNotsFilxYrNIpWSzqBgpm0VFeHlAodMyK7PSCehKx5VZ6QR0peOqPKs8s4iVK4zVWIGD8XPttdcmHyMrjz/+eFrxwmoRxsts0bLmmmumLVPY0oSVOYwD+RyGE+NWxqtoWf1R5OVS+lV2TNnlZtGoUaNSFgkD3PZeSd76Em0Wdb5ZlGWWtLcMrbVZRKDvtddeaYkXhY2Y2TeIZWW8UQ0nlT2MMIVqldZmEZk0SyyxRMosIpOFrCKOy6bV3IDjx4+Pl156KQYOHBiZWcReO7yRjMwidJhUmFO/+c1vkjHCMjU2iMbN5XrYf6moWcR3c56YN5hfL774YjKLOJ+Zucjsm4TxwzI03GMaktbL0DKziPPhTWlos3Nl7yGWqWH2sOcQpb0VoplZdOyxx6ZjkCFEphCZRZzft7/97VQPmGd8J3svsY8Sy+Iyswhzjb2M2mYWsQyR+vj1r3+dzoHsJLK5WN6mFJtFNouUOEHjzoxKyqx0UmZlVkUI6Fq3V2alE9CVjiuz0gnoSsdVeVYzM4sYH7LqArOHVTckTDCOZTyWFRIB2P+XfxmfsYqElw6xV222SocxFfvBMs5kvEZSQjYmJsuo1ouU9CvqfGWXm0UsZ8JVAxZmA5WUbf5b63JtFrWi0kmZRUXDasqUKWlfITJVWgc0+99gqPCmrcxMan1sDB/Mh/YKxgVvZ8Nkae/19HnnyrmxxItzm5n5mNeQkmLIfkdcX/fu3ad9LdlUxGrbQmYUZkyRwvVyrnyO/YGyMmHChLSXEEZqme8iW4+GbLHFFityOtNpOQf2lqIuMOxaL+2b2UFtFtksUoMu7x5Uj9MMOrPSa9mszEonoCsdV2alE9CVjiuz0gnoSsdVeVYzM4sYD22++eYpiYDCRDwJEmQPZYXxJy8b4t/hw4enlVOMiynPPPNM2lOXN2MzxiOTiOPtsssuafKeZWgcWx1z6VfZMeVsM4t4Axb7qbQu/fr1S1kYZImwDw2bJLMHCwDbMwtsFrUi2EVmUV7IsRkyddi2cOPwmvh6KGUbUrKwPvjggxkugU2+V1hhhU69tNn5XTM78SKsbBbZLFJvgiJxpR6zqjqz0mvWrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWMzOL8DLYJoUtOyhsnXLvvfem1S1Z4WVQ/J2MI+pho402SqtvKHyefX9ZgsbqF96yzUoPVodQmOQnKQF/pJ7KbDOLfvvb36YlMa0Lb+Aiq4isCn7ICiEbBKhkW7C5cbaJcuvPZW+U4nfT3RB+G1rduZH1FOytz8UNqV4zRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCvMoraFPXRZOsYeQ6w4YfUJSS1sUULh5URZYZ9Xfk8SwWOPPZZeEIRBxH+z1Qfl+OOPj3fffTcZSphLhx9+ePJA+vTpk1aG1NtG17PNLGqv2th8l+wi9qIhbYs3YWXpXbU+48yiVlTqNLNIv0W7TumGVGdfhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8rb4Jo9bfEs2E+XvWHZmxYjiRcLsZ0O+74ussgiaU8i9i5ib90f//jHwXYlLEtbfPHFk9dBxhH/zd64rCRhH1n23c1eKKVfwaxXdrlZxOvTWa9HRhE/QN9+++3bvXKbRTaLOuO2cEOqUyzCymaRzSI1sorElXrMqurMSq9ZszIrnYCudFyZlU5AVzquzEonoCsdV+VZ5ZlFvExo9913T1/AS554QdeIESOSYcRetyS8ZFuuLLjggsn84UVRZBjxZmk2xsZwyt7+ve2226aNrslauvvuu9t9E7Z+RZ2v7HKzKLskdgHHYcsrNotsFuXFiPJ3N6QKpRZNEVY2i2wWqZFVJK7UY1ZVZ1Z6zZqVWekEdKXjyqx0ArrScWVWOgFd6bgqzyrPLOLIvARo7NixaRlZrcJb09544420yXXrPZgxhCZOnJiWm7UubL+DB8Kb1uqx1I1ZpMKxWWSzSI2VmenckOoUi7CyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVaKWaQfvRpKm0WNXI/es6h07bkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwWzcjOZpEeT/WnrAOz6LXXXoubbropvc3uk08+STvC33PPPfHCCy+kNL3ddtstSMe75ZZb0t8HDBgQW2yxRVq3yW7v7E/FW/Jm9nleJdjZpSsa0mZgZbPIZpF6r3bFPaieW73pzEqvEbMyK52ArnRcmZVOQFc6rsxKJ6ArHVflWdksslmkR08jKOvALLryyitjk002iaWXXjpOP/309Po/dnZnh3g2+cIg4mfTTTeNZZddNs4///w48MADk1l03HHHpQ2+8j6/6667dnptdEVD2gysbBbZLFJv1q64B9VzqzedWek1YlZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8K5tFNov06GkEZR2YRZdcckkMGjQo2PH9rLPOiv333z+GDBkSW2+9dYwbNy5lDD3xxBNJ07dv3/RawIMPPjgZSrxSUPn8Ouus0+m10RUNqXKtjc7KZpHNIvVm7Yp7UD23etOZlV4jZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ1oFZNGrUqPSqP3Z35+f444+Pa6+9Nj766KMYM2ZM7LDDDimz6K677oru3bunDCSWnv3iF79IZpHy+eWXX77Ta6MrGlLlWhudlc0im0XqzdoV96B6bvWmMyu9RszKrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoKwDs+jRRx8N9hSaOnVq2ruIPYso48ePT+YQP5TPPvssJk+eHPPMM890ZNXPd3Z1dEVDql5rI7OyWWSzSL1Xu+IeVM+t3nRmpdeIWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsbBbZLNKjp7Vy7bUjttwyYujQiFGjWv4yaFDESitFTJ4c8eyzEXfeiSMy/fH53LrrRvTqFfHqqxE33xwxblzEQQdF9O79ufattyKuuqr4udWBWfT222/Hbbfdlowg9in6whe+UOg6Ovr5Ql/WStwVDWlHr7Wjn58drGwW2SxS46wr7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXpQLrVUxOabR/TrF9GtW8RNN0U8/XQEe+hsvXWLOcTPXHO1mEWPPPL58eedN+KYYyKmTm0xiDCHnnkm4oYbIk44oeX3kya16N98M+Lqq4udG+o6MIuKn3R9fMINqV4PRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhBudpqEdtsE8FSqjnmiLjxxogRIyL22iuCDJqLL46YMiXi0EMj3nkn4qKLPj/+l77Ukn00cuTnBtH48REXXBBx3HERDz8ccd99rNcqdk6t1TaLSrNzQ6qjK8LKZpHNIjWyisSVesyq6sxKr1mzMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPa+XOO0esssrnZlHPnhHsvfPBBy1mEsvNnn8+4ve///xTZBsdeWREjx4Rn3zSov/b3yJeeSVi330/1338ccvytH/9q/i51YFZ9Nprr6W9injrGZszs2fRPffcEy+88EJMmDAhdtttt/j000/jlltuSX8fMGBAbLHFFnHOOefEHHPMkTa7/utf/zrTz7MnUmeXrmhIm4GVzSKbReq92hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZtGMBDAidtppxt+//37Etde2/L6tWZSp+dyAARGffhpx2WUt2UVZYQnbfvu1/B+GEAYTRhHZRN/5TsTo0RFjxkR89asR773XknFUtNSBWXTllVfGJptskt5ydvrpp8fhhx8eF154Ydq/6MUXX0wGET+bbrppLLvssnH++efHgQcemMyi4447Lq6++urcz++6665FyeTqu6IhbQZWNotsFuXefP8TdMU9qJ5bvenMSq8RszIrnYCudFyZlU5AVzquzEonoCsdV+VZ2SyakV23qbzGqoFK20qc7oYYNiyCnyJl2WUj9txzxk+MHfu5gdPWLGL/okMOiVh44RbDZ8iQCPStyw47RAwc2HI+/LD0bO65I371q4g+fSJee60l4+gnP2nZ8+jkk4ucdYu2DsyiSy65JAYNGhQLLrhgnHXWWbH//vvHkCFDYuutt45x48aljKEnnngiafr27RvnnntuHHzwwclQOuqoo0L5/DrsEdXJpSsaUuVaG52VzSKbReqt2hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePa2Vbc0i3oy23not+xXxdjT8NrKDnnoqYu+9I15+ucUM2nbbiHffjXjyyYjNNouYODHi73+P2G67lr+j22CDliyjSy4pfm51YBaNGjUq7r777pg4cWL6Of744+Paa6+Njz76KMaMGRM77LBDyiy66667onv37ikDiaVnv/jFL5JZpHx++eWXL84m5xNd0ZAq19rorGwW2SxSb9auuAfVc6s3nVnpNWJWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhprcyWm2UbXP/whxF9+05/rAkTIq65JuKAA1qWo7H59UEHRSy6aMub1Hjz2e23t2yQffDBLb+nYDjxuZdeKn5udWAWPfroo8GeQiSosXcRexZRxo8fn8whfiifffZZTJ48OeZh76ZWRf18cTgz/0RXNKTqtTYyK5tFNovUe7Ur7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXo6S8kG1717t2QPtS7sYYThRIYRhlGZUgdm0dtvvx233XZbMoLYp+gLvCWuQOno5wt81XTSrmhIO3qtHf387GBls8hmkRpnXXEPqudWbzqz0mvErMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWNotsFunR0wjKOjCLGgFTrXN0Q6rXXBFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkFps6h0Lbkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwW2SzSo6cRlDaLSteSG1IdXRFWNotsFqmRVSSu1GNWVZZ2mCgAACAASURBVGdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkHZAbPolltuaYQrnGXnOHr06LQxt0ttAt/61rem/aHIQ8dmkc0i9Z4qElfqMauqMyu9Zs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoOyAWXTo4EPjwrMubISr9DnOZgInHXJInHjBBTaLBO4b99s4+MmKH9ACtP9JzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUHbALNrniH3ioUcfaoSr7JRzXKTnIsFPVj766KPo1auXdux3343gp0nK6uuuGycOGVLKAHFmkTOL1NvEnRmVVIRZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6Mq2cWWzyGaRHj2NoOyAWeRBfYFB/bBhEfw0S3FcyTXtzCIZ1QxCd/x0dmZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bPqNnXq1Kn5svpRtHX8pqtkD+qjf//+UmXZLKozs2jttSO23DJi6NCIUaNmrMPNNotA061bxH//G3HjjRETJkSssUbEFltEzD13xPvvR1xxRcTEiVIMtCuyWSTzs1kko7JZVB6VM4sKsPOAQodlVmalE9CVjiuz0gnoSseVWekEdKXNonxWNovyGdWvwoN6uW46NKiflSbkUktFbL55RL9+LUbQTTdFPP309Ne15JIRBxwQMWVKxKRJET17Rjz+eMTdd0cMHtzyuU8+iejePeLllyOuvFLmUlPouJL5dSiu5G+pptAdP71ezcqsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9R/So8qJfrpkOD+llpFq22WsQ227QYPXPM0ZIxNGLE9Nf1ta+1ZA/dcQebl0T8+McRY8ZEPPJISzbSyJERN98ccdxxESQKnnqqzMVmUQdReYPr0gDd8dPRmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLJLrpm7NouwKdt45YpVVaptFmWbNNSM23bQls+ieeyIWWijiq19t+e/772/JMpp33oiTTpK52CzqICqbRaUBuuOnozMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk102XmkWLLRax004znit7DF17bcvvFbOI+t5gg4i55op44YWWvYlWXTXizjtbsoyOOipivvkiTjkl4rPPZDYzCB1XMrsOxZX8LdUUuuOn16tZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhQf1ct10aFDf0WVoyy4bseeeM57r2LERF1yQbxYNHNiSdfTXv0ZMnhxx9NEty80eeihi/fVb/uVvP/lJi5F08skyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1HfULFLOsm1mEUvM9t67ZcPqt99u2QT7nXda9iei3jGa/vCHiAMPbNnc+l//asky+uCDiF/+UvnG9jWOK5lfh+JK/pZqCt3x0+vVrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8KDerluOjSonx1mEcvUBgz4fM+i7A1oGES//nXEwQdHLLhgy/VOmBBx660Ro0ZF7LZbxIortvyepWdXXx3x0ksyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1M8Os0i5kt69W96ahoHUuvTqFbHwwhGvvdaxvYqyYzqulNpImg7Flfwt1RS646fXq1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FB/Vy3XRoUF8vZpF8tR0UOq5kgB2KK/lbqil0x0+vV7MyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlTaL8lnZLMpnVL8KD+rluunQoN5mUfTv319iPezlYcFPs5QOxVWzQGrnOt3x0wPArMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8JmkVw3HRnUn7zPPvHS8OHydzW8cPHFI/j5Xxk3blzMP//80mW9Nf6t4KdZyuqrrB5Dzhsy7XLdmdFr3qzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPKszzzwzBg8erB+gCZQ2ixq5km0WybXXIbPoBz+Iky69VP4uC5uHwEFHHhSXnHOJzaISVe7OjA7NrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlM4vyWdksymdUvwqbRXLddMQsuuqqq+TvqaLwnXfeib59+1bx0jrlmvbaay+bRSVIuuOnQzMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk101HzCL5Syoq9ANar1izMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TOqX4XNIrlubBbJqGYQ+gGtszMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVThzowOz6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPCtvcD0jO5tFejzVn9JmkVwnNotkVDaLyqOyWVSAnTszOiyzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JXOLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZ1a/CZpFcNzaLZFQ2i8qjsllUgJ07fjosszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymdUvwqbRXLd2CySUdksKo/KZlEBdu746bDMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFfaLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFZdYhaNHz8+evXqFd26dZt2hh999FHMO++8Mcccc8z0rM8888wYPHjwNM10lTxsWAQ/zVLqyCxaddFVY7uVtpuO/HVPXxevfvjqdL/DtFlvmfVijm5zxCtjXolrRlwTU6dOTZq1l147tlx+yxg6cmiMendUp9aizaLyOP2A1tmZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z9XyQNrTctz55ptvOg9Fv9pyytlqFr399tvx9NNPx3e/+9144YUXYtFFF4133303dt1115hrrrnilVdeiaOPPjr23nvvdq/GZlErNHVkFmEUrbXkWjFh8oRpJ/j7Eb+fzizqt2C/2Psre8fkKZNj8meTo+fcPeOe/9wTL415KTbvv3nw927RLW567qZ4evTT5SK6nU/ZLCqP0w9onZ1ZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHRlUbNoyJAhcf7558dSSy0Vn376aVx77bXRt2/faV/4+OOPx7777hvLLbdc8jWuuOKKWHPNNaPW50iaqeWBnHXWWfHII4/EnHPOmUypK6+8MplD+++/fzKg3nnnndhxxx1n6pfoBPKVs9UsuvHGG+OBBx6I8847L0aPHp3MojPOOCNwyU477bR46623Yokllggctp49e9Y8e5tF9WkW7bnanrHcgsvF2Q+cHZ9+9mn6aVt2WXWXWHmRleOqJ6+Kt8a/Fesss068Oe7NmGfOeWKbFbeJ7nN2TxlHNz53Y4wYPSI/egsobBYVgNVG6ge0zs6szEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyiFmEOTT33HPHmDFjonfv3nHYYYcl3+LYY4+d9oVbbrllHHXUUcG/+B6XXXZZ3HnnnTU/hwHU1gN57rnnYpVVVkkmUY8ePWLPPfeMgQMHJkOK4/zxj3+MBx98MPbZZ594/vnn9QvtgHK2mkXZeQInM4v222+/2HzzzWOXXXZJy5FYhvbiiy9G//79bRblVWwdZRYd+rVDY+GeC6czph7JFvrdU7+b7gp+tM6Pok+PPslImmuOuWL0R6PjuhHXxdiJY5Nu51V3jlUWWcVmUV69z+a/+wGtAzcrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK4sYha99NJLybPAp6BccMEF8eSTT6bsoawss8wyyczh3+HDh8fWW28d//znP2t+Dj+krQcyYsSIWG+99ZJPwvY8fH755ZePn/70p/GVr3wlNt1007j//vvj8MMPjyOPPFK/0A4oO90smjhxYtx1110znNJWW20V88wzT/p9a7Nop512Cn5Ip6Istthi8fDDD0e/fv1qXpYzi1phqSOziOVli/RcJB5747H42lJfS0vMrnzyynh5zMvTTviIdY+I3vP0jjfGvZEMo2V7Lxsj3x4ZQ58dmjQ2izpwJ8/Cj/oBrcM1K7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCuLGIWsZXOoEGDpmX0XH311XHvvffGb37zm2lfuMACC6S/k3HEsTfaaKO44447an7uww8/rOmB/OxnP0tG0worrJAyiY477rh0nD322CMOOOCA5JN07949br/9dv1CO6DsdLOI1KwDDzxwhlO6/PLLU8pWW7PolFNOCcDikE2ZMiX69OmT0rvIMMI5Y9la2+INrv9HpI7Moi/0+ULar2j0+NGRLfka/ubwuOX5W6ZV3x6r7RHL91k+zn3o3KT96YY/jfGfjI9zHjzHZlEHbuJZ/VE/oHXCZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlbXMorafXn/99WODDTZIS8PYJofNp0l8YVsdyhFHHDHtIxtuuGH6/RprrBGPPfZY4HNcf/31NT/HErT2PBCykV599dWUlURG0d///vdYeeWV00u+ss9lq7T0qy2n7HSzSDmN1plFt956a1x44YUpG2no0KFx7rnnxkMPPdTuYZxZ1ApNHZlFgzcYHD3m7BF3vXhXetvZ/PPMH5c/fnksOf+SseFyG8Z9r9yXlp5ttcJW8Z8P/pNMoi8v9uW0NxF7FFGcWaTcPbNf4we0ztyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqySGYRR11ttdXi4osvTvsIsWrq5JNPTkbSyJEjY6211kpLwxZZZJE45phj0t5FvLns1FNPrfk5VmO19UDIVGLZGUvZSKDBdLrllltSFhHnetFFF6WNs9dee+14/fXX0wvCZnXpMrOIN6OxWRMu3bbbbhvPPvts+u+77747AWiv2CyqT7PoK4t/JbZfaftkCFFYfsYytK1X2DrWWXqdePi1h5ORdPBaB0/b24i3ol382MXxwccfpM/s9KWdYkDfAd6zaFbf9QWP7we0DsyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyqFlEksvuu++evmC77baL6667LthnCMOIZWXsZ8SeQ5QFF1wwJcAstNBCUetzmEW1PBDMpRtuuCG9+OvQQw9N+xWRRfSNb3wj3nzzzXTsE044Ib0dbXaULjGLal0YqVaLL7542i18ZsVmUSs6dZRZlJ3VMgssE2MnjY0PJ33YbjUuNO9CaU+j18e9njbDnh3Fb0MrT9kPaJ2dWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0ZVGziCNPmDAhxo4dm/YlqlV4a9obb7yRNrlmNVVW2vtcLQ+EpWYch+yi1oXjkmyT55foBPKVdWMW5Z9qi8JmUStSdWgWqfU4u3U2i8oT9wNaZ2dWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZxizSj14Npc2iRq5Hm0Vy7dksklHNIPQDWmdnVmalE9CVjiuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFdabMon5XNonxG9auwWSTXjc0iGZXNovKo0uZz/fv378ARmuejZqXXtVmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT6rSplF919wQcTw4flXXRXF6qtH8PO/8sYbb8SSSy4pXd3wt4bH8Debh9XqS6weh+546DQ2fuhIYZJEZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY6r8qzOPPPMGDx4sH6AJlBWyiw6eZ994qQrr2yCavMlFiWw9+F7x5DzhtgsKgrOZlEhYn5A67jMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsqzslk0I7tqmUUnnxz33HOPHiEVU06cODF69OhRsavqnMvZfPPN48QTT7RZVAKnHzo6NLMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EovQ8tnVSmzKP9yq61wQ6rXr1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArrSZlE+K5tF+YwaRuGGVK8qszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXNonxWNovyGTWMwg2pXlVmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzahiFG1K9qszKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymfUMAo3pHpVmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCttFuWzslmUz6hhFG5I9aoyK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AV9osymdlsyifUcMo3JDqVWVWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6jhlG4IdWryqzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEYNo3BDqleVWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jBpG4YZUryqzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZNYzCDaleVWZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TNqGIUbUr2qzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JU2i/JZ2SzKZ9QwCjekelWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bOyWZTPqGEUbkj1qjIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9RwyjckOpVZVZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqOGUbgh1avKrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8Rg2jcEOqV5VZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmMGkbhhlSvKrMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hk1jMINqV5VZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsusQsGj9+fPTq1Su6deuWf4ZtFGeeeWYMHjx42m/deHwOyCz0cDIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z3300Ucx77zzxhxzzDFN3572gw8+iD59+szwtRMnTow555wz5p57bv3iReVsNYvefvvtePrpp+O73/1uvPDCC7HooovGpEmTom/fvrH11lunU/7iF78Yp556arunb7Oo/Zp1QypGfUSYlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK4uaRUOGDInzzz8/llpqqfj000/j2muvTT5GVh5//PHYd999Y7nllotXXnklrrjiilhzzTWj1udImtl1111jrrnmStqjjz469t5775ra9957L3bbbbdYfvnlY8KECbH77rvHLrvsEhhNI0aMiGOOOSaOOOKI+M53vqNfvKicrWbRjTfeGA888ECcd955MXr06GQWjRo1Kk444YS47rrrEqy8YrPIZlFejCh/90NHodSiMSuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFd6bgyK52ArnRclWfV1mdofSTMITJ3xowZE717947DDjssllhiiTj22GOnybbccss46qijgn/xPS677LK48847a34Os4gMpNNOOy3eeuutdKyxY8emY7f9jnnmmSf9/Xvf+17cc889ceSRR8ZTTz2Vfq666qq45ZZb4pxzzml8sygjCZzMLLr99tuTqwastdZaK6ikTTbZpN1atllks0hvAszKrDqDgH4MP6DNSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCurJIZtFLL70Um2++ebz44ovpCy644IJ48sknU/ZQVpZZZpl48MEHg3+HDx+eVk7985//rPk5/BCOR4bQ1KlT0zK0YcOGpcyk9r7j4osvTgbUHnvskUyprOy4YbLRLgAAIABJREFU444p86ghMotYM3fXXXfNUEtbbbVV4IpRWptFf/vb3+KJJ56IQw45JK6//vo4/fTTU7YRmvvvvz9lIrUuPXv2TOlXLiZgAiZgAiZgAiZgAiZgAiZgAiZgAibQUQK1fIb1118/Nthgg7SVzqBBg+L5559PX3P11VfHvffeG7/5zW+mfe0CCyyQ/k4WEEbURhttFHfccUfNz3344Yex0047BUYPZbHFFktZQj/60Y/a/Q5WZ5GxxHm29lsayiwiberAAw+coa4uv/zylFbV1iz65JNP0oZM/EyZMiUtRXv11Vdj6aWXlup7Zuli0gEqJDILvTLNyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlUXiik2tMWnYfJqkFowbCnsFZWXDDTdMv19jjTXisccei1NOOSUlw9T6HKuqMJcOP/zw5IGwcfWbb74Z88033wzf8YUvfCG+9rWvxZJLLpmWqKF9/fXX0/9TGsosUqqndWbRiSeeGO+8806QVkXaFmlVWeqVcqwilawcr5E1ZqHXnlmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyaFytttpqybMYOHBgsGrq5JNPTllHI0eOTNvpsJfQIosskjacZpkYxg8v7qr1OVZjXXjhhSlDaOjQoXHuuefGQw89VFP797//Pa3Qwjd59tlnY7PNNos33ngjJdtU1izizWjsHo6Dxno9Mor4Afr2228v13LRSpYP3IBCs9ArzazMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZNK5uvfXW9CYyynbbbZde0MXbyDCMWFZGwst6662X/r7gggsm82ehhRaKWp/DLNp2222T+UPW0t133x1rr712Te1zzz0XBxxwQPz73/+O7t27x89//vOUYJMVMos4r29/+9v6xYvK2fo2tJmdE7uAL7744uJpfy4rWsmFv6CBPmAWemWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK8vEFXsn89Yy9iWqVXhrGlk/bHLNaqqstPc5tt/BA+FNa3lakmzY24jNsGdXqRuzqOwFswk2bp5LpA3BzUKLBLPSOKEyK7PSCehKx5VZ6QR0pePKrHQCuvK+++6LRRddNO0v0d4AQT9atZW+B/X6NSuz0gnoSseVWekE8pUNbxblX6IVJmACJmACJmACJmACJtA+gccffzwtA/i///u/JGLDUV7CQuF1xJMnT45//etfcdhhh8XRRx9tlCZgAiZgAiZQeQI2iypfxb5AEzABEzABEzCBZibAq3zZIHPVVVeNr3/9682Mot1rf++992LAgAHpjbwsI1h33XXj//2//xe33HJLej3ylVdeGQ888EDK4P7vf/+blhi4mIAJmIAJmECVCdgsqnLt+tpMQCDAuttXXnkldZLZZN7FBEzABEyg8QhgZrCXwTbbbJNOnv0R5p133pQt8/3vfz+9pWXIkCFx0EEHxQ9+8IPGu8BOOmM2CF1xxRVrHo1NQvfee+9kBmEanX766ennz3/+c3qVMW+5+eY3v5k2If3Sl77USWfkw1SZwD/+8Y945plnYosttmg37qp8/b62zicwderUuOmmm+Lpp59O7RWvVXcxgVlFwGbRrCLr45pAAxBgd/4jjjgidWDoQLPO2fsxNEDF+RRNwARMoA0BDI3LLrss/vSnP8UTTzwRxx13XPzlL38JDJD99tsvVl555Tj77LPTm1Zefvnlaa/cbSaQmGWXXHJJ/POf/0wbhP7tb39LzOaff/741a9+Fffcc09cccUVMXz48Dj++OPT22d4LpKN9dJLL0W/fv3S65BXWGGFZLq5mMDMCPCGZ2KMtzz/4he/iDvvvDPWWGMNQzOB0gR+85vfpDaJjZMXXnjhlP346KOPztYNj0ufvD/YkARsFjVktfmkWxNgx/mPPvrIMzZCWDBbypsH11prrfSgYRaahw7p9LvssksstdRScdFFFwlHssQEPidAdtqPf/zjuP3229MyFzIcvETDEWICnU+A1/KOGjUqvbK3bWFPnaWXXjplMfzwhz+MffbZJ2UZMVDltburrLJKerUuGaQMWJtxNvqUU06Jd999Nxk9r732Wtp7iPbqt7/9bcwzzzzxs5/9LG1kvfnmm8dTTz0V3/rWt+KMM85Iryl+8MEHY/nllw8yRXhu9unTp/MruM6OOH78+GSasUQPZtkroevsNOvidHhLEfcdhuP++++fjFlenU2csQz0mGOOSWYjhmWzF7Ieued4XThxhVnr0kLg6quvTm309773vfT/jHFYCkt7893vfje9qn3w4MHp9xjeX/nKV1K/3S84cgTNKgI2i2YVWR93thC48cYbg84fDSuD0xtuuMFLqdqQZyA/cuTI9JrHww8/PP11t912S7POvKaRBzWdYB5CzJbyNxcTyCPAxq/du3dPMjaEZY+Ps846K3WQmUm966678g7hv5uACRQkgMlDllC2jKxtZgwDewZgl156aVqiMHDgwLj++uvTvUk2zfvvv58G/OxftNxyyxX89saXk2VFv+Hmm28OjBCMITay/ulPf5qyazFFML6//OUvp4ysPfbYI8aMGZOWobEBNhNTm266aVreV/XCgB5TkiWMDFQZvGKgNaPJyBJE6p+JttaF32evsN5zzz2jR48ecfHFF6f7jf+nX0osrbnmmqlvNWLEiPjRj35U6dDBtKZP3vqV4a0vmOsnS4+lnA899FBazsnry5u50AZhJmJMv/DCC8EyM7aGwOSH0wknnJAMavpZ11xzTbofP/zww2SyXXjhhamPT8akiwnMCgI2i2YFVR9zlhCg48KMTM+ePdNDmCyZrbfeOqWL0+mjU0yjOWjQoFny/Y12UGagSU099dRTUweGZQnMcNG54eFMhtE3vvGNWG211eKcc85JnWRmTXkANVth1u/ggw9OM/IwobOXGSHNxmJm10vs0AEktf7cc89NM1oMVrkPN9tss/jPf/6TYm6nnXZK+6MQdy4m0JoAAwlMapdyBDD1+/btm0z+d955Z4bMGDJEGdDy92uvvTY9E3leMhPN8jSeoyeeeGIynJqxwIysIZaaMYBn0oQ3nJ133nmxww47pLatd+/eaeDG4IxBHM/EZsgiIjOG/hMmI1kfZKkde+yxcf7558fvf//7GDp0aPzyl79MmWrNVmi3WPLD4J0MbIyjQw45JA3SMT/oZ9GvYiC/+uqrJzwYs5iQPAd5XmLWYhjRN6ty2XLLLeOkk05KpjTmBss82TeN/gL3FX0teNI+jR49Oq0KIPZ69epVZSy517bJJpukzGziCoP2qquuSvGE8faTn/wkJk2alAwkjG72UeM+JJ7oy6+00kqJZTOY2LkgLeh0AjaLOh2pD9iZBLJN3Ei3ZFDKngs8dEj1/eIXv5iWTtExfvvtt9N/83c6gs1YeJDQmYMFA4Unn3wy1l9//cQLRsxwYYYsu+yyse2228Zee+2V0lY33HDD2HnnndNsKw9yHlJVL8wU0yFmxoalB8zWM4DaaqutUmeZTk72+uSqs1CuDxOI2GEJCwMp4onBA0s0uO8wiBhYXX755fG1r30t/Y5Y8t4MCt3m0bBMkXYmW4bBQMKb6uv1z+CTe4/B57Bhw+Kvf/1rzcwYBhwYQxgd3KO89p0JAT7PYKIqAwomOOacc8601KdIwfxgsokBPBMk7CMDKzJnyHi477770ox9//79ixy2rrVkRHFtxEbrkmXG0Nei/0QGA30oBvgYk0zC0Z6zpBFWZC8QS81YyDjDQONfWPAMZGnnAgsskEwk+hD0p+ifwpv/5u158CQTl3jlMzwjq1bYDJ4MRvbzog+KKc2SOzIdH3744RQzGBy0XRgcmEn0GSjEGRNMxFkzFu49jB7a9oUWWijtQURmGm3QxIkT08QlHCnsoUZ/nd9fcMEFaU86yiOPPBJf/epX/TxtxgCaDddss2g2QPZXlCPAJm4sZaEzyMOHAT6zOTxgDjzwwPQQxvjAfaczfNttt6W1vn/84x/LfWEDf4plB8ySMtPAf2OuYRyxrIwZwo022igtW2Dmi1mLP/zhD2nGgsHb66+/nma8mLGg41PVwsCUByoDC7KHmB0ktogxHsZ04mBCJw/DDGOkWQsxhJnGcgOWaRA3DOoZoLLHx5JLLpmWfxI/dGowANZZZ5203wezpsQerDHiqlR4a+B8882XZphdihMYN25cuu/YfwFDm9lk/iWGXDQCDMIWX3zxtEE1A4tamTHcuwwmGLySdUsmV9XuRWhhbDBQZ4DKgIs4IpOK7GNMDZaL1So8H8n+INOWjCLaLZYKkemAGcBzoWqFmGAihCxaCn0AshXItGIPFNpvMtay7FE0mIsYH/QLMEjod/HfZMs0S6HNp/9JvLAEjyw9Jk7IPiYrm+chRiN7g/E3Jpow2tjXir2xfve73yVUZH/wJr2qmuO0M/QL4LHvvvumOOGa2RiePiis6MOToYdxxn2GiYShRKbMr3/962TaNkthchfzjAxH+p8Y/9x/TOpivBF3jGsYz3z7299OsYfRtvHGG6f90+jT8zdvG9EsEdO112mzqGv5+9tbEWibGUNDyGwWnRcGoLjmdF5YH85eC7zRhZkaOjPsLYC5hMuepQBXGW7b12Z+8MEH6U0bPHiYwWEWAhOI/yfdl4E9Jhvp0tm+C3SsSbmvemGAyoOYwQOxhOFBR5klB5ggZDmwLwWdZVLJMSAZ0DLT04wF45CsM8xHOrz8P/ciDLm/WPbJ/ca6emKLDjAdGQansKQzyOxXFQ0V7isGp3SI4cCgkkGmy+cEMPHZOB+jmsJA6tlnn00mLR1hBlRkvaBjcIFJzQbD2evem4kl5gQD+KJLXjH+eR6yiW6tzBj212GwhplU5UJcwY+lQJlxzbXTHrE0lmdgexvnkl2LAULWBwYcBlPVCwN2+klMALBUiPadJXi05xhntNlkVaFjk2bae/oIDP7JVOaZme0RWXVWtE9cM0YHE030K2mnyGin/0B/lUkl+qEw5JnH3o8Y4ExasiyI+7PqS7GzzDTuv1133TVlCNHXIlZo64k3lp1985vfTCEDP/qgGLT0FVgeS9+BzKyq991bZ9LS9hM7TFDSF6ct43eYP2S4w47+afZmRgwi+h5kq7GZdbZPVtXvQ19ffRCwWVQf9dD0Z1ErM4aHDA8TZiNY+sKSKWYS6eTQYSEDhE3x2DCQjSlZcsUgpeql1msz2SQQBjyoMdjovDAII9MILsykstcMM7A8dKregcFEZAaVARWdGdbCM4vD0jL21mG/DpYcYKyxxIosIrixHwOdQ+KIFN9mKGx8TvywJI/7jRRnWDBzRaeF+43/Z/AJV7IU6PDRISadHgMFo63W25mqxo9BKSnzzO5xj7GUJVviU7VrLXs9dGSZFaUDjInNoJy4YoBw2GGHpVR7zNnMjGXpIjPQtO3NVoglBuK000XeKMiAnr1kmACAczNkxrSODeKF6+etcJjZ7Md3xx13pEklDEky17hHMYNqbeLNZAv9CgzM9jbhrUIsMlFC5jXPe+45BvG0WdyHtGXcgzzzyAohG4a9mU477bTUr+J5mT0Xq8Ci6DVgYsCL7CCygbhHMUPoS/EcxNigr8CSRl4cQhYuk0zN0o5xDx5xxBFpo3xY3HTTTakfQTYj7RLZxfQRmKDELMJ8I5OI9o7lkJhq/DTDG7y4z7in6LsTJywzY9yCQU1WNrzI/COjCMMRhsQeZi6sfvWrX6U4pDA552ICs5uAzaLZTdzflwiQlcCeJswokDZOx61WZgyb5GabuOGw33vvvSmtlwc2jWfVZvUxNpihyWZhaoULs1u1XptJKjkDsb333jt18pgZZODGAxyThBTXZijECQMoDA0MRfZsYqkL+zEweGBWkEwZOjc8nJm9Ic2cBzPsiSkYVjVdPIsBBlZ0WFiKwAaTDOYx2Pg9BhrLW9jvhH0IuF/J/Dj00EOTKUQHmY4Os6lVK9xf7FXCDB6FrAO4kC6P6cE+TJiJxAodZuKKwWqWSVM1HkWuJ8sCZQBAVgcDUUw1BqLcYzAiI4ulGtkSBAb2ZPuxHKiZCksxGCiQZcU9VuSNgnAmPjFImEipemYMz3raagxrjA/aZ7Jj2Pck26uQZx+TJczWY3IzkKd/kb0BNOt3ZO0Z+xVVddNqzDD6TmRYbbHFFmkASvtFjNFewZN+F/cgy3+YNKGNo7/A3pDcj3wOM7NKhXaILCol65V2igmT7IUfZICQtcZkG5MkDOIx3TDfmLxkwqTKBeOf7B/6RyzF5tlP3wkziAk4Jt+4LzHMiLclllgiLZel70A7R4wRg/TNmmEvQ/pQ9Cl5FtK/ou/EM47li2Rp039gbEOMYbqxXI/YZKknbRb9de5XMnOrniFa5fumKtdms6gqNdlA17Huuuums+WhwUCe9EsG8HRW2mbG0Mhmm7hhKD322GOV38Aak4PUbzI6aj0ksnXfbV+byewOhhtrwXkIsV8Ds6pFN/9soFBKp0pnjQEpgyeyXuigEFOkidNxwWCk88yDF+MMA4mODA9zZmmIw2zw0WjXXvR8mRGlk8syKpbc0UGhQ8O/3Hss3WA/J5a20MkjbRqGaJkRYzaaznKVCzOi7H+GKU17Q+YQWVfsbXXDDTekWGM/pmwvCjp3LIVpho316bi2t59Lxoo2h1lkOsQY1nR6iTcK2Q1k9bE3BX+jk8wsKtkMzbS5KYYkGXm078wos7yagYL6RkHasypnxLRuX2BF+8NzkT4Cs/JkKsCP+5L2n02b2XuH+5A3LpFVyyCWGXvaevoXxCTHIHOyGV79Th+AZZ5k7tGOs7Ts0ksvTfcaA1cGqzwrycDid/QTmGSa2URVo7b7GNWYixgcLK/GCKP9ZqkYJkd7BTOEDA/6FsQhZlFm7DKgh1/VC5NHTIawTxVtO1mjTCxh8nOfkYHG5C2F+42MPzLV2BuTSSUyS+lTNEOhz0S2FP2p7C1vxB5vOcNYJNYw+rnXaPdp7zFt+QwmNxMIZBF54qkZoqWxrtFmUWPVV92fLUYGMzI0ju0VBu3MbJGSyfIzZunpBNIhbJsZQ8NJR6dZNnHjAUNnhj0sGFDRua1VeOjUem0m7BmAMHtY5cLgCuOCh3OW5cKsFZtU05FhdpROHTNYDKqYzaHjzICBBzEZD3RiMCOboZAqziCfPSiYPWYAwaAJFhggGI2YISxnIeOKzBpm3ukg08FmOQP/Vv2V57RDGI3MqLMsiGUHtD3cb5gbLMfjzW8MMhik0uljbwE2oKzaLHzr+wLjlQ4/PDBWaxUGmQzWMYTIViMTBAOEwQTLpsjUy5ZdYUBiGmEQcY+2txFxVe7N1pkxtO3EDe0UpgWDdZZmZC9vaO+NghhEZIJgZnIfnnHGGZXAkw3ks4shI42MKdpmBl08z7LMPZb48IxkUEVfAdMIA5PYwpwk44M+AxMC7LvGYJZnBc8J9I1ssJE9htlDdqxSsmVADEIpmLIYJvAkm42JJeIOw4MJACaZqliID579ZLuwKTz8MDPIvKIfwHOuvSXU/A0dmck8F2GaZZxWkVXra8oyYzD76WuyfxOGI8up2PIANphpLHOkDadNw8gl+y97QQh9jEa+55Q6bt1e0cdiAoS2nAI39q0iA5kJJrLeKXBjiR7jJdo0sot4ZjbDvmkKU2vqj4DNovqrk4Y+I2YYMCqYmacBrFVw1JmtZ8aCQoePBwxva6lqZgyGFx3WWiYOHWMGVBhnDOR54DDjkO0PU4shn2nG12Zi9pAKTeYVcQM3BqUMwDCLyJJhwM9sDYzoFJMxk731jRTqqqeLZ/ECCwblZAnBgWUZmEF0+Bh4UjBosw3Qsywisq+Y6SLrj85eld+Q1/reYnPJ7I0/cKEzd/bZZ6clVFnMsMEk9yXtF6YR2URk1NARZDlQ1QrZi9xbtE0MMlmK0F6mIoYZGUTskYbRhi7bh4cBO58ntmDFHmLZxqhVY9b2emplxjBDz/1GW0+2Au1Ye28UxEwhC4LnBwNVOFdl+VTrgTwvFmAPIuKHJeoMzGnnudfQsaErbTsDd5ZOocM8IZuB5bQYupi5VSvZBBymIuY+fSvuJ+IGk4MlnbVK9tY8MmvJvMLsxUDjX5ax09eoWqHNxjjMsoUwhTBYiScMDp5pmNoYQPyO5yL9KCaXahU2/cZwpC/Bc7Dq+8XUyoyBAUYizzsmLzHc6EcxqQIb2nNMN5Z8MqlEFl/Vl/BnsUK707q9YqkdBizGNWwwh7hPaacw3ehX0O7ze8Y/RV9sULX71dfTOARsFjVOXTXEmTJAxSQizZcHcXtOOc46nWhm+zAASHFlVoLZnyplxjAQp2OGYcFb27IZBwZKDESZqacTSGeFBy0/dP7IzKIz094bgjhuM702k4ctnTyumZkbOirzzjtv6rTQcaZzwrIEZtyZXaYzyDIE3s5F+i9xyP47VS50QhgY0GljCSMzgHSWyUDgd8wq02Hmb2T1ce/ROcw2QGfgSjYWmW0YTM1W4EIKPfceHV4GpCxpybI4yFYg44oBLe0Ug3gGEGiqumE8gy7uu4EDB6Z2iSU9tNe1Bk20VwzqMfyJO95ChclBthFZaxSWOVatg8zyp9b7wZHdSXwQT2QO1cqMYVNmBg6wJWON5yWDBzK42r5RkHhjIqWKS6cwQpgYoV3iGcigHGOStguzgzae+4vMF4wR2JLZxl48MMYAZwBLGw+jKpbWE3D0r9hPiEw13ojHPUd8kDlTq5C9x8CUdgt+3JtVzg5lIomJEAbq9BO4p8hQw+ygD4HZSCYHmWk8F7nfuHfJUmZj9NYF7mTk0oZxrKq+rbF1e8UkUa3MGPoVtGP00+kz8OIQJhLI6iYzmThrL+O0Svck/U6umf47+w9xP7Vtr9hHjb4YSzuZACC7lvuVDCPuPZ6jZCNXxfCvUv36WtonYLPI0SERoPPPoJzZv7aldWZM9nYpnHUG9u0VGloyQkhl5eHOw7uKnb2bb745PVAwwpiRoXNCJ4QZeAZTDAxI4WWvABgz2MJEYgABVzoqrbnQgWZ5Gmn5Vd87hllClqnwgCXjg84cmS5ky8CRQScDe9J3yfCgw8dglDX1bPbNjBj7yVTlocyAqr1lc8QNJi2Za3TiyECABUYQadKYaSwPIkMGoxFG2YbCGGvNtAF6e20Shi5ZCyyJwlxjoMpAjN8TX9xzZK9xzzZLYTkBA3LaGrKKyBQi06pWof1iDxlMEkxxmLGMaGZLkhudI4MHMjWyN9vQXtO2c0/BiYxGBq5tM2PIZmDwSSYMGW18BsOoGUxa2mXMau4xDA+W92QDeQx/TGsGXBQYkgmJ4ciAFL5oqjowZS8h9nrJlp+zvxyZGzwHiQ/6EkyQkKFHW85zEeOWlxHUKhhLDPAxmar2qm0G3Azc2+7ryIbCLI1iL0L6BCyBZSkUTOkX0K5zz2J68HuYk+nHm2Jpw8jcov+FwUTbT7+N+7eKezm1ba8whdhTtG1mDBOeTMLRTyUeuW9bbxzf6O24cv4sJWOyhOc/5g99UNqwtu0VZhD9LjLf6f/zL8uveSbyLM2WhSrfaY0J1AsBm0X1UhN1eh40kHQ26NjSQcEMar1JLg0fM3+tM2PozDDTxUO2vV38GXQ0wy7/zH5mmwbT2WCmgT0pMDB46GbZHTxI6PTRsWH2i6wGOskMHthnhlR7PsuMBRkyDGirlupLTNC5ZQ8rOsIMMunAMSNKCjQDhMwQyt7KRXYan+FfCgYIBlHV1n7TQWGjTTISanX66bwwUGdQQIeXmS+yXug4M5PKAB5mxCOdYTrLWZZbnTY9s/20WLrI4J60cQYS7EuEccvSDdo3Bg/N8Jrf1uAxrMkuwjQjewqzjGdCe/cX2VZkEbFcphmWe5LJgBlErDBDn2Wn0WZxH/LWINrxWpkxMOWZSmZpFbOGat3ADLDgxfIysmh5DmKEZAN5PsNeclnmKL/nXqQvwTOA52V7+/jN9gZjFnwhz38MfwagLBlmKR4GEayyCTgG87Tp9MlowzE0MuOj9Smx3J+JKdqvbK++WXDKXXZIMrXZa497LMswgxlLOpmIw6hunSWDecR+V/Bkgg7DloE9k5aYRsQc7T8Dez7b3kb+XXbBnfDFtOe81Y3MfibZuE6yaVu3V+xt1TYzhuxJDBDGAjBrBlObfgD9Lt6cByMmBFi6yWRtVrj/arVX9OFpr9iziP4sBWOJZwF7P2FYuphAIxGwWdRItdUF58rDlsyWbJNSHjIYRtkmubyillmZtpkxPIgYvDJz2jozhsEEaasMNqoyOwgbuNSaeSI7hnRnfjB4mJmg48vAnc4e3OggMqND1gwzqgyy+Hu2pwezXAzQMInoBFWxwITlCDDgetmQ+plnnkkdZDatprBfDKYZhlH2ummWMTDTTMevaqX1ZvG8mhdDiMwXBlttC5077lU6MsQYmUPcgyw9I2uB2GSWmowjlmxUzWjsjLonw5H4I77gSUzBuqobv6rMaIsYHDCTzMCUH1Lr2xYGp7RTGCZVLq0zabnHyBqlEC8M5Bmw0pZlWaLcezwnmyEzpm29kzVF20VbRvtEphr752SbUMMIM4MMkWwgT9vPM5U+AtmQDFCrVmjLaZfbZinSPyKDKMtihBd9AozHbAKO/hP7pDHpRME8I0OE/hbmEBndDEhZTsx9SnsG82zQ2kgsmfxgLzgG2W0LEx+017TPxAxmEH0m7kn2ueKtlZjbLCUjI5cMWyZQ2POLJUFkKLM8r1kK5ge8MMTIvGISgL5T2/aKrRGIl7aZMdzL3MdV2Fif5YmY9e1tbM6EB20Pk+FMRnKvYUjykg8+h7nIvUv/ir5W1durZrlHfJ3tE7BZ5OiYKQEewKSC83DNXlHL7HrrTXKZ1WqbGcOuongDAAAPOElEQVSyFjKOWLfLIINBLBkyrA9nsMGMUBUKHVzeJsLMS3ubH9KRY0DBw4UBA2YQHRWyYHgoZQN9lhnxMKryW5Xaq3New0rmFPFG5hrGEMYYyx6zDDU6xXQCGTxUdYPO1nxa71XBQBQ+pDXT2a1VmH1mCRqxxYw0hhodPDqJZG0xcLBJlN/qYKpxL1fVmM0nML2CbDay9dgnhs4zS4iyVPpag9Mqv06afavInG2dScuAlGwQngFkhGbZaQzSGXBlm+43Q2YMkcPzjHaG5xl9BbKnyP4gm4NnIUYJz0MGWhiM8GPZXjaQR8OSRzIoq7hpPIwwpomZrJ1msogMZDiQPYV5xu+yPef4DBNvGEJMGvEszDL8yHiAIXsTwY3+FZNXjV7oB9AO07dkj5y2BWOIiUrMC95YyTOOpepsl0D/NNtcmAwhMrEoDPTpW7S3x1OjM8vOn34pmVdMRGKUkXlN2wRPTMqstM6mbd1ecV+2zYyhH8bkJwZToxfaIvriLKerVRi/EEswpDAJwCQ5fc8ddtghTfIy2Usfnv581durRq9vn3/HCdgs6jjDSh+BdHFmtugIk1rJ7CDLp3gYZ5vktpcZw6whD2p0DPqrsnSK6+LhwZs16NAyOMcYY++FWoZR1olhYMUDmIctnWXSW1nGwOebvTCjygOYWRo6cqSEYy7SyYERyxVY0khnuSoZaXl13nqzeO4hlo7RAWbGuFYhtljSQbo4r71l0NVMM6d5PP33cgQY2NK+kSGKScRAguwhBrRVGpzWotM2MwbTrFYmLW/AwRjiHmVmnvaLgT4ZNO3NXperjfr8FM842mmyhNgklw2qea4xG49pTeGNSey5R6YVg1n6Awz0yfjADG+WgXxWg1w7GdrEDANXMj3YgwizjaxajKPWLx/ArM0m4DCLuAerZmjTt2LTbtiQvcEzHyawqHWtZK2hywwMlq4zqULmDKY/n2OSk+VWzVQwFskkI+OFZXe027RD7BeWZWETc9lkbjO0V+yLxr6OmNJMyDJxTaZ2rYlr2i/6pLCjkF3Lfcq4B7ZkJvE7zCTiz8UEqk7AZlHVa7gTro/GkUaWDQXpKGOSMJDPNslttswYrjfbBJeMK2YHmW1m5qG9wswX65eZ9cPsYJaHDjMmmh82LdQYNGQZRTyI2SCXlHyyjniw8//NVMgUYklBtlcFg3M6vmwK317BJGLGGUOpam+daqa6r7drJaaY6a9CxsLM2GYbUdMmt5cZw4xz20xaBvo8CxjoMkDFMMHgrspb8tjnDJOQJT61Cn0EBuloaHdot9GSAcpyIPbo4A2DLI9iwonnJ1mQDNoYmFWFU5H7FjMDMx9TsVevXimTCGOELGyyQbIlnSwTYl8rSjYBV+R7Gk2L4cMyKLKJyPAgg4Ps9lovQOEeJUuEjFteksIyKybl4NQMe2K2V7eYGky0YYTQX8V0I3OIfgH3Mv0s+vTZyy+q1l7V4sJ9xPJN+uLEFW0OS8xav8ky+xwxxMQkcQU7JofJ0K6V4dZo95fP1wTKELBZVIZak32GlHsaWrJhmMkh/ZflUs26SS6DJgYGzNKQZcUsA505zLP23jiSvWq7vSVETRZSNS+XDZxZqscyFtbGMxu24IILNjWa1ntVsEEinT/iru3rj7O3uNCxbnZmTR0wvvhSBBiY83zL3vBD24OZXyszhqVVtfaY41nArHXVsj0ASiYLZnV7rw9nOTX767BZMIU9PuDBoJRlQWSNMkhjdp+lxGSrMZhv9mWx7CHH5ufEFFl6DExhQ/YVWVrsP0eGSDNsKEzccB+yDA8O3I8YjWRvzOxlDAzkyWAnq5uNiBnkN3vBNGPfNPrpxBMvHIAhhhF7FmLoZnsVNQsrMvGY6IYByzbpZ87sJTxsCk+2KIW4ImvbxQSalYDNomat+QLXzcwEKeV0/pi9YUBf9de25+Hh9eMsIyNdnOwgOnswofPXtpCij769PY3yvquZ/k6HBiNk4MCBzrj6X8Vne1XwLwMtZp/JsuK+ZNDKMg8yIar8Fpdmugd8rbOXAIMp2nDeSEbGLNkxGBvsz8Ggq21mDIMssmOqvsccmUBMhDALzz45ZB+wrKXWBuZZH4FJEYwN2iQyG8i6ZR86DG72TGMA6/I5gewtlywvJoOWpccYb2Q20L+olU1TdX7Zsn2MR8xGjA72AcOIrVUY8GOqNSOr9mKBDGMyh1jmyD1JVgx9q2Y3Z+mns7UG7RD7FZEpxMRvrcJzwVn/VW9tfH0qAZtFKqkm19HxI4WV9GCXFgIsN2DWj6UH7CnDnjGkS1Mwh3irFzPUpOAzQ0Gnx8UEihJovVcFHRwyh8hiY9DKcg8y/Np7lXnR77LeBJqRAHuesEdF1n5jzDKg4K1UtTJjmoERpgUGDyY0zzMmRmiL2issOSMbBDOb12/z/+zl5NI+gSybiDacDb/J3K765stKPGDW8gZBtj5gXx0mKRnkty7scXX99dcnHZsMu0xPgBcTsHcTy2bpfzrjOFI/nYwhTFr2WiVjiDfsZmXSpElp2T9vvCRjrVn2x/S9YwJ5BGwW5RHy302gHQLDhw9PbzChE8NeRCyjOu6449IDiAEGKfv8NON+DA6aziXQDHtVdC4xH80EdAIsTWDpDy9xYPadQTtv4mKQ1ayZMSzBY6DOG5MYkLNfIWZQe5MemakNL2bsnUWkxR8xt9JKKzmLoRUuMmEwHOlTYXLwBi9eIIKhe8MNN6Qsd/aJpN+19NJLa6CtanoC9MtZgkYMsW8a20dgDPFG5+uuuy5twM/eokzCec/Hpg8XA2hFwGaRw8EEOkDgmmuuSa8Fbr0XERt3kj7tYgImYAIm0BgE2CiX15kzUCArhs1P21v60hhX1PGzvPjii4NXszNo562oGGm8PrpWYdkGmcdkM7T3xsaOn5GP0AwEmBzhzYNsPszSRwrxdeqpp6ZM2lpvsGoGLr7GjhNgaR7LPdlXjQkBCllY7MvGSwlcTMAEZiRgs8hRYQImYAImYAIm0NQEGESQTcM+RSy98rLhSJkccGDjYd7EyOu3mYXP9vJgAP/www+nvYnYa45l2czIsymxiwmYgAmYgAmYQOMTsFnU+HXoKzABEzCB/9/evYRS/sZxHP9GSO4R2SC3ctlJlI2mLExjx4JsGJpy25DcspFrhsWMMTPYsHCJBQtW04ws7BRJRCSXhXOKcVkoMn2fOv6m+f/n3+mcpjk/799KnN/z+z2v56w+vs/3QQABBFwQ0EBEtwPZbDaa5T5x1OBM/+OuTb3n5uZMTyI9rXJ8fNwER3qog1bW8l95F7583IoAAggggMBfKkBY9JcuDK+FAAIIIIAAAn9OQHug6IEFbKP6x1xPpdJGwiUlJY/Nl7W5sJ4+pSfIcSGAAAIIIICAdQUIi6y7tswMAQQQQAABBBBAAAEEEEAAAQQQcFqAsMhpMm5AAAEEEEAAAQQQQAABBBBAAAEErCtAWGTdtWVmCCCAAAIIIIAAAggggAACCCCAgNMChEVOk3EDAggggAACCCCAAAIIIIAAAgggYF0BwiLrri0zQwABBBBAAAEEEEAAAQQQQAABBJwWICxymowbEEAAAQQQQAABBBBAAAEEEEAAAesKEBZZd22ZGQIIIIAAAh4rcHl5Kff39xIWFuaxc+DFEUAAAQQQQAABTxUgLPLUleO9EUAAAQQQsKDA3t6elJeXy8rKipldfHy8jIyMyIsXL3472+bmZunp6RG73S7h4eEWlGFKCCCAAAIIIIDAnxMgLPpz1jwJAQQQQAABBH4jcHd3JxkZGbKxsSGlpaXi5+cnY2Nj5o7d3V1JTEz8z7ubmpqkt7dXbDabRERE4IwAAggggAACCCDgggBhkQt43IoAAggggAAC7hNYWlqSly9fSkFBgSwsLJiB5+fnpbGxUTQMKisrk0+fPklfX5/s7+9Ldna2vH//3gRMT8Oijx8/mvuXl5fF39/fjBkbGyvDw8NSWFhofnd7eyurq6tSUVEh3t7eZtzk5GSZmJiQgIAAycvLk6ysLNna2pLj42PzbH0GFwIIIIAAAggg8BwECIuewyozRwQQQAABBDxAYGBgQOrr60XDnjdv3vzyxtvb25KSkiKZmZny6tUr6e/vl+joaNnZ2fkpLNJQRyuSrq+vTfATFRUlqamp8vXrV0lISDBBU2VlpWg4pUGQ/i09PV1mZmbMOA0NDY/VSVVVVfLt2zcTGh0eHkpMTIwHSPKKCCCAAAIIIICAawKERa75cTcCCCCAAAIIuEmgs7NT2traTGhTVFT0y6gdHR3S3t4um5ubkpaWJt3d3dLS0iJra2syPT39uA3t/8KiwMBAWV9fF0c4pRVGGkKFhoaafklauaRb2TRQ+vz5s0xOTkpJSYmpVtKqJy4EEEAAAQQQQMDqAoRFVl9h5ocAAggggICHCExNTUlxcbG8fv1aRkdHzVvrVjINkerq6kyFz9u3b+Xg4EDi4uLMFrTa2lrzmcXFxcewqLW11YQ8FxcXEhISIsHBwWarmqOyKDIy0mxBGxoakpqaGhM2JSUlSVBQkHm29j7SsEhDJw2kZmdnTXhFWOQhXyReEwEEEEAAAQRcFiAscpmQARBAAAEEEEDAHQI3Nzfm9LOzszNT1aM/Dw4OmqF165hWFGmfIq3y0d5DGuZoIHRycmIqkhwNrvX0NK040iqk8/NzeffuneTm5hIWuWORGAMBBBBAAAEEnoUAYdGzWGYmiQACCCCAgGcI6EloWl2kPYL00mof3WKWn58vDw8Poj2EtKeR43JsWWtubpaenh6x2+0mIMrJyTGhk/YjOjo6Mn2Ovnz5YnoWOSqLPnz4INXV1aaySJtb6/a0p5VFOmZXV5fMzc2ZcIrKIs/4DvGWCCCAAAIIIOC6AGGR64aMgAACCCCAAAJuFjg9PZWrqytTXeTj4/PT6N+/fzdBkJ5w5uvr+69P1mBJg6Pw8HDx8vJy89sxHAIIIIAAAgggYG0BwiJrry+zQwABBBBAAAEEEEAAAQQQQAABBJwSICxyiosPI4AAAggggAACCCCAAAIIIIAAAtYWICyy9voyOwQQQAABBBBAAAEEEEAAAQQQQMApAcIip7j4MAIIIIAAAggggAACCCCAAAIIIGBtAcIia68vs0MAAQQQQAABBBBAAAEEEEAAAQScEiAscoqLDyOAAAIIIIAAAggggAACCCCAAALWFvgB5BDRhAlSkuUAAAAASUVORK5CYII=",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "df_predict = linker.inference.predict()\n",
+ "df_e = df_predict.as_pandas_dataframe(limit=5)\n",
+ "df_e"
]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from splink.charts import waterfall_chart\n",
- "records_to_plot = df_e.to_dict(orient=\"records\")\n",
- "linker.waterfall_chart(records_to_plot, filter_nulls=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "4c8f021b-49e7-4f9e-ad32-72066084470d",
- "metadata": {},
- "outputs": [
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Completed iteration 1, root rows count 642\n",
- "Completed iteration 2, root rows count 119\n",
- "Completed iteration 3, root rows count 35\n",
- "Completed iteration 4, root rows count 6\n",
- "Completed iteration 5, root rows count 0\n"
- ]
- }
- ],
- "source": [
- "clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, threshold_match_probability=0.95)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "8b036e11-e15c-4196-a268-faf62c2ec85a",
- "metadata": {},
- "outputs": [],
- "source": [
- "linker.cluster_studio_dashboard(df_predict, clusters, \"dashboards/50k_cluster.html\", sampling_method='by_cluster_size', overwrite=True)\n",
- "\n",
- "from IPython.display import IFrame\n",
- "\n",
- "IFrame(\n",
- " src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "d018c6cf-bee9-43ee-89c2-f81c7f3b6027",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
- "data": {
- "values": [
- {
- "f1": 0.03150014247597337,
- "fn": 299097,
- "fn_rate": 0.9839979471050563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.99999999999985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01600205289494376,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4864,
- "tp_rate": 0.01600205289494376,
- "truth_threshold": 42.6
- },
- {
- "f1": 0.03141717290778856,
- "fn": 299110,
- "fn_rate": 0.9840407157497179,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999852,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015959284250282108,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4851,
- "tp_rate": 0.015959284250282108,
- "truth_threshold": 42.62
- },
- {
- "f1": 0.031200409355588803,
- "fn": 299144,
- "fn_rate": 0.9841525722049869,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015847427795013178,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4817,
- "tp_rate": 0.015847427795013178,
- "truth_threshold": 42.64
- },
- {
- "f1": 0.031021862348178136,
- "fn": 299172,
- "fn_rate": 0.9842446892857966,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998561,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015755310714203465,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4789,
- "tp_rate": 0.015755310714203465,
- "truth_threshold": 42.660000000000004
- },
- {
- "f1": 0.030830526043016327,
- "fn": 299202,
- "fn_rate": 0.9843433861580927,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01565661384190735,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4759,
- "tp_rate": 0.01565661384190735,
- "truth_threshold": 42.68
- },
- {
- "f1": 0.03072846480771224,
- "fn": 299218,
- "fn_rate": 0.9843960244899839,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.99999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015603975510016087,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4743,
- "tp_rate": 0.015603975510016087,
- "truth_threshold": 42.7
- },
- {
- "f1": 0.030639152547863552,
- "fn": 299232,
- "fn_rate": 0.9844420830303887,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999862,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015557916969611233,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4729,
- "tp_rate": 0.015557916969611233,
- "truth_threshold": 42.72
- },
- {
- "f1": 0.030441459479423828,
- "fn": 299263,
- "fn_rate": 0.9845440697984281,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998639,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015455930201571912,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4698,
- "tp_rate": 0.015455930201571912,
- "truth_threshold": 42.74
- },
- {
- "f1": 0.030269058295964126,
- "fn": 299290,
- "fn_rate": 0.9846328969834945,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998658,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015367103016505406,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4671,
- "tp_rate": 0.015367103016505406,
- "truth_threshold": 42.76
- },
- {
- "f1": 0.030135121998639058,
- "fn": 299311,
- "fn_rate": 0.9847019847941019,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998676,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015298015205898125,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4650,
- "tp_rate": 0.015298015205898125,
- "truth_threshold": 42.78
- },
- {
- "f1": 0.030071289695398573,
- "fn": 299321,
- "fn_rate": 0.984734883751534,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015265116248466087,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4640,
- "tp_rate": 0.015265116248466087,
- "truth_threshold": 42.800000000000004
- },
- {
- "f1": 0.029937131375980298,
- "fn": 299342,
- "fn_rate": 0.9848039715621412,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.015196028437858805,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4619,
- "tp_rate": 0.015196028437858805,
- "truth_threshold": 42.82
- },
- {
- "f1": 0.029617865361553173,
- "fn": 299392,
- "fn_rate": 0.9849684663493014,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01503153365069861,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4569,
- "tp_rate": 0.01503153365069861,
- "truth_threshold": 42.84
- },
- {
- "f1": 0.02940718842383694,
- "fn": 299425,
- "fn_rate": 0.9850770329088271,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998748,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01492296709117288,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4536,
- "tp_rate": 0.01492296709117288,
- "truth_threshold": 42.86
- },
- {
- "f1": 0.029349601929410545,
- "fn": 299434,
- "fn_rate": 0.985106641970516,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998764,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014893358029484046,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4527,
- "tp_rate": 0.014893358029484046,
- "truth_threshold": 42.88
- },
- {
- "f1": 0.02931775597927918,
- "fn": 299439,
- "fn_rate": 0.9851230914492319,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014876908550768026,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4522,
- "tp_rate": 0.014876908550768026,
- "truth_threshold": 42.9
- },
- {
- "f1": 0.029215537530878605,
- "fn": 299455,
- "fn_rate": 0.9851757297811232,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998799,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014824270218876764,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4506,
- "tp_rate": 0.014824270218876764,
- "truth_threshold": 42.92
- },
- {
- "f1": 0.02911330847787324,
- "fn": 299471,
- "fn_rate": 0.9852283681130145,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998815,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014771631886985501,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4490,
- "tp_rate": 0.014771631886985501,
- "truth_threshold": 42.94
- },
- {
- "f1": 0.029011068818612734,
- "fn": 299487,
- "fn_rate": 0.9852810064449058,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998831,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01471899355509424,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4474,
- "tp_rate": 0.01471899355509424,
- "truth_threshold": 42.96
- },
- {
- "f1": 0.028915115751248298,
- "fn": 299502,
- "fn_rate": 0.9853303548810538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998848,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014669645118946181,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4459,
- "tp_rate": 0.014669645118946181,
- "truth_threshold": 42.980000000000004
- },
- {
- "f1": 0.028800072632473202,
- "fn": 299520,
- "fn_rate": 0.9853895730044315,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01461042699556851,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4441,
- "tp_rate": 0.01461042699556851,
- "truth_threshold": 43
- },
- {
- "f1": 0.02869150150461762,
- "fn": 299537,
- "fn_rate": 0.985445501232066,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014554498767934044,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4424,
- "tp_rate": 0.014554498767934044,
- "truth_threshold": 43.02
- },
- {
- "f1": 0.028602004086000585,
- "fn": 299551,
- "fn_rate": 0.9854915597724708,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998894,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014508440227529189,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4410,
- "tp_rate": 0.014508440227529189,
- "truth_threshold": 43.04
- },
- {
- "f1": 0.028563645561738724,
- "fn": 299557,
- "fn_rate": 0.98551129914693,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999891,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014488700853069966,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4404,
- "tp_rate": 0.014488700853069966,
- "truth_threshold": 43.06
- },
- {
- "f1": 0.02848043794105438,
- "fn": 299570,
- "fn_rate": 0.9855540677915917,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998924,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014445932208408315,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4391,
- "tp_rate": 0.014445932208408315,
- "truth_threshold": 43.08
- },
- {
- "f1": 0.028371830547393413,
- "fn": 299587,
- "fn_rate": 0.9856099960192262,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999894,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01439000398077385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4374,
- "tp_rate": 0.01439000398077385,
- "truth_threshold": 43.1
- },
- {
- "f1": 0.02820556067309314,
- "fn": 299613,
- "fn_rate": 0.9856955333085494,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998954,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014304466691450548,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4348,
- "tp_rate": 0.014304466691450548,
- "truth_threshold": 43.12
- },
- {
- "f1": 0.02789852721728411,
- "fn": 299661,
- "fn_rate": 0.9858534483042233,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014146551695776761,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4300,
- "tp_rate": 0.014146551695776761,
- "truth_threshold": 43.14
- },
- {
- "f1": 0.02773848609507001,
- "fn": 299686,
- "fn_rate": 0.9859356956978034,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.014064304302196663,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4275,
- "tp_rate": 0.014064304302196663,
- "truth_threshold": 43.160000000000004
- },
- {
- "f1": 0.027565799719669833,
- "fn": 299713,
- "fn_rate": 0.9860245228828698,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013975477117130158,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4248,
- "tp_rate": 0.013975477117130158,
- "truth_threshold": 43.18
- },
- {
- "f1": 0.02745059865667283,
- "fn": 299731,
- "fn_rate": 0.9860837410062475,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999011,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013916258993752487,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4230,
- "tp_rate": 0.013916258993752487,
- "truth_threshold": 43.2
- },
- {
- "f1": 0.027232959929386416,
- "fn": 299765,
- "fn_rate": 0.9861955974615164,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013804402538483555,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4196,
- "tp_rate": 0.013804402538483555,
- "truth_threshold": 43.22
- },
- {
- "f1": 0.02713683950905751,
- "fn": 299780,
- "fn_rate": 0.9862449458976645,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013755054102335497,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4181,
- "tp_rate": 0.013755054102335497,
- "truth_threshold": 43.24
- },
- {
- "f1": 0.027021588711038415,
- "fn": 299798,
- "fn_rate": 0.9863041640210422,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999051,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013695835978957826,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4163,
- "tp_rate": 0.013695835978957826,
- "truth_threshold": 43.26
- },
- {
- "f1": 0.026771919346671686,
- "fn": 299837,
- "fn_rate": 0.9864324699550271,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999064,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013567530044972876,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4124,
- "tp_rate": 0.013567530044972876,
- "truth_threshold": 43.28
- },
- {
- "f1": 0.026682247541143247,
- "fn": 299851,
- "fn_rate": 0.9864785284954319,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01352147150456802,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4110,
- "tp_rate": 0.01352147150456802,
- "truth_threshold": 43.300000000000004
- },
- {
- "f1": 0.026490066225165563,
- "fn": 299881,
- "fn_rate": 0.9865772253677281,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999909,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013422774632271903,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4080,
- "tp_rate": 0.013422774632271903,
- "truth_threshold": 43.32
- },
- {
- "f1": 0.02637473946666147,
- "fn": 299899,
- "fn_rate": 0.9866364434911058,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013363556508894233,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4062,
- "tp_rate": 0.013363556508894233,
- "truth_threshold": 43.34
- },
- {
- "f1": 0.026169680833793306,
- "fn": 299931,
- "fn_rate": 0.9867417201548883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999114,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013258279845111708,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4030,
- "tp_rate": 0.013258279845111708,
- "truth_threshold": 43.36
- },
- {
- "f1": 0.025868339698126932,
- "fn": 299978,
- "fn_rate": 0.9868963452548188,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013103654745181124,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3983,
- "tp_rate": 0.013103654745181124,
- "truth_threshold": 43.38
- },
- {
- "f1": 0.025810725674982302,
- "fn": 299987,
- "fn_rate": 0.9869259543165078,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01307404568349229,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3974,
- "tp_rate": 0.01307404568349229,
- "truth_threshold": 43.4
- },
- {
- "f1": 0.02574661280056118,
- "fn": 299997,
- "fn_rate": 0.9869588532739397,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999151,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013041146726060252,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3964,
- "tp_rate": 0.013041146726060252,
- "truth_threshold": 43.42
- },
- {
- "f1": 0.02568249576180362,
- "fn": 300007,
- "fn_rate": 0.9869917522313718,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999162,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.013008247768628212,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3954,
- "tp_rate": 0.013008247768628212,
- "truth_threshold": 43.44
- },
- {
- "f1": 0.025470797253493223,
- "fn": 300040,
- "fn_rate": 0.9871003187908975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012899681209102483,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3921,
- "tp_rate": 0.012899681209102483,
- "truth_threshold": 43.46
- },
- {
- "f1": 0.025374675995400598,
- "fn": 300055,
- "fn_rate": 0.9871496672270456,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999185,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012850332772954425,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3906,
- "tp_rate": 0.012850332772954425,
- "truth_threshold": 43.480000000000004
- },
- {
- "f1": 0.0251757429280526,
- "fn": 300086,
- "fn_rate": 0.9872516539950849,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012748346004915104,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3875,
- "tp_rate": 0.012748346004915104,
- "truth_threshold": 43.5
- },
- {
- "f1": 0.02495760261466787,
- "fn": 300120,
- "fn_rate": 0.9873635104503539,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999207,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012636489549646171,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3841,
- "tp_rate": 0.012636489549646171,
- "truth_threshold": 43.52
- },
- {
- "f1": 0.024842097055077585,
- "fn": 300138,
- "fn_rate": 0.9874227285737315,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999218,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012577271426268502,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3823,
- "tp_rate": 0.012577271426268502,
- "truth_threshold": 43.54
- },
- {
- "f1": 0.02472024018403712,
- "fn": 300157,
- "fn_rate": 0.9874852365928524,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999228,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012514763407147628,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3804,
- "tp_rate": 0.012514763407147628,
- "truth_threshold": 43.56
- },
- {
- "f1": 0.024649557763668384,
- "fn": 300168,
- "fn_rate": 0.9875214254460276,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999924,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012478574553972385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3793,
- "tp_rate": 0.012478574553972385,
- "truth_threshold": 43.58
- },
- {
- "f1": 0.024611045400782457,
- "fn": 300174,
- "fn_rate": 0.9875411648204868,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999925,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012458835179513161,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3787,
- "tp_rate": 0.012458835179513161,
- "truth_threshold": 43.6
- },
- {
- "f1": 0.02434141680695209,
- "fn": 300216,
- "fn_rate": 0.9876793404417014,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999261,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012320659558298598,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3745,
- "tp_rate": 0.012320659558298598,
- "truth_threshold": 43.62
- },
- {
- "f1": 0.02414243647497026,
- "fn": 300247,
- "fn_rate": 0.9877813272097408,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012218672790259276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3714,
- "tp_rate": 0.012218672790259276,
- "truth_threshold": 43.64
- },
- {
- "f1": 0.024026835166549652,
- "fn": 300265,
- "fn_rate": 0.9878405453331184,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999281,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012159454666881607,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3696,
- "tp_rate": 0.012159454666881607,
- "truth_threshold": 43.660000000000004
- },
- {
- "f1": 0.023949760112337636,
- "fn": 300277,
- "fn_rate": 0.9878800240820368,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999291,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01211997591796316,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3684,
- "tp_rate": 0.01211997591796316,
- "truth_threshold": 43.68
- },
- {
- "f1": 0.02390471918293579,
- "fn": 300284,
- "fn_rate": 0.9879030533522393,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012096946647760733,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3677,
- "tp_rate": 0.012096946647760733,
- "truth_threshold": 43.7
- },
- {
- "f1": 0.02374419723547846,
- "fn": 300309,
- "fn_rate": 0.9879853007458194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999309,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.012014699254180635,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3652,
- "tp_rate": 0.012014699254180635,
- "truth_threshold": 43.72
- },
- {
- "f1": 0.023634897722987293,
- "fn": 300326,
- "fn_rate": 0.9880412289734538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999319,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011958771026546168,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3635,
- "tp_rate": 0.011958771026546168,
- "truth_threshold": 43.74
- },
- {
- "f1": 0.023500035763751162,
- "fn": 300347,
- "fn_rate": 0.9881103167840611,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999328,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011889683215938886,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3614,
- "tp_rate": 0.011889683215938886,
- "truth_threshold": 43.76
- },
- {
- "f1": 0.023461478437288665,
- "fn": 300353,
- "fn_rate": 0.9881300561585203,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999338,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011869943841479663,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3608,
- "tp_rate": 0.011869943841479663,
- "truth_threshold": 43.78
- },
- {
- "f1": 0.02334579743131198,
- "fn": 300371,
- "fn_rate": 0.988189274281898,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999347,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011810725718101994,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3590,
- "tp_rate": 0.011810725718101994,
- "truth_threshold": 43.800000000000004
- },
- {
- "f1": 0.02328787612748828,
- "fn": 300380,
- "fn_rate": 0.9882188833435869,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999356,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011781116656413158,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3581,
- "tp_rate": 0.011781116656413158,
- "truth_threshold": 43.82
- },
- {
- "f1": 0.023178678737269285,
- "fn": 300397,
- "fn_rate": 0.9882748115712213,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999365,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011725188428778692,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3564,
- "tp_rate": 0.011725188428778692,
- "truth_threshold": 43.84
- },
- {
- "f1": 0.023056460686945945,
- "fn": 300416,
- "fn_rate": 0.9883373195903422,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999374,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011662680409657818,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3545,
- "tp_rate": 0.011662680409657818,
- "truth_threshold": 43.86
- },
- {
- "f1": 0.02299216900382444,
- "fn": 300426,
- "fn_rate": 0.9883702185477742,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999383,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011629781452225778,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3535,
- "tp_rate": 0.011629781452225778,
- "truth_threshold": 43.88
- },
- {
- "f1": 0.022940732646477262,
- "fn": 300434,
- "fn_rate": 0.9883965377137198,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011603462286280147,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3527,
- "tp_rate": 0.011603462286280147,
- "truth_threshold": 43.9
- },
- {
- "f1": 0.02283149575568348,
- "fn": 300451,
- "fn_rate": 0.9884524659413543,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999399,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011547534058645682,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3510,
- "tp_rate": 0.011547534058645682,
- "truth_threshold": 43.92
- },
- {
- "f1": 0.02275432742033058,
- "fn": 300463,
- "fn_rate": 0.9884919446902728,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011508055309727235,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3498,
- "tp_rate": 0.011508055309727235,
- "truth_threshold": 43.94
- },
- {
- "f1": 0.022657784832359713,
- "fn": 300478,
- "fn_rate": 0.9885412931264208,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999416,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011458706873579177,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3483,
- "tp_rate": 0.011458706873579177,
- "truth_threshold": 43.96
- },
- {
- "f1": 0.022535651087748517,
- "fn": 300497,
- "fn_rate": 0.9886038011455417,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999424,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011396198854458302,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3464,
- "tp_rate": 0.011396198854458302,
- "truth_threshold": 43.980000000000004
- },
- {
- "f1": 0.022413355627411306,
- "fn": 300516,
- "fn_rate": 0.9886663091646626,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999432,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011333690835337428,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3445,
- "tp_rate": 0.011333690835337428,
- "truth_threshold": 44
- },
- {
- "f1": 0.022381262199089133,
- "fn": 300521,
- "fn_rate": 0.9886827586433786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999439,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011317241356621408,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3440,
- "tp_rate": 0.011317241356621408,
- "truth_threshold": 44.02
- },
- {
- "f1": 0.022355528373823992,
- "fn": 300525,
- "fn_rate": 0.9886959182263514,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011304081773648594,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3436,
- "tp_rate": 0.011304081773648594,
- "truth_threshold": 44.04
- },
- {
- "f1": 0.022201111356922557,
- "fn": 300549,
- "fn_rate": 0.9887748757241883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999455,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0112251242758117,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3412,
- "tp_rate": 0.0112251242758117,
- "truth_threshold": 44.06
- },
- {
- "f1": 0.022033799040820444,
- "fn": 300575,
- "fn_rate": 0.9888604130135116,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999463,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011139586986488398,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3386,
- "tp_rate": 0.011139586986488398,
- "truth_threshold": 44.08
- },
- {
- "f1": 0.02197580513961827,
- "fn": 300584,
- "fn_rate": 0.9888900220752005,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999469,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011109977924799563,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3377,
- "tp_rate": 0.011109977924799563,
- "truth_threshold": 44.1
- },
- {
- "f1": 0.021859950540153585,
- "fn": 300602,
- "fn_rate": 0.9889492401985781,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999477,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011050759801421893,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3359,
- "tp_rate": 0.011050759801421893,
- "truth_threshold": 44.12
- },
- {
- "f1": 0.021853584886013838,
- "fn": 300603,
- "fn_rate": 0.9889525300943213,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999484,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011047469905678689,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3358,
- "tp_rate": 0.011047469905678689,
- "truth_threshold": 44.14
- },
- {
- "f1": 0.021795581009404184,
- "fn": 300612,
- "fn_rate": 0.9889821391560102,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999492,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.011017860843989855,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3349,
- "tp_rate": 0.011017860843989855,
- "truth_threshold": 44.160000000000004
- },
- {
- "f1": 0.021673337889290246,
- "fn": 300631,
- "fn_rate": 0.9890446471751311,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999498,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01095535282486898,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3330,
- "tp_rate": 0.01095535282486898,
- "truth_threshold": 44.18
- },
- {
- "f1": 0.021608956001041395,
- "fn": 300641,
- "fn_rate": 0.989077546132563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01092245386743694,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3320,
- "tp_rate": 0.01092245386743694,
- "truth_threshold": 44.2
- },
- {
- "f1": 0.021531692203548693,
- "fn": 300653,
- "fn_rate": 0.9891170248814815,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999512,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010882975118518495,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3308,
- "tp_rate": 0.010882975118518495,
- "truth_threshold": 44.22
- },
- {
- "f1": 0.02141578519121237,
- "fn": 300671,
- "fn_rate": 0.9891762430048592,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999518,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010823756995140824,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3290,
- "tp_rate": 0.010823756995140824,
- "truth_threshold": 44.24
- },
- {
- "f1": 0.021306235637982774,
- "fn": 300688,
- "fn_rate": 0.9892321712324936,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010767828767506357,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3273,
- "tp_rate": 0.010767828767506357,
- "truth_threshold": 44.26
- },
- {
- "f1": 0.021113006341063268,
- "fn": 300718,
- "fn_rate": 0.9893308681047898,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010669131895210241,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3243,
- "tp_rate": 0.010669131895210241,
- "truth_threshold": 44.28
- },
- {
- "f1": 0.021022819753247175,
- "fn": 300732,
- "fn_rate": 0.9893769266451946,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999538,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010623073354805387,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3229,
- "tp_rate": 0.010623073354805387,
- "truth_threshold": 44.300000000000004
- },
- {
- "f1": 0.021003561360218238,
- "fn": 300735,
- "fn_rate": 0.9893867963324242,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010613203667575774,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3226,
- "tp_rate": 0.010613203667575774,
- "truth_threshold": 44.32
- },
- {
- "f1": 0.02093913586998984,
- "fn": 300745,
- "fn_rate": 0.9894196952898563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999955,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010580304710143736,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3216,
- "tp_rate": 0.010580304710143736,
- "truth_threshold": 44.34
- },
- {
- "f1": 0.02085530856480577,
- "fn": 300758,
- "fn_rate": 0.9894624639345179,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999557,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010537536065482085,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3203,
- "tp_rate": 0.010537536065482085,
- "truth_threshold": 44.36
- },
- {
- "f1": 0.020707169369017387,
- "fn": 300781,
- "fn_rate": 0.9895381315366116,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999564,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010461868463388395,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3180,
- "tp_rate": 0.010461868463388395,
- "truth_threshold": 44.38
- },
- {
- "f1": 0.020610433502862017,
- "fn": 300796,
- "fn_rate": 0.9895874799727596,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999569,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010412520027240336,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3165,
- "tp_rate": 0.010412520027240336,
- "truth_threshold": 44.4
- },
- {
- "f1": 0.020545982625457482,
- "fn": 300806,
- "fn_rate": 0.9896203789301917,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999575,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010379621069808298,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3155,
- "tp_rate": 0.010379621069808298,
- "truth_threshold": 44.42
- },
- {
- "f1": 0.020488039960144054,
- "fn": 300815,
- "fn_rate": 0.9896499879918805,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010350012008119462,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3146,
- "tp_rate": 0.010350012008119462,
- "truth_threshold": 44.44
- },
- {
- "f1": 0.02033971160985268,
- "fn": 300838,
- "fn_rate": 0.9897256555939742,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010274344406025773,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3123,
- "tp_rate": 0.010274344406025773,
- "truth_threshold": 44.46
- },
- {
- "f1": 0.020191493519181918,
- "fn": 300861,
- "fn_rate": 0.989801323196068,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999593,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010198676803932083,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3100,
- "tp_rate": 0.010198676803932083,
- "truth_threshold": 44.480000000000004
- },
- {
- "f1": 0.020081812378681882,
- "fn": 300878,
- "fn_rate": 0.9898572514237024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999598,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010142748576297617,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3083,
- "tp_rate": 0.010142748576297617,
- "truth_threshold": 44.5
- },
- {
- "f1": 0.02003022446879193,
- "fn": 300886,
- "fn_rate": 0.989883570589648,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010116429410351986,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3075,
- "tp_rate": 0.010116429410351986,
- "truth_threshold": 44.52
- },
- {
- "f1": 0.019830360516475354,
- "fn": 300917,
- "fn_rate": 0.9899855573576873,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999609,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.010014442642312665,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3044,
- "tp_rate": 0.010014442642312665,
- "truth_threshold": 44.54
- },
- {
- "f1": 0.019778759332369153,
- "fn": 300925,
- "fn_rate": 0.990011876523633,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999615,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009988123476367034,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3036,
- "tp_rate": 0.009988123476367034,
- "truth_threshold": 44.56
- },
- {
- "f1": 0.0197077391151388,
- "fn": 300936,
- "fn_rate": 0.9900480653768082,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999619,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00995193462319179,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3025,
- "tp_rate": 0.00995193462319179,
- "truth_threshold": 44.58
- },
- {
- "f1": 0.01966903381327774,
- "fn": 300942,
- "fn_rate": 0.9900678047512674,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999625,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009932195248732567,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3019,
- "tp_rate": 0.009932195248732567,
- "truth_threshold": 44.6
- },
- {
- "f1": 0.019630326998377714,
- "fn": 300948,
- "fn_rate": 0.9900875441257266,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009912455874273344,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3013,
- "tp_rate": 0.009912455874273344,
- "truth_threshold": 44.62
- },
- {
- "f1": 0.019514197474556613,
- "fn": 300966,
- "fn_rate": 0.9901467622491044,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999635,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009853237750895675,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2995,
- "tp_rate": 0.009853237750895675,
- "truth_threshold": 44.64
- },
- {
- "f1": 0.019398054330190463,
- "fn": 300984,
- "fn_rate": 0.990205980372482,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009794019627518004,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2977,
- "tp_rate": 0.009794019627518004,
- "truth_threshold": 44.660000000000004
- },
- {
- "f1": 0.019243175612712354,
- "fn": 301008,
- "fn_rate": 0.9902849378703189,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999645,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00971506212968111,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2953,
- "tp_rate": 0.00971506212968111,
- "truth_threshold": 44.68
- },
- {
- "f1": 0.019159335288367548,
- "fn": 301021,
- "fn_rate": 0.9903277065149806,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999965,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00967229348501946,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2940,
- "tp_rate": 0.00967229348501946,
- "truth_threshold": 44.7
- },
- {
- "f1": 0.01901732936215695,
- "fn": 301043,
- "fn_rate": 0.9904000842213311,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009599915778668974,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2918,
- "tp_rate": 0.009599915778668974,
- "truth_threshold": 44.72
- },
- {
- "f1": 0.01888821539604638,
- "fn": 301063,
- "fn_rate": 0.9904658821361951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999659,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009534117863804896,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2898,
- "tp_rate": 0.009534117863804896,
- "truth_threshold": 44.74
- },
- {
- "f1": 0.01866216462858186,
- "fn": 301098,
- "fn_rate": 0.9905810284872072,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00941897151279276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2863,
- "tp_rate": 0.00941897151279276,
- "truth_threshold": 44.76
- },
- {
- "f1": 0.018591189392852953,
- "fn": 301109,
- "fn_rate": 0.9906172173403824,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999669,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009382782659617516,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2852,
- "tp_rate": 0.009382782659617516,
- "truth_threshold": 44.78
- },
- {
- "f1": 0.018513689700130377,
- "fn": 301121,
- "fn_rate": 0.990656696089301,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00934330391069907,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2840,
- "tp_rate": 0.00934330391069907,
- "truth_threshold": 44.800000000000004
- },
- {
- "f1": 0.01837159118320088,
- "fn": 301143,
- "fn_rate": 0.9907290737956514,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999678,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009270926204348584,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2818,
- "tp_rate": 0.009270926204348584,
- "truth_threshold": 44.82
- },
- {
- "f1": 0.0182875546833743,
- "fn": 301156,
- "fn_rate": 0.990771842440313,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999682,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009228157559686933,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2805,
- "tp_rate": 0.009228157559686933,
- "truth_threshold": 44.84
- },
- {
- "f1": 0.01824239302642474,
- "fn": 301163,
- "fn_rate": 0.9907948717105155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999687,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009205128289484506,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2798,
- "tp_rate": 0.009205128289484506,
- "truth_threshold": 44.86
- },
- {
- "f1": 0.018171267620326784,
- "fn": 301174,
- "fn_rate": 0.9908310605636907,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999691,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009168939436309264,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2787,
- "tp_rate": 0.009168939436309264,
- "truth_threshold": 44.88
- },
- {
- "f1": 0.018100255594387354,
- "fn": 301185,
- "fn_rate": 0.990867249416866,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999696,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00913275058313402,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2776,
- "tp_rate": 0.00913275058313402,
- "truth_threshold": 44.9
- },
- {
- "f1": 0.01809373532940379,
- "fn": 301186,
- "fn_rate": 0.9908705393126092,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999699,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009129460687390817,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2775,
- "tp_rate": 0.009129460687390817,
- "truth_threshold": 44.92
- },
- {
- "f1": 0.01806148730153555,
- "fn": 301191,
- "fn_rate": 0.9908869887913252,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999704,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009113011208674797,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2770,
- "tp_rate": 0.009113011208674797,
- "truth_threshold": 44.94
- },
- {
- "f1": 0.01799034950443401,
- "fn": 301202,
- "fn_rate": 0.9909231776445004,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009076822355499553,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2759,
- "tp_rate": 0.009076822355499553,
- "truth_threshold": 44.96
- },
- {
- "f1": 0.01793865254701479,
- "fn": 301210,
- "fn_rate": 0.9909494968104461,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999711,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009050503189553923,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2751,
- "tp_rate": 0.009050503189553923,
- "truth_threshold": 44.980000000000004
- },
- {
- "f1": 0.01787402755769444,
- "fn": 301220,
- "fn_rate": 0.9909823957678782,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999716,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.009017604232121884,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2741,
- "tp_rate": 0.009017604232121884,
- "truth_threshold": 45
- },
- {
- "f1": 0.017680127302133877,
- "fn": 301250,
- "fn_rate": 0.9910810926401742,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008918907359825767,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2711,
- "tp_rate": 0.008918907359825767,
- "truth_threshold": 45.02
- },
- {
- "f1": 0.017557361439025344,
- "fn": 301269,
- "fn_rate": 0.9911436006592951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999724,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008856399340704892,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2692,
- "tp_rate": 0.008856399340704892,
- "truth_threshold": 45.04
- },
- {
- "f1": 0.017524979781377997,
- "fn": 301274,
- "fn_rate": 0.9911600501380111,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008839949861988874,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2687,
- "tp_rate": 0.008839949861988874,
- "truth_threshold": 45.06
- },
- {
- "f1": 0.01746032781325211,
- "fn": 301284,
- "fn_rate": 0.9911929490954432,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999731,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008807050904556834,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2677,
- "tp_rate": 0.008807050904556834,
- "truth_threshold": 45.08
- },
- {
- "f1": 0.017421534608260063,
- "fn": 301290,
- "fn_rate": 0.9912126884699024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999735,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00878731153009761,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2671,
- "tp_rate": 0.00878731153009761,
- "truth_threshold": 45.1
- },
- {
- "f1": 0.0173051458837496,
- "fn": 301308,
- "fn_rate": 0.99127190659328,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999738,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008728093406719942,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2653,
- "tp_rate": 0.008728093406719942,
- "truth_threshold": 45.12
- },
- {
- "f1": 0.01721461187214612,
- "fn": 301322,
- "fn_rate": 0.9913179651336849,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999742,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008682034866315087,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2639,
- "tp_rate": 0.008682034866315087,
- "truth_threshold": 45.14
- },
- {
- "f1": 0.017137004709903845,
- "fn": 301334,
- "fn_rate": 0.9913574438826034,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999746,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00864255611739664,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2627,
- "tp_rate": 0.00864255611739664,
- "truth_threshold": 45.160000000000004
- },
- {
- "f1": 0.01710472239074701,
- "fn": 301339,
- "fn_rate": 0.9913738933613194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999749,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00862610663868062,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2622,
- "tp_rate": 0.00862610663868062,
- "truth_threshold": 45.18
- },
- {
- "f1": 0.016936546666840642,
- "fn": 301365,
- "fn_rate": 0.9914594306506427,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999752,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008540569349357319,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2596,
- "tp_rate": 0.008540569349357319,
- "truth_threshold": 45.2
- },
- {
- "f1": 0.016813576130854904,
- "fn": 301384,
- "fn_rate": 0.9915219386697636,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999756,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008478061330236444,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2577,
- "tp_rate": 0.008478061330236444,
- "truth_threshold": 45.22
- },
- {
- "f1": 0.016735937571364257,
- "fn": 301396,
- "fn_rate": 0.991561417418682,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008438582581317997,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2565,
- "tp_rate": 0.008438582581317997,
- "truth_threshold": 45.24
- },
- {
- "f1": 0.01653539710402161,
- "fn": 301427,
- "fn_rate": 0.9916634041867213,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999762,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008336595813278678,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2534,
- "tp_rate": 0.008336595813278678,
- "truth_threshold": 45.26
- },
- {
- "f1": 0.0164836240480805,
- "fn": 301435,
- "fn_rate": 0.9916897233526669,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999766,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008310276647333047,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2526,
- "tp_rate": 0.008310276647333047,
- "truth_threshold": 45.28
- },
- {
- "f1": 0.01641237813075086,
- "fn": 301446,
- "fn_rate": 0.9917259122058422,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999769,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008274087794157803,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2515,
- "tp_rate": 0.008274087794157803,
- "truth_threshold": 45.300000000000004
- },
- {
- "f1": 0.016354179582726957,
- "fn": 301455,
- "fn_rate": 0.9917555212675311,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999772,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008244478732468969,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2506,
- "tp_rate": 0.008244478732468969,
- "truth_threshold": 45.32
- },
- {
- "f1": 0.016295870886059428,
- "fn": 301464,
- "fn_rate": 0.9917851303292199,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008214869670780132,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2497,
- "tp_rate": 0.008214869670780132,
- "truth_threshold": 45.34
- },
- {
- "f1": 0.016263558403926227,
- "fn": 301469,
- "fn_rate": 0.9918015798079359,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008198420192064114,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2492,
- "tp_rate": 0.008198420192064114,
- "truth_threshold": 45.36
- },
- {
- "f1": 0.016179349954314057,
- "fn": 301482,
- "fn_rate": 0.9918443484525975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999781,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008155651547402464,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2479,
- "tp_rate": 0.008155651547402464,
- "truth_threshold": 45.38
- },
- {
- "f1": 0.016069342279601335,
- "fn": 301499,
- "fn_rate": 0.991900276680232,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008099723319767996,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2462,
- "tp_rate": 0.008099723319767996,
- "truth_threshold": 45.4
- },
- {
- "f1": 0.015985117979178225,
- "fn": 301512,
- "fn_rate": 0.9919430453248936,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999788,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008056954675106346,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2449,
- "tp_rate": 0.008056954675106346,
- "truth_threshold": 45.42
- },
- {
- "f1": 0.015939843734701472,
- "fn": 301519,
- "fn_rate": 0.9919660745950961,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999793,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008033925404903918,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2442,
- "tp_rate": 0.008033925404903918,
- "truth_threshold": 45.46
- },
- {
- "f1": 0.015913941997010423,
- "fn": 301523,
- "fn_rate": 0.9919792341780689,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999796,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.008020765821931102,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2438,
- "tp_rate": 0.008020765821931102,
- "truth_threshold": 45.480000000000004
- },
- {
- "f1": 0.015836232726038395,
- "fn": 301535,
- "fn_rate": 0.9920187129269873,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999799,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007981287073012657,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2426,
- "tp_rate": 0.007981287073012657,
- "truth_threshold": 45.5
- },
- {
- "f1": 0.015790847966577454,
- "fn": 301542,
- "fn_rate": 0.9920417421971898,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999801,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00795825780281023,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2419,
- "tp_rate": 0.00795825780281023,
- "truth_threshold": 45.52
- },
- {
- "f1": 0.015771470350157975,
- "fn": 301545,
- "fn_rate": 0.9920516118844194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999805,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007948388115580617,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2416,
- "tp_rate": 0.007948388115580617,
- "truth_threshold": 45.54
- },
- {
- "f1": 0.01565488741929377,
- "fn": 301563,
- "fn_rate": 0.9921108300077971,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007889169992202946,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2398,
- "tp_rate": 0.007889169992202946,
- "truth_threshold": 45.56
- },
- {
- "f1": 0.015551246645905556,
- "fn": 301579,
- "fn_rate": 0.9921634683396883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007836531660311685,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2382,
- "tp_rate": 0.007836531660311685,
- "truth_threshold": 45.58
- },
- {
- "f1": 0.015454023138596538,
- "fn": 301594,
- "fn_rate": 0.9922128167758364,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999812,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0077871832241636265,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2367,
- "tp_rate": 0.0077871832241636265,
- "truth_threshold": 45.6
- },
- {
- "f1": 0.015356891013084698,
- "fn": 301609,
- "fn_rate": 0.9922621652119844,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999815,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007737834788015568,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2352,
- "tp_rate": 0.007737834788015568,
- "truth_threshold": 45.62
- },
- {
- "f1": 0.01526617868872797,
- "fn": 301623,
- "fn_rate": 0.9923082237523893,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007691776247610713,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2338,
- "tp_rate": 0.007691776247610713,
- "truth_threshold": 45.64
- },
- {
- "f1": 0.015253219108313527,
- "fn": 301625,
- "fn_rate": 0.9923148035438757,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007685196456124305,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2336,
- "tp_rate": 0.007685196456124305,
- "truth_threshold": 45.660000000000004
- },
- {
- "f1": 0.01511065255294279,
- "fn": 301647,
- "fn_rate": 0.9923871812502262,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999822,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00761281874977382,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2314,
- "tp_rate": 0.00761281874977382,
- "truth_threshold": 45.68
- },
- {
- "f1": 0.015039312488571951,
- "fn": 301658,
- "fn_rate": 0.9924233701034014,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999825,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007576629896598577,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2303,
- "tp_rate": 0.007576629896598577,
- "truth_threshold": 45.7
- },
- {
- "f1": 0.014987461470142625,
- "fn": 301666,
- "fn_rate": 0.9924496892693471,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999828,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0075503107306529454,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2295,
- "tp_rate": 0.0075503107306529454,
- "truth_threshold": 45.72
- },
- {
- "f1": 0.014922643887593633,
- "fn": 301676,
- "fn_rate": 0.992482588226779,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0075174117732209065,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2285,
- "tp_rate": 0.0075174117732209065,
- "truth_threshold": 45.74
- },
- {
- "f1": 0.014909679863115685,
- "fn": 301678,
- "fn_rate": 0.9924891680182655,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999832,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007510831981734499,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2283,
- "tp_rate": 0.007510831981734499,
- "truth_threshold": 45.76
- },
- {
- "f1": 0.014870786773685826,
- "fn": 301684,
- "fn_rate": 0.9925089073927247,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999835,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007491092607275276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2277,
- "tp_rate": 0.007491092607275276,
- "truth_threshold": 45.78
- },
- {
- "f1": 0.014747663429321595,
- "fn": 301703,
- "fn_rate": 0.9925714154118456,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999837,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007428584588154401,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2258,
- "tp_rate": 0.007428584588154401,
- "truth_threshold": 45.800000000000004
- },
- {
- "f1": 0.014663331221465289,
- "fn": 301716,
- "fn_rate": 0.9926141840565073,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999839,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0073858159434927505,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2245,
- "tp_rate": 0.0073858159434927505,
- "truth_threshold": 45.82
- },
- {
- "f1": 0.014630960156760287,
- "fn": 301721,
- "fn_rate": 0.9926306335352233,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999841,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0073693664647767314,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2240,
- "tp_rate": 0.0073693664647767314,
- "truth_threshold": 45.84
- },
- {
- "f1": 0.014553150352071276,
- "fn": 301733,
- "fn_rate": 0.9926701122841417,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999843,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007329887715858284,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2228,
- "tp_rate": 0.007329887715858284,
- "truth_threshold": 45.86
- },
- {
- "f1": 0.014416921428758068,
- "fn": 301754,
- "fn_rate": 0.992739200094749,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999846,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007260799905251003,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2207,
- "tp_rate": 0.007260799905251003,
- "truth_threshold": 45.88
- },
- {
- "f1": 0.01425482292530917,
- "fn": 301779,
- "fn_rate": 0.9928214474883291,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999848,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007178552511670905,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2182,
- "tp_rate": 0.007178552511670905,
- "truth_threshold": 45.9
- },
- {
- "f1": 0.01422887717303961,
- "fn": 301783,
- "fn_rate": 0.9928346070713019,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007165392928698089,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2178,
- "tp_rate": 0.007165392928698089,
- "truth_threshold": 45.92
- },
- {
- "f1": 0.01419639765592845,
- "fn": 301788,
- "fn_rate": 0.9928510565500179,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999852,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00714894344998207,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2173,
- "tp_rate": 0.00714894344998207,
- "truth_threshold": 45.94
- },
- {
- "f1": 0.014151035847984163,
- "fn": 301795,
- "fn_rate": 0.9928740858202204,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999853,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007125914179779643,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2166,
- "tp_rate": 0.007125914179779643,
- "truth_threshold": 45.96
- },
- {
- "f1": 0.014118554040545926,
- "fn": 301800,
- "fn_rate": 0.9928905352989363,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999856,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007109464701063623,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2161,
- "tp_rate": 0.007109464701063623,
- "truth_threshold": 45.980000000000004
- },
- {
- "f1": 0.014086163415175946,
- "fn": 301805,
- "fn_rate": 0.9929069847776524,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007093015222347604,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2156,
- "tp_rate": 0.007093015222347604,
- "truth_threshold": 46
- },
- {
- "f1": 0.014079629944204157,
- "fn": 301806,
- "fn_rate": 0.9929102746733957,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0070897253266044,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2155,
- "tp_rate": 0.0070897253266044,
- "truth_threshold": 46.02
- },
- {
- "f1": 0.013988801118581388,
- "fn": 301820,
- "fn_rate": 0.9929563332138005,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999862,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.007043666786199545,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2141,
- "tp_rate": 0.007043666786199545,
- "truth_threshold": 46.04
- },
- {
- "f1": 0.013774716729615642,
- "fn": 301853,
- "fn_rate": 0.9930648997733262,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0069351002266738165,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2108,
- "tp_rate": 0.0069351002266738165,
- "truth_threshold": 46.06
- },
- {
- "f1": 0.013547514328473308,
- "fn": 301888,
- "fn_rate": 0.9931800461243383,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0068199538756616804,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2073,
- "tp_rate": 0.0068199538756616804,
- "truth_threshold": 46.08
- },
- {
- "f1": 0.013463172341677014,
- "fn": 301901,
- "fn_rate": 0.993222814769,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00677718523100003,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2060,
- "tp_rate": 0.00677718523100003,
- "truth_threshold": 46.1
- },
- {
- "f1": 0.013437205897730838,
- "fn": 301905,
- "fn_rate": 0.9932359743519728,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999869,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006764025648027214,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2056,
- "tp_rate": 0.006764025648027214,
- "truth_threshold": 46.12
- },
- {
- "f1": 0.013378735196465453,
- "fn": 301914,
- "fn_rate": 0.9932655834136617,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999871,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006734416586338379,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2047,
- "tp_rate": 0.006734416586338379,
- "truth_threshold": 46.14
- },
- {
- "f1": 0.013313812508578488,
- "fn": 301924,
- "fn_rate": 0.9932984823710936,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999872,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00670151762890634,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2037,
- "tp_rate": 0.00670151762890634,
- "truth_threshold": 46.160000000000004
- },
- {
- "f1": 0.013229449905877431,
- "fn": 301937,
- "fn_rate": 0.9933412510157553,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999875,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006658748984244689,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2024,
- "tp_rate": 0.006658748984244689,
- "truth_threshold": 46.18
- },
- {
- "f1": 0.01320992738134923,
- "fn": 301940,
- "fn_rate": 0.9933511207029849,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006648879297015077,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2021,
- "tp_rate": 0.006648879297015077,
- "truth_threshold": 46.2
- },
- {
- "f1": 0.013099580342785426,
- "fn": 301957,
- "fn_rate": 0.9934070489306194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999878,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006592951069380611,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2004,
- "tp_rate": 0.006592951069380611,
- "truth_threshold": 46.22
- },
- {
- "f1": 0.01306706759053471,
- "fn": 301962,
- "fn_rate": 0.9934234984093354,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006576501590664592,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1999,
- "tp_rate": 0.006576501590664592,
- "truth_threshold": 46.24
- },
- {
- "f1": 0.01299567246721665,
- "fn": 301973,
- "fn_rate": 0.9934596872625107,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999881,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006540312737489349,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1988,
- "tp_rate": 0.006540312737489349,
- "truth_threshold": 46.26
- },
- {
- "f1": 0.012865772338589472,
- "fn": 301993,
- "fn_rate": 0.9935254851773747,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999883,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006474514822625271,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1968,
- "tp_rate": 0.006474514822625271,
- "truth_threshold": 46.28
- },
- {
- "f1": 0.012833252703285784,
- "fn": 301998,
- "fn_rate": 0.9935419346560908,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999885,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006458065343909252,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1963,
- "tp_rate": 0.006458065343909252,
- "truth_threshold": 46.300000000000004
- },
- {
- "f1": 0.012794278205270694,
- "fn": 302004,
- "fn_rate": 0.99356167403055,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999886,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006438325969450028,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1957,
- "tp_rate": 0.006438325969450028,
- "truth_threshold": 46.32
- },
- {
- "f1": 0.012709869763062922,
- "fn": 302017,
- "fn_rate": 0.9936044426752116,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006395557324788377,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1944,
- "tp_rate": 0.006395557324788377,
- "truth_threshold": 46.34
- },
- {
- "f1": 0.012677345537757437,
- "fn": 302022,
- "fn_rate": 0.9936208921539277,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999889,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006379107846072358,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1939,
- "tp_rate": 0.006379107846072358,
- "truth_threshold": 46.36
- },
- {
- "f1": 0.01261237699826735,
- "fn": 302032,
- "fn_rate": 0.9936537911113597,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999891,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006346208888640319,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1929,
- "tp_rate": 0.006346208888640319,
- "truth_threshold": 46.38
- },
- {
- "f1": 0.01254740421080162,
- "fn": 302042,
- "fn_rate": 0.9936866900687917,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999892,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00631330993120828,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1919,
- "tp_rate": 0.00631330993120828,
- "truth_threshold": 46.4
- },
- {
- "f1": 0.012508418499120552,
- "fn": 302048,
- "fn_rate": 0.9937064294432509,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999893,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006293570556749057,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1913,
- "tp_rate": 0.006293570556749057,
- "truth_threshold": 46.42
- },
- {
- "f1": 0.012430442487134721,
- "fn": 302060,
- "fn_rate": 0.9937459081921693,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0062540918078306095,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1901,
- "tp_rate": 0.0062540918078306095,
- "truth_threshold": 46.44
- },
- {
- "f1": 0.01242398482966063,
- "fn": 302061,
- "fn_rate": 0.9937491980879126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999897,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006250801912087406,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1900,
- "tp_rate": 0.006250801912087406,
- "truth_threshold": 46.46
- },
- {
- "f1": 0.012365457803120464,
- "fn": 302070,
- "fn_rate": 0.9937788071496014,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999898,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0062211928503985705,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1891,
- "tp_rate": 0.0062211928503985705,
- "truth_threshold": 46.480000000000004
- },
- {
- "f1": 0.012203017402052147,
- "fn": 302095,
- "fn_rate": 0.9938610545431815,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0061389454568184735,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1866,
- "tp_rate": 0.0061389454568184735,
- "truth_threshold": 46.5
- },
- {
- "f1": 0.01212501716729777,
- "fn": 302107,
- "fn_rate": 0.9939005332920999,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999901,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006099466707900026,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1854,
- "tp_rate": 0.006099466707900026,
- "truth_threshold": 46.52
- },
- {
- "f1": 0.012105476567302787,
- "fn": 302110,
- "fn_rate": 0.9939104029793295,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006089597020670415,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1851,
- "tp_rate": 0.006089597020670415,
- "truth_threshold": 46.54
- },
- {
- "f1": 0.012099015728720448,
- "fn": 302111,
- "fn_rate": 0.9939136928750728,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999903,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006086307124927211,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1850,
- "tp_rate": 0.006086307124927211,
- "truth_threshold": 46.56
- },
- {
- "f1": 0.012053472158637559,
- "fn": 302118,
- "fn_rate": 0.9939367221452752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999905,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006063277854724784,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1843,
- "tp_rate": 0.006063277854724784,
- "truth_threshold": 46.58
- },
- {
- "f1": 0.012001465028973564,
- "fn": 302126,
- "fn_rate": 0.9939630413112208,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999907,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.006036958688779153,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1835,
- "tp_rate": 0.006036958688779153,
- "truth_threshold": 46.6
- },
- {
- "f1": 0.011890979730392638,
- "fn": 302143,
- "fn_rate": 0.9940189695388553,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999908,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005981030461144687,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1818,
- "tp_rate": 0.005981030461144687,
- "truth_threshold": 46.62
- },
- {
- "f1": 0.011845427311853276,
- "fn": 302150,
- "fn_rate": 0.9940419988090577,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999909,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005958001190942259,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1811,
- "tp_rate": 0.005958001190942259,
- "truth_threshold": 46.64
- },
- {
- "f1": 0.011754393997867594,
- "fn": 302164,
- "fn_rate": 0.9940880573494626,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005911942650537404,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1797,
- "tp_rate": 0.005911942650537404,
- "truth_threshold": 46.660000000000004
- },
- {
- "f1": 0.01159831749167577,
- "fn": 302188,
- "fn_rate": 0.9941670148472995,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999911,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005832985152700511,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1773,
- "tp_rate": 0.005832985152700511,
- "truth_threshold": 46.68
- },
- {
- "f1": 0.011565836298932384,
- "fn": 302193,
- "fn_rate": 0.9941834643260155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999912,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005816535673984492,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1768,
- "tp_rate": 0.005816535673984492,
- "truth_threshold": 46.7
- },
- {
- "f1": 0.011526811940259452,
- "fn": 302199,
- "fn_rate": 0.9942032037004748,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999913,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005796796299525268,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1762,
- "tp_rate": 0.005796796299525268,
- "truth_threshold": 46.72
- },
- {
- "f1": 0.011435749146244128,
- "fn": 302213,
- "fn_rate": 0.9942492622408796,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999915,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005750737759120414,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1748,
- "tp_rate": 0.005750737759120414,
- "truth_threshold": 46.74
- },
- {
- "f1": 0.01139671968125822,
- "fn": 302219,
- "fn_rate": 0.9942690016153388,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00573099838466119,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1742,
- "tp_rate": 0.00573099838466119,
- "truth_threshold": 46.76
- },
- {
- "f1": 0.011351146236784257,
- "fn": 302226,
- "fn_rate": 0.9942920308855412,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999917,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005707969114458763,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1735,
- "tp_rate": 0.005707969114458763,
- "truth_threshold": 46.78
- },
- {
- "f1": 0.011247055744569485,
- "fn": 302242,
- "fn_rate": 0.9943446692174325,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999918,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0056553307825675005,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1719,
- "tp_rate": 0.0056553307825675005,
- "truth_threshold": 46.800000000000004
- },
- {
- "f1": 0.01119500641210186,
- "fn": 302250,
- "fn_rate": 0.9943709883833781,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999919,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00562901161662187,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1711,
- "tp_rate": 0.00562901161662187,
- "truth_threshold": 46.82
- },
- {
- "f1": 0.011136484090269645,
- "fn": 302259,
- "fn_rate": 0.9944005974450669,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005599402554933034,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1702,
- "tp_rate": 0.005599402554933034,
- "truth_threshold": 46.84
- },
- {
- "f1": 0.011116927304848525,
- "fn": 302262,
- "fn_rate": 0.9944104671322965,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999921,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0055895328677034225,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1699,
- "tp_rate": 0.0055895328677034225,
- "truth_threshold": 46.86
- },
- {
- "f1": 0.011084428798576167,
- "fn": 302267,
- "fn_rate": 0.9944269166110126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999922,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0055730833889874026,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1694,
- "tp_rate": 0.0055730833889874026,
- "truth_threshold": 46.88
- },
- {
- "f1": 0.01101935585190614,
- "fn": 302277,
- "fn_rate": 0.9944598155684446,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999923,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0055401844315553644,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1684,
- "tp_rate": 0.0055401844315553644,
- "truth_threshold": 46.9
- },
- {
- "f1": 0.010941262695005758,
- "fn": 302289,
- "fn_rate": 0.9944992943173631,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999925,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005500705682636917,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1672,
- "tp_rate": 0.005500705682636917,
- "truth_threshold": 46.92
- },
- {
- "f1": 0.010843602143852783,
- "fn": 302304,
- "fn_rate": 0.9945486427535112,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999926,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005451357246488858,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1657,
- "tp_rate": 0.005451357246488858,
- "truth_threshold": 46.94
- },
- {
- "f1": 0.010739458511397177,
- "fn": 302320,
- "fn_rate": 0.9946012810854024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999927,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005398718914597597,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1641,
- "tp_rate": 0.005398718914597597,
- "truth_threshold": 46.96
- },
- {
- "f1": 0.010693927236791299,
- "fn": 302327,
- "fn_rate": 0.9946243103556048,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0053756896443951695,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1634,
- "tp_rate": 0.0053756896443951695,
- "truth_threshold": 46.980000000000004
- },
- {
- "f1": 0.010641848775794703,
- "fn": 302335,
- "fn_rate": 0.9946506295215505,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005349370478449538,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1626,
- "tp_rate": 0.005349370478449538,
- "truth_threshold": 47.02
- },
- {
- "f1": 0.010609263634638166,
- "fn": 302340,
- "fn_rate": 0.9946670790002665,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005332920999733519,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1621,
- "tp_rate": 0.005332920999733519,
- "truth_threshold": 47.04
- },
- {
- "f1": 0.010576746864937037,
- "fn": 302345,
- "fn_rate": 0.9946835284789824,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999932,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005316471521017499,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1616,
- "tp_rate": 0.005316471521017499,
- "truth_threshold": 47.06
- },
- {
- "f1": 0.010544159805217756,
- "fn": 302350,
- "fn_rate": 0.9946999779576985,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999932,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00530002204230148,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1611,
- "tp_rate": 0.00530002204230148,
- "truth_threshold": 47.08
- },
- {
- "f1": 0.010531138527996859,
- "fn": 302352,
- "fn_rate": 0.9947065577491849,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999933,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005293442250815072,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1609,
- "tp_rate": 0.005293442250815072,
- "truth_threshold": 47.1
- },
- {
- "f1": 0.010485597031044435,
- "fn": 302359,
- "fn_rate": 0.9947295870193874,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999934,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005270412980612644,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1602,
- "tp_rate": 0.005270412980612644,
- "truth_threshold": 47.12
- },
- {
- "f1": 0.010459552687214865,
- "fn": 302363,
- "fn_rate": 0.9947427466023602,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999936,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005257253397639829,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1598,
- "tp_rate": 0.005257253397639829,
- "truth_threshold": 47.14
- },
- {
- "f1": 0.010381415564268555,
- "fn": 302375,
- "fn_rate": 0.9947822253512786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005217774648721382,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1586,
- "tp_rate": 0.005217774648721382,
- "truth_threshold": 47.160000000000004
- },
- {
- "f1": 0.010335798913399228,
- "fn": 302382,
- "fn_rate": 0.9948052546214811,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005194745378518955,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1579,
- "tp_rate": 0.005194745378518955,
- "truth_threshold": 47.18
- },
- {
- "f1": 0.010296726387243318,
- "fn": 302388,
- "fn_rate": 0.9948249939959403,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005175006004059731,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1573,
- "tp_rate": 0.005175006004059731,
- "truth_threshold": 47.2
- },
- {
- "f1": 0.010244627298495054,
- "fn": 302396,
- "fn_rate": 0.9948513131618859,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0051486868381141,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1565,
- "tp_rate": 0.0051486868381141,
- "truth_threshold": 47.22
- },
- {
- "f1": 0.010238148230580904,
- "fn": 302397,
- "fn_rate": 0.9948546030576291,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005145396942370897,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1564,
- "tp_rate": 0.005145396942370897,
- "truth_threshold": 47.24
- },
- {
- "f1": 0.01022512290440623,
- "fn": 302399,
- "fn_rate": 0.9948611828491155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999941,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0051388171508844884,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1562,
- "tp_rate": 0.0051388171508844884,
- "truth_threshold": 47.26
- },
- {
- "f1": 0.010199071740453917,
- "fn": 302403,
- "fn_rate": 0.9948743424320883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999941,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005125657567911673,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1558,
- "tp_rate": 0.005125657567911673,
- "truth_threshold": 47.28
- },
- {
- "f1": 0.010133940846066223,
- "fn": 302413,
- "fn_rate": 0.9949072413895204,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999942,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005092758610479634,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1548,
- "tp_rate": 0.005092758610479634,
- "truth_threshold": 47.300000000000004
- },
- {
- "f1": 0.010101340735309522,
- "fn": 302418,
- "fn_rate": 0.9949236908682364,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005076309131763614,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1543,
- "tp_rate": 0.005076309131763614,
- "truth_threshold": 47.32
- },
- {
- "f1": 0.010081833060556464,
- "fn": 302421,
- "fn_rate": 0.994933560555466,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005066439444534002,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1540,
- "tp_rate": 0.005066439444534002,
- "truth_threshold": 47.34
- },
- {
- "f1": 0.00998409092397033,
- "fn": 302436,
- "fn_rate": 0.994982908991614,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005017091008385944,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1525,
- "tp_rate": 0.005017091008385944,
- "truth_threshold": 47.36
- },
- {
- "f1": 0.009958033533890704,
- "fn": 302440,
- "fn_rate": 0.9949960685745869,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.005003931425413129,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1521,
- "tp_rate": 0.005003931425413129,
- "truth_threshold": 47.38
- },
- {
- "f1": 0.00993852257773064,
- "fn": 302443,
- "fn_rate": 0.9950059382618165,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004994061738183517,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1518,
- "tp_rate": 0.004994061738183517,
- "truth_threshold": 47.4
- },
- {
- "f1": 0.009879857269126265,
- "fn": 302452,
- "fn_rate": 0.9950355473235053,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004964452676494682,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1509,
- "tp_rate": 0.004964452676494682,
- "truth_threshold": 47.42
- },
- {
- "f1": 0.009690937663698272,
- "fn": 302481,
- "fn_rate": 0.9951309543000583,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999948,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004869045699941769,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1480,
- "tp_rate": 0.004869045699941769,
- "truth_threshold": 47.44
- },
- {
- "f1": 0.009625773499656222,
- "fn": 302491,
- "fn_rate": 0.9951638532574902,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999948,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00483614674250973,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1470,
- "tp_rate": 0.00483614674250973,
- "truth_threshold": 47.46
- },
- {
- "f1": 0.009619225354418361,
- "fn": 302492,
- "fn_rate": 0.9951671431532335,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999949,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004832856846766526,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1469,
- "tp_rate": 0.004832856846766526,
- "truth_threshold": 47.480000000000004
- },
- {
- "f1": 0.009534536501034654,
- "fn": 302505,
- "fn_rate": 0.9952099117978951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004790088202104875,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1456,
- "tp_rate": 0.004790088202104875,
- "truth_threshold": 47.5
- },
- {
- "f1": 0.00951495347299076,
- "fn": 302508,
- "fn_rate": 0.9952197814851247,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004780218514875263,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1453,
- "tp_rate": 0.004780218514875263,
- "truth_threshold": 47.52
- },
- {
- "f1": 0.009397634546621436,
- "fn": 302526,
- "fn_rate": 0.9952789996085024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999951,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004721000391497593,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1435,
- "tp_rate": 0.004721000391497593,
- "truth_threshold": 47.54
- },
- {
- "f1": 0.009260775311585139,
- "fn": 302547,
- "fn_rate": 0.9953480874191097,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004651912580890312,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1414,
- "tp_rate": 0.004651912580890312,
- "truth_threshold": 47.56
- },
- {
- "f1": 0.009162955200419178,
- "fn": 302562,
- "fn_rate": 0.9953974358552578,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004602564144742253,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1399,
- "tp_rate": 0.004602564144742253,
- "truth_threshold": 47.58
- },
- {
- "f1": 0.009149915836493558,
- "fn": 302564,
- "fn_rate": 0.9954040156467442,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999953,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004595984353255846,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1397,
- "tp_rate": 0.004595984353255846,
- "truth_threshold": 47.6
- },
- {
- "f1": 0.00904559477569414,
- "fn": 302580,
- "fn_rate": 0.9954566539786354,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999953,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004543346021364583,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1381,
- "tp_rate": 0.004543346021364583,
- "truth_threshold": 47.62
- },
- {
- "f1": 0.008999980349387883,
- "fn": 302587,
- "fn_rate": 0.9954796832488378,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999954,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004520316751162156,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1374,
- "tp_rate": 0.004520316751162156,
- "truth_threshold": 47.64
- },
- {
- "f1": 0.008973897094946452,
- "fn": 302591,
- "fn_rate": 0.9954928428318106,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999954,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00450715716818934,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1370,
- "tp_rate": 0.00450715716818934,
- "truth_threshold": 47.660000000000004
- },
- {
- "f1": 0.008954304878687838,
- "fn": 302594,
- "fn_rate": 0.9955027125190403,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004497287480959729,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1367,
- "tp_rate": 0.004497287480959729,
- "truth_threshold": 47.68
- },
- {
- "f1": 0.00889564323099195,
- "fn": 302603,
- "fn_rate": 0.9955323215807291,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004467678419270893,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1358,
- "tp_rate": 0.004467678419270893,
- "truth_threshold": 47.7
- },
- {
- "f1": 0.008797788433823337,
- "fn": 302618,
- "fn_rate": 0.9955816700168771,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004418329983122835,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1343,
- "tp_rate": 0.004418329983122835,
- "truth_threshold": 47.72
- },
- {
- "f1": 0.008752161836381741,
- "fn": 302625,
- "fn_rate": 0.9956046992870796,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004395300712920407,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1336,
- "tp_rate": 0.004395300712920407,
- "truth_threshold": 47.74
- },
- {
- "f1": 0.008549920397292852,
- "fn": 302656,
- "fn_rate": 0.9957066860551189,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0042933139448810866,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1305,
- "tp_rate": 0.0042933139448810866,
- "truth_threshold": 47.76
- },
- {
- "f1": 0.00851732948961541,
- "fn": 302661,
- "fn_rate": 0.995723135533835,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999959,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0042768644661650675,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1300,
- "tp_rate": 0.0042768644661650675,
- "truth_threshold": 47.78
- },
- {
- "f1": 0.008497729789227472,
- "fn": 302664,
- "fn_rate": 0.9957330052210646,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999959,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004266994778935456,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1297,
- "tp_rate": 0.004266994778935456,
- "truth_threshold": 47.800000000000004
- },
- {
- "f1": 0.008465137001559367,
- "fn": 302669,
- "fn_rate": 0.9957494546997806,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004250545300219436,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1292,
- "tp_rate": 0.004250545300219436,
- "truth_threshold": 47.82
- },
- {
- "f1": 0.008432487682146975,
- "fn": 302674,
- "fn_rate": 0.9957659041784965,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004234095821503417,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1287,
- "tp_rate": 0.004234095821503417,
- "truth_threshold": 47.84
- },
- {
- "f1": 0.008399892544276345,
- "fn": 302679,
- "fn_rate": 0.9957823536572126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999961,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004217646342787397,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1282,
- "tp_rate": 0.004217646342787397,
- "truth_threshold": 47.86
- },
- {
- "f1": 0.008354191510830963,
- "fn": 302686,
- "fn_rate": 0.995805382927415,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999961,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00419461707258497,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1275,
- "tp_rate": 0.00419461707258497,
- "truth_threshold": 47.88
- },
- {
- "f1": 0.008334643811920114,
- "fn": 302689,
- "fn_rate": 0.9958152526146447,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004184747385355358,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1272,
- "tp_rate": 0.004184747385355358,
- "truth_threshold": 47.9
- },
- {
- "f1": 0.008236735710213683,
- "fn": 302704,
- "fn_rate": 0.9958646010507927,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0041353989492073,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1257,
- "tp_rate": 0.0041353989492073,
- "truth_threshold": 47.92
- },
- {
- "f1": 0.0081519246143563,
- "fn": 302717,
- "fn_rate": 0.9959073696954543,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004092630304545649,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1244,
- "tp_rate": 0.004092630304545649,
- "truth_threshold": 47.94
- },
- {
- "f1": 0.008086659632889244,
- "fn": 302727,
- "fn_rate": 0.9959402686528864,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00405973134711361,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1234,
- "tp_rate": 0.00405973134711361,
- "truth_threshold": 47.96
- },
- {
- "f1": 0.008027891187669159,
- "fn": 302736,
- "fn_rate": 0.9959698777145752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004030122285424775,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1225,
- "tp_rate": 0.004030122285424775,
- "truth_threshold": 47.980000000000004
- },
- {
- "f1": 0.008001782542876054,
- "fn": 302740,
- "fn_rate": 0.995983037297548,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.004016962702451959,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1221,
- "tp_rate": 0.004016962702451959,
- "truth_threshold": 48
- },
- {
- "f1": 0.007956116838262762,
- "fn": 302747,
- "fn_rate": 0.9960060665677505,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003993933432249532,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1214,
- "tp_rate": 0.003993933432249532,
- "truth_threshold": 48.02
- },
- {
- "f1": 0.007832059667842022,
- "fn": 302766,
- "fn_rate": 0.9960685745868714,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003931425413128658,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1195,
- "tp_rate": 0.003931425413128658,
- "truth_threshold": 48.04
- },
- {
- "f1": 0.007792888743241029,
- "fn": 302772,
- "fn_rate": 0.9960883139613306,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003911686038669435,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1189,
- "tp_rate": 0.003911686038669435,
- "truth_threshold": 48.06
- },
- {
- "f1": 0.0077798314260621075,
- "fn": 302774,
- "fn_rate": 0.996094893752817,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999967,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003905106247183027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1187,
- "tp_rate": 0.003905106247183027,
- "truth_threshold": 48.08
- },
- {
- "f1": 0.007708038382885009,
- "fn": 302785,
- "fn_rate": 0.9961310826059923,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999967,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003868917394007784,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1176,
- "tp_rate": 0.003868917394007784,
- "truth_threshold": 48.1
- },
- {
- "f1": 0.0076492488398311525,
- "fn": 302794,
- "fn_rate": 0.9961606916676811,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003839308332318949,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1167,
- "tp_rate": 0.003839308332318949,
- "truth_threshold": 48.120000000000005
- },
- {
- "f1": 0.007597011012060829,
- "fn": 302802,
- "fn_rate": 0.9961870108336267,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0038129891663733176,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1159,
- "tp_rate": 0.0038129891663733176,
- "truth_threshold": 48.14
- },
- {
- "f1": 0.007479465883540586,
- "fn": 302820,
- "fn_rate": 0.9962462289570043,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0037537710429956473,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1141,
- "tp_rate": 0.0037537710429956473,
- "truth_threshold": 48.18
- },
- {
- "f1": 0.007388032305433187,
- "fn": 302834,
- "fn_rate": 0.9962922874974092,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003707712502590793,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1127,
- "tp_rate": 0.003707712502590793,
- "truth_threshold": 48.2
- },
- {
- "f1": 0.007374969680680202,
- "fn": 302836,
- "fn_rate": 0.9962988672888956,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0037011327111043852,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1125,
- "tp_rate": 0.0037011327111043852,
- "truth_threshold": 48.24
- },
- {
- "f1": 0.007348843917373034,
- "fn": 302840,
- "fn_rate": 0.9963120268718685,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0036879731281315694,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1121,
- "tp_rate": 0.0036879731281315694,
- "truth_threshold": 48.26
- },
- {
- "f1": 0.007342336436344565,
- "fn": 302841,
- "fn_rate": 0.9963153167676116,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999971,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0036846832323883657,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1120,
- "tp_rate": 0.0036846832323883657,
- "truth_threshold": 48.28
- },
- {
- "f1": 0.007316209731345632,
- "fn": 302845,
- "fn_rate": 0.9963284763505844,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999971,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00367152364941555,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1116,
- "tp_rate": 0.00367152364941555,
- "truth_threshold": 48.300000000000004
- },
- {
- "f1": 0.0072770183892221455,
- "fn": 302851,
- "fn_rate": 0.9963482157250437,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999971,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0036517842749563267,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1110,
- "tp_rate": 0.0036517842749563267,
- "truth_threshold": 48.32
- },
- {
- "f1": 0.007237825505467705,
- "fn": 302857,
- "fn_rate": 0.9963679550995029,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003632044900497103,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1104,
- "tp_rate": 0.003632044900497103,
- "truth_threshold": 48.34
- },
- {
- "f1": 0.0072116960597915164,
- "fn": 302861,
- "fn_rate": 0.9963811146824757,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0036188853175242877,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1100,
- "tp_rate": 0.0036188853175242877,
- "truth_threshold": 48.36
- },
- {
- "f1": 0.007126747266004038,
- "fn": 302874,
- "fn_rate": 0.9964238833271374,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003576116672862637,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1087,
- "tp_rate": 0.003576116672862637,
- "truth_threshold": 48.38
- },
- {
- "f1": 0.007087548599864936,
- "fn": 302880,
- "fn_rate": 0.9964436227015966,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0035563772984034134,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1081,
- "tp_rate": 0.0035563772984034134,
- "truth_threshold": 48.4
- },
- {
- "f1": 0.007022214062786855,
- "fn": 302890,
- "fn_rate": 0.9964765216590287,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0035234783409713744,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1071,
- "tp_rate": 0.0035234783409713744,
- "truth_threshold": 48.44
- },
- {
- "f1": 0.006963432145878002,
- "fn": 302899,
- "fn_rate": 0.9965061307207175,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999974,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0034938692792825395,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1062,
- "tp_rate": 0.0034938692792825395,
- "truth_threshold": 48.46
- },
- {
- "f1": 0.006917669892726939,
- "fn": 302906,
- "fn_rate": 0.9965291599909198,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999974,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0034708400090801123,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1055,
- "tp_rate": 0.0034708400090801123,
- "truth_threshold": 48.480000000000004
- },
- {
- "f1": 0.006885020163273335,
- "fn": 302911,
- "fn_rate": 0.9965456094696359,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999974,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003454390530364093,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1050,
- "tp_rate": 0.003454390530364093,
- "truth_threshold": 48.5
- },
- {
- "f1": 0.0068719508996485336,
- "fn": 302913,
- "fn_rate": 0.9965521892611223,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003447810738877685,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1048,
- "tp_rate": 0.003447810738877685,
- "truth_threshold": 48.52
- },
- {
- "f1": 0.006832742080379801,
- "fn": 302919,
- "fn_rate": 0.9965719286355815,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0034280713644184615,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1042,
- "tp_rate": 0.0034280713644184615,
- "truth_threshold": 48.54
- },
- {
- "f1": 0.006819672131147541,
- "fn": 302921,
- "fn_rate": 0.996578508427068,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003421491572932054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1040,
- "tp_rate": 0.003421491572932054,
- "truth_threshold": 48.56
- },
- {
- "f1": 0.0067804612549755075,
- "fn": 302927,
- "fn_rate": 0.9965982478015272,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0034017521984728303,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1034,
- "tp_rate": 0.0034017521984728303,
- "truth_threshold": 48.6
- },
- {
- "f1": 0.006721620008787289,
- "fn": 302936,
- "fn_rate": 0.996627856863216,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0033721431367839953,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1025,
- "tp_rate": 0.0033721431367839953,
- "truth_threshold": 48.620000000000005
- },
- {
- "f1": 0.006695477110124532,
- "fn": 302940,
- "fn_rate": 0.9966410164461889,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00335898355381118,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1021,
- "tp_rate": 0.00335898355381118,
- "truth_threshold": 48.64
- },
- {
- "f1": 0.006682405403633025,
- "fn": 302942,
- "fn_rate": 0.9966475962376752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999978,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0033524037623247718,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1019,
- "tp_rate": 0.0033524037623247718,
- "truth_threshold": 48.68
- },
- {
- "f1": 0.00665626147631289,
- "fn": 302946,
- "fn_rate": 0.9966607558206481,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999978,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0033392441793519564,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1015,
- "tp_rate": 0.0033392441793519564,
- "truth_threshold": 48.7
- },
- {
- "f1": 0.0066236023215398235,
- "fn": 302951,
- "fn_rate": 0.9966772052993641,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003322794700635937,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1010,
- "tp_rate": 0.003322794700635937,
- "truth_threshold": 48.72
- },
- {
- "f1": 0.006577825579412652,
- "fn": 302958,
- "fn_rate": 0.9967002345695665,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0032997654304335097,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1003,
- "tp_rate": 0.0032997654304335097,
- "truth_threshold": 48.74
- },
- {
- "f1": 0.006558237145855194,
- "fn": 302961,
- "fn_rate": 0.9967101042567961,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003289895743203898,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1000,
- "tp_rate": 0.003289895743203898,
- "truth_threshold": 48.76
- },
- {
- "f1": 0.0064993835095359265,
- "fn": 302970,
- "fn_rate": 0.996739713318485,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003260286681515063,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 991,
- "tp_rate": 0.003260286681515063,
- "truth_threshold": 48.78
- },
- {
- "f1": 0.006479793276230702,
- "fn": 302973,
- "fn_rate": 0.9967495830057146,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003250416994285451,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 988,
- "tp_rate": 0.003250416994285451,
- "truth_threshold": 48.800000000000004
- },
- {
- "f1": 0.006473234781011845,
- "fn": 302974,
- "fn_rate": 0.9967528729014578,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003247127098542247,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 987,
- "tp_rate": 0.003247127098542247,
- "truth_threshold": 48.82
- },
- {
- "f1": 0.006257502115350558,
- "fn": 303007,
- "fn_rate": 0.9968614394609835,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0031385605390165184,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 954,
- "tp_rate": 0.0031385605390165184,
- "truth_threshold": 48.84
- },
- {
- "f1": 0.006133238874895046,
- "fn": 303026,
- "fn_rate": 0.9969239474801044,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030760525198956445,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 935,
- "tp_rate": 0.0030760525198956445,
- "truth_threshold": 48.86
- },
- {
- "f1": 0.006113640239822625,
- "fn": 303029,
- "fn_rate": 0.996933817167334,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030661828326660327,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 932,
- "tp_rate": 0.0030661828326660327,
- "truth_threshold": 48.88
- },
- {
- "f1": 0.00610708053999449,
- "fn": 303030,
- "fn_rate": 0.9969371070630771,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003062892936922829,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 931,
- "tp_rate": 0.003062892936922829,
- "truth_threshold": 48.92
- },
- {
- "f1": 0.006087481304610218,
- "fn": 303033,
- "fn_rate": 0.9969469767503067,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030530232496932173,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 928,
- "tp_rate": 0.0030530232496932173,
- "truth_threshold": 48.94
- },
- {
- "f1": 0.006067841750687142,
- "fn": 303036,
- "fn_rate": 0.9969568464375363,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030431535624636055,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 925,
- "tp_rate": 0.0030431535624636055,
- "truth_threshold": 48.96
- },
- {
- "f1": 0.006061321683000748,
- "fn": 303037,
- "fn_rate": 0.9969601363332796,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.003039863666720402,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 924,
- "tp_rate": 0.003039863666720402,
- "truth_threshold": 48.980000000000004
- },
- {
- "f1": 0.006022080963532954,
- "fn": 303043,
- "fn_rate": 0.9969798757077388,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030201242922611783,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 918,
- "tp_rate": 0.0030201242922611783,
- "truth_threshold": 49
- },
- {
- "f1": 0.0060090003804825565,
- "fn": 303045,
- "fn_rate": 0.9969864554992253,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0030135445007747706,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 916,
- "tp_rate": 0.0030135445007747706,
- "truth_threshold": 49.02
- },
- {
- "f1": 0.0059305132780518525,
- "fn": 303057,
- "fn_rate": 0.9970259342481437,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002974065751856324,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 904,
- "tp_rate": 0.002974065751856324,
- "truth_threshold": 49.04
- },
- {
- "f1": 0.005891267409744865,
- "fn": 303063,
- "fn_rate": 0.9970456736226029,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0029543263773971003,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 898,
- "tp_rate": 0.0029543263773971003,
- "truth_threshold": 49.06
- },
- {
- "f1": 0.005845459436054216,
- "fn": 303070,
- "fn_rate": 0.9970687028928054,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002931297107194673,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 891,
- "tp_rate": 0.002931297107194673,
- "truth_threshold": 49.08
- },
- {
- "f1": 0.005838937182220764,
- "fn": 303071,
- "fn_rate": 0.9970719927885485,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002928007211451469,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 890,
- "tp_rate": 0.002928007211451469,
- "truth_threshold": 49.1
- },
- {
- "f1": 0.005773520535362813,
- "fn": 303081,
- "fn_rate": 0.9971048917459806,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00289510825401943,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 880,
- "tp_rate": 0.00289510825401943,
- "truth_threshold": 49.120000000000005
- },
- {
- "f1": 0.005740791770000918,
- "fn": 303086,
- "fn_rate": 0.9971213412246966,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0028786587753034105,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 875,
- "tp_rate": 0.0028786587753034105,
- "truth_threshold": 49.14
- },
- {
- "f1": 0.005708099596496408,
- "fn": 303091,
- "fn_rate": 0.9971377907034126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002862209296587391,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 870,
- "tp_rate": 0.002862209296587391,
- "truth_threshold": 49.160000000000004
- },
- {
- "f1": 0.005642674365199134,
- "fn": 303101,
- "fn_rate": 0.9971706896608447,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002829310339155352,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 860,
- "tp_rate": 0.002829310339155352,
- "truth_threshold": 49.18
- },
- {
- "f1": 0.005623027511498665,
- "fn": 303104,
- "fn_rate": 0.9971805593480743,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0028194406519257403,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 857,
- "tp_rate": 0.0028194406519257403,
- "truth_threshold": 49.2
- },
- {
- "f1": 0.005518336493855028,
- "fn": 303120,
- "fn_rate": 0.9972331976799655,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002766802320034478,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 841,
- "tp_rate": 0.002766802320034478,
- "truth_threshold": 49.24
- },
- {
- "f1": 0.00547907452853712,
- "fn": 303126,
- "fn_rate": 0.9972529370544247,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0027470629455752546,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 835,
- "tp_rate": 0.0027470629455752546,
- "truth_threshold": 49.26
- },
- {
- "f1": 0.00540054596041787,
- "fn": 303138,
- "fn_rate": 0.9972924158033432,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002707584196656808,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 823,
- "tp_rate": 0.002707584196656808,
- "truth_threshold": 49.28
- },
- {
- "f1": 0.00538745726453662,
- "fn": 303140,
- "fn_rate": 0.9972989955948296,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0027010044051704,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 821,
- "tp_rate": 0.0027010044051704,
- "truth_threshold": 49.300000000000004
- },
- {
- "f1": 0.005374368396876435,
- "fn": 303142,
- "fn_rate": 0.997305575386316,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0026944246136839925,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 819,
- "tp_rate": 0.0026944246136839925,
- "truth_threshold": 49.32
- },
- {
- "f1": 0.005322011208378723,
- "fn": 303150,
- "fn_rate": 0.9973318945522617,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002668105447738361,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 811,
- "tp_rate": 0.002668105447738361,
- "truth_threshold": 49.34
- },
- {
- "f1": 0.005276213726030633,
- "fn": 303157,
- "fn_rate": 0.997354923822464,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002645076177535934,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 804,
- "tp_rate": 0.002645076177535934,
- "truth_threshold": 49.36
- },
- {
- "f1": 0.005236942098320635,
- "fn": 303163,
- "fn_rate": 0.9973746631969233,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0026253368030767104,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 798,
- "tp_rate": 0.0026253368030767104,
- "truth_threshold": 49.38
- },
- {
- "f1": 0.005191106210951856,
- "fn": 303170,
- "fn_rate": 0.9973976924671257,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002602307532874283,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 791,
- "tp_rate": 0.002602307532874283,
- "truth_threshold": 49.4
- },
- {
- "f1": 0.005132210197478523,
- "fn": 303179,
- "fn_rate": 0.9974273015288145,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0025726984711854483,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 782,
- "tp_rate": 0.0025726984711854483,
- "truth_threshold": 49.42
- },
- {
- "f1": 0.005106025503875461,
- "fn": 303183,
- "fn_rate": 0.9974404611117874,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0025595388882126324,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 778,
- "tp_rate": 0.0025595388882126324,
- "truth_threshold": 49.44
- },
- {
- "f1": 0.005040560762384815,
- "fn": 303193,
- "fn_rate": 0.9974733600692194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0025266399307805935,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 768,
- "tp_rate": 0.0025266399307805935,
- "truth_threshold": 49.46
- },
- {
- "f1": 0.005027467298491103,
- "fn": 303195,
- "fn_rate": 0.9974799398607058,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0025200601392941857,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 766,
- "tp_rate": 0.0025200601392941857,
- "truth_threshold": 49.480000000000004
- },
- {
- "f1": 0.005014373662724302,
- "fn": 303197,
- "fn_rate": 0.9974865196521923,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002513480347807778,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 764,
- "tp_rate": 0.002513480347807778,
- "truth_threshold": 49.5
- },
- {
- "f1": 0.004935808238599071,
- "fn": 303209,
- "fn_rate": 0.9975259984011107,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024740015988893313,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 752,
- "tp_rate": 0.0024740015988893313,
- "truth_threshold": 49.52
- },
- {
- "f1": 0.00490961838875251,
- "fn": 303213,
- "fn_rate": 0.9975391579840834,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024608420159165155,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 748,
- "tp_rate": 0.0024608420159165155,
- "truth_threshold": 49.54
- },
- {
- "f1": 0.0048899595019461384,
- "fn": 303216,
- "fn_rate": 0.9975490276713131,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024509723286869037,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 745,
- "tp_rate": 0.0024509723286869037,
- "truth_threshold": 49.58
- },
- {
- "f1": 0.0048834278512917455,
- "fn": 303217,
- "fn_rate": 0.9975523175670563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024476824329437,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 744,
- "tp_rate": 0.0024476824329437,
- "truth_threshold": 49.6
- },
- {
- "f1": 0.004876864104179794,
- "fn": 303218,
- "fn_rate": 0.9975556074627995,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002444392537200496,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 743,
- "tp_rate": 0.002444392537200496,
- "truth_threshold": 49.620000000000005
- },
- {
- "f1": 0.004863768534502563,
- "fn": 303220,
- "fn_rate": 0.9975621872542859,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024378127457140883,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 741,
- "tp_rate": 0.0024378127457140883,
- "truth_threshold": 49.64
- },
- {
- "f1": 0.004831044713419277,
- "fn": 303225,
- "fn_rate": 0.997578636733002,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024213632669980688,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 736,
- "tp_rate": 0.0024213632669980688,
- "truth_threshold": 49.660000000000004
- },
- {
- "f1": 0.004804852112953409,
- "fn": 303229,
- "fn_rate": 0.9975917963159747,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0024082036840252534,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 732,
- "tp_rate": 0.0024082036840252534,
- "truth_threshold": 49.68
- },
- {
- "f1": 0.004778658824765005,
- "fn": 303233,
- "fn_rate": 0.9976049558989476,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0023950441010524375,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 728,
- "tp_rate": 0.0023950441010524375,
- "truth_threshold": 49.7
- },
- {
- "f1": 0.0047000748335937195,
- "fn": 303245,
- "fn_rate": 0.997644434647866,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999989,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002355565352133991,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 716,
- "tp_rate": 0.002355565352133991,
- "truth_threshold": 49.74
- },
- {
- "f1": 0.004693510483267471,
- "fn": 303246,
- "fn_rate": 0.9976477245436092,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002352275456390787,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 715,
- "tp_rate": 0.002352275456390787,
- "truth_threshold": 49.76
- },
- {
- "f1": 0.004667314357735532,
- "fn": 303250,
- "fn_rate": 0.997660884126582,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0023391158734179713,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 711,
- "tp_rate": 0.0023391158734179713,
- "truth_threshold": 49.78
- },
- {
- "f1": 0.004654216037023665,
- "fn": 303252,
- "fn_rate": 0.9976674639180685,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0023325360819315636,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 709,
- "tp_rate": 0.0023325360819315636,
- "truth_threshold": 49.800000000000004
- },
- {
- "f1": 0.0046345834454779985,
- "fn": 303255,
- "fn_rate": 0.9976773336052981,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002322666394701952,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 706,
- "tp_rate": 0.002322666394701952,
- "truth_threshold": 49.82
- },
- {
- "f1": 0.004628018879691203,
- "fn": 303256,
- "fn_rate": 0.9976806235010413,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002319376498958748,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 705,
- "tp_rate": 0.002319376498958748,
- "truth_threshold": 49.84
- },
- {
- "f1": 0.004549423280180139,
- "fn": 303268,
- "fn_rate": 0.9977201022499597,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002279897750040301,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 693,
- "tp_rate": 0.002279897750040301,
- "truth_threshold": 49.86
- },
- {
- "f1": 0.004542888279085645,
- "fn": 303269,
- "fn_rate": 0.9977233921457029,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0022766078542970974,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 692,
- "tp_rate": 0.0022766078542970974,
- "truth_threshold": 49.88
- },
- {
- "f1": 0.004523223371081569,
- "fn": 303272,
- "fn_rate": 0.9977332618329325,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0022667381670674856,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 689,
- "tp_rate": 0.0022667381670674856,
- "truth_threshold": 49.9
- },
- {
- "f1": 0.004516688112181928,
- "fn": 303273,
- "fn_rate": 0.9977365517286757,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0022634482713242816,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 688,
- "tp_rate": 0.0022634482713242816,
- "truth_threshold": 49.92
- },
- {
- "f1": 0.004497022773973727,
- "fn": 303276,
- "fn_rate": 0.9977464214159053,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00225357858409467,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 685,
- "tp_rate": 0.00225357858409467,
- "truth_threshold": 49.94
- },
- {
- "f1": 0.00444461951562182,
- "fn": 303284,
- "fn_rate": 0.997772740581851,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002227259418149039,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 677,
- "tp_rate": 0.002227259418149039,
- "truth_threshold": 49.96
- },
- {
- "f1": 0.004411880564090444,
- "fn": 303289,
- "fn_rate": 0.997789190060567,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0022108099394330194,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 672,
- "tp_rate": 0.0022108099394330194,
- "truth_threshold": 49.980000000000004
- },
- {
- "f1": 0.004346370255595459,
- "fn": 303299,
- "fn_rate": 0.9978220890179991,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0021779109820009804,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 662,
- "tp_rate": 0.0021779109820009804,
- "truth_threshold": 50
- },
- {
- "f1": 0.004300496362633611,
- "fn": 303306,
- "fn_rate": 0.9978451182882014,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0021548817117985532,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 655,
- "tp_rate": 0.0021548817117985532,
- "truth_threshold": 50.02
- },
- {
- "f1": 0.004248082781804811,
- "fn": 303314,
- "fn_rate": 0.9978714374541471,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002128562545852922,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 647,
- "tp_rate": 0.002128562545852922,
- "truth_threshold": 50.06
- },
- {
- "f1": 0.004241544815269561,
- "fn": 303315,
- "fn_rate": 0.9978747273498902,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999991,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002125272650109718,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 646,
- "tp_rate": 0.002125272650109718,
- "truth_threshold": 50.08
- },
- {
- "f1": 0.0042218749589631125,
- "fn": 303318,
- "fn_rate": 0.9978845970371198,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0021154029628801065,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 643,
- "tp_rate": 0.0021154029628801065,
- "truth_threshold": 50.120000000000005
- },
- {
- "f1": 0.004202232435981616,
- "fn": 303321,
- "fn_rate": 0.9978944667243496,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0021055332756504948,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 640,
- "tp_rate": 0.0021055332756504948,
- "truth_threshold": 50.14
- },
- {
- "f1": 0.004195666447800394,
- "fn": 303322,
- "fn_rate": 0.9978977566200927,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0021022433799072907,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 639,
- "tp_rate": 0.0021022433799072907,
- "truth_threshold": 50.18
- },
- {
- "f1": 0.004143247360403425,
- "fn": 303330,
- "fn_rate": 0.9979240757860384,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0020759242139616594,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 631,
- "tp_rate": 0.0020759242139616594,
- "truth_threshold": 50.2
- },
- {
- "f1": 0.0041170367841149354,
- "fn": 303334,
- "fn_rate": 0.9979372353690111,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.002062764630988844,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 627,
- "tp_rate": 0.002062764630988844,
- "truth_threshold": 50.22
- },
- {
- "f1": 0.004018754186202277,
- "fn": 303349,
- "fn_rate": 0.9979865838051593,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0020134161948407855,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 612,
- "tp_rate": 0.0020134161948407855,
- "truth_threshold": 50.24
- },
- {
- "f1": 0.003972866308123691,
- "fn": 303356,
- "fn_rate": 0.9980096130753616,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0019903869246383583,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 605,
- "tp_rate": 0.0019903869246383583,
- "truth_threshold": 50.26
- },
- {
- "f1": 0.003946651256558599,
- "fn": 303360,
- "fn_rate": 0.9980227726583345,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0019772273416655425,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 601,
- "tp_rate": 0.0019772273416655425,
- "truth_threshold": 50.300000000000004
- },
- {
- "f1": 0.003927002410049974,
- "fn": 303363,
- "fn_rate": 0.9980326423455641,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001967357654435931,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 598,
- "tp_rate": 0.001967357654435931,
- "truth_threshold": 50.32
- },
- {
- "f1": 0.0039007860674954197,
- "fn": 303367,
- "fn_rate": 0.9980458019285369,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0019541980714631152,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 594,
- "tp_rate": 0.0019541980714631152,
- "truth_threshold": 50.34
- },
- {
- "f1": 0.003887677637973154,
- "fn": 303369,
- "fn_rate": 0.9980523817200233,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0019476182799767075,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 592,
- "tp_rate": 0.0019476182799767075,
- "truth_threshold": 50.36
- },
- {
- "f1": 0.003868001970119849,
- "fn": 303372,
- "fn_rate": 0.9980622514072529,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0019377485927470958,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 589,
- "tp_rate": 0.0019377485927470958,
- "truth_threshold": 50.38
- },
- {
- "f1": 0.003789346485496063,
- "fn": 303384,
- "fn_rate": 0.9981017301561713,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001898269843828649,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 577,
- "tp_rate": 0.001898269843828649,
- "truth_threshold": 50.4
- },
- {
- "f1": 0.003776236635405995,
- "fn": 303386,
- "fn_rate": 0.9981083099476578,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0018916900523422413,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 575,
- "tp_rate": 0.0018916900523422413,
- "truth_threshold": 50.42
- },
- {
- "f1": 0.0037696940243125564,
- "fn": 303387,
- "fn_rate": 0.9981115998434009,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0018884001565990373,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 574,
- "tp_rate": 0.0018884001565990373,
- "truth_threshold": 50.46
- },
- {
- "f1": 0.0036844628631100542,
- "fn": 303400,
- "fn_rate": 0.9981543684880626,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0018456315119373867,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 561,
- "tp_rate": 0.0018456315119373867,
- "truth_threshold": 50.480000000000004
- },
- {
- "f1": 0.0036779193484828584,
- "fn": 303401,
- "fn_rate": 0.9981576583838058,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0018423416161941829,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 560,
- "tp_rate": 0.0018423416161941829,
- "truth_threshold": 50.5
- },
- {
- "f1": 0.0035664556130625543,
- "fn": 303418,
- "fn_rate": 0.9982135866114403,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0017864133885597165,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 543,
- "tp_rate": 0.0017864133885597165,
- "truth_threshold": 50.52
- },
- {
- "f1": 0.0035599109365455728,
- "fn": 303419,
- "fn_rate": 0.9982168765071835,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0017831234928165126,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 542,
- "tp_rate": 0.0017831234928165126,
- "truth_threshold": 50.54
- },
- {
- "f1": 0.0035336849503116606,
- "fn": 303423,
- "fn_rate": 0.9982300360901563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001769963909843697,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 538,
- "tp_rate": 0.001769963909843697,
- "truth_threshold": 50.56
- },
- {
- "f1": 0.0034418885721417217,
- "fn": 303437,
- "fn_rate": 0.9982760946305611,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0017239053694388426,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 524,
- "tp_rate": 0.0017239053694388426,
- "truth_threshold": 50.58
- },
- {
- "f1": 0.0034287741147259938,
- "fn": 303439,
- "fn_rate": 0.9982826744220475,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0017173255779524346,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 522,
- "tp_rate": 0.0017173255779524346,
- "truth_threshold": 50.620000000000005
- },
- {
- "f1": 0.003395976063952075,
- "fn": 303444,
- "fn_rate": 0.9982991239007636,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0017008760992364151,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 517,
- "tp_rate": 0.0017008760992364151,
- "truth_threshold": 50.64
- },
- {
- "f1": 0.003389429708745517,
- "fn": 303445,
- "fn_rate": 0.9983024137965067,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016975862034932113,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 516,
- "tp_rate": 0.0016975862034932113,
- "truth_threshold": 50.660000000000004
- },
- {
- "f1": 0.0033763145621629434,
- "fn": 303447,
- "fn_rate": 0.9983089935879932,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016910064120068036,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 514,
- "tp_rate": 0.0016910064120068036,
- "truth_threshold": 50.68
- },
- {
- "f1": 0.0033435149604230303,
- "fn": 303452,
- "fn_rate": 0.9983254430667092,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001674556933290784,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 509,
- "tp_rate": 0.001674556933290784,
- "truth_threshold": 50.7
- },
- {
- "f1": 0.003336968088600444,
- "fn": 303453,
- "fn_rate": 0.9983287329624524,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016712670375475802,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 508,
- "tp_rate": 0.0016712670375475802,
- "truth_threshold": 50.72
- },
- {
- "f1": 0.0033303992537803643,
- "fn": 303454,
- "fn_rate": 0.9983320228581957,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016679771418043761,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 507,
- "tp_rate": 0.0016679771418043761,
- "truth_threshold": 50.74
- },
- {
- "f1": 0.0032779347040662156,
- "fn": 303462,
- "fn_rate": 0.9983583420241413,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001641657975858745,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 499,
- "tp_rate": 0.001641657975858745,
- "truth_threshold": 50.76
- },
- {
- "f1": 0.003271387186409948,
- "fn": 303463,
- "fn_rate": 0.9983616319198845,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016383680801155412,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 498,
- "tp_rate": 0.0016383680801155412,
- "truth_threshold": 50.78
- },
- {
- "f1": 0.003264818135834828,
- "fn": 303464,
- "fn_rate": 0.9983649218156276,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016350781843723372,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 497,
- "tp_rate": 0.0016350781843723372,
- "truth_threshold": 50.800000000000004
- },
- {
- "f1": 0.0032451536192659646,
- "fn": 303467,
- "fn_rate": 0.9983747915028572,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0016252084971427256,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 494,
- "tp_rate": 0.0016252084971427256,
- "truth_threshold": 50.82
- },
- {
- "f1": 0.0031205245108988423,
- "fn": 303486,
- "fn_rate": 0.9984372995219781,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0015627004780218515,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 475,
- "tp_rate": 0.0015627004780218515,
- "truth_threshold": 50.84
- },
- {
- "f1": 0.003100856677353235,
- "fn": 303489,
- "fn_rate": 0.9984471692092077,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0015528307907922397,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 472,
- "tp_rate": 0.0015528307907922397,
- "truth_threshold": 50.86
- },
- {
- "f1": 0.0030877377393817955,
- "fn": 303491,
- "fn_rate": 0.9984537490006942,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001546250999305832,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 470,
- "tp_rate": 0.001546250999305832,
- "truth_threshold": 50.88
- },
- {
- "f1": 0.003074618629035437,
- "fn": 303493,
- "fn_rate": 0.9984603287921806,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0015396712078194243,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 468,
- "tp_rate": 0.0015396712078194243,
- "truth_threshold": 50.9
- },
- {
- "f1": 0.002963089497128891,
- "fn": 303510,
- "fn_rate": 0.9985162570198151,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014837429801849579,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 451,
- "tp_rate": 0.0014837429801849579,
- "truth_threshold": 50.92
- },
- {
- "f1": 0.002917175858398707,
- "fn": 303517,
- "fn_rate": 0.9985392862900174,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014607137099825307,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 444,
- "tp_rate": 0.0014607137099825307,
- "truth_threshold": 50.94
- },
- {
- "f1": 0.0029106056425014125,
- "fn": 303518,
- "fn_rate": 0.9985425761857607,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014574238142393268,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 443,
- "tp_rate": 0.0014574238142393268,
- "truth_threshold": 50.96
- },
- {
- "f1": 0.0028974842478038908,
- "fn": 303520,
- "fn_rate": 0.998549155977247,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014508440227529189,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 441,
- "tp_rate": 0.0014508440227529189,
- "truth_threshold": 50.980000000000004
- },
- {
- "f1": 0.0028843626806833115,
- "fn": 303522,
- "fn_rate": 0.9985557357687335,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014442642312665112,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 439,
- "tp_rate": 0.0014442642312665112,
- "truth_threshold": 51
- },
- {
- "f1": 0.0028778112865393336,
- "fn": 303523,
- "fn_rate": 0.9985590256644767,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014409743355233073,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 438,
- "tp_rate": 0.0014409743355233073,
- "truth_threshold": 51.02
- },
- {
- "f1": 0.0028449969447492396,
- "fn": 303528,
- "fn_rate": 0.9985754751431927,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014245248568072878,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 433,
- "tp_rate": 0.0014245248568072878,
- "truth_threshold": 51.04
- },
- {
- "f1": 0.0028318746879024415,
- "fn": 303530,
- "fn_rate": 0.9985820549346791,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0014179450653208799,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 431,
- "tp_rate": 0.0014179450653208799,
- "truth_threshold": 51.06
- },
- {
- "f1": 0.0027859545836837678,
- "fn": 303537,
- "fn_rate": 0.9986050842048816,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013949157951184527,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 424,
- "tp_rate": 0.0013949157951184527,
- "truth_threshold": 51.08
- },
- {
- "f1": 0.00277938393608074,
- "fn": 303538,
- "fn_rate": 0.9986083741006248,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013916258993752488,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 423,
- "tp_rate": 0.0013916258993752488,
- "truth_threshold": 51.1
- },
- {
- "f1": 0.0027728315077764124,
- "fn": 303539,
- "fn_rate": 0.9986116639963679,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001388336003632045,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 422,
- "tp_rate": 0.001388336003632045,
- "truth_threshold": 51.14
- },
- {
- "f1": 0.002766260816999691,
- "fn": 303540,
- "fn_rate": 0.9986149538921112,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013850461078888411,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 421,
- "tp_rate": 0.0013850461078888411,
- "truth_threshold": 51.2
- },
- {
- "f1": 0.0027400140614630493,
- "fn": 303544,
- "fn_rate": 0.998628113475084,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013718865249160255,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 417,
- "tp_rate": 0.0013718865249160255,
- "truth_threshold": 51.22
- },
- {
- "f1": 0.002726890425000657,
- "fn": 303546,
- "fn_rate": 0.9986346932665704,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013653067334296175,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 415,
- "tp_rate": 0.0013653067334296175,
- "truth_threshold": 51.26
- },
- {
- "f1": 0.002707213541324432,
- "fn": 303549,
- "fn_rate": 0.9986445629538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001355437046200006,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 412,
- "tp_rate": 0.001355437046200006,
- "truth_threshold": 51.28
- },
- {
- "f1": 0.0026940894306271973,
- "fn": 303551,
- "fn_rate": 0.9986511427452864,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001348857254713598,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 410,
- "tp_rate": 0.001348857254713598,
- "truth_threshold": 51.32
- },
- {
- "f1": 0.0026743941544446195,
- "fn": 303554,
- "fn_rate": 0.998661012432516,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013389875674839865,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 407,
- "tp_rate": 0.0013389875674839865,
- "truth_threshold": 51.34
- },
- {
- "f1": 0.0026481449842951205,
- "fn": 303558,
- "fn_rate": 0.9986741720154888,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013258279845111708,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 403,
- "tp_rate": 0.0013258279845111708,
- "truth_threshold": 51.36
- },
- {
- "f1": 0.0026415912630354645,
- "fn": 303559,
- "fn_rate": 0.9986774619112321,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001322538088767967,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 402,
- "tp_rate": 0.001322538088767967,
- "truth_threshold": 51.38
- },
- {
- "f1": 0.002602215826203525,
- "fn": 303565,
- "fn_rate": 0.9986972012856913,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0013027987143087436,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 396,
- "tp_rate": 0.0013027987143087436,
- "truth_threshold": 51.4
- },
- {
- "f1": 0.002595644574117152,
- "fn": 303566,
- "fn_rate": 0.9987004911814344,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012995088185655396,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 395,
- "tp_rate": 0.0012995088185655396,
- "truth_threshold": 51.480000000000004
- },
- {
- "f1": 0.0025825190403280392,
- "fn": 303568,
- "fn_rate": 0.9987070709729209,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012929290270791319,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 393,
- "tp_rate": 0.0012929290270791319,
- "truth_threshold": 51.5
- },
- {
- "f1": 0.002569393334034276,
- "fn": 303570,
- "fn_rate": 0.9987136507644073,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012863492355927241,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 391,
- "tp_rate": 0.0012863492355927241,
- "truth_threshold": 51.52
- },
- {
- "f1": 0.0024972070710389694,
- "fn": 303581,
- "fn_rate": 0.9987498396175826,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001250160382417481,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 380,
- "tp_rate": 0.001250160382417481,
- "truth_threshold": 51.56
- },
- {
- "f1": 0.0024840802003036097,
- "fn": 303583,
- "fn_rate": 0.9987564194090689,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012435805909310734,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 378,
- "tp_rate": 0.0012435805909310734,
- "truth_threshold": 51.58
- },
- {
- "f1": 0.002470953157036959,
- "fn": 303585,
- "fn_rate": 0.9987629992005553,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012370007994446657,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 376,
- "tp_rate": 0.0012370007994446657,
- "truth_threshold": 51.6
- },
- {
- "f1": 0.0024643814731086693,
- "fn": 303586,
- "fn_rate": 0.9987662890962985,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012337109037014616,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 375,
- "tp_rate": 0.0012337109037014616,
- "truth_threshold": 51.64
- },
- {
- "f1": 0.0024315709920152465,
- "fn": 303591,
- "fn_rate": 0.9987827385750145,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012172614249854423,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 370,
- "tp_rate": 0.0012172614249854423,
- "truth_threshold": 51.68
- },
- {
- "f1": 0.0024118714019084673,
- "fn": 303594,
- "fn_rate": 0.9987926082622441,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012073917377558305,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 367,
- "tp_rate": 0.0012073917377558305,
- "truth_threshold": 51.7
- },
- {
- "f1": 0.0024053153526152875,
- "fn": 303595,
- "fn_rate": 0.9987958981579874,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0012041018420126267,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 366,
- "tp_rate": 0.0012041018420126267,
- "truth_threshold": 51.72
- },
- {
- "f1": 0.002385615331028772,
- "fn": 303598,
- "fn_rate": 0.998805767845217,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001194232154783015,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 363,
- "tp_rate": 0.001194232154783015,
- "truth_threshold": 51.78
- },
- {
- "f1": 0.0023790590230085237,
- "fn": 303599,
- "fn_rate": 0.9988090577409602,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001190942259039811,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 362,
- "tp_rate": 0.001190942259039811,
- "truth_threshold": 51.800000000000004
- },
- {
- "f1": 0.002333101118574114,
- "fn": 303606,
- "fn_rate": 0.9988320870111627,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011679129888373838,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 355,
- "tp_rate": 0.0011679129888373838,
- "truth_threshold": 51.82
- },
- {
- "f1": 0.0023068429769447147,
- "fn": 303610,
- "fn_rate": 0.9988452465941354,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011547534058645682,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 351,
- "tp_rate": 0.0011547534058645682,
- "truth_threshold": 51.84
- },
- {
- "f1": 0.0023002858926752323,
- "fn": 303611,
- "fn_rate": 0.9988485364898786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011514635101213643,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 350,
- "tp_rate": 0.0011514635101213643,
- "truth_threshold": 51.86
- },
- {
- "f1": 0.002293713647267589,
- "fn": 303612,
- "fn_rate": 0.9988518263856219,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011481736143781603,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 349,
- "tp_rate": 0.0011481736143781603,
- "truth_threshold": 51.88
- },
- {
- "f1": 0.0022871564336133126,
- "fn": 303613,
- "fn_rate": 0.998855116281365,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011448837186349564,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 348,
- "tp_rate": 0.0011448837186349564,
- "truth_threshold": 51.9
- },
- {
- "f1": 0.0022740268019690708,
- "fn": 303615,
- "fn_rate": 0.9988616960728515,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011383039271485487,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 346,
- "tp_rate": 0.0011383039271485487,
- "truth_threshold": 51.92
- },
- {
- "f1": 0.002260896997739103,
- "fn": 303617,
- "fn_rate": 0.9988682758643379,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011317241356621408,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 344,
- "tp_rate": 0.0011317241356621408,
- "truth_threshold": 51.94
- },
- {
- "f1": 0.002254324622745675,
- "fn": 303618,
- "fn_rate": 0.9988715657600811,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001128434239918937,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 343,
- "tp_rate": 0.001128434239918937,
- "truth_threshold": 51.96
- },
- {
- "f1": 0.0022411946027301823,
- "fn": 303620,
- "fn_rate": 0.9988781455515675,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011218544484325292,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 341,
- "tp_rate": 0.0011218544484325292,
- "truth_threshold": 51.980000000000004
- },
- {
- "f1": 0.0022346368715083797,
- "fn": 303621,
- "fn_rate": 0.9988814354473107,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011185645526893254,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 340,
- "tp_rate": 0.0011185645526893254,
- "truth_threshold": 52
- },
- {
- "f1": 0.002201803507111497,
- "fn": 303626,
- "fn_rate": 0.9988978849260267,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0011021150739733059,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 335,
- "tp_rate": 0.0011021150739733059,
- "truth_threshold": 52.02
- },
- {
- "f1": 0.002195245387684279,
- "fn": 303627,
- "fn_rate": 0.9989011748217699,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010988251782301018,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 334,
- "tp_rate": 0.0010988251782301018,
- "truth_threshold": 52.04
- },
- {
- "f1": 0.0021886727967031882,
- "fn": 303628,
- "fn_rate": 0.9989044647175132,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001095535282486898,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 333,
- "tp_rate": 0.001095535282486898,
- "truth_threshold": 52.06
- },
- {
- "f1": 0.0021689835354431627,
- "fn": 303631,
- "fn_rate": 0.9989143344047428,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010856655952572864,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 330,
- "tp_rate": 0.0010856655952572864,
- "truth_threshold": 52.08
- },
- {
- "f1": 0.0021427209927502417,
- "fn": 303635,
- "fn_rate": 0.9989274939877155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010725060122844707,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 326,
- "tp_rate": 0.0010725060122844707,
- "truth_threshold": 52.120000000000005
- },
- {
- "f1": 0.0020836208993091844,
- "fn": 303644,
- "fn_rate": 0.9989571030494043,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010428969505956356,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 317,
- "tp_rate": 0.0010428969505956356,
- "truth_threshold": 52.14
- },
- {
- "f1": 0.0020770616151125952,
- "fn": 303645,
- "fn_rate": 0.9989603929451476,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010396070548524317,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 316,
- "tp_rate": 0.0010396070548524317,
- "truth_threshold": 52.18
- },
- {
- "f1": 0.002057356198689339,
- "fn": 303648,
- "fn_rate": 0.9989702626323772,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00102973736762282,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 313,
- "tp_rate": 0.00102973736762282,
- "truth_threshold": 52.2
- },
- {
- "f1": 0.0020507966556239155,
- "fn": 303649,
- "fn_rate": 0.9989735525281204,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.001026447471879616,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 312,
- "tp_rate": 0.001026447471879616,
- "truth_threshold": 52.24
- },
- {
- "f1": 0.002044223589419993,
- "fn": 303650,
- "fn_rate": 0.9989768424238636,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010231575761364122,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 311,
- "tp_rate": 0.0010231575761364122,
- "truth_threshold": 52.28
- },
- {
- "f1": 0.002011397921555481,
- "fn": 303655,
- "fn_rate": 0.9989932919025796,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0010067080974203928,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 306,
- "tp_rate": 0.0010067080974203928,
- "truth_threshold": 52.300000000000004
- },
- {
- "f1": 0.0019588638589618022,
- "fn": 303663,
- "fn_rate": 0.9990196110685252,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009803889314747615,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 298,
- "tp_rate": 0.0009803889314747615,
- "truth_threshold": 52.34
- },
- {
- "f1": 0.001952290490307568,
- "fn": 303664,
- "fn_rate": 0.9990229009642685,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009770990357315576,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 297,
- "tp_rate": 0.0009770990357315576,
- "truth_threshold": 52.38
- },
- {
- "f1": 0.0019325957916740619,
- "fn": 303667,
- "fn_rate": 0.9990327706514981,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000967229348501946,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 294,
- "tp_rate": 0.000967229348501946,
- "truth_threshold": 52.4
- },
- {
- "f1": 0.0019063270336894002,
- "fn": 303671,
- "fn_rate": 0.9990459302344709,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009540697655291304,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 290,
- "tp_rate": 0.0009540697655291304,
- "truth_threshold": 52.44
- },
- {
- "f1": 0.0018537874455203424,
- "fn": 303679,
- "fn_rate": 0.9990722494004165,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009277505995834993,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 282,
- "tp_rate": 0.0009277505995834993,
- "truth_threshold": 52.480000000000004
- },
- {
- "f1": 0.0018275166152814572,
- "fn": 303683,
- "fn_rate": 0.9990854089833893,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009145910166106836,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 278,
- "tp_rate": 0.0009145910166106836,
- "truth_threshold": 52.5
- },
- {
- "f1": 0.001807807097121971,
- "fn": 303686,
- "fn_rate": 0.999095278670619,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0009047213293810719,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 275,
- "tp_rate": 0.0009047213293810719,
- "truth_threshold": 52.52
- },
- {
- "f1": 0.001788109074653554,
- "fn": 303689,
- "fn_rate": 0.9991051483578486,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008948516421514603,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 272,
- "tp_rate": 0.0008948516421514603,
- "truth_threshold": 52.54
- },
- {
- "f1": 0.0017618365173488306,
- "fn": 303693,
- "fn_rate": 0.9991183079408213,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008816920591786446,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 268,
- "tp_rate": 0.0008816920591786446,
- "truth_threshold": 52.58
- },
- {
- "f1": 0.0017289891658777742,
- "fn": 303698,
- "fn_rate": 0.9991347574195374,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008652425804626251,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 263,
- "tp_rate": 0.0008652425804626251,
- "truth_threshold": 52.6
- },
- {
- "f1": 0.001715852239483009,
- "fn": 303700,
- "fn_rate": 0.9991413372110238,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008586627889762173,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 261,
- "tp_rate": 0.0008586627889762173,
- "truth_threshold": 52.620000000000005
- },
- {
- "f1": 0.0017092893300900663,
- "fn": 303701,
- "fn_rate": 0.999144627106767,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008553728932330135,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 260,
- "tp_rate": 0.0008553728932330135,
- "truth_threshold": 52.64
- },
- {
- "f1": 0.0016764404239093275,
- "fn": 303706,
- "fn_rate": 0.999161076585483,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000838923414516994,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 255,
- "tp_rate": 0.000838923414516994,
- "truth_threshold": 52.660000000000004
- },
- {
- "f1": 0.001663302806576949,
- "fn": 303708,
- "fn_rate": 0.9991676563769694,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008323436230305861,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 253,
- "tp_rate": 0.0008323436230305861,
- "truth_threshold": 52.68
- },
- {
- "f1": 0.0016567393791171946,
- "fn": 303709,
- "fn_rate": 0.9991709462727126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008290537272873823,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 252,
- "tp_rate": 0.0008290537272873823,
- "truth_threshold": 52.7
- },
- {
- "f1": 0.0016501650165016502,
- "fn": 303710,
- "fn_rate": 0.9991742361684558,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008257638315441783,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 251,
- "tp_rate": 0.0008257638315441783,
- "truth_threshold": 52.72
- },
- {
- "f1": 0.0016370270536800236,
- "fn": 303712,
- "fn_rate": 0.9991808159599422,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008191840400577706,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 249,
- "tp_rate": 0.0008191840400577706,
- "truth_threshold": 52.76
- },
- {
- "f1": 0.0016238889181086624,
- "fn": 303714,
- "fn_rate": 0.9991873957514287,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008126042485713628,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 247,
- "tp_rate": 0.0008126042485713628,
- "truth_threshold": 52.78
- },
- {
- "f1": 0.0016173251020689928,
- "fn": 303715,
- "fn_rate": 0.9991906856471718,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0008093143528281588,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 246,
- "tp_rate": 0.0008093143528281588,
- "truth_threshold": 52.86
- },
- {
- "f1": 0.001538491883469102,
- "fn": 303727,
- "fn_rate": 0.9992301643960902,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007698356039097121,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 234,
- "tp_rate": 0.0007698356039097121,
- "truth_threshold": 52.9
- },
- {
- "f1": 0.0015056379236661297,
- "fn": 303732,
- "fn_rate": 0.9992466138748063,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007533861251936926,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 229,
- "tp_rate": 0.0007533861251936926,
- "truth_threshold": 52.92
- },
- {
- "f1": 0.0014990729417334017,
- "fn": 303733,
- "fn_rate": 0.9992499037705496,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007500962294504887,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 228,
- "tp_rate": 0.0007500962294504887,
- "truth_threshold": 52.96
- },
- {
- "f1": 0.001485932948919411,
- "fn": 303735,
- "fn_rate": 0.9992564835620359,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000743516437964081,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 226,
- "tp_rate": 0.000743516437964081,
- "truth_threshold": 52.980000000000004
- },
- {
- "f1": 0.001466217815532704,
- "fn": 303738,
- "fn_rate": 0.9992663532492655,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007336467507344692,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 223,
- "tp_rate": 0.0007336467507344692,
- "truth_threshold": 53.02
- },
- {
- "f1": 0.0014596524449178453,
- "fn": 303739,
- "fn_rate": 0.9992696431450088,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007303568549912653,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 222,
- "tp_rate": 0.0007303568549912653,
- "truth_threshold": 53.04
- },
- {
- "f1": 0.0014530774339047018,
- "fn": 303740,
- "fn_rate": 0.9992729330407519,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007270669592480615,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 221,
- "tp_rate": 0.0007270669592480615,
- "truth_threshold": 53.08
- },
- {
- "f1": 0.0014333712497287773,
- "fn": 303743,
- "fn_rate": 0.9992828027279815,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007171972720184497,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 218,
- "tp_rate": 0.0007171972720184497,
- "truth_threshold": 53.1
- },
- {
- "f1": 0.0014005141793841682,
- "fn": 303748,
- "fn_rate": 0.9992992522066976,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0007007477933024302,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 213,
- "tp_rate": 0.0007007477933024302,
- "truth_threshold": 53.14
- },
- {
- "f1": 0.0013939481609089594,
- "fn": 303749,
- "fn_rate": 0.9993025421024407,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006974578975592263,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 212,
- "tp_rate": 0.0006974578975592263,
- "truth_threshold": 53.160000000000004
- },
- {
- "f1": 0.0013808067856790611,
- "fn": 303751,
- "fn_rate": 0.9993091218939272,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006908781060728185,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 210,
- "tp_rate": 0.0006908781060728185,
- "truth_threshold": 53.18
- },
- {
- "f1": 0.0013742315152710655,
- "fn": 303752,
- "fn_rate": 0.9993124117896703,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006875882103296147,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 209,
- "tp_rate": 0.0006875882103296147,
- "truth_threshold": 53.2
- },
- {
- "f1": 0.0013610899239893744,
- "fn": 303754,
- "fn_rate": 0.9993189915811568,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006810084188432068,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 207,
- "tp_rate": 0.0006810084188432068,
- "truth_threshold": 53.28
- },
- {
- "f1": 0.0013545235167638724,
- "fn": 303755,
- "fn_rate": 0.9993222814768999,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000677718523100003,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 206,
- "tp_rate": 0.000677718523100003,
- "truth_threshold": 53.300000000000004
- },
- {
- "f1": 0.0013150973172014729,
- "fn": 303761,
- "fn_rate": 0.9993420208513593,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006579791486407795,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 200,
- "tp_rate": 0.0006579791486407795,
- "truth_threshold": 53.32
- },
- {
- "f1": 0.0013085218306154655,
- "fn": 303762,
- "fn_rate": 0.9993453107471024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006546892528975757,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 199,
- "tp_rate": 0.0006546892528975757,
- "truth_threshold": 53.34
- },
- {
- "f1": 0.0012953793751931562,
- "fn": 303764,
- "fn_rate": 0.9993518905385889,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006481094614111679,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 197,
- "tp_rate": 0.0006481094614111679,
- "truth_threshold": 53.36
- },
- {
- "f1": 0.0012888123199936874,
- "fn": 303765,
- "fn_rate": 0.999355180434332,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000644819565667964,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 196,
- "tp_rate": 0.000644819565667964,
- "truth_threshold": 53.38
- },
- {
- "f1": 0.0012822367469324952,
- "fn": 303766,
- "fn_rate": 0.9993584703300752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00064152966992476,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 195,
- "tp_rate": 0.00064152966992476,
- "truth_threshold": 53.4
- },
- {
- "f1": 0.0012756695621297105,
- "fn": 303767,
- "fn_rate": 0.9993617602258185,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006382397741815562,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 194,
- "tp_rate": 0.0006382397741815562,
- "truth_threshold": 53.44
- },
- {
- "f1": 0.001269093945830073,
- "fn": 303768,
- "fn_rate": 0.9993650501215616,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006349498784383523,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 193,
- "tp_rate": 0.0006349498784383523,
- "truth_threshold": 53.46
- },
- {
- "f1": 0.00125595097188248,
- "fn": 303770,
- "fn_rate": 0.9993716299130481,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006283700869519445,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 191,
- "tp_rate": 0.0006283700869519445,
- "truth_threshold": 53.58
- },
- {
- "f1": 0.0012493835278645405,
- "fn": 303771,
- "fn_rate": 0.9993749198087912,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006250801912087405,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 190,
- "tp_rate": 0.0006250801912087405,
- "truth_threshold": 53.660000000000004
- },
- {
- "f1": 0.0012362402514565277,
- "fn": 303773,
- "fn_rate": 0.9993814996002777,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006185003997223328,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 188,
- "tp_rate": 0.0006185003997223328,
- "truth_threshold": 53.68
- },
- {
- "f1": 0.0012165210129345774,
- "fn": 303776,
- "fn_rate": 0.9993913692875073,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006086307124927212,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 185,
- "tp_rate": 0.0006086307124927212,
- "truth_threshold": 53.72
- },
- {
- "f1": 0.0012099531800725972,
- "fn": 303777,
- "fn_rate": 0.9993946591832504,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006053408167495172,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 184,
- "tp_rate": 0.0006053408167495172,
- "truth_threshold": 53.76
- },
- {
- "f1": 0.0012033773475722026,
- "fn": 303778,
- "fn_rate": 0.9993979490789937,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0006020509210063133,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 183,
- "tp_rate": 0.0006020509210063133,
- "truth_threshold": 53.78
- },
- {
- "f1": 0.0011968093850898594,
- "fn": 303779,
- "fn_rate": 0.9994012389747369,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999999999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005987610252631094,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 182,
- "tp_rate": 0.0005987610252631094,
- "truth_threshold": 53.800000000000004
- },
- {
- "f1": 0.0011705212765257876,
- "fn": 303783,
- "fn_rate": 0.9994143985577097,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005856014422902938,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 178,
- "tp_rate": 0.0005856014422902938,
- "truth_threshold": 53.84
- },
- {
- "f1": 0.0011442324764741856,
- "fn": 303787,
- "fn_rate": 0.9994275581406825,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005724418593174782,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 174,
- "tp_rate": 0.0005724418593174782,
- "truth_threshold": 53.9
- },
- {
- "f1": 0.0011113668497024299,
- "fn": 303792,
- "fn_rate": 0.9994440076193986,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005559923806014587,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 169,
- "tp_rate": 0.0005559923806014587,
- "truth_threshold": 53.92
- },
- {
- "f1": 0.0010982218013468013,
- "fn": 303794,
- "fn_rate": 0.999450587410885,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005494125891150509,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 167,
- "tp_rate": 0.0005494125891150509,
- "truth_threshold": 53.980000000000004
- },
- {
- "f1": 0.0010587856189292455,
- "fn": 303800,
- "fn_rate": 0.9994703267853442,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005296732146558275,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 161,
- "tp_rate": 0.0005296732146558275,
- "truth_threshold": 54
- },
- {
- "f1": 0.0010456398789951335,
- "fn": 303802,
- "fn_rate": 0.9994769065768305,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005230934231694197,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 159,
- "tp_rate": 0.0005230934231694197,
- "truth_threshold": 54.02
- },
- {
- "f1": 0.0010062016217602609,
- "fn": 303808,
- "fn_rate": 0.9994966459512898,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0005033540487101964,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 153,
- "tp_rate": 0.0005033540487101964,
- "truth_threshold": 54.06
- },
- {
- "f1": 0.0009930551901930868,
- "fn": 303810,
- "fn_rate": 0.9995032257427762,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004967742572237886,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 151,
- "tp_rate": 0.0004967742572237886,
- "truth_threshold": 54.08
- },
- {
- "f1": 0.0009864851533984414,
- "fn": 303811,
- "fn_rate": 0.9995065156385194,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004934843614805847,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 150,
- "tp_rate": 0.0004934843614805847,
- "truth_threshold": 54.14
- },
- {
- "f1": 0.0009733384192457942,
- "fn": 303813,
- "fn_rate": 0.9995130954300058,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004869045699941769,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 148,
- "tp_rate": 0.0004869045699941769,
- "truth_threshold": 54.2
- },
- {
- "f1": 0.0009667618083049443,
- "fn": 303814,
- "fn_rate": 0.999516385325749,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000483614674250973,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 147,
- "tp_rate": 0.000483614674250973,
- "truth_threshold": 54.26
- },
- {
- "f1": 0.0009601915121700985,
- "fn": 303815,
- "fn_rate": 0.9995196752214922,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00048032477850776906,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 146,
- "tp_rate": 0.00048032477850776906,
- "truth_threshold": 54.28
- },
- {
- "f1": 0.0009536148579771527,
- "fn": 303816,
- "fn_rate": 0.9995229651172355,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004770348827645652,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 145,
- "tp_rate": 0.0004770348827645652,
- "truth_threshold": 54.32
- },
- {
- "f1": 0.0009470444321679426,
- "fn": 303817,
- "fn_rate": 0.9995262550129786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004737449870213613,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 144,
- "tp_rate": 0.0004737449870213613,
- "truth_threshold": 54.36
- },
- {
- "f1": 0.0009207497533706018,
- "fn": 303821,
- "fn_rate": 0.9995394145959514,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004605854040485457,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 140,
- "tp_rate": 0.0004605854040485457,
- "truth_threshold": 54.4
- },
- {
- "f1": 0.0008944543828264759,
- "fn": 303825,
- "fn_rate": 0.9995525741789243,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00044742582107573013,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 136,
- "tp_rate": 0.00044742582107573013,
- "truth_threshold": 54.42
- },
- {
- "f1": 0.0008813064381408381,
- "fn": 303827,
- "fn_rate": 0.9995591539704107,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004408460295893223,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 134,
- "tp_rate": 0.0004408460295893223,
- "truth_threshold": 54.5
- },
- {
- "f1": 0.0008747295244233691,
- "fn": 303828,
- "fn_rate": 0.9995624438661539,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004375561338461184,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 133,
- "tp_rate": 0.0004375561338461184,
- "truth_threshold": 54.58
- },
- {
- "f1": 0.0008681583205082672,
- "fn": 303829,
- "fn_rate": 0.9995657337618971,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004342662381029145,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 132,
- "tp_rate": 0.0004342662381029145,
- "truth_threshold": 54.6
- },
- {
- "f1": 0.0008615813635347197,
- "fn": 303830,
- "fn_rate": 0.9995690236576403,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00043097634235971064,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 131,
- "tp_rate": 0.00043097634235971064,
- "truth_threshold": 54.7
- },
- {
- "f1": 0.0008418615663886769,
- "fn": 303833,
- "fn_rate": 0.9995788933448699,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0004211066551300989,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 128,
- "tp_rate": 0.0004211066551300989,
- "truth_threshold": 54.74
- },
- {
- "f1": 0.0008352845229012654,
- "fn": 303834,
- "fn_rate": 0.9995821832406131,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00041781675938689505,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 127,
- "tp_rate": 0.00041781675938689505,
- "truth_threshold": 54.76
- },
- {
- "f1": 0.0008221358431496353,
- "fn": 303836,
- "fn_rate": 0.9995887630320995,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00041123696790048723,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 125,
- "tp_rate": 0.00041123696790048723,
- "truth_threshold": 54.78
- },
- {
- "f1": 0.0008024151380219809,
- "fn": 303839,
- "fn_rate": 0.9995986327193291,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00040136728067087556,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 122,
- "tp_rate": 0.00040136728067087556,
- "truth_threshold": 54.800000000000004
- },
- {
- "f1": 0.000762967152948605,
- "fn": 303845,
- "fn_rate": 0.9996183720937883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00038162790621165216,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 116,
- "tp_rate": 0.00038162790621165216,
- "truth_threshold": 54.88
- },
- {
- "f1": 0.0007563898499059446,
- "fn": 303846,
- "fn_rate": 0.9996216619895315,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00037833801046844825,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 115,
- "tp_rate": 0.00037833801046844825,
- "truth_threshold": 54.9
- },
- {
- "f1": 0.0007169401782484297,
- "fn": 303852,
- "fn_rate": 0.9996414013639908,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00035859863600922484,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 109,
- "tp_rate": 0.00035859863600922484,
- "truth_threshold": 54.980000000000004
- },
- {
- "f1": 0.0007103674178144362,
- "fn": 303853,
- "fn_rate": 0.999644691259734,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000355308740266021,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 108,
- "tp_rate": 0.000355308740266021,
- "truth_threshold": 55.02
- },
- {
- "f1": 0.0007037899417235618,
- "fn": 303854,
- "fn_rate": 0.9996479811554771,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003520188445228171,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 107,
- "tp_rate": 0.0003520188445228171,
- "truth_threshold": 55.18
- },
- {
- "f1": 0.0006972170515611743,
- "fn": 303855,
- "fn_rate": 0.9996512710512204,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00034872894877961317,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 106,
- "tp_rate": 0.00034872894877961317,
- "truth_threshold": 55.2
- },
- {
- "f1": 0.0006906395322068235,
- "fn": 303856,
- "fn_rate": 0.9996545609469636,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00034543905303640926,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 105,
- "tp_rate": 0.00034543905303640926,
- "truth_threshold": 55.24
- },
- {
- "f1": 0.0006840665123131972,
- "fn": 303857,
- "fn_rate": 0.9996578508427068,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003421491572932054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 104,
- "tp_rate": 0.0003421491572932054,
- "truth_threshold": 55.26
- },
- {
- "f1": 0.0006774889496948011,
- "fn": 303858,
- "fn_rate": 0.99966114073845,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003388592615500015,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 103,
- "tp_rate": 0.0003388592615500015,
- "truth_threshold": 55.42
- },
- {
- "f1": 0.0006709158000670916,
- "fn": 303859,
- "fn_rate": 0.9996644306341932,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003355693658067976,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 102,
- "tp_rate": 0.0003355693658067976,
- "truth_threshold": 55.46
- },
- {
- "f1": 0.0006511872656712491,
- "fn": 303862,
- "fn_rate": 0.9996743003214228,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003256996785771859,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 99,
- "tp_rate": 0.0003256996785771859,
- "truth_threshold": 55.5
- },
- {
- "f1": 0.0006446138565668392,
- "fn": 303863,
- "fn_rate": 0.9996775902171661,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000322409782833982,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 98,
- "tp_rate": 0.000322409782833982,
- "truth_threshold": 55.64
- },
- {
- "f1": 0.0006314626253058647,
- "fn": 303865,
- "fn_rate": 0.9996841700086524,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003158299913475742,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 96,
- "tp_rate": 0.0003158299913475742,
- "truth_threshold": 55.74
- },
- {
- "f1": 0.0006248848896255953,
- "fn": 303866,
- "fn_rate": 0.9996874599043957,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00031254009560437027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 95,
- "tp_rate": 0.00031254009560437027,
- "truth_threshold": 55.78
- },
- {
- "f1": 0.0006051596437451488,
- "fn": 303869,
- "fn_rate": 0.9996973295916253,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0003026704083747586,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 92,
- "tp_rate": 0.0003026704083747586,
- "truth_threshold": 55.800000000000004
- },
- {
- "f1": 0.0005985818215305277,
- "fn": 303870,
- "fn_rate": 0.9997006194873684,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002993805126315547,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 91,
- "tp_rate": 0.0002993805126315547,
- "truth_threshold": 55.82
- },
- {
- "f1": 0.0005854300279559283,
- "fn": 303872,
- "fn_rate": 0.9997071992788549,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002928007211451469,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 89,
- "tp_rate": 0.0002928007211451469,
- "truth_threshold": 55.84
- },
- {
- "f1": 0.0005722780613587328,
- "fn": 303874,
- "fn_rate": 0.9997137790703413,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002862209296587391,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 87,
- "tp_rate": 0.0002862209296587391,
- "truth_threshold": 55.92
- },
- {
- "f1": 0.0005657038737559448,
- "fn": 303875,
- "fn_rate": 0.9997170689660845,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002829310339155352,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 86,
- "tp_rate": 0.0002829310339155352,
- "truth_threshold": 55.94
- },
- {
- "f1": 0.0005591259217355268,
- "fn": 303876,
- "fn_rate": 0.9997203588618276,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00027964113817233134,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 85,
- "tp_rate": 0.00027964113817233134,
- "truth_threshold": 56.02
- },
- {
- "f1": 0.0005459736090828959,
- "fn": 303878,
- "fn_rate": 0.9997269386533141,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002730613466859235,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 83,
- "tp_rate": 0.0002730613466859235,
- "truth_threshold": 56.08
- },
- {
- "f1": 0.0005393991619578874,
- "fn": 303879,
- "fn_rate": 0.9997302285490572,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002697714509427196,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 82,
- "tp_rate": 0.0002697714509427196,
- "truth_threshold": 56.1
- },
- {
- "f1": 0.0005196684646757005,
- "fn": 303882,
- "fn_rate": 0.9997400982362868,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00025990176371310794,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 79,
- "tp_rate": 0.00025990176371310794,
- "truth_threshold": 56.120000000000005
- },
- {
- "f1": 0.00051309375801709,
- "fn": 303883,
- "fn_rate": 0.9997433881320301,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000256611867969904,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 78,
- "tp_rate": 0.000256611867969904,
- "truth_threshold": 56.14
- },
- {
- "f1": 0.0005065156329143068,
- "fn": 303884,
- "fn_rate": 0.9997466780277733,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0002533219722267001,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 77,
- "tp_rate": 0.0002533219722267001,
- "truth_threshold": 56.28
- },
- {
- "f1": 0.0004999407964846268,
- "fn": 303885,
- "fn_rate": 0.9997499679235166,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00025003207648349626,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 76,
- "tp_rate": 0.00025003207648349626,
- "truth_threshold": 56.300000000000004
- },
- {
- "f1": 0.0004933626281098291,
- "fn": 303886,
- "fn_rate": 0.9997532578192597,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00024674218074029235,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 75,
- "tp_rate": 0.00024674218074029235,
- "truth_threshold": 56.32
- },
- {
- "f1": 0.00048678766190623417,
- "fn": 303887,
- "fn_rate": 0.9997565477150029,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00024345228499708844,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 74,
- "tp_rate": 0.00024345228499708844,
- "truth_threshold": 56.4
- },
- {
- "f1": 0.0004802094502588526,
- "fn": 303888,
- "fn_rate": 0.9997598376107462,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00024016238925388453,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 73,
- "tp_rate": 0.00024016238925388453,
- "truth_threshold": 56.42
- },
- {
- "f1": 0.0004604808735980002,
- "fn": 303891,
- "fn_rate": 0.9997697072979758,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00023029270202427286,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 70,
- "tp_rate": 0.00023029270202427286,
- "truth_threshold": 56.54
- },
- {
- "f1": 0.00045390257540374305,
- "fn": 303892,
- "fn_rate": 0.9997729971937189,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00022700280628106895,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 69,
- "tp_rate": 0.00022700280628106895,
- "truth_threshold": 56.6
- },
- {
- "f1": 0.00044732721986132855,
- "fn": 303893,
- "fn_rate": 0.9997762870894621,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00022371291053786507,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 68,
- "tp_rate": 0.00022371291053786507,
- "truth_threshold": 56.660000000000004
- },
- {
- "f1": 0.0004407488783927796,
- "fn": 303894,
- "fn_rate": 0.9997795769852054,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00022042301479466116,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 67,
- "tp_rate": 0.00022042301479466116,
- "truth_threshold": 56.72
- },
- {
- "f1": 0.0004341733930650668,
- "fn": 303895,
- "fn_rate": 0.9997828668809485,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00021713311905145725,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 66,
- "tp_rate": 0.00021713311905145725,
- "truth_threshold": 56.82
- },
- {
- "f1": 0.0004275950083216567,
- "fn": 303896,
- "fn_rate": 0.9997861567766917,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00021384322330825336,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 65,
- "tp_rate": 0.00021384322330825336,
- "truth_threshold": 57
- },
- {
- "f1": 0.00042101939320579953,
- "fn": 303897,
- "fn_rate": 0.999789446672435,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00021055332756504945,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 64,
- "tp_rate": 0.00021055332756504945,
- "truth_threshold": 57.08
- },
- {
- "f1": 0.0004144409651869589,
- "fn": 303898,
- "fn_rate": 0.9997927365681781,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00020726343182184557,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 63,
- "tp_rate": 0.00020726343182184557,
- "truth_threshold": 57.120000000000005
- },
- {
- "f1": 0.0004078652202801113,
- "fn": 303899,
- "fn_rate": 0.9997960264639214,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00020397353607864166,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 62,
- "tp_rate": 0.00020397353607864166,
- "truth_threshold": 57.14
- },
- {
- "f1": 0.0004012867489852708,
- "fn": 303900,
- "fn_rate": 0.9997993163596646,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00020068364033543778,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 61,
- "tp_rate": 0.00020068364033543778,
- "truth_threshold": 57.2
- },
- {
- "f1": 0.00039471087428458656,
- "fn": 303901,
- "fn_rate": 0.9998026062554077,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00019739374459223387,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 60,
- "tp_rate": 0.00019739374459223387,
- "truth_threshold": 57.42
- },
- {
- "f1": 0.0003552467978448361,
- "fn": 303907,
- "fn_rate": 0.9998223456298669,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001776543701330105,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 54,
- "tp_rate": 0.0001776543701330105,
- "truth_threshold": 57.46
- },
- {
- "f1": 0.0003486681534403021,
- "fn": 303908,
- "fn_rate": 0.9998256355256102,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00017436447438980658,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 53,
- "tp_rate": 0.00017436447438980658,
- "truth_threshold": 57.56
- },
- {
- "f1": 0.00034209175953580777,
- "fn": 303909,
- "fn_rate": 0.9998289254213534,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001710745786466027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 52,
- "tp_rate": 0.0001710745786466027,
- "truth_threshold": 57.6
- },
- {
- "f1": 0.0003026256060735643,
- "fn": 303915,
- "fn_rate": 0.9998486647958126,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001513352041873793,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 46,
- "tp_rate": 0.0001513352041873793,
- "truth_threshold": 57.660000000000004
- },
- {
- "f1": 0.000296046788550226,
- "fn": 303916,
- "fn_rate": 0.9998519546915559,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00014804530844417542,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 45,
- "tp_rate": 0.00014804530844417542,
- "truth_threshold": 57.82
- },
- {
- "f1": 0.00028946987539637636,
- "fn": 303917,
- "fn_rate": 0.999855244587299,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001447554127009715,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 44,
- "tp_rate": 0.0001447554127009715,
- "truth_threshold": 57.86
- },
- {
- "f1": 0.00028289101459191325,
- "fn": 303918,
- "fn_rate": 0.9998585344830422,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001414655169577676,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 43,
- "tp_rate": 0.0001414655169577676,
- "truth_threshold": 57.980000000000004
- },
- {
- "f1": 0.00027631397161860776,
- "fn": 303919,
- "fn_rate": 0.9998618243787855,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00013817562121456371,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 42,
- "tp_rate": 0.00013817562121456371,
- "truth_threshold": 58.120000000000005
- },
- {
- "f1": 0.00026973506753245045,
- "fn": 303920,
- "fn_rate": 0.9998651142745286,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0001348857254713598,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 41,
- "tp_rate": 0.0001348857254713598,
- "truth_threshold": 58.34
- },
- {
- "f1": 0.0002631578947368421,
- "fn": 303921,
- "fn_rate": 0.9998684041702719,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00013159582972815592,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 40,
- "tp_rate": 0.00013159582972815592,
- "truth_threshold": 58.44
- },
- {
- "f1": 0.00025657894736842105,
- "fn": 303922,
- "fn_rate": 0.9998716940660151,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000128305933984952,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 39,
- "tp_rate": 0.000128305933984952,
- "truth_threshold": 58.7
- },
- {
- "f1": 0.00023684522164765326,
- "fn": 303925,
- "fn_rate": 0.9998815637532447,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00011843624675534032,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36,
- "tp_rate": 0.00011843624675534032,
- "truth_threshold": 58.84
- },
- {
- "f1": 0.00023026618771299624,
- "fn": 303926,
- "fn_rate": 0.9998848536489878,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00011514635101213643,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35,
- "tp_rate": 0.00011514635101213643,
- "truth_threshold": 58.86
- },
- {
- "f1": 0.0002236886254333967,
- "fn": 303927,
- "fn_rate": 0.9998881435447311,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00011185645526893253,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34,
- "tp_rate": 0.00011185645526893253,
- "truth_threshold": 58.980000000000004
- },
- {
- "f1": 0.0002171095482147674,
- "fn": 303928,
- "fn_rate": 0.9998914334404743,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00010856655952572862,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33,
- "tp_rate": 0.00010856655952572862,
- "truth_threshold": 59.22
- },
- {
- "f1": 0.00021053185610147635,
- "fn": 303929,
- "fn_rate": 0.9998947233362174,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00010527666378252473,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32,
- "tp_rate": 0.00010527666378252473,
- "truth_threshold": 59.44
- },
- {
- "f1": 0.00020395273559830522,
- "fn": 303930,
- "fn_rate": 0.9998980132319607,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00010198676803932083,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31,
- "tp_rate": 0.00010198676803932083,
- "truth_threshold": 59.46
- },
- {
- "f1": 0.0001973749136484753,
- "fn": 303931,
- "fn_rate": 0.9999013031277039,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00009869687229611694,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30,
- "tp_rate": 0.00009869687229611694,
- "truth_threshold": 59.52
- },
- {
- "f1": 0.00019079574986019277,
- "fn": 303932,
- "fn_rate": 0.9999045930234471,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00009540697655291304,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29,
- "tp_rate": 0.00009540697655291304,
- "truth_threshold": 59.88
- },
- {
- "f1": 0.0001842177980709765,
- "fn": 303933,
- "fn_rate": 0.9999078829191903,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00009211708080970914,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28,
- "tp_rate": 0.00009211708080970914,
- "truth_threshold": 60
- },
- {
- "f1": 0.00017763859099701303,
- "fn": 303934,
- "fn_rate": 0.9999111728149335,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00008882718506650525,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27,
- "tp_rate": 0.00008882718506650525,
- "truth_threshold": 60.1
- },
- {
- "f1": 0.00013816607562289874,
- "fn": 303940,
- "fn_rate": 0.9999309121893927,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00006908781060728186,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21,
- "tp_rate": 0.00006908781060728186,
- "truth_threshold": 60.14
- },
- {
- "f1": 0.00013158760444766102,
- "fn": 303941,
- "fn_rate": 0.999934202085136,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00006579791486407796,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20,
- "tp_rate": 0.00006579791486407796,
- "truth_threshold": 60.26
- },
- {
- "f1": 0.00012500822422527799,
- "fn": 303942,
- "fn_rate": 0.9999374919808791,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00006250801912087407,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19,
- "tp_rate": 0.00006250801912087407,
- "truth_threshold": 60.34
- },
- {
- "f1": 0.00011842962319641553,
- "fn": 303943,
- "fn_rate": 0.9999407818766223,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00005921812337767016,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18,
- "tp_rate": 0.00005921812337767016,
- "truth_threshold": 60.42
- },
- {
- "f1": 0.00011185019968550356,
- "fn": 303944,
- "fn_rate": 0.9999440717723656,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000055928227634466266,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17,
- "tp_rate": 0.000055928227634466266,
- "truth_threshold": 60.44
- },
- {
- "f1": 0.00010527146880016843,
- "fn": 303945,
- "fn_rate": 0.9999473616681087,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000052638331891262364,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16,
- "tp_rate": 0.000052638331891262364,
- "truth_threshold": 60.54
- },
- {
- "f1": 0.0000986920020001579,
- "fn": 303946,
- "fn_rate": 0.999950651563852,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00004934843614805847,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15,
- "tp_rate": 0.00004934843614805847,
- "truth_threshold": 60.7
- },
- {
- "f1": 0.00009211314125550212,
- "fn": 303947,
- "fn_rate": 0.9999539414595952,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00004605854040485457,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14,
- "tp_rate": 0.00004605854040485457,
- "truth_threshold": 60.78
- },
- {
- "f1": 0.00008553363116582339,
- "fn": 303948,
- "fn_rate": 0.9999572313553383,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000042768644661650676,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13,
- "tp_rate": 0.000042768644661650676,
- "truth_threshold": 60.92
- },
- {
- "f1": 0.00007895464055899886,
- "fn": 303949,
- "fn_rate": 0.9999605212510816,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00003947874891844677,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12,
- "tp_rate": 0.00003947874891844677,
- "truth_threshold": 61.26
- },
- {
- "f1": 0.00007237508717908228,
- "fn": 303950,
- "fn_rate": 0.9999638111468248,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00003618885317524288,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11,
- "tp_rate": 0.00003618885317524288,
- "truth_threshold": 61.36
- },
- {
- "f1": 0.00006579596670724084,
- "fn": 303951,
- "fn_rate": 0.9999671010425679,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00003289895743203898,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10,
- "tp_rate": 0.00003289895743203898,
- "truth_threshold": 61.46
- },
- {
- "f1": 0.00005921637003651676,
- "fn": 303952,
- "fn_rate": 0.9999703909383112,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00002960906168883508,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9,
- "tp_rate": 0.00002960906168883508,
- "truth_threshold": 61.480000000000004
- },
- {
- "f1": 0.000052637119696810194,
- "fn": 303953,
- "fn_rate": 0.9999736808340544,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000026319165945631182,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8,
- "tp_rate": 0.000026319165945631182,
- "truth_threshold": 61.5
- },
- {
- "f1": 0.00004605747973470892,
- "fn": 303954,
- "fn_rate": 0.9999769707297975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000023029270202427286,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7,
- "tp_rate": 0.000023029270202427286,
- "truth_threshold": 61.54
- },
- {
- "f1": 0.0000394780995242889,
- "fn": 303955,
- "fn_rate": 0.9999802606255408,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000019739374459223386,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6,
- "tp_rate": 0.000019739374459223386,
- "truth_threshold": 61.6
- },
- {
- "f1": 0.00003289841627024075,
- "fn": 303956,
- "fn_rate": 0.999983550521284,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.00001644947871601949,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5,
- "tp_rate": 0.00001644947871601949,
- "truth_threshold": 62
- },
- {
- "f1": 0.0000263189061862589,
- "fn": 303957,
- "fn_rate": 0.9999868404170272,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000013159582972815591,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4,
- "tp_rate": 0.000013159582972815591,
- "truth_threshold": 62.2
- },
- {
- "f1": 0.000019739179639694174,
- "fn": 303958,
- "fn_rate": 0.9999901303127704,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.000009869687229611693,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 3,
- "tp_rate": 0.000009869687229611693,
- "truth_threshold": 62.52
- },
- {
- "f1": 0.000013159539679302018,
- "fn": 303959,
- "fn_rate": 0.9999934202085136,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0000065797914864077955,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 2,
- "tp_rate": 0.0000065797914864077955,
- "truth_threshold": 63.4
- },
- {
- "f1": 0.000006579769839651009,
- "fn": 303960,
- "fn_rate": 0.9999967101042568,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 1,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0000032898957432038977,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 1,
- "tp_rate": 0.0000032898957432038977,
- "truth_threshold": 65.22
- },
- {
- "f1": 0.39733748088785786,
- "fn": 228598,
- "fn_rate": 0.7520635871049246,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999780610216,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997877392907839,
- "recall": 0.24793641289507534,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75363,
- "tp_rate": 0.24793641289507534,
- "truth_threshold": 22.12
- },
- {
- "f1": 0.39686097472219733,
- "fn": 228711,
- "fn_rate": 0.7524353453239067,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997836306193,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997874206148859,
- "recall": 0.24756465467609332,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75250,
- "tp_rate": 0.24756465467609332,
- "truth_threshold": 22.14
- },
- {
- "f1": 0.39630276395827946,
- "fn": 228843,
- "fn_rate": 0.7528696115620096,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997866094399,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997870471424388,
- "recall": 0.2471303884379904,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75118,
- "tp_rate": 0.2471303884379904,
- "truth_threshold": 22.16
- },
- {
- "f1": 0.3958542222972759,
- "fn": 228949,
- "fn_rate": 0.7532183405107892,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997895472501,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997867462813883,
- "recall": 0.2467816594892108,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75012,
- "tp_rate": 0.2467816594892108,
- "truth_threshold": 22.18
- },
- {
- "f1": 0.39523072943337856,
- "fn": 229096,
- "fn_rate": 0.7537019551850402,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997924446148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997863276398552,
- "recall": 0.24629804481495982,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74865,
- "tp_rate": 0.24629804481495982,
- "truth_threshold": 22.2
- },
- {
- "f1": 0.3948377285160582,
- "fn": 229189,
- "fn_rate": 0.7540079154891581,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997953020905,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997860619350698,
- "recall": 0.24599208451084184,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74772,
- "tp_rate": 0.24599208451084184,
- "truth_threshold": 22.22
- },
- {
- "f1": 0.394218731015684,
- "fn": 229335,
- "fn_rate": 0.7544882402676659,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997981202265,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999785643471504,
- "recall": 0.24551175973233408,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74626,
- "tp_rate": 0.24551175973233408,
- "truth_threshold": 22.240000000000002
- },
- {
- "f1": 0.3937382757800735,
- "fn": 229448,
- "fn_rate": 0.754859998486648,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998008995644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997853184666371,
- "recall": 0.24514000151335205,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74513,
- "tp_rate": 0.24514000151335205,
- "truth_threshold": 22.26
- },
- {
- "f1": 0.3933785055126267,
- "fn": 229533,
- "fn_rate": 0.7551396396248203,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998036406385,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997850733437215,
- "recall": 0.24486036037517972,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74428,
- "tp_rate": 0.24486036037517972,
- "truth_threshold": 22.28
- },
- {
- "f1": 0.39291454310909973,
- "fn": 229642,
- "fn_rate": 0.7554982382608295,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998063439753,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997847581892783,
- "recall": 0.2445017617391705,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74319,
- "tp_rate": 0.2445017617391705,
- "truth_threshold": 22.3
- },
- {
- "f1": 0.39246939369100187,
- "fn": 229747,
- "fn_rate": 0.7558436773138659,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998090100946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997844537249091,
- "recall": 0.24415632268613408,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74214,
- "tp_rate": 0.24415632268613408,
- "truth_threshold": 22.32
- },
- {
- "f1": 0.39207295463081,
- "fn": 229840,
- "fn_rate": 0.7561496376179839,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998116395085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997841833362558,
- "recall": 0.2438503623820161,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 74121,
- "tp_rate": 0.2438503623820161,
- "truth_threshold": 22.34
- },
- {
- "f1": 0.3915422306414232,
- "fn": 229965,
- "fn_rate": 0.7565608745858844,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998142327226,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997838188401881,
- "recall": 0.24343912541411564,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73996,
- "tp_rate": 0.24343912541411564,
- "truth_threshold": 22.36
- },
- {
- "f1": 0.3910090830175097,
- "fn": 230090,
- "fn_rate": 0.7569721115537849,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998167902351,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997834531108314,
- "recall": 0.24302788844621515,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73871,
- "tp_rate": 0.24302788844621515,
- "truth_threshold": 22.38
- },
- {
- "f1": 0.39050321924771264,
- "fn": 230209,
- "fn_rate": 0.7573636091472261,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998193125376,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997831037848389,
- "recall": 0.2426363908527739,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73752,
- "tp_rate": 0.2426363908527739,
- "truth_threshold": 22.400000000000002
- },
- {
- "f1": 0.39001731927312017,
- "fn": 230323,
- "fn_rate": 0.7577386572619513,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998218001148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999782768077769,
- "recall": 0.24226134273804864,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73638,
- "tp_rate": 0.24226134273804864,
- "truth_threshold": 22.42
- },
- {
- "f1": 0.389559956345296,
- "fn": 230430,
- "fn_rate": 0.7580906761064742,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998242534449,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997824520374726,
- "recall": 0.24190932389352582,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73531,
- "tp_rate": 0.24190932389352582,
- "truth_threshold": 22.44
- },
- {
- "f1": 0.389138545022893,
- "fn": 230529,
- "fn_rate": 0.7584163757850514,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998266729992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997821588062302,
- "recall": 0.24158362421494864,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73432,
- "tp_rate": 0.24158362421494864,
- "truth_threshold": 22.46
- },
- {
- "f1": 0.38862089438307074,
- "fn": 230650,
- "fn_rate": 0.7588144531699791,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998290592429,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997817993372154,
- "recall": 0.24118554683002097,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73311,
- "tp_rate": 0.24118554683002097,
- "truth_threshold": 22.48
- },
- {
- "f1": 0.3880654791890932,
- "fn": 230780,
- "fn_rate": 0.7592421396165956,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998314126344,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997814118064948,
- "recall": 0.24075786038340444,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73181,
- "tp_rate": 0.24075786038340444,
- "truth_threshold": 22.5
- },
- {
- "f1": 0.3875267881771309,
- "fn": 230906,
- "fn_rate": 0.7596566664802392,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998337336261,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99978103488388,
- "recall": 0.24034333351976075,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 73055,
- "tp_rate": 0.24034333351976075,
- "truth_threshold": 22.52
- },
- {
- "f1": 0.38695880583075526,
- "fn": 231039,
- "fn_rate": 0.7600942226140853,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999836022664,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997806356083249,
- "recall": 0.23990577738591465,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72922,
- "tp_rate": 0.23990577738591465,
- "truth_threshold": 22.54
- },
- {
- "f1": 0.3864997133697106,
- "fn": 231146,
- "fn_rate": 0.7604462414586082,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998382801881,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997803133281158,
- "recall": 0.23955375854139183,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72815,
- "tp_rate": 0.23955375854139183,
- "truth_threshold": 22.56
- },
- {
- "f1": 0.38601996389508336,
- "fn": 231258,
- "fn_rate": 0.7608147097818471,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998405066322,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997799749721531,
- "recall": 0.239185290218153,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72703,
- "tp_rate": 0.239185290218153,
- "truth_threshold": 22.580000000000002
- },
- {
- "f1": 0.3855142048321392,
- "fn": 231376,
- "fn_rate": 0.761202917479545,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998427024241,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997796173606425,
- "recall": 0.23879708252045492,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72585,
- "tp_rate": 0.23879708252045492,
- "truth_threshold": 22.6
- },
- {
- "f1": 0.3849995484032069,
- "fn": 231496,
- "fn_rate": 0.7615977049687296,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999844867986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999779252493757,
- "recall": 0.23840229503127047,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72465,
- "tp_rate": 0.23840229503127047,
- "truth_threshold": 22.62
- },
- {
- "f1": 0.3845961716283865,
- "fn": 231590,
- "fn_rate": 0.7619069551685907,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999847003734,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997789658364071,
- "recall": 0.2380930448314093,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72371,
- "tp_rate": 0.2380930448314093,
- "truth_threshold": 22.64
- },
- {
- "f1": 0.3839659755449229,
- "fn": 231737,
- "fn_rate": 0.7623905698428417,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998491100784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997785160575858,
- "recall": 0.23760943015715832,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72224,
- "tp_rate": 0.23760943015715832,
- "truth_threshold": 22.66
- },
- {
- "f1": 0.383487994894839,
- "fn": 231848,
- "fn_rate": 0.7627557482703373,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998511874243,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997781752138529,
- "recall": 0.23724425172966268,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72113,
- "tp_rate": 0.23724425172966268,
- "truth_threshold": 22.68
- },
- {
- "f1": 0.3831440653174118,
- "fn": 231928,
- "fn_rate": 0.7630189399297936,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998532361707,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997779289094921,
- "recall": 0.23698106007020636,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 72033,
- "tp_rate": 0.23698106007020636,
- "truth_threshold": 22.7
- },
- {
- "f1": 0.38262789645907047,
- "fn": 232048,
- "fn_rate": 0.7634137274189781,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998552567114,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997775584256697,
- "recall": 0.2365862725810219,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71913,
- "tp_rate": 0.2365862725810219,
- "truth_threshold": 22.72
- },
- {
- "f1": 0.3821630626267357,
- "fn": 232156,
- "fn_rate": 0.7637690361592441,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998572494347,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997772239317191,
- "recall": 0.2362309638407559,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71805,
- "tp_rate": 0.2362309638407559,
- "truth_threshold": 22.740000000000002
- },
- {
- "f1": 0.38166349895918183,
- "fn": 232272,
- "fn_rate": 0.7641506640654557,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998592147237,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997768635381076,
- "recall": 0.23584933593454424,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71689,
- "tp_rate": 0.23584933593454424,
- "truth_threshold": 22.76
- },
- {
- "f1": 0.38095669264078486,
- "fn": 232436,
- "fn_rate": 0.7646902069673412,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998611529559,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997763520219175,
- "recall": 0.23530979303265878,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71525,
- "tp_rate": 0.23530979303265878,
- "truth_threshold": 22.78
- },
- {
- "f1": 0.3804444539162773,
- "fn": 232555,
- "fn_rate": 0.7650817045607825,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999863064504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997759793901039,
- "recall": 0.23491829543921752,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71406,
- "tp_rate": 0.23491829543921752,
- "truth_threshold": 22.8
- },
- {
- "f1": 0.38009059419131364,
- "fn": 232637,
- "fn_rate": 0.7653514760117252,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998649497351,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99977572189515,
- "recall": 0.23464852398827482,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71324,
- "tp_rate": 0.23464852398827482,
- "truth_threshold": 22.82
- },
- {
- "f1": 0.3795412262043745,
- "fn": 232764,
- "fn_rate": 0.765769292771112,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998668090118,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997753219215593,
- "recall": 0.23423070722888792,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71197,
- "tp_rate": 0.23423070722888792,
- "truth_threshold": 22.84
- },
- {
- "f1": 0.37905732918824087,
- "fn": 232876,
- "fn_rate": 0.7661377610943509,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998686426912,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997749680032629,
- "recall": 0.23386223890564908,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 71085,
- "tp_rate": 0.23386223890564908,
- "truth_threshold": 22.86
- },
- {
- "f1": 0.37863901601220384,
- "fn": 232973,
- "fn_rate": 0.7664568809814417,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998704511259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997746605825024,
- "recall": 0.23354311901855832,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70988,
- "tp_rate": 0.23354311901855832,
- "truth_threshold": 22.88
- },
- {
- "f1": 0.3781925081763422,
- "fn": 233076,
- "fn_rate": 0.7667957402429917,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998722346632,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997743332252014,
- "recall": 0.23320425975700831,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70885,
- "tp_rate": 0.23320425975700831,
- "truth_threshold": 22.900000000000002
- },
- {
- "f1": 0.37756594327437315,
- "fn": 233221,
- "fn_rate": 0.7672727751257563,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998739936462,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997738707671434,
- "recall": 0.23272722487424374,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70740,
- "tp_rate": 0.23272722487424374,
- "truth_threshold": 22.92
- },
- {
- "f1": 0.3771448401046394,
- "fn": 233318,
- "fn_rate": 0.7675918950128471,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998757284128,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997735603390934,
- "recall": 0.23240810498715295,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70643,
- "tp_rate": 0.23240810498715295,
- "truth_threshold": 22.94
- },
- {
- "f1": 0.3766941866302107,
- "fn": 233422,
- "fn_rate": 0.7679340441701402,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998774392962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997732265608391,
- "recall": 0.23206595582985975,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70539,
- "tp_rate": 0.23206595582985975,
- "truth_threshold": 22.96
- },
- {
- "f1": 0.3762085875150907,
- "fn": 233534,
- "fn_rate": 0.7683025124933791,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998791266254,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997728660051389,
- "recall": 0.23169748750662092,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70427,
- "tp_rate": 0.23169748750662092,
- "truth_threshold": 22.98
- },
- {
- "f1": 0.37562722099019424,
- "fn": 233668,
- "fn_rate": 0.7687433585229684,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998807907247,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997724331166707,
- "recall": 0.2312566414770316,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70293,
- "tp_rate": 0.2312566414770316,
- "truth_threshold": 23
- },
- {
- "f1": 0.3751670390523941,
- "fn": 233774,
- "fn_rate": 0.7690920874717481,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998824319137,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997720895118443,
- "recall": 0.230907912528252,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70187,
- "tp_rate": 0.230907912528252,
- "truth_threshold": 23.02
- },
- {
- "f1": 0.37460765598849305,
- "fn": 233903,
- "fn_rate": 0.7695164840226213,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998840505082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997716699489112,
- "recall": 0.23048351597737868,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 70058,
- "tp_rate": 0.23048351597737868,
- "truth_threshold": 23.04
- },
- {
- "f1": 0.37412415357131396,
- "fn": 234014,
- "fn_rate": 0.7698816624501169,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999885646819,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997713076912083,
- "recall": 0.23011833754988303,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69947,
- "tp_rate": 0.23011833754988303,
- "truth_threshold": 23.06
- },
- {
- "f1": 0.37365976844222826,
- "fn": 234121,
- "fn_rate": 0.7702336812946398,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998872211527,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997709573980761,
- "recall": 0.22976631870536024,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69840,
- "tp_rate": 0.22976631870536024,
- "truth_threshold": 23.080000000000002
- },
- {
- "f1": 0.37325405914525156,
- "fn": 234214,
- "fn_rate": 0.7705396415987578,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998887738123,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997706520648482,
- "recall": 0.22946035840124226,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69747,
- "tp_rate": 0.22946035840124226,
- "truth_threshold": 23.1
- },
- {
- "f1": 0.3727489775379542,
- "fn": 234330,
- "fn_rate": 0.7709212695049694,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999890305096,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997702700762416,
- "recall": 0.2290787304950306,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69631,
- "tp_rate": 0.2290787304950306,
- "truth_threshold": 23.12
- },
- {
- "f1": 0.37225765340273204,
- "fn": 234443,
- "fn_rate": 0.7712930277239515,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998918152979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997698967411626,
- "recall": 0.22870697227604858,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69518,
- "tp_rate": 0.22870697227604858,
- "truth_threshold": 23.14
- },
- {
- "f1": 0.37156877450875353,
- "fn": 234601,
- "fn_rate": 0.7718128312513777,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999998933047085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997693726937269,
- "recall": 0.22818716874862235,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69360,
- "tp_rate": 0.22818716874862235,
- "truth_threshold": 23.16
- },
- {
- "f1": 0.37096661825626076,
- "fn": 234739,
- "fn_rate": 0.7722668368639398,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999894773614,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997689130246397,
- "recall": 0.2277331631360602,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 69222,
- "tp_rate": 0.2277331631360602,
- "truth_threshold": 23.18
- },
- {
- "f1": 0.3704358920750307,
- "fn": 234861,
- "fn_rate": 0.7726682041446107,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999998962222966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997974361200336,
- "recall": 0.22733179585538935,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 69100,
- "tp_rate": 0.22733179585538935,
- "truth_threshold": 23.2
- },
- {
- "f1": 0.3699552771849294,
- "fn": 234971,
- "fn_rate": 0.7730300926763631,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999998976510348,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997971132108283,
- "recall": 0.22696990732363692,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68990,
- "tp_rate": 0.22696990732363692,
- "truth_threshold": 23.22
- },
- {
- "f1": 0.36950936271328266,
- "fn": 235073,
- "fn_rate": 0.7733656620421698,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999998990601031,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997968128646484,
- "recall": 0.2266343379578301,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68888,
- "tp_rate": 0.2266343379578301,
- "truth_threshold": 23.240000000000002
- },
- {
- "f1": 0.36901069891723093,
- "fn": 235187,
- "fn_rate": 0.7737407101568952,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999004497723,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997964761295575,
- "recall": 0.22625928984310487,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68774,
- "tp_rate": 0.22625928984310487,
- "truth_threshold": 23.26
- },
- {
- "f1": 0.3685204864801039,
- "fn": 235299,
- "fn_rate": 0.7741091784801339,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999018203096,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997961442134079,
- "recall": 0.22589082151986603,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68662,
- "tp_rate": 0.22589082151986603,
- "truth_threshold": 23.28
- },
- {
- "f1": 0.36794235766595795,
- "fn": 235431,
- "fn_rate": 0.7745434447182369,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999031719783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997957516339869,
- "recall": 0.22545655528176312,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68530,
- "tp_rate": 0.22545655528176312,
- "truth_threshold": 23.3
- },
- {
- "f1": 0.3674602705736397,
- "fn": 235541,
- "fn_rate": 0.7749053332499893,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999045050382,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997954233275858,
- "recall": 0.2250946667500107,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68420,
- "tp_rate": 0.2250946667500107,
- "truth_threshold": 23.32
- },
- {
- "f1": 0.36699544438714116,
- "fn": 235647,
- "fn_rate": 0.7752540621987689,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999058197454,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997951059594895,
- "recall": 0.2247459378012311,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68314,
- "tp_rate": 0.2247459378012311,
- "truth_threshold": 23.34
- },
- {
- "f1": 0.36649524147307444,
- "fn": 235761,
- "fn_rate": 0.7756291103134941,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999071163527,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997947635382766,
- "recall": 0.22437088968650584,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68200,
- "tp_rate": 0.22437088968650584,
- "truth_threshold": 23.36
- },
- {
- "f1": 0.36591567618709714,
- "fn": 235893,
- "fn_rate": 0.7760633765515971,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999083951091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997943656179313,
- "recall": 0.22393662344840293,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 68068,
- "tp_rate": 0.22393662344840293,
- "truth_threshold": 23.38
- },
- {
- "f1": 0.3653620710052808,
- "fn": 236019,
- "fn_rate": 0.7764779034152408,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999096562606,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997939843428101,
- "recall": 0.22352209658475922,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 67942,
- "tp_rate": 0.22352209658475922,
- "truth_threshold": 23.400000000000002
- },
- {
- "f1": 0.36479391481166684,
- "fn": 236148,
- "fn_rate": 0.776902299966114,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999109000495,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997935925221519,
- "recall": 0.22309770003388593,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 67813,
- "tp_rate": 0.22309770003388593,
- "truth_threshold": 23.42
- },
- {
- "f1": 0.3641691286869763,
- "fn": 236290,
- "fn_rate": 0.7773694651616491,
- "fp": 14,
- "fp_rate": 0.00008052039178922062,
- "match_probability": 0.9999999121267147,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997931594888084,
- "recall": 0.22263053483835096,
- "row_count": 477830,
- "tn": 173855,
- "tn_rate": 0.9999194796082108,
- "tp": 67671,
- "tp_rate": 0.22263053483835096,
- "truth_threshold": 23.44
- },
- {
- "f1": 0.36362168185659915,
- "fn": 236415,
- "fn_rate": 0.7777807021295495,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999133364921,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998223748482785,
- "recall": 0.22221929787045047,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 67546,
- "tp_rate": 0.22221929787045047,
- "truth_threshold": 23.46
- },
- {
- "f1": 0.3632462294781845,
- "fn": 236500,
- "fn_rate": 0.7780603432677219,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999145296141,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998221510826553,
- "recall": 0.22193965673227817,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 67461,
- "tp_rate": 0.22193965673227817,
- "truth_threshold": 23.48
- },
- {
- "f1": 0.36268199274991514,
- "fn": 236628,
- "fn_rate": 0.778481449922852,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999157063101,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999821813052194,
- "recall": 0.22151855007714805,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 67333,
- "tp_rate": 0.22151855007714805,
- "truth_threshold": 23.5
- },
- {
- "f1": 0.3620344974377489,
- "fn": 236775,
- "fn_rate": 0.7789650645971029,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999168668061,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998214232566446,
- "recall": 0.2210349354028971,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 67186,
- "tp_rate": 0.2210349354028971,
- "truth_threshold": 23.52
- },
- {
- "f1": 0.3615170250268164,
- "fn": 236892,
- "fn_rate": 0.7793499823990577,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999180113253,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998211117902237,
- "recall": 0.22065001760094222,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 67069,
- "tp_rate": 0.22065001760094222,
- "truth_threshold": 23.54
- },
- {
- "f1": 0.361048806263075,
- "fn": 236998,
- "fn_rate": 0.7796987113478374,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999191400875,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998208286674132,
- "recall": 0.2203012886521626,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66963,
- "tp_rate": 0.2203012886521626,
- "truth_threshold": 23.56
- },
- {
- "f1": 0.3606422107409045,
- "fn": 237090,
- "fn_rate": 0.7800013817562121,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999202533097,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998205822107262,
- "recall": 0.21999861824378786,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66871,
- "tp_rate": 0.21999861824378786,
- "truth_threshold": 23.580000000000002
- },
- {
- "f1": 0.3601204123800327,
- "fn": 237208,
- "fn_rate": 0.7803895894539102,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999213512059,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998202651089643,
- "recall": 0.2196104105460898,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66753,
- "tp_rate": 0.2196104105460898,
- "truth_threshold": 23.6
- },
- {
- "f1": 0.35956287101996764,
- "fn": 237334,
- "fn_rate": 0.7808041163175539,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999224339869,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998199252689867,
- "recall": 0.2191958836824461,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66627,
- "tp_rate": 0.2191958836824461,
- "truth_threshold": 23.62
- },
- {
- "f1": 0.3590315266681062,
- "fn": 237454,
- "fn_rate": 0.7811989038067384,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999235018612,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999819600414919,
- "recall": 0.21880109619326163,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66507,
- "tp_rate": 0.21880109619326163,
- "truth_threshold": 23.64
- },
- {
- "f1": 0.35845205050385043,
- "fn": 237585,
- "fn_rate": 0.7816298801490981,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999245550335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998192444417666,
- "recall": 0.21837011985090193,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66376,
- "tp_rate": 0.21837011985090193,
- "truth_threshold": 23.66
- },
- {
- "f1": 0.3581008453290842,
- "fn": 237664,
- "fn_rate": 0.7818897819128112,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999255937067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998190290910736,
- "recall": 0.2181102180871888,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66297,
- "tp_rate": 0.2181102180871888,
- "truth_threshold": 23.68
- },
- {
- "f1": 0.35751183348823135,
- "fn": 237797,
- "fn_rate": 0.7823273380466573,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.99999992661808,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999818665377176,
- "recall": 0.2176726619533427,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66164,
- "tp_rate": 0.2176726619533427,
- "truth_threshold": 23.7
- },
- {
- "f1": 0.35710347958621136,
- "fn": 237889,
- "fn_rate": 0.7826300084550321,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999276283504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998184129289994,
- "recall": 0.21736999154496794,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 66072,
- "tp_rate": 0.21736999154496794,
- "truth_threshold": 23.72
- },
- {
- "f1": 0.3566771546271368,
- "fn": 237985,
- "fn_rate": 0.7829458384463797,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999286247123,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999818148754319,
- "recall": 0.21705416155362037,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65976,
- "tp_rate": 0.21705416155362037,
- "truth_threshold": 23.740000000000002
- },
- {
- "f1": 0.35615630881048693,
- "fn": 238102,
- "fn_rate": 0.7833307562483345,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999296073568,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998178257503302,
- "recall": 0.21666924375166552,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65859,
- "tp_rate": 0.21666924375166552,
- "truth_threshold": 23.76
- },
- {
- "f1": 0.35548582557887903,
- "fn": 238253,
- "fn_rate": 0.7838275305055583,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999305764732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998174071819842,
- "recall": 0.21617246949444172,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65708,
- "tp_rate": 0.21617246949444172,
- "truth_threshold": 23.78
- },
- {
- "f1": 0.3549642281174573,
- "fn": 238370,
- "fn_rate": 0.7842124483075131,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999315322473,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998170815359053,
- "recall": 0.21578755169248687,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65591,
- "tp_rate": 0.21578755169248687,
- "truth_threshold": 23.8
- },
- {
- "f1": 0.35452439209232833,
- "fn": 238469,
- "fn_rate": 0.7845381479860903,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.999999932474863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998168050806058,
- "recall": 0.2154618520139097,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65492,
- "tp_rate": 0.2154618520139097,
- "truth_threshold": 23.82
- },
- {
- "f1": 0.3541804281676719,
- "fn": 238546,
- "fn_rate": 0.7847914699583171,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999334045014,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998165894814067,
- "recall": 0.21520853004168297,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65415,
- "tp_rate": 0.21520853004168297,
- "truth_threshold": 23.84
- },
- {
- "f1": 0.3535439980067381,
- "fn": 238689,
- "fn_rate": 0.7852619250495951,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999343213413,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998161877335947,
- "recall": 0.2147380749504048,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65272,
- "tp_rate": 0.2147380749504048,
- "truth_threshold": 23.86
- },
- {
- "f1": 0.35303551594289273,
- "fn": 238803,
- "fn_rate": 0.7856369731643205,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999352255587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998158661961025,
- "recall": 0.21436302683567957,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65158,
- "tp_rate": 0.21436302683567957,
- "truth_threshold": 23.88
- },
- {
- "f1": 0.35261600494260725,
- "fn": 238897,
- "fn_rate": 0.7859462233641816,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999361173275,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998156002212797,
- "recall": 0.2140537766358184,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 65064,
- "tp_rate": 0.2140537766358184,
- "truth_threshold": 23.900000000000002
- },
- {
- "f1": 0.3522409419111429,
- "fn": 238981,
- "fn_rate": 0.7862225746066107,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999369968191,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998153618906942,
- "recall": 0.2137774253933893,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64980,
- "tp_rate": 0.2137774253933893,
- "truth_threshold": 23.92
- },
- {
- "f1": 0.35186922221921,
- "fn": 239064,
- "fn_rate": 0.7864956359532966,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999378642025,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998151257914927,
- "recall": 0.21350436404670337,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64897,
- "tp_rate": 0.21350436404670337,
- "truth_threshold": 23.94
- },
- {
- "f1": 0.35138653115017277,
- "fn": 239172,
- "fn_rate": 0.7868509446935626,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999387196443,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998148176725667,
- "recall": 0.21314905530643735,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64789,
- "tp_rate": 0.21314905530643735,
- "truth_threshold": 23.96
- },
- {
- "f1": 0.3509303965713666,
- "fn": 239274,
- "fn_rate": 0.7871865140593695,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.999999939563309,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998145257268273,
- "recall": 0.21281348594063054,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64687,
- "tp_rate": 0.21281348594063054,
- "truth_threshold": 23.98
- },
- {
- "f1": 0.35047400951817625,
- "fn": 239376,
- "fn_rate": 0.7875220834251763,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999403953588,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998142328591111,
- "recall": 0.21247791657482373,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64585,
- "tp_rate": 0.21247791657482373,
- "truth_threshold": 24
- },
- {
- "f1": 0.3500442379404118,
- "fn": 239472,
- "fn_rate": 0.7878379134165239,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999412159535,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998139563727694,
- "recall": 0.21216208658347616,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64489,
- "tp_rate": 0.21216208658347616,
- "truth_threshold": 24.02
- },
- {
- "f1": 0.3494314788067028,
- "fn": 239609,
- "fn_rate": 0.7882886291333427,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999420252508,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998135603753651,
- "recall": 0.21171137086665723,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64352,
- "tp_rate": 0.21171137086665723,
- "truth_threshold": 24.04
- },
- {
- "f1": 0.3487894573879223,
- "fn": 239752,
- "fn_rate": 0.7887590842246209,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999428234062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998131452328678,
- "recall": 0.21124091577537907,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64209,
- "tp_rate": 0.21124091577537907,
- "truth_threshold": 24.060000000000002
- },
- {
- "f1": 0.3482475683312503,
- "fn": 239873,
- "fn_rate": 0.7891571616095486,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999436105732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998127925117005,
- "recall": 0.2108428383904514,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 64088,
- "tp_rate": 0.2108428383904514,
- "truth_threshold": 24.080000000000002
- },
- {
- "f1": 0.34769090276569836,
- "fn": 239997,
- "fn_rate": 0.7895651086817059,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999443869031,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998124296611229,
- "recall": 0.21043489131829413,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63964,
- "tp_rate": 0.21043489131829413,
- "truth_threshold": 24.1
- },
- {
- "f1": 0.3471733610278885,
- "fn": 240112,
- "fn_rate": 0.7899434466921743,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.999999945152545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998120918870672,
- "recall": 0.2100565533078257,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63849,
- "tp_rate": 0.2100565533078257,
- "truth_threshold": 24.12
- },
- {
- "f1": 0.3467742812700554,
- "fn": 240201,
- "fn_rate": 0.7902362474133194,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999459076461,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998118296431036,
- "recall": 0.20976375258668054,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63760,
- "tp_rate": 0.20976375258668054,
- "truth_threshold": 24.14
- },
- {
- "f1": 0.3462885992209431,
- "fn": 240309,
- "fn_rate": 0.7905915561535855,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999466523515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115104297562,
- "recall": 0.2094084438464145,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63652,
- "tp_rate": 0.2094084438464145,
- "truth_threshold": 24.16
- },
- {
- "f1": 0.3457701831242687,
- "fn": 240424,
- "fn_rate": 0.7909698941640539,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999473868042,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998111693338998,
- "recall": 0.20903010583594606,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63537,
- "tp_rate": 0.20903010583594606,
- "truth_threshold": 24.18
- },
- {
- "f1": 0.3452533247685047,
- "fn": 240539,
- "fn_rate": 0.7913482321745224,
- "fp": 12,
- "fp_rate": 0.00006901747867647482,
- "match_probability": 0.9999999481111456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998108270012926,
- "recall": 0.20865176782547762,
- "row_count": 477830,
- "tn": 173857,
- "tn_rate": 0.9999309825213235,
- "tp": 63422,
- "tp_rate": 0.20865176782547762,
- "truth_threshold": 24.2
- },
- {
- "f1": 0.3448136914842061,
- "fn": 240637,
- "fn_rate": 0.7916706419573564,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999488255148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998421069251903,
- "recall": 0.20832935804264363,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 63324,
- "tp_rate": 0.20832935804264363,
- "truth_threshold": 24.22
- },
- {
- "f1": 0.3442096088898573,
- "fn": 240771,
- "fn_rate": 0.7921114879869456,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999949530049,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998417721518987,
- "recall": 0.2078885120130543,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 63190,
- "tp_rate": 0.2078885120130543,
- "truth_threshold": 24.240000000000002
- },
- {
- "f1": 0.343650214147931,
- "fn": 240895,
- "fn_rate": 0.7925194350591029,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999502248836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998414610945526,
- "recall": 0.20748056494089703,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 63066,
- "tp_rate": 0.20748056494089703,
- "truth_threshold": 24.26
- },
- {
- "f1": 0.3432168746934104,
- "fn": 240991,
- "fn_rate": 0.7928352650504505,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999509101524,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998412194347411,
- "recall": 0.20716473494954946,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62970,
- "tp_rate": 0.20716473494954946,
- "truth_threshold": 24.28
- },
- {
- "f1": 0.3428320648973984,
- "fn": 241076,
- "fn_rate": 0.7931149061886229,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999515859868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998410048493521,
- "recall": 0.20688509381137712,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62885,
- "tp_rate": 0.20688509381137712,
- "truth_threshold": 24.3
- },
- {
- "f1": 0.34246702328954615,
- "fn": 241157,
- "fn_rate": 0.7933813877438224,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999522525168,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998407998216958,
- "recall": 0.20661861225617761,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62804,
- "tp_rate": 0.20661861225617761,
- "truth_threshold": 24.32
- },
- {
- "f1": 0.34190645029319516,
- "fn": 241281,
- "fn_rate": 0.7937893348159797,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999529098704,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998404849258254,
- "recall": 0.20621066518402031,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62680,
- "tp_rate": 0.20621066518402031,
- "truth_threshold": 24.34
- },
- {
- "f1": 0.3414848400525974,
- "fn": 241374,
- "fn_rate": 0.7940952951200977,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999535581742,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998402479352045,
- "recall": 0.20590470487990237,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62587,
- "tp_rate": 0.20590470487990237,
- "truth_threshold": 24.36
- },
- {
- "f1": 0.3410196095553603,
- "fn": 241477,
- "fn_rate": 0.7944341543816477,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999541975525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998399846385253,
- "recall": 0.20556584561835237,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62484,
- "tp_rate": 0.20556584561835237,
- "truth_threshold": 24.38
- },
- {
- "f1": 0.3404978981274226,
- "fn": 241592,
- "fn_rate": 0.794812492392116,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999548281283,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998396896391414,
- "recall": 0.2051875076078839,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62369,
- "tp_rate": 0.2051875076078839,
- "truth_threshold": 24.400000000000002
- },
- {
- "f1": 0.3398815960502889,
- "fn": 241728,
- "fn_rate": 0.7952599182131919,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999554500227,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998393393634626,
- "recall": 0.20474008178680816,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62233,
- "tp_rate": 0.20474008178680816,
- "truth_threshold": 24.42
- },
- {
- "f1": 0.3393156649675752,
- "fn": 241853,
- "fn_rate": 0.7956711551810923,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999560633555,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998390160661966,
- "recall": 0.2043288448189077,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62108,
- "tp_rate": 0.2043288448189077,
- "truth_threshold": 24.44
- },
- {
- "f1": 0.3389617486338798,
- "fn": 241931,
- "fn_rate": 0.7959277670490622,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999566682441,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999838813668601,
- "recall": 0.2040722329509378,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 62030,
- "tp_rate": 0.2040722329509378,
- "truth_threshold": 24.46
- },
- {
- "f1": 0.3383388362888942,
- "fn": 242068,
- "fn_rate": 0.7963784827658812,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999572648053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998384569406975,
- "recall": 0.20362151723411884,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61893,
- "tp_rate": 0.20362151723411884,
- "truth_threshold": 24.48
- },
- {
- "f1": 0.3378082056946624,
- "fn": 242185,
- "fn_rate": 0.796763400567836,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999578531533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998381510374519,
- "recall": 0.203236599432164,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61776,
- "tp_rate": 0.203236599432164,
- "truth_threshold": 24.5
- },
- {
- "f1": 0.3372990476815613,
- "fn": 242297,
- "fn_rate": 0.7971318688910748,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999584334013,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998378571196939,
- "recall": 0.20286813110892515,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61664,
- "tp_rate": 0.20286813110892515,
- "truth_threshold": 24.52
- },
- {
- "f1": 0.3366530594376895,
- "fn": 242439,
- "fn_rate": 0.7975990340866098,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999959005661,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998374829357083,
- "recall": 0.2024009659133902,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61522,
- "tp_rate": 0.2024009659133902,
- "truth_threshold": 24.54
- },
- {
- "f1": 0.33617051556436206,
- "fn": 242545,
- "fn_rate": 0.7979477630353894,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999595700421,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999837202487546,
- "recall": 0.20205223696461058,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61416,
- "tp_rate": 0.20205223696461058,
- "truth_threshold": 24.560000000000002
- },
- {
- "f1": 0.33586081167640247,
- "fn": 242613,
- "fn_rate": 0.7981714759459273,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999601266533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998370220672121,
- "recall": 0.20182852405407273,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61348,
- "tp_rate": 0.20182852405407273,
- "truth_threshold": 24.580000000000002
- },
- {
- "f1": 0.33534134346830813,
- "fn": 242727,
- "fn_rate": 0.7985465240606525,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999606756014,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998367186989746,
- "recall": 0.20145347593934748,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61234,
- "tp_rate": 0.20145347593934748,
- "truth_threshold": 24.6
- },
- {
- "f1": 0.33502221102389806,
- "fn": 242797,
- "fn_rate": 0.7987768167626768,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999961216992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998365318599405,
- "recall": 0.20122318323732322,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61164,
- "tp_rate": 0.20122318323732322,
- "truth_threshold": 24.62
- },
- {
- "f1": 0.33451134452170006,
- "fn": 242909,
- "fn_rate": 0.7991452850859156,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999617509291,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998362320264649,
- "recall": 0.20085471491408438,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 61052,
- "tp_rate": 0.20085471491408438,
- "truth_threshold": 24.64
- },
- {
- "f1": 0.3340585985027019,
- "fn": 243008,
- "fn_rate": 0.7994709847644929,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999622775153,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998359660777849,
- "recall": 0.20052901523550717,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60953,
- "tp_rate": 0.20052901523550717,
- "truth_threshold": 24.66
- },
- {
- "f1": 0.33352886998092146,
- "fn": 243124,
- "fn_rate": 0.7998526126707045,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999627968519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998356533600671,
- "recall": 0.20014738732929555,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60837,
- "tp_rate": 0.20014738732929555,
- "truth_threshold": 24.68
- },
- {
- "f1": 0.33280314165990216,
- "fn": 243283,
- "fn_rate": 0.8003757060938739,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999633090386,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998352227788031,
- "recall": 0.19962429390612613,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60678,
- "tp_rate": 0.19962429390612613,
- "truth_threshold": 24.7
- },
- {
- "f1": 0.33232751053370785,
- "fn": 243387,
- "fn_rate": 0.8007178552511671,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999638141739,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998349399181302,
- "recall": 0.1992821447488329,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60574,
- "tp_rate": 0.1992821447488329,
- "truth_threshold": 24.72
- },
- {
- "f1": 0.3318241437407048,
- "fn": 243497,
- "fn_rate": 0.8010797437829196,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999643123548,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998346396798624,
- "recall": 0.19892025621708048,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60464,
- "tp_rate": 0.19892025621708048,
- "truth_threshold": 24.740000000000002
- },
- {
- "f1": 0.3313241437613566,
- "fn": 243606,
- "fn_rate": 0.8014383424189288,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999648036773,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998343410916922,
- "recall": 0.19856165758107125,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60355,
- "tp_rate": 0.19856165758107125,
- "truth_threshold": 24.76
- },
- {
- "f1": 0.33082566389175655,
- "fn": 243715,
- "fn_rate": 0.8017969410549379,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999652882353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998340414232607,
- "recall": 0.19820305894506204,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60246,
- "tp_rate": 0.19820305894506204,
- "truth_threshold": 24.78
- },
- {
- "f1": 0.3301874872966782,
- "fn": 243854,
- "fn_rate": 0.8022542365632434,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999657661225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998336577008168,
- "recall": 0.19774576343675668,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60107,
- "tp_rate": 0.19774576343675668,
- "truth_threshold": 24.8
- },
- {
- "f1": 0.3297195419478207,
- "fn": 243956,
- "fn_rate": 0.8025898059290502,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999662374304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998333749895859,
- "recall": 0.1974101940709499,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 60005,
- "tp_rate": 0.1974101940709499,
- "truth_threshold": 24.82
- },
- {
- "f1": 0.32923296781817685,
- "fn": 244062,
- "fn_rate": 0.8029385348778297,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999667022497,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998330801715936,
- "recall": 0.19706146512217027,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59899,
- "tp_rate": 0.19706146512217027,
- "truth_threshold": 24.84
- },
- {
- "f1": 0.3287148528134244,
- "fn": 244175,
- "fn_rate": 0.8033102930968118,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999671606695,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999832764733427,
- "recall": 0.19668970690318824,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59786,
- "tp_rate": 0.19668970690318824,
- "truth_threshold": 24.86
- },
- {
- "f1": 0.3283012434486589,
- "fn": 244265,
- "fn_rate": 0.8036063837137001,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999676127783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998325126452953,
- "recall": 0.1963936162862999,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59696,
- "tp_rate": 0.1963936162862999,
- "truth_threshold": 24.88
- },
- {
- "f1": 0.3277715429979755,
- "fn": 244380,
- "fn_rate": 0.8039847217241686,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999680586628,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998321894245775,
- "recall": 0.19601527827583143,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59581,
- "tp_rate": 0.19601527827583143,
- "truth_threshold": 24.900000000000002
- },
- {
- "f1": 0.3272101917838373,
- "fn": 244502,
- "fn_rate": 0.8043860890048394,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999684984086,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998318451630261,
- "recall": 0.19561391099516057,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59459,
- "tp_rate": 0.19561391099516057,
- "truth_threshold": 24.92
- },
- {
- "f1": 0.3267682077647564,
- "fn": 244598,
- "fn_rate": 0.804701918996187,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999689321003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998315732740471,
- "recall": 0.195298081003813,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59363,
- "tp_rate": 0.195298081003813,
- "truth_threshold": 24.94
- },
- {
- "f1": 0.32623383202374334,
- "fn": 244714,
- "fn_rate": 0.8050835469023987,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999693598213,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998312435661609,
- "recall": 0.19491645309760133,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59247,
- "tp_rate": 0.19491645309760133,
- "truth_threshold": 24.96
- },
- {
- "f1": 0.3257267810128116,
- "fn": 244824,
- "fn_rate": 0.8054454354341511,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999697816536,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998309297174836,
- "recall": 0.1945545645658489,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59137,
- "tp_rate": 0.1945545645658489,
- "truth_threshold": 24.98
- },
- {
- "f1": 0.3252655588857546,
- "fn": 244924,
- "fn_rate": 0.8057744250084715,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999701976785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998306433857774,
- "recall": 0.1942255749915285,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 59037,
- "tp_rate": 0.1942255749915285,
- "truth_threshold": 25
- },
- {
- "f1": 0.32473945559860457,
- "fn": 245038,
- "fn_rate": 0.8061494731231967,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999706079759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998303157823291,
- "recall": 0.19385052687680326,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58923,
- "tp_rate": 0.19385052687680326,
- "truth_threshold": 25.02
- },
- {
- "f1": 0.3243109151047409,
- "fn": 245131,
- "fn_rate": 0.8064554334273147,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999710126245,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998300475866757,
- "recall": 0.19354456657268532,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58830,
- "tp_rate": 0.19354456657268532,
- "truth_threshold": 25.04
- },
- {
- "f1": 0.3236640379418739,
- "fn": 245271,
- "fn_rate": 0.8069160188313632,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999714117023,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998296422487223,
- "recall": 0.19308398116863676,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58690,
- "tp_rate": 0.19308398116863676,
- "truth_threshold": 25.060000000000002
- },
- {
- "f1": 0.32327567185914124,
- "fn": 245355,
- "fn_rate": 0.8071923700737924,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999718052858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998293981165552,
- "recall": 0.19280762992620765,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58606,
- "tp_rate": 0.19280762992620765,
- "truth_threshold": 25.080000000000002
- },
- {
- "f1": 0.3228408583046882,
- "fn": 245449,
- "fn_rate": 0.8075016202736536,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999721934507,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998291240900857,
- "recall": 0.19249837972634648,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58512,
- "tp_rate": 0.19249837972634648,
- "truth_threshold": 25.1
- },
- {
- "f1": 0.3224280755200141,
- "fn": 245538,
- "fn_rate": 0.8077944209947987,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999725762717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998288638269471,
- "recall": 0.19220557900520133,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58423,
- "tp_rate": 0.19220557900520133,
- "truth_threshold": 25.12
- },
- {
- "f1": 0.32199834391388354,
- "fn": 245631,
- "fn_rate": 0.8081003812989166,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999729538223,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998285910181693,
- "recall": 0.19189961870108335,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58330,
- "tp_rate": 0.19189961870108335,
- "truth_threshold": 25.14
- },
- {
- "f1": 0.32153880983539573,
- "fn": 245730,
- "fn_rate": 0.8084260809774938,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999973326175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998282996514483,
- "recall": 0.19157391902250617,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58231,
- "tp_rate": 0.19157391902250617,
- "truth_threshold": 25.16
- },
- {
- "f1": 0.32101963600209893,
- "fn": 245842,
- "fn_rate": 0.8087945493007327,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999736934014,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998279688279517,
- "recall": 0.19120545069926734,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58119,
- "tp_rate": 0.19120545069926734,
- "truth_threshold": 25.18
- },
- {
- "f1": 0.3205558164590182,
- "fn": 245942,
- "fn_rate": 0.8091235388750531,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999740555722,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998276723707112,
- "recall": 0.19087646112494694,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 58019,
- "tp_rate": 0.19087646112494694,
- "truth_threshold": 25.2
- },
- {
- "f1": 0.32011583502351515,
- "fn": 246037,
- "fn_rate": 0.8094360789706574,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999744127567,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998273897883799,
- "recall": 0.19056392102934258,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57924,
- "tp_rate": 0.19056392102934258,
- "truth_threshold": 25.22
- },
- {
- "f1": 0.3196088295290586,
- "fn": 246146,
- "fn_rate": 0.8097946776066667,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999747650239,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998270644185041,
- "recall": 0.19020532239333335,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57815,
- "tp_rate": 0.19020532239333335,
- "truth_threshold": 25.240000000000002
- },
- {
- "f1": 0.31932080812995545,
- "fn": 246208,
- "fn_rate": 0.8099986511427453,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999751124412,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998268787978464,
- "recall": 0.19000134885725473,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57753,
- "tp_rate": 0.19000134885725473,
- "truth_threshold": 25.26
- },
- {
- "f1": 0.31883745368065924,
- "fn": 246312,
- "fn_rate": 0.8103408003000385,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999754550756,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998265665377478,
- "recall": 0.1896591996999615,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57649,
- "tp_rate": 0.1896591996999615,
- "truth_threshold": 25.28
- },
- {
- "f1": 0.3183817305724133,
- "fn": 246410,
- "fn_rate": 0.8106632100828725,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999757929928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998262712600545,
- "recall": 0.18933678991712752,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57551,
- "tp_rate": 0.18933678991712752,
- "truth_threshold": 25.3
- },
- {
- "f1": 0.31786991024094385,
- "fn": 246520,
- "fn_rate": 0.8110250986146249,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999761262578,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998259386259595,
- "recall": 0.1889749013853751,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57441,
- "tp_rate": 0.1889749013853751,
- "truth_threshold": 25.32
- },
- {
- "f1": 0.3172422192451201,
- "fn": 246655,
- "fn_rate": 0.8114692345399575,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999764549347,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999825528648196,
- "recall": 0.18853076546004258,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57306,
- "tp_rate": 0.18853076546004258,
- "truth_threshold": 25.34
- },
- {
- "f1": 0.31657501093776824,
- "fn": 246798,
- "fn_rate": 0.8119396896312356,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999767790866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998250922638309,
- "recall": 0.18806031036876442,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57163,
- "tp_rate": 0.18806031036876442,
- "truth_threshold": 25.36
- },
- {
- "f1": 0.3160247745252288,
- "fn": 246916,
- "fn_rate": 0.8123278973289336,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999770987757,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998247305231794,
- "recall": 0.18767210267106635,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 57045,
- "tp_rate": 0.18767210267106635,
- "truth_threshold": 25.38
- },
- {
- "f1": 0.3156664025400484,
- "fn": 246993,
- "fn_rate": 0.8125812193011603,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999774140637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998244936642213,
- "recall": 0.18741878069883966,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56968,
- "tp_rate": 0.18741878069883966,
- "truth_threshold": 25.400000000000002
- },
- {
- "f1": 0.315100687881425,
- "fn": 247114,
- "fn_rate": 0.812979296686088,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999777250109,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998241201611059,
- "recall": 0.187020703313912,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56847,
- "tp_rate": 0.187020703313912,
- "truth_threshold": 25.42
- },
- {
- "f1": 0.31463913638909063,
- "fn": 247213,
- "fn_rate": 0.8133049963646652,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999780316773,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998238133831354,
- "recall": 0.18669500363533478,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56748,
- "tp_rate": 0.18669500363533478,
- "truth_threshold": 25.44
- },
- {
- "f1": 0.3141194870884728,
- "fn": 247324,
- "fn_rate": 0.8136701747921609,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999783341216,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998234681448267,
- "recall": 0.18632982520783917,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56637,
- "tp_rate": 0.18632982520783917,
- "truth_threshold": 25.46
- },
- {
- "f1": 0.3137415886787638,
- "fn": 247405,
- "fn_rate": 0.8139366563473603,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999786324022,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998232153590496,
- "recall": 0.18606334365263966,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56556,
- "tp_rate": 0.18606334365263966,
- "truth_threshold": 25.48
- },
- {
- "f1": 0.3133430621292746,
- "fn": 247490,
- "fn_rate": 0.8142162974855327,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999789265762,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998229493103875,
- "recall": 0.18578370251446732,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56471,
- "tp_rate": 0.18578370251446732,
- "truth_threshold": 25.5
- },
- {
- "f1": 0.3128188049843199,
- "fn": 247602,
- "fn_rate": 0.8145847658087715,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999792167003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998225975270095,
- "recall": 0.1854152341912285,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56359,
- "tp_rate": 0.1854152341912285,
- "truth_threshold": 25.52
- },
- {
- "f1": 0.31223799714607753,
- "fn": 247726,
- "fn_rate": 0.8149927128809288,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.99999997950283,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998222064183483,
- "recall": 0.1850072871190712,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56235,
- "tp_rate": 0.1850072871190712,
- "truth_threshold": 25.54
- },
- {
- "f1": 0.31194362223789507,
- "fn": 247789,
- "fn_rate": 0.8151999763127507,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999797850206,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998220070485209,
- "recall": 0.18480002368724935,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56172,
- "tp_rate": 0.18480002368724935,
- "truth_threshold": 25.560000000000002
- },
- {
- "f1": 0.31159114389504206,
- "fn": 247864,
- "fn_rate": 0.8154467184934909,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999800633262,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998217691197177,
- "recall": 0.18455328150650907,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 56097,
- "tp_rate": 0.18455328150650907,
- "truth_threshold": 25.580000000000002
- },
- {
- "f1": 0.3110901211245694,
- "fn": 247971,
- "fn_rate": 0.8157987373380138,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999803378004,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998214285714285,
- "recall": 0.18420126266198625,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55990,
- "tp_rate": 0.18420126266198625,
- "truth_threshold": 25.6
- },
- {
- "f1": 0.31075606435299674,
- "fn": 248042,
- "fn_rate": 0.8160323199357812,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999806084956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998212018809562,
- "recall": 0.18396768006421876,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55919,
- "tp_rate": 0.18396768006421876,
- "truth_threshold": 25.62
- },
- {
- "f1": 0.3102733291456588,
- "fn": 248145,
- "fn_rate": 0.8163711791973313,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999808754642,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998208719951277,
- "recall": 0.18362882080266876,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55816,
- "tp_rate": 0.18362882080266876,
- "truth_threshold": 25.64
- },
- {
- "f1": 0.3098167866774167,
- "fn": 248242,
- "fn_rate": 0.816690299084422,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999811387573,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998205602110212,
- "recall": 0.183309700915578,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55719,
- "tp_rate": 0.183309700915578,
- "truth_threshold": 25.66
- },
- {
- "f1": 0.30927152686234266,
- "fn": 248358,
- "fn_rate": 0.8170719269906337,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999813984256,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998201859277507,
- "recall": 0.18292807300936634,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55603,
- "tp_rate": 0.18292807300936634,
- "truth_threshold": 25.68
- },
- {
- "f1": 0.30873532521003727,
- "fn": 248472,
- "fn_rate": 0.8174469751053589,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999981654519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998198165732716,
- "recall": 0.1825530248946411,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55489,
- "tp_rate": 0.1825530248946411,
- "truth_threshold": 25.7
- },
- {
- "f1": 0.3082081992942774,
- "fn": 248584,
- "fn_rate": 0.8178154434285978,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999819070866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998194522180295,
- "recall": 0.18218455657140226,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55377,
- "tp_rate": 0.18218455657140226,
- "truth_threshold": 25.72
- },
- {
- "f1": 0.3077184309271693,
- "fn": 248688,
- "fn_rate": 0.8181575925858909,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999821561771,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99981911256625,
- "recall": 0.18184240741410904,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55273,
- "tp_rate": 0.18184240741410904,
- "truth_threshold": 25.740000000000002
- },
- {
- "f1": 0.3073470615095054,
- "fn": 248767,
- "fn_rate": 0.8184174943496041,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999824018383,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998188537062531,
- "recall": 0.18158250565039594,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55194,
- "tp_rate": 0.18158250565039594,
- "truth_threshold": 25.76
- },
- {
- "f1": 0.3069832464465535,
- "fn": 248844,
- "fn_rate": 0.8186708163218308,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999826441174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998186006856894,
- "recall": 0.18132918367816925,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55117,
- "tp_rate": 0.18132918367816925,
- "truth_threshold": 25.78
- },
- {
- "f1": 0.30658325023258926,
- "fn": 248929,
- "fn_rate": 0.8189504574600031,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999828830609,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998183205552124,
- "recall": 0.18104954253999692,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 55032,
- "tp_rate": 0.18104954253999692,
- "truth_threshold": 25.8
- },
- {
- "f1": 0.30609640568403457,
- "fn": 249032,
- "fn_rate": 0.8192893167215531,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999831187149,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998179799413895,
- "recall": 0.18071068327844692,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54929,
- "tp_rate": 0.18071068327844692,
- "truth_threshold": 25.82
- },
- {
- "f1": 0.30563932196587534,
- "fn": 249129,
- "fn_rate": 0.8196084366086439,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999833511245,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998176579993435,
- "recall": 0.18039156339135612,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54832,
- "tp_rate": 0.18039156339135612,
- "truth_threshold": 25.84
- },
- {
- "f1": 0.30501575264170405,
- "fn": 249261,
- "fn_rate": 0.8200427028467467,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999835803345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998172180588558,
- "recall": 0.1799572971532532,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54700,
- "tp_rate": 0.1799572971532532,
- "truth_threshold": 25.86
- },
- {
- "f1": 0.3046320310103461,
- "fn": 249342,
- "fn_rate": 0.8203091844019463,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999838063889,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998169470427795,
- "recall": 0.1796908155980537,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54619,
- "tp_rate": 0.1796908155980537,
- "truth_threshold": 25.88
- },
- {
- "f1": 0.30421199442119945,
- "fn": 249431,
- "fn_rate": 0.8206019851230915,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999840293311,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998166483314999,
- "recall": 0.17939801487690854,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54530,
- "tp_rate": 0.17939801487690854,
- "truth_threshold": 25.900000000000002
- },
- {
- "f1": 0.3037861666806172,
- "fn": 249521,
- "fn_rate": 0.8208980757399797,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999984249204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998163452708907,
- "recall": 0.1791019242600202,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54440,
- "tp_rate": 0.1791019242600202,
- "truth_threshold": 25.92
- },
- {
- "f1": 0.30308545142940085,
- "fn": 249669,
- "fn_rate": 0.821384980309974,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999844660499,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998158447202681,
- "recall": 0.17861501969002602,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54292,
- "tp_rate": 0.17861501969002602,
- "truth_threshold": 25.94
- },
- {
- "f1": 0.30274435355537566,
- "fn": 249741,
- "fn_rate": 0.8216218528034847,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999846799104,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998156002212797,
- "recall": 0.17837814719651535,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54220,
- "tp_rate": 0.17837814719651535,
- "truth_threshold": 25.96
- },
- {
- "f1": 0.30231220329516895,
- "fn": 249832,
- "fn_rate": 0.8219212333161162,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999848908265,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998152902713386,
- "recall": 0.17807876668388378,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54129,
- "tp_rate": 0.17807876668388378,
- "truth_threshold": 25.98
- },
- {
- "f1": 0.3018190147375948,
- "fn": 249936,
- "fn_rate": 0.8222633824734095,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999985098839,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998149347645044,
- "recall": 0.1777366175265906,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 54025,
- "tp_rate": 0.1777366175265906,
- "truth_threshold": 26
- },
- {
- "f1": 0.30137858966979786,
- "fn": 250029,
- "fn_rate": 0.8225693427775274,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999853039877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998146156983426,
- "recall": 0.17743065722247262,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53932,
- "tp_rate": 0.17743065722247262,
- "truth_threshold": 26.02
- },
- {
- "f1": 0.30100272759792523,
- "fn": 250108,
- "fn_rate": 0.8228292445412405,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999855063121,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998143437981546,
- "recall": 0.17717075545875952,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53853,
- "tp_rate": 0.17717075545875952,
- "truth_threshold": 26.04
- },
- {
- "f1": 0.30051436878005144,
- "fn": 250211,
- "fn_rate": 0.8231681038027905,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999857058509,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998139880952381,
- "recall": 0.17683189619720951,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53750,
- "tp_rate": 0.17683189619720951,
- "truth_threshold": 26.060000000000002
- },
- {
- "f1": 0.2999670027907809,
- "fn": 250326,
- "fn_rate": 0.823546441813259,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999859026427,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998135893373101,
- "recall": 0.17645355818674105,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53635,
- "tp_rate": 0.17645355818674105,
- "truth_threshold": 26.080000000000002
- },
- {
- "f1": 0.2994399906012409,
- "fn": 250437,
- "fn_rate": 0.8239116202407546,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999860967251,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998132028243732,
- "recall": 0.17608837975924543,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53524,
- "tp_rate": 0.17608837975924543,
- "truth_threshold": 26.1
- },
- {
- "f1": 0.2989776103951337,
- "fn": 250534,
- "fn_rate": 0.8242307401278454,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999862881357,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998128637460936,
- "recall": 0.17576925987215467,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53427,
- "tp_rate": 0.17576925987215467,
- "truth_threshold": 26.12
- },
- {
- "f1": 0.29844438349109675,
- "fn": 250646,
- "fn_rate": 0.8245992084510841,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999986476911,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998124706985466,
- "recall": 0.1754007915489158,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53315,
- "tp_rate": 0.1754007915489158,
- "truth_threshold": 26.14
- },
- {
- "f1": 0.2980347144456887,
- "fn": 250732,
- "fn_rate": 0.8248821394849997,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999866630873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998121677717463,
- "recall": 0.17511786051500028,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53229,
- "tp_rate": 0.17511786051500028,
- "truth_threshold": 26.16
- },
- {
- "f1": 0.2975827770061383,
- "fn": 250827,
- "fn_rate": 0.8251946795806041,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999868467006,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998118320036128,
- "recall": 0.17480532041939592,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53134,
- "tp_rate": 0.17480532041939592,
- "truth_threshold": 26.18
- },
- {
- "f1": 0.29720524555634603,
- "fn": 250906,
- "fn_rate": 0.8254545813443172,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999870277859,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115518703476,
- "recall": 0.1745454186556828,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 53055,
- "tp_rate": 0.1745454186556828,
- "truth_threshold": 26.2
- },
- {
- "f1": 0.29684829808096375,
- "fn": 250981,
- "fn_rate": 0.8257013235250575,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999872063782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998112851481411,
- "recall": 0.17429867647494252,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52980,
- "tp_rate": 0.17429867647494252,
- "truth_threshold": 26.22
- },
- {
- "f1": 0.29636147603461416,
- "fn": 251083,
- "fn_rate": 0.8260368928908642,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999873825117,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998109211919528,
- "recall": 0.1739631071091357,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52878,
- "tp_rate": 0.1739631071091357,
- "truth_threshold": 26.240000000000002
- },
- {
- "f1": 0.2958974301475535,
- "fn": 251180,
- "fn_rate": 0.8263560127779551,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999875562204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998105737720445,
- "recall": 0.17364398722204494,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52781,
- "tp_rate": 0.17364398722204494,
- "truth_threshold": 26.26
- },
- {
- "f1": 0.2955438799140962,
- "fn": 251254,
- "fn_rate": 0.8265994650629521,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999877275376,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998103078703264,
- "recall": 0.17340053493704785,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52707,
- "tp_rate": 0.17340053493704785,
- "truth_threshold": 26.28
- },
- {
- "f1": 0.29499893427266916,
- "fn": 251368,
- "fn_rate": 0.8269745131776775,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999878964962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998098967739483,
- "recall": 0.1730254868223226,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52593,
- "tp_rate": 0.1730254868223226,
- "truth_threshold": 26.3
- },
- {
- "f1": 0.29452062480362673,
- "fn": 251468,
- "fn_rate": 0.8273035027519978,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999880631287,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998095346932556,
- "recall": 0.1726964972480022,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52493,
- "tp_rate": 0.1726964972480022,
- "truth_threshold": 26.32
- },
- {
- "f1": 0.29410510247603655,
- "fn": 251555,
- "fn_rate": 0.8275897236816565,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999882274672,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998092185592186,
- "recall": 0.17241027631834346,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52406,
- "tp_rate": 0.17241027631834346,
- "truth_threshold": 26.34
- },
- {
- "f1": 0.29351133467320883,
- "fn": 251679,
- "fn_rate": 0.8279976707538138,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999883895432,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998087661592595,
- "recall": 0.1720023292461862,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52282,
- "tp_rate": 0.1720023292461862,
- "truth_threshold": 26.36
- },
- {
- "f1": 0.2927829261443415,
- "fn": 251831,
- "fn_rate": 0.8284977349067808,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999885493878,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998082086689681,
- "recall": 0.1715022650932192,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52130,
- "tp_rate": 0.1715022650932192,
- "truth_threshold": 26.38
- },
- {
- "f1": 0.2923417451293229,
- "fn": 251923,
- "fn_rate": 0.8288004053151555,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999887070317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998078696587765,
- "recall": 0.17119959468484444,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 52038,
- "tp_rate": 0.17119959468484444,
- "truth_threshold": 26.400000000000002
- },
- {
- "f1": 0.29196190262130195,
- "fn": 252002,
- "fn_rate": 0.8290603070788687,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999888625053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998075775943351,
- "recall": 0.17093969292113134,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51959,
- "tp_rate": 0.17093969292113134,
- "truth_threshold": 26.42
- },
- {
- "f1": 0.29146830192284995,
- "fn": 252105,
- "fn_rate": 0.8293991663404187,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999890158385,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998071954652373,
- "recall": 0.17060083365958134,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51856,
- "tp_rate": 0.17060083365958134,
- "truth_threshold": 26.44
- },
- {
- "f1": 0.29106487285729543,
- "fn": 252189,
- "fn_rate": 0.8296755175828479,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999891670607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998068827005523,
- "recall": 0.1703244824171522,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51772,
- "tp_rate": 0.1703244824171522,
- "truth_threshold": 26.46
- },
- {
- "f1": 0.29079581428563395,
- "fn": 252245,
- "fn_rate": 0.8298597517444672,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999893162009,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998066736264161,
- "recall": 0.17014024825553278,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51716,
- "tp_rate": 0.17014024825553278,
- "truth_threshold": 26.48
- },
- {
- "f1": 0.2904016827707225,
- "fn": 252327,
- "fn_rate": 0.8301295231954099,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999894632879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998063666640848,
- "recall": 0.16987047680459005,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51634,
- "tp_rate": 0.16987047680459005,
- "truth_threshold": 26.5
- },
- {
- "f1": 0.2900458470452564,
- "fn": 252401,
- "fn_rate": 0.830372975480407,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.99999998960835,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998060888113244,
- "recall": 0.16962702451959297,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51560,
- "tp_rate": 0.16962702451959297,
- "truth_threshold": 26.52
- },
- {
- "f1": 0.2895743770960409,
- "fn": 252499,
- "fn_rate": 0.830695385263241,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999897514149,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998057196145477,
- "recall": 0.16930461473675898,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51462,
- "tp_rate": 0.16930461473675898,
- "truth_threshold": 26.54
- },
- {
- "f1": 0.28908338727380184,
- "fn": 252601,
- "fn_rate": 0.8310309546290479,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999898925103,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998053338524431,
- "recall": 0.1689690453709522,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51360,
- "tp_rate": 0.1689690453709522,
- "truth_threshold": 26.560000000000002
- },
- {
- "f1": 0.28879844175730146,
- "fn": 252660,
- "fn_rate": 0.8312250584778968,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999900316631,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998051100153963,
- "recall": 0.16877494152210318,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51301,
- "tp_rate": 0.16877494152210318,
- "truth_threshold": 26.580000000000002
- },
- {
- "f1": 0.28832628514474595,
- "fn": 252758,
- "fn_rate": 0.8315474682607308,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999901689001,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998047370784762,
- "recall": 0.1684525317392692,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51203,
- "tp_rate": 0.1684525317392692,
- "truth_threshold": 26.6
- },
- {
- "f1": 0.2880081552654404,
- "fn": 252824,
- "fn_rate": 0.8317646013797823,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999903042477,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998044851115413,
- "recall": 0.16823539862021772,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51137,
- "tp_rate": 0.16823539862021772,
- "truth_threshold": 26.62
- },
- {
- "f1": 0.2875894315813194,
- "fn": 252911,
- "fn_rate": 0.832050822309441,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999990437732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999804151978065,
- "recall": 0.16794917769055898,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 51050,
- "tp_rate": 0.16794917769055898,
- "truth_threshold": 26.64
- },
- {
- "f1": 0.2871745169524475,
- "fn": 252997,
- "fn_rate": 0.8323337533433566,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999905693786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998038215560874,
- "recall": 0.16766624665664345,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50964,
- "tp_rate": 0.16766624665664345,
- "truth_threshold": 26.66
- },
- {
- "f1": 0.2866724910520531,
- "fn": 253101,
- "fn_rate": 0.8326759025006497,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999906992127,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998034204835856,
- "recall": 0.16732409749935023,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50860,
- "tp_rate": 0.16732409749935023,
- "truth_threshold": 26.68
- },
- {
- "f1": 0.286212845609129,
- "fn": 253196,
- "fn_rate": 0.8329884425962542,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999908272594,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998030526834072,
- "recall": 0.16701155740374587,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50765,
- "tp_rate": 0.16701155740374587,
- "truth_threshold": 26.7
- },
- {
- "f1": 0.28580693186560346,
- "fn": 253280,
- "fn_rate": 0.8332647938386832,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999909535432,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998027263222268,
- "recall": 0.16673520616131673,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50681,
- "tp_rate": 0.16673520616131673,
- "truth_threshold": 26.72
- },
- {
- "f1": 0.28535810784131227,
- "fn": 253373,
- "fn_rate": 0.8335707541428012,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999910780885,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998023637297917,
- "recall": 0.1664292458571988,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50588,
- "tp_rate": 0.1664292458571988,
- "truth_threshold": 26.740000000000002
- },
- {
- "f1": 0.2848259829368483,
- "fn": 253483,
- "fn_rate": 0.8339326426745537,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999912009191,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998019331326256,
- "recall": 0.16606735732544636,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50478,
- "tp_rate": 0.16606735732544636,
- "truth_threshold": 26.76
- },
- {
- "f1": 0.2842354216173806,
- "fn": 253605,
- "fn_rate": 0.8343340099552246,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999913220586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998014533613946,
- "recall": 0.16566599004477547,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50356,
- "tp_rate": 0.16566599004477547,
- "truth_threshold": 26.78
- },
- {
- "f1": 0.2839060797497869,
- "fn": 253673,
- "fn_rate": 0.8345577228657624,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999914415304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998011849377709,
- "recall": 0.16544227713423762,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50288,
- "tp_rate": 0.16544227713423762,
- "truth_threshold": 26.8
- },
- {
- "f1": 0.28337710009882816,
- "fn": 253782,
- "fn_rate": 0.8349163215017716,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999915593574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998007531530814,
- "recall": 0.1650836784982284,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50179,
- "tp_rate": 0.1650836784982284,
- "truth_threshold": 26.82
- },
- {
- "f1": 0.28308217166354127,
- "fn": 253843,
- "fn_rate": 0.8351170051421071,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999916755622,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998005106926269,
- "recall": 0.16488299485789296,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50118,
- "tp_rate": 0.16488299485789296,
- "truth_threshold": 26.84
- },
- {
- "f1": 0.28250981721614826,
- "fn": 253961,
- "fn_rate": 0.8355052128398051,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999917901672,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998000399920016,
- "recall": 0.1644947871601949,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 50000,
- "tp_rate": 0.1644947871601949,
- "truth_threshold": 26.86
- },
- {
- "f1": 0.28210620309250384,
- "fn": 254044,
- "fn_rate": 0.835778274186491,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999919031943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997997075730567,
- "recall": 0.16422172581350897,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49917,
- "tp_rate": 0.16422172581350897,
- "truth_threshold": 26.88
- },
- {
- "f1": 0.28160120299391717,
- "fn": 254148,
- "fn_rate": 0.8361204233437842,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999920146655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997992894847761,
- "recall": 0.16387957665621578,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49813,
- "tp_rate": 0.16387957665621578,
- "truth_threshold": 26.900000000000002
- },
- {
- "f1": 0.2809792566788065,
- "fn": 254276,
- "fn_rate": 0.8365415299989143,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999992124602,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997987725123252,
- "recall": 0.16345847000108565,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49685,
- "tp_rate": 0.16345847000108565,
- "truth_threshold": 26.92
- },
- {
- "f1": 0.28047359370050234,
- "fn": 254380,
- "fn_rate": 0.8368836791562075,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999922330249,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997983505071485,
- "recall": 0.16311632084379246,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49581,
- "tp_rate": 0.16311632084379246,
- "truth_threshold": 26.94
- },
- {
- "f1": 0.2800608828006088,
- "fn": 254465,
- "fn_rate": 0.8371633202943799,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999923399552,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997980042823092,
- "recall": 0.16283667970562013,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49496,
- "tp_rate": 0.16283667970562013,
- "truth_threshold": 26.96
- },
- {
- "f1": 0.27923735769803393,
- "fn": 254634,
- "fn_rate": 0.8377193126749813,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999924454133,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999797312361919,
- "recall": 0.16228068732501866,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49327,
- "tp_rate": 0.16228068732501866,
- "truth_threshold": 26.98
- },
- {
- "f1": 0.2787209223311966,
- "fn": 254740,
- "fn_rate": 0.8380680416237609,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999925494194,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999796875952144,
- "recall": 0.16193195837623905,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49221,
- "tp_rate": 0.16193195837623905,
- "truth_threshold": 27
- },
- {
- "f1": 0.27813181522077773,
- "fn": 254861,
- "fn_rate": 0.8384661190086886,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999926519938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997963754836082,
- "recall": 0.16153388099131138,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49100,
- "tp_rate": 0.16153388099131138,
- "truth_threshold": 27.02
- },
- {
- "f1": 0.2776578444871294,
- "fn": 254958,
- "fn_rate": 0.8387852388957794,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999992753156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997959724970926,
- "recall": 0.16121476110422062,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 49003,
- "tp_rate": 0.16121476110422062,
- "truth_threshold": 27.04
- },
- {
- "f1": 0.277120930443457,
- "fn": 255068,
- "fn_rate": 0.8391471274275318,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999928529254,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997955135676748,
- "recall": 0.1608528725724682,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48893,
- "tp_rate": 0.1608528725724682,
- "truth_threshold": 27.060000000000002
- },
- {
- "f1": 0.2768433643418763,
- "fn": 255125,
- "fn_rate": 0.8393346514848944,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999929513212,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997952749457478,
- "recall": 0.16066534851510555,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48836,
- "tp_rate": 0.16066534851510555,
- "truth_threshold": 27.080000000000002
- },
- {
- "f1": 0.2763589144561507,
- "fn": 255224,
- "fn_rate": 0.8396603511634716,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999930483625,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997948591708208,
- "recall": 0.16033964883652838,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48737,
- "tp_rate": 0.16033964883652838,
- "truth_threshold": 27.1
- },
- {
- "f1": 0.2758953183669302,
- "fn": 255319,
- "fn_rate": 0.839972891259076,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999931440678,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997944586039629,
- "recall": 0.160027108740924,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48642,
- "tp_rate": 0.160027108740924,
- "truth_threshold": 27.12
- },
- {
- "f1": 0.275416011846338,
- "fn": 255417,
- "fn_rate": 0.84029530104191,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999932384555,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997940437451085,
- "recall": 0.15970469895809003,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48544,
- "tp_rate": 0.15970469895809003,
- "truth_threshold": 27.14
- },
- {
- "f1": 0.27500907976574207,
- "fn": 255500,
- "fn_rate": 0.8405683623885959,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999933315437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997936910730127,
- "recall": 0.15943163761140408,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48461,
- "tp_rate": 0.15943163761140408,
- "truth_threshold": 27.16
- },
- {
- "f1": 0.2746133106286363,
- "fn": 255581,
- "fn_rate": 0.8408348439437954,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999934233502,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997933457325894,
- "recall": 0.15916515605620457,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48380,
- "tp_rate": 0.15916515605620457,
- "truth_threshold": 27.18
- },
- {
- "f1": 0.2742255984012354,
- "fn": 255660,
- "fn_rate": 0.8410947457075085,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999935138929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997930078036058,
- "recall": 0.15890525429249147,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48301,
- "tp_rate": 0.15890525429249147,
- "truth_threshold": 27.2
- },
- {
- "f1": 0.27383926948936943,
- "fn": 255739,
- "fn_rate": 0.8413546474712217,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999993603189,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997926687676232,
- "recall": 0.15864535252877837,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48222,
- "tp_rate": 0.15864535252877837,
- "truth_threshold": 27.22
- },
- {
- "f1": 0.2732942893984924,
- "fn": 255850,
- "fn_rate": 0.8417198258987173,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999936912558,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997921905197316,
- "recall": 0.15828017410128273,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48111,
- "tp_rate": 0.15828017410128273,
- "truth_threshold": 27.240000000000002
- },
- {
- "f1": 0.2730449109450899,
- "fn": 255901,
- "fn_rate": 0.8418876105816206,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999937781102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997919700436863,
- "recall": 0.15811238941837932,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 48060,
- "tp_rate": 0.15811238941837932,
- "truth_threshold": 27.26
- },
- {
- "f1": 0.2724405242279232,
- "fn": 256024,
- "fn_rate": 0.8422922677580348,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999938637688,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999791436377667,
- "recall": 0.15770773224196524,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47937,
- "tp_rate": 0.15770773224196524,
- "truth_threshold": 27.28
- },
- {
- "f1": 0.271974804725251,
- "fn": 256119,
- "fn_rate": 0.8426048078536391,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999939482481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997910223188163,
- "recall": 0.15739519214636088,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47842,
- "tp_rate": 0.15739519214636088,
- "truth_threshold": 27.3
- },
- {
- "f1": 0.27155228786043684,
- "fn": 256205,
- "fn_rate": 0.8428877388875546,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999940315644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997906460662396,
- "recall": 0.15711226111244533,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47756,
- "tp_rate": 0.15711226111244533,
- "truth_threshold": 27.32
- },
- {
- "f1": 0.27116889616889617,
- "fn": 256283,
- "fn_rate": 0.8431443507555245,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999941137335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997903036403288,
- "recall": 0.15685564924447545,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47678,
- "tp_rate": 0.15685564924447545,
- "truth_threshold": 27.34
- },
- {
- "f1": 0.27065744259609037,
- "fn": 256387,
- "fn_rate": 0.8434864999128178,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999941947715,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997898453261601,
- "recall": 0.15651350008718223,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47574,
- "tp_rate": 0.15651350008718223,
- "truth_threshold": 27.36
- },
- {
- "f1": 0.27027780622987013,
- "fn": 256464,
- "fn_rate": 0.8437398218850445,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999942746939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997895047045698,
- "recall": 0.15626017811495554,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47497,
- "tp_rate": 0.15626017811495554,
- "truth_threshold": 27.38
- },
- {
- "f1": 0.26976582689177037,
- "fn": 256568,
- "fn_rate": 0.8440819710423376,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999943535158,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999789042887581,
- "recall": 0.15591802895766232,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47393,
- "tp_rate": 0.15591802895766232,
- "truth_threshold": 27.400000000000002
- },
- {
- "f1": 0.26923383515157034,
- "fn": 256676,
- "fn_rate": 0.8444372797826037,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999944312526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997885611586849,
- "recall": 0.1555627202173963,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47285,
- "tp_rate": 0.1555627202173963,
- "truth_threshold": 27.42
- },
- {
- "f1": 0.26884941539618085,
- "fn": 256754,
- "fn_rate": 0.8446938916505736,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999945079192,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997882118728424,
- "recall": 0.1553061083494264,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47207,
- "tp_rate": 0.1553061083494264,
- "truth_threshold": 27.44
- },
- {
- "f1": 0.26849024790375503,
- "fn": 256827,
- "fn_rate": 0.8449340540398275,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999945835303,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997878839300866,
- "recall": 0.15506594596017254,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47134,
- "tp_rate": 0.15506594596017254,
- "truth_threshold": 27.46
- },
- {
- "f1": 0.26810966646535317,
- "fn": 256904,
- "fn_rate": 0.8451873760120542,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999946581004,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999787536915461,
- "recall": 0.15481262398794582,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 47057,
- "tp_rate": 0.15481262398794582,
- "truth_threshold": 27.48
- },
- {
- "f1": 0.2677050030489021,
- "fn": 256986,
- "fn_rate": 0.8454571474629969,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999947316439,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997871661168458,
- "recall": 0.1545428525370031,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46975,
- "tp_rate": 0.1545428525370031,
- "truth_threshold": 27.5
- },
- {
- "f1": 0.2672169555873517,
- "fn": 257085,
- "fn_rate": 0.845782847141574,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999994804175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997867167171437,
- "recall": 0.1542171528584259,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46876,
- "tp_rate": 0.1542171528584259,
- "truth_threshold": 27.52
- },
- {
- "f1": 0.26686128390359604,
- "fn": 257157,
- "fn_rate": 0.8460197196350847,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999948757075,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997863886871449,
- "recall": 0.15398028036491523,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46804,
- "tp_rate": 0.15398028036491523,
- "truth_threshold": 27.54
- },
- {
- "f1": 0.26645033248548583,
- "fn": 257240,
- "fn_rate": 0.8462927809817707,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999949462551,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999786009287197,
- "recall": 0.1537072190182293,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46721,
- "tp_rate": 0.1537072190182293,
- "truth_threshold": 27.560000000000002
- },
- {
- "f1": 0.2659261921468627,
- "fn": 257346,
- "fn_rate": 0.8466415099305503,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999950158315,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997855227882038,
- "recall": 0.1533584900694497,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46615,
- "tp_rate": 0.1533584900694497,
- "truth_threshold": 27.580000000000002
- },
- {
- "f1": 0.265526213680871,
- "fn": 257427,
- "fn_rate": 0.8469079914857498,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.99999999508445,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999785149535923,
- "recall": 0.15309200851425017,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46534,
- "tp_rate": 0.15309200851425017,
- "truth_threshold": 27.6
- },
- {
- "f1": 0.2651896494652376,
- "fn": 257495,
- "fn_rate": 0.8471317043962877,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999951521238,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997848351837507,
- "recall": 0.15286829560371232,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46466,
- "tp_rate": 0.15286829560371232,
- "truth_threshold": 27.62
- },
- {
- "f1": 0.264589684741776,
- "fn": 257616,
- "fn_rate": 0.8475297817812154,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999995218866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997842735411498,
- "recall": 0.15247021821878465,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46345,
- "tp_rate": 0.15247021821878465,
- "truth_threshold": 27.64
- },
- {
- "f1": 0.26417917266269214,
- "fn": 257699,
- "fn_rate": 0.8478028431279013,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999952846893,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997838865836791,
- "recall": 0.15219715687209873,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46262,
- "tp_rate": 0.15219715687209873,
- "truth_threshold": 27.66
- },
- {
- "f1": 0.26363381906878175,
- "fn": 257809,
- "fn_rate": 0.8481647316596537,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999953496064,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997833716043499,
- "recall": 0.1518352683403463,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46152,
- "tp_rate": 0.1518352683403463,
- "truth_threshold": 27.68
- },
- {
- "f1": 0.26328088398295113,
- "fn": 257880,
- "fn_rate": 0.8483983142574212,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999954136297,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997830379032783,
- "recall": 0.15160168574257882,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 46081,
- "tp_rate": 0.15160168574257882,
- "truth_threshold": 27.7
- },
- {
- "f1": 0.262730753843516,
- "fn": 257991,
- "fn_rate": 0.8487634926849168,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999954767717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997825141365811,
- "recall": 0.15123650731508317,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45970,
- "tp_rate": 0.15123650731508317,
- "truth_threshold": 27.72
- },
- {
- "f1": 0.261960169932473,
- "fn": 258146,
- "fn_rate": 0.8492734265251134,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999955390442,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997817785051828,
- "recall": 0.15072657347488658,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45815,
- "tp_rate": 0.15072657347488658,
- "truth_threshold": 27.740000000000002
- },
- {
- "f1": 0.2615029139762192,
- "fn": 258238,
- "fn_rate": 0.8495760969334881,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999956004595,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997813395141364,
- "recall": 0.15042390306651182,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45723,
- "tp_rate": 0.15042390306651182,
- "truth_threshold": 27.76
- },
- {
- "f1": 0.2611705079141711,
- "fn": 258305,
- "fn_rate": 0.8497965199482829,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999956610293,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997810187010029,
- "recall": 0.15020348005171716,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45656,
- "tp_rate": 0.15020348005171716,
- "truth_threshold": 27.78
- },
- {
- "f1": 0.26074269039308806,
- "fn": 258391,
- "fn_rate": 0.8500794509821984,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999957207651,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997806055287407,
- "recall": 0.14992054901780164,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45570,
- "tp_rate": 0.14992054901780164,
- "truth_threshold": 27.8
- },
- {
- "f1": 0.2604184550584303,
- "fn": 258456,
- "fn_rate": 0.8502932942055066,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999957796787,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997802922113589,
- "recall": 0.14970670579449338,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45505,
- "tp_rate": 0.14970670579449338,
- "truth_threshold": 27.82
- },
- {
- "f1": 0.25977684015274255,
- "fn": 258585,
- "fn_rate": 0.8507176907563799,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999958377811,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997796677389503,
- "recall": 0.14928230924362007,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45376,
- "tp_rate": 0.14928230924362007,
- "truth_threshold": 27.84
- },
- {
- "f1": 0.25937251264079525,
- "fn": 258666,
- "fn_rate": 0.8509841723115794,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999958950836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997792738108376,
- "recall": 0.14901582768842056,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45295,
- "tp_rate": 0.14901582768842056,
- "truth_threshold": 27.86
- },
- {
- "f1": 0.2588398375520538,
- "fn": 258773,
- "fn_rate": 0.8513361911561023,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999959515972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997787512721802,
- "recall": 0.14866380884389774,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45188,
- "tp_rate": 0.14866380884389774,
- "truth_threshold": 27.88
- },
- {
- "f1": 0.25849494399725,
- "fn": 258842,
- "fn_rate": 0.8515631939623833,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999960073327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999778412993862,
- "recall": 0.14843680603761666,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45119,
- "tp_rate": 0.14843680603761666,
- "truth_threshold": 27.900000000000002
- },
- {
- "f1": 0.25812145071544407,
- "fn": 258917,
- "fn_rate": 0.8518099361431236,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999960623009,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999778044124828,
- "recall": 0.1481900638568764,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 45044,
- "tp_rate": 0.1481900638568764,
- "truth_threshold": 27.92
- },
- {
- "f1": 0.25761223460356764,
- "fn": 259019,
- "fn_rate": 0.8521455055089304,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999961165125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997775404876312,
- "recall": 0.14785449449106958,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44942,
- "tp_rate": 0.14785449449106958,
- "truth_threshold": 27.94
- },
- {
- "f1": 0.2570670061123152,
- "fn": 259128,
- "fn_rate": 0.8525041041449396,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999961699776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997769997546997,
- "recall": 0.14749589585506034,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44833,
- "tp_rate": 0.14749589585506034,
- "truth_threshold": 27.96
- },
- {
- "f1": 0.2566871601936179,
- "fn": 259204,
- "fn_rate": 0.8527541362214232,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999962227066,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997766211718453,
- "recall": 0.14724586377857685,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44757,
- "tp_rate": 0.14724586377857685,
- "truth_threshold": 27.98
- },
- {
- "f1": 0.25610280829580334,
- "fn": 259321,
- "fn_rate": 0.853139054023378,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999962747097,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997760358342666,
- "recall": 0.146860945976622,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44640,
- "tp_rate": 0.146860945976622,
- "truth_threshold": 28
- },
- {
- "f1": 0.25560242173825715,
- "fn": 259421,
- "fn_rate": 0.8534680435976983,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999963259969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997755331088665,
- "recall": 0.1465319564023016,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44540,
- "tp_rate": 0.1465319564023016,
- "truth_threshold": 28.02
- },
- {
- "f1": 0.25523195077431726,
- "fn": 259495,
- "fn_rate": 0.8537114958826955,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999996376578,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999775159636658,
- "recall": 0.1462885041173045,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44466,
- "tp_rate": 0.1462885041173045,
- "truth_threshold": 28.04
- },
- {
- "f1": 0.25470528116854035,
- "fn": 259600,
- "fn_rate": 0.8540569349357319,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999964264626,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997746275720628,
- "recall": 0.1459430650642681,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44361,
- "tp_rate": 0.1459430650642681,
- "truth_threshold": 28.060000000000002
- },
- {
- "f1": 0.2542800204453174,
- "fn": 259685,
- "fn_rate": 0.8543365760739042,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999964756606,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997741950051935,
- "recall": 0.14566342392609577,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44276,
- "tp_rate": 0.14566342392609577,
- "truth_threshold": 28.080000000000002
- },
- {
- "f1": 0.253868866396296,
- "fn": 259767,
- "fn_rate": 0.854606347524847,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999965241813,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997737761288571,
- "recall": 0.14539365247515307,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44194,
- "tp_rate": 0.14539365247515307,
- "truth_threshold": 28.1
- },
- {
- "f1": 0.25332130461764774,
- "fn": 259876,
- "fn_rate": 0.8549649461608562,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999965720339,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997732169180179,
- "recall": 0.14503505383914383,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 44085,
- "tp_rate": 0.14503505383914383,
- "truth_threshold": 28.12
- },
- {
- "f1": 0.2528896169209989,
- "fn": 259962,
- "fn_rate": 0.8552478771947717,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999966192277,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997727737508237,
- "recall": 0.1447521228052283,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43999,
- "tp_rate": 0.1447521228052283,
- "truth_threshold": 28.14
- },
- {
- "f1": 0.252337147128155,
- "fn": 260072,
- "fn_rate": 0.8556097657265241,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999966657718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997722043782319,
- "recall": 0.1443902342734759,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43889,
- "tp_rate": 0.1443902342734759,
- "truth_threshold": 28.16
- },
- {
- "f1": 0.2519006705542712,
- "fn": 260159,
- "fn_rate": 0.8558959866561828,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999996711675,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997717520314069,
- "recall": 0.14410401334381714,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43802,
- "tp_rate": 0.14410401334381714,
- "truth_threshold": 28.18
- },
- {
- "f1": 0.251488394834479,
- "fn": 260241,
- "fn_rate": 0.8561657581071256,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999967569464,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999771324033844,
- "recall": 0.14383424189287441,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43720,
- "tp_rate": 0.14383424189287441,
- "truth_threshold": 28.2
- },
- {
- "f1": 0.25112048282885235,
- "fn": 260314,
- "fn_rate": 0.8564059204963794,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999968015946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997709416588405,
- "recall": 0.14359407950362052,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43647,
- "tp_rate": 0.14359407950362052,
- "truth_threshold": 28.22
- },
- {
- "f1": 0.2506373697204781,
- "fn": 260410,
- "fn_rate": 0.856721750487727,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999968456279,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999770436858658,
- "recall": 0.14327824951227294,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43551,
- "tp_rate": 0.14327824951227294,
- "truth_threshold": 28.240000000000002
- },
- {
- "f1": 0.2502302555836979,
- "fn": 260491,
- "fn_rate": 0.8569882320429265,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999996889055,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999770009199632,
- "recall": 0.14301176795707343,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43470,
- "tp_rate": 0.14301176795707343,
- "truth_threshold": 28.26
- },
- {
- "f1": 0.2497768821073845,
- "fn": 260581,
- "fn_rate": 0.8572843226598149,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999969318843,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999769532150265,
- "recall": 0.1427156773401851,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43380,
- "tp_rate": 0.1427156773401851,
- "truth_threshold": 28.28
- },
- {
- "f1": 0.24944858128458966,
- "fn": 260646,
- "fn_rate": 0.8574981658831231,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.999999996974124,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997691863819965,
- "recall": 0.14250183411687684,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43315,
- "tp_rate": 0.14250183411687684,
- "truth_threshold": 28.3
- },
- {
- "f1": 0.2491518492278804,
- "fn": 260705,
- "fn_rate": 0.8576922697319722,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999970157821,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999768871631304,
- "recall": 0.14230773026802782,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43256,
- "tp_rate": 0.14230773026802782,
- "truth_threshold": 28.32
- },
- {
- "f1": 0.24868782660298328,
- "fn": 260797,
- "fn_rate": 0.8579949401403469,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999970568668,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997683791170612,
- "recall": 0.14200505985965306,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43164,
- "tp_rate": 0.14200505985965306,
- "truth_threshold": 28.34
- },
- {
- "f1": 0.24824808095710105,
- "fn": 260884,
- "fn_rate": 0.8582811610700057,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999970973857,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997679114350035,
- "recall": 0.14171883892999432,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 43077,
- "tp_rate": 0.14171883892999432,
- "truth_threshold": 28.36
- },
- {
- "f1": 0.24771287419799276,
- "fn": 260990,
- "fn_rate": 0.8586298900187853,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999971373469,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997673390567925,
- "recall": 0.1413701099812147,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 42971,
- "tp_rate": 0.1413701099812147,
- "truth_threshold": 28.38
- },
- {
- "f1": 0.24729428180984725,
- "fn": 261073,
- "fn_rate": 0.8589029513654712,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999971767579,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997668888992494,
- "recall": 0.14109704863452877,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 42888,
- "tp_rate": 0.14109704863452877,
- "truth_threshold": 28.400000000000002
- },
- {
- "f1": 0.24677294697135738,
- "fn": 261176,
- "fn_rate": 0.8592418106270212,
- "fp": 10,
- "fp_rate": 0.00005751456556372901,
- "match_probability": 0.9999999972156263,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997663278420377,
- "recall": 0.14075818937297876,
- "row_count": 477830,
- "tn": 173859,
- "tn_rate": 0.9999424854344363,
- "tp": 42785,
- "tp_rate": 0.14075818937297876,
- "truth_threshold": 28.42
- },
- {
- "f1": 0.24631627531298678,
- "fn": 261267,
- "fn_rate": 0.8595411911396528,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999972539596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998594847775175,
- "recall": 0.14045880886034723,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42694,
- "tp_rate": 0.14045880886034723,
- "truth_threshold": 28.44
- },
- {
- "f1": 0.24590570719602978,
- "fn": 261348,
- "fn_rate": 0.8598076726948523,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999972917651,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998592177197964,
- "recall": 0.1401923273051477,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42613,
- "tp_rate": 0.1401923273051477,
- "truth_threshold": 28.46
- },
- {
- "f1": 0.24551084842223134,
- "fn": 261426,
- "fn_rate": 0.8600642845628222,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999973290502,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998589595919231,
- "recall": 0.13993571543717778,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42535,
- "tp_rate": 0.13993571543717778,
- "truth_threshold": 28.48
- },
- {
- "f1": 0.24522725042286533,
- "fn": 261482,
- "fn_rate": 0.8602485187244416,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999997365822,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998587736848299,
- "recall": 0.13975148127555836,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42479,
- "tp_rate": 0.13975148127555836,
- "truth_threshold": 28.5
- },
- {
- "f1": 0.24493342725498574,
- "fn": 261540,
- "fn_rate": 0.8604393326775475,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999974020874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998585806208311,
- "recall": 0.13956066732245256,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42421,
- "tp_rate": 0.13956066732245256,
- "truth_threshold": 28.52
- },
- {
- "f1": 0.24448307527043184,
- "fn": 261629,
- "fn_rate": 0.8607321333986926,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999974378537,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998582833388445,
- "recall": 0.1392678666013074,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42332,
- "tp_rate": 0.1392678666013074,
- "truth_threshold": 28.54
- },
- {
- "f1": 0.24401079126300526,
- "fn": 261722,
- "fn_rate": 0.8610380937028106,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999974731275,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998579713575572,
- "recall": 0.13896190629718944,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42239,
- "tp_rate": 0.13896190629718944,
- "truth_threshold": 28.560000000000002
- },
- {
- "f1": 0.24364552456563066,
- "fn": 261794,
- "fn_rate": 0.8612749661963213,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999975079157,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998577288786664,
- "recall": 0.13872503380367876,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42167,
- "tp_rate": 0.13872503380367876,
- "truth_threshold": 28.580000000000002
- },
- {
- "f1": 0.24331634245292832,
- "fn": 261859,
- "fn_rate": 0.8614888094196295,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999997542225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999857509261898,
- "recall": 0.1385111905803705,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42102,
- "tp_rate": 0.1385111905803705,
- "truth_threshold": 28.6
- },
- {
- "f1": 0.2428796873825806,
- "fn": 261945,
- "fn_rate": 0.861771740453545,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999997576062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998572176478987,
- "recall": 0.13822825954645498,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 42016,
- "tp_rate": 0.13822825954645498,
- "truth_threshold": 28.62
- },
- {
- "f1": 0.2424268706597975,
- "fn": 262034,
- "fn_rate": 0.8620645411746902,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999997609433,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998569146018649,
- "recall": 0.13793545882530983,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41927,
- "tp_rate": 0.13793545882530983,
- "truth_threshold": 28.64
- },
- {
- "f1": 0.24193893544786263,
- "fn": 262130,
- "fn_rate": 0.8623803711660377,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999976423446,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998565862753065,
- "recall": 0.13761962883396225,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41831,
- "tp_rate": 0.13761962883396225,
- "truth_threshold": 28.66
- },
- {
- "f1": 0.24162945137330216,
- "fn": 262191,
- "fn_rate": 0.8625810548063731,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999976748032,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998563768671007,
- "recall": 0.13741894519362682,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41770,
- "tp_rate": 0.13741894519362682,
- "truth_threshold": 28.68
- },
- {
- "f1": 0.24122248709699817,
- "fn": 262271,
- "fn_rate": 0.8628442464658295,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999977068148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998561013046815,
- "recall": 0.1371557535341705,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41690,
- "tp_rate": 0.1371557535341705,
- "truth_threshold": 28.7
- },
- {
- "f1": 0.24066260353180186,
- "fn": 262381,
- "fn_rate": 0.8632061349975819,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999977383858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998557206752272,
- "recall": 0.13679386500241808,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41580,
- "tp_rate": 0.13679386500241808,
- "truth_threshold": 28.72
- },
- {
- "f1": 0.2400660046898069,
- "fn": 262498,
- "fn_rate": 0.8635910527995367,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999977695221,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998553136077551,
- "recall": 0.1364089472004632,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41463,
- "tp_rate": 0.1364089472004632,
- "truth_threshold": 28.740000000000002
- },
- {
- "f1": 0.23957235356121065,
- "fn": 262595,
- "fn_rate": 0.8639101726866275,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999978002297,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998549743788069,
- "recall": 0.13608982731337244,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41366,
- "tp_rate": 0.13608982731337244,
- "truth_threshold": 28.76
- },
- {
- "f1": 0.23868930351141499,
- "fn": 262768,
- "fn_rate": 0.8644793246502018,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999978305146,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998543653972184,
- "recall": 0.13552067534979817,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41193,
- "tp_rate": 0.13552067534979817,
- "truth_threshold": 28.78
- },
- {
- "f1": 0.23815844384679588,
- "fn": 262872,
- "fn_rate": 0.8648214738074951,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999978603826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998539968365981,
- "recall": 0.13517852619250495,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41089,
- "tp_rate": 0.13517852619250495,
- "truth_threshold": 28.8
- },
- {
- "f1": 0.23770900489320748,
- "fn": 262960,
- "fn_rate": 0.8651109846328969,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999978898393,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998536835174482,
- "recall": 0.13488901536710302,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 41001,
- "tp_rate": 0.13488901536710302,
- "truth_threshold": 28.82
- },
- {
- "f1": 0.23713223567074762,
- "fn": 263073,
- "fn_rate": 0.865482742851879,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999979188905,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999853279209664,
- "recall": 0.134517257148121,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40888,
- "tp_rate": 0.134517257148121,
- "truth_threshold": 28.84
- },
- {
- "f1": 0.23677432827509398,
- "fn": 263143,
- "fn_rate": 0.8657130355539033,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999979475418,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998530276308054,
- "recall": 0.1342869644460967,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40818,
- "tp_rate": 0.1342869644460967,
- "truth_threshold": 28.86
- },
- {
- "f1": 0.23627744510978044,
- "fn": 263240,
- "fn_rate": 0.8660321554409941,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999979757986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998526775848945,
- "recall": 0.13396784455900593,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40721,
- "tp_rate": 0.13396784455900593,
- "truth_threshold": 28.88
- },
- {
- "f1": 0.23590451925922917,
- "fn": 263313,
- "fn_rate": 0.8662723178302479,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999980036663,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998524130466867,
- "recall": 0.13372768216975203,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40648,
- "tp_rate": 0.13372768216975203,
- "truth_threshold": 28.900000000000002
- },
- {
- "f1": 0.23530470423630906,
- "fn": 263430,
- "fn_rate": 0.8666572356322028,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999980311505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998519870735377,
- "recall": 0.13334276436779718,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40531,
- "tp_rate": 0.13334276436779718,
- "truth_threshold": 28.92
- },
- {
- "f1": 0.2348538079614413,
- "fn": 263518,
- "fn_rate": 0.8669467464576047,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999980582562,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998516650597048,
- "recall": 0.13305325354239525,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40443,
- "tp_rate": 0.13305325354239525,
- "truth_threshold": 28.94
- },
- {
- "f1": 0.23423857794301317,
- "fn": 263638,
- "fn_rate": 0.8673415339467893,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999980849887,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998512236851893,
- "recall": 0.13265846605321077,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40323,
- "tp_rate": 0.13265846605321077,
- "truth_threshold": 28.96
- },
- {
- "f1": 0.23398210550778525,
- "fn": 263688,
- "fn_rate": 0.8675060287339494,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999981113533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998510390029544,
- "recall": 0.1324939712660506,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40273,
- "tp_rate": 0.1324939712660506,
- "truth_threshold": 28.98
- },
- {
- "f1": 0.23354660994787219,
- "fn": 263773,
- "fn_rate": 0.8677856698721218,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999981373549,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999850723988655,
- "recall": 0.13221433012787825,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40188,
- "tp_rate": 0.13221433012787825,
- "truth_threshold": 29
- },
- {
- "f1": 0.23320778405524167,
- "fn": 263839,
- "fn_rate": 0.8680028029911732,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999981629984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998504784688995,
- "recall": 0.13199719700882678,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40122,
- "tp_rate": 0.13199719700882678,
- "truth_threshold": 29.02
- },
- {
- "f1": 0.23281745985605154,
- "fn": 263915,
- "fn_rate": 0.8682528350676567,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999998188289,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998501947468291,
- "recall": 0.13174716493234329,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 40046,
- "tp_rate": 0.13174716493234329,
- "truth_threshold": 29.04
- },
- {
- "f1": 0.23229333255793666,
- "fn": 264017,
- "fn_rate": 0.8685884044334635,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999982132314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998498122653316,
- "recall": 0.1314115955665365,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39944,
- "tp_rate": 0.1314115955665365,
- "truth_threshold": 29.060000000000002
- },
- {
- "f1": 0.2318145065121663,
- "fn": 264110,
- "fn_rate": 0.8688943647375814,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999982378304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998494618260281,
- "recall": 0.13110563526241853,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39851,
- "tp_rate": 0.13110563526241853,
- "truth_threshold": 29.080000000000002
- },
- {
- "f1": 0.23138822461554573,
- "fn": 264193,
- "fn_rate": 0.8691674260842673,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999982620906,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998491476844169,
- "recall": 0.1308325739157326,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39768,
- "tp_rate": 0.1308325739157326,
- "truth_threshold": 29.1
- },
- {
- "f1": 0.23087802209314506,
- "fn": 264292,
- "fn_rate": 0.8694931257628445,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999982860169,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998487712665406,
- "recall": 0.13050687423715543,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39669,
- "tp_rate": 0.13050687423715543,
- "truth_threshold": 29.12
- },
- {
- "f1": 0.23054399394592076,
- "fn": 264357,
- "fn_rate": 0.8697069689861529,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999983096138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998485231002272,
- "recall": 0.13029303101384718,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39604,
- "tp_rate": 0.13029303101384718,
- "truth_threshold": 29.14
- },
- {
- "f1": 0.23024523160762944,
- "fn": 264415,
- "fn_rate": 0.8698977829392587,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999983328859,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998483009708737,
- "recall": 0.13010221706074135,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39546,
- "tp_rate": 0.13010221706074135,
- "truth_threshold": 29.16
- },
- {
- "f1": 0.22964740416312363,
- "fn": 264531,
- "fn_rate": 0.8702794108454703,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999983558375,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998478547520032,
- "recall": 0.1297205891545297,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39430,
- "tp_rate": 0.1297205891545297,
- "truth_threshold": 29.18
- },
- {
- "f1": 0.2292187327053368,
- "fn": 264614,
- "fn_rate": 0.8705524721921563,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999983784732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998475338601885,
- "recall": 0.12944752780784377,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39347,
- "tp_rate": 0.12944752780784377,
- "truth_threshold": 29.2
- },
- {
- "f1": 0.22868797529209522,
- "fn": 264717,
- "fn_rate": 0.8708913314537062,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999984007972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998471337579617,
- "recall": 0.12910866854629377,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39244,
- "tp_rate": 0.12910866854629377,
- "truth_threshold": 29.22
- },
- {
- "f1": 0.22822336208906505,
- "fn": 264807,
- "fn_rate": 0.8711874220705946,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999998422814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998467824310521,
- "recall": 0.12881257792940543,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39154,
- "tp_rate": 0.12881257792940543,
- "truth_threshold": 29.240000000000002
- },
- {
- "f1": 0.22793864737397468,
- "fn": 264862,
- "fn_rate": 0.8713683663364707,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999984445276,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998465669351745,
- "recall": 0.1286316336635292,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39099,
- "tp_rate": 0.1286316336635292,
- "truth_threshold": 29.26
- },
- {
- "f1": 0.22755182366832852,
- "fn": 264937,
- "fn_rate": 0.8716151085172111,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.9999999984659422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998462720983858,
- "recall": 0.12838489148278892,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 39024,
- "tp_rate": 0.12838489148278892,
- "truth_threshold": 29.28
- },
- {
- "f1": 0.22709112224483963,
- "fn": 265026,
- "fn_rate": 0.8719079092383563,
- "fp": 6,
- "fp_rate": 0.00003450873933823741,
- "match_probability": 0.999999998487062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998459207519067,
- "recall": 0.12809209076164377,
- "row_count": 477830,
- "tn": 173863,
- "tn_rate": 0.9999654912606618,
- "tp": 38935,
- "tp_rate": 0.12809209076164377,
- "truth_threshold": 29.3
- },
- {
- "f1": 0.22648026699652252,
- "fn": 265145,
- "fn_rate": 0.8722994068317975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999985078911,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1277005931682025,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38816,
- "tp_rate": 0.1277005931682025,
- "truth_threshold": 29.32
- },
- {
- "f1": 0.22603970912656263,
- "fn": 265230,
- "fn_rate": 0.8725790479699699,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999985284334,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12742095203003018,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38731,
- "tp_rate": 0.12742095203003018,
- "truth_threshold": 29.34
- },
- {
- "f1": 0.22570834841285592,
- "fn": 265294,
- "fn_rate": 0.8727896012975349,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999985486929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12721039870246512,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38667,
- "tp_rate": 0.12721039870246512,
- "truth_threshold": 29.36
- },
- {
- "f1": 0.22533541961022432,
- "fn": 265366,
- "fn_rate": 0.8730264737910456,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999985686735,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12697352620895444,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38595,
- "tp_rate": 0.12697352620895444,
- "truth_threshold": 29.38
- },
- {
- "f1": 0.22471936361831116,
- "fn": 265485,
- "fn_rate": 0.8734179713844868,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999998588379,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12658202861551318,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38476,
- "tp_rate": 0.12658202861551318,
- "truth_threshold": 29.400000000000002
- },
- {
- "f1": 0.22434601768877568,
- "fn": 265557,
- "fn_rate": 0.8736548438779975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999986078132,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1263451561220025,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38404,
- "tp_rate": 0.1263451561220025,
- "truth_threshold": 29.42
- },
- {
- "f1": 0.223987426087363,
- "fn": 265626,
- "fn_rate": 0.8738818466842786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999986269797,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12611815331572143,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38335,
- "tp_rate": 0.12611815331572143,
- "truth_threshold": 29.44
- },
- {
- "f1": 0.22357224676812307,
- "fn": 265706,
- "fn_rate": 0.8741450383437349,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999986458826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1258549616562651,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38255,
- "tp_rate": 0.1258549616562651,
- "truth_threshold": 29.46
- },
- {
- "f1": 0.22306923342238644,
- "fn": 265803,
- "fn_rate": 0.8744641582308257,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999986645252,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12553584176917434,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38158,
- "tp_rate": 0.12553584176917434,
- "truth_threshold": 29.48
- },
- {
- "f1": 0.22271013009793889,
- "fn": 265872,
- "fn_rate": 0.8746911610371068,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999998682911,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12530883896289327,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38089,
- "tp_rate": 0.12530883896289327,
- "truth_threshold": 29.5
- },
- {
- "f1": 0.2223313916766089,
- "fn": 265945,
- "fn_rate": 0.8749313234263606,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987010437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12506867657363938,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 38016,
- "tp_rate": 0.12506867657363938,
- "truth_threshold": 29.52
- },
- {
- "f1": 0.22194079005095027,
- "fn": 266020,
- "fn_rate": 0.8751780656071009,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987189269,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12482193439289908,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37941,
- "tp_rate": 0.12482193439289908,
- "truth_threshold": 29.54
- },
- {
- "f1": 0.2215513155816117,
- "fn": 266095,
- "fn_rate": 0.8754248077878412,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987365638,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12457519221215879,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37866,
- "tp_rate": 0.12457519221215879,
- "truth_threshold": 29.560000000000002
- },
- {
- "f1": 0.22110832148228782,
- "fn": 266180,
- "fn_rate": 0.8757044489260135,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987539578,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12429555107398646,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37781,
- "tp_rate": 0.12429555107398646,
- "truth_threshold": 29.580000000000002
- },
- {
- "f1": 0.22072889471650842,
- "fn": 266253,
- "fn_rate": 0.8759446113152675,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987711125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12405538868473258,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37708,
- "tp_rate": 0.12405538868473258,
- "truth_threshold": 29.6
- },
- {
- "f1": 0.22016629581918257,
- "fn": 266361,
- "fn_rate": 0.8762999200555335,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999987880309,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12370007994446656,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37600,
- "tp_rate": 0.12370007994446656,
- "truth_threshold": 29.62
- },
- {
- "f1": 0.219743469602905,
- "fn": 266442,
- "fn_rate": 0.876566401610733,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988047165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12343359838926704,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37519,
- "tp_rate": 0.12343359838926704,
- "truth_threshold": 29.64
- },
- {
- "f1": 0.21923241412845434,
- "fn": 266540,
- "fn_rate": 0.8768888113935669,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988211723,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12311118860643307,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37421,
- "tp_rate": 0.12311118860643307,
- "truth_threshold": 29.66
- },
- {
- "f1": 0.218601652698822,
- "fn": 266661,
- "fn_rate": 0.8772868887784946,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988374015,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1227131112215054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37300,
- "tp_rate": 0.1227131112215054,
- "truth_threshold": 29.68
- },
- {
- "f1": 0.2183034196551037,
- "fn": 266718,
- "fn_rate": 0.8774744128358573,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988534074,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12252558716414277,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37243,
- "tp_rate": 0.12252558716414277,
- "truth_threshold": 29.7
- },
- {
- "f1": 0.2177079363217919,
- "fn": 266832,
- "fn_rate": 0.8778494609505825,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988691929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12215053904941753,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37129,
- "tp_rate": 0.12215053904941753,
- "truth_threshold": 29.72
- },
- {
- "f1": 0.21745249824067558,
- "fn": 266881,
- "fn_rate": 0.8780106658419995,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999988847611,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12198933415800053,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37080,
- "tp_rate": 0.12198933415800053,
- "truth_threshold": 29.740000000000002
- },
- {
- "f1": 0.21717020640143583,
- "fn": 266935,
- "fn_rate": 0.8781883202121324,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989001149,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12181167978786753,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 37026,
- "tp_rate": 0.12181167978786753,
- "truth_threshold": 29.76
- },
- {
- "f1": 0.21688195886569755,
- "fn": 266990,
- "fn_rate": 0.8783692644780087,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989152574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12163073552199131,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36971,
- "tp_rate": 0.12163073552199131,
- "truth_threshold": 29.78
- },
- {
- "f1": 0.2164797831329543,
- "fn": 267067,
- "fn_rate": 0.8786225864502354,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989301913,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12137741354976461,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36894,
- "tp_rate": 0.12137741354976461,
- "truth_threshold": 29.8
- },
- {
- "f1": 0.21610296318467526,
- "fn": 267139,
- "fn_rate": 0.8788594589437461,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989449196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12114054105625392,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36822,
- "tp_rate": 0.12114054105625392,
- "truth_threshold": 29.82
- },
- {
- "f1": 0.21567361314939829,
- "fn": 267221,
- "fn_rate": 0.8791292303946888,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989594452,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1208707696053112,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36740,
- "tp_rate": 0.1208707696053112,
- "truth_threshold": 29.84
- },
- {
- "f1": 0.2151857854190154,
- "fn": 267314,
- "fn_rate": 0.8794351906988067,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989737709,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12056480930119325,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36647,
- "tp_rate": 0.12056480930119325,
- "truth_threshold": 29.86
- },
- {
- "f1": 0.21485035707573763,
- "fn": 267378,
- "fn_rate": 0.8796457440263719,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999989878993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1203542559736282,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36583,
- "tp_rate": 0.1203542559736282,
- "truth_threshold": 29.88
- },
- {
- "f1": 0.21452529061741885,
- "fn": 267440,
- "fn_rate": 0.8798497175624505,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990018332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.12015028243754955,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36521,
- "tp_rate": 0.12015028243754955,
- "truth_threshold": 29.900000000000002
- },
- {
- "f1": 0.21410567505478817,
- "fn": 267520,
- "fn_rate": 0.8801129092219068,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990155752,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11988709077809324,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36441,
- "tp_rate": 0.11988709077809324,
- "truth_threshold": 29.92
- },
- {
- "f1": 0.213601875958696,
- "fn": 267616,
- "fn_rate": 0.8804287392132544,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990291281,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11957126078674567,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36345,
- "tp_rate": 0.11957126078674567,
- "truth_threshold": 29.94
- },
- {
- "f1": 0.21310367126186766,
- "fn": 267711,
- "fn_rate": 0.8807412793088587,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990424944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1192587206911413,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36250,
- "tp_rate": 0.1192587206911413,
- "truth_threshold": 29.96
- },
- {
- "f1": 0.2126144455747711,
- "fn": 267804,
- "fn_rate": 0.8810472396129767,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990556766,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11895276038702333,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36157,
- "tp_rate": 0.11895276038702333,
- "truth_threshold": 29.98
- },
- {
- "f1": 0.21232010633355095,
- "fn": 267860,
- "fn_rate": 0.8812314737745961,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990686774,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11876852622540392,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36101,
- "tp_rate": 0.11876852622540392,
- "truth_threshold": 30
- },
- {
- "f1": 0.21188429839577855,
- "fn": 267943,
- "fn_rate": 0.881504535121282,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990814992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.118495464878718,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 36018,
- "tp_rate": 0.118495464878718,
- "truth_threshold": 30.02
- },
- {
- "f1": 0.21145755491353288,
- "fn": 268024,
- "fn_rate": 0.8817710166764815,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999990941445,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11822898332351847,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35937,
- "tp_rate": 0.11822898332351847,
- "truth_threshold": 30.04
- },
- {
- "f1": 0.21122599704579026,
- "fn": 268068,
- "fn_rate": 0.8819157720891825,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991066156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1180842279108175,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35893,
- "tp_rate": 0.1180842279108175,
- "truth_threshold": 30.060000000000002
- },
- {
- "f1": 0.21078965182329223,
- "fn": 268151,
- "fn_rate": 0.8821888334358684,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991189151,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11781116656413158,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35810,
- "tp_rate": 0.11781116656413158,
- "truth_threshold": 30.080000000000002
- },
- {
- "f1": 0.21026755222685414,
- "fn": 268250,
- "fn_rate": 0.8825145331144456,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991310453,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11748546688555439,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35711,
- "tp_rate": 0.11748546688555439,
- "truth_threshold": 30.1
- },
- {
- "f1": 0.20992561968869808,
- "fn": 268315,
- "fn_rate": 0.8827283763377538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991430085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11727162366224614,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35646,
- "tp_rate": 0.11727162366224614,
- "truth_threshold": 30.12
- },
- {
- "f1": 0.20951438467519615,
- "fn": 268393,
- "fn_rate": 0.8829849882057238,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999154807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11701501179427624,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35568,
- "tp_rate": 0.11701501179427624,
- "truth_threshold": 30.14
- },
- {
- "f1": 0.20901265047107834,
- "fn": 268488,
- "fn_rate": 0.8832975283013281,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999166443,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11670247169867187,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35473,
- "tp_rate": 0.11670247169867187,
- "truth_threshold": 30.16
- },
- {
- "f1": 0.20862211221122112,
- "fn": 268562,
- "fn_rate": 0.8835409805863252,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991779188,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11645901941367479,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35399,
- "tp_rate": 0.11645901941367479,
- "truth_threshold": 30.18
- },
- {
- "f1": 0.2081739243207555,
- "fn": 268647,
- "fn_rate": 0.8838206217244976,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999991892367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11617937827550245,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35314,
- "tp_rate": 0.11617937827550245,
- "truth_threshold": 30.2
- },
- {
- "f1": 0.20778301886792452,
- "fn": 268721,
- "fn_rate": 0.8840640740094946,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992003986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11593592599050537,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35240,
- "tp_rate": 0.11593592599050537,
- "truth_threshold": 30.22
- },
- {
- "f1": 0.20745537214939053,
- "fn": 268783,
- "fn_rate": 0.8842680475455733,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999211407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11573195245442672,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35178,
- "tp_rate": 0.11573195245442672,
- "truth_threshold": 30.240000000000002
- },
- {
- "f1": 0.20703710257771485,
- "fn": 268862,
- "fn_rate": 0.8845279493092864,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992222638,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11547205069071362,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35099,
- "tp_rate": 0.11547205069071362,
- "truth_threshold": 30.26
- },
- {
- "f1": 0.20660337839033802,
- "fn": 268944,
- "fn_rate": 0.8847977207602291,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992329711,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11520227923977089,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 35017,
- "tp_rate": 0.11520227923977089,
- "truth_threshold": 30.28
- },
- {
- "f1": 0.20614358641447078,
- "fn": 269031,
- "fn_rate": 0.8850839416898878,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999243531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11491605831011215,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34930,
- "tp_rate": 0.11491605831011215,
- "truth_threshold": 30.3
- },
- {
- "f1": 0.20578825584964466,
- "fn": 269098,
- "fn_rate": 0.8853043647046825,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992539456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1146956352953175,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34863,
- "tp_rate": 0.1146956352953175,
- "truth_threshold": 30.32
- },
- {
- "f1": 0.20553404019174912,
- "fn": 269146,
- "fn_rate": 0.8854622797003563,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992642167,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11453772029964371,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34815,
- "tp_rate": 0.11453772029964371,
- "truth_threshold": 30.34
- },
- {
- "f1": 0.2049723920040157,
- "fn": 269252,
- "fn_rate": 0.8858110086491359,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992743465,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11418899135086409,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34709,
- "tp_rate": 0.11418899135086409,
- "truth_threshold": 30.36
- },
- {
- "f1": 0.2046390199819259,
- "fn": 269315,
- "fn_rate": 0.8860182720809577,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992843367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11398172791904225,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34646,
- "tp_rate": 0.11398172791904225,
- "truth_threshold": 30.38
- },
- {
- "f1": 0.2043891776937618,
- "fn": 269362,
- "fn_rate": 0.8861728971808883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999992941895,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11382710281911167,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34599,
- "tp_rate": 0.11382710281911167,
- "truth_threshold": 30.400000000000002
- },
- {
- "f1": 0.20393294610516613,
- "fn": 269448,
- "fn_rate": 0.8864558282148038,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993039066,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11354417178519613,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34513,
- "tp_rate": 0.11354417178519613,
- "truth_threshold": 30.42
- },
- {
- "f1": 0.2035508064373142,
- "fn": 269520,
- "fn_rate": 0.8866927007083145,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993134899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11330729929168544,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34441,
- "tp_rate": 0.11330729929168544,
- "truth_threshold": 30.44
- },
- {
- "f1": 0.20330657650521936,
- "fn": 269566,
- "fn_rate": 0.8868440359125019,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993229413,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11315596408749806,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34395,
- "tp_rate": 0.11315596408749806,
- "truth_threshold": 30.46
- },
- {
- "f1": 0.20294070697575425,
- "fn": 269635,
- "fn_rate": 0.887071038718783,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993322626,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.112928961281217,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34326,
- "tp_rate": 0.112928961281217,
- "truth_threshold": 30.48
- },
- {
- "f1": 0.20245184716464515,
- "fn": 269727,
- "fn_rate": 0.8873737091271577,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993414554,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11262629087284223,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34234,
- "tp_rate": 0.11262629087284223,
- "truth_threshold": 30.5
- },
- {
- "f1": 0.2021328822301218,
- "fn": 269787,
- "fn_rate": 0.88757110287175,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993505219,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11242889712825001,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34174,
- "tp_rate": 0.11242889712825001,
- "truth_threshold": 30.52
- },
- {
- "f1": 0.20181852601190264,
- "fn": 269846,
- "fn_rate": 0.887765206720599,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993594634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11223479327940097,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34115,
- "tp_rate": 0.11223479327940097,
- "truth_threshold": 30.54
- },
- {
- "f1": 0.201462687273674,
- "fn": 269913,
- "fn_rate": 0.8879856297353936,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993682819,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11201437026460631,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 34048,
- "tp_rate": 0.11201437026460631,
- "truth_threshold": 30.560000000000002
- },
- {
- "f1": 0.20101561297806608,
- "fn": 269997,
- "fn_rate": 0.8882619809778228,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993769789,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11173801902217718,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33964,
- "tp_rate": 0.11173801902217718,
- "truth_threshold": 30.580000000000002
- },
- {
- "f1": 0.20061092562335725,
- "fn": 270073,
- "fn_rate": 0.8885120130543063,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993855563,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11148798694569369,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33888,
- "tp_rate": 0.11148798694569369,
- "truth_threshold": 30.6
- },
- {
- "f1": 0.20021671295007903,
- "fn": 270147,
- "fn_rate": 0.8887554653393034,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999993940155,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1112445346606966,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33814,
- "tp_rate": 0.1112445346606966,
- "truth_threshold": 30.62
- },
- {
- "f1": 0.19982232750962392,
- "fn": 270221,
- "fn_rate": 0.8889989176243005,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994023583,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11100108237569951,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33740,
- "tp_rate": 0.11100108237569951,
- "truth_threshold": 30.64
- },
- {
- "f1": 0.1993365125440597,
- "fn": 270312,
- "fn_rate": 0.8892982981369321,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994105861,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11070170186306796,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33649,
- "tp_rate": 0.11070170186306796,
- "truth_threshold": 30.66
- },
- {
- "f1": 0.19885161680265942,
- "fn": 270403,
- "fn_rate": 0.8895976786495636,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994187008,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1104023213504364,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33558,
- "tp_rate": 0.1104023213504364,
- "truth_threshold": 30.68
- },
- {
- "f1": 0.19850409240963213,
- "fn": 270468,
- "fn_rate": 0.8898115218728718,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994267037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11018847812712815,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33493,
- "tp_rate": 0.11018847812712815,
- "truth_threshold": 30.7
- },
- {
- "f1": 0.1982264479760049,
- "fn": 270520,
- "fn_rate": 0.8899825964515184,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994345965,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.11001740354848155,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33441,
- "tp_rate": 0.11001740354848155,
- "truth_threshold": 30.72
- },
- {
- "f1": 0.19794396291070349,
- "fn": 270573,
- "fn_rate": 0.8901569609259082,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994423805,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10984303907409174,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33388,
- "tp_rate": 0.10984303907409174,
- "truth_threshold": 30.740000000000002
- },
- {
- "f1": 0.1975640273009209,
- "fn": 270644,
- "fn_rate": 0.8903905435236757,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994500575,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10960945647632427,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33317,
- "tp_rate": 0.10960945647632427,
- "truth_threshold": 30.76
- },
- {
- "f1": 0.19726470989437225,
- "fn": 270700,
- "fn_rate": 0.8905747776852951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994576286,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10942522231470485,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33261,
- "tp_rate": 0.10942522231470485,
- "truth_threshold": 30.78
- },
- {
- "f1": 0.19694983420432907,
- "fn": 270759,
- "fn_rate": 0.8907688815341441,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994650957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10923111846585581,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33202,
- "tp_rate": 0.10923111846585581,
- "truth_threshold": 30.8
- },
- {
- "f1": 0.19663961270112487,
- "fn": 270817,
- "fn_rate": 0.89095969548725,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994724599,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10904030451274999,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33144,
- "tp_rate": 0.10904030451274999,
- "truth_threshold": 30.82
- },
- {
- "f1": 0.19636139230741845,
- "fn": 270869,
- "fn_rate": 0.8911307700658966,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994797226,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10886922993410339,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 33092,
- "tp_rate": 0.10886922993410339,
- "truth_threshold": 30.84
- },
- {
- "f1": 0.19582017616752534,
- "fn": 270970,
- "fn_rate": 0.8914630495359602,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994868854,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1085369504640398,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32991,
- "tp_rate": 0.1085369504640398,
- "truth_threshold": 30.86
- },
- {
- "f1": 0.1954833653914654,
- "fn": 271033,
- "fn_rate": 0.8916703129677821,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999994939497,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10832968703221794,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32928,
- "tp_rate": 0.10832968703221794,
- "truth_threshold": 30.88
- },
- {
- "f1": 0.1950976200655551,
- "fn": 271105,
- "fn_rate": 0.8919071854612928,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995009166,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10809281453870727,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32856,
- "tp_rate": 0.10809281453870727,
- "truth_threshold": 30.900000000000002
- },
- {
- "f1": 0.1946628813076119,
- "fn": 271186,
- "fn_rate": 0.8921736670164923,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995077876,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10782633298350776,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32775,
- "tp_rate": 0.10782633298350776,
- "truth_threshold": 30.92
- },
- {
- "f1": 0.19431969394544246,
- "fn": 271250,
- "fn_rate": 0.8923842203440573,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995145641,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1076157796559427,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32711,
- "tp_rate": 0.1076157796559427,
- "truth_threshold": 30.94
- },
- {
- "f1": 0.19386906247400382,
- "fn": 271334,
- "fn_rate": 0.8926605715864864,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995212472,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10733942841351357,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32627,
- "tp_rate": 0.10733942841351357,
- "truth_threshold": 30.96
- },
- {
- "f1": 0.1935255732132032,
- "fn": 271398,
- "fn_rate": 0.8928711249140515,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995278384,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10712887508594852,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32563,
- "tp_rate": 0.10712887508594852,
- "truth_threshold": 30.98
- },
- {
- "f1": 0.19318789752125068,
- "fn": 271461,
- "fn_rate": 0.8930783883458733,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995343387,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10692161165412668,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32500,
- "tp_rate": 0.10692161165412668,
- "truth_threshold": 31
- },
- {
- "f1": 0.19273669940780555,
- "fn": 271545,
- "fn_rate": 0.8933547395883025,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995407496,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10664526041169756,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32416,
- "tp_rate": 0.10664526041169756,
- "truth_threshold": 31.02
- },
- {
- "f1": 0.19225302272470457,
- "fn": 271635,
- "fn_rate": 0.8936508302051908,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995470722,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1063491697948092,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32326,
- "tp_rate": 0.1063491697948092,
- "truth_threshold": 31.04
- },
- {
- "f1": 0.191881457863648,
- "fn": 271704,
- "fn_rate": 0.8938778330114718,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995533079,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10612216698852814,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32257,
- "tp_rate": 0.10612216698852814,
- "truth_threshold": 31.060000000000002
- },
- {
- "f1": 0.19129565496804599,
- "fn": 271813,
- "fn_rate": 0.8942364316474811,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995594576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.1057635683525189,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32148,
- "tp_rate": 0.1057635683525189,
- "truth_threshold": 31.080000000000002
- },
- {
- "f1": 0.19083755922196033,
- "fn": 271898,
- "fn_rate": 0.8945160727856534,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995655227,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10548392721434657,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32063,
- "tp_rate": 0.10548392721434657,
- "truth_threshold": 31.1
- },
- {
- "f1": 0.19051445988260646,
- "fn": 271958,
- "fn_rate": 0.8947134665302456,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995715042,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10528653346975435,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 32003,
- "tp_rate": 0.10528653346975435,
- "truth_threshold": 31.12
- },
- {
- "f1": 0.1902235717900628,
- "fn": 272012,
- "fn_rate": 0.8948911209003787,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995774035,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10510887909962133,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31949,
- "tp_rate": 0.10510887909962133,
- "truth_threshold": 31.14
- },
- {
- "f1": 0.18987387001107658,
- "fn": 272077,
- "fn_rate": 0.8951049641236869,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995832215,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10489503587631308,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31884,
- "tp_rate": 0.10489503587631308,
- "truth_threshold": 31.16
- },
- {
- "f1": 0.1894317999058857,
- "fn": 272159,
- "fn_rate": 0.8953747355746297,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995889594,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10462526442537036,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31802,
- "tp_rate": 0.10462526442537036,
- "truth_threshold": 31.18
- },
- {
- "f1": 0.18903750484077572,
- "fn": 272232,
- "fn_rate": 0.8956148979638835,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999995946183,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10438510203611648,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31729,
- "tp_rate": 0.10438510203611648,
- "truth_threshold": 31.2
- },
- {
- "f1": 0.1887305143728846,
- "fn": 272289,
- "fn_rate": 0.8958024220212462,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996001994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10419757797875386,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31672,
- "tp_rate": 0.10419757797875386,
- "truth_threshold": 31.220000000000002
- },
- {
- "f1": 0.1882770870337478,
- "fn": 272373,
- "fn_rate": 0.8960787732636752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996057035,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10392122673632473,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31588,
- "tp_rate": 0.10392122673632473,
- "truth_threshold": 31.240000000000002
- },
- {
- "f1": 0.18789905746427485,
- "fn": 272443,
- "fn_rate": 0.8963090659656996,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996111318,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10369093403430045,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31518,
- "tp_rate": 0.10369093403430045,
- "truth_threshold": 31.26
- },
- {
- "f1": 0.1874824837061198,
- "fn": 272520,
- "fn_rate": 0.8965623879379262,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996164856,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10343761206207375,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31441,
- "tp_rate": 0.10343761206207375,
- "truth_threshold": 31.28
- },
- {
- "f1": 0.18707168546429445,
- "fn": 272596,
- "fn_rate": 0.8968124200144098,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996217656,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10318757998559025,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31365,
- "tp_rate": 0.10318757998559025,
- "truth_threshold": 31.3
- },
- {
- "f1": 0.18666666666666668,
- "fn": 272671,
- "fn_rate": 0.89705916219515,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996269727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10294083780484996,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31290,
- "tp_rate": 0.10294083780484996,
- "truth_threshold": 31.32
- },
- {
- "f1": 0.18634692952099097,
- "fn": 272730,
- "fn_rate": 0.897253266043999,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996321084,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10274673395600094,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31231,
- "tp_rate": 0.10274673395600094,
- "truth_threshold": 31.34
- },
- {
- "f1": 0.1860546998549851,
- "fn": 272784,
- "fn_rate": 0.8974309204141321,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996371732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10256907958586792,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31177,
- "tp_rate": 0.10256907958586792,
- "truth_threshold": 31.36
- },
- {
- "f1": 0.1856974023493458,
- "fn": 272850,
- "fn_rate": 0.8976480535331836,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996421683,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10235194646681646,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31111,
- "tp_rate": 0.10235194646681646,
- "truth_threshold": 31.38
- },
- {
- "f1": 0.18527496014853997,
- "fn": 272928,
- "fn_rate": 0.8979046654011534,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996470947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10209533459884657,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 31033,
- "tp_rate": 0.10209533459884657,
- "truth_threshold": 31.400000000000002
- },
- {
- "f1": 0.18486316053481747,
- "fn": 273004,
- "fn_rate": 0.898154697477637,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996519533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10184530252236307,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30957,
- "tp_rate": 0.10184530252236307,
- "truth_threshold": 31.42
- },
- {
- "f1": 0.1842993423214083,
- "fn": 273108,
- "fn_rate": 0.8984968466349301,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996567449,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10150315336506986,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30853,
- "tp_rate": 0.10150315336506986,
- "truth_threshold": 31.44
- },
- {
- "f1": 0.1840015772587959,
- "fn": 273163,
- "fn_rate": 0.8986777909008064,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996614707,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10132220909919365,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30798,
- "tp_rate": 0.10132220909919365,
- "truth_threshold": 31.46
- },
- {
- "f1": 0.18362663957692194,
- "fn": 273232,
- "fn_rate": 0.8989047937070874,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996661313,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10109520629291258,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30729,
- "tp_rate": 0.10109520629291258,
- "truth_threshold": 31.48
- },
- {
- "f1": 0.1831054950178425,
- "fn": 273328,
- "fn_rate": 0.899220623698435,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996707277,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.100779376301565,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30633,
- "tp_rate": 0.100779376301565,
- "truth_threshold": 31.5
- },
- {
- "f1": 0.1826166503240619,
- "fn": 273418,
- "fn_rate": 0.8995167143153233,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999675261,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10048328568467665,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30543,
- "tp_rate": 0.10048328568467665,
- "truth_threshold": 31.52
- },
- {
- "f1": 0.18229658776955185,
- "fn": 273477,
- "fn_rate": 0.8997108181641724,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996797317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10028918183582762,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30484,
- "tp_rate": 0.10028918183582762,
- "truth_threshold": 31.54
- },
- {
- "f1": 0.18197532193333452,
- "fn": 273536,
- "fn_rate": 0.8999049220130214,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999684141,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.10009507798697859,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30425,
- "tp_rate": 0.10009507798697859,
- "truth_threshold": 31.560000000000002
- },
- {
- "f1": 0.1815511444536176,
- "fn": 273614,
- "fn_rate": 0.9001615338809913,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996884895,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09983846611900869,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30347,
- "tp_rate": 0.09983846611900869,
- "truth_threshold": 31.580000000000002
- },
- {
- "f1": 0.1812573671519264,
- "fn": 273668,
- "fn_rate": 0.9003391882511244,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996927781,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09966081174887567,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30293,
- "tp_rate": 0.09966081174887567,
- "truth_threshold": 31.6
- },
- {
- "f1": 0.18105057806927258,
- "fn": 273706,
- "fn_rate": 0.900464204289366,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999996970077,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09953579571063394,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30255,
- "tp_rate": 0.09953579571063394,
- "truth_threshold": 31.62
- },
- {
- "f1": 0.18068640243245507,
- "fn": 273773,
- "fn_rate": 0.9006846273041608,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997011791,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09931537269583927,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30188,
- "tp_rate": 0.09931537269583927,
- "truth_threshold": 31.64
- },
- {
- "f1": 0.1802180433572211,
- "fn": 273859,
- "fn_rate": 0.9009675583380763,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997052931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09903244166192374,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30102,
- "tp_rate": 0.09903244166192374,
- "truth_threshold": 31.66
- },
- {
- "f1": 0.1799069477793812,
- "fn": 273916,
- "fn_rate": 0.9011550823954388,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997093504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09884491760456111,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 30045,
- "tp_rate": 0.09884491760456111,
- "truth_threshold": 31.68
- },
- {
- "f1": 0.17961263894212343,
- "fn": 273970,
- "fn_rate": 0.9013327367655719,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997133519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09866726323442811,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29991,
- "tp_rate": 0.09866726323442811,
- "truth_threshold": 31.7
- },
- {
- "f1": 0.17925878892795744,
- "fn": 274035,
- "fn_rate": 0.9015465799888801,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997172982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09845342001111984,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29926,
- "tp_rate": 0.09845342001111984,
- "truth_threshold": 31.720000000000002
- },
- {
- "f1": 0.17874604544147255,
- "fn": 274129,
- "fn_rate": 0.9018558301887413,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997211902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09814416981125867,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29832,
- "tp_rate": 0.09814416981125867,
- "truth_threshold": 31.740000000000002
- },
- {
- "f1": 0.17846227602325163,
- "fn": 274181,
- "fn_rate": 0.9020269047673879,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997250287,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09797309523261208,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29780,
- "tp_rate": 0.09797309523261208,
- "truth_threshold": 31.76
- },
- {
- "f1": 0.17800369242573189,
- "fn": 274265,
- "fn_rate": 0.9023032560098171,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997288144,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09769674399018295,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29696,
- "tp_rate": 0.09769674399018295,
- "truth_threshold": 31.78
- },
- {
- "f1": 0.1776978417266187,
- "fn": 274321,
- "fn_rate": 0.9024874901714365,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997325478,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09751250982856353,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29640,
- "tp_rate": 0.09751250982856353,
- "truth_threshold": 31.8
- },
- {
- "f1": 0.1773640342987348,
- "fn": 274382,
- "fn_rate": 0.9026881738117719,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997362299,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09731182618822809,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29579,
- "tp_rate": 0.09731182618822809,
- "truth_threshold": 31.82
- },
- {
- "f1": 0.1770202353392748,
- "fn": 274445,
- "fn_rate": 0.9028954372435938,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997398613,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09710456275640625,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29516,
- "tp_rate": 0.09710456275640625,
- "truth_threshold": 31.84
- },
- {
- "f1": 0.1764674121712421,
- "fn": 274546,
- "fn_rate": 0.9032277167136573,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997434427,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09677228328634266,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29415,
- "tp_rate": 0.09677228328634266,
- "truth_threshold": 31.86
- },
- {
- "f1": 0.17605160516051604,
- "fn": 274622,
- "fn_rate": 0.9034777487901409,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997469748,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09652225120985916,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29339,
- "tp_rate": 0.09652225120985916,
- "truth_threshold": 31.88
- },
- {
- "f1": 0.17564161044822701,
- "fn": 274697,
- "fn_rate": 0.9037244909708811,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997504583,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09627550902911887,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29264,
- "tp_rate": 0.09627550902911887,
- "truth_threshold": 31.900000000000002
- },
- {
- "f1": 0.17537877878358585,
- "fn": 274745,
- "fn_rate": 0.9038824059665549,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997538939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09611759403344508,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29216,
- "tp_rate": 0.09611759403344508,
- "truth_threshold": 31.92
- },
- {
- "f1": 0.1750391757776617,
- "fn": 274807,
- "fn_rate": 0.9040863795026336,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999757282,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09591362049736644,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29154,
- "tp_rate": 0.09591362049736644,
- "truth_threshold": 31.94
- },
- {
- "f1": 0.1745459786682041,
- "fn": 274897,
- "fn_rate": 0.9043824701195219,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997606236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09561752988047809,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29064,
- "tp_rate": 0.09561752988047809,
- "truth_threshold": 31.96
- },
- {
- "f1": 0.17423295932341848,
- "fn": 274954,
- "fn_rate": 0.9045699941768846,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997639192,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09543000582311546,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 29007,
- "tp_rate": 0.09543000582311546,
- "truth_threshold": 31.98
- },
- {
- "f1": 0.1738879677024007,
- "fn": 275017,
- "fn_rate": 0.9047772576087064,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997671694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09522274239129362,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28944,
- "tp_rate": 0.09522274239129362,
- "truth_threshold": 32
- },
- {
- "f1": 0.17342106844540592,
- "fn": 275102,
- "fn_rate": 0.9050568987468787,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997703748,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09494310125312129,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28859,
- "tp_rate": 0.09494310125312129,
- "truth_threshold": 32.02
- },
- {
- "f1": 0.17303184391791987,
- "fn": 275173,
- "fn_rate": 0.9052904813446462,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997735362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0947095186553538,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28788,
- "tp_rate": 0.0947095186553538,
- "truth_threshold": 32.04
- },
- {
- "f1": 0.17260845517506734,
- "fn": 275250,
- "fn_rate": 0.9055438033168729,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997766539,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09445619668312712,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28711,
- "tp_rate": 0.09445619668312712,
- "truth_threshold": 32.06
- },
- {
- "f1": 0.17215293396033532,
- "fn": 275333,
- "fn_rate": 0.9058168646635588,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997797288,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09418313533644118,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28628,
- "tp_rate": 0.09418313533644118,
- "truth_threshold": 32.08
- },
- {
- "f1": 0.17187810114934232,
- "fn": 275383,
- "fn_rate": 0.905981359450719,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997827613,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.094018640549281,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28578,
- "tp_rate": 0.094018640549281,
- "truth_threshold": 32.1
- },
- {
- "f1": 0.1715701902659392,
- "fn": 275439,
- "fn_rate": 0.9061655936123384,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997857522,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09383440638766158,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28522,
- "tp_rate": 0.09383440638766158,
- "truth_threshold": 32.12
- },
- {
- "f1": 0.1712121485599456,
- "fn": 275504,
- "fn_rate": 0.9063794368356467,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997887017,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09362056316435333,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28457,
- "tp_rate": 0.09362056316435333,
- "truth_threshold": 32.14
- },
- {
- "f1": 0.17081595686423184,
- "fn": 275576,
- "fn_rate": 0.9066163093291574,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997916107,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09338369067084264,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28385,
- "tp_rate": 0.09338369067084264,
- "truth_threshold": 32.160000000000004
- },
- {
- "f1": 0.17032047577771356,
- "fn": 275666,
- "fn_rate": 0.9069123999460457,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997944797,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09308760005395429,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28295,
- "tp_rate": 0.09308760005395429,
- "truth_threshold": 32.18
- },
- {
- "f1": 0.16997898818160473,
- "fn": 275728,
- "fn_rate": 0.9071163734821244,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999997973091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09288362651787564,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28233,
- "tp_rate": 0.09288362651787564,
- "truth_threshold": 32.2
- },
- {
- "f1": 0.1694560039506411,
- "fn": 275823,
- "fn_rate": 0.9074289135777287,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998000997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09257108642227128,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28138,
- "tp_rate": 0.09257108642227128,
- "truth_threshold": 32.22
- },
- {
- "f1": 0.16916933196002965,
- "fn": 275875,
- "fn_rate": 0.9075999881563753,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998028517,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09240001184362467,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28086,
- "tp_rate": 0.09240001184362467,
- "truth_threshold": 32.24
- },
- {
- "f1": 0.16877726100681978,
- "fn": 275946,
- "fn_rate": 0.9078335707541428,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999805566,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0921664292458572,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 28015,
- "tp_rate": 0.0921664292458572,
- "truth_threshold": 32.26
- },
- {
- "f1": 0.1682585979354108,
- "fn": 276040,
- "fn_rate": 0.908142820954004,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998082427,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09185717904599604,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27921,
- "tp_rate": 0.09185717904599604,
- "truth_threshold": 32.28
- },
- {
- "f1": 0.1678059071729958,
- "fn": 276122,
- "fn_rate": 0.9084125924049467,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998108827,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09158740759505331,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27839,
- "tp_rate": 0.09158740759505331,
- "truth_threshold": 32.3
- },
- {
- "f1": 0.16734194310795983,
- "fn": 276206,
- "fn_rate": 0.9086889436473758,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998134864,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09131105635262418,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27755,
- "tp_rate": 0.09131105635262418,
- "truth_threshold": 32.32
- },
- {
- "f1": 0.16710987294753282,
- "fn": 276248,
- "fn_rate": 0.9088271192685904,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998160541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09117288073140963,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27713,
- "tp_rate": 0.09117288073140963,
- "truth_threshold": 32.34
- },
- {
- "f1": 0.16682246654323296,
- "fn": 276300,
- "fn_rate": 0.908998193847237,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998185866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09100180615276302,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27661,
- "tp_rate": 0.09100180615276302,
- "truth_threshold": 32.36
- },
- {
- "f1": 0.16640224885837862,
- "fn": 276376,
- "fn_rate": 0.9092482259237205,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998210842,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09075177407627952,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27585,
- "tp_rate": 0.09075177407627952,
- "truth_threshold": 32.38
- },
- {
- "f1": 0.16597680620753738,
- "fn": 276453,
- "fn_rate": 0.9095015478959472,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998235474,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09049845210405283,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27508,
- "tp_rate": 0.09049845210405283,
- "truth_threshold": 32.4
- },
- {
- "f1": 0.16567797377298485,
- "fn": 276507,
- "fn_rate": 0.9096792022660802,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998259766,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09032079773391981,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27454,
- "tp_rate": 0.09032079773391981,
- "truth_threshold": 32.42
- },
- {
- "f1": 0.1652572297774478,
- "fn": 276583,
- "fn_rate": 0.9099292343425637,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998283725,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.09007076565743631,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27378,
- "tp_rate": 0.09007076565743631,
- "truth_threshold": 32.44
- },
- {
- "f1": 0.16481413279075524,
- "fn": 276663,
- "fn_rate": 0.91019242600202,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998307353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08980757399798,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27298,
- "tp_rate": 0.08980757399798,
- "truth_threshold": 32.46
- },
- {
- "f1": 0.16442624732780173,
- "fn": 276733,
- "fn_rate": 0.9104227187040442,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998330656,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08957728129595573,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27228,
- "tp_rate": 0.08957728129595573,
- "truth_threshold": 32.480000000000004
- },
- {
- "f1": 0.1639212559423494,
- "fn": 276824,
- "fn_rate": 0.9107220992166758,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998353639,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08927790078332418,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27137,
- "tp_rate": 0.08927790078332418,
- "truth_threshold": 32.5
- },
- {
- "f1": 0.1633221547478776,
- "fn": 276932,
- "fn_rate": 0.9110774079569418,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998376304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08892259204305815,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 27029,
- "tp_rate": 0.08892259204305815,
- "truth_threshold": 32.52
- },
- {
- "f1": 0.16289527125036263,
- "fn": 277009,
- "fn_rate": 0.9113307299291685,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998398659,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08866927007083146,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26952,
- "tp_rate": 0.08866927007083146,
- "truth_threshold": 32.54
- },
- {
- "f1": 0.16260049567793025,
- "fn": 277062,
- "fn_rate": 0.9115050944035583,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998420704,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08849490559644164,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26899,
- "tp_rate": 0.08849490559644164,
- "truth_threshold": 32.56
- },
- {
- "f1": 0.1623399393008718,
- "fn": 277109,
- "fn_rate": 0.9116597195034889,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998442447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08834028049651106,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26852,
- "tp_rate": 0.08834028049651106,
- "truth_threshold": 32.58
- },
- {
- "f1": 0.16209548686692787,
- "fn": 277153,
- "fn_rate": 0.9118044749161899,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998463891,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0881955250838101,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26808,
- "tp_rate": 0.0881955250838101,
- "truth_threshold": 32.6
- },
- {
- "f1": 0.16160638683924036,
- "fn": 277241,
- "fn_rate": 0.9120939857415918,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998485039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08790601425840815,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26720,
- "tp_rate": 0.08790601425840815,
- "truth_threshold": 32.62
- },
- {
- "f1": 0.16138398257924025,
- "fn": 277281,
- "fn_rate": 0.91222558157132,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998505895,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08777441842868,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26680,
- "tp_rate": 0.08777441842868,
- "truth_threshold": 32.64
- },
- {
- "f1": 0.16102197376700064,
- "fn": 277346,
- "fn_rate": 0.9124394247946283,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998526465,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08756057520537174,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26615,
- "tp_rate": 0.08756057520537174,
- "truth_threshold": 32.660000000000004
- },
- {
- "f1": 0.160610223236168,
- "fn": 277420,
- "fn_rate": 0.9126828770796254,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998546752,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08731712292037465,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26541,
- "tp_rate": 0.08731712292037465,
- "truth_threshold": 32.68
- },
- {
- "f1": 0.1603490954868151,
- "fn": 277467,
- "fn_rate": 0.912837502179556,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999856676,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08716249782044407,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26494,
- "tp_rate": 0.08716249782044407,
- "truth_threshold": 32.7
- },
- {
- "f1": 0.159975543905953,
- "fn": 277534,
- "fn_rate": 0.9130579251943506,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998586491,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0869420748056494,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26427,
- "tp_rate": 0.0869420748056494,
- "truth_threshold": 32.72
- },
- {
- "f1": 0.15968589557299234,
- "fn": 277586,
- "fn_rate": 0.9132289997729972,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998605952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0867710002270028,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26375,
- "tp_rate": 0.0867710002270028,
- "truth_threshold": 32.74
- },
- {
- "f1": 0.15934648201190527,
- "fn": 277647,
- "fn_rate": 0.9134296834133326,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998625143,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08657031658666736,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26314,
- "tp_rate": 0.08657031658666736,
- "truth_threshold": 32.76
- },
- {
- "f1": 0.15902318482447853,
- "fn": 277705,
- "fn_rate": 0.9136204973664385,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998644071,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08637950263356155,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26256,
- "tp_rate": 0.08637950263356155,
- "truth_threshold": 32.78
- },
- {
- "f1": 0.1585933240443448,
- "fn": 277782,
- "fn_rate": 0.9138738193386652,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998662739,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08612618066133484,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26179,
- "tp_rate": 0.08612618066133484,
- "truth_threshold": 32.8
- },
- {
- "f1": 0.15821396543784386,
- "fn": 277850,
- "fn_rate": 0.914097532249203,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998681149,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08590246775079698,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26111,
- "tp_rate": 0.08590246775079698,
- "truth_threshold": 32.82
- },
- {
- "f1": 0.1578516754240832,
- "fn": 277915,
- "fn_rate": 0.9143113754725113,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998699307,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08568862452748872,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26046,
- "tp_rate": 0.08568862452748872,
- "truth_threshold": 32.84
- },
- {
- "f1": 0.1576334674877564,
- "fn": 277954,
- "fn_rate": 0.9144396814064962,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998717214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08556031859350377,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 26007,
- "tp_rate": 0.08556031859350377,
- "truth_threshold": 32.86
- },
- {
- "f1": 0.15732074007614152,
- "fn": 278010,
- "fn_rate": 0.9146239155681156,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998734874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08537608443188435,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25951,
- "tp_rate": 0.08537608443188435,
- "truth_threshold": 32.88
- },
- {
- "f1": 0.15681791996895295,
- "fn": 278100,
- "fn_rate": 0.914920006185004,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998752291,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08507999381499601,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25861,
- "tp_rate": 0.08507999381499601,
- "truth_threshold": 32.9
- },
- {
- "f1": 0.15646019201960226,
- "fn": 278164,
- "fn_rate": 0.915130559512569,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998769469,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08486944048743095,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25797,
- "tp_rate": 0.08486944048743095,
- "truth_threshold": 32.92
- },
- {
- "f1": 0.15620298927548892,
- "fn": 278210,
- "fn_rate": 0.9152818947167565,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999878641,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08471810528324357,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25751,
- "tp_rate": 0.08471810528324357,
- "truth_threshold": 32.94
- },
- {
- "f1": 0.1557666988235437,
- "fn": 278288,
- "fn_rate": 0.9155385065847264,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998803119,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08446149341527368,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25673,
- "tp_rate": 0.08446149341527368,
- "truth_threshold": 32.96
- },
- {
- "f1": 0.1552518343640568,
- "fn": 278380,
- "fn_rate": 0.9158411769931011,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998819595,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0841588230068989,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25581,
- "tp_rate": 0.0841588230068989,
- "truth_threshold": 32.980000000000004
- },
- {
- "f1": 0.15494949740202982,
- "fn": 278434,
- "fn_rate": 0.9160188313632341,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998835847,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0839811686367659,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25527,
- "tp_rate": 0.0839811686367659,
- "truth_threshold": 33
- },
- {
- "f1": 0.1545074800854867,
- "fn": 278513,
- "fn_rate": 0.9162787331269472,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998851874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0837212668730528,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25448,
- "tp_rate": 0.0837212668730528,
- "truth_threshold": 33.02
- },
- {
- "f1": 0.1542324508136993,
- "fn": 278562,
- "fn_rate": 0.9164399380183642,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999886768,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0835600619816358,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25399,
- "tp_rate": 0.0835600619816358,
- "truth_threshold": 33.04
- },
- {
- "f1": 0.15379008746355685,
- "fn": 278641,
- "fn_rate": 0.9166998397820773,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999888327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08330016021792269,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25320,
- "tp_rate": 0.08330016021792269,
- "truth_threshold": 33.06
- },
- {
- "f1": 0.15338630895968505,
- "fn": 278713,
- "fn_rate": 0.916936712275588,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998898644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08306328772441202,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25248,
- "tp_rate": 0.08306328772441202,
- "truth_threshold": 33.08
- },
- {
- "f1": 0.15294260626500167,
- "fn": 278792,
- "fn_rate": 0.9171966140393011,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998913807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0828033859606989,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25169,
- "tp_rate": 0.0828033859606989,
- "truth_threshold": 33.1
- },
- {
- "f1": 0.15269564794612958,
- "fn": 278836,
- "fn_rate": 0.9173413694520021,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999892876,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08265863054799794,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25125,
- "tp_rate": 0.08265863054799794,
- "truth_threshold": 33.12
- },
- {
- "f1": 0.15225254250682357,
- "fn": 278915,
- "fn_rate": 0.9176012712157152,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998943508,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08239872878428482,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 25046,
- "tp_rate": 0.08239872878428482,
- "truth_threshold": 33.14
- },
- {
- "f1": 0.15193190454476363,
- "fn": 278972,
- "fn_rate": 0.9177887952730778,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998958053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0822112047269222,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24989,
- "tp_rate": 0.0822112047269222,
- "truth_threshold": 33.160000000000004
- },
- {
- "f1": 0.1516397180888908,
- "fn": 279024,
- "fn_rate": 0.9179598698517244,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998972399,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0820401301482756,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24937,
- "tp_rate": 0.0820401301482756,
- "truth_threshold": 33.18
- },
- {
- "f1": 0.15143738102912468,
- "fn": 279060,
- "fn_rate": 0.9180783060984797,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999998986546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08192169390152026,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24901,
- "tp_rate": 0.08192169390152026,
- "truth_threshold": 33.2
- },
- {
- "f1": 0.1510499038906056,
- "fn": 279129,
- "fn_rate": 0.9183053089047608,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999000498,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08169469109523919,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24832,
- "tp_rate": 0.08169469109523919,
- "truth_threshold": 33.22
- },
- {
- "f1": 0.1505774121712888,
- "fn": 279213,
- "fn_rate": 0.9185816601471899,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999014259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08141833985281006,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24748,
- "tp_rate": 0.08141833985281006,
- "truth_threshold": 33.24
- },
- {
- "f1": 0.15007607571054712,
- "fn": 279302,
- "fn_rate": 0.9188744608683351,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999902783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08112553913166491,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24659,
- "tp_rate": 0.08112553913166491,
- "truth_threshold": 33.26
- },
- {
- "f1": 0.14978330208663046,
- "fn": 279354,
- "fn_rate": 0.9190455354469816,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999041214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08095446455301832,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24607,
- "tp_rate": 0.08095446455301832,
- "truth_threshold": 33.28
- },
- {
- "f1": 0.14940030441400304,
- "fn": 279422,
- "fn_rate": 0.9192692483575196,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999054414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08073075164248045,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24539,
- "tp_rate": 0.08073075164248045,
- "truth_threshold": 33.3
- },
- {
- "f1": 0.14905705186366985,
- "fn": 279483,
- "fn_rate": 0.919469931997855,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999067432,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08053006800214502,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24478,
- "tp_rate": 0.08053006800214502,
- "truth_threshold": 33.32
- },
- {
- "f1": 0.14861128030210743,
- "fn": 279562,
- "fn_rate": 0.9197298337615681,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999080271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0802701662384319,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24399,
- "tp_rate": 0.0802701662384319,
- "truth_threshold": 33.34
- },
- {
- "f1": 0.14841437116994188,
- "fn": 279597,
- "fn_rate": 0.9198449801125802,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999092933,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08015501988741977,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24364,
- "tp_rate": 0.08015501988741977,
- "truth_threshold": 33.36
- },
- {
- "f1": 0.14822779720492732,
- "fn": 279630,
- "fn_rate": 0.9199535466721059,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999105421,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.08004645332789403,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24331,
- "tp_rate": 0.08004645332789403,
- "truth_threshold": 33.38
- },
- {
- "f1": 0.14779901040778023,
- "fn": 279706,
- "fn_rate": 0.9202035787485895,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999117737,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07979642125141054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24255,
- "tp_rate": 0.07979642125141054,
- "truth_threshold": 33.4
- },
- {
- "f1": 0.14760192577244197,
- "fn": 279741,
- "fn_rate": 0.9203187250996016,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999129883,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0796812749003984,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24220,
- "tp_rate": 0.0796812749003984,
- "truth_threshold": 33.42
- },
- {
- "f1": 0.14689565196186016,
- "fn": 279866,
- "fn_rate": 0.9207299620675021,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999141862,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07927003793249791,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24095,
- "tp_rate": 0.07927003793249791,
- "truth_threshold": 33.44
- },
- {
- "f1": 0.1465627629605239,
- "fn": 279925,
- "fn_rate": 0.9209240659163511,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999153677,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0790759340836489,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 24036,
- "tp_rate": 0.0790759340836489,
- "truth_threshold": 33.46
- },
- {
- "f1": 0.14602012808783166,
- "fn": 280021,
- "fn_rate": 0.9212398959076987,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999165328,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07876010409230132,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23940,
- "tp_rate": 0.07876010409230132,
- "truth_threshold": 33.480000000000004
- },
- {
- "f1": 0.14556768958574828,
- "fn": 280101,
- "fn_rate": 0.921503087567155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999917682,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.078496912432845,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23860,
- "tp_rate": 0.078496912432845,
- "truth_threshold": 33.5
- },
- {
- "f1": 0.14518294320095682,
- "fn": 280169,
- "fn_rate": 0.9217268004776928,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999188153,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07827319952230714,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23792,
- "tp_rate": 0.07827319952230714,
- "truth_threshold": 33.52
- },
- {
- "f1": 0.144775390625,
- "fn": 280241,
- "fn_rate": 0.9219636729712035,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999199329,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07803632702879645,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23720,
- "tp_rate": 0.07803632702879645,
- "truth_threshold": 33.54
- },
- {
- "f1": 0.1444181943605052,
- "fn": 280304,
- "fn_rate": 0.9221709364030254,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999210353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07782906359697461,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23657,
- "tp_rate": 0.07782906359697461,
- "truth_threshold": 33.56
- },
- {
- "f1": 0.14413495823767888,
- "fn": 280354,
- "fn_rate": 0.9223354311901856,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999221224,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07766456880981441,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23607,
- "tp_rate": 0.07766456880981441,
- "truth_threshold": 33.58
- },
- {
- "f1": 0.1437496183206107,
- "fn": 280422,
- "fn_rate": 0.9225591441007235,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999231945,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07744085589927655,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23539,
- "tp_rate": 0.07744085589927655,
- "truth_threshold": 33.6
- },
- {
- "f1": 0.1434722858451672,
- "fn": 280471,
- "fn_rate": 0.9227203489921404,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999242519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07727965100785956,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23490,
- "tp_rate": 0.07727965100785956,
- "truth_threshold": 33.62
- },
- {
- "f1": 0.1430919043080908,
- "fn": 280538,
- "fn_rate": 0.9229407720069351,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999252948,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0770592279930649,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23423,
- "tp_rate": 0.0770592279930649,
- "truth_threshold": 33.64
- },
- {
- "f1": 0.1427515244833865,
- "fn": 280598,
- "fn_rate": 0.9231381657515273,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999263233,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07686183424847266,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23363,
- "tp_rate": 0.07686183424847266,
- "truth_threshold": 33.660000000000004
- },
- {
- "f1": 0.1423263090989097,
- "fn": 280673,
- "fn_rate": 0.9233849079322676,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999273376,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07661509206773237,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23288,
- "tp_rate": 0.07661509206773237,
- "truth_threshold": 33.68
- },
- {
- "f1": 0.1419061416860753,
- "fn": 280747,
- "fn_rate": 0.9236283602172647,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999928338,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07637163978273528,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23214,
- "tp_rate": 0.07637163978273528,
- "truth_threshold": 33.7
- },
- {
- "f1": 0.14149714767870572,
- "fn": 280819,
- "fn_rate": 0.9238652327107754,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999293245,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07613476728922461,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23142,
- "tp_rate": 0.07613476728922461,
- "truth_threshold": 33.72
- },
- {
- "f1": 0.1411675493205807,
- "fn": 280877,
- "fn_rate": 0.9240560466638812,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999302975,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07594395333611878,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 23084,
- "tp_rate": 0.07594395333611878,
- "truth_threshold": 33.74
- },
- {
- "f1": 0.14058150987025222,
- "fn": 280980,
- "fn_rate": 0.9243949059254313,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999312572,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07560509407456878,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22981,
- "tp_rate": 0.07560509407456878,
- "truth_threshold": 33.76
- },
- {
- "f1": 0.14031985707992756,
- "fn": 281026,
- "fn_rate": 0.9245462411296186,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999322036,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0754537588703814,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22935,
- "tp_rate": 0.0754537588703814,
- "truth_threshold": 33.78
- },
- {
- "f1": 0.1398873997919344,
- "fn": 281102,
- "fn_rate": 0.9247962732061021,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999331369,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0752037267938979,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22859,
- "tp_rate": 0.0752037267938979,
- "truth_threshold": 33.8
- },
- {
- "f1": 0.13959751260833375,
- "fn": 281153,
- "fn_rate": 0.9249640578890055,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999340575,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0750359421109945,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22808,
- "tp_rate": 0.0750359421109945,
- "truth_threshold": 33.82
- },
- {
- "f1": 0.13916471783820847,
- "fn": 281229,
- "fn_rate": 0.925214089965489,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999349654,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.074785910034511,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22732,
- "tp_rate": 0.074785910034511,
- "truth_threshold": 33.84
- },
- {
- "f1": 0.1389307275020511,
- "fn": 281270,
- "fn_rate": 0.9253489756909603,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999358606,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07465102430903965,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22691,
- "tp_rate": 0.07465102430903965,
- "truth_threshold": 33.86
- },
- {
- "f1": 0.13854934718173578,
- "fn": 281337,
- "fn_rate": 0.925569398705755,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999367437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07443060129424499,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22624,
- "tp_rate": 0.07443060129424499,
- "truth_threshold": 33.88
- },
- {
- "f1": 0.1382581905712728,
- "fn": 281388,
- "fn_rate": 0.9257371833886584,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999376146,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07426281661134158,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22573,
- "tp_rate": 0.07426281661134158,
- "truth_threshold": 33.9
- },
- {
- "f1": 0.137865124485395,
- "fn": 281457,
- "fn_rate": 0.9259641861949395,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999384734,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07403581380506052,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22504,
- "tp_rate": 0.07403581380506052,
- "truth_threshold": 33.92
- },
- {
- "f1": 0.13744822177014143,
- "fn": 281530,
- "fn_rate": 0.9262043485841933,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999393205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07379565141580663,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22431,
- "tp_rate": 0.07379565141580663,
- "truth_threshold": 33.94
- },
- {
- "f1": 0.13704339298847756,
- "fn": 281601,
- "fn_rate": 0.9264379311819608,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999401559,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07356206881803916,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22360,
- "tp_rate": 0.07356206881803916,
- "truth_threshold": 33.96
- },
- {
- "f1": 0.13672363484785327,
- "fn": 281657,
- "fn_rate": 0.9266221653435802,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999409798,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07337783465641974,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22304,
- "tp_rate": 0.07337783465641974,
- "truth_threshold": 33.980000000000004
- },
- {
- "f1": 0.13638620994095754,
- "fn": 281716,
- "fn_rate": 0.9268162691924293,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999417923,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07318373080757071,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22245,
- "tp_rate": 0.07318373080757071,
- "truth_threshold": 34
- },
- {
- "f1": 0.13606622719607542,
- "fn": 281772,
- "fn_rate": 0.9270005033540487,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999425937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07299949664595129,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22189,
- "tp_rate": 0.07299949664595129,
- "truth_threshold": 34.02
- },
- {
- "f1": 0.1358094350268626,
- "fn": 281817,
- "fn_rate": 0.9271485486624929,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999433841,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07285145133750712,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22144,
- "tp_rate": 0.07285145133750712,
- "truth_threshold": 34.04
- },
- {
- "f1": 0.13560891833041985,
- "fn": 281852,
- "fn_rate": 0.927263695013505,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999441634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07273630498649498,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22109,
- "tp_rate": 0.07273630498649498,
- "truth_threshold": 34.06
- },
- {
- "f1": 0.13533442528418327,
- "fn": 281900,
- "fn_rate": 0.9274216100091788,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999449322,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0725783899908212,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22061,
- "tp_rate": 0.0725783899908212,
- "truth_threshold": 34.08
- },
- {
- "f1": 0.13505985139919136,
- "fn": 281948,
- "fn_rate": 0.9275795250048526,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999456903,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07242047499514741,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 22013,
- "tp_rate": 0.07242047499514741,
- "truth_threshold": 34.1
- },
- {
- "f1": 0.1347394129811793,
- "fn": 282004,
- "fn_rate": 0.927763759166472,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999464381,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07223624083352799,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21957,
- "tp_rate": 0.07223624083352799,
- "truth_threshold": 34.12
- },
- {
- "f1": 0.13434484790454446,
- "fn": 282073,
- "fn_rate": 0.9279907619727531,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999471755,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07200923802724692,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21888,
- "tp_rate": 0.07200923802724692,
- "truth_threshold": 34.14
- },
- {
- "f1": 0.13387523559855846,
- "fn": 282155,
- "fn_rate": 0.9282605334236959,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999479027,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0717394665763042,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21806,
- "tp_rate": 0.0717394665763042,
- "truth_threshold": 34.160000000000004
- },
- {
- "f1": 0.1334221709120385,
- "fn": 282234,
- "fn_rate": 0.9285204351874089,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999486199,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07147956481259109,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21727,
- "tp_rate": 0.07147956481259109,
- "truth_threshold": 34.18
- },
- {
- "f1": 0.1330729118682169,
- "fn": 282295,
- "fn_rate": 0.9287211188277443,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999493273,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07127888117225566,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21666,
- "tp_rate": 0.07127888117225566,
- "truth_threshold": 34.2
- },
- {
- "f1": 0.1327456460976134,
- "fn": 282352,
- "fn_rate": 0.928908642885107,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999500249,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07109135711489303,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21609,
- "tp_rate": 0.07109135711489303,
- "truth_threshold": 34.22
- },
- {
- "f1": 0.13256824088124888,
- "fn": 282383,
- "fn_rate": 0.9290106296531463,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999950713,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07098937034685371,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21578,
- "tp_rate": 0.07098937034685371,
- "truth_threshold": 34.24
- },
- {
- "f1": 0.13232727898345908,
- "fn": 282425,
- "fn_rate": 0.9291488052743608,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999513914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07085119472563914,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21536,
- "tp_rate": 0.07085119472563914,
- "truth_threshold": 34.26
- },
- {
- "f1": 0.13205181780192227,
- "fn": 282473,
- "fn_rate": 0.9293067202700347,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999520607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07069327972996536,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21488,
- "tp_rate": 0.07069327972996536,
- "truth_threshold": 34.28
- },
- {
- "f1": 0.13166677935472768,
- "fn": 282540,
- "fn_rate": 0.9295271432848293,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999527207,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0704728567151707,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21421,
- "tp_rate": 0.0704728567151707,
- "truth_threshold": 34.300000000000004
- },
- {
- "f1": 0.13127090301003344,
- "fn": 282609,
- "fn_rate": 0.9297541460911104,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999533716,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.07024585390888963,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21352,
- "tp_rate": 0.07024585390888963,
- "truth_threshold": 34.32
- },
- {
- "f1": 0.1308227307108113,
- "fn": 282687,
- "fn_rate": 0.9300107579590803,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999540136,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06998924204091972,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21274,
- "tp_rate": 0.06998924204091972,
- "truth_threshold": 34.34
- },
- {
- "f1": 0.1304778364813915,
- "fn": 282747,
- "fn_rate": 0.9302081517036725,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999546466,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0697918482963275,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21214,
- "tp_rate": 0.0697918482963275,
- "truth_threshold": 34.36
- },
- {
- "f1": 0.13024168496681368,
- "fn": 282788,
- "fn_rate": 0.9303430374291438,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999955271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06965696257085613,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21173,
- "tp_rate": 0.06965696257085613,
- "truth_threshold": 34.38
- },
- {
- "f1": 0.12996560910036115,
- "fn": 282836,
- "fn_rate": 0.9305009524248177,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999558868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06949904757518234,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21125,
- "tp_rate": 0.06949904757518234,
- "truth_threshold": 34.4
- },
- {
- "f1": 0.12960889042039972,
- "fn": 282898,
- "fn_rate": 0.9307049259608963,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999564941,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0692950740391037,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21063,
- "tp_rate": 0.0692950740391037,
- "truth_threshold": 34.42
- },
- {
- "f1": 0.129281217111944,
- "fn": 282955,
- "fn_rate": 0.9308924500182589,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999570931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06910754998174108,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 21006,
- "tp_rate": 0.06910754998174108,
- "truth_threshold": 34.44
- },
- {
- "f1": 0.12888352652217003,
- "fn": 283024,
- "fn_rate": 0.93111945282454,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999576838,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06888054717546001,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20937,
- "tp_rate": 0.06888054717546001,
- "truth_threshold": 34.46
- },
- {
- "f1": 0.12857864082451884,
- "fn": 283077,
- "fn_rate": 0.9312938172989298,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999582664,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0687061827010702,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20884,
- "tp_rate": 0.0687061827010702,
- "truth_threshold": 34.480000000000004
- },
- {
- "f1": 0.12829054723917313,
- "fn": 283127,
- "fn_rate": 0.93145831208609,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999588409,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06854168791391001,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20834,
- "tp_rate": 0.06854168791391001,
- "truth_threshold": 34.5
- },
- {
- "f1": 0.1278063502817899,
- "fn": 283211,
- "fn_rate": 0.9317346633285191,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999594076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06826533667148088,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20750,
- "tp_rate": 0.06826533667148088,
- "truth_threshold": 34.52
- },
- {
- "f1": 0.12750032341725753,
- "fn": 283264,
- "fn_rate": 0.931909027802909,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999599665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06809097219709108,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20697,
- "tp_rate": 0.06809097219709108,
- "truth_threshold": 34.54
- },
- {
- "f1": 0.12718882084016217,
- "fn": 283318,
- "fn_rate": 0.9320866821730419,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999605176,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06791331782695806,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20643,
- "tp_rate": 0.06791331782695806,
- "truth_threshold": 34.56
- },
- {
- "f1": 0.1269003001041429,
- "fn": 283368,
- "fn_rate": 0.9322511769602021,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999610611,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06774882303979787,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20593,
- "tp_rate": 0.06774882303979787,
- "truth_threshold": 34.58
- },
- {
- "f1": 0.12659476117103236,
- "fn": 283421,
- "fn_rate": 0.9324255414345919,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999615973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06757445856540806,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20540,
- "tp_rate": 0.06757445856540806,
- "truth_threshold": 34.6
- },
- {
- "f1": 0.12635764038710473,
- "fn": 283462,
- "fn_rate": 0.9325604271600633,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999962126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0674395728399367,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20499,
- "tp_rate": 0.0674395728399367,
- "truth_threshold": 34.62
- },
- {
- "f1": 0.12615589475501196,
- "fn": 283497,
- "fn_rate": 0.9326755735110754,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999626474,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06732442648892456,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20464,
- "tp_rate": 0.06732442648892456,
- "truth_threshold": 34.64
- },
- {
- "f1": 0.1257746070699659,
- "fn": 283563,
- "fn_rate": 0.9328927066301269,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999631617,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0671072933698731,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20398,
- "tp_rate": 0.0671072933698731,
- "truth_threshold": 34.660000000000004
- },
- {
- "f1": 0.12522512520662177,
- "fn": 283658,
- "fn_rate": 0.9332052467257312,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999636688,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06679475327426874,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20303,
- "tp_rate": 0.06679475327426874,
- "truth_threshold": 34.68
- },
- {
- "f1": 0.124965301124552,
- "fn": 283703,
- "fn_rate": 0.9333532920341754,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999964169,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06664670796582456,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20258,
- "tp_rate": 0.06664670796582456,
- "truth_threshold": 34.7
- },
- {
- "f1": 0.12461207189086804,
- "fn": 283764,
- "fn_rate": 0.9335539756745109,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999646623,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06644602432548913,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20197,
- "tp_rate": 0.06644602432548913,
- "truth_threshold": 34.72
- },
- {
- "f1": 0.12426488284407802,
- "fn": 283824,
- "fn_rate": 0.9337513694191031,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999651488,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06624863058089689,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20137,
- "tp_rate": 0.06624863058089689,
- "truth_threshold": 34.74
- },
- {
- "f1": 0.12379018320082959,
- "fn": 283906,
- "fn_rate": 0.9340211408700458,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999656286,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06597885912995417,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 20055,
- "tp_rate": 0.06597885912995417,
- "truth_threshold": 34.76
- },
- {
- "f1": 0.12339093552629142,
- "fn": 283975,
- "fn_rate": 0.9342481436763269,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999661018,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0657518563236731,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19986,
- "tp_rate": 0.0657518563236731,
- "truth_threshold": 34.78
- },
- {
- "f1": 0.12317619091723009,
- "fn": 284012,
- "fn_rate": 0.9343698698188254,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999665685,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06563013018117456,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19949,
- "tp_rate": 0.06563013018117456,
- "truth_threshold": 34.800000000000004
- },
- {
- "f1": 0.12288101575381803,
- "fn": 284063,
- "fn_rate": 0.9345376545017289,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999670287,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06546234549827117,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19898,
- "tp_rate": 0.06546234549827117,
- "truth_threshold": 34.82
- },
- {
- "f1": 0.12249839403073579,
- "fn": 284129,
- "fn_rate": 0.9347547876207803,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999674827,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06524521237921971,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19832,
- "tp_rate": 0.06524521237921971,
- "truth_threshold": 34.84
- },
- {
- "f1": 0.12199959222257234,
- "fn": 284215,
- "fn_rate": 0.9350377186546959,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999679303,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06496228134530417,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19746,
- "tp_rate": 0.06496228134530417,
- "truth_threshold": 34.86
- },
- {
- "f1": 0.12165143397415695,
- "fn": 284275,
- "fn_rate": 0.935235112399288,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999683719,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06476488760071193,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19686,
- "tp_rate": 0.06476488760071193,
- "truth_threshold": 34.88
- },
- {
- "f1": 0.1212737420499286,
- "fn": 284340,
- "fn_rate": 0.9354489556225963,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999688073,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06455104437740368,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19621,
- "tp_rate": 0.06455104437740368,
- "truth_threshold": 34.9
- },
- {
- "f1": 0.12098957753792515,
- "fn": 284389,
- "fn_rate": 0.9356101605140134,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999692367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06438983948598669,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19572,
- "tp_rate": 0.06438983948598669,
- "truth_threshold": 34.92
- },
- {
- "f1": 0.12058838077807732,
- "fn": 284458,
- "fn_rate": 0.9358371633202944,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999696603,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06416283667970563,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19503,
- "tp_rate": 0.06416283667970563,
- "truth_threshold": 34.94
- },
- {
- "f1": 0.12040243389646046,
- "fn": 284490,
- "fn_rate": 0.9359424399840769,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999700779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0640575600159231,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19471,
- "tp_rate": 0.0640575600159231,
- "truth_threshold": 34.96
- },
- {
- "f1": 0.12014125534191337,
- "fn": 284535,
- "fn_rate": 0.936090485292521,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999704899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06390951470747892,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19426,
- "tp_rate": 0.06390951470747892,
- "truth_threshold": 34.980000000000004
- },
- {
- "f1": 0.11978077717707315,
- "fn": 284597,
- "fn_rate": 0.9362944588285997,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999708962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06370554117140027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19364,
- "tp_rate": 0.06370554117140027,
- "truth_threshold": 35
- },
- {
- "f1": 0.11939689040951809,
- "fn": 284663,
- "fn_rate": 0.9365115919476512,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999712968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06348840805234882,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19298,
- "tp_rate": 0.06348840805234882,
- "truth_threshold": 35.02
- },
- {
- "f1": 0.11915796768744315,
- "fn": 284704,
- "fn_rate": 0.9366464776731226,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999971692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06335352232687746,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19257,
- "tp_rate": 0.06335352232687746,
- "truth_threshold": 35.04
- },
- {
- "f1": 0.11847106159083876,
- "fn": 284822,
- "fn_rate": 0.9370346853708206,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999720818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0629653146291794,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19139,
- "tp_rate": 0.0629653146291794,
- "truth_threshold": 35.06
- },
- {
- "f1": 0.11810994372179125,
- "fn": 284884,
- "fn_rate": 0.9372386589068993,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999724661,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06276134109310076,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19077,
- "tp_rate": 0.06276134109310076,
- "truth_threshold": 35.08
- },
- {
- "f1": 0.11783027338307688,
- "fn": 284932,
- "fn_rate": 0.937396573902573,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999728452,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06260342609742697,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 19029,
- "tp_rate": 0.06260342609742697,
- "truth_threshold": 35.1
- },
- {
- "f1": 0.11752720336411324,
- "fn": 284984,
- "fn_rate": 0.9375676484812197,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999973219,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06243235151878037,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18977,
- "tp_rate": 0.06243235151878037,
- "truth_threshold": 35.12
- },
- {
- "f1": 0.11721237348397567,
- "fn": 285038,
- "fn_rate": 0.9377453028513526,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999735877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.062254697148647356,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18923,
- "tp_rate": 0.062254697148647356,
- "truth_threshold": 35.14
- },
- {
- "f1": 0.1169502970530111,
- "fn": 285083,
- "fn_rate": 0.9378933481597969,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999739514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.062106651840203184,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18878,
- "tp_rate": 0.062106651840203184,
- "truth_threshold": 35.160000000000004
- },
- {
- "f1": 0.11669909168639017,
- "fn": 285126,
- "fn_rate": 0.9380348136767546,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.99999999997431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.061965186323245415,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18835,
- "tp_rate": 0.061965186323245415,
- "truth_threshold": 35.18
- },
- {
- "f1": 0.11644854253420583,
- "fn": 285169,
- "fn_rate": 0.9381762791937124,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999746636,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.061823720806287646,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18792,
- "tp_rate": 0.061823720806287646,
- "truth_threshold": 35.2
- },
- {
- "f1": 0.11618005243162507,
- "fn": 285215,
- "fn_rate": 0.9383276143978997,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999750124,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06167238560210027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18746,
- "tp_rate": 0.06167238560210027,
- "truth_threshold": 35.22
- },
- {
- "f1": 0.11596987634425264,
- "fn": 285251,
- "fn_rate": 0.938446050644655,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999753565,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06155394935534493,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18710,
- "tp_rate": 0.06155394935534493,
- "truth_threshold": 35.24
- },
- {
- "f1": 0.11573629234727087,
- "fn": 285291,
- "fn_rate": 0.9385776464743832,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999756958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06142235352561677,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18670,
- "tp_rate": 0.06142235352561677,
- "truth_threshold": 35.26
- },
- {
- "f1": 0.11538580773165515,
- "fn": 285351,
- "fn_rate": 0.9387750402189755,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999760304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06122495978102454,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18610,
- "tp_rate": 0.06122495978102454,
- "truth_threshold": 35.28
- },
- {
- "f1": 0.11502899134910545,
- "fn": 285412,
- "fn_rate": 0.9389757238593109,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999763604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0610242761406891,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18549,
- "tp_rate": 0.0610242761406891,
- "truth_threshold": 35.300000000000004
- },
- {
- "f1": 0.11443884767127367,
- "fn": 285513,
- "fn_rate": 0.9393080033293745,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999766858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.060691996670625505,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18448,
- "tp_rate": 0.060691996670625505,
- "truth_threshold": 35.32
- },
- {
- "f1": 0.11413468339351525,
- "fn": 285565,
- "fn_rate": 0.9394790779080211,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999770067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06052092209197891,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18396,
- "tp_rate": 0.06052092209197891,
- "truth_threshold": 35.34
- },
- {
- "f1": 0.11397635963143363,
- "fn": 285592,
- "fn_rate": 0.9395679050930876,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999773234,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0604320949069124,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18369,
- "tp_rate": 0.0604320949069124,
- "truth_threshold": 35.36
- },
- {
- "f1": 0.11355497768868422,
- "fn": 285664,
- "fn_rate": 0.9398047775865983,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999776356,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.06019522241340172,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18297,
- "tp_rate": 0.06019522241340172,
- "truth_threshold": 35.38
- },
- {
- "f1": 0.11319817750685918,
- "fn": 285725,
- "fn_rate": 0.9400054612269337,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999779434,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.059994538773066285,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18236,
- "tp_rate": 0.059994538773066285,
- "truth_threshold": 35.4
- },
- {
- "f1": 0.11282331466603752,
- "fn": 285789,
- "fn_rate": 0.9402160145544988,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999782471,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05978398544550123,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18172,
- "tp_rate": 0.05978398544550123,
- "truth_threshold": 35.42
- },
- {
- "f1": 0.11250069858854067,
- "fn": 285844,
- "fn_rate": 0.940396958820375,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999785466,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05960304117962502,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18117,
- "tp_rate": 0.05960304117962502,
- "truth_threshold": 35.44
- },
- {
- "f1": 0.11227797789094522,
- "fn": 285882,
- "fn_rate": 0.9405219748586168,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999788419,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05947802514138327,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18079,
- "tp_rate": 0.05947802514138327,
- "truth_threshold": 35.46
- },
- {
- "f1": 0.11200278267783051,
- "fn": 285929,
- "fn_rate": 0.9406765999585474,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999791332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05932340004145269,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 18032,
- "tp_rate": 0.05932340004145269,
- "truth_threshold": 35.480000000000004
- },
- {
- "f1": 0.11177373165110543,
- "fn": 285968,
- "fn_rate": 0.9408049058925323,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999794205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05919509410746773,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17993,
- "tp_rate": 0.05919509410746773,
- "truth_threshold": 35.5
- },
- {
- "f1": 0.11128095193711747,
- "fn": 286052,
- "fn_rate": 0.9410812571349614,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999797038,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.058918742865038606,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17909,
- "tp_rate": 0.058918742865038606,
- "truth_threshold": 35.52
- },
- {
- "f1": 0.11105794327475205,
- "fn": 286090,
- "fn_rate": 0.9412062731732032,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999799832,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05879372682679686,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17871,
- "tp_rate": 0.05879372682679686,
- "truth_threshold": 35.54
- },
- {
- "f1": 0.11080587218914316,
- "fn": 286133,
- "fn_rate": 0.9413477386901609,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999802588,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05865226130983909,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17828,
- "tp_rate": 0.05865226130983909,
- "truth_threshold": 35.56
- },
- {
- "f1": 0.11068223067551776,
- "fn": 286154,
- "fn_rate": 0.9414168265007682,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999805306,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05858317349923181,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17807,
- "tp_rate": 0.05858317349923181,
- "truth_threshold": 35.58
- },
- {
- "f1": 0.11032433339757418,
- "fn": 286215,
- "fn_rate": 0.9416175101411036,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999807986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05838248985889637,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17746,
- "tp_rate": 0.05838248985889637,
- "truth_threshold": 35.6
- },
- {
- "f1": 0.11001884012012908,
- "fn": 286267,
- "fn_rate": 0.9417885847197502,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999981063,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05821141528024977,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17694,
- "tp_rate": 0.05821141528024977,
- "truth_threshold": 35.62
- },
- {
- "f1": 0.10963649367206692,
- "fn": 286332,
- "fn_rate": 0.9420024279430584,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999813237,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05799757205694152,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17629,
- "tp_rate": 0.05799757205694152,
- "truth_threshold": 35.64
- },
- {
- "f1": 0.10929549780426209,
- "fn": 286390,
- "fn_rate": 0.9421932418961643,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999815808,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05780675810383569,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17571,
- "tp_rate": 0.05780675810383569,
- "truth_threshold": 35.660000000000004
- },
- {
- "f1": 0.10903672920917733,
- "fn": 286434,
- "fn_rate": 0.9423379973088652,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999818344,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.057662002691134716,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17527,
- "tp_rate": 0.057662002691134716,
- "truth_threshold": 35.68
- },
- {
- "f1": 0.108671980486955,
- "fn": 286496,
- "fn_rate": 0.942541970844944,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999820844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05745802915505607,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17465,
- "tp_rate": 0.05745802915505607,
- "truth_threshold": 35.7
- },
- {
- "f1": 0.10850720913011282,
- "fn": 286524,
- "fn_rate": 0.9426340879257536,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999823311,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.057365912074246364,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17437,
- "tp_rate": 0.057365912074246364,
- "truth_threshold": 35.72
- },
- {
- "f1": 0.10816025493405697,
- "fn": 286583,
- "fn_rate": 0.9428281917746026,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999825744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05717180822539734,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17378,
- "tp_rate": 0.05717180822539734,
- "truth_threshold": 35.74
- },
- {
- "f1": 0.10764757884775815,
- "fn": 286670,
- "fn_rate": 0.9431144127042614,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999828143,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.056885587295738595,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17291,
- "tp_rate": 0.056885587295738595,
- "truth_threshold": 35.76
- },
- {
- "f1": 0.10734122042341221,
- "fn": 286722,
- "fn_rate": 0.943285487282908,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999830509,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.056714512717092,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17239,
- "tp_rate": 0.056714512717092,
- "truth_threshold": 35.78
- },
- {
- "f1": 0.10706456755679554,
- "fn": 286769,
- "fn_rate": 0.9434401123828385,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999832843,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.056559887617161415,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17192,
- "tp_rate": 0.056559887617161415,
- "truth_threshold": 35.800000000000004
- },
- {
- "f1": 0.10674622700857682,
- "fn": 286823,
- "fn_rate": 0.9436177667529716,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999835144,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0563822332470284,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17138,
- "tp_rate": 0.0563822332470284,
- "truth_threshold": 35.82
- },
- {
- "f1": 0.10652771115859243,
- "fn": 286860,
- "fn_rate": 0.9437394928954701,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999837413,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05626050710452986,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17101,
- "tp_rate": 0.05626050710452986,
- "truth_threshold": 35.84
- },
- {
- "f1": 0.10626261619358536,
- "fn": 286905,
- "fn_rate": 0.9438875382039144,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999839652,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05611246179608568,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17056,
- "tp_rate": 0.05611246179608568,
- "truth_threshold": 35.86
- },
- {
- "f1": 0.10598498302021996,
- "fn": 286952,
- "fn_rate": 0.9440421633038449,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999841859,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.055957836696155096,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 17009,
- "tp_rate": 0.055957836696155096,
- "truth_threshold": 35.88
- },
- {
- "f1": 0.10566070660675446,
- "fn": 287007,
- "fn_rate": 0.9442231075697212,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999844037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.055776892430278883,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16954,
- "tp_rate": 0.055776892430278883,
- "truth_threshold": 35.9
- },
- {
- "f1": 0.10525298741452285,
- "fn": 287076,
- "fn_rate": 0.9444501103760022,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999846184,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05554988962399782,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16885,
- "tp_rate": 0.05554988962399782,
- "truth_threshold": 35.92
- },
- {
- "f1": 0.1046622561154309,
- "fn": 287176,
- "fn_rate": 0.9447790999503226,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999848301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.055220900049677425,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16785,
- "tp_rate": 0.055220900049677425,
- "truth_threshold": 35.94
- },
- {
- "f1": 0.10446132355508993,
- "fn": 287210,
- "fn_rate": 0.9448909564055915,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999985039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05510904359440849,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16751,
- "tp_rate": 0.05510904359440849,
- "truth_threshold": 35.96
- },
- {
- "f1": 0.10389999251440976,
- "fn": 287305,
- "fn_rate": 0.9452034965011958,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999852449,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.054796503498804126,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16656,
- "tp_rate": 0.054796503498804126,
- "truth_threshold": 35.980000000000004
- },
- {
- "f1": 0.10360424998284284,
- "fn": 287355,
- "fn_rate": 0.945367991288356,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999854481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05463200871164393,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16606,
- "tp_rate": 0.05463200871164393,
- "truth_threshold": 36
- },
- {
- "f1": 0.10327850439297125,
- "fn": 287410,
- "fn_rate": 0.9455489355542323,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999856485,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.054451064445767715,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16551,
- "tp_rate": 0.054451064445767715,
- "truth_threshold": 36.02
- },
- {
- "f1": 0.10281680470861394,
- "fn": 287488,
- "fn_rate": 0.9458055474222022,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999985846,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05419445257779781,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16473,
- "tp_rate": 0.05419445257779781,
- "truth_threshold": 36.04
- },
- {
- "f1": 0.10255625955866288,
- "fn": 287532,
- "fn_rate": 0.9459503028349031,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999860408,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05404969716509684,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16429,
- "tp_rate": 0.05404969716509684,
- "truth_threshold": 36.06
- },
- {
- "f1": 0.10230749060396818,
- "fn": 287574,
- "fn_rate": 0.9460884784561178,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999986233,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.053911521543882276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16387,
- "tp_rate": 0.053911521543882276,
- "truth_threshold": 36.08
- },
- {
- "f1": 0.10208860166713496,
- "fn": 287611,
- "fn_rate": 0.9462102045986163,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999864225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05378979540138373,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16350,
- "tp_rate": 0.05378979540138373,
- "truth_threshold": 36.1
- },
- {
- "f1": 0.10182785559503663,
- "fn": 287655,
- "fn_rate": 0.9463549600113172,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999866095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05364503998868276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16306,
- "tp_rate": 0.05364503998868276,
- "truth_threshold": 36.12
- },
- {
- "f1": 0.10137106093257128,
- "fn": 287732,
- "fn_rate": 0.946608281983544,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999867939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.053391718016456056,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16229,
- "tp_rate": 0.053391718016456056,
- "truth_threshold": 36.14
- },
- {
- "f1": 0.1009977321429687,
- "fn": 287795,
- "fn_rate": 0.9468155454153658,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999869756,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.053184454584634215,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16166,
- "tp_rate": 0.053184454584634215,
- "truth_threshold": 36.160000000000004
- },
- {
- "f1": 0.10063549392937707,
- "fn": 287856,
- "fn_rate": 0.9470162290557013,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999871549,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05298377094429878,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16105,
- "tp_rate": 0.05298377094429878,
- "truth_threshold": 36.18
- },
- {
- "f1": 0.10025,
- "fn": 287921,
- "fn_rate": 0.9472300722790095,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999873318,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05276992772099052,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 16040,
- "tp_rate": 0.05276992772099052,
- "truth_threshold": 36.2
- },
- {
- "f1": 0.09986997399479897,
- "fn": 287985,
- "fn_rate": 0.9474406256065745,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999875062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05255937439342547,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15976,
- "tp_rate": 0.05255937439342547,
- "truth_threshold": 36.22
- },
- {
- "f1": 0.09957860251087881,
- "fn": 288034,
- "fn_rate": 0.9476018304979915,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999876782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.052398169502008485,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15927,
- "tp_rate": 0.052398169502008485,
- "truth_threshold": 36.24
- },
- {
- "f1": 0.09912135330352397,
- "fn": 288111,
- "fn_rate": 0.9478551524702182,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999878478,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05214484752978178,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15850,
- "tp_rate": 0.05214484752978178,
- "truth_threshold": 36.26
- },
- {
- "f1": 0.09893676902870724,
- "fn": 288142,
- "fn_rate": 0.9479571392382575,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999880151,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05204286076174246,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15819,
- "tp_rate": 0.05204286076174246,
- "truth_threshold": 36.28
- },
- {
- "f1": 0.09863383876294851,
- "fn": 288193,
- "fn_rate": 0.948124923921161,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999881801,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05187507607883906,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15768,
- "tp_rate": 0.05187507607883906,
- "truth_threshold": 36.300000000000004
- },
- {
- "f1": 0.09840157652726078,
- "fn": 288232,
- "fn_rate": 0.9482532298551459,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999883429,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05174677014485411,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15729,
- "tp_rate": 0.05174677014485411,
- "truth_threshold": 36.32
- },
- {
- "f1": 0.09815171688857743,
- "fn": 288274,
- "fn_rate": 0.9483914054763605,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999885034,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05160859452363955,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15687,
- "tp_rate": 0.05160859452363955,
- "truth_threshold": 36.34
- },
- {
- "f1": 0.09787798574477005,
- "fn": 288320,
- "fn_rate": 0.9485427406805478,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999886616,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.051457259319452164,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15641,
- "tp_rate": 0.051457259319452164,
- "truth_threshold": 36.36
- },
- {
- "f1": 0.09762798848416573,
- "fn": 288362,
- "fn_rate": 0.9486809163017624,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999888177,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0513190836982376,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15599,
- "tp_rate": 0.0513190836982376,
- "truth_threshold": 36.38
- },
- {
- "f1": 0.09725317374865414,
- "fn": 288425,
- "fn_rate": 0.9488881797335842,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999889717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05111182026641576,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15536,
- "tp_rate": 0.05111182026641576,
- "truth_threshold": 36.4
- },
- {
- "f1": 0.0969315243455776,
- "fn": 288479,
- "fn_rate": 0.9490658341037173,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999891236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.050934165896282746,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15482,
- "tp_rate": 0.050934165896282746,
- "truth_threshold": 36.42
- },
- {
- "f1": 0.0966392605997608,
- "fn": 288528,
- "fn_rate": 0.9492270389951343,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999892732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05077296100486576,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15433,
- "tp_rate": 0.05077296100486576,
- "truth_threshold": 36.44
- },
- {
- "f1": 0.09655582691464713,
- "fn": 288542,
- "fn_rate": 0.9492730975355391,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999894209,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.050726902464460905,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15419,
- "tp_rate": 0.050726902464460905,
- "truth_threshold": 36.46
- },
- {
- "f1": 0.09616239814101481,
- "fn": 288608,
- "fn_rate": 0.9494902306545906,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999895666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.05050976934540945,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15353,
- "tp_rate": 0.05050976934540945,
- "truth_threshold": 36.480000000000004
- },
- {
- "f1": 0.09578700078308536,
- "fn": 288671,
- "fn_rate": 0.9496974940864124,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999897102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0503025059135876,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15290,
- "tp_rate": 0.0503025059135876,
- "truth_threshold": 36.5
- },
- {
- "f1": 0.09538698681638177,
- "fn": 288738,
- "fn_rate": 0.9499179171012071,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999898519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.050082082898792936,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15223,
- "tp_rate": 0.050082082898792936,
- "truth_threshold": 36.52
- },
- {
- "f1": 0.09501128102281274,
- "fn": 288801,
- "fn_rate": 0.9501251805330289,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999899916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.049874819466971095,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15160,
- "tp_rate": 0.049874819466971095,
- "truth_threshold": 36.54
- },
- {
- "f1": 0.09446760492743629,
- "fn": 288892,
- "fn_rate": 0.9504245610456604,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999901295,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04957543895433954,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15069,
- "tp_rate": 0.04957543895433954,
- "truth_threshold": 36.56
- },
- {
- "f1": 0.09411543405335925,
- "fn": 288951,
- "fn_rate": 0.9506186648945095,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999902653,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.049381335105490504,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 15010,
- "tp_rate": 0.049381335105490504,
- "truth_threshold": 36.58
- },
- {
- "f1": 0.09384622138050833,
- "fn": 288996,
- "fn_rate": 0.9507667102029537,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999903993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04923328979704633,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14965,
- "tp_rate": 0.04923328979704633,
- "truth_threshold": 36.6
- },
- {
- "f1": 0.09350577668502327,
- "fn": 289053,
- "fn_rate": 0.9509542342603163,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999905315,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04904576573968371,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14908,
- "tp_rate": 0.04904576573968371,
- "truth_threshold": 36.62
- },
- {
- "f1": 0.09325462791616744,
- "fn": 289095,
- "fn_rate": 0.9510924098815309,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999906618,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.048907590118469145,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14866,
- "tp_rate": 0.048907590118469145,
- "truth_threshold": 36.64
- },
- {
- "f1": 0.09299713912868902,
- "fn": 289138,
- "fn_rate": 0.9512338753984886,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999907904,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.048766124601511376,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14823,
- "tp_rate": 0.048766124601511376,
- "truth_threshold": 36.660000000000004
- },
- {
- "f1": 0.09289572915555612,
- "fn": 289155,
- "fn_rate": 0.9512898036261231,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999909172,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04871019637387691,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14806,
- "tp_rate": 0.04871019637387691,
- "truth_threshold": 36.68
- },
- {
- "f1": 0.0926444196232477,
- "fn": 289197,
- "fn_rate": 0.9514279792473377,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999910423,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04857202075266235,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14764,
- "tp_rate": 0.04857202075266235,
- "truth_threshold": 36.7
- },
- {
- "f1": 0.09242895873079626,
- "fn": 289233,
- "fn_rate": 0.951546415494093,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999911656,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.048453584505907005,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14728,
- "tp_rate": 0.048453584505907005,
- "truth_threshold": 36.72
- },
- {
- "f1": 0.09226704156755433,
- "fn": 289260,
- "fn_rate": 0.9516352426791594,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999912872,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0483647573208405,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14701,
- "tp_rate": 0.0483647573208405,
- "truth_threshold": 36.74
- },
- {
- "f1": 0.09191974990897792,
- "fn": 289318,
- "fn_rate": 0.9518260566322653,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999914071,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04817394336773468,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14643,
- "tp_rate": 0.04817394336773468,
- "truth_threshold": 36.76
- },
- {
- "f1": 0.09165050006592206,
- "fn": 289363,
- "fn_rate": 0.9519741019407095,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999915254,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0480258980592905,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14598,
- "tp_rate": 0.0480258980592905,
- "truth_threshold": 36.78
- },
- {
- "f1": 0.09148845327941933,
- "fn": 289390,
- "fn_rate": 0.9520629291257761,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999916421,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.047937070874224,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14571,
- "tp_rate": 0.047937070874224,
- "truth_threshold": 36.800000000000004
- },
- {
- "f1": 0.09123677352507142,
- "fn": 289432,
- "fn_rate": 0.9522011047469906,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999917571,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.047798895253009434,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14529,
- "tp_rate": 0.047798895253009434,
- "truth_threshold": 36.82
- },
- {
- "f1": 0.09089538739825143,
- "fn": 289489,
- "fn_rate": 0.9523886288043532,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999918706,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04761137119564681,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14472,
- "tp_rate": 0.04761137119564681,
- "truth_threshold": 36.84
- },
- {
- "f1": 0.09073949611502295,
- "fn": 289515,
- "fn_rate": 0.9524741660936765,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999919826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.047525833906323506,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14446,
- "tp_rate": 0.047525833906323506,
- "truth_threshold": 36.86
- },
- {
- "f1": 0.09051160920695547,
- "fn": 289553,
- "fn_rate": 0.9525991821319182,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999992093,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04740081786808176,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14408,
- "tp_rate": 0.04740081786808176,
- "truth_threshold": 36.88
- },
- {
- "f1": 0.0902716694729964,
- "fn": 289593,
- "fn_rate": 0.9527307779616464,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999922018,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.047269222038353605,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14368,
- "tp_rate": 0.047269222038353605,
- "truth_threshold": 36.9
- },
- {
- "f1": 0.09006767328319101,
- "fn": 289627,
- "fn_rate": 0.9528426344169153,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999923092,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04715736558308467,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14334,
- "tp_rate": 0.04715736558308467,
- "truth_threshold": 36.92
- },
- {
- "f1": 0.08985734933702004,
- "fn": 289662,
- "fn_rate": 0.9529577807679275,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999924151,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04704221923207254,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14299,
- "tp_rate": 0.04704221923207254,
- "truth_threshold": 36.94
- },
- {
- "f1": 0.08948516332597942,
- "fn": 289724,
- "fn_rate": 0.9531617543040061,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999925195,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.046838245695993895,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14237,
- "tp_rate": 0.046838245695993895,
- "truth_threshold": 36.96
- },
- {
- "f1": 0.08938909177766184,
- "fn": 289740,
- "fn_rate": 0.9532143926358974,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999926225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04678560736410263,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14221,
- "tp_rate": 0.04678560736410263,
- "truth_threshold": 36.980000000000004
- },
- {
- "f1": 0.0891551571310924,
- "fn": 289779,
- "fn_rate": 0.9533426985698823,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999992724,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04665730143011768,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14182,
- "tp_rate": 0.04665730143011768,
- "truth_threshold": 37
- },
- {
- "f1": 0.08890858906891501,
- "fn": 289820,
- "fn_rate": 0.9534775842953537,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999928242,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04652241570464632,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14141,
- "tp_rate": 0.04652241570464632,
- "truth_threshold": 37.02
- },
- {
- "f1": 0.08867453515352353,
- "fn": 289859,
- "fn_rate": 0.9536058902293386,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999992923,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04639410977066137,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14102,
- "tp_rate": 0.04639410977066137,
- "truth_threshold": 37.04
- },
- {
- "f1": 0.08847019759266479,
- "fn": 289893,
- "fn_rate": 0.9537177466846075,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999930205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04628225331539244,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14068,
- "tp_rate": 0.04628225331539244,
- "truth_threshold": 37.06
- },
- {
- "f1": 0.08823547910311645,
- "fn": 289932,
- "fn_rate": 0.9538460526185926,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999931165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04615394738140748,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 14029,
- "tp_rate": 0.04615394738140748,
- "truth_threshold": 37.08
- },
- {
- "f1": 0.08795314868749646,
- "fn": 289979,
- "fn_rate": 0.9540006777185231,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999932113,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0459993222814769,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13982,
- "tp_rate": 0.0459993222814769,
- "truth_threshold": 37.1
- },
- {
- "f1": 0.08759799172025015,
- "fn": 290038,
- "fn_rate": 0.9541947815673721,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999933048,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04580521843262787,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13923,
- "tp_rate": 0.04580521843262787,
- "truth_threshold": 37.12
- },
- {
- "f1": 0.08711658758228343,
- "fn": 290118,
- "fn_rate": 0.9544579732268285,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999993397,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04554202677317156,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13843,
- "tp_rate": 0.04554202677317156,
- "truth_threshold": 37.14
- },
- {
- "f1": 0.08692395805797867,
- "fn": 290150,
- "fn_rate": 0.9545632498906109,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999934879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04543675010938903,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13811,
- "tp_rate": 0.04543675010938903,
- "truth_threshold": 37.160000000000004
- },
- {
- "f1": 0.08680983911981671,
- "fn": 290169,
- "fn_rate": 0.9546257579097318,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999935775,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.045374242090268156,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13792,
- "tp_rate": 0.045374242090268156,
- "truth_threshold": 37.18
- },
- {
- "f1": 0.08652078664417194,
- "fn": 290217,
- "fn_rate": 0.9547836729054057,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999993666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.045216327094594375,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13744,
- "tp_rate": 0.045216327094594375,
- "truth_threshold": 37.2
- },
- {
- "f1": 0.0859424195864084,
- "fn": 290313,
- "fn_rate": 0.9550995028967532,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999937531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0449004971032468,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13648,
- "tp_rate": 0.0449004971032468,
- "truth_threshold": 37.22
- },
- {
- "f1": 0.08553253133463501,
- "fn": 290381,
- "fn_rate": 0.9553232158072911,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999938392,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.044676784192708936,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13580,
- "tp_rate": 0.044676784192708936,
- "truth_threshold": 37.24
- },
- {
- "f1": 0.08530339966362417,
- "fn": 290419,
- "fn_rate": 0.9554482318455328,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999993924,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04455176815446719,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13542,
- "tp_rate": 0.04455176815446719,
- "truth_threshold": 37.26
- },
- {
- "f1": 0.08498346196251379,
- "fn": 290472,
- "fn_rate": 0.9556225963199226,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999940076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04437740368007738,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13489,
- "tp_rate": 0.04437740368007738,
- "truth_threshold": 37.28
- },
- {
- "f1": 0.08473006351446719,
- "fn": 290514,
- "fn_rate": 0.9557607719411372,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999940901,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.044239228058862816,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13447,
- "tp_rate": 0.044239228058862816,
- "truth_threshold": 37.300000000000004
- },
- {
- "f1": 0.084476597997265,
- "fn": 290556,
- "fn_rate": 0.9558989475623517,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999941714,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04410105243764825,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13405,
- "tp_rate": 0.04410105243764825,
- "truth_threshold": 37.32
- },
- {
- "f1": 0.08420521870666835,
- "fn": 290601,
- "fn_rate": 0.956046992870796,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999942517,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04395300712920407,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13360,
- "tp_rate": 0.04395300712920407,
- "truth_threshold": 37.34
- },
- {
- "f1": 0.08384868027056502,
- "fn": 290660,
- "fn_rate": 0.956241096719645,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999943309,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.043758903280355047,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13301,
- "tp_rate": 0.043758903280355047,
- "truth_threshold": 37.36
- },
- {
- "f1": 0.08369794096508593,
- "fn": 290685,
- "fn_rate": 0.9563233441132251,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999944089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04367665588677495,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13276,
- "tp_rate": 0.04367665588677495,
- "truth_threshold": 37.38
- },
- {
- "f1": 0.08338955691613123,
- "fn": 290736,
- "fn_rate": 0.9564911287961284,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999944859,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04350887120387155,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13225,
- "tp_rate": 0.04350887120387155,
- "truth_threshold": 37.4
- },
- {
- "f1": 0.08318408838664111,
- "fn": 290770,
- "fn_rate": 0.9566029852513974,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999945618,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.043397014748602615,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13191,
- "tp_rate": 0.043397014748602615,
- "truth_threshold": 37.42
- },
- {
- "f1": 0.08299066599394551,
- "fn": 290802,
- "fn_rate": 0.9567082619151799,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999946366,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04329173808482009,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13159,
- "tp_rate": 0.04329173808482009,
- "truth_threshold": 37.44
- },
- {
- "f1": 0.08282138937595399,
- "fn": 290830,
- "fn_rate": 0.9568003789959896,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999947105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04319962100401038,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13131,
- "tp_rate": 0.04319962100401038,
- "truth_threshold": 37.46
- },
- {
- "f1": 0.08260370407751312,
- "fn": 290866,
- "fn_rate": 0.9569188152427449,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999947833,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.043081184757255045,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13095,
- "tp_rate": 0.043081184757255045,
- "truth_threshold": 37.480000000000004
- },
- {
- "f1": 0.08219869521874645,
- "fn": 290933,
- "fn_rate": 0.9571392382575397,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999948551,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04286076174246038,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 13028,
- "tp_rate": 0.04286076174246038,
- "truth_threshold": 37.5
- },
- {
- "f1": 0.08199297058879207,
- "fn": 290967,
- "fn_rate": 0.9572510947128086,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999994926,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04274890528719145,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12994,
- "tp_rate": 0.04274890528719145,
- "truth_threshold": 37.52
- },
- {
- "f1": 0.08172036224795683,
- "fn": 291012,
- "fn_rate": 0.9573991400212527,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999949958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.042600859978747276,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12949,
- "tp_rate": 0.042600859978747276,
- "truth_threshold": 37.54
- },
- {
- "f1": 0.08142977068881721,
- "fn": 291060,
- "fn_rate": 0.9575570550169266,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999950647,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04244294498307349,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12901,
- "tp_rate": 0.04244294498307349,
- "truth_threshold": 37.56
- },
- {
- "f1": 0.08110906290245196,
- "fn": 291113,
- "fn_rate": 0.9577314194913163,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999951327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04226858050868368,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12848,
- "tp_rate": 0.04226858050868368,
- "truth_threshold": 37.58
- },
- {
- "f1": 0.08085463717696975,
- "fn": 291155,
- "fn_rate": 0.9578695951125309,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999951996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.042130404887469115,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12806,
- "tp_rate": 0.042130404887469115,
- "truth_threshold": 37.6
- },
- {
- "f1": 0.08052741923261512,
- "fn": 291209,
- "fn_rate": 0.9580472494826638,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999952658,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04195275051733611,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12752,
- "tp_rate": 0.04195275051733611,
- "truth_threshold": 37.62
- },
- {
- "f1": 0.08035139129226611,
- "fn": 291238,
- "fn_rate": 0.9581426564592168,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999995331,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.041857343540783194,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12723,
- "tp_rate": 0.041857343540783194,
- "truth_threshold": 37.64
- },
- {
- "f1": 0.0801030817137335,
- "fn": 291279,
- "fn_rate": 0.9582775421846882,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999953952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04172245781531183,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12682,
- "tp_rate": 0.04172245781531183,
- "truth_threshold": 37.660000000000004
- },
- {
- "f1": 0.07994542284660283,
- "fn": 291305,
- "fn_rate": 0.9583630794740114,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999954586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04163692052598853,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12656,
- "tp_rate": 0.04163692052598853,
- "truth_threshold": 37.68
- },
- {
- "f1": 0.07959944402324994,
- "fn": 291362,
- "fn_rate": 0.9585506035313741,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999955211,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04144939646862591,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12599,
- "tp_rate": 0.04144939646862591,
- "truth_threshold": 37.7
- },
- {
- "f1": 0.07930820948336872,
- "fn": 291410,
- "fn_rate": 0.9587085185270479,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999955828,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04129148147295212,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12551,
- "tp_rate": 0.04129148147295212,
- "truth_threshold": 37.72
- },
- {
- "f1": 0.07915673995058234,
- "fn": 291435,
- "fn_rate": 0.958790765920628,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999956436,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04120923407937203,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12526,
- "tp_rate": 0.04120923407937203,
- "truth_threshold": 37.74
- },
- {
- "f1": 0.0789503621402298,
- "fn": 291469,
- "fn_rate": 0.958902622375897,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999957035,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04109737762410309,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12492,
- "tp_rate": 0.04109737762410309,
- "truth_threshold": 37.76
- },
- {
- "f1": 0.07867107450554035,
- "fn": 291515,
- "fn_rate": 0.9590539575800843,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999957627,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.040946042419915715,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12446,
- "tp_rate": 0.040946042419915715,
- "truth_threshold": 37.78
- },
- {
- "f1": 0.07830034203056148,
- "fn": 291576,
- "fn_rate": 0.9592546412204197,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999995821,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04074535877958028,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12385,
- "tp_rate": 0.04074535877958028,
- "truth_threshold": 37.800000000000004
- },
- {
- "f1": 0.07798440691255604,
- "fn": 291628,
- "fn_rate": 0.9594257157990663,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999958786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.040574284200933675,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12333,
- "tp_rate": 0.040574284200933675,
- "truth_threshold": 37.82
- },
- {
- "f1": 0.07754678675107994,
- "fn": 291700,
- "fn_rate": 0.959662588292577,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999959354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04033741170742299,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12261,
- "tp_rate": 0.04033741170742299,
- "truth_threshold": 37.84
- },
- {
- "f1": 0.07722476657979302,
- "fn": 291753,
- "fn_rate": 0.9598369527669668,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999959913,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04016304723303318,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12208,
- "tp_rate": 0.04016304723303318,
- "truth_threshold": 37.86
- },
- {
- "f1": 0.07707247330330483,
- "fn": 291778,
- "fn_rate": 0.9599192001605469,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999960465,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.04008079983945309,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12183,
- "tp_rate": 0.04008079983945309,
- "truth_threshold": 37.88
- },
- {
- "f1": 0.07688998272775012,
- "fn": 291808,
- "fn_rate": 0.960017897032843,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999961009,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03998210296715697,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12153,
- "tp_rate": 0.03998210296715697,
- "truth_threshold": 37.9
- },
- {
- "f1": 0.0765190538265855,
- "fn": 291869,
- "fn_rate": 0.9602185806731784,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999961546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.039781419326821534,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12092,
- "tp_rate": 0.039781419326821534,
- "truth_threshold": 37.92
- },
- {
- "f1": 0.07613532073799804,
- "fn": 291932,
- "fn_rate": 0.9604258441050003,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999962075,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.039574155894999685,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 12029,
- "tp_rate": 0.039574155894999685,
- "truth_threshold": 37.94
- },
- {
- "f1": 0.07573973487294412,
- "fn": 291997,
- "fn_rate": 0.9606396873283085,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999962598,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03936031267169143,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11964,
- "tp_rate": 0.03936031267169143,
- "truth_threshold": 37.96
- },
- {
- "f1": 0.0754409958338082,
- "fn": 292046,
- "fn_rate": 0.9608008922197255,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999963113,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.039199107780274446,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11915,
- "tp_rate": 0.039199107780274446,
- "truth_threshold": 37.980000000000004
- },
- {
- "f1": 0.07524015172143034,
- "fn": 292079,
- "fn_rate": 0.9609094587792513,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999996362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03909054122074872,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11882,
- "tp_rate": 0.03909054122074872,
- "truth_threshold": 38
- },
- {
- "f1": 0.07492320846131924,
- "fn": 292131,
- "fn_rate": 0.9610805333578979,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999964121,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.038919466642102114,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11830,
- "tp_rate": 0.038919466642102114,
- "truth_threshold": 38.02
- },
- {
- "f1": 0.07449638920562524,
- "fn": 292201,
- "fn_rate": 0.9613108260599221,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999964615,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03868917394007784,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11760,
- "tp_rate": 0.03868917394007784,
- "truth_threshold": 38.04
- },
- {
- "f1": 0.07422800593013089,
- "fn": 292245,
- "fn_rate": 0.9614555814726231,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999965102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03854441852737687,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11716,
- "tp_rate": 0.03854441852737687,
- "truth_threshold": 38.06
- },
- {
- "f1": 0.07409965278657779,
- "fn": 292266,
- "fn_rate": 0.9615246692832304,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999965583,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03847533071676958,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11695,
- "tp_rate": 0.03847533071676958,
- "truth_threshold": 38.08
- },
- {
- "f1": 0.07386777686950681,
- "fn": 292304,
- "fn_rate": 0.9616496853214722,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999966056,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.038350314678527835,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11657,
- "tp_rate": 0.038350314678527835,
- "truth_threshold": 38.1
- },
- {
- "f1": 0.07362363662866232,
- "fn": 292344,
- "fn_rate": 0.9617812811512003,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999966523,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03821871884879968,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11617,
- "tp_rate": 0.03821871884879968,
- "truth_threshold": 38.12
- },
- {
- "f1": 0.07341606875744745,
- "fn": 292378,
- "fn_rate": 0.9618931376064692,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999966984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03810686239353075,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11583,
- "tp_rate": 0.03810686239353075,
- "truth_threshold": 38.14
- },
- {
- "f1": 0.07324509692059991,
- "fn": 292406,
- "fn_rate": 0.9619852546872789,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999967439,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03801474531272104,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11555,
- "tp_rate": 0.03801474531272104,
- "truth_threshold": 38.160000000000004
- },
- {
- "f1": 0.07306821855803428,
- "fn": 292435,
- "fn_rate": 0.9620806616638319,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999967888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.037919338336168125,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11526,
- "tp_rate": 0.037919338336168125,
- "truth_threshold": 38.18
- },
- {
- "f1": 0.07293971458096911,
- "fn": 292456,
- "fn_rate": 0.9621497494744392,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999996833,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03785025052556085,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11505,
- "tp_rate": 0.03785025052556085,
- "truth_threshold": 38.2
- },
- {
- "f1": 0.07273833980065435,
- "fn": 292489,
- "fn_rate": 0.9622583160339648,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999968766,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03774168396603512,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11472,
- "tp_rate": 0.03774168396603512,
- "truth_threshold": 38.22
- },
- {
- "f1": 0.07245724287064105,
- "fn": 292535,
- "fn_rate": 0.9624096512381523,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999969196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03759034876184774,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11426,
- "tp_rate": 0.03759034876184774,
- "truth_threshold": 38.24
- },
- {
- "f1": 0.07225530673465376,
- "fn": 292568,
- "fn_rate": 0.962518217797678,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999996962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03748178220232201,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11393,
- "tp_rate": 0.03748178220232201,
- "truth_threshold": 38.26
- },
- {
- "f1": 0.07199852844167047,
- "fn": 292610,
- "fn_rate": 0.9626563934188925,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999970038,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03734360658110744,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11351,
- "tp_rate": 0.03734360658110744,
- "truth_threshold": 38.28
- },
- {
- "f1": 0.0718639982238574,
- "fn": 292632,
- "fn_rate": 0.962728771125243,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999997045,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03727122887475696,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11329,
- "tp_rate": 0.03727122887475696,
- "truth_threshold": 38.300000000000004
- },
- {
- "f1": 0.0713687469861171,
- "fn": 292713,
- "fn_rate": 0.9629952526804425,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999970858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03700474731955744,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11248,
- "tp_rate": 0.03700474731955744,
- "truth_threshold": 38.32
- },
- {
- "f1": 0.07109949105862344,
- "fn": 292757,
- "fn_rate": 0.9631400080931435,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999971259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.036859991906856474,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11204,
- "tp_rate": 0.036859991906856474,
- "truth_threshold": 38.34
- },
- {
- "f1": 0.07083015993907082,
- "fn": 292801,
- "fn_rate": 0.9632847635058445,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999971654,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0367152364941555,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11160,
- "tp_rate": 0.0367152364941555,
- "truth_threshold": 38.36
- },
- {
- "f1": 0.07069546617242889,
- "fn": 292823,
- "fn_rate": 0.963357141212195,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999972045,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.036642858787805016,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11138,
- "tp_rate": 0.036642858787805016,
- "truth_threshold": 38.38
- },
- {
- "f1": 0.07054850606524182,
- "fn": 292847,
- "fn_rate": 0.9634360987100319,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999972429,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03656390128996812,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11114,
- "tp_rate": 0.03656390128996812,
- "truth_threshold": 38.4
- },
- {
- "f1": 0.07035842612460481,
- "fn": 292878,
- "fn_rate": 0.9635380854780712,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999972808,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0364619145219288,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11083,
- "tp_rate": 0.0364619145219288,
- "truth_threshold": 38.42
- },
- {
- "f1": 0.07027267244389424,
- "fn": 292892,
- "fn_rate": 0.963584144018476,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999973184,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03641585598152394,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11069,
- "tp_rate": 0.03641585598152394,
- "truth_threshold": 38.44
- },
- {
- "f1": 0.0701197445111808,
- "fn": 292917,
- "fn_rate": 0.9636663914120561,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999973552,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03633360858794385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11044,
- "tp_rate": 0.03633360858794385,
- "truth_threshold": 38.46
- },
- {
- "f1": 0.0698869084282113,
- "fn": 292955,
- "fn_rate": 0.9637914074502979,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999973916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0362085925497021,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 11006,
- "tp_rate": 0.0362085925497021,
- "truth_threshold": 38.480000000000004
- },
- {
- "f1": 0.06961088777538565,
- "fn": 293000,
- "fn_rate": 0.963939452758742,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999974276,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03606054724125792,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10961,
- "tp_rate": 0.03606054724125792,
- "truth_threshold": 38.5
- },
- {
- "f1": 0.06934749331487115,
- "fn": 293043,
- "fn_rate": 0.9640809182756999,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999997463,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03591908172430016,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10918,
- "tp_rate": 0.03591908172430016,
- "truth_threshold": 38.52
- },
- {
- "f1": 0.0690222535622852,
- "fn": 293096,
- "fn_rate": 0.9642552827500896,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999974979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03574471724991035,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10865,
- "tp_rate": 0.03574471724991035,
- "truth_threshold": 38.54
- },
- {
- "f1": 0.0687646131950798,
- "fn": 293138,
- "fn_rate": 0.9643934583713042,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999975323,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03560654162869579,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10823,
- "tp_rate": 0.03560654162869579,
- "truth_threshold": 38.56
- },
- {
- "f1": 0.06848235675387147,
- "fn": 293184,
- "fn_rate": 0.9645447935754916,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999975663,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03545520642450841,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10777,
- "tp_rate": 0.03545520642450841,
- "truth_threshold": 38.58
- },
- {
- "f1": 0.06807131280388978,
- "fn": 293251,
- "fn_rate": 0.9647652165902862,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999975998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03523478340971375,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10710,
- "tp_rate": 0.03523478340971375,
- "truth_threshold": 38.6
- },
- {
- "f1": 0.06784390752429807,
- "fn": 293288,
- "fn_rate": 0.9648869427327847,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999976329,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.035113057267215204,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10673,
- "tp_rate": 0.035113057267215204,
- "truth_threshold": 38.62
- },
- {
- "f1": 0.06763509218054672,
- "fn": 293322,
- "fn_rate": 0.9649987991880538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999976654,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03500120081194627,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10639,
- "tp_rate": 0.03500120081194627,
- "truth_threshold": 38.64
- },
- {
- "f1": 0.06746945055503986,
- "fn": 293349,
- "fn_rate": 0.9650876263731203,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999976976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03491237362687977,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10612,
- "tp_rate": 0.03491237362687977,
- "truth_threshold": 38.660000000000004
- },
- {
- "f1": 0.06719274595584494,
- "fn": 293394,
- "fn_rate": 0.9652356716815644,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999977293,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03476432831843559,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10567,
- "tp_rate": 0.03476432831843559,
- "truth_threshold": 38.68
- },
- {
- "f1": 0.06696556329295049,
- "fn": 293431,
- "fn_rate": 0.9653573978240629,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999977606,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.034642602175937044,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10530,
- "tp_rate": 0.034642602175937044,
- "truth_threshold": 38.7
- },
- {
- "f1": 0.0667993792612191,
- "fn": 293458,
- "fn_rate": 0.9654462250091295,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999977914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03455377499087054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10503,
- "tp_rate": 0.03455377499087054,
- "truth_threshold": 38.72
- },
- {
- "f1": 0.0665780401236531,
- "fn": 293494,
- "fn_rate": 0.9655646612558848,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999978219,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.034435338744115196,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10467,
- "tp_rate": 0.034435338744115196,
- "truth_threshold": 38.74
- },
- {
- "f1": 0.0664058524173028,
- "fn": 293522,
- "fn_rate": 0.9656567783366945,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999978518,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03434322166330549,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10439,
- "tp_rate": 0.03434322166330549,
- "truth_threshold": 38.76
- },
- {
- "f1": 0.06616617890316834,
- "fn": 293561,
- "fn_rate": 0.9657850842706794,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999978814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03421491572932054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10400,
- "tp_rate": 0.03421491572932054,
- "truth_threshold": 38.78
- },
- {
- "f1": 0.06574141244447838,
- "fn": 293630,
- "fn_rate": 0.9660120870769605,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999979106,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.033987912923039466,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10331,
- "tp_rate": 0.033987912923039466,
- "truth_threshold": 38.800000000000004
- },
- {
- "f1": 0.06547058374277641,
- "fn": 293674,
- "fn_rate": 0.9661568424896615,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999979393,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0338431575103385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10287,
- "tp_rate": 0.0338431575103385,
- "truth_threshold": 38.82
- },
- {
- "f1": 0.06531051294944339,
- "fn": 293700,
- "fn_rate": 0.9662423797789848,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999979676,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.033757620221015194,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10261,
- "tp_rate": 0.033757620221015194,
- "truth_threshold": 38.84
- },
- {
- "f1": 0.06497797356828194,
- "fn": 293754,
- "fn_rate": 0.9664200341491178,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999979956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03357996585088219,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10207,
- "tp_rate": 0.03357996585088219,
- "truth_threshold": 38.86
- },
- {
- "f1": 0.06460835126771684,
- "fn": 293814,
- "fn_rate": 0.9666174278937101,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999980232,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03338257210628995,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10147,
- "tp_rate": 0.03338257210628995,
- "truth_threshold": 38.88
- },
- {
- "f1": 0.06447278770782525,
- "fn": 293836,
- "fn_rate": 0.9666898056000606,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999980504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.033310194399939465,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10125,
- "tp_rate": 0.033310194399939465,
- "truth_threshold": 38.9
- },
- {
- "f1": 0.06426324302981672,
- "fn": 293870,
- "fn_rate": 0.9668016620553295,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999980773,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03319833794467053,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10091,
- "tp_rate": 0.03319833794467053,
- "truth_threshold": 38.92
- },
- {
- "f1": 0.06400433107225885,
- "fn": 293912,
- "fn_rate": 0.966939837676544,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999981037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03306016232345597,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 10049,
- "tp_rate": 0.03306016232345597,
- "truth_threshold": 38.94
- },
- {
- "f1": 0.06360966535646258,
- "fn": 293976,
- "fn_rate": 0.967150391004109,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999981298,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03284960899589092,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9985,
- "tp_rate": 0.03284960899589092,
- "truth_threshold": 38.96
- },
- {
- "f1": 0.06350500751764736,
- "fn": 293993,
- "fn_rate": 0.9672063192317435,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999981556,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03279368076825646,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9968,
- "tp_rate": 0.03279368076825646,
- "truth_threshold": 38.980000000000004
- },
- {
- "f1": 0.06339993373939193,
- "fn": 294010,
- "fn_rate": 0.967262247459378,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999998181,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03273775254062199,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9951,
- "tp_rate": 0.03273775254062199,
- "truth_threshold": 39
- },
- {
- "f1": 0.06317184602738679,
- "fn": 294047,
- "fn_rate": 0.9673839736018766,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999982061,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03261602639812344,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9914,
- "tp_rate": 0.03261602639812344,
- "truth_threshold": 39.02
- },
- {
- "f1": 0.06296799026261622,
- "fn": 294080,
- "fn_rate": 0.9674925401614023,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999982307,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.032507459838597715,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9881,
- "tp_rate": 0.032507459838597715,
- "truth_threshold": 39.04
- },
- {
- "f1": 0.06279515891579088,
- "fn": 294108,
- "fn_rate": 0.967584657242212,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999982551,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.032415342757788006,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9853,
- "tp_rate": 0.032415342757788006,
- "truth_threshold": 39.06
- },
- {
- "f1": 0.06251752887483746,
- "fn": 294153,
- "fn_rate": 0.9677327025506561,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999982792,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03226729744934383,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9808,
- "tp_rate": 0.03226729744934383,
- "truth_threshold": 39.08
- },
- {
- "f1": 0.06223942063724803,
- "fn": 294198,
- "fn_rate": 0.9678807478591004,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999983028,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.032119252140899654,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9763,
- "tp_rate": 0.032119252140899654,
- "truth_threshold": 39.1
- },
- {
- "f1": 0.06194927249773652,
- "fn": 294245,
- "fn_rate": 0.968035372959031,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999983262,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03196462704096907,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9716,
- "tp_rate": 0.03196462704096907,
- "truth_threshold": 39.12
- },
- {
- "f1": 0.061782241351825286,
- "fn": 294272,
- "fn_rate": 0.9681242001440974,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999983492,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03187579985590257,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9689,
- "tp_rate": 0.03187579985590257,
- "truth_threshold": 39.14
- },
- {
- "f1": 0.06154738976824867,
- "fn": 294310,
- "fn_rate": 0.9682492161823392,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999998372,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03175078381766082,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9651,
- "tp_rate": 0.03175078381766082,
- "truth_threshold": 39.160000000000004
- },
- {
- "f1": 0.06134957586580777,
- "fn": 294342,
- "fn_rate": 0.9683544928461217,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999983944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.031645507153878295,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9619,
- "tp_rate": 0.031645507153878295,
- "truth_threshold": 39.18
- },
- {
- "f1": 0.06101567334128589,
- "fn": 294396,
- "fn_rate": 0.9685321472162547,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999984165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03146785278374528,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9565,
- "tp_rate": 0.03146785278374528,
- "truth_threshold": 39.2
- },
- {
- "f1": 0.06079938754027242,
- "fn": 294431,
- "fn_rate": 0.9686472935672669,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999984382,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03135270643273315,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9530,
- "tp_rate": 0.03135270643273315,
- "truth_threshold": 39.22
- },
- {
- "f1": 0.06065091588880453,
- "fn": 294455,
- "fn_rate": 0.9687262510651038,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999984598,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.031273748934896255,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9506,
- "tp_rate": 0.031273748934896255,
- "truth_threshold": 39.24
- },
- {
- "f1": 0.06050841617641429,
- "fn": 294478,
- "fn_rate": 0.9688019186671974,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999998481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.031198081332802562,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9483,
- "tp_rate": 0.031198081332802562,
- "truth_threshold": 39.26
- },
- {
- "f1": 0.06017422381058745,
- "fn": 294532,
- "fn_rate": 0.9689795730373304,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999985019,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.031020426962669552,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9429,
- "tp_rate": 0.031020426962669552,
- "truth_threshold": 39.28
- },
- {
- "f1": 0.05982753228184621,
- "fn": 294588,
- "fn_rate": 0.9691638071989499,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999985225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.030836192801050134,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9373,
- "tp_rate": 0.030836192801050134,
- "truth_threshold": 39.300000000000004
- },
- {
- "f1": 0.059623364187679544,
- "fn": 294621,
- "fn_rate": 0.9692723737584756,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999985428,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.030727626241524406,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9340,
- "tp_rate": 0.030727626241524406,
- "truth_threshold": 39.32
- },
- {
- "f1": 0.05943116161777381,
- "fn": 294652,
- "fn_rate": 0.9693743605265149,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999985629,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.030625639473485084,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9309,
- "tp_rate": 0.030625639473485084,
- "truth_threshold": 39.34
- },
- {
- "f1": 0.05907181078630448,
- "fn": 294710,
- "fn_rate": 0.9695651744796208,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999985827,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03043482552037926,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9251,
- "tp_rate": 0.03043482552037926,
- "truth_threshold": 39.36
- },
- {
- "f1": 0.05885508468081845,
- "fn": 294745,
- "fn_rate": 0.9696803208306328,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986022,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.030319679169367123,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9216,
- "tp_rate": 0.030319679169367123,
- "truth_threshold": 39.38
- },
- {
- "f1": 0.05876830522221726,
- "fn": 294759,
- "fn_rate": 0.9697263793710378,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03027362062896227,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9202,
- "tp_rate": 0.03027362062896227,
- "truth_threshold": 39.4
- },
- {
- "f1": 0.05869391665336101,
- "fn": 294771,
- "fn_rate": 0.9697658581199562,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03023414188004382,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9190,
- "tp_rate": 0.03023414188004382,
- "truth_threshold": 39.42
- },
- {
- "f1": 0.058464329285819225,
- "fn": 294808,
- "fn_rate": 0.9698875842624547,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986592,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.03011241573754528,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9153,
- "tp_rate": 0.03011241573754528,
- "truth_threshold": 39.44
- },
- {
- "f1": 0.05825348153826498,
- "fn": 294842,
- "fn_rate": 0.9699994407177237,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.030000559282276344,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9119,
- "tp_rate": 0.030000559282276344,
- "truth_threshold": 39.46
- },
- {
- "f1": 0.058005366726296956,
- "fn": 294882,
- "fn_rate": 0.9701310365474518,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999986958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02986896345254819,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9079,
- "tp_rate": 0.02986896345254819,
- "truth_threshold": 39.480000000000004
- },
- {
- "f1": 0.05782562857416696,
- "fn": 294911,
- "fn_rate": 0.9702264435240048,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999987138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.029773556475995274,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9050,
- "tp_rate": 0.029773556475995274,
- "truth_threshold": 39.5
- },
- {
- "f1": 0.05773236718680111,
- "fn": 294926,
- "fn_rate": 0.9702757919601528,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999987315,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.029724208039847218,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9035,
- "tp_rate": 0.029724208039847218,
- "truth_threshold": 39.52
- },
- {
- "f1": 0.057515337423312884,
- "fn": 294961,
- "fn_rate": 0.970390938311165,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999998749,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.029609061688835082,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 9000,
- "tp_rate": 0.029609061688835082,
- "truth_threshold": 39.54
- },
- {
- "f1": 0.05722339045232876,
- "fn": 295008,
- "fn_rate": 0.9705455634110955,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999987662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0294544365889045,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8953,
- "tp_rate": 0.0294544365889045,
- "truth_threshold": 39.56
- },
- {
- "f1": 0.05707437118476142,
- "fn": 295032,
- "fn_rate": 0.9706245209089324,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999987832,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.029375479091067604,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8929,
- "tp_rate": 0.029375479091067604,
- "truth_threshold": 39.58
- },
- {
- "f1": 0.05679507997596246,
- "fn": 295077,
- "fn_rate": 0.9707725662173766,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02922743378262343,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8884,
- "tp_rate": 0.02922743378262343,
- "truth_threshold": 39.6
- },
- {
- "f1": 0.056589900643197834,
- "fn": 295110,
- "fn_rate": 0.9708811327769022,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988164,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0291188672230977,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8851,
- "tp_rate": 0.0291188672230977,
- "truth_threshold": 39.62
- },
- {
- "f1": 0.05636621735683045,
- "fn": 295146,
- "fn_rate": 0.9709995690236577,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02900043097634236,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8815,
- "tp_rate": 0.02900043097634236,
- "truth_threshold": 39.64
- },
- {
- "f1": 0.056173739544163916,
- "fn": 295177,
- "fn_rate": 0.971101555791697,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988488,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02889844420830304,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8784,
- "tp_rate": 0.02889844420830304,
- "truth_threshold": 39.660000000000004
- },
- {
- "f1": 0.05589382795011193,
- "fn": 295222,
- "fn_rate": 0.9712496011001411,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988647,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028750398899858864,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8739,
- "tp_rate": 0.028750398899858864,
- "truth_threshold": 39.68
- },
- {
- "f1": 0.055738564767137656,
- "fn": 295247,
- "fn_rate": 0.9713318484937212,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988802,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028668151506278765,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8714,
- "tp_rate": 0.028668151506278765,
- "truth_threshold": 39.7
- },
- {
- "f1": 0.05552072671443194,
- "fn": 295282,
- "fn_rate": 0.9714469948447334,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999988957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02855300515526663,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8679,
- "tp_rate": 0.02855300515526663,
- "truth_threshold": 39.72
- },
- {
- "f1": 0.055290753098188754,
- "fn": 295319,
- "fn_rate": 0.9715687209872319,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989109,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028431279012768085,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8642,
- "tp_rate": 0.028431279012768085,
- "truth_threshold": 39.74
- },
- {
- "f1": 0.05519725645258295,
- "fn": 295334,
- "fn_rate": 0.97161806942338,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028381930576620026,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8627,
- "tp_rate": 0.028381930576620026,
- "truth_threshold": 39.76
- },
- {
- "f1": 0.05506037124959209,
- "fn": 295356,
- "fn_rate": 0.9716904471297304,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028309552870269542,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8605,
- "tp_rate": 0.028309552870269542,
- "truth_threshold": 39.78
- },
- {
- "f1": 0.05486123109805653,
- "fn": 295388,
- "fn_rate": 0.971795723793513,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989553,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028204276206487015,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8573,
- "tp_rate": 0.028204276206487015,
- "truth_threshold": 39.800000000000004
- },
- {
- "f1": 0.054686950010559794,
- "fn": 295416,
- "fn_rate": 0.9718878408743227,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989696,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.028112159125677307,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8545,
- "tp_rate": 0.028112159125677307,
- "truth_threshold": 39.82
- },
- {
- "f1": 0.05441941740115598,
- "fn": 295459,
- "fn_rate": 0.9720293063912805,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989838,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02797069360871954,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8502,
- "tp_rate": 0.02797069360871954,
- "truth_threshold": 39.84
- },
- {
- "f1": 0.05426996716148484,
- "fn": 295483,
- "fn_rate": 0.9721082638891173,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999989978,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027891736110882647,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8478,
- "tp_rate": 0.027891736110882647,
- "truth_threshold": 39.86
- },
- {
- "f1": 0.054157864413289805,
- "fn": 295501,
- "fn_rate": 0.972167482012495,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990116,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027832517987504975,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8460,
- "tp_rate": 0.027832517987504975,
- "truth_threshold": 39.88
- },
- {
- "f1": 0.054026888604353396,
- "fn": 295522,
- "fn_rate": 0.9722365698231024,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990252,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027763430176897693,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8439,
- "tp_rate": 0.027763430176897693,
- "truth_threshold": 39.9
- },
- {
- "f1": 0.05375276927608242,
- "fn": 295566,
- "fn_rate": 0.9723813252358032,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990387,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027618674764196723,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8395,
- "tp_rate": 0.027618674764196723,
- "truth_threshold": 39.92
- },
- {
- "f1": 0.05360321708950732,
- "fn": 295590,
- "fn_rate": 0.9724602827336402,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02753971726635983,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8371,
- "tp_rate": 0.02753971726635983,
- "truth_threshold": 39.94
- },
- {
- "f1": 0.05350350286248543,
- "fn": 295606,
- "fn_rate": 0.9725129210655314,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999065,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027487078934468567,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8355,
- "tp_rate": 0.027487078934468567,
- "truth_threshold": 39.96
- },
- {
- "f1": 0.05339771628380585,
- "fn": 295623,
- "fn_rate": 0.9725688492931659,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990778,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0274311507068341,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8338,
- "tp_rate": 0.0274311507068341,
- "truth_threshold": 39.980000000000004
- },
- {
- "f1": 0.05317936105346758,
- "fn": 295658,
- "fn_rate": 0.9726839956441781,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999990905,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.027316004355821964,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8303,
- "tp_rate": 0.027316004355821964,
- "truth_threshold": 40
- },
- {
- "f1": 0.052948825530224904,
- "fn": 295695,
- "fn_rate": 0.9728057217866766,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999103,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02719427821332342,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8266,
- "tp_rate": 0.02719427821332342,
- "truth_threshold": 40.02
- },
- {
- "f1": 0.05267440147093683,
- "fn": 295739,
- "fn_rate": 0.9729504771993776,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991154,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02704952280062245,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8222,
- "tp_rate": 0.02704952280062245,
- "truth_threshold": 40.04
- },
- {
- "f1": 0.05253716043054844,
- "fn": 295761,
- "fn_rate": 0.973022854905728,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991276,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026977145094271963,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8200,
- "tp_rate": 0.026977145094271963,
- "truth_threshold": 40.06
- },
- {
- "f1": 0.05239990004421122,
- "fn": 295783,
- "fn_rate": 0.9730952326120785,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991396,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026904767387921476,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8178,
- "tp_rate": 0.026904767387921476,
- "truth_threshold": 40.08
- },
- {
- "f1": 0.052181324173993286,
- "fn": 295818,
- "fn_rate": 0.9732103789630907,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02678962103690934,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8143,
- "tp_rate": 0.02678962103690934,
- "truth_threshold": 40.1
- },
- {
- "f1": 0.051975518313198965,
- "fn": 295851,
- "fn_rate": 0.9733189455226164,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991631,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02668105447738361,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8110,
- "tp_rate": 0.02668105447738361,
- "truth_threshold": 40.12
- },
- {
- "f1": 0.05174436119140863,
- "fn": 295888,
- "fn_rate": 0.9734406716651149,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991747,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026559328334885068,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8073,
- "tp_rate": 0.026559328334885068,
- "truth_threshold": 40.14
- },
- {
- "f1": 0.05154454138114499,
- "fn": 295920,
- "fn_rate": 0.9735459483288974,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999186,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026454051671102544,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8041,
- "tp_rate": 0.026454051671102544,
- "truth_threshold": 40.160000000000004
- },
- {
- "f1": 0.05135109145110107,
- "fn": 295951,
- "fn_rate": 0.9736479350969368,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999991972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026352064903063223,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 8010,
- "tp_rate": 0.026352064903063223,
- "truth_threshold": 40.18
- },
- {
- "f1": 0.05126363974406647,
- "fn": 295965,
- "fn_rate": 0.9736939936373417,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02630600636265837,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7996,
- "tp_rate": 0.02630600636265837,
- "truth_threshold": 40.2
- },
- {
- "f1": 0.05118226348318929,
- "fn": 295978,
- "fn_rate": 0.9737367622820032,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992192,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026263237717996716,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7983,
- "tp_rate": 0.026263237717996716,
- "truth_threshold": 40.22
- },
- {
- "f1": 0.0510698050178568,
- "fn": 295996,
- "fn_rate": 0.973795980405381,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992298,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026204019594619047,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7965,
- "tp_rate": 0.026204019594619047,
- "truth_threshold": 40.24
- },
- {
- "f1": 0.050876259241921934,
- "fn": 296027,
- "fn_rate": 0.9738979671734203,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.026102032826579726,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7934,
- "tp_rate": 0.026102032826579726,
- "truth_threshold": 40.26
- },
- {
- "f1": 0.05071985122005964,
- "fn": 296052,
- "fn_rate": 0.9739802145670003,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992509,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02601978543299963,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7909,
- "tp_rate": 0.02601978543299963,
- "truth_threshold": 40.28
- },
- {
- "f1": 0.0506012506012506,
- "fn": 296071,
- "fn_rate": 0.9740427225861212,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992613,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.025957277413878755,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7890,
- "tp_rate": 0.025957277413878755,
- "truth_threshold": 40.300000000000004
- },
- {
- "f1": 0.050338669950738914,
- "fn": 296113,
- "fn_rate": 0.9741808982073358,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992715,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.025819101792664192,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7848,
- "tp_rate": 0.025819101792664192,
- "truth_threshold": 40.32
- },
- {
- "f1": 0.050082112339945084,
- "fn": 296154,
- "fn_rate": 0.9743157839328072,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992815,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02568421606719283,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7807,
- "tp_rate": 0.02568421606719283,
- "truth_threshold": 40.34
- },
- {
- "f1": 0.049844416642607386,
- "fn": 296192,
- "fn_rate": 0.9744407999710489,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999992913,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.025559200028951082,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7769,
- "tp_rate": 0.025559200028951082,
- "truth_threshold": 40.36
- },
- {
- "f1": 0.04964420689256909,
- "fn": 296224,
- "fn_rate": 0.9745460766348314,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993011,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02545392336516856,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7737,
- "tp_rate": 0.02545392336516856,
- "truth_threshold": 40.38
- },
- {
- "f1": 0.04940030417958147,
- "fn": 296263,
- "fn_rate": 0.9746743825688164,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993108,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.025325617431183604,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7698,
- "tp_rate": 0.025325617431183604,
- "truth_threshold": 40.4
- },
- {
- "f1": 0.049181064359612864,
- "fn": 296298,
- "fn_rate": 0.9747895289198285,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993202,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02521047108017147,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7663,
- "tp_rate": 0.02521047108017147,
- "truth_threshold": 40.42
- },
- {
- "f1": 0.049049749359760204,
- "fn": 296319,
- "fn_rate": 0.9748586167304358,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993295,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.025141383269564187,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7642,
- "tp_rate": 0.025141383269564187,
- "truth_threshold": 40.44
- },
- {
- "f1": 0.04894314892196697,
- "fn": 296336,
- "fn_rate": 0.9749145449580703,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993389,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02508545504192972,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7625,
- "tp_rate": 0.02508545504192972,
- "truth_threshold": 40.46
- },
- {
- "f1": 0.04859243090553077,
- "fn": 296392,
- "fn_rate": 0.9750987791196897,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999348,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024901220880310302,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7569,
- "tp_rate": 0.024901220880310302,
- "truth_threshold": 40.480000000000004
- },
- {
- "f1": 0.048360792572521925,
- "fn": 296429,
- "fn_rate": 0.9752205052621883,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993568,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02477949473781176,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7532,
- "tp_rate": 0.02477949473781176,
- "truth_threshold": 40.5
- },
- {
- "f1": 0.048003442119729255,
- "fn": 296486,
- "fn_rate": 0.9754080293195508,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993657,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024591970680449136,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7475,
- "tp_rate": 0.024591970680449136,
- "truth_threshold": 40.52
- },
- {
- "f1": 0.04758356671205776,
- "fn": 296553,
- "fn_rate": 0.9756284523343455,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993745,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024371547665654476,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7408,
- "tp_rate": 0.024371547665654476,
- "truth_threshold": 40.54
- },
- {
- "f1": 0.04740155457056594,
- "fn": 296582,
- "fn_rate": 0.9757238593108984,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999383,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024276140689101562,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7379,
- "tp_rate": 0.024276140689101562,
- "truth_threshold": 40.56
- },
- {
- "f1": 0.04716320486215957,
- "fn": 296620,
- "fn_rate": 0.9758488753491402,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024151124650859813,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7341,
- "tp_rate": 0.024151124650859813,
- "truth_threshold": 40.58
- },
- {
- "f1": 0.04691224755993343,
- "fn": 296660,
- "fn_rate": 0.9759804711788683,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999993999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.024019528821131658,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7301,
- "tp_rate": 0.024019528821131658,
- "truth_threshold": 40.6
- },
- {
- "f1": 0.046648672964462436,
- "fn": 296702,
- "fn_rate": 0.9761186468000829,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994083,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023881353199917094,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7259,
- "tp_rate": 0.023881353199917094,
- "truth_threshold": 40.62
- },
- {
- "f1": 0.04647934394200365,
- "fn": 296729,
- "fn_rate": 0.9762074739851494,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994164,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02379252601485059,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7232,
- "tp_rate": 0.02379252601485059,
- "truth_threshold": 40.64
- },
- {
- "f1": 0.046353785044926925,
- "fn": 296749,
- "fn_rate": 0.9762732719000135,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994243,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02372672809998651,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7212,
- "tp_rate": 0.02372672809998651,
- "truth_threshold": 40.660000000000004
- },
- {
- "f1": 0.046234340551623954,
- "fn": 296768,
- "fn_rate": 0.9763357799191343,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994323,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023664220080865637,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7193,
- "tp_rate": 0.023664220080865637,
- "truth_threshold": 40.68
- },
- {
- "f1": 0.04610875057049374,
- "fn": 296788,
- "fn_rate": 0.9764015778339984,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994401,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02359842216600156,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7173,
- "tp_rate": 0.02359842216600156,
- "truth_threshold": 40.7
- },
- {
- "f1": 0.0459393261460724,
- "fn": 296815,
- "fn_rate": 0.9764904050190649,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994479,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023509594980935054,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7146,
- "tp_rate": 0.023509594980935054,
- "truth_threshold": 40.72
- },
- {
- "f1": 0.045826261379416755,
- "fn": 296833,
- "fn_rate": 0.9765496231424426,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994554,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023450376857557385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7128,
- "tp_rate": 0.023450376857557385,
- "truth_threshold": 40.74
- },
- {
- "f1": 0.0456564929178106,
- "fn": 296860,
- "fn_rate": 0.9766384503275091,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999463,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023361549672490878,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7101,
- "tp_rate": 0.023361549672490878,
- "truth_threshold": 40.76
- },
- {
- "f1": 0.0455121239205499,
- "fn": 296883,
- "fn_rate": 0.9767141179296028,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994703,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02328588207039719,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7078,
- "tp_rate": 0.02328588207039719,
- "truth_threshold": 40.78
- },
- {
- "f1": 0.045298452753019254,
- "fn": 296917,
- "fn_rate": 0.9768259743848717,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023174025615128258,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7044,
- "tp_rate": 0.023174025615128258,
- "truth_threshold": 40.800000000000004
- },
- {
- "f1": 0.04521659721150383,
- "fn": 296930,
- "fn_rate": 0.9768687430295334,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999994849,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.023131256970466606,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 7031,
- "tp_rate": 0.023131256970466606,
- "truth_threshold": 40.82
- },
- {
- "f1": 0.0449212719975301,
- "fn": 296977,
- "fn_rate": 0.977023368129464,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999492,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022976631870536023,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6984,
- "tp_rate": 0.022976631870536023,
- "truth_threshold": 40.84
- },
- {
- "f1": 0.0446697372822479,
- "fn": 297017,
- "fn_rate": 0.9771549639591921,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999499,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022845036040807867,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6944,
- "tp_rate": 0.022845036040807867,
- "truth_threshold": 40.86
- },
- {
- "f1": 0.044569105272638375,
- "fn": 297033,
- "fn_rate": 0.9772076022910834,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995058,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022792397708916605,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6928,
- "tp_rate": 0.022792397708916605,
- "truth_threshold": 40.88
- },
- {
- "f1": 0.044330062731220844,
- "fn": 297071,
- "fn_rate": 0.9773326183293252,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022667381670674856,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6890,
- "tp_rate": 0.022667381670674856,
- "truth_threshold": 40.9
- },
- {
- "f1": 0.0442229614520934,
- "fn": 297088,
- "fn_rate": 0.9773885465569596,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995193,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02261145344304039,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6873,
- "tp_rate": 0.02261145344304039,
- "truth_threshold": 40.92
- },
- {
- "f1": 0.044059354971558,
- "fn": 297114,
- "fn_rate": 0.9774740838462829,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022525916153717088,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6847,
- "tp_rate": 0.022525916153717088,
- "truth_threshold": 40.94
- },
- {
- "f1": 0.04399027014504691,
- "fn": 297125,
- "fn_rate": 0.9775102726994581,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995325,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022489727300541846,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6836,
- "tp_rate": 0.022489727300541846,
- "truth_threshold": 40.96
- },
- {
- "f1": 0.043820188563889695,
- "fn": 297152,
- "fn_rate": 0.9775990998845246,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995389,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02240090011547534,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6809,
- "tp_rate": 0.02240090011547534,
- "truth_threshold": 40.980000000000004
- },
- {
- "f1": 0.04369428801287208,
- "fn": 297172,
- "fn_rate": 0.9776648977993887,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995453,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022335102200611263,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6789,
- "tp_rate": 0.022335102200611263,
- "truth_threshold": 41
- },
- {
- "f1": 0.04360614798414088,
- "fn": 297186,
- "fn_rate": 0.9777109563397935,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02228904366020641,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6775,
- "tp_rate": 0.02228904366020641,
- "truth_threshold": 41.02
- },
- {
- "f1": 0.04331648910489556,
- "fn": 297232,
- "fn_rate": 0.977862291543981,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995577,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.022137708456019027,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6729,
- "tp_rate": 0.022137708456019027,
- "truth_threshold": 41.04
- },
- {
- "f1": 0.04319052370682718,
- "fn": 297252,
- "fn_rate": 0.977928089458845,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995638,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02207191054115495,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6709,
- "tp_rate": 0.02207191054115495,
- "truth_threshold": 41.06
- },
- {
- "f1": 0.04299538369420354,
- "fn": 297283,
- "fn_rate": 0.9780300762268843,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995698,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02196992377311563,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6678,
- "tp_rate": 0.02196992377311563,
- "truth_threshold": 41.08
- },
- {
- "f1": 0.042913342733705485,
- "fn": 297296,
- "fn_rate": 0.978072844871546,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995757,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02192715512845398,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6665,
- "tp_rate": 0.02192715512845398,
- "truth_threshold": 41.1
- },
- {
- "f1": 0.04268649988731125,
- "fn": 297332,
- "fn_rate": 0.9781912811183013,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995816,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02180871888169864,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6629,
- "tp_rate": 0.02180871888169864,
- "truth_threshold": 41.12
- },
- {
- "f1": 0.04252907613245579,
- "fn": 297357,
- "fn_rate": 0.9782735285118814,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021726471488118543,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6604,
- "tp_rate": 0.021726471488118543,
- "truth_threshold": 41.14
- },
- {
- "f1": 0.042484817650809185,
- "fn": 297364,
- "fn_rate": 0.9782965577820839,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999593,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021703442217916116,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6597,
- "tp_rate": 0.021703442217916116,
- "truth_threshold": 41.160000000000004
- },
- {
- "f1": 0.04225787544843843,
- "fn": 297400,
- "fn_rate": 0.9784149940288392,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999995985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021585005971160774,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6561,
- "tp_rate": 0.021585005971160774,
- "truth_threshold": 41.18
- },
- {
- "f1": 0.04209394001855096,
- "fn": 297426,
- "fn_rate": 0.9785005313181625,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021499468681837473,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6535,
- "tp_rate": 0.021499468681837473,
- "truth_threshold": 41.2
- },
- {
- "f1": 0.041942590636192635,
- "fn": 297450,
- "fn_rate": 0.9785794888159994,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02142051118400058,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6511,
- "tp_rate": 0.02142051118400058,
- "truth_threshold": 41.22
- },
- {
- "f1": 0.04162720425743021,
- "fn": 297500,
- "fn_rate": 0.9787439836031596,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999615,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021256016396840383,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6461,
- "tp_rate": 0.021256016396840383,
- "truth_threshold": 41.24
- },
- {
- "f1": 0.041261228750757176,
- "fn": 297558,
- "fn_rate": 0.9789347975562654,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996202,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.021065202443734558,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6403,
- "tp_rate": 0.021065202443734558,
- "truth_threshold": 41.26
- },
- {
- "f1": 0.04112237467052478,
- "fn": 297580,
- "fn_rate": 0.9790071752626159,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996255,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02099282473738407,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6381,
- "tp_rate": 0.02099282473738407,
- "truth_threshold": 41.28
- },
- {
- "f1": 0.0408572349339349,
- "fn": 297622,
- "fn_rate": 0.9791453508838305,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996306,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020854649116169507,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6339,
- "tp_rate": 0.020854649116169507,
- "truth_threshold": 41.300000000000004
- },
- {
- "f1": 0.04061728474644011,
- "fn": 297660,
- "fn_rate": 0.9792703669220723,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996357,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02072963307792776,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6301,
- "tp_rate": 0.02072963307792776,
- "truth_threshold": 41.32
- },
- {
- "f1": 0.040503603615218986,
- "fn": 297678,
- "fn_rate": 0.9793295850454499,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02067041495455009,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6283,
- "tp_rate": 0.02067041495455009,
- "truth_threshold": 41.34
- },
- {
- "f1": 0.04029528383997937,
- "fn": 297711,
- "fn_rate": 0.9794381516049756,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996457,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02056184839502436,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6250,
- "tp_rate": 0.02056184839502436,
- "truth_threshold": 41.36
- },
- {
- "f1": 0.040270014119649526,
- "fn": 297715,
- "fn_rate": 0.9794513111879485,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020548688812051547,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6246,
- "tp_rate": 0.020548688812051547,
- "truth_threshold": 41.38
- },
- {
- "f1": 0.040143655742038646,
- "fn": 297735,
- "fn_rate": 0.9795171091028125,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996554,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020482890897187467,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6226,
- "tp_rate": 0.020482890897187467,
- "truth_threshold": 41.4
- },
- {
- "f1": 0.03989708139339928,
- "fn": 297774,
- "fn_rate": 0.9796454150367975,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996602,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020354584963202516,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6187,
- "tp_rate": 0.020354584963202516,
- "truth_threshold": 41.42
- },
- {
- "f1": 0.03972655746162776,
- "fn": 297801,
- "fn_rate": 0.979734242221864,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996648,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.02026575777813601,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6160,
- "tp_rate": 0.02026575777813601,
- "truth_threshold": 41.44
- },
- {
- "f1": 0.03959367945823928,
- "fn": 297822,
- "fn_rate": 0.9798033300324712,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020196669967528728,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6139,
- "tp_rate": 0.020196669967528728,
- "truth_threshold": 41.46
- },
- {
- "f1": 0.03945458884538729,
- "fn": 297844,
- "fn_rate": 0.9798757077388217,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996739,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020124292261178244,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6117,
- "tp_rate": 0.020124292261178244,
- "truth_threshold": 41.480000000000004
- },
- {
- "f1": 0.039309281609010045,
- "fn": 297867,
- "fn_rate": 0.9799513753409155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.020048624659084555,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6094,
- "tp_rate": 0.020048624659084555,
- "truth_threshold": 41.5
- },
- {
- "f1": 0.03918279930588258,
- "fn": 297887,
- "fn_rate": 0.9800171732557795,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996829,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019982826744220476,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6074,
- "tp_rate": 0.019982826744220476,
- "truth_threshold": 41.52
- },
- {
- "f1": 0.03904364992322878,
- "fn": 297909,
- "fn_rate": 0.98008955096213,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01991044903786999,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6052,
- "tp_rate": 0.01991044903786999,
- "truth_threshold": 41.54
- },
- {
- "f1": 0.03889802896867641,
- "fn": 297932,
- "fn_rate": 0.9801652185642237,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.0198347814357763,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6029,
- "tp_rate": 0.0198347814357763,
- "truth_threshold": 41.56
- },
- {
- "f1": 0.03886007019717147,
- "fn": 297938,
- "fn_rate": 0.9801849579386829,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999996958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019815042061317078,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6023,
- "tp_rate": 0.019815042061317078,
- "truth_threshold": 41.58
- },
- {
- "f1": 0.03875263738603589,
- "fn": 297955,
- "fn_rate": 0.9802408861663174,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01975911383368261,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6006,
- "tp_rate": 0.01975911383368261,
- "truth_threshold": 41.6
- },
- {
- "f1": 0.038733530345459476,
- "fn": 297958,
- "fn_rate": 0.980250755853547,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019749244146452998,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 6003,
- "tp_rate": 0.019749244146452998,
- "truth_threshold": 41.62
- },
- {
- "f1": 0.03847419673337162,
- "fn": 297999,
- "fn_rate": 0.9803856415790183,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01961435842098164,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5962,
- "tp_rate": 0.01961435842098164,
- "truth_threshold": 41.64
- },
- {
- "f1": 0.03825252994630318,
- "fn": 298034,
- "fn_rate": 0.9805007879300305,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997122,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019499212069969504,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5927,
- "tp_rate": 0.019499212069969504,
- "truth_threshold": 41.660000000000004
- },
- {
- "f1": 0.038087923010888716,
- "fn": 298060,
- "fn_rate": 0.9805863252193538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997161,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019413674780646203,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5901,
- "tp_rate": 0.019413674780646203,
- "truth_threshold": 41.68
- },
- {
- "f1": 0.03803105998993068,
- "fn": 298069,
- "fn_rate": 0.9806159342810427,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997201,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019384065718957365,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5892,
- "tp_rate": 0.019384065718957365,
- "truth_threshold": 41.7
- },
- {
- "f1": 0.03787262610222446,
- "fn": 298094,
- "fn_rate": 0.9806981816746227,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997239,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01930181832537727,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5867,
- "tp_rate": 0.01930181832537727,
- "truth_threshold": 41.72
- },
- {
- "f1": 0.03766995054810262,
- "fn": 298126,
- "fn_rate": 0.9808034583384052,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997278,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019196541661594745,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5835,
- "tp_rate": 0.019196541661594745,
- "truth_threshold": 41.74
- },
- {
- "f1": 0.037499031533276515,
- "fn": 298153,
- "fn_rate": 0.9808922855234717,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01910771447652824,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5808,
- "tp_rate": 0.01910771447652824,
- "truth_threshold": 41.76
- },
- {
- "f1": 0.03733429757669286,
- "fn": 298179,
- "fn_rate": 0.9809778228127951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997352,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.019022177187204937,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5782,
- "tp_rate": 0.019022177187204937,
- "truth_threshold": 41.78
- },
- {
- "f1": 0.037144185565945134,
- "fn": 298209,
- "fn_rate": 0.9810765196850911,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997388,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01892348031490882,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5752,
- "tp_rate": 0.01892348031490882,
- "truth_threshold": 41.800000000000004
- },
- {
- "f1": 0.036700447613695814,
- "fn": 298279,
- "fn_rate": 0.9813068123871155,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997424,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01869318761288455,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5682,
- "tp_rate": 0.01869318761288455,
- "truth_threshold": 41.82
- },
- {
- "f1": 0.03654826269790516,
- "fn": 298303,
- "fn_rate": 0.9813857698849523,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999746,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018614230115047654,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5658,
- "tp_rate": 0.018614230115047654,
- "truth_threshold": 41.84
- },
- {
- "f1": 0.03639605418709665,
- "fn": 298327,
- "fn_rate": 0.9814647273827892,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997494,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01853527261721076,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5634,
- "tp_rate": 0.01853527261721076,
- "truth_threshold": 41.86
- },
- {
- "f1": 0.03622467438494935,
- "fn": 298354,
- "fn_rate": 0.9815535545678558,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997529,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018446445432144257,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5607,
- "tp_rate": 0.018446445432144257,
- "truth_threshold": 41.88
- },
- {
- "f1": 0.036180385062669594,
- "fn": 298361,
- "fn_rate": 0.9815765838380581,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997563,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01842341616194183,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5600,
- "tp_rate": 0.01842341616194183,
- "truth_threshold": 41.9
- },
- {
- "f1": 0.035996278252329324,
- "fn": 298390,
- "fn_rate": 0.9816719908146111,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018328009185388915,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5571,
- "tp_rate": 0.018328009185388915,
- "truth_threshold": 41.92
- },
- {
- "f1": 0.03579321486268174,
- "fn": 298422,
- "fn_rate": 0.9817772674783936,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999763,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018222732521606392,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5539,
- "tp_rate": 0.018222732521606392,
- "truth_threshold": 41.94
- },
- {
- "f1": 0.03562196256850377,
- "fn": 298449,
- "fn_rate": 0.9818660946634601,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018133905336539885,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5512,
- "tp_rate": 0.018133905336539885,
- "truth_threshold": 41.96
- },
- {
- "f1": 0.0355457894396691,
- "fn": 298461,
- "fn_rate": 0.9819055734123786,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.018094426587621438,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5500,
- "tp_rate": 0.018094426587621438,
- "truth_threshold": 41.980000000000004
- },
- {
- "f1": 0.03541882109617373,
- "fn": 298481,
- "fn_rate": 0.9819713713272427,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997726,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01802862867275736,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5480,
- "tp_rate": 0.01802862867275736,
- "truth_threshold": 42
- },
- {
- "f1": 0.03522187388901458,
- "fn": 298512,
- "fn_rate": 0.982073358095282,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997757,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01792664190471804,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5449,
- "tp_rate": 0.01792664190471804,
- "truth_threshold": 42.02
- },
- {
- "f1": 0.03508862657892355,
- "fn": 298533,
- "fn_rate": 0.9821424459058893,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997788,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01785755409411076,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5428,
- "tp_rate": 0.01785755409411076,
- "truth_threshold": 42.04
- },
- {
- "f1": 0.034980541225450267,
- "fn": 298550,
- "fn_rate": 0.9821983741335237,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01780162586647629,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5411,
- "tp_rate": 0.01780162586647629,
- "truth_threshold": 42.06
- },
- {
- "f1": 0.03486620505957576,
- "fn": 298568,
- "fn_rate": 0.9822575922569013,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997848,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017742407743098623,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5393,
- "tp_rate": 0.017742407743098623,
- "truth_threshold": 42.08
- },
- {
- "f1": 0.03483455525815586,
- "fn": 298573,
- "fn_rate": 0.9822740417356174,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997878,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017725958264382603,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5388,
- "tp_rate": 0.017725958264382603,
- "truth_threshold": 42.1
- },
- {
- "f1": 0.03471373613939805,
- "fn": 298592,
- "fn_rate": 0.9823365497547383,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997907,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01766345024526173,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5369,
- "tp_rate": 0.01766345024526173,
- "truth_threshold": 42.12
- },
- {
- "f1": 0.03456124355815923,
- "fn": 298616,
- "fn_rate": 0.9824155072525752,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997936,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017584492747424834,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5345,
- "tp_rate": 0.017584492747424834,
- "truth_threshold": 42.14
- },
- {
- "f1": 0.03440872731035107,
- "fn": 298640,
- "fn_rate": 0.982494464750412,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997965,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01750553524958794,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5321,
- "tp_rate": 0.01750553524958794,
- "truth_threshold": 42.160000000000004
- },
- {
- "f1": 0.03426889995473065,
- "fn": 298662,
- "fn_rate": 0.9825668424567625,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999997993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017433157543237456,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5299,
- "tp_rate": 0.017433157543237456,
- "truth_threshold": 42.18
- },
- {
- "f1": 0.03416719483643983,
- "fn": 298678,
- "fn_rate": 0.9826194807886538,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999802,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01738051921134619,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5283,
- "tp_rate": 0.01738051921134619,
- "truth_threshold": 42.2
- },
- {
- "f1": 0.0340527639978527,
- "fn": 298696,
- "fn_rate": 0.9826786989120315,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998048,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017321301087968522,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5265,
- "tp_rate": 0.017321301087968522,
- "truth_threshold": 42.22
- },
- {
- "f1": 0.03390663708514175,
- "fn": 298719,
- "fn_rate": 0.9827543665141252,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998075,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017245633485874833,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5242,
- "tp_rate": 0.017245633485874833,
- "truth_threshold": 42.24
- },
- {
- "f1": 0.03379217553301594,
- "fn": 298737,
- "fn_rate": 0.9828135846375028,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01718641536249716,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5224,
- "tp_rate": 0.01718641536249716,
- "truth_threshold": 42.26
- },
- {
- "f1": 0.03369667173399748,
- "fn": 298752,
- "fn_rate": 0.9828629330736509,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998127,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017137066926349104,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5209,
- "tp_rate": 0.017137066926349104,
- "truth_threshold": 42.28
- },
- {
- "f1": 0.0335504907066564,
- "fn": 298775,
- "fn_rate": 0.9829386006757446,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998154,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.017061399324255416,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5186,
- "tp_rate": 0.017061399324255416,
- "truth_threshold": 42.300000000000004
- },
- {
- "f1": 0.033429517869620354,
- "fn": 298794,
- "fn_rate": 0.9830011086948655,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998178,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01699889130513454,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5167,
- "tp_rate": 0.01699889130513454,
- "truth_threshold": 42.32
- },
- {
- "f1": 0.0332705708795155,
- "fn": 298819,
- "fn_rate": 0.9830833560884455,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01691664391155444,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5142,
- "tp_rate": 0.01691664391155444,
- "truth_threshold": 42.34
- },
- {
- "f1": 0.03317501811781758,
- "fn": 298834,
- "fn_rate": 0.9831327045245937,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998228,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016867295475406385,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5127,
- "tp_rate": 0.016867295475406385,
- "truth_threshold": 42.36
- },
- {
- "f1": 0.03301602914625544,
- "fn": 298859,
- "fn_rate": 0.9832149519181738,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998253,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016785048081826286,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5102,
- "tp_rate": 0.016785048081826286,
- "truth_threshold": 42.38
- },
- {
- "f1": 0.03288873357019434,
- "fn": 298879,
- "fn_rate": 0.9832807498330378,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998277,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01671925016696221,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5082,
- "tp_rate": 0.01671925016696221,
- "truth_threshold": 42.4
- },
- {
- "f1": 0.032716752530613305,
- "fn": 298906,
- "fn_rate": 0.9833695770181043,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.99999999999983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016630422981895703,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5055,
- "tp_rate": 0.016630422981895703,
- "truth_threshold": 42.42
- },
- {
- "f1": 0.03266582094961943,
- "fn": 298914,
- "fn_rate": 0.9833958961840499,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998324,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016604103815950073,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5047,
- "tp_rate": 0.016604103815950073,
- "truth_threshold": 42.44
- },
- {
- "f1": 0.032506747965900924,
- "fn": 298939,
- "fn_rate": 0.98347814357763,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998347,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016521856422369974,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 5022,
- "tp_rate": 0.016521856422369974,
- "truth_threshold": 42.46
- },
- {
- "f1": 0.03229648810487134,
- "fn": 298972,
- "fn_rate": 0.9835867101371557,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.999999999999837,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016413289862844245,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4989,
- "tp_rate": 0.016413289862844245,
- "truth_threshold": 42.480000000000004
- },
- {
- "f1": 0.03209913310328307,
- "fn": 299003,
- "fn_rate": 0.9836886969051951,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998392,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016311303094804927,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4958,
- "tp_rate": 0.016311303094804927,
- "truth_threshold": 42.5
- },
- {
- "f1": 0.03193349131735364,
- "fn": 299029,
- "fn_rate": 0.9837742341945184,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998415,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016225765805481625,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4932,
- "tp_rate": 0.016225765805481625,
- "truth_threshold": 42.52
- },
- {
- "f1": 0.03185055685055685,
- "fn": 299042,
- "fn_rate": 0.98381700283918,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998436,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016182997160819973,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4919,
- "tp_rate": 0.016182997160819973,
- "truth_threshold": 42.54
- },
- {
- "f1": 0.03171684074882308,
- "fn": 299063,
- "fn_rate": 0.9838860906497873,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998458,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.01611390935021269,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4898,
- "tp_rate": 0.01611390935021269,
- "truth_threshold": 42.56
- },
- {
- "f1": 0.031595648232094285,
- "fn": 299082,
- "fn_rate": 0.9839485986689082,
- "fp": 0,
- "fp_rate": 0,
- "match_probability": 0.9999999999998479,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 1,
- "recall": 0.016051401331091817,
- "row_count": 477830,
- "tn": 173869,
- "tn_rate": 1,
- "tp": 4879,
- "tp_rate": 0.016051401331091817,
- "truth_threshold": 42.58
- },
- {
- "f1": 0.85910966959049,
- "fn": 74577,
- "fn_rate": 0.24535055484091708,
- "fp": 660,
- "fp_rate": 0.003795961327206115,
- "match_probability": 0.7570845276442862,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971309836379127,
- "recall": 0.7546494451590829,
- "row_count": 477830,
- "tn": 173209,
- "tn_rate": 0.9962040386727938,
- "tp": 229384,
- "tp_rate": 0.7546494451590829,
- "truth_threshold": 1.6400000000000001
- },
- {
- "f1": 0.8587452934454789,
- "fn": 74749,
- "fn_rate": 0.24591641690874816,
- "fp": 658,
- "fp_rate": 0.003784458414093369,
- "match_probability": 0.7596249330210829,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971375125070692,
- "recall": 0.7540835830912518,
- "row_count": 477830,
- "tn": 173211,
- "tn_rate": 0.9962155415859066,
- "tp": 229212,
- "tp_rate": 0.7540835830912518,
- "truth_threshold": 1.6600000000000001
- },
- {
- "f1": 0.8583940456916712,
- "fn": 74914,
- "fn_rate": 0.2464592497063768,
- "fp": 657,
- "fp_rate": 0.003778706957536996,
- "match_probability": 0.7621471175890653,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971397973043569,
- "recall": 0.7535407502936232,
- "row_count": 477830,
- "tn": 173212,
- "tn_rate": 0.996221293042463,
- "tp": 229047,
- "tp_rate": 0.7535407502936232,
- "truth_threshold": 1.68
- },
- {
- "f1": 0.8581292569282268,
- "fn": 75037,
- "fn_rate": 0.2468639068827909,
- "fp": 657,
- "fp_rate": 0.003778706957536996,
- "match_probability": 0.7646510369310004,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971382649261045,
- "recall": 0.7531360931172091,
- "row_count": 477830,
- "tn": 173212,
- "tn_rate": 0.996221293042463,
- "tp": 228924,
- "tp_rate": 0.7531360931172091,
- "truth_threshold": 1.7
- },
- {
- "f1": 0.8577208791291207,
- "fn": 75230,
- "fn_rate": 0.24749885676122924,
- "fp": 655,
- "fp_rate": 0.0037672040444242504,
- "match_probability": 0.767136650755255,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997144551105996,
- "recall": 0.7525011432387707,
- "row_count": 477830,
- "tn": 173214,
- "tn_rate": 0.9962327959555758,
- "tp": 228731,
- "tp_rate": 0.7525011432387707,
- "truth_threshold": 1.72
- },
- {
- "f1": 0.8574622107197779,
- "fn": 75353,
- "fn_rate": 0.24790351393764332,
- "fp": 652,
- "fp_rate": 0.003749949674755132,
- "match_probability": 0.7696039228492181,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971560673471168,
- "recall": 0.7520964860623567,
- "row_count": 477830,
- "tn": 173217,
- "tn_rate": 0.9962500503252448,
- "tp": 228608,
- "tp_rate": 0.7520964860623567,
- "truth_threshold": 1.74
- },
- {
- "f1": 0.8572114590992992,
- "fn": 75473,
- "fn_rate": 0.2482983014268278,
- "fp": 648,
- "fp_rate": 0.00372694384852964,
- "match_probability": 0.7720528210314674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971719851965645,
- "recall": 0.7517016985731723,
- "row_count": 477830,
- "tn": 173221,
- "tn_rate": 0.9962730561514703,
- "tp": 228488,
- "tp_rate": 0.7517016985731723,
- "truth_threshold": 1.76
- },
- {
- "f1": 0.8569552229844338,
- "fn": 75603,
- "fn_rate": 0.2487259878734443,
- "fp": 633,
- "fp_rate": 0.0036406720001840465,
- "match_probability": 0.774483317102736,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99723569921962,
- "recall": 0.7512740121265558,
- "row_count": 477830,
- "tn": 173236,
- "tn_rate": 0.996359327999816,
- "tp": 228358,
- "tp_rate": 0.7512740121265558,
- "truth_threshold": 1.78
- },
- {
- "f1": 0.8566119611405577,
- "fn": 75763,
- "fn_rate": 0.2492523711923569,
- "fp": 633,
- "fp_rate": 0.0036406720001840465,
- "match_probability": 0.7768953867957377,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972337664040274,
- "recall": 0.7507476288076431,
- "row_count": 477830,
- "tn": 173236,
- "tn_rate": 0.996359327999816,
- "tp": 228198,
- "tp_rate": 0.7507476288076431,
- "truth_threshold": 1.8
- },
- {
- "f1": 0.8557937205580725,
- "fn": 76147,
- "fn_rate": 0.2505156911577472,
- "fp": 629,
- "fp_rate": 0.003617666173958555,
- "match_probability": 0.7792890097239141,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972465779209694,
- "recall": 0.7494843088422528,
- "row_count": 477830,
- "tn": 173240,
- "tn_rate": 0.9963823338260415,
- "tp": 227814,
- "tp_rate": 0.7494843088422528,
- "truth_threshold": 1.82
- },
- {
- "f1": 0.8555099648300117,
- "fn": 76279,
- "fn_rate": 0.25094995739585013,
- "fp": 629,
- "fp_rate": 0.003617666173958555,
- "match_probability": 0.7816641693291569,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972449860059305,
- "recall": 0.7490500426041499,
- "row_count": 477830,
- "tn": 173240,
- "tn_rate": 0.9963823338260415,
- "tp": 227682,
- "tp_rate": 0.7490500426041499,
- "truth_threshold": 1.84
- },
- {
- "f1": 0.8552717624155323,
- "fn": 76392,
- "fn_rate": 0.2513217156148322,
- "fp": 627,
- "fp_rate": 0.0036061632608458093,
- "match_probability": 0.7840208528285652,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972523620045926,
- "recall": 0.7486782843851678,
- "row_count": 477830,
- "tn": 173242,
- "tn_rate": 0.9963938367391542,
- "tp": 227569,
- "tp_rate": 0.7486782843851678,
- "truth_threshold": 1.86
- },
- {
- "f1": 0.8550431540011427,
- "fn": 76499,
- "fn_rate": 0.251673734459355,
- "fp": 626,
- "fp_rate": 0.0036004118042894362,
- "match_probability": 0.786359051160298,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972554452667391,
- "recall": 0.748326265540645,
- "row_count": 477830,
- "tn": 173243,
- "tn_rate": 0.9963995881957106,
- "tp": 227462,
- "tp_rate": 0.748326265540645,
- "truth_threshold": 1.8800000000000001
- },
- {
- "f1": 0.8548408321020239,
- "fn": 76593,
- "fn_rate": 0.25198298465921615,
- "fp": 625,
- "fp_rate": 0.0035946603477330632,
- "match_probability": 0.7886787589285739,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972586877667297,
- "recall": 0.7480170153407838,
- "row_count": 477830,
- "tn": 173244,
- "tn_rate": 0.996405339652267,
- "tp": 227368,
- "tp_rate": 0.7480170153407838,
- "truth_threshold": 1.9000000000000001
- },
- {
- "f1": 0.8546454128733609,
- "fn": 76686,
- "fn_rate": 0.2522889449633341,
- "fp": 623,
- "fp_rate": 0.0035831574346203176,
- "match_probability": 0.7909799743478786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972663208979455,
- "recall": 0.7477110550366659,
- "row_count": 477830,
- "tn": 173246,
- "tn_rate": 0.9964168425653797,
- "tp": 227275,
- "tp_rate": 0.7477110550366659,
- "truth_threshold": 1.92
- },
- {
- "f1": 0.8541973102605097,
- "fn": 76894,
- "fn_rate": 0.25297324327792053,
- "fp": 623,
- "fp_rate": 0.0035831574346203176,
- "match_probability": 0.7932626991864332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997263823619834,
- "recall": 0.7470267567220795,
- "row_count": 477830,
- "tn": 173246,
- "tn_rate": 0.9964168425653797,
- "tp": 227067,
- "tp_rate": 0.7470267567220795,
- "truth_threshold": 1.94
- },
- {
- "f1": 0.8539671669758324,
- "fn": 77003,
- "fn_rate": 0.25333184191392977,
- "fp": 620,
- "fp_rate": 0.003565903064951199,
- "match_probability": 0.795526938708981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997275659334382,
- "recall": 0.7466681580860702,
- "row_count": 477830,
- "tn": 173249,
- "tn_rate": 0.9964340969350488,
- "tp": 226958,
- "tp_rate": 0.7466681580860702,
- "truth_threshold": 1.96
- },
- {
- "f1": 0.8536770794128716,
- "fn": 77139,
- "fn_rate": 0.2537792677350055,
- "fp": 618,
- "fp_rate": 0.003554400151838453,
- "match_probability": 0.7977727016189426,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972827998593036,
- "recall": 0.7462207322649945,
- "row_count": 477830,
- "tn": 173251,
- "tn_rate": 0.9964455998481615,
- "tp": 226822,
- "tp_rate": 0.7462207322649945,
- "truth_threshold": 1.98
- },
- {
- "f1": 0.8534952965666254,
- "fn": 77224,
- "fn_rate": 0.25405890887317784,
- "fp": 617,
- "fp_rate": 0.0035486486952820803,
- "match_probability": 0.8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972861704654415,
- "recall": 0.7459410911268222,
- "row_count": 477830,
- "tn": 173252,
- "tn_rate": 0.996451351304718,
- "tp": 226737,
- "tp_rate": 0.7459410911268222,
- "truth_threshold": 2
- },
- {
- "f1": 0.8533231934582747,
- "fn": 77303,
- "fn_rate": 0.25431881063689094,
- "fp": 617,
- "fp_rate": 0.0035486486952820803,
- "match_probability": 0.8022088492571531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972852271477285,
- "recall": 0.7456811893631091,
- "row_count": 477830,
- "tn": 173252,
- "tn_rate": 0.996451351304718,
- "tp": 226658,
- "tp_rate": 0.7456811893631091,
- "truth_threshold": 2.02
- },
- {
- "f1": 0.853167206991464,
- "fn": 77376,
- "fn_rate": 0.2545589730261448,
- "fp": 616,
- "fp_rate": 0.0035428972387257073,
- "match_probability": 0.8043992680573092,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9972887443277099,
- "recall": 0.7454410269738552,
- "row_count": 477830,
- "tn": 173253,
- "tn_rate": 0.9964571027612743,
- "tp": 226585,
- "tp_rate": 0.7454410269738552,
- "truth_threshold": 2.04
- },
- {
- "f1": 0.8529306533193232,
- "fn": 77490,
- "fn_rate": 0.25493402114087005,
- "fp": 610,
- "fp_rate": 0.00350838849938747,
- "match_probability": 0.8065712782694506,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973137338658893,
- "recall": 0.74506597885913,
- "row_count": 477830,
- "tn": 173259,
- "tn_rate": 0.9964916115006125,
- "tp": 226471,
- "tp_rate": 0.74506597885913,
- "truth_threshold": 2.06
- },
- {
- "f1": 0.8526616363478831,
- "fn": 77616,
- "fn_rate": 0.25534854800451373,
- "fp": 609,
- "fp_rate": 0.003502637042831097,
- "match_probability": 0.8087249049044327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973166368515206,
- "recall": 0.7446514519954862,
- "row_count": 477830,
- "tn": 173260,
- "tn_rate": 0.996497362957169,
- "tp": 226345,
- "tp_rate": 0.7446514519954862,
- "truth_threshold": 2.08
- },
- {
- "f1": 0.8524086738634865,
- "fn": 77736,
- "fn_rate": 0.2557433354936982,
- "fp": 605,
- "fp_rate": 0.0034796312166056054,
- "match_probability": 0.8108601760544609,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973328043027818,
- "recall": 0.7442566645063018,
- "row_count": 477830,
- "tn": 173264,
- "tn_rate": 0.9965203687833945,
- "tp": 226225,
- "tp_rate": 0.7442566645063018,
- "truth_threshold": 2.1
- },
- {
- "f1": 0.8520788339985753,
- "fn": 77890,
- "fn_rate": 0.2562499794381516,
- "fp": 603,
- "fp_rate": 0.0034681283034928598,
- "match_probability": 0.8129771228322951,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973397919479076,
- "recall": 0.7437500205618484,
- "row_count": 477830,
- "tn": 173266,
- "tn_rate": 0.9965318716965071,
- "tp": 226071,
- "tp_rate": 0.7437500205618484,
- "truth_threshold": 2.12
- },
- {
- "f1": 0.8517103958436231,
- "fn": 78061,
- "fn_rate": 0.25681255161023947,
- "fp": 601,
- "fp_rate": 0.0034566253903801137,
- "match_probability": 0.8150757793102267,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99734659008128,
- "recall": 0.7431874483897605,
- "row_count": 477830,
- "tn": 173268,
- "tn_rate": 0.9965433746096198,
- "tp": 225900,
- "tp_rate": 0.7431874483897605,
- "truth_threshold": 2.14
- },
- {
- "f1": 0.8514110295254581,
- "fn": 78200,
- "fn_rate": 0.25726984711854484,
- "fp": 601,
- "fp_rate": 0.0034566253903801137,
- "match_probability": 0.8171561824588779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973449607266237,
- "recall": 0.7427301528814552,
- "row_count": 477830,
- "tn": 173268,
- "tn_rate": 0.9965433746096198,
- "tp": 225761,
- "tp_rate": 0.7427301528814552,
- "truth_threshold": 2.16
- },
- {
- "f1": 0.8511727384517891,
- "fn": 78310,
- "fn_rate": 0.25763173565029723,
- "fp": 601,
- "fp_rate": 0.0034566253903801137,
- "match_probability": 0.8192183720858639,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997343669890211,
- "recall": 0.7423682643497027,
- "row_count": 477830,
- "tn": 173268,
- "tn_rate": 0.9965433746096198,
- "tp": 225651,
- "tp_rate": 0.7423682643497027,
- "truth_threshold": 2.18
- },
- {
- "f1": 0.8509332236680764,
- "fn": 78422,
- "fn_rate": 0.25800020397353607,
- "fp": 599,
- "fp_rate": 0.003445122477267368,
- "match_probability": 0.8212623907743639,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973511749462718,
- "recall": 0.7419997960264639,
- "row_count": 477830,
- "tn": 173270,
- "tn_rate": 0.9965548775227326,
- "tp": 225539,
- "tp_rate": 0.7419997960264639,
- "truth_threshold": 2.2
- },
- {
- "f1": 0.8506155320899409,
- "fn": 78570,
- "fn_rate": 0.25848710854353024,
- "fp": 597,
- "fp_rate": 0.003433619564154622,
- "match_probability": 0.823288283821645,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973582668106271,
- "recall": 0.7415128914564697,
- "row_count": 477830,
- "tn": 173272,
- "tn_rate": 0.9965663804358453,
- "tp": 225391,
- "tp_rate": 0.7415128914564697,
- "truth_threshold": 2.22
- },
- {
- "f1": 0.8502678439973876,
- "fn": 78731,
- "fn_rate": 0.2590167817581861,
- "fp": 596,
- "fp_rate": 0.0034278681075982495,
- "match_probability": 0.8252960991775768,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973607999078937,
- "recall": 0.7409832182418139,
- "row_count": 477830,
- "tn": 173273,
- "tn_rate": 0.9965721318924018,
- "tp": 225230,
- "tp_rate": 0.7409832182418139,
- "truth_threshold": 2.24
- },
- {
- "f1": 0.8499509100521109,
- "fn": 78877,
- "fn_rate": 0.25949710653669383,
- "fp": 596,
- "fp_rate": 0.0034278681075982495,
- "match_probability": 0.8272858873831817,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973590925203828,
- "recall": 0.7405028934633061,
- "row_count": 477830,
- "tn": 173273,
- "tn_rate": 0.9965721318924018,
- "tp": 225084,
- "tp_rate": 0.7405028934633061,
- "truth_threshold": 2.2600000000000002
- },
- {
- "f1": 0.8496717707758901,
- "fn": 79007,
- "fn_rate": 0.25992479298331034,
- "fp": 594,
- "fp_rate": 0.0034163651944855034,
- "match_probability": 0.8292577015092557,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973664142444181,
- "recall": 0.7400752070166896,
- "row_count": 477830,
- "tn": 173275,
- "tn_rate": 0.9965836348055145,
- "tp": 224954,
- "tp_rate": 0.7400752070166896,
- "truth_threshold": 2.2800000000000002
- },
- {
- "f1": 0.8493632005077772,
- "fn": 79149,
- "fn_rate": 0.2603919581788453,
- "fp": 594,
- "fp_rate": 0.0034163651944855034,
- "match_probability": 0.8312115970951024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973647551529241,
- "recall": 0.7396080418211547,
- "row_count": 477830,
- "tn": 173275,
- "tn_rate": 0.9965836348055145,
- "tp": 224812,
- "tp_rate": 0.7396080418211547,
- "truth_threshold": 2.3000000000000003
- },
- {
- "f1": 0.8491266920106112,
- "fn": 79260,
- "fn_rate": 0.2607571366063409,
- "fp": 590,
- "fp_rate": 0.0033933593682600118,
- "match_probability": 0.8331476320874132,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973811648046305,
- "recall": 0.7392428633936591,
- "row_count": 477830,
- "tn": 173279,
- "tn_rate": 0.99660664063174,
- "tp": 224701,
- "tp_rate": 0.7392428633936591,
- "truth_threshold": 2.32
- },
- {
- "f1": 0.8487824423729711,
- "fn": 79419,
- "fn_rate": 0.26128023002951034,
- "fp": 589,
- "fp_rate": 0.0033876079117036387,
- "match_probability": 0.835065866779332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973837454637522,
- "recall": 0.7387197699704896,
- "row_count": 477830,
- "tn": 173280,
- "tn_rate": 0.9966123920882963,
- "tp": 224542,
- "tp_rate": 0.7387197699704896,
- "truth_threshold": 2.34
- },
- {
- "f1": 0.8485032951327317,
- "fn": 79548,
- "fn_rate": 0.2617046265803837,
- "fp": 588,
- "fp_rate": 0.003381856455147266,
- "match_probability": 0.8369663637497393,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973866782814299,
- "recall": 0.7382953734196164,
- "row_count": 477830,
- "tn": 173281,
- "tn_rate": 0.9966181435448528,
- "tp": 224413,
- "tp_rate": 0.7382953734196164,
- "truth_threshold": 2.36
- },
- {
- "f1": 0.8481711629595731,
- "fn": 79702,
- "fn_rate": 0.26221127052483706,
- "fp": 586,
- "fp_rate": 0.00337035354203452,
- "match_probability": 0.8388491878027863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9973937601458782,
- "recall": 0.7377887294751629,
- "row_count": 477830,
- "tn": 173283,
- "tn_rate": 0.9966296464579655,
- "tp": 224259,
- "tp_rate": 0.7377887294751629,
- "truth_threshold": 2.38
- },
- {
- "f1": 0.8479292134491421,
- "fn": 79816,
- "fn_rate": 0.26258631863956233,
- "fp": 583,
- "fp_rate": 0.0033530991723654015,
- "match_probability": 0.840714405907716,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974057527321918,
- "recall": 0.7374136813604377,
- "row_count": 477830,
- "tn": 173286,
- "tn_rate": 0.9966469008276346,
- "tp": 224145,
- "tp_rate": 0.7374136813604377,
- "truth_threshold": 2.4
- },
- {
- "f1": 0.8476354087046021,
- "fn": 79953,
- "fn_rate": 0.26303703435638126,
- "fp": 580,
- "fp_rate": 0.003335844802696283,
- "match_probability": 0.8425620871389979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974174933656295,
- "recall": 0.7369629656436187,
- "row_count": 477830,
- "tn": 173289,
- "tn_rate": 0.9966641551973037,
- "tp": 224008,
- "tp_rate": 0.7369629656436187,
- "truth_threshold": 2.42
- },
- {
- "f1": 0.8473516476029704,
- "fn": 80089,
- "fn_rate": 0.26348446017745697,
- "fp": 571,
- "fp_rate": 0.0032840816936889265,
- "match_probability": 0.8443923026168105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974559242212945,
- "recall": 0.736515539822543,
- "row_count": 477830,
- "tn": 173298,
- "tn_rate": 0.9967159183063111,
- "tp": 223872,
- "tp_rate": 0.736515539822543,
- "truth_threshold": 2.44
- },
- {
- "f1": 0.8470237689587545,
- "fn": 80240,
- "fn_rate": 0.26398123443468074,
- "fp": 571,
- "fp_rate": 0.0032840816936889265,
- "match_probability": 0.8462051254478966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974542114743281,
- "recall": 0.7360187655653192,
- "row_count": 477830,
- "tn": 173298,
- "tn_rate": 0.9967159183063111,
- "tp": 223721,
- "tp_rate": 0.7360187655653192,
- "truth_threshold": 2.46
- },
- {
- "f1": 0.8467719946679593,
- "fn": 80359,
- "fn_rate": 0.264372732028122,
- "fp": 566,
- "fp_rate": 0.0032553244109070623,
- "match_probability": 0.8480006306668223,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974751079547483,
- "recall": 0.7356272679718779,
- "row_count": 477830,
- "tn": 173303,
- "tn_rate": 0.996744675589093,
- "tp": 223602,
- "tp_rate": 0.7356272679718779,
- "truth_threshold": 2.48
- },
- {
- "f1": 0.8462876107200497,
- "fn": 80580,
- "fn_rate": 0.26509979898737007,
- "fp": 566,
- "fp_rate": 0.0032553244109070623,
- "match_probability": 0.8497788951776651,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974726162886755,
- "recall": 0.7349002010126299,
- "row_count": 477830,
- "tn": 173303,
- "tn_rate": 0.996744675589093,
- "tp": 223381,
- "tp_rate": 0.7349002010126299,
- "truth_threshold": 2.5
- },
- {
- "f1": 0.8460378330857611,
- "fn": 80695,
- "fn_rate": 0.26547813699783857,
- "fp": 566,
- "fp_rate": 0.0032553244109070623,
- "match_probability": 0.851539997696156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974713177740449,
- "recall": 0.7345218630021615,
- "row_count": 477830,
- "tn": 173303,
- "tn_rate": 0.996744675589093,
- "tp": 223266,
- "tp_rate": 0.7345218630021615,
- "truth_threshold": 2.52
- },
- {
- "f1": 0.8457266965856025,
- "fn": 80838,
- "fn_rate": 0.2659485920891167,
- "fp": 565,
- "fp_rate": 0.0032495729543506892,
- "match_probability": 0.8532840186923007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974741604377526,
- "recall": 0.7340514079108833,
- "row_count": 477830,
- "tn": 173304,
- "tn_rate": 0.9967504270456493,
- "tp": 223123,
- "tp_rate": 0.7340514079108833,
- "truth_threshold": 2.54
- },
- {
- "f1": 0.84540663507109,
- "fn": 80985,
- "fn_rate": 0.26643220676336765,
- "fp": 564,
- "fp_rate": 0.003243821497794316,
- "match_probability": 0.8550110403335041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974769616176076,
- "recall": 0.7335677932366323,
- "row_count": 477830,
- "tn": 173305,
- "tn_rate": 0.9967561785022057,
- "tp": 222976,
- "tp_rate": 0.7335677932366323,
- "truth_threshold": 2.56
- },
- {
- "f1": 0.8450469721277217,
- "fn": 81150,
- "fn_rate": 0.26697503956099633,
- "fp": 563,
- "fp_rate": 0.0032380700412379436,
- "match_probability": 0.8567211464282175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974795634227798,
- "recall": 0.7330249604390037,
- "row_count": 477830,
- "tn": 173306,
- "tn_rate": 0.996761929958762,
- "tp": 222811,
- "tp_rate": 0.7330249604390037,
- "truth_threshold": 2.58
- },
- {
- "f1": 0.8448103849203188,
- "fn": 81258,
- "fn_rate": 0.26733034830126234,
- "fp": 563,
- "fp_rate": 0.0032380700412379436,
- "match_probability": 0.8584144223701331,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9974783442172117,
- "recall": 0.7326696516987377,
- "row_count": 477830,
- "tn": 173306,
- "tn_rate": 0.996761929958762,
- "tp": 222703,
- "tp_rate": 0.7326696516987377,
- "truth_threshold": 2.6
- },
- {
- "f1": 0.8445635964163337,
- "fn": 81394,
- "fn_rate": 0.26777777412233805,
- "fp": 531,
- "fp_rate": 0.003054023431434011,
- "match_probability": 0.8600909550829424,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9976198800527123,
- "recall": 0.732222225877662,
- "row_count": 477830,
- "tn": 173338,
- "tn_rate": 0.996945976568566,
- "tp": 222567,
- "tp_rate": 0.732222225877662,
- "truth_threshold": 2.62
- },
- {
- "f1": 0.8443729220118721,
- "fn": 81489,
- "fn_rate": 0.26809031421794244,
- "fp": 519,
- "fp_rate": 0.002985005952757536,
- "match_probability": 0.8617508329656802,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9976725518070236,
- "recall": 0.7319096857820576,
- "row_count": 477830,
- "tn": 173350,
- "tn_rate": 0.9970149940472425,
- "tp": 222472,
- "tp_rate": 0.7319096857820576,
- "truth_threshold": 2.64
- },
- {
- "f1": 0.8439730583482672,
- "fn": 81672,
- "fn_rate": 0.26869236513894873,
- "fp": 518,
- "fp_rate": 0.002979254496201163,
- "match_probability": 0.8633941458386707,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9976751179271747,
- "recall": 0.7313076348610512,
- "row_count": 477830,
- "tn": 173351,
- "tn_rate": 0.9970207455037988,
- "tp": 222289,
- "tp_rate": 0.7313076348610512,
- "truth_threshold": 2.66
- },
- {
- "f1": 0.843692085675224,
- "fn": 81800,
- "fn_rate": 0.26911347179407885,
- "fp": 518,
- "fp_rate": 0.002979254496201163,
- "match_probability": 0.8650209848900923,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9976737815420403,
- "recall": 0.7308865282059211,
- "row_count": 477830,
- "tn": 173351,
- "tn_rate": 0.9970207455037988,
- "tp": 222161,
- "tp_rate": 0.7308865282059211,
- "truth_threshold": 2.68
- },
- {
- "f1": 0.8433601288616712,
- "fn": 81965,
- "fn_rate": 0.2696563045917075,
- "fp": 499,
- "fp_rate": 0.002869976821630078,
- "match_probability": 0.8666314426231786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9977572529719769,
- "recall": 0.7303436954082925,
- "row_count": 477830,
- "tn": 173370,
- "tn_rate": 0.99713002317837,
- "tp": 221996,
- "tp_rate": 0.7303436954082925,
- "truth_threshold": 2.7
- },
- {
- "f1": 0.8431204164608428,
- "fn": 82077,
- "fn_rate": 0.2700247729149463,
- "fp": 496,
- "fp_rate": 0.002852722451960959,
- "match_probability": 0.8682256128040682,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997769583595647,
- "recall": 0.7299752270850537,
- "row_count": 477830,
- "tn": 173373,
- "tn_rate": 0.997147277548039,
- "tp": 221884,
- "tp_rate": 0.7299752270850537,
- "truth_threshold": 2.72
- },
- {
- "f1": 0.8429487910367212,
- "fn": 82166,
- "fn_rate": 0.2703175736360915,
- "fp": 481,
- "fp_rate": 0.0027664506036153657,
- "match_probability": 0.8698035904103196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978360236822689,
- "recall": 0.7296824263639086,
- "row_count": 477830,
- "tn": 173388,
- "tn_rate": 0.9972335493963846,
- "tp": 221795,
- "tp_rate": 0.7296824263639086,
- "truth_threshold": 2.74
- },
- {
- "f1": 0.842529085240666,
- "fn": 82359,
- "fn_rate": 0.2709525235145298,
- "fp": 478,
- "fp_rate": 0.0027491962339462467,
- "match_probability": 0.8713654715801021,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978476224783862,
- "recall": 0.7290474764854702,
- "row_count": 477830,
- "tn": 173391,
- "tn_rate": 0.9972508037660538,
- "tp": 221602,
- "tp_rate": 0.7290474764854702,
- "truth_threshold": 2.7600000000000002
- },
- {
- "f1": 0.8422165514985795,
- "fn": 82501,
- "fn_rate": 0.2714196887100648,
- "fp": 478,
- "fp_rate": 0.0027491962339462467,
- "match_probability": 0.8729113535620762,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978462453477999,
- "recall": 0.7285803112899352,
- "row_count": 477830,
- "tn": 173391,
- "tn_rate": 0.9972508037660538,
- "tp": 221460,
- "tp_rate": 0.7285803112899352,
- "truth_threshold": 2.7800000000000002
- },
- {
- "f1": 0.8419090514847417,
- "fn": 82645,
- "fn_rate": 0.27189343369708613,
- "fp": 471,
- "fp_rate": 0.0027089360380516364,
- "match_probability": 0.8744413346659732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978763408134832,
- "recall": 0.7281065663029138,
- "row_count": 477830,
- "tn": 173398,
- "tn_rate": 0.9972910639619483,
- "tp": 221316,
- "tp_rate": 0.7281065663029138,
- "truth_threshold": 2.8000000000000003
- },
- {
- "f1": 0.8414727428408334,
- "fn": 82843,
- "fn_rate": 0.2725448330542405,
- "fp": 471,
- "fp_rate": 0.0027089360380516364,
- "match_probability": 0.8759555142138866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978744432259724,
- "recall": 0.7274551669457595,
- "row_count": 477830,
- "tn": 173398,
- "tn_rate": 0.9972910639619483,
- "tp": 221118,
- "tp_rate": 0.7274551669457595,
- "truth_threshold": 2.82
- },
- {
- "f1": 0.8411736492299259,
- "fn": 82983,
- "fn_rate": 0.2730054184582891,
- "fp": 466,
- "fp_rate": 0.002680178755269772,
- "match_probability": 0.8774539924922818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997895630498004,
- "recall": 0.7269945815417109,
- "row_count": 477830,
- "tn": 173403,
- "tn_rate": 0.9973198212447302,
- "tp": 220978,
- "tp_rate": 0.7269945815417109,
- "truth_threshold": 2.84
- },
- {
- "f1": 0.8408383023767639,
- "fn": 83135,
- "fn_rate": 0.27350548261125607,
- "fp": 466,
- "fp_rate": 0.002680178755269772,
- "match_probability": 0.8789368707047344,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9978941850586556,
- "recall": 0.7264945173887439,
- "row_count": 477830,
- "tn": 173403,
- "tn_rate": 0.9973198212447302,
- "tp": 220826,
- "tp_rate": 0.7264945173887439,
- "truth_threshold": 2.86
- },
- {
- "f1": 0.8404164143116708,
- "fn": 83329,
- "fn_rate": 0.2741437223854376,
- "fp": 461,
- "fp_rate": 0.0026514214724879075,
- "match_probability": 0.880404250925403,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979149045876622,
- "recall": 0.7258562776145624,
- "row_count": 477830,
- "tn": 173408,
- "tn_rate": 0.9973485785275121,
- "tp": 220632,
- "tp_rate": 0.7258562776145624,
- "truth_threshold": 2.88
- },
- {
- "f1": 0.8400617272190364,
- "fn": 83491,
- "fn_rate": 0.2746766854958366,
- "fp": 460,
- "fp_rate": 0.002645670015931535,
- "match_probability": 0.8818562360532484,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979178925451501,
- "recall": 0.7253233145041633,
- "row_count": 477830,
- "tn": 173409,
- "tn_rate": 0.9973543299840685,
- "tp": 220470,
- "tp_rate": 0.7253233145041633,
- "truth_threshold": 2.9
- },
- {
- "f1": 0.8398406981840355,
- "fn": 83591,
- "fn_rate": 0.27500567507015705,
- "fp": 459,
- "fp_rate": 0.002639918559375162,
- "match_probability": 0.8832929297669961,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979214686476867,
- "recall": 0.724994324929843,
- "row_count": 477830,
- "tn": 173410,
- "tn_rate": 0.9973600814406248,
- "tp": 220370,
- "tp_rate": 0.724994324929843,
- "truth_threshold": 2.92
- },
- {
- "f1": 0.8394597191088339,
- "fn": 83764,
- "fn_rate": 0.2755748270337313,
- "fp": 459,
- "fp_rate": 0.002639918559375162,
- "match_probability": 0.8847144364808572,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979198390254513,
- "recall": 0.7244251729662687,
- "row_count": 477830,
- "tn": 173410,
- "tn_rate": 0.9973600814406248,
- "tp": 220197,
- "tp_rate": 0.7244251729662687,
- "truth_threshold": 2.94
- },
- {
- "f1": 0.8391348119222674,
- "fn": 83913,
- "fn_rate": 0.27606502149946865,
- "fp": 455,
- "fp_rate": 0.00261691273314967,
- "match_probability": 0.8861208613010066,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997936536010848,
- "recall": 0.7239349785005313,
- "row_count": 477830,
- "tn": 173414,
- "tn_rate": 0.9973830872668503,
- "tp": 220048,
- "tp_rate": 0.7239349785005313,
- "truth_threshold": 2.96
- },
- {
- "f1": 0.8388590522107962,
- "fn": 84039,
- "fn_rate": 0.2764795483631124,
- "fp": 453,
- "fp_rate": 0.002605409820036924,
- "match_probability": 0.8875123099828214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979444129325015,
- "recall": 0.7235204516368876,
- "row_count": 477830,
- "tn": 173416,
- "tn_rate": 0.9973945901799631,
- "tp": 219922,
- "tp_rate": 0.7235204516368876,
- "truth_threshold": 2.98
- },
- {
- "f1": 0.8385438923142665,
- "fn": 84182,
- "fn_rate": 0.2769500034543905,
- "fp": 452,
- "fp_rate": 0.0025996583634805516,
- "match_probability": 0.8888888888888888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979476095554214,
- "recall": 0.7230499965456094,
- "row_count": 477830,
- "tn": 173417,
- "tn_rate": 0.9974003416365195,
- "tp": 219779,
- "tp_rate": 0.7230499965456094,
- "truth_threshold": 3
- },
- {
- "f1": 0.8382900124791537,
- "fn": 84298,
- "fn_rate": 0.2773316313606022,
- "fp": 451,
- "fp_rate": 0.0025939069069241785,
- "match_probability": 0.890250704947779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997951061722562,
- "recall": 0.7226683686393978,
- "row_count": 477830,
- "tn": 173418,
- "tn_rate": 0.9974060930930758,
- "tp": 219663,
- "tp_rate": 0.7226683686393978,
- "truth_threshold": 3.02
- },
- {
- "f1": 0.8378725061273107,
- "fn": 84487,
- "fn_rate": 0.27795342165606773,
- "fp": 450,
- "fp_rate": 0.0025881554503678055,
- "match_probability": 0.8915978656135887,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979538385987887,
- "recall": 0.7220465783439323,
- "row_count": 477830,
- "tn": 173419,
- "tn_rate": 0.9974118445496322,
- "tp": 219474,
- "tp_rate": 0.7220465783439323,
- "truth_threshold": 3.04
- },
- {
- "f1": 0.8376861397479954,
- "fn": 84571,
- "fn_rate": 0.2782297728984969,
- "fp": 449,
- "fp_rate": 0.002582403993811433,
- "match_probability": 0.8929304788262556,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979575962408854,
- "recall": 0.7217702271015032,
- "row_count": 477830,
- "tn": 173420,
- "tn_rate": 0.9974175960061886,
- "tp": 219390,
- "tp_rate": 0.7217702271015032,
- "truth_threshold": 3.06
- },
- {
- "f1": 0.8374364105776134,
- "fn": 84690,
- "fn_rate": 0.27862127049193813,
- "fp": 441,
- "fp_rate": 0.0025363923413604496,
- "match_probability": 0.8942486529726457,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979928269734926,
- "recall": 0.7213787295080619,
- "row_count": 477830,
- "tn": 173428,
- "tn_rate": 0.9974636076586395,
- "tp": 219271,
- "tp_rate": 0.7213787295080619,
- "truth_threshold": 3.08
- },
- {
- "f1": 0.8371699468247662,
- "fn": 84810,
- "fn_rate": 0.27901605798112256,
- "fp": 441,
- "fp_rate": 0.0025363923413604496,
- "match_probability": 0.895552496848409,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9979917301176727,
- "recall": 0.7209839420188774,
- "row_count": 477830,
- "tn": 173428,
- "tn_rate": 0.9974636076586395,
- "tp": 219151,
- "tp_rate": 0.7209839420188774,
- "truth_threshold": 3.1
- },
- {
- "f1": 0.8367675269984179,
- "fn": 84994,
- "fn_rate": 0.2796213987978721,
- "fp": 437,
- "fp_rate": 0.002513386515134958,
- "match_probability": 0.8968421196206098,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9980082405060984,
- "recall": 0.7203786012021279,
- "row_count": 477830,
- "tn": 173432,
- "tn_rate": 0.997486613484865,
- "tp": 218967,
- "tp_rate": 0.7203786012021279,
- "truth_threshold": 3.12
- },
- {
- "f1": 0.8363634973546592,
- "fn": 85175,
- "fn_rate": 0.280216869927392,
- "fp": 437,
- "fp_rate": 0.002513386515134958,
- "match_probability": 0.8981176307911237,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9980065960232275,
- "recall": 0.719783130072608,
- "row_count": 477830,
- "tn": 173432,
- "tn_rate": 0.997486613484865,
- "tp": 218786,
- "tp_rate": 0.719783130072608,
- "truth_threshold": 3.14
- },
- {
- "f1": 0.8360552307462881,
- "fn": 85315,
- "fn_rate": 0.28067745533144056,
- "fp": 436,
- "fp_rate": 0.002507635058578585,
- "match_probability": 0.8993791401608047,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9980098775800842,
- "recall": 0.7193225446685595,
- "row_count": 477830,
- "tn": 173433,
- "tn_rate": 0.9974923649414215,
- "tp": 218646,
- "tp_rate": 0.7193225446685595,
- "truth_threshold": 3.16
- },
- {
- "f1": 0.8356806254685659,
- "fn": 85484,
- "fn_rate": 0.281233447712042,
- "fp": 434,
- "fp_rate": 0.0024961321454658393,
- "match_probability": 0.9006267577944164,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9980174591500656,
- "recall": 0.718766552287958,
- "row_count": 477830,
- "tn": 173435,
- "tn_rate": 0.9975038678545342,
- "tp": 218477,
- "tp_rate": 0.718766552287958,
- "truth_threshold": 3.18
- },
- {
- "f1": 0.8354044871598666,
- "fn": 85613,
- "fn_rate": 0.2816578442629153,
- "fp": 427,
- "fp_rate": 0.002455871949571229,
- "match_probability": 0.9018605939863281,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9980482230602217,
- "recall": 0.7183421557370847,
- "row_count": 477830,
- "tn": 173442,
- "tn_rate": 0.9975441280504288,
- "tp": 218348,
- "tp_rate": 0.7183421557370847,
- "truth_threshold": 3.2
- },
- {
- "f1": 0.8353659003391439,
- "fn": 85725,
- "fn_rate": 0.2820263125861541,
- "fp": 296,
- "fp_rate": 0.001702431140686379,
- "match_probability": 0.9030807592269698,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986455072941263,
- "recall": 0.7179736874138458,
- "row_count": 477830,
- "tn": 173573,
- "tn_rate": 0.9982975688593136,
- "tp": 218236,
- "tp_rate": 0.7179736874138458,
- "truth_threshold": 3.22
- },
- {
- "f1": 0.8349243912432461,
- "fn": 85923,
- "fn_rate": 0.28267771194330854,
- "fp": 296,
- "fp_rate": 0.001702431140686379,
- "match_probability": 0.9042873641700437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986442789487666,
- "recall": 0.7173222880566915,
- "row_count": 477830,
- "tn": 173573,
- "tn_rate": 0.9982975688593136,
- "tp": 218038,
- "tp_rate": 0.7173222880566915,
- "truth_threshold": 3.24
- },
- {
- "f1": 0.8345367557773854,
- "fn": 86096,
- "fn_rate": 0.2832468639068828,
- "fp": 296,
- "fp_rate": 0.001702431140686379,
- "match_probability": 0.9054805196004887,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986432038723695,
- "recall": 0.7167531360931172,
- "row_count": 477830,
- "tn": 173573,
- "tn_rate": 0.9982975688593136,
- "tp": 217865,
- "tp_rate": 0.7167531360931172,
- "truth_threshold": 3.2600000000000002
- },
- {
- "f1": 0.8342815982958051,
- "fn": 86211,
- "fn_rate": 0.28362520191735124,
- "fp": 296,
- "fp_rate": 0.001702431140686379,
- "match_probability": 0.9066603364031919,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986424882822891,
- "recall": 0.7163747980826488,
- "row_count": 477830,
- "tn": 173573,
- "tn_rate": 0.9982975688593136,
- "tp": 217750,
- "tp_rate": 0.7163747980826488,
- "truth_threshold": 3.2800000000000002
- },
- {
- "f1": 0.8340084540183413,
- "fn": 86334,
- "fn_rate": 0.2840298590937653,
- "fp": 294,
- "fp_rate": 0.001690928227573633,
- "match_probability": 0.9078269255324448,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986508872481312,
- "recall": 0.7159701409062347,
- "row_count": 477830,
- "tn": 173575,
- "tn_rate": 0.9983090717724263,
- "tp": 217627,
- "tp_rate": 0.7159701409062347,
- "truth_threshold": 3.3000000000000003
- },
- {
- "f1": 0.8337160227390339,
- "fn": 86467,
- "fn_rate": 0.28446741522761143,
- "fp": 291,
- "fp_rate": 0.0016736738579045142,
- "match_probability": 0.9089803979821356,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986638198223018,
- "recall": 0.7155325847723886,
- "row_count": 477830,
- "tn": 173578,
- "tn_rate": 0.9983263261420955,
- "tp": 217494,
- "tp_rate": 0.7155325847723886,
- "truth_threshold": 3.3200000000000003
- },
- {
- "f1": 0.8333135212034527,
- "fn": 86647,
- "fn_rate": 0.2850595964613881,
- "fp": 291,
- "fp_rate": 0.0016736738579045142,
- "match_probability": 0.9101208647566755,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986627145515958,
- "recall": 0.7149404035386119,
- "row_count": 477830,
- "tn": 173578,
- "tn_rate": 0.9983263261420955,
- "tp": 217314,
- "tp_rate": 0.7149404035386119,
- "truth_threshold": 3.34
- },
- {
- "f1": 0.833004107965464,
- "fn": 86786,
- "fn_rate": 0.2855168919696935,
- "fp": 290,
- "fp_rate": 0.0016679224013481414,
- "match_probability": 0.911248436842651,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986664520727473,
- "recall": 0.7144831080303066,
- "row_count": 477830,
- "tn": 173579,
- "tn_rate": 0.9983320775986518,
- "tp": 217175,
- "tp_rate": 0.7144831080303066,
- "truth_threshold": 3.36
- },
- {
- "f1": 0.8326676565491469,
- "fn": 86937,
- "fn_rate": 0.28601366622691726,
- "fp": 289,
- "fp_rate": 0.0016621709447917686,
- "match_probability": 0.9123632251811958,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986701209775761,
- "recall": 0.7139863337730827,
- "row_count": 477830,
- "tn": 173580,
- "tn_rate": 0.9983378290552082,
- "tp": 217024,
- "tp_rate": 0.7139863337730827,
- "truth_threshold": 3.38
- },
- {
- "f1": 0.8323002820901537,
- "fn": 87101,
- "fn_rate": 0.2865532091288027,
- "fp": 289,
- "fp_rate": 0.0016621709447917686,
- "match_probability": 0.9134653406410783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986691165973595,
- "recall": 0.7134467908711973,
- "row_count": 477830,
- "tn": 173580,
- "tn_rate": 0.9983378290552082,
- "tp": 216860,
- "tp_rate": 0.7134467908711973,
- "truth_threshold": 3.4
- },
- {
- "f1": 0.8319646799116998,
- "fn": 87255,
- "fn_rate": 0.2870598530732561,
- "fp": 283,
- "fp_rate": 0.0016276622054535311,
- "match_probability": 0.9145548939924946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9986957864223532,
- "recall": 0.7129401469267439,
- "row_count": 477830,
- "tn": 173586,
- "tn_rate": 0.9983723377945465,
- "tp": 216706,
- "tp_rate": 0.7129401469267439,
- "truth_threshold": 3.42
- },
- {
- "f1": 0.8316532451623061,
- "fn": 87396,
- "fn_rate": 0.28752372837304785,
- "fp": 281,
- "fp_rate": 0.0016161592923407853,
- "match_probability": 0.9156319958815625,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987041494885771,
- "recall": 0.7124762716269522,
- "row_count": 477830,
- "tn": 173588,
- "tn_rate": 0.9983838407076592,
- "tp": 216565,
- "tp_rate": 0.7124762716269522,
- "truth_threshold": 3.44
- },
- {
- "f1": 0.8313249772403382,
- "fn": 87543,
- "fn_rate": 0.28800734304729886,
- "fp": 280,
- "fp_rate": 0.0016104078357844125,
- "match_probability": 0.9166967568055082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987078791682433,
- "recall": 0.7119926569527012,
- "row_count": 477830,
- "tn": 173589,
- "tn_rate": 0.9983895921642156,
- "tp": 216418,
- "tp_rate": 0.7119926569527012,
- "truth_threshold": 3.46
- },
- {
- "f1": 0.8310305079535849,
- "fn": 87677,
- "fn_rate": 0.28844818907688813,
- "fp": 275,
- "fp_rate": 0.0015816505530025478,
- "match_probability": 0.9177492870885379,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987301382071399,
- "recall": 0.7115518109231118,
- "row_count": 477830,
- "tn": 173594,
- "tn_rate": 0.9984183494469975,
- "tp": 216284,
- "tp_rate": 0.7115518109231118,
- "truth_threshold": 3.48
- },
- {
- "f1": 0.8307827704416535,
- "fn": 87788,
- "fn_rate": 0.2888133675043838,
- "fp": 275,
- "fp_rate": 0.0015816505530025478,
- "match_probability": 0.9187896968583877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987294869899468,
- "recall": 0.7111866324956162,
- "row_count": 477830,
- "tn": 173594,
- "tn_rate": 0.9984183494469975,
- "tp": 216173,
- "tp_rate": 0.7111866324956162,
- "truth_threshold": 3.5
- },
- {
- "f1": 0.8305632005412137,
- "fn": 87885,
- "fn_rate": 0.28913248739147457,
- "fp": 275,
- "fp_rate": 0.0015816505530025478,
- "match_probability": 0.9198180960235423,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99872891736114,
- "recall": 0.7108675126085254,
- "row_count": 477830,
- "tn": 173594,
- "tn_rate": 0.9984183494469975,
- "tp": 216076,
- "tp_rate": 0.7108675126085254,
- "truth_threshold": 3.52
- },
- {
- "f1": 0.8302612961766787,
- "fn": 88020,
- "fn_rate": 0.2895766233168071,
- "fp": 274,
- "fp_rate": 0.001575899096446175,
- "match_probability": 0.9208345942511155,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987327428716787,
- "recall": 0.7104233766831929,
- "row_count": 477830,
- "tn": 173595,
- "tn_rate": 0.9984241009035538,
- "tp": 215941,
- "tp_rate": 0.7104233766831929,
- "truth_threshold": 3.54
- },
- {
- "f1": 0.8299783857792272,
- "fn": 88155,
- "fn_rate": 0.2900207592421396,
- "fp": 262,
- "fp_rate": 0.0015068816177697003,
- "match_probability": 0.9218393009453847,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987874187755706,
- "recall": 0.7099792407578603,
- "row_count": 477830,
- "tn": 173607,
- "tn_rate": 0.9984931183822303,
- "tp": 215806,
- "tp_rate": 0.7099792407578603,
- "truth_threshold": 3.56
- },
- {
- "f1": 0.829699329106912,
- "fn": 88279,
- "fn_rate": 0.2904287063142969,
- "fp": 262,
- "fp_rate": 0.0015068816177697003,
- "match_probability": 0.9228323252269688,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987867224836069,
- "recall": 0.7095712936857032,
- "row_count": 477830,
- "tn": 173607,
- "tn_rate": 0.9984931183822303,
- "tp": 215682,
- "tp_rate": 0.7095712936857032,
- "truth_threshold": 3.58
- },
- {
- "f1": 0.8294928570604101,
- "fn": 88370,
- "fn_rate": 0.29072808682692847,
- "fp": 262,
- "fp_rate": 0.0015068816177697003,
- "match_probability": 0.9238137759126431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987862109861804,
- "recall": 0.7092719131730716,
- "row_count": 477830,
- "tn": 173607,
- "tn_rate": 0.9984931183822303,
- "tp": 215591,
- "tp_rate": 0.7092719131730716,
- "truth_threshold": 3.6
- },
- {
- "f1": 0.8292541196210179,
- "fn": 88476,
- "fn_rate": 0.29107681577570804,
- "fp": 262,
- "fp_rate": 0.0015068816177697003,
- "match_probability": 0.9247837614957818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987856146319531,
- "recall": 0.7089231842242919,
- "row_count": 477830,
- "tn": 173607,
- "tn_rate": 0.9984931183822303,
- "tp": 215485,
- "tp_rate": 0.7089231842242919,
- "truth_threshold": 3.62
- },
- {
- "f1": 0.828936681281541,
- "fn": 88619,
- "fn_rate": 0.29154727086698623,
- "fp": 260,
- "fp_rate": 0.0014953787046569544,
- "match_probability": 0.9257423901274181,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987940742664725,
- "recall": 0.7084527291330138,
- "row_count": 477830,
- "tn": 173609,
- "tn_rate": 0.998504621295343,
- "tp": 215342,
- "tp_rate": 0.7084527291330138,
- "truth_threshold": 3.64
- },
- {
- "f1": 0.8286668052764109,
- "fn": 88738,
- "fn_rate": 0.2919387684604275,
- "fp": 260,
- "fp_rate": 0.0014953787046569544,
- "match_probability": 0.9266897695979149,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987934082967102,
- "recall": 0.7080612315395726,
- "row_count": 477830,
- "tn": 173609,
- "tn_rate": 0.998504621295343,
- "tp": 215223,
- "tp_rate": 0.7080612315395726,
- "truth_threshold": 3.66
- },
- {
- "f1": 0.8283690729272576,
- "fn": 88870,
- "fn_rate": 0.2923730346985304,
- "fp": 260,
- "fp_rate": 0.0014953787046569544,
- "match_probability": 0.9276260073192355,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987926687129384,
- "recall": 0.7076269653014696,
- "row_count": 477830,
- "tn": 173609,
- "tn_rate": 0.998504621295343,
- "tp": 215091,
- "tp_rate": 0.7076269653014696,
- "truth_threshold": 3.68
- },
- {
- "f1": 0.8280118346842543,
- "fn": 89029,
- "fn_rate": 0.29289612812169985,
- "fp": 259,
- "fp_rate": 0.0014896272481005814,
- "match_probability": 0.9285512103078053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987964180658113,
- "recall": 0.7071038718783001,
- "row_count": 477830,
- "tn": 173610,
- "tn_rate": 0.9985103727518995,
- "tp": 214932,
- "tp_rate": 0.7071038718783001,
- "truth_threshold": 3.7
- },
- {
- "f1": 0.827718285544736,
- "fn": 89159,
- "fn_rate": 0.29332381456831635,
- "fp": 259,
- "fp_rate": 0.0014896272481005814,
- "match_probability": 0.9294654851679567,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987956905250138,
- "recall": 0.7066761854316836,
- "row_count": 477830,
- "tn": 173610,
- "tn_rate": 0.9985103727518995,
- "tp": 214802,
- "tp_rate": 0.7066761854316836,
- "truth_threshold": 3.72
- },
- {
- "f1": 0.8274962325744524,
- "fn": 89258,
- "fn_rate": 0.2936495142468935,
- "fp": 259,
- "fp_rate": 0.0014896272481005814,
- "match_probability": 0.9303689380759456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987951358844819,
- "recall": 0.7063504857531064,
- "row_count": 477830,
- "tn": 173610,
- "tn_rate": 0.9985103727518995,
- "tp": 214703,
- "tp_rate": 0.7063504857531064,
- "truth_threshold": 3.74
- },
- {
- "f1": 0.8271759621575151,
- "fn": 89399,
- "fn_rate": 0.29411338954668526,
- "fp": 259,
- "fp_rate": 0.0014896272481005814,
- "match_probability": 0.9312616747645321,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.998794345059375,
- "recall": 0.7058866104533147,
- "row_count": 477830,
- "tn": 173610,
- "tn_rate": 0.9985103727518995,
- "tp": 214562,
- "tp_rate": 0.7058866104533147,
- "truth_threshold": 3.7600000000000002
- },
- {
- "f1": 0.826967938460352,
- "fn": 89491,
- "fn_rate": 0.29441605995506004,
- "fp": 259,
- "fp_rate": 0.0014896272481005814,
- "match_probability": 0.9321438005081154,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9987938285001094,
- "recall": 0.70558394004494,
- "row_count": 477830,
- "tn": 173610,
- "tn_rate": 0.9985103727518995,
- "tp": 214470,
- "tp_rate": 0.70558394004494,
- "truth_threshold": 3.7800000000000002
- },
- {
- "f1": 0.8267157760765181,
- "fn": 89606,
- "fn_rate": 0.2947943979655285,
- "fp": 255,
- "fp_rate": 0.00146662142187509,
- "match_probability": 0.9330154201084124,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9988117981454732,
- "recall": 0.7052056020344716,
- "row_count": 477830,
- "tn": 173614,
- "tn_rate": 0.998533378578125,
- "tp": 214355,
- "tp_rate": 0.7052056020344716,
- "truth_threshold": 3.8000000000000003
- },
- {
- "f1": 0.8262003611501243,
- "fn": 89833,
- "fn_rate": 0.29554120429923575,
- "fp": 255,
- "fp_rate": 0.00146662142187509,
- "match_probability": 0.9338766378806729,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9988105400148333,
- "recall": 0.7044587957007642,
- "row_count": 477830,
- "tn": 173614,
- "tn_rate": 0.998533378578125,
- "tp": 214128,
- "tp_rate": 0.7044587957007642,
- "truth_threshold": 3.8200000000000003
- },
- {
- "f1": 0.825850177349446,
- "fn": 89989,
- "fn_rate": 0.29605442803517557,
- "fp": 253,
- "fp_rate": 0.0014551185087623441,
- "match_probability": 0.9347275576404188,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.998818998716303,
- "recall": 0.7039455719648244,
- "row_count": 477830,
- "tn": 173616,
- "tn_rate": 0.9985448814912377,
- "tp": 213972,
- "tp_rate": 0.7039455719648244,
- "truth_threshold": 3.84
- },
- {
- "f1": 0.8256847794614419,
- "fn": 90088,
- "fn_rate": 0.2963801277137528,
- "fp": 217,
- "fp_rate": 0.0012480660727329197,
- "match_probability": 0.9355682826907014,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989864075855949,
- "recall": 0.7036198722862472,
- "row_count": 477830,
- "tn": 173652,
- "tn_rate": 0.9987519339272671,
- "tp": 213873,
- "tp_rate": 0.7036198722862472,
- "truth_threshold": 3.86
- },
- {
- "f1": 0.8254158879226456,
- "fn": 90208,
- "fn_rate": 0.2967749152029372,
- "fp": 215,
- "fp_rate": 0.0012365631596201738,
- "match_probability": 0.9363989158098637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989951768488746,
- "recall": 0.7032250847970628,
- "row_count": 477830,
- "tn": 173654,
- "tn_rate": 0.9987634368403798,
- "tp": 213753,
- "tp_rate": 0.7032250847970628,
- "truth_threshold": 3.88
- },
- {
- "f1": 0.8251209931285945,
- "fn": 90338,
- "fn_rate": 0.2972026016495537,
- "fp": 215,
- "fp_rate": 0.0012365631596201738,
- "match_probability": 0.9372195592398013,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989945659798539,
- "recall": 0.7027973983504463,
- "row_count": 477830,
- "tn": 173654,
- "tn_rate": 0.9987634368403798,
- "tp": 213623,
- "tp_rate": 0.7027973983504463,
- "truth_threshold": 3.9
- },
- {
- "f1": 0.8247714645586542,
- "fn": 90492,
- "fn_rate": 0.29770924559400713,
- "fp": 215,
- "fp_rate": 0.0012365631596201738,
- "match_probability": 0.9380303146747102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989938413732428,
- "recall": 0.7022907544059929,
- "row_count": 477830,
- "tn": 173654,
- "tn_rate": 0.9987634368403798,
- "tp": 213469,
- "tp_rate": 0.7022907544059929,
- "truth_threshold": 3.92
- },
- {
- "f1": 0.8244755677163041,
- "fn": 90623,
- "fn_rate": 0.29814022193636686,
- "fp": 214,
- "fp_rate": 0.0012308117030638008,
- "match_probability": 0.9388312832503134,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989979021502959,
- "recall": 0.7018597780636332,
- "row_count": 477830,
- "tn": 173655,
- "tn_rate": 0.9987691882969362,
- "tp": 213338,
- "tp_rate": 0.7018597780636332,
- "truth_threshold": 3.94
- },
- {
- "f1": 0.8240392793628701,
- "fn": 90815,
- "fn_rate": 0.298771881919062,
- "fp": 214,
- "fp_rate": 0.0012308117030638008,
- "match_probability": 0.9396225655335566,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989970003749531,
- "recall": 0.701228118080938,
- "row_count": 477830,
- "tn": 173655,
- "tn_rate": 0.9987691882969362,
- "tp": 213146,
- "tp_rate": 0.701228118080938,
- "truth_threshold": 3.96
- },
- {
- "f1": 0.8236260973817535,
- "fn": 90996,
- "fn_rate": 0.29936735304858186,
- "fp": 214,
- "fp_rate": 0.0012308117030638008,
- "match_probability": 0.9404042615127621,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9989961487763804,
- "recall": 0.7006326469514181,
- "row_count": 477830,
- "tn": 173655,
- "tn_rate": 0.9987691882969362,
- "tp": 212965,
- "tp_rate": 0.7006326469514181,
- "truth_threshold": 3.98
- },
- {
- "f1": 0.8233100449519919,
- "fn": 91137,
- "fn_rate": 0.2998312283483736,
- "fp": 212,
- "fp_rate": 0.0012193087899510552,
- "match_probability": 0.9411764705882353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990048630278451,
- "recall": 0.7001687716516264,
- "row_count": 477830,
- "tn": 173657,
- "tn_rate": 0.998780691210049,
- "tp": 212824,
- "tp_rate": 0.7001687716516264,
- "truth_threshold": 4
- },
- {
- "f1": 0.8230231973223441,
- "fn": 91263,
- "fn_rate": 0.30024575521201735,
- "fp": 212,
- "fp_rate": 0.0012193087899510552,
- "match_probability": 0.9419392915633099,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99900427410643,
- "recall": 0.6997542447879826,
- "row_count": 477830,
- "tn": 173657,
- "tn_rate": 0.998780691210049,
- "tp": 212698,
- "tp_rate": 0.6997542447879826,
- "truth_threshold": 4.0200000000000005
- },
- {
- "f1": 0.8226541876649868,
- "fn": 91425,
- "fn_rate": 0.30077871832241637,
- "fp": 212,
- "fp_rate": 0.0012193087899510552,
- "match_probability": 0.9426928226358258,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990035158967416,
- "recall": 0.6992212816775837,
- "row_count": 477830,
- "tn": 173657,
- "tn_rate": 0.998780691210049,
- "tp": 212536,
- "tp_rate": 0.6992212816775837,
- "truth_threshold": 4.04
- },
- {
- "f1": 0.8223305444028449,
- "fn": 91567,
- "fn_rate": 0.30124588351795134,
- "fp": 211,
- "fp_rate": 0.0012135573333946822,
- "match_probability": 0.9434371613900292,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990075492109781,
- "recall": 0.6987541164820487,
- "row_count": 477830,
- "tn": 173658,
- "tn_rate": 0.9987864426666053,
- "tp": 212394,
- "tp_rate": 0.6987541164820487,
- "truth_threshold": 4.0600000000000005
- },
- {
- "f1": 0.8220516534286522,
- "fn": 91690,
- "fn_rate": 0.3016505406943654,
- "fp": 211,
- "fp_rate": 0.0012135573333946822,
- "match_probability": 0.9441724047888862,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990069747084459,
- "recall": 0.6983494593056346,
- "row_count": 477830,
- "tn": 173658,
- "tn_rate": 0.9987864426666053,
- "tp": 212271,
- "tp_rate": 0.6983494593056346,
- "truth_threshold": 4.08
- },
- {
- "f1": 0.8216089941268537,
- "fn": 91884,
- "fn_rate": 0.30228878046854696,
- "fp": 211,
- "fp_rate": 0.0012135573333946822,
- "match_probability": 0.9448986491668007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990060672294242,
- "recall": 0.6977112195314531,
- "row_count": 477830,
- "tn": 173658,
- "tn_rate": 0.9987864426666053,
- "tp": 212077,
- "tp_rate": 0.6977112195314531,
- "truth_threshold": 4.1
- },
- {
- "f1": 0.8212854673827958,
- "fn": 92025,
- "fn_rate": 0.3027526557683387,
- "fp": 211,
- "fp_rate": 0.0012135573333946822,
- "match_probability": 0.9456159902227271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990054066284227,
- "recall": 0.6972473442316613,
- "row_count": 477830,
- "tn": 173658,
- "tn_rate": 0.9987864426666053,
- "tp": 211936,
- "tp_rate": 0.6972473442316613,
- "truth_threshold": 4.12
- },
- {
- "f1": 0.8209962440259081,
- "fn": 92153,
- "fn_rate": 0.3031737624234688,
- "fp": 209,
- "fp_rate": 0.0012020544202819363,
- "match_probability": 0.94632452301367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990142299909913,
- "recall": 0.6968262375765312,
- "row_count": 477830,
- "tn": 173660,
- "tn_rate": 0.998797945579718,
- "tp": 211808,
- "tp_rate": 0.6968262375765312,
- "truth_threshold": 4.14
- },
- {
- "f1": 0.8207251636115505,
- "fn": 92273,
- "fn_rate": 0.30356854991265325,
- "fp": 208,
- "fp_rate": 0.0011963029637255635,
- "match_probability": 0.9470243419485608,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990183863782233,
- "recall": 0.6964314500873467,
- "row_count": 477830,
- "tn": 173661,
- "tn_rate": 0.9988036970362745,
- "tp": 211688,
- "tp_rate": 0.6964314500873467,
- "truth_threshold": 4.16
- },
- {
- "f1": 0.8204050291245569,
- "fn": 92413,
- "fn_rate": 0.30402913531670184,
- "fp": 208,
- "fp_rate": 0.0011963029637255635,
- "match_probability": 0.9477155407825041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990177373958707,
- "recall": 0.6959708646832982,
- "row_count": 477830,
- "tn": 173661,
- "tn_rate": 0.9988036970362745,
- "tp": 211548,
- "tp_rate": 0.6959708646832982,
- "truth_threshold": 4.18
- },
- {
- "f1": 0.8200716873685926,
- "fn": 92558,
- "fn_rate": 0.30450617019946635,
- "fp": 208,
- "fp_rate": 0.0011963029637255635,
- "match_probability": 0.9483982126113827,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990170643303042,
- "recall": 0.6954938298005336,
- "row_count": 477830,
- "tn": 173661,
- "tn_rate": 0.9988036970362745,
- "tp": 211403,
- "tp_rate": 0.6954938298005336,
- "truth_threshold": 4.2
- },
- {
- "f1": 0.8197498001660756,
- "fn": 92700,
- "fn_rate": 0.3049733353950013,
- "fp": 206,
- "fp_rate": 0.0011848000506128177,
- "match_probability": 0.9490724498668156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990258527335234,
- "recall": 0.6950266646049986,
- "row_count": 477830,
- "tn": 173663,
- "tn_rate": 0.9988151999493872,
- "tp": 211261,
- "tp_rate": 0.6950266646049986,
- "truth_threshold": 4.22
- },
- {
- "f1": 0.8193910741594665,
- "fn": 92858,
- "fn_rate": 0.3054931389224275,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9497383443114579,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990345800186459,
- "recall": 0.6945068610775724,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 211103,
- "tp_rate": 0.6945068610775724,
- "truth_threshold": 4.24
- },
- {
- "f1": 0.8190014327370714,
- "fn": 93028,
- "fn_rate": 0.3060524211987722,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9503959870346359,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990338026968272,
- "recall": 0.6939475788012278,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210933,
- "tp_rate": 0.6939475788012278,
- "truth_threshold": 4.26
- },
- {
- "f1": 0.8183407470717352,
- "fn": 93316,
- "fn_rate": 0.30699991117281494,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9510454684483088,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990324829617404,
- "recall": 0.6930000888271851,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210645,
- "tp_rate": 0.6930000888271851,
- "truth_threshold": 4.28
- },
- {
- "f1": 0.8180140129715194,
- "fn": 93459,
- "fn_rate": 0.3074703662640931,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9516868782833479,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999031826336222,
- "recall": 0.6925296337359069,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210502,
- "tp_rate": 0.6925296337359069,
- "truth_threshold": 4.3
- },
- {
- "f1": 0.817637249223521,
- "fn": 93623,
- "fn_rate": 0.30800990916597853,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9523203055861257,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990310721851222,
- "recall": 0.6919900908340215,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210338,
- "tp_rate": 0.6919900908340215,
- "truth_threshold": 4.32
- },
- {
- "f1": 0.8172333608125554,
- "fn": 93798,
- "fn_rate": 0.30858564092103924,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9529458387154083,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999030266153912,
- "recall": 0.6914143590789608,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210163,
- "tp_rate": 0.6914143590789608,
- "truth_threshold": 4.34
- },
- {
- "f1": 0.8169757456010703,
- "fn": 93910,
- "fn_rate": 0.3089541092442781,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9535635653395406,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990297495897839,
- "recall": 0.691045890755722,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 210051,
- "tp_rate": 0.691045890755722,
- "truth_threshold": 4.36
- },
- {
- "f1": 0.8166167373458351,
- "fn": 94066,
- "fn_rate": 0.30946733298021784,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9541735724339184,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990290291719618,
- "recall": 0.6905326670197821,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 209895,
- "tp_rate": 0.6905326670197821,
- "truth_threshold": 4.38
- },
- {
- "f1": 0.8161930115436409,
- "fn": 94250,
- "fn_rate": 0.3100726737969674,
- "fp": 204,
- "fp_rate": 0.0011732971375000719,
- "match_probability": 0.9547759462787397,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990281780720768,
- "recall": 0.6899273262030327,
- "row_count": 477830,
- "tn": 173665,
- "tn_rate": 0.9988267028625,
- "tp": 209711,
- "tp_rate": 0.6899273262030327,
- "truth_threshold": 4.4
- },
- {
- "f1": 0.815794494041246,
- "fn": 94425,
- "fn_rate": 0.31064840555202805,
- "fp": 202,
- "fp_rate": 0.001161794224387326,
- "match_probability": 0.9553707724570261,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999036893648266,
- "recall": 0.6893515944479719,
- "row_count": 477830,
- "tn": 173667,
- "tn_rate": 0.9988382057756127,
- "tp": 209536,
- "tp_rate": 0.6893515944479719,
- "truth_threshold": 4.42
- },
- {
- "f1": 0.815462444066252,
- "fn": 94569,
- "fn_rate": 0.3111221505390494,
- "fp": 202,
- "fp_rate": 0.001161794224387326,
- "match_probability": 0.9559581358529086,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990362319532048,
- "recall": 0.6888778494609505,
- "row_count": 477830,
- "tn": 173667,
- "tn_rate": 0.9988382057756127,
- "tp": 209392,
- "tp_rate": 0.6888778494609505,
- "truth_threshold": 4.44
- },
- {
- "f1": 0.8151550210940878,
- "fn": 94705,
- "fn_rate": 0.31156957636012517,
- "fp": 198,
- "fp_rate": 0.0011387883981618344,
- "match_probability": 0.9565381206501699,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990546850382422,
- "recall": 0.6884304236398748,
- "row_count": 477830,
- "tn": 173671,
- "tn_rate": 0.9988612116018382,
- "tp": 209256,
- "tp_rate": 0.6884304236398748,
- "truth_threshold": 4.46
- },
- {
- "f1": 0.8147742594165738,
- "fn": 94872,
- "fn_rate": 0.3121189889492402,
- "fp": 195,
- "fp_rate": 0.0011215340284927158,
- "match_probability": 0.9571108103310354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999068251753598,
- "recall": 0.6878810110507598,
- "row_count": 477830,
- "tn": 173674,
- "tn_rate": 0.9988784659715073,
- "tp": 209089,
- "tp_rate": 0.6878810110507598,
- "truth_threshold": 4.48
- },
- {
- "f1": 0.8144739765432243,
- "fn": 95002,
- "fn_rate": 0.31254667539585673,
- "fp": 195,
- "fp_rate": 0.0011215340284927158,
- "match_probability": 0.9576762876752064,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990676726239995,
- "recall": 0.6874533246041433,
- "row_count": 477830,
- "tn": 173674,
- "tn_rate": 0.9988784659715073,
- "tp": 208959,
- "tp_rate": 0.6874533246041433,
- "truth_threshold": 4.5
- },
- {
- "f1": 0.8140895922767699,
- "fn": 95169,
- "fn_rate": 0.31309608798497174,
- "fp": 194,
- "fp_rate": 0.001115782571936343,
- "match_probability": 0.9582346347591285,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990717081526992,
- "recall": 0.6869039120150282,
- "row_count": 477830,
- "tn": 173675,
- "tn_rate": 0.9988842174280637,
- "tp": 208792,
- "tp_rate": 0.6869039120150282,
- "truth_threshold": 4.5200000000000005
- },
- {
- "f1": 0.8137526764716206,
- "fn": 95314,
- "fn_rate": 0.3135731228677363,
- "fp": 194,
- "fp_rate": 0.001115782571936343,
- "match_probability": 0.9587859329554874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990710636321412,
- "recall": 0.6864268771322637,
- "row_count": 477830,
- "tn": 173675,
- "tn_rate": 0.9988842174280637,
- "tp": 208647,
- "tp_rate": 0.6864268771322637,
- "truth_threshold": 4.54
- },
- {
- "f1": 0.8133734403895222,
- "fn": 95482,
- "fn_rate": 0.3141258253525946,
- "fp": 189,
- "fp_rate": 0.0010870252891544783,
- "match_probability": 0.9593302629329274,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999094254988786,
- "recall": 0.6858741746474054,
- "row_count": 477830,
- "tn": 173680,
- "tn_rate": 0.9989129747108455,
- "tp": 208479,
- "tp_rate": 0.6858741746474054,
- "truth_threshold": 4.5600000000000005
- },
- {
- "f1": 0.8130863368871267,
- "fn": 95606,
- "fn_rate": 0.31453377242475183,
- "fp": 189,
- "fp_rate": 0.0010870252891544783,
- "match_probability": 0.9598677046559833,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999093716433942,
- "recall": 0.6854662275752481,
- "row_count": 477830,
- "tn": 173680,
- "tn_rate": 0.9989129747108455,
- "tp": 208355,
- "tp_rate": 0.6854662275752481,
- "truth_threshold": 4.58
- },
- {
- "f1": 0.8128083624781414,
- "fn": 95726,
- "fn_rate": 0.3149285599139363,
- "fp": 188,
- "fp_rate": 0.0010812738325981055,
- "match_probability": 0.9603983373852208,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990979882258676,
- "recall": 0.6850714400860637,
- "row_count": 477830,
- "tn": 173681,
- "tn_rate": 0.9989187261674018,
- "tp": 208235,
- "tp_rate": 0.6850714400860637,
- "truth_threshold": 4.6000000000000005
- },
- {
- "f1": 0.812497803806735,
- "fn": 95860,
- "fn_rate": 0.31536940594352564,
- "fp": 188,
- "fp_rate": 0.0010812738325981055,
- "match_probability": 0.96092223967758,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990974079284072,
- "recall": 0.6846305940564743,
- "row_count": 477830,
- "tn": 173681,
- "tn_rate": 0.9989187261674018,
- "tp": 208101,
- "tp_rate": 0.6846305940564743,
- "truth_threshold": 4.62
- },
- {
- "f1": 0.8121221352580025,
- "fn": 96022,
- "fn_rate": 0.31590236905392466,
- "fp": 188,
- "fp_rate": 0.0010812738325981055,
- "match_probability": 0.9614394893869119,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990967053770053,
- "recall": 0.6840976309460753,
- "row_count": 477830,
- "tn": 173681,
- "tn_rate": 0.9989187261674018,
- "tp": 207939,
- "tp_rate": 0.6840976309460753,
- "truth_threshold": 4.64
- },
- {
- "f1": 0.8116519041497845,
- "fn": 96226,
- "fn_rate": 0.3165735077855383,
- "fp": 187,
- "fp_rate": 0.0010755223760417327,
- "match_probability": 0.9619501636647065,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991006242725637,
- "recall": 0.6834264922144617,
- "row_count": 477830,
- "tn": 173682,
- "tn_rate": 0.9989244776239583,
- "tp": 207735,
- "tp_rate": 0.6834264922144617,
- "truth_threshold": 4.66
- },
- {
- "f1": 0.811262497166397,
- "fn": 96393,
- "fn_rate": 0.31712292037465334,
- "fp": 187,
- "fp_rate": 0.0010755223760417327,
- "match_probability": 0.9624543389610023,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990999013260812,
- "recall": 0.6828770796253467,
- "row_count": 477830,
- "tn": 173682,
- "tn_rate": 0.9989244776239583,
- "tp": 207568,
- "tp_rate": 0.6828770796253467,
- "truth_threshold": 4.68
- },
- {
- "f1": 0.8109557765684619,
- "fn": 96525,
- "fn_rate": 0.3175571866127562,
- "fp": 187,
- "fp_rate": 0.0010755223760417327,
- "match_probability": 0.9629520910254744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990993290724053,
- "recall": 0.6824428133872438,
- "row_count": 477830,
- "tn": 173682,
- "tn_rate": 0.9989244776239583,
- "tp": 207436,
- "tp_rate": 0.6824428133872438,
- "truth_threshold": 4.7
- },
- {
- "f1": 0.8106202511350349,
- "fn": 96670,
- "fn_rate": 0.3180342214955208,
- "fp": 187,
- "fp_rate": 0.0010755223760417327,
- "match_probability": 0.9634434949086931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990986996211646,
- "recall": 0.6819657785044791,
- "row_count": 477830,
- "tn": 173682,
- "tn_rate": 0.9989244776239583,
- "tp": 207291,
- "tp_rate": 0.6819657785044791,
- "truth_threshold": 4.72
- },
- {
- "f1": 0.8102534413493924,
- "fn": 96827,
- "fn_rate": 0.31855073512720383,
- "fp": 187,
- "fp_rate": 0.0010755223760417327,
- "match_probability": 0.9639286249635483,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9990980170846175,
- "recall": 0.6814492648727962,
- "row_count": 477830,
- "tn": 173682,
- "tn_rate": 0.9989244776239583,
- "tp": 207134,
- "tp_rate": 0.6814492648727962,
- "truth_threshold": 4.74
- },
- {
- "f1": 0.8097444527061401,
- "fn": 97047,
- "fn_rate": 0.3192745121907087,
- "fp": 186,
- "fp_rate": 0.0010697709194853596,
- "match_probability": 0.9644075548468342,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991018831482376,
- "recall": 0.6807254878092913,
- "row_count": 477830,
- "tn": 173683,
- "tn_rate": 0.9989302290805147,
- "tp": 206914,
- "tp_rate": 0.6807254878092913,
- "truth_threshold": 4.76
- },
- {
- "f1": 0.809385679557492,
- "fn": 97201,
- "fn_rate": 0.31978115613516206,
- "fp": 186,
- "fp_rate": 0.0010697709194853596,
- "match_probability": 0.9648803575209879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991012148096605,
- "recall": 0.6802188438648379,
- "row_count": 477830,
- "tn": 173683,
- "tn_rate": 0.9989302290805147,
- "tp": 206760,
- "tp_rate": 0.6802188438648379,
- "truth_threshold": 4.78
- },
- {
- "f1": 0.8090322782753071,
- "fn": 97356,
- "fn_rate": 0.32029108997535866,
- "fp": 181,
- "fp_rate": 0.0010410136367034952,
- "match_probability": 0.9653471052559783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991246989641465,
- "recall": 0.6797089100246413,
- "row_count": 477830,
- "tn": 173688,
- "tn_rate": 0.9989589863632965,
- "tp": 206605,
- "tp_rate": 0.6797089100246413,
- "truth_threshold": 4.8
- },
- {
- "f1": 0.8086038185222617,
- "fn": 97539,
- "fn_rate": 0.320893140896365,
- "fp": 181,
- "fp_rate": 0.0010410136367034952,
- "match_probability": 0.9658078696313372,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991239236603534,
- "recall": 0.679106859103635,
- "row_count": 477830,
- "tn": 173688,
- "tn_rate": 0.9989589863632965,
- "tp": 206422,
- "tp_rate": 0.679106859103635,
- "truth_threshold": 4.82
- },
- {
- "f1": 0.8082809585756155,
- "fn": 97678,
- "fn_rate": 0.3213504364046703,
- "fp": 181,
- "fp_rate": 0.0010410136367034952,
- "match_probability": 0.9662627215383301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999123333849969,
- "recall": 0.6786495635953297,
- "row_count": 477830,
- "tn": 173688,
- "tn_rate": 0.9989589863632965,
- "tp": 206283,
- "tp_rate": 0.6786495635953297,
- "truth_threshold": 4.84
- },
- {
- "f1": 0.8078566332970109,
- "fn": 97859,
- "fn_rate": 0.3219459075341902,
- "fp": 181,
- "fp_rate": 0.0010410136367034952,
- "match_probability": 0.9667117311822604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991225646320832,
- "recall": 0.6780540924658097,
- "row_count": 477830,
- "tn": 173688,
- "tn_rate": 0.9989589863632965,
- "tp": 206102,
- "tp_rate": 0.6780540924658097,
- "truth_threshold": 4.86
- },
- {
- "f1": 0.8074912857831816,
- "fn": 98016,
- "fn_rate": 0.32246242116587326,
- "fp": 180,
- "fp_rate": 0.0010352621801471222,
- "match_probability": 0.9671549680849019,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991267434808975,
- "recall": 0.6775375788341268,
- "row_count": 477830,
- "tn": 173689,
- "tn_rate": 0.9989647378198528,
- "tp": 205945,
- "tp_rate": 0.6775375788341268,
- "truth_threshold": 4.88
- },
- {
- "f1": 0.807157704828019,
- "fn": 98160,
- "fn_rate": 0.3229361661528946,
- "fp": 179,
- "fp_rate": 0.0010295107235907494,
- "match_probability": 0.9675925010870554,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991309835906399,
- "recall": 0.6770638338471053,
- "row_count": 477830,
- "tn": 173690,
- "tn_rate": 0.9989704892764093,
- "tp": 205801,
- "tp_rate": 0.6770638338471053,
- "truth_threshold": 4.9
- },
- {
- "f1": 0.8067130946542422,
- "fn": 98350,
- "fn_rate": 0.3235612463441034,
- "fp": 178,
- "fp_rate": 0.0010237592670343766,
- "match_probability": 0.9680243983512243,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991350363722065,
- "recall": 0.6764387536558967,
- "row_count": 477830,
- "tn": 173691,
- "tn_rate": 0.9989762407329656,
- "tp": 205611,
- "tp_rate": 0.6764387536558967,
- "truth_threshold": 4.92
- },
- {
- "f1": 0.8063524831435097,
- "fn": 98504,
- "fn_rate": 0.32406789028855676,
- "fp": 178,
- "fp_rate": 0.0010237592670343766,
- "match_probability": 0.9684507273644041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991343886011622,
- "recall": 0.6759321097114432,
- "row_count": 477830,
- "tn": 173691,
- "tn_rate": 0.9989762407329656,
- "tp": 205457,
- "tp_rate": 0.6759321097114432,
- "truth_threshold": 4.94
- },
- {
- "f1": 0.8059533904959326,
- "fn": 98675,
- "fn_rate": 0.32463046246064464,
- "fp": 177,
- "fp_rate": 0.0010180078104780035,
- "match_probability": 0.9688715549409818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991385310250508,
- "recall": 0.6753695375393554,
- "row_count": 477830,
- "tn": 173692,
- "tn_rate": 0.998981992189522,
- "tp": 205286,
- "tp_rate": 0.6753695375393554,
- "truth_threshold": 4.96
- },
- {
- "f1": 0.8056009362383952,
- "fn": 98826,
- "fn_rate": 0.3251272367178684,
- "fp": 176,
- "fp_rate": 0.0010122563539216307,
- "match_probability": 0.9692869472257413,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991427639045156,
- "recall": 0.6748727632821316,
- "row_count": 477830,
- "tn": 173693,
- "tn_rate": 0.9989877436460783,
- "tp": 205135,
- "tp_rate": 0.6748727632821316,
- "truth_threshold": 4.98
- },
- {
- "f1": 0.8053241259029684,
- "fn": 98944,
- "fn_rate": 0.32551544441556646,
- "fp": 176,
- "fp_rate": 0.0010122563539216307,
- "match_probability": 0.9696969696969697,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991422709351684,
- "recall": 0.6744845555844335,
- "row_count": 477830,
- "tn": 173693,
- "tn_rate": 0.9989877436460783,
- "tp": 205017,
- "tp_rate": 0.6744845555844335,
- "truth_threshold": 5
- },
- {
- "f1": 0.8047599584997013,
- "fn": 99185,
- "fn_rate": 0.32630830928967863,
- "fp": 176,
- "fp_rate": 0.0010122563539216307,
- "match_probability": 0.9701016871696593,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991412623443539,
- "recall": 0.6736916907103214,
- "row_count": 477830,
- "tn": 173693,
- "tn_rate": 0.9989877436460783,
- "tp": 204776,
- "tp_rate": 0.6736916907103214,
- "truth_threshold": 5.0200000000000005
- },
- {
- "f1": 0.8042477402918061,
- "fn": 99403,
- "fn_rate": 0.32702550656169704,
- "fp": 175,
- "fp_rate": 0.0010065048973652577,
- "match_probability": 0.9705011637988036,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991452281752331,
- "recall": 0.672974493438303,
- "row_count": 477830,
- "tn": 173694,
- "tn_rate": 0.9989934951026347,
- "tp": 204558,
- "tp_rate": 0.672974493438303,
- "truth_threshold": 5.04
- },
- {
- "f1": 0.803965597926752,
- "fn": 99523,
- "fn_rate": 0.3274202940508815,
- "fp": 175,
- "fp_rate": 0.0010065048973652577,
- "match_probability": 0.9708954630827813,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991447268746365,
- "recall": 0.6725797059491184,
- "row_count": 477830,
- "tn": 173694,
- "tn_rate": 0.9989934951026347,
- "tp": 204438,
- "tp_rate": 0.6725797059491184,
- "truth_threshold": 5.0600000000000005
- },
- {
- "f1": 0.8036151213563589,
- "fn": 99674,
- "fn_rate": 0.3279170683081053,
- "fp": 172,
- "fp_rate": 0.000989250527696139,
- "match_probability": 0.9712846478668253,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991587555451216,
- "recall": 0.6720829316918947,
- "row_count": 477830,
- "tn": 173697,
- "tn_rate": 0.9990107494723038,
- "tp": 204287,
- "tp_rate": 0.6720829316918947,
- "truth_threshold": 5.08
- },
- {
- "f1": 0.803223597742852,
- "fn": 99841,
- "fn_rate": 0.32846648089722036,
- "fp": 172,
- "fp_rate": 0.000989250527696139,
- "match_probability": 0.9716687803465724,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991580678636461,
- "recall": 0.6715335191027796,
- "row_count": 477830,
- "tn": 173697,
- "tn_rate": 0.9990107494723038,
- "tp": 204120,
- "tp_rate": 0.6715335191027796,
- "truth_threshold": 5.1000000000000005
- },
- {
- "f1": 0.8029464552796889,
- "fn": 99958,
- "fn_rate": 0.32885139869917523,
- "fp": 172,
- "fp_rate": 0.000989250527696139,
- "match_probability": 0.9720479220716894,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991575854046774,
- "recall": 0.6711486013008248,
- "row_count": 477830,
- "tn": 173697,
- "tn_rate": 0.9990107494723038,
- "tp": 204003,
- "tp_rate": 0.6711486013008248,
- "truth_threshold": 5.12
- },
- {
- "f1": 0.8026480002204698,
- "fn": 100086,
- "fn_rate": 0.3292725053543053,
- "fp": 170,
- "fp_rate": 0.0009777476145833932,
- "match_probability": 0.9724221339495741,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991668504496557,
- "recall": 0.6707274946456947,
- "row_count": 477830,
- "tn": 173699,
- "tn_rate": 0.9990222523854166,
- "tp": 203875,
- "tp_rate": 0.6707274946456947,
- "truth_threshold": 5.14
- },
- {
- "f1": 0.802074224627577,
- "fn": 100332,
- "fn_rate": 0.33008181970713346,
- "fp": 167,
- "fp_rate": 0.0009604932449142745,
- "match_probability": 0.972791476249125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991805531021217,
- "recall": 0.6699181802928665,
- "row_count": 477830,
- "tn": 173702,
- "tn_rate": 0.9990395067550857,
- "tp": 203629,
- "tp_rate": 0.6699181802928665,
- "truth_threshold": 5.16
- },
- {
- "f1": 0.8015266273122059,
- "fn": 100564,
- "fn_rate": 0.3308450755195568,
- "fp": 167,
- "fp_rate": 0.0009604932449142745,
- "match_probability": 0.9731560086045776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991796191861037,
- "recall": 0.6691549244804432,
- "row_count": 477830,
- "tn": 173702,
- "tn_rate": 0.9990395067550857,
- "tp": 203397,
- "tp_rate": 0.6691549244804432,
- "truth_threshold": 5.18
- },
- {
- "f1": 0.8012825818759435,
- "fn": 100670,
- "fn_rate": 0.3311938044683364,
- "fp": 163,
- "fp_rate": 0.000937487418688783,
- "match_probability": 0.9735157900194042,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991988361005436,
- "recall": 0.6688061955316636,
- "row_count": 477830,
- "tn": 173706,
- "tn_rate": 0.9990625125813112,
- "tp": 203291,
- "tp_rate": 0.6688061955316636,
- "truth_threshold": 5.2
- },
- {
- "f1": 0.8009706632602773,
- "fn": 100802,
- "fn_rate": 0.3316280707064393,
- "fp": 163,
- "fp_rate": 0.000937487418688783,
- "match_probability": 0.9738708788702727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991983159717099,
- "recall": 0.6683719292935607,
- "row_count": 477830,
- "tn": 173706,
- "tn_rate": 0.9990625125813112,
- "tp": 203159,
- "tp_rate": 0.6683719292935607,
- "truth_threshold": 5.22
- },
- {
- "f1": 0.8005970926242891,
- "fn": 100960,
- "fn_rate": 0.33214787423386555,
- "fp": 163,
- "fp_rate": 0.000937487418688783,
- "match_probability": 0.974221332911062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991976925045776,
- "recall": 0.6678521257661345,
- "row_count": 477830,
- "tn": 173706,
- "tn_rate": 0.9990625125813112,
- "tp": 203001,
- "tp_rate": 0.6678521257661345,
- "truth_threshold": 5.24
- },
- {
- "f1": 0.8001286183782248,
- "fn": 101158,
- "fn_rate": 0.3327992735910199,
- "fp": 163,
- "fp_rate": 0.000937487418688783,
- "match_probability": 0.9745672092769317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991969098272617,
- "recall": 0.6672007264089801,
- "row_count": 477830,
- "tn": 173706,
- "tn_rate": 0.9990625125813112,
- "tp": 202803,
- "tp_rate": 0.6672007264089801,
- "truth_threshold": 5.26
- },
- {
- "f1": 0.7997789968033466,
- "fn": 101305,
- "fn_rate": 0.33328288826527086,
- "fp": 163,
- "fp_rate": 0.000937487418688783,
- "match_probability": 0.9749085644884405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9991963277602197,
- "recall": 0.6667171117347291,
- "row_count": 477830,
- "tn": 173706,
- "tn_rate": 0.9990625125813112,
- "tp": 202656,
- "tp_rate": 0.6667171117347291,
- "truth_threshold": 5.28
- },
- {
- "f1": 0.7993643775044909,
- "fn": 101486,
- "fn_rate": 0.33387835939479077,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9752454544557132,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992350589744855,
- "recall": 0.6661216406052092,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 202475,
- "tp_rate": 0.6661216406052092,
- "truth_threshold": 5.3
- },
- {
- "f1": 0.7989660796726841,
- "fn": 101654,
- "fn_rate": 0.33443106187964905,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9755779344826514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992344242376348,
- "recall": 0.665568938120351,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 202307,
- "tp_rate": 0.665568938120351,
- "truth_threshold": 5.32
- },
- {
- "f1": 0.7984583412352234,
- "fn": 101868,
- "fn_rate": 0.3351350995686947,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9759060592711867,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992336141766544,
- "recall": 0.6648649004313053,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 202093,
- "tp_rate": 0.6648649004313053,
- "truth_threshold": 5.34
- },
- {
- "f1": 0.7980641923002438,
- "fn": 102034,
- "fn_rate": 0.33568122226206654,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9762298829255712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992329846300017,
- "recall": 0.6643187777379335,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201927,
- "tp_rate": 0.6643187777379335,
- "truth_threshold": 5.36
- },
- {
- "f1": 0.7976040328160522,
- "fn": 102227,
- "fn_rate": 0.33631617214050485,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9765494589567063,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992322513856624,
- "recall": 0.6636838278594951,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201734,
- "tp_rate": 0.6636838278594951,
- "truth_threshold": 5.38
- },
- {
- "f1": 0.7972608482432411,
- "fn": 102372,
- "fn_rate": 0.3367932070232694,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9768648402865033,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992316995796653,
- "recall": 0.6632067929767306,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201589,
- "tp_rate": 0.6632067929767306,
- "truth_threshold": 5.4
- },
- {
- "f1": 0.7969333502120387,
- "fn": 102509,
- "fn_rate": 0.33724392274008835,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9771760792522766,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992311774888769,
- "recall": 0.6627560772599116,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201452,
- "tp_rate": 0.6627560772599116,
- "truth_threshold": 5.42
- },
- {
- "f1": 0.7965001009129655,
- "fn": 102691,
- "fn_rate": 0.3378426837653515,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9774832276111642,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999230482809979,
- "recall": 0.6621573162346486,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201270,
- "tp_rate": 0.6621573162346486,
- "truth_threshold": 5.44
- },
- {
- "f1": 0.7960704982541706,
- "fn": 102872,
- "fn_rate": 0.3384381548948714,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9777863365445763,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992297907018346,
- "recall": 0.6615618451051286,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 201089,
- "tp_rate": 0.6615618451051286,
- "truth_threshold": 5.46
- },
- {
- "f1": 0.795704204715554,
- "fn": 103025,
- "fn_rate": 0.3389415089435816,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9780854566626659,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992292046884247,
- "recall": 0.6610584910564185,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 200936,
- "tp_rate": 0.6610584910564185,
- "truth_threshold": 5.48
- },
- {
- "f1": 0.7952072133459578,
- "fn": 103234,
- "fn_rate": 0.3396290971539112,
- "fp": 155,
- "fp_rate": 0.0008914757662377997,
- "match_probability": 0.9783806380088231,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992284027438995,
- "recall": 0.6603709028460888,
- "row_count": 477830,
- "tn": 173714,
- "tn_rate": 0.9991085242337622,
- "tp": 200727,
- "tp_rate": 0.6603709028460888,
- "truth_threshold": 5.5
- },
- {
- "f1": 0.7948586872097263,
- "fn": 103380,
- "fn_rate": 0.34010942193241894,
- "fp": 154,
- "fp_rate": 0.0008857243096814268,
- "match_probability": 0.9786719300641882,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992328193887463,
- "recall": 0.659890578067581,
- "row_count": 477830,
- "tn": 173715,
- "tn_rate": 0.9991142756903185,
- "tp": 200581,
- "tp_rate": 0.659890578067581,
- "truth_threshold": 5.5200000000000005
- },
- {
- "f1": 0.7945712620943608,
- "fn": 103501,
- "fn_rate": 0.34050749931734664,
- "fp": 153,
- "fp_rate": 0.0008799728531250539,
- "match_probability": 0.9789593817521819,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992373375603775,
- "recall": 0.6594925006826534,
- "row_count": 477830,
- "tn": 173716,
- "tn_rate": 0.999120027146875,
- "tp": 200460,
- "tp_rate": 0.6594925006826534,
- "truth_threshold": 5.54
- },
- {
- "f1": 0.7941012026789644,
- "fn": 103699,
- "fn_rate": 0.341158898674501,
- "fp": 152,
- "fp_rate": 0.000874221396568681,
- "match_probability": 0.9792430414430521,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992415699502031,
- "recall": 0.658841101325499,
- "row_count": 477830,
- "tn": 173717,
- "tn_rate": 0.9991257786034313,
- "tp": 200262,
- "tp_rate": 0.658841101325499,
- "truth_threshold": 5.5600000000000005
- },
- {
- "f1": 0.7938883160149124,
- "fn": 103790,
- "fn_rate": 0.34145827918713256,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9795229569584335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992611784204194,
- "recall": 0.6585417208128674,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 200171,
- "tp_rate": 0.6585417208128674,
- "truth_threshold": 5.58
- },
- {
- "f1": 0.7935429865868995,
- "fn": 103935,
- "fn_rate": 0.34193531406989713,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.979799175575919,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992606432403809,
- "recall": 0.6580646859301029,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 200026,
- "tp_rate": 0.6580646859301029,
- "truth_threshold": 5.6000000000000005
- },
- {
- "f1": 0.7932605314117012,
- "fn": 104053,
- "fn_rate": 0.3423235217675952,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9800717440336414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992602071420003,
- "recall": 0.6576764782324048,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 199908,
- "tp_rate": 0.6576764782324048,
- "truth_threshold": 5.62
- },
- {
- "f1": 0.7928054526761223,
- "fn": 104243,
- "fn_rate": 0.34294860195880394,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9803407085348623,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992595038675913,
- "recall": 0.657051398041196,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 199718,
- "tp_rate": 0.657051398041196,
- "truth_threshold": 5.64
- },
- {
- "f1": 0.792379628710414,
- "fn": 104420,
- "fn_rate": 0.34353091350535103,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9806061147525681,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992588475078747,
- "recall": 0.656469086494649,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 199541,
- "tp_rate": 0.656469086494649,
- "truth_threshold": 5.66
- },
- {
- "f1": 0.7919862717136127,
- "fn": 104584,
- "fn_rate": 0.34407045640723644,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9808680078340698,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992582383160005,
- "recall": 0.6559295435927636,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 199377,
- "tp_rate": 0.6559295435927636,
- "truth_threshold": 5.68
- },
- {
- "f1": 0.7916118649792383,
- "fn": 104740,
- "fn_rate": 0.34458368014317625,
- "fp": 148,
- "fp_rate": 0.0008512155703431895,
- "match_probability": 0.9811264324056064,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992576579107083,
- "recall": 0.6554163198568237,
- "row_count": 477830,
- "tn": 173721,
- "tn_rate": 0.9991487844296568,
- "tp": 199221,
- "tp_rate": 0.6554163198568237,
- "truth_threshold": 5.7
- },
- {
- "f1": 0.7912675384554235,
- "fn": 104886,
- "fn_rate": 0.34506400492168404,
- "fp": 145,
- "fp_rate": 0.0008339612006740707,
- "match_probability": 0.9813814325769498,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992721614295753,
- "recall": 0.654935995078316,
- "row_count": 477830,
- "tn": 173724,
- "tn_rate": 0.999166038799326,
- "tp": 199075,
- "tp_rate": 0.654935995078316,
- "truth_threshold": 5.72
- },
- {
- "f1": 0.790845437231365,
- "fn": 105061,
- "fn_rate": 0.3456397366767447,
- "fp": 145,
- "fp_rate": 0.0008339612006740707,
- "match_probability": 0.9816330519460089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992715215152352,
- "recall": 0.6543602633232553,
- "row_count": 477830,
- "tn": 173724,
- "tn_rate": 0.999166038799326,
- "tp": 198900,
- "tp_rate": 0.6543602633232553,
- "truth_threshold": 5.74
- },
- {
- "f1": 0.7904766071520903,
- "fn": 105217,
- "fn_rate": 0.3461529604126845,
- "fp": 141,
- "fp_rate": 0.000810955374448579,
- "match_probability": 0.9818813336034329,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992910475903161,
- "recall": 0.6538470395873155,
- "row_count": 477830,
- "tn": 173728,
- "tn_rate": 0.9991890446255515,
- "tp": 198744,
- "tp_rate": 0.6538470395873155,
- "truth_threshold": 5.76
- },
- {
- "f1": 0.790197521532433,
- "fn": 105333,
- "fn_rate": 0.34653458831889616,
- "fp": 141,
- "fp_rate": 0.000810955374448579,
- "match_probability": 0.9821263201372112,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992906338513551,
- "recall": 0.6534654116811038,
- "row_count": 477830,
- "tn": 173728,
- "tn_rate": 0.9991890446255515,
- "tp": 198628,
- "tp_rate": 0.6534654116811038,
- "truth_threshold": 5.78
- },
- {
- "f1": 0.7896284915978762,
- "fn": 105570,
- "fn_rate": 0.3473142936100355,
- "fp": 141,
- "fp_rate": 0.000810955374448579,
- "match_probability": 0.9823680536372692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992897870368505,
- "recall": 0.6526857063899645,
- "row_count": 477830,
- "tn": 173728,
- "tn_rate": 0.9991890446255515,
- "tp": 198391,
- "tp_rate": 0.6526857063899645,
- "truth_threshold": 5.8
- },
- {
- "f1": 0.7893056346270986,
- "fn": 105704,
- "fn_rate": 0.34775513963962484,
- "fp": 141,
- "fp_rate": 0.000810955374448579,
- "match_probability": 0.982606575700058,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992893073518886,
- "recall": 0.6522448603603752,
- "row_count": 477830,
- "tn": 173728,
- "tn_rate": 0.9991890446255515,
- "tp": 198257,
- "tp_rate": 0.6522448603603752,
- "truth_threshold": 5.82
- },
- {
- "f1": 0.7890058777616719,
- "fn": 105829,
- "fn_rate": 0.3481663766075253,
- "fp": 140,
- "fp_rate": 0.0008052039178922062,
- "match_probability": 0.9828419274331381,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992938992898645,
- "recall": 0.6518336233924746,
- "row_count": 477830,
- "tn": 173729,
- "tn_rate": 0.9991947960821078,
- "tp": 198132,
- "tp_rate": 0.6518336233924746,
- "truth_threshold": 5.84
- },
- {
- "f1": 0.7886682122001546,
- "fn": 105969,
- "fn_rate": 0.34862696201157384,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9830741494597539,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999298443958795,
- "recall": 0.6513730379884262,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197992,
- "tp_rate": 0.6513730379884262,
- "truth_threshold": 5.86
- },
- {
- "f1": 0.7883488259973942,
- "fn": 106102,
- "fn_rate": 0.34906451814541994,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9833032819233992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999297972706795,
- "recall": 0.6509354818545801,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197859,
- "tp_rate": 0.6509354818545801,
- "truth_threshold": 5.88
- },
- {
- "f1": 0.7879818097033515,
- "fn": 106254,
- "fn_rate": 0.34956458229838694,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9835293644923733,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992974333572576,
- "recall": 0.6504354177016131,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197707,
- "tp_rate": 0.6504354177016131,
- "truth_threshold": 5.9
- },
- {
- "f1": 0.7876250847187338,
- "fn": 106401,
- "fn_rate": 0.35004819697263795,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9837524363643234,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992969109606017,
- "recall": 0.6499518030273621,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197560,
- "tp_rate": 0.6499518030273621,
- "truth_threshold": 5.92
- },
- {
- "f1": 0.7871173596569947,
- "fn": 106611,
- "fn_rate": 0.35073907507871077,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9839725362707769,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992961633306159,
- "recall": 0.6492609249212893,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197350,
- "tp_rate": 0.6492609249212893,
- "truth_threshold": 5.94
- },
- {
- "f1": 0.786680977042221,
- "fn": 106792,
- "fn_rate": 0.3513345462082307,
- "fp": 139,
- "fp_rate": 0.0007994524613358333,
- "match_probability": 0.9841897024816576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9992955176678087,
- "recall": 0.6486654537917693,
- "row_count": 477830,
- "tn": 173730,
- "tn_rate": 0.9992005475386642,
- "tp": 197169,
- "tp_rate": 0.6486654537917693,
- "truth_threshold": 5.96
- },
- {
- "f1": 0.7861336973746712,
- "fn": 107018,
- "fn_rate": 0.35207806264619473,
- "fp": 138,
- "fp_rate": 0.0007937010047794604,
- "match_probability": 0.9844039728097899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999299780293382,
- "recall": 0.6479219373538052,
- "row_count": 477830,
- "tn": 173731,
- "tn_rate": 0.9992062989952205,
- "tp": 196943,
- "tp_rate": 0.6479219373538052,
- "truth_threshold": 5.98
- },
- {
- "f1": 0.7858468983194988,
- "fn": 107137,
- "fn_rate": 0.352469560239636,
- "fp": 137,
- "fp_rate": 0.0007879495482230875,
- "match_probability": 0.9846153846153847,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993044308264073,
- "recall": 0.647530439760364,
- "row_count": 477830,
- "tn": 173732,
- "tn_rate": 0.999212050451777,
- "tp": 196824,
- "tp_rate": 0.647530439760364,
- "truth_threshold": 6
- },
- {
- "f1": 0.7855850675100936,
- "fn": 107245,
- "fn_rate": 0.352824868979902,
- "fp": 137,
- "fp_rate": 0.0007879495482230875,
- "match_probability": 0.9848239748105114,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993040492143884,
- "recall": 0.6471751310200979,
- "row_count": 477830,
- "tn": 173732,
- "tn_rate": 0.999212050451777,
- "tp": 196716,
- "tp_rate": 0.6471751310200979,
- "truth_threshold": 6.0200000000000005
- },
- {
- "f1": 0.7852394838812767,
- "fn": 107392,
- "fn_rate": 0.353308483654153,
- "fp": 131,
- "fp_rate": 0.0007534408088848501,
- "match_probability": 0.9850297798635513,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999334011184545,
- "recall": 0.646691516345847,
- "row_count": 477830,
- "tn": 173738,
- "tn_rate": 0.9992465591911152,
- "tp": 196569,
- "tp_rate": 0.646691516345847,
- "truth_threshold": 6.04
- },
- {
- "f1": 0.7849293939950931,
- "fn": 107523,
- "fn_rate": 0.3537394599965127,
- "fp": 125,
- "fp_rate": 0.0007189320695466126,
- "match_probability": 0.9852328358036327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993640715699292,
- "recall": 0.6462605400034873,
- "row_count": 477830,
- "tn": 173744,
- "tn_rate": 0.9992810679304533,
- "tp": 196438,
- "tp_rate": 0.6462605400034873,
- "truth_threshold": 6.0600000000000005
- },
- {
- "f1": 0.7844242438778691,
- "fn": 107731,
- "fn_rate": 0.3544237583110991,
- "fp": 125,
- "fp_rate": 0.0007189320695466126,
- "match_probability": 0.9854331782250482,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993633979272236,
- "recall": 0.6455762416889009,
- "row_count": 477830,
- "tn": 173744,
- "tn_rate": 0.9992810679304533,
- "tp": 196230,
- "tp_rate": 0.6455762416889009,
- "truth_threshold": 6.08
- },
- {
- "f1": 0.7841326200129549,
- "fn": 107851,
- "fn_rate": 0.3548185458002836,
- "fp": 125,
- "fp_rate": 0.0007189320695466126,
- "match_probability": 0.9856308422916512,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993630086376029,
- "recall": 0.6451814541997164,
- "row_count": 477830,
- "tn": 173744,
- "tn_rate": 0.9992810679304533,
- "tp": 196110,
- "tp_rate": 0.6451814541997164,
- "truth_threshold": 6.1000000000000005
- },
- {
- "f1": 0.7838422620833083,
- "fn": 107973,
- "fn_rate": 0.35521991308095446,
- "fp": 121,
- "fp_rate": 0.0006959262433211211,
- "match_probability": 0.9858258627412329,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993829961908939,
- "recall": 0.6447800869190455,
- "row_count": 477830,
- "tn": 173748,
- "tn_rate": 0.9993040737566788,
- "tp": 195988,
- "tp_rate": 0.6447800869190455,
- "truth_threshold": 6.12
- },
- {
- "f1": 0.7834618892925155,
- "fn": 108130,
- "fn_rate": 0.3557364267126375,
- "fp": 121,
- "fp_rate": 0.0006959262433211211,
- "match_probability": 0.9860182738898777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993825018371846,
- "recall": 0.6442635732873625,
- "row_count": 477830,
- "tn": 173748,
- "tn_rate": 0.9993040737566788,
- "tp": 195831,
- "tp_rate": 0.6442635732873625,
- "truth_threshold": 6.140000000000001
- },
- {
- "f1": 0.7830090889807615,
- "fn": 108316,
- "fn_rate": 0.3563483473208734,
- "fp": 121,
- "fp_rate": 0.0006959262433211211,
- "match_probability": 0.9862081096362973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993819151435898,
- "recall": 0.6436516526791266,
- "row_count": 477830,
- "tn": 173748,
- "tn_rate": 0.9993040737566788,
- "tp": 195645,
- "tp_rate": 0.6436516526791266,
- "truth_threshold": 6.16
- },
- {
- "f1": 0.7826241872978253,
- "fn": 108474,
- "fn_rate": 0.3568681508482996,
- "fp": 121,
- "fp_rate": 0.0006959262433211211,
- "match_probability": 0.9863954034661423,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993814158930105,
- "recall": 0.6431318491517004,
- "row_count": 477830,
- "tn": 173748,
- "tn_rate": 0.9993040737566788,
- "tp": 195487,
- "tp_rate": 0.6431318491517004,
- "truth_threshold": 6.18
- },
- {
- "f1": 0.7822683021572938,
- "fn": 108620,
- "fn_rate": 0.3573484756268074,
- "fp": 121,
- "fp_rate": 0.0006959262433211211,
- "match_probability": 0.9865801884562904,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993809538426907,
- "recall": 0.6426515243731926,
- "row_count": 477830,
- "tn": 173748,
- "tn_rate": 0.9993040737566788,
- "tp": 195341,
- "tp_rate": 0.6426515243731926,
- "truth_threshold": 6.2
- },
- {
- "f1": 0.7819024499671522,
- "fn": 108770,
- "fn_rate": 0.357841959988288,
- "fp": 120,
- "fp_rate": 0.0006901747867647482,
- "match_probability": 0.9867624972791117,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993855952813717,
- "recall": 0.6421580400117121,
- "row_count": 477830,
- "tn": 173749,
- "tn_rate": 0.9993098252132353,
- "tp": 195191,
- "tp_rate": 0.6421580400117121,
- "truth_threshold": 6.22
- },
- {
- "f1": 0.7815501496616085,
- "fn": 108915,
- "fn_rate": 0.3583189948710525,
- "fp": 120,
- "fp_rate": 0.0006901747867647482,
- "match_probability": 0.9869423622067105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993851388049148,
- "recall": 0.6416810051289474,
- "row_count": 477830,
- "tn": 173749,
- "tn_rate": 0.9993098252132353,
- "tp": 195046,
- "tp_rate": 0.6416810051289474,
- "truth_threshold": 6.24
- },
- {
- "f1": 0.7811056952283222,
- "fn": 109097,
- "fn_rate": 0.35891775589631564,
- "fp": 119,
- "fp_rate": 0.0006844233302083753,
- "match_probability": 0.9871198151151404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993896903832642,
- "recall": 0.6410822441036843,
- "row_count": 477830,
- "tn": 173750,
- "tn_rate": 0.9993155766697916,
- "tp": 194864,
- "tp_rate": 0.6410822441036843,
- "truth_threshold": 6.26
- },
- {
- "f1": 0.7807773732578467,
- "fn": 109232,
- "fn_rate": 0.3593618918216482,
- "fp": 119,
- "fp_rate": 0.0006844233302083753,
- "match_probability": 0.9872948874885967,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993892675316144,
- "recall": 0.6406381081783519,
- "row_count": 477830,
- "tn": 173750,
- "tn_rate": 0.9993155766697916,
- "tp": 194729,
- "tp_rate": 0.6406381081783519,
- "truth_threshold": 6.28
- },
- {
- "f1": 0.7804350790505907,
- "fn": 109372,
- "fn_rate": 0.3598224772256967,
- "fp": 119,
- "fp_rate": 0.0006844233302083753,
- "match_probability": 0.9874676104235824,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993888283994494,
- "recall": 0.6401775227743033,
- "row_count": 477830,
- "tn": 173750,
- "tn_rate": 0.9993155766697916,
- "tp": 194589,
- "tp_rate": 0.6401775227743033,
- "truth_threshold": 6.3
- },
- {
- "f1": 0.7799898091420823,
- "fn": 109554,
- "fn_rate": 0.36042123825095984,
- "fp": 119,
- "fp_rate": 0.0006844233302083753,
- "match_probability": 0.9876380146330476,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993882565826676,
- "recall": 0.6395787617490402,
- "row_count": 477830,
- "tn": 173750,
- "tn_rate": 0.9993155766697916,
- "tp": 194407,
- "tp_rate": 0.6395787617490402,
- "truth_threshold": 6.32
- },
- {
- "f1": 0.7796430592399658,
- "fn": 109695,
- "fn_rate": 0.3608851135507516,
- "fp": 119,
- "fp_rate": 0.0006844233302083753,
- "match_probability": 0.9878061304505031,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9993878128456414,
- "recall": 0.6391148864492484,
- "row_count": 477830,
- "tn": 173750,
- "tn_rate": 0.9993155766697916,
- "tp": 194266,
- "tp_rate": 0.6391148864492484,
- "truth_threshold": 6.34
- },
- {
- "f1": 0.7792907983636896,
- "fn": 109842,
- "fn_rate": 0.36136872822500254,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9879719878341077,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994130760478395,
- "recall": 0.6386312717749975,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 194119,
- "tp_rate": 0.6386312717749975,
- "truth_threshold": 6.36
- },
- {
- "f1": 0.7788054522526285,
- "fn": 110040,
- "fn_rate": 0.3620201275821569,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9881356163707273,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994124771304146,
- "recall": 0.637979872417843,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 193921,
- "tp_rate": 0.637979872417843,
- "truth_threshold": 6.38
- },
- {
- "f1": 0.7783924503742271,
- "fn": 110209,
- "fn_rate": 0.3625761199627584,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9882970452799678,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994119649654917,
- "recall": 0.6374238800372416,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 193752,
- "tp_rate": 0.6374238800372416,
- "truth_threshold": 6.4
- },
- {
- "f1": 0.7780979132258803,
- "fn": 110329,
- "fn_rate": 0.3629709074519428,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9884563034181787,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994116007556285,
- "recall": 0.6370290925480572,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 193632,
- "tp_rate": 0.6370290925480572,
- "truth_threshold": 6.42
- },
- {
- "f1": 0.7776509273924473,
- "fn": 110511,
- "fn_rate": 0.36356966847720595,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9886134192824297,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994110475088342,
- "recall": 0.636430331522794,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 193450,
- "tp_rate": 0.636430331522794,
- "truth_threshold": 6.44
- },
- {
- "f1": 0.7774346850650133,
- "fn": 110599,
- "fn_rate": 0.3638591793026079,
- "fp": 114,
- "fp_rate": 0.0006556660474265108,
- "match_probability": 0.9887684210144592,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994107796315822,
- "recall": 0.6361408206973921,
- "row_count": 477830,
- "tn": 173755,
- "tn_rate": 0.9993443339525735,
- "tp": 193362,
- "tp_rate": 0.6361408206973921,
- "truth_threshold": 6.46
- },
- {
- "f1": 0.7770055304172951,
- "fn": 110778,
- "fn_rate": 0.3644480706406414,
- "fp": 106,
- "fp_rate": 0.0006096543949755276,
- "match_probability": 0.9889213364045922,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994515983837673,
- "recall": 0.6355519293593586,
- "row_count": 477830,
- "tn": 173763,
- "tn_rate": 0.9993903456050245,
- "tp": 193183,
- "tp_rate": 0.6355519293593586,
- "truth_threshold": 6.48
- },
- {
- "f1": 0.7765854718393164,
- "fn": 110950,
- "fn_rate": 0.3650139327084725,
- "fp": 105,
- "fp_rate": 0.0006039029384191547,
- "match_probability": 0.989072192895632,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994562853414528,
- "recall": 0.6349860672915275,
- "row_count": 477830,
- "tn": 173764,
- "tn_rate": 0.9993960970615808,
- "tp": 193011,
- "tp_rate": 0.6349860672915275,
- "truth_threshold": 6.5
- },
- {
- "f1": 0.7762170777255457,
- "fn": 111099,
- "fn_rate": 0.3655041271742098,
- "fp": 105,
- "fp_rate": 0.0006039029384191547,
- "match_probability": 0.9892210175867204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994558655106832,
- "recall": 0.6344958728257901,
- "row_count": 477830,
- "tn": 173764,
- "tn_rate": 0.9993960970615808,
- "tp": 192862,
- "tp_rate": 0.6344958728257901,
- "truth_threshold": 6.5200000000000005
- },
- {
- "f1": 0.7757391279839915,
- "fn": 111293,
- "fn_rate": 0.3661423669483914,
- "fp": 105,
- "fp_rate": 0.0006039029384191547,
- "match_probability": 0.9893678372371703,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994553179127782,
- "recall": 0.6338576330516086,
- "row_count": 477830,
- "tn": 173764,
- "tn_rate": 0.9993960970615808,
- "tp": 192668,
- "tp_rate": 0.6338576330516086,
- "truth_threshold": 6.54
- },
- {
- "f1": 0.7752926202502074,
- "fn": 111476,
- "fn_rate": 0.3667444178693977,
- "fp": 102,
- "fp_rate": 0.0005866485687500359,
- "match_probability": 0.9895126782702673,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994703692357221,
- "recall": 0.6332555821306023,
- "row_count": 477830,
- "tn": 173767,
- "tn_rate": 0.99941335143125,
- "tp": 192485,
- "tp_rate": 0.6332555821306023,
- "truth_threshold": 6.5600000000000005
- },
- {
- "f1": 0.7749839852704777,
- "fn": 111603,
- "fn_rate": 0.3671622346287846,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9896555667770431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994804061145809,
- "recall": 0.6328377653712154,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 192358,
- "tp_rate": 0.6328377653712154,
- "truth_threshold": 6.58
- },
- {
- "f1": 0.7745050622299606,
- "fn": 111797,
- "fn_rate": 0.36780047440296615,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9897965285200179,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994798818291516,
- "recall": 0.6321995255970339,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 192164,
- "tp_rate": 0.6321995255970339,
- "truth_threshold": 6.6000000000000005
- },
- {
- "f1": 0.7742135753246282,
- "fn": 111915,
- "fn_rate": 0.36818868210066424,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9899355889369128,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994795624160795,
- "recall": 0.6318113178993358,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 192046,
- "tp_rate": 0.6318113178993358,
- "truth_threshold": 6.62
- },
- {
- "f1": 0.7738585865103113,
- "fn": 112058,
- "fn_rate": 0.3686591371919424,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9900727731443332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994791748045604,
- "recall": 0.6313408628080576,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191903,
- "tp_rate": 0.6313408628080576,
- "truth_threshold": 6.640000000000001
- },
- {
- "f1": 0.7733292990418558,
- "fn": 112272,
- "fn_rate": 0.369363174880988,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9902081059414205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994785936628274,
- "recall": 0.630636825119012,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191689,
- "tp_rate": 0.630636825119012,
- "truth_threshold": 6.66
- },
- {
- "f1": 0.7728738452597635,
- "fn": 112456,
- "fn_rate": 0.36996851569773753,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9903416118134748,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994780929516454,
- "recall": 0.6300314843022624,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191505,
- "tp_rate": 0.6300314843022624,
- "truth_threshold": 6.68
- },
- {
- "f1": 0.7724824790879437,
- "fn": 112614,
- "fn_rate": 0.37048831922516373,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9904733149355459,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994776622250544,
- "recall": 0.6295116807748362,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191347,
- "tp_rate": 0.6295116807748362,
- "truth_threshold": 6.7
- },
- {
- "f1": 0.7720949015648663,
- "fn": 112771,
- "fn_rate": 0.37100483285684677,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9906032391759949,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994772335197867,
- "recall": 0.6289951671431533,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191190,
- "tp_rate": 0.6289951671431533,
- "truth_threshold": 6.72
- },
- {
- "f1": 0.7717030370113029,
- "fn": 112929,
- "fn_rate": 0.37152463638427297,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9907314081000241,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994768013728732,
- "recall": 0.628475363615727,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 191032,
- "tp_rate": 0.628475363615727,
- "truth_threshold": 6.74
- },
- {
- "f1": 0.771346600666734,
- "fn": 113072,
- "fn_rate": 0.37199509147555115,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9908578449731781,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999476409636157,
- "recall": 0.6280049085244489,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 190889,
- "tp_rate": 0.6280049085244489,
- "truth_threshold": 6.76
- },
- {
- "f1": 0.7709135888304559,
- "fn": 113247,
- "fn_rate": 0.3725708232306118,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9909825727648117,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994759294391397,
- "recall": 0.6274291767693881,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 190714,
- "tp_rate": 0.6274291767693881,
- "truth_threshold": 6.78
- },
- {
- "f1": 0.7705368118004787,
- "fn": 113398,
- "fn_rate": 0.37306759748783563,
- "fp": 100,
- "fp_rate": 0.0005751456556372901,
- "match_probability": 0.9911056141515298,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994755143892627,
- "recall": 0.6269324025121644,
- "row_count": 477830,
- "tn": 173769,
- "tn_rate": 0.9994248543443627,
- "tp": 190563,
- "tp_rate": 0.6269324025121644,
- "truth_threshold": 6.8
- },
- {
- "f1": 0.7701054113307069,
- "fn": 113574,
- "fn_rate": 0.3736466191386395,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9912269915205945,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999490770878394,
- "recall": 0.6263533808613605,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 190387,
- "tp_rate": 0.6263533808613605,
- "truth_threshold": 6.82
- },
- {
- "f1": 0.7697380932150242,
- "fn": 113721,
- "fn_rate": 0.37413023381289046,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9913467269733026,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994903775934264,
- "recall": 0.6258697661871095,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 190240,
- "tp_rate": 0.6258697661871095,
- "truth_threshold": 6.84
- },
- {
- "f1": 0.7692450920866222,
- "fn": 113919,
- "fn_rate": 0.3747816331700448,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9914648423283329,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994898469014774,
- "recall": 0.6252183668299551,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 190042,
- "tp_rate": 0.6252183668299551,
- "truth_threshold": 6.86
- },
- {
- "f1": 0.768840497554339,
- "fn": 114082,
- "fn_rate": 0.37531788617618705,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9915813591250612,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994894091885291,
- "recall": 0.6246821138238129,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 189879,
- "tp_rate": 0.6246821138238129,
- "truth_threshold": 6.88
- },
- {
- "f1": 0.7684674394679498,
- "fn": 114231,
- "fn_rate": 0.37580808064192445,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9916962986268459,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994890084129233,
- "recall": 0.6241919193580755,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 189730,
- "tp_rate": 0.6241919193580755,
- "truth_threshold": 6.9
- },
- {
- "f1": 0.7679874552770091,
- "fn": 114424,
- "fn_rate": 0.3764430305203628,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9918096818242835,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999488488351245,
- "recall": 0.6235569694796372,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 189537,
- "tp_rate": 0.6235569694796372,
- "truth_threshold": 6.92
- },
- {
- "f1": 0.767478059952573,
- "fn": 114628,
- "fn_rate": 0.3771141692519764,
- "fp": 97,
- "fp_rate": 0.0005578912859681715,
- "match_probability": 0.9919215294384318,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9994879374967006,
- "recall": 0.6228858307480236,
- "row_count": 477830,
- "tn": 173772,
- "tn_rate": 0.9994421087140318,
- "tp": 189333,
- "tp_rate": 0.6228858307480236,
- "truth_threshold": 6.94
- },
- {
- "f1": 0.7671203993171709,
- "fn": 114773,
- "fn_rate": 0.37759120413474095,
- "fp": 93,
- "fp_rate": 0.0005348854597426798,
- "match_probability": 0.9920318619240045,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995086670083104,
- "recall": 0.622408795865259,
- "row_count": 477830,
- "tn": 173776,
- "tn_rate": 0.9994651145402573,
- "tp": 189188,
- "tp_rate": 0.622408795865259,
- "truth_threshold": 6.96
- },
- {
- "f1": 0.7667093916556474,
- "fn": 114938,
- "fn_rate": 0.37813403693236963,
- "fp": 93,
- "fp_rate": 0.0005348854597426798,
- "match_probability": 0.9921406994725337,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995082383299139,
- "recall": 0.6218659630676304,
- "row_count": 477830,
- "tn": 173776,
- "tn_rate": 0.9994651145402573,
- "tp": 189023,
- "tp_rate": 0.6218659630676304,
- "truth_threshold": 6.98
- },
- {
- "f1": 0.7664291915839696,
- "fn": 115050,
- "fn_rate": 0.37850250525560847,
- "fp": 93,
- "fp_rate": 0.0005348854597426798,
- "match_probability": 0.9922480620155039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995079469217583,
- "recall": 0.6214974947443915,
- "row_count": 477830,
- "tn": 173776,
- "tn_rate": 0.9994651145402573,
- "tp": 188911,
- "tp_rate": 0.6214974947443915,
- "truth_threshold": 7
- },
- {
- "f1": 0.7659695362249432,
- "fn": 115233,
- "fn_rate": 0.37910455617661476,
- "fp": 93,
- "fp_rate": 0.0005348854597426798,
- "match_probability": 0.9923539692274538,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995074700377606,
- "recall": 0.6208954438233852,
- "row_count": 477830,
- "tn": 173776,
- "tn_rate": 0.9994651145402573,
- "tp": 188728,
- "tp_rate": 0.6208954438233852,
- "truth_threshold": 7.0200000000000005
- },
- {
- "f1": 0.7654525005379902,
- "fn": 115440,
- "fn_rate": 0.379785564595458,
- "fp": 93,
- "fp_rate": 0.0005348854597426798,
- "match_probability": 0.9924584405290495,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995069294962198,
- "recall": 0.620214435404542,
- "row_count": 477830,
- "tn": 173776,
- "tn_rate": 0.9994651145402573,
- "tp": 188521,
- "tp_rate": 0.620214435404542,
- "truth_threshold": 7.04
- },
- {
- "f1": 0.7650654525220443,
- "fn": 115595,
- "fn_rate": 0.3802954984356546,
- "fp": 92,
- "fp_rate": 0.0005291340031863069,
- "match_probability": 0.9925614950901266,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995118275690075,
- "recall": 0.6197045015643454,
- "row_count": 477830,
- "tn": 173777,
- "tn_rate": 0.9994708659968137,
- "tp": 188366,
- "tp_rate": 0.6197045015643454,
- "truth_threshold": 7.0600000000000005
- },
- {
- "f1": 0.764739339573583,
- "fn": 115725,
- "fn_rate": 0.3807231848822711,
- "fp": 92,
- "fp_rate": 0.0005291340031863069,
- "match_probability": 0.9926631518327027,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999511490590884,
- "recall": 0.6192768151177289,
- "row_count": 477830,
- "tn": 173777,
- "tn_rate": 0.9994708659968137,
- "tp": 188236,
- "tp_rate": 0.6192768151177289,
- "truth_threshold": 7.08
- },
- {
- "f1": 0.7644431802019628,
- "fn": 115843,
- "fn_rate": 0.3811113925799691,
- "fp": 92,
- "fp_rate": 0.0005291340031863069,
- "match_probability": 0.9927634294339601,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995111843153924,
- "recall": 0.6188886074200308,
- "row_count": 477830,
- "tn": 173777,
- "tn_rate": 0.9994708659968137,
- "tp": 188118,
- "tp_rate": 0.6188886074200308,
- "truth_threshold": 7.1000000000000005
- },
- {
- "f1": 0.7640303737367989,
- "fn": 116008,
- "fn_rate": 0.3816542253775978,
- "fp": 90,
- "fp_rate": 0.0005176310900735611,
- "match_probability": 0.9928623463291987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999521386065953,
- "recall": 0.6183457746224023,
- "row_count": 477830,
- "tn": 173779,
- "tn_rate": 0.9994823689099265,
- "tp": 187953,
- "tp_rate": 0.6183457746224023,
- "truth_threshold": 7.12
- },
- {
- "f1": 0.7637077788214055,
- "fn": 116137,
- "fn_rate": 0.3820786219284711,
- "fp": 89,
- "fp_rate": 0.0005118796335171883,
- "match_probability": 0.9929599207147589,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995263765678798,
- "recall": 0.6179213780715289,
- "row_count": 477830,
- "tn": 173780,
- "tn_rate": 0.9994881203664828,
- "tp": 187824,
- "tp_rate": 0.6179213780715289,
- "truth_threshold": 7.140000000000001
- },
- {
- "f1": 0.7634091981323919,
- "fn": 116257,
- "fn_rate": 0.38247340941765556,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9930561705509157,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995367190120932,
- "recall": 0.6175265905823445,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187704,
- "tp_rate": 0.6175265905823445,
- "truth_threshold": 7.16
- },
- {
- "f1": 0.7630963374597763,
- "fn": 116382,
- "fn_rate": 0.382884646385556,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9931511135647422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995364104312982,
- "recall": 0.6171153536144439,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187579,
- "tp_rate": 0.6171153536144439,
- "truth_threshold": 7.18
- },
- {
- "f1": 0.762809453278862,
- "fn": 116496,
- "fn_rate": 0.3832596945002813,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9932447672529455,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995361286469886,
- "recall": 0.6167403054997187,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187465,
- "tp_rate": 0.6167403054997187,
- "truth_threshold": 7.2
- },
- {
- "f1": 0.7623017553000945,
- "fn": 116697,
- "fn_rate": 0.38392096354466526,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9933371488846718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99953563098142,
- "recall": 0.6160790364553347,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187264,
- "tp_rate": 0.6160790364553347,
- "truth_threshold": 7.22
- },
- {
- "f1": 0.762054827427557,
- "fn": 116795,
- "fn_rate": 0.38424337332749925,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.993428275504284,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995353879510609,
- "recall": 0.6157566266725008,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187166,
- "tp_rate": 0.6157566266725008,
- "truth_threshold": 7.24
- },
- {
- "f1": 0.7617261475680233,
- "fn": 116926,
- "fn_rate": 0.384674349669859,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9935181639341092,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995350626863757,
- "recall": 0.6153256503301411,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 187035,
- "tp_rate": 0.6153256503301411,
- "truth_threshold": 7.26
- },
- {
- "f1": 0.7612680331308489,
- "fn": 117107,
- "fn_rate": 0.3852698207993789,
- "fp": 87,
- "fp_rate": 0.0005003767204044424,
- "match_probability": 0.9936068307771581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995346125248072,
- "recall": 0.6147301792006211,
- "row_count": 477830,
- "tn": 173782,
- "tn_rate": 0.9994996232795955,
- "tp": 186854,
- "tp_rate": 0.6147301792006211,
- "truth_threshold": 7.28
- },
- {
- "f1": 0.7608076328971018,
- "fn": 117290,
- "fn_rate": 0.3858718717203852,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.9936942924198163,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995395085592508,
- "recall": 0.6141281282796148,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 186671,
- "tp_rate": 0.6141281282796148,
- "truth_threshold": 7.3
- },
- {
- "f1": 0.7604438881799688,
- "fn": 117434,
- "fn_rate": 0.3863456167074065,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.9937805650345067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995391532208368,
- "recall": 0.6136543832925935,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 186527,
- "tp_rate": 0.6136543832925935,
- "truth_threshold": 7.32
- },
- {
- "f1": 0.760079929857472,
- "fn": 117578,
- "fn_rate": 0.3868193616944279,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.9938656645823235,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995387973336051,
- "recall": 0.6131806383055721,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 186383,
- "tp_rate": 0.6131806383055721,
- "truth_threshold": 7.34
- },
- {
- "f1": 0.75967528096763,
- "fn": 117738,
- "fn_rate": 0.3873457450133405,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.9939496068156388,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999538401258125,
- "recall": 0.6126542549866595,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 186223,
- "tp_rate": 0.6126542549866595,
- "truth_threshold": 7.36
- },
- {
- "f1": 0.7590931352542649,
- "fn": 117968,
- "fn_rate": 0.38810242103427744,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.994032407280681,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995378307063129,
- "recall": 0.6118975789657226,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 185993,
- "tp_rate": 0.6118975789657226,
- "truth_threshold": 7.38
- },
- {
- "f1": 0.7587172630590541,
- "fn": 118117,
- "fn_rate": 0.3885926155000148,
- "fp": 86,
- "fp_rate": 0.0004946252638480695,
- "match_probability": 0.9941140813200855,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995374603345345,
- "recall": 0.6114073844999852,
- "row_count": 477830,
- "tn": 173783,
- "tn_rate": 0.999505374736152,
- "tp": 185844,
- "tp_rate": 0.6114073844999852,
- "truth_threshold": 7.4
- },
- {
- "f1": 0.7583563724869626,
- "fn": 118260,
- "fn_rate": 0.38906307059129297,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9941946440754179,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995424843637303,
- "recall": 0.610936929408707,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 185701,
- "tp_rate": 0.610936929408707,
- "truth_threshold": 7.42
- },
- {
- "f1": 0.7577628331889719,
- "fn": 118494,
- "fn_rate": 0.38983290619520267,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9942741104896703,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995419073898422,
- "recall": 0.6101670938047973,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 185467,
- "tp_rate": 0.6101670938047973,
- "truth_threshold": 7.44
- },
- {
- "f1": 0.7573728952100703,
- "fn": 118647,
- "fn_rate": 0.3903362602439129,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9943524953097296,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995415293502122,
- "recall": 0.6096637397560871,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 185314,
- "tp_rate": 0.6096637397560871,
- "truth_threshold": 7.46
- },
- {
- "f1": 0.7569359837117836,
- "fn": 118819,
- "fn_rate": 0.3909021223117439,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9944298130888198,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995411036188029,
- "recall": 0.6090978776882561,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 185142,
- "tp_rate": 0.6090978776882561,
- "truth_threshold": 7.48
- },
- {
- "f1": 0.756523197225494,
- "fn": 118982,
- "fn_rate": 0.39143837531788617,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.994506078188917,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995406994337094,
- "recall": 0.6085616246821138,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184979,
- "tp_rate": 0.6085616246821138,
- "truth_threshold": 7.5
- },
- {
- "f1": 0.7560755081334075,
- "fn": 119158,
- "fn_rate": 0.39201739696869004,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9945813047831374,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995402622127991,
- "recall": 0.6079826030313099,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184803,
- "tp_rate": 0.6079826030313099,
- "truth_threshold": 7.5200000000000005
- },
- {
- "f1": 0.7557089772132006,
- "fn": 119302,
- "fn_rate": 0.39249114195571144,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9946555068581004,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995399038669727,
- "recall": 0.6075088580442886,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184659,
- "tp_rate": 0.6075088580442886,
- "truth_threshold": 7.54
- },
- {
- "f1": 0.7553941815294055,
- "fn": 119425,
- "fn_rate": 0.3928957991321255,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9947286982162634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995395973372476,
- "recall": 0.6071042008678745,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184536,
- "tp_rate": 0.6071042008678745,
- "truth_threshold": 7.5600000000000005
- },
- {
- "f1": 0.7549711721155736,
- "fn": 119591,
- "fn_rate": 0.39344192182549736,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9948008924782327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995391829985634,
- "recall": 0.6065580781745027,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184370,
- "tp_rate": 0.6065580781745027,
- "truth_threshold": 7.58
- },
- {
- "f1": 0.7546131884966228,
- "fn": 119732,
- "fn_rate": 0.3939057971252891,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9948721030850469,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995388304740823,
- "recall": 0.6060942028747109,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184229,
- "tp_rate": 0.6060942028747109,
- "truth_threshold": 7.6000000000000005
- },
- {
- "f1": 0.7542355867132666,
- "fn": 119880,
- "fn_rate": 0.3943927016952833,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9949423433004362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999538459867728,
- "recall": 0.6056072983047167,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 184081,
- "tp_rate": 0.6056072983047167,
- "truth_threshold": 7.62
- },
- {
- "f1": 0.75369530820879,
- "fn": 120091,
- "fn_rate": 0.3950868696970993,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9950116262130546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995379304721264,
- "recall": 0.6049131303029007,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 183870,
- "tp_rate": 0.6049131303029007,
- "truth_threshold": 7.640000000000001
- },
- {
- "f1": 0.7533723666838873,
- "fn": 120218,
- "fn_rate": 0.3955046864564862,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9950799647386886,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995376112452945,
- "recall": 0.6044953135435138,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 183743,
- "tp_rate": 0.6044953135435138,
- "truth_threshold": 7.66
- },
- {
- "f1": 0.7529796815657581,
- "fn": 120371,
- "fn_rate": 0.3960080405051964,
- "fp": 85,
- "fp_rate": 0.0004888738072916966,
- "match_probability": 0.9951473716224397,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995372260786716,
- "recall": 0.6039919594948036,
- "row_count": 477830,
- "tn": 173784,
- "tn_rate": 0.9995111261927083,
- "tp": 183590,
- "tp_rate": 0.6039919594948036,
- "truth_threshold": 7.68
- },
- {
- "f1": 0.7524956815374958,
- "fn": 120562,
- "fn_rate": 0.3966364105921483,
- "fp": 83,
- "fp_rate": 0.00047737089417895085,
- "match_probability": 0.9952138594408825,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995476395504737,
- "recall": 0.6033635894078516,
- "row_count": 477830,
- "tn": 173786,
- "tn_rate": 0.999522629105821,
- "tp": 183399,
- "tp_rate": 0.6033635894078516,
- "truth_threshold": 7.7
- },
- {
- "f1": 0.752,
- "fn": 120755,
- "fn_rate": 0.3972713604705867,
- "fp": 83,
- "fp_rate": 0.00047737089417895085,
- "match_probability": 0.9952794406041985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995471632231067,
- "recall": 0.6027286395294134,
- "row_count": 477830,
- "tn": 173786,
- "tn_rate": 0.999522629105821,
- "tp": 183206,
- "tp_rate": 0.6027286395294134,
- "truth_threshold": 7.72
- },
- {
- "f1": 0.7516351677047707,
- "fn": 120898,
- "fn_rate": 0.39774181556186483,
- "fp": 83,
- "fp_rate": 0.00047737089417895085,
- "match_probability": 0.9953441273582849,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995468096491323,
- "recall": 0.6022581844381352,
- "row_count": 477830,
- "tn": 173786,
- "tn_rate": 0.999522629105821,
- "tp": 183063,
- "tp_rate": 0.6022581844381352,
- "truth_threshold": 7.74
- },
- {
- "f1": 0.7512352397576754,
- "fn": 121054,
- "fn_rate": 0.39825503929780465,
- "fp": 83,
- "fp_rate": 0.00047737089417895085,
- "match_probability": 0.9954079317868398,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995464233018198,
- "recall": 0.6017449607021953,
- "row_count": 477830,
- "tn": 173786,
- "tn_rate": 0.999522629105821,
- "tp": 182907,
- "tp_rate": 0.6017449607021953,
- "truth_threshold": 7.76
- },
- {
- "f1": 0.7506913370232035,
- "fn": 121266,
- "fn_rate": 0.39895249719536385,
- "fp": 83,
- "fp_rate": 0.00047737089417895085,
- "match_probability": 0.9954708658134229,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995458972086356,
- "recall": 0.6010475028046361,
- "row_count": 477830,
- "tn": 173786,
- "tn_rate": 0.999522629105821,
- "tp": 182695,
- "tp_rate": 0.6010475028046361,
- "truth_threshold": 7.78
- },
- {
- "f1": 0.7502682039583205,
- "fn": 121432,
- "fn_rate": 0.39949861988873575,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9955329412034929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995564317397733,
- "recall": 0.6005013801112643,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 182529,
- "tp_rate": 0.6005013801112643,
- "truth_threshold": 7.8
- },
- {
- "f1": 0.7497604723936724,
- "fn": 121629,
- "fn_rate": 0.4001467293501469,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9955941695664209,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995559527007395,
- "recall": 0.599853270649853,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 182332,
- "tp_rate": 0.599853270649853,
- "truth_threshold": 7.82
- },
- {
- "f1": 0.7492615903574807,
- "fn": 121823,
- "fn_rate": 0.4007849691243284,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9956545623574807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995554799444625,
- "recall": 0.5992150308756715,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 182138,
- "tp_rate": 0.5992150308756715,
- "truth_threshold": 7.84
- },
- {
- "f1": 0.7487767238009012,
- "fn": 122012,
- "fn_rate": 0.401406759419794,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.995714130879816,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995550184035599,
- "recall": 0.598593240580206,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 181949,
- "tp_rate": 0.598593240580206,
- "truth_threshold": 7.86
- },
- {
- "f1": 0.7483141626802138,
- "fn": 122191,
- "fn_rate": 0.4019956507578275,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9957728862863844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995545803982381,
- "recall": 0.5980043492421725,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 181770,
- "tp_rate": 0.5980043492421725,
- "truth_threshold": 7.88
- },
- {
- "f1": 0.7479780925712404,
- "fn": 122322,
- "fn_rate": 0.4024266271001872,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9958308395818786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995542593000221,
- "recall": 0.5975733728998128,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 181639,
- "tp_rate": 0.5975733728998128,
- "truth_threshold": 7.9
- },
- {
- "f1": 0.7475603376187907,
- "fn": 122484,
- "fn_rate": 0.40295959021058625,
- "fp": 81,
- "fp_rate": 0.000465867981066205,
- "match_probability": 0.9958880016246255,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995538615759151,
- "recall": 0.5970404097894138,
- "row_count": 477830,
- "tn": 173788,
- "tn_rate": 0.9995341320189338,
- "tp": 181477,
- "tp_rate": 0.5970404097894138,
- "truth_threshold": 7.92
- },
- {
- "f1": 0.7469811989482621,
- "fn": 122709,
- "fn_rate": 0.4036998167528071,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9959443831284631,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995588202854433,
- "recall": 0.5963001832471929,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 181252,
- "tp_rate": 0.5963001832471929,
- "truth_threshold": 7.94
- },
- {
- "f1": 0.7464800926823034,
- "fn": 122903,
- "fn_rate": 0.4043380565269887,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9959999946645937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995583477790414,
- "recall": 0.5956619434730114,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 181058,
- "tp_rate": 0.5956619434730114,
- "truth_threshold": 7.96
- },
- {
- "f1": 0.7460509927165045,
- "fn": 123069,
- "fn_rate": 0.4048841792203605,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9960548466634173,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995579426651636,
- "recall": 0.5951158207796395,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 180892,
- "tp_rate": 0.5951158207796395,
- "truth_threshold": 7.98
- },
- {
- "f1": 0.7455543177786029,
- "fn": 123261,
- "fn_rate": 0.4055158392030557,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9961089494163424,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995574731718111,
- "recall": 0.5944841607969443,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 180700,
- "tp_rate": 0.5944841607969443,
- "truth_threshold": 8
- },
- {
- "f1": 0.7451453004857795,
- "fn": 123419,
- "fn_rate": 0.40603564273048187,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9961623130775747,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995570860692496,
- "recall": 0.5939643572695181,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 180542,
- "tp_rate": 0.5939643572695181,
- "truth_threshold": 8.02
- },
- {
- "f1": 0.7445338662856719,
- "fn": 123655,
- "fn_rate": 0.406812058125878,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9962149476658856,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995565066025079,
- "recall": 0.593187941874122,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 180306,
- "tp_rate": 0.593187941874122,
- "truth_threshold": 8.040000000000001
- },
- {
- "f1": 0.7441823003147382,
- "fn": 123790,
- "fn_rate": 0.4072561940512105,
- "fp": 80,
- "fp_rate": 0.0004601165245098321,
- "match_probability": 0.9962668630663583,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995561744456342,
- "recall": 0.5927438059487895,
- "row_count": 477830,
- "tn": 173789,
- "tn_rate": 0.9995398834754902,
- "tp": 180171,
- "tp_rate": 0.5927438059487895,
- "truth_threshold": 8.06
- },
- {
- "f1": 0.7437546999859517,
- "fn": 123956,
- "fn_rate": 0.40780231674458234,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.9963180690321144,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995668663893871,
- "recall": 0.5921976832554177,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 180005,
- "tp_rate": 0.5921976832554177,
- "truth_threshold": 8.08
- },
- {
- "f1": 0.7431979959820432,
- "fn": 124171,
- "fn_rate": 0.4085096443293712,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.9963685751860192,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995663486556808,
- "recall": 0.5914903556706288,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 179790,
- "tp_rate": 0.5914903556706288,
- "truth_threshold": 8.1
- },
- {
- "f1": 0.7428768714880527,
- "fn": 124294,
- "fn_rate": 0.4089143015057853,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.9964183910223661,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995660519068681,
- "recall": 0.5910856984942148,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 179667,
- "tp_rate": 0.5910856984942148,
- "truth_threshold": 8.120000000000001
- },
- {
- "f1": 0.742471305966291,
- "fn": 124450,
- "fn_rate": 0.4094275252417251,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.996467525908541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995656749578203,
- "recall": 0.5905724747582749,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 179511,
- "tp_rate": 0.5905724747582749,
- "truth_threshold": 8.14
- },
- {
- "f1": 0.742018635596306,
- "fn": 124624,
- "fn_rate": 0.4099999671010426,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.9965159890866674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999565253741326,
- "recall": 0.5900000328989574,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 179337,
- "tp_rate": 0.5900000328989574,
- "truth_threshold": 8.16
- },
- {
- "f1": 0.7416999826177646,
- "fn": 124747,
- "fn_rate": 0.41040462427745666,
- "fp": 78,
- "fp_rate": 0.00044861361139708633,
- "match_probability": 0.9965637896752301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995649554916003,
- "recall": 0.5895953757225434,
- "row_count": 477830,
- "tn": 173791,
- "tn_rate": 0.9995513863886029,
- "tp": 179214,
- "tp_rate": 0.5895953757225434,
- "truth_threshold": 8.18
- },
- {
- "f1": 0.7412780227286841,
- "fn": 124909,
- "fn_rate": 0.4109375873878557,
- "fp": 77,
- "fp_rate": 0.0004428621548407134,
- "match_probability": 0.9966109366706807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995701421880321,
- "recall": 0.5890624126121443,
- "row_count": 477830,
- "tn": 173792,
- "tn_rate": 0.9995571378451593,
- "tp": 179052,
- "tp_rate": 0.5890624126121443,
- "truth_threshold": 8.2
- },
- {
- "f1": 0.7408901349655649,
- "fn": 125059,
- "fn_rate": 0.41143107174933624,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9966574389490227,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995809517424027,
- "recall": 0.5885689282506638,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 178902,
- "tp_rate": 0.5885689282506638,
- "truth_threshold": 8.22
- },
- {
- "f1": 0.7404832823096139,
- "fn": 125215,
- "fn_rate": 0.41194429548527606,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9967033052673774,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995805861727649,
- "recall": 0.5880557045147239,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 178746,
- "tp_rate": 0.5880557045147239,
- "truth_threshold": 8.24
- },
- {
- "f1": 0.740044839146813,
- "fn": 125383,
- "fn_rate": 0.41249699797013434,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9967485442655314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995801917684002,
- "recall": 0.5875030020298657,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 178578,
- "tp_rate": 0.5875030020298657,
- "truth_threshold": 8.26
- },
- {
- "f1": 0.7395486128384989,
- "fn": 125573,
- "fn_rate": 0.41312207816134305,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9967931644674644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995797448210554,
- "recall": 0.586877921838657,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 178388,
- "tp_rate": 0.586877921838657,
- "truth_threshold": 8.28
- },
- {
- "f1": 0.7389306201341391,
- "fn": 125810,
- "fn_rate": 0.4139017834524824,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9968371742828585,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995791859773546,
- "recall": 0.5860982165475176,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 178151,
- "tp_rate": 0.5860982165475176,
- "truth_threshold": 8.3
- },
- {
- "f1": 0.7384439834024896,
- "fn": 125996,
- "fn_rate": 0.4145137040607183,
- "fp": 75,
- "fp_rate": 0.0004313592417279676,
- "match_probability": 0.9968805820085895,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999578746349135,
- "recall": 0.5854862959392817,
- "row_count": 477830,
- "tn": 173794,
- "tn_rate": 0.999568640758272,
- "tp": 177965,
- "tp_rate": 0.5854862959392817,
- "truth_threshold": 8.32
- },
- {
- "f1": 0.738139212504306,
- "fn": 126113,
- "fn_rate": 0.4148986218626732,
- "fp": 74,
- "fp_rate": 0.0004256077851715947,
- "match_probability": 0.9969233958301993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995840874090893,
- "recall": 0.5851013781373269,
- "row_count": 477830,
- "tn": 173795,
- "tn_rate": 0.9995743922148284,
- "tp": 177848,
- "tp_rate": 0.5851013781373269,
- "truth_threshold": 8.34
- },
- {
- "f1": 0.737558702990894,
- "fn": 126334,
- "fn_rate": 0.41562568882192125,
- "fp": 74,
- "fp_rate": 0.0004256077851715947,
- "match_probability": 0.9969656238233504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995835701543604,
- "recall": 0.5843743111780788,
- "row_count": 477830,
- "tn": 173795,
- "tn_rate": 0.9995743922148284,
- "tp": 177627,
- "tp_rate": 0.5843743111780788,
- "truth_threshold": 8.36
- },
- {
- "f1": 0.737132864518648,
- "fn": 126497,
- "fn_rate": 0.4161619418280635,
- "fp": 74,
- "fp_rate": 0.0004256077851715947,
- "match_probability": 0.9970072739552628,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995831878245784,
- "recall": 0.5838380581719366,
- "row_count": 477830,
- "tn": 173795,
- "tn_rate": 0.9995743922148284,
- "tp": 177464,
- "tp_rate": 0.5838380581719366,
- "truth_threshold": 8.38
- },
- {
- "f1": 0.7366144333495394,
- "fn": 126694,
- "fn_rate": 0.4168100512894746,
- "fp": 74,
- "fp_rate": 0.0004256077851715947,
- "match_probability": 0.9970483540861322,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995827248070103,
- "recall": 0.5831899487105253,
- "row_count": 477830,
- "tn": 173795,
- "tn_rate": 0.9995743922148284,
- "tp": 177267,
- "tp_rate": 0.5831899487105253,
- "truth_threshold": 8.4
- },
- {
- "f1": 0.7363024232096097,
- "fn": 126814,
- "fn_rate": 0.4172048387786591,
- "fp": 73,
- "fp_rate": 0.0004198563286152218,
- "match_probability": 0.9970888719705324,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995880826091863,
- "recall": 0.5827951612213409,
- "row_count": 477830,
- "tn": 173796,
- "tn_rate": 0.9995801436713848,
- "tp": 177147,
- "tp_rate": 0.5827951612213409,
- "truth_threshold": 8.42
- },
- {
- "f1": 0.7358715718396062,
- "fn": 126978,
- "fn_rate": 0.41774438168054456,
- "fp": 73,
- "fp_rate": 0.0004198563286152218,
- "match_probability": 0.9971288352587981,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995877010663293,
- "recall": 0.5822556183194555,
- "row_count": 477830,
- "tn": 173796,
- "tn_rate": 0.9995801436713848,
- "tp": 176983,
- "tp_rate": 0.5822556183194555,
- "truth_threshold": 8.44
- },
- {
- "f1": 0.7354130272023958,
- "fn": 127153,
- "fn_rate": 0.4183201134356052,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.9971682514983926,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995929443690638,
- "recall": 0.5816798865643947,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 176808,
- "tp_rate": 0.5816798865643947,
- "truth_threshold": 8.46
- },
- {
- "f1": 0.7349605132856775,
- "fn": 127325,
- "fn_rate": 0.4188859755034363,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.9972071281352571,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999592548158544,
- "recall": 0.5811140244965637,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 176636,
- "tp_rate": 0.5811140244965637,
- "truth_threshold": 8.48
- },
- {
- "f1": 0.7344982455556157,
- "fn": 127500,
- "fn_rate": 0.41946170725849696,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.9972454725151444,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995921442449853,
- "recall": 0.580538292741503,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 176461,
- "tp_rate": 0.580538292741503,
- "truth_threshold": 8.5
- },
- {
- "f1": 0.7341335764873406,
- "fn": 127639,
- "fn_rate": 0.41991900276680233,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.9972832918849344,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995918228511174,
- "recall": 0.5800809972331977,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 176322,
- "tp_rate": 0.5800809972331977,
- "truth_threshold": 8.52
- },
- {
- "f1": 0.73359575132771,
- "fn": 127843,
- "fn_rate": 0.4205901414984159,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.997320593393935,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995913502468926,
- "recall": 0.5794098585015841,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 176118,
- "tp_rate": 0.5794098585015841,
- "truth_threshold": 8.540000000000001
- },
- {
- "f1": 0.7332011116620347,
- "fn": 127992,
- "fn_rate": 0.4210803359641533,
- "fp": 72,
- "fp_rate": 0.0004141048720588489,
- "match_probability": 0.9973573840951653,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995910043683006,
- "recall": 0.5789196640358467,
- "row_count": 477830,
- "tn": 173797,
- "tn_rate": 0.9995858951279412,
- "tp": 175969,
- "tp_rate": 0.5789196640358467,
- "truth_threshold": 8.56
- },
- {
- "f1": 0.7328726587701823,
- "fn": 128117,
- "fn_rate": 0.4214915729320538,
- "fp": 71,
- "fp_rate": 0.000408353415502476,
- "match_probability": 0.9973936709466236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9995963959866981,
- "recall": 0.5785084270679463,
- "row_count": 477830,
- "tn": 173798,
- "tn_rate": 0.9995916465844975,
- "tp": 175844,
- "tp_rate": 0.5785084270679463,
- "truth_threshold": 8.58
- },
- {
- "f1": 0.7325743300705364,
- "fn": 128234,
- "fn_rate": 0.4218764907340086,
- "fp": 65,
- "fp_rate": 0.0003738446761642386,
- "match_probability": 0.9974294608125389,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996302448348048,
- "recall": 0.5781235092659913,
- "row_count": 477830,
- "tn": 173804,
- "tn_rate": 0.9996261553238358,
- "tp": 175727,
- "tp_rate": 0.5781235092659913,
- "truth_threshold": 8.6
- },
- {
- "f1": 0.7321673568280102,
- "fn": 128388,
- "fn_rate": 0.42238313467846206,
- "fp": 65,
- "fp_rate": 0.0003738446761642386,
- "match_probability": 0.9974647604646075,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996299206322095,
- "recall": 0.577616865321538,
- "row_count": 477830,
- "tn": 173804,
- "tn_rate": 0.9996261553238358,
- "tp": 175573,
- "tp_rate": 0.577616865321538,
- "truth_threshold": 8.620000000000001
- },
- {
- "f1": 0.731676588501796,
- "fn": 128573,
- "fn_rate": 0.4229917653909548,
- "fp": 65,
- "fp_rate": 0.0003738446761642386,
- "match_probability": 0.9974995765832131,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996295304155529,
- "recall": 0.5770082346090453,
- "row_count": 477830,
- "tn": 173804,
- "tn_rate": 0.9996261553238358,
- "tp": 175388,
- "tp_rate": 0.5770082346090453,
- "truth_threshold": 8.64
- },
- {
- "f1": 0.7313091522141916,
- "fn": 128713,
- "fn_rate": 0.4234523507950033,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9975339157586318,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996349365702291,
- "recall": 0.5765476492049967,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 175248,
- "tp_rate": 0.5765476492049967,
- "truth_threshold": 8.66
- },
- {
- "f1": 0.7308707013867437,
- "fn": 128878,
- "fn_rate": 0.42399518359263194,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9975677844922232,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996345926564543,
- "recall": 0.576004816407368,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 175083,
- "tp_rate": 0.576004816407368,
- "truth_threshold": 8.68
- },
- {
- "f1": 0.7304721101729595,
- "fn": 129029,
- "fn_rate": 0.4244919578498557,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9976011891976038,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999634277354911,
- "recall": 0.5755080421501443,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174932,
- "tp_rate": 0.5755080421501443,
- "truth_threshold": 8.700000000000001
- },
- {
- "f1": 0.7299959480176617,
- "fn": 129208,
- "fn_rate": 0.42508084918788924,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9976341362018084,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996339028812987,
- "recall": 0.5749191508121108,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174753,
- "tp_rate": 0.5749191508121108,
- "truth_threshold": 8.72
- },
- {
- "f1": 0.7295065525541589,
- "fn": 129393,
- "fn_rate": 0.425689479900382,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9976666317464351,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996335150487883,
- "recall": 0.574310520099618,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174568,
- "tp_rate": 0.574310520099618,
- "truth_threshold": 8.74
- },
- {
- "f1": 0.729141237647767,
- "fn": 129530,
- "fn_rate": 0.4261401956172009,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9976986819887761,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996332273131036,
- "recall": 0.5738598043827992,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174431,
- "tp_rate": 0.5738598043827992,
- "truth_threshold": 8.76
- },
- {
- "f1": 0.7286363655371697,
- "fn": 129720,
- "fn_rate": 0.4267652758084096,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9977302930029345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999632827514988,
- "recall": 0.5732347241915904,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174241,
- "tp_rate": 0.5732347241915904,
- "truth_threshold": 8.78
- },
- {
- "f1": 0.7282204020848846,
- "fn": 129877,
- "fn_rate": 0.42728178944009265,
- "fp": 64,
- "fp_rate": 0.0003680932196078657,
- "match_probability": 0.9977614707809268,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996324964972323,
- "recall": 0.5727182105599073,
- "row_count": 477830,
- "tn": 173805,
- "tn_rate": 0.9996319067803922,
- "tp": 174084,
- "tp_rate": 0.5727182105599073,
- "truth_threshold": 8.8
- },
- {
- "f1": 0.7276923591988416,
- "fn": 130076,
- "fn_rate": 0.42793647869299023,
- "fp": 63,
- "fp_rate": 0.0003623417630514928,
- "match_probability": 0.997792221233771,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996378227976177,
- "recall": 0.5720635213070098,
- "row_count": 477830,
- "tn": 173806,
- "tn_rate": 0.9996376582369485,
- "tp": 173885,
- "tp_rate": 0.5720635213070098,
- "truth_threshold": 8.82
- },
- {
- "f1": 0.7273526419999079,
- "fn": 130203,
- "fn_rate": 0.42835429545237713,
- "fp": 63,
- "fp_rate": 0.0003623417630514928,
- "match_probability": 0.9978225501925614,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996375581776655,
- "recall": 0.5716457045476229,
- "row_count": 477830,
- "tn": 173806,
- "tn_rate": 0.9996376582369485,
- "tp": 173758,
- "tp_rate": 0.5716457045476229,
- "truth_threshold": 8.84
- },
- {
- "f1": 0.7269624859201815,
- "fn": 130350,
- "fn_rate": 0.4288379101266281,
- "fp": 63,
- "fp_rate": 0.0003623417630514928,
- "match_probability": 0.9978524634095293,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996372514020522,
- "recall": 0.5711620898733719,
- "row_count": 477830,
- "tn": 173806,
- "tn_rate": 0.9996376582369485,
- "tp": 173611,
- "tp_rate": 0.5711620898733719,
- "truth_threshold": 8.86
- },
- {
- "f1": 0.7265358951482175,
- "fn": 130510,
- "fn_rate": 0.4293642934455407,
- "fp": 63,
- "fp_rate": 0.0003623417630514928,
- "match_probability": 0.9978819665590902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996369169058404,
- "recall": 0.5706357065544593,
- "row_count": 477830,
- "tn": 173806,
- "tn_rate": 0.9996376582369485,
- "tp": 173451,
- "tp_rate": 0.5706357065544593,
- "truth_threshold": 8.88
- },
- {
- "f1": 0.7260674628116489,
- "fn": 130685,
- "fn_rate": 0.4299400252006014,
- "fp": 63,
- "fp_rate": 0.0003623417630514928,
- "match_probability": 0.9979110652388782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996365503435465,
- "recall": 0.5700599747993986,
- "row_count": 477830,
- "tn": 173806,
- "tn_rate": 0.9996376582369485,
- "tp": 173276,
- "tp_rate": 0.5700599747993986,
- "truth_threshold": 8.9
- },
- {
- "f1": 0.7254910180895885,
- "fn": 130906,
- "fn_rate": 0.43066709215984944,
- "fp": 55,
- "fp_rate": 0.0003163301106005096,
- "match_probability": 0.9979397649707662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996822829414823,
- "recall": 0.5693329078401506,
- "row_count": 477830,
- "tn": 173814,
- "tn_rate": 0.9996836698893995,
- "tp": 173055,
- "tp_rate": 0.5693329078401506,
- "truth_threshold": 8.92
- },
- {
- "f1": 0.7251008546435072,
- "fn": 131052,
- "fn_rate": 0.43114741693835723,
- "fp": 55,
- "fp_rate": 0.0003163301106005096,
- "match_probability": 0.9979680712018738,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996820147545153,
- "recall": 0.5688525830616428,
- "row_count": 477830,
- "tn": 173814,
- "tn_rate": 0.9996836698893995,
- "tp": 172909,
- "tp_rate": 0.5688525830616428,
- "truth_threshold": 8.94
- },
- {
- "f1": 0.7247211513857487,
- "fn": 131194,
- "fn_rate": 0.4316145821338922,
- "fp": 55,
- "fp_rate": 0.0003163301106005096,
- "match_probability": 0.9979959893055618,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996817534804596,
- "recall": 0.5683854178661079,
- "row_count": 477830,
- "tn": 173814,
- "tn_rate": 0.9996836698893995,
- "tp": 172767,
- "tp_rate": 0.5683854178661079,
- "truth_threshold": 8.96
- },
- {
- "f1": 0.7242448657585753,
- "fn": 131372,
- "fn_rate": 0.43220018357618245,
- "fp": 55,
- "fp_rate": 0.0003163301106005096,
- "match_probability": 0.9980235245824145,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996814253608581,
- "recall": 0.5677998164238175,
- "row_count": 477830,
- "tn": 173814,
- "tn_rate": 0.9996836698893995,
- "tp": 172589,
- "tp_rate": 0.5677998164238175,
- "truth_threshold": 8.98
- },
- {
- "f1": 0.7238217972236098,
- "fn": 131530,
- "fn_rate": 0.4327199871036087,
- "fp": 55,
- "fp_rate": 0.0003163301106005096,
- "match_probability": 0.9980506822612085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996811335412729,
- "recall": 0.5672800128963913,
- "row_count": 477830,
- "tn": 173814,
- "tn_rate": 0.9996836698893995,
- "tp": 172431,
- "tp_rate": 0.5672800128963913,
- "truth_threshold": 9
- },
- {
- "f1": 0.7233651217576437,
- "fn": 131701,
- "fn_rate": 0.43328255927569653,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9980774674998706,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996866186148543,
- "recall": 0.5667174407243034,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 172260,
- "tp_rate": 0.5667174407243034,
- "truth_threshold": 9.02
- },
- {
- "f1": 0.7229146450580333,
- "fn": 131869,
- "fn_rate": 0.4338352617605548,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9981038853864208,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996863127810115,
- "recall": 0.5661647382394452,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 172092,
- "tp_rate": 0.5661647382394452,
- "truth_threshold": 9.040000000000001
- },
- {
- "f1": 0.7224918583884862,
- "fn": 132026,
- "fn_rate": 0.4343517753922378,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9981299409399065,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999686026431923,
- "recall": 0.5656482246077622,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 171935,
- "tp_rate": 0.5656482246077622,
- "truth_threshold": 9.06
- },
- {
- "f1": 0.7220676261895954,
- "fn": 132184,
- "fn_rate": 0.43487157891966405,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9981556391113212,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996857377306773,
- "recall": 0.565128421080336,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 171777,
- "tp_rate": 0.565128421080336,
- "truth_threshold": 9.08
- },
- {
- "f1": 0.7215290481296915,
- "fn": 132385,
- "fn_rate": 0.435532847964048,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9981809847845143,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996853696906135,
- "recall": 0.564467152035952,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 171576,
- "tp_rate": 0.564467152035952,
- "truth_threshold": 9.1
- },
- {
- "f1": 0.7210569269860501,
- "fn": 132560,
- "fn_rate": 0.4361085797191087,
- "fp": 54,
- "fp_rate": 0.00031057865404413666,
- "match_probability": 0.9982059827770873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996850485550144,
- "recall": 0.5638914202808913,
- "row_count": 477830,
- "tn": 173815,
- "tn_rate": 0.9996894213459558,
- "tp": 171401,
- "tp_rate": 0.5638914202808913,
- "truth_threshold": 9.120000000000001
- },
- {
- "f1": 0.7205701636253451,
- "fn": 132742,
- "fn_rate": 0.4367073407443718,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9982306378412784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996963875962656,
- "recall": 0.5632926592556282,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 171219,
- "tp_rate": 0.5632926592556282,
- "truth_threshold": 9.14
- },
- {
- "f1": 0.7201758004900186,
- "fn": 132889,
- "fn_rate": 0.4371909554186228,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9982549546648377,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996961267852551,
- "recall": 0.5628090445813773,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 171072,
- "tp_rate": 0.5628090445813773,
- "truth_threshold": 9.16
- },
- {
- "f1": 0.7196541529442484,
- "fn": 133082,
- "fn_rate": 0.4378259052970611,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9982789378718879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996957836787944,
- "recall": 0.5621740947029389,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170879,
- "tp_rate": 0.5621740947029389,
- "truth_threshold": 9.18
- },
- {
- "f1": 0.719195655562624,
- "fn": 133252,
- "fn_rate": 0.4383851875734058,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9983025920237768,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996954808182196,
- "recall": 0.5616148124265942,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170709,
- "tp_rate": 0.5616148124265942,
- "truth_threshold": 9.200000000000001
- },
- {
- "f1": 0.7186978437884586,
- "fn": 133437,
- "fn_rate": 0.4389938182858985,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9983259216199165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999695150548729,
- "recall": 0.5610061817141014,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170524,
- "tp_rate": 0.5610061817141014,
- "truth_threshold": 9.22
- },
- {
- "f1": 0.7184007621841974,
- "fn": 133547,
- "fn_rate": 0.43935570681765096,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9983489310986134,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996949538324358,
- "recall": 0.5606442931823491,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170414,
- "tp_rate": 0.5606442931823491,
- "truth_threshold": 9.24
- },
- {
- "f1": 0.7180614882501023,
- "fn": 133672,
- "fn_rate": 0.4397669437855514,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9983716248378863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996947299827992,
- "recall": 0.5602330562144485,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170289,
- "tp_rate": 0.5602330562144485,
- "truth_threshold": 9.26
- },
- {
- "f1": 0.71761266809523,
- "fn": 133838,
- "fn_rate": 0.44031306647892327,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.998394007156274,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996944322021448,
- "recall": 0.5596869335210767,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 170123,
- "tp_rate": 0.5596869335210767,
- "truth_threshold": 9.28
- },
- {
- "f1": 0.7171027923012326,
- "fn": 134027,
- "fn_rate": 0.4409348567743888,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9984160823136331,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996940924546728,
- "recall": 0.5590651432256112,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 169934,
- "tp_rate": 0.5590651432256112,
- "truth_threshold": 9.3
- },
- {
- "f1": 0.7166274072760738,
- "fn": 134202,
- "fn_rate": 0.4415105885294495,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9984378545119243,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996937771993569,
- "recall": 0.5584894114705505,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 169759,
- "tp_rate": 0.5584894114705505,
- "truth_threshold": 9.32
- },
- {
- "f1": 0.7162155314387061,
- "fn": 134354,
- "fn_rate": 0.4420106526824165,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9984593278959899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999693502849834,
- "recall": 0.5579893473175835,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 169607,
- "tp_rate": 0.5579893473175835,
- "truth_threshold": 9.34
- },
- {
- "f1": 0.7156406313370285,
- "fn": 134566,
- "fn_rate": 0.4427081105799757,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9984805065543192,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996931193824617,
- "recall": 0.5572918894200243,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 169395,
- "tp_rate": 0.5572918894200243,
- "truth_threshold": 9.36
- },
- {
- "f1": 0.7151901141487864,
- "fn": 134732,
- "fn_rate": 0.44325423327334756,
- "fp": 52,
- "fp_rate": 0.0002990757409313909,
- "match_probability": 0.9985013945198057,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9996928184497965,
- "recall": 0.5567457667266524,
- "row_count": 477830,
- "tn": 173817,
- "tn_rate": 0.9997009242590686,
- "tp": 169229,
- "tp_rate": 0.5567457667266524,
- "truth_threshold": 9.38
- },
- {
- "f1": 0.7146921915891209,
- "fn": 134917,
- "fn_rate": 0.4438628639858403,
- "fp": 49,
- "fp_rate": 0.00028182137126227214,
- "match_probability": 0.9985219957704938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997102186370813,
- "recall": 0.5561371360141597,
- "row_count": 477830,
- "tn": 173820,
- "tn_rate": 0.9997181786287377,
- "tp": 169044,
- "tp_rate": 0.5561371360141597,
- "truth_threshold": 9.4
- },
- {
- "f1": 0.714349753027945,
- "fn": 135043,
- "fn_rate": 0.444277390849484,
- "fp": 49,
- "fp_rate": 0.00028182137126227214,
- "match_probability": 0.998542314230315,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997100025448756,
- "recall": 0.555722609150516,
- "row_count": 477830,
- "tn": 173820,
- "tn_rate": 0.9997181786287377,
- "tp": 168918,
- "tp_rate": 0.555722609150516,
- "truth_threshold": 9.42
- },
- {
- "f1": 0.7139025556199525,
- "fn": 135208,
- "fn_rate": 0.4448202236471126,
- "fp": 49,
- "fp_rate": 0.00028182137126227214,
- "match_probability": 0.9985623537698158,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997097190791578,
- "recall": 0.5551797763528874,
- "row_count": 477830,
- "tn": 173820,
- "tn_rate": 0.9997181786287377,
- "tp": 168753,
- "tp_rate": 0.5551797763528874,
- "truth_threshold": 9.44
- },
- {
- "f1": 0.7135161440480724,
- "fn": 135350,
- "fn_rate": 0.44528738884264757,
- "fp": 49,
- "fp_rate": 0.00028182137126227214,
- "match_probability": 0.9985821182068747,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997094746827938,
- "recall": 0.5547126111573524,
- "row_count": 477830,
- "tn": 173820,
- "tn_rate": 0.9997181786287377,
- "tp": 168611,
- "tp_rate": 0.5547126111573524,
- "truth_threshold": 9.46
- },
- {
- "f1": 0.7129618261793581,
- "fn": 135553,
- "fn_rate": 0.44595523767851797,
- "fp": 49,
- "fp_rate": 0.00028182137126227214,
- "match_probability": 0.9986016113074108,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997091245837216,
- "recall": 0.554044762321482,
- "row_count": 477830,
- "tn": 173820,
- "tn_rate": 0.9997181786287377,
- "tp": 168408,
- "tp_rate": 0.554044762321482,
- "truth_threshold": 9.48
- },
- {
- "f1": 0.7124348820465037,
- "fn": 135748,
- "fn_rate": 0.4465967673484427,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9986208367860828,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997206703910615,
- "recall": 0.5534032326515572,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 168213,
- "tp_rate": 0.5534032326515572,
- "truth_threshold": 9.5
- },
- {
- "f1": 0.7120597181857466,
- "fn": 135885,
- "fn_rate": 0.44704748306526165,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9986397983069785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997204427710664,
- "recall": 0.5529525169347383,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 168076,
- "tp_rate": 0.5529525169347383,
- "truth_threshold": 9.52
- },
- {
- "f1": 0.7116121376504493,
- "fn": 136049,
- "fn_rate": 0.4475870259671471,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9986584994842955,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997201698033449,
- "recall": 0.5524129740328529,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167912,
- "tp_rate": 0.5524129740328529,
- "truth_threshold": 9.540000000000001
- },
- {
- "f1": 0.7111684854034713,
- "fn": 136212,
- "fn_rate": 0.44812327897328935,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9986769438830138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997198979713462,
- "recall": 0.5518767210267107,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167749,
- "tp_rate": 0.5518767210267107,
- "truth_threshold": 9.56
- },
- {
- "f1": 0.7107105748637588,
- "fn": 136379,
- "fn_rate": 0.4486726915624044,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9986951350195571,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997196189203539,
- "recall": 0.5513273084375956,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167582,
- "tp_rate": 0.5513273084375956,
- "truth_threshold": 9.58
- },
- {
- "f1": 0.7102237533198137,
- "fn": 136557,
- "fn_rate": 0.44925829300469466,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9987130763624487,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997193208759577,
- "recall": 0.5507417069953053,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167404,
- "tp_rate": 0.5507417069953053,
- "truth_threshold": 9.6
- },
- {
- "f1": 0.709895351501829,
- "fn": 136677,
- "fn_rate": 0.44965308049387914,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9987307713329557,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999719119589317,
- "recall": 0.5503469195061208,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167284,
- "tp_rate": 0.5503469195061208,
- "truth_threshold": 9.620000000000001
- },
- {
- "f1": 0.7094669457097131,
- "fn": 136834,
- "fn_rate": 0.4501695941255622,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.998748223305727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997188558029358,
- "recall": 0.5498304058744379,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 167127,
- "tp_rate": 0.5498304058744379,
- "truth_threshold": 9.64
- },
- {
- "f1": 0.7091065044033596,
- "fn": 136965,
- "fn_rate": 0.45060057046792185,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9987654356094217,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997186353214442,
- "recall": 0.5493994295320781,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166996,
- "tp_rate": 0.5493994295320781,
- "truth_threshold": 9.66
- },
- {
- "f1": 0.7086336894420492,
- "fn": 137138,
- "fn_rate": 0.45116972243149617,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9987824115273289,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997183436207826,
- "recall": 0.5488302775685039,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166823,
- "tp_rate": 0.5488302775685039,
- "truth_threshold": 9.68
- },
- {
- "f1": 0.7082166576725489,
- "fn": 137290,
- "fn_rate": 0.45166978658446316,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9987991542979808,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997180868292566,
- "recall": 0.5483302134155369,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166671,
- "tp_rate": 0.5483302134155369,
- "truth_threshold": 9.700000000000001
- },
- {
- "f1": 0.7078048490206746,
- "fn": 137440,
- "fn_rate": 0.4521632709459437,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988156671157563,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997178329571106,
- "recall": 0.5478367290540562,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166521,
- "tp_rate": 0.5478367290540562,
- "truth_threshold": 9.72
- },
- {
- "f1": 0.7072511098637546,
- "fn": 137641,
- "fn_rate": 0.4528245399903277,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988319531314767,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997174920507071,
- "recall": 0.5471754600096723,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166320,
- "tp_rate": 0.5471754600096723,
- "truth_threshold": 9.74
- },
- {
- "f1": 0.7068166833273072,
- "fn": 137799,
- "fn_rate": 0.45334434351775393,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988480154529947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997172234957192,
- "recall": 0.5466556564822461,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166162,
- "tp_rate": 0.5466556564822461,
- "truth_threshold": 9.76
- },
- {
- "f1": 0.7063752106347126,
- "fn": 137960,
- "fn_rate": 0.45387401673240974,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988638571457743,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997169493158605,
- "recall": 0.5461259832675902,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 166001,
- "tp_rate": 0.5461259832675902,
- "truth_threshold": 9.78
- },
- {
- "f1": 0.7059524620309201,
- "fn": 138113,
- "fn_rate": 0.45437737078111995,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988794812334637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997166882666747,
- "recall": 0.54562262921888,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 165848,
- "tp_rate": 0.54562262921888,
- "truth_threshold": 9.8
- },
- {
- "f1": 0.7055600027250741,
- "fn": 138256,
- "fn_rate": 0.4548478258723981,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9988948906984604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997164438438149,
- "recall": 0.5451521741276019,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 165705,
- "tp_rate": 0.5451521741276019,
- "truth_threshold": 9.82
- },
- {
- "f1": 0.7051036315776023,
- "fn": 138421,
- "fn_rate": 0.45539065867002676,
- "fp": 47,
- "fp_rate": 0.00027031845814952637,
- "match_probability": 0.9989100884824688,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997161612928551,
- "recall": 0.5446093413299733,
- "row_count": 477830,
- "tn": 173822,
- "tn_rate": 0.9997296815418505,
- "tp": 165540,
- "tp_rate": 0.5446093413299733,
- "truth_threshold": 9.84
- },
- {
- "f1": 0.7046529464399847,
- "fn": 138586,
- "fn_rate": 0.4559334914676554,
- "fp": 45,
- "fp_rate": 0.00025881554503678054,
- "match_probability": 0.9989250774870504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999727965179543,
- "recall": 0.5440665085323446,
- "row_count": 477830,
- "tn": 173824,
- "tn_rate": 0.9997411844549632,
- "tp": 165375,
- "tp_rate": 0.5440665085323446,
- "truth_threshold": 9.86
- },
- {
- "f1": 0.7040676260955564,
- "fn": 138798,
- "fn_rate": 0.4566309493652146,
- "fp": 45,
- "fp_rate": 0.00025881554503678054,
- "match_probability": 0.9989398605741672,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997276160960729,
- "recall": 0.5433690506347854,
- "row_count": 477830,
- "tn": 173824,
- "tn_rate": 0.9997411844549632,
- "tp": 165163,
- "tp_rate": 0.5433690506347854,
- "truth_threshold": 9.88
- },
- {
- "f1": 0.7035217454346955,
- "fn": 138995,
- "fn_rate": 0.4572790588266258,
- "fp": 45,
- "fp_rate": 0.00025881554503678054,
- "match_probability": 0.9989544405667166,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997272909078788,
- "recall": 0.5427209411733742,
- "row_count": 477830,
- "tn": 173824,
- "tn_rate": 0.9997411844549632,
- "tp": 164966,
- "tp_rate": 0.5427209411733742,
- "truth_threshold": 9.9
- },
- {
- "f1": 0.7029852083502213,
- "fn": 139189,
- "fn_rate": 0.4579172986008073,
- "fp": 45,
- "fp_rate": 0.00025881554503678054,
- "match_probability": 0.998968820249061,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997269699120843,
- "recall": 0.5420827013991927,
- "row_count": 477830,
- "tn": 173824,
- "tn_rate": 0.9997411844549632,
- "tp": 164772,
- "tp_rate": 0.5420827013991927,
- "truth_threshold": 9.92
- },
- {
- "f1": 0.7026837876014048,
- "fn": 139299,
- "fn_rate": 0.4582791871325598,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9989830023675484,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997328573336733,
- "recall": 0.5417208128674402,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 164662,
- "tp_rate": 0.5417208128674402,
- "truth_threshold": 9.94
- },
- {
- "f1": 0.702207498922078,
- "fn": 139471,
- "fn_rate": 0.4588450492003908,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9989969896310279,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997325780689705,
- "recall": 0.5411549507996092,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 164490,
- "tp_rate": 0.5411549507996092,
- "truth_threshold": 9.96
- },
- {
- "f1": 0.7016988674217188,
- "fn": 139654,
- "fn_rate": 0.45944710012139717,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990107847113568,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997322803025233,
- "recall": 0.5405528998786029,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 164307,
- "tp_rate": 0.5405528998786029,
- "truth_threshold": 9.98
- },
- {
- "f1": 0.7013050814874938,
- "fn": 139796,
- "fn_rate": 0.4599142653169321,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990243902439024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997320487914791,
- "recall": 0.5400857346830679,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 164165,
- "tp_rate": 0.5400857346830679,
- "truth_threshold": 10
- },
- {
- "f1": 0.7009221591686039,
- "fn": 139934,
- "fn_rate": 0.4603682709294942,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990378088280355,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997318234179106,
- "recall": 0.5396317290705057,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 164027,
- "tp_rate": 0.5396317290705057,
- "truth_threshold": 10.02
- },
- {
- "f1": 0.7004321861093418,
- "fn": 140111,
- "fn_rate": 0.4609505824760413,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990510430276189,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997315337962341,
- "recall": 0.5390494175239586,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163850,
- "tp_rate": 0.5390494175239586,
- "truth_threshold": 10.040000000000001
- },
- {
- "f1": 0.6999875987290836,
- "fn": 140271,
- "fn_rate": 0.46147696579495395,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990640953714882,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997312714524778,
- "recall": 0.538523034205046,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163690,
- "tp_rate": 0.538523034205046,
- "truth_threshold": 10.06
- },
- {
- "f1": 0.6996608052560215,
- "fn": 140388,
- "fn_rate": 0.46186188359690883,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990769683539271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999731079288827,
- "recall": 0.5381381164030912,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163573,
- "tp_rate": 0.5381381164030912,
- "truth_threshold": 10.08
- },
- {
- "f1": 0.6991476105709982,
- "fn": 140573,
- "fn_rate": 0.46247051430940156,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9990896644351354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997307748788486,
- "recall": 0.5375294856905984,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163388,
- "tp_rate": 0.5375294856905984,
- "truth_threshold": 10.1
- },
- {
- "f1": 0.698675581733815,
- "fn": 140742,
- "fn_rate": 0.463026506690003,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9991021860416915,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997304961932587,
- "recall": 0.536973493309997,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163219,
- "tp_rate": 0.536973493309997,
- "truth_threshold": 10.120000000000001
- },
- {
- "f1": 0.6981560307984823,
- "fn": 140929,
- "fn_rate": 0.4636417171939821,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9991145355670089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997301871520028,
- "recall": 0.5363582828060178,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 163032,
- "tp_rate": 0.5363582828060178,
- "truth_threshold": 10.14
- },
- {
- "f1": 0.6978939568511721,
- "fn": 141023,
- "fn_rate": 0.4639509673938433,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9991267153717854,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999730031537225,
- "recall": 0.5360490326061567,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 162938,
- "tp_rate": 0.5360490326061567,
- "truth_threshold": 10.16
- },
- {
- "f1": 0.6974866965441007,
- "fn": 141169,
- "fn_rate": 0.4644312921723511,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9991387277844479,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997297894814414,
- "recall": 0.535568707827649,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 162792,
- "tp_rate": 0.535568707827649,
- "truth_threshold": 10.18
- },
- {
- "f1": 0.6970400912059935,
- "fn": 141329,
- "fn_rate": 0.46495767549126366,
- "fp": 44,
- "fp_rate": 0.0002530640884804077,
- "match_probability": 0.9991505751015896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997295237158523,
- "recall": 0.5350423245087363,
- "row_count": 477830,
- "tn": 173825,
- "tn_rate": 0.9997469359115196,
- "tp": 162632,
- "tp_rate": 0.5350423245087363,
- "truth_threshold": 10.200000000000001
- },
- {
- "f1": 0.6966511320811343,
- "fn": 141472,
- "fn_rate": 0.46542813058254184,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9991622595884027,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999778495616059,
- "recall": 0.5345718694174582,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 162489,
- "tp_rate": 0.5345718694174582,
- "truth_threshold": 10.22
- },
- {
- "f1": 0.6962585559158047,
- "fn": 141613,
- "fn_rate": 0.4658920058823336,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.999173783479105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997783032811114,
- "recall": 0.5341079941176664,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 162348,
- "tp_rate": 0.5341079941176664,
- "truth_threshold": 10.24
- },
- {
- "f1": 0.6958446661919021,
- "fn": 141761,
- "fn_rate": 0.46637891045232777,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9991851489773601,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999778101037994,
- "recall": 0.5336210895476723,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 162200,
- "tp_rate": 0.5336210895476723,
- "truth_threshold": 10.26
- },
- {
- "f1": 0.6953633289272656,
- "fn": 141933,
- "fn_rate": 0.4669447725201588,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9991963582566927,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997778655346036,
- "recall": 0.5330552274798411,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 162028,
- "tp_rate": 0.5330552274798411,
- "truth_threshold": 10.28
- },
- {
- "f1": 0.6949949988624021,
- "fn": 142064,
- "fn_rate": 0.46737574886251854,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992074134608979,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997776858330297,
- "recall": 0.5326242511374815,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161897,
- "tp_rate": 0.5326242511374815,
- "truth_threshold": 10.3
- },
- {
- "f1": 0.6943827656257382,
- "fn": 142283,
- "fn_rate": 0.4680962360302802,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992183167044456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997773847656974,
- "recall": 0.5319037639697198,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161678,
- "tp_rate": 0.5319037639697198,
- "truth_threshold": 10.32
- },
- {
- "f1": 0.6940026635734845,
- "fn": 142418,
- "fn_rate": 0.4685403719556127,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992290700728785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997771987696421,
- "recall": 0.5314596280443873,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161543,
- "tp_rate": 0.5314596280443873,
- "truth_threshold": 10.34
- },
- {
- "f1": 0.6934638163267061,
- "fn": 142610,
- "fn_rate": 0.46917203193830787,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.999239675623206,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997769337059367,
- "recall": 0.5308279680616921,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161351,
- "tp_rate": 0.5308279680616921,
- "truth_threshold": 10.36
- },
- {
- "f1": 0.6929962595124468,
- "fn": 142777,
- "fn_rate": 0.4697214445274229,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992501353842916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997767026423521,
- "recall": 0.5302785554725771,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161184,
- "tp_rate": 0.5302785554725771,
- "truth_threshold": 10.38
- },
- {
- "f1": 0.6925759947702523,
- "fn": 142926,
- "fn_rate": 0.4702116389931603,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.999260451357236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997764960793687,
- "recall": 0.5297883610068397,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 161035,
- "tp_rate": 0.5297883610068397,
- "truth_threshold": 10.4
- },
- {
- "f1": 0.692231581302107,
- "fn": 143049,
- "fn_rate": 0.4706162961695744,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992706255157543,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999776325272759,
- "recall": 0.5293837038304257,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160912,
- "tp_rate": 0.5293837038304257,
- "truth_threshold": 10.42
- },
- {
- "f1": 0.691782678859602,
- "fn": 143208,
- "fn_rate": 0.4711393895927438,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992806598065492,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997761040867224,
- "recall": 0.5288606104072562,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160753,
- "tp_rate": 0.5288606104072562,
- "truth_threshold": 10.44
- },
- {
- "f1": 0.691388476356514,
- "fn": 143348,
- "fn_rate": 0.47159997499679235,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9992905561496781,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997759089692435,
- "recall": 0.5284000250032076,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160613,
- "tp_rate": 0.5284000250032076,
- "truth_threshold": 10.46
- },
- {
- "f1": 0.6908517757709649,
- "fn": 143539,
- "fn_rate": 0.4722283450837443,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993003164389153,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997756422241334,
- "recall": 0.5277716549162557,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160422,
- "tp_rate": 0.5277716549162557,
- "truth_threshold": 10.48
- },
- {
- "f1": 0.690413213171816,
- "fn": 143694,
- "fn_rate": 0.4727382789239409,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993099425421107,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997754252883602,
- "recall": 0.5272617210760591,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160267,
- "tp_rate": 0.5272617210760591,
- "truth_threshold": 10.5
- },
- {
- "f1": 0.6899335048503105,
- "fn": 143864,
- "fn_rate": 0.47329756120028554,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993194363015417,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997751868759094,
- "recall": 0.5267024387997145,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 160097,
- "tp_rate": 0.5267024387997145,
- "truth_threshold": 10.52
- },
- {
- "f1": 0.6894295063309148,
- "fn": 144043,
- "fn_rate": 0.47388645253831907,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993287995342623,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999774935293897,
- "recall": 0.5261135474616809,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159918,
- "tp_rate": 0.5261135474616809,
- "truth_threshold": 10.540000000000001
- },
- {
- "f1": 0.6890338828826109,
- "fn": 144183,
- "fn_rate": 0.4743470379423676,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993380340324456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997747381330797,
- "recall": 0.5256529620576323,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159778,
- "tp_rate": 0.5256529620576323,
- "truth_threshold": 10.56
- },
- {
- "f1": 0.6886719609357139,
- "fn": 144311,
- "fn_rate": 0.4747681445974977,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993471415637232,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997745575692296,
- "recall": 0.5252318554025023,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159650,
- "tp_rate": 0.5252318554025023,
- "truth_threshold": 10.58
- },
- {
- "f1": 0.6882588996763754,
- "fn": 144457,
- "fn_rate": 0.47524846937600546,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993561238715196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997743512598721,
- "recall": 0.5247515306239945,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159504,
- "tp_rate": 0.5247515306239945,
- "truth_threshold": 10.6
- },
- {
- "f1": 0.6877832741964726,
- "fn": 144625,
- "fn_rate": 0.47580117186086374,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993649826753817,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997741133950757,
- "recall": 0.5241988281391363,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159336,
- "tp_rate": 0.5241988281391363,
- "truth_threshold": 10.620000000000001
- },
- {
- "f1": 0.6872349613507794,
- "fn": 144818,
- "fn_rate": 0.47643612173930205,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993737196713037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997738395140062,
- "recall": 0.523563878260698,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 159143,
- "tp_rate": 0.523563878260698,
- "truth_threshold": 10.64
- },
- {
- "f1": 0.6868082974072762,
- "fn": 144969,
- "fn_rate": 0.4769328959965259,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993823365320493,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997736247704807,
- "recall": 0.5230671040034741,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158992,
- "tp_rate": 0.5230671040034741,
- "truth_threshold": 10.66
- },
- {
- "f1": 0.6864735238835958,
- "fn": 145087,
- "fn_rate": 0.4773211036942239,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993908349074672,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997734566735889,
- "recall": 0.522678896305776,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158874,
- "tp_rate": 0.522678896305776,
- "truth_threshold": 10.68
- },
- {
- "f1": 0.6860250004322344,
- "fn": 145245,
- "fn_rate": 0.4778409072216501,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9993992164248033,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997732312033865,
- "recall": 0.5221590927783498,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158716,
- "tp_rate": 0.5221590927783498,
- "truth_threshold": 10.700000000000001
- },
- {
- "f1": 0.685537745761466,
- "fn": 145416,
- "fn_rate": 0.478403479393738,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994074826890101,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999772986675579,
- "recall": 0.5215965206062619,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158545,
- "tp_rate": 0.5215965206062619,
- "truth_threshold": 10.72
- },
- {
- "f1": 0.6852578269274849,
- "fn": 145515,
- "fn_rate": 0.4787291790723152,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994156352830494,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999772844865663,
- "recall": 0.5212708209276848,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158446,
- "tp_rate": 0.5212708209276848,
- "truth_threshold": 10.74
- },
- {
- "f1": 0.6848269059382381,
- "fn": 145666,
- "fn_rate": 0.479225953329539,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994236757681928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997726282282055,
- "recall": 0.520774046670461,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158295,
- "tp_rate": 0.520774046670461,
- "truth_threshold": 10.76
- },
- {
- "f1": 0.6843758926021137,
- "fn": 145825,
- "fn_rate": 0.4797490467527084,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994316056843171,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997723996661861,
- "recall": 0.5202509532472916,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 158136,
- "tp_rate": 0.5202509532472916,
- "truth_threshold": 10.78
- },
- {
- "f1": 0.6839159083234482,
- "fn": 145986,
- "fn_rate": 0.4802787199673642,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994394265501966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997721677604724,
- "recall": 0.5197212800326357,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157975,
- "tp_rate": 0.5197212800326357,
- "truth_threshold": 10.8
- },
- {
- "f1": 0.6833858107435046,
- "fn": 146172,
- "fn_rate": 0.48089064057560016,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994471398637907,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997718992555045,
- "recall": 0.5191093594243998,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157789,
- "tp_rate": 0.5191093594243998,
- "truth_threshold": 10.82
- },
- {
- "f1": 0.6829465894911965,
- "fn": 146326,
- "fn_rate": 0.48139728452005354,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994547471025279,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997716764655517,
- "recall": 0.5186027154799464,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157635,
- "tp_rate": 0.5186027154799464,
- "truth_threshold": 10.84
- },
- {
- "f1": 0.6825456672950659,
- "fn": 146467,
- "fn_rate": 0.4818611598198453,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.999462249723586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997714721005523,
- "recall": 0.5181388401801547,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157494,
- "tp_rate": 0.5181388401801547,
- "truth_threshold": 10.86
- },
- {
- "f1": 0.6820786945513821,
- "fn": 146630,
- "fn_rate": 0.4823974128259875,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994696491641683,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997712353924266,
- "recall": 0.5176025871740124,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157331,
- "tp_rate": 0.5176025871740124,
- "truth_threshold": 10.88
- },
- {
- "f1": 0.681585760938862,
- "fn": 146803,
- "fn_rate": 0.4829665647895618,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994769468417765,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997709836253292,
- "recall": 0.5170334352104382,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 157158,
- "tp_rate": 0.5170334352104382,
- "truth_threshold": 10.9
- },
- {
- "f1": 0.6810208305311981,
- "fn": 147000,
- "fn_rate": 0.483614674250973,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994841441544793,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997706962553424,
- "recall": 0.5163853257490271,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 156961,
- "tp_rate": 0.5163853257490271,
- "truth_threshold": 10.92
- },
- {
- "f1": 0.680476942843253,
- "fn": 147190,
- "fn_rate": 0.4842397544421817,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994912424811782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997704184124433,
- "recall": 0.5157602455578183,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 156771,
- "tp_rate": 0.5157602455578183,
- "truth_threshold": 10.94
- },
- {
- "f1": 0.6798624259584152,
- "fn": 147405,
- "fn_rate": 0.48494708202697057,
- "fp": 36,
- "fp_rate": 0.00020705243602942445,
- "match_probability": 0.9994982431818683,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99977010319812,
- "recall": 0.5150529179730294,
- "row_count": 477830,
- "tn": 173833,
- "tn_rate": 0.9997929475639705,
- "tp": 156556,
- "tp_rate": 0.5150529179730294,
- "truth_threshold": 10.96
- },
- {
- "f1": 0.679242987730701,
- "fn": 147621,
- "fn_rate": 0.4856576995075026,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995051475978975,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997761790567546,
- "recall": 0.5143423004924974,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 156340,
- "tp_rate": 0.5143423004924974,
- "truth_threshold": 10.98
- },
- {
- "f1": 0.6787938580288497,
- "fn": 147778,
- "fn_rate": 0.48617421313918563,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995119570522206,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997759541154029,
- "recall": 0.5138257868608144,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 156183,
- "tp_rate": 0.5138257868608144,
- "truth_threshold": 11
- },
- {
- "f1": 0.6783472166669565,
- "fn": 147933,
- "fn_rate": 0.4866841469793822,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995186728496503,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997757315955735,
- "recall": 0.5133158530206178,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 156028,
- "tp_rate": 0.5133158530206178,
- "truth_threshold": 11.02
- },
- {
- "f1": 0.6778356232303858,
- "fn": 148111,
- "fn_rate": 0.48726974842167253,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995252962771056,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997754755107933,
- "recall": 0.5127302515783275,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 155850,
- "tp_rate": 0.5127302515783275,
- "truth_threshold": 11.040000000000001
- },
- {
- "f1": 0.6772761884042205,
- "fn": 148306,
- "fn_rate": 0.4879112780915973,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995318286038558,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997751942963582,
- "recall": 0.5120887219084027,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 155655,
- "tp_rate": 0.5120887219084027,
- "truth_threshold": 11.06
- },
- {
- "f1": 0.6768803562024226,
- "fn": 148443,
- "fn_rate": 0.4883619938084162,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995382710817619,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997749963035107,
- "recall": 0.5116380061915838,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 155518,
- "tp_rate": 0.5116380061915838,
- "truth_threshold": 11.08
- },
- {
- "f1": 0.6764425442243808,
- "fn": 148595,
- "fn_rate": 0.4888620579613832,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.999544624945514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997747762240913,
- "recall": 0.5111379420386168,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 155366,
- "tp_rate": 0.5111379420386168,
- "truth_threshold": 11.1
- },
- {
- "f1": 0.6759972648441005,
- "fn": 148750,
- "fn_rate": 0.4893719918015798,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995508914128666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997745513572008,
- "recall": 0.5106280081984202,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 155211,
- "tp_rate": 0.5106280081984202,
- "truth_threshold": 11.120000000000001
- },
- {
- "f1": 0.6753640618055374,
- "fn": 148969,
- "fn_rate": 0.49009247896934144,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995570716848697,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997742328755637,
- "recall": 0.5099075210306585,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154992,
- "tp_rate": 0.5099075210306585,
- "truth_threshold": 11.14
- },
- {
- "f1": 0.6748559322772726,
- "fn": 149145,
- "fn_rate": 0.49067150062014536,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995631669460973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997739762739666,
- "recall": 0.5093284993798547,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154816,
- "tp_rate": 0.5093284993798547,
- "truth_threshold": 11.16
- },
- {
- "f1": 0.6744341198170346,
- "fn": 149291,
- "fn_rate": 0.4911518253986531,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995691783648718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997737629682298,
- "recall": 0.5088481746013469,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154670,
- "tp_rate": 0.5088481746013469,
- "truth_threshold": 11.18
- },
- {
- "f1": 0.6738732136313668,
- "fn": 149485,
- "fn_rate": 0.4917900651728347,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995751070934877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997734789108866,
- "recall": 0.5082099348271654,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154476,
- "tp_rate": 0.5082099348271654,
- "truth_threshold": 11.200000000000001
- },
- {
- "f1": 0.673439197769254,
- "fn": 149635,
- "fn_rate": 0.49228354953431525,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995809542684295,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997732587894611,
- "recall": 0.5077164504656847,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154326,
- "tp_rate": 0.5077164504656847,
- "truth_threshold": 11.22
- },
- {
- "f1": 0.6730382249848313,
- "fn": 149774,
- "fn_rate": 0.4927408450426206,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995867210105881,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997730544280323,
- "recall": 0.5072591549573794,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154187,
- "tp_rate": 0.5072591549573794,
- "truth_threshold": 11.24
- },
- {
- "f1": 0.6725399008755267,
- "fn": 149946,
- "fn_rate": 0.49330670711045166,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995924084254744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997728010386239,
- "recall": 0.5066932928895483,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 154015,
- "tp_rate": 0.5066932928895483,
- "truth_threshold": 11.26
- },
- {
- "f1": 0.6719773882957345,
- "fn": 150140,
- "fn_rate": 0.49394494688463325,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9995980176034294,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997725145590682,
- "recall": 0.5060550531153668,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 153821,
- "tp_rate": 0.5060550531153668,
- "truth_threshold": 11.28
- },
- {
- "f1": 0.6715131015435174,
- "fn": 150300,
- "fn_rate": 0.49447133020354583,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996035496198316,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997722777430772,
- "recall": 0.5055286697964542,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 153661,
- "tp_rate": 0.5055286697964542,
- "truth_threshold": 11.3
- },
- {
- "f1": 0.670881427072403,
- "fn": 150517,
- "fn_rate": 0.4951852375798211,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.999609005535302,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997719557724509,
- "recall": 0.5048147624201789,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 153444,
- "tp_rate": 0.5048147624201789,
- "truth_threshold": 11.32
- },
- {
- "f1": 0.670374225830155,
- "fn": 150692,
- "fn_rate": 0.4957609693348818,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996143863959054,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997716954547826,
- "recall": 0.5042390306651182,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 153269,
- "tp_rate": 0.5042390306651182,
- "truth_threshold": 11.34
- },
- {
- "f1": 0.6698637029906583,
- "fn": 150867,
- "fn_rate": 0.49633670108994243,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996196932333503,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999771434542118,
- "recall": 0.5036632989100576,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 153094,
- "tp_rate": 0.5036632989100576,
- "truth_threshold": 11.36
- },
- {
- "f1": 0.669379018738428,
- "fn": 151034,
- "fn_rate": 0.4968861136790575,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996249270651847,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997711850001961,
- "recall": 0.5031138863209424,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 152927,
- "tp_rate": 0.5031138863209424,
- "truth_threshold": 11.38
- },
- {
- "f1": 0.6688619057419222,
- "fn": 151211,
- "fn_rate": 0.4974684252256046,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996300888949902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997709199201492,
- "recall": 0.5025315747743954,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 152750,
- "tp_rate": 0.5025315747743954,
- "truth_threshold": 11.4
- },
- {
- "f1": 0.6683706546117185,
- "fn": 151380,
- "fn_rate": 0.4980244176062061,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996351797125727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997706662473135,
- "recall": 0.5019755823937939,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 152581,
- "tp_rate": 0.5019755823937939,
- "truth_threshold": 11.42
- },
- {
- "f1": 0.6678585983409363,
- "fn": 151555,
- "fn_rate": 0.49860014936126673,
- "fp": 35,
- "fp_rate": 0.00020130097947305156,
- "match_probability": 0.9996402004941516,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997704029755774,
- "recall": 0.5013998506387333,
- "row_count": 477830,
- "tn": 173834,
- "tn_rate": 0.999798699020527,
- "tp": 152406,
- "tp_rate": 0.5013998506387333,
- "truth_threshold": 11.44
- },
- {
- "f1": 0.6674542258614568,
- "fn": 151694,
- "fn_rate": 0.4990574448695721,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996451522025451,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997767578676436,
- "recall": 0.500942555130428,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 152267,
- "tp_rate": 0.500942555130428,
- "truth_threshold": 11.46
- },
- {
- "f1": 0.6668815478461451,
- "fn": 151890,
- "fn_rate": 0.4997022644352401,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996500357873543,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997764702015055,
- "recall": 0.50029773556476,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 152071,
- "tp_rate": 0.50029773556476,
- "truth_threshold": 11.48
- },
- {
- "f1": 0.6665014387984278,
- "fn": 152020,
- "fn_rate": 0.5001299508818565,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996548521851435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997762789932555,
- "recall": 0.4998700491181434,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151941,
- "tp_rate": 0.4998700491181434,
- "truth_threshold": 11.5
- },
- {
- "f1": 0.6660918481074867,
- "fn": 152160,
- "fn_rate": 0.5005905362859051,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996596023196187,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997760727105082,
- "recall": 0.4994094637140949,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151801,
- "tp_rate": 0.4994094637140949,
- "truth_threshold": 11.52
- },
- {
- "f1": 0.6654755215284119,
- "fn": 152371,
- "fn_rate": 0.5012847042877211,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996642871018043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997757610932306,
- "recall": 0.4987152957122789,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151590,
- "tp_rate": 0.4987152957122789,
- "truth_threshold": 11.540000000000001
- },
- {
- "f1": 0.6650374586110892,
- "fn": 152520,
- "fn_rate": 0.5017748987534585,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996689074302161,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997755405182374,
- "recall": 0.4982251012465415,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151441,
- "tp_rate": 0.4982251012465415,
- "truth_threshold": 11.56
- },
- {
- "f1": 0.6644627009928828,
- "fn": 152716,
- "fn_rate": 0.5024197183191265,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996734641910328,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999775249704189,
- "recall": 0.49758028168087354,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151245,
- "tp_rate": 0.49758028168087354,
- "truth_threshold": 11.58
- },
- {
- "f1": 0.6640518567347836,
- "fn": 152856,
- "fn_rate": 0.502880303723175,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996779582582649,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997750415180727,
- "recall": 0.497119696276825,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 151105,
- "tp_rate": 0.497119696276825,
- "truth_threshold": 11.6
- },
- {
- "f1": 0.6636818807228545,
- "fn": 152982,
- "fn_rate": 0.5032948305868187,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996823904939214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999774853820532,
- "recall": 0.49670516941318127,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 150979,
- "tp_rate": 0.49670516941318127,
- "truth_threshold": 11.620000000000001
- },
- {
- "f1": 0.6633175772232605,
- "fn": 153106,
- "fn_rate": 0.503702777658976,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996867617481742,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997746687962674,
- "recall": 0.496297222341024,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 150855,
- "tp_rate": 0.496297222341024,
- "truth_threshold": 11.64
- },
- {
- "f1": 0.6628104408413904,
- "fn": 153279,
- "fn_rate": 0.5042719296225503,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996910728595202,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997744101488893,
- "recall": 0.49572807037744976,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 150682,
- "tp_rate": 0.49572807037744976,
- "truth_threshold": 11.66
- },
- {
- "f1": 0.6623514916835342,
- "fn": 153435,
- "fn_rate": 0.5047851533584901,
- "fp": 34,
- "fp_rate": 0.00019554952291667865,
- "match_probability": 0.9996953246549412,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997741764080765,
- "recall": 0.49521484664150994,
- "row_count": 477830,
- "tn": 173835,
- "tn_rate": 0.9998044504770833,
- "tp": 150526,
- "tp_rate": 0.49521484664150994,
- "truth_threshold": 11.68
- },
- {
- "f1": 0.6618715803096265,
- "fn": 153599,
- "fn_rate": 0.5053246962603755,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.9996995179500615,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999787225554211,
- "recall": 0.4946753037396245,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 150362,
- "tp_rate": 0.4946753037396245,
- "truth_threshold": 11.700000000000001
- },
- {
- "f1": 0.6614296659650729,
- "fn": 153749,
- "fn_rate": 0.5058181806218561,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.999703653549304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997870131253161,
- "recall": 0.4941818193781439,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 150212,
- "tp_rate": 0.4941818193781439,
- "truth_threshold": 11.72
- },
- {
- "f1": 0.6608591843387399,
- "fn": 153942,
- "fn_rate": 0.5064531305002944,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.999707732246043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999786739175347,
- "recall": 0.49354686949970555,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 150019,
- "tp_rate": 0.49354686949970555,
- "truth_threshold": 11.74
- },
- {
- "f1": 0.6603162431582009,
- "fn": 154126,
- "fn_rate": 0.507058471317044,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.9997117548227562,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997864773432443,
- "recall": 0.49294152868295604,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 149835,
- "tp_rate": 0.49294152868295604,
- "truth_threshold": 11.76
- },
- {
- "f1": 0.6599308788263507,
- "fn": 154257,
- "fn_rate": 0.5074894476594036,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.9997157220511734,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997862905380136,
- "recall": 0.4925105523405963,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 149704,
- "tp_rate": 0.4925105523405963,
- "truth_threshold": 11.78
- },
- {
- "f1": 0.659430068264804,
- "fn": 154426,
- "fn_rate": 0.5080454400400052,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.9997196346924244,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997860490616246,
- "recall": 0.4919545599599949,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 149535,
- "tp_rate": 0.4919545599599949,
- "truth_threshold": 11.8
- },
- {
- "f1": 0.6590027835247099,
- "fn": 154571,
- "fn_rate": 0.5085224749227697,
- "fp": 32,
- "fp_rate": 0.00018404660980393285,
- "match_probability": 0.9997234934971839,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997858414423579,
- "recall": 0.4914775250772303,
- "row_count": 477830,
- "tn": 173837,
- "tn_rate": 0.999815953390196,
- "tp": 149390,
- "tp_rate": 0.4914775250772303,
- "truth_threshold": 11.82
- },
- {
- "f1": 0.6585411058647015,
- "fn": 154729,
- "fn_rate": 0.5090422784501959,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997272992058148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999812407878869,
- "recall": 0.4909577215498041,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 149232,
- "tp_rate": 0.4909577215498041,
- "truth_threshold": 11.84
- },
- {
- "f1": 0.6579977838503613,
- "fn": 154912,
- "fn_rate": 0.5096443293712022,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997310525485098,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998121775994956,
- "recall": 0.49035567062879776,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 149049,
- "tp_rate": 0.49035567062879776,
- "truth_threshold": 11.86
- },
- {
- "f1": 0.657474716247847,
- "fn": 155089,
- "fn_rate": 0.5102266409177493,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997347542454303,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998119543317663,
- "recall": 0.48977335908225067,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148872,
- "tp_rate": 0.48977335908225067,
- "truth_threshold": 11.88
- },
- {
- "f1": 0.6569364672616418,
- "fn": 155270,
- "fn_rate": 0.5108221120472692,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997384050068445,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998117254688372,
- "recall": 0.48917788795273076,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148691,
- "tp_rate": 0.48917788795273076,
- "truth_threshold": 11.9
- },
- {
- "f1": 0.6565728882171488,
- "fn": 155393,
- "fn_rate": 0.5112267692236833,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997420055332628,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115696250236,
- "recall": 0.4887732307763167,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148568,
- "tp_rate": 0.4887732307763167,
- "truth_threshold": 11.92
- },
- {
- "f1": 0.6560918137729501,
- "fn": 155555,
- "fn_rate": 0.5117597323340823,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997455565155712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998113639732137,
- "recall": 0.48824026766591766,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148406,
- "tp_rate": 0.48824026766591766,
- "truth_threshold": 11.94
- },
- {
- "f1": 0.6555821893574866,
- "fn": 155726,
- "fn_rate": 0.5123223045061702,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997490586351637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998111464087466,
- "recall": 0.4876776954938298,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148235,
- "tp_rate": 0.4876776954938298,
- "truth_threshold": 11.96
- },
- {
- "f1": 0.6550290019865587,
- "fn": 155912,
- "fn_rate": 0.5129342251144061,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997525125640727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998109091891381,
- "recall": 0.4870657748855939,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 148049,
- "tp_rate": 0.4870657748855939,
- "truth_threshold": 11.98
- },
- {
- "f1": 0.654552777519596,
- "fn": 156072,
- "fn_rate": 0.5134606084333188,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997559189650964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998107046519332,
- "recall": 0.48653939156668125,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147889,
- "tp_rate": 0.48653939156668125,
- "truth_threshold": 12
- },
- {
- "f1": 0.6542593928876572,
- "fn": 156171,
- "fn_rate": 0.513786308111896,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997592784919264,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998105778727895,
- "recall": 0.4862136918881041,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147790,
- "tp_rate": 0.4862136918881041,
- "truth_threshold": 12.02
- },
- {
- "f1": 0.6538378081560896,
- "fn": 156312,
- "fn_rate": 0.5142501834116877,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997625917892721,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998103970151073,
- "recall": 0.4857498165883123,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147649,
- "tp_rate": 0.4857498165883123,
- "truth_threshold": 12.040000000000001
- },
- {
- "f1": 0.6533726704497632,
- "fn": 156468,
- "fn_rate": 0.5147634071476275,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997658594929839,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998101965143945,
- "recall": 0.48523659285237253,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147493,
- "tp_rate": 0.48523659285237253,
- "truth_threshold": 12.06
- },
- {
- "f1": 0.6529430271769716,
- "fn": 156612,
- "fn_rate": 0.5152371521346488,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997690822301749,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998100110600704,
- "recall": 0.4847628478653511,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147349,
- "tp_rate": 0.4847628478653511,
- "truth_threshold": 12.08
- },
- {
- "f1": 0.6523876653544703,
- "fn": 156798,
- "fn_rate": 0.5158490727428848,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997722606193405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998097709778451,
- "recall": 0.4841509272571152,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147163,
- "tp_rate": 0.4841509272571152,
- "truth_threshold": 12.1
- },
- {
- "f1": 0.6519438938186527,
- "fn": 156947,
- "fn_rate": 0.5163392672086221,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.999775395270477,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998095782157479,
- "recall": 0.48366073279137783,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 147014,
- "tp_rate": 0.48366073279137783,
- "truth_threshold": 12.120000000000001
- },
- {
- "f1": 0.6513218898210713,
- "fn": 157155,
- "fn_rate": 0.5170235655232086,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997784867851973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998093084707902,
- "recall": 0.48297643447679145,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 146806,
- "tp_rate": 0.48297643447679145,
- "truth_threshold": 12.14
- },
- {
- "f1": 0.6509284078604015,
- "fn": 157286,
- "fn_rate": 0.5174545418655683,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997815357568474,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998091381907663,
- "recall": 0.4825454581344317,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 146675,
- "tp_rate": 0.4825454581344317,
- "truth_threshold": 12.16
- },
- {
- "f1": 0.6504177654653135,
- "fn": 157457,
- "fn_rate": 0.5180171140376562,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.999784542770618,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998089154587394,
- "recall": 0.48198288596234384,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 146504,
- "tp_rate": 0.48198288596234384,
- "truth_threshold": 12.18
- },
- {
- "f1": 0.6498003491114536,
- "fn": 157663,
- "fn_rate": 0.5186948325607561,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997875084036579,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998086464469745,
- "recall": 0.48130516743924384,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 146298,
- "tp_rate": 0.48130516743924384,
- "truth_threshold": 12.200000000000001
- },
- {
- "f1": 0.6492559530421723,
- "fn": 157844,
- "fn_rate": 0.5192903036902761,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997904332251836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998084094563618,
- "recall": 0.48070969630972393,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 146117,
- "tp_rate": 0.48070969630972393,
- "truth_threshold": 12.22
- },
- {
- "f1": 0.6488056609979642,
- "fn": 157994,
- "fn_rate": 0.5197837880517566,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.999793317796588,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998082126100208,
- "recall": 0.4802162119482434,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145967,
- "tp_rate": 0.4802162119482434,
- "truth_threshold": 12.24
- },
- {
- "f1": 0.6483791078090055,
- "fn": 158136,
- "fn_rate": 0.5202509532472916,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997961626715484,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998080258890801,
- "recall": 0.4797490467527084,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145825,
- "tp_rate": 0.4797490467527084,
- "truth_threshold": 12.26
- },
- {
- "f1": 0.6478921477053365,
- "fn": 158298,
- "fn_rate": 0.5207839163576906,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9997989683961317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998078124249268,
- "recall": 0.4792160836423094,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145663,
- "tp_rate": 0.4792160836423094,
- "truth_threshold": 12.280000000000001
- },
- {
- "f1": 0.6474153043880647,
- "fn": 158457,
- "fn_rate": 0.5213070097808601,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998017355088994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998076024516944,
- "recall": 0.47869299021913997,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145504,
- "tp_rate": 0.47869299021913997,
- "truth_threshold": 12.3
- },
- {
- "f1": 0.6469999154341566,
- "fn": 158595,
- "fn_rate": 0.5217610153934222,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998044645410099,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998074198385077,
- "recall": 0.4782389846065778,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145366,
- "tp_rate": 0.4782389846065778,
- "truth_threshold": 12.32
- },
- {
- "f1": 0.6463869692220006,
- "fn": 158798,
- "fn_rate": 0.5224288642292926,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998071560163209,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998071505809589,
- "recall": 0.4775711357707074,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145163,
- "tp_rate": 0.4775711357707074,
- "truth_threshold": 12.34
- },
- {
- "f1": 0.645909058513292,
- "fn": 158957,
- "fn_rate": 0.5229519576524619,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998098104514891,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998069391582547,
- "recall": 0.477048042347538,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 145004,
- "tp_rate": 0.477048042347538,
- "truth_threshold": 12.36
- },
- {
- "f1": 0.645468601703034,
- "fn": 159103,
- "fn_rate": 0.5234322824309697,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998124283560689,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998067446130061,
- "recall": 0.4765677175690302,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 144858,
- "tp_rate": 0.4765677175690302,
- "truth_threshold": 12.38
- },
- {
- "f1": 0.6450218186842821,
- "fn": 159251,
- "fn_rate": 0.523919187000964,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998150102326104,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998065470021694,
- "recall": 0.47608081299903604,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 144710,
- "tp_rate": 0.47608081299903604,
- "truth_threshold": 12.4
- },
- {
- "f1": 0.6445521509595491,
- "fn": 159406,
- "fn_rate": 0.5244291208411606,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998175565767553,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998063396111576,
- "recall": 0.47557087915883944,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 144555,
- "tp_rate": 0.47557087915883944,
- "truth_threshold": 12.42
- },
- {
- "f1": 0.6440079935052769,
- "fn": 159586,
- "fn_rate": 0.5250213020749372,
- "fp": 28,
- "fp_rate": 0.00016104078357844124,
- "match_probability": 0.9998200678773314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999806098211256,
- "recall": 0.47497869792506275,
- "row_count": 477830,
- "tn": 173841,
- "tn_rate": 0.9998389592164215,
- "tp": 144375,
- "tp_rate": 0.47497869792506275,
- "truth_threshold": 12.44
- },
- {
- "f1": 0.6436010244786136,
- "fn": 159721,
- "fn_rate": 0.5254654380002698,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998225446164466,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998128470128304,
- "recall": 0.4745345619997302,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 144240,
- "tp_rate": 0.4745345619997302,
- "truth_threshold": 12.46
- },
- {
- "f1": 0.6431711769615654,
- "fn": 159863,
- "fn_rate": 0.5259326031958047,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.999824987269581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998126626192542,
- "recall": 0.4740673968041953,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 144098,
- "tp_rate": 0.4740673968041953,
- "truth_threshold": 12.48
- },
- {
- "f1": 0.6426380299613762,
- "fn": 160039,
- "fn_rate": 0.5265116248466086,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998273963056777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998124335702228,
- "recall": 0.47348837515339137,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143922,
- "tp_rate": 0.47348837515339137,
- "truth_threshold": 12.5
- },
- {
- "f1": 0.6422318302008146,
- "fn": 160173,
- "fn_rate": 0.5269524708761979,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.999829772187233,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998122588047144,
- "recall": 0.47304752912380205,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143788,
- "tp_rate": 0.47304752912380205,
- "truth_threshold": 12.52
- },
- {
- "f1": 0.6415947592086977,
- "fn": 160383,
- "fn_rate": 0.5276433489822707,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998321153703844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998119842623864,
- "recall": 0.4723566510177292,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143578,
- "tp_rate": 0.4723566510177292,
- "truth_threshold": 12.540000000000001
- },
- {
- "f1": 0.6410769925390148,
- "fn": 160554,
- "fn_rate": 0.5282059211543586,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.999834426304998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999811760112665,
- "recall": 0.4717940788456414,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143407,
- "tp_rate": 0.4717940788456414,
- "truth_threshold": 12.56
- },
- {
- "f1": 0.6404935577211193,
- "fn": 160746,
- "fn_rate": 0.5288375811370538,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998367054347549,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115077979922,
- "recall": 0.47116241886294624,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143215,
- "tp_rate": 0.47116241886294624,
- "truth_threshold": 12.58
- },
- {
- "f1": 0.6399720825354784,
- "fn": 160917,
- "fn_rate": 0.5294001533091416,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.999838953197236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998112825100824,
- "recall": 0.47059984669085836,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 143044,
- "tp_rate": 0.47059984669085836,
- "truth_threshold": 12.6
- },
- {
- "f1": 0.6394469831579607,
- "fn": 161090,
- "fn_rate": 0.5299693052727159,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998411700240056,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999811054038545,
- "recall": 0.4700306947272841,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 142871,
- "tp_rate": 0.4700306947272841,
- "truth_threshold": 12.620000000000001
- },
- {
- "f1": 0.6388637645857773,
- "fn": 161281,
- "fn_rate": 0.5305976753596678,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998433563406941,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998108011520107,
- "recall": 0.46940232464033216,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 142680,
- "tp_rate": 0.46940232464033216,
- "truth_threshold": 12.64
- },
- {
- "f1": 0.6382723294077595,
- "fn": 161475,
- "fn_rate": 0.5312359151338494,
- "fp": 27,
- "fp_rate": 0.00015528932702206833,
- "match_probability": 0.9998455125670797,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998105435995313,
- "recall": 0.46876408486615057,
- "row_count": 477830,
- "tn": 173842,
- "tn_rate": 0.999844710672978,
- "tp": 142486,
- "tp_rate": 0.46876408486615057,
- "truth_threshold": 12.66
- },
- {
- "f1": 0.6377764334207165,
- "fn": 161638,
- "fn_rate": 0.5317721681399916,
- "fp": 26,
- "fp_rate": 0.00014953787046569544,
- "match_probability": 0.9998476391171683,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998173503150707,
- "recall": 0.4682278318600084,
- "row_count": 477830,
- "tn": 173843,
- "tn_rate": 0.9998504621295343,
- "tp": 142323,
- "tp_rate": 0.4682278318600084,
- "truth_threshold": 12.68
- },
- {
- "f1": 0.6372879076543764,
- "fn": 161798,
- "fn_rate": 0.5322985514589043,
- "fp": 26,
- "fp_rate": 0.00014953787046569544,
- "match_probability": 0.9998497363992734,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998171447861649,
- "recall": 0.46770144854109574,
- "row_count": 477830,
- "tn": 173843,
- "tn_rate": 0.9998504621295343,
- "tp": 142163,
- "tp_rate": 0.46770144854109574,
- "truth_threshold": 12.700000000000001
- },
- {
- "f1": 0.6368479347811464,
- "fn": 161942,
- "fn_rate": 0.5327722964459256,
- "fp": 26,
- "fp_rate": 0.00014953787046569544,
- "match_probability": 0.9998518048160936,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998169594142702,
- "recall": 0.4672277035540744,
- "row_count": 477830,
- "tn": 173843,
- "tn_rate": 0.9998504621295343,
- "tp": 142019,
- "tp_rate": 0.4672277035540744,
- "truth_threshold": 12.72
- },
- {
- "f1": 0.6363493630001794,
- "fn": 162106,
- "fn_rate": 0.5333118393478111,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998538447647903,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999830841773624,
- "recall": 0.46668816065218893,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141855,
- "tp_rate": 0.46668816065218893,
- "truth_threshold": 12.74
- },
- {
- "f1": 0.6358887831846494,
- "fn": 162257,
- "fn_rate": 0.5338086136050348,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998558566370636,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998306615488823,
- "recall": 0.46619138639496516,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141704,
- "tp_rate": 0.46619138639496516,
- "truth_threshold": 12.76
- },
- {
- "f1": 0.6353376370345762,
- "fn": 162437,
- "fn_rate": 0.5344007948388115,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998578408192266,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998304462090598,
- "recall": 0.46559920516118847,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141524,
- "tp_rate": 0.46559920516118847,
- "truth_threshold": 12.780000000000001
- },
- {
- "f1": 0.6348060790055149,
- "fn": 162610,
- "fn_rate": 0.5349699468023859,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998597976922806,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998302387267904,
- "recall": 0.46503005319761415,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141351,
- "tp_rate": 0.46503005319761415,
- "truth_threshold": 12.8
- },
- {
- "f1": 0.6342278713051448,
- "fn": 162799,
- "fn_rate": 0.5355917370978514,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998617276319876,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998300114742255,
- "recall": 0.46440826290214865,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141162,
- "tp_rate": 0.46440826290214865,
- "truth_threshold": 12.82
- },
- {
- "f1": 0.6337507191140515,
- "fn": 162954,
- "fn_rate": 0.536101670938048,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998636310089414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998298246484816,
- "recall": 0.46389832906195205,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 141007,
- "tp_rate": 0.46389832906195205,
- "truth_threshold": 12.84
- },
- {
- "f1": 0.6331978453818692,
- "fn": 163134,
- "fn_rate": 0.5366938521718246,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.99986550818864,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999829607173538,
- "recall": 0.4633061478281753,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140827,
- "tp_rate": 0.4633061478281753,
- "truth_threshold": 12.86
- },
- {
- "f1": 0.6327289737281236,
- "fn": 163287,
- "fn_rate": 0.5371972062205349,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998673595315546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998294218823295,
- "recall": 0.46280279377946515,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140674,
- "tp_rate": 0.46280279377946515,
- "truth_threshold": 12.88
- },
- {
- "f1": 0.63229835462231,
- "fn": 163427,
- "fn_rate": 0.5376577916245834,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998691853931992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998292519813885,
- "recall": 0.46234220837541656,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140534,
- "tp_rate": 0.46234220837541656,
- "truth_threshold": 12.9
- },
- {
- "f1": 0.6318075434332523,
- "fn": 163586,
- "fn_rate": 0.5381808850477529,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998709861241983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998290586115286,
- "recall": 0.46181911495224715,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140375,
- "tp_rate": 0.46181911495224715,
- "truth_threshold": 12.92
- },
- {
- "f1": 0.6312715844263439,
- "fn": 163760,
- "fn_rate": 0.5387533269070703,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998727620703545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998288464967018,
- "recall": 0.46124667309292966,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140201,
- "tp_rate": 0.46124667309292966,
- "truth_threshold": 12.94
- },
- {
- "f1": 0.6307890493392309,
- "fn": 163917,
- "fn_rate": 0.5392698405387534,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998745135727142,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999828654653454,
- "recall": 0.4607301594612467,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 140044,
- "tp_rate": 0.4607301594612467,
- "truth_threshold": 12.96
- },
- {
- "f1": 0.6302399459276783,
- "fn": 164095,
- "fn_rate": 0.5398554419810436,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998762409676335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998284366287797,
- "recall": 0.4601445580189564,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 139866,
- "tp_rate": 0.4601445580189564,
- "truth_threshold": 12.98
- },
- {
- "f1": 0.629889709693558,
- "fn": 164208,
- "fn_rate": 0.5402272002000257,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998779445868424,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998282979317055,
- "recall": 0.4597727997999743,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 139753,
- "tp_rate": 0.4597727997999743,
- "truth_threshold": 13
- },
- {
- "f1": 0.6294185543211658,
- "fn": 164361,
- "fn_rate": 0.5407305542487358,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998796247575082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998281097805535,
- "recall": 0.45926944575126416,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 139600,
- "tp_rate": 0.45926944575126416,
- "truth_threshold": 13.02
- },
- {
- "f1": 0.6289627862294165,
- "fn": 164508,
- "fn_rate": 0.5412141689229868,
- "fp": 24,
- "fp_rate": 0.00013803495735294964,
- "match_probability": 0.9998812818022986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998279286190555,
- "recall": 0.45878583107701315,
- "row_count": 477830,
- "tn": 173845,
- "tn_rate": 0.999861965042647,
- "tp": 139453,
- "tp_rate": 0.45878583107701315,
- "truth_threshold": 13.040000000000001
- },
- {
- "f1": 0.6284026765691906,
- "fn": 164690,
- "fn_rate": 0.5418129299482499,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.999882916039443,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998348816172986,
- "recall": 0.4581870700517501,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 139271,
- "tp_rate": 0.4581870700517501,
- "truth_threshold": 13.06
- },
- {
- "f1": 0.6279586199425878,
- "fn": 164833,
- "fn_rate": 0.5422833850395281,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.999884527782794,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998347119316426,
- "recall": 0.4577166149604719,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 139128,
- "tp_rate": 0.4577166149604719,
- "truth_threshold": 13.08
- },
- {
- "f1": 0.6274692180226389,
- "fn": 164991,
- "fn_rate": 0.5428031885669543,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998861173418873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999834524040779,
- "recall": 0.4571968114330457,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138970,
- "tp_rate": 0.4571968114330457,
- "truth_threshold": 13.1
- },
- {
- "f1": 0.6270104741128169,
- "fn": 165139,
- "fn_rate": 0.5432900931369485,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998876850220009,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998343476538586,
- "recall": 0.4567099068630515,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138822,
- "tp_rate": 0.4567099068630515,
- "truth_threshold": 13.120000000000001
- },
- {
- "f1": 0.6266072703286376,
- "fn": 165269,
- "fn_rate": 0.543717779583565,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998892311242138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998341924088959,
- "recall": 0.456282220416435,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138692,
- "tp_rate": 0.456282220416435,
- "truth_threshold": 13.14
- },
- {
- "f1": 0.6261524694482609,
- "fn": 165416,
- "fn_rate": 0.544201394257816,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998907559454638,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998340165117487,
- "recall": 0.455798605742184,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138545,
- "tp_rate": 0.455798605742184,
- "truth_threshold": 13.16
- },
- {
- "f1": 0.6255454023430259,
- "fn": 165611,
- "fn_rate": 0.5448429239277407,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998922597786042,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998337826020972,
- "recall": 0.45515707607225925,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138350,
- "tp_rate": 0.45515707607225925,
- "truth_threshold": 13.18
- },
- {
- "f1": 0.6251272054599976,
- "fn": 165746,
- "fn_rate": 0.5452870598530732,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998937429124599,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998336202780711,
- "recall": 0.45471294014692676,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138215,
- "tp_rate": 0.45471294014692676,
- "truth_threshold": 13.200000000000001
- },
- {
- "f1": 0.6247805866705272,
- "fn": 165857,
- "fn_rate": 0.5456522382805689,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998952056318829,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998334865739501,
- "recall": 0.4543477617194311,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 138104,
- "tp_rate": 0.4543477617194311,
- "truth_threshold": 13.22
- },
- {
- "f1": 0.6242515579813449,
- "fn": 166027,
- "fn_rate": 0.5462115205569136,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.999896648217807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998332813847793,
- "recall": 0.4537884794430864,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137934,
- "tp_rate": 0.4537884794430864,
- "truth_threshold": 13.24
- },
- {
- "f1": 0.6238512589748929,
- "fn": 166156,
- "fn_rate": 0.5466359171077868,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998980709473013,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998331253446324,
- "recall": 0.45336408289221314,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137805,
- "tp_rate": 0.45336408289221314,
- "truth_threshold": 13.26
- },
- {
- "f1": 0.6233668603413687,
- "fn": 166311,
- "fn_rate": 0.5471458509479834,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9998994740936238,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998329374677678,
- "recall": 0.45285414905201654,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137650,
- "tp_rate": 0.45285414905201654,
- "truth_threshold": 13.280000000000001
- },
- {
- "f1": 0.6228554601671688,
- "fn": 166475,
- "fn_rate": 0.5476853938498689,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9999008579262733,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999832738220771,
- "recall": 0.4523146061501311,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137486,
- "tp_rate": 0.4523146061501311,
- "truth_threshold": 13.3
- },
- {
- "f1": 0.6222920179112054,
- "fn": 166656,
- "fn_rate": 0.5482808649793888,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9999022227110415,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998325177676803,
- "recall": 0.4517191350206112,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137305,
- "tp_rate": 0.4517191350206112,
- "truth_threshold": 13.32
- },
- {
- "f1": 0.6218235563474468,
- "fn": 166806,
- "fn_rate": 0.5487743493408694,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9999035687100634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998323346309175,
- "recall": 0.4512256506591306,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 137155,
- "tp_rate": 0.4512256506591306,
- "truth_threshold": 13.34
- },
- {
- "f1": 0.6212939655758896,
- "fn": 166975,
- "fn_rate": 0.5493303417214709,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9999048961818684,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998321278164208,
- "recall": 0.4506696582785292,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 136986,
- "tp_rate": 0.4506696582785292,
- "truth_threshold": 13.36
- },
- {
- "f1": 0.6208185691146914,
- "fn": 167127,
- "fn_rate": 0.5498304058744379,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.999906205381429,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998319413694586,
- "recall": 0.4501695941255622,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 136834,
- "tp_rate": 0.4501695941255622,
- "truth_threshold": 13.38
- },
- {
- "f1": 0.6201782974589889,
- "fn": 167332,
- "fn_rate": 0.5505048345017947,
- "fp": 23,
- "fp_rate": 0.00013228350079657673,
- "match_probability": 0.9999074965602103,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998316892544565,
- "recall": 0.44949516549820534,
- "row_count": 477830,
- "tn": 173846,
- "tn_rate": 0.9998677164992035,
- "tp": 136629,
- "tp_rate": 0.44949516549820534,
- "truth_threshold": 13.4
- },
- {
- "f1": 0.619727199251705,
- "fn": 167476,
- "fn_rate": 0.550978579488816,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999087699662178,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999838836103643,
- "recall": 0.449021420511184,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 136485,
- "tp_rate": 0.449021420511184,
- "truth_threshold": 13.42
- },
- {
- "f1": 0.6191925431982122,
- "fn": 167647,
- "fn_rate": 0.5515411516609039,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999100258440452,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998386339631499,
- "recall": 0.44845884833909616,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 136314,
- "tp_rate": 0.44845884833909616,
- "truth_threshold": 13.44
- },
- {
- "f1": 0.6186358265927474,
- "fn": 167824,
- "fn_rate": 0.552123463207451,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999112644349214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998384241952424,
- "recall": 0.447876536792549,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 136137,
- "tp_rate": 0.447876536792549,
- "truth_threshold": 13.46
- },
- {
- "f1": 0.6180940388138544,
- "fn": 167997,
- "fn_rate": 0.5526926151710252,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999124859767564,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998382186401541,
- "recall": 0.44730738482897475,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135964,
- "tp_rate": 0.44730738482897475,
- "truth_threshold": 13.48
- },
- {
- "f1": 0.6176730057388157,
- "fn": 168131,
- "fn_rate": 0.5531334612006146,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999136907041872,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998380590642758,
- "recall": 0.4468665387993854,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135830,
- "tp_rate": 0.4468665387993854,
- "truth_threshold": 13.5
- },
- {
- "f1": 0.617119617137814,
- "fn": 168307,
- "fn_rate": 0.5537124828514184,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999148788486228,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998378489931896,
- "recall": 0.44628751714858156,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135654,
- "tp_rate": 0.44628751714858156,
- "truth_threshold": 13.52
- },
- {
- "f1": 0.6166035606364001,
- "fn": 168471,
- "fn_rate": 0.5542520257533039,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999160506382885,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998376527539996,
- "recall": 0.4457479742466961,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135490,
- "tp_rate": 0.4457479742466961,
- "truth_threshold": 13.540000000000001
- },
- {
- "f1": 0.6159754504022547,
- "fn": 168670,
- "fn_rate": 0.5549067150062015,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999172062982694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998374139956988,
- "recall": 0.4450932849937985,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135291,
- "tp_rate": 0.4450932849937985,
- "truth_threshold": 13.56
- },
- {
- "f1": 0.6153197924685583,
- "fn": 168878,
- "fn_rate": 0.5555910133207879,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999183460505544,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998371636875023,
- "recall": 0.44440898667921214,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 135083,
- "tp_rate": 0.44440898667921214,
- "truth_threshold": 13.58
- },
- {
- "f1": 0.6149584235106504,
- "fn": 168993,
- "fn_rate": 0.5559693513312564,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999194701140777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998370249648122,
- "recall": 0.4440306486687437,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134968,
- "tp_rate": 0.4440306486687437,
- "truth_threshold": 13.6
- },
- {
- "f1": 0.6144361944091197,
- "fn": 169158,
- "fn_rate": 0.5565121841288849,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999205787047616,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998368255145559,
- "recall": 0.443487815871115,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134803,
- "tp_rate": 0.443487815871115,
- "truth_threshold": 13.620000000000001
- },
- {
- "f1": 0.6139054940745706,
- "fn": 169326,
- "fn_rate": 0.5570648866137432,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999216720355576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999836621935733,
- "recall": 0.4429351133862568,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134635,
- "tp_rate": 0.4429351133862568,
- "truth_threshold": 13.64
- },
- {
- "f1": 0.6132524349353345,
- "fn": 169533,
- "fn_rate": 0.5577458950325864,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999227503164871,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998363703979174,
- "recall": 0.4422541049674136,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134428,
- "tp_rate": 0.4422541049674136,
- "truth_threshold": 13.66
- },
- {
- "f1": 0.6128112222546729,
- "fn": 169672,
- "fn_rate": 0.5582031905408917,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999238137546823,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998362010557587,
- "recall": 0.44179680945910826,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134289,
- "tp_rate": 0.44179680945910826,
- "truth_threshold": 13.68
- },
- {
- "f1": 0.6124105316973415,
- "fn": 169799,
- "fn_rate": 0.5586210073002786,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999248625544251,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998360460263519,
- "recall": 0.44137899269972136,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134162,
- "tp_rate": 0.44137899269972136,
- "truth_threshold": 13.700000000000001
- },
- {
- "f1": 0.6119226466357679,
- "fn": 169953,
- "fn_rate": 0.5591276512447321,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999258969171868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998358576438111,
- "recall": 0.44087234875526793,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 134008,
- "tp_rate": 0.44087234875526793,
- "truth_threshold": 13.72
- },
- {
- "f1": 0.6115313290763427,
- "fn": 170076,
- "fn_rate": 0.5595323084211461,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999269170416667,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998357068711867,
- "recall": 0.44046769157885385,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133885,
- "tp_rate": 0.44046769157885385,
- "truth_threshold": 13.74
- },
- {
- "f1": 0.6110428270514537,
- "fn": 170230,
- "fn_rate": 0.5600389523655995,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.99992792312383,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999835517708014,
- "recall": 0.43996104763440047,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133731,
- "tp_rate": 0.43996104763440047,
- "truth_threshold": 13.76
- },
- {
- "f1": 0.6105649028023458,
- "fn": 170381,
- "fn_rate": 0.5605357266228234,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999928915356946,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99983533180641,
- "recall": 0.4394642733771767,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133580,
- "tp_rate": 0.4394642733771767,
- "truth_threshold": 13.780000000000001
- },
- {
- "f1": 0.6100075905146003,
- "fn": 170556,
- "fn_rate": 0.561111458377884,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999929893931624,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998351158311286,
- "recall": 0.438888541622116,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133405,
- "tp_rate": 0.438888541622116,
- "truth_threshold": 13.8
- },
- {
- "f1": 0.6095925499021169,
- "fn": 170687,
- "fn_rate": 0.5615424347202437,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999308590358513,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998349537870603,
- "recall": 0.43845756527975627,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133274,
- "tp_rate": 0.43845756527975627,
- "truth_threshold": 13.82
- },
- {
- "f1": 0.6091090449870054,
- "fn": 170839,
- "fn_rate": 0.5620424988732107,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999318108550282,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998347653668209,
- "recall": 0.4379575011267893,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 133122,
- "tp_rate": 0.4379575011267893,
- "truth_threshold": 13.84
- },
- {
- "f1": 0.6085232994598554,
- "fn": 171023,
- "fn_rate": 0.5626478396899602,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999327495720041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998345367027678,
- "recall": 0.43735216031003976,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132938,
- "tp_rate": 0.43735216031003976,
- "truth_threshold": 13.86
- },
- {
- "f1": 0.607886059717897,
- "fn": 171223,
- "fn_rate": 0.563305818838601,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999336753671121,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998342874359747,
- "recall": 0.436694181161399,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132738,
- "tp_rate": 0.436694181161399,
- "truth_threshold": 13.88
- },
- {
- "f1": 0.6074669598479122,
- "fn": 171354,
- "fn_rate": 0.5637367951809608,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999345884182044,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998341237587556,
- "recall": 0.4362632048190393,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132607,
- "tp_rate": 0.4362632048190393,
- "truth_threshold": 13.9
- },
- {
- "f1": 0.6070202772367969,
- "fn": 171494,
- "fn_rate": 0.5641973805850092,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999354889006857,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998339484787416,
- "recall": 0.43580261941499077,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132467,
- "tp_rate": 0.43580261941499077,
- "truth_threshold": 13.92
- },
- {
- "f1": 0.6065012400122856,
- "fn": 171657,
- "fn_rate": 0.5647336335911515,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999936376987547,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998337439354322,
- "recall": 0.4352663664088485,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132304,
- "tp_rate": 0.4352663664088485,
- "truth_threshold": 13.94
- },
- {
- "f1": 0.6059964047252183,
- "fn": 171815,
- "fn_rate": 0.5652534371185777,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999372528493993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998335451849162,
- "recall": 0.43474656288142227,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 132146,
- "tp_rate": 0.43474656288142227,
- "truth_threshold": 13.96
- },
- {
- "f1": 0.6054976007633518,
- "fn": 171971,
- "fn_rate": 0.5657666608545175,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999381166545053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998333484834712,
- "recall": 0.43423333914548246,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131990,
- "tp_rate": 0.43423333914548246,
- "truth_threshold": 13.98
- },
- {
- "f1": 0.604985636008187,
- "fn": 172131,
- "fn_rate": 0.5662930441734302,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999389685688129,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998331462548918,
- "recall": 0.4337069558265699,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131830,
- "tp_rate": 0.4337069558265699,
- "truth_threshold": 14
- },
- {
- "f1": 0.6045071431194682,
- "fn": 172280,
- "fn_rate": 0.5667832386391676,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999398087559863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998329574876806,
- "recall": 0.4332167613608325,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131681,
- "tp_rate": 0.4332167613608325,
- "truth_threshold": 14.02
- },
- {
- "f1": 0.6040713800260833,
- "fn": 172416,
- "fn_rate": 0.5672306644602433,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999406373774375,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998327848168613,
- "recall": 0.43276933553975677,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131545,
- "tp_rate": 0.43276933553975677,
- "truth_threshold": 14.040000000000001
- },
- {
- "f1": 0.6033979757326827,
- "fn": 172626,
- "fn_rate": 0.5679215425663161,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999414545923574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999832517490503,
- "recall": 0.43207845743368395,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131335,
- "tp_rate": 0.43207845743368395,
- "truth_threshold": 14.06
- },
- {
- "f1": 0.603083498001011,
- "fn": 172724,
- "fn_rate": 0.56824395234915,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999422605577463,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998323924454704,
- "recall": 0.43175604765084996,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131237,
- "tp_rate": 0.43175604765084996,
- "truth_threshold": 14.08
- },
- {
- "f1": 0.6025247904819261,
- "fn": 172898,
- "fn_rate": 0.5688163942084675,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999430554284441,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998321699660525,
- "recall": 0.4311836057915325,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 131063,
- "tp_rate": 0.4311836057915325,
- "truth_threshold": 14.1
- },
- {
- "f1": 0.602074931134544,
- "fn": 173038,
- "fn_rate": 0.5692769796125161,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999438393571597,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998319905303753,
- "recall": 0.43072302038748395,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130923,
- "tp_rate": 0.43072302038748395,
- "truth_threshold": 14.120000000000001
- },
- {
- "f1": 0.6017065709882932,
- "fn": 173153,
- "fn_rate": 0.5696553176229845,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999446124945011,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998318428494993,
- "recall": 0.43034468237701545,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130808,
- "tp_rate": 0.43034468237701545,
- "truth_threshold": 14.14
- },
- {
- "f1": 0.6010373186188107,
- "fn": 173361,
- "fn_rate": 0.570339615937571,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999945374989003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998315750792363,
- "recall": 0.42966038406242907,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130600,
- "tp_rate": 0.42966038406242907,
- "truth_threshold": 14.16
- },
- {
- "f1": 0.6005883381977885,
- "fn": 173500,
- "fn_rate": 0.5707969114458763,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999461269871569,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998313956607374,
- "recall": 0.4292030885541237,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130461,
- "tp_rate": 0.4292030885541237,
- "truth_threshold": 14.18
- },
- {
- "f1": 0.6000709216591984,
- "fn": 173661,
- "fn_rate": 0.5713265846605321,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999468686334378,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998311873666764,
- "recall": 0.4286734153394679,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130300,
- "tp_rate": 0.4286734153394679,
- "truth_threshold": 14.200000000000001
- },
- {
- "f1": 0.5994001022867069,
- "fn": 173869,
- "fn_rate": 0.5720108829751185,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999476000703327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998309175031127,
- "recall": 0.42798911702488146,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 130092,
- "tp_rate": 0.42798911702488146,
- "truth_threshold": 14.22
- },
- {
- "f1": 0.5989288545565163,
- "fn": 174015,
- "fn_rate": 0.5724912077536263,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999483214383678,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998307275637079,
- "recall": 0.4275087922463737,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129946,
- "tp_rate": 0.4275087922463737,
- "truth_threshold": 14.24
- },
- {
- "f1": 0.5984139059870438,
- "fn": 174174,
- "fn_rate": 0.5730143011767957,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999490328761353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998305202258703,
- "recall": 0.4269856988232043,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129787,
- "tp_rate": 0.4269856988232043,
- "truth_threshold": 14.26
- },
- {
- "f1": 0.5979401414134892,
- "fn": 174321,
- "fn_rate": 0.5734979158510467,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999497345203204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999830328083787,
- "recall": 0.4265020841489533,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129640,
- "tp_rate": 0.4265020841489533,
- "truth_threshold": 14.280000000000001
- },
- {
- "f1": 0.597385639009625,
- "fn": 174492,
- "fn_rate": 0.5740604880231346,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999504265057271,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998301040226734,
- "recall": 0.42593951197686547,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129469,
- "tp_rate": 0.42593951197686547,
- "truth_threshold": 14.3
- },
- {
- "f1": 0.5968806543332964,
- "fn": 174648,
- "fn_rate": 0.5745737117590743,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999511089653043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998298990992384,
- "recall": 0.42542628824092565,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129313,
- "tp_rate": 0.42542628824092565,
- "truth_threshold": 14.32
- },
- {
- "f1": 0.5963539983192191,
- "fn": 174811,
- "fn_rate": 0.5751099647652166,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999517820301712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998296844517388,
- "recall": 0.4248900352347834,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 129150,
- "tp_rate": 0.4248900352347834,
- "truth_threshold": 14.34
- },
- {
- "f1": 0.595822324051662,
- "fn": 174975,
- "fn_rate": 0.575649507667102,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999524458296426,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998294679399727,
- "recall": 0.42435049233289796,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128986,
- "tp_rate": 0.42435049233289796,
- "truth_threshold": 14.36
- },
- {
- "f1": 0.5954395287050941,
- "fn": 175093,
- "fn_rate": 0.5760377153648001,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999531004912537,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998293118162774,
- "recall": 0.4239622846351999,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128868,
- "tp_rate": 0.4239622846351999,
- "truth_threshold": 14.38
- },
- {
- "f1": 0.5950908620339046,
- "fn": 175200,
- "fn_rate": 0.5763897342093229,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999537461407846,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998291699991458,
- "recall": 0.4236102657906771,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128761,
- "tp_rate": 0.4236102657906771,
- "truth_threshold": 14.4
- },
- {
- "f1": 0.5944867509097046,
- "fn": 175386,
- "fn_rate": 0.5770016548175588,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999543829022842,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998289229142204,
- "recall": 0.42299834518244117,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128575,
- "tp_rate": 0.42299834518244117,
- "truth_threshold": 14.42
- },
- {
- "f1": 0.5938347102850429,
- "fn": 175587,
- "fn_rate": 0.5776629238619428,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999550108980944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998286550982897,
- "recall": 0.4223370761380572,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128374,
- "tp_rate": 0.4223370761380572,
- "truth_threshold": 14.44
- },
- {
- "f1": 0.593426678265376,
- "fn": 175712,
- "fn_rate": 0.5780741608298433,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999556302488732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998284881228025,
- "recall": 0.4219258391701567,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128249,
- "tp_rate": 0.4219258391701567,
- "truth_threshold": 14.46
- },
- {
- "f1": 0.5930081323391236,
- "fn": 175841,
- "fn_rate": 0.5784985573807166,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999562410736184,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998283154625337,
- "recall": 0.4215014426192834,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 128120,
- "tp_rate": 0.4215014426192834,
- "truth_threshold": 14.48
- },
- {
- "f1": 0.5925130223405487,
- "fn": 175993,
- "fn_rate": 0.5789986215336836,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999568434896896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998281115712165,
- "recall": 0.4210013784663164,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127968,
- "tp_rate": 0.4210013784663164,
- "truth_threshold": 14.5
- },
- {
- "f1": 0.5920129319728207,
- "fn": 176146,
- "fn_rate": 0.5795019755823938,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999574376128317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998279058488544,
- "recall": 0.4204980244176062,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127815,
- "tp_rate": 0.4204980244176062,
- "truth_threshold": 14.52
- },
- {
- "f1": 0.5915432267510552,
- "fn": 176290,
- "fn_rate": 0.5799757205694152,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999580235571964,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998277117774663,
- "recall": 0.42002427943058485,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127671,
- "tp_rate": 0.42002427943058485,
- "truth_threshold": 14.540000000000001
- },
- {
- "f1": 0.5910386606658663,
- "fn": 176445,
- "fn_rate": 0.5804856544096118,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999586014353645,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998275023914441,
- "recall": 0.41951434559038825,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127516,
- "tp_rate": 0.41951434559038825,
- "truth_threshold": 14.56
- },
- {
- "f1": 0.5905767367244841,
- "fn": 176586,
- "fn_rate": 0.5809495297094035,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999591713583673,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998273114751525,
- "recall": 0.4190504702905965,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127375,
- "tp_rate": 0.4190504702905965,
- "truth_threshold": 14.58
- },
- {
- "f1": 0.590086454796757,
- "fn": 176736,
- "fn_rate": 0.5814430140708841,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999597334357079,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998271079082415,
- "recall": 0.4185569859291159,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127225,
- "tp_rate": 0.4185569859291159,
- "truth_threshold": 14.6
- },
- {
- "f1": 0.5897313371901517,
- "fn": 176845,
- "fn_rate": 0.5818016127068933,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999602877753826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998269596816058,
- "recall": 0.41819838729310665,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 127116,
- "tp_rate": 0.41819838729310665,
- "truth_threshold": 14.620000000000001
- },
- {
- "f1": 0.5891965396253735,
- "fn": 177008,
- "fn_rate": 0.5823378657130356,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999608344839012,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998267375467612,
- "recall": 0.41766213428696447,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126953,
- "tp_rate": 0.41766213428696447,
- "truth_threshold": 14.64
- },
- {
- "f1": 0.588803572754958,
- "fn": 177128,
- "fn_rate": 0.58273265320222,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999613736663076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998265736470774,
- "recall": 0.41726734679778,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126833,
- "tp_rate": 0.41726734679778,
- "truth_threshold": 14.66
- },
- {
- "f1": 0.5882314694408323,
- "fn": 177303,
- "fn_rate": 0.5833083849572807,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999619054261999,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998263340700979,
- "recall": 0.4166916150427193,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126658,
- "tp_rate": 0.4166916150427193,
- "truth_threshold": 14.68
- },
- {
- "f1": 0.5878595584956147,
- "fn": 177416,
- "fn_rate": 0.5836801431762627,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999624298657506,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998261790198076,
- "recall": 0.41631985682373723,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126545,
- "tp_rate": 0.41631985682373723,
- "truth_threshold": 14.700000000000001
- },
- {
- "f1": 0.5872801208318811,
- "fn": 177593,
- "fn_rate": 0.5842624547228098,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999629470857259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998259355961706,
- "recall": 0.41573754527719015,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126368,
- "tp_rate": 0.41573754527719015,
- "truth_threshold": 14.72
- },
- {
- "f1": 0.5868400989270506,
- "fn": 177727,
- "fn_rate": 0.5847033007523992,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999634571855048,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998257508554049,
- "recall": 0.4152966992476008,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126234,
- "tp_rate": 0.4152966992476008,
- "truth_threshold": 14.74
- },
- {
- "f1": 0.5864740319828136,
- "fn": 177838,
- "fn_rate": 0.5850684791798948,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999639602630992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998255975266558,
- "recall": 0.4149315208201052,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 126123,
- "tp_rate": 0.4149315208201052,
- "truth_threshold": 14.76
- },
- {
- "f1": 0.5859460766983607,
- "fn": 177999,
- "fn_rate": 0.5855981523945506,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999644564151715,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998253746507493,
- "recall": 0.4144018476054494,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125962,
- "tp_rate": 0.4144018476054494,
- "truth_threshold": 14.780000000000001
- },
- {
- "f1": 0.585452565647729,
- "fn": 178149,
- "fn_rate": 0.5860916367560312,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999649457370537,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998251664891842,
- "recall": 0.4139083632439688,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125812,
- "tp_rate": 0.4139083632439688,
- "truth_threshold": 14.8
- },
- {
- "f1": 0.5849277062443556,
- "fn": 178308,
- "fn_rate": 0.5866147301792006,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999654283227661,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998249452954048,
- "recall": 0.4133852698207994,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125653,
- "tp_rate": 0.4133852698207994,
- "truth_threshold": 14.82
- },
- {
- "f1": 0.5844400774876132,
- "fn": 178456,
- "fn_rate": 0.5871016347491947,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999659042650346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998247389007943,
- "recall": 0.4128983652508052,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125505,
- "tp_rate": 0.4128983652508052,
- "truth_threshold": 14.84
- },
- {
- "f1": 0.5837805855276644,
- "fn": 178656,
- "fn_rate": 0.5877596138978356,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999663736553089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998244592146943,
- "recall": 0.4122403861021644,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125305,
- "tp_rate": 0.4122403861021644,
- "truth_threshold": 14.86
- },
- {
- "f1": 0.5834044000801539,
- "fn": 178770,
- "fn_rate": 0.5881346620125608,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999668365837804,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998242993938329,
- "recall": 0.4118653379874392,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125191,
- "tp_rate": 0.4118653379874392,
- "truth_threshold": 14.88
- },
- {
- "f1": 0.5827901945975179,
- "fn": 178956,
- "fn_rate": 0.5887465826207967,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999672931393985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998240380077903,
- "recall": 0.41125341737920323,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 125005,
- "tp_rate": 0.41125341737920323,
- "truth_threshold": 14.9
- },
- {
- "f1": 0.5822793075143646,
- "fn": 179111,
- "fn_rate": 0.5892565164609933,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999677434098888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998238195912614,
- "recall": 0.41074348353900664,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124850,
- "tp_rate": 0.41074348353900664,
- "truth_threshold": 14.92
- },
- {
- "f1": 0.5818096993165224,
- "fn": 179253,
- "fn_rate": 0.5897236816565283,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999681874817694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998236190170768,
- "recall": 0.41027631834347167,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124708,
- "tp_rate": 0.41027631834347167,
- "truth_threshold": 14.94
- },
- {
- "f1": 0.5812735690549976,
- "fn": 179415,
- "fn_rate": 0.5902566447669273,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999686254403675,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998233896345771,
- "recall": 0.40974335523307265,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124546,
- "tp_rate": 0.40974335523307265,
- "truth_threshold": 14.96
- },
- {
- "f1": 0.5805846096376541,
- "fn": 179623,
- "fn_rate": 0.5909409430815138,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999690573698359,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998230942425217,
- "recall": 0.40905905691848626,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124338,
- "tp_rate": 0.40905905691848626,
- "truth_threshold": 14.98
- },
- {
- "f1": 0.580113877873221,
- "fn": 179765,
- "fn_rate": 0.5914081082770487,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999694833531692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998228920124298,
- "recall": 0.4085918917229513,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124196,
- "tp_rate": 0.4085918917229513,
- "truth_threshold": 15
- },
- {
- "f1": 0.5795850661184057,
- "fn": 179924,
- "fn_rate": 0.5919312017002181,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999699034722195,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998226650222878,
- "recall": 0.4080687982997819,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 124037,
- "tp_rate": 0.4080687982997819,
- "truth_threshold": 15.02
- },
- {
- "f1": 0.5791581948631658,
- "fn": 180053,
- "fn_rate": 0.5923555982510914,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999703178077124,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998224804325022,
- "recall": 0.4076444017489086,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123908,
- "tp_rate": 0.4076444017489086,
- "truth_threshold": 15.040000000000001
- },
- {
- "f1": 0.5787150678654753,
- "fn": 180186,
- "fn_rate": 0.5927931543849375,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999707264392624,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999822289716229,
- "recall": 0.4072068456150625,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123775,
- "tp_rate": 0.4072068456150625,
- "truth_threshold": 15.06
- },
- {
- "f1": 0.5782810212662467,
- "fn": 180317,
- "fn_rate": 0.5932241307272973,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999711294453882,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998221014668542,
- "recall": 0.40677586927270276,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123644,
- "tp_rate": 0.40677586927270276,
- "truth_threshold": 15.08
- },
- {
- "f1": 0.5778772695587898,
- "fn": 180438,
- "fn_rate": 0.5936222081122249,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999715269035279,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999821927232992,
- "recall": 0.40637779188777506,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123523,
- "tp_rate": 0.40637779188777506,
- "truth_threshold": 15.1
- },
- {
- "f1": 0.5772762587638419,
- "fn": 180619,
- "fn_rate": 0.5942176792417448,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999719188900533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998216659641387,
- "recall": 0.40578232075825516,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123342,
- "tp_rate": 0.40578232075825516,
- "truth_threshold": 15.120000000000001
- },
- {
- "f1": 0.5767520038954229,
- "fn": 180776,
- "fn_rate": 0.5947341928734279,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999723054802854,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998214387169561,
- "recall": 0.4052658071265722,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123185,
- "tp_rate": 0.4052658071265722,
- "truth_threshold": 15.14
- },
- {
- "f1": 0.5763300861745972,
- "fn": 180903,
- "fn_rate": 0.5951520096328148,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999726867485083,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998212544686382,
- "recall": 0.4048479903671853,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 123058,
- "tp_rate": 0.4048479903671853,
- "truth_threshold": 15.16
- },
- {
- "f1": 0.5759032306423806,
- "fn": 181031,
- "fn_rate": 0.5955731162879448,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999730627679836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998210683844102,
- "recall": 0.40442688371205515,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122930,
- "tp_rate": 0.40442688371205515,
- "truth_threshold": 15.18
- },
- {
- "f1": 0.5754026834629138,
- "fn": 181181,
- "fn_rate": 0.5960666006494254,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999734336109646,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998208498232928,
- "recall": 0.4039333993505746,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122780,
- "tp_rate": 0.4039333993505746,
- "truth_threshold": 15.200000000000001
- },
- {
- "f1": 0.5748750597744043,
- "fn": 181339,
- "fn_rate": 0.5965864041768516,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999737993487102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999820619027429,
- "recall": 0.40341359582314834,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122622,
- "tp_rate": 0.40341359582314834,
- "truth_threshold": 15.22
- },
- {
- "f1": 0.5743624135893372,
- "fn": 181492,
- "fn_rate": 0.5970897582255619,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999741600514982,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998203949677935,
- "recall": 0.4029102417744382,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122469,
- "tp_rate": 0.4029102417744382,
- "truth_threshold": 15.24
- },
- {
- "f1": 0.5738520940750367,
- "fn": 181645,
- "fn_rate": 0.597593112274272,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999745157886392,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998201703477252,
- "recall": 0.40240688772572797,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122316,
- "tp_rate": 0.40240688772572797,
- "truth_threshold": 15.26
- },
- {
- "f1": 0.5732918438418143,
- "fn": 181812,
- "fn_rate": 0.598142524863387,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999748666284898,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998199245320084,
- "recall": 0.4018574751366129,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122149,
- "tp_rate": 0.4018574751366129,
- "truth_threshold": 15.280000000000001
- },
- {
- "f1": 0.572887960376517,
- "fn": 181933,
- "fn_rate": 0.5985406022483147,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999752126384654,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998197460057353,
- "recall": 0.40145939775168527,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 122028,
- "tp_rate": 0.40145939775168527,
- "truth_threshold": 15.3
- },
- {
- "f1": 0.5723785862893265,
- "fn": 182085,
- "fn_rate": 0.5990406664012817,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999755538850542,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998195212390687,
- "recall": 0.40095933359871827,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121876,
- "tp_rate": 0.40095933359871827,
- "truth_threshold": 15.32
- },
- {
- "f1": 0.5718641503760812,
- "fn": 182238,
- "fn_rate": 0.5995440204499919,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999758904338284,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998192944268759,
- "recall": 0.40045597955000806,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121723,
- "tp_rate": 0.40045597955000806,
- "truth_threshold": 15.34
- },
- {
- "f1": 0.5714124585849566,
- "fn": 182373,
- "fn_rate": 0.5999881563753244,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999976222349458,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999819093824521,
- "recall": 0.4000118436246755,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121588,
- "tp_rate": 0.4000118436246755,
- "truth_threshold": 15.36
- },
- {
- "f1": 0.5708973292150309,
- "fn": 182526,
- "fn_rate": 0.6004915104240347,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999976549695723,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998188659360926,
- "recall": 0.39950848957596535,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121435,
- "tp_rate": 0.39950848957596535,
- "truth_threshold": 15.38
- },
- {
- "f1": 0.5702991251998871,
- "fn": 182704,
- "fn_rate": 0.601077111866325,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999976872535525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998186000874018,
- "recall": 0.39892288813367505,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121257,
- "tp_rate": 0.39892288813367505,
- "truth_threshold": 15.4
- },
- {
- "f1": 0.5697656911640162,
- "fn": 182863,
- "fn_rate": 0.6016002052894944,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.9999771909309003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998183619550859,
- "recall": 0.39839979471050563,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 121098,
- "tp_rate": 0.39839979471050563,
- "truth_threshold": 15.42
- },
- {
- "f1": 0.5691955040102421,
- "fn": 183032,
- "fn_rate": 0.6021561976700959,
- "fp": 22,
- "fp_rate": 0.00012653204424020384,
- "match_probability": 0.999977504943031,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998181081595026,
- "recall": 0.3978438023299042,
- "row_count": 477830,
- "tn": 173847,
- "tn_rate": 0.9998734679557598,
- "tp": 120929,
- "tp_rate": 0.3978438023299042,
- "truth_threshold": 15.44
- },
- {
- "f1": 0.5687110960439209,
- "fn": 183177,
- "fn_rate": 0.6026332325528604,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.999977814632257,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998344425681269,
- "recall": 0.3973667674471396,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120784,
- "tp_rate": 0.3973667674471396,
- "truth_threshold": 15.46
- },
- {
- "f1": 0.5682884325546345,
- "fn": 183302,
- "fn_rate": 0.6030444695207609,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999781200580878,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998342710827899,
- "recall": 0.3969555304792391,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120659,
- "tp_rate": 0.3969555304792391,
- "truth_threshold": 15.48
- },
- {
- "f1": 0.5678904744630432,
- "fn": 183420,
- "fn_rate": 0.603432677218459,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999784212792137,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998341088743458,
- "recall": 0.39656732278154105,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120541,
- "tp_rate": 0.39656732278154105,
- "truth_threshold": 15.5
- },
- {
- "f1": 0.5671681891456206,
- "fn": 183634,
- "fn_rate": 0.6041367149075045,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.999978718353517,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998338138881734,
- "recall": 0.3958632850924954,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120327,
- "tp_rate": 0.3958632850924954,
- "truth_threshold": 15.52
- },
- {
- "f1": 0.5666614799202184,
- "fn": 183784,
- "fn_rate": 0.6046301992689852,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999790113380835,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998336064960024,
- "recall": 0.39536980073101485,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120177,
- "tp_rate": 0.39536980073101485,
- "truth_threshold": 15.540000000000001
- },
- {
- "f1": 0.5660712011358973,
- "fn": 183959,
- "fn_rate": 0.6052059310240459,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999793002892131,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999833363883288,
- "recall": 0.39479406897595415,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 120002,
- "tp_rate": 0.39479406897595415,
- "truth_threshold": 15.56
- },
- {
- "f1": 0.5655928388408888,
- "fn": 184100,
- "fn_rate": 0.6056698063238376,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999795852624306,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998331678914923,
- "recall": 0.3943301936761624,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119861,
- "tp_rate": 0.3943301936761624,
- "truth_threshold": 15.58
- },
- {
- "f1": 0.5650714676837673,
- "fn": 184254,
- "fn_rate": 0.606176450268291,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999798663124968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998329533020957,
- "recall": 0.393823549731709,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119707,
- "tp_rate": 0.393823549731709,
- "truth_threshold": 15.6
- },
- {
- "f1": 0.5646717189602664,
- "fn": 184372,
- "fn_rate": 0.606564657965989,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999801434934182,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998327885025374,
- "recall": 0.3934353420340109,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119589,
- "tp_rate": 0.3934353420340109,
- "truth_threshold": 15.620000000000001
- },
- {
- "f1": 0.5641408368208742,
- "fn": 184529,
- "fn_rate": 0.607081171597672,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999804168584587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998325687305362,
- "recall": 0.39291882840232795,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119432,
- "tp_rate": 0.39291882840232795,
- "truth_threshold": 15.64
- },
- {
- "f1": 0.5637269956767228,
- "fn": 184651,
- "fn_rate": 0.6074825388783429,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999806864601481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998323975530042,
- "recall": 0.39251746112165703,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119310,
- "tp_rate": 0.39251746112165703,
- "truth_threshold": 15.66
- },
- {
- "f1": 0.5632246385374177,
- "fn": 184799,
- "fn_rate": 0.6079694434483371,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999809523502939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998321894245775,
- "recall": 0.39203055655166286,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 119162,
- "tp_rate": 0.39203055655166286,
- "truth_threshold": 15.68
- },
- {
- "f1": 0.562662833527985,
- "fn": 184964,
- "fn_rate": 0.6085122762459657,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999812145799899,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998319567792836,
- "recall": 0.39148772375403423,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118997,
- "tp_rate": 0.39148772375403423,
- "truth_threshold": 15.700000000000001
- },
- {
- "f1": 0.5620645124668284,
- "fn": 185140,
- "fn_rate": 0.6090912978967696,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999814731996269,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998317079122525,
- "recall": 0.39090870210323037,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118821,
- "tp_rate": 0.39090870210323037,
- "truth_threshold": 15.72
- },
- {
- "f1": 0.5616133703048255,
- "fn": 185273,
- "fn_rate": 0.6095288540306157,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.999981728258902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998315193584257,
- "recall": 0.3904711459693842,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118688,
- "tp_rate": 0.3904711459693842,
- "truth_threshold": 15.74
- },
- {
- "f1": 0.5610346084478507,
- "fn": 185443,
- "fn_rate": 0.6100881363069605,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999819798068281,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998312777337225,
- "recall": 0.38991186369303954,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118518,
- "tp_rate": 0.38991186369303954,
- "truth_threshold": 15.76
- },
- {
- "f1": 0.5604438277539152,
- "fn": 185616,
- "fn_rate": 0.6106572882705347,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999822278917435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998310311325138,
- "recall": 0.3893427117294653,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118345,
- "tp_rate": 0.3893427117294653,
- "truth_threshold": 15.780000000000001
- },
- {
- "f1": 0.5600210325862975,
- "fn": 185740,
- "fn_rate": 0.611065235342692,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999824725613211,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998308539339147,
- "recall": 0.38893476465730803,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118221,
- "tp_rate": 0.38893476465730803,
- "truth_threshold": 15.8
- },
- {
- "f1": 0.5594798621938101,
- "fn": 185899,
- "fn_rate": 0.6115883287658614,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999827138625776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998306261750309,
- "recall": 0.3884116712341386,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 118062,
- "tp_rate": 0.3884116712341386,
- "truth_threshold": 15.82
- },
- {
- "f1": 0.5589472037469838,
- "fn": 186055,
- "fn_rate": 0.6121015525018012,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999829518418826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998304021165816,
- "recall": 0.3878984474981988,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117906,
- "tp_rate": 0.3878984474981988,
- "truth_threshold": 15.84
- },
- {
- "f1": 0.5585461270360623,
- "fn": 186172,
- "fn_rate": 0.612486470303756,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.999983186544967,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998302336833349,
- "recall": 0.3875135296962439,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117789,
- "tp_rate": 0.3875135296962439,
- "truth_threshold": 15.860000000000001
- },
- {
- "f1": 0.5579580548294821,
- "fn": 186344,
- "fn_rate": 0.6130523323715872,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999834180169326,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998299854637571,
- "recall": 0.3869476676284129,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117617,
- "tp_rate": 0.3869476676284129,
- "truth_threshold": 15.88
- },
- {
- "f1": 0.5572325611197334,
- "fn": 186556,
- "fn_rate": 0.6137497902691463,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999836463022602,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998296785182031,
- "recall": 0.3862502097308536,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117405,
- "tp_rate": 0.3862502097308536,
- "truth_threshold": 15.9
- },
- {
- "f1": 0.5567599134001823,
- "fn": 186694,
- "fn_rate": 0.6142037958817085,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999838714448183,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998294781177794,
- "recall": 0.38579620411829146,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117267,
- "tp_rate": 0.38579620411829146,
- "truth_threshold": 15.92
- },
- {
- "f1": 0.5563191314548417,
- "fn": 186823,
- "fn_rate": 0.6146281924325818,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999840934878717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998292903600267,
- "recall": 0.3853718075674182,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 117138,
- "tp_rate": 0.3853718075674182,
- "truth_threshold": 15.94
- },
- {
- "f1": 0.5557361004209546,
- "fn": 186993,
- "fn_rate": 0.6151874747089264,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999843124740891,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998290422949362,
- "recall": 0.3848125252910735,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 116968,
- "tp_rate": 0.3848125252910735,
- "truth_threshold": 15.96
- },
- {
- "f1": 0.5551684474694856,
- "fn": 187158,
- "fn_rate": 0.6157303075065551,
- "fp": 20,
- "fp_rate": 0.00011502913112745803,
- "match_probability": 0.9999845284455526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998288008354519,
- "recall": 0.3842696924934449,
- "row_count": 477830,
- "tn": 173849,
- "tn_rate": 0.9998849708688725,
- "tp": 116803,
- "tp_rate": 0.3842696924934449,
- "truth_threshold": 15.98
- },
- {
- "f1": 0.5546695955648114,
- "fn": 187304,
- "fn_rate": 0.6162106322850629,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999847414437646,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999837155884672,
- "recall": 0.3837893677149371,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 116657,
- "tp_rate": 0.3837893677149371,
- "truth_threshold": 16
- },
- {
- "f1": 0.5541079828954941,
- "fn": 187467,
- "fn_rate": 0.6167468852912051,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999984951509656,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998369280681125,
- "recall": 0.38325311470879486,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 116494,
- "tp_rate": 0.38325311470879486,
- "truth_threshold": 16.02
- },
- {
- "f1": 0.5535713436017492,
- "fn": 187623,
- "fn_rate": 0.6172601090271449,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999851586835948,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999836709437335,
- "recall": 0.38273989097285505,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 116338,
- "tp_rate": 0.38273989097285505,
- "truth_threshold": 16.04
- },
- {
- "f1": 0.5531217127652992,
- "fn": 187754,
- "fn_rate": 0.6176910853695047,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999853630053928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998365253901881,
- "recall": 0.3823089146304954,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 116207,
- "tp_rate": 0.3823089146304954,
- "truth_threshold": 16.06
- },
- {
- "f1": 0.5526394728196435,
- "fn": 187894,
- "fn_rate": 0.6181516707735532,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999855645143139,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998363282394087,
- "recall": 0.3818483292264468,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 116067,
- "tp_rate": 0.3818483292264468,
- "truth_threshold": 16.080000000000002
- },
- {
- "f1": 0.5520349058760765,
- "fn": 188069,
- "fn_rate": 0.6187274025286139,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999857632490817,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998360811312127,
- "recall": 0.38127259747138614,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115892,
- "tp_rate": 0.38127259747138614,
- "truth_threshold": 16.1
- },
- {
- "f1": 0.5516623626609237,
- "fn": 188177,
- "fn_rate": 0.6190827112688799,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999859592478867,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998359282574717,
- "recall": 0.38091728873112013,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115784,
- "tp_rate": 0.38091728873112013,
- "truth_threshold": 16.12
- },
- {
- "f1": 0.5510203108837928,
- "fn": 188363,
- "fn_rate": 0.6196946318771158,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999861525483934,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998356643054223,
- "recall": 0.3803053681228842,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115598,
- "tp_rate": 0.3803053681228842,
- "truth_threshold": 16.14
- },
- {
- "f1": 0.5504515845993915,
- "fn": 188528,
- "fn_rate": 0.6202374646747445,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999863431877482,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998354294425389,
- "recall": 0.37976253532525556,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115433,
- "tp_rate": 0.37976253532525556,
- "truth_threshold": 16.16
- },
- {
- "f1": 0.5497483361561032,
- "fn": 188731,
- "fn_rate": 0.6209053135106148,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999865312025857,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998351395673715,
- "recall": 0.37909468648938516,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115230,
- "tp_rate": 0.37909468648938516,
- "truth_threshold": 16.18
- },
- {
- "f1": 0.5491045858948413,
- "fn": 188917,
- "fn_rate": 0.6215172341188507,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999867166290367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998348730695358,
- "recall": 0.3784827658811492,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 115044,
- "tp_rate": 0.3784827658811492,
- "truth_threshold": 16.2
- },
- {
- "f1": 0.5485434343530805,
- "fn": 189079,
- "fn_rate": 0.6220501972292498,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999868995027343,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998346402555244,
- "recall": 0.3779498027707502,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114882,
- "tp_rate": 0.3779498027707502,
- "truth_threshold": 16.22
- },
- {
- "f1": 0.5479380729233841,
- "fn": 189254,
- "fn_rate": 0.6226259289843105,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999870798588212,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998343880201523,
- "recall": 0.37737407101568954,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114707,
- "tp_rate": 0.37737407101568954,
- "truth_threshold": 16.240000000000002
- },
- {
- "f1": 0.5474384888493867,
- "fn": 189398,
- "fn_rate": 0.6230996739713318,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999872577319563,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998341798886387,
- "recall": 0.37690032602866813,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114563,
- "tp_rate": 0.37690032602866813,
- "truth_threshold": 16.26
- },
- {
- "f1": 0.5469337807542101,
- "fn": 189543,
- "fn_rate": 0.6235767088540964,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999874331563213,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998339697825004,
- "recall": 0.37642329114590356,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114418,
- "tp_rate": 0.37642329114590356,
- "truth_threshold": 16.28
- },
- {
- "f1": 0.5463896327467482,
- "fn": 189700,
- "fn_rate": 0.6240932224857795,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999876061656275,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998337416870844,
- "recall": 0.3759067775142206,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114261,
- "tp_rate": 0.3759067775142206,
- "truth_threshold": 16.3
- },
- {
- "f1": 0.5459168053881331,
- "fn": 189836,
- "fn_rate": 0.6245406483068552,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999877767931221,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998335435940566,
- "recall": 0.37545935169314487,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 114125,
- "tp_rate": 0.37545935169314487,
- "truth_threshold": 16.32
- },
- {
- "f1": 0.545457590460605,
- "fn": 189968,
- "fn_rate": 0.624974914544958,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999879450715947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998333508753464,
- "recall": 0.37502508545504193,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113993,
- "tp_rate": 0.37502508545504193,
- "truth_threshold": 16.34
- },
- {
- "f1": 0.5450398705761849,
- "fn": 190088,
- "fn_rate": 0.6253697020341425,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999881110333831,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998331752888702,
- "recall": 0.37463029796585745,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113873,
- "tp_rate": 0.37463029796585745,
- "truth_threshold": 16.36
- },
- {
- "f1": 0.5445243521728306,
- "fn": 190236,
- "fn_rate": 0.6258566066041367,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999882747103807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998329582219722,
- "recall": 0.3741433933958633,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113725,
- "tp_rate": 0.3741433933958633,
- "truth_threshold": 16.38
- },
- {
- "f1": 0.5439387262415696,
- "fn": 190404,
- "fn_rate": 0.626409309088995,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999884361340411,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998327111361556,
- "recall": 0.37359069091100505,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113557,
- "tp_rate": 0.37359069091100505,
- "truth_threshold": 16.4
- },
- {
- "f1": 0.5434106558437514,
- "fn": 190555,
- "fn_rate": 0.6269060833462188,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999885953353853,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998324884284769,
- "recall": 0.3730939166537812,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113406,
- "tp_rate": 0.3730939166537812,
- "truth_threshold": 16.42
- },
- {
- "f1": 0.5428778233692526,
- "fn": 190708,
- "fn_rate": 0.6274094373949289,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999887523450072,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998322621654072,
- "recall": 0.37259056260507106,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113253,
- "tp_rate": 0.37259056260507106,
- "truth_threshold": 16.44
- },
- {
- "f1": 0.5423140369048989,
- "fn": 190869,
- "fn_rate": 0.6279391106095847,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999889071930795,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999832023410632,
- "recall": 0.3720608893904152,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 113092,
- "tp_rate": 0.3720608893904152,
- "truth_threshold": 16.46
- },
- {
- "f1": 0.5416404799485701,
- "fn": 191062,
- "fn_rate": 0.6285740604880231,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999890599093596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998317363042207,
- "recall": 0.3714259395119769,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112899,
- "tp_rate": 0.3714259395119769,
- "truth_threshold": 16.48
- },
- {
- "f1": 0.5411037468264519,
- "fn": 191215,
- "fn_rate": 0.6290774145367334,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999892105231952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998315080033698,
- "recall": 0.3709225854632667,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112746,
- "tp_rate": 0.3709225854632667,
- "truth_threshold": 16.5
- },
- {
- "f1": 0.5405924432281914,
- "fn": 191361,
- "fn_rate": 0.6295577393152411,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999893590635301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998312895692556,
- "recall": 0.3704422606847589,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112600,
- "tp_rate": 0.3704422606847589,
- "truth_threshold": 16.52
- },
- {
- "f1": 0.5400224775224776,
- "fn": 191524,
- "fn_rate": 0.6300939923213833,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999895055589096,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998310450309454,
- "recall": 0.36990600767861664,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112437,
- "tp_rate": 0.36990600767861664,
- "truth_threshold": 16.54
- },
- {
- "f1": 0.5394003459542571,
- "fn": 191701,
- "fn_rate": 0.6306763038679304,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999989650037486,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998307786852394,
- "recall": 0.36932369613206956,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112260,
- "tp_rate": 0.36932369613206956,
- "truth_threshold": 16.56
- },
- {
- "f1": 0.5389159388803707,
- "fn": 191839,
- "fn_rate": 0.6311303094804925,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999897925270239,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998305704425678,
- "recall": 0.3688696905195074,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 112122,
- "tp_rate": 0.3688696905195074,
- "truth_threshold": 16.580000000000002
- },
- {
- "f1": 0.5384079085287867,
- "fn": 191984,
- "fn_rate": 0.6316073443632572,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999989933054906,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998303510839673,
- "recall": 0.3683926556367429,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111977,
- "tp_rate": 0.3683926556367429,
- "truth_threshold": 16.6
- },
- {
- "f1": 0.5378876789287363,
- "fn": 192132,
- "fn_rate": 0.6320942489332513,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999900716481379,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998301266003863,
- "recall": 0.3679057510667487,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111829,
- "tp_rate": 0.3679057510667487,
- "truth_threshold": 16.62
- },
- {
- "f1": 0.5374256034719181,
- "fn": 192263,
- "fn_rate": 0.6325252252756111,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999902083333535,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998299274058559,
- "recall": 0.367474774724389,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111698,
- "tp_rate": 0.367474774724389,
- "truth_threshold": 16.64
- },
- {
- "f1": 0.5367756779913934,
- "fn": 192448,
- "fn_rate": 0.6331338559881038,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.99999034313682,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99982964530359,
- "recall": 0.36686614401189627,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111513,
- "tp_rate": 0.36686614401189627,
- "truth_threshold": 16.66
- },
- {
- "f1": 0.5363551883362945,
- "fn": 192567,
- "fn_rate": 0.633525353581545,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999904760844428,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998294633480832,
- "recall": 0.366474646418455,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111394,
- "tp_rate": 0.366474646418455,
- "truth_threshold": 16.68
- },
- {
- "f1": 0.5358828629226472,
- "fn": 192701,
- "fn_rate": 0.6339661996111343,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999906072017711,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998292579911753,
- "recall": 0.3660338003888657,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111260,
- "tp_rate": 0.3660338003888657,
- "truth_threshold": 16.7
- },
- {
- "f1": 0.5353820061768546,
- "fn": 192843,
- "fn_rate": 0.6344333648066692,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999990736514002,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998290398337187,
- "recall": 0.3655666351933307,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 111118,
- "tp_rate": 0.3655666351933307,
- "truth_threshold": 16.72
- },
- {
- "f1": 0.5348666833754265,
- "fn": 192989,
- "fn_rate": 0.634913689585177,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999908640459861,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998288149489598,
- "recall": 0.365086310414823,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110972,
- "tp_rate": 0.365086310414823,
- "truth_threshold": 16.740000000000002
- },
- {
- "f1": 0.5344476800246847,
- "fn": 193108,
- "fn_rate": 0.6353051871786183,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999909898222314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998286312143734,
- "recall": 0.36469481282138166,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110853,
- "tp_rate": 0.36469481282138166,
- "truth_threshold": 16.76
- },
- {
- "f1": 0.5339175561032309,
- "fn": 193258,
- "fn_rate": 0.635798671540099,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999911138669091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998283990534853,
- "recall": 0.3642013284599011,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110703,
- "tp_rate": 0.3642013284599011,
- "truth_threshold": 16.78
- },
- {
- "f1": 0.5332336123911313,
- "fn": 193451,
- "fn_rate": 0.6364336214185372,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999912362038571,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998280994128238,
- "recall": 0.36356637858146273,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110510,
- "tp_rate": 0.36356637858146273,
- "truth_threshold": 16.8
- },
- {
- "f1": 0.5326884460920606,
- "fn": 193605,
- "fn_rate": 0.6369402653629906,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999913568565856,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998278595696489,
- "recall": 0.36305973463700936,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110356,
- "tp_rate": 0.36305973463700936,
- "truth_threshold": 16.82
- },
- {
- "f1": 0.5321641380242789,
- "fn": 193753,
- "fn_rate": 0.6374271699329849,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999914758482807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999827628439493,
- "recall": 0.3625728300670152,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110208,
- "tp_rate": 0.3625728300670152,
- "truth_threshold": 16.84
- },
- {
- "f1": 0.5317032879451671,
- "fn": 193883,
- "fn_rate": 0.6378548563796014,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999915932018099,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998274249071274,
- "recall": 0.3621451436203987,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 110078,
- "tp_rate": 0.3621451436203987,
- "truth_threshold": 16.86
- },
- {
- "f1": 0.531199567061916,
- "fn": 194025,
- "fn_rate": 0.6383220215751363,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999917089397252,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999827202037197,
- "recall": 0.3616779784248637,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109936,
- "tp_rate": 0.3616779784248637,
- "truth_threshold": 16.88
- },
- {
- "f1": 0.5305463440101321,
- "fn": 194209,
- "fn_rate": 0.6389273623918859,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999918230842687,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998269123903399,
- "recall": 0.3610726376081142,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109752,
- "tp_rate": 0.3610726376081142,
- "truth_threshold": 16.9
- },
- {
- "f1": 0.5301342307841089,
- "fn": 194325,
- "fn_rate": 0.6393089902980974,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999919356573761,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998267292873102,
- "recall": 0.36069100970190254,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109636,
- "tp_rate": 0.36069100970190254,
- "truth_threshold": 16.92
- },
- {
- "f1": 0.5294991244110334,
- "fn": 194504,
- "fn_rate": 0.6398978816361309,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999992046680681,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998264459790274,
- "recall": 0.3601021183638691,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109457,
- "tp_rate": 0.3601021183638691,
- "truth_threshold": 16.94
- },
- {
- "f1": 0.5289961673957648,
- "fn": 194645,
- "fn_rate": 0.6403617569359227,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999921561755195,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998262221612475,
- "recall": 0.3596382430640773,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109316,
- "tp_rate": 0.3596382430640773,
- "truth_threshold": 16.96
- },
- {
- "f1": 0.5285119566269726,
- "fn": 194781,
- "fn_rate": 0.6408091827569984,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999922641629336,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998260057326532,
- "recall": 0.35919081724300156,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109180,
- "tp_rate": 0.35919081724300156,
- "truth_threshold": 16.98
- },
- {
- "f1": 0.528096416345069,
- "fn": 194898,
- "fn_rate": 0.6411941005589533,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999992370663676,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998258191085605,
- "recall": 0.35880589944104674,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 109063,
- "tp_rate": 0.35880589944104674,
- "truth_threshold": 17
- },
- {
- "f1": 0.5276116113594862,
- "fn": 195034,
- "fn_rate": 0.641641526380029,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999924756982134,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999825601674224,
- "recall": 0.358358473619971,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108927,
- "tp_rate": 0.358358473619971,
- "truth_threshold": 17.02
- },
- {
- "f1": 0.5272286821705426,
- "fn": 195141,
- "fn_rate": 0.6419935452245519,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999925792867308,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998254302226224,
- "recall": 0.3580064547754482,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108820,
- "tp_rate": 0.3580064547754482,
- "truth_threshold": 17.04
- },
- {
- "f1": 0.5267053110126693,
- "fn": 195288,
- "fn_rate": 0.6424771598988028,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999926814491356,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998251941265226,
- "recall": 0.35752284010119717,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108673,
- "tp_rate": 0.35752284010119717,
- "truth_threshold": 17.06
- },
- {
- "f1": 0.5262910388426707,
- "fn": 195404,
- "fn_rate": 0.6428587878050145,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999927822050607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998250073681109,
- "recall": 0.3571412121949855,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108557,
- "tp_rate": 0.3571412121949855,
- "truth_threshold": 17.080000000000002
- },
- {
- "f1": 0.5257930445831455,
- "fn": 195543,
- "fn_rate": 0.6433160833133198,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999928815738692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998247830537547,
- "recall": 0.3566839166866802,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108418,
- "tp_rate": 0.3566839166866802,
- "truth_threshold": 17.1
- },
- {
- "f1": 0.5253544972518277,
- "fn": 195666,
- "fn_rate": 0.6437207404897339,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999929795746573,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998245840796204,
- "recall": 0.3562792595102661,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108295,
- "tp_rate": 0.3562792595102661,
- "truth_threshold": 17.12
- },
- {
- "f1": 0.5245027133551438,
- "fn": 195904,
- "fn_rate": 0.6445037356766165,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999930762262584,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998241977867427,
- "recall": 0.3554962643233836,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 108057,
- "tp_rate": 0.3554962643233836,
- "truth_threshold": 17.14
- },
- {
- "f1": 0.5240728692257645,
- "fn": 196024,
- "fn_rate": 0.6448985231658009,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999931715472467,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998240023713365,
- "recall": 0.3551014768341991,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107937,
- "tp_rate": 0.3551014768341991,
- "truth_threshold": 17.16
- },
- {
- "f1": 0.52362843377239,
- "fn": 196148,
- "fn_rate": 0.6453064702379582,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999932655559404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998237999851621,
- "recall": 0.3546935297620418,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107813,
- "tp_rate": 0.3546935297620418,
- "truth_threshold": 17.18
- },
- {
- "f1": 0.5231980800248742,
- "fn": 196268,
- "fn_rate": 0.6457012577271426,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999993358270406,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998236036838978,
- "recall": 0.35429874227285735,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107693,
- "tp_rate": 0.35429874227285735,
- "truth_threshold": 17.2
- },
- {
- "f1": 0.5227051825356712,
- "fn": 196405,
- "fn_rate": 0.6461519734439616,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999934497084612,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998233790378805,
- "recall": 0.3538480265560384,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107556,
- "tp_rate": 0.3538480265560384,
- "truth_threshold": 17.22
- },
- {
- "f1": 0.5221162354268156,
- "fn": 196569,
- "fn_rate": 0.646691516345847,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999935398876778,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998231093649627,
- "recall": 0.353308483654153,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107392,
- "tp_rate": 0.353308483654153,
- "truth_threshold": 17.240000000000002
- },
- {
- "f1": 0.5217497021421451,
- "fn": 196671,
- "fn_rate": 0.6470270857116538,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999936288253866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998229412258058,
- "recall": 0.3529729142883462,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107290,
- "tp_rate": 0.3529729142883462,
- "truth_threshold": 17.26
- },
- {
- "f1": 0.5213303109312372,
- "fn": 196788,
- "fn_rate": 0.6474120035136086,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999993716538679,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998227479662661,
- "recall": 0.35258799648639133,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107173,
- "tp_rate": 0.35258799648639133,
- "truth_threshold": 17.28
- },
- {
- "f1": 0.5208073808782311,
- "fn": 196933,
- "fn_rate": 0.6478890383963732,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999938030444118,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998225078703747,
- "recall": 0.35211096160362676,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 107028,
- "tp_rate": 0.35211096160362676,
- "truth_threshold": 17.3
- },
- {
- "f1": 0.5201641562892501,
- "fn": 197112,
- "fn_rate": 0.6484779297344068,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999938883592091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999822210577535,
- "recall": 0.3515220702655933,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106849,
- "tp_rate": 0.3515220702655933,
- "truth_threshold": 17.32
- },
- {
- "f1": 0.5197822371336329,
- "fn": 197218,
- "fn_rate": 0.6488266586831863,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999939724994668,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998220340570615,
- "recall": 0.35117334131681366,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106743,
- "tp_rate": 0.35117334131681366,
- "truth_threshold": 17.34
- },
- {
- "f1": 0.5191693135096164,
- "fn": 197388,
- "fn_rate": 0.649385940959531,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999940554813546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998217502251576,
- "recall": 0.350614059040469,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106573,
- "tp_rate": 0.350614059040469,
- "truth_threshold": 17.36
- },
- {
- "f1": 0.5186881730909799,
- "fn": 197521,
- "fn_rate": 0.6498234970933771,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999941373208195,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998215275364225,
- "recall": 0.3501765029066229,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106440,
- "tp_rate": 0.3501765029066229,
- "truth_threshold": 17.38
- },
- {
- "f1": 0.5180598957698551,
- "fn": 197695,
- "fn_rate": 0.6503959389526945,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999942180335896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998212353577645,
- "recall": 0.3496040610473054,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106266,
- "tp_rate": 0.3496040610473054,
- "truth_threshold": 17.400000000000002
- },
- {
- "f1": 0.5173804681288988,
- "fn": 197883,
- "fn_rate": 0.6510144393524169,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999942976351759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998209185933626,
- "recall": 0.34898556064758307,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 106078,
- "tp_rate": 0.34898556064758307,
- "truth_threshold": 17.42
- },
- {
- "f1": 0.5167993832581923,
- "fn": 198044,
- "fn_rate": 0.6515441125670728,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999943761408759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999820646428032,
- "recall": 0.34845588743292727,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105917,
- "tp_rate": 0.34845588743292727,
- "truth_threshold": 17.44
- },
- {
- "f1": 0.5163311922844146,
- "fn": 198173,
- "fn_rate": 0.651968509117946,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999994453565777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999820427759978,
- "recall": 0.34803149088205393,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105788,
- "tp_rate": 0.34803149088205393,
- "truth_threshold": 17.46
- },
- {
- "f1": 0.5156550612822892,
- "fn": 198360,
- "fn_rate": 0.6525837196219252,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999945299247582,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998201098276841,
- "recall": 0.3474162803780748,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105601,
- "tp_rate": 0.3474162803780748,
- "truth_threshold": 17.48
- },
- {
- "f1": 0.5151402654370136,
- "fn": 198502,
- "fn_rate": 0.6530508848174601,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999946052324943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998198676501261,
- "recall": 0.34694911518253985,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105459,
- "tp_rate": 0.34694911518253985,
- "truth_threshold": 17.5
- },
- {
- "f1": 0.514583933972821,
- "fn": 198655,
- "fn_rate": 0.6535542388661704,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999946795034576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998196059814859,
- "recall": 0.3464457611338297,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105306,
- "tp_rate": 0.3464457611338297,
- "truth_threshold": 17.52
- },
- {
- "f1": 0.5140683964569931,
- "fn": 198797,
- "fn_rate": 0.6540214040617053,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999947527519214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998193624445015,
- "recall": 0.3459785959382947,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105164,
- "tp_rate": 0.3459785959382947,
- "truth_threshold": 17.54
- },
- {
- "f1": 0.5136228057307711,
- "fn": 198920,
- "fn_rate": 0.6544260612381194,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999948249919623,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998191509613554,
- "recall": 0.34557393876188064,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 105041,
- "tp_rate": 0.34557393876188064,
- "truth_threshold": 17.56
- },
- {
- "f1": 0.5130920528084446,
- "fn": 199066,
- "fn_rate": 0.6549063860166271,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999948962374636,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998188992889414,
- "recall": 0.34509361398337285,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104895,
- "tp_rate": 0.34509361398337285,
- "truth_threshold": 17.580000000000002
- },
- {
- "f1": 0.5125851405308072,
- "fn": 199205,
- "fn_rate": 0.6553636815249325,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999994966502117,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998186590312574,
- "recall": 0.34463631847506754,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104756,
- "tp_rate": 0.34463631847506754,
- "truth_threshold": 17.6
- },
- {
- "f1": 0.512196912595319,
- "fn": 199312,
- "fn_rate": 0.6557157003694553,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999950357994258,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998184736500172,
- "recall": 0.3442842996305447,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104649,
- "tp_rate": 0.3442842996305447,
- "truth_threshold": 17.62
- },
- {
- "f1": 0.5116602445150582,
- "fn": 199459,
- "fn_rate": 0.6561993150437062,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999951041427074,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998182183484658,
- "recall": 0.34380068495629373,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104502,
- "tp_rate": 0.34380068495629373,
- "truth_threshold": 17.64
- },
- {
- "f1": 0.5110551631579463,
- "fn": 199625,
- "fn_rate": 0.6567454377370782,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999951715450961,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998179291840352,
- "recall": 0.3432545622629219,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104336,
- "tp_rate": 0.3432545622629219,
- "truth_threshold": 17.66
- },
- {
- "f1": 0.5105079795965367,
- "fn": 199775,
- "fn_rate": 0.6572389220985587,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999995238019545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998176670985077,
- "recall": 0.3427610779014413,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104186,
- "tp_rate": 0.3427610779014413,
- "truth_threshold": 17.68
- },
- {
- "f1": 0.5100042153969826,
- "fn": 199913,
- "fn_rate": 0.6576929277111209,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999953035788293,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999817425312539,
- "recall": 0.3423070722888792,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 104048,
- "tp_rate": 0.3423070722888792,
- "truth_threshold": 17.7
- },
- {
- "f1": 0.5096292446632216,
- "fn": 200016,
- "fn_rate": 0.6580317869726708,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999953682355479,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998172444307645,
- "recall": 0.34196821302732916,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103945,
- "tp_rate": 0.34196821302732916,
- "truth_threshold": 17.72
- },
- {
- "f1": 0.5090810105597708,
- "fn": 200166,
- "fn_rate": 0.6585252713341514,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999954320021266,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998169803687363,
- "recall": 0.3414747286658486,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103795,
- "tp_rate": 0.3414747286658486,
- "truth_threshold": 17.740000000000002
- },
- {
- "f1": 0.5085640550101317,
- "fn": 200307,
- "fn_rate": 0.6589891466339431,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999954948908198,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998167314537054,
- "recall": 0.34101085336605685,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103654,
- "tp_rate": 0.34101085336605685,
- "truth_threshold": 17.76
- },
- {
- "f1": 0.5079393906671051,
- "fn": 200478,
- "fn_rate": 0.659551718806031,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999955569137137,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998164286680451,
- "recall": 0.34044828119396897,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103483,
- "tp_rate": 0.34044828119396897,
- "truth_threshold": 17.78
- },
- {
- "f1": 0.5073703438184372,
- "fn": 200633,
- "fn_rate": 0.6600616526462276,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999956180827274,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998161533474605,
- "recall": 0.3399383473537724,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103328,
- "tp_rate": 0.3399383473537724,
- "truth_threshold": 17.8
- },
- {
- "f1": 0.506805778648865,
- "fn": 200787,
- "fn_rate": 0.6605682965906811,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999956784096167,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998158789840396,
- "recall": 0.33943170340931894,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103174,
- "tp_rate": 0.33943170340931894,
- "truth_threshold": 17.82
- },
- {
- "f1": 0.5062701470241371,
- "fn": 200933,
- "fn_rate": 0.6610486213691888,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999995737905975,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998156181160053,
- "recall": 0.3389513786308112,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 103028,
- "tp_rate": 0.3389513786308112,
- "truth_threshold": 17.84
- },
- {
- "f1": 0.5058149251383687,
- "fn": 201057,
- "fn_rate": 0.6614565684413461,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999957965832362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998153959756323,
- "recall": 0.3385434315586539,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102904,
- "tp_rate": 0.3385434315586539,
- "truth_threshold": 17.86
- },
- {
- "f1": 0.5053349461096688,
- "fn": 201188,
- "fn_rate": 0.6618875447837058,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999958544526771,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999815160712896,
- "recall": 0.3381124552162942,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102773,
- "tp_rate": 0.3381124552162942,
- "truth_threshold": 17.88
- },
- {
- "f1": 0.5048301099809157,
- "fn": 201325,
- "fn_rate": 0.6623382605005247,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999959115254188,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998149140324387,
- "recall": 0.33766173949947526,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102636,
- "tp_rate": 0.33766173949947526,
- "truth_threshold": 17.900000000000002
- },
- {
- "f1": 0.5043568536185749,
- "fn": 201454,
- "fn_rate": 0.662762657051398,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999959678124296,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998146811540487,
- "recall": 0.33723734294860197,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102507,
- "tp_rate": 0.33723734294860197,
- "truth_threshold": 17.92
- },
- {
- "f1": 0.5038513596653131,
- "fn": 201591,
- "fn_rate": 0.663213372768217,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999960233245266,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998144331910654,
- "recall": 0.33678662723178304,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102370,
- "tp_rate": 0.33678662723178304,
- "truth_threshold": 17.94
- },
- {
- "f1": 0.5033430819375104,
- "fn": 201729,
- "fn_rate": 0.6636673783807792,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999960780723782,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999814182746379,
- "recall": 0.3363326216192209,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102232,
- "tp_rate": 0.3363326216192209,
- "truth_threshold": 17.96
- },
- {
- "f1": 0.5028172621334358,
- "fn": 201872,
- "fn_rate": 0.6641378334720572,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999996132066506,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998139225134172,
- "recall": 0.3358621665279427,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 102089,
- "tp_rate": 0.3358621665279427,
- "truth_threshold": 17.98
- },
- {
- "f1": 0.5022197257493114,
- "fn": 202034,
- "fn_rate": 0.6646707965824563,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999961853172863,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999813626822043,
- "recall": 0.3353292034175437,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101927,
- "tp_rate": 0.3353292034175437,
- "truth_threshold": 18
- },
- {
- "f1": 0.5018580215274219,
- "fn": 202132,
- "fn_rate": 0.6649932063652902,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999962378349528,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998134474903778,
- "recall": 0.3350067936347097,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101829,
- "tp_rate": 0.3350067936347097,
- "truth_threshold": 18.02
- },
- {
- "f1": 0.5012400096636936,
- "fn": 202299,
- "fn_rate": 0.6655426189544054,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999962896295986,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998131410981402,
- "recall": 0.3344573810455947,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101662,
- "tp_rate": 0.3344573810455947,
- "truth_threshold": 18.04
- },
- {
- "f1": 0.5007669278989135,
- "fn": 202427,
- "fn_rate": 0.6659637256095354,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999963407111775,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998129055763986,
- "recall": 0.33403627439046457,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101534,
- "tp_rate": 0.33403627439046457,
- "truth_threshold": 18.06
- },
- {
- "f1": 0.5000912836454248,
- "fn": 202610,
- "fn_rate": 0.6665657765305417,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999963910895062,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998125678208543,
- "recall": 0.3334342234694583,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101351,
- "tp_rate": 0.3334342234694583,
- "truth_threshold": 18.080000000000002
- },
- {
- "f1": 0.4995236661417945,
- "fn": 202763,
- "fn_rate": 0.667069130579252,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999964407742665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998122844976635,
- "recall": 0.33293086942074807,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101198,
- "tp_rate": 0.33293086942074807,
- "truth_threshold": 18.1
- },
- {
- "f1": 0.4989654985112067,
- "fn": 202914,
- "fn_rate": 0.6675659048364757,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.999996489775007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998120040369659,
- "recall": 0.3324340951635243,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 101047,
- "tp_rate": 0.3324340951635243,
- "truth_threshold": 18.12
- },
- {
- "f1": 0.4983673610527928,
- "fn": 203075,
- "fn_rate": 0.6680955780511315,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999965381011445,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998117040780933,
- "recall": 0.33190442194886843,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 100886,
- "tp_rate": 0.33190442194886843,
- "truth_threshold": 18.14
- },
- {
- "f1": 0.4978701955862151,
- "fn": 203209,
- "fn_rate": 0.6685364240807209,
- "fp": 19,
- "fp_rate": 0.00010927767457108513,
- "match_probability": 0.9999965857619664,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998114536920344,
- "recall": 0.3314635759192791,
- "row_count": 477830,
- "tn": 173850,
- "tn_rate": 0.9998907223254289,
- "tp": 100752,
- "tp_rate": 0.3314635759192791,
- "truth_threshold": 18.16
- },
- {
- "f1": 0.49744694943823003,
- "fn": 203324,
- "fn_rate": 0.6689147620911894,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999996632766632,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998311045760725,
- "recall": 0.33108523790881067,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 100637,
- "tp_rate": 0.33108523790881067,
- "truth_threshold": 18.18
- },
- {
- "f1": 0.4968599798247523,
- "fn": 203482,
- "fn_rate": 0.6694345656186156,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999966791241749,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998308390383697,
- "recall": 0.33056543438138447,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 100479,
- "tp_rate": 0.33056543438138447,
- "truth_threshold": 18.2
- },
- {
- "f1": 0.4963494261970716,
- "fn": 203619,
- "fn_rate": 0.6698852813354345,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999996724843504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998306081168604,
- "recall": 0.33011471866456554,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 100342,
- "tp_rate": 0.33011471866456554,
- "truth_threshold": 18.22
- },
- {
- "f1": 0.4956722703630938,
- "fn": 203801,
- "fn_rate": 0.6704840423606976,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999967699334056,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998303003683481,
- "recall": 0.3295159576393024,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 100160,
- "tp_rate": 0.3295159576393024,
- "truth_threshold": 18.240000000000002
- },
- {
- "f1": 0.4951211663655041,
- "fn": 203949,
- "fn_rate": 0.6709709469306918,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999968144025453,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998300492857072,
- "recall": 0.32902905306930824,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 100012,
- "tp_rate": 0.32902905306930824,
- "truth_threshold": 18.26
- },
- {
- "f1": 0.4946740287716344,
- "fn": 204069,
- "fn_rate": 0.6713657344198762,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999996858259469,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998298451590948,
- "recall": 0.32863426558012376,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99892,
- "tp_rate": 0.32863426558012376,
- "truth_threshold": 18.28
- },
- {
- "f1": 0.4941346068105934,
- "fn": 204214,
- "fn_rate": 0.6718427693026408,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999969015126052,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998295978509282,
- "recall": 0.3281572306973592,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99747,
- "tp_rate": 0.3281572306973592,
- "truth_threshold": 18.3
- },
- {
- "f1": 0.49367195242814665,
- "fn": 204338,
- "fn_rate": 0.672250716374798,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999969441702665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998293857888398,
- "recall": 0.3277492836252019,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99623,
- "tp_rate": 0.3277492836252019,
- "truth_threshold": 18.32
- },
- {
- "f1": 0.49317913688322246,
- "fn": 204470,
- "fn_rate": 0.672684982612901,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999969862406507,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998291594645656,
- "recall": 0.327315017387099,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99491,
- "tp_rate": 0.327315017387099,
- "truth_threshold": 18.34
- },
- {
- "f1": 0.4926785244983066,
- "fn": 204604,
- "fn_rate": 0.6731258286424903,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999970277318428,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998289290961418,
- "recall": 0.3268741713575097,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99357,
- "tp_rate": 0.3268741713575097,
- "truth_threshold": 18.36
- },
- {
- "f1": 0.492110262858957,
- "fn": 204756,
- "fn_rate": 0.6736258927954573,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999997068651817,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998286670294895,
- "recall": 0.3263741072045427,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99205,
- "tp_rate": 0.3263741072045427,
- "truth_threshold": 18.38
- },
- {
- "f1": 0.4915216388024594,
- "fn": 204913,
- "fn_rate": 0.6741424064271403,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999997109008437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998283954979054,
- "recall": 0.32585759357285965,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 99048,
- "tp_rate": 0.32585759357285965,
- "truth_threshold": 18.400000000000002
- },
- {
- "f1": 0.4909899623713029,
- "fn": 205055,
- "fn_rate": 0.6746095716226753,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999971488094587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998281491665234,
- "recall": 0.32539042837732474,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98906,
- "tp_rate": 0.32539042837732474,
- "truth_threshold": 18.42
- },
- {
- "f1": 0.4906427667022518,
- "fn": 205148,
- "fn_rate": 0.6749155319267932,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999997188062531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998279874532024,
- "recall": 0.32508446807320673,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98813,
- "tp_rate": 0.32508446807320673,
- "truth_threshold": 18.44
- },
- {
- "f1": 0.49033542914469047,
- "fn": 205230,
- "fn_rate": 0.675185303377736,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999972267751978,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998278446145745,
- "recall": 0.32481469662226403,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98731,
- "tp_rate": 0.32481469662226403,
- "truth_threshold": 18.46
- },
- {
- "f1": 0.48984042764596003,
- "fn": 205362,
- "fn_rate": 0.6756195696158389,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999972649548987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998276141802547,
- "recall": 0.32438043038416114,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98599,
- "tp_rate": 0.32438043038416114,
- "truth_threshold": 18.48
- },
- {
- "f1": 0.4893776680067784,
- "fn": 205485,
- "fn_rate": 0.6760242267922529,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999973026089712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998273989014448,
- "recall": 0.32397577320774706,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98476,
- "tp_rate": 0.32397577320774706,
- "truth_threshold": 18.5
- },
- {
- "f1": 0.4889696379217784,
- "fn": 205594,
- "fn_rate": 0.6763828254282622,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999973397446519,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998272076760449,
- "recall": 0.32361717457173783,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98367,
- "tp_rate": 0.32361717457173783,
- "truth_threshold": 18.52
- },
- {
- "f1": 0.4884762837693367,
- "fn": 205725,
- "fn_rate": 0.6768138017706219,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999973763690773,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998269772933142,
- "recall": 0.3231861982293781,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98236,
- "tp_rate": 0.3231861982293781,
- "truth_threshold": 18.54
- },
- {
- "f1": 0.4881455066322496,
- "fn": 205813,
- "fn_rate": 0.6771033125960239,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999997412489286,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998268221871339,
- "recall": 0.32289668740397615,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98148,
- "tp_rate": 0.32289668740397615,
- "truth_threshold": 18.56
- },
- {
- "f1": 0.4876565935979463,
- "fn": 205943,
- "fn_rate": 0.6775309990426404,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999974481122197,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998265925434794,
- "recall": 0.32246900095735964,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 98018,
- "tp_rate": 0.32246900095735964,
- "truth_threshold": 18.580000000000002
- },
- {
- "f1": 0.4872852678304835,
- "fn": 206042,
- "fn_rate": 0.6778566987212176,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999974832447245,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999826417252083,
- "recall": 0.3221433012787825,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97919,
- "tp_rate": 0.3221433012787825,
- "truth_threshold": 18.6
- },
- {
- "f1": 0.48674306537366335,
- "fn": 206186,
- "fn_rate": 0.6783304437082389,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999975178935521,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998261616492147,
- "recall": 0.32166955629176114,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97775,
- "tp_rate": 0.32166955629176114,
- "truth_threshold": 18.62
- },
- {
- "f1": 0.486290932993387,
- "fn": 206306,
- "fn_rate": 0.6787252311974233,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999975520653613,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999825948071095,
- "recall": 0.32127476880257666,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97655,
- "tp_rate": 0.32127476880257666,
- "truth_threshold": 18.64
- },
- {
- "f1": 0.485898866330617,
- "fn": 206410,
- "fn_rate": 0.6790673803547166,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999975857667196,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998257625450968,
- "recall": 0.32093261964528347,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97551,
- "tp_rate": 0.32093261964528347,
- "truth_threshold": 18.66
- },
- {
- "f1": 0.48544124681122447,
- "fn": 206531,
- "fn_rate": 0.6794654577396443,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999976190041034,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998255461943415,
- "recall": 0.32053454226035577,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97430,
- "tp_rate": 0.32053454226035577,
- "truth_threshold": 18.68
- },
- {
- "f1": 0.4848373076002871,
- "fn": 206691,
- "fn_rate": 0.6799918410585568,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999976517839005,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998252592843854,
- "recall": 0.32000815894144313,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97270,
- "tp_rate": 0.32000815894144313,
- "truth_threshold": 18.7
- },
- {
- "f1": 0.48399597031599106,
- "fn": 206914,
- "fn_rate": 0.6807254878092913,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999976841124106,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998248578257645,
- "recall": 0.3192745121907087,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 97047,
- "tp_rate": 0.3192745121907087,
- "truth_threshold": 18.72
- },
- {
- "f1": 0.483529640660311,
- "fn": 207037,
- "fn_rate": 0.6811301449857055,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999977159958466,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998246356030988,
- "recall": 0.3188698550142946,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96924,
- "tp_rate": 0.3188698550142946,
- "truth_threshold": 18.740000000000002
- },
- {
- "f1": 0.4829973051202715,
- "fn": 207178,
- "fn_rate": 0.6815940202854972,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999977474403359,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998243801652893,
- "recall": 0.31840597971450285,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96783,
- "tp_rate": 0.31840597971450285,
- "truth_threshold": 18.76
- },
- {
- "f1": 0.48238642036944585,
- "fn": 207339,
- "fn_rate": 0.682123693500153,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999977784519215,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998240875836878,
- "recall": 0.317876306499847,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96622,
- "tp_rate": 0.317876306499847,
- "truth_threshold": 18.78
- },
- {
- "f1": 0.48206813210957866,
- "fn": 207423,
- "fn_rate": 0.6824000447425821,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999978090365634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998239345450779,
- "recall": 0.3175999552574179,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96538,
- "tp_rate": 0.3175999552574179,
- "truth_threshold": 18.8
- },
- {
- "f1": 0.48156769501278773,
- "fn": 207555,
- "fn_rate": 0.682834310980685,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999978392001393,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998236935171069,
- "recall": 0.31716568901931497,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96406,
- "tp_rate": 0.31716568901931497,
- "truth_threshold": 18.82
- },
- {
- "f1": 0.48109469392242005,
- "fn": 207680,
- "fn_rate": 0.6832455479485855,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999978689484461,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998234646617791,
- "recall": 0.3167544520514145,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96281,
- "tp_rate": 0.3167544520514145,
- "truth_threshold": 18.84
- },
- {
- "f1": 0.4806999305267472,
- "fn": 207784,
- "fn_rate": 0.6835876971058787,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999997898287201,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998232738008608,
- "recall": 0.3164123028941213,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96177,
- "tp_rate": 0.3164123028941213,
- "truth_threshold": 18.86
- },
- {
- "f1": 0.4801935893525856,
- "fn": 207917,
- "fn_rate": 0.6840252532397249,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999979272220422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998230291169153,
- "recall": 0.31597474676027515,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 96044,
- "tp_rate": 0.31597474676027515,
- "truth_threshold": 18.88
- },
- {
- "f1": 0.4797831533779763,
- "fn": 208025,
- "fn_rate": 0.6843805619799909,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999979557585305,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998228299271519,
- "recall": 0.31561943802000914,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95936,
- "tp_rate": 0.31561943802000914,
- "truth_threshold": 18.900000000000002
- },
- {
- "f1": 0.4792583846954294,
- "fn": 208163,
- "fn_rate": 0.684834567592553,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999979839021501,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998225747534311,
- "recall": 0.315165432407447,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95798,
- "tp_rate": 0.315165432407447,
- "truth_threshold": 18.92
- },
- {
- "f1": 0.47877893156511947,
- "fn": 208289,
- "fn_rate": 0.6852490944561966,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999980116583098,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998223411259393,
- "recall": 0.3147509055438033,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95672,
- "tp_rate": 0.3147509055438033,
- "truth_threshold": 18.94
- },
- {
- "f1": 0.4782763229691779,
- "fn": 208421,
- "fn_rate": 0.6856833606942996,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999980390323437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998220957125067,
- "recall": 0.3143166393057004,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95540,
- "tp_rate": 0.3143166393057004,
- "truth_threshold": 18.96
- },
- {
- "f1": 0.47768952634689155,
- "fn": 208575,
- "fn_rate": 0.686190004638753,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999980660295127,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998218085385155,
- "recall": 0.313809995361247,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95386,
- "tp_rate": 0.313809995361247,
- "truth_threshold": 18.98
- },
- {
- "f1": 0.47732851117545105,
- "fn": 208670,
- "fn_rate": 0.6865025447343573,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999980926550052,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998216309229025,
- "recall": 0.31349745526564265,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95291,
- "tp_rate": 0.31349745526564265,
- "truth_threshold": 19
- },
- {
- "f1": 0.476809676999088,
- "fn": 208806,
- "fn_rate": 0.686949970555433,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998118913938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998213760349682,
- "recall": 0.3130500294445669,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 95155,
- "tp_rate": 0.3130500294445669,
- "truth_threshold": 19.02
- },
- {
- "f1": 0.47615299779426506,
- "fn": 208978,
- "fn_rate": 0.6875158326232642,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999981448113576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998210526315789,
- "recall": 0.31248416737673584,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94983,
- "tp_rate": 0.31248416737673584,
- "truth_threshold": 19.04
- },
- {
- "f1": 0.4756894995486912,
- "fn": 209099,
- "fn_rate": 0.6879139100081918,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999981703522411,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998208244184699,
- "recall": 0.31208608999180815,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94862,
- "tp_rate": 0.31208608999180815,
- "truth_threshold": 19.06
- },
- {
- "f1": 0.4751466021901289,
- "fn": 209241,
- "fn_rate": 0.6883810752037268,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998195541497,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998205558546291,
- "recall": 0.31161892479627323,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94720,
- "tp_rate": 0.31161892479627323,
- "truth_threshold": 19.080000000000002
- },
- {
- "f1": 0.47472578201049703,
- "fn": 209351,
- "fn_rate": 0.6887429637354793,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999982203839662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998203472581821,
- "recall": 0.3112570362645208,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94610,
- "tp_rate": 0.3112570362645208,
- "truth_threshold": 19.1
- },
- {
- "f1": 0.4741872173393634,
- "fn": 209492,
- "fn_rate": 0.689206839035271,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999982448844231,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998200791651674,
- "recall": 0.31079316096472903,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94469,
- "tp_rate": 0.31079316096472903,
- "truth_threshold": 19.12
- },
- {
- "f1": 0.4736228973135827,
- "fn": 209639,
- "fn_rate": 0.689690453709522,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998269047576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998197988106722,
- "recall": 0.3103095462904781,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94322,
- "tp_rate": 0.3103095462904781,
- "truth_threshold": 19.14
- },
- {
- "f1": 0.47316289115475413,
- "fn": 209759,
- "fn_rate": 0.6900852411987064,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999982928780689,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998195693013087,
- "recall": 0.3099147588012936,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94202,
- "tp_rate": 0.3099147588012936,
- "truth_threshold": 19.16
- },
- {
- "f1": 0.47260284297321337,
- "fn": 209905,
- "fn_rate": 0.6905655659772142,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999983163804814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99981928927535,
- "recall": 0.3094344340227858,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 94056,
- "tp_rate": 0.3094344340227858,
- "truth_threshold": 19.18
- },
- {
- "f1": 0.4720347034075087,
- "fn": 210053,
- "fn_rate": 0.6910524705472083,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999983395593304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998190045248869,
- "recall": 0.30894752945279164,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93908,
- "tp_rate": 0.30894752945279164,
- "truth_threshold": 19.2
- },
- {
- "f1": 0.47164290167528106,
- "fn": 210155,
- "fn_rate": 0.6913880399130151,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999983624190703,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998188077550281,
- "recall": 0.3086119600869848,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93806,
- "tp_rate": 0.3086119600869848,
- "truth_threshold": 19.22
- },
- {
- "f1": 0.4709971429721138,
- "fn": 210323,
- "fn_rate": 0.6919407423978734,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999983849640944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998184827291655,
- "recall": 0.3080592576021266,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93638,
- "tp_rate": 0.3080592576021266,
- "truth_threshold": 19.240000000000002
- },
- {
- "f1": 0.47044320103051285,
- "fn": 210467,
- "fn_rate": 0.6924144873848948,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999984071987357,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.99981820320604,
- "recall": 0.30758551261510525,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93494,
- "tp_rate": 0.30758551261510525,
- "truth_threshold": 19.26
- },
- {
- "f1": 0.470004378922785,
- "fn": 210581,
- "fn_rate": 0.69278953549962,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999984291272669,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998179813056094,
- "recall": 0.30721046450038,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93380,
- "tp_rate": 0.30721046450038,
- "truth_threshold": 19.28
- },
- {
- "f1": 0.469603830294975,
- "fn": 210685,
- "fn_rate": 0.6931316846569132,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999984507539025,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998177783970931,
- "recall": 0.3068683153430868,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93276,
- "tp_rate": 0.3068683153430868,
- "truth_threshold": 19.3
- },
- {
- "f1": 0.46915681702581974,
- "fn": 210801,
- "fn_rate": 0.6935133125631249,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999984720827987,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998175515416895,
- "recall": 0.3064866874368751,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93160,
- "tp_rate": 0.3064866874368751,
- "truth_threshold": 19.32
- },
- {
- "f1": 0.46854753388080006,
- "fn": 210959,
- "fn_rate": 0.6940331160905511,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999984931180547,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998172416388049,
- "recall": 0.30596688390944893,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 93002,
- "tp_rate": 0.30596688390944893,
- "truth_threshold": 19.34
- },
- {
- "f1": 0.4680586213500247,
- "fn": 211086,
- "fn_rate": 0.694450932849938,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999985138637129,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998169917753951,
- "recall": 0.305549067150062,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92875,
- "tp_rate": 0.305549067150062,
- "truth_threshold": 19.36
- },
- {
- "f1": 0.4676725007057305,
- "fn": 211186,
- "fn_rate": 0.6947799224242583,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999985343237603,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998167945512544,
- "recall": 0.3052200775757416,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92775,
- "tp_rate": 0.3052200775757416,
- "truth_threshold": 19.38
- },
- {
- "f1": 0.46709564200058495,
- "fn": 211335,
- "fn_rate": 0.6952701168899957,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998554502129,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998164998974558,
- "recall": 0.30472988311000426,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92626,
- "tp_rate": 0.30472988311000426,
- "truth_threshold": 19.400000000000002
- },
- {
- "f1": 0.4666239577080422,
- "fn": 211457,
- "fn_rate": 0.6956714841706666,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998574402697,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999816257930632,
- "recall": 0.30432851582933335,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92504,
- "tp_rate": 0.30432851582933335,
- "truth_threshold": 19.42
- },
- {
- "f1": 0.46600996159688335,
- "fn": 211616,
- "fn_rate": 0.6961945775938361,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999985940292888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999815941621013,
- "recall": 0.3038054224061639,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92345,
- "tp_rate": 0.3038054224061639,
- "truth_threshold": 19.44
- },
- {
- "f1": 0.4655066230514498,
- "fn": 211746,
- "fn_rate": 0.6966222640404526,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999986133856762,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998156821927314,
- "recall": 0.3033777359595474,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92215,
- "tp_rate": 0.3033777359595474,
- "truth_threshold": 19.46
- },
- {
- "f1": 0.46489442825615984,
- "fn": 211904,
- "fn_rate": 0.6971420675678788,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999986324755792,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998153659013402,
- "recall": 0.3028579324321212,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 92057,
- "tp_rate": 0.3028579324321212,
- "truth_threshold": 19.48
- },
- {
- "f1": 0.46413702506063054,
- "fn": 212099,
- "fn_rate": 0.6977835972378036,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999986513026666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998149740419465,
- "recall": 0.30221640276219647,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91862,
- "tp_rate": 0.30221640276219647,
- "truth_threshold": 19.5
- },
- {
- "f1": 0.4635831547450568,
- "fn": 212242,
- "fn_rate": 0.6982540523290817,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999986698705566,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998146856196041,
- "recall": 0.30174594767091834,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91719,
- "tp_rate": 0.30174594767091834,
- "truth_threshold": 19.52
- },
- {
- "f1": 0.46304713847273976,
- "fn": 212380,
- "fn_rate": 0.6987080579416438,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999986881828178,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998144064280879,
- "recall": 0.3012919420583562,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91581,
- "tp_rate": 0.3012919420583562,
- "truth_threshold": 19.54
- },
- {
- "f1": 0.4624434755338843,
- "fn": 212535,
- "fn_rate": 0.6992179917818404,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987062429692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998140918386317,
- "recall": 0.3007820082181596,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91426,
- "tp_rate": 0.3007820082181596,
- "truth_threshold": 19.56
- },
- {
- "f1": 0.46194557726752955,
- "fn": 212663,
- "fn_rate": 0.6996390984369706,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987240544819,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998138312434978,
- "recall": 0.30036090156302947,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91298,
- "tp_rate": 0.30036090156302947,
- "truth_threshold": 19.580000000000002
- },
- {
- "f1": 0.46158751366452083,
- "fn": 212755,
- "fn_rate": 0.6999417688453453,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987416207787,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998136434890323,
- "recall": 0.3000582311546547,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91206,
- "tp_rate": 0.3000582311546547,
- "truth_threshold": 19.6
- },
- {
- "f1": 0.46091764300831367,
- "fn": 212927,
- "fn_rate": 0.7005076309131764,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987589452358,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998132914520433,
- "recall": 0.29949236908682364,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 91034,
- "tp_rate": 0.29949236908682364,
- "truth_threshold": 19.62
- },
- {
- "f1": 0.46034857394660467,
- "fn": 213073,
- "fn_rate": 0.7009879556916842,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987760311826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998129915846213,
- "recall": 0.29901204430831585,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90888,
- "tp_rate": 0.29901204430831585,
- "truth_threshold": 19.64
- },
- {
- "f1": 0.45987272764120546,
- "fn": 213195,
- "fn_rate": 0.701389322972355,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999987928819026,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998127402707555,
- "recall": 0.298610677027645,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90766,
- "tp_rate": 0.298610677027645,
- "truth_threshold": 19.66
- },
- {
- "f1": 0.45945124114373753,
- "fn": 213303,
- "fn_rate": 0.701744631712621,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988095006345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999812517231872,
- "recall": 0.298255368287379,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90658,
- "tp_rate": 0.298255368287379,
- "truth_threshold": 19.68
- },
- {
- "f1": 0.45878732260828564,
- "fn": 213473,
- "fn_rate": 0.7023039139889657,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988258905718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998121650737528,
- "recall": 0.2976960860110343,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90488,
- "tp_rate": 0.2976960860110343,
- "truth_threshold": 19.7
- },
- {
- "f1": 0.45823231657215896,
- "fn": 213615,
- "fn_rate": 0.7027710791845007,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988420548644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998118699025044,
- "recall": 0.29722892081549934,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90346,
- "tp_rate": 0.29722892081549934,
- "truth_threshold": 19.72
- },
- {
- "f1": 0.4576769106656316,
- "fn": 213757,
- "fn_rate": 0.7032382443800356,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988579966191,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115738021082,
- "recall": 0.29676175561996443,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90204,
- "tp_rate": 0.29676175561996443,
- "truth_threshold": 19.740000000000002
- },
- {
- "f1": 0.45730119821561793,
- "fn": 213853,
- "fn_rate": 0.7035540743713832,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988737188994,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998113730929264,
- "recall": 0.2964459256286168,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 90108,
- "tp_rate": 0.2964459256286168,
- "truth_threshold": 19.76
- },
- {
- "f1": 0.4568548018640919,
- "fn": 213967,
- "fn_rate": 0.7039291224861084,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999988892247269,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998111341947096,
- "recall": 0.2960708775138916,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89994,
- "tp_rate": 0.2960708775138916,
- "truth_threshold": 19.78
- },
- {
- "f1": 0.4560761049541359,
- "fn": 214166,
- "fn_rate": 0.704583811739006,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989045170816,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998107157172761,
- "recall": 0.29541618826099403,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89795,
- "tp_rate": 0.29541618826099403,
- "truth_threshold": 19.8
- },
- {
- "f1": 0.45556622514873923,
- "fn": 214296,
- "fn_rate": 0.7050114981856225,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989195989024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998104413371691,
- "recall": 0.2949885018143775,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89665,
- "tp_rate": 0.2949885018143775,
- "truth_threshold": 19.82
- },
- {
- "f1": 0.4551922510087715,
- "fn": 214391,
- "fn_rate": 0.7053240382812269,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989344730877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998102403250472,
- "recall": 0.29467596171877314,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89570,
- "tp_rate": 0.29467596171877314,
- "truth_threshold": 19.84
- },
- {
- "f1": 0.4546397360487639,
- "fn": 214532,
- "fn_rate": 0.7057879135810187,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989491424962,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998099411935693,
- "recall": 0.2942120864189814,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89429,
- "tp_rate": 0.2942120864189814,
- "truth_threshold": 19.86
- },
- {
- "f1": 0.45417607453062386,
- "fn": 214650,
- "fn_rate": 0.7061761212787167,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999998963609947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999809690130754,
- "recall": 0.29382387872128335,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89311,
- "tp_rate": 0.29382387872128335,
- "truth_threshold": 19.88
- },
- {
- "f1": 0.4536649387777942,
- "fn": 214780,
- "fn_rate": 0.7066038077253332,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989778782205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998094127671024,
- "recall": 0.2933961922746668,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89181,
- "tp_rate": 0.2933961922746668,
- "truth_threshold": 19.900000000000002
- },
- {
- "f1": 0.4532821794017229,
- "fn": 214877,
- "fn_rate": 0.7069229276124239,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999989919500589,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998092052838913,
- "recall": 0.293077072387576,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 89084,
- "tp_rate": 0.293077072387576,
- "truth_threshold": 19.92
- },
- {
- "f1": 0.4529409070320174,
- "fn": 214964,
- "fn_rate": 0.7072091485420827,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990058281665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998090188060305,
- "recall": 0.2927908514579173,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88997,
- "tp_rate": 0.2927908514579173,
- "truth_threshold": 19.94
- },
- {
- "f1": 0.45247113446148207,
- "fn": 215083,
- "fn_rate": 0.707600646135524,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990195152105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998087631475336,
- "recall": 0.292399353864476,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88878,
- "tp_rate": 0.292399353864476,
- "truth_threshold": 19.96
- },
- {
- "f1": 0.4520349133277657,
- "fn": 215194,
- "fn_rate": 0.7079658245630196,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990330138213,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998085240583889,
- "recall": 0.2920341754369804,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88767,
- "tp_rate": 0.2920341754369804,
- "truth_threshold": 19.98
- },
- {
- "f1": 0.4515302483851906,
- "fn": 215322,
- "fn_rate": 0.7083869312181497,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990463265931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998082476087349,
- "recall": 0.2916130687818503,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88639,
- "tp_rate": 0.2916130687818503,
- "truth_threshold": 20
- },
- {
- "f1": 0.45087806916514633,
- "fn": 215487,
- "fn_rate": 0.7089297640157783,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990594560844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998078900679165,
- "recall": 0.29107023598422166,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88474,
- "tp_rate": 0.29107023598422166,
- "truth_threshold": 20.02
- },
- {
- "f1": 0.4503094507376857,
- "fn": 215631,
- "fn_rate": 0.7094035090027997,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990724048183,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998075769409261,
- "recall": 0.2905964909972003,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88330,
- "tp_rate": 0.2905964909972003,
- "truth_threshold": 20.04
- },
- {
- "f1": 0.4498906175899154,
- "fn": 215737,
- "fn_rate": 0.7097522379515793,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990851752837,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998073457916388,
- "recall": 0.2902477620484207,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88224,
- "tp_rate": 0.2902477620484207,
- "truth_threshold": 20.06
- },
- {
- "f1": 0.449294732814692,
- "fn": 215888,
- "fn_rate": 0.7102490122088031,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999990977699345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998070155522761,
- "recall": 0.2897509877911969,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 88073,
- "tp_rate": 0.2897509877911969,
- "truth_threshold": 20.080000000000002
- },
- {
- "f1": 0.4486723450729024,
- "fn": 216045,
- "fn_rate": 0.7107655258404861,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991101911914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998066709881387,
- "recall": 0.28923447415951387,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87916,
- "tp_rate": 0.28923447415951387,
- "truth_threshold": 20.1
- },
- {
- "f1": 0.4480675958543932,
- "fn": 216198,
- "fn_rate": 0.7112688798891963,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991224414414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998063340168604,
- "recall": 0.2887311201108037,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87763,
- "tp_rate": 0.2887311201108037,
- "truth_threshold": 20.12
- },
- {
- "f1": 0.44762376541003196,
- "fn": 216310,
- "fn_rate": 0.7116373482124352,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999999134523039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998060865994434,
- "recall": 0.28836265178756487,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87651,
- "tp_rate": 0.28836265178756487,
- "truth_threshold": 20.14
- },
- {
- "f1": 0.44707937837810224,
- "fn": 216447,
- "fn_rate": 0.7120880639292541,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991464383059,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998057830939896,
- "recall": 0.28791193607074594,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87514,
- "tp_rate": 0.28791193607074594,
- "truth_threshold": 20.16
- },
- {
- "f1": 0.44663498390311207,
- "fn": 216559,
- "fn_rate": 0.712456532252493,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991581895321,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998055342660063,
- "recall": 0.2875434677475071,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87402,
- "tp_rate": 0.2875434677475071,
- "truth_threshold": 20.18
- },
- {
- "f1": 0.4461954465992619,
- "fn": 216670,
- "fn_rate": 0.7128217106799886,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.999999169778976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998052870298254,
- "recall": 0.28717828932001144,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87291,
- "tp_rate": 0.28717828932001144,
- "truth_threshold": 20.2
- },
- {
- "f1": 0.44568980063506347,
- "fn": 216797,
- "fn_rate": 0.7132395274393755,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991812088648,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998050033837648,
- "recall": 0.28676047256062454,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87164,
- "tp_rate": 0.28676047256062454,
- "truth_threshold": 20.22
- },
- {
- "f1": 0.4452894844517185,
- "fn": 216898,
- "fn_rate": 0.713571806909439,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999991924813951,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998047772163527,
- "recall": 0.28642819309056095,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 87063,
- "tp_rate": 0.28642819309056095,
- "truth_threshold": 20.240000000000002
- },
- {
- "f1": 0.4447434664265395,
- "fn": 217035,
- "fn_rate": 0.714022522626258,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992035987335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999804469595022,
- "recall": 0.285977477373742,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86926,
- "tp_rate": 0.285977477373742,
- "truth_threshold": 20.26
- },
- {
- "f1": 0.44438530861228104,
- "fn": 217125,
- "fn_rate": 0.7143186132431463,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992145630165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998042669798395,
- "recall": 0.2856813867568537,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86836,
- "tp_rate": 0.2856813867568537,
- "truth_threshold": 20.28
- },
- {
- "f1": 0.4439871619650179,
- "fn": 217225,
- "fn_rate": 0.7146476028174668,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992253763512,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998040413588003,
- "recall": 0.2853523971825333,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86736,
- "tp_rate": 0.2853523971825333,
- "truth_threshold": 20.3
- },
- {
- "f1": 0.4434931769886582,
- "fn": 217349,
- "fn_rate": 0.7150555498896239,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992360408158,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998037608652991,
- "recall": 0.284944450110376,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86612,
- "tp_rate": 0.284944450110376,
- "truth_threshold": 20.32
- },
- {
- "f1": 0.4429749526199867,
- "fn": 217479,
- "fn_rate": 0.7154832363362406,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992465584596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998034659360224,
- "recall": 0.2845167636637595,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86482,
- "tp_rate": 0.2845167636637595,
- "truth_threshold": 20.34
- },
- {
- "f1": 0.442568104150549,
- "fn": 217581,
- "fn_rate": 0.7158188057020473,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992569313043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998032339085848,
- "recall": 0.2841811942979527,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86380,
- "tp_rate": 0.2841811942979527,
- "truth_threshold": 20.36
- },
- {
- "f1": 0.4420543887163402,
- "fn": 217710,
- "fn_rate": 0.7162432022529206,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992671613431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998029396763574,
- "recall": 0.2837567977470794,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86251,
- "tp_rate": 0.2837567977470794,
- "truth_threshold": 20.38
- },
- {
- "f1": 0.44158600607005166,
- "fn": 217827,
- "fn_rate": 0.7166281200548754,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992772505422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998026720525589,
- "recall": 0.2833718799451245,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86134,
- "tp_rate": 0.2833718799451245,
- "truth_threshold": 20.400000000000002
- },
- {
- "f1": 0.44105564929303703,
- "fn": 217960,
- "fn_rate": 0.7170656761887216,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992872008404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998023669464531,
- "recall": 0.2829343238112784,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 86001,
- "tp_rate": 0.2829343238112784,
- "truth_threshold": 20.42
- },
- {
- "f1": 0.4405466689923356,
- "fn": 218087,
- "fn_rate": 0.7174834929481084,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999992970141501,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998020747226135,
- "recall": 0.2825165070518915,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 85874,
- "tp_rate": 0.2825165070518915,
- "truth_threshold": 20.44
- },
- {
- "f1": 0.440023606691984,
- "fn": 218218,
- "fn_rate": 0.7179144692904682,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999993066923574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998017723880597,
- "recall": 0.2820855307095318,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 85743,
- "tp_rate": 0.2820855307095318,
- "truth_threshold": 20.46
- },
- {
- "f1": 0.43949505631590297,
- "fn": 218350,
- "fn_rate": 0.7183487355285711,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999993162373221,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999801466809922,
- "recall": 0.2816512644714289,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 85611,
- "tp_rate": 0.2816512644714289,
- "truth_threshold": 20.48
- },
- {
- "f1": 0.4388086837280249,
- "fn": 218521,
- "fn_rate": 0.7189113077006589,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999993256508786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998010695437471,
- "recall": 0.281088692299341,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 85440,
- "tp_rate": 0.281088692299341,
- "truth_threshold": 20.5
- },
- {
- "f1": 0.4382391927578376,
- "fn": 218663,
- "fn_rate": 0.7193784728961939,
- "fp": 17,
- "fp_rate": 0.00009777476145833932,
- "match_probability": 0.9999993349348361,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998007384398993,
- "recall": 0.28062152710380606,
- "row_count": 477830,
- "tn": 173852,
- "tn_rate": 0.9999022252385417,
- "tp": 85298,
- "tp_rate": 0.28062152710380606,
- "truth_threshold": 20.52
- },
- {
- "f1": 0.43748168785307107,
- "fn": 218852,
- "fn_rate": 0.7200002631916594,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993440909787,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998120411160059,
- "recall": 0.27999973680834056,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 85109,
- "tp_rate": 0.27999973680834056,
- "truth_threshold": 20.54
- },
- {
- "f1": 0.436988703266643,
- "fn": 218975,
- "fn_rate": 0.7204049203680736,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993531210661,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998117691348439,
- "recall": 0.2795950796319265,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84986,
- "tp_rate": 0.2795950796319265,
- "truth_threshold": 20.56
- },
- {
- "f1": 0.4366350025972423,
- "fn": 219063,
- "fn_rate": 0.7206944311934754,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993620268339,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998115740631698,
- "recall": 0.2793055688065245,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84898,
- "tp_rate": 0.2793055688065245,
- "truth_threshold": 20.580000000000002
- },
- {
- "f1": 0.4360075941942488,
- "fn": 219219,
- "fn_rate": 0.7212076549294153,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993708099935,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998112272587838,
- "recall": 0.2787923450705847,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84742,
- "tp_rate": 0.2787923450705847,
- "truth_threshold": 20.6
- },
- {
- "f1": 0.43553558653841207,
- "fn": 219336,
- "fn_rate": 0.7215925727313701,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993794722328,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998109663165605,
- "recall": 0.2784074272686299,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84625,
- "tp_rate": 0.2784074272686299,
- "truth_threshold": 20.62
- },
- {
- "f1": 0.4349688513617876,
- "fn": 219477,
- "fn_rate": 0.7220564480311619,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999993880152168,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998106508875739,
- "recall": 0.27794355196883813,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84484,
- "tp_rate": 0.27794355196883813,
- "truth_threshold": 20.64
- },
- {
- "f1": 0.43439140086218,
- "fn": 219620,
- "fn_rate": 0.7225269031224401,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999396440587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998103299074173,
- "recall": 0.27747309687755994,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84341,
- "tp_rate": 0.27747309687755994,
- "truth_threshold": 20.66
- },
- {
- "f1": 0.4338025411415558,
- "fn": 219766,
- "fn_rate": 0.7230072279009478,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994047499629,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999810001068744,
- "recall": 0.27699277209905215,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84195,
- "tp_rate": 0.27699277209905215,
- "truth_threshold": 20.68
- },
- {
- "f1": 0.4333475923702127,
- "fn": 219879,
- "fn_rate": 0.7233789861199299,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994129449412,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998097457727889,
- "recall": 0.27662101388007015,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 84082,
- "tp_rate": 0.27662101388007015,
- "truth_threshold": 20.7
- },
- {
- "f1": 0.4327498646593282,
- "fn": 220027,
- "fn_rate": 0.723865890689924,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999421027097,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998094103633115,
- "recall": 0.276134109310076,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83934,
- "tp_rate": 0.276134109310076,
- "truth_threshold": 20.72
- },
- {
- "f1": 0.4321950414416645,
- "fn": 220164,
- "fn_rate": 0.724316606406743,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994289979836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999809098827151,
- "recall": 0.27568339359325705,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83797,
- "tp_rate": 0.27568339359325705,
- "truth_threshold": 20.740000000000002
- },
- {
- "f1": 0.43166926355109325,
- "fn": 220294,
- "fn_rate": 0.7247442928533595,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994368591326,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998088022656931,
- "recall": 0.27525570714664055,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83667,
- "tp_rate": 0.27525570714664055,
- "truth_threshold": 20.76
- },
- {
- "f1": 0.43116448784314537,
- "fn": 220419,
- "fn_rate": 0.72515552982126,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999444612055,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998085162402164,
- "recall": 0.27484447017874003,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83542,
- "tp_rate": 0.27484447017874003,
- "truth_threshold": 20.78
- },
- {
- "f1": 0.43064611889826787,
- "fn": 220547,
- "fn_rate": 0.72557663647639,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994522582408,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998082224619441,
- "recall": 0.27442336352360996,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83414,
- "tp_rate": 0.27442336352360996,
- "truth_threshold": 20.8
- },
- {
- "f1": 0.43013551479094364,
- "fn": 220673,
- "fn_rate": 0.7259911633400338,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994597991594,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999807932392202,
- "recall": 0.2740088366599662,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83288,
- "tp_rate": 0.2740088366599662,
- "truth_threshold": 20.82
- },
- {
- "f1": 0.42960023971151956,
- "fn": 220805,
- "fn_rate": 0.7264254295781367,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.99999946723626,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998076275669696,
- "recall": 0.27357457042186334,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83156,
- "tp_rate": 0.27357457042186334,
- "truth_threshold": 20.84
- },
- {
- "f1": 0.42910002325521307,
- "fn": 220928,
- "fn_rate": 0.7268300867545507,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999474570972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998073426531325,
- "recall": 0.27316991324544926,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 83033,
- "tp_rate": 0.27316991324544926,
- "truth_threshold": 20.86
- },
- {
- "f1": 0.4286290301736393,
- "fn": 221044,
- "fn_rate": 0.7272117146607624,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999481804705,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998070731795545,
- "recall": 0.2727882853392376,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82917,
- "tp_rate": 0.2727882853392376,
- "truth_threshold": 20.88
- },
- {
- "f1": 0.4281171141356058,
- "fn": 221170,
- "fn_rate": 0.7276262415244061,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999488938849,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998067796200805,
- "recall": 0.2723737584755939,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82791,
- "tp_rate": 0.2723737584755939,
- "truth_threshold": 20.900000000000002
- },
- {
- "f1": 0.42756123425497244,
- "fn": 221307,
- "fn_rate": 0.728076957241225,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999994959747754,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999806459416959,
- "recall": 0.271923042758775,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82654,
- "tp_rate": 0.271923042758775,
- "truth_threshold": 20.92
- },
- {
- "f1": 0.42711669710909084,
- "fn": 221416,
- "fn_rate": 0.7284355558772343,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995029138362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998062038977241,
- "recall": 0.27156444412276576,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82545,
- "tp_rate": 0.27156444412276576,
- "truth_threshold": 20.94
- },
- {
- "f1": 0.4266496897046112,
- "fn": 221531,
- "fn_rate": 0.7288138938877027,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999509757365,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999805933580768,
- "recall": 0.2711861061122973,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82430,
- "tp_rate": 0.2711861061122973,
- "truth_threshold": 20.96
- },
- {
- "f1": 0.42618019529268014,
- "fn": 221646,
- "fn_rate": 0.7291922318981712,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995165066768,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998056625086541,
- "recall": 0.2708077681018288,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82315,
- "tp_rate": 0.2708077681018288,
- "truth_threshold": 20.98
- },
- {
- "f1": 0.4257563673651175,
- "fn": 221750,
- "fn_rate": 0.7295343810554643,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995231630692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998054167122721,
- "recall": 0.27046561894453564,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82211,
- "tp_rate": 0.27046561894453564,
- "truth_threshold": 21
- },
- {
- "f1": 0.4252967047768044,
- "fn": 221863,
- "fn_rate": 0.7299061392744464,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999529727821,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998051489392795,
- "recall": 0.2700938607255536,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82098,
- "tp_rate": 0.2700938607255536,
- "truth_threshold": 21.02
- },
- {
- "f1": 0.42489986475913133,
- "fn": 221960,
- "fn_rate": 0.7302252591615371,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995362021941,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998049184925076,
- "recall": 0.2697747408384628,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 82001,
- "tp_rate": 0.2697747408384628,
- "truth_threshold": 21.04
- },
- {
- "f1": 0.42454883749857475,
- "fn": 222046,
- "fn_rate": 0.7305081901954527,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995425874326,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998047137225227,
- "recall": 0.2694918098045473,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81915,
- "tp_rate": 0.2694918098045473,
- "truth_threshold": 21.06
- },
- {
- "f1": 0.42404761411003505,
- "fn": 222169,
- "fn_rate": 0.7309128473718668,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995488847637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998044201056131,
- "recall": 0.2690871526281332,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81792,
- "tp_rate": 0.2690871526281332,
- "truth_threshold": 21.080000000000002
- },
- {
- "f1": 0.42353569613425857,
- "fn": 222294,
- "fn_rate": 0.7313240843397673,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995550953977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998041208084913,
- "recall": 0.26867591566023274,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81667,
- "tp_rate": 0.26867591566023274,
- "truth_threshold": 21.1
- },
- {
- "f1": 0.42313498259611043,
- "fn": 222392,
- "fn_rate": 0.7316464941226013,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995612205282,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998038855181712,
- "recall": 0.26835350587739876,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81569,
- "tp_rate": 0.26835350587739876,
- "truth_threshold": 21.12
- },
- {
- "f1": 0.4224527606661512,
- "fn": 222559,
- "fn_rate": 0.7321959067117163,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995672613322,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998034832592302,
- "recall": 0.2678040932882837,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81402,
- "tp_rate": 0.2678040932882837,
- "truth_threshold": 21.14
- },
- {
- "f1": 0.42187946152767897,
- "fn": 222699,
- "fn_rate": 0.7326564921157649,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995732189708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998031447624204,
- "recall": 0.26734350788423517,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81262,
- "tp_rate": 0.26734350788423517,
- "truth_threshold": 21.16
- },
- {
- "f1": 0.4213385405576646,
- "fn": 222831,
- "fn_rate": 0.7330907583538677,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995790945889,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998028245384862,
- "recall": 0.2669092416461322,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81130,
- "tp_rate": 0.2669092416461322,
- "truth_threshold": 21.18
- },
- {
- "f1": 0.4208330735822787,
- "fn": 222954,
- "fn_rate": 0.7334954155302819,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995848893156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998025252088913,
- "recall": 0.26650458446971814,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 81007,
- "tp_rate": 0.26650458446971814,
- "truth_threshold": 21.2
- },
- {
- "f1": 0.42011600590424314,
- "fn": 223129,
- "fn_rate": 0.7340711472853425,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995906042648,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998020977637048,
- "recall": 0.2659288527146575,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80832,
- "tp_rate": 0.2659288527146575,
- "truth_threshold": 21.22
- },
- {
- "f1": 0.4197001362072013,
- "fn": 223230,
- "fn_rate": 0.7344034267554062,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999995962405346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998018502235377,
- "recall": 0.2655965732445939,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80731,
- "tp_rate": 0.2655965732445939,
- "truth_threshold": 21.240000000000002
- },
- {
- "f1": 0.4193139095300743,
- "fn": 223324,
- "fn_rate": 0.7347126769552673,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996017992082,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998016192826057,
- "recall": 0.26528732304473274,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80637,
- "tp_rate": 0.26528732304473274,
- "truth_threshold": 21.26
- },
- {
- "f1": 0.41872707883579996,
- "fn": 223467,
- "fn_rate": 0.7351831320465454,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996072813541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998012669233636,
- "recall": 0.26481686795345455,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80494,
- "tp_rate": 0.26481686795345455,
- "truth_threshold": 21.28
- },
- {
- "f1": 0.4183598607635113,
- "fn": 223556,
- "fn_rate": 0.7354759327676906,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996126880256,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999801046990214,
- "recall": 0.2645240672323094,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80405,
- "tp_rate": 0.2645240672323094,
- "truth_threshold": 21.3
- },
- {
- "f1": 0.41790407786192,
- "fn": 223667,
- "fn_rate": 0.7358411111951862,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996180202619,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998007720084672,
- "recall": 0.26415888880481375,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80294,
- "tp_rate": 0.26415888880481375,
- "truth_threshold": 21.32
- },
- {
- "f1": 0.4175252096684349,
- "fn": 223759,
- "fn_rate": 0.736143781603561,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996232790879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999800543518911,
- "recall": 0.263856218396439,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80202,
- "tp_rate": 0.263856218396439,
- "truth_threshold": 21.34
- },
- {
- "f1": 0.41709670532241183,
- "fn": 223863,
- "fn_rate": 0.7364859307608542,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999628465514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9998002845944529,
- "recall": 0.26351406923914583,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 80098,
- "tp_rate": 0.26351406923914583,
- "truth_threshold": 21.36
- },
- {
- "f1": 0.4165030083608991,
- "fn": 224007,
- "fn_rate": 0.7369596757478756,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996335805373,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997999249718644,
- "recall": 0.2630403242521244,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79954,
- "tp_rate": 0.2630403242521244,
- "truth_threshold": 21.38
- },
- {
- "f1": 0.4159036546408676,
- "fn": 224152,
- "fn_rate": 0.7374367106306401,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996386251405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997995615408707,
- "recall": 0.2625632893693599,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79809,
- "tp_rate": 0.2625632893693599,
- "truth_threshold": 21.400000000000002
- },
- {
- "f1": 0.4154547065753396,
- "fn": 224261,
- "fn_rate": 0.7377953092666494,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996436002931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997992874705204,
- "recall": 0.2622046907333507,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79700,
- "tp_rate": 0.2622046907333507,
- "truth_threshold": 21.42
- },
- {
- "f1": 0.4149868079381798,
- "fn": 224374,
- "fn_rate": 0.7381670674856314,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996485069516,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997990025501552,
- "recall": 0.2618329325143686,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79587,
- "tp_rate": 0.2618329325143686,
- "truth_threshold": 21.44
- },
- {
- "f1": 0.41457041375677384,
- "fn": 224475,
- "fn_rate": 0.738499346955695,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996533460586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997987472013282,
- "recall": 0.26150065304430503,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79486,
- "tp_rate": 0.26150065304430503,
- "truth_threshold": 21.46
- },
- {
- "f1": 0.41412681684909064,
- "fn": 224582,
- "fn_rate": 0.7388513658002178,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996581185442,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997984759745576,
- "recall": 0.2611486341997822,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79379,
- "tp_rate": 0.2611486341997822,
- "truth_threshold": 21.48
- },
- {
- "f1": 0.41359406720838354,
- "fn": 224711,
- "fn_rate": 0.739275762351091,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996628253256,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997981480079732,
- "recall": 0.2607242376489089,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79250,
- "tp_rate": 0.2607242376489089,
- "truth_threshold": 21.5
- },
- {
- "f1": 0.4129179458262849,
- "fn": 224874,
- "fn_rate": 0.7398120153572333,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996674673074,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997977320708443,
- "recall": 0.26018798464276666,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 79087,
- "tp_rate": 0.26018798464276666,
- "truth_threshold": 21.52
- },
- {
- "f1": 0.4123346268952946,
- "fn": 225015,
- "fn_rate": 0.740275890657025,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996720453818,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997973708872623,
- "recall": 0.2597241093429749,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78946,
- "tp_rate": 0.2597241093429749,
- "truth_threshold": 21.54
- },
- {
- "f1": 0.41183692875167843,
- "fn": 225135,
- "fn_rate": 0.7406706781462096,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996765604284,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997970624793892,
- "recall": 0.25932932185379043,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78826,
- "tp_rate": 0.25932932185379043,
- "truth_threshold": 21.56
- },
- {
- "f1": 0.41132231275380343,
- "fn": 225259,
- "fn_rate": 0.7410786252183669,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996810133152,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997967428034249,
- "recall": 0.2589213747816332,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78702,
- "tp_rate": 0.2589213747816332,
- "truth_threshold": 21.580000000000002
- },
- {
- "f1": 0.41084059577271137,
- "fn": 225375,
- "fn_rate": 0.7414602531245785,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996854048978,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997964428386046,
- "recall": 0.25853974687542153,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78586,
- "tp_rate": 0.25853974687542153,
- "truth_threshold": 21.6
- },
- {
- "f1": 0.4103003932725295,
- "fn": 225505,
- "fn_rate": 0.741887939571195,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996897360202,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997961056172903,
- "recall": 0.258112060428805,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78456,
- "tp_rate": 0.258112060428805,
- "truth_threshold": 21.62
- },
- {
- "f1": 0.40990955646574495,
- "fn": 225599,
- "fn_rate": 0.7421971897710562,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996940075148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997958610834673,
- "recall": 0.25780281022894386,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78362,
- "tp_rate": 0.25780281022894386,
- "truth_threshold": 21.64
- },
- {
- "f1": 0.4093468409540455,
- "fn": 225734,
- "fn_rate": 0.7426413256963886,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999996982202024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997955088634127,
- "recall": 0.2573586743036113,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78227,
- "tp_rate": 0.2573586743036113,
- "truth_threshold": 21.66
- },
- {
- "f1": 0.40897742558503486,
- "fn": 225823,
- "fn_rate": 0.7429341264175339,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997023748929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997952759935512,
- "recall": 0.2570658735824662,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78138,
- "tp_rate": 0.2570658735824662,
- "truth_threshold": 21.68
- },
- {
- "f1": 0.40852761474950655,
- "fn": 225931,
- "fn_rate": 0.7432894351577999,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997064723845,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997949926966149,
- "recall": 0.2567105648422002,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 78030,
- "tp_rate": 0.2567105648422002,
- "truth_threshold": 21.7
- },
- {
- "f1": 0.4079941761504983,
- "fn": 226059,
- "fn_rate": 0.74371054181293,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997105134647,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997946559203265,
- "recall": 0.25628945818707005,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77902,
- "tp_rate": 0.25628945818707005,
- "truth_threshold": 21.72
- },
- {
- "f1": 0.40748017058016117,
- "fn": 226182,
- "fn_rate": 0.744115198989344,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997144989102,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997943312552221,
- "recall": 0.25588480101065597,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77779,
- "tp_rate": 0.25588480101065597,
- "truth_threshold": 21.740000000000002
- },
- {
- "f1": 0.40681244038197467,
- "fn": 226342,
- "fn_rate": 0.7446415823082566,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999718429487,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997939073871321,
- "recall": 0.25535841769174333,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77619,
- "tp_rate": 0.25535841769174333,
- "truth_threshold": 21.76
- },
- {
- "f1": 0.4064418383983476,
- "fn": 226431,
- "fn_rate": 0.7449343830294018,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997223059504,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999793670853429,
- "recall": 0.2550656169705982,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77530,
- "tp_rate": 0.2550656169705982,
- "truth_threshold": 21.78
- },
- {
- "f1": 0.40605221622698695,
- "fn": 226524,
- "fn_rate": 0.7452403433335197,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997261290454,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997934231082075,
- "recall": 0.25475965666648026,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77437,
- "tp_rate": 0.25475965666648026,
- "truth_threshold": 21.8
- },
- {
- "f1": 0.4056091138921816,
- "fn": 226630,
- "fn_rate": 0.7455890722822994,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997298995067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997931400054301,
- "recall": 0.25441092771770063,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77331,
- "tp_rate": 0.25441092771770063,
- "truth_threshold": 21.82
- },
- {
- "f1": 0.4050371225437469,
- "fn": 226767,
- "fn_rate": 0.7460397879991183,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999733618059,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997927729568709,
- "recall": 0.2539602120008817,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77194,
- "tp_rate": 0.2539602120008817,
- "truth_threshold": 21.84
- },
- {
- "f1": 0.40461020080405596,
- "fn": 226869,
- "fn_rate": 0.7463753573649251,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999737285417,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999792498832806,
- "recall": 0.2536246426350749,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 77092,
- "tp_rate": 0.2536246426350749,
- "truth_threshold": 21.86
- },
- {
- "f1": 0.4039568194228588,
- "fn": 227025,
- "fn_rate": 0.7468885811008649,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997409022854,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997920781786048,
- "recall": 0.2531114188991351,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76936,
- "tp_rate": 0.2531114188991351,
- "truth_threshold": 21.88
- },
- {
- "f1": 0.40337312946787335,
- "fn": 227164,
- "fn_rate": 0.7473458766091703,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997444693592,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997917019254553,
- "recall": 0.25265412339082977,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76797,
- "tp_rate": 0.25265412339082977,
- "truth_threshold": 21.900000000000002
- },
- {
- "f1": 0.40282470142548643,
- "fn": 227295,
- "fn_rate": 0.74777685295153,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997479873242,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997913460786103,
- "recall": 0.25222314704847004,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76666,
- "tp_rate": 0.25222314704847004,
- "truth_threshold": 21.92
- },
- {
- "f1": 0.40229057385234784,
- "fn": 227422,
- "fn_rate": 0.7481946697109169,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997514568563,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997909999346875,
- "recall": 0.25180533028908314,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76539,
- "tp_rate": 0.25180533028908314,
- "truth_threshold": 21.94
- },
- {
- "f1": 0.4017109296541861,
- "fn": 227560,
- "fn_rate": 0.748648675323479,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997548786224,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997906225054635,
- "recall": 0.251351324676521,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76401,
- "tp_rate": 0.251351324676521,
- "truth_threshold": 21.96
- },
- {
- "f1": 0.4011613534396154,
- "fn": 227691,
- "fn_rate": 0.7490796516658387,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.99999975825328,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997902629578166,
- "recall": 0.25092034833416127,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76270,
- "tp_rate": 0.25092034833416127,
- "truth_threshold": 21.98
- },
- {
- "f1": 0.40070185038065126,
- "fn": 227800,
- "fn_rate": 0.749438250301848,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997615814777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.999789962849679,
- "recall": 0.2505617496981521,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76161,
- "tp_rate": 0.2505617496981521,
- "truth_threshold": 22
- },
- {
- "f1": 0.4001431563878275,
- "fn": 227933,
- "fn_rate": 0.7498758064356941,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997648638552,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997895954973437,
- "recall": 0.25012419356430593,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 76028,
- "tp_rate": 0.25012419356430593,
- "truth_threshold": 22.02
- },
- {
- "f1": 0.3997304596400162,
- "fn": 228031,
- "fn_rate": 0.750198216218528,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997681010433,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997893239933637,
- "recall": 0.24980178378147197,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75930,
- "tp_rate": 0.24980178378147197,
- "truth_threshold": 22.04
- },
- {
- "f1": 0.3993512648229669,
- "fn": 228121,
- "fn_rate": 0.7504943068354164,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999771293664,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997890740350137,
- "recall": 0.24950569316458363,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75840,
- "tp_rate": 0.24950569316458363,
- "truth_threshold": 22.06
- },
- {
- "f1": 0.39865138943763995,
- "fn": 228287,
- "fn_rate": 0.7510404295287882,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.999999774442331,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997886114414057,
- "recall": 0.24895957047121176,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75674,
- "tp_rate": 0.24895957047121176,
- "truth_threshold": 22.080000000000002
- },
- {
- "f1": 0.3980690992643184,
- "fn": 228425,
- "fn_rate": 0.7514944351413504,
- "fp": 16,
- "fp_rate": 0.00009202330490196642,
- "match_probability": 0.9999997775476493,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9997882253282507,
- "recall": 0.24850556485864964,
- "row_count": 477830,
- "tn": 173853,
- "tn_rate": 0.999907976695098,
- "tp": 75536,
- "tp_rate": 0.24850556485864964,
- "truth_threshold": 22.1
- },
- {
- "f1": 0.7776026810268742,
- "fn": 0,
- "fn_rate": 0,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.660044869636506e-9,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.63612791160036,
- "recall": 1,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303961,
- "tp_rate": 1,
- "truth_threshold": -26.96
- },
- {
- "f1": 0.7775969956049467,
- "fn": 3,
- "fn_rate": 0.000009869687229611693,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.1367597838873383e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6361256270574915,
- "recall": 0.9999901303127704,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303958,
- "tp_rate": 0.9999901303127704,
- "truth_threshold": -25.48
- },
- {
- "f1": 0.7775964266436084,
- "fn": 4,
- "fn_rate": 0.000013159582972815591,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.3220913456904493e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6361248655368272,
- "recall": 0.9999868404170272,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303957,
- "tp_rate": 0.9999868404170272,
- "truth_threshold": -25.36
- },
- {
- "f1": 0.777593868398769,
- "fn": 5,
- "fn_rate": 0.00001644947871601949,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 3.423387752987849e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6361241040129755,
- "recall": 0.999983550521284,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303956,
- "tp_rate": 0.999983550521284,
- "truth_threshold": -24.8
- },
- {
- "f1": 0.7775782321278729,
- "fn": 15,
- "fn_rate": 0.00004934843614805847,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 4.517187172301535e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.636116488599144,
- "recall": 0.999950651563852,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303946,
- "tp_rate": 0.999950651563852,
- "truth_threshold": -24.400000000000002
- },
- {
- "f1": 0.7775432618016968,
- "fn": 38,
- "fn_rate": 0.00012501603824174813,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 4.9775116316185605e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6360989719375796,
- "recall": 0.9998749839617582,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303923,
- "tp_rate": 0.9998749839617582,
- "truth_threshold": -24.26
- },
- {
- "f1": 0.7775281933727666,
- "fn": 47,
- "fn_rate": 0.0001546250999305832,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.338192003972388e-8,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6360921171326732,
- "recall": 0.9998453749000694,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303914,
- "tp_rate": 0.9998453749000694,
- "truth_threshold": -23.7
- },
- {
- "f1": 0.7773561539032335,
- "fn": 157,
- "fn_rate": 0.000516513631683012,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 1.096949040514205e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6360083153119394,
- "recall": 0.999483486368317,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303804,
- "tp_rate": 0.999483486368317,
- "truth_threshold": -23.12
- },
- {
- "f1": 0.77732486879713,
- "fn": 177,
- "fn_rate": 0.0005823115465470899,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 1.225607038318767e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359930744703791,
- "recall": 0.9994176884534529,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303784,
- "tp_rate": 0.9994176884534529,
- "truth_threshold": -22.96
- },
- {
- "f1": 0.7773117844842146,
- "fn": 186,
- "fn_rate": 0.000611920608235925,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 1.3693549605601495e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359862156752728,
- "recall": 0.9993880793917641,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303775,
- "tp_rate": 0.9993880793917641,
- "truth_threshold": -22.8
- },
- {
- "f1": 0.7773055271238485,
- "fn": 190,
- "fn_rate": 0.0006250801912087405,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.01879773478931e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359831672389247,
- "recall": 0.9993749198087912,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303771,
- "tp_rate": 0.9993749198087912,
- "truth_threshold": -22.240000000000002
- },
- {
- "f1": 0.7772335628760136,
- "fn": 236,
- "fn_rate": 0.0007764153953961198,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.0469790951995952e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359481065507523,
- "recall": 0.9992235846046039,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303725,
- "tp_rate": 0.9992235846046039,
- "truth_threshold": -22.22
- },
- {
- "f1": 0.7772304338035089,
- "fn": 238,
- "fn_rate": 0.0007829951868825277,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.2245235061202631e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359465820197994,
- "recall": 0.9992170048131175,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303723,
- "tp_rate": 0.9992170048131175,
- "truth_threshold": -22.1
- },
- {
- "f1": 0.7772022714302896,
- "fn": 256,
- "fn_rate": 0.0008422133102601978,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 2.935276155400355e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6359328606666192,
- "recall": 0.9991577866897398,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303705,
- "tp_rate": 0.9991577866897398,
- "truth_threshold": -21.7
- },
- {
- "f1": 0.777130295026923,
- "fn": 302,
- "fn_rate": 0.0009935485144475771,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 3.059924852476653e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6358977902866428,
- "recall": 0.9990064514855524,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303659,
- "tp_rate": 0.9990064514855524,
- "truth_threshold": -21.64
- },
- {
- "f1": 0.7771240358087945,
- "fn": 306,
- "fn_rate": 0.0010067080974203928,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 3.3253269256413913e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6358947403690705,
- "recall": 0.9989932919025796,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303655,
- "tp_rate": 0.9989932919025796,
- "truth_threshold": -21.52
- },
- {
- "f1": 0.7771209061757021,
- "fn": 308,
- "fn_rate": 0.0010132878889068005,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 4.3273866777349967e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6358932153911233,
- "recall": 0.9989867121110932,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303653,
- "tp_rate": 0.9989867121110932,
- "truth_threshold": -21.14
- },
- {
- "f1": 0.7765573111498588,
- "fn": 668,
- "fn_rate": 0.0021976503564602036,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 4.702721789815695e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.635618511113626,
- "recall": 0.9978023496435398,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303293,
- "tp_rate": 0.9978023496435398,
- "truth_threshold": -21.02
- },
- {
- "f1": 0.7761468124887944,
- "fn": 930,
- "fn_rate": 0.003059603041179625,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 4.902426350740596e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6354183266932271,
- "recall": 0.9969403969588204,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303031,
- "tp_rate": 0.9969403969588204,
- "truth_threshold": -20.96
- },
- {
- "f1": 0.7761034995914624,
- "fn": 957,
- "fn_rate": 0.00314843022624613,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 5.7897290296989e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353976844988078,
- "recall": 0.9968515697737539,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303004,
- "tp_rate": 0.9968515697737539,
- "truth_threshold": -20.72
- },
- {
- "f1": 0.7761029261095856,
- "fn": 958,
- "fn_rate": 0.003151720121989334,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 6.468789338535844e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353969199281988,
- "recall": 0.9968482798780106,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 303003,
- "tp_rate": 0.9968482798780106,
- "truth_threshold": -20.56
- },
- {
- "f1": 0.7760120085965977,
- "fn": 1016,
- "fn_rate": 0.0033425340750951604,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.02985849809981e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353525693456987,
- "recall": 0.9966574659249049,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302945,
- "tp_rate": 0.9966574659249049,
- "truth_threshold": -20.44
- },
- {
- "f1": 0.7760057379253813,
- "fn": 1020,
- "fn_rate": 0.003355693658067976,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.127991595781558e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353495102871165,
- "recall": 0.996644306341932,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302941,
- "tp_rate": 0.996644306341932,
- "truth_threshold": -20.42
- },
- {
- "f1": 0.7759780929716659,
- "fn": 1037,
- "fn_rate": 0.003411621885702442,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.227494578490585e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353365087155223,
- "recall": 0.9965883781142976,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302924,
- "tp_rate": 0.9965883781142976,
- "truth_threshold": -20.400000000000002
- },
- {
- "f1": 0.7759624153371656,
- "fn": 1047,
- "fn_rate": 0.003444520843134481,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.430686957241937e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353288602991298,
- "recall": 0.9965554791568655,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302914,
- "tp_rate": 0.9965554791568655,
- "truth_threshold": -20.36
- },
- {
- "f1": 0.775930484858887,
- "fn": 1068,
- "fn_rate": 0.003513608653741763,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 7.854369834792407e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353127975803441,
- "recall": 0.9964863913462583,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302893,
- "tp_rate": 0.9964863913462583,
- "truth_threshold": -20.28
- },
- {
- "f1": 0.7759242133523244,
- "fn": 1072,
- "fn_rate": 0.0035267682367145785,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 9.022300655021115e-7,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353097378544251,
- "recall": 0.9964732317632854,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302889,
- "tp_rate": 0.9964732317632854,
- "truth_threshold": -20.080000000000002
- },
- {
- "f1": 0.7759216516078788,
- "fn": 1073,
- "fn_rate": 0.0035300581324577826,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.000001050857503825523,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6353089729149232,
- "recall": 0.9964699418675422,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302888,
- "tp_rate": 0.9964699418675422,
- "truth_threshold": -19.86
- },
- {
- "f1": 0.7755201406346497,
- "fn": 1329,
- "fn_rate": 0.00437227144271798,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000010954829183746414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6351130427848001,
- "recall": 0.995627728557282,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302632,
- "tp_rate": 0.995627728557282,
- "truth_threshold": -19.8
- },
- {
- "f1": 0.7755195653845168,
- "fn": 1330,
- "fn_rate": 0.0043755613384611845,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000011579451355209237,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.635112277019937,
- "recall": 0.9956244386615388,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302631,
- "tp_rate": 0.9956244386615388,
- "truth_threshold": -19.72
- },
- {
- "f1": 0.7754536671373546,
- "fn": 1372,
- "fn_rate": 0.004513736959675748,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.00000120711809735545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6350801119930823,
- "recall": 0.9954862630403243,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302589,
- "tp_rate": 0.9954862630403243,
- "truth_threshold": -19.66
- },
- {
- "f1": 0.7754473907438872,
- "fn": 1376,
- "fn_rate": 0.004526896542648563,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.000001241054764180587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6350770483614367,
- "recall": 0.9954731034573514,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302585,
- "tp_rate": 0.9954731034573514,
- "truth_threshold": -19.62
- },
- {
- "f1": 0.7754416897741193,
- "fn": 1379,
- "fn_rate": 0.004536766229878175,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.000001311817182236054,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6350747506039446,
- "recall": 0.9954632337701218,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302582,
- "tp_rate": 0.9954632337701218,
- "truth_threshold": -19.54
- },
- {
- "f1": 0.7752722016034777,
- "fn": 1487,
- "fn_rate": 0.0048920749701441965,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000015492460975215529,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349920120585376,
- "recall": 0.9951079250298558,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302474,
- "tp_rate": 0.9951079250298558,
- "truth_threshold": -19.3
- },
- {
- "f1": 0.7752716256013698,
- "fn": 1488,
- "fn_rate": 0.0048953648658874,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000015708727331369402,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349912457855911,
- "recall": 0.9951046351341126,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302473,
- "tp_rate": 0.9951046351341126,
- "truth_threshold": -19.28
- },
- {
- "f1": 0.7752502274795269,
- "fn": 1501,
- "fn_rate": 0.004938133510549051,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000016604406696292195,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349812839445006,
- "recall": 0.9950618664894509,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302460,
- "tp_rate": 0.9950618664894509,
- "truth_threshold": -19.2
- },
- {
- "f1": 0.7752496514107612,
- "fn": 1502,
- "fn_rate": 0.0049414234062922545,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000017309524239438608,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349805176265094,
- "recall": 0.9950585765937078,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302459,
- "tp_rate": 0.9950585765937078,
- "truth_threshold": -19.14
- },
- {
- "f1": 0.7752470882545932,
- "fn": 1503,
- "fn_rate": 0.004944713302035458,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000017551155769142057,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349797513053008,
- "recall": 0.9950552866979645,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302458,
- "tp_rate": 0.9950552866979645,
- "truth_threshold": -19.12
- },
- {
- "f1": 0.775240233659113,
- "fn": 1508,
- "fn_rate": 0.004961162780751478,
- "fp": 173869,
- "fp_rate": 1,
- "match_probability": 0.0000018044585029675095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6349759196509924,
- "recall": 0.9950388372192486,
- "row_count": 477830,
- "tn": 0,
- "tn_rate": 0,
- "tp": 302453,
- "tp_rate": 0.9950388372192486,
- "truth_threshold": -19.080000000000002
- },
- {
- "f1": 0.8023775288768152,
- "fn": 1508,
- "fn_rate": 0.004961162780751478,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000019339704872557063,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6722193575918138,
- "recall": 0.9950388372192486,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302453,
- "tp_rate": 0.9950388372192486,
- "truth_threshold": -18.98
- },
- {
- "f1": 0.8023489336414308,
- "fn": 1526,
- "fn_rate": 0.005020380904129148,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000019609676562463853,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6722062438599377,
- "recall": 0.9949796190958708,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302435,
- "tp_rate": 0.9949796190958708,
- "truth_threshold": -18.96
- },
- {
- "f1": 0.8023367486085097,
- "fn": 1533,
- "fn_rate": 0.005043410174331575,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.000002044241469521586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6722011437919392,
- "recall": 0.9949565898256684,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302428,
- "tp_rate": 0.9949565898256684,
- "truth_threshold": -18.900000000000002
- },
- {
- "f1": 0.8023335712182271,
- "fn": 1535,
- "fn_rate": 0.005049989965817983,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000021017127990503803,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721996866005046,
- "recall": 0.994950010034182,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302426,
- "tp_rate": 0.994950010034182,
- "truth_threshold": -18.86
- },
- {
- "f1": 0.8023330468095041,
- "fn": 1536,
- "fn_rate": 0.005053279861561187,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000022525596641027384,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721989579999289,
- "recall": 0.9949467201384388,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302425,
- "tp_rate": 0.9949467201384388,
- "truth_threshold": -18.76
- },
- {
- "f1": 0.8023303938110853,
- "fn": 1537,
- "fn_rate": 0.005056569757304391,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000022840041533901063,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721982293961143,
- "recall": 0.9949434302426956,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302424,
- "tp_rate": 0.9949434302426956,
- "truth_threshold": -18.740000000000002
- },
- {
- "f1": 0.8023298693925414,
- "fn": 1538,
- "fn_rate": 0.005059859653047595,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000023158875893710783,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721975007890607,
- "recall": 0.9949401403469524,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302423,
- "tp_rate": 0.9949401403469524,
- "truth_threshold": -18.72
- },
- {
- "f1": 0.8023272163870842,
- "fn": 1539,
- "fn_rate": 0.005063149548790799,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000024821064479311417,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721967721787682,
- "recall": 0.9949368504512092,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302422,
- "tp_rate": 0.9949368504512092,
- "truth_threshold": -18.62
- },
- {
- "f1": 0.8023240389462234,
- "fn": 1541,
- "fn_rate": 0.005069729340277207,
- "fp": 147479,
- "fp_rate": 0.8482190614773192,
- "match_probability": 0.0000025167552755248973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6721953149484662,
- "recall": 0.9949302706597228,
- "row_count": 477830,
- "tn": 26390,
- "tn_rate": 0.15178093852268087,
- "tp": 302420,
- "tp_rate": 0.9949302706597228,
- "truth_threshold": -18.6
- },
- {
- "f1": 0.8023347129364321,
- "fn": 1545,
- "fn_rate": 0.005082888923250022,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000025875107139958215,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6722163070514516,
- "recall": 0.99491711107675,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 302416,
- "tp_rate": 0.99491711107675,
- "truth_threshold": -18.56
- },
- {
- "f1": 0.8023341885126513,
- "fn": 1546,
- "fn_rate": 0.005086178818993226,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.00000277322480226071,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.672215578445712,
- "recall": 0.9949138211810068,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 302415,
- "tp_rate": 0.9949138211810068,
- "truth_threshold": -18.46
- },
- {
- "f1": 0.8007693370312516,
- "fn": 2529,
- "fn_rate": 0.008320146334562658,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000028909915630084804,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6714977890152486,
- "recall": 0.9916798536654373,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301432,
- "tp_rate": 0.9916798536654373,
- "truth_threshold": -18.400000000000002
- },
- {
- "f1": 0.800606308585032,
- "fn": 2632,
- "fn_rate": 0.008659005596112658,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000029313481830057973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671422396121143,
- "recall": 0.9913409944038873,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301329,
- "tp_rate": 0.9913409944038873,
- "truth_threshold": -18.38
- },
- {
- "f1": 0.8006036516674815,
- "fn": 2633,
- "fn_rate": 0.008662295491855864,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.000003013759349323224,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6714216639816752,
- "recall": 0.9913377045081442,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301328,
- "tp_rate": 0.9913377045081442,
- "truth_threshold": -18.34
- },
- {
- "f1": 0.8006004649618067,
- "fn": 2635,
- "fn_rate": 0.008668875283342271,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000030558297334917884,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6714201996929515,
- "recall": 0.9913311247166577,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301326,
- "tp_rate": 0.9913311247166577,
- "truth_threshold": -18.32
- },
- {
- "f1": 0.8005967484383842,
- "fn": 2638,
- "fn_rate": 0.008678744970571882,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.000003098487394723601,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671418003235395,
- "recall": 0.9913212550294281,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301323,
- "tp_rate": 0.9913212550294281,
- "truth_threshold": -18.3
- },
- {
- "f1": 0.8005940914996559,
- "fn": 2639,
- "fn_rate": 0.008682034866315087,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.000003185597454736396,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6714172710763506,
- "recall": 0.9913179651336849,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301322,
- "tp_rate": 0.9913179651336849,
- "truth_threshold": -18.26
- },
- {
- "f1": 0.8004729828477287,
- "fn": 2715,
- "fn_rate": 0.008932066942798583,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000032300665943862097,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713616174402564,
- "recall": 0.9910679330572014,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301246,
- "tp_rate": 0.9910679330572014,
- "truth_threshold": -18.240000000000002
- },
- {
- "f1": 0.8004602331458212,
- "fn": 2723,
- "fn_rate": 0.008958386108744214,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000033208758251411607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713557580660618,
- "recall": 0.9910416138912558,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301238,
- "tp_rate": 0.9910416138912558,
- "truth_threshold": -18.2
- },
- {
- "f1": 0.8004597029203093,
- "fn": 2724,
- "fn_rate": 0.008961676004487417,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000034142380336736073,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713550256295966,
- "recall": 0.9910383239955126,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301237,
- "tp_rate": 0.9910383239955126,
- "truth_threshold": -18.16
- },
- {
- "f1": 0.8004506706915244,
- "fn": 2729,
- "fn_rate": 0.008978125483203437,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.000003510224992977848,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713513633982995,
- "recall": 0.9910218745167966,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301232,
- "tp_rate": 0.9910218745167966,
- "truth_threshold": -18.12
- },
- {
- "f1": 0.8004501404363759,
- "fn": 2730,
- "fn_rate": 0.008981415378946641,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000035592257334204593,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713506309422457,
- "recall": 0.9910185846210534,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301231,
- "tp_rate": 0.9910185846210534,
- "truth_threshold": -18.1
- },
- {
- "f1": 0.8004442956372932,
- "fn": 2733,
- "fn_rate": 0.008991285066176254,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000036089104938057927,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713484335544951,
- "recall": 0.9910087149338237,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301228,
- "tp_rate": 0.9910087149338237,
- "truth_threshold": -18.080000000000002
- },
- {
- "f1": 0.8004411080847672,
- "fn": 2735,
- "fn_rate": 0.008997864857662661,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000036592888225585765,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713469686130037,
- "recall": 0.9910021351423374,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301226,
- "tp_rate": 0.9910021351423374,
- "truth_threshold": -18.06
- },
- {
- "f1": 0.800437390220635,
- "fn": 2738,
- "fn_rate": 0.009007734544892272,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000037103704013906797,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713447711762792,
- "recall": 0.9909922654551078,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301223,
- "tp_rate": 0.9909922654551078,
- "truth_threshold": -18.04
- },
- {
- "f1": 0.800421452069792,
- "fn": 2748,
- "fn_rate": 0.009040633502324312,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000037621650471616754,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713374461749682,
- "recall": 0.9909593664976757,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301213,
- "tp_rate": 0.9909593664976757,
- "truth_threshold": -18.02
- },
- {
- "f1": 0.8004187947427441,
- "fn": 2749,
- "fn_rate": 0.009043923398067515,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000038146827137652828,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713367136568786,
- "recall": 0.9909560766019325,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301212,
- "tp_rate": 0.9909560766019325,
- "truth_threshold": -18
- },
- {
- "f1": 0.8004156070546906,
- "fn": 2751,
- "fn_rate": 0.009050503189553923,
- "fp": 147463,
- "fp_rate": 0.8481270381724172,
- "match_probability": 0.0000039766754733776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713352486109037,
- "recall": 0.9909494968104461,
- "row_count": 477830,
- "tn": 26406,
- "tn_rate": 0.15187296182758284,
- "tp": 301210,
- "tp_rate": 0.9909494968104461,
- "truth_threshold": -17.94
- },
- {
- "f1": 0.8004368773368553,
- "fn": 2751,
- "fn_rate": 0.009050503189553923,
- "fp": 147443,
- "fp_rate": 0.8480120090412897,
- "match_probability": 0.000004088474581213888,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713651753136611,
- "recall": 0.9909494968104461,
- "row_count": 477830,
- "tn": 26426,
- "tn_rate": 0.1519879909587103,
- "tp": 301210,
- "tp_rate": 0.9909494968104461,
- "truth_threshold": -17.900000000000002
- },
- {
- "f1": 0.8004336896036736,
- "fn": 2753,
- "fn_rate": 0.009057082981040332,
- "fp": 147443,
- "fp_rate": 0.8480120090412897,
- "match_probability": 0.000004145547322903667,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671363710322723,
- "recall": 0.9909429170189596,
- "row_count": 477830,
- "tn": 26426,
- "tn_rate": 0.1519879909587103,
- "tp": 301208,
- "tp_rate": 0.9909429170189596,
- "truth_threshold": -17.88
- },
- {
- "f1": 0.8004012809099244,
- "fn": 2774,
- "fn_rate": 0.009126170791647613,
- "fp": 147443,
- "fp_rate": 0.8480120090412897,
- "match_probability": 0.000004203416763725948,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713483271292602,
- "recall": 0.9908738292083524,
- "row_count": 477830,
- "tn": 26426,
- "tn_rate": 0.1519879909587103,
- "tp": 301187,
- "tp_rate": 0.9908738292083524,
- "truth_threshold": -17.86
- },
- {
- "f1": 0.8002551495016611,
- "fn": 2865,
- "fn_rate": 0.009425551304279167,
- "fp": 147443,
- "fp_rate": 0.8480120090412897,
- "match_probability": 0.0000042620940249991784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6712816499791545,
- "recall": 0.9905744486957209,
- "row_count": 477830,
- "tn": 26426,
- "tn_rate": 0.1519879909587103,
- "tp": 301096,
- "tp_rate": 0.9905744486957209,
- "truth_threshold": -17.84
- },
- {
- "f1": 0.8002806734035371,
- "fn": 2865,
- "fn_rate": 0.009425551304279167,
- "fp": 147419,
- "fp_rate": 0.8478739740839367,
- "match_probability": 0.000004381917272552001,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671317570203895,
- "recall": 0.9905744486957209,
- "row_count": 477830,
- "tn": 26450,
- "tn_rate": 0.15212602591606325,
- "tp": 301096,
- "tp_rate": 0.9905744486957209,
- "truth_threshold": -17.8
- },
- {
- "f1": 0.8002764450233251,
- "fn": 2893,
- "fn_rate": 0.009517668385088876,
- "fp": 147382,
- "fp_rate": 0.847661170191351,
- "match_probability": 0.000004443086286379355,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713524361690266,
- "recall": 0.9904823316149112,
- "row_count": 477830,
- "tn": 26487,
- "tn_rate": 0.15233882980864905,
- "tp": 301068,
- "tp_rate": 0.9904823316149112,
- "truth_threshold": -17.78
- },
- {
- "f1": 0.8002828267792303,
- "fn": 2893,
- "fn_rate": 0.009517668385088876,
- "fp": 147376,
- "fp_rate": 0.8476266614520127,
- "match_probability": 0.000004505109180178255,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671361418594072,
- "recall": 0.9904823316149112,
- "row_count": 477830,
- "tn": 26493,
- "tn_rate": 0.1523733385479873,
- "tp": 301068,
- "tp_rate": 0.9904823316149112,
- "truth_threshold": -17.76
- },
- {
- "f1": 0.8002870966026902,
- "fn": 2909,
- "fn_rate": 0.009570306716980139,
- "fp": 147348,
- "fp_rate": 0.8474656206684342,
- "match_probability": 0.000004631764452096345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713916146297948,
- "recall": 0.9904296932830199,
- "row_count": 477830,
- "tn": 26521,
- "tn_rate": 0.15253437933156572,
- "tp": 301052,
- "tp_rate": 0.9904296932830199,
- "truth_threshold": -17.72
- },
- {
- "f1": 0.8002238403236912,
- "fn": 2948,
- "fn_rate": 0.009698612650965091,
- "fp": 147348,
- "fp_rate": 0.8474656206684342,
- "match_probability": 0.00000469642117070095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671363031128934,
- "recall": 0.990301387349035,
- "row_count": 477830,
- "tn": 26521,
- "tn_rate": 0.15253437933156572,
- "tp": 301013,
- "tp_rate": 0.990301387349035,
- "truth_threshold": -17.7
- },
- {
- "f1": 0.8002233092301149,
- "fn": 2949,
- "fn_rate": 0.009701902546708295,
- "fp": 147348,
- "fp_rate": 0.8474656206684342,
- "match_probability": 0.000004761980454925296,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713622981532696,
- "recall": 0.9902980974532917,
- "row_count": 477830,
- "tn": 26521,
- "tn_rate": 0.15253437933156572,
- "tp": 301012,
- "tp_rate": 0.9902980974532917,
- "truth_threshold": -17.68
- },
- {
- "f1": 0.8002238462745015,
- "fn": 2956,
- "fn_rate": 0.009724931816910722,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.00000482845490387591,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713736388738953,
- "recall": 0.9902750681830893,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 301005,
- "tp_rate": 0.9902750681830893,
- "truth_threshold": -17.66
- },
- {
- "f1": 0.8002211877676784,
- "fn": 2957,
- "fn_rate": 0.009728221712653926,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.00000489585729252954,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713729058908287,
- "recall": 0.990271778287346,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 301004,
- "tp_rate": 0.990271778287346,
- "truth_threshold": -17.64
- },
- {
- "f1": 0.8002142773589119,
- "fn": 2962,
- "fn_rate": 0.009744671191369946,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000004964200574188029,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671369240926448,
- "recall": 0.9902553288086301,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300999,
- "tp_rate": 0.9902553288086301,
- "truth_threshold": -17.62
- },
- {
- "f1": 0.8002116188308858,
- "fn": 2963,
- "fn_rate": 0.00974796108711315,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005103762536321944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713685079237623,
- "recall": 0.9902520389128868,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300998,
- "tp_rate": 0.9902520389128868,
- "truth_threshold": -17.580000000000002
- },
- {
- "f1": 0.800211087686463,
- "fn": 2964,
- "fn_rate": 0.009751250982856353,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005247248078653649,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713677749178069,
- "recall": 0.9902487490171437,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300997,
- "tp_rate": 0.9902487490171437,
- "truth_threshold": -17.54
- },
- {
- "f1": 0.800208429151369,
- "fn": 2965,
- "fn_rate": 0.009754540878599557,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005320496542440611,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713670419085813,
- "recall": 0.9902454591214005,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300996,
- "tp_rate": 0.9902454591214005,
- "truth_threshold": -17.52
- },
- {
- "f1": 0.8001924804993858,
- "fn": 2975,
- "fn_rate": 0.009787439836031597,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005546434223012468,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713597116364763,
- "recall": 0.9902125601639684,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300986,
- "tp_rate": 0.9902125601639684,
- "truth_threshold": -17.46
- },
- {
- "f1": 0.8001829111046714,
- "fn": 2981,
- "fn_rate": 0.00980717921049082,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005702364824139267,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713553133162472,
- "recall": 0.9901928207895092,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300980,
- "tp_rate": 0.9901928207895092,
- "truth_threshold": -17.42
- },
- {
- "f1": 0.8001823798712174,
- "fn": 2982,
- "fn_rate": 0.009810469106234024,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.00000578196641040085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713545802514298,
- "recall": 0.9901895308937659,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300979,
- "tp_rate": 0.9901895308937659,
- "truth_threshold": -17.400000000000002
- },
- {
- "f1": 0.8001728102941763,
- "fn": 2988,
- "fn_rate": 0.009830208480693247,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005862679180457631,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.671350181793848,
- "recall": 0.9901697915193067,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300973,
- "tp_rate": 0.9901697915193067,
- "truth_threshold": -17.38
- },
- {
- "f1": 0.8001605819233674,
- "fn": 2995,
- "fn_rate": 0.009853237750895675,
- "fp": 147337,
- "fp_rate": 0.8474023546463142,
- "match_probability": 0.000005944518645493533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713450501111972,
- "recall": 0.9901467622491044,
- "row_count": 477830,
- "tn": 26532,
- "tn_rate": 0.15259764535368583,
- "tp": 300966,
- "tp_rate": 0.9901467622491044,
- "truth_threshold": -17.36
- },
- {
- "f1": 0.8001733461659125,
- "fn": 2995,
- "fn_rate": 0.009853237750895675,
- "fp": 147325,
- "fp_rate": 0.8473333371676377,
- "match_probability": 0.000006111640790849928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713630208949097,
- "recall": 0.9901467622491044,
- "row_count": 477830,
- "tn": 26544,
- "tn_rate": 0.1526666628323623,
- "tp": 300966,
- "tp_rate": 0.9901467622491044,
- "truth_threshold": -17.32
- },
- {
- "f1": 0.8001776010039242,
- "fn": 2995,
- "fn_rate": 0.009853237750895675,
- "fp": 147321,
- "fp_rate": 0.8473103313414122,
- "match_probability": 0.000006196955588258426,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6713690113699483,
- "recall": 0.9901467622491044,
- "row_count": 477830,
- "tn": 26548,
- "tn_rate": 0.1526896686585878,
- "tp": 300966,
- "tp_rate": 0.9901467622491044,
- "truth_threshold": -17.3
- },
- {
- "f1": 0.7985511722140283,
- "fn": 4014,
- "fn_rate": 0.013205641513220446,
- "fp": 147321,
- "fp_rate": 0.8473103313414122,
- "match_probability": 0.000006283461320993584,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6706202992389351,
- "recall": 0.9867943584867795,
- "row_count": 477830,
- "tn": 26548,
- "tn_rate": 0.1526896686585878,
- "tp": 299947,
- "tp_rate": 0.9867943584867795,
- "truth_threshold": -17.28
- },
- {
- "f1": 0.798554887902644,
- "fn": 4015,
- "fn_rate": 0.01320893140896365,
- "fp": 147315,
- "fp_rate": 0.847275822602074,
- "match_probability": 0.000006460112322179412,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6706285591634414,
- "recall": 0.9867910685910364,
- "row_count": 477830,
- "tn": 26554,
- "tn_rate": 0.15272417739792601,
- "tp": 299946,
- "tp_rate": 0.9867910685910364,
- "truth_threshold": -17.240000000000002
- },
- {
- "f1": 0.7985756123535677,
- "fn": 4016,
- "fn_rate": 0.013212221304706853,
- "fp": 147295,
- "fp_rate": 0.8471607934709465,
- "match_probability": 0.000006550291538878178,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.670657812360254,
- "recall": 0.9867877786952931,
- "row_count": 477830,
- "tn": 26574,
- "tn_rate": 0.15283920652905347,
- "tp": 299945,
- "tp_rate": 0.9867877786952931,
- "truth_threshold": -17.22
- },
- {
- "f1": 0.7985724136645731,
- "fn": 4018,
- "fn_rate": 0.013218801096193262,
- "fp": 147295,
- "fp_rate": 0.8471607934709465,
- "match_probability": 0.000006641729593923075,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6706563395775851,
- "recall": 0.9867811989038068,
- "row_count": 477830,
- "tn": 26574,
- "tn_rate": 0.15283920652905347,
- "tp": 299943,
- "tp_rate": 0.9867811989038068,
- "truth_threshold": -17.2
- },
- {
- "f1": 0.7985659971458391,
- "fn": 4026,
- "fn_rate": 0.013245120262138893,
- "fp": 147289,
- "fp_rate": 0.8471262847316082,
- "match_probability": 0.000006734444059575694,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6706594458258054,
- "recall": 0.9867548797378611,
- "row_count": 477830,
- "tn": 26580,
- "tn_rate": 0.15287371526839172,
- "tp": 299935,
- "tp_rate": 0.9867548797378611,
- "truth_threshold": -17.18
- },
- {
- "f1": 0.7977209267627249,
- "fn": 4554,
- "fn_rate": 0.014982185214550551,
- "fp": 147289,
- "fp_rate": 0.8471262847316082,
- "match_probability": 0.0000068284527533841125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702701613625374,
- "recall": 0.9850178147854495,
- "row_count": 477830,
- "tn": 26580,
- "tn_rate": 0.15287371526839172,
- "tp": 299407,
- "tp_rate": 0.9850178147854495,
- "truth_threshold": -17.16
- },
- {
- "f1": 0.7973785835929609,
- "fn": 4771,
- "fn_rate": 0.015696092590825796,
- "fp": 147283,
- "fp_rate": 0.84709177599227,
- "match_probability": 0.00000692377374160662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701189097661001,
- "recall": 0.9843039074091742,
- "row_count": 477830,
- "tn": 26586,
- "tn_rate": 0.15290822400772996,
- "tp": 299190,
- "tp_rate": 0.9843039074091742,
- "truth_threshold": -17.14
- },
- {
- "f1": 0.7973753784486802,
- "fn": 4773,
- "fn_rate": 0.015702672382312204,
- "fp": 147283,
- "fp_rate": 0.84709177599227,
- "match_probability": 0.000007118426130755453,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.670117432039259,
- "recall": 0.9842973276176878,
- "row_count": 477830,
- "tn": 26586,
- "tn_rate": 0.15290822400772996,
- "tp": 299188,
- "tp_rate": 0.9842973276176878,
- "truth_threshold": -17.1
- },
- {
- "f1": 0.7973748384259691,
- "fn": 4774,
- "fn_rate": 0.01570596227805541,
- "fp": 147283,
- "fp_rate": 0.84709177599227,
- "match_probability": 0.000007217794939235686,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701166931708737,
- "recall": 0.9842940377219446,
- "row_count": 477830,
- "tn": 26586,
- "tn_rate": 0.15290822400772996,
- "tp": 299187,
- "tp_rate": 0.9842940377219446,
- "truth_threshold": -17.080000000000002
- },
- {
- "f1": 0.7973721732873152,
- "fn": 4775,
- "fn_rate": 0.01570925217379861,
- "fp": 147283,
- "fp_rate": 0.84709177599227,
- "match_probability": 0.000007318550864425777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701159542991787,
- "recall": 0.9842907478262014,
- "row_count": 477830,
- "tn": 26586,
- "tn_rate": 0.15290822400772996,
- "tp": 299186,
- "tp_rate": 0.9842907478262014,
- "truth_threshold": -17.06
- },
- {
- "f1": 0.7973689681088659,
- "fn": 4777,
- "fn_rate": 0.01571583196528502,
- "fp": 147283,
- "fp_rate": 0.84709177599227,
- "match_probability": 0.00000742071326918649,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.670114476545859,
- "recall": 0.984284168034715,
- "row_count": 477830,
- "tn": 26586,
- "tn_rate": 0.15290822400772996,
- "tp": 299184,
- "tp_rate": 0.984284168034715,
- "truth_threshold": -17.04
- },
- {
- "f1": 0.7973753434734057,
- "fn": 4777,
- "fn_rate": 0.01571583196528502,
- "fp": 147278,
- "fp_rate": 0.8470630187094882,
- "match_probability": 0.000007524301786658165,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701219812660428,
- "recall": 0.984284168034715,
- "row_count": 477830,
- "tn": 26591,
- "tn_rate": 0.1529369812905118,
- "tp": 299184,
- "tp_rate": 0.984284168034715,
- "truth_threshold": -17.02
- },
- {
- "f1": 0.7971803353849517,
- "fn": 4898,
- "fn_rate": 0.01611390935021269,
- "fp": 147278,
- "fp_rate": 0.8470630187094882,
- "match_probability": 0.000007629336324033172,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700325535857113,
- "recall": 0.9838860906497873,
- "row_count": 477830,
- "tn": 26591,
- "tn_rate": 0.1529369812905118,
- "tp": 299063,
- "tp_rate": 0.9838860906497873,
- "truth_threshold": -17
- },
- {
- "f1": 0.7971792165141919,
- "fn": 4904,
- "fn_rate": 0.016133648724671917,
- "fp": 147270,
- "fp_rate": 0.8470170070570372,
- "match_probability": 0.000007735837066381084,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700401275298156,
- "recall": 0.9838663512753281,
- "row_count": 477830,
- "tn": 26599,
- "tn_rate": 0.1529829929429628,
- "tp": 299057,
- "tp_rate": 0.9838663512753281,
- "truth_threshold": -16.98
- },
- {
- "f1": 0.7971658505247389,
- "fn": 4913,
- "fn_rate": 0.01616325778636075,
- "fp": 147270,
- "fp_rate": 0.8470170070570372,
- "match_probability": 0.000007843824480527219,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700334738908132,
- "recall": 0.9838367422136393,
- "row_count": 477830,
- "tn": 26599,
- "tn_rate": 0.1529829929429628,
- "tp": 299048,
- "tp_rate": 0.9838367422136393,
- "truth_threshold": -16.96
- },
- {
- "f1": 0.7971460332100861,
- "fn": 4930,
- "fn_rate": 0.016219186013995218,
- "fp": 147262,
- "fp_rate": 0.8469709954045862,
- "match_probability": 0.000007953319318985333,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700329155958081,
- "recall": 0.9837808139860048,
- "row_count": 477830,
- "tn": 26607,
- "tn_rate": 0.1530290045954138,
- "tp": 299031,
- "tp_rate": 0.9837808139860048,
- "truth_threshold": -16.94
- },
- {
- "f1": 0.7971390793444301,
- "fn": 4935,
- "fn_rate": 0.016235635492711235,
- "fp": 147262,
- "fp_rate": 0.8469709954045862,
- "match_probability": 0.000008064342623945162,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700292188004159,
- "recall": 0.9837643645072888,
- "row_count": 477830,
- "tn": 26607,
- "tn_rate": 0.1530290045954138,
- "tp": 299026,
- "tp_rate": 0.9837643645072888,
- "truth_threshold": -16.92
- },
- {
- "f1": 0.7971582048171894,
- "fn": 4935,
- "fn_rate": 0.016235635492711235,
- "fp": 147244,
- "fp_rate": 0.8468674691865715,
- "match_probability": 0.000008176915731315674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700562439778609,
- "recall": 0.9837643645072888,
- "row_count": 477830,
- "tn": 26625,
- "tn_rate": 0.1531325308134285,
- "tp": 299026,
- "tp_rate": 0.9837643645072888,
- "truth_threshold": -16.9
- },
- {
- "f1": 0.7971624550468792,
- "fn": 4935,
- "fn_rate": 0.016235635492711235,
- "fp": 147240,
- "fp_rate": 0.846844463360346,
- "match_probability": 0.000008291060274824607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700622498689123,
- "recall": 0.9837643645072888,
- "row_count": 477830,
- "tn": 26629,
- "tn_rate": 0.153155536639654,
- "tp": 299026,
- "tp_rate": 0.9837643645072888,
- "truth_threshold": -16.88
- },
- {
- "f1": 0.797177331207712,
- "fn": 4935,
- "fn_rate": 0.016235635492711235,
- "fp": 147226,
- "fp_rate": 0.8467639429685568,
- "match_probability": 0.000008524151719262247,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6700832713354786,
- "recall": 0.9837643645072888,
- "row_count": 477830,
- "tn": 26643,
- "tn_rate": 0.15323605703144322,
- "tp": 299026,
- "tp_rate": 0.9837643645072888,
- "truth_threshold": -16.84
- },
- {
- "f1": 0.7972511797797744,
- "fn": 4936,
- "fn_rate": 0.01623892538845444,
- "fp": 147154,
- "fp_rate": 0.8463498380964979,
- "match_probability": 0.000008643143414443251,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701906633884607,
- "recall": 0.9837610746115456,
- "row_count": 477830,
- "tn": 26715,
- "tn_rate": 0.15365016190350206,
- "tp": 299025,
- "tp_rate": 0.9837610746115456,
- "truth_threshold": -16.82
- },
- {
- "f1": 0.7972506392157176,
- "fn": 4937,
- "fn_rate": 0.016242215284197645,
- "fp": 147154,
- "fp_rate": 0.8463498380964979,
- "match_probability": 0.00000876379614287431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701899242006554,
- "recall": 0.9837577847158023,
- "row_count": 477830,
- "tn": 26715,
- "tn_rate": 0.15365016190350206,
- "tp": 299024,
- "tp_rate": 0.9837577847158023,
- "truth_threshold": -16.8
- },
- {
- "f1": 0.7972522242692639,
- "fn": 4938,
- "fn_rate": 0.016245505179940847,
- "fp": 147150,
- "fp_rate": 0.8463268322702725,
- "match_probability": 0.000008886133090902635,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701951933442858,
- "recall": 0.9837544948200592,
- "row_count": 477830,
- "tn": 26719,
- "tn_rate": 0.15367316772972756,
- "tp": 299023,
- "tp_rate": 0.9837544948200592,
- "truth_threshold": -16.78
- },
- {
- "f1": 0.7972543499010841,
- "fn": 4938,
- "fn_rate": 0.016245505179940847,
- "fp": 147148,
- "fp_rate": 0.8463153293571597,
- "match_probability": 0.00000901017776852193,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701981975520597,
- "recall": 0.9837544948200592,
- "row_count": 477830,
- "tn": 26721,
- "tn_rate": 0.1536846706428403,
- "tp": 299023,
- "tp_rate": 0.9837544948200592,
- "truth_threshold": -16.76
- },
- {
- "f1": 0.7972511431351899,
- "fn": 4940,
- "fn_rate": 0.016252084971427255,
- "fp": 147148,
- "fp_rate": 0.8463153293571597,
- "match_probability": 0.000009135954013889686,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6701967191804002,
- "recall": 0.9837479150285727,
- "row_count": 477830,
- "tn": 26721,
- "tn_rate": 0.1536846706428403,
- "tp": 299021,
- "tp_rate": 0.9837479150285727,
- "truth_threshold": -16.740000000000002
- },
- {
- "f1": 0.797265482313355,
- "fn": 4941,
- "fn_rate": 0.01625537486717046,
- "fp": 147133,
- "fp_rate": 0.846229057508814,
- "match_probability": 0.000009392798228865447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702185124833857,
- "recall": 0.9837446251328296,
- "row_count": 477830,
- "tn": 26736,
- "tn_rate": 0.1537709424911859,
- "tp": 299020,
- "tp_rate": 0.9837446251328296,
- "truth_threshold": -16.7
- },
- {
- "f1": 0.7972676080371998,
- "fn": 4941,
- "fn_rate": 0.01625537486717046,
- "fp": 147131,
- "fp_rate": 0.8462175545957014,
- "match_probability": 0.000009656863180023442,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702215169303666,
- "recall": 0.9837446251328296,
- "row_count": 477830,
- "tn": 26738,
- "tn_rate": 0.15378244540429864,
- "tp": 299020,
- "tp_rate": 0.9837446251328296,
- "truth_threshold": -16.66
- },
- {
- "f1": 0.7972670674967671,
- "fn": 4942,
- "fn_rate": 0.016258664762913662,
- "fp": 147130,
- "fp_rate": 0.846211803139145,
- "match_probability": 0.000009791666646456521,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702222800006276,
- "recall": 0.9837413352370863,
- "row_count": 477830,
- "tn": 26739,
- "tn_rate": 0.15378819686085501,
- "tp": 299019,
- "tp_rate": 0.9837413352370863,
- "truth_threshold": -16.64
- },
- {
- "f1": 0.7972627795612341,
- "fn": 4946,
- "fn_rate": 0.01627182434588648,
- "fp": 147129,
- "fp_rate": 0.8462060516825887,
- "match_probability": 0.000009928351862046044,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.670220825563047,
- "recall": 0.9837281756541135,
- "row_count": 477830,
- "tn": 26740,
- "tn_rate": 0.1537939483174114,
- "tp": 299015,
- "tp_rate": 0.9837281756541135,
- "truth_threshold": -16.62
- },
- {
- "f1": 0.7972691568301742,
- "fn": 4946,
- "fn_rate": 0.01627182434588648,
- "fp": 147123,
- "fp_rate": 0.8461715429432504,
- "match_probability": 0.000010066945093988067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.670229839197737,
- "recall": 0.9837281756541135,
- "row_count": 477830,
- "tn": 26746,
- "tn_rate": 0.15382845705674963,
- "tp": 299015,
- "tp_rate": 0.9837281756541135,
- "truth_threshold": -16.6
- },
- {
- "f1": 0.7972627430695353,
- "fn": 4950,
- "fn_rate": 0.016284983928859294,
- "fp": 147123,
- "fp_rate": 0.8461715429432504,
- "match_probability": 0.000010207472976125722,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702268825061528,
- "recall": 0.9837150160711408,
- "row_count": 477830,
- "tn": 26746,
- "tn_rate": 0.15382845705674963,
- "tp": 299011,
- "tp_rate": 0.9837150160711408,
- "truth_threshold": -16.580000000000002
- },
- {
- "f1": 0.7973047202060657,
- "fn": 4951,
- "fn_rate": 0.0162882738246025,
- "fp": 147082,
- "fp_rate": 0.845935733224439,
- "match_probability": 0.000010349962514066602,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702877433354555,
- "recall": 0.9837117261753975,
- "row_count": 477830,
- "tn": 26787,
- "tn_rate": 0.1540642667755609,
- "tp": 299010,
- "tp_rate": 0.9837117261753975,
- "truth_threshold": -16.56
- },
- {
- "f1": 0.7972731902820406,
- "fn": 4970,
- "fn_rate": 0.01635078184372337,
- "fp": 147082,
- "fp_rate": 0.845935733224439,
- "match_probability": 0.000010494441090371449,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702736995962544,
- "recall": 0.9836492181562766,
- "row_count": 477830,
- "tn": 26787,
- "tn_rate": 0.1540642667755609,
- "tp": 298991,
- "tp_rate": 0.9836492181562766,
- "truth_threshold": -16.54
- },
- {
- "f1": 0.7972437847826841,
- "fn": 4989,
- "fn_rate": 0.016413289862844245,
- "fp": 147082,
- "fp_rate": 0.845935733224439,
- "match_probability": 0.000010640936469815525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6702596546606465,
- "recall": 0.9835867101371557,
- "row_count": 477830,
- "tn": 26787,
- "tn_rate": 0.1540642667755609,
- "tp": 298972,
- "tp_rate": 0.9835867101371557,
- "truth_threshold": -16.52
- },
- {
- "f1": 0.8036444864978199,
- "fn": 4994,
- "fn_rate": 0.016429739341560265,
- "fp": 141100,
- "fp_rate": 0.8115305201042164,
- "match_probability": 0.000010789476804723106,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6793670054787112,
- "recall": 0.9835702606584398,
- "row_count": 477830,
- "tn": 32769,
- "tn_rate": 0.1884694798957836,
- "tp": 298967,
- "tp_rate": 0.9835702606584398,
- "truth_threshold": -16.5
- },
- {
- "f1": 0.8038373740659979,
- "fn": 4997,
- "fn_rate": 0.016439609028789878,
- "fp": 140917,
- "fp_rate": 0.8104780035544001,
- "match_probability": 0.000011092806920501003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6796474501058241,
- "recall": 0.9835603909712102,
- "row_count": 477830,
- "tn": 32952,
- "tn_rate": 0.18952199644559986,
- "tp": 298964,
- "tp_rate": 0.9835603909712102,
- "truth_threshold": -16.46
- },
- {
- "f1": 0.8038357917605494,
- "fn": 5000,
- "fn_rate": 0.01644947871601949,
- "fp": 140914,
- "fp_rate": 0.810460749184731,
- "match_probability": 0.000011247654992825144,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6796499005399261,
- "recall": 0.9835505212839805,
- "row_count": 477830,
- "tn": 32955,
- "tn_rate": 0.18953925081526896,
- "tp": 298961,
- "tp_rate": 0.9835505212839805,
- "truth_threshold": -16.44
- },
- {
- "f1": 0.8039527328664708,
- "fn": 5016,
- "fn_rate": 0.016502117047910752,
- "fp": 140783,
- "fp_rate": 0.8097073083758461,
- "match_probability": 0.000011404664614720203,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6798407197176436,
- "recall": 0.9834978829520893,
- "row_count": 477830,
- "tn": 33086,
- "tn_rate": 0.19029269162415383,
- "tp": 298945,
- "tp_rate": 0.9834978829520893,
- "truth_threshold": -16.42
- },
- {
- "f1": 0.803949523996546,
- "fn": 5100,
- "fn_rate": 0.01677846829033988,
- "fp": 140660,
- "fp_rate": 0.8089998792194123,
- "match_probability": 0.00001156386595891718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6799697852889851,
- "recall": 0.9832215317096601,
- "row_count": 477830,
- "tn": 33209,
- "tn_rate": 0.19100012078058767,
- "tp": 298861,
- "tp_rate": 0.9832215317096601,
- "truth_threshold": -16.4
- },
- {
- "f1": 0.8062252652535994,
- "fn": 5107,
- "fn_rate": 0.016801497560542306,
- "fp": 138551,
- "fp_rate": 0.7968700573420219,
- "match_probability": 0.000011725289619303927,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6832432185274516,
- "recall": 0.9831985024394577,
- "row_count": 477830,
- "tn": 35318,
- "tn_rate": 0.20312994265797812,
- "tp": 298854,
- "tp_rate": 0.9831985024394577,
- "truth_threshold": -16.38
- },
- {
- "f1": 0.8062215220094906,
- "fn": 5110,
- "fn_rate": 0.016811367247771918,
- "fp": 138551,
- "fp_rate": 0.7968700573420219,
- "match_probability": 0.000012223206877850105,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6832410459943027,
- "recall": 0.9831886327522281,
- "row_count": 477830,
- "tn": 35318,
- "tn_rate": 0.20312994265797812,
- "tp": 298851,
- "tp_rate": 0.9831886327522281,
- "truth_threshold": -16.32
- },
- {
- "f1": 0.8062280469841749,
- "fn": 5110,
- "fn_rate": 0.016811367247771918,
- "fp": 138545,
- "fp_rate": 0.7968355486026836,
- "match_probability": 0.000012393834372475679,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6832504183851704,
- "recall": 0.9831886327522281,
- "row_count": 477830,
- "tn": 35324,
- "tn_rate": 0.20316445139731637,
- "tp": 298851,
- "tp_rate": 0.9831886327522281,
- "truth_threshold": -16.3
- },
- {
- "f1": 0.8062683289402331,
- "fn": 5112,
- "fn_rate": 0.016817947039258326,
- "fp": 138505,
- "fp_rate": 0.7966054903404287,
- "match_probability": 0.000012566843678710988,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6833114593670117,
- "recall": 0.9831820529607417,
- "row_count": 477830,
- "tn": 35364,
- "tn_rate": 0.2033945096595713,
- "tp": 298849,
- "tp_rate": 0.9831820529607417,
- "truth_threshold": -16.28
- },
- {
- "f1": 0.8061813668618298,
- "fn": 5166,
- "fn_rate": 0.016995601409391336,
- "fp": 138505,
- "fp_rate": 0.7966054903404287,
- "match_probability": 0.00001274226804373564,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6832723530756918,
- "recall": 0.9830043985906086,
- "row_count": 477830,
- "tn": 35364,
- "tn_rate": 0.2033945096595713,
- "tp": 298795,
- "tp_rate": 0.9830043985906086,
- "truth_threshold": -16.26
- },
- {
- "f1": 0.8064185295840182,
- "fn": 5166,
- "fn_rate": 0.016995601409391336,
- "fp": 138286,
- "fp_rate": 0.795345921354583,
- "match_probability": 0.000012920141178795591,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6836147075713654,
- "recall": 0.9830043985906086,
- "row_count": 477830,
- "tn": 35583,
- "tn_rate": 0.20465407864541696,
- "tp": 298795,
- "tp_rate": 0.9830043985906086,
- "truth_threshold": -16.240000000000002
- },
- {
- "f1": 0.8066101022317126,
- "fn": 5166,
- "fn_rate": 0.016995601409391336,
- "fp": 138111,
- "fp_rate": 0.7943394164572178,
- "match_probability": 0.00001310049726567996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.683888525220528,
- "recall": 0.9830043985906086,
- "row_count": 477830,
- "tn": 35758,
- "tn_rate": 0.20566058354278222,
- "tp": 298795,
- "tp_rate": 0.9830043985906086,
- "truth_threshold": -16.22
- },
- {
- "f1": 0.8066297000194372,
- "fn": 5166,
- "fn_rate": 0.016995601409391336,
- "fp": 138093,
- "fp_rate": 0.794235890239203,
- "match_probability": 0.000013283370963288116,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.683916701763381,
- "recall": 0.9830043985906086,
- "row_count": 477830,
- "tn": 35776,
- "tn_rate": 0.20576410976079693,
- "tp": 298795,
- "tp_rate": 0.9830043985906086,
- "truth_threshold": -16.2
- },
- {
- "f1": 0.8067832947663163,
- "fn": 5168,
- "fn_rate": 0.017002181200877743,
- "fp": 137948,
- "fp_rate": 0.793401929038529,
- "match_probability": 0.000013468797414288652,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841423177581221,
- "recall": 0.9829978187991223,
- "row_count": 477830,
- "tn": 35921,
- "tn_rate": 0.20659807096147098,
- "tp": 298793,
- "tp_rate": 0.9829978187991223,
- "truth_threshold": -16.18
- },
- {
- "f1": 0.8067827730525179,
- "fn": 5169,
- "fn_rate": 0.01700547109662095,
- "fp": 137948,
- "fp_rate": 0.793401929038529,
- "match_probability": 0.000013656812251871,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841415945413747,
- "recall": 0.982994528903379,
- "row_count": 477830,
- "tn": 35921,
- "tn_rate": 0.20659807096147098,
- "tp": 298792,
- "tp_rate": 0.982994528903379,
- "truth_threshold": -16.16
- },
- {
- "f1": 0.8068073501019347,
- "fn": 5172,
- "fn_rate": 0.01701534078385056,
- "fp": 137921,
- "fp_rate": 0.7932466397115069,
- "match_probability": 0.000014236750918251151,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841817224244923,
- "recall": 0.9829846592161494,
- "row_count": 477830,
- "tn": 35948,
- "tn_rate": 0.20675336028849306,
- "tp": 298789,
- "tp_rate": 0.9829846592161494,
- "truth_threshold": -16.1
- },
- {
- "f1": 0.8067875881325222,
- "fn": 5189,
- "fn_rate": 0.017071269011485025,
- "fp": 137913,
- "fp_rate": 0.793200628059056,
- "match_probability": 0.000014435485686095844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841819618260302,
- "recall": 0.982928730988515,
- "row_count": 477830,
- "tn": 35956,
- "tn_rate": 0.20679937194094405,
- "tp": 298772,
- "tp_rate": 0.982928730988515,
- "truth_threshold": -16.080000000000002
- },
- {
- "f1": 0.8067870663908706,
- "fn": 5190,
- "fn_rate": 0.01707455890722823,
- "fp": 137913,
- "fp_rate": 0.793200628059056,
- "match_probability": 0.000014636994607262019,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841812386073225,
- "recall": 0.9829254410927718,
- "row_count": 477830,
- "tn": 35956,
- "tn_rate": 0.20679937194094405,
- "tp": 298771,
- "tp_rate": 0.9829254410927718,
- "truth_threshold": -16.06
- },
- {
- "f1": 0.8067947374674602,
- "fn": 5192,
- "fn_rate": 0.017081138698714637,
- "fp": 137903,
- "fp_rate": 0.7931431134934922,
- "match_probability": 0.000014841316405219397,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6841954602081196,
- "recall": 0.9829188613012854,
- "row_count": 477830,
- "tn": 35966,
- "tn_rate": 0.20685688650650777,
- "tp": 298769,
- "tp_rate": 0.9829188613012854,
- "truth_threshold": -16.04
- },
- {
- "f1": 0.8068368405133302,
- "fn": 5199,
- "fn_rate": 0.017104167968917065,
- "fp": 137854,
- "fp_rate": 0.79286129212223,
- "match_probability": 0.000015048490343933547,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6842671821463254,
- "recall": 0.9828958320310829,
- "row_count": 477830,
- "tn": 36015,
- "tn_rate": 0.20713870787777006,
- "tp": 298762,
- "tp_rate": 0.9828958320310829,
- "truth_threshold": -16.02
- },
- {
- "f1": 0.8068013946315866,
- "fn": 5221,
- "fn_rate": 0.01717654567526755,
- "fp": 137854,
- "fp_rate": 0.79286129212223,
- "match_probability": 0.000015258556235409006,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6842512723491391,
- "recall": 0.9828234543247325,
- "row_count": 477830,
- "tn": 36015,
- "tn_rate": 0.20713870787777006,
- "tp": 298740,
- "tp_rate": 0.9828234543247325,
- "truth_threshold": -16
- },
- {
- "f1": 0.8067954714861346,
- "fn": 5224,
- "fn_rate": 0.01718641536249716,
- "fp": 137854,
- "fp_rate": 0.79286129212223,
- "match_probability": 0.000015471554447337795,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6842491027071104,
- "recall": 0.9828135846375028,
- "row_count": 477830,
- "tn": 36015,
- "tn_rate": 0.20713870787777006,
- "tp": 298737,
- "tp_rate": 0.9828135846375028,
- "truth_threshold": -15.98
- },
- {
- "f1": 0.8068063661480375,
- "fn": 5224,
- "fn_rate": 0.01718641536249716,
- "fp": 137845,
- "fp_rate": 0.7928095290132225,
- "match_probability": 0.000015687525910854657,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6842632082861868,
- "recall": 0.9828135846375028,
- "row_count": 477830,
- "tn": 36024,
- "tn_rate": 0.2071904709867774,
- "tp": 298737,
- "tp_rate": 0.9828135846375028,
- "truth_threshold": -15.96
- },
- {
- "f1": 0.8069567425351565,
- "fn": 5224,
- "fn_rate": 0.01718641536249716,
- "fp": 137706,
- "fp_rate": 0.7920100765518867,
- "match_probability": 0.000015906512128400478,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.684481134993573,
- "recall": 0.9828135846375028,
- "row_count": 477830,
- "tn": 36163,
- "tn_rate": 0.20798992344811323,
- "tp": 298737,
- "tp_rate": 0.9828135846375028,
- "truth_threshold": -15.94
- },
- {
- "f1": 0.807041241402413,
- "fn": 5225,
- "fn_rate": 0.017189705258240366,
- "fp": 137628,
- "fp_rate": 0.7915614629404897,
- "match_probability": 0.00001612855518169533,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6846027628310309,
- "recall": 0.9828102947417596,
- "row_count": 477830,
- "tn": 36241,
- "tn_rate": 0.20843853705951032,
- "tp": 298736,
- "tp_rate": 0.9828102947417596,
- "truth_threshold": -15.92
- },
- {
- "f1": 0.8070528545338621,
- "fn": 5232,
- "fn_rate": 0.017212734528442793,
- "fp": 137607,
- "fp_rate": 0.7914406823528058,
- "match_probability": 0.000016353697739823012,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6846306516079351,
- "recall": 0.9827872654715573,
- "row_count": 477830,
- "tn": 36262,
- "tn_rate": 0.20855931764719415,
- "tp": 298729,
- "tp_rate": 0.9827872654715573,
- "truth_threshold": -15.9
- },
- {
- "f1": 0.8070437070777478,
- "fn": 5237,
- "fn_rate": 0.017229184007158813,
- "fp": 137607,
- "fp_rate": 0.7914406823528058,
- "match_probability": 0.000016581983067428103,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6846270377305302,
- "recall": 0.9827708159928412,
- "row_count": 477830,
- "tn": 36262,
- "tn_rate": 0.20855931764719415,
- "tp": 298724,
- "tp_rate": 0.9827708159928412,
- "truth_threshold": -15.88
- },
- {
- "f1": 0.806859971520364,
- "fn": 5351,
- "fn_rate": 0.017604232121884056,
- "fp": 137607,
- "fp_rate": 0.7914406823528058,
- "match_probability": 0.000016813455033027547,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6845446188479587,
- "recall": 0.9823957678781159,
- "row_count": 477830,
- "tn": 36262,
- "tn_rate": 0.20855931764719415,
- "tp": 298610,
- "tp_rate": 0.9823957678781159,
- "truth_threshold": -15.860000000000001
- },
- {
- "f1": 0.8069079382922552,
- "fn": 5351,
- "fn_rate": 0.017604232121884056,
- "fp": 137564,
- "fp_rate": 0.7911933697208818,
- "match_probability": 0.000017048158117438166,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.6846121043436794,
- "recall": 0.9823957678781159,
- "row_count": 477830,
- "tn": 36305,
- "tn_rate": 0.2088066302791182,
- "tp": 298610,
- "tp_rate": 0.9823957678781159,
- "truth_threshold": -15.84
- },
- {
- "f1": 0.8414346177039128,
- "fn": 5351,
- "fn_rate": 0.017604232121884056,
- "fp": 107194,
- "fp_rate": 0.6165216341038368,
- "match_probability": 0.00001728613742232168,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7358478477294458,
- "recall": 0.9823957678781159,
- "row_count": 477830,
- "tn": 66675,
- "tn_rate": 0.3834783658961632,
- "tp": 298610,
- "tp_rate": 0.9823957678781159,
- "truth_threshold": -15.82
- },
- {
- "f1": 0.8414393597835889,
- "fn": 5351,
- "fn_rate": 0.017604232121884056,
- "fp": 107189,
- "fp_rate": 0.6164928768210549,
- "match_probability": 0.000017527438678849133,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.735856914383722,
- "recall": 0.9823957678781159,
- "row_count": 477830,
- "tn": 66680,
- "tn_rate": 0.3835071231789451,
- "tp": 298610,
- "tp_rate": 0.9823957678781159,
- "truth_threshold": -15.8
- },
- {
- "f1": 0.8414578818782036,
- "fn": 5352,
- "fn_rate": 0.01760752201762726,
- "fp": 107173,
- "fp_rate": 0.6164008535161529,
- "match_probability": 0.000017772108256485995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7358852783021426,
- "recall": 0.9823924779823727,
- "row_count": 477830,
- "tn": 66696,
- "tn_rate": 0.383599146483847,
- "tp": 298609,
- "tp_rate": 0.9823924779823727,
- "truth_threshold": -15.780000000000001
- },
- {
- "f1": 0.8414485345296433,
- "fn": 5357,
- "fn_rate": 0.01762397149634328,
- "fp": 107173,
- "fp_rate": 0.6164008535161529,
- "match_probability": 0.00001802019317189998,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7358820238702538,
- "recall": 0.9823760285036567,
- "row_count": 477830,
- "tn": 66696,
- "tn_rate": 0.383599146483847,
- "tp": 298604,
- "tp_rate": 0.9823760285036567,
- "truth_threshold": -15.76
- },
- {
- "f1": 0.8414480877396666,
- "fn": 5358,
- "fn_rate": 0.017627261392086487,
- "fp": 107173,
- "fp_rate": 0.6164008535161529,
- "match_probability": 0.000018271741097992973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7358813729742518,
- "recall": 0.9823727386079135,
- "row_count": 477830,
- "tn": 66696,
- "tn_rate": 0.383599146483847,
- "tp": 298603,
- "tp_rate": 0.9823727386079135,
- "truth_threshold": -15.74
- },
- {
- "f1": 0.8415814795085779,
- "fn": 5362,
- "fn_rate": 0.0176404209750593,
- "fp": 107055,
- "fp_rate": 0.6157221816425009,
- "match_probability": 0.000018526800373059223,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7360928278779453,
- "recall": 0.9823595790249408,
- "row_count": 477830,
- "tn": 66814,
- "tn_rate": 0.384277818357499,
- "tp": 298599,
- "tp_rate": 0.9823595790249408,
- "truth_threshold": -15.72
- },
- {
- "f1": 0.8416352853631587,
- "fn": 5369,
- "fn_rate": 0.01766345024526173,
- "fp": 107000,
- "fp_rate": 0.6154058515319004,
- "match_probability": 0.00001878542001007107,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361880904948815,
- "recall": 0.9823365497547383,
- "row_count": 477830,
- "tn": 66869,
- "tn_rate": 0.38459414846809953,
- "tp": 298592,
- "tp_rate": 0.9823365497547383,
- "truth_threshold": -15.700000000000001
- },
- {
- "f1": 0.8413559551436233,
- "fn": 5580,
- "fn_rate": 0.01835761824707775,
- "fp": 106945,
- "fp_rate": 0.6150895214212999,
- "match_probability": 0.00001904764970609435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361506540414382,
- "recall": 0.9816423817529223,
- "row_count": 477830,
- "tn": 66924,
- "tn_rate": 0.38491047857870003,
- "tp": 298381,
- "tp_rate": 0.9816423817529223,
- "truth_threshold": -15.68
- },
- {
- "f1": 0.8413749347921102,
- "fn": 5580,
- "fn_rate": 0.01835761824707775,
- "fp": 106929,
- "fp_rate": 0.6149974981163979,
- "match_probability": 0.00001931353985183501,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361797142927635,
- "recall": 0.9816423817529223,
- "row_count": 477830,
- "tn": 66940,
- "tn_rate": 0.385002501883602,
- "tp": 298381,
- "tp_rate": 0.9816423817529223,
- "truth_threshold": -15.66
- },
- {
- "f1": 0.8413721149914701,
- "fn": 5581,
- "fn_rate": 0.018360908142820955,
- "fp": 106929,
- "fp_rate": 0.6149974981163979,
- "match_probability": 0.00001958314154131918,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.736179063381272,
- "recall": 0.981639091857179,
- "row_count": 477830,
- "tn": 66940,
- "tn_rate": 0.385002501883602,
- "tp": 298380,
- "tp_rate": 0.981639091857179,
- "truth_threshold": -15.64
- },
- {
- "f1": 0.8413633441239834,
- "fn": 5590,
- "fn_rate": 0.01839051720450979,
- "fp": 106925,
- "fp_rate": 0.6149744922901725,
- "match_probability": 0.000019856506581707993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361804705696577,
- "recall": 0.9816094827954902,
- "row_count": 477830,
- "tn": 66944,
- "tn_rate": 0.3850255077098275,
- "tp": 298371,
- "tp_rate": 0.9816094827954902,
- "truth_threshold": -15.620000000000001
- },
- {
- "f1": 0.8413728343259339,
- "fn": 5590,
- "fn_rate": 0.01839051720450979,
- "fp": 106917,
- "fp_rate": 0.6149284806377215,
- "match_probability": 0.00002013368750324953,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361950020726002,
- "recall": 0.9816094827954902,
- "row_count": 477830,
- "tn": 66952,
- "tn_rate": 0.3850715193622785,
- "tp": 298371,
- "tp_rate": 0.9816094827954902,
- "truth_threshold": -15.6
- },
- {
- "f1": 0.8413602127341584,
- "fn": 5597,
- "fn_rate": 0.018413546474712217,
- "fp": 106917,
- "fp_rate": 0.6149284806377215,
- "match_probability": 0.000020414737569369415,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7361904456414191,
- "recall": 0.9815864535252878,
- "row_count": 477830,
- "tn": 66952,
- "tn_rate": 0.3850715193622785,
- "tp": 298364,
- "tp_rate": 0.9815864535252878,
- "truth_threshold": -15.58
- },
- {
- "f1": 0.8413958026654935,
- "fn": 5597,
- "fn_rate": 0.018413546474712217,
- "fp": 106887,
- "fp_rate": 0.6147559369410304,
- "match_probability": 0.00002069971078690248,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7362449444911919,
- "recall": 0.9815864535252878,
- "row_count": 477830,
- "tn": 66982,
- "tn_rate": 0.3852440630589697,
- "tp": 298364,
- "tp_rate": 0.9815864535252878,
- "truth_threshold": -15.56
- },
- {
- "f1": 0.841375751200652,
- "fn": 5610,
- "fn_rate": 0.018456315119373866,
- "fp": 106887,
- "fp_rate": 0.6147559369410304,
- "match_probability": 0.000020988661916466824,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7362364832518175,
- "recall": 0.9815436848806262,
- "row_count": 477830,
- "tn": 66982,
- "tn_rate": 0.3852440630589697,
- "tp": 298351,
- "tp_rate": 0.9815436848806262,
- "truth_threshold": -15.540000000000001
- },
- {
- "f1": 0.8414115802150878,
- "fn": 5636,
- "fn_rate": 0.018541852408697167,
- "fp": 106821,
- "fp_rate": 0.6143763408083097,
- "match_probability": 0.000021578720786338814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7363394924298895,
- "recall": 0.9814581475913028,
- "row_count": 477830,
- "tn": 67048,
- "tn_rate": 0.3856236591916903,
- "tp": 298325,
- "tp_rate": 0.9814581475913028,
- "truth_threshold": -15.5
- },
- {
- "f1": 0.8414017769002962,
- "fn": 5642,
- "fn_rate": 0.018561591783156393,
- "fp": 106821,
- "fp_rate": 0.6143763408083097,
- "match_probability": 0.00002187994191220544,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7363355876980797,
- "recall": 0.9814384082168436,
- "row_count": 477830,
- "tn": 67048,
- "tn_rate": 0.3856236591916903,
- "tp": 298319,
- "tp_rate": 0.9814384082168436,
- "truth_threshold": -15.48
- },
- {
- "f1": 0.8414863248634743,
- "fn": 5644,
- "fn_rate": 0.0185681715746428,
- "fp": 106747,
- "fp_rate": 0.6139507330231381,
- "match_probability": 0.00002218536774300117,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7364688049295913,
- "recall": 0.9814318284253573,
- "row_count": 477830,
- "tn": 67122,
- "tn_rate": 0.38604926697686187,
- "tp": 298317,
- "tp_rate": 0.9814318284253573,
- "truth_threshold": -15.46
- },
- {
- "f1": 0.8415053144675377,
- "fn": 5644,
- "fn_rate": 0.0185681715746428,
- "fp": 106731,
- "fp_rate": 0.6138587097182362,
- "match_probability": 0.000022495056969010486,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7364978965455946,
- "recall": 0.9814318284253573,
- "row_count": 477830,
- "tn": 67138,
- "tn_rate": 0.38614129028176386,
- "tp": 298317,
- "tp_rate": 0.9814318284253573,
- "truth_threshold": -15.44
- },
- {
- "f1": 0.8414959577096885,
- "fn": 5649,
- "fn_rate": 0.01858462105335882,
- "fp": 106731,
- "fp_rate": 0.6138587097182362,
- "match_probability": 0.00002280906909965718,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7364946437785618,
- "recall": 0.9814153789466412,
- "row_count": 477830,
- "tn": 67138,
- "tn_rate": 0.38614129028176386,
- "tp": 298312,
- "tp_rate": 0.9814153789466412,
- "truth_threshold": -15.42
- },
- {
- "f1": 0.8414867388446631,
- "fn": 5659,
- "fn_rate": 0.018617520010790856,
- "fp": 106725,
- "fp_rate": 0.6138242009788979,
- "match_probability": 0.000023127464474935175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7364990482116007,
- "recall": 0.9813824799892091,
- "row_count": 477830,
- "tn": 67144,
- "tn_rate": 0.3861757990211021,
- "tp": 298302,
- "tp_rate": 0.9813824799892091,
- "truth_threshold": -15.4
- },
- {
- "f1": 0.8414494470774092,
- "fn": 5684,
- "fn_rate": 0.018699767404370956,
- "fp": 106722,
- "fp_rate": 0.6138069466092287,
- "match_probability": 0.00002345030427699851,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7364882382425636,
- "recall": 0.981300232595629,
- "row_count": 477830,
- "tn": 67147,
- "tn_rate": 0.3861930533907712,
- "tp": 298277,
- "tp_rate": 0.981300232595629,
- "truth_threshold": -15.38
- },
- {
- "f1": 0.8414595270134934,
- "fn": 5688,
- "fn_rate": 0.01871292698734377,
- "fp": 106708,
- "fp_rate": 0.6137264262174396,
- "match_probability": 0.000023777650541913158,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7365110955822619,
- "recall": 0.9812870730126563,
- "row_count": 477830,
- "tn": 67161,
- "tn_rate": 0.38627357378256044,
- "tp": 298273,
- "tp_rate": 0.9812870730126563,
- "truth_threshold": -15.36
- },
- {
- "f1": 0.8414942418480255,
- "fn": 5690,
- "fn_rate": 0.018719506778830178,
- "fp": 106676,
- "fp_rate": 0.6135423796076356,
- "match_probability": 0.00002410956617157259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7365679953179058,
- "recall": 0.9812804932211698,
- "row_count": 477830,
- "tn": 67193,
- "tn_rate": 0.38645762039236436,
- "tp": 298271,
- "tp_rate": 0.9812804932211698,
- "truth_threshold": -15.34
- },
- {
- "f1": 0.8414933474772325,
- "fn": 5692,
- "fn_rate": 0.018726086570316585,
- "fp": 106674,
- "fp_rate": 0.6135308766945229,
- "match_probability": 0.000024446114945779867,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.736570332120817,
- "recall": 0.9812739134296834,
- "row_count": 477830,
- "tn": 67195,
- "tn_rate": 0.3864691233054771,
- "tp": 298269,
- "tp_rate": 0.9812739134296834,
- "truth_threshold": -15.32
- },
- {
- "f1": 0.8415095191341933,
- "fn": 5693,
- "fn_rate": 0.01872937646605979,
- "fp": 106660,
- "fp_rate": 0.6134503563027337,
- "match_probability": 0.000025133371510271085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7365951477793583,
- "recall": 0.9812706235339402,
- "row_count": 477830,
- "tn": 67209,
- "tn_rate": 0.38654964369726635,
- "tp": 298268,
- "tp_rate": 0.9812706235339402,
- "truth_threshold": -15.280000000000001
- },
- {
- "f1": 0.8416064243429777,
- "fn": 5694,
- "fn_rate": 0.018732666361802996,
- "fp": 106576,
- "fp_rate": 0.6129672339519984,
- "match_probability": 0.000025484211360819274,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7367473316816643,
- "recall": 0.981267333638197,
- "row_count": 477830,
- "tn": 67293,
- "tn_rate": 0.38703276604800163,
- "tp": 298267,
- "tp_rate": 0.981267333638197,
- "truth_threshold": -15.26
- },
- {
- "f1": 0.8416254225523006,
- "fn": 5694,
- "fn_rate": 0.018732666361802996,
- "fp": 106561,
- "fp_rate": 0.6128809621036527,
- "match_probability": 0.00002583994850180852,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7367746302133251,
- "recall": 0.981267333638197,
- "row_count": 477830,
- "tn": 67308,
- "tn_rate": 0.3871190378963473,
- "tp": 298267,
- "tp_rate": 0.981267333638197,
- "truth_threshold": -15.24
- },
- {
- "f1": 0.8416432217666496,
- "fn": 5702,
- "fn_rate": 0.018758985527748625,
- "fp": 106535,
- "fp_rate": 0.612731424233187,
- "match_probability": 0.000026200651289799313,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7368167512364314,
- "recall": 0.9812410144722514,
- "row_count": 477830,
- "tn": 67334,
- "tn_rate": 0.38726857576681295,
- "tp": 298259,
- "tp_rate": 0.9812410144722514,
- "truth_threshold": -15.22
- },
- {
- "f1": 0.841685080300375,
- "fn": 5704,
- "fn_rate": 0.018765565319235032,
- "fp": 106496,
- "fp_rate": 0.6125071174274885,
- "match_probability": 0.000026566389035375488,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7368864467959472,
- "recall": 0.981234434680765,
- "row_count": 477830,
- "tn": 67373,
- "tn_rate": 0.38749288257251147,
- "tp": 298257,
- "tp_rate": 0.981234434680765,
- "truth_threshold": -15.200000000000001
- },
- {
- "f1": 0.8416837173860894,
- "fn": 5723,
- "fn_rate": 0.018828073338355907,
- "fp": 106471,
- "fp_rate": 0.6123633310135792,
- "match_probability": 0.00002693723201645637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.736919613845998,
- "recall": 0.9811719266616441,
- "row_count": 477830,
- "tn": 67398,
- "tn_rate": 0.3876366689864208,
- "tp": 298238,
- "tp_rate": 0.9811719266616441,
- "truth_threshold": -15.18
- },
- {
- "f1": 0.8417189030224177,
- "fn": 5724,
- "fn_rate": 0.018831363234099112,
- "fp": 106440,
- "fp_rate": 0.6121850358603317,
- "match_probability": 0.000027694519714661317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7369754149605735,
- "recall": 0.9811686367659009,
- "row_count": 477830,
- "tn": 67429,
- "tn_rate": 0.38781496413966837,
- "tp": 298237,
- "tp_rate": 0.9811686367659009,
- "truth_threshold": -15.14
- },
- {
- "f1": 0.8416814379099725,
- "fn": 5760,
- "fn_rate": 0.018949799480854453,
- "fp": 106422,
- "fp_rate": 0.6120815096423169,
- "match_probability": 0.00002808110994672502,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7369847981948628,
- "recall": 0.9810502005191456,
- "row_count": 477830,
- "tn": 67447,
- "tn_rate": 0.3879184903576831,
- "tp": 298201,
- "tp_rate": 0.9810502005191456,
- "truth_threshold": -15.120000000000001
- },
- {
- "f1": 0.8416244887128691,
- "fn": 5813,
- "fn_rate": 0.01912416395524426,
- "fp": 106397,
- "fp_rate": 0.6119377232284076,
- "match_probability": 0.000028473096472119992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7369958842650385,
- "recall": 0.9808758360447557,
- "row_count": 477830,
- "tn": 67472,
- "tn_rate": 0.3880622767715924,
- "tp": 298148,
- "tp_rate": 0.9808758360447557,
- "truth_threshold": -15.1
- },
- {
- "f1": 0.8416286271620412,
- "fn": 5825,
- "fn_rate": 0.019163642704162705,
- "fp": 106377,
- "fp_rate": 0.6118226940972802,
- "match_probability": 0.000028870554611713878,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7370245208435823,
- "recall": 0.9808363572958373,
- "row_count": 477830,
- "tn": 67492,
- "tn_rate": 0.38817730590271987,
- "tp": 298136,
- "tp_rate": 0.9808363572958373,
- "truth_threshold": -15.08
- },
- {
- "f1": 0.8416577028297492,
- "fn": 5845,
- "fn_rate": 0.01922944061902678,
- "fp": 106325,
- "fp_rate": 0.6115236183563487,
- "match_probability": 0.000029273560737573354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7371062775534627,
- "recall": 0.9807705593809732,
- "row_count": 477830,
- "tn": 67544,
- "tn_rate": 0.3884763816436513,
- "tp": 298116,
- "tp_rate": 0.9807705593809732,
- "truth_threshold": -15.06
- },
- {
- "f1": 0.8416667607765193,
- "fn": 5846,
- "fn_rate": 0.019232730514769987,
- "fp": 106317,
- "fp_rate": 0.6114776067038977,
- "match_probability": 0.000029682192287631416,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737120208094315,
- "recall": 0.98076726948523,
- "row_count": 477830,
- "tn": 67552,
- "tn_rate": 0.3885223932961022,
- "tp": 298115,
- "tp_rate": 0.98076726948523,
- "truth_threshold": -15.040000000000001
- },
- {
- "f1": 0.8417157716709066,
- "fn": 5848,
- "fn_rate": 0.019239310306256394,
- "fp": 106272,
- "fp_rate": 0.611218791158861,
- "match_probability": 0.000030096527780559407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7372009347527727,
- "recall": 0.9807606896937436,
- "row_count": 477830,
- "tn": 67597,
- "tn_rate": 0.38878120884113904,
- "tp": 298113,
- "tp_rate": 0.9807606896937436,
- "truth_threshold": -15.02
- },
- {
- "f1": 0.8417585520464204,
- "fn": 5848,
- "fn_rate": 0.019239310306256394,
- "fp": 106236,
- "fp_rate": 0.6110117387228315,
- "match_probability": 0.000030516646830846227,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7372665692260894,
- "recall": 0.9807606896937436,
- "row_count": 477830,
- "tn": 67633,
- "tn_rate": 0.38898826127716846,
- "tp": 298113,
- "tp_rate": 0.9807606896937436,
- "truth_threshold": -15
- },
- {
- "f1": 0.8417775669425408,
- "fn": 5848,
- "fn_rate": 0.019239310306256394,
- "fp": 106220,
- "fp_rate": 0.6109197154179296,
- "match_probability": 0.00003094263016408827,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737295743854694,
- "recall": 0.9807606896937436,
- "row_count": 477830,
- "tn": 67649,
- "tn_rate": 0.3890802845820704,
- "tp": 298113,
- "tp_rate": 0.9807606896937436,
- "truth_threshold": -14.98
- },
- {
- "f1": 0.8418980481205641,
- "fn": 5871,
- "fn_rate": 0.019314977908350083,
- "fp": 106087,
- "fp_rate": 0.610154771695932,
- "match_probability": 0.00003137455963249214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737523411772565,
- "recall": 0.9806850220916499,
- "row_count": 477830,
- "tn": 67782,
- "tn_rate": 0.389845228304068,
- "tp": 298090,
- "tp_rate": 0.9806850220916499,
- "truth_threshold": -14.96
- },
- {
- "f1": 0.8418812471226872,
- "fn": 5882,
- "fn_rate": 0.01935116676152533,
- "fp": 106087,
- "fp_rate": 0.610154771695932,
- "match_probability": 0.00003181251823059389,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737516268068071,
- "recall": 0.9806488332384746,
- "row_count": 477830,
- "tn": 67782,
- "tn_rate": 0.389845228304068,
- "tp": 298079,
- "tp_rate": 0.9806488332384746,
- "truth_threshold": -14.94
- },
- {
- "f1": 0.841874705206165,
- "fn": 5886,
- "fn_rate": 0.019364326344498143,
- "fp": 106087,
- "fp_rate": 0.610154771695932,
- "match_probability": 0.00003225659011119708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737513670260935,
- "recall": 0.9806356736555019,
- "row_count": 477830,
- "tn": 67782,
- "tn_rate": 0.389845228304068,
- "tp": 298075,
- "tp_rate": 0.9806356736555019,
- "truth_threshold": -14.92
- },
- {
- "f1": 0.8418387233441604,
- "fn": 5908,
- "fn_rate": 0.01943670405084863,
- "fp": 106087,
- "fp_rate": 0.610154771695932,
- "match_probability": 0.00003270686060153373,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7374993814024843,
- "recall": 0.9805632959491514,
- "row_count": 477830,
- "tn": 67782,
- "tn_rate": 0.389845228304068,
- "tp": 298053,
- "tp_rate": 0.9805632959491514,
- "truth_threshold": -14.9
- },
- {
- "f1": 0.841766752912199,
- "fn": 5952,
- "fn_rate": 0.0195814594635496,
- "fp": 106087,
- "fp_rate": 0.610154771695932,
- "match_probability": 0.00003316341621965,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7374707990180551,
- "recall": 0.9804185405364504,
- "row_count": 477830,
- "tn": 67782,
- "tn_rate": 0.389845228304068,
- "tp": 298009,
- "tp_rate": 0.9804185405364504,
- "truth_threshold": -14.88
- },
- {
- "f1": 0.8417924613576787,
- "fn": 5953,
- "fn_rate": 0.019584749359292802,
- "fp": 106064,
- "fp_rate": 0.6100224881951354,
- "match_probability": 0.00003362634469102074,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375121265517036,
- "recall": 0.9804152506407072,
- "row_count": 477830,
- "tn": 67805,
- "tn_rate": 0.38997751180486456,
- "tp": 298008,
- "tp_rate": 0.9804152506407072,
- "truth_threshold": -14.86
- },
- {
- "f1": 0.8418012225850555,
- "fn": 5960,
- "fn_rate": 0.01960777862949523,
- "fp": 106047,
- "fp_rate": 0.609924713433677,
- "match_probability": 0.000034095734965395514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375386092741456,
- "recall": 0.9803922213705047,
- "row_count": 477830,
- "tn": 67822,
- "tn_rate": 0.3900752865663229,
- "tp": 298001,
- "tp_rate": 0.9803922213705047,
- "truth_threshold": -14.84
- },
- {
- "f1": 0.8417943756267744,
- "fn": 5970,
- "fn_rate": 0.01964067758692727,
- "fp": 106039,
- "fp_rate": 0.609878701781226,
- "match_probability": 0.00003457167723387977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375467168279584,
- "recall": 0.9803593224130728,
- "row_count": 477830,
- "tn": 67830,
- "tn_rate": 0.3901212982187739,
- "tp": 297991,
- "tp_rate": 0.9803593224130728,
- "truth_threshold": -14.82
- },
- {
- "f1": 0.8417469227705094,
- "fn": 6007,
- "fn_rate": 0.019762403729425816,
- "fp": 106027,
- "fp_rate": 0.6098096843025497,
- "match_probability": 0.00003505426294625404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375445874929761,
- "recall": 0.9802375962705742,
- "row_count": 477830,
- "tn": 67842,
- "tn_rate": 0.3901903156974504,
- "tp": 297954,
- "tp_rate": 0.9802375962705742,
- "truth_threshold": -14.8
- },
- {
- "f1": 0.8417689154332306,
- "fn": 6011,
- "fn_rate": 0.01977556331239863,
- "fp": 106004,
- "fp_rate": 0.609677400801753,
- "match_probability": 0.000035543584828534594,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375839823346223,
- "recall": 0.9802244366876014,
- "row_count": 477830,
- "tn": 67865,
- "tn_rate": 0.39032259919824697,
- "tp": 297950,
- "tp_rate": 0.9802244366876014,
- "truth_threshold": -14.780000000000001
- },
- {
- "f1": 0.8417699525078188,
- "fn": 6014,
- "fn_rate": 0.019785432999628243,
- "fp": 105998,
- "fp_rate": 0.6096428920624148,
- "match_probability": 0.00003603973690077914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7375929891445617,
- "recall": 0.9802145670003718,
- "row_count": 477830,
- "tn": 67871,
- "tn_rate": 0.3903571079375852,
- "tp": 297947,
- "tp_rate": 0.9802145670003718,
- "truth_threshold": -14.76
- },
- {
- "f1": 0.8417824338947232,
- "fn": 6018,
- "fn_rate": 0.019798592582601058,
- "fp": 105983,
- "fp_rate": 0.6095566202140692,
- "match_probability": 0.0000365428144951405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7376177814748246,
- "recall": 0.9802014074173989,
- "row_count": 477830,
- "tn": 67886,
- "tn_rate": 0.3904433797859308,
- "tp": 297943,
- "tp_rate": 0.9802014074173989,
- "truth_threshold": -14.74
- },
- {
- "f1": 0.8418561676348922,
- "fn": 6018,
- "fn_rate": 0.019798592582601058,
- "fp": 105921,
- "fp_rate": 0.609200029907574,
- "match_probability": 0.000037052914274172446,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377310183626171,
- "recall": 0.9802014074173989,
- "row_count": 477830,
- "tn": 67948,
- "tn_rate": 0.3907999700924259,
- "tp": 297943,
- "tp_rate": 0.9802014074173989,
- "truth_threshold": -14.72
- },
- {
- "f1": 0.8420515603492379,
- "fn": 6044,
- "fn_rate": 0.01988412987192436,
- "fp": 105720,
- "fp_rate": 0.6080439871397432,
- "match_probability": 0.000037570134249390434,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7380814940156626,
- "recall": 0.9801158701280757,
- "row_count": 477830,
- "tn": 68149,
- "tn_rate": 0.3919560128602569,
- "tp": 297917,
- "tp_rate": 0.9801158701280757,
- "truth_threshold": -14.700000000000001
- },
- {
- "f1": 0.8420658407599925,
- "fn": 6044,
- "fn_rate": 0.01988412987192436,
- "fp": 105708,
- "fp_rate": 0.6079749696610667,
- "match_probability": 0.00003809457380009125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7381034375967792,
- "recall": 0.9801158701280757,
- "row_count": 477830,
- "tn": 68161,
- "tn_rate": 0.3920250303389333,
- "tp": 297917,
- "tp_rate": 0.9801158701280757,
- "truth_threshold": -14.68
- },
- {
- "f1": 0.8421225209741978,
- "fn": 6045,
- "fn_rate": 0.01988741976766756,
- "fp": 105659,
- "fp_rate": 0.6076931482898044,
- "match_probability": 0.00003862633369243492,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7381924053769435,
- "recall": 0.9801125802323324,
- "row_count": 477830,
- "tn": 68210,
- "tn_rate": 0.3923068517101956,
- "tp": 297916,
- "tp_rate": 0.9801125802323324,
- "truth_threshold": -14.66
- },
- {
- "f1": 0.842165371024735,
- "fn": 6045,
- "fn_rate": 0.01988741976766756,
- "fp": 105623,
- "fp_rate": 0.607486095853775,
- "match_probability": 0.00003916551609879306,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7382582600442584,
- "recall": 0.9801125802323324,
- "row_count": 477830,
- "tn": 68246,
- "tn_rate": 0.39251390414622506,
- "tp": 297916,
- "tp_rate": 0.9801125802323324,
- "truth_threshold": -14.64
- },
- {
- "f1": 0.8421132980136944,
- "fn": 6087,
- "fn_rate": 0.020025595388882125,
- "fp": 105610,
- "fp_rate": 0.6074113269185422,
- "match_probability": 0.0000397122246173665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7382548006860247,
- "recall": 0.9799744046111178,
- "row_count": 477830,
- "tn": 68259,
- "tn_rate": 0.3925886730814579,
- "tp": 297874,
- "tp_rate": 0.9799744046111178,
- "truth_threshold": -14.620000000000001
- },
- {
- "f1": 0.8382298294334399,
- "fn": 8459,
- "fn_rate": 0.027829228091761773,
- "fp": 105599,
- "fp_rate": 0.607348060896422,
- "match_probability": 0.00004026656429207677,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7367271584962392,
- "recall": 0.9721707719082382,
- "row_count": 477830,
- "tn": 68270,
- "tn_rate": 0.392651939103578,
- "tp": 295502,
- "tp_rate": 0.9721707719082382,
- "truth_threshold": -14.6
- },
- {
- "f1": 0.8382455563057057,
- "fn": 8461,
- "fn_rate": 0.02783580788324818,
- "fp": 105584,
- "fp_rate": 0.6072617890480764,
- "match_probability": 0.00004082864163273459,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7367533982906324,
- "recall": 0.9721641921167519,
- "row_count": 477830,
- "tn": 68285,
- "tn_rate": 0.39273821095192357,
- "tp": 295500,
- "tp_rate": 0.9721641921167519,
- "truth_threshold": -14.58
- },
- {
- "f1": 0.8384653799662908,
- "fn": 8464,
- "fn_rate": 0.027845677570477793,
- "fp": 105394,
- "fp_rate": 0.6061690123023655,
- "match_probability": 0.000041398564635490015,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7371006083948006,
- "recall": 0.9721543224295222,
- "row_count": 477830,
- "tn": 68475,
- "tn_rate": 0.3938309876976344,
- "tp": 295497,
- "tp_rate": 0.9721543224295222,
- "truth_threshold": -14.56
- },
- {
- "f1": 0.8385315425500217,
- "fn": 8465,
- "fn_rate": 0.027848967466220995,
- "fp": 105338,
- "fp_rate": 0.6058469307352087,
- "match_probability": 0.00004197644280356719,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7372029318870156,
- "recall": 0.972151032533779,
- "row_count": 477830,
- "tn": 68531,
- "tn_rate": 0.3941530692647913,
- "tp": 295496,
- "tp_rate": 0.972151032533779,
- "truth_threshold": -14.540000000000001
- },
- {
- "f1": 0.8385977160241566,
- "fn": 8466,
- "fn_rate": 0.0278522573619642,
- "fp": 105281,
- "fp_rate": 0.6055190977114955,
- "match_probability": 0.000042562387168288515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7373071241790926,
- "recall": 0.9721477426380358,
- "row_count": 477830,
- "tn": 68588,
- "tn_rate": 0.3944809022885046,
- "tp": 295495,
- "tp_rate": 0.9721477426380358,
- "truth_threshold": -14.52
- },
- {
- "f1": 0.8386497947783436,
- "fn": 8503,
- "fn_rate": 0.027973983504462743,
- "fp": 105185,
- "fp_rate": 0.6049669578820837,
- "match_probability": 0.00004315651031039153,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7374595337994174,
- "recall": 0.9720260164955372,
- "row_count": 477830,
- "tn": 68684,
- "tn_rate": 0.39503304211791634,
- "tp": 295458,
- "tp_rate": 0.9720260164955372,
- "truth_threshold": -14.5
- },
- {
- "f1": 0.8388003429538319,
- "fn": 8507,
- "fn_rate": 0.027987143087435558,
- "fp": 105053,
- "fp_rate": 0.6042077656166425,
- "match_probability": 0.000043758926381643505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7376999652939898,
- "recall": 0.9720128569125644,
- "row_count": 477830,
- "tn": 68816,
- "tn_rate": 0.3957922343833576,
- "tp": 295454,
- "tp_rate": 0.9720128569125644,
- "truth_threshold": -14.48
- },
- {
- "f1": 0.8388510002782494,
- "fn": 8516,
- "fn_rate": 0.028016752149124396,
- "fp": 104998,
- "fp_rate": 0.6038914355060419,
- "match_probability": 0.000044369751126756925,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377953916037988,
- "recall": 0.9719832478508756,
- "row_count": 477830,
- "tn": 68871,
- "tn_rate": 0.3961085644939581,
- "tp": 295445,
- "tp_rate": 0.9719832478508756,
- "truth_threshold": -14.46
- },
- {
- "f1": 0.8381329923273657,
- "fn": 9022,
- "fn_rate": 0.029681439395185565,
- "fp": 104900,
- "fp_rate": 0.6033277927635173,
- "match_probability": 0.000044989101905610624,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7376444018717534,
- "recall": 0.9703185606048145,
- "row_count": 477830,
- "tn": 68969,
- "tn_rate": 0.39667220723648267,
- "tp": 294939,
- "tp_rate": 0.9703185606048145,
- "truth_threshold": -14.44
- },
- {
- "f1": 0.8381383796502855,
- "fn": 9031,
- "fn_rate": 0.029711048456874403,
- "fp": 104883,
- "fp_rate": 0.603230018002059,
- "match_probability": 0.00004561709771578043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7376698606598585,
- "recall": 0.9702889515431256,
- "row_count": 477830,
- "tn": 68986,
- "tn_rate": 0.396769981997941,
- "tp": 294930,
- "tp_rate": 0.9702889515431256,
- "truth_threshold": -14.42
- },
- {
- "f1": 0.8381784129889248,
- "fn": 9032,
- "fn_rate": 0.029714338352617605,
- "fp": 104848,
- "fp_rate": 0.603028717022586,
- "match_probability": 0.00004625385921538452,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377337865860217,
- "recall": 0.9702856616473824,
- "row_count": 477830,
- "tn": 69021,
- "tn_rate": 0.396971282977414,
- "tp": 294929,
- "tp_rate": 0.9702856616473824,
- "truth_threshold": -14.4
- },
- {
- "f1": 0.8381501082921672,
- "fn": 9078,
- "fn_rate": 0.029865673556804986,
- "fp": 104808,
- "fp_rate": 0.602798658760331,
- "match_probability": 0.000046899508746246485,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377774330670442,
- "recall": 0.970134326443195,
- "row_count": 477830,
- "tn": 69061,
- "tn_rate": 0.39720134123966894,
- "tp": 294883,
- "tp_rate": 0.970134326443195,
- "truth_threshold": -14.38
- },
- {
- "f1": 0.8380802947095541,
- "fn": 9121,
- "fn_rate": 0.03000713907376275,
- "fp": 104808,
- "fp_rate": 0.602798658760331,
- "match_probability": 0.000047554170357381744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377492193129954,
- "recall": 0.9699928609262373,
- "row_count": 477830,
- "tn": 69061,
- "tn_rate": 0.39720134123966894,
- "tp": 294840,
- "tp_rate": 0.9699928609262373,
- "truth_threshold": -14.36
- },
- {
- "f1": 0.8380741494529609,
- "fn": 9124,
- "fn_rate": 0.030017008760992364,
- "fp": 104808,
- "fp_rate": 0.602798658760331,
- "match_probability": 0.00004821796982881093,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377472506849829,
- "recall": 0.9699829912390077,
- "row_count": 477830,
- "tn": 69061,
- "tn_rate": 0.39720134123966894,
- "tp": 294837,
- "tp_rate": 0.9699829912390077,
- "truth_threshold": -14.34
- },
- {
- "f1": 0.8380736891774351,
- "fn": 9125,
- "fn_rate": 0.03002029865673557,
- "fp": 104808,
- "fp_rate": 0.602798658760331,
- "match_probability": 0.000048891034695705744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7377465944690775,
- "recall": 0.9699797013432644,
- "row_count": 477830,
- "tn": 69061,
- "tn_rate": 0.39720134123966894,
- "tp": 294836,
- "tp_rate": 0.9699797013432644,
- "truth_threshold": -14.32
- },
- {
- "f1": 0.8380708466694333,
- "fn": 9126,
- "fn_rate": 0.03002358855247877,
- "fp": 104808,
- "fp_rate": 0.602798658760331,
- "match_probability": 0.000049573494272870864,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.737745938249888,
- "recall": 0.9699764114475212,
- "row_count": 477830,
- "tn": 69061,
- "tn_rate": 0.39720134123966894,
- "tp": 294835,
- "tp_rate": 0.9699764114475212,
- "truth_threshold": -14.3
- },
- {
- "f1": 0.8381199559950991,
- "fn": 9128,
- "fn_rate": 0.03003016834396518,
- "fp": 104764,
- "fp_rate": 0.6025455946718506,
- "match_probability": 0.00005026547967956725,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7378258595535001,
- "recall": 0.9699698316560348,
- "row_count": 477830,
- "tn": 69105,
- "tn_rate": 0.39745440532814935,
- "tp": 294833,
- "tp_rate": 0.9699698316560348,
- "truth_threshold": -14.280000000000001
- },
- {
- "f1": 0.8381613326017178,
- "fn": 9152,
- "fn_rate": 0.030109125841802073,
- "fp": 104697,
- "fp_rate": 0.6021602470825737,
- "match_probability": 0.00005096712386468152,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7379338483026537,
- "recall": 0.969890874158198,
- "row_count": 477830,
- "tn": 69172,
- "tn_rate": 0.39783975291742635,
- "tp": 294809,
- "tp_rate": 0.969890874158198,
- "truth_threshold": -14.26
- },
- {
- "f1": 0.8381282998268523,
- "fn": 9172,
- "fn_rate": 0.030174923756666153,
- "fp": 104697,
- "fp_rate": 0.6021602470825737,
- "match_probability": 0.000051678561632245805,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7379207281356543,
- "recall": 0.9698250762433338,
- "row_count": 477830,
- "tn": 69172,
- "tn_rate": 0.39783975291742635,
- "tp": 294789,
- "tp_rate": 0.9698250762433338,
- "truth_threshold": -14.24
- },
- {
- "f1": 0.8381245362090975,
- "fn": 9175,
- "fn_rate": 0.030184793443895762,
- "fp": 104695,
- "fp_rate": 0.602148744169461,
- "match_probability": 0.000052399929667313805,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7379224543845639,
- "recall": 0.9698152065561042,
- "row_count": 477830,
- "tn": 69174,
- "tn_rate": 0.3978512558305391,
- "tp": 294786,
- "tp_rate": 0.9698152065561042,
- "truth_threshold": -14.22
- },
- {
- "f1": 0.8381491549327813,
- "fn": 9194,
- "fn_rate": 0.030247301463016636,
- "fp": 104649,
- "fp_rate": 0.6018841771678678,
- "match_probability": 0.0000531313665621969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7379949726600837,
- "recall": 0.9697526985369833,
- "row_count": 477830,
- "tn": 69220,
- "tn_rate": 0.39811582283213226,
- "tp": 294767,
- "tp_rate": 0.9697526985369833,
- "truth_threshold": -14.200000000000001
- },
- {
- "f1": 0.8381744508423971,
- "fn": 9196,
- "fn_rate": 0.030253881254503043,
- "fp": 104625,
- "fp_rate": 0.6017461422105148,
- "match_probability": 0.000053873012843066357,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7380380079621423,
- "recall": 0.969746118745497,
- "row_count": 477830,
- "tn": 69244,
- "tn_rate": 0.3982538577894852,
- "tp": 294765,
- "tp_rate": 0.969746118745497,
- "truth_threshold": -14.18
- },
- {
- "f1": 0.8381873709713193,
- "fn": 9199,
- "fn_rate": 0.030263750941732656,
- "fp": 104609,
- "fp_rate": 0.6016541189056128,
- "match_probability": 0.00005462501099692568,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7380656081688455,
- "recall": 0.9697362490582674,
- "row_count": 477830,
- "tn": 69260,
- "tn_rate": 0.3983458810943872,
- "tp": 294762,
- "tp_rate": 0.9697362490582674,
- "truth_threshold": -14.16
- },
- {
- "f1": 0.8381966108249987,
- "fn": 9210,
- "fn_rate": 0.030299939794907898,
- "fp": 104586,
- "fp_rate": 0.6015218354048163,
- "match_probability": 0.00005538750549895966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7381009022454719,
- "recall": 0.9697000602050921,
- "row_count": 477830,
- "tn": 69283,
- "tn_rate": 0.3984781645951837,
- "tp": 294751,
- "tp_rate": 0.9697000602050921,
- "truth_threshold": -14.14
- },
- {
- "f1": 0.8381862389625901,
- "fn": 9217,
- "fn_rate": 0.030322969065110325,
- "fp": 104586,
- "fp_rate": 0.6015218354048163,
- "match_probability": 0.00005616064284026378,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7380963113214635,
- "recall": 0.9696770309348897,
- "row_count": 477830,
- "tn": 69283,
- "tn_rate": 0.3984781645951837,
- "tp": 294744,
- "tp_rate": 0.9696770309348897,
- "truth_threshold": -14.120000000000001
- },
- {
- "f1": 0.8382301499048697,
- "fn": 9220,
- "fn_rate": 0.030332838752339938,
- "fp": 104544,
- "fp_rate": 0.6012802742294486,
- "match_probability": 0.000056944571555960515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7381719824185732,
- "recall": 0.9696671612476601,
- "row_count": 477830,
- "tn": 69325,
- "tn_rate": 0.39871972577055137,
- "tp": 294741,
- "tp_rate": 0.9696671612476601,
- "truth_threshold": -14.1
- },
- {
- "f1": 0.8382578375411324,
- "fn": 9222,
- "fn_rate": 0.030339418543826345,
- "fp": 104519,
- "fp_rate": 0.6011364878155393,
- "match_probability": 0.00005773944225370692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.738216892335282,
- "recall": 0.9696605814561736,
- "row_count": 477830,
- "tn": 69350,
- "tn_rate": 0.3988635121844607,
- "tp": 294739,
- "tp_rate": 0.9696605814561736,
- "truth_threshold": -14.08
- },
- {
- "f1": 0.8382640698058043,
- "fn": 9224,
- "fn_rate": 0.030345998335312752,
- "fp": 104511,
- "fp_rate": 0.6010904761630883,
- "match_probability": 0.000058545407642600166,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7382303731014307,
- "recall": 0.9696540016646873,
- "row_count": 477830,
- "tn": 69358,
- "tn_rate": 0.3989095238369117,
- "tp": 294737,
- "tp_rate": 0.9696540016646873,
- "truth_threshold": -14.06
- },
- {
- "f1": 0.838313304415843,
- "fn": 9231,
- "fn_rate": 0.03036902760551518,
- "fp": 104460,
- "fp_rate": 0.6007971518787133,
- "match_probability": 0.00005936262256248524,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7383200981988527,
- "recall": 0.9696309723944848,
- "row_count": 477830,
- "tn": 69409,
- "tn_rate": 0.3992028481212867,
- "tp": 294730,
- "tp_rate": 0.9696309723944848,
- "truth_threshold": -14.040000000000001
- },
- {
- "f1": 0.8383026413849208,
- "fn": 9249,
- "fn_rate": 0.030428245728892852,
- "fp": 104443,
- "fp_rate": 0.600699377117255,
- "match_probability": 0.0000601912440136712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7383397427064674,
- "recall": 0.9695717542711072,
- "row_count": 477830,
- "tn": 69426,
- "tn_rate": 0.39930062288274504,
- "tp": 294712,
- "tp_rate": 0.9695717542711072,
- "truth_threshold": -14.02
- },
- {
- "f1": 0.8383169488439832,
- "fn": 9249,
- "fn_rate": 0.030428245728892852,
- "fp": 104431,
- "fp_rate": 0.6006303596385785,
- "match_probability": 0.000061031431187061336,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7383619404574301,
- "recall": 0.9695717542711072,
- "row_count": 477830,
- "tn": 69438,
- "tn_rate": 0.39936964036142153,
- "tp": 294712,
- "tp_rate": 0.9695717542711072,
- "truth_threshold": -14
- },
- {
- "f1": 0.8384801411175601,
- "fn": 9252,
- "fn_rate": 0.030438115416122465,
- "fp": 104291,
- "fp_rate": 0.5998251557206863,
- "match_probability": 0.00006188334549470357,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7386190476190476,
- "recall": 0.9695618845838775,
- "row_count": 477830,
- "tn": 69578,
- "tn_rate": 0.4001748442793137,
- "tp": 294709,
- "tp_rate": 0.9695618845838775,
- "truth_threshold": -13.98
- },
- {
- "f1": 0.8383413290537733,
- "fn": 9336,
- "fn_rate": 0.03071446665855159,
- "fp": 104291,
- "fp_rate": 0.5998251557206863,
- "match_probability": 0.00006274715060076599,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7385640084629346,
- "recall": 0.9692855333414484,
- "row_count": 477830,
- "tn": 69578,
- "tn_rate": 0.4001748442793137,
- "tp": 294625,
- "tp_rate": 0.9692855333414484,
- "truth_threshold": -13.96
- },
- {
- "f1": 0.8385795731091193,
- "fn": 9342,
- "fn_rate": 0.030734206033010813,
- "fp": 104082,
- "fp_rate": 0.5986231013004043,
- "match_probability": 0.00006362301245294422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7389472311331048,
- "recall": 0.9692657939669892,
- "row_count": 477830,
- "tn": 69787,
- "tn_rate": 0.4013768986995957,
- "tp": 294619,
- "tp_rate": 0.9692657939669892,
- "truth_threshold": -13.94
- },
- {
- "f1": 0.8386595384904436,
- "fn": 9355,
- "fn_rate": 0.030776974677672465,
- "fp": 103997,
- "fp_rate": 0.5981342274931126,
- "match_probability": 0.00006451109931430596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7390962938061179,
- "recall": 0.9692230253223275,
- "row_count": 477830,
- "tn": 69872,
- "tn_rate": 0.4018657725068874,
- "tp": 294606,
- "tp_rate": 0.9692230253223275,
- "truth_threshold": -13.92
- },
- {
- "f1": 0.8386825863168443,
- "fn": 9362,
- "fn_rate": 0.030800003947874893,
- "fp": 103968,
- "fp_rate": 0.5979674352529778,
- "match_probability": 0.00006541158179557995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7391454887133154,
- "recall": 0.9691999960521251,
- "row_count": 477830,
- "tn": 69901,
- "tn_rate": 0.4020325647470222,
- "tp": 294599,
- "tp_rate": 0.9691999960521251,
- "truth_threshold": -13.9
- },
- {
- "f1": 0.8386751467598945,
- "fn": 9373,
- "fn_rate": 0.030836192801050134,
- "fp": 103960,
- "fp_rate": 0.5979214236005268,
- "match_probability": 0.00006632463288789393,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.739153125846824,
- "recall": 0.9691638071989499,
- "row_count": 477830,
- "tn": 69909,
- "tn_rate": 0.40207857639947314,
- "tp": 294588,
- "tp_rate": 0.9691638071989499,
- "truth_threshold": -13.88
- },
- {
- "f1": 0.8385957919312131,
- "fn": 9421,
- "fn_rate": 0.030994107796723923,
- "fp": 103960,
- "fp_rate": 0.5979214236005268,
- "match_probability": 0.00006725042799596908,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7391217063989962,
- "recall": 0.969005892203276,
- "row_count": 477830,
- "tn": 69909,
- "tn_rate": 0.40207857639947314,
- "tp": 294540,
- "tp_rate": 0.969005892203276,
- "truth_threshold": -13.86
- },
- {
- "f1": 0.8386079013161267,
- "fn": 9457,
- "fn_rate": 0.03111254404347926,
- "fp": 103900,
- "fp_rate": 0.5975763362071445,
- "match_probability": 0.00006818914497177655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7392094456882963,
- "recall": 0.9688874559565207,
- "row_count": 477830,
- "tn": 69969,
- "tn_rate": 0.40242366379285555,
- "tp": 294504,
- "tp_rate": 0.9688874559565207,
- "truth_threshold": -13.84
- },
- {
- "f1": 0.8402368214565946,
- "fn": 9479,
- "fn_rate": 0.031184921749829748,
- "fp": 102507,
- "fp_rate": 0.589564557224117,
- "match_probability": 0.00006914096414866335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7417888153072252,
- "recall": 0.9688150782501702,
- "row_count": 477830,
- "tn": 71362,
- "tn_rate": 0.410435442775883,
- "tp": 294482,
- "tp_rate": 0.9688150782501702,
- "truth_threshold": -13.82
- },
- {
- "f1": 0.8402176580360556,
- "fn": 9500,
- "fn_rate": 0.03125400956043703,
- "fp": 102495,
- "fp_rate": 0.5894955397454406,
- "match_probability": 0.0000701060683759531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7417975795806084,
- "recall": 0.968745990439563,
- "row_count": 477830,
- "tn": 71374,
- "tn_rate": 0.41050446025455944,
- "tp": 294461,
- "tp_rate": 0.968745990439563,
- "truth_threshold": -13.8
- },
- {
- "f1": 0.8402838814250003,
- "fn": 9502,
- "fn_rate": 0.03126058935192344,
- "fp": 102436,
- "fp_rate": 0.5891562038086146,
- "match_probability": 0.0000710846430540288,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7419065495912017,
- "recall": 0.9687394106480766,
- "row_count": 477830,
- "tn": 71433,
- "tn_rate": 0.41084379619138545,
- "tp": 294459,
- "tp_rate": 0.9687394106480766,
- "truth_threshold": -13.780000000000001
- },
- {
- "f1": 0.8403577666411717,
- "fn": 9503,
- "fn_rate": 0.03126387924766664,
- "fp": 102373,
- "fp_rate": 0.588793862045563,
- "match_probability": 0.00007207687616990448,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7420236826256014,
- "recall": 0.9687361207523334,
- "row_count": 477830,
- "tn": 71496,
- "tn_rate": 0.41120613795443695,
- "tp": 294458,
- "tp_rate": 0.9687361207523334,
- "truth_threshold": -13.76
- },
- {
- "f1": 0.8403512677374796,
- "fn": 9512,
- "fn_rate": 0.03129348830935548,
- "fp": 102366,
- "fp_rate": 0.5887536018496684,
- "match_probability": 0.00007308295833329186,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7420309212101357,
- "recall": 0.9687065116906445,
- "row_count": 477830,
- "tn": 71503,
- "tn_rate": 0.4112463981503316,
- "tp": 294449,
- "tp_rate": 0.9687065116906445,
- "truth_threshold": -13.74
- },
- {
- "f1": 0.8404059777831056,
- "fn": 9513,
- "fn_rate": 0.03129677820509868,
- "fp": 102320,
- "fp_rate": 0.5884890348480752,
- "match_probability": 0.00007410308281316996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7421162997015889,
- "recall": 0.9687032217949013,
- "row_count": 477830,
- "tn": 71549,
- "tn_rate": 0.4115109651519247,
- "tp": 294448,
- "tp_rate": 0.9687032217949013,
- "truth_threshold": -13.72
- },
- {
- "f1": 0.840176886556793,
- "fn": 9663,
- "fn_rate": 0.03179026256657926,
- "fp": 102304,
- "fp_rate": 0.5883970115431733,
- "match_probability": 0.00007513744557486346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7420487037382565,
- "recall": 0.9682097374334208,
- "row_count": 477830,
- "tn": 71565,
- "tn_rate": 0.4116029884568267,
- "tp": 294298,
- "tp_rate": 0.9682097374334208,
- "truth_threshold": -13.700000000000001
- },
- {
- "f1": 0.8402009906784863,
- "fn": 9668,
- "fn_rate": 0.03180671204529528,
- "fp": 102276,
- "fp_rate": 0.5882359707595949,
- "match_probability": 0.0000761862453176377,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7420978442591327,
- "recall": 0.9681932879547047,
- "row_count": 477830,
- "tn": 71593,
- "tn_rate": 0.4117640292404051,
- "tp": 294293,
- "tp_rate": 0.9681932879547047,
- "truth_threshold": -13.68
- },
- {
- "f1": 0.8401721139926849,
- "fn": 9705,
- "fn_rate": 0.031928438187793826,
- "fp": 102250,
- "fp_rate": 0.5880864328891292,
- "match_probability": 0.00007724968351281685,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.742122439509112,
- "recall": 0.9680715618122062,
- "row_count": 477830,
- "tn": 71619,
- "tn_rate": 0.41191356711087085,
- "tp": 294256,
- "tp_rate": 0.9680715618122062,
- "truth_threshold": -13.66
- },
- {
- "f1": 0.8401731438573048,
- "fn": 9708,
- "fn_rate": 0.03193830787502344,
- "fp": 102244,
- "fp_rate": 0.5880519241497909,
- "match_probability": 0.00007832796444243376,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7421317185249825,
- "recall": 0.9680616921249766,
- "row_count": 477830,
- "tn": 71625,
- "tn_rate": 0.41194807585020904,
- "tp": 294253,
- "tp_rate": 0.9680616921249766,
- "truth_threshold": -13.64
- },
- {
- "f1": 0.8401620737212709,
- "fn": 9727,
- "fn_rate": 0.032000815894144316,
- "fp": 102227,
- "fp_rate": 0.5879541493883326,
- "match_probability": 0.0000794212952384171,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7421511825879469,
- "recall": 0.9679991841058557,
- "row_count": 477830,
- "tn": 71642,
- "tn_rate": 0.41204585061166743,
- "tp": 294234,
- "tp_rate": 0.9679991841058557,
- "truth_threshold": -13.620000000000001
- },
- {
- "f1": 0.8402131481328121,
- "fn": 9736,
- "fn_rate": 0.03203042495583315,
- "fp": 102173,
- "fp_rate": 0.5876435707342884,
- "match_probability": 0.00008052988592232462,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7422464290939914,
- "recall": 0.9679695750441668,
- "row_count": 477830,
- "tn": 71696,
- "tn_rate": 0.41235642926571153,
- "tp": 294225,
- "tp_rate": 0.9679695750441668,
- "truth_threshold": -13.6
- },
- {
- "f1": 0.8402432093582483,
- "fn": 9749,
- "fn_rate": 0.0320731936004948,
- "fp": 102130,
- "fp_rate": 0.5873962581023644,
- "match_probability": 0.00008165394944562937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7423185027072579,
- "recall": 0.9679268063995052,
- "row_count": 477830,
- "tn": 71739,
- "tn_rate": 0.4126037418976356,
- "tp": 294212,
- "tp_rate": 0.9679268063995052,
- "truth_threshold": -13.58
- },
- {
- "f1": 0.8402446965283251,
- "fn": 9751,
- "fn_rate": 0.03207977339198121,
- "fp": 102125,
- "fp_rate": 0.5873675008195826,
- "match_probability": 0.00008279370173056753,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7423265671717107,
- "recall": 0.9679202266080188,
- "row_count": 477830,
- "tn": 71744,
- "tn_rate": 0.41263249918041744,
- "tp": 294210,
- "tp_rate": 0.9679202266080188,
- "truth_threshold": -13.56
- },
- {
- "f1": 0.8402338473138118,
- "fn": 9759,
- "fn_rate": 0.03210609255792684,
- "fp": 102123,
- "fp_rate": 0.5873559979064699,
- "match_probability": 0.0000839493617115541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7423251119661893,
- "recall": 0.9678939074420732,
- "row_count": 477830,
- "tn": 71746,
- "tn_rate": 0.4126440020935302,
- "tp": 294202,
- "tp_rate": 0.9678939074420732,
- "truth_threshold": -13.540000000000001
- },
- {
- "f1": 0.8402879136259123,
- "fn": 9772,
- "fn_rate": 0.03214886120258849,
- "fp": 102060,
- "fp_rate": 0.5869936561434184,
- "match_probability": 0.0000851211513771759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7424346812231702,
- "recall": 0.9678511387974115,
- "row_count": 477830,
- "tn": 71809,
- "tn_rate": 0.4130063438565817,
- "tp": 294189,
- "tp_rate": 0.9678511387974115,
- "truth_threshold": -13.52
- },
- {
- "f1": 0.8403133060818744,
- "fn": 9790,
- "fn_rate": 0.03220807932596616,
- "fp": 102015,
- "fp_rate": 0.5867348405983815,
- "match_probability": 0.00008630929581276842,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7425073071739031,
- "recall": 0.9677919206740339,
- "row_count": 477830,
- "tn": 71854,
- "tn_rate": 0.41326515940161845,
- "tp": 294171,
- "tp_rate": 0.9677919206740339,
- "truth_threshold": -13.5
- },
- {
- "f1": 0.8404828571428572,
- "fn": 9792,
- "fn_rate": 0.03221465911745257,
- "fp": 101871,
- "fp_rate": 0.5859066308542639,
- "match_probability": 0.00008751402324358653,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7427759822240178,
- "recall": 0.9677853408825474,
- "row_count": 477830,
- "tn": 71998,
- "tn_rate": 0.41409336914573613,
- "tp": 294169,
- "tp_rate": 0.9677853408825474,
- "truth_threshold": -13.48
- },
- {
- "f1": 0.8405110093892689,
- "fn": 9804,
- "fn_rate": 0.03225413786637101,
- "fp": 101831,
- "fp_rate": 0.5856765725920089,
- "match_probability": 0.00008873556507857524,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7428432174712365,
- "recall": 0.967745862133629,
- "row_count": 477830,
- "tn": 72038,
- "tn_rate": 0.41432342740799105,
- "tp": 294157,
- "tp_rate": 0.967745862133629,
- "truth_threshold": -13.46
- },
- {
- "f1": 0.8405764383812174,
- "fn": 9808,
- "fn_rate": 0.03226729744934383,
- "fp": 101770,
- "fp_rate": 0.5853257337420702,
- "match_probability": 0.00008997415595475012,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7429550695463512,
- "recall": 0.9677327025506561,
- "row_count": 477830,
- "tn": 72099,
- "tn_rate": 0.4146742662579298,
- "tp": 294153,
- "tp_rate": 0.9677327025506561,
- "truth_threshold": -13.44
- },
- {
- "f1": 0.8405995484811248,
- "fn": 9810,
- "fn_rate": 0.03227387724083024,
- "fp": 101748,
- "fp_rate": 0.58519920169783,
- "match_probability": 0.0000912300337821952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7429950568200475,
- "recall": 0.9677261227591698,
- "row_count": 477830,
- "tn": 72121,
- "tn_rate": 0.41480079830217004,
- "tp": 294151,
- "tp_rate": 0.9677261227591698,
- "truth_threshold": -13.42
- },
- {
- "f1": 0.8406803203255844,
- "fn": 9812,
- "fn_rate": 0.03228045703231665,
- "fp": 101678,
- "fp_rate": 0.5847965997388839,
- "match_probability": 0.00009250343978968807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7431251531603453,
- "recall": 0.9677195429676834,
- "row_count": 477830,
- "tn": 72191,
- "tn_rate": 0.41520340026111613,
- "tp": 294149,
- "tp_rate": 0.9677195429676834,
- "truth_threshold": -13.4
- },
- {
- "f1": 0.8407548097398124,
- "fn": 9812,
- "fn_rate": 0.03228045703231665,
- "fp": 101617,
- "fp_rate": 0.5844457608889452,
- "match_probability": 0.00009379461857095894,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7432396921413158,
- "recall": 0.9677195429676834,
- "row_count": 477830,
- "tn": 72252,
- "tn_rate": 0.4155542391110549,
- "tp": 294149,
- "tp_rate": 0.9677195429676834,
- "truth_threshold": -13.38
- },
- {
- "f1": 0.8407965034345352,
- "fn": 9826,
- "fn_rate": 0.0323265155727215,
- "fp": 101563,
- "fp_rate": 0.584135182234901,
- "match_probability": 0.00009510381813159443,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7433320360476929,
- "recall": 0.9676734844272785,
- "row_count": 477830,
- "tn": 72306,
- "tn_rate": 0.41586481776509904,
- "tp": 294135,
- "tp_rate": 0.9676734844272785,
- "truth_threshold": -13.36
- },
- {
- "f1": 0.8407664070808604,
- "fn": 9871,
- "fn_rate": 0.032474560881165675,
- "fp": 101526,
- "fp_rate": 0.5839223783423152,
- "match_probability": 0.00009643128993659314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7433723610774085,
- "recall": 0.9675254391188344,
- "row_count": 477830,
- "tn": 72343,
- "tn_rate": 0.4160776216576848,
- "tp": 294090,
- "tp_rate": 0.9675254391188344,
- "truth_threshold": -13.34
- },
- {
- "f1": 0.8408107010711365,
- "fn": 9911,
- "fn_rate": 0.032606156710893834,
- "fp": 101434,
- "fp_rate": 0.5833932443391289,
- "match_probability": 0.00009777728895858458,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7435193332726482,
- "recall": 0.9673938432891062,
- "row_count": 477830,
- "tn": 72435,
- "tn_rate": 0.41660675566087113,
- "tp": 294050,
- "tp_rate": 0.9673938432891062,
- "truth_threshold": -13.32
- },
- {
- "f1": 0.8400958000217468,
- "fn": 10366,
- "fn_rate": 0.034103059274051606,
- "fp": 101401,
- "fp_rate": 0.5832034462727685,
- "match_probability": 0.00009914207372671765,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7432860079595742,
- "recall": 0.9658969407259484,
- "row_count": 477830,
- "tn": 72468,
- "tn_rate": 0.4167965537272314,
- "tp": 293595,
- "tp_rate": 0.9658969407259484,
- "truth_threshold": -13.3
- },
- {
- "f1": 0.8400972887903283,
- "fn": 10368,
- "fn_rate": 0.03410963906553801,
- "fp": 101396,
- "fp_rate": 0.5831746889899867,
- "match_probability": 0.00010052590637623026,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.743294117051361,
- "recall": 0.965890360934462,
- "row_count": 477830,
- "tn": 72473,
- "tn_rate": 0.4168253110100133,
- "tp": 293593,
- "tp_rate": 0.965890360934462,
- "truth_threshold": -13.280000000000001
- },
- {
- "f1": 0.8554769453121358,
- "fn": 10375,
- "fn_rate": 0.03413266833574044,
- "fp": 88822,
- "fp_rate": 0.5108558742501539,
- "match_probability": 0.00010192905269870875,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7677297546076441,
- "recall": 0.9658673316642595,
- "row_count": 477830,
- "tn": 85047,
- "tn_rate": 0.48914412574984617,
- "tp": 293586,
- "tp_rate": 0.9658673316642595,
- "truth_threshold": -13.26
- },
- {
- "f1": 0.8559832523748155,
- "fn": 10381,
- "fn_rate": 0.034152407710199666,
- "fp": 88407,
- "fp_rate": 0.5084690197792591,
- "match_probability": 0.00010335178219304575,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.768560186603209,
- "recall": 0.9658475922898003,
- "row_count": 477830,
- "tn": 85462,
- "tn_rate": 0.4915309802207409,
- "tp": 293580,
- "tp_rate": 0.9658475922898003,
- "truth_threshold": -13.24
- },
- {
- "f1": 0.8566534676000361,
- "fn": 10385,
- "fn_rate": 0.03416556729317248,
- "fp": 87866,
- "fp_rate": 0.5053574817822614,
- "match_probability": 0.00010479436811710874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7696478101520021,
- "recall": 0.9658344327068276,
- "row_count": 477830,
- "tn": 86003,
- "tn_rate": 0.49464251821773864,
- "tp": 293576,
- "tp_rate": 0.9658344327068276,
- "truth_threshold": -13.22
- },
- {
- "f1": 0.8566459380827178,
- "fn": 10403,
- "fn_rate": 0.03422478541655015,
- "fp": 87848,
- "fp_rate": 0.5052539555642467,
- "match_probability": 0.00010625708754012587,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7696732615637929,
- "recall": 0.9657752145834498,
- "row_count": 477830,
- "tn": 86021,
- "tn_rate": 0.4947460444357534,
- "tp": 293558,
- "tp_rate": 0.9657752145834498,
- "truth_threshold": -13.200000000000001
- },
- {
- "f1": 0.8570260793913543,
- "fn": 10403,
- "fn_rate": 0.03422478541655015,
- "fp": 87543,
- "fp_rate": 0.5034997613145529,
- "match_probability": 0.00010774022139580177,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.77028924090989,
- "recall": 0.9657752145834498,
- "row_count": 477830,
- "tn": 86326,
- "tn_rate": 0.49650023868544707,
- "tp": 293558,
- "tp_rate": 0.9657752145834498,
- "truth_threshold": -13.18
- },
- {
- "f1": 0.8566102893270655,
- "fn": 10763,
- "fn_rate": 0.035409147884103556,
- "fp": 87395,
- "fp_rate": 0.5026485457442097,
- "match_probability": 0.00010924405453617098,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7703714992130701,
- "recall": 0.9645908521158965,
- "row_count": 477830,
- "tn": 86474,
- "tn_rate": 0.4973514542557903,
- "tp": 293198,
- "tp_rate": 0.9645908521158965,
- "truth_threshold": -13.16
- },
- {
- "f1": 0.8566415586085189,
- "fn": 10772,
- "fn_rate": 0.03543875694579239,
- "fp": 87358,
- "fp_rate": 0.5024357418516239,
- "match_probability": 0.0001107688757862026,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7704409704977309,
- "recall": 0.9645612430542077,
- "row_count": 477830,
- "tn": 86511,
- "tn_rate": 0.49756425814837607,
- "tp": 293189,
- "tp_rate": 0.9645612430542077,
- "truth_threshold": -13.14
- },
- {
- "f1": 0.8644874970511913,
- "fn": 10796,
- "fn_rate": 0.03551771444362928,
- "fp": 81114,
- "fp_rate": 0.46652364711363153,
- "match_probability": 0.00011231497799916251,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7832793183694516,
- "recall": 0.9644822855563707,
- "row_count": 477830,
- "tn": 92755,
- "tn_rate": 0.5334763528863685,
- "tp": 293165,
- "tp_rate": 0.9644822855563707,
- "truth_threshold": -13.120000000000001
- },
- {
- "f1": 0.8643985820538984,
- "fn": 10859,
- "fn_rate": 0.035724977875451126,
- "fp": 81101,
- "fp_rate": 0.4664488781783987,
- "match_probability": 0.00011388265811274712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7832700432652865,
- "recall": 0.9642750221245489,
- "row_count": 477830,
- "tn": 92768,
- "tn_rate": 0.5335511218216014,
- "tp": 293102,
- "tp_rate": 0.9642750221245489,
- "truth_threshold": -13.1
- },
- {
- "f1": 0.8644014309856164,
- "fn": 10871,
- "fn_rate": 0.03576445662436958,
- "fp": 81083,
- "fp_rate": 0.46634535196038396,
- "match_probability": 0.00011547221720599655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7833007726372561,
- "recall": 0.9642355433756304,
- "row_count": 477830,
- "tn": 92786,
- "tn_rate": 0.533654648039616,
- "tp": 293090,
- "tp_rate": 0.9642355433756304,
- "truth_threshold": -13.08
- },
- {
- "f1": 0.8644048300230647,
- "fn": 10888,
- "fn_rate": 0.03582038485200404,
- "fp": 81059,
- "fp_rate": 0.46620731700303103,
- "match_probability": 0.00011708396055700113,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7833411737033988,
- "recall": 0.964179615147996,
- "row_count": 477830,
- "tn": 92810,
- "tn_rate": 0.533792682996969,
- "tp": 293073,
- "tp_rate": 0.964179615147996,
- "truth_threshold": -13.06
- },
- {
- "f1": 0.8643982810135767,
- "fn": 10898,
- "fn_rate": 0.03585328380943608,
- "fp": 81050,
- "fp_rate": 0.4661555538940237,
- "match_probability": 0.00011871819770140902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.783354227198734,
- "recall": 0.9641467161905639,
- "row_count": 477830,
- "tn": 92819,
- "tn_rate": 0.5338444461059764,
- "tp": 293063,
- "tp_rate": 0.9641467161905639,
- "truth_threshold": -13.040000000000001
- },
- {
- "f1": 0.8644292292670264,
- "fn": 10929,
- "fn_rate": 0.0359552705774754,
- "fp": 80985,
- "fp_rate": 0.46578170921785944,
- "match_probability": 0.00012037524249174837,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7834724090081467,
- "recall": 0.9640447294225246,
- "row_count": 477830,
- "tn": 92884,
- "tn_rate": 0.5342182907821406,
- "tp": 293032,
- "tp_rate": 0.9640447294225246,
- "truth_threshold": -13.02
- },
- {
- "f1": 0.8644368793991493,
- "fn": 10929,
- "fn_rate": 0.0359552705774754,
- "fp": 80980,
- "fp_rate": 0.46575295193507754,
- "match_probability": 0.00012205541315757354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7834828829021528,
- "recall": 0.9640447294225246,
- "row_count": 477830,
- "tn": 92889,
- "tn_rate": 0.5342470480649224,
- "tp": 293032,
- "tp_rate": 0.9640447294225246,
- "truth_threshold": -13
- },
- {
- "f1": 0.8651773640169835,
- "fn": 10941,
- "fn_rate": 0.03599474932639385,
- "fp": 80383,
- "fp_rate": 0.46231933237092293,
- "match_probability": 0.00012375903236644915,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7847285640447452,
- "recall": 0.9640052506736062,
- "row_count": 477830,
- "tn": 93486,
- "tn_rate": 0.5376806676290771,
- "tp": 293020,
- "tp_rate": 0.9640052506736062,
- "truth_threshold": -12.98
- },
- {
- "f1": 0.8653541144259651,
- "fn": 10972,
- "fn_rate": 0.03609673609443317,
- "fp": 80204,
- "fp_rate": 0.4612898216473322,
- "match_probability": 0.00012548642728578072,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7850870729086559,
- "recall": 0.9639032639055668,
- "row_count": 477830,
- "tn": 93665,
- "tn_rate": 0.5387101783526678,
- "tp": 292989,
- "tp_rate": 0.9639032639055668,
- "truth_threshold": -12.96
- },
- {
- "f1": 0.8653668938955378,
- "fn": 10972,
- "fn_rate": 0.03609673609443317,
- "fp": 80194,
- "fp_rate": 0.46123230708176843,
- "match_probability": 0.0001272379296455061,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7851081104980666,
- "recall": 0.9639032639055668,
- "row_count": 477830,
- "tn": 93675,
- "tn_rate": 0.5387676929182316,
- "tp": 292989,
- "tp_rate": 0.9639032639055668,
- "truth_threshold": -12.94
- },
- {
- "f1": 0.8655373307177803,
- "fn": 10987,
- "fn_rate": 0.03614608453058123,
- "fp": 80041,
- "fp_rate": 0.4603523342286434,
- "match_probability": 0.00012901387580165717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7854214977949948,
- "recall": 0.9638539154694188,
- "row_count": 477830,
- "tn": 93828,
- "tn_rate": 0.5396476657713566,
- "tp": 292974,
- "tp_rate": 0.9638539154694188,
- "truth_threshold": -12.92
- },
- {
- "f1": 0.8655884273444171,
- "fn": 11000,
- "fn_rate": 0.036188853175242876,
- "fp": 79985,
- "fp_rate": 0.4600302526614865,
- "match_probability": 0.0001308146068008071,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7855319536876653,
- "recall": 0.9638111468247571,
- "row_count": 477830,
- "tn": 93884,
- "tn_rate": 0.5399697473385134,
- "tp": 292961,
- "tp_rate": 0.9638111468247571,
- "truth_threshold": -12.9
- },
- {
- "f1": 0.8655854727244255,
- "fn": 11001,
- "fn_rate": 0.03619214307098608,
- "fp": 79985,
- "fp_rate": 0.4600302526614865,
- "match_probability": 0.00013264046844541213,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7855313786215126,
- "recall": 0.9638078569290139,
- "row_count": 477830,
- "tn": 93884,
- "tn_rate": 0.5399697473385134,
- "tp": 292960,
- "tp_rate": 0.9638078569290139,
- "truth_threshold": -12.88
- },
- {
- "f1": 0.8656147504653843,
- "fn": 11011,
- "fn_rate": 0.03622504202841812,
- "fp": 79950,
- "fp_rate": 0.4598289516820135,
- "match_probability": 0.00013449181136006226,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7855993563958166,
- "recall": 0.9637749579715819,
- "row_count": 477830,
- "tn": 93919,
- "tn_rate": 0.5401710483179866,
- "tp": 292950,
- "tp_rate": 0.9637749579715819,
- "truth_threshold": -12.86
- },
- {
- "f1": 0.8656131621092942,
- "fn": 11015,
- "fn_rate": 0.036238201611390936,
- "fp": 79945,
- "fp_rate": 0.4598001943992316,
- "match_probability": 0.00013636899105865216,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7856075904218659,
- "recall": 0.9637617983886091,
- "row_count": 477830,
- "tn": 93924,
- "tn_rate": 0.5401998056007684,
- "tp": 292946,
- "tp_rate": 0.9637617983886091,
- "truth_threshold": -12.84
- },
- {
- "f1": 0.8654820234879693,
- "fn": 11094,
- "fn_rate": 0.03649810337510404,
- "fp": 79945,
- "fp_rate": 0.4598001943992316,
- "match_probability": 0.00013827236801248723,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7855621600163085,
- "recall": 0.9635018966248959,
- "row_count": 477830,
- "tn": 93924,
- "tn_rate": 0.5401998056007684,
- "tp": 292867,
- "tp_rate": 0.9635018966248959,
- "truth_threshold": -12.82
- },
- {
- "f1": 0.8654465069406067,
- "fn": 11119,
- "fn_rate": 0.03658035076868414,
- "fp": 79939,
- "fp_rate": 0.45976568565989334,
- "match_probability": 0.00014020230771933477,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7855604228756294,
- "recall": 0.9634196492313158,
- "row_count": 477830,
- "tn": 93930,
- "tn_rate": 0.5402343143401066,
- "tp": 292842,
- "tp_rate": 0.9634196492313158,
- "truth_threshold": -12.8
- },
- {
- "f1": 0.8655104025347958,
- "fn": 11132,
- "fn_rate": 0.03662311941334579,
- "fp": 79872,
- "fp_rate": 0.4593803380706164,
- "match_probability": 0.00014215918077343544,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7856941623446141,
- "recall": 0.9633768805866542,
- "row_count": 477830,
- "tn": 93997,
- "tn_rate": 0.5406196619293836,
- "tp": 292829,
- "tp_rate": 0.9633768805866542,
- "truth_threshold": -12.780000000000001
- },
- {
- "f1": 0.8655449764852985,
- "fn": 11148,
- "fn_rate": 0.036675757745237056,
- "fp": 79824,
- "fp_rate": 0.4591042681559105,
- "match_probability": 0.0001441433629364879,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7857861672351377,
- "recall": 0.963324242254763,
- "row_count": 477830,
- "tn": 94045,
- "tn_rate": 0.5408957318440896,
- "tp": 292813,
- "tp_rate": 0.963324242254763,
- "truth_threshold": -12.76
- },
- {
- "f1": 0.8655433866891322,
- "fn": 11152,
- "fn_rate": 0.03668891732820987,
- "fp": 79820,
- "fp_rate": 0.459081262329685,
- "match_probability": 0.00014615523520961874,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7857923027998358,
- "recall": 0.9633110826717901,
- "row_count": 477830,
- "tn": 94049,
- "tn_rate": 0.540918737670315,
- "tp": 292809,
- "tp_rate": 0.9633110826717901,
- "truth_threshold": -12.74
- },
- {
- "f1": 0.8655214513549546,
- "fn": 11175,
- "fn_rate": 0.03676458493030356,
- "fp": 79807,
- "fp_rate": 0.45900649339445215,
- "match_probability": 0.00014819518390635442,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7858064966330554,
- "recall": 0.9632354150696965,
- "row_count": 477830,
- "tn": 94062,
- "tn_rate": 0.5409935066055479,
- "tp": 292786,
- "tp_rate": 0.9632354150696965,
- "truth_threshold": -12.72
- },
- {
- "f1": 0.8656401341115112,
- "fn": 11179,
- "fn_rate": 0.036777744513276374,
- "fp": 79709,
- "fp_rate": 0.4584428506519276,
- "match_probability": 0.00015026360072660546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7860109371770057,
- "recall": 0.9632222554867236,
- "row_count": 477830,
- "tn": 94160,
- "tn_rate": 0.5415571493480724,
- "tp": 292782,
- "tp_rate": 0.9632222554867236,
- "truth_threshold": -12.700000000000001
- },
- {
- "f1": 0.865829747593488,
- "fn": 11185,
- "fn_rate": 0.0367974838877356,
- "fp": 79553,
- "fp_rate": 0.4575456234291334,
- "match_probability": 0.00015236088283167914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7863368150211237,
- "recall": 0.9632025161122644,
- "row_count": 477830,
- "tn": 94316,
- "tn_rate": 0.5424543765708666,
- "tp": 292776,
- "tp_rate": 0.9632025161122644,
- "truth_threshold": -12.68
- },
- {
- "f1": 0.8659662386601948,
- "fn": 11196,
- "fn_rate": 0.03683367274091084,
- "fp": 79433,
- "fp_rate": 0.45685544864236866,
- "match_probability": 0.0001544874329203339,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7865840224826571,
- "recall": 0.9631663272590891,
- "row_count": 477830,
- "tn": 94436,
- "tn_rate": 0.5431445513576313,
- "tp": 292765,
- "tp_rate": 0.9631663272590891,
- "truth_threshold": -12.66
- },
- {
- "f1": 0.8660491891540104,
- "fn": 11200,
- "fn_rate": 0.03684683232388366,
- "fp": 79363,
- "fp_rate": 0.45645284668342256,
- "match_probability": 0.00015664365930589128,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.78672969225312,
- "recall": 0.9631531676761164,
- "row_count": 477830,
- "tn": 94506,
- "tn_rate": 0.5435471533165774,
- "tp": 292761,
- "tp_rate": 0.9631531676761164,
- "truth_threshold": -12.64
- },
- {
- "f1": 0.8660434570384723,
- "fn": 11208,
- "fn_rate": 0.03687315148982929,
- "fp": 79357,
- "fp_rate": 0.4564183379440843,
- "match_probability": 0.00015882997599441802,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7867377925882132,
- "recall": 0.9631268485101707,
- "row_count": 477830,
- "tn": 94512,
- "tn_rate": 0.5435816620559156,
- "tp": 292753,
- "tp_rate": 0.9631268485101707,
- "truth_threshold": -12.620000000000001
- },
- {
- "f1": 0.8660450145551795,
- "fn": 11217,
- "fn_rate": 0.03690276055151812,
- "fp": 79344,
- "fp_rate": 0.4563435690088515,
- "match_probability": 0.00016104680276399447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7867601212616371,
- "recall": 0.9630972394484819,
- "row_count": 477830,
- "tn": 94525,
- "tn_rate": 0.5436564309911485,
- "tp": 292744,
- "tp_rate": 0.9630972394484819,
- "truth_threshold": -12.6
- },
- {
- "f1": 0.8660566363722427,
- "fn": 11220,
- "fn_rate": 0.03691263023874773,
- "fp": 79330,
- "fp_rate": 0.4562630486170623,
- "match_probability": 0.00016329456524508346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7867880055150764,
- "recall": 0.9630873697612523,
- "row_count": 477830,
- "tn": 94539,
- "tn_rate": 0.5437369513829378,
- "tp": 292741,
- "tp_rate": 0.9630873697612523,
- "truth_threshold": -12.58
- },
- {
- "f1": 0.8658711273691563,
- "fn": 11397,
- "fn_rate": 0.037494941785294826,
- "fp": 79244,
- "fp_rate": 0.4557684233532142,
- "match_probability": 0.00016557369500201663,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7868684912643085,
- "recall": 0.9625050582147052,
- "row_count": 477830,
- "tn": 94625,
- "tn_rate": 0.5442315766467858,
- "tp": 292564,
- "tp_rate": 0.9625050582147052,
- "truth_threshold": -12.56
- },
- {
- "f1": 0.8658590367044435,
- "fn": 11421,
- "fn_rate": 0.03757389928313172,
- "fp": 79222,
- "fp_rate": 0.455641891308974,
- "match_probability": 0.0001678846296156108,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7869012970664027,
- "recall": 0.9624261007168683,
- "row_count": 477830,
- "tn": 94647,
- "tn_rate": 0.544358108691026,
- "tp": 292540,
- "tp_rate": 0.9624261007168683,
- "truth_threshold": -12.540000000000001
- },
- {
- "f1": 0.8658546692319077,
- "fn": 11432,
- "fn_rate": 0.03761008813630696,
- "fp": 79210,
- "fp_rate": 0.45557287383029754,
- "match_probability": 0.00017022781276693265,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.786920393071483,
- "recall": 0.962389911863693,
- "row_count": 477830,
- "tn": 94659,
- "tn_rate": 0.5444271261697025,
- "tp": 292529,
- "tp_rate": 0.962389911863693,
- "truth_threshold": -12.52
- },
- {
- "f1": 0.8658469443934667,
- "fn": 11445,
- "fn_rate": 0.03765285678096861,
- "fp": 79200,
- "fp_rate": 0.4555153592647338,
- "match_probability": 0.00017260369432222522,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.7869341109879585,
- "recall": 0.9623471432190314,
- "row_count": 477830,
- "tn": 94669,
- "tn_rate": 0.5444846407352663,
- "tp": 292516,
- "tp_rate": 0.9623471432190314,
- "truth_threshold": -12.5
- },
- {
- "f1": 0.8825417801874866,
- "fn": 11454,
- "fn_rate": 0.03768246584265745,
- "fp": 66407,
- "fp_rate": 0.38193697553905526,
- "match_probability": 0.00017501273041901525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8149779612943491,
- "recall": 0.9623175341573426,
- "row_count": 477830,
- "tn": 107462,
- "tn_rate": 0.6180630244609447,
- "tp": 292507,
- "tp_rate": 0.9623175341573426,
- "truth_threshold": -12.48
- },
- {
- "f1": 0.8829135034788776,
- "fn": 11465,
- "fn_rate": 0.03771865469583269,
- "fp": 66113,
- "fp_rate": 0.38024604731148165,
- "match_probability": 0.00017745538355341462,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.81564043289488,
- "recall": 0.9622813453041673,
- "row_count": 477830,
- "tn": 107756,
- "tn_rate": 0.6197539526885184,
- "tp": 292496,
- "tp_rate": 0.9622813453041673,
- "truth_threshold": -12.46
- },
- {
- "f1": 0.8829375201881308,
- "fn": 11480,
- "fn_rate": 0.03776800313198075,
- "fp": 66077,
- "fp_rate": 0.38003899487545223,
- "match_probability": 0.00017993212266863398,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.815714612419748,
- "recall": 0.9622319968680193,
- "row_count": 477830,
- "tn": 107792,
- "tn_rate": 0.6199610051245478,
- "tp": 292481,
- "tp_rate": 0.9622319968680193,
- "truth_threshold": -12.44
- },
- {
- "f1": 0.8828220062379792,
- "fn": 11573,
- "fn_rate": 0.03807396343609871,
- "fp": 66046,
- "fp_rate": 0.37986069972220465,
- "match_probability": 0.00018244342324472447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8157373463454918,
- "recall": 0.9619260365639013,
- "row_count": 477830,
- "tn": 107823,
- "tn_rate": 0.6201393002777954,
- "tp": 292388,
- "tp_rate": 0.9619260365639013,
- "truth_threshold": -12.42
- },
- {
- "f1": 0.8827886947094405,
- "fn": 11637,
- "fn_rate": 0.03828451676366376,
- "fp": 65990,
- "fp_rate": 0.37953861815504775,
- "match_probability": 0.00018498976738956673,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8158319239549668,
- "recall": 0.9617154832363363,
- "row_count": 477830,
- "tn": 107879,
- "tn_rate": 0.6204613818449523,
- "tp": 292324,
- "tp_rate": 0.9617154832363363,
- "truth_threshold": -12.4
- },
- {
- "f1": 0.88282002724343,
- "fn": 11669,
- "fn_rate": 0.038389793427446285,
- "fp": 65926,
- "fp_rate": 0.3791705249354399,
- "match_probability": 0.00018757164393112065,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.815961230312268,
- "recall": 0.9616102065725537,
- "row_count": 477830,
- "tn": 107943,
- "tn_rate": 0.6208294750645601,
- "tp": 292292,
- "tp_rate": 0.9616102065725537,
- "truth_threshold": -12.38
- },
- {
- "f1": 0.8828979325511425,
- "fn": 11690,
- "fn_rate": 0.03845888123805356,
- "fp": 65840,
- "fp_rate": 0.3786758996715918,
- "match_probability": 0.00019018954851095674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8161463903649986,
- "recall": 0.9615411187619465,
- "row_count": 477830,
- "tn": 108029,
- "tn_rate": 0.6213241003284081,
- "tp": 292271,
- "tp_rate": 0.9615411187619465,
- "truth_threshold": -12.36
- },
- {
- "f1": 0.882926210342515,
- "fn": 11693,
- "fn_rate": 0.03846875092528318,
- "fp": 65816,
- "fp_rate": 0.3785378647142389,
- "match_probability": 0.0001928439836790836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8161995509433541,
- "recall": 0.9615312490747169,
- "row_count": 477830,
- "tn": 108053,
- "tn_rate": 0.6214621352857611,
- "tp": 292268,
- "tp_rate": 0.9615312490747169,
- "truth_threshold": -12.34
- },
- {
- "f1": 0.8829253408496999,
- "fn": 11703,
- "fn_rate": 0.03850164988271522,
- "fp": 65803,
- "fp_rate": 0.37846309577900605,
- "match_probability": 0.0001955354589900938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8162240512091515,
- "recall": 0.9614983501172848,
- "row_count": 477830,
- "tn": 108066,
- "tn_rate": 0.621536904220994,
- "tp": 292258,
- "tp_rate": 0.9614983501172848,
- "truth_threshold": -12.32
- },
- {
- "f1": 0.8829322819896981,
- "fn": 11706,
- "fn_rate": 0.03851151956994483,
- "fp": 65794,
- "fp_rate": 0.37841133266999866,
- "match_probability": 0.00019826449110064116,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8162430281888792,
- "recall": 0.9614884804300552,
- "row_count": 477830,
- "tn": 108075,
- "tn_rate": 0.6215886673300013,
- "tp": 292255,
- "tp_rate": 0.9614884804300552,
- "truth_threshold": -12.3
- },
- {
- "f1": 0.8829230857546854,
- "fn": 11732,
- "fn_rate": 0.038597056859268127,
- "fp": 65768,
- "fp_rate": 0.378261794799533,
- "match_probability": 0.00020103160386827137,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8162889633153351,
- "recall": 0.9614029431407318,
- "row_count": 477830,
- "tn": 108101,
- "tn_rate": 0.621738205200467,
- "tp": 292229,
- "tp_rate": 0.9614029431407318,
- "truth_threshold": -12.280000000000001
- },
- {
- "f1": 0.8829377069786555,
- "fn": 11751,
- "fn_rate": 0.038659564878389,
- "fp": 65733,
- "fp_rate": 0.3780604938200599,
- "match_probability": 0.00020383732845162376,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8163590292309111,
- "recall": 0.961340435121611,
- "row_count": 477830,
- "tn": 108136,
- "tn_rate": 0.6219395061799401,
- "tp": 292210,
- "tp_rate": 0.961340435121611,
- "truth_threshold": -12.26
- },
- {
- "f1": 0.8829215669684406,
- "fn": 11774,
- "fn_rate": 0.0387352324804827,
- "fp": 65716,
- "fp_rate": 0.37796271905860157,
- "match_probability": 0.0002066822034120213,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8163860040290246,
- "recall": 0.9612647675195173,
- "row_count": 477830,
- "tn": 108153,
- "tn_rate": 0.6220372809413984,
- "tp": 292187,
- "tp_rate": 0.9612647675195173,
- "truth_threshold": -12.24
- },
- {
- "f1": 0.8829150071618085,
- "fn": 11785,
- "fn_rate": 0.038771421333657935,
- "fp": 65708,
- "fp_rate": 0.37791670740615063,
- "match_probability": 0.00020956677481647222,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8163986096053469,
- "recall": 0.961228578666342,
- "row_count": 477830,
- "tn": 108161,
- "tn_rate": 0.6220832925938494,
- "tp": 292176,
- "tp_rate": 0.961228578666342,
- "truth_threshold": -12.22
- },
- {
- "f1": 0.8828395106501293,
- "fn": 11840,
- "fn_rate": 0.038952365599534154,
- "fp": 65694,
- "fp_rate": 0.3778361870143614,
- "match_probability": 0.0002124915963420977,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8164023308134092,
- "recall": 0.9610476344004658,
- "row_count": 477830,
- "tn": 108175,
- "tn_rate": 0.6221638129856386,
- "tp": 292121,
- "tp_rate": 0.9610476344004658,
- "truth_threshold": -12.200000000000001
- },
- {
- "f1": 0.8827989941851327,
- "fn": 11864,
- "fn_rate": 0.03903132309737104,
- "fp": 65694,
- "fp_rate": 0.3778361870143614,
- "match_probability": 0.0002154572293820086,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.816390015400052,
- "recall": 0.960968676902629,
- "row_count": 477830,
- "tn": 108175,
- "tn_rate": 0.6221638129856386,
- "tp": 292097,
- "tp_rate": 0.960968676902629,
- "truth_threshold": -12.18
- },
- {
- "f1": 0.8828153808024083,
- "fn": 11878,
- "fn_rate": 0.039077381637775896,
- "fp": 65664,
- "fp_rate": 0.3776636433176702,
- "match_probability": 0.00021846424315264881,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8164512909961509,
- "recall": 0.9609226183622241,
- "row_count": 477830,
- "tn": 108205,
- "tn_rate": 0.6223363566823298,
- "tp": 292083,
- "tp_rate": 0.9609226183622241,
- "truth_threshold": -12.16
- },
- {
- "f1": 0.8827476965490556,
- "fn": 11941,
- "fn_rate": 0.039284645069597744,
- "fp": 65636,
- "fp_rate": 0.37750260253409174,
- "match_probability": 0.00022151321480262968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8164828774017492,
- "recall": 0.9607153549304023,
- "row_count": 477830,
- "tn": 108233,
- "tn_rate": 0.6224973974659083,
- "tp": 292020,
- "tp_rate": 0.9607153549304023,
- "truth_threshold": -12.14
- },
- {
- "f1": 0.8827655007708818,
- "fn": 11951,
- "fn_rate": 0.039317544027029784,
- "fp": 65609,
- "fp_rate": 0.3773473132070697,
- "match_probability": 0.00022460472952307015,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8165393896856711,
- "recall": 0.9606824559729702,
- "row_count": 477830,
- "tn": 108260,
- "tn_rate": 0.6226526867929303,
- "tp": 292010,
- "tp_rate": 0.9606824559729702,
- "truth_threshold": -12.120000000000001
- },
- {
- "f1": 0.8827747579977145,
- "fn": 11955,
- "fn_rate": 0.0393307036100026,
- "fp": 65597,
- "fp_rate": 0.3772782957283932,
- "match_probability": 0.00022773938065946784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8165647379915717,
- "recall": 0.9606692963899974,
- "row_count": 477830,
- "tn": 108272,
- "tn_rate": 0.6227217042716068,
- "tp": 292006,
- "tp_rate": 0.9606692963899974,
- "truth_threshold": -12.1
- },
- {
- "f1": 0.8838267965349621,
- "fn": 11957,
- "fn_rate": 0.03933728340148901,
- "fp": 64807,
- "fp_rate": 0.3727346450488586,
- "match_probability": 0.00023091776982511915,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8183716309194503,
- "recall": 0.960662716598511,
- "row_count": 477830,
- "tn": 109062,
- "tn_rate": 0.6272653549511413,
- "tp": 292004,
- "tp_rate": 0.960662716598511,
- "truth_threshold": -12.08
- },
- {
- "f1": 0.8837876700924818,
- "fn": 12015,
- "fn_rate": 0.03952809735459483,
- "fp": 64764,
- "fp_rate": 0.3724873324169346,
- "match_probability": 0.000234140507016114,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8184407501892293,
- "recall": 0.9604719026454052,
- "row_count": 477830,
- "tn": 109105,
- "tn_rate": 0.6275126675830655,
- "tp": 291946,
- "tp_rate": 0.9604719026454052,
- "truth_threshold": -12.06
- },
- {
- "f1": 0.8837868360577811,
- "fn": 12063,
- "fn_rate": 0.03968601235026862,
- "fp": 64703,
- "fp_rate": 0.37213649356699585,
- "match_probability": 0.00023740821072792089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8185563136390531,
- "recall": 0.9603139876497314,
- "row_count": 477830,
- "tn": 109166,
- "tn_rate": 0.6278635064330041,
- "tp": 291898,
- "tp_rate": 0.9603139876497314,
- "truth_threshold": -12.040000000000001
- },
- {
- "f1": 0.8838707919098074,
- "fn": 12083,
- "fn_rate": 0.0397518102651327,
- "fp": 64616,
- "fp_rate": 0.3716361168465914,
- "match_probability": 0.00024072150807358944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8187458975466628,
- "recall": 0.9602481897348673,
- "row_count": 477830,
- "tn": 109253,
- "tn_rate": 0.6283638831534086,
- "tp": 291878,
- "tp_rate": 0.9602481897348673,
- "truth_threshold": -12.02
- },
- {
- "f1": 0.8838660831907451,
- "fn": 12104,
- "fn_rate": 0.03982089807573998,
- "fp": 64593,
- "fp_rate": 0.37150383334579484,
- "match_probability": 0.000244081034903588,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8187880488147005,
- "recall": 0.96017910192426,
- "row_count": 477830,
- "tn": 109276,
- "tn_rate": 0.6284961666542052,
- "tp": 291857,
- "tp_rate": 0.96017910192426,
- "truth_threshold": -12
- },
- {
- "f1": 0.8839555606709515,
- "fn": 12116,
- "fn_rate": 0.03986037682465843,
- "fp": 64510,
- "fp_rate": 0.37102646245161586,
- "match_probability": 0.00024748743592730506,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8189726536740048,
- "recall": 0.9601396231753416,
- "row_count": 477830,
- "tn": 109359,
- "tn_rate": 0.6289735375483841,
- "tp": 291845,
- "tp_rate": 0.9601396231753416,
- "truth_threshold": -11.98
- },
- {
- "f1": 0.8839888287109399,
- "fn": 12128,
- "fn_rate": 0.03989985557357687,
- "fp": 64470,
- "fp_rate": 0.37079640418936094,
- "match_probability": 0.00025094136483622993,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8190584979638117,
- "recall": 0.9601001444264231,
- "row_count": 477830,
- "tn": 109399,
- "tn_rate": 0.629203595810639,
- "tp": 291833,
- "tp_rate": 0.9601001444264231,
- "truth_threshold": -11.96
- },
- {
- "f1": 0.8838193762651055,
- "fn": 12290,
- "fn_rate": 0.040432818683975906,
- "fp": 64393,
- "fp_rate": 0.37035354203452026,
- "match_probability": 0.00025444348442884174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8191532982834546,
- "recall": 0.9595671813160241,
- "row_count": 477830,
- "tn": 109476,
- "tn_rate": 0.6296464579654798,
- "tp": 291671,
- "tp_rate": 0.9595671813160241,
- "truth_threshold": -11.94
- },
- {
- "f1": 0.8838624434827933,
- "fn": 12297,
- "fn_rate": 0.04045584795417833,
- "fp": 64352,
- "fp_rate": 0.37011773231570894,
- "match_probability": 0.00025799446673722515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8192440789178015,
- "recall": 0.9595441520458217,
- "row_count": 477830,
- "tn": 109517,
- "tn_rate": 0.629882267684291,
- "tp": 291664,
- "tp_rate": 0.9595441520458217,
- "truth_threshold": -11.92
- },
- {
- "f1": 0.8838498324130699,
- "fn": 12310,
- "fn_rate": 0.040498616598839986,
- "fp": 64344,
- "fp_rate": 0.370071720663258,
- "match_probability": 0.0002615949931554435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8192558884253992,
- "recall": 0.95950138340116,
- "row_count": 477830,
- "tn": 109525,
- "tn_rate": 0.629928279336742,
- "tp": 291651,
- "tp_rate": 0.95950138340116,
- "truth_threshold": -11.9
- },
- {
- "f1": 0.8838669006422205,
- "fn": 12330,
- "fn_rate": 0.04056441451370406,
- "fp": 64307,
- "fp_rate": 0.3698589167706722,
- "match_probability": 0.00026524575456968495,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8193308947063814,
- "recall": 0.9594355854862959,
- "row_count": 477830,
- "tn": 109562,
- "tn_rate": 0.6301410832293278,
- "tp": 291631,
- "tp_rate": 0.9594355854862959,
- "truth_threshold": -11.88
- },
- {
- "f1": 0.8838835410503856,
- "fn": 12336,
- "fn_rate": 0.040584153888163284,
- "fp": 64287,
- "fp_rate": 0.3697438876395447,
- "match_probability": 0.0002689474514902129,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8193738901750994,
- "recall": 0.9594158461118367,
- "row_count": 477830,
- "tn": 109582,
- "tn_rate": 0.6302561123604553,
- "tp": 291625,
- "tp_rate": 0.9594158461118367,
- "truth_threshold": -11.86
- },
- {
- "f1": 0.8844384188193617,
- "fn": 12359,
- "fn_rate": 0.04065982149025697,
- "fp": 63844,
- "fp_rate": 0.3671959923850715,
- "match_probability": 0.00027270079418514036,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8203834056368619,
- "recall": 0.9593401785097431,
- "row_count": 477830,
- "tn": 110025,
- "tn_rate": 0.6328040076149285,
- "tp": 291602,
- "tp_rate": 0.9593401785097431,
- "truth_threshold": -11.84
- },
- {
- "f1": 0.8845240298131671,
- "fn": 12375,
- "fn_rate": 0.04071245982214824,
- "fp": 63759,
- "fp_rate": 0.3667071185777798,
- "match_probability": 0.0002765065028160592,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8205715572190406,
- "recall": 0.9592875401778518,
- "row_count": 477830,
- "tn": 110110,
- "tn_rate": 0.6332928814222202,
- "tp": 291586,
- "tp_rate": 0.9592875401778518,
- "truth_threshold": -11.82
- },
- {
- "f1": 0.88455797585098,
- "fn": 12393,
- "fn_rate": 0.04077167794552591,
- "fp": 63712,
- "fp_rate": 0.3664368001196303,
- "match_probability": 0.00028036530757554303,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8206710200405314,
- "recall": 0.9592283220544741,
- "row_count": 477830,
- "tn": 110157,
- "tn_rate": 0.6335631998803697,
- "tp": 291568,
- "tp_rate": 0.9592283220544741,
- "truth_threshold": -11.8
- },
- {
- "f1": 0.8846842418283994,
- "fn": 12408,
- "fn_rate": 0.04082102638167397,
- "fp": 63599,
- "fp_rate": 0.36578688552876015,
- "match_probability": 0.0002842779488265541,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8209245618777312,
- "recall": 0.959178973618326,
- "row_count": 477830,
- "tn": 110270,
- "tn_rate": 0.6342131144712398,
- "tp": 291553,
- "tp_rate": 0.959178973618326,
- "truth_threshold": -11.78
- },
- {
- "f1": 0.8846807425973916,
- "fn": 12418,
- "fn_rate": 0.040853925339106006,
- "fp": 63589,
- "fp_rate": 0.3657293709631964,
- "match_probability": 0.0002882451772437776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8209426354144375,
- "recall": 0.959146074660894,
- "row_count": 477830,
- "tn": 110280,
- "tn_rate": 0.6342706290368035,
- "tp": 291543,
- "tp_rate": 0.959146074660894,
- "truth_threshold": -11.76
- },
- {
- "f1": 0.8847824305498648,
- "fn": 12442,
- "fn_rate": 0.0409328828369429,
- "fp": 63483,
- "fp_rate": 0.3651197165682209,
- "match_probability": 0.00029226775395691364,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8211756553484205,
- "recall": 0.9590671171630571,
- "row_count": 477830,
- "tn": 110386,
- "tn_rate": 0.634880283431779,
- "tp": 291519,
- "tp_rate": 0.9590671171630571,
- "truth_threshold": -11.74
- },
- {
- "f1": 0.8849735112406455,
- "fn": 12464,
- "fn_rate": 0.041005260543293384,
- "fp": 63312,
- "fp_rate": 0.36413621749708114,
- "match_probability": 0.00029634645069594797,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8215603324605633,
- "recall": 0.9589947394567067,
- "row_count": 477830,
- "tn": 110557,
- "tn_rate": 0.6358637825029189,
- "tp": 291497,
- "tp_rate": 0.9589947394567067,
- "truth_threshold": -11.72
- },
- {
- "f1": 0.8849091036070094,
- "fn": 12533,
- "fn_rate": 0.04123226334957445,
- "fp": 63274,
- "fp_rate": 0.36391766214793897,
- "match_probability": 0.0003004820499384334,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8216136362354878,
- "recall": 0.9587677366504256,
- "row_count": 477830,
- "tn": 110595,
- "tn_rate": 0.636082337852061,
- "tp": 291428,
- "tp_rate": 0.9587677366504256,
- "truth_threshold": -11.700000000000001
- },
- {
- "f1": 0.8848937029512955,
- "fn": 12554,
- "fn_rate": 0.041301351160181736,
- "fp": 63259,
- "fp_rate": 0.3638313902995934,
- "match_probability": 0.00030467534505880815,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8216378226274862,
- "recall": 0.9586986488398183,
- "row_count": 477830,
- "tn": 110610,
- "tn_rate": 0.6361686097004067,
- "tp": 291407,
- "tp_rate": 0.9586986488398183,
- "truth_threshold": -11.68
- },
- {
- "f1": 0.8848993176497025,
- "fn": 12561,
- "fn_rate": 0.04132438043038416,
- "fp": 63245,
- "fp_rate": 0.36375086990780414,
- "match_probability": 0.00030892714047977567,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.821666737159695,
- "recall": 0.9586756195696159,
- "row_count": 477830,
- "tn": 110624,
- "tn_rate": 0.6362491300921959,
- "tp": 291400,
- "tp_rate": 0.9586756195696159,
- "truth_threshold": -11.66
- },
- {
- "f1": 0.8849166218723712,
- "fn": 12573,
- "fn_rate": 0.04136385917930261,
- "fp": 63218,
- "fp_rate": 0.36359558058078206,
- "match_probability": 0.00031323825182578204,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8217232646937728,
- "recall": 0.9586361408206974,
- "row_count": 477830,
- "tn": 110651,
- "tn_rate": 0.6364044194192179,
- "tp": 291388,
- "tp_rate": 0.9586361408206974,
- "truth_threshold": -11.64
- },
- {
- "f1": 0.8849093907450094,
- "fn": 12586,
- "fn_rate": 0.04140662782396426,
- "fp": 63206,
- "fp_rate": 0.3635265631021056,
- "match_probability": 0.00031760950607860996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8217445379194035,
- "recall": 0.9585933721760358,
- "row_count": 477830,
- "tn": 110663,
- "tn_rate": 0.6364734368978944,
- "tp": 291375,
- "tp_rate": 0.9585933721760358,
- "truth_threshold": -11.620000000000001
- },
- {
- "f1": 0.8850178767250204,
- "fn": 12614,
- "fn_rate": 0.04149874490477397,
- "fp": 63091,
- "fp_rate": 0.3628651455981227,
- "match_probability": 0.000322041741735126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8219970770628432,
- "recall": 0.958501255095226,
- "row_count": 477830,
- "tn": 110778,
- "tn_rate": 0.6371348544018772,
- "tp": 291347,
- "tp_rate": 0.958501255095226,
- "truth_threshold": -11.6
- },
- {
- "f1": 0.8850092501739154,
- "fn": 12631,
- "fn_rate": 0.04155467313240843,
- "fp": 63075,
- "fp_rate": 0.3627731222932208,
- "match_probability": 0.0003265358089672047,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8220256486223388,
- "recall": 0.9584453268675915,
- "row_count": 477830,
- "tn": 110794,
- "tn_rate": 0.6372268777067792,
- "tp": 291330,
- "tp_rate": 0.9584453268675915,
- "truth_threshold": -11.58
- },
- {
- "f1": 0.8850078838716342,
- "fn": 12658,
- "fn_rate": 0.04164350031747494,
- "fp": 63043,
- "fp_rate": 0.3625890756834168,
- "match_probability": 0.0003310925697838664,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8220863224080418,
- "recall": 0.958356499682525,
- "row_count": 477830,
- "tn": 110826,
- "tn_rate": 0.6374109243165832,
- "tp": 291303,
- "tp_rate": 0.958356499682525,
- "truth_threshold": -11.56
- },
- {
- "f1": 0.885070463619624,
- "fn": 12679,
- "fn_rate": 0.04171258812808222,
- "fp": 62969,
- "fp_rate": 0.3621634678982452,
- "match_probability": 0.0003357128981956508,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8222475024770572,
- "recall": 0.9582874118719178,
- "row_count": 477830,
- "tn": 110900,
- "tn_rate": 0.6378365321017547,
- "tp": 291282,
- "tp_rate": 0.9582874118719178,
- "truth_threshold": -11.540000000000001
- },
- {
- "f1": 0.8850209367764049,
- "fn": 12713,
- "fn_rate": 0.041824444583351154,
- "fp": 62964,
- "fp_rate": 0.3621347106154634,
- "match_probability": 0.00034039768038126314,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8222420471356137,
- "recall": 0.9581755554166489,
- "row_count": 477830,
- "tn": 110905,
- "tn_rate": 0.6378652893845367,
- "tp": 291248,
- "tp_rate": 0.9581755554166489,
- "truth_threshold": -11.52
- },
- {
- "f1": 0.8851094868327077,
- "fn": 12729,
- "fn_rate": 0.04187708291524241,
- "fp": 62877,
- "fp_rate": 0.36163433389505895,
- "match_probability": 0.0003451478148565189,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8224360295841111,
- "recall": 0.9581229170847576,
- "row_count": 477830,
- "tn": 110992,
- "tn_rate": 0.638365666104941,
- "tp": 291232,
- "tp_rate": 0.9581229170847576,
- "truth_threshold": -11.5
- },
- {
- "f1": 0.8851341904501383,
- "fn": 12743,
- "fn_rate": 0.041923141455647274,
- "fp": 62841,
- "fp_rate": 0.3614272814590295,
- "match_probability": 0.00034996421264562645,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.822512632075445,
- "recall": 0.9580768585443528,
- "row_count": 477830,
- "tn": 111028,
- "tn_rate": 0.6385727185409705,
- "tp": 291218,
- "tp_rate": 0.9580768585443528,
- "truth_threshold": -11.48
- },
- {
- "f1": 0.8850431430256669,
- "fn": 12865,
- "fn_rate": 0.04232450873631815,
- "fp": 62756,
- "fp_rate": 0.3609384076517378,
- "match_probability": 0.00035484779745482883,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8226490171031957,
- "recall": 0.9576754912636819,
- "row_count": 477830,
- "tn": 111113,
- "tn_rate": 0.6390615923482622,
- "tp": 291096,
- "tp_rate": 0.9576754912636819,
- "truth_threshold": -11.46
- },
- {
- "f1": 0.8850180148679669,
- "fn": 12883,
- "fn_rate": 0.04238372685969582,
- "fp": 62752,
- "fp_rate": 0.3609154018255123,
- "match_probability": 0.00035979950584844554,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8226492948591131,
- "recall": 0.9576162731403042,
- "row_count": 477830,
- "tn": 111117,
- "tn_rate": 0.6390845981744877,
- "tp": 291078,
- "tp_rate": 0.9576162731403042,
- "truth_threshold": -11.44
- },
- {
- "f1": 0.8850400308935723,
- "fn": 12897,
- "fn_rate": 0.04242978540010067,
- "fp": 62718,
- "fp_rate": 0.3607198523025956,
- "match_probability": 0.00036482028742734155,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.822721336868467,
- "recall": 0.9575702145998993,
- "row_count": 477830,
- "tn": 111151,
- "tn_rate": 0.6392801476974044,
- "tp": 291064,
- "tp_rate": 0.9575702145998993,
- "truth_threshold": -11.42
- },
- {
- "f1": 0.8850483830747429,
- "fn": 12927,
- "fn_rate": 0.042528482272396785,
- "fp": 62673,
- "fp_rate": 0.36046103675755886,
- "match_probability": 0.00036991110500986284,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8228109706621582,
- "recall": 0.9574715177276032,
- "row_count": 477830,
- "tn": 111196,
- "tn_rate": 0.6395389632424412,
- "tp": 291034,
- "tp_rate": 0.9574715177276032,
- "truth_threshold": -11.4
- },
- {
- "f1": 0.8851505686052064,
- "fn": 12935,
- "fn_rate": 0.04255480143834242,
- "fp": 62588,
- "fp_rate": 0.3599721629502672,
- "match_probability": 0.0003750729348152639,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8230047452872341,
- "recall": 0.9574451985616576,
- "row_count": 477830,
- "tn": 111281,
- "tn_rate": 0.6400278370497329,
- "tp": 291026,
- "tp_rate": 0.9574451985616576,
- "truth_threshold": -11.38
- },
- {
- "f1": 0.8851574951638217,
- "fn": 12946,
- "fn_rate": 0.04259099029151766,
- "fp": 62568,
- "fp_rate": 0.3598571338191397,
- "match_probability": 0.0003803067666496687,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8230457912286507,
- "recall": 0.9574090097084823,
- "row_count": 477830,
- "tn": 111301,
- "tn_rate": 0.6401428661808602,
- "tp": 291015,
- "tp_rate": 0.9574090097084823,
- "truth_threshold": -11.36
- },
- {
- "f1": 0.8851413637732704,
- "fn": 13023,
- "fn_rate": 0.04284431226374436,
- "fp": 62483,
- "fp_rate": 0.359368260011848,
- "match_probability": 0.0003856136040945928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8232051858831252,
- "recall": 0.9571556877362556,
- "row_count": 477830,
- "tn": 111386,
- "tn_rate": 0.640631739988152,
- "tp": 290938,
- "tp_rate": 0.9571556877362556,
- "truth_threshold": -11.34
- },
- {
- "f1": 0.885192780468807,
- "fn": 13030,
- "fn_rate": 0.042867341533946786,
- "fp": 62437,
- "fp_rate": 0.35910369301025485,
- "match_probability": 0.0003909944646980703,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8233088451699079,
- "recall": 0.9571326584660532,
- "row_count": 477830,
- "tn": 111432,
- "tn_rate": 0.6408963069897452,
- "tp": 290931,
- "tp_rate": 0.9571326584660532,
- "truth_threshold": -11.32
- },
- {
- "f1": 0.8852199631214133,
- "fn": 13037,
- "fn_rate": 0.04289037080414922,
- "fp": 62408,
- "fp_rate": 0.35893690077012,
- "match_probability": 0.00039645038016841163,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8233729183883712,
- "recall": 0.9571096291958507,
- "row_count": 477830,
- "tn": 111461,
- "tn_rate": 0.6410630992298799,
- "tp": 290924,
- "tp_rate": 0.9571096291958507,
- "truth_threshold": -11.3
- },
- {
- "f1": 0.8850565617400991,
- "fn": 13150,
- "fn_rate": 0.04326212902313126,
- "fp": 62387,
- "fp_rate": 0.3588161201824362,
- "match_probability": 0.00040198239657063386,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8233653644697875,
- "recall": 0.9567378709768688,
- "row_count": 477830,
- "tn": 111482,
- "tn_rate": 0.6411838798175638,
- "tp": 290811,
- "tp_rate": 0.9567378709768688,
- "truth_threshold": -11.28
- },
- {
- "f1": 0.8850399069750452,
- "fn": 13213,
- "fn_rate": 0.043469392454953105,
- "fp": 62320,
- "fp_rate": 0.3584307725931592,
- "match_probability": 0.0004075915745255968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8234900925600734,
- "recall": 0.9565306075450469,
- "row_count": 477830,
- "tn": 111549,
- "tn_rate": 0.6415692274068407,
- "tp": 290748,
- "tp_rate": 0.9565306075450469,
- "truth_threshold": -11.26
- },
- {
- "f1": 0.8850389961460483,
- "fn": 13231,
- "fn_rate": 0.043528610578330774,
- "fp": 62297,
- "fp_rate": 0.3582984890923626,
- "match_probability": 0.000413278989411887,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8235347438014656,
- "recall": 0.9564713894216692,
- "row_count": 477830,
- "tn": 111572,
- "tn_rate": 0.6417015109076374,
- "tp": 290730,
- "tp_rate": 0.9564713894216692,
- "truth_threshold": -11.24
- },
- {
- "f1": 0.885006241057022,
- "fn": 13263,
- "fn_rate": 0.0436338872421133,
- "fp": 62282,
- "fp_rate": 0.35821221724401703,
- "match_probability": 0.0004190457315704786,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8235537424216669,
- "recall": 0.9563661127578867,
- "row_count": 477830,
- "tn": 111587,
- "tn_rate": 0.6417877827559829,
- "tp": 290698,
- "tp_rate": 0.9563661127578867,
- "truth_threshold": -11.22
- },
- {
- "f1": 0.8850515919048358,
- "fn": 13272,
- "fn_rate": 0.04366349630380213,
- "fp": 62236,
- "fp_rate": 0.3579476502424239,
- "match_probability": 0.00042489290651221616,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8236565842601119,
- "recall": 0.9563365036961978,
- "row_count": 477830,
- "tn": 111633,
- "tn_rate": 0.6420523497575761,
- "tp": 290689,
- "tp_rate": 0.9563365036961978,
- "truth_threshold": -11.200000000000001
- },
- {
- "f1": 0.8850283173984532,
- "fn": 13300,
- "fn_rate": 0.04375561338461184,
- "fp": 62218,
- "fp_rate": 0.3578441240244092,
- "match_probability": 0.00043082163512815456,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8236846057713834,
- "recall": 0.9562443866153881,
- "row_count": 477830,
- "tn": 111651,
- "tn_rate": 0.6421558759755909,
- "tp": 290661,
- "tp_rate": 0.9562443866153881,
- "truth_threshold": -11.18
- },
- {
- "f1": 0.8850657319743346,
- "fn": 13324,
- "fn_rate": 0.043834570882448735,
- "fp": 62160,
- "fp_rate": 0.3575105395441395,
- "match_probability": 0.0004368330539027926,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8238080255784488,
- "recall": 0.9561654291175513,
- "row_count": 477830,
- "tn": 111709,
- "tn_rate": 0.6424894604558604,
- "tp": 290637,
- "tp_rate": 0.9561654291175513,
- "truth_threshold": -11.16
- },
- {
- "f1": 0.8851000718714597,
- "fn": 13326,
- "fn_rate": 0.043841150673935146,
- "fp": 62132,
- "fp_rate": 0.3573494987605611,
- "match_probability": 0.00044292831513024784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8238724143698248,
- "recall": 0.9561588493260649,
- "row_count": 477830,
- "tn": 111737,
- "tn_rate": 0.6426505012394389,
- "tp": 290635,
- "tp_rate": 0.9561588493260649,
- "truth_threshold": -11.14
- },
- {
- "f1": 0.8850836234492884,
- "fn": 13373,
- "fn_rate": 0.04399577577386573,
- "fp": 62086,
- "fp_rate": 0.35708493175896794,
- "match_probability": 0.0004491085871334007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8239564016627253,
- "recall": 0.9560042242261343,
- "row_count": 477830,
- "tn": 111783,
- "tn_rate": 0.6429150682410321,
- "tp": 290588,
- "tp_rate": 0.9560042242261343,
- "truth_threshold": -11.120000000000001
- },
- {
- "f1": 0.8850329278025185,
- "fn": 13410,
- "fn_rate": 0.04411750191636427,
- "fp": 62077,
- "fp_rate": 0.3570331686499606,
- "match_probability": 0.00045537505448605916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8239589595834704,
- "recall": 0.9558824980836357,
- "row_count": 477830,
- "tn": 111792,
- "tn_rate": 0.6429668313500394,
- "tp": 290551,
- "tp_rate": 0.9558824980836357,
- "truth_threshold": -11.1
- },
- {
- "f1": 0.8850127939563787,
- "fn": 13429,
- "fn_rate": 0.04418000993548515,
- "fp": 62067,
- "fp_rate": 0.35697565408439685,
- "match_probability": 0.000461728918238175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8239728416699991,
- "recall": 0.9558199900645149,
- "row_count": 477830,
- "tn": 111802,
- "tn_rate": 0.6430243459156031,
- "tp": 290532,
- "tp_rate": 0.9558199900645149,
- "truth_threshold": -11.08
- },
- {
- "f1": 0.8850064887193766,
- "fn": 13447,
- "fn_rate": 0.044239228058862816,
- "fp": 62049,
- "fp_rate": 0.35687212786638217,
- "match_probability": 0.00046817139614416427,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8240059223457935,
- "recall": 0.9557607719411372,
- "row_count": 477830,
- "tn": 111820,
- "tn_rate": 0.6431278721336179,
- "tp": 290514,
- "tp_rate": 0.9557607719411372,
- "truth_threshold": -11.06
- },
- {
- "f1": 0.8850436737765401,
- "fn": 13464,
- "fn_rate": 0.04429515628649728,
- "fp": 62000,
- "fp_rate": 0.3565903064951199,
- "match_probability": 0.0004747037228943636,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.824111978257971,
- "recall": 0.9557048437135027,
- "row_count": 477830,
- "tn": 111869,
- "tn_rate": 0.6434096935048801,
- "tp": 290497,
- "tp_rate": 0.9557048437135027,
- "truth_threshold": -11.040000000000001
- },
- {
- "f1": 0.8851039454480638,
- "fn": 13469,
- "fn_rate": 0.0443116057652133,
- "fp": 61949,
- "fp_rate": 0.35629698221074485,
- "match_probability": 0.0004813271503496699,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8242287361572576,
- "recall": 0.9556883942347867,
- "row_count": 477830,
- "tn": 111920,
- "tn_rate": 0.6437030177892551,
- "tp": 290492,
- "tp_rate": 0.9556883942347867,
- "truth_threshold": -11.02
- },
- {
- "f1": 0.8851155761132542,
- "fn": 13482,
- "fn_rate": 0.04435437440987495,
- "fp": 61924,
- "fp_rate": 0.3561531957968356,
- "match_probability": 0.0004880429477794046,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8242807240574002,
- "recall": 0.955645625590125,
- "row_count": 477830,
- "tn": 111945,
- "tn_rate": 0.6438468042031644,
- "tp": 290479,
- "tp_rate": 0.955645625590125,
- "truth_threshold": -11
- },
- {
- "f1": 0.8923439904887422,
- "fn": 13495,
- "fn_rate": 0.044397143054536604,
- "fp": 56592,
- "fp_rate": 0.32548642943825523,
- "match_probability": 0.0004948524021024512,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8369379181577719,
- "recall": 0.9556028569454634,
- "row_count": 477830,
- "tn": 117277,
- "tn_rate": 0.6745135705617448,
- "tp": 290466,
- "tp_rate": 0.9556028569454634,
- "truth_threshold": -10.98
- },
- {
- "f1": 0.8926244221500934,
- "fn": 13551,
- "fn_rate": 0.04458137721615602,
- "fp": 56318,
- "fp_rate": 0.32391053034180906,
- "match_probability": 0.000501756818131702,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8375729678595325,
- "recall": 0.9554186227838439,
- "row_count": 477830,
- "tn": 117551,
- "tn_rate": 0.676089469658191,
- "tp": 290410,
- "tp_rate": 0.9554186227838439,
- "truth_threshold": -10.96
- },
- {
- "f1": 0.8926113431881545,
- "fn": 13574,
- "fn_rate": 0.04465704481824971,
- "fp": 56299,
- "fp_rate": 0.32380125266723797,
- "match_probability": 0.0005087575188218651,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8376080949331672,
- "recall": 0.9553429551817503,
- "row_count": 477830,
- "tn": 117570,
- "tn_rate": 0.676198747332762,
- "tp": 290387,
- "tp_rate": 0.9553429551817503,
- "truth_threshold": -10.94
- },
- {
- "f1": 0.8926780680207697,
- "fn": 13588,
- "fn_rate": 0.044703103358654565,
- "fp": 56233,
- "fp_rate": 0.3234216565345174,
- "match_probability": 0.000515855845520672,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8377610312573931,
- "recall": 0.9552968966413454,
- "row_count": 477830,
- "tn": 117636,
- "tn_rate": 0.6765783434654826,
- "tp": 290373,
- "tp_rate": 0.9552968966413454,
- "truth_threshold": -10.92
- },
- {
- "f1": 0.8926147876432443,
- "fn": 13655,
- "fn_rate": 0.04492352637344923,
- "fp": 56195,
- "fp_rate": 0.3232031011853752,
- "match_probability": 0.0005230531582235416,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8378215358685833,
- "recall": 0.9550764736265508,
- "row_count": 477830,
- "tn": 117674,
- "tn_rate": 0.6767968988146248,
- "tp": 290306,
- "tp_rate": 0.9550764736265508,
- "truth_threshold": -10.9
- },
- {
- "f1": 0.8926088440498996,
- "fn": 13673,
- "fn_rate": 0.0449827444968269,
- "fp": 56178,
- "fp_rate": 0.32310532642391687,
- "match_probability": 0.0005303508358317331,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.83785421946165,
- "recall": 0.9550172555031731,
- "row_count": 477830,
- "tn": 117691,
- "tn_rate": 0.6768946735760831,
- "tp": 290288,
- "tp_rate": 0.9550172555031731,
- "truth_threshold": -10.88
- },
- {
- "f1": 0.8925434820044773,
- "fn": 13713,
- "fn_rate": 0.04511434032655505,
- "fp": 56176,
- "fp_rate": 0.3230938235108041,
- "match_probability": 0.0005377502764140461,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8378403343879177,
- "recall": 0.954885659673445,
- "row_count": 477830,
- "tn": 117693,
- "tn_rate": 0.6769061764891959,
- "tp": 290248,
- "tp_rate": 0.954885659673445,
- "truth_threshold": -10.86
- },
- {
- "f1": 0.8925425917953134,
- "fn": 13724,
- "fn_rate": 0.045150529179730295,
- "fp": 56163,
- "fp_rate": 0.3230190545755713,
- "match_probability": 0.0005452528974721083,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8378666281755196,
- "recall": 0.9548494708202697,
- "row_count": 477830,
- "tn": 117706,
- "tn_rate": 0.6769809454244288,
- "tp": 290237,
- "tp_rate": 0.9548494708202697,
- "truth_threshold": -10.84
- },
- {
- "f1": 0.8925867148911566,
- "fn": 13740,
- "fn_rate": 0.04520316751162156,
- "fp": 56111,
- "fp_rate": 0.3227199788346399,
- "match_probability": 0.0005528601362093087,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8379849393067923,
- "recall": 0.9547968324883784,
- "row_count": 477830,
- "tn": 117758,
- "tn_rate": 0.6772800211653601,
- "tp": 290221,
- "tp_rate": 0.9547968324883784,
- "truth_threshold": -10.82
- },
- {
- "f1": 0.8926547937621113,
- "fn": 13750,
- "fn_rate": 0.04523606646905359,
- "fp": 56048,
- "fp_rate": 0.3223576370715884,
- "match_probability": 0.0005605734498034131,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8381327272359708,
- "recall": 0.9547639335309464,
- "row_count": 477830,
- "tn": 117821,
- "tn_rate": 0.6776423629284116,
- "tp": 290211,
- "tp_rate": 0.9547639335309464,
- "truth_threshold": -10.8
- },
- {
- "f1": 0.8924540609730581,
- "fn": 13917,
- "fn_rate": 0.04578547905816865,
- "fp": 55988,
- "fp_rate": 0.32201254967820603,
- "match_probability": 0.0005683943156829212,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8381999352661026,
- "recall": 0.9542145209418313,
- "row_count": 477830,
- "tn": 117881,
- "tn_rate": 0.677987450321794,
- "tp": 290044,
- "tp_rate": 0.9542145209418313,
- "truth_threshold": -10.78
- },
- {
- "f1": 0.8925214661619426,
- "fn": 13954,
- "fn_rate": 0.04590720520066719,
- "fp": 55892,
- "fp_rate": 0.3214604098487942,
- "match_probability": 0.0005763242318072081,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8384152599458223,
- "recall": 0.9540927947993328,
- "row_count": 477830,
- "tn": 117977,
- "tn_rate": 0.6785395901512058,
- "tp": 290007,
- "tp_rate": 0.9540927947993328,
- "truth_threshold": -10.76
- },
- {
- "f1": 0.8926325509811466,
- "fn": 13967,
- "fn_rate": 0.04594997384532884,
- "fp": 55795,
- "fp_rate": 0.32090251856282603,
- "match_probability": 0.0005843647169505126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8386443756163441,
- "recall": 0.9540500261546712,
- "row_count": 477830,
- "tn": 118074,
- "tn_rate": 0.679097481437174,
- "tp": 289994,
- "tp_rate": 0.9540500261546712,
- "truth_threshold": -10.74
- },
- {
- "f1": 0.8925929460440403,
- "fn": 14012,
- "fn_rate": 0.04609801915377302,
- "fp": 55768,
- "fp_rate": 0.32074722923580395,
- "match_probability": 0.0005925173109898081,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8386888697981297,
- "recall": 0.953901980846227,
- "row_count": 477830,
- "tn": 118101,
- "tn_rate": 0.679252770764196,
- "tp": 289949,
- "tp_rate": 0.953901980846227,
- "truth_threshold": -10.72
- },
- {
- "f1": 0.8927566309281144,
- "fn": 14024,
- "fn_rate": 0.04613749790269146,
- "fp": 55634,
- "fp_rate": 0.31997653405725,
- "match_probability": 0.0006007835751966225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8390084816144874,
- "recall": 0.9538625020973085,
- "row_count": 477830,
- "tn": 118235,
- "tn_rate": 0.68002346594275,
- "tp": 289937,
- "tp_rate": 0.9538625020973085,
- "truth_threshold": -10.700000000000001
- },
- {
- "f1": 0.8928893693160995,
- "fn": 14030,
- "fn_rate": 0.04615723727715069,
- "fp": 55530,
- "fp_rate": 0.3193783825753872,
- "match_probability": 0.000609165092532851,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.839258266490284,
- "recall": 0.9538427627228493,
- "row_count": 477830,
- "tn": 118339,
- "tn_rate": 0.6806216174246128,
- "tp": 289931,
- "tp_rate": 0.9538427627228493,
- "truth_threshold": -10.68
- },
- {
- "f1": 0.8930468759629725,
- "fn": 14153,
- "fn_rate": 0.04656189445356477,
- "fp": 55264,
- "fp_rate": 0.317848495131392,
- "match_probability": 0.0006176634679506185,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8398479157972829,
- "recall": 0.9534381055464353,
- "row_count": 477830,
- "tn": 118605,
- "tn_rate": 0.682151504868608,
- "tp": 289808,
- "tp_rate": 0.9534381055464353,
- "truth_threshold": -10.66
- },
- {
- "f1": 0.893022668162264,
- "fn": 14168,
- "fn_rate": 0.04661124288971283,
- "fp": 55262,
- "fp_rate": 0.31783699221827927,
- "match_probability": 0.0006262803286962502,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8398458216806016,
- "recall": 0.9533887571102871,
- "row_count": 477830,
- "tn": 118607,
- "tn_rate": 0.6821630077817207,
- "tp": 289793,
- "tp_rate": 0.9533887571102871,
- "truth_threshold": -10.64
- },
- {
- "f1": 0.8930292758089369,
- "fn": 14173,
- "fn_rate": 0.04662769236842884,
- "fp": 55252,
- "fp_rate": 0.3177794776527155,
- "match_probability": 0.0006350173246183965,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8398678414096916,
- "recall": 0.9533723076315711,
- "row_count": 477830,
- "tn": 118617,
- "tn_rate": 0.6822205223472845,
- "tp": 289788,
- "tp_rate": 0.9533723076315711,
- "truth_threshold": -10.620000000000001
- },
- {
- "f1": 0.891475787309828,
- "fn": 15138,
- "fn_rate": 0.049802441760620604,
- "fp": 55182,
- "fp_rate": 0.31737687569376943,
- "match_probability": 0.0006438761284803746,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.839589540849697,
- "recall": 0.9501975582393793,
- "row_count": 477830,
- "tn": 118687,
- "tn_rate": 0.6826231243062305,
- "tp": 288823,
- "tp_rate": 0.9501975582393793,
- "truth_threshold": -10.6
- },
- {
- "f1": 0.8915326439265319,
- "fn": 15149,
- "fn_rate": 0.04983863061379585,
- "fp": 55127,
- "fp_rate": 0.31706054558316893,
- "match_probability": 0.0006528584362767788,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8397186710434118,
- "recall": 0.9501613693862041,
- "row_count": 477830,
- "tn": 118742,
- "tn_rate": 0.682939454416831,
- "tp": 288812,
- "tp_rate": 0.9501613693862041,
- "truth_threshold": -10.58
- },
- {
- "f1": 0.8957581773345534,
- "fn": 15182,
- "fn_rate": 0.04994719717332158,
- "fp": 52031,
- "fp_rate": 0.2992540360846384,
- "match_probability": 0.0006619659675544257,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8473313576479563,
- "recall": 0.9500528028266785,
- "row_count": 477830,
- "tn": 121838,
- "tn_rate": 0.7007459639153616,
- "tp": 288779,
- "tp_rate": 0.9500528028266785,
- "truth_threshold": -10.56
- },
- {
- "f1": 0.8957055595367724,
- "fn": 15233,
- "fn_rate": 0.050114981856224976,
- "fp": 52005,
- "fp_rate": 0.29910449821417273,
- "match_probability": 0.0006712004657376785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8473731631512064,
- "recall": 0.949885018143775,
- "row_count": 477830,
- "tn": 121864,
- "tn_rate": 0.7008955017858273,
- "tp": 288728,
- "tp_rate": 0.949885018143775,
- "truth_threshold": -10.540000000000001
- },
- {
- "f1": 0.895650285430628,
- "fn": 15275,
- "fn_rate": 0.05025315747743954,
- "fp": 51994,
- "fp_rate": 0.29904123219205264,
- "match_probability": 0.0006805636984582193,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8473817071738875,
- "recall": 0.9497468425225605,
- "row_count": 477830,
- "tn": 121875,
- "tn_rate": 0.7009587678079474,
- "tp": 288686,
- "tp_rate": 0.9497468425225605,
- "truth_threshold": -10.52
- },
- {
- "f1": 0.8956079246629536,
- "fn": 15320,
- "fn_rate": 0.05040120278588372,
- "fp": 51968,
- "fp_rate": 0.29889169432158696,
- "match_probability": 0.000690057457889322,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8474262277273942,
- "recall": 0.9495987972141163,
- "row_count": 477830,
- "tn": 121901,
- "tn_rate": 0.7011083056784131,
- "tp": 288641,
- "tp_rate": 0.9495987972141163,
- "truth_threshold": -10.5
- },
- {
- "f1": 0.8957775329371053,
- "fn": 15337,
- "fn_rate": 0.05045713101351818,
- "fp": 51825,
- "fp_rate": 0.29806923603402563,
- "match_probability": 0.0006996835610846967,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8477745565415085,
- "recall": 0.9495428689864818,
- "row_count": 477830,
- "tn": 122044,
- "tn_rate": 0.7019307639659744,
- "tp": 288624,
- "tp_rate": 0.9495428689864818,
- "truth_threshold": -10.48
- },
- {
- "f1": 0.8957162234727736,
- "fn": 15389,
- "fn_rate": 0.050628205592164785,
- "fp": 51805,
- "fp_rate": 0.29795420690289814,
- "match_probability": 0.000709443850321953,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8478011146464067,
- "recall": 0.9493717944078353,
- "row_count": 477830,
- "tn": 122064,
- "tn_rate": 0.7020457930971018,
- "tp": 288572,
- "tp_rate": 0.9493717944078353,
- "truth_threshold": -10.46
- },
- {
- "f1": 0.8957102635181489,
- "fn": 15416,
- "fn_rate": 0.05071703277723129,
- "fp": 51777,
- "fp_rate": 0.2977931661193197,
- "match_probability": 0.0007193401934507505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8478587925552858,
- "recall": 0.9492829672227687,
- "row_count": 477830,
- "tn": 122092,
- "tn_rate": 0.7022068338806803,
- "tp": 288545,
- "tp_rate": 0.9492829672227687,
- "truth_threshold": -10.44
- },
- {
- "f1": 0.8958743486712584,
- "fn": 15459,
- "fn_rate": 0.05085849829418906,
- "fp": 51606,
- "fp_rate": 0.29680966704817996,
- "match_probability": 0.0007293744842456983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8482658449668928,
- "recall": 0.9491415017058109,
- "row_count": 477830,
- "tn": 122263,
- "tn_rate": 0.7031903329518201,
- "tp": 288502,
- "tp_rate": 0.9491415017058109,
- "truth_threshold": -10.42
- },
- {
- "f1": 0.895605385623839,
- "fn": 15671,
- "fn_rate": 0.051555956191748284,
- "fp": 51538,
- "fp_rate": 0.2964185680023466,
- "match_probability": 0.0007395486427640722,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8483409254093247,
- "recall": 0.9484440438082518,
- "row_count": 477830,
- "tn": 122331,
- "tn_rate": 0.7035814319976534,
- "tp": 288290,
- "tp_rate": 0.9484440438082518,
- "truth_threshold": -10.4
- },
- {
- "f1": 0.8956330738114915,
- "fn": 15680,
- "fn_rate": 0.05158556525343712,
- "fp": 51506,
- "fp_rate": 0.29623452139254264,
- "match_probability": 0.0007498646157084,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8484168022908469,
- "recall": 0.9484144347465628,
- "row_count": 477830,
- "tn": 122363,
- "tn_rate": 0.7037654786074573,
- "tp": 288281,
- "tp_rate": 0.9484144347465628,
- "truth_threshold": -10.38
- },
- {
- "f1": 0.895629288058069,
- "fn": 15726,
- "fn_rate": 0.051736900457624496,
- "fp": 51453,
- "fp_rate": 0.2959296941950549,
- "match_probability": 0.0007603243767939938,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8485286498198347,
- "recall": 0.9482630995423755,
- "row_count": 477830,
- "tn": 122416,
- "tn_rate": 0.7040703058049451,
- "tp": 288235,
- "tp_rate": 0.9482630995423755,
- "truth_threshold": -10.36
- },
- {
- "f1": 0.8956503093603652,
- "fn": 15747,
- "fn_rate": 0.05180598826823178,
- "fp": 51412,
- "fp_rate": 0.2956938844762436,
- "match_probability": 0.0007709299271214838,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8486217191852214,
- "recall": 0.9481940117317682,
- "row_count": 477830,
- "tn": 122457,
- "tn_rate": 0.7043061155237564,
- "tp": 288214,
- "tp_rate": 0.9481940117317682,
- "truth_threshold": -10.34
- },
- {
- "f1": 0.8956308793869122,
- "fn": 15764,
- "fn_rate": 0.051861916495866245,
- "fp": 51404,
- "fp_rate": 0.2956478728237926,
- "match_probability": 0.0007816832955544318,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8486341324083262,
- "recall": 0.9481380835041338,
- "row_count": 477830,
- "tn": 122465,
- "tn_rate": 0.7043521271762073,
- "tp": 288197,
- "tp_rate": 0.9481380835041338,
- "truth_threshold": -10.32
- },
- {
- "f1": 0.8956630385459338,
- "fn": 15785,
- "fn_rate": 0.05193100430647353,
- "fp": 51356,
- "fp_rate": 0.2953718029090867,
- "match_probability": 0.0007925865391020799,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8487447427635687,
- "recall": 0.9480689956935264,
- "row_count": 477830,
- "tn": 122513,
- "tn_rate": 0.7046281970909133,
- "tp": 288176,
- "tp_rate": 0.9480689956935264,
- "truth_threshold": -10.3
- },
- {
- "f1": 0.895677202972836,
- "fn": 15810,
- "fn_rate": 0.05201325170005362,
- "fp": 51315,
- "fp_rate": 0.29513599319027545,
- "match_probability": 0.0008036417433073089,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8488361131895389,
- "recall": 0.9479867482999463,
- "row_count": 477830,
- "tn": 122554,
- "tn_rate": 0.7048640068097246,
- "tp": 288151,
- "tp_rate": 0.9479867482999463,
- "truth_threshold": -10.28
- },
- {
- "f1": 0.8956223304049391,
- "fn": 15859,
- "fn_rate": 0.05217445659147062,
- "fp": 51293,
- "fp_rate": 0.2950094611460352,
- "match_probability": 0.0008148510226398721,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8488693115691156,
- "recall": 0.9478255434085294,
- "row_count": 477830,
- "tn": 122576,
- "tn_rate": 0.7049905388539648,
- "tp": 288102,
- "tp_rate": 0.9478255434085294,
- "truth_threshold": -10.26
- },
- {
- "f1": 0.8956557965720184,
- "fn": 15876,
- "fn_rate": 0.05223038481910508,
- "fp": 51248,
- "fp_rate": 0.29475064560099845,
- "match_probability": 0.0008262165208949831,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8489743113696575,
- "recall": 0.9477696151808949,
- "row_count": 477830,
- "tn": 122621,
- "tn_rate": 0.7052493543990015,
- "tp": 288085,
- "tp_rate": 0.9477696151808949,
- "truth_threshold": -10.24
- },
- {
- "f1": 0.895669315821549,
- "fn": 15903,
- "fn_rate": 0.05231921200417159,
- "fp": 51206,
- "fp_rate": 0.2945090844256308,
- "match_probability": 0.0008377404115973132,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8490673929447274,
- "recall": 0.9476807879958284,
- "row_count": 477830,
- "tn": 122663,
- "tn_rate": 0.7054909155743692,
- "tp": 288058,
- "tp_rate": 0.9476807879958284,
- "truth_threshold": -10.22
- },
- {
- "f1": 0.8957094703848354,
- "fn": 15908,
- "fn_rate": 0.05233566148288761,
- "fp": 51170,
- "fp_rate": 0.29430203198960136,
- "match_probability": 0.0008494248984104829,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8491552754382811,
- "recall": 0.9476643385171124,
- "row_count": 477830,
- "tn": 122699,
- "tn_rate": 0.7056979680103986,
- "tp": 288053,
- "tp_rate": 0.9476643385171124,
- "truth_threshold": -10.200000000000001
- },
- {
- "f1": 0.8957131528617853,
- "fn": 15931,
- "fn_rate": 0.0524113290849813,
- "fp": 51139,
- "fp_rate": 0.2941237368363538,
- "match_probability": 0.0008612722155521146,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8492226589104547,
- "recall": 0.9475886709150187,
- "row_count": 477830,
- "tn": 122730,
- "tn_rate": 0.7058762631636462,
- "tp": 288030,
- "tp_rate": 0.9475886709150187,
- "truth_threshold": -10.18
- },
- {
- "f1": 0.8957020681076038,
- "fn": 15948,
- "fn_rate": 0.05246725731261576,
- "fp": 51126,
- "fp_rate": 0.29404896790112095,
- "match_probability": 0.000873284628214516,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8492476536169535,
- "recall": 0.9475327426873842,
- "row_count": 477830,
- "tn": 122743,
- "tn_rate": 0.705951032098879,
- "tp": 288013,
- "tp_rate": 0.9475327426873842,
- "truth_threshold": -10.16
- },
- {
- "f1": 0.8956737304083036,
- "fn": 16001,
- "fn_rate": 0.05264162178700557,
- "fp": 51082,
- "fp_rate": 0.29379590381264054,
- "match_probability": 0.0008854644329910831,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.849334300765097,
- "recall": 0.9473583782129944,
- "row_count": 477830,
- "tn": 122787,
- "tn_rate": 0.7062040961873595,
- "tp": 287960,
- "tp_rate": 0.9473583782129944,
- "truth_threshold": -10.14
- },
- {
- "f1": 0.8961420545621489,
- "fn": 16044,
- "fn_rate": 0.05278308730396334,
- "fp": 50693,
- "fp_rate": 0.2915585872122115,
- "match_probability": 0.0008978139583084768,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8502908951300907,
- "recall": 0.9472169126960367,
- "row_count": 477830,
- "tn": 123176,
- "tn_rate": 0.7084414127877885,
- "tp": 287917,
- "tp_rate": 0.9472169126960367,
- "truth_threshold": -10.120000000000001
- },
- {
- "f1": 0.8964068873182427,
- "fn": 16062,
- "fn_rate": 0.05284230542734101,
- "fp": 50481,
- "fp_rate": 0.2903392784222604,
- "match_probability": 0.0009103355648646677,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8508156510432059,
- "recall": 0.947157694572659,
- "row_count": 477830,
- "tn": 123388,
- "tn_rate": 0.7096607215777395,
- "tp": 287899,
- "tp_rate": 0.947157694572659,
- "truth_threshold": -10.1
- },
- {
- "f1": 0.8964498239080274,
- "fn": 16076,
- "fn_rate": 0.05288836396774586,
- "fp": 50433,
- "fp_rate": 0.2900632085075545,
- "match_probability": 0.0009230316460729091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8509301899396425,
- "recall": 0.9471116360322541,
- "row_count": 477830,
- "tn": 123436,
- "tn_rate": 0.7099367914924455,
- "tp": 287885,
- "tp_rate": 0.9471116360322541,
- "truth_threshold": -10.08
- },
- {
- "f1": 0.8965202577494573,
- "fn": 16100,
- "fn_rate": 0.05296732146558276,
- "fp": 50352,
- "fp_rate": 0.28959734052648833,
- "match_probability": 0.0009359046285117405,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.851123404481791,
- "recall": 0.9470326785344172,
- "row_count": 477830,
- "tn": 123517,
- "tn_rate": 0.7104026594735117,
- "tp": 287861,
- "tp_rate": 0.9470326785344172,
- "truth_threshold": -10.06
- },
- {
- "f1": 0.896473644212441,
- "fn": 16132,
- "fn_rate": 0.05307259812936528,
- "fp": 50346,
- "fp_rate": 0.2895628317871501,
- "match_probability": 0.0009489569723810712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8511244178310047,
- "recall": 0.9469274018706347,
- "row_count": 477830,
- "tn": 123523,
- "tn_rate": 0.7104371682128499,
- "tp": 287829,
- "tp_rate": 0.9469274018706347,
- "truth_threshold": -10.040000000000001
- },
- {
- "f1": 0.8964872770089056,
- "fn": 16159,
- "fn_rate": 0.053161425314431784,
- "fp": 50303,
- "fp_rate": 0.2893155191552261,
- "match_probability": 0.0009621911719644465,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8512207746114373,
- "recall": 0.9468385746855682,
- "row_count": 477830,
- "tn": 123566,
- "tn_rate": 0.710684480844774,
- "tp": 287802,
- "tp_rate": 0.9468385746855682,
- "truth_threshold": -10.02
- },
- {
- "f1": 0.8965076753873523,
- "fn": 16217,
- "fn_rate": 0.05335223926753761,
- "fp": 50218,
- "fp_rate": 0.28882664534793434,
- "match_probability": 0.000975609756097561,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8514093300430225,
- "recall": 0.9466477607324624,
- "row_count": 477830,
- "tn": 123651,
- "tn_rate": 0.7111733546520657,
- "tp": 287744,
- "tp_rate": 0.9466477607324624,
- "truth_threshold": -10
- },
- {
- "f1": 0.8965252866506057,
- "fn": 16301,
- "fn_rate": 0.05362859050996674,
- "fp": 50101,
- "fp_rate": 0.28815372493083874,
- "match_probability": 0.0009892152886431212,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8516673032114425,
- "recall": 0.9463714094900333,
- "row_count": 477830,
- "tn": 123768,
- "tn_rate": 0.7118462750691613,
- "tp": 287660,
- "tp_rate": 0.9463714094900333,
- "truth_threshold": -9.98
- },
- {
- "f1": 0.8965234574673665,
- "fn": 16324,
- "fn_rate": 0.05370425811206043,
- "fp": 50074,
- "fp_rate": 0.28799843560381666,
- "match_probability": 0.0010030103689721156,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8517252917435322,
- "recall": 0.9462957418879395,
- "row_count": 477830,
- "tn": 123795,
- "tn_rate": 0.7120015643961833,
- "tp": 287637,
- "tp_rate": 0.9462957418879395,
- "truth_threshold": -9.96
- },
- {
- "f1": 0.896532698248425,
- "fn": 16356,
- "fn_rate": 0.05380953477584295,
- "fp": 50028,
- "fp_rate": 0.2877338686022235,
- "match_probability": 0.0010169976324515963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8518272799163589,
- "recall": 0.9461904652241571,
- "row_count": 477830,
- "tn": 123841,
- "tn_rate": 0.7122661313977765,
- "tp": 287605,
- "tp_rate": 0.9461904652241571,
- "truth_threshold": -9.94
- },
- {
- "f1": 0.9007962362021225,
- "fn": 16380,
- "fn_rate": 0.053888492273679846,
- "fp": 46962,
- "fp_rate": 0.2700999028003842,
- "match_probability": 0.0010311797509390394,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8596234265849233,
- "recall": 0.9461115077263201,
- "row_count": 477830,
- "tn": 126907,
- "tn_rate": 0.7299000971996158,
- "tp": 287581,
- "tp_rate": 0.9461115077263201,
- "truth_threshold": -9.92
- },
- {
- "f1": 0.9008816783847803,
- "fn": 16432,
- "fn_rate": 0.05405956685232645,
- "fp": 46838,
- "fp_rate": 0.26938672218739396,
- "match_probability": 0.0010455594332833937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8599203868802843,
- "recall": 0.9459404331476735,
- "row_count": 477830,
- "tn": 127031,
- "tn_rate": 0.730613277812606,
- "tp": 287529,
- "tp_rate": 0.9459404331476735,
- "truth_threshold": -9.9
- },
- {
- "f1": 0.9008451445708,
- "fn": 16486,
- "fn_rate": 0.05423722122245946,
- "fp": 46799,
- "fp_rate": 0.26916241538169544,
- "match_probability": 0.0010601394258328775,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8599980854029927,
- "recall": 0.9457627787775406,
- "row_count": 477830,
- "tn": 127070,
- "tn_rate": 0.7308375846183046,
- "tp": 287475,
- "tp_rate": 0.9457627787775406,
- "truth_threshold": -9.88
- },
- {
- "f1": 0.9002022482479658,
- "fn": 16873,
- "fn_rate": 0.055510410875079366,
- "fp": 46782,
- "fp_rate": 0.26906464062023705,
- "match_probability": 0.00107492251294963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8598795938538952,
- "recall": 0.9444895891249206,
- "row_count": 477830,
- "tn": 127087,
- "tn_rate": 0.730935359379763,
- "tp": 287088,
- "tp_rate": 0.9444895891249206,
- "truth_threshold": -9.86
- },
- {
- "f1": 0.9001737363347279,
- "fn": 16919,
- "fn_rate": 0.05566174607926675,
- "fp": 46745,
- "fp_rate": 0.2688518367276513,
- "match_probability": 0.0010899115175312943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8599556004278177,
- "recall": 0.9443382539207332,
- "row_count": 477830,
- "tn": 127124,
- "tn_rate": 0.7311481632723488,
- "tp": 287042,
- "tp_rate": 0.9443382539207332,
- "truth_threshold": -9.84
- },
- {
- "f1": 0.9001263944950963,
- "fn": 16962,
- "fn_rate": 0.05580321159622451,
- "fp": 46726,
- "fp_rate": 0.2687425590530802,
- "match_probability": 0.0011051093015396422,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8599865158438834,
- "recall": 0.9441967884037755,
- "row_count": 477830,
- "tn": 127143,
- "tn_rate": 0.7312574409469198,
- "tp": 286999,
- "tp_rate": 0.9441967884037755,
- "truth_threshold": -9.82
- },
- {
- "f1": 0.900108846695546,
- "fn": 17009,
- "fn_rate": 0.055957836696155096,
- "fp": 46681,
- "fp_rate": 0.26848374350804344,
- "match_probability": 0.0011205187665362995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8600827855757673,
- "recall": 0.9440421633038449,
- "row_count": 477830,
- "tn": 127188,
- "tn_rate": 0.7315162564919566,
- "tp": 286952,
- "tp_rate": 0.9440421633038449,
- "truth_threshold": -9.8
- },
- {
- "f1": 0.901032475240063,
- "fn": 17020,
- "fn_rate": 0.05599402554933034,
- "fp": 46014,
- "fp_rate": 0.2646475219849427,
- "match_probability": 0.0011361428542256968,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8618011442987791,
- "recall": 0.9440059744506697,
- "row_count": 477830,
- "tn": 127855,
- "tn_rate": 0.7353524780150573,
- "tp": 286941,
- "tp_rate": 0.9440059744506697,
- "truth_threshold": -9.78
- },
- {
- "f1": 0.9010464101098542,
- "fn": 17048,
- "fn_rate": 0.05608614263014005,
- "fp": 45970,
- "fp_rate": 0.26439445789646226,
- "match_probability": 0.0011519845470053095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8619034315360051,
- "recall": 0.94391385736986,
- "row_count": 477830,
- "tn": 127899,
- "tn_rate": 0.7356055421035377,
- "tp": 286913,
- "tp_rate": 0.94391385736986,
- "truth_threshold": -9.76
- },
- {
- "f1": 0.901097416955626,
- "fn": 17066,
- "fn_rate": 0.05614536075351772,
- "fp": 45913,
- "fp_rate": 0.264066624872749,
- "match_probability": 0.0011680468685233154,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8620435806831567,
- "recall": 0.9438546392464823,
- "row_count": 477830,
- "tn": 127956,
- "tn_rate": 0.735933375127251,
- "tp": 286895,
- "tp_rate": 0.9438546392464823,
- "truth_threshold": -9.74
- },
- {
- "f1": 0.9010880596217713,
- "fn": 17169,
- "fn_rate": 0.05648422001506772,
- "fp": 45794,
- "fp_rate": 0.26338220154254066,
- "match_probability": 0.0011843328842437272,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8623092974448714,
- "recall": 0.9435157799849323,
- "row_count": 477830,
- "tn": 128075,
- "tn_rate": 0.7366177984574593,
- "tp": 286792,
- "tp_rate": 0.9435157799849323,
- "truth_threshold": -9.72
- },
- {
- "f1": 0.9011038387697838,
- "fn": 17182,
- "fn_rate": 0.056526988659729376,
- "fp": 45766,
- "fp_rate": 0.2632211607589622,
- "match_probability": 0.0012008457020191263,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8623765204709137,
- "recall": 0.9434730113402706,
- "row_count": 477830,
- "tn": 128103,
- "tn_rate": 0.7367788392410378,
- "tp": 286779,
- "tp_rate": 0.9434730113402706,
- "truth_threshold": -9.700000000000001
- },
- {
- "f1": 0.9010608479241821,
- "fn": 17211,
- "fn_rate": 0.05662239563628228,
- "fp": 45761,
- "fp_rate": 0.26319240347618034,
- "match_probability": 0.0012175884726710806,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8623774852561269,
- "recall": 0.9433776043637178,
- "row_count": 477830,
- "tn": 128108,
- "tn_rate": 0.7368075965238197,
- "tp": 286750,
- "tp_rate": 0.9433776043637178,
- "truth_threshold": -9.68
- },
- {
- "f1": 0.9010261003472714,
- "fn": 17259,
- "fn_rate": 0.05678031063195607,
- "fp": 45728,
- "fp_rate": 0.26300260540982,
- "match_probability": 0.001234564390578344,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8624432211292603,
- "recall": 0.9432196893680439,
- "row_count": 477830,
- "tn": 128141,
- "tn_rate": 0.73699739459018,
- "tp": 286702,
- "tp_rate": 0.9432196893680439,
- "truth_threshold": -9.66
- },
- {
- "f1": 0.901102907665664,
- "fn": 17267,
- "fn_rate": 0.05680662979790171,
- "fp": 45664,
- "fp_rate": 0.26263451219021217,
- "match_probability": 0.001251776694272957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.862605985112439,
- "recall": 0.9431933702020983,
- "row_count": 477830,
- "tn": 128205,
- "tn_rate": 0.7373654878097878,
- "tp": 286694,
- "tp_rate": 0.9431933702020983,
- "truth_threshold": -9.64
- },
- {
- "f1": 0.9010194170179459,
- "fn": 17326,
- "fn_rate": 0.057000733646750734,
- "fp": 45650,
- "fp_rate": 0.2625539917984229,
- "match_probability": 0.0012692286670443176,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8626179334005447,
- "recall": 0.9429992663532493,
- "row_count": 477830,
- "tn": 128219,
- "tn_rate": 0.737446008201577,
- "tp": 286635,
- "tp_rate": 0.9429992663532493,
- "truth_threshold": -9.620000000000001
- },
- {
- "f1": 0.900939985538684,
- "fn": 17381,
- "fn_rate": 0.057181677912626946,
- "fp": 45640,
- "fp_rate": 0.26249647723285924,
- "match_probability": 0.0012869236375513526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8626211546565529,
- "recall": 0.942818322087373,
- "row_count": 477830,
- "tn": 128229,
- "tn_rate": 0.7375035227671408,
- "tp": 286580,
- "tp_rate": 0.942818322087373,
- "truth_threshold": -9.6
- },
- {
- "f1": 0.9008831694748458,
- "fn": 17427,
- "fn_rate": 0.05733301311681433,
- "fp": 45623,
- "fp_rate": 0.2623987024714009,
- "match_probability": 0.0013048649804428731,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8626462787175944,
- "recall": 0.9426669868831856,
- "row_count": 477830,
- "tn": 128246,
- "tn_rate": 0.7376012975285992,
- "tp": 286534,
- "tp_rate": 0.9426669868831856,
- "truth_threshold": -9.58
- },
- {
- "f1": 0.9007609584302874,
- "fn": 17501,
- "fn_rate": 0.05757646540181142,
- "fp": 45619,
- "fp_rate": 0.2623756966451754,
- "match_probability": 0.0013230561169862418,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8626260618708199,
- "recall": 0.9424235345981886,
- "row_count": 477830,
- "tn": 128250,
- "tn_rate": 0.7376243033548247,
- "tp": 286460,
- "tp_rate": 0.9424235345981886,
- "truth_threshold": -9.56
- },
- {
- "f1": 0.9007012578616352,
- "fn": 17538,
- "fn_rate": 0.05769819154430996,
- "fp": 45617,
- "fp_rate": 0.26236419373206266,
- "match_probability": 0.001341500515704429,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.862615949885556,
- "recall": 0.94230180845569,
- "row_count": 477830,
- "tn": 128252,
- "tn_rate": 0.7376358062679373,
- "tp": 286423,
- "tp_rate": 0.94230180845569,
- "truth_threshold": -9.540000000000001
- },
- {
- "f1": 0.9010514327422826,
- "fn": 17560,
- "fn_rate": 0.057770569250660445,
- "fp": 45342,
- "fp_rate": 0.2607825431790601,
- "match_probability": 0.0013602016930215866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8633219088270137,
- "recall": 0.9422294307493395,
- "row_count": 477830,
- "tn": 128527,
- "tn_rate": 0.7392174568209399,
- "tp": 286401,
- "tp_rate": 0.9422294307493395,
- "truth_threshold": -9.52
- },
- {
- "f1": 0.9010053018265343,
- "fn": 17608,
- "fn_rate": 0.05792848424633423,
- "fp": 45316,
- "fp_rate": 0.2606330053085944,
- "match_probability": 0.0013791632139172336,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8633698054385547,
- "recall": 0.9420715157536658,
- "row_count": 477830,
- "tn": 128553,
- "tn_rate": 0.7393669946914055,
- "tp": 286353,
- "tp_rate": 0.9420715157536658,
- "truth_threshold": -9.5
- },
- {
- "f1": 0.9009516796012009,
- "fn": 17680,
- "fn_rate": 0.058165356739844916,
- "fp": 45266,
- "fp_rate": 0.26034543248077574,
- "match_probability": 0.0013983886925891824,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8634703375388708,
- "recall": 0.9418346432601551,
- "row_count": 477830,
- "tn": 128603,
- "tn_rate": 0.7396545675192242,
- "tp": 286281,
- "tp_rate": 0.9418346432601551,
- "truth_threshold": -9.48
- },
- {
- "f1": 0.9007863060612928,
- "fn": 17792,
- "fn_rate": 0.05853382506308375,
- "fp": 45247,
- "fp_rate": 0.26023615480620466,
- "match_probability": 0.0014178817931252896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8634737007265793,
- "recall": 0.9414661749369162,
- "row_count": 477830,
- "tn": 128622,
- "tn_rate": 0.7397638451937953,
- "tp": 286169,
- "tp_rate": 0.9414661749369162,
- "truth_threshold": -9.46
- },
- {
- "f1": 0.9007898158145743,
- "fn": 17808,
- "fn_rate": 0.058586463394975016,
- "fp": 45224,
- "fp_rate": 0.2601038713054081,
- "match_probability": 0.0014376462301841668,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8635270401989275,
- "recall": 0.941413536605025,
- "row_count": 477830,
- "tn": 128645,
- "tn_rate": 0.7398961286945919,
- "tp": 286153,
- "tp_rate": 0.941413536605025,
- "truth_threshold": -9.44
- },
- {
- "f1": 0.9009002200957842,
- "fn": 17845,
- "fn_rate": 0.05870818953747356,
- "fp": 45102,
- "fp_rate": 0.2594021936055306,
- "match_probability": 0.0014576857696849406,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8638298643189681,
- "recall": 0.9412918104625264,
- "row_count": 477830,
- "tn": 128767,
- "tn_rate": 0.7405978063944694,
- "tp": 286116,
- "tp_rate": 0.9412918104625264,
- "truth_threshold": -9.42
- },
- {
- "f1": 0.9010481955791847,
- "fn": 17880,
- "fn_rate": 0.05882333588848569,
- "fp": 44954,
- "fp_rate": 0.2585509780351874,
- "match_probability": 0.0014780042295062135,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8642016705182232,
- "recall": 0.9411766641115143,
- "row_count": 477830,
- "tn": 128915,
- "tn_rate": 0.7414490219648125,
- "tp": 286081,
- "tp_rate": 0.9411766641115143,
- "truth_threshold": -9.4
- },
- {
- "f1": 0.9010158600160648,
- "fn": 17920,
- "fn_rate": 0.05895493171821385,
- "fp": 44928,
- "fp_rate": 0.2584014401647217,
- "match_probability": 0.0014986054801942956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8642531475757548,
- "recall": 0.9410450682817861,
- "row_count": 477830,
- "tn": 128941,
- "tn_rate": 0.7415985598352783,
- "tp": 286041,
- "tp_rate": 0.9410450682817861,
- "truth_threshold": -9.38
- },
- {
- "f1": 0.9010077526705919,
- "fn": 17946,
- "fn_rate": 0.05904046900753715,
- "fp": 44902,
- "fp_rate": 0.25825190229425604,
- "match_probability": 0.0015194934456808581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8643103859880272,
- "recall": 0.9409595309924629,
- "row_count": 477830,
- "tn": 128967,
- "tn_rate": 0.741748097705744,
- "tp": 286015,
- "tp_rate": 0.9409595309924629,
- "truth_threshold": -9.36
- },
- {
- "f1": 0.9009961502353334,
- "fn": 17965,
- "fn_rate": 0.059102977026658024,
- "fp": 44887,
- "fp_rate": 0.25816563044591045,
- "match_probability": 0.0015406721040101049,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8643417763983039,
- "recall": 0.940897022973342,
- "row_count": 477830,
- "tn": 128982,
- "tn_rate": 0.7418343695540895,
- "tp": 285996,
- "tp_rate": 0.940897022973342,
- "truth_threshold": -9.34
- },
- {
- "f1": 0.9009414937863931,
- "fn": 18031,
- "fn_rate": 0.05932011014570948,
- "fp": 44846,
- "fp_rate": 0.25792982072709913,
- "match_probability": 0.0015621454880756095,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8644218443901613,
- "recall": 0.9406798898542905,
- "row_count": 477830,
- "tn": 129023,
- "tn_rate": 0.7420701792729009,
- "tp": 285930,
- "tp_rate": 0.9406798898542905,
- "truth_threshold": -9.32
- },
- {
- "f1": 0.9009699742852821,
- "fn": 18058,
- "fn_rate": 0.059408937330775985,
- "fp": 44792,
- "fp_rate": 0.257619242073055,
- "match_probability": 0.0015839176863668995,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8645519285141898,
- "recall": 0.940591062669224,
- "row_count": 477830,
- "tn": 129077,
- "tn_rate": 0.742380757926945,
- "tp": 285903,
- "tp_rate": 0.940591062669224,
- "truth_threshold": -9.3
- },
- {
- "f1": 0.9009335543774938,
- "fn": 18111,
- "fn_rate": 0.05958330180516579,
- "fp": 44753,
- "fp_rate": 0.25739493526735646,
- "match_probability": 0.0016059928437259468,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8646322023696095,
- "recall": 0.9404166981948342,
- "row_count": 477830,
- "tn": 129116,
- "tn_rate": 0.7426050647326435,
- "tp": 285850,
- "tp_rate": 0.9404166981948342,
- "truth_threshold": -9.28
- },
- {
- "f1": 0.9005851825227168,
- "fn": 18326,
- "fn_rate": 0.06029062938995463,
- "fp": 44736,
- "fp_rate": 0.2572971605058981,
- "match_probability": 0.0016283751621136546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8645885988782308,
- "recall": 0.9397093706100453,
- "row_count": 477830,
- "tn": 129133,
- "tn_rate": 0.7427028394941019,
- "tp": 285635,
- "tp_rate": 0.9397093706100453,
- "truth_threshold": -9.26
- },
- {
- "f1": 0.9005543677747715,
- "fn": 18379,
- "fn_rate": 0.06046499386434444,
- "fp": 44693,
- "fp_rate": 0.25704984787397406,
- "match_probability": 0.001651068901386505,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8646794338051623,
- "recall": 0.9395350061356555,
- "row_count": 477830,
- "tn": 129176,
- "tn_rate": 0.7429501521260259,
- "tp": 285582,
- "tp_rate": 0.9395350061356555,
- "truth_threshold": -9.24
- },
- {
- "f1": 0.9005011843595154,
- "fn": 18458,
- "fn_rate": 0.060724895628057544,
- "fp": 44635,
- "fp_rate": 0.25671626339370446,
- "match_probability": 0.0016740783800834494,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8647989628579563,
- "recall": 0.9392751043719425,
- "row_count": 477830,
- "tn": 129234,
- "tn_rate": 0.7432837366062955,
- "tp": 285503,
- "tp_rate": 0.9392751043719425,
- "truth_threshold": -9.22
- },
- {
- "f1": 0.9005330893949909,
- "fn": 18474,
- "fn_rate": 0.06077753395994881,
- "fp": 44593,
- "fp_rate": 0.2564747022183368,
- "match_probability": 0.0016974079762232014,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8649024478914202,
- "recall": 0.9392224660400512,
- "row_count": 477830,
- "tn": 129276,
- "tn_rate": 0.7435252977816632,
- "tp": 285487,
- "tp_rate": 0.9392224660400512,
- "truth_threshold": -9.200000000000001
- },
- {
- "f1": 0.9004063629881561,
- "fn": 18570,
- "fn_rate": 0.06109336395129639,
- "fp": 44565,
- "fp_rate": 0.25631366143475837,
- "match_probability": 0.0017210621281120474,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8649365369928111,
- "recall": 0.9389066360487036,
- "row_count": 477830,
- "tn": 129304,
- "tn_rate": 0.7436863385652417,
- "tp": 285391,
- "tp_rate": 0.9389066360487036,
- "truth_threshold": -9.18
- },
- {
- "f1": 0.9005462618459296,
- "fn": 18595,
- "fn_rate": 0.06117561134487648,
- "fp": 44436,
- "fp_rate": 0.2555717235389863,
- "match_probability": 0.0017450453351622972,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8652646133134426,
- "recall": 0.9388243886551235,
- "row_count": 477830,
- "tn": 129433,
- "tn_rate": 0.7444282764610137,
- "tp": 285366,
- "tp_rate": 0.9388243886551235,
- "truth_threshold": -9.16
- },
- {
- "f1": 0.9007595272369119,
- "fn": 18622,
- "fn_rate": 0.06126443852994298,
- "fp": 44253,
- "fp_rate": 0.25451920698917,
- "match_probability": 0.001769362158721538,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8657339983980193,
- "recall": 0.938735561470057,
- "row_count": 477830,
- "tn": 129616,
- "tn_rate": 0.74548079301083,
- "tp": 285339,
- "tp_rate": 0.938735561470057,
- "truth_threshold": -9.14
- },
- {
- "f1": 0.9007293278186468,
- "fn": 18673,
- "fn_rate": 0.06143222321284639,
- "fp": 44212,
- "fp_rate": 0.2542833972703587,
- "match_probability": 0.001794017222912777,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8658209408194234,
- "recall": 0.9385677767871536,
- "row_count": 477830,
- "tn": 129657,
- "tn_rate": 0.7457166027296412,
- "tp": 285288,
- "tp_rate": 0.9385677767871536,
- "truth_threshold": -9.120000000000001
- },
- {
- "f1": 0.9005902061774281,
- "fn": 18772,
- "fn_rate": 0.061757922891423574,
- "fp": 44189,
- "fp_rate": 0.2541511137695621,
- "match_probability": 0.0018190152154856484,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8658410701382606,
- "recall": 0.9382420771085764,
- "row_count": 477830,
- "tn": 129680,
- "tn_rate": 0.7458488862304379,
- "tp": 285189,
- "tp_rate": 0.9382420771085764,
- "truth_threshold": -9.1
- },
- {
- "f1": 0.9006006593989616,
- "fn": 18784,
- "fn_rate": 0.06179740164034202,
- "fp": 44167,
- "fp_rate": 0.25402458172532194,
- "match_probability": 0.0018443608886787883,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8658940196268947,
- "recall": 0.938202598359658,
- "row_count": 477830,
- "tn": 129702,
- "tn_rate": 0.7459754182746781,
- "tp": 285177,
- "tp_rate": 0.938202598359658,
- "truth_threshold": -9.08
- },
- {
- "f1": 0.9006791117849584,
- "fn": 18815,
- "fn_rate": 0.061899388408381335,
- "fp": 44073,
- "fp_rate": 0.25348394480902287,
- "match_probability": 0.0018700590600935494,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.866128625626103,
- "recall": 0.9381006115916186,
- "row_count": 477830,
- "tn": 129796,
- "tn_rate": 0.7465160551909771,
- "tp": 285146,
- "tp_rate": 0.9381006115916186,
- "truth_threshold": -9.06
- },
- {
- "f1": 0.9007111018445685,
- "fn": 18840,
- "fn_rate": 0.061981635801961435,
- "fp": 44021,
- "fp_rate": 0.2531848690680915,
- "match_probability": 0.0018961146135791532,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.866255294067606,
- "recall": 0.9380183641980385,
- "row_count": 477830,
- "tn": 129848,
- "tn_rate": 0.7468151309319085,
- "tp": 285121,
- "tp_rate": 0.9380183641980385,
- "truth_threshold": -9.040000000000001
- },
- {
- "f1": 0.9006334412763605,
- "fn": 18888,
- "fn_rate": 0.062139550797635223,
- "fp": 44017,
- "fp_rate": 0.253161863241866,
- "match_probability": 0.001922532500129454,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8662463155975569,
- "recall": 0.9378604492023648,
- "row_count": 477830,
- "tn": 129852,
- "tn_rate": 0.746838136758134,
- "tp": 285073,
- "tp_rate": 0.9378604492023648,
- "truth_threshold": -9.02
- },
- {
- "f1": 0.9006325394468282,
- "fn": 18909,
- "fn_rate": 0.0622086386082425,
- "fp": 43992,
- "fp_rate": 0.2530180768279567,
- "match_probability": 0.001949317738791423,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8663035946560338,
- "recall": 0.9377913613917574,
- "row_count": 477830,
- "tn": 129877,
- "tn_rate": 0.7469819231720434,
- "tp": 285052,
- "tp_rate": 0.9377913613917574,
- "truth_threshold": -9
- },
- {
- "f1": 0.9004939434256225,
- "fn": 19015,
- "fn_rate": 0.06255736755702211,
- "fp": 43960,
- "fp_rate": 0.25283403021815276,
- "match_probability": 0.001976475417585539,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8663447915209816,
- "recall": 0.9374426324429779,
- "row_count": 477830,
- "tn": 129909,
- "tn_rate": 0.7471659697818472,
- "tp": 284946,
- "tp_rate": 0.9374426324429779,
- "truth_threshold": -8.98
- },
- {
- "f1": 0.9004273180105692,
- "fn": 19073,
- "fn_rate": 0.06274818151012794,
- "fp": 43935,
- "fp_rate": 0.25269024380424343,
- "match_probability": 0.0020040106944381785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8663870836285783,
- "recall": 0.937251818489872,
- "row_count": 477830,
- "tn": 129934,
- "tn_rate": 0.7473097561957566,
- "tp": 284888,
- "tp_rate": 0.937251818489872,
- "truth_threshold": -8.96
- },
- {
- "f1": 0.9003701350629483,
- "fn": 19110,
- "fn_rate": 0.06286990765262648,
- "fp": 43931,
- "fp_rate": 0.25266723797801793,
- "match_probability": 0.002031928798126188,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8663825878545662,
- "recall": 0.9371300923473735,
- "row_count": 477830,
- "tn": 129938,
- "tn_rate": 0.7473327620219821,
- "tp": 284851,
- "tp_rate": 0.9371300923473735,
- "truth_threshold": -8.94
- },
- {
- "f1": 0.900332877063095,
- "fn": 19156,
- "fn_rate": 0.06302124285681386,
- "fp": 43900,
- "fp_rate": 0.25248894282477036,
- "match_probability": 0.0020602350292337574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.866445597115955,
- "recall": 0.9369787571431861,
- "row_count": 477830,
- "tn": 129969,
- "tn_rate": 0.7475110571752296,
- "tp": 284805,
- "tp_rate": 0.9369787571431861,
- "truth_threshold": -8.92
- },
- {
- "f1": 0.8997222503416511,
- "fn": 19548,
- "fn_rate": 0.0643108819881498,
- "fp": 43850,
- "fp_rate": 0.25220136999695175,
- "match_probability": 0.0020889347611217834,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.866418085498518,
- "recall": 0.9356891180118502,
- "row_count": 477830,
- "tn": 130019,
- "tn_rate": 0.7477986300030482,
- "tp": 284413,
- "tp_rate": 0.9356891180118502,
- "truth_threshold": -8.9
- },
- {
- "f1": 0.8995947087503046,
- "fn": 19627,
- "fn_rate": 0.0645707837518629,
- "fp": 43843,
- "fp_rate": 0.2521611098010571,
- "match_probability": 0.002118033440909814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.866404409815435,
- "recall": 0.9354292162481371,
- "row_count": 477830,
- "tn": 130026,
- "tn_rate": 0.7478388901989429,
- "tp": 284334,
- "tp_rate": 0.9354292162481371,
- "truth_threshold": -8.88
- },
- {
- "f1": 0.8995816958720154,
- "fn": 19659,
- "fn_rate": 0.06467606041564543,
- "fp": 43814,
- "fp_rate": 0.2519943175609223,
- "match_probability": 0.0021475365904707793,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8664679564544246,
- "recall": 0.9353239395843546,
- "row_count": 477830,
- "tn": 130055,
- "tn_rate": 0.7480056824390777,
- "tp": 284302,
- "tp_rate": 0.9353239395843546,
- "truth_threshold": -8.86
- },
- {
- "f1": 0.9003246598989595,
- "fn": 19715,
- "fn_rate": 0.06486029457726485,
- "fp": 43223,
- "fp_rate": 0.2485952067361059,
- "match_probability": 0.0021774498074386152,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8680088802298843,
- "recall": 0.9351397054227352,
- "row_count": 477830,
- "tn": 130646,
- "tn_rate": 0.7514047932638941,
- "tp": 284246,
- "tp_rate": 0.9351397054227352,
- "truth_threshold": -8.84
- },
- {
- "f1": 0.9003006027893659,
- "fn": 19737,
- "fn_rate": 0.06493267228361534,
- "fp": 43214,
- "fp_rate": 0.24854344362709857,
- "match_probability": 0.002207778766228983,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8680238701677875,
- "recall": 0.9350673277163847,
- "row_count": 477830,
- "tn": 130655,
- "tn_rate": 0.7514565563729014,
- "tp": 284224,
- "tp_rate": 0.9350673277163847,
- "truth_threshold": -8.82
- },
- {
- "f1": 0.9003640695946439,
- "fn": 19807,
- "fn_rate": 0.0651629649856396,
- "fp": 43083,
- "fp_rate": 0.2477900028182137,
- "match_probability": 0.002238529219073188,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8683431274580808,
- "recall": 0.9348370350143604,
- "row_count": 477830,
- "tn": 130786,
- "tn_rate": 0.7522099971817863,
- "tp": 284154,
- "tp_rate": 0.9348370350143604,
- "truth_threshold": -8.8
- },
- {
- "f1": 0.9003546088053265,
- "fn": 19846,
- "fn_rate": 0.06529127091962456,
- "fp": 43043,
- "fp_rate": 0.24755994455595878,
- "match_probability": 0.0022697069970654916,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8684336008900898,
- "recall": 0.9347087290803754,
- "row_count": 477830,
- "tn": 130826,
- "tn_rate": 0.7524400554440412,
- "tp": 284115,
- "tp_rate": 0.9347087290803754,
- "truth_threshold": -8.78
- },
- {
- "f1": 0.8999302495165024,
- "fn": 20114,
- "fn_rate": 0.06617296297880321,
- "fp": 43012,
- "fp_rate": 0.24738164940271123,
- "match_probability": 0.002301318011223944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8684080903386475,
- "recall": 0.9338270370211968,
- "row_count": 477830,
- "tn": 130857,
- "tn_rate": 0.7526183505972888,
- "tp": 283847,
- "tp_rate": 0.9338270370211968,
- "truth_threshold": -8.76
- },
- {
- "f1": 0.8999080503503599,
- "fn": 20139,
- "fn_rate": 0.0662552103723833,
- "fp": 42998,
- "fp_rate": 0.24730112901092202,
- "match_probability": 0.002333368253564943,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8684352242824797,
- "recall": 0.9337447896276168,
- "row_count": 477830,
- "tn": 130871,
- "tn_rate": 0.752698870989078,
- "tp": 283822,
- "tp_rate": 0.9337447896276168,
- "truth_threshold": -8.74
- },
- {
- "f1": 0.8997897554122919,
- "fn": 20215,
- "fn_rate": 0.0665052424488668,
- "fp": 42988,
- "fp_rate": 0.24724361444535828,
- "match_probability": 0.0023658637981916145,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8684312009157296,
- "recall": 0.9334947575511332,
- "row_count": 477830,
- "tn": 130881,
- "tn_rate": 0.7527563855546417,
- "tp": 283746,
- "tp_rate": 0.9334947575511332,
- "truth_threshold": -8.72
- },
- {
- "f1": 0.899750693047952,
- "fn": 20293,
- "fn_rate": 0.0667618543168367,
- "fp": 42919,
- "fp_rate": 0.24684676394296856,
- "match_probability": 0.002398810802396238,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8685832565288881,
- "recall": 0.9332381456831633,
- "row_count": 477830,
- "tn": 130950,
- "tn_rate": 0.7531532360570314,
- "tp": 283668,
- "tp_rate": 0.9332381456831633,
- "truth_threshold": -8.700000000000001
- },
- {
- "f1": 0.8997354447003293,
- "fn": 20323,
- "fn_rate": 0.06686055118913281,
- "fp": 42893,
- "fp_rate": 0.24669722607250286,
- "match_probability": 0.00243221550777684,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8686403434895921,
- "recall": 0.9331394488108672,
- "row_count": 477830,
- "tn": 130976,
- "tn_rate": 0.7533027739274971,
- "tp": 283638,
- "tp_rate": 0.9331394488108672,
- "truth_threshold": -8.68
- },
- {
- "f1": 0.8997328917481949,
- "fn": 20340,
- "fn_rate": 0.06691647941676729,
- "fp": 42875,
- "fp_rate": 0.24659369985448815,
- "match_probability": 0.0024660842413681285,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8686813927276291,
- "recall": 0.9330835205832327,
- "row_count": 477830,
- "tn": 130994,
- "tn_rate": 0.7534063001455118,
- "tp": 283621,
- "tp_rate": 0.9330835205832327,
- "truth_threshold": -8.66
- },
- {
- "f1": 0.8997960005964524,
- "fn": 20348,
- "fn_rate": 0.06694279858271292,
- "fp": 42821,
- "fp_rate": 0.24628312120044402,
- "match_probability": 0.002500423416786966,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8688218751723166,
- "recall": 0.9330572014172871,
- "row_count": 477830,
- "tn": 131048,
- "tn_rate": 0.753716878799556,
- "tp": 283613,
- "tp_rate": 0.9330572014172871,
- "truth_threshold": -8.64
- },
- {
- "f1": 0.8997096666719551,
- "fn": 20413,
- "fn_rate": 0.06715664180602117,
- "fp": 42801,
- "fp_rate": 0.24616809206931656,
- "match_probability": 0.0025352395353924907,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.868848992949266,
- "recall": 0.9328433581939788,
- "row_count": 477830,
- "tn": 131068,
- "tn_rate": 0.7538319079306834,
- "tp": 283548,
- "tp_rate": 0.9328433581939788,
- "truth_threshold": -8.620000000000001
- },
- {
- "f1": 0.8996829789192088,
- "fn": 20452,
- "fn_rate": 0.06728494774000612,
- "fp": 42772,
- "fp_rate": 0.24600129982918173,
- "match_probability": 0.0025705391874611093,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8689105403011514,
- "recall": 0.9327150522599938,
- "row_count": 477830,
- "tn": 131097,
- "tn_rate": 0.7539987001708183,
- "tp": 283509,
- "tp_rate": 0.9327150522599938,
- "truth_threshold": -8.6
- },
- {
- "f1": 0.8996569223298814,
- "fn": 20489,
- "fn_rate": 0.06740667388250467,
- "fp": 42746,
- "fp_rate": 0.24585176195871605,
- "match_probability": 0.0026063290533764843,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8689649252953546,
- "recall": 0.9325933261174953,
- "row_count": 477830,
- "tn": 131123,
- "tn_rate": 0.754148238041284,
- "tp": 283472,
- "tp_rate": 0.9325933261174953,
- "truth_threshold": -8.58
- },
- {
- "f1": 0.8994345834298976,
- "fn": 20649,
- "fn_rate": 0.06793305720141729,
- "fp": 42705,
- "fp_rate": 0.24561595223990476,
- "match_probability": 0.0026426159048347467,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8690098982568394,
- "recall": 0.9320669427985827,
- "row_count": 477830,
- "tn": 131164,
- "tn_rate": 0.7543840477600953,
- "tp": 283312,
- "tp_rate": 0.9320669427985827,
- "truth_threshold": -8.56
- },
- {
- "f1": 0.8994158359260905,
- "fn": 20663,
- "fn_rate": 0.06797911574182214,
- "fp": 42701,
- "fp_rate": 0.24559294641367926,
- "match_probability": 0.0026794066060650402,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8690149356286369,
- "recall": 0.9320208842581779,
- "row_count": 477830,
- "tn": 131168,
- "tn_rate": 0.7544070535863208,
- "tp": 283298,
- "tp_rate": 0.9320208842581779,
- "truth_threshold": -8.540000000000001
- },
- {
- "f1": 0.8993408351960983,
- "fn": 20719,
- "fn_rate": 0.06816334990344156,
- "fp": 42686,
- "fp_rate": 0.24550667456533368,
- "match_probability": 0.0027167081150656154,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8690324243391179,
- "recall": 0.9318366500965585,
- "row_count": 477830,
- "tn": 131183,
- "tn_rate": 0.7544933254346663,
- "tp": 283242,
- "tp_rate": 0.9318366500965585,
- "truth_threshold": -8.52
- },
- {
- "f1": 0.8993559696657901,
- "fn": 20761,
- "fn_rate": 0.06830152552465613,
- "fp": 42623,
- "fp_rate": 0.24514433280228218,
- "match_probability": 0.0027545274848556306,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.869183575131283,
- "recall": 0.9316984744753439,
- "row_count": 477830,
- "tn": 131246,
- "tn_rate": 0.7548556671977178,
- "tp": 283200,
- "tp_rate": 0.9316984744753439,
- "truth_threshold": -8.5
- },
- {
- "f1": 0.8993054121951451,
- "fn": 20803,
- "fn_rate": 0.06843970114587068,
- "fp": 42607,
- "fp_rate": 0.24505230949738022,
- "match_probability": 0.0027928718647428573,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8692093994136878,
- "recall": 0.9315602988541293,
- "row_count": 477830,
- "tn": 131262,
- "tn_rate": 0.7549476905026198,
- "tp": 283158,
- "tp_rate": 0.9315602988541293,
- "truth_threshold": -8.48
- },
- {
- "f1": 0.8993241054243081,
- "fn": 20816,
- "fn_rate": 0.06848246979053234,
- "fp": 42579,
- "fp_rate": 0.24489126871380176,
- "match_probability": 0.0028317485016074407,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8692788986995125,
- "recall": 0.9315175302094677,
- "row_count": 477830,
- "tn": 131290,
- "tn_rate": 0.7551087312861983,
- "tp": 283145,
- "tp_rate": 0.9315175302094677,
- "truth_threshold": -8.46
- },
- {
- "f1": 0.8992496298978963,
- "fn": 20897,
- "fn_rate": 0.06874895134573185,
- "fp": 42532,
- "fp_rate": 0.24462095025565225,
- "match_probability": 0.002871164741201907,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8693718596051548,
- "recall": 0.9312510486542681,
- "row_count": 477830,
- "tn": 131337,
- "tn_rate": 0.7553790497443478,
- "tp": 283064,
- "tp_rate": 0.9312510486542681,
- "truth_threshold": -8.44
- },
- {
- "f1": 0.9015675918463563,
- "fn": 20940,
- "fn_rate": 0.06889041686268962,
- "fp": 40861,
- "fp_rate": 0.23501026634995312,
- "match_probability": 0.002911128029467595,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8738398552559266,
- "recall": 0.9311095831373104,
- "row_count": 477830,
- "tn": 133008,
- "tn_rate": 0.7649897336500469,
- "tp": 283021,
- "tp_rate": 0.9311095831373104,
- "truth_threshold": -8.42
- },
- {
- "f1": 0.9015463145585532,
- "fn": 21017,
- "fn_rate": 0.06914373883491633,
- "fp": 40781,
- "fp_rate": 0.23455014982544328,
- "match_probability": 0.002951645913867726,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8740257934975674,
- "recall": 0.9308562611650837,
- "row_count": 477830,
- "tn": 133088,
- "tn_rate": 0.7654498501745567,
- "tp": 282944,
- "tp_rate": 0.9308562611650837,
- "truth_threshold": -8.4
- },
- {
- "f1": 0.9015002804262479,
- "fn": 21063,
- "fn_rate": 0.0692950740391037,
- "fp": 40758,
- "fp_rate": 0.23441786632464673,
- "match_probability": 0.0029927260447372276,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.874070000247176,
- "recall": 0.9307049259608963,
- "row_count": 477830,
- "tn": 133111,
- "tn_rate": 0.7655821336753533,
- "tp": 282898,
- "tp_rate": 0.9307049259608963,
- "truth_threshold": -8.38
- },
- {
- "f1": 0.9014042759341654,
- "fn": 21140,
- "fn_rate": 0.06954839601133041,
- "fp": 40731,
- "fp_rate": 0.23426257699762465,
- "match_probability": 0.0030343761766495666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8741129710216595,
- "recall": 0.9304516039886696,
- "row_count": 477830,
- "tn": 133138,
- "tn_rate": 0.7657374230023754,
- "tp": 282821,
- "tp_rate": 0.9304516039886696,
- "truth_threshold": -8.36
- },
- {
- "f1": 0.9013951175666243,
- "fn": 21160,
- "fn_rate": 0.06961419392619447,
- "fp": 40713,
- "fp_rate": 0.23415905077960994,
- "match_probability": 0.003076604169800717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.874153823327584,
- "recall": 0.9303858060738055,
- "row_count": 477830,
- "tn": 133156,
- "tn_rate": 0.76584094922039,
- "tp": 282801,
- "tp_rate": 0.9303858060738055,
- "truth_threshold": -8.34
- },
- {
- "f1": 0.9013935905036944,
- "fn": 21174,
- "fn_rate": 0.06966025246659933,
- "fp": 40696,
- "fp_rate": 0.2340612760181516,
- "match_probability": 0.003119417991410515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8741943162391841,
- "recall": 0.9303397475334007,
- "row_count": 477830,
- "tn": 133173,
- "tn_rate": 0.7659387239818484,
- "tp": 282787,
- "tp_rate": 0.9303397475334007,
- "truth_threshold": -8.32
- },
- {
- "f1": 0.9025279285030322,
- "fn": 21199,
- "fn_rate": 0.06974249986017943,
- "fp": 39878,
- "fp_rate": 0.22935658455503857,
- "match_probability": 0.0031628257171415226,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8764009422266303,
- "recall": 0.9302575001398206,
- "row_count": 477830,
- "tn": 133991,
- "tn_rate": 0.7706434154449614,
- "tp": 282762,
- "tp_rate": 0.9302575001398206,
- "truth_threshold": -8.3
- },
- {
- "f1": 0.9024422943713271,
- "fn": 21252,
- "fn_rate": 0.06991686433456924,
- "fp": 39872,
- "fp_rate": 0.22932207581570033,
- "match_probability": 0.0032068355325356353,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8763969359633704,
- "recall": 0.9300831356654308,
- "row_count": 477830,
- "tn": 133997,
- "tn_rate": 0.7706779241842997,
- "tp": 282709,
- "tp_rate": 0.9300831356654308,
- "truth_threshold": -8.28
- },
- {
- "f1": 0.9024541307103155,
- "fn": 21288,
- "fn_rate": 0.07003530058132458,
- "fp": 39820,
- "fp_rate": 0.22902300007476895,
- "match_probability": 0.0032514557344685887,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8765244516935251,
- "recall": 0.9299646994186754,
- "row_count": 477830,
- "tn": 134049,
- "tn_rate": 0.770976999925231,
- "tp": 282673,
- "tp_rate": 0.9299646994186754,
- "truth_threshold": -8.26
- },
- {
- "f1": 0.90244774670643,
- "fn": 21327,
- "fn_rate": 0.07016360651530953,
- "fp": 39778,
- "fp_rate": 0.22878143889940128,
- "match_probability": 0.0032966947326226116,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8766236988697691,
- "recall": 0.9298363934846905,
- "row_count": 477830,
- "tn": 134091,
- "tn_rate": 0.7712185611005987,
- "tp": 282634,
- "tp_rate": 0.9298363934846905,
- "truth_threshold": -8.24
- },
- {
- "f1": 0.9023776366725863,
- "fn": 21441,
- "fn_rate": 0.07053865463003478,
- "fp": 39687,
- "fp_rate": 0.22825805635277133,
- "match_probability": 0.0033425610509773486,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.876827629443184,
- "recall": 0.9294613453699653,
- "row_count": 477830,
- "tn": 134182,
- "tn_rate": 0.7717419436472287,
- "tp": 282520,
- "tp_rate": 0.9294613453699653,
- "truth_threshold": -8.22
- },
- {
- "f1": 0.902302118741534,
- "fn": 21526,
- "fn_rate": 0.07081829576820711,
- "fp": 39637,
- "fp_rate": 0.2279704835249527,
- "match_probability": 0.0033890633293192944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8769312451874115,
- "recall": 0.9291817042317929,
- "row_count": 477830,
- "tn": 134232,
- "tn_rate": 0.7720295164750473,
- "tp": 282435,
- "tp_rate": 0.9291817042317929,
- "truth_threshold": -8.2
- },
- {
- "f1": 0.9022837206627519,
- "fn": 21548,
- "fn_rate": 0.07089067347455759,
- "fp": 39622,
- "fp_rate": 0.2278842116766071,
- "match_probability": 0.0034362103247699053,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8769636840716071,
- "recall": 0.9291093265254424,
- "row_count": 477830,
- "tn": 134247,
- "tn_rate": 0.7721157883233929,
- "tp": 282413,
- "tp_rate": 0.9291093265254424,
- "truth_threshold": -8.18
- },
- {
- "f1": 0.9021561998734654,
- "fn": 21624,
- "fn_rate": 0.07114070555104109,
- "fp": 39618,
- "fp_rate": 0.2278612058503816,
- "match_probability": 0.0034840109133326283,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8769455358668137,
- "recall": 0.9288592944489589,
- "row_count": 477830,
- "tn": 134251,
- "tn_rate": 0.7721387941496184,
- "tp": 282337,
- "tp_rate": 0.9288592944489589,
- "truth_threshold": -8.16
- },
- {
- "f1": 0.9021805479653439,
- "fn": 21666,
- "fn_rate": 0.07127888117225566,
- "fp": 39551,
- "fp_rate": 0.2274758582611046,
- "match_probability": 0.003532474091458984,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8771120349483915,
- "recall": 0.9287211188277443,
- "row_count": 477830,
- "tn": 134318,
- "tn_rate": 0.7725241417388954,
- "tp": 282295,
- "tp_rate": 0.9287211188277443,
- "truth_threshold": -8.14
- },
- {
- "f1": 0.9021499395868894,
- "fn": 21727,
- "fn_rate": 0.07147956481259109,
- "fp": 39498,
- "fp_rate": 0.22717103106361686,
- "match_probability": 0.003581608977633939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.877233225168774,
- "recall": 0.9285204351874089,
- "row_count": 477830,
- "tn": 134371,
- "tn_rate": 0.7728289689363831,
- "tp": 282234,
- "tp_rate": 0.9285204351874089,
- "truth_threshold": -8.120000000000001
- },
- {
- "f1": 0.9015903173597917,
- "fn": 22086,
- "fn_rate": 0.07266063738440129,
- "fp": 39449,
- "fp_rate": 0.2268892096923546,
- "match_probability": 0.0036314248139807737,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8772298365512691,
- "recall": 0.9273393626155987,
- "row_count": 477830,
- "tn": 134420,
- "tn_rate": 0.7731107903076454,
- "tp": 281875,
- "tp_rate": 0.9273393626155987,
- "truth_threshold": -8.1
- },
- {
- "f1": 0.9015591611111822,
- "fn": 22130,
- "fn_rate": 0.07280539279710226,
- "fp": 39417,
- "fp_rate": 0.22670516308255065,
- "match_probability": 0.0036819309678855936,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8773004034266361,
- "recall": 0.9271946072028977,
- "row_count": 477830,
- "tn": 134452,
- "tn_rate": 0.7732948369174494,
- "tp": 281831,
- "tp_rate": 0.9271946072028977,
- "truth_threshold": -8.08
- },
- {
- "f1": 0.9014790145022122,
- "fn": 22183,
- "fn_rate": 0.07297975727149207,
- "fp": 39408,
- "fp_rate": 0.2266533999735433,
- "match_probability": 0.0037331369336417713,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8773047393099326,
- "recall": 0.9270202427285079,
- "row_count": 477830,
- "tn": 134461,
- "tn_rate": 0.7733466000264567,
- "tp": 281778,
- "tp_rate": 0.9270202427285079,
- "truth_threshold": -8.06
- },
- {
- "f1": 0.9014750111985665,
- "fn": 22214,
- "fn_rate": 0.07308174403953138,
- "fp": 39372,
- "fp_rate": 0.2264463475375139,
- "match_probability": 0.0037850523341144294,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8773912474814632,
- "recall": 0.9269182559604686,
- "row_count": 477830,
- "tn": 134497,
- "tn_rate": 0.7735536524624861,
- "tp": 281747,
- "tp_rate": 0.9269182559604686,
- "truth_threshold": -8.040000000000001
- },
- {
- "f1": 0.9014330150277771,
- "fn": 22274,
- "fn_rate": 0.07327913778412362,
- "fp": 39329,
- "fp_rate": 0.22619903490558985,
- "match_probability": 0.0038376869224252233,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8774858574027463,
- "recall": 0.9267208622158764,
- "row_count": 477830,
- "tn": 134540,
- "tn_rate": 0.7738009650944102,
- "tp": 281687,
- "tp_rate": 0.9267208622158764,
- "truth_threshold": -8.02
- },
- {
- "f1": 0.9013883021621414,
- "fn": 22306,
- "fn_rate": 0.07338441444790615,
- "fp": 39321,
- "fp_rate": 0.22615302325313885,
- "match_probability": 0.0038910505836575876,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8774955136832661,
- "recall": 0.9266155855520939,
- "row_count": 477830,
- "tn": 134548,
- "tn_rate": 0.7738469767468611,
- "tp": 281655,
- "tp_rate": 0.9266155855520939,
- "truth_threshold": -8
- },
- {
- "f1": 0.9013875774210586,
- "fn": 22354,
- "fn_rate": 0.07354232944357993,
- "fp": 39263,
- "fp_rate": 0.22581943877286922,
- "match_probability": 0.003945153336582717,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.877635802661514,
- "recall": 0.92645767055642,
- "row_count": 477830,
- "tn": 134606,
- "tn_rate": 0.7741805612271307,
- "tp": 281607,
- "tp_rate": 0.92645767055642,
- "truth_threshold": -7.98
- },
- {
- "f1": 0.9012990671558176,
- "fn": 22415,
- "fn_rate": 0.07374301308391537,
- "fp": 39250,
- "fp_rate": 0.22574466983763639,
- "match_probability": 0.004000005335406395,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8776481003503784,
- "recall": 0.9262569869160846,
- "row_count": 477830,
- "tn": 134619,
- "tn_rate": 0.7742553301623636,
- "tp": 281546,
- "tp_rate": 0.9262569869160846,
- "truth_threshold": -7.96
- },
- {
- "f1": 0.9012049195813041,
- "fn": 22512,
- "fn_rate": 0.07406213297100615,
- "fp": 39196,
- "fp_rate": 0.22543409118359226,
- "match_probability": 0.004055616871536931,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8777588922328432,
- "recall": 0.9259378670289938,
- "row_count": 477830,
- "tn": 134673,
- "tn_rate": 0.7745659088164077,
- "tp": 281449,
- "tp_rate": 0.9259378670289938,
- "truth_threshold": -7.94
- },
- {
- "f1": 0.9011989854738298,
- "fn": 22549,
- "fn_rate": 0.0741838591135047,
- "fp": 39156,
- "fp_rate": 0.22520403292133734,
- "match_probability": 0.004111998375374417,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.877854308602231,
- "recall": 0.9258161408864953,
- "row_count": 477830,
- "tn": 134713,
- "tn_rate": 0.7747959670786627,
- "tp": 281412,
- "tp_rate": 0.9258161408864953,
- "truth_threshold": -7.92
- },
- {
- "f1": 0.901206455352825,
- "fn": 22571,
- "fn_rate": 0.07425623681985517,
- "fp": 39124,
- "fp_rate": 0.2250199863115334,
- "match_probability": 0.00416916041812146,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8779335692044653,
- "recall": 0.9257437631801448,
- "row_count": 477830,
- "tn": 134745,
- "tn_rate": 0.7749800136884666,
- "tp": 281390,
- "tp_rate": 0.9257437631801448,
- "truth_threshold": -7.9
- },
- {
- "f1": 0.901106644672571,
- "fn": 22631,
- "fn_rate": 0.07445363056444741,
- "fp": 39119,
- "fp_rate": 0.22499122902875154,
- "match_probability": 0.004227113713615665,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.877924412308979,
- "recall": 0.9255463694355526,
- "row_count": 477830,
- "tn": 134750,
- "tn_rate": 0.7750087709712484,
- "tp": 281330,
- "tp_rate": 0.9255463694355526,
- "truth_threshold": -7.88
- },
- {
- "f1": 0.9011212917280708,
- "fn": 22685,
- "fn_rate": 0.07463128493458042,
- "fp": 39044,
- "fp_rate": 0.22455986978702355,
- "match_probability": 0.004285869120183992,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8781093906093906,
- "recall": 0.9253687150654196,
- "row_count": 477830,
- "tn": 134825,
- "tn_rate": 0.7754401302129764,
- "tp": 281276,
- "tp_rate": 0.9253687150654196,
- "truth_threshold": -7.86
- },
- {
- "f1": 0.9010865420662563,
- "fn": 22740,
- "fn_rate": 0.07481222920045663,
- "fp": 39001,
- "fp_rate": 0.22431255715509954,
- "match_probability": 0.00434543764251929,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8782063693312764,
- "recall": 0.9251877707995434,
- "row_count": 477830,
- "tn": 134868,
- "tn_rate": 0.7756874428449004,
- "tp": 281221,
- "tp_rate": 0.9251877707995434,
- "truth_threshold": -7.84
- },
- {
- "f1": 0.9010334385464567,
- "fn": 22780,
- "fn_rate": 0.07494382503018479,
- "fp": 38988,
- "fp_rate": 0.22423778821986667,
- "match_probability": 0.004405830433579104,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.878226811465195,
- "recall": 0.9250561749698152,
- "row_count": 477830,
- "tn": 134881,
- "tn_rate": 0.7757622117801333,
- "tp": 281181,
- "tp_rate": 0.9250561749698152,
- "truth_threshold": -7.82
- },
- {
- "f1": 0.90098962305873,
- "fn": 22818,
- "fn_rate": 0.07506884106842654,
- "fp": 38972,
- "fp_rate": 0.2241457649149647,
- "match_probability": 0.00446705879650708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8782562516595599,
- "recall": 0.9249311589315734,
- "row_count": 477830,
- "tn": 134897,
- "tn_rate": 0.7758542350850353,
- "tp": 281143,
- "tp_rate": 0.9249311589315734,
- "truth_threshold": -7.8
- },
- {
- "f1": 0.9009746763632168,
- "fn": 22856,
- "fn_rate": 0.07519385710666829,
- "fp": 38937,
- "fp_rate": 0.22394446393549167,
- "match_probability": 0.004529134186577057,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8783378431580855,
- "recall": 0.9248061428933317,
- "row_count": 477830,
- "tn": 134932,
- "tn_rate": 0.7760555360645084,
- "tp": 281105,
- "tp_rate": 0.9248061428933317,
- "truth_threshold": -7.78
- },
- {
- "f1": 0.9008901297211013,
- "fn": 22904,
- "fn_rate": 0.07535177210234208,
- "fp": 38936,
- "fp_rate": 0.2239387124789353,
- "match_probability": 0.004592068213160174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.8783223383011504,
- "recall": 0.9246482278976579,
- "row_count": 477830,
- "tn": 134933,
- "tn_rate": 0.7760612875210647,
- "tp": 281057,
- "tp_rate": 0.9246482278976579,
- "truth_threshold": -7.76
- },
- {
- "f1": 0.9127129240212396,
- "fn": 22923,
- "fn_rate": 0.07541428012146295,
- "fp": 30831,
- "fp_rate": 0.17732315708953292,
- "match_probability": 0.004655872641715067,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9011411842792968,
- "recall": 0.9245857198785371,
- "row_count": 477830,
- "tn": 143038,
- "tn_rate": 0.822676842910467,
- "tp": 281038,
- "tp_rate": 0.9245857198785371,
- "truth_threshold": -7.74
- },
- {
- "f1": 0.9125203431619364,
- "fn": 23048,
- "fn_rate": 0.07582551708936344,
- "fp": 30813,
- "fp_rate": 0.1772196308715182,
- "match_probability": 0.0047205593958014914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9011535771799594,
- "recall": 0.9241744829106365,
- "row_count": 477830,
- "tn": 143056,
- "tn_rate": 0.8227803691284817,
- "tp": 280913,
- "tp_rate": 0.9241744829106365,
- "truth_threshold": -7.72
- },
- {
- "f1": 0.9124100398018032,
- "fn": 23144,
- "fn_rate": 0.076141347080711,
- "fp": 30772,
- "fp_rate": 0.17698382115270692,
- "match_probability": 0.004786140559117481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9012416998032665,
- "recall": 0.923858652919289,
- "row_count": 477830,
- "tn": 143097,
- "tn_rate": 0.8230161788472931,
- "tp": 280817,
- "tp_rate": 0.923858652919289,
- "truth_threshold": -7.7
- },
- {
- "f1": 0.9123932943175873,
- "fn": 23182,
- "fn_rate": 0.07626636311895275,
- "fp": 30739,
- "fp_rate": 0.17679402308634662,
- "match_probability": 0.0048526283775603,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9013251240698772,
- "recall": 0.9237336368810473,
- "row_count": 477830,
- "tn": 143130,
- "tn_rate": 0.8232059769136534,
- "tp": 280779,
- "tp_rate": 0.9237336368810473,
- "truth_threshold": -7.68
- },
- {
- "f1": 0.9122963820023141,
- "fn": 23262,
- "fn_rate": 0.07652955477840907,
- "fp": 30708,
- "fp_rate": 0.17661572793309907,
- "match_probability": 0.004920035261311362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9013894999149024,
- "recall": 0.9234704452215909,
- "row_count": 477830,
- "tn": 143161,
- "tn_rate": 0.8233842720669009,
- "tp": 280699,
- "tp_rate": 0.9234704452215909,
- "truth_threshold": -7.66
- },
- {
- "f1": 0.9122961556839125,
- "fn": 23294,
- "fn_rate": 0.0766348314421916,
- "fp": 30671,
- "fp_rate": 0.17640292404051325,
- "match_probability": 0.004988373786945367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9014864873545793,
- "recall": 0.9233651685578084,
- "row_count": 477830,
- "tn": 143198,
- "tn_rate": 0.8235970759594867,
- "tp": 280667,
- "tp_rate": 0.9233651685578084,
- "truth_threshold": -7.640000000000001
- },
- {
- "f1": 0.9122040499201914,
- "fn": 23357,
- "fn_rate": 0.07684209487401344,
- "fp": 30658,
- "fp_rate": 0.1763281551052804,
- "match_probability": 0.005057656699563808,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9015041990348966,
- "recall": 0.9231579051259866,
- "row_count": 477830,
- "tn": 143211,
- "tn_rate": 0.8236718448947196,
- "tp": 280604,
- "tp_rate": 0.9231579051259866,
- "truth_threshold": -7.62
- },
- {
- "f1": 0.9121003452782709,
- "fn": 23419,
- "fn_rate": 0.07704606841009208,
- "fp": 30654,
- "fp_rate": 0.1763051492790549,
- "match_probability": 0.005127896914953068,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9014961631897582,
- "recall": 0.9229539315899079,
- "row_count": 477830,
- "tn": 143215,
- "tn_rate": 0.8236948507209451,
- "tp": 280542,
- "tp_rate": 0.9229539315899079,
- "truth_threshold": -7.6000000000000005
- },
- {
- "f1": 0.9119810363664742,
- "fn": 23494,
- "fn_rate": 0.07729281059083237,
- "fp": 30644,
- "fp_rate": 0.1762476347134912,
- "match_probability": 0.005199107521767358,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9015013933933548,
- "recall": 0.9227071894091676,
- "row_count": 477830,
- "tn": 143225,
- "tn_rate": 0.8237523652865089,
- "tp": 280467,
- "tp_rate": 0.9227071894091676,
- "truth_threshold": -7.58
- },
- {
- "f1": 0.9121875050828712,
- "fn": 23550,
- "fn_rate": 0.07747704475245179,
- "fp": 30439,
- "fp_rate": 0.17506858611943474,
- "match_probability": 0.0052713017837366085,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9020781727521312,
- "recall": 0.9225229552475482,
- "row_count": 477830,
- "tn": 143430,
- "tn_rate": 0.8249314138805652,
- "tp": 280411,
- "tp_rate": 0.9225229552475482,
- "truth_threshold": -7.5600000000000005
- },
- {
- "f1": 0.9121977088830399,
- "fn": 23587,
- "fn_rate": 0.07759877089495033,
- "fp": 30388,
- "fp_rate": 0.17477526183505973,
- "match_probability": 0.005344493141899607,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9022145564773042,
- "recall": 0.9224012291050496,
- "row_count": 477830,
- "tn": 143481,
- "tn_rate": 0.8252247381649402,
- "tp": 280374,
- "tp_rate": 0.9224012291050496,
- "truth_threshold": -7.54
- },
- {
- "f1": 0.912210200927357,
- "fn": 23616,
- "fn_rate": 0.07769417787150325,
- "fp": 30344,
- "fp_rate": 0.17452219774657932,
- "match_probability": 0.005418695216862511,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9023332013685711,
- "recall": 0.9223058221284968,
- "row_count": 477830,
- "tn": 143525,
- "tn_rate": 0.8254778022534207,
- "tp": 280345,
- "tp_rate": 0.9223058221284968,
- "truth_threshold": -7.5200000000000005
- },
- {
- "f1": 0.9121507493531642,
- "fn": 23689,
- "fn_rate": 0.07793434026075714,
- "fp": 30298,
- "fp_rate": 0.17425763074498618,
- "match_probability": 0.005493921811082985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9024438934861706,
- "recall": 0.9220656597392428,
- "row_count": 477830,
- "tn": 143571,
- "tn_rate": 0.8257423692550139,
- "tp": 280272,
- "tp_rate": 0.9220656597392428,
- "truth_threshold": -7.5
- },
- {
- "f1": 0.9120650203269894,
- "fn": 23750,
- "fn_rate": 0.07813502390109257,
- "fp": 30282,
- "fp_rate": 0.1741656074400842,
- "match_probability": 0.005570186911180121,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9024712312354868,
- "recall": 0.9218649760989074,
- "row_count": 477830,
- "tn": 143587,
- "tn_rate": 0.8258343925599158,
- "tp": 280211,
- "tp_rate": 0.9218649760989074,
- "truth_threshold": -7.48
- },
- {
- "f1": 0.9118518470284103,
- "fn": 23893,
- "fn_rate": 0.07860547899237073,
- "fp": 30255,
- "fp_rate": 0.17401031811306214,
- "match_probability": 0.00564750469027039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9025048095049352,
- "recall": 0.9213945210076293,
- "row_count": 477830,
- "tn": 143614,
- "tn_rate": 0.8259896818869379,
- "tp": 280068,
- "tp_rate": 0.9213945210076293,
- "truth_threshold": -7.46
- },
- {
- "f1": 0.9119454458415155,
- "fn": 23929,
- "fn_rate": 0.07872391523912607,
- "fp": 30150,
- "fp_rate": 0.17340641517464297,
- "match_probability": 0.005725889510329732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9027990018763178,
- "recall": 0.921276084760874,
- "row_count": 477830,
- "tn": 143719,
- "tn_rate": 0.826593584825357,
- "tp": 280032,
- "tp_rate": 0.921276084760874,
- "truth_threshold": -7.44
- },
- {
- "f1": 0.9119290324051903,
- "fn": 24038,
- "fn_rate": 0.07908251387513529,
- "fp": 30031,
- "fp_rate": 0.1727219918444346,
- "match_probability": 0.005805355924582104,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9031114294379166,
- "recall": 0.9209174861248647,
- "row_count": 477830,
- "tn": 143838,
- "tn_rate": 0.8272780081555654,
- "tp": 279923,
- "tp_rate": 0.9209174861248647,
- "truth_threshold": -7.42
- },
- {
- "f1": 0.9118627390288643,
- "fn": 24093,
- "fn_rate": 0.07926345814101152,
- "fp": 30009,
- "fp_rate": 0.1725954598001944,
- "match_probability": 0.005885918679914525,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9031583499259384,
- "recall": 0.9207365418589885,
- "row_count": 477830,
- "tn": 143860,
- "tn_rate": 0.8274045401998056,
- "tp": 279868,
- "tp_rate": 0.9207365418589885,
- "truth_threshold": -7.4
- },
- {
- "f1": 0.9117967166533065,
- "fn": 24147,
- "fn_rate": 0.07944111251114452,
- "fp": 29990,
- "fp_rate": 0.1724861821256233,
- "match_probability": 0.005967592719318969,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9031968599501621,
- "recall": 0.9205588874888555,
- "row_count": 477830,
- "tn": 143879,
- "tn_rate": 0.8275138178743767,
- "tp": 279814,
- "tp_rate": 0.9205588874888555,
- "truth_threshold": -7.38
- },
- {
- "f1": 0.9117484112758677,
- "fn": 24191,
- "fn_rate": 0.07958586792384549,
- "fp": 29969,
- "fp_rate": 0.17236540153793947,
- "match_probability": 0.006050393184361143,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9032443444319249,
- "recall": 0.9204141320761545,
- "row_count": 477830,
- "tn": 143900,
- "tn_rate": 0.8276345984620606,
- "tp": 279770,
- "tp_rate": 0.9204141320761545,
- "truth_threshold": -7.36
- },
- {
- "f1": 0.9115573302909298,
- "fn": 24318,
- "fn_rate": 0.08000368468323239,
- "fp": 29946,
- "fp_rate": 0.17223311803714292,
- "match_probability": 0.0061343354176764545,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9032717570714722,
- "recall": 0.9199963153167676,
- "row_count": 477830,
- "tn": 143923,
- "tn_rate": 0.8277668819628571,
- "tp": 279643,
- "tp_rate": 0.9199963153167676,
- "truth_threshold": -7.34
- },
- {
- "f1": 0.9115726325742138,
- "fn": 24368,
- "fn_rate": 0.08016817947039258,
- "fp": 29876,
- "fp_rate": 0.1718305160781968,
- "match_probability": 0.006219434965493263,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9034604435339242,
- "recall": 0.9198318205296074,
- "row_count": 477830,
- "tn": 143993,
- "tn_rate": 0.8281694839218032,
- "tp": 279593,
- "tp_rate": 0.9198318205296074,
- "truth_threshold": -7.32
- },
- {
- "f1": 0.9112962141571216,
- "fn": 24543,
- "fn_rate": 0.08074391122545327,
- "fp": 29853,
- "fp_rate": 0.17169823257740022,
- "match_probability": 0.00630570758018367,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9034730058751063,
- "recall": 0.9192560887745468,
- "row_count": 477830,
- "tn": 144016,
- "tn_rate": 0.8283017674225998,
- "tp": 279418,
- "tp_rate": 0.9192560887745468,
- "truth_threshold": -7.3
- },
- {
- "f1": 0.9110527517698105,
- "fn": 24696,
- "fn_rate": 0.08124726527416345,
- "fp": 29834,
- "fp_rate": 0.17158895490282913,
- "match_probability": 0.006393169222841944,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9034807618271169,
- "recall": 0.9187527347258365,
- "row_count": 477830,
- "tn": 144035,
- "tn_rate": 0.8284110450971709,
- "tp": 279265,
- "tp_rate": 0.9187527347258365,
- "truth_threshold": -7.28
- },
- {
- "f1": 0.9109800223822404,
- "fn": 24752,
- "fn_rate": 0.08143149943578289,
- "fp": 29816,
- "fp_rate": 0.17148542868481442,
- "match_probability": 0.006481836065890851,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9035158967721059,
- "recall": 0.9185685005642171,
- "row_count": 477830,
- "tn": 144053,
- "tn_rate": 0.8285145713151856,
- "tp": 279209,
- "tp_rate": 0.9185685005642171,
- "truth_threshold": -7.26
- },
- {
- "f1": 0.9109143830475954,
- "fn": 24804,
- "fn_rate": 0.08160257401442948,
- "fp": 29798,
- "fp_rate": 0.1713819024667997,
- "match_probability": 0.00657172449571595,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9035522972601188,
- "recall": 0.9183974259855705,
- "row_count": 477830,
- "tn": 144071,
- "tn_rate": 0.8286180975332003,
- "tp": 279157,
- "tp_rate": 0.9183974259855705,
- "truth_threshold": -7.24
- },
- {
- "f1": 0.9120228471346321,
- "fn": 24851,
- "fn_rate": 0.08175719911436007,
- "fp": 28997,
- "fp_rate": 0.16677498576514502,
- "match_probability": 0.006662851115328145,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9058865913465127,
- "recall": 0.9182428008856399,
- "row_count": 477830,
- "tn": 144872,
- "tn_rate": 0.833225014234855,
- "tp": 279110,
- "tp_rate": 0.9182428008856399,
- "truth_threshold": -7.22
- },
- {
- "f1": 0.911998457546584,
- "fn": 24884,
- "fn_rate": 0.0818657656738858,
- "fp": 28975,
- "fp_rate": 0.1666484537209048,
- "match_probability": 0.006755232747054526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9059412047316687,
- "recall": 0.9181342343261142,
- "row_count": 477830,
- "tn": 144894,
- "tn_rate": 0.8333515462790951,
- "tp": 279077,
- "tp_rate": 0.9181342343261142,
- "truth_threshold": -7.2
- },
- {
- "f1": 0.9117507657005384,
- "fn": 25030,
- "fn_rate": 0.08234609045239356,
- "fp": 28967,
- "fp_rate": 0.16660244206845384,
- "match_probability": 0.006848886435257802,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9059201423848158,
- "recall": 0.9176539095476064,
- "row_count": 477830,
- "tn": 144902,
- "tn_rate": 0.8333975579315461,
- "tp": 278931,
- "tp_rate": 0.9176539095476064,
- "truth_threshold": -7.18
- },
- {
- "f1": 0.9117075945394634,
- "fn": 25066,
- "fn_rate": 0.0824645266991489,
- "fp": 28952,
- "fp_rate": 0.16651617022010826,
- "match_probability": 0.006943829449084327,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9059532819874808,
- "recall": 0.9175354733008511,
- "row_count": 477830,
- "tn": 144917,
- "tn_rate": 0.8334838297798918,
- "tp": 278895,
- "tp_rate": 0.9175354733008511,
- "truth_threshold": -7.16
- },
- {
- "f1": 0.9115853558852091,
- "fn": 25159,
- "fn_rate": 0.08277048700326686,
- "fp": 28924,
- "fp_rate": 0.1663551294365298,
- "match_probability": 0.007040079285241038,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060072922015039,
- "recall": 0.9172295129967332,
- "row_count": 477830,
- "tn": 144945,
- "tn_rate": 0.8336448705634703,
- "tp": 278802,
- "tp_rate": 0.9172295129967332,
- "truth_threshold": -7.140000000000001
- },
- {
- "f1": 0.9114453891432309,
- "fn": 25241,
- "fn_rate": 0.08304025845420959,
- "fp": 28920,
- "fp_rate": 0.1663321236103043,
- "match_probability": 0.0071376536708013,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9059940189832272,
- "recall": 0.9169597415457904,
- "row_count": 477830,
- "tn": 144949,
- "tn_rate": 0.8336678763896956,
- "tp": 278720,
- "tp_rate": 0.9169597415457904,
- "truth_threshold": -7.12
- },
- {
- "f1": 0.9113585818942962,
- "fn": 25304,
- "fn_rate": 0.08324752188603143,
- "fp": 28902,
- "fp_rate": 0.1662285973922896,
- "match_probability": 0.007236570566039904,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060277865385178,
- "recall": 0.9167524781139685,
- "row_count": 477830,
- "tn": 144967,
- "tn_rate": 0.8337714026077104,
- "tp": 278657,
- "tp_rate": 0.9167524781139685,
- "truth_threshold": -7.1000000000000005
- },
- {
- "f1": 0.9113411503049927,
- "fn": 25323,
- "fn_rate": 0.08331002990515231,
- "fp": 28892,
- "fp_rate": 0.16617108282672588,
- "match_probability": 0.007336848167297341,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060514421357266,
- "recall": 0.9166899700948477,
- "row_count": 477830,
- "tn": 144977,
- "tn_rate": 0.8338289171732741,
- "tp": 278638,
- "tp_rate": 0.9166899700948477,
- "truth_threshold": -7.08
- },
- {
- "f1": 0.9111043500734445,
- "fn": 25461,
- "fn_rate": 0.08376403551771444,
- "fp": 28886,
- "fp_rate": 0.16613657408738763,
- "match_probability": 0.007438504909873419,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060269498285544,
- "recall": 0.9162359644822855,
- "row_count": 477830,
- "tn": 144983,
- "tn_rate": 0.8338634259126124,
- "tp": 278500,
- "tp_rate": 0.9162359644822855,
- "truth_threshold": -7.0600000000000005
- },
- {
- "f1": 0.9109803741926196,
- "fn": 25549,
- "fn_rate": 0.08405354634311639,
- "fp": 28864,
- "fp_rate": 0.16601004204314743,
- "match_probability": 0.0075415594709504815,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060649058175712,
- "recall": 0.9159464536568837,
- "row_count": 477830,
- "tn": 145005,
- "tn_rate": 0.8339899579568526,
- "tp": 278412,
- "tp_rate": 0.9159464536568837,
- "truth_threshold": -7.04
- },
- {
- "f1": 0.9109474958687152,
- "fn": 25580,
- "fn_rate": 0.08415553311115571,
- "fp": 28849,
- "fp_rate": 0.16592377019480184,
- "match_probability": 0.007646030772546182,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9060996647462813,
- "recall": 0.9158444668888442,
- "row_count": 477830,
- "tn": 145020,
- "tn_rate": 0.8340762298051981,
- "tp": 278381,
- "tp_rate": 0.9158444668888442,
- "truth_threshold": -7.0200000000000005
- },
- {
- "f1": 0.9110973637869295,
- "fn": 25608,
- "fn_rate": 0.08424765019196542,
- "fp": 28715,
- "fp_rate": 0.16515307501624787,
- "match_probability": 0.007751937984496124,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.906486511131085,
- "recall": 0.9157523498080345,
- "row_count": 477830,
- "tn": 145154,
- "tn_rate": 0.8348469249837521,
- "tp": 278353,
- "tp_rate": 0.9157523498080345,
- "truth_threshold": -7
- },
- {
- "f1": 0.9110687010406471,
- "fn": 25645,
- "fn_rate": 0.08436937633446397,
- "fp": 28689,
- "fp_rate": 0.16500353714578217,
- "match_probability": 0.007859300527466294,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.906552010553574,
- "recall": 0.915630623665536,
- "row_count": 477830,
- "tn": 145180,
- "tn_rate": 0.8349964628542178,
- "tp": 278316,
- "tp_rate": 0.915630623665536,
- "truth_threshold": -6.98
- },
- {
- "f1": 0.9109766637856526,
- "fn": 25705,
- "fn_rate": 0.08456677007905619,
- "fp": 28680,
- "fp_rate": 0.1649517740367748,
- "match_probability": 0.007968138075995553,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9065603252795371,
- "recall": 0.9154332299209438,
- "row_count": 477830,
- "tn": 145189,
- "tn_rate": 0.8350482259632251,
- "tp": 278256,
- "tp_rate": 0.9154332299209438,
- "truth_threshold": -6.96
- },
- {
- "f1": 0.9109051261230584,
- "fn": 25756,
- "fn_rate": 0.0847345547619596,
- "fp": 28667,
- "fp_rate": 0.16487700510154196,
- "match_probability": 0.008078470561568152,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9065832008133684,
- "recall": 0.9152654452380404,
- "row_count": 477830,
- "tn": 145202,
- "tn_rate": 0.835122994898458,
- "tp": 278205,
- "tp_rate": 0.9152654452380404,
- "truth_threshold": -6.94
- },
- {
- "f1": 0.9108437522513377,
- "fn": 25813,
- "fn_rate": 0.08492207881932222,
- "fp": 28639,
- "fp_rate": 0.16471596431796354,
- "match_probability": 0.008190318175716487,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9066485868045256,
- "recall": 0.9150779211806778,
- "row_count": 477830,
- "tn": 145230,
- "tn_rate": 0.8352840356820365,
- "tp": 278148,
- "tp_rate": 0.9150779211806778,
- "truth_threshold": -6.92
- },
- {
- "f1": 0.9106461449772849,
- "fn": 25938,
- "fn_rate": 0.0853333157872227,
- "fp": 28622,
- "fp_rate": 0.16461818955650517,
- "match_probability": 0.008303701373154063,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9066607966867224,
- "recall": 0.9146666842127773,
- "row_count": 477830,
- "tn": 145247,
- "tn_rate": 0.8353818104434948,
- "tp": 278023,
- "tp_rate": 0.9146666842127773,
- "truth_threshold": -6.9
- },
- {
- "f1": 0.9104500106482316,
- "fn": 26078,
- "fn_rate": 0.08579390119127125,
- "fp": 28586,
- "fp_rate": 0.16441113712047575,
- "match_probability": 0.008418640874938868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9067246605692583,
- "recall": 0.9142060988087287,
- "row_count": 477830,
- "tn": 145283,
- "tn_rate": 0.8355888628795243,
- "tp": 277883,
- "tp_rate": 0.9142060988087287,
- "truth_threshold": -6.88
- },
- {
- "f1": 0.9104362187385309,
- "fn": 26125,
- "fn_rate": 0.08594852629120184,
- "fp": 28539,
- "fp_rate": 0.16414081866232624,
- "match_probability": 0.008535157671667086,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9068494492044064,
- "recall": 0.9140514737087981,
- "row_count": 477830,
- "tn": 145330,
- "tn_rate": 0.8358591813376738,
- "tp": 277836,
- "tp_rate": 0.9140514737087981,
- "truth_threshold": -6.86
- },
- {
- "f1": 0.9104528977194511,
- "fn": 26180,
- "fn_rate": 0.08612947055707805,
- "fp": 28462,
- "fp_rate": 0.16369795650748553,
- "match_probability": 0.008653273026697373,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9070607328167501,
- "recall": 0.9138705294429219,
- "row_count": 477830,
- "tn": 145407,
- "tn_rate": 0.8363020434925145,
- "tp": 277781,
- "tp_rate": 0.9138705294429219,
- "truth_threshold": -6.84
- },
- {
- "f1": 0.9103947704876114,
- "fn": 26256,
- "fn_rate": 0.08637950263356155,
- "fp": 28410,
- "fp_rate": 0.16339888076655412,
- "match_probability": 0.008773008479405596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9071917416657138,
- "recall": 0.9136204973664385,
- "row_count": 477830,
- "tn": 145459,
- "tn_rate": 0.8366011192334458,
- "tp": 277705,
- "tp_rate": 0.9136204973664385,
- "truth_threshold": -6.82
- },
- {
- "f1": 0.9102668354197953,
- "fn": 26346,
- "fn_rate": 0.08667559325044989,
- "fp": 28388,
- "fp_rate": 0.16327234872231391,
- "match_probability": 0.008894385848470222,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9072296676829966,
- "recall": 0.9133244067495501,
- "row_count": 477830,
- "tn": 145481,
- "tn_rate": 0.8367276512776861,
- "tp": 277615,
- "tp_rate": 0.9133244067495501,
- "truth_threshold": -6.8
- },
- {
- "f1": 0.9102440496100846,
- "fn": 26393,
- "fn_rate": 0.08683021835038048,
- "fp": 28348,
- "fp_rate": 0.163042290460059,
- "match_probability": 0.009017427235188254,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9073340394095111,
- "recall": 0.9131697816496195,
- "row_count": 477830,
- "tn": 145521,
- "tn_rate": 0.836957709539941,
- "tp": 277568,
- "tp_rate": 0.9131697816496195,
- "truth_threshold": -6.78
- },
- {
- "f1": 0.9101855526727523,
- "fn": 26470,
- "fn_rate": 0.08708354032260718,
- "fp": 28294,
- "fp_rate": 0.16273171180601487,
- "match_probability": 0.009142155026821896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9074709354611901,
- "recall": 0.9129164596773929,
- "row_count": 477830,
- "tn": 145575,
- "tn_rate": 0.8372682881939851,
- "tp": 277491,
- "tp_rate": 0.9129164596773929,
- "truth_threshold": -6.76
- },
- {
- "f1": 0.9101099268794347,
- "fn": 26524,
- "fn_rate": 0.08726119469274018,
- "fp": 28281,
- "fp_rate": 0.16265694287078203,
- "match_probability": 0.009268591899975812,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.907493179989402,
- "recall": 0.9127388053072598,
- "row_count": 477830,
- "tn": 145588,
- "tn_rate": 0.837343057129218,
- "tp": 277437,
- "tp_rate": 0.9127388053072598,
- "truth_threshold": -6.74
- },
- {
- "f1": 0.9099717492806074,
- "fn": 26628,
- "fn_rate": 0.08760334385003339,
- "fp": 28248,
- "fp_rate": 0.16246714480442173,
- "match_probability": 0.009396760824005125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9075596977560778,
- "recall": 0.9123966561499666,
- "row_count": 477830,
- "tn": 145621,
- "tn_rate": 0.8375328551955783,
- "tp": 277333,
- "tp_rate": 0.9123966561499666,
- "truth_threshold": -6.72
- },
- {
- "f1": 0.9098975526839097,
- "fn": 26677,
- "fn_rate": 0.08776454874145038,
- "fp": 28239,
- "fp_rate": 0.16241538169541436,
- "match_probability": 0.00952668506445404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9075716067202797,
- "recall": 0.9122354512585497,
- "row_count": 477830,
- "tn": 145630,
- "tn_rate": 0.8375846183045856,
- "tp": 277284,
- "tp_rate": 0.9122354512585497,
- "truth_threshold": -6.7
- },
- {
- "f1": 0.909801875244087,
- "fn": 26738,
- "fn_rate": 0.08796523238178582,
- "fp": 28230,
- "fp_rate": 0.16236361858640702,
- "match_probability": 0.009658388186525174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9075798895411078,
- "recall": 0.9120347676182142,
- "row_count": 477830,
- "tn": 145639,
- "tn_rate": 0.837636381413593,
- "tp": 277223,
- "tp_rate": 0.9120347676182142,
- "truth_threshold": -6.68
- },
- {
- "f1": 0.9095803704506208,
- "fn": 26901,
- "fn_rate": 0.08850148538792806,
- "fp": 28184,
- "fp_rate": 0.16209905158481386,
- "match_probability": 0.009791894058579487,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.90766730877593,
- "recall": 0.911498514612072,
- "row_count": 477830,
- "tn": 145685,
- "tn_rate": 0.8379009484151861,
- "tp": 277060,
- "tp_rate": 0.911498514612072,
- "truth_threshold": -6.66
- },
- {
- "f1": 0.9095448680698506,
- "fn": 26920,
- "fn_rate": 0.08856399340704893,
- "fp": 28184,
- "fp_rate": 0.16209905158481386,
- "match_probability": 0.009927226855666866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9076615611434188,
- "recall": 0.9114360065929511,
- "row_count": 477830,
- "tn": 145685,
- "tn_rate": 0.8379009484151861,
- "tp": 277041,
- "tp_rate": 0.9114360065929511,
- "truth_threshold": -6.640000000000001
- },
- {
- "f1": 0.9094017037878738,
- "fn": 27050,
- "fn_rate": 0.08899167985366543,
- "fp": 28124,
- "fp_rate": 0.16175396419143148,
- "match_probability": 0.010064411063087227,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9078007441768977,
- "recall": 0.9110083201463346,
- "row_count": 477830,
- "tn": 145745,
- "tn_rate": 0.8382460358085685,
- "tp": 276911,
- "tp_rate": 0.9110083201463346,
- "truth_threshold": -6.62
- },
- {
- "f1": 0.9092596181323103,
- "fn": 27136,
- "fn_rate": 0.08927461088758097,
- "fp": 28117,
- "fp_rate": 0.16171370399553686,
- "match_probability": 0.010203471479982122,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9077955807989716,
- "recall": 0.9107253891124191,
- "row_count": 477830,
- "tn": 145752,
- "tn_rate": 0.8382862960044631,
- "tp": 276825,
- "tp_rate": 0.9107253891124191,
- "truth_threshold": -6.6000000000000005
- },
- {
- "f1": 0.9093181945115201,
- "fn": 27180,
- "fn_rate": 0.08941936630028194,
- "fp": 28024,
- "fp_rate": 0.1611788185357942,
- "match_probability": 0.010344433222956822,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9080592509965387,
- "recall": 0.9105806336997181,
- "row_count": 477830,
- "tn": 145845,
- "tn_rate": 0.8388211814642058,
- "tp": 276781,
- "tp_rate": 0.9105806336997181,
- "truth_threshold": -6.58
- },
- {
- "f1": 0.9083698615271799,
- "fn": 27723,
- "fn_rate": 0.09120577968884166,
- "fp": 28007,
- "fp_rate": 0.16108104377433585,
- "match_probability": 0.010487321729732655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.907945898864402,
- "recall": 0.9087942203111583,
- "row_count": 477830,
- "tn": 145862,
- "tn_rate": 0.8389189562256641,
- "tp": 276238,
- "tp_rate": 0.9087942203111583,
- "truth_threshold": -6.5600000000000005
- },
- {
- "f1": 0.9082552211807269,
- "fn": 27806,
- "fn_rate": 0.09147884103552759,
- "fp": 27984,
- "fp_rate": 0.16094876027353927,
- "match_probability": 0.010632162762829713,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9079894390393866,
- "recall": 0.9085211589644724,
- "row_count": 477830,
- "tn": 145885,
- "tn_rate": 0.8390512397264607,
- "tp": 276155,
- "tp_rate": 0.9085211589644724,
- "truth_threshold": -6.54
- },
- {
- "f1": 0.9081725629512672,
- "fn": 27872,
- "fn_rate": 0.09169597415457904,
- "fp": 27961,
- "fp_rate": 0.1608164767727427,
- "match_probability": 0.010778982413279539,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9080381516197994,
- "recall": 0.9083040258454209,
- "row_count": 477830,
- "tn": 145908,
- "tn_rate": 0.8391835232272573,
- "tp": 276089,
- "tp_rate": 0.9083040258454209,
- "truth_threshold": -6.5200000000000005
- },
- {
- "f1": 0.90816736082325,
- "fn": 27909,
- "fn_rate": 0.09181770029707759,
- "fp": 27920,
- "fp_rate": 0.1605806670539314,
- "match_probability": 0.010927807104367976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9081494348163647,
- "recall": 0.9081822997029224,
- "row_count": 477830,
- "tn": 145949,
- "tn_rate": 0.8394193329460686,
- "tp": 276052,
- "tp_rate": 0.9081822997029224,
- "truth_threshold": -6.5
- },
- {
- "f1": 0.9082619826389118,
- "fn": 27942,
- "fn_rate": 0.09192626685660331,
- "fp": 27816,
- "fp_rate": 0.15998251557206863,
- "match_probability": 0.011078663595407736,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9084503102012605,
- "recall": 0.9080737331433967,
- "row_count": 477830,
- "tn": 146053,
- "tn_rate": 0.8400174844279313,
- "tp": 276019,
- "tp_rate": 0.9080737331433967,
- "truth_threshold": -6.48
- },
- {
- "f1": 0.908127766715487,
- "fn": 28040,
- "fn_rate": 0.0922486766394373,
- "fp": 27789,
- "fp_rate": 0.15982722624504656,
- "match_probability": 0.011231578985540796,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9085015310658193,
- "recall": 0.9077513233605627,
- "row_count": 477830,
- "tn": 146080,
- "tn_rate": 0.8401727737549535,
- "tp": 275921,
- "tp_rate": 0.9077513233605627,
- "truth_threshold": -6.46
- },
- {
- "f1": 0.9081381416966202,
- "fn": 28065,
- "fn_rate": 0.09233092403301739,
- "fp": 27752,
- "fp_rate": 0.15961442235246076,
- "match_probability": 0.011386580717570208,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9086047001791548,
- "recall": 0.9076690759669827,
- "row_count": 477830,
- "tn": 146117,
- "tn_rate": 0.8403855776475393,
- "tp": 275896,
- "tp_rate": 0.9076690759669827,
- "truth_threshold": -6.44
- },
- {
- "f1": 0.9078936537986666,
- "fn": 28211,
- "fn_rate": 0.09281124881152517,
- "fp": 27740,
- "fp_rate": 0.1595454048737843,
- "match_probability": 0.011543696581821352,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9085966588684965,
- "recall": 0.9071887511884749,
- "row_count": 477830,
- "tn": 146129,
- "tn_rate": 0.8404545951262157,
- "tp": 275750,
- "tp_rate": 0.9071887511884749,
- "truth_threshold": -6.42
- },
- {
- "f1": 0.9076837449488047,
- "fn": 28351,
- "fn_rate": 0.09327183421557371,
- "fp": 27711,
- "fp_rate": 0.15937861263364947,
- "match_probability": 0.011702954720032218,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9086413403621906,
- "recall": 0.9067281657844263,
- "row_count": 477830,
- "tn": 146158,
- "tn_rate": 0.8406213873663505,
- "tp": 275610,
- "tp_rate": 0.9067281657844263,
- "truth_threshold": -6.4
- },
- {
- "f1": 0.9076038801693045,
- "fn": 28417,
- "fn_rate": 0.09348896733462517,
- "fp": 27686,
- "fp_rate": 0.15923482621974014,
- "match_probability": 0.011864383629272682,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9086963690927679,
- "recall": 0.9065110326653748,
- "row_count": 477830,
- "tn": 146183,
- "tn_rate": 0.8407651737802598,
- "tp": 275544,
- "tp_rate": 0.9065110326653748,
- "truth_threshold": -6.38
- },
- {
- "f1": 0.9075116705815689,
- "fn": 28494,
- "fn_rate": 0.09374228930685187,
- "fp": 27655,
- "fp_rate": 0.1590565310664926,
- "match_probability": 0.012028012165892355,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.908766107375908,
- "recall": 0.9062577106931481,
- "row_count": 477830,
- "tn": 146214,
- "tn_rate": 0.8409434689335075,
- "tp": 275467,
- "tp_rate": 0.9062577106931481,
- "truth_threshold": -6.36
- },
- {
- "f1": 0.9074140584070038,
- "fn": 28569,
- "fn_rate": 0.09398903148759216,
- "fp": 27629,
- "fp_rate": 0.15890699319602689,
- "match_probability": 0.012193869549496904,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9088215008200752,
- "recall": 0.9060109685124078,
- "row_count": 477830,
- "tn": 146240,
- "tn_rate": 0.8410930068039731,
- "tp": 275392,
- "tp_rate": 0.9060109685124078,
- "truth_threshold": -6.34
- },
- {
- "f1": 0.90723487557385,
- "fn": 28676,
- "fn_rate": 0.09434105033211497,
- "fp": 27621,
- "fp_rate": 0.15886098154357592,
- "match_probability": 0.012361985366952384,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9088132952136967,
- "recall": 0.9056589496678851,
- "row_count": 477830,
- "tn": 146248,
- "tn_rate": 0.8411390184564241,
- "tp": 275285,
- "tp_rate": 0.9056589496678851,
- "truth_threshold": -6.32
- },
- {
- "f1": 0.9069691545437464,
- "fn": 28831,
- "fn_rate": 0.09485098417231158,
- "fp": 27611,
- "fp_rate": 0.15880346697801218,
- "match_probability": 0.01253238957641751,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9087966281408861,
- "recall": 0.9051490158276885,
- "row_count": 477830,
- "tn": 146258,
- "tn_rate": 0.8411965330219878,
- "tp": 275130,
- "tp_rate": 0.9051490158276885,
- "truth_threshold": -6.3
- },
- {
- "f1": 0.9072315582894932,
- "fn": 28902,
- "fn_rate": 0.09508456677007905,
- "fp": 27350,
- "fp_rate": 0.15730233681679887,
- "match_probability": 0.01270511251140324,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.909559569986343,
- "recall": 0.904915433229921,
- "row_count": 477830,
- "tn": 146519,
- "tn_rate": 0.8426976631832012,
- "tp": 275059,
- "tp_rate": 0.904915433229921,
- "truth_threshold": -6.28
- },
- {
- "f1": 0.9070296056321301,
- "fn": 29024,
- "fn_rate": 0.09548593405074993,
- "fp": 27339,
- "fp_rate": 0.15723907079467875,
- "match_probability": 0.012880184884859674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9095561672114226,
- "recall": 0.9045140659492501,
- "row_count": 477830,
- "tn": 146530,
- "tn_rate": 0.8427609292053212,
- "tp": 274937,
- "tp_rate": 0.9045140659492501,
- "truth_threshold": -6.26
- },
- {
- "f1": 0.9067553296812092,
- "fn": 29196,
- "fn_rate": 0.096051796118581,
- "fp": 27315,
- "fp_rate": 0.1571010358373258,
- "match_probability": 0.013057637793289553,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9095769332627118,
- "recall": 0.9039482038814189,
- "row_count": 477830,
- "tn": 146554,
- "tn_rate": 0.8428989641626742,
- "tp": 274765,
- "tp_rate": 0.9039482038814189,
- "truth_threshold": -6.24
- },
- {
- "f1": 0.9065901784358641,
- "fn": 29295,
- "fn_rate": 0.0963774957971582,
- "fp": 27306,
- "fp_rate": 0.15704927272831845,
- "match_probability": 0.013237502720888259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.90957439762627,
- "recall": 0.9036225042028418,
- "row_count": 477830,
- "tn": 146563,
- "tn_rate": 0.8429507272716815,
- "tp": 274666,
- "tp_rate": 0.9036225042028418,
- "truth_threshold": -6.22
- },
- {
- "f1": 0.9048066177783362,
- "fn": 30295,
- "fn_rate": 0.09966739154036208,
- "fp": 27290,
- "fp_rate": 0.1569572494234165,
- "match_probability": 0.013419811543709683,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9093222929597682,
- "recall": 0.9003326084596379,
- "row_count": 477830,
- "tn": 146579,
- "tn_rate": 0.8430427505765835,
- "tp": 273666,
- "tp_rate": 0.9003326084596379,
- "truth_threshold": -6.2
- },
- {
- "f1": 0.904633396170255,
- "fn": 30427,
- "fn_rate": 0.100101657778465,
- "fp": 27245,
- "fp_rate": 0.1566984338783797,
- "match_probability": 0.013604596533857708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9094185431828685,
- "recall": 0.899898342221535,
- "row_count": 477830,
- "tn": 146624,
- "tn_rate": 0.8433015661216203,
- "tp": 273534,
- "tp_rate": 0.899898342221535,
- "truth_threshold": -6.18
- },
- {
- "f1": 0.904551167559701,
- "fn": 30479,
- "fn_rate": 0.10027273235711161,
- "fp": 27237,
- "fp_rate": 0.1566524222259287,
- "match_probability": 0.013791890363702633,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9094270731147682,
- "recall": 0.8997272676428884,
- "row_count": 477830,
- "tn": 146632,
- "tn_rate": 0.8433475777740713,
- "tp": 273482,
- "tp_rate": 0.8997272676428884,
- "truth_threshold": -6.16
- },
- {
- "f1": 0.9044960552790426,
- "fn": 30644,
- "fn_rate": 0.10081556515474024,
- "fp": 27074,
- "fp_rate": 0.15571493480723994,
- "match_probability": 0.013981726110122288,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9098708017217559,
- "recall": 0.8991844348452598,
- "row_count": 477830,
- "tn": 146795,
- "tn_rate": 0.84428506519276,
- "tp": 273317,
- "tp_rate": 0.8991844348452598,
- "truth_threshold": -6.140000000000001
- },
- {
- "f1": 0.9044490705040161,
- "fn": 30679,
- "fn_rate": 0.10093071150575238,
- "fp": 27064,
- "fp_rate": 0.1556574202416762,
- "match_probability": 0.01417413725876712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9098905928495802,
- "recall": 0.8990692884942476,
- "row_count": 477830,
- "tn": 146805,
- "tn_rate": 0.8443425797583238,
- "tp": 273282,
- "tp_rate": 0.8990692884942476,
- "truth_threshold": -6.12
- },
- {
- "f1": 0.904331388997398,
- "fn": 30786,
- "fn_rate": 0.1012827303502752,
- "fp": 27013,
- "fp_rate": 0.1553640959573012,
- "match_probability": 0.014369157708348785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9100130584833505,
- "recall": 0.8987172696497248,
- "row_count": 477830,
- "tn": 146856,
- "tn_rate": 0.8446359040426988,
- "tp": 273175,
- "tp_rate": 0.8987172696497248,
- "truth_threshold": -6.1000000000000005
- },
- {
- "f1": 0.9042895548874968,
- "fn": 30833,
- "fn_rate": 0.10143735545020578,
- "fp": 26983,
- "fp_rate": 0.15519155226061,
- "match_probability": 0.01456682177495178,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9100899333913118,
- "recall": 0.8985626445497942,
- "row_count": 477830,
- "tn": 146886,
- "tn_rate": 0.84480844773939,
- "tp": 273128,
- "tp_rate": 0.8985626445497942,
- "truth_threshold": -6.08
- },
- {
- "f1": 0.9040295151135795,
- "fn": 30992,
- "fn_rate": 0.1019604488733752,
- "fp": 26965,
- "fp_rate": 0.15508802604259528,
- "match_probability": 0.014767164196367252,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9100968879820227,
- "recall": 0.8980395511266248,
- "row_count": 477830,
- "tn": 146904,
- "tn_rate": 0.8449119739574047,
- "tp": 272969,
- "tp_rate": 0.8980395511266248,
- "truth_threshold": -6.0600000000000005
- },
- {
- "f1": 0.9037775414674869,
- "fn": 31144,
- "fn_rate": 0.1024605130263422,
- "fp": 26949,
- "fp_rate": 0.15499600273769332,
- "match_probability": 0.014970220136448715,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9100998779047658,
- "recall": 0.8975394869736578,
- "row_count": 477830,
- "tn": 146920,
- "tn_rate": 0.8450039972623067,
- "tp": 272817,
- "tp_rate": 0.8975394869736578,
- "truth_threshold": -6.04
- },
- {
- "f1": 0.9036230011199693,
- "fn": 31253,
- "fn_rate": 0.10281911166235141,
- "fp": 26920,
- "fp_rate": 0.15482921049755852,
- "match_probability": 0.015176025189488596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9101552591880598,
- "recall": 0.8971808883376485,
- "row_count": 477830,
- "tn": 146949,
- "tn_rate": 0.8451707895024415,
- "tp": 272708,
- "tp_rate": 0.8971808883376485,
- "truth_threshold": -6.0200000000000005
- },
- {
- "f1": 0.9035442660436447,
- "fn": 31312,
- "fn_rate": 0.10301321551120045,
- "fp": 26901,
- "fp_rate": 0.15471993282298743,
- "match_probability": 0.015384615384615385,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9101952929394092,
- "recall": 0.8969867844887995,
- "row_count": 477830,
- "tn": 146968,
- "tn_rate": 0.8452800671770125,
- "tp": 272649,
- "tp_rate": 0.8969867844887995,
- "truth_threshold": -6
- },
- {
- "f1": 0.9034882757477836,
- "fn": 31356,
- "fn_rate": 0.10315797092390142,
- "fp": 26885,
- "fp_rate": 0.15462790951808544,
- "match_probability": 0.01559602719021019,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9102307255667968,
- "recall": 0.8968420290760986,
- "row_count": 477830,
- "tn": 146984,
- "tn_rate": 0.8453720904819145,
- "tp": 272605,
- "tp_rate": 0.8968420290760986,
- "truth_threshold": -5.98
- },
- {
- "f1": 0.9032984154345952,
- "fn": 31472,
- "fn_rate": 0.10353959883011307,
- "fp": 26870,
- "fp_rate": 0.15454163766973986,
- "match_probability": 0.015810297518342384,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9102415494439786,
- "recall": 0.8964604011698869,
- "row_count": 477830,
- "tn": 146999,
- "tn_rate": 0.8454583623302602,
- "tp": 272489,
- "tp_rate": 0.8964604011698869,
- "truth_threshold": -5.96
- },
- {
- "f1": 0.9032842056400139,
- "fn": 31535,
- "fn_rate": 0.10374686226193491,
- "fp": 26804,
- "fp_rate": 0.15416204153701926,
- "match_probability": 0.016027463729223174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9104234201116198,
- "recall": 0.896253137738065,
- "row_count": 477830,
- "tn": 147065,
- "tn_rate": 0.8458379584629807,
- "tp": 272426,
- "tp_rate": 0.896253137738065,
- "truth_threshold": -5.94
- },
- {
- "f1": 0.9031568055873369,
- "fn": 31624,
- "fn_rate": 0.10403966298308007,
- "fp": 26781,
- "fp_rate": 0.15402975803622268,
- "match_probability": 0.016247563635676584,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9104667723105931,
- "recall": 0.8959603370169199,
- "row_count": 477830,
- "tn": 147088,
- "tn_rate": 0.8459702419637773,
- "tp": 272337,
- "tp_rate": 0.8959603370169199,
- "truth_threshold": -5.92
- },
- {
- "f1": 0.9030544048238967,
- "fn": 31691,
- "fn_rate": 0.10426008599787473,
- "fp": 26768,
- "fp_rate": 0.15395498910098981,
- "match_probability": 0.016470635507626726,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.910486292711963,
- "recall": 0.8957399140021253,
- "row_count": 477830,
- "tn": 147101,
- "tn_rate": 0.8460450108990102,
- "tp": 272270,
- "tp_rate": 0.8957399140021253,
- "truth_threshold": -5.9
- },
- {
- "f1": 0.9024278531007817,
- "fn": 32064,
- "fn_rate": 0.10548721711008978,
- "fp": 26733,
- "fp_rate": 0.15375368812151677,
- "match_probability": 0.016696718076600735,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9104811974684393,
- "recall": 0.8945127828899102,
- "row_count": 477830,
- "tn": 147136,
- "tn_rate": 0.8462463118784832,
- "tp": 271897,
- "tp_rate": 0.8945127828899102,
- "truth_threshold": -5.88
- },
- {
- "f1": 0.9023616297402706,
- "fn": 32102,
- "fn_rate": 0.10561223314833153,
- "fp": 26730,
- "fp_rate": 0.15373643375184765,
- "match_probability": 0.0169258505402461,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9104789526740771,
- "recall": 0.8943877668516684,
- "row_count": 477830,
- "tn": 147139,
- "tn_rate": 0.8462635662481524,
- "tp": 271859,
- "tp_rate": 0.8943877668516684,
- "truth_threshold": -5.86
- },
- {
- "f1": 0.9022589341443009,
- "fn": 32197,
- "fn_rate": 0.1059247732439359,
- "fp": 26684,
- "fp_rate": 0.1534718667502545,
- "match_probability": 0.017158072566861807,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9105907896853053,
- "recall": 0.8940752267560641,
- "row_count": 477830,
- "tn": 147185,
- "tn_rate": 0.8465281332497455,
- "tp": 271764,
- "tp_rate": 0.8940752267560641,
- "truth_threshold": -5.84
- },
- {
- "f1": 0.9021289737688912,
- "fn": 32302,
- "fn_rate": 0.10627021229697231,
- "fp": 26643,
- "fp_rate": 0.15323605703144322,
- "match_probability": 0.017393424299941902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9106844741235393,
- "recall": 0.8937297877030277,
- "row_count": 477830,
- "tn": 147226,
- "tn_rate": 0.8467639429685568,
- "tp": 271659,
- "tp_rate": 0.8937297877030277,
- "truth_threshold": -5.82
- },
- {
- "f1": 0.9019897638919795,
- "fn": 32380,
- "fn_rate": 0.10652682416494222,
- "fp": 26641,
- "fp_rate": 0.15322455411833047,
- "match_probability": 0.017631946362730785,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9106672210635031,
- "recall": 0.8934731758350578,
- "row_count": 477830,
- "tn": 147228,
- "tn_rate": 0.8467754458816695,
- "tp": 271581,
- "tp_rate": 0.8934731758350578,
- "truth_threshold": -5.8
- },
- {
- "f1": 0.9018548783566522,
- "fn": 32463,
- "fn_rate": 0.10679988551162814,
- "fp": 26630,
- "fp_rate": 0.15316128809621035,
- "match_probability": 0.01787367986278876,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9106759512692535,
- "recall": 0.8932001144883719,
- "row_count": 477830,
- "tn": 147239,
- "tn_rate": 0.8468387119037897,
- "tp": 271498,
- "tp_rate": 0.8932001144883719,
- "truth_threshold": -5.78
- },
- {
- "f1": 0.9017574750830565,
- "fn": 32532,
- "fn_rate": 0.1070268883179092,
- "fp": 26610,
- "fp_rate": 0.15304625896508292,
- "match_probability": 0.018118666396567108,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.910716382755277,
- "recall": 0.8929731116820908,
- "row_count": 477830,
- "tn": 147259,
- "tn_rate": 0.846953741034917,
- "tp": 271429,
- "tp_rate": 0.8929731116820908,
- "truth_threshold": -5.76
- },
- {
- "f1": 0.9029532354468125,
- "fn": 32638,
- "fn_rate": 0.10737561726668882,
- "fp": 25684,
- "fp_rate": 0.1477204101938816,
- "match_probability": 0.018366948053991125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9135239236785665,
- "recall": 0.8926243827333111,
- "row_count": 477830,
- "tn": 148185,
- "tn_rate": 0.8522795898061184,
- "tp": 271323,
- "tp_rate": 0.8926243827333111,
- "truth_threshold": -5.74
- },
- {
- "f1": 0.9025602610201092,
- "fn": 32868,
- "fn_rate": 0.10813229328762572,
- "fp": 25666,
- "fp_rate": 0.1476168839758669,
- "match_probability": 0.018618567423050236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9135123113368087,
- "recall": 0.8918677067123743,
- "row_count": 477830,
- "tn": 148203,
- "tn_rate": 0.8523831160241331,
- "tp": 271093,
- "tp_rate": 0.8918677067123743,
- "truth_threshold": -5.72
- },
- {
- "f1": 0.9024999334061427,
- "fn": 32915,
- "fn_rate": 0.1082869183875563,
- "fp": 25650,
- "fp_rate": 0.14752486067096493,
- "match_probability": 0.018873567594393605,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9135478739180845,
- "recall": 0.8917130816124437,
- "row_count": 477830,
- "tn": 148219,
- "tn_rate": 0.8524751393290351,
- "tp": 271046,
- "tp_rate": 0.8917130816124437,
- "truth_threshold": -5.7
- },
- {
- "f1": 0.902293778122679,
- "fn": 33050,
- "fn_rate": 0.10873105431288882,
- "fp": 25622,
- "fp_rate": 0.14736381988738648,
- "match_probability": 0.01913199216593024,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9135947769725461,
- "recall": 0.8912689456871111,
- "row_count": 477830,
- "tn": 148247,
- "tn_rate": 0.8526361801126136,
- "tp": 270911,
- "tp_rate": 0.8912689456871111,
- "truth_threshold": -5.68
- },
- {
- "f1": 0.9021919451014357,
- "fn": 33132,
- "fn_rate": 0.10900082576383155,
- "fp": 25591,
- "fp_rate": 0.14718552473413893,
- "match_probability": 0.019393885247431873,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9136664192699548,
- "recall": 0.8909991742361685,
- "row_count": 477830,
- "tn": 148278,
- "tn_rate": 0.8528144752658611,
- "tp": 270829,
- "tp_rate": 0.8909991742361685,
- "truth_threshold": -5.66
- },
- {
- "f1": 0.9021412841041223,
- "fn": 33186,
- "fn_rate": 0.10917848013396456,
- "fp": 25559,
- "fp_rate": 0.14700147812433498,
- "match_probability": 0.019659291465137646,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9137493503951623,
- "recall": 0.8908215198660354,
- "row_count": 477830,
- "tn": 148310,
- "tn_rate": 0.852998521875665,
- "tp": 270775,
- "tp_rate": 0.8908215198660354,
- "truth_threshold": -5.64
- },
- {
- "f1": 0.902026576744682,
- "fn": 33252,
- "fn_rate": 0.10939561325301601,
- "fp": 25554,
- "fp_rate": 0.14697272084155313,
- "match_probability": 0.019928255966358603,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9137455571569855,
- "recall": 0.890604386746984,
- "row_count": 477830,
- "tn": 148315,
- "tn_rate": 0.8530272791584469,
- "tp": 270709,
- "tp_rate": 0.890604386746984,
- "truth_threshold": -5.62
- },
- {
- "f1": 0.9017208680667815,
- "fn": 33424,
- "fn_rate": 0.10996147532084709,
- "fp": 25548,
- "fp_rate": 0.1469382121022149,
- "match_probability": 0.02020082442408101,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9137139672729115,
- "recall": 0.8900385246791529,
- "row_count": 477830,
- "tn": 148321,
- "tn_rate": 0.8530617878977851,
- "tp": 270537,
- "tp_rate": 0.8900385246791529,
- "truth_threshold": -5.6000000000000005
- },
- {
- "f1": 0.9016074297791201,
- "fn": 33495,
- "fn_rate": 0.11019505791861456,
- "fp": 25537,
- "fp_rate": 0.14687494608009477,
- "match_probability": 0.02047704304156655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.913727225737577,
- "recall": 0.8898049420813854,
- "row_count": 477830,
- "tn": 148332,
- "tn_rate": 0.8531250539199052,
- "tp": 270466,
- "tp_rate": 0.8898049420813854,
- "truth_threshold": -5.58
- },
- {
- "f1": 0.9014607179890705,
- "fn": 33594,
- "fn_rate": 0.11052075759719175,
- "fp": 25514,
- "fp_rate": 0.14674266257929822,
- "match_probability": 0.020756958556947872,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9137693870170778,
- "recall": 0.8894792424028083,
- "row_count": 477830,
- "tn": 148355,
- "tn_rate": 0.8532573374207018,
- "tp": 270367,
- "tp_rate": 0.8894792424028083,
- "truth_threshold": -5.5600000000000005
- },
- {
- "f1": 0.9014555579638862,
- "fn": 33628,
- "fn_rate": 0.11063261405246068,
- "fp": 25477,
- "fp_rate": 0.14652985868671242,
- "match_probability": 0.02104061824781806,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9138737703255468,
- "recall": 0.8893673859475393,
- "row_count": 477830,
- "tn": 148392,
- "tn_rate": 0.8534701413132876,
- "tp": 270333,
- "tp_rate": 0.8893673859475393,
- "truth_threshold": -5.54
- },
- {
- "f1": 0.9012971159266091,
- "fn": 33735,
- "fn_rate": 0.1109846328969835,
- "fp": 25451,
- "fp_rate": 0.14638032081624672,
- "match_probability": 0.021328069935811763,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9139229632335285,
- "recall": 0.8890153671030165,
- "row_count": 477830,
- "tn": 148418,
- "tn_rate": 0.8536196791837533,
- "tp": 270226,
- "tp_rate": 0.8890153671030165,
- "truth_threshold": -5.5200000000000005
- },
- {
- "f1": 0.9019668070018463,
- "fn": 33803,
- "fn_rate": 0.11120834580752136,
- "fp": 24924,
- "fp_rate": 0.1433493032110382,
- "match_probability": 0.021619361991176866,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9155353427182953,
- "recall": 0.8887916541924786,
- "row_count": 477830,
- "tn": 148945,
- "tn_rate": 0.8566506967889618,
- "tp": 270158,
- "tp_rate": 0.8887916541924786,
- "truth_threshold": -5.5
- },
- {
- "f1": 0.9017218463429132,
- "fn": 33944,
- "fn_rate": 0.1116722211073131,
- "fp": 24915,
- "fp_rate": 0.14329754010203083,
- "match_probability": 0.021914543337334162,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.915522900193943,
- "recall": 0.8883277788926869,
- "row_count": 477830,
- "tn": 148954,
- "tn_rate": 0.8567024598979691,
- "tp": 270017,
- "tp_rate": 0.8883277788926869,
- "truth_threshold": -5.48
- },
- {
- "f1": 0.9015856261503055,
- "fn": 34047,
- "fn_rate": 0.1120110803688631,
- "fp": 24880,
- "fp_rate": 0.14309623912255778,
- "match_probability": 0.02221366345542378,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9156020814534895,
- "recall": 0.8879889196311369,
- "row_count": 477830,
- "tn": 148989,
- "tn_rate": 0.8569037608774422,
- "tp": 269914,
- "tp_rate": 0.8879889196311369,
- "truth_threshold": -5.46
- },
- {
- "f1": 0.9015217572872296,
- "fn": 34113,
- "fn_rate": 0.11222821348791456,
- "fp": 24842,
- "fp_rate": 0.14287768377341561,
- "match_probability": 0.02251677238883578,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9157012453764973,
- "recall": 0.8877717865120854,
- "row_count": 477830,
- "tn": 149027,
- "tn_rate": 0.8571223162265844,
- "tp": 269848,
- "tp_rate": 0.8877717865120854,
- "truth_threshold": -5.44
- },
- {
- "f1": 0.9013829904537238,
- "fn": 34196,
- "fn_rate": 0.1125012748346005,
- "fp": 24832,
- "fp_rate": 0.1428201692078519,
- "match_probability": 0.02282392074772345,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.915708578159316,
- "recall": 0.8874987251653995,
- "row_count": 477830,
- "tn": 149037,
- "tn_rate": 0.8571798307921481,
- "tp": 269765,
- "tp_rate": 0.8874987251653995,
- "truth_threshold": -5.42
- },
- {
- "f1": 0.9013705130818666,
- "fn": 34243,
- "fn_rate": 0.11265589993453108,
- "fp": 24784,
- "fp_rate": 0.142544099293146,
- "match_probability": 0.023135159713496674,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9158443745713102,
- "recall": 0.8873441000654689,
- "row_count": 477830,
- "tn": 149085,
- "tn_rate": 0.857455900706854,
- "tp": 269718,
- "tp_rate": 0.8873441000654689,
- "truth_threshold": -5.4
- },
- {
- "f1": 0.9012921727620945,
- "fn": 34307,
- "fn_rate": 0.11286645326209613,
- "fp": 24758,
- "fp_rate": 0.14239456142268028,
- "match_probability": 0.023450541043293725,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9159069603141177,
- "recall": 0.8871335467379039,
- "row_count": 477830,
- "tn": 149111,
- "tn_rate": 0.8576054385773197,
- "tp": 269654,
- "tp_rate": 0.8871335467379039,
- "truth_threshold": -5.38
- },
- {
- "f1": 0.901193711536983,
- "fn": 34368,
- "fn_rate": 0.11306713690243156,
- "fp": 24749,
- "fp_rate": 0.14234279831367294,
- "match_probability": 0.023770117074428793,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9159175381019359,
- "recall": 0.8869328630975685,
- "row_count": 477830,
- "tn": 149120,
- "tn_rate": 0.8576572016863271,
- "tp": 269593,
- "tp_rate": 0.8869328630975685,
- "truth_threshold": -5.36
- },
- {
- "f1": 0.9010488236257803,
- "fn": 34460,
- "fn_rate": 0.11336980731080631,
- "fp": 24733,
- "fp_rate": 0.14225077500877098,
- "match_probability": 0.024093940728813348,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9159410537191487,
- "recall": 0.8866301926891936,
- "row_count": 477830,
- "tn": 149136,
- "tn_rate": 0.8577492249912291,
- "tp": 269501,
- "tp_rate": 0.8866301926891936,
- "truth_threshold": -5.34
- },
- {
- "f1": 0.9009367235077135,
- "fn": 34562,
- "fn_rate": 0.11370537667661312,
- "fp": 24682,
- "fp_rate": 0.14195745072439594,
- "match_probability": 0.024422065517348556,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9160707424145048,
- "recall": 0.8862946233233869,
- "row_count": 477830,
- "tn": 149187,
- "tn_rate": 0.8580425492756041,
- "tp": 269399,
- "tp_rate": 0.8862946233233869,
- "truth_threshold": -5.32
- },
- {
- "f1": 0.9008027829810008,
- "fn": 34657,
- "fn_rate": 0.1140179167722175,
- "fp": 24655,
- "fp_rate": 0.1418021613973739,
- "match_probability": 0.024754545544286844,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9161277593133736,
- "recall": 0.8859820832277825,
- "row_count": 477830,
- "tn": 149214,
- "tn_rate": 0.8581978386026261,
- "tp": 269304,
- "tp_rate": 0.8859820832277825,
- "truth_threshold": -5.3
- },
- {
- "f1": 0.9007263031470906,
- "fn": 34724,
- "fn_rate": 0.11423833978701214,
- "fp": 24624,
- "fp_rate": 0.14162386624412632,
- "match_probability": 0.0250914355115595,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9162052807279633,
- "recall": 0.8857616602129879,
- "row_count": 477830,
- "tn": 149245,
- "tn_rate": 0.8583761337558736,
- "tp": 269237,
- "tp_rate": 0.8857616602129879,
- "truth_threshold": -5.28
- },
- {
- "f1": 0.9003664842612581,
- "fn": 34945,
- "fn_rate": 0.11496540674626021,
- "fp": 24593,
- "fp_rate": 0.14144557109087877,
- "match_probability": 0.02543279072306829,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9162389436291122,
- "recall": 0.8850345932537398,
- "row_count": 477830,
- "tn": 149276,
- "tn_rate": 0.8585544289091213,
- "tp": 269016,
- "tp_rate": 0.8850345932537398,
- "truth_threshold": -5.26
- },
- {
- "f1": 0.900325052473713,
- "fn": 35015,
- "fn_rate": 0.11519569944828448,
- "fp": 24536,
- "fp_rate": 0.14111773806716552,
- "match_probability": 0.025778667088937956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9163969170170573,
- "recall": 0.8848043005517156,
- "row_count": 477830,
- "tn": 149333,
- "tn_rate": 0.8588822619328345,
- "tp": 268946,
- "tp_rate": 0.8848043005517156,
- "truth_threshold": -5.24
- },
- {
- "f1": 0.9002504285408185,
- "fn": 35067,
- "fn_rate": 0.11536677402693109,
- "fp": 24522,
- "fp_rate": 0.14103721767537628,
- "match_probability": 0.02612912112972733,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9164258254491916,
- "recall": 0.8846332259730689,
- "row_count": 477830,
- "tn": 149347,
- "tn_rate": 0.8589627823246238,
- "tp": 268894,
- "tp_rate": 0.8846332259730689,
- "truth_threshold": -5.22
- },
- {
- "f1": 0.9000622831808623,
- "fn": 35170,
- "fn_rate": 0.11570563328848109,
- "fp": 24520,
- "fp_rate": 0.14102571476226355,
- "match_probability": 0.026484209980595738,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9164027261166475,
- "recall": 0.884294366711519,
- "row_count": 477830,
- "tn": 149349,
- "tn_rate": 0.8589742852377364,
- "tp": 268791,
- "tp_rate": 0.884294366711519,
- "truth_threshold": -5.2
- },
- {
- "f1": 0.9154485174357192,
- "fn": 35297,
- "fn_rate": 0.11612345004786798,
- "fp": 14331,
- "fp_rate": 0.08242412390938005,
- "match_probability": 0.026843991395422352,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.949359529320306,
- "recall": 0.883876549952132,
- "row_count": 477830,
- "tn": 159538,
- "tn_rate": 0.91757587609062,
- "tp": 268664,
- "tp_rate": 0.883876549952132,
- "truth_threshold": -5.18
- },
- {
- "f1": 0.9153844843156298,
- "fn": 35346,
- "fn_rate": 0.11628465493928497,
- "fp": 14315,
- "fp_rate": 0.08233210060447808,
- "match_probability": 0.027208523750875003,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9494044463294808,
- "recall": 0.883715345060715,
- "row_count": 477830,
- "tn": 159554,
- "tn_rate": 0.917667899395522,
- "tp": 268615,
- "tp_rate": 0.883715345060715,
- "truth_threshold": -5.16
- },
- {
- "f1": 0.915198778426133,
- "fn": 35449,
- "fn_rate": 0.11662351420083497,
- "fp": 14311,
- "fp_rate": 0.08230909477825259,
- "match_probability": 0.0275778660504259,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9493994477111126,
- "recall": 0.8833764857991651,
- "row_count": 477830,
- "tn": 159558,
- "tn_rate": 0.9176909052217475,
- "tp": 268512,
- "tp_rate": 0.8833764857991651,
- "truth_threshold": -5.14
- },
- {
- "f1": 0.9150951757615424,
- "fn": 35516,
- "fn_rate": 0.11684393721562963,
- "fp": 14298,
- "fp_rate": 0.08223432584301975,
- "match_probability": 0.027952077928310608,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9494311088161334,
- "recall": 0.8831560627843703,
- "row_count": 477830,
- "tn": 159571,
- "tn_rate": 0.9177656741569803,
- "tp": 268445,
- "tp_rate": 0.8831560627843703,
- "truth_threshold": -5.12
- },
- {
- "f1": 0.9150014830674608,
- "fn": 35581,
- "fn_rate": 0.11705778043893789,
- "fp": 14282,
- "fp_rate": 0.08214230253811777,
- "match_probability": 0.028331219653427598,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9494732224352761,
- "recall": 0.8829422195610621,
- "row_count": 477830,
- "tn": 159587,
- "tn_rate": 0.9178576974618822,
- "tp": 268380,
- "tp_rate": 0.8829422195610621,
- "truth_threshold": -5.1000000000000005
- },
- {
- "f1": 0.9148984052401687,
- "fn": 35646,
- "fn_rate": 0.11727162366224614,
- "fp": 14271,
- "fp_rate": 0.08207903651599768,
- "match_probability": 0.02871535213317462,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9494985597304891,
- "recall": 0.8827283763377538,
- "row_count": 477830,
- "tn": 159598,
- "tn_rate": 0.9179209634840023,
- "tp": 268315,
- "tp_rate": 0.8827283763377538,
- "truth_threshold": -5.08
- },
- {
- "f1": 0.9147601702545634,
- "fn": 35746,
- "fn_rate": 0.11760061323656654,
- "fp": 14241,
- "fp_rate": 0.0819064928193065,
- "match_probability": 0.029104536917218708,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.949581527742374,
- "recall": 0.8823993867634334,
- "row_count": 477830,
- "tn": 159628,
- "tn_rate": 0.9180935071806935,
- "tp": 268215,
- "tp_rate": 0.8823993867634334,
- "truth_threshold": -5.0600000000000005
- },
- {
- "f1": 0.9183632925960432,
- "fn": 35843,
- "fn_rate": 0.1179197331236573,
- "fp": 11826,
- "fp_rate": 0.06801672523566593,
- "match_probability": 0.029498836201196473,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.957755836881662,
- "recall": 0.8820802668763427,
- "row_count": 477830,
- "tn": 162043,
- "tn_rate": 0.9319832747643341,
- "tp": 268118,
- "tp_rate": 0.8820802668763427,
- "truth_threshold": -5.04
- },
- {
- "f1": 0.918295828637396,
- "fn": 35893,
- "fn_rate": 0.1180842279108175,
- "fp": 11809,
- "fp_rate": 0.0679189504742076,
- "match_probability": 0.02989831283034073,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9578064649828317,
- "recall": 0.8819157720891825,
- "row_count": 477830,
- "tn": 162060,
- "tn_rate": 0.9320810495257924,
- "tp": 268068,
- "tp_rate": 0.8819157720891825,
- "truth_threshold": -5.0200000000000005
- },
- {
- "f1": 0.918101705600592,
- "fn": 36002,
- "fn_rate": 0.11844282654682674,
- "fp": 11804,
- "fp_rate": 0.06789019319142572,
- "match_probability": 0.030303030303030304,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9578071439039473,
- "recall": 0.8815571734531733,
- "row_count": 477830,
- "tn": 162065,
- "tn_rate": 0.9321098068085742,
- "tp": 267959,
- "tp_rate": 0.8815571734531733,
- "truth_threshold": -5
- },
- {
- "f1": 0.9180090255862006,
- "fn": 36052,
- "fn_rate": 0.11860732133398692,
- "fp": 11804,
- "fp_rate": 0.06789019319142572,
- "match_probability": 0.03071305277425868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9577996017346352,
- "recall": 0.8813926786660131,
- "row_count": 477830,
- "tn": 162065,
- "tn_rate": 0.9321098068085742,
- "tp": 267909,
- "tp_rate": 0.8813926786660131,
- "truth_threshold": -4.98
- },
- {
- "f1": 0.9178362963953126,
- "fn": 36174,
- "fn_rate": 0.1190086886146578,
- "fp": 11771,
- "fp_rate": 0.06770039512506543,
- "match_probability": 0.031128445059018316,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9578942473475988,
- "recall": 0.8809913113853421,
- "row_count": 477830,
- "tn": 162098,
- "tn_rate": 0.9322996048749346,
- "tp": 267787,
- "tp_rate": 0.8809913113853421,
- "truth_threshold": -4.96
- },
- {
- "f1": 0.9177450150311764,
- "fn": 36230,
- "fn_rate": 0.11919292277627722,
- "fp": 11762,
- "fp_rate": 0.06764863201605807,
- "match_probability": 0.03154927263559596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9579166562311042,
- "recall": 0.8808070772237228,
- "row_count": 477830,
- "tn": 162107,
- "tn_rate": 0.9323513679839419,
- "tp": 267731,
- "tp_rate": 0.8808070772237228,
- "truth_threshold": -4.94
- },
- {
- "f1": 0.9176560126983692,
- "fn": 36289,
- "fn_rate": 0.11938702662512625,
- "fp": 11749,
- "fp_rate": 0.06757386308082522,
- "match_probability": 0.03197560164877564,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9579523371543298,
- "recall": 0.8806129733748738,
- "row_count": 477830,
- "tn": 162120,
- "tn_rate": 0.9324261369191748,
- "tp": 267672,
- "tp_rate": 0.8806129733748738,
- "truth_threshold": -4.92
- },
- {
- "f1": 0.9172094235630233,
- "fn": 36533,
- "fn_rate": 0.120189761186468,
- "fp": 11745,
- "fp_rate": 0.06755085725459972,
- "match_probability": 0.03240749891294454,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9579293126484295,
- "recall": 0.879810238813532,
- "row_count": 477830,
- "tn": 162124,
- "tn_rate": 0.9324491427454003,
- "tp": 267428,
- "tp_rate": 0.879810238813532,
- "truth_threshold": -4.9
- },
- {
- "f1": 0.9169782839891591,
- "fn": 36671,
- "fn_rate": 0.12064376679903013,
- "fp": 11730,
- "fp_rate": 0.06746458540625414,
- "match_probability": 0.032845031915098126,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.957960002867178,
- "recall": 0.8793562332009699,
- "row_count": 477830,
- "tn": 162139,
- "tn_rate": 0.9325354145937459,
- "tp": 267290,
- "tp_rate": 0.8793562332009699,
- "truth_threshold": -4.88
- },
- {
- "f1": 0.9171430924552,
- "fn": 36700,
- "fn_rate": 0.12073917377558305,
- "fp": 11591,
- "fp_rate": 0.0666651329449183,
- "match_probability": 0.0332882688177396,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9584331473326352,
- "recall": 0.8792608262244169,
- "row_count": 477830,
- "tn": 162278,
- "tn_rate": 0.9333348670550817,
- "tp": 267261,
- "tp_rate": 0.8792608262244169,
- "truth_threshold": -4.86
- },
- {
- "f1": 0.9170513555348863,
- "fn": 36768,
- "fn_rate": 0.12096288668612092,
- "fp": 11568,
- "fp_rate": 0.06653284944412173,
- "match_probability": 0.03373727846166985,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9585020860163366,
- "recall": 0.8790371133138791,
- "row_count": 477830,
- "tn": 162301,
- "tn_rate": 0.9334671505558783,
- "tp": 267193,
- "tp_rate": 0.8790371133138791,
- "truth_threshold": -4.84
- },
- {
- "f1": 0.9169018049004868,
- "fn": 36851,
- "fn_rate": 0.12123594803280684,
- "fp": 11565,
- "fp_rate": 0.06651559507445261,
- "match_probability": 0.034192130368662726,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.958500044855118,
- "recall": 0.8787640519671932,
- "row_count": 477830,
- "tn": 162304,
- "tn_rate": 0.9334844049255474,
- "tp": 267110,
- "tp_rate": 0.8787640519671932,
- "truth_threshold": -4.82
- },
- {
- "f1": 0.9168097173775714,
- "fn": 36920,
- "fn_rate": 0.12146295083908791,
- "fp": 11543,
- "fp_rate": 0.0663890630302124,
- "match_probability": 0.034652894744021626,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9585654596100278,
- "recall": 0.8785370491609121,
- "row_count": 477830,
- "tn": 162326,
- "tn_rate": 0.9336109369697876,
- "tp": 267041,
- "tp_rate": 0.8785370491609121,
- "truth_threshold": -4.8
- },
- {
- "f1": 0.9164600262393274,
- "fn": 37119,
- "fn_rate": 0.12211764009198549,
- "fp": 11530,
- "fp_rate": 0.06631429409497955,
- "match_probability": 0.03511964247901206,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9585806043711292,
- "recall": 0.8778823599080146,
- "row_count": 477830,
- "tn": 162339,
- "tn_rate": 0.9336857059050204,
- "tp": 266842,
- "tp_rate": 0.8778823599080146,
- "truth_threshold": -4.78
- },
- {
- "f1": 0.9164339663468969,
- "fn": 37144,
- "fn_rate": 0.12219988748556558,
- "fp": 11516,
- "fp_rate": 0.06623377370319034,
- "match_probability": 0.0355924451531659,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9586251001498205,
- "recall": 0.8778001125144345,
- "row_count": 477830,
- "tn": 162353,
- "tn_rate": 0.9337662262968097,
- "tp": 266817,
- "tp_rate": 0.8778001125144345,
- "truth_threshold": -4.76
- },
- {
- "f1": 0.9162882093069593,
- "fn": 37235,
- "fn_rate": 0.12249926799819713,
- "fp": 11501,
- "fp_rate": 0.06614750185484473,
- "match_probability": 0.03607137503645171,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9586632497924357,
- "recall": 0.8775007320018029,
- "row_count": 477830,
- "tn": 162368,
- "tn_rate": 0.9338524981451553,
- "tp": 266726,
- "tp_rate": 0.8775007320018029,
- "truth_threshold": -4.74
- },
- {
- "f1": 0.9161020326823436,
- "fn": 37335,
- "fn_rate": 0.12282825757251753,
- "fp": 11501,
- "fp_rate": 0.06614750185484473,
- "match_probability": 0.036556505091306896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9586483872475524,
- "recall": 0.8771717424274825,
- "row_count": 477830,
- "tn": 162368,
- "tn_rate": 0.9338524981451553,
- "tp": 266626,
- "tp_rate": 0.8771717424274825,
- "truth_threshold": -4.72
- },
- {
- "f1": 0.9160752641979552,
- "fn": 37406,
- "fn_rate": 0.123061840170285,
- "fp": 11435,
- "fp_rate": 0.06576790572212413,
- "match_probability": 0.03704790897452556,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9588654268139142,
- "recall": 0.876938159829715,
- "row_count": 477830,
- "tn": 162434,
- "tn_rate": 0.9342320942778759,
- "tp": 266555,
- "tp_rate": 0.876938159829715,
- "truth_threshold": -4.7
- },
- {
- "f1": 0.9160147926146909,
- "fn": 37441,
- "fn_rate": 0.12317698652129715,
- "fp": 11432,
- "fp_rate": 0.065750651352455,
- "match_probability": 0.037545661038997695,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9588705963619618,
- "recall": 0.8768230134787028,
- "row_count": 477830,
- "tn": 162437,
- "tn_rate": 0.9342493486475449,
- "tp": 266520,
- "tp_rate": 0.8768230134787028,
- "truth_threshold": -4.68
- },
- {
- "f1": 0.9158714662853371,
- "fn": 37523,
- "fn_rate": 0.12344675797223986,
- "fp": 11425,
- "fp_rate": 0.0657103911565604,
- "match_probability": 0.0380498363352935,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9588826148137751,
- "recall": 0.8765532420277602,
- "row_count": 477830,
- "tn": 162444,
- "tn_rate": 0.9342896088434396,
- "tp": 266438,
- "tp_rate": 0.8765532420277602,
- "truth_threshold": -4.66
- },
- {
- "f1": 0.9157968563059532,
- "fn": 37585,
- "fn_rate": 0.1236507315083185,
- "fp": 11400,
- "fp_rate": 0.06556660474265108,
- "match_probability": 0.03856051061308806,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.958959737342319,
- "recall": 0.8763492684916815,
- "row_count": 477830,
- "tn": 162469,
- "tn_rate": 0.9344333952573489,
- "tp": 266376,
- "tp_rate": 0.8763492684916815,
- "truth_threshold": -4.64
- },
- {
- "f1": 0.9158113778633831,
- "fn": 37698,
- "fn_rate": 0.12402248972730054,
- "fp": 11257,
- "fp_rate": 0.06474414645508975,
- "match_probability": 0.03907776032242,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9594371576823292,
- "recall": 0.8759775102726994,
- "row_count": 477830,
- "tn": 162612,
- "tn_rate": 0.9352558535449103,
- "tp": 266263,
- "tp_rate": 0.8759775102726994,
- "truth_threshold": -4.62
- },
- {
- "f1": 0.9156960544872897,
- "fn": 37759,
- "fn_rate": 0.12422317336763598,
- "fp": 11257,
- "fp_rate": 0.06474414645508975,
- "match_probability": 0.039601662614779175,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9594282398480496,
- "recall": 0.875776826632364,
- "row_count": 477830,
- "tn": 162612,
- "tn_rate": 0.9352558535449103,
- "tp": 266202,
- "tp_rate": 0.875776826632364,
- "truth_threshold": -4.6000000000000005
- },
- {
- "f1": 0.9155255226324989,
- "fn": 37869,
- "fn_rate": 0.12458506189938841,
- "fp": 11235,
- "fp_rate": 0.06461761441084955,
- "match_probability": 0.0401322953440168,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.959488257544343,
- "recall": 0.8754149381006116,
- "row_count": 477830,
- "tn": 162634,
- "tn_rate": 0.9353823855891504,
- "tp": 266092,
- "tp_rate": 0.8754149381006116,
- "truth_threshold": -4.58
- },
- {
- "f1": 0.915386283004649,
- "fn": 37947,
- "fn_rate": 0.12484167376735832,
- "fp": 11231,
- "fp_rate": 0.06459460858462406,
- "match_probability": 0.04066973706707255,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9594907031686776,
- "recall": 0.8751583262326417,
- "row_count": 477830,
- "tn": 162638,
- "tn_rate": 0.9354053914153759,
- "tp": 266014,
- "tp_rate": 0.8751583262326417,
- "truth_threshold": -4.5600000000000005
- },
- {
- "f1": 0.9152329459218547,
- "fn": 38030,
- "fn_rate": 0.12511473511404422,
- "fp": 11230,
- "fp_rate": 0.06458885712806768,
- "match_probability": 0.041214067044512546,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9594820339080895,
- "recall": 0.8748852648859557,
- "row_count": 477830,
- "tn": 162639,
- "tn_rate": 0.9354111428719323,
- "tp": 265931,
- "tp_rate": 0.8748852648859557,
- "truth_threshold": -4.54
- },
- {
- "f1": 0.9151507433044089,
- "fn": 38085,
- "fn_rate": 0.12529567937992045,
- "fp": 11217,
- "fp_rate": 0.06451408819283483,
- "match_probability": 0.041765365240871495,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9595190062542179,
- "recall": 0.8747043206200795,
- "row_count": 477830,
- "tn": 162652,
- "tn_rate": 0.9354859118071651,
- "tp": 265876,
- "tp_rate": 0.8747043206200795,
- "truth_threshold": -4.5200000000000005
- },
- {
- "f1": 0.9150260422942005,
- "fn": 38156,
- "fn_rate": 0.12552926197768793,
- "fp": 11212,
- "fp_rate": 0.06448533091005297,
- "match_probability": 0.04232371232479359,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9595259496709588,
- "recall": 0.8744707380223121,
- "row_count": 477830,
- "tn": 162657,
- "tn_rate": 0.9355146690899471,
- "tp": 265805,
- "tp_rate": 0.8744707380223121,
- "truth_threshold": -4.5
- },
- {
- "f1": 0.9150009295536077,
- "fn": 38188,
- "fn_rate": 0.12563453864147045,
- "fp": 11191,
- "fp_rate": 0.06436455032236914,
- "match_probability": 0.04288918966896465,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9595940266605046,
- "recall": 0.8743654613585295,
- "row_count": 477830,
- "tn": 162678,
- "tn_rate": 0.9356354496776309,
- "tp": 265773,
- "tp_rate": 0.8743654613585295,
- "truth_threshold": -4.48
- },
- {
- "f1": 0.9148813090097722,
- "fn": 38263,
- "fn_rate": 0.12588128082221076,
- "fp": 11177,
- "fp_rate": 0.06428402993057993,
- "match_probability": 0.0434618793498302,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9596316027088037,
- "recall": 0.8741187191777893,
- "row_count": 477830,
- "tn": 162692,
- "tn_rate": 0.9357159700694201,
- "tp": 265698,
- "tp_rate": 0.8741187191777893,
- "truth_threshold": -4.46
- },
- {
- "f1": 0.9148259878367117,
- "fn": 38312,
- "fn_rate": 0.12604248571362772,
- "fp": 11155,
- "fp_rate": 0.06415749788633972,
- "match_probability": 0.04404186414709147,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9597007268681088,
- "recall": 0.8739575142863723,
- "row_count": 477830,
- "tn": 162714,
- "tn_rate": 0.9358425021136603,
- "tp": 265649,
- "tp_rate": 0.8739575142863723,
- "truth_threshold": -4.44
- },
- {
- "f1": 0.9147340757146253,
- "fn": 38389,
- "fn_rate": 0.12629580768585444,
- "fp": 11122,
- "fp_rate": 0.0639676998199794,
- "match_probability": 0.04462922754297395,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9598039711739322,
- "recall": 0.8737041923141455,
- "row_count": 477830,
- "tn": 162747,
- "tn_rate": 0.9360323001800206,
- "tp": 265572,
- "tp_rate": 0.8737041923141455,
- "truth_threshold": -4.42
- },
- {
- "f1": 0.9177388022039558,
- "fn": 38461,
- "fn_rate": 0.12653268017936511,
- "fp": 9135,
- "fp_rate": 0.05253955564246646,
- "match_probability": 0.04522405372126023,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9667376699983614,
- "recall": 0.8734673198206349,
- "row_count": 477830,
- "tn": 164734,
- "tn_rate": 0.9474604443575335,
- "tp": 265500,
- "tp_rate": 0.8734673198206349,
- "truth_threshold": -4.4
- },
- {
- "f1": 0.917671258923787,
- "fn": 38520,
- "fn_rate": 0.12672678402821413,
- "fp": 9109,
- "fp_rate": 0.05239001777200076,
- "match_probability": 0.04582642756608153,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9668220724822437,
- "recall": 0.8732732159717859,
- "row_count": 477830,
- "tn": 164760,
- "tn_rate": 0.9476099822279992,
- "tp": 265441,
- "tp_rate": 0.8732732159717859,
- "truth_threshold": -4.38
- },
- {
- "f1": 0.9174874121617883,
- "fn": 38653,
- "fn_rate": 0.12716434016206027,
- "fp": 9068,
- "fp_rate": 0.05215420805318947,
- "match_probability": 0.046436434660459415,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9669504621395457,
- "recall": 0.8728356598379398,
- "row_count": 477830,
- "tn": 164801,
- "tn_rate": 0.9478457919468105,
- "tp": 265308,
- "tp_rate": 0.8728356598379398,
- "truth_threshold": -4.36
- },
- {
- "f1": 0.9173886427541269,
- "fn": 38710,
- "fn_rate": 0.12735186421942288,
- "fp": 9062,
- "fp_rate": 0.052119699313851235,
- "match_probability": 0.047054161284591715,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9669647446530059,
- "recall": 0.8726481357805771,
- "row_count": 477830,
- "tn": 164807,
- "tn_rate": 0.9478803006861488,
- "tp": 265251,
- "tp_rate": 0.8726481357805771,
- "truth_threshold": -4.34
- },
- {
- "f1": 0.9172677175977335,
- "fn": 38800,
- "fn_rate": 0.12764795483631125,
- "fp": 9033,
- "fp_rate": 0.05195290707371642,
- "match_probability": 0.04767969441387431,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9670561719074816,
- "recall": 0.8723520451636888,
- "row_count": 477830,
- "tn": 164836,
- "tn_rate": 0.9480470929262835,
- "tp": 265161,
- "tp_rate": 0.8723520451636888,
- "truth_threshold": -4.32
- },
- {
- "f1": 0.9171885488101087,
- "fn": 38877,
- "fn_rate": 0.12790127680853794,
- "fp": 8992,
- "fp_rate": 0.05171709735490513,
- "match_probability": 0.04831312171665215,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9671915818969921,
- "recall": 0.8720987231914621,
- "row_count": 477830,
- "tn": 164877,
- "tn_rate": 0.9482829026450948,
- "tp": 265084,
- "tp_rate": 0.8720987231914621,
- "truth_threshold": -4.3
- },
- {
- "f1": 0.9170052395157774,
- "fn": 38985,
- "fn_rate": 0.12825658554880395,
- "fp": 8980,
- "fp_rate": 0.05164807987622865,
- "match_probability": 0.04895453155169113,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9672210135934237,
- "recall": 0.8717434144511961,
- "row_count": 477830,
- "tn": 164889,
- "tn_rate": 0.9483519201237713,
- "tp": 264976,
- "tp_rate": 0.8717434144511961,
- "truth_threshold": -4.28
- },
- {
- "f1": 0.9169527896995708,
- "fn": 39035,
- "fn_rate": 0.12842108033596417,
- "fp": 8953,
- "fp_rate": 0.05149279054920659,
- "match_probability": 0.04960401296536411,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9673103815918709,
- "recall": 0.8715789196640359,
- "row_count": 477830,
- "tn": 164916,
- "tn_rate": 0.9485072094507934,
- "tp": 264926,
- "tp_rate": 0.8715789196640359,
- "truth_threshold": -4.26
- },
- {
- "f1": 0.9168642627445144,
- "fn": 39089,
- "fn_rate": 0.12859873470609717,
- "fp": 8945,
- "fp_rate": 0.051446778896755606,
- "match_probability": 0.05026165568854217,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9673321963209005,
- "recall": 0.8714012652939028,
- "row_count": 477830,
- "tn": 164924,
- "tn_rate": 0.9485532211032444,
- "tp": 264872,
- "tp_rate": 0.8714012652939028,
- "truth_threshold": -4.24
- },
- {
- "f1": 0.9166721489139956,
- "fn": 39216,
- "fn_rate": 0.12901655146548405,
- "fp": 8916,
- "fp_rate": 0.05127998665662079,
- "match_probability": 0.05092755013318443,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9674195446190725,
- "recall": 0.8709834485345159,
- "row_count": 477830,
- "tn": 164953,
- "tn_rate": 0.9487200133433792,
- "tp": 264745,
- "tp_rate": 0.8709834485345159,
- "truth_threshold": -4.22
- },
- {
- "f1": 0.9164704089548931,
- "fn": 39343,
- "fn_rate": 0.12943436822487095,
- "fp": 8893,
- "fp_rate": 0.05114770315582421,
- "match_probability": 0.05160178738861727,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9674857683968835,
- "recall": 0.870565631775129,
- "row_count": 477830,
- "tn": 164976,
- "tn_rate": 0.9488522968441758,
- "tp": 264618,
- "tp_rate": 0.870565631775129,
- "truth_threshold": -4.2
- },
- {
- "f1": 0.9160418543413484,
- "fn": 39573,
- "fn_rate": 0.13019104424580785,
- "fp": 8892,
- "fp_rate": 0.05114195169926784,
- "match_probability": 0.052284459217495936,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.967461943793911,
- "recall": 0.8698089557541921,
- "row_count": 477830,
- "tn": 164977,
- "tn_rate": 0.9488580483007322,
- "tp": 264388,
- "tp_rate": 0.8698089557541921,
- "truth_threshold": -4.18
- },
- {
- "f1": 0.9159089333980179,
- "fn": 39648,
- "fn_rate": 0.13043778642654813,
- "fp": 8886,
- "fp_rate": 0.051107442959929604,
- "match_probability": 0.05297565805143919,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9674742586905516,
- "recall": 0.8695622135734519,
- "row_count": 477830,
- "tn": 164983,
- "tn_rate": 0.9488925570400704,
- "tp": 264313,
- "tp_rate": 0.8695622135734519,
- "truth_threshold": -4.16
- },
- {
- "f1": 0.9157313496987806,
- "fn": 39778,
- "fn_rate": 0.13086547287316466,
- "fp": 8845,
- "fp_rate": 0.05087163324111831,
- "match_probability": 0.05367547698633007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9676040552617314,
- "recall": 0.8691345271268354,
- "row_count": 477830,
- "tn": 165024,
- "tn_rate": 0.9491283667588817,
- "tp": 264183,
- "tp_rate": 0.8691345271268354,
- "truth_threshold": -4.14
- },
- {
- "f1": 0.9156017943935602,
- "fn": 39852,
- "fn_rate": 0.13110892515816175,
- "fp": 8839,
- "fp_rate": 0.05083712450178007,
- "match_probability": 0.05438400977727288,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9676165423450621,
- "recall": 0.8688910748418383,
- "row_count": 477830,
- "tn": 165030,
- "tn_rate": 0.9491628754982199,
- "tp": 264109,
- "tp_rate": 0.8688910748418383,
- "truth_threshold": -4.12
- },
- {
- "f1": 0.9151909270627406,
- "fn": 40084,
- "fn_rate": 0.13187218097058503,
- "fp": 8823,
- "fp_rate": 0.05074510119687811,
- "match_probability": 0.05510135083319928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9676457645764577,
- "recall": 0.8681278190294149,
- "row_count": 477830,
- "tn": 165046,
- "tn_rate": 0.9492548988031219,
- "tp": 263877,
- "tp_rate": 0.8681278190294149,
- "truth_threshold": -4.1
- },
- {
- "f1": 0.9151564131290604,
- "fn": 40115,
- "fn_rate": 0.13197416773862436,
- "fp": 8808,
- "fp_rate": 0.05065882934853252,
- "match_probability": 0.05582759521111378,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9676953208095241,
- "recall": 0.8680258322613756,
- "row_count": 477830,
- "tn": 165061,
- "tn_rate": 0.9493411706514675,
- "tp": 263846,
- "tp_rate": 0.8680258322613756,
- "truth_threshold": -4.08
- },
- {
- "f1": 0.9150295053303868,
- "fn": 40201,
- "fn_rate": 0.1322570987725399,
- "fp": 8785,
- "fp_rate": 0.050526545847735936,
- "match_probability": 0.05656283860997083,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9677667908051881,
- "recall": 0.8677429012274601,
- "row_count": 477830,
- "tn": 165084,
- "tn_rate": 0.949473454152264,
- "tp": 263760,
- "tp_rate": 0.8677429012274601,
- "truth_threshold": -4.0600000000000005
- },
- {
- "f1": 0.9147861933992872,
- "fn": 40337,
- "fn_rate": 0.13270452459361562,
- "fp": 8777,
- "fp_rate": 0.050480534195284955,
- "match_probability": 0.05730717736417426,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9677791197535985,
- "recall": 0.8672954754063844,
- "row_count": 477830,
- "tn": 165092,
- "tn_rate": 0.949519465804715,
- "tp": 263624,
- "tp_rate": 0.8672954754063844,
- "truth_threshold": -4.04
- },
- {
- "f1": 0.9146731265118572,
- "fn": 40408,
- "fn_rate": 0.1329381071913831,
- "fp": 8765,
- "fp_rate": 0.050411516716608484,
- "match_probability": 0.0580607084366901,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9678133652567954,
- "recall": 0.8670618928086169,
- "row_count": 477830,
- "tn": 165104,
- "tn_rate": 0.9495884832833915,
- "tp": 263553,
- "tp_rate": 0.8670618928086169,
- "truth_threshold": -4.0200000000000005
- },
- {
- "f1": 0.9145849169903402,
- "fn": 40470,
- "fn_rate": 0.13314208072746175,
- "fp": 8747,
- "fp_rate": 0.05030799049859377,
- "match_probability": 0.058823529411764705,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9678700254924,
- "recall": 0.8668579192725383,
- "row_count": 477830,
- "tn": 165122,
- "tn_rate": 0.9496920095014062,
- "tp": 263491,
- "tp_rate": 0.8668579192725383,
- "truth_threshold": -4
- },
- {
- "f1": 0.9142976182209569,
- "fn": 40625,
- "fn_rate": 0.13365201456765835,
- "fp": 8743,
- "fp_rate": 0.05028498467236828,
- "match_probability": 0.059595738487237926,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9678659506981429,
- "recall": 0.8663479854323416,
- "row_count": 477830,
- "tn": 165126,
- "tn_rate": 0.9497150153276317,
- "tp": 263336,
- "tp_rate": 0.8663479854323416,
- "truth_threshold": -3.98
- },
- {
- "f1": 0.9142021799292339,
- "fn": 40679,
- "fn_rate": 0.13382966893779136,
- "fp": 8740,
- "fp_rate": 0.05026773030269916,
- "match_probability": 0.06037743446644346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9678702457889435,
- "recall": 0.8661703310622086,
- "row_count": 477830,
- "tn": 165129,
- "tn_rate": 0.9497322696973008,
- "tp": 263282,
- "tp_rate": 0.8661703310622086,
- "truth_threshold": -3.96
- },
- {
- "f1": 0.9141457112792712,
- "fn": 40730,
- "fn_rate": 0.13399745362069476,
- "fp": 8714,
- "fp_rate": 0.05011819243223346,
- "match_probability": 0.061168716749686526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9679567559616834,
- "recall": 0.8660025463793053,
- "row_count": 477830,
- "tn": 165155,
- "tn_rate": 0.9498818075677665,
- "tp": 263231,
- "tp_rate": 0.8660025463793053,
- "truth_threshold": -3.94
- },
- {
- "f1": 0.9138592261677309,
- "fn": 40892,
- "fn_rate": 0.13453041673109378,
- "fp": 8703,
- "fp_rate": 0.05005492641011336,
- "match_probability": 0.061969685325289826,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9679768335222172,
- "recall": 0.8654695832689062,
- "row_count": 477830,
- "tn": 165166,
- "tn_rate": 0.9499450735898867,
- "tp": 263069,
- "tp_rate": 0.8654695832689062,
- "truth_threshold": -3.92
- },
- {
- "f1": 0.913809037404543,
- "fn": 40943,
- "fn_rate": 0.1346982014139972,
- "fp": 8673,
- "fp_rate": 0.04988238271342217,
- "match_probability": 0.06278044076019877,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9680777059232731,
- "recall": 0.8653017985860028,
- "row_count": 477830,
- "tn": 165196,
- "tn_rate": 0.9501176172865778,
- "tp": 263018,
- "tp_rate": 0.8653017985860028,
- "truth_threshold": -3.9
- },
- {
- "f1": 0.9136257649311431,
- "fn": 41046,
- "fn_rate": 0.1350370606755472,
- "fp": 8666,
- "fp_rate": 0.049842122517527565,
- "match_probability": 0.06360108419013638,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9680905512535855,
- "recall": 0.8649629393244528,
- "row_count": 477830,
- "tn": 165203,
- "tn_rate": 0.9501578774824725,
- "tp": 262915,
- "tp_rate": 0.8649629393244528,
- "truth_threshold": -3.88
- },
- {
- "f1": 0.913567503883728,
- "fn": 41092,
- "fn_rate": 0.13518839587973458,
- "fp": 8648,
- "fp_rate": 0.049738596299512855,
- "match_probability": 0.06443171730929868,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.968149323983397,
- "recall": 0.8648116041202655,
- "row_count": 477830,
- "tn": 165221,
- "tn_rate": 0.9502614037004872,
- "tp": 262869,
- "tp_rate": 0.8648116041202655,
- "truth_threshold": -3.86
- },
- {
- "f1": 0.9134674212297339,
- "fn": 41182,
- "fn_rate": 0.13548448649662292,
- "fp": 8605,
- "fp_rate": 0.049491283667588815,
- "match_probability": 0.06527244235958121,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9682921616602306,
- "recall": 0.8645155135033771,
- "row_count": 477830,
- "tn": 165264,
- "tn_rate": 0.9505087163324112,
- "tp": 262779,
- "tp_rate": 0.8645155135033771,
- "truth_threshold": -3.84
- },
- {
- "f1": 0.9134024704405839,
- "fn": 41229,
- "fn_rate": 0.1356391115965535,
- "fp": 8589,
- "fp_rate": 0.04939926036268685,
- "match_probability": 0.06612336211932712,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.96834376992566,
- "recall": 0.8643608884034465,
- "row_count": 477830,
- "tn": 165280,
- "tn_rate": 0.9506007396373132,
- "tp": 262732,
- "tp_rate": 0.8643608884034465,
- "truth_threshold": -3.8200000000000003
- },
- {
- "f1": 0.9132785579922045,
- "fn": 41303,
- "fn_rate": 0.1358825638815506,
- "fp": 8580,
- "fp_rate": 0.04934749725367949,
- "match_probability": 0.06698457989158756,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.968367264173899,
- "recall": 0.8641174361184494,
- "row_count": 477830,
- "tn": 165289,
- "tn_rate": 0.9506525027463205,
- "tp": 262658,
- "tp_rate": 0.8641174361184494,
- "truth_threshold": -3.8000000000000003
- },
- {
- "f1": 0.9129412501260838,
- "fn": 41484,
- "fn_rate": 0.1364780350110705,
- "fp": 8576,
- "fp_rate": 0.049324491427454,
- "match_probability": 0.06785619949188462,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9683604313547535,
- "recall": 0.8635219649889295,
- "row_count": 477830,
- "tn": 165293,
- "tn_rate": 0.950675508572546,
- "tp": 262477,
- "tp_rate": 0.8635219649889295,
- "truth_threshold": -3.7800000000000002
- },
- {
- "f1": 0.9128452015291658,
- "fn": 41539,
- "fn_rate": 0.1366589792769467,
- "fp": 8571,
- "fp_rate": 0.049295734144672136,
- "match_probability": 0.0687383252354679,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9683718767643444,
- "recall": 0.8633410207230533,
- "row_count": 477830,
- "tn": 165298,
- "tn_rate": 0.9507042658553279,
- "tp": 262422,
- "tp_rate": 0.8633410207230533,
- "truth_threshold": -3.7600000000000002
- },
- {
- "f1": 0.9128060938647254,
- "fn": 41647,
- "fn_rate": 0.13701428801721274,
- "fp": 8467,
- "fp_rate": 0.04869758266280936,
- "match_probability": 0.06963106192405447,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687311886727651,
- "recall": 0.8629857119827873,
- "row_count": 477830,
- "tn": 165402,
- "tn_rate": 0.9513024173371907,
- "tp": 262314,
- "tp_rate": 0.8629857119827873,
- "truth_threshold": -3.74
- },
- {
- "f1": 0.9125554294783886,
- "fn": 41782,
- "fn_rate": 0.13745842394254526,
- "fp": 8464,
- "fp_rate": 0.048680328293140236,
- "match_probability": 0.07053451483204333,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687263295189604,
- "recall": 0.8625415760574547,
- "row_count": 477830,
- "tn": 165405,
- "tn_rate": 0.9513196717068597,
- "tp": 262179,
- "tp_rate": 0.8625415760574547,
- "truth_threshold": -3.72
- },
- {
- "f1": 0.9123473380773998,
- "fn": 41902,
- "fn_rate": 0.13785321143172974,
- "fp": 8452,
- "fp_rate": 0.048611310814463765,
- "match_probability": 0.07144878969219468,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687554295389097,
- "recall": 0.8621467885682703,
- "row_count": 477830,
- "tn": 165417,
- "tn_rate": 0.9513886891855362,
- "tp": 262059,
- "tp_rate": 0.8621467885682703,
- "truth_threshold": -3.7
- },
- {
- "f1": 0.9120020338298339,
- "fn": 42086,
- "fn_rate": 0.13845855224847925,
- "fp": 8451,
- "fp_rate": 0.04860555935790739,
- "match_probability": 0.07237399268076448,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687377462767177,
- "recall": 0.8615414477515208,
- "row_count": 477830,
- "tn": 165418,
- "tn_rate": 0.9513944406420927,
- "tp": 261875,
- "tp_rate": 0.8615414477515208,
- "truth_threshold": -3.68
- },
- {
- "f1": 0.9118457396229175,
- "fn": 42171,
- "fn_rate": 0.13873819338665158,
- "fp": 8447,
- "fp_rate": 0.0485825535316819,
- "match_probability": 0.07331023040208501,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687422521712423,
- "recall": 0.8612618066133484,
- "row_count": 477830,
- "tn": 165422,
- "tn_rate": 0.951417446468318,
- "tp": 261790,
- "tp_rate": 0.8612618066133484,
- "truth_threshold": -3.66
- },
- {
- "f1": 0.9117621444620556,
- "fn": 42226,
- "fn_rate": 0.13891913765252778,
- "fp": 8434,
- "fp_rate": 0.04850778459644905,
- "match_probability": 0.07425760987258186,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687825028038006,
- "recall": 0.8610808623474722,
- "row_count": 477830,
- "tn": 165435,
- "tn_rate": 0.951492215403551,
- "tp": 261735,
- "tp_rate": 0.8610808623474722,
- "truth_threshold": -3.64
- },
- {
- "f1": 0.9114190034463653,
- "fn": 42412,
- "fn_rate": 0.13953105826076373,
- "fp": 8428,
- "fp_rate": 0.048473275857110816,
- "match_probability": 0.0752162385042182,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9687825259188746,
- "recall": 0.8604689417392363,
- "row_count": 477830,
- "tn": 165441,
- "tn_rate": 0.9515267241428892,
- "tp": 261549,
- "tp_rate": 0.8604689417392363,
- "truth_threshold": -3.62
- },
- {
- "f1": 0.9113274225251976,
- "fn": 42472,
- "fn_rate": 0.13972845200535594,
- "fp": 8415,
- "fp_rate": 0.048398506921877964,
- "match_probability": 0.0761862240873569,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9688222479103681,
- "recall": 0.860271547994644,
- "row_count": 477830,
- "tn": 165454,
- "tn_rate": 0.951601493078122,
- "tp": 261489,
- "tp_rate": 0.860271547994644,
- "truth_threshold": -3.6
- },
- {
- "f1": 0.9111207185094277,
- "fn": 42637,
- "fn_rate": 0.1402712848029846,
- "fp": 8347,
- "fp_rate": 0.04800740787604461,
- "match_probability": 0.07716767477303127,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9690474689529093,
- "recall": 0.8597287151970154,
- "row_count": 477830,
- "tn": 165522,
- "tn_rate": 0.9519925921239554,
- "tp": 261324,
- "tp_rate": 0.8597287151970154,
- "truth_threshold": -3.58
- },
- {
- "f1": 0.9109888308871477,
- "fn": 42714,
- "fn_rate": 0.14052460677521128,
- "fp": 8338,
- "fp_rate": 0.04795564476703725,
- "match_probability": 0.07816069905461534,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9690709794684422,
- "recall": 0.8594753932247887,
- "row_count": 477830,
- "tn": 165531,
- "tn_rate": 0.9520443552329627,
- "tp": 261247,
- "tp_rate": 0.8594753932247887,
- "truth_threshold": -3.56
- },
- {
- "f1": 0.9105073841612967,
- "fn": 42985,
- "fn_rate": 0.14141616852161956,
- "fp": 8318,
- "fp_rate": 0.04784061563590979,
- "match_probability": 0.07916540574888453,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9691118257369269,
- "recall": 0.8585838314783805,
- "row_count": 477830,
- "tn": 165551,
- "tn_rate": 0.9521593843640902,
- "tp": 260976,
- "tp_rate": 0.8585838314783805,
- "truth_threshold": -3.54
- },
- {
- "f1": 0.9104476570323923,
- "fn": 43044,
- "fn_rate": 0.14161027237046858,
- "fp": 8285,
- "fp_rate": 0.04765081756954949,
- "match_probability": 0.08018190397645779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9692238542061352,
- "recall": 0.8583897276295315,
- "row_count": 477830,
- "tn": 165584,
- "tn_rate": 0.9523491824304505,
- "tp": 260917,
- "tp_rate": 0.8583897276295315,
- "truth_threshold": -3.52
- },
- {
- "f1": 0.9102902374670184,
- "fn": 43141,
- "fn_rate": 0.14192939225755935,
- "fp": 8267,
- "fp_rate": 0.04754729135153478,
- "match_probability": 0.08121030314161229,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9692775942353217,
- "recall": 0.8580706077424406,
- "row_count": 477830,
- "tn": 165602,
- "tn_rate": 0.9524527086484652,
- "tp": 260820,
- "tp_rate": 0.8580706077424406,
- "truth_threshold": -3.5
- },
- {
- "f1": 0.9101888373067123,
- "fn": 43201,
- "fn_rate": 0.1421267860021516,
- "fp": 8260,
- "fp_rate": 0.047507031155640166,
- "match_probability": 0.08225071291146206,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9692959631254182,
- "recall": 0.8578732139978484,
- "row_count": 477830,
- "tn": 165609,
- "tn_rate": 0.9524929688443599,
- "tp": 260760,
- "tp_rate": 0.8578732139978484,
- "truth_threshold": -3.48
- },
- {
- "f1": 0.9096655456491599,
- "fn": 43481,
- "fn_rate": 0.14304795681024868,
- "fp": 8253,
- "fp_rate": 0.04746677095974555,
- "match_probability": 0.08330324319449184,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9692892201553215,
- "recall": 0.8569520431897513,
- "row_count": 477830,
- "tn": 165616,
- "tn_rate": 0.9525332290402544,
- "tp": 260480,
- "tp_rate": 0.8569520431897513,
- "truth_threshold": -3.46
- },
- {
- "f1": 0.9095227450542082,
- "fn": 43561,
- "fn_rate": 0.143311148469705,
- "fp": 8247,
- "fp_rate": 0.04743226222040732,
- "match_probability": 0.08436800411843749,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693017230789847,
- "recall": 0.8566888515302951,
- "row_count": 477830,
- "tn": 165622,
- "tn_rate": 0.9525677377795927,
- "tp": 260400,
- "tp_rate": 0.8566888515302951,
- "truth_threshold": -3.44
- },
- {
- "f1": 0.9093252935442963,
- "fn": 43673,
- "fn_rate": 0.14367961679294383,
- "fp": 8238,
- "fp_rate": 0.047380499111399965,
- "match_probability": 0.08544510600750539,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.969321406493226,
- "recall": 0.8563203832070562,
- "row_count": 477830,
- "tn": 165631,
- "tn_rate": 0.9526195008886,
- "tp": 260288,
- "tp_rate": 0.8563203832070562,
- "truth_threshold": -3.42
- },
- {
- "f1": 0.9092633741405333,
- "fn": 43708,
- "fn_rate": 0.14379476314395598,
- "fp": 8234,
- "fp_rate": 0.04735749328517447,
- "match_probability": 0.08653465935892166,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693318484693858,
- "recall": 0.856205236856044,
- "row_count": 477830,
- "tn": 165635,
- "tn_rate": 0.9526425067148255,
- "tp": 260253,
- "tp_rate": 0.856205236856044,
- "truth_threshold": -3.4
- },
- {
- "f1": 0.9091382406999742,
- "fn": 43782,
- "fn_rate": 0.14403821542895306,
- "fp": 8224,
- "fp_rate": 0.04729997871961074,
- "match_probability": 0.08763677481880414,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.969359507904159,
- "recall": 0.855961784571047,
- "row_count": 477830,
- "tn": 165645,
- "tn_rate": 0.9527000212803892,
- "tp": 260179,
- "tp_rate": 0.855961784571047,
- "truth_threshold": -3.38
- },
- {
- "f1": 0.9085579034220426,
- "fn": 44088,
- "fn_rate": 0.14504492352637344,
- "fp": 8223,
- "fp_rate": 0.04729422726305437,
- "match_probability": 0.08875156315734896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693281511100501,
- "recall": 0.8549550764736266,
- "row_count": 477830,
- "tn": 165646,
- "tn_rate": 0.9527057727369457,
- "tp": 259873,
- "tp_rate": 0.8549550764736266,
- "truth_threshold": -3.36
- },
- {
- "f1": 0.9081844285659325,
- "fn": 44292,
- "fn_rate": 0.14571606225798706,
- "fp": 8213,
- "fp_rate": 0.04723671269749064,
- "match_probability": 0.08987913524332442,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693409784905294,
- "recall": 0.8542839377420129,
- "row_count": 477830,
- "tn": 165656,
- "tn_rate": 0.9527632873025094,
- "tp": 259669,
- "tp_rate": 0.8542839377420129,
- "truth_threshold": -3.34
- },
- {
- "f1": 0.9078733766233766,
- "fn": 44469,
- "fn_rate": 0.14629837380453414,
- "fp": 8195,
- "fp_rate": 0.047133186479475925,
- "match_probability": 0.0910196020178644,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693858872489138,
- "recall": 0.8537016261954659,
- "row_count": 477830,
- "tn": 165674,
- "tn_rate": 0.952866813520524,
- "tp": 259492,
- "tp_rate": 0.8537016261954659,
- "truth_threshold": -3.3200000000000003
- },
- {
- "f1": 0.9076583906356621,
- "fn": 44584,
- "fn_rate": 0.14667671181500258,
- "fp": 8193,
- "fp_rate": 0.04712168356636318,
- "match_probability": 0.09217307446755524,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9693799753335576,
- "recall": 0.8533232881849974,
- "row_count": 477830,
- "tn": 165676,
- "tn_rate": 0.9528783164336369,
- "tp": 259377,
- "tp_rate": 0.8533232881849974,
- "truth_threshold": -3.3000000000000003
- },
- {
- "f1": 0.9075790239941764,
- "fn": 44633,
- "fn_rate": 0.14683791670641957,
- "fp": 8184,
- "fp_rate": 0.04706992045735583,
- "match_probability": 0.0933396635968081,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9694069798738001,
- "recall": 0.8531620832935805,
- "row_count": 477830,
- "tn": 165685,
- "tn_rate": 0.9529300795426442,
- "tp": 259328,
- "tp_rate": 0.8531620832935805,
- "truth_threshold": -3.2800000000000002
- },
- {
- "f1": 0.9070909867577958,
- "fn": 44894,
- "fn_rate": 0.1476965794953958,
- "fp": 8176,
- "fp_rate": 0.04702390880490484,
- "match_probability": 0.09451948039951134,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9694061210209435,
- "recall": 0.8523034205046042,
- "row_count": 477830,
- "tn": 165693,
- "tn_rate": 0.9529760911950952,
- "tp": 259067,
- "tp_rate": 0.8523034205046042,
- "truth_threshold": -3.2600000000000002
- },
- {
- "f1": 0.907007283933324,
- "fn": 44956,
- "fn_rate": 0.14790055303147442,
- "fp": 8154,
- "fp_rate": 0.04689737676066464,
- "match_probability": 0.09571263582995625,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9694788496737897,
- "recall": 0.8520994469685256,
- "row_count": 477830,
- "tn": 165715,
- "tn_rate": 0.9531026232393354,
- "tp": 259005,
- "tp_rate": 0.8520994469685256,
- "truth_threshold": -3.24
- },
- {
- "f1": 0.9067806702908704,
- "fn": 45086,
- "fn_rate": 0.14832823947809093,
- "fp": 8141,
- "fp_rate": 0.04682260782543179,
- "match_probability": 0.09691924077303016,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9695111903406537,
- "recall": 0.8516717605219091,
- "row_count": 477830,
- "tn": 165728,
- "tn_rate": 0.9531773921745682,
- "tp": 258875,
- "tp_rate": 0.8516717605219091,
- "truth_threshold": -3.22
- },
- {
- "f1": 0.9064288142066738,
- "fn": 45278,
- "fn_rate": 0.14895989946078608,
- "fp": 8130,
- "fp_rate": 0.04675934180331169,
- "match_probability": 0.09813940601367187,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.969529220840064,
- "recall": 0.8510401005392139,
- "row_count": 477830,
- "tn": 165739,
- "tn_rate": 0.9532406581966884,
- "tp": 258683,
- "tp_rate": 0.8510401005392139,
- "truth_threshold": -3.2
- },
- {
- "f1": 0.9062016998159993,
- "fn": 45399,
- "fn_rate": 0.14935797684571375,
- "fp": 8128,
- "fp_rate": 0.04674783889019894,
- "match_probability": 0.09937324220558363,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9695226667666579,
- "recall": 0.8506420231542863,
- "row_count": 477830,
- "tn": 165741,
- "tn_rate": 0.953252161109801,
- "tp": 258562,
- "tp_rate": 0.8506420231542863,
- "truth_threshold": -3.18
- },
- {
- "f1": 0.9057720492843668,
- "fn": 45633,
- "fn_rate": 0.15012781244962348,
- "fp": 8116,
- "fp_rate": 0.04667882141152247,
- "match_probability": 0.10062085983919537,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9695395655372235,
- "recall": 0.8498721875503765,
- "row_count": 477830,
- "tn": 165753,
- "tn_rate": 0.9533211785884775,
- "tp": 258328,
- "tp_rate": 0.8498721875503765,
- "truth_threshold": -3.16
- },
- {
- "f1": 0.905689688425999,
- "fn": 45690,
- "fn_rate": 0.15031533650698609,
- "fp": 8099,
- "fp_rate": 0.04658104665006413,
- "match_probability": 0.10188236920887628,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.969594924353343,
- "recall": 0.8496846634930139,
- "row_count": 477830,
- "tn": 165770,
- "tn_rate": 0.9534189533499359,
- "tp": 258271,
- "tp_rate": 0.8496846634930139,
- "truth_threshold": -3.14
- },
- {
- "f1": 0.9055577379031693,
- "fn": 45772,
- "fn_rate": 0.15058510795792882,
- "fp": 8083,
- "fp_rate": 0.04648902334516216,
- "match_probability": 0.10315788037939025,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9696438228578296,
- "recall": 0.8494148920420712,
- "row_count": 477830,
- "tn": 165786,
- "tn_rate": 0.9535109766548379,
- "tp": 258189,
- "tp_rate": 0.8494148920420712,
- "truth_threshold": -3.12
- },
- {
- "f1": 0.9054527597032463,
- "fn": 45830,
- "fn_rate": 0.15077592191103464,
- "fp": 8078,
- "fp_rate": 0.046460266062380295,
- "match_probability": 0.10444750315159104,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9696554211164912,
- "recall": 0.8492240780889654,
- "row_count": 477830,
- "tn": 165791,
- "tn_rate": 0.9535397339376197,
- "tp": 258131,
- "tp_rate": 0.8492240780889654,
- "truth_threshold": -3.1
- },
- {
- "f1": 0.9053773399567792,
- "fn": 45885,
- "fn_rate": 0.15095686617691084,
- "fp": 8060,
- "fp_rate": 0.046356739844365585,
- "match_probability": 0.1057513470273544,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9697147323173114,
- "recall": 0.8490431338230892,
- "row_count": 477830,
- "tn": 165809,
- "tn_rate": 0.9536432601556344,
- "tp": 258076,
- "tp_rate": 0.8490431338230892,
- "truth_threshold": -3.08
- },
- {
- "f1": 0.9052960266643277,
- "fn": 45929,
- "fn_rate": 0.15110162158961182,
- "fp": 8057,
- "fp_rate": 0.04633948547469647,
- "match_probability": 0.10706952117374435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9697206573740365,
- "recall": 0.8488983784103882,
- "row_count": 477830,
- "tn": 165812,
- "tn_rate": 0.9536605145253035,
- "tp": 258032,
- "tp_rate": 0.8488983784103882,
- "truth_threshold": -3.06
- },
- {
- "f1": 0.9046201376211206,
- "fn": 46289,
- "fn_rate": 0.15228598405716523,
- "fp": 8047,
- "fp_rate": 0.04628197090913274,
- "match_probability": 0.10840213438641137,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9697161286923404,
- "recall": 0.8477140159428348,
- "row_count": 477830,
- "tn": 165822,
- "tn_rate": 0.9537180290908672,
- "tp": 257672,
- "tp_rate": 0.8477140159428348,
- "truth_threshold": -3.04
- },
- {
- "f1": 0.9044988992391232,
- "fn": 46357,
- "fn_rate": 0.15250969696770308,
- "fp": 8042,
- "fp_rate": 0.046253213626350875,
- "match_probability": 0.10974929505222096,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9697266286712392,
- "recall": 0.8474903030322969,
- "row_count": 477830,
- "tn": 165827,
- "tn_rate": 0.9537467863736492,
- "tp": 257604,
- "tp_rate": 0.8474903030322969,
- "truth_threshold": -3.02
- },
- {
- "f1": 0.9042198612696462,
- "fn": 46507,
- "fn_rate": 0.15300318132918367,
- "fp": 8035,
- "fp_rate": 0.04621295343045626,
- "match_probability": 0.1111111111111111,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9697350926027067,
- "recall": 0.8469968186708163,
- "row_count": 477830,
- "tn": 165834,
- "tn_rate": 0.9537870465695437,
- "tp": 257454,
- "tp_rate": 0.8469968186708163,
- "truth_threshold": -3
- },
- {
- "f1": 0.9041225814610294,
- "fn": 46579,
- "fn_rate": 0.15324005382269437,
- "fp": 8010,
- "fp_rate": 0.04606916701654694,
- "match_probability": 0.11248769001717858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9698182311448725,
- "recall": 0.8467599461773057,
- "row_count": 477830,
- "tn": 165859,
- "tn_rate": 0.953930832983453,
- "tp": 257382,
- "tp_rate": 0.8467599461773057,
- "truth_threshold": -2.98
- },
- {
- "f1": 0.9040247895557836,
- "fn": 46643,
- "fn_rate": 0.1534506071502594,
- "fp": 7993,
- "fp_rate": 0.0459713922550886,
- "match_probability": 0.11387913869899342,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9698730923331487,
- "recall": 0.8465493928497406,
- "row_count": 477830,
- "tn": 165876,
- "tn_rate": 0.9540286077449114,
- "tp": 257318,
- "tp_rate": 0.8465493928497406,
- "truth_threshold": -2.96
- },
- {
- "f1": 0.9040885034123576,
- "fn": 46699,
- "fn_rate": 0.15363484131187882,
- "fp": 7886,
- "fp_rate": 0.0453559864035567,
- "match_probability": 0.11528556351914263,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9702581199933622,
- "recall": 0.8463651586881211,
- "row_count": 477830,
- "tn": 165983,
- "tn_rate": 0.9546440135964434,
- "tp": 257262,
- "tp_rate": 0.8463651586881211,
- "truth_threshold": -2.94
- },
- {
- "f1": 0.903720812503955,
- "fn": 46894,
- "fn_rate": 0.15427637098180358,
- "fp": 7880,
- "fp_rate": 0.045321477664218464,
- "match_probability": 0.1167070702330039,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.970258202583913,
- "recall": 0.8457236290181964,
- "row_count": 477830,
- "tn": 165989,
- "tn_rate": 0.9546785223357815,
- "tp": 257067,
- "tp_rate": 0.8457236290181964,
- "truth_threshold": -2.92
- },
- {
- "f1": 0.9035727722476362,
- "fn": 46984,
- "fn_rate": 0.15457246159869192,
- "fp": 7865,
- "fp_rate": 0.04523520581587287,
- "match_probability": 0.1181437639467516,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9703030486101147,
- "recall": 0.845427538401308,
- "row_count": 477830,
- "tn": 166004,
- "tn_rate": 0.9547647941841272,
- "tp": 256977,
- "tp_rate": 0.845427538401308,
- "truth_threshold": -2.9
- },
- {
- "f1": 0.903302160525307,
- "fn": 47126,
- "fn_rate": 0.1550396267942269,
- "fp": 7862,
- "fp_rate": 0.045217951446203754,
- "match_probability": 0.11959574907459691,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9702981144478403,
- "recall": 0.8449603732057731,
- "row_count": 477830,
- "tn": 166007,
- "tn_rate": 0.9547820485537962,
- "tp": 256835,
- "tp_rate": 0.8449603732057731,
- "truth_threshold": -2.88
- },
- {
- "f1": 0.9031290123999648,
- "fn": 47224,
- "fn_rate": 0.15536203657706088,
- "fp": 7853,
- "fp_rate": 0.04516618833719639,
- "match_probability": 0.12106312929526573,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9703201179182886,
- "recall": 0.8446379634229392,
- "row_count": 477830,
- "tn": 166016,
- "tn_rate": 0.9548338116628036,
- "tp": 256737,
- "tp_rate": 0.8446379634229392,
- "truth_threshold": -2.86
- },
- {
- "f1": 0.9030156942782743,
- "fn": 47342,
- "fn_rate": 0.15575024427475892,
- "fp": 7781,
- "fp_rate": 0.044752083465137545,
- "match_probability": 0.12254600750771812,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.970571104387292,
- "recall": 0.8442497557252411,
- "row_count": 477830,
- "tn": 166088,
- "tn_rate": 0.9552479165348624,
- "tp": 256619,
- "tp_rate": 0.8442497557252411,
- "truth_threshold": -2.84
- },
- {
- "f1": 0.9029367774630044,
- "fn": 47387,
- "fn_rate": 0.15589828958320312,
- "fp": 7776,
- "fp_rate": 0.04472332618235568,
- "match_probability": 0.12404448578611339,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9705844524304899,
- "recall": 0.8441017104167969,
- "row_count": 477830,
- "tn": 166093,
- "tn_rate": 0.9552766738176444,
- "tp": 256574,
- "tp_rate": 0.8441017104167969,
- "truth_threshold": -2.82
- },
- {
- "f1": 0.9028361455451608,
- "fn": 47449,
- "fn_rate": 0.15610226311928174,
- "fp": 7764,
- "fp_rate": 0.04465430870367921,
- "match_probability": 0.12555866533402688,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9706216228488399,
- "recall": 0.8438977368807182,
- "row_count": 477830,
- "tn": 166105,
- "tn_rate": 0.9553456912963207,
- "tp": 256512,
- "tp_rate": 0.8438977368807182,
- "truth_threshold": -2.8000000000000003
- },
- {
- "f1": 0.902552383903327,
- "fn": 47628,
- "fn_rate": 0.15669115445731524,
- "fp": 7724,
- "fp_rate": 0.04442425044142429,
- "match_probability": 0.12708864643792386,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.97074873985541,
- "recall": 0.8433088455426847,
- "row_count": 477830,
- "tn": 166145,
- "tn_rate": 0.9555757495585757,
- "tp": 256333,
- "tp_rate": 0.8433088455426847,
- "truth_threshold": -2.7800000000000002
- },
- {
- "f1": 0.9023971939413362,
- "fn": 47719,
- "fn_rate": 0.1569905349699468,
- "fp": 7711,
- "fp_rate": 0.044349481506191446,
- "match_probability": 0.12863452841989784,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9707864657723155,
- "recall": 0.8430094650300533,
- "row_count": 477830,
- "tn": 166158,
- "tn_rate": 0.9556505184938086,
- "tp": 256242,
- "tp_rate": 0.8430094650300533,
- "truth_threshold": -2.7600000000000002
- },
- {
- "f1": 0.9021658716682285,
- "fn": 47874,
- "fn_rate": 0.1575004688101434,
- "fp": 7669,
- "fp_rate": 0.04410792033082378,
- "match_probability": 0.13019640958968035,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9709238841959993,
- "recall": 0.8424995311898565,
- "row_count": 477830,
- "tn": 166200,
- "tn_rate": 0.9558920796691762,
- "tp": 256087,
- "tp_rate": 0.8424995311898565,
- "truth_threshold": -2.74
- },
- {
- "f1": 0.9020104664070622,
- "fn": 48002,
- "fn_rate": 0.1579215754652735,
- "fp": 7611,
- "fp_rate": 0.04377433585055415,
- "match_probability": 0.13177438719593176,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9711234207231475,
- "recall": 0.8420784245347265,
- "row_count": 477830,
- "tn": 166258,
- "tn_rate": 0.9562256641494459,
- "tp": 255959,
- "tp_rate": 0.8420784245347265,
- "truth_threshold": -2.72
- },
- {
- "f1": 0.901949795926999,
- "fn": 48058,
- "fn_rate": 0.1581058096268929,
- "fp": 7581,
- "fp_rate": 0.043601792153862964,
- "match_probability": 0.13336855737682143,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9712278544427745,
- "recall": 0.8418941903731071,
- "row_count": 477830,
- "tn": 166288,
- "tn_rate": 0.956398207846137,
- "tp": 255903,
- "tp_rate": 0.8418941903731071,
- "truth_threshold": -2.7
- },
- {
- "f1": 0.901677143673075,
- "fn": 48212,
- "fn_rate": 0.15861245357134632,
- "fp": 7564,
- "fp_rate": 0.04350401739240463,
- "match_probability": 0.13497901510990773,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9712737312627937,
- "recall": 0.8413875464286537,
- "row_count": 477830,
- "tn": 166305,
- "tn_rate": 0.9564959826075954,
- "tp": 255749,
- "tp_rate": 0.8413875464286537,
- "truth_threshold": -2.68
- },
- {
- "f1": 0.9015782458763214,
- "fn": 48268,
- "fn_rate": 0.15879668773296574,
- "fp": 7559,
- "fp_rate": 0.043475260109622764,
- "match_probability": 0.13660585416132934,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9712860681020468,
- "recall": 0.8412033122670343,
- "row_count": 477830,
- "tn": 166310,
- "tn_rate": 0.9565247398903772,
- "tp": 255693,
- "tp_rate": 0.8412033122670343,
- "truth_threshold": -2.66
- },
- {
- "f1": 0.9014705363754981,
- "fn": 48331,
- "fn_rate": 0.15900395116478758,
- "fp": 7550,
- "fp_rate": 0.04342349700061541,
- "match_probability": 0.1382491670343198,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9713124097575804,
- "recall": 0.8409960488352124,
- "row_count": 477830,
- "tn": 166319,
- "tn_rate": 0.9565765029993846,
- "tp": 255630,
- "tp_rate": 0.8409960488352124,
- "truth_threshold": -2.64
- },
- {
- "f1": 0.901073197578426,
- "fn": 48550,
- "fn_rate": 0.15972443833254923,
- "fp": 7533,
- "fp_rate": 0.043325722239157066,
- "match_probability": 0.1399090449170576,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9713513143483024,
- "recall": 0.8402755616674508,
- "row_count": 477830,
- "tn": 166336,
- "tn_rate": 0.9566742777608429,
- "tp": 255411,
- "tp_rate": 0.8402755616674508,
- "truth_threshold": -2.62
- },
- {
- "f1": 0.9009572264777382,
- "fn": 48609,
- "fn_rate": 0.15991854218139828,
- "fp": 7533,
- "fp_rate": 0.043325722239157066,
- "match_probability": 0.14158557762986687,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9713448846453773,
- "recall": 0.8400814578186018,
- "row_count": 477830,
- "tn": 166336,
- "tn_rate": 0.9566742777608429,
- "tp": 255352,
- "tp_rate": 0.8400814578186018,
- "truth_threshold": -2.6
- },
- {
- "f1": 0.9003279683964146,
- "fn": 48935,
- "fn_rate": 0.16099104819368273,
- "fp": 7531,
- "fp_rate": 0.04331421932604432,
- "match_probability": 0.14327885357178247,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9713167045631996,
- "recall": 0.8390089518063173,
- "row_count": 477830,
- "tn": 166338,
- "tn_rate": 0.9566857806739557,
- "tp": 255026,
- "tp_rate": 0.8390089518063173,
- "truth_threshold": -2.58
- },
- {
- "f1": 0.9002047950284241,
- "fn": 49014,
- "fn_rate": 0.16125094995739586,
- "fp": 7512,
- "fp_rate": 0.04320494165147323,
- "match_probability": 0.14498895966649594,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9713783867194495,
- "recall": 0.8387490500426041,
- "row_count": 477830,
- "tn": 166357,
- "tn_rate": 0.9567950583485267,
- "tp": 254947,
- "tp_rate": 0.8387490500426041,
- "truth_threshold": -2.56
- },
- {
- "f1": 0.9000723985096502,
- "fn": 49101,
- "fn_rate": 0.16153717088705458,
- "fp": 7489,
- "fp_rate": 0.04307265815067666,
- "match_probability": 0.14671598130769928,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9714540554757213,
- "recall": 0.8384628291129455,
- "row_count": 477830,
- "tn": 166380,
- "tn_rate": 0.9569273418493234,
- "tp": 254860,
- "tp_rate": 0.8384628291129455,
- "truth_threshold": -2.54
- },
- {
- "f1": 0.8999650326185624,
- "fn": 49162,
- "fn_rate": 0.16173785452739003,
- "fp": 7483,
- "fp_rate": 0.04303814941133842,
- "match_probability": 0.14846000230384404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9714696395482725,
- "recall": 0.83826214547261,
- "row_count": 477830,
- "tn": 166386,
- "tn_rate": 0.9569618505886616,
- "tp": 254799,
- "tp_rate": 0.83826214547261,
- "truth_threshold": -2.52
- },
- {
- "f1": 0.8998728274692667,
- "fn": 49225,
- "fn_rate": 0.16194511795921188,
- "fp": 7463,
- "fp_rate": 0.04292312028021096,
- "match_probability": 0.15022110482233483,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9715368861055915,
- "recall": 0.8380548820407882,
- "row_count": 477830,
- "tn": 166406,
- "tn_rate": 0.957076879719789,
- "tp": 254736,
- "tp_rate": 0.8380548820407882,
- "truth_threshold": -2.5
- },
- {
- "f1": 0.9041257869674987,
- "fn": 49342,
- "fn_rate": 0.16233003576116672,
- "fp": 4659,
- "fp_rate": 0.026796036096141347,
- "match_probability": 0.15199936933317765,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.982030870339944,
- "recall": 0.8376699642388332,
- "row_count": 477830,
- "tn": 169210,
- "tn_rate": 0.9732039639038587,
- "tp": 254619,
- "tp_rate": 0.8376699642388332,
- "truth_threshold": -2.48
- },
- {
- "f1": 0.9038026392909791,
- "fn": 49527,
- "fn_rate": 0.16293866647365945,
- "fp": 4636,
- "fp_rate": 0.026663752595344772,
- "match_probability": 0.15379487455210342,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9821052225267303,
- "recall": 0.8370613335263406,
- "row_count": 477830,
- "tn": 169233,
- "tn_rate": 0.9733362474046552,
- "tp": 254434,
- "tp_rate": 0.8370613335263406,
- "truth_threshold": -2.46
- },
- {
- "f1": 0.9037096510611691,
- "fn": 49583,
- "fn_rate": 0.16312290063527887,
- "fp": 4626,
- "fp_rate": 0.026606238029781043,
- "match_probability": 0.15560769738318947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9821392719803556,
- "recall": 0.8368770993647211,
- "row_count": 477830,
- "tn": 169243,
- "tn_rate": 0.973393761970219,
- "tp": 254378,
- "tp_rate": 0.8368770993647211,
- "truth_threshold": -2.44
- },
- {
- "f1": 0.9034670968704804,
- "fn": 49710,
- "fn_rate": 0.16354071739466577,
- "fp": 4623,
- "fp_rate": 0.026588983660111924,
- "match_probability": 0.1574379128610021,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9821418914220817,
- "recall": 0.8364592826053342,
- "row_count": 477830,
- "tn": 169246,
- "tn_rate": 0.973411016339888,
- "tp": 254251,
- "tp_rate": 0.8364592826053342,
- "truth_threshold": -2.42
- },
- {
- "f1": 0.9029682272761209,
- "fn": 49975,
- "fn_rate": 0.1644125397666148,
- "fp": 4612,
- "fp_rate": 0.02652571763799182,
- "match_probability": 0.15928559409228404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9821653686416755,
- "recall": 0.8355874602333851,
- "row_count": 477830,
- "tn": 169257,
- "tn_rate": 0.9734742823620082,
- "tp": 253986,
- "tp_rate": 0.8355874602333851,
- "truth_threshold": -2.4
- },
- {
- "f1": 0.9027746663679713,
- "fn": 50080,
- "fn_rate": 0.1647579788196512,
- "fp": 4605,
- "fp_rate": 0.02648545744209721,
- "match_probability": 0.16115081219721364,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9821847218031151,
- "recall": 0.8352420211803488,
- "row_count": 477830,
- "tn": 169264,
- "tn_rate": 0.9735145425579028,
- "tp": 253881,
- "tp_rate": 0.8352420211803488,
- "truth_threshold": -2.38
- },
- {
- "f1": 0.9026530104200007,
- "fn": 50144,
- "fn_rate": 0.16496853214721627,
- "fp": 4602,
- "fp_rate": 0.026468203072428094,
- "match_probability": 0.16303363625026068,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.982191711909728,
- "recall": 0.8350314678527837,
- "row_count": 477830,
- "tn": 169267,
- "tn_rate": 0.9735317969275719,
- "tp": 253817,
- "tp_rate": 0.8350314678527837,
- "truth_threshold": -2.36
- },
- {
- "f1": 0.9025282057848535,
- "fn": 50217,
- "fn_rate": 0.16520869453647014,
- "fp": 4592,
- "fp_rate": 0.026410688506864365,
- "match_probability": 0.1649341332206679,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.982224699616004,
- "recall": 0.8347913054635299,
- "row_count": 477830,
- "tn": 169277,
- "tn_rate": 0.9735893114931357,
- "tp": 253744,
- "tp_rate": 0.8347913054635299,
- "truth_threshold": -2.34
- },
- {
- "f1": 0.9023955546701576,
- "fn": 50294,
- "fn_rate": 0.16546201650869685,
- "fp": 4580,
- "fp_rate": 0.02634167102818789,
- "match_probability": 0.16685236791258687,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9822650408330009,
- "recall": 0.8345379834913031,
- "row_count": 477830,
- "tn": 169289,
- "tn_rate": 0.9736583289718121,
- "tp": 253667,
- "tp_rate": 0.8345379834913031,
- "truth_threshold": -2.32
- },
- {
- "f1": 0.9022489779798691,
- "fn": 50374,
- "fn_rate": 0.16572520816815314,
- "fp": 4574,
- "fp_rate": 0.02630716228884965,
- "match_probability": 0.1687884029048976,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9822823741773544,
- "recall": 0.8342747918318468,
- "row_count": 477830,
- "tn": 169295,
- "tn_rate": 0.9736928377111503,
- "tp": 253587,
- "tp_rate": 0.8342747918318468,
- "truth_threshold": -2.3000000000000003
- },
- {
- "f1": 0.9018597284262604,
- "fn": 50579,
- "fn_rate": 0.16639963679550995,
- "fp": 4568,
- "fp_rate": 0.026272653549511412,
- "match_probability": 0.17074229849074432,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9822911416941268,
- "recall": 0.83360036320449,
- "row_count": 477830,
- "tn": 169301,
- "tn_rate": 0.9737273464504886,
- "tp": 253382,
- "tp_rate": 0.83360036320449,
- "truth_threshold": -2.2800000000000002
- },
- {
- "f1": 0.9016148900265588,
- "fn": 50710,
- "fn_rate": 0.16683061313786965,
- "fp": 4561,
- "fp_rate": 0.026232393353616802,
- "match_probability": 0.17271411261681832,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9823088141746699,
- "recall": 0.8331693868621304,
- "row_count": 477830,
- "tn": 169308,
- "tn_rate": 0.9737676066463832,
- "tp": 253251,
- "tp_rate": 0.8331693868621304,
- "truth_threshold": -2.2600000000000002
- },
- {
- "f1": 0.9013250905413249,
- "fn": 50859,
- "fn_rate": 0.16732080760360704,
- "fp": 4560,
- "fp_rate": 0.02622664189706043,
- "match_probability": 0.1747039008224231,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9823023961624143,
- "recall": 0.832679192396393,
- "row_count": 477830,
- "tn": 169309,
- "tn_rate": 0.9737733581029395,
- "tp": 253102,
- "tp_rate": 0.832679192396393,
- "truth_threshold": -2.24
- },
- {
- "f1": 0.9004348290979078,
- "fn": 51326,
- "fn_rate": 0.16885718891568327,
- "fp": 4545,
- "fp_rate": 0.026140370048714837,
- "match_probability": 0.17671171617835496,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9823275526868341,
- "recall": 0.8311428110843168,
- "row_count": 477830,
- "tn": 169324,
- "tn_rate": 0.9738596299512852,
- "tp": 252635,
- "tp_rate": 0.8311428110843168,
- "truth_threshold": -2.22
- },
- {
- "f1": 0.900186101564394,
- "fn": 51466,
- "fn_rate": 0.1693177743197318,
- "fp": 4528,
- "fp_rate": 0.026042595287256498,
- "match_probability": 0.17873760922563603,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.982382899584862,
- "recall": 0.8306822256802682,
- "row_count": 477830,
- "tn": 169341,
- "tn_rate": 0.9739574047127435,
- "tp": 252495,
- "tp_rate": 0.8306822256802682,
- "truth_threshold": -2.2
- },
- {
- "f1": 0.9000852174471135,
- "fn": 51524,
- "fn_rate": 0.16950858827283763,
- "fp": 4521,
- "fp_rate": 0.026002335091361888,
- "match_probability": 0.18078162791413613,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9824056849757548,
- "recall": 0.8304914117271623,
- "row_count": 477830,
- "tn": 169348,
- "tn_rate": 0.9739976649086381,
- "tp": 252437,
- "tp_rate": 0.8304914117271623,
- "truth_threshold": -2.18
- },
- {
- "f1": 0.8998134720939274,
- "fn": 51665,
- "fn_rate": 0.16997246357262938,
- "fp": 4517,
- "fp_rate": 0.025979329265136394,
- "match_probability": 0.18284381754112208,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9824113265294202,
- "recall": 0.8300275364273706,
- "row_count": 477830,
- "tn": 169352,
- "tn_rate": 0.9740206707348636,
- "tp": 252296,
- "tp_rate": 0.8300275364273706,
- "truth_threshold": -2.16
- },
- {
- "f1": 0.8996989327093202,
- "fn": 51743,
- "fn_rate": 0.1702290754405993,
- "fp": 4494,
- "fp_rate": 0.02584704576433982,
- "match_probability": 0.18492422068977335,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9824940010595531,
- "recall": 0.8297709245594007,
- "row_count": 477830,
- "tn": 169375,
- "tn_rate": 0.9741529542356602,
- "tp": 252218,
- "tp_rate": 0.8297709245594007,
- "truth_threshold": -2.14
- },
- {
- "f1": 0.8994862280576567,
- "fn": 51853,
- "fn_rate": 0.1705909639723517,
- "fp": 4492,
- "fp_rate": 0.025835542851227074,
- "match_probability": 0.187022877167705,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9824941543257989,
- "recall": 0.8294090360276483,
- "row_count": 477830,
- "tn": 169377,
- "tn_rate": 0.974164457148773,
- "tp": 252108,
- "tp_rate": 0.8294090360276483,
- "truth_threshold": -2.12
- },
- {
- "f1": 0.8993248595836396,
- "fn": 51936,
- "fn_rate": 0.17086402531903763,
- "fp": 4490,
- "fp_rate": 0.025824039938114326,
- "match_probability": 0.18913982394553902,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9824961503225932,
- "recall": 0.8291359746809623,
- "row_count": 477830,
- "tn": 169379,
- "tn_rate": 0.9741759600618857,
- "tp": 252025,
- "tp_rate": 0.8291359746809623,
- "truth_threshold": -2.1
- },
- {
- "f1": 0.8991662919263081,
- "fn": 52020,
- "fn_rate": 0.17114037656146677,
- "fp": 4486,
- "fp_rate": 0.025801034111888835,
- "match_probability": 0.19127509509556725,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9825057423750229,
- "recall": 0.8288596234385333,
- "row_count": 477830,
- "tn": 169383,
- "tn_rate": 0.9741989658881112,
- "tp": 251941,
- "tp_rate": 0.8288596234385333,
- "truth_threshold": -2.08
- },
- {
- "f1": 0.8990546975960474,
- "fn": 52116,
- "fn_rate": 0.17145620655281435,
- "fp": 4439,
- "fp_rate": 0.025530715653739308,
- "match_probability": 0.1934287217305493,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9826793713224392,
- "recall": 0.8285437934471857,
- "row_count": 477830,
- "tn": 169430,
- "tn_rate": 0.9744692843462607,
- "tp": 251845,
- "tp_rate": 0.8285437934471857,
- "truth_threshold": -2.06
- },
- {
- "f1": 0.899107704177859,
- "fn": 52254,
- "fn_rate": 0.17191021216537647,
- "fp": 4236,
- "fp_rate": 0.024363169972795612,
- "match_probability": 0.19560073194269076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.983449439914356,
- "recall": 0.8280897878346235,
- "row_count": 477830,
- "tn": 169633,
- "tn_rate": 0.9756368300272044,
- "tp": 251707,
- "tp_rate": 0.8280897878346235,
- "truth_threshold": -2.04
- },
- {
- "f1": 0.8989031013291411,
- "fn": 52376,
- "fn_rate": 0.17231157944604736,
- "fp": 4215,
- "fp_rate": 0.02424238938511178,
- "match_probability": 0.19779115074284692,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.98352228303362,
- "recall": 0.8276884205539526,
- "row_count": 477830,
- "tn": 169654,
- "tn_rate": 0.9757576106148882,
- "tp": 251585,
- "tp_rate": 0.8276884205539526,
- "truth_threshold": -2.02
- },
- {
- "f1": 0.8987417315574869,
- "fn": 52467,
- "fn_rate": 0.17261095995867892,
- "fp": 4203,
- "fp_rate": 0.024173371906435304,
- "match_probability": 0.2,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9835625760177085,
- "recall": 0.8273890400413211,
- "row_count": 477830,
- "tn": 169666,
- "tn_rate": 0.9758266280935647,
- "tp": 251494,
- "tp_rate": 0.8273890400413211,
- "truth_threshold": -2
- },
- {
- "f1": 0.8986154198058586,
- "fn": 52532,
- "fn_rate": 0.17282480318198717,
- "fp": 4202,
- "fp_rate": 0.024167620449878933,
- "match_probability": 0.20222729838105732,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9835622440157884,
- "recall": 0.8271751968180129,
- "row_count": 477830,
- "tn": 169667,
- "tn_rate": 0.975832379550121,
- "tp": 251429,
- "tp_rate": 0.8271751968180129,
- "truth_threshold": -1.98
- },
- {
- "f1": 0.8983612535123656,
- "fn": 52666,
- "fn_rate": 0.17326564921157647,
- "fp": 4197,
- "fp_rate": 0.02413886316709707,
- "match_probability": 0.2044730612910191,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9835728711662205,
- "recall": 0.8267343507884235,
- "row_count": 477830,
- "tn": 169672,
- "tn_rate": 0.975861136832903,
- "tp": 251295,
- "tp_rate": 0.8267343507884235,
- "truth_threshold": -1.96
- },
- {
- "f1": 0.8981363616859991,
- "fn": 52781,
- "fn_rate": 0.17364398722204494,
- "fp": 4195,
- "fp_rate": 0.02412736025398432,
- "match_probability": 0.2067373008135667,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.98357317670093,
- "recall": 0.8263560127779551,
- "row_count": 477830,
- "tn": 169674,
- "tn_rate": 0.9758726397460157,
- "tp": 251180,
- "tp_rate": 0.8263560127779551,
- "truth_threshold": -1.94
- },
- {
- "f1": 0.898156195790189,
- "fn": 52850,
- "fn_rate": 0.173870990028326,
- "fp": 4099,
- "fp_rate": 0.023575220424572524,
- "match_probability": 0.2090200256521214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9839387171349085,
- "recall": 0.826129009971674,
- "row_count": 477830,
- "tn": 169770,
- "tn_rate": 0.9764247795754275,
- "tp": 251111,
- "tp_rate": 0.826129009971674,
- "truth_threshold": -1.92
- },
- {
- "f1": 0.897931147974972,
- "fn": 52965,
- "fn_rate": 0.17424932803879445,
- "fp": 4098,
- "fp_rate": 0.02356946896801615,
- "match_probability": 0.21132124107142602,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9839353336417164,
- "recall": 0.8257506719612056,
- "row_count": 477830,
- "tn": 169771,
- "tn_rate": 0.9764305310319839,
- "tp": 250996,
- "tp_rate": 0.8257506719612056,
- "truth_threshold": -1.9000000000000001
- },
- {
- "f1": 0.8978024101213647,
- "fn": 53036,
- "fn_rate": 0.17448291063656193,
- "fp": 4091,
- "fp_rate": 0.02352920877212154,
- "match_probability": 0.213640948839702,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9839578693101609,
- "recall": 0.825517089363438,
- "row_count": 477830,
- "tn": 169778,
- "tn_rate": 0.9764707912278785,
- "tp": 250925,
- "tp_rate": 0.825517089363438,
- "truth_threshold": -1.8800000000000001
- },
- {
- "f1": 0.8976642821612995,
- "fn": 53115,
- "fn_rate": 0.17474281240027503,
- "fp": 4080,
- "fp_rate": 0.02346594275000144,
- "match_probability": 0.2159791471714348,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9839953555149338,
- "recall": 0.825257187599725,
- "row_count": 477830,
- "tn": 169789,
- "tn_rate": 0.9765340572499985,
- "tp": 250846,
- "tp_rate": 0.825257187599725,
- "truth_threshold": -1.86
- },
- {
- "f1": 0.8985604393240947,
- "fn": 53286,
- "fn_rate": 0.17530538457236292,
- "fp": 3313,
- "fp_rate": 0.019054575571263423,
- "match_probability": 0.21833583067084317,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9869560766650393,
- "recall": 0.8246946154276371,
- "row_count": 477830,
- "tn": 170556,
- "tn_rate": 0.9809454244287366,
- "tp": 250675,
- "tp_rate": 0.8246946154276371,
- "truth_threshold": -1.84
- },
- {
- "f1": 0.8984164656028508,
- "fn": 53363,
- "fn_rate": 0.1755587065445896,
- "fp": 3307,
- "fp_rate": 0.019020066831925184,
- "match_probability": 0.2207109902760858,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9869754435714145,
- "recall": 0.8244412934554104,
- "row_count": 477830,
- "tn": 170562,
- "tn_rate": 0.9809799331680749,
- "tp": 250598,
- "tp_rate": 0.8244412934554104,
- "truth_threshold": -1.82
- },
- {
- "f1": 0.8982591390716603,
- "fn": 53450,
- "fn_rate": 0.17584492747424835,
- "fp": 3298,
- "fp_rate": 0.01896830372291783,
- "match_probability": 0.22310461320426225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.987005976935412,
- "recall": 0.8241550725257517,
- "row_count": 477830,
- "tn": 170571,
- "tn_rate": 0.9810316962770822,
- "tp": 250511,
- "tp_rate": 0.8241550725257517,
- "truth_threshold": -1.8
- },
- {
- "f1": 0.89802806191986,
- "fn": 53580,
- "fn_rate": 0.17627261392086485,
- "fp": 3282,
- "fp_rate": 0.018876280418015864,
- "match_probability": 0.225516682897264,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9870615738203837,
- "recall": 0.8237273860791352,
- "row_count": 477830,
- "tn": 170587,
- "tn_rate": 0.9811237195819842,
- "tp": 250381,
- "tp_rate": 0.8237273860791352,
- "truth_threshold": -1.78
- },
- {
- "f1": 0.8978935889341675,
- "fn": 53657,
- "fn_rate": 0.17652593589309154,
- "fp": 3272,
- "fp_rate": 0.018818765852452134,
- "match_probability": 0.22794717896853242,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9870965706533741,
- "recall": 0.8234740641069085,
- "row_count": 477830,
- "tn": 170597,
- "tn_rate": 0.9811812341475479,
- "tp": 250304,
- "tp_rate": 0.8234740641069085,
- "truth_threshold": -1.76
- },
- {
- "f1": 0.8975640740395174,
- "fn": 53844,
- "fn_rate": 0.17714114639707068,
- "fp": 3247,
- "fp_rate": 0.01867497943854281,
- "match_probability": 0.2303960771507819,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9871844460933676,
- "recall": 0.8228588536029293,
- "row_count": 477830,
- "tn": 170622,
- "tn_rate": 0.9813250205614572,
- "tp": 250117,
- "tp_rate": 0.8228588536029293,
- "truth_threshold": -1.74
- },
- {
- "f1": 0.8974936020990141,
- "fn": 53913,
- "fn_rate": 0.17736814920335175,
- "fp": 3206,
- "fp_rate": 0.018439169719731523,
- "match_probability": 0.23286334924474508,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9873407725050739,
- "recall": 0.8226318507966482,
- "row_count": 477830,
- "tn": 170663,
- "tn_rate": 0.9815608302802685,
- "tp": 250048,
- "tp_rate": 0.8226318507966482,
- "truth_threshold": -1.72
- },
- {
- "f1": 0.8979181261338938,
- "fn": 54021,
- "fn_rate": 0.17772345794361777,
- "fp": 2810,
- "fp_rate": 0.016161592923407853,
- "match_probability": 0.2353489630689996,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9888822947576656,
- "recall": 0.8222765420563822,
- "row_count": 477830,
- "tn": 171059,
- "tn_rate": 0.9838384070765921,
- "tp": 249940,
- "tp_rate": 0.8222765420563822,
- "truth_threshold": -1.7
- },
- {
- "f1": 0.897744912038634,
- "fn": 54115,
- "fn_rate": 0.17803270814347893,
- "fp": 2802,
- "fp_rate": 0.01611558127095687,
- "match_probability": 0.2378528824109348,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9889094708843925,
- "recall": 0.8219672918565211,
- "row_count": 477830,
- "tn": 171067,
- "tn_rate": 0.9838844187290431,
- "tp": 249846,
- "tp_rate": 0.8219672918565211,
- "truth_threshold": -1.68
- },
- {
- "f1": 0.8974855697003242,
- "fn": 54250,
- "fn_rate": 0.17847684406881145,
- "fp": 2796,
- "fp_rate": 0.016081072531618633,
- "match_probability": 0.24037506697891697,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9889270396464257,
- "recall": 0.8215231559311885,
- "row_count": 477830,
- "tn": 171073,
- "tn_rate": 0.9839189274683814,
- "tp": 249711,
- "tp_rate": 0.8215231559311885,
- "truth_threshold": -1.6600000000000001
- },
- {
- "f1": 0.897396174058072,
- "fn": 54300,
- "fn_rate": 0.17864133885597167,
- "fp": 2790,
- "fp_rate": 0.016046563792280394,
- "match_probability": 0.2429154723557138,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9889483503729437,
- "recall": 0.8213586611440283,
- "row_count": 477830,
- "tn": 171079,
- "tn_rate": 0.9839534362077196,
- "tp": 249661,
- "tp_rate": 0.8213586611440283,
- "truth_threshold": -1.6400000000000001
- },
- {
- "f1": 0.8971211614587266,
- "fn": 54442,
- "fn_rate": 0.1791085040515066,
- "fp": 2786,
- "fp_rate": 0.016023557966054904,
- "match_probability": 0.2454740499532359,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9889578090010107,
- "recall": 0.8208914959484934,
- "row_count": 477830,
- "tn": 171083,
- "tn_rate": 0.9839764420339451,
- "tp": 249519,
- "tp_rate": 0.8208914959484934,
- "truth_threshold": -1.62
- },
- {
- "f1": 0.8969559667008289,
- "fn": 54531,
- "fn_rate": 0.17940130477265176,
- "fp": 2780,
- "fp_rate": 0.015989049226716665,
- "match_probability": 0.2480507469686566,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9889774394353912,
- "recall": 0.8205986952273483,
- "row_count": 477830,
- "tn": 171089,
- "tn_rate": 0.9840109507732834,
- "tp": 249430,
- "tp_rate": 0.8205986952273483,
- "truth_threshold": -1.6
- },
- {
- "f1": 0.8967427272465687,
- "fn": 54645,
- "fn_rate": 0.179776352887377,
- "fp": 2772,
- "fp_rate": 0.015943037574265684,
- "match_probability": 0.25064550634196875,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9890038399289137,
- "recall": 0.820223647112623,
- "row_count": 477830,
- "tn": 171097,
- "tn_rate": 0.9840569624257344,
- "tp": 249316,
- "tp_rate": 0.820223647112623,
- "truth_threshold": -1.58
- },
- {
- "f1": 0.8966464972048148,
- "fn": 54713,
- "fn_rate": 0.18000006579791486,
- "fp": 2748,
- "fp_rate": 0.015805002616912735,
- "match_probability": 0.2532582667150385,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9890950650010317,
- "recall": 0.8199999342020852,
- "row_count": 477830,
- "tn": 171121,
- "tn_rate": 0.9841949973830872,
- "tp": 249248,
- "tp_rate": 0.8199999342020852,
- "truth_threshold": -1.56
- },
- {
- "f1": 0.8964667362285468,
- "fn": 54806,
- "fn_rate": 0.18030602610203283,
- "fp": 2745,
- "fp_rate": 0.015787748247243615,
- "match_probability": 0.2558889623922157,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9891028185788011,
- "recall": 0.8196939738979672,
- "row_count": 477830,
- "tn": 171124,
- "tn_rate": 0.9842122517527564,
- "tp": 249155,
- "tp_rate": 0.8196939738979672,
- "truth_threshold": -1.54
- },
- {
- "f1": 0.8964321056514151,
- "fn": 54847,
- "fn_rate": 0.18044091182750419,
- "fp": 2715,
- "fp_rate": 0.015615204550552427,
- "match_probability": 0.2585375233025599,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9892188747126026,
- "recall": 0.8195590881724958,
- "row_count": 477830,
- "tn": 171154,
- "tn_rate": 0.9843847954494476,
- "tp": 249114,
- "tp_rate": 0.8195590881724958,
- "truth_threshold": -1.52
- },
- {
- "f1": 0.8961788758350611,
- "fn": 54981,
- "fn_rate": 0.1808817578570935,
- "fp": 2707,
- "fp_rate": 0.015569192898101445,
- "match_probability": 0.2612038749637415,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9892445775904198,
- "recall": 0.8191182421429065,
- "row_count": 477830,
- "tn": 171162,
- "tn_rate": 0.9844308071018986,
- "tp": 248980,
- "tp_rate": 0.8191182421429065,
- "truth_threshold": -1.5
- },
- {
- "f1": 0.8954549711478197,
- "fn": 55363,
- "fn_rate": 0.1821384980309974,
- "fp": 2686,
- "fp_rate": 0.015448412310417613,
- "match_probability": 0.2638879384476761,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9893108992215979,
- "recall": 0.8178615019690026,
- "row_count": 477830,
- "tn": 171183,
- "tn_rate": 0.9845515876895824,
- "tp": 248598,
- "tp_rate": 0.8178615019690026,
- "truth_threshold": -1.48
- },
- {
- "f1": 0.8950641750924251,
- "fn": 55561,
- "fn_rate": 0.18278989738815177,
- "fp": 2683,
- "fp_rate": 0.015431157940748494,
- "match_probability": 0.26658963034795197,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9893142904935818,
- "recall": 0.8172101026118482,
- "row_count": 477830,
- "tn": 171186,
- "tn_rate": 0.9845688420592515,
- "tp": 248400,
- "tp_rate": 0.8172101026118482,
- "truth_threshold": -1.46
- },
- {
- "f1": 0.8949485193687541,
- "fn": 55628,
- "fn_rate": 0.18301032040294643,
- "fp": 2672,
- "fp_rate": 0.015367891918628392,
- "match_probability": 0.26930886274910526,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9893547937292085,
- "recall": 0.8169896795970536,
- "row_count": 477830,
- "tn": 171197,
- "tn_rate": 0.9846321080813716,
- "tp": 248333,
- "tp_rate": 0.8169896795970536,
- "truth_threshold": -1.44
- },
- {
- "f1": 0.8946924474435505,
- "fn": 55759,
- "fn_rate": 0.18344129674530615,
- "fp": 2669,
- "fp_rate": 0.015350637548959274,
- "match_probability": 0.2720455431978043,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9893610660458961,
- "recall": 0.8165587032546938,
- "row_count": 477830,
- "tn": 171200,
- "tn_rate": 0.9846493624510407,
- "tp": 248202,
- "tp_rate": 0.8165587032546938,
- "truth_threshold": -1.42
- },
- {
- "f1": 0.894573850219375,
- "fn": 55825,
- "fn_rate": 0.1836584298643576,
- "fp": 2662,
- "fp_rate": 0.015310377353064664,
- "match_probability": 0.2747995746759952,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9893858802701776,
- "recall": 0.8163415701356423,
- "row_count": 477830,
- "tn": 171207,
- "tn_rate": 0.9846896226469354,
- "tp": 248136,
- "tp_rate": 0.8163415701356423,
- "truth_threshold": -1.4000000000000001
- },
- {
- "f1": 0.8943859282203656,
- "fn": 55929,
- "fn_rate": 0.18400057902165082,
- "fp": 2650,
- "fp_rate": 0.015241359874388188,
- "match_probability": 0.27757085557606836,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9894288381295825,
- "recall": 0.8159994209783492,
- "row_count": 477830,
- "tn": 171219,
- "tn_rate": 0.9847586401256118,
- "tp": 248032,
- "tp_rate": 0.8159994209783492,
- "truth_threshold": -1.3800000000000001
- },
- {
- "f1": 0.8942869508764336,
- "fn": 56011,
- "fn_rate": 0.18427035047259352,
- "fp": 2609,
- "fp_rate": 0.0150055501555769,
- "match_probability": 0.2803592796780973,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9895872828355796,
- "recall": 0.8157296495274065,
- "row_count": 477830,
- "tn": 171260,
- "tn_rate": 0.9849944498444231,
- "tp": 247950,
- "tp_rate": 0.8157296495274065,
- "truth_threshold": -1.36
- },
- {
- "f1": 0.8941741304120421,
- "fn": 56070,
- "fn_rate": 0.18446445432144257,
- "fp": 2607,
- "fp_rate": 0.014994047242464155,
- "match_probability": 0.28316473612920606,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9895927312792917,
- "recall": 0.8155355456785575,
- "row_count": 477830,
- "tn": 171262,
- "tn_rate": 0.9850059527575359,
- "tp": 247891,
- "tp_rate": 0.8155355456785575,
- "truth_threshold": -1.34
- },
- {
- "f1": 0.893929226017809,
- "fn": 56196,
- "fn_rate": 0.18487898118508625,
- "fp": 2602,
- "fp_rate": 0.01496528995968229,
- "match_probability": 0.2859871094251169,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9896072565473885,
- "recall": 0.8151210188149137,
- "row_count": 477830,
- "tn": 171267,
- "tn_rate": 0.9850347100403177,
- "tp": 247765,
- "tp_rate": 0.8151210188149137,
- "truth_threshold": -1.32
- },
- {
- "f1": 0.8937478573104058,
- "fn": 56299,
- "fn_rate": 0.18521784044663625,
- "fp": 2587,
- "fp_rate": 0.014879018111336696,
- "match_probability": 0.2888262793939301,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9896622963528325,
- "recall": 0.8147821595533637,
- "row_count": 477830,
- "tn": 171282,
- "tn_rate": 0.9851209818886633,
- "tp": 247662,
- "tp_rate": 0.8147821595533637,
- "truth_threshold": -1.3
- },
- {
- "f1": 0.8935986658773589,
- "fn": 56402,
- "fn_rate": 0.18555669970818625,
- "fp": 2552,
- "fp_rate": 0.014677717131863645,
- "match_probability": 0.29168212118218634,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9897965303405288,
- "recall": 0.8144433002918138,
- "row_count": 477830,
- "tn": 171317,
- "tn_rate": 0.9853222828681364,
- "tp": 247559,
- "tp_rate": 0.8144433002918138,
- "truth_threshold": -1.28
- },
- {
- "f1": 0.8934971912140598,
- "fn": 56473,
- "fn_rate": 0.18579028230595374,
- "fp": 2528,
- "fp_rate": 0.014539682174510694,
- "match_probability": 0.29455450524326093,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9898886471265839,
- "recall": 0.8142097176940463,
- "row_count": 477830,
- "tn": 171341,
- "tn_rate": 0.9854603178254893,
- "tp": 247488,
- "tp_rate": 0.8142097176940463,
- "truth_threshold": -1.26
- },
- {
- "f1": 0.8933603425988113,
- "fn": 56552,
- "fn_rate": 0.18605018406966684,
- "fp": 2515,
- "fp_rate": 0.014464913239277847,
- "match_probability": 0.2974432973281369,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9899369408300123,
- "recall": 0.8139498159303332,
- "row_count": 477830,
- "tn": 171354,
- "tn_rate": 0.9855350867607221,
- "tp": 247409,
- "tp_rate": 0.8139498159303332,
- "truth_threshold": -1.24
- },
- {
- "f1": 0.8931315079476873,
- "fn": 56677,
- "fn_rate": 0.18646142103756733,
- "fp": 2501,
- "fp_rate": 0.014384392847488627,
- "match_probability": 0.300348358478604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.989987389154673,
- "recall": 0.8135385789624326,
- "row_count": 477830,
- "tn": 171368,
- "tn_rate": 0.9856156071525114,
- "tp": 247284,
- "tp_rate": 0.8135385789624326,
- "truth_threshold": -1.22
- },
- {
- "f1": 0.8929477129377424,
- "fn": 56777,
- "fn_rate": 0.1867904106118877,
- "fp": 2491,
- "fp_rate": 0.014326878281924898,
- "match_probability": 0.30326954502292763,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9900230299389206,
- "recall": 0.8132095893881123,
- "row_count": 477830,
- "tn": 171378,
- "tn_rate": 0.9856731217180751,
- "tp": 247184,
- "tp_rate": 0.8132095893881123,
- "truth_threshold": -1.2
- },
- {
- "f1": 0.892855207102516,
- "fn": 56866,
- "fn_rate": 0.18708321133303285,
- "fp": 2438,
- "fp_rate": 0.014022051084437133,
- "match_probability": 0.3062067085740297,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9902297491714522,
- "recall": 0.8129167886669671,
- "row_count": 477830,
- "tn": 171431,
- "tn_rate": 0.9859779489155629,
- "tp": 247095,
- "tp_rate": 0.8129167886669671,
- "truth_threshold": -1.18
- },
- {
- "f1": 0.8925480925632739,
- "fn": 57034,
- "fn_rate": 0.1876359138178911,
- "fp": 2421,
- "fp_rate": 0.013924276322978794,
- "match_probability": 0.309159696030225,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9902906780884547,
- "recall": 0.8123640861821089,
- "row_count": 477830,
- "tn": 171448,
- "tn_rate": 0.9860757236770212,
- "tp": 246927,
- "tp_rate": 0.8123640861821089,
- "truth_threshold": -1.16
- },
- {
- "f1": 0.8923995719698066,
- "fn": 57109,
- "fn_rate": 0.1878826559986314,
- "fp": 2419,
- "fp_rate": 0.013912773409866049,
- "match_probability": 0.3121283495785485,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9902957022678129,
- "recall": 0.8121173440013686,
- "row_count": 477830,
- "tn": 171450,
- "tn_rate": 0.9860872265901339,
- "tp": 246852,
- "tp_rate": 0.8121173440013686,
- "truth_threshold": -1.1400000000000001
- },
- {
- "f1": 0.8920747539181438,
- "fn": 57272,
- "fn_rate": 0.18841890900477365,
- "fp": 2419,
- "fp_rate": 0.013912773409866049,
- "match_probability": 0.3151125067007146,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9902893524093968,
- "recall": 0.8115810909952264,
- "row_count": 477830,
- "tn": 171450,
- "tn_rate": 0.9860872265901339,
- "tp": 246689,
- "tp_rate": 0.8115810909952264,
- "truth_threshold": -1.12
- },
- {
- "f1": 0.8917927589337713,
- "fn": 57424,
- "fn_rate": 0.18891897315774064,
- "fp": 2405,
- "fp_rate": 0.013832253018076827,
- "match_probability": 0.3181120001817404,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9903391151352524,
- "recall": 0.8110810268422594,
- "row_count": 477830,
- "tn": 171464,
- "tn_rate": 0.9861677469819232,
- "tp": 246537,
- "tp_rate": 0.8110810268422594,
- "truth_threshold": -1.1
- },
- {
- "f1": 0.8916581947373943,
- "fn": 57504,
- "fn_rate": 0.18918216481719694,
- "fp": 2388,
- "fp_rate": 0.013734478256618488,
- "match_probability": 0.32112665812126734,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9904036649319857,
- "recall": 0.810817835182803,
- "row_count": 477830,
- "tn": 171481,
- "tn_rate": 0.9862655217433816,
- "tp": 246457,
- "tp_rate": 0.810817835182803,
- "truth_threshold": -1.08
- },
- {
- "f1": 0.8916610571877329,
- "fn": 57579,
- "fn_rate": 0.18942890699793724,
- "fp": 2294,
- "fp_rate": 0.013193841340319435,
- "match_probability": 0.3241563039476125,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.990775145168814,
- "recall": 0.8105710930020628,
- "row_count": 477830,
- "tn": 171575,
- "tn_rate": 0.9868061586596806,
- "tp": 246382,
- "tp_rate": 0.8105710930020628,
- "truth_threshold": -1.06
- },
- {
- "f1": 0.8915106632497937,
- "fn": 57658,
- "fn_rate": 0.18968880876165034,
- "fp": 2288,
- "fp_rate": 0.013159332600981198,
- "match_probability": 0.32720075643457636,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.990796126971612,
- "recall": 0.8103111912383496,
- "row_count": 477830,
- "tn": 171581,
- "tn_rate": 0.9868406673990188,
- "tp": 246303,
- "tp_rate": 0.8103111912383496,
- "truth_threshold": -1.04
- },
- {
- "f1": 0.8913433830024472,
- "fn": 57747,
- "fn_rate": 0.1899816094827955,
- "fp": 2282,
- "fp_rate": 0.01312482386164296,
- "match_probability": 0.33025982972103385,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.990816753589595,
- "recall": 0.8100183905172045,
- "row_count": 477830,
- "tn": 171587,
- "tn_rate": 0.9868751761383571,
- "tp": 246214,
- "tp_rate": 0.8100183905172045,
- "truth_threshold": -1.02
- },
- {
- "f1": 0.8910571637564547,
- "fn": 57892,
- "fn_rate": 0.19045864436556006,
- "fp": 2278,
- "fp_rate": 0.013101818035417469,
- "match_probability": 0.3333333333333333,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9908273504411167,
- "recall": 0.80954135563444,
- "row_count": 477830,
- "tn": 171591,
- "tn_rate": 0.9868981819645826,
- "tp": 246069,
- "tp_rate": 0.80954135563444,
- "truth_threshold": -1
- },
- {
- "f1": 0.8909588048890901,
- "fn": 57945,
- "fn_rate": 0.19063300883994985,
- "fp": 2274,
- "fp_rate": 0.013078812209191978,
- "match_probability": 0.33642107221052214,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9908413548672923,
- "recall": 0.8093669911600502,
- "row_count": 477830,
- "tn": 171595,
- "tn_rate": 0.9869211877908081,
- "tp": 246016,
- "tp_rate": 0.8093669911600502,
- "truth_threshold": -0.98
- },
- {
- "f1": 0.8907664388250763,
- "fn": 58048,
- "fn_rate": 0.19097186810149985,
- "fp": 2265,
- "fp_rate": 0.013027049100184622,
- "match_probability": 0.339522846732419,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9908734859657181,
- "recall": 0.8090281318985001,
- "row_count": 477830,
- "tn": 171604,
- "tn_rate": 0.9869729508998154,
- "tp": 245913,
- "tp_rate": 0.8090281318985001,
- "truth_threshold": -0.96
- },
- {
- "f1": 0.8905932433656372,
- "fn": 58135,
- "fn_rate": 0.1912580890311586,
- "fp": 2263,
- "fp_rate": 0.013015546187071876,
- "match_probability": 0.3426384527505482,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9908782735228083,
- "recall": 0.8087419109688414,
- "row_count": 477830,
- "tn": 171606,
- "tn_rate": 0.9869844538129281,
- "tp": 245826,
- "tp_rate": 0.8087419109688414,
- "truth_threshold": -0.9400000000000001
- },
- {
- "f1": 0.8904260484531376,
- "fn": 58223,
- "fn_rate": 0.19154759985656056,
- "fp": 2258,
- "fp_rate": 0.012986788904290012,
- "match_probability": 0.34576768162194854,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9908950144357167,
- "recall": 0.8084524001434394,
- "row_count": 477830,
- "tn": 171611,
- "tn_rate": 0.9870132110957099,
- "tp": 245738,
- "tp_rate": 0.8084524001434394,
- "truth_threshold": -0.92
- },
- {
- "f1": 0.8902117265024173,
- "fn": 58332,
- "fn_rate": 0.19190619849256976,
- "fp": 2254,
- "fp_rate": 0.01296378307806452,
- "match_probability": 0.34891032024586677,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909070004800652,
- "recall": 0.8080938015074303,
- "row_count": 477830,
- "tn": 171615,
- "tn_rate": 0.9870362169219354,
- "tp": 245629,
- "tp_rate": 0.8080938015074303,
- "truth_threshold": -0.9
- },
- {
- "f1": 0.8898266985715322,
- "fn": 58529,
- "fn_rate": 0.19255430795398093,
- "fp": 2247,
- "fp_rate": 0.01292352288216991,
- "match_probability": 0.3520661511033437,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909277734486978,
- "recall": 0.807445692046019,
- "row_count": 477830,
- "tn": 171622,
- "tn_rate": 0.9870764771178301,
- "tp": 245432,
- "tp_rate": 0.807445692046019,
- "truth_threshold": -0.88
- },
- {
- "f1": 0.8896491705194453,
- "fn": 58618,
- "fn_rate": 0.19284710867512608,
- "fp": 2246,
- "fp_rate": 0.012917771425613537,
- "match_probability": 0.3552349522996959,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909285145947518,
- "recall": 0.8071528913248739,
- "row_count": 477830,
- "tn": 171623,
- "tn_rate": 0.9870822285743864,
- "tp": 245343,
- "tp_rate": 0.8071528913248739,
- "truth_threshold": -0.86
- },
- {
- "f1": 0.8894792388233459,
- "fn": 58704,
- "fn_rate": 0.19313003970904163,
- "fp": 2244,
- "fp_rate": 0.01290626851250079,
- "match_probability": 0.3584164976098956,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.990933369966182,
- "recall": 0.8068699602909584,
- "row_count": 477830,
- "tn": 171625,
- "tn_rate": 0.9870937314874992,
- "tp": 245257,
- "tp_rate": 0.8068699602909584,
- "truth_threshold": -0.84
- },
- {
- "f1": 0.8893217406444172,
- "fn": 58783,
- "fn_rate": 0.19338994147275473,
- "fp": 2243,
- "fp_rate": 0.012900517055944418,
- "match_probability": 0.36161055652684515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909344800966773,
- "recall": 0.8066100585272453,
- "row_count": 477830,
- "tn": 171626,
- "tn_rate": 0.9870994829440556,
- "tp": 245178,
- "tp_rate": 0.8066100585272453,
- "truth_threshold": -0.8200000000000001
- },
- {
- "f1": 0.8890823864048645,
- "fn": 58905,
- "fn_rate": 0.1937913087534256,
- "fp": 2240,
- "fp_rate": 0.0128832626862753,
- "match_probability": 0.36481689431254416,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909420289855072,
- "recall": 0.8062086912465743,
- "row_count": 477830,
- "tn": 171629,
- "tn_rate": 0.9871167373137247,
- "tp": 245056,
- "tp_rate": 0.8062086912465743,
- "truth_threshold": -0.8
- },
- {
- "f1": 0.8889009844584027,
- "fn": 58995,
- "fn_rate": 0.19408739937031397,
- "fp": 2239,
- "fp_rate": 0.012877511229718926,
- "match_probability": 0.36803527205213776,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909427398313141,
- "recall": 0.8059126006296861,
- "row_count": 477830,
- "tn": 171630,
- "tn_rate": 0.9871224887702811,
- "tp": 244966,
- "tp_rate": 0.8059126006296861,
- "truth_threshold": -0.78
- },
- {
- "f1": 0.8886739449194988,
- "fn": 59110,
- "fn_rate": 0.1944657373807824,
- "fp": 2237,
- "fp_rate": 0.01286600831660618,
- "match_probability": 0.37126544671083744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909465453603574,
- "recall": 0.8055342626192176,
- "row_count": 477830,
- "tn": 171632,
- "tn_rate": 0.9871339916833938,
- "tp": 244851,
- "tp_rate": 0.8055342626192176,
- "truth_threshold": -0.76
- },
- {
- "f1": 0.8885049042740876,
- "fn": 59201,
- "fn_rate": 0.19476511789341397,
- "fp": 2228,
- "fp_rate": 0.012814245207598824,
- "match_probability": 0.37450717119369914,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909793188333036,
- "recall": 0.805234882106586,
- "row_count": 477830,
- "tn": 171641,
- "tn_rate": 0.9871857547924012,
- "tp": 244760,
- "tp_rate": 0.805234882106586,
- "truth_threshold": -0.74
- },
- {
- "f1": 0.888297466768814,
- "fn": 59307,
- "fn_rate": 0.19511384684219357,
- "fp": 2224,
- "fp_rate": 0.012791239381373333,
- "match_probability": 0.3777601944082411,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909915018754203,
- "recall": 0.8048861531578064,
- "row_count": 477830,
- "tn": 171645,
- "tn_rate": 0.9872087606186266,
- "tp": 244654,
- "tp_rate": 0.8048861531578064,
- "truth_threshold": -0.72
- },
- {
- "f1": 0.8881480997305561,
- "fn": 59381,
- "fn_rate": 0.19535729912719066,
- "fp": 2224,
- "fp_rate": 0.012791239381373333,
- "match_probability": 0.3810242613298804,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909888008298082,
- "recall": 0.8046427008728093,
- "row_count": 477830,
- "tn": 171645,
- "tn_rate": 0.9872087606186266,
- "tp": 244580,
- "tp_rate": 0.8046427008728093,
- "truth_threshold": -0.7000000000000001
- },
- {
- "f1": 0.88792640051139,
- "fn": 59490,
- "fn_rate": 0.1957158977631999,
- "fp": 2224,
- "fp_rate": 0.012791239381373333,
- "match_probability": 0.38429911307016507,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9909848193112953,
- "recall": 0.8042841022368001,
- "row_count": 477830,
- "tn": 171645,
- "tn_rate": 0.9872087606186266,
- "tp": 244471,
- "tp_rate": 0.8042841022368001,
- "truth_threshold": -0.68
- },
- {
- "f1": 0.8878128519016311,
- "fn": 59555,
- "fn_rate": 0.19592974098650814,
- "fp": 2213,
- "fp_rate": 0.012727973359253231,
- "match_probability": 0.38758448694777375,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910266443380275,
- "recall": 0.8040702590134918,
- "row_count": 477830,
- "tn": 171656,
- "tn_rate": 0.9872720266407468,
- "tp": 244406,
- "tp_rate": 0.8040702590134918,
- "truth_threshold": -0.66
- },
- {
- "f1": 0.8875505510197408,
- "fn": 59692,
- "fn_rate": 0.19638045670332707,
- "fp": 2205,
- "fp_rate": 0.012681961706802247,
- "match_probability": 0.3908801165622518,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910538231213029,
- "recall": 0.803619543296673,
- "row_count": 477830,
- "tn": 171664,
- "tn_rate": 0.9873180382931978,
- "tp": 244269,
- "tp_rate": 0.803619543296673,
- "truth_threshold": -0.64
- },
- {
- "f1": 0.8874167372257734,
- "fn": 59759,
- "fn_rate": 0.19660087971812173,
- "fp": 2203,
- "fp_rate": 0.012670458793689502,
- "match_probability": 0.3941857318704517,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910594346705627,
- "recall": 0.8033991202818783,
- "row_count": 477830,
- "tn": 171666,
- "tn_rate": 0.9873295412063104,
- "tp": 244202,
- "tp_rate": 0.8033991202818783,
- "truth_threshold": -0.62
- },
- {
- "f1": 0.8870972432243805,
- "fn": 59917,
- "fn_rate": 0.19712068324554796,
- "fp": 2203,
- "fp_rate": 0.012670458793689502,
- "match_probability": 0.39750105926563917,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910536981161192,
- "recall": 0.802879316754452,
- "row_count": 477830,
- "tn": 171666,
- "tn_rate": 0.9873295412063104,
- "tp": 244044,
- "tp_rate": 0.802879316754452,
- "truth_threshold": -0.6
- },
- {
- "f1": 0.886909825992743,
- "fn": 60020,
- "fn_rate": 0.19745954250709796,
- "fp": 2191,
- "fp_rate": 0.012601441315013027,
- "match_probability": 0.4008258216592253,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910982724716818,
- "recall": 0.802540457492902,
- "row_count": 477830,
- "tn": 171678,
- "tn_rate": 0.9873985586849869,
- "tp": 243941,
- "tp_rate": 0.802540457492902,
- "truth_threshold": -0.58
- },
- {
- "f1": 0.8866665454479336,
- "fn": 60141,
- "fn_rate": 0.19785761989202563,
- "fp": 2190,
- "fp_rate": 0.012595689858456655,
- "match_probability": 0.4041597385650814,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9910979228486647,
- "recall": 0.8021423801079743,
- "row_count": 477830,
- "tn": 171679,
- "tn_rate": 0.9874043101415434,
- "tp": 243820,
- "tp_rate": 0.8021423801079743,
- "truth_threshold": -0.56
- },
- {
- "f1": 0.8864534949277445,
- "fn": 60251,
- "fn_rate": 0.19821950842377806,
- "fp": 2184,
- "fp_rate": 0.012561181119118416,
- "match_probability": 0.4075025261863895,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911181240697211,
- "recall": 0.801780491576222,
- "row_count": 477830,
- "tn": 171685,
- "tn_rate": 0.9874388188808816,
- "tp": 243710,
- "tp_rate": 0.801780491576222,
- "truth_threshold": -0.54
- },
- {
- "f1": 0.8863684313910937,
- "fn": 60293,
- "fn_rate": 0.19835768404499263,
- "fp": 2184,
- "fp_rate": 0.012561181119118416,
- "match_probability": 0.4108538975049788,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911166067390137,
- "recall": 0.8016423159550073,
- "row_count": 477830,
- "tn": 171685,
- "tn_rate": 0.9874388188808816,
- "tp": 243668,
- "tp_rate": 0.8016423159550073,
- "truth_threshold": -0.52
- },
- {
- "f1": 0.8861897468174823,
- "fn": 60382,
- "fn_rate": 0.19865048476613775,
- "fp": 2182,
- "fp_rate": 0.01254967820600567,
- "match_probability": 0.4142135623730951,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911214553977238,
- "recall": 0.8013495152338622,
- "row_count": 477830,
- "tn": 171687,
- "tn_rate": 0.9874503217939943,
- "tp": 243579,
- "tp_rate": 0.8013495152338622,
- "truth_threshold": -0.5
- },
- {
- "f1": 0.8860498795584051,
- "fn": 60455,
- "fn_rate": 0.19889064715539165,
- "fp": 2177,
- "fp_rate": 0.012520920923223806,
- "match_probability": 0.41758122760754685,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911389880455709,
- "recall": 0.8011093528446084,
- "row_count": 477830,
- "tn": 171692,
- "tn_rate": 0.9874790790767762,
- "tp": 243506,
- "tp_rate": 0.8011093528446084,
- "truth_threshold": -0.48
- },
- {
- "f1": 0.8858548692921066,
- "fn": 60552,
- "fn_rate": 0.19920976704248242,
- "fp": 2176,
- "fp_rate": 0.012515169466667433,
- "match_probability": 0.4209565970861701,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911395239937293,
- "recall": 0.8007902329575176,
- "row_count": 477830,
- "tn": 171693,
- "tn_rate": 0.9874848305333326,
- "tp": 243409,
- "tp_rate": 0.8007902329575176,
- "truth_threshold": -0.46
- },
- {
- "f1": 0.8857428841814079,
- "fn": 60612,
- "fn_rate": 0.19940716078707466,
- "fp": 2170,
- "fp_rate": 0.012480660727329196,
- "match_probability": 0.42433937184654724,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9911615801628387,
- "recall": 0.8005928392129253,
- "row_count": 477830,
- "tn": 171699,
- "tn_rate": 0.9875193392726708,
- "tp": 243349,
- "tp_rate": 0.8005928392129253,
- "truth_threshold": -0.44
- },
- {
- "f1": 0.885595503327363,
- "fn": 60695,
- "fn_rate": 0.19968022213376058,
- "fp": 2158,
- "fp_rate": 0.012411643248652722,
- "match_probability": 0.4277292501869187,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912070539148575,
- "recall": 0.8003197778662394,
- "row_count": 477830,
- "tn": 171711,
- "tn_rate": 0.9875883567513473,
- "tp": 243266,
- "tp_rate": 0.8003197778662394,
- "truth_threshold": -0.42
- },
- {
- "f1": 0.8854336198767172,
- "fn": 60774,
- "fn_rate": 0.19994012389747368,
- "fp": 2158,
- "fp_rate": 0.012411643248652722,
- "match_probability": 0.43112592776921604,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912042226252827,
- "recall": 0.8000598761025263,
- "row_count": 477830,
- "tn": 171711,
- "tn_rate": 0.9875883567513473,
- "tp": 243187,
- "tp_rate": 0.8000598761025263,
- "truth_threshold": -0.4
- },
- {
- "f1": 0.8852285887005732,
- "fn": 60879,
- "fn_rate": 0.2002855629505101,
- "fp": 2153,
- "fp_rate": 0.012382885965870857,
- "match_probability": 0.434529097724148,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912206658918996,
- "recall": 0.7997144370494899,
- "row_count": 477830,
- "tn": 171716,
- "tn_rate": 0.9876171140341291,
- "tp": 243082,
- "tp_rate": 0.7997144370494899,
- "truth_threshold": -0.38
- },
- {
- "f1": 0.8850694027105482,
- "fn": 60959,
- "fn_rate": 0.2005487546099664,
- "fp": 2152,
- "fp_rate": 0.012377134509314484,
- "match_probability": 0.4379384507582655,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912218442285258,
- "recall": 0.7994512453900335,
- "row_count": 477830,
- "tn": 171717,
- "tn_rate": 0.9876228654906856,
- "tp": 243002,
- "tp_rate": 0.7994512453900335,
- "truth_threshold": -0.36
- },
- {
- "f1": 0.8848866351926328,
- "fn": 61049,
- "fn_rate": 0.20084484522685475,
- "fp": 2151,
- "fp_rate": 0.012371383052758112,
- "match_probability": 0.4413536752629294,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912226651922159,
- "recall": 0.7991551547731452,
- "row_count": 477830,
- "tn": 171718,
- "tn_rate": 0.9876286169472419,
- "tp": 242912,
- "tp_rate": 0.7991551547731452,
- "truth_threshold": -0.34
- },
- {
- "f1": 0.8846159451974931,
- "fn": 61187,
- "fn_rate": 0.2012988508394169,
- "fp": 2145,
- "fp_rate": 0.012336874313419873,
- "match_probability": 0.4447744574251037,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912420024579555,
- "recall": 0.7987011491605831,
- "row_count": 477830,
- "tn": 171724,
- "tn_rate": 0.9876631256865801,
- "tp": 242774,
- "tp_rate": 0.7987011491605831,
- "truth_threshold": -0.32
- },
- {
- "f1": 0.884481244328473,
- "fn": 61262,
- "fn_rate": 0.2015455930201572,
- "fp": 2134,
- "fp_rate": 0.01227360829129977,
- "match_probability": 0.44820048133989093,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9912838547091283,
- "recall": 0.7984544069798428,
- "row_count": 477830,
- "tn": 171735,
- "tn_rate": 0.9877263917087002,
- "tp": 242699,
- "tp_rate": 0.7984544069798428,
- "truth_threshold": -0.3
- },
- {
- "f1": 0.8842969783795015,
- "fn": 61378,
- "fn_rate": 0.20192722092636883,
- "fp": 2103,
- "fp_rate": 0.012095313138052212,
- "match_probability": 0.45163142912472937,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9914053112969274,
- "recall": 0.7980727790736312,
- "row_count": 477830,
- "tn": 171766,
- "tn_rate": 0.9879046868619478,
- "tp": 242583,
- "tp_rate": 0.7980727790736312,
- "truth_threshold": -0.28
- },
- {
- "f1": 0.8841942928392523,
- "fn": 61438,
- "fn_rate": 0.20212461467096107,
- "fp": 2090,
- "fp_rate": 0.012020544202819365,
- "match_probability": 0.4550669810351646,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.991455891551144,
- "recall": 0.7978753853290389,
- "row_count": 477830,
- "tn": 171779,
- "tn_rate": 0.9879794557971806,
- "tp": 242523,
- "tp_rate": 0.7978753853290389,
- "truth_threshold": -0.26
- },
- {
- "f1": 0.884033870861869,
- "fn": 61543,
- "fn_rate": 0.20247005372399748,
- "fp": 2057,
- "fp_rate": 0.011830746136459059,
- "match_probability": 0.4585068155821077,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9915860517435321,
- "recall": 0.7975299462760025,
- "row_count": 477830,
- "tn": 171812,
- "tn_rate": 0.9881692538635409,
- "tp": 242418,
- "tp_rate": 0.7975299462760025,
- "truth_threshold": -0.24
- },
- {
- "f1": 0.8837217785916747,
- "fn": 61709,
- "fn_rate": 0.20301617641736933,
- "fp": 2042,
- "fp_rate": 0.011744474288113465,
- "match_probability": 0.46195060965049234,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916412191867177,
- "recall": 0.7969838235826306,
- "row_count": 477830,
- "tn": 171827,
- "tn_rate": 0.9882555257118866,
- "tp": 242252,
- "tp_rate": 0.7969838235826306,
- "truth_threshold": -0.22
- },
- {
- "f1": 0.8835751629933124,
- "fn": 61781,
- "fn_rate": 0.20325304891088,
- "fp": 2041,
- "fp_rate": 0.011738722831557092,
- "match_probability": 0.46539803861923645,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.991642815318912,
- "recall": 0.79674695108912,
- "row_count": 477830,
- "tn": 171828,
- "tn_rate": 0.9882612771684429,
- "tp": 242180,
- "tp_rate": 0.79674695108912,
- "truth_threshold": -0.2
- },
- {
- "f1": 0.883143237768491,
- "fn": 61993,
- "fn_rate": 0.20395050680843924,
- "fp": 2041,
- "fp_rate": 0.011738722831557092,
- "match_probability": 0.4688487764824174,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916355544262712,
- "recall": 0.7960494931915607,
- "row_count": 477830,
- "tn": 171828,
- "tn_rate": 0.9882612771684429,
- "tp": 241968,
- "tp_rate": 0.7960494931915607,
- "truth_threshold": -0.18
- },
- {
- "f1": 0.882881435752905,
- "fn": 62123,
- "fn_rate": 0.20437819325505574,
- "fp": 2039,
- "fp_rate": 0.011727219918444345,
- "match_probability": 0.47230249597156454,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916392279714774,
- "recall": 0.7956218067449442,
- "row_count": 477830,
- "tn": 171830,
- "tn_rate": 0.9882727800815556,
- "tp": 241838,
- "tp_rate": 0.7956218067449442,
- "truth_threshold": -0.16
- },
- {
- "f1": 0.8825638890714813,
- "fn": 62285,
- "fn_rate": 0.2049111563654548,
- "fp": 2031,
- "fp_rate": 0.011681208265993363,
- "match_probability": 0.47575886867897205,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916662221438038,
- "recall": 0.7950888436345452,
- "row_count": 477830,
- "tn": 171838,
- "tn_rate": 0.9883187917340066,
- "tp": 241676,
- "tp_rate": 0.7950888436345452,
- "truth_threshold": -0.14
- },
- {
- "f1": 0.8823944073516735,
- "fn": 62372,
- "fn_rate": 0.20519737729511353,
- "fp": 2027,
- "fp_rate": 0.011658202439767871,
- "match_probability": 0.4792175651819362,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916795284381978,
- "recall": 0.7948026227048864,
- "row_count": 477830,
- "tn": 171842,
- "tn_rate": 0.9883417975602321,
- "tp": 241589,
- "tp_rate": 0.7948026227048864,
- "truth_threshold": -0.12
- },
- {
- "f1": 0.8821676993219546,
- "fn": 62487,
- "fn_rate": 0.20557571530558197,
- "fp": 2022,
- "fp_rate": 0.011629445156986006,
- "match_probability": 0.48267825516781476,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9916959621513289,
- "recall": 0.7944242846944181,
- "row_count": 477830,
- "tn": 171847,
- "tn_rate": 0.988370554843014,
- "tp": 241474,
- "tp_rate": 0.7944242846944181,
- "truth_threshold": -0.1
- },
- {
- "f1": 0.8819249812727239,
- "fn": 62609,
- "fn_rate": 0.20597708258625283,
- "fp": 2018,
- "fp_rate": 0.011606439330760516,
- "match_probability": 0.4861406075598103,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.991708098779636,
- "recall": 0.7940229174137472,
- "row_count": 477830,
- "tn": 171851,
- "tn_rate": 0.9883935606692394,
- "tp": 241352,
- "tp_rate": 0.7940229174137472,
- "truth_threshold": -0.08
- },
- {
- "f1": 0.8816685916460767,
- "fn": 62740,
- "fn_rate": 0.20640805892861255,
- "fp": 2010,
- "fp_rate": 0.011560427678309532,
- "match_probability": 0.48960429064337574,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917362507246198,
- "recall": 0.7935919410713874,
- "row_count": 477830,
- "tn": 171859,
- "tn_rate": 0.9884395723216904,
- "tp": 241221,
- "tp_rate": 0.7935919410713874,
- "truth_threshold": -0.06
- },
- {
- "f1": 0.8814751449481988,
- "fn": 62837,
- "fn_rate": 0.20672717881570332,
- "fp": 2007,
- "fp_rate": 0.011543173308640414,
- "match_probability": 0.49306897219313867,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917451908641843,
- "recall": 0.7932728211842967,
- "row_count": 477830,
- "tn": 171862,
- "tn_rate": 0.9884568266913596,
- "tp": 241124,
- "tp_rate": 0.7932728211842967,
- "truth_threshold": -0.04
- },
- {
- "f1": 0.8812207019109118,
- "fn": 62963,
- "fn_rate": 0.20714170567934703,
- "fp": 2006,
- "fp_rate": 0.01153742185208404,
- "match_probability": 0.4965343196002423,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.991744991851986,
- "recall": 0.792858294320653,
- "row_count": 477830,
- "tn": 171863,
- "tn_rate": 0.9884625781479159,
- "tp": 240998,
- "tp_rate": 0.792858294320653,
- "truth_threshold": -0.02
- },
- {
- "f1": 0.8808845525125343,
- "fn": 63141,
- "fn_rate": 0.2077273071216373,
- "fp": 2003,
- "fp_rate": 0.011520167482414922,
- "match_probability": 0.5,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917531291172595,
- "recall": 0.7923116394424015,
- "row_count": 477830,
- "tn": 171870,
- "tn_rate": 0.9885028383438106,
- "tp": 240877,
- "tp_rate": 0.7924602169357253,
- "truth_threshold": 0
- },
- {
- "f1": 0.8807299531621919,
- "fn": 63237,
- "fn_rate": 0.2080431371129849,
- "fp": 2003,
- "fp_rate": 0.011520167482414922,
- "match_probability": 0.5,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917531291172595,
- "recall": 0.7920615295579947,
- "row_count": 477830,
- "tn": 171867,
- "tn_rate": 0.9884855839741414,
- "tp": 240877,
- "tp_rate": 0.7924602169357253,
- "truth_threshold": 0
- },
- {
- "f1": 0.8805545290564298,
- "fn": 63294,
- "fn_rate": 0.20823066117034753,
- "fp": 1998,
- "fp_rate": 0.011491410199633057,
- "match_probability": 0.5034656803997578,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917664269672182,
- "recall": 0.7917693388296525,
- "row_count": 477830,
- "tn": 171871,
- "tn_rate": 0.9885085898003669,
- "tp": 240667,
- "tp_rate": 0.7917693388296525,
- "truth_threshold": 0.02
- },
- {
- "f1": 0.8804281401518617,
- "fn": 63362,
- "fn_rate": 0.20845437408088538,
- "fp": 1991,
- "fp_rate": 0.011451150003738447,
- "match_probability": 0.5069310278068614,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9917927367162702,
- "recall": 0.7915456259191146,
- "row_count": 477830,
- "tn": 171878,
- "tn_rate": 0.9885488499962616,
- "tp": 240599,
- "tp_rate": 0.7915456259191146,
- "truth_threshold": 0.04
- },
- {
- "f1": 0.8802589825893135,
- "fn": 63454,
- "fn_rate": 0.20875704448926014,
- "fp": 1978,
- "fp_rate": 0.011376381068505598,
- "match_probability": 0.5103957093566241,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9918427943996536,
- "recall": 0.7912429555107399,
- "row_count": 477830,
- "tn": 171891,
- "tn_rate": 0.9886236189314944,
- "tp": 240507,
- "tp_rate": 0.7912429555107399,
- "truth_threshold": 0.06
- },
- {
- "f1": 0.8799802310043748,
- "fn": 63590,
- "fn_rate": 0.20920447031033587,
- "fp": 1978,
- "fp_rate": 0.011376381068505598,
- "match_probability": 0.5138593924401896,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9918382167865352,
- "recall": 0.7907955296896642,
- "row_count": 477830,
- "tn": 171891,
- "tn_rate": 0.9886236189314944,
- "tp": 240371,
- "tp_rate": 0.7907955296896642,
- "truth_threshold": 0.08
- },
- {
- "f1": 0.8797621314428837,
- "fn": 63705,
- "fn_rate": 0.2095828083208043,
- "fp": 1968,
- "fp_rate": 0.01131886650294187,
- "match_probability": 0.5173217448321853,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9918752889887047,
- "recall": 0.7904171916791957,
- "row_count": 477830,
- "tn": 171901,
- "tn_rate": 0.9886811334970581,
- "tp": 240256,
- "tp_rate": 0.7904171916791957,
- "truth_threshold": 0.1
- },
- {
- "f1": 0.8796176594458992,
- "fn": 63777,
- "fn_rate": 0.20981968081431498,
- "fp": 1965,
- "fp_rate": 0.011301612133272751,
- "match_probability": 0.5207824348180637,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9918851616153691,
- "recall": 0.790180319185685,
- "row_count": 477830,
- "tn": 171904,
- "tn_rate": 0.9886983878667273,
- "tp": 240184,
- "tp_rate": 0.790180319185685,
- "truth_threshold": 0.12
- },
- {
- "f1": 0.8794379240113118,
- "fn": 63885,
- "fn_rate": 0.21017498955458103,
- "fp": 1940,
- "fp_rate": 0.01115782571936343,
- "match_probability": 0.5242411313210279,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9919840010577813,
- "recall": 0.789825010445419,
- "row_count": 477830,
- "tn": 171929,
- "tn_rate": 0.9888421742806366,
- "tp": 240076,
- "tp_rate": 0.789825010445419,
- "truth_threshold": 0.14
- },
- {
- "f1": 0.8792805929356249,
- "fn": 63964,
- "fn_rate": 0.21043489131829413,
- "fp": 1937,
- "fp_rate": 0.01114057134969431,
- "match_probability": 0.5276975040284355,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9919936842279299,
- "recall": 0.7895651086817059,
- "row_count": 477830,
- "tn": 171932,
- "tn_rate": 0.9888594286503057,
- "tp": 239997,
- "tp_rate": 0.7895651086817059,
- "truth_threshold": 0.16
- },
- {
- "f1": 0.8789650180498799,
- "fn": 64131,
- "fn_rate": 0.2109843039074092,
- "fp": 1919,
- "fp_rate": 0.011037045131679598,
- "match_probability": 0.5311512235175825,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920620147342906,
- "recall": 0.7890156960925908,
- "row_count": 477830,
- "tn": 171950,
- "tn_rate": 0.9889629548683204,
- "tp": 239830,
- "tp_rate": 0.7890156960925908,
- "truth_threshold": 0.18
- },
- {
- "f1": 0.8787257830971975,
- "fn": 64249,
- "fn_rate": 0.21137251160510723,
- "fp": 1918,
- "fp_rate": 0.011031293675123226,
- "match_probability": 0.5346019613807635,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920622439266648,
- "recall": 0.7886274883948927,
- "row_count": 477830,
- "tn": 171951,
- "tn_rate": 0.9889687063248768,
- "tp": 239712,
- "tp_rate": 0.7886274883948927,
- "truth_threshold": 0.2
- },
- {
- "f1": 0.878524341328562,
- "fn": 64347,
- "fn_rate": 0.21169492138794122,
- "fp": 1918,
- "fp_rate": 0.011031293675123226,
- "match_probability": 0.5380493903495076,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920590232350165,
- "recall": 0.7883050786120588,
- "row_count": 477830,
- "tn": 171951,
- "tn_rate": 0.9889687063248768,
- "tp": 239614,
- "tp_rate": 0.7883050786120588,
- "truth_threshold": 0.22
- },
- {
- "f1": 0.8782981469868826,
- "fn": 64457,
- "fn_rate": 0.21205680991969364,
- "fp": 1917,
- "fp_rate": 0.011025542218566851,
- "match_probability": 0.5414931844178922,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920595142924601,
- "recall": 0.7879431900803063,
- "row_count": 477830,
- "tn": 171952,
- "tn_rate": 0.9889744577814331,
- "tp": 239504,
- "tp_rate": 0.7879431900803063,
- "truth_threshold": 0.24
- },
- {
- "f1": 0.8779873152587386,
- "fn": 64612,
- "fn_rate": 0.21256674375989024,
- "fp": 1912,
- "fp_rate": 0.010996784935784987,
- "match_probability": 0.5449330189648354,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920749727473566,
- "recall": 0.7874332562401097,
- "row_count": 477830,
- "tn": 171957,
- "tn_rate": 0.989003215064215,
- "tp": 239349,
- "tp_rate": 0.7874332562401097,
- "truth_threshold": 0.26
- },
- {
- "f1": 0.8769322279092652,
- "fn": 65125,
- "fn_rate": 0.21425446027615386,
- "fp": 1912,
- "fp_rate": 0.010996784935784987,
- "match_probability": 0.5483685708752706,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9920580856331102,
- "recall": 0.7857455397238462,
- "row_count": 477830,
- "tn": 171957,
- "tn_rate": 0.989003215064215,
- "tp": 238836,
- "tp_rate": 0.7857455397238462,
- "truth_threshold": 0.28
- },
- {
- "f1": 0.8767457831281055,
- "fn": 65224,
- "fn_rate": 0.21458015995473104,
- "fp": 1900,
- "fp_rate": 0.010927767457108512,
- "match_probability": 0.5517995186601091,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.992104289863986,
- "recall": 0.785419840045269,
- "row_count": 477830,
- "tn": 171969,
- "tn_rate": 0.9890722325428914,
- "tp": 238737,
- "tp_rate": 0.785419840045269,
- "truth_threshold": 0.3
- },
- {
- "f1": 0.8765225312587238,
- "fn": 65333,
- "fn_rate": 0.21493875859074027,
- "fp": 1900,
- "fp_rate": 0.010927767457108512,
- "match_probability": 0.5552255425748963,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.992100711767445,
- "recall": 0.7850612414092597,
- "row_count": 477830,
- "tn": 171969,
- "tn_rate": 0.9890722325428914,
- "tp": 238628,
- "tp_rate": 0.7850612414092597,
- "truth_threshold": 0.32
- },
- {
- "f1": 0.8763395628901127,
- "fn": 65424,
- "fn_rate": 0.2152381391033718,
- "fp": 1896,
- "fp_rate": 0.010904761630883022,
- "match_probability": 0.5586463247370707,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921142272483394,
- "recall": 0.7847618608966281,
- "row_count": 477830,
- "tn": 171973,
- "tn_rate": 0.989095238369117,
- "tp": 238537,
- "tp_rate": 0.7847618608966281,
- "truth_threshold": 0.34
- },
- {
- "f1": 0.8758880496903542,
- "fn": 65645,
- "fn_rate": 0.21596520606261987,
- "fp": 1894,
- "fp_rate": 0.010893258717770275,
- "match_probability": 0.5620615492417346,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921152325048915,
- "recall": 0.7840347939373801,
- "row_count": 477830,
- "tn": 171975,
- "tn_rate": 0.9891067412822298,
- "tp": 238316,
- "tp_rate": 0.7840347939373801,
- "truth_threshold": 0.36
- },
- {
- "f1": 0.8757595250785716,
- "fn": 65715,
- "fn_rate": 0.21619549876464414,
- "fp": 1884,
- "fp_rate": 0.010835744152206546,
- "match_probability": 0.5654709022758521,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921542497813685,
- "recall": 0.7838045012353558,
- "row_count": 477830,
- "tn": 171985,
- "tn_rate": 0.9891642558477934,
- "tp": 238246,
- "tp_rate": 0.7838045012353558,
- "truth_threshold": 0.38
- },
- {
- "f1": 0.8755675655802496,
- "fn": 65811,
- "fn_rate": 0.21651132875599172,
- "fp": 1879,
- "fp_rate": 0.010806986869424683,
- "match_probability": 0.5688740722307839,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921717792433414,
- "recall": 0.7834886712440082,
- "row_count": 477830,
- "tn": 171990,
- "tn_rate": 0.9891930131305753,
- "tp": 238150,
- "tp_rate": 0.7834886712440082,
- "truth_threshold": 0.4
- },
- {
- "f1": 0.8753429090454442,
- "fn": 65922,
- "fn_rate": 0.21687650718348736,
- "fp": 1877,
- "fp_rate": 0.010795483956311936,
- "match_probability": 0.5722707498130813,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921764284166125,
- "recall": 0.7831234928165126,
- "row_count": 477830,
- "tn": 171992,
- "tn_rate": 0.9892045160436881,
- "tp": 238039,
- "tp_rate": 0.7831234928165126,
- "truth_threshold": 0.42
- },
- {
- "f1": 0.8747677511690625,
- "fn": 66200,
- "fn_rate": 0.21779109820009804,
- "fp": 1877,
- "fp_rate": 0.010795483956311936,
- "match_probability": 0.5756606281534528,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921673524232384,
- "recall": 0.782208901799902,
- "row_count": 477830,
- "tn": 171992,
- "tn_rate": 0.9892045160436881,
- "tp": 237761,
- "tp_rate": 0.782208901799902,
- "truth_threshold": 0.44
- },
- {
- "f1": 0.874631116475203,
- "fn": 66266,
- "fn_rate": 0.2180082313191495,
- "fp": 1877,
- "fp_rate": 0.010795483956311936,
- "match_probability": 0.57904340291383,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921651945970313,
- "recall": 0.7819917686808505,
- "row_count": 477830,
- "tn": 171992,
- "tn_rate": 0.9892045160436881,
- "tp": 237695,
- "tp_rate": 0.7819917686808505,
- "truth_threshold": 0.46
- },
- {
- "f1": 0.8743687891056312,
- "fn": 66395,
- "fn_rate": 0.2184326278700228,
- "fp": 1873,
- "fp_rate": 0.010772478130086444,
- "match_probability": 0.5824187723924531,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921775483526075,
- "recall": 0.7815673721299772,
- "row_count": 477830,
- "tn": 171996,
- "tn_rate": 0.9892275218699136,
- "tp": 237566,
- "tp_rate": 0.7815673721299772,
- "truth_threshold": 0.48
- },
- {
- "f1": 0.8741648229884889,
- "fn": 66495,
- "fn_rate": 0.2187616174443432,
- "fp": 1872,
- "fp_rate": 0.010766726673530071,
- "match_probability": 0.5857864376269051,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9921784254903108,
- "recall": 0.7812383825556568,
- "row_count": 477830,
- "tn": 171997,
- "tn_rate": 0.9892332733264699,
- "tp": 237466,
- "tp_rate": 0.7812383825556568,
- "truth_threshold": 0.5
- },
- {
- "f1": 0.8743323190722827,
- "fn": 66613,
- "fn_rate": 0.21914982514204126,
- "fp": 1616,
- "fp_rate": 0.009294353795098608,
- "match_probability": 0.5891461024950211,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.993237475100852,
- "recall": 0.7808501748579587,
- "row_count": 477830,
- "tn": 172253,
- "tn_rate": 0.9907056462049014,
- "tp": 237348,
- "tp_rate": 0.7808501748579587,
- "truth_threshold": 0.52
- },
- {
- "f1": 0.8738787543762668,
- "fn": 66834,
- "fn_rate": 0.2198768921012893,
- "fp": 1612,
- "fp_rate": 0.009271347968873116,
- "match_probability": 0.5924974738136106,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.993247856445742,
- "recall": 0.7801231078987106,
- "row_count": 477830,
- "tn": 172257,
- "tn_rate": 0.9907286520311269,
- "tp": 237127,
- "tp_rate": 0.7801231078987106,
- "truth_threshold": 0.54
- },
- {
- "f1": 0.8736485913649918,
- "fn": 66948,
- "fn_rate": 0.22025194021601455,
- "fp": 1608,
- "fp_rate": 0.009248342142647626,
- "match_probability": 0.5958402614349186,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9932612804405312,
- "recall": 0.7797480597839854,
- "row_count": 477830,
- "tn": 172261,
- "tn_rate": 0.9907516578573524,
- "tp": 237013,
- "tp_rate": 0.7797480597839854,
- "truth_threshold": 0.56
- },
- {
- "f1": 0.8733906528824458,
- "fn": 67073,
- "fn_rate": 0.22066317718391504,
- "fp": 1607,
- "fp_rate": 0.009242590686091253,
- "match_probability": 0.5991741783407747,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9932619132476572,
- "recall": 0.779336822816085,
- "row_count": 477830,
- "tn": 172262,
- "tn_rate": 0.9907574093139088,
- "tp": 236888,
- "tp_rate": 0.779336822816085,
- "truth_threshold": 0.58
- },
- {
- "f1": 0.8732572503180368,
- "fn": 67138,
- "fn_rate": 0.2208770204072233,
- "fp": 1607,
- "fp_rate": 0.009242590686091253,
- "match_probability": 0.6024989407343608,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9932600763326762,
- "recall": 0.7791229795927767,
- "row_count": 477830,
- "tn": 172262,
- "tn_rate": 0.9907574093139088,
- "tp": 236823,
- "tp_rate": 0.7791229795927767,
- "truth_threshold": 0.6
- },
- {
- "f1": 0.8729214925417177,
- "fn": 67305,
- "fn_rate": 0.22142643299633835,
- "fp": 1599,
- "fp_rate": 0.00919657903364027,
- "match_probability": 0.6058142681295483,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9932887032800991,
- "recall": 0.7785735670036616,
- "row_count": 477830,
- "tn": 172270,
- "tn_rate": 0.9908034209663598,
- "tp": 236656,
- "tp_rate": 0.7785735670036616,
- "truth_threshold": 0.62
- },
- {
- "f1": 0.8728260789363005,
- "fn": 67378,
- "fn_rate": 0.22166659538559222,
- "fp": 1564,
- "fp_rate": 0.008995278054167218,
- "match_probability": 0.6091198834377483,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9934326277467279,
- "recall": 0.7783334046144078,
- "row_count": 477830,
- "tn": 172305,
- "tn_rate": 0.9910047219458328,
- "tp": 236583,
- "tp_rate": 0.7783334046144078,
- "truth_threshold": 0.64
- },
- {
- "f1": 0.8725180047323561,
- "fn": 67595,
- "fn_rate": 0.22238050276186747,
- "fp": 1475,
- "fp_rate": 0.00848339842065003,
- "match_probability": 0.6124155130522262,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9937983779079301,
- "recall": 0.7776194972381325,
- "row_count": 477830,
- "tn": 172394,
- "tn_rate": 0.99151660157935,
- "tp": 236366,
- "tp_rate": 0.7776194972381325,
- "truth_threshold": 0.66
- },
- {
- "f1": 0.8722834715442952,
- "fn": 67710,
- "fn_rate": 0.22275884077233593,
- "fp": 1472,
- "fp_rate": 0.00846614405098091,
- "match_probability": 0.6157008869298349,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938079193010353,
- "recall": 0.7772411592276641,
- "row_count": 477830,
- "tn": 172397,
- "tn_rate": 0.9915338559490191,
- "tp": 236251,
- "tp_rate": 0.7772411592276641,
- "truth_threshold": 0.68
- },
- {
- "f1": 0.8720247877420332,
- "fn": 67835,
- "fn_rate": 0.22317007774023642,
- "fp": 1471,
- "fp_rate": 0.008460392594424538,
- "match_probability": 0.6189757386701197,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938088443877658,
- "recall": 0.7768299222597636,
- "row_count": 477830,
- "tn": 172398,
- "tn_rate": 0.9915396074055755,
- "tp": 236126,
- "tp_rate": 0.7768299222597636,
- "truth_threshold": 0.7000000000000001
- },
- {
- "f1": 0.8715014649970996,
- "fn": 68090,
- "fn_rate": 0.22400900115475342,
- "fp": 1466,
- "fp_rate": 0.008431635311642673,
- "match_probability": 0.622239805591759,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938231291370498,
- "recall": 0.7759909988452466,
- "row_count": 477830,
- "tn": 172403,
- "tn_rate": 0.9915683646883573,
- "tp": 235871,
- "tp_rate": 0.7759909988452466,
- "truth_threshold": 0.72
- },
- {
- "f1": 0.8712697116290758,
- "fn": 68205,
- "fn_rate": 0.22438733916522186,
- "fp": 1461,
- "fp_rate": 0.008402878028860809,
- "match_probability": 0.6254928288063007,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938410822158614,
- "recall": 0.7756126608347782,
- "row_count": 477830,
- "tn": 172408,
- "tn_rate": 0.9915971219711391,
- "tp": 235756,
- "tp_rate": 0.7756126608347782,
- "truth_threshold": 0.74
- },
- {
- "f1": 0.8709604678500927,
- "fn": 68354,
- "fn_rate": 0.22487753363095925,
- "fp": 1460,
- "fp_rate": 0.008397126572304436,
- "match_probability": 0.6287345532891625,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938414034850908,
- "recall": 0.7751224663690408,
- "row_count": 477830,
- "tn": 172409,
- "tn_rate": 0.9916028734276956,
- "tp": 235607,
- "tp_rate": 0.7751224663690408,
- "truth_threshold": 0.76
- },
- {
- "f1": 0.8707450545387317,
- "fn": 68468,
- "fn_rate": 0.22525258174568447,
- "fp": 1446,
- "fp_rate": 0.008316606180515216,
- "match_probability": 0.6319647279478622,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.993897163404927,
- "recall": 0.7747474182543155,
- "row_count": 477830,
- "tn": 172423,
- "tn_rate": 0.9916833938194848,
- "tp": 235493,
- "tp_rate": 0.7747474182543155,
- "truth_threshold": 0.78
- },
- {
- "f1": 0.8702683707252113,
- "fn": 68697,
- "fn_rate": 0.22600596787087818,
- "fp": 1445,
- "fp_rate": 0.008310854723958842,
- "match_probability": 0.6351831056874558,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938954581363615,
- "recall": 0.7739940321291219,
- "row_count": 477830,
- "tn": 172424,
- "tn_rate": 0.9916891452760411,
- "tp": 235264,
- "tp_rate": 0.7739940321291219,
- "truth_threshold": 0.8
- },
- {
- "f1": 0.87001291286958,
- "fn": 68820,
- "fn_rate": 0.22641062504729226,
- "fp": 1445,
- "fp_rate": 0.008310854723958842,
- "match_probability": 0.6383894434731548,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938922844124335,
- "recall": 0.7735893749527077,
- "row_count": 477830,
- "tn": 172424,
- "tn_rate": 0.9916891452760411,
- "tp": 235141,
- "tp_rate": 0.7735893749527077,
- "truth_threshold": 0.8200000000000001
- },
- {
- "f1": 0.8697071417732856,
- "fn": 68967,
- "fn_rate": 0.2268942397215432,
- "fp": 1444,
- "fp_rate": 0.00830510326740247,
- "match_probability": 0.6415835023901045,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9938926906842386,
- "recall": 0.7731057602784568,
- "row_count": 477830,
- "tn": 172425,
- "tn_rate": 0.9916948967325975,
- "tp": 234994,
- "tp_rate": 0.7731057602784568,
- "truth_threshold": 0.84
- },
- {
- "f1": 0.8703466980869913,
- "fn": 69064,
- "fn_rate": 0.227213359608634,
- "fp": 920,
- "fp_rate": 0.00529134003186307,
- "match_probability": 0.6447650477003041,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9960986697311899,
- "recall": 0.772786640391366,
- "row_count": 477830,
- "tn": 172949,
- "tn_rate": 0.994708659968137,
- "tp": 234897,
- "tp_rate": 0.772786640391366,
- "truth_threshold": 0.86
- },
- {
- "f1": 0.8701766999214338,
- "fn": 69156,
- "fn_rate": 0.22751603001700876,
- "fp": 907,
- "fp_rate": 0.005216571096630222,
- "match_probability": 0.6479338488966562,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9961520838989953,
- "recall": 0.7724839699829913,
- "row_count": 477830,
- "tn": 172962,
- "tn_rate": 0.9947834289033698,
- "tp": 234805,
- "tp_rate": 0.7724839699829913,
- "truth_threshold": 0.88
- },
- {
- "f1": 0.8698588750783101,
- "fn": 69307,
- "fn_rate": 0.22801280427423254,
- "fp": 907,
- "fp_rate": 0.005216571096630222,
- "match_probability": 0.6510896797541332,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9961496172965814,
- "recall": 0.7719871957257675,
- "row_count": 477830,
- "tn": 172962,
- "tn_rate": 0.9947834289033698,
- "tp": 234654,
- "tp_rate": 0.7719871957257675,
- "truth_threshold": 0.9
- },
- {
- "f1": 0.8696832176543869,
- "fn": 69397,
- "fn_rate": 0.2283088948911209,
- "fp": 899,
- "fp_rate": 0.0051705594441792384,
- "match_probability": 0.6542323183780514,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9961819903764073,
- "recall": 0.7716911051088791,
- "row_count": 477830,
- "tn": 172970,
- "tn_rate": 0.9948294405558208,
- "tp": 234564,
- "tp_rate": 0.7716911051088791,
- "truth_threshold": 0.92
- },
- {
- "f1": 0.869085863944266,
- "fn": 69685,
- "fn_rate": 0.22925638486516361,
- "fp": 896,
- "fp_rate": 0.00515330507451012,
- "match_probability": 0.6573615472494517,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9961900226217407,
- "recall": 0.7707436151348364,
- "row_count": 477830,
- "tn": 172973,
- "tn_rate": 0.9948466949254898,
- "tp": 234276,
- "tp_rate": 0.7707436151348364,
- "truth_threshold": 0.9400000000000001
- },
- {
- "f1": 0.8688912058595446,
- "fn": 69787,
- "fn_rate": 0.22959195423097042,
- "fp": 884,
- "fp_rate": 0.005084287595833645,
- "match_probability": 0.660477153267581,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962392260633546,
- "recall": 0.7704080457690295,
- "row_count": 477830,
- "tn": 172985,
- "tn_rate": 0.9949157124041663,
- "tp": 234174,
- "tp_rate": 0.7704080457690295,
- "truth_threshold": 0.96
- },
- {
- "f1": 0.8686714615481678,
- "fn": 69894,
- "fn_rate": 0.22994397307549325,
- "fp": 881,
- "fp_rate": 0.005067033226164526,
- "match_probability": 0.6635789277894779,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962502340943528,
- "recall": 0.7700560269245068,
- "row_count": 477830,
- "tn": 172988,
- "tn_rate": 0.9949329667738355,
- "tp": 234067,
- "tp_rate": 0.7700560269245068,
- "truth_threshold": 0.98
- },
- {
- "f1": 0.8684325793064537,
- "fn": 70007,
- "fn_rate": 0.23031573129447527,
- "fp": 881,
- "fp_rate": 0.005067033226164526,
- "match_probability": 0.6666666666666666,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962484297485469,
- "recall": 0.7696842687055248,
- "row_count": 477830,
- "tn": 172988,
- "tn_rate": 0.9949329667738355,
- "tp": 233954,
- "tp_rate": 0.7696842687055248,
- "truth_threshold": 1
- },
- {
- "f1": 0.8680917583804898,
- "fn": 70170,
- "fn_rate": 0.2308519843006175,
- "fp": 881,
- "fp_rate": 0.005067033226164526,
- "match_probability": 0.6697401702789662,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962458239585464,
- "recall": 0.7691480156993825,
- "row_count": 477830,
- "tn": 172988,
- "tn_rate": 0.9949329667738355,
- "tp": 233791,
- "tp_rate": 0.7691480156993825,
- "truth_threshold": 1.02
- },
- {
- "f1": 0.8676661231069822,
- "fn": 70374,
- "fn_rate": 0.2315231230322311,
- "fp": 879,
- "fp_rate": 0.005055530313051781,
- "match_probability": 0.6727992435654236,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962510555901495,
- "recall": 0.7684768769677689,
- "row_count": 477830,
- "tn": 172990,
- "tn_rate": 0.9949444696869483,
- "tp": 233587,
- "tp_rate": 0.7684768769677689,
- "truth_threshold": 1.04
- },
- {
- "f1": 0.8675572462368307,
- "fn": 70425,
- "fn_rate": 0.2316909077151345,
- "fp": 879,
- "fp_rate": 0.005055530313051781,
- "match_probability": 0.6758436960523875,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962502399590469,
- "recall": 0.7683090922848655,
- "row_count": 477830,
- "tn": 172990,
- "tn_rate": 0.9949444696869483,
- "tp": 233536,
- "tp_rate": 0.7683090922848655,
- "truth_threshold": 1.06
- },
- {
- "f1": 0.8671321914473757,
- "fn": 70627,
- "fn_rate": 0.2323554666552617,
- "fp": 879,
- "fp_rate": 0.005055530313051781,
- "match_probability": 0.6788733418787326,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962470059304992,
- "recall": 0.7676445333447383,
- "row_count": 477830,
- "tn": 172990,
- "tn_rate": 0.9949444696869483,
- "tp": 233334,
- "tp_rate": 0.7676445333447383,
- "truth_threshold": 1.08
- },
- {
- "f1": 0.8668837444429576,
- "fn": 70745,
- "fn_rate": 0.23274367435295976,
- "fp": 879,
- "fp_rate": 0.005055530313051781,
- "match_probability": 0.6818879998182596,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962451141630535,
- "recall": 0.7672563256470403,
- "row_count": 477830,
- "tn": 172990,
- "tn_rate": 0.9949444696869483,
- "tp": 233216,
- "tp_rate": 0.7672563256470403,
- "truth_threshold": 1.1
- },
- {
- "f1": 0.8665796606766389,
- "fn": 70897,
- "fn_rate": 0.23324373850592675,
- "fp": 869,
- "fp_rate": 0.004998015747488051,
- "match_probability": 0.6848874932992853,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962852611645214,
- "recall": 0.7667562614940733,
- "row_count": 477830,
- "tn": 173000,
- "tn_rate": 0.995001984252512,
- "tp": 233064,
- "tp_rate": 0.7667562614940733,
- "truth_threshold": 1.12
- },
- {
- "f1": 0.8663842795409412,
- "fn": 70992,
- "fn_rate": 0.2335562786015311,
- "fp": 867,
- "fp_rate": 0.004986512834375305,
- "match_probability": 0.6878716504214515,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962922732171265,
- "recall": 0.7664437213984688,
- "row_count": 477830,
- "tn": 173002,
- "tn_rate": 0.9950134871656247,
- "tp": 232969,
- "tp_rate": 0.7664437213984688,
- "truth_threshold": 1.1400000000000001
- },
- {
- "f1": 0.866113907146816,
- "fn": 71121,
- "fn_rate": 0.23398067515240442,
- "fp": 866,
- "fp_rate": 0.004980761377818933,
- "match_probability": 0.690840303969775,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962944896579463,
- "recall": 0.7660193248475956,
- "row_count": 477830,
- "tn": 173003,
- "tn_rate": 0.9950192386221811,
- "tp": 232840,
- "tp_rate": 0.7660193248475956,
- "truth_threshold": 1.16
- },
- {
- "f1": 0.8656999114365879,
- "fn": 71318,
- "fn_rate": 0.2346287846138156,
- "fp": 864,
- "fp_rate": 0.0049692584647061866,
- "match_probability": 0.6937932914259702,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9962998967911026,
- "recall": 0.7653712153861845,
- "row_count": 477830,
- "tn": 173005,
- "tn_rate": 0.9950307415352938,
- "tp": 232643,
- "tp_rate": 0.7653712153861845,
- "truth_threshold": 1.18
- },
- {
- "f1": 0.8655382118904595,
- "fn": 71403,
- "fn_rate": 0.23490842575198792,
- "fp": 854,
- "fp_rate": 0.004911743899142458,
- "match_probability": 0.6967304549770723,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9963412335269823,
- "recall": 0.7650915742480121,
- "row_count": 477830,
- "tn": 173015,
- "tn_rate": 0.9950882561008575,
- "tp": 232558,
- "tp_rate": 0.7650915742480121,
- "truth_threshold": 1.2
- },
- {
- "f1": 0.8651523500327635,
- "fn": 71588,
- "fn_rate": 0.23551705646448065,
- "fp": 851,
- "fp_rate": 0.0048944895294733394,
- "match_probability": 0.6996516415213959,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9963511473947793,
- "recall": 0.7644829435355194,
- "row_count": 477830,
- "tn": 173018,
- "tn_rate": 0.9951055104705266,
- "tp": 232373,
- "tp_rate": 0.7644829435355194,
- "truth_threshold": 1.22
- },
- {
- "f1": 0.8647963174007285,
- "fn": 71758,
- "fn_rate": 0.23607633874082531,
- "fp": 848,
- "fp_rate": 0.004877235159804221,
- "match_probability": 0.7025567026718631,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9963613114725961,
- "recall": 0.7639236612591747,
- "row_count": 477830,
- "tn": 173021,
- "tn_rate": 0.9951227648401958,
- "tp": 232203,
- "tp_rate": 0.7639236612591747,
- "truth_threshold": 1.24
- },
- {
- "f1": 0.8644691646859842,
- "fn": 71915,
- "fn_rate": 0.23659285237250832,
- "fp": 845,
- "fp_rate": 0.004859980790135101,
- "match_probability": 0.705445494756739,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9963716931955292,
- "recall": 0.7634071476274917,
- "row_count": 477830,
- "tn": 173024,
- "tn_rate": 0.995140019209865,
- "tp": 232046,
- "tp_rate": 0.7634071476274917,
- "truth_threshold": 1.26
- },
- {
- "f1": 0.8642322167157283,
- "fn": 72027,
- "fn_rate": 0.23696132069574716,
- "fp": 845,
- "fp_rate": 0.004859980790135101,
- "match_probability": 0.7083178788178136,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9963699474608964,
- "recall": 0.7630386793042528,
- "row_count": 477830,
- "tn": 173024,
- "tn_rate": 0.995140019209865,
- "tp": 231934,
- "tp_rate": 0.7630386793042528,
- "truth_threshold": 1.28
- },
- {
- "f1": 0.8639953486118513,
- "fn": 72145,
- "fn_rate": 0.23734952839344522,
- "fp": 837,
- "fp_rate": 0.004813969137684119,
- "match_probability": 0.7111737206060699,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9964023674743072,
- "recall": 0.7626504716065547,
- "row_count": 477830,
- "tn": 173032,
- "tn_rate": 0.9951860308623158,
- "tp": 231816,
- "tp_rate": 0.7626504716065547,
- "truth_threshold": 1.3
- },
- {
- "f1": 0.8637100772824032,
- "fn": 72282,
- "fn_rate": 0.23780024411026415,
- "fp": 835,
- "fp_rate": 0.004802466224571373,
- "match_probability": 0.714012890574883,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9964088183937311,
- "recall": 0.7621997558897359,
- "row_count": 477830,
- "tn": 173034,
- "tn_rate": 0.9951975337754286,
- "tp": 231679,
- "tp_rate": 0.7621997558897359,
- "truth_threshold": 1.32
- },
- {
- "f1": 0.863561786859572,
- "fn": 72371,
- "fn_rate": 0.2380930448314093,
- "fp": 809,
- "fp_rate": 0.004652928354105678,
- "match_probability": 0.7168352638707939,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9965189178955159,
- "recall": 0.7619069551685907,
- "row_count": 477830,
- "tn": 173060,
- "tn_rate": 0.9953470716458943,
- "tp": 231590,
- "tp_rate": 0.7619069551685907,
- "truth_threshold": 1.34
- },
- {
- "f1": 0.8630732327848304,
- "fn": 72603,
- "fn_rate": 0.2388563006438326,
- "fp": 807,
- "fp_rate": 0.004641425440992932,
- "match_probability": 0.7196407203219027,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9965240238623393,
- "recall": 0.7611436993561674,
- "row_count": 477830,
- "tn": 173062,
- "tn_rate": 0.9953585745590071,
- "tp": 231358,
- "tp_rate": 0.7611436993561674,
- "truth_threshold": 1.36
- },
- {
- "f1": 0.8628463541861003,
- "fn": 72713,
- "fn_rate": 0.23921818917558502,
- "fp": 804,
- "fp_rate": 0.004624171071323813,
- "match_probability": 0.7224291444239316,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9965352593384241,
- "recall": 0.760781810824415,
- "row_count": 477830,
- "tn": 173065,
- "tn_rate": 0.9953758289286762,
- "tp": 231248,
- "tp_rate": 0.760781810824415,
- "truth_threshold": 1.3800000000000001
- },
- {
- "f1": 0.862551971754238,
- "fn": 72854,
- "fn_rate": 0.23968206447537677,
- "fp": 801,
- "fp_rate": 0.004606916701654694,
- "match_probability": 0.7252004253240049,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9965460441209445,
- "recall": 0.7603179355246232,
- "row_count": 477830,
- "tn": 173068,
- "tn_rate": 0.9953930832983453,
- "tp": 231107,
- "tp_rate": 0.7603179355246232,
- "truth_threshold": 1.4000000000000001
- },
- {
- "f1": 0.8622490694522742,
- "fn": 73005,
- "fn_rate": 0.24017883873260057,
- "fp": 789,
- "fp_rate": 0.004537899222978219,
- "match_probability": 0.7279544568021957,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9965953958014196,
- "recall": 0.7598211612673994,
- "row_count": 477830,
- "tn": 173080,
- "tn_rate": 0.9954621007770218,
- "tp": 230956,
- "tp_rate": 0.7598211612673994,
- "truth_threshold": 1.42
- },
- {
- "f1": 0.8619922175500967,
- "fn": 73135,
- "fn_rate": 0.24060652517921707,
- "fp": 778,
- "fp_rate": 0.004474633200858117,
- "match_probability": 0.7306911372508947,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9966408179478765,
- "recall": 0.7593934748207829,
- "row_count": 477830,
- "tn": 173091,
- "tn_rate": 0.9955253667991418,
- "tp": 230826,
- "tp_rate": 0.7593934748207829,
- "truth_threshold": 1.44
- },
- {
- "f1": 0.8616606401099722,
- "fn": 73291,
- "fn_rate": 0.2411197489151569,
- "fp": 778,
- "fp_rate": 0.004474633200858117,
- "match_probability": 0.7334103696520481,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9966385538004217,
- "recall": 0.7588802510848431,
- "row_count": 477830,
- "tn": 173091,
- "tn_rate": 0.9955253667991418,
- "tp": 230670,
- "tp_rate": 0.7588802510848431,
- "truth_threshold": 1.46
- },
- {
- "f1": 0.8613293875431104,
- "fn": 73446,
- "fn_rate": 0.2416296827553535,
- "fp": 778,
- "fp_rate": 0.004474633200858117,
- "match_probability": 0.7361120615523239,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9966363011418418,
- "recall": 0.7583703172446465,
- "row_count": 477830,
- "tn": 173091,
- "tn_rate": 0.9955253667991418,
- "tp": 230515,
- "tp_rate": 0.7583703172446465,
- "truth_threshold": 1.48
- },
- {
- "f1": 0.8611603304549362,
- "fn": 73592,
- "fn_rate": 0.24211000753386125,
- "fp": 690,
- "fp_rate": 0.003968505023897302,
- "match_probability": 0.7387961250362586,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9970137497349162,
- "recall": 0.7578899924661388,
- "row_count": 477830,
- "tn": 173179,
- "tn_rate": 0.9960314949761027,
- "tp": 230369,
- "tp_rate": 0.7578899924661388,
- "truth_threshold": 1.5
- },
- {
- "f1": 0.86088520458718,
- "fn": 73725,
- "fn_rate": 0.24254756366770738,
- "fp": 685,
- "fp_rate": 0.003939747741115438,
- "match_probability": 0.74146247669744,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9970336175575196,
- "recall": 0.7574524363322926,
- "row_count": 477830,
- "tn": 173184,
- "tn_rate": 0.9960602522588846,
- "tp": 230236,
- "tp_rate": 0.7574524363322926,
- "truth_threshold": 1.52
- },
- {
- "f1": 0.8605374876101064,
- "fn": 73892,
- "fn_rate": 0.24309697625682242,
- "fp": 681,
- "fp_rate": 0.0039167419148899455,
- "match_probability": 0.7441110376077843,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9970487540628385,
- "recall": 0.7569030237431775,
- "row_count": 477830,
- "tn": 173188,
- "tn_rate": 0.99608325808511,
- "tp": 230069,
- "tp_rate": 0.7569030237431775,
- "truth_threshold": 1.54
- },
- {
- "f1": 0.8600850146680237,
- "fn": 74105,
- "fn_rate": 0.24379772405012484,
- "fp": 680,
- "fp_rate": 0.003910990458333573,
- "match_probability": 0.7467417332849615,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9970503522226464,
- "recall": 0.7562022759498751,
- "row_count": 477830,
- "tn": 173189,
- "tn_rate": 0.9960890095416665,
- "tp": 229856,
- "tp_rate": 0.7562022759498751,
- "truth_threshold": 1.56
- },
- {
- "f1": 0.8597180736781429,
- "fn": 74277,
- "fn_rate": 0.24436358611795592,
- "fp": 679,
- "fp_rate": 0.0039052390017772,
- "match_probability": 0.7493544936580313,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9970524780455194,
- "recall": 0.7556364138820441,
- "row_count": 477830,
- "tn": 173190,
- "tn_rate": 0.9960947609982228,
- "tp": 229684,
- "tp_rate": 0.7556364138820441,
- "truth_threshold": 1.58
- },
- {
- "f1": 0.8595324737559339,
- "fn": 74373,
- "fn_rate": 0.2446794161093035,
- "fp": 667,
- "fp_rate": 0.0038362215231007254,
- "match_probability": 0.7519492530313435,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.9971032116566415,
- "recall": 0.7553205838906965,
- "row_count": 477830,
- "tn": 173202,
- "tn_rate": 0.9961637784768993,
- "tp": 229588,
- "tp_rate": 0.7553205838906965,
- "truth_threshold": 1.6
- },
- {
- "f1": 0.8592720191731575,
- "fn": 74501,
- "fn_rate": 0.2451005227644336,
- "fp": 660,
- "fp_rate": 0.003795961327206115,
- "match_probability": 0.754525950046764,
- "n": 173869,
- "n_rate": 0.36387208839964,
- "p": 303961,
- "p_rate": 0,
- "precision": 0.997131931166348,
- "recall": 0.7548994772355664,
- "row_count": 477830,
- "tn": 173209,
- "tn_rate": 0.9962040386727938,
- "tp": 229460,
- "tp_rate": 0.7548994772355664,
- "truth_threshold": 1.62
- }
- ]
- },
- "encoding": {
- "tooltip": [
- {
- "field": "truth_threshold",
- "format": ".4f",
- "type": "quantitative"
- },
- {
- "field": "match_probability",
- "format": ".4%",
- "type": "quantitative"
- },
- {
- "field": "fp_rate",
- "format": ".4f",
- "title": "FP_rate",
- "type": "quantitative"
- },
- {
- "field": "tp_rate",
- "format": ".4f",
- "title": "TP_rate",
- "type": "quantitative"
- },
- {
- "field": "tp",
- "format": ",.0f",
- "title": "TP",
- "type": "quantitative"
- },
- {
- "field": "tn",
- "format": ",.0f",
- "title": "TN",
- "type": "quantitative"
- },
- {
- "field": "fp",
- "format": ",.0f",
- "title": "FP",
- "type": "quantitative"
- },
- {
- "field": "fn",
- "format": ",.0f",
- "title": "FN",
- "type": "quantitative"
- },
- {
- "field": "precision",
- "format": ".4f",
- "type": "quantitative"
- },
- {
- "field": "recall",
- "format": ".4f",
- "type": "quantitative"
- },
- {
- "field": "f1",
- "format": ".4f",
- "title": "F1",
- "type": "quantitative"
- }
- ],
- "x": {
- "field": "fp_rate",
- "sort": [
- "truth_threshold"
- ],
- "title": "False Positive Rate amongst clerically reviewed records",
- "type": "quantitative"
- },
- "y": {
- "field": "tp_rate",
- "sort": [
- "truth_threshold"
- ],
- "title": "True Positive Rate amongst clerically reviewed records",
- "type": "quantitative"
- }
- },
- "height": 400,
- "mark": {
- "clip": true,
- "point": true,
- "type": "line"
- },
- "selection": {
- "selector076": {
- "bind": "scales",
- "encodings": [
- "x"
- ],
- "type": "interval"
- }
- },
- "title": "Receiver operating characteristic curve",
- "width": 400
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAHQCAYAAAAxsWT9AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TVX7xx+Xa7rmeY4rZI4yhTJFZYq6KFSIBi9RXjJEKNKbkFK9SBGKzOJNSoq4MiURkpAMDa5Zpv6f3/Lft3PPPefstc+z9z533/Osz6dPdc961n72d629fns9ew0Z/v77779JkhAQAkJACAiBKCKQQcQvimpbblUICAEhIAQUARE/aQhCQAgIASEQdQRE/KKuyuWGhYAQEAJCQMRP2oAQEAJCQAhEHQERv3Re5YHmM2XIkMGVuz59+jTh+rlz53blemn1IpcuXaILFy5Q1qxZKUuWLGnVzTTv1/nz5+ny5csUFxdHmTJlsuQvx9bShSSzZwiI+HmmqsJztEGDBrR+/foUxoUKFaIWLVrQhAkTKH/+/OEVrGFliOxff/1FmTNn1rBIH1l27NhBmzZtojp16lDVqlXpjTfeoH/96180cuRIGj58uKs3mStXLjpz5ox6CYlk+u2332jJkiVUqlQpat68eViu3H///bRgwQJas2YNNWrUKGQZ//vf/+iXX36hdu3aqTZuxTYs58TIcwRE/DxXZdYcNsQPYle8eHHCKGTVqlV04sQJJYDoJJxKffv2pYsXL9KUKVMsv6k75ZMb5eKl4umnn6bJkycr0fv888/pgw8+oNatW6t/3EzGC0ikxW/z5s1Uq1YtJUYLFy4MC8Gbb75J27ZtU2xvuummkGW0adOGli1bRlu3bqUaNWqQFduwnBMjzxEQ8fNclVlz2BC/tWvX0u23366MIX4QPqRr166pUcHbb79N06ZNU2/Lt9xyC73wwgtUs2ZNlQdv7P/5z39o37596o373nvvpQceeED9ho599OjRtGvXLipXrhz17t07+be77rqLEG5Cnj59+tD3339Pw4YNU2/+p06dUkIQGxtLK1asUNcdPHgwwc8iRYqoazz33HNKNJ955hn65ptv6IknnlCd2GOPPUadO3dOAeKHH36gAQMG0JdffknZsmWjO+64g1555RU10kAH2K9fP2rcuDH9/vvvSvDLli1LY8aMoVtvvdX0PsANLw5gCSEHD/gP/7Zs2UI33HCD+u3ZZ59V/49r7d27l8qXL08DBw6kvHnz0sSJE6l79+70yCOPKLt169ZRQkICzZ8/X72ItG3bVo0KERoFC5SRmJhIlStXVrwWL16symrVqlWqBrBz504aMmSIyl+9enW68847FW+UZYgf6g/swPPJJ5+kp556SpUzd+5cNTJF3cK2SZMmiiPyWblvRBOuXLlC48ePpzlz5tDZs2eV3127dlXsUF+IQOTMmZO6detGkyZNov3791uqc9Qx2gdsIWgrV66k999/n1avXq3+H23m8ccfp5dfflm1X4x469evr3xavnx5Cts//vhDtUU8C3ny5FHPA2zRXvxTML4ZM2akpk2bKs4oB+nVV19VdYVRPtqbP0M8N8jbsmVLGjRokLIBD7DAfd144430/PPPqzKQGjZsqNpxgQIFrD34ktuUgIifKSJvZzDEb9asWVS3bl01EkNn99Zbb6mO7rPPPlMdOkQLHRPyo1NBQod48OBBatasmfp/CN8XX3yh/hudSYkSJejmm29W/4+HGcKDDgejnI4dOyZ3vAh7vv7660rEIADTp09Xb//33XefEoAZM2aoN3l0+rjGoUOH6KefflJiB98gop988klyRbz33nv00EMPJf8/BC0+Pl5du1q1aqrjhT065AMHDihRwL0iwWcIF/LifiFSx48f17oP44LohNGpQbQwkoHfEGcIG/yCeEBwMdLBKAUdrW/YE500BBQJLxjIi/TRRx8pJug0wRm+YqSO6yDh5aRHjx4pGiTCiRBy3A86yu3bt6v/Rsf60ksvJdcBjCAERggc4osOFdzBAeJrRAQMvv7fhkPdN+oQnTY6fXDHCwGYIGG0BqH5+OOP1W+o13//+9+W63zp0qXJYc8KFSpQsWLFVL2DGUQc9YARJkLO8AXc8IIFn1588cVkW7wYgRVYVKpUifBtGraoC7y8+KZQfFEuhA/JGFnjOUKbnTdvnmrb/gzR7tu3b6/qFu0cba9o0aKqDtBO8JKAFyK8OOXLl482btyo/hsvlxBbSfYREPGzj2WaLCnQNz84iocNnS7eNNGRQATwYELMRo0aRe+++67qQL777jvVafz3v/+lnj17qg565syZqrNERwtRQ0eL0RgECh0bOll0rr7f/CBQGAHguidPnqRHH31UXQMiitFhhw4dVIeEjhedAIQDCR0TOhGUjX+PGzeOypQpk4I13rYhrPAJb8xXr16l2rVrq/vDyACdJMQPHSXuBwkii84ZQozOWec+0NlhxIQRDuwgHrhXXAMjDeO+/cOe/t/8DPGDOIEdhAMvBRglYZQCgYCvGHGgwwMLfEcMJH5G2Q8++CDNnj2bIFAYIZYuXZpee+215DrYsGGDevlB54qRGeoQLwrgitElGGFECoEaMWKEqnuj/nTv2/i+iI66YsWKqgzUAUalGEn6hj3RwVutc9/vdmgj+H9wQvkFCxYkvGRBKDCC9Q97+tpCVJAHAoQXPDAGF7wYgiHaqJFC8cVoWlf8DIaY/GU8b6hTiC1GfmgH+EyAZwRp9+7danIUXjzxIoeXVOMFLk12NB50SsTPg5VmxWVD/BAGw0OHN010tnjTReeLN/Bgb5TojL/99lvV8eIhNcKgxvX9R2TG39F54zr+E14QskPn+tVXX9E999yjsqMTg1gYISD/e0PnhFETOulgEx0guBjJorPHfSKhPIS/0OlAVNFx4H7Q6SOhwxw7dqz6/euvv04xsgx2H8aMTYSKwQ2i65usip8hSBhpgwfEAGExjCYNMUP5/fv3V2HTQOIH0Ycf+N0IZfr6ZNQBZklCgAwuKAsjEHT6xkjfsEP4FVwMW537xkjWCM0F+r7o/80PdWO1zn0FDEKK0bcxaobv4I+XErTzUOKHFyq8KBkvS6Gep1B8Ibb+4oeQMsLL/iM/gyGuhRccRAfAAG1g0aJF6hk7d+4c1atXL6A7eGYRWZBkHwERP/tYpsmSAn3zw7cFfFMyHv7ChQurEBFGYVWqVFFhM4QG8XcIxDvvvKO+y919990qtAkBQ8eDUSBGbxgxIByHDhaihw4B3w39xQ/5MXrDCAThHCM0B0F6+OGHlUDhWkhHjhxRoSSM4BC6gvgFEmDkxajL8AGdOpIhzBixYnSLsiHKKBciYHSOU6dOVeEvnfswOnVMpIA9Rk4It/3666/qO5tV8UM4FvfnK37oEDFqQzgOLx7wFXkwSg0kfghnI9RqsMRLDSbaYFSDFwH/CS++4ofRBTpidKpgiPIxWvMXP537xgsNvpfh+hjZ4zsaOmyMRFE+OnbfkV84de4rfmibhw8fVqO1H3/8UY3YIITGC04o8YOfCBUbYU68zGC0ixCzbygT7SgUXwidseQCfmCkhu+cn376aSrx830hQHvBCA/tB6Jn+IHvfmirGHmirWOGNCImKBuCLt/97O1iRfzs5ZnmSgskfggNYnSBERHEDJ0kwn7ovCFO+GaBMCje5mNiYpT4IJyE8AzEAmEYdHbHjh1T+SEqGEmhE4dI4TsXOlV/8cPbLzotiCsSHnwsBfj555+TQ5nohFEu/EGngE4fo6JQ4rdnz57k2X8QYVwHoT0kdDTogI2QEUZUEGmE3ZDQ4aDT1LkPowMzxAoijkkuGEFDzPH/eJOH72CKSRToTDHqCfTNL5D4ffjhh8lih/LQIRujm0Dih5Gz0SniuxY6XnwvxH+jTkKJH0bVCCNjogfaCUbQqBt8n8MkJn9bs/tGuBWhQLwkQbBx70goE9dCfSJMiTz4byN8rVvnvuIHUTBepPCdDe0EI/9evXqpyVsY1WJEhZc8jJzRJn2XSSDsifaHekLYHSNG4xu470NsxtcoBy8/aFfGN3H/kZ//aBht2hhx43kDe4TrIYgIG+OFAc8c6tB4GURoWpJ9BET87GOZJksyxA8iB7FDQkdthFfwcOMNE9/sDMFAHmMEgNAOBMX3N8ySxMxMJPz30KFDk+8doorRG978jW9Avuv8DKH1n1yA0SS+exmTOzDygUDh38YoLtjIDxdHxwZxNoQVb8/o/DAbD+FSdGy+kxuMt/ouXbqY3oe/COCbHzo7o6NDR4WRI64JIT969Ki6Hu4FnS46fIgfvqVihGp888PEDIyGMPsUgoGwJ8QPnTLqA/WEFxLMiMW1goW+jG+MRiVgAgi+nWIxuL/vEGsIHjp7jN4h0HiZQcKLAerZ/5ut0XGb3TfYY8QF/5HAA6N9jIYg4sa3S3TwGNVarXND/MACPqK9YGRmJNQvJu1gVIUROe4HCS9xGGmijcAWE14wAxn1YLQXCA2iGxgR+qdQfHEPxgxcvATCB1wDbRf+BltqYnzzxLUg5MZ6W7zIYfRqTBYCQ9wjojSS7CUg4mcvT0+XBiFEx43OOnv27CnuBQ8oRlHoHNCp+iaEtDCrErPWOIvm0bliJIalCiVLlkw1U84MrmGPb5gYVRjfMg3xg0hBmOErOkj/3Vas3gdCfBB4/OOf4EtSUpLi6M8y1H3ABuFnhNPQeUI0MJMWHaohloHs4TtEDHVgJTwGYQNzzM6EyOqkUPeN8hCOhD9Y+uK7Ewt+Q0gUfzOYcesc5eG+cc9oM4hUGAkRAPiBSSaB7g0jNdiiHeD+Q+18FIovRmwI90P8rO48E4g3OIExRqR43uwoU6deoy2PiF+01XgU3q+v+GH0lJYTvj9hRGZMw4eQYHSCjhVT42V7tLRce+KblwiI+HmptsTXsAggDIfvWAhF4htQWk9YW4mwHULVEENMQsKsQ4zqJAkBIWAPARE/ezhKKUJACAgBIeAhAiJ+HqoscVUICAEhIATsISDiZw9HKUUICAEhIAQ8REDEz0OVJa4KASEgBISAPQRE/OzhKKUIASEgBISAhwg4Kn7YXd93oa0/F6ydwZou37U5HmInrgoBISAEhIBHCTgiftjZAtPLscUQ9t3DGiXfhAXT2H0BizcxrRubBMumrR5tQeK2EBACQsCDBBwRP2wjhEW62BbI2PnAlw32QsTCXew/iH0csX4Jo0ArO2F4kLW4LASEgBAQAmmEgCPiZ9wbtgsKJH44yw3nVHXq1Ent3I+wJ7ZYwrZakoSAEBACQkAIOE0gIuKHDXzxD/YuRMJO/9jhHke54BBU47Rp4+ZxUCUOH5UkBISAEBAC1gg8N/tbOn3+UiqjST2vHxidHtNTU79Jvi3cZ6CBVUTED7vbY2NbbDWFTWHz5s2rNgEONvEFu9AHO/gyLVQcNsdNy6NW8Y/XSoSf8OMR4Flz21+bIfNUhC1aU5oQP4zucH7b6tWr1ZlnOH4ER3vgJGqcgxYsifjxmi334eFd3dxa/DNnFCqH8BN+oQi0HvwhD5DHrSMmfpj5ibAlEkZ7RngThzni0EYcO4IDOOvUqSPi51Ajk86RB1b4CT8egfCsfzt1gQrmzqaOXTIiS59s+omSzl2k5rfGU96cWbUKDiZ+k55uTvEF82qVkdZfvj7bcoCmLt9G5y5epjJF89DPx04lj3YjIn5mVHFcS5EiRUzPEZORnxnJ0L9L5y38eAR41r7t78rVv+m+4R+p0yqQMhBR3crFaUiXBryLMKzTyvMx+r2vaNMPv6a6k0wZYyihUUWa+9n3KX4rWzwvTfxXc9M7DyZ+y8Z2NLXVyRBJfhA7iB7ED6lpzdLUs3VNissaS0a4N02Knw5Y5BHx0yUVOF8kG6eO5+KfDqXgebzAb9B72+jipStBb+Llx5pSxdIFeCDCtE4L/PBNDp11sJQhA1Ggz3Z33hpPBfOkPHjat4yFa3fTxctXAxbrdfH76WgSTZqfSPg3xK5nqxrU9JYyqe41WP06OuElzLaYykzEj0cyLTzcoe5A/Evf9fvAyAV09mJw4ePdvViHS8DL4ucf5uyXUIfii+YJiELEL9wWomEnnbcGpBBZhF/65tdm8IcUvXMNeXVrZt2kRmkqnC8uaLaFX/5AfwUY+WEN9tIxHcyK1/rdzec3VJgzmLMiflrVGF4mNys/HA/Fv3Co/WMj/Hj82gz5MGDIzrfUpzvUocY1SvMuFKZ1WqhfCNT9wz8KegdF8sXRsT/PpfgdE15mDmlreteBvvnNHnYv5YrLYmqrk8EtfrphTn+fRfx0ajHMPG5VfpjupZgtFm4ZTtoJPx7dtMJvzuqdlLjrCJUslJua3Vqann/3S7p61XzMlysuK80eZt6J8ygFt04r/OZ/sZtmfrIj2VF854vNlJE61C9FHVvUphUbf6RlX++jq39fo7tujaf2d1TURtLh+YXqm2vGDBlo0YsJ2nY6Gd3gZyXMKeKnU2s25XGj8jmuin8ceuSJl4esuQtRTIYMlDEmA2F2oO40eB4Zojmf7qS5n6echahbZoGc2WnGkNa62R3LJ88HD62T/MIJc4r48erTkrWTlW/JkSCZxT8eRaf4Hf79ND375ufqTf7S5asqNJg9SyxN6X835c6hF5IaMnUNfffTiVQ3iNlvT7S9he64+QbezYew/v3Ueer20rKwytcN2YVVuEUjp+rXohtBs0erf+GGOUX87Gp5GuVEa+PUQKOVJRL8MLW83bCP6Nrff6u1ZnlyZaWn2temmuWLpPLZbv/aP/cRXb4SePq5cfHFL3ZQo7hQ6aU562n9d78EzZIze2ZH18+9tWQLHTx+SquO/TPVi/DaPl9/7K7fsICEMIpG/zhhThE/u1ugNE7HiDr9cA+d9gV9f+A3JXRmexy+8mQzqlAyf4p7tdO/sbPX09c7gwuWceGc2bNQ6SK5QzLf9fNvdPWa+Tc1xyouzILz585O7z4b+XCn4b6d9RsmkpBm0eSfHWFOET8nWmGQMqOpcTqB1Ql+l69cUzuJmImdE/eTlsqsXLoAYVq7E+nQ8dN0+vxf2kXbOb1e+6IaGZ1ofxqX1c4SLf7ZFeYU8dNuWvyM0dI4+aQClxCM31ffHab/zN2QQsAwPXtMz8Z0Q+HgoyJMGQ+0tskp/50o985by5hO/ce2TgeOJgW9fNv65enRVjWccE+VefLMRer20tJUo8+YmAy05MUO9PX3v9CRE6fp5pJZqNyNZR3zg1uwPL88gnbwszPMKeLHq09L1nZUvqULWszsNf8uXblGCSOw/2PgkB6E7/G2twSkcPSPs/Tagk0WCf2TfVT3O6hGuZTf/ezk99Kcr2n9d4dD+ofZmoteMJ+OjjDuvyb+j3757bSaLJMpUwxVLJmfyhbPR7UrFqOq8YXC5qBriG+X76/aSWcuXKIKpfJTi1qpD6S2k5+uX1byiX9WaKXOy+U3bfk2WrJ+ryrYd29Onlf/WAfzT7Y3s4Ewt/JtcCFkEWnRv5fnfk3r1GQNTDjJQE1vLUN9218/XPPx8SvoyO9nnMaSqvwn772V7q6TeoRiN78nJ6ykwydOJ18fSxQ6Nq2sZnre26C85fu22z/LDpgYiH88oumV34mT5+jFWevU3pxIiFIgWmF3EvGzm6hPeem1cYaDDIucEZqseEPqTYo7Pr+QLly6EvQ73JAu9ale5RLUdsg8NTklWMoYE0MVb0g5KcXI++eZi/SrpnDiGxS+hmHE8vLjTYNeT+o3nJZg/ubNK9U+a6lfHstw+G3cdYQmzk9URxAVyhNHQx9qEHRvTp53wdfpysiPS5a8sQjayZPmcdTK8sQf6fSZi8k0Ebob/2Qzii+WV4Xlnnh1pQ2krxfxQNPK9GCzKkHLC3aES664zDR7WDvLfoTzcFu+CMNA/GPAk+eXBy8Mfr5hzrqVihM2pca6VKeSjPycIhtG5TvoSsCineocR89aR5t2HQl6O3lyZKF76pajZev3qm9CdqT2t99E3e6uHrIozPB8eOwySjp7UY3sere7hZrXCn/ChVP87OCBMsQ/Hknh5w4/t8Kc/ncj4ser35DW0fbwJJ25SF3HLLGdaLd7qlP7hjfRwLc+o90Hf09RPkT0ibY1bb+mToHRVr86TKzkEX5WaKXOmx74uRnmFPHjtTdL1umhceresHE6sk7+jBljqEOjivTxxn10+lzokV+hvNlp+sB/Fj5jMfi+X/5U+1Ri5uKjLZ2bsm92L9FUv2Yswvld+IVD7R8br/NzO8wp4sdrb5asvd44dW52wJTVtOfwHzpZk/O0qV+OeraqqWY29p6wMuCZblgTNqHHreTkN0lLTgfIHA31y2UUyl748eh6lV+kwpwifrz2Zsnaq40z1E1u33+CsmfJROVL5KO2Q+cFXXMXrIw8ObPSLL+zxj5au5t+SzpPbW8rR8UK5ko2TY/8LDUgZmbhxwMo/OznF8kwp4gfrz4tWaeHh+e9/31LC77cw9oOLCYmhl7q1ZjKl8xvuimzL+D0wM9Sg7E5s/DjARV+9vKLdJhTxI9Xn5asvf7wvDovkdZs+9nSPftnXja2Y9j2XucX9o3bZCj8eCCFnz380kqYU8SPV5+WrCPx8Ez9eDtt+O4wZc8aSx0aV6Lbq5cK6nMo/+Z9/j3N+nSnpfv1zdyoxg30TIe6YdvDMBL8rDgs/lmhlTqv8Ev//E5czOLaonWrNGWpg1ViFvK7/XAHmnH5cItqdH+jigG9DuVfsAXhZrefLXMstWlQjrrcWdUsq+nvbvMzdcgvg/hnlVjK/MIvffMbP/sL+mLncXWTbixat0pTxM8qMQv53Xq4DxxLor6TPgnoGWZNVi5dMOBvFy5coGzZsqX6DYvAffeY1L3lciXy06u9m+lmN83nFj9TR4JkEP/CJXfdTvilT35pNczpT1vEj9f+Qlo7/XCP+/+TANw8thT7XsZmjKG2DcpTQqOKtHrLAXUuXKt65Wwn6TQ/rsPiH4+g8Et//Hxnc+bLkZlGdG/s2N6cPHqytyeXX8TE78yFy/TgqIWm/mMxOI7jCZSOHj1KRYsWDfjbkKlrUv3d7UNHpXM0rd6ItT+eZzLyS4/8/Gdz3lurMFW+yf6XYjvYhYo8yMbWNhB2svPW/Sa3ZExHiglyYHco/2Z98h3N/2JX8gL0rJkz0fyR99lARb8IJ/npexE8p/jHoyj80ge/YGFOr9aviB+vXSprpypfdyuxyU/dRaWLBD/Z3Cn/bEDnKD/xzy4CvHKk/XmfX6hF616tXxE/Xrt0rPP+5bcz9MSrK0y901lf59XGaXrzLmUQfjzQws/b/MwWrXu1fkX8eO3SMfFrPXieOuU8WGrXsAJ1v+dmLe+92ji1bs6FTMKPB1n4eZOf7mxOr9avY+J37do1whT7uLi4oDV/5swZypEjh5pFGCqNGzeOBg0axGtBDlrbXfkPj11Kf56+EMTjDLRsbAdLd2O3f5YurpFZ/NOAFCKL8BN+PAKpra3szenV9ueI+M2YMYMmTpxIxYsXpytXrtDs2bOpYMF/1qDt2bOHRo0aRdgL8uDBg9SrVy/q0qVL0PqLNvELNcllYu87qWyJfJbaulcbp6WbdDCz8OPBFX7e4mcW5vS/G6/Wr+3iB7GLjY2lpKQkyp07N/Xt21dNsx88eHAyM4hd+fLlacCAAbRv3z7133/99Rdlzpw5YCuJJvHbdfA3GvTW5wE5hLsEwauNk9dl2Gct/HgshZ83+OmGOUX8gtTngQMHqFmzZrR//36VY/LkybR9+3aaPn16sgVGfRBICOLGjRupXr16dOTIESpWrFjUi1+oGZ46k1sCAZTOxxudT7heSv2GS+66nfAjshLmFPEL0t527NhBCQkJhNAm0qxZs2jt2rU0bdq0ZItdu3ZR3bp1qX379rRhwwbau3cvGd//1q9fT+vWrUtVOspMz2nWmv204+ApunT5asDbLJArKz3Xkb+PZnpmKPcmBISAdQKLNhxK3puz6g15qHOjeMqWOaP1gtKwRaDDsm0Pe2KSS/bs2QkTXhCmmzBhgkLSv3//FGhOnTpFy5cvp7JlyyqxPHz4cFB06T3s2eWFxXTq3F8hm84jd1en+26/KazmJW+2YWFLNhJ+wo9HgGftVPsLN8wpI78Q9Vm9enWaMmUKVa1alVq0aEEjR46k5s2bU2JiovobJsSgQsePH6/CoRgZzpw5MyrFT2che7jf+gygTj08vEf6H2vxj0dS+Ak/qwQ4YU4RvxC0ly5dmjx7s2XLljRnzhw1CsyVK5cSQIwM77nnHvX/v/zyi/pbsO99uEwkR35nz1+ijzfup8yZMlDLeuUoc2zqcEC4nY+O8OH+3x5wDxXLn9Nq+5aRS9jEUhqGW782Xd60GPHPFFHIDNHGz+psTjO6XuVne9jTAHX+/HlCaDPYhsrIh1BniRIl0sQ6v9VbD9DsVTvpypVrVDm+ED37YD165cONtHb7wRR1/+yDt1H9qiVT/C2cyr946QoljFhg1q4oY0wGWvyitXV96eXNzBSOSxnCqV+XXFOXEf94tKOFn11hzvTSvzgmfrzmmNLa6ZHftOVbacn6fSkuGpc1ls5dvJzqNjCCfaBp5RR/P3nyJOXNm/d6R/TryYB2/gUdOHqKzl4I/p0Pole3Ugl6tvNtbJTR8nCzQQUpQPjxyAq/yPOzM8wp4serT0vWTouf7skJlpxmZM4Sm5E+GnU/o4SUptL58FAKP+HHI8Cz5ra/uZ99T3NW71ROOHHSOtc/Hh1z62D+ReXI78hvp4koAxUvmJNemrOe1n/3izlBnxyhRn7xxfISRo1macdPJ+iDz75Ple21vs2pTNHro0i7klcbp133zy1H+PEICr/I8EPk6sVZ6+i7n04oB9BvPdisCs+ZANZerd+oEr+te4/R8zPWJm8XHZMhA137O/jm0Qg9Xr2W8vcyRfPQa31bpGgC4VZ+/9c/pR+P/JlcVo3yRWhUt8AH0nJabLj+ca5pxVb8s0IrdV7hJ/z8CUDwIHwQQLyMD+3agKrGF+KBCmLt1fYXVeJnJbyJfUfnDGtLT7y6kpLO/UXYe7ty6YI0pmfjVE2AW/mY/IJDZJ1icik6AAAgAElEQVRKXP+c8ssoV/zjERZ+ws+XgG+Ys0qZgjTsoYZa0ahwKXq1/UWN+K36Zj9NXrhZu34/GnUfZYnVEySvVr42DIczCj8eYOEn/EDArTCnP22vtr+oEb97h86nq9euaT0lVheVe7XytWC4kEn48SALP+HnZphTxI/X3ixZ2zHbM1jIE+FNbMXmm6xuIC2dj6XqtD1szLu6ubXUrzmjUDmEn7P83A5zivjx6tOSNVf8fks6T93HLQt4zaVjOtChE6dpy56jVKJgLqpdMfDJEvJwW6oyS5mlc7SES14eeLjSDb9IhTlF/GxugKGK44rfAyMX09mLgReUWx3lBfJTOm9eYxB+wo9HgGftxfYXyTCniB+vvVmy5opfsJCn1W97wZz24sNjqQIcziz8eICFX3Txi3SYM6rFD6e1Z8qkNxOS1yyvWzslfk8l1KZmNcuwXZTOh4dQ+Ak/HgGetVfaX1oJc0aV+G3bto2eeuopWrFiBd155530/fffK0F64okneK1O09op8bMj5Ilb8MrDo4nb9WzCj4dc+KV/fucoh2uL1q3S9Gr701rqUK9ePdXBP/fcc9SnTx+qWbMm7du3j/78809XRoAiflabY8r8Xm2cvLu2z1r48VgKPx6/KR+to5VbjqhC3Fi0btVbr9avqfhdvHiRsmXLRjijb+LEibRz507avHkzlSpVir799luqVq2aVVaW83PE741F39D/Nv2U6pp2fe+TkZ/l6kxl4NWHh3/n9pQg/Hgc0yq/tBrmjKqwZ4UKFahixYq0ZMkS6tWrlzqjD6eznz17luLi4ngtT8OaI37BDowV8dMA71KWtNr5GLcv/vEagvCzzs93Nme2zBnpuYdvd2xvTuvepY/IkunID7c5c+ZMevjhh9UdY7TXoEEDat26Nc2ePZvLTcueI37BZnrmz52N3n22jdb1zTLJw21GKPTvwk/48QjwrNNa+/Ofzdnl9pJU+aZyvJt00Dqt8dMdmWqJHwrDga0ZM2akXLly0datW9V3P7eSmfj9fuo8DXzrc0o6e5EyZ4qhtg0qqOM7nnh1Bf3y25mAbr43uC3ly5XVllvwauXbcvM2FCL8eBCFX/rgFyzMKfXrTP2GFL+SJUvSpUuXgl55//79lCNHDp5nGtZm4td2yLxURxM9fFc1mvnJd/R3gCOLcELD0jEdNa6sl0Uapx6nYLmEn/DjEeBZp4X2F2rRelrwLxRhr/oXUvxatWqlxA8ihxvMmTMnlSlThnbs2EHx8fFq8gsmwzidQonf4ROn6ckJKy25cFftstS73a2WbNJj5dsGgFmQVx8e5m3bZi78eCgjzc9s0Xqk/TOj61X/tMKelStXptq1a9Nbb71FWbJkoTfffJOefPJJOn36tBJEp1Mo8Xv6jVW075eTqVzAhBaM8K75HUaLjHat7zMu6tXKd7redMsXfrqkAucTft7kpzubU+rXmfo1FT/s5hIbG0tt27alBQsWqO9+48ePpwEDBqhvfzVq1OB5pmEdSvwSRiwgHAbrnzJljKF+CXXolQ82pPgpW5ZMNO/5+zSuqp9FGqc+q0A5hZ/w4xHgWUei/VnZmzMS/lkh6lX/TMUPENq0aUPLli1TozyEOU+cOEG1atWijRs3Eo4EcjoFEr8rV6/RwLdWBxz1wZ+ShXPSlH730PYfj9PU5dvowl+XqVrZwtTv/tq2u+vVyrcdRJgFCr8wwf2/mfDzFj+zMKf/3Uj9OlO/WuJ36tQpmj9/Pi1fvpwOHz5M9913H3Xt2pUwIcaN5C9+P/16kp6avCrkpdvdfhN1v7u6G+7J9mZMyvJw8wAKP2/w0w1zivjx6lOXn6n4Iez5+uuvU5UqVahZs2b2eqVZmr/4BVu751uc3d/1QrkqnY9mRQbJJvyEH48Az9qN9mclzKnbefPu2j5rN/hxvA3mn6n44aKY8AIR3LVrl/rm53byFb9uLy2h309dDOkCTpxYNNre73oifs7VulcfHueIWCtZ+Fnj5ba4WA1zuu0fj553N/bXEr/OnTvTnDlzqGHDhmoEiJmUSJj4kjWrPQvFQ1WAr/gF264sUqM+XFc6H97jI/yEH48Az9qp9hdumFPEj1efuvy0xK9w4cJqkot/wrdA7PjidPIVv1Ahz2IFctKkPs0pa2b3zhoU8ePXvlOdD9+z6yWIfzyS0ciPE+bU7bx5tWKftVfrV0v8zp8/r3ZKOXPmDP31119UoEABRc6NTa1xHR3xmzqgJRXJ7/xuM4GajFcr377mzytJ+Ak/HgGetd3tjxvmFPHj1acuPy3xQ+N49tln1YxPJBxoO2zYMLr99tvt9TJIaYb4dRu3jH5POh8wl5sTXHThugJH4yJ2P9wal7SURfyzhCtVZuGXNvjZFeaU/oVXn7r8tMSvQ4cOSvjwb+zlaYjgsWPHKHv27PZ6GqA0Q/zcOJ4onJuRziccav/YCD/hxyPAs7aj/dkZ5tTtvHl3bZ+1Hfzs8yZ1SWHP9sRpDvny5aMXXniBhg4dqkpetGgRtW/fPuQOL9euXaMLFy6EDI0ijAoxNSbQBANgiF+w733Nb42nPvfVcpJfyLK9WvkRA+Z3YeHHqwnhF1l+S9fvVRtpIJUpmofG9mpCcVljeU75WEv98lCGLX7G9mZY1D5t2jS11OGll15SYc+9e/dSuXKpz5maMWOGOvW9ePHiaokEzv0rWLBg8h1AUHv27Kl2jPntt9/o/vvvp0ceeSToHZqJXyRDnnBaGqczjZNXqn3WUr88lumVH8KcE+cn0sZdRxSgNvXLU89W9m/3mF758VqVvnXY4odL9OjRg9555x11NQgWRmwIgX744YepPDDEMikpiXLnzk19+/ZVJ78PHjw4Oe+7775LK1asoHnz5tHXX39N3bp1oz179oj46denpZzy8FjClSqz8BN+/gR+OppEY2ato+Mnz6lRHvYRrlupOA9UEGtpfzysLPFD+HLx4sVK7LC8oVOnTkr88ubNm8qrAwcOqJ1gcAwS0uTJk2n79u00ffr05LxHjx6lm2++mZo0aULr1q2jfv360TPPPCPix6vjoNby8PDACj/h50vAP8w5rGsDKpQ3jgcphLW0Px5alvjh0tjdJU+ePOobHsTrpptuCugRzvpLSEhIHsnNmjWL1q5dq0KmRlq1apXaG7RXr16UmJhImTNnVvuGIq1fv14Jon9q1/5+euadzQGvOaln5L738apFrIWAEPAKgQuXrtKctQdox8/Xj1C7o0phal+vlFfcj2o/cf6sf9Ka7Ym9Pfv06UMrV66kUqVKqe3OBg4cqNbf+SeMEjEDFBNeMJFlwoQJKkv//v2TsyLMCfEcNGiQCqFiofzx48epUKFCASsI16nROIEmL/om4O/yzS90u5Y3R95zL/yEn5thTn/a0v6caX9a4lehQgU1YeWjjz5SI7/evXsTRnRHjhyhYsWKpfKsevXqNGXKFKpatSq1aNGCRo4cSc2bN1ejPPwNv6FC33jjDTp48CDVqVNHlYU9OQMliN+fuW+lXQd/T63eGTLQ0jEdeHSY1tI4eQCFn/DjEeBZm7U/t8OcIn68+tTlZyp+xgSWxx9/XJ3gjoTZm126dKENGzZQ3bp1U3m6dOlS9TtSy5Yt1b6gGAVihAcBxNKJ1q1bq/Ap0vDhw9Xsz2AJ4rfpfFm6dOlqqiwxGTLQEhG/kK3F7OG2t6lZL038s87M10L4OcPPrdmcZt5L/ZoRCv0765sfdnL56quv1GnumO25ZMkSNZPzxx9/pCxZsgS8MrZEw+QYzPQMln799Vc1osRJ8aESxG/DmXi6evVaqmxxWWLpg+fb8+gwraVx8gAKP+HHI8CzDtT+Ihnm1B258O7aPmuvPr+mIz8gwgxOfLvDbE9scI3R3L///W+644477CMYoiSI3/pTZdT+ov6pSc0bqH9C6tGnK479/0W8WvluMgp1LeHHqwnhZy+/SIc5Rfx49anLT0v8UNjPP/+s1uThG1+JEiXoxhtvtNdDE/Fbl1Q6YI52DcpT95b2Lyy1cnPS+VihlTqv8BN+PAI8a6P9pZUwp27nzbtr+6y9+vxqid+yZcuoTZs2ihYWq2MpQo0aNWjSpEn2EQxR0uAXJtHOc0UC5sBWQlXK/LN7jCsO+V3Eq5UfCVaBrin8eDUh/Pj8KFs+1xatW/VW6tcqsZT5Wd/8SpYsqZYhYJ0fZmZiVubo0aODzvbkuZrauu2QD+ja39cP0PVPkV7mAH+kcfJqXPgJPx4BnvWMpRto4YZDqhDszen0onWr3srzYZWYTeKH8/twWruxLAF7e2IRe82aNWnnzp1qzZ/TKdiG1pkyZqRFL9zv9OVNy5fGaYooZAbhJ/x4BMKzTqthTv+7kecjvPo1rFgjPwjc77//TkWKFFGjPkx6wUL2UPtx8txNaR1M/Pq0r0XNa6VeuW/ntXXKksapQyl4HuEn/HgErFv7zubMljkjPd2xnmN7c1r3Tm/kwi3XLnuvPr9a3/y2bdtGI0aMIHz7MxKWOxjfAe2CGKycYOK38IUEis0Y4/TlTcv3auWb3phLGYQfD7Tws8bPfzbnQ3eUolurV7RWiIu5pX55sMMe+WGRO7Y3q1KlCt1yyy30yy+/UNmyZV05xNa45UDilzdnVpo5pC2Pik3W0jh5IIWf8OMR0LMOFuaU9qfHL1gur/LTGvkh7AkRxObW+ObndgokfmlhoovBwauV73Y9preHR/jpEUgLz0eoRetpwb9QJMU/vXZmtX/REr/OnTurLcoaNmyoRoDGyevjx49Xk2GcTiJ+PMLy8Ag/HgGedaTbn9mi9Uj7Z0ZX/DMjFPr3sMOeKLZw4cJqkot/wvZl2K/T6STixyMsD4/w4xHgWUeq/enO5oyUf7pUxT9dUoHzscQP+3QG2loMJzy4kUT8eJTl4RF+PAI860i0Pyt7c0bCPytExT8rtFLnZYkf79J8a3/xQ9g10scY+d6VNE5eHQs/4ccjkNLaLMzpfy1pfzz6XuWn9c2Ph4Zv7S9+mWMz0oJRkV/cbtyZVyufXzP2lCD8eByF33V+umFOET9ee0sv/DwpfvlyZ6f3nm1tbw0ySpPOhwFPtofjwRN+ip+VMGd66bzZDcemArza/4UUv5kzZ6olDsFS165dTc/is4Ov/8ivaP4c9N8BLe0o2pYyvFr5tty8DYUIPx7EaOdnNcwp4sdrb+mFX0jxM5Y0BEMVqdmehfLG0fSBreytQUZp0d75MNBdf2v/6SeKj4/8NnXB7kP849WwU/zCDXOml86bVyv2WTtVv3Z5GNaEl40bN9LVq1fpxRdfpO+++44GDBhAZcqUoVdeeYXOnTtHiYmJaq9Pp5P/yK98iXw0vvedTl9Wu3yvVr72DTqcUfjxAEcjP06YU8SP197SCz/Tb34Ie8bGxtJzzz1Ho0aNUvdtnO+3b98+Vw619Re/htVK0sAHbrO3BhmlRWPnw8CVylT48WhGGz9umDO9dN68VmOftVfbn6n4AZGxkH3MmDGUI0cOmjJlCn3zzTeunefnL34tb7uRHm99i321xyzJq5XPvG3bzIUfD2W08LMrzCnix2tv6YWflvgtWLCAnnzyyRS7vEycOJGeeuopeykGKc1f/J5scwvdXe9GV66tc5Fo6Xx0WISTR/iFQ+0fm2jgZ2eYM7103rxWY5+1V9uflvgBE779rVq1ipKSkqhly5aubGtmVI+/+I3p2YSqxhe0r/aYJXm18pm3bZu58OOhTO/8PttygKYu36bW8Tlx0np658drXebWXuWnJX74tnfXXXepWXmDBw9WJ7g/+OCD1KlTJ3MyNuTwF7+FoxMoNlPkz/Ezbs2rlW9D1dhShPDjYUyv/CB2ED2IH1LTmqWpZ+uaFJc1lgfMzzq98rMVUojCvMpPS/xwjh8EsGDBgtSxY0d1pt+sWbPUKDB37tyOM/YXv7R0nBFu3quV73jFaV5A+GmCCpItPfJDmHPS/ES1eB1i17NVDWp6SxkeqCji5wiodMbPVPz++usvdWwRDrQ9dOiQOs8vISGBatasSVu3bqUaNWo4zlnEj4c4PXaOPCLWrIWfNV7+ua3y8w9z9kuoQ/FF8/CcSIcjF8eAWCzYav1aLJ6dPZh/puKHK2O2Z7Vq1ShPnjyUOXNmiomJUd///vjjj4js8CIjP2vtwauN09pdOpdb+PHY6vJzK8zJFWceDevWuvysl2yPhVf90xK/uXPn0mOPPUZnzpxJpjV69GgaNmyYPfRMSpGRHw+zVxsn767tsxZ+PJY6/NwMc4r48eozvfDTEr9du3apnV3Wrl1LBw4coOrVq9Ntt7m3yFzEj9dYdTof3hV41uJfdPNzO8yZXjpvXquxz9qrz6+W+OEkd6TWrVurZQ6NGzdWIVC3kq/4pbWz/MDAq5XvVv2ZXUf4mREK/btX+UUqzCnix2tv6YWflvhhQfvnn39OX3zxRXLos1GjRrRixQrKli2bvSQDlCbix0Ps1c6Rd9f2WQs/HstA/CIZ5kwvnTevVuyz9urzoSV+ly9fpt27d6stzWbMmEHr169X5CJxqoOM/Kw3Wq82Tut36oyF8ONx9ecX6TCniB+vPtMLPy3xK1mypFrbh2NnEPKsU6cO3XrrrXTzzTdTsGOPrl27RhcuXKC4uDg2aRn58RBK5y38eAR41kb7SythzvTSefNqxT5rr/YvWuLXoEEDNdrLmTMn4b/r1atHtWrVojvvvFOt+/NPGB0iVFq8eHF1GO7s2bPVAnkj/ec//0kePUIkcUpEqDWDvuIXkyEDLRnTwb6as6Ekr1a+DbduSxHCj4fRC/woWz7XFq1bpekFfnLepdVa/Sc/a50fijl9+rT6xjdp0iTCOX/Bwp7GEUjG7i99+/alokWLqm3RAqVBgwZRkSJFqH///kHvzlf8MmaMocUvJIRPwgFLeXh4UIVf+uY393+baEniL8l7czq9aN0qTWl/VomlzO9Vflojv169etGSJUuST3XACPDuu++m9957T+3+4puwFKJZs2a0f/9+9efJkyfT9u3bafr06akI79ixg9q1a6e+J2LxfLDkK37ZssTSvOfb82rLZmuvVr7NGMIuTviFjU4ZplV+aTXM6U87rfIz/BT/nHk+tMQPSx1uuOEGatWqlRK22rVrBz3BHYKG7c/27NmjPMYeoFgfOG3atFR38Oijj6oQao8ePZJ/Q3h13bp1KfKuSyqd/P9xWTPRmK7Ob6nGwy3WQiC6CRz54zzNXnuA8O9smTNSu3qlqE75AtENRe4+YgQChY21xA8hTPyzYcMGNeklf/78QU9wxySX7NmzE77lYTLMhAkT1A37hzWxNVqBAgXo5MmTpmsGfUd+eXJkoVlD740YxEAXljczXnUIv/TFz382Z0K94tSwVhXeTTpoLe2PB9er/LTEDxNS2rRpowjh2x1GZtjQGt//AiXsAIPT3qtWrUotWrSgkSNHUvPmzSkxMVH9DeKIA3IRNl26dKkpeV/xK5g7O73zbGtTGzczeLXy3WQU6lrCj1cTaYVfsDDn8V8Pq5fmtJrSCr9gfMQ/XsthTXjBUodChQqpERqWOWTKlImwt+eRI0eoWLFiqTyDoHXp0kX9HTvCzJkzR40CsUE2BLBixYr09NNPE8KpmPBilnzFr1De7DR9oIifGTPf3+XhsUIrdV7hZ84v1KJ14WfOT14OeYzC4Wc68jOONHrjjTfo4MGDKY40wqG2lStXDnjd8+fPq0XwmOnJTb7iVzhvHE0b2IpbpK328nDzcAo/b/MzW7Qu9evt+jXz3qv1ayp+uHEI3O+//66WJGDUd+LECRW6NCa1mMHh/u4rfsXy56S3B9zDLdJWe69Wvq0QGIUJPwa8CM721J3NKfXrzfrV9dqr9aslftu2baMRI0aoxehGwtIH4zugLqRw8/mKX+nCuWlyv7vCLcoRO69WviMwwihU+IUBzcckEvys7M0ZCf+sEBX/rNBKnder/LTEz7hdzMzENmdly5ZVIz+3kq/4VShVgF55oqlbl9a6jlcrX+vmXMgk/HiQ3eZnFub0vxu3/bNKU/yzSixlfq/yCyp+2My6RIkS6sBarNE7duxYKkJYyJ4jRw4eOQ1rX/GrUqYgje3VRMPKvSxerXz3CIW+kvDj1YRb/HTDnCJ+vPoUfu7wCyp+2KYMyxS6d++udnfBujz/hDCoGyNAX/GrfmMheqFHY3vpMEtzq/MJ103xL1xy1+2EH5GVMKd03rz2Jvzc4acV9pw6daoSwlKlStnrlWZpvuJ3a4WiNOKR2zUt3ckmnSOPs/BL2/yshjml8+bVp/Bzh5+W+GE9HmZ4NmnShLp27Ur33nuv6a4sdrrvK363VS5Og7s0sLN4dlnSefMQCr+0yS/cMKd03rz6FH7u8NMSvzVr1tDHH39MixYtUiEgpE6dOtG7775LWbJksdfTAKX5il+TW8pQ//trO35NKxeQztsKrdR5hV/a48cJc0rnzatP4ecOPy3xM1zBur7XX39d/YMUiZPc2zW8ibrfU91eOszSpPPmARR+aYsfN8wpnTevPoWfO/y0xA/7eb7//vtqmQNSzZo1qVu3bvT4448HPd3BTvd9R34dm1SiLndWtbN4dlnSefMQCr+0wc+uMKd03rz6FH7u8NMSP3zzw3l7OIKoQ4cOam9ON5Ov+HVoXJG6Nq/m5uVNryWdtymikBmEX+T52RnmlM6bV5/Czx1+WuKHHV6qVaumNrLG4bX58uVzZcRnIEghfo0qUtcWIn5WmoeIixVaqfOmd34bdx2hifMTHTtpPb3z47Uuc2vhZ84oVI5g/LTEb9++fXTXXXepyS4IgWJD6wcffFBNenEj+Ypfj3uq070Nb3LjstrXkMapjSpgRuEXOX7Tlm+jJev3KgfqVipO/RLqUFzWWJ5DftZSvzycws8Zflrid8sttxAEsGDBgtSxY0f17Q8ntOOA29y5c/M807D2Fb8n29xCd9e7UcPKvSzSOHmshZ/7/E6cPEcvzlqnFq8jPdqqBrWtX57nSBBrqV8eVuHnDD9T8TOONMIMz0OHDqU40mjr1q3qUFunk6/4PZVQi5rVTFsHY0rj5LUA4ecuP98wZ6E8cTT0oQYUXzQPz4kQ1lK/PLTCzxl+puKHy+IQWnzzw2G2mPgSExNDq1atUluexcbaGyIJdJu+4je0S0OqWzn1Abo8PDxraZzCj0eAZ22l/bkR5vS/Gyv+8UiEZy3+hcfNsPIqPy3xmzt3Lj322GN05syZZEo4yR2bXruRfMVvdPc76OZyRdy4rPY1vFr52jfocEbhxwOsw8/NMKeIH68+hZ87/EzF7+rVq7R9+3bKmTOnmvBy4MABql69Ot122232ehiiNF/xe+uZllS8gPMnSVi5OZ3Ox0p5ducV/3hEvc7P7TCndN689ib83OFnKn7Xrl2jokWLUqVKlQjbnEUi+Yrf1IEtqUheET8r9eD1ztvKvTqR18v8IhHmlM7b3lbo5fZnL4nwSmMtdXjiiSforbfeouHDhysRxDc/pHbt2rmy3s9X/GYNaUt5cmYNj4JDVtI4eWCFn/38IhnmFPHj1afwc4ef6cgPbhinOvi7FIm9PT8Y0d72dUhc1NJ58wgKP3v5RTrMKZ03rz6Fnzv8tMRv7dq1hCUP/glHHGXKlMleTwOU5jvyWza2o+PXs3oB6bytEkuZX/jZxy8thDml8+bVp/Bzh5+W+NnrivXSRPysM/O1EHFJ//xy5C3s2qJ1qzSl/VklJi+HPGJ6/ET8bKAsDzcPovDj8Vvy+Raa+9VBtTenG4vWrXor9WuVmF7nzSvVPmuv1q+Inw1twKuVb8Ot21KE8AsfY1oMc0rYLvz6DGQpzwePJ3u2Z7Nmzejuu++m7Nmz8zwJw1rCnmFA8zGRhyf98UtLsznN6Er7MyMU+nfh5ww/rZGf72zPRx55RG1u3bRpU1e2NsNti/g5U/m8Uu2zlofbGkv/2ZyPNClNDWtVsVaIi7mlfnmwhZ8z/LTE7+TJk4QZn9jPc8GCBXTixAm14wtOcu/RowdVqFCB552JtYgfD688POmHX6Aw5/FfD1N8fNra7N2XuLS/9NP+0lNYVkv8cMO//vqrEr+lS5fSokWLUjDAlmelS5fm1XAIaxE/HlrpfLzPL1SYU+rX+/Ub6g6kfp2pXy3xa968OX366afKA4z4OnfurEKfeNu84YYbaObMmdS1a1eehyJ+jvGTh4eHNtL8zBatR9o/M7rinxmh0L8LP2f4aYlfyZIlqUGDBur0dghhlixZkr354osv6MYbb6QSJUrwPBTxc4yfPDw8tJHkpzObM5L+6ZAV/3QoBc8j/JzhF1L8AP3vv/+mixcvUtasqffTLFOmTPI+n/7uYUPsCxcuUFxcXFDPz507R8iH0WSoJGFPZyqfV6p91vJwp2ZpZTan8OO1ReEXnfxCil+GDBlCUgm2t+eMGTNo4sSJVLx4cbpy5QrNnj2bChYsmFwWxBQTZWCPTbJxGvzIkSODXkvELzobJ++u7bN2u3M0C3P635nb/lklK/5ZJZYyv/Bzhl9I8XvllVcI5/kFS/3791cnu/smiB1Od09KSqLcuXNT37591ZFIgwcPTs727rvv0qZNm2jKlClqZIkJNG3btqWMGTMGvJSInzOVzyvVPmt5uP9hqRPmFPGzr+2hJGl/PJ5e5acV9gyGJlDYEzM/sSB+//79ymzy5MnqMNzp06cnF4OjkTZv3kxbtmxR3wpfeOEFtYA+WBLxi87Gybtr+6zdeLithDlF/OyrWxE/Pks3ng+Ol8H8sz3suWPHDkpISKA9e/Yof2fNmqXWCE6bNi3Z/27dutGXX35JK1asoG3bttG///1vOnToECHMun79elq3bl2Ke12X9M8yikk9a3E4iK0QSHMEvvv5JM1ee4AuXLpK+XJkpkebl6Pi+d3fSSnNgRGHhIBNBAKtg7U97IlJLvz40KIAACAASURBVNgCDRNZIGYTJkxQ7iNEaqSnn35azRgdO3as+hN2kIHoYdZooCQjP14L8OqbGe+u7bN2kl84YU4Z+dlXtzLy47N08vngexc8rK211AEO4Dw/TFBBwne6H3/8kWrXrh1wi7Pq1aur73lVq1alFi1aqMksWCKRmJio/oZdYqZOnUqrV6+mX375herVq6cW0cs3PzuqOnUZXm2cztCwXqoT/DhhThE/63UYysKJ+rXTQ/GPRzOssKdxyQ8//FBNXMG2Zr4p2GxP7ALTpUsXlbVly5Y0Z84cNQrMlSuXEkAMQVEewp4YJUIcO3XqFPQOZeTnTOXzSrXPOtoebquzOc1IRxs/Mx5Wfxd+VomlzO9Vflojv7Jly1KePHlo3759VLduXdq9ezcVKlSINm7cGHRz6/Pnz6uRImZ6BkvYMxSCGGzEZ9iJ+EVn4+TdtX3Wdj7cdoQ5ZeRnX92iJDvr117Prpcm/vGohj3yu3z5slrO8P7776tJKgUKFFAbWpcqVYogXhBFp5OIH4+wPDyR54eDZof893P66WiScubRVjWobf3yPMf+31rql4dR+EUnP62RH7Y3gwA+8cQTNGrUKLrvvvsIa/X27t1L5cqV45HTsBbx04AUIos83JHl991PJ+jFWevUSetxWWNpTK8mFF/UvpdGqd/I1i/v6ubWUr/mjELlCHvkh0I///xzNVsTyxbwDQ+TVFq3bq1OeHAjifjxKMvDEzl+cz/7nuas3qkcqFKmIA17qKESQDuT1C+PpvCLTn5aIz+g2bVrlwpxYonC999/T7fffjuPmAVrET8LsAJklYfbfX4Y5WG0h1Ef0gNNK9ODzZw5cFbq1/365V3RmrXUrzVe/rlZI7/XX3+d+vTpQytXrlTf+ipXrkwDBw6kcePG8bzStBbx0wQVJJs8PO7y8w9zDu3agKrGF+I5EcJa6peHVvhFJz+tkR9OasfG1B999JE6paF3794qBHrkyBEqVqwYj5yGtYifBiTpHHmQbOLnRphT983WMSAWCxZxsQjML7vwc4afqfgZG1Vjhuebb76pvMApDVjHt2HDBrX0wekk4scjLA+P8/zcDHOK+PHqU/gJPxAwFT9kwve9r776Sp28gLP3lixZok5swC4vvgfb2ov0n9JE/HhkRfyc5ed2mFM6b159Cj/hpy1+OKkBe3Ripxfs8oIZn9iM+o477rCXYpDSRPx4mEX8nOMXiTCndN68+hR+wk9b/AxUOqez24v1emkifjyqIn7284tkmFM6b159Cj/hF1L8sLMLztobNmyYOo7o2LFjqYjhzL4cOXLYSzJAaSJ+PMQifvbyi3SYUzpvXn0KP+EXUvww0QUnMnTv3l194/vjjz9SEVu2bJnamNrpJOLHIyziZx+/tBDmlM6bV5/CT/hphT0hgljnV6VKFXVCeySSiB+Puogfn1/hYiVdW7Ru1VupX6vEUuYXftHJT2u2Jxa1QwSxy4vZCQw8jIGtRfx4VOXh5vFbtf5bemf1/uS9OZ1etG7VW6lfq8RE/HjE0gc/LfHr3LmzOpOvYcOGagSIs/mQxo8fT1mzZrWTY8CyRPx4iKVzDJ9fWgxzStgu/PoMZCnPB4+nV/lpiV/hwoVTHWQLXMEOs+WhTG0t4scj6tXGybtrnnVams1pdidSv2aEQv8u/KKTn5b44WDav//+OxUhbHXmRhLx41GWh9saP//ZnN2blaXm9atbK8TF3FK/PNjCLzr5aYnfmTNnaMCAAbRixQp67LHH6K+//qKEhASqVq0aj5qmtYifJqgg2eTh1ucXKMx5/NfDFB8fr1+IyzmlfnnAhV908tMSvw4dOtD8+fMVocGDB1NiYiLt3LmTDh06JNubEZE8PN5/eEKFOaV+vV+/oe5A6jc669dU/IyNrUeOHEnnzp1Tsz3vvvtutd/nt99+68roT0Z+0dk4eXetb222aF06R32WgXIKP+HHI8CzDtb+TMXv6tWrlClTJurRo4ca5eEfHG80ZMgQOnnypDrg1ukk4scjLJ1PcH46szmFn7Q/HgGetbQ/Z/iZih8u+8wzz9Crr76awgMcaYQz/dxIIn48yvLwpOZnZTan8JP2xyPAs5b25ww/LfHDTM8tW7bQwoULCft51qhRg/r27evK1ma4bRE/ZyqfV6p91m4/3GZhTv87c9s/q2TFP6vEUuYXftHJL6T4vf/++4STHIKlBx54gGJjY3nkNKxF/DQghcgiD/c/cHTCnCJ+vPYm/ISfvQR4pYX1zc/YySXYpWWR+3UyIi7ONE5eqSmtrYQ5pfO2k7w8H1ya0r/wCIYlfhs3bgw58qtTp44re33KyM+ZyueVap+10w+31TCniJ99dSsvh3yWTj8fXA+96p/WNz8sd3j33XcJYpc/f3612L1Tp06unOWHihHx4zVPrzZO3l1ftw4nzCniZwf5f8qI5vZnB0nhx6MY1sjPuOQTTzxBb731Fq1cuZJKlSpFOOWhUaNG9Nlnn1FMTAzPMw1rET8NSCGyROPDwwlzivjx2pvwE372EuCVFrb4YaZnkSJF6J577qG3335bid0bb7xB/fr1o71791K5cuV4nmlYi/hpQBLxSybADXNK581rb8JP+NlLgFda2OJnLHJv0qQJrVq1Sn3jGzVqFI0YMYK2bt2qlj04nUT8eISjaeRnR5hTOm9eexN+ws9eArzSwhY/XLZbt27qmx9Szpw5CRtd169fn9atW8fzStNaxE8TVJBs0SB+doY5pfPmtTfhJ/zsJcArjSV+ONII3/sWL15MBw8epLZt21LHjh2pRIkSQb3C+sALFy6QHcceifg5U/m8Uu2z5orzT0eTaMysdXT85DmKyxpLdp+0zvXPPlKBSxL/eISFX3Ty05rtaRXNjBkzaOLEiVS8eHHCTNHZs2er/UCNhCOR8P933XWX+lOFChVo9OjRQS8j4me1BlLmT88P99L1e2nq8m3qhssUzUPDujagQnntPWcyPfPjtSw9a+GnxylYLuHnDD/bxc84BSIpKYly586ttkErWrSoOgrJSD/88AMNHz6c5syZozbNNksifmaEQv+eHh8ehDknzk+kjbuOqJtvU7889WzlzPfn9MiP16KsWQs/a7z8cws/Z/jZLn4HDhygZs2aqT1AkSZPnkzbt2+n6dOnJ9/B8uXL6cEHH1TfDmvVqkXjxo2jxo0by8iPV8dBrdPbw+Mf5uyXUIfqViruED3ZoYQLNr21Py4Pq/bCzyoxvciXlvhNmTJFiVPFihVVqTjKCMsd+vTpo0Z3vmnHjh3qlPc9e/aoP+Pkh7Vr19K0adOSs2F9IGaK/utf/6IPP/yQxo4dSxgNYjs1TKJZv359ijLXJZVO/v9JPWvxSIi1pwms3XmcFm44pO6heP7s9OidN1K+nFk8fU/ivBAQAs4SiI+PT3WBkOK3Zs0a+uSTTwjih0XtlSpVUgUcPnxYhSyPHDlCxYoVS1EoJrlkz55dbYsGMZswYYL6vX///sn5Ll26pJZM4B9jKQXKDDaBRsKevIaRHt4c3Qxz+tNOD/x4LYhnLfyEH48Azzqs2Z4vv/wyDRo0KOCVEa7ctGlTwN+qV6+uBLNq1arUokULwinwzZs3p8TERPU3hDl/++03lefrr7+mrl27JodJAxUo4udM5fNKtc/arHN0O8wp4mdf3aIks/q192rWSxP/rDPztfAqv5AjP8zKxEiuXbt21Lt3b/Utz0gIdwY79WHp0qWEw26RWrZsqUaJyJsrVy4lgDj9HWVhsgv+gTi2atUqaA2I+EVn48RduzGb04yuVx9us/ty63fhxyMt/Jzhp/XN7/Tp02rpwtChQ+n555+n3bt304ABA6hu3bpBvcLaQBx5hJmewdKxY8fU1mlmScTPjFDo37348EQyzCkjP157E37Cz14CvNLCCnsal2zTpg0tW7aMFixYQPfdd5/6M77P4TudG0nEj0fZa+IX6TCndN689ib8hJ+9BHilhS1+xro9bGqNvT0hgBj5YeYnZmhigbrTScSPR9hL4pcWwpzSefPam/ATfvYS4JUWtvhhNiZmdOKb3yuvvELY4Prhhx+m9u3b09GjR7XCljzX5Tw/Lj8viF/hYiVdW7RulacX+AWaym31Pp3KL/x4ZIWfM/y0vvnh+9748eOVBzjIFvt64iijLVu28LzStJaRnyaoINnS+sPz1Tc76b01Pyfvzen0onWrNNM6P/HPao2mzC/8opOflvjhTD+s+cOMTaz3wxKFDh06pNivk4cvtLWIH49uWn6402KYU8J2vPYm/ISfvQR4pYUd9sRlFy1aRFj24J8KFChADRo0oKxZs/K8M7EW8ePhTYvil5Zmc5rRTYv8fH0W/8xqMPTvwi86+WmN/AoXLkwnTpwISKhmzZpqOzInBVDEL301Tv/ZnA80vIHaNrmFd5MOWkvnyIMr/IQfjwDPmjXy69y5M3355Zfq2CEsSsdenFiwfuedd6q/ffrppykWwPNcTW0t4scjmpY6n0BhzrMnj5NM2Ai/jtNS/Qa6C/Ev/LqFpfBzhp/pyM9Y6oC9OV999VXlxUsvvaSOKDp37pya7Yn9O3v06MHzMIS1iB8PbVp4eEKFOdOCf6EIi3/eb39Sv7w6TI/8TMUPN41RHo4feuuttyhLlizqjL5s2bKpExuwdyfCnrfddptjdEX8eGgj3XmbLVqPtH9mdMU/M0Khfxd+wo9HgGfNCnvOnz9fjewggEg5c+ZU5/Nh2zMsfkdIVL75pT4yg1dl9llHsvPRmc0ZSf90KIt/OpSC5xF+wo9HgGfNEj9cGovdN2/erDa6rl+/PsXGxqpJMNikOnPmzDzvTKxl5MfDG4nOx8pszkj4Z4Wo+GeFVuq8wk/48QjwrFnid/z4cZo3b546kd03vf766yr86XQS8eMRdrvzMQtz+t+N2/5ZpSn+WSWWMr/wE348Ajxrlvg1bdqUPv/881Qe4NQGfA90Oon48Qi72fnohDlF/Hj1KfyEn70EeKW52b+E42nY4mectN69e3c12xPhTiPhxHY3kogfj7IbjdNKmFM6b159Cj/hZy8BXmlu9C8cD8MWP1z0nnvuURNaFi5cyPEhbFsRv7DRKUOnG6fVMKd03rz6FH7Cz14CvNKc7l943gXv/7SWOtSuXZu++eYbNcuzYMGCyb7s2LGD4uLiuL6Z2ov4mSIKmcHJxhlOmFM6b159Cj/hZy8BXmlO9i88z65bs0Z+2MT6t99+S+XHxx9/TG6EPkX8eE3AicbJCXNK582rT+En/OwlwCvNif6F51FKa5b4GUVhXR82uPYd/dnpZLCyRPx4lO1unNwwp3TevPoUfsLPXgK80uzuX3jepLZmiR+Mn332WcJidyTs6Tls2DC6/fbb7fYzYHkifjzMdjZOO8Kc0nnz6lP4CT97CfBKs7N/4XkS2Jolfgh7Qvjw7xw5ciSL4LFjxyTs6cKEEm6DsKNx2hnmlM6bW6N6YR17rxJ+aXa0v/Cvbm4p/pkzCpXDq/xMJ7ycPHmS8uXLRy+88AINHTpUMcD5fu3bt6etW7dSjRo1eOQ0rGXkpwEpRBZu40SYc9L8RMK/47LGUs9WNajpLWV4TvlYc/2zzZEgBYl/PMLCT/jxCPCswx75Gac6dO3alaZNm0YZM2ZUpzog7Ll3714qV64czzMNaxE/DUgOid9nWw7Q1OXbCCO/MkXzUL+EOhRfNA/PIT9r6Rx5OIWf8OMR4Fl7tf2ZjvyABZtav/POO4oQljtgg2uEQD/88EMeNU1rET9NUDaOXCB2ED2IH1LTmqWpZ+uaauRnd/Lqw2M3h3DLE37hkrtuJ/yik5+W+GEz68WLFyuxw5ZmnTp1UuKXN29eHjVNaxE/TVA2iZ/TYU5/N6Xzcbd+eVezbi31a52Zr4Xwc4aflvgZb0cQPqSYmBj17ypVqqgwqNNJxI9H2MrD40aYU8SPV5/CT/jZS4BXmpX+hXel8KzD/uaHy+Hw2smTJ6e6smxsfR2JVyvft0LdDHNK5x3eQxzMKj20P3uJWCtN+FnjlV6eX9ORn7GxdXx8PPXq1SvFSA+i6PRZfgAtIz9nG6fbYc708vDwasU+a+m8eSyFX3TyMxU/YKlQoQK1bNlSneoQiSTix6Me6uGORJhTxI9Xn8JP+NlLgFeaV18etMRv6tSpatRXq1YtdbqDkf73v//JInePhj0jGeaUzpvX2Qg/4WcvAV5p6Vb8/v77bypSpAidOHGCChUqlCLMuXv3brXji9NJRn48wv6NM9JhTum8efUp/ISfvQR4paVb8bt27RrlyZOHHn30UUthT9hhiYTZkUd//vmnypMlS5agNSDiZ1/jTAthTum8efUp/ISfvQR4paVb8QOWjh070s6dO2nw4MEpRKpdu3aUKVOmVORmzJhBEydOpOLFixN2iJk9e3bAkyAOHjxIVatWJYRPb7vtNhE/XhsMao3GWbhYSdcWrVu9Da8+PFbv06n8wo9HVvhFJz+tb36FCxdWYU//FGipg7EdWlJSEuXOnVstkyhatKgSTt906dIltVD+wIED9Oabb4r48dpfSOuvvtlJH2044tjenFzXpfPhERR+wo9HgGft1fanJX5r1qxR5/j5p2bNmqUa+UHM8Pf9+/er7FgfuH37dpo+fXoK86effpqaNm2qfh8+fLiIH6/9BbVGmPPtpVvowqWrju3NyXXdqw8P977tshd+PJLCLzr5aYkfvt0hlLlv3z5FCd/zMNll4cKFqSa87NixgxISEmjPnj0q76xZs2jt2rVqU2wjLViwgJYsWUIzZ86ku+66K4X4rV+/ntatW5eiNtYllU7+/0k9a/FqKkqsIXaLNhyixL2/qzuuXb4Ata9XirJldn5HnihBLLcpBISARwhgnbp/0hK/Vq1a0ccff5zKGBtc+8/2hFBmz55dCWSGDBlowoQJyq5///7J9vXq1VNh1Pz589M333xD5cuXV98Fb7311oAoZcKLtRbmP5uzbZ0S9MBdta0V4mJuefPmwRZ+wo9HgGft1fZnKn7GN7xx48bR0qVLqU2bNmqXlzlz5tDmzZuVwPmn6tWr05QpU9RklhYtWtDIkSOpefPmlJiYqP72xx9/0MWLF5UZTox48sknVbkQzUBJxE+/cQaazUkX/qRAbz76pTqb06sPj7NU9EsXfvqsAuUUftHJz1T8MIKD2GHkli1bNtq2bRu98sorVLlyZRX6vOmmm1KRg0h26dJF/R07w0AoIZK5cuVSAlixYsVkG4wqhwwZIt/8eO1PnbcX7Agiebh5cIWf8OMR4FlL+3OGn6n44bIPPfSQ+nY3d+5ceuCBB5I9CRT2NH48f/68Ov4IMz25SUZ+oQmaLVqXh4fXAoWf8OMR4FlL+3OGn5b4YabnqlWr1OzMefPm0ZYtW9TavwYNGvC80rQW8QsOSmfRujw8mg0tSDbhJ/x4BHjW0v6c4aclfrxL861F/FIztLI3pzw8vDYo/IQfjwDPWtqfM/xE/HhclbXbjdMszOl/S277ZxWp+GeVWMr8wk/48QjwrL3a/kT8ePXuuvjphDlF/GyoVJ8ivPpw20sh/NKEX/jsIvFybdVbr9avlvjhZIcPPviAvvjiC2rcuDHFxsaqXVywfZkbScKeFHI2p1kdeLVxmt2XW78LPx5p4Sf8eAR41sHan5b4jRo1ikaMGKE8wB6dxg4sEMOYmBieZxrW0S5+VsOcMvLTaFQWskjnbQFWgKzCT/jxCPCswxY/jPowwsN6PRxki6ULWNv38MMPq+3ObrzxRp5nGtbRLH7hhDlF/DQalYUs0nlbgCXix4Ml/FzjZzryu3z5sjrA9qWXXiKcvYcF740aNVI7t+BIolKlStnurH+B0Sh+VmZzmlWAdN5mhEL/LvyEH48Az1ranzP8TMUPlzX29syZM6fyAovbIYA47cGNFG3ixw1zysjP3lYpnQ+Pp/ATfjwCPOuww564LPbixAkM2OHlhx9+oLp169Jrr70WcGsznpuBraNJ/OwIc4r42dsKpfPm8RR+wo9HgGfNEj9sUo1ZnsaenCdPnqQ33niD+vTp48qMz2gRv4kfbSKIH1LTmqWpZ+uaFJc1llfzEViHaNVh6RytEkuZX/gJPx4BnrVX21/IsCfCmp988ok6oQFhzkqVKilKhw8fVptVHzlyhIoVK8Yjp2Gd3sXvxMlz9OKsdeqkdaR+99empreU0SCjl8WrjVPv7pzPJfx4jIWf8OMR4FmHNfJ7+eWXadCgQQGvXKtWLdq0aRPPK03r9Cx+G3cdoYnzE9U6vkJ54mjoQw0ovmgeTTJ62aTz0eMULJfwE348AjxraX/O8As58sOG1jictl27dtS7d2+1sN1IWP4Q6Cw/npuBrdOr+E1bvo2WrN+rbrpupeLUL6GOLWFOf4ry8PBapfATfjwCPGtpf87w05rtCQGcMWOGWteHhDP+cJbfwoULU53kznMzOsTPP8z5aKsa1LZ+eSfQqTLl4eGhFX7Cj0eAZy3tzxl+WuJnLHXwdyHUeX48d1Nap6eRnxthThn52dn65OWBS1M6bx5B4ecMP1Pxu3LlitrLc9y4cYQT2tu0aaMWumPCy+bNm10JfaYX8XMrzCnix3tYhJ/ws5cArzQRP2f4mYofQpwQu/79+1O2bNlo27Zt9Morr1DlypVV6BNbnTmdvC5+boc5pfO2t0VK58PjKfyEH48Azzqs2Z7GJR966CGaNWuWWuT+wAMPJHsiYc/rKEI93JEIc4r48R4W4Sf87CXAK01eHpzhZzryw2Ux63PVqlXUtGlTmjdvHm3ZsoU6duxIDRo04Hmlae3VkV+kwpzSeWs2LM1s0vloggqSTfgJPx4BnnXYIz+IHjawbtKkCZUuXZp+/PFHOn78OH333XfUo0cPddKD08lr4hfpMKeIn70tUjpvHk/hJ/x4BHjWYYnf6NGjafjw4erK2NQa6/wWLVqU7MmpU6coV65cPM80rL0kfmkhzCnip9GoLGSRztsCrABZhZ/w4xHgWYclfiVLllRXHThwIE2cOFF927rzzjtVuDN//vz02GOPUaZMmXieaVh7RfzSSphTxE+jUVnIIp23BVgifjxYws81fiG/+WEHl2HDhhFGgGPHjqUhQ4bQ2bNnKS4uznYHQxWY1sVv87e7adbaQ8l7czq9aN0qfOm8rRJLmV/4CT8eAZ61tD9n+JmKH4QPAjhhwgR6+umnCSe7u53SsvghzPnqhxvowqWrju3NyeUtDw+PoPATfjwCPGtpf87wMxW/mjVrqvP7tm7dShs3bqQnn3wy2ZPx48dH9YSXtBrmlLAn72ERfsLPXgK80kT8nOFnKn6hLhutE178Z3O2q1eKurepx6shB63l4eHBFX7Cj0eAZy3tzxl+IcXv119/DRnmxFl+bpzskJbCnoFmc9KFPyk+Pp5XQw5ay8PDgyv8hB+PAM9a2p8z/LQWufMuzbdOK+IXLMwpjZNXx8JP+PEI8Kyl/UUnPxE/jXo3W7QuD48GxBBZhJ/w4xHgWUv7i05+In4m9a6zaF0enuh8eHh3bZ+1tD8eS+EXnfy0xA8bWA8YMIBWrFihFrZjr8+EhASqVq1aUGo4DQKH4IZaE3jy5EnKmzevKflIhT11Z3PKw2NahSEzCD/hxyPAs5b2F538tMSvQ4cONH/+fEVo8ODBlJiYSDt37qRDhw5RlixZUpHDqe/YEaZ48eKE8wBnz55NBQsWTM73ww8/UOfOnals2bJ0/vx56tKlC3Xq1CloDbgtfmZhTn9H5eGJzoeHd9f2WUv747EUftHJz1T8jMNsR44cSefOnVNn+9199910++2307fffptq9GfkT0pKoty5c1Pfvn2paNGiSjSN9Oqrr6q/4Xik1atX0zPPPKPKCpbcFD+dMKeIH+9hEX7Cz14CvNJE/KKTn6n4Xb16Ve3fiRMcMMrDPxjFYaszhC3z5MmTgtyBAwfUBtj79+9Xf588eTJt376dpk+fnorwlClT6O2336auXbuqsGqkxU83zCmdN+9hEX7Cz14CvNJE/KKTn6n4AQtGZhit+SaEKnHArX/asWOH+h64Z88e9RPyrF27lqZNm5YqL7ZMW7BgAWXPnl2dF4i0fv16WrduXYq865JKJ///pJ61eDUVwPrPM3/RtE9/pCN/nFe/YtF6oyqFbb+OFCgEhIAQEALuEwi0DltL/LCfJw6wXbhwoRrR1ahRQ4UzIVr+CZNc8HdMeMECeAgcUv/+/ZOzLl68mGrXrk1YJI/wKCa9HDlyRP1/oORk2DOcMKe/j/LmyGvMwk/48QjwrKX9RSc/LfHr1q0btWjRglq1akU5cuQwJVW9enVCSLNq1arKDt8LmzdvribK4G+jRo1S4dMRI0bQrl271Anx2E0G3xPdFL9ww5wifqZNwFIG6Xws4UqVWfgJPx4BnrVX25+W+BUuXJhOnDihCD3yyCNqpmajRo2CnuW3dOlSNYMTqWXLljRnzhw1CsTBtxBAjCR79epF+/bto8yZM9OYMWPUd79gye6Rn9XZnGZNw6uVb3Zfbv0u/HikhZ/w4xHgWXu1/WmJ3+nTp9V3u5UrV6pvdBDCQoUKESa3BAp9AiWWMGDja8zqDJaOHj1KENaYmJiQ9O0UPzvCnDLy4z0swk/42UuAV5pXO2/eXdtn7VV+WuIHTAcPHqTPPvtMLXSHACJ57VQHu8Kc0nnb9+CgJK8+PPZSCL804Rc+O2l/PHZe5qclfg0aNFCzMJEw4sM3wI4dO6qJL24k7sjv3MXL9OKsdfTdT9dDt3aftC6dD68VCD/hxyPAs5b2F538tMQPO7E0btyYHnzwQbW4Hev+3Ewc8YPgQfgggHFZY2lo1wZUNb6Qre7Lw8PDKfyEH48Az1raX3TyCyl+mJCSP39++v333wOe2wdRNPtex8N63Tpc8Zv72fc0Z/VOVUaVMgVp2EMNlQDaneTh4REVkN65KQAAIABJREFUfsKPR4BnLe0vOvkFFb9Lly6p5QiYiYl9Oo3Znr6Y0uo3P/8w5wNNK9ODzarwajiEtTw8PLTCT/jxCPCspf1FJ7+g4odtzcaNG0d33HEHbd68We3r6Z+wJRmWKjidrIz83Ahz+t+vPDy8FiD8hB+PAM9a2l908tP65ocF6/jmV7FiRUUJe3q+8cYb1KdPH7V5tdNJV/zcCnOK+Nlb49L58HgKP+HHI8Cz9mr7Cyl+a9asoU8++UTt1oJF7ZUqVVKUDh8+rBauh9qSjIczpbWZ+Lkd5hTxs7N2ZakDl6ZXOx/ufdtlL/x4JL3KL6T4vfzyyzRo0KCAZGrVqkWbNm3iUdO0DiV+kQhzivhpVpxmNq8+PJq353g24cdDLPyik19I8cOJ7dioul27dtS7d291VJGREO7ElmVupGDiF6kwp4ifvbUunQ+Pp/ATfjwCPGuvtr+g4odTGd577z2qWbMm7d69W4mgf8L+nbGx9i8d8L+Ov/hFOswp4sd7WISf8LOXAK80r3bevLu2z9qr/Dy31GFMz8aOL1q32iy8WvlW79Op/MKPR1b4CT8eAZ61V9tfUPHDyQvY0qxUqVKEDagvX76cilC9evWCHkPEw5nS2nfkZ/zi5KJ1q757tfKt3qdT+YUfj6zwE348Ajxrr7Y/raUOQIOZn1jugBPXsfMLjjXKkycPj5qmtb/4Ob1oXdOt5GxerXyr9+lUfuHHIyv8hB+PAM/aq+1PS/wGDhxI//nPf9RZfHXq1FGk8C0Qp7u7kXzFD2FPu/fm5N6DVyufe9922Qs/HknhJ/x4BHjWXm1/puKH8GeRIkWoQ4cOatLL9OnT1Ro/bHKNcCh+czqZrfNz+vpm5Xu18s3uy63fhR+PtPATfjwCPGuvtj9T8cNyh6xZs9LChQvp8ccfp3LlyqlF79WrV6cffviBKlSowCOnYS3ipwEpRBavNk7eXdtnLfx4LIWf8OMR4FkHa3+m4ofL4uy+efPmKQ+mTp1KY8eOJWx8jZ1e3EgifjzK0vkIPx4BnrW0P+HHI8CzZokfTnR488031aJ2bGaNw2yx6B1n+7mRRPx4lKXzEX48AjxraX/Cj0eAZ80SP1x6x44dKvR5+vRpuu+++6hu3bquLHPAtUX8nKl8Xqn2WUvnyGMp/IQfjwDP2qvtTyvsOW3aNOrZs2cKQgkJCcmhUB46c2sRP3NGoXJ4tXHy7to+a+HHYyn8hB+PAM867JEfvu2VLFlSnejw+uuvU7Zs2Wj06NH07rvv0sGDB9UieKeTiB+PsHQ+wo9HgGct7U/48QjwrMMWv6SkJMqbNy9NmDCB+vXrp7zAQvcWLVqoHWBuu+02nmca1iJ+GpBCZJHOR/jxCPCspf0JPx4BnnXY4ofLYuSHESAmu2TPnp3++9//0rFjx+jnn39WI0Gnk4gfj7B0PsKPR4BnLe1P+PEI8KxZ4vfFF19Qjx49CIUg5cyZk9555x26//77eV5pWov4aYIKkk06H+HHI8CzlvYn/HgEeNYs8cOlsdPLtm3b6OzZsyrUmSlTJp5HFqxF/CzACpBVOh/hxyPAs5b2J/x4BHjWYYkfljVgcftHH32kJrxgbV/ZsmV5noRhLeIXBjQfE+l8hB+PAM9a2p/w4xHgWYclfoMHD6aXXnop+cq1atWiTZs28TwJw1rELwxoIn48aMJP+NlGgFeQvDw4wy/kOj+M8kqXLq1Gfi+//LISwuPHj1OhQoV43li0FvGzCMwvuzw8wo9HgGct7U/48QjwrMMa+WE7s5EjR9Lw4cMJk15wnt/WrVupRo0aPG8sWov4WQQm4scDJvyEn60EeIXJy4Mz/EKO/CB+7dq1o/bt29P333+vRn4Qw/j4eOUNNryOjY3leaZhLeKnASlEFnl4hB+PAM9a2p/w4xHgWYc98gt12VOnTlGuXLkCZrl27Zo6/y8uLi5oESdPnlT2GTNmDHl3In7OVD6vVPuspXPksRR+wo9HgGft1fYXcuQ3f/58gogFS9jgOtCShxkzZtDEiROpePHidOXKFZo9ezYVLFgwuZhDhw6pUSP+BnucCj9s2LCg1xHxi87Gybtr+6y9+nDbR4BXkvATfjwCPOuwRn7hXBJih1AotkXLnTs39e3bl4oWLUqYOWqkF154gS5fvqxCqBcvXlS7xBw5coSKFSsW8JIifuHUxD820vkIPx4BnrW0P+HHI8Czdk38Dhw4QM2aNaP9+/crjydPnkzbt2+n6dOnJ98BwqH4nogT4pcsWUJPP/00/fjjj+pvgZKInzOVzyvVPmvpHHkshZ/w4xHgWXu1/WkdaWQFDc79w3FHe/bsUWazZs2itWvXEo5F8k3YKxQnwo8fP54WL15MTZo0UT+vW7dObZjtm9YllU7+30k9a1lxR/IKASEgBIRAlBMwJmn6YtASP2xt9sEHHyQvd0BYE6M7hDX9E0Z12Pwa3woxksNpEEj9+/dPzopQZ4cOHShz5sxqZIiwaKgkIz9ey/Xqmxnvru2zFn48lsJP+PEI8KxZYc9Ro0bRiBEjlAf4dofRGRLW/sXExKTyrHr16jRlyhSqWrWqOvoI3/aaN29OiYmJ6m/vv/8+LV++nJYuXap1VyJ+WpiCZpLOR/jxCPCspf0JPx4BnnXY4odRH0Z4LVu2VN/oMEq76aab6OGHH6Z9+/bRjTfemMoziFqXLl3U32E3Z84cNQrEsgYIIHaLwWG4vmnv3r1Urly5gHcp4udM5fNKtc9aOkceS+En/HgEeNZebX+mYU/MykR4Egvc//zzT7Umr1GjRmpEF+ok9/PnzxPWAZqFNHWwi/jpUAqex6uNk3fX9lkLPx5L4Sf8eAR41mGP/HDZVq1a0ccff6zO8UM6c+aMEsA1a9bwvNK0FvHTBBUkm3Q+wo9HgGct7U/48QjwrFni98cff9DMmTNp7ty59MMPP1DdunXptddeU+FPN5KIH4+ydD7Cj0eAZy3tT/jxCPCsWeKHbcjw7c8/5cuXj+eVprWInyYoGfnxQAk/4ecIAV6h8vLgDD/Tb364bOHChenEiROpPAi1tyfP3ZTWIn48mvLwCD8eAZ61tD/hxyPAs2aN/LDMAd/5kM6ePavW/JUsWVIdb5QlSxaeZxrWIn4akEJkkc5H+PEI8Kyl/Qk/HgGeNUv8/C+Njau7d++uZn/mzZuX55mGtYifBiQRPx4k4Sf8HCPAK1heHpzhpxX2XLZsmdqAGunq1atqkTpmf2IfT5z07nQS8eMRlodH+PEI8Kyl/Qk/HgGeNWvkF+ibX/369emrr74Kuhk1z92U1iJ+PJrS+Qg/HgGetbQ/4ccjwLNmid/q1auTR37YqQXf+7DMAYvf3UgifjzK0vkIPx4BnrW0P+HHI8CzDlv8cD4fljS0bt1aHUobiSTix6MunY/w4xHgWUv7E348AjzrsMUPl33qqafUovZPP/2UKlasmBzqxNZlwc7g47krYU87+Unnw6Mp/IQfjwDPWtqfM/y0JrzIOr/Q8KVxOtM4eaXaZy31y2Mp/IQfjwDPOqyR37Zt29QCd2xtdu7cuVQeDBs2TNb5EZE83M40Tl6p9llL/fJYCj/hxyPAsw5L/BDSfO655wjn+UUyyTc/Hn3pfIQfjwDPWtqf8OMR4FmL+PH4hbSWh5sHV/gJPx4BnrW0v+jkF/KbH0Z+OMYISxsCpU2bNlFcXByPnIa1jPw0IIXIIg+38OMR4FlL+xN+PAI867BHfriscY6fvwu//vor5ciRg+eZhrWInwYkET8eJOEn/BwjwCtYXh6c4Wc68pNvfubgpXGaMwqVQ/gJPx4BnrW0v+jkJ+LHq3dlLQ8PD6LwE348AjxraX/RyS+k+K1cuZLi4+OpQoUKPDpMawl78gDKwy38eAR41tL+hB+PAM86rG9+vEvaZy3ix2MpnY/w4xHgWUv7E348AjxrET8ev5DW8nDz4Ao/4ccjwLOW9hed/LS2N+Oh4VvLyI/HUB5u4ccjwLOW9if8eAR41jLy4/GTkZ/wc5AAr2gRF+HHI8Cz9mr7k5Efr96VtVcr34Zbt6UI4cfDKPyEH48Az9qr7U/Ej1fvIn7CzwYCvCK82vnw7to+a+HHY+lVfiJ+vHoX8RN+NhDgFeHVzod31/ZZCz8eS6/yE/Hj1buIn/CzgQCvCK92Pry7ts9a+PFYepWfiB+v3kX8hJ8NBHhFeLXz4d21fdbCj8fSq/xE/Hj1/n/tnQeQFUUTx4cPMYCCCRUxIEZURMWcA4KKWTFizgnFjAFFxSygBNMhKoIBI2YxoaCiqIgYUCjMYgZFUAT86jdVc7U89r3ddz2774brqbrijvdmtuc/M/3v7pntUfJT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKX2bkN2/ePDNr1qyS9/3NmTPHzJ492zRs2LAk+vqSe92cnLJe+6sd6uL2h4CsJcVP8ZMhIKud60vugwYNMn369DHNmzc3ENyQIUNM06ZNq3swd+5cM2HCBDNw4EBTv35907t3byU/2fiWrK3KRwau4qf4yRCQ1db5lw1+3j0/yK5BgwZm2rRppkmTJqZLly6mWbNmplu3btU9mDFjhunevbsZO3asadu2rZKfbGwTa+viSYRIjQcZRIqf4pchArKmc/P8pkyZYtq1a2cmT55sJe7bt68ZN26c9fIKS//+/c2kSZOU/GRjm1hbyS8RIlXeMogUP8UvQwRkTedGfuPHjzedOnUyEydOtBIPHjzYjBw50lRVVaUiv1GjRpnRo0fP991R01pU/33LiZvLkNDaioAioAgoAnUKAe6lLSzew54ccuEACwde6tWrV+3Vde3aNRX5xY2IHniRzVP1/BQ/GQKy2jr/FD8ZArLauXl+iNmmTRszYMAA07p1a9OhQwfTo0cP0759ezNmzBj7f+50p4Y9ZYOatrYqn7RIxX9P8VP8ZAjIauv8ywY/754fYg4fPtx07tzZStyxY0czdOhQ6wU2btzYEmCrVq3sZ5Afe4O9evUq2Tv1/LIZfFmr/mrr4pZhqfgpfjIEZLVDnX+ZkB9Qzpw500yfPt2e9JQWJT8ZgqFOTlmv/dVW/GRYKn6KnwwBWe1cw54yUResreQnQ1SVj+InQ0BWW+ef4idDQFZbyU+GX8naurhl4Cp+ip8MAVltnX91E7/Mwp4yOOevrZ6fDE1d3IqfDAFZbZ1/ip8MAVlt9fxk+Knnp/hliICsaSUXxU+GgKx2qPNPPT/ZuNvaoQ6+h657aULxk8Go+Cl+MgRktUOdf0p+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhoqfkp9s3JX8FD8PCMiaCFX5yHrtr7biJ8MyVPyU/GTjruSn+HlAQNZEqMpH1mt/tRU/GZah4qfkJxt3JT/FzwMCsiZCVT6yXvurrfjJsAwVPyU/2bgr+Sl+HhCQNRGq8pH12l9txU+GZaj4KfnJxl3JT/HzgICsiVCVj6zX/morfjIsQ8VPyU827kp+ip8HBGRNhKp8ZL32V1vxk2EZKn5KfrJxV/JT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKn5KfbNyV/BQ/DwjImghV+ch67a+24ifDMlT8lPxk467kp/h5QEDWRKjKR9Zrf7UVPxmWoeKn5CcbdyU/xc8DArImQlU+sl77q634ybAMFT8lP9m4K/kpfh4QkDURqvKR9dpfbcVPhmWo+Cn5ycZdyU/x84CArIlQlY+s1/5qK34yLEPFT8lPNu5KfoqfBwRkTYSqfGS99ldb8ZNhGSp+Sn6ycVfyU/w8ICBrIlTlI+u1v9qKnwzLUPFT8pONu5Kf4ucBAVkToSofWa/91Vb8ZFiGip+Sn2zclfwUPw8IyJoIVfnIeu2vtuInwzJU/JT8ZOOu5Kf4eUBA1kSoykfWa3+1FT8ZlqHip+QnG3clP8XPAwKyJkJVPrJe+6ut+MmwDBU/JT/ZuCv5KX4eEJA1EarykfXaX23FT4ZlqPgp+cnGXclP8fOAgKyJUJWPrNf+ait+MixDxU/JTzbuSn6KnwcEZE2EqnxkvfZXW/GTYRkqfkp+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhopfZuQ3b948M2vWLNOoUaOiyP71119miSWWMP/73/9Kor93t4eqP3/q2kNkI5VB7VAHPwMoatSk4lcj2KorKX6KnwwBWe1Q518m5Ddo0CDTp08f07x5czNnzhwzZMgQ07Rp02qEf/nlF3P44YebRRZZxHz11Vfm/PPPN8ccc0zREVDyq5uTU9Zrf7VDXdz+EJC1pPgpfjIEZLWLzT/v5AfZNWjQwEybNs00adLEdOnSxTRr1sx069atugfXXXed+fPPP03Pnj3N1KlT7ed4gQ0bNoztpZJfNoMva9VfbVWOMiwVP8VPhoCsdqjzzzv5TZkyxbRr185MnjzZItq3b18zbtw4M3DgwGqETzjhBPudQw891Pz333827Mn3W7ZsqeQnm4extUOdnBlAUaMmFb8awaZhWRlsil/G+Hknv/Hjx5tOnTqZiRMnWtEHDx5sRo4caaqqqqq7cvDBBxt+DjroIPt/K664ohkzZoxp0aKFGTVqlBk9evR83caT/Pfffz1Boc0oAoqAIqAI1BUEVlhhBXPssccu0F3v5MchF8KXHHipV6+e6d27t31o165dqx9+5ZVXmsaNG5uzzz7bzJ071yyzzDI2TFrs4Mv1119vLrzwwlo7ViqfbGgUP8VPhoCsts6/uomfd/IDxjZt2pgBAwaY1q1bmw4dOpgePXqY9u3bW++O/3vppZdMv379zIsvvmiGDRtmevXqZd56662iI6CTs25OTlmv/dXW+SfDUvFT/GQIyGoXm3+ZkN/w4cNN586drcQdO3Y0Q4cOtV4g3p4Lb+65557mk08+sa9DjBgxwmy55ZZKfrIxVvwUv4wQkDWr5Kf4yRCQ1c6V/BB15syZZvr06fYkZ7HyzTffmJVWWsmeDi1VdPFkM/iyVv3V1vGVYan4KX4yBGS1Q51/mXh+MigXrM0hmO222853s97aU/lkUCp+ip8MAVltnX91E78gyE82NFpbEVAEFAFFQBGYHwElP50RioAioAgoAnUOgaDIL02+UDLHLLXUUpkNZBoZyHIze/bsohlrMhPOGPuKSVJO1d9//90ePqpfv36WosS2nVY+Xn+pREkjH3L99ttvNm/tYostlquYaeXLVajIw9LIRzYnvpflOi3W/zTyVQo7nptGPnTckksuaQ8R5l1qi3wzZsyw668YBmnyRgdDfkn5Qt977z1z3HHHmdVXX93mCyWjzGabbeZ1biTJwDuLEyZMsM+GWNw7jl6FKNFYknxff/21OeSQQ2yeVfKqbrrppubSSy/NSzyTJN9nn31mjjjiCLPmmmvaA1OcGCYLUF4lST4nB/OLV3aef/55s8022+QlXiJ+//zzjx3b3Xff3cq07rrrmquuuqrWyPf333+b448/3h6E453eTTbZxL4GlVdJGt8bb7yxOsEGSv6pp54y77//vpUzj5IkH0briSeeaI2Gn3/+2SYJKZUT2bfMSfKR2IR3uBlb1shJJ51Uferflyw//fSTIZHKAQccYCZNmmR4gT1ayskbHQT5pckXynuE5513nn2f8NFHHzV33HGHfY/QV0kjA9ZI9+7dzdixY03btm1zJb808l199dU2Uw4KB0XEjRrfffedWXnllX3BVLSdNPLxviengw877DD7Lui5555rPvzww8xl4wFp5ON7ePRkJyKN32233ZYb+aWRD+OB+cerRRg3eZY08t1zzz3mnXfese8Ak9bw8ccfN/vuu28uEYg08kXxIqkGJ9GjyTmyxDONfOD37LPPmocffti8+eabNmuJy6SVpWxp1wdkt84661g9/MUXX9jfMcgWXXRRb+Kh28kAhmPx448/LkB+5eSNDoL80uQLXXXVVe2E4N8PPvjAWr+A46ukkcE9q3///tYqydPzSyMf4VDCBIsvvrh58sknzTnnnGPlzCN8kkY+hx/KEePlyCOPtAspj5JWPjDbddddbc5aiCYvzy+NfE8//bS9LYWw2Oabb244gr7zzjvnAZ81BpJy+jrDkCjNKqusYjDG9thjj1ojnxMEz2L//fc3n376qVfFXaqjafD74YcfzMYbb2x22WUXmwaSDFkYiHmUNPLh9fHaGpcYvP3222brrbfOzLhGZ8WRXzl5o4MgvzT5QtnDwgrCcyAR8Y477mh4j9BXSSNDJckvrXx4Ltdee625+eabzRNPPGEXUh4lrXzIgtGAhUeaPJ/ee6l+ppEPmTAa7rvvPmtc5Ul+aeR7+eWXbZjujDPOMA899JAdZ7zBPIybNPLhqbz++uvWe8FA5SozQvG1RT43P1CgKG5CtHmVNPixFjAI8bBIFoJHhcGTR0kjH0lLttpqKxuSJGPX559/bg0x9id9l2LkVypvdKEMQZBfmnyhO+ywg1WahBsJO2KFkGnGV0kjQyXJL418hDqZHCwaPJdSCQh84ebaSSMfZLzFFlvYMCy5Xjn0kldYNo18KET2HJZbbjnz7rvv2rAOd1X63luOwz6NfBg27DXzw/4zoU8MQLysrEsa+fCaOSAEKVNIaE8Ia6211spaPHsILCnnMEL8+uuvZvnllzfsry299NKZy1XO+sB4WG+99WyeY0gFgz/O+8lC6LT4sZ8LIbNvzwUHPh2QaL+KkV85eaODID86HZcvlBffP/74Yxviwf1n0l5wwQU2VIa14XuzP0mGSpJfGozuvPNOOzF9GgXlLLQk/C666CKrHC+//HKb+o7w4vfff5/LnlAa/FjIGBAUvILTTjvN7LPPPrmd6k3CD9w4CEHYmC0AvAR3tVg541TT7ybJxw0vd911l93P/fbbb613VZvGl37j3d97770VWSNJ+N100002qsW2CgdKSAmJcZjX/m6SfMiFfESVOPTHbT5ESbIoheRXk7zRwZBfXL7Qjz76yGZ++eOPP+wid/svWGy43csuu6xX3JNkiJIf8nCAI8+SJB+WI5vm0UJoYu21185FzCT5IDxCOmyW451ec801VoHnVZLki8qx1157mYsvvji3PT+enSQfe0Lsu6EM+eFgE3LmVZLk4/ADl1sT9sQLQ748T/MmyQdOeKd4pJW4RSZJPry8vffe2zDOFMLunP7MqyTJByGTsxmPFOMGQsrqMB3kRxSG082UmuSNDob86GBSvlBOTGFJcuglq32EJBnymojFnrMwyMfiRgEVu+IqS4wXBvymTp1qTypWoqTBr5LvmaaRrxK4uWemkQ8dh9JPyomcRT/SyOdC7Vnp4DT9SpM3OijyS9Np/Y4ioAgoAoqAIpCEgJJfEkL6uSKgCCgCisBCh4CS30I3pNohRUARUAQUgSQElPySENLPFQFFQBFQBBY6BJT8Froh1Q4pAoqAIqAIJCGg5JeEkH6eGgFehKWQM7SwcEqM4/c+8/ylFky/6AUB8sLyw2sKoRVe+nd5JvN6Ly40jOqavEp+FRxxUlGRkaawkAGDF77jynPPPWffpSHNFi9YSwrvxpApwhXeISI1FsnBa1J4CZaXwEkz98wzz9ik1LwLx9F23rnkHa9bbrmlJk1X1yHp9YMPPjhfG6Ro4wV+skoUK1F5RALUwso16RuZdCCDchKH8+7bDTfcYHiVgldRyim8i9ukSRP7Hh0v47vfeSE6jwJGvPPIS+yk38q6gC/X6pCEo7YUcm6S+Lkm41db+uBTDiU/n2iW2RYJfkmNxdVC2267bXVtyM1dS1PYpCM/UoGREV9SID/Kqaeeal+cJQMHhRRF7rNy2idlGu9akgn/5JNPtoTE1TAQImmHyOghJWyuZCKrPURKNhgwfOWVV+zLv6Uy10TlqeT7R+Xgmfa7NekbRhfjUo5yhkBIqHzJJZeUna+ROUXyCeYG5Od+zysRBEmqyTZC4m+uo8q6gC+3vOR160Ka/mBQk+yctV6p90DTyJnXd5T88kI65jmO/MjUUHivGQl/UfBkquGOQpLtkv0kSn4ofDLjk18S0oFYsKS5LuaBBx4wt99+u02DxL14pHorDPdAcGussUa19e8ywOCR8hIt6btee+01G8bkrkSXtR3PixRaLOyddtrJ5lQlkwPZWMgviYJBVjIwdOzY0cpCqjLyitIW6aP69etn83jiSTzyyCP258svv7Spm3gm7fI7KeuixZGfS5iLguF+s5YtW9osPyROxkMhzRKe6GWXXWYvno3KQ4o3vpf0rLi2tt9+e3uPGv3Ac2J8GBvyaXITBfk+MSLAg7yVKHuXBxRZGAvaJQUfNy5wJyBhRDxkxhOSwPsmiTEYMJbcwoHiph3unHP3CEJCcX2L4hXtA9lfeM4GG2xgIw6O/LjZg/FkHnEHYJ8+faxBRj/JY0o4G0+NHJx854UXXrB5V7nSiXGkHQw2MvIwx8Cf64roV4cOHWx7jFcc+ZF3lPlE2jPGizYw7DBkogq6UBbmYlVVlf0BH5JkYwwyzzbaaCP7/9zthlzcHEHfSYGI50PS+7j1wbOZG9zjx7jyN94SdWkXz/HMM89c4LmMKeN21lln2fWJIctY0f9C8kvTD9qjxOHLXGeesW6Y4ySSZgwYT4gN2ekzGJJhhT6gB8jjS10MRcgPAxAMWXfoFzLF5JktpoJqt/rRSn4VHAVHfihMripxhfvYUIBMWixjsvVjdUOIXJbrJjeKhgXJJMbDuuKKK+yiZqKjOLnoEiXNImLRF6ZsgvwgOTwpckKefvrpdkGRRgmljRzU4WYAwqx8j8W22mqr2aS1yAFhnnLKKfYZztpF8UE2KH+UNjK6sCcLG9JDCffs2dOGKslwwIifAAAJAUlEQVTDyndZnCgOvF6IAsWJoo8jPxY8Sg+iRnGjlAipuiTJKEOIAowIdSGjk4frapKeBenEtYUHQTo4cEJZoOxI5bT++uubDTfc0GKEhY1R4lI7MZYoGTLj813GHUWNDMjFODMOkBDGC7KDM4QD0UBEJGsnqTGF8UapQTq0i+fu+hZNB0cfGCueyfU35FskHSDpxaLkBwmTWo4xh4SYCyhInkv6O+TkeWTNcGFPjA7wgbwwuhgD8OZvQtM8jww9zN9hw4aZ3XbbLZb89ttvP0tGGH8YgWRnYv5y71+0QMpRWQil833mPH0fMWKE/Rc5WSskRmdskIW5i3Hiwp4Qetz6aN68uTXgIEDmHXOM8SEFG99nPTBGcc+F7Ogzxh79hoRY14Xkl7YfhJXj8KUPrVq1svmM+Z18n+DFc1gDyExhnTGejDNzE/kZIwpji8HKWKIvHnvsMTtGXFvUokWLCmrEfB+t5Jcv3vM9zZEfCoOFQmGRsmiZiExKssyj4FC2kCDehiM/NvEPPPBAe6Ej1i0KlQXBvgqLAOKiPRQCi6VQoRTu+aHkuNkdj4/f8dS4GsdldKd9FhBKgsLf7A9y+zqKOhrqiYbiUETRPT8UAKREv1iYt956q7Xy3XUkfM6t0Sht9oqQxRXn+RUOG3tXhLOw2EmcjAJ3igD5scpdGJbnJj0L4ijWFp4ThM0zUe54FHwXpYR3g5d81FFHWYUDsYEFihnioa9Y2mB3//33W+wcVow1RIJyQplh0BDahYSYK05x4n3iiWDc0FaxsCeEybjffffd1kjhbxIho6BJigx5QhqMJ2QLQeF1v/HGG3YOghmyMA7MleieH0TAPHO5Yfl+o0aN7BjgyVHPtQVBQQxxnh/Kmz4wP6jHfGDcMMQKyS8qC1gwr+g7EQO8bbw0bl1nbDHAUOiQEHOBOeHI79VXX41dH3ibEAlrAAOBaAo/Rx99tO077WCcxT2X8ceAwHB0N5IUI780/cAYisOXZNGQL0Yw85DzARiSGIGMM9gx18hzTLSH70LYGJnMPz7j+dRjLoI3cwnSZ/1WIqVgpVSwkl+lkDfGKjT2/OLCnljEWKxYb1i5JKQuJD8XUoSgsHYpWN+EzFBqLFiX/4/wIcosWpznh5LAi0KhQJYscgiVmwsIH6EAUE4sDhQHCxAvAq+E0CbE67wJt89RivywOJENj4jFymKE7FjEhEwJYbrC96L3gUXDnihbR2RYvSx2Z0SgPMGBxV5IfnjBSc8ijFWsLZQO+KDwCJ3SD5QPHiFEDW6QG0SGUsYK5/46SAwZCcvxOZiBnbPYIT+IjcJenMOddpkreP6EvOiz84I4vMAcccQe3c9k/jCPGF/CbXhuzCU8VEgR8qMeShGlHr34FpwxrDBqnNEUJT9CbHgP5JmEMPCImWuQIOF66tJP9vdKkR/GA/MfXKLzoXBPirnpZOHEKaeGGQMiDK7QJ0KU1KXfhP4ISfOM6IEXDJJi68MdQGM8GTtIwe3HM/eLPZf5xnpye6h4bpB9nOeXph8YDnH4IjvRAeelsX6YP6xJxpm/ncHo1qC79shta7DeXEQIL5c1QuECWoyiulKU/Co40qXIz+3HEbJjEhOrx3plT815flh/WKlYuSgCFqkjD8JukAxKg99RBij8QvKL7vlFP+MZHG7A08OixVJ0e1ooScJUWNgQMGTJgovz/FhQkEjU80MJE46juIMqEBVhTuSnv3gEeId4v9FSuOfHvg5WMqFMPFy8LzxX2kCps9fEaxZ4Hih65IHYkp5FqLdYW5BHEvlx+AcFCHGh3CF3yAjliCVejPwgU77P5xgsGBmQJoYPmOFpgz19xftibNhTc32LKi935xskBAFBSk5Bu7AnXh5hQMYIzwHvi70iZMVzZdwgeUqU/Jh7EA3hb05PulAnxhBy0U9C3pAkBAhBFzvwQh8wKCjOkCpclszjqCwcnmIsIVvqIzfhYELmhIEhCQrhSAzMKPlhiBRbH7SBvBgxzGuMQmdUsk9b7LmQD0YVxMQpT8awmOeXph8YEnH4EoLFS2edYNAQYsfTxKMHY8gPAxTD0J0PIBLBWsD4ZU5AfkQmOA8AwTPezA3mUF3a91Pyq6Xk57wjxCMchaWKQiV84V51YFFDHlipFJQkh0kIIxGKY/+GgvIj/OMIx3W58MBLFApCZBAbyszJgGVJHRYge1sUQrYQFaQU3UdCGaEQKRzKYMFDQFizFJQ4fcKLwUugoCix0nkmyifupnn3qoNb4M4LQA7CX5AGio769BurFnywwJ08hDTTPIswWVxbKB1HfhgHWP08A2WHl+o8Zrx1rG1X2MtjXAmvISfKCWWN4mFs8fwIZeO9o7zxZFDe7PXhfbGnCek5fCB5FG4Ua/oWLeyrYiBRwMQdyIi+6sDcgBzdPEKBE3IrJBxHfngSEBmk5yIOYE3bGA0YWihZDAyiAxgmYFHqVQfmDs9nDyrumqNCWSA87u50z8cQQ5HjmbkQc5R8HPlhTLnDL3HrAyKAXJj7eEWEBDE8uT4No6fYcyEfLtQmRMzcYB5gvMV5flHyK9Ye4xWHL1424+7Ine+xFjFCXATBrQ0MZaIPjAGFfmEwEC3AOCGci7wU+ks7Ib7DWVMVruRXU+RyqEeIigUU3fOKeywWHJZe4clIPB6Ihz2dmhzvRxG7tgvf68LjwsKFaIsVng85ofTSFp5JeI+DDzV9GZlQHAqosH6hPGmeVayttP0htAiGHH5JGkfaxNMnpEW4Dhw4AYk1jlVOgdz4f8ieELUrpbDG08WL4TBDKUxplzlUjgJEkbIPjWHl5hh/442kfReQcYAgIWHmVDnPp1/gUJO7OyXrI+65hKkhQdZbuXO3WD/i8GXMGVOMINZfUuIICA58CnEFd6IQrLVyME8792v795T8avsIqXx1CgEX/o12mpAaXsXCWtxBHjxLPFktikAeCCj55YGyPkMRKAMBwp+EOfFo8PzSelBlPKJWfZVwKZ4xodOaRChqVWdUmGAQUPILZqhUUEVAEVAEFAFfCCj5+UJS21EEFAFFQBEIBgElv2CGSgVVBBQBRUAR8IXA/wEnbzwhUOZURwAAAABJRU5ErkJggg==",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "cf6b3c45-1031-4ab0-9398-94d731117e2c",
+ "metadata": {},
+ "source": [
+ "You can also view rows in this dataset as a waterfall chart as follows:"
]
- },
- "execution_count": 20,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "linker.roc_chart_from_labels_column(\"cluster\",match_weight_round_to_nearest=0.02)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "3a7de8fb-a7e3-4322-b718-3e3cf9803e9c",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
- "config": {
- "view": {
- "continuousHeight": 300,
- "continuousWidth": 400
- }
- },
- "data": {
- "values": [
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 0,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 0,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 0,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 1,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 1,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 1,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 2,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 2,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 2,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 3,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 3,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 3,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 4,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 4,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 4,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 5,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 5,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 5,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 5,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 5,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 6,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 6,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 6,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 6,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 6,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 7,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 7,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 7,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 7,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "me17 4nw",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "maidstone",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 7,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1175.0185002272876,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.198467756325595,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 8,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 8,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 8,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 8,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 8,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 44707.80551426446,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 15.448239112381744,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 9,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 13.63690070072612,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.769443890879799,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norman",
- "value_r": "norman"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 9,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 2.640131796652814,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4006099514137826,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "macdougall",
- "value_r": "macdougall"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 9,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 9,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "dn32 0sd"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "north east lincolnshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 9,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.43356375526865354,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.205683938471788,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "painter",
- "value_r": "painter"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 44707.80551426446,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 15.448239112381744,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 7.778809222513577,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 2.9595493248441493,
- "m_probability": 0.07354167451568606,
- "record_number": 10,
- "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
- "term_frequency_adjustment": false,
- "u_probability": 0.009454104402360242,
- "value_l": "william",
- "value_r": "willie"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 0,
- "m_probability": 0.07354167451568606,
- "record_number": 10,
- "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
- "term_frequency_adjustment": true,
- "u_probability": 0.009454104402360242,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 10,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.1169788370454212,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.1596018519099875,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 10,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 3.7243862718894305,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.897002708675377,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "l37 5aa",
- "value_r": "sw1p 4lg"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 10,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "wales",
- "value_r": "wales"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.8006442152248647,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.8485131509070939,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "wales",
- "value_r": "wales"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9590935537162004,
- "value_l": "association football player",
- "value_r": "association football manager"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.10073668618440759,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9590935537162004,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 8410.342139625365,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 13.037948776355417,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 0.2943290699918006,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -1.7644980549473468,
- "m_probability": 0.28724905116399735,
- "record_number": 11,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9759452274693747,
- "value_l": "william",
- "value_r": "will"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.28724905116399735,
- "record_number": 11,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9759452274693747,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 11,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.1169788370454212,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.1596018519099875,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 11,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 3.7243862718894305,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.897002708675377,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sw1p 4lg"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 11,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "association football player",
- "value_r": "association football player"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1.490609683099434,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.49 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.5759025366451791,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "association football player",
- "value_r": "association football player"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1997.8309788652232,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 10.964218817608423,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 12,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 333.4770408553619,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 8.381443628293102,
- "m_probability": 0.1284849300847964,
- "record_number": 12,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.0003852886836084281,
- "value_l": "bevan",
- "value_r": "brvan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.1284849300847964,
- "record_number": 12,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.0003852886836084281,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 12,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-81",
- "value_r": "1852-01-81"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 16.387299596313493,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 4.034506232425312,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-81",
- "value_r": "1852-01-81"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 12,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "ol3 7ne",
- "value_r": "ch42 0ns"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 12,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 64921.415925324545,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 15.986406844718264,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 13,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "ed",
- "value_r": "ed"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 6.225541624244533,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 6.23 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.638199357601547,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "ed",
- "value_r": "ed"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 13,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "thomas",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 13,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "None"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 13,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.8677289824782918,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.204683578355832,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 13,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 3.6012884304497295,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.8485131509070938,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 6486.8228086590925,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 12.663296315961755,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 14,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 14,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 14,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-07",
- "value_r": "1852-01-07"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 16.387299596313493,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 4.034506232425312,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-07",
- "value_r": "1852-01-07"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "m9 6ns",
- "value_r": "ch6 5nz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "wales",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9590935537162004,
- "value_l": "artist",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.10073668618440759,
- "record_number": 14,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9590935537162004,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 2782.8094472485195,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.442326408235818,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 15,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 15,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 15,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.38109999061194166,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3917585222767863,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ch42 0ns"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 15,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "wales",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 15,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3633.189784025681,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.827021013289533,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 16,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 16,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 16,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.38109999061194166,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3917585222767863,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ch42 0ns"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 16,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "wales",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 16,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3633.189784025681,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.827021013289533,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 17,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 17,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 17,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.38109999061194166,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3917585222767863,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 17,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "wales",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 17,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3633.189784025681,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.827021013289533,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 18,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 18,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 18,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.38109999061194166,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.3917585222767863,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1852-01-01",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 18,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "wales",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 18,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3633.189784025681,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.827021013289533,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 19,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 19,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 19,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1852-01-81",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 19,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "ol3 7ne",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3303.4930368139717,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.689776588431448,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 20,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 35.79686433940606,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.16176131365856,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "irwin",
- "value_r": "irwin"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 20,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7083280430044135,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4975104345670039,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bevan",
- "value_r": "bevan"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 20,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1852-01-81",
- "value_r": "1852-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 20,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "ol3 7ne",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "wirral"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "visual artist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 3303.4930368139717,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 11.689776588431448,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 21,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 21,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "barlow",
- "value_r": "barlow"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.708320574304762,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.7725787288007404,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "barlow",
- "value_r": "barlow"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 0.0037043486234159474,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -8.076564404852965,
- "m_probability": 0.0033233936977775237,
- "record_number": 21,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.8971600774208104,
- "value_l": "1544-01-01",
- "value_r": "1498-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.0033233936977775237,
- "record_number": 21,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.8971600774208104,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 21,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "cm3 4bs",
- "value_r": "cm3 4bs"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.337450159852669,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.5672536577405403,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cm3 4bs",
- "value_r": "cm3 4bs"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 21,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "chelmsford",
- "value_r": "chelmsford"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 2.140388406776726,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.0978726198438111,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "chelmsford",
- "value_r": "chelmsford"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "scientist",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 5575.084648618187,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 12.444777994845623,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 22,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 22,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "barlow",
- "value_r": "barlow"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.708320574304762,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.7725787288007404,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "barlow",
- "value_r": "barlow"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "1498-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 22,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "cm3 4bs",
- "value_r": "cm3 4bs"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.337450159852669,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.5672536577405403,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cm3 4bs",
- "value_r": "cm3 4bs"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 22,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "chelmsford",
- "value_r": "chelmsford"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 2.140388406776726,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.0978726198438111,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "chelmsford",
- "value_r": "chelmsford"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "scientist",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 1505010.7901229756,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 20.52134239969859,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 23,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 23,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.93609665087873,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.9531509744425611,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 23,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 23,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 23,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.8677289824782918,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.204683578355832,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 23,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 3.6012884304497295,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.8485131509070938,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 357545718.6376666,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 28.41355248724083,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 24,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 24,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.93609665087873,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.9531509744425611,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 24,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 24,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 24,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.8677289824782918,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.204683578355832,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 24,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 3.6012884304497295,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.8485131509070938,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 357545718.6376666,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 28.41355248724083,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 25,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 25,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.93609665087873,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.9531509744425611,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 25,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 25,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 25,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.8677289824782918,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.204683578355832,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 25,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 3.6012884304497295,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.8485131509070938,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 357545718.6376666,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 28.41355248724083,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 26,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 26,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.93609665087873,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.9531509744425611,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "dyer",
- "value_r": "dyer"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 26,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1850-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 26,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 26,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.8677289824782918,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.204683578355832,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "gl2 8jb",
- "value_r": "gl2 8jb"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 26,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 3.6012884304497295,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.8485131509070938,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "tewkesbury",
- "value_r": "tewkesbury"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 357545718.6376666,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 28.41355248724083,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 27,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 27,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 27,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 27,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 27,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 27,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 27,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 28,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 28,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 28,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 28,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 28,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 28,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 28,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 29,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 29,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 29,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 29,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 29,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 29,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 9498277.481511904,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 23.179234472851824,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 30,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 30,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 30,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 30,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 30,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 30,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 9498277.481511904,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 23.179234472851824,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 31,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 31,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 31,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 31,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 31,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 31,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 31,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 32,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 32,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 32,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 32,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 32,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 32,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 32,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 33,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 33,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 33,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 33,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 33,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 33,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 33,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 34,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 34,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 34,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 34,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 34,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 34,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 34,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 656549519.3217664,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 29.290328587560083,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 35,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 35,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 0.4683030453214949,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": -1.094485675137949,
- "m_probability": 0.03711726145166532,
- "record_number": 35,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
- "term_frequency_adjustment": false,
- "u_probability": 0.07925906487792309,
- "value_l": "1680-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 0,
- "m_probability": 0.03711726145166532,
- "record_number": 35,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
- "term_frequency_adjustment": true,
- "u_probability": 0.07925906487792309,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 35,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 35,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 35,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 19365395.160392523,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 24.206977604778523,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 36,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 36,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 0.4683030453214949,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": -1.094485675137949,
- "m_probability": 0.03711726145166532,
- "record_number": 36,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
- "term_frequency_adjustment": false,
- "u_probability": 0.07925906487792309,
- "value_l": "1680-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 0,
- "m_probability": 0.03711726145166532,
- "record_number": 36,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
- "term_frequency_adjustment": true,
- "u_probability": 0.07925906487792309,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 36,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 36,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 36,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 19365395.160392523,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 24.206977604778523,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 37,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 37,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 37,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 37,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 37,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 37,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "oswestry",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 37,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 6777.620508935834,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 12.726563144676158,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 38,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 38,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 38,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 38,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 38,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.5061752397790036,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.982291157019384,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sy10 8ra",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 38,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "oswestry",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 38,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 6777.620508935834,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 12.726563144676158,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 39,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 39,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 39,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 39,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 39,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 39,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 292565.96219926194,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 18.158402407198313,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 40,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 40,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.7260362440795238,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4618865248362826,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "cartwright",
- "value_r": "cartwright"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 15.876987624378211,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 3.9888653076436063,
- "m_probability": 0.3411854615955972,
- "record_number": 40,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": false,
- "u_probability": 0.02148930701890366,
- "value_l": "1600-01-01",
- "value_r": "1606-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 2,
- "label_for_charts": "Levenshtein_distance <= 1",
- "log2_bayes_factor": 0,
- "m_probability": 0.3411854615955972,
- "record_number": 40,
- "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
- "term_frequency_adjustment": true,
- "u_probability": 0.02148930701890366,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sy10 8ra"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 40,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.3345951242254879,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4164021382693085,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "shropshire"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 40,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 3.144325592920995,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.6527506154881986,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "actor",
- "value_r": "actor"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 292565.96219926194,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 18.158402407198313,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 41,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4385527024735812,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1891778678878713,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 41,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "norfolk",
- "value_r": "norfolk"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.9075453050994048,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.13995842994892027,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norfolk",
- "value_r": "norfolk"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "1655-01-11"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 41,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "ec1m 3ln",
- "value_r": "ec1m 3ln"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.674900319705338,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.5672536577405403,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "ec1m 3ln",
- "value_r": "ec1m 3ln"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 41,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "camden",
- "value_r": "camden"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.71122624175026,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.49161953935785924,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "camden",
- "value_r": "camden"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 41,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 11437060.827131525,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 23.447213010477377,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 42,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4385527024735812,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1891778678878713,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 42,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "norfolk",
- "value_r": "norfolk"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 0.9075453050994048,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.13995842994892027,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "norfolk",
- "value_r": "norfolk"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "1655-01-11"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 4433.459980200162,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 12.114217337381147,
- "m_probability": 0.687813956434951,
- "record_number": 42,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.00015514157328739382,
- "value_l": "ec1m 3ln",
- "value_r": "ec1m 3ln"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 0.674900319705338,
- "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 2,
- "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.5672536577405403,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "ec1m 3ln",
- "value_r": "ec1m 3ln"
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 42,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "camden",
- "value_r": "camden"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.71122624175026,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.49161953935785924,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "camden",
- "value_r": "camden"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 42,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.4599747087910215,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1203735565543766,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "politician",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 11437060.827131525,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 23.447213010477377,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 43,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1239.7644819625823,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 10.275850362551136,
- "m_probability": 0.7816372776652062,
- "record_number": 43,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.0006304723913592461,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1.1169788370454212,
- "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.1596018519099875,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"surname_l\" = \"surname_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "owen",
- "value_r": "owen"
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 43,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 3.7243862718894305,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.897002708675377,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-11-20",
- "value_r": "1860-11-20"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "l37 5aa",
- "value_r": "sw1p 4lg"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 43,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "wales",
- "value_r": "wales"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1.8006442152248647,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.8485131509070939,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "wales",
- "value_r": "wales"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9590935537162004,
- "value_l": "association football player",
- "value_r": "association football manager"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.10073668618440759,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9590935537162004,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 10853.316525050908,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": 13.405848344165456,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- }
- ]
- },
- "height": 450,
- "layer": [
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "c2f47ebb-3181-4db6-89ba-1ef60df3bba7",
+ "metadata": {},
+ "outputs": [
{
- "layer": [
- {
- "encoding": {
- "color": {
- "value": "black"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
+ "config": {
+ "view": {
+ "continuousHeight": 300,
+ "continuousWidth": 400
+ }
+ },
+ "data": {
+ "values": [
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4047701974773831,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3048250240606851,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 0,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1v 1an"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 0,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 724060.5742920743,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 19.46575087143477,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4047701974773831,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3048250240606851,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 1,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 1,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 1,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.674900319705338,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.5672536577405403,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 1,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 12774887550.161978,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 33.57259154089463,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4047701974773831,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3048250240606851,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 2,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 2,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 2,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.674900319705338,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.5672536577405403,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 2,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 12774887550.161978,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 33.57259154089463,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4047701974773831,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3048250240606851,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 3,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 3,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 3,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.674900319705338,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.5672536577405403,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sw1e 5la",
+ "value_r": "sw1e 5la"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 3,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 12774887550.161978,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 33.57259154089463,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4047701974773831,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.47 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3048250240606851,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "george",
+ "value_r": "george"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 4,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "lucan",
+ "value_r": "lucan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 4,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-12-13",
+ "value_r": "1860-12-13"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "sw1e 5la",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 4,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 4269476.815657544,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 22.025627861254016,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ }
+ ]
+ },
+ "height": 450,
+ "layer": [
+ {
+ "layer": [
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "size": {
+ "value": 0.5
+ },
+ "y": {
+ "field": "zero",
+ "type": "quantitative"
+ }
+ },
+ "mark": "rule"
+ },
+ {
+ "encoding": {
+ "color": {
+ "condition": {
+ "test": "(datum.log2_bayes_factor < 0)",
+ "value": "red"
+ },
+ "value": "green"
+ },
+ "opacity": {
+ "condition": {
+ "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
+ "value": 1
+ },
+ "value": 0.5
+ },
+ "tooltip": [
+ {
+ "field": "column_name",
+ "title": "Comparison column",
+ "type": "nominal"
+ },
+ {
+ "field": "value_l",
+ "title": "Value (L)",
+ "type": "nominal"
+ },
+ {
+ "field": "value_r",
+ "title": "Value (R)",
+ "type": "nominal"
+ },
+ {
+ "field": "label_for_charts",
+ "title": "Label",
+ "type": "ordinal"
+ },
+ {
+ "field": "sql_condition",
+ "title": "SQL condition",
+ "type": "nominal"
+ },
+ {
+ "field": "comparison_vector_value",
+ "title": "Comparison vector value",
+ "type": "nominal"
+ },
+ {
+ "field": "bayes_factor",
+ "format": ",.4f",
+ "title": "Bayes factor = m/u",
+ "type": "quantitative"
+ },
+ {
+ "field": "log2_bayes_factor",
+ "format": ",.4f",
+ "title": "Match weight = log2(m/u)",
+ "type": "quantitative"
+ },
+ {
+ "field": "prob",
+ "format": ".4f",
+ "title": "Adjusted match score",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor_description",
+ "title": "Match weight description",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "axis": {
+ "grid": true,
+ "labelAlign": "center",
+ "labelAngle": -20,
+ "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
+ "labelPadding": 10,
+ "tickBand": "extent",
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "grid": false,
+ "orient": "left",
+ "title": "log2(Bayes factor)"
+ },
+ "field": "previous_sum",
+ "type": "quantitative"
+ },
+ "y2": {
+ "field": "sum"
+ }
+ },
+ "mark": {
+ "type": "bar",
+ "width": 60
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "white"
+ },
+ "text": {
+ "condition": {
+ "field": "log2_bayes_factor",
+ "format": ".2f",
+ "test": "abs(datum.log2_bayes_factor) > 1",
+ "type": "nominal"
+ },
+ "value": ""
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "orient": "left"
+ },
+ "field": "center",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "text": {
+ "field": "column_name",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -25,
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_l",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -13,
+ "fontSize": 8,
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_r",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -5,
+ "fontSize": 8,
+ "type": "text"
+ }
+ }
+ ]
+ },
+ {
+ "encoding": {
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "x2": {
+ "field": "lead"
+ },
+ "y": {
+ "axis": {
+ "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
+ "orient": "right",
+ "title": "Probability"
+ },
+ "field": "sum",
+ "scale": {
+ "zero": false
+ },
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "color": "black",
+ "strokeWidth": 2,
+ "type": "rule",
+ "x2Offset": 30,
+ "xOffset": -30
+ }
+ }
+ ],
+ "params": [
+ {
+ "bind": {
+ "input": "range",
+ "max": 4,
+ "min": 0,
+ "step": 1
+ },
+ "description": "Filter by the interation number",
+ "name": "record_number",
+ "value": 0
+ }
+ ],
+ "resolve": {
+ "axis": {
+ "y": "independent"
+ }
+ },
+ "title": {
+ "subtitle": "How each comparison contributes to the final match score",
+ "text": "Match weights waterfall chart"
+ },
+ "transform": [
+ {
+ "filter": "(datum.record_number == record_number)"
+ },
+ {
+ "frame": [
+ null,
+ 0
+ ],
+ "window": [
+ {
+ "as": "sum",
+ "field": "log2_bayes_factor",
+ "op": "sum"
+ },
+ {
+ "as": "lead",
+ "field": "column_name",
+ "op": "lead"
+ }
+ ]
+ },
+ {
+ "as": "sum",
+ "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
+ },
+ {
+ "as": "lead",
+ "calculate": "datum.lead === null ? datum.column_name : datum.lead"
+ },
+ {
+ "as": "previous_sum",
+ "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
+ },
+ {
+ "as": "top_label",
+ "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "bottom_label",
+ "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "sum_top",
+ "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "sum_bottom",
+ "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "center",
+ "calculate": "(datum.sum + datum.previous_sum) / 2"
+ },
+ {
+ "as": "text_log2_bayes_factor",
+ "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
+ },
+ {
+ "as": "dy",
+ "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
+ },
+ {
+ "as": "baseline",
+ "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
+ },
+ {
+ "as": "prob",
+ "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
+ },
+ {
+ "as": "zero",
+ "calculate": "0*datum.sum"
+ }
+ ],
+ "width": {
+ "step": 75
+ }
},
- "size": {
- "value": 0.5
- },
- "y": {
- "field": "zero",
- "type": "quantitative"
- }
- },
- "mark": "rule"
- },
- {
- "encoding": {
- "color": {
- "condition": {
- "test": "(datum.log2_bayes_factor < 0)",
- "value": "red"
- },
- "value": "green"
- },
- "opacity": {
- "condition": {
- "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
- "value": 1
- },
- "value": 0.5
- },
- "tooltip": [
- {
- "field": "column_name",
- "title": "Comparison column",
- "type": "nominal"
- },
- {
- "field": "value_l",
- "title": "Value (L)",
- "type": "nominal"
- },
- {
- "field": "value_r",
- "title": "Value (R)",
- "type": "nominal"
- },
- {
- "field": "label_for_charts",
- "title": "Label",
- "type": "ordinal"
- },
- {
- "field": "sql_condition",
- "title": "SQL condition",
- "type": "nominal"
- },
- {
- "field": "comparison_vector_value",
- "title": "Comparison vector value",
- "type": "nominal"
- },
- {
- "field": "bayes_factor",
- "format": ",.4f",
- "title": "Bayes factor = m/u",
- "type": "quantitative"
- },
- {
- "field": "log2_bayes_factor",
- "format": ",.4f",
- "title": "Match weight = log2(m/u)",
- "type": "quantitative"
- },
- {
- "field": "prob",
- "format": ".4f",
- "title": "Adjusted match score",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor_description",
- "title": "Match weight description",
- "type": "nominal"
- }
- ],
- "x": {
- "axis": {
- "grid": true,
- "labelAlign": "center",
- "labelAngle": -20,
- "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
- "labelPadding": 10,
- "tickBand": "extent",
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "grid": false,
- "orient": "left",
- "title": "log2(Bayes factor)"
- },
- "field": "previous_sum",
- "type": "quantitative"
- },
- "y2": {
- "field": "sum"
- }
- },
- "mark": {
- "type": "bar",
- "width": 60
- }
- },
- {
- "encoding": {
- "color": {
- "value": "white"
- },
- "text": {
- "condition": {
- "field": "log2_bayes_factor",
- "format": ".2f",
- "test": "abs(datum.log2_bayes_factor) > 1",
- "type": "nominal"
- },
- "value": ""
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "orient": "left"
- },
- "field": "center",
- "type": "quantitative"
- }
- },
- "mark": {
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "black"
- },
- "text": {
- "field": "column_name",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -25,
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
- },
- "text": {
- "field": "value_l",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -13,
- "fontSize": 8,
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
- },
- "text": {
- "field": "value_r",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -5,
- "fontSize": 8,
- "type": "text"
- }
- }
- ]
- },
- {
- "encoding": {
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "x2": {
- "field": "lead"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAIlCAYAAABVSXjKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQnYjVX3h5cMkVmKBmVojmYRiiJp0jyXqeH7mtOkGc2apEGfUtIsaZ5pkCEKlaL0qUiDUuYhJP/r3v7P+x3HOe9Zzzs55/Xb1/VeOGc9z7P3vdez2T9rrV1m9erVq01NBERABERABERABERABERABERABERABERABMysjMQi+YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBEQGKRfEEEREAEREAEREAEREAEREAEREAEREAERCCPgMQiOYMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIDEIvmACIiACIiACIiACIiACIiACIiACIiACIjAugQUWSSvEAEREAEREIESJpB4tkSZMmXynp7u8xLuXpE9bsWKFbZs2TKrWLGibbzxxkV239Jwo4ULF4ZhVKtWLd/hRD4R+Ql/TvSZ0sBCYxABERABERABEcg+AhKLsm9O1CMREAEREIFSTmDHHXe0b7/9NoxyzJgx1qJFi/D79u3b2/Dhw8PvX3/9dTv88MPzJTF58mT75JNPrFmzZtakSZN8bb/44gvbY4897JhjjrEXX3yxRAg/+OCDdsEFF1jv3r3thhtuyPjME0880YYOHWoTJkywvffeex37t99+23766acwhk033TTj/YraYM6cOfbKK6/YNttsE+aqIG3BggV2wAEHGHPXuXNne/zxx9PeZsqUKda4cWM76KCD7L333rMBAwbYv//9b7vlllvsmmuucT++OOZ+fc+Fe/AyFAEREAEREAERKBABiUUFwqaLREAEREAERKDgBBLFoj59+tiVV15py5cvDxE4UXvttdfsiCOOyPchffv2tUsvvdTuv//+IMrk1z777DPba6+9ggCFEFUS7f3337fnnnvOjjzyyPCTqR199NFBjBk/frztu+++65h37NjR4DJp0iTbc889M92uyL9HxGratGmhBLeXX345XM99br755nxFp6+++iqIgJFY9J///MfOPffccN21117rHl9xzP36ngv34GUoAiIgAiIgAiJQIAISiwqETReJgAiIgAiIQMEJRGJR1apVrVWrVvbmm2/auHHjbL/99jM+W7RoURBFEIsmTpxo119/ffh12223DfZXXXVV+PMll1wSIpR22GGHIDideeaZQWy588477b///a+1adPGEGBOOeUUiwSD/fffP9hzf+532223Wdu2bdcazFtvvRU+P/DAA0NU0COPPGJPPvmkHXvsseGZDzzwgD3//PPh9wcffLD16tXLEEFo3P+uu+6y2rVrhwime++917p162ZdunQJKWmIHPSxSpUqdvHFF4fIGu7BGCOxqGfPnvbSSy/Z3LlzDVHijjvuMKKUEElg07JlS7v77ruD4IKAwrOJnmG8Z599trVr167A40FMu/3220PfeT5RWyeddFIQr0477bQQCcYcde3a1fr162ffffedXX311TZy5EirW7duGANjKVeunF122WX26aefBoHnoYcesubNm4exM2cNGza0s846K4h9qZ53wgknWFyxqDBz/+yzzwbG+M3uu+8eBKrLL788jINIqK222ir4Xv/+/YNfMp7EuYCTmgiIgAiIgAiIQOkhILGo9MylRiICIiACIpAjBCKxCEGAtCtq+yA8XHHFFSHqBKEEMefQQw+1Lbfc0n7//ffwOSlYiA8IL506dQqbeaJsEE0QHTbbbLM8oQTh5MMPPwxEiCTiPkQW0bbeeutQK2fq1Knhz4sXL7bKlSvn0UMA2W677WzzzTe33377zQ477DBDQELs+Pjjj4NogGiCmIGYxBgQoGrVqhVEL37PvRFyEtPQbrrpppCOhtiyxRZb5KXinX766UGMisQiOpLY/1tvvdVq1KgRRClYEKXEc+GBmIRAhcCBiEWf6T9iVNTijIf+I+Ig5iBK0S8a46Ufb7zxRngGAhDztdNOO4V+0N8ff/zRvv/++/AdokqHDh3snXfeyesHotIHH3wQGO22224hpaxChQopnzd9+vQgrnkji0hTi0SyuHNP/xkH83LUUUfZu+++GzgPHjw4+FlyjSTYIywlzsX6iPTKkddd3RQBERABERCBnCQgsSgnp02dFgEREAERyGUCkVh033332UUXXRTSrm688Ub79ddfQ3rVo48+GsQiIo34PVE6CBdPPfVUiK7h96NHj7bkNLTjjz/ehg0bZg8//HCIsHnhhRfsiSeeCAIAQlEkFiFCIFIgwBAdgpiCOJLYoj7OnDkz1M3Bjka0DaIQghP9JuKE9vXXX4ci1ggWCCaIF3yWKBYh6FCr55tvvjHuf+GFFwaBJ1ksIpIIIYaIpnPOOSdEJsEhOfUJdqTgHXLIIUFwoVEAGj6IY3HHM2vWrMCdfrdu3dr+/vtvO/nkk4MYNGLECKtevfpaaWiIZNRZQqxCWPnzzz/D9zQKWCMGIhbxK+mGDRo0yBsTwtl1112X7/Pq1KnjFosKM/fMLf3cddddAzcioxDFiPBCoIvEIkQiosHgoDS0XF6B1HcREAEREAERyExAYlFmRrIQAREQAREQgSIlEAkxFKcmvYk0JFLLEEgQYyKxiIgePrvnnnvWen46sSgSY0hRi4Sh6MIoDY2ULyJHaBSRJjIpEm8SH0J/EDgopkzqGBFBCFqkuNEnIpkQQRC0UrVBgwbZkiVL8sQiom2IyCF6JToJjAgqUtuSxaKo6DeCBSlP0ffJAgWpZxSaJsIlameccUaIaNpkk03W6pZnPKS2cU8EoKgAeXQTCo8jriXWLELU6tGjR8rxk86FUIYIQzQR0T60SACLxKL8nkdamzeyqDBzz7yQYkf0WGJjzhGIIrEoOtkOG4lFRbok6GYiIAIiIAIikHUEJBZl3ZSoQyIgAiIgAqWdQCQWEUmE+MAJWUR3UHuHyJZILCJKhk05KUvUlPnll19CfZ90YhE1ix577LFQA4kUto8++ihEiFBzJkpDSyxwnZ9YRA0eBI6ohhLP5h7RnylezalgpKvxGQIV0Up//PGH/fXXXyFyaMiQIXliEdEq2BJ1RKQOEUmc6EVtpGSxKCpwnUksGjt2bBDXaKTnIRIhHMGAmkKJzTMeajRFogsRSwhP8EK8SiUWEbXFiWbU9+GZtJ9//jlENyECki6HWJQo3iWLRfk9L45YVJi5p08IZaQ3Erk2cODAEFGULBYxrqhJLCrtq5TGJwIiIAIisKETkFi0oXuAxi8CIiACIlDiBBLFIurYRMenIx6RmhSJRWXLlg31gqgVRGQMEUjUu4lqB5HCRSoXaVhEgHC0OwIFNYMQSxABEGdGjRoVahIln4aWn1hEHSXSymhch+AR2SMOIQrRP4Qs6hMhNPDc6Eh3RBMihxLT0IhQou4PKWykPEX1fLxiEVFI3JPC2t27dw9RTjBA1GHcjBdR55lnnglFvRObZzyIXdEYqTlELScKh9PoKzWhYEHKHs/m96SW0RBZZs+eHfrD54hXzF0msSi/5yHOeSOLqEtV0LknCowoMmooUY+KKDDES3yRCKgosihRLEqeC4RDNREQAREQAREQgdJDQGJR6ZlLjUQEREAERCBHCERiEeIC0TNEhSBAUDuI2juIRWz+EYGIJIoKVSPIICwh1syYMSPUOCKqhWga0sJIGeNeiCVRQ5xBkEp1fHp+YhHXcwpYdOpZVB+JX0899VR7+umnwyOmTZsWxBrEERp9oyg0dZIogoxYRPoakUVEASFEcE+EpT322CP8nnEhWEQFrknPI+Iqiizi/kTxEF3Fs2mc/IVQhSgW8eHz4447LkQ0IWQlN894iO6iqDNiCaIWYg3pWUTawJF+UXeJZ5NCRh+pqRSlwu2yyy6h4De/RgWuU0UWIS4hnuX3POoQUS+KOaYG1IABA4KgwzxHolw0RqK5Cjr3sMLXEBZpMMaHogi2VGJR8lwQaaQmAiIgAiIgAiJQeghILCo9c6mRiIAIiIAIlFICpG1xehk/yY0izPPnzw81eqI6PUT9kDbWqFGjtU45Ky48RJzQx6VLl4Znctx6qoaIsnz58iCAEaWDWEK0FClQiF2eRt0caiFRZLl8+fLhEp5NVBWROBSFLmwjComTzRhL8klgjHXevHlhjNF8MAcIfZUqVbJ69eqtc02m/uT3vEzXJn9f0LlnXIxh2223zeOa6dmp5iLTNfpeBERABERABEQgNwhILMqNeVIvRUAEREAERCDnCVADh7QmCipTLDoqIk2RbR29nvPTqwGIgAiIgAiIgAiUIgISi0rRZGooIiACIiACIpDNBIg84oh5Cm9T02jnnXcOqVMUg1YTAREQAREQAREQARHIHgISi7JnLtQTERABERABERABERABERABERABERABEVjvBCQWrfcpUAdEQAREQAREQAREQAREQAREQAREQAREIHsISCzKnrlQT0RABERABHKAAMWMN9poo/Cjlp0EVq5c6S7SnJ0jMFu1alXoWqpT3eL0mYLi3Csqfh7n2myyLSoe2TQm9UUEREAEREAEspmAxKJsnh31TQREQARKKQHq1XAs+VdffWW77rpr3ijvv/9++89//mNTpkzJ2pG3atUqHF9++umnZ20fPR3jKPgZM2bY448/7jHPCpuXXnopHFnPKWXJLRoPR9JzIhkndVWsWNHd75kzZ9onn3xiJ5xwgvuadIYINE8//bSdfPLJsUSaxPH17Nkz1HUaOHBggfvz6KOPWvfu3e2uu+6y0aNH24477hhOoCtIu/XWW+3rr7+2J598siCX53vNuHHjgqDVsmXLtHZFwaPIO64bioAIiIAIiEApJiCxqBRProYmAiIgAtlKgKPO2dAni0X9+vWzhx9+WGJRCUzcDz/8EI6x32mnnUrgaUXziN13392uu+66lIJONJ4qVaoUSCx67bXX7JJLLgnHxxe2zZ071zbddNMg9my55Zbu2yWOryjEkQMPPNA6dOhgPXr0CEIP0UXbbrutuz+JhrfccotNnTo1iGBF3S6//PIg7j344IMSi4oaru4nAiIgAiIgAgUkILGogOB0mQiIgAiIQMEJeMSi+fPn20UXXWQvv/yybbbZZnbVVVfZ2WefbUQ4IHL07t07bIA7d+5sDzzwQDhR65FHHrEff/wxHM+e2GbPnm0XX3yxffjhh8aGvE+fPnlHtb/yyit2991327Rp06x9+/Z2++2321ZbbWXz5s2z8847z9544w1r2rRp2HDzPZFF3IONMz+nnnpqiNxIThdKd326cf311192wAEH2GmnnWaPPfaYVa1a1ThqftCgQfb+++/bQQcdFD5ftGiRHX/88XbsscfaQw89FIZJ/4844ojw+3Tj4T4IKggY5cqVC7zgQqQJES333XefTZw40Y4++ujAs1q1aoEvDPgcUalv374h+oMIHJ5JVBjMN99887DRb968+TpO8cILL4RnMO6TTjrJ7rjjjhDx8+qrr9rVV19ts2bNCmPjmUSbDRgwIPSRvr777ru29957hxPU6B9RQ9gwFq5LNR78ASESdkSp1ahRw2677bbAa+zYsWF+eTZtzJgxYUx33nmntWvXzr7//ns77rjjjD4zRkQM/OKQQw4JdghAzCtRTM8995zVrl073O/II49ca9yINPgaUVAjRoywP/74IyXHxIuuv/76tcY3atSowL1y5crhXnAgqoc+5OfP0T0Z8zXXXGMNGzYM48NXt9lmGzvxxBODn/3rX/+ye+65x/A75uGss87K13/SiUXM17fffmtz5syxDz74INx/v/32y4tg4hmHH354uDd9euqpp4xUTj6jX8wFc0bDTy677LLAAd+G77nnnmsXXHCBIZ6l45HIMd388MxU9yWiiX4xjhUrVoT3j7FWqlTJzj///OD3rEH0kUgx/Gro0KHBr6644orwmZoIiIAIiIAIlEYCEotK46xqTCIgAiKQ5QQisYhIjrp16+b1duTIkUY6EGlobNomTJgQNpRLliwJosw777xjv/32W9isEwGCUHHOOeeEDTtiDlEUiB2kiUVt9erV1qxZs7C5u/LKK+29994L9mwqibSIhAVs2FwjgCAMIGwgRiCKvPXWWzZkyJCwKW7dunUQGdhcsgFlQ0m/2YAntnTXd+rUKeW4EKEQBnbZZZcwvv79+weRAIGMjTXjQqBArKHPCFiwQVAhfe/PP/80xppuPGyAicpB+IAV92Z8bOYR455//nmrWbNm2KyzMWZc2223nTVp0iRwgT2RX9OnT7fJkyfbwQcfbMccc0wQQegvNZw++uijtRgQOcb1CD3bb799EOwQRfbaa6/Amflns424h5iEQMK9brzxxiAGwoJ+8APPww47LPSNZ8I/1XgQEyM+iA9s9Em1Y6yIX/gLQhMNIRBB8ssvvwxju/fee8NcIxbilxdeeGEQ5hC4Fi5cGMaHMIgABM+333479AHBZeONN84bO3MC5xdffDGIUIwjFUdEtqghSiWOjzmFA+z33HPPkE6GwMOY0vkzPh61//73v8Fn+IEfYusOO+xgl156afAzfs8zmHfS1YjsYQ7z859UkUWIOPQTEQUhD76MC57Dhw8Pfsa7CmNYEDmIn5Huh5iHwIgfIADDlvcTEebZZ58N7+gZZ5wRRDzmMBUP+Ce2dPPD9anuy1zi8whGzBHrTpcuXYJPtm3bNgi1jAnhEE4IRYjNS5cuDb6IQNamTZssX3HVPREQAREQARGIT0BiUXxmukIEREAERKCQBCKxCOGDCJaosakk6uXjjz+26tWrB4GCaB4amzhSjBAb2ND++uuvQfxBWNpiiy3CxpwN+zfffBNqs0SNaIR99tkniAX169cPggpCAGJMFAFC1AmREWxGP/vsM3vzzTfD89koYoMoxKYU8QDRgk0kYgaNiA+iH6LIDD5DWEh1PZvQnXfeOeW4EKjYxLN55f5EkSAscS+ijDp27BiigbgH44cRG23Gg6hDtE3jxo3D5jx5PNSrQdxAtIEbogCbfJgQbUFqEsIB9yaFCuGA7w499NC85zMu5gqRBnEJsYgoJ+YE0YSIEvqa2IhYQViLRCTGRuQXghObbMZAY87gglDIhpzvomsQS/ic9KfENK1044nEIoQKxIl//vknCIXwJSUslViE3yWmoSEaIRLS1zJlyoToIiJMYIeIQI0dop0QvBgf4ldiAenENDSEtXQcTznllLV4JaehIZwwdzTEHkQuxJ50/kxUVGJDwERsRHDBlxLFosi3mcMoigyRJz//SScWJfazTp06QcyLIoHoKxE7zDniD0IX7z9iESIodolpaPg4UXKITzQEJcQ2npGKR3JaHMJYqvlB0El1X56NsBdFI1Ijincb1ryHRGPxbuFHRA/yXkb1ymCKb/FeqYmACIiACIhAaSMgsai0zajGIwIiIAI5QCBTGhrRDggfpO+QdkNjU4mQQ9oKYhBRNWwMEX0QUti0I+REUSMRBiIBEDKSG2kuXbt2DWIJURBsmomMQDhBEOH5qWrOEAGEMISwQmNDiThDX6KGgJXq+ujzVOMiagixiIgQxB/6TZRNVOybMSBOnHnmmUEsSrwHESn7779/EBJSjScSixI3+5FY9MQTTwRhhE0zjQ08wgpiApvgxGLjjJ1IG8aGeEeUF430LoQ/hKvExnwgQCBEJX9O9A5RTTTEKcQWIsmYX0QaNug0ojjGjx8fxMBksSjVeCKxaPHixYEnDcER4YjIkUSxiJQ9mCWLRYiCpMUlN6JjEAeIhsLfSPEi4oc0qcSWKBYhQqXjSERNYksWixDJogLkjAs+CEzp/Dkxoo775icWRX6GHYLY559/HgQxr/9E/caPEvvJu0nkHlFn8CIVj/lFjCUqCrEF8ZNGRE+yWIRwhWCYXGg8+TkRD/wisbG2pJqfdPflc/p01FFHhdsgSOEr+DLvNvdCcPvll19CxFlyYy6IOlQTAREQAREQgdJGQGJRaZtRjUcEREAEcoBAJrHo008/DRv9L774Imw2aWzKiOIhhQphA1GIlCHSl4gsInIAYQnxKLFFKUHUeYk2qYgMiEKIKAg9bML32GOPIBI988wzIVIGW6KSiBohqoD7IpTwk3gaWiqxCKEi1fUIMQgMqcaFQMGYSblp0KBBRrEoMVKKKCZSpYjqSDWe/MQihCEiPhCgEH3YlPN7Up6IxOA7IirYPPMc2JCCg9AWCXPpxCIitSZNmhRSwWjMK3OPAIU4QW0gWiQqkM6FCJB4ClhBxSL6hvhHgwsbekQLRL5I5ELEIoooWSwieo2oNqJsaCtXrgzF2En9IxWR+SHtD7GJNDb8icioqCWKRUTUpOPYokWLtXw1vwLXkTiC7xEJk8qfifhKbPmJRZGfYR+JRXzm9Z/oOcmFuBGLmDPS3xLFIqLMiPhBFOXdi8TPZLGIPhMhRcoiDTGI6B5Et0S/SCcWMU+p5gd/TnVfUtN4pyOxFxGZecXPebcR5xCHSYUlig4xk89p+BjvBuKumgiIgAiIgAiUNgISi0rbjGo8IiACIpADBDKJRYgJbDYpcEvUC1E/pKKQnoRgxEaO1J7of/VJByE6gI0lEQ2JjQgcNtFEIrGxJz2JzTubSgQBohgQb9jgc88KFSqE9CiilbiO6BcKQCMgINAgSmUSi3h+uuvZmKYaF2JDHLGIzTdiDJtv0owyjSe5QHEUWUR0C2NCvEHIitKHGDPiG9yIZoIbkUJwQkTxiEWIcBSvRtQjaoUIH0QxBECeSbof0UqMhTlnI54sPiSKRcw9kUFs/NONJ4osIkURPoh/3bp1C0IRQg+CDDWm8CfqTyFQIRZRvwg7BAmiqhBksItqQ1HAm++YP/qPP+CXMEIQo65Q1BAwqcvDnJD6lY4jKZeJLXF8yRwicYSaP+n8mcizwohFRNWkex/SFbj2ikVwQ8RBoIMX84/vMUek2PFuIeghXlIEe9iwYUGgIYqNeeMzj1jEupFqfvDZVPfFB0ll4z1CXCSqCMGMviWKRXClcDfCFaIykUb4CH6AT6qJgAiIgAiIQGkjILGotM2oxiMCIiACOUCATR8bMzbTiRtc0sHYDCMckOaDeMOGnIZgwSaN/8mPInfYwFMfhVPC+J5oj1q1aq1DgE1o4qlFbLwRKNjwkb5FigyN6AJSaHgOokJUl4e+EoFCZALihkcsInUq1fXpxkWB30xiERtnBA0if4h4YtNNBBP1lBBH8hsPohkFnhHVaIlpPYhupL2RMkaaFSlgRL3AlxQrnsE8ICTwfGoPecQiIrKYlyiVilPDSDGkthQFy9mgc29OniJyhHo1qcQiIpKIQqJ+EYWIuQdpVKnGQxoVfBAjosggUsqYW2pPkbKH8MVzEbKIfkEsgh2CD+OnRhEpUlGaHFwouIw9giW/RlFqsKPOTXLDT5hrfB3hLRXH5GsSx8e7kSyOMN9wSOfPyfcjSgchgxo7yTWLkiOLEEwRMdO9D8n+Ez0rlVhElBtpXYkRYwhvCEY0xC7mgXlBpEQ8RsCFEeIL733k20QYUU8olXgW8Ugcd7r5+f3331PelwgtRB9qS9EQB19//fXwLiAW4af4MA0bogPpLw1hmrkoX758Dqy66qIIiIAIiIAIxCMgsSgeL1mLgAiIgAiUIIEo6oOC1FHtooI+nigFoheoO0LUR9RIr0IsoPg1kR4LFiwI0UUIGIgLiAiID6TqxG3pri/MuKKoLKJX6Csbb/rqGU9+/afuDIWIObUssfEcnknUUWIR5zgsEPEQ+RJP6+J62CJCNWrUKLD3NCKbSIfjfpkaaULMNelDiQ2BAFGReU5szBcRSJEQhIhIyhppRhUrVswzpZD3jBkzQr+jukip+kIKX+RrXo7e8aXz50xMMn2f3/uQ6dpM3yOIMue8a7xP8GUemEuYIiJGp8rhcwg2yXOU6Rl8n9/8pLrvqlWrwtrAszK96/gIqYX4VJTm6OmTbERABERABEQg1whILMq1GVN/RUAEREAENmgCkViEUJR4ktwGDUWDFwEREAEREAEREAERKFICEouKFKduJgIiIAIiIALFS4BIHIptcwpXQaIuird3ursIiIAIiIAIiIAIiEBpICCxqDTMosYgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkVEQGJREYHUbURABERABERABERABERABERABERABESgNBCQWFQaZlFjEAEREAEREAEREAEREAEREAEREAEREIEiIiCxqIhA6jYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUBoIlLhYxJGjixcvXuf43NIAU2MQAREQAREQAREQAREQAREQAREQAREonQTQMipXrmxlypRJOUAOIqlatWqpGHyJikX33HOPDRgwwJo1a2YLFy60Pn36WP369W2zzTazDh06BKA77rij3XTTTaUCrgYhAiIgAiIgAiIgAiIgAiIgAiIgAiKQ2wR+//13mzx5sh177LE2ffp023zzzdca0MSJE61bt2627bbb2syZM+3RRx+1ffbZJ6cHXWJi0YoVK2zjjTcOUUUocTfffLP99ttvdv7559sNN9xgzzzzjJUrVy6nYarzIiACIiACIiACIiACIiACIiACIiACpYvAsGHDbMyYMda3b9+gYySLRe3bt7fLL7/c+BVbgmTefffdnIZQYmIRlObNm2c1a9a0pUuXWtu2be3iiy+2KlWq2KmnnmqEazVt2jREGx144IE5DVWdFwEREAEREAEREAEREAEREAEREAERKF0ESD9LJRbVq1fPxo4da/z62Wefhcwp7HK5lahYBKhJkyZZ165drXHjxiE0C3WOzy644AIbMmSI3XbbbfbNN9+EHMDRo0eH7xMbKWtt2rTJZebquwiIgAiIgAiIgAiIgAiIgAiIgAiIQJYQGDlypJFqlthatmxprVq1WuuzdGJRtWrVbNq0abbFFlvY999/b61bt7ZZs2ZlyegK1o0SFYvee++9EEV033332UknnRR6THpa2bJlw8+qVatCKhpQt95665QjIvKoR48eed8xEQ3B1eRhAAAgAElEQVQbNizY6EvZVWLhn1CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWyX6VrDOku1M6seiAAw4IKWp77723TZgwwW688UZ79dVX/R3KQssSE4tWr15t1atXtxEjRti+++6bh6Jnz542Z84c69+/fwjbOuOMM+y7775Li0piUXov0kLqf8PESqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/BbFoVYRHmdKVOmhHI6l112mdWuXduuvPLKULuIcju5fnBXiYlFVAzffvvt15q9zp07h7Szdu3ahYgifnr37m1HHHGExCK/n+dZaiH1QxMrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG9ZGLGIdDXK43A6GmlqnPROwEuLFi1CB2rUqGEff/yx1apVy9+hLLQsMbEo09hnz55tdevWzWQWCmArDS01Ji2kGd1HwpofkViJVQEI+C/ReiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+VXBW3jS0/J7w999/2y+//BKKXJOulusta8QiL0iJRelJaXHwepGFomOqdeXjJVY+TliJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C0LGlnkf0LuW0osyv05zBuBFlL/ZIqVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUWJSZlcSizIxyxkILqX+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8iux8hPwW0osysxKYlFmRjljoYXUP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn4lVn4Cfkv5lVj5CfgtJRZlZiWxKDOjnLHQQuqfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvxIrPwG/pfxKrPwE/JYSizKzkliUmVHOWGgh9U+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S4lFmVlJLMrMKGcstJD6p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Eis/Ab+lxKLMrCQWZWaUMxZaSP1TJVZi5Sfgt5RfiZWfgN9SfiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+JlZ+A31JiUWZWEosyM8oZCy2k/qkSK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvKr8TKT8BvKbEoMyuJRZkZ5YyFFlL/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+ZVYQWDp0qVWrlw5q1Chgh9IPpZx/Oqvv/4Kd6pYsWKRPHt93WTVqlW2fPnywBCW3haHlfeepdVOYlHmmZVYlJlRzlhocfBPlViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX22YrL788kt79dVXrVOnTlalShWrVauWXXTRRdavXz8/kAKIRW+88YZ98cUXds0114SrTzvtNHvmmWfspptusuuuu65Inl2SN0kcD78/4ogjbNiwYXbssce6u6F30I3KJBZlZiWxKDOjnLHQ4uCfKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pv9owWT377LN26qmn2pgxY2zPPfe0G2+80fbbbz/r2LGjH0gBxKJ//etf9vDDD9s///xjy5Yts8qVK9v+++9vDz30kO26665F8uySvEnieL755ht74oknAtcmTZq4u6F30I1KYpEDlcQiB6RcMdHi4J8psRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kl5WiDHdu3e3Tz/91HbYYQe7/vrr7fTTTw8PRSB54IEHjDSsww47zG699VarWrVqys9Hjx5tPXv2tPvuu8+aN29uvXv3NiJZPv74Y7vtttvs7bfftgMOOMCGDBkSBB+euc0229hHH31kPXr0CJvs3XffPTx/q622skMPPdS+/fZb22uvveyxxx6zs88+20488US7/PLL7aeffrLzzjvPPvzwQ6tUqZJ169YtiEk8i+8PPPDA8LxNNtkkRAgdeeSR60BM5VevvPKKnXPOOfb777/b4Ycfbn///be98847tvnmm9stt9xiZ511VtrJGDBggN1xxx1hHIwfbnvvvbf9+OOPdskllwTRiz+fe+65oT+k1V177bX2wgsv2BZbbGEnnHCCXXHFFXbzzTeHiKqRI0eGscF92223DczhRoTVypUrbcKECaE/cEDQiubqjz/+sNatW9u9994b5jRxPHC+7LLL7Pbbb7eDDjrI0vWZ6K2nn37aDjnkkBBV1aBBA7v//vtt55139jvjBmqpyKLMEy+xKDOjnLHQX9D+qRIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyW8qviY0UNmy233DI84IILLgjCxeTJk4MYg0C03Xbb2dZbbx1Eiv79+9udd95pxxxzTMrP69ata2eccUYQV9q3b29du3a1xx9/PAgb//73v+3RRx8NokubNm3s+eeft86dO9ugQYPCvWgIJdyfWjpjx44NAhLX8CuCR6NGjfLS0KLUML4jWgaRh3tuvPHGdtRRRwVBi2f+5z//sc0228ymT59uZcqUWQtkKr+aOnVqeBbCDhE4S5YsCeIOwhHiF2JPqkYfEFKaNm0a0rzuuuuuIABNmzYtj0OXLl3CuH799Vf75Zdf7MUXXwwM4IHYg7A2btw4e+SRR8K4Fy9eHD6vU6eO7bLLLvbBBx9YvXr1wtwgRpUtWzb0E4Zt27YNwhviDkIUc8kPfU8cD0JTlIbGPdP1GUHpnnvuCc9FVEL4gieClFr+BCQWZfYQiUWZGeWMhf6C9k+VWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgt5RfFR8rolcQKxBVSFdCfGjVqlWIDiKq5tJLLw3RPdtvv7299dZbQbyYOHFiys+JoMkkFiGUICohWCCOEF3z2Wef2YgRI2zOnDlBlKCR/vXSSy/lpaEhakQ1i4jwQQwiyogoJWyJIEIkIsKIX5966qlQayhKwfrzzz/D9YktnV8lpm0RpYPARXQSz03XqGd0ww032FdffRVS1Yik4prx48dbu3bt7Oijjw7i04wZM0I9JMQeIqX4HuGIMbz33nuBMyJNfmJRtWrVwj1Wr14dClUTgUUNonfffdcmTZoUhDGigVq2bGlEeyWO580338wTi6ZMmZKyz9wDfvSD/hLVhPAFB56rJrGosD4gsaiwBLPoev0F7Z8MsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq/Eyk/Abym/Kj5Wr732WogaevLJJ0PqGcINaV+IH3PnzrW+ffsGMQOx4Ouvv7by5cuHCKNUn5PyRC0cBAkEjOOPPz6IGImRRb/99lsQHRB6hg4darNnz7bddtstDPD8888PggeCVX5iEUWmuceZZ55pAwcODKIWQhBRP6S2IRZFfbjwwguDAFXcYhGpb3fffbf98MMPVr9+/fBMnk3EE/0hyoc0rnnz5tmsWbNCWheCEX0n+mjFihUhQoooqF69eoWaSfPnz7fq1asb4hBjiyKL+DNCDzWVatSoEe5D6lqzZs3C3CHYIVzBNT+xiCinVH1GQKTfiEULFiwIz2/YsGEQ6CQWZX4XFVmUmZHEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KjxWiDGlORLQgMJDShFCAGEEUEFEx1NLh5KxTTjkl1N4hKijV54hDRCWRpkZBaKKSaIliEalMCB9E1Rx33HFB5CBqiLo7RMBw/aJFi0LE0csvvxzEJ4QXbBGsotPQqOODEIJwReoYkTzU3yFqqajEIlLCEEk8kUVECCHa0F84XHXVVUHs+fnnn0PkFql9jINUOSKqEODoL6lt1Foi5Y96UKSmIRoRlcR8IC4hMnGPxDS0Bx98MIhO1B7ivqTfwRTRr2LFimHOkiOLGA+RUlEaGnWh0vWZ9D6JRf73LtFSYlFmbhKLMjPKGQv9Be2fKrESKz8Bv6X8Sqz8BPyW8iux8hPwW8qvxMpPwG8pvypeVtQVor5Q1KgdRKFmol0QiRA3aESqkIpWu3btlJ/XrFkzFGOm6DRRKETPIJIkikWIE4gWfE8B6hYtWuSlpPEZzyCyiFQoUsuoAYR4RBFsimMjVhHVRHFn6ghRiJp28MEHh0glomIQi+hnhw4dgriE2BInsui5554LwhiN+yMWEc1EtFW6RkoYghfpfFFDGEK0YZxEWkUNcYcoKqKQEN3wbxqRXRTynjlzZhB6eDY1gxCF4ECaGjWLmJeob/AiGmujjTYKUUXUM6JIORFL1DziGRTLjsbz+uuvB96IUqTGpetzVLNIkUX+dy+ylFiUmZnEosyMcsZCf0H7p0qsxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+KnxWRLYgUFLtGtElspIotX748FFBOLBKd7nPS17gHKWtR49Qu6vAgqhCxRLoVhayjRqQNokziZ3yH0IToQSoUBZ0TG8W56XNUBNpPaY1lfn5FZBPPJg0sakTlfP755+s8hrpBCFk0xBVEHur88HnU4EdNJ6J5EMGixhj4HF6IcFGDE8/bdNNNgxAUNcQiaiIh4JHSR7RVNCdcQyQTz0gu5p1qPNE90/U5caB6B/3eJbEoMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXus0oUi/yjKV7LuH6FoDVq1Kh1OkUKGFE6JdEisYhopZJscVmVZN+y7VkSizLPiMSizIxyxkKLg3+qxEqs/AT8lvIrsfIT8FvKr8TKT8BvKb8SKz8Bv6X8KvdZcUoYYkv79u39gylmy1z0K8QqIpOo+1SSLRdZlSSfxGdJLMpMXmJRZkY5Y6HFwT9VYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3lF+tH1akspDmQtpLchqPv0fZaxnHr0inolHkN26j2DOtUqVKcS/NGvs4rLKm0+upI2LlB1/UrEiLY61KTNXz9ya7LSUWZZ4fiUWZGeWMRVEvDjkz8AJ0VKz80MRKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7Bv1KhRKDxMAeLERv2S6IQjChInN05O4ojt0047LdQ6wfadd94pkiiPfffdNwhVxXmkdjpWjIXncnIUjfE988wzoRAxBYlTtaeeeiocLf7xxx+Hk6AS2+677x5OpeIo8+RGXRcKE3MqFcWHGTcbXU7kKmxbuHBhqI3D6WEcZV6YFtevCvOsXL9WrPwzWBBWpOZxsl5ymzNnTqhZFZ1s5+/FGkuKl1NInXt37Ngx7uXFbi+xKDNiiUWZGeWMRUEWh5wZXBF3VKz8QMVKrPwE/JbyK7HyE/Bbyq/Eyk/AbxnXr7777jvbbrvtrE+fPnbllVeu9aCvv/7annjiiXBsd5MmTdbpBHVOOJ6cU5M4GSnxaHF/j1Nbkg6DwMJR68XV0rHiqPWHH37Y/vnnHyMqiELHHNn+0EMPhSLAqRqcOnfunFIs4tQsTpHq3r37OpdShJiixRzRzrHoCEvUqvnkk08KPWyEKMQ8nstx5YVpcf2qMM/K9WvFyj+DBWGFkPPaa6/Zv//977xi5xTevvXWW+3mm2+2/fbbr0BiTyQWvfzyy2Ety7YmsSjzjEgsyswoZywKsjjkzOCKuKNi5QcqVmLlJ+C3lF+JlZ+A31J+JVZ+An7LuH4ViUVHHnmk8T/znLhE0eCrr746FN3lqOvbb789CCdE2hxzzDFGFA1Hivfr1y+ctkTkCsdrs8EiuoYjymlcxxHf6RobOwrqcuLTkCFDwgYPYYPTsRLFIo4379GjRzhlCjHl+uuvD+INQgtHnvM87M8991xjHPPmzbOBAweGH9LGiJji+PDklooVUQXnnHNO4MAR6og8REtxotYtt9wS2OQnFnXp0sXGjh0bnsvmlXvAhGPJGSOiHBtdIhjYlCLmDB8+3Lbeemu77777rFevXuGUrj333DOIcNTieeSRR4zj49M1uNWqVSucssXR7/SRo8vpe6JYhNhFFBOnYbVu3druvffecEpZIl+OXGeeEcWmT59u/fv3t6effjoIWhzfzjyv78Yx8AiY+CFjhTcRWY8//vg68wODVJ8X5xjivoPF2ZfSyCoSi5YsWbLWCXCLFi2ytm3b2oknnmhnn312WKOaNWtmU6dOtZ9++sm6du0aBFkEYNaTl156KVx/yCGHhHeB9zx6L5PFoueeey68C0QHEgXYt2/ffN8dnsc7+OGHH4b0027dutmNN94YTrXjGTyT6EH8lz5G79mOO+4Y+pLqPZNYlPlNkViUmVHOWGTTQprt0MTKP0NiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM61eRWMQTjjvuuCBQsOmaPHlyEGOiNDTqF7EJo5FmhUB05plnhiO22eiwcWODhejB50SycB8EjHT1jqKTrBBi2IA9//zzITqHzX0kFlHAmMgnGqLPnXfeGe5H1BPPwTYSaDg6nWLHbORuuOGGILwgJCHG8GuLFi3WApmKFRtLxCLsiRZiXIhQiD69e/dOWwA4iiziAXBiLAhpHPfOZhABiI3mhRdeGAQbGgIW40QgQ4QjzQ0RBPaMDVEH8YoUMnina0R4sTllXjgGnr4PGjQo3DMSiyIRjk0qgtoFF1wQfhCoEOe4HuGNY+hbtWplb775ph144IFho821CE2IcDAm0mp9NnwLjhzxjr+RQklUHGPgz8kt3efFNYa472Bx9YP7lkZWkViEf5cvXz7g45076KCDgmhKGhrvf+3atcN3kWiDL8+cOTOIi6ecckrw94022igwGjp0aPDrVGLRrFmzwjuC8M33iE5ENbHupXt3otRVRKlvvvkmvMesCaSabrXVVqFfDRs2DII2IlL0niEMI9qnes8kFmV+UyQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/pVJBZFqUqffvppiNIgKma33XZbRywiWogNEC1VGhrpW/yvPhsqhBzq5iCapGqRWMTGqG7duuFZ1Avif/7ZVJGGhlhEHaARI0aETVQktPA/9AgD1C9BqJkxY0aoM4RgQqTS/PnzjXQyPn/yySdDpBRjSmyeNDQEG8Qsom2ILErXIrGIaAX6xAaUqCyiB9i8JotFkXiVKg1t9uzZYbP4ww8/BKEsVd8T+8E8VKtWLYx/9erVoebRoYceas8++2yeWETfEQInTZoUIoaowQRjohiaNm1qRKAwZ0Qm/fzzzyGyiWgieBKhQQQYvkGqTocOHfwOGdMSfswZ4iRRFghbbLThRGMTjl8h4A0ePDgIWy+++KIREYXIxiY+ugccIkERERIBDaERgQCBEVERbtTGOv7440OkSFG0uO9gQZ+5obKKxCIEZuaShu8i6CaLRaxFrEm8CwixpMviM0QK8Y4R+UMEJcIy614qsQgBOhJ4EMSJ9sMP//vf/6Z8d4jaIxIQAYtoQtYzIpi4FoGJe9FXIguJYOTP0XsW9SfVeyaxKPObIrEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3j+lUkFiEAIQQhzlCfiP/tJhUiObIocROTX80i/jefaBREG4os5ycWESGCIMPmiv/h50QjNnSIRUQB7LDDDuHy888/PwgeCC38bz/PJzqGmkBEvfAZAtKmm24a7keEUNQQRJKL1haHWEREDkINKVsIGmz+iApKFosiES2/mkWINownmpt0XhCJRdR3Il2QaCI2n7CMIotOPvnkEOHEnJIWR+QFYiDRWohb2CKYwBCWiHGIbghKRBjxGRvgk046yRo3bux3yJiWpJY1aNAg1J0h6ok+kbYHS8Qg/BURjT+z8UaQI7IIxqRFIhogDOArRHQwftLo8AWuJ/Lq/fffD4ImURyIgAh6zE9RiWBx38GYiPLMN1RW6dLQ8NFksYi0M+qBvfDCCyEyCLEIMRIBl0hK3oGePXvmKxYBfOTIkSHqjlQ1BB7eccToVO9OnTp1gviNUEnkEKmQ9IsoQnwRcSgSgFnLWOui9yya3FTvmcSizG+KxKLMjHLGoqQW0pwBIrGoSKZKfuXHKFZi5Sfgt5RfiZWfgN9SflV8rCKxCHHlrrvuClEZ/BBFgoiTLBYlnnYWiRSvv/66ffnll2sVuI4jFhENwkaKDTwbODZ2URrasGHDQhFt7sfmjI0V6W0ISkS8IAAQbUSKB1FJRAFwctu4ceNCFAzpHUQRIH4liwGZxCLuQapInMgiNn0IWKSUIbwQmYTwkSwW8WfSXiKxiEgX+JNKExW4jiMWkWrF6XQ8E9EPJqS5RWLRLrvsEvgSZUU9JTbO9BVGRNewaSa6gk00fybaAtENoY6oI6IzSP0jyofUw+JqCCDUpUKwJDqLtLnx48eHmi9ETuGvbPbTiUWIS6QdErVG2h9CJRt0olAQHqlpg2DARh4WiEwUE0cAwNeLopXUerWhsiqsWMR6QGQd4ioRgdQRQzBCTE0VWYTgi2BKGiqCNlFBRDnyfqZ6d7gv90GERNBkDUKwGjBgQPAxxCJOVWSNIE018T2jb/h7qvdMYlHmt1NiUWZGOWNRUgtpzgCRWFQkUyW/8mMUK7HyE/Bbyq/Eyk/Abym/Kj5WsG3UqFEQCxBeaKRrsIki9YjNDWk+/O84G6VEsYg6MdQQonYIYgdpFlHkEZEdbJQ8kUVEwSDMkK7GM6ktREoI6UEIBFF6Gt/TT/43nnQqxCz+hz9qCCQ8l80ZfUM8otFvhAHSkhJbOr9iw0ZNExoiAmJRtLlLNxPcv1OnTiFyh77Rov4kFuuOahZFYhFcEUfoM/aIMpFYFKW/eCKLKKAd9RdGRGBRWBexBEGECAv6hqiEAMRz6QNROqRjMT4ajJlDhCQiehCQovFkqp3k99L0lggg1JVhE84x6EREEdFBfxkjc4n4kygWISoROYboQ6QR4ha21MtCIENEQ2BAJOK+bNDxuYkTJ+a8WLQhssokFlGLCH+mZlEUwYPojJCIDyDSEhGE6IwYyZrGGoavIPIg1CRGIZLaiR8iSNOI9kPYJfqH9M5U7w7pnIhKrB80hG2i96iBligW8Z33PZNYlHmFkViUmVHOWOgffv6pEiux8hPwW8qvxMpPwG8pvxIrPwG/pfyqZFiR9kXEDikT3sY1pD5RkyNVo64HG9rkhgBDmhFCAJsx6ocgDqQrho1wwjXJ3yMoEZ3DBiy5D/zvP2lH6caTn1/BAbEhMYWOKKHPP/98nbEgQpGyFTUEMj5LxyT5BvAjLQ37ZEErsiXagM1tcttpp51C5BKnlyGOIaAR+cNR4skNzkRDwCr5e9LO4FW/fv11GMOXZ/OM4m6IRYyHNJ7EQtpsstMV1oYfP4m+gV8guiU2PqPGDXbMbTrWhR1jSa1XYlXwmcIXeE9JGfM23n/8kFpeiS3du0PdLdY+/NbzHN4zBK5064bEoswzJbEoM6OcsSiphTRngOTTUbHyz6JYiZWfgN9SfiVWfgJ+S/mVWPkJ+C2zza+IDKJ2THIjhY0IkEgs8o+w6CzjskKwIj0ruSFKEKlQnI1IIWqyJDeilkiRQcghKqu4WlxWBe0HtWFIO0QYzNUmVv6ZKylW/h5lr6XEosxzI7EoM6OcsdDi4J8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq9KJyuKaSPAcLrQ+milxa8QsIhGQDgqrpZNrBAZSZUksobaRNQiIm2RU9L4c2IjfS3V58XFifuKlZ9uNrHy93r9WEosysxdYlFmRjljocXBP1ViJVZ+An5L+ZVY+Qn4LeVXYuUn4LeUX4mVn4DfUn6Vm6yoUUTtJ1LuqB/DaWjUqKIeE39Obuk+948+nmU2+ZVYxZu7bLaWWJR5diQWZWaUMxbZtJBmOzSx8s+QWImVn4DfUn4lVn4Cfkv5lVj5Cfgt5Vdi5Sfgtywpv+IkPk47o97LjjvuaEceeWQoOEw9F9ppp50WIoUocD148OBwOh4F2Nu1axcKtHOyXnQPahJx6hn2nTt3tkGDBoV6RdQtoiA7hb0peE39Goofb7nlln4g+ViKlR9jSbHy9yh7LSUWZZ4biUWZGeWMhRYH/1SJlVj5Cfgt5Vdi5Sfgt5RfiZWfgN9SfiVWfgJ+S/lV9rEitaxBgwahyDUF0BFxOC0KcQgx6LvvvgsnuCWehkZkESe+9evXz7p27WrPPvtsOBWPWlk1atQIp6edc8454XoKnr///vvh5KtHHnnErrnmmnDEOSfDdejQwQ8kC8QisSqS6cqZm0gsyjxVEosyM8oZC/0F7Z8qsRIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+ymxWnbA0cODBswOO0N998MxRmTj5dKM49CmO7PvxKrPKfMQSQ3Xff3Zo0aWKkUHG0OSfBdevWzSiWjlhE5FE6sQhxafjw4aF20bRp08JpdohFbdq0CbWN2rZtG45PJ+LoySefDCLTJ598Eo44P+KIIwrjTnnXlpRfiVWRTFfO3ERiUeapkliUmVHOWJTUQpozQLLgfyjEqjQQ8I9B76BY+Qn4LeVXYuUn4LeUX2U3KwSQu+++2y6//HJ/R83s+eeft7322su22267WNcVlfH68CuxyiwWcdw46WGbbbaZnXzyyeHEPApVr1ixwk488cQg/iSKRYhKTZs2DaLPZZddFk7Zw3blypVBwHzwwQetY8eOQSTivnPnzrXmzZvbxIkTc14sEquiWg2y/z4SizLPkcSizIxyxmJ9/AWdM3CSOipW/pkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSACh6DAbeVJ6qlSpEqJB+vfvbxwtv2jRIv/qJmMAACAASURBVNt///1tl112CSIRNgsWLAib/ylTpqxVk4YIEDbB//zzj9WrV6/YjqUXq+zzK6JlSEGrW7euVa5cOa+DS5YsWevPiT3HT/ihHlHUqEOE3yU2PqNeEXYISdQ0Ko5WUn4lVsUxe9l7T4lFmedGYlFmRjljUVILac4AyaejYuWfRbESKz8Bv6X8Sqz8BPyW8iux8hPwW64Pv4rEohYtWgQRqH379jZ06NCQYkaqGSk/FCweMmSINW7c2JYtWxbqwxDxgTBAmlFiTRpsKTbM/fr06WM9evTwA4hhKVZ+WCXFauTIkbbzzjvb5ptv7u9cllmKlX9CSoqVv0fZaymxKPPcSCzKzChnLLQ4+KdKrMTKT8BvKb8SKz8Bv6X8Sqz8BPyW8qvsZhWJRdSZ2WSTTUIEEdFDCEOIRdSFITKEU6m23357q1SpkrVu3doGDBgQatNQiDixJg1RIkQg8VNaxSKx8vt0rllqvfLPmFgVnFVxro3+XmWXpcSi7JqPQvVGi4Mfn1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVX2c0qEouoD4MgVLFiRStTpkwoMkw9mUSxqFOnTqEGDYLRvHnzQhoa0SSJNWlGjRpV6sUisfL7dK5Zar3yz5hYFZyVxKJ12Uks8vtT1ltqcfBPkViJlZ+A31J+JVZ+An5L+ZVY+Qn4LeVXucUqv/oy0UiiukbRnz3X+Cn4LLPBrzzjFivffGaLVTb4VbawyNQPscpE6H/fKw0tMyuJRZkZ5YyFFgf/VImVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsHruuef8Ny6Flr///ntO11wq7inhhLuo6R3005ZYlJmVxKLMjHLGQouDf6rESqz8BPyW8iux8hPwW8qvxMpPwG8pv8puVqShDRw4MBxTHqdRz4gi2Ntuu22cy4rMdn341YbA6vwrz7f+d/YvsnnSjUoPgV7nnWc9H3xQYlEBplRiUWZoEosyM8oZi/XxF3TOwEnqqFj5Z06sxMpPwG8pvxIrPwG/pfxKrPwE/Jbrw6+imkWXX365v6NmoQj2XnvtZdttt12s64rKWKz8JOOw6tq9q02YPMF/8xy33Lzy5sZP1JLTBvMd3u+/m/GzgbSd9tnHeg4aJLGoAPMtsSgzNIlFmRnljEWcv3RyZlDF1FGx8oMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab/l+vCrSCy68MIL7emnn7Zos8wJZ/3797eNN97YFi1aFE5J44QzRCJsFixYEApcT5kyxX788ccwyNNOO83Gjh1rM2fONE5Fq1evnh199NF+ADEsxcoPKw6rD2d8aPxsKK1N/TbGT9TisLIPP7TwU5ytWTOz9u3Nhg41++ab1E+qXt3soovMvvjC7NVX19g0b27WurVZ2bJmP/xg9tZbZvPnF66nbdqY8fP/LRarwj0556+WWJR5CktcLOJkBv4yq1Gjxlq9oxgdpzhstNFG+fY6uUq5Xoj/4RKLzA6vhdTPSKzEKj4B/xVar8TKT8BvKb8SKz8Bv+X68KtILGrRokX4d3P79u1t6NChIcWMVLMzzzzTVq1aZUOGDLHGjRvbsmXLrEOHDvbggw/afvvtZ+PHj7dzzz3XJk+ebN99912w3XLLLY37FeeJP2JVPH4lseh7a9iwoQ9ucYpFW21l1q6dWf36ZmXKmL34otnkyWv3q1w5sxNOMGvUyIzfIyZRcwrxqHv3NbbLlplVqmT2/fdmTzzhG1c6K4lFBeZXULGINbly5crhhMpUDSG/atWqBe5XNl1YomIRR30OGDDAmjVrZgsXLgx/WW266aZ26qmnWrly5cL/eFxxxRXWpUuXtIwkFqV3n/XxF3Q2OXOcvoiVn5ZYiZWfgN9SfiVWfgJ+S/mVWPkJ+C3Xh19FYlGTJk1sk002CRFERA8hDCEWXXrppcZ/tD7++OO2/fbbh/9wbd26dfh3Ntd88803RhTSF198EcQiIoqIQOKntIpFpZmVxKIsEYt2393s0EPNKlQwI8Bh2DCzL79cezGpWNHskkvWRA+VL/8/sYioog4dzMaMMRs+3Oy669YITjfd5F+MUllKLCowv7hiEYXWEeCPPfZYmz59+jpF1ydOnBjWXWrGoWs8+uijts8++xS4f9lwYYmJRStWrAghs5ESd/PNN9tvv/1mW221VQijveWWW2z27Nm2xRZbhL/8+IsxVZNYJLGoKF6c9fEPv6Lo9/q4h1j5qYuVWPkJ+C3lV2LlJ+C3lF9lN6tILKLANYJQxYoVw/9in3XWWcZ/viaKRZ06dQqbEgSjefPmhTS0kSNHGtH8/PubP48aNarUi0WlmZXEoiwRi6Jl46STzHbeObVYFNk0aWJ23HH/E4sQmCpXNlu0yGzLLc26dTNbssTszjv9i5HEosKxSro6rlg0bNgwGzNmjPXt2zfoGJtv/r+6WtyaCFDqzPErtoj37777bpH2uaRvVmJiEQPjL7CaNWva0qVLrW3btnbxxRfbiBEjrF27dsaRf/zFSBoa/wOSLtRQYpHEoqJ4SfSPZD9FsRIrPwG/pfxKrPwE/JbyK7HyE/BbZoNf8R+ppD3k15KLAHuu8VPwWYqVjxNWcVhJLCpBsahOHbMTT1x3IufONXv66TWfF0Qsiu5IhNEhh6z502uvmU2a5HeaVJaKLCowv7hiUfQghPtUYhH14KgPx6+fffZZSA3GLpdbiYpFgJo0aZJ17do1hNHyvyD8bwj/43H88ccHjnXq1Al51vXr17fRo0cH9S659ejRI++jOAttLk+Up+9i4aG0xkasxMpPwG8pvxIrPwG/pfxKrPwE/JbyK7HyE/Bbyq+Kh5XEohIUi7bZxqxTp3UncsECs/vvX/N5QcWio44y23NPs5UrzYYMMZs+3e8w6SwlFhWYYSqxKPlmLVu2tFatWq31cTqxqFq1ajZt2rSQKcW9SQ2eNWtWgfuXDReWqFj03nvvhfpE9913n53ES2ZmN954owH2kksuCcX3iDyaP39+2kLXiixK7zb6C9r/SomVWPkJ+C3lV2LlJ+C3lF+JlZ+A31J+JVZ+An5L+VXxsJJYVIJikWcKk8WiWrXMqLk7Y8aaote05DQ0Us/OOWfNd9OmrRGMaC+84HliehuJRQXmV9SRRQcccEBIUdt7771twoQJQed4NToJr8C9XL8XlphYRIpZ9erVQ9rZvvvumzdqAD7wwAMhn49THsjD/vjjj9NSkVgksagoXhn9Y8ZPUazEyk/Abym/Eis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRVkmFpGmtssu/6tZFAlBc+aYPfjgGido3NiMzJnoNDQKYzdrtq6D9Orld5pUlhKLCsyvKMQiyutMmTLFmjZtapdddpnVrl3brrzyylC7qEqVKnZTYQuYF3h0RXNhiYlFVAzntIbE1rlzZ3vooYfssMMOs6lTp4ZjP4cPHx5OS0vXJBZJLCoK14/zF3RRPC+X7yFW/tkTK7HyE/Bbyq/Eyk/Abym/Eis/Ab+l/Kp4WEksyjKxyD/NxW8psajAjAsjFnEy2mabbRZORyNNjZPeqbvcokWL0J8aNWqEAJhaRJ3lcCsxsSgTI/L56tata+U5YjCfJrFIYlEmX/J8r3/MeCitsRErsfIT8FvKr8TKT8BvKb8SKz8Bv6X8Sqz8BPyWcfxKYpHEorSeJbHI/9IlWRZULMrvgZxC+csvv4Qi19Q2yvWWNWKRF6TEIolFXl/Jzy7OX9BF8bxcvodY+WdPrMTKT8BvKb8SKz8Bv6X8qnhY9e7d2/r16+e/eSmz/Oeff9LWHS1lQ409HE6B7tmzZ951cd5BiUV+sah31642auTI2POTsxfUrGnGz/83MnUqVarkGg4+uIDC3RtI22233eyDDz5I+w4m6wwbCJZ8hymxqBR5QZy/dErRsAs0FLHyYxMrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv+ravas9fu/j/pvLcoMh0KtLF+s5aJDEIseMt6nfxviJWpx3sPcll1ivDViwdeDdYE3q71HffvjsB4lFMTxAYlEMWNluGmchzfaxFHf/xMpPWKzEyk/Abym/Eis/Ab+l/Eqs/AT8lnH86rUvXrMxP47x3zzHLVtu09JabfO/Y6VnzJhh9evX941q9GizMRsOK2vZ0moeeWSBBBBFFvkjizh9e0Nuv/76azi63dPuGHaHvfvdux7TUmHTvmF7e+ehdyQWxZhNiUUxYGW7aZx/zGT7WIq7f2LlJyxWYuUn4LeUX4mVn4DfUn4lVn4Cfss4fqVNvX9Tbx9+aOFnQ2mFqC0jv4rhVxuKP6UZZ5z1qvfI3tbrw0KexpZDvHu17mU926RPBVUa2rqTKbEohxw8U1fjLA6Z7lXavxcr/wyLlVj5Cfgt5Vdi5Sfgt5RfiZWfgN8yjl9pUx9jUy+xyBo2bOhyRPlVDL9yES29RnHWK4lFa/uVxCKJRaV3ZdCpVbHmNs5CGuvGpdBYrPyTKlZi5Sfgt5RfiZWfgN9SflU8rLSpj7Gpl1gksSjNa1iYmkX+N7t0WsZZ2yUWSSzK9BYosigToRz6Ps7ikEPDKpauipUfq1iJlZ+A31J+JVZ+An5L+ZVY+Qn4LeP4lcQiiUVpPUtpaO6XTmKRG9U6hnHWK4lFEosyeZrEokyEcuj7OItDDg2rWLoqVn6sYiVWfgJ+S/mVWPkJ+C3lV2LlJ+C3jONXEoskFkks8r9b6SwlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRRKL/O+WxKLCs0q+Q5z1SmKRxKJMHiixKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn4lVn4Cfkv5lVj5Cfgt4/iVxCKJRbkkFh3U4CDbb+v9bPaS2fbopEdTdr1etXp2xu5n2KrVq6zP6D7BhsifFvVa2EZlNrKZ82faU18+ZatXr/a/VBksFVlUcJRx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilhUpUIVu2y/y6xMmTK24K8F1ndc35Rdx6bqxlVtta223h/2tvo16luXPbrYylUrbeU/K22T8pvYiO9H2OgfR/tfKolFRcYq+UZx1iuJRRKLMjmixKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5lVj5Cfgt5Vdi5Sfgt4zjVxKLJBblilh05l5nWt3Kda182fJpxaL9t93f2jZoG4ShcmXLBbHo5MYn2061d7LBnw+22YtnW/N6ze3XRb/aN39843+pJBYVGSuJRX6UvVr3sp5teuZdkLy29+nTx3r06OG/4QZgKbGoFE1ynH/MlKJhF2goYuXHJlZi5Sfgt5RfiZWfgN9SfiVWfgJ+yzh+JbFIYlEuiEXb1drOTt/tdHt12qt25I5H2sK/Fq4TWVSxXEW7ouUV9t3c76xOlTpWbeNqQSy6uPnFVrNiTfv7n7+t3Ebl7Lclv9kzXz4TBKeiakpDKzjJOOuVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWCSxKBfEoh4te9jSv5fa/ePvD5EWqcSiM3Y7w+rXrG93jLnDzmt6Xp5Y1H2/7lZ94+r2y6JfgmC0TfVtbMrvU2zo1KH+lyqDpcSigqOMs15JLJJYlMnTJBZlIpRD38dZHHJoWMXSVbHyYxUrsfIT8FvKr8TKT8BvKb8SKz8Bv2Ucv5JYJLEo28Ui0s6u3f/a0E3qEJWxMuH3P8z7wQZ/MTiv+1e1usqILkq0WbZymf2y+BdrVLOR3fPxPbZ05VK77oDrbPGKxXbX2Lv8L5XEoiJjlXyjOOsVkWK9RvYqtr5k242VhhZ/RiQWxWeWtVfEWRyydhAl1DGx8oMWK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJRFYlHnzmbbbGO2fLnZ1Klmr7++7qS3bWvWrJlZmTJmP/5oNmyY2dKlZg0bmh13nFnFimZz5pi98ILZH3/4nSaVZZs2Zvz8f1tffkVBa+oQRa3VNq1sxaoV9uLXLxpFrw/Y9gAbNXNUKHxN6hlt3632tQplK9g7098Jfz5ku0Ps+3nfB5Fotzq72Ze/fWnDvh5WOD4JVyuyqOAo4/iVIosUWZTJ0yQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/Eyk/Abym/Eis/Ab9lHL+SWJQlYhEi0P77m/31l1m5cmt+Bg82++GH/038lluanXOO2apVawSlTTYxmzjR7I03zK691myjjczmzzerWXONkPTYY36nyWKxKLlrpKFRb+jecfdah+06WPOtm9v4n8bbW9PfyjMl9SyqWVS2TNmQlrbpJpuG7yl+3X9Cf5u3bF7h+EgsKhJ+cdYriUUSizI5ncSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+ZVY+Qn4LeVXYuUn4LeM41cSi7JELDr5ZLNGjczuvtts333NDjrI7PPPzV5++X8Tz+cHH7xGHPr+e7NLL10jDr333pqookmT1nzXtOmaa8aN8ztNDolFBR1UrUq1bJPym9jPi3621atXF/Q2Ka9TZFHBccZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVXYuUn4LeUX4mVn4DfMo5fSSzKErEomt6OHc12331NlNDDD5v9+uu6E7/PPmvEJCKLRoww23RTsz33XBNxVLas2aJFa1LYpk3zO80GIBYVDkb+V0ssKjjdOOuVxCKJRZk8TWJRJkI59H2cxSGHhlUsXRUrP1axEis/Ab+l/Cr7Wf3999+2fPlyq1y5sr+z69lyQ/Orv0ixMcqqVIxNfkNjFRtQwgVxWEksKkGxqE4dsxNPXHdq5841e/rpNZ+fccaa+kPUJCJK6NNP17WnjlCrVmtS1aZPN1u2zKxJkzW1ixCIEI4QjIhSKkzLkppFhRlCSV0rsajgpOOsVxKLJBZl8jSJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvKr7GL15Zdf2quvvmqdOnWyevXq2X/+8x8799xzrU2bNvbBBx+4OvvWW2/ZYYcdZi+++KIdc8wxaa/h/k2aNLE333zTdd84RsXpV2+88YZ98cUXds0118TpUlrbq6++2m6//XabPXu21WHTG7Oddtpp9swzz9hNN91k1113XcqrL730Uuvbt68h/JUlQiKhFSermEPJevM4rCQWlaBYRPHqTp3W9Z8FC8ymTDGrWtXslVfMdt7Z7KSTzP780+z++/9njyDEd++8Y7ZypdkVV5iRTvXWW2aHH272/vtmH31kduWVa6KObrzR7J9/Cu6vEovc7CQWuVGtYxhnvZJYJLEok6dJLMpEKIe+j7M45NCwiqWrYuXHKlZi5Sfgt5RfZRerZ5991k499VQbM2aMtWjRwg444AD7/PPPg/DTrl07V2cRU4444gh74YUX7DjqfaRpCCN77rmnvf322677xjEqTr/617/+ZQ8//LD9888/4ZSgwrarrrrK+vTpY7/++qvVrVs31u2WLl0aIr72339/e+ihh2zXXXdNef2FF15oDzzwgK1cudLKETUhsSgW58g4jl9JLCpBsSi/2TzzTLN69cy++sqsQgWzHXYwmzzZ7MMPzbp0MZsxw+z3381Y3zjtDHEJMQehacCANQLRwoVmEyaYHXjgmt/37Vsg/8m7SGKRm5/EIjcqiUUxUPVq3cso6J5ubefv5B49esS4Y+k3lVhUiuY4zj9mStGwCzQUsfJjEyux8hPwW8qvsocVc3HooYfat99+a3vttVcQIPr16xc6eN5559mDDz6YtrOvvfaaIXqQDrXPPvvY888/H8QiIoyIwCHyZdmyZdahQwe7//77QwQNP7Vr17btt9/eJk6cGMSo++67z6oSBVDIluhXRDr17NnTDjnkkBA1xfMuv/xya968eehTuv59+umndueddwYxC+Hs2muvtblz59o555xjv//+ux1++OH2+uuv20cffRT+UckzGQP3Q7RBcOvevbtxnx122MGuv/56O/3000MB2FtvvTVEbW2xxRZhvO+//34QizbeeGMbOHBg+CGl7IorrgjXpGvwfOedd2zzzTe3W265xdq3b28XXXSRffzxx7btttvaWWedFfqbKBY9+uij9uSTT1rnzp2tW7duYY4RA2fOnBmeRYRSsqBUyOkoNZfHWa8kFmWJWLTFFmYIRpFISlQRp6FVqbLmBDQEokceYZEzq1Fjja+Sdvbqq2bffGN29NFme+yx5nOijV580ezLLwvn0xKL3PwkFrlRrWMYZ71SZJEiizJ5msSiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VX2sJo3b14QJxATED8QSM4++2yrUKFCEDYQR1I1olU2pRCssSc7M1y/aNGiIBZxT+5BtBLiEKlQkfDEnxFdWrZsaXPmzAkiVf/+/UPaW2Fbol899dRTdgb1SsyCQDJ48OAgriDOPPbYYyn7RxTOTjvtFK658cYbg7iDEMaY6B9C0BNPPBHElW222cZ++uknu+SSS8LYW7VqZYhnW3Ict5ldcMEF4brJkycHu99++8323ntv22WXXUJ6H2Om0Z9HHnnEbrjhBuvVq1d4xvDhw/OivFIxidIEmZvevXsHkYnP7rnnHnvvvfeMKK8ff/zR7rjjjhBZROTYKaecYieccEIQ8HgGfejSpYtVqlQpRCeREqf/UU3tgXHWK4lFWSIWRVNJ1N7ixWt+0rXq1ddEHyEgJTZSz0gR/emnNWlqhW0Si9wEJRa5Ua1jGGe9klgksSiTp0ksykQoh76Pszjk0LCKpati5ccqVmLlJ+C3lF9lF6vkNDQiZEhz+uSTT9J2dOTIkUFwQISh1hFRPAgsCCQIFEQNzZ8/3zbaaKMQ+TJu3Dj7448/Qk0k0q4+++wzW7FiRRBwiPZ59913/VDSWKYSi6K0uLvvvjtEFhF9Q72gdP2jnhICFhFWbdu2DYIK0TqJaWhc27Rp0yA6de3a1SZMmGA///xziBbiGoQb7BFlEJGInIIFgtD06dOtUaNG4XO+Ryxq3bp1+J5rZsyYESKA6CNiVaqGyAY3opmILOKeRAn9+eefgT8cEI1eeumlMBdRW7JkiW2yySZ5EUeIQ9Qy4jmMJ7/5LvTk5PAN4qxXEouyTCzKJr+TWOSeDYlFblQSi2KgUhpaDFj/byqxKD6zrL0izj9msnYQJdQxsfKDFiux8hPwW8qvsotVQcSi6JqooDURN0TwIFYgGpG6NWvWrDDQY489NggXixcvtoYNG9rWW28dxBrq/9SoUSNE3HgLaedHLpVY9PLLL9tRRx0VInnOP/98Gz16dIhyStc/BJcBAwaEcSAaIQBRhJrUsqhmEWltRx99tA0dOtSOP/74ME6iqRB6eBZiD9FHCGKk9pHihQ3XE2GE0IPI9Pjjj4cIIKKU+IzUsagh3nTk2O8ULVksoi+vvPJK6CP94L6JYhH3JpoL4QgGiHdELyEWlS9fPjyB1MCLL77Y75gbkGWc9UpikcSitK+GxCL3qiGxyI1KYlEMVBKLYsCSWBQfVrZfEecfM9k+luLun1j5CYuVWPkJ+C3lV9nFKhJ+EBNIKUO8yRRZhChRq1atEBWEyHDbbbeFlCtElh9++CGkthGxQhQRNXJOPvnkkA4VpaER6bNw4cKQRkX6FEJHYVsqsYh0N/rHiWFE8SAS3XvvvSn7RzoWwg1iCv2i/6RtTZ06NVyD2EOEFKlk1apVs9122y2kjlEviD8TYcT4qI9EFNGgQYOCiDNlypRQG4haTrAgqog+kbZHnzg9jvtSZ4lnPffcc0FwozaRRyzi2Q0aNLBhw4aF6CRqIY0YMcIQyphTxkxfFyxYYNOmTQvC2c033xzS1HbcccfwewSnojrprbDzmG3Xx1mvJBZJLJJYVPg3WGJRwRnGWa+UhqY0tEyepsiiTIRy6Ps4i0MODatYuipWfqxiJVZ+An5L+VV2sUJAIJIF8YJT0Kg1hABBylZ+DUGD9DMaaVujRo0KggW/RwAhzYpGJBFCSOPGjYOYQj0khAueh4hBClpBjo9P7lsqsYjInkmTJgVTinUTVURkTrr+UfgZkYhIHKKKsKeeDwIOdX9oFKsm/Ss6sh47xocwRVQPUUNRQzRDlCHljkghClPTENkQiIhaIprpyiuvDLWGaCeeeGKIToJTqhZFFvF8opa4f1Rv6OCDDw5RQxQUZ14Ri/7+++8Q2UXNIqK/+I4oJsZEYw6ot4RQprYugTjrlcQiiUVp3yFFFrmXF4lFblTrGMZZryQWSSzK5GkSizIRyqHv4ywOOTSsYumqWPmxipVY+Qn4LeVX2ceKgtWkiSESUceGhsjwIUdNp2j77bdfiD4iagXxJCp2nWhK1Mzy5cuDCEHtosRGChqCTNxj4/Mjl0osQvDiVDJOHKO/nv4xHtLDELkiFlzHkfVwqk5BXOOU7QVBeKpfv/5aJ4lRFJtIIopdJ5/yRrFrIrKoHZTcuBfP43sP+8TrifTiNDPvqXKwgj3zt9VWW1mZMmX8TrmBWcZZryQWSSxK+3pILHKvHBKL3KjWMYyzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvcoMVggWRQqnaoYceGoSlbGrpxCKieHKtFTd7vYN+j4jDSmKRxCKJRf53K52lxKKCM4yzXkkskliUydMkFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvxMpPwG+Z6Fe//PKLffXVV7bvvvuGItpqaxPQO+j3iDisJBZJLJJY5H+3JBYVnlXyHeKsVxKLJBZl8kCJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TK2vnv7QAAIABJREFUT8BvGcevJBZJLJJY5H+3JBYVnpXEIj9DnYbmZxVZSiyKzyxrr4jzj5msHUQJdUys/KDFSqz8BPyW8iux8hPwW8qvxMpPwG8Zx68kFkkskljkf7ckFhWelcQiP0OJRX5WEovis8r6K+L8YybrB1PMHRQrP2CxEis/Ab+l/Eqs/AT8lvIrsfIT8FvG8SuJRRKLJBb53y2JRYVnJbHIz1BikZ+VxKL4rLL+ijj/mMn6wRRzB8XKD1isxMpPwG8pv8oOVhSvPu6440Jnpk+fbqNHjw4nY7Vr1y6cjjVq1Cj7+uuvrXXr1rbjjjvarFmz7P3337d69erZQQcdtM4gvvzyy3Ai184772ycdvbKK6/YwoULw/WcGJbcEp8/efJk++STT8LJae3bt/cDSrDMRr9KZJLfoN577z2jzhKtVatW9t133wUWnORWHC0bWRXHOIvinnFYSSySWCSxqPBvnQpcF5xhnPVKNYtUsyiTpykNLROhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61fllx5Purr74ajoe/9tprQ2f69OkTRJ2xY8caJ51VrFjRnn/+edt///2DaNSjRw+78847g5DBcfSHH354EJCi9umnn9rw4cODPT+ISpMmTbJmzZrZRx99lPcc7JOfz3H0PJ97T5gwwY455hhr1KiRH9L/W2abXyUzyW9Affv2tb322iuY7LLLLkG4g8Fuu+0Wm4Pngmxj5enz+rKJw0pikcQiiUWFf1MlFhWcYZz1SmKRxKJMniaxKBOhHPo+zuKQQ8Mqlq6KlR+rWImVn4DfUn61flnNnTvXiORBGLrmmmsMseauu+6yrl272ltvvRXECuaodu3aVqdOHatUqZJVq1bNnn76abv00kvDdX/88Yd17NgxbyAIQ+PHj7fGjRsHsQjhaNddd7Utt9wyCEHnn3++ValSJdgnP3/+/Pnh5LIWLVrY4MGDwz2aNm3qh1TCYtEbb7wRooCIviIKCmZnn3223XHHHdalSxf74osvQoTWihUr1mICM0Q6xLIGDRrY0UcfnTdGhLg2bdqEaCKYv/TSS0Esgg3RSbQDDzwwzE1RNL2DfopxWEksklgkscj/bqWzlFhUcIZx1iuJRRKLMnmaxKJMhHLo+ziLQw4Nq1i6KlZ+rGIlVn4Cfkv5VXawuu222+zqq6+2v//+2/r16xdEIcSJk08+OQggpJJtv/32Qaw44ogjQppY586dQ2oawhBCEDakpFWoUMHefPNNq1q1ahCLaHPmzLEXX3zRNttsM2vbtm2ISKpcuXLe99HzIxpDhgwJ6XAnnnhieG7cVlJ+de+994aoqrp161rDhg3tkUceCZFWpN0RHQSff//737bxxhuvxeS5554Ln5GSB9+LLrooCGiISgMHDrQ999zTiEZq2bJliPpCLFq1apWtXr3avv32W1u+fHngXxStpFgVRV/X9z3isCpKsahsmbJ2ecvL1xn+jPkzbMhXQ9b6vPMenW2batvY8lXLbeqcqfb6t69b+bLl7dL9Ll3L7pOfP7EPfvigyJAWZlP/+cCBZhMmFFlfsv5G++xjxs//t59//jmIyp424ZcJxs+G0vbZch8767Cz8oYb5x3cUBilG2ccVhKLJBZlel8kFmUilEPfx1kccmhYxdJVsfJjFSux8hPwW8qvsoNVJNb88MMPQdQg+gexAsGGNLQoDYoUKQQkxJxLLrnEqK+DwMRGB7GIaBdqFSWKRVOnTrURI0aEmkjYLVu2zP773/+G+0Z1eKLns2nCJxCZxo0bF35/6qmn+iH9v2VJ+RXiGdFYY8aMsX333ddmz54dmB188MFhzIhu5557buhVIpPHHnssCGz8wAKBCR7UdZo5c6Y1adIkpOFRrwjxDf7vvPOONW/e3JYuXRqeI7EotlsU+oI4flWUYlG5jcrZVa2uyus/4hHRbD8t/MkGThqY93nbhm1t/232t7/+/su4hp/Bnw+2VatXWbc9u9mKVSvs73/+DvaIRfSxqFphxKJeXbpY78GDi6oruk8pItDlki42qO8giUUFmNM461XvD3tbr5G9CvCU3LxEBa7jz5vEovjMsvaKOItD1g6ihDomVn7QYiVWfgJ+S/lVdrBKjOzp37+/lS1b1v7666+QHoVYMXTo0BAJU6tWLTvhhBPs4YcfDsIG0S7/+te/rEaNGmsNJFEY4X5LliwJYgitU6dOVr169bXsEyObHnroIStfvnyInjn22GNDEe24raT86tFHHw1dY3xEXNHvQYMG2XXXXWdEHVGnieggWiITRLnXXnst2MP3zDPPDDYIbvfff3+IykJUY/yIZohFCFIwRCxavHixde/ePVxb2FZSrArbz2y4Pg6rohSLEseOUHRFyytCtFC/cf1s4fKFeV+f3Phka1Szkd398d2271b72kENDrLPZ39uvyz6xQ7b/jB77LPHbM6SObbs72VFjrNQYlGvXiEab0NtrHWsr2rrEuDvoJ49e+Z9Eecd3NB5xmGlyCJFFmV6XyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq+ykxViRFRXKOoh4gWRMlGj3g71i4hwKOqW6vlxnlGSfvXnn39azZo1baONNorTxSAMIbglC23cBPGJNL3kFnEpys1lSbKKBSgLjeOwKi6x6IRdT7BdN9vV3p7+to37aVxKSh137Gi719k9+OTDEx62vbfc20jnidq8ZfNCRNKSlUuKjHJhxKIi60SO3iiOX+XoEIus22LlRxmHlSKLJBZl8iyJRZkI5dD3cRaHHBpWsXRVrPxYxUqs/AT8lvIrsfIT8FvKr8TKT8BvGcevikMsqlSukl3Z6kpbvGKx3T327rQdP2P3M6xhjYZByH3j2zesRqUatmfdPUMNoy2qbmFbVd0q1L2hnlFRNYlFBScZx68K/pTScaVY+ecxDitFFkksyuRZEosyEcqh7+MsDjk0rGLpqlj5sYqVWPkJ+C3lV9nBatiwYaGmEI2aOxzXTn2hdu3ahQ3nqFGjQrHm1q1bh4LOs2bNsvfffz+kiFHUOrlRy4faRTvvvHOIoCHFhCgarqeoc3JLfD6ns1FAm9PAOGGsIC3b/CqRR6bxJLLIZFsU32cbq6IYU3HdIw6r4hCLjtrpqCD6fDDjAxs5Y+Q6wyTtrGqFqvbKtFds5812tpN2Pcn+XPqnDft6mJXfqLzNXDDTalSsYZc0v8Tm/TUvpLEVVZNYVHCScfyq4E8pHVeKlX8e47BSZJHEokyeJbEoE6Ec+j7O4pBDwyqWroqVH6tYiZWfgN9SfrV+WZFKxhHunLh17bXXhs5wvD2iztixY+3QQw8NdXKef/75UHQa0ahHjx7G8e6tWrUKp5pRnBkBKWoUxh4+fHiw5wdRadKkSaF+z0cffZT3HOyTn0+xaJ7PvSnwfMwxx4R6PXFbNvlVMo90Y0k1F3HHXRD7bGJVkP6X5DVxWBWHWNR9v+5WfePqdvvo20MRaxrpZQdse4CNmjnKdquzm9WrXs+++v0rq1C2gu2w6Q42+bfJVrlC5VDLaPzP423zTTa3BjUb2NhZY+3d794tMnwSiwqOMo5fFfwppeNKsfLPYxxWiiySWJTJsyQWZSKUQ9/HWRxyaFjF0lWx8mMVK7HyE/Bbyq/WL6u5c+cakTwIQ9dcc0042euuu+6yrl27hiPdOd2MOapdu7bVqVMn1CyiTtHTTz9tl156abjujz/+sI4dO+YNBGFo/Pjx1rhx4yAWIRztuuuu4eQvhCBOWovqISU/f/78+fbVV19ZixYtbPDgweEeTZs29UP6f8vi9iuipR5//PFwEhxjQSybM2dO4PXss8/+H3vnAWZFkX3xS84MIkiSIGJAFFdEYREBERUUFRGRRRFQWQyoBBFFBcyIKGJGUTBgAGEVsyIqYEBBV1Aw4N8l5yA58/9OsW92GGamT73pnpn35tR+88nOu13d/avT9eadd+uWM9RQBLxLly4uIyvGA7ucvfzyy3bDDTc47ih0feGFF7qrTs8Cv3v11Vdt06ZNtnPnTrf7Gcw27JaG8yOrC8Vfs9uiZpXd68tLx/uwisIsurPZnQ7HPdPuScXSuk5ra3x4Y5u5ZKYrZn1Vg6vcLmhoa7etdbuhFSxQ0Ho27GlYxoa2dddWe3zm46EWupZZFL9SfXQV/1mS40ix4sfRh5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WrvMEq7W5kI0eOdKYQjJtOnTo50wjmxFFHHWVYToVdv7BMDOZFzAiBEYQYLEnDDl1pd/7CHcJImTRpklWsWNHOPPNMl5GEAs4wk9DS7saG///GG2+45XAdO3Z05/VtUesKBaixaxkyoHAfRxxxhNsF7eijj3aMsKQPDG666SZ36Wl5PPbYY9ahQwe3NA8mG5b7pW1pWcAcKlmypON18skn27Jly5zpBjMNxhtMqey2qFll9/ry0vE+rKIwi1gWlUtXdnWN8JO2VShZwQoVLGQrN69ku6LjZBbRqA4K9NFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5Su8garmEGBTBcYG8j+wfIpGDZYhoalYPXr17cRI0Y4AwlmTu/eve3TTz912TUwPGAWIbMGtYrSmiPz5s2zKVOmOAMFcdhV7ffff3f9wlxBi51/6dKlLpMJJhK2jMe/O3fuzEP6b2TUusKuZFi6h2wgbGnfo0cPe+WVVxwDXPvnn3/usqLOOeecg8yi2bNnu+wpmHExMykjswgZRU899ZSr24RsLdR/glkExviRWeQti2wf4KOr3DSLsn2jcXQgsygOaDk0X8V/ZXnvSJ9nMO9dfc5ekQ8rmUUyi4LUmStmEf7Ywjdy8Wy7m/6PJJ8HIghGor8uFvwIipVY8QT4SOlKrHgCfGSUukqbzQKDolChQrZ9+3a3zAmZQhMmTLBixYpZ+fLl7ZJLLnFLrFCwes+ePdazZ8+Dtn9PaxahP2TiwBxCu+KKKywlJeWAG0+b2fT0009bkSJFDNvDt2/f3i238m1RssK14NqQWYSleWvXrrVrr73WLRH77bffnHGE+4HhhuV7aGl5wFC67777nAmEOk7pW4wF+CMLKXaOcuXKuSWAMot81RBevI+uZBYd+OErvFFIvp58dJV8d+93R2LF8/JhJbMoPrMoyMvAlz5lypThBy0PR+aoWbRq1Sq3Vh9/BOJby8MOO8z94YX09NatWztMWP9/zz3/W5Odnp3MoszV5DM55GFN5siliRWPWazEiifAR0pXeZMV/gCK1RWKXSEygrA8LdZQkBnmRTxf+ATddUbnDzom7es5oSuYPuvXr7dDDz3U59K8YnEOcMcXa/g7CYZd2C3GCuYUWszUC/s8idAfdIf7R3ZcRs1HVzKLZBaxmvfRFdtnssaJFT+yPqxkFvmZRRl5GWlHBhnEV155pdWsWdPVGXz++eetYcOG/ODlwcgcNYuwLSzStpHOvnLlSmcW/fLLLzZo0CBXzDGzN+m03GQWySwK4znymUjDOF8i9yFW/OiJlVjxBPhI6UqseAJZRz755JMuG+yyyy5zS/3uvPNO9/cXvqS74447wjpNlv2kvYYwTnjqqae6DLaff/7Zuzt8+/u3v/3Nsfjiiy+sWbNmGfaB+ln4QaZYUJNZJLMoSCOx1zW3s6TMPaO1a9fmD8jHkT6sZBb5mUUZeRlppYbM4ZtvvtllECN21KhR9vHH4e0+mRuyzlGzKHaD+DYyZha9++67ri4B3rCx8wnMoDPOOCNTFjKLZBaF8aD4TKRhnC+R+xArfvTESqx4AnykdCVWPIGsI7G0DzWQ8McrzJXYznVYAoid63Kipb2GMM6HAuDIDPr111+9u/vss89ccfbrrrvOBg8e7L7EzKjhQyqKmaNWV1CTWaQP9UEakVnEEvpfnN4HeWY+rGQW+ZlFGXkZaUcG72/YLRb//eGHH9zKKXgeidxy3SzCGy8KOPbq1csVzsSafWQbZZbeLrNIZlEYD5zPRBrG+RK5D7HiR0+sxIonwEdKV2LFE8g88u6773aGCOoo9O3b12CUoN4SDBLUUrr66qszPPjee++1Dz/80GXd4O807OTWp08fq1Gjhi1ZssQZLSjsjaWKSL/HeVB76vXXX3eFumHitGjRwmWVjx49+oBrGDJkiMGoeuKJJ1ytrHPPPdfuv/9+d434RnbYsGEuo6Bx48YuBsYQlkGiQDh26zvttNNcQXbsHIfzoMQBzjlu3DhX1uDRRx+1Bg0aZHhf6LdNmzau3hSKuD/33HPuGrDTHF478cQTXeYVCpfHzCKYbDfccIMrqfDII4+4Wl7pz7ex/EaDYZRfmgpcxz/Smtt5dmIVDSuZReGaRViij/eiKlWquPeR5s2b2+LFi/nBy4ORuW4W7dy50xXUxA8KZmIpGqAefvjhNmPGDLdsLX1Lu2WsJg+57vE8V9INT02sxIonwEdKV2LFE+AjpavMWeHLuYsuusj9EQuD4+uvv3ZmyHnnnWd33XWXM2IyajCRUHcBphJMn/Hjx1vXrl1t7NixbjkblrHh7zJ80ff222+712HuwExCUXQYQN27d7drrrnGOnTocMA11KpVy+rUqeP+5oMJhet66KGHrG3bti4DChnn+Pfw4cPddeOP8JEjR7od+XDdBQsWtHfeecftrofXkJmOXfhgZsH8Wb16tS1fvtzVfkrfUHcKZRBgQsE8wzH4wx6tf//+7jrwN+n8+fPdNSKzCNlXKHCOAuQwjTI63/hvxts3q77hRZvgkTKL4h9AzVc8O7GKhpXMooPNovSk8aVE06ZND/h12lVSaV/Alyr4YgTvp7NmzXJfnkyePJkfvDwYmetmEb7lwps5/kBA2laXLl3sjz/+yBSVMosyV5EmUv4JEyux4gnwkdKVWPEE+EgfXaH4Yn5uKCiJwpJqGRPAH7CxZWj4QxZmzMCBA11mUWYtZhbBdKlcubIzb9577z33txs2KOnYsaPLOEJBbmT4XHjhhe5vumrVqrku8f9RvwHGEnbDS7sMDX9Uw6hBdg9qAiFbCMYO6gfByPnpp5+cQYOsc1wnMtERD0MIqf0bNmywQw45xJlFyJTCOWFUnXXWWS7bafr06a7P2CYq6e/xrbfecubVRx995I6BgTZlyhR3bzCR0HBf2Inuzz//dP8fccgwWrZsWYbne3Dsg7a15tZ8I0GZRfEPtc/cHv9ZkuNIseLH0YeVzKLsZxZt3brVLevG+2m/fv3cbqi33HKLq12EDUOy2riLH9Xci8w1swh/0OKPDPzx0apVK/ftDX7w7Rb+EMmsySySWRTG4+IzkYZxvkTuQ6z40RMrseIJ8JE+urp90O12/z33850rMt8QGDJwoI1+6aW4zaJYrUmYQxMmTLBFixa57KGrrrrKLS/bvXu3W5YFQwrGDQwfZCTBiMHffFjyhQLRac0iGD8wjGC8IHMIWTxYwvbMM8/Yww8/7AwaZB/BuEEmD/qE6YRU/1hB60qVKrmi3S+88IL79hffAqetfXnppZe62kwZtbRmUaNGjZzphHb99dc7QwjZ7WnNImRX4V5gWuEDQkbnq316bVtYdGG+0ZXMoviH2mduj/8syXGkWPHj6MNKZlH8ZlHMy8CyZLwXbNy40SW8NGnSxA0W3pfwBQTeFxO55YpZlBGwFStWuG+sgprMIplFQRphXveZSJn+kjlGrPjRFSux4gnwkT666t6nu014cYLZPjMrYPv/m90W6ye7/aXvJ4T+ihQsYkULFU29Qyxnx7J2qu3cabZrFxWaDEHXXXKJjZ4yxRkt2Fxk7dq1XplFWEYGI6hHjx528cUX25tvvumWmKFkADKJkO2DDCDUGoLpAsMGXwDCXMKSMWTr4I9pmEWxa4C28YUhlqu1b9/e/vGPf7glZp06dXIZQtgABUvXbr31VpdFtHTpUrd0bujQoc5Mwi5oyEDC+fBH+aGHHur+DeMINZNmzpzplsbBiMqopTWLYHwh6wo1mHr27On++MfmKzCFkN2EpXK4zxNOOMFdG5a/4UvP9Ocb8MQAm7t1bjJIhroHmUUUpgyDfOb2+M+SHEeKFT+OPqxkFsVnFmU1GvjiBF+A4L0usxrM/GjmfmSeMYtYFDKLZBaxWskqzmciDeN8idyHWPGjJ1ZixRPgI310pZ2YPHZi+vxzM/zkl9aihd3y/vuuFg+WXmFZF9Lm77jjjizT5GPL0GCQfPPNN674NApe49tTLGWDERRb/oglWsg6ghkEwwf1i9BgtKDuELJ8kJ4fuwYYOjCJsKwNDYWmsWwM5g5MG2QYxRr6gqmEbCPUhUBxbWT6IM0fmemoWQQDB0WzkfmDBkMJ2UuZtbRmEZbKxZbY4R5xLcgsQl8wx2K7oSHDCZlOY8aMceZU+vM1aN9ABa61xTk1q/jM7VSHSRwkVvzg+rCSWRS+WcSPVGJEyixKjHGirtJncqA6TOIgseIHV6zEiifAR0pX0bCSWSSzKFNltWhh1qKF2/Fr7969hoxu7PKF9vvvvxvqPaVvMGNQzBnLyfbt2+dKByCbBuZMrCGbC8ei1hCWhKVta9ascdk/6etIxa4BNY7QcC07duxwy9rSfhOLnc9gROH4okX/l0GGb26RZYQaRWmvJXZuLJFD3Qj0n9W9wRBK3/CNMO47bb9B81Xa8+kZ9HgG+WkwKSODdJWUNx3nTYkVD86HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjIvKSrWJFcLH9B/ZTMWizDAh+ac7L5sNIHVY8PqvkwswhmUayl1dWPP/7odjNL35BGjyVdMbMoJ3Uf1rmyurdYbYmgc+kZzJyQlqEFqSfz1310Ff9ZkuNIseLH0YeVzCKZRUHKklkURCiBXveZHBLotiK5VLHisYqVWPEE+Mi8pKuYWYTlJciiyKxh+29sFy6ziB/nqCOz9UFVZlFqZlFW44QdyZBtg2Va+bX5zFcybD0M2/wqqP/et4+u8jkqEyteAT6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq6QRXHttde6orzt2rWzZ5991u22BLMIdUr69Olj3333nStei4K6l19+ucXMItRAQf0UFMN98skn3ZbfUTYfVvqg6vFBVWYRZRZFqe1E6VvPYOYjlS3DNlEEENF1+ugqoktImG7Fih8qH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI3NbVzCIsEsStv3GLkowjWAWYRla1apV3Y306tXL7fiEbVFRTBeFgJFZhHomJ510ktsSHAV3Y0V8+bv3i/RhJbNIZlGm6vpvzaLY6z668lNs8kX7sNIz6PEMJp9UvO7IR1deHSdhsFjxg+rDSmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4AnxkbuoKBXexg1K3bt3cjkZTpkwx7OIEswi7HrVo0cLtwoTts5FlhC20kXGEXZFgFq1cudIZRrGdk9BfrFAvT4CP9GGlD6oeH1SVWaTMIvIx1DOYOShlFpEiyiDMR1fxnyU5jhQrfhx9WMksklkUpCyZRUGEEuh1n8khgW4rkksVKx6rWIkVT4CPzE1dYeci7K4UK2j9xx9/WJ06dZxZBNPoggsusJdfftktPfvhhx+sQYMGbmtxxMEsWr9+vZUrV85tA46sIplF/LiHHZmtD6oyi2QWkYL0ma9k2HoYtiT/ZA3z0VWyMmDvS6xYUuZV3+muz++yIV8M4TtP8MghzYfY4BaDU+8iva4efPBBGzBgQILfZbiXL7MoXJ652psmUh6/WIkVT4CPlK4Sh9Wpp57qtvt++OGH7Z133nGmD8wi/KGA7b9Rh2jQoEEu8wjL1X7++Wd76KGHnFl05ZVXumwj/Pf888+3yZMn8zceR6SPrvRB1eODatRm0SWXmB19tNmuXWbz5pm9/77Z3r0HKuCaa8xSUv73uxUrzF580Qxb2l98sVnx4marV5u9+abZmjVxqCfNIVqGFjc/PYOZo8uWYRv3iCTHgT66So47jv8uxIpn58NKmUXKLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEfmtq4++OADO/fcc90Ft2zZ0qZOnWo33nijjRw50hlCKGYda/3797dhw4a5+kbYRhyZRliSVqZMGfvwww+N3X6bp3NgpA8rmUV5xCxq3Nisdev95hB+ChfebxZ9++2BgztokNm+fWY7duz//fLlZuPGmd1+u1nBgmYbNpgdcojZokVmL7wQr4T2HyezKG5+egZlFsUtniwO9NFVFOdPpD7Fih8tH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj8wLutq6dautW7fODj/88IMufPv27S7zCMWuYQqlb6tWrbLy5ctbYZgAETcfVjKL8ohZ1LWr2RFHmD31lNmePWY33LA/Q+jJJ/+nlqJFzQYONJs502z6dLPNm/e/dsIJ+7OKvv/e7L33zE45Zf/vv/kme0qTWRQ3Pz2DMoviFo/MolDQ+TyDoZwwgTvxYaXMIplFQVKXWRREKIFe95kcEui2IrlUseKxipVY8QT4SOkqGlYyi/KIWVSypFmxYmbr15u1aWPWqJHZr7+avfba/wa+Rg2zK6/83//fts3sX/8yq1vX7KST9ptMhQqZbdpk9u67+4/PTpNZFDc9n/lKz6DHMxj3iCTHgT66So47jv8uxIpn58NKmUUyi4KUJbMoiFACve4zOSTQbUVyqWLFYxUrseIJ8JHSVTSs9EHV44NqdmsWVapk1rHjwQO5bt3+pWRoeP2448x27zYbNWp/dlGs1aljdtFFZitX7l9u1qCB2dq1ZsuW7c8u2rp1v0EE4wiG0cMP86LJKFJmUdz8fOYrPYMez2DcI5IcB/roKjnuOP67ECuenQ8rZRbJLApSlsw00wCqAAAgAElEQVSiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdKV9GwCvuDakrxFOt2YjcrW7ysbdqxyWYsmmGzls066OK7/q2r1Shbw3bs2WHzVs+zd39718Wg+G2T6k2sYIGCtnDDQntl7iu2DzV6QmrZKq6bXbMImUFXXHHwnfz1l9kTT5j16mV26KH7jaAxY8zw+7QNtYjws2SJ2c6d++sUxWobnXee2dSpZtOmmd1yixkyle6+++AC2T4cZRb50Dog1me+CvsZjPuic+jAbD2DOXSNefU0PrrKq/eQU9clVjxpH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj5SuomEV9gfVng17WpXSVeyvHX9Z2WJlndFz37T7bM++Pak3cGbtM+30Gqfb9t3brXDBwu7nxX+/aPtsn3X7WzfbtWeX7dq7y0oWKWlT/m+KM5zCatn6oJpdsyirmzj7bLMmTfYvJfvll/1FrJE19OOPZt26mf3nP2aLF5vBFIJZhP/ftOn+LCPshgaDaONGs1mzzM44Y/+/R4zIHjaZRXHz85mvwn4G477oHDowW89gDl1jXj2Nj67y6j3k1HWJFU/ah5Uyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6WraFiF/UG1T+M+tnvfbnt85uN2dYOr7fCyh9src16xBesWpN5Ap+M72ZGHHGkPf/2wnVrtVGt5REv794p/W/HCxe3YCsc642jF5hXWuHpjW75puf2y5hf+5gMis/VBNUqz6PrrzSpWPPDqsazslVfM/vnP/xW7vu46s8MO2x8HYwmv//mnWbt2Zn/72/7fw2iaNMls7tzscZNZFDc/n/kq7Gcw7ovOoQOz9Qzm0DXm1dP46Cqv3kNOXZdY8aR9WCmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdTZw40S7GblJmtmDBApsxY4ZVq1bNWrVqZQUKFLDp06fb/PnzrXnz5nbMMcfY4sWLberUqVa9enVr2bLlQTcxd+5ct+tZ3bp1be/evfb222/bxo0b3fG1atU6KD7t+efMmWPffvut1ahRw85GtkkczYdVVB9UYRRVK1vNZQndP/3+DO/igmMusBMrnWgFCxa0Z2c9ax2P72iHFD/Edu/d7bKNVm5Zaa/OfdX+2p5uOVYcTGKHZOuDapRmkc89YYkZjCVkGMEwijX8HnWR8Ptdu3x6zDhWZlHcDPPCMxj3xUd8YLaewYivLa9376OrvH4vUV+fWPGEfVgps0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXf311182efJkW7Rokd2O+i9m9uCDDzpT56uvvrI2bdpY8eLFbfz48Xb66ac702jAgAH20EMPWdOmTe3rr7+28847zxlIsfbdd9/ZJ5984uLxA1Pp+++/t0aNGtm0adNSz4P49OfftWuXOz/6njVrll100UV25JFH8pD+G+nDKiqzqN/f+1mZYmXc0rIRX4+wjTs2HnQfXU7sYrXL1XaG3Hu/vWdNaza1lGIptmzTMmcY1UipYT+v+tkmzJvgzSCzA7L1QTWvmEWh0QjoSGZR3KTzwjMY98VHfGC2nsGIry2vd++jq7x+L1Ffn1jxhH1YKbNIZlGQsmQWBRFKoNd9JocEuq1ILlWseKxiJVY8AT4yCl2tW7fOkMkDY2jgwIEGs2b48OHWvXt3++CDD+y4444znLdChQpWqVIlK1GihJUtW9bGjRtnffv2dcetWbPGLrjggtQbgTE0c+ZMO/74451ZBOOoXr16VrVqVWcEXX/99Va6dGkXn/78GzZssJ9++smaNGliL774ouvjlFNO4SHlAbOow3Ed3BIy1BnCv48/7HhX4DpWwBqXiGVnZYqWsbd/fdvqVqxrl9a71NZuXWsbdmxwy9Me+foR27prq93R7A7bvHOzDf9quDcDmUUhIJNZFDdEn/kqKsM27ouP+ECZRfED9tFV/GdJjiPFih9HH1bKLJJZFKQsmUVBhBLodZ/JIYFuK5JLFSseq1iJFU+Aj4xSVw888IDddttttnv3bhs5cqQzhWDcdOrUyZlGWEp21FFHGZaXtW3b1i0T69q1q1uaBmMIRhBisCStaNGi9v7771uZMmWcWYS2evVqmzRpklWsWNHOPPNMl5FUqlSp1Ndj54/ReOONN9xyuI4dO7rz+jYfVmF/UB14+kArUrCIfbn4S2cUlStezl6b+5rLMmpWs5lNXzjd6leqb9VTqttPq36yooWK2tGHHm1zVs5x9YnOqXOO/d/6/3MmEeLmrpxrE+dP9EWQaXy2Pqgqs8hq164d2lgkc0e5+Qzmda7Zegbz+s1FfH0+uor4UvJ892LFD5EPK2UWySwKUpbMoiBCCfS6z+SQQLcVyaWKFY9VrMSKJ8BHRqmrmFnz559/OqMH2T9YTgbDBsvQsBSsfv36NmLECGcgwczp3bu3ffrpp85gQn0jmEXIREKtorRm0bx582zKlCmuJhLitm3bZr///rvr9+ijj3YAYudfunSpy2SCyfTNN9+4f3fu3JmH9N9IH1Zhm0UoWN3mqDZWwAq4ndD+3PCnvfTjS9a6TmtrfHhjm7lkpitmfVWDq1xdIrS129a6otZbdm6x6065zg4teaj7PeodPTXrKVu/bb03g8wOyNYHVZlFMotIJebmM0heYq6FZesZzLWrzhsn9tFV3rji3LsKseLZ+7BSZpHMoiBlySwKIpRAr/tMDgl0W5FcqljxWMVKrHgCfGSUukqb2fPUU09ZoUKFbPv27dauXTuXKTRhwgQrVqyYlS9f3i655BJ79tlnXcHqPXv2WM+ePa1cuXIH3Ehaswj9bdmyxZlDaFdccYWlpKQcEJ82s+npp5+2IkWK2I4dO6x9+/auiLZv82EVtlmEay1UoJArbh2rPZTZ9VcuXdllEOEnbStforyVLFLSlm5a6gynMFu2PqjKLJJZRIoxt59B8jJzJSxbz2CuXHHeOamPrvLOVefOlYgVz92HlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rGKlVjxBPjInNTV5s2bU+sKxa4QGUFYnhZrKE6N+kUozhx2y+j8PufwYRWFWeRzrTkdm60PqjKLZBaRgtUzmDmobD2DJP9kDfPRVbIyYO9LrFhS5rKY2SXGMotkFgUpS2ZREKEEet1nckig24rkUsWKxypWYsUT4COlq2hYySzi/0g2mUX0BwperckZ6TNf6Rn0eAaTUy70Xfnoiu40SQPFih9YH1Yyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI6PU1cSJE11NITTUKZoxY4arL9SqVSuXOTR9+nRXzLp58+Z2zDHH2OLFi23q1KluiRiKWqdvKISN2kV169Z1tYzefvttt2wNx9eqVeug+LTnx+5sKKBdo0YNO/vss3lAaSJ9WOmDqscHVZlFMovIJ1LPYOaglFlEiiiDMB9dxX+W5DhSrPhx9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjIKXWEp2eTJk23RokV2++23u4vB9vYwdb766itr06aNqzU0fvx4V3QaptGAAQPsoYcesqZNm7pdzc477zxnIMUaCmN/8sknLh4/MJW+//57a9SokU2bNi31PIhPf/5du3a586PvWbNm2UUXXeSKa/s2H1Yyi2QWZaqvFi3M8PPf5qMrX80mW7wPKz2DHs9gsgnF8358dOXZddKFixU/pD6sZBbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEdGoat169YZMnlgDA0cONBg1gwfPty6d+9uH3zwgdvdDOetUKGCVapUydUsQp2icePGWd++fd1xa9assQsuuCD1RmAMzZw5044//nhnFsE4qlevnlWtWtUZQdhprXTp0i4+/fk3bNhgP/30kzVp0sRefPFF18cpp5zCQ4rjQ70+qPIfVD8YNsxszhzv8UjYA+rXNzvhhNTLX7FihVWuXJm6HZid+a01bNgwLlZzV861Oavyj67qH1bfbul2i0zIOB6QKN4H47iMhDhErPhh8mEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXdjWzkyJHOFIJx06lTJ2caYSnZUUcdZVhe1rZtW7dMrGvXrm5pGowhGEGIwZI07J6Wdjc03OHq1att0qRJVrFiRTvzzDNdRlKpUqWcmYSWdjc2/P833njDLYfr2LGjO69v82Els4g3i+7q3t2GjB3rOxyKFwERSEOgW+9uNmbEGJlFcajCZ26Po/ukOkSs+OH0YSWzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+MkpdxcyaP//80xk9yP7BcjIYNliGhqVg9evXtxEjRjgDCWZO79697dNPP7Xdu3e7+kYwi5CJhFpFac2iefPm2ZQpU1xNJMRhV7Xff//d9Xv00UcfYBYtXbrUZTLBRPrmm2/cvzt37sxD+m+kDyuZRR5m0V13OXMwv7atW7dayZIlqduHxrHMMr+0cuXKWZ06dVJv14dVfmEUu08syR08eLDMojgG3mduj6P7pDpErPjh9GEls0hmUZCyZBYFEUqg130mhwS6rUguVax4rGIlVjwBPjJKXaXN7HnqqaesUKFCtn37dmvXrp3LFJowYYIVK1bMypcvb5dccok9++yzrmD1nj17rGfPnoYPimlbWrMI/W3ZssWZQ2hXXHGFpaSkHBCfNrPp6aeftiJFitiOHTusffv2roi2b/NhJbOIN4t8xyHZ4n10lWz37ns/YsUTEyux4gnwkdJVNKxkFsksClKWzKIgQgn0uiZSfrDESqx4AnykdJU3WW3evDm1rlDsCpERhOVpsYasCdQvwm5pYbeMzu9zDh9dySySWcRqy0dXbJ/JGidW/MiKlVjxBPhI6SoaVjKLZBYFKUtmURChBHpdEyk/WGIlVjwBPlK6EiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldRcNKZpHMoiBlySwKIpRAr2si5QdLrMSKJ8BHSldixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpatoWMksklkUpCyZRUGEEuh1TaT8YImVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ2ruz6/y4Z8MYTvPMEjhzQfYoNbZF6Q/8EHH7QBAwYk+F2Ge/kyi8Llmau9aSLl8YuVWPEE+EjpSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0FQ0rZRYpsyhIWTKLgggl0OuaSPnBEiux4gnwkdJVNKwmTpzId5yEkStXrrRKlSpRd/bz6p/t51U/U7HJEFTvsHo26JpBqbeiZ5AfVbESK54AHyldiRVPgI+UrqJhpcwimUVBypJZFEQogV7XRMoPlliJFU+Aj5SuomHV65Ze9uRDT/KdKzLfEOjWu5uNGTFGZlEcI675iocmVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj6669+luM7+fyXee4JEVS1a0iqUqpt7Fli1brFSpUgl+V9Fc/gknnGCDB2defyCasyZHrz7PYHLccfx3IVY8O7ESK54AHyldRcNKmUUyi4KUJbMoiFACva6JlB8ssRIrngAfKV1Fw0p1eFSHh1WWnkGWlJlYiRVPgI+UrsSKJ8BHSlfRsFJmkcyiIGXJLAoilECvayLlB0usxIonwEdKV9Gwklkks4hVlp5BlpTMIp6UWImVDwE+VvOVWPEE+EgfXSmzSGZRkLJkFgURSqDXfSaHBLqtSC5VrHisYiVWPAE+0kdXMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAf6aMrZRbJLApSlsyiIEIJ9LrP5JBAtxXJpYoVj1WsxIonwEf66EpmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dKXMIplFQcqSWRREKIFe95kcEui2IrlUseKxipVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+ulFkksyhIWTKLgggl0Os+k0MC3VYklypWPFaxEiueAB/poyuZRTKLWGX56IrtM1njxIofWbESK54AHyldiRVPgI/00ZUyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66UmaRzKIgZcksCiKUQK/7TA4JdFuRXKpY8VjFSqx4Anykj65kFsksYpXloyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi2QWBSlLZlEQoQR63WdySKDbiuRSxYrHKlZixRPgI310JbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klkksyhIWbliFm3evNlKlSplBQoUSL2+LVu2WIkSJaxgwYJZXvODDz5oAwYMSI3xeSCCYCT662LBj6BYiRVPgI+UrqJhJbNIZhGrLD2DLCkzsRIrngAfKV2JFU+Aj5SuomElsyg+sygjLyPtCG3atMnKlCnDD1oejsxRs2jVqlU2Z84ca9++vS1YsMAOO+wwW7NmjXXu3NkKFy5sCxcutP79+1u3bt0yRSazKHM1aSLlnzSxEiueAB8pXUXDSmaRzCJWWXoGWVIyi3hSYiVWPgT4WM1XYsUT4CN9dCWzyM8sysjLSDsys2fPtiuvvNJq1qzpfI3nn3/eGjZsyA9eHozMUbNo4sSJ9uWXX9qIESNs5cqVziwaOnSowX277777bMWKFValShVDllHJkiUzxCWzSGZRGM+Rz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZ5GcWZeRlpB2Zs88+226++WbDfxE7atQo+/jjj/nBy4OROWoWxe4fy89iZtHVV19trVq1sk6dOtm+ffvcMrQ//vjDateuLbPIUzA+k4Nn10kXLlb8kIqVWPEE+EgfXcksklnEKstHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrsI0i97t/K61OqKVFb+vuLvYKqWr2FPnPWVt6rSxv3b8ZQOmDLCx/x6b4Y38/fC/2yddPrGde3da+QfL2zNtn7GO9ToeFHvqc6fagnULeBjpIoc0H2KDWwxO/W16VumTUjI7UVovI21M9erV7auvvjL894cffrDWrVs7zyORW66bRR07djT8dOjQwXGsVKmSzZw502rVqiWzyFNZPpODZ9dJFy5W/JCKlVjxBPhIH13JLJJZxCrLR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj67CMIuuOukqu7HRjVa/Un13kQXu2l+T+J1/vGNtj25ryzYts8qlK7vfHfnYkfafDf856GaW9l1qVctU3Z84cndBe6X9K3Zx3YtT44oX3m9A1R5Z2/7c8CcPI11k1GZR2bJl7ddff3UrpTAOzZs3t8WLF8d9vXnhwFw3i+6++24D2N69e9uePXvskEMOsQ0bNrgMoxkzZrhla+mbClxnLB2fySEviC83r0GsePpiJVY8AT7SR1cyi2QWscry0RXbZ7LGiRU/smIlVjwBPlK6EiueAB/po6swzKIxF46xdse2s5RiKW7zqphZtGXgFitcsLAVu7eYDWo+yO5qcZfd9ultNnTG0ANuZuDpA+2+lvfZ1l1brUThEs4sSttubnKzPXTWQ/bq3FftskmX8SAyiGTMovSHnXbaada0adMDfp1ZZlGzZs1cuZ2TTz7ZZs2aZfA5Jk+enK1rzu2Dc90sAsAnnnjCreebMGGCPfLII/b1119nykU1izKXjM/kkNvCy+3zixU/AmIlVjwBPtJHVzKLZBaxyvLRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjqzDMotiVLe+33GUQxcyizbdttqKFilr5YeXthQtfsEuOu8Qmzp9oHcbvX02EBoNpdf/V9vH/fewykw4vc/gBZlGlUpVsWb9ltnHHRjt02KG2d99eHkScZlHapJTMTpbWLNq6dav9/PPPdsopp1i/fv2sQoUKdsstt7jaRaVLl7Z77rknW9ec2wfnmlmEauIVK1a0bdu22bnnnmvz5s1z//7kk0+sUaNGMoviUIbP5BBH90l1iFjxwylWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+uorSLBrVdpT98+R/uqVlMFfQPlzwobUZ1yb1Zj66/CM7o9YZVuGhCvbTdT8dZBZNuGSCdTiug3Wc0NEmzJvAQ8gkksksYs2imJeBnd6RebRx40ZXd7lJkybu7OXKlXMJMOXLl8/2dedmB7liFmV0w1jPV7lyZStSpEiWPJRZlDken8khN0WXF84tVvwoiJVY8QT4SB9dySySWcQqy0dXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pI+uojSLcMVnH3m2dT2xq1uOhoLVD8x4wAZ+OjD1ZtYPWG/lipc7wFBat22dyyJCnSIsZdu+e7uVur8UDyCLyLDMoqwuZvfu3bZs2TJX5DpmkoVy8bnUSZ4xi9j7l1kks4jVSlZxPhNpGOdL5D7Eih89sYqGlcwimUWssvQMsqS0HTxPSqzEyocAH6v5Sqx4Anykj66iNIu+7fGtnVjpROv3cT9D3aGaKTWt0ehG1qBKA7uj2R1237T7rFDBQnZ42cPdzV1/yvVWumhp6/tRXxvxzQg7/+jzbfI/Jtunf35qrV5qxQPIZbMolAvNQ53ILMpDg5HdS/GZHLJ7rkQ/Xqz4ERQrseIJ8JE+upJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXUVpFmF5GZaZFSm0f9XQqNmj7Jp3r7FHWz9qNzW6yR6b+Zjd9OFNqTe2qM+iA5ahDT97uPX7ez976KuH7JZPbuEByCwKhVWsE5lFoeLM3c58JofcvdLcP7tY8WMgVmLFE+AjfXQls0hmEassH12xfSZrnFjxIytWYsUT4COlK7HiCfCRProK0yzK7ApbHtHSvl36rW3euZm/iYgic2IZWkSXnmvdyizKNfThn9hncgj/7InVo1jx4yVWYsUT4CN9dCWzSGYRqywfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JE+usoJs4i/8ugjZRb5M/Yyi1DNHC03izWpZlHmg+wzOfhLJbmOECt+PMVKrHgCfKSPrmQWySxileWjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDvz7Kr3PwFNP3shAs2jhwoX2yiuvuK3fpk2b5ki0bNnSbRF31lln2YknnpijdGQWySwKQ3A+E2kY50vkPsSKHz2xioaVzCKZRayy9AyypFS0mSclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStTswjbvt1///02ePBg10eDBg2sWrVqht/Pnj3bVq1a5X7frVs3GzlypJUtWzboXKG8LrNIZlEYQvKZSMM4XyL3IVb86IlVNKxkFsksYpWlZ5AlJQOEJyVWYuVDgI/VfCVWPAE+0kdXMotkFgUpK1OzaPny5daqVSu79tpr7eKLL7YqVaoc0NemTZvss88+s2HDhtk999xjZ5xxRtC5QnldZpHMojCE5DORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFsksClJWpmbR3r17DTWK8NOhQwdr0aKF9e7dO8P+du7caUWLFg06VyivyyySWRSGkHwm0jDOl8h9iBU/emIVDSuZRTKLWGXpGWRJyQDhSYmVWPkQ4GM1X4kVT4CP9NGVzCKZRUHKCqxZhA7atm3r6hUtXrzYUlJSgvqM9HWZRTKLwhCYz0QaxvkSuQ+x4kdPrKJhJbNIZhGrLD2DLCkZIDwpsRIrHwJ8rOYrseIJ8JE+upJZJLMoSFmUWYQlZp9//rnrq3bt2ql9zpkzx0qVKhV0jlBfl1kksygMQflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFyCxau3btQX19+umnVrJkyaBzhPq6zCKZRWEIymciDeN8idyHWPGjJ1bRsJJZJLOIVZaeQZaUDBCelFiJlQ8BPlbzlVjxBPhIH13JLJJZFKQsyiyKdbJx40bbsWOHVaxYMajfyF6XWSSzKAxx+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJKSAcKTEiux8iHAx2q+EiueAB/poyuZRTKLgpRFmUUQ3a233moTJkxw/Z111ll2xx13WLNmzYL6D/11mUUyi8IQlc9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZlFnUsWNHZxThv6VLl041jVasWKFlaEGEc/B1n8khBy8rT55KrPhhESux4gnwkT66klkks4hVlo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySySWRSkrECzaP369Va+fHm799577fbbb3f9/etf/7L27dvb999/byeddFLQOUJ9XZlFmeP0mRxCHZQE7Eys+EETK7HiCfCRPrqSWSSziFWWj67YPpM1Tqz4kRUrseIJ8JHSlVjxBPhIH13JLJJZFKSsQLNo9+7dVqRIEevSpYuNHj3aChUqZEOHDnXL0H777Tc76qijgs4R6usyi2QWhSEon4k0jPMlch9ixY+eWEXDSmaRzCJWWXoGWVJaWsWTEiux8iHAx2q+EiueAB/poyuZRTKLgpQVaBahg6uuuspeeOEF11eZMmVs06ZNbknaG2+8EdR/6K/LLJJZFIaofCbSMM6XyH2IFT96YhUNK5lFMotYZekZZEcluVcAACAASURBVEnJAOFJiZVY+RDgYzVfiRVPgI/00ZXMIplFQcqizKJt27bZW2+95cyhv/76yzp16uTMokMOOSSo/9Bfl1kksygMUflMpGGcL5H7ECt+9MQqGlYyi2QWscrSM8iSkgHCkxIrsfIhwMdqvhIrngAf6aMrmUUyi4KURZlFV1xxhV199dWpu58tWbLELUt7/fXXrVKlSkHnCPV1mUUyi8IQlM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywpGSA8KbESKx8CfKzmK7HiCfCRPrqSWSSzKEhZWZpFY8eOtccff9wVsj788MPtsMMOc/2tWrXKYBitXbvWFb/OySazSGZRGHrzmUjDOF8i9yFW/OiJVTSsZBbJLGKVpWeQJSUDhCclVmLlQ4CP1XwlVjwBPtJHVzKLZBYFKStLs+ill16ykSNHHmQWodNWrVoZjJucbjKLZBaFoTmfiTSM8yVyH2LFj55YRcNKZpHMIlZZegZZUjJAeFJiJVY+BPhYzVdixRPgI310JbNIZlGQsqhlaIMGDbILL7zQTj755KD+In9dZpHMojBE5jORhnG+RO5DrPjRE6toWIVtFpUpWsba1W1nNcrWsC27ttjXS762mUtmHnTxlxx3iR196NG2a+8um7d6nr3/+/u2d99eF9fo8EZ29pFn24SfJ9gva37hb5yIbFGrheEn1qQrAtp/Q8RKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFixYtsttuu83++c9/WrVq1Wzw4MF255132rHHHhvUf+ivyyySWRSGqHwm0jDOl8h9iBU/emIVDauwzaKO9TracRWPs7+2/2VlipWxAlbAHpjxgO3cszP1Bhof3tha12ntzCH8FC5Y2JlFSzcttVa1W1mtcrXccZPmT7I5K+fwN05EyiwiIGUSomeQZydWYsUT4COlK7HiCfCR0lU0rGQWySwKUhZlFrVr187efvttmz59ulWpUsXq1Knj6hfBRCpWrFjQOUJ9XWaRzKIwBKU3HZ6iWIkVT4CP9NFV2GZRvyb9rHTR0nb3F3fbxXUvtuMPO97G/zzeZQ/FWte/dbUjyh1hT333lO3Zt8duOPUGW711tc1YOMPaHNXGihYqagULFLSJ8yfa3JVz+RsnImUWEZBkFsUP6b9H+jyD2T5ZgncgVvwAipVY8QT4SOkqGlYyi/KHWbRnzx6bOfPgDPqYqgoWLGiNGzfOUGSBZtHu3butSJEiLpPo7rvvdp188MEHdu6557paRieddBKv3hAiZRbJLApBRqY3HZ6iWIkVT4CP9NFV2GZRk+pN3BKyHXt2ONNn+67t9vDXD9vuvbtTb6BkkZJWrFAxW799vbWp08YtO/t17a/22tzXXMylx19qdSvUlVnED3mORProKkcuKA+fRKz4wRErseIJ8JHSlVjxBPhIH13JLMofZtHGjRstJSUlSxHt27cvPrMIR5UtW9adANlFpUqVckvS/vWvf9mCBQvsyCOP5NUbQqTMIplFIchIZpEHRJ83HY9ukzJUrPhh9WEVtlnU7W/d3DKyrbu2WonCJdxFP/f9c7Zs07KDbiC2ZA1G0qjZo2z1ltUyi/hhzvFIH13l+MXlsROKFT8gYiVWPAE+UroSK54AH+mjK5lF+cMs2rFjhw0fPtyJCDvaP/PMM9atWze3WmzKlCn2+eefW7bMokceecT69et3gEq7dOli2C0tp5vMIplFYWjOZyIN43yJ3IdY8aMnVtGwCtssGtxisO3es9vum36fNavZzFoe0dLVHUL9oVgrUKCA9Tqllx1a8lDbsH2Djfn3GFfjKNaUWcSPdU5G6hnkaYuVWPEE+EjpSqx4AnykdBUNK5lF+cMsSqueH374wRo0aOAMoubNm9u9997rVpBlyyzCCZYvX27vv/++LV261Fq3bm0NGzY0rG/L6SazSGZRGJrTmw5PUazEiifAR/roKmyz6Namt1qxwsVs6p9T7cRKJ1qFkhXsvd/es322z5lH0xdOt0NKHGJYrrZn7x632xleW7ttrX3252fuJmUW8WOdk5E+usrJ68qL5xIrflTESqx4AnykdCVWPAE+0kdXMovyn1mEzKLq1avbww8/bL1797YOHTrYl19+aStXrsxQZIE1i3DUtm3bbMyYMfb777+7Tvbu3Wvz58+3SZMmWenSpXn1hhAps0hmUQgy0jI0D4g+bzoe3SZlqFjxw+rDKmyz6OSqJ9s5R57j6hXBBFq6camN/n602/0Mu6DNXDLTapevbRVLVjzghrBsbdiXw9zvYsvTVOCaH/OciPTRVU5cT14+h1jxoyNWYsUT4COlK7HiCfCRPrqSWZT/zCIoqV69ejZv3jwrU6aMbdq0yW688UYbOXJk/GZR27Zt7b333juoA3Qus4h/eKOO9Jkcor6WvN6/WPEjJFZixRPgI310FbZZFLvKqmWq2qotqw4obM3fQXSR2g0tfrY+uor/LMlxpFjx4yhWYsUT4COlK7HiCfCRPrqSWZQ/zSLsjPbAAw/Y3Llz7bLLLrNrrrnGqlatGp9ZFNsNDRk9kydPtgsuuMAKFSpkr776qs2aNctQ1yEnmzKLMqftMznk5JjlxXOJFT8qYiVWPAE+0kdXUZlF/NXmbKTMovh5++gq/rMkx5FixY+jWIkVT4CPlK7EiifAR/roSmZR/jSLeDWZBS5Dw5IzmEN9+vSxEiVKGIoioZo20pewFO3YY4/1OV+2Y2UWySzKtojMtAzNA6LPm45Ht0kZKlb8sPqwkll04B8zPOX8F+mjq/xH58A7FiteAWIlVjwBPlK6EiueAB/poyuZRfnDLNq8eXOGmUNVqlSxX3/9NUtxBZpFOPqKK66wl19+2V577TX7xz/+kdqhlqHxD25ORPpMDjlxPXn5HGLFj45YiRVPgI/00ZXMIplFrLJ8dMX2maxxYsWPrFiJFU+Aj5SuxIonwEf66EpmUf4wi7Zu3eoKWccaDCLo5MILL7S33nor+2bRjh077OOPP7YzzzzTxo8fb7Nnz7ZLL73UmjZtyis3pEhlFmUO0mdyCGk4ErYbseKHTqzEiifAR/roSmaRzCJWWT66YvtM1jix4kdWrMSKJ8BHSldixRPgI310JbMof5hF6dUDb6dGjRpWu3Zt+/rrr+Mzi7Zv326NGjVy26oNGzbMbrnlFmvVqhWv1IgiZRbJLApDWj4TaRjnS+Q+xIofPbGKhpXMIplFrLL0DLKktBybJyVWYuVDgI/VfCVWPAE+0kdXMovyn1m0b98+V3P69ddft2+//db5PIULF85UYJkuQ4vVKoptqXbYYYcdtPPZnDlzrFSpUrx6Q4iUWSSzKAQZqWaRB0SfNx2PbpMyVKz4YfVhJbNIZhGrLB9dsX0ma5xY8SMrVmLFE+AjpSux4gnwkT66klmUf8yi//znP/bMM8/YuHHjrGzZsnb55Zdbz549rXz58lmKK8uaRS+99JKNGTPGPv/8czv66KOtUqVKB3T24YcfWsmSJXn1hhAps0hmUQgyklnkAdHnTcej26QMDYMVHH/Ug8NEnszNh5XMIplF7LPgoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KPWXT22WfbJ598Yg0aNLANGza4z8Lnn3++2+0+q0YVuB40aJBddNFFdtJJJ/FKjShSZpHMojCk5TORhnG+RO5DrPjR82U1d+5cN0ljE4Hq1avbrFmzrGXLls4s2rVrV5ZpofxV5c1IH1Yyi2QWsSr20RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLnjfr169vo0aPtqquucmLq27evjRgxwrZt22bFixfPVGCUWcTLM/pImUUyi8JQmc9EGsb5ErkPseJHz5cVdpjs3Lmzffnll9akSRO7++67bfDgwfb444/b9ddf79YUJ2vzYSWzSGYR+xz46IrtM1njxIofWbESK54AHyldiRVPgI/00ZXMovxlFmF3eyw/Q7vtttts6NCh9tdff2W5mkFmEf/s5flIn8khz99MxBcoVjxgsYqGFbi2adPGfvvtN5cS2qNHD2cUrVq1yk4//XTLapkvitI99dRThq0vW7Ro4b4ZqFq1ql1wwQV26KGHuuXDS5Yssfbt27v1yNga89xzz7VzzjnHZsyYYVdffbXrH7Xp0KZNm2ZIT4VJhaXFTz/9tD3xxBO2Zs0aa968uT366KMuy6lt27Zu44Mff/zRVq5caXfeead99NFHbrdMnAPXBIMLJhjWRS9cuNC9Kd1zzz0HZUn56Epmkcwi9in00RXbZ7LGiRU/smIlVjwBPlK6EiueAB/poyuZRfnDLMLuZ3Xq1HGfDfC5YePGjfb999/bNddc4/7mz6rJLOKfvTwf6TM55PmbifgCxYoHLFbRsFq/fr3179/fnn/+eRswYIC1a9fObr/9dps6daozWpAmmtHuBIsXL3bbXV5yySXOAOrevXvqZI+lbIcffrjbBnPBggV21FFHOaPmyiuvtGrVqrkbwTaZSEPt3bu3YZMCrFdGe+edd5zJc9ppp7n+YSzhtV69erkfXCP6x6YHXbp0ccYQGkyiZcuW2XfffWfvv/++M5vwRtStWzcrUaKEexPCNxc4Pm3z0ZXMIplF7FPooyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT7SR1cyi/KHWQT1zJs3z0aOHOn+1sff5/g7vV+/foZNzLJtFsF9wjfL+CAzZMgQmz9/vt18883WuHFjXrkhRWoZWuYgfSaHkIYjYbsRK37oxCo6VumXocXWD6NmUenSpTM8MYyZmPEDowYZQZdddpmlpKQ4Mycrs+i8886zt956y5lQJ554oq1bt85gPi1atMhq1qzp3jRgLiFTCN84wHB69dVXnYGEbCb0D4ML22wiy+i9995ztZVQMA/GFTZFwDacyEqCOVSoUCG7//777ZRTTnG/l1nEaalFrRaGn1jTM8hxQ5RYiRVPgI+UrsSKJ8BHSldixRPgI310JbMo/5hFMQXt3r3bChYs6H6YRmUWYWkDvnWeOHGiXXzxxa5ffCDBh4ycbjKLZBaFoTmfiTSM8yVyH2LFj54vq3jMIlzNF1984TKSsAQMy9awnA1ZPTBz8A3B7NmzXdYQDKG0mUVYnwzzBg2vFStWzJk4y5cvd8vYYBZ17NjRLTXD0jhkEGGDAxTFi5lFd9xxh+uzQ4cO7j0Bu7fBXEImEtZCwzCCeQSzqEiRIu5cFSpUsJtuuukAkD6slFmkzCL2KfTRFdtnssaJFT+yYiVWPAE+UroSK54AH+mjK5lF+cMsCtplGasGkByUUQs0i+A+4Q/+UaNGuQ8E+HCAzKK6devaL7/8Yscccwyv3hAiZRbJLApBRvr22QOiz5uOR7dJGerLKmYWIRMHy84GDhzo6g9llVn0+eef2xlnnGF33XWXM3aQLbR69Wo3yce2xXzuueds/PjxzrRJaxbFjJ6szKJjjz3W1U+C8YPdEbDcLW1mUZBZhDpK9957r8s+wvsD/o0ldri3tM2HlcwimUXshOGjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZhB3Pjj76aFezCF/uYlUAyl7gy+DjjjvOfXk8duzY+MyiPXv2uG+csTPP8OHD3bbOXbt2dYVT8W105cqVefWGECmzSGZRCDKSWeQB0edNx6PbpAz1ZQVjBUu0YA79+9//thdffNGZRZs3b7ZSpUplyAiZPJ06dXJmEBqyPDE3X3rppW6J2UUXXeR+j7kabwQwa1DXCEvXMjOLVqxYYVWqVHGZRcgIQlYR3lDwxoIvDHA92LENNZBifcComjBhwkGZRVgah35gWKHhjQiZqaiDJLOIk72WoXGcMoryfQbjP1PiHylW/BiKlVjxBPhI6UqseAJ8pI+uZBblD7No69at7nPFCy+84D4ToOGL3N9//91+/vnnLMUVmFmEo1Gf6OGHH3YdYakDPpTgQwOWOuR0k1mUOXGfySGnxy2vnU+s+BERq2hZwd2HGVO2bFlX4yfWZs6c6Uyk9A2ZPzCIsFPZli1bXK2htA394bjy5cvzF54uEobU0qVLncGE3c3iaXhjQk2kzPrw0ZUyi5RZxGrQR1dsn8kaJ1b8yIqVWPEE+EjpSqx4Anykj65kFuUPswhfTuPzA77wxQ+SgfBlNYpe43NDRhvqxBRHmUX44PDZZ5+5Dw3Y5Qa74OBb5YoVK/LKDSlSZpHMojCk5DORhnG+RO5DrPjRC5MVlv1ix7T07eSTT3bbXyZ682Els0hmEat3H12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCKsEkCtUphDadu1116burtxZgqjzCJ8S43sImQV9ezZ03bs2OHqWGB5QU43mUUyi8LQnM9EGsb5ErkPseJHT6yiYSWzSGYRqyw9gywp7RzHkxIrsfIhwMdqvhIrngAf6aMrmUX+ZtHevXsNNYAyKxeBkUIdUawYyEsNKxJQrgJ+DnZCwwZmKCuU2e7LsWunzKJYbQochN10sDzip59+ctstoyBSdhqMJ2QotW7d2nWDgqgoyJpZk1kksyg7eosd6zORhnG+RO5DrPjRE6toWMksklnEKkvPIEtKBghPSqzEyocAH6v5Sqx4Anykj65kFvmZRWPGjLFHH33UlVhAts64ceMOWGn13nvvGWJKlChhCxcutJEjR9qhhx5qN954Y+oAYqMwZPnEao/yI5u9yAULFti//vUvV5cUG9dgaRquI6gFmkWx3dCw8w7qY6CmBrZpbtasmf3444/Zzi7CjmrYmvnVV1/Ncr1c7EZkFsksChI187rPRMr0l8wxYsWPrlhFw0pmkcwiVll6BllSMkB4UmIlVj4E+FjNV2LFE+AjfXQls4g3i2KeyIYNGywlJcUZQNgcBok0sVa9enV78803rVGjRs40wkYwyOSJNRhIyOjBzsaHHHIIP6jZjIwl58RqoWLjmfPPP9/69u2bWpc6s1MEmkUogISiR9jWGVlE+EEmELZBRj2NcuXKZevy3333XevcubMryIpCSzCDsC10Zk1mkcyibAnuvwf7TKRhnC+R+xArfvTEKhpWMotkFrHK0jPIkpIBwpMSK7HyIcDHar4SK54AH+mjK5lFvFn0559/WqtWreyPP/5wg/H444+7nYyff/751MFBMs0DDzzgMneGDRtmo0aNSo1HEDYJw2qq2I5k/KhmLxI7nh1//PH2ySef2J133mlnn3224X5efvllw7K6rDazCTSLcGnYBvmRRx454Covv/xyd4Lstk8//dS+//5769Wrl73xxhsOMLKNcNEzZsxw2zWnb9jaOdZ8HojsXmteP14s+BESK7HiCfCRua2rKVOmuC3qseV9Xm8+rGQWySxi9eyjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKLDjaL0pOG8dO0aVObM2eOq9mM5Vto8EG++OILGz16dOoh+B3qPJ977rk2ceJEtwPZt99+617HuDRv3tz9t0iRIvyAhhCJrKgjjjjCHnroIVu9erV98MEH1qFDB5cMFNpuaLNnz7ZJkyY5d+ykk05yqVclS5bM9uXv3LnTLW3DTyyLafHixW5r6IyaMosyR+4zOWR74BK8A7HiB1CsEocV1iIfeeSR2V4ezN9x/JE+upJZJLOIVZqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EgfXcks4jOLUNQa3kcsE2fEiBFuUPr06XPA4CBjB8kuMGimT5+emnmE5WpYrZVVbWZ+lP0it27dapUrV3YrudK2008/3aZNm5ZlZ1RmEbZVQ9oVahWFYRClvaLBgwc7h+upp56yr776yrp06XJAulb6q5dZJLPI7/HIONpnIg3jfInch1jxo5fbrGJmESb+6667zrCuGsX2sEnB2LFj3U6Whx12mF144YVuLTXetLAjQrdu3Qxveti5ATH4tqFq1ar8jccR6cNKZpHMIlZiPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjfXQls4g3izACKAgNz+KEE06wc845x1DTGVlHWOaFcjpYZoafdu3a2ZVXXulqPOO/aNjECwWxGzZsyA9mSJHYnQ3Xh2uIteOOO84ZXZUqVcq+WYROVq1a5TrChwpAOPPMM0NJoVq+fLkzovChBT+A3rZt20wvWmaRzKIwnhufiTSM8yVyH2LFj15us4qZRR999JFbPrx27VqXEYo3tb/++ssZ/jDl69Wr53a0REbn1KlTrUePHvbcc8+5WnRY/rt58+bUHSr5u/eL9GEls0hmEasuH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWeRnFk2ePNlQigftvPPOcxt0zZ071xlGMGSwvKt3797udWT6Ix7+BnwU+Cn4QrZo0aL8YIYUidVbP/zwg/u7P6OGL44z2xmNyixCIWusyfv444/d+jvccJkyZeyaa65xa93SulTx3tOKFStcelRQk1kksyhII8zrPhMp018yx4TJ6rvvvnPrZT/88ENr0qSJ3X777YYUyHvvvddNqJhnsN0k1vrWrFnTnn76aZflgm0nkf6J3Qfq1KnjnHk4+pikYXxgXqhbt65LpURNM1wzJj0UcUP/6AP9YpL++uuv7eqrr3YTJgrPob4P1hgjkwbHP/nkk26XghYtWrh/V6hQgR7eMFnRJ00TmNYswpsVrgf3UqtWLStevLhbK/3NN9+4Ny5wgOkP7pjHwQC7ImBtNeb4rEz7eK4t/TE+rGQWySxiNeejK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL/MwijAKWdOELWOyEllHD8jP8HR11hj6vCHNGFj5DZdX27duX4cuUWYQjly1b5swifLDAB5K0DWvz8GEkJ5rMIplFYejMZyIN43yJ3EdYrDAJodAb2t13323333+/bd++3aVuwnjGbgLIaClVqpRz35Ee+dlnnzkz+rfffnMGNY7BfIOC+3i9ZcuW9sQTT7jjkRYKIwmtf//+zpSCKTJ//nw76qijnHGCDBq4/kuWLHHHY2eA8ePH26233uqMK5wDheywUwGMJhhSMLbYFhYr9nzp42JmEeZrFOCDOYY3h06dOtlLL73kvs3AUjOkwGIux7/XrVtnjRs3NtSlk1kUL/lwj2tRq4XhJ9ZyW1fh3l20vYkVz1esxIonwEdKV2LFE+AjpatoWMks8jeL+JHIO5EoYh37DPbPf/7T1VO644477KyzznJfqOPzUmy5XPqrpswibK+GrdbQ8GHqsssuc0vRateu7b79x4cQ1BrKiSazKHPKmkh5BYpV7rCKGT/I9kFWC5a1Yg5Bpk9WZhGWq8LggbkR253xP//5jzu2evXqVr58ebd9JbJlsCMY6qDBREJDRhKyj0qXLm0//vijM5rQB2KRjVSuXDk3QcIgQm0f/OA6UdMH54Qbj3mPaXlJV9g8IH2qK8yjYsWKuVvBv5F2ijcIvInkdFqsDytlFimziHn+EOOjK7bPZI0TK35kxUqseAJ8pHQlVjwBPtJHVzKL8odZtGbNGqtYsaJL+EE9JTR89nrnnXcMq7uwC31mjTKL8GEMa/E6d+5sMI5iHzbQKZY44Nv8zHYv46XNRcosklnEKSXrKJ+JNIzzJXIfYbJatGiRW/r15ptvpmYLYZJCgbVnn33WFWRGJgxMoZNPPjk1swi/i209GTOLkAKKOBg7WGKFJWSxLeOvv/56lwmJ3QhiZhEKO8MgwtKyXr162ffff+8yjmAEYRkW1hajZg/mORjhsYZlbTCamBYmK+Z8iRzjw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4CN9dCWzKH+YRQsXLnSrwM4//3y3mgJfGGOzG+yOhiyjzGoZQXWUWYQPW7///nvqLmVYToIlDqiJgTogOdlkFsksCkNvPhNpGOdL5D7CYgUjqEaNGs5wRiF7LClDzaF58+bZW2+95YyaQYMGGWqkPf74465mUGwZGjKHYPSgZWYWvfHGGy5TCLuA9ezZ0xncmASxthjLzYLMImQUYdkZzCIcP3z4cJd1gwLRbAuLFXu+9HHIqgLjmGkWbz85cZwPK5lFMotYTfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWQT1YFYbSG2nbY489ZjfccEOW4qLMIjhQMGnSt9g3+7x8sx8ps0hmUfZVpKUKPgx93nSC+h05cqQziWJF8mHsDB061BYsWOBqBeH3qCW0ePFit8Xjp59+6jKHGLMIS8xQlBlbxSNbqH79+i6zCBlEWI8bM4tQ2wiZR/g9TBVkDSGzaPTo0W6ewzK12PXBxEJdJLaFyYo9Z9q4WM0i3Htebz6sZBbJLGL17KMrts9kjRMrfmTFSqx4AnykdCVWPAE+0kdXMovyj1kEBf3yyy+uXAeWnaH8BlZVBDXKLEKxWXzjjg9e+C/WvaFeCHbVQc2LnGwyi2QWhaE3n4k0jPMlch9hs0JmIpajYelq2rRH/B5zC3Y+y868guLOMIaQFRRPw/aSuD4sv/XtI2xWvtcfM4uwJA9GHLK5YJ4ha2rs2LEu7RRskHqKmky4P7BG7agRI0a4ZX2IgbkW9S4OPqxkFsksYp8FH12xfSZrnFjxIytWYsUT4COlK7HiCfCRPrqSWZQ/zCIsNXv99dcPEhFWiOGLc3zhjpUVGX3+CjSLYoVPn3nmGbf0DEvSsJMRPnDg2/+cqlUUuzuZRTKL+OlSrMQqDAJ8Hz5v0HyvfGTMLProo4/ccr21a9e6ZXQnnHCC2+azTZs29tVXX7mC3z/99JMz66ZOnep2iXvuuefcUsAZM2a4XenwjUOUzYeVzCKZRawWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BH+uhKZlH+MIuwWQ/qv6Zv8HNQVgh//+PL4ow2uwk0i9Apan8gqwjLN/BtNYq/Qoj4Br9KlSq8ekOIlFkkUH+44QAAIABJREFUAyQEGWnHHA+IPm86Ht0mZWhus0prFmHyx/VgEwIUtUMR8ObNm7uMUGQUoQYUdqSbPHmyW4b38ssvW9++fV0hcSzDw5K+KJsPK5lFMotYLfroiu0zWePEih9ZsRIrngAfKV2JFU+Aj/TRlcyi/GEWIbMIqw7SN5hD1apVsz///NPOOOOMDHdFo8wiVNBGwVl8U33bbbfZ9OnTnWmE/5/TTWaRzKIwNOczkYZxvkTuQ6z40cttVjGzCEY+MkHxLQG+SejUqZO99NJL7hsDLDVr2LChM4nw73Xr1lnjxo1t9uzZMov4oY40skWtFoafWMttXUV6syF3LlY8ULESK54AHyldiRVPgI+UrqJhJbMo/5hF2Ik6s4YaRiiAnVGjzKLYgTt37nRLF2LbTfOyDS9SZpHMojDUpDcdnqJYJSYrzNfp00lhHhUrVszdEP6NtcnIMootN+bvNPuRPrpSZpEyi1jF+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZltgwtrapQO9bbLIoVO0LR2f79+xt2MlqyZInrB1uvXXLJJbxyQ4qUWSSzKAwp+UykYZwvkfsQK370xCoaVjKLZBaxytIzyJLSrqA8KbESKx8CfKzmK7HiCfCRPrqSWZQ/zCIsQ0NJocwaMouaNWvmbxahngWKn6JK9m+//eY6uPjii23ixImuwPXKlSt55YYUKbNIZlEYUvKZSMM4XyL3kdussMVjjRo13DyU11tus8rrfNJenw8rmUUyi1ht++iK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YxZFshsaXKYbbrjBHn30UStXrpyre/Hss8/a0KFDXe2irVu3GrZcy8kms0hmURh685lIwzhfIveR26xidXjq16+f5zHmNqs8DyjNBfqwklkks4jVto+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SB9dySzKH2ZRZLuhwSy655577I477rBjjjnG2rVrZzBrRo0aZddcc43bihkFUnOyySySWRSG3nwm0jDOl8h95DarmFmEKv4orL9hwwZ77733rGPHjjZ27FhXeweZjhdeeKGNGTPG1eBBLZ5u3brZiBEj3ByFmA4dOljVqlUjHYrcZhXpzYXcuQ8rmUUyi1j5+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CP9NGVzKL8YRZFthsazKLOnTu7nyuvvNL+/ve/W48ePdwHtaefflpmEf/c5kikz+SQIxeUh08iVvzg5DartNvBYwfGtWvX2qRJk+yEE05wc1CbNm3sq6++snr16rkC/IUKFXLLZzFXPffcczZw4ECbMWOGbd682Vq3bs3feByRuc0qjkvOtUN8WMksklnECtVHV2yfyRonVvzIipVY8QT4SOlKrHgCfKSPrmQW5Q+zKCP1YHf7F154wX3RnlXLcjc0mEVZNWUW7aeD5XjIZki/8xD/WIcT6TM5hHPGxO1FrPixy21Wac2i3r17G67n888/t1q1alnx4sWtefPm9s0337hn8OuvvzbUWsO28FdddZW9/PLLeXY7+LvuustlbqoFE9hn+yyzXRqCj068iK43drUxI/735p3bz2AiERQrfrTESqx4AnykdCVWPAE+UrqKhpXMovxjFmFFxocffpgqpE2bNrl/lylTxn0euemmmzIUWZZmEQohZfUHOnZDwwe0nGw5sQwNdZl69uyZelu1a9e2Sy+91G699daDlt2tX7/eypcvbzfeeKPbLS43myZSnr5YJQ6rmFm0bNky+/XXX92SspSUFFdD7aWXXnImLZaaNWzY0JlE+Pe6deuscePGNnv27DxrFnXv093GPjqWHwhF5hsCgwcPtiFDhqTer+YrfujFSqx4AnykdCVWPAE+UroSK54AH+mjK5lF+cMswqZklStXttNPP92qVKnixLRo0SL3ZTtMJKwiQzmPjFqmZtGaNWvszjvvdMvP8CEsoyyjhQsXuuLXMFLwwSwnWk6YRbGaTIB25JFHOhdu3rx5hkyAQYMGHXCb27Zts7vvvtst0bvgggtyAkGm5/CZHHL1QvPAycWKH4S8xGrnzp0HZfDBPCpWrJi7Ifwb9YpgYu/atSvHs/18WE39Y6p9sfALfiASPLJ5zebWvFZzGSDkOGI5Zaz56IrsPmnDxIofWrESK54AHyldiRVPgI+UrqJhJbMof5hF+BL9lltusfvvv9/VeUXDF+qo/fr4449nKa5MzSIsrUJB608++cSQWQPjBI4UCiT98ssv9uOPP9qcOXPcdtbY2rp69eq8irMRmZNmEbIUzj//fLfsBabRRRdd5ArsogYK/v3KK6/Ya6+9ZldffbVz5W6++Wb78ssvrU+fPvbdd985NjDcLr/8csco7XHoG32G2TSR8jTFSqx4Anykj65Uh0d1eFhl+eiK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK6iYSWzKLnNovnz5ztTCF5ErGGlBlZtvPjii4bEH2QdZdWyXIaGA99++21XzBoFZNOubWvZsqW1bdvWunbtakWKFOEVnM3InDSLhg8f7tK13nrrLXvggQecI4csKxhDaMimQlGounXrumVojzzySOpuS7169bI333zTGWpLlixx/NIehwK9sTSwbCJJPVwTKU9SrBKHFYzWGjVqOPM1rzcfXUVlFnU+obPVPqS23Tvt3kxxVS9b3bqc2MX27NtjD8540MW1O7ad1atYz2WR/r7ud3vjpzdCxd2iVgvDT6z5sAr1QhKwM7HiB02sxIonwEdKV2LFE+AjpSux4gnwkT66klmU3GYRSgr94x//MBSzhi6Q6IJEoFhDfdfRo0dnKa5Asyh29N69e+23335zHySOOuoot9QjN1pOmkVp7++UU05xOzChgC5Mn6FDh9qAAQMsbc2i9u3bW4sWLeyZZ55xNY+QZdS0aVN77LHHXFZW2uOiYOczOURx/kTqU6z40cptVrGaRfXr1+cvOpcifViFbRY1qNLAGlVrZJVKV3J3P+Tz/9W8SY+j39/7WZliZVA22u76/C47sdKJdlHdi1yNOvyvYIGC9vEfH9tXi78KjaTMovhR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWZTcZtGKFSsOSk655pprnCdx2mmnUeU6sjSLsOTsvffes3Hjxtnxxx/vlltVrVrV3n33XVenBzsSlSxZkldvCJE5aRY9/PDDzvxBVkOFChXc1U+YMMEB/uCDD9w23GnNolatWrm6RdiBCeleP/zwgzVo0MBVGD/mmGMOOC4EFAd1oYmUpypWicMqZhZNmzbNLQPdsGGDm5fwHGKtLeoUYf0tlsoi0w/1imBmd+vWzUaMGOEKXiOmQ4cOqZl//N37RfroKmyzCJlBx1Y41ooVLmYFrECmZtHpNU+3M48403bt2WWFCxV2ZlH3k7pbzZSaNv7n8bZ111br9rdutmLzCntm1jN+ALKIllkUP0ofXcV/luQ4Uqz4cRQrseIJ8JHSlVjxBPhI6SoaVjKLktssgmrgVaBsDmoyY8UT2jnnnON8jLPOOsvq1auXpbiyNItgelxxxRWpHaB20cyZM51Z1L17d/vrr78O2h2Ml3J8kTlpFsVqFqW90phZ9NFHH9nZZ599gFmEbKNKlSq5zCsUwsYHVyzj+/nnn90PPtzGjovv7rM+ShMpT1WsEodVzCzCs9OvXz9bu3aty/I74YQT3BzUpk0bt8wTk91PP/1kKAw8depU69Gjhz333HOuVtiMGTNs8+bNbmKMsvnoKmyzKHZfNze52UoXLZ2hWVS8cHHrf1p/+2PdHy4DqWyxss4suqnRTXZIiUNs+FfDbfvu7XZHszts887N7v+H1WQWxU/SR1fxnyU5jhQrfhzFSqx4AnykdCVWPAE+UrqKhpXMouQ3i9IqBzWM4GWgXhGeKXzZnq2aReeee65h+RkMj/fff9+wzOq8885z/8Uat2Q1i5599lm3jOydd95xdZkYs6h3794uiwGZDjDSYq1///42bNiw1IwkmUX8ZBdlpN50eLq5zSqtWYTnDNeDrMZatWpZ8eLFrXnz5m7rR2QUYZnomWeeaTB6MUfB8O7bt699++23tmrVqoOeZ54CF+nDKjfMoi71u1itQ2rZsC+H2XWnXJdqFvX9e1/3b9Q52r13tw1pMcS27dpmD365v55RGE1mUfwUfXQV/1mS40ix4sdRrMSKJ8BHSldixRPgI6WraFjJLMpfZlFMRSg7gcLXqF902223ZSmuLDOLUG9n+fLl7lv6mjVr2vPPP++WoiHDCA9tsppF/OOYceT27dtddXEs2StTpkx2u6OP10RKo3L6hY7VggnkNquYWYTq/b/++qtbUpaSkmKdOnWyl156ya23xVIzFJ+HSYR/Y4tIFKDHRCiz6H9jfGvTWw3ZRahLhKVqaDCFNu7Y6DKNRs0aZVt3b7U+jfvY+u3rbeQ3I4MFQkbILCJBZRCW289g/Fee80eKFc9crMSKJ8BHSldixRPgI6WraFjlO7OoxRAb3HxwKsz0ukq/gomnnryRWZpF+CCG3c7Q9uzZ4+qAYHt41PJBk1mUt4ShiZQfD7FKTFY7d+48qBgbzKNixYq5G8K/MU8hy2jXrl1U4TaeRHCkj65yKrOoYdWG1qxmM5u+cLrboAAZRGinVjvVihYqah8t+MgVu25SvYmt3rraZRZVKV3Ffljxg739y9vBN01GyCwiQcksih+Umb4I8KDnM195dJuUoWLFD6tYiRVPgI+UrqJhle/MouZDbHALmUW8mswCd0PD8o7PPvvMbr31VvdBAw3/H9lGqAVSokQJn/NlOzYnahZl+yJzqQNNpDx4sRIrngAf6aOrnDKLWtdpbY0Pb2wzl8y0DxZ8kHozff7eJ3UZGkyjGxrdYGWK7s+ERJHrJ759wv03rCazKH6SPrqK/yzJcaRY8eMoVmLFE+AjpSux4gnwkdJVNKxkFuXPZWi8mgizCJ1hGQi+sU/fsEMYlqqhbkhONZlFmZPWRMqrUKzEiifAR/roKiqziL/agyMrlqrolqet2rIqO91keKzMoviR+ugq/rMkx5FixY+jWIkVT4CPlK7EiifAR0pX0bCSWSSzKEhZgZlF6AA7fKE4bEYNW8N/+eWXOWYYySySWRQkauZ1vekwlPbHiFU0rPKiWcTfqX+kzCJ/ZrEj9Azy7MRKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFl112mU2bNs3uueceVwvkgQcecEVkzzrrLPc7VNJu1apV0LlCeV1mkcyiMITkM5GGcb5E7kOs+NHzYSWzSEXmWWX56IrtM1njxIofWbESK54AHyldiRVPgI+UrqJhJbNIZlGQsgLNot27d1uRIkWsT58+9sgjj7j+hg4d6rZZ27Jli1WuXNltGY9tqnOiySySWRSGzvSmw1P0YYUsw/zcsGMbdkFkGgpI/7D8ByY0KWJOqnKS9bq4V+q9+OgqKQBk4ybEiocnVmLFE+AjpSux4gnwkdKVWPEE+EgfXcksklkUpKxAswgdIIto06ZN9swzz7hdh2688UZX2Prll1+2c845xy1Da9KkSdC5QnldZpHMojCE5DORhnG+RO7Dh1Xf2/raiKEjEvl2de0REejWu5uNGTFGZlEcfH2ewTi6T6pDxIofTrESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizaMKECS5zCIYRWpkyZez555+3jRs32qhRo9wStZwqci2zSGZRkKiZ1/Wmw1DaH+PDqnuf7vbplE/5zhM8MqVYiqUUT0m9i+3bt+fYXJho6LBsefDgzLcrTbT7ycnr9XkGc/K68uK5xIofFbESK54AHyldiRVPgI+UrqJhJbNIZlGQsiizCJ3s2bPHZs2aZdu2bbPTTjvNLU1D0ety5cpZ0aJFg84T2usyi2QWhSEmvenwFH1YqQ6P6vCwyvLRFdtnssaJFT+yYiVWPAE+UroSK54AHyldiRVPgI/00ZXMIplFQcqizCJkFGHJ2auvvuqyizp16mRdu3ala3MEXYTP6zKLZBb56CWzWJ+JNIzzJXIfPqxkFsksYrXuoyu2z2SNEyt+ZMVKrHgCfKR0JVY8AT5SuhIrngAf6aMrmUUyi4KURZlFKGaNotZYfpaSkmJLliyx4447zn788Ue3O1pONplFMovC0JvPRBrG+RK5Dx9WMotkFrFa99EV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBygo0i7DjWenSpa1Hjx6uwHXBggXt0UcfdbujzZ8/34499tigc4T6uswimUVhCMpnIg3jfInchw8rmUUyi1it++iK7TNZ48SKH1mxEiueAB8pXYkVT4CPlK7EiifAR/roSmaRzKIgZQWaRVu3brVSpUrZkCFDUouTouB1x44dXQ2jk08+Oegcob4us0hmURiC8plIwzhfIvfhw0pmkcwiVus+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZgWYROmjatKl9+eWX1qZNGytZsqRNnDjRTjnlFJs5c6YVKFAg6Byhvi6zSGZRGILymUjDOF8i9+HDSmaRzCJW6z66YvtM1jix4kdWrMSKJ8BHSldixRPgI6UrseIJ8JE+usp3ZlGLITa4eeY786b3GXjqyRtJmUULFy60+++/31577TVX4BpZRbfffrvVr18/x8nILJJZFIbofCbSMM6XyH34sJJZJLOI1bqPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFimzKEhZlFkU62Tnzp22e/dul12UW01mkcyiMLTnM5GGcb5E7sOHlcwimUWs1n10xfaZrHFixY+sWIkVT4CPlK7EiifAR0pXYsUT4CN9dCWzSGZRkLKyNIuqV69uMIgya3/88Ycrfp2TTWaRzKIw9OYzkYZxvkTuw4eVzCKZRazWfXTF9pmscWLFj6xYiRVPgI+UrsSKJ8BHSldixRPgI310le/MouZDbHALLUPj1WSWpVnUtm1bl0mUWZs0aVKOZxnJLJJZ5CPwzGJ9JtIwzpfIffiwklkks4jVuo+u2D6TNU6s+JEVK7HiCfCR0pVY8QT4SOlKrHgCfKSPrmQWKbMoSFley9CCOsuJ12UWySwKQ2c+E2kY50vkPnxYySySWcRq3UdXbJ/JGidW/MiKlVjxBPhI6UqseAJ8pHQlVjwBPtJHVzKLZBYFKUtmURChBHrdZ3JIoNuK5FLFisfqw0pmkcwiVlk+umL7TNY4seJHVqzEiifAR0pXYsUT4COlK7HiCfCRPrqSWSSzKEhZMouCCCXQ6z6TQwLdViSXKlY8Vh9WMotkFrHK8tEV22eyxokVP7JiJVY8AT5SuhIrngAfKV2JFU+Aj/TRlcwimUVBypJZFEQogV73mRwS6LYiuVSx4rH6sJJZJLOIVZaPrtg+kzVOrPiRFSux4gnwkdKVWPEE+EjpSqx4Anykj65kFsksClJWnjGLtmzZYiVKlLCCBQtmec2qWZQ5Hp/JIUgYyf66WPEj7MNKZpHMIlZZPrpi+0zWOLHiR1asxIonwEdKV2LFE+AjpSux4gnwkT66klnkbxbt3bvXtm3bZqVKleIHxcziPc7rJBEE57pZtGbNGuvcubMVLlzYFi5caP3797du3bpleqsyi2QWhfEc+EykYZwvkfvwYSWzSGYRq3UfXbF9JmucWPEjK1ZixRPgI6UrseIJ8JHSlVjxBPhIH13JLPIzi8aMGWOPPvqoVatWze0YP27cOKtYsWLq4EybNs169OhhJ554ovtd+/btrVOnThZ0HD+6OR+Z62bR0KFDbdOmTXbffffZihUrrEqVKoYso5IlS2ZIQ2aRzKIwHhOfiTSM8yVyHz6sZBbJLGK17qMrts9kjRMrfmTFSqx4AnykdCVWPAE+UroSK54AH+mjK5lFvFkEc6hIkSK2YcMGS0lJsRtvvNH5Frfddlvq4IwePdp27drlDCMkwqAxx/Gjm/OR/8/emYDbNd3v/xtDRIIIYh7SGEoqVUWNNc90JKiZmqooNeRHa64ai9as1VBDqzHU2BbtP2qqMYgQLUWNMSYSkYjI//ms2x03N+dmv3vfm9xz9nnX89wn3Pueffb+rO9ee613fdfaXW4W7bfffrH55psn123q1KlpGdqLL74Y/fv3r0lj0UUXjYUWWmja36gQKs4lUnCahRYJZqVxQlWE1YRFJwQ/zVJ6vt0z+MlKEVbNwqi96zQrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRczRpW7w18L95d9V394A2uXOSZRWLhEQu322/fZ599YvDgwTWv8qWXXkqeBT4F5YILLognn3wyrrjiimn6Y445Ji699NKUCDNo0KAgyYWS97l6xtrlZtFOO+0U/Oy4446J02KLLRYPP/xw9OvXL+6///544IEHpuPX2r1rC3bjiFiunml38rm9EhHDOvmYPpwJdIhAv4ipy03t0CEa6cPdXukW8XIjnbHP1QRMwARMwARMwARMwAQiol8TUphJv/3000+fAcj6668fG2ywQTz99NPJAHr++eeT5uqrr4577703yCbKykUXXRRLLrlkbLHFFoFxNOecc6Yso7zP1XMtdLlZdMopp8QCCywQhx9+eEyZMiX69OmT0rva2+h6psvQhg2L4KdZysYbR/Dzv1Ik7bBZELV3nWalR0ARVl6G5mVoamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks2rrM7Q+Eptas00OG1V369YtzjvvvPTnI444YpoMDS/sojz22GOx8847xzPPPJP7Of2MZ7+yy82iW2+9NS688MK46667YujQoXHuuefGQw891C4Jm0Wt0NgsKn3HuCHV0RVhZbPIZpEaWUXiSj1mVXVmpdesWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsZmYWcVQ2rr744otj4MCBsdVWW8XJJ5+cso5GjhwZa621VvrvQw89NJlEZ511Vrz88stJX+tzW265pX6iXajscrMIB27bbbeNZ599Nr2G7u677461117bZpESFDaLFEo1NW5IdXRFWNksslmkRlaRuFKPWVWdWek1a1ZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8qzyziCSX3XffPX3BdtttF9ddd12MGDEimUQffvhh3HPPPcG+R2QgrbjiiskwGjBgQNT6HNlJjVC63CzKIL366qux+OKL527Q7MyiVmFls6j0PeaGVEdXhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8ozizjyhAkTYuzYselNaLUK2+q8//770bdv3+n+nPc5/axnr7JuzCL1sm0W2SxSY2VmOjekOsUirGwW2SxSI6tIXKnHrKrOrPSaNSuz0gnoSseVWekEdKXjyqx0ArrScVWelWIW6UevhtJmUSPXozOLSteeG1IdXRFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZtGM7GwW6fFUf0qbRaXrxA2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVkz1WyAAAgAElEQVRnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirCyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4IK5tFNovUyCoSV+oxq6ozK71mzcqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePY2gtFlUupbckOroirDqTLNo14G7Rv8+/eNn//hZOtm555w79l1931i056Lx6dRP496X740HX31whgsZNGBQrLTwSjH5s8nx7DvPxp3/vjM+m/pZrL302rHu0utGr7l7xasfvho3P3dzjPtknA6ihnLjfhsHP1kpwqpDX1yBD5uVXolmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCvbxpXNIptFevQ0gtJmUela8kNHR1eEVWeYRV9d4qux9lJrx2LzLZZO8qRhJ6V/v7fq9+KLi3wxJk+ZnIwjyrkPnRsfTvpw2sWss/Q6sfUKWydziJ+55pgrmUUjRo+IYzY4JqZOnRrjJo2L3j16xzNvPxM3PHuDDsJmUYdYtf1wkbjq1C9uwIOZlV5pZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ2iwqXUtuSHV0RVh1hln07ZW/HSsvsnLMM9c80S26TTOLjv36sdF9zu5x+n2nx1bLbxVrLLlG3P/f++Oe/9wz7WL2+spe8YUFvxAXP3pxTJk6JQ792qHxzoR3YthLw2LQlwbFyLdHxg3P3RAnbHRCjJ80Pn7x0C90EDaLOsTKZlF5fEXuwfLfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOrMon1W3qUy1N1Bp6/hNV8nDhkXw0yzFZlHpmvZDR0dXhFVnmEXZmR213lExX/f5pplFJ250Ylpa9vP7fh5rLrlmbL/S9vHcu8/F9c9cP+1ies7dM+aZc574YOIHsc0K26SlZ8+/93wMHTk0jlzvyOgxV4/4ZMonSfO3l/4W971ynw7CZlGHWNksKo+vyD1Y/luq8Umz0uvRrMxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhc2i0nXjh46OrgirWWoWbXxiTPx0Ypx5/5kxcNGBscOAHeKF91+Ia56+ZoaL2elLO8WAvgPi088+jcsevyxlJO23+n5J9/GnHwem0itjX4khw4foIGwWdYiVzaLy+Ircg+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLCpdN37o6OiKsJqVZtHxGx4f0S3i1HtPjY36bRSb9Nskhr85PG55/pZpF9OtW7c4ZK1DYuGeC8eYiWNiyJNDYuzEsbHDKjvEwMUGRnZ+x339uLTv0cnDTtZB2CzqECubReXxFbkHy39LNT5pVno9mpVZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEb1q7BZVLpu/NDR0RVhNSvNoh+s9YNYrNdiaelZvwX7xbxzzRtXP3119OnRJzZcbsO0pKzPvH1ivWXWiymfTYlR746KqTE13vv4vfjok49i2xW3jXcnvBtPvvVkbNZ/s2lZSjqJGZV+G1p5ekXiqvy3VOOTZqXXo1mZlU5AVzquzEonoCsdV2alE9CVjqvyrLzB9YzsbBbp8VR/SptFpevEDamOrgirWWkWLTn/kvH91b8fc84xZzr5/479b/x2+G/T2894C9rDrz0c/RfqH3179p3u4iZMnhBnP3h2HLTmQbFor0XTptmTPp0Ut//79vSWtI4Um0Xl6RWJq/LfUo1PmpVej2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUNosKl1Lbkh1dEVYdaZZVOsMWWa29PxLx9hJY+PDSR/qF/E/JRtc9+7RO0aPH134s7U+YLOoPMYicVX+W6rxSbPS69GszEonoCsdV2alE9CVjiuz0gnoSsdVeVY2i2wW6dHTCEqbRaVryQ2pjq4Iq1ltFulnPXuUNovKcy4SV+W/pRqfNCu9Hs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoLRZVLqW3JDq6Iqwsln0n+jfv78Ot4mVReKqiTGlSzcrPQLMyqx0ArrScWVWOgFd6bgyK52ArnRclWdls8hmkR49jaC0WVS6ltyQ6uiKsLJZZLNIjawicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk42iz7++OOYe+65Y/LkycHeMD169GgECqXOsWhDOnXq1Bg3blwssMACud83fvz46NWrV8Cze/fuMddcc+V+pp4FRVjZLLJZpMZykbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhpBGUnmUVTpkyJbbbZJu6+++7485//HD/84Q9j+eWXj7vuukumMGLEiLj11ltjzz33jGWWWUb+XFcJZ9aQjh07Ni688MLYeOONY/3114/HHnssNt1002QWYaS1Z/48//zz8d3vfjeeffbZ9DNgwIA4/fTT4//+7//ky7zjjjviqaeeiuOOO07+zKwWFnno2CyyWaTGY5G4Uo9ZVZ1Z6TVrVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5lFmCFrrbVW7LHHHsFNcv3118eCCy4Ye++9t0zh97//fey6667xwAMPxHrrrSd/rquEM2tI//vf/8Zyyy03zeg55ZRT4sQTT4wLLrggGWlkXdUq5513Xvz4xz+O0047LQ466KD45S9/mUymjTbaSL7MAw88MC6//PL47LPP2v0e+WCdJCzy0LFZZLNIDbsicaUes6o6s9Jr1qzMSiegKx1XZqUT0JWOK7PSCehKx1V5VjaLbBbp0dMIyk4wi15//fXYcsstp2XCXHbZZXHRRRfFIossksyRHXfcMRZeeOG0pKp3797x05/+NDBPbrjhhmSo7L///rHZZpulzKR//etf8dWvfjWZTSussEJNghhSGCGUf/zjH+m7+Z6ePXvGJZdckjJ63n333WSwnH/++bHkkkumc5h33nlj0qRJ8dBDD8V+++0Xc845Z3CuK620Ulx99dVJx/E492HDhqWsoOw6ap3IzBpSzoksq6WXXjp23333+O1vfxtvv/12fP3rX4+//OUv6VzbFjKyMNfQkY00ZMiQ2GeffeL73/9+yrQiU+g73/lOXHPNNSkD6/3334+zzz47HQ9z7Sc/+Un63QEHHJCOsd1228Xtt99ekyGZT1tssUWsvfbaqd5ee+219F1kMFFPgwcPjptvvjmd51ZbbZU4wnT77bdPnyFzafTo0XH88cfHX//615RB9q1vfSsuvvjiZFBh/F166aXxyiuvpOvfd999Y8UVV5TuCJtFNoukQPGmzSqmpHPHT8dlVmalE9CVjiuz0gnoSseVWekEdKXjqjwrm0U2i/ToaQRlJ5hFH374YZx00klBVswhhxwSRx11VMqGWWqppZL58sUvfjGZQPPPP3/8/Oc/j1dffTXOOuusZCjcdNNNMXTo0HjyySeT4XPFFVcko+KYY46JhRZaqCbB1VZbLZ5++un4xje+kf5+2223pWNhsCy77LLJ3OBvnAs/HJclcTR8GFOYMpgjLPFaddVV449//GMySTBbOEeOs/XWWycjhGNhxhQ1izBXjjjiiGTuYMLw/3//+9+TgYL5U2sZ2r///e/40Y9+lM6Pc+YcMFhOPvnkWGWVVWKnnXZKp7HOOuvEjTfeGJtsskn6f4w3uE6cODEZcD/4wQ9Sdtbvfve7lOlVq7z33nvJzKMcfPDByRzDNMLcefDBB+N73/teHH744THHHHPEueeem+qI78W0ghHHxRiiYBK98cYb8eijj8add96ZDCaMNowvDDoMPOqTxlMpNotsFilxgsadGZWUWemkzMqsihDQtW6vzEonoCsdV2alE9CVjqvyrGwWzciu21R27m2g0rYSp7shhg2L4KdZSieYRaDCUCEz6E9/+lMyDzBnWptFb775ZjJo2NwZQ+RXv/pVMmvIKMJ4WGONNVI2kbIMDbOIDBpMp2y515FHHhmnnnpqynB54okn4oUXXojrrrsuGT/3339/Op/55psvZcRgfqAnwwgThuVyZL5gzmDI8IPBRWYP54wZhkHSthRZhsbSMsw09iziPNorZA+xR9E777yTsqDITGptFp1xxhnJTKNkJhzZSnDEnCFTS1mGlplFmGcsWcuWAJKxtMEGG8Qf/vCHoM4wke67775kBmYZTkcffXQy+8gyYn8k9mAii2rbbbdNBtUjjzySsrs4T7K3MLK+/OUvJ/ZKsVlks0iJE5tFKqUWnTt+Oi+zMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPIyhnk1nE8jNMBApLoMg2YYkUGTCUf/7zn2kwo5pF88wzTzoehgbLxzB/MHlYIsUyNgyoE044IZkUmVm06KKLJoOIpWVkHGEqkbmDEYQRgqGEWcM59O/ff1rtYXrUMni6wiwi6whTi4JRxjI6somyzK233norZTTl7VmUmUVkVGFOcYxBgwal5W0vv/xyHHbYYbHDDjskfuy11NosYhkhxhxL+8hwwivGpCMLi+V8GEaYR3DjzXgUlqaRAaUUm0U2i5Q4sQGiUrJZVIyUjbUivDyg0GmZlVnpBHSl48qsdAK60nFVnpViFrGdCtt+8Obr9goJBm2TFT755JP49NNPZ9jO5KOPPkqrOVgRUo+lyzOLyMDo27fvtEE0GRcMZtsrzixqRWY2mUUsKcOoobCfD8udMBYefvjhZExgbmDIYNSQlYJ506NHj5pVSGZRLbNo5ZVXTsvMOC6fxfxonVmUZxZhNmF4cA5k55xzzjlpuRhL5WoVxSwi24fjsGF1Z2QWsT8Q/MaMGZOW3PHfZB6RvUMmFUvJWPIGTww4zLNaZWZmEVlFHGvkyJHJ+OF+wTBinyeWoeWZRbzR7Wc/+1nKPuJe5L833HDDxEEpNotsFilxYrNIpWSzqBgpm0VFeHlAodMyK7PSCehKx5VZ6QR0peOqPKs8s4iVK4zVWIGD8XPttdcmHyMrjz/+eFrxwmoRxsts0bLmmmumLVPY0oSVOYwD+RyGE+NWxqtoWf1R5OVS+lV2TNnlZtGoUaNSFgkD3PZeSd76Em0Wdb5ZlGWWtLcMrbVZRKDvtddeaYkXhY2Y2TeIZWW8UQ0nlT2MMIVqldZmEZk0SyyxRMosIpOFrCKOy6bV3IDjx4+Pl156KQYOHBiZWcReO7yRjMwidJhUmFO/+c1vkjHCMjU2iMbN5XrYf6moWcR3c56YN5hfL774YjKLOJ+Zucjsm4TxwzI03GMaktbL0DKziPPhTWlos3Nl7yGWqWH2sOcQpb0VoplZdOyxx6ZjkCFEphCZRZzft7/97VQPmGd8J3svsY8Sy+Iyswhzjb2M2mYWsQyR+vj1r3+dzoHsJLK5WN6mFJtFNouUOEHjzoxKyqx0UmZlVkUI6Fq3V2alE9CVjiuz0gnoSsdVeVYzM4sYH7LqArOHVTckTDCOZTyWFRIB2P+XfxmfsYqElw6xV222SocxFfvBMs5kvEZSQjYmJsuo1ouU9CvqfGWXm0UsZ8JVAxZmA5WUbf5b63JtFrWi0kmZRUXDasqUKWlfITJVWgc0+99gqPCmrcxMan1sDB/Mh/YKxgVvZ8Nkae/19HnnyrmxxItzm5n5mNeQkmLIfkdcX/fu3ad9LdlUxGrbQmYUZkyRwvVyrnyO/YGyMmHChLSXEEZqme8iW4+GbLHFFityOtNpOQf2lqIuMOxaL+2b2UFtFtksUoMu7x5Uj9MMOrPSa9mszEonoCsdV2alE9CVjiuz0gnoSsdVeVYzM4sYD22++eYpiYDCRDwJEmQPZYXxJy8b4t/hw4enlVOMiynPPPNM2lOXN2MzxiOTiOPtsssuafKeZWgcWx1z6VfZMeVsM4t4Axb7qbQu/fr1S1kYZImwDw2bJLMHCwDbMwtsFrUi2EVmUV7IsRkyddi2cOPwmvh6KGUbUrKwPvjggxkugU2+V1hhhU69tNn5XTM78SKsbBbZLFJvgiJxpR6zqjqz0mvWrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWMzOL8DLYJoUtOyhsnXLvvfem1S1Z4WVQ/J2MI+pho402SqtvKHyefX9ZgsbqF96yzUoPVodQmOQnKQF/pJ7KbDOLfvvb36YlMa0Lb+Aiq4isCn7ICiEbBKhkW7C5cbaJcuvPZW+U4nfT3RB+G1rduZH1FOytz8UNqV4zRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCvMoraFPXRZOsYeQ6w4YfUJSS1sUULh5URZYZ9Xfk8SwWOPPZZeEIRBxH+z1Qfl+OOPj3fffTcZSphLhx9+ePJA+vTpk1aG1NtG17PNLGqv2th8l+wi9qIhbYs3YWXpXbU+48yiVlTqNLNIv0W7TumGVGdfhJXNIptFamQViSv1mFXVmZVes2ZlVjoBXem4MiudgK50XJmVTkBXOq7Ks8rb4Jo9bfEs2E+XvWHZmxYjiRcLsZ0O+74ussgiaU8i9i5ib90f//jHwXYlLEtbfPHFk9dBxhH/zd64rCRhH1n23c1eKKVfwaxXdrlZxOvTWa9HRhE/QN9+++3bvXKbRTaLOuO2cEOqUyzCymaRzSI1sorElXrMqurMSq9ZszIrnYCudFyZlU5AVzquzEonoCsdV+VZ5ZlFvExo9913T1/AS554QdeIESOSYcRetyS8ZFuuLLjggsn84UVRZBjxZmk2xsZwyt7+ve2226aNrslauvvuu9t9E7Z+RZ2v7HKzKLskdgHHYcsrNotsFuXFiPJ3N6QKpRZNEVY2i2wWqZFVJK7UY1ZVZ1Z6zZqVWekEdKXjyqx0ArrScWVWOgFd6bgqzyrPLOLIvARo7NixaRlZrcJb09544420yXXrPZgxhCZOnJiWm7UubL+DB8Kb1uqx1I1ZpMKxWWSzSI2VmenckOoUi7CyWWSzSI2sInGlHrOqOrPSa9aszEonoCsdV2alE9CVjiuz0gnoSsdVeVaKWaQfvRpKm0WNXI/es6h07bkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwWzcjOZpEeT/WnrAOz6LXXXoubbropvc3uk08+STvC33PPPfHCCy+kNL3ddtstSMe75ZZb0t8HDBgQW2yxRVq3yW7v7E/FW/Jm9nleJdjZpSsa0mZgZbPIZpF6r3bFPaieW73pzEqvEbMyK52ArnRcmZVOQFc6rsxKJ6ArHVflWdksslmkR08jKOvALLryyitjk002iaWXXjpOP/309Po/dnZnh3g2+cIg4mfTTTeNZZddNs4///w48MADk1l03HHHpQ2+8j6/6667dnptdEVD2gysbBbZLFJv1q64B9VzqzedWek1YlZmpRPQlY4rs9IJ6ErHlVnpBHSl46o8K5tFNov06GkEZR2YRZdcckkMGjQo2PH9rLPOiv333z+GDBkSW2+9dYwbNy5lDD3xxBNJ07dv3/RawIMPPjgZSrxSUPn8Ouus0+m10RUNqXKtjc7KZpHNIvVm7Yp7UD23etOZlV4jZmVWOgFd6bgyK52ArnRcmZVOQFc6rsqzsllks0iPnkZQ1oFZNGrUqPSqP3Z35+f444+Pa6+9Nj766KMYM2ZM7LDDDimz6K677oru3bunDCSWnv3iF79IZpHy+eWXX77Ta6MrGlLlWhudlc0im0XqzdoV96B6bvWmMyu9RszKrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoKwDs+jRRx8N9hSaOnVq2ruIPYso48ePT+YQP5TPPvssJk+eHPPMM890ZNXPd3Z1dEVDql5rI7OyWWSzSL1Xu+IeVM+t3nRmpdeIWZmVTkBXOq7MSiegKx1XZqUT0JWOq/KsbBbZLNKjp7Vy7bUjttwyYujQiFGjWv4yaFDESitFTJ4c8eyzEXfeiSMy/fH53LrrRvTqFfHqqxE33xwxblzEQQdF9O79ufattyKuuqr4udWBWfT222/Hbbfdlowg9in6whe+UOg6Ovr5Ql/WStwVDWlHr7Wjn58drGwW2SxS46wr7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXpQLrVUxOabR/TrF9GtW8RNN0U8/XQEe+hsvXWLOcTPXHO1mEWPPPL58eedN+KYYyKmTm0xiDCHnnkm4oYbIk44oeX3kya16N98M+Lqq4udG+o6MIuKn3R9fMINqV4PRVjZLLJZpEZWkbhSj1lVnVnpNWtWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhBudpqEdtsE8FSqjnmiLjxxogRIyL22iuCDJqLL46YMiXi0EMj3nkn4qKLPj/+l77Ukn00cuTnBtH48REXXBBx3HERDz8ccd99rNcqdk6t1TaLSrNzQ6qjK8LKZpHNIjWyisSVesyq6sxKr1mzMiudgK50XJmVTkBXOq7MSiegKx1X5VnZLLJZpEdPa+XOO0esssrnZlHPnhHsvfPBBy1mEsvNnn8+4ve///xTZBsdeWREjx4Rn3zSov/b3yJeeSVi330/1338ccvytH/9q/i51YFZ9Nprr6W9injrGZszs2fRPffcEy+88EJMmDAhdtttt/j000/jlltuSX8fMGBAbLHFFnHOOefEHHPMkTa7/utf/zrTz7MnUmeXrmhIm4GVzSKbReq92hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZtGMBDAidtppxt+//37Etde2/L6tWZSp+dyAARGffhpx2WUt2UVZYQnbfvu1/B+GEAYTRhHZRN/5TsTo0RFjxkR89asR773XknFUtNSBWXTllVfGJptskt5ydvrpp8fhhx8eF154Ydq/6MUXX0wGET+bbrppLLvssnH++efHgQcemMyi4447Lq6++urcz++6665FyeTqu6IhbQZWNotsFuXefP8TdMU9qJ5bvenMSq8RszIrnYCudFyZlU5AVzquzEonoCsdV+VZ2SyakV23qbzGqoFK20qc7oYYNiyCnyJl2WUj9txzxk+MHfu5gdPWLGL/okMOiVh44RbDZ8iQCPStyw47RAwc2HI+/LD0bO65I371q4g+fSJee60l4+gnP2nZ8+jkk4ucdYu2DsyiSy65JAYNGhQLLrhgnHXWWbH//vvHkCFDYuutt45x48aljKEnnngiafr27RvnnntuHHzwwclQOuqoo0L5/DrsEdXJpSsaUuVaG52VzSKbReqt2hX3oHpu9aYzK71GzMqsdAK60nFlVjoBXem4MiudgK50XJVnZbPIZpEePa2Vbc0i3oy23not+xXxdjT8NrKDnnoqYu+9I15+ucUM2nbbiHffjXjyyYjNNouYODHi73+P2G67lr+j22CDliyjSy4pfm51YBaNGjUq7r777pg4cWL6Of744+Paa6+Njz76KMaMGRM77LBDyiy66667onv37ikDiaVnv/jFL5JZpHx++eWXL84m5xNd0ZAq19rorGwW2SxSb9auuAfVc6s3nVnpNWJWZqUT0JWOK7PSCehKx5VZ6QR0peOqPCubRTaL9OhprcyWm2UbXP/whxF9+05/rAkTIq65JuKAA1qWo7H59UEHRSy6aMub1Hjz2e23t2yQffDBLb+nYDjxuZdeKn5udWAWPfroo8GeQiSosXcRexZRxo8fn8whfiifffZZTJ48OeZh76ZWRf18cTgz/0RXNKTqtTYyK5tFNovUe7Ur7kH13OpNZ1Z6jZiVWekEdKXjyqx0ArrScWVWOgFd6bgqz8pmkc0iPXo6S8kG1717t2QPtS7sYYThRIYRhlGZUgdm0dtvvx233XZbMoLYp+gLvCWuQOno5wt81XTSrmhIO3qtHf387GBls8hmkRpnXXEPqudWbzqz0mvErMxKJ6ArHVdmpRPQlY4rs9IJ6ErHVXlWNotsFunR0wjKOjCLGgFTrXN0Q6rXXBFWNotsFqmRVSSu1GNWVWdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkFps6h0Lbkh1dEVYWWzyGaRGllF4ko9ZlV1ZqXXrFmZlU5AVzquzEonoCsdV2alE9CVjqvyrGwW2SzSo6cRlDaLSteSG1IdXRFWNotsFqmRVSSu1GNWVZZ2mCgAACAASURBVGdWes2alVnpBHSl48qsdAK60nFlVjoBXem4Ks/KZpHNIj16GkHZAbPolltuaYQrnGXnOHr06LQxt0ttAt/61rem/aHIQ8dmkc0i9Z4qElfqMauqMyu9Zs3KrHQCutJxZVY6AV3puDIrnYCudFyVZ2WzyGaRHj2NoOyAWXTo4EPjwrMubISr9DnOZgInHXJInHjBBTaLBO4b99s4+MmKH9ACtP9JzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7Ks7JZZLNIj55GUHbALNrniH3ioUcfaoSr7JRzXKTnIsFPVj766KPo1auXdux3343gp0nK6uuuGycOGVLKAHFmkTOL1NvEnRmVVIRZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6Mq2cWWzyGaRHj2NoOyAWeRBfYFB/bBhEfw0S3FcyTXtzCIZ1QxCd/x0dmZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bPqNnXq1Kn5svpRtHX8pqtkD+qjf//+UmXZLKozs2jttSO23DJi6NCIUaNmrMPNNotA061bxH//G3HjjRETJkSssUbEFltEzD13xPvvR1xxRcTEiVIMtCuyWSTzs1kko7JZVB6VM4sKsPOAQodlVmalE9CVjiuz0gnoSseVWekEdKXNonxWNovyGdWvwoN6uW46NKiflSbkUktFbL55RL9+LUbQTTdFPP309Ne15JIRBxwQMWVKxKRJET17Rjz+eMTdd0cMHtzyuU8+iejePeLllyOuvFLmUlPouJL5dSiu5G+pptAdP71ezcqsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9R/So8qJfrpkOD+llpFq22WsQ227QYPXPM0ZIxNGLE9Nf1ta+1ZA/dcQebl0T8+McRY8ZEPPJISzbSyJERN98ccdxxESQKnnqqzMVmUQdReYPr0gDd8dPRmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6j+lXYLJLrpm7NouwKdt45YpVVaptFmWbNNSM23bQls+ieeyIWWijiq19t+e/772/JMpp33oiTTpK52CzqICqbRaUBuuOnozMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk102XmkWLLRax004znit7DF17bcvvFbOI+t5gg4i55op44YWWvYlWXTXizjtbsoyOOipivvkiTjkl4rPPZDYzCB1XMrsOxZX8LdUUuuOn16tZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsbBblM6pfhQf1ct10aFDf0WVoyy4bseeeM57r2LERF1yQbxYNHNiSdfTXv0ZMnhxx9NEty80eeihi/fVb/uVvP/lJi5F08skyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1HfULFLOsm1mEUvM9t67ZcPqt99u2QT7nXda9iei3jGa/vCHiAMPbNnc+l//asky+uCDiF/+UvnG9jWOK5lfh+JK/pZqCt3x0+vVrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8KDerluOjSonx1mEcvUBgz4fM+i7A1oGES//nXEwQdHLLhgy/VOmBBx660Ro0ZF7LZbxIortvyepWdXXx3x0ksyl5pCx5XMr0NxJX9LNYXu+On1alZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmM6lfhQb1cNx0a1M8Os0i5kt69W96ahoHUuvTqFbHwwhGvvdaxvYqyYzqulNpImg7Flfwt1RS646fXq1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FB/Vy3XRoUF8vZpF8tR0UOq5kgB2KK/lbqil0x0+vV7MyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlTaL8lnZLMpnVL8KD+rluunQoN5mUfTv319iPezlYcFPs5QOxVWzQGrnOt3x0wPArMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hnVr8JmkVw3HRnUn7zPPvHS8OHydzW8cPHFI/j5Xxk3blzMP//80mW9Nf6t4KdZyuqrrB5Dzhsy7XLdmdFr3qzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPKszzzwzBg8erB+gCZQ2ixq5km0WybXXIbPoBz+Iky69VP4uC5uHwEFHHhSXnHOJzaISVe7OjA7NrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlM4vyWdksymdUvwqbRXLddMQsuuqqq+TvqaLwnXfeib59+1bx0jrlmvbaay+bRSVIuuOnQzMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk101HzCL5Syoq9ANar1izMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TOqX4XNIrlubBbJqGYQ+gGtszMrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVThzowOz6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0peOqPCtvcD0jO5tFejzVn9JmkVwnNotkVDaLyqOyWVSAnTszOiyzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JXOLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZ1a/CZpFcNzaLZFQ2i8qjsllUgJ07fjosszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymdUvwqbRXLd2CySUdksKo/KZlEBdu746bDMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFfaLMpnZbMon1H9KmwWyXVjs0hGZbOoPCqbRQXYueOnwzIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8RvWrsFkk143NIhmVzaLyqGwWFWDnjp8Oy6zMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFZdYhaNHz8+evXqFd26dZt2hh999FHMO++8Mcccc8z0rM8888wYPHjwNM10lTxsWAQ/zVLqyCxaddFVY7uVtpuO/HVPXxevfvjqdL/DtFlvmfVijm5zxCtjXolrRlwTU6dOTZq1l147tlx+yxg6cmiMendUp9aizaLyOP2A1tmZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z9XyQNrTctz55ptvOg9Fv9pyytlqFr399tvx9NNPx3e/+9144YUXYtFFF4133303dt1115hrrrnilVdeiaOPPjr23nvvdq/GZlErNHVkFmEUrbXkWjFh8oRpJ/j7Eb+fzizqt2C/2Psre8fkKZNj8meTo+fcPeOe/9wTL415KTbvv3nw927RLW567qZ4evTT5SK6nU/ZLCqP0w9onZ1ZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHRlUbNoyJAhcf7558dSSy0Vn376aVx77bXRt2/faV/4+OOPx7777hvLLbdc8jWuuOKKWHPNNaPW50iaqeWBnHXWWfHII4/EnHPOmUypK6+8MplD+++/fzKg3nnnndhxxx1n6pfoBPKVs9UsuvHGG+OBBx6I8847L0aPHp3MojPOOCNwyU477bR46623Yokllggctp49e9Y8e5tF9WkW7bnanrHcgsvF2Q+cHZ9+9mn6aVt2WXWXWHmRleOqJ6+Kt8a/Fesss068Oe7NmGfOeWKbFbeJ7nN2TxlHNz53Y4wYPSI/egsobBYVgNVG6ge0zs6szEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyiFmEOTT33HPHmDFjonfv3nHYYYcl3+LYY4+d9oVbbrllHHXUUcG/+B6XXXZZ3HnnnTU/hwHU1gN57rnnYpVVVkkmUY8ePWLPPfeMgQMHJkOK4/zxj3+MBx98MPbZZ594/vnn9QvtgHK2mkXZeQInM4v222+/2HzzzWOXXXZJy5FYhvbiiy9G//79bRblVWwdZRYd+rVDY+GeC6czph7JFvrdU7+b7gp+tM6Pok+PPslImmuOuWL0R6PjuhHXxdiJY5Nu51V3jlUWWcVmUV69z+a/+wGtAzcrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK4sYha99NJLybPAp6BccMEF8eSTT6bsoawss8wyyczh3+HDh8fWW28d//znP2t+Dj+krQcyYsSIWG+99ZJPwvY8fH755ZePn/70p/GVr3wlNt1007j//vvj8MMPjyOPPFK/0A4oO90smjhxYtx1110znNJWW20V88wzT/p9a7Nop512Cn5Ip6Istthi8fDDD0e/fv1qXpYzi1phqSOziOVli/RcJB5747H42lJfS0vMrnzyynh5zMvTTviIdY+I3vP0jjfGvZEMo2V7Lxsj3x4ZQ58dmjQ2izpwJ8/Cj/oBrcM1K7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCuLGIWsZXOoEGDpmX0XH311XHvvffGb37zm2lfuMACC6S/k3HEsTfaaKO44447an7uww8/rOmB/OxnP0tG0worrJAyiY477rh0nD322CMOOOCA5JN07949br/9dv1CO6DsdLOI1KwDDzxwhlO6/PLLU8pWW7PolFNOCcDikE2ZMiX69OmT0rvIMMI5Y9la2+INrv9HpI7Moi/0+ULar2j0+NGRLfka/ubwuOX5W6ZV3x6r7RHL91k+zn3o3KT96YY/jfGfjI9zHjzHZlEHbuJZ/VE/oHXCZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlbXMorafXn/99WODDTZIS8PYJofNp0l8YVsdyhFHHDHtIxtuuGH6/RprrBGPPfZY4HNcf/31NT/HErT2PBCykV599dWUlURG0d///vdYeeWV00u+ss9lq7T0qy2n7HSzSDmN1plFt956a1x44YUpG2no0KFx7rnnxkMPPdTuYZxZ1ApNHZlFgzcYHD3m7BF3vXhXetvZ/PPMH5c/fnksOf+SseFyG8Z9r9yXlp5ttcJW8Z8P/pNMoi8v9uW0NxF7FFGcWaTcPbNf4we0ztyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqySGYRR11ttdXi4osvTvsIsWrq5JNPTkbSyJEjY6211kpLwxZZZJE45phj0t5FvLns1FNPrfk5VmO19UDIVGLZGUvZSKDBdLrllltSFhHnetFFF6WNs9dee+14/fXX0wvCZnXpMrOIN6OxWRMu3bbbbhvPPvts+u+77747AWiv2CyqT7PoK4t/JbZfaftkCFFYfsYytK1X2DrWWXqdePi1h5ORdPBaB0/b24i3ol382MXxwccfpM/s9KWdYkDfAd6zaFbf9QWP7we0DsyszEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyqFlEksvuu++evmC77baL6667LthnCMOIZWXsZ8SeQ5QFF1wwJcAstNBCUetzmEW1PBDMpRtuuCG9+OvQQw9N+xWRRfSNb3wj3nzzzXTsE044Ib0dbXaULjGLal0YqVaLL7542i18ZsVmUSs6dZRZlJ3VMgssE2MnjY0PJ33YbjUuNO9CaU+j18e9njbDnh3Fb0MrT9kPaJ2dWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0ZVGziCNPmDAhxo4dm/YlqlV4a9obb7yRNrlmNVVW2vtcLQ+EpWYch+yi1oXjkmyT55foBPKVdWMW5Z9qi8JmUStSdWgWqfU4u3U2i8oT9wNaZ2dWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZxizSj14Npc2iRq5Hm0Vy7dksklHNIPQDWmdnVmalE9CVjiuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFdabMon5XNonxG9auwWSTXjc0iGZXNovKo0uZz/fv378ARmuejZqXXtVmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jOpXYbNIrhubRTIqm0XlUdksKsDOHT8dllmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzql+FzSK5bmwWyahsFpVHZbOoADt3/HRYZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArbRbls7JZlM+ofhU2i+S6sVkko7JZVB6VzaIC7Nzx02GZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqP6VdgskuvGZpGMymZReVQ2iwqwc8dPh2VWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT6rSplF919wQcTw4flXXRXF6qtH8PO/8sYbb8SSSy4pXd3wt4bH8Debh9XqS6weh+546DQ2fuhIYZJEZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY6r8qzOPPPMGDx4sH6AJlBWyiw6eZ994qQrr2yCavMlFiWw9+F7x5DzhtgsKgrOZlEhYn5A67jMyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsqzslk0I7tqmUUnnxz33HOPHiEVU06cODF69OhRsavqnMvZfPPN48QTT7RZVAKnHzo6NLMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EovQ8tnVSmzKP9yq61wQ6rXr1mZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArrSZlE+K5tF+YwaRuGGVK8qszIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXNonxWNovyGTWMwg2pXlVmZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSptF+axsFuUzahiFG1K9qszKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCsdV2alE9CVNovyWdksymfUMAo3pHpVmZVZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AVzquzEonoCttFuWzslmUz6hhFG5I9aoyK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCudFyZlU5AV9osymdlsyifUcMo3JDqVWVWZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV3puDIrnYCutFmUz8pmUT6jhlG4IdWryqzMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1psyiflc2ifEYNo3BDqleVWZmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJmUT4rm0X5jBpG4YZUryqzMiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pc2ifFY2i/IZNYzCDaleVWZlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JWOK7PSCehKm0X5rGwW5TNqGIUbUr2qzMqsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegKx1XZqUT0JU2i/JZ2SzKZ9QwCjekelWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK20W5bOyWZTPqGEUbkj1qjIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBX2izKZ2WzKJ9RwyjckOpVZVZmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK60WZTPymZRPqOGUbgh1avKrMxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXWmzKJ+VzaJ8Rg2jcEOqV5VZmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSl48qsdAK60mZRPiubRfmMGkbhhlSvKrMyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6ErHlVnpBHSlzaJ8VjaL8hk1jMINqV5VZmVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlY4rs9IJ6EqbRfmsusQsGj9+fPTq1Su6deuWf4ZtFGeeeWYMHjx42m/deHwOyCz0cDIrs9IJ6ErHlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXljGLPvvss/j444+Tl9FeGTduXMw///zT/bm9z3300Ucx77zzxhxzzDFN3572gw8+iD59+szwtRMnTow555wz5p57bv3iReVsNYvefvvtePrpp+O73/1uvPDCC7HooovGpEmTom/fvrH11lunU/7iF78Yp556arunb7Oo/Zp1QypGfUSYlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK4uaRUOGDInzzz8/llpqqfj000/j2muvTT5GVh5//PHYd999Y7nllotXXnklrrjiilhzzTWj1udImtl1111jrrnmStqjjz469t5775ra9957L3bbbbdYfvnlY8KECbH77rvHLrvsEhhNI0aMiGOOOSaOOOKI+M53vqNfvKicrWbRjTfeGA888ECcd955MXr06GQWjRo1Kk444YS47rrrEqy8YrPIZlFejCh/90NHodSiMSuz0gnoSseVWekEdKXjyqx0ArrScWVWOgFd6bgyK52ArnRclWfV1mdofSTMITJ3xowZE717947DDjssllhiiTj22GOnybbccss46qijgn/xPS677LK48847a34Os4gMpNNOOy3eeuutdKyxY8emY7f9jnnmmSf9/Xvf+17cc889ceSRR8ZTTz2Vfq666qq45ZZb4pxzzml8sygjCZzMLLr99tuTqwastdZaK6ikTTbZpN1atllks0hvAszKrDqDgH4MP6DNSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCurJIZtFLL70Um2++ebz44ovpCy644IJ48sknU/ZQVpZZZpl48MEHg3+HDx+eVk7985//rPk5/BCOR4bQ1KlT0zK0YcOGpcyk9r7j4osvTgbUHnvskUyprOy4YbLRLgAAIABJREFU444p86ghMotYM3fXXXfNUEtbbbVV4IpRWptFf/vb3+KJJ56IQw45JK6//vo4/fTTU7YRmvvvvz9lIrUuPXv2TOlXLiZgAiZgAiZgAiZgAiZgAiZgAiZgAibQUQK1fIb1118/Nthgg7SVzqBBg+L5559PX3P11VfHvffeG7/5zW+mfe0CCyyQ/k4WEEbURhttFHfccUfNz3344Yex0047BUYPZbHFFktZQj/60Y/a/Q5WZ5GxxHm29lsayiwiberAAw+coa4uv/zylFbV1iz65JNP0oZM/EyZMiUtRXv11Vdj6aWXlup7Zuli0gEqJDILvTLNyqx0ArrScWVWOgFd6bgyK52ArnRcmZVOQFc6rsxKJ6ArHVdmpRPQlUXiik2tMWnYfJqkFowbCnsFZWXDDTdMv19jjTXisccei1NOOSUlw9T6HKuqMJcOP/zw5IGwcfWbb74Z88033wzf8YUvfCG+9rWvxZJLLpmWqKF9/fXX0/9TGsosUqqndWbRiSeeGO+8806QVkXaFmlVWeqVcqwilawcr5E1ZqHXnlmZlU5AVzquzEonoCsdV2alE9CVjiuz0gnoSseVWekEdKXjyqx0ArqyaFytttpqybMYOHBgsGrq5JNPTllHI0eOTNvpsJfQIosskjacZpkYxg8v7qr1OVZjXXjhhSlDaOjQoXHuuefGQw89VFP797//Pa3Qwjd59tlnY7PNNos33ngjJdtU1izizWjsHo6Dxno9Mor4Afr2228v13LRSpYP3IBCs9ArzazMSiegKx1XZqUT0JWOK7PSCehKx5VZ6QR0pePKrHQCutJxZVY6AV1ZNK5uvfXW9CYyynbbbZde0MXbyDCMWFZGwst6662X/r7gggsm82ehhRaKWp/DLNp2222T+UPW0t133x1rr712Te1zzz0XBxxwQPz73/+O7t27x89//vOUYJMVMos4r29/+9v6xYvK2fo2tJmdE7uAL7744uJpfy4rWsmFv6CBPmAWemWZlVnpBHSl48qsdAK60nFlVjoBXem4MiudgK50XJmVTkBXOq7MSiegK8vEFXsn89Yy9iWqVXhrGlk/bHLNaqqstPc5tt/BA+FNa3lakmzY24jNsGdXqRuzqOwFswk2bp5LpA3BzUKLBLPSOKEyK7PSCehKx5VZ6QR0pePKrHQCuvK+++6LRRddNO0v0d4AQT9atZW+B/X6NSuz0gnoSseVWekE8pUNbxblX6IVJmACJmACJmACJmACJtA+gccffzwtA/i///u/JGLDUV7CQuF1xJMnT45//etfcdhhh8XRRx9tlCZgAiZgAiZQeQI2iypfxb5AEzABEzABEzCBZibAq3zZIHPVVVeNr3/9682Mot1rf++992LAgAHpjbwsI1h33XXj//2//xe33HJLej3ylVdeGQ888EDK4P7vf/+blhi4mIAJmIAJmECVCdgsqnLt+tpMQCDAuttXXnkldZLZZN7FBEzABEyg8QhgZrCXwTbbbJNOnv0R5p133pQt8/3vfz+9pWXIkCFx0EEHxQ9+8IPGu8BOOmM2CF1xxRVrHo1NQvfee+9kBmEanX766ennz3/+c3qVMW+5+eY3v5k2If3Sl77USWfkw1SZwD/+8Y945plnYosttmg37qp8/b62zicwderUuOmmm+Lpp59O7RWvVXcxgVlFwGbRrCLr45pAAxBgd/4jjjgidWDoQLPO2fsxNEDF+RRNwARMoA0BDI3LLrss/vSnP8UTTzwRxx13XPzlL38JDJD99tsvVl555Tj77LPTm1Zefvnlaa/cbSaQmGWXXHJJ/POf/0wbhP7tb39LzOaff/741a9+Fffcc09cccUVMXz48Dj++OPT22d4LpKN9dJLL0W/fv3S65BXWGGFZLq5mMDMCPCGZ2KMtzz/4he/iDvvvDPWWGMNQzOB0gR+85vfpDaJjZMXXnjhlP346KOPztYNj0ufvD/YkARsFjVktfmkWxNgx/mPPvrIMzZCWDBbypsH11prrfSgYRaahw7p9LvssksstdRScdFFFwlHssQEPidAdtqPf/zjuP3229MyFzIcvETDEWICnU+A1/KOGjUqvbK3bWFPnaWXXjplMfzwhz+MffbZJ2UZMVDltburrLJKerUuGaQMWJtxNvqUU06Jd999Nxk9r732Wtp7iPbqt7/9bcwzzzzxs5/9LG1kvfnmm8dTTz0V3/rWt+KMM85Iryl+8MEHY/nllw8yRXhu9unTp/MruM6OOH78+GSasUQPZtkroevsNOvidHhLEfcdhuP++++fjFlenU2csQz0mGOOSWYjhmWzF7Ieued4XThxhVnr0kLg6quvTm309773vfT/jHFYCkt7893vfje9qn3w4MHp9xjeX/nKV1K/3S84cgTNKgI2i2YVWR93thC48cYbg84fDSuD0xtuuMFLqdqQZyA/cuTI9JrHww8/PP11t912S7POvKaRBzWdYB5CzJbyNxcTyCPAxq/du3dPMjaEZY+Ps846K3WQmUm966678g7hv5uACRQkgMlDllC2jKxtZgwDewZgl156aVqiMHDgwLj++uvTvUk2zfvvv58G/OxftNxyyxX89saXk2VFv+Hmm28OjBCMITay/ulPf5qyazFFML6//OUvp4ysPfbYI8aMGZOWobEBNhNTm266aVreV/XCgB5TkiWMDFQZvGKgNaPJyBJE6p+JttaF32evsN5zzz2jR48ecfHFF6f7jf+nX0osrbnmmqlvNWLEiPjRj35U6dDBtKZP3vqV4a0vmOsnS4+lnA899FBazsnry5u50AZhJmJMv/DCC8EyM7aGwOSH0wknnJAMavpZ11xzTbofP/zww2SyXXjhhamPT8akiwnMCgI2i2YFVR9zlhCg48KMTM+ePdNDmCyZrbfeOqWL0+mjU0yjOWjQoFny/Y12UGagSU099dRTUweGZQnMcNG54eFMhtE3vvGNWG211eKcc85JnWRmTXkANVth1u/ggw9OM/IwobOXGSHNxmJm10vs0AEktf7cc89NM1oMVrkPN9tss/jPf/6TYm6nnXZK+6MQdy4m0JoAAwlMapdyBDD1+/btm0z+d955Z4bMGDJEGdDy92uvvTY9E3leMhPN8jSeoyeeeGIynJqxwIysIZaaMYBn0oQ3nJ133nmxww47pLatd+/eaeDG4IxBHM/EZsgiIjOG/hMmI1kfZKkde+yxcf7558fvf//7GDp0aPzyl79MmWrNVmi3WPLD4J0MbIyjQw45JA3SMT/oZ9GvYiC/+uqrJzwYs5iQPAd5XmLWYhjRN6ty2XLLLeOkk05KpjTmBss82TeN/gL3FX0teNI+jR49Oq0KIPZ69epVZSy517bJJpukzGziCoP2qquuSvGE8faTn/wkJk2alAwkjG72UeM+JJ7oy6+00kqJZTOY2LkgLeh0AjaLOh2pD9iZBLJN3Ei3ZFDKngs8dEj1/eIXv5iWTtExfvvtt9N/83c6gs1YeJDQmYMFA4Unn3wy1l9//cQLRsxwYYYsu+yyse2228Zee+2V0lY33HDD2HnnndNsKw9yHlJVL8wU0yFmxoalB8zWM4DaaqutUmeZTk72+uSqs1CuDxOI2GEJCwMp4onBA0s0uO8wiBhYXX755fG1r30t/Y5Y8t4MCt3m0bBMkXYmW4bBQMKb6uv1z+CTe4/B57Bhw+Kvf/1rzcwYBhwYQxgd3KO89p0JAT7PYKIqAwomOOacc8601KdIwfxgsokBPBMk7CMDKzJnyHi477770ox9//79ixy2rrVkRHFtxEbrkmXG0Nei/0QGA30oBvgYk0zC0Z6zpBFWZC8QS81YyDjDQONfWPAMZGnnAgsskEwk+hD0p+ifwpv/5u158CQTl3jlMzwjq1bYDJ4MRvbzog+KKc2SOzIdH3744RQzGBy0XRgcmEn0GSjEGRNMxFkzFu49jB7a9oUWWijtQURmGm3QxIkT08QlHCnsoUZ/nd9fcMEFaU86yiOPPBJf/epX/TxtxgCaDddss2g2QPZXlCPAJm4sZaEzyMOHAT6zOTxgDjzwwPQQxvjAfaczfNttt6W1vn/84x/LfWEDf4plB8ySMtPAf2OuYRyxrIwZwo022igtW2Dmi1mLP/zhD2nGgsHb66+/nma8mLGg41PVwsCUByoDC7KHmB0ktogxHsZ04mBCJw/DDGOkWQsxhJnGcgOWaRA3DOoZoLLHx5JLLpmWfxI/dGowANZZZ5203wezpsQerDHiqlR4a+B8882XZphdihMYN25cuu/YfwFDm9lk/iWGXDQCDMIWX3zxtEE1A4tamTHcuwwmGLySdUsmV9XuRWhhbDBQZ4DKgIs4IpOK7GNMDZaL1So8H8n+INOWjCLaLZYKkemAGcBzoWqFmGAihCxaCn0AshXItGIPFNpvMtay7FE0mIsYH/QLMEjod/HfZMs0S6HNp/9JvLAEjyw9Jk7IPiYrm+chRiN7g/E3Jpow2tjXir2xfve73yVUZH/wJr2qmuO0M/QL4LHvvvumOOGa2RiePiis6MOToYdxxn2GiYShRKbMr3/962TaNkthchfzjAxH+p8Y/9x/TOpivBF3jGsYz3z7299OsYfRtvHGG6f90+jT8zdvG9EsEdO112mzqGv5+9tbEWibGUNDyGwWnRcGoLjmdF5YH85eC7zRhZkaOjPsLYC5hMuepQBXGW7b12Z+8MEH6U0bPHiYwWEWAhOI/yfdl4E9Jhvp0tm+C3SsSbmvemGAyoOYwQOxhOFBR5klB5ggZDmwLwWdZVLJMSAZ0DLT04wF45CsM8xHOrz8P/ciDLm/WPbJ/ca6emKLDjAdGQansKQzyOxXFQ0V7isGp3SI4cCgkkGmy+cEMPHZOB+jmsJA6tlnn00mLR1hBlRkvaBjcIFJzQbD2evem4kl5gQD+KJLXjH+eR6yiW6tzBj212GwhplU5UJcwY+lQJlxzbXTHrE0lmdgexvnkl2LAULWBwYcBlPVCwN2+klMALBUiPadJXi05xhntNlkVaFjk2bae/oIDP7JVOaZme0RWXVWtE9cM0YHE030K2mnyGin/0B/lUkl+qEw5JnH3o8Y4ExasiyI+7PqS7GzzDTuv1133TVlCNHXIlZo64k3lp1985vfTCEDP/qgGLT0FVgeS9+BzKyq991bZ9LS9hM7TFDSF6ct43eYP2S4w47+afZmRgwi+h5kq7GZdbZPVtXvQ19ffRCwWVQf9dD0Z1ErM4aHDA8TZiNY+sKSKWYS6eTQYSEDhE3x2DCQjSlZcsUgpeql1msz2SQQBjyoMdjovDAII9MILsykstcMM7A8dKregcFEZAaVARWdGdbCM4vD0jL21mG/DpYcYKyxxIosIrixHwOdQ+KIFN9mKGx8TvywJI/7jRRnWDBzRaeF+43/Z/AJV7IU6PDRISadHgMFo63W25mqxo9BKSnzzO5xj7GUJVviU7VrLXs9dGSZFaUDjInNoJy4YoBw2GGHpVR7zNnMjGXpIjPQtO3NVoglBuK000XeKMiAnr1kmACAczNkxrSODeKF6+etcJjZ7Md3xx13pEklDEky17hHMYNqbeLNZAv9CgzM9jbhrUIsMlFC5jXPe+45BvG0WdyHtGXcgzzzyAohG4a9mU477bTUr+J5mT0Xq8Ci6DVgYsCL7CCygbhHMUPoS/EcxNigr8CSRl4cQhYuk0zN0o5xDx5xxBFpo3xY3HTTTakfQTYj7RLZxfQRmKDELMJ8I5OI9o7lkJhq/DTDG7y4z7in6LsTJywzY9yCQU1WNrzI/COjCMMRhsQeZi6sfvWrX6U4pDA552ICs5uAzaLZTdzflwiQlcCeJswokDZOx61WZgyb5GabuOGw33vvvSmtlwc2jWfVZvUxNpihyWZhaoULs1u1XptJKjkDsb333jt18pgZZODGAxyThBTXZijECQMoDA0MRfZsYqkL+zEweGBWkEwZOjc8nJm9Ic2cBzPsiSkYVjVdPIsBBlZ0WFiKwAaTDOYx2Pg9BhrLW9jvhH0IuF/J/Dj00EOTKUQHmY4Os6lVK9xf7FXCDB6FrAO4kC6P6cE+TJiJxAodZuKKwWqWSVM1HkWuJ8sCZQBAVgcDUUw1BqLcYzAiI4ulGtkSBAb2ZPuxHKiZCksxGCiQZcU9VuSNgnAmPjFImEipemYMz3raagxrjA/aZ7Jj2Pck26uQZx+TJczWY3IzkKd/kb0BNOt3ZO0Z+xVVddNqzDD6TmRYbbHFFmkASvtFjNFewZN+F/cgy3+YNKGNo7/A3pDcj3wOM7NKhXaILCol65V2igmT7IUfZICQtcZkG5MkDOIx3TDfmLxkwqTKBeOf7B/6RyzF5tlP3wkziAk4Jt+4LzHMiLclllgiLZel70A7R4wRg/TNmmEvQ/pQ9Cl5FtK/ou/EM47li2Rp039gbEOMYbqxXI/YZKknbRb9de5XMnOrniFa5fumKtdms6gqNdlA17Huuuums+WhwUCe9EsG8HRW2mbG0Mhmm7hhKD322GOV38Aak4PUbzI6aj0ksnXfbV+byewOhhtrwXkIsV8Ds6pFN/9soFBKp0pnjQEpgyeyXuigEFOkidNxwWCk88yDF+MMA4mODA9zZmmIw2zw0WjXXvR8mRGlk8syKpbc0UGhQ8O/3Hss3WA/J5a20MkjbRqGaJkRYzaaznKVCzOi7H+GKU17Q+YQWVfsbXXDDTekWGM/pmwvCjp3LIVpho316bi2t59Lxoo2h1lkOsQY1nR6iTcK2Q1k9bE3BX+jk8wsKtkMzbS5KYYkGXm078wos7yagYL6RkHasypnxLRuX2BF+8NzkT4Cs/JkKsCP+5L2n02b2XuH+5A3LpFVyyCWGXvaevoXxCTHIHOyGV79Th+AZZ5k7tGOs7Ts0ksvTfcaA1cGqzwrycDid/QTmGSa2URVo7b7GNWYixgcLK/GCKP9ZqkYJkd7BTOEDA/6FsQhZlFm7DKgh1/VC5NHTIawTxVtO1mjTCxh8nOfkYHG5C2F+42MPzLV2BuTSSUyS+lTNEOhz0S2FP2p7C1vxB5vOcNYJNYw+rnXaPdp7zFt+QwmNxMIZBF54qkZoqWxrtFmUWPVV92fLUYGMzI0ju0VBu3MbJGSyfIzZunpBNIhbJsZQ8NJR6dZNnHjAUNnhj0sGFDRua1VeOjUem0m7BmAMHtY5cLgCuOCh3OW5cKsFZtU05FhdpROHTNYDKqYzaHjzICBBzEZD3RiMCOboZAqziCfPSiYPWYAwaAJFhggGI2YISxnIeOKzBpm3ukg08FmOQP/Vv2V57RDGI3MqLMsiGUHtD3cb5gbLMfjzW8MMhik0uljbwE2oKzaLHzr+wLjlQ4/PDBWaxUGmQzWMYTIViMTBAOEwQTLpsjUy5ZdYUBiGmEQcY+2txFxVe7N1pkxtO3EDe0UpgWDdZZmZC9vaO+NghhEZIJgZnIfnnHGGZXAkw3ks4shI42MKdpmBl08z7LMPZb48IxkUEVfAdMIA5PYwpwk44M+AxMC7LvGYJZnBc8J9I1ssJE9htlDdqxSsmVADEIpmLIYJvAkm42JJeIOw4MJACaZqliID579ZLuwKTz8MDPIvKIfwHOuvSXU/A0dmck8F2GaZZxWkVXra8oyYzD76WuyfxOGI8up2PIANphpLHOkDadNw8gl+y97QQh9jEa+55Q6bt1e0cdiAoS2nAI39q0iA5kJJrLeKXBjiR7jJdo0sot4ZjbDvmkKU2vqj4DNovqrk4Y+I2YYMCqYmacBrFVw1JmtZ8aCQoePBwxva6lqZgyGFx3WWiYOHWMGVBhnDOR54DDjkO0PU4shn2nG12Zi9pAKTeYVcQM3BqUMwDCLyJJhwM9sDYzoFJMxk731jRTqqqeLZ/ECCwblZAnBgWUZmEF0+Bh4UjBosw3Qsywisq+Y6SLrj85eld+Q1/reYnPJ7I0/cKEzd/bZZ6clVFnMsMEk9yXtF6YR2URk1NARZDlQ1QrZi9xbtE0MMlmK0F6mIoYZGUTskYbRhi7bh4cBO58ntmDFHmLZxqhVY9b2emplxjBDz/1GW0+2Au1Ye28UxEwhC4LnBwNVOFdl+VTrgTwvFmAPIuKHJeoMzGnnudfQsaErbTsDd5ZOocM8IZuB5bQYupi5VSvZBBymIuY+fSvuJ+IGk4MlnbVK9tY8MmvJvMLsxUDjX5ax09eoWqHNxjjMsoUwhTBYiScMDp5pmNoYQPyO5yL9KCaXahU2/cZwpC/Bc7Dq+8XUyoyBAUYizzsmLzHc6EcxqQIb2nNMN5Z8MqlEFl/Vl/BnsUK707q9YqkdBizGNWwwh7hPaacw3ehX0O7ze8Y/RV9sULX71dfTOARsFjVOXTXEmTJAxSQizZcHcXtOOc46nWhm+zAASHFlVoLZnyplxjAQp2OGYcFb27IZBwZKDESZqacTSGeFBy0/dP7IzKIz094bgjhuM702k4ctnTyumZkbOirzzjtv6rTQcaZzwrIEZtyZXaYzyDIE3s5F+i9xyP47VS50QhgY0GljCSMzgHSWyUDgd8wq02Hmb2T1ce/ROcw2QGfgSjYWmW0YTM1W4EIKPfceHV4GpCxpybI4yFYg44oBLe0Ug3gGEGiqumE8gy7uu4EDB6Z2iSU9tNe1Bk20VwzqMfyJO95ChclBthFZaxSWOVatg8zyp9b7wZHdSXwQT2QO1cqMYVNmBg6wJWON5yWDBzK42r5RkHhjIqWKS6cwQpgYoV3iGcigHGOStguzgzae+4vMF4wR2JLZxl48MMYAZwBLGw+jKpbWE3D0r9hPiEw13ojHPUd8kDlTq5C9x8CUdgt+3JtVzg5lIomJEAbq9BO4p8hQw+ygD4HZSCYHmWk8F7nfuHfJUmZj9NYF7mTk0oZxrKq+rbF1e8UkUa3MGPoVtGP00+kz8OIQJhLI6iYzmThrL+O0Svck/U6umf47+w9xP7Vtr9hHjb4YSzuZACC7lvuVDCPuPZ6jZCNXxfCvUv36WtonYLPI0SERoPPPoJzZv7aldWZM9nYpnHUG9u0VGloyQkhl5eHOw7uKnb2bb745PVAwwpiRoXNCJ4QZeAZTDAxI4WWvABgz2MJEYgABVzoqrbnQgWZ5Gmn5Vd87hllClqnwgCXjg84cmS5ky8CRQScDe9J3yfCgw8dglDX1bPbNjBj7yVTlocyAqr1lc8QNJi2Za3TiyECABUYQadKYaSwPIkMGoxFG2YbCGGvNtAF6e20Shi5ZCyyJwlxjoMpAjN8TX9xzZK9xzzZLYTkBA3LaGrKKyBQi06pWof1iDxlMEkxxmLGMaGZLkhudI4MHMjWyN9vQXtO2c0/BiYxGBq5tM2PIZmDwSSYMGW18BsOoGUxa2mXMau4xDA+W92QDeQx/TGsGXBQYkgmJ4ciAFL5oqjowZS8h9nrJlp+zvxyZGzwHiQ/6EkyQkKFHW85zEeOWlxHUKhhLDPAxmar2qm0G3Azc2+7ryIbCLI1iL0L6BCyBZSkUTOkX0K5zz2J68HuYk+nHm2Jpw8jcov+FwUTbT7+N+7eKezm1ba8whdhTtG1mDBOeTMLRTyUeuW9bbxzf6O24cv4sJWOyhOc/5g99UNqwtu0VZhD9LjLf6f/zL8uveSbyLM2WhSrfaY0J1AsBm0X1UhN1eh40kHQ26NjSQcEMar1JLg0fM3+tM2PozDDTxUO2vV38GXQ0wy7/zH5mmwbT2WCmgT0pMDB46GbZHTxI6PTRsWH2i6wGOskMHthnhlR7PsuMBRkyDGirlupLTNC5ZQ8rOsIMMunAMSNKCjQDhMwQyt7KRXYan+FfCgYIBlHV1n7TQWGjTTISanX66bwwUGdQQIeXmS+yXug4M5PKAB5mxCOdYTrLWZZbnTY9s/20WLrI4J60cQYS7EuEccvSDdo3Bg/N8Jrf1uAxrMkuwjQjewqzjGdCe/cX2VZkEbFcphmWe5LJgBlErDBDn2Wn0WZxH/LWINrxWpkxMOWZSmZpFbOGat3ADLDgxfIysmh5DmKEZAN5PsNeclnmKL/nXqQvwTOA52V7+/jN9gZjFnwhz38MfwagLBlmKR4GEayyCTgG87Tp9MlowzE0MuOj9Smx3J+JKdqvbK++WXDKXXZIMrXZa497LMswgxlLOpmIw6hunSWDecR+V/Bkgg7DloE9k5aYRsQc7T8Dez7b3kb+XXbBnfDFtOe81Y3MfibZuE6yaVu3V+xt1TYzhuxJDBDGAjBrBlObfgD9Lt6cByMmBFi6yWRtVrj/arVX9OFpr9iziP4sBWOJZwF7P2FYuphAIxGwWdRItdUF58rDlsyWbJNSHjIYRtkmubyillmZtpkxPIgYvDJz2jozhsEEaasMNqoyOwgbuNSaeSI7hnRnfjB4mJmg48vAnc4e3OggMqND1gwzqgyy+Hu2pwezXAzQMInoBFWxwITlCDDgetmQ+plnnkkdZDatprBfDKYZhlH2ummWMTDTTMevaqX1ZvG8mhdDiMwXBlttC5077lU6MsQYmUPcgyw9I2uB2GSWmowjlmxUzWjsjLonw5H4I77gSUzBuqobv6rMaIsYHDCTzMCUH1Lr2xYGp7RTGCZVLq0zabnHyBqlEC8M5Bmw0pZlWaLcezwnmyEzpm29kzVF20VbRvtEphr752SbUMMIM4MMkWwgT9vPM5U+AtmQDFCrVmjLaZfbZinSPyKDKMtihBd9AozHbAKO/hP7pDHpRME8I0OE/hbmEBndDEhZTsx9SnsG82zQ2kgsmfxgLzgG2W0LEx+017TPxAxmEH0m7kn2ueKtlZjbLCUjI5cMWyZQ2POLJUFkKLM8r1kK5ge8MMTIvGISgL5T2/aKrRGIl7aZMdzL3MdV2Fif5YmY9e1tbM6EB20Pk+FMRnKvYUjykg8+h7nIvUv/ir5W1durZrlHfJ3tE7BZ5OiYKQEewKSC83DNXlHL7HrrTXKZ1WqbGcOuongDAAAPOElEQVSyFjKOWLfLIINBLBkyrA9nsMGMUBUKHVzeJsLMS3ubH9KRY0DBw4UBA2YQHRWyYHgoZQN9lhnxMKryW5Xaq3New0rmFPFG5hrGEMYYyx6zDDU6xXQCGTxUdYPO1nxa71XBQBQ+pDXT2a1VmH1mCRqxxYw0hhodPDqJZG0xcLBJlN/qYKpxL1fVmM0nML2CbDay9dgnhs4zS4iyVPpag9Mqv06afavInG2dScuAlGwQngFkhGbZaQzSGXBlm+43Q2YMkcPzjHaG5xl9BbKnyP4gm4NnIUYJz0MGWhiM8GPZXjaQR8OSRzIoq7hpPIwwpomZrJ1msogMZDiQPYV5xu+yPef4DBNvGEJMGvEszDL8yHiAIXsTwY3+FZNXjV7oB9AO07dkj5y2BWOIiUrMC95YyTOOpepsl0D/NNtcmAwhMrEoDPTpW7S3x1OjM8vOn34pmVdMRGKUkXlN2wRPTMqstM6mbd1ecV+2zYyhH8bkJwZToxfaIvriLKerVRi/EEswpDAJwCQ5fc8ddtghTfIy2Usfnv581durRq9vn3/HCdgs6jjDSh+BdHFmtugIk1rJ7CDLp3gYZ5vktpcZw6whD2p0DPqrsnSK6+LhwZs16NAyOMcYY++FWoZR1olhYMUDmIctnWXSW1nGwOebvTCjygOYWRo6cqSEYy7SyYERyxVY0khnuSoZaXl13nqzeO4hlo7RAWbGuFYhtljSQbo4r71l0NVMM6d5PP33cgQY2NK+kSGKScRAguwhBrRVGpzWotM2MwbTrFYmLW/AwRjiHmVmnvaLgT4ZNO3NXperjfr8FM842mmyhNgklw2qea4xG49pTeGNSey5R6YVg1n6Awz0yfjADG+WgXxWg1w7GdrEDANXMj3YgwizjaxajKPWLx/ArM0m4DCLuAerZmjTt2LTbtiQvcEzHyawqHWtZK2hywwMlq4zqULmDKY/n2OSk+VWzVQwFskkI+OFZXe027RD7BeWZWETc9lkbjO0V+yLxr6OmNJMyDJxTaZ2rYlr2i/6pLCjkF3Lfcq4B7ZkJvE7zCTiz8UEqk7AZlHVa7gTro/GkUaWDQXpKGOSMJDPNslttswYrjfbBJeMK2YHmW1m5qG9wswX65eZ9cPsYJaHDjMmmh82LdQYNGQZRTyI2SCXlHyyjniw8//NVMgUYklBtlcFg3M6vmwK317BJGLGGUOpam+daqa6r7drJaaY6a9CxsLM2GYbUdMmt5cZw4xz20xaBvo8CxjoMkDFMMHgrspb8tjnDJOQJT61Cn0EBuloaHdot9GSAcpyIPbo4A2DLI9iwonnJ1mQDNoYmFWFU5H7FjMDMx9TsVevXimTCGOELGyyQbIlnSwTYl8rSjYBV+R7Gk2L4cMyKLKJyPAgg4Ps9lovQOEeJUuEjFteksIyKybl4NQMe2K2V7eYGky0YYTQX8V0I3OIfgH3Mv0s+vTZyy+q1l7V4sJ9xPJN+uLEFW0OS8xav8ky+xwxxMQkcQU7JofJ0K6V4dZo95fP1wTKELBZVIZak32GlHsaWrJhmMkh/ZflUs26SS6DJgYGzNKQZcUsA505zLP23jiSvWq7vSVETRZSNS+XDZxZqscyFtbGMxu24IILNjWa1ntVsEEinT/iru3rj7O3uNCxbnZmTR0wvvhSBBiY83zL3vBD24OZXyszhqVVtfaY41nArHXVsj0ASiYLZnV7rw9nOTX767BZMIU9PuDBoJRlQWSNMkhjdp+lxGSrMZhv9mWx7CHH5ufEFFl6DExhQ/YVWVrsP0eGSDNsKEzccB+yDA8O3I8YjWRvzOxlDAzkyWAnq5uNiBnkN3vBNGPfNPrpxBMvHIAhhhF7FmLoZnsVNQsrMvGY6IYByzbpZ87sJTxsCk+2KIW4ImvbxQSalYDNomat+QLXzcwEKeV0/pi9YUBf9de25+Hh9eMsIyNdnOwgOnswofPXtpCij769PY3yvquZ/k6HBiNk4MCBzrj6X8Vne1XwLwMtZp/JsuK+ZNDKMg8yIar8Fpdmugd8rbOXAIMp2nDeSEbGLNkxGBvsz8Ggq21mDIMssmOqvsccmUBMhDALzz45ZB+wrKXWBuZZH4FJEYwN2iQyG8i6ZR86DG72TGMA6/I5gewtlywvJoOWpccYb2Q20L+olU1TdX7Zsn2MR8xGjA72AcOIrVUY8GOqNSOr9mKBDGMyh1jmyD1JVgx9q2Y3Z+mns7UG7RD7FZEpxMRvrcJzwVn/VW9tfH0qAZtFKqkm19HxI4WV9GCXFgIsN2DWj6UH7CnDnjGkS1Mwh3irFzPUpOAzQ0Gnx8UEihJovVcFHRwyh8hiY9DKcg8y/Np7lXnR77LeBJqRAHuesEdF1n5jzDKg4K1UtTJjmoERpgUGDyY0zzMmRmiL2issOSMbBDOb12/z/+zl5NI+gSybiDacDb/J3K765stKPGDW8gZBtj5gXx0mKRnkty7scXX99dcnHZsMu0xPgBcTsHcTy2bpfzrjOFI/nYwhTFr2WiVjiDfsZmXSpElp2T9vvCRjrVn2x/S9YwJ5BGwW5RHy302gHQLDhw9PbzChE8NeRCyjOu6449IDiAEGKfv8NON+DA6aziXQDHtVdC4xH80EdAIsTWDpDy9xYPadQTtv4mKQ1ayZMSzBY6DOG5MYkLNfIWZQe5MemakNL2bsnUWkxR8xt9JKKzmLoRUuMmEwHOlTYXLwBi9eIIKhe8MNN6Qsd/aJpN+19NJLa6CtanoC9MtZgkYMsW8a20dgDPFG5+uuuy5twM/eokzCec/Hpg8XA2hFwGaRw8EEOkDgmmuuSa8Fbr0XERt3kj7tYgImYAIm0BgE2CiX15kzUCArhs1P21v60hhX1PGzvPjii4NXszNo562oGGm8PrpWYdkGmcdkM7T3xsaOn5GP0AwEmBzhzYNsPszSRwrxdeqpp6ZM2lpvsGoGLr7GjhNgaR7LPdlXjQkBCllY7MvGSwlcTMAEZiRgs8hRYQImYAImYAIm0NQEGESQTcM+RSy98rLhSJkccGDjYd7EyOu3mYXP9vJgAP/www+nvYnYa45l2czIsymxiwmYgAmYgAmYQOMTsFnU+HXoKzABEzCB/9/evYRS/sZxHP9GSO4R2SC3ctlJlI2mLExjx4JsGJpy25DcspFrhsWMMTPYsHCJBQtW04ws7BRJRCSXhXOKcVkoMn2fOv6m+f/n3+mcpjk/799KnN/z+z2v56w+vs/3QQABBFwQ0EBEtwPZbDaa5T5x1OBM/+OuTb3n5uZMTyI9rXJ8fNwER3qog1bW8l95F7583IoAAggggMBfKkBY9JcuDK+FAAIIIIAAAn9OQHug6IEFbKP6x1xPpdJGwiUlJY/Nl7W5sJ4+pSfIcSGAAAIIIICAdQUIi6y7tswMAQQQQAABBBBAAAEEEEAAAQQQcFqAsMhpMm5AAAEEEEAAAQQQQAABBBBAAAEErCtAWGTdtWVmCCCAAAIIIIAAAggggAACCCCAgNMChEVOk3EDAggggAACCCCAAAIIIIAAAgggYF0BwiLrri0zQwABBBBAAAEEEEAAAQQQQAABBJwWICxymowbEEAAAQQQQAABBBBAAAEEEEAAAesKEBZZd22ZGQIIIIAAAh4rcHl5Kff39xIWFuaxc+DFEUAAAQQQQAABTxUgLPLUleO9EUAAAQQQsKDA3t6elJeXy8rKipldfHy8jIyMyIsXL3472+bmZunp6RG73S7h4eEWlGFKCCCAAAIIIIDAnxMgLPpz1jwJAQQQQAABBH4jcHd3JxkZGbKxsSGlpaXi5+cnY2Nj5o7d3V1JTEz8z7ubmpqkt7dXbDabRERE4IwAAggggAACCCDgggBhkQt43IoAAggggAAC7hNYWlqSly9fSkFBgSwsLJiB5+fnpbGxUTQMKisrk0+fPklfX5/s7+9Ldna2vH//3gRMT8Oijx8/mvuXl5fF39/fjBkbGyvDw8NSWFhofnd7eyurq6tSUVEh3t7eZtzk5GSZmJiQgIAAycvLk6ysLNna2pLj42PzbH0GFwIIIIAAAggg8BwECIuewyozRwQQQAABBDxAYGBgQOrr60XDnjdv3vzyxtvb25KSkiKZmZny6tUr6e/vl+joaNnZ2fkpLNJQRyuSrq+vTfATFRUlqamp8vXrV0lISDBBU2VlpWg4pUGQ/i09PV1mZmbMOA0NDY/VSVVVVfLt2zcTGh0eHkpMTIwHSPKKCCCAAAIIIICAawKERa75cTcCCCCAAAIIuEmgs7NT2traTGhTVFT0y6gdHR3S3t4um5ubkpaWJt3d3dLS0iJra2syPT39uA3t/8KiwMBAWV9fF0c4pRVGGkKFhoaafklauaRb2TRQ+vz5s0xOTkpJSYmpVtKqJy4EEEAAAQQQQMDqAoRFVl9h5ocAAggggICHCExNTUlxcbG8fv1aRkdHzVvrVjINkerq6kyFz9u3b+Xg4EDi4uLMFrTa2lrzmcXFxcewqLW11YQ8FxcXEhISIsHBwWarmqOyKDIy0mxBGxoakpqaGhM2JSUlSVBQkHm29j7SsEhDJw2kZmdnTXhFWOQhXyReEwEEEEAAAQRcFiAscpmQARBAAAEEEEDAHQI3Nzfm9LOzszNT1aM/Dw4OmqF165hWFGmfIq3y0d5DGuZoIHRycmIqkhwNrvX0NK040iqk8/NzeffuneTm5hIWuWORGAMBBBBAAAEEnoUAYdGzWGYmiQACCCCAgGcI6EloWl2kPYL00mof3WKWn58vDw8Poj2EtKeR43JsWWtubpaenh6x2+0mIMrJyTGhk/YjOjo6Mn2Ovnz5YnoWOSqLPnz4INXV1aaySJtb6/a0p5VFOmZXV5fMzc2ZcIrKIs/4DvGWCCCAAAIIIOC6AGGR64aMgAACCCCAAAJuFjg9PZWrqytTXeTj4/PT6N+/fzdBkJ5w5uvr+69P1mBJg6Pw8HDx8vJy89sxHAIIIIAAAgggYG0BwiJrry+zQwABBBBAAAEEEEAAAQQQQAABBJwSICxyiosPI4AAAggggAACCCCAAAIIIIAAAtYWICyy9voyOwQQQAABBBBAAAEEEEAAAQQQQMApAcIip7j4MAIIIIAAAggggAACCCCAAAIIIGBtAcIia68vs0MAAQQQQAABBBBAAAEEEEAAAQScEiAscoqLDyOAAAIIIIAAAggggAACCCCAAALWFvgB5BDRhAlSkuUAAAAASUVORK5CYII=",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
},
- "y": {
- "axis": {
- "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
- "orient": "right",
- "title": "Probability"
- },
- "field": "sum",
- "scale": {
- "zero": false
- },
- "type": "quantitative"
- }
- },
- "mark": {
- "color": "black",
- "strokeWidth": 2,
- "type": "rule",
- "x2Offset": 30,
- "xOffset": -30
- }
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "params": [
+ ],
+ "source": [
+ "from splink.charts import waterfall_chart\n",
+ "records_to_plot = df_e.to_dict(orient=\"records\")\n",
+ "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "4c8f021b-49e7-4f9e-ad32-72066084470d",
+ "metadata": {},
+ "outputs": [
{
- "bind": {
- "input": "range",
- "max": 43,
- "min": 0,
- "step": 1
- },
- "description": "Filter by the interation number",
- "name": "record_number",
- "value": 0
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 1, root rows count 642\n",
+ "Completed iteration 2, root rows count 119\n",
+ "Completed iteration 3, root rows count 35\n",
+ "Completed iteration 4, root rows count 6\n",
+ "Completed iteration 5, root rows count 0\n"
+ ]
}
- ],
- "resolve": {
- "axis": {
- "y": "independent"
- }
- },
- "title": {
- "subtitle": "How each comparison contributes to the final match score",
- "text": "Match weights waterfall chart"
- },
- "transform": [
- {
- "filter": "(datum.record_number == record_number)"
- },
- {
- "filter": "(datum.bayes_factor !== 1.0)"
- },
+ ],
+ "source": [
+ "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, threshold_match_probability=0.95)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8b036e11-e15c-4196-a268-faf62c2ec85a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "linker.visualisations.cluster_studio_dashboard(df_predict, clusters, \"dashboards/50k_cluster.html\", sampling_method='by_cluster_size', overwrite=True)\n",
+ "\n",
+ "from IPython.display import IFrame\n",
+ "\n",
+ "IFrame(\n",
+ " src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "d018c6cf-bee9-43ee-89c2-f81c7f3b6027",
+ "metadata": {},
+ "outputs": [
{
- "frame": [
- null,
- 0
- ],
- "window": [
- {
- "as": "sum",
- "field": "log2_bayes_factor",
- "op": "sum"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json",
+ "data": {
+ "values": [
+ {
+ "f1": 0.03150014247597337,
+ "fn": 299097,
+ "fn_rate": 0.9839979471050563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.99999999999985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01600205289494376,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4864,
+ "tp_rate": 0.01600205289494376,
+ "truth_threshold": 42.6
+ },
+ {
+ "f1": 0.03141717290778856,
+ "fn": 299110,
+ "fn_rate": 0.9840407157497179,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999852,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015959284250282108,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4851,
+ "tp_rate": 0.015959284250282108,
+ "truth_threshold": 42.62
+ },
+ {
+ "f1": 0.031200409355588803,
+ "fn": 299144,
+ "fn_rate": 0.9841525722049869,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015847427795013178,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4817,
+ "tp_rate": 0.015847427795013178,
+ "truth_threshold": 42.64
+ },
+ {
+ "f1": 0.031021862348178136,
+ "fn": 299172,
+ "fn_rate": 0.9842446892857966,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998561,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015755310714203465,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4789,
+ "tp_rate": 0.015755310714203465,
+ "truth_threshold": 42.660000000000004
+ },
+ {
+ "f1": 0.030830526043016327,
+ "fn": 299202,
+ "fn_rate": 0.9843433861580927,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01565661384190735,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4759,
+ "tp_rate": 0.01565661384190735,
+ "truth_threshold": 42.68
+ },
+ {
+ "f1": 0.03072846480771224,
+ "fn": 299218,
+ "fn_rate": 0.9843960244899839,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.99999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015603975510016087,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4743,
+ "tp_rate": 0.015603975510016087,
+ "truth_threshold": 42.7
+ },
+ {
+ "f1": 0.030639152547863552,
+ "fn": 299232,
+ "fn_rate": 0.9844420830303887,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999862,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015557916969611233,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4729,
+ "tp_rate": 0.015557916969611233,
+ "truth_threshold": 42.72
+ },
+ {
+ "f1": 0.030441459479423828,
+ "fn": 299263,
+ "fn_rate": 0.9845440697984281,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998639,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015455930201571912,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4698,
+ "tp_rate": 0.015455930201571912,
+ "truth_threshold": 42.74
+ },
+ {
+ "f1": 0.030269058295964126,
+ "fn": 299290,
+ "fn_rate": 0.9846328969834945,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998658,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015367103016505406,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4671,
+ "tp_rate": 0.015367103016505406,
+ "truth_threshold": 42.76
+ },
+ {
+ "f1": 0.030135121998639058,
+ "fn": 299311,
+ "fn_rate": 0.9847019847941019,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998676,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015298015205898125,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4650,
+ "tp_rate": 0.015298015205898125,
+ "truth_threshold": 42.78
+ },
+ {
+ "f1": 0.030071289695398573,
+ "fn": 299321,
+ "fn_rate": 0.984734883751534,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015265116248466087,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4640,
+ "tp_rate": 0.015265116248466087,
+ "truth_threshold": 42.800000000000004
+ },
+ {
+ "f1": 0.029937131375980298,
+ "fn": 299342,
+ "fn_rate": 0.9848039715621412,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.015196028437858805,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4619,
+ "tp_rate": 0.015196028437858805,
+ "truth_threshold": 42.82
+ },
+ {
+ "f1": 0.029617865361553173,
+ "fn": 299392,
+ "fn_rate": 0.9849684663493014,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01503153365069861,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4569,
+ "tp_rate": 0.01503153365069861,
+ "truth_threshold": 42.84
+ },
+ {
+ "f1": 0.02940718842383694,
+ "fn": 299425,
+ "fn_rate": 0.9850770329088271,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998748,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01492296709117288,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4536,
+ "tp_rate": 0.01492296709117288,
+ "truth_threshold": 42.86
+ },
+ {
+ "f1": 0.029349601929410545,
+ "fn": 299434,
+ "fn_rate": 0.985106641970516,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998764,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014893358029484046,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4527,
+ "tp_rate": 0.014893358029484046,
+ "truth_threshold": 42.88
+ },
+ {
+ "f1": 0.02931775597927918,
+ "fn": 299439,
+ "fn_rate": 0.9851230914492319,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014876908550768026,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4522,
+ "tp_rate": 0.014876908550768026,
+ "truth_threshold": 42.9
+ },
+ {
+ "f1": 0.029215537530878605,
+ "fn": 299455,
+ "fn_rate": 0.9851757297811232,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998799,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014824270218876764,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4506,
+ "tp_rate": 0.014824270218876764,
+ "truth_threshold": 42.92
+ },
+ {
+ "f1": 0.02911330847787324,
+ "fn": 299471,
+ "fn_rate": 0.9852283681130145,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998815,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014771631886985501,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4490,
+ "tp_rate": 0.014771631886985501,
+ "truth_threshold": 42.94
+ },
+ {
+ "f1": 0.029011068818612734,
+ "fn": 299487,
+ "fn_rate": 0.9852810064449058,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998831,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01471899355509424,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4474,
+ "tp_rate": 0.01471899355509424,
+ "truth_threshold": 42.96
+ },
+ {
+ "f1": 0.028915115751248298,
+ "fn": 299502,
+ "fn_rate": 0.9853303548810538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998848,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014669645118946181,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4459,
+ "tp_rate": 0.014669645118946181,
+ "truth_threshold": 42.980000000000004
+ },
+ {
+ "f1": 0.028800072632473202,
+ "fn": 299520,
+ "fn_rate": 0.9853895730044315,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01461042699556851,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4441,
+ "tp_rate": 0.01461042699556851,
+ "truth_threshold": 43
+ },
+ {
+ "f1": 0.02869150150461762,
+ "fn": 299537,
+ "fn_rate": 0.985445501232066,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014554498767934044,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4424,
+ "tp_rate": 0.014554498767934044,
+ "truth_threshold": 43.02
+ },
+ {
+ "f1": 0.028602004086000585,
+ "fn": 299551,
+ "fn_rate": 0.9854915597724708,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998894,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014508440227529189,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4410,
+ "tp_rate": 0.014508440227529189,
+ "truth_threshold": 43.04
+ },
+ {
+ "f1": 0.028563645561738724,
+ "fn": 299557,
+ "fn_rate": 0.98551129914693,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999891,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014488700853069966,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4404,
+ "tp_rate": 0.014488700853069966,
+ "truth_threshold": 43.06
+ },
+ {
+ "f1": 0.02848043794105438,
+ "fn": 299570,
+ "fn_rate": 0.9855540677915917,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998924,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014445932208408315,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4391,
+ "tp_rate": 0.014445932208408315,
+ "truth_threshold": 43.08
+ },
+ {
+ "f1": 0.028371830547393413,
+ "fn": 299587,
+ "fn_rate": 0.9856099960192262,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999894,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01439000398077385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4374,
+ "tp_rate": 0.01439000398077385,
+ "truth_threshold": 43.1
+ },
+ {
+ "f1": 0.02820556067309314,
+ "fn": 299613,
+ "fn_rate": 0.9856955333085494,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998954,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014304466691450548,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4348,
+ "tp_rate": 0.014304466691450548,
+ "truth_threshold": 43.12
+ },
+ {
+ "f1": 0.02789852721728411,
+ "fn": 299661,
+ "fn_rate": 0.9858534483042233,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014146551695776761,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4300,
+ "tp_rate": 0.014146551695776761,
+ "truth_threshold": 43.14
+ },
+ {
+ "f1": 0.02773848609507001,
+ "fn": 299686,
+ "fn_rate": 0.9859356956978034,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.014064304302196663,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4275,
+ "tp_rate": 0.014064304302196663,
+ "truth_threshold": 43.160000000000004
+ },
+ {
+ "f1": 0.027565799719669833,
+ "fn": 299713,
+ "fn_rate": 0.9860245228828698,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013975477117130158,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4248,
+ "tp_rate": 0.013975477117130158,
+ "truth_threshold": 43.18
+ },
+ {
+ "f1": 0.02745059865667283,
+ "fn": 299731,
+ "fn_rate": 0.9860837410062475,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999011,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013916258993752487,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4230,
+ "tp_rate": 0.013916258993752487,
+ "truth_threshold": 43.2
+ },
+ {
+ "f1": 0.027232959929386416,
+ "fn": 299765,
+ "fn_rate": 0.9861955974615164,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013804402538483555,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4196,
+ "tp_rate": 0.013804402538483555,
+ "truth_threshold": 43.22
+ },
+ {
+ "f1": 0.02713683950905751,
+ "fn": 299780,
+ "fn_rate": 0.9862449458976645,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013755054102335497,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4181,
+ "tp_rate": 0.013755054102335497,
+ "truth_threshold": 43.24
+ },
+ {
+ "f1": 0.027021588711038415,
+ "fn": 299798,
+ "fn_rate": 0.9863041640210422,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999051,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013695835978957826,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4163,
+ "tp_rate": 0.013695835978957826,
+ "truth_threshold": 43.26
+ },
+ {
+ "f1": 0.026771919346671686,
+ "fn": 299837,
+ "fn_rate": 0.9864324699550271,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999064,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013567530044972876,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4124,
+ "tp_rate": 0.013567530044972876,
+ "truth_threshold": 43.28
+ },
+ {
+ "f1": 0.026682247541143247,
+ "fn": 299851,
+ "fn_rate": 0.9864785284954319,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01352147150456802,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4110,
+ "tp_rate": 0.01352147150456802,
+ "truth_threshold": 43.300000000000004
+ },
+ {
+ "f1": 0.026490066225165563,
+ "fn": 299881,
+ "fn_rate": 0.9865772253677281,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999909,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013422774632271903,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4080,
+ "tp_rate": 0.013422774632271903,
+ "truth_threshold": 43.32
+ },
+ {
+ "f1": 0.02637473946666147,
+ "fn": 299899,
+ "fn_rate": 0.9866364434911058,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013363556508894233,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4062,
+ "tp_rate": 0.013363556508894233,
+ "truth_threshold": 43.34
+ },
+ {
+ "f1": 0.026169680833793306,
+ "fn": 299931,
+ "fn_rate": 0.9867417201548883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999114,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013258279845111708,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4030,
+ "tp_rate": 0.013258279845111708,
+ "truth_threshold": 43.36
+ },
+ {
+ "f1": 0.025868339698126932,
+ "fn": 299978,
+ "fn_rate": 0.9868963452548188,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013103654745181124,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3983,
+ "tp_rate": 0.013103654745181124,
+ "truth_threshold": 43.38
+ },
+ {
+ "f1": 0.025810725674982302,
+ "fn": 299987,
+ "fn_rate": 0.9869259543165078,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01307404568349229,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3974,
+ "tp_rate": 0.01307404568349229,
+ "truth_threshold": 43.4
+ },
+ {
+ "f1": 0.02574661280056118,
+ "fn": 299997,
+ "fn_rate": 0.9869588532739397,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999151,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013041146726060252,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3964,
+ "tp_rate": 0.013041146726060252,
+ "truth_threshold": 43.42
+ },
+ {
+ "f1": 0.02568249576180362,
+ "fn": 300007,
+ "fn_rate": 0.9869917522313718,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999162,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.013008247768628212,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3954,
+ "tp_rate": 0.013008247768628212,
+ "truth_threshold": 43.44
+ },
+ {
+ "f1": 0.025470797253493223,
+ "fn": 300040,
+ "fn_rate": 0.9871003187908975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012899681209102483,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3921,
+ "tp_rate": 0.012899681209102483,
+ "truth_threshold": 43.46
+ },
+ {
+ "f1": 0.025374675995400598,
+ "fn": 300055,
+ "fn_rate": 0.9871496672270456,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999185,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012850332772954425,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3906,
+ "tp_rate": 0.012850332772954425,
+ "truth_threshold": 43.480000000000004
+ },
+ {
+ "f1": 0.0251757429280526,
+ "fn": 300086,
+ "fn_rate": 0.9872516539950849,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012748346004915104,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3875,
+ "tp_rate": 0.012748346004915104,
+ "truth_threshold": 43.5
+ },
+ {
+ "f1": 0.02495760261466787,
+ "fn": 300120,
+ "fn_rate": 0.9873635104503539,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999207,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012636489549646171,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3841,
+ "tp_rate": 0.012636489549646171,
+ "truth_threshold": 43.52
+ },
+ {
+ "f1": 0.024842097055077585,
+ "fn": 300138,
+ "fn_rate": 0.9874227285737315,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999218,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012577271426268502,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3823,
+ "tp_rate": 0.012577271426268502,
+ "truth_threshold": 43.54
+ },
+ {
+ "f1": 0.02472024018403712,
+ "fn": 300157,
+ "fn_rate": 0.9874852365928524,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999228,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012514763407147628,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3804,
+ "tp_rate": 0.012514763407147628,
+ "truth_threshold": 43.56
+ },
+ {
+ "f1": 0.024649557763668384,
+ "fn": 300168,
+ "fn_rate": 0.9875214254460276,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999924,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012478574553972385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3793,
+ "tp_rate": 0.012478574553972385,
+ "truth_threshold": 43.58
+ },
+ {
+ "f1": 0.024611045400782457,
+ "fn": 300174,
+ "fn_rate": 0.9875411648204868,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999925,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012458835179513161,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3787,
+ "tp_rate": 0.012458835179513161,
+ "truth_threshold": 43.6
+ },
+ {
+ "f1": 0.02434141680695209,
+ "fn": 300216,
+ "fn_rate": 0.9876793404417014,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999261,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012320659558298598,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3745,
+ "tp_rate": 0.012320659558298598,
+ "truth_threshold": 43.62
+ },
+ {
+ "f1": 0.02414243647497026,
+ "fn": 300247,
+ "fn_rate": 0.9877813272097408,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012218672790259276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3714,
+ "tp_rate": 0.012218672790259276,
+ "truth_threshold": 43.64
+ },
+ {
+ "f1": 0.024026835166549652,
+ "fn": 300265,
+ "fn_rate": 0.9878405453331184,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999281,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012159454666881607,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3696,
+ "tp_rate": 0.012159454666881607,
+ "truth_threshold": 43.660000000000004
+ },
+ {
+ "f1": 0.023949760112337636,
+ "fn": 300277,
+ "fn_rate": 0.9878800240820368,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999291,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01211997591796316,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3684,
+ "tp_rate": 0.01211997591796316,
+ "truth_threshold": 43.68
+ },
+ {
+ "f1": 0.02390471918293579,
+ "fn": 300284,
+ "fn_rate": 0.9879030533522393,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012096946647760733,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3677,
+ "tp_rate": 0.012096946647760733,
+ "truth_threshold": 43.7
+ },
+ {
+ "f1": 0.02374419723547846,
+ "fn": 300309,
+ "fn_rate": 0.9879853007458194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999309,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.012014699254180635,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3652,
+ "tp_rate": 0.012014699254180635,
+ "truth_threshold": 43.72
+ },
+ {
+ "f1": 0.023634897722987293,
+ "fn": 300326,
+ "fn_rate": 0.9880412289734538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999319,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011958771026546168,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3635,
+ "tp_rate": 0.011958771026546168,
+ "truth_threshold": 43.74
+ },
+ {
+ "f1": 0.023500035763751162,
+ "fn": 300347,
+ "fn_rate": 0.9881103167840611,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999328,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011889683215938886,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3614,
+ "tp_rate": 0.011889683215938886,
+ "truth_threshold": 43.76
+ },
+ {
+ "f1": 0.023461478437288665,
+ "fn": 300353,
+ "fn_rate": 0.9881300561585203,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999338,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011869943841479663,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3608,
+ "tp_rate": 0.011869943841479663,
+ "truth_threshold": 43.78
+ },
+ {
+ "f1": 0.02334579743131198,
+ "fn": 300371,
+ "fn_rate": 0.988189274281898,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999347,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011810725718101994,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3590,
+ "tp_rate": 0.011810725718101994,
+ "truth_threshold": 43.800000000000004
+ },
+ {
+ "f1": 0.02328787612748828,
+ "fn": 300380,
+ "fn_rate": 0.9882188833435869,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999356,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011781116656413158,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3581,
+ "tp_rate": 0.011781116656413158,
+ "truth_threshold": 43.82
+ },
+ {
+ "f1": 0.023178678737269285,
+ "fn": 300397,
+ "fn_rate": 0.9882748115712213,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999365,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011725188428778692,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3564,
+ "tp_rate": 0.011725188428778692,
+ "truth_threshold": 43.84
+ },
+ {
+ "f1": 0.023056460686945945,
+ "fn": 300416,
+ "fn_rate": 0.9883373195903422,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999374,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011662680409657818,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3545,
+ "tp_rate": 0.011662680409657818,
+ "truth_threshold": 43.86
+ },
+ {
+ "f1": 0.02299216900382444,
+ "fn": 300426,
+ "fn_rate": 0.9883702185477742,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999383,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011629781452225778,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3535,
+ "tp_rate": 0.011629781452225778,
+ "truth_threshold": 43.88
+ },
+ {
+ "f1": 0.022940732646477262,
+ "fn": 300434,
+ "fn_rate": 0.9883965377137198,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011603462286280147,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3527,
+ "tp_rate": 0.011603462286280147,
+ "truth_threshold": 43.9
+ },
+ {
+ "f1": 0.02283149575568348,
+ "fn": 300451,
+ "fn_rate": 0.9884524659413543,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999399,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011547534058645682,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3510,
+ "tp_rate": 0.011547534058645682,
+ "truth_threshold": 43.92
+ },
+ {
+ "f1": 0.02275432742033058,
+ "fn": 300463,
+ "fn_rate": 0.9884919446902728,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011508055309727235,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3498,
+ "tp_rate": 0.011508055309727235,
+ "truth_threshold": 43.94
+ },
+ {
+ "f1": 0.022657784832359713,
+ "fn": 300478,
+ "fn_rate": 0.9885412931264208,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999416,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011458706873579177,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3483,
+ "tp_rate": 0.011458706873579177,
+ "truth_threshold": 43.96
+ },
+ {
+ "f1": 0.022535651087748517,
+ "fn": 300497,
+ "fn_rate": 0.9886038011455417,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999424,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011396198854458302,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3464,
+ "tp_rate": 0.011396198854458302,
+ "truth_threshold": 43.980000000000004
+ },
+ {
+ "f1": 0.022413355627411306,
+ "fn": 300516,
+ "fn_rate": 0.9886663091646626,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999432,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011333690835337428,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3445,
+ "tp_rate": 0.011333690835337428,
+ "truth_threshold": 44
+ },
+ {
+ "f1": 0.022381262199089133,
+ "fn": 300521,
+ "fn_rate": 0.9886827586433786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999439,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011317241356621408,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3440,
+ "tp_rate": 0.011317241356621408,
+ "truth_threshold": 44.02
+ },
+ {
+ "f1": 0.022355528373823992,
+ "fn": 300525,
+ "fn_rate": 0.9886959182263514,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011304081773648594,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3436,
+ "tp_rate": 0.011304081773648594,
+ "truth_threshold": 44.04
+ },
+ {
+ "f1": 0.022201111356922557,
+ "fn": 300549,
+ "fn_rate": 0.9887748757241883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999455,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0112251242758117,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3412,
+ "tp_rate": 0.0112251242758117,
+ "truth_threshold": 44.06
+ },
+ {
+ "f1": 0.022033799040820444,
+ "fn": 300575,
+ "fn_rate": 0.9888604130135116,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999463,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011139586986488398,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3386,
+ "tp_rate": 0.011139586986488398,
+ "truth_threshold": 44.08
+ },
+ {
+ "f1": 0.02197580513961827,
+ "fn": 300584,
+ "fn_rate": 0.9888900220752005,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999469,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011109977924799563,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3377,
+ "tp_rate": 0.011109977924799563,
+ "truth_threshold": 44.1
+ },
+ {
+ "f1": 0.021859950540153585,
+ "fn": 300602,
+ "fn_rate": 0.9889492401985781,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999477,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011050759801421893,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3359,
+ "tp_rate": 0.011050759801421893,
+ "truth_threshold": 44.12
+ },
+ {
+ "f1": 0.021853584886013838,
+ "fn": 300603,
+ "fn_rate": 0.9889525300943213,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999484,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011047469905678689,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3358,
+ "tp_rate": 0.011047469905678689,
+ "truth_threshold": 44.14
+ },
+ {
+ "f1": 0.021795581009404184,
+ "fn": 300612,
+ "fn_rate": 0.9889821391560102,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999492,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.011017860843989855,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3349,
+ "tp_rate": 0.011017860843989855,
+ "truth_threshold": 44.160000000000004
+ },
+ {
+ "f1": 0.021673337889290246,
+ "fn": 300631,
+ "fn_rate": 0.9890446471751311,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999498,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01095535282486898,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3330,
+ "tp_rate": 0.01095535282486898,
+ "truth_threshold": 44.18
+ },
+ {
+ "f1": 0.021608956001041395,
+ "fn": 300641,
+ "fn_rate": 0.989077546132563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01092245386743694,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3320,
+ "tp_rate": 0.01092245386743694,
+ "truth_threshold": 44.2
+ },
+ {
+ "f1": 0.021531692203548693,
+ "fn": 300653,
+ "fn_rate": 0.9891170248814815,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999512,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010882975118518495,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3308,
+ "tp_rate": 0.010882975118518495,
+ "truth_threshold": 44.22
+ },
+ {
+ "f1": 0.02141578519121237,
+ "fn": 300671,
+ "fn_rate": 0.9891762430048592,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999518,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010823756995140824,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3290,
+ "tp_rate": 0.010823756995140824,
+ "truth_threshold": 44.24
+ },
+ {
+ "f1": 0.021306235637982774,
+ "fn": 300688,
+ "fn_rate": 0.9892321712324936,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010767828767506357,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3273,
+ "tp_rate": 0.010767828767506357,
+ "truth_threshold": 44.26
+ },
+ {
+ "f1": 0.021113006341063268,
+ "fn": 300718,
+ "fn_rate": 0.9893308681047898,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010669131895210241,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3243,
+ "tp_rate": 0.010669131895210241,
+ "truth_threshold": 44.28
+ },
+ {
+ "f1": 0.021022819753247175,
+ "fn": 300732,
+ "fn_rate": 0.9893769266451946,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999538,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010623073354805387,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3229,
+ "tp_rate": 0.010623073354805387,
+ "truth_threshold": 44.300000000000004
+ },
+ {
+ "f1": 0.021003561360218238,
+ "fn": 300735,
+ "fn_rate": 0.9893867963324242,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010613203667575774,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3226,
+ "tp_rate": 0.010613203667575774,
+ "truth_threshold": 44.32
+ },
+ {
+ "f1": 0.02093913586998984,
+ "fn": 300745,
+ "fn_rate": 0.9894196952898563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999955,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010580304710143736,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3216,
+ "tp_rate": 0.010580304710143736,
+ "truth_threshold": 44.34
+ },
+ {
+ "f1": 0.02085530856480577,
+ "fn": 300758,
+ "fn_rate": 0.9894624639345179,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999557,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010537536065482085,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3203,
+ "tp_rate": 0.010537536065482085,
+ "truth_threshold": 44.36
+ },
+ {
+ "f1": 0.020707169369017387,
+ "fn": 300781,
+ "fn_rate": 0.9895381315366116,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999564,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010461868463388395,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3180,
+ "tp_rate": 0.010461868463388395,
+ "truth_threshold": 44.38
+ },
+ {
+ "f1": 0.020610433502862017,
+ "fn": 300796,
+ "fn_rate": 0.9895874799727596,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999569,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010412520027240336,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3165,
+ "tp_rate": 0.010412520027240336,
+ "truth_threshold": 44.4
+ },
+ {
+ "f1": 0.020545982625457482,
+ "fn": 300806,
+ "fn_rate": 0.9896203789301917,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999575,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010379621069808298,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3155,
+ "tp_rate": 0.010379621069808298,
+ "truth_threshold": 44.42
+ },
+ {
+ "f1": 0.020488039960144054,
+ "fn": 300815,
+ "fn_rate": 0.9896499879918805,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010350012008119462,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3146,
+ "tp_rate": 0.010350012008119462,
+ "truth_threshold": 44.44
+ },
+ {
+ "f1": 0.02033971160985268,
+ "fn": 300838,
+ "fn_rate": 0.9897256555939742,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010274344406025773,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3123,
+ "tp_rate": 0.010274344406025773,
+ "truth_threshold": 44.46
+ },
+ {
+ "f1": 0.020191493519181918,
+ "fn": 300861,
+ "fn_rate": 0.989801323196068,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999593,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010198676803932083,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3100,
+ "tp_rate": 0.010198676803932083,
+ "truth_threshold": 44.480000000000004
+ },
+ {
+ "f1": 0.020081812378681882,
+ "fn": 300878,
+ "fn_rate": 0.9898572514237024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999598,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010142748576297617,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3083,
+ "tp_rate": 0.010142748576297617,
+ "truth_threshold": 44.5
+ },
+ {
+ "f1": 0.02003022446879193,
+ "fn": 300886,
+ "fn_rate": 0.989883570589648,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010116429410351986,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3075,
+ "tp_rate": 0.010116429410351986,
+ "truth_threshold": 44.52
+ },
+ {
+ "f1": 0.019830360516475354,
+ "fn": 300917,
+ "fn_rate": 0.9899855573576873,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999609,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.010014442642312665,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3044,
+ "tp_rate": 0.010014442642312665,
+ "truth_threshold": 44.54
+ },
+ {
+ "f1": 0.019778759332369153,
+ "fn": 300925,
+ "fn_rate": 0.990011876523633,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999615,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009988123476367034,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3036,
+ "tp_rate": 0.009988123476367034,
+ "truth_threshold": 44.56
+ },
+ {
+ "f1": 0.0197077391151388,
+ "fn": 300936,
+ "fn_rate": 0.9900480653768082,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999619,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00995193462319179,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3025,
+ "tp_rate": 0.00995193462319179,
+ "truth_threshold": 44.58
+ },
+ {
+ "f1": 0.01966903381327774,
+ "fn": 300942,
+ "fn_rate": 0.9900678047512674,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999625,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009932195248732567,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3019,
+ "tp_rate": 0.009932195248732567,
+ "truth_threshold": 44.6
+ },
+ {
+ "f1": 0.019630326998377714,
+ "fn": 300948,
+ "fn_rate": 0.9900875441257266,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009912455874273344,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3013,
+ "tp_rate": 0.009912455874273344,
+ "truth_threshold": 44.62
+ },
+ {
+ "f1": 0.019514197474556613,
+ "fn": 300966,
+ "fn_rate": 0.9901467622491044,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999635,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009853237750895675,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2995,
+ "tp_rate": 0.009853237750895675,
+ "truth_threshold": 44.64
+ },
+ {
+ "f1": 0.019398054330190463,
+ "fn": 300984,
+ "fn_rate": 0.990205980372482,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009794019627518004,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2977,
+ "tp_rate": 0.009794019627518004,
+ "truth_threshold": 44.660000000000004
+ },
+ {
+ "f1": 0.019243175612712354,
+ "fn": 301008,
+ "fn_rate": 0.9902849378703189,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999645,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00971506212968111,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2953,
+ "tp_rate": 0.00971506212968111,
+ "truth_threshold": 44.68
+ },
+ {
+ "f1": 0.019159335288367548,
+ "fn": 301021,
+ "fn_rate": 0.9903277065149806,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999965,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00967229348501946,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2940,
+ "tp_rate": 0.00967229348501946,
+ "truth_threshold": 44.7
+ },
+ {
+ "f1": 0.01901732936215695,
+ "fn": 301043,
+ "fn_rate": 0.9904000842213311,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009599915778668974,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2918,
+ "tp_rate": 0.009599915778668974,
+ "truth_threshold": 44.72
+ },
+ {
+ "f1": 0.01888821539604638,
+ "fn": 301063,
+ "fn_rate": 0.9904658821361951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999659,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009534117863804896,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2898,
+ "tp_rate": 0.009534117863804896,
+ "truth_threshold": 44.74
+ },
+ {
+ "f1": 0.01866216462858186,
+ "fn": 301098,
+ "fn_rate": 0.9905810284872072,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00941897151279276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2863,
+ "tp_rate": 0.00941897151279276,
+ "truth_threshold": 44.76
+ },
+ {
+ "f1": 0.018591189392852953,
+ "fn": 301109,
+ "fn_rate": 0.9906172173403824,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999669,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009382782659617516,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2852,
+ "tp_rate": 0.009382782659617516,
+ "truth_threshold": 44.78
+ },
+ {
+ "f1": 0.018513689700130377,
+ "fn": 301121,
+ "fn_rate": 0.990656696089301,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00934330391069907,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2840,
+ "tp_rate": 0.00934330391069907,
+ "truth_threshold": 44.800000000000004
+ },
+ {
+ "f1": 0.01837159118320088,
+ "fn": 301143,
+ "fn_rate": 0.9907290737956514,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999678,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009270926204348584,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2818,
+ "tp_rate": 0.009270926204348584,
+ "truth_threshold": 44.82
+ },
+ {
+ "f1": 0.0182875546833743,
+ "fn": 301156,
+ "fn_rate": 0.990771842440313,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999682,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009228157559686933,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2805,
+ "tp_rate": 0.009228157559686933,
+ "truth_threshold": 44.84
+ },
+ {
+ "f1": 0.01824239302642474,
+ "fn": 301163,
+ "fn_rate": 0.9907948717105155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999687,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009205128289484506,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2798,
+ "tp_rate": 0.009205128289484506,
+ "truth_threshold": 44.86
+ },
+ {
+ "f1": 0.018171267620326784,
+ "fn": 301174,
+ "fn_rate": 0.9908310605636907,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999691,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009168939436309264,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2787,
+ "tp_rate": 0.009168939436309264,
+ "truth_threshold": 44.88
+ },
+ {
+ "f1": 0.018100255594387354,
+ "fn": 301185,
+ "fn_rate": 0.990867249416866,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999696,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00913275058313402,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2776,
+ "tp_rate": 0.00913275058313402,
+ "truth_threshold": 44.9
+ },
+ {
+ "f1": 0.01809373532940379,
+ "fn": 301186,
+ "fn_rate": 0.9908705393126092,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999699,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009129460687390817,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2775,
+ "tp_rate": 0.009129460687390817,
+ "truth_threshold": 44.92
+ },
+ {
+ "f1": 0.01806148730153555,
+ "fn": 301191,
+ "fn_rate": 0.9908869887913252,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999704,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009113011208674797,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2770,
+ "tp_rate": 0.009113011208674797,
+ "truth_threshold": 44.94
+ },
+ {
+ "f1": 0.01799034950443401,
+ "fn": 301202,
+ "fn_rate": 0.9909231776445004,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009076822355499553,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2759,
+ "tp_rate": 0.009076822355499553,
+ "truth_threshold": 44.96
+ },
+ {
+ "f1": 0.01793865254701479,
+ "fn": 301210,
+ "fn_rate": 0.9909494968104461,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999711,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009050503189553923,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2751,
+ "tp_rate": 0.009050503189553923,
+ "truth_threshold": 44.980000000000004
+ },
+ {
+ "f1": 0.01787402755769444,
+ "fn": 301220,
+ "fn_rate": 0.9909823957678782,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999716,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.009017604232121884,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2741,
+ "tp_rate": 0.009017604232121884,
+ "truth_threshold": 45
+ },
+ {
+ "f1": 0.017680127302133877,
+ "fn": 301250,
+ "fn_rate": 0.9910810926401742,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008918907359825767,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2711,
+ "tp_rate": 0.008918907359825767,
+ "truth_threshold": 45.02
+ },
+ {
+ "f1": 0.017557361439025344,
+ "fn": 301269,
+ "fn_rate": 0.9911436006592951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999724,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008856399340704892,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2692,
+ "tp_rate": 0.008856399340704892,
+ "truth_threshold": 45.04
+ },
+ {
+ "f1": 0.017524979781377997,
+ "fn": 301274,
+ "fn_rate": 0.9911600501380111,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008839949861988874,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2687,
+ "tp_rate": 0.008839949861988874,
+ "truth_threshold": 45.06
+ },
+ {
+ "f1": 0.01746032781325211,
+ "fn": 301284,
+ "fn_rate": 0.9911929490954432,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999731,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008807050904556834,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2677,
+ "tp_rate": 0.008807050904556834,
+ "truth_threshold": 45.08
+ },
+ {
+ "f1": 0.017421534608260063,
+ "fn": 301290,
+ "fn_rate": 0.9912126884699024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999735,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00878731153009761,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2671,
+ "tp_rate": 0.00878731153009761,
+ "truth_threshold": 45.1
+ },
+ {
+ "f1": 0.0173051458837496,
+ "fn": 301308,
+ "fn_rate": 0.99127190659328,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999738,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008728093406719942,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2653,
+ "tp_rate": 0.008728093406719942,
+ "truth_threshold": 45.12
+ },
+ {
+ "f1": 0.01721461187214612,
+ "fn": 301322,
+ "fn_rate": 0.9913179651336849,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999742,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008682034866315087,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2639,
+ "tp_rate": 0.008682034866315087,
+ "truth_threshold": 45.14
+ },
+ {
+ "f1": 0.017137004709903845,
+ "fn": 301334,
+ "fn_rate": 0.9913574438826034,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999746,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00864255611739664,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2627,
+ "tp_rate": 0.00864255611739664,
+ "truth_threshold": 45.160000000000004
+ },
+ {
+ "f1": 0.01710472239074701,
+ "fn": 301339,
+ "fn_rate": 0.9913738933613194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999749,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00862610663868062,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2622,
+ "tp_rate": 0.00862610663868062,
+ "truth_threshold": 45.18
+ },
+ {
+ "f1": 0.016936546666840642,
+ "fn": 301365,
+ "fn_rate": 0.9914594306506427,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999752,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008540569349357319,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2596,
+ "tp_rate": 0.008540569349357319,
+ "truth_threshold": 45.2
+ },
+ {
+ "f1": 0.016813576130854904,
+ "fn": 301384,
+ "fn_rate": 0.9915219386697636,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999756,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008478061330236444,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2577,
+ "tp_rate": 0.008478061330236444,
+ "truth_threshold": 45.22
+ },
+ {
+ "f1": 0.016735937571364257,
+ "fn": 301396,
+ "fn_rate": 0.991561417418682,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008438582581317997,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2565,
+ "tp_rate": 0.008438582581317997,
+ "truth_threshold": 45.24
+ },
+ {
+ "f1": 0.01653539710402161,
+ "fn": 301427,
+ "fn_rate": 0.9916634041867213,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999762,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008336595813278678,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2534,
+ "tp_rate": 0.008336595813278678,
+ "truth_threshold": 45.26
+ },
+ {
+ "f1": 0.0164836240480805,
+ "fn": 301435,
+ "fn_rate": 0.9916897233526669,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999766,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008310276647333047,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2526,
+ "tp_rate": 0.008310276647333047,
+ "truth_threshold": 45.28
+ },
+ {
+ "f1": 0.01641237813075086,
+ "fn": 301446,
+ "fn_rate": 0.9917259122058422,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999769,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008274087794157803,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2515,
+ "tp_rate": 0.008274087794157803,
+ "truth_threshold": 45.300000000000004
+ },
+ {
+ "f1": 0.016354179582726957,
+ "fn": 301455,
+ "fn_rate": 0.9917555212675311,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999772,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008244478732468969,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2506,
+ "tp_rate": 0.008244478732468969,
+ "truth_threshold": 45.32
+ },
+ {
+ "f1": 0.016295870886059428,
+ "fn": 301464,
+ "fn_rate": 0.9917851303292199,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008214869670780132,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2497,
+ "tp_rate": 0.008214869670780132,
+ "truth_threshold": 45.34
+ },
+ {
+ "f1": 0.016263558403926227,
+ "fn": 301469,
+ "fn_rate": 0.9918015798079359,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008198420192064114,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2492,
+ "tp_rate": 0.008198420192064114,
+ "truth_threshold": 45.36
+ },
+ {
+ "f1": 0.016179349954314057,
+ "fn": 301482,
+ "fn_rate": 0.9918443484525975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999781,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008155651547402464,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2479,
+ "tp_rate": 0.008155651547402464,
+ "truth_threshold": 45.38
+ },
+ {
+ "f1": 0.016069342279601335,
+ "fn": 301499,
+ "fn_rate": 0.991900276680232,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008099723319767996,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2462,
+ "tp_rate": 0.008099723319767996,
+ "truth_threshold": 45.4
+ },
+ {
+ "f1": 0.015985117979178225,
+ "fn": 301512,
+ "fn_rate": 0.9919430453248936,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999788,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008056954675106346,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2449,
+ "tp_rate": 0.008056954675106346,
+ "truth_threshold": 45.42
+ },
+ {
+ "f1": 0.015939843734701472,
+ "fn": 301519,
+ "fn_rate": 0.9919660745950961,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999793,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008033925404903918,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2442,
+ "tp_rate": 0.008033925404903918,
+ "truth_threshold": 45.46
+ },
+ {
+ "f1": 0.015913941997010423,
+ "fn": 301523,
+ "fn_rate": 0.9919792341780689,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999796,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.008020765821931102,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2438,
+ "tp_rate": 0.008020765821931102,
+ "truth_threshold": 45.480000000000004
+ },
+ {
+ "f1": 0.015836232726038395,
+ "fn": 301535,
+ "fn_rate": 0.9920187129269873,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999799,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007981287073012657,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2426,
+ "tp_rate": 0.007981287073012657,
+ "truth_threshold": 45.5
+ },
+ {
+ "f1": 0.015790847966577454,
+ "fn": 301542,
+ "fn_rate": 0.9920417421971898,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999801,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00795825780281023,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2419,
+ "tp_rate": 0.00795825780281023,
+ "truth_threshold": 45.52
+ },
+ {
+ "f1": 0.015771470350157975,
+ "fn": 301545,
+ "fn_rate": 0.9920516118844194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999805,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007948388115580617,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2416,
+ "tp_rate": 0.007948388115580617,
+ "truth_threshold": 45.54
+ },
+ {
+ "f1": 0.01565488741929377,
+ "fn": 301563,
+ "fn_rate": 0.9921108300077971,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007889169992202946,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2398,
+ "tp_rate": 0.007889169992202946,
+ "truth_threshold": 45.56
+ },
+ {
+ "f1": 0.015551246645905556,
+ "fn": 301579,
+ "fn_rate": 0.9921634683396883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007836531660311685,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2382,
+ "tp_rate": 0.007836531660311685,
+ "truth_threshold": 45.58
+ },
+ {
+ "f1": 0.015454023138596538,
+ "fn": 301594,
+ "fn_rate": 0.9922128167758364,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999812,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0077871832241636265,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2367,
+ "tp_rate": 0.0077871832241636265,
+ "truth_threshold": 45.6
+ },
+ {
+ "f1": 0.015356891013084698,
+ "fn": 301609,
+ "fn_rate": 0.9922621652119844,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999815,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007737834788015568,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2352,
+ "tp_rate": 0.007737834788015568,
+ "truth_threshold": 45.62
+ },
+ {
+ "f1": 0.01526617868872797,
+ "fn": 301623,
+ "fn_rate": 0.9923082237523893,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007691776247610713,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2338,
+ "tp_rate": 0.007691776247610713,
+ "truth_threshold": 45.64
+ },
+ {
+ "f1": 0.015253219108313527,
+ "fn": 301625,
+ "fn_rate": 0.9923148035438757,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007685196456124305,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2336,
+ "tp_rate": 0.007685196456124305,
+ "truth_threshold": 45.660000000000004
+ },
+ {
+ "f1": 0.01511065255294279,
+ "fn": 301647,
+ "fn_rate": 0.9923871812502262,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999822,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00761281874977382,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2314,
+ "tp_rate": 0.00761281874977382,
+ "truth_threshold": 45.68
+ },
+ {
+ "f1": 0.015039312488571951,
+ "fn": 301658,
+ "fn_rate": 0.9924233701034014,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999825,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007576629896598577,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2303,
+ "tp_rate": 0.007576629896598577,
+ "truth_threshold": 45.7
+ },
+ {
+ "f1": 0.014987461470142625,
+ "fn": 301666,
+ "fn_rate": 0.9924496892693471,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999828,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0075503107306529454,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2295,
+ "tp_rate": 0.0075503107306529454,
+ "truth_threshold": 45.72
+ },
+ {
+ "f1": 0.014922643887593633,
+ "fn": 301676,
+ "fn_rate": 0.992482588226779,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0075174117732209065,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2285,
+ "tp_rate": 0.0075174117732209065,
+ "truth_threshold": 45.74
+ },
+ {
+ "f1": 0.014909679863115685,
+ "fn": 301678,
+ "fn_rate": 0.9924891680182655,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999832,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007510831981734499,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2283,
+ "tp_rate": 0.007510831981734499,
+ "truth_threshold": 45.76
+ },
+ {
+ "f1": 0.014870786773685826,
+ "fn": 301684,
+ "fn_rate": 0.9925089073927247,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999835,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007491092607275276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2277,
+ "tp_rate": 0.007491092607275276,
+ "truth_threshold": 45.78
+ },
+ {
+ "f1": 0.014747663429321595,
+ "fn": 301703,
+ "fn_rate": 0.9925714154118456,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999837,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007428584588154401,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2258,
+ "tp_rate": 0.007428584588154401,
+ "truth_threshold": 45.800000000000004
+ },
+ {
+ "f1": 0.014663331221465289,
+ "fn": 301716,
+ "fn_rate": 0.9926141840565073,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999839,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0073858159434927505,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2245,
+ "tp_rate": 0.0073858159434927505,
+ "truth_threshold": 45.82
+ },
+ {
+ "f1": 0.014630960156760287,
+ "fn": 301721,
+ "fn_rate": 0.9926306335352233,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999841,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0073693664647767314,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2240,
+ "tp_rate": 0.0073693664647767314,
+ "truth_threshold": 45.84
+ },
+ {
+ "f1": 0.014553150352071276,
+ "fn": 301733,
+ "fn_rate": 0.9926701122841417,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999843,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007329887715858284,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2228,
+ "tp_rate": 0.007329887715858284,
+ "truth_threshold": 45.86
+ },
+ {
+ "f1": 0.014416921428758068,
+ "fn": 301754,
+ "fn_rate": 0.992739200094749,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999846,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007260799905251003,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2207,
+ "tp_rate": 0.007260799905251003,
+ "truth_threshold": 45.88
+ },
+ {
+ "f1": 0.01425482292530917,
+ "fn": 301779,
+ "fn_rate": 0.9928214474883291,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999848,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007178552511670905,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2182,
+ "tp_rate": 0.007178552511670905,
+ "truth_threshold": 45.9
+ },
+ {
+ "f1": 0.01422887717303961,
+ "fn": 301783,
+ "fn_rate": 0.9928346070713019,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007165392928698089,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2178,
+ "tp_rate": 0.007165392928698089,
+ "truth_threshold": 45.92
+ },
+ {
+ "f1": 0.01419639765592845,
+ "fn": 301788,
+ "fn_rate": 0.9928510565500179,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999852,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00714894344998207,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2173,
+ "tp_rate": 0.00714894344998207,
+ "truth_threshold": 45.94
+ },
+ {
+ "f1": 0.014151035847984163,
+ "fn": 301795,
+ "fn_rate": 0.9928740858202204,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999853,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007125914179779643,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2166,
+ "tp_rate": 0.007125914179779643,
+ "truth_threshold": 45.96
+ },
+ {
+ "f1": 0.014118554040545926,
+ "fn": 301800,
+ "fn_rate": 0.9928905352989363,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999856,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007109464701063623,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2161,
+ "tp_rate": 0.007109464701063623,
+ "truth_threshold": 45.980000000000004
+ },
+ {
+ "f1": 0.014086163415175946,
+ "fn": 301805,
+ "fn_rate": 0.9929069847776524,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007093015222347604,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2156,
+ "tp_rate": 0.007093015222347604,
+ "truth_threshold": 46
+ },
+ {
+ "f1": 0.014079629944204157,
+ "fn": 301806,
+ "fn_rate": 0.9929102746733957,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0070897253266044,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2155,
+ "tp_rate": 0.0070897253266044,
+ "truth_threshold": 46.02
+ },
+ {
+ "f1": 0.013988801118581388,
+ "fn": 301820,
+ "fn_rate": 0.9929563332138005,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999862,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.007043666786199545,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2141,
+ "tp_rate": 0.007043666786199545,
+ "truth_threshold": 46.04
+ },
+ {
+ "f1": 0.013774716729615642,
+ "fn": 301853,
+ "fn_rate": 0.9930648997733262,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0069351002266738165,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2108,
+ "tp_rate": 0.0069351002266738165,
+ "truth_threshold": 46.06
+ },
+ {
+ "f1": 0.013547514328473308,
+ "fn": 301888,
+ "fn_rate": 0.9931800461243383,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0068199538756616804,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2073,
+ "tp_rate": 0.0068199538756616804,
+ "truth_threshold": 46.08
+ },
+ {
+ "f1": 0.013463172341677014,
+ "fn": 301901,
+ "fn_rate": 0.993222814769,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00677718523100003,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2060,
+ "tp_rate": 0.00677718523100003,
+ "truth_threshold": 46.1
+ },
+ {
+ "f1": 0.013437205897730838,
+ "fn": 301905,
+ "fn_rate": 0.9932359743519728,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999869,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006764025648027214,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2056,
+ "tp_rate": 0.006764025648027214,
+ "truth_threshold": 46.12
+ },
+ {
+ "f1": 0.013378735196465453,
+ "fn": 301914,
+ "fn_rate": 0.9932655834136617,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999871,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006734416586338379,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2047,
+ "tp_rate": 0.006734416586338379,
+ "truth_threshold": 46.14
+ },
+ {
+ "f1": 0.013313812508578488,
+ "fn": 301924,
+ "fn_rate": 0.9932984823710936,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999872,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00670151762890634,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2037,
+ "tp_rate": 0.00670151762890634,
+ "truth_threshold": 46.160000000000004
+ },
+ {
+ "f1": 0.013229449905877431,
+ "fn": 301937,
+ "fn_rate": 0.9933412510157553,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999875,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006658748984244689,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2024,
+ "tp_rate": 0.006658748984244689,
+ "truth_threshold": 46.18
+ },
+ {
+ "f1": 0.01320992738134923,
+ "fn": 301940,
+ "fn_rate": 0.9933511207029849,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006648879297015077,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2021,
+ "tp_rate": 0.006648879297015077,
+ "truth_threshold": 46.2
+ },
+ {
+ "f1": 0.013099580342785426,
+ "fn": 301957,
+ "fn_rate": 0.9934070489306194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999878,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006592951069380611,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2004,
+ "tp_rate": 0.006592951069380611,
+ "truth_threshold": 46.22
+ },
+ {
+ "f1": 0.01306706759053471,
+ "fn": 301962,
+ "fn_rate": 0.9934234984093354,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006576501590664592,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1999,
+ "tp_rate": 0.006576501590664592,
+ "truth_threshold": 46.24
+ },
+ {
+ "f1": 0.01299567246721665,
+ "fn": 301973,
+ "fn_rate": 0.9934596872625107,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999881,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006540312737489349,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1988,
+ "tp_rate": 0.006540312737489349,
+ "truth_threshold": 46.26
+ },
+ {
+ "f1": 0.012865772338589472,
+ "fn": 301993,
+ "fn_rate": 0.9935254851773747,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999883,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006474514822625271,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1968,
+ "tp_rate": 0.006474514822625271,
+ "truth_threshold": 46.28
+ },
+ {
+ "f1": 0.012833252703285784,
+ "fn": 301998,
+ "fn_rate": 0.9935419346560908,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999885,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006458065343909252,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1963,
+ "tp_rate": 0.006458065343909252,
+ "truth_threshold": 46.300000000000004
+ },
+ {
+ "f1": 0.012794278205270694,
+ "fn": 302004,
+ "fn_rate": 0.99356167403055,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999886,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006438325969450028,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1957,
+ "tp_rate": 0.006438325969450028,
+ "truth_threshold": 46.32
+ },
+ {
+ "f1": 0.012709869763062922,
+ "fn": 302017,
+ "fn_rate": 0.9936044426752116,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006395557324788377,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1944,
+ "tp_rate": 0.006395557324788377,
+ "truth_threshold": 46.34
+ },
+ {
+ "f1": 0.012677345537757437,
+ "fn": 302022,
+ "fn_rate": 0.9936208921539277,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999889,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006379107846072358,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1939,
+ "tp_rate": 0.006379107846072358,
+ "truth_threshold": 46.36
+ },
+ {
+ "f1": 0.01261237699826735,
+ "fn": 302032,
+ "fn_rate": 0.9936537911113597,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999891,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006346208888640319,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1929,
+ "tp_rate": 0.006346208888640319,
+ "truth_threshold": 46.38
+ },
+ {
+ "f1": 0.01254740421080162,
+ "fn": 302042,
+ "fn_rate": 0.9936866900687917,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999892,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00631330993120828,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1919,
+ "tp_rate": 0.00631330993120828,
+ "truth_threshold": 46.4
+ },
+ {
+ "f1": 0.012508418499120552,
+ "fn": 302048,
+ "fn_rate": 0.9937064294432509,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999893,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006293570556749057,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1913,
+ "tp_rate": 0.006293570556749057,
+ "truth_threshold": 46.42
+ },
+ {
+ "f1": 0.012430442487134721,
+ "fn": 302060,
+ "fn_rate": 0.9937459081921693,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0062540918078306095,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1901,
+ "tp_rate": 0.0062540918078306095,
+ "truth_threshold": 46.44
+ },
+ {
+ "f1": 0.01242398482966063,
+ "fn": 302061,
+ "fn_rate": 0.9937491980879126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999897,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006250801912087406,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1900,
+ "tp_rate": 0.006250801912087406,
+ "truth_threshold": 46.46
+ },
+ {
+ "f1": 0.012365457803120464,
+ "fn": 302070,
+ "fn_rate": 0.9937788071496014,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999898,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0062211928503985705,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1891,
+ "tp_rate": 0.0062211928503985705,
+ "truth_threshold": 46.480000000000004
+ },
+ {
+ "f1": 0.012203017402052147,
+ "fn": 302095,
+ "fn_rate": 0.9938610545431815,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0061389454568184735,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1866,
+ "tp_rate": 0.0061389454568184735,
+ "truth_threshold": 46.5
+ },
+ {
+ "f1": 0.01212501716729777,
+ "fn": 302107,
+ "fn_rate": 0.9939005332920999,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999901,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006099466707900026,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1854,
+ "tp_rate": 0.006099466707900026,
+ "truth_threshold": 46.52
+ },
+ {
+ "f1": 0.012105476567302787,
+ "fn": 302110,
+ "fn_rate": 0.9939104029793295,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006089597020670415,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1851,
+ "tp_rate": 0.006089597020670415,
+ "truth_threshold": 46.54
+ },
+ {
+ "f1": 0.012099015728720448,
+ "fn": 302111,
+ "fn_rate": 0.9939136928750728,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999903,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006086307124927211,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1850,
+ "tp_rate": 0.006086307124927211,
+ "truth_threshold": 46.56
+ },
+ {
+ "f1": 0.012053472158637559,
+ "fn": 302118,
+ "fn_rate": 0.9939367221452752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999905,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006063277854724784,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1843,
+ "tp_rate": 0.006063277854724784,
+ "truth_threshold": 46.58
+ },
+ {
+ "f1": 0.012001465028973564,
+ "fn": 302126,
+ "fn_rate": 0.9939630413112208,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999907,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.006036958688779153,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1835,
+ "tp_rate": 0.006036958688779153,
+ "truth_threshold": 46.6
+ },
+ {
+ "f1": 0.011890979730392638,
+ "fn": 302143,
+ "fn_rate": 0.9940189695388553,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999908,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005981030461144687,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1818,
+ "tp_rate": 0.005981030461144687,
+ "truth_threshold": 46.62
+ },
+ {
+ "f1": 0.011845427311853276,
+ "fn": 302150,
+ "fn_rate": 0.9940419988090577,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999909,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005958001190942259,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1811,
+ "tp_rate": 0.005958001190942259,
+ "truth_threshold": 46.64
+ },
+ {
+ "f1": 0.011754393997867594,
+ "fn": 302164,
+ "fn_rate": 0.9940880573494626,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005911942650537404,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1797,
+ "tp_rate": 0.005911942650537404,
+ "truth_threshold": 46.660000000000004
+ },
+ {
+ "f1": 0.01159831749167577,
+ "fn": 302188,
+ "fn_rate": 0.9941670148472995,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999911,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005832985152700511,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1773,
+ "tp_rate": 0.005832985152700511,
+ "truth_threshold": 46.68
+ },
+ {
+ "f1": 0.011565836298932384,
+ "fn": 302193,
+ "fn_rate": 0.9941834643260155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999912,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005816535673984492,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1768,
+ "tp_rate": 0.005816535673984492,
+ "truth_threshold": 46.7
+ },
+ {
+ "f1": 0.011526811940259452,
+ "fn": 302199,
+ "fn_rate": 0.9942032037004748,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999913,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005796796299525268,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1762,
+ "tp_rate": 0.005796796299525268,
+ "truth_threshold": 46.72
+ },
+ {
+ "f1": 0.011435749146244128,
+ "fn": 302213,
+ "fn_rate": 0.9942492622408796,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999915,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005750737759120414,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1748,
+ "tp_rate": 0.005750737759120414,
+ "truth_threshold": 46.74
+ },
+ {
+ "f1": 0.01139671968125822,
+ "fn": 302219,
+ "fn_rate": 0.9942690016153388,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00573099838466119,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1742,
+ "tp_rate": 0.00573099838466119,
+ "truth_threshold": 46.76
+ },
+ {
+ "f1": 0.011351146236784257,
+ "fn": 302226,
+ "fn_rate": 0.9942920308855412,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999917,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005707969114458763,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1735,
+ "tp_rate": 0.005707969114458763,
+ "truth_threshold": 46.78
+ },
+ {
+ "f1": 0.011247055744569485,
+ "fn": 302242,
+ "fn_rate": 0.9943446692174325,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999918,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0056553307825675005,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1719,
+ "tp_rate": 0.0056553307825675005,
+ "truth_threshold": 46.800000000000004
+ },
+ {
+ "f1": 0.01119500641210186,
+ "fn": 302250,
+ "fn_rate": 0.9943709883833781,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999919,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00562901161662187,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1711,
+ "tp_rate": 0.00562901161662187,
+ "truth_threshold": 46.82
+ },
+ {
+ "f1": 0.011136484090269645,
+ "fn": 302259,
+ "fn_rate": 0.9944005974450669,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005599402554933034,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1702,
+ "tp_rate": 0.005599402554933034,
+ "truth_threshold": 46.84
+ },
+ {
+ "f1": 0.011116927304848525,
+ "fn": 302262,
+ "fn_rate": 0.9944104671322965,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999921,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0055895328677034225,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1699,
+ "tp_rate": 0.0055895328677034225,
+ "truth_threshold": 46.86
+ },
+ {
+ "f1": 0.011084428798576167,
+ "fn": 302267,
+ "fn_rate": 0.9944269166110126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999922,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0055730833889874026,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1694,
+ "tp_rate": 0.0055730833889874026,
+ "truth_threshold": 46.88
+ },
+ {
+ "f1": 0.01101935585190614,
+ "fn": 302277,
+ "fn_rate": 0.9944598155684446,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999923,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0055401844315553644,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1684,
+ "tp_rate": 0.0055401844315553644,
+ "truth_threshold": 46.9
+ },
+ {
+ "f1": 0.010941262695005758,
+ "fn": 302289,
+ "fn_rate": 0.9944992943173631,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999925,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005500705682636917,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1672,
+ "tp_rate": 0.005500705682636917,
+ "truth_threshold": 46.92
+ },
+ {
+ "f1": 0.010843602143852783,
+ "fn": 302304,
+ "fn_rate": 0.9945486427535112,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999926,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005451357246488858,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1657,
+ "tp_rate": 0.005451357246488858,
+ "truth_threshold": 46.94
+ },
+ {
+ "f1": 0.010739458511397177,
+ "fn": 302320,
+ "fn_rate": 0.9946012810854024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999927,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005398718914597597,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1641,
+ "tp_rate": 0.005398718914597597,
+ "truth_threshold": 46.96
+ },
+ {
+ "f1": 0.010693927236791299,
+ "fn": 302327,
+ "fn_rate": 0.9946243103556048,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0053756896443951695,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1634,
+ "tp_rate": 0.0053756896443951695,
+ "truth_threshold": 46.980000000000004
+ },
+ {
+ "f1": 0.010641848775794703,
+ "fn": 302335,
+ "fn_rate": 0.9946506295215505,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005349370478449538,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1626,
+ "tp_rate": 0.005349370478449538,
+ "truth_threshold": 47.02
+ },
+ {
+ "f1": 0.010609263634638166,
+ "fn": 302340,
+ "fn_rate": 0.9946670790002665,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005332920999733519,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1621,
+ "tp_rate": 0.005332920999733519,
+ "truth_threshold": 47.04
+ },
+ {
+ "f1": 0.010576746864937037,
+ "fn": 302345,
+ "fn_rate": 0.9946835284789824,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999932,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005316471521017499,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1616,
+ "tp_rate": 0.005316471521017499,
+ "truth_threshold": 47.06
+ },
+ {
+ "f1": 0.010544159805217756,
+ "fn": 302350,
+ "fn_rate": 0.9946999779576985,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999932,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00530002204230148,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1611,
+ "tp_rate": 0.00530002204230148,
+ "truth_threshold": 47.08
+ },
+ {
+ "f1": 0.010531138527996859,
+ "fn": 302352,
+ "fn_rate": 0.9947065577491849,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999933,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005293442250815072,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1609,
+ "tp_rate": 0.005293442250815072,
+ "truth_threshold": 47.1
+ },
+ {
+ "f1": 0.010485597031044435,
+ "fn": 302359,
+ "fn_rate": 0.9947295870193874,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999934,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005270412980612644,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1602,
+ "tp_rate": 0.005270412980612644,
+ "truth_threshold": 47.12
+ },
+ {
+ "f1": 0.010459552687214865,
+ "fn": 302363,
+ "fn_rate": 0.9947427466023602,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999936,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005257253397639829,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1598,
+ "tp_rate": 0.005257253397639829,
+ "truth_threshold": 47.14
+ },
+ {
+ "f1": 0.010381415564268555,
+ "fn": 302375,
+ "fn_rate": 0.9947822253512786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005217774648721382,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1586,
+ "tp_rate": 0.005217774648721382,
+ "truth_threshold": 47.160000000000004
+ },
+ {
+ "f1": 0.010335798913399228,
+ "fn": 302382,
+ "fn_rate": 0.9948052546214811,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005194745378518955,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1579,
+ "tp_rate": 0.005194745378518955,
+ "truth_threshold": 47.18
+ },
+ {
+ "f1": 0.010296726387243318,
+ "fn": 302388,
+ "fn_rate": 0.9948249939959403,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005175006004059731,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1573,
+ "tp_rate": 0.005175006004059731,
+ "truth_threshold": 47.2
+ },
+ {
+ "f1": 0.010244627298495054,
+ "fn": 302396,
+ "fn_rate": 0.9948513131618859,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0051486868381141,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1565,
+ "tp_rate": 0.0051486868381141,
+ "truth_threshold": 47.22
+ },
+ {
+ "f1": 0.010238148230580904,
+ "fn": 302397,
+ "fn_rate": 0.9948546030576291,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005145396942370897,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1564,
+ "tp_rate": 0.005145396942370897,
+ "truth_threshold": 47.24
+ },
+ {
+ "f1": 0.01022512290440623,
+ "fn": 302399,
+ "fn_rate": 0.9948611828491155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999941,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0051388171508844884,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1562,
+ "tp_rate": 0.0051388171508844884,
+ "truth_threshold": 47.26
+ },
+ {
+ "f1": 0.010199071740453917,
+ "fn": 302403,
+ "fn_rate": 0.9948743424320883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999941,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005125657567911673,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1558,
+ "tp_rate": 0.005125657567911673,
+ "truth_threshold": 47.28
+ },
+ {
+ "f1": 0.010133940846066223,
+ "fn": 302413,
+ "fn_rate": 0.9949072413895204,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999942,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005092758610479634,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1548,
+ "tp_rate": 0.005092758610479634,
+ "truth_threshold": 47.300000000000004
+ },
+ {
+ "f1": 0.010101340735309522,
+ "fn": 302418,
+ "fn_rate": 0.9949236908682364,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005076309131763614,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1543,
+ "tp_rate": 0.005076309131763614,
+ "truth_threshold": 47.32
+ },
+ {
+ "f1": 0.010081833060556464,
+ "fn": 302421,
+ "fn_rate": 0.994933560555466,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005066439444534002,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1540,
+ "tp_rate": 0.005066439444534002,
+ "truth_threshold": 47.34
+ },
+ {
+ "f1": 0.00998409092397033,
+ "fn": 302436,
+ "fn_rate": 0.994982908991614,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005017091008385944,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1525,
+ "tp_rate": 0.005017091008385944,
+ "truth_threshold": 47.36
+ },
+ {
+ "f1": 0.009958033533890704,
+ "fn": 302440,
+ "fn_rate": 0.9949960685745869,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.005003931425413129,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1521,
+ "tp_rate": 0.005003931425413129,
+ "truth_threshold": 47.38
+ },
+ {
+ "f1": 0.00993852257773064,
+ "fn": 302443,
+ "fn_rate": 0.9950059382618165,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004994061738183517,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1518,
+ "tp_rate": 0.004994061738183517,
+ "truth_threshold": 47.4
+ },
+ {
+ "f1": 0.009879857269126265,
+ "fn": 302452,
+ "fn_rate": 0.9950355473235053,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004964452676494682,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1509,
+ "tp_rate": 0.004964452676494682,
+ "truth_threshold": 47.42
+ },
+ {
+ "f1": 0.009690937663698272,
+ "fn": 302481,
+ "fn_rate": 0.9951309543000583,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999948,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004869045699941769,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1480,
+ "tp_rate": 0.004869045699941769,
+ "truth_threshold": 47.44
+ },
+ {
+ "f1": 0.009625773499656222,
+ "fn": 302491,
+ "fn_rate": 0.9951638532574902,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999948,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00483614674250973,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1470,
+ "tp_rate": 0.00483614674250973,
+ "truth_threshold": 47.46
+ },
+ {
+ "f1": 0.009619225354418361,
+ "fn": 302492,
+ "fn_rate": 0.9951671431532335,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999949,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004832856846766526,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1469,
+ "tp_rate": 0.004832856846766526,
+ "truth_threshold": 47.480000000000004
+ },
+ {
+ "f1": 0.009534536501034654,
+ "fn": 302505,
+ "fn_rate": 0.9952099117978951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004790088202104875,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1456,
+ "tp_rate": 0.004790088202104875,
+ "truth_threshold": 47.5
+ },
+ {
+ "f1": 0.00951495347299076,
+ "fn": 302508,
+ "fn_rate": 0.9952197814851247,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004780218514875263,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1453,
+ "tp_rate": 0.004780218514875263,
+ "truth_threshold": 47.52
+ },
+ {
+ "f1": 0.009397634546621436,
+ "fn": 302526,
+ "fn_rate": 0.9952789996085024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999951,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004721000391497593,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1435,
+ "tp_rate": 0.004721000391497593,
+ "truth_threshold": 47.54
+ },
+ {
+ "f1": 0.009260775311585139,
+ "fn": 302547,
+ "fn_rate": 0.9953480874191097,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004651912580890312,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1414,
+ "tp_rate": 0.004651912580890312,
+ "truth_threshold": 47.56
+ },
+ {
+ "f1": 0.009162955200419178,
+ "fn": 302562,
+ "fn_rate": 0.9953974358552578,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004602564144742253,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1399,
+ "tp_rate": 0.004602564144742253,
+ "truth_threshold": 47.58
+ },
+ {
+ "f1": 0.009149915836493558,
+ "fn": 302564,
+ "fn_rate": 0.9954040156467442,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999953,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004595984353255846,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1397,
+ "tp_rate": 0.004595984353255846,
+ "truth_threshold": 47.6
+ },
+ {
+ "f1": 0.00904559477569414,
+ "fn": 302580,
+ "fn_rate": 0.9954566539786354,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999953,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004543346021364583,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1381,
+ "tp_rate": 0.004543346021364583,
+ "truth_threshold": 47.62
+ },
+ {
+ "f1": 0.008999980349387883,
+ "fn": 302587,
+ "fn_rate": 0.9954796832488378,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999954,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004520316751162156,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1374,
+ "tp_rate": 0.004520316751162156,
+ "truth_threshold": 47.64
+ },
+ {
+ "f1": 0.008973897094946452,
+ "fn": 302591,
+ "fn_rate": 0.9954928428318106,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999954,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00450715716818934,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1370,
+ "tp_rate": 0.00450715716818934,
+ "truth_threshold": 47.660000000000004
+ },
+ {
+ "f1": 0.008954304878687838,
+ "fn": 302594,
+ "fn_rate": 0.9955027125190403,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004497287480959729,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1367,
+ "tp_rate": 0.004497287480959729,
+ "truth_threshold": 47.68
+ },
+ {
+ "f1": 0.00889564323099195,
+ "fn": 302603,
+ "fn_rate": 0.9955323215807291,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004467678419270893,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1358,
+ "tp_rate": 0.004467678419270893,
+ "truth_threshold": 47.7
+ },
+ {
+ "f1": 0.008797788433823337,
+ "fn": 302618,
+ "fn_rate": 0.9955816700168771,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004418329983122835,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1343,
+ "tp_rate": 0.004418329983122835,
+ "truth_threshold": 47.72
+ },
+ {
+ "f1": 0.008752161836381741,
+ "fn": 302625,
+ "fn_rate": 0.9956046992870796,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004395300712920407,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1336,
+ "tp_rate": 0.004395300712920407,
+ "truth_threshold": 47.74
+ },
+ {
+ "f1": 0.008549920397292852,
+ "fn": 302656,
+ "fn_rate": 0.9957066860551189,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0042933139448810866,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1305,
+ "tp_rate": 0.0042933139448810866,
+ "truth_threshold": 47.76
+ },
+ {
+ "f1": 0.00851732948961541,
+ "fn": 302661,
+ "fn_rate": 0.995723135533835,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999959,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0042768644661650675,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1300,
+ "tp_rate": 0.0042768644661650675,
+ "truth_threshold": 47.78
+ },
+ {
+ "f1": 0.008497729789227472,
+ "fn": 302664,
+ "fn_rate": 0.9957330052210646,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999959,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004266994778935456,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1297,
+ "tp_rate": 0.004266994778935456,
+ "truth_threshold": 47.800000000000004
+ },
+ {
+ "f1": 0.008465137001559367,
+ "fn": 302669,
+ "fn_rate": 0.9957494546997806,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004250545300219436,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1292,
+ "tp_rate": 0.004250545300219436,
+ "truth_threshold": 47.82
+ },
+ {
+ "f1": 0.008432487682146975,
+ "fn": 302674,
+ "fn_rate": 0.9957659041784965,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004234095821503417,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1287,
+ "tp_rate": 0.004234095821503417,
+ "truth_threshold": 47.84
+ },
+ {
+ "f1": 0.008399892544276345,
+ "fn": 302679,
+ "fn_rate": 0.9957823536572126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999961,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004217646342787397,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1282,
+ "tp_rate": 0.004217646342787397,
+ "truth_threshold": 47.86
+ },
+ {
+ "f1": 0.008354191510830963,
+ "fn": 302686,
+ "fn_rate": 0.995805382927415,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999961,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00419461707258497,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1275,
+ "tp_rate": 0.00419461707258497,
+ "truth_threshold": 47.88
+ },
+ {
+ "f1": 0.008334643811920114,
+ "fn": 302689,
+ "fn_rate": 0.9958152526146447,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004184747385355358,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1272,
+ "tp_rate": 0.004184747385355358,
+ "truth_threshold": 47.9
+ },
+ {
+ "f1": 0.008236735710213683,
+ "fn": 302704,
+ "fn_rate": 0.9958646010507927,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0041353989492073,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1257,
+ "tp_rate": 0.0041353989492073,
+ "truth_threshold": 47.92
+ },
+ {
+ "f1": 0.0081519246143563,
+ "fn": 302717,
+ "fn_rate": 0.9959073696954543,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004092630304545649,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1244,
+ "tp_rate": 0.004092630304545649,
+ "truth_threshold": 47.94
+ },
+ {
+ "f1": 0.008086659632889244,
+ "fn": 302727,
+ "fn_rate": 0.9959402686528864,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00405973134711361,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1234,
+ "tp_rate": 0.00405973134711361,
+ "truth_threshold": 47.96
+ },
+ {
+ "f1": 0.008027891187669159,
+ "fn": 302736,
+ "fn_rate": 0.9959698777145752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004030122285424775,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1225,
+ "tp_rate": 0.004030122285424775,
+ "truth_threshold": 47.980000000000004
+ },
+ {
+ "f1": 0.008001782542876054,
+ "fn": 302740,
+ "fn_rate": 0.995983037297548,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.004016962702451959,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1221,
+ "tp_rate": 0.004016962702451959,
+ "truth_threshold": 48
+ },
+ {
+ "f1": 0.007956116838262762,
+ "fn": 302747,
+ "fn_rate": 0.9960060665677505,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003993933432249532,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1214,
+ "tp_rate": 0.003993933432249532,
+ "truth_threshold": 48.02
+ },
+ {
+ "f1": 0.007832059667842022,
+ "fn": 302766,
+ "fn_rate": 0.9960685745868714,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003931425413128658,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1195,
+ "tp_rate": 0.003931425413128658,
+ "truth_threshold": 48.04
+ },
+ {
+ "f1": 0.007792888743241029,
+ "fn": 302772,
+ "fn_rate": 0.9960883139613306,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003911686038669435,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1189,
+ "tp_rate": 0.003911686038669435,
+ "truth_threshold": 48.06
+ },
+ {
+ "f1": 0.0077798314260621075,
+ "fn": 302774,
+ "fn_rate": 0.996094893752817,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999967,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003905106247183027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1187,
+ "tp_rate": 0.003905106247183027,
+ "truth_threshold": 48.08
+ },
+ {
+ "f1": 0.007708038382885009,
+ "fn": 302785,
+ "fn_rate": 0.9961310826059923,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999967,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003868917394007784,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1176,
+ "tp_rate": 0.003868917394007784,
+ "truth_threshold": 48.1
+ },
+ {
+ "f1": 0.0076492488398311525,
+ "fn": 302794,
+ "fn_rate": 0.9961606916676811,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003839308332318949,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1167,
+ "tp_rate": 0.003839308332318949,
+ "truth_threshold": 48.120000000000005
+ },
+ {
+ "f1": 0.007597011012060829,
+ "fn": 302802,
+ "fn_rate": 0.9961870108336267,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0038129891663733176,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1159,
+ "tp_rate": 0.0038129891663733176,
+ "truth_threshold": 48.14
+ },
+ {
+ "f1": 0.007479465883540586,
+ "fn": 302820,
+ "fn_rate": 0.9962462289570043,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0037537710429956473,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1141,
+ "tp_rate": 0.0037537710429956473,
+ "truth_threshold": 48.18
+ },
+ {
+ "f1": 0.007388032305433187,
+ "fn": 302834,
+ "fn_rate": 0.9962922874974092,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003707712502590793,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1127,
+ "tp_rate": 0.003707712502590793,
+ "truth_threshold": 48.2
+ },
+ {
+ "f1": 0.007374969680680202,
+ "fn": 302836,
+ "fn_rate": 0.9962988672888956,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0037011327111043852,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1125,
+ "tp_rate": 0.0037011327111043852,
+ "truth_threshold": 48.24
+ },
+ {
+ "f1": 0.007348843917373034,
+ "fn": 302840,
+ "fn_rate": 0.9963120268718685,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0036879731281315694,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1121,
+ "tp_rate": 0.0036879731281315694,
+ "truth_threshold": 48.26
+ },
+ {
+ "f1": 0.007342336436344565,
+ "fn": 302841,
+ "fn_rate": 0.9963153167676116,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999971,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0036846832323883657,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1120,
+ "tp_rate": 0.0036846832323883657,
+ "truth_threshold": 48.28
+ },
+ {
+ "f1": 0.007316209731345632,
+ "fn": 302845,
+ "fn_rate": 0.9963284763505844,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999971,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00367152364941555,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1116,
+ "tp_rate": 0.00367152364941555,
+ "truth_threshold": 48.300000000000004
+ },
+ {
+ "f1": 0.0072770183892221455,
+ "fn": 302851,
+ "fn_rate": 0.9963482157250437,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999971,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0036517842749563267,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1110,
+ "tp_rate": 0.0036517842749563267,
+ "truth_threshold": 48.32
+ },
+ {
+ "f1": 0.007237825505467705,
+ "fn": 302857,
+ "fn_rate": 0.9963679550995029,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003632044900497103,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1104,
+ "tp_rate": 0.003632044900497103,
+ "truth_threshold": 48.34
+ },
+ {
+ "f1": 0.0072116960597915164,
+ "fn": 302861,
+ "fn_rate": 0.9963811146824757,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0036188853175242877,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1100,
+ "tp_rate": 0.0036188853175242877,
+ "truth_threshold": 48.36
+ },
+ {
+ "f1": 0.007126747266004038,
+ "fn": 302874,
+ "fn_rate": 0.9964238833271374,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003576116672862637,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1087,
+ "tp_rate": 0.003576116672862637,
+ "truth_threshold": 48.38
+ },
+ {
+ "f1": 0.007087548599864936,
+ "fn": 302880,
+ "fn_rate": 0.9964436227015966,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0035563772984034134,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1081,
+ "tp_rate": 0.0035563772984034134,
+ "truth_threshold": 48.4
+ },
+ {
+ "f1": 0.007022214062786855,
+ "fn": 302890,
+ "fn_rate": 0.9964765216590287,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0035234783409713744,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1071,
+ "tp_rate": 0.0035234783409713744,
+ "truth_threshold": 48.44
+ },
+ {
+ "f1": 0.006963432145878002,
+ "fn": 302899,
+ "fn_rate": 0.9965061307207175,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999974,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0034938692792825395,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1062,
+ "tp_rate": 0.0034938692792825395,
+ "truth_threshold": 48.46
+ },
+ {
+ "f1": 0.006917669892726939,
+ "fn": 302906,
+ "fn_rate": 0.9965291599909198,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999974,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0034708400090801123,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1055,
+ "tp_rate": 0.0034708400090801123,
+ "truth_threshold": 48.480000000000004
+ },
+ {
+ "f1": 0.006885020163273335,
+ "fn": 302911,
+ "fn_rate": 0.9965456094696359,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999974,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003454390530364093,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1050,
+ "tp_rate": 0.003454390530364093,
+ "truth_threshold": 48.5
+ },
+ {
+ "f1": 0.0068719508996485336,
+ "fn": 302913,
+ "fn_rate": 0.9965521892611223,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003447810738877685,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1048,
+ "tp_rate": 0.003447810738877685,
+ "truth_threshold": 48.52
+ },
+ {
+ "f1": 0.006832742080379801,
+ "fn": 302919,
+ "fn_rate": 0.9965719286355815,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0034280713644184615,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1042,
+ "tp_rate": 0.0034280713644184615,
+ "truth_threshold": 48.54
+ },
+ {
+ "f1": 0.006819672131147541,
+ "fn": 302921,
+ "fn_rate": 0.996578508427068,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003421491572932054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1040,
+ "tp_rate": 0.003421491572932054,
+ "truth_threshold": 48.56
+ },
+ {
+ "f1": 0.0067804612549755075,
+ "fn": 302927,
+ "fn_rate": 0.9965982478015272,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0034017521984728303,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1034,
+ "tp_rate": 0.0034017521984728303,
+ "truth_threshold": 48.6
+ },
+ {
+ "f1": 0.006721620008787289,
+ "fn": 302936,
+ "fn_rate": 0.996627856863216,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0033721431367839953,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1025,
+ "tp_rate": 0.0033721431367839953,
+ "truth_threshold": 48.620000000000005
+ },
+ {
+ "f1": 0.006695477110124532,
+ "fn": 302940,
+ "fn_rate": 0.9966410164461889,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00335898355381118,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1021,
+ "tp_rate": 0.00335898355381118,
+ "truth_threshold": 48.64
+ },
+ {
+ "f1": 0.006682405403633025,
+ "fn": 302942,
+ "fn_rate": 0.9966475962376752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999978,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0033524037623247718,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1019,
+ "tp_rate": 0.0033524037623247718,
+ "truth_threshold": 48.68
+ },
+ {
+ "f1": 0.00665626147631289,
+ "fn": 302946,
+ "fn_rate": 0.9966607558206481,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999978,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0033392441793519564,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1015,
+ "tp_rate": 0.0033392441793519564,
+ "truth_threshold": 48.7
+ },
+ {
+ "f1": 0.0066236023215398235,
+ "fn": 302951,
+ "fn_rate": 0.9966772052993641,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003322794700635937,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1010,
+ "tp_rate": 0.003322794700635937,
+ "truth_threshold": 48.72
+ },
+ {
+ "f1": 0.006577825579412652,
+ "fn": 302958,
+ "fn_rate": 0.9967002345695665,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0032997654304335097,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1003,
+ "tp_rate": 0.0032997654304335097,
+ "truth_threshold": 48.74
+ },
+ {
+ "f1": 0.006558237145855194,
+ "fn": 302961,
+ "fn_rate": 0.9967101042567961,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003289895743203898,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1000,
+ "tp_rate": 0.003289895743203898,
+ "truth_threshold": 48.76
+ },
+ {
+ "f1": 0.0064993835095359265,
+ "fn": 302970,
+ "fn_rate": 0.996739713318485,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003260286681515063,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 991,
+ "tp_rate": 0.003260286681515063,
+ "truth_threshold": 48.78
+ },
+ {
+ "f1": 0.006479793276230702,
+ "fn": 302973,
+ "fn_rate": 0.9967495830057146,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003250416994285451,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 988,
+ "tp_rate": 0.003250416994285451,
+ "truth_threshold": 48.800000000000004
+ },
+ {
+ "f1": 0.006473234781011845,
+ "fn": 302974,
+ "fn_rate": 0.9967528729014578,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003247127098542247,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 987,
+ "tp_rate": 0.003247127098542247,
+ "truth_threshold": 48.82
+ },
+ {
+ "f1": 0.006257502115350558,
+ "fn": 303007,
+ "fn_rate": 0.9968614394609835,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0031385605390165184,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 954,
+ "tp_rate": 0.0031385605390165184,
+ "truth_threshold": 48.84
+ },
+ {
+ "f1": 0.006133238874895046,
+ "fn": 303026,
+ "fn_rate": 0.9969239474801044,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030760525198956445,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 935,
+ "tp_rate": 0.0030760525198956445,
+ "truth_threshold": 48.86
+ },
+ {
+ "f1": 0.006113640239822625,
+ "fn": 303029,
+ "fn_rate": 0.996933817167334,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030661828326660327,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 932,
+ "tp_rate": 0.0030661828326660327,
+ "truth_threshold": 48.88
+ },
+ {
+ "f1": 0.00610708053999449,
+ "fn": 303030,
+ "fn_rate": 0.9969371070630771,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003062892936922829,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 931,
+ "tp_rate": 0.003062892936922829,
+ "truth_threshold": 48.92
+ },
+ {
+ "f1": 0.006087481304610218,
+ "fn": 303033,
+ "fn_rate": 0.9969469767503067,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030530232496932173,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 928,
+ "tp_rate": 0.0030530232496932173,
+ "truth_threshold": 48.94
+ },
+ {
+ "f1": 0.006067841750687142,
+ "fn": 303036,
+ "fn_rate": 0.9969568464375363,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030431535624636055,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 925,
+ "tp_rate": 0.0030431535624636055,
+ "truth_threshold": 48.96
+ },
+ {
+ "f1": 0.006061321683000748,
+ "fn": 303037,
+ "fn_rate": 0.9969601363332796,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.003039863666720402,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 924,
+ "tp_rate": 0.003039863666720402,
+ "truth_threshold": 48.980000000000004
+ },
+ {
+ "f1": 0.006022080963532954,
+ "fn": 303043,
+ "fn_rate": 0.9969798757077388,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030201242922611783,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 918,
+ "tp_rate": 0.0030201242922611783,
+ "truth_threshold": 49
+ },
+ {
+ "f1": 0.0060090003804825565,
+ "fn": 303045,
+ "fn_rate": 0.9969864554992253,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0030135445007747706,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 916,
+ "tp_rate": 0.0030135445007747706,
+ "truth_threshold": 49.02
+ },
+ {
+ "f1": 0.0059305132780518525,
+ "fn": 303057,
+ "fn_rate": 0.9970259342481437,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002974065751856324,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 904,
+ "tp_rate": 0.002974065751856324,
+ "truth_threshold": 49.04
+ },
+ {
+ "f1": 0.005891267409744865,
+ "fn": 303063,
+ "fn_rate": 0.9970456736226029,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0029543263773971003,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 898,
+ "tp_rate": 0.0029543263773971003,
+ "truth_threshold": 49.06
+ },
+ {
+ "f1": 0.005845459436054216,
+ "fn": 303070,
+ "fn_rate": 0.9970687028928054,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002931297107194673,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 891,
+ "tp_rate": 0.002931297107194673,
+ "truth_threshold": 49.08
+ },
+ {
+ "f1": 0.005838937182220764,
+ "fn": 303071,
+ "fn_rate": 0.9970719927885485,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002928007211451469,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 890,
+ "tp_rate": 0.002928007211451469,
+ "truth_threshold": 49.1
+ },
+ {
+ "f1": 0.005773520535362813,
+ "fn": 303081,
+ "fn_rate": 0.9971048917459806,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00289510825401943,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 880,
+ "tp_rate": 0.00289510825401943,
+ "truth_threshold": 49.120000000000005
+ },
+ {
+ "f1": 0.005740791770000918,
+ "fn": 303086,
+ "fn_rate": 0.9971213412246966,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0028786587753034105,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 875,
+ "tp_rate": 0.0028786587753034105,
+ "truth_threshold": 49.14
+ },
+ {
+ "f1": 0.005708099596496408,
+ "fn": 303091,
+ "fn_rate": 0.9971377907034126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002862209296587391,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 870,
+ "tp_rate": 0.002862209296587391,
+ "truth_threshold": 49.160000000000004
+ },
+ {
+ "f1": 0.005642674365199134,
+ "fn": 303101,
+ "fn_rate": 0.9971706896608447,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002829310339155352,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 860,
+ "tp_rate": 0.002829310339155352,
+ "truth_threshold": 49.18
+ },
+ {
+ "f1": 0.005623027511498665,
+ "fn": 303104,
+ "fn_rate": 0.9971805593480743,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0028194406519257403,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 857,
+ "tp_rate": 0.0028194406519257403,
+ "truth_threshold": 49.2
+ },
+ {
+ "f1": 0.005518336493855028,
+ "fn": 303120,
+ "fn_rate": 0.9972331976799655,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002766802320034478,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 841,
+ "tp_rate": 0.002766802320034478,
+ "truth_threshold": 49.24
+ },
+ {
+ "f1": 0.00547907452853712,
+ "fn": 303126,
+ "fn_rate": 0.9972529370544247,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0027470629455752546,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 835,
+ "tp_rate": 0.0027470629455752546,
+ "truth_threshold": 49.26
+ },
+ {
+ "f1": 0.00540054596041787,
+ "fn": 303138,
+ "fn_rate": 0.9972924158033432,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002707584196656808,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 823,
+ "tp_rate": 0.002707584196656808,
+ "truth_threshold": 49.28
+ },
+ {
+ "f1": 0.00538745726453662,
+ "fn": 303140,
+ "fn_rate": 0.9972989955948296,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0027010044051704,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 821,
+ "tp_rate": 0.0027010044051704,
+ "truth_threshold": 49.300000000000004
+ },
+ {
+ "f1": 0.005374368396876435,
+ "fn": 303142,
+ "fn_rate": 0.997305575386316,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0026944246136839925,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 819,
+ "tp_rate": 0.0026944246136839925,
+ "truth_threshold": 49.32
+ },
+ {
+ "f1": 0.005322011208378723,
+ "fn": 303150,
+ "fn_rate": 0.9973318945522617,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002668105447738361,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 811,
+ "tp_rate": 0.002668105447738361,
+ "truth_threshold": 49.34
+ },
+ {
+ "f1": 0.005276213726030633,
+ "fn": 303157,
+ "fn_rate": 0.997354923822464,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002645076177535934,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 804,
+ "tp_rate": 0.002645076177535934,
+ "truth_threshold": 49.36
+ },
+ {
+ "f1": 0.005236942098320635,
+ "fn": 303163,
+ "fn_rate": 0.9973746631969233,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0026253368030767104,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 798,
+ "tp_rate": 0.0026253368030767104,
+ "truth_threshold": 49.38
+ },
+ {
+ "f1": 0.005191106210951856,
+ "fn": 303170,
+ "fn_rate": 0.9973976924671257,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002602307532874283,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 791,
+ "tp_rate": 0.002602307532874283,
+ "truth_threshold": 49.4
+ },
+ {
+ "f1": 0.005132210197478523,
+ "fn": 303179,
+ "fn_rate": 0.9974273015288145,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0025726984711854483,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 782,
+ "tp_rate": 0.0025726984711854483,
+ "truth_threshold": 49.42
+ },
+ {
+ "f1": 0.005106025503875461,
+ "fn": 303183,
+ "fn_rate": 0.9974404611117874,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0025595388882126324,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 778,
+ "tp_rate": 0.0025595388882126324,
+ "truth_threshold": 49.44
+ },
+ {
+ "f1": 0.005040560762384815,
+ "fn": 303193,
+ "fn_rate": 0.9974733600692194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0025266399307805935,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 768,
+ "tp_rate": 0.0025266399307805935,
+ "truth_threshold": 49.46
+ },
+ {
+ "f1": 0.005027467298491103,
+ "fn": 303195,
+ "fn_rate": 0.9974799398607058,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0025200601392941857,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 766,
+ "tp_rate": 0.0025200601392941857,
+ "truth_threshold": 49.480000000000004
+ },
+ {
+ "f1": 0.005014373662724302,
+ "fn": 303197,
+ "fn_rate": 0.9974865196521923,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002513480347807778,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 764,
+ "tp_rate": 0.002513480347807778,
+ "truth_threshold": 49.5
+ },
+ {
+ "f1": 0.004935808238599071,
+ "fn": 303209,
+ "fn_rate": 0.9975259984011107,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024740015988893313,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 752,
+ "tp_rate": 0.0024740015988893313,
+ "truth_threshold": 49.52
+ },
+ {
+ "f1": 0.00490961838875251,
+ "fn": 303213,
+ "fn_rate": 0.9975391579840834,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024608420159165155,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 748,
+ "tp_rate": 0.0024608420159165155,
+ "truth_threshold": 49.54
+ },
+ {
+ "f1": 0.0048899595019461384,
+ "fn": 303216,
+ "fn_rate": 0.9975490276713131,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024509723286869037,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 745,
+ "tp_rate": 0.0024509723286869037,
+ "truth_threshold": 49.58
+ },
+ {
+ "f1": 0.0048834278512917455,
+ "fn": 303217,
+ "fn_rate": 0.9975523175670563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024476824329437,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 744,
+ "tp_rate": 0.0024476824329437,
+ "truth_threshold": 49.6
+ },
+ {
+ "f1": 0.004876864104179794,
+ "fn": 303218,
+ "fn_rate": 0.9975556074627995,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002444392537200496,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 743,
+ "tp_rate": 0.002444392537200496,
+ "truth_threshold": 49.620000000000005
+ },
+ {
+ "f1": 0.004863768534502563,
+ "fn": 303220,
+ "fn_rate": 0.9975621872542859,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024378127457140883,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 741,
+ "tp_rate": 0.0024378127457140883,
+ "truth_threshold": 49.64
+ },
+ {
+ "f1": 0.004831044713419277,
+ "fn": 303225,
+ "fn_rate": 0.997578636733002,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024213632669980688,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 736,
+ "tp_rate": 0.0024213632669980688,
+ "truth_threshold": 49.660000000000004
+ },
+ {
+ "f1": 0.004804852112953409,
+ "fn": 303229,
+ "fn_rate": 0.9975917963159747,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0024082036840252534,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 732,
+ "tp_rate": 0.0024082036840252534,
+ "truth_threshold": 49.68
+ },
+ {
+ "f1": 0.004778658824765005,
+ "fn": 303233,
+ "fn_rate": 0.9976049558989476,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0023950441010524375,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 728,
+ "tp_rate": 0.0023950441010524375,
+ "truth_threshold": 49.7
+ },
+ {
+ "f1": 0.0047000748335937195,
+ "fn": 303245,
+ "fn_rate": 0.997644434647866,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999989,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002355565352133991,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 716,
+ "tp_rate": 0.002355565352133991,
+ "truth_threshold": 49.74
+ },
+ {
+ "f1": 0.004693510483267471,
+ "fn": 303246,
+ "fn_rate": 0.9976477245436092,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002352275456390787,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 715,
+ "tp_rate": 0.002352275456390787,
+ "truth_threshold": 49.76
+ },
+ {
+ "f1": 0.004667314357735532,
+ "fn": 303250,
+ "fn_rate": 0.997660884126582,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0023391158734179713,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 711,
+ "tp_rate": 0.0023391158734179713,
+ "truth_threshold": 49.78
+ },
+ {
+ "f1": 0.004654216037023665,
+ "fn": 303252,
+ "fn_rate": 0.9976674639180685,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0023325360819315636,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 709,
+ "tp_rate": 0.0023325360819315636,
+ "truth_threshold": 49.800000000000004
+ },
+ {
+ "f1": 0.0046345834454779985,
+ "fn": 303255,
+ "fn_rate": 0.9976773336052981,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002322666394701952,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 706,
+ "tp_rate": 0.002322666394701952,
+ "truth_threshold": 49.82
+ },
+ {
+ "f1": 0.004628018879691203,
+ "fn": 303256,
+ "fn_rate": 0.9976806235010413,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002319376498958748,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 705,
+ "tp_rate": 0.002319376498958748,
+ "truth_threshold": 49.84
+ },
+ {
+ "f1": 0.004549423280180139,
+ "fn": 303268,
+ "fn_rate": 0.9977201022499597,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002279897750040301,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 693,
+ "tp_rate": 0.002279897750040301,
+ "truth_threshold": 49.86
+ },
+ {
+ "f1": 0.004542888279085645,
+ "fn": 303269,
+ "fn_rate": 0.9977233921457029,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0022766078542970974,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 692,
+ "tp_rate": 0.0022766078542970974,
+ "truth_threshold": 49.88
+ },
+ {
+ "f1": 0.004523223371081569,
+ "fn": 303272,
+ "fn_rate": 0.9977332618329325,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0022667381670674856,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 689,
+ "tp_rate": 0.0022667381670674856,
+ "truth_threshold": 49.9
+ },
+ {
+ "f1": 0.004516688112181928,
+ "fn": 303273,
+ "fn_rate": 0.9977365517286757,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0022634482713242816,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 688,
+ "tp_rate": 0.0022634482713242816,
+ "truth_threshold": 49.92
+ },
+ {
+ "f1": 0.004497022773973727,
+ "fn": 303276,
+ "fn_rate": 0.9977464214159053,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00225357858409467,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 685,
+ "tp_rate": 0.00225357858409467,
+ "truth_threshold": 49.94
+ },
+ {
+ "f1": 0.00444461951562182,
+ "fn": 303284,
+ "fn_rate": 0.997772740581851,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002227259418149039,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 677,
+ "tp_rate": 0.002227259418149039,
+ "truth_threshold": 49.96
+ },
+ {
+ "f1": 0.004411880564090444,
+ "fn": 303289,
+ "fn_rate": 0.997789190060567,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0022108099394330194,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 672,
+ "tp_rate": 0.0022108099394330194,
+ "truth_threshold": 49.980000000000004
+ },
+ {
+ "f1": 0.004346370255595459,
+ "fn": 303299,
+ "fn_rate": 0.9978220890179991,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0021779109820009804,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 662,
+ "tp_rate": 0.0021779109820009804,
+ "truth_threshold": 50
+ },
+ {
+ "f1": 0.004300496362633611,
+ "fn": 303306,
+ "fn_rate": 0.9978451182882014,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0021548817117985532,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 655,
+ "tp_rate": 0.0021548817117985532,
+ "truth_threshold": 50.02
+ },
+ {
+ "f1": 0.004248082781804811,
+ "fn": 303314,
+ "fn_rate": 0.9978714374541471,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002128562545852922,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 647,
+ "tp_rate": 0.002128562545852922,
+ "truth_threshold": 50.06
+ },
+ {
+ "f1": 0.004241544815269561,
+ "fn": 303315,
+ "fn_rate": 0.9978747273498902,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999991,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002125272650109718,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 646,
+ "tp_rate": 0.002125272650109718,
+ "truth_threshold": 50.08
+ },
+ {
+ "f1": 0.0042218749589631125,
+ "fn": 303318,
+ "fn_rate": 0.9978845970371198,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0021154029628801065,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 643,
+ "tp_rate": 0.0021154029628801065,
+ "truth_threshold": 50.120000000000005
+ },
+ {
+ "f1": 0.004202232435981616,
+ "fn": 303321,
+ "fn_rate": 0.9978944667243496,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0021055332756504948,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 640,
+ "tp_rate": 0.0021055332756504948,
+ "truth_threshold": 50.14
+ },
+ {
+ "f1": 0.004195666447800394,
+ "fn": 303322,
+ "fn_rate": 0.9978977566200927,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0021022433799072907,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 639,
+ "tp_rate": 0.0021022433799072907,
+ "truth_threshold": 50.18
+ },
+ {
+ "f1": 0.004143247360403425,
+ "fn": 303330,
+ "fn_rate": 0.9979240757860384,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0020759242139616594,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 631,
+ "tp_rate": 0.0020759242139616594,
+ "truth_threshold": 50.2
+ },
+ {
+ "f1": 0.0041170367841149354,
+ "fn": 303334,
+ "fn_rate": 0.9979372353690111,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.002062764630988844,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 627,
+ "tp_rate": 0.002062764630988844,
+ "truth_threshold": 50.22
+ },
+ {
+ "f1": 0.004018754186202277,
+ "fn": 303349,
+ "fn_rate": 0.9979865838051593,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0020134161948407855,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 612,
+ "tp_rate": 0.0020134161948407855,
+ "truth_threshold": 50.24
+ },
+ {
+ "f1": 0.003972866308123691,
+ "fn": 303356,
+ "fn_rate": 0.9980096130753616,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0019903869246383583,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 605,
+ "tp_rate": 0.0019903869246383583,
+ "truth_threshold": 50.26
+ },
+ {
+ "f1": 0.003946651256558599,
+ "fn": 303360,
+ "fn_rate": 0.9980227726583345,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0019772273416655425,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 601,
+ "tp_rate": 0.0019772273416655425,
+ "truth_threshold": 50.300000000000004
+ },
+ {
+ "f1": 0.003927002410049974,
+ "fn": 303363,
+ "fn_rate": 0.9980326423455641,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001967357654435931,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 598,
+ "tp_rate": 0.001967357654435931,
+ "truth_threshold": 50.32
+ },
+ {
+ "f1": 0.0039007860674954197,
+ "fn": 303367,
+ "fn_rate": 0.9980458019285369,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0019541980714631152,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 594,
+ "tp_rate": 0.0019541980714631152,
+ "truth_threshold": 50.34
+ },
+ {
+ "f1": 0.003887677637973154,
+ "fn": 303369,
+ "fn_rate": 0.9980523817200233,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0019476182799767075,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 592,
+ "tp_rate": 0.0019476182799767075,
+ "truth_threshold": 50.36
+ },
+ {
+ "f1": 0.003868001970119849,
+ "fn": 303372,
+ "fn_rate": 0.9980622514072529,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0019377485927470958,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 589,
+ "tp_rate": 0.0019377485927470958,
+ "truth_threshold": 50.38
+ },
+ {
+ "f1": 0.003789346485496063,
+ "fn": 303384,
+ "fn_rate": 0.9981017301561713,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001898269843828649,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 577,
+ "tp_rate": 0.001898269843828649,
+ "truth_threshold": 50.4
+ },
+ {
+ "f1": 0.003776236635405995,
+ "fn": 303386,
+ "fn_rate": 0.9981083099476578,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0018916900523422413,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 575,
+ "tp_rate": 0.0018916900523422413,
+ "truth_threshold": 50.42
+ },
+ {
+ "f1": 0.0037696940243125564,
+ "fn": 303387,
+ "fn_rate": 0.9981115998434009,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0018884001565990373,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 574,
+ "tp_rate": 0.0018884001565990373,
+ "truth_threshold": 50.46
+ },
+ {
+ "f1": 0.0036844628631100542,
+ "fn": 303400,
+ "fn_rate": 0.9981543684880626,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0018456315119373867,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 561,
+ "tp_rate": 0.0018456315119373867,
+ "truth_threshold": 50.480000000000004
+ },
+ {
+ "f1": 0.0036779193484828584,
+ "fn": 303401,
+ "fn_rate": 0.9981576583838058,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0018423416161941829,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 560,
+ "tp_rate": 0.0018423416161941829,
+ "truth_threshold": 50.5
+ },
+ {
+ "f1": 0.0035664556130625543,
+ "fn": 303418,
+ "fn_rate": 0.9982135866114403,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0017864133885597165,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 543,
+ "tp_rate": 0.0017864133885597165,
+ "truth_threshold": 50.52
+ },
+ {
+ "f1": 0.0035599109365455728,
+ "fn": 303419,
+ "fn_rate": 0.9982168765071835,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0017831234928165126,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 542,
+ "tp_rate": 0.0017831234928165126,
+ "truth_threshold": 50.54
+ },
+ {
+ "f1": 0.0035336849503116606,
+ "fn": 303423,
+ "fn_rate": 0.9982300360901563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001769963909843697,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 538,
+ "tp_rate": 0.001769963909843697,
+ "truth_threshold": 50.56
+ },
+ {
+ "f1": 0.0034418885721417217,
+ "fn": 303437,
+ "fn_rate": 0.9982760946305611,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0017239053694388426,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 524,
+ "tp_rate": 0.0017239053694388426,
+ "truth_threshold": 50.58
+ },
+ {
+ "f1": 0.0034287741147259938,
+ "fn": 303439,
+ "fn_rate": 0.9982826744220475,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0017173255779524346,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 522,
+ "tp_rate": 0.0017173255779524346,
+ "truth_threshold": 50.620000000000005
+ },
+ {
+ "f1": 0.003395976063952075,
+ "fn": 303444,
+ "fn_rate": 0.9982991239007636,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0017008760992364151,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 517,
+ "tp_rate": 0.0017008760992364151,
+ "truth_threshold": 50.64
+ },
+ {
+ "f1": 0.003389429708745517,
+ "fn": 303445,
+ "fn_rate": 0.9983024137965067,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016975862034932113,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 516,
+ "tp_rate": 0.0016975862034932113,
+ "truth_threshold": 50.660000000000004
+ },
+ {
+ "f1": 0.0033763145621629434,
+ "fn": 303447,
+ "fn_rate": 0.9983089935879932,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016910064120068036,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 514,
+ "tp_rate": 0.0016910064120068036,
+ "truth_threshold": 50.68
+ },
+ {
+ "f1": 0.0033435149604230303,
+ "fn": 303452,
+ "fn_rate": 0.9983254430667092,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001674556933290784,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 509,
+ "tp_rate": 0.001674556933290784,
+ "truth_threshold": 50.7
+ },
+ {
+ "f1": 0.003336968088600444,
+ "fn": 303453,
+ "fn_rate": 0.9983287329624524,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016712670375475802,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 508,
+ "tp_rate": 0.0016712670375475802,
+ "truth_threshold": 50.72
+ },
+ {
+ "f1": 0.0033303992537803643,
+ "fn": 303454,
+ "fn_rate": 0.9983320228581957,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016679771418043761,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 507,
+ "tp_rate": 0.0016679771418043761,
+ "truth_threshold": 50.74
+ },
+ {
+ "f1": 0.0032779347040662156,
+ "fn": 303462,
+ "fn_rate": 0.9983583420241413,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001641657975858745,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 499,
+ "tp_rate": 0.001641657975858745,
+ "truth_threshold": 50.76
+ },
+ {
+ "f1": 0.003271387186409948,
+ "fn": 303463,
+ "fn_rate": 0.9983616319198845,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016383680801155412,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 498,
+ "tp_rate": 0.0016383680801155412,
+ "truth_threshold": 50.78
+ },
+ {
+ "f1": 0.003264818135834828,
+ "fn": 303464,
+ "fn_rate": 0.9983649218156276,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016350781843723372,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 497,
+ "tp_rate": 0.0016350781843723372,
+ "truth_threshold": 50.800000000000004
+ },
+ {
+ "f1": 0.0032451536192659646,
+ "fn": 303467,
+ "fn_rate": 0.9983747915028572,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0016252084971427256,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 494,
+ "tp_rate": 0.0016252084971427256,
+ "truth_threshold": 50.82
+ },
+ {
+ "f1": 0.0031205245108988423,
+ "fn": 303486,
+ "fn_rate": 0.9984372995219781,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0015627004780218515,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 475,
+ "tp_rate": 0.0015627004780218515,
+ "truth_threshold": 50.84
+ },
+ {
+ "f1": 0.003100856677353235,
+ "fn": 303489,
+ "fn_rate": 0.9984471692092077,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0015528307907922397,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 472,
+ "tp_rate": 0.0015528307907922397,
+ "truth_threshold": 50.86
+ },
+ {
+ "f1": 0.0030877377393817955,
+ "fn": 303491,
+ "fn_rate": 0.9984537490006942,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001546250999305832,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 470,
+ "tp_rate": 0.001546250999305832,
+ "truth_threshold": 50.88
+ },
+ {
+ "f1": 0.003074618629035437,
+ "fn": 303493,
+ "fn_rate": 0.9984603287921806,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0015396712078194243,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 468,
+ "tp_rate": 0.0015396712078194243,
+ "truth_threshold": 50.9
+ },
+ {
+ "f1": 0.002963089497128891,
+ "fn": 303510,
+ "fn_rate": 0.9985162570198151,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014837429801849579,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 451,
+ "tp_rate": 0.0014837429801849579,
+ "truth_threshold": 50.92
+ },
+ {
+ "f1": 0.002917175858398707,
+ "fn": 303517,
+ "fn_rate": 0.9985392862900174,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014607137099825307,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 444,
+ "tp_rate": 0.0014607137099825307,
+ "truth_threshold": 50.94
+ },
+ {
+ "f1": 0.0029106056425014125,
+ "fn": 303518,
+ "fn_rate": 0.9985425761857607,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014574238142393268,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 443,
+ "tp_rate": 0.0014574238142393268,
+ "truth_threshold": 50.96
+ },
+ {
+ "f1": 0.0028974842478038908,
+ "fn": 303520,
+ "fn_rate": 0.998549155977247,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014508440227529189,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 441,
+ "tp_rate": 0.0014508440227529189,
+ "truth_threshold": 50.980000000000004
+ },
+ {
+ "f1": 0.0028843626806833115,
+ "fn": 303522,
+ "fn_rate": 0.9985557357687335,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014442642312665112,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 439,
+ "tp_rate": 0.0014442642312665112,
+ "truth_threshold": 51
+ },
+ {
+ "f1": 0.0028778112865393336,
+ "fn": 303523,
+ "fn_rate": 0.9985590256644767,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014409743355233073,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 438,
+ "tp_rate": 0.0014409743355233073,
+ "truth_threshold": 51.02
+ },
+ {
+ "f1": 0.0028449969447492396,
+ "fn": 303528,
+ "fn_rate": 0.9985754751431927,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014245248568072878,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 433,
+ "tp_rate": 0.0014245248568072878,
+ "truth_threshold": 51.04
+ },
+ {
+ "f1": 0.0028318746879024415,
+ "fn": 303530,
+ "fn_rate": 0.9985820549346791,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0014179450653208799,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 431,
+ "tp_rate": 0.0014179450653208799,
+ "truth_threshold": 51.06
+ },
+ {
+ "f1": 0.0027859545836837678,
+ "fn": 303537,
+ "fn_rate": 0.9986050842048816,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013949157951184527,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 424,
+ "tp_rate": 0.0013949157951184527,
+ "truth_threshold": 51.08
+ },
+ {
+ "f1": 0.00277938393608074,
+ "fn": 303538,
+ "fn_rate": 0.9986083741006248,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013916258993752488,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 423,
+ "tp_rate": 0.0013916258993752488,
+ "truth_threshold": 51.1
+ },
+ {
+ "f1": 0.0027728315077764124,
+ "fn": 303539,
+ "fn_rate": 0.9986116639963679,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001388336003632045,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 422,
+ "tp_rate": 0.001388336003632045,
+ "truth_threshold": 51.14
+ },
+ {
+ "f1": 0.002766260816999691,
+ "fn": 303540,
+ "fn_rate": 0.9986149538921112,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013850461078888411,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 421,
+ "tp_rate": 0.0013850461078888411,
+ "truth_threshold": 51.2
+ },
+ {
+ "f1": 0.0027400140614630493,
+ "fn": 303544,
+ "fn_rate": 0.998628113475084,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013718865249160255,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 417,
+ "tp_rate": 0.0013718865249160255,
+ "truth_threshold": 51.22
+ },
+ {
+ "f1": 0.002726890425000657,
+ "fn": 303546,
+ "fn_rate": 0.9986346932665704,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013653067334296175,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 415,
+ "tp_rate": 0.0013653067334296175,
+ "truth_threshold": 51.26
+ },
+ {
+ "f1": 0.002707213541324432,
+ "fn": 303549,
+ "fn_rate": 0.9986445629538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001355437046200006,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 412,
+ "tp_rate": 0.001355437046200006,
+ "truth_threshold": 51.28
+ },
+ {
+ "f1": 0.0026940894306271973,
+ "fn": 303551,
+ "fn_rate": 0.9986511427452864,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001348857254713598,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 410,
+ "tp_rate": 0.001348857254713598,
+ "truth_threshold": 51.32
+ },
+ {
+ "f1": 0.0026743941544446195,
+ "fn": 303554,
+ "fn_rate": 0.998661012432516,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013389875674839865,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 407,
+ "tp_rate": 0.0013389875674839865,
+ "truth_threshold": 51.34
+ },
+ {
+ "f1": 0.0026481449842951205,
+ "fn": 303558,
+ "fn_rate": 0.9986741720154888,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013258279845111708,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 403,
+ "tp_rate": 0.0013258279845111708,
+ "truth_threshold": 51.36
+ },
+ {
+ "f1": 0.0026415912630354645,
+ "fn": 303559,
+ "fn_rate": 0.9986774619112321,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001322538088767967,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 402,
+ "tp_rate": 0.001322538088767967,
+ "truth_threshold": 51.38
+ },
+ {
+ "f1": 0.002602215826203525,
+ "fn": 303565,
+ "fn_rate": 0.9986972012856913,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0013027987143087436,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 396,
+ "tp_rate": 0.0013027987143087436,
+ "truth_threshold": 51.4
+ },
+ {
+ "f1": 0.002595644574117152,
+ "fn": 303566,
+ "fn_rate": 0.9987004911814344,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012995088185655396,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 395,
+ "tp_rate": 0.0012995088185655396,
+ "truth_threshold": 51.480000000000004
+ },
+ {
+ "f1": 0.0025825190403280392,
+ "fn": 303568,
+ "fn_rate": 0.9987070709729209,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012929290270791319,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 393,
+ "tp_rate": 0.0012929290270791319,
+ "truth_threshold": 51.5
+ },
+ {
+ "f1": 0.002569393334034276,
+ "fn": 303570,
+ "fn_rate": 0.9987136507644073,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012863492355927241,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 391,
+ "tp_rate": 0.0012863492355927241,
+ "truth_threshold": 51.52
+ },
+ {
+ "f1": 0.0024972070710389694,
+ "fn": 303581,
+ "fn_rate": 0.9987498396175826,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001250160382417481,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 380,
+ "tp_rate": 0.001250160382417481,
+ "truth_threshold": 51.56
+ },
+ {
+ "f1": 0.0024840802003036097,
+ "fn": 303583,
+ "fn_rate": 0.9987564194090689,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012435805909310734,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 378,
+ "tp_rate": 0.0012435805909310734,
+ "truth_threshold": 51.58
+ },
+ {
+ "f1": 0.002470953157036959,
+ "fn": 303585,
+ "fn_rate": 0.9987629992005553,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012370007994446657,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 376,
+ "tp_rate": 0.0012370007994446657,
+ "truth_threshold": 51.6
+ },
+ {
+ "f1": 0.0024643814731086693,
+ "fn": 303586,
+ "fn_rate": 0.9987662890962985,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012337109037014616,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 375,
+ "tp_rate": 0.0012337109037014616,
+ "truth_threshold": 51.64
+ },
+ {
+ "f1": 0.0024315709920152465,
+ "fn": 303591,
+ "fn_rate": 0.9987827385750145,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012172614249854423,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 370,
+ "tp_rate": 0.0012172614249854423,
+ "truth_threshold": 51.68
+ },
+ {
+ "f1": 0.0024118714019084673,
+ "fn": 303594,
+ "fn_rate": 0.9987926082622441,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012073917377558305,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 367,
+ "tp_rate": 0.0012073917377558305,
+ "truth_threshold": 51.7
+ },
+ {
+ "f1": 0.0024053153526152875,
+ "fn": 303595,
+ "fn_rate": 0.9987958981579874,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0012041018420126267,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 366,
+ "tp_rate": 0.0012041018420126267,
+ "truth_threshold": 51.72
+ },
+ {
+ "f1": 0.002385615331028772,
+ "fn": 303598,
+ "fn_rate": 0.998805767845217,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001194232154783015,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 363,
+ "tp_rate": 0.001194232154783015,
+ "truth_threshold": 51.78
+ },
+ {
+ "f1": 0.0023790590230085237,
+ "fn": 303599,
+ "fn_rate": 0.9988090577409602,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001190942259039811,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 362,
+ "tp_rate": 0.001190942259039811,
+ "truth_threshold": 51.800000000000004
+ },
+ {
+ "f1": 0.002333101118574114,
+ "fn": 303606,
+ "fn_rate": 0.9988320870111627,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011679129888373838,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 355,
+ "tp_rate": 0.0011679129888373838,
+ "truth_threshold": 51.82
+ },
+ {
+ "f1": 0.0023068429769447147,
+ "fn": 303610,
+ "fn_rate": 0.9988452465941354,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011547534058645682,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 351,
+ "tp_rate": 0.0011547534058645682,
+ "truth_threshold": 51.84
+ },
+ {
+ "f1": 0.0023002858926752323,
+ "fn": 303611,
+ "fn_rate": 0.9988485364898786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011514635101213643,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 350,
+ "tp_rate": 0.0011514635101213643,
+ "truth_threshold": 51.86
+ },
+ {
+ "f1": 0.002293713647267589,
+ "fn": 303612,
+ "fn_rate": 0.9988518263856219,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011481736143781603,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 349,
+ "tp_rate": 0.0011481736143781603,
+ "truth_threshold": 51.88
+ },
+ {
+ "f1": 0.0022871564336133126,
+ "fn": 303613,
+ "fn_rate": 0.998855116281365,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011448837186349564,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 348,
+ "tp_rate": 0.0011448837186349564,
+ "truth_threshold": 51.9
+ },
+ {
+ "f1": 0.0022740268019690708,
+ "fn": 303615,
+ "fn_rate": 0.9988616960728515,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011383039271485487,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 346,
+ "tp_rate": 0.0011383039271485487,
+ "truth_threshold": 51.92
+ },
+ {
+ "f1": 0.002260896997739103,
+ "fn": 303617,
+ "fn_rate": 0.9988682758643379,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011317241356621408,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 344,
+ "tp_rate": 0.0011317241356621408,
+ "truth_threshold": 51.94
+ },
+ {
+ "f1": 0.002254324622745675,
+ "fn": 303618,
+ "fn_rate": 0.9988715657600811,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001128434239918937,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 343,
+ "tp_rate": 0.001128434239918937,
+ "truth_threshold": 51.96
+ },
+ {
+ "f1": 0.0022411946027301823,
+ "fn": 303620,
+ "fn_rate": 0.9988781455515675,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011218544484325292,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 341,
+ "tp_rate": 0.0011218544484325292,
+ "truth_threshold": 51.980000000000004
+ },
+ {
+ "f1": 0.0022346368715083797,
+ "fn": 303621,
+ "fn_rate": 0.9988814354473107,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011185645526893254,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 340,
+ "tp_rate": 0.0011185645526893254,
+ "truth_threshold": 52
+ },
+ {
+ "f1": 0.002201803507111497,
+ "fn": 303626,
+ "fn_rate": 0.9988978849260267,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0011021150739733059,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 335,
+ "tp_rate": 0.0011021150739733059,
+ "truth_threshold": 52.02
+ },
+ {
+ "f1": 0.002195245387684279,
+ "fn": 303627,
+ "fn_rate": 0.9989011748217699,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010988251782301018,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 334,
+ "tp_rate": 0.0010988251782301018,
+ "truth_threshold": 52.04
+ },
+ {
+ "f1": 0.0021886727967031882,
+ "fn": 303628,
+ "fn_rate": 0.9989044647175132,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001095535282486898,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 333,
+ "tp_rate": 0.001095535282486898,
+ "truth_threshold": 52.06
+ },
+ {
+ "f1": 0.0021689835354431627,
+ "fn": 303631,
+ "fn_rate": 0.9989143344047428,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010856655952572864,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 330,
+ "tp_rate": 0.0010856655952572864,
+ "truth_threshold": 52.08
+ },
+ {
+ "f1": 0.0021427209927502417,
+ "fn": 303635,
+ "fn_rate": 0.9989274939877155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010725060122844707,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 326,
+ "tp_rate": 0.0010725060122844707,
+ "truth_threshold": 52.120000000000005
+ },
+ {
+ "f1": 0.0020836208993091844,
+ "fn": 303644,
+ "fn_rate": 0.9989571030494043,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010428969505956356,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 317,
+ "tp_rate": 0.0010428969505956356,
+ "truth_threshold": 52.14
+ },
+ {
+ "f1": 0.0020770616151125952,
+ "fn": 303645,
+ "fn_rate": 0.9989603929451476,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010396070548524317,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 316,
+ "tp_rate": 0.0010396070548524317,
+ "truth_threshold": 52.18
+ },
+ {
+ "f1": 0.002057356198689339,
+ "fn": 303648,
+ "fn_rate": 0.9989702626323772,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00102973736762282,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 313,
+ "tp_rate": 0.00102973736762282,
+ "truth_threshold": 52.2
+ },
+ {
+ "f1": 0.0020507966556239155,
+ "fn": 303649,
+ "fn_rate": 0.9989735525281204,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.001026447471879616,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 312,
+ "tp_rate": 0.001026447471879616,
+ "truth_threshold": 52.24
+ },
+ {
+ "f1": 0.002044223589419993,
+ "fn": 303650,
+ "fn_rate": 0.9989768424238636,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010231575761364122,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 311,
+ "tp_rate": 0.0010231575761364122,
+ "truth_threshold": 52.28
+ },
+ {
+ "f1": 0.002011397921555481,
+ "fn": 303655,
+ "fn_rate": 0.9989932919025796,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0010067080974203928,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 306,
+ "tp_rate": 0.0010067080974203928,
+ "truth_threshold": 52.300000000000004
+ },
+ {
+ "f1": 0.0019588638589618022,
+ "fn": 303663,
+ "fn_rate": 0.9990196110685252,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009803889314747615,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 298,
+ "tp_rate": 0.0009803889314747615,
+ "truth_threshold": 52.34
+ },
+ {
+ "f1": 0.001952290490307568,
+ "fn": 303664,
+ "fn_rate": 0.9990229009642685,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009770990357315576,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 297,
+ "tp_rate": 0.0009770990357315576,
+ "truth_threshold": 52.38
+ },
+ {
+ "f1": 0.0019325957916740619,
+ "fn": 303667,
+ "fn_rate": 0.9990327706514981,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000967229348501946,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 294,
+ "tp_rate": 0.000967229348501946,
+ "truth_threshold": 52.4
+ },
+ {
+ "f1": 0.0019063270336894002,
+ "fn": 303671,
+ "fn_rate": 0.9990459302344709,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009540697655291304,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 290,
+ "tp_rate": 0.0009540697655291304,
+ "truth_threshold": 52.44
+ },
+ {
+ "f1": 0.0018537874455203424,
+ "fn": 303679,
+ "fn_rate": 0.9990722494004165,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009277505995834993,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 282,
+ "tp_rate": 0.0009277505995834993,
+ "truth_threshold": 52.480000000000004
+ },
+ {
+ "f1": 0.0018275166152814572,
+ "fn": 303683,
+ "fn_rate": 0.9990854089833893,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009145910166106836,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 278,
+ "tp_rate": 0.0009145910166106836,
+ "truth_threshold": 52.5
+ },
+ {
+ "f1": 0.001807807097121971,
+ "fn": 303686,
+ "fn_rate": 0.999095278670619,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0009047213293810719,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 275,
+ "tp_rate": 0.0009047213293810719,
+ "truth_threshold": 52.52
+ },
+ {
+ "f1": 0.001788109074653554,
+ "fn": 303689,
+ "fn_rate": 0.9991051483578486,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008948516421514603,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 272,
+ "tp_rate": 0.0008948516421514603,
+ "truth_threshold": 52.54
+ },
+ {
+ "f1": 0.0017618365173488306,
+ "fn": 303693,
+ "fn_rate": 0.9991183079408213,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008816920591786446,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 268,
+ "tp_rate": 0.0008816920591786446,
+ "truth_threshold": 52.58
+ },
+ {
+ "f1": 0.0017289891658777742,
+ "fn": 303698,
+ "fn_rate": 0.9991347574195374,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008652425804626251,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 263,
+ "tp_rate": 0.0008652425804626251,
+ "truth_threshold": 52.6
+ },
+ {
+ "f1": 0.001715852239483009,
+ "fn": 303700,
+ "fn_rate": 0.9991413372110238,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008586627889762173,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 261,
+ "tp_rate": 0.0008586627889762173,
+ "truth_threshold": 52.620000000000005
+ },
+ {
+ "f1": 0.0017092893300900663,
+ "fn": 303701,
+ "fn_rate": 0.999144627106767,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008553728932330135,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 260,
+ "tp_rate": 0.0008553728932330135,
+ "truth_threshold": 52.64
+ },
+ {
+ "f1": 0.0016764404239093275,
+ "fn": 303706,
+ "fn_rate": 0.999161076585483,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000838923414516994,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 255,
+ "tp_rate": 0.000838923414516994,
+ "truth_threshold": 52.660000000000004
+ },
+ {
+ "f1": 0.001663302806576949,
+ "fn": 303708,
+ "fn_rate": 0.9991676563769694,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008323436230305861,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 253,
+ "tp_rate": 0.0008323436230305861,
+ "truth_threshold": 52.68
+ },
+ {
+ "f1": 0.0016567393791171946,
+ "fn": 303709,
+ "fn_rate": 0.9991709462727126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008290537272873823,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 252,
+ "tp_rate": 0.0008290537272873823,
+ "truth_threshold": 52.7
+ },
+ {
+ "f1": 0.0016501650165016502,
+ "fn": 303710,
+ "fn_rate": 0.9991742361684558,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008257638315441783,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 251,
+ "tp_rate": 0.0008257638315441783,
+ "truth_threshold": 52.72
+ },
+ {
+ "f1": 0.0016370270536800236,
+ "fn": 303712,
+ "fn_rate": 0.9991808159599422,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008191840400577706,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 249,
+ "tp_rate": 0.0008191840400577706,
+ "truth_threshold": 52.76
+ },
+ {
+ "f1": 0.0016238889181086624,
+ "fn": 303714,
+ "fn_rate": 0.9991873957514287,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008126042485713628,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 247,
+ "tp_rate": 0.0008126042485713628,
+ "truth_threshold": 52.78
+ },
+ {
+ "f1": 0.0016173251020689928,
+ "fn": 303715,
+ "fn_rate": 0.9991906856471718,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0008093143528281588,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 246,
+ "tp_rate": 0.0008093143528281588,
+ "truth_threshold": 52.86
+ },
+ {
+ "f1": 0.001538491883469102,
+ "fn": 303727,
+ "fn_rate": 0.9992301643960902,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007698356039097121,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 234,
+ "tp_rate": 0.0007698356039097121,
+ "truth_threshold": 52.9
+ },
+ {
+ "f1": 0.0015056379236661297,
+ "fn": 303732,
+ "fn_rate": 0.9992466138748063,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007533861251936926,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 229,
+ "tp_rate": 0.0007533861251936926,
+ "truth_threshold": 52.92
+ },
+ {
+ "f1": 0.0014990729417334017,
+ "fn": 303733,
+ "fn_rate": 0.9992499037705496,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007500962294504887,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 228,
+ "tp_rate": 0.0007500962294504887,
+ "truth_threshold": 52.96
+ },
+ {
+ "f1": 0.001485932948919411,
+ "fn": 303735,
+ "fn_rate": 0.9992564835620359,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000743516437964081,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 226,
+ "tp_rate": 0.000743516437964081,
+ "truth_threshold": 52.980000000000004
+ },
+ {
+ "f1": 0.001466217815532704,
+ "fn": 303738,
+ "fn_rate": 0.9992663532492655,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007336467507344692,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 223,
+ "tp_rate": 0.0007336467507344692,
+ "truth_threshold": 53.02
+ },
+ {
+ "f1": 0.0014596524449178453,
+ "fn": 303739,
+ "fn_rate": 0.9992696431450088,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007303568549912653,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 222,
+ "tp_rate": 0.0007303568549912653,
+ "truth_threshold": 53.04
+ },
+ {
+ "f1": 0.0014530774339047018,
+ "fn": 303740,
+ "fn_rate": 0.9992729330407519,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007270669592480615,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 221,
+ "tp_rate": 0.0007270669592480615,
+ "truth_threshold": 53.08
+ },
+ {
+ "f1": 0.0014333712497287773,
+ "fn": 303743,
+ "fn_rate": 0.9992828027279815,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007171972720184497,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 218,
+ "tp_rate": 0.0007171972720184497,
+ "truth_threshold": 53.1
+ },
+ {
+ "f1": 0.0014005141793841682,
+ "fn": 303748,
+ "fn_rate": 0.9992992522066976,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0007007477933024302,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 213,
+ "tp_rate": 0.0007007477933024302,
+ "truth_threshold": 53.14
+ },
+ {
+ "f1": 0.0013939481609089594,
+ "fn": 303749,
+ "fn_rate": 0.9993025421024407,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006974578975592263,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 212,
+ "tp_rate": 0.0006974578975592263,
+ "truth_threshold": 53.160000000000004
+ },
+ {
+ "f1": 0.0013808067856790611,
+ "fn": 303751,
+ "fn_rate": 0.9993091218939272,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006908781060728185,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 210,
+ "tp_rate": 0.0006908781060728185,
+ "truth_threshold": 53.18
+ },
+ {
+ "f1": 0.0013742315152710655,
+ "fn": 303752,
+ "fn_rate": 0.9993124117896703,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006875882103296147,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 209,
+ "tp_rate": 0.0006875882103296147,
+ "truth_threshold": 53.2
+ },
+ {
+ "f1": 0.0013610899239893744,
+ "fn": 303754,
+ "fn_rate": 0.9993189915811568,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006810084188432068,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 207,
+ "tp_rate": 0.0006810084188432068,
+ "truth_threshold": 53.28
+ },
+ {
+ "f1": 0.0013545235167638724,
+ "fn": 303755,
+ "fn_rate": 0.9993222814768999,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000677718523100003,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 206,
+ "tp_rate": 0.000677718523100003,
+ "truth_threshold": 53.300000000000004
+ },
+ {
+ "f1": 0.0013150973172014729,
+ "fn": 303761,
+ "fn_rate": 0.9993420208513593,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006579791486407795,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 200,
+ "tp_rate": 0.0006579791486407795,
+ "truth_threshold": 53.32
+ },
+ {
+ "f1": 0.0013085218306154655,
+ "fn": 303762,
+ "fn_rate": 0.9993453107471024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006546892528975757,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 199,
+ "tp_rate": 0.0006546892528975757,
+ "truth_threshold": 53.34
+ },
+ {
+ "f1": 0.0012953793751931562,
+ "fn": 303764,
+ "fn_rate": 0.9993518905385889,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006481094614111679,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 197,
+ "tp_rate": 0.0006481094614111679,
+ "truth_threshold": 53.36
+ },
+ {
+ "f1": 0.0012888123199936874,
+ "fn": 303765,
+ "fn_rate": 0.999355180434332,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000644819565667964,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 196,
+ "tp_rate": 0.000644819565667964,
+ "truth_threshold": 53.38
+ },
+ {
+ "f1": 0.0012822367469324952,
+ "fn": 303766,
+ "fn_rate": 0.9993584703300752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00064152966992476,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 195,
+ "tp_rate": 0.00064152966992476,
+ "truth_threshold": 53.4
+ },
+ {
+ "f1": 0.0012756695621297105,
+ "fn": 303767,
+ "fn_rate": 0.9993617602258185,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006382397741815562,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 194,
+ "tp_rate": 0.0006382397741815562,
+ "truth_threshold": 53.44
+ },
+ {
+ "f1": 0.001269093945830073,
+ "fn": 303768,
+ "fn_rate": 0.9993650501215616,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006349498784383523,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 193,
+ "tp_rate": 0.0006349498784383523,
+ "truth_threshold": 53.46
+ },
+ {
+ "f1": 0.00125595097188248,
+ "fn": 303770,
+ "fn_rate": 0.9993716299130481,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006283700869519445,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 191,
+ "tp_rate": 0.0006283700869519445,
+ "truth_threshold": 53.58
+ },
+ {
+ "f1": 0.0012493835278645405,
+ "fn": 303771,
+ "fn_rate": 0.9993749198087912,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006250801912087405,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 190,
+ "tp_rate": 0.0006250801912087405,
+ "truth_threshold": 53.660000000000004
+ },
+ {
+ "f1": 0.0012362402514565277,
+ "fn": 303773,
+ "fn_rate": 0.9993814996002777,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006185003997223328,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 188,
+ "tp_rate": 0.0006185003997223328,
+ "truth_threshold": 53.68
+ },
+ {
+ "f1": 0.0012165210129345774,
+ "fn": 303776,
+ "fn_rate": 0.9993913692875073,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006086307124927212,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 185,
+ "tp_rate": 0.0006086307124927212,
+ "truth_threshold": 53.72
+ },
+ {
+ "f1": 0.0012099531800725972,
+ "fn": 303777,
+ "fn_rate": 0.9993946591832504,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006053408167495172,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 184,
+ "tp_rate": 0.0006053408167495172,
+ "truth_threshold": 53.76
+ },
+ {
+ "f1": 0.0012033773475722026,
+ "fn": 303778,
+ "fn_rate": 0.9993979490789937,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0006020509210063133,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 183,
+ "tp_rate": 0.0006020509210063133,
+ "truth_threshold": 53.78
+ },
+ {
+ "f1": 0.0011968093850898594,
+ "fn": 303779,
+ "fn_rate": 0.9994012389747369,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999999999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005987610252631094,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 182,
+ "tp_rate": 0.0005987610252631094,
+ "truth_threshold": 53.800000000000004
+ },
+ {
+ "f1": 0.0011705212765257876,
+ "fn": 303783,
+ "fn_rate": 0.9994143985577097,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005856014422902938,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 178,
+ "tp_rate": 0.0005856014422902938,
+ "truth_threshold": 53.84
+ },
+ {
+ "f1": 0.0011442324764741856,
+ "fn": 303787,
+ "fn_rate": 0.9994275581406825,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005724418593174782,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 174,
+ "tp_rate": 0.0005724418593174782,
+ "truth_threshold": 53.9
+ },
+ {
+ "f1": 0.0011113668497024299,
+ "fn": 303792,
+ "fn_rate": 0.9994440076193986,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005559923806014587,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 169,
+ "tp_rate": 0.0005559923806014587,
+ "truth_threshold": 53.92
+ },
+ {
+ "f1": 0.0010982218013468013,
+ "fn": 303794,
+ "fn_rate": 0.999450587410885,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005494125891150509,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 167,
+ "tp_rate": 0.0005494125891150509,
+ "truth_threshold": 53.980000000000004
+ },
+ {
+ "f1": 0.0010587856189292455,
+ "fn": 303800,
+ "fn_rate": 0.9994703267853442,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005296732146558275,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 161,
+ "tp_rate": 0.0005296732146558275,
+ "truth_threshold": 54
+ },
+ {
+ "f1": 0.0010456398789951335,
+ "fn": 303802,
+ "fn_rate": 0.9994769065768305,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005230934231694197,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 159,
+ "tp_rate": 0.0005230934231694197,
+ "truth_threshold": 54.02
+ },
+ {
+ "f1": 0.0010062016217602609,
+ "fn": 303808,
+ "fn_rate": 0.9994966459512898,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0005033540487101964,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 153,
+ "tp_rate": 0.0005033540487101964,
+ "truth_threshold": 54.06
+ },
+ {
+ "f1": 0.0009930551901930868,
+ "fn": 303810,
+ "fn_rate": 0.9995032257427762,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004967742572237886,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 151,
+ "tp_rate": 0.0004967742572237886,
+ "truth_threshold": 54.08
+ },
+ {
+ "f1": 0.0009864851533984414,
+ "fn": 303811,
+ "fn_rate": 0.9995065156385194,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004934843614805847,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 150,
+ "tp_rate": 0.0004934843614805847,
+ "truth_threshold": 54.14
+ },
+ {
+ "f1": 0.0009733384192457942,
+ "fn": 303813,
+ "fn_rate": 0.9995130954300058,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004869045699941769,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 148,
+ "tp_rate": 0.0004869045699941769,
+ "truth_threshold": 54.2
+ },
+ {
+ "f1": 0.0009667618083049443,
+ "fn": 303814,
+ "fn_rate": 0.999516385325749,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000483614674250973,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 147,
+ "tp_rate": 0.000483614674250973,
+ "truth_threshold": 54.26
+ },
+ {
+ "f1": 0.0009601915121700985,
+ "fn": 303815,
+ "fn_rate": 0.9995196752214922,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00048032477850776906,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 146,
+ "tp_rate": 0.00048032477850776906,
+ "truth_threshold": 54.28
+ },
+ {
+ "f1": 0.0009536148579771527,
+ "fn": 303816,
+ "fn_rate": 0.9995229651172355,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004770348827645652,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 145,
+ "tp_rate": 0.0004770348827645652,
+ "truth_threshold": 54.32
+ },
+ {
+ "f1": 0.0009470444321679426,
+ "fn": 303817,
+ "fn_rate": 0.9995262550129786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004737449870213613,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 144,
+ "tp_rate": 0.0004737449870213613,
+ "truth_threshold": 54.36
+ },
+ {
+ "f1": 0.0009207497533706018,
+ "fn": 303821,
+ "fn_rate": 0.9995394145959514,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004605854040485457,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 140,
+ "tp_rate": 0.0004605854040485457,
+ "truth_threshold": 54.4
+ },
+ {
+ "f1": 0.0008944543828264759,
+ "fn": 303825,
+ "fn_rate": 0.9995525741789243,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00044742582107573013,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 136,
+ "tp_rate": 0.00044742582107573013,
+ "truth_threshold": 54.42
+ },
+ {
+ "f1": 0.0008813064381408381,
+ "fn": 303827,
+ "fn_rate": 0.9995591539704107,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004408460295893223,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 134,
+ "tp_rate": 0.0004408460295893223,
+ "truth_threshold": 54.5
+ },
+ {
+ "f1": 0.0008747295244233691,
+ "fn": 303828,
+ "fn_rate": 0.9995624438661539,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004375561338461184,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 133,
+ "tp_rate": 0.0004375561338461184,
+ "truth_threshold": 54.58
+ },
+ {
+ "f1": 0.0008681583205082672,
+ "fn": 303829,
+ "fn_rate": 0.9995657337618971,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004342662381029145,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 132,
+ "tp_rate": 0.0004342662381029145,
+ "truth_threshold": 54.6
+ },
+ {
+ "f1": 0.0008615813635347197,
+ "fn": 303830,
+ "fn_rate": 0.9995690236576403,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00043097634235971064,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 131,
+ "tp_rate": 0.00043097634235971064,
+ "truth_threshold": 54.7
+ },
+ {
+ "f1": 0.0008418615663886769,
+ "fn": 303833,
+ "fn_rate": 0.9995788933448699,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0004211066551300989,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 128,
+ "tp_rate": 0.0004211066551300989,
+ "truth_threshold": 54.74
+ },
+ {
+ "f1": 0.0008352845229012654,
+ "fn": 303834,
+ "fn_rate": 0.9995821832406131,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00041781675938689505,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 127,
+ "tp_rate": 0.00041781675938689505,
+ "truth_threshold": 54.76
+ },
+ {
+ "f1": 0.0008221358431496353,
+ "fn": 303836,
+ "fn_rate": 0.9995887630320995,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00041123696790048723,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 125,
+ "tp_rate": 0.00041123696790048723,
+ "truth_threshold": 54.78
+ },
+ {
+ "f1": 0.0008024151380219809,
+ "fn": 303839,
+ "fn_rate": 0.9995986327193291,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00040136728067087556,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 122,
+ "tp_rate": 0.00040136728067087556,
+ "truth_threshold": 54.800000000000004
+ },
+ {
+ "f1": 0.000762967152948605,
+ "fn": 303845,
+ "fn_rate": 0.9996183720937883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00038162790621165216,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 116,
+ "tp_rate": 0.00038162790621165216,
+ "truth_threshold": 54.88
+ },
+ {
+ "f1": 0.0007563898499059446,
+ "fn": 303846,
+ "fn_rate": 0.9996216619895315,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00037833801046844825,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 115,
+ "tp_rate": 0.00037833801046844825,
+ "truth_threshold": 54.9
+ },
+ {
+ "f1": 0.0007169401782484297,
+ "fn": 303852,
+ "fn_rate": 0.9996414013639908,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00035859863600922484,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 109,
+ "tp_rate": 0.00035859863600922484,
+ "truth_threshold": 54.980000000000004
+ },
+ {
+ "f1": 0.0007103674178144362,
+ "fn": 303853,
+ "fn_rate": 0.999644691259734,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000355308740266021,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 108,
+ "tp_rate": 0.000355308740266021,
+ "truth_threshold": 55.02
+ },
+ {
+ "f1": 0.0007037899417235618,
+ "fn": 303854,
+ "fn_rate": 0.9996479811554771,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003520188445228171,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 107,
+ "tp_rate": 0.0003520188445228171,
+ "truth_threshold": 55.18
+ },
+ {
+ "f1": 0.0006972170515611743,
+ "fn": 303855,
+ "fn_rate": 0.9996512710512204,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00034872894877961317,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 106,
+ "tp_rate": 0.00034872894877961317,
+ "truth_threshold": 55.2
+ },
+ {
+ "f1": 0.0006906395322068235,
+ "fn": 303856,
+ "fn_rate": 0.9996545609469636,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00034543905303640926,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 105,
+ "tp_rate": 0.00034543905303640926,
+ "truth_threshold": 55.24
+ },
+ {
+ "f1": 0.0006840665123131972,
+ "fn": 303857,
+ "fn_rate": 0.9996578508427068,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003421491572932054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 104,
+ "tp_rate": 0.0003421491572932054,
+ "truth_threshold": 55.26
+ },
+ {
+ "f1": 0.0006774889496948011,
+ "fn": 303858,
+ "fn_rate": 0.99966114073845,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003388592615500015,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 103,
+ "tp_rate": 0.0003388592615500015,
+ "truth_threshold": 55.42
+ },
+ {
+ "f1": 0.0006709158000670916,
+ "fn": 303859,
+ "fn_rate": 0.9996644306341932,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003355693658067976,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 102,
+ "tp_rate": 0.0003355693658067976,
+ "truth_threshold": 55.46
+ },
+ {
+ "f1": 0.0006511872656712491,
+ "fn": 303862,
+ "fn_rate": 0.9996743003214228,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003256996785771859,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 99,
+ "tp_rate": 0.0003256996785771859,
+ "truth_threshold": 55.5
+ },
+ {
+ "f1": 0.0006446138565668392,
+ "fn": 303863,
+ "fn_rate": 0.9996775902171661,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000322409782833982,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 98,
+ "tp_rate": 0.000322409782833982,
+ "truth_threshold": 55.64
+ },
+ {
+ "f1": 0.0006314626253058647,
+ "fn": 303865,
+ "fn_rate": 0.9996841700086524,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003158299913475742,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 96,
+ "tp_rate": 0.0003158299913475742,
+ "truth_threshold": 55.74
+ },
+ {
+ "f1": 0.0006248848896255953,
+ "fn": 303866,
+ "fn_rate": 0.9996874599043957,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00031254009560437027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 95,
+ "tp_rate": 0.00031254009560437027,
+ "truth_threshold": 55.78
+ },
+ {
+ "f1": 0.0006051596437451488,
+ "fn": 303869,
+ "fn_rate": 0.9996973295916253,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0003026704083747586,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 92,
+ "tp_rate": 0.0003026704083747586,
+ "truth_threshold": 55.800000000000004
+ },
+ {
+ "f1": 0.0005985818215305277,
+ "fn": 303870,
+ "fn_rate": 0.9997006194873684,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002993805126315547,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 91,
+ "tp_rate": 0.0002993805126315547,
+ "truth_threshold": 55.82
+ },
+ {
+ "f1": 0.0005854300279559283,
+ "fn": 303872,
+ "fn_rate": 0.9997071992788549,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002928007211451469,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 89,
+ "tp_rate": 0.0002928007211451469,
+ "truth_threshold": 55.84
+ },
+ {
+ "f1": 0.0005722780613587328,
+ "fn": 303874,
+ "fn_rate": 0.9997137790703413,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002862209296587391,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 87,
+ "tp_rate": 0.0002862209296587391,
+ "truth_threshold": 55.92
+ },
+ {
+ "f1": 0.0005657038737559448,
+ "fn": 303875,
+ "fn_rate": 0.9997170689660845,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002829310339155352,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 86,
+ "tp_rate": 0.0002829310339155352,
+ "truth_threshold": 55.94
+ },
+ {
+ "f1": 0.0005591259217355268,
+ "fn": 303876,
+ "fn_rate": 0.9997203588618276,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00027964113817233134,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 85,
+ "tp_rate": 0.00027964113817233134,
+ "truth_threshold": 56.02
+ },
+ {
+ "f1": 0.0005459736090828959,
+ "fn": 303878,
+ "fn_rate": 0.9997269386533141,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002730613466859235,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 83,
+ "tp_rate": 0.0002730613466859235,
+ "truth_threshold": 56.08
+ },
+ {
+ "f1": 0.0005393991619578874,
+ "fn": 303879,
+ "fn_rate": 0.9997302285490572,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002697714509427196,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 82,
+ "tp_rate": 0.0002697714509427196,
+ "truth_threshold": 56.1
+ },
+ {
+ "f1": 0.0005196684646757005,
+ "fn": 303882,
+ "fn_rate": 0.9997400982362868,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00025990176371310794,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 79,
+ "tp_rate": 0.00025990176371310794,
+ "truth_threshold": 56.120000000000005
+ },
+ {
+ "f1": 0.00051309375801709,
+ "fn": 303883,
+ "fn_rate": 0.9997433881320301,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000256611867969904,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 78,
+ "tp_rate": 0.000256611867969904,
+ "truth_threshold": 56.14
+ },
+ {
+ "f1": 0.0005065156329143068,
+ "fn": 303884,
+ "fn_rate": 0.9997466780277733,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0002533219722267001,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 77,
+ "tp_rate": 0.0002533219722267001,
+ "truth_threshold": 56.28
+ },
+ {
+ "f1": 0.0004999407964846268,
+ "fn": 303885,
+ "fn_rate": 0.9997499679235166,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00025003207648349626,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 76,
+ "tp_rate": 0.00025003207648349626,
+ "truth_threshold": 56.300000000000004
+ },
+ {
+ "f1": 0.0004933626281098291,
+ "fn": 303886,
+ "fn_rate": 0.9997532578192597,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00024674218074029235,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 75,
+ "tp_rate": 0.00024674218074029235,
+ "truth_threshold": 56.32
+ },
+ {
+ "f1": 0.00048678766190623417,
+ "fn": 303887,
+ "fn_rate": 0.9997565477150029,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00024345228499708844,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 74,
+ "tp_rate": 0.00024345228499708844,
+ "truth_threshold": 56.4
+ },
+ {
+ "f1": 0.0004802094502588526,
+ "fn": 303888,
+ "fn_rate": 0.9997598376107462,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00024016238925388453,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 73,
+ "tp_rate": 0.00024016238925388453,
+ "truth_threshold": 56.42
+ },
+ {
+ "f1": 0.0004604808735980002,
+ "fn": 303891,
+ "fn_rate": 0.9997697072979758,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00023029270202427286,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 70,
+ "tp_rate": 0.00023029270202427286,
+ "truth_threshold": 56.54
+ },
+ {
+ "f1": 0.00045390257540374305,
+ "fn": 303892,
+ "fn_rate": 0.9997729971937189,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00022700280628106895,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 69,
+ "tp_rate": 0.00022700280628106895,
+ "truth_threshold": 56.6
+ },
+ {
+ "f1": 0.00044732721986132855,
+ "fn": 303893,
+ "fn_rate": 0.9997762870894621,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00022371291053786507,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 68,
+ "tp_rate": 0.00022371291053786507,
+ "truth_threshold": 56.660000000000004
+ },
+ {
+ "f1": 0.0004407488783927796,
+ "fn": 303894,
+ "fn_rate": 0.9997795769852054,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00022042301479466116,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 67,
+ "tp_rate": 0.00022042301479466116,
+ "truth_threshold": 56.72
+ },
+ {
+ "f1": 0.0004341733930650668,
+ "fn": 303895,
+ "fn_rate": 0.9997828668809485,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00021713311905145725,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 66,
+ "tp_rate": 0.00021713311905145725,
+ "truth_threshold": 56.82
+ },
+ {
+ "f1": 0.0004275950083216567,
+ "fn": 303896,
+ "fn_rate": 0.9997861567766917,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00021384322330825336,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 65,
+ "tp_rate": 0.00021384322330825336,
+ "truth_threshold": 57
+ },
+ {
+ "f1": 0.00042101939320579953,
+ "fn": 303897,
+ "fn_rate": 0.999789446672435,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00021055332756504945,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 64,
+ "tp_rate": 0.00021055332756504945,
+ "truth_threshold": 57.08
+ },
+ {
+ "f1": 0.0004144409651869589,
+ "fn": 303898,
+ "fn_rate": 0.9997927365681781,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00020726343182184557,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 63,
+ "tp_rate": 0.00020726343182184557,
+ "truth_threshold": 57.120000000000005
+ },
+ {
+ "f1": 0.0004078652202801113,
+ "fn": 303899,
+ "fn_rate": 0.9997960264639214,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00020397353607864166,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 62,
+ "tp_rate": 0.00020397353607864166,
+ "truth_threshold": 57.14
+ },
+ {
+ "f1": 0.0004012867489852708,
+ "fn": 303900,
+ "fn_rate": 0.9997993163596646,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00020068364033543778,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 61,
+ "tp_rate": 0.00020068364033543778,
+ "truth_threshold": 57.2
+ },
+ {
+ "f1": 0.00039471087428458656,
+ "fn": 303901,
+ "fn_rate": 0.9998026062554077,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00019739374459223387,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 60,
+ "tp_rate": 0.00019739374459223387,
+ "truth_threshold": 57.42
+ },
+ {
+ "f1": 0.0003552467978448361,
+ "fn": 303907,
+ "fn_rate": 0.9998223456298669,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001776543701330105,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 54,
+ "tp_rate": 0.0001776543701330105,
+ "truth_threshold": 57.46
+ },
+ {
+ "f1": 0.0003486681534403021,
+ "fn": 303908,
+ "fn_rate": 0.9998256355256102,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00017436447438980658,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 53,
+ "tp_rate": 0.00017436447438980658,
+ "truth_threshold": 57.56
+ },
+ {
+ "f1": 0.00034209175953580777,
+ "fn": 303909,
+ "fn_rate": 0.9998289254213534,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001710745786466027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 52,
+ "tp_rate": 0.0001710745786466027,
+ "truth_threshold": 57.6
+ },
+ {
+ "f1": 0.0003026256060735643,
+ "fn": 303915,
+ "fn_rate": 0.9998486647958126,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001513352041873793,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 46,
+ "tp_rate": 0.0001513352041873793,
+ "truth_threshold": 57.660000000000004
+ },
+ {
+ "f1": 0.000296046788550226,
+ "fn": 303916,
+ "fn_rate": 0.9998519546915559,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00014804530844417542,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 45,
+ "tp_rate": 0.00014804530844417542,
+ "truth_threshold": 57.82
+ },
+ {
+ "f1": 0.00028946987539637636,
+ "fn": 303917,
+ "fn_rate": 0.999855244587299,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001447554127009715,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 44,
+ "tp_rate": 0.0001447554127009715,
+ "truth_threshold": 57.86
+ },
+ {
+ "f1": 0.00028289101459191325,
+ "fn": 303918,
+ "fn_rate": 0.9998585344830422,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001414655169577676,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 43,
+ "tp_rate": 0.0001414655169577676,
+ "truth_threshold": 57.980000000000004
+ },
+ {
+ "f1": 0.00027631397161860776,
+ "fn": 303919,
+ "fn_rate": 0.9998618243787855,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00013817562121456371,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 42,
+ "tp_rate": 0.00013817562121456371,
+ "truth_threshold": 58.120000000000005
+ },
+ {
+ "f1": 0.00026973506753245045,
+ "fn": 303920,
+ "fn_rate": 0.9998651142745286,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0001348857254713598,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 41,
+ "tp_rate": 0.0001348857254713598,
+ "truth_threshold": 58.34
+ },
+ {
+ "f1": 0.0002631578947368421,
+ "fn": 303921,
+ "fn_rate": 0.9998684041702719,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00013159582972815592,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 40,
+ "tp_rate": 0.00013159582972815592,
+ "truth_threshold": 58.44
+ },
+ {
+ "f1": 0.00025657894736842105,
+ "fn": 303922,
+ "fn_rate": 0.9998716940660151,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000128305933984952,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 39,
+ "tp_rate": 0.000128305933984952,
+ "truth_threshold": 58.7
+ },
+ {
+ "f1": 0.00023684522164765326,
+ "fn": 303925,
+ "fn_rate": 0.9998815637532447,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00011843624675534032,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36,
+ "tp_rate": 0.00011843624675534032,
+ "truth_threshold": 58.84
+ },
+ {
+ "f1": 0.00023026618771299624,
+ "fn": 303926,
+ "fn_rate": 0.9998848536489878,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00011514635101213643,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35,
+ "tp_rate": 0.00011514635101213643,
+ "truth_threshold": 58.86
+ },
+ {
+ "f1": 0.0002236886254333967,
+ "fn": 303927,
+ "fn_rate": 0.9998881435447311,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00011185645526893253,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34,
+ "tp_rate": 0.00011185645526893253,
+ "truth_threshold": 58.980000000000004
+ },
+ {
+ "f1": 0.0002171095482147674,
+ "fn": 303928,
+ "fn_rate": 0.9998914334404743,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00010856655952572862,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33,
+ "tp_rate": 0.00010856655952572862,
+ "truth_threshold": 59.22
+ },
+ {
+ "f1": 0.00021053185610147635,
+ "fn": 303929,
+ "fn_rate": 0.9998947233362174,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00010527666378252473,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32,
+ "tp_rate": 0.00010527666378252473,
+ "truth_threshold": 59.44
+ },
+ {
+ "f1": 0.00020395273559830522,
+ "fn": 303930,
+ "fn_rate": 0.9998980132319607,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00010198676803932083,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31,
+ "tp_rate": 0.00010198676803932083,
+ "truth_threshold": 59.46
+ },
+ {
+ "f1": 0.0001973749136484753,
+ "fn": 303931,
+ "fn_rate": 0.9999013031277039,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00009869687229611694,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30,
+ "tp_rate": 0.00009869687229611694,
+ "truth_threshold": 59.52
+ },
+ {
+ "f1": 0.00019079574986019277,
+ "fn": 303932,
+ "fn_rate": 0.9999045930234471,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00009540697655291304,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29,
+ "tp_rate": 0.00009540697655291304,
+ "truth_threshold": 59.88
+ },
+ {
+ "f1": 0.0001842177980709765,
+ "fn": 303933,
+ "fn_rate": 0.9999078829191903,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00009211708080970914,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28,
+ "tp_rate": 0.00009211708080970914,
+ "truth_threshold": 60
+ },
+ {
+ "f1": 0.00017763859099701303,
+ "fn": 303934,
+ "fn_rate": 0.9999111728149335,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00008882718506650525,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27,
+ "tp_rate": 0.00008882718506650525,
+ "truth_threshold": 60.1
+ },
+ {
+ "f1": 0.00013816607562289874,
+ "fn": 303940,
+ "fn_rate": 0.9999309121893927,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00006908781060728186,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21,
+ "tp_rate": 0.00006908781060728186,
+ "truth_threshold": 60.14
+ },
+ {
+ "f1": 0.00013158760444766102,
+ "fn": 303941,
+ "fn_rate": 0.999934202085136,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00006579791486407796,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20,
+ "tp_rate": 0.00006579791486407796,
+ "truth_threshold": 60.26
+ },
+ {
+ "f1": 0.00012500822422527799,
+ "fn": 303942,
+ "fn_rate": 0.9999374919808791,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00006250801912087407,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19,
+ "tp_rate": 0.00006250801912087407,
+ "truth_threshold": 60.34
+ },
+ {
+ "f1": 0.00011842962319641553,
+ "fn": 303943,
+ "fn_rate": 0.9999407818766223,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00005921812337767016,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18,
+ "tp_rate": 0.00005921812337767016,
+ "truth_threshold": 60.42
+ },
+ {
+ "f1": 0.00011185019968550356,
+ "fn": 303944,
+ "fn_rate": 0.9999440717723656,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000055928227634466266,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17,
+ "tp_rate": 0.000055928227634466266,
+ "truth_threshold": 60.44
+ },
+ {
+ "f1": 0.00010527146880016843,
+ "fn": 303945,
+ "fn_rate": 0.9999473616681087,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000052638331891262364,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16,
+ "tp_rate": 0.000052638331891262364,
+ "truth_threshold": 60.54
+ },
+ {
+ "f1": 0.0000986920020001579,
+ "fn": 303946,
+ "fn_rate": 0.999950651563852,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00004934843614805847,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15,
+ "tp_rate": 0.00004934843614805847,
+ "truth_threshold": 60.7
+ },
+ {
+ "f1": 0.00009211314125550212,
+ "fn": 303947,
+ "fn_rate": 0.9999539414595952,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00004605854040485457,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14,
+ "tp_rate": 0.00004605854040485457,
+ "truth_threshold": 60.78
+ },
+ {
+ "f1": 0.00008553363116582339,
+ "fn": 303948,
+ "fn_rate": 0.9999572313553383,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000042768644661650676,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13,
+ "tp_rate": 0.000042768644661650676,
+ "truth_threshold": 60.92
+ },
+ {
+ "f1": 0.00007895464055899886,
+ "fn": 303949,
+ "fn_rate": 0.9999605212510816,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00003947874891844677,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12,
+ "tp_rate": 0.00003947874891844677,
+ "truth_threshold": 61.26
+ },
+ {
+ "f1": 0.00007237508717908228,
+ "fn": 303950,
+ "fn_rate": 0.9999638111468248,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00003618885317524288,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11,
+ "tp_rate": 0.00003618885317524288,
+ "truth_threshold": 61.36
+ },
+ {
+ "f1": 0.00006579596670724084,
+ "fn": 303951,
+ "fn_rate": 0.9999671010425679,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00003289895743203898,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10,
+ "tp_rate": 0.00003289895743203898,
+ "truth_threshold": 61.46
+ },
+ {
+ "f1": 0.00005921637003651676,
+ "fn": 303952,
+ "fn_rate": 0.9999703909383112,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00002960906168883508,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9,
+ "tp_rate": 0.00002960906168883508,
+ "truth_threshold": 61.480000000000004
+ },
+ {
+ "f1": 0.000052637119696810194,
+ "fn": 303953,
+ "fn_rate": 0.9999736808340544,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000026319165945631182,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8,
+ "tp_rate": 0.000026319165945631182,
+ "truth_threshold": 61.5
+ },
+ {
+ "f1": 0.00004605747973470892,
+ "fn": 303954,
+ "fn_rate": 0.9999769707297975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000023029270202427286,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7,
+ "tp_rate": 0.000023029270202427286,
+ "truth_threshold": 61.54
+ },
+ {
+ "f1": 0.0000394780995242889,
+ "fn": 303955,
+ "fn_rate": 0.9999802606255408,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000019739374459223386,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6,
+ "tp_rate": 0.000019739374459223386,
+ "truth_threshold": 61.6
+ },
+ {
+ "f1": 0.00003289841627024075,
+ "fn": 303956,
+ "fn_rate": 0.999983550521284,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.00001644947871601949,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5,
+ "tp_rate": 0.00001644947871601949,
+ "truth_threshold": 62
+ },
+ {
+ "f1": 0.0000263189061862589,
+ "fn": 303957,
+ "fn_rate": 0.9999868404170272,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000013159582972815591,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4,
+ "tp_rate": 0.000013159582972815591,
+ "truth_threshold": 62.2
+ },
+ {
+ "f1": 0.000019739179639694174,
+ "fn": 303958,
+ "fn_rate": 0.9999901303127704,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.000009869687229611693,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 3,
+ "tp_rate": 0.000009869687229611693,
+ "truth_threshold": 62.52
+ },
+ {
+ "f1": 0.000013159539679302018,
+ "fn": 303959,
+ "fn_rate": 0.9999934202085136,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0000065797914864077955,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 2,
+ "tp_rate": 0.0000065797914864077955,
+ "truth_threshold": 63.4
+ },
+ {
+ "f1": 0.000006579769839651009,
+ "fn": 303960,
+ "fn_rate": 0.9999967101042568,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 1,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0000032898957432038977,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 1,
+ "tp_rate": 0.0000032898957432038977,
+ "truth_threshold": 65.22
+ },
+ {
+ "f1": 0.39733748088785786,
+ "fn": 228598,
+ "fn_rate": 0.7520635871049246,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999780610216,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997877392907839,
+ "recall": 0.24793641289507534,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75363,
+ "tp_rate": 0.24793641289507534,
+ "truth_threshold": 22.12
+ },
+ {
+ "f1": 0.39686097472219733,
+ "fn": 228711,
+ "fn_rate": 0.7524353453239067,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997836306193,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997874206148859,
+ "recall": 0.24756465467609332,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75250,
+ "tp_rate": 0.24756465467609332,
+ "truth_threshold": 22.14
+ },
+ {
+ "f1": 0.39630276395827946,
+ "fn": 228843,
+ "fn_rate": 0.7528696115620096,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997866094399,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997870471424388,
+ "recall": 0.2471303884379904,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75118,
+ "tp_rate": 0.2471303884379904,
+ "truth_threshold": 22.16
+ },
+ {
+ "f1": 0.3958542222972759,
+ "fn": 228949,
+ "fn_rate": 0.7532183405107892,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997895472501,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997867462813883,
+ "recall": 0.2467816594892108,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75012,
+ "tp_rate": 0.2467816594892108,
+ "truth_threshold": 22.18
+ },
+ {
+ "f1": 0.39523072943337856,
+ "fn": 229096,
+ "fn_rate": 0.7537019551850402,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997924446148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997863276398552,
+ "recall": 0.24629804481495982,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74865,
+ "tp_rate": 0.24629804481495982,
+ "truth_threshold": 22.2
+ },
+ {
+ "f1": 0.3948377285160582,
+ "fn": 229189,
+ "fn_rate": 0.7540079154891581,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997953020905,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997860619350698,
+ "recall": 0.24599208451084184,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74772,
+ "tp_rate": 0.24599208451084184,
+ "truth_threshold": 22.22
+ },
+ {
+ "f1": 0.394218731015684,
+ "fn": 229335,
+ "fn_rate": 0.7544882402676659,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997981202265,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999785643471504,
+ "recall": 0.24551175973233408,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74626,
+ "tp_rate": 0.24551175973233408,
+ "truth_threshold": 22.240000000000002
+ },
+ {
+ "f1": 0.3937382757800735,
+ "fn": 229448,
+ "fn_rate": 0.754859998486648,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998008995644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997853184666371,
+ "recall": 0.24514000151335205,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74513,
+ "tp_rate": 0.24514000151335205,
+ "truth_threshold": 22.26
+ },
+ {
+ "f1": 0.3933785055126267,
+ "fn": 229533,
+ "fn_rate": 0.7551396396248203,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998036406385,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997850733437215,
+ "recall": 0.24486036037517972,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74428,
+ "tp_rate": 0.24486036037517972,
+ "truth_threshold": 22.28
+ },
+ {
+ "f1": 0.39291454310909973,
+ "fn": 229642,
+ "fn_rate": 0.7554982382608295,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998063439753,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997847581892783,
+ "recall": 0.2445017617391705,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74319,
+ "tp_rate": 0.2445017617391705,
+ "truth_threshold": 22.3
+ },
+ {
+ "f1": 0.39246939369100187,
+ "fn": 229747,
+ "fn_rate": 0.7558436773138659,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998090100946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997844537249091,
+ "recall": 0.24415632268613408,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74214,
+ "tp_rate": 0.24415632268613408,
+ "truth_threshold": 22.32
+ },
+ {
+ "f1": 0.39207295463081,
+ "fn": 229840,
+ "fn_rate": 0.7561496376179839,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998116395085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997841833362558,
+ "recall": 0.2438503623820161,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 74121,
+ "tp_rate": 0.2438503623820161,
+ "truth_threshold": 22.34
+ },
+ {
+ "f1": 0.3915422306414232,
+ "fn": 229965,
+ "fn_rate": 0.7565608745858844,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998142327226,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997838188401881,
+ "recall": 0.24343912541411564,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73996,
+ "tp_rate": 0.24343912541411564,
+ "truth_threshold": 22.36
+ },
+ {
+ "f1": 0.3910090830175097,
+ "fn": 230090,
+ "fn_rate": 0.7569721115537849,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998167902351,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997834531108314,
+ "recall": 0.24302788844621515,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73871,
+ "tp_rate": 0.24302788844621515,
+ "truth_threshold": 22.38
+ },
+ {
+ "f1": 0.39050321924771264,
+ "fn": 230209,
+ "fn_rate": 0.7573636091472261,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998193125376,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997831037848389,
+ "recall": 0.2426363908527739,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73752,
+ "tp_rate": 0.2426363908527739,
+ "truth_threshold": 22.400000000000002
+ },
+ {
+ "f1": 0.39001731927312017,
+ "fn": 230323,
+ "fn_rate": 0.7577386572619513,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998218001148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999782768077769,
+ "recall": 0.24226134273804864,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73638,
+ "tp_rate": 0.24226134273804864,
+ "truth_threshold": 22.42
+ },
+ {
+ "f1": 0.389559956345296,
+ "fn": 230430,
+ "fn_rate": 0.7580906761064742,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998242534449,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997824520374726,
+ "recall": 0.24190932389352582,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73531,
+ "tp_rate": 0.24190932389352582,
+ "truth_threshold": 22.44
+ },
+ {
+ "f1": 0.389138545022893,
+ "fn": 230529,
+ "fn_rate": 0.7584163757850514,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998266729992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997821588062302,
+ "recall": 0.24158362421494864,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73432,
+ "tp_rate": 0.24158362421494864,
+ "truth_threshold": 22.46
+ },
+ {
+ "f1": 0.38862089438307074,
+ "fn": 230650,
+ "fn_rate": 0.7588144531699791,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998290592429,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997817993372154,
+ "recall": 0.24118554683002097,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73311,
+ "tp_rate": 0.24118554683002097,
+ "truth_threshold": 22.48
+ },
+ {
+ "f1": 0.3880654791890932,
+ "fn": 230780,
+ "fn_rate": 0.7592421396165956,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998314126344,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997814118064948,
+ "recall": 0.24075786038340444,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73181,
+ "tp_rate": 0.24075786038340444,
+ "truth_threshold": 22.5
+ },
+ {
+ "f1": 0.3875267881771309,
+ "fn": 230906,
+ "fn_rate": 0.7596566664802392,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998337336261,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99978103488388,
+ "recall": 0.24034333351976075,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 73055,
+ "tp_rate": 0.24034333351976075,
+ "truth_threshold": 22.52
+ },
+ {
+ "f1": 0.38695880583075526,
+ "fn": 231039,
+ "fn_rate": 0.7600942226140853,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999836022664,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997806356083249,
+ "recall": 0.23990577738591465,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72922,
+ "tp_rate": 0.23990577738591465,
+ "truth_threshold": 22.54
+ },
+ {
+ "f1": 0.3864997133697106,
+ "fn": 231146,
+ "fn_rate": 0.7604462414586082,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998382801881,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997803133281158,
+ "recall": 0.23955375854139183,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72815,
+ "tp_rate": 0.23955375854139183,
+ "truth_threshold": 22.56
+ },
+ {
+ "f1": 0.38601996389508336,
+ "fn": 231258,
+ "fn_rate": 0.7608147097818471,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998405066322,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997799749721531,
+ "recall": 0.239185290218153,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72703,
+ "tp_rate": 0.239185290218153,
+ "truth_threshold": 22.580000000000002
+ },
+ {
+ "f1": 0.3855142048321392,
+ "fn": 231376,
+ "fn_rate": 0.761202917479545,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998427024241,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997796173606425,
+ "recall": 0.23879708252045492,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72585,
+ "tp_rate": 0.23879708252045492,
+ "truth_threshold": 22.6
+ },
+ {
+ "f1": 0.3849995484032069,
+ "fn": 231496,
+ "fn_rate": 0.7615977049687296,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999844867986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999779252493757,
+ "recall": 0.23840229503127047,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72465,
+ "tp_rate": 0.23840229503127047,
+ "truth_threshold": 22.62
+ },
+ {
+ "f1": 0.3845961716283865,
+ "fn": 231590,
+ "fn_rate": 0.7619069551685907,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999847003734,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997789658364071,
+ "recall": 0.2380930448314093,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72371,
+ "tp_rate": 0.2380930448314093,
+ "truth_threshold": 22.64
+ },
+ {
+ "f1": 0.3839659755449229,
+ "fn": 231737,
+ "fn_rate": 0.7623905698428417,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998491100784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997785160575858,
+ "recall": 0.23760943015715832,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72224,
+ "tp_rate": 0.23760943015715832,
+ "truth_threshold": 22.66
+ },
+ {
+ "f1": 0.383487994894839,
+ "fn": 231848,
+ "fn_rate": 0.7627557482703373,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998511874243,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997781752138529,
+ "recall": 0.23724425172966268,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72113,
+ "tp_rate": 0.23724425172966268,
+ "truth_threshold": 22.68
+ },
+ {
+ "f1": 0.3831440653174118,
+ "fn": 231928,
+ "fn_rate": 0.7630189399297936,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998532361707,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997779289094921,
+ "recall": 0.23698106007020636,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 72033,
+ "tp_rate": 0.23698106007020636,
+ "truth_threshold": 22.7
+ },
+ {
+ "f1": 0.38262789645907047,
+ "fn": 232048,
+ "fn_rate": 0.7634137274189781,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998552567114,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997775584256697,
+ "recall": 0.2365862725810219,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71913,
+ "tp_rate": 0.2365862725810219,
+ "truth_threshold": 22.72
+ },
+ {
+ "f1": 0.3821630626267357,
+ "fn": 232156,
+ "fn_rate": 0.7637690361592441,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998572494347,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997772239317191,
+ "recall": 0.2362309638407559,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71805,
+ "tp_rate": 0.2362309638407559,
+ "truth_threshold": 22.740000000000002
+ },
+ {
+ "f1": 0.38166349895918183,
+ "fn": 232272,
+ "fn_rate": 0.7641506640654557,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998592147237,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997768635381076,
+ "recall": 0.23584933593454424,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71689,
+ "tp_rate": 0.23584933593454424,
+ "truth_threshold": 22.76
+ },
+ {
+ "f1": 0.38095669264078486,
+ "fn": 232436,
+ "fn_rate": 0.7646902069673412,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998611529559,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997763520219175,
+ "recall": 0.23530979303265878,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71525,
+ "tp_rate": 0.23530979303265878,
+ "truth_threshold": 22.78
+ },
+ {
+ "f1": 0.3804444539162773,
+ "fn": 232555,
+ "fn_rate": 0.7650817045607825,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999863064504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997759793901039,
+ "recall": 0.23491829543921752,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71406,
+ "tp_rate": 0.23491829543921752,
+ "truth_threshold": 22.8
+ },
+ {
+ "f1": 0.38009059419131364,
+ "fn": 232637,
+ "fn_rate": 0.7653514760117252,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998649497351,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99977572189515,
+ "recall": 0.23464852398827482,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71324,
+ "tp_rate": 0.23464852398827482,
+ "truth_threshold": 22.82
+ },
+ {
+ "f1": 0.3795412262043745,
+ "fn": 232764,
+ "fn_rate": 0.765769292771112,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998668090118,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997753219215593,
+ "recall": 0.23423070722888792,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71197,
+ "tp_rate": 0.23423070722888792,
+ "truth_threshold": 22.84
+ },
+ {
+ "f1": 0.37905732918824087,
+ "fn": 232876,
+ "fn_rate": 0.7661377610943509,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998686426912,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997749680032629,
+ "recall": 0.23386223890564908,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 71085,
+ "tp_rate": 0.23386223890564908,
+ "truth_threshold": 22.86
+ },
+ {
+ "f1": 0.37863901601220384,
+ "fn": 232973,
+ "fn_rate": 0.7664568809814417,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998704511259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997746605825024,
+ "recall": 0.23354311901855832,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70988,
+ "tp_rate": 0.23354311901855832,
+ "truth_threshold": 22.88
+ },
+ {
+ "f1": 0.3781925081763422,
+ "fn": 233076,
+ "fn_rate": 0.7667957402429917,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998722346632,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997743332252014,
+ "recall": 0.23320425975700831,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70885,
+ "tp_rate": 0.23320425975700831,
+ "truth_threshold": 22.900000000000002
+ },
+ {
+ "f1": 0.37756594327437315,
+ "fn": 233221,
+ "fn_rate": 0.7672727751257563,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998739936462,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997738707671434,
+ "recall": 0.23272722487424374,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70740,
+ "tp_rate": 0.23272722487424374,
+ "truth_threshold": 22.92
+ },
+ {
+ "f1": 0.3771448401046394,
+ "fn": 233318,
+ "fn_rate": 0.7675918950128471,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998757284128,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997735603390934,
+ "recall": 0.23240810498715295,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70643,
+ "tp_rate": 0.23240810498715295,
+ "truth_threshold": 22.94
+ },
+ {
+ "f1": 0.3766941866302107,
+ "fn": 233422,
+ "fn_rate": 0.7679340441701402,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998774392962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997732265608391,
+ "recall": 0.23206595582985975,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70539,
+ "tp_rate": 0.23206595582985975,
+ "truth_threshold": 22.96
+ },
+ {
+ "f1": 0.3762085875150907,
+ "fn": 233534,
+ "fn_rate": 0.7683025124933791,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998791266254,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997728660051389,
+ "recall": 0.23169748750662092,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70427,
+ "tp_rate": 0.23169748750662092,
+ "truth_threshold": 22.98
+ },
+ {
+ "f1": 0.37562722099019424,
+ "fn": 233668,
+ "fn_rate": 0.7687433585229684,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998807907247,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997724331166707,
+ "recall": 0.2312566414770316,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70293,
+ "tp_rate": 0.2312566414770316,
+ "truth_threshold": 23
+ },
+ {
+ "f1": 0.3751670390523941,
+ "fn": 233774,
+ "fn_rate": 0.7690920874717481,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998824319137,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997720895118443,
+ "recall": 0.230907912528252,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70187,
+ "tp_rate": 0.230907912528252,
+ "truth_threshold": 23.02
+ },
+ {
+ "f1": 0.37460765598849305,
+ "fn": 233903,
+ "fn_rate": 0.7695164840226213,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998840505082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997716699489112,
+ "recall": 0.23048351597737868,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 70058,
+ "tp_rate": 0.23048351597737868,
+ "truth_threshold": 23.04
+ },
+ {
+ "f1": 0.37412415357131396,
+ "fn": 234014,
+ "fn_rate": 0.7698816624501169,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999885646819,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997713076912083,
+ "recall": 0.23011833754988303,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69947,
+ "tp_rate": 0.23011833754988303,
+ "truth_threshold": 23.06
+ },
+ {
+ "f1": 0.37365976844222826,
+ "fn": 234121,
+ "fn_rate": 0.7702336812946398,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998872211527,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997709573980761,
+ "recall": 0.22976631870536024,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69840,
+ "tp_rate": 0.22976631870536024,
+ "truth_threshold": 23.080000000000002
+ },
+ {
+ "f1": 0.37325405914525156,
+ "fn": 234214,
+ "fn_rate": 0.7705396415987578,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998887738123,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997706520648482,
+ "recall": 0.22946035840124226,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69747,
+ "tp_rate": 0.22946035840124226,
+ "truth_threshold": 23.1
+ },
+ {
+ "f1": 0.3727489775379542,
+ "fn": 234330,
+ "fn_rate": 0.7709212695049694,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999890305096,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997702700762416,
+ "recall": 0.2290787304950306,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69631,
+ "tp_rate": 0.2290787304950306,
+ "truth_threshold": 23.12
+ },
+ {
+ "f1": 0.37225765340273204,
+ "fn": 234443,
+ "fn_rate": 0.7712930277239515,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998918152979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997698967411626,
+ "recall": 0.22870697227604858,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69518,
+ "tp_rate": 0.22870697227604858,
+ "truth_threshold": 23.14
+ },
+ {
+ "f1": 0.37156877450875353,
+ "fn": 234601,
+ "fn_rate": 0.7718128312513777,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999998933047085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997693726937269,
+ "recall": 0.22818716874862235,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69360,
+ "tp_rate": 0.22818716874862235,
+ "truth_threshold": 23.16
+ },
+ {
+ "f1": 0.37096661825626076,
+ "fn": 234739,
+ "fn_rate": 0.7722668368639398,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999894773614,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997689130246397,
+ "recall": 0.2277331631360602,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 69222,
+ "tp_rate": 0.2277331631360602,
+ "truth_threshold": 23.18
+ },
+ {
+ "f1": 0.3704358920750307,
+ "fn": 234861,
+ "fn_rate": 0.7726682041446107,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999998962222966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997974361200336,
+ "recall": 0.22733179585538935,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 69100,
+ "tp_rate": 0.22733179585538935,
+ "truth_threshold": 23.2
+ },
+ {
+ "f1": 0.3699552771849294,
+ "fn": 234971,
+ "fn_rate": 0.7730300926763631,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999998976510348,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997971132108283,
+ "recall": 0.22696990732363692,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68990,
+ "tp_rate": 0.22696990732363692,
+ "truth_threshold": 23.22
+ },
+ {
+ "f1": 0.36950936271328266,
+ "fn": 235073,
+ "fn_rate": 0.7733656620421698,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999998990601031,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997968128646484,
+ "recall": 0.2266343379578301,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68888,
+ "tp_rate": 0.2266343379578301,
+ "truth_threshold": 23.240000000000002
+ },
+ {
+ "f1": 0.36901069891723093,
+ "fn": 235187,
+ "fn_rate": 0.7737407101568952,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999004497723,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997964761295575,
+ "recall": 0.22625928984310487,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68774,
+ "tp_rate": 0.22625928984310487,
+ "truth_threshold": 23.26
+ },
+ {
+ "f1": 0.3685204864801039,
+ "fn": 235299,
+ "fn_rate": 0.7741091784801339,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999018203096,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997961442134079,
+ "recall": 0.22589082151986603,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68662,
+ "tp_rate": 0.22589082151986603,
+ "truth_threshold": 23.28
+ },
+ {
+ "f1": 0.36794235766595795,
+ "fn": 235431,
+ "fn_rate": 0.7745434447182369,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999031719783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997957516339869,
+ "recall": 0.22545655528176312,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68530,
+ "tp_rate": 0.22545655528176312,
+ "truth_threshold": 23.3
+ },
+ {
+ "f1": 0.3674602705736397,
+ "fn": 235541,
+ "fn_rate": 0.7749053332499893,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999045050382,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997954233275858,
+ "recall": 0.2250946667500107,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68420,
+ "tp_rate": 0.2250946667500107,
+ "truth_threshold": 23.32
+ },
+ {
+ "f1": 0.36699544438714116,
+ "fn": 235647,
+ "fn_rate": 0.7752540621987689,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999058197454,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997951059594895,
+ "recall": 0.2247459378012311,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68314,
+ "tp_rate": 0.2247459378012311,
+ "truth_threshold": 23.34
+ },
+ {
+ "f1": 0.36649524147307444,
+ "fn": 235761,
+ "fn_rate": 0.7756291103134941,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999071163527,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997947635382766,
+ "recall": 0.22437088968650584,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68200,
+ "tp_rate": 0.22437088968650584,
+ "truth_threshold": 23.36
+ },
+ {
+ "f1": 0.36591567618709714,
+ "fn": 235893,
+ "fn_rate": 0.7760633765515971,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999083951091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997943656179313,
+ "recall": 0.22393662344840293,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 68068,
+ "tp_rate": 0.22393662344840293,
+ "truth_threshold": 23.38
+ },
+ {
+ "f1": 0.3653620710052808,
+ "fn": 236019,
+ "fn_rate": 0.7764779034152408,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999096562606,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997939843428101,
+ "recall": 0.22352209658475922,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 67942,
+ "tp_rate": 0.22352209658475922,
+ "truth_threshold": 23.400000000000002
+ },
+ {
+ "f1": 0.36479391481166684,
+ "fn": 236148,
+ "fn_rate": 0.776902299966114,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999109000495,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997935925221519,
+ "recall": 0.22309770003388593,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 67813,
+ "tp_rate": 0.22309770003388593,
+ "truth_threshold": 23.42
+ },
+ {
+ "f1": 0.3641691286869763,
+ "fn": 236290,
+ "fn_rate": 0.7773694651616491,
+ "fp": 14,
+ "fp_rate": 0.00008052039178922062,
+ "match_probability": 0.9999999121267147,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997931594888084,
+ "recall": 0.22263053483835096,
+ "row_count": 477830,
+ "tn": 173855,
+ "tn_rate": 0.9999194796082108,
+ "tp": 67671,
+ "tp_rate": 0.22263053483835096,
+ "truth_threshold": 23.44
+ },
+ {
+ "f1": 0.36362168185659915,
+ "fn": 236415,
+ "fn_rate": 0.7777807021295495,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999133364921,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998223748482785,
+ "recall": 0.22221929787045047,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 67546,
+ "tp_rate": 0.22221929787045047,
+ "truth_threshold": 23.46
+ },
+ {
+ "f1": 0.3632462294781845,
+ "fn": 236500,
+ "fn_rate": 0.7780603432677219,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999145296141,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998221510826553,
+ "recall": 0.22193965673227817,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 67461,
+ "tp_rate": 0.22193965673227817,
+ "truth_threshold": 23.48
+ },
+ {
+ "f1": 0.36268199274991514,
+ "fn": 236628,
+ "fn_rate": 0.778481449922852,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999157063101,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999821813052194,
+ "recall": 0.22151855007714805,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 67333,
+ "tp_rate": 0.22151855007714805,
+ "truth_threshold": 23.5
+ },
+ {
+ "f1": 0.3620344974377489,
+ "fn": 236775,
+ "fn_rate": 0.7789650645971029,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999168668061,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998214232566446,
+ "recall": 0.2210349354028971,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 67186,
+ "tp_rate": 0.2210349354028971,
+ "truth_threshold": 23.52
+ },
+ {
+ "f1": 0.3615170250268164,
+ "fn": 236892,
+ "fn_rate": 0.7793499823990577,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999180113253,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998211117902237,
+ "recall": 0.22065001760094222,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 67069,
+ "tp_rate": 0.22065001760094222,
+ "truth_threshold": 23.54
+ },
+ {
+ "f1": 0.361048806263075,
+ "fn": 236998,
+ "fn_rate": 0.7796987113478374,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999191400875,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998208286674132,
+ "recall": 0.2203012886521626,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66963,
+ "tp_rate": 0.2203012886521626,
+ "truth_threshold": 23.56
+ },
+ {
+ "f1": 0.3606422107409045,
+ "fn": 237090,
+ "fn_rate": 0.7800013817562121,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999202533097,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998205822107262,
+ "recall": 0.21999861824378786,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66871,
+ "tp_rate": 0.21999861824378786,
+ "truth_threshold": 23.580000000000002
+ },
+ {
+ "f1": 0.3601204123800327,
+ "fn": 237208,
+ "fn_rate": 0.7803895894539102,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999213512059,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998202651089643,
+ "recall": 0.2196104105460898,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66753,
+ "tp_rate": 0.2196104105460898,
+ "truth_threshold": 23.6
+ },
+ {
+ "f1": 0.35956287101996764,
+ "fn": 237334,
+ "fn_rate": 0.7808041163175539,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999224339869,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998199252689867,
+ "recall": 0.2191958836824461,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66627,
+ "tp_rate": 0.2191958836824461,
+ "truth_threshold": 23.62
+ },
+ {
+ "f1": 0.3590315266681062,
+ "fn": 237454,
+ "fn_rate": 0.7811989038067384,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999235018612,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999819600414919,
+ "recall": 0.21880109619326163,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66507,
+ "tp_rate": 0.21880109619326163,
+ "truth_threshold": 23.64
+ },
+ {
+ "f1": 0.35845205050385043,
+ "fn": 237585,
+ "fn_rate": 0.7816298801490981,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999245550335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998192444417666,
+ "recall": 0.21837011985090193,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66376,
+ "tp_rate": 0.21837011985090193,
+ "truth_threshold": 23.66
+ },
+ {
+ "f1": 0.3581008453290842,
+ "fn": 237664,
+ "fn_rate": 0.7818897819128112,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999255937067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998190290910736,
+ "recall": 0.2181102180871888,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66297,
+ "tp_rate": 0.2181102180871888,
+ "truth_threshold": 23.68
+ },
+ {
+ "f1": 0.35751183348823135,
+ "fn": 237797,
+ "fn_rate": 0.7823273380466573,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.99999992661808,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999818665377176,
+ "recall": 0.2176726619533427,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66164,
+ "tp_rate": 0.2176726619533427,
+ "truth_threshold": 23.7
+ },
+ {
+ "f1": 0.35710347958621136,
+ "fn": 237889,
+ "fn_rate": 0.7826300084550321,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999276283504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998184129289994,
+ "recall": 0.21736999154496794,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 66072,
+ "tp_rate": 0.21736999154496794,
+ "truth_threshold": 23.72
+ },
+ {
+ "f1": 0.3566771546271368,
+ "fn": 237985,
+ "fn_rate": 0.7829458384463797,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999286247123,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999818148754319,
+ "recall": 0.21705416155362037,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65976,
+ "tp_rate": 0.21705416155362037,
+ "truth_threshold": 23.740000000000002
+ },
+ {
+ "f1": 0.35615630881048693,
+ "fn": 238102,
+ "fn_rate": 0.7833307562483345,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999296073568,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998178257503302,
+ "recall": 0.21666924375166552,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65859,
+ "tp_rate": 0.21666924375166552,
+ "truth_threshold": 23.76
+ },
+ {
+ "f1": 0.35548582557887903,
+ "fn": 238253,
+ "fn_rate": 0.7838275305055583,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999305764732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998174071819842,
+ "recall": 0.21617246949444172,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65708,
+ "tp_rate": 0.21617246949444172,
+ "truth_threshold": 23.78
+ },
+ {
+ "f1": 0.3549642281174573,
+ "fn": 238370,
+ "fn_rate": 0.7842124483075131,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999315322473,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998170815359053,
+ "recall": 0.21578755169248687,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65591,
+ "tp_rate": 0.21578755169248687,
+ "truth_threshold": 23.8
+ },
+ {
+ "f1": 0.35452439209232833,
+ "fn": 238469,
+ "fn_rate": 0.7845381479860903,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.999999932474863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998168050806058,
+ "recall": 0.2154618520139097,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65492,
+ "tp_rate": 0.2154618520139097,
+ "truth_threshold": 23.82
+ },
+ {
+ "f1": 0.3541804281676719,
+ "fn": 238546,
+ "fn_rate": 0.7847914699583171,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999334045014,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998165894814067,
+ "recall": 0.21520853004168297,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65415,
+ "tp_rate": 0.21520853004168297,
+ "truth_threshold": 23.84
+ },
+ {
+ "f1": 0.3535439980067381,
+ "fn": 238689,
+ "fn_rate": 0.7852619250495951,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999343213413,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998161877335947,
+ "recall": 0.2147380749504048,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65272,
+ "tp_rate": 0.2147380749504048,
+ "truth_threshold": 23.86
+ },
+ {
+ "f1": 0.35303551594289273,
+ "fn": 238803,
+ "fn_rate": 0.7856369731643205,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999352255587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998158661961025,
+ "recall": 0.21436302683567957,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65158,
+ "tp_rate": 0.21436302683567957,
+ "truth_threshold": 23.88
+ },
+ {
+ "f1": 0.35261600494260725,
+ "fn": 238897,
+ "fn_rate": 0.7859462233641816,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999361173275,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998156002212797,
+ "recall": 0.2140537766358184,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 65064,
+ "tp_rate": 0.2140537766358184,
+ "truth_threshold": 23.900000000000002
+ },
+ {
+ "f1": 0.3522409419111429,
+ "fn": 238981,
+ "fn_rate": 0.7862225746066107,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999369968191,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998153618906942,
+ "recall": 0.2137774253933893,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64980,
+ "tp_rate": 0.2137774253933893,
+ "truth_threshold": 23.92
+ },
+ {
+ "f1": 0.35186922221921,
+ "fn": 239064,
+ "fn_rate": 0.7864956359532966,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999378642025,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998151257914927,
+ "recall": 0.21350436404670337,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64897,
+ "tp_rate": 0.21350436404670337,
+ "truth_threshold": 23.94
+ },
+ {
+ "f1": 0.35138653115017277,
+ "fn": 239172,
+ "fn_rate": 0.7868509446935626,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999387196443,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998148176725667,
+ "recall": 0.21314905530643735,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64789,
+ "tp_rate": 0.21314905530643735,
+ "truth_threshold": 23.96
+ },
+ {
+ "f1": 0.3509303965713666,
+ "fn": 239274,
+ "fn_rate": 0.7871865140593695,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.999999939563309,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998145257268273,
+ "recall": 0.21281348594063054,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64687,
+ "tp_rate": 0.21281348594063054,
+ "truth_threshold": 23.98
+ },
+ {
+ "f1": 0.35047400951817625,
+ "fn": 239376,
+ "fn_rate": 0.7875220834251763,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999403953588,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998142328591111,
+ "recall": 0.21247791657482373,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64585,
+ "tp_rate": 0.21247791657482373,
+ "truth_threshold": 24
+ },
+ {
+ "f1": 0.3500442379404118,
+ "fn": 239472,
+ "fn_rate": 0.7878379134165239,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999412159535,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998139563727694,
+ "recall": 0.21216208658347616,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64489,
+ "tp_rate": 0.21216208658347616,
+ "truth_threshold": 24.02
+ },
+ {
+ "f1": 0.3494314788067028,
+ "fn": 239609,
+ "fn_rate": 0.7882886291333427,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999420252508,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998135603753651,
+ "recall": 0.21171137086665723,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64352,
+ "tp_rate": 0.21171137086665723,
+ "truth_threshold": 24.04
+ },
+ {
+ "f1": 0.3487894573879223,
+ "fn": 239752,
+ "fn_rate": 0.7887590842246209,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999428234062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998131452328678,
+ "recall": 0.21124091577537907,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64209,
+ "tp_rate": 0.21124091577537907,
+ "truth_threshold": 24.060000000000002
+ },
+ {
+ "f1": 0.3482475683312503,
+ "fn": 239873,
+ "fn_rate": 0.7891571616095486,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999436105732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998127925117005,
+ "recall": 0.2108428383904514,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 64088,
+ "tp_rate": 0.2108428383904514,
+ "truth_threshold": 24.080000000000002
+ },
+ {
+ "f1": 0.34769090276569836,
+ "fn": 239997,
+ "fn_rate": 0.7895651086817059,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999443869031,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998124296611229,
+ "recall": 0.21043489131829413,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63964,
+ "tp_rate": 0.21043489131829413,
+ "truth_threshold": 24.1
+ },
+ {
+ "f1": 0.3471733610278885,
+ "fn": 240112,
+ "fn_rate": 0.7899434466921743,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.999999945152545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998120918870672,
+ "recall": 0.2100565533078257,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63849,
+ "tp_rate": 0.2100565533078257,
+ "truth_threshold": 24.12
+ },
+ {
+ "f1": 0.3467742812700554,
+ "fn": 240201,
+ "fn_rate": 0.7902362474133194,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999459076461,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998118296431036,
+ "recall": 0.20976375258668054,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63760,
+ "tp_rate": 0.20976375258668054,
+ "truth_threshold": 24.14
+ },
+ {
+ "f1": 0.3462885992209431,
+ "fn": 240309,
+ "fn_rate": 0.7905915561535855,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999466523515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115104297562,
+ "recall": 0.2094084438464145,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63652,
+ "tp_rate": 0.2094084438464145,
+ "truth_threshold": 24.16
+ },
+ {
+ "f1": 0.3457701831242687,
+ "fn": 240424,
+ "fn_rate": 0.7909698941640539,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999473868042,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998111693338998,
+ "recall": 0.20903010583594606,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63537,
+ "tp_rate": 0.20903010583594606,
+ "truth_threshold": 24.18
+ },
+ {
+ "f1": 0.3452533247685047,
+ "fn": 240539,
+ "fn_rate": 0.7913482321745224,
+ "fp": 12,
+ "fp_rate": 0.00006901747867647482,
+ "match_probability": 0.9999999481111456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998108270012926,
+ "recall": 0.20865176782547762,
+ "row_count": 477830,
+ "tn": 173857,
+ "tn_rate": 0.9999309825213235,
+ "tp": 63422,
+ "tp_rate": 0.20865176782547762,
+ "truth_threshold": 24.2
+ },
+ {
+ "f1": 0.3448136914842061,
+ "fn": 240637,
+ "fn_rate": 0.7916706419573564,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999488255148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998421069251903,
+ "recall": 0.20832935804264363,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 63324,
+ "tp_rate": 0.20832935804264363,
+ "truth_threshold": 24.22
+ },
+ {
+ "f1": 0.3442096088898573,
+ "fn": 240771,
+ "fn_rate": 0.7921114879869456,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999949530049,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998417721518987,
+ "recall": 0.2078885120130543,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 63190,
+ "tp_rate": 0.2078885120130543,
+ "truth_threshold": 24.240000000000002
+ },
+ {
+ "f1": 0.343650214147931,
+ "fn": 240895,
+ "fn_rate": 0.7925194350591029,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999502248836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998414610945526,
+ "recall": 0.20748056494089703,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 63066,
+ "tp_rate": 0.20748056494089703,
+ "truth_threshold": 24.26
+ },
+ {
+ "f1": 0.3432168746934104,
+ "fn": 240991,
+ "fn_rate": 0.7928352650504505,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999509101524,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998412194347411,
+ "recall": 0.20716473494954946,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62970,
+ "tp_rate": 0.20716473494954946,
+ "truth_threshold": 24.28
+ },
+ {
+ "f1": 0.3428320648973984,
+ "fn": 241076,
+ "fn_rate": 0.7931149061886229,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999515859868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998410048493521,
+ "recall": 0.20688509381137712,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62885,
+ "tp_rate": 0.20688509381137712,
+ "truth_threshold": 24.3
+ },
+ {
+ "f1": 0.34246702328954615,
+ "fn": 241157,
+ "fn_rate": 0.7933813877438224,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999522525168,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998407998216958,
+ "recall": 0.20661861225617761,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62804,
+ "tp_rate": 0.20661861225617761,
+ "truth_threshold": 24.32
+ },
+ {
+ "f1": 0.34190645029319516,
+ "fn": 241281,
+ "fn_rate": 0.7937893348159797,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999529098704,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998404849258254,
+ "recall": 0.20621066518402031,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62680,
+ "tp_rate": 0.20621066518402031,
+ "truth_threshold": 24.34
+ },
+ {
+ "f1": 0.3414848400525974,
+ "fn": 241374,
+ "fn_rate": 0.7940952951200977,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999535581742,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998402479352045,
+ "recall": 0.20590470487990237,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62587,
+ "tp_rate": 0.20590470487990237,
+ "truth_threshold": 24.36
+ },
+ {
+ "f1": 0.3410196095553603,
+ "fn": 241477,
+ "fn_rate": 0.7944341543816477,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999541975525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998399846385253,
+ "recall": 0.20556584561835237,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62484,
+ "tp_rate": 0.20556584561835237,
+ "truth_threshold": 24.38
+ },
+ {
+ "f1": 0.3404978981274226,
+ "fn": 241592,
+ "fn_rate": 0.794812492392116,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999548281283,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998396896391414,
+ "recall": 0.2051875076078839,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62369,
+ "tp_rate": 0.2051875076078839,
+ "truth_threshold": 24.400000000000002
+ },
+ {
+ "f1": 0.3398815960502889,
+ "fn": 241728,
+ "fn_rate": 0.7952599182131919,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999554500227,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998393393634626,
+ "recall": 0.20474008178680816,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62233,
+ "tp_rate": 0.20474008178680816,
+ "truth_threshold": 24.42
+ },
+ {
+ "f1": 0.3393156649675752,
+ "fn": 241853,
+ "fn_rate": 0.7956711551810923,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999560633555,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998390160661966,
+ "recall": 0.2043288448189077,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62108,
+ "tp_rate": 0.2043288448189077,
+ "truth_threshold": 24.44
+ },
+ {
+ "f1": 0.3389617486338798,
+ "fn": 241931,
+ "fn_rate": 0.7959277670490622,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999566682441,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999838813668601,
+ "recall": 0.2040722329509378,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 62030,
+ "tp_rate": 0.2040722329509378,
+ "truth_threshold": 24.46
+ },
+ {
+ "f1": 0.3383388362888942,
+ "fn": 242068,
+ "fn_rate": 0.7963784827658812,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999572648053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998384569406975,
+ "recall": 0.20362151723411884,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61893,
+ "tp_rate": 0.20362151723411884,
+ "truth_threshold": 24.48
+ },
+ {
+ "f1": 0.3378082056946624,
+ "fn": 242185,
+ "fn_rate": 0.796763400567836,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999578531533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998381510374519,
+ "recall": 0.203236599432164,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61776,
+ "tp_rate": 0.203236599432164,
+ "truth_threshold": 24.5
+ },
+ {
+ "f1": 0.3372990476815613,
+ "fn": 242297,
+ "fn_rate": 0.7971318688910748,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999584334013,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998378571196939,
+ "recall": 0.20286813110892515,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61664,
+ "tp_rate": 0.20286813110892515,
+ "truth_threshold": 24.52
+ },
+ {
+ "f1": 0.3366530594376895,
+ "fn": 242439,
+ "fn_rate": 0.7975990340866098,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999959005661,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998374829357083,
+ "recall": 0.2024009659133902,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61522,
+ "tp_rate": 0.2024009659133902,
+ "truth_threshold": 24.54
+ },
+ {
+ "f1": 0.33617051556436206,
+ "fn": 242545,
+ "fn_rate": 0.7979477630353894,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999595700421,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999837202487546,
+ "recall": 0.20205223696461058,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61416,
+ "tp_rate": 0.20205223696461058,
+ "truth_threshold": 24.560000000000002
+ },
+ {
+ "f1": 0.33586081167640247,
+ "fn": 242613,
+ "fn_rate": 0.7981714759459273,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999601266533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998370220672121,
+ "recall": 0.20182852405407273,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61348,
+ "tp_rate": 0.20182852405407273,
+ "truth_threshold": 24.580000000000002
+ },
+ {
+ "f1": 0.33534134346830813,
+ "fn": 242727,
+ "fn_rate": 0.7985465240606525,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999606756014,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998367186989746,
+ "recall": 0.20145347593934748,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61234,
+ "tp_rate": 0.20145347593934748,
+ "truth_threshold": 24.6
+ },
+ {
+ "f1": 0.33502221102389806,
+ "fn": 242797,
+ "fn_rate": 0.7987768167626768,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999961216992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998365318599405,
+ "recall": 0.20122318323732322,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61164,
+ "tp_rate": 0.20122318323732322,
+ "truth_threshold": 24.62
+ },
+ {
+ "f1": 0.33451134452170006,
+ "fn": 242909,
+ "fn_rate": 0.7991452850859156,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999617509291,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998362320264649,
+ "recall": 0.20085471491408438,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 61052,
+ "tp_rate": 0.20085471491408438,
+ "truth_threshold": 24.64
+ },
+ {
+ "f1": 0.3340585985027019,
+ "fn": 243008,
+ "fn_rate": 0.7994709847644929,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999622775153,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998359660777849,
+ "recall": 0.20052901523550717,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60953,
+ "tp_rate": 0.20052901523550717,
+ "truth_threshold": 24.66
+ },
+ {
+ "f1": 0.33352886998092146,
+ "fn": 243124,
+ "fn_rate": 0.7998526126707045,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999627968519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998356533600671,
+ "recall": 0.20014738732929555,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60837,
+ "tp_rate": 0.20014738732929555,
+ "truth_threshold": 24.68
+ },
+ {
+ "f1": 0.33280314165990216,
+ "fn": 243283,
+ "fn_rate": 0.8003757060938739,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999633090386,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998352227788031,
+ "recall": 0.19962429390612613,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60678,
+ "tp_rate": 0.19962429390612613,
+ "truth_threshold": 24.7
+ },
+ {
+ "f1": 0.33232751053370785,
+ "fn": 243387,
+ "fn_rate": 0.8007178552511671,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999638141739,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998349399181302,
+ "recall": 0.1992821447488329,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60574,
+ "tp_rate": 0.1992821447488329,
+ "truth_threshold": 24.72
+ },
+ {
+ "f1": 0.3318241437407048,
+ "fn": 243497,
+ "fn_rate": 0.8010797437829196,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999643123548,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998346396798624,
+ "recall": 0.19892025621708048,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60464,
+ "tp_rate": 0.19892025621708048,
+ "truth_threshold": 24.740000000000002
+ },
+ {
+ "f1": 0.3313241437613566,
+ "fn": 243606,
+ "fn_rate": 0.8014383424189288,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999648036773,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998343410916922,
+ "recall": 0.19856165758107125,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60355,
+ "tp_rate": 0.19856165758107125,
+ "truth_threshold": 24.76
+ },
+ {
+ "f1": 0.33082566389175655,
+ "fn": 243715,
+ "fn_rate": 0.8017969410549379,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999652882353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998340414232607,
+ "recall": 0.19820305894506204,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60246,
+ "tp_rate": 0.19820305894506204,
+ "truth_threshold": 24.78
+ },
+ {
+ "f1": 0.3301874872966782,
+ "fn": 243854,
+ "fn_rate": 0.8022542365632434,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999657661225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998336577008168,
+ "recall": 0.19774576343675668,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60107,
+ "tp_rate": 0.19774576343675668,
+ "truth_threshold": 24.8
+ },
+ {
+ "f1": 0.3297195419478207,
+ "fn": 243956,
+ "fn_rate": 0.8025898059290502,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999662374304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998333749895859,
+ "recall": 0.1974101940709499,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 60005,
+ "tp_rate": 0.1974101940709499,
+ "truth_threshold": 24.82
+ },
+ {
+ "f1": 0.32923296781817685,
+ "fn": 244062,
+ "fn_rate": 0.8029385348778297,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999667022497,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998330801715936,
+ "recall": 0.19706146512217027,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59899,
+ "tp_rate": 0.19706146512217027,
+ "truth_threshold": 24.84
+ },
+ {
+ "f1": 0.3287148528134244,
+ "fn": 244175,
+ "fn_rate": 0.8033102930968118,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999671606695,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999832764733427,
+ "recall": 0.19668970690318824,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59786,
+ "tp_rate": 0.19668970690318824,
+ "truth_threshold": 24.86
+ },
+ {
+ "f1": 0.3283012434486589,
+ "fn": 244265,
+ "fn_rate": 0.8036063837137001,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999676127783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998325126452953,
+ "recall": 0.1963936162862999,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59696,
+ "tp_rate": 0.1963936162862999,
+ "truth_threshold": 24.88
+ },
+ {
+ "f1": 0.3277715429979755,
+ "fn": 244380,
+ "fn_rate": 0.8039847217241686,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999680586628,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998321894245775,
+ "recall": 0.19601527827583143,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59581,
+ "tp_rate": 0.19601527827583143,
+ "truth_threshold": 24.900000000000002
+ },
+ {
+ "f1": 0.3272101917838373,
+ "fn": 244502,
+ "fn_rate": 0.8043860890048394,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999684984086,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998318451630261,
+ "recall": 0.19561391099516057,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59459,
+ "tp_rate": 0.19561391099516057,
+ "truth_threshold": 24.92
+ },
+ {
+ "f1": 0.3267682077647564,
+ "fn": 244598,
+ "fn_rate": 0.804701918996187,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999689321003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998315732740471,
+ "recall": 0.195298081003813,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59363,
+ "tp_rate": 0.195298081003813,
+ "truth_threshold": 24.94
+ },
+ {
+ "f1": 0.32623383202374334,
+ "fn": 244714,
+ "fn_rate": 0.8050835469023987,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999693598213,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998312435661609,
+ "recall": 0.19491645309760133,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59247,
+ "tp_rate": 0.19491645309760133,
+ "truth_threshold": 24.96
+ },
+ {
+ "f1": 0.3257267810128116,
+ "fn": 244824,
+ "fn_rate": 0.8054454354341511,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999697816536,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998309297174836,
+ "recall": 0.1945545645658489,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59137,
+ "tp_rate": 0.1945545645658489,
+ "truth_threshold": 24.98
+ },
+ {
+ "f1": 0.3252655588857546,
+ "fn": 244924,
+ "fn_rate": 0.8057744250084715,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999701976785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998306433857774,
+ "recall": 0.1942255749915285,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 59037,
+ "tp_rate": 0.1942255749915285,
+ "truth_threshold": 25
+ },
+ {
+ "f1": 0.32473945559860457,
+ "fn": 245038,
+ "fn_rate": 0.8061494731231967,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999706079759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998303157823291,
+ "recall": 0.19385052687680326,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58923,
+ "tp_rate": 0.19385052687680326,
+ "truth_threshold": 25.02
+ },
+ {
+ "f1": 0.3243109151047409,
+ "fn": 245131,
+ "fn_rate": 0.8064554334273147,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999710126245,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998300475866757,
+ "recall": 0.19354456657268532,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58830,
+ "tp_rate": 0.19354456657268532,
+ "truth_threshold": 25.04
+ },
+ {
+ "f1": 0.3236640379418739,
+ "fn": 245271,
+ "fn_rate": 0.8069160188313632,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999714117023,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998296422487223,
+ "recall": 0.19308398116863676,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58690,
+ "tp_rate": 0.19308398116863676,
+ "truth_threshold": 25.060000000000002
+ },
+ {
+ "f1": 0.32327567185914124,
+ "fn": 245355,
+ "fn_rate": 0.8071923700737924,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999718052858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998293981165552,
+ "recall": 0.19280762992620765,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58606,
+ "tp_rate": 0.19280762992620765,
+ "truth_threshold": 25.080000000000002
+ },
+ {
+ "f1": 0.3228408583046882,
+ "fn": 245449,
+ "fn_rate": 0.8075016202736536,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999721934507,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998291240900857,
+ "recall": 0.19249837972634648,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58512,
+ "tp_rate": 0.19249837972634648,
+ "truth_threshold": 25.1
+ },
+ {
+ "f1": 0.3224280755200141,
+ "fn": 245538,
+ "fn_rate": 0.8077944209947987,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999725762717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998288638269471,
+ "recall": 0.19220557900520133,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58423,
+ "tp_rate": 0.19220557900520133,
+ "truth_threshold": 25.12
+ },
+ {
+ "f1": 0.32199834391388354,
+ "fn": 245631,
+ "fn_rate": 0.8081003812989166,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999729538223,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998285910181693,
+ "recall": 0.19189961870108335,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58330,
+ "tp_rate": 0.19189961870108335,
+ "truth_threshold": 25.14
+ },
+ {
+ "f1": 0.32153880983539573,
+ "fn": 245730,
+ "fn_rate": 0.8084260809774938,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999973326175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998282996514483,
+ "recall": 0.19157391902250617,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58231,
+ "tp_rate": 0.19157391902250617,
+ "truth_threshold": 25.16
+ },
+ {
+ "f1": 0.32101963600209893,
+ "fn": 245842,
+ "fn_rate": 0.8087945493007327,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999736934014,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998279688279517,
+ "recall": 0.19120545069926734,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58119,
+ "tp_rate": 0.19120545069926734,
+ "truth_threshold": 25.18
+ },
+ {
+ "f1": 0.3205558164590182,
+ "fn": 245942,
+ "fn_rate": 0.8091235388750531,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999740555722,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998276723707112,
+ "recall": 0.19087646112494694,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 58019,
+ "tp_rate": 0.19087646112494694,
+ "truth_threshold": 25.2
+ },
+ {
+ "f1": 0.32011583502351515,
+ "fn": 246037,
+ "fn_rate": 0.8094360789706574,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999744127567,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998273897883799,
+ "recall": 0.19056392102934258,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57924,
+ "tp_rate": 0.19056392102934258,
+ "truth_threshold": 25.22
+ },
+ {
+ "f1": 0.3196088295290586,
+ "fn": 246146,
+ "fn_rate": 0.8097946776066667,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999747650239,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998270644185041,
+ "recall": 0.19020532239333335,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57815,
+ "tp_rate": 0.19020532239333335,
+ "truth_threshold": 25.240000000000002
+ },
+ {
+ "f1": 0.31932080812995545,
+ "fn": 246208,
+ "fn_rate": 0.8099986511427453,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999751124412,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998268787978464,
+ "recall": 0.19000134885725473,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57753,
+ "tp_rate": 0.19000134885725473,
+ "truth_threshold": 25.26
+ },
+ {
+ "f1": 0.31883745368065924,
+ "fn": 246312,
+ "fn_rate": 0.8103408003000385,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999754550756,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998265665377478,
+ "recall": 0.1896591996999615,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57649,
+ "tp_rate": 0.1896591996999615,
+ "truth_threshold": 25.28
+ },
+ {
+ "f1": 0.3183817305724133,
+ "fn": 246410,
+ "fn_rate": 0.8106632100828725,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999757929928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998262712600545,
+ "recall": 0.18933678991712752,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57551,
+ "tp_rate": 0.18933678991712752,
+ "truth_threshold": 25.3
+ },
+ {
+ "f1": 0.31786991024094385,
+ "fn": 246520,
+ "fn_rate": 0.8110250986146249,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999761262578,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998259386259595,
+ "recall": 0.1889749013853751,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57441,
+ "tp_rate": 0.1889749013853751,
+ "truth_threshold": 25.32
+ },
+ {
+ "f1": 0.3172422192451201,
+ "fn": 246655,
+ "fn_rate": 0.8114692345399575,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999764549347,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999825528648196,
+ "recall": 0.18853076546004258,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57306,
+ "tp_rate": 0.18853076546004258,
+ "truth_threshold": 25.34
+ },
+ {
+ "f1": 0.31657501093776824,
+ "fn": 246798,
+ "fn_rate": 0.8119396896312356,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999767790866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998250922638309,
+ "recall": 0.18806031036876442,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57163,
+ "tp_rate": 0.18806031036876442,
+ "truth_threshold": 25.36
+ },
+ {
+ "f1": 0.3160247745252288,
+ "fn": 246916,
+ "fn_rate": 0.8123278973289336,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999770987757,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998247305231794,
+ "recall": 0.18767210267106635,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 57045,
+ "tp_rate": 0.18767210267106635,
+ "truth_threshold": 25.38
+ },
+ {
+ "f1": 0.3156664025400484,
+ "fn": 246993,
+ "fn_rate": 0.8125812193011603,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999774140637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998244936642213,
+ "recall": 0.18741878069883966,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56968,
+ "tp_rate": 0.18741878069883966,
+ "truth_threshold": 25.400000000000002
+ },
+ {
+ "f1": 0.315100687881425,
+ "fn": 247114,
+ "fn_rate": 0.812979296686088,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999777250109,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998241201611059,
+ "recall": 0.187020703313912,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56847,
+ "tp_rate": 0.187020703313912,
+ "truth_threshold": 25.42
+ },
+ {
+ "f1": 0.31463913638909063,
+ "fn": 247213,
+ "fn_rate": 0.8133049963646652,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999780316773,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998238133831354,
+ "recall": 0.18669500363533478,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56748,
+ "tp_rate": 0.18669500363533478,
+ "truth_threshold": 25.44
+ },
+ {
+ "f1": 0.3141194870884728,
+ "fn": 247324,
+ "fn_rate": 0.8136701747921609,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999783341216,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998234681448267,
+ "recall": 0.18632982520783917,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56637,
+ "tp_rate": 0.18632982520783917,
+ "truth_threshold": 25.46
+ },
+ {
+ "f1": 0.3137415886787638,
+ "fn": 247405,
+ "fn_rate": 0.8139366563473603,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999786324022,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998232153590496,
+ "recall": 0.18606334365263966,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56556,
+ "tp_rate": 0.18606334365263966,
+ "truth_threshold": 25.48
+ },
+ {
+ "f1": 0.3133430621292746,
+ "fn": 247490,
+ "fn_rate": 0.8142162974855327,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999789265762,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998229493103875,
+ "recall": 0.18578370251446732,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56471,
+ "tp_rate": 0.18578370251446732,
+ "truth_threshold": 25.5
+ },
+ {
+ "f1": 0.3128188049843199,
+ "fn": 247602,
+ "fn_rate": 0.8145847658087715,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999792167003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998225975270095,
+ "recall": 0.1854152341912285,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56359,
+ "tp_rate": 0.1854152341912285,
+ "truth_threshold": 25.52
+ },
+ {
+ "f1": 0.31223799714607753,
+ "fn": 247726,
+ "fn_rate": 0.8149927128809288,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.99999997950283,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998222064183483,
+ "recall": 0.1850072871190712,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56235,
+ "tp_rate": 0.1850072871190712,
+ "truth_threshold": 25.54
+ },
+ {
+ "f1": 0.31194362223789507,
+ "fn": 247789,
+ "fn_rate": 0.8151999763127507,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999797850206,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998220070485209,
+ "recall": 0.18480002368724935,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56172,
+ "tp_rate": 0.18480002368724935,
+ "truth_threshold": 25.560000000000002
+ },
+ {
+ "f1": 0.31159114389504206,
+ "fn": 247864,
+ "fn_rate": 0.8154467184934909,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999800633262,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998217691197177,
+ "recall": 0.18455328150650907,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 56097,
+ "tp_rate": 0.18455328150650907,
+ "truth_threshold": 25.580000000000002
+ },
+ {
+ "f1": 0.3110901211245694,
+ "fn": 247971,
+ "fn_rate": 0.8157987373380138,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999803378004,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998214285714285,
+ "recall": 0.18420126266198625,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55990,
+ "tp_rate": 0.18420126266198625,
+ "truth_threshold": 25.6
+ },
+ {
+ "f1": 0.31075606435299674,
+ "fn": 248042,
+ "fn_rate": 0.8160323199357812,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999806084956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998212018809562,
+ "recall": 0.18396768006421876,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55919,
+ "tp_rate": 0.18396768006421876,
+ "truth_threshold": 25.62
+ },
+ {
+ "f1": 0.3102733291456588,
+ "fn": 248145,
+ "fn_rate": 0.8163711791973313,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999808754642,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998208719951277,
+ "recall": 0.18362882080266876,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55816,
+ "tp_rate": 0.18362882080266876,
+ "truth_threshold": 25.64
+ },
+ {
+ "f1": 0.3098167866774167,
+ "fn": 248242,
+ "fn_rate": 0.816690299084422,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999811387573,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998205602110212,
+ "recall": 0.183309700915578,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55719,
+ "tp_rate": 0.183309700915578,
+ "truth_threshold": 25.66
+ },
+ {
+ "f1": 0.30927152686234266,
+ "fn": 248358,
+ "fn_rate": 0.8170719269906337,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999813984256,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998201859277507,
+ "recall": 0.18292807300936634,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55603,
+ "tp_rate": 0.18292807300936634,
+ "truth_threshold": 25.68
+ },
+ {
+ "f1": 0.30873532521003727,
+ "fn": 248472,
+ "fn_rate": 0.8174469751053589,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999981654519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998198165732716,
+ "recall": 0.1825530248946411,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55489,
+ "tp_rate": 0.1825530248946411,
+ "truth_threshold": 25.7
+ },
+ {
+ "f1": 0.3082081992942774,
+ "fn": 248584,
+ "fn_rate": 0.8178154434285978,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999819070866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998194522180295,
+ "recall": 0.18218455657140226,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55377,
+ "tp_rate": 0.18218455657140226,
+ "truth_threshold": 25.72
+ },
+ {
+ "f1": 0.3077184309271693,
+ "fn": 248688,
+ "fn_rate": 0.8181575925858909,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999821561771,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99981911256625,
+ "recall": 0.18184240741410904,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55273,
+ "tp_rate": 0.18184240741410904,
+ "truth_threshold": 25.740000000000002
+ },
+ {
+ "f1": 0.3073470615095054,
+ "fn": 248767,
+ "fn_rate": 0.8184174943496041,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999824018383,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998188537062531,
+ "recall": 0.18158250565039594,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55194,
+ "tp_rate": 0.18158250565039594,
+ "truth_threshold": 25.76
+ },
+ {
+ "f1": 0.3069832464465535,
+ "fn": 248844,
+ "fn_rate": 0.8186708163218308,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999826441174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998186006856894,
+ "recall": 0.18132918367816925,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55117,
+ "tp_rate": 0.18132918367816925,
+ "truth_threshold": 25.78
+ },
+ {
+ "f1": 0.30658325023258926,
+ "fn": 248929,
+ "fn_rate": 0.8189504574600031,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999828830609,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998183205552124,
+ "recall": 0.18104954253999692,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 55032,
+ "tp_rate": 0.18104954253999692,
+ "truth_threshold": 25.8
+ },
+ {
+ "f1": 0.30609640568403457,
+ "fn": 249032,
+ "fn_rate": 0.8192893167215531,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999831187149,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998179799413895,
+ "recall": 0.18071068327844692,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54929,
+ "tp_rate": 0.18071068327844692,
+ "truth_threshold": 25.82
+ },
+ {
+ "f1": 0.30563932196587534,
+ "fn": 249129,
+ "fn_rate": 0.8196084366086439,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999833511245,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998176579993435,
+ "recall": 0.18039156339135612,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54832,
+ "tp_rate": 0.18039156339135612,
+ "truth_threshold": 25.84
+ },
+ {
+ "f1": 0.30501575264170405,
+ "fn": 249261,
+ "fn_rate": 0.8200427028467467,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999835803345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998172180588558,
+ "recall": 0.1799572971532532,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54700,
+ "tp_rate": 0.1799572971532532,
+ "truth_threshold": 25.86
+ },
+ {
+ "f1": 0.3046320310103461,
+ "fn": 249342,
+ "fn_rate": 0.8203091844019463,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999838063889,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998169470427795,
+ "recall": 0.1796908155980537,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54619,
+ "tp_rate": 0.1796908155980537,
+ "truth_threshold": 25.88
+ },
+ {
+ "f1": 0.30421199442119945,
+ "fn": 249431,
+ "fn_rate": 0.8206019851230915,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999840293311,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998166483314999,
+ "recall": 0.17939801487690854,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54530,
+ "tp_rate": 0.17939801487690854,
+ "truth_threshold": 25.900000000000002
+ },
+ {
+ "f1": 0.3037861666806172,
+ "fn": 249521,
+ "fn_rate": 0.8208980757399797,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999984249204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998163452708907,
+ "recall": 0.1791019242600202,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54440,
+ "tp_rate": 0.1791019242600202,
+ "truth_threshold": 25.92
+ },
+ {
+ "f1": 0.30308545142940085,
+ "fn": 249669,
+ "fn_rate": 0.821384980309974,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999844660499,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998158447202681,
+ "recall": 0.17861501969002602,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54292,
+ "tp_rate": 0.17861501969002602,
+ "truth_threshold": 25.94
+ },
+ {
+ "f1": 0.30274435355537566,
+ "fn": 249741,
+ "fn_rate": 0.8216218528034847,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999846799104,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998156002212797,
+ "recall": 0.17837814719651535,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54220,
+ "tp_rate": 0.17837814719651535,
+ "truth_threshold": 25.96
+ },
+ {
+ "f1": 0.30231220329516895,
+ "fn": 249832,
+ "fn_rate": 0.8219212333161162,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999848908265,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998152902713386,
+ "recall": 0.17807876668388378,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54129,
+ "tp_rate": 0.17807876668388378,
+ "truth_threshold": 25.98
+ },
+ {
+ "f1": 0.3018190147375948,
+ "fn": 249936,
+ "fn_rate": 0.8222633824734095,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999985098839,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998149347645044,
+ "recall": 0.1777366175265906,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 54025,
+ "tp_rate": 0.1777366175265906,
+ "truth_threshold": 26
+ },
+ {
+ "f1": 0.30137858966979786,
+ "fn": 250029,
+ "fn_rate": 0.8225693427775274,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999853039877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998146156983426,
+ "recall": 0.17743065722247262,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53932,
+ "tp_rate": 0.17743065722247262,
+ "truth_threshold": 26.02
+ },
+ {
+ "f1": 0.30100272759792523,
+ "fn": 250108,
+ "fn_rate": 0.8228292445412405,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999855063121,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998143437981546,
+ "recall": 0.17717075545875952,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53853,
+ "tp_rate": 0.17717075545875952,
+ "truth_threshold": 26.04
+ },
+ {
+ "f1": 0.30051436878005144,
+ "fn": 250211,
+ "fn_rate": 0.8231681038027905,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999857058509,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998139880952381,
+ "recall": 0.17683189619720951,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53750,
+ "tp_rate": 0.17683189619720951,
+ "truth_threshold": 26.060000000000002
+ },
+ {
+ "f1": 0.2999670027907809,
+ "fn": 250326,
+ "fn_rate": 0.823546441813259,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999859026427,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998135893373101,
+ "recall": 0.17645355818674105,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53635,
+ "tp_rate": 0.17645355818674105,
+ "truth_threshold": 26.080000000000002
+ },
+ {
+ "f1": 0.2994399906012409,
+ "fn": 250437,
+ "fn_rate": 0.8239116202407546,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999860967251,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998132028243732,
+ "recall": 0.17608837975924543,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53524,
+ "tp_rate": 0.17608837975924543,
+ "truth_threshold": 26.1
+ },
+ {
+ "f1": 0.2989776103951337,
+ "fn": 250534,
+ "fn_rate": 0.8242307401278454,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999862881357,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998128637460936,
+ "recall": 0.17576925987215467,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53427,
+ "tp_rate": 0.17576925987215467,
+ "truth_threshold": 26.12
+ },
+ {
+ "f1": 0.29844438349109675,
+ "fn": 250646,
+ "fn_rate": 0.8245992084510841,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999986476911,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998124706985466,
+ "recall": 0.1754007915489158,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53315,
+ "tp_rate": 0.1754007915489158,
+ "truth_threshold": 26.14
+ },
+ {
+ "f1": 0.2980347144456887,
+ "fn": 250732,
+ "fn_rate": 0.8248821394849997,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999866630873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998121677717463,
+ "recall": 0.17511786051500028,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53229,
+ "tp_rate": 0.17511786051500028,
+ "truth_threshold": 26.16
+ },
+ {
+ "f1": 0.2975827770061383,
+ "fn": 250827,
+ "fn_rate": 0.8251946795806041,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999868467006,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998118320036128,
+ "recall": 0.17480532041939592,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53134,
+ "tp_rate": 0.17480532041939592,
+ "truth_threshold": 26.18
+ },
+ {
+ "f1": 0.29720524555634603,
+ "fn": 250906,
+ "fn_rate": 0.8254545813443172,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999870277859,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115518703476,
+ "recall": 0.1745454186556828,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 53055,
+ "tp_rate": 0.1745454186556828,
+ "truth_threshold": 26.2
+ },
+ {
+ "f1": 0.29684829808096375,
+ "fn": 250981,
+ "fn_rate": 0.8257013235250575,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999872063782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998112851481411,
+ "recall": 0.17429867647494252,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52980,
+ "tp_rate": 0.17429867647494252,
+ "truth_threshold": 26.22
+ },
+ {
+ "f1": 0.29636147603461416,
+ "fn": 251083,
+ "fn_rate": 0.8260368928908642,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999873825117,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998109211919528,
+ "recall": 0.1739631071091357,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52878,
+ "tp_rate": 0.1739631071091357,
+ "truth_threshold": 26.240000000000002
+ },
+ {
+ "f1": 0.2958974301475535,
+ "fn": 251180,
+ "fn_rate": 0.8263560127779551,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999875562204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998105737720445,
+ "recall": 0.17364398722204494,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52781,
+ "tp_rate": 0.17364398722204494,
+ "truth_threshold": 26.26
+ },
+ {
+ "f1": 0.2955438799140962,
+ "fn": 251254,
+ "fn_rate": 0.8265994650629521,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999877275376,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998103078703264,
+ "recall": 0.17340053493704785,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52707,
+ "tp_rate": 0.17340053493704785,
+ "truth_threshold": 26.28
+ },
+ {
+ "f1": 0.29499893427266916,
+ "fn": 251368,
+ "fn_rate": 0.8269745131776775,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999878964962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998098967739483,
+ "recall": 0.1730254868223226,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52593,
+ "tp_rate": 0.1730254868223226,
+ "truth_threshold": 26.3
+ },
+ {
+ "f1": 0.29452062480362673,
+ "fn": 251468,
+ "fn_rate": 0.8273035027519978,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999880631287,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998095346932556,
+ "recall": 0.1726964972480022,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52493,
+ "tp_rate": 0.1726964972480022,
+ "truth_threshold": 26.32
+ },
+ {
+ "f1": 0.29410510247603655,
+ "fn": 251555,
+ "fn_rate": 0.8275897236816565,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999882274672,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998092185592186,
+ "recall": 0.17241027631834346,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52406,
+ "tp_rate": 0.17241027631834346,
+ "truth_threshold": 26.34
+ },
+ {
+ "f1": 0.29351133467320883,
+ "fn": 251679,
+ "fn_rate": 0.8279976707538138,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999883895432,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998087661592595,
+ "recall": 0.1720023292461862,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52282,
+ "tp_rate": 0.1720023292461862,
+ "truth_threshold": 26.36
+ },
+ {
+ "f1": 0.2927829261443415,
+ "fn": 251831,
+ "fn_rate": 0.8284977349067808,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999885493878,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998082086689681,
+ "recall": 0.1715022650932192,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52130,
+ "tp_rate": 0.1715022650932192,
+ "truth_threshold": 26.38
+ },
+ {
+ "f1": 0.2923417451293229,
+ "fn": 251923,
+ "fn_rate": 0.8288004053151555,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999887070317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998078696587765,
+ "recall": 0.17119959468484444,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 52038,
+ "tp_rate": 0.17119959468484444,
+ "truth_threshold": 26.400000000000002
+ },
+ {
+ "f1": 0.29196190262130195,
+ "fn": 252002,
+ "fn_rate": 0.8290603070788687,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999888625053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998075775943351,
+ "recall": 0.17093969292113134,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51959,
+ "tp_rate": 0.17093969292113134,
+ "truth_threshold": 26.42
+ },
+ {
+ "f1": 0.29146830192284995,
+ "fn": 252105,
+ "fn_rate": 0.8293991663404187,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999890158385,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998071954652373,
+ "recall": 0.17060083365958134,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51856,
+ "tp_rate": 0.17060083365958134,
+ "truth_threshold": 26.44
+ },
+ {
+ "f1": 0.29106487285729543,
+ "fn": 252189,
+ "fn_rate": 0.8296755175828479,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999891670607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998068827005523,
+ "recall": 0.1703244824171522,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51772,
+ "tp_rate": 0.1703244824171522,
+ "truth_threshold": 26.46
+ },
+ {
+ "f1": 0.29079581428563395,
+ "fn": 252245,
+ "fn_rate": 0.8298597517444672,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999893162009,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998066736264161,
+ "recall": 0.17014024825553278,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51716,
+ "tp_rate": 0.17014024825553278,
+ "truth_threshold": 26.48
+ },
+ {
+ "f1": 0.2904016827707225,
+ "fn": 252327,
+ "fn_rate": 0.8301295231954099,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999894632879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998063666640848,
+ "recall": 0.16987047680459005,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51634,
+ "tp_rate": 0.16987047680459005,
+ "truth_threshold": 26.5
+ },
+ {
+ "f1": 0.2900458470452564,
+ "fn": 252401,
+ "fn_rate": 0.830372975480407,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.99999998960835,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998060888113244,
+ "recall": 0.16962702451959297,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51560,
+ "tp_rate": 0.16962702451959297,
+ "truth_threshold": 26.52
+ },
+ {
+ "f1": 0.2895743770960409,
+ "fn": 252499,
+ "fn_rate": 0.830695385263241,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999897514149,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998057196145477,
+ "recall": 0.16930461473675898,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51462,
+ "tp_rate": 0.16930461473675898,
+ "truth_threshold": 26.54
+ },
+ {
+ "f1": 0.28908338727380184,
+ "fn": 252601,
+ "fn_rate": 0.8310309546290479,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999898925103,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998053338524431,
+ "recall": 0.1689690453709522,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51360,
+ "tp_rate": 0.1689690453709522,
+ "truth_threshold": 26.560000000000002
+ },
+ {
+ "f1": 0.28879844175730146,
+ "fn": 252660,
+ "fn_rate": 0.8312250584778968,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999900316631,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998051100153963,
+ "recall": 0.16877494152210318,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51301,
+ "tp_rate": 0.16877494152210318,
+ "truth_threshold": 26.580000000000002
+ },
+ {
+ "f1": 0.28832628514474595,
+ "fn": 252758,
+ "fn_rate": 0.8315474682607308,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999901689001,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998047370784762,
+ "recall": 0.1684525317392692,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51203,
+ "tp_rate": 0.1684525317392692,
+ "truth_threshold": 26.6
+ },
+ {
+ "f1": 0.2880081552654404,
+ "fn": 252824,
+ "fn_rate": 0.8317646013797823,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999903042477,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998044851115413,
+ "recall": 0.16823539862021772,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51137,
+ "tp_rate": 0.16823539862021772,
+ "truth_threshold": 26.62
+ },
+ {
+ "f1": 0.2875894315813194,
+ "fn": 252911,
+ "fn_rate": 0.832050822309441,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999990437732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999804151978065,
+ "recall": 0.16794917769055898,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 51050,
+ "tp_rate": 0.16794917769055898,
+ "truth_threshold": 26.64
+ },
+ {
+ "f1": 0.2871745169524475,
+ "fn": 252997,
+ "fn_rate": 0.8323337533433566,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999905693786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998038215560874,
+ "recall": 0.16766624665664345,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50964,
+ "tp_rate": 0.16766624665664345,
+ "truth_threshold": 26.66
+ },
+ {
+ "f1": 0.2866724910520531,
+ "fn": 253101,
+ "fn_rate": 0.8326759025006497,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999906992127,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998034204835856,
+ "recall": 0.16732409749935023,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50860,
+ "tp_rate": 0.16732409749935023,
+ "truth_threshold": 26.68
+ },
+ {
+ "f1": 0.286212845609129,
+ "fn": 253196,
+ "fn_rate": 0.8329884425962542,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999908272594,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998030526834072,
+ "recall": 0.16701155740374587,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50765,
+ "tp_rate": 0.16701155740374587,
+ "truth_threshold": 26.7
+ },
+ {
+ "f1": 0.28580693186560346,
+ "fn": 253280,
+ "fn_rate": 0.8332647938386832,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999909535432,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998027263222268,
+ "recall": 0.16673520616131673,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50681,
+ "tp_rate": 0.16673520616131673,
+ "truth_threshold": 26.72
+ },
+ {
+ "f1": 0.28535810784131227,
+ "fn": 253373,
+ "fn_rate": 0.8335707541428012,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999910780885,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998023637297917,
+ "recall": 0.1664292458571988,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50588,
+ "tp_rate": 0.1664292458571988,
+ "truth_threshold": 26.740000000000002
+ },
+ {
+ "f1": 0.2848259829368483,
+ "fn": 253483,
+ "fn_rate": 0.8339326426745537,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999912009191,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998019331326256,
+ "recall": 0.16606735732544636,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50478,
+ "tp_rate": 0.16606735732544636,
+ "truth_threshold": 26.76
+ },
+ {
+ "f1": 0.2842354216173806,
+ "fn": 253605,
+ "fn_rate": 0.8343340099552246,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999913220586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998014533613946,
+ "recall": 0.16566599004477547,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50356,
+ "tp_rate": 0.16566599004477547,
+ "truth_threshold": 26.78
+ },
+ {
+ "f1": 0.2839060797497869,
+ "fn": 253673,
+ "fn_rate": 0.8345577228657624,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999914415304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998011849377709,
+ "recall": 0.16544227713423762,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50288,
+ "tp_rate": 0.16544227713423762,
+ "truth_threshold": 26.8
+ },
+ {
+ "f1": 0.28337710009882816,
+ "fn": 253782,
+ "fn_rate": 0.8349163215017716,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999915593574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998007531530814,
+ "recall": 0.1650836784982284,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50179,
+ "tp_rate": 0.1650836784982284,
+ "truth_threshold": 26.82
+ },
+ {
+ "f1": 0.28308217166354127,
+ "fn": 253843,
+ "fn_rate": 0.8351170051421071,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999916755622,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998005106926269,
+ "recall": 0.16488299485789296,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50118,
+ "tp_rate": 0.16488299485789296,
+ "truth_threshold": 26.84
+ },
+ {
+ "f1": 0.28250981721614826,
+ "fn": 253961,
+ "fn_rate": 0.8355052128398051,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999917901672,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998000399920016,
+ "recall": 0.1644947871601949,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 50000,
+ "tp_rate": 0.1644947871601949,
+ "truth_threshold": 26.86
+ },
+ {
+ "f1": 0.28210620309250384,
+ "fn": 254044,
+ "fn_rate": 0.835778274186491,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999919031943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997997075730567,
+ "recall": 0.16422172581350897,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49917,
+ "tp_rate": 0.16422172581350897,
+ "truth_threshold": 26.88
+ },
+ {
+ "f1": 0.28160120299391717,
+ "fn": 254148,
+ "fn_rate": 0.8361204233437842,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999920146655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997992894847761,
+ "recall": 0.16387957665621578,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49813,
+ "tp_rate": 0.16387957665621578,
+ "truth_threshold": 26.900000000000002
+ },
+ {
+ "f1": 0.2809792566788065,
+ "fn": 254276,
+ "fn_rate": 0.8365415299989143,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999992124602,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997987725123252,
+ "recall": 0.16345847000108565,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49685,
+ "tp_rate": 0.16345847000108565,
+ "truth_threshold": 26.92
+ },
+ {
+ "f1": 0.28047359370050234,
+ "fn": 254380,
+ "fn_rate": 0.8368836791562075,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999922330249,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997983505071485,
+ "recall": 0.16311632084379246,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49581,
+ "tp_rate": 0.16311632084379246,
+ "truth_threshold": 26.94
+ },
+ {
+ "f1": 0.2800608828006088,
+ "fn": 254465,
+ "fn_rate": 0.8371633202943799,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999923399552,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997980042823092,
+ "recall": 0.16283667970562013,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49496,
+ "tp_rate": 0.16283667970562013,
+ "truth_threshold": 26.96
+ },
+ {
+ "f1": 0.27923735769803393,
+ "fn": 254634,
+ "fn_rate": 0.8377193126749813,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999924454133,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999797312361919,
+ "recall": 0.16228068732501866,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49327,
+ "tp_rate": 0.16228068732501866,
+ "truth_threshold": 26.98
+ },
+ {
+ "f1": 0.2787209223311966,
+ "fn": 254740,
+ "fn_rate": 0.8380680416237609,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999925494194,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999796875952144,
+ "recall": 0.16193195837623905,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49221,
+ "tp_rate": 0.16193195837623905,
+ "truth_threshold": 27
+ },
+ {
+ "f1": 0.27813181522077773,
+ "fn": 254861,
+ "fn_rate": 0.8384661190086886,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999926519938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997963754836082,
+ "recall": 0.16153388099131138,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49100,
+ "tp_rate": 0.16153388099131138,
+ "truth_threshold": 27.02
+ },
+ {
+ "f1": 0.2776578444871294,
+ "fn": 254958,
+ "fn_rate": 0.8387852388957794,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999992753156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997959724970926,
+ "recall": 0.16121476110422062,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 49003,
+ "tp_rate": 0.16121476110422062,
+ "truth_threshold": 27.04
+ },
+ {
+ "f1": 0.277120930443457,
+ "fn": 255068,
+ "fn_rate": 0.8391471274275318,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999928529254,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997955135676748,
+ "recall": 0.1608528725724682,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48893,
+ "tp_rate": 0.1608528725724682,
+ "truth_threshold": 27.060000000000002
+ },
+ {
+ "f1": 0.2768433643418763,
+ "fn": 255125,
+ "fn_rate": 0.8393346514848944,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999929513212,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997952749457478,
+ "recall": 0.16066534851510555,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48836,
+ "tp_rate": 0.16066534851510555,
+ "truth_threshold": 27.080000000000002
+ },
+ {
+ "f1": 0.2763589144561507,
+ "fn": 255224,
+ "fn_rate": 0.8396603511634716,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999930483625,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997948591708208,
+ "recall": 0.16033964883652838,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48737,
+ "tp_rate": 0.16033964883652838,
+ "truth_threshold": 27.1
+ },
+ {
+ "f1": 0.2758953183669302,
+ "fn": 255319,
+ "fn_rate": 0.839972891259076,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999931440678,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997944586039629,
+ "recall": 0.160027108740924,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48642,
+ "tp_rate": 0.160027108740924,
+ "truth_threshold": 27.12
+ },
+ {
+ "f1": 0.275416011846338,
+ "fn": 255417,
+ "fn_rate": 0.84029530104191,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999932384555,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997940437451085,
+ "recall": 0.15970469895809003,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48544,
+ "tp_rate": 0.15970469895809003,
+ "truth_threshold": 27.14
+ },
+ {
+ "f1": 0.27500907976574207,
+ "fn": 255500,
+ "fn_rate": 0.8405683623885959,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999933315437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997936910730127,
+ "recall": 0.15943163761140408,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48461,
+ "tp_rate": 0.15943163761140408,
+ "truth_threshold": 27.16
+ },
+ {
+ "f1": 0.2746133106286363,
+ "fn": 255581,
+ "fn_rate": 0.8408348439437954,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999934233502,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997933457325894,
+ "recall": 0.15916515605620457,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48380,
+ "tp_rate": 0.15916515605620457,
+ "truth_threshold": 27.18
+ },
+ {
+ "f1": 0.2742255984012354,
+ "fn": 255660,
+ "fn_rate": 0.8410947457075085,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999935138929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997930078036058,
+ "recall": 0.15890525429249147,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48301,
+ "tp_rate": 0.15890525429249147,
+ "truth_threshold": 27.2
+ },
+ {
+ "f1": 0.27383926948936943,
+ "fn": 255739,
+ "fn_rate": 0.8413546474712217,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999993603189,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997926687676232,
+ "recall": 0.15864535252877837,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48222,
+ "tp_rate": 0.15864535252877837,
+ "truth_threshold": 27.22
+ },
+ {
+ "f1": 0.2732942893984924,
+ "fn": 255850,
+ "fn_rate": 0.8417198258987173,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999936912558,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997921905197316,
+ "recall": 0.15828017410128273,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48111,
+ "tp_rate": 0.15828017410128273,
+ "truth_threshold": 27.240000000000002
+ },
+ {
+ "f1": 0.2730449109450899,
+ "fn": 255901,
+ "fn_rate": 0.8418876105816206,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999937781102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997919700436863,
+ "recall": 0.15811238941837932,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 48060,
+ "tp_rate": 0.15811238941837932,
+ "truth_threshold": 27.26
+ },
+ {
+ "f1": 0.2724405242279232,
+ "fn": 256024,
+ "fn_rate": 0.8422922677580348,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999938637688,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999791436377667,
+ "recall": 0.15770773224196524,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47937,
+ "tp_rate": 0.15770773224196524,
+ "truth_threshold": 27.28
+ },
+ {
+ "f1": 0.271974804725251,
+ "fn": 256119,
+ "fn_rate": 0.8426048078536391,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999939482481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997910223188163,
+ "recall": 0.15739519214636088,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47842,
+ "tp_rate": 0.15739519214636088,
+ "truth_threshold": 27.3
+ },
+ {
+ "f1": 0.27155228786043684,
+ "fn": 256205,
+ "fn_rate": 0.8428877388875546,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999940315644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997906460662396,
+ "recall": 0.15711226111244533,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47756,
+ "tp_rate": 0.15711226111244533,
+ "truth_threshold": 27.32
+ },
+ {
+ "f1": 0.27116889616889617,
+ "fn": 256283,
+ "fn_rate": 0.8431443507555245,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999941137335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997903036403288,
+ "recall": 0.15685564924447545,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47678,
+ "tp_rate": 0.15685564924447545,
+ "truth_threshold": 27.34
+ },
+ {
+ "f1": 0.27065744259609037,
+ "fn": 256387,
+ "fn_rate": 0.8434864999128178,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999941947715,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997898453261601,
+ "recall": 0.15651350008718223,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47574,
+ "tp_rate": 0.15651350008718223,
+ "truth_threshold": 27.36
+ },
+ {
+ "f1": 0.27027780622987013,
+ "fn": 256464,
+ "fn_rate": 0.8437398218850445,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999942746939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997895047045698,
+ "recall": 0.15626017811495554,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47497,
+ "tp_rate": 0.15626017811495554,
+ "truth_threshold": 27.38
+ },
+ {
+ "f1": 0.26976582689177037,
+ "fn": 256568,
+ "fn_rate": 0.8440819710423376,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999943535158,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999789042887581,
+ "recall": 0.15591802895766232,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47393,
+ "tp_rate": 0.15591802895766232,
+ "truth_threshold": 27.400000000000002
+ },
+ {
+ "f1": 0.26923383515157034,
+ "fn": 256676,
+ "fn_rate": 0.8444372797826037,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999944312526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997885611586849,
+ "recall": 0.1555627202173963,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47285,
+ "tp_rate": 0.1555627202173963,
+ "truth_threshold": 27.42
+ },
+ {
+ "f1": 0.26884941539618085,
+ "fn": 256754,
+ "fn_rate": 0.8446938916505736,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999945079192,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997882118728424,
+ "recall": 0.1553061083494264,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47207,
+ "tp_rate": 0.1553061083494264,
+ "truth_threshold": 27.44
+ },
+ {
+ "f1": 0.26849024790375503,
+ "fn": 256827,
+ "fn_rate": 0.8449340540398275,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999945835303,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997878839300866,
+ "recall": 0.15506594596017254,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47134,
+ "tp_rate": 0.15506594596017254,
+ "truth_threshold": 27.46
+ },
+ {
+ "f1": 0.26810966646535317,
+ "fn": 256904,
+ "fn_rate": 0.8451873760120542,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999946581004,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999787536915461,
+ "recall": 0.15481262398794582,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 47057,
+ "tp_rate": 0.15481262398794582,
+ "truth_threshold": 27.48
+ },
+ {
+ "f1": 0.2677050030489021,
+ "fn": 256986,
+ "fn_rate": 0.8454571474629969,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999947316439,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997871661168458,
+ "recall": 0.1545428525370031,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46975,
+ "tp_rate": 0.1545428525370031,
+ "truth_threshold": 27.5
+ },
+ {
+ "f1": 0.2672169555873517,
+ "fn": 257085,
+ "fn_rate": 0.845782847141574,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999994804175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997867167171437,
+ "recall": 0.1542171528584259,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46876,
+ "tp_rate": 0.1542171528584259,
+ "truth_threshold": 27.52
+ },
+ {
+ "f1": 0.26686128390359604,
+ "fn": 257157,
+ "fn_rate": 0.8460197196350847,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999948757075,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997863886871449,
+ "recall": 0.15398028036491523,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46804,
+ "tp_rate": 0.15398028036491523,
+ "truth_threshold": 27.54
+ },
+ {
+ "f1": 0.26645033248548583,
+ "fn": 257240,
+ "fn_rate": 0.8462927809817707,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999949462551,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999786009287197,
+ "recall": 0.1537072190182293,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46721,
+ "tp_rate": 0.1537072190182293,
+ "truth_threshold": 27.560000000000002
+ },
+ {
+ "f1": 0.2659261921468627,
+ "fn": 257346,
+ "fn_rate": 0.8466415099305503,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999950158315,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997855227882038,
+ "recall": 0.1533584900694497,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46615,
+ "tp_rate": 0.1533584900694497,
+ "truth_threshold": 27.580000000000002
+ },
+ {
+ "f1": 0.265526213680871,
+ "fn": 257427,
+ "fn_rate": 0.8469079914857498,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.99999999508445,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999785149535923,
+ "recall": 0.15309200851425017,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46534,
+ "tp_rate": 0.15309200851425017,
+ "truth_threshold": 27.6
+ },
+ {
+ "f1": 0.2651896494652376,
+ "fn": 257495,
+ "fn_rate": 0.8471317043962877,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999951521238,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997848351837507,
+ "recall": 0.15286829560371232,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46466,
+ "tp_rate": 0.15286829560371232,
+ "truth_threshold": 27.62
+ },
+ {
+ "f1": 0.264589684741776,
+ "fn": 257616,
+ "fn_rate": 0.8475297817812154,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999995218866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997842735411498,
+ "recall": 0.15247021821878465,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46345,
+ "tp_rate": 0.15247021821878465,
+ "truth_threshold": 27.64
+ },
+ {
+ "f1": 0.26417917266269214,
+ "fn": 257699,
+ "fn_rate": 0.8478028431279013,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999952846893,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997838865836791,
+ "recall": 0.15219715687209873,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46262,
+ "tp_rate": 0.15219715687209873,
+ "truth_threshold": 27.66
+ },
+ {
+ "f1": 0.26363381906878175,
+ "fn": 257809,
+ "fn_rate": 0.8481647316596537,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999953496064,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997833716043499,
+ "recall": 0.1518352683403463,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46152,
+ "tp_rate": 0.1518352683403463,
+ "truth_threshold": 27.68
+ },
+ {
+ "f1": 0.26328088398295113,
+ "fn": 257880,
+ "fn_rate": 0.8483983142574212,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999954136297,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997830379032783,
+ "recall": 0.15160168574257882,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 46081,
+ "tp_rate": 0.15160168574257882,
+ "truth_threshold": 27.7
+ },
+ {
+ "f1": 0.262730753843516,
+ "fn": 257991,
+ "fn_rate": 0.8487634926849168,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999954767717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997825141365811,
+ "recall": 0.15123650731508317,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45970,
+ "tp_rate": 0.15123650731508317,
+ "truth_threshold": 27.72
+ },
+ {
+ "f1": 0.261960169932473,
+ "fn": 258146,
+ "fn_rate": 0.8492734265251134,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999955390442,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997817785051828,
+ "recall": 0.15072657347488658,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45815,
+ "tp_rate": 0.15072657347488658,
+ "truth_threshold": 27.740000000000002
+ },
+ {
+ "f1": 0.2615029139762192,
+ "fn": 258238,
+ "fn_rate": 0.8495760969334881,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999956004595,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997813395141364,
+ "recall": 0.15042390306651182,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45723,
+ "tp_rate": 0.15042390306651182,
+ "truth_threshold": 27.76
+ },
+ {
+ "f1": 0.2611705079141711,
+ "fn": 258305,
+ "fn_rate": 0.8497965199482829,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999956610293,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997810187010029,
+ "recall": 0.15020348005171716,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45656,
+ "tp_rate": 0.15020348005171716,
+ "truth_threshold": 27.78
+ },
+ {
+ "f1": 0.26074269039308806,
+ "fn": 258391,
+ "fn_rate": 0.8500794509821984,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999957207651,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997806055287407,
+ "recall": 0.14992054901780164,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45570,
+ "tp_rate": 0.14992054901780164,
+ "truth_threshold": 27.8
+ },
+ {
+ "f1": 0.2604184550584303,
+ "fn": 258456,
+ "fn_rate": 0.8502932942055066,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999957796787,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997802922113589,
+ "recall": 0.14970670579449338,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45505,
+ "tp_rate": 0.14970670579449338,
+ "truth_threshold": 27.82
+ },
+ {
+ "f1": 0.25977684015274255,
+ "fn": 258585,
+ "fn_rate": 0.8507176907563799,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999958377811,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997796677389503,
+ "recall": 0.14928230924362007,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45376,
+ "tp_rate": 0.14928230924362007,
+ "truth_threshold": 27.84
+ },
+ {
+ "f1": 0.25937251264079525,
+ "fn": 258666,
+ "fn_rate": 0.8509841723115794,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999958950836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997792738108376,
+ "recall": 0.14901582768842056,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45295,
+ "tp_rate": 0.14901582768842056,
+ "truth_threshold": 27.86
+ },
+ {
+ "f1": 0.2588398375520538,
+ "fn": 258773,
+ "fn_rate": 0.8513361911561023,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999959515972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997787512721802,
+ "recall": 0.14866380884389774,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45188,
+ "tp_rate": 0.14866380884389774,
+ "truth_threshold": 27.88
+ },
+ {
+ "f1": 0.25849494399725,
+ "fn": 258842,
+ "fn_rate": 0.8515631939623833,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999960073327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999778412993862,
+ "recall": 0.14843680603761666,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45119,
+ "tp_rate": 0.14843680603761666,
+ "truth_threshold": 27.900000000000002
+ },
+ {
+ "f1": 0.25812145071544407,
+ "fn": 258917,
+ "fn_rate": 0.8518099361431236,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999960623009,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999778044124828,
+ "recall": 0.1481900638568764,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 45044,
+ "tp_rate": 0.1481900638568764,
+ "truth_threshold": 27.92
+ },
+ {
+ "f1": 0.25761223460356764,
+ "fn": 259019,
+ "fn_rate": 0.8521455055089304,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999961165125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997775404876312,
+ "recall": 0.14785449449106958,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44942,
+ "tp_rate": 0.14785449449106958,
+ "truth_threshold": 27.94
+ },
+ {
+ "f1": 0.2570670061123152,
+ "fn": 259128,
+ "fn_rate": 0.8525041041449396,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999961699776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997769997546997,
+ "recall": 0.14749589585506034,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44833,
+ "tp_rate": 0.14749589585506034,
+ "truth_threshold": 27.96
+ },
+ {
+ "f1": 0.2566871601936179,
+ "fn": 259204,
+ "fn_rate": 0.8527541362214232,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999962227066,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997766211718453,
+ "recall": 0.14724586377857685,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44757,
+ "tp_rate": 0.14724586377857685,
+ "truth_threshold": 27.98
+ },
+ {
+ "f1": 0.25610280829580334,
+ "fn": 259321,
+ "fn_rate": 0.853139054023378,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999962747097,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997760358342666,
+ "recall": 0.146860945976622,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44640,
+ "tp_rate": 0.146860945976622,
+ "truth_threshold": 28
+ },
+ {
+ "f1": 0.25560242173825715,
+ "fn": 259421,
+ "fn_rate": 0.8534680435976983,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999963259969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997755331088665,
+ "recall": 0.1465319564023016,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44540,
+ "tp_rate": 0.1465319564023016,
+ "truth_threshold": 28.02
+ },
+ {
+ "f1": 0.25523195077431726,
+ "fn": 259495,
+ "fn_rate": 0.8537114958826955,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999996376578,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999775159636658,
+ "recall": 0.1462885041173045,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44466,
+ "tp_rate": 0.1462885041173045,
+ "truth_threshold": 28.04
+ },
+ {
+ "f1": 0.25470528116854035,
+ "fn": 259600,
+ "fn_rate": 0.8540569349357319,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999964264626,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997746275720628,
+ "recall": 0.1459430650642681,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44361,
+ "tp_rate": 0.1459430650642681,
+ "truth_threshold": 28.060000000000002
+ },
+ {
+ "f1": 0.2542800204453174,
+ "fn": 259685,
+ "fn_rate": 0.8543365760739042,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999964756606,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997741950051935,
+ "recall": 0.14566342392609577,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44276,
+ "tp_rate": 0.14566342392609577,
+ "truth_threshold": 28.080000000000002
+ },
+ {
+ "f1": 0.253868866396296,
+ "fn": 259767,
+ "fn_rate": 0.854606347524847,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999965241813,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997737761288571,
+ "recall": 0.14539365247515307,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44194,
+ "tp_rate": 0.14539365247515307,
+ "truth_threshold": 28.1
+ },
+ {
+ "f1": 0.25332130461764774,
+ "fn": 259876,
+ "fn_rate": 0.8549649461608562,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999965720339,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997732169180179,
+ "recall": 0.14503505383914383,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 44085,
+ "tp_rate": 0.14503505383914383,
+ "truth_threshold": 28.12
+ },
+ {
+ "f1": 0.2528896169209989,
+ "fn": 259962,
+ "fn_rate": 0.8552478771947717,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999966192277,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997727737508237,
+ "recall": 0.1447521228052283,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43999,
+ "tp_rate": 0.1447521228052283,
+ "truth_threshold": 28.14
+ },
+ {
+ "f1": 0.252337147128155,
+ "fn": 260072,
+ "fn_rate": 0.8556097657265241,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999966657718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997722043782319,
+ "recall": 0.1443902342734759,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43889,
+ "tp_rate": 0.1443902342734759,
+ "truth_threshold": 28.16
+ },
+ {
+ "f1": 0.2519006705542712,
+ "fn": 260159,
+ "fn_rate": 0.8558959866561828,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999996711675,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997717520314069,
+ "recall": 0.14410401334381714,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43802,
+ "tp_rate": 0.14410401334381714,
+ "truth_threshold": 28.18
+ },
+ {
+ "f1": 0.251488394834479,
+ "fn": 260241,
+ "fn_rate": 0.8561657581071256,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999967569464,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999771324033844,
+ "recall": 0.14383424189287441,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43720,
+ "tp_rate": 0.14383424189287441,
+ "truth_threshold": 28.2
+ },
+ {
+ "f1": 0.25112048282885235,
+ "fn": 260314,
+ "fn_rate": 0.8564059204963794,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999968015946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997709416588405,
+ "recall": 0.14359407950362052,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43647,
+ "tp_rate": 0.14359407950362052,
+ "truth_threshold": 28.22
+ },
+ {
+ "f1": 0.2506373697204781,
+ "fn": 260410,
+ "fn_rate": 0.856721750487727,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999968456279,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999770436858658,
+ "recall": 0.14327824951227294,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43551,
+ "tp_rate": 0.14327824951227294,
+ "truth_threshold": 28.240000000000002
+ },
+ {
+ "f1": 0.2502302555836979,
+ "fn": 260491,
+ "fn_rate": 0.8569882320429265,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999996889055,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999770009199632,
+ "recall": 0.14301176795707343,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43470,
+ "tp_rate": 0.14301176795707343,
+ "truth_threshold": 28.26
+ },
+ {
+ "f1": 0.2497768821073845,
+ "fn": 260581,
+ "fn_rate": 0.8572843226598149,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999969318843,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999769532150265,
+ "recall": 0.1427156773401851,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43380,
+ "tp_rate": 0.1427156773401851,
+ "truth_threshold": 28.28
+ },
+ {
+ "f1": 0.24944858128458966,
+ "fn": 260646,
+ "fn_rate": 0.8574981658831231,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.999999996974124,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997691863819965,
+ "recall": 0.14250183411687684,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43315,
+ "tp_rate": 0.14250183411687684,
+ "truth_threshold": 28.3
+ },
+ {
+ "f1": 0.2491518492278804,
+ "fn": 260705,
+ "fn_rate": 0.8576922697319722,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999970157821,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999768871631304,
+ "recall": 0.14230773026802782,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43256,
+ "tp_rate": 0.14230773026802782,
+ "truth_threshold": 28.32
+ },
+ {
+ "f1": 0.24868782660298328,
+ "fn": 260797,
+ "fn_rate": 0.8579949401403469,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999970568668,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997683791170612,
+ "recall": 0.14200505985965306,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43164,
+ "tp_rate": 0.14200505985965306,
+ "truth_threshold": 28.34
+ },
+ {
+ "f1": 0.24824808095710105,
+ "fn": 260884,
+ "fn_rate": 0.8582811610700057,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999970973857,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997679114350035,
+ "recall": 0.14171883892999432,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 43077,
+ "tp_rate": 0.14171883892999432,
+ "truth_threshold": 28.36
+ },
+ {
+ "f1": 0.24771287419799276,
+ "fn": 260990,
+ "fn_rate": 0.8586298900187853,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999971373469,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997673390567925,
+ "recall": 0.1413701099812147,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 42971,
+ "tp_rate": 0.1413701099812147,
+ "truth_threshold": 28.38
+ },
+ {
+ "f1": 0.24729428180984725,
+ "fn": 261073,
+ "fn_rate": 0.8589029513654712,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999971767579,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997668888992494,
+ "recall": 0.14109704863452877,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 42888,
+ "tp_rate": 0.14109704863452877,
+ "truth_threshold": 28.400000000000002
+ },
+ {
+ "f1": 0.24677294697135738,
+ "fn": 261176,
+ "fn_rate": 0.8592418106270212,
+ "fp": 10,
+ "fp_rate": 0.00005751456556372901,
+ "match_probability": 0.9999999972156263,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997663278420377,
+ "recall": 0.14075818937297876,
+ "row_count": 477830,
+ "tn": 173859,
+ "tn_rate": 0.9999424854344363,
+ "tp": 42785,
+ "tp_rate": 0.14075818937297876,
+ "truth_threshold": 28.42
+ },
+ {
+ "f1": 0.24631627531298678,
+ "fn": 261267,
+ "fn_rate": 0.8595411911396528,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999972539596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998594847775175,
+ "recall": 0.14045880886034723,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42694,
+ "tp_rate": 0.14045880886034723,
+ "truth_threshold": 28.44
+ },
+ {
+ "f1": 0.24590570719602978,
+ "fn": 261348,
+ "fn_rate": 0.8598076726948523,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999972917651,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998592177197964,
+ "recall": 0.1401923273051477,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42613,
+ "tp_rate": 0.1401923273051477,
+ "truth_threshold": 28.46
+ },
+ {
+ "f1": 0.24551084842223134,
+ "fn": 261426,
+ "fn_rate": 0.8600642845628222,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999973290502,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998589595919231,
+ "recall": 0.13993571543717778,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42535,
+ "tp_rate": 0.13993571543717778,
+ "truth_threshold": 28.48
+ },
+ {
+ "f1": 0.24522725042286533,
+ "fn": 261482,
+ "fn_rate": 0.8602485187244416,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999997365822,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998587736848299,
+ "recall": 0.13975148127555836,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42479,
+ "tp_rate": 0.13975148127555836,
+ "truth_threshold": 28.5
+ },
+ {
+ "f1": 0.24493342725498574,
+ "fn": 261540,
+ "fn_rate": 0.8604393326775475,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999974020874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998585806208311,
+ "recall": 0.13956066732245256,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42421,
+ "tp_rate": 0.13956066732245256,
+ "truth_threshold": 28.52
+ },
+ {
+ "f1": 0.24448307527043184,
+ "fn": 261629,
+ "fn_rate": 0.8607321333986926,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999974378537,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998582833388445,
+ "recall": 0.1392678666013074,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42332,
+ "tp_rate": 0.1392678666013074,
+ "truth_threshold": 28.54
+ },
+ {
+ "f1": 0.24401079126300526,
+ "fn": 261722,
+ "fn_rate": 0.8610380937028106,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999974731275,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998579713575572,
+ "recall": 0.13896190629718944,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42239,
+ "tp_rate": 0.13896190629718944,
+ "truth_threshold": 28.560000000000002
+ },
+ {
+ "f1": 0.24364552456563066,
+ "fn": 261794,
+ "fn_rate": 0.8612749661963213,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999975079157,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998577288786664,
+ "recall": 0.13872503380367876,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42167,
+ "tp_rate": 0.13872503380367876,
+ "truth_threshold": 28.580000000000002
+ },
+ {
+ "f1": 0.24331634245292832,
+ "fn": 261859,
+ "fn_rate": 0.8614888094196295,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999997542225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999857509261898,
+ "recall": 0.1385111905803705,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42102,
+ "tp_rate": 0.1385111905803705,
+ "truth_threshold": 28.6
+ },
+ {
+ "f1": 0.2428796873825806,
+ "fn": 261945,
+ "fn_rate": 0.861771740453545,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999997576062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998572176478987,
+ "recall": 0.13822825954645498,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 42016,
+ "tp_rate": 0.13822825954645498,
+ "truth_threshold": 28.62
+ },
+ {
+ "f1": 0.2424268706597975,
+ "fn": 262034,
+ "fn_rate": 0.8620645411746902,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999997609433,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998569146018649,
+ "recall": 0.13793545882530983,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41927,
+ "tp_rate": 0.13793545882530983,
+ "truth_threshold": 28.64
+ },
+ {
+ "f1": 0.24193893544786263,
+ "fn": 262130,
+ "fn_rate": 0.8623803711660377,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999976423446,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998565862753065,
+ "recall": 0.13761962883396225,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41831,
+ "tp_rate": 0.13761962883396225,
+ "truth_threshold": 28.66
+ },
+ {
+ "f1": 0.24162945137330216,
+ "fn": 262191,
+ "fn_rate": 0.8625810548063731,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999976748032,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998563768671007,
+ "recall": 0.13741894519362682,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41770,
+ "tp_rate": 0.13741894519362682,
+ "truth_threshold": 28.68
+ },
+ {
+ "f1": 0.24122248709699817,
+ "fn": 262271,
+ "fn_rate": 0.8628442464658295,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999977068148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998561013046815,
+ "recall": 0.1371557535341705,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41690,
+ "tp_rate": 0.1371557535341705,
+ "truth_threshold": 28.7
+ },
+ {
+ "f1": 0.24066260353180186,
+ "fn": 262381,
+ "fn_rate": 0.8632061349975819,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999977383858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998557206752272,
+ "recall": 0.13679386500241808,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41580,
+ "tp_rate": 0.13679386500241808,
+ "truth_threshold": 28.72
+ },
+ {
+ "f1": 0.2400660046898069,
+ "fn": 262498,
+ "fn_rate": 0.8635910527995367,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999977695221,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998553136077551,
+ "recall": 0.1364089472004632,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41463,
+ "tp_rate": 0.1364089472004632,
+ "truth_threshold": 28.740000000000002
+ },
+ {
+ "f1": 0.23957235356121065,
+ "fn": 262595,
+ "fn_rate": 0.8639101726866275,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999978002297,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998549743788069,
+ "recall": 0.13608982731337244,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41366,
+ "tp_rate": 0.13608982731337244,
+ "truth_threshold": 28.76
+ },
+ {
+ "f1": 0.23868930351141499,
+ "fn": 262768,
+ "fn_rate": 0.8644793246502018,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999978305146,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998543653972184,
+ "recall": 0.13552067534979817,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41193,
+ "tp_rate": 0.13552067534979817,
+ "truth_threshold": 28.78
+ },
+ {
+ "f1": 0.23815844384679588,
+ "fn": 262872,
+ "fn_rate": 0.8648214738074951,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999978603826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998539968365981,
+ "recall": 0.13517852619250495,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41089,
+ "tp_rate": 0.13517852619250495,
+ "truth_threshold": 28.8
+ },
+ {
+ "f1": 0.23770900489320748,
+ "fn": 262960,
+ "fn_rate": 0.8651109846328969,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999978898393,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998536835174482,
+ "recall": 0.13488901536710302,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 41001,
+ "tp_rate": 0.13488901536710302,
+ "truth_threshold": 28.82
+ },
+ {
+ "f1": 0.23713223567074762,
+ "fn": 263073,
+ "fn_rate": 0.865482742851879,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999979188905,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999853279209664,
+ "recall": 0.134517257148121,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40888,
+ "tp_rate": 0.134517257148121,
+ "truth_threshold": 28.84
+ },
+ {
+ "f1": 0.23677432827509398,
+ "fn": 263143,
+ "fn_rate": 0.8657130355539033,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999979475418,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998530276308054,
+ "recall": 0.1342869644460967,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40818,
+ "tp_rate": 0.1342869644460967,
+ "truth_threshold": 28.86
+ },
+ {
+ "f1": 0.23627744510978044,
+ "fn": 263240,
+ "fn_rate": 0.8660321554409941,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999979757986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998526775848945,
+ "recall": 0.13396784455900593,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40721,
+ "tp_rate": 0.13396784455900593,
+ "truth_threshold": 28.88
+ },
+ {
+ "f1": 0.23590451925922917,
+ "fn": 263313,
+ "fn_rate": 0.8662723178302479,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999980036663,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998524130466867,
+ "recall": 0.13372768216975203,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40648,
+ "tp_rate": 0.13372768216975203,
+ "truth_threshold": 28.900000000000002
+ },
+ {
+ "f1": 0.23530470423630906,
+ "fn": 263430,
+ "fn_rate": 0.8666572356322028,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999980311505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998519870735377,
+ "recall": 0.13334276436779718,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40531,
+ "tp_rate": 0.13334276436779718,
+ "truth_threshold": 28.92
+ },
+ {
+ "f1": 0.2348538079614413,
+ "fn": 263518,
+ "fn_rate": 0.8669467464576047,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999980582562,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998516650597048,
+ "recall": 0.13305325354239525,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40443,
+ "tp_rate": 0.13305325354239525,
+ "truth_threshold": 28.94
+ },
+ {
+ "f1": 0.23423857794301317,
+ "fn": 263638,
+ "fn_rate": 0.8673415339467893,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999980849887,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998512236851893,
+ "recall": 0.13265846605321077,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40323,
+ "tp_rate": 0.13265846605321077,
+ "truth_threshold": 28.96
+ },
+ {
+ "f1": 0.23398210550778525,
+ "fn": 263688,
+ "fn_rate": 0.8675060287339494,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999981113533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998510390029544,
+ "recall": 0.1324939712660506,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40273,
+ "tp_rate": 0.1324939712660506,
+ "truth_threshold": 28.98
+ },
+ {
+ "f1": 0.23354660994787219,
+ "fn": 263773,
+ "fn_rate": 0.8677856698721218,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999981373549,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999850723988655,
+ "recall": 0.13221433012787825,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40188,
+ "tp_rate": 0.13221433012787825,
+ "truth_threshold": 29
+ },
+ {
+ "f1": 0.23320778405524167,
+ "fn": 263839,
+ "fn_rate": 0.8680028029911732,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999981629984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998504784688995,
+ "recall": 0.13199719700882678,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40122,
+ "tp_rate": 0.13199719700882678,
+ "truth_threshold": 29.02
+ },
+ {
+ "f1": 0.23281745985605154,
+ "fn": 263915,
+ "fn_rate": 0.8682528350676567,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999998188289,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998501947468291,
+ "recall": 0.13174716493234329,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 40046,
+ "tp_rate": 0.13174716493234329,
+ "truth_threshold": 29.04
+ },
+ {
+ "f1": 0.23229333255793666,
+ "fn": 264017,
+ "fn_rate": 0.8685884044334635,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999982132314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998498122653316,
+ "recall": 0.1314115955665365,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39944,
+ "tp_rate": 0.1314115955665365,
+ "truth_threshold": 29.060000000000002
+ },
+ {
+ "f1": 0.2318145065121663,
+ "fn": 264110,
+ "fn_rate": 0.8688943647375814,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999982378304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998494618260281,
+ "recall": 0.13110563526241853,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39851,
+ "tp_rate": 0.13110563526241853,
+ "truth_threshold": 29.080000000000002
+ },
+ {
+ "f1": 0.23138822461554573,
+ "fn": 264193,
+ "fn_rate": 0.8691674260842673,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999982620906,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998491476844169,
+ "recall": 0.1308325739157326,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39768,
+ "tp_rate": 0.1308325739157326,
+ "truth_threshold": 29.1
+ },
+ {
+ "f1": 0.23087802209314506,
+ "fn": 264292,
+ "fn_rate": 0.8694931257628445,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999982860169,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998487712665406,
+ "recall": 0.13050687423715543,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39669,
+ "tp_rate": 0.13050687423715543,
+ "truth_threshold": 29.12
+ },
+ {
+ "f1": 0.23054399394592076,
+ "fn": 264357,
+ "fn_rate": 0.8697069689861529,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999983096138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998485231002272,
+ "recall": 0.13029303101384718,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39604,
+ "tp_rate": 0.13029303101384718,
+ "truth_threshold": 29.14
+ },
+ {
+ "f1": 0.23024523160762944,
+ "fn": 264415,
+ "fn_rate": 0.8698977829392587,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999983328859,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998483009708737,
+ "recall": 0.13010221706074135,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39546,
+ "tp_rate": 0.13010221706074135,
+ "truth_threshold": 29.16
+ },
+ {
+ "f1": 0.22964740416312363,
+ "fn": 264531,
+ "fn_rate": 0.8702794108454703,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999983558375,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998478547520032,
+ "recall": 0.1297205891545297,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39430,
+ "tp_rate": 0.1297205891545297,
+ "truth_threshold": 29.18
+ },
+ {
+ "f1": 0.2292187327053368,
+ "fn": 264614,
+ "fn_rate": 0.8705524721921563,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999983784732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998475338601885,
+ "recall": 0.12944752780784377,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39347,
+ "tp_rate": 0.12944752780784377,
+ "truth_threshold": 29.2
+ },
+ {
+ "f1": 0.22868797529209522,
+ "fn": 264717,
+ "fn_rate": 0.8708913314537062,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999984007972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998471337579617,
+ "recall": 0.12910866854629377,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39244,
+ "tp_rate": 0.12910866854629377,
+ "truth_threshold": 29.22
+ },
+ {
+ "f1": 0.22822336208906505,
+ "fn": 264807,
+ "fn_rate": 0.8711874220705946,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999998422814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998467824310521,
+ "recall": 0.12881257792940543,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39154,
+ "tp_rate": 0.12881257792940543,
+ "truth_threshold": 29.240000000000002
+ },
+ {
+ "f1": 0.22793864737397468,
+ "fn": 264862,
+ "fn_rate": 0.8713683663364707,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999984445276,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998465669351745,
+ "recall": 0.1286316336635292,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39099,
+ "tp_rate": 0.1286316336635292,
+ "truth_threshold": 29.26
+ },
+ {
+ "f1": 0.22755182366832852,
+ "fn": 264937,
+ "fn_rate": 0.8716151085172111,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.9999999984659422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998462720983858,
+ "recall": 0.12838489148278892,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 39024,
+ "tp_rate": 0.12838489148278892,
+ "truth_threshold": 29.28
+ },
+ {
+ "f1": 0.22709112224483963,
+ "fn": 265026,
+ "fn_rate": 0.8719079092383563,
+ "fp": 6,
+ "fp_rate": 0.00003450873933823741,
+ "match_probability": 0.999999998487062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998459207519067,
+ "recall": 0.12809209076164377,
+ "row_count": 477830,
+ "tn": 173863,
+ "tn_rate": 0.9999654912606618,
+ "tp": 38935,
+ "tp_rate": 0.12809209076164377,
+ "truth_threshold": 29.3
+ },
+ {
+ "f1": 0.22648026699652252,
+ "fn": 265145,
+ "fn_rate": 0.8722994068317975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999985078911,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1277005931682025,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38816,
+ "tp_rate": 0.1277005931682025,
+ "truth_threshold": 29.32
+ },
+ {
+ "f1": 0.22603970912656263,
+ "fn": 265230,
+ "fn_rate": 0.8725790479699699,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999985284334,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12742095203003018,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38731,
+ "tp_rate": 0.12742095203003018,
+ "truth_threshold": 29.34
+ },
+ {
+ "f1": 0.22570834841285592,
+ "fn": 265294,
+ "fn_rate": 0.8727896012975349,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999985486929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12721039870246512,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38667,
+ "tp_rate": 0.12721039870246512,
+ "truth_threshold": 29.36
+ },
+ {
+ "f1": 0.22533541961022432,
+ "fn": 265366,
+ "fn_rate": 0.8730264737910456,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999985686735,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12697352620895444,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38595,
+ "tp_rate": 0.12697352620895444,
+ "truth_threshold": 29.38
+ },
+ {
+ "f1": 0.22471936361831116,
+ "fn": 265485,
+ "fn_rate": 0.8734179713844868,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999998588379,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12658202861551318,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38476,
+ "tp_rate": 0.12658202861551318,
+ "truth_threshold": 29.400000000000002
+ },
+ {
+ "f1": 0.22434601768877568,
+ "fn": 265557,
+ "fn_rate": 0.8736548438779975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999986078132,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1263451561220025,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38404,
+ "tp_rate": 0.1263451561220025,
+ "truth_threshold": 29.42
+ },
+ {
+ "f1": 0.223987426087363,
+ "fn": 265626,
+ "fn_rate": 0.8738818466842786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999986269797,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12611815331572143,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38335,
+ "tp_rate": 0.12611815331572143,
+ "truth_threshold": 29.44
+ },
+ {
+ "f1": 0.22357224676812307,
+ "fn": 265706,
+ "fn_rate": 0.8741450383437349,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999986458826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1258549616562651,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38255,
+ "tp_rate": 0.1258549616562651,
+ "truth_threshold": 29.46
+ },
+ {
+ "f1": 0.22306923342238644,
+ "fn": 265803,
+ "fn_rate": 0.8744641582308257,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999986645252,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12553584176917434,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38158,
+ "tp_rate": 0.12553584176917434,
+ "truth_threshold": 29.48
+ },
+ {
+ "f1": 0.22271013009793889,
+ "fn": 265872,
+ "fn_rate": 0.8746911610371068,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999998682911,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12530883896289327,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38089,
+ "tp_rate": 0.12530883896289327,
+ "truth_threshold": 29.5
+ },
+ {
+ "f1": 0.2223313916766089,
+ "fn": 265945,
+ "fn_rate": 0.8749313234263606,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987010437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12506867657363938,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 38016,
+ "tp_rate": 0.12506867657363938,
+ "truth_threshold": 29.52
+ },
+ {
+ "f1": 0.22194079005095027,
+ "fn": 266020,
+ "fn_rate": 0.8751780656071009,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987189269,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12482193439289908,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37941,
+ "tp_rate": 0.12482193439289908,
+ "truth_threshold": 29.54
+ },
+ {
+ "f1": 0.2215513155816117,
+ "fn": 266095,
+ "fn_rate": 0.8754248077878412,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987365638,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12457519221215879,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37866,
+ "tp_rate": 0.12457519221215879,
+ "truth_threshold": 29.560000000000002
+ },
+ {
+ "f1": 0.22110832148228782,
+ "fn": 266180,
+ "fn_rate": 0.8757044489260135,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987539578,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12429555107398646,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37781,
+ "tp_rate": 0.12429555107398646,
+ "truth_threshold": 29.580000000000002
+ },
+ {
+ "f1": 0.22072889471650842,
+ "fn": 266253,
+ "fn_rate": 0.8759446113152675,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987711125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12405538868473258,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37708,
+ "tp_rate": 0.12405538868473258,
+ "truth_threshold": 29.6
+ },
+ {
+ "f1": 0.22016629581918257,
+ "fn": 266361,
+ "fn_rate": 0.8762999200555335,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999987880309,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12370007994446656,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37600,
+ "tp_rate": 0.12370007994446656,
+ "truth_threshold": 29.62
+ },
+ {
+ "f1": 0.219743469602905,
+ "fn": 266442,
+ "fn_rate": 0.876566401610733,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988047165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12343359838926704,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37519,
+ "tp_rate": 0.12343359838926704,
+ "truth_threshold": 29.64
+ },
+ {
+ "f1": 0.21923241412845434,
+ "fn": 266540,
+ "fn_rate": 0.8768888113935669,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988211723,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12311118860643307,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37421,
+ "tp_rate": 0.12311118860643307,
+ "truth_threshold": 29.66
+ },
+ {
+ "f1": 0.218601652698822,
+ "fn": 266661,
+ "fn_rate": 0.8772868887784946,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988374015,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1227131112215054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37300,
+ "tp_rate": 0.1227131112215054,
+ "truth_threshold": 29.68
+ },
+ {
+ "f1": 0.2183034196551037,
+ "fn": 266718,
+ "fn_rate": 0.8774744128358573,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988534074,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12252558716414277,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37243,
+ "tp_rate": 0.12252558716414277,
+ "truth_threshold": 29.7
+ },
+ {
+ "f1": 0.2177079363217919,
+ "fn": 266832,
+ "fn_rate": 0.8778494609505825,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988691929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12215053904941753,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37129,
+ "tp_rate": 0.12215053904941753,
+ "truth_threshold": 29.72
+ },
+ {
+ "f1": 0.21745249824067558,
+ "fn": 266881,
+ "fn_rate": 0.8780106658419995,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999988847611,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12198933415800053,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37080,
+ "tp_rate": 0.12198933415800053,
+ "truth_threshold": 29.740000000000002
+ },
+ {
+ "f1": 0.21717020640143583,
+ "fn": 266935,
+ "fn_rate": 0.8781883202121324,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989001149,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12181167978786753,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 37026,
+ "tp_rate": 0.12181167978786753,
+ "truth_threshold": 29.76
+ },
+ {
+ "f1": 0.21688195886569755,
+ "fn": 266990,
+ "fn_rate": 0.8783692644780087,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989152574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12163073552199131,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36971,
+ "tp_rate": 0.12163073552199131,
+ "truth_threshold": 29.78
+ },
+ {
+ "f1": 0.2164797831329543,
+ "fn": 267067,
+ "fn_rate": 0.8786225864502354,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989301913,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12137741354976461,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36894,
+ "tp_rate": 0.12137741354976461,
+ "truth_threshold": 29.8
+ },
+ {
+ "f1": 0.21610296318467526,
+ "fn": 267139,
+ "fn_rate": 0.8788594589437461,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989449196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12114054105625392,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36822,
+ "tp_rate": 0.12114054105625392,
+ "truth_threshold": 29.82
+ },
+ {
+ "f1": 0.21567361314939829,
+ "fn": 267221,
+ "fn_rate": 0.8791292303946888,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989594452,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1208707696053112,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36740,
+ "tp_rate": 0.1208707696053112,
+ "truth_threshold": 29.84
+ },
+ {
+ "f1": 0.2151857854190154,
+ "fn": 267314,
+ "fn_rate": 0.8794351906988067,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989737709,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12056480930119325,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36647,
+ "tp_rate": 0.12056480930119325,
+ "truth_threshold": 29.86
+ },
+ {
+ "f1": 0.21485035707573763,
+ "fn": 267378,
+ "fn_rate": 0.8796457440263719,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999989878993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1203542559736282,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36583,
+ "tp_rate": 0.1203542559736282,
+ "truth_threshold": 29.88
+ },
+ {
+ "f1": 0.21452529061741885,
+ "fn": 267440,
+ "fn_rate": 0.8798497175624505,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990018332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.12015028243754955,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36521,
+ "tp_rate": 0.12015028243754955,
+ "truth_threshold": 29.900000000000002
+ },
+ {
+ "f1": 0.21410567505478817,
+ "fn": 267520,
+ "fn_rate": 0.8801129092219068,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990155752,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11988709077809324,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36441,
+ "tp_rate": 0.11988709077809324,
+ "truth_threshold": 29.92
+ },
+ {
+ "f1": 0.213601875958696,
+ "fn": 267616,
+ "fn_rate": 0.8804287392132544,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990291281,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11957126078674567,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36345,
+ "tp_rate": 0.11957126078674567,
+ "truth_threshold": 29.94
+ },
+ {
+ "f1": 0.21310367126186766,
+ "fn": 267711,
+ "fn_rate": 0.8807412793088587,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990424944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1192587206911413,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36250,
+ "tp_rate": 0.1192587206911413,
+ "truth_threshold": 29.96
+ },
+ {
+ "f1": 0.2126144455747711,
+ "fn": 267804,
+ "fn_rate": 0.8810472396129767,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990556766,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11895276038702333,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36157,
+ "tp_rate": 0.11895276038702333,
+ "truth_threshold": 29.98
+ },
+ {
+ "f1": 0.21232010633355095,
+ "fn": 267860,
+ "fn_rate": 0.8812314737745961,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990686774,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11876852622540392,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36101,
+ "tp_rate": 0.11876852622540392,
+ "truth_threshold": 30
+ },
+ {
+ "f1": 0.21188429839577855,
+ "fn": 267943,
+ "fn_rate": 0.881504535121282,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990814992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.118495464878718,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 36018,
+ "tp_rate": 0.118495464878718,
+ "truth_threshold": 30.02
+ },
+ {
+ "f1": 0.21145755491353288,
+ "fn": 268024,
+ "fn_rate": 0.8817710166764815,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999990941445,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11822898332351847,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35937,
+ "tp_rate": 0.11822898332351847,
+ "truth_threshold": 30.04
+ },
+ {
+ "f1": 0.21122599704579026,
+ "fn": 268068,
+ "fn_rate": 0.8819157720891825,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991066156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1180842279108175,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35893,
+ "tp_rate": 0.1180842279108175,
+ "truth_threshold": 30.060000000000002
+ },
+ {
+ "f1": 0.21078965182329223,
+ "fn": 268151,
+ "fn_rate": 0.8821888334358684,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991189151,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11781116656413158,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35810,
+ "tp_rate": 0.11781116656413158,
+ "truth_threshold": 30.080000000000002
+ },
+ {
+ "f1": 0.21026755222685414,
+ "fn": 268250,
+ "fn_rate": 0.8825145331144456,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991310453,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11748546688555439,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35711,
+ "tp_rate": 0.11748546688555439,
+ "truth_threshold": 30.1
+ },
+ {
+ "f1": 0.20992561968869808,
+ "fn": 268315,
+ "fn_rate": 0.8827283763377538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991430085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11727162366224614,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35646,
+ "tp_rate": 0.11727162366224614,
+ "truth_threshold": 30.12
+ },
+ {
+ "f1": 0.20951438467519615,
+ "fn": 268393,
+ "fn_rate": 0.8829849882057238,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999154807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11701501179427624,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35568,
+ "tp_rate": 0.11701501179427624,
+ "truth_threshold": 30.14
+ },
+ {
+ "f1": 0.20901265047107834,
+ "fn": 268488,
+ "fn_rate": 0.8832975283013281,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999166443,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11670247169867187,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35473,
+ "tp_rate": 0.11670247169867187,
+ "truth_threshold": 30.16
+ },
+ {
+ "f1": 0.20862211221122112,
+ "fn": 268562,
+ "fn_rate": 0.8835409805863252,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991779188,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11645901941367479,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35399,
+ "tp_rate": 0.11645901941367479,
+ "truth_threshold": 30.18
+ },
+ {
+ "f1": 0.2081739243207555,
+ "fn": 268647,
+ "fn_rate": 0.8838206217244976,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999991892367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11617937827550245,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35314,
+ "tp_rate": 0.11617937827550245,
+ "truth_threshold": 30.2
+ },
+ {
+ "f1": 0.20778301886792452,
+ "fn": 268721,
+ "fn_rate": 0.8840640740094946,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992003986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11593592599050537,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35240,
+ "tp_rate": 0.11593592599050537,
+ "truth_threshold": 30.22
+ },
+ {
+ "f1": 0.20745537214939053,
+ "fn": 268783,
+ "fn_rate": 0.8842680475455733,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999211407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11573195245442672,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35178,
+ "tp_rate": 0.11573195245442672,
+ "truth_threshold": 30.240000000000002
+ },
+ {
+ "f1": 0.20703710257771485,
+ "fn": 268862,
+ "fn_rate": 0.8845279493092864,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992222638,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11547205069071362,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35099,
+ "tp_rate": 0.11547205069071362,
+ "truth_threshold": 30.26
+ },
+ {
+ "f1": 0.20660337839033802,
+ "fn": 268944,
+ "fn_rate": 0.8847977207602291,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992329711,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11520227923977089,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 35017,
+ "tp_rate": 0.11520227923977089,
+ "truth_threshold": 30.28
+ },
+ {
+ "f1": 0.20614358641447078,
+ "fn": 269031,
+ "fn_rate": 0.8850839416898878,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999243531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11491605831011215,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34930,
+ "tp_rate": 0.11491605831011215,
+ "truth_threshold": 30.3
+ },
+ {
+ "f1": 0.20578825584964466,
+ "fn": 269098,
+ "fn_rate": 0.8853043647046825,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992539456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1146956352953175,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34863,
+ "tp_rate": 0.1146956352953175,
+ "truth_threshold": 30.32
+ },
+ {
+ "f1": 0.20553404019174912,
+ "fn": 269146,
+ "fn_rate": 0.8854622797003563,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992642167,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11453772029964371,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34815,
+ "tp_rate": 0.11453772029964371,
+ "truth_threshold": 30.34
+ },
+ {
+ "f1": 0.2049723920040157,
+ "fn": 269252,
+ "fn_rate": 0.8858110086491359,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992743465,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11418899135086409,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34709,
+ "tp_rate": 0.11418899135086409,
+ "truth_threshold": 30.36
+ },
+ {
+ "f1": 0.2046390199819259,
+ "fn": 269315,
+ "fn_rate": 0.8860182720809577,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992843367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11398172791904225,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34646,
+ "tp_rate": 0.11398172791904225,
+ "truth_threshold": 30.38
+ },
+ {
+ "f1": 0.2043891776937618,
+ "fn": 269362,
+ "fn_rate": 0.8861728971808883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999992941895,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11382710281911167,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34599,
+ "tp_rate": 0.11382710281911167,
+ "truth_threshold": 30.400000000000002
+ },
+ {
+ "f1": 0.20393294610516613,
+ "fn": 269448,
+ "fn_rate": 0.8864558282148038,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993039066,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11354417178519613,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34513,
+ "tp_rate": 0.11354417178519613,
+ "truth_threshold": 30.42
+ },
+ {
+ "f1": 0.2035508064373142,
+ "fn": 269520,
+ "fn_rate": 0.8866927007083145,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993134899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11330729929168544,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34441,
+ "tp_rate": 0.11330729929168544,
+ "truth_threshold": 30.44
+ },
+ {
+ "f1": 0.20330657650521936,
+ "fn": 269566,
+ "fn_rate": 0.8868440359125019,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993229413,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11315596408749806,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34395,
+ "tp_rate": 0.11315596408749806,
+ "truth_threshold": 30.46
+ },
+ {
+ "f1": 0.20294070697575425,
+ "fn": 269635,
+ "fn_rate": 0.887071038718783,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993322626,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.112928961281217,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34326,
+ "tp_rate": 0.112928961281217,
+ "truth_threshold": 30.48
+ },
+ {
+ "f1": 0.20245184716464515,
+ "fn": 269727,
+ "fn_rate": 0.8873737091271577,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993414554,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11262629087284223,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34234,
+ "tp_rate": 0.11262629087284223,
+ "truth_threshold": 30.5
+ },
+ {
+ "f1": 0.2021328822301218,
+ "fn": 269787,
+ "fn_rate": 0.88757110287175,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993505219,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11242889712825001,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34174,
+ "tp_rate": 0.11242889712825001,
+ "truth_threshold": 30.52
+ },
+ {
+ "f1": 0.20181852601190264,
+ "fn": 269846,
+ "fn_rate": 0.887765206720599,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993594634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11223479327940097,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34115,
+ "tp_rate": 0.11223479327940097,
+ "truth_threshold": 30.54
+ },
+ {
+ "f1": 0.201462687273674,
+ "fn": 269913,
+ "fn_rate": 0.8879856297353936,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993682819,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11201437026460631,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 34048,
+ "tp_rate": 0.11201437026460631,
+ "truth_threshold": 30.560000000000002
+ },
+ {
+ "f1": 0.20101561297806608,
+ "fn": 269997,
+ "fn_rate": 0.8882619809778228,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993769789,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11173801902217718,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33964,
+ "tp_rate": 0.11173801902217718,
+ "truth_threshold": 30.580000000000002
+ },
+ {
+ "f1": 0.20061092562335725,
+ "fn": 270073,
+ "fn_rate": 0.8885120130543063,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993855563,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11148798694569369,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33888,
+ "tp_rate": 0.11148798694569369,
+ "truth_threshold": 30.6
+ },
+ {
+ "f1": 0.20021671295007903,
+ "fn": 270147,
+ "fn_rate": 0.8887554653393034,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999993940155,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1112445346606966,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33814,
+ "tp_rate": 0.1112445346606966,
+ "truth_threshold": 30.62
+ },
+ {
+ "f1": 0.19982232750962392,
+ "fn": 270221,
+ "fn_rate": 0.8889989176243005,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994023583,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11100108237569951,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33740,
+ "tp_rate": 0.11100108237569951,
+ "truth_threshold": 30.64
+ },
+ {
+ "f1": 0.1993365125440597,
+ "fn": 270312,
+ "fn_rate": 0.8892982981369321,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994105861,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11070170186306796,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33649,
+ "tp_rate": 0.11070170186306796,
+ "truth_threshold": 30.66
+ },
+ {
+ "f1": 0.19885161680265942,
+ "fn": 270403,
+ "fn_rate": 0.8895976786495636,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994187008,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1104023213504364,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33558,
+ "tp_rate": 0.1104023213504364,
+ "truth_threshold": 30.68
+ },
+ {
+ "f1": 0.19850409240963213,
+ "fn": 270468,
+ "fn_rate": 0.8898115218728718,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994267037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11018847812712815,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33493,
+ "tp_rate": 0.11018847812712815,
+ "truth_threshold": 30.7
+ },
+ {
+ "f1": 0.1982264479760049,
+ "fn": 270520,
+ "fn_rate": 0.8899825964515184,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994345965,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.11001740354848155,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33441,
+ "tp_rate": 0.11001740354848155,
+ "truth_threshold": 30.72
+ },
+ {
+ "f1": 0.19794396291070349,
+ "fn": 270573,
+ "fn_rate": 0.8901569609259082,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994423805,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10984303907409174,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33388,
+ "tp_rate": 0.10984303907409174,
+ "truth_threshold": 30.740000000000002
+ },
+ {
+ "f1": 0.1975640273009209,
+ "fn": 270644,
+ "fn_rate": 0.8903905435236757,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994500575,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10960945647632427,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33317,
+ "tp_rate": 0.10960945647632427,
+ "truth_threshold": 30.76
+ },
+ {
+ "f1": 0.19726470989437225,
+ "fn": 270700,
+ "fn_rate": 0.8905747776852951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994576286,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10942522231470485,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33261,
+ "tp_rate": 0.10942522231470485,
+ "truth_threshold": 30.78
+ },
+ {
+ "f1": 0.19694983420432907,
+ "fn": 270759,
+ "fn_rate": 0.8907688815341441,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994650957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10923111846585581,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33202,
+ "tp_rate": 0.10923111846585581,
+ "truth_threshold": 30.8
+ },
+ {
+ "f1": 0.19663961270112487,
+ "fn": 270817,
+ "fn_rate": 0.89095969548725,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994724599,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10904030451274999,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33144,
+ "tp_rate": 0.10904030451274999,
+ "truth_threshold": 30.82
+ },
+ {
+ "f1": 0.19636139230741845,
+ "fn": 270869,
+ "fn_rate": 0.8911307700658966,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994797226,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10886922993410339,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 33092,
+ "tp_rate": 0.10886922993410339,
+ "truth_threshold": 30.84
+ },
+ {
+ "f1": 0.19582017616752534,
+ "fn": 270970,
+ "fn_rate": 0.8914630495359602,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994868854,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1085369504640398,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32991,
+ "tp_rate": 0.1085369504640398,
+ "truth_threshold": 30.86
+ },
+ {
+ "f1": 0.1954833653914654,
+ "fn": 271033,
+ "fn_rate": 0.8916703129677821,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999994939497,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10832968703221794,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32928,
+ "tp_rate": 0.10832968703221794,
+ "truth_threshold": 30.88
+ },
+ {
+ "f1": 0.1950976200655551,
+ "fn": 271105,
+ "fn_rate": 0.8919071854612928,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995009166,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10809281453870727,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32856,
+ "tp_rate": 0.10809281453870727,
+ "truth_threshold": 30.900000000000002
+ },
+ {
+ "f1": 0.1946628813076119,
+ "fn": 271186,
+ "fn_rate": 0.8921736670164923,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995077876,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10782633298350776,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32775,
+ "tp_rate": 0.10782633298350776,
+ "truth_threshold": 30.92
+ },
+ {
+ "f1": 0.19431969394544246,
+ "fn": 271250,
+ "fn_rate": 0.8923842203440573,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995145641,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1076157796559427,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32711,
+ "tp_rate": 0.1076157796559427,
+ "truth_threshold": 30.94
+ },
+ {
+ "f1": 0.19386906247400382,
+ "fn": 271334,
+ "fn_rate": 0.8926605715864864,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995212472,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10733942841351357,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32627,
+ "tp_rate": 0.10733942841351357,
+ "truth_threshold": 30.96
+ },
+ {
+ "f1": 0.1935255732132032,
+ "fn": 271398,
+ "fn_rate": 0.8928711249140515,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995278384,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10712887508594852,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32563,
+ "tp_rate": 0.10712887508594852,
+ "truth_threshold": 30.98
+ },
+ {
+ "f1": 0.19318789752125068,
+ "fn": 271461,
+ "fn_rate": 0.8930783883458733,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995343387,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10692161165412668,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32500,
+ "tp_rate": 0.10692161165412668,
+ "truth_threshold": 31
+ },
+ {
+ "f1": 0.19273669940780555,
+ "fn": 271545,
+ "fn_rate": 0.8933547395883025,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995407496,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10664526041169756,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32416,
+ "tp_rate": 0.10664526041169756,
+ "truth_threshold": 31.02
+ },
+ {
+ "f1": 0.19225302272470457,
+ "fn": 271635,
+ "fn_rate": 0.8936508302051908,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995470722,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1063491697948092,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32326,
+ "tp_rate": 0.1063491697948092,
+ "truth_threshold": 31.04
+ },
+ {
+ "f1": 0.191881457863648,
+ "fn": 271704,
+ "fn_rate": 0.8938778330114718,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995533079,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10612216698852814,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32257,
+ "tp_rate": 0.10612216698852814,
+ "truth_threshold": 31.060000000000002
+ },
+ {
+ "f1": 0.19129565496804599,
+ "fn": 271813,
+ "fn_rate": 0.8942364316474811,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995594576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.1057635683525189,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32148,
+ "tp_rate": 0.1057635683525189,
+ "truth_threshold": 31.080000000000002
+ },
+ {
+ "f1": 0.19083755922196033,
+ "fn": 271898,
+ "fn_rate": 0.8945160727856534,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995655227,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10548392721434657,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32063,
+ "tp_rate": 0.10548392721434657,
+ "truth_threshold": 31.1
+ },
+ {
+ "f1": 0.19051445988260646,
+ "fn": 271958,
+ "fn_rate": 0.8947134665302456,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995715042,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10528653346975435,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 32003,
+ "tp_rate": 0.10528653346975435,
+ "truth_threshold": 31.12
+ },
+ {
+ "f1": 0.1902235717900628,
+ "fn": 272012,
+ "fn_rate": 0.8948911209003787,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995774035,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10510887909962133,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31949,
+ "tp_rate": 0.10510887909962133,
+ "truth_threshold": 31.14
+ },
+ {
+ "f1": 0.18987387001107658,
+ "fn": 272077,
+ "fn_rate": 0.8951049641236869,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995832215,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10489503587631308,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31884,
+ "tp_rate": 0.10489503587631308,
+ "truth_threshold": 31.16
+ },
+ {
+ "f1": 0.1894317999058857,
+ "fn": 272159,
+ "fn_rate": 0.8953747355746297,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995889594,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10462526442537036,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31802,
+ "tp_rate": 0.10462526442537036,
+ "truth_threshold": 31.18
+ },
+ {
+ "f1": 0.18903750484077572,
+ "fn": 272232,
+ "fn_rate": 0.8956148979638835,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999995946183,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10438510203611648,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31729,
+ "tp_rate": 0.10438510203611648,
+ "truth_threshold": 31.2
+ },
+ {
+ "f1": 0.1887305143728846,
+ "fn": 272289,
+ "fn_rate": 0.8958024220212462,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996001994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10419757797875386,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31672,
+ "tp_rate": 0.10419757797875386,
+ "truth_threshold": 31.220000000000002
+ },
+ {
+ "f1": 0.1882770870337478,
+ "fn": 272373,
+ "fn_rate": 0.8960787732636752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996057035,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10392122673632473,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31588,
+ "tp_rate": 0.10392122673632473,
+ "truth_threshold": 31.240000000000002
+ },
+ {
+ "f1": 0.18789905746427485,
+ "fn": 272443,
+ "fn_rate": 0.8963090659656996,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996111318,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10369093403430045,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31518,
+ "tp_rate": 0.10369093403430045,
+ "truth_threshold": 31.26
+ },
+ {
+ "f1": 0.1874824837061198,
+ "fn": 272520,
+ "fn_rate": 0.8965623879379262,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996164856,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10343761206207375,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31441,
+ "tp_rate": 0.10343761206207375,
+ "truth_threshold": 31.28
+ },
+ {
+ "f1": 0.18707168546429445,
+ "fn": 272596,
+ "fn_rate": 0.8968124200144098,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996217656,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10318757998559025,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31365,
+ "tp_rate": 0.10318757998559025,
+ "truth_threshold": 31.3
+ },
+ {
+ "f1": 0.18666666666666668,
+ "fn": 272671,
+ "fn_rate": 0.89705916219515,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996269727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10294083780484996,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31290,
+ "tp_rate": 0.10294083780484996,
+ "truth_threshold": 31.32
+ },
+ {
+ "f1": 0.18634692952099097,
+ "fn": 272730,
+ "fn_rate": 0.897253266043999,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996321084,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10274673395600094,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31231,
+ "tp_rate": 0.10274673395600094,
+ "truth_threshold": 31.34
+ },
+ {
+ "f1": 0.1860546998549851,
+ "fn": 272784,
+ "fn_rate": 0.8974309204141321,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996371732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10256907958586792,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31177,
+ "tp_rate": 0.10256907958586792,
+ "truth_threshold": 31.36
+ },
+ {
+ "f1": 0.1856974023493458,
+ "fn": 272850,
+ "fn_rate": 0.8976480535331836,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996421683,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10235194646681646,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31111,
+ "tp_rate": 0.10235194646681646,
+ "truth_threshold": 31.38
+ },
+ {
+ "f1": 0.18527496014853997,
+ "fn": 272928,
+ "fn_rate": 0.8979046654011534,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996470947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10209533459884657,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 31033,
+ "tp_rate": 0.10209533459884657,
+ "truth_threshold": 31.400000000000002
+ },
+ {
+ "f1": 0.18486316053481747,
+ "fn": 273004,
+ "fn_rate": 0.898154697477637,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996519533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10184530252236307,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30957,
+ "tp_rate": 0.10184530252236307,
+ "truth_threshold": 31.42
+ },
+ {
+ "f1": 0.1842993423214083,
+ "fn": 273108,
+ "fn_rate": 0.8984968466349301,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996567449,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10150315336506986,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30853,
+ "tp_rate": 0.10150315336506986,
+ "truth_threshold": 31.44
+ },
+ {
+ "f1": 0.1840015772587959,
+ "fn": 273163,
+ "fn_rate": 0.8986777909008064,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996614707,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10132220909919365,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30798,
+ "tp_rate": 0.10132220909919365,
+ "truth_threshold": 31.46
+ },
+ {
+ "f1": 0.18362663957692194,
+ "fn": 273232,
+ "fn_rate": 0.8989047937070874,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996661313,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10109520629291258,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30729,
+ "tp_rate": 0.10109520629291258,
+ "truth_threshold": 31.48
+ },
+ {
+ "f1": 0.1831054950178425,
+ "fn": 273328,
+ "fn_rate": 0.899220623698435,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996707277,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.100779376301565,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30633,
+ "tp_rate": 0.100779376301565,
+ "truth_threshold": 31.5
+ },
+ {
+ "f1": 0.1826166503240619,
+ "fn": 273418,
+ "fn_rate": 0.8995167143153233,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999675261,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10048328568467665,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30543,
+ "tp_rate": 0.10048328568467665,
+ "truth_threshold": 31.52
+ },
+ {
+ "f1": 0.18229658776955185,
+ "fn": 273477,
+ "fn_rate": 0.8997108181641724,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996797317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10028918183582762,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30484,
+ "tp_rate": 0.10028918183582762,
+ "truth_threshold": 31.54
+ },
+ {
+ "f1": 0.18197532193333452,
+ "fn": 273536,
+ "fn_rate": 0.8999049220130214,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999684141,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.10009507798697859,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30425,
+ "tp_rate": 0.10009507798697859,
+ "truth_threshold": 31.560000000000002
+ },
+ {
+ "f1": 0.1815511444536176,
+ "fn": 273614,
+ "fn_rate": 0.9001615338809913,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996884895,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09983846611900869,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30347,
+ "tp_rate": 0.09983846611900869,
+ "truth_threshold": 31.580000000000002
+ },
+ {
+ "f1": 0.1812573671519264,
+ "fn": 273668,
+ "fn_rate": 0.9003391882511244,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996927781,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09966081174887567,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30293,
+ "tp_rate": 0.09966081174887567,
+ "truth_threshold": 31.6
+ },
+ {
+ "f1": 0.18105057806927258,
+ "fn": 273706,
+ "fn_rate": 0.900464204289366,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999996970077,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09953579571063394,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30255,
+ "tp_rate": 0.09953579571063394,
+ "truth_threshold": 31.62
+ },
+ {
+ "f1": 0.18068640243245507,
+ "fn": 273773,
+ "fn_rate": 0.9006846273041608,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997011791,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09931537269583927,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30188,
+ "tp_rate": 0.09931537269583927,
+ "truth_threshold": 31.64
+ },
+ {
+ "f1": 0.1802180433572211,
+ "fn": 273859,
+ "fn_rate": 0.9009675583380763,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997052931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09903244166192374,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30102,
+ "tp_rate": 0.09903244166192374,
+ "truth_threshold": 31.66
+ },
+ {
+ "f1": 0.1799069477793812,
+ "fn": 273916,
+ "fn_rate": 0.9011550823954388,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997093504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09884491760456111,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 30045,
+ "tp_rate": 0.09884491760456111,
+ "truth_threshold": 31.68
+ },
+ {
+ "f1": 0.17961263894212343,
+ "fn": 273970,
+ "fn_rate": 0.9013327367655719,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997133519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09866726323442811,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29991,
+ "tp_rate": 0.09866726323442811,
+ "truth_threshold": 31.7
+ },
+ {
+ "f1": 0.17925878892795744,
+ "fn": 274035,
+ "fn_rate": 0.9015465799888801,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997172982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09845342001111984,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29926,
+ "tp_rate": 0.09845342001111984,
+ "truth_threshold": 31.720000000000002
+ },
+ {
+ "f1": 0.17874604544147255,
+ "fn": 274129,
+ "fn_rate": 0.9018558301887413,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997211902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09814416981125867,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29832,
+ "tp_rate": 0.09814416981125867,
+ "truth_threshold": 31.740000000000002
+ },
+ {
+ "f1": 0.17846227602325163,
+ "fn": 274181,
+ "fn_rate": 0.9020269047673879,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997250287,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09797309523261208,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29780,
+ "tp_rate": 0.09797309523261208,
+ "truth_threshold": 31.76
+ },
+ {
+ "f1": 0.17800369242573189,
+ "fn": 274265,
+ "fn_rate": 0.9023032560098171,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997288144,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09769674399018295,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29696,
+ "tp_rate": 0.09769674399018295,
+ "truth_threshold": 31.78
+ },
+ {
+ "f1": 0.1776978417266187,
+ "fn": 274321,
+ "fn_rate": 0.9024874901714365,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997325478,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09751250982856353,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29640,
+ "tp_rate": 0.09751250982856353,
+ "truth_threshold": 31.8
+ },
+ {
+ "f1": 0.1773640342987348,
+ "fn": 274382,
+ "fn_rate": 0.9026881738117719,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997362299,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09731182618822809,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29579,
+ "tp_rate": 0.09731182618822809,
+ "truth_threshold": 31.82
+ },
+ {
+ "f1": 0.1770202353392748,
+ "fn": 274445,
+ "fn_rate": 0.9028954372435938,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997398613,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09710456275640625,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29516,
+ "tp_rate": 0.09710456275640625,
+ "truth_threshold": 31.84
+ },
+ {
+ "f1": 0.1764674121712421,
+ "fn": 274546,
+ "fn_rate": 0.9032277167136573,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997434427,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09677228328634266,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29415,
+ "tp_rate": 0.09677228328634266,
+ "truth_threshold": 31.86
+ },
+ {
+ "f1": 0.17605160516051604,
+ "fn": 274622,
+ "fn_rate": 0.9034777487901409,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997469748,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09652225120985916,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29339,
+ "tp_rate": 0.09652225120985916,
+ "truth_threshold": 31.88
+ },
+ {
+ "f1": 0.17564161044822701,
+ "fn": 274697,
+ "fn_rate": 0.9037244909708811,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997504583,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09627550902911887,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29264,
+ "tp_rate": 0.09627550902911887,
+ "truth_threshold": 31.900000000000002
+ },
+ {
+ "f1": 0.17537877878358585,
+ "fn": 274745,
+ "fn_rate": 0.9038824059665549,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997538939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09611759403344508,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29216,
+ "tp_rate": 0.09611759403344508,
+ "truth_threshold": 31.92
+ },
+ {
+ "f1": 0.1750391757776617,
+ "fn": 274807,
+ "fn_rate": 0.9040863795026336,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999757282,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09591362049736644,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29154,
+ "tp_rate": 0.09591362049736644,
+ "truth_threshold": 31.94
+ },
+ {
+ "f1": 0.1745459786682041,
+ "fn": 274897,
+ "fn_rate": 0.9043824701195219,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997606236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09561752988047809,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29064,
+ "tp_rate": 0.09561752988047809,
+ "truth_threshold": 31.96
+ },
+ {
+ "f1": 0.17423295932341848,
+ "fn": 274954,
+ "fn_rate": 0.9045699941768846,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997639192,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09543000582311546,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 29007,
+ "tp_rate": 0.09543000582311546,
+ "truth_threshold": 31.98
+ },
+ {
+ "f1": 0.1738879677024007,
+ "fn": 275017,
+ "fn_rate": 0.9047772576087064,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997671694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09522274239129362,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28944,
+ "tp_rate": 0.09522274239129362,
+ "truth_threshold": 32
+ },
+ {
+ "f1": 0.17342106844540592,
+ "fn": 275102,
+ "fn_rate": 0.9050568987468787,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997703748,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09494310125312129,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28859,
+ "tp_rate": 0.09494310125312129,
+ "truth_threshold": 32.02
+ },
+ {
+ "f1": 0.17303184391791987,
+ "fn": 275173,
+ "fn_rate": 0.9052904813446462,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997735362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0947095186553538,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28788,
+ "tp_rate": 0.0947095186553538,
+ "truth_threshold": 32.04
+ },
+ {
+ "f1": 0.17260845517506734,
+ "fn": 275250,
+ "fn_rate": 0.9055438033168729,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997766539,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09445619668312712,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28711,
+ "tp_rate": 0.09445619668312712,
+ "truth_threshold": 32.06
+ },
+ {
+ "f1": 0.17215293396033532,
+ "fn": 275333,
+ "fn_rate": 0.9058168646635588,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997797288,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09418313533644118,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28628,
+ "tp_rate": 0.09418313533644118,
+ "truth_threshold": 32.08
+ },
+ {
+ "f1": 0.17187810114934232,
+ "fn": 275383,
+ "fn_rate": 0.905981359450719,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997827613,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.094018640549281,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28578,
+ "tp_rate": 0.094018640549281,
+ "truth_threshold": 32.1
+ },
+ {
+ "f1": 0.1715701902659392,
+ "fn": 275439,
+ "fn_rate": 0.9061655936123384,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997857522,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09383440638766158,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28522,
+ "tp_rate": 0.09383440638766158,
+ "truth_threshold": 32.12
+ },
+ {
+ "f1": 0.1712121485599456,
+ "fn": 275504,
+ "fn_rate": 0.9063794368356467,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997887017,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09362056316435333,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28457,
+ "tp_rate": 0.09362056316435333,
+ "truth_threshold": 32.14
+ },
+ {
+ "f1": 0.17081595686423184,
+ "fn": 275576,
+ "fn_rate": 0.9066163093291574,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997916107,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09338369067084264,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28385,
+ "tp_rate": 0.09338369067084264,
+ "truth_threshold": 32.160000000000004
+ },
+ {
+ "f1": 0.17032047577771356,
+ "fn": 275666,
+ "fn_rate": 0.9069123999460457,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997944797,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09308760005395429,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28295,
+ "tp_rate": 0.09308760005395429,
+ "truth_threshold": 32.18
+ },
+ {
+ "f1": 0.16997898818160473,
+ "fn": 275728,
+ "fn_rate": 0.9071163734821244,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999997973091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09288362651787564,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28233,
+ "tp_rate": 0.09288362651787564,
+ "truth_threshold": 32.2
+ },
+ {
+ "f1": 0.1694560039506411,
+ "fn": 275823,
+ "fn_rate": 0.9074289135777287,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998000997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09257108642227128,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28138,
+ "tp_rate": 0.09257108642227128,
+ "truth_threshold": 32.22
+ },
+ {
+ "f1": 0.16916933196002965,
+ "fn": 275875,
+ "fn_rate": 0.9075999881563753,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998028517,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09240001184362467,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28086,
+ "tp_rate": 0.09240001184362467,
+ "truth_threshold": 32.24
+ },
+ {
+ "f1": 0.16877726100681978,
+ "fn": 275946,
+ "fn_rate": 0.9078335707541428,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999805566,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0921664292458572,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 28015,
+ "tp_rate": 0.0921664292458572,
+ "truth_threshold": 32.26
+ },
+ {
+ "f1": 0.1682585979354108,
+ "fn": 276040,
+ "fn_rate": 0.908142820954004,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998082427,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09185717904599604,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27921,
+ "tp_rate": 0.09185717904599604,
+ "truth_threshold": 32.28
+ },
+ {
+ "f1": 0.1678059071729958,
+ "fn": 276122,
+ "fn_rate": 0.9084125924049467,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998108827,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09158740759505331,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27839,
+ "tp_rate": 0.09158740759505331,
+ "truth_threshold": 32.3
+ },
+ {
+ "f1": 0.16734194310795983,
+ "fn": 276206,
+ "fn_rate": 0.9086889436473758,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998134864,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09131105635262418,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27755,
+ "tp_rate": 0.09131105635262418,
+ "truth_threshold": 32.32
+ },
+ {
+ "f1": 0.16710987294753282,
+ "fn": 276248,
+ "fn_rate": 0.9088271192685904,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998160541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09117288073140963,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27713,
+ "tp_rate": 0.09117288073140963,
+ "truth_threshold": 32.34
+ },
+ {
+ "f1": 0.16682246654323296,
+ "fn": 276300,
+ "fn_rate": 0.908998193847237,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998185866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09100180615276302,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27661,
+ "tp_rate": 0.09100180615276302,
+ "truth_threshold": 32.36
+ },
+ {
+ "f1": 0.16640224885837862,
+ "fn": 276376,
+ "fn_rate": 0.9092482259237205,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998210842,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09075177407627952,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27585,
+ "tp_rate": 0.09075177407627952,
+ "truth_threshold": 32.38
+ },
+ {
+ "f1": 0.16597680620753738,
+ "fn": 276453,
+ "fn_rate": 0.9095015478959472,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998235474,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09049845210405283,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27508,
+ "tp_rate": 0.09049845210405283,
+ "truth_threshold": 32.4
+ },
+ {
+ "f1": 0.16567797377298485,
+ "fn": 276507,
+ "fn_rate": 0.9096792022660802,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998259766,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09032079773391981,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27454,
+ "tp_rate": 0.09032079773391981,
+ "truth_threshold": 32.42
+ },
+ {
+ "f1": 0.1652572297774478,
+ "fn": 276583,
+ "fn_rate": 0.9099292343425637,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998283725,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.09007076565743631,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27378,
+ "tp_rate": 0.09007076565743631,
+ "truth_threshold": 32.44
+ },
+ {
+ "f1": 0.16481413279075524,
+ "fn": 276663,
+ "fn_rate": 0.91019242600202,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998307353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08980757399798,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27298,
+ "tp_rate": 0.08980757399798,
+ "truth_threshold": 32.46
+ },
+ {
+ "f1": 0.16442624732780173,
+ "fn": 276733,
+ "fn_rate": 0.9104227187040442,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998330656,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08957728129595573,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27228,
+ "tp_rate": 0.08957728129595573,
+ "truth_threshold": 32.480000000000004
+ },
+ {
+ "f1": 0.1639212559423494,
+ "fn": 276824,
+ "fn_rate": 0.9107220992166758,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998353639,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08927790078332418,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27137,
+ "tp_rate": 0.08927790078332418,
+ "truth_threshold": 32.5
+ },
+ {
+ "f1": 0.1633221547478776,
+ "fn": 276932,
+ "fn_rate": 0.9110774079569418,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998376304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08892259204305815,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 27029,
+ "tp_rate": 0.08892259204305815,
+ "truth_threshold": 32.52
+ },
+ {
+ "f1": 0.16289527125036263,
+ "fn": 277009,
+ "fn_rate": 0.9113307299291685,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998398659,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08866927007083146,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26952,
+ "tp_rate": 0.08866927007083146,
+ "truth_threshold": 32.54
+ },
+ {
+ "f1": 0.16260049567793025,
+ "fn": 277062,
+ "fn_rate": 0.9115050944035583,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998420704,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08849490559644164,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26899,
+ "tp_rate": 0.08849490559644164,
+ "truth_threshold": 32.56
+ },
+ {
+ "f1": 0.1623399393008718,
+ "fn": 277109,
+ "fn_rate": 0.9116597195034889,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998442447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08834028049651106,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26852,
+ "tp_rate": 0.08834028049651106,
+ "truth_threshold": 32.58
+ },
+ {
+ "f1": 0.16209548686692787,
+ "fn": 277153,
+ "fn_rate": 0.9118044749161899,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998463891,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0881955250838101,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26808,
+ "tp_rate": 0.0881955250838101,
+ "truth_threshold": 32.6
+ },
+ {
+ "f1": 0.16160638683924036,
+ "fn": 277241,
+ "fn_rate": 0.9120939857415918,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998485039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08790601425840815,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26720,
+ "tp_rate": 0.08790601425840815,
+ "truth_threshold": 32.62
+ },
+ {
+ "f1": 0.16138398257924025,
+ "fn": 277281,
+ "fn_rate": 0.91222558157132,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998505895,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08777441842868,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26680,
+ "tp_rate": 0.08777441842868,
+ "truth_threshold": 32.64
+ },
+ {
+ "f1": 0.16102197376700064,
+ "fn": 277346,
+ "fn_rate": 0.9124394247946283,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998526465,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08756057520537174,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26615,
+ "tp_rate": 0.08756057520537174,
+ "truth_threshold": 32.660000000000004
+ },
+ {
+ "f1": 0.160610223236168,
+ "fn": 277420,
+ "fn_rate": 0.9126828770796254,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998546752,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08731712292037465,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26541,
+ "tp_rate": 0.08731712292037465,
+ "truth_threshold": 32.68
+ },
+ {
+ "f1": 0.1603490954868151,
+ "fn": 277467,
+ "fn_rate": 0.912837502179556,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999856676,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08716249782044407,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26494,
+ "tp_rate": 0.08716249782044407,
+ "truth_threshold": 32.7
+ },
+ {
+ "f1": 0.159975543905953,
+ "fn": 277534,
+ "fn_rate": 0.9130579251943506,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998586491,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0869420748056494,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26427,
+ "tp_rate": 0.0869420748056494,
+ "truth_threshold": 32.72
+ },
+ {
+ "f1": 0.15968589557299234,
+ "fn": 277586,
+ "fn_rate": 0.9132289997729972,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998605952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0867710002270028,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26375,
+ "tp_rate": 0.0867710002270028,
+ "truth_threshold": 32.74
+ },
+ {
+ "f1": 0.15934648201190527,
+ "fn": 277647,
+ "fn_rate": 0.9134296834133326,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998625143,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08657031658666736,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26314,
+ "tp_rate": 0.08657031658666736,
+ "truth_threshold": 32.76
+ },
+ {
+ "f1": 0.15902318482447853,
+ "fn": 277705,
+ "fn_rate": 0.9136204973664385,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998644071,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08637950263356155,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26256,
+ "tp_rate": 0.08637950263356155,
+ "truth_threshold": 32.78
+ },
+ {
+ "f1": 0.1585933240443448,
+ "fn": 277782,
+ "fn_rate": 0.9138738193386652,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998662739,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08612618066133484,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26179,
+ "tp_rate": 0.08612618066133484,
+ "truth_threshold": 32.8
+ },
+ {
+ "f1": 0.15821396543784386,
+ "fn": 277850,
+ "fn_rate": 0.914097532249203,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998681149,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08590246775079698,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26111,
+ "tp_rate": 0.08590246775079698,
+ "truth_threshold": 32.82
+ },
+ {
+ "f1": 0.1578516754240832,
+ "fn": 277915,
+ "fn_rate": 0.9143113754725113,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998699307,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08568862452748872,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26046,
+ "tp_rate": 0.08568862452748872,
+ "truth_threshold": 32.84
+ },
+ {
+ "f1": 0.1576334674877564,
+ "fn": 277954,
+ "fn_rate": 0.9144396814064962,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998717214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08556031859350377,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 26007,
+ "tp_rate": 0.08556031859350377,
+ "truth_threshold": 32.86
+ },
+ {
+ "f1": 0.15732074007614152,
+ "fn": 278010,
+ "fn_rate": 0.9146239155681156,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998734874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08537608443188435,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25951,
+ "tp_rate": 0.08537608443188435,
+ "truth_threshold": 32.88
+ },
+ {
+ "f1": 0.15681791996895295,
+ "fn": 278100,
+ "fn_rate": 0.914920006185004,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998752291,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08507999381499601,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25861,
+ "tp_rate": 0.08507999381499601,
+ "truth_threshold": 32.9
+ },
+ {
+ "f1": 0.15646019201960226,
+ "fn": 278164,
+ "fn_rate": 0.915130559512569,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998769469,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08486944048743095,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25797,
+ "tp_rate": 0.08486944048743095,
+ "truth_threshold": 32.92
+ },
+ {
+ "f1": 0.15620298927548892,
+ "fn": 278210,
+ "fn_rate": 0.9152818947167565,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999878641,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08471810528324357,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25751,
+ "tp_rate": 0.08471810528324357,
+ "truth_threshold": 32.94
+ },
+ {
+ "f1": 0.1557666988235437,
+ "fn": 278288,
+ "fn_rate": 0.9155385065847264,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998803119,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08446149341527368,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25673,
+ "tp_rate": 0.08446149341527368,
+ "truth_threshold": 32.96
+ },
+ {
+ "f1": 0.1552518343640568,
+ "fn": 278380,
+ "fn_rate": 0.9158411769931011,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998819595,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0841588230068989,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25581,
+ "tp_rate": 0.0841588230068989,
+ "truth_threshold": 32.980000000000004
+ },
+ {
+ "f1": 0.15494949740202982,
+ "fn": 278434,
+ "fn_rate": 0.9160188313632341,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998835847,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0839811686367659,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25527,
+ "tp_rate": 0.0839811686367659,
+ "truth_threshold": 33
+ },
+ {
+ "f1": 0.1545074800854867,
+ "fn": 278513,
+ "fn_rate": 0.9162787331269472,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998851874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0837212668730528,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25448,
+ "tp_rate": 0.0837212668730528,
+ "truth_threshold": 33.02
+ },
+ {
+ "f1": 0.1542324508136993,
+ "fn": 278562,
+ "fn_rate": 0.9164399380183642,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999886768,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0835600619816358,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25399,
+ "tp_rate": 0.0835600619816358,
+ "truth_threshold": 33.04
+ },
+ {
+ "f1": 0.15379008746355685,
+ "fn": 278641,
+ "fn_rate": 0.9166998397820773,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999888327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08330016021792269,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25320,
+ "tp_rate": 0.08330016021792269,
+ "truth_threshold": 33.06
+ },
+ {
+ "f1": 0.15338630895968505,
+ "fn": 278713,
+ "fn_rate": 0.916936712275588,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998898644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08306328772441202,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25248,
+ "tp_rate": 0.08306328772441202,
+ "truth_threshold": 33.08
+ },
+ {
+ "f1": 0.15294260626500167,
+ "fn": 278792,
+ "fn_rate": 0.9171966140393011,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998913807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0828033859606989,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25169,
+ "tp_rate": 0.0828033859606989,
+ "truth_threshold": 33.1
+ },
+ {
+ "f1": 0.15269564794612958,
+ "fn": 278836,
+ "fn_rate": 0.9173413694520021,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999892876,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08265863054799794,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25125,
+ "tp_rate": 0.08265863054799794,
+ "truth_threshold": 33.12
+ },
+ {
+ "f1": 0.15225254250682357,
+ "fn": 278915,
+ "fn_rate": 0.9176012712157152,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998943508,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08239872878428482,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 25046,
+ "tp_rate": 0.08239872878428482,
+ "truth_threshold": 33.14
+ },
+ {
+ "f1": 0.15193190454476363,
+ "fn": 278972,
+ "fn_rate": 0.9177887952730778,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998958053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0822112047269222,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24989,
+ "tp_rate": 0.0822112047269222,
+ "truth_threshold": 33.160000000000004
+ },
+ {
+ "f1": 0.1516397180888908,
+ "fn": 279024,
+ "fn_rate": 0.9179598698517244,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998972399,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0820401301482756,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24937,
+ "tp_rate": 0.0820401301482756,
+ "truth_threshold": 33.18
+ },
+ {
+ "f1": 0.15143738102912468,
+ "fn": 279060,
+ "fn_rate": 0.9180783060984797,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999998986546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08192169390152026,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24901,
+ "tp_rate": 0.08192169390152026,
+ "truth_threshold": 33.2
+ },
+ {
+ "f1": 0.1510499038906056,
+ "fn": 279129,
+ "fn_rate": 0.9183053089047608,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999000498,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08169469109523919,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24832,
+ "tp_rate": 0.08169469109523919,
+ "truth_threshold": 33.22
+ },
+ {
+ "f1": 0.1505774121712888,
+ "fn": 279213,
+ "fn_rate": 0.9185816601471899,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999014259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08141833985281006,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24748,
+ "tp_rate": 0.08141833985281006,
+ "truth_threshold": 33.24
+ },
+ {
+ "f1": 0.15007607571054712,
+ "fn": 279302,
+ "fn_rate": 0.9188744608683351,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999902783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08112553913166491,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24659,
+ "tp_rate": 0.08112553913166491,
+ "truth_threshold": 33.26
+ },
+ {
+ "f1": 0.14978330208663046,
+ "fn": 279354,
+ "fn_rate": 0.9190455354469816,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999041214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08095446455301832,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24607,
+ "tp_rate": 0.08095446455301832,
+ "truth_threshold": 33.28
+ },
+ {
+ "f1": 0.14940030441400304,
+ "fn": 279422,
+ "fn_rate": 0.9192692483575196,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999054414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08073075164248045,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24539,
+ "tp_rate": 0.08073075164248045,
+ "truth_threshold": 33.3
+ },
+ {
+ "f1": 0.14905705186366985,
+ "fn": 279483,
+ "fn_rate": 0.919469931997855,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999067432,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08053006800214502,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24478,
+ "tp_rate": 0.08053006800214502,
+ "truth_threshold": 33.32
+ },
+ {
+ "f1": 0.14861128030210743,
+ "fn": 279562,
+ "fn_rate": 0.9197298337615681,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999080271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0802701662384319,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24399,
+ "tp_rate": 0.0802701662384319,
+ "truth_threshold": 33.34
+ },
+ {
+ "f1": 0.14841437116994188,
+ "fn": 279597,
+ "fn_rate": 0.9198449801125802,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999092933,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08015501988741977,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24364,
+ "tp_rate": 0.08015501988741977,
+ "truth_threshold": 33.36
+ },
+ {
+ "f1": 0.14822779720492732,
+ "fn": 279630,
+ "fn_rate": 0.9199535466721059,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999105421,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.08004645332789403,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24331,
+ "tp_rate": 0.08004645332789403,
+ "truth_threshold": 33.38
+ },
+ {
+ "f1": 0.14779901040778023,
+ "fn": 279706,
+ "fn_rate": 0.9202035787485895,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999117737,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07979642125141054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24255,
+ "tp_rate": 0.07979642125141054,
+ "truth_threshold": 33.4
+ },
+ {
+ "f1": 0.14760192577244197,
+ "fn": 279741,
+ "fn_rate": 0.9203187250996016,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999129883,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0796812749003984,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24220,
+ "tp_rate": 0.0796812749003984,
+ "truth_threshold": 33.42
+ },
+ {
+ "f1": 0.14689565196186016,
+ "fn": 279866,
+ "fn_rate": 0.9207299620675021,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999141862,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07927003793249791,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24095,
+ "tp_rate": 0.07927003793249791,
+ "truth_threshold": 33.44
+ },
+ {
+ "f1": 0.1465627629605239,
+ "fn": 279925,
+ "fn_rate": 0.9209240659163511,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999153677,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0790759340836489,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 24036,
+ "tp_rate": 0.0790759340836489,
+ "truth_threshold": 33.46
+ },
+ {
+ "f1": 0.14602012808783166,
+ "fn": 280021,
+ "fn_rate": 0.9212398959076987,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999165328,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07876010409230132,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23940,
+ "tp_rate": 0.07876010409230132,
+ "truth_threshold": 33.480000000000004
+ },
+ {
+ "f1": 0.14556768958574828,
+ "fn": 280101,
+ "fn_rate": 0.921503087567155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999917682,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.078496912432845,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23860,
+ "tp_rate": 0.078496912432845,
+ "truth_threshold": 33.5
+ },
+ {
+ "f1": 0.14518294320095682,
+ "fn": 280169,
+ "fn_rate": 0.9217268004776928,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999188153,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07827319952230714,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23792,
+ "tp_rate": 0.07827319952230714,
+ "truth_threshold": 33.52
+ },
+ {
+ "f1": 0.144775390625,
+ "fn": 280241,
+ "fn_rate": 0.9219636729712035,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999199329,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07803632702879645,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23720,
+ "tp_rate": 0.07803632702879645,
+ "truth_threshold": 33.54
+ },
+ {
+ "f1": 0.1444181943605052,
+ "fn": 280304,
+ "fn_rate": 0.9221709364030254,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999210353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07782906359697461,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23657,
+ "tp_rate": 0.07782906359697461,
+ "truth_threshold": 33.56
+ },
+ {
+ "f1": 0.14413495823767888,
+ "fn": 280354,
+ "fn_rate": 0.9223354311901856,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999221224,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07766456880981441,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23607,
+ "tp_rate": 0.07766456880981441,
+ "truth_threshold": 33.58
+ },
+ {
+ "f1": 0.1437496183206107,
+ "fn": 280422,
+ "fn_rate": 0.9225591441007235,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999231945,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07744085589927655,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23539,
+ "tp_rate": 0.07744085589927655,
+ "truth_threshold": 33.6
+ },
+ {
+ "f1": 0.1434722858451672,
+ "fn": 280471,
+ "fn_rate": 0.9227203489921404,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999242519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07727965100785956,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23490,
+ "tp_rate": 0.07727965100785956,
+ "truth_threshold": 33.62
+ },
+ {
+ "f1": 0.1430919043080908,
+ "fn": 280538,
+ "fn_rate": 0.9229407720069351,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999252948,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0770592279930649,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23423,
+ "tp_rate": 0.0770592279930649,
+ "truth_threshold": 33.64
+ },
+ {
+ "f1": 0.1427515244833865,
+ "fn": 280598,
+ "fn_rate": 0.9231381657515273,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999263233,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07686183424847266,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23363,
+ "tp_rate": 0.07686183424847266,
+ "truth_threshold": 33.660000000000004
+ },
+ {
+ "f1": 0.1423263090989097,
+ "fn": 280673,
+ "fn_rate": 0.9233849079322676,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999273376,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07661509206773237,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23288,
+ "tp_rate": 0.07661509206773237,
+ "truth_threshold": 33.68
+ },
+ {
+ "f1": 0.1419061416860753,
+ "fn": 280747,
+ "fn_rate": 0.9236283602172647,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999928338,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07637163978273528,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23214,
+ "tp_rate": 0.07637163978273528,
+ "truth_threshold": 33.7
+ },
+ {
+ "f1": 0.14149714767870572,
+ "fn": 280819,
+ "fn_rate": 0.9238652327107754,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999293245,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07613476728922461,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23142,
+ "tp_rate": 0.07613476728922461,
+ "truth_threshold": 33.72
+ },
+ {
+ "f1": 0.1411675493205807,
+ "fn": 280877,
+ "fn_rate": 0.9240560466638812,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999302975,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07594395333611878,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 23084,
+ "tp_rate": 0.07594395333611878,
+ "truth_threshold": 33.74
+ },
+ {
+ "f1": 0.14058150987025222,
+ "fn": 280980,
+ "fn_rate": 0.9243949059254313,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999312572,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07560509407456878,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22981,
+ "tp_rate": 0.07560509407456878,
+ "truth_threshold": 33.76
+ },
+ {
+ "f1": 0.14031985707992756,
+ "fn": 281026,
+ "fn_rate": 0.9245462411296186,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999322036,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0754537588703814,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22935,
+ "tp_rate": 0.0754537588703814,
+ "truth_threshold": 33.78
+ },
+ {
+ "f1": 0.1398873997919344,
+ "fn": 281102,
+ "fn_rate": 0.9247962732061021,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999331369,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0752037267938979,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22859,
+ "tp_rate": 0.0752037267938979,
+ "truth_threshold": 33.8
+ },
+ {
+ "f1": 0.13959751260833375,
+ "fn": 281153,
+ "fn_rate": 0.9249640578890055,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999340575,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0750359421109945,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22808,
+ "tp_rate": 0.0750359421109945,
+ "truth_threshold": 33.82
+ },
+ {
+ "f1": 0.13916471783820847,
+ "fn": 281229,
+ "fn_rate": 0.925214089965489,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999349654,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.074785910034511,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22732,
+ "tp_rate": 0.074785910034511,
+ "truth_threshold": 33.84
+ },
+ {
+ "f1": 0.1389307275020511,
+ "fn": 281270,
+ "fn_rate": 0.9253489756909603,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999358606,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07465102430903965,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22691,
+ "tp_rate": 0.07465102430903965,
+ "truth_threshold": 33.86
+ },
+ {
+ "f1": 0.13854934718173578,
+ "fn": 281337,
+ "fn_rate": 0.925569398705755,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999367437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07443060129424499,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22624,
+ "tp_rate": 0.07443060129424499,
+ "truth_threshold": 33.88
+ },
+ {
+ "f1": 0.1382581905712728,
+ "fn": 281388,
+ "fn_rate": 0.9257371833886584,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999376146,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07426281661134158,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22573,
+ "tp_rate": 0.07426281661134158,
+ "truth_threshold": 33.9
+ },
+ {
+ "f1": 0.137865124485395,
+ "fn": 281457,
+ "fn_rate": 0.9259641861949395,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999384734,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07403581380506052,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22504,
+ "tp_rate": 0.07403581380506052,
+ "truth_threshold": 33.92
+ },
+ {
+ "f1": 0.13744822177014143,
+ "fn": 281530,
+ "fn_rate": 0.9262043485841933,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999393205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07379565141580663,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22431,
+ "tp_rate": 0.07379565141580663,
+ "truth_threshold": 33.94
+ },
+ {
+ "f1": 0.13704339298847756,
+ "fn": 281601,
+ "fn_rate": 0.9264379311819608,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999401559,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07356206881803916,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22360,
+ "tp_rate": 0.07356206881803916,
+ "truth_threshold": 33.96
+ },
+ {
+ "f1": 0.13672363484785327,
+ "fn": 281657,
+ "fn_rate": 0.9266221653435802,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999409798,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07337783465641974,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22304,
+ "tp_rate": 0.07337783465641974,
+ "truth_threshold": 33.980000000000004
+ },
+ {
+ "f1": 0.13638620994095754,
+ "fn": 281716,
+ "fn_rate": 0.9268162691924293,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999417923,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07318373080757071,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22245,
+ "tp_rate": 0.07318373080757071,
+ "truth_threshold": 34
+ },
+ {
+ "f1": 0.13606622719607542,
+ "fn": 281772,
+ "fn_rate": 0.9270005033540487,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999425937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07299949664595129,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22189,
+ "tp_rate": 0.07299949664595129,
+ "truth_threshold": 34.02
+ },
+ {
+ "f1": 0.1358094350268626,
+ "fn": 281817,
+ "fn_rate": 0.9271485486624929,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999433841,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07285145133750712,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22144,
+ "tp_rate": 0.07285145133750712,
+ "truth_threshold": 34.04
+ },
+ {
+ "f1": 0.13560891833041985,
+ "fn": 281852,
+ "fn_rate": 0.927263695013505,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999441634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07273630498649498,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22109,
+ "tp_rate": 0.07273630498649498,
+ "truth_threshold": 34.06
+ },
+ {
+ "f1": 0.13533442528418327,
+ "fn": 281900,
+ "fn_rate": 0.9274216100091788,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999449322,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0725783899908212,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22061,
+ "tp_rate": 0.0725783899908212,
+ "truth_threshold": 34.08
+ },
+ {
+ "f1": 0.13505985139919136,
+ "fn": 281948,
+ "fn_rate": 0.9275795250048526,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999456903,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07242047499514741,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 22013,
+ "tp_rate": 0.07242047499514741,
+ "truth_threshold": 34.1
+ },
+ {
+ "f1": 0.1347394129811793,
+ "fn": 282004,
+ "fn_rate": 0.927763759166472,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999464381,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07223624083352799,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21957,
+ "tp_rate": 0.07223624083352799,
+ "truth_threshold": 34.12
+ },
+ {
+ "f1": 0.13434484790454446,
+ "fn": 282073,
+ "fn_rate": 0.9279907619727531,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999471755,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07200923802724692,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21888,
+ "tp_rate": 0.07200923802724692,
+ "truth_threshold": 34.14
+ },
+ {
+ "f1": 0.13387523559855846,
+ "fn": 282155,
+ "fn_rate": 0.9282605334236959,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999479027,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0717394665763042,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21806,
+ "tp_rate": 0.0717394665763042,
+ "truth_threshold": 34.160000000000004
+ },
+ {
+ "f1": 0.1334221709120385,
+ "fn": 282234,
+ "fn_rate": 0.9285204351874089,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999486199,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07147956481259109,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21727,
+ "tp_rate": 0.07147956481259109,
+ "truth_threshold": 34.18
+ },
+ {
+ "f1": 0.1330729118682169,
+ "fn": 282295,
+ "fn_rate": 0.9287211188277443,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999493273,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07127888117225566,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21666,
+ "tp_rate": 0.07127888117225566,
+ "truth_threshold": 34.2
+ },
+ {
+ "f1": 0.1327456460976134,
+ "fn": 282352,
+ "fn_rate": 0.928908642885107,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999500249,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07109135711489303,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21609,
+ "tp_rate": 0.07109135711489303,
+ "truth_threshold": 34.22
+ },
+ {
+ "f1": 0.13256824088124888,
+ "fn": 282383,
+ "fn_rate": 0.9290106296531463,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999950713,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07098937034685371,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21578,
+ "tp_rate": 0.07098937034685371,
+ "truth_threshold": 34.24
+ },
+ {
+ "f1": 0.13232727898345908,
+ "fn": 282425,
+ "fn_rate": 0.9291488052743608,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999513914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07085119472563914,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21536,
+ "tp_rate": 0.07085119472563914,
+ "truth_threshold": 34.26
+ },
+ {
+ "f1": 0.13205181780192227,
+ "fn": 282473,
+ "fn_rate": 0.9293067202700347,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999520607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07069327972996536,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21488,
+ "tp_rate": 0.07069327972996536,
+ "truth_threshold": 34.28
+ },
+ {
+ "f1": 0.13166677935472768,
+ "fn": 282540,
+ "fn_rate": 0.9295271432848293,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999527207,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0704728567151707,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21421,
+ "tp_rate": 0.0704728567151707,
+ "truth_threshold": 34.300000000000004
+ },
+ {
+ "f1": 0.13127090301003344,
+ "fn": 282609,
+ "fn_rate": 0.9297541460911104,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999533716,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.07024585390888963,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21352,
+ "tp_rate": 0.07024585390888963,
+ "truth_threshold": 34.32
+ },
+ {
+ "f1": 0.1308227307108113,
+ "fn": 282687,
+ "fn_rate": 0.9300107579590803,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999540136,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06998924204091972,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21274,
+ "tp_rate": 0.06998924204091972,
+ "truth_threshold": 34.34
+ },
+ {
+ "f1": 0.1304778364813915,
+ "fn": 282747,
+ "fn_rate": 0.9302081517036725,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999546466,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0697918482963275,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21214,
+ "tp_rate": 0.0697918482963275,
+ "truth_threshold": 34.36
+ },
+ {
+ "f1": 0.13024168496681368,
+ "fn": 282788,
+ "fn_rate": 0.9303430374291438,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999955271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06965696257085613,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21173,
+ "tp_rate": 0.06965696257085613,
+ "truth_threshold": 34.38
+ },
+ {
+ "f1": 0.12996560910036115,
+ "fn": 282836,
+ "fn_rate": 0.9305009524248177,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999558868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06949904757518234,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21125,
+ "tp_rate": 0.06949904757518234,
+ "truth_threshold": 34.4
+ },
+ {
+ "f1": 0.12960889042039972,
+ "fn": 282898,
+ "fn_rate": 0.9307049259608963,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999564941,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0692950740391037,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21063,
+ "tp_rate": 0.0692950740391037,
+ "truth_threshold": 34.42
+ },
+ {
+ "f1": 0.129281217111944,
+ "fn": 282955,
+ "fn_rate": 0.9308924500182589,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999570931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06910754998174108,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 21006,
+ "tp_rate": 0.06910754998174108,
+ "truth_threshold": 34.44
+ },
+ {
+ "f1": 0.12888352652217003,
+ "fn": 283024,
+ "fn_rate": 0.93111945282454,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999576838,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06888054717546001,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20937,
+ "tp_rate": 0.06888054717546001,
+ "truth_threshold": 34.46
+ },
+ {
+ "f1": 0.12857864082451884,
+ "fn": 283077,
+ "fn_rate": 0.9312938172989298,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999582664,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0687061827010702,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20884,
+ "tp_rate": 0.0687061827010702,
+ "truth_threshold": 34.480000000000004
+ },
+ {
+ "f1": 0.12829054723917313,
+ "fn": 283127,
+ "fn_rate": 0.93145831208609,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999588409,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06854168791391001,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20834,
+ "tp_rate": 0.06854168791391001,
+ "truth_threshold": 34.5
+ },
+ {
+ "f1": 0.1278063502817899,
+ "fn": 283211,
+ "fn_rate": 0.9317346633285191,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999594076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06826533667148088,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20750,
+ "tp_rate": 0.06826533667148088,
+ "truth_threshold": 34.52
+ },
+ {
+ "f1": 0.12750032341725753,
+ "fn": 283264,
+ "fn_rate": 0.931909027802909,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999599665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06809097219709108,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20697,
+ "tp_rate": 0.06809097219709108,
+ "truth_threshold": 34.54
+ },
+ {
+ "f1": 0.12718882084016217,
+ "fn": 283318,
+ "fn_rate": 0.9320866821730419,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999605176,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06791331782695806,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20643,
+ "tp_rate": 0.06791331782695806,
+ "truth_threshold": 34.56
+ },
+ {
+ "f1": 0.1269003001041429,
+ "fn": 283368,
+ "fn_rate": 0.9322511769602021,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999610611,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06774882303979787,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20593,
+ "tp_rate": 0.06774882303979787,
+ "truth_threshold": 34.58
+ },
+ {
+ "f1": 0.12659476117103236,
+ "fn": 283421,
+ "fn_rate": 0.9324255414345919,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999615973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06757445856540806,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20540,
+ "tp_rate": 0.06757445856540806,
+ "truth_threshold": 34.6
+ },
+ {
+ "f1": 0.12635764038710473,
+ "fn": 283462,
+ "fn_rate": 0.9325604271600633,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999962126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0674395728399367,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20499,
+ "tp_rate": 0.0674395728399367,
+ "truth_threshold": 34.62
+ },
+ {
+ "f1": 0.12615589475501196,
+ "fn": 283497,
+ "fn_rate": 0.9326755735110754,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999626474,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06732442648892456,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20464,
+ "tp_rate": 0.06732442648892456,
+ "truth_threshold": 34.64
+ },
+ {
+ "f1": 0.1257746070699659,
+ "fn": 283563,
+ "fn_rate": 0.9328927066301269,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999631617,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0671072933698731,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20398,
+ "tp_rate": 0.0671072933698731,
+ "truth_threshold": 34.660000000000004
+ },
+ {
+ "f1": 0.12522512520662177,
+ "fn": 283658,
+ "fn_rate": 0.9332052467257312,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999636688,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06679475327426874,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20303,
+ "tp_rate": 0.06679475327426874,
+ "truth_threshold": 34.68
+ },
+ {
+ "f1": 0.124965301124552,
+ "fn": 283703,
+ "fn_rate": 0.9333532920341754,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999964169,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06664670796582456,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20258,
+ "tp_rate": 0.06664670796582456,
+ "truth_threshold": 34.7
+ },
+ {
+ "f1": 0.12461207189086804,
+ "fn": 283764,
+ "fn_rate": 0.9335539756745109,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999646623,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06644602432548913,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20197,
+ "tp_rate": 0.06644602432548913,
+ "truth_threshold": 34.72
+ },
+ {
+ "f1": 0.12426488284407802,
+ "fn": 283824,
+ "fn_rate": 0.9337513694191031,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999651488,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06624863058089689,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20137,
+ "tp_rate": 0.06624863058089689,
+ "truth_threshold": 34.74
+ },
+ {
+ "f1": 0.12379018320082959,
+ "fn": 283906,
+ "fn_rate": 0.9340211408700458,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999656286,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06597885912995417,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 20055,
+ "tp_rate": 0.06597885912995417,
+ "truth_threshold": 34.76
+ },
+ {
+ "f1": 0.12339093552629142,
+ "fn": 283975,
+ "fn_rate": 0.9342481436763269,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999661018,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0657518563236731,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19986,
+ "tp_rate": 0.0657518563236731,
+ "truth_threshold": 34.78
+ },
+ {
+ "f1": 0.12317619091723009,
+ "fn": 284012,
+ "fn_rate": 0.9343698698188254,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999665685,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06563013018117456,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19949,
+ "tp_rate": 0.06563013018117456,
+ "truth_threshold": 34.800000000000004
+ },
+ {
+ "f1": 0.12288101575381803,
+ "fn": 284063,
+ "fn_rate": 0.9345376545017289,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999670287,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06546234549827117,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19898,
+ "tp_rate": 0.06546234549827117,
+ "truth_threshold": 34.82
+ },
+ {
+ "f1": 0.12249839403073579,
+ "fn": 284129,
+ "fn_rate": 0.9347547876207803,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999674827,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06524521237921971,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19832,
+ "tp_rate": 0.06524521237921971,
+ "truth_threshold": 34.84
+ },
+ {
+ "f1": 0.12199959222257234,
+ "fn": 284215,
+ "fn_rate": 0.9350377186546959,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999679303,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06496228134530417,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19746,
+ "tp_rate": 0.06496228134530417,
+ "truth_threshold": 34.86
+ },
+ {
+ "f1": 0.12165143397415695,
+ "fn": 284275,
+ "fn_rate": 0.935235112399288,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999683719,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06476488760071193,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19686,
+ "tp_rate": 0.06476488760071193,
+ "truth_threshold": 34.88
+ },
+ {
+ "f1": 0.1212737420499286,
+ "fn": 284340,
+ "fn_rate": 0.9354489556225963,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999688073,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06455104437740368,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19621,
+ "tp_rate": 0.06455104437740368,
+ "truth_threshold": 34.9
+ },
+ {
+ "f1": 0.12098957753792515,
+ "fn": 284389,
+ "fn_rate": 0.9356101605140134,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999692367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06438983948598669,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19572,
+ "tp_rate": 0.06438983948598669,
+ "truth_threshold": 34.92
+ },
+ {
+ "f1": 0.12058838077807732,
+ "fn": 284458,
+ "fn_rate": 0.9358371633202944,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999696603,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06416283667970563,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19503,
+ "tp_rate": 0.06416283667970563,
+ "truth_threshold": 34.94
+ },
+ {
+ "f1": 0.12040243389646046,
+ "fn": 284490,
+ "fn_rate": 0.9359424399840769,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999700779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0640575600159231,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19471,
+ "tp_rate": 0.0640575600159231,
+ "truth_threshold": 34.96
+ },
+ {
+ "f1": 0.12014125534191337,
+ "fn": 284535,
+ "fn_rate": 0.936090485292521,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999704899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06390951470747892,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19426,
+ "tp_rate": 0.06390951470747892,
+ "truth_threshold": 34.980000000000004
+ },
+ {
+ "f1": 0.11978077717707315,
+ "fn": 284597,
+ "fn_rate": 0.9362944588285997,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999708962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06370554117140027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19364,
+ "tp_rate": 0.06370554117140027,
+ "truth_threshold": 35
+ },
+ {
+ "f1": 0.11939689040951809,
+ "fn": 284663,
+ "fn_rate": 0.9365115919476512,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999712968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06348840805234882,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19298,
+ "tp_rate": 0.06348840805234882,
+ "truth_threshold": 35.02
+ },
+ {
+ "f1": 0.11915796768744315,
+ "fn": 284704,
+ "fn_rate": 0.9366464776731226,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999971692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06335352232687746,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19257,
+ "tp_rate": 0.06335352232687746,
+ "truth_threshold": 35.04
+ },
+ {
+ "f1": 0.11847106159083876,
+ "fn": 284822,
+ "fn_rate": 0.9370346853708206,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999720818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0629653146291794,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19139,
+ "tp_rate": 0.0629653146291794,
+ "truth_threshold": 35.06
+ },
+ {
+ "f1": 0.11810994372179125,
+ "fn": 284884,
+ "fn_rate": 0.9372386589068993,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999724661,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06276134109310076,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19077,
+ "tp_rate": 0.06276134109310076,
+ "truth_threshold": 35.08
+ },
+ {
+ "f1": 0.11783027338307688,
+ "fn": 284932,
+ "fn_rate": 0.937396573902573,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999728452,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06260342609742697,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 19029,
+ "tp_rate": 0.06260342609742697,
+ "truth_threshold": 35.1
+ },
+ {
+ "f1": 0.11752720336411324,
+ "fn": 284984,
+ "fn_rate": 0.9375676484812197,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999973219,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06243235151878037,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18977,
+ "tp_rate": 0.06243235151878037,
+ "truth_threshold": 35.12
+ },
+ {
+ "f1": 0.11721237348397567,
+ "fn": 285038,
+ "fn_rate": 0.9377453028513526,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999735877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.062254697148647356,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18923,
+ "tp_rate": 0.062254697148647356,
+ "truth_threshold": 35.14
+ },
+ {
+ "f1": 0.1169502970530111,
+ "fn": 285083,
+ "fn_rate": 0.9378933481597969,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999739514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.062106651840203184,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18878,
+ "tp_rate": 0.062106651840203184,
+ "truth_threshold": 35.160000000000004
+ },
+ {
+ "f1": 0.11669909168639017,
+ "fn": 285126,
+ "fn_rate": 0.9380348136767546,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.99999999997431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.061965186323245415,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18835,
+ "tp_rate": 0.061965186323245415,
+ "truth_threshold": 35.18
+ },
+ {
+ "f1": 0.11644854253420583,
+ "fn": 285169,
+ "fn_rate": 0.9381762791937124,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999746636,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.061823720806287646,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18792,
+ "tp_rate": 0.061823720806287646,
+ "truth_threshold": 35.2
+ },
+ {
+ "f1": 0.11618005243162507,
+ "fn": 285215,
+ "fn_rate": 0.9383276143978997,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999750124,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06167238560210027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18746,
+ "tp_rate": 0.06167238560210027,
+ "truth_threshold": 35.22
+ },
+ {
+ "f1": 0.11596987634425264,
+ "fn": 285251,
+ "fn_rate": 0.938446050644655,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999753565,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06155394935534493,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18710,
+ "tp_rate": 0.06155394935534493,
+ "truth_threshold": 35.24
+ },
+ {
+ "f1": 0.11573629234727087,
+ "fn": 285291,
+ "fn_rate": 0.9385776464743832,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999756958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06142235352561677,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18670,
+ "tp_rate": 0.06142235352561677,
+ "truth_threshold": 35.26
+ },
+ {
+ "f1": 0.11538580773165515,
+ "fn": 285351,
+ "fn_rate": 0.9387750402189755,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999760304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06122495978102454,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18610,
+ "tp_rate": 0.06122495978102454,
+ "truth_threshold": 35.28
+ },
+ {
+ "f1": 0.11502899134910545,
+ "fn": 285412,
+ "fn_rate": 0.9389757238593109,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999763604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0610242761406891,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18549,
+ "tp_rate": 0.0610242761406891,
+ "truth_threshold": 35.300000000000004
+ },
+ {
+ "f1": 0.11443884767127367,
+ "fn": 285513,
+ "fn_rate": 0.9393080033293745,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999766858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.060691996670625505,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18448,
+ "tp_rate": 0.060691996670625505,
+ "truth_threshold": 35.32
+ },
+ {
+ "f1": 0.11413468339351525,
+ "fn": 285565,
+ "fn_rate": 0.9394790779080211,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999770067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06052092209197891,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18396,
+ "tp_rate": 0.06052092209197891,
+ "truth_threshold": 35.34
+ },
+ {
+ "f1": 0.11397635963143363,
+ "fn": 285592,
+ "fn_rate": 0.9395679050930876,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999773234,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0604320949069124,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18369,
+ "tp_rate": 0.0604320949069124,
+ "truth_threshold": 35.36
+ },
+ {
+ "f1": 0.11355497768868422,
+ "fn": 285664,
+ "fn_rate": 0.9398047775865983,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999776356,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.06019522241340172,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18297,
+ "tp_rate": 0.06019522241340172,
+ "truth_threshold": 35.38
+ },
+ {
+ "f1": 0.11319817750685918,
+ "fn": 285725,
+ "fn_rate": 0.9400054612269337,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999779434,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.059994538773066285,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18236,
+ "tp_rate": 0.059994538773066285,
+ "truth_threshold": 35.4
+ },
+ {
+ "f1": 0.11282331466603752,
+ "fn": 285789,
+ "fn_rate": 0.9402160145544988,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999782471,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05978398544550123,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18172,
+ "tp_rate": 0.05978398544550123,
+ "truth_threshold": 35.42
+ },
+ {
+ "f1": 0.11250069858854067,
+ "fn": 285844,
+ "fn_rate": 0.940396958820375,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999785466,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05960304117962502,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18117,
+ "tp_rate": 0.05960304117962502,
+ "truth_threshold": 35.44
+ },
+ {
+ "f1": 0.11227797789094522,
+ "fn": 285882,
+ "fn_rate": 0.9405219748586168,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999788419,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05947802514138327,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18079,
+ "tp_rate": 0.05947802514138327,
+ "truth_threshold": 35.46
+ },
+ {
+ "f1": 0.11200278267783051,
+ "fn": 285929,
+ "fn_rate": 0.9406765999585474,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999791332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05932340004145269,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 18032,
+ "tp_rate": 0.05932340004145269,
+ "truth_threshold": 35.480000000000004
+ },
+ {
+ "f1": 0.11177373165110543,
+ "fn": 285968,
+ "fn_rate": 0.9408049058925323,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999794205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05919509410746773,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17993,
+ "tp_rate": 0.05919509410746773,
+ "truth_threshold": 35.5
+ },
+ {
+ "f1": 0.11128095193711747,
+ "fn": 286052,
+ "fn_rate": 0.9410812571349614,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999797038,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.058918742865038606,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17909,
+ "tp_rate": 0.058918742865038606,
+ "truth_threshold": 35.52
+ },
+ {
+ "f1": 0.11105794327475205,
+ "fn": 286090,
+ "fn_rate": 0.9412062731732032,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999799832,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05879372682679686,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17871,
+ "tp_rate": 0.05879372682679686,
+ "truth_threshold": 35.54
+ },
+ {
+ "f1": 0.11080587218914316,
+ "fn": 286133,
+ "fn_rate": 0.9413477386901609,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999802588,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05865226130983909,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17828,
+ "tp_rate": 0.05865226130983909,
+ "truth_threshold": 35.56
+ },
+ {
+ "f1": 0.11068223067551776,
+ "fn": 286154,
+ "fn_rate": 0.9414168265007682,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999805306,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05858317349923181,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17807,
+ "tp_rate": 0.05858317349923181,
+ "truth_threshold": 35.58
+ },
+ {
+ "f1": 0.11032433339757418,
+ "fn": 286215,
+ "fn_rate": 0.9416175101411036,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999807986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05838248985889637,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17746,
+ "tp_rate": 0.05838248985889637,
+ "truth_threshold": 35.6
+ },
+ {
+ "f1": 0.11001884012012908,
+ "fn": 286267,
+ "fn_rate": 0.9417885847197502,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999981063,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05821141528024977,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17694,
+ "tp_rate": 0.05821141528024977,
+ "truth_threshold": 35.62
+ },
+ {
+ "f1": 0.10963649367206692,
+ "fn": 286332,
+ "fn_rate": 0.9420024279430584,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999813237,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05799757205694152,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17629,
+ "tp_rate": 0.05799757205694152,
+ "truth_threshold": 35.64
+ },
+ {
+ "f1": 0.10929549780426209,
+ "fn": 286390,
+ "fn_rate": 0.9421932418961643,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999815808,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05780675810383569,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17571,
+ "tp_rate": 0.05780675810383569,
+ "truth_threshold": 35.660000000000004
+ },
+ {
+ "f1": 0.10903672920917733,
+ "fn": 286434,
+ "fn_rate": 0.9423379973088652,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999818344,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.057662002691134716,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17527,
+ "tp_rate": 0.057662002691134716,
+ "truth_threshold": 35.68
+ },
+ {
+ "f1": 0.108671980486955,
+ "fn": 286496,
+ "fn_rate": 0.942541970844944,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999820844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05745802915505607,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17465,
+ "tp_rate": 0.05745802915505607,
+ "truth_threshold": 35.7
+ },
+ {
+ "f1": 0.10850720913011282,
+ "fn": 286524,
+ "fn_rate": 0.9426340879257536,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999823311,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.057365912074246364,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17437,
+ "tp_rate": 0.057365912074246364,
+ "truth_threshold": 35.72
+ },
+ {
+ "f1": 0.10816025493405697,
+ "fn": 286583,
+ "fn_rate": 0.9428281917746026,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999825744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05717180822539734,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17378,
+ "tp_rate": 0.05717180822539734,
+ "truth_threshold": 35.74
+ },
+ {
+ "f1": 0.10764757884775815,
+ "fn": 286670,
+ "fn_rate": 0.9431144127042614,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999828143,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.056885587295738595,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17291,
+ "tp_rate": 0.056885587295738595,
+ "truth_threshold": 35.76
+ },
+ {
+ "f1": 0.10734122042341221,
+ "fn": 286722,
+ "fn_rate": 0.943285487282908,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999830509,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.056714512717092,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17239,
+ "tp_rate": 0.056714512717092,
+ "truth_threshold": 35.78
+ },
+ {
+ "f1": 0.10706456755679554,
+ "fn": 286769,
+ "fn_rate": 0.9434401123828385,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999832843,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.056559887617161415,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17192,
+ "tp_rate": 0.056559887617161415,
+ "truth_threshold": 35.800000000000004
+ },
+ {
+ "f1": 0.10674622700857682,
+ "fn": 286823,
+ "fn_rate": 0.9436177667529716,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999835144,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0563822332470284,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17138,
+ "tp_rate": 0.0563822332470284,
+ "truth_threshold": 35.82
+ },
+ {
+ "f1": 0.10652771115859243,
+ "fn": 286860,
+ "fn_rate": 0.9437394928954701,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999837413,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05626050710452986,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17101,
+ "tp_rate": 0.05626050710452986,
+ "truth_threshold": 35.84
+ },
+ {
+ "f1": 0.10626261619358536,
+ "fn": 286905,
+ "fn_rate": 0.9438875382039144,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999839652,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05611246179608568,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17056,
+ "tp_rate": 0.05611246179608568,
+ "truth_threshold": 35.86
+ },
+ {
+ "f1": 0.10598498302021996,
+ "fn": 286952,
+ "fn_rate": 0.9440421633038449,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999841859,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.055957836696155096,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 17009,
+ "tp_rate": 0.055957836696155096,
+ "truth_threshold": 35.88
+ },
+ {
+ "f1": 0.10566070660675446,
+ "fn": 287007,
+ "fn_rate": 0.9442231075697212,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999844037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.055776892430278883,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16954,
+ "tp_rate": 0.055776892430278883,
+ "truth_threshold": 35.9
+ },
+ {
+ "f1": 0.10525298741452285,
+ "fn": 287076,
+ "fn_rate": 0.9444501103760022,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999846184,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05554988962399782,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16885,
+ "tp_rate": 0.05554988962399782,
+ "truth_threshold": 35.92
+ },
+ {
+ "f1": 0.1046622561154309,
+ "fn": 287176,
+ "fn_rate": 0.9447790999503226,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999848301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.055220900049677425,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16785,
+ "tp_rate": 0.055220900049677425,
+ "truth_threshold": 35.94
+ },
+ {
+ "f1": 0.10446132355508993,
+ "fn": 287210,
+ "fn_rate": 0.9448909564055915,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999985039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05510904359440849,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16751,
+ "tp_rate": 0.05510904359440849,
+ "truth_threshold": 35.96
+ },
+ {
+ "f1": 0.10389999251440976,
+ "fn": 287305,
+ "fn_rate": 0.9452034965011958,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999852449,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.054796503498804126,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16656,
+ "tp_rate": 0.054796503498804126,
+ "truth_threshold": 35.980000000000004
+ },
+ {
+ "f1": 0.10360424998284284,
+ "fn": 287355,
+ "fn_rate": 0.945367991288356,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999854481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05463200871164393,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16606,
+ "tp_rate": 0.05463200871164393,
+ "truth_threshold": 36
+ },
+ {
+ "f1": 0.10327850439297125,
+ "fn": 287410,
+ "fn_rate": 0.9455489355542323,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999856485,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.054451064445767715,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16551,
+ "tp_rate": 0.054451064445767715,
+ "truth_threshold": 36.02
+ },
+ {
+ "f1": 0.10281680470861394,
+ "fn": 287488,
+ "fn_rate": 0.9458055474222022,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999985846,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05419445257779781,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16473,
+ "tp_rate": 0.05419445257779781,
+ "truth_threshold": 36.04
+ },
+ {
+ "f1": 0.10255625955866288,
+ "fn": 287532,
+ "fn_rate": 0.9459503028349031,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999860408,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05404969716509684,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16429,
+ "tp_rate": 0.05404969716509684,
+ "truth_threshold": 36.06
+ },
+ {
+ "f1": 0.10230749060396818,
+ "fn": 287574,
+ "fn_rate": 0.9460884784561178,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999986233,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.053911521543882276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16387,
+ "tp_rate": 0.053911521543882276,
+ "truth_threshold": 36.08
+ },
+ {
+ "f1": 0.10208860166713496,
+ "fn": 287611,
+ "fn_rate": 0.9462102045986163,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999864225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05378979540138373,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16350,
+ "tp_rate": 0.05378979540138373,
+ "truth_threshold": 36.1
+ },
+ {
+ "f1": 0.10182785559503663,
+ "fn": 287655,
+ "fn_rate": 0.9463549600113172,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999866095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05364503998868276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16306,
+ "tp_rate": 0.05364503998868276,
+ "truth_threshold": 36.12
+ },
+ {
+ "f1": 0.10137106093257128,
+ "fn": 287732,
+ "fn_rate": 0.946608281983544,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999867939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.053391718016456056,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16229,
+ "tp_rate": 0.053391718016456056,
+ "truth_threshold": 36.14
+ },
+ {
+ "f1": 0.1009977321429687,
+ "fn": 287795,
+ "fn_rate": 0.9468155454153658,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999869756,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.053184454584634215,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16166,
+ "tp_rate": 0.053184454584634215,
+ "truth_threshold": 36.160000000000004
+ },
+ {
+ "f1": 0.10063549392937707,
+ "fn": 287856,
+ "fn_rate": 0.9470162290557013,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999871549,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05298377094429878,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16105,
+ "tp_rate": 0.05298377094429878,
+ "truth_threshold": 36.18
+ },
+ {
+ "f1": 0.10025,
+ "fn": 287921,
+ "fn_rate": 0.9472300722790095,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999873318,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05276992772099052,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 16040,
+ "tp_rate": 0.05276992772099052,
+ "truth_threshold": 36.2
+ },
+ {
+ "f1": 0.09986997399479897,
+ "fn": 287985,
+ "fn_rate": 0.9474406256065745,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999875062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05255937439342547,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15976,
+ "tp_rate": 0.05255937439342547,
+ "truth_threshold": 36.22
+ },
+ {
+ "f1": 0.09957860251087881,
+ "fn": 288034,
+ "fn_rate": 0.9476018304979915,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999876782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.052398169502008485,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15927,
+ "tp_rate": 0.052398169502008485,
+ "truth_threshold": 36.24
+ },
+ {
+ "f1": 0.09912135330352397,
+ "fn": 288111,
+ "fn_rate": 0.9478551524702182,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999878478,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05214484752978178,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15850,
+ "tp_rate": 0.05214484752978178,
+ "truth_threshold": 36.26
+ },
+ {
+ "f1": 0.09893676902870724,
+ "fn": 288142,
+ "fn_rate": 0.9479571392382575,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999880151,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05204286076174246,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15819,
+ "tp_rate": 0.05204286076174246,
+ "truth_threshold": 36.28
+ },
+ {
+ "f1": 0.09863383876294851,
+ "fn": 288193,
+ "fn_rate": 0.948124923921161,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999881801,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05187507607883906,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15768,
+ "tp_rate": 0.05187507607883906,
+ "truth_threshold": 36.300000000000004
+ },
+ {
+ "f1": 0.09840157652726078,
+ "fn": 288232,
+ "fn_rate": 0.9482532298551459,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999883429,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05174677014485411,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15729,
+ "tp_rate": 0.05174677014485411,
+ "truth_threshold": 36.32
+ },
+ {
+ "f1": 0.09815171688857743,
+ "fn": 288274,
+ "fn_rate": 0.9483914054763605,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999885034,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05160859452363955,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15687,
+ "tp_rate": 0.05160859452363955,
+ "truth_threshold": 36.34
+ },
+ {
+ "f1": 0.09787798574477005,
+ "fn": 288320,
+ "fn_rate": 0.9485427406805478,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999886616,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.051457259319452164,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15641,
+ "tp_rate": 0.051457259319452164,
+ "truth_threshold": 36.36
+ },
+ {
+ "f1": 0.09762798848416573,
+ "fn": 288362,
+ "fn_rate": 0.9486809163017624,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999888177,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0513190836982376,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15599,
+ "tp_rate": 0.0513190836982376,
+ "truth_threshold": 36.38
+ },
+ {
+ "f1": 0.09725317374865414,
+ "fn": 288425,
+ "fn_rate": 0.9488881797335842,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999889717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05111182026641576,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15536,
+ "tp_rate": 0.05111182026641576,
+ "truth_threshold": 36.4
+ },
+ {
+ "f1": 0.0969315243455776,
+ "fn": 288479,
+ "fn_rate": 0.9490658341037173,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999891236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.050934165896282746,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15482,
+ "tp_rate": 0.050934165896282746,
+ "truth_threshold": 36.42
+ },
+ {
+ "f1": 0.0966392605997608,
+ "fn": 288528,
+ "fn_rate": 0.9492270389951343,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999892732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05077296100486576,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15433,
+ "tp_rate": 0.05077296100486576,
+ "truth_threshold": 36.44
+ },
+ {
+ "f1": 0.09655582691464713,
+ "fn": 288542,
+ "fn_rate": 0.9492730975355391,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999894209,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.050726902464460905,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15419,
+ "tp_rate": 0.050726902464460905,
+ "truth_threshold": 36.46
+ },
+ {
+ "f1": 0.09616239814101481,
+ "fn": 288608,
+ "fn_rate": 0.9494902306545906,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999895666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.05050976934540945,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15353,
+ "tp_rate": 0.05050976934540945,
+ "truth_threshold": 36.480000000000004
+ },
+ {
+ "f1": 0.09578700078308536,
+ "fn": 288671,
+ "fn_rate": 0.9496974940864124,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999897102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0503025059135876,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15290,
+ "tp_rate": 0.0503025059135876,
+ "truth_threshold": 36.5
+ },
+ {
+ "f1": 0.09538698681638177,
+ "fn": 288738,
+ "fn_rate": 0.9499179171012071,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999898519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.050082082898792936,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15223,
+ "tp_rate": 0.050082082898792936,
+ "truth_threshold": 36.52
+ },
+ {
+ "f1": 0.09501128102281274,
+ "fn": 288801,
+ "fn_rate": 0.9501251805330289,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999899916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.049874819466971095,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15160,
+ "tp_rate": 0.049874819466971095,
+ "truth_threshold": 36.54
+ },
+ {
+ "f1": 0.09446760492743629,
+ "fn": 288892,
+ "fn_rate": 0.9504245610456604,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999901295,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04957543895433954,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15069,
+ "tp_rate": 0.04957543895433954,
+ "truth_threshold": 36.56
+ },
+ {
+ "f1": 0.09411543405335925,
+ "fn": 288951,
+ "fn_rate": 0.9506186648945095,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999902653,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.049381335105490504,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 15010,
+ "tp_rate": 0.049381335105490504,
+ "truth_threshold": 36.58
+ },
+ {
+ "f1": 0.09384622138050833,
+ "fn": 288996,
+ "fn_rate": 0.9507667102029537,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999903993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04923328979704633,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14965,
+ "tp_rate": 0.04923328979704633,
+ "truth_threshold": 36.6
+ },
+ {
+ "f1": 0.09350577668502327,
+ "fn": 289053,
+ "fn_rate": 0.9509542342603163,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999905315,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04904576573968371,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14908,
+ "tp_rate": 0.04904576573968371,
+ "truth_threshold": 36.62
+ },
+ {
+ "f1": 0.09325462791616744,
+ "fn": 289095,
+ "fn_rate": 0.9510924098815309,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999906618,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.048907590118469145,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14866,
+ "tp_rate": 0.048907590118469145,
+ "truth_threshold": 36.64
+ },
+ {
+ "f1": 0.09299713912868902,
+ "fn": 289138,
+ "fn_rate": 0.9512338753984886,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999907904,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.048766124601511376,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14823,
+ "tp_rate": 0.048766124601511376,
+ "truth_threshold": 36.660000000000004
+ },
+ {
+ "f1": 0.09289572915555612,
+ "fn": 289155,
+ "fn_rate": 0.9512898036261231,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999909172,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04871019637387691,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14806,
+ "tp_rate": 0.04871019637387691,
+ "truth_threshold": 36.68
+ },
+ {
+ "f1": 0.0926444196232477,
+ "fn": 289197,
+ "fn_rate": 0.9514279792473377,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999910423,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04857202075266235,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14764,
+ "tp_rate": 0.04857202075266235,
+ "truth_threshold": 36.7
+ },
+ {
+ "f1": 0.09242895873079626,
+ "fn": 289233,
+ "fn_rate": 0.951546415494093,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999911656,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.048453584505907005,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14728,
+ "tp_rate": 0.048453584505907005,
+ "truth_threshold": 36.72
+ },
+ {
+ "f1": 0.09226704156755433,
+ "fn": 289260,
+ "fn_rate": 0.9516352426791594,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999912872,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0483647573208405,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14701,
+ "tp_rate": 0.0483647573208405,
+ "truth_threshold": 36.74
+ },
+ {
+ "f1": 0.09191974990897792,
+ "fn": 289318,
+ "fn_rate": 0.9518260566322653,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999914071,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04817394336773468,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14643,
+ "tp_rate": 0.04817394336773468,
+ "truth_threshold": 36.76
+ },
+ {
+ "f1": 0.09165050006592206,
+ "fn": 289363,
+ "fn_rate": 0.9519741019407095,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999915254,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0480258980592905,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14598,
+ "tp_rate": 0.0480258980592905,
+ "truth_threshold": 36.78
+ },
+ {
+ "f1": 0.09148845327941933,
+ "fn": 289390,
+ "fn_rate": 0.9520629291257761,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999916421,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.047937070874224,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14571,
+ "tp_rate": 0.047937070874224,
+ "truth_threshold": 36.800000000000004
+ },
+ {
+ "f1": 0.09123677352507142,
+ "fn": 289432,
+ "fn_rate": 0.9522011047469906,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999917571,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.047798895253009434,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14529,
+ "tp_rate": 0.047798895253009434,
+ "truth_threshold": 36.82
+ },
+ {
+ "f1": 0.09089538739825143,
+ "fn": 289489,
+ "fn_rate": 0.9523886288043532,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999918706,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04761137119564681,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14472,
+ "tp_rate": 0.04761137119564681,
+ "truth_threshold": 36.84
+ },
+ {
+ "f1": 0.09073949611502295,
+ "fn": 289515,
+ "fn_rate": 0.9524741660936765,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999919826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.047525833906323506,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14446,
+ "tp_rate": 0.047525833906323506,
+ "truth_threshold": 36.86
+ },
+ {
+ "f1": 0.09051160920695547,
+ "fn": 289553,
+ "fn_rate": 0.9525991821319182,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999992093,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04740081786808176,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14408,
+ "tp_rate": 0.04740081786808176,
+ "truth_threshold": 36.88
+ },
+ {
+ "f1": 0.0902716694729964,
+ "fn": 289593,
+ "fn_rate": 0.9527307779616464,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999922018,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.047269222038353605,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14368,
+ "tp_rate": 0.047269222038353605,
+ "truth_threshold": 36.9
+ },
+ {
+ "f1": 0.09006767328319101,
+ "fn": 289627,
+ "fn_rate": 0.9528426344169153,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999923092,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04715736558308467,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14334,
+ "tp_rate": 0.04715736558308467,
+ "truth_threshold": 36.92
+ },
+ {
+ "f1": 0.08985734933702004,
+ "fn": 289662,
+ "fn_rate": 0.9529577807679275,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999924151,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04704221923207254,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14299,
+ "tp_rate": 0.04704221923207254,
+ "truth_threshold": 36.94
+ },
+ {
+ "f1": 0.08948516332597942,
+ "fn": 289724,
+ "fn_rate": 0.9531617543040061,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999925195,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.046838245695993895,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14237,
+ "tp_rate": 0.046838245695993895,
+ "truth_threshold": 36.96
+ },
+ {
+ "f1": 0.08938909177766184,
+ "fn": 289740,
+ "fn_rate": 0.9532143926358974,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999926225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04678560736410263,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14221,
+ "tp_rate": 0.04678560736410263,
+ "truth_threshold": 36.980000000000004
+ },
+ {
+ "f1": 0.0891551571310924,
+ "fn": 289779,
+ "fn_rate": 0.9533426985698823,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999992724,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04665730143011768,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14182,
+ "tp_rate": 0.04665730143011768,
+ "truth_threshold": 37
+ },
+ {
+ "f1": 0.08890858906891501,
+ "fn": 289820,
+ "fn_rate": 0.9534775842953537,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999928242,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04652241570464632,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14141,
+ "tp_rate": 0.04652241570464632,
+ "truth_threshold": 37.02
+ },
+ {
+ "f1": 0.08867453515352353,
+ "fn": 289859,
+ "fn_rate": 0.9536058902293386,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999992923,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04639410977066137,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14102,
+ "tp_rate": 0.04639410977066137,
+ "truth_threshold": 37.04
+ },
+ {
+ "f1": 0.08847019759266479,
+ "fn": 289893,
+ "fn_rate": 0.9537177466846075,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999930205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04628225331539244,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14068,
+ "tp_rate": 0.04628225331539244,
+ "truth_threshold": 37.06
+ },
+ {
+ "f1": 0.08823547910311645,
+ "fn": 289932,
+ "fn_rate": 0.9538460526185926,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999931165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04615394738140748,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 14029,
+ "tp_rate": 0.04615394738140748,
+ "truth_threshold": 37.08
+ },
+ {
+ "f1": 0.08795314868749646,
+ "fn": 289979,
+ "fn_rate": 0.9540006777185231,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999932113,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0459993222814769,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13982,
+ "tp_rate": 0.0459993222814769,
+ "truth_threshold": 37.1
+ },
+ {
+ "f1": 0.08759799172025015,
+ "fn": 290038,
+ "fn_rate": 0.9541947815673721,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999933048,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04580521843262787,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13923,
+ "tp_rate": 0.04580521843262787,
+ "truth_threshold": 37.12
+ },
+ {
+ "f1": 0.08711658758228343,
+ "fn": 290118,
+ "fn_rate": 0.9544579732268285,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999993397,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04554202677317156,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13843,
+ "tp_rate": 0.04554202677317156,
+ "truth_threshold": 37.14
+ },
+ {
+ "f1": 0.08692395805797867,
+ "fn": 290150,
+ "fn_rate": 0.9545632498906109,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999934879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04543675010938903,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13811,
+ "tp_rate": 0.04543675010938903,
+ "truth_threshold": 37.160000000000004
+ },
+ {
+ "f1": 0.08680983911981671,
+ "fn": 290169,
+ "fn_rate": 0.9546257579097318,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999935775,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.045374242090268156,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13792,
+ "tp_rate": 0.045374242090268156,
+ "truth_threshold": 37.18
+ },
+ {
+ "f1": 0.08652078664417194,
+ "fn": 290217,
+ "fn_rate": 0.9547836729054057,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999993666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.045216327094594375,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13744,
+ "tp_rate": 0.045216327094594375,
+ "truth_threshold": 37.2
+ },
+ {
+ "f1": 0.0859424195864084,
+ "fn": 290313,
+ "fn_rate": 0.9550995028967532,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999937531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0449004971032468,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13648,
+ "tp_rate": 0.0449004971032468,
+ "truth_threshold": 37.22
+ },
+ {
+ "f1": 0.08553253133463501,
+ "fn": 290381,
+ "fn_rate": 0.9553232158072911,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999938392,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.044676784192708936,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13580,
+ "tp_rate": 0.044676784192708936,
+ "truth_threshold": 37.24
+ },
+ {
+ "f1": 0.08530339966362417,
+ "fn": 290419,
+ "fn_rate": 0.9554482318455328,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999993924,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04455176815446719,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13542,
+ "tp_rate": 0.04455176815446719,
+ "truth_threshold": 37.26
+ },
+ {
+ "f1": 0.08498346196251379,
+ "fn": 290472,
+ "fn_rate": 0.9556225963199226,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999940076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04437740368007738,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13489,
+ "tp_rate": 0.04437740368007738,
+ "truth_threshold": 37.28
+ },
+ {
+ "f1": 0.08473006351446719,
+ "fn": 290514,
+ "fn_rate": 0.9557607719411372,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999940901,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.044239228058862816,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13447,
+ "tp_rate": 0.044239228058862816,
+ "truth_threshold": 37.300000000000004
+ },
+ {
+ "f1": 0.084476597997265,
+ "fn": 290556,
+ "fn_rate": 0.9558989475623517,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999941714,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04410105243764825,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13405,
+ "tp_rate": 0.04410105243764825,
+ "truth_threshold": 37.32
+ },
+ {
+ "f1": 0.08420521870666835,
+ "fn": 290601,
+ "fn_rate": 0.956046992870796,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999942517,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04395300712920407,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13360,
+ "tp_rate": 0.04395300712920407,
+ "truth_threshold": 37.34
+ },
+ {
+ "f1": 0.08384868027056502,
+ "fn": 290660,
+ "fn_rate": 0.956241096719645,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999943309,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.043758903280355047,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13301,
+ "tp_rate": 0.043758903280355047,
+ "truth_threshold": 37.36
+ },
+ {
+ "f1": 0.08369794096508593,
+ "fn": 290685,
+ "fn_rate": 0.9563233441132251,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999944089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04367665588677495,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13276,
+ "tp_rate": 0.04367665588677495,
+ "truth_threshold": 37.38
+ },
+ {
+ "f1": 0.08338955691613123,
+ "fn": 290736,
+ "fn_rate": 0.9564911287961284,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999944859,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04350887120387155,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13225,
+ "tp_rate": 0.04350887120387155,
+ "truth_threshold": 37.4
+ },
+ {
+ "f1": 0.08318408838664111,
+ "fn": 290770,
+ "fn_rate": 0.9566029852513974,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999945618,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.043397014748602615,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13191,
+ "tp_rate": 0.043397014748602615,
+ "truth_threshold": 37.42
+ },
+ {
+ "f1": 0.08299066599394551,
+ "fn": 290802,
+ "fn_rate": 0.9567082619151799,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999946366,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04329173808482009,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13159,
+ "tp_rate": 0.04329173808482009,
+ "truth_threshold": 37.44
+ },
+ {
+ "f1": 0.08282138937595399,
+ "fn": 290830,
+ "fn_rate": 0.9568003789959896,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999947105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04319962100401038,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13131,
+ "tp_rate": 0.04319962100401038,
+ "truth_threshold": 37.46
+ },
+ {
+ "f1": 0.08260370407751312,
+ "fn": 290866,
+ "fn_rate": 0.9569188152427449,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999947833,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.043081184757255045,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13095,
+ "tp_rate": 0.043081184757255045,
+ "truth_threshold": 37.480000000000004
+ },
+ {
+ "f1": 0.08219869521874645,
+ "fn": 290933,
+ "fn_rate": 0.9571392382575397,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999948551,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04286076174246038,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 13028,
+ "tp_rate": 0.04286076174246038,
+ "truth_threshold": 37.5
+ },
+ {
+ "f1": 0.08199297058879207,
+ "fn": 290967,
+ "fn_rate": 0.9572510947128086,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999994926,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04274890528719145,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12994,
+ "tp_rate": 0.04274890528719145,
+ "truth_threshold": 37.52
+ },
+ {
+ "f1": 0.08172036224795683,
+ "fn": 291012,
+ "fn_rate": 0.9573991400212527,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999949958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.042600859978747276,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12949,
+ "tp_rate": 0.042600859978747276,
+ "truth_threshold": 37.54
+ },
+ {
+ "f1": 0.08142977068881721,
+ "fn": 291060,
+ "fn_rate": 0.9575570550169266,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999950647,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04244294498307349,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12901,
+ "tp_rate": 0.04244294498307349,
+ "truth_threshold": 37.56
+ },
+ {
+ "f1": 0.08110906290245196,
+ "fn": 291113,
+ "fn_rate": 0.9577314194913163,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999951327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04226858050868368,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12848,
+ "tp_rate": 0.04226858050868368,
+ "truth_threshold": 37.58
+ },
+ {
+ "f1": 0.08085463717696975,
+ "fn": 291155,
+ "fn_rate": 0.9578695951125309,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999951996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.042130404887469115,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12806,
+ "tp_rate": 0.042130404887469115,
+ "truth_threshold": 37.6
+ },
+ {
+ "f1": 0.08052741923261512,
+ "fn": 291209,
+ "fn_rate": 0.9580472494826638,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999952658,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04195275051733611,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12752,
+ "tp_rate": 0.04195275051733611,
+ "truth_threshold": 37.62
+ },
+ {
+ "f1": 0.08035139129226611,
+ "fn": 291238,
+ "fn_rate": 0.9581426564592168,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999995331,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.041857343540783194,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12723,
+ "tp_rate": 0.041857343540783194,
+ "truth_threshold": 37.64
+ },
+ {
+ "f1": 0.0801030817137335,
+ "fn": 291279,
+ "fn_rate": 0.9582775421846882,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999953952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04172245781531183,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12682,
+ "tp_rate": 0.04172245781531183,
+ "truth_threshold": 37.660000000000004
+ },
+ {
+ "f1": 0.07994542284660283,
+ "fn": 291305,
+ "fn_rate": 0.9583630794740114,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999954586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04163692052598853,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12656,
+ "tp_rate": 0.04163692052598853,
+ "truth_threshold": 37.68
+ },
+ {
+ "f1": 0.07959944402324994,
+ "fn": 291362,
+ "fn_rate": 0.9585506035313741,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999955211,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04144939646862591,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12599,
+ "tp_rate": 0.04144939646862591,
+ "truth_threshold": 37.7
+ },
+ {
+ "f1": 0.07930820948336872,
+ "fn": 291410,
+ "fn_rate": 0.9587085185270479,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999955828,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04129148147295212,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12551,
+ "tp_rate": 0.04129148147295212,
+ "truth_threshold": 37.72
+ },
+ {
+ "f1": 0.07915673995058234,
+ "fn": 291435,
+ "fn_rate": 0.958790765920628,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999956436,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04120923407937203,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12526,
+ "tp_rate": 0.04120923407937203,
+ "truth_threshold": 37.74
+ },
+ {
+ "f1": 0.0789503621402298,
+ "fn": 291469,
+ "fn_rate": 0.958902622375897,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999957035,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04109737762410309,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12492,
+ "tp_rate": 0.04109737762410309,
+ "truth_threshold": 37.76
+ },
+ {
+ "f1": 0.07867107450554035,
+ "fn": 291515,
+ "fn_rate": 0.9590539575800843,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999957627,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.040946042419915715,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12446,
+ "tp_rate": 0.040946042419915715,
+ "truth_threshold": 37.78
+ },
+ {
+ "f1": 0.07830034203056148,
+ "fn": 291576,
+ "fn_rate": 0.9592546412204197,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999995821,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04074535877958028,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12385,
+ "tp_rate": 0.04074535877958028,
+ "truth_threshold": 37.800000000000004
+ },
+ {
+ "f1": 0.07798440691255604,
+ "fn": 291628,
+ "fn_rate": 0.9594257157990663,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999958786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.040574284200933675,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12333,
+ "tp_rate": 0.040574284200933675,
+ "truth_threshold": 37.82
+ },
+ {
+ "f1": 0.07754678675107994,
+ "fn": 291700,
+ "fn_rate": 0.959662588292577,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999959354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04033741170742299,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12261,
+ "tp_rate": 0.04033741170742299,
+ "truth_threshold": 37.84
+ },
+ {
+ "f1": 0.07722476657979302,
+ "fn": 291753,
+ "fn_rate": 0.9598369527669668,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999959913,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04016304723303318,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12208,
+ "tp_rate": 0.04016304723303318,
+ "truth_threshold": 37.86
+ },
+ {
+ "f1": 0.07707247330330483,
+ "fn": 291778,
+ "fn_rate": 0.9599192001605469,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999960465,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.04008079983945309,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12183,
+ "tp_rate": 0.04008079983945309,
+ "truth_threshold": 37.88
+ },
+ {
+ "f1": 0.07688998272775012,
+ "fn": 291808,
+ "fn_rate": 0.960017897032843,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999961009,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03998210296715697,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12153,
+ "tp_rate": 0.03998210296715697,
+ "truth_threshold": 37.9
+ },
+ {
+ "f1": 0.0765190538265855,
+ "fn": 291869,
+ "fn_rate": 0.9602185806731784,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999961546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.039781419326821534,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12092,
+ "tp_rate": 0.039781419326821534,
+ "truth_threshold": 37.92
+ },
+ {
+ "f1": 0.07613532073799804,
+ "fn": 291932,
+ "fn_rate": 0.9604258441050003,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999962075,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.039574155894999685,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 12029,
+ "tp_rate": 0.039574155894999685,
+ "truth_threshold": 37.94
+ },
+ {
+ "f1": 0.07573973487294412,
+ "fn": 291997,
+ "fn_rate": 0.9606396873283085,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999962598,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03936031267169143,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11964,
+ "tp_rate": 0.03936031267169143,
+ "truth_threshold": 37.96
+ },
+ {
+ "f1": 0.0754409958338082,
+ "fn": 292046,
+ "fn_rate": 0.9608008922197255,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999963113,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.039199107780274446,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11915,
+ "tp_rate": 0.039199107780274446,
+ "truth_threshold": 37.980000000000004
+ },
+ {
+ "f1": 0.07524015172143034,
+ "fn": 292079,
+ "fn_rate": 0.9609094587792513,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999996362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03909054122074872,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11882,
+ "tp_rate": 0.03909054122074872,
+ "truth_threshold": 38
+ },
+ {
+ "f1": 0.07492320846131924,
+ "fn": 292131,
+ "fn_rate": 0.9610805333578979,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999964121,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.038919466642102114,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11830,
+ "tp_rate": 0.038919466642102114,
+ "truth_threshold": 38.02
+ },
+ {
+ "f1": 0.07449638920562524,
+ "fn": 292201,
+ "fn_rate": 0.9613108260599221,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999964615,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03868917394007784,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11760,
+ "tp_rate": 0.03868917394007784,
+ "truth_threshold": 38.04
+ },
+ {
+ "f1": 0.07422800593013089,
+ "fn": 292245,
+ "fn_rate": 0.9614555814726231,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999965102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03854441852737687,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11716,
+ "tp_rate": 0.03854441852737687,
+ "truth_threshold": 38.06
+ },
+ {
+ "f1": 0.07409965278657779,
+ "fn": 292266,
+ "fn_rate": 0.9615246692832304,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999965583,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03847533071676958,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11695,
+ "tp_rate": 0.03847533071676958,
+ "truth_threshold": 38.08
+ },
+ {
+ "f1": 0.07386777686950681,
+ "fn": 292304,
+ "fn_rate": 0.9616496853214722,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999966056,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.038350314678527835,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11657,
+ "tp_rate": 0.038350314678527835,
+ "truth_threshold": 38.1
+ },
+ {
+ "f1": 0.07362363662866232,
+ "fn": 292344,
+ "fn_rate": 0.9617812811512003,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999966523,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03821871884879968,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11617,
+ "tp_rate": 0.03821871884879968,
+ "truth_threshold": 38.12
+ },
+ {
+ "f1": 0.07341606875744745,
+ "fn": 292378,
+ "fn_rate": 0.9618931376064692,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999966984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03810686239353075,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11583,
+ "tp_rate": 0.03810686239353075,
+ "truth_threshold": 38.14
+ },
+ {
+ "f1": 0.07324509692059991,
+ "fn": 292406,
+ "fn_rate": 0.9619852546872789,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999967439,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03801474531272104,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11555,
+ "tp_rate": 0.03801474531272104,
+ "truth_threshold": 38.160000000000004
+ },
+ {
+ "f1": 0.07306821855803428,
+ "fn": 292435,
+ "fn_rate": 0.9620806616638319,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999967888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.037919338336168125,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11526,
+ "tp_rate": 0.037919338336168125,
+ "truth_threshold": 38.18
+ },
+ {
+ "f1": 0.07293971458096911,
+ "fn": 292456,
+ "fn_rate": 0.9621497494744392,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999996833,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03785025052556085,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11505,
+ "tp_rate": 0.03785025052556085,
+ "truth_threshold": 38.2
+ },
+ {
+ "f1": 0.07273833980065435,
+ "fn": 292489,
+ "fn_rate": 0.9622583160339648,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999968766,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03774168396603512,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11472,
+ "tp_rate": 0.03774168396603512,
+ "truth_threshold": 38.22
+ },
+ {
+ "f1": 0.07245724287064105,
+ "fn": 292535,
+ "fn_rate": 0.9624096512381523,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999969196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03759034876184774,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11426,
+ "tp_rate": 0.03759034876184774,
+ "truth_threshold": 38.24
+ },
+ {
+ "f1": 0.07225530673465376,
+ "fn": 292568,
+ "fn_rate": 0.962518217797678,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999996962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03748178220232201,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11393,
+ "tp_rate": 0.03748178220232201,
+ "truth_threshold": 38.26
+ },
+ {
+ "f1": 0.07199852844167047,
+ "fn": 292610,
+ "fn_rate": 0.9626563934188925,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999970038,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03734360658110744,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11351,
+ "tp_rate": 0.03734360658110744,
+ "truth_threshold": 38.28
+ },
+ {
+ "f1": 0.0718639982238574,
+ "fn": 292632,
+ "fn_rate": 0.962728771125243,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999997045,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03727122887475696,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11329,
+ "tp_rate": 0.03727122887475696,
+ "truth_threshold": 38.300000000000004
+ },
+ {
+ "f1": 0.0713687469861171,
+ "fn": 292713,
+ "fn_rate": 0.9629952526804425,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999970858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03700474731955744,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11248,
+ "tp_rate": 0.03700474731955744,
+ "truth_threshold": 38.32
+ },
+ {
+ "f1": 0.07109949105862344,
+ "fn": 292757,
+ "fn_rate": 0.9631400080931435,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999971259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.036859991906856474,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11204,
+ "tp_rate": 0.036859991906856474,
+ "truth_threshold": 38.34
+ },
+ {
+ "f1": 0.07083015993907082,
+ "fn": 292801,
+ "fn_rate": 0.9632847635058445,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999971654,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0367152364941555,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11160,
+ "tp_rate": 0.0367152364941555,
+ "truth_threshold": 38.36
+ },
+ {
+ "f1": 0.07069546617242889,
+ "fn": 292823,
+ "fn_rate": 0.963357141212195,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999972045,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.036642858787805016,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11138,
+ "tp_rate": 0.036642858787805016,
+ "truth_threshold": 38.38
+ },
+ {
+ "f1": 0.07054850606524182,
+ "fn": 292847,
+ "fn_rate": 0.9634360987100319,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999972429,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03656390128996812,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11114,
+ "tp_rate": 0.03656390128996812,
+ "truth_threshold": 38.4
+ },
+ {
+ "f1": 0.07035842612460481,
+ "fn": 292878,
+ "fn_rate": 0.9635380854780712,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999972808,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0364619145219288,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11083,
+ "tp_rate": 0.0364619145219288,
+ "truth_threshold": 38.42
+ },
+ {
+ "f1": 0.07027267244389424,
+ "fn": 292892,
+ "fn_rate": 0.963584144018476,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999973184,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03641585598152394,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11069,
+ "tp_rate": 0.03641585598152394,
+ "truth_threshold": 38.44
+ },
+ {
+ "f1": 0.0701197445111808,
+ "fn": 292917,
+ "fn_rate": 0.9636663914120561,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999973552,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03633360858794385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11044,
+ "tp_rate": 0.03633360858794385,
+ "truth_threshold": 38.46
+ },
+ {
+ "f1": 0.0698869084282113,
+ "fn": 292955,
+ "fn_rate": 0.9637914074502979,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999973916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0362085925497021,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 11006,
+ "tp_rate": 0.0362085925497021,
+ "truth_threshold": 38.480000000000004
+ },
+ {
+ "f1": 0.06961088777538565,
+ "fn": 293000,
+ "fn_rate": 0.963939452758742,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999974276,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03606054724125792,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10961,
+ "tp_rate": 0.03606054724125792,
+ "truth_threshold": 38.5
+ },
+ {
+ "f1": 0.06934749331487115,
+ "fn": 293043,
+ "fn_rate": 0.9640809182756999,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999997463,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03591908172430016,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10918,
+ "tp_rate": 0.03591908172430016,
+ "truth_threshold": 38.52
+ },
+ {
+ "f1": 0.0690222535622852,
+ "fn": 293096,
+ "fn_rate": 0.9642552827500896,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999974979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03574471724991035,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10865,
+ "tp_rate": 0.03574471724991035,
+ "truth_threshold": 38.54
+ },
+ {
+ "f1": 0.0687646131950798,
+ "fn": 293138,
+ "fn_rate": 0.9643934583713042,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999975323,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03560654162869579,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10823,
+ "tp_rate": 0.03560654162869579,
+ "truth_threshold": 38.56
+ },
+ {
+ "f1": 0.06848235675387147,
+ "fn": 293184,
+ "fn_rate": 0.9645447935754916,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999975663,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03545520642450841,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10777,
+ "tp_rate": 0.03545520642450841,
+ "truth_threshold": 38.58
+ },
+ {
+ "f1": 0.06807131280388978,
+ "fn": 293251,
+ "fn_rate": 0.9647652165902862,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999975998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03523478340971375,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10710,
+ "tp_rate": 0.03523478340971375,
+ "truth_threshold": 38.6
+ },
+ {
+ "f1": 0.06784390752429807,
+ "fn": 293288,
+ "fn_rate": 0.9648869427327847,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999976329,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.035113057267215204,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10673,
+ "tp_rate": 0.035113057267215204,
+ "truth_threshold": 38.62
+ },
+ {
+ "f1": 0.06763509218054672,
+ "fn": 293322,
+ "fn_rate": 0.9649987991880538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999976654,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03500120081194627,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10639,
+ "tp_rate": 0.03500120081194627,
+ "truth_threshold": 38.64
+ },
+ {
+ "f1": 0.06746945055503986,
+ "fn": 293349,
+ "fn_rate": 0.9650876263731203,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999976976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03491237362687977,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10612,
+ "tp_rate": 0.03491237362687977,
+ "truth_threshold": 38.660000000000004
+ },
+ {
+ "f1": 0.06719274595584494,
+ "fn": 293394,
+ "fn_rate": 0.9652356716815644,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999977293,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03476432831843559,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10567,
+ "tp_rate": 0.03476432831843559,
+ "truth_threshold": 38.68
+ },
+ {
+ "f1": 0.06696556329295049,
+ "fn": 293431,
+ "fn_rate": 0.9653573978240629,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999977606,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.034642602175937044,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10530,
+ "tp_rate": 0.034642602175937044,
+ "truth_threshold": 38.7
+ },
+ {
+ "f1": 0.0667993792612191,
+ "fn": 293458,
+ "fn_rate": 0.9654462250091295,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999977914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03455377499087054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10503,
+ "tp_rate": 0.03455377499087054,
+ "truth_threshold": 38.72
+ },
+ {
+ "f1": 0.0665780401236531,
+ "fn": 293494,
+ "fn_rate": 0.9655646612558848,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999978219,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.034435338744115196,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10467,
+ "tp_rate": 0.034435338744115196,
+ "truth_threshold": 38.74
+ },
+ {
+ "f1": 0.0664058524173028,
+ "fn": 293522,
+ "fn_rate": 0.9656567783366945,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999978518,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03434322166330549,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10439,
+ "tp_rate": 0.03434322166330549,
+ "truth_threshold": 38.76
+ },
+ {
+ "f1": 0.06616617890316834,
+ "fn": 293561,
+ "fn_rate": 0.9657850842706794,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999978814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03421491572932054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10400,
+ "tp_rate": 0.03421491572932054,
+ "truth_threshold": 38.78
+ },
+ {
+ "f1": 0.06574141244447838,
+ "fn": 293630,
+ "fn_rate": 0.9660120870769605,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999979106,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.033987912923039466,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10331,
+ "tp_rate": 0.033987912923039466,
+ "truth_threshold": 38.800000000000004
+ },
+ {
+ "f1": 0.06547058374277641,
+ "fn": 293674,
+ "fn_rate": 0.9661568424896615,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999979393,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0338431575103385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10287,
+ "tp_rate": 0.0338431575103385,
+ "truth_threshold": 38.82
+ },
+ {
+ "f1": 0.06531051294944339,
+ "fn": 293700,
+ "fn_rate": 0.9662423797789848,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999979676,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.033757620221015194,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10261,
+ "tp_rate": 0.033757620221015194,
+ "truth_threshold": 38.84
+ },
+ {
+ "f1": 0.06497797356828194,
+ "fn": 293754,
+ "fn_rate": 0.9664200341491178,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999979956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03357996585088219,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10207,
+ "tp_rate": 0.03357996585088219,
+ "truth_threshold": 38.86
+ },
+ {
+ "f1": 0.06460835126771684,
+ "fn": 293814,
+ "fn_rate": 0.9666174278937101,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999980232,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03338257210628995,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10147,
+ "tp_rate": 0.03338257210628995,
+ "truth_threshold": 38.88
+ },
+ {
+ "f1": 0.06447278770782525,
+ "fn": 293836,
+ "fn_rate": 0.9666898056000606,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999980504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.033310194399939465,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10125,
+ "tp_rate": 0.033310194399939465,
+ "truth_threshold": 38.9
+ },
+ {
+ "f1": 0.06426324302981672,
+ "fn": 293870,
+ "fn_rate": 0.9668016620553295,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999980773,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03319833794467053,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10091,
+ "tp_rate": 0.03319833794467053,
+ "truth_threshold": 38.92
+ },
+ {
+ "f1": 0.06400433107225885,
+ "fn": 293912,
+ "fn_rate": 0.966939837676544,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999981037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03306016232345597,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 10049,
+ "tp_rate": 0.03306016232345597,
+ "truth_threshold": 38.94
+ },
+ {
+ "f1": 0.06360966535646258,
+ "fn": 293976,
+ "fn_rate": 0.967150391004109,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999981298,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03284960899589092,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9985,
+ "tp_rate": 0.03284960899589092,
+ "truth_threshold": 38.96
+ },
+ {
+ "f1": 0.06350500751764736,
+ "fn": 293993,
+ "fn_rate": 0.9672063192317435,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999981556,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03279368076825646,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9968,
+ "tp_rate": 0.03279368076825646,
+ "truth_threshold": 38.980000000000004
+ },
+ {
+ "f1": 0.06339993373939193,
+ "fn": 294010,
+ "fn_rate": 0.967262247459378,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999998181,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03273775254062199,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9951,
+ "tp_rate": 0.03273775254062199,
+ "truth_threshold": 39
+ },
+ {
+ "f1": 0.06317184602738679,
+ "fn": 294047,
+ "fn_rate": 0.9673839736018766,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999982061,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03261602639812344,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9914,
+ "tp_rate": 0.03261602639812344,
+ "truth_threshold": 39.02
+ },
+ {
+ "f1": 0.06296799026261622,
+ "fn": 294080,
+ "fn_rate": 0.9674925401614023,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999982307,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.032507459838597715,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9881,
+ "tp_rate": 0.032507459838597715,
+ "truth_threshold": 39.04
+ },
+ {
+ "f1": 0.06279515891579088,
+ "fn": 294108,
+ "fn_rate": 0.967584657242212,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999982551,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.032415342757788006,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9853,
+ "tp_rate": 0.032415342757788006,
+ "truth_threshold": 39.06
+ },
+ {
+ "f1": 0.06251752887483746,
+ "fn": 294153,
+ "fn_rate": 0.9677327025506561,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999982792,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03226729744934383,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9808,
+ "tp_rate": 0.03226729744934383,
+ "truth_threshold": 39.08
+ },
+ {
+ "f1": 0.06223942063724803,
+ "fn": 294198,
+ "fn_rate": 0.9678807478591004,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999983028,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.032119252140899654,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9763,
+ "tp_rate": 0.032119252140899654,
+ "truth_threshold": 39.1
+ },
+ {
+ "f1": 0.06194927249773652,
+ "fn": 294245,
+ "fn_rate": 0.968035372959031,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999983262,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03196462704096907,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9716,
+ "tp_rate": 0.03196462704096907,
+ "truth_threshold": 39.12
+ },
+ {
+ "f1": 0.061782241351825286,
+ "fn": 294272,
+ "fn_rate": 0.9681242001440974,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999983492,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03187579985590257,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9689,
+ "tp_rate": 0.03187579985590257,
+ "truth_threshold": 39.14
+ },
+ {
+ "f1": 0.06154738976824867,
+ "fn": 294310,
+ "fn_rate": 0.9682492161823392,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999998372,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03175078381766082,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9651,
+ "tp_rate": 0.03175078381766082,
+ "truth_threshold": 39.160000000000004
+ },
+ {
+ "f1": 0.06134957586580777,
+ "fn": 294342,
+ "fn_rate": 0.9683544928461217,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999983944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.031645507153878295,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9619,
+ "tp_rate": 0.031645507153878295,
+ "truth_threshold": 39.18
+ },
+ {
+ "f1": 0.06101567334128589,
+ "fn": 294396,
+ "fn_rate": 0.9685321472162547,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999984165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03146785278374528,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9565,
+ "tp_rate": 0.03146785278374528,
+ "truth_threshold": 39.2
+ },
+ {
+ "f1": 0.06079938754027242,
+ "fn": 294431,
+ "fn_rate": 0.9686472935672669,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999984382,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03135270643273315,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9530,
+ "tp_rate": 0.03135270643273315,
+ "truth_threshold": 39.22
+ },
+ {
+ "f1": 0.06065091588880453,
+ "fn": 294455,
+ "fn_rate": 0.9687262510651038,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999984598,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.031273748934896255,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9506,
+ "tp_rate": 0.031273748934896255,
+ "truth_threshold": 39.24
+ },
+ {
+ "f1": 0.06050841617641429,
+ "fn": 294478,
+ "fn_rate": 0.9688019186671974,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999998481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.031198081332802562,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9483,
+ "tp_rate": 0.031198081332802562,
+ "truth_threshold": 39.26
+ },
+ {
+ "f1": 0.06017422381058745,
+ "fn": 294532,
+ "fn_rate": 0.9689795730373304,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999985019,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.031020426962669552,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9429,
+ "tp_rate": 0.031020426962669552,
+ "truth_threshold": 39.28
+ },
+ {
+ "f1": 0.05982753228184621,
+ "fn": 294588,
+ "fn_rate": 0.9691638071989499,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999985225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.030836192801050134,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9373,
+ "tp_rate": 0.030836192801050134,
+ "truth_threshold": 39.300000000000004
+ },
+ {
+ "f1": 0.059623364187679544,
+ "fn": 294621,
+ "fn_rate": 0.9692723737584756,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999985428,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.030727626241524406,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9340,
+ "tp_rate": 0.030727626241524406,
+ "truth_threshold": 39.32
+ },
+ {
+ "f1": 0.05943116161777381,
+ "fn": 294652,
+ "fn_rate": 0.9693743605265149,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999985629,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.030625639473485084,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9309,
+ "tp_rate": 0.030625639473485084,
+ "truth_threshold": 39.34
+ },
+ {
+ "f1": 0.05907181078630448,
+ "fn": 294710,
+ "fn_rate": 0.9695651744796208,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999985827,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03043482552037926,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9251,
+ "tp_rate": 0.03043482552037926,
+ "truth_threshold": 39.36
+ },
+ {
+ "f1": 0.05885508468081845,
+ "fn": 294745,
+ "fn_rate": 0.9696803208306328,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986022,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.030319679169367123,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9216,
+ "tp_rate": 0.030319679169367123,
+ "truth_threshold": 39.38
+ },
+ {
+ "f1": 0.05876830522221726,
+ "fn": 294759,
+ "fn_rate": 0.9697263793710378,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03027362062896227,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9202,
+ "tp_rate": 0.03027362062896227,
+ "truth_threshold": 39.4
+ },
+ {
+ "f1": 0.05869391665336101,
+ "fn": 294771,
+ "fn_rate": 0.9697658581199562,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03023414188004382,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9190,
+ "tp_rate": 0.03023414188004382,
+ "truth_threshold": 39.42
+ },
+ {
+ "f1": 0.058464329285819225,
+ "fn": 294808,
+ "fn_rate": 0.9698875842624547,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986592,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.03011241573754528,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9153,
+ "tp_rate": 0.03011241573754528,
+ "truth_threshold": 39.44
+ },
+ {
+ "f1": 0.05825348153826498,
+ "fn": 294842,
+ "fn_rate": 0.9699994407177237,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.030000559282276344,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9119,
+ "tp_rate": 0.030000559282276344,
+ "truth_threshold": 39.46
+ },
+ {
+ "f1": 0.058005366726296956,
+ "fn": 294882,
+ "fn_rate": 0.9701310365474518,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999986958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02986896345254819,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9079,
+ "tp_rate": 0.02986896345254819,
+ "truth_threshold": 39.480000000000004
+ },
+ {
+ "f1": 0.05782562857416696,
+ "fn": 294911,
+ "fn_rate": 0.9702264435240048,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999987138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.029773556475995274,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9050,
+ "tp_rate": 0.029773556475995274,
+ "truth_threshold": 39.5
+ },
+ {
+ "f1": 0.05773236718680111,
+ "fn": 294926,
+ "fn_rate": 0.9702757919601528,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999987315,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.029724208039847218,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9035,
+ "tp_rate": 0.029724208039847218,
+ "truth_threshold": 39.52
+ },
+ {
+ "f1": 0.057515337423312884,
+ "fn": 294961,
+ "fn_rate": 0.970390938311165,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999998749,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.029609061688835082,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 9000,
+ "tp_rate": 0.029609061688835082,
+ "truth_threshold": 39.54
+ },
+ {
+ "f1": 0.05722339045232876,
+ "fn": 295008,
+ "fn_rate": 0.9705455634110955,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999987662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0294544365889045,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8953,
+ "tp_rate": 0.0294544365889045,
+ "truth_threshold": 39.56
+ },
+ {
+ "f1": 0.05707437118476142,
+ "fn": 295032,
+ "fn_rate": 0.9706245209089324,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999987832,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.029375479091067604,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8929,
+ "tp_rate": 0.029375479091067604,
+ "truth_threshold": 39.58
+ },
+ {
+ "f1": 0.05679507997596246,
+ "fn": 295077,
+ "fn_rate": 0.9707725662173766,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02922743378262343,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8884,
+ "tp_rate": 0.02922743378262343,
+ "truth_threshold": 39.6
+ },
+ {
+ "f1": 0.056589900643197834,
+ "fn": 295110,
+ "fn_rate": 0.9708811327769022,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988164,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0291188672230977,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8851,
+ "tp_rate": 0.0291188672230977,
+ "truth_threshold": 39.62
+ },
+ {
+ "f1": 0.05636621735683045,
+ "fn": 295146,
+ "fn_rate": 0.9709995690236577,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02900043097634236,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8815,
+ "tp_rate": 0.02900043097634236,
+ "truth_threshold": 39.64
+ },
+ {
+ "f1": 0.056173739544163916,
+ "fn": 295177,
+ "fn_rate": 0.971101555791697,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988488,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02889844420830304,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8784,
+ "tp_rate": 0.02889844420830304,
+ "truth_threshold": 39.660000000000004
+ },
+ {
+ "f1": 0.05589382795011193,
+ "fn": 295222,
+ "fn_rate": 0.9712496011001411,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988647,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028750398899858864,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8739,
+ "tp_rate": 0.028750398899858864,
+ "truth_threshold": 39.68
+ },
+ {
+ "f1": 0.055738564767137656,
+ "fn": 295247,
+ "fn_rate": 0.9713318484937212,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988802,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028668151506278765,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8714,
+ "tp_rate": 0.028668151506278765,
+ "truth_threshold": 39.7
+ },
+ {
+ "f1": 0.05552072671443194,
+ "fn": 295282,
+ "fn_rate": 0.9714469948447334,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999988957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02855300515526663,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8679,
+ "tp_rate": 0.02855300515526663,
+ "truth_threshold": 39.72
+ },
+ {
+ "f1": 0.055290753098188754,
+ "fn": 295319,
+ "fn_rate": 0.9715687209872319,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989109,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028431279012768085,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8642,
+ "tp_rate": 0.028431279012768085,
+ "truth_threshold": 39.74
+ },
+ {
+ "f1": 0.05519725645258295,
+ "fn": 295334,
+ "fn_rate": 0.97161806942338,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028381930576620026,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8627,
+ "tp_rate": 0.028381930576620026,
+ "truth_threshold": 39.76
+ },
+ {
+ "f1": 0.05506037124959209,
+ "fn": 295356,
+ "fn_rate": 0.9716904471297304,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028309552870269542,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8605,
+ "tp_rate": 0.028309552870269542,
+ "truth_threshold": 39.78
+ },
+ {
+ "f1": 0.05486123109805653,
+ "fn": 295388,
+ "fn_rate": 0.971795723793513,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989553,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028204276206487015,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8573,
+ "tp_rate": 0.028204276206487015,
+ "truth_threshold": 39.800000000000004
+ },
+ {
+ "f1": 0.054686950010559794,
+ "fn": 295416,
+ "fn_rate": 0.9718878408743227,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989696,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.028112159125677307,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8545,
+ "tp_rate": 0.028112159125677307,
+ "truth_threshold": 39.82
+ },
+ {
+ "f1": 0.05441941740115598,
+ "fn": 295459,
+ "fn_rate": 0.9720293063912805,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989838,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02797069360871954,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8502,
+ "tp_rate": 0.02797069360871954,
+ "truth_threshold": 39.84
+ },
+ {
+ "f1": 0.05426996716148484,
+ "fn": 295483,
+ "fn_rate": 0.9721082638891173,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999989978,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027891736110882647,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8478,
+ "tp_rate": 0.027891736110882647,
+ "truth_threshold": 39.86
+ },
+ {
+ "f1": 0.054157864413289805,
+ "fn": 295501,
+ "fn_rate": 0.972167482012495,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990116,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027832517987504975,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8460,
+ "tp_rate": 0.027832517987504975,
+ "truth_threshold": 39.88
+ },
+ {
+ "f1": 0.054026888604353396,
+ "fn": 295522,
+ "fn_rate": 0.9722365698231024,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990252,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027763430176897693,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8439,
+ "tp_rate": 0.027763430176897693,
+ "truth_threshold": 39.9
+ },
+ {
+ "f1": 0.05375276927608242,
+ "fn": 295566,
+ "fn_rate": 0.9723813252358032,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990387,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027618674764196723,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8395,
+ "tp_rate": 0.027618674764196723,
+ "truth_threshold": 39.92
+ },
+ {
+ "f1": 0.05360321708950732,
+ "fn": 295590,
+ "fn_rate": 0.9724602827336402,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02753971726635983,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8371,
+ "tp_rate": 0.02753971726635983,
+ "truth_threshold": 39.94
+ },
+ {
+ "f1": 0.05350350286248543,
+ "fn": 295606,
+ "fn_rate": 0.9725129210655314,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999065,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027487078934468567,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8355,
+ "tp_rate": 0.027487078934468567,
+ "truth_threshold": 39.96
+ },
+ {
+ "f1": 0.05339771628380585,
+ "fn": 295623,
+ "fn_rate": 0.9725688492931659,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990778,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0274311507068341,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8338,
+ "tp_rate": 0.0274311507068341,
+ "truth_threshold": 39.980000000000004
+ },
+ {
+ "f1": 0.05317936105346758,
+ "fn": 295658,
+ "fn_rate": 0.9726839956441781,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999990905,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.027316004355821964,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8303,
+ "tp_rate": 0.027316004355821964,
+ "truth_threshold": 40
+ },
+ {
+ "f1": 0.052948825530224904,
+ "fn": 295695,
+ "fn_rate": 0.9728057217866766,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999103,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02719427821332342,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8266,
+ "tp_rate": 0.02719427821332342,
+ "truth_threshold": 40.02
+ },
+ {
+ "f1": 0.05267440147093683,
+ "fn": 295739,
+ "fn_rate": 0.9729504771993776,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991154,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02704952280062245,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8222,
+ "tp_rate": 0.02704952280062245,
+ "truth_threshold": 40.04
+ },
+ {
+ "f1": 0.05253716043054844,
+ "fn": 295761,
+ "fn_rate": 0.973022854905728,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991276,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026977145094271963,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8200,
+ "tp_rate": 0.026977145094271963,
+ "truth_threshold": 40.06
+ },
+ {
+ "f1": 0.05239990004421122,
+ "fn": 295783,
+ "fn_rate": 0.9730952326120785,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991396,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026904767387921476,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8178,
+ "tp_rate": 0.026904767387921476,
+ "truth_threshold": 40.08
+ },
+ {
+ "f1": 0.052181324173993286,
+ "fn": 295818,
+ "fn_rate": 0.9732103789630907,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02678962103690934,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8143,
+ "tp_rate": 0.02678962103690934,
+ "truth_threshold": 40.1
+ },
+ {
+ "f1": 0.051975518313198965,
+ "fn": 295851,
+ "fn_rate": 0.9733189455226164,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991631,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02668105447738361,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8110,
+ "tp_rate": 0.02668105447738361,
+ "truth_threshold": 40.12
+ },
+ {
+ "f1": 0.05174436119140863,
+ "fn": 295888,
+ "fn_rate": 0.9734406716651149,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991747,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026559328334885068,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8073,
+ "tp_rate": 0.026559328334885068,
+ "truth_threshold": 40.14
+ },
+ {
+ "f1": 0.05154454138114499,
+ "fn": 295920,
+ "fn_rate": 0.9735459483288974,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999186,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026454051671102544,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8041,
+ "tp_rate": 0.026454051671102544,
+ "truth_threshold": 40.160000000000004
+ },
+ {
+ "f1": 0.05135109145110107,
+ "fn": 295951,
+ "fn_rate": 0.9736479350969368,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999991972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026352064903063223,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 8010,
+ "tp_rate": 0.026352064903063223,
+ "truth_threshold": 40.18
+ },
+ {
+ "f1": 0.05126363974406647,
+ "fn": 295965,
+ "fn_rate": 0.9736939936373417,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02630600636265837,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7996,
+ "tp_rate": 0.02630600636265837,
+ "truth_threshold": 40.2
+ },
+ {
+ "f1": 0.05118226348318929,
+ "fn": 295978,
+ "fn_rate": 0.9737367622820032,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992192,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026263237717996716,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7983,
+ "tp_rate": 0.026263237717996716,
+ "truth_threshold": 40.22
+ },
+ {
+ "f1": 0.0510698050178568,
+ "fn": 295996,
+ "fn_rate": 0.973795980405381,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992298,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026204019594619047,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7965,
+ "tp_rate": 0.026204019594619047,
+ "truth_threshold": 40.24
+ },
+ {
+ "f1": 0.050876259241921934,
+ "fn": 296027,
+ "fn_rate": 0.9738979671734203,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.026102032826579726,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7934,
+ "tp_rate": 0.026102032826579726,
+ "truth_threshold": 40.26
+ },
+ {
+ "f1": 0.05071985122005964,
+ "fn": 296052,
+ "fn_rate": 0.9739802145670003,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992509,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02601978543299963,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7909,
+ "tp_rate": 0.02601978543299963,
+ "truth_threshold": 40.28
+ },
+ {
+ "f1": 0.0506012506012506,
+ "fn": 296071,
+ "fn_rate": 0.9740427225861212,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992613,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.025957277413878755,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7890,
+ "tp_rate": 0.025957277413878755,
+ "truth_threshold": 40.300000000000004
+ },
+ {
+ "f1": 0.050338669950738914,
+ "fn": 296113,
+ "fn_rate": 0.9741808982073358,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992715,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.025819101792664192,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7848,
+ "tp_rate": 0.025819101792664192,
+ "truth_threshold": 40.32
+ },
+ {
+ "f1": 0.050082112339945084,
+ "fn": 296154,
+ "fn_rate": 0.9743157839328072,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992815,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02568421606719283,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7807,
+ "tp_rate": 0.02568421606719283,
+ "truth_threshold": 40.34
+ },
+ {
+ "f1": 0.049844416642607386,
+ "fn": 296192,
+ "fn_rate": 0.9744407999710489,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999992913,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.025559200028951082,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7769,
+ "tp_rate": 0.025559200028951082,
+ "truth_threshold": 40.36
+ },
+ {
+ "f1": 0.04964420689256909,
+ "fn": 296224,
+ "fn_rate": 0.9745460766348314,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993011,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02545392336516856,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7737,
+ "tp_rate": 0.02545392336516856,
+ "truth_threshold": 40.38
+ },
+ {
+ "f1": 0.04940030417958147,
+ "fn": 296263,
+ "fn_rate": 0.9746743825688164,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993108,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.025325617431183604,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7698,
+ "tp_rate": 0.025325617431183604,
+ "truth_threshold": 40.4
+ },
+ {
+ "f1": 0.049181064359612864,
+ "fn": 296298,
+ "fn_rate": 0.9747895289198285,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993202,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02521047108017147,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7663,
+ "tp_rate": 0.02521047108017147,
+ "truth_threshold": 40.42
+ },
+ {
+ "f1": 0.049049749359760204,
+ "fn": 296319,
+ "fn_rate": 0.9748586167304358,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993295,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.025141383269564187,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7642,
+ "tp_rate": 0.025141383269564187,
+ "truth_threshold": 40.44
+ },
+ {
+ "f1": 0.04894314892196697,
+ "fn": 296336,
+ "fn_rate": 0.9749145449580703,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993389,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02508545504192972,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7625,
+ "tp_rate": 0.02508545504192972,
+ "truth_threshold": 40.46
+ },
+ {
+ "f1": 0.04859243090553077,
+ "fn": 296392,
+ "fn_rate": 0.9750987791196897,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999348,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024901220880310302,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7569,
+ "tp_rate": 0.024901220880310302,
+ "truth_threshold": 40.480000000000004
+ },
+ {
+ "f1": 0.048360792572521925,
+ "fn": 296429,
+ "fn_rate": 0.9752205052621883,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993568,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02477949473781176,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7532,
+ "tp_rate": 0.02477949473781176,
+ "truth_threshold": 40.5
+ },
+ {
+ "f1": 0.048003442119729255,
+ "fn": 296486,
+ "fn_rate": 0.9754080293195508,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993657,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024591970680449136,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7475,
+ "tp_rate": 0.024591970680449136,
+ "truth_threshold": 40.52
+ },
+ {
+ "f1": 0.04758356671205776,
+ "fn": 296553,
+ "fn_rate": 0.9756284523343455,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993745,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024371547665654476,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7408,
+ "tp_rate": 0.024371547665654476,
+ "truth_threshold": 40.54
+ },
+ {
+ "f1": 0.04740155457056594,
+ "fn": 296582,
+ "fn_rate": 0.9757238593108984,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999383,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024276140689101562,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7379,
+ "tp_rate": 0.024276140689101562,
+ "truth_threshold": 40.56
+ },
+ {
+ "f1": 0.04716320486215957,
+ "fn": 296620,
+ "fn_rate": 0.9758488753491402,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024151124650859813,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7341,
+ "tp_rate": 0.024151124650859813,
+ "truth_threshold": 40.58
+ },
+ {
+ "f1": 0.04691224755993343,
+ "fn": 296660,
+ "fn_rate": 0.9759804711788683,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999993999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.024019528821131658,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7301,
+ "tp_rate": 0.024019528821131658,
+ "truth_threshold": 40.6
+ },
+ {
+ "f1": 0.046648672964462436,
+ "fn": 296702,
+ "fn_rate": 0.9761186468000829,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994083,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023881353199917094,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7259,
+ "tp_rate": 0.023881353199917094,
+ "truth_threshold": 40.62
+ },
+ {
+ "f1": 0.04647934394200365,
+ "fn": 296729,
+ "fn_rate": 0.9762074739851494,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994164,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02379252601485059,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7232,
+ "tp_rate": 0.02379252601485059,
+ "truth_threshold": 40.64
+ },
+ {
+ "f1": 0.046353785044926925,
+ "fn": 296749,
+ "fn_rate": 0.9762732719000135,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994243,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02372672809998651,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7212,
+ "tp_rate": 0.02372672809998651,
+ "truth_threshold": 40.660000000000004
+ },
+ {
+ "f1": 0.046234340551623954,
+ "fn": 296768,
+ "fn_rate": 0.9763357799191343,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994323,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023664220080865637,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7193,
+ "tp_rate": 0.023664220080865637,
+ "truth_threshold": 40.68
+ },
+ {
+ "f1": 0.04610875057049374,
+ "fn": 296788,
+ "fn_rate": 0.9764015778339984,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994401,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02359842216600156,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7173,
+ "tp_rate": 0.02359842216600156,
+ "truth_threshold": 40.7
+ },
+ {
+ "f1": 0.0459393261460724,
+ "fn": 296815,
+ "fn_rate": 0.9764904050190649,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994479,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023509594980935054,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7146,
+ "tp_rate": 0.023509594980935054,
+ "truth_threshold": 40.72
+ },
+ {
+ "f1": 0.045826261379416755,
+ "fn": 296833,
+ "fn_rate": 0.9765496231424426,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994554,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023450376857557385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7128,
+ "tp_rate": 0.023450376857557385,
+ "truth_threshold": 40.74
+ },
+ {
+ "f1": 0.0456564929178106,
+ "fn": 296860,
+ "fn_rate": 0.9766384503275091,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999463,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023361549672490878,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7101,
+ "tp_rate": 0.023361549672490878,
+ "truth_threshold": 40.76
+ },
+ {
+ "f1": 0.0455121239205499,
+ "fn": 296883,
+ "fn_rate": 0.9767141179296028,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994703,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02328588207039719,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7078,
+ "tp_rate": 0.02328588207039719,
+ "truth_threshold": 40.78
+ },
+ {
+ "f1": 0.045298452753019254,
+ "fn": 296917,
+ "fn_rate": 0.9768259743848717,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023174025615128258,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7044,
+ "tp_rate": 0.023174025615128258,
+ "truth_threshold": 40.800000000000004
+ },
+ {
+ "f1": 0.04521659721150383,
+ "fn": 296930,
+ "fn_rate": 0.9768687430295334,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999994849,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.023131256970466606,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 7031,
+ "tp_rate": 0.023131256970466606,
+ "truth_threshold": 40.82
+ },
+ {
+ "f1": 0.0449212719975301,
+ "fn": 296977,
+ "fn_rate": 0.977023368129464,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999492,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022976631870536023,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6984,
+ "tp_rate": 0.022976631870536023,
+ "truth_threshold": 40.84
+ },
+ {
+ "f1": 0.0446697372822479,
+ "fn": 297017,
+ "fn_rate": 0.9771549639591921,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999499,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022845036040807867,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6944,
+ "tp_rate": 0.022845036040807867,
+ "truth_threshold": 40.86
+ },
+ {
+ "f1": 0.044569105272638375,
+ "fn": 297033,
+ "fn_rate": 0.9772076022910834,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995058,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022792397708916605,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6928,
+ "tp_rate": 0.022792397708916605,
+ "truth_threshold": 40.88
+ },
+ {
+ "f1": 0.044330062731220844,
+ "fn": 297071,
+ "fn_rate": 0.9773326183293252,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022667381670674856,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6890,
+ "tp_rate": 0.022667381670674856,
+ "truth_threshold": 40.9
+ },
+ {
+ "f1": 0.0442229614520934,
+ "fn": 297088,
+ "fn_rate": 0.9773885465569596,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995193,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02261145344304039,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6873,
+ "tp_rate": 0.02261145344304039,
+ "truth_threshold": 40.92
+ },
+ {
+ "f1": 0.044059354971558,
+ "fn": 297114,
+ "fn_rate": 0.9774740838462829,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022525916153717088,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6847,
+ "tp_rate": 0.022525916153717088,
+ "truth_threshold": 40.94
+ },
+ {
+ "f1": 0.04399027014504691,
+ "fn": 297125,
+ "fn_rate": 0.9775102726994581,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995325,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022489727300541846,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6836,
+ "tp_rate": 0.022489727300541846,
+ "truth_threshold": 40.96
+ },
+ {
+ "f1": 0.043820188563889695,
+ "fn": 297152,
+ "fn_rate": 0.9775990998845246,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995389,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02240090011547534,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6809,
+ "tp_rate": 0.02240090011547534,
+ "truth_threshold": 40.980000000000004
+ },
+ {
+ "f1": 0.04369428801287208,
+ "fn": 297172,
+ "fn_rate": 0.9776648977993887,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995453,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022335102200611263,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6789,
+ "tp_rate": 0.022335102200611263,
+ "truth_threshold": 41
+ },
+ {
+ "f1": 0.04360614798414088,
+ "fn": 297186,
+ "fn_rate": 0.9777109563397935,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02228904366020641,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6775,
+ "tp_rate": 0.02228904366020641,
+ "truth_threshold": 41.02
+ },
+ {
+ "f1": 0.04331648910489556,
+ "fn": 297232,
+ "fn_rate": 0.977862291543981,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995577,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.022137708456019027,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6729,
+ "tp_rate": 0.022137708456019027,
+ "truth_threshold": 41.04
+ },
+ {
+ "f1": 0.04319052370682718,
+ "fn": 297252,
+ "fn_rate": 0.977928089458845,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995638,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02207191054115495,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6709,
+ "tp_rate": 0.02207191054115495,
+ "truth_threshold": 41.06
+ },
+ {
+ "f1": 0.04299538369420354,
+ "fn": 297283,
+ "fn_rate": 0.9780300762268843,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995698,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02196992377311563,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6678,
+ "tp_rate": 0.02196992377311563,
+ "truth_threshold": 41.08
+ },
+ {
+ "f1": 0.042913342733705485,
+ "fn": 297296,
+ "fn_rate": 0.978072844871546,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995757,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02192715512845398,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6665,
+ "tp_rate": 0.02192715512845398,
+ "truth_threshold": 41.1
+ },
+ {
+ "f1": 0.04268649988731125,
+ "fn": 297332,
+ "fn_rate": 0.9781912811183013,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995816,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02180871888169864,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6629,
+ "tp_rate": 0.02180871888169864,
+ "truth_threshold": 41.12
+ },
+ {
+ "f1": 0.04252907613245579,
+ "fn": 297357,
+ "fn_rate": 0.9782735285118814,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021726471488118543,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6604,
+ "tp_rate": 0.021726471488118543,
+ "truth_threshold": 41.14
+ },
+ {
+ "f1": 0.042484817650809185,
+ "fn": 297364,
+ "fn_rate": 0.9782965577820839,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999593,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021703442217916116,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6597,
+ "tp_rate": 0.021703442217916116,
+ "truth_threshold": 41.160000000000004
+ },
+ {
+ "f1": 0.04225787544843843,
+ "fn": 297400,
+ "fn_rate": 0.9784149940288392,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999995985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021585005971160774,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6561,
+ "tp_rate": 0.021585005971160774,
+ "truth_threshold": 41.18
+ },
+ {
+ "f1": 0.04209394001855096,
+ "fn": 297426,
+ "fn_rate": 0.9785005313181625,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021499468681837473,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6535,
+ "tp_rate": 0.021499468681837473,
+ "truth_threshold": 41.2
+ },
+ {
+ "f1": 0.041942590636192635,
+ "fn": 297450,
+ "fn_rate": 0.9785794888159994,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02142051118400058,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6511,
+ "tp_rate": 0.02142051118400058,
+ "truth_threshold": 41.22
+ },
+ {
+ "f1": 0.04162720425743021,
+ "fn": 297500,
+ "fn_rate": 0.9787439836031596,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999615,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021256016396840383,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6461,
+ "tp_rate": 0.021256016396840383,
+ "truth_threshold": 41.24
+ },
+ {
+ "f1": 0.041261228750757176,
+ "fn": 297558,
+ "fn_rate": 0.9789347975562654,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996202,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.021065202443734558,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6403,
+ "tp_rate": 0.021065202443734558,
+ "truth_threshold": 41.26
+ },
+ {
+ "f1": 0.04112237467052478,
+ "fn": 297580,
+ "fn_rate": 0.9790071752626159,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996255,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02099282473738407,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6381,
+ "tp_rate": 0.02099282473738407,
+ "truth_threshold": 41.28
+ },
+ {
+ "f1": 0.0408572349339349,
+ "fn": 297622,
+ "fn_rate": 0.9791453508838305,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996306,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020854649116169507,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6339,
+ "tp_rate": 0.020854649116169507,
+ "truth_threshold": 41.300000000000004
+ },
+ {
+ "f1": 0.04061728474644011,
+ "fn": 297660,
+ "fn_rate": 0.9792703669220723,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996357,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02072963307792776,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6301,
+ "tp_rate": 0.02072963307792776,
+ "truth_threshold": 41.32
+ },
+ {
+ "f1": 0.040503603615218986,
+ "fn": 297678,
+ "fn_rate": 0.9793295850454499,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02067041495455009,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6283,
+ "tp_rate": 0.02067041495455009,
+ "truth_threshold": 41.34
+ },
+ {
+ "f1": 0.04029528383997937,
+ "fn": 297711,
+ "fn_rate": 0.9794381516049756,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996457,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02056184839502436,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6250,
+ "tp_rate": 0.02056184839502436,
+ "truth_threshold": 41.36
+ },
+ {
+ "f1": 0.040270014119649526,
+ "fn": 297715,
+ "fn_rate": 0.9794513111879485,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020548688812051547,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6246,
+ "tp_rate": 0.020548688812051547,
+ "truth_threshold": 41.38
+ },
+ {
+ "f1": 0.040143655742038646,
+ "fn": 297735,
+ "fn_rate": 0.9795171091028125,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996554,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020482890897187467,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6226,
+ "tp_rate": 0.020482890897187467,
+ "truth_threshold": 41.4
+ },
+ {
+ "f1": 0.03989708139339928,
+ "fn": 297774,
+ "fn_rate": 0.9796454150367975,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996602,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020354584963202516,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6187,
+ "tp_rate": 0.020354584963202516,
+ "truth_threshold": 41.42
+ },
+ {
+ "f1": 0.03972655746162776,
+ "fn": 297801,
+ "fn_rate": 0.979734242221864,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996648,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.02026575777813601,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6160,
+ "tp_rate": 0.02026575777813601,
+ "truth_threshold": 41.44
+ },
+ {
+ "f1": 0.03959367945823928,
+ "fn": 297822,
+ "fn_rate": 0.9798033300324712,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020196669967528728,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6139,
+ "tp_rate": 0.020196669967528728,
+ "truth_threshold": 41.46
+ },
+ {
+ "f1": 0.03945458884538729,
+ "fn": 297844,
+ "fn_rate": 0.9798757077388217,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996739,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020124292261178244,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6117,
+ "tp_rate": 0.020124292261178244,
+ "truth_threshold": 41.480000000000004
+ },
+ {
+ "f1": 0.039309281609010045,
+ "fn": 297867,
+ "fn_rate": 0.9799513753409155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.020048624659084555,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6094,
+ "tp_rate": 0.020048624659084555,
+ "truth_threshold": 41.5
+ },
+ {
+ "f1": 0.03918279930588258,
+ "fn": 297887,
+ "fn_rate": 0.9800171732557795,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996829,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019982826744220476,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6074,
+ "tp_rate": 0.019982826744220476,
+ "truth_threshold": 41.52
+ },
+ {
+ "f1": 0.03904364992322878,
+ "fn": 297909,
+ "fn_rate": 0.98008955096213,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01991044903786999,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6052,
+ "tp_rate": 0.01991044903786999,
+ "truth_threshold": 41.54
+ },
+ {
+ "f1": 0.03889802896867641,
+ "fn": 297932,
+ "fn_rate": 0.9801652185642237,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.0198347814357763,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6029,
+ "tp_rate": 0.0198347814357763,
+ "truth_threshold": 41.56
+ },
+ {
+ "f1": 0.03886007019717147,
+ "fn": 297938,
+ "fn_rate": 0.9801849579386829,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999996958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019815042061317078,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6023,
+ "tp_rate": 0.019815042061317078,
+ "truth_threshold": 41.58
+ },
+ {
+ "f1": 0.03875263738603589,
+ "fn": 297955,
+ "fn_rate": 0.9802408861663174,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01975911383368261,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6006,
+ "tp_rate": 0.01975911383368261,
+ "truth_threshold": 41.6
+ },
+ {
+ "f1": 0.038733530345459476,
+ "fn": 297958,
+ "fn_rate": 0.980250755853547,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019749244146452998,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 6003,
+ "tp_rate": 0.019749244146452998,
+ "truth_threshold": 41.62
+ },
+ {
+ "f1": 0.03847419673337162,
+ "fn": 297999,
+ "fn_rate": 0.9803856415790183,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01961435842098164,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5962,
+ "tp_rate": 0.01961435842098164,
+ "truth_threshold": 41.64
+ },
+ {
+ "f1": 0.03825252994630318,
+ "fn": 298034,
+ "fn_rate": 0.9805007879300305,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997122,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019499212069969504,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5927,
+ "tp_rate": 0.019499212069969504,
+ "truth_threshold": 41.660000000000004
+ },
+ {
+ "f1": 0.038087923010888716,
+ "fn": 298060,
+ "fn_rate": 0.9805863252193538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997161,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019413674780646203,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5901,
+ "tp_rate": 0.019413674780646203,
+ "truth_threshold": 41.68
+ },
+ {
+ "f1": 0.03803105998993068,
+ "fn": 298069,
+ "fn_rate": 0.9806159342810427,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997201,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019384065718957365,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5892,
+ "tp_rate": 0.019384065718957365,
+ "truth_threshold": 41.7
+ },
+ {
+ "f1": 0.03787262610222446,
+ "fn": 298094,
+ "fn_rate": 0.9806981816746227,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997239,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01930181832537727,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5867,
+ "tp_rate": 0.01930181832537727,
+ "truth_threshold": 41.72
+ },
+ {
+ "f1": 0.03766995054810262,
+ "fn": 298126,
+ "fn_rate": 0.9808034583384052,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997278,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019196541661594745,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5835,
+ "tp_rate": 0.019196541661594745,
+ "truth_threshold": 41.74
+ },
+ {
+ "f1": 0.037499031533276515,
+ "fn": 298153,
+ "fn_rate": 0.9808922855234717,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01910771447652824,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5808,
+ "tp_rate": 0.01910771447652824,
+ "truth_threshold": 41.76
+ },
+ {
+ "f1": 0.03733429757669286,
+ "fn": 298179,
+ "fn_rate": 0.9809778228127951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997352,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.019022177187204937,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5782,
+ "tp_rate": 0.019022177187204937,
+ "truth_threshold": 41.78
+ },
+ {
+ "f1": 0.037144185565945134,
+ "fn": 298209,
+ "fn_rate": 0.9810765196850911,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997388,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01892348031490882,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5752,
+ "tp_rate": 0.01892348031490882,
+ "truth_threshold": 41.800000000000004
+ },
+ {
+ "f1": 0.036700447613695814,
+ "fn": 298279,
+ "fn_rate": 0.9813068123871155,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997424,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01869318761288455,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5682,
+ "tp_rate": 0.01869318761288455,
+ "truth_threshold": 41.82
+ },
+ {
+ "f1": 0.03654826269790516,
+ "fn": 298303,
+ "fn_rate": 0.9813857698849523,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999746,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018614230115047654,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5658,
+ "tp_rate": 0.018614230115047654,
+ "truth_threshold": 41.84
+ },
+ {
+ "f1": 0.03639605418709665,
+ "fn": 298327,
+ "fn_rate": 0.9814647273827892,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997494,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01853527261721076,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5634,
+ "tp_rate": 0.01853527261721076,
+ "truth_threshold": 41.86
+ },
+ {
+ "f1": 0.03622467438494935,
+ "fn": 298354,
+ "fn_rate": 0.9815535545678558,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997529,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018446445432144257,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5607,
+ "tp_rate": 0.018446445432144257,
+ "truth_threshold": 41.88
+ },
+ {
+ "f1": 0.036180385062669594,
+ "fn": 298361,
+ "fn_rate": 0.9815765838380581,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997563,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01842341616194183,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5600,
+ "tp_rate": 0.01842341616194183,
+ "truth_threshold": 41.9
+ },
+ {
+ "f1": 0.035996278252329324,
+ "fn": 298390,
+ "fn_rate": 0.9816719908146111,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018328009185388915,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5571,
+ "tp_rate": 0.018328009185388915,
+ "truth_threshold": 41.92
+ },
+ {
+ "f1": 0.03579321486268174,
+ "fn": 298422,
+ "fn_rate": 0.9817772674783936,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999763,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018222732521606392,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5539,
+ "tp_rate": 0.018222732521606392,
+ "truth_threshold": 41.94
+ },
+ {
+ "f1": 0.03562196256850377,
+ "fn": 298449,
+ "fn_rate": 0.9818660946634601,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018133905336539885,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5512,
+ "tp_rate": 0.018133905336539885,
+ "truth_threshold": 41.96
+ },
+ {
+ "f1": 0.0355457894396691,
+ "fn": 298461,
+ "fn_rate": 0.9819055734123786,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.018094426587621438,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5500,
+ "tp_rate": 0.018094426587621438,
+ "truth_threshold": 41.980000000000004
+ },
+ {
+ "f1": 0.03541882109617373,
+ "fn": 298481,
+ "fn_rate": 0.9819713713272427,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997726,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01802862867275736,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5480,
+ "tp_rate": 0.01802862867275736,
+ "truth_threshold": 42
+ },
+ {
+ "f1": 0.03522187388901458,
+ "fn": 298512,
+ "fn_rate": 0.982073358095282,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997757,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01792664190471804,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5449,
+ "tp_rate": 0.01792664190471804,
+ "truth_threshold": 42.02
+ },
+ {
+ "f1": 0.03508862657892355,
+ "fn": 298533,
+ "fn_rate": 0.9821424459058893,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997788,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01785755409411076,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5428,
+ "tp_rate": 0.01785755409411076,
+ "truth_threshold": 42.04
+ },
+ {
+ "f1": 0.034980541225450267,
+ "fn": 298550,
+ "fn_rate": 0.9821983741335237,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01780162586647629,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5411,
+ "tp_rate": 0.01780162586647629,
+ "truth_threshold": 42.06
+ },
+ {
+ "f1": 0.03486620505957576,
+ "fn": 298568,
+ "fn_rate": 0.9822575922569013,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997848,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017742407743098623,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5393,
+ "tp_rate": 0.017742407743098623,
+ "truth_threshold": 42.08
+ },
+ {
+ "f1": 0.03483455525815586,
+ "fn": 298573,
+ "fn_rate": 0.9822740417356174,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997878,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017725958264382603,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5388,
+ "tp_rate": 0.017725958264382603,
+ "truth_threshold": 42.1
+ },
+ {
+ "f1": 0.03471373613939805,
+ "fn": 298592,
+ "fn_rate": 0.9823365497547383,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997907,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01766345024526173,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5369,
+ "tp_rate": 0.01766345024526173,
+ "truth_threshold": 42.12
+ },
+ {
+ "f1": 0.03456124355815923,
+ "fn": 298616,
+ "fn_rate": 0.9824155072525752,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997936,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017584492747424834,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5345,
+ "tp_rate": 0.017584492747424834,
+ "truth_threshold": 42.14
+ },
+ {
+ "f1": 0.03440872731035107,
+ "fn": 298640,
+ "fn_rate": 0.982494464750412,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997965,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01750553524958794,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5321,
+ "tp_rate": 0.01750553524958794,
+ "truth_threshold": 42.160000000000004
+ },
+ {
+ "f1": 0.03426889995473065,
+ "fn": 298662,
+ "fn_rate": 0.9825668424567625,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999997993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017433157543237456,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5299,
+ "tp_rate": 0.017433157543237456,
+ "truth_threshold": 42.18
+ },
+ {
+ "f1": 0.03416719483643983,
+ "fn": 298678,
+ "fn_rate": 0.9826194807886538,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999802,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01738051921134619,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5283,
+ "tp_rate": 0.01738051921134619,
+ "truth_threshold": 42.2
+ },
+ {
+ "f1": 0.0340527639978527,
+ "fn": 298696,
+ "fn_rate": 0.9826786989120315,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998048,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017321301087968522,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5265,
+ "tp_rate": 0.017321301087968522,
+ "truth_threshold": 42.22
+ },
+ {
+ "f1": 0.03390663708514175,
+ "fn": 298719,
+ "fn_rate": 0.9827543665141252,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998075,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017245633485874833,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5242,
+ "tp_rate": 0.017245633485874833,
+ "truth_threshold": 42.24
+ },
+ {
+ "f1": 0.03379217553301594,
+ "fn": 298737,
+ "fn_rate": 0.9828135846375028,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01718641536249716,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5224,
+ "tp_rate": 0.01718641536249716,
+ "truth_threshold": 42.26
+ },
+ {
+ "f1": 0.03369667173399748,
+ "fn": 298752,
+ "fn_rate": 0.9828629330736509,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998127,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017137066926349104,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5209,
+ "tp_rate": 0.017137066926349104,
+ "truth_threshold": 42.28
+ },
+ {
+ "f1": 0.0335504907066564,
+ "fn": 298775,
+ "fn_rate": 0.9829386006757446,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998154,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.017061399324255416,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5186,
+ "tp_rate": 0.017061399324255416,
+ "truth_threshold": 42.300000000000004
+ },
+ {
+ "f1": 0.033429517869620354,
+ "fn": 298794,
+ "fn_rate": 0.9830011086948655,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998178,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01699889130513454,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5167,
+ "tp_rate": 0.01699889130513454,
+ "truth_threshold": 42.32
+ },
+ {
+ "f1": 0.0332705708795155,
+ "fn": 298819,
+ "fn_rate": 0.9830833560884455,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01691664391155444,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5142,
+ "tp_rate": 0.01691664391155444,
+ "truth_threshold": 42.34
+ },
+ {
+ "f1": 0.03317501811781758,
+ "fn": 298834,
+ "fn_rate": 0.9831327045245937,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998228,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016867295475406385,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5127,
+ "tp_rate": 0.016867295475406385,
+ "truth_threshold": 42.36
+ },
+ {
+ "f1": 0.03301602914625544,
+ "fn": 298859,
+ "fn_rate": 0.9832149519181738,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998253,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016785048081826286,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5102,
+ "tp_rate": 0.016785048081826286,
+ "truth_threshold": 42.38
+ },
+ {
+ "f1": 0.03288873357019434,
+ "fn": 298879,
+ "fn_rate": 0.9832807498330378,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998277,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01671925016696221,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5082,
+ "tp_rate": 0.01671925016696221,
+ "truth_threshold": 42.4
+ },
+ {
+ "f1": 0.032716752530613305,
+ "fn": 298906,
+ "fn_rate": 0.9833695770181043,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.99999999999983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016630422981895703,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5055,
+ "tp_rate": 0.016630422981895703,
+ "truth_threshold": 42.42
+ },
+ {
+ "f1": 0.03266582094961943,
+ "fn": 298914,
+ "fn_rate": 0.9833958961840499,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998324,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016604103815950073,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5047,
+ "tp_rate": 0.016604103815950073,
+ "truth_threshold": 42.44
+ },
+ {
+ "f1": 0.032506747965900924,
+ "fn": 298939,
+ "fn_rate": 0.98347814357763,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998347,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016521856422369974,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 5022,
+ "tp_rate": 0.016521856422369974,
+ "truth_threshold": 42.46
+ },
+ {
+ "f1": 0.03229648810487134,
+ "fn": 298972,
+ "fn_rate": 0.9835867101371557,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.999999999999837,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016413289862844245,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4989,
+ "tp_rate": 0.016413289862844245,
+ "truth_threshold": 42.480000000000004
+ },
+ {
+ "f1": 0.03209913310328307,
+ "fn": 299003,
+ "fn_rate": 0.9836886969051951,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998392,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016311303094804927,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4958,
+ "tp_rate": 0.016311303094804927,
+ "truth_threshold": 42.5
+ },
+ {
+ "f1": 0.03193349131735364,
+ "fn": 299029,
+ "fn_rate": 0.9837742341945184,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998415,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016225765805481625,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4932,
+ "tp_rate": 0.016225765805481625,
+ "truth_threshold": 42.52
+ },
+ {
+ "f1": 0.03185055685055685,
+ "fn": 299042,
+ "fn_rate": 0.98381700283918,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998436,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016182997160819973,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4919,
+ "tp_rate": 0.016182997160819973,
+ "truth_threshold": 42.54
+ },
+ {
+ "f1": 0.03171684074882308,
+ "fn": 299063,
+ "fn_rate": 0.9838860906497873,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998458,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.01611390935021269,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4898,
+ "tp_rate": 0.01611390935021269,
+ "truth_threshold": 42.56
+ },
+ {
+ "f1": 0.031595648232094285,
+ "fn": 299082,
+ "fn_rate": 0.9839485986689082,
+ "fp": 0,
+ "fp_rate": 0,
+ "match_probability": 0.9999999999998479,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 1,
+ "recall": 0.016051401331091817,
+ "row_count": 477830,
+ "tn": 173869,
+ "tn_rate": 1,
+ "tp": 4879,
+ "tp_rate": 0.016051401331091817,
+ "truth_threshold": 42.58
+ },
+ {
+ "f1": 0.85910966959049,
+ "fn": 74577,
+ "fn_rate": 0.24535055484091708,
+ "fp": 660,
+ "fp_rate": 0.003795961327206115,
+ "match_probability": 0.7570845276442862,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971309836379127,
+ "recall": 0.7546494451590829,
+ "row_count": 477830,
+ "tn": 173209,
+ "tn_rate": 0.9962040386727938,
+ "tp": 229384,
+ "tp_rate": 0.7546494451590829,
+ "truth_threshold": 1.6400000000000001
+ },
+ {
+ "f1": 0.8587452934454789,
+ "fn": 74749,
+ "fn_rate": 0.24591641690874816,
+ "fp": 658,
+ "fp_rate": 0.003784458414093369,
+ "match_probability": 0.7596249330210829,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971375125070692,
+ "recall": 0.7540835830912518,
+ "row_count": 477830,
+ "tn": 173211,
+ "tn_rate": 0.9962155415859066,
+ "tp": 229212,
+ "tp_rate": 0.7540835830912518,
+ "truth_threshold": 1.6600000000000001
+ },
+ {
+ "f1": 0.8583940456916712,
+ "fn": 74914,
+ "fn_rate": 0.2464592497063768,
+ "fp": 657,
+ "fp_rate": 0.003778706957536996,
+ "match_probability": 0.7621471175890653,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971397973043569,
+ "recall": 0.7535407502936232,
+ "row_count": 477830,
+ "tn": 173212,
+ "tn_rate": 0.996221293042463,
+ "tp": 229047,
+ "tp_rate": 0.7535407502936232,
+ "truth_threshold": 1.68
+ },
+ {
+ "f1": 0.8581292569282268,
+ "fn": 75037,
+ "fn_rate": 0.2468639068827909,
+ "fp": 657,
+ "fp_rate": 0.003778706957536996,
+ "match_probability": 0.7646510369310004,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971382649261045,
+ "recall": 0.7531360931172091,
+ "row_count": 477830,
+ "tn": 173212,
+ "tn_rate": 0.996221293042463,
+ "tp": 228924,
+ "tp_rate": 0.7531360931172091,
+ "truth_threshold": 1.7
+ },
+ {
+ "f1": 0.8577208791291207,
+ "fn": 75230,
+ "fn_rate": 0.24749885676122924,
+ "fp": 655,
+ "fp_rate": 0.0037672040444242504,
+ "match_probability": 0.767136650755255,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997144551105996,
+ "recall": 0.7525011432387707,
+ "row_count": 477830,
+ "tn": 173214,
+ "tn_rate": 0.9962327959555758,
+ "tp": 228731,
+ "tp_rate": 0.7525011432387707,
+ "truth_threshold": 1.72
+ },
+ {
+ "f1": 0.8574622107197779,
+ "fn": 75353,
+ "fn_rate": 0.24790351393764332,
+ "fp": 652,
+ "fp_rate": 0.003749949674755132,
+ "match_probability": 0.7696039228492181,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971560673471168,
+ "recall": 0.7520964860623567,
+ "row_count": 477830,
+ "tn": 173217,
+ "tn_rate": 0.9962500503252448,
+ "tp": 228608,
+ "tp_rate": 0.7520964860623567,
+ "truth_threshold": 1.74
+ },
+ {
+ "f1": 0.8572114590992992,
+ "fn": 75473,
+ "fn_rate": 0.2482983014268278,
+ "fp": 648,
+ "fp_rate": 0.00372694384852964,
+ "match_probability": 0.7720528210314674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971719851965645,
+ "recall": 0.7517016985731723,
+ "row_count": 477830,
+ "tn": 173221,
+ "tn_rate": 0.9962730561514703,
+ "tp": 228488,
+ "tp_rate": 0.7517016985731723,
+ "truth_threshold": 1.76
+ },
+ {
+ "f1": 0.8569552229844338,
+ "fn": 75603,
+ "fn_rate": 0.2487259878734443,
+ "fp": 633,
+ "fp_rate": 0.0036406720001840465,
+ "match_probability": 0.774483317102736,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99723569921962,
+ "recall": 0.7512740121265558,
+ "row_count": 477830,
+ "tn": 173236,
+ "tn_rate": 0.996359327999816,
+ "tp": 228358,
+ "tp_rate": 0.7512740121265558,
+ "truth_threshold": 1.78
+ },
+ {
+ "f1": 0.8566119611405577,
+ "fn": 75763,
+ "fn_rate": 0.2492523711923569,
+ "fp": 633,
+ "fp_rate": 0.0036406720001840465,
+ "match_probability": 0.7768953867957377,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972337664040274,
+ "recall": 0.7507476288076431,
+ "row_count": 477830,
+ "tn": 173236,
+ "tn_rate": 0.996359327999816,
+ "tp": 228198,
+ "tp_rate": 0.7507476288076431,
+ "truth_threshold": 1.8
+ },
+ {
+ "f1": 0.8557937205580725,
+ "fn": 76147,
+ "fn_rate": 0.2505156911577472,
+ "fp": 629,
+ "fp_rate": 0.003617666173958555,
+ "match_probability": 0.7792890097239141,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972465779209694,
+ "recall": 0.7494843088422528,
+ "row_count": 477830,
+ "tn": 173240,
+ "tn_rate": 0.9963823338260415,
+ "tp": 227814,
+ "tp_rate": 0.7494843088422528,
+ "truth_threshold": 1.82
+ },
+ {
+ "f1": 0.8555099648300117,
+ "fn": 76279,
+ "fn_rate": 0.25094995739585013,
+ "fp": 629,
+ "fp_rate": 0.003617666173958555,
+ "match_probability": 0.7816641693291569,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972449860059305,
+ "recall": 0.7490500426041499,
+ "row_count": 477830,
+ "tn": 173240,
+ "tn_rate": 0.9963823338260415,
+ "tp": 227682,
+ "tp_rate": 0.7490500426041499,
+ "truth_threshold": 1.84
+ },
+ {
+ "f1": 0.8552717624155323,
+ "fn": 76392,
+ "fn_rate": 0.2513217156148322,
+ "fp": 627,
+ "fp_rate": 0.0036061632608458093,
+ "match_probability": 0.7840208528285652,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972523620045926,
+ "recall": 0.7486782843851678,
+ "row_count": 477830,
+ "tn": 173242,
+ "tn_rate": 0.9963938367391542,
+ "tp": 227569,
+ "tp_rate": 0.7486782843851678,
+ "truth_threshold": 1.86
+ },
+ {
+ "f1": 0.8550431540011427,
+ "fn": 76499,
+ "fn_rate": 0.251673734459355,
+ "fp": 626,
+ "fp_rate": 0.0036004118042894362,
+ "match_probability": 0.786359051160298,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972554452667391,
+ "recall": 0.748326265540645,
+ "row_count": 477830,
+ "tn": 173243,
+ "tn_rate": 0.9963995881957106,
+ "tp": 227462,
+ "tp_rate": 0.748326265540645,
+ "truth_threshold": 1.8800000000000001
+ },
+ {
+ "f1": 0.8548408321020239,
+ "fn": 76593,
+ "fn_rate": 0.25198298465921615,
+ "fp": 625,
+ "fp_rate": 0.0035946603477330632,
+ "match_probability": 0.7886787589285739,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972586877667297,
+ "recall": 0.7480170153407838,
+ "row_count": 477830,
+ "tn": 173244,
+ "tn_rate": 0.996405339652267,
+ "tp": 227368,
+ "tp_rate": 0.7480170153407838,
+ "truth_threshold": 1.9000000000000001
+ },
+ {
+ "f1": 0.8546454128733609,
+ "fn": 76686,
+ "fn_rate": 0.2522889449633341,
+ "fp": 623,
+ "fp_rate": 0.0035831574346203176,
+ "match_probability": 0.7909799743478786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972663208979455,
+ "recall": 0.7477110550366659,
+ "row_count": 477830,
+ "tn": 173246,
+ "tn_rate": 0.9964168425653797,
+ "tp": 227275,
+ "tp_rate": 0.7477110550366659,
+ "truth_threshold": 1.92
+ },
+ {
+ "f1": 0.8541973102605097,
+ "fn": 76894,
+ "fn_rate": 0.25297324327792053,
+ "fp": 623,
+ "fp_rate": 0.0035831574346203176,
+ "match_probability": 0.7932626991864332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997263823619834,
+ "recall": 0.7470267567220795,
+ "row_count": 477830,
+ "tn": 173246,
+ "tn_rate": 0.9964168425653797,
+ "tp": 227067,
+ "tp_rate": 0.7470267567220795,
+ "truth_threshold": 1.94
+ },
+ {
+ "f1": 0.8539671669758324,
+ "fn": 77003,
+ "fn_rate": 0.25333184191392977,
+ "fp": 620,
+ "fp_rate": 0.003565903064951199,
+ "match_probability": 0.795526938708981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997275659334382,
+ "recall": 0.7466681580860702,
+ "row_count": 477830,
+ "tn": 173249,
+ "tn_rate": 0.9964340969350488,
+ "tp": 226958,
+ "tp_rate": 0.7466681580860702,
+ "truth_threshold": 1.96
+ },
+ {
+ "f1": 0.8536770794128716,
+ "fn": 77139,
+ "fn_rate": 0.2537792677350055,
+ "fp": 618,
+ "fp_rate": 0.003554400151838453,
+ "match_probability": 0.7977727016189426,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972827998593036,
+ "recall": 0.7462207322649945,
+ "row_count": 477830,
+ "tn": 173251,
+ "tn_rate": 0.9964455998481615,
+ "tp": 226822,
+ "tp_rate": 0.7462207322649945,
+ "truth_threshold": 1.98
+ },
+ {
+ "f1": 0.8534952965666254,
+ "fn": 77224,
+ "fn_rate": 0.25405890887317784,
+ "fp": 617,
+ "fp_rate": 0.0035486486952820803,
+ "match_probability": 0.8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972861704654415,
+ "recall": 0.7459410911268222,
+ "row_count": 477830,
+ "tn": 173252,
+ "tn_rate": 0.996451351304718,
+ "tp": 226737,
+ "tp_rate": 0.7459410911268222,
+ "truth_threshold": 2
+ },
+ {
+ "f1": 0.8533231934582747,
+ "fn": 77303,
+ "fn_rate": 0.25431881063689094,
+ "fp": 617,
+ "fp_rate": 0.0035486486952820803,
+ "match_probability": 0.8022088492571531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972852271477285,
+ "recall": 0.7456811893631091,
+ "row_count": 477830,
+ "tn": 173252,
+ "tn_rate": 0.996451351304718,
+ "tp": 226658,
+ "tp_rate": 0.7456811893631091,
+ "truth_threshold": 2.02
+ },
+ {
+ "f1": 0.853167206991464,
+ "fn": 77376,
+ "fn_rate": 0.2545589730261448,
+ "fp": 616,
+ "fp_rate": 0.0035428972387257073,
+ "match_probability": 0.8043992680573092,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9972887443277099,
+ "recall": 0.7454410269738552,
+ "row_count": 477830,
+ "tn": 173253,
+ "tn_rate": 0.9964571027612743,
+ "tp": 226585,
+ "tp_rate": 0.7454410269738552,
+ "truth_threshold": 2.04
+ },
+ {
+ "f1": 0.8529306533193232,
+ "fn": 77490,
+ "fn_rate": 0.25493402114087005,
+ "fp": 610,
+ "fp_rate": 0.00350838849938747,
+ "match_probability": 0.8065712782694506,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973137338658893,
+ "recall": 0.74506597885913,
+ "row_count": 477830,
+ "tn": 173259,
+ "tn_rate": 0.9964916115006125,
+ "tp": 226471,
+ "tp_rate": 0.74506597885913,
+ "truth_threshold": 2.06
+ },
+ {
+ "f1": 0.8526616363478831,
+ "fn": 77616,
+ "fn_rate": 0.25534854800451373,
+ "fp": 609,
+ "fp_rate": 0.003502637042831097,
+ "match_probability": 0.8087249049044327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973166368515206,
+ "recall": 0.7446514519954862,
+ "row_count": 477830,
+ "tn": 173260,
+ "tn_rate": 0.996497362957169,
+ "tp": 226345,
+ "tp_rate": 0.7446514519954862,
+ "truth_threshold": 2.08
+ },
+ {
+ "f1": 0.8524086738634865,
+ "fn": 77736,
+ "fn_rate": 0.2557433354936982,
+ "fp": 605,
+ "fp_rate": 0.0034796312166056054,
+ "match_probability": 0.8108601760544609,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973328043027818,
+ "recall": 0.7442566645063018,
+ "row_count": 477830,
+ "tn": 173264,
+ "tn_rate": 0.9965203687833945,
+ "tp": 226225,
+ "tp_rate": 0.7442566645063018,
+ "truth_threshold": 2.1
+ },
+ {
+ "f1": 0.8520788339985753,
+ "fn": 77890,
+ "fn_rate": 0.2562499794381516,
+ "fp": 603,
+ "fp_rate": 0.0034681283034928598,
+ "match_probability": 0.8129771228322951,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973397919479076,
+ "recall": 0.7437500205618484,
+ "row_count": 477830,
+ "tn": 173266,
+ "tn_rate": 0.9965318716965071,
+ "tp": 226071,
+ "tp_rate": 0.7437500205618484,
+ "truth_threshold": 2.12
+ },
+ {
+ "f1": 0.8517103958436231,
+ "fn": 78061,
+ "fn_rate": 0.25681255161023947,
+ "fp": 601,
+ "fp_rate": 0.0034566253903801137,
+ "match_probability": 0.8150757793102267,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99734659008128,
+ "recall": 0.7431874483897605,
+ "row_count": 477830,
+ "tn": 173268,
+ "tn_rate": 0.9965433746096198,
+ "tp": 225900,
+ "tp_rate": 0.7431874483897605,
+ "truth_threshold": 2.14
+ },
+ {
+ "f1": 0.8514110295254581,
+ "fn": 78200,
+ "fn_rate": 0.25726984711854484,
+ "fp": 601,
+ "fp_rate": 0.0034566253903801137,
+ "match_probability": 0.8171561824588779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973449607266237,
+ "recall": 0.7427301528814552,
+ "row_count": 477830,
+ "tn": 173268,
+ "tn_rate": 0.9965433746096198,
+ "tp": 225761,
+ "tp_rate": 0.7427301528814552,
+ "truth_threshold": 2.16
+ },
+ {
+ "f1": 0.8511727384517891,
+ "fn": 78310,
+ "fn_rate": 0.25763173565029723,
+ "fp": 601,
+ "fp_rate": 0.0034566253903801137,
+ "match_probability": 0.8192183720858639,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997343669890211,
+ "recall": 0.7423682643497027,
+ "row_count": 477830,
+ "tn": 173268,
+ "tn_rate": 0.9965433746096198,
+ "tp": 225651,
+ "tp_rate": 0.7423682643497027,
+ "truth_threshold": 2.18
+ },
+ {
+ "f1": 0.8509332236680764,
+ "fn": 78422,
+ "fn_rate": 0.25800020397353607,
+ "fp": 599,
+ "fp_rate": 0.003445122477267368,
+ "match_probability": 0.8212623907743639,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973511749462718,
+ "recall": 0.7419997960264639,
+ "row_count": 477830,
+ "tn": 173270,
+ "tn_rate": 0.9965548775227326,
+ "tp": 225539,
+ "tp_rate": 0.7419997960264639,
+ "truth_threshold": 2.2
+ },
+ {
+ "f1": 0.8506155320899409,
+ "fn": 78570,
+ "fn_rate": 0.25848710854353024,
+ "fp": 597,
+ "fp_rate": 0.003433619564154622,
+ "match_probability": 0.823288283821645,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973582668106271,
+ "recall": 0.7415128914564697,
+ "row_count": 477830,
+ "tn": 173272,
+ "tn_rate": 0.9965663804358453,
+ "tp": 225391,
+ "tp_rate": 0.7415128914564697,
+ "truth_threshold": 2.22
+ },
+ {
+ "f1": 0.8502678439973876,
+ "fn": 78731,
+ "fn_rate": 0.2590167817581861,
+ "fp": 596,
+ "fp_rate": 0.0034278681075982495,
+ "match_probability": 0.8252960991775768,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973607999078937,
+ "recall": 0.7409832182418139,
+ "row_count": 477830,
+ "tn": 173273,
+ "tn_rate": 0.9965721318924018,
+ "tp": 225230,
+ "tp_rate": 0.7409832182418139,
+ "truth_threshold": 2.24
+ },
+ {
+ "f1": 0.8499509100521109,
+ "fn": 78877,
+ "fn_rate": 0.25949710653669383,
+ "fp": 596,
+ "fp_rate": 0.0034278681075982495,
+ "match_probability": 0.8272858873831817,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973590925203828,
+ "recall": 0.7405028934633061,
+ "row_count": 477830,
+ "tn": 173273,
+ "tn_rate": 0.9965721318924018,
+ "tp": 225084,
+ "tp_rate": 0.7405028934633061,
+ "truth_threshold": 2.2600000000000002
+ },
+ {
+ "f1": 0.8496717707758901,
+ "fn": 79007,
+ "fn_rate": 0.25992479298331034,
+ "fp": 594,
+ "fp_rate": 0.0034163651944855034,
+ "match_probability": 0.8292577015092557,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973664142444181,
+ "recall": 0.7400752070166896,
+ "row_count": 477830,
+ "tn": 173275,
+ "tn_rate": 0.9965836348055145,
+ "tp": 224954,
+ "tp_rate": 0.7400752070166896,
+ "truth_threshold": 2.2800000000000002
+ },
+ {
+ "f1": 0.8493632005077772,
+ "fn": 79149,
+ "fn_rate": 0.2603919581788453,
+ "fp": 594,
+ "fp_rate": 0.0034163651944855034,
+ "match_probability": 0.8312115970951024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973647551529241,
+ "recall": 0.7396080418211547,
+ "row_count": 477830,
+ "tn": 173275,
+ "tn_rate": 0.9965836348055145,
+ "tp": 224812,
+ "tp_rate": 0.7396080418211547,
+ "truth_threshold": 2.3000000000000003
+ },
+ {
+ "f1": 0.8491266920106112,
+ "fn": 79260,
+ "fn_rate": 0.2607571366063409,
+ "fp": 590,
+ "fp_rate": 0.0033933593682600118,
+ "match_probability": 0.8331476320874132,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973811648046305,
+ "recall": 0.7392428633936591,
+ "row_count": 477830,
+ "tn": 173279,
+ "tn_rate": 0.99660664063174,
+ "tp": 224701,
+ "tp_rate": 0.7392428633936591,
+ "truth_threshold": 2.32
+ },
+ {
+ "f1": 0.8487824423729711,
+ "fn": 79419,
+ "fn_rate": 0.26128023002951034,
+ "fp": 589,
+ "fp_rate": 0.0033876079117036387,
+ "match_probability": 0.835065866779332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973837454637522,
+ "recall": 0.7387197699704896,
+ "row_count": 477830,
+ "tn": 173280,
+ "tn_rate": 0.9966123920882963,
+ "tp": 224542,
+ "tp_rate": 0.7387197699704896,
+ "truth_threshold": 2.34
+ },
+ {
+ "f1": 0.8485032951327317,
+ "fn": 79548,
+ "fn_rate": 0.2617046265803837,
+ "fp": 588,
+ "fp_rate": 0.003381856455147266,
+ "match_probability": 0.8369663637497393,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973866782814299,
+ "recall": 0.7382953734196164,
+ "row_count": 477830,
+ "tn": 173281,
+ "tn_rate": 0.9966181435448528,
+ "tp": 224413,
+ "tp_rate": 0.7382953734196164,
+ "truth_threshold": 2.36
+ },
+ {
+ "f1": 0.8481711629595731,
+ "fn": 79702,
+ "fn_rate": 0.26221127052483706,
+ "fp": 586,
+ "fp_rate": 0.00337035354203452,
+ "match_probability": 0.8388491878027863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9973937601458782,
+ "recall": 0.7377887294751629,
+ "row_count": 477830,
+ "tn": 173283,
+ "tn_rate": 0.9966296464579655,
+ "tp": 224259,
+ "tp_rate": 0.7377887294751629,
+ "truth_threshold": 2.38
+ },
+ {
+ "f1": 0.8479292134491421,
+ "fn": 79816,
+ "fn_rate": 0.26258631863956233,
+ "fp": 583,
+ "fp_rate": 0.0033530991723654015,
+ "match_probability": 0.840714405907716,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974057527321918,
+ "recall": 0.7374136813604377,
+ "row_count": 477830,
+ "tn": 173286,
+ "tn_rate": 0.9966469008276346,
+ "tp": 224145,
+ "tp_rate": 0.7374136813604377,
+ "truth_threshold": 2.4
+ },
+ {
+ "f1": 0.8476354087046021,
+ "fn": 79953,
+ "fn_rate": 0.26303703435638126,
+ "fp": 580,
+ "fp_rate": 0.003335844802696283,
+ "match_probability": 0.8425620871389979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974174933656295,
+ "recall": 0.7369629656436187,
+ "row_count": 477830,
+ "tn": 173289,
+ "tn_rate": 0.9966641551973037,
+ "tp": 224008,
+ "tp_rate": 0.7369629656436187,
+ "truth_threshold": 2.42
+ },
+ {
+ "f1": 0.8473516476029704,
+ "fn": 80089,
+ "fn_rate": 0.26348446017745697,
+ "fp": 571,
+ "fp_rate": 0.0032840816936889265,
+ "match_probability": 0.8443923026168105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974559242212945,
+ "recall": 0.736515539822543,
+ "row_count": 477830,
+ "tn": 173298,
+ "tn_rate": 0.9967159183063111,
+ "tp": 223872,
+ "tp_rate": 0.736515539822543,
+ "truth_threshold": 2.44
+ },
+ {
+ "f1": 0.8470237689587545,
+ "fn": 80240,
+ "fn_rate": 0.26398123443468074,
+ "fp": 571,
+ "fp_rate": 0.0032840816936889265,
+ "match_probability": 0.8462051254478966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974542114743281,
+ "recall": 0.7360187655653192,
+ "row_count": 477830,
+ "tn": 173298,
+ "tn_rate": 0.9967159183063111,
+ "tp": 223721,
+ "tp_rate": 0.7360187655653192,
+ "truth_threshold": 2.46
+ },
+ {
+ "f1": 0.8467719946679593,
+ "fn": 80359,
+ "fn_rate": 0.264372732028122,
+ "fp": 566,
+ "fp_rate": 0.0032553244109070623,
+ "match_probability": 0.8480006306668223,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974751079547483,
+ "recall": 0.7356272679718779,
+ "row_count": 477830,
+ "tn": 173303,
+ "tn_rate": 0.996744675589093,
+ "tp": 223602,
+ "tp_rate": 0.7356272679718779,
+ "truth_threshold": 2.48
+ },
+ {
+ "f1": 0.8462876107200497,
+ "fn": 80580,
+ "fn_rate": 0.26509979898737007,
+ "fp": 566,
+ "fp_rate": 0.0032553244109070623,
+ "match_probability": 0.8497788951776651,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974726162886755,
+ "recall": 0.7349002010126299,
+ "row_count": 477830,
+ "tn": 173303,
+ "tn_rate": 0.996744675589093,
+ "tp": 223381,
+ "tp_rate": 0.7349002010126299,
+ "truth_threshold": 2.5
+ },
+ {
+ "f1": 0.8460378330857611,
+ "fn": 80695,
+ "fn_rate": 0.26547813699783857,
+ "fp": 566,
+ "fp_rate": 0.0032553244109070623,
+ "match_probability": 0.851539997696156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974713177740449,
+ "recall": 0.7345218630021615,
+ "row_count": 477830,
+ "tn": 173303,
+ "tn_rate": 0.996744675589093,
+ "tp": 223266,
+ "tp_rate": 0.7345218630021615,
+ "truth_threshold": 2.52
+ },
+ {
+ "f1": 0.8457266965856025,
+ "fn": 80838,
+ "fn_rate": 0.2659485920891167,
+ "fp": 565,
+ "fp_rate": 0.0032495729543506892,
+ "match_probability": 0.8532840186923007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974741604377526,
+ "recall": 0.7340514079108833,
+ "row_count": 477830,
+ "tn": 173304,
+ "tn_rate": 0.9967504270456493,
+ "tp": 223123,
+ "tp_rate": 0.7340514079108833,
+ "truth_threshold": 2.54
+ },
+ {
+ "f1": 0.84540663507109,
+ "fn": 80985,
+ "fn_rate": 0.26643220676336765,
+ "fp": 564,
+ "fp_rate": 0.003243821497794316,
+ "match_probability": 0.8550110403335041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974769616176076,
+ "recall": 0.7335677932366323,
+ "row_count": 477830,
+ "tn": 173305,
+ "tn_rate": 0.9967561785022057,
+ "tp": 222976,
+ "tp_rate": 0.7335677932366323,
+ "truth_threshold": 2.56
+ },
+ {
+ "f1": 0.8450469721277217,
+ "fn": 81150,
+ "fn_rate": 0.26697503956099633,
+ "fp": 563,
+ "fp_rate": 0.0032380700412379436,
+ "match_probability": 0.8567211464282175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974795634227798,
+ "recall": 0.7330249604390037,
+ "row_count": 477830,
+ "tn": 173306,
+ "tn_rate": 0.996761929958762,
+ "tp": 222811,
+ "tp_rate": 0.7330249604390037,
+ "truth_threshold": 2.58
+ },
+ {
+ "f1": 0.8448103849203188,
+ "fn": 81258,
+ "fn_rate": 0.26733034830126234,
+ "fp": 563,
+ "fp_rate": 0.0032380700412379436,
+ "match_probability": 0.8584144223701331,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9974783442172117,
+ "recall": 0.7326696516987377,
+ "row_count": 477830,
+ "tn": 173306,
+ "tn_rate": 0.996761929958762,
+ "tp": 222703,
+ "tp_rate": 0.7326696516987377,
+ "truth_threshold": 2.6
+ },
+ {
+ "f1": 0.8445635964163337,
+ "fn": 81394,
+ "fn_rate": 0.26777777412233805,
+ "fp": 531,
+ "fp_rate": 0.003054023431434011,
+ "match_probability": 0.8600909550829424,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9976198800527123,
+ "recall": 0.732222225877662,
+ "row_count": 477830,
+ "tn": 173338,
+ "tn_rate": 0.996945976568566,
+ "tp": 222567,
+ "tp_rate": 0.732222225877662,
+ "truth_threshold": 2.62
+ },
+ {
+ "f1": 0.8443729220118721,
+ "fn": 81489,
+ "fn_rate": 0.26809031421794244,
+ "fp": 519,
+ "fp_rate": 0.002985005952757536,
+ "match_probability": 0.8617508329656802,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9976725518070236,
+ "recall": 0.7319096857820576,
+ "row_count": 477830,
+ "tn": 173350,
+ "tn_rate": 0.9970149940472425,
+ "tp": 222472,
+ "tp_rate": 0.7319096857820576,
+ "truth_threshold": 2.64
+ },
+ {
+ "f1": 0.8439730583482672,
+ "fn": 81672,
+ "fn_rate": 0.26869236513894873,
+ "fp": 518,
+ "fp_rate": 0.002979254496201163,
+ "match_probability": 0.8633941458386707,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9976751179271747,
+ "recall": 0.7313076348610512,
+ "row_count": 477830,
+ "tn": 173351,
+ "tn_rate": 0.9970207455037988,
+ "tp": 222289,
+ "tp_rate": 0.7313076348610512,
+ "truth_threshold": 2.66
+ },
+ {
+ "f1": 0.843692085675224,
+ "fn": 81800,
+ "fn_rate": 0.26911347179407885,
+ "fp": 518,
+ "fp_rate": 0.002979254496201163,
+ "match_probability": 0.8650209848900923,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9976737815420403,
+ "recall": 0.7308865282059211,
+ "row_count": 477830,
+ "tn": 173351,
+ "tn_rate": 0.9970207455037988,
+ "tp": 222161,
+ "tp_rate": 0.7308865282059211,
+ "truth_threshold": 2.68
+ },
+ {
+ "f1": 0.8433601288616712,
+ "fn": 81965,
+ "fn_rate": 0.2696563045917075,
+ "fp": 499,
+ "fp_rate": 0.002869976821630078,
+ "match_probability": 0.8666314426231786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9977572529719769,
+ "recall": 0.7303436954082925,
+ "row_count": 477830,
+ "tn": 173370,
+ "tn_rate": 0.99713002317837,
+ "tp": 221996,
+ "tp_rate": 0.7303436954082925,
+ "truth_threshold": 2.7
+ },
+ {
+ "f1": 0.8431204164608428,
+ "fn": 82077,
+ "fn_rate": 0.2700247729149463,
+ "fp": 496,
+ "fp_rate": 0.002852722451960959,
+ "match_probability": 0.8682256128040682,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997769583595647,
+ "recall": 0.7299752270850537,
+ "row_count": 477830,
+ "tn": 173373,
+ "tn_rate": 0.997147277548039,
+ "tp": 221884,
+ "tp_rate": 0.7299752270850537,
+ "truth_threshold": 2.72
+ },
+ {
+ "f1": 0.8429487910367212,
+ "fn": 82166,
+ "fn_rate": 0.2703175736360915,
+ "fp": 481,
+ "fp_rate": 0.0027664506036153657,
+ "match_probability": 0.8698035904103196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978360236822689,
+ "recall": 0.7296824263639086,
+ "row_count": 477830,
+ "tn": 173388,
+ "tn_rate": 0.9972335493963846,
+ "tp": 221795,
+ "tp_rate": 0.7296824263639086,
+ "truth_threshold": 2.74
+ },
+ {
+ "f1": 0.842529085240666,
+ "fn": 82359,
+ "fn_rate": 0.2709525235145298,
+ "fp": 478,
+ "fp_rate": 0.0027491962339462467,
+ "match_probability": 0.8713654715801021,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978476224783862,
+ "recall": 0.7290474764854702,
+ "row_count": 477830,
+ "tn": 173391,
+ "tn_rate": 0.9972508037660538,
+ "tp": 221602,
+ "tp_rate": 0.7290474764854702,
+ "truth_threshold": 2.7600000000000002
+ },
+ {
+ "f1": 0.8422165514985795,
+ "fn": 82501,
+ "fn_rate": 0.2714196887100648,
+ "fp": 478,
+ "fp_rate": 0.0027491962339462467,
+ "match_probability": 0.8729113535620762,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978462453477999,
+ "recall": 0.7285803112899352,
+ "row_count": 477830,
+ "tn": 173391,
+ "tn_rate": 0.9972508037660538,
+ "tp": 221460,
+ "tp_rate": 0.7285803112899352,
+ "truth_threshold": 2.7800000000000002
+ },
+ {
+ "f1": 0.8419090514847417,
+ "fn": 82645,
+ "fn_rate": 0.27189343369708613,
+ "fp": 471,
+ "fp_rate": 0.0027089360380516364,
+ "match_probability": 0.8744413346659732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978763408134832,
+ "recall": 0.7281065663029138,
+ "row_count": 477830,
+ "tn": 173398,
+ "tn_rate": 0.9972910639619483,
+ "tp": 221316,
+ "tp_rate": 0.7281065663029138,
+ "truth_threshold": 2.8000000000000003
+ },
+ {
+ "f1": 0.8414727428408334,
+ "fn": 82843,
+ "fn_rate": 0.2725448330542405,
+ "fp": 471,
+ "fp_rate": 0.0027089360380516364,
+ "match_probability": 0.8759555142138866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978744432259724,
+ "recall": 0.7274551669457595,
+ "row_count": 477830,
+ "tn": 173398,
+ "tn_rate": 0.9972910639619483,
+ "tp": 221118,
+ "tp_rate": 0.7274551669457595,
+ "truth_threshold": 2.82
+ },
+ {
+ "f1": 0.8411736492299259,
+ "fn": 82983,
+ "fn_rate": 0.2730054184582891,
+ "fp": 466,
+ "fp_rate": 0.002680178755269772,
+ "match_probability": 0.8774539924922818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997895630498004,
+ "recall": 0.7269945815417109,
+ "row_count": 477830,
+ "tn": 173403,
+ "tn_rate": 0.9973198212447302,
+ "tp": 220978,
+ "tp_rate": 0.7269945815417109,
+ "truth_threshold": 2.84
+ },
+ {
+ "f1": 0.8408383023767639,
+ "fn": 83135,
+ "fn_rate": 0.27350548261125607,
+ "fp": 466,
+ "fp_rate": 0.002680178755269772,
+ "match_probability": 0.8789368707047344,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9978941850586556,
+ "recall": 0.7264945173887439,
+ "row_count": 477830,
+ "tn": 173403,
+ "tn_rate": 0.9973198212447302,
+ "tp": 220826,
+ "tp_rate": 0.7264945173887439,
+ "truth_threshold": 2.86
+ },
+ {
+ "f1": 0.8404164143116708,
+ "fn": 83329,
+ "fn_rate": 0.2741437223854376,
+ "fp": 461,
+ "fp_rate": 0.0026514214724879075,
+ "match_probability": 0.880404250925403,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979149045876622,
+ "recall": 0.7258562776145624,
+ "row_count": 477830,
+ "tn": 173408,
+ "tn_rate": 0.9973485785275121,
+ "tp": 220632,
+ "tp_rate": 0.7258562776145624,
+ "truth_threshold": 2.88
+ },
+ {
+ "f1": 0.8400617272190364,
+ "fn": 83491,
+ "fn_rate": 0.2746766854958366,
+ "fp": 460,
+ "fp_rate": 0.002645670015931535,
+ "match_probability": 0.8818562360532484,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979178925451501,
+ "recall": 0.7253233145041633,
+ "row_count": 477830,
+ "tn": 173409,
+ "tn_rate": 0.9973543299840685,
+ "tp": 220470,
+ "tp_rate": 0.7253233145041633,
+ "truth_threshold": 2.9
+ },
+ {
+ "f1": 0.8398406981840355,
+ "fn": 83591,
+ "fn_rate": 0.27500567507015705,
+ "fp": 459,
+ "fp_rate": 0.002639918559375162,
+ "match_probability": 0.8832929297669961,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979214686476867,
+ "recall": 0.724994324929843,
+ "row_count": 477830,
+ "tn": 173410,
+ "tn_rate": 0.9973600814406248,
+ "tp": 220370,
+ "tp_rate": 0.724994324929843,
+ "truth_threshold": 2.92
+ },
+ {
+ "f1": 0.8394597191088339,
+ "fn": 83764,
+ "fn_rate": 0.2755748270337313,
+ "fp": 459,
+ "fp_rate": 0.002639918559375162,
+ "match_probability": 0.8847144364808572,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979198390254513,
+ "recall": 0.7244251729662687,
+ "row_count": 477830,
+ "tn": 173410,
+ "tn_rate": 0.9973600814406248,
+ "tp": 220197,
+ "tp_rate": 0.7244251729662687,
+ "truth_threshold": 2.94
+ },
+ {
+ "f1": 0.8391348119222674,
+ "fn": 83913,
+ "fn_rate": 0.27606502149946865,
+ "fp": 455,
+ "fp_rate": 0.00261691273314967,
+ "match_probability": 0.8861208613010066,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997936536010848,
+ "recall": 0.7239349785005313,
+ "row_count": 477830,
+ "tn": 173414,
+ "tn_rate": 0.9973830872668503,
+ "tp": 220048,
+ "tp_rate": 0.7239349785005313,
+ "truth_threshold": 2.96
+ },
+ {
+ "f1": 0.8388590522107962,
+ "fn": 84039,
+ "fn_rate": 0.2764795483631124,
+ "fp": 453,
+ "fp_rate": 0.002605409820036924,
+ "match_probability": 0.8875123099828214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979444129325015,
+ "recall": 0.7235204516368876,
+ "row_count": 477830,
+ "tn": 173416,
+ "tn_rate": 0.9973945901799631,
+ "tp": 219922,
+ "tp_rate": 0.7235204516368876,
+ "truth_threshold": 2.98
+ },
+ {
+ "f1": 0.8385438923142665,
+ "fn": 84182,
+ "fn_rate": 0.2769500034543905,
+ "fp": 452,
+ "fp_rate": 0.0025996583634805516,
+ "match_probability": 0.8888888888888888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979476095554214,
+ "recall": 0.7230499965456094,
+ "row_count": 477830,
+ "tn": 173417,
+ "tn_rate": 0.9974003416365195,
+ "tp": 219779,
+ "tp_rate": 0.7230499965456094,
+ "truth_threshold": 3
+ },
+ {
+ "f1": 0.8382900124791537,
+ "fn": 84298,
+ "fn_rate": 0.2773316313606022,
+ "fp": 451,
+ "fp_rate": 0.0025939069069241785,
+ "match_probability": 0.890250704947779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997951061722562,
+ "recall": 0.7226683686393978,
+ "row_count": 477830,
+ "tn": 173418,
+ "tn_rate": 0.9974060930930758,
+ "tp": 219663,
+ "tp_rate": 0.7226683686393978,
+ "truth_threshold": 3.02
+ },
+ {
+ "f1": 0.8378725061273107,
+ "fn": 84487,
+ "fn_rate": 0.27795342165606773,
+ "fp": 450,
+ "fp_rate": 0.0025881554503678055,
+ "match_probability": 0.8915978656135887,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979538385987887,
+ "recall": 0.7220465783439323,
+ "row_count": 477830,
+ "tn": 173419,
+ "tn_rate": 0.9974118445496322,
+ "tp": 219474,
+ "tp_rate": 0.7220465783439323,
+ "truth_threshold": 3.04
+ },
+ {
+ "f1": 0.8376861397479954,
+ "fn": 84571,
+ "fn_rate": 0.2782297728984969,
+ "fp": 449,
+ "fp_rate": 0.002582403993811433,
+ "match_probability": 0.8929304788262556,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979575962408854,
+ "recall": 0.7217702271015032,
+ "row_count": 477830,
+ "tn": 173420,
+ "tn_rate": 0.9974175960061886,
+ "tp": 219390,
+ "tp_rate": 0.7217702271015032,
+ "truth_threshold": 3.06
+ },
+ {
+ "f1": 0.8374364105776134,
+ "fn": 84690,
+ "fn_rate": 0.27862127049193813,
+ "fp": 441,
+ "fp_rate": 0.0025363923413604496,
+ "match_probability": 0.8942486529726457,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979928269734926,
+ "recall": 0.7213787295080619,
+ "row_count": 477830,
+ "tn": 173428,
+ "tn_rate": 0.9974636076586395,
+ "tp": 219271,
+ "tp_rate": 0.7213787295080619,
+ "truth_threshold": 3.08
+ },
+ {
+ "f1": 0.8371699468247662,
+ "fn": 84810,
+ "fn_rate": 0.27901605798112256,
+ "fp": 441,
+ "fp_rate": 0.0025363923413604496,
+ "match_probability": 0.895552496848409,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9979917301176727,
+ "recall": 0.7209839420188774,
+ "row_count": 477830,
+ "tn": 173428,
+ "tn_rate": 0.9974636076586395,
+ "tp": 219151,
+ "tp_rate": 0.7209839420188774,
+ "truth_threshold": 3.1
+ },
+ {
+ "f1": 0.8367675269984179,
+ "fn": 84994,
+ "fn_rate": 0.2796213987978721,
+ "fp": 437,
+ "fp_rate": 0.002513386515134958,
+ "match_probability": 0.8968421196206098,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9980082405060984,
+ "recall": 0.7203786012021279,
+ "row_count": 477830,
+ "tn": 173432,
+ "tn_rate": 0.997486613484865,
+ "tp": 218967,
+ "tp_rate": 0.7203786012021279,
+ "truth_threshold": 3.12
+ },
+ {
+ "f1": 0.8363634973546592,
+ "fn": 85175,
+ "fn_rate": 0.280216869927392,
+ "fp": 437,
+ "fp_rate": 0.002513386515134958,
+ "match_probability": 0.8981176307911237,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9980065960232275,
+ "recall": 0.719783130072608,
+ "row_count": 477830,
+ "tn": 173432,
+ "tn_rate": 0.997486613484865,
+ "tp": 218786,
+ "tp_rate": 0.719783130072608,
+ "truth_threshold": 3.14
+ },
+ {
+ "f1": 0.8360552307462881,
+ "fn": 85315,
+ "fn_rate": 0.28067745533144056,
+ "fp": 436,
+ "fp_rate": 0.002507635058578585,
+ "match_probability": 0.8993791401608047,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9980098775800842,
+ "recall": 0.7193225446685595,
+ "row_count": 477830,
+ "tn": 173433,
+ "tn_rate": 0.9974923649414215,
+ "tp": 218646,
+ "tp_rate": 0.7193225446685595,
+ "truth_threshold": 3.16
+ },
+ {
+ "f1": 0.8356806254685659,
+ "fn": 85484,
+ "fn_rate": 0.281233447712042,
+ "fp": 434,
+ "fp_rate": 0.0024961321454658393,
+ "match_probability": 0.9006267577944164,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9980174591500656,
+ "recall": 0.718766552287958,
+ "row_count": 477830,
+ "tn": 173435,
+ "tn_rate": 0.9975038678545342,
+ "tp": 218477,
+ "tp_rate": 0.718766552287958,
+ "truth_threshold": 3.18
+ },
+ {
+ "f1": 0.8354044871598666,
+ "fn": 85613,
+ "fn_rate": 0.2816578442629153,
+ "fp": 427,
+ "fp_rate": 0.002455871949571229,
+ "match_probability": 0.9018605939863281,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9980482230602217,
+ "recall": 0.7183421557370847,
+ "row_count": 477830,
+ "tn": 173442,
+ "tn_rate": 0.9975441280504288,
+ "tp": 218348,
+ "tp_rate": 0.7183421557370847,
+ "truth_threshold": 3.2
+ },
+ {
+ "f1": 0.8353659003391439,
+ "fn": 85725,
+ "fn_rate": 0.2820263125861541,
+ "fp": 296,
+ "fp_rate": 0.001702431140686379,
+ "match_probability": 0.9030807592269698,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986455072941263,
+ "recall": 0.7179736874138458,
+ "row_count": 477830,
+ "tn": 173573,
+ "tn_rate": 0.9982975688593136,
+ "tp": 218236,
+ "tp_rate": 0.7179736874138458,
+ "truth_threshold": 3.22
+ },
+ {
+ "f1": 0.8349243912432461,
+ "fn": 85923,
+ "fn_rate": 0.28267771194330854,
+ "fp": 296,
+ "fp_rate": 0.001702431140686379,
+ "match_probability": 0.9042873641700437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986442789487666,
+ "recall": 0.7173222880566915,
+ "row_count": 477830,
+ "tn": 173573,
+ "tn_rate": 0.9982975688593136,
+ "tp": 218038,
+ "tp_rate": 0.7173222880566915,
+ "truth_threshold": 3.24
+ },
+ {
+ "f1": 0.8345367557773854,
+ "fn": 86096,
+ "fn_rate": 0.2832468639068828,
+ "fp": 296,
+ "fp_rate": 0.001702431140686379,
+ "match_probability": 0.9054805196004887,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986432038723695,
+ "recall": 0.7167531360931172,
+ "row_count": 477830,
+ "tn": 173573,
+ "tn_rate": 0.9982975688593136,
+ "tp": 217865,
+ "tp_rate": 0.7167531360931172,
+ "truth_threshold": 3.2600000000000002
+ },
+ {
+ "f1": 0.8342815982958051,
+ "fn": 86211,
+ "fn_rate": 0.28362520191735124,
+ "fp": 296,
+ "fp_rate": 0.001702431140686379,
+ "match_probability": 0.9066603364031919,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986424882822891,
+ "recall": 0.7163747980826488,
+ "row_count": 477830,
+ "tn": 173573,
+ "tn_rate": 0.9982975688593136,
+ "tp": 217750,
+ "tp_rate": 0.7163747980826488,
+ "truth_threshold": 3.2800000000000002
+ },
+ {
+ "f1": 0.8340084540183413,
+ "fn": 86334,
+ "fn_rate": 0.2840298590937653,
+ "fp": 294,
+ "fp_rate": 0.001690928227573633,
+ "match_probability": 0.9078269255324448,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986508872481312,
+ "recall": 0.7159701409062347,
+ "row_count": 477830,
+ "tn": 173575,
+ "tn_rate": 0.9983090717724263,
+ "tp": 217627,
+ "tp_rate": 0.7159701409062347,
+ "truth_threshold": 3.3000000000000003
+ },
+ {
+ "f1": 0.8337160227390339,
+ "fn": 86467,
+ "fn_rate": 0.28446741522761143,
+ "fp": 291,
+ "fp_rate": 0.0016736738579045142,
+ "match_probability": 0.9089803979821356,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986638198223018,
+ "recall": 0.7155325847723886,
+ "row_count": 477830,
+ "tn": 173578,
+ "tn_rate": 0.9983263261420955,
+ "tp": 217494,
+ "tp_rate": 0.7155325847723886,
+ "truth_threshold": 3.3200000000000003
+ },
+ {
+ "f1": 0.8333135212034527,
+ "fn": 86647,
+ "fn_rate": 0.2850595964613881,
+ "fp": 291,
+ "fp_rate": 0.0016736738579045142,
+ "match_probability": 0.9101208647566755,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986627145515958,
+ "recall": 0.7149404035386119,
+ "row_count": 477830,
+ "tn": 173578,
+ "tn_rate": 0.9983263261420955,
+ "tp": 217314,
+ "tp_rate": 0.7149404035386119,
+ "truth_threshold": 3.34
+ },
+ {
+ "f1": 0.833004107965464,
+ "fn": 86786,
+ "fn_rate": 0.2855168919696935,
+ "fp": 290,
+ "fp_rate": 0.0016679224013481414,
+ "match_probability": 0.911248436842651,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986664520727473,
+ "recall": 0.7144831080303066,
+ "row_count": 477830,
+ "tn": 173579,
+ "tn_rate": 0.9983320775986518,
+ "tp": 217175,
+ "tp_rate": 0.7144831080303066,
+ "truth_threshold": 3.36
+ },
+ {
+ "f1": 0.8326676565491469,
+ "fn": 86937,
+ "fn_rate": 0.28601366622691726,
+ "fp": 289,
+ "fp_rate": 0.0016621709447917686,
+ "match_probability": 0.9123632251811958,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986701209775761,
+ "recall": 0.7139863337730827,
+ "row_count": 477830,
+ "tn": 173580,
+ "tn_rate": 0.9983378290552082,
+ "tp": 217024,
+ "tp_rate": 0.7139863337730827,
+ "truth_threshold": 3.38
+ },
+ {
+ "f1": 0.8323002820901537,
+ "fn": 87101,
+ "fn_rate": 0.2865532091288027,
+ "fp": 289,
+ "fp_rate": 0.0016621709447917686,
+ "match_probability": 0.9134653406410783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986691165973595,
+ "recall": 0.7134467908711973,
+ "row_count": 477830,
+ "tn": 173580,
+ "tn_rate": 0.9983378290552082,
+ "tp": 216860,
+ "tp_rate": 0.7134467908711973,
+ "truth_threshold": 3.4
+ },
+ {
+ "f1": 0.8319646799116998,
+ "fn": 87255,
+ "fn_rate": 0.2870598530732561,
+ "fp": 283,
+ "fp_rate": 0.0016276622054535311,
+ "match_probability": 0.9145548939924946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9986957864223532,
+ "recall": 0.7129401469267439,
+ "row_count": 477830,
+ "tn": 173586,
+ "tn_rate": 0.9983723377945465,
+ "tp": 216706,
+ "tp_rate": 0.7129401469267439,
+ "truth_threshold": 3.42
+ },
+ {
+ "f1": 0.8316532451623061,
+ "fn": 87396,
+ "fn_rate": 0.28752372837304785,
+ "fp": 281,
+ "fp_rate": 0.0016161592923407853,
+ "match_probability": 0.9156319958815625,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987041494885771,
+ "recall": 0.7124762716269522,
+ "row_count": 477830,
+ "tn": 173588,
+ "tn_rate": 0.9983838407076592,
+ "tp": 216565,
+ "tp_rate": 0.7124762716269522,
+ "truth_threshold": 3.44
+ },
+ {
+ "f1": 0.8313249772403382,
+ "fn": 87543,
+ "fn_rate": 0.28800734304729886,
+ "fp": 280,
+ "fp_rate": 0.0016104078357844125,
+ "match_probability": 0.9166967568055082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987078791682433,
+ "recall": 0.7119926569527012,
+ "row_count": 477830,
+ "tn": 173589,
+ "tn_rate": 0.9983895921642156,
+ "tp": 216418,
+ "tp_rate": 0.7119926569527012,
+ "truth_threshold": 3.46
+ },
+ {
+ "f1": 0.8310305079535849,
+ "fn": 87677,
+ "fn_rate": 0.28844818907688813,
+ "fp": 275,
+ "fp_rate": 0.0015816505530025478,
+ "match_probability": 0.9177492870885379,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987301382071399,
+ "recall": 0.7115518109231118,
+ "row_count": 477830,
+ "tn": 173594,
+ "tn_rate": 0.9984183494469975,
+ "tp": 216284,
+ "tp_rate": 0.7115518109231118,
+ "truth_threshold": 3.48
+ },
+ {
+ "f1": 0.8307827704416535,
+ "fn": 87788,
+ "fn_rate": 0.2888133675043838,
+ "fp": 275,
+ "fp_rate": 0.0015816505530025478,
+ "match_probability": 0.9187896968583877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987294869899468,
+ "recall": 0.7111866324956162,
+ "row_count": 477830,
+ "tn": 173594,
+ "tn_rate": 0.9984183494469975,
+ "tp": 216173,
+ "tp_rate": 0.7111866324956162,
+ "truth_threshold": 3.5
+ },
+ {
+ "f1": 0.8305632005412137,
+ "fn": 87885,
+ "fn_rate": 0.28913248739147457,
+ "fp": 275,
+ "fp_rate": 0.0015816505530025478,
+ "match_probability": 0.9198180960235423,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99872891736114,
+ "recall": 0.7108675126085254,
+ "row_count": 477830,
+ "tn": 173594,
+ "tn_rate": 0.9984183494469975,
+ "tp": 216076,
+ "tp_rate": 0.7108675126085254,
+ "truth_threshold": 3.52
+ },
+ {
+ "f1": 0.8302612961766787,
+ "fn": 88020,
+ "fn_rate": 0.2895766233168071,
+ "fp": 274,
+ "fp_rate": 0.001575899096446175,
+ "match_probability": 0.9208345942511155,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987327428716787,
+ "recall": 0.7104233766831929,
+ "row_count": 477830,
+ "tn": 173595,
+ "tn_rate": 0.9984241009035538,
+ "tp": 215941,
+ "tp_rate": 0.7104233766831929,
+ "truth_threshold": 3.54
+ },
+ {
+ "f1": 0.8299783857792272,
+ "fn": 88155,
+ "fn_rate": 0.2900207592421396,
+ "fp": 262,
+ "fp_rate": 0.0015068816177697003,
+ "match_probability": 0.9218393009453847,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987874187755706,
+ "recall": 0.7099792407578603,
+ "row_count": 477830,
+ "tn": 173607,
+ "tn_rate": 0.9984931183822303,
+ "tp": 215806,
+ "tp_rate": 0.7099792407578603,
+ "truth_threshold": 3.56
+ },
+ {
+ "f1": 0.829699329106912,
+ "fn": 88279,
+ "fn_rate": 0.2904287063142969,
+ "fp": 262,
+ "fp_rate": 0.0015068816177697003,
+ "match_probability": 0.9228323252269688,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987867224836069,
+ "recall": 0.7095712936857032,
+ "row_count": 477830,
+ "tn": 173607,
+ "tn_rate": 0.9984931183822303,
+ "tp": 215682,
+ "tp_rate": 0.7095712936857032,
+ "truth_threshold": 3.58
+ },
+ {
+ "f1": 0.8294928570604101,
+ "fn": 88370,
+ "fn_rate": 0.29072808682692847,
+ "fp": 262,
+ "fp_rate": 0.0015068816177697003,
+ "match_probability": 0.9238137759126431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987862109861804,
+ "recall": 0.7092719131730716,
+ "row_count": 477830,
+ "tn": 173607,
+ "tn_rate": 0.9984931183822303,
+ "tp": 215591,
+ "tp_rate": 0.7092719131730716,
+ "truth_threshold": 3.6
+ },
+ {
+ "f1": 0.8292541196210179,
+ "fn": 88476,
+ "fn_rate": 0.29107681577570804,
+ "fp": 262,
+ "fp_rate": 0.0015068816177697003,
+ "match_probability": 0.9247837614957818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987856146319531,
+ "recall": 0.7089231842242919,
+ "row_count": 477830,
+ "tn": 173607,
+ "tn_rate": 0.9984931183822303,
+ "tp": 215485,
+ "tp_rate": 0.7089231842242919,
+ "truth_threshold": 3.62
+ },
+ {
+ "f1": 0.828936681281541,
+ "fn": 88619,
+ "fn_rate": 0.29154727086698623,
+ "fp": 260,
+ "fp_rate": 0.0014953787046569544,
+ "match_probability": 0.9257423901274181,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987940742664725,
+ "recall": 0.7084527291330138,
+ "row_count": 477830,
+ "tn": 173609,
+ "tn_rate": 0.998504621295343,
+ "tp": 215342,
+ "tp_rate": 0.7084527291330138,
+ "truth_threshold": 3.64
+ },
+ {
+ "f1": 0.8286668052764109,
+ "fn": 88738,
+ "fn_rate": 0.2919387684604275,
+ "fp": 260,
+ "fp_rate": 0.0014953787046569544,
+ "match_probability": 0.9266897695979149,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987934082967102,
+ "recall": 0.7080612315395726,
+ "row_count": 477830,
+ "tn": 173609,
+ "tn_rate": 0.998504621295343,
+ "tp": 215223,
+ "tp_rate": 0.7080612315395726,
+ "truth_threshold": 3.66
+ },
+ {
+ "f1": 0.8283690729272576,
+ "fn": 88870,
+ "fn_rate": 0.2923730346985304,
+ "fp": 260,
+ "fp_rate": 0.0014953787046569544,
+ "match_probability": 0.9276260073192355,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987926687129384,
+ "recall": 0.7076269653014696,
+ "row_count": 477830,
+ "tn": 173609,
+ "tn_rate": 0.998504621295343,
+ "tp": 215091,
+ "tp_rate": 0.7076269653014696,
+ "truth_threshold": 3.68
+ },
+ {
+ "f1": 0.8280118346842543,
+ "fn": 89029,
+ "fn_rate": 0.29289612812169985,
+ "fp": 259,
+ "fp_rate": 0.0014896272481005814,
+ "match_probability": 0.9285512103078053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987964180658113,
+ "recall": 0.7071038718783001,
+ "row_count": 477830,
+ "tn": 173610,
+ "tn_rate": 0.9985103727518995,
+ "tp": 214932,
+ "tp_rate": 0.7071038718783001,
+ "truth_threshold": 3.7
+ },
+ {
+ "f1": 0.827718285544736,
+ "fn": 89159,
+ "fn_rate": 0.29332381456831635,
+ "fp": 259,
+ "fp_rate": 0.0014896272481005814,
+ "match_probability": 0.9294654851679567,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987956905250138,
+ "recall": 0.7066761854316836,
+ "row_count": 477830,
+ "tn": 173610,
+ "tn_rate": 0.9985103727518995,
+ "tp": 214802,
+ "tp_rate": 0.7066761854316836,
+ "truth_threshold": 3.72
+ },
+ {
+ "f1": 0.8274962325744524,
+ "fn": 89258,
+ "fn_rate": 0.2936495142468935,
+ "fp": 259,
+ "fp_rate": 0.0014896272481005814,
+ "match_probability": 0.9303689380759456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987951358844819,
+ "recall": 0.7063504857531064,
+ "row_count": 477830,
+ "tn": 173610,
+ "tn_rate": 0.9985103727518995,
+ "tp": 214703,
+ "tp_rate": 0.7063504857531064,
+ "truth_threshold": 3.74
+ },
+ {
+ "f1": 0.8271759621575151,
+ "fn": 89399,
+ "fn_rate": 0.29411338954668526,
+ "fp": 259,
+ "fp_rate": 0.0014896272481005814,
+ "match_probability": 0.9312616747645321,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.998794345059375,
+ "recall": 0.7058866104533147,
+ "row_count": 477830,
+ "tn": 173610,
+ "tn_rate": 0.9985103727518995,
+ "tp": 214562,
+ "tp_rate": 0.7058866104533147,
+ "truth_threshold": 3.7600000000000002
+ },
+ {
+ "f1": 0.826967938460352,
+ "fn": 89491,
+ "fn_rate": 0.29441605995506004,
+ "fp": 259,
+ "fp_rate": 0.0014896272481005814,
+ "match_probability": 0.9321438005081154,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9987938285001094,
+ "recall": 0.70558394004494,
+ "row_count": 477830,
+ "tn": 173610,
+ "tn_rate": 0.9985103727518995,
+ "tp": 214470,
+ "tp_rate": 0.70558394004494,
+ "truth_threshold": 3.7800000000000002
+ },
+ {
+ "f1": 0.8267157760765181,
+ "fn": 89606,
+ "fn_rate": 0.2947943979655285,
+ "fp": 255,
+ "fp_rate": 0.00146662142187509,
+ "match_probability": 0.9330154201084124,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9988117981454732,
+ "recall": 0.7052056020344716,
+ "row_count": 477830,
+ "tn": 173614,
+ "tn_rate": 0.998533378578125,
+ "tp": 214355,
+ "tp_rate": 0.7052056020344716,
+ "truth_threshold": 3.8000000000000003
+ },
+ {
+ "f1": 0.8262003611501243,
+ "fn": 89833,
+ "fn_rate": 0.29554120429923575,
+ "fp": 255,
+ "fp_rate": 0.00146662142187509,
+ "match_probability": 0.9338766378806729,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9988105400148333,
+ "recall": 0.7044587957007642,
+ "row_count": 477830,
+ "tn": 173614,
+ "tn_rate": 0.998533378578125,
+ "tp": 214128,
+ "tp_rate": 0.7044587957007642,
+ "truth_threshold": 3.8200000000000003
+ },
+ {
+ "f1": 0.825850177349446,
+ "fn": 89989,
+ "fn_rate": 0.29605442803517557,
+ "fp": 253,
+ "fp_rate": 0.0014551185087623441,
+ "match_probability": 0.9347275576404188,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.998818998716303,
+ "recall": 0.7039455719648244,
+ "row_count": 477830,
+ "tn": 173616,
+ "tn_rate": 0.9985448814912377,
+ "tp": 213972,
+ "tp_rate": 0.7039455719648244,
+ "truth_threshold": 3.84
+ },
+ {
+ "f1": 0.8256847794614419,
+ "fn": 90088,
+ "fn_rate": 0.2963801277137528,
+ "fp": 217,
+ "fp_rate": 0.0012480660727329197,
+ "match_probability": 0.9355682826907014,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989864075855949,
+ "recall": 0.7036198722862472,
+ "row_count": 477830,
+ "tn": 173652,
+ "tn_rate": 0.9987519339272671,
+ "tp": 213873,
+ "tp_rate": 0.7036198722862472,
+ "truth_threshold": 3.86
+ },
+ {
+ "f1": 0.8254158879226456,
+ "fn": 90208,
+ "fn_rate": 0.2967749152029372,
+ "fp": 215,
+ "fp_rate": 0.0012365631596201738,
+ "match_probability": 0.9363989158098637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989951768488746,
+ "recall": 0.7032250847970628,
+ "row_count": 477830,
+ "tn": 173654,
+ "tn_rate": 0.9987634368403798,
+ "tp": 213753,
+ "tp_rate": 0.7032250847970628,
+ "truth_threshold": 3.88
+ },
+ {
+ "f1": 0.8251209931285945,
+ "fn": 90338,
+ "fn_rate": 0.2972026016495537,
+ "fp": 215,
+ "fp_rate": 0.0012365631596201738,
+ "match_probability": 0.9372195592398013,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989945659798539,
+ "recall": 0.7027973983504463,
+ "row_count": 477830,
+ "tn": 173654,
+ "tn_rate": 0.9987634368403798,
+ "tp": 213623,
+ "tp_rate": 0.7027973983504463,
+ "truth_threshold": 3.9
+ },
+ {
+ "f1": 0.8247714645586542,
+ "fn": 90492,
+ "fn_rate": 0.29770924559400713,
+ "fp": 215,
+ "fp_rate": 0.0012365631596201738,
+ "match_probability": 0.9380303146747102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989938413732428,
+ "recall": 0.7022907544059929,
+ "row_count": 477830,
+ "tn": 173654,
+ "tn_rate": 0.9987634368403798,
+ "tp": 213469,
+ "tp_rate": 0.7022907544059929,
+ "truth_threshold": 3.92
+ },
+ {
+ "f1": 0.8244755677163041,
+ "fn": 90623,
+ "fn_rate": 0.29814022193636686,
+ "fp": 214,
+ "fp_rate": 0.0012308117030638008,
+ "match_probability": 0.9388312832503134,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989979021502959,
+ "recall": 0.7018597780636332,
+ "row_count": 477830,
+ "tn": 173655,
+ "tn_rate": 0.9987691882969362,
+ "tp": 213338,
+ "tp_rate": 0.7018597780636332,
+ "truth_threshold": 3.94
+ },
+ {
+ "f1": 0.8240392793628701,
+ "fn": 90815,
+ "fn_rate": 0.298771881919062,
+ "fp": 214,
+ "fp_rate": 0.0012308117030638008,
+ "match_probability": 0.9396225655335566,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989970003749531,
+ "recall": 0.701228118080938,
+ "row_count": 477830,
+ "tn": 173655,
+ "tn_rate": 0.9987691882969362,
+ "tp": 213146,
+ "tp_rate": 0.701228118080938,
+ "truth_threshold": 3.96
+ },
+ {
+ "f1": 0.8236260973817535,
+ "fn": 90996,
+ "fn_rate": 0.29936735304858186,
+ "fp": 214,
+ "fp_rate": 0.0012308117030638008,
+ "match_probability": 0.9404042615127621,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9989961487763804,
+ "recall": 0.7006326469514181,
+ "row_count": 477830,
+ "tn": 173655,
+ "tn_rate": 0.9987691882969362,
+ "tp": 212965,
+ "tp_rate": 0.7006326469514181,
+ "truth_threshold": 3.98
+ },
+ {
+ "f1": 0.8233100449519919,
+ "fn": 91137,
+ "fn_rate": 0.2998312283483736,
+ "fp": 212,
+ "fp_rate": 0.0012193087899510552,
+ "match_probability": 0.9411764705882353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990048630278451,
+ "recall": 0.7001687716516264,
+ "row_count": 477830,
+ "tn": 173657,
+ "tn_rate": 0.998780691210049,
+ "tp": 212824,
+ "tp_rate": 0.7001687716516264,
+ "truth_threshold": 4
+ },
+ {
+ "f1": 0.8230231973223441,
+ "fn": 91263,
+ "fn_rate": 0.30024575521201735,
+ "fp": 212,
+ "fp_rate": 0.0012193087899510552,
+ "match_probability": 0.9419392915633099,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99900427410643,
+ "recall": 0.6997542447879826,
+ "row_count": 477830,
+ "tn": 173657,
+ "tn_rate": 0.998780691210049,
+ "tp": 212698,
+ "tp_rate": 0.6997542447879826,
+ "truth_threshold": 4.0200000000000005
+ },
+ {
+ "f1": 0.8226541876649868,
+ "fn": 91425,
+ "fn_rate": 0.30077871832241637,
+ "fp": 212,
+ "fp_rate": 0.0012193087899510552,
+ "match_probability": 0.9426928226358258,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990035158967416,
+ "recall": 0.6992212816775837,
+ "row_count": 477830,
+ "tn": 173657,
+ "tn_rate": 0.998780691210049,
+ "tp": 212536,
+ "tp_rate": 0.6992212816775837,
+ "truth_threshold": 4.04
+ },
+ {
+ "f1": 0.8223305444028449,
+ "fn": 91567,
+ "fn_rate": 0.30124588351795134,
+ "fp": 211,
+ "fp_rate": 0.0012135573333946822,
+ "match_probability": 0.9434371613900292,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990075492109781,
+ "recall": 0.6987541164820487,
+ "row_count": 477830,
+ "tn": 173658,
+ "tn_rate": 0.9987864426666053,
+ "tp": 212394,
+ "tp_rate": 0.6987541164820487,
+ "truth_threshold": 4.0600000000000005
+ },
+ {
+ "f1": 0.8220516534286522,
+ "fn": 91690,
+ "fn_rate": 0.3016505406943654,
+ "fp": 211,
+ "fp_rate": 0.0012135573333946822,
+ "match_probability": 0.9441724047888862,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990069747084459,
+ "recall": 0.6983494593056346,
+ "row_count": 477830,
+ "tn": 173658,
+ "tn_rate": 0.9987864426666053,
+ "tp": 212271,
+ "tp_rate": 0.6983494593056346,
+ "truth_threshold": 4.08
+ },
+ {
+ "f1": 0.8216089941268537,
+ "fn": 91884,
+ "fn_rate": 0.30228878046854696,
+ "fp": 211,
+ "fp_rate": 0.0012135573333946822,
+ "match_probability": 0.9448986491668007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990060672294242,
+ "recall": 0.6977112195314531,
+ "row_count": 477830,
+ "tn": 173658,
+ "tn_rate": 0.9987864426666053,
+ "tp": 212077,
+ "tp_rate": 0.6977112195314531,
+ "truth_threshold": 4.1
+ },
+ {
+ "f1": 0.8212854673827958,
+ "fn": 92025,
+ "fn_rate": 0.3027526557683387,
+ "fp": 211,
+ "fp_rate": 0.0012135573333946822,
+ "match_probability": 0.9456159902227271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990054066284227,
+ "recall": 0.6972473442316613,
+ "row_count": 477830,
+ "tn": 173658,
+ "tn_rate": 0.9987864426666053,
+ "tp": 211936,
+ "tp_rate": 0.6972473442316613,
+ "truth_threshold": 4.12
+ },
+ {
+ "f1": 0.8209962440259081,
+ "fn": 92153,
+ "fn_rate": 0.3031737624234688,
+ "fp": 209,
+ "fp_rate": 0.0012020544202819363,
+ "match_probability": 0.94632452301367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990142299909913,
+ "recall": 0.6968262375765312,
+ "row_count": 477830,
+ "tn": 173660,
+ "tn_rate": 0.998797945579718,
+ "tp": 211808,
+ "tp_rate": 0.6968262375765312,
+ "truth_threshold": 4.14
+ },
+ {
+ "f1": 0.8207251636115505,
+ "fn": 92273,
+ "fn_rate": 0.30356854991265325,
+ "fp": 208,
+ "fp_rate": 0.0011963029637255635,
+ "match_probability": 0.9470243419485608,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990183863782233,
+ "recall": 0.6964314500873467,
+ "row_count": 477830,
+ "tn": 173661,
+ "tn_rate": 0.9988036970362745,
+ "tp": 211688,
+ "tp_rate": 0.6964314500873467,
+ "truth_threshold": 4.16
+ },
+ {
+ "f1": 0.8204050291245569,
+ "fn": 92413,
+ "fn_rate": 0.30402913531670184,
+ "fp": 208,
+ "fp_rate": 0.0011963029637255635,
+ "match_probability": 0.9477155407825041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990177373958707,
+ "recall": 0.6959708646832982,
+ "row_count": 477830,
+ "tn": 173661,
+ "tn_rate": 0.9988036970362745,
+ "tp": 211548,
+ "tp_rate": 0.6959708646832982,
+ "truth_threshold": 4.18
+ },
+ {
+ "f1": 0.8200716873685926,
+ "fn": 92558,
+ "fn_rate": 0.30450617019946635,
+ "fp": 208,
+ "fp_rate": 0.0011963029637255635,
+ "match_probability": 0.9483982126113827,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990170643303042,
+ "recall": 0.6954938298005336,
+ "row_count": 477830,
+ "tn": 173661,
+ "tn_rate": 0.9988036970362745,
+ "tp": 211403,
+ "tp_rate": 0.6954938298005336,
+ "truth_threshold": 4.2
+ },
+ {
+ "f1": 0.8197498001660756,
+ "fn": 92700,
+ "fn_rate": 0.3049733353950013,
+ "fp": 206,
+ "fp_rate": 0.0011848000506128177,
+ "match_probability": 0.9490724498668156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990258527335234,
+ "recall": 0.6950266646049986,
+ "row_count": 477830,
+ "tn": 173663,
+ "tn_rate": 0.9988151999493872,
+ "tp": 211261,
+ "tp_rate": 0.6950266646049986,
+ "truth_threshold": 4.22
+ },
+ {
+ "f1": 0.8193910741594665,
+ "fn": 92858,
+ "fn_rate": 0.3054931389224275,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9497383443114579,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990345800186459,
+ "recall": 0.6945068610775724,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 211103,
+ "tp_rate": 0.6945068610775724,
+ "truth_threshold": 4.24
+ },
+ {
+ "f1": 0.8190014327370714,
+ "fn": 93028,
+ "fn_rate": 0.3060524211987722,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9503959870346359,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990338026968272,
+ "recall": 0.6939475788012278,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210933,
+ "tp_rate": 0.6939475788012278,
+ "truth_threshold": 4.26
+ },
+ {
+ "f1": 0.8183407470717352,
+ "fn": 93316,
+ "fn_rate": 0.30699991117281494,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9510454684483088,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990324829617404,
+ "recall": 0.6930000888271851,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210645,
+ "tp_rate": 0.6930000888271851,
+ "truth_threshold": 4.28
+ },
+ {
+ "f1": 0.8180140129715194,
+ "fn": 93459,
+ "fn_rate": 0.3074703662640931,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9516868782833479,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999031826336222,
+ "recall": 0.6925296337359069,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210502,
+ "tp_rate": 0.6925296337359069,
+ "truth_threshold": 4.3
+ },
+ {
+ "f1": 0.817637249223521,
+ "fn": 93623,
+ "fn_rate": 0.30800990916597853,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9523203055861257,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990310721851222,
+ "recall": 0.6919900908340215,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210338,
+ "tp_rate": 0.6919900908340215,
+ "truth_threshold": 4.32
+ },
+ {
+ "f1": 0.8172333608125554,
+ "fn": 93798,
+ "fn_rate": 0.30858564092103924,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9529458387154083,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999030266153912,
+ "recall": 0.6914143590789608,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210163,
+ "tp_rate": 0.6914143590789608,
+ "truth_threshold": 4.34
+ },
+ {
+ "f1": 0.8169757456010703,
+ "fn": 93910,
+ "fn_rate": 0.3089541092442781,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9535635653395406,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990297495897839,
+ "recall": 0.691045890755722,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 210051,
+ "tp_rate": 0.691045890755722,
+ "truth_threshold": 4.36
+ },
+ {
+ "f1": 0.8166167373458351,
+ "fn": 94066,
+ "fn_rate": 0.30946733298021784,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9541735724339184,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990290291719618,
+ "recall": 0.6905326670197821,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 209895,
+ "tp_rate": 0.6905326670197821,
+ "truth_threshold": 4.38
+ },
+ {
+ "f1": 0.8161930115436409,
+ "fn": 94250,
+ "fn_rate": 0.3100726737969674,
+ "fp": 204,
+ "fp_rate": 0.0011732971375000719,
+ "match_probability": 0.9547759462787397,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990281780720768,
+ "recall": 0.6899273262030327,
+ "row_count": 477830,
+ "tn": 173665,
+ "tn_rate": 0.9988267028625,
+ "tp": 209711,
+ "tp_rate": 0.6899273262030327,
+ "truth_threshold": 4.4
+ },
+ {
+ "f1": 0.815794494041246,
+ "fn": 94425,
+ "fn_rate": 0.31064840555202805,
+ "fp": 202,
+ "fp_rate": 0.001161794224387326,
+ "match_probability": 0.9553707724570261,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999036893648266,
+ "recall": 0.6893515944479719,
+ "row_count": 477830,
+ "tn": 173667,
+ "tn_rate": 0.9988382057756127,
+ "tp": 209536,
+ "tp_rate": 0.6893515944479719,
+ "truth_threshold": 4.42
+ },
+ {
+ "f1": 0.815462444066252,
+ "fn": 94569,
+ "fn_rate": 0.3111221505390494,
+ "fp": 202,
+ "fp_rate": 0.001161794224387326,
+ "match_probability": 0.9559581358529086,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990362319532048,
+ "recall": 0.6888778494609505,
+ "row_count": 477830,
+ "tn": 173667,
+ "tn_rate": 0.9988382057756127,
+ "tp": 209392,
+ "tp_rate": 0.6888778494609505,
+ "truth_threshold": 4.44
+ },
+ {
+ "f1": 0.8151550210940878,
+ "fn": 94705,
+ "fn_rate": 0.31156957636012517,
+ "fp": 198,
+ "fp_rate": 0.0011387883981618344,
+ "match_probability": 0.9565381206501699,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990546850382422,
+ "recall": 0.6884304236398748,
+ "row_count": 477830,
+ "tn": 173671,
+ "tn_rate": 0.9988612116018382,
+ "tp": 209256,
+ "tp_rate": 0.6884304236398748,
+ "truth_threshold": 4.46
+ },
+ {
+ "f1": 0.8147742594165738,
+ "fn": 94872,
+ "fn_rate": 0.3121189889492402,
+ "fp": 195,
+ "fp_rate": 0.0011215340284927158,
+ "match_probability": 0.9571108103310354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999068251753598,
+ "recall": 0.6878810110507598,
+ "row_count": 477830,
+ "tn": 173674,
+ "tn_rate": 0.9988784659715073,
+ "tp": 209089,
+ "tp_rate": 0.6878810110507598,
+ "truth_threshold": 4.48
+ },
+ {
+ "f1": 0.8144739765432243,
+ "fn": 95002,
+ "fn_rate": 0.31254667539585673,
+ "fp": 195,
+ "fp_rate": 0.0011215340284927158,
+ "match_probability": 0.9576762876752064,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990676726239995,
+ "recall": 0.6874533246041433,
+ "row_count": 477830,
+ "tn": 173674,
+ "tn_rate": 0.9988784659715073,
+ "tp": 208959,
+ "tp_rate": 0.6874533246041433,
+ "truth_threshold": 4.5
+ },
+ {
+ "f1": 0.8140895922767699,
+ "fn": 95169,
+ "fn_rate": 0.31309608798497174,
+ "fp": 194,
+ "fp_rate": 0.001115782571936343,
+ "match_probability": 0.9582346347591285,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990717081526992,
+ "recall": 0.6869039120150282,
+ "row_count": 477830,
+ "tn": 173675,
+ "tn_rate": 0.9988842174280637,
+ "tp": 208792,
+ "tp_rate": 0.6869039120150282,
+ "truth_threshold": 4.5200000000000005
+ },
+ {
+ "f1": 0.8137526764716206,
+ "fn": 95314,
+ "fn_rate": 0.3135731228677363,
+ "fp": 194,
+ "fp_rate": 0.001115782571936343,
+ "match_probability": 0.9587859329554874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990710636321412,
+ "recall": 0.6864268771322637,
+ "row_count": 477830,
+ "tn": 173675,
+ "tn_rate": 0.9988842174280637,
+ "tp": 208647,
+ "tp_rate": 0.6864268771322637,
+ "truth_threshold": 4.54
+ },
+ {
+ "f1": 0.8133734403895222,
+ "fn": 95482,
+ "fn_rate": 0.3141258253525946,
+ "fp": 189,
+ "fp_rate": 0.0010870252891544783,
+ "match_probability": 0.9593302629329274,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999094254988786,
+ "recall": 0.6858741746474054,
+ "row_count": 477830,
+ "tn": 173680,
+ "tn_rate": 0.9989129747108455,
+ "tp": 208479,
+ "tp_rate": 0.6858741746474054,
+ "truth_threshold": 4.5600000000000005
+ },
+ {
+ "f1": 0.8130863368871267,
+ "fn": 95606,
+ "fn_rate": 0.31453377242475183,
+ "fp": 189,
+ "fp_rate": 0.0010870252891544783,
+ "match_probability": 0.9598677046559833,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999093716433942,
+ "recall": 0.6854662275752481,
+ "row_count": 477830,
+ "tn": 173680,
+ "tn_rate": 0.9989129747108455,
+ "tp": 208355,
+ "tp_rate": 0.6854662275752481,
+ "truth_threshold": 4.58
+ },
+ {
+ "f1": 0.8128083624781414,
+ "fn": 95726,
+ "fn_rate": 0.3149285599139363,
+ "fp": 188,
+ "fp_rate": 0.0010812738325981055,
+ "match_probability": 0.9603983373852208,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990979882258676,
+ "recall": 0.6850714400860637,
+ "row_count": 477830,
+ "tn": 173681,
+ "tn_rate": 0.9989187261674018,
+ "tp": 208235,
+ "tp_rate": 0.6850714400860637,
+ "truth_threshold": 4.6000000000000005
+ },
+ {
+ "f1": 0.812497803806735,
+ "fn": 95860,
+ "fn_rate": 0.31536940594352564,
+ "fp": 188,
+ "fp_rate": 0.0010812738325981055,
+ "match_probability": 0.96092223967758,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990974079284072,
+ "recall": 0.6846305940564743,
+ "row_count": 477830,
+ "tn": 173681,
+ "tn_rate": 0.9989187261674018,
+ "tp": 208101,
+ "tp_rate": 0.6846305940564743,
+ "truth_threshold": 4.62
+ },
+ {
+ "f1": 0.8121221352580025,
+ "fn": 96022,
+ "fn_rate": 0.31590236905392466,
+ "fp": 188,
+ "fp_rate": 0.0010812738325981055,
+ "match_probability": 0.9614394893869119,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990967053770053,
+ "recall": 0.6840976309460753,
+ "row_count": 477830,
+ "tn": 173681,
+ "tn_rate": 0.9989187261674018,
+ "tp": 207939,
+ "tp_rate": 0.6840976309460753,
+ "truth_threshold": 4.64
+ },
+ {
+ "f1": 0.8116519041497845,
+ "fn": 96226,
+ "fn_rate": 0.3165735077855383,
+ "fp": 187,
+ "fp_rate": 0.0010755223760417327,
+ "match_probability": 0.9619501636647065,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991006242725637,
+ "recall": 0.6834264922144617,
+ "row_count": 477830,
+ "tn": 173682,
+ "tn_rate": 0.9989244776239583,
+ "tp": 207735,
+ "tp_rate": 0.6834264922144617,
+ "truth_threshold": 4.66
+ },
+ {
+ "f1": 0.811262497166397,
+ "fn": 96393,
+ "fn_rate": 0.31712292037465334,
+ "fp": 187,
+ "fp_rate": 0.0010755223760417327,
+ "match_probability": 0.9624543389610023,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990999013260812,
+ "recall": 0.6828770796253467,
+ "row_count": 477830,
+ "tn": 173682,
+ "tn_rate": 0.9989244776239583,
+ "tp": 207568,
+ "tp_rate": 0.6828770796253467,
+ "truth_threshold": 4.68
+ },
+ {
+ "f1": 0.8109557765684619,
+ "fn": 96525,
+ "fn_rate": 0.3175571866127562,
+ "fp": 187,
+ "fp_rate": 0.0010755223760417327,
+ "match_probability": 0.9629520910254744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990993290724053,
+ "recall": 0.6824428133872438,
+ "row_count": 477830,
+ "tn": 173682,
+ "tn_rate": 0.9989244776239583,
+ "tp": 207436,
+ "tp_rate": 0.6824428133872438,
+ "truth_threshold": 4.7
+ },
+ {
+ "f1": 0.8106202511350349,
+ "fn": 96670,
+ "fn_rate": 0.3180342214955208,
+ "fp": 187,
+ "fp_rate": 0.0010755223760417327,
+ "match_probability": 0.9634434949086931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990986996211646,
+ "recall": 0.6819657785044791,
+ "row_count": 477830,
+ "tn": 173682,
+ "tn_rate": 0.9989244776239583,
+ "tp": 207291,
+ "tp_rate": 0.6819657785044791,
+ "truth_threshold": 4.72
+ },
+ {
+ "f1": 0.8102534413493924,
+ "fn": 96827,
+ "fn_rate": 0.31855073512720383,
+ "fp": 187,
+ "fp_rate": 0.0010755223760417327,
+ "match_probability": 0.9639286249635483,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9990980170846175,
+ "recall": 0.6814492648727962,
+ "row_count": 477830,
+ "tn": 173682,
+ "tn_rate": 0.9989244776239583,
+ "tp": 207134,
+ "tp_rate": 0.6814492648727962,
+ "truth_threshold": 4.74
+ },
+ {
+ "f1": 0.8097444527061401,
+ "fn": 97047,
+ "fn_rate": 0.3192745121907087,
+ "fp": 186,
+ "fp_rate": 0.0010697709194853596,
+ "match_probability": 0.9644075548468342,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991018831482376,
+ "recall": 0.6807254878092913,
+ "row_count": 477830,
+ "tn": 173683,
+ "tn_rate": 0.9989302290805147,
+ "tp": 206914,
+ "tp_rate": 0.6807254878092913,
+ "truth_threshold": 4.76
+ },
+ {
+ "f1": 0.809385679557492,
+ "fn": 97201,
+ "fn_rate": 0.31978115613516206,
+ "fp": 186,
+ "fp_rate": 0.0010697709194853596,
+ "match_probability": 0.9648803575209879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991012148096605,
+ "recall": 0.6802188438648379,
+ "row_count": 477830,
+ "tn": 173683,
+ "tn_rate": 0.9989302290805147,
+ "tp": 206760,
+ "tp_rate": 0.6802188438648379,
+ "truth_threshold": 4.78
+ },
+ {
+ "f1": 0.8090322782753071,
+ "fn": 97356,
+ "fn_rate": 0.32029108997535866,
+ "fp": 181,
+ "fp_rate": 0.0010410136367034952,
+ "match_probability": 0.9653471052559783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991246989641465,
+ "recall": 0.6797089100246413,
+ "row_count": 477830,
+ "tn": 173688,
+ "tn_rate": 0.9989589863632965,
+ "tp": 206605,
+ "tp_rate": 0.6797089100246413,
+ "truth_threshold": 4.8
+ },
+ {
+ "f1": 0.8086038185222617,
+ "fn": 97539,
+ "fn_rate": 0.320893140896365,
+ "fp": 181,
+ "fp_rate": 0.0010410136367034952,
+ "match_probability": 0.9658078696313372,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991239236603534,
+ "recall": 0.679106859103635,
+ "row_count": 477830,
+ "tn": 173688,
+ "tn_rate": 0.9989589863632965,
+ "tp": 206422,
+ "tp_rate": 0.679106859103635,
+ "truth_threshold": 4.82
+ },
+ {
+ "f1": 0.8082809585756155,
+ "fn": 97678,
+ "fn_rate": 0.3213504364046703,
+ "fp": 181,
+ "fp_rate": 0.0010410136367034952,
+ "match_probability": 0.9662627215383301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999123333849969,
+ "recall": 0.6786495635953297,
+ "row_count": 477830,
+ "tn": 173688,
+ "tn_rate": 0.9989589863632965,
+ "tp": 206283,
+ "tp_rate": 0.6786495635953297,
+ "truth_threshold": 4.84
+ },
+ {
+ "f1": 0.8078566332970109,
+ "fn": 97859,
+ "fn_rate": 0.3219459075341902,
+ "fp": 181,
+ "fp_rate": 0.0010410136367034952,
+ "match_probability": 0.9667117311822604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991225646320832,
+ "recall": 0.6780540924658097,
+ "row_count": 477830,
+ "tn": 173688,
+ "tn_rate": 0.9989589863632965,
+ "tp": 206102,
+ "tp_rate": 0.6780540924658097,
+ "truth_threshold": 4.86
+ },
+ {
+ "f1": 0.8074912857831816,
+ "fn": 98016,
+ "fn_rate": 0.32246242116587326,
+ "fp": 180,
+ "fp_rate": 0.0010352621801471222,
+ "match_probability": 0.9671549680849019,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991267434808975,
+ "recall": 0.6775375788341268,
+ "row_count": 477830,
+ "tn": 173689,
+ "tn_rate": 0.9989647378198528,
+ "tp": 205945,
+ "tp_rate": 0.6775375788341268,
+ "truth_threshold": 4.88
+ },
+ {
+ "f1": 0.807157704828019,
+ "fn": 98160,
+ "fn_rate": 0.3229361661528946,
+ "fp": 179,
+ "fp_rate": 0.0010295107235907494,
+ "match_probability": 0.9675925010870554,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991309835906399,
+ "recall": 0.6770638338471053,
+ "row_count": 477830,
+ "tn": 173690,
+ "tn_rate": 0.9989704892764093,
+ "tp": 205801,
+ "tp_rate": 0.6770638338471053,
+ "truth_threshold": 4.9
+ },
+ {
+ "f1": 0.8067130946542422,
+ "fn": 98350,
+ "fn_rate": 0.3235612463441034,
+ "fp": 178,
+ "fp_rate": 0.0010237592670343766,
+ "match_probability": 0.9680243983512243,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991350363722065,
+ "recall": 0.6764387536558967,
+ "row_count": 477830,
+ "tn": 173691,
+ "tn_rate": 0.9989762407329656,
+ "tp": 205611,
+ "tp_rate": 0.6764387536558967,
+ "truth_threshold": 4.92
+ },
+ {
+ "f1": 0.8063524831435097,
+ "fn": 98504,
+ "fn_rate": 0.32406789028855676,
+ "fp": 178,
+ "fp_rate": 0.0010237592670343766,
+ "match_probability": 0.9684507273644041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991343886011622,
+ "recall": 0.6759321097114432,
+ "row_count": 477830,
+ "tn": 173691,
+ "tn_rate": 0.9989762407329656,
+ "tp": 205457,
+ "tp_rate": 0.6759321097114432,
+ "truth_threshold": 4.94
+ },
+ {
+ "f1": 0.8059533904959326,
+ "fn": 98675,
+ "fn_rate": 0.32463046246064464,
+ "fp": 177,
+ "fp_rate": 0.0010180078104780035,
+ "match_probability": 0.9688715549409818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991385310250508,
+ "recall": 0.6753695375393554,
+ "row_count": 477830,
+ "tn": 173692,
+ "tn_rate": 0.998981992189522,
+ "tp": 205286,
+ "tp_rate": 0.6753695375393554,
+ "truth_threshold": 4.96
+ },
+ {
+ "f1": 0.8056009362383952,
+ "fn": 98826,
+ "fn_rate": 0.3251272367178684,
+ "fp": 176,
+ "fp_rate": 0.0010122563539216307,
+ "match_probability": 0.9692869472257413,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991427639045156,
+ "recall": 0.6748727632821316,
+ "row_count": 477830,
+ "tn": 173693,
+ "tn_rate": 0.9989877436460783,
+ "tp": 205135,
+ "tp_rate": 0.6748727632821316,
+ "truth_threshold": 4.98
+ },
+ {
+ "f1": 0.8053241259029684,
+ "fn": 98944,
+ "fn_rate": 0.32551544441556646,
+ "fp": 176,
+ "fp_rate": 0.0010122563539216307,
+ "match_probability": 0.9696969696969697,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991422709351684,
+ "recall": 0.6744845555844335,
+ "row_count": 477830,
+ "tn": 173693,
+ "tn_rate": 0.9989877436460783,
+ "tp": 205017,
+ "tp_rate": 0.6744845555844335,
+ "truth_threshold": 5
+ },
+ {
+ "f1": 0.8047599584997013,
+ "fn": 99185,
+ "fn_rate": 0.32630830928967863,
+ "fp": 176,
+ "fp_rate": 0.0010122563539216307,
+ "match_probability": 0.9701016871696593,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991412623443539,
+ "recall": 0.6736916907103214,
+ "row_count": 477830,
+ "tn": 173693,
+ "tn_rate": 0.9989877436460783,
+ "tp": 204776,
+ "tp_rate": 0.6736916907103214,
+ "truth_threshold": 5.0200000000000005
+ },
+ {
+ "f1": 0.8042477402918061,
+ "fn": 99403,
+ "fn_rate": 0.32702550656169704,
+ "fp": 175,
+ "fp_rate": 0.0010065048973652577,
+ "match_probability": 0.9705011637988036,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991452281752331,
+ "recall": 0.672974493438303,
+ "row_count": 477830,
+ "tn": 173694,
+ "tn_rate": 0.9989934951026347,
+ "tp": 204558,
+ "tp_rate": 0.672974493438303,
+ "truth_threshold": 5.04
+ },
+ {
+ "f1": 0.803965597926752,
+ "fn": 99523,
+ "fn_rate": 0.3274202940508815,
+ "fp": 175,
+ "fp_rate": 0.0010065048973652577,
+ "match_probability": 0.9708954630827813,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991447268746365,
+ "recall": 0.6725797059491184,
+ "row_count": 477830,
+ "tn": 173694,
+ "tn_rate": 0.9989934951026347,
+ "tp": 204438,
+ "tp_rate": 0.6725797059491184,
+ "truth_threshold": 5.0600000000000005
+ },
+ {
+ "f1": 0.8036151213563589,
+ "fn": 99674,
+ "fn_rate": 0.3279170683081053,
+ "fp": 172,
+ "fp_rate": 0.000989250527696139,
+ "match_probability": 0.9712846478668253,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991587555451216,
+ "recall": 0.6720829316918947,
+ "row_count": 477830,
+ "tn": 173697,
+ "tn_rate": 0.9990107494723038,
+ "tp": 204287,
+ "tp_rate": 0.6720829316918947,
+ "truth_threshold": 5.08
+ },
+ {
+ "f1": 0.803223597742852,
+ "fn": 99841,
+ "fn_rate": 0.32846648089722036,
+ "fp": 172,
+ "fp_rate": 0.000989250527696139,
+ "match_probability": 0.9716687803465724,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991580678636461,
+ "recall": 0.6715335191027796,
+ "row_count": 477830,
+ "tn": 173697,
+ "tn_rate": 0.9990107494723038,
+ "tp": 204120,
+ "tp_rate": 0.6715335191027796,
+ "truth_threshold": 5.1000000000000005
+ },
+ {
+ "f1": 0.8029464552796889,
+ "fn": 99958,
+ "fn_rate": 0.32885139869917523,
+ "fp": 172,
+ "fp_rate": 0.000989250527696139,
+ "match_probability": 0.9720479220716894,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991575854046774,
+ "recall": 0.6711486013008248,
+ "row_count": 477830,
+ "tn": 173697,
+ "tn_rate": 0.9990107494723038,
+ "tp": 204003,
+ "tp_rate": 0.6711486013008248,
+ "truth_threshold": 5.12
+ },
+ {
+ "f1": 0.8026480002204698,
+ "fn": 100086,
+ "fn_rate": 0.3292725053543053,
+ "fp": 170,
+ "fp_rate": 0.0009777476145833932,
+ "match_probability": 0.9724221339495741,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991668504496557,
+ "recall": 0.6707274946456947,
+ "row_count": 477830,
+ "tn": 173699,
+ "tn_rate": 0.9990222523854166,
+ "tp": 203875,
+ "tp_rate": 0.6707274946456947,
+ "truth_threshold": 5.14
+ },
+ {
+ "f1": 0.802074224627577,
+ "fn": 100332,
+ "fn_rate": 0.33008181970713346,
+ "fp": 167,
+ "fp_rate": 0.0009604932449142745,
+ "match_probability": 0.972791476249125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991805531021217,
+ "recall": 0.6699181802928665,
+ "row_count": 477830,
+ "tn": 173702,
+ "tn_rate": 0.9990395067550857,
+ "tp": 203629,
+ "tp_rate": 0.6699181802928665,
+ "truth_threshold": 5.16
+ },
+ {
+ "f1": 0.8015266273122059,
+ "fn": 100564,
+ "fn_rate": 0.3308450755195568,
+ "fp": 167,
+ "fp_rate": 0.0009604932449142745,
+ "match_probability": 0.9731560086045776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991796191861037,
+ "recall": 0.6691549244804432,
+ "row_count": 477830,
+ "tn": 173702,
+ "tn_rate": 0.9990395067550857,
+ "tp": 203397,
+ "tp_rate": 0.6691549244804432,
+ "truth_threshold": 5.18
+ },
+ {
+ "f1": 0.8012825818759435,
+ "fn": 100670,
+ "fn_rate": 0.3311938044683364,
+ "fp": 163,
+ "fp_rate": 0.000937487418688783,
+ "match_probability": 0.9735157900194042,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991988361005436,
+ "recall": 0.6688061955316636,
+ "row_count": 477830,
+ "tn": 173706,
+ "tn_rate": 0.9990625125813112,
+ "tp": 203291,
+ "tp_rate": 0.6688061955316636,
+ "truth_threshold": 5.2
+ },
+ {
+ "f1": 0.8009706632602773,
+ "fn": 100802,
+ "fn_rate": 0.3316280707064393,
+ "fp": 163,
+ "fp_rate": 0.000937487418688783,
+ "match_probability": 0.9738708788702727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991983159717099,
+ "recall": 0.6683719292935607,
+ "row_count": 477830,
+ "tn": 173706,
+ "tn_rate": 0.9990625125813112,
+ "tp": 203159,
+ "tp_rate": 0.6683719292935607,
+ "truth_threshold": 5.22
+ },
+ {
+ "f1": 0.8005970926242891,
+ "fn": 100960,
+ "fn_rate": 0.33214787423386555,
+ "fp": 163,
+ "fp_rate": 0.000937487418688783,
+ "match_probability": 0.974221332911062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991976925045776,
+ "recall": 0.6678521257661345,
+ "row_count": 477830,
+ "tn": 173706,
+ "tn_rate": 0.9990625125813112,
+ "tp": 203001,
+ "tp_rate": 0.6678521257661345,
+ "truth_threshold": 5.24
+ },
+ {
+ "f1": 0.8001286183782248,
+ "fn": 101158,
+ "fn_rate": 0.3327992735910199,
+ "fp": 163,
+ "fp_rate": 0.000937487418688783,
+ "match_probability": 0.9745672092769317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991969098272617,
+ "recall": 0.6672007264089801,
+ "row_count": 477830,
+ "tn": 173706,
+ "tn_rate": 0.9990625125813112,
+ "tp": 202803,
+ "tp_rate": 0.6672007264089801,
+ "truth_threshold": 5.26
+ },
+ {
+ "f1": 0.7997789968033466,
+ "fn": 101305,
+ "fn_rate": 0.33328288826527086,
+ "fp": 163,
+ "fp_rate": 0.000937487418688783,
+ "match_probability": 0.9749085644884405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9991963277602197,
+ "recall": 0.6667171117347291,
+ "row_count": 477830,
+ "tn": 173706,
+ "tn_rate": 0.9990625125813112,
+ "tp": 202656,
+ "tp_rate": 0.6667171117347291,
+ "truth_threshold": 5.28
+ },
+ {
+ "f1": 0.7993643775044909,
+ "fn": 101486,
+ "fn_rate": 0.33387835939479077,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9752454544557132,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992350589744855,
+ "recall": 0.6661216406052092,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 202475,
+ "tp_rate": 0.6661216406052092,
+ "truth_threshold": 5.3
+ },
+ {
+ "f1": 0.7989660796726841,
+ "fn": 101654,
+ "fn_rate": 0.33443106187964905,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9755779344826514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992344242376348,
+ "recall": 0.665568938120351,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 202307,
+ "tp_rate": 0.665568938120351,
+ "truth_threshold": 5.32
+ },
+ {
+ "f1": 0.7984583412352234,
+ "fn": 101868,
+ "fn_rate": 0.3351350995686947,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9759060592711867,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992336141766544,
+ "recall": 0.6648649004313053,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 202093,
+ "tp_rate": 0.6648649004313053,
+ "truth_threshold": 5.34
+ },
+ {
+ "f1": 0.7980641923002438,
+ "fn": 102034,
+ "fn_rate": 0.33568122226206654,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9762298829255712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992329846300017,
+ "recall": 0.6643187777379335,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201927,
+ "tp_rate": 0.6643187777379335,
+ "truth_threshold": 5.36
+ },
+ {
+ "f1": 0.7976040328160522,
+ "fn": 102227,
+ "fn_rate": 0.33631617214050485,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9765494589567063,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992322513856624,
+ "recall": 0.6636838278594951,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201734,
+ "tp_rate": 0.6636838278594951,
+ "truth_threshold": 5.38
+ },
+ {
+ "f1": 0.7972608482432411,
+ "fn": 102372,
+ "fn_rate": 0.3367932070232694,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9768648402865033,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992316995796653,
+ "recall": 0.6632067929767306,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201589,
+ "tp_rate": 0.6632067929767306,
+ "truth_threshold": 5.4
+ },
+ {
+ "f1": 0.7969333502120387,
+ "fn": 102509,
+ "fn_rate": 0.33724392274008835,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9771760792522766,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992311774888769,
+ "recall": 0.6627560772599116,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201452,
+ "tp_rate": 0.6627560772599116,
+ "truth_threshold": 5.42
+ },
+ {
+ "f1": 0.7965001009129655,
+ "fn": 102691,
+ "fn_rate": 0.3378426837653515,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9774832276111642,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999230482809979,
+ "recall": 0.6621573162346486,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201270,
+ "tp_rate": 0.6621573162346486,
+ "truth_threshold": 5.44
+ },
+ {
+ "f1": 0.7960704982541706,
+ "fn": 102872,
+ "fn_rate": 0.3384381548948714,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9777863365445763,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992297907018346,
+ "recall": 0.6615618451051286,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 201089,
+ "tp_rate": 0.6615618451051286,
+ "truth_threshold": 5.46
+ },
+ {
+ "f1": 0.795704204715554,
+ "fn": 103025,
+ "fn_rate": 0.3389415089435816,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9780854566626659,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992292046884247,
+ "recall": 0.6610584910564185,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 200936,
+ "tp_rate": 0.6610584910564185,
+ "truth_threshold": 5.48
+ },
+ {
+ "f1": 0.7952072133459578,
+ "fn": 103234,
+ "fn_rate": 0.3396290971539112,
+ "fp": 155,
+ "fp_rate": 0.0008914757662377997,
+ "match_probability": 0.9783806380088231,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992284027438995,
+ "recall": 0.6603709028460888,
+ "row_count": 477830,
+ "tn": 173714,
+ "tn_rate": 0.9991085242337622,
+ "tp": 200727,
+ "tp_rate": 0.6603709028460888,
+ "truth_threshold": 5.5
+ },
+ {
+ "f1": 0.7948586872097263,
+ "fn": 103380,
+ "fn_rate": 0.34010942193241894,
+ "fp": 154,
+ "fp_rate": 0.0008857243096814268,
+ "match_probability": 0.9786719300641882,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992328193887463,
+ "recall": 0.659890578067581,
+ "row_count": 477830,
+ "tn": 173715,
+ "tn_rate": 0.9991142756903185,
+ "tp": 200581,
+ "tp_rate": 0.659890578067581,
+ "truth_threshold": 5.5200000000000005
+ },
+ {
+ "f1": 0.7945712620943608,
+ "fn": 103501,
+ "fn_rate": 0.34050749931734664,
+ "fp": 153,
+ "fp_rate": 0.0008799728531250539,
+ "match_probability": 0.9789593817521819,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992373375603775,
+ "recall": 0.6594925006826534,
+ "row_count": 477830,
+ "tn": 173716,
+ "tn_rate": 0.999120027146875,
+ "tp": 200460,
+ "tp_rate": 0.6594925006826534,
+ "truth_threshold": 5.54
+ },
+ {
+ "f1": 0.7941012026789644,
+ "fn": 103699,
+ "fn_rate": 0.341158898674501,
+ "fp": 152,
+ "fp_rate": 0.000874221396568681,
+ "match_probability": 0.9792430414430521,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992415699502031,
+ "recall": 0.658841101325499,
+ "row_count": 477830,
+ "tn": 173717,
+ "tn_rate": 0.9991257786034313,
+ "tp": 200262,
+ "tp_rate": 0.658841101325499,
+ "truth_threshold": 5.5600000000000005
+ },
+ {
+ "f1": 0.7938883160149124,
+ "fn": 103790,
+ "fn_rate": 0.34145827918713256,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9795229569584335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992611784204194,
+ "recall": 0.6585417208128674,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 200171,
+ "tp_rate": 0.6585417208128674,
+ "truth_threshold": 5.58
+ },
+ {
+ "f1": 0.7935429865868995,
+ "fn": 103935,
+ "fn_rate": 0.34193531406989713,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.979799175575919,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992606432403809,
+ "recall": 0.6580646859301029,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 200026,
+ "tp_rate": 0.6580646859301029,
+ "truth_threshold": 5.6000000000000005
+ },
+ {
+ "f1": 0.7932605314117012,
+ "fn": 104053,
+ "fn_rate": 0.3423235217675952,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9800717440336414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992602071420003,
+ "recall": 0.6576764782324048,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 199908,
+ "tp_rate": 0.6576764782324048,
+ "truth_threshold": 5.62
+ },
+ {
+ "f1": 0.7928054526761223,
+ "fn": 104243,
+ "fn_rate": 0.34294860195880394,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9803407085348623,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992595038675913,
+ "recall": 0.657051398041196,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 199718,
+ "tp_rate": 0.657051398041196,
+ "truth_threshold": 5.64
+ },
+ {
+ "f1": 0.792379628710414,
+ "fn": 104420,
+ "fn_rate": 0.34353091350535103,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9806061147525681,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992588475078747,
+ "recall": 0.656469086494649,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 199541,
+ "tp_rate": 0.656469086494649,
+ "truth_threshold": 5.66
+ },
+ {
+ "f1": 0.7919862717136127,
+ "fn": 104584,
+ "fn_rate": 0.34407045640723644,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9808680078340698,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992582383160005,
+ "recall": 0.6559295435927636,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 199377,
+ "tp_rate": 0.6559295435927636,
+ "truth_threshold": 5.68
+ },
+ {
+ "f1": 0.7916118649792383,
+ "fn": 104740,
+ "fn_rate": 0.34458368014317625,
+ "fp": 148,
+ "fp_rate": 0.0008512155703431895,
+ "match_probability": 0.9811264324056064,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992576579107083,
+ "recall": 0.6554163198568237,
+ "row_count": 477830,
+ "tn": 173721,
+ "tn_rate": 0.9991487844296568,
+ "tp": 199221,
+ "tp_rate": 0.6554163198568237,
+ "truth_threshold": 5.7
+ },
+ {
+ "f1": 0.7912675384554235,
+ "fn": 104886,
+ "fn_rate": 0.34506400492168404,
+ "fp": 145,
+ "fp_rate": 0.0008339612006740707,
+ "match_probability": 0.9813814325769498,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992721614295753,
+ "recall": 0.654935995078316,
+ "row_count": 477830,
+ "tn": 173724,
+ "tn_rate": 0.999166038799326,
+ "tp": 199075,
+ "tp_rate": 0.654935995078316,
+ "truth_threshold": 5.72
+ },
+ {
+ "f1": 0.790845437231365,
+ "fn": 105061,
+ "fn_rate": 0.3456397366767447,
+ "fp": 145,
+ "fp_rate": 0.0008339612006740707,
+ "match_probability": 0.9816330519460089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992715215152352,
+ "recall": 0.6543602633232553,
+ "row_count": 477830,
+ "tn": 173724,
+ "tn_rate": 0.999166038799326,
+ "tp": 198900,
+ "tp_rate": 0.6543602633232553,
+ "truth_threshold": 5.74
+ },
+ {
+ "f1": 0.7904766071520903,
+ "fn": 105217,
+ "fn_rate": 0.3461529604126845,
+ "fp": 141,
+ "fp_rate": 0.000810955374448579,
+ "match_probability": 0.9818813336034329,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992910475903161,
+ "recall": 0.6538470395873155,
+ "row_count": 477830,
+ "tn": 173728,
+ "tn_rate": 0.9991890446255515,
+ "tp": 198744,
+ "tp_rate": 0.6538470395873155,
+ "truth_threshold": 5.76
+ },
+ {
+ "f1": 0.790197521532433,
+ "fn": 105333,
+ "fn_rate": 0.34653458831889616,
+ "fp": 141,
+ "fp_rate": 0.000810955374448579,
+ "match_probability": 0.9821263201372112,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992906338513551,
+ "recall": 0.6534654116811038,
+ "row_count": 477830,
+ "tn": 173728,
+ "tn_rate": 0.9991890446255515,
+ "tp": 198628,
+ "tp_rate": 0.6534654116811038,
+ "truth_threshold": 5.78
+ },
+ {
+ "f1": 0.7896284915978762,
+ "fn": 105570,
+ "fn_rate": 0.3473142936100355,
+ "fp": 141,
+ "fp_rate": 0.000810955374448579,
+ "match_probability": 0.9823680536372692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992897870368505,
+ "recall": 0.6526857063899645,
+ "row_count": 477830,
+ "tn": 173728,
+ "tn_rate": 0.9991890446255515,
+ "tp": 198391,
+ "tp_rate": 0.6526857063899645,
+ "truth_threshold": 5.8
+ },
+ {
+ "f1": 0.7893056346270986,
+ "fn": 105704,
+ "fn_rate": 0.34775513963962484,
+ "fp": 141,
+ "fp_rate": 0.000810955374448579,
+ "match_probability": 0.982606575700058,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992893073518886,
+ "recall": 0.6522448603603752,
+ "row_count": 477830,
+ "tn": 173728,
+ "tn_rate": 0.9991890446255515,
+ "tp": 198257,
+ "tp_rate": 0.6522448603603752,
+ "truth_threshold": 5.82
+ },
+ {
+ "f1": 0.7890058777616719,
+ "fn": 105829,
+ "fn_rate": 0.3481663766075253,
+ "fp": 140,
+ "fp_rate": 0.0008052039178922062,
+ "match_probability": 0.9828419274331381,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992938992898645,
+ "recall": 0.6518336233924746,
+ "row_count": 477830,
+ "tn": 173729,
+ "tn_rate": 0.9991947960821078,
+ "tp": 198132,
+ "tp_rate": 0.6518336233924746,
+ "truth_threshold": 5.84
+ },
+ {
+ "f1": 0.7886682122001546,
+ "fn": 105969,
+ "fn_rate": 0.34862696201157384,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9830741494597539,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999298443958795,
+ "recall": 0.6513730379884262,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197992,
+ "tp_rate": 0.6513730379884262,
+ "truth_threshold": 5.86
+ },
+ {
+ "f1": 0.7883488259973942,
+ "fn": 106102,
+ "fn_rate": 0.34906451814541994,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9833032819233992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999297972706795,
+ "recall": 0.6509354818545801,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197859,
+ "tp_rate": 0.6509354818545801,
+ "truth_threshold": 5.88
+ },
+ {
+ "f1": 0.7879818097033515,
+ "fn": 106254,
+ "fn_rate": 0.34956458229838694,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9835293644923733,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992974333572576,
+ "recall": 0.6504354177016131,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197707,
+ "tp_rate": 0.6504354177016131,
+ "truth_threshold": 5.9
+ },
+ {
+ "f1": 0.7876250847187338,
+ "fn": 106401,
+ "fn_rate": 0.35004819697263795,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9837524363643234,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992969109606017,
+ "recall": 0.6499518030273621,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197560,
+ "tp_rate": 0.6499518030273621,
+ "truth_threshold": 5.92
+ },
+ {
+ "f1": 0.7871173596569947,
+ "fn": 106611,
+ "fn_rate": 0.35073907507871077,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9839725362707769,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992961633306159,
+ "recall": 0.6492609249212893,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197350,
+ "tp_rate": 0.6492609249212893,
+ "truth_threshold": 5.94
+ },
+ {
+ "f1": 0.786680977042221,
+ "fn": 106792,
+ "fn_rate": 0.3513345462082307,
+ "fp": 139,
+ "fp_rate": 0.0007994524613358333,
+ "match_probability": 0.9841897024816576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9992955176678087,
+ "recall": 0.6486654537917693,
+ "row_count": 477830,
+ "tn": 173730,
+ "tn_rate": 0.9992005475386642,
+ "tp": 197169,
+ "tp_rate": 0.6486654537917693,
+ "truth_threshold": 5.96
+ },
+ {
+ "f1": 0.7861336973746712,
+ "fn": 107018,
+ "fn_rate": 0.35207806264619473,
+ "fp": 138,
+ "fp_rate": 0.0007937010047794604,
+ "match_probability": 0.9844039728097899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999299780293382,
+ "recall": 0.6479219373538052,
+ "row_count": 477830,
+ "tn": 173731,
+ "tn_rate": 0.9992062989952205,
+ "tp": 196943,
+ "tp_rate": 0.6479219373538052,
+ "truth_threshold": 5.98
+ },
+ {
+ "f1": 0.7858468983194988,
+ "fn": 107137,
+ "fn_rate": 0.352469560239636,
+ "fp": 137,
+ "fp_rate": 0.0007879495482230875,
+ "match_probability": 0.9846153846153847,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993044308264073,
+ "recall": 0.647530439760364,
+ "row_count": 477830,
+ "tn": 173732,
+ "tn_rate": 0.999212050451777,
+ "tp": 196824,
+ "tp_rate": 0.647530439760364,
+ "truth_threshold": 6
+ },
+ {
+ "f1": 0.7855850675100936,
+ "fn": 107245,
+ "fn_rate": 0.352824868979902,
+ "fp": 137,
+ "fp_rate": 0.0007879495482230875,
+ "match_probability": 0.9848239748105114,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993040492143884,
+ "recall": 0.6471751310200979,
+ "row_count": 477830,
+ "tn": 173732,
+ "tn_rate": 0.999212050451777,
+ "tp": 196716,
+ "tp_rate": 0.6471751310200979,
+ "truth_threshold": 6.0200000000000005
+ },
+ {
+ "f1": 0.7852394838812767,
+ "fn": 107392,
+ "fn_rate": 0.353308483654153,
+ "fp": 131,
+ "fp_rate": 0.0007534408088848501,
+ "match_probability": 0.9850297798635513,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999334011184545,
+ "recall": 0.646691516345847,
+ "row_count": 477830,
+ "tn": 173738,
+ "tn_rate": 0.9992465591911152,
+ "tp": 196569,
+ "tp_rate": 0.646691516345847,
+ "truth_threshold": 6.04
+ },
+ {
+ "f1": 0.7849293939950931,
+ "fn": 107523,
+ "fn_rate": 0.3537394599965127,
+ "fp": 125,
+ "fp_rate": 0.0007189320695466126,
+ "match_probability": 0.9852328358036327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993640715699292,
+ "recall": 0.6462605400034873,
+ "row_count": 477830,
+ "tn": 173744,
+ "tn_rate": 0.9992810679304533,
+ "tp": 196438,
+ "tp_rate": 0.6462605400034873,
+ "truth_threshold": 6.0600000000000005
+ },
+ {
+ "f1": 0.7844242438778691,
+ "fn": 107731,
+ "fn_rate": 0.3544237583110991,
+ "fp": 125,
+ "fp_rate": 0.0007189320695466126,
+ "match_probability": 0.9854331782250482,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993633979272236,
+ "recall": 0.6455762416889009,
+ "row_count": 477830,
+ "tn": 173744,
+ "tn_rate": 0.9992810679304533,
+ "tp": 196230,
+ "tp_rate": 0.6455762416889009,
+ "truth_threshold": 6.08
+ },
+ {
+ "f1": 0.7841326200129549,
+ "fn": 107851,
+ "fn_rate": 0.3548185458002836,
+ "fp": 125,
+ "fp_rate": 0.0007189320695466126,
+ "match_probability": 0.9856308422916512,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993630086376029,
+ "recall": 0.6451814541997164,
+ "row_count": 477830,
+ "tn": 173744,
+ "tn_rate": 0.9992810679304533,
+ "tp": 196110,
+ "tp_rate": 0.6451814541997164,
+ "truth_threshold": 6.1000000000000005
+ },
+ {
+ "f1": 0.7838422620833083,
+ "fn": 107973,
+ "fn_rate": 0.35521991308095446,
+ "fp": 121,
+ "fp_rate": 0.0006959262433211211,
+ "match_probability": 0.9858258627412329,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993829961908939,
+ "recall": 0.6447800869190455,
+ "row_count": 477830,
+ "tn": 173748,
+ "tn_rate": 0.9993040737566788,
+ "tp": 195988,
+ "tp_rate": 0.6447800869190455,
+ "truth_threshold": 6.12
+ },
+ {
+ "f1": 0.7834618892925155,
+ "fn": 108130,
+ "fn_rate": 0.3557364267126375,
+ "fp": 121,
+ "fp_rate": 0.0006959262433211211,
+ "match_probability": 0.9860182738898777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993825018371846,
+ "recall": 0.6442635732873625,
+ "row_count": 477830,
+ "tn": 173748,
+ "tn_rate": 0.9993040737566788,
+ "tp": 195831,
+ "tp_rate": 0.6442635732873625,
+ "truth_threshold": 6.140000000000001
+ },
+ {
+ "f1": 0.7830090889807615,
+ "fn": 108316,
+ "fn_rate": 0.3563483473208734,
+ "fp": 121,
+ "fp_rate": 0.0006959262433211211,
+ "match_probability": 0.9862081096362973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993819151435898,
+ "recall": 0.6436516526791266,
+ "row_count": 477830,
+ "tn": 173748,
+ "tn_rate": 0.9993040737566788,
+ "tp": 195645,
+ "tp_rate": 0.6436516526791266,
+ "truth_threshold": 6.16
+ },
+ {
+ "f1": 0.7826241872978253,
+ "fn": 108474,
+ "fn_rate": 0.3568681508482996,
+ "fp": 121,
+ "fp_rate": 0.0006959262433211211,
+ "match_probability": 0.9863954034661423,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993814158930105,
+ "recall": 0.6431318491517004,
+ "row_count": 477830,
+ "tn": 173748,
+ "tn_rate": 0.9993040737566788,
+ "tp": 195487,
+ "tp_rate": 0.6431318491517004,
+ "truth_threshold": 6.18
+ },
+ {
+ "f1": 0.7822683021572938,
+ "fn": 108620,
+ "fn_rate": 0.3573484756268074,
+ "fp": 121,
+ "fp_rate": 0.0006959262433211211,
+ "match_probability": 0.9865801884562904,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993809538426907,
+ "recall": 0.6426515243731926,
+ "row_count": 477830,
+ "tn": 173748,
+ "tn_rate": 0.9993040737566788,
+ "tp": 195341,
+ "tp_rate": 0.6426515243731926,
+ "truth_threshold": 6.2
+ },
+ {
+ "f1": 0.7819024499671522,
+ "fn": 108770,
+ "fn_rate": 0.357841959988288,
+ "fp": 120,
+ "fp_rate": 0.0006901747867647482,
+ "match_probability": 0.9867624972791117,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993855952813717,
+ "recall": 0.6421580400117121,
+ "row_count": 477830,
+ "tn": 173749,
+ "tn_rate": 0.9993098252132353,
+ "tp": 195191,
+ "tp_rate": 0.6421580400117121,
+ "truth_threshold": 6.22
+ },
+ {
+ "f1": 0.7815501496616085,
+ "fn": 108915,
+ "fn_rate": 0.3583189948710525,
+ "fp": 120,
+ "fp_rate": 0.0006901747867647482,
+ "match_probability": 0.9869423622067105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993851388049148,
+ "recall": 0.6416810051289474,
+ "row_count": 477830,
+ "tn": 173749,
+ "tn_rate": 0.9993098252132353,
+ "tp": 195046,
+ "tp_rate": 0.6416810051289474,
+ "truth_threshold": 6.24
+ },
+ {
+ "f1": 0.7811056952283222,
+ "fn": 109097,
+ "fn_rate": 0.35891775589631564,
+ "fp": 119,
+ "fp_rate": 0.0006844233302083753,
+ "match_probability": 0.9871198151151404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993896903832642,
+ "recall": 0.6410822441036843,
+ "row_count": 477830,
+ "tn": 173750,
+ "tn_rate": 0.9993155766697916,
+ "tp": 194864,
+ "tp_rate": 0.6410822441036843,
+ "truth_threshold": 6.26
+ },
+ {
+ "f1": 0.7807773732578467,
+ "fn": 109232,
+ "fn_rate": 0.3593618918216482,
+ "fp": 119,
+ "fp_rate": 0.0006844233302083753,
+ "match_probability": 0.9872948874885967,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993892675316144,
+ "recall": 0.6406381081783519,
+ "row_count": 477830,
+ "tn": 173750,
+ "tn_rate": 0.9993155766697916,
+ "tp": 194729,
+ "tp_rate": 0.6406381081783519,
+ "truth_threshold": 6.28
+ },
+ {
+ "f1": 0.7804350790505907,
+ "fn": 109372,
+ "fn_rate": 0.3598224772256967,
+ "fp": 119,
+ "fp_rate": 0.0006844233302083753,
+ "match_probability": 0.9874676104235824,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993888283994494,
+ "recall": 0.6401775227743033,
+ "row_count": 477830,
+ "tn": 173750,
+ "tn_rate": 0.9993155766697916,
+ "tp": 194589,
+ "tp_rate": 0.6401775227743033,
+ "truth_threshold": 6.3
+ },
+ {
+ "f1": 0.7799898091420823,
+ "fn": 109554,
+ "fn_rate": 0.36042123825095984,
+ "fp": 119,
+ "fp_rate": 0.0006844233302083753,
+ "match_probability": 0.9876380146330476,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993882565826676,
+ "recall": 0.6395787617490402,
+ "row_count": 477830,
+ "tn": 173750,
+ "tn_rate": 0.9993155766697916,
+ "tp": 194407,
+ "tp_rate": 0.6395787617490402,
+ "truth_threshold": 6.32
+ },
+ {
+ "f1": 0.7796430592399658,
+ "fn": 109695,
+ "fn_rate": 0.3608851135507516,
+ "fp": 119,
+ "fp_rate": 0.0006844233302083753,
+ "match_probability": 0.9878061304505031,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9993878128456414,
+ "recall": 0.6391148864492484,
+ "row_count": 477830,
+ "tn": 173750,
+ "tn_rate": 0.9993155766697916,
+ "tp": 194266,
+ "tp_rate": 0.6391148864492484,
+ "truth_threshold": 6.34
+ },
+ {
+ "f1": 0.7792907983636896,
+ "fn": 109842,
+ "fn_rate": 0.36136872822500254,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9879719878341077,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994130760478395,
+ "recall": 0.6386312717749975,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 194119,
+ "tp_rate": 0.6386312717749975,
+ "truth_threshold": 6.36
+ },
+ {
+ "f1": 0.7788054522526285,
+ "fn": 110040,
+ "fn_rate": 0.3620201275821569,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9881356163707273,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994124771304146,
+ "recall": 0.637979872417843,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 193921,
+ "tp_rate": 0.637979872417843,
+ "truth_threshold": 6.38
+ },
+ {
+ "f1": 0.7783924503742271,
+ "fn": 110209,
+ "fn_rate": 0.3625761199627584,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9882970452799678,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994119649654917,
+ "recall": 0.6374238800372416,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 193752,
+ "tp_rate": 0.6374238800372416,
+ "truth_threshold": 6.4
+ },
+ {
+ "f1": 0.7780979132258803,
+ "fn": 110329,
+ "fn_rate": 0.3629709074519428,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9884563034181787,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994116007556285,
+ "recall": 0.6370290925480572,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 193632,
+ "tp_rate": 0.6370290925480572,
+ "truth_threshold": 6.42
+ },
+ {
+ "f1": 0.7776509273924473,
+ "fn": 110511,
+ "fn_rate": 0.36356966847720595,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9886134192824297,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994110475088342,
+ "recall": 0.636430331522794,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 193450,
+ "tp_rate": 0.636430331522794,
+ "truth_threshold": 6.44
+ },
+ {
+ "f1": 0.7774346850650133,
+ "fn": 110599,
+ "fn_rate": 0.3638591793026079,
+ "fp": 114,
+ "fp_rate": 0.0006556660474265108,
+ "match_probability": 0.9887684210144592,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994107796315822,
+ "recall": 0.6361408206973921,
+ "row_count": 477830,
+ "tn": 173755,
+ "tn_rate": 0.9993443339525735,
+ "tp": 193362,
+ "tp_rate": 0.6361408206973921,
+ "truth_threshold": 6.46
+ },
+ {
+ "f1": 0.7770055304172951,
+ "fn": 110778,
+ "fn_rate": 0.3644480706406414,
+ "fp": 106,
+ "fp_rate": 0.0006096543949755276,
+ "match_probability": 0.9889213364045922,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994515983837673,
+ "recall": 0.6355519293593586,
+ "row_count": 477830,
+ "tn": 173763,
+ "tn_rate": 0.9993903456050245,
+ "tp": 193183,
+ "tp_rate": 0.6355519293593586,
+ "truth_threshold": 6.48
+ },
+ {
+ "f1": 0.7765854718393164,
+ "fn": 110950,
+ "fn_rate": 0.3650139327084725,
+ "fp": 105,
+ "fp_rate": 0.0006039029384191547,
+ "match_probability": 0.989072192895632,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994562853414528,
+ "recall": 0.6349860672915275,
+ "row_count": 477830,
+ "tn": 173764,
+ "tn_rate": 0.9993960970615808,
+ "tp": 193011,
+ "tp_rate": 0.6349860672915275,
+ "truth_threshold": 6.5
+ },
+ {
+ "f1": 0.7762170777255457,
+ "fn": 111099,
+ "fn_rate": 0.3655041271742098,
+ "fp": 105,
+ "fp_rate": 0.0006039029384191547,
+ "match_probability": 0.9892210175867204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994558655106832,
+ "recall": 0.6344958728257901,
+ "row_count": 477830,
+ "tn": 173764,
+ "tn_rate": 0.9993960970615808,
+ "tp": 192862,
+ "tp_rate": 0.6344958728257901,
+ "truth_threshold": 6.5200000000000005
+ },
+ {
+ "f1": 0.7757391279839915,
+ "fn": 111293,
+ "fn_rate": 0.3661423669483914,
+ "fp": 105,
+ "fp_rate": 0.0006039029384191547,
+ "match_probability": 0.9893678372371703,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994553179127782,
+ "recall": 0.6338576330516086,
+ "row_count": 477830,
+ "tn": 173764,
+ "tn_rate": 0.9993960970615808,
+ "tp": 192668,
+ "tp_rate": 0.6338576330516086,
+ "truth_threshold": 6.54
+ },
+ {
+ "f1": 0.7752926202502074,
+ "fn": 111476,
+ "fn_rate": 0.3667444178693977,
+ "fp": 102,
+ "fp_rate": 0.0005866485687500359,
+ "match_probability": 0.9895126782702673,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994703692357221,
+ "recall": 0.6332555821306023,
+ "row_count": 477830,
+ "tn": 173767,
+ "tn_rate": 0.99941335143125,
+ "tp": 192485,
+ "tp_rate": 0.6332555821306023,
+ "truth_threshold": 6.5600000000000005
+ },
+ {
+ "f1": 0.7749839852704777,
+ "fn": 111603,
+ "fn_rate": 0.3671622346287846,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9896555667770431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994804061145809,
+ "recall": 0.6328377653712154,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 192358,
+ "tp_rate": 0.6328377653712154,
+ "truth_threshold": 6.58
+ },
+ {
+ "f1": 0.7745050622299606,
+ "fn": 111797,
+ "fn_rate": 0.36780047440296615,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9897965285200179,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994798818291516,
+ "recall": 0.6321995255970339,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 192164,
+ "tp_rate": 0.6321995255970339,
+ "truth_threshold": 6.6000000000000005
+ },
+ {
+ "f1": 0.7742135753246282,
+ "fn": 111915,
+ "fn_rate": 0.36818868210066424,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9899355889369128,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994795624160795,
+ "recall": 0.6318113178993358,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 192046,
+ "tp_rate": 0.6318113178993358,
+ "truth_threshold": 6.62
+ },
+ {
+ "f1": 0.7738585865103113,
+ "fn": 112058,
+ "fn_rate": 0.3686591371919424,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9900727731443332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994791748045604,
+ "recall": 0.6313408628080576,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191903,
+ "tp_rate": 0.6313408628080576,
+ "truth_threshold": 6.640000000000001
+ },
+ {
+ "f1": 0.7733292990418558,
+ "fn": 112272,
+ "fn_rate": 0.369363174880988,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9902081059414205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994785936628274,
+ "recall": 0.630636825119012,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191689,
+ "tp_rate": 0.630636825119012,
+ "truth_threshold": 6.66
+ },
+ {
+ "f1": 0.7728738452597635,
+ "fn": 112456,
+ "fn_rate": 0.36996851569773753,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9903416118134748,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994780929516454,
+ "recall": 0.6300314843022624,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191505,
+ "tp_rate": 0.6300314843022624,
+ "truth_threshold": 6.68
+ },
+ {
+ "f1": 0.7724824790879437,
+ "fn": 112614,
+ "fn_rate": 0.37048831922516373,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9904733149355459,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994776622250544,
+ "recall": 0.6295116807748362,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191347,
+ "tp_rate": 0.6295116807748362,
+ "truth_threshold": 6.7
+ },
+ {
+ "f1": 0.7720949015648663,
+ "fn": 112771,
+ "fn_rate": 0.37100483285684677,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9906032391759949,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994772335197867,
+ "recall": 0.6289951671431533,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191190,
+ "tp_rate": 0.6289951671431533,
+ "truth_threshold": 6.72
+ },
+ {
+ "f1": 0.7717030370113029,
+ "fn": 112929,
+ "fn_rate": 0.37152463638427297,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9907314081000241,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994768013728732,
+ "recall": 0.628475363615727,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 191032,
+ "tp_rate": 0.628475363615727,
+ "truth_threshold": 6.74
+ },
+ {
+ "f1": 0.771346600666734,
+ "fn": 113072,
+ "fn_rate": 0.37199509147555115,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9908578449731781,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999476409636157,
+ "recall": 0.6280049085244489,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 190889,
+ "tp_rate": 0.6280049085244489,
+ "truth_threshold": 6.76
+ },
+ {
+ "f1": 0.7709135888304559,
+ "fn": 113247,
+ "fn_rate": 0.3725708232306118,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9909825727648117,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994759294391397,
+ "recall": 0.6274291767693881,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 190714,
+ "tp_rate": 0.6274291767693881,
+ "truth_threshold": 6.78
+ },
+ {
+ "f1": 0.7705368118004787,
+ "fn": 113398,
+ "fn_rate": 0.37306759748783563,
+ "fp": 100,
+ "fp_rate": 0.0005751456556372901,
+ "match_probability": 0.9911056141515298,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994755143892627,
+ "recall": 0.6269324025121644,
+ "row_count": 477830,
+ "tn": 173769,
+ "tn_rate": 0.9994248543443627,
+ "tp": 190563,
+ "tp_rate": 0.6269324025121644,
+ "truth_threshold": 6.8
+ },
+ {
+ "f1": 0.7701054113307069,
+ "fn": 113574,
+ "fn_rate": 0.3736466191386395,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9912269915205945,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999490770878394,
+ "recall": 0.6263533808613605,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 190387,
+ "tp_rate": 0.6263533808613605,
+ "truth_threshold": 6.82
+ },
+ {
+ "f1": 0.7697380932150242,
+ "fn": 113721,
+ "fn_rate": 0.37413023381289046,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9913467269733026,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994903775934264,
+ "recall": 0.6258697661871095,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 190240,
+ "tp_rate": 0.6258697661871095,
+ "truth_threshold": 6.84
+ },
+ {
+ "f1": 0.7692450920866222,
+ "fn": 113919,
+ "fn_rate": 0.3747816331700448,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9914648423283329,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994898469014774,
+ "recall": 0.6252183668299551,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 190042,
+ "tp_rate": 0.6252183668299551,
+ "truth_threshold": 6.86
+ },
+ {
+ "f1": 0.768840497554339,
+ "fn": 114082,
+ "fn_rate": 0.37531788617618705,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9915813591250612,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994894091885291,
+ "recall": 0.6246821138238129,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 189879,
+ "tp_rate": 0.6246821138238129,
+ "truth_threshold": 6.88
+ },
+ {
+ "f1": 0.7684674394679498,
+ "fn": 114231,
+ "fn_rate": 0.37580808064192445,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9916962986268459,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994890084129233,
+ "recall": 0.6241919193580755,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 189730,
+ "tp_rate": 0.6241919193580755,
+ "truth_threshold": 6.9
+ },
+ {
+ "f1": 0.7679874552770091,
+ "fn": 114424,
+ "fn_rate": 0.3764430305203628,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9918096818242835,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999488488351245,
+ "recall": 0.6235569694796372,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 189537,
+ "tp_rate": 0.6235569694796372,
+ "truth_threshold": 6.92
+ },
+ {
+ "f1": 0.767478059952573,
+ "fn": 114628,
+ "fn_rate": 0.3771141692519764,
+ "fp": 97,
+ "fp_rate": 0.0005578912859681715,
+ "match_probability": 0.9919215294384318,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9994879374967006,
+ "recall": 0.6228858307480236,
+ "row_count": 477830,
+ "tn": 173772,
+ "tn_rate": 0.9994421087140318,
+ "tp": 189333,
+ "tp_rate": 0.6228858307480236,
+ "truth_threshold": 6.94
+ },
+ {
+ "f1": 0.7671203993171709,
+ "fn": 114773,
+ "fn_rate": 0.37759120413474095,
+ "fp": 93,
+ "fp_rate": 0.0005348854597426798,
+ "match_probability": 0.9920318619240045,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995086670083104,
+ "recall": 0.622408795865259,
+ "row_count": 477830,
+ "tn": 173776,
+ "tn_rate": 0.9994651145402573,
+ "tp": 189188,
+ "tp_rate": 0.622408795865259,
+ "truth_threshold": 6.96
+ },
+ {
+ "f1": 0.7667093916556474,
+ "fn": 114938,
+ "fn_rate": 0.37813403693236963,
+ "fp": 93,
+ "fp_rate": 0.0005348854597426798,
+ "match_probability": 0.9921406994725337,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995082383299139,
+ "recall": 0.6218659630676304,
+ "row_count": 477830,
+ "tn": 173776,
+ "tn_rate": 0.9994651145402573,
+ "tp": 189023,
+ "tp_rate": 0.6218659630676304,
+ "truth_threshold": 6.98
+ },
+ {
+ "f1": 0.7664291915839696,
+ "fn": 115050,
+ "fn_rate": 0.37850250525560847,
+ "fp": 93,
+ "fp_rate": 0.0005348854597426798,
+ "match_probability": 0.9922480620155039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995079469217583,
+ "recall": 0.6214974947443915,
+ "row_count": 477830,
+ "tn": 173776,
+ "tn_rate": 0.9994651145402573,
+ "tp": 188911,
+ "tp_rate": 0.6214974947443915,
+ "truth_threshold": 7
+ },
+ {
+ "f1": 0.7659695362249432,
+ "fn": 115233,
+ "fn_rate": 0.37910455617661476,
+ "fp": 93,
+ "fp_rate": 0.0005348854597426798,
+ "match_probability": 0.9923539692274538,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995074700377606,
+ "recall": 0.6208954438233852,
+ "row_count": 477830,
+ "tn": 173776,
+ "tn_rate": 0.9994651145402573,
+ "tp": 188728,
+ "tp_rate": 0.6208954438233852,
+ "truth_threshold": 7.0200000000000005
+ },
+ {
+ "f1": 0.7654525005379902,
+ "fn": 115440,
+ "fn_rate": 0.379785564595458,
+ "fp": 93,
+ "fp_rate": 0.0005348854597426798,
+ "match_probability": 0.9924584405290495,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995069294962198,
+ "recall": 0.620214435404542,
+ "row_count": 477830,
+ "tn": 173776,
+ "tn_rate": 0.9994651145402573,
+ "tp": 188521,
+ "tp_rate": 0.620214435404542,
+ "truth_threshold": 7.04
+ },
+ {
+ "f1": 0.7650654525220443,
+ "fn": 115595,
+ "fn_rate": 0.3802954984356546,
+ "fp": 92,
+ "fp_rate": 0.0005291340031863069,
+ "match_probability": 0.9925614950901266,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995118275690075,
+ "recall": 0.6197045015643454,
+ "row_count": 477830,
+ "tn": 173777,
+ "tn_rate": 0.9994708659968137,
+ "tp": 188366,
+ "tp_rate": 0.6197045015643454,
+ "truth_threshold": 7.0600000000000005
+ },
+ {
+ "f1": 0.764739339573583,
+ "fn": 115725,
+ "fn_rate": 0.3807231848822711,
+ "fp": 92,
+ "fp_rate": 0.0005291340031863069,
+ "match_probability": 0.9926631518327027,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999511490590884,
+ "recall": 0.6192768151177289,
+ "row_count": 477830,
+ "tn": 173777,
+ "tn_rate": 0.9994708659968137,
+ "tp": 188236,
+ "tp_rate": 0.6192768151177289,
+ "truth_threshold": 7.08
+ },
+ {
+ "f1": 0.7644431802019628,
+ "fn": 115843,
+ "fn_rate": 0.3811113925799691,
+ "fp": 92,
+ "fp_rate": 0.0005291340031863069,
+ "match_probability": 0.9927634294339601,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995111843153924,
+ "recall": 0.6188886074200308,
+ "row_count": 477830,
+ "tn": 173777,
+ "tn_rate": 0.9994708659968137,
+ "tp": 188118,
+ "tp_rate": 0.6188886074200308,
+ "truth_threshold": 7.1000000000000005
+ },
+ {
+ "f1": 0.7640303737367989,
+ "fn": 116008,
+ "fn_rate": 0.3816542253775978,
+ "fp": 90,
+ "fp_rate": 0.0005176310900735611,
+ "match_probability": 0.9928623463291987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999521386065953,
+ "recall": 0.6183457746224023,
+ "row_count": 477830,
+ "tn": 173779,
+ "tn_rate": 0.9994823689099265,
+ "tp": 187953,
+ "tp_rate": 0.6183457746224023,
+ "truth_threshold": 7.12
+ },
+ {
+ "f1": 0.7637077788214055,
+ "fn": 116137,
+ "fn_rate": 0.3820786219284711,
+ "fp": 89,
+ "fp_rate": 0.0005118796335171883,
+ "match_probability": 0.9929599207147589,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995263765678798,
+ "recall": 0.6179213780715289,
+ "row_count": 477830,
+ "tn": 173780,
+ "tn_rate": 0.9994881203664828,
+ "tp": 187824,
+ "tp_rate": 0.6179213780715289,
+ "truth_threshold": 7.140000000000001
+ },
+ {
+ "f1": 0.7634091981323919,
+ "fn": 116257,
+ "fn_rate": 0.38247340941765556,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9930561705509157,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995367190120932,
+ "recall": 0.6175265905823445,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187704,
+ "tp_rate": 0.6175265905823445,
+ "truth_threshold": 7.16
+ },
+ {
+ "f1": 0.7630963374597763,
+ "fn": 116382,
+ "fn_rate": 0.382884646385556,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9931511135647422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995364104312982,
+ "recall": 0.6171153536144439,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187579,
+ "tp_rate": 0.6171153536144439,
+ "truth_threshold": 7.18
+ },
+ {
+ "f1": 0.762809453278862,
+ "fn": 116496,
+ "fn_rate": 0.3832596945002813,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9932447672529455,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995361286469886,
+ "recall": 0.6167403054997187,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187465,
+ "tp_rate": 0.6167403054997187,
+ "truth_threshold": 7.2
+ },
+ {
+ "f1": 0.7623017553000945,
+ "fn": 116697,
+ "fn_rate": 0.38392096354466526,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9933371488846718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99953563098142,
+ "recall": 0.6160790364553347,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187264,
+ "tp_rate": 0.6160790364553347,
+ "truth_threshold": 7.22
+ },
+ {
+ "f1": 0.762054827427557,
+ "fn": 116795,
+ "fn_rate": 0.38424337332749925,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.993428275504284,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995353879510609,
+ "recall": 0.6157566266725008,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187166,
+ "tp_rate": 0.6157566266725008,
+ "truth_threshold": 7.24
+ },
+ {
+ "f1": 0.7617261475680233,
+ "fn": 116926,
+ "fn_rate": 0.384674349669859,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9935181639341092,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995350626863757,
+ "recall": 0.6153256503301411,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 187035,
+ "tp_rate": 0.6153256503301411,
+ "truth_threshold": 7.26
+ },
+ {
+ "f1": 0.7612680331308489,
+ "fn": 117107,
+ "fn_rate": 0.3852698207993789,
+ "fp": 87,
+ "fp_rate": 0.0005003767204044424,
+ "match_probability": 0.9936068307771581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995346125248072,
+ "recall": 0.6147301792006211,
+ "row_count": 477830,
+ "tn": 173782,
+ "tn_rate": 0.9994996232795955,
+ "tp": 186854,
+ "tp_rate": 0.6147301792006211,
+ "truth_threshold": 7.28
+ },
+ {
+ "f1": 0.7608076328971018,
+ "fn": 117290,
+ "fn_rate": 0.3858718717203852,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.9936942924198163,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995395085592508,
+ "recall": 0.6141281282796148,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 186671,
+ "tp_rate": 0.6141281282796148,
+ "truth_threshold": 7.3
+ },
+ {
+ "f1": 0.7604438881799688,
+ "fn": 117434,
+ "fn_rate": 0.3863456167074065,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.9937805650345067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995391532208368,
+ "recall": 0.6136543832925935,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 186527,
+ "tp_rate": 0.6136543832925935,
+ "truth_threshold": 7.32
+ },
+ {
+ "f1": 0.760079929857472,
+ "fn": 117578,
+ "fn_rate": 0.3868193616944279,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.9938656645823235,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995387973336051,
+ "recall": 0.6131806383055721,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 186383,
+ "tp_rate": 0.6131806383055721,
+ "truth_threshold": 7.34
+ },
+ {
+ "f1": 0.75967528096763,
+ "fn": 117738,
+ "fn_rate": 0.3873457450133405,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.9939496068156388,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999538401258125,
+ "recall": 0.6126542549866595,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 186223,
+ "tp_rate": 0.6126542549866595,
+ "truth_threshold": 7.36
+ },
+ {
+ "f1": 0.7590931352542649,
+ "fn": 117968,
+ "fn_rate": 0.38810242103427744,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.994032407280681,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995378307063129,
+ "recall": 0.6118975789657226,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 185993,
+ "tp_rate": 0.6118975789657226,
+ "truth_threshold": 7.38
+ },
+ {
+ "f1": 0.7587172630590541,
+ "fn": 118117,
+ "fn_rate": 0.3885926155000148,
+ "fp": 86,
+ "fp_rate": 0.0004946252638480695,
+ "match_probability": 0.9941140813200855,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995374603345345,
+ "recall": 0.6114073844999852,
+ "row_count": 477830,
+ "tn": 173783,
+ "tn_rate": 0.999505374736152,
+ "tp": 185844,
+ "tp_rate": 0.6114073844999852,
+ "truth_threshold": 7.4
+ },
+ {
+ "f1": 0.7583563724869626,
+ "fn": 118260,
+ "fn_rate": 0.38906307059129297,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9941946440754179,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995424843637303,
+ "recall": 0.610936929408707,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 185701,
+ "tp_rate": 0.610936929408707,
+ "truth_threshold": 7.42
+ },
+ {
+ "f1": 0.7577628331889719,
+ "fn": 118494,
+ "fn_rate": 0.38983290619520267,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9942741104896703,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995419073898422,
+ "recall": 0.6101670938047973,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 185467,
+ "tp_rate": 0.6101670938047973,
+ "truth_threshold": 7.44
+ },
+ {
+ "f1": 0.7573728952100703,
+ "fn": 118647,
+ "fn_rate": 0.3903362602439129,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9943524953097296,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995415293502122,
+ "recall": 0.6096637397560871,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 185314,
+ "tp_rate": 0.6096637397560871,
+ "truth_threshold": 7.46
+ },
+ {
+ "f1": 0.7569359837117836,
+ "fn": 118819,
+ "fn_rate": 0.3909021223117439,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9944298130888198,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995411036188029,
+ "recall": 0.6090978776882561,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 185142,
+ "tp_rate": 0.6090978776882561,
+ "truth_threshold": 7.48
+ },
+ {
+ "f1": 0.756523197225494,
+ "fn": 118982,
+ "fn_rate": 0.39143837531788617,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.994506078188917,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995406994337094,
+ "recall": 0.6085616246821138,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184979,
+ "tp_rate": 0.6085616246821138,
+ "truth_threshold": 7.5
+ },
+ {
+ "f1": 0.7560755081334075,
+ "fn": 119158,
+ "fn_rate": 0.39201739696869004,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9945813047831374,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995402622127991,
+ "recall": 0.6079826030313099,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184803,
+ "tp_rate": 0.6079826030313099,
+ "truth_threshold": 7.5200000000000005
+ },
+ {
+ "f1": 0.7557089772132006,
+ "fn": 119302,
+ "fn_rate": 0.39249114195571144,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9946555068581004,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995399038669727,
+ "recall": 0.6075088580442886,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184659,
+ "tp_rate": 0.6075088580442886,
+ "truth_threshold": 7.54
+ },
+ {
+ "f1": 0.7553941815294055,
+ "fn": 119425,
+ "fn_rate": 0.3928957991321255,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9947286982162634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995395973372476,
+ "recall": 0.6071042008678745,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184536,
+ "tp_rate": 0.6071042008678745,
+ "truth_threshold": 7.5600000000000005
+ },
+ {
+ "f1": 0.7549711721155736,
+ "fn": 119591,
+ "fn_rate": 0.39344192182549736,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9948008924782327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995391829985634,
+ "recall": 0.6065580781745027,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184370,
+ "tp_rate": 0.6065580781745027,
+ "truth_threshold": 7.58
+ },
+ {
+ "f1": 0.7546131884966228,
+ "fn": 119732,
+ "fn_rate": 0.3939057971252891,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9948721030850469,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995388304740823,
+ "recall": 0.6060942028747109,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184229,
+ "tp_rate": 0.6060942028747109,
+ "truth_threshold": 7.6000000000000005
+ },
+ {
+ "f1": 0.7542355867132666,
+ "fn": 119880,
+ "fn_rate": 0.3943927016952833,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9949423433004362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999538459867728,
+ "recall": 0.6056072983047167,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 184081,
+ "tp_rate": 0.6056072983047167,
+ "truth_threshold": 7.62
+ },
+ {
+ "f1": 0.75369530820879,
+ "fn": 120091,
+ "fn_rate": 0.3950868696970993,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9950116262130546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995379304721264,
+ "recall": 0.6049131303029007,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 183870,
+ "tp_rate": 0.6049131303029007,
+ "truth_threshold": 7.640000000000001
+ },
+ {
+ "f1": 0.7533723666838873,
+ "fn": 120218,
+ "fn_rate": 0.3955046864564862,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9950799647386886,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995376112452945,
+ "recall": 0.6044953135435138,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 183743,
+ "tp_rate": 0.6044953135435138,
+ "truth_threshold": 7.66
+ },
+ {
+ "f1": 0.7529796815657581,
+ "fn": 120371,
+ "fn_rate": 0.3960080405051964,
+ "fp": 85,
+ "fp_rate": 0.0004888738072916966,
+ "match_probability": 0.9951473716224397,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995372260786716,
+ "recall": 0.6039919594948036,
+ "row_count": 477830,
+ "tn": 173784,
+ "tn_rate": 0.9995111261927083,
+ "tp": 183590,
+ "tp_rate": 0.6039919594948036,
+ "truth_threshold": 7.68
+ },
+ {
+ "f1": 0.7524956815374958,
+ "fn": 120562,
+ "fn_rate": 0.3966364105921483,
+ "fp": 83,
+ "fp_rate": 0.00047737089417895085,
+ "match_probability": 0.9952138594408825,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995476395504737,
+ "recall": 0.6033635894078516,
+ "row_count": 477830,
+ "tn": 173786,
+ "tn_rate": 0.999522629105821,
+ "tp": 183399,
+ "tp_rate": 0.6033635894078516,
+ "truth_threshold": 7.7
+ },
+ {
+ "f1": 0.752,
+ "fn": 120755,
+ "fn_rate": 0.3972713604705867,
+ "fp": 83,
+ "fp_rate": 0.00047737089417895085,
+ "match_probability": 0.9952794406041985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995471632231067,
+ "recall": 0.6027286395294134,
+ "row_count": 477830,
+ "tn": 173786,
+ "tn_rate": 0.999522629105821,
+ "tp": 183206,
+ "tp_rate": 0.6027286395294134,
+ "truth_threshold": 7.72
+ },
+ {
+ "f1": 0.7516351677047707,
+ "fn": 120898,
+ "fn_rate": 0.39774181556186483,
+ "fp": 83,
+ "fp_rate": 0.00047737089417895085,
+ "match_probability": 0.9953441273582849,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995468096491323,
+ "recall": 0.6022581844381352,
+ "row_count": 477830,
+ "tn": 173786,
+ "tn_rate": 0.999522629105821,
+ "tp": 183063,
+ "tp_rate": 0.6022581844381352,
+ "truth_threshold": 7.74
+ },
+ {
+ "f1": 0.7512352397576754,
+ "fn": 121054,
+ "fn_rate": 0.39825503929780465,
+ "fp": 83,
+ "fp_rate": 0.00047737089417895085,
+ "match_probability": 0.9954079317868398,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995464233018198,
+ "recall": 0.6017449607021953,
+ "row_count": 477830,
+ "tn": 173786,
+ "tn_rate": 0.999522629105821,
+ "tp": 182907,
+ "tp_rate": 0.6017449607021953,
+ "truth_threshold": 7.76
+ },
+ {
+ "f1": 0.7506913370232035,
+ "fn": 121266,
+ "fn_rate": 0.39895249719536385,
+ "fp": 83,
+ "fp_rate": 0.00047737089417895085,
+ "match_probability": 0.9954708658134229,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995458972086356,
+ "recall": 0.6010475028046361,
+ "row_count": 477830,
+ "tn": 173786,
+ "tn_rate": 0.999522629105821,
+ "tp": 182695,
+ "tp_rate": 0.6010475028046361,
+ "truth_threshold": 7.78
+ },
+ {
+ "f1": 0.7502682039583205,
+ "fn": 121432,
+ "fn_rate": 0.39949861988873575,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9955329412034929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995564317397733,
+ "recall": 0.6005013801112643,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 182529,
+ "tp_rate": 0.6005013801112643,
+ "truth_threshold": 7.8
+ },
+ {
+ "f1": 0.7497604723936724,
+ "fn": 121629,
+ "fn_rate": 0.4001467293501469,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9955941695664209,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995559527007395,
+ "recall": 0.599853270649853,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 182332,
+ "tp_rate": 0.599853270649853,
+ "truth_threshold": 7.82
+ },
+ {
+ "f1": 0.7492615903574807,
+ "fn": 121823,
+ "fn_rate": 0.4007849691243284,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9956545623574807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995554799444625,
+ "recall": 0.5992150308756715,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 182138,
+ "tp_rate": 0.5992150308756715,
+ "truth_threshold": 7.84
+ },
+ {
+ "f1": 0.7487767238009012,
+ "fn": 122012,
+ "fn_rate": 0.401406759419794,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.995714130879816,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995550184035599,
+ "recall": 0.598593240580206,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 181949,
+ "tp_rate": 0.598593240580206,
+ "truth_threshold": 7.86
+ },
+ {
+ "f1": 0.7483141626802138,
+ "fn": 122191,
+ "fn_rate": 0.4019956507578275,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9957728862863844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995545803982381,
+ "recall": 0.5980043492421725,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 181770,
+ "tp_rate": 0.5980043492421725,
+ "truth_threshold": 7.88
+ },
+ {
+ "f1": 0.7479780925712404,
+ "fn": 122322,
+ "fn_rate": 0.4024266271001872,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9958308395818786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995542593000221,
+ "recall": 0.5975733728998128,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 181639,
+ "tp_rate": 0.5975733728998128,
+ "truth_threshold": 7.9
+ },
+ {
+ "f1": 0.7475603376187907,
+ "fn": 122484,
+ "fn_rate": 0.40295959021058625,
+ "fp": 81,
+ "fp_rate": 0.000465867981066205,
+ "match_probability": 0.9958880016246255,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995538615759151,
+ "recall": 0.5970404097894138,
+ "row_count": 477830,
+ "tn": 173788,
+ "tn_rate": 0.9995341320189338,
+ "tp": 181477,
+ "tp_rate": 0.5970404097894138,
+ "truth_threshold": 7.92
+ },
+ {
+ "f1": 0.7469811989482621,
+ "fn": 122709,
+ "fn_rate": 0.4036998167528071,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9959443831284631,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995588202854433,
+ "recall": 0.5963001832471929,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 181252,
+ "tp_rate": 0.5963001832471929,
+ "truth_threshold": 7.94
+ },
+ {
+ "f1": 0.7464800926823034,
+ "fn": 122903,
+ "fn_rate": 0.4043380565269887,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9959999946645937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995583477790414,
+ "recall": 0.5956619434730114,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 181058,
+ "tp_rate": 0.5956619434730114,
+ "truth_threshold": 7.96
+ },
+ {
+ "f1": 0.7460509927165045,
+ "fn": 123069,
+ "fn_rate": 0.4048841792203605,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9960548466634173,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995579426651636,
+ "recall": 0.5951158207796395,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 180892,
+ "tp_rate": 0.5951158207796395,
+ "truth_threshold": 7.98
+ },
+ {
+ "f1": 0.7455543177786029,
+ "fn": 123261,
+ "fn_rate": 0.4055158392030557,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9961089494163424,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995574731718111,
+ "recall": 0.5944841607969443,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 180700,
+ "tp_rate": 0.5944841607969443,
+ "truth_threshold": 8
+ },
+ {
+ "f1": 0.7451453004857795,
+ "fn": 123419,
+ "fn_rate": 0.40603564273048187,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9961623130775747,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995570860692496,
+ "recall": 0.5939643572695181,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 180542,
+ "tp_rate": 0.5939643572695181,
+ "truth_threshold": 8.02
+ },
+ {
+ "f1": 0.7445338662856719,
+ "fn": 123655,
+ "fn_rate": 0.406812058125878,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9962149476658856,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995565066025079,
+ "recall": 0.593187941874122,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 180306,
+ "tp_rate": 0.593187941874122,
+ "truth_threshold": 8.040000000000001
+ },
+ {
+ "f1": 0.7441823003147382,
+ "fn": 123790,
+ "fn_rate": 0.4072561940512105,
+ "fp": 80,
+ "fp_rate": 0.0004601165245098321,
+ "match_probability": 0.9962668630663583,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995561744456342,
+ "recall": 0.5927438059487895,
+ "row_count": 477830,
+ "tn": 173789,
+ "tn_rate": 0.9995398834754902,
+ "tp": 180171,
+ "tp_rate": 0.5927438059487895,
+ "truth_threshold": 8.06
+ },
+ {
+ "f1": 0.7437546999859517,
+ "fn": 123956,
+ "fn_rate": 0.40780231674458234,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.9963180690321144,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995668663893871,
+ "recall": 0.5921976832554177,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 180005,
+ "tp_rate": 0.5921976832554177,
+ "truth_threshold": 8.08
+ },
+ {
+ "f1": 0.7431979959820432,
+ "fn": 124171,
+ "fn_rate": 0.4085096443293712,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.9963685751860192,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995663486556808,
+ "recall": 0.5914903556706288,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 179790,
+ "tp_rate": 0.5914903556706288,
+ "truth_threshold": 8.1
+ },
+ {
+ "f1": 0.7428768714880527,
+ "fn": 124294,
+ "fn_rate": 0.4089143015057853,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.9964183910223661,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995660519068681,
+ "recall": 0.5910856984942148,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 179667,
+ "tp_rate": 0.5910856984942148,
+ "truth_threshold": 8.120000000000001
+ },
+ {
+ "f1": 0.742471305966291,
+ "fn": 124450,
+ "fn_rate": 0.4094275252417251,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.996467525908541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995656749578203,
+ "recall": 0.5905724747582749,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 179511,
+ "tp_rate": 0.5905724747582749,
+ "truth_threshold": 8.14
+ },
+ {
+ "f1": 0.742018635596306,
+ "fn": 124624,
+ "fn_rate": 0.4099999671010426,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.9965159890866674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999565253741326,
+ "recall": 0.5900000328989574,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 179337,
+ "tp_rate": 0.5900000328989574,
+ "truth_threshold": 8.16
+ },
+ {
+ "f1": 0.7416999826177646,
+ "fn": 124747,
+ "fn_rate": 0.41040462427745666,
+ "fp": 78,
+ "fp_rate": 0.00044861361139708633,
+ "match_probability": 0.9965637896752301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995649554916003,
+ "recall": 0.5895953757225434,
+ "row_count": 477830,
+ "tn": 173791,
+ "tn_rate": 0.9995513863886029,
+ "tp": 179214,
+ "tp_rate": 0.5895953757225434,
+ "truth_threshold": 8.18
+ },
+ {
+ "f1": 0.7412780227286841,
+ "fn": 124909,
+ "fn_rate": 0.4109375873878557,
+ "fp": 77,
+ "fp_rate": 0.0004428621548407134,
+ "match_probability": 0.9966109366706807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995701421880321,
+ "recall": 0.5890624126121443,
+ "row_count": 477830,
+ "tn": 173792,
+ "tn_rate": 0.9995571378451593,
+ "tp": 179052,
+ "tp_rate": 0.5890624126121443,
+ "truth_threshold": 8.2
+ },
+ {
+ "f1": 0.7408901349655649,
+ "fn": 125059,
+ "fn_rate": 0.41143107174933624,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9966574389490227,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995809517424027,
+ "recall": 0.5885689282506638,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 178902,
+ "tp_rate": 0.5885689282506638,
+ "truth_threshold": 8.22
+ },
+ {
+ "f1": 0.7404832823096139,
+ "fn": 125215,
+ "fn_rate": 0.41194429548527606,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9967033052673774,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995805861727649,
+ "recall": 0.5880557045147239,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 178746,
+ "tp_rate": 0.5880557045147239,
+ "truth_threshold": 8.24
+ },
+ {
+ "f1": 0.740044839146813,
+ "fn": 125383,
+ "fn_rate": 0.41249699797013434,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9967485442655314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995801917684002,
+ "recall": 0.5875030020298657,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 178578,
+ "tp_rate": 0.5875030020298657,
+ "truth_threshold": 8.26
+ },
+ {
+ "f1": 0.7395486128384989,
+ "fn": 125573,
+ "fn_rate": 0.41312207816134305,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9967931644674644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995797448210554,
+ "recall": 0.586877921838657,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 178388,
+ "tp_rate": 0.586877921838657,
+ "truth_threshold": 8.28
+ },
+ {
+ "f1": 0.7389306201341391,
+ "fn": 125810,
+ "fn_rate": 0.4139017834524824,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9968371742828585,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995791859773546,
+ "recall": 0.5860982165475176,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 178151,
+ "tp_rate": 0.5860982165475176,
+ "truth_threshold": 8.3
+ },
+ {
+ "f1": 0.7384439834024896,
+ "fn": 125996,
+ "fn_rate": 0.4145137040607183,
+ "fp": 75,
+ "fp_rate": 0.0004313592417279676,
+ "match_probability": 0.9968805820085895,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999578746349135,
+ "recall": 0.5854862959392817,
+ "row_count": 477830,
+ "tn": 173794,
+ "tn_rate": 0.999568640758272,
+ "tp": 177965,
+ "tp_rate": 0.5854862959392817,
+ "truth_threshold": 8.32
+ },
+ {
+ "f1": 0.738139212504306,
+ "fn": 126113,
+ "fn_rate": 0.4148986218626732,
+ "fp": 74,
+ "fp_rate": 0.0004256077851715947,
+ "match_probability": 0.9969233958301993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995840874090893,
+ "recall": 0.5851013781373269,
+ "row_count": 477830,
+ "tn": 173795,
+ "tn_rate": 0.9995743922148284,
+ "tp": 177848,
+ "tp_rate": 0.5851013781373269,
+ "truth_threshold": 8.34
+ },
+ {
+ "f1": 0.737558702990894,
+ "fn": 126334,
+ "fn_rate": 0.41562568882192125,
+ "fp": 74,
+ "fp_rate": 0.0004256077851715947,
+ "match_probability": 0.9969656238233504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995835701543604,
+ "recall": 0.5843743111780788,
+ "row_count": 477830,
+ "tn": 173795,
+ "tn_rate": 0.9995743922148284,
+ "tp": 177627,
+ "tp_rate": 0.5843743111780788,
+ "truth_threshold": 8.36
+ },
+ {
+ "f1": 0.737132864518648,
+ "fn": 126497,
+ "fn_rate": 0.4161619418280635,
+ "fp": 74,
+ "fp_rate": 0.0004256077851715947,
+ "match_probability": 0.9970072739552628,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995831878245784,
+ "recall": 0.5838380581719366,
+ "row_count": 477830,
+ "tn": 173795,
+ "tn_rate": 0.9995743922148284,
+ "tp": 177464,
+ "tp_rate": 0.5838380581719366,
+ "truth_threshold": 8.38
+ },
+ {
+ "f1": 0.7366144333495394,
+ "fn": 126694,
+ "fn_rate": 0.4168100512894746,
+ "fp": 74,
+ "fp_rate": 0.0004256077851715947,
+ "match_probability": 0.9970483540861322,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995827248070103,
+ "recall": 0.5831899487105253,
+ "row_count": 477830,
+ "tn": 173795,
+ "tn_rate": 0.9995743922148284,
+ "tp": 177267,
+ "tp_rate": 0.5831899487105253,
+ "truth_threshold": 8.4
+ },
+ {
+ "f1": 0.7363024232096097,
+ "fn": 126814,
+ "fn_rate": 0.4172048387786591,
+ "fp": 73,
+ "fp_rate": 0.0004198563286152218,
+ "match_probability": 0.9970888719705324,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995880826091863,
+ "recall": 0.5827951612213409,
+ "row_count": 477830,
+ "tn": 173796,
+ "tn_rate": 0.9995801436713848,
+ "tp": 177147,
+ "tp_rate": 0.5827951612213409,
+ "truth_threshold": 8.42
+ },
+ {
+ "f1": 0.7358715718396062,
+ "fn": 126978,
+ "fn_rate": 0.41774438168054456,
+ "fp": 73,
+ "fp_rate": 0.0004198563286152218,
+ "match_probability": 0.9971288352587981,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995877010663293,
+ "recall": 0.5822556183194555,
+ "row_count": 477830,
+ "tn": 173796,
+ "tn_rate": 0.9995801436713848,
+ "tp": 176983,
+ "tp_rate": 0.5822556183194555,
+ "truth_threshold": 8.44
+ },
+ {
+ "f1": 0.7354130272023958,
+ "fn": 127153,
+ "fn_rate": 0.4183201134356052,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.9971682514983926,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995929443690638,
+ "recall": 0.5816798865643947,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 176808,
+ "tp_rate": 0.5816798865643947,
+ "truth_threshold": 8.46
+ },
+ {
+ "f1": 0.7349605132856775,
+ "fn": 127325,
+ "fn_rate": 0.4188859755034363,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.9972071281352571,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999592548158544,
+ "recall": 0.5811140244965637,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 176636,
+ "tp_rate": 0.5811140244965637,
+ "truth_threshold": 8.48
+ },
+ {
+ "f1": 0.7344982455556157,
+ "fn": 127500,
+ "fn_rate": 0.41946170725849696,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.9972454725151444,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995921442449853,
+ "recall": 0.580538292741503,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 176461,
+ "tp_rate": 0.580538292741503,
+ "truth_threshold": 8.5
+ },
+ {
+ "f1": 0.7341335764873406,
+ "fn": 127639,
+ "fn_rate": 0.41991900276680233,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.9972832918849344,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995918228511174,
+ "recall": 0.5800809972331977,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 176322,
+ "tp_rate": 0.5800809972331977,
+ "truth_threshold": 8.52
+ },
+ {
+ "f1": 0.73359575132771,
+ "fn": 127843,
+ "fn_rate": 0.4205901414984159,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.997320593393935,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995913502468926,
+ "recall": 0.5794098585015841,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 176118,
+ "tp_rate": 0.5794098585015841,
+ "truth_threshold": 8.540000000000001
+ },
+ {
+ "f1": 0.7332011116620347,
+ "fn": 127992,
+ "fn_rate": 0.4210803359641533,
+ "fp": 72,
+ "fp_rate": 0.0004141048720588489,
+ "match_probability": 0.9973573840951653,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995910043683006,
+ "recall": 0.5789196640358467,
+ "row_count": 477830,
+ "tn": 173797,
+ "tn_rate": 0.9995858951279412,
+ "tp": 175969,
+ "tp_rate": 0.5789196640358467,
+ "truth_threshold": 8.56
+ },
+ {
+ "f1": 0.7328726587701823,
+ "fn": 128117,
+ "fn_rate": 0.4214915729320538,
+ "fp": 71,
+ "fp_rate": 0.000408353415502476,
+ "match_probability": 0.9973936709466236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9995963959866981,
+ "recall": 0.5785084270679463,
+ "row_count": 477830,
+ "tn": 173798,
+ "tn_rate": 0.9995916465844975,
+ "tp": 175844,
+ "tp_rate": 0.5785084270679463,
+ "truth_threshold": 8.58
+ },
+ {
+ "f1": 0.7325743300705364,
+ "fn": 128234,
+ "fn_rate": 0.4218764907340086,
+ "fp": 65,
+ "fp_rate": 0.0003738446761642386,
+ "match_probability": 0.9974294608125389,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996302448348048,
+ "recall": 0.5781235092659913,
+ "row_count": 477830,
+ "tn": 173804,
+ "tn_rate": 0.9996261553238358,
+ "tp": 175727,
+ "tp_rate": 0.5781235092659913,
+ "truth_threshold": 8.6
+ },
+ {
+ "f1": 0.7321673568280102,
+ "fn": 128388,
+ "fn_rate": 0.42238313467846206,
+ "fp": 65,
+ "fp_rate": 0.0003738446761642386,
+ "match_probability": 0.9974647604646075,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996299206322095,
+ "recall": 0.577616865321538,
+ "row_count": 477830,
+ "tn": 173804,
+ "tn_rate": 0.9996261553238358,
+ "tp": 175573,
+ "tp_rate": 0.577616865321538,
+ "truth_threshold": 8.620000000000001
+ },
+ {
+ "f1": 0.731676588501796,
+ "fn": 128573,
+ "fn_rate": 0.4229917653909548,
+ "fp": 65,
+ "fp_rate": 0.0003738446761642386,
+ "match_probability": 0.9974995765832131,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996295304155529,
+ "recall": 0.5770082346090453,
+ "row_count": 477830,
+ "tn": 173804,
+ "tn_rate": 0.9996261553238358,
+ "tp": 175388,
+ "tp_rate": 0.5770082346090453,
+ "truth_threshold": 8.64
+ },
+ {
+ "f1": 0.7313091522141916,
+ "fn": 128713,
+ "fn_rate": 0.4234523507950033,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9975339157586318,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996349365702291,
+ "recall": 0.5765476492049967,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 175248,
+ "tp_rate": 0.5765476492049967,
+ "truth_threshold": 8.66
+ },
+ {
+ "f1": 0.7308707013867437,
+ "fn": 128878,
+ "fn_rate": 0.42399518359263194,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9975677844922232,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996345926564543,
+ "recall": 0.576004816407368,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 175083,
+ "tp_rate": 0.576004816407368,
+ "truth_threshold": 8.68
+ },
+ {
+ "f1": 0.7304721101729595,
+ "fn": 129029,
+ "fn_rate": 0.4244919578498557,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9976011891976038,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999634277354911,
+ "recall": 0.5755080421501443,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174932,
+ "tp_rate": 0.5755080421501443,
+ "truth_threshold": 8.700000000000001
+ },
+ {
+ "f1": 0.7299959480176617,
+ "fn": 129208,
+ "fn_rate": 0.42508084918788924,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9976341362018084,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996339028812987,
+ "recall": 0.5749191508121108,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174753,
+ "tp_rate": 0.5749191508121108,
+ "truth_threshold": 8.72
+ },
+ {
+ "f1": 0.7295065525541589,
+ "fn": 129393,
+ "fn_rate": 0.425689479900382,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9976666317464351,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996335150487883,
+ "recall": 0.574310520099618,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174568,
+ "tp_rate": 0.574310520099618,
+ "truth_threshold": 8.74
+ },
+ {
+ "f1": 0.729141237647767,
+ "fn": 129530,
+ "fn_rate": 0.4261401956172009,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9976986819887761,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996332273131036,
+ "recall": 0.5738598043827992,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174431,
+ "tp_rate": 0.5738598043827992,
+ "truth_threshold": 8.76
+ },
+ {
+ "f1": 0.7286363655371697,
+ "fn": 129720,
+ "fn_rate": 0.4267652758084096,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9977302930029345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999632827514988,
+ "recall": 0.5732347241915904,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174241,
+ "tp_rate": 0.5732347241915904,
+ "truth_threshold": 8.78
+ },
+ {
+ "f1": 0.7282204020848846,
+ "fn": 129877,
+ "fn_rate": 0.42728178944009265,
+ "fp": 64,
+ "fp_rate": 0.0003680932196078657,
+ "match_probability": 0.9977614707809268,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996324964972323,
+ "recall": 0.5727182105599073,
+ "row_count": 477830,
+ "tn": 173805,
+ "tn_rate": 0.9996319067803922,
+ "tp": 174084,
+ "tp_rate": 0.5727182105599073,
+ "truth_threshold": 8.8
+ },
+ {
+ "f1": 0.7276923591988416,
+ "fn": 130076,
+ "fn_rate": 0.42793647869299023,
+ "fp": 63,
+ "fp_rate": 0.0003623417630514928,
+ "match_probability": 0.997792221233771,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996378227976177,
+ "recall": 0.5720635213070098,
+ "row_count": 477830,
+ "tn": 173806,
+ "tn_rate": 0.9996376582369485,
+ "tp": 173885,
+ "tp_rate": 0.5720635213070098,
+ "truth_threshold": 8.82
+ },
+ {
+ "f1": 0.7273526419999079,
+ "fn": 130203,
+ "fn_rate": 0.42835429545237713,
+ "fp": 63,
+ "fp_rate": 0.0003623417630514928,
+ "match_probability": 0.9978225501925614,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996375581776655,
+ "recall": 0.5716457045476229,
+ "row_count": 477830,
+ "tn": 173806,
+ "tn_rate": 0.9996376582369485,
+ "tp": 173758,
+ "tp_rate": 0.5716457045476229,
+ "truth_threshold": 8.84
+ },
+ {
+ "f1": 0.7269624859201815,
+ "fn": 130350,
+ "fn_rate": 0.4288379101266281,
+ "fp": 63,
+ "fp_rate": 0.0003623417630514928,
+ "match_probability": 0.9978524634095293,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996372514020522,
+ "recall": 0.5711620898733719,
+ "row_count": 477830,
+ "tn": 173806,
+ "tn_rate": 0.9996376582369485,
+ "tp": 173611,
+ "tp_rate": 0.5711620898733719,
+ "truth_threshold": 8.86
+ },
+ {
+ "f1": 0.7265358951482175,
+ "fn": 130510,
+ "fn_rate": 0.4293642934455407,
+ "fp": 63,
+ "fp_rate": 0.0003623417630514928,
+ "match_probability": 0.9978819665590902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996369169058404,
+ "recall": 0.5706357065544593,
+ "row_count": 477830,
+ "tn": 173806,
+ "tn_rate": 0.9996376582369485,
+ "tp": 173451,
+ "tp_rate": 0.5706357065544593,
+ "truth_threshold": 8.88
+ },
+ {
+ "f1": 0.7260674628116489,
+ "fn": 130685,
+ "fn_rate": 0.4299400252006014,
+ "fp": 63,
+ "fp_rate": 0.0003623417630514928,
+ "match_probability": 0.9979110652388782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996365503435465,
+ "recall": 0.5700599747993986,
+ "row_count": 477830,
+ "tn": 173806,
+ "tn_rate": 0.9996376582369485,
+ "tp": 173276,
+ "tp_rate": 0.5700599747993986,
+ "truth_threshold": 8.9
+ },
+ {
+ "f1": 0.7254910180895885,
+ "fn": 130906,
+ "fn_rate": 0.43066709215984944,
+ "fp": 55,
+ "fp_rate": 0.0003163301106005096,
+ "match_probability": 0.9979397649707662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996822829414823,
+ "recall": 0.5693329078401506,
+ "row_count": 477830,
+ "tn": 173814,
+ "tn_rate": 0.9996836698893995,
+ "tp": 173055,
+ "tp_rate": 0.5693329078401506,
+ "truth_threshold": 8.92
+ },
+ {
+ "f1": 0.7251008546435072,
+ "fn": 131052,
+ "fn_rate": 0.43114741693835723,
+ "fp": 55,
+ "fp_rate": 0.0003163301106005096,
+ "match_probability": 0.9979680712018738,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996820147545153,
+ "recall": 0.5688525830616428,
+ "row_count": 477830,
+ "tn": 173814,
+ "tn_rate": 0.9996836698893995,
+ "tp": 172909,
+ "tp_rate": 0.5688525830616428,
+ "truth_threshold": 8.94
+ },
+ {
+ "f1": 0.7247211513857487,
+ "fn": 131194,
+ "fn_rate": 0.4316145821338922,
+ "fp": 55,
+ "fp_rate": 0.0003163301106005096,
+ "match_probability": 0.9979959893055618,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996817534804596,
+ "recall": 0.5683854178661079,
+ "row_count": 477830,
+ "tn": 173814,
+ "tn_rate": 0.9996836698893995,
+ "tp": 172767,
+ "tp_rate": 0.5683854178661079,
+ "truth_threshold": 8.96
+ },
+ {
+ "f1": 0.7242448657585753,
+ "fn": 131372,
+ "fn_rate": 0.43220018357618245,
+ "fp": 55,
+ "fp_rate": 0.0003163301106005096,
+ "match_probability": 0.9980235245824145,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996814253608581,
+ "recall": 0.5677998164238175,
+ "row_count": 477830,
+ "tn": 173814,
+ "tn_rate": 0.9996836698893995,
+ "tp": 172589,
+ "tp_rate": 0.5677998164238175,
+ "truth_threshold": 8.98
+ },
+ {
+ "f1": 0.7238217972236098,
+ "fn": 131530,
+ "fn_rate": 0.4327199871036087,
+ "fp": 55,
+ "fp_rate": 0.0003163301106005096,
+ "match_probability": 0.9980506822612085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996811335412729,
+ "recall": 0.5672800128963913,
+ "row_count": 477830,
+ "tn": 173814,
+ "tn_rate": 0.9996836698893995,
+ "tp": 172431,
+ "tp_rate": 0.5672800128963913,
+ "truth_threshold": 9
+ },
+ {
+ "f1": 0.7233651217576437,
+ "fn": 131701,
+ "fn_rate": 0.43328255927569653,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9980774674998706,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996866186148543,
+ "recall": 0.5667174407243034,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 172260,
+ "tp_rate": 0.5667174407243034,
+ "truth_threshold": 9.02
+ },
+ {
+ "f1": 0.7229146450580333,
+ "fn": 131869,
+ "fn_rate": 0.4338352617605548,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9981038853864208,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996863127810115,
+ "recall": 0.5661647382394452,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 172092,
+ "tp_rate": 0.5661647382394452,
+ "truth_threshold": 9.040000000000001
+ },
+ {
+ "f1": 0.7224918583884862,
+ "fn": 132026,
+ "fn_rate": 0.4343517753922378,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9981299409399065,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999686026431923,
+ "recall": 0.5656482246077622,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 171935,
+ "tp_rate": 0.5656482246077622,
+ "truth_threshold": 9.06
+ },
+ {
+ "f1": 0.7220676261895954,
+ "fn": 132184,
+ "fn_rate": 0.43487157891966405,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9981556391113212,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996857377306773,
+ "recall": 0.565128421080336,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 171777,
+ "tp_rate": 0.565128421080336,
+ "truth_threshold": 9.08
+ },
+ {
+ "f1": 0.7215290481296915,
+ "fn": 132385,
+ "fn_rate": 0.435532847964048,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9981809847845143,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996853696906135,
+ "recall": 0.564467152035952,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 171576,
+ "tp_rate": 0.564467152035952,
+ "truth_threshold": 9.1
+ },
+ {
+ "f1": 0.7210569269860501,
+ "fn": 132560,
+ "fn_rate": 0.4361085797191087,
+ "fp": 54,
+ "fp_rate": 0.00031057865404413666,
+ "match_probability": 0.9982059827770873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996850485550144,
+ "recall": 0.5638914202808913,
+ "row_count": 477830,
+ "tn": 173815,
+ "tn_rate": 0.9996894213459558,
+ "tp": 171401,
+ "tp_rate": 0.5638914202808913,
+ "truth_threshold": 9.120000000000001
+ },
+ {
+ "f1": 0.7205701636253451,
+ "fn": 132742,
+ "fn_rate": 0.4367073407443718,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9982306378412784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996963875962656,
+ "recall": 0.5632926592556282,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 171219,
+ "tp_rate": 0.5632926592556282,
+ "truth_threshold": 9.14
+ },
+ {
+ "f1": 0.7201758004900186,
+ "fn": 132889,
+ "fn_rate": 0.4371909554186228,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9982549546648377,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996961267852551,
+ "recall": 0.5628090445813773,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 171072,
+ "tp_rate": 0.5628090445813773,
+ "truth_threshold": 9.16
+ },
+ {
+ "f1": 0.7196541529442484,
+ "fn": 133082,
+ "fn_rate": 0.4378259052970611,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9982789378718879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996957836787944,
+ "recall": 0.5621740947029389,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170879,
+ "tp_rate": 0.5621740947029389,
+ "truth_threshold": 9.18
+ },
+ {
+ "f1": 0.719195655562624,
+ "fn": 133252,
+ "fn_rate": 0.4383851875734058,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9983025920237768,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996954808182196,
+ "recall": 0.5616148124265942,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170709,
+ "tp_rate": 0.5616148124265942,
+ "truth_threshold": 9.200000000000001
+ },
+ {
+ "f1": 0.7186978437884586,
+ "fn": 133437,
+ "fn_rate": 0.4389938182858985,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9983259216199165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999695150548729,
+ "recall": 0.5610061817141014,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170524,
+ "tp_rate": 0.5610061817141014,
+ "truth_threshold": 9.22
+ },
+ {
+ "f1": 0.7184007621841974,
+ "fn": 133547,
+ "fn_rate": 0.43935570681765096,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9983489310986134,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996949538324358,
+ "recall": 0.5606442931823491,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170414,
+ "tp_rate": 0.5606442931823491,
+ "truth_threshold": 9.24
+ },
+ {
+ "f1": 0.7180614882501023,
+ "fn": 133672,
+ "fn_rate": 0.4397669437855514,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9983716248378863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996947299827992,
+ "recall": 0.5602330562144485,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170289,
+ "tp_rate": 0.5602330562144485,
+ "truth_threshold": 9.26
+ },
+ {
+ "f1": 0.71761266809523,
+ "fn": 133838,
+ "fn_rate": 0.44031306647892327,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.998394007156274,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996944322021448,
+ "recall": 0.5596869335210767,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 170123,
+ "tp_rate": 0.5596869335210767,
+ "truth_threshold": 9.28
+ },
+ {
+ "f1": 0.7171027923012326,
+ "fn": 134027,
+ "fn_rate": 0.4409348567743888,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9984160823136331,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996940924546728,
+ "recall": 0.5590651432256112,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 169934,
+ "tp_rate": 0.5590651432256112,
+ "truth_threshold": 9.3
+ },
+ {
+ "f1": 0.7166274072760738,
+ "fn": 134202,
+ "fn_rate": 0.4415105885294495,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9984378545119243,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996937771993569,
+ "recall": 0.5584894114705505,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 169759,
+ "tp_rate": 0.5584894114705505,
+ "truth_threshold": 9.32
+ },
+ {
+ "f1": 0.7162155314387061,
+ "fn": 134354,
+ "fn_rate": 0.4420106526824165,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9984593278959899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999693502849834,
+ "recall": 0.5579893473175835,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 169607,
+ "tp_rate": 0.5579893473175835,
+ "truth_threshold": 9.34
+ },
+ {
+ "f1": 0.7156406313370285,
+ "fn": 134566,
+ "fn_rate": 0.4427081105799757,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9984805065543192,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996931193824617,
+ "recall": 0.5572918894200243,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 169395,
+ "tp_rate": 0.5572918894200243,
+ "truth_threshold": 9.36
+ },
+ {
+ "f1": 0.7151901141487864,
+ "fn": 134732,
+ "fn_rate": 0.44325423327334756,
+ "fp": 52,
+ "fp_rate": 0.0002990757409313909,
+ "match_probability": 0.9985013945198057,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9996928184497965,
+ "recall": 0.5567457667266524,
+ "row_count": 477830,
+ "tn": 173817,
+ "tn_rate": 0.9997009242590686,
+ "tp": 169229,
+ "tp_rate": 0.5567457667266524,
+ "truth_threshold": 9.38
+ },
+ {
+ "f1": 0.7146921915891209,
+ "fn": 134917,
+ "fn_rate": 0.4438628639858403,
+ "fp": 49,
+ "fp_rate": 0.00028182137126227214,
+ "match_probability": 0.9985219957704938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997102186370813,
+ "recall": 0.5561371360141597,
+ "row_count": 477830,
+ "tn": 173820,
+ "tn_rate": 0.9997181786287377,
+ "tp": 169044,
+ "tp_rate": 0.5561371360141597,
+ "truth_threshold": 9.4
+ },
+ {
+ "f1": 0.714349753027945,
+ "fn": 135043,
+ "fn_rate": 0.444277390849484,
+ "fp": 49,
+ "fp_rate": 0.00028182137126227214,
+ "match_probability": 0.998542314230315,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997100025448756,
+ "recall": 0.555722609150516,
+ "row_count": 477830,
+ "tn": 173820,
+ "tn_rate": 0.9997181786287377,
+ "tp": 168918,
+ "tp_rate": 0.555722609150516,
+ "truth_threshold": 9.42
+ },
+ {
+ "f1": 0.7139025556199525,
+ "fn": 135208,
+ "fn_rate": 0.4448202236471126,
+ "fp": 49,
+ "fp_rate": 0.00028182137126227214,
+ "match_probability": 0.9985623537698158,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997097190791578,
+ "recall": 0.5551797763528874,
+ "row_count": 477830,
+ "tn": 173820,
+ "tn_rate": 0.9997181786287377,
+ "tp": 168753,
+ "tp_rate": 0.5551797763528874,
+ "truth_threshold": 9.44
+ },
+ {
+ "f1": 0.7135161440480724,
+ "fn": 135350,
+ "fn_rate": 0.44528738884264757,
+ "fp": 49,
+ "fp_rate": 0.00028182137126227214,
+ "match_probability": 0.9985821182068747,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997094746827938,
+ "recall": 0.5547126111573524,
+ "row_count": 477830,
+ "tn": 173820,
+ "tn_rate": 0.9997181786287377,
+ "tp": 168611,
+ "tp_rate": 0.5547126111573524,
+ "truth_threshold": 9.46
+ },
+ {
+ "f1": 0.7129618261793581,
+ "fn": 135553,
+ "fn_rate": 0.44595523767851797,
+ "fp": 49,
+ "fp_rate": 0.00028182137126227214,
+ "match_probability": 0.9986016113074108,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997091245837216,
+ "recall": 0.554044762321482,
+ "row_count": 477830,
+ "tn": 173820,
+ "tn_rate": 0.9997181786287377,
+ "tp": 168408,
+ "tp_rate": 0.554044762321482,
+ "truth_threshold": 9.48
+ },
+ {
+ "f1": 0.7124348820465037,
+ "fn": 135748,
+ "fn_rate": 0.4465967673484427,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9986208367860828,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997206703910615,
+ "recall": 0.5534032326515572,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 168213,
+ "tp_rate": 0.5534032326515572,
+ "truth_threshold": 9.5
+ },
+ {
+ "f1": 0.7120597181857466,
+ "fn": 135885,
+ "fn_rate": 0.44704748306526165,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9986397983069785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997204427710664,
+ "recall": 0.5529525169347383,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 168076,
+ "tp_rate": 0.5529525169347383,
+ "truth_threshold": 9.52
+ },
+ {
+ "f1": 0.7116121376504493,
+ "fn": 136049,
+ "fn_rate": 0.4475870259671471,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9986584994842955,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997201698033449,
+ "recall": 0.5524129740328529,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167912,
+ "tp_rate": 0.5524129740328529,
+ "truth_threshold": 9.540000000000001
+ },
+ {
+ "f1": 0.7111684854034713,
+ "fn": 136212,
+ "fn_rate": 0.44812327897328935,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9986769438830138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997198979713462,
+ "recall": 0.5518767210267107,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167749,
+ "tp_rate": 0.5518767210267107,
+ "truth_threshold": 9.56
+ },
+ {
+ "f1": 0.7107105748637588,
+ "fn": 136379,
+ "fn_rate": 0.4486726915624044,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9986951350195571,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997196189203539,
+ "recall": 0.5513273084375956,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167582,
+ "tp_rate": 0.5513273084375956,
+ "truth_threshold": 9.58
+ },
+ {
+ "f1": 0.7102237533198137,
+ "fn": 136557,
+ "fn_rate": 0.44925829300469466,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9987130763624487,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997193208759577,
+ "recall": 0.5507417069953053,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167404,
+ "tp_rate": 0.5507417069953053,
+ "truth_threshold": 9.6
+ },
+ {
+ "f1": 0.709895351501829,
+ "fn": 136677,
+ "fn_rate": 0.44965308049387914,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9987307713329557,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999719119589317,
+ "recall": 0.5503469195061208,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167284,
+ "tp_rate": 0.5503469195061208,
+ "truth_threshold": 9.620000000000001
+ },
+ {
+ "f1": 0.7094669457097131,
+ "fn": 136834,
+ "fn_rate": 0.4501695941255622,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.998748223305727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997188558029358,
+ "recall": 0.5498304058744379,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 167127,
+ "tp_rate": 0.5498304058744379,
+ "truth_threshold": 9.64
+ },
+ {
+ "f1": 0.7091065044033596,
+ "fn": 136965,
+ "fn_rate": 0.45060057046792185,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9987654356094217,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997186353214442,
+ "recall": 0.5493994295320781,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166996,
+ "tp_rate": 0.5493994295320781,
+ "truth_threshold": 9.66
+ },
+ {
+ "f1": 0.7086336894420492,
+ "fn": 137138,
+ "fn_rate": 0.45116972243149617,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9987824115273289,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997183436207826,
+ "recall": 0.5488302775685039,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166823,
+ "tp_rate": 0.5488302775685039,
+ "truth_threshold": 9.68
+ },
+ {
+ "f1": 0.7082166576725489,
+ "fn": 137290,
+ "fn_rate": 0.45166978658446316,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9987991542979808,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997180868292566,
+ "recall": 0.5483302134155369,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166671,
+ "tp_rate": 0.5483302134155369,
+ "truth_threshold": 9.700000000000001
+ },
+ {
+ "f1": 0.7078048490206746,
+ "fn": 137440,
+ "fn_rate": 0.4521632709459437,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988156671157563,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997178329571106,
+ "recall": 0.5478367290540562,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166521,
+ "tp_rate": 0.5478367290540562,
+ "truth_threshold": 9.72
+ },
+ {
+ "f1": 0.7072511098637546,
+ "fn": 137641,
+ "fn_rate": 0.4528245399903277,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988319531314767,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997174920507071,
+ "recall": 0.5471754600096723,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166320,
+ "tp_rate": 0.5471754600096723,
+ "truth_threshold": 9.74
+ },
+ {
+ "f1": 0.7068166833273072,
+ "fn": 137799,
+ "fn_rate": 0.45334434351775393,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988480154529947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997172234957192,
+ "recall": 0.5466556564822461,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166162,
+ "tp_rate": 0.5466556564822461,
+ "truth_threshold": 9.76
+ },
+ {
+ "f1": 0.7063752106347126,
+ "fn": 137960,
+ "fn_rate": 0.45387401673240974,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988638571457743,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997169493158605,
+ "recall": 0.5461259832675902,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 166001,
+ "tp_rate": 0.5461259832675902,
+ "truth_threshold": 9.78
+ },
+ {
+ "f1": 0.7059524620309201,
+ "fn": 138113,
+ "fn_rate": 0.45437737078111995,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988794812334637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997166882666747,
+ "recall": 0.54562262921888,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 165848,
+ "tp_rate": 0.54562262921888,
+ "truth_threshold": 9.8
+ },
+ {
+ "f1": 0.7055600027250741,
+ "fn": 138256,
+ "fn_rate": 0.4548478258723981,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9988948906984604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997164438438149,
+ "recall": 0.5451521741276019,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 165705,
+ "tp_rate": 0.5451521741276019,
+ "truth_threshold": 9.82
+ },
+ {
+ "f1": 0.7051036315776023,
+ "fn": 138421,
+ "fn_rate": 0.45539065867002676,
+ "fp": 47,
+ "fp_rate": 0.00027031845814952637,
+ "match_probability": 0.9989100884824688,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997161612928551,
+ "recall": 0.5446093413299733,
+ "row_count": 477830,
+ "tn": 173822,
+ "tn_rate": 0.9997296815418505,
+ "tp": 165540,
+ "tp_rate": 0.5446093413299733,
+ "truth_threshold": 9.84
+ },
+ {
+ "f1": 0.7046529464399847,
+ "fn": 138586,
+ "fn_rate": 0.4559334914676554,
+ "fp": 45,
+ "fp_rate": 0.00025881554503678054,
+ "match_probability": 0.9989250774870504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999727965179543,
+ "recall": 0.5440665085323446,
+ "row_count": 477830,
+ "tn": 173824,
+ "tn_rate": 0.9997411844549632,
+ "tp": 165375,
+ "tp_rate": 0.5440665085323446,
+ "truth_threshold": 9.86
+ },
+ {
+ "f1": 0.7040676260955564,
+ "fn": 138798,
+ "fn_rate": 0.4566309493652146,
+ "fp": 45,
+ "fp_rate": 0.00025881554503678054,
+ "match_probability": 0.9989398605741672,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997276160960729,
+ "recall": 0.5433690506347854,
+ "row_count": 477830,
+ "tn": 173824,
+ "tn_rate": 0.9997411844549632,
+ "tp": 165163,
+ "tp_rate": 0.5433690506347854,
+ "truth_threshold": 9.88
+ },
+ {
+ "f1": 0.7035217454346955,
+ "fn": 138995,
+ "fn_rate": 0.4572790588266258,
+ "fp": 45,
+ "fp_rate": 0.00025881554503678054,
+ "match_probability": 0.9989544405667166,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997272909078788,
+ "recall": 0.5427209411733742,
+ "row_count": 477830,
+ "tn": 173824,
+ "tn_rate": 0.9997411844549632,
+ "tp": 164966,
+ "tp_rate": 0.5427209411733742,
+ "truth_threshold": 9.9
+ },
+ {
+ "f1": 0.7029852083502213,
+ "fn": 139189,
+ "fn_rate": 0.4579172986008073,
+ "fp": 45,
+ "fp_rate": 0.00025881554503678054,
+ "match_probability": 0.998968820249061,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997269699120843,
+ "recall": 0.5420827013991927,
+ "row_count": 477830,
+ "tn": 173824,
+ "tn_rate": 0.9997411844549632,
+ "tp": 164772,
+ "tp_rate": 0.5420827013991927,
+ "truth_threshold": 9.92
+ },
+ {
+ "f1": 0.7026837876014048,
+ "fn": 139299,
+ "fn_rate": 0.4582791871325598,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9989830023675484,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997328573336733,
+ "recall": 0.5417208128674402,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 164662,
+ "tp_rate": 0.5417208128674402,
+ "truth_threshold": 9.94
+ },
+ {
+ "f1": 0.702207498922078,
+ "fn": 139471,
+ "fn_rate": 0.4588450492003908,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9989969896310279,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997325780689705,
+ "recall": 0.5411549507996092,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 164490,
+ "tp_rate": 0.5411549507996092,
+ "truth_threshold": 9.96
+ },
+ {
+ "f1": 0.7016988674217188,
+ "fn": 139654,
+ "fn_rate": 0.45944710012139717,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990107847113568,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997322803025233,
+ "recall": 0.5405528998786029,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 164307,
+ "tp_rate": 0.5405528998786029,
+ "truth_threshold": 9.98
+ },
+ {
+ "f1": 0.7013050814874938,
+ "fn": 139796,
+ "fn_rate": 0.4599142653169321,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990243902439024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997320487914791,
+ "recall": 0.5400857346830679,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 164165,
+ "tp_rate": 0.5400857346830679,
+ "truth_threshold": 10
+ },
+ {
+ "f1": 0.7009221591686039,
+ "fn": 139934,
+ "fn_rate": 0.4603682709294942,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990378088280355,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997318234179106,
+ "recall": 0.5396317290705057,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 164027,
+ "tp_rate": 0.5396317290705057,
+ "truth_threshold": 10.02
+ },
+ {
+ "f1": 0.7004321861093418,
+ "fn": 140111,
+ "fn_rate": 0.4609505824760413,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990510430276189,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997315337962341,
+ "recall": 0.5390494175239586,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163850,
+ "tp_rate": 0.5390494175239586,
+ "truth_threshold": 10.040000000000001
+ },
+ {
+ "f1": 0.6999875987290836,
+ "fn": 140271,
+ "fn_rate": 0.46147696579495395,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990640953714882,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997312714524778,
+ "recall": 0.538523034205046,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163690,
+ "tp_rate": 0.538523034205046,
+ "truth_threshold": 10.06
+ },
+ {
+ "f1": 0.6996608052560215,
+ "fn": 140388,
+ "fn_rate": 0.46186188359690883,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990769683539271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999731079288827,
+ "recall": 0.5381381164030912,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163573,
+ "tp_rate": 0.5381381164030912,
+ "truth_threshold": 10.08
+ },
+ {
+ "f1": 0.6991476105709982,
+ "fn": 140573,
+ "fn_rate": 0.46247051430940156,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9990896644351354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997307748788486,
+ "recall": 0.5375294856905984,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163388,
+ "tp_rate": 0.5375294856905984,
+ "truth_threshold": 10.1
+ },
+ {
+ "f1": 0.698675581733815,
+ "fn": 140742,
+ "fn_rate": 0.463026506690003,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9991021860416915,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997304961932587,
+ "recall": 0.536973493309997,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163219,
+ "tp_rate": 0.536973493309997,
+ "truth_threshold": 10.120000000000001
+ },
+ {
+ "f1": 0.6981560307984823,
+ "fn": 140929,
+ "fn_rate": 0.4636417171939821,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9991145355670089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997301871520028,
+ "recall": 0.5363582828060178,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 163032,
+ "tp_rate": 0.5363582828060178,
+ "truth_threshold": 10.14
+ },
+ {
+ "f1": 0.6978939568511721,
+ "fn": 141023,
+ "fn_rate": 0.4639509673938433,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9991267153717854,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999730031537225,
+ "recall": 0.5360490326061567,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 162938,
+ "tp_rate": 0.5360490326061567,
+ "truth_threshold": 10.16
+ },
+ {
+ "f1": 0.6974866965441007,
+ "fn": 141169,
+ "fn_rate": 0.4644312921723511,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9991387277844479,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997297894814414,
+ "recall": 0.535568707827649,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 162792,
+ "tp_rate": 0.535568707827649,
+ "truth_threshold": 10.18
+ },
+ {
+ "f1": 0.6970400912059935,
+ "fn": 141329,
+ "fn_rate": 0.46495767549126366,
+ "fp": 44,
+ "fp_rate": 0.0002530640884804077,
+ "match_probability": 0.9991505751015896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997295237158523,
+ "recall": 0.5350423245087363,
+ "row_count": 477830,
+ "tn": 173825,
+ "tn_rate": 0.9997469359115196,
+ "tp": 162632,
+ "tp_rate": 0.5350423245087363,
+ "truth_threshold": 10.200000000000001
+ },
+ {
+ "f1": 0.6966511320811343,
+ "fn": 141472,
+ "fn_rate": 0.46542813058254184,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9991622595884027,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999778495616059,
+ "recall": 0.5345718694174582,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 162489,
+ "tp_rate": 0.5345718694174582,
+ "truth_threshold": 10.22
+ },
+ {
+ "f1": 0.6962585559158047,
+ "fn": 141613,
+ "fn_rate": 0.4658920058823336,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.999173783479105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997783032811114,
+ "recall": 0.5341079941176664,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 162348,
+ "tp_rate": 0.5341079941176664,
+ "truth_threshold": 10.24
+ },
+ {
+ "f1": 0.6958446661919021,
+ "fn": 141761,
+ "fn_rate": 0.46637891045232777,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9991851489773601,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999778101037994,
+ "recall": 0.5336210895476723,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 162200,
+ "tp_rate": 0.5336210895476723,
+ "truth_threshold": 10.26
+ },
+ {
+ "f1": 0.6953633289272656,
+ "fn": 141933,
+ "fn_rate": 0.4669447725201588,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9991963582566927,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997778655346036,
+ "recall": 0.5330552274798411,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 162028,
+ "tp_rate": 0.5330552274798411,
+ "truth_threshold": 10.28
+ },
+ {
+ "f1": 0.6949949988624021,
+ "fn": 142064,
+ "fn_rate": 0.46737574886251854,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992074134608979,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997776858330297,
+ "recall": 0.5326242511374815,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161897,
+ "tp_rate": 0.5326242511374815,
+ "truth_threshold": 10.3
+ },
+ {
+ "f1": 0.6943827656257382,
+ "fn": 142283,
+ "fn_rate": 0.4680962360302802,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992183167044456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997773847656974,
+ "recall": 0.5319037639697198,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161678,
+ "tp_rate": 0.5319037639697198,
+ "truth_threshold": 10.32
+ },
+ {
+ "f1": 0.6940026635734845,
+ "fn": 142418,
+ "fn_rate": 0.4685403719556127,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992290700728785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997771987696421,
+ "recall": 0.5314596280443873,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161543,
+ "tp_rate": 0.5314596280443873,
+ "truth_threshold": 10.34
+ },
+ {
+ "f1": 0.6934638163267061,
+ "fn": 142610,
+ "fn_rate": 0.46917203193830787,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.999239675623206,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997769337059367,
+ "recall": 0.5308279680616921,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161351,
+ "tp_rate": 0.5308279680616921,
+ "truth_threshold": 10.36
+ },
+ {
+ "f1": 0.6929962595124468,
+ "fn": 142777,
+ "fn_rate": 0.4697214445274229,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992501353842916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997767026423521,
+ "recall": 0.5302785554725771,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161184,
+ "tp_rate": 0.5302785554725771,
+ "truth_threshold": 10.38
+ },
+ {
+ "f1": 0.6925759947702523,
+ "fn": 142926,
+ "fn_rate": 0.4702116389931603,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.999260451357236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997764960793687,
+ "recall": 0.5297883610068397,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 161035,
+ "tp_rate": 0.5297883610068397,
+ "truth_threshold": 10.4
+ },
+ {
+ "f1": 0.692231581302107,
+ "fn": 143049,
+ "fn_rate": 0.4706162961695744,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992706255157543,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999776325272759,
+ "recall": 0.5293837038304257,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160912,
+ "tp_rate": 0.5293837038304257,
+ "truth_threshold": 10.42
+ },
+ {
+ "f1": 0.691782678859602,
+ "fn": 143208,
+ "fn_rate": 0.4711393895927438,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992806598065492,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997761040867224,
+ "recall": 0.5288606104072562,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160753,
+ "tp_rate": 0.5288606104072562,
+ "truth_threshold": 10.44
+ },
+ {
+ "f1": 0.691388476356514,
+ "fn": 143348,
+ "fn_rate": 0.47159997499679235,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9992905561496781,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997759089692435,
+ "recall": 0.5284000250032076,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160613,
+ "tp_rate": 0.5284000250032076,
+ "truth_threshold": 10.46
+ },
+ {
+ "f1": 0.6908517757709649,
+ "fn": 143539,
+ "fn_rate": 0.4722283450837443,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993003164389153,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997756422241334,
+ "recall": 0.5277716549162557,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160422,
+ "tp_rate": 0.5277716549162557,
+ "truth_threshold": 10.48
+ },
+ {
+ "f1": 0.690413213171816,
+ "fn": 143694,
+ "fn_rate": 0.4727382789239409,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993099425421107,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997754252883602,
+ "recall": 0.5272617210760591,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160267,
+ "tp_rate": 0.5272617210760591,
+ "truth_threshold": 10.5
+ },
+ {
+ "f1": 0.6899335048503105,
+ "fn": 143864,
+ "fn_rate": 0.47329756120028554,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993194363015417,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997751868759094,
+ "recall": 0.5267024387997145,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 160097,
+ "tp_rate": 0.5267024387997145,
+ "truth_threshold": 10.52
+ },
+ {
+ "f1": 0.6894295063309148,
+ "fn": 144043,
+ "fn_rate": 0.47388645253831907,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993287995342623,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999774935293897,
+ "recall": 0.5261135474616809,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159918,
+ "tp_rate": 0.5261135474616809,
+ "truth_threshold": 10.540000000000001
+ },
+ {
+ "f1": 0.6890338828826109,
+ "fn": 144183,
+ "fn_rate": 0.4743470379423676,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993380340324456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997747381330797,
+ "recall": 0.5256529620576323,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159778,
+ "tp_rate": 0.5256529620576323,
+ "truth_threshold": 10.56
+ },
+ {
+ "f1": 0.6886719609357139,
+ "fn": 144311,
+ "fn_rate": 0.4747681445974977,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993471415637232,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997745575692296,
+ "recall": 0.5252318554025023,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159650,
+ "tp_rate": 0.5252318554025023,
+ "truth_threshold": 10.58
+ },
+ {
+ "f1": 0.6882588996763754,
+ "fn": 144457,
+ "fn_rate": 0.47524846937600546,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993561238715196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997743512598721,
+ "recall": 0.5247515306239945,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159504,
+ "tp_rate": 0.5247515306239945,
+ "truth_threshold": 10.6
+ },
+ {
+ "f1": 0.6877832741964726,
+ "fn": 144625,
+ "fn_rate": 0.47580117186086374,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993649826753817,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997741133950757,
+ "recall": 0.5241988281391363,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159336,
+ "tp_rate": 0.5241988281391363,
+ "truth_threshold": 10.620000000000001
+ },
+ {
+ "f1": 0.6872349613507794,
+ "fn": 144818,
+ "fn_rate": 0.47643612173930205,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993737196713037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997738395140062,
+ "recall": 0.523563878260698,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 159143,
+ "tp_rate": 0.523563878260698,
+ "truth_threshold": 10.64
+ },
+ {
+ "f1": 0.6868082974072762,
+ "fn": 144969,
+ "fn_rate": 0.4769328959965259,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993823365320493,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997736247704807,
+ "recall": 0.5230671040034741,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158992,
+ "tp_rate": 0.5230671040034741,
+ "truth_threshold": 10.66
+ },
+ {
+ "f1": 0.6864735238835958,
+ "fn": 145087,
+ "fn_rate": 0.4773211036942239,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993908349074672,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997734566735889,
+ "recall": 0.522678896305776,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158874,
+ "tp_rate": 0.522678896305776,
+ "truth_threshold": 10.68
+ },
+ {
+ "f1": 0.6860250004322344,
+ "fn": 145245,
+ "fn_rate": 0.4778409072216501,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9993992164248033,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997732312033865,
+ "recall": 0.5221590927783498,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158716,
+ "tp_rate": 0.5221590927783498,
+ "truth_threshold": 10.700000000000001
+ },
+ {
+ "f1": 0.685537745761466,
+ "fn": 145416,
+ "fn_rate": 0.478403479393738,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994074826890101,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999772986675579,
+ "recall": 0.5215965206062619,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158545,
+ "tp_rate": 0.5215965206062619,
+ "truth_threshold": 10.72
+ },
+ {
+ "f1": 0.6852578269274849,
+ "fn": 145515,
+ "fn_rate": 0.4787291790723152,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994156352830494,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999772844865663,
+ "recall": 0.5212708209276848,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158446,
+ "tp_rate": 0.5212708209276848,
+ "truth_threshold": 10.74
+ },
+ {
+ "f1": 0.6848269059382381,
+ "fn": 145666,
+ "fn_rate": 0.479225953329539,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994236757681928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997726282282055,
+ "recall": 0.520774046670461,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158295,
+ "tp_rate": 0.520774046670461,
+ "truth_threshold": 10.76
+ },
+ {
+ "f1": 0.6843758926021137,
+ "fn": 145825,
+ "fn_rate": 0.4797490467527084,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994316056843171,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997723996661861,
+ "recall": 0.5202509532472916,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 158136,
+ "tp_rate": 0.5202509532472916,
+ "truth_threshold": 10.78
+ },
+ {
+ "f1": 0.6839159083234482,
+ "fn": 145986,
+ "fn_rate": 0.4802787199673642,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994394265501966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997721677604724,
+ "recall": 0.5197212800326357,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157975,
+ "tp_rate": 0.5197212800326357,
+ "truth_threshold": 10.8
+ },
+ {
+ "f1": 0.6833858107435046,
+ "fn": 146172,
+ "fn_rate": 0.48089064057560016,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994471398637907,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997718992555045,
+ "recall": 0.5191093594243998,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157789,
+ "tp_rate": 0.5191093594243998,
+ "truth_threshold": 10.82
+ },
+ {
+ "f1": 0.6829465894911965,
+ "fn": 146326,
+ "fn_rate": 0.48139728452005354,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994547471025279,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997716764655517,
+ "recall": 0.5186027154799464,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157635,
+ "tp_rate": 0.5186027154799464,
+ "truth_threshold": 10.84
+ },
+ {
+ "f1": 0.6825456672950659,
+ "fn": 146467,
+ "fn_rate": 0.4818611598198453,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.999462249723586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997714721005523,
+ "recall": 0.5181388401801547,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157494,
+ "tp_rate": 0.5181388401801547,
+ "truth_threshold": 10.86
+ },
+ {
+ "f1": 0.6820786945513821,
+ "fn": 146630,
+ "fn_rate": 0.4823974128259875,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994696491641683,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997712353924266,
+ "recall": 0.5176025871740124,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157331,
+ "tp_rate": 0.5176025871740124,
+ "truth_threshold": 10.88
+ },
+ {
+ "f1": 0.681585760938862,
+ "fn": 146803,
+ "fn_rate": 0.4829665647895618,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994769468417765,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997709836253292,
+ "recall": 0.5170334352104382,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 157158,
+ "tp_rate": 0.5170334352104382,
+ "truth_threshold": 10.9
+ },
+ {
+ "f1": 0.6810208305311981,
+ "fn": 147000,
+ "fn_rate": 0.483614674250973,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994841441544793,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997706962553424,
+ "recall": 0.5163853257490271,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 156961,
+ "tp_rate": 0.5163853257490271,
+ "truth_threshold": 10.92
+ },
+ {
+ "f1": 0.680476942843253,
+ "fn": 147190,
+ "fn_rate": 0.4842397544421817,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994912424811782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997704184124433,
+ "recall": 0.5157602455578183,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 156771,
+ "tp_rate": 0.5157602455578183,
+ "truth_threshold": 10.94
+ },
+ {
+ "f1": 0.6798624259584152,
+ "fn": 147405,
+ "fn_rate": 0.48494708202697057,
+ "fp": 36,
+ "fp_rate": 0.00020705243602942445,
+ "match_probability": 0.9994982431818683,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99977010319812,
+ "recall": 0.5150529179730294,
+ "row_count": 477830,
+ "tn": 173833,
+ "tn_rate": 0.9997929475639705,
+ "tp": 156556,
+ "tp_rate": 0.5150529179730294,
+ "truth_threshold": 10.96
+ },
+ {
+ "f1": 0.679242987730701,
+ "fn": 147621,
+ "fn_rate": 0.4856576995075026,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995051475978975,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997761790567546,
+ "recall": 0.5143423004924974,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 156340,
+ "tp_rate": 0.5143423004924974,
+ "truth_threshold": 10.98
+ },
+ {
+ "f1": 0.6787938580288497,
+ "fn": 147778,
+ "fn_rate": 0.48617421313918563,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995119570522206,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997759541154029,
+ "recall": 0.5138257868608144,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 156183,
+ "tp_rate": 0.5138257868608144,
+ "truth_threshold": 11
+ },
+ {
+ "f1": 0.6783472166669565,
+ "fn": 147933,
+ "fn_rate": 0.4866841469793822,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995186728496503,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997757315955735,
+ "recall": 0.5133158530206178,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 156028,
+ "tp_rate": 0.5133158530206178,
+ "truth_threshold": 11.02
+ },
+ {
+ "f1": 0.6778356232303858,
+ "fn": 148111,
+ "fn_rate": 0.48726974842167253,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995252962771056,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997754755107933,
+ "recall": 0.5127302515783275,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 155850,
+ "tp_rate": 0.5127302515783275,
+ "truth_threshold": 11.040000000000001
+ },
+ {
+ "f1": 0.6772761884042205,
+ "fn": 148306,
+ "fn_rate": 0.4879112780915973,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995318286038558,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997751942963582,
+ "recall": 0.5120887219084027,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 155655,
+ "tp_rate": 0.5120887219084027,
+ "truth_threshold": 11.06
+ },
+ {
+ "f1": 0.6768803562024226,
+ "fn": 148443,
+ "fn_rate": 0.4883619938084162,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995382710817619,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997749963035107,
+ "recall": 0.5116380061915838,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 155518,
+ "tp_rate": 0.5116380061915838,
+ "truth_threshold": 11.08
+ },
+ {
+ "f1": 0.6764425442243808,
+ "fn": 148595,
+ "fn_rate": 0.4888620579613832,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.999544624945514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997747762240913,
+ "recall": 0.5111379420386168,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 155366,
+ "tp_rate": 0.5111379420386168,
+ "truth_threshold": 11.1
+ },
+ {
+ "f1": 0.6759972648441005,
+ "fn": 148750,
+ "fn_rate": 0.4893719918015798,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995508914128666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997745513572008,
+ "recall": 0.5106280081984202,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 155211,
+ "tp_rate": 0.5106280081984202,
+ "truth_threshold": 11.120000000000001
+ },
+ {
+ "f1": 0.6753640618055374,
+ "fn": 148969,
+ "fn_rate": 0.49009247896934144,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995570716848697,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997742328755637,
+ "recall": 0.5099075210306585,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154992,
+ "tp_rate": 0.5099075210306585,
+ "truth_threshold": 11.14
+ },
+ {
+ "f1": 0.6748559322772726,
+ "fn": 149145,
+ "fn_rate": 0.49067150062014536,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995631669460973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997739762739666,
+ "recall": 0.5093284993798547,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154816,
+ "tp_rate": 0.5093284993798547,
+ "truth_threshold": 11.16
+ },
+ {
+ "f1": 0.6744341198170346,
+ "fn": 149291,
+ "fn_rate": 0.4911518253986531,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995691783648718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997737629682298,
+ "recall": 0.5088481746013469,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154670,
+ "tp_rate": 0.5088481746013469,
+ "truth_threshold": 11.18
+ },
+ {
+ "f1": 0.6738732136313668,
+ "fn": 149485,
+ "fn_rate": 0.4917900651728347,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995751070934877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997734789108866,
+ "recall": 0.5082099348271654,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154476,
+ "tp_rate": 0.5082099348271654,
+ "truth_threshold": 11.200000000000001
+ },
+ {
+ "f1": 0.673439197769254,
+ "fn": 149635,
+ "fn_rate": 0.49228354953431525,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995809542684295,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997732587894611,
+ "recall": 0.5077164504656847,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154326,
+ "tp_rate": 0.5077164504656847,
+ "truth_threshold": 11.22
+ },
+ {
+ "f1": 0.6730382249848313,
+ "fn": 149774,
+ "fn_rate": 0.4927408450426206,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995867210105881,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997730544280323,
+ "recall": 0.5072591549573794,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154187,
+ "tp_rate": 0.5072591549573794,
+ "truth_threshold": 11.24
+ },
+ {
+ "f1": 0.6725399008755267,
+ "fn": 149946,
+ "fn_rate": 0.49330670711045166,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995924084254744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997728010386239,
+ "recall": 0.5066932928895483,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 154015,
+ "tp_rate": 0.5066932928895483,
+ "truth_threshold": 11.26
+ },
+ {
+ "f1": 0.6719773882957345,
+ "fn": 150140,
+ "fn_rate": 0.49394494688463325,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9995980176034294,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997725145590682,
+ "recall": 0.5060550531153668,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 153821,
+ "tp_rate": 0.5060550531153668,
+ "truth_threshold": 11.28
+ },
+ {
+ "f1": 0.6715131015435174,
+ "fn": 150300,
+ "fn_rate": 0.49447133020354583,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996035496198316,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997722777430772,
+ "recall": 0.5055286697964542,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 153661,
+ "tp_rate": 0.5055286697964542,
+ "truth_threshold": 11.3
+ },
+ {
+ "f1": 0.670881427072403,
+ "fn": 150517,
+ "fn_rate": 0.4951852375798211,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.999609005535302,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997719557724509,
+ "recall": 0.5048147624201789,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 153444,
+ "tp_rate": 0.5048147624201789,
+ "truth_threshold": 11.32
+ },
+ {
+ "f1": 0.670374225830155,
+ "fn": 150692,
+ "fn_rate": 0.4957609693348818,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996143863959054,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997716954547826,
+ "recall": 0.5042390306651182,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 153269,
+ "tp_rate": 0.5042390306651182,
+ "truth_threshold": 11.34
+ },
+ {
+ "f1": 0.6698637029906583,
+ "fn": 150867,
+ "fn_rate": 0.49633670108994243,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996196932333503,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999771434542118,
+ "recall": 0.5036632989100576,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 153094,
+ "tp_rate": 0.5036632989100576,
+ "truth_threshold": 11.36
+ },
+ {
+ "f1": 0.669379018738428,
+ "fn": 151034,
+ "fn_rate": 0.4968861136790575,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996249270651847,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997711850001961,
+ "recall": 0.5031138863209424,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 152927,
+ "tp_rate": 0.5031138863209424,
+ "truth_threshold": 11.38
+ },
+ {
+ "f1": 0.6688619057419222,
+ "fn": 151211,
+ "fn_rate": 0.4974684252256046,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996300888949902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997709199201492,
+ "recall": 0.5025315747743954,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 152750,
+ "tp_rate": 0.5025315747743954,
+ "truth_threshold": 11.4
+ },
+ {
+ "f1": 0.6683706546117185,
+ "fn": 151380,
+ "fn_rate": 0.4980244176062061,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996351797125727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997706662473135,
+ "recall": 0.5019755823937939,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 152581,
+ "tp_rate": 0.5019755823937939,
+ "truth_threshold": 11.42
+ },
+ {
+ "f1": 0.6678585983409363,
+ "fn": 151555,
+ "fn_rate": 0.49860014936126673,
+ "fp": 35,
+ "fp_rate": 0.00020130097947305156,
+ "match_probability": 0.9996402004941516,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997704029755774,
+ "recall": 0.5013998506387333,
+ "row_count": 477830,
+ "tn": 173834,
+ "tn_rate": 0.999798699020527,
+ "tp": 152406,
+ "tp_rate": 0.5013998506387333,
+ "truth_threshold": 11.44
+ },
+ {
+ "f1": 0.6674542258614568,
+ "fn": 151694,
+ "fn_rate": 0.4990574448695721,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996451522025451,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997767578676436,
+ "recall": 0.500942555130428,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 152267,
+ "tp_rate": 0.500942555130428,
+ "truth_threshold": 11.46
+ },
+ {
+ "f1": 0.6668815478461451,
+ "fn": 151890,
+ "fn_rate": 0.4997022644352401,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996500357873543,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997764702015055,
+ "recall": 0.50029773556476,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 152071,
+ "tp_rate": 0.50029773556476,
+ "truth_threshold": 11.48
+ },
+ {
+ "f1": 0.6665014387984278,
+ "fn": 152020,
+ "fn_rate": 0.5001299508818565,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996548521851435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997762789932555,
+ "recall": 0.4998700491181434,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151941,
+ "tp_rate": 0.4998700491181434,
+ "truth_threshold": 11.5
+ },
+ {
+ "f1": 0.6660918481074867,
+ "fn": 152160,
+ "fn_rate": 0.5005905362859051,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996596023196187,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997760727105082,
+ "recall": 0.4994094637140949,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151801,
+ "tp_rate": 0.4994094637140949,
+ "truth_threshold": 11.52
+ },
+ {
+ "f1": 0.6654755215284119,
+ "fn": 152371,
+ "fn_rate": 0.5012847042877211,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996642871018043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997757610932306,
+ "recall": 0.4987152957122789,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151590,
+ "tp_rate": 0.4987152957122789,
+ "truth_threshold": 11.540000000000001
+ },
+ {
+ "f1": 0.6650374586110892,
+ "fn": 152520,
+ "fn_rate": 0.5017748987534585,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996689074302161,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997755405182374,
+ "recall": 0.4982251012465415,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151441,
+ "tp_rate": 0.4982251012465415,
+ "truth_threshold": 11.56
+ },
+ {
+ "f1": 0.6644627009928828,
+ "fn": 152716,
+ "fn_rate": 0.5024197183191265,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996734641910328,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999775249704189,
+ "recall": 0.49758028168087354,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151245,
+ "tp_rate": 0.49758028168087354,
+ "truth_threshold": 11.58
+ },
+ {
+ "f1": 0.6640518567347836,
+ "fn": 152856,
+ "fn_rate": 0.502880303723175,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996779582582649,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997750415180727,
+ "recall": 0.497119696276825,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 151105,
+ "tp_rate": 0.497119696276825,
+ "truth_threshold": 11.6
+ },
+ {
+ "f1": 0.6636818807228545,
+ "fn": 152982,
+ "fn_rate": 0.5032948305868187,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996823904939214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999774853820532,
+ "recall": 0.49670516941318127,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 150979,
+ "tp_rate": 0.49670516941318127,
+ "truth_threshold": 11.620000000000001
+ },
+ {
+ "f1": 0.6633175772232605,
+ "fn": 153106,
+ "fn_rate": 0.503702777658976,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996867617481742,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997746687962674,
+ "recall": 0.496297222341024,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 150855,
+ "tp_rate": 0.496297222341024,
+ "truth_threshold": 11.64
+ },
+ {
+ "f1": 0.6628104408413904,
+ "fn": 153279,
+ "fn_rate": 0.5042719296225503,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996910728595202,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997744101488893,
+ "recall": 0.49572807037744976,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 150682,
+ "tp_rate": 0.49572807037744976,
+ "truth_threshold": 11.66
+ },
+ {
+ "f1": 0.6623514916835342,
+ "fn": 153435,
+ "fn_rate": 0.5047851533584901,
+ "fp": 34,
+ "fp_rate": 0.00019554952291667865,
+ "match_probability": 0.9996953246549412,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997741764080765,
+ "recall": 0.49521484664150994,
+ "row_count": 477830,
+ "tn": 173835,
+ "tn_rate": 0.9998044504770833,
+ "tp": 150526,
+ "tp_rate": 0.49521484664150994,
+ "truth_threshold": 11.68
+ },
+ {
+ "f1": 0.6618715803096265,
+ "fn": 153599,
+ "fn_rate": 0.5053246962603755,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.9996995179500615,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999787225554211,
+ "recall": 0.4946753037396245,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 150362,
+ "tp_rate": 0.4946753037396245,
+ "truth_threshold": 11.700000000000001
+ },
+ {
+ "f1": 0.6614296659650729,
+ "fn": 153749,
+ "fn_rate": 0.5058181806218561,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.999703653549304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997870131253161,
+ "recall": 0.4941818193781439,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 150212,
+ "tp_rate": 0.4941818193781439,
+ "truth_threshold": 11.72
+ },
+ {
+ "f1": 0.6608591843387399,
+ "fn": 153942,
+ "fn_rate": 0.5064531305002944,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.999707732246043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999786739175347,
+ "recall": 0.49354686949970555,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 150019,
+ "tp_rate": 0.49354686949970555,
+ "truth_threshold": 11.74
+ },
+ {
+ "f1": 0.6603162431582009,
+ "fn": 154126,
+ "fn_rate": 0.507058471317044,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.9997117548227562,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997864773432443,
+ "recall": 0.49294152868295604,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 149835,
+ "tp_rate": 0.49294152868295604,
+ "truth_threshold": 11.76
+ },
+ {
+ "f1": 0.6599308788263507,
+ "fn": 154257,
+ "fn_rate": 0.5074894476594036,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.9997157220511734,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997862905380136,
+ "recall": 0.4925105523405963,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 149704,
+ "tp_rate": 0.4925105523405963,
+ "truth_threshold": 11.78
+ },
+ {
+ "f1": 0.659430068264804,
+ "fn": 154426,
+ "fn_rate": 0.5080454400400052,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.9997196346924244,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997860490616246,
+ "recall": 0.4919545599599949,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 149535,
+ "tp_rate": 0.4919545599599949,
+ "truth_threshold": 11.8
+ },
+ {
+ "f1": 0.6590027835247099,
+ "fn": 154571,
+ "fn_rate": 0.5085224749227697,
+ "fp": 32,
+ "fp_rate": 0.00018404660980393285,
+ "match_probability": 0.9997234934971839,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997858414423579,
+ "recall": 0.4914775250772303,
+ "row_count": 477830,
+ "tn": 173837,
+ "tn_rate": 0.999815953390196,
+ "tp": 149390,
+ "tp_rate": 0.4914775250772303,
+ "truth_threshold": 11.82
+ },
+ {
+ "f1": 0.6585411058647015,
+ "fn": 154729,
+ "fn_rate": 0.5090422784501959,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997272992058148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999812407878869,
+ "recall": 0.4909577215498041,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 149232,
+ "tp_rate": 0.4909577215498041,
+ "truth_threshold": 11.84
+ },
+ {
+ "f1": 0.6579977838503613,
+ "fn": 154912,
+ "fn_rate": 0.5096443293712022,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997310525485098,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998121775994956,
+ "recall": 0.49035567062879776,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 149049,
+ "tp_rate": 0.49035567062879776,
+ "truth_threshold": 11.86
+ },
+ {
+ "f1": 0.657474716247847,
+ "fn": 155089,
+ "fn_rate": 0.5102266409177493,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997347542454303,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998119543317663,
+ "recall": 0.48977335908225067,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148872,
+ "tp_rate": 0.48977335908225067,
+ "truth_threshold": 11.88
+ },
+ {
+ "f1": 0.6569364672616418,
+ "fn": 155270,
+ "fn_rate": 0.5108221120472692,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997384050068445,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998117254688372,
+ "recall": 0.48917788795273076,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148691,
+ "tp_rate": 0.48917788795273076,
+ "truth_threshold": 11.9
+ },
+ {
+ "f1": 0.6565728882171488,
+ "fn": 155393,
+ "fn_rate": 0.5112267692236833,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997420055332628,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115696250236,
+ "recall": 0.4887732307763167,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148568,
+ "tp_rate": 0.4887732307763167,
+ "truth_threshold": 11.92
+ },
+ {
+ "f1": 0.6560918137729501,
+ "fn": 155555,
+ "fn_rate": 0.5117597323340823,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997455565155712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998113639732137,
+ "recall": 0.48824026766591766,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148406,
+ "tp_rate": 0.48824026766591766,
+ "truth_threshold": 11.94
+ },
+ {
+ "f1": 0.6555821893574866,
+ "fn": 155726,
+ "fn_rate": 0.5123223045061702,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997490586351637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998111464087466,
+ "recall": 0.4876776954938298,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148235,
+ "tp_rate": 0.4876776954938298,
+ "truth_threshold": 11.96
+ },
+ {
+ "f1": 0.6550290019865587,
+ "fn": 155912,
+ "fn_rate": 0.5129342251144061,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997525125640727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998109091891381,
+ "recall": 0.4870657748855939,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 148049,
+ "tp_rate": 0.4870657748855939,
+ "truth_threshold": 11.98
+ },
+ {
+ "f1": 0.654552777519596,
+ "fn": 156072,
+ "fn_rate": 0.5134606084333188,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997559189650964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998107046519332,
+ "recall": 0.48653939156668125,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147889,
+ "tp_rate": 0.48653939156668125,
+ "truth_threshold": 12
+ },
+ {
+ "f1": 0.6542593928876572,
+ "fn": 156171,
+ "fn_rate": 0.513786308111896,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997592784919264,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998105778727895,
+ "recall": 0.4862136918881041,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147790,
+ "tp_rate": 0.4862136918881041,
+ "truth_threshold": 12.02
+ },
+ {
+ "f1": 0.6538378081560896,
+ "fn": 156312,
+ "fn_rate": 0.5142501834116877,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997625917892721,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998103970151073,
+ "recall": 0.4857498165883123,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147649,
+ "tp_rate": 0.4857498165883123,
+ "truth_threshold": 12.040000000000001
+ },
+ {
+ "f1": 0.6533726704497632,
+ "fn": 156468,
+ "fn_rate": 0.5147634071476275,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997658594929839,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998101965143945,
+ "recall": 0.48523659285237253,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147493,
+ "tp_rate": 0.48523659285237253,
+ "truth_threshold": 12.06
+ },
+ {
+ "f1": 0.6529430271769716,
+ "fn": 156612,
+ "fn_rate": 0.5152371521346488,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997690822301749,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998100110600704,
+ "recall": 0.4847628478653511,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147349,
+ "tp_rate": 0.4847628478653511,
+ "truth_threshold": 12.08
+ },
+ {
+ "f1": 0.6523876653544703,
+ "fn": 156798,
+ "fn_rate": 0.5158490727428848,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997722606193405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998097709778451,
+ "recall": 0.4841509272571152,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147163,
+ "tp_rate": 0.4841509272571152,
+ "truth_threshold": 12.1
+ },
+ {
+ "f1": 0.6519438938186527,
+ "fn": 156947,
+ "fn_rate": 0.5163392672086221,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.999775395270477,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998095782157479,
+ "recall": 0.48366073279137783,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 147014,
+ "tp_rate": 0.48366073279137783,
+ "truth_threshold": 12.120000000000001
+ },
+ {
+ "f1": 0.6513218898210713,
+ "fn": 157155,
+ "fn_rate": 0.5170235655232086,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997784867851973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998093084707902,
+ "recall": 0.48297643447679145,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 146806,
+ "tp_rate": 0.48297643447679145,
+ "truth_threshold": 12.14
+ },
+ {
+ "f1": 0.6509284078604015,
+ "fn": 157286,
+ "fn_rate": 0.5174545418655683,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997815357568474,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998091381907663,
+ "recall": 0.4825454581344317,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 146675,
+ "tp_rate": 0.4825454581344317,
+ "truth_threshold": 12.16
+ },
+ {
+ "f1": 0.6504177654653135,
+ "fn": 157457,
+ "fn_rate": 0.5180171140376562,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.999784542770618,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998089154587394,
+ "recall": 0.48198288596234384,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 146504,
+ "tp_rate": 0.48198288596234384,
+ "truth_threshold": 12.18
+ },
+ {
+ "f1": 0.6498003491114536,
+ "fn": 157663,
+ "fn_rate": 0.5186948325607561,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997875084036579,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998086464469745,
+ "recall": 0.48130516743924384,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 146298,
+ "tp_rate": 0.48130516743924384,
+ "truth_threshold": 12.200000000000001
+ },
+ {
+ "f1": 0.6492559530421723,
+ "fn": 157844,
+ "fn_rate": 0.5192903036902761,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997904332251836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998084094563618,
+ "recall": 0.48070969630972393,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 146117,
+ "tp_rate": 0.48070969630972393,
+ "truth_threshold": 12.22
+ },
+ {
+ "f1": 0.6488056609979642,
+ "fn": 157994,
+ "fn_rate": 0.5197837880517566,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.999793317796588,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998082126100208,
+ "recall": 0.4802162119482434,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145967,
+ "tp_rate": 0.4802162119482434,
+ "truth_threshold": 12.24
+ },
+ {
+ "f1": 0.6483791078090055,
+ "fn": 158136,
+ "fn_rate": 0.5202509532472916,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997961626715484,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998080258890801,
+ "recall": 0.4797490467527084,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145825,
+ "tp_rate": 0.4797490467527084,
+ "truth_threshold": 12.26
+ },
+ {
+ "f1": 0.6478921477053365,
+ "fn": 158298,
+ "fn_rate": 0.5207839163576906,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9997989683961317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998078124249268,
+ "recall": 0.4792160836423094,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145663,
+ "tp_rate": 0.4792160836423094,
+ "truth_threshold": 12.280000000000001
+ },
+ {
+ "f1": 0.6474153043880647,
+ "fn": 158457,
+ "fn_rate": 0.5213070097808601,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998017355088994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998076024516944,
+ "recall": 0.47869299021913997,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145504,
+ "tp_rate": 0.47869299021913997,
+ "truth_threshold": 12.3
+ },
+ {
+ "f1": 0.6469999154341566,
+ "fn": 158595,
+ "fn_rate": 0.5217610153934222,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998044645410099,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998074198385077,
+ "recall": 0.4782389846065778,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145366,
+ "tp_rate": 0.4782389846065778,
+ "truth_threshold": 12.32
+ },
+ {
+ "f1": 0.6463869692220006,
+ "fn": 158798,
+ "fn_rate": 0.5224288642292926,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998071560163209,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998071505809589,
+ "recall": 0.4775711357707074,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145163,
+ "tp_rate": 0.4775711357707074,
+ "truth_threshold": 12.34
+ },
+ {
+ "f1": 0.645909058513292,
+ "fn": 158957,
+ "fn_rate": 0.5229519576524619,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998098104514891,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998069391582547,
+ "recall": 0.477048042347538,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 145004,
+ "tp_rate": 0.477048042347538,
+ "truth_threshold": 12.36
+ },
+ {
+ "f1": 0.645468601703034,
+ "fn": 159103,
+ "fn_rate": 0.5234322824309697,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998124283560689,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998067446130061,
+ "recall": 0.4765677175690302,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 144858,
+ "tp_rate": 0.4765677175690302,
+ "truth_threshold": 12.38
+ },
+ {
+ "f1": 0.6450218186842821,
+ "fn": 159251,
+ "fn_rate": 0.523919187000964,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998150102326104,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998065470021694,
+ "recall": 0.47608081299903604,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 144710,
+ "tp_rate": 0.47608081299903604,
+ "truth_threshold": 12.4
+ },
+ {
+ "f1": 0.6445521509595491,
+ "fn": 159406,
+ "fn_rate": 0.5244291208411606,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998175565767553,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998063396111576,
+ "recall": 0.47557087915883944,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 144555,
+ "tp_rate": 0.47557087915883944,
+ "truth_threshold": 12.42
+ },
+ {
+ "f1": 0.6440079935052769,
+ "fn": 159586,
+ "fn_rate": 0.5250213020749372,
+ "fp": 28,
+ "fp_rate": 0.00016104078357844124,
+ "match_probability": 0.9998200678773314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999806098211256,
+ "recall": 0.47497869792506275,
+ "row_count": 477830,
+ "tn": 173841,
+ "tn_rate": 0.9998389592164215,
+ "tp": 144375,
+ "tp_rate": 0.47497869792506275,
+ "truth_threshold": 12.44
+ },
+ {
+ "f1": 0.6436010244786136,
+ "fn": 159721,
+ "fn_rate": 0.5254654380002698,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998225446164466,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998128470128304,
+ "recall": 0.4745345619997302,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 144240,
+ "tp_rate": 0.4745345619997302,
+ "truth_threshold": 12.46
+ },
+ {
+ "f1": 0.6431711769615654,
+ "fn": 159863,
+ "fn_rate": 0.5259326031958047,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.999824987269581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998126626192542,
+ "recall": 0.4740673968041953,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 144098,
+ "tp_rate": 0.4740673968041953,
+ "truth_threshold": 12.48
+ },
+ {
+ "f1": 0.6426380299613762,
+ "fn": 160039,
+ "fn_rate": 0.5265116248466086,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998273963056777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998124335702228,
+ "recall": 0.47348837515339137,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143922,
+ "tp_rate": 0.47348837515339137,
+ "truth_threshold": 12.5
+ },
+ {
+ "f1": 0.6422318302008146,
+ "fn": 160173,
+ "fn_rate": 0.5269524708761979,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.999829772187233,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998122588047144,
+ "recall": 0.47304752912380205,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143788,
+ "tp_rate": 0.47304752912380205,
+ "truth_threshold": 12.52
+ },
+ {
+ "f1": 0.6415947592086977,
+ "fn": 160383,
+ "fn_rate": 0.5276433489822707,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998321153703844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998119842623864,
+ "recall": 0.4723566510177292,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143578,
+ "tp_rate": 0.4723566510177292,
+ "truth_threshold": 12.540000000000001
+ },
+ {
+ "f1": 0.6410769925390148,
+ "fn": 160554,
+ "fn_rate": 0.5282059211543586,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.999834426304998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999811760112665,
+ "recall": 0.4717940788456414,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143407,
+ "tp_rate": 0.4717940788456414,
+ "truth_threshold": 12.56
+ },
+ {
+ "f1": 0.6404935577211193,
+ "fn": 160746,
+ "fn_rate": 0.5288375811370538,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998367054347549,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115077979922,
+ "recall": 0.47116241886294624,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143215,
+ "tp_rate": 0.47116241886294624,
+ "truth_threshold": 12.58
+ },
+ {
+ "f1": 0.6399720825354784,
+ "fn": 160917,
+ "fn_rate": 0.5294001533091416,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.999838953197236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998112825100824,
+ "recall": 0.47059984669085836,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 143044,
+ "tp_rate": 0.47059984669085836,
+ "truth_threshold": 12.6
+ },
+ {
+ "f1": 0.6394469831579607,
+ "fn": 161090,
+ "fn_rate": 0.5299693052727159,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998411700240056,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999811054038545,
+ "recall": 0.4700306947272841,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 142871,
+ "tp_rate": 0.4700306947272841,
+ "truth_threshold": 12.620000000000001
+ },
+ {
+ "f1": 0.6388637645857773,
+ "fn": 161281,
+ "fn_rate": 0.5305976753596678,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998433563406941,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998108011520107,
+ "recall": 0.46940232464033216,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 142680,
+ "tp_rate": 0.46940232464033216,
+ "truth_threshold": 12.64
+ },
+ {
+ "f1": 0.6382723294077595,
+ "fn": 161475,
+ "fn_rate": 0.5312359151338494,
+ "fp": 27,
+ "fp_rate": 0.00015528932702206833,
+ "match_probability": 0.9998455125670797,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998105435995313,
+ "recall": 0.46876408486615057,
+ "row_count": 477830,
+ "tn": 173842,
+ "tn_rate": 0.999844710672978,
+ "tp": 142486,
+ "tp_rate": 0.46876408486615057,
+ "truth_threshold": 12.66
+ },
+ {
+ "f1": 0.6377764334207165,
+ "fn": 161638,
+ "fn_rate": 0.5317721681399916,
+ "fp": 26,
+ "fp_rate": 0.00014953787046569544,
+ "match_probability": 0.9998476391171683,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998173503150707,
+ "recall": 0.4682278318600084,
+ "row_count": 477830,
+ "tn": 173843,
+ "tn_rate": 0.9998504621295343,
+ "tp": 142323,
+ "tp_rate": 0.4682278318600084,
+ "truth_threshold": 12.68
+ },
+ {
+ "f1": 0.6372879076543764,
+ "fn": 161798,
+ "fn_rate": 0.5322985514589043,
+ "fp": 26,
+ "fp_rate": 0.00014953787046569544,
+ "match_probability": 0.9998497363992734,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998171447861649,
+ "recall": 0.46770144854109574,
+ "row_count": 477830,
+ "tn": 173843,
+ "tn_rate": 0.9998504621295343,
+ "tp": 142163,
+ "tp_rate": 0.46770144854109574,
+ "truth_threshold": 12.700000000000001
+ },
+ {
+ "f1": 0.6368479347811464,
+ "fn": 161942,
+ "fn_rate": 0.5327722964459256,
+ "fp": 26,
+ "fp_rate": 0.00014953787046569544,
+ "match_probability": 0.9998518048160936,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998169594142702,
+ "recall": 0.4672277035540744,
+ "row_count": 477830,
+ "tn": 173843,
+ "tn_rate": 0.9998504621295343,
+ "tp": 142019,
+ "tp_rate": 0.4672277035540744,
+ "truth_threshold": 12.72
+ },
+ {
+ "f1": 0.6363493630001794,
+ "fn": 162106,
+ "fn_rate": 0.5333118393478111,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998538447647903,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999830841773624,
+ "recall": 0.46668816065218893,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141855,
+ "tp_rate": 0.46668816065218893,
+ "truth_threshold": 12.74
+ },
+ {
+ "f1": 0.6358887831846494,
+ "fn": 162257,
+ "fn_rate": 0.5338086136050348,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998558566370636,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998306615488823,
+ "recall": 0.46619138639496516,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141704,
+ "tp_rate": 0.46619138639496516,
+ "truth_threshold": 12.76
+ },
+ {
+ "f1": 0.6353376370345762,
+ "fn": 162437,
+ "fn_rate": 0.5344007948388115,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998578408192266,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998304462090598,
+ "recall": 0.46559920516118847,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141524,
+ "tp_rate": 0.46559920516118847,
+ "truth_threshold": 12.780000000000001
+ },
+ {
+ "f1": 0.6348060790055149,
+ "fn": 162610,
+ "fn_rate": 0.5349699468023859,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998597976922806,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998302387267904,
+ "recall": 0.46503005319761415,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141351,
+ "tp_rate": 0.46503005319761415,
+ "truth_threshold": 12.8
+ },
+ {
+ "f1": 0.6342278713051448,
+ "fn": 162799,
+ "fn_rate": 0.5355917370978514,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998617276319876,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998300114742255,
+ "recall": 0.46440826290214865,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141162,
+ "tp_rate": 0.46440826290214865,
+ "truth_threshold": 12.82
+ },
+ {
+ "f1": 0.6337507191140515,
+ "fn": 162954,
+ "fn_rate": 0.536101670938048,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998636310089414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998298246484816,
+ "recall": 0.46389832906195205,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 141007,
+ "tp_rate": 0.46389832906195205,
+ "truth_threshold": 12.84
+ },
+ {
+ "f1": 0.6331978453818692,
+ "fn": 163134,
+ "fn_rate": 0.5366938521718246,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.99986550818864,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999829607173538,
+ "recall": 0.4633061478281753,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140827,
+ "tp_rate": 0.4633061478281753,
+ "truth_threshold": 12.86
+ },
+ {
+ "f1": 0.6327289737281236,
+ "fn": 163287,
+ "fn_rate": 0.5371972062205349,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998673595315546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998294218823295,
+ "recall": 0.46280279377946515,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140674,
+ "tp_rate": 0.46280279377946515,
+ "truth_threshold": 12.88
+ },
+ {
+ "f1": 0.63229835462231,
+ "fn": 163427,
+ "fn_rate": 0.5376577916245834,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998691853931992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998292519813885,
+ "recall": 0.46234220837541656,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140534,
+ "tp_rate": 0.46234220837541656,
+ "truth_threshold": 12.9
+ },
+ {
+ "f1": 0.6318075434332523,
+ "fn": 163586,
+ "fn_rate": 0.5381808850477529,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998709861241983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998290586115286,
+ "recall": 0.46181911495224715,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140375,
+ "tp_rate": 0.46181911495224715,
+ "truth_threshold": 12.92
+ },
+ {
+ "f1": 0.6312715844263439,
+ "fn": 163760,
+ "fn_rate": 0.5387533269070703,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998727620703545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998288464967018,
+ "recall": 0.46124667309292966,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140201,
+ "tp_rate": 0.46124667309292966,
+ "truth_threshold": 12.94
+ },
+ {
+ "f1": 0.6307890493392309,
+ "fn": 163917,
+ "fn_rate": 0.5392698405387534,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998745135727142,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999828654653454,
+ "recall": 0.4607301594612467,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 140044,
+ "tp_rate": 0.4607301594612467,
+ "truth_threshold": 12.96
+ },
+ {
+ "f1": 0.6302399459276783,
+ "fn": 164095,
+ "fn_rate": 0.5398554419810436,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998762409676335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998284366287797,
+ "recall": 0.4601445580189564,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 139866,
+ "tp_rate": 0.4601445580189564,
+ "truth_threshold": 12.98
+ },
+ {
+ "f1": 0.629889709693558,
+ "fn": 164208,
+ "fn_rate": 0.5402272002000257,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998779445868424,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998282979317055,
+ "recall": 0.4597727997999743,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 139753,
+ "tp_rate": 0.4597727997999743,
+ "truth_threshold": 13
+ },
+ {
+ "f1": 0.6294185543211658,
+ "fn": 164361,
+ "fn_rate": 0.5407305542487358,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998796247575082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998281097805535,
+ "recall": 0.45926944575126416,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 139600,
+ "tp_rate": 0.45926944575126416,
+ "truth_threshold": 13.02
+ },
+ {
+ "f1": 0.6289627862294165,
+ "fn": 164508,
+ "fn_rate": 0.5412141689229868,
+ "fp": 24,
+ "fp_rate": 0.00013803495735294964,
+ "match_probability": 0.9998812818022986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998279286190555,
+ "recall": 0.45878583107701315,
+ "row_count": 477830,
+ "tn": 173845,
+ "tn_rate": 0.999861965042647,
+ "tp": 139453,
+ "tp_rate": 0.45878583107701315,
+ "truth_threshold": 13.040000000000001
+ },
+ {
+ "f1": 0.6284026765691906,
+ "fn": 164690,
+ "fn_rate": 0.5418129299482499,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.999882916039443,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998348816172986,
+ "recall": 0.4581870700517501,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 139271,
+ "tp_rate": 0.4581870700517501,
+ "truth_threshold": 13.06
+ },
+ {
+ "f1": 0.6279586199425878,
+ "fn": 164833,
+ "fn_rate": 0.5422833850395281,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.999884527782794,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998347119316426,
+ "recall": 0.4577166149604719,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 139128,
+ "tp_rate": 0.4577166149604719,
+ "truth_threshold": 13.08
+ },
+ {
+ "f1": 0.6274692180226389,
+ "fn": 164991,
+ "fn_rate": 0.5428031885669543,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998861173418873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999834524040779,
+ "recall": 0.4571968114330457,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138970,
+ "tp_rate": 0.4571968114330457,
+ "truth_threshold": 13.1
+ },
+ {
+ "f1": 0.6270104741128169,
+ "fn": 165139,
+ "fn_rate": 0.5432900931369485,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998876850220009,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998343476538586,
+ "recall": 0.4567099068630515,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138822,
+ "tp_rate": 0.4567099068630515,
+ "truth_threshold": 13.120000000000001
+ },
+ {
+ "f1": 0.6266072703286376,
+ "fn": 165269,
+ "fn_rate": 0.543717779583565,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998892311242138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998341924088959,
+ "recall": 0.456282220416435,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138692,
+ "tp_rate": 0.456282220416435,
+ "truth_threshold": 13.14
+ },
+ {
+ "f1": 0.6261524694482609,
+ "fn": 165416,
+ "fn_rate": 0.544201394257816,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998907559454638,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998340165117487,
+ "recall": 0.455798605742184,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138545,
+ "tp_rate": 0.455798605742184,
+ "truth_threshold": 13.16
+ },
+ {
+ "f1": 0.6255454023430259,
+ "fn": 165611,
+ "fn_rate": 0.5448429239277407,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998922597786042,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998337826020972,
+ "recall": 0.45515707607225925,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138350,
+ "tp_rate": 0.45515707607225925,
+ "truth_threshold": 13.18
+ },
+ {
+ "f1": 0.6251272054599976,
+ "fn": 165746,
+ "fn_rate": 0.5452870598530732,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998937429124599,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998336202780711,
+ "recall": 0.45471294014692676,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138215,
+ "tp_rate": 0.45471294014692676,
+ "truth_threshold": 13.200000000000001
+ },
+ {
+ "f1": 0.6247805866705272,
+ "fn": 165857,
+ "fn_rate": 0.5456522382805689,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998952056318829,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998334865739501,
+ "recall": 0.4543477617194311,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 138104,
+ "tp_rate": 0.4543477617194311,
+ "truth_threshold": 13.22
+ },
+ {
+ "f1": 0.6242515579813449,
+ "fn": 166027,
+ "fn_rate": 0.5462115205569136,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.999896648217807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998332813847793,
+ "recall": 0.4537884794430864,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137934,
+ "tp_rate": 0.4537884794430864,
+ "truth_threshold": 13.24
+ },
+ {
+ "f1": 0.6238512589748929,
+ "fn": 166156,
+ "fn_rate": 0.5466359171077868,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998980709473013,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998331253446324,
+ "recall": 0.45336408289221314,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137805,
+ "tp_rate": 0.45336408289221314,
+ "truth_threshold": 13.26
+ },
+ {
+ "f1": 0.6233668603413687,
+ "fn": 166311,
+ "fn_rate": 0.5471458509479834,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9998994740936238,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998329374677678,
+ "recall": 0.45285414905201654,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137650,
+ "tp_rate": 0.45285414905201654,
+ "truth_threshold": 13.280000000000001
+ },
+ {
+ "f1": 0.6228554601671688,
+ "fn": 166475,
+ "fn_rate": 0.5476853938498689,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9999008579262733,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999832738220771,
+ "recall": 0.4523146061501311,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137486,
+ "tp_rate": 0.4523146061501311,
+ "truth_threshold": 13.3
+ },
+ {
+ "f1": 0.6222920179112054,
+ "fn": 166656,
+ "fn_rate": 0.5482808649793888,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9999022227110415,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998325177676803,
+ "recall": 0.4517191350206112,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137305,
+ "tp_rate": 0.4517191350206112,
+ "truth_threshold": 13.32
+ },
+ {
+ "f1": 0.6218235563474468,
+ "fn": 166806,
+ "fn_rate": 0.5487743493408694,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9999035687100634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998323346309175,
+ "recall": 0.4512256506591306,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 137155,
+ "tp_rate": 0.4512256506591306,
+ "truth_threshold": 13.34
+ },
+ {
+ "f1": 0.6212939655758896,
+ "fn": 166975,
+ "fn_rate": 0.5493303417214709,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9999048961818684,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998321278164208,
+ "recall": 0.4506696582785292,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 136986,
+ "tp_rate": 0.4506696582785292,
+ "truth_threshold": 13.36
+ },
+ {
+ "f1": 0.6208185691146914,
+ "fn": 167127,
+ "fn_rate": 0.5498304058744379,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.999906205381429,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998319413694586,
+ "recall": 0.4501695941255622,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 136834,
+ "tp_rate": 0.4501695941255622,
+ "truth_threshold": 13.38
+ },
+ {
+ "f1": 0.6201782974589889,
+ "fn": 167332,
+ "fn_rate": 0.5505048345017947,
+ "fp": 23,
+ "fp_rate": 0.00013228350079657673,
+ "match_probability": 0.9999074965602103,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998316892544565,
+ "recall": 0.44949516549820534,
+ "row_count": 477830,
+ "tn": 173846,
+ "tn_rate": 0.9998677164992035,
+ "tp": 136629,
+ "tp_rate": 0.44949516549820534,
+ "truth_threshold": 13.4
+ },
+ {
+ "f1": 0.619727199251705,
+ "fn": 167476,
+ "fn_rate": 0.550978579488816,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999087699662178,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999838836103643,
+ "recall": 0.449021420511184,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 136485,
+ "tp_rate": 0.449021420511184,
+ "truth_threshold": 13.42
+ },
+ {
+ "f1": 0.6191925431982122,
+ "fn": 167647,
+ "fn_rate": 0.5515411516609039,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999100258440452,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998386339631499,
+ "recall": 0.44845884833909616,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 136314,
+ "tp_rate": 0.44845884833909616,
+ "truth_threshold": 13.44
+ },
+ {
+ "f1": 0.6186358265927474,
+ "fn": 167824,
+ "fn_rate": 0.552123463207451,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999112644349214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998384241952424,
+ "recall": 0.447876536792549,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 136137,
+ "tp_rate": 0.447876536792549,
+ "truth_threshold": 13.46
+ },
+ {
+ "f1": 0.6180940388138544,
+ "fn": 167997,
+ "fn_rate": 0.5526926151710252,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999124859767564,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998382186401541,
+ "recall": 0.44730738482897475,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135964,
+ "tp_rate": 0.44730738482897475,
+ "truth_threshold": 13.48
+ },
+ {
+ "f1": 0.6176730057388157,
+ "fn": 168131,
+ "fn_rate": 0.5531334612006146,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999136907041872,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998380590642758,
+ "recall": 0.4468665387993854,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135830,
+ "tp_rate": 0.4468665387993854,
+ "truth_threshold": 13.5
+ },
+ {
+ "f1": 0.617119617137814,
+ "fn": 168307,
+ "fn_rate": 0.5537124828514184,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999148788486228,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998378489931896,
+ "recall": 0.44628751714858156,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135654,
+ "tp_rate": 0.44628751714858156,
+ "truth_threshold": 13.52
+ },
+ {
+ "f1": 0.6166035606364001,
+ "fn": 168471,
+ "fn_rate": 0.5542520257533039,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999160506382885,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998376527539996,
+ "recall": 0.4457479742466961,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135490,
+ "tp_rate": 0.4457479742466961,
+ "truth_threshold": 13.540000000000001
+ },
+ {
+ "f1": 0.6159754504022547,
+ "fn": 168670,
+ "fn_rate": 0.5549067150062015,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999172062982694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998374139956988,
+ "recall": 0.4450932849937985,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135291,
+ "tp_rate": 0.4450932849937985,
+ "truth_threshold": 13.56
+ },
+ {
+ "f1": 0.6153197924685583,
+ "fn": 168878,
+ "fn_rate": 0.5555910133207879,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999183460505544,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998371636875023,
+ "recall": 0.44440898667921214,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 135083,
+ "tp_rate": 0.44440898667921214,
+ "truth_threshold": 13.58
+ },
+ {
+ "f1": 0.6149584235106504,
+ "fn": 168993,
+ "fn_rate": 0.5559693513312564,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999194701140777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998370249648122,
+ "recall": 0.4440306486687437,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134968,
+ "tp_rate": 0.4440306486687437,
+ "truth_threshold": 13.6
+ },
+ {
+ "f1": 0.6144361944091197,
+ "fn": 169158,
+ "fn_rate": 0.5565121841288849,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999205787047616,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998368255145559,
+ "recall": 0.443487815871115,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134803,
+ "tp_rate": 0.443487815871115,
+ "truth_threshold": 13.620000000000001
+ },
+ {
+ "f1": 0.6139054940745706,
+ "fn": 169326,
+ "fn_rate": 0.5570648866137432,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999216720355576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999836621935733,
+ "recall": 0.4429351133862568,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134635,
+ "tp_rate": 0.4429351133862568,
+ "truth_threshold": 13.64
+ },
+ {
+ "f1": 0.6132524349353345,
+ "fn": 169533,
+ "fn_rate": 0.5577458950325864,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999227503164871,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998363703979174,
+ "recall": 0.4422541049674136,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134428,
+ "tp_rate": 0.4422541049674136,
+ "truth_threshold": 13.66
+ },
+ {
+ "f1": 0.6128112222546729,
+ "fn": 169672,
+ "fn_rate": 0.5582031905408917,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999238137546823,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998362010557587,
+ "recall": 0.44179680945910826,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134289,
+ "tp_rate": 0.44179680945910826,
+ "truth_threshold": 13.68
+ },
+ {
+ "f1": 0.6124105316973415,
+ "fn": 169799,
+ "fn_rate": 0.5586210073002786,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999248625544251,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998360460263519,
+ "recall": 0.44137899269972136,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134162,
+ "tp_rate": 0.44137899269972136,
+ "truth_threshold": 13.700000000000001
+ },
+ {
+ "f1": 0.6119226466357679,
+ "fn": 169953,
+ "fn_rate": 0.5591276512447321,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999258969171868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998358576438111,
+ "recall": 0.44087234875526793,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 134008,
+ "tp_rate": 0.44087234875526793,
+ "truth_threshold": 13.72
+ },
+ {
+ "f1": 0.6115313290763427,
+ "fn": 170076,
+ "fn_rate": 0.5595323084211461,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999269170416667,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998357068711867,
+ "recall": 0.44046769157885385,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133885,
+ "tp_rate": 0.44046769157885385,
+ "truth_threshold": 13.74
+ },
+ {
+ "f1": 0.6110428270514537,
+ "fn": 170230,
+ "fn_rate": 0.5600389523655995,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.99992792312383,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999835517708014,
+ "recall": 0.43996104763440047,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133731,
+ "tp_rate": 0.43996104763440047,
+ "truth_threshold": 13.76
+ },
+ {
+ "f1": 0.6105649028023458,
+ "fn": 170381,
+ "fn_rate": 0.5605357266228234,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999928915356946,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99983533180641,
+ "recall": 0.4394642733771767,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133580,
+ "tp_rate": 0.4394642733771767,
+ "truth_threshold": 13.780000000000001
+ },
+ {
+ "f1": 0.6100075905146003,
+ "fn": 170556,
+ "fn_rate": 0.561111458377884,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999929893931624,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998351158311286,
+ "recall": 0.438888541622116,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133405,
+ "tp_rate": 0.438888541622116,
+ "truth_threshold": 13.8
+ },
+ {
+ "f1": 0.6095925499021169,
+ "fn": 170687,
+ "fn_rate": 0.5615424347202437,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999308590358513,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998349537870603,
+ "recall": 0.43845756527975627,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133274,
+ "tp_rate": 0.43845756527975627,
+ "truth_threshold": 13.82
+ },
+ {
+ "f1": 0.6091090449870054,
+ "fn": 170839,
+ "fn_rate": 0.5620424988732107,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999318108550282,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998347653668209,
+ "recall": 0.4379575011267893,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 133122,
+ "tp_rate": 0.4379575011267893,
+ "truth_threshold": 13.84
+ },
+ {
+ "f1": 0.6085232994598554,
+ "fn": 171023,
+ "fn_rate": 0.5626478396899602,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999327495720041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998345367027678,
+ "recall": 0.43735216031003976,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132938,
+ "tp_rate": 0.43735216031003976,
+ "truth_threshold": 13.86
+ },
+ {
+ "f1": 0.607886059717897,
+ "fn": 171223,
+ "fn_rate": 0.563305818838601,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999336753671121,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998342874359747,
+ "recall": 0.436694181161399,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132738,
+ "tp_rate": 0.436694181161399,
+ "truth_threshold": 13.88
+ },
+ {
+ "f1": 0.6074669598479122,
+ "fn": 171354,
+ "fn_rate": 0.5637367951809608,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999345884182044,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998341237587556,
+ "recall": 0.4362632048190393,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132607,
+ "tp_rate": 0.4362632048190393,
+ "truth_threshold": 13.9
+ },
+ {
+ "f1": 0.6070202772367969,
+ "fn": 171494,
+ "fn_rate": 0.5641973805850092,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999354889006857,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998339484787416,
+ "recall": 0.43580261941499077,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132467,
+ "tp_rate": 0.43580261941499077,
+ "truth_threshold": 13.92
+ },
+ {
+ "f1": 0.6065012400122856,
+ "fn": 171657,
+ "fn_rate": 0.5647336335911515,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999936376987547,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998337439354322,
+ "recall": 0.4352663664088485,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132304,
+ "tp_rate": 0.4352663664088485,
+ "truth_threshold": 13.94
+ },
+ {
+ "f1": 0.6059964047252183,
+ "fn": 171815,
+ "fn_rate": 0.5652534371185777,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999372528493993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998335451849162,
+ "recall": 0.43474656288142227,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 132146,
+ "tp_rate": 0.43474656288142227,
+ "truth_threshold": 13.96
+ },
+ {
+ "f1": 0.6054976007633518,
+ "fn": 171971,
+ "fn_rate": 0.5657666608545175,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999381166545053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998333484834712,
+ "recall": 0.43423333914548246,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131990,
+ "tp_rate": 0.43423333914548246,
+ "truth_threshold": 13.98
+ },
+ {
+ "f1": 0.604985636008187,
+ "fn": 172131,
+ "fn_rate": 0.5662930441734302,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999389685688129,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998331462548918,
+ "recall": 0.4337069558265699,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131830,
+ "tp_rate": 0.4337069558265699,
+ "truth_threshold": 14
+ },
+ {
+ "f1": 0.6045071431194682,
+ "fn": 172280,
+ "fn_rate": 0.5667832386391676,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999398087559863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998329574876806,
+ "recall": 0.4332167613608325,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131681,
+ "tp_rate": 0.4332167613608325,
+ "truth_threshold": 14.02
+ },
+ {
+ "f1": 0.6040713800260833,
+ "fn": 172416,
+ "fn_rate": 0.5672306644602433,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999406373774375,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998327848168613,
+ "recall": 0.43276933553975677,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131545,
+ "tp_rate": 0.43276933553975677,
+ "truth_threshold": 14.040000000000001
+ },
+ {
+ "f1": 0.6033979757326827,
+ "fn": 172626,
+ "fn_rate": 0.5679215425663161,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999414545923574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999832517490503,
+ "recall": 0.43207845743368395,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131335,
+ "tp_rate": 0.43207845743368395,
+ "truth_threshold": 14.06
+ },
+ {
+ "f1": 0.603083498001011,
+ "fn": 172724,
+ "fn_rate": 0.56824395234915,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999422605577463,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998323924454704,
+ "recall": 0.43175604765084996,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131237,
+ "tp_rate": 0.43175604765084996,
+ "truth_threshold": 14.08
+ },
+ {
+ "f1": 0.6025247904819261,
+ "fn": 172898,
+ "fn_rate": 0.5688163942084675,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999430554284441,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998321699660525,
+ "recall": 0.4311836057915325,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 131063,
+ "tp_rate": 0.4311836057915325,
+ "truth_threshold": 14.1
+ },
+ {
+ "f1": 0.602074931134544,
+ "fn": 173038,
+ "fn_rate": 0.5692769796125161,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999438393571597,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998319905303753,
+ "recall": 0.43072302038748395,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130923,
+ "tp_rate": 0.43072302038748395,
+ "truth_threshold": 14.120000000000001
+ },
+ {
+ "f1": 0.6017065709882932,
+ "fn": 173153,
+ "fn_rate": 0.5696553176229845,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999446124945011,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998318428494993,
+ "recall": 0.43034468237701545,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130808,
+ "tp_rate": 0.43034468237701545,
+ "truth_threshold": 14.14
+ },
+ {
+ "f1": 0.6010373186188107,
+ "fn": 173361,
+ "fn_rate": 0.570339615937571,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999945374989003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998315750792363,
+ "recall": 0.42966038406242907,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130600,
+ "tp_rate": 0.42966038406242907,
+ "truth_threshold": 14.16
+ },
+ {
+ "f1": 0.6005883381977885,
+ "fn": 173500,
+ "fn_rate": 0.5707969114458763,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999461269871569,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998313956607374,
+ "recall": 0.4292030885541237,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130461,
+ "tp_rate": 0.4292030885541237,
+ "truth_threshold": 14.18
+ },
+ {
+ "f1": 0.6000709216591984,
+ "fn": 173661,
+ "fn_rate": 0.5713265846605321,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999468686334378,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998311873666764,
+ "recall": 0.4286734153394679,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130300,
+ "tp_rate": 0.4286734153394679,
+ "truth_threshold": 14.200000000000001
+ },
+ {
+ "f1": 0.5994001022867069,
+ "fn": 173869,
+ "fn_rate": 0.5720108829751185,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999476000703327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998309175031127,
+ "recall": 0.42798911702488146,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 130092,
+ "tp_rate": 0.42798911702488146,
+ "truth_threshold": 14.22
+ },
+ {
+ "f1": 0.5989288545565163,
+ "fn": 174015,
+ "fn_rate": 0.5724912077536263,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999483214383678,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998307275637079,
+ "recall": 0.4275087922463737,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129946,
+ "tp_rate": 0.4275087922463737,
+ "truth_threshold": 14.24
+ },
+ {
+ "f1": 0.5984139059870438,
+ "fn": 174174,
+ "fn_rate": 0.5730143011767957,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999490328761353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998305202258703,
+ "recall": 0.4269856988232043,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129787,
+ "tp_rate": 0.4269856988232043,
+ "truth_threshold": 14.26
+ },
+ {
+ "f1": 0.5979401414134892,
+ "fn": 174321,
+ "fn_rate": 0.5734979158510467,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999497345203204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999830328083787,
+ "recall": 0.4265020841489533,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129640,
+ "tp_rate": 0.4265020841489533,
+ "truth_threshold": 14.280000000000001
+ },
+ {
+ "f1": 0.597385639009625,
+ "fn": 174492,
+ "fn_rate": 0.5740604880231346,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999504265057271,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998301040226734,
+ "recall": 0.42593951197686547,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129469,
+ "tp_rate": 0.42593951197686547,
+ "truth_threshold": 14.3
+ },
+ {
+ "f1": 0.5968806543332964,
+ "fn": 174648,
+ "fn_rate": 0.5745737117590743,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999511089653043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998298990992384,
+ "recall": 0.42542628824092565,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129313,
+ "tp_rate": 0.42542628824092565,
+ "truth_threshold": 14.32
+ },
+ {
+ "f1": 0.5963539983192191,
+ "fn": 174811,
+ "fn_rate": 0.5751099647652166,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999517820301712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998296844517388,
+ "recall": 0.4248900352347834,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 129150,
+ "tp_rate": 0.4248900352347834,
+ "truth_threshold": 14.34
+ },
+ {
+ "f1": 0.595822324051662,
+ "fn": 174975,
+ "fn_rate": 0.575649507667102,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999524458296426,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998294679399727,
+ "recall": 0.42435049233289796,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128986,
+ "tp_rate": 0.42435049233289796,
+ "truth_threshold": 14.36
+ },
+ {
+ "f1": 0.5954395287050941,
+ "fn": 175093,
+ "fn_rate": 0.5760377153648001,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999531004912537,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998293118162774,
+ "recall": 0.4239622846351999,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128868,
+ "tp_rate": 0.4239622846351999,
+ "truth_threshold": 14.38
+ },
+ {
+ "f1": 0.5950908620339046,
+ "fn": 175200,
+ "fn_rate": 0.5763897342093229,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999537461407846,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998291699991458,
+ "recall": 0.4236102657906771,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128761,
+ "tp_rate": 0.4236102657906771,
+ "truth_threshold": 14.4
+ },
+ {
+ "f1": 0.5944867509097046,
+ "fn": 175386,
+ "fn_rate": 0.5770016548175588,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999543829022842,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998289229142204,
+ "recall": 0.42299834518244117,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128575,
+ "tp_rate": 0.42299834518244117,
+ "truth_threshold": 14.42
+ },
+ {
+ "f1": 0.5938347102850429,
+ "fn": 175587,
+ "fn_rate": 0.5776629238619428,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999550108980944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998286550982897,
+ "recall": 0.4223370761380572,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128374,
+ "tp_rate": 0.4223370761380572,
+ "truth_threshold": 14.44
+ },
+ {
+ "f1": 0.593426678265376,
+ "fn": 175712,
+ "fn_rate": 0.5780741608298433,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999556302488732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998284881228025,
+ "recall": 0.4219258391701567,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128249,
+ "tp_rate": 0.4219258391701567,
+ "truth_threshold": 14.46
+ },
+ {
+ "f1": 0.5930081323391236,
+ "fn": 175841,
+ "fn_rate": 0.5784985573807166,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999562410736184,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998283154625337,
+ "recall": 0.4215014426192834,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 128120,
+ "tp_rate": 0.4215014426192834,
+ "truth_threshold": 14.48
+ },
+ {
+ "f1": 0.5925130223405487,
+ "fn": 175993,
+ "fn_rate": 0.5789986215336836,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999568434896896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998281115712165,
+ "recall": 0.4210013784663164,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127968,
+ "tp_rate": 0.4210013784663164,
+ "truth_threshold": 14.5
+ },
+ {
+ "f1": 0.5920129319728207,
+ "fn": 176146,
+ "fn_rate": 0.5795019755823938,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999574376128317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998279058488544,
+ "recall": 0.4204980244176062,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127815,
+ "tp_rate": 0.4204980244176062,
+ "truth_threshold": 14.52
+ },
+ {
+ "f1": 0.5915432267510552,
+ "fn": 176290,
+ "fn_rate": 0.5799757205694152,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999580235571964,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998277117774663,
+ "recall": 0.42002427943058485,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127671,
+ "tp_rate": 0.42002427943058485,
+ "truth_threshold": 14.540000000000001
+ },
+ {
+ "f1": 0.5910386606658663,
+ "fn": 176445,
+ "fn_rate": 0.5804856544096118,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999586014353645,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998275023914441,
+ "recall": 0.41951434559038825,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127516,
+ "tp_rate": 0.41951434559038825,
+ "truth_threshold": 14.56
+ },
+ {
+ "f1": 0.5905767367244841,
+ "fn": 176586,
+ "fn_rate": 0.5809495297094035,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999591713583673,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998273114751525,
+ "recall": 0.4190504702905965,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127375,
+ "tp_rate": 0.4190504702905965,
+ "truth_threshold": 14.58
+ },
+ {
+ "f1": 0.590086454796757,
+ "fn": 176736,
+ "fn_rate": 0.5814430140708841,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999597334357079,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998271079082415,
+ "recall": 0.4185569859291159,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127225,
+ "tp_rate": 0.4185569859291159,
+ "truth_threshold": 14.6
+ },
+ {
+ "f1": 0.5897313371901517,
+ "fn": 176845,
+ "fn_rate": 0.5818016127068933,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999602877753826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998269596816058,
+ "recall": 0.41819838729310665,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 127116,
+ "tp_rate": 0.41819838729310665,
+ "truth_threshold": 14.620000000000001
+ },
+ {
+ "f1": 0.5891965396253735,
+ "fn": 177008,
+ "fn_rate": 0.5823378657130356,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999608344839012,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998267375467612,
+ "recall": 0.41766213428696447,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126953,
+ "tp_rate": 0.41766213428696447,
+ "truth_threshold": 14.64
+ },
+ {
+ "f1": 0.588803572754958,
+ "fn": 177128,
+ "fn_rate": 0.58273265320222,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999613736663076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998265736470774,
+ "recall": 0.41726734679778,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126833,
+ "tp_rate": 0.41726734679778,
+ "truth_threshold": 14.66
+ },
+ {
+ "f1": 0.5882314694408323,
+ "fn": 177303,
+ "fn_rate": 0.5833083849572807,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999619054261999,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998263340700979,
+ "recall": 0.4166916150427193,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126658,
+ "tp_rate": 0.4166916150427193,
+ "truth_threshold": 14.68
+ },
+ {
+ "f1": 0.5878595584956147,
+ "fn": 177416,
+ "fn_rate": 0.5836801431762627,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999624298657506,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998261790198076,
+ "recall": 0.41631985682373723,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126545,
+ "tp_rate": 0.41631985682373723,
+ "truth_threshold": 14.700000000000001
+ },
+ {
+ "f1": 0.5872801208318811,
+ "fn": 177593,
+ "fn_rate": 0.5842624547228098,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999629470857259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998259355961706,
+ "recall": 0.41573754527719015,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126368,
+ "tp_rate": 0.41573754527719015,
+ "truth_threshold": 14.72
+ },
+ {
+ "f1": 0.5868400989270506,
+ "fn": 177727,
+ "fn_rate": 0.5847033007523992,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999634571855048,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998257508554049,
+ "recall": 0.4152966992476008,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126234,
+ "tp_rate": 0.4152966992476008,
+ "truth_threshold": 14.74
+ },
+ {
+ "f1": 0.5864740319828136,
+ "fn": 177838,
+ "fn_rate": 0.5850684791798948,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999639602630992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998255975266558,
+ "recall": 0.4149315208201052,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 126123,
+ "tp_rate": 0.4149315208201052,
+ "truth_threshold": 14.76
+ },
+ {
+ "f1": 0.5859460766983607,
+ "fn": 177999,
+ "fn_rate": 0.5855981523945506,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999644564151715,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998253746507493,
+ "recall": 0.4144018476054494,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125962,
+ "tp_rate": 0.4144018476054494,
+ "truth_threshold": 14.780000000000001
+ },
+ {
+ "f1": 0.585452565647729,
+ "fn": 178149,
+ "fn_rate": 0.5860916367560312,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999649457370537,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998251664891842,
+ "recall": 0.4139083632439688,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125812,
+ "tp_rate": 0.4139083632439688,
+ "truth_threshold": 14.8
+ },
+ {
+ "f1": 0.5849277062443556,
+ "fn": 178308,
+ "fn_rate": 0.5866147301792006,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999654283227661,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998249452954048,
+ "recall": 0.4133852698207994,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125653,
+ "tp_rate": 0.4133852698207994,
+ "truth_threshold": 14.82
+ },
+ {
+ "f1": 0.5844400774876132,
+ "fn": 178456,
+ "fn_rate": 0.5871016347491947,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999659042650346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998247389007943,
+ "recall": 0.4128983652508052,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125505,
+ "tp_rate": 0.4128983652508052,
+ "truth_threshold": 14.84
+ },
+ {
+ "f1": 0.5837805855276644,
+ "fn": 178656,
+ "fn_rate": 0.5877596138978356,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999663736553089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998244592146943,
+ "recall": 0.4122403861021644,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125305,
+ "tp_rate": 0.4122403861021644,
+ "truth_threshold": 14.86
+ },
+ {
+ "f1": 0.5834044000801539,
+ "fn": 178770,
+ "fn_rate": 0.5881346620125608,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999668365837804,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998242993938329,
+ "recall": 0.4118653379874392,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125191,
+ "tp_rate": 0.4118653379874392,
+ "truth_threshold": 14.88
+ },
+ {
+ "f1": 0.5827901945975179,
+ "fn": 178956,
+ "fn_rate": 0.5887465826207967,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999672931393985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998240380077903,
+ "recall": 0.41125341737920323,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 125005,
+ "tp_rate": 0.41125341737920323,
+ "truth_threshold": 14.9
+ },
+ {
+ "f1": 0.5822793075143646,
+ "fn": 179111,
+ "fn_rate": 0.5892565164609933,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999677434098888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998238195912614,
+ "recall": 0.41074348353900664,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124850,
+ "tp_rate": 0.41074348353900664,
+ "truth_threshold": 14.92
+ },
+ {
+ "f1": 0.5818096993165224,
+ "fn": 179253,
+ "fn_rate": 0.5897236816565283,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999681874817694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998236190170768,
+ "recall": 0.41027631834347167,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124708,
+ "tp_rate": 0.41027631834347167,
+ "truth_threshold": 14.94
+ },
+ {
+ "f1": 0.5812735690549976,
+ "fn": 179415,
+ "fn_rate": 0.5902566447669273,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999686254403675,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998233896345771,
+ "recall": 0.40974335523307265,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124546,
+ "tp_rate": 0.40974335523307265,
+ "truth_threshold": 14.96
+ },
+ {
+ "f1": 0.5805846096376541,
+ "fn": 179623,
+ "fn_rate": 0.5909409430815138,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999690573698359,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998230942425217,
+ "recall": 0.40905905691848626,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124338,
+ "tp_rate": 0.40905905691848626,
+ "truth_threshold": 14.98
+ },
+ {
+ "f1": 0.580113877873221,
+ "fn": 179765,
+ "fn_rate": 0.5914081082770487,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999694833531692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998228920124298,
+ "recall": 0.4085918917229513,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124196,
+ "tp_rate": 0.4085918917229513,
+ "truth_threshold": 15
+ },
+ {
+ "f1": 0.5795850661184057,
+ "fn": 179924,
+ "fn_rate": 0.5919312017002181,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999699034722195,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998226650222878,
+ "recall": 0.4080687982997819,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 124037,
+ "tp_rate": 0.4080687982997819,
+ "truth_threshold": 15.02
+ },
+ {
+ "f1": 0.5791581948631658,
+ "fn": 180053,
+ "fn_rate": 0.5923555982510914,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999703178077124,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998224804325022,
+ "recall": 0.4076444017489086,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123908,
+ "tp_rate": 0.4076444017489086,
+ "truth_threshold": 15.040000000000001
+ },
+ {
+ "f1": 0.5787150678654753,
+ "fn": 180186,
+ "fn_rate": 0.5927931543849375,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999707264392624,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999822289716229,
+ "recall": 0.4072068456150625,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123775,
+ "tp_rate": 0.4072068456150625,
+ "truth_threshold": 15.06
+ },
+ {
+ "f1": 0.5782810212662467,
+ "fn": 180317,
+ "fn_rate": 0.5932241307272973,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999711294453882,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998221014668542,
+ "recall": 0.40677586927270276,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123644,
+ "tp_rate": 0.40677586927270276,
+ "truth_threshold": 15.08
+ },
+ {
+ "f1": 0.5778772695587898,
+ "fn": 180438,
+ "fn_rate": 0.5936222081122249,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999715269035279,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999821927232992,
+ "recall": 0.40637779188777506,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123523,
+ "tp_rate": 0.40637779188777506,
+ "truth_threshold": 15.1
+ },
+ {
+ "f1": 0.5772762587638419,
+ "fn": 180619,
+ "fn_rate": 0.5942176792417448,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999719188900533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998216659641387,
+ "recall": 0.40578232075825516,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123342,
+ "tp_rate": 0.40578232075825516,
+ "truth_threshold": 15.120000000000001
+ },
+ {
+ "f1": 0.5767520038954229,
+ "fn": 180776,
+ "fn_rate": 0.5947341928734279,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999723054802854,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998214387169561,
+ "recall": 0.4052658071265722,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123185,
+ "tp_rate": 0.4052658071265722,
+ "truth_threshold": 15.14
+ },
+ {
+ "f1": 0.5763300861745972,
+ "fn": 180903,
+ "fn_rate": 0.5951520096328148,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999726867485083,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998212544686382,
+ "recall": 0.4048479903671853,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 123058,
+ "tp_rate": 0.4048479903671853,
+ "truth_threshold": 15.16
+ },
+ {
+ "f1": 0.5759032306423806,
+ "fn": 181031,
+ "fn_rate": 0.5955731162879448,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999730627679836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998210683844102,
+ "recall": 0.40442688371205515,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122930,
+ "tp_rate": 0.40442688371205515,
+ "truth_threshold": 15.18
+ },
+ {
+ "f1": 0.5754026834629138,
+ "fn": 181181,
+ "fn_rate": 0.5960666006494254,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999734336109646,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998208498232928,
+ "recall": 0.4039333993505746,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122780,
+ "tp_rate": 0.4039333993505746,
+ "truth_threshold": 15.200000000000001
+ },
+ {
+ "f1": 0.5748750597744043,
+ "fn": 181339,
+ "fn_rate": 0.5965864041768516,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999737993487102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999820619027429,
+ "recall": 0.40341359582314834,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122622,
+ "tp_rate": 0.40341359582314834,
+ "truth_threshold": 15.22
+ },
+ {
+ "f1": 0.5743624135893372,
+ "fn": 181492,
+ "fn_rate": 0.5970897582255619,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999741600514982,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998203949677935,
+ "recall": 0.4029102417744382,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122469,
+ "tp_rate": 0.4029102417744382,
+ "truth_threshold": 15.24
+ },
+ {
+ "f1": 0.5738520940750367,
+ "fn": 181645,
+ "fn_rate": 0.597593112274272,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999745157886392,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998201703477252,
+ "recall": 0.40240688772572797,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122316,
+ "tp_rate": 0.40240688772572797,
+ "truth_threshold": 15.26
+ },
+ {
+ "f1": 0.5732918438418143,
+ "fn": 181812,
+ "fn_rate": 0.598142524863387,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999748666284898,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998199245320084,
+ "recall": 0.4018574751366129,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122149,
+ "tp_rate": 0.4018574751366129,
+ "truth_threshold": 15.280000000000001
+ },
+ {
+ "f1": 0.572887960376517,
+ "fn": 181933,
+ "fn_rate": 0.5985406022483147,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999752126384654,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998197460057353,
+ "recall": 0.40145939775168527,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 122028,
+ "tp_rate": 0.40145939775168527,
+ "truth_threshold": 15.3
+ },
+ {
+ "f1": 0.5723785862893265,
+ "fn": 182085,
+ "fn_rate": 0.5990406664012817,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999755538850542,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998195212390687,
+ "recall": 0.40095933359871827,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121876,
+ "tp_rate": 0.40095933359871827,
+ "truth_threshold": 15.32
+ },
+ {
+ "f1": 0.5718641503760812,
+ "fn": 182238,
+ "fn_rate": 0.5995440204499919,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999758904338284,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998192944268759,
+ "recall": 0.40045597955000806,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121723,
+ "tp_rate": 0.40045597955000806,
+ "truth_threshold": 15.34
+ },
+ {
+ "f1": 0.5714124585849566,
+ "fn": 182373,
+ "fn_rate": 0.5999881563753244,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999976222349458,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999819093824521,
+ "recall": 0.4000118436246755,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121588,
+ "tp_rate": 0.4000118436246755,
+ "truth_threshold": 15.36
+ },
+ {
+ "f1": 0.5708973292150309,
+ "fn": 182526,
+ "fn_rate": 0.6004915104240347,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999976549695723,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998188659360926,
+ "recall": 0.39950848957596535,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121435,
+ "tp_rate": 0.39950848957596535,
+ "truth_threshold": 15.38
+ },
+ {
+ "f1": 0.5702991251998871,
+ "fn": 182704,
+ "fn_rate": 0.601077111866325,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999976872535525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998186000874018,
+ "recall": 0.39892288813367505,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121257,
+ "tp_rate": 0.39892288813367505,
+ "truth_threshold": 15.4
+ },
+ {
+ "f1": 0.5697656911640162,
+ "fn": 182863,
+ "fn_rate": 0.6016002052894944,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.9999771909309003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998183619550859,
+ "recall": 0.39839979471050563,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 121098,
+ "tp_rate": 0.39839979471050563,
+ "truth_threshold": 15.42
+ },
+ {
+ "f1": 0.5691955040102421,
+ "fn": 183032,
+ "fn_rate": 0.6021561976700959,
+ "fp": 22,
+ "fp_rate": 0.00012653204424020384,
+ "match_probability": 0.999977504943031,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998181081595026,
+ "recall": 0.3978438023299042,
+ "row_count": 477830,
+ "tn": 173847,
+ "tn_rate": 0.9998734679557598,
+ "tp": 120929,
+ "tp_rate": 0.3978438023299042,
+ "truth_threshold": 15.44
+ },
+ {
+ "f1": 0.5687110960439209,
+ "fn": 183177,
+ "fn_rate": 0.6026332325528604,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.999977814632257,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998344425681269,
+ "recall": 0.3973667674471396,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120784,
+ "tp_rate": 0.3973667674471396,
+ "truth_threshold": 15.46
+ },
+ {
+ "f1": 0.5682884325546345,
+ "fn": 183302,
+ "fn_rate": 0.6030444695207609,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999781200580878,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998342710827899,
+ "recall": 0.3969555304792391,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120659,
+ "tp_rate": 0.3969555304792391,
+ "truth_threshold": 15.48
+ },
+ {
+ "f1": 0.5678904744630432,
+ "fn": 183420,
+ "fn_rate": 0.603432677218459,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999784212792137,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998341088743458,
+ "recall": 0.39656732278154105,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120541,
+ "tp_rate": 0.39656732278154105,
+ "truth_threshold": 15.5
+ },
+ {
+ "f1": 0.5671681891456206,
+ "fn": 183634,
+ "fn_rate": 0.6041367149075045,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.999978718353517,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998338138881734,
+ "recall": 0.3958632850924954,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120327,
+ "tp_rate": 0.3958632850924954,
+ "truth_threshold": 15.52
+ },
+ {
+ "f1": 0.5666614799202184,
+ "fn": 183784,
+ "fn_rate": 0.6046301992689852,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999790113380835,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998336064960024,
+ "recall": 0.39536980073101485,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120177,
+ "tp_rate": 0.39536980073101485,
+ "truth_threshold": 15.540000000000001
+ },
+ {
+ "f1": 0.5660712011358973,
+ "fn": 183959,
+ "fn_rate": 0.6052059310240459,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999793002892131,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999833363883288,
+ "recall": 0.39479406897595415,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 120002,
+ "tp_rate": 0.39479406897595415,
+ "truth_threshold": 15.56
+ },
+ {
+ "f1": 0.5655928388408888,
+ "fn": 184100,
+ "fn_rate": 0.6056698063238376,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999795852624306,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998331678914923,
+ "recall": 0.3943301936761624,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119861,
+ "tp_rate": 0.3943301936761624,
+ "truth_threshold": 15.58
+ },
+ {
+ "f1": 0.5650714676837673,
+ "fn": 184254,
+ "fn_rate": 0.606176450268291,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999798663124968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998329533020957,
+ "recall": 0.393823549731709,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119707,
+ "tp_rate": 0.393823549731709,
+ "truth_threshold": 15.6
+ },
+ {
+ "f1": 0.5646717189602664,
+ "fn": 184372,
+ "fn_rate": 0.606564657965989,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999801434934182,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998327885025374,
+ "recall": 0.3934353420340109,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119589,
+ "tp_rate": 0.3934353420340109,
+ "truth_threshold": 15.620000000000001
+ },
+ {
+ "f1": 0.5641408368208742,
+ "fn": 184529,
+ "fn_rate": 0.607081171597672,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999804168584587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998325687305362,
+ "recall": 0.39291882840232795,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119432,
+ "tp_rate": 0.39291882840232795,
+ "truth_threshold": 15.64
+ },
+ {
+ "f1": 0.5637269956767228,
+ "fn": 184651,
+ "fn_rate": 0.6074825388783429,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999806864601481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998323975530042,
+ "recall": 0.39251746112165703,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119310,
+ "tp_rate": 0.39251746112165703,
+ "truth_threshold": 15.66
+ },
+ {
+ "f1": 0.5632246385374177,
+ "fn": 184799,
+ "fn_rate": 0.6079694434483371,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999809523502939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998321894245775,
+ "recall": 0.39203055655166286,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 119162,
+ "tp_rate": 0.39203055655166286,
+ "truth_threshold": 15.68
+ },
+ {
+ "f1": 0.562662833527985,
+ "fn": 184964,
+ "fn_rate": 0.6085122762459657,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999812145799899,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998319567792836,
+ "recall": 0.39148772375403423,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118997,
+ "tp_rate": 0.39148772375403423,
+ "truth_threshold": 15.700000000000001
+ },
+ {
+ "f1": 0.5620645124668284,
+ "fn": 185140,
+ "fn_rate": 0.6090912978967696,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999814731996269,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998317079122525,
+ "recall": 0.39090870210323037,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118821,
+ "tp_rate": 0.39090870210323037,
+ "truth_threshold": 15.72
+ },
+ {
+ "f1": 0.5616133703048255,
+ "fn": 185273,
+ "fn_rate": 0.6095288540306157,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.999981728258902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998315193584257,
+ "recall": 0.3904711459693842,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118688,
+ "tp_rate": 0.3904711459693842,
+ "truth_threshold": 15.74
+ },
+ {
+ "f1": 0.5610346084478507,
+ "fn": 185443,
+ "fn_rate": 0.6100881363069605,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999819798068281,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998312777337225,
+ "recall": 0.38991186369303954,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118518,
+ "tp_rate": 0.38991186369303954,
+ "truth_threshold": 15.76
+ },
+ {
+ "f1": 0.5604438277539152,
+ "fn": 185616,
+ "fn_rate": 0.6106572882705347,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999822278917435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998310311325138,
+ "recall": 0.3893427117294653,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118345,
+ "tp_rate": 0.3893427117294653,
+ "truth_threshold": 15.780000000000001
+ },
+ {
+ "f1": 0.5600210325862975,
+ "fn": 185740,
+ "fn_rate": 0.611065235342692,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999824725613211,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998308539339147,
+ "recall": 0.38893476465730803,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118221,
+ "tp_rate": 0.38893476465730803,
+ "truth_threshold": 15.8
+ },
+ {
+ "f1": 0.5594798621938101,
+ "fn": 185899,
+ "fn_rate": 0.6115883287658614,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999827138625776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998306261750309,
+ "recall": 0.3884116712341386,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 118062,
+ "tp_rate": 0.3884116712341386,
+ "truth_threshold": 15.82
+ },
+ {
+ "f1": 0.5589472037469838,
+ "fn": 186055,
+ "fn_rate": 0.6121015525018012,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999829518418826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998304021165816,
+ "recall": 0.3878984474981988,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117906,
+ "tp_rate": 0.3878984474981988,
+ "truth_threshold": 15.84
+ },
+ {
+ "f1": 0.5585461270360623,
+ "fn": 186172,
+ "fn_rate": 0.612486470303756,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.999983186544967,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998302336833349,
+ "recall": 0.3875135296962439,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117789,
+ "tp_rate": 0.3875135296962439,
+ "truth_threshold": 15.860000000000001
+ },
+ {
+ "f1": 0.5579580548294821,
+ "fn": 186344,
+ "fn_rate": 0.6130523323715872,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999834180169326,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998299854637571,
+ "recall": 0.3869476676284129,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117617,
+ "tp_rate": 0.3869476676284129,
+ "truth_threshold": 15.88
+ },
+ {
+ "f1": 0.5572325611197334,
+ "fn": 186556,
+ "fn_rate": 0.6137497902691463,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999836463022602,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998296785182031,
+ "recall": 0.3862502097308536,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117405,
+ "tp_rate": 0.3862502097308536,
+ "truth_threshold": 15.9
+ },
+ {
+ "f1": 0.5567599134001823,
+ "fn": 186694,
+ "fn_rate": 0.6142037958817085,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999838714448183,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998294781177794,
+ "recall": 0.38579620411829146,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117267,
+ "tp_rate": 0.38579620411829146,
+ "truth_threshold": 15.92
+ },
+ {
+ "f1": 0.5563191314548417,
+ "fn": 186823,
+ "fn_rate": 0.6146281924325818,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999840934878717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998292903600267,
+ "recall": 0.3853718075674182,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 117138,
+ "tp_rate": 0.3853718075674182,
+ "truth_threshold": 15.94
+ },
+ {
+ "f1": 0.5557361004209546,
+ "fn": 186993,
+ "fn_rate": 0.6151874747089264,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999843124740891,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998290422949362,
+ "recall": 0.3848125252910735,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 116968,
+ "tp_rate": 0.3848125252910735,
+ "truth_threshold": 15.96
+ },
+ {
+ "f1": 0.5551684474694856,
+ "fn": 187158,
+ "fn_rate": 0.6157303075065551,
+ "fp": 20,
+ "fp_rate": 0.00011502913112745803,
+ "match_probability": 0.9999845284455526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998288008354519,
+ "recall": 0.3842696924934449,
+ "row_count": 477830,
+ "tn": 173849,
+ "tn_rate": 0.9998849708688725,
+ "tp": 116803,
+ "tp_rate": 0.3842696924934449,
+ "truth_threshold": 15.98
+ },
+ {
+ "f1": 0.5546695955648114,
+ "fn": 187304,
+ "fn_rate": 0.6162106322850629,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999847414437646,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999837155884672,
+ "recall": 0.3837893677149371,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 116657,
+ "tp_rate": 0.3837893677149371,
+ "truth_threshold": 16
+ },
+ {
+ "f1": 0.5541079828954941,
+ "fn": 187467,
+ "fn_rate": 0.6167468852912051,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999984951509656,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998369280681125,
+ "recall": 0.38325311470879486,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 116494,
+ "tp_rate": 0.38325311470879486,
+ "truth_threshold": 16.02
+ },
+ {
+ "f1": 0.5535713436017492,
+ "fn": 187623,
+ "fn_rate": 0.6172601090271449,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999851586835948,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999836709437335,
+ "recall": 0.38273989097285505,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 116338,
+ "tp_rate": 0.38273989097285505,
+ "truth_threshold": 16.04
+ },
+ {
+ "f1": 0.5531217127652992,
+ "fn": 187754,
+ "fn_rate": 0.6176910853695047,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999853630053928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998365253901881,
+ "recall": 0.3823089146304954,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 116207,
+ "tp_rate": 0.3823089146304954,
+ "truth_threshold": 16.06
+ },
+ {
+ "f1": 0.5526394728196435,
+ "fn": 187894,
+ "fn_rate": 0.6181516707735532,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999855645143139,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998363282394087,
+ "recall": 0.3818483292264468,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 116067,
+ "tp_rate": 0.3818483292264468,
+ "truth_threshold": 16.080000000000002
+ },
+ {
+ "f1": 0.5520349058760765,
+ "fn": 188069,
+ "fn_rate": 0.6187274025286139,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999857632490817,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998360811312127,
+ "recall": 0.38127259747138614,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115892,
+ "tp_rate": 0.38127259747138614,
+ "truth_threshold": 16.1
+ },
+ {
+ "f1": 0.5516623626609237,
+ "fn": 188177,
+ "fn_rate": 0.6190827112688799,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999859592478867,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998359282574717,
+ "recall": 0.38091728873112013,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115784,
+ "tp_rate": 0.38091728873112013,
+ "truth_threshold": 16.12
+ },
+ {
+ "f1": 0.5510203108837928,
+ "fn": 188363,
+ "fn_rate": 0.6196946318771158,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999861525483934,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998356643054223,
+ "recall": 0.3803053681228842,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115598,
+ "tp_rate": 0.3803053681228842,
+ "truth_threshold": 16.14
+ },
+ {
+ "f1": 0.5504515845993915,
+ "fn": 188528,
+ "fn_rate": 0.6202374646747445,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999863431877482,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998354294425389,
+ "recall": 0.37976253532525556,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115433,
+ "tp_rate": 0.37976253532525556,
+ "truth_threshold": 16.16
+ },
+ {
+ "f1": 0.5497483361561032,
+ "fn": 188731,
+ "fn_rate": 0.6209053135106148,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999865312025857,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998351395673715,
+ "recall": 0.37909468648938516,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115230,
+ "tp_rate": 0.37909468648938516,
+ "truth_threshold": 16.18
+ },
+ {
+ "f1": 0.5491045858948413,
+ "fn": 188917,
+ "fn_rate": 0.6215172341188507,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999867166290367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998348730695358,
+ "recall": 0.3784827658811492,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 115044,
+ "tp_rate": 0.3784827658811492,
+ "truth_threshold": 16.2
+ },
+ {
+ "f1": 0.5485434343530805,
+ "fn": 189079,
+ "fn_rate": 0.6220501972292498,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999868995027343,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998346402555244,
+ "recall": 0.3779498027707502,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114882,
+ "tp_rate": 0.3779498027707502,
+ "truth_threshold": 16.22
+ },
+ {
+ "f1": 0.5479380729233841,
+ "fn": 189254,
+ "fn_rate": 0.6226259289843105,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999870798588212,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998343880201523,
+ "recall": 0.37737407101568954,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114707,
+ "tp_rate": 0.37737407101568954,
+ "truth_threshold": 16.240000000000002
+ },
+ {
+ "f1": 0.5474384888493867,
+ "fn": 189398,
+ "fn_rate": 0.6230996739713318,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999872577319563,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998341798886387,
+ "recall": 0.37690032602866813,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114563,
+ "tp_rate": 0.37690032602866813,
+ "truth_threshold": 16.26
+ },
+ {
+ "f1": 0.5469337807542101,
+ "fn": 189543,
+ "fn_rate": 0.6235767088540964,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999874331563213,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998339697825004,
+ "recall": 0.37642329114590356,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114418,
+ "tp_rate": 0.37642329114590356,
+ "truth_threshold": 16.28
+ },
+ {
+ "f1": 0.5463896327467482,
+ "fn": 189700,
+ "fn_rate": 0.6240932224857795,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999876061656275,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998337416870844,
+ "recall": 0.3759067775142206,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114261,
+ "tp_rate": 0.3759067775142206,
+ "truth_threshold": 16.3
+ },
+ {
+ "f1": 0.5459168053881331,
+ "fn": 189836,
+ "fn_rate": 0.6245406483068552,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999877767931221,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998335435940566,
+ "recall": 0.37545935169314487,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 114125,
+ "tp_rate": 0.37545935169314487,
+ "truth_threshold": 16.32
+ },
+ {
+ "f1": 0.545457590460605,
+ "fn": 189968,
+ "fn_rate": 0.624974914544958,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999879450715947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998333508753464,
+ "recall": 0.37502508545504193,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113993,
+ "tp_rate": 0.37502508545504193,
+ "truth_threshold": 16.34
+ },
+ {
+ "f1": 0.5450398705761849,
+ "fn": 190088,
+ "fn_rate": 0.6253697020341425,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999881110333831,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998331752888702,
+ "recall": 0.37463029796585745,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113873,
+ "tp_rate": 0.37463029796585745,
+ "truth_threshold": 16.36
+ },
+ {
+ "f1": 0.5445243521728306,
+ "fn": 190236,
+ "fn_rate": 0.6258566066041367,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999882747103807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998329582219722,
+ "recall": 0.3741433933958633,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113725,
+ "tp_rate": 0.3741433933958633,
+ "truth_threshold": 16.38
+ },
+ {
+ "f1": 0.5439387262415696,
+ "fn": 190404,
+ "fn_rate": 0.626409309088995,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999884361340411,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998327111361556,
+ "recall": 0.37359069091100505,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113557,
+ "tp_rate": 0.37359069091100505,
+ "truth_threshold": 16.4
+ },
+ {
+ "f1": 0.5434106558437514,
+ "fn": 190555,
+ "fn_rate": 0.6269060833462188,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999885953353853,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998324884284769,
+ "recall": 0.3730939166537812,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113406,
+ "tp_rate": 0.3730939166537812,
+ "truth_threshold": 16.42
+ },
+ {
+ "f1": 0.5428778233692526,
+ "fn": 190708,
+ "fn_rate": 0.6274094373949289,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999887523450072,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998322621654072,
+ "recall": 0.37259056260507106,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113253,
+ "tp_rate": 0.37259056260507106,
+ "truth_threshold": 16.44
+ },
+ {
+ "f1": 0.5423140369048989,
+ "fn": 190869,
+ "fn_rate": 0.6279391106095847,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999889071930795,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999832023410632,
+ "recall": 0.3720608893904152,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 113092,
+ "tp_rate": 0.3720608893904152,
+ "truth_threshold": 16.46
+ },
+ {
+ "f1": 0.5416404799485701,
+ "fn": 191062,
+ "fn_rate": 0.6285740604880231,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999890599093596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998317363042207,
+ "recall": 0.3714259395119769,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112899,
+ "tp_rate": 0.3714259395119769,
+ "truth_threshold": 16.48
+ },
+ {
+ "f1": 0.5411037468264519,
+ "fn": 191215,
+ "fn_rate": 0.6290774145367334,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999892105231952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998315080033698,
+ "recall": 0.3709225854632667,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112746,
+ "tp_rate": 0.3709225854632667,
+ "truth_threshold": 16.5
+ },
+ {
+ "f1": 0.5405924432281914,
+ "fn": 191361,
+ "fn_rate": 0.6295577393152411,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999893590635301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998312895692556,
+ "recall": 0.3704422606847589,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112600,
+ "tp_rate": 0.3704422606847589,
+ "truth_threshold": 16.52
+ },
+ {
+ "f1": 0.5400224775224776,
+ "fn": 191524,
+ "fn_rate": 0.6300939923213833,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999895055589096,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998310450309454,
+ "recall": 0.36990600767861664,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112437,
+ "tp_rate": 0.36990600767861664,
+ "truth_threshold": 16.54
+ },
+ {
+ "f1": 0.5394003459542571,
+ "fn": 191701,
+ "fn_rate": 0.6306763038679304,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999989650037486,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998307786852394,
+ "recall": 0.36932369613206956,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112260,
+ "tp_rate": 0.36932369613206956,
+ "truth_threshold": 16.56
+ },
+ {
+ "f1": 0.5389159388803707,
+ "fn": 191839,
+ "fn_rate": 0.6311303094804925,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999897925270239,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998305704425678,
+ "recall": 0.3688696905195074,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 112122,
+ "tp_rate": 0.3688696905195074,
+ "truth_threshold": 16.580000000000002
+ },
+ {
+ "f1": 0.5384079085287867,
+ "fn": 191984,
+ "fn_rate": 0.6316073443632572,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999989933054906,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998303510839673,
+ "recall": 0.3683926556367429,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111977,
+ "tp_rate": 0.3683926556367429,
+ "truth_threshold": 16.6
+ },
+ {
+ "f1": 0.5378876789287363,
+ "fn": 192132,
+ "fn_rate": 0.6320942489332513,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999900716481379,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998301266003863,
+ "recall": 0.3679057510667487,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111829,
+ "tp_rate": 0.3679057510667487,
+ "truth_threshold": 16.62
+ },
+ {
+ "f1": 0.5374256034719181,
+ "fn": 192263,
+ "fn_rate": 0.6325252252756111,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999902083333535,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998299274058559,
+ "recall": 0.367474774724389,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111698,
+ "tp_rate": 0.367474774724389,
+ "truth_threshold": 16.64
+ },
+ {
+ "f1": 0.5367756779913934,
+ "fn": 192448,
+ "fn_rate": 0.6331338559881038,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.99999034313682,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99982964530359,
+ "recall": 0.36686614401189627,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111513,
+ "tp_rate": 0.36686614401189627,
+ "truth_threshold": 16.66
+ },
+ {
+ "f1": 0.5363551883362945,
+ "fn": 192567,
+ "fn_rate": 0.633525353581545,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999904760844428,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998294633480832,
+ "recall": 0.366474646418455,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111394,
+ "tp_rate": 0.366474646418455,
+ "truth_threshold": 16.68
+ },
+ {
+ "f1": 0.5358828629226472,
+ "fn": 192701,
+ "fn_rate": 0.6339661996111343,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999906072017711,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998292579911753,
+ "recall": 0.3660338003888657,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111260,
+ "tp_rate": 0.3660338003888657,
+ "truth_threshold": 16.7
+ },
+ {
+ "f1": 0.5353820061768546,
+ "fn": 192843,
+ "fn_rate": 0.6344333648066692,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999990736514002,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998290398337187,
+ "recall": 0.3655666351933307,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 111118,
+ "tp_rate": 0.3655666351933307,
+ "truth_threshold": 16.72
+ },
+ {
+ "f1": 0.5348666833754265,
+ "fn": 192989,
+ "fn_rate": 0.634913689585177,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999908640459861,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998288149489598,
+ "recall": 0.365086310414823,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110972,
+ "tp_rate": 0.365086310414823,
+ "truth_threshold": 16.740000000000002
+ },
+ {
+ "f1": 0.5344476800246847,
+ "fn": 193108,
+ "fn_rate": 0.6353051871786183,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999909898222314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998286312143734,
+ "recall": 0.36469481282138166,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110853,
+ "tp_rate": 0.36469481282138166,
+ "truth_threshold": 16.76
+ },
+ {
+ "f1": 0.5339175561032309,
+ "fn": 193258,
+ "fn_rate": 0.635798671540099,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999911138669091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998283990534853,
+ "recall": 0.3642013284599011,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110703,
+ "tp_rate": 0.3642013284599011,
+ "truth_threshold": 16.78
+ },
+ {
+ "f1": 0.5332336123911313,
+ "fn": 193451,
+ "fn_rate": 0.6364336214185372,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999912362038571,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998280994128238,
+ "recall": 0.36356637858146273,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110510,
+ "tp_rate": 0.36356637858146273,
+ "truth_threshold": 16.8
+ },
+ {
+ "f1": 0.5326884460920606,
+ "fn": 193605,
+ "fn_rate": 0.6369402653629906,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999913568565856,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998278595696489,
+ "recall": 0.36305973463700936,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110356,
+ "tp_rate": 0.36305973463700936,
+ "truth_threshold": 16.82
+ },
+ {
+ "f1": 0.5321641380242789,
+ "fn": 193753,
+ "fn_rate": 0.6374271699329849,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999914758482807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999827628439493,
+ "recall": 0.3625728300670152,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110208,
+ "tp_rate": 0.3625728300670152,
+ "truth_threshold": 16.84
+ },
+ {
+ "f1": 0.5317032879451671,
+ "fn": 193883,
+ "fn_rate": 0.6378548563796014,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999915932018099,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998274249071274,
+ "recall": 0.3621451436203987,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 110078,
+ "tp_rate": 0.3621451436203987,
+ "truth_threshold": 16.86
+ },
+ {
+ "f1": 0.531199567061916,
+ "fn": 194025,
+ "fn_rate": 0.6383220215751363,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999917089397252,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999827202037197,
+ "recall": 0.3616779784248637,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109936,
+ "tp_rate": 0.3616779784248637,
+ "truth_threshold": 16.88
+ },
+ {
+ "f1": 0.5305463440101321,
+ "fn": 194209,
+ "fn_rate": 0.6389273623918859,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999918230842687,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998269123903399,
+ "recall": 0.3610726376081142,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109752,
+ "tp_rate": 0.3610726376081142,
+ "truth_threshold": 16.9
+ },
+ {
+ "f1": 0.5301342307841089,
+ "fn": 194325,
+ "fn_rate": 0.6393089902980974,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999919356573761,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998267292873102,
+ "recall": 0.36069100970190254,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109636,
+ "tp_rate": 0.36069100970190254,
+ "truth_threshold": 16.92
+ },
+ {
+ "f1": 0.5294991244110334,
+ "fn": 194504,
+ "fn_rate": 0.6398978816361309,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999992046680681,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998264459790274,
+ "recall": 0.3601021183638691,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109457,
+ "tp_rate": 0.3601021183638691,
+ "truth_threshold": 16.94
+ },
+ {
+ "f1": 0.5289961673957648,
+ "fn": 194645,
+ "fn_rate": 0.6403617569359227,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999921561755195,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998262221612475,
+ "recall": 0.3596382430640773,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109316,
+ "tp_rate": 0.3596382430640773,
+ "truth_threshold": 16.96
+ },
+ {
+ "f1": 0.5285119566269726,
+ "fn": 194781,
+ "fn_rate": 0.6408091827569984,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999922641629336,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998260057326532,
+ "recall": 0.35919081724300156,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109180,
+ "tp_rate": 0.35919081724300156,
+ "truth_threshold": 16.98
+ },
+ {
+ "f1": 0.528096416345069,
+ "fn": 194898,
+ "fn_rate": 0.6411941005589533,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999992370663676,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998258191085605,
+ "recall": 0.35880589944104674,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 109063,
+ "tp_rate": 0.35880589944104674,
+ "truth_threshold": 17
+ },
+ {
+ "f1": 0.5276116113594862,
+ "fn": 195034,
+ "fn_rate": 0.641641526380029,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999924756982134,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999825601674224,
+ "recall": 0.358358473619971,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108927,
+ "tp_rate": 0.358358473619971,
+ "truth_threshold": 17.02
+ },
+ {
+ "f1": 0.5272286821705426,
+ "fn": 195141,
+ "fn_rate": 0.6419935452245519,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999925792867308,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998254302226224,
+ "recall": 0.3580064547754482,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108820,
+ "tp_rate": 0.3580064547754482,
+ "truth_threshold": 17.04
+ },
+ {
+ "f1": 0.5267053110126693,
+ "fn": 195288,
+ "fn_rate": 0.6424771598988028,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999926814491356,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998251941265226,
+ "recall": 0.35752284010119717,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108673,
+ "tp_rate": 0.35752284010119717,
+ "truth_threshold": 17.06
+ },
+ {
+ "f1": 0.5262910388426707,
+ "fn": 195404,
+ "fn_rate": 0.6428587878050145,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999927822050607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998250073681109,
+ "recall": 0.3571412121949855,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108557,
+ "tp_rate": 0.3571412121949855,
+ "truth_threshold": 17.080000000000002
+ },
+ {
+ "f1": 0.5257930445831455,
+ "fn": 195543,
+ "fn_rate": 0.6433160833133198,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999928815738692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998247830537547,
+ "recall": 0.3566839166866802,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108418,
+ "tp_rate": 0.3566839166866802,
+ "truth_threshold": 17.1
+ },
+ {
+ "f1": 0.5253544972518277,
+ "fn": 195666,
+ "fn_rate": 0.6437207404897339,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999929795746573,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998245840796204,
+ "recall": 0.3562792595102661,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108295,
+ "tp_rate": 0.3562792595102661,
+ "truth_threshold": 17.12
+ },
+ {
+ "f1": 0.5245027133551438,
+ "fn": 195904,
+ "fn_rate": 0.6445037356766165,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999930762262584,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998241977867427,
+ "recall": 0.3554962643233836,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 108057,
+ "tp_rate": 0.3554962643233836,
+ "truth_threshold": 17.14
+ },
+ {
+ "f1": 0.5240728692257645,
+ "fn": 196024,
+ "fn_rate": 0.6448985231658009,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999931715472467,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998240023713365,
+ "recall": 0.3551014768341991,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107937,
+ "tp_rate": 0.3551014768341991,
+ "truth_threshold": 17.16
+ },
+ {
+ "f1": 0.52362843377239,
+ "fn": 196148,
+ "fn_rate": 0.6453064702379582,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999932655559404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998237999851621,
+ "recall": 0.3546935297620418,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107813,
+ "tp_rate": 0.3546935297620418,
+ "truth_threshold": 17.18
+ },
+ {
+ "f1": 0.5231980800248742,
+ "fn": 196268,
+ "fn_rate": 0.6457012577271426,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999993358270406,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998236036838978,
+ "recall": 0.35429874227285735,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107693,
+ "tp_rate": 0.35429874227285735,
+ "truth_threshold": 17.2
+ },
+ {
+ "f1": 0.5227051825356712,
+ "fn": 196405,
+ "fn_rate": 0.6461519734439616,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999934497084612,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998233790378805,
+ "recall": 0.3538480265560384,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107556,
+ "tp_rate": 0.3538480265560384,
+ "truth_threshold": 17.22
+ },
+ {
+ "f1": 0.5221162354268156,
+ "fn": 196569,
+ "fn_rate": 0.646691516345847,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999935398876778,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998231093649627,
+ "recall": 0.353308483654153,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107392,
+ "tp_rate": 0.353308483654153,
+ "truth_threshold": 17.240000000000002
+ },
+ {
+ "f1": 0.5217497021421451,
+ "fn": 196671,
+ "fn_rate": 0.6470270857116538,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999936288253866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998229412258058,
+ "recall": 0.3529729142883462,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107290,
+ "tp_rate": 0.3529729142883462,
+ "truth_threshold": 17.26
+ },
+ {
+ "f1": 0.5213303109312372,
+ "fn": 196788,
+ "fn_rate": 0.6474120035136086,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999993716538679,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998227479662661,
+ "recall": 0.35258799648639133,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107173,
+ "tp_rate": 0.35258799648639133,
+ "truth_threshold": 17.28
+ },
+ {
+ "f1": 0.5208073808782311,
+ "fn": 196933,
+ "fn_rate": 0.6478890383963732,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999938030444118,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998225078703747,
+ "recall": 0.35211096160362676,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 107028,
+ "tp_rate": 0.35211096160362676,
+ "truth_threshold": 17.3
+ },
+ {
+ "f1": 0.5201641562892501,
+ "fn": 197112,
+ "fn_rate": 0.6484779297344068,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999938883592091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999822210577535,
+ "recall": 0.3515220702655933,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106849,
+ "tp_rate": 0.3515220702655933,
+ "truth_threshold": 17.32
+ },
+ {
+ "f1": 0.5197822371336329,
+ "fn": 197218,
+ "fn_rate": 0.6488266586831863,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999939724994668,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998220340570615,
+ "recall": 0.35117334131681366,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106743,
+ "tp_rate": 0.35117334131681366,
+ "truth_threshold": 17.34
+ },
+ {
+ "f1": 0.5191693135096164,
+ "fn": 197388,
+ "fn_rate": 0.649385940959531,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999940554813546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998217502251576,
+ "recall": 0.350614059040469,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106573,
+ "tp_rate": 0.350614059040469,
+ "truth_threshold": 17.36
+ },
+ {
+ "f1": 0.5186881730909799,
+ "fn": 197521,
+ "fn_rate": 0.6498234970933771,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999941373208195,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998215275364225,
+ "recall": 0.3501765029066229,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106440,
+ "tp_rate": 0.3501765029066229,
+ "truth_threshold": 17.38
+ },
+ {
+ "f1": 0.5180598957698551,
+ "fn": 197695,
+ "fn_rate": 0.6503959389526945,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999942180335896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998212353577645,
+ "recall": 0.3496040610473054,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106266,
+ "tp_rate": 0.3496040610473054,
+ "truth_threshold": 17.400000000000002
+ },
+ {
+ "f1": 0.5173804681288988,
+ "fn": 197883,
+ "fn_rate": 0.6510144393524169,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999942976351759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998209185933626,
+ "recall": 0.34898556064758307,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 106078,
+ "tp_rate": 0.34898556064758307,
+ "truth_threshold": 17.42
+ },
+ {
+ "f1": 0.5167993832581923,
+ "fn": 198044,
+ "fn_rate": 0.6515441125670728,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999943761408759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999820646428032,
+ "recall": 0.34845588743292727,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105917,
+ "tp_rate": 0.34845588743292727,
+ "truth_threshold": 17.44
+ },
+ {
+ "f1": 0.5163311922844146,
+ "fn": 198173,
+ "fn_rate": 0.651968509117946,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999994453565777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999820427759978,
+ "recall": 0.34803149088205393,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105788,
+ "tp_rate": 0.34803149088205393,
+ "truth_threshold": 17.46
+ },
+ {
+ "f1": 0.5156550612822892,
+ "fn": 198360,
+ "fn_rate": 0.6525837196219252,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999945299247582,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998201098276841,
+ "recall": 0.3474162803780748,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105601,
+ "tp_rate": 0.3474162803780748,
+ "truth_threshold": 17.48
+ },
+ {
+ "f1": 0.5151402654370136,
+ "fn": 198502,
+ "fn_rate": 0.6530508848174601,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999946052324943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998198676501261,
+ "recall": 0.34694911518253985,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105459,
+ "tp_rate": 0.34694911518253985,
+ "truth_threshold": 17.5
+ },
+ {
+ "f1": 0.514583933972821,
+ "fn": 198655,
+ "fn_rate": 0.6535542388661704,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999946795034576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998196059814859,
+ "recall": 0.3464457611338297,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105306,
+ "tp_rate": 0.3464457611338297,
+ "truth_threshold": 17.52
+ },
+ {
+ "f1": 0.5140683964569931,
+ "fn": 198797,
+ "fn_rate": 0.6540214040617053,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999947527519214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998193624445015,
+ "recall": 0.3459785959382947,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105164,
+ "tp_rate": 0.3459785959382947,
+ "truth_threshold": 17.54
+ },
+ {
+ "f1": 0.5136228057307711,
+ "fn": 198920,
+ "fn_rate": 0.6544260612381194,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999948249919623,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998191509613554,
+ "recall": 0.34557393876188064,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 105041,
+ "tp_rate": 0.34557393876188064,
+ "truth_threshold": 17.56
+ },
+ {
+ "f1": 0.5130920528084446,
+ "fn": 199066,
+ "fn_rate": 0.6549063860166271,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999948962374636,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998188992889414,
+ "recall": 0.34509361398337285,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104895,
+ "tp_rate": 0.34509361398337285,
+ "truth_threshold": 17.580000000000002
+ },
+ {
+ "f1": 0.5125851405308072,
+ "fn": 199205,
+ "fn_rate": 0.6553636815249325,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999994966502117,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998186590312574,
+ "recall": 0.34463631847506754,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104756,
+ "tp_rate": 0.34463631847506754,
+ "truth_threshold": 17.6
+ },
+ {
+ "f1": 0.512196912595319,
+ "fn": 199312,
+ "fn_rate": 0.6557157003694553,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999950357994258,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998184736500172,
+ "recall": 0.3442842996305447,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104649,
+ "tp_rate": 0.3442842996305447,
+ "truth_threshold": 17.62
+ },
+ {
+ "f1": 0.5116602445150582,
+ "fn": 199459,
+ "fn_rate": 0.6561993150437062,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999951041427074,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998182183484658,
+ "recall": 0.34380068495629373,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104502,
+ "tp_rate": 0.34380068495629373,
+ "truth_threshold": 17.64
+ },
+ {
+ "f1": 0.5110551631579463,
+ "fn": 199625,
+ "fn_rate": 0.6567454377370782,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999951715450961,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998179291840352,
+ "recall": 0.3432545622629219,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104336,
+ "tp_rate": 0.3432545622629219,
+ "truth_threshold": 17.66
+ },
+ {
+ "f1": 0.5105079795965367,
+ "fn": 199775,
+ "fn_rate": 0.6572389220985587,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999995238019545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998176670985077,
+ "recall": 0.3427610779014413,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104186,
+ "tp_rate": 0.3427610779014413,
+ "truth_threshold": 17.68
+ },
+ {
+ "f1": 0.5100042153969826,
+ "fn": 199913,
+ "fn_rate": 0.6576929277111209,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999953035788293,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999817425312539,
+ "recall": 0.3423070722888792,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 104048,
+ "tp_rate": 0.3423070722888792,
+ "truth_threshold": 17.7
+ },
+ {
+ "f1": 0.5096292446632216,
+ "fn": 200016,
+ "fn_rate": 0.6580317869726708,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999953682355479,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998172444307645,
+ "recall": 0.34196821302732916,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103945,
+ "tp_rate": 0.34196821302732916,
+ "truth_threshold": 17.72
+ },
+ {
+ "f1": 0.5090810105597708,
+ "fn": 200166,
+ "fn_rate": 0.6585252713341514,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999954320021266,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998169803687363,
+ "recall": 0.3414747286658486,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103795,
+ "tp_rate": 0.3414747286658486,
+ "truth_threshold": 17.740000000000002
+ },
+ {
+ "f1": 0.5085640550101317,
+ "fn": 200307,
+ "fn_rate": 0.6589891466339431,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999954948908198,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998167314537054,
+ "recall": 0.34101085336605685,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103654,
+ "tp_rate": 0.34101085336605685,
+ "truth_threshold": 17.76
+ },
+ {
+ "f1": 0.5079393906671051,
+ "fn": 200478,
+ "fn_rate": 0.659551718806031,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999955569137137,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998164286680451,
+ "recall": 0.34044828119396897,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103483,
+ "tp_rate": 0.34044828119396897,
+ "truth_threshold": 17.78
+ },
+ {
+ "f1": 0.5073703438184372,
+ "fn": 200633,
+ "fn_rate": 0.6600616526462276,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999956180827274,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998161533474605,
+ "recall": 0.3399383473537724,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103328,
+ "tp_rate": 0.3399383473537724,
+ "truth_threshold": 17.8
+ },
+ {
+ "f1": 0.506805778648865,
+ "fn": 200787,
+ "fn_rate": 0.6605682965906811,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999956784096167,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998158789840396,
+ "recall": 0.33943170340931894,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103174,
+ "tp_rate": 0.33943170340931894,
+ "truth_threshold": 17.82
+ },
+ {
+ "f1": 0.5062701470241371,
+ "fn": 200933,
+ "fn_rate": 0.6610486213691888,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999995737905975,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998156181160053,
+ "recall": 0.3389513786308112,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 103028,
+ "tp_rate": 0.3389513786308112,
+ "truth_threshold": 17.84
+ },
+ {
+ "f1": 0.5058149251383687,
+ "fn": 201057,
+ "fn_rate": 0.6614565684413461,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999957965832362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998153959756323,
+ "recall": 0.3385434315586539,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102904,
+ "tp_rate": 0.3385434315586539,
+ "truth_threshold": 17.86
+ },
+ {
+ "f1": 0.5053349461096688,
+ "fn": 201188,
+ "fn_rate": 0.6618875447837058,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999958544526771,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999815160712896,
+ "recall": 0.3381124552162942,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102773,
+ "tp_rate": 0.3381124552162942,
+ "truth_threshold": 17.88
+ },
+ {
+ "f1": 0.5048301099809157,
+ "fn": 201325,
+ "fn_rate": 0.6623382605005247,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999959115254188,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998149140324387,
+ "recall": 0.33766173949947526,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102636,
+ "tp_rate": 0.33766173949947526,
+ "truth_threshold": 17.900000000000002
+ },
+ {
+ "f1": 0.5043568536185749,
+ "fn": 201454,
+ "fn_rate": 0.662762657051398,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999959678124296,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998146811540487,
+ "recall": 0.33723734294860197,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102507,
+ "tp_rate": 0.33723734294860197,
+ "truth_threshold": 17.92
+ },
+ {
+ "f1": 0.5038513596653131,
+ "fn": 201591,
+ "fn_rate": 0.663213372768217,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999960233245266,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998144331910654,
+ "recall": 0.33678662723178304,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102370,
+ "tp_rate": 0.33678662723178304,
+ "truth_threshold": 17.94
+ },
+ {
+ "f1": 0.5033430819375104,
+ "fn": 201729,
+ "fn_rate": 0.6636673783807792,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999960780723782,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999814182746379,
+ "recall": 0.3363326216192209,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102232,
+ "tp_rate": 0.3363326216192209,
+ "truth_threshold": 17.96
+ },
+ {
+ "f1": 0.5028172621334358,
+ "fn": 201872,
+ "fn_rate": 0.6641378334720572,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999996132066506,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998139225134172,
+ "recall": 0.3358621665279427,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 102089,
+ "tp_rate": 0.3358621665279427,
+ "truth_threshold": 17.98
+ },
+ {
+ "f1": 0.5022197257493114,
+ "fn": 202034,
+ "fn_rate": 0.6646707965824563,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999961853172863,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999813626822043,
+ "recall": 0.3353292034175437,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101927,
+ "tp_rate": 0.3353292034175437,
+ "truth_threshold": 18
+ },
+ {
+ "f1": 0.5018580215274219,
+ "fn": 202132,
+ "fn_rate": 0.6649932063652902,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999962378349528,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998134474903778,
+ "recall": 0.3350067936347097,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101829,
+ "tp_rate": 0.3350067936347097,
+ "truth_threshold": 18.02
+ },
+ {
+ "f1": 0.5012400096636936,
+ "fn": 202299,
+ "fn_rate": 0.6655426189544054,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999962896295986,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998131410981402,
+ "recall": 0.3344573810455947,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101662,
+ "tp_rate": 0.3344573810455947,
+ "truth_threshold": 18.04
+ },
+ {
+ "f1": 0.5007669278989135,
+ "fn": 202427,
+ "fn_rate": 0.6659637256095354,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999963407111775,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998129055763986,
+ "recall": 0.33403627439046457,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101534,
+ "tp_rate": 0.33403627439046457,
+ "truth_threshold": 18.06
+ },
+ {
+ "f1": 0.5000912836454248,
+ "fn": 202610,
+ "fn_rate": 0.6665657765305417,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999963910895062,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998125678208543,
+ "recall": 0.3334342234694583,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101351,
+ "tp_rate": 0.3334342234694583,
+ "truth_threshold": 18.080000000000002
+ },
+ {
+ "f1": 0.4995236661417945,
+ "fn": 202763,
+ "fn_rate": 0.667069130579252,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999964407742665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998122844976635,
+ "recall": 0.33293086942074807,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101198,
+ "tp_rate": 0.33293086942074807,
+ "truth_threshold": 18.1
+ },
+ {
+ "f1": 0.4989654985112067,
+ "fn": 202914,
+ "fn_rate": 0.6675659048364757,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.999996489775007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998120040369659,
+ "recall": 0.3324340951635243,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 101047,
+ "tp_rate": 0.3324340951635243,
+ "truth_threshold": 18.12
+ },
+ {
+ "f1": 0.4983673610527928,
+ "fn": 203075,
+ "fn_rate": 0.6680955780511315,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999965381011445,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998117040780933,
+ "recall": 0.33190442194886843,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 100886,
+ "tp_rate": 0.33190442194886843,
+ "truth_threshold": 18.14
+ },
+ {
+ "f1": 0.4978701955862151,
+ "fn": 203209,
+ "fn_rate": 0.6685364240807209,
+ "fp": 19,
+ "fp_rate": 0.00010927767457108513,
+ "match_probability": 0.9999965857619664,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998114536920344,
+ "recall": 0.3314635759192791,
+ "row_count": 477830,
+ "tn": 173850,
+ "tn_rate": 0.9998907223254289,
+ "tp": 100752,
+ "tp_rate": 0.3314635759192791,
+ "truth_threshold": 18.16
+ },
+ {
+ "f1": 0.49744694943823003,
+ "fn": 203324,
+ "fn_rate": 0.6689147620911894,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999996632766632,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998311045760725,
+ "recall": 0.33108523790881067,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 100637,
+ "tp_rate": 0.33108523790881067,
+ "truth_threshold": 18.18
+ },
+ {
+ "f1": 0.4968599798247523,
+ "fn": 203482,
+ "fn_rate": 0.6694345656186156,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999966791241749,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998308390383697,
+ "recall": 0.33056543438138447,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 100479,
+ "tp_rate": 0.33056543438138447,
+ "truth_threshold": 18.2
+ },
+ {
+ "f1": 0.4963494261970716,
+ "fn": 203619,
+ "fn_rate": 0.6698852813354345,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999996724843504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998306081168604,
+ "recall": 0.33011471866456554,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 100342,
+ "tp_rate": 0.33011471866456554,
+ "truth_threshold": 18.22
+ },
+ {
+ "f1": 0.4956722703630938,
+ "fn": 203801,
+ "fn_rate": 0.6704840423606976,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999967699334056,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998303003683481,
+ "recall": 0.3295159576393024,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 100160,
+ "tp_rate": 0.3295159576393024,
+ "truth_threshold": 18.240000000000002
+ },
+ {
+ "f1": 0.4951211663655041,
+ "fn": 203949,
+ "fn_rate": 0.6709709469306918,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999968144025453,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998300492857072,
+ "recall": 0.32902905306930824,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 100012,
+ "tp_rate": 0.32902905306930824,
+ "truth_threshold": 18.26
+ },
+ {
+ "f1": 0.4946740287716344,
+ "fn": 204069,
+ "fn_rate": 0.6713657344198762,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999996858259469,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998298451590948,
+ "recall": 0.32863426558012376,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99892,
+ "tp_rate": 0.32863426558012376,
+ "truth_threshold": 18.28
+ },
+ {
+ "f1": 0.4941346068105934,
+ "fn": 204214,
+ "fn_rate": 0.6718427693026408,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999969015126052,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998295978509282,
+ "recall": 0.3281572306973592,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99747,
+ "tp_rate": 0.3281572306973592,
+ "truth_threshold": 18.3
+ },
+ {
+ "f1": 0.49367195242814665,
+ "fn": 204338,
+ "fn_rate": 0.672250716374798,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999969441702665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998293857888398,
+ "recall": 0.3277492836252019,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99623,
+ "tp_rate": 0.3277492836252019,
+ "truth_threshold": 18.32
+ },
+ {
+ "f1": 0.49317913688322246,
+ "fn": 204470,
+ "fn_rate": 0.672684982612901,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999969862406507,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998291594645656,
+ "recall": 0.327315017387099,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99491,
+ "tp_rate": 0.327315017387099,
+ "truth_threshold": 18.34
+ },
+ {
+ "f1": 0.4926785244983066,
+ "fn": 204604,
+ "fn_rate": 0.6731258286424903,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999970277318428,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998289290961418,
+ "recall": 0.3268741713575097,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99357,
+ "tp_rate": 0.3268741713575097,
+ "truth_threshold": 18.36
+ },
+ {
+ "f1": 0.492110262858957,
+ "fn": 204756,
+ "fn_rate": 0.6736258927954573,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999997068651817,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998286670294895,
+ "recall": 0.3263741072045427,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99205,
+ "tp_rate": 0.3263741072045427,
+ "truth_threshold": 18.38
+ },
+ {
+ "f1": 0.4915216388024594,
+ "fn": 204913,
+ "fn_rate": 0.6741424064271403,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999997109008437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998283954979054,
+ "recall": 0.32585759357285965,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 99048,
+ "tp_rate": 0.32585759357285965,
+ "truth_threshold": 18.400000000000002
+ },
+ {
+ "f1": 0.4909899623713029,
+ "fn": 205055,
+ "fn_rate": 0.6746095716226753,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999971488094587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998281491665234,
+ "recall": 0.32539042837732474,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98906,
+ "tp_rate": 0.32539042837732474,
+ "truth_threshold": 18.42
+ },
+ {
+ "f1": 0.4906427667022518,
+ "fn": 205148,
+ "fn_rate": 0.6749155319267932,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999997188062531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998279874532024,
+ "recall": 0.32508446807320673,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98813,
+ "tp_rate": 0.32508446807320673,
+ "truth_threshold": 18.44
+ },
+ {
+ "f1": 0.49033542914469047,
+ "fn": 205230,
+ "fn_rate": 0.675185303377736,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999972267751978,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998278446145745,
+ "recall": 0.32481469662226403,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98731,
+ "tp_rate": 0.32481469662226403,
+ "truth_threshold": 18.46
+ },
+ {
+ "f1": 0.48984042764596003,
+ "fn": 205362,
+ "fn_rate": 0.6756195696158389,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999972649548987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998276141802547,
+ "recall": 0.32438043038416114,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98599,
+ "tp_rate": 0.32438043038416114,
+ "truth_threshold": 18.48
+ },
+ {
+ "f1": 0.4893776680067784,
+ "fn": 205485,
+ "fn_rate": 0.6760242267922529,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999973026089712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998273989014448,
+ "recall": 0.32397577320774706,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98476,
+ "tp_rate": 0.32397577320774706,
+ "truth_threshold": 18.5
+ },
+ {
+ "f1": 0.4889696379217784,
+ "fn": 205594,
+ "fn_rate": 0.6763828254282622,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999973397446519,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998272076760449,
+ "recall": 0.32361717457173783,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98367,
+ "tp_rate": 0.32361717457173783,
+ "truth_threshold": 18.52
+ },
+ {
+ "f1": 0.4884762837693367,
+ "fn": 205725,
+ "fn_rate": 0.6768138017706219,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999973763690773,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998269772933142,
+ "recall": 0.3231861982293781,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98236,
+ "tp_rate": 0.3231861982293781,
+ "truth_threshold": 18.54
+ },
+ {
+ "f1": 0.4881455066322496,
+ "fn": 205813,
+ "fn_rate": 0.6771033125960239,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999997412489286,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998268221871339,
+ "recall": 0.32289668740397615,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98148,
+ "tp_rate": 0.32289668740397615,
+ "truth_threshold": 18.56
+ },
+ {
+ "f1": 0.4876565935979463,
+ "fn": 205943,
+ "fn_rate": 0.6775309990426404,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999974481122197,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998265925434794,
+ "recall": 0.32246900095735964,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 98018,
+ "tp_rate": 0.32246900095735964,
+ "truth_threshold": 18.580000000000002
+ },
+ {
+ "f1": 0.4872852678304835,
+ "fn": 206042,
+ "fn_rate": 0.6778566987212176,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999974832447245,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999826417252083,
+ "recall": 0.3221433012787825,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97919,
+ "tp_rate": 0.3221433012787825,
+ "truth_threshold": 18.6
+ },
+ {
+ "f1": 0.48674306537366335,
+ "fn": 206186,
+ "fn_rate": 0.6783304437082389,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999975178935521,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998261616492147,
+ "recall": 0.32166955629176114,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97775,
+ "tp_rate": 0.32166955629176114,
+ "truth_threshold": 18.62
+ },
+ {
+ "f1": 0.486290932993387,
+ "fn": 206306,
+ "fn_rate": 0.6787252311974233,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999975520653613,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999825948071095,
+ "recall": 0.32127476880257666,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97655,
+ "tp_rate": 0.32127476880257666,
+ "truth_threshold": 18.64
+ },
+ {
+ "f1": 0.485898866330617,
+ "fn": 206410,
+ "fn_rate": 0.6790673803547166,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999975857667196,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998257625450968,
+ "recall": 0.32093261964528347,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97551,
+ "tp_rate": 0.32093261964528347,
+ "truth_threshold": 18.66
+ },
+ {
+ "f1": 0.48544124681122447,
+ "fn": 206531,
+ "fn_rate": 0.6794654577396443,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999976190041034,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998255461943415,
+ "recall": 0.32053454226035577,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97430,
+ "tp_rate": 0.32053454226035577,
+ "truth_threshold": 18.68
+ },
+ {
+ "f1": 0.4848373076002871,
+ "fn": 206691,
+ "fn_rate": 0.6799918410585568,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999976517839005,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998252592843854,
+ "recall": 0.32000815894144313,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97270,
+ "tp_rate": 0.32000815894144313,
+ "truth_threshold": 18.7
+ },
+ {
+ "f1": 0.48399597031599106,
+ "fn": 206914,
+ "fn_rate": 0.6807254878092913,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999976841124106,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998248578257645,
+ "recall": 0.3192745121907087,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 97047,
+ "tp_rate": 0.3192745121907087,
+ "truth_threshold": 18.72
+ },
+ {
+ "f1": 0.483529640660311,
+ "fn": 207037,
+ "fn_rate": 0.6811301449857055,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999977159958466,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998246356030988,
+ "recall": 0.3188698550142946,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96924,
+ "tp_rate": 0.3188698550142946,
+ "truth_threshold": 18.740000000000002
+ },
+ {
+ "f1": 0.4829973051202715,
+ "fn": 207178,
+ "fn_rate": 0.6815940202854972,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999977474403359,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998243801652893,
+ "recall": 0.31840597971450285,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96783,
+ "tp_rate": 0.31840597971450285,
+ "truth_threshold": 18.76
+ },
+ {
+ "f1": 0.48238642036944585,
+ "fn": 207339,
+ "fn_rate": 0.682123693500153,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999977784519215,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998240875836878,
+ "recall": 0.317876306499847,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96622,
+ "tp_rate": 0.317876306499847,
+ "truth_threshold": 18.78
+ },
+ {
+ "f1": 0.48206813210957866,
+ "fn": 207423,
+ "fn_rate": 0.6824000447425821,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999978090365634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998239345450779,
+ "recall": 0.3175999552574179,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96538,
+ "tp_rate": 0.3175999552574179,
+ "truth_threshold": 18.8
+ },
+ {
+ "f1": 0.48156769501278773,
+ "fn": 207555,
+ "fn_rate": 0.682834310980685,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999978392001393,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998236935171069,
+ "recall": 0.31716568901931497,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96406,
+ "tp_rate": 0.31716568901931497,
+ "truth_threshold": 18.82
+ },
+ {
+ "f1": 0.48109469392242005,
+ "fn": 207680,
+ "fn_rate": 0.6832455479485855,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999978689484461,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998234646617791,
+ "recall": 0.3167544520514145,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96281,
+ "tp_rate": 0.3167544520514145,
+ "truth_threshold": 18.84
+ },
+ {
+ "f1": 0.4806999305267472,
+ "fn": 207784,
+ "fn_rate": 0.6835876971058787,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999997898287201,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998232738008608,
+ "recall": 0.3164123028941213,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96177,
+ "tp_rate": 0.3164123028941213,
+ "truth_threshold": 18.86
+ },
+ {
+ "f1": 0.4801935893525856,
+ "fn": 207917,
+ "fn_rate": 0.6840252532397249,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999979272220422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998230291169153,
+ "recall": 0.31597474676027515,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 96044,
+ "tp_rate": 0.31597474676027515,
+ "truth_threshold": 18.88
+ },
+ {
+ "f1": 0.4797831533779763,
+ "fn": 208025,
+ "fn_rate": 0.6843805619799909,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999979557585305,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998228299271519,
+ "recall": 0.31561943802000914,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95936,
+ "tp_rate": 0.31561943802000914,
+ "truth_threshold": 18.900000000000002
+ },
+ {
+ "f1": 0.4792583846954294,
+ "fn": 208163,
+ "fn_rate": 0.684834567592553,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999979839021501,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998225747534311,
+ "recall": 0.315165432407447,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95798,
+ "tp_rate": 0.315165432407447,
+ "truth_threshold": 18.92
+ },
+ {
+ "f1": 0.47877893156511947,
+ "fn": 208289,
+ "fn_rate": 0.6852490944561966,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999980116583098,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998223411259393,
+ "recall": 0.3147509055438033,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95672,
+ "tp_rate": 0.3147509055438033,
+ "truth_threshold": 18.94
+ },
+ {
+ "f1": 0.4782763229691779,
+ "fn": 208421,
+ "fn_rate": 0.6856833606942996,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999980390323437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998220957125067,
+ "recall": 0.3143166393057004,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95540,
+ "tp_rate": 0.3143166393057004,
+ "truth_threshold": 18.96
+ },
+ {
+ "f1": 0.47768952634689155,
+ "fn": 208575,
+ "fn_rate": 0.686190004638753,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999980660295127,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998218085385155,
+ "recall": 0.313809995361247,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95386,
+ "tp_rate": 0.313809995361247,
+ "truth_threshold": 18.98
+ },
+ {
+ "f1": 0.47732851117545105,
+ "fn": 208670,
+ "fn_rate": 0.6865025447343573,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999980926550052,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998216309229025,
+ "recall": 0.31349745526564265,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95291,
+ "tp_rate": 0.31349745526564265,
+ "truth_threshold": 19
+ },
+ {
+ "f1": 0.476809676999088,
+ "fn": 208806,
+ "fn_rate": 0.686949970555433,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998118913938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998213760349682,
+ "recall": 0.3130500294445669,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 95155,
+ "tp_rate": 0.3130500294445669,
+ "truth_threshold": 19.02
+ },
+ {
+ "f1": 0.47615299779426506,
+ "fn": 208978,
+ "fn_rate": 0.6875158326232642,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999981448113576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998210526315789,
+ "recall": 0.31248416737673584,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94983,
+ "tp_rate": 0.31248416737673584,
+ "truth_threshold": 19.04
+ },
+ {
+ "f1": 0.4756894995486912,
+ "fn": 209099,
+ "fn_rate": 0.6879139100081918,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999981703522411,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998208244184699,
+ "recall": 0.31208608999180815,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94862,
+ "tp_rate": 0.31208608999180815,
+ "truth_threshold": 19.06
+ },
+ {
+ "f1": 0.4751466021901289,
+ "fn": 209241,
+ "fn_rate": 0.6883810752037268,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998195541497,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998205558546291,
+ "recall": 0.31161892479627323,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94720,
+ "tp_rate": 0.31161892479627323,
+ "truth_threshold": 19.080000000000002
+ },
+ {
+ "f1": 0.47472578201049703,
+ "fn": 209351,
+ "fn_rate": 0.6887429637354793,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999982203839662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998203472581821,
+ "recall": 0.3112570362645208,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94610,
+ "tp_rate": 0.3112570362645208,
+ "truth_threshold": 19.1
+ },
+ {
+ "f1": 0.4741872173393634,
+ "fn": 209492,
+ "fn_rate": 0.689206839035271,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999982448844231,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998200791651674,
+ "recall": 0.31079316096472903,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94469,
+ "tp_rate": 0.31079316096472903,
+ "truth_threshold": 19.12
+ },
+ {
+ "f1": 0.4736228973135827,
+ "fn": 209639,
+ "fn_rate": 0.689690453709522,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998269047576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998197988106722,
+ "recall": 0.3103095462904781,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94322,
+ "tp_rate": 0.3103095462904781,
+ "truth_threshold": 19.14
+ },
+ {
+ "f1": 0.47316289115475413,
+ "fn": 209759,
+ "fn_rate": 0.6900852411987064,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999982928780689,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998195693013087,
+ "recall": 0.3099147588012936,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94202,
+ "tp_rate": 0.3099147588012936,
+ "truth_threshold": 19.16
+ },
+ {
+ "f1": 0.47260284297321337,
+ "fn": 209905,
+ "fn_rate": 0.6905655659772142,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999983163804814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99981928927535,
+ "recall": 0.3094344340227858,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 94056,
+ "tp_rate": 0.3094344340227858,
+ "truth_threshold": 19.18
+ },
+ {
+ "f1": 0.4720347034075087,
+ "fn": 210053,
+ "fn_rate": 0.6910524705472083,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999983395593304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998190045248869,
+ "recall": 0.30894752945279164,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93908,
+ "tp_rate": 0.30894752945279164,
+ "truth_threshold": 19.2
+ },
+ {
+ "f1": 0.47164290167528106,
+ "fn": 210155,
+ "fn_rate": 0.6913880399130151,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999983624190703,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998188077550281,
+ "recall": 0.3086119600869848,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93806,
+ "tp_rate": 0.3086119600869848,
+ "truth_threshold": 19.22
+ },
+ {
+ "f1": 0.4709971429721138,
+ "fn": 210323,
+ "fn_rate": 0.6919407423978734,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999983849640944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998184827291655,
+ "recall": 0.3080592576021266,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93638,
+ "tp_rate": 0.3080592576021266,
+ "truth_threshold": 19.240000000000002
+ },
+ {
+ "f1": 0.47044320103051285,
+ "fn": 210467,
+ "fn_rate": 0.6924144873848948,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999984071987357,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.99981820320604,
+ "recall": 0.30758551261510525,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93494,
+ "tp_rate": 0.30758551261510525,
+ "truth_threshold": 19.26
+ },
+ {
+ "f1": 0.470004378922785,
+ "fn": 210581,
+ "fn_rate": 0.69278953549962,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999984291272669,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998179813056094,
+ "recall": 0.30721046450038,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93380,
+ "tp_rate": 0.30721046450038,
+ "truth_threshold": 19.28
+ },
+ {
+ "f1": 0.469603830294975,
+ "fn": 210685,
+ "fn_rate": 0.6931316846569132,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999984507539025,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998177783970931,
+ "recall": 0.3068683153430868,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93276,
+ "tp_rate": 0.3068683153430868,
+ "truth_threshold": 19.3
+ },
+ {
+ "f1": 0.46915681702581974,
+ "fn": 210801,
+ "fn_rate": 0.6935133125631249,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999984720827987,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998175515416895,
+ "recall": 0.3064866874368751,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93160,
+ "tp_rate": 0.3064866874368751,
+ "truth_threshold": 19.32
+ },
+ {
+ "f1": 0.46854753388080006,
+ "fn": 210959,
+ "fn_rate": 0.6940331160905511,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999984931180547,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998172416388049,
+ "recall": 0.30596688390944893,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 93002,
+ "tp_rate": 0.30596688390944893,
+ "truth_threshold": 19.34
+ },
+ {
+ "f1": 0.4680586213500247,
+ "fn": 211086,
+ "fn_rate": 0.694450932849938,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999985138637129,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998169917753951,
+ "recall": 0.305549067150062,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92875,
+ "tp_rate": 0.305549067150062,
+ "truth_threshold": 19.36
+ },
+ {
+ "f1": 0.4676725007057305,
+ "fn": 211186,
+ "fn_rate": 0.6947799224242583,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999985343237603,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998167945512544,
+ "recall": 0.3052200775757416,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92775,
+ "tp_rate": 0.3052200775757416,
+ "truth_threshold": 19.38
+ },
+ {
+ "f1": 0.46709564200058495,
+ "fn": 211335,
+ "fn_rate": 0.6952701168899957,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998554502129,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998164998974558,
+ "recall": 0.30472988311000426,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92626,
+ "tp_rate": 0.30472988311000426,
+ "truth_threshold": 19.400000000000002
+ },
+ {
+ "f1": 0.4666239577080422,
+ "fn": 211457,
+ "fn_rate": 0.6956714841706666,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998574402697,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999816257930632,
+ "recall": 0.30432851582933335,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92504,
+ "tp_rate": 0.30432851582933335,
+ "truth_threshold": 19.42
+ },
+ {
+ "f1": 0.46600996159688335,
+ "fn": 211616,
+ "fn_rate": 0.6961945775938361,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999985940292888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999815941621013,
+ "recall": 0.3038054224061639,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92345,
+ "tp_rate": 0.3038054224061639,
+ "truth_threshold": 19.44
+ },
+ {
+ "f1": 0.4655066230514498,
+ "fn": 211746,
+ "fn_rate": 0.6966222640404526,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999986133856762,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998156821927314,
+ "recall": 0.3033777359595474,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92215,
+ "tp_rate": 0.3033777359595474,
+ "truth_threshold": 19.46
+ },
+ {
+ "f1": 0.46489442825615984,
+ "fn": 211904,
+ "fn_rate": 0.6971420675678788,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999986324755792,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998153659013402,
+ "recall": 0.3028579324321212,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 92057,
+ "tp_rate": 0.3028579324321212,
+ "truth_threshold": 19.48
+ },
+ {
+ "f1": 0.46413702506063054,
+ "fn": 212099,
+ "fn_rate": 0.6977835972378036,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999986513026666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998149740419465,
+ "recall": 0.30221640276219647,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91862,
+ "tp_rate": 0.30221640276219647,
+ "truth_threshold": 19.5
+ },
+ {
+ "f1": 0.4635831547450568,
+ "fn": 212242,
+ "fn_rate": 0.6982540523290817,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999986698705566,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998146856196041,
+ "recall": 0.30174594767091834,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91719,
+ "tp_rate": 0.30174594767091834,
+ "truth_threshold": 19.52
+ },
+ {
+ "f1": 0.46304713847273976,
+ "fn": 212380,
+ "fn_rate": 0.6987080579416438,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999986881828178,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998144064280879,
+ "recall": 0.3012919420583562,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91581,
+ "tp_rate": 0.3012919420583562,
+ "truth_threshold": 19.54
+ },
+ {
+ "f1": 0.4624434755338843,
+ "fn": 212535,
+ "fn_rate": 0.6992179917818404,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987062429692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998140918386317,
+ "recall": 0.3007820082181596,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91426,
+ "tp_rate": 0.3007820082181596,
+ "truth_threshold": 19.56
+ },
+ {
+ "f1": 0.46194557726752955,
+ "fn": 212663,
+ "fn_rate": 0.6996390984369706,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987240544819,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998138312434978,
+ "recall": 0.30036090156302947,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91298,
+ "tp_rate": 0.30036090156302947,
+ "truth_threshold": 19.580000000000002
+ },
+ {
+ "f1": 0.46158751366452083,
+ "fn": 212755,
+ "fn_rate": 0.6999417688453453,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987416207787,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998136434890323,
+ "recall": 0.3000582311546547,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91206,
+ "tp_rate": 0.3000582311546547,
+ "truth_threshold": 19.6
+ },
+ {
+ "f1": 0.46091764300831367,
+ "fn": 212927,
+ "fn_rate": 0.7005076309131764,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987589452358,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998132914520433,
+ "recall": 0.29949236908682364,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 91034,
+ "tp_rate": 0.29949236908682364,
+ "truth_threshold": 19.62
+ },
+ {
+ "f1": 0.46034857394660467,
+ "fn": 213073,
+ "fn_rate": 0.7009879556916842,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987760311826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998129915846213,
+ "recall": 0.29901204430831585,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90888,
+ "tp_rate": 0.29901204430831585,
+ "truth_threshold": 19.64
+ },
+ {
+ "f1": 0.45987272764120546,
+ "fn": 213195,
+ "fn_rate": 0.701389322972355,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999987928819026,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998127402707555,
+ "recall": 0.298610677027645,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90766,
+ "tp_rate": 0.298610677027645,
+ "truth_threshold": 19.66
+ },
+ {
+ "f1": 0.45945124114373753,
+ "fn": 213303,
+ "fn_rate": 0.701744631712621,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988095006345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999812517231872,
+ "recall": 0.298255368287379,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90658,
+ "tp_rate": 0.298255368287379,
+ "truth_threshold": 19.68
+ },
+ {
+ "f1": 0.45878732260828564,
+ "fn": 213473,
+ "fn_rate": 0.7023039139889657,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988258905718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998121650737528,
+ "recall": 0.2976960860110343,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90488,
+ "tp_rate": 0.2976960860110343,
+ "truth_threshold": 19.7
+ },
+ {
+ "f1": 0.45823231657215896,
+ "fn": 213615,
+ "fn_rate": 0.7027710791845007,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988420548644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998118699025044,
+ "recall": 0.29722892081549934,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90346,
+ "tp_rate": 0.29722892081549934,
+ "truth_threshold": 19.72
+ },
+ {
+ "f1": 0.4576769106656316,
+ "fn": 213757,
+ "fn_rate": 0.7032382443800356,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988579966191,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115738021082,
+ "recall": 0.29676175561996443,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90204,
+ "tp_rate": 0.29676175561996443,
+ "truth_threshold": 19.740000000000002
+ },
+ {
+ "f1": 0.45730119821561793,
+ "fn": 213853,
+ "fn_rate": 0.7035540743713832,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988737188994,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998113730929264,
+ "recall": 0.2964459256286168,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 90108,
+ "tp_rate": 0.2964459256286168,
+ "truth_threshold": 19.76
+ },
+ {
+ "f1": 0.4568548018640919,
+ "fn": 213967,
+ "fn_rate": 0.7039291224861084,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999988892247269,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998111341947096,
+ "recall": 0.2960708775138916,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89994,
+ "tp_rate": 0.2960708775138916,
+ "truth_threshold": 19.78
+ },
+ {
+ "f1": 0.4560761049541359,
+ "fn": 214166,
+ "fn_rate": 0.704583811739006,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989045170816,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998107157172761,
+ "recall": 0.29541618826099403,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89795,
+ "tp_rate": 0.29541618826099403,
+ "truth_threshold": 19.8
+ },
+ {
+ "f1": 0.45556622514873923,
+ "fn": 214296,
+ "fn_rate": 0.7050114981856225,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989195989024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998104413371691,
+ "recall": 0.2949885018143775,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89665,
+ "tp_rate": 0.2949885018143775,
+ "truth_threshold": 19.82
+ },
+ {
+ "f1": 0.4551922510087715,
+ "fn": 214391,
+ "fn_rate": 0.7053240382812269,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989344730877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998102403250472,
+ "recall": 0.29467596171877314,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89570,
+ "tp_rate": 0.29467596171877314,
+ "truth_threshold": 19.84
+ },
+ {
+ "f1": 0.4546397360487639,
+ "fn": 214532,
+ "fn_rate": 0.7057879135810187,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989491424962,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998099411935693,
+ "recall": 0.2942120864189814,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89429,
+ "tp_rate": 0.2942120864189814,
+ "truth_threshold": 19.86
+ },
+ {
+ "f1": 0.45417607453062386,
+ "fn": 214650,
+ "fn_rate": 0.7061761212787167,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999998963609947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999809690130754,
+ "recall": 0.29382387872128335,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89311,
+ "tp_rate": 0.29382387872128335,
+ "truth_threshold": 19.88
+ },
+ {
+ "f1": 0.4536649387777942,
+ "fn": 214780,
+ "fn_rate": 0.7066038077253332,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989778782205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998094127671024,
+ "recall": 0.2933961922746668,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89181,
+ "tp_rate": 0.2933961922746668,
+ "truth_threshold": 19.900000000000002
+ },
+ {
+ "f1": 0.4532821794017229,
+ "fn": 214877,
+ "fn_rate": 0.7069229276124239,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999989919500589,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998092052838913,
+ "recall": 0.293077072387576,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 89084,
+ "tp_rate": 0.293077072387576,
+ "truth_threshold": 19.92
+ },
+ {
+ "f1": 0.4529409070320174,
+ "fn": 214964,
+ "fn_rate": 0.7072091485420827,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990058281665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998090188060305,
+ "recall": 0.2927908514579173,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88997,
+ "tp_rate": 0.2927908514579173,
+ "truth_threshold": 19.94
+ },
+ {
+ "f1": 0.45247113446148207,
+ "fn": 215083,
+ "fn_rate": 0.707600646135524,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990195152105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998087631475336,
+ "recall": 0.292399353864476,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88878,
+ "tp_rate": 0.292399353864476,
+ "truth_threshold": 19.96
+ },
+ {
+ "f1": 0.4520349133277657,
+ "fn": 215194,
+ "fn_rate": 0.7079658245630196,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990330138213,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998085240583889,
+ "recall": 0.2920341754369804,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88767,
+ "tp_rate": 0.2920341754369804,
+ "truth_threshold": 19.98
+ },
+ {
+ "f1": 0.4515302483851906,
+ "fn": 215322,
+ "fn_rate": 0.7083869312181497,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990463265931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998082476087349,
+ "recall": 0.2916130687818503,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88639,
+ "tp_rate": 0.2916130687818503,
+ "truth_threshold": 20
+ },
+ {
+ "f1": 0.45087806916514633,
+ "fn": 215487,
+ "fn_rate": 0.7089297640157783,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990594560844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998078900679165,
+ "recall": 0.29107023598422166,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88474,
+ "tp_rate": 0.29107023598422166,
+ "truth_threshold": 20.02
+ },
+ {
+ "f1": 0.4503094507376857,
+ "fn": 215631,
+ "fn_rate": 0.7094035090027997,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990724048183,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998075769409261,
+ "recall": 0.2905964909972003,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88330,
+ "tp_rate": 0.2905964909972003,
+ "truth_threshold": 20.04
+ },
+ {
+ "f1": 0.4498906175899154,
+ "fn": 215737,
+ "fn_rate": 0.7097522379515793,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990851752837,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998073457916388,
+ "recall": 0.2902477620484207,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88224,
+ "tp_rate": 0.2902477620484207,
+ "truth_threshold": 20.06
+ },
+ {
+ "f1": 0.449294732814692,
+ "fn": 215888,
+ "fn_rate": 0.7102490122088031,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999990977699345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998070155522761,
+ "recall": 0.2897509877911969,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 88073,
+ "tp_rate": 0.2897509877911969,
+ "truth_threshold": 20.080000000000002
+ },
+ {
+ "f1": 0.4486723450729024,
+ "fn": 216045,
+ "fn_rate": 0.7107655258404861,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991101911914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998066709881387,
+ "recall": 0.28923447415951387,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87916,
+ "tp_rate": 0.28923447415951387,
+ "truth_threshold": 20.1
+ },
+ {
+ "f1": 0.4480675958543932,
+ "fn": 216198,
+ "fn_rate": 0.7112688798891963,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991224414414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998063340168604,
+ "recall": 0.2887311201108037,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87763,
+ "tp_rate": 0.2887311201108037,
+ "truth_threshold": 20.12
+ },
+ {
+ "f1": 0.44762376541003196,
+ "fn": 216310,
+ "fn_rate": 0.7116373482124352,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999999134523039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998060865994434,
+ "recall": 0.28836265178756487,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87651,
+ "tp_rate": 0.28836265178756487,
+ "truth_threshold": 20.14
+ },
+ {
+ "f1": 0.44707937837810224,
+ "fn": 216447,
+ "fn_rate": 0.7120880639292541,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991464383059,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998057830939896,
+ "recall": 0.28791193607074594,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87514,
+ "tp_rate": 0.28791193607074594,
+ "truth_threshold": 20.16
+ },
+ {
+ "f1": 0.44663498390311207,
+ "fn": 216559,
+ "fn_rate": 0.712456532252493,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991581895321,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998055342660063,
+ "recall": 0.2875434677475071,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87402,
+ "tp_rate": 0.2875434677475071,
+ "truth_threshold": 20.18
+ },
+ {
+ "f1": 0.4461954465992619,
+ "fn": 216670,
+ "fn_rate": 0.7128217106799886,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.999999169778976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998052870298254,
+ "recall": 0.28717828932001144,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87291,
+ "tp_rate": 0.28717828932001144,
+ "truth_threshold": 20.2
+ },
+ {
+ "f1": 0.44568980063506347,
+ "fn": 216797,
+ "fn_rate": 0.7132395274393755,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991812088648,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998050033837648,
+ "recall": 0.28676047256062454,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87164,
+ "tp_rate": 0.28676047256062454,
+ "truth_threshold": 20.22
+ },
+ {
+ "f1": 0.4452894844517185,
+ "fn": 216898,
+ "fn_rate": 0.713571806909439,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999991924813951,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998047772163527,
+ "recall": 0.28642819309056095,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 87063,
+ "tp_rate": 0.28642819309056095,
+ "truth_threshold": 20.240000000000002
+ },
+ {
+ "f1": 0.4447434664265395,
+ "fn": 217035,
+ "fn_rate": 0.714022522626258,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992035987335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999804469595022,
+ "recall": 0.285977477373742,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86926,
+ "tp_rate": 0.285977477373742,
+ "truth_threshold": 20.26
+ },
+ {
+ "f1": 0.44438530861228104,
+ "fn": 217125,
+ "fn_rate": 0.7143186132431463,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992145630165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998042669798395,
+ "recall": 0.2856813867568537,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86836,
+ "tp_rate": 0.2856813867568537,
+ "truth_threshold": 20.28
+ },
+ {
+ "f1": 0.4439871619650179,
+ "fn": 217225,
+ "fn_rate": 0.7146476028174668,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992253763512,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998040413588003,
+ "recall": 0.2853523971825333,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86736,
+ "tp_rate": 0.2853523971825333,
+ "truth_threshold": 20.3
+ },
+ {
+ "f1": 0.4434931769886582,
+ "fn": 217349,
+ "fn_rate": 0.7150555498896239,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992360408158,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998037608652991,
+ "recall": 0.284944450110376,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86612,
+ "tp_rate": 0.284944450110376,
+ "truth_threshold": 20.32
+ },
+ {
+ "f1": 0.4429749526199867,
+ "fn": 217479,
+ "fn_rate": 0.7154832363362406,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992465584596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998034659360224,
+ "recall": 0.2845167636637595,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86482,
+ "tp_rate": 0.2845167636637595,
+ "truth_threshold": 20.34
+ },
+ {
+ "f1": 0.442568104150549,
+ "fn": 217581,
+ "fn_rate": 0.7158188057020473,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992569313043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998032339085848,
+ "recall": 0.2841811942979527,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86380,
+ "tp_rate": 0.2841811942979527,
+ "truth_threshold": 20.36
+ },
+ {
+ "f1": 0.4420543887163402,
+ "fn": 217710,
+ "fn_rate": 0.7162432022529206,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992671613431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998029396763574,
+ "recall": 0.2837567977470794,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86251,
+ "tp_rate": 0.2837567977470794,
+ "truth_threshold": 20.38
+ },
+ {
+ "f1": 0.44158600607005166,
+ "fn": 217827,
+ "fn_rate": 0.7166281200548754,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992772505422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998026720525589,
+ "recall": 0.2833718799451245,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86134,
+ "tp_rate": 0.2833718799451245,
+ "truth_threshold": 20.400000000000002
+ },
+ {
+ "f1": 0.44105564929303703,
+ "fn": 217960,
+ "fn_rate": 0.7170656761887216,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992872008404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998023669464531,
+ "recall": 0.2829343238112784,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 86001,
+ "tp_rate": 0.2829343238112784,
+ "truth_threshold": 20.42
+ },
+ {
+ "f1": 0.4405466689923356,
+ "fn": 218087,
+ "fn_rate": 0.7174834929481084,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999992970141501,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998020747226135,
+ "recall": 0.2825165070518915,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 85874,
+ "tp_rate": 0.2825165070518915,
+ "truth_threshold": 20.44
+ },
+ {
+ "f1": 0.440023606691984,
+ "fn": 218218,
+ "fn_rate": 0.7179144692904682,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999993066923574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998017723880597,
+ "recall": 0.2820855307095318,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 85743,
+ "tp_rate": 0.2820855307095318,
+ "truth_threshold": 20.46
+ },
+ {
+ "f1": 0.43949505631590297,
+ "fn": 218350,
+ "fn_rate": 0.7183487355285711,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999993162373221,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999801466809922,
+ "recall": 0.2816512644714289,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 85611,
+ "tp_rate": 0.2816512644714289,
+ "truth_threshold": 20.48
+ },
+ {
+ "f1": 0.4388086837280249,
+ "fn": 218521,
+ "fn_rate": 0.7189113077006589,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999993256508786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998010695437471,
+ "recall": 0.281088692299341,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 85440,
+ "tp_rate": 0.281088692299341,
+ "truth_threshold": 20.5
+ },
+ {
+ "f1": 0.4382391927578376,
+ "fn": 218663,
+ "fn_rate": 0.7193784728961939,
+ "fp": 17,
+ "fp_rate": 0.00009777476145833932,
+ "match_probability": 0.9999993349348361,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998007384398993,
+ "recall": 0.28062152710380606,
+ "row_count": 477830,
+ "tn": 173852,
+ "tn_rate": 0.9999022252385417,
+ "tp": 85298,
+ "tp_rate": 0.28062152710380606,
+ "truth_threshold": 20.52
+ },
+ {
+ "f1": 0.43748168785307107,
+ "fn": 218852,
+ "fn_rate": 0.7200002631916594,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993440909787,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998120411160059,
+ "recall": 0.27999973680834056,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 85109,
+ "tp_rate": 0.27999973680834056,
+ "truth_threshold": 20.54
+ },
+ {
+ "f1": 0.436988703266643,
+ "fn": 218975,
+ "fn_rate": 0.7204049203680736,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993531210661,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998117691348439,
+ "recall": 0.2795950796319265,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84986,
+ "tp_rate": 0.2795950796319265,
+ "truth_threshold": 20.56
+ },
+ {
+ "f1": 0.4366350025972423,
+ "fn": 219063,
+ "fn_rate": 0.7206944311934754,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993620268339,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998115740631698,
+ "recall": 0.2793055688065245,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84898,
+ "tp_rate": 0.2793055688065245,
+ "truth_threshold": 20.580000000000002
+ },
+ {
+ "f1": 0.4360075941942488,
+ "fn": 219219,
+ "fn_rate": 0.7212076549294153,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993708099935,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998112272587838,
+ "recall": 0.2787923450705847,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84742,
+ "tp_rate": 0.2787923450705847,
+ "truth_threshold": 20.6
+ },
+ {
+ "f1": 0.43553558653841207,
+ "fn": 219336,
+ "fn_rate": 0.7215925727313701,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993794722328,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998109663165605,
+ "recall": 0.2784074272686299,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84625,
+ "tp_rate": 0.2784074272686299,
+ "truth_threshold": 20.62
+ },
+ {
+ "f1": 0.4349688513617876,
+ "fn": 219477,
+ "fn_rate": 0.7220564480311619,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999993880152168,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998106508875739,
+ "recall": 0.27794355196883813,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84484,
+ "tp_rate": 0.27794355196883813,
+ "truth_threshold": 20.64
+ },
+ {
+ "f1": 0.43439140086218,
+ "fn": 219620,
+ "fn_rate": 0.7225269031224401,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999396440587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998103299074173,
+ "recall": 0.27747309687755994,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84341,
+ "tp_rate": 0.27747309687755994,
+ "truth_threshold": 20.66
+ },
+ {
+ "f1": 0.4338025411415558,
+ "fn": 219766,
+ "fn_rate": 0.7230072279009478,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994047499629,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999810001068744,
+ "recall": 0.27699277209905215,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84195,
+ "tp_rate": 0.27699277209905215,
+ "truth_threshold": 20.68
+ },
+ {
+ "f1": 0.4333475923702127,
+ "fn": 219879,
+ "fn_rate": 0.7233789861199299,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994129449412,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998097457727889,
+ "recall": 0.27662101388007015,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 84082,
+ "tp_rate": 0.27662101388007015,
+ "truth_threshold": 20.7
+ },
+ {
+ "f1": 0.4327498646593282,
+ "fn": 220027,
+ "fn_rate": 0.723865890689924,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999421027097,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998094103633115,
+ "recall": 0.276134109310076,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83934,
+ "tp_rate": 0.276134109310076,
+ "truth_threshold": 20.72
+ },
+ {
+ "f1": 0.4321950414416645,
+ "fn": 220164,
+ "fn_rate": 0.724316606406743,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994289979836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999809098827151,
+ "recall": 0.27568339359325705,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83797,
+ "tp_rate": 0.27568339359325705,
+ "truth_threshold": 20.740000000000002
+ },
+ {
+ "f1": 0.43166926355109325,
+ "fn": 220294,
+ "fn_rate": 0.7247442928533595,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994368591326,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998088022656931,
+ "recall": 0.27525570714664055,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83667,
+ "tp_rate": 0.27525570714664055,
+ "truth_threshold": 20.76
+ },
+ {
+ "f1": 0.43116448784314537,
+ "fn": 220419,
+ "fn_rate": 0.72515552982126,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999444612055,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998085162402164,
+ "recall": 0.27484447017874003,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83542,
+ "tp_rate": 0.27484447017874003,
+ "truth_threshold": 20.78
+ },
+ {
+ "f1": 0.43064611889826787,
+ "fn": 220547,
+ "fn_rate": 0.72557663647639,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994522582408,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998082224619441,
+ "recall": 0.27442336352360996,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83414,
+ "tp_rate": 0.27442336352360996,
+ "truth_threshold": 20.8
+ },
+ {
+ "f1": 0.43013551479094364,
+ "fn": 220673,
+ "fn_rate": 0.7259911633400338,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994597991594,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999807932392202,
+ "recall": 0.2740088366599662,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83288,
+ "tp_rate": 0.2740088366599662,
+ "truth_threshold": 20.82
+ },
+ {
+ "f1": 0.42960023971151956,
+ "fn": 220805,
+ "fn_rate": 0.7264254295781367,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.99999946723626,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998076275669696,
+ "recall": 0.27357457042186334,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83156,
+ "tp_rate": 0.27357457042186334,
+ "truth_threshold": 20.84
+ },
+ {
+ "f1": 0.42910002325521307,
+ "fn": 220928,
+ "fn_rate": 0.7268300867545507,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999474570972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998073426531325,
+ "recall": 0.27316991324544926,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 83033,
+ "tp_rate": 0.27316991324544926,
+ "truth_threshold": 20.86
+ },
+ {
+ "f1": 0.4286290301736393,
+ "fn": 221044,
+ "fn_rate": 0.7272117146607624,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999481804705,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998070731795545,
+ "recall": 0.2727882853392376,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82917,
+ "tp_rate": 0.2727882853392376,
+ "truth_threshold": 20.88
+ },
+ {
+ "f1": 0.4281171141356058,
+ "fn": 221170,
+ "fn_rate": 0.7276262415244061,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999488938849,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998067796200805,
+ "recall": 0.2723737584755939,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82791,
+ "tp_rate": 0.2723737584755939,
+ "truth_threshold": 20.900000000000002
+ },
+ {
+ "f1": 0.42756123425497244,
+ "fn": 221307,
+ "fn_rate": 0.728076957241225,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999994959747754,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999806459416959,
+ "recall": 0.271923042758775,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82654,
+ "tp_rate": 0.271923042758775,
+ "truth_threshold": 20.92
+ },
+ {
+ "f1": 0.42711669710909084,
+ "fn": 221416,
+ "fn_rate": 0.7284355558772343,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995029138362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998062038977241,
+ "recall": 0.27156444412276576,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82545,
+ "tp_rate": 0.27156444412276576,
+ "truth_threshold": 20.94
+ },
+ {
+ "f1": 0.4266496897046112,
+ "fn": 221531,
+ "fn_rate": 0.7288138938877027,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999509757365,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999805933580768,
+ "recall": 0.2711861061122973,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82430,
+ "tp_rate": 0.2711861061122973,
+ "truth_threshold": 20.96
+ },
+ {
+ "f1": 0.42618019529268014,
+ "fn": 221646,
+ "fn_rate": 0.7291922318981712,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995165066768,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998056625086541,
+ "recall": 0.2708077681018288,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82315,
+ "tp_rate": 0.2708077681018288,
+ "truth_threshold": 20.98
+ },
+ {
+ "f1": 0.4257563673651175,
+ "fn": 221750,
+ "fn_rate": 0.7295343810554643,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995231630692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998054167122721,
+ "recall": 0.27046561894453564,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82211,
+ "tp_rate": 0.27046561894453564,
+ "truth_threshold": 21
+ },
+ {
+ "f1": 0.4252967047768044,
+ "fn": 221863,
+ "fn_rate": 0.7299061392744464,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999529727821,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998051489392795,
+ "recall": 0.2700938607255536,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82098,
+ "tp_rate": 0.2700938607255536,
+ "truth_threshold": 21.02
+ },
+ {
+ "f1": 0.42489986475913133,
+ "fn": 221960,
+ "fn_rate": 0.7302252591615371,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995362021941,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998049184925076,
+ "recall": 0.2697747408384628,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 82001,
+ "tp_rate": 0.2697747408384628,
+ "truth_threshold": 21.04
+ },
+ {
+ "f1": 0.42454883749857475,
+ "fn": 222046,
+ "fn_rate": 0.7305081901954527,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995425874326,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998047137225227,
+ "recall": 0.2694918098045473,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81915,
+ "tp_rate": 0.2694918098045473,
+ "truth_threshold": 21.06
+ },
+ {
+ "f1": 0.42404761411003505,
+ "fn": 222169,
+ "fn_rate": 0.7309128473718668,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995488847637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998044201056131,
+ "recall": 0.2690871526281332,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81792,
+ "tp_rate": 0.2690871526281332,
+ "truth_threshold": 21.080000000000002
+ },
+ {
+ "f1": 0.42353569613425857,
+ "fn": 222294,
+ "fn_rate": 0.7313240843397673,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995550953977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998041208084913,
+ "recall": 0.26867591566023274,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81667,
+ "tp_rate": 0.26867591566023274,
+ "truth_threshold": 21.1
+ },
+ {
+ "f1": 0.42313498259611043,
+ "fn": 222392,
+ "fn_rate": 0.7316464941226013,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995612205282,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998038855181712,
+ "recall": 0.26835350587739876,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81569,
+ "tp_rate": 0.26835350587739876,
+ "truth_threshold": 21.12
+ },
+ {
+ "f1": 0.4224527606661512,
+ "fn": 222559,
+ "fn_rate": 0.7321959067117163,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995672613322,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998034832592302,
+ "recall": 0.2678040932882837,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81402,
+ "tp_rate": 0.2678040932882837,
+ "truth_threshold": 21.14
+ },
+ {
+ "f1": 0.42187946152767897,
+ "fn": 222699,
+ "fn_rate": 0.7326564921157649,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995732189708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998031447624204,
+ "recall": 0.26734350788423517,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81262,
+ "tp_rate": 0.26734350788423517,
+ "truth_threshold": 21.16
+ },
+ {
+ "f1": 0.4213385405576646,
+ "fn": 222831,
+ "fn_rate": 0.7330907583538677,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995790945889,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998028245384862,
+ "recall": 0.2669092416461322,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81130,
+ "tp_rate": 0.2669092416461322,
+ "truth_threshold": 21.18
+ },
+ {
+ "f1": 0.4208330735822787,
+ "fn": 222954,
+ "fn_rate": 0.7334954155302819,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995848893156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998025252088913,
+ "recall": 0.26650458446971814,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 81007,
+ "tp_rate": 0.26650458446971814,
+ "truth_threshold": 21.2
+ },
+ {
+ "f1": 0.42011600590424314,
+ "fn": 223129,
+ "fn_rate": 0.7340711472853425,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995906042648,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998020977637048,
+ "recall": 0.2659288527146575,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80832,
+ "tp_rate": 0.2659288527146575,
+ "truth_threshold": 21.22
+ },
+ {
+ "f1": 0.4197001362072013,
+ "fn": 223230,
+ "fn_rate": 0.7344034267554062,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999995962405346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998018502235377,
+ "recall": 0.2655965732445939,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80731,
+ "tp_rate": 0.2655965732445939,
+ "truth_threshold": 21.240000000000002
+ },
+ {
+ "f1": 0.4193139095300743,
+ "fn": 223324,
+ "fn_rate": 0.7347126769552673,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996017992082,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998016192826057,
+ "recall": 0.26528732304473274,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80637,
+ "tp_rate": 0.26528732304473274,
+ "truth_threshold": 21.26
+ },
+ {
+ "f1": 0.41872707883579996,
+ "fn": 223467,
+ "fn_rate": 0.7351831320465454,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996072813541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998012669233636,
+ "recall": 0.26481686795345455,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80494,
+ "tp_rate": 0.26481686795345455,
+ "truth_threshold": 21.28
+ },
+ {
+ "f1": 0.4183598607635113,
+ "fn": 223556,
+ "fn_rate": 0.7354759327676906,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996126880256,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999801046990214,
+ "recall": 0.2645240672323094,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80405,
+ "tp_rate": 0.2645240672323094,
+ "truth_threshold": 21.3
+ },
+ {
+ "f1": 0.41790407786192,
+ "fn": 223667,
+ "fn_rate": 0.7358411111951862,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996180202619,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998007720084672,
+ "recall": 0.26415888880481375,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80294,
+ "tp_rate": 0.26415888880481375,
+ "truth_threshold": 21.32
+ },
+ {
+ "f1": 0.4175252096684349,
+ "fn": 223759,
+ "fn_rate": 0.736143781603561,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996232790879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999800543518911,
+ "recall": 0.263856218396439,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80202,
+ "tp_rate": 0.263856218396439,
+ "truth_threshold": 21.34
+ },
+ {
+ "f1": 0.41709670532241183,
+ "fn": 223863,
+ "fn_rate": 0.7364859307608542,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999628465514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9998002845944529,
+ "recall": 0.26351406923914583,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 80098,
+ "tp_rate": 0.26351406923914583,
+ "truth_threshold": 21.36
+ },
+ {
+ "f1": 0.4165030083608991,
+ "fn": 224007,
+ "fn_rate": 0.7369596757478756,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996335805373,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997999249718644,
+ "recall": 0.2630403242521244,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79954,
+ "tp_rate": 0.2630403242521244,
+ "truth_threshold": 21.38
+ },
+ {
+ "f1": 0.4159036546408676,
+ "fn": 224152,
+ "fn_rate": 0.7374367106306401,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996386251405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997995615408707,
+ "recall": 0.2625632893693599,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79809,
+ "tp_rate": 0.2625632893693599,
+ "truth_threshold": 21.400000000000002
+ },
+ {
+ "f1": 0.4154547065753396,
+ "fn": 224261,
+ "fn_rate": 0.7377953092666494,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996436002931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997992874705204,
+ "recall": 0.2622046907333507,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79700,
+ "tp_rate": 0.2622046907333507,
+ "truth_threshold": 21.42
+ },
+ {
+ "f1": 0.4149868079381798,
+ "fn": 224374,
+ "fn_rate": 0.7381670674856314,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996485069516,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997990025501552,
+ "recall": 0.2618329325143686,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79587,
+ "tp_rate": 0.2618329325143686,
+ "truth_threshold": 21.44
+ },
+ {
+ "f1": 0.41457041375677384,
+ "fn": 224475,
+ "fn_rate": 0.738499346955695,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996533460586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997987472013282,
+ "recall": 0.26150065304430503,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79486,
+ "tp_rate": 0.26150065304430503,
+ "truth_threshold": 21.46
+ },
+ {
+ "f1": 0.41412681684909064,
+ "fn": 224582,
+ "fn_rate": 0.7388513658002178,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996581185442,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997984759745576,
+ "recall": 0.2611486341997822,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79379,
+ "tp_rate": 0.2611486341997822,
+ "truth_threshold": 21.48
+ },
+ {
+ "f1": 0.41359406720838354,
+ "fn": 224711,
+ "fn_rate": 0.739275762351091,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996628253256,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997981480079732,
+ "recall": 0.2607242376489089,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79250,
+ "tp_rate": 0.2607242376489089,
+ "truth_threshold": 21.5
+ },
+ {
+ "f1": 0.4129179458262849,
+ "fn": 224874,
+ "fn_rate": 0.7398120153572333,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996674673074,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997977320708443,
+ "recall": 0.26018798464276666,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 79087,
+ "tp_rate": 0.26018798464276666,
+ "truth_threshold": 21.52
+ },
+ {
+ "f1": 0.4123346268952946,
+ "fn": 225015,
+ "fn_rate": 0.740275890657025,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996720453818,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997973708872623,
+ "recall": 0.2597241093429749,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78946,
+ "tp_rate": 0.2597241093429749,
+ "truth_threshold": 21.54
+ },
+ {
+ "f1": 0.41183692875167843,
+ "fn": 225135,
+ "fn_rate": 0.7406706781462096,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996765604284,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997970624793892,
+ "recall": 0.25932932185379043,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78826,
+ "tp_rate": 0.25932932185379043,
+ "truth_threshold": 21.56
+ },
+ {
+ "f1": 0.41132231275380343,
+ "fn": 225259,
+ "fn_rate": 0.7410786252183669,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996810133152,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997967428034249,
+ "recall": 0.2589213747816332,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78702,
+ "tp_rate": 0.2589213747816332,
+ "truth_threshold": 21.580000000000002
+ },
+ {
+ "f1": 0.41084059577271137,
+ "fn": 225375,
+ "fn_rate": 0.7414602531245785,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996854048978,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997964428386046,
+ "recall": 0.25853974687542153,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78586,
+ "tp_rate": 0.25853974687542153,
+ "truth_threshold": 21.6
+ },
+ {
+ "f1": 0.4103003932725295,
+ "fn": 225505,
+ "fn_rate": 0.741887939571195,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996897360202,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997961056172903,
+ "recall": 0.258112060428805,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78456,
+ "tp_rate": 0.258112060428805,
+ "truth_threshold": 21.62
+ },
+ {
+ "f1": 0.40990955646574495,
+ "fn": 225599,
+ "fn_rate": 0.7421971897710562,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996940075148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997958610834673,
+ "recall": 0.25780281022894386,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78362,
+ "tp_rate": 0.25780281022894386,
+ "truth_threshold": 21.64
+ },
+ {
+ "f1": 0.4093468409540455,
+ "fn": 225734,
+ "fn_rate": 0.7426413256963886,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999996982202024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997955088634127,
+ "recall": 0.2573586743036113,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78227,
+ "tp_rate": 0.2573586743036113,
+ "truth_threshold": 21.66
+ },
+ {
+ "f1": 0.40897742558503486,
+ "fn": 225823,
+ "fn_rate": 0.7429341264175339,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997023748929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997952759935512,
+ "recall": 0.2570658735824662,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78138,
+ "tp_rate": 0.2570658735824662,
+ "truth_threshold": 21.68
+ },
+ {
+ "f1": 0.40852761474950655,
+ "fn": 225931,
+ "fn_rate": 0.7432894351577999,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997064723845,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997949926966149,
+ "recall": 0.2567105648422002,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 78030,
+ "tp_rate": 0.2567105648422002,
+ "truth_threshold": 21.7
+ },
+ {
+ "f1": 0.4079941761504983,
+ "fn": 226059,
+ "fn_rate": 0.74371054181293,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997105134647,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997946559203265,
+ "recall": 0.25628945818707005,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77902,
+ "tp_rate": 0.25628945818707005,
+ "truth_threshold": 21.72
+ },
+ {
+ "f1": 0.40748017058016117,
+ "fn": 226182,
+ "fn_rate": 0.744115198989344,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997144989102,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997943312552221,
+ "recall": 0.25588480101065597,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77779,
+ "tp_rate": 0.25588480101065597,
+ "truth_threshold": 21.740000000000002
+ },
+ {
+ "f1": 0.40681244038197467,
+ "fn": 226342,
+ "fn_rate": 0.7446415823082566,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999718429487,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997939073871321,
+ "recall": 0.25535841769174333,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77619,
+ "tp_rate": 0.25535841769174333,
+ "truth_threshold": 21.76
+ },
+ {
+ "f1": 0.4064418383983476,
+ "fn": 226431,
+ "fn_rate": 0.7449343830294018,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997223059504,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999793670853429,
+ "recall": 0.2550656169705982,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77530,
+ "tp_rate": 0.2550656169705982,
+ "truth_threshold": 21.78
+ },
+ {
+ "f1": 0.40605221622698695,
+ "fn": 226524,
+ "fn_rate": 0.7452403433335197,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997261290454,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997934231082075,
+ "recall": 0.25475965666648026,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77437,
+ "tp_rate": 0.25475965666648026,
+ "truth_threshold": 21.8
+ },
+ {
+ "f1": 0.4056091138921816,
+ "fn": 226630,
+ "fn_rate": 0.7455890722822994,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997298995067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997931400054301,
+ "recall": 0.25441092771770063,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77331,
+ "tp_rate": 0.25441092771770063,
+ "truth_threshold": 21.82
+ },
+ {
+ "f1": 0.4050371225437469,
+ "fn": 226767,
+ "fn_rate": 0.7460397879991183,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999733618059,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997927729568709,
+ "recall": 0.2539602120008817,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77194,
+ "tp_rate": 0.2539602120008817,
+ "truth_threshold": 21.84
+ },
+ {
+ "f1": 0.40461020080405596,
+ "fn": 226869,
+ "fn_rate": 0.7463753573649251,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999737285417,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999792498832806,
+ "recall": 0.2536246426350749,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 77092,
+ "tp_rate": 0.2536246426350749,
+ "truth_threshold": 21.86
+ },
+ {
+ "f1": 0.4039568194228588,
+ "fn": 227025,
+ "fn_rate": 0.7468885811008649,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997409022854,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997920781786048,
+ "recall": 0.2531114188991351,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76936,
+ "tp_rate": 0.2531114188991351,
+ "truth_threshold": 21.88
+ },
+ {
+ "f1": 0.40337312946787335,
+ "fn": 227164,
+ "fn_rate": 0.7473458766091703,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997444693592,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997917019254553,
+ "recall": 0.25265412339082977,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76797,
+ "tp_rate": 0.25265412339082977,
+ "truth_threshold": 21.900000000000002
+ },
+ {
+ "f1": 0.40282470142548643,
+ "fn": 227295,
+ "fn_rate": 0.74777685295153,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997479873242,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997913460786103,
+ "recall": 0.25222314704847004,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76666,
+ "tp_rate": 0.25222314704847004,
+ "truth_threshold": 21.92
+ },
+ {
+ "f1": 0.40229057385234784,
+ "fn": 227422,
+ "fn_rate": 0.7481946697109169,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997514568563,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997909999346875,
+ "recall": 0.25180533028908314,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76539,
+ "tp_rate": 0.25180533028908314,
+ "truth_threshold": 21.94
+ },
+ {
+ "f1": 0.4017109296541861,
+ "fn": 227560,
+ "fn_rate": 0.748648675323479,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997548786224,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997906225054635,
+ "recall": 0.251351324676521,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76401,
+ "tp_rate": 0.251351324676521,
+ "truth_threshold": 21.96
+ },
+ {
+ "f1": 0.4011613534396154,
+ "fn": 227691,
+ "fn_rate": 0.7490796516658387,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.99999975825328,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997902629578166,
+ "recall": 0.25092034833416127,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76270,
+ "tp_rate": 0.25092034833416127,
+ "truth_threshold": 21.98
+ },
+ {
+ "f1": 0.40070185038065126,
+ "fn": 227800,
+ "fn_rate": 0.749438250301848,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997615814777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.999789962849679,
+ "recall": 0.2505617496981521,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76161,
+ "tp_rate": 0.2505617496981521,
+ "truth_threshold": 22
+ },
+ {
+ "f1": 0.4001431563878275,
+ "fn": 227933,
+ "fn_rate": 0.7498758064356941,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997648638552,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997895954973437,
+ "recall": 0.25012419356430593,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 76028,
+ "tp_rate": 0.25012419356430593,
+ "truth_threshold": 22.02
+ },
+ {
+ "f1": 0.3997304596400162,
+ "fn": 228031,
+ "fn_rate": 0.750198216218528,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997681010433,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997893239933637,
+ "recall": 0.24980178378147197,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75930,
+ "tp_rate": 0.24980178378147197,
+ "truth_threshold": 22.04
+ },
+ {
+ "f1": 0.3993512648229669,
+ "fn": 228121,
+ "fn_rate": 0.7504943068354164,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999771293664,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997890740350137,
+ "recall": 0.24950569316458363,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75840,
+ "tp_rate": 0.24950569316458363,
+ "truth_threshold": 22.06
+ },
+ {
+ "f1": 0.39865138943763995,
+ "fn": 228287,
+ "fn_rate": 0.7510404295287882,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.999999774442331,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997886114414057,
+ "recall": 0.24895957047121176,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75674,
+ "tp_rate": 0.24895957047121176,
+ "truth_threshold": 22.080000000000002
+ },
+ {
+ "f1": 0.3980690992643184,
+ "fn": 228425,
+ "fn_rate": 0.7514944351413504,
+ "fp": 16,
+ "fp_rate": 0.00009202330490196642,
+ "match_probability": 0.9999997775476493,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9997882253282507,
+ "recall": 0.24850556485864964,
+ "row_count": 477830,
+ "tn": 173853,
+ "tn_rate": 0.999907976695098,
+ "tp": 75536,
+ "tp_rate": 0.24850556485864964,
+ "truth_threshold": 22.1
+ },
+ {
+ "f1": 0.7776026810268742,
+ "fn": 0,
+ "fn_rate": 0,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.660044869636506e-9,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.63612791160036,
+ "recall": 1,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303961,
+ "tp_rate": 1,
+ "truth_threshold": -26.96
+ },
+ {
+ "f1": 0.7775969956049467,
+ "fn": 3,
+ "fn_rate": 0.000009869687229611693,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.1367597838873383e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6361256270574915,
+ "recall": 0.9999901303127704,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303958,
+ "tp_rate": 0.9999901303127704,
+ "truth_threshold": -25.48
+ },
+ {
+ "f1": 0.7775964266436084,
+ "fn": 4,
+ "fn_rate": 0.000013159582972815591,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.3220913456904493e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6361248655368272,
+ "recall": 0.9999868404170272,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303957,
+ "tp_rate": 0.9999868404170272,
+ "truth_threshold": -25.36
+ },
+ {
+ "f1": 0.777593868398769,
+ "fn": 5,
+ "fn_rate": 0.00001644947871601949,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 3.423387752987849e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6361241040129755,
+ "recall": 0.999983550521284,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303956,
+ "tp_rate": 0.999983550521284,
+ "truth_threshold": -24.8
+ },
+ {
+ "f1": 0.7775782321278729,
+ "fn": 15,
+ "fn_rate": 0.00004934843614805847,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 4.517187172301535e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.636116488599144,
+ "recall": 0.999950651563852,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303946,
+ "tp_rate": 0.999950651563852,
+ "truth_threshold": -24.400000000000002
+ },
+ {
+ "f1": 0.7775432618016968,
+ "fn": 38,
+ "fn_rate": 0.00012501603824174813,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 4.9775116316185605e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6360989719375796,
+ "recall": 0.9998749839617582,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303923,
+ "tp_rate": 0.9998749839617582,
+ "truth_threshold": -24.26
+ },
+ {
+ "f1": 0.7775281933727666,
+ "fn": 47,
+ "fn_rate": 0.0001546250999305832,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.338192003972388e-8,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6360921171326732,
+ "recall": 0.9998453749000694,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303914,
+ "tp_rate": 0.9998453749000694,
+ "truth_threshold": -23.7
+ },
+ {
+ "f1": 0.7773561539032335,
+ "fn": 157,
+ "fn_rate": 0.000516513631683012,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 1.096949040514205e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6360083153119394,
+ "recall": 0.999483486368317,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303804,
+ "tp_rate": 0.999483486368317,
+ "truth_threshold": -23.12
+ },
+ {
+ "f1": 0.77732486879713,
+ "fn": 177,
+ "fn_rate": 0.0005823115465470899,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 1.225607038318767e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359930744703791,
+ "recall": 0.9994176884534529,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303784,
+ "tp_rate": 0.9994176884534529,
+ "truth_threshold": -22.96
+ },
+ {
+ "f1": 0.7773117844842146,
+ "fn": 186,
+ "fn_rate": 0.000611920608235925,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 1.3693549605601495e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359862156752728,
+ "recall": 0.9993880793917641,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303775,
+ "tp_rate": 0.9993880793917641,
+ "truth_threshold": -22.8
+ },
+ {
+ "f1": 0.7773055271238485,
+ "fn": 190,
+ "fn_rate": 0.0006250801912087405,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.01879773478931e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359831672389247,
+ "recall": 0.9993749198087912,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303771,
+ "tp_rate": 0.9993749198087912,
+ "truth_threshold": -22.240000000000002
+ },
+ {
+ "f1": 0.7772335628760136,
+ "fn": 236,
+ "fn_rate": 0.0007764153953961198,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.0469790951995952e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359481065507523,
+ "recall": 0.9992235846046039,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303725,
+ "tp_rate": 0.9992235846046039,
+ "truth_threshold": -22.22
+ },
+ {
+ "f1": 0.7772304338035089,
+ "fn": 238,
+ "fn_rate": 0.0007829951868825277,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.2245235061202631e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359465820197994,
+ "recall": 0.9992170048131175,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303723,
+ "tp_rate": 0.9992170048131175,
+ "truth_threshold": -22.1
+ },
+ {
+ "f1": 0.7772022714302896,
+ "fn": 256,
+ "fn_rate": 0.0008422133102601978,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 2.935276155400355e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6359328606666192,
+ "recall": 0.9991577866897398,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303705,
+ "tp_rate": 0.9991577866897398,
+ "truth_threshold": -21.7
+ },
+ {
+ "f1": 0.777130295026923,
+ "fn": 302,
+ "fn_rate": 0.0009935485144475771,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 3.059924852476653e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6358977902866428,
+ "recall": 0.9990064514855524,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303659,
+ "tp_rate": 0.9990064514855524,
+ "truth_threshold": -21.64
+ },
+ {
+ "f1": 0.7771240358087945,
+ "fn": 306,
+ "fn_rate": 0.0010067080974203928,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 3.3253269256413913e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6358947403690705,
+ "recall": 0.9989932919025796,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303655,
+ "tp_rate": 0.9989932919025796,
+ "truth_threshold": -21.52
+ },
+ {
+ "f1": 0.7771209061757021,
+ "fn": 308,
+ "fn_rate": 0.0010132878889068005,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 4.3273866777349967e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6358932153911233,
+ "recall": 0.9989867121110932,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303653,
+ "tp_rate": 0.9989867121110932,
+ "truth_threshold": -21.14
+ },
+ {
+ "f1": 0.7765573111498588,
+ "fn": 668,
+ "fn_rate": 0.0021976503564602036,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 4.702721789815695e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.635618511113626,
+ "recall": 0.9978023496435398,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303293,
+ "tp_rate": 0.9978023496435398,
+ "truth_threshold": -21.02
+ },
+ {
+ "f1": 0.7761468124887944,
+ "fn": 930,
+ "fn_rate": 0.003059603041179625,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 4.902426350740596e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6354183266932271,
+ "recall": 0.9969403969588204,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303031,
+ "tp_rate": 0.9969403969588204,
+ "truth_threshold": -20.96
+ },
+ {
+ "f1": 0.7761034995914624,
+ "fn": 957,
+ "fn_rate": 0.00314843022624613,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 5.7897290296989e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353976844988078,
+ "recall": 0.9968515697737539,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303004,
+ "tp_rate": 0.9968515697737539,
+ "truth_threshold": -20.72
+ },
+ {
+ "f1": 0.7761029261095856,
+ "fn": 958,
+ "fn_rate": 0.003151720121989334,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 6.468789338535844e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353969199281988,
+ "recall": 0.9968482798780106,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 303003,
+ "tp_rate": 0.9968482798780106,
+ "truth_threshold": -20.56
+ },
+ {
+ "f1": 0.7760120085965977,
+ "fn": 1016,
+ "fn_rate": 0.0033425340750951604,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.02985849809981e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353525693456987,
+ "recall": 0.9966574659249049,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302945,
+ "tp_rate": 0.9966574659249049,
+ "truth_threshold": -20.44
+ },
+ {
+ "f1": 0.7760057379253813,
+ "fn": 1020,
+ "fn_rate": 0.003355693658067976,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.127991595781558e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353495102871165,
+ "recall": 0.996644306341932,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302941,
+ "tp_rate": 0.996644306341932,
+ "truth_threshold": -20.42
+ },
+ {
+ "f1": 0.7759780929716659,
+ "fn": 1037,
+ "fn_rate": 0.003411621885702442,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.227494578490585e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353365087155223,
+ "recall": 0.9965883781142976,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302924,
+ "tp_rate": 0.9965883781142976,
+ "truth_threshold": -20.400000000000002
+ },
+ {
+ "f1": 0.7759624153371656,
+ "fn": 1047,
+ "fn_rate": 0.003444520843134481,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.430686957241937e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353288602991298,
+ "recall": 0.9965554791568655,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302914,
+ "tp_rate": 0.9965554791568655,
+ "truth_threshold": -20.36
+ },
+ {
+ "f1": 0.775930484858887,
+ "fn": 1068,
+ "fn_rate": 0.003513608653741763,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 7.854369834792407e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353127975803441,
+ "recall": 0.9964863913462583,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302893,
+ "tp_rate": 0.9964863913462583,
+ "truth_threshold": -20.28
+ },
+ {
+ "f1": 0.7759242133523244,
+ "fn": 1072,
+ "fn_rate": 0.0035267682367145785,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 9.022300655021115e-7,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353097378544251,
+ "recall": 0.9964732317632854,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302889,
+ "tp_rate": 0.9964732317632854,
+ "truth_threshold": -20.080000000000002
+ },
+ {
+ "f1": 0.7759216516078788,
+ "fn": 1073,
+ "fn_rate": 0.0035300581324577826,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.000001050857503825523,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6353089729149232,
+ "recall": 0.9964699418675422,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302888,
+ "tp_rate": 0.9964699418675422,
+ "truth_threshold": -19.86
+ },
+ {
+ "f1": 0.7755201406346497,
+ "fn": 1329,
+ "fn_rate": 0.00437227144271798,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000010954829183746414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6351130427848001,
+ "recall": 0.995627728557282,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302632,
+ "tp_rate": 0.995627728557282,
+ "truth_threshold": -19.8
+ },
+ {
+ "f1": 0.7755195653845168,
+ "fn": 1330,
+ "fn_rate": 0.0043755613384611845,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000011579451355209237,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.635112277019937,
+ "recall": 0.9956244386615388,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302631,
+ "tp_rate": 0.9956244386615388,
+ "truth_threshold": -19.72
+ },
+ {
+ "f1": 0.7754536671373546,
+ "fn": 1372,
+ "fn_rate": 0.004513736959675748,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.00000120711809735545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6350801119930823,
+ "recall": 0.9954862630403243,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302589,
+ "tp_rate": 0.9954862630403243,
+ "truth_threshold": -19.66
+ },
+ {
+ "f1": 0.7754473907438872,
+ "fn": 1376,
+ "fn_rate": 0.004526896542648563,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.000001241054764180587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6350770483614367,
+ "recall": 0.9954731034573514,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302585,
+ "tp_rate": 0.9954731034573514,
+ "truth_threshold": -19.62
+ },
+ {
+ "f1": 0.7754416897741193,
+ "fn": 1379,
+ "fn_rate": 0.004536766229878175,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.000001311817182236054,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6350747506039446,
+ "recall": 0.9954632337701218,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302582,
+ "tp_rate": 0.9954632337701218,
+ "truth_threshold": -19.54
+ },
+ {
+ "f1": 0.7752722016034777,
+ "fn": 1487,
+ "fn_rate": 0.0048920749701441965,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000015492460975215529,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349920120585376,
+ "recall": 0.9951079250298558,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302474,
+ "tp_rate": 0.9951079250298558,
+ "truth_threshold": -19.3
+ },
+ {
+ "f1": 0.7752716256013698,
+ "fn": 1488,
+ "fn_rate": 0.0048953648658874,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000015708727331369402,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349912457855911,
+ "recall": 0.9951046351341126,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302473,
+ "tp_rate": 0.9951046351341126,
+ "truth_threshold": -19.28
+ },
+ {
+ "f1": 0.7752502274795269,
+ "fn": 1501,
+ "fn_rate": 0.004938133510549051,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000016604406696292195,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349812839445006,
+ "recall": 0.9950618664894509,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302460,
+ "tp_rate": 0.9950618664894509,
+ "truth_threshold": -19.2
+ },
+ {
+ "f1": 0.7752496514107612,
+ "fn": 1502,
+ "fn_rate": 0.0049414234062922545,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000017309524239438608,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349805176265094,
+ "recall": 0.9950585765937078,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302459,
+ "tp_rate": 0.9950585765937078,
+ "truth_threshold": -19.14
+ },
+ {
+ "f1": 0.7752470882545932,
+ "fn": 1503,
+ "fn_rate": 0.004944713302035458,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000017551155769142057,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349797513053008,
+ "recall": 0.9950552866979645,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302458,
+ "tp_rate": 0.9950552866979645,
+ "truth_threshold": -19.12
+ },
+ {
+ "f1": 0.775240233659113,
+ "fn": 1508,
+ "fn_rate": 0.004961162780751478,
+ "fp": 173869,
+ "fp_rate": 1,
+ "match_probability": 0.0000018044585029675095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6349759196509924,
+ "recall": 0.9950388372192486,
+ "row_count": 477830,
+ "tn": 0,
+ "tn_rate": 0,
+ "tp": 302453,
+ "tp_rate": 0.9950388372192486,
+ "truth_threshold": -19.080000000000002
+ },
+ {
+ "f1": 0.8023775288768152,
+ "fn": 1508,
+ "fn_rate": 0.004961162780751478,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000019339704872557063,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6722193575918138,
+ "recall": 0.9950388372192486,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302453,
+ "tp_rate": 0.9950388372192486,
+ "truth_threshold": -18.98
+ },
+ {
+ "f1": 0.8023489336414308,
+ "fn": 1526,
+ "fn_rate": 0.005020380904129148,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000019609676562463853,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6722062438599377,
+ "recall": 0.9949796190958708,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302435,
+ "tp_rate": 0.9949796190958708,
+ "truth_threshold": -18.96
+ },
+ {
+ "f1": 0.8023367486085097,
+ "fn": 1533,
+ "fn_rate": 0.005043410174331575,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.000002044241469521586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6722011437919392,
+ "recall": 0.9949565898256684,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302428,
+ "tp_rate": 0.9949565898256684,
+ "truth_threshold": -18.900000000000002
+ },
+ {
+ "f1": 0.8023335712182271,
+ "fn": 1535,
+ "fn_rate": 0.005049989965817983,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000021017127990503803,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721996866005046,
+ "recall": 0.994950010034182,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302426,
+ "tp_rate": 0.994950010034182,
+ "truth_threshold": -18.86
+ },
+ {
+ "f1": 0.8023330468095041,
+ "fn": 1536,
+ "fn_rate": 0.005053279861561187,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000022525596641027384,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721989579999289,
+ "recall": 0.9949467201384388,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302425,
+ "tp_rate": 0.9949467201384388,
+ "truth_threshold": -18.76
+ },
+ {
+ "f1": 0.8023303938110853,
+ "fn": 1537,
+ "fn_rate": 0.005056569757304391,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000022840041533901063,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721982293961143,
+ "recall": 0.9949434302426956,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302424,
+ "tp_rate": 0.9949434302426956,
+ "truth_threshold": -18.740000000000002
+ },
+ {
+ "f1": 0.8023298693925414,
+ "fn": 1538,
+ "fn_rate": 0.005059859653047595,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000023158875893710783,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721975007890607,
+ "recall": 0.9949401403469524,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302423,
+ "tp_rate": 0.9949401403469524,
+ "truth_threshold": -18.72
+ },
+ {
+ "f1": 0.8023272163870842,
+ "fn": 1539,
+ "fn_rate": 0.005063149548790799,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000024821064479311417,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721967721787682,
+ "recall": 0.9949368504512092,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302422,
+ "tp_rate": 0.9949368504512092,
+ "truth_threshold": -18.62
+ },
+ {
+ "f1": 0.8023240389462234,
+ "fn": 1541,
+ "fn_rate": 0.005069729340277207,
+ "fp": 147479,
+ "fp_rate": 0.8482190614773192,
+ "match_probability": 0.0000025167552755248973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6721953149484662,
+ "recall": 0.9949302706597228,
+ "row_count": 477830,
+ "tn": 26390,
+ "tn_rate": 0.15178093852268087,
+ "tp": 302420,
+ "tp_rate": 0.9949302706597228,
+ "truth_threshold": -18.6
+ },
+ {
+ "f1": 0.8023347129364321,
+ "fn": 1545,
+ "fn_rate": 0.005082888923250022,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000025875107139958215,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6722163070514516,
+ "recall": 0.99491711107675,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 302416,
+ "tp_rate": 0.99491711107675,
+ "truth_threshold": -18.56
+ },
+ {
+ "f1": 0.8023341885126513,
+ "fn": 1546,
+ "fn_rate": 0.005086178818993226,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.00000277322480226071,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.672215578445712,
+ "recall": 0.9949138211810068,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 302415,
+ "tp_rate": 0.9949138211810068,
+ "truth_threshold": -18.46
+ },
+ {
+ "f1": 0.8007693370312516,
+ "fn": 2529,
+ "fn_rate": 0.008320146334562658,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000028909915630084804,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6714977890152486,
+ "recall": 0.9916798536654373,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301432,
+ "tp_rate": 0.9916798536654373,
+ "truth_threshold": -18.400000000000002
+ },
+ {
+ "f1": 0.800606308585032,
+ "fn": 2632,
+ "fn_rate": 0.008659005596112658,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000029313481830057973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671422396121143,
+ "recall": 0.9913409944038873,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301329,
+ "tp_rate": 0.9913409944038873,
+ "truth_threshold": -18.38
+ },
+ {
+ "f1": 0.8006036516674815,
+ "fn": 2633,
+ "fn_rate": 0.008662295491855864,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.000003013759349323224,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6714216639816752,
+ "recall": 0.9913377045081442,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301328,
+ "tp_rate": 0.9913377045081442,
+ "truth_threshold": -18.34
+ },
+ {
+ "f1": 0.8006004649618067,
+ "fn": 2635,
+ "fn_rate": 0.008668875283342271,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000030558297334917884,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6714201996929515,
+ "recall": 0.9913311247166577,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301326,
+ "tp_rate": 0.9913311247166577,
+ "truth_threshold": -18.32
+ },
+ {
+ "f1": 0.8005967484383842,
+ "fn": 2638,
+ "fn_rate": 0.008678744970571882,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.000003098487394723601,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671418003235395,
+ "recall": 0.9913212550294281,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301323,
+ "tp_rate": 0.9913212550294281,
+ "truth_threshold": -18.3
+ },
+ {
+ "f1": 0.8005940914996559,
+ "fn": 2639,
+ "fn_rate": 0.008682034866315087,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.000003185597454736396,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6714172710763506,
+ "recall": 0.9913179651336849,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301322,
+ "tp_rate": 0.9913179651336849,
+ "truth_threshold": -18.26
+ },
+ {
+ "f1": 0.8004729828477287,
+ "fn": 2715,
+ "fn_rate": 0.008932066942798583,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000032300665943862097,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713616174402564,
+ "recall": 0.9910679330572014,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301246,
+ "tp_rate": 0.9910679330572014,
+ "truth_threshold": -18.240000000000002
+ },
+ {
+ "f1": 0.8004602331458212,
+ "fn": 2723,
+ "fn_rate": 0.008958386108744214,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000033208758251411607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713557580660618,
+ "recall": 0.9910416138912558,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301238,
+ "tp_rate": 0.9910416138912558,
+ "truth_threshold": -18.2
+ },
+ {
+ "f1": 0.8004597029203093,
+ "fn": 2724,
+ "fn_rate": 0.008961676004487417,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000034142380336736073,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713550256295966,
+ "recall": 0.9910383239955126,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301237,
+ "tp_rate": 0.9910383239955126,
+ "truth_threshold": -18.16
+ },
+ {
+ "f1": 0.8004506706915244,
+ "fn": 2729,
+ "fn_rate": 0.008978125483203437,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.000003510224992977848,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713513633982995,
+ "recall": 0.9910218745167966,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301232,
+ "tp_rate": 0.9910218745167966,
+ "truth_threshold": -18.12
+ },
+ {
+ "f1": 0.8004501404363759,
+ "fn": 2730,
+ "fn_rate": 0.008981415378946641,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000035592257334204593,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713506309422457,
+ "recall": 0.9910185846210534,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301231,
+ "tp_rate": 0.9910185846210534,
+ "truth_threshold": -18.1
+ },
+ {
+ "f1": 0.8004442956372932,
+ "fn": 2733,
+ "fn_rate": 0.008991285066176254,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000036089104938057927,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713484335544951,
+ "recall": 0.9910087149338237,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301228,
+ "tp_rate": 0.9910087149338237,
+ "truth_threshold": -18.080000000000002
+ },
+ {
+ "f1": 0.8004411080847672,
+ "fn": 2735,
+ "fn_rate": 0.008997864857662661,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000036592888225585765,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713469686130037,
+ "recall": 0.9910021351423374,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301226,
+ "tp_rate": 0.9910021351423374,
+ "truth_threshold": -18.06
+ },
+ {
+ "f1": 0.800437390220635,
+ "fn": 2738,
+ "fn_rate": 0.009007734544892272,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000037103704013906797,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713447711762792,
+ "recall": 0.9909922654551078,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301223,
+ "tp_rate": 0.9909922654551078,
+ "truth_threshold": -18.04
+ },
+ {
+ "f1": 0.800421452069792,
+ "fn": 2748,
+ "fn_rate": 0.009040633502324312,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000037621650471616754,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713374461749682,
+ "recall": 0.9909593664976757,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301213,
+ "tp_rate": 0.9909593664976757,
+ "truth_threshold": -18.02
+ },
+ {
+ "f1": 0.8004187947427441,
+ "fn": 2749,
+ "fn_rate": 0.009043923398067515,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000038146827137652828,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713367136568786,
+ "recall": 0.9909560766019325,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301212,
+ "tp_rate": 0.9909560766019325,
+ "truth_threshold": -18
+ },
+ {
+ "f1": 0.8004156070546906,
+ "fn": 2751,
+ "fn_rate": 0.009050503189553923,
+ "fp": 147463,
+ "fp_rate": 0.8481270381724172,
+ "match_probability": 0.0000039766754733776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713352486109037,
+ "recall": 0.9909494968104461,
+ "row_count": 477830,
+ "tn": 26406,
+ "tn_rate": 0.15187296182758284,
+ "tp": 301210,
+ "tp_rate": 0.9909494968104461,
+ "truth_threshold": -17.94
+ },
+ {
+ "f1": 0.8004368773368553,
+ "fn": 2751,
+ "fn_rate": 0.009050503189553923,
+ "fp": 147443,
+ "fp_rate": 0.8480120090412897,
+ "match_probability": 0.000004088474581213888,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713651753136611,
+ "recall": 0.9909494968104461,
+ "row_count": 477830,
+ "tn": 26426,
+ "tn_rate": 0.1519879909587103,
+ "tp": 301210,
+ "tp_rate": 0.9909494968104461,
+ "truth_threshold": -17.900000000000002
+ },
+ {
+ "f1": 0.8004336896036736,
+ "fn": 2753,
+ "fn_rate": 0.009057082981040332,
+ "fp": 147443,
+ "fp_rate": 0.8480120090412897,
+ "match_probability": 0.000004145547322903667,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671363710322723,
+ "recall": 0.9909429170189596,
+ "row_count": 477830,
+ "tn": 26426,
+ "tn_rate": 0.1519879909587103,
+ "tp": 301208,
+ "tp_rate": 0.9909429170189596,
+ "truth_threshold": -17.88
+ },
+ {
+ "f1": 0.8004012809099244,
+ "fn": 2774,
+ "fn_rate": 0.009126170791647613,
+ "fp": 147443,
+ "fp_rate": 0.8480120090412897,
+ "match_probability": 0.000004203416763725948,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713483271292602,
+ "recall": 0.9908738292083524,
+ "row_count": 477830,
+ "tn": 26426,
+ "tn_rate": 0.1519879909587103,
+ "tp": 301187,
+ "tp_rate": 0.9908738292083524,
+ "truth_threshold": -17.86
+ },
+ {
+ "f1": 0.8002551495016611,
+ "fn": 2865,
+ "fn_rate": 0.009425551304279167,
+ "fp": 147443,
+ "fp_rate": 0.8480120090412897,
+ "match_probability": 0.0000042620940249991784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6712816499791545,
+ "recall": 0.9905744486957209,
+ "row_count": 477830,
+ "tn": 26426,
+ "tn_rate": 0.1519879909587103,
+ "tp": 301096,
+ "tp_rate": 0.9905744486957209,
+ "truth_threshold": -17.84
+ },
+ {
+ "f1": 0.8002806734035371,
+ "fn": 2865,
+ "fn_rate": 0.009425551304279167,
+ "fp": 147419,
+ "fp_rate": 0.8478739740839367,
+ "match_probability": 0.000004381917272552001,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671317570203895,
+ "recall": 0.9905744486957209,
+ "row_count": 477830,
+ "tn": 26450,
+ "tn_rate": 0.15212602591606325,
+ "tp": 301096,
+ "tp_rate": 0.9905744486957209,
+ "truth_threshold": -17.8
+ },
+ {
+ "f1": 0.8002764450233251,
+ "fn": 2893,
+ "fn_rate": 0.009517668385088876,
+ "fp": 147382,
+ "fp_rate": 0.847661170191351,
+ "match_probability": 0.000004443086286379355,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713524361690266,
+ "recall": 0.9904823316149112,
+ "row_count": 477830,
+ "tn": 26487,
+ "tn_rate": 0.15233882980864905,
+ "tp": 301068,
+ "tp_rate": 0.9904823316149112,
+ "truth_threshold": -17.78
+ },
+ {
+ "f1": 0.8002828267792303,
+ "fn": 2893,
+ "fn_rate": 0.009517668385088876,
+ "fp": 147376,
+ "fp_rate": 0.8476266614520127,
+ "match_probability": 0.000004505109180178255,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671361418594072,
+ "recall": 0.9904823316149112,
+ "row_count": 477830,
+ "tn": 26493,
+ "tn_rate": 0.1523733385479873,
+ "tp": 301068,
+ "tp_rate": 0.9904823316149112,
+ "truth_threshold": -17.76
+ },
+ {
+ "f1": 0.8002870966026902,
+ "fn": 2909,
+ "fn_rate": 0.009570306716980139,
+ "fp": 147348,
+ "fp_rate": 0.8474656206684342,
+ "match_probability": 0.000004631764452096345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713916146297948,
+ "recall": 0.9904296932830199,
+ "row_count": 477830,
+ "tn": 26521,
+ "tn_rate": 0.15253437933156572,
+ "tp": 301052,
+ "tp_rate": 0.9904296932830199,
+ "truth_threshold": -17.72
+ },
+ {
+ "f1": 0.8002238403236912,
+ "fn": 2948,
+ "fn_rate": 0.009698612650965091,
+ "fp": 147348,
+ "fp_rate": 0.8474656206684342,
+ "match_probability": 0.00000469642117070095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671363031128934,
+ "recall": 0.990301387349035,
+ "row_count": 477830,
+ "tn": 26521,
+ "tn_rate": 0.15253437933156572,
+ "tp": 301013,
+ "tp_rate": 0.990301387349035,
+ "truth_threshold": -17.7
+ },
+ {
+ "f1": 0.8002233092301149,
+ "fn": 2949,
+ "fn_rate": 0.009701902546708295,
+ "fp": 147348,
+ "fp_rate": 0.8474656206684342,
+ "match_probability": 0.000004761980454925296,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713622981532696,
+ "recall": 0.9902980974532917,
+ "row_count": 477830,
+ "tn": 26521,
+ "tn_rate": 0.15253437933156572,
+ "tp": 301012,
+ "tp_rate": 0.9902980974532917,
+ "truth_threshold": -17.68
+ },
+ {
+ "f1": 0.8002238462745015,
+ "fn": 2956,
+ "fn_rate": 0.009724931816910722,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.00000482845490387591,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713736388738953,
+ "recall": 0.9902750681830893,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 301005,
+ "tp_rate": 0.9902750681830893,
+ "truth_threshold": -17.66
+ },
+ {
+ "f1": 0.8002211877676784,
+ "fn": 2957,
+ "fn_rate": 0.009728221712653926,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.00000489585729252954,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713729058908287,
+ "recall": 0.990271778287346,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 301004,
+ "tp_rate": 0.990271778287346,
+ "truth_threshold": -17.64
+ },
+ {
+ "f1": 0.8002142773589119,
+ "fn": 2962,
+ "fn_rate": 0.009744671191369946,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000004964200574188029,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671369240926448,
+ "recall": 0.9902553288086301,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300999,
+ "tp_rate": 0.9902553288086301,
+ "truth_threshold": -17.62
+ },
+ {
+ "f1": 0.8002116188308858,
+ "fn": 2963,
+ "fn_rate": 0.00974796108711315,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005103762536321944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713685079237623,
+ "recall": 0.9902520389128868,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300998,
+ "tp_rate": 0.9902520389128868,
+ "truth_threshold": -17.580000000000002
+ },
+ {
+ "f1": 0.800211087686463,
+ "fn": 2964,
+ "fn_rate": 0.009751250982856353,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005247248078653649,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713677749178069,
+ "recall": 0.9902487490171437,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300997,
+ "tp_rate": 0.9902487490171437,
+ "truth_threshold": -17.54
+ },
+ {
+ "f1": 0.800208429151369,
+ "fn": 2965,
+ "fn_rate": 0.009754540878599557,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005320496542440611,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713670419085813,
+ "recall": 0.9902454591214005,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300996,
+ "tp_rate": 0.9902454591214005,
+ "truth_threshold": -17.52
+ },
+ {
+ "f1": 0.8001924804993858,
+ "fn": 2975,
+ "fn_rate": 0.009787439836031597,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005546434223012468,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713597116364763,
+ "recall": 0.9902125601639684,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300986,
+ "tp_rate": 0.9902125601639684,
+ "truth_threshold": -17.46
+ },
+ {
+ "f1": 0.8001829111046714,
+ "fn": 2981,
+ "fn_rate": 0.00980717921049082,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005702364824139267,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713553133162472,
+ "recall": 0.9901928207895092,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300980,
+ "tp_rate": 0.9901928207895092,
+ "truth_threshold": -17.42
+ },
+ {
+ "f1": 0.8001823798712174,
+ "fn": 2982,
+ "fn_rate": 0.009810469106234024,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.00000578196641040085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713545802514298,
+ "recall": 0.9901895308937659,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300979,
+ "tp_rate": 0.9901895308937659,
+ "truth_threshold": -17.400000000000002
+ },
+ {
+ "f1": 0.8001728102941763,
+ "fn": 2988,
+ "fn_rate": 0.009830208480693247,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005862679180457631,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.671350181793848,
+ "recall": 0.9901697915193067,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300973,
+ "tp_rate": 0.9901697915193067,
+ "truth_threshold": -17.38
+ },
+ {
+ "f1": 0.8001605819233674,
+ "fn": 2995,
+ "fn_rate": 0.009853237750895675,
+ "fp": 147337,
+ "fp_rate": 0.8474023546463142,
+ "match_probability": 0.000005944518645493533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713450501111972,
+ "recall": 0.9901467622491044,
+ "row_count": 477830,
+ "tn": 26532,
+ "tn_rate": 0.15259764535368583,
+ "tp": 300966,
+ "tp_rate": 0.9901467622491044,
+ "truth_threshold": -17.36
+ },
+ {
+ "f1": 0.8001733461659125,
+ "fn": 2995,
+ "fn_rate": 0.009853237750895675,
+ "fp": 147325,
+ "fp_rate": 0.8473333371676377,
+ "match_probability": 0.000006111640790849928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713630208949097,
+ "recall": 0.9901467622491044,
+ "row_count": 477830,
+ "tn": 26544,
+ "tn_rate": 0.1526666628323623,
+ "tp": 300966,
+ "tp_rate": 0.9901467622491044,
+ "truth_threshold": -17.32
+ },
+ {
+ "f1": 0.8001776010039242,
+ "fn": 2995,
+ "fn_rate": 0.009853237750895675,
+ "fp": 147321,
+ "fp_rate": 0.8473103313414122,
+ "match_probability": 0.000006196955588258426,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6713690113699483,
+ "recall": 0.9901467622491044,
+ "row_count": 477830,
+ "tn": 26548,
+ "tn_rate": 0.1526896686585878,
+ "tp": 300966,
+ "tp_rate": 0.9901467622491044,
+ "truth_threshold": -17.3
+ },
+ {
+ "f1": 0.7985511722140283,
+ "fn": 4014,
+ "fn_rate": 0.013205641513220446,
+ "fp": 147321,
+ "fp_rate": 0.8473103313414122,
+ "match_probability": 0.000006283461320993584,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6706202992389351,
+ "recall": 0.9867943584867795,
+ "row_count": 477830,
+ "tn": 26548,
+ "tn_rate": 0.1526896686585878,
+ "tp": 299947,
+ "tp_rate": 0.9867943584867795,
+ "truth_threshold": -17.28
+ },
+ {
+ "f1": 0.798554887902644,
+ "fn": 4015,
+ "fn_rate": 0.01320893140896365,
+ "fp": 147315,
+ "fp_rate": 0.847275822602074,
+ "match_probability": 0.000006460112322179412,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6706285591634414,
+ "recall": 0.9867910685910364,
+ "row_count": 477830,
+ "tn": 26554,
+ "tn_rate": 0.15272417739792601,
+ "tp": 299946,
+ "tp_rate": 0.9867910685910364,
+ "truth_threshold": -17.240000000000002
+ },
+ {
+ "f1": 0.7985756123535677,
+ "fn": 4016,
+ "fn_rate": 0.013212221304706853,
+ "fp": 147295,
+ "fp_rate": 0.8471607934709465,
+ "match_probability": 0.000006550291538878178,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.670657812360254,
+ "recall": 0.9867877786952931,
+ "row_count": 477830,
+ "tn": 26574,
+ "tn_rate": 0.15283920652905347,
+ "tp": 299945,
+ "tp_rate": 0.9867877786952931,
+ "truth_threshold": -17.22
+ },
+ {
+ "f1": 0.7985724136645731,
+ "fn": 4018,
+ "fn_rate": 0.013218801096193262,
+ "fp": 147295,
+ "fp_rate": 0.8471607934709465,
+ "match_probability": 0.000006641729593923075,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6706563395775851,
+ "recall": 0.9867811989038068,
+ "row_count": 477830,
+ "tn": 26574,
+ "tn_rate": 0.15283920652905347,
+ "tp": 299943,
+ "tp_rate": 0.9867811989038068,
+ "truth_threshold": -17.2
+ },
+ {
+ "f1": 0.7985659971458391,
+ "fn": 4026,
+ "fn_rate": 0.013245120262138893,
+ "fp": 147289,
+ "fp_rate": 0.8471262847316082,
+ "match_probability": 0.000006734444059575694,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6706594458258054,
+ "recall": 0.9867548797378611,
+ "row_count": 477830,
+ "tn": 26580,
+ "tn_rate": 0.15287371526839172,
+ "tp": 299935,
+ "tp_rate": 0.9867548797378611,
+ "truth_threshold": -17.18
+ },
+ {
+ "f1": 0.7977209267627249,
+ "fn": 4554,
+ "fn_rate": 0.014982185214550551,
+ "fp": 147289,
+ "fp_rate": 0.8471262847316082,
+ "match_probability": 0.0000068284527533841125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702701613625374,
+ "recall": 0.9850178147854495,
+ "row_count": 477830,
+ "tn": 26580,
+ "tn_rate": 0.15287371526839172,
+ "tp": 299407,
+ "tp_rate": 0.9850178147854495,
+ "truth_threshold": -17.16
+ },
+ {
+ "f1": 0.7973785835929609,
+ "fn": 4771,
+ "fn_rate": 0.015696092590825796,
+ "fp": 147283,
+ "fp_rate": 0.84709177599227,
+ "match_probability": 0.00000692377374160662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701189097661001,
+ "recall": 0.9843039074091742,
+ "row_count": 477830,
+ "tn": 26586,
+ "tn_rate": 0.15290822400772996,
+ "tp": 299190,
+ "tp_rate": 0.9843039074091742,
+ "truth_threshold": -17.14
+ },
+ {
+ "f1": 0.7973753784486802,
+ "fn": 4773,
+ "fn_rate": 0.015702672382312204,
+ "fp": 147283,
+ "fp_rate": 0.84709177599227,
+ "match_probability": 0.000007118426130755453,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.670117432039259,
+ "recall": 0.9842973276176878,
+ "row_count": 477830,
+ "tn": 26586,
+ "tn_rate": 0.15290822400772996,
+ "tp": 299188,
+ "tp_rate": 0.9842973276176878,
+ "truth_threshold": -17.1
+ },
+ {
+ "f1": 0.7973748384259691,
+ "fn": 4774,
+ "fn_rate": 0.01570596227805541,
+ "fp": 147283,
+ "fp_rate": 0.84709177599227,
+ "match_probability": 0.000007217794939235686,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701166931708737,
+ "recall": 0.9842940377219446,
+ "row_count": 477830,
+ "tn": 26586,
+ "tn_rate": 0.15290822400772996,
+ "tp": 299187,
+ "tp_rate": 0.9842940377219446,
+ "truth_threshold": -17.080000000000002
+ },
+ {
+ "f1": 0.7973721732873152,
+ "fn": 4775,
+ "fn_rate": 0.01570925217379861,
+ "fp": 147283,
+ "fp_rate": 0.84709177599227,
+ "match_probability": 0.000007318550864425777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701159542991787,
+ "recall": 0.9842907478262014,
+ "row_count": 477830,
+ "tn": 26586,
+ "tn_rate": 0.15290822400772996,
+ "tp": 299186,
+ "tp_rate": 0.9842907478262014,
+ "truth_threshold": -17.06
+ },
+ {
+ "f1": 0.7973689681088659,
+ "fn": 4777,
+ "fn_rate": 0.01571583196528502,
+ "fp": 147283,
+ "fp_rate": 0.84709177599227,
+ "match_probability": 0.00000742071326918649,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.670114476545859,
+ "recall": 0.984284168034715,
+ "row_count": 477830,
+ "tn": 26586,
+ "tn_rate": 0.15290822400772996,
+ "tp": 299184,
+ "tp_rate": 0.984284168034715,
+ "truth_threshold": -17.04
+ },
+ {
+ "f1": 0.7973753434734057,
+ "fn": 4777,
+ "fn_rate": 0.01571583196528502,
+ "fp": 147278,
+ "fp_rate": 0.8470630187094882,
+ "match_probability": 0.000007524301786658165,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701219812660428,
+ "recall": 0.984284168034715,
+ "row_count": 477830,
+ "tn": 26591,
+ "tn_rate": 0.1529369812905118,
+ "tp": 299184,
+ "tp_rate": 0.984284168034715,
+ "truth_threshold": -17.02
+ },
+ {
+ "f1": 0.7971803353849517,
+ "fn": 4898,
+ "fn_rate": 0.01611390935021269,
+ "fp": 147278,
+ "fp_rate": 0.8470630187094882,
+ "match_probability": 0.000007629336324033172,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700325535857113,
+ "recall": 0.9838860906497873,
+ "row_count": 477830,
+ "tn": 26591,
+ "tn_rate": 0.1529369812905118,
+ "tp": 299063,
+ "tp_rate": 0.9838860906497873,
+ "truth_threshold": -17
+ },
+ {
+ "f1": 0.7971792165141919,
+ "fn": 4904,
+ "fn_rate": 0.016133648724671917,
+ "fp": 147270,
+ "fp_rate": 0.8470170070570372,
+ "match_probability": 0.000007735837066381084,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700401275298156,
+ "recall": 0.9838663512753281,
+ "row_count": 477830,
+ "tn": 26599,
+ "tn_rate": 0.1529829929429628,
+ "tp": 299057,
+ "tp_rate": 0.9838663512753281,
+ "truth_threshold": -16.98
+ },
+ {
+ "f1": 0.7971658505247389,
+ "fn": 4913,
+ "fn_rate": 0.01616325778636075,
+ "fp": 147270,
+ "fp_rate": 0.8470170070570372,
+ "match_probability": 0.000007843824480527219,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700334738908132,
+ "recall": 0.9838367422136393,
+ "row_count": 477830,
+ "tn": 26599,
+ "tn_rate": 0.1529829929429628,
+ "tp": 299048,
+ "tp_rate": 0.9838367422136393,
+ "truth_threshold": -16.96
+ },
+ {
+ "f1": 0.7971460332100861,
+ "fn": 4930,
+ "fn_rate": 0.016219186013995218,
+ "fp": 147262,
+ "fp_rate": 0.8469709954045862,
+ "match_probability": 0.000007953319318985333,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700329155958081,
+ "recall": 0.9837808139860048,
+ "row_count": 477830,
+ "tn": 26607,
+ "tn_rate": 0.1530290045954138,
+ "tp": 299031,
+ "tp_rate": 0.9837808139860048,
+ "truth_threshold": -16.94
+ },
+ {
+ "f1": 0.7971390793444301,
+ "fn": 4935,
+ "fn_rate": 0.016235635492711235,
+ "fp": 147262,
+ "fp_rate": 0.8469709954045862,
+ "match_probability": 0.000008064342623945162,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700292188004159,
+ "recall": 0.9837643645072888,
+ "row_count": 477830,
+ "tn": 26607,
+ "tn_rate": 0.1530290045954138,
+ "tp": 299026,
+ "tp_rate": 0.9837643645072888,
+ "truth_threshold": -16.92
+ },
+ {
+ "f1": 0.7971582048171894,
+ "fn": 4935,
+ "fn_rate": 0.016235635492711235,
+ "fp": 147244,
+ "fp_rate": 0.8468674691865715,
+ "match_probability": 0.000008176915731315674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700562439778609,
+ "recall": 0.9837643645072888,
+ "row_count": 477830,
+ "tn": 26625,
+ "tn_rate": 0.1531325308134285,
+ "tp": 299026,
+ "tp_rate": 0.9837643645072888,
+ "truth_threshold": -16.9
+ },
+ {
+ "f1": 0.7971624550468792,
+ "fn": 4935,
+ "fn_rate": 0.016235635492711235,
+ "fp": 147240,
+ "fp_rate": 0.846844463360346,
+ "match_probability": 0.000008291060274824607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700622498689123,
+ "recall": 0.9837643645072888,
+ "row_count": 477830,
+ "tn": 26629,
+ "tn_rate": 0.153155536639654,
+ "tp": 299026,
+ "tp_rate": 0.9837643645072888,
+ "truth_threshold": -16.88
+ },
+ {
+ "f1": 0.797177331207712,
+ "fn": 4935,
+ "fn_rate": 0.016235635492711235,
+ "fp": 147226,
+ "fp_rate": 0.8467639429685568,
+ "match_probability": 0.000008524151719262247,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6700832713354786,
+ "recall": 0.9837643645072888,
+ "row_count": 477830,
+ "tn": 26643,
+ "tn_rate": 0.15323605703144322,
+ "tp": 299026,
+ "tp_rate": 0.9837643645072888,
+ "truth_threshold": -16.84
+ },
+ {
+ "f1": 0.7972511797797744,
+ "fn": 4936,
+ "fn_rate": 0.01623892538845444,
+ "fp": 147154,
+ "fp_rate": 0.8463498380964979,
+ "match_probability": 0.000008643143414443251,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701906633884607,
+ "recall": 0.9837610746115456,
+ "row_count": 477830,
+ "tn": 26715,
+ "tn_rate": 0.15365016190350206,
+ "tp": 299025,
+ "tp_rate": 0.9837610746115456,
+ "truth_threshold": -16.82
+ },
+ {
+ "f1": 0.7972506392157176,
+ "fn": 4937,
+ "fn_rate": 0.016242215284197645,
+ "fp": 147154,
+ "fp_rate": 0.8463498380964979,
+ "match_probability": 0.00000876379614287431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701899242006554,
+ "recall": 0.9837577847158023,
+ "row_count": 477830,
+ "tn": 26715,
+ "tn_rate": 0.15365016190350206,
+ "tp": 299024,
+ "tp_rate": 0.9837577847158023,
+ "truth_threshold": -16.8
+ },
+ {
+ "f1": 0.7972522242692639,
+ "fn": 4938,
+ "fn_rate": 0.016245505179940847,
+ "fp": 147150,
+ "fp_rate": 0.8463268322702725,
+ "match_probability": 0.000008886133090902635,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701951933442858,
+ "recall": 0.9837544948200592,
+ "row_count": 477830,
+ "tn": 26719,
+ "tn_rate": 0.15367316772972756,
+ "tp": 299023,
+ "tp_rate": 0.9837544948200592,
+ "truth_threshold": -16.78
+ },
+ {
+ "f1": 0.7972543499010841,
+ "fn": 4938,
+ "fn_rate": 0.016245505179940847,
+ "fp": 147148,
+ "fp_rate": 0.8463153293571597,
+ "match_probability": 0.00000901017776852193,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701981975520597,
+ "recall": 0.9837544948200592,
+ "row_count": 477830,
+ "tn": 26721,
+ "tn_rate": 0.1536846706428403,
+ "tp": 299023,
+ "tp_rate": 0.9837544948200592,
+ "truth_threshold": -16.76
+ },
+ {
+ "f1": 0.7972511431351899,
+ "fn": 4940,
+ "fn_rate": 0.016252084971427255,
+ "fp": 147148,
+ "fp_rate": 0.8463153293571597,
+ "match_probability": 0.000009135954013889686,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6701967191804002,
+ "recall": 0.9837479150285727,
+ "row_count": 477830,
+ "tn": 26721,
+ "tn_rate": 0.1536846706428403,
+ "tp": 299021,
+ "tp_rate": 0.9837479150285727,
+ "truth_threshold": -16.740000000000002
+ },
+ {
+ "f1": 0.797265482313355,
+ "fn": 4941,
+ "fn_rate": 0.01625537486717046,
+ "fp": 147133,
+ "fp_rate": 0.846229057508814,
+ "match_probability": 0.000009392798228865447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702185124833857,
+ "recall": 0.9837446251328296,
+ "row_count": 477830,
+ "tn": 26736,
+ "tn_rate": 0.1537709424911859,
+ "tp": 299020,
+ "tp_rate": 0.9837446251328296,
+ "truth_threshold": -16.7
+ },
+ {
+ "f1": 0.7972676080371998,
+ "fn": 4941,
+ "fn_rate": 0.01625537486717046,
+ "fp": 147131,
+ "fp_rate": 0.8462175545957014,
+ "match_probability": 0.000009656863180023442,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702215169303666,
+ "recall": 0.9837446251328296,
+ "row_count": 477830,
+ "tn": 26738,
+ "tn_rate": 0.15378244540429864,
+ "tp": 299020,
+ "tp_rate": 0.9837446251328296,
+ "truth_threshold": -16.66
+ },
+ {
+ "f1": 0.7972670674967671,
+ "fn": 4942,
+ "fn_rate": 0.016258664762913662,
+ "fp": 147130,
+ "fp_rate": 0.846211803139145,
+ "match_probability": 0.000009791666646456521,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702222800006276,
+ "recall": 0.9837413352370863,
+ "row_count": 477830,
+ "tn": 26739,
+ "tn_rate": 0.15378819686085501,
+ "tp": 299019,
+ "tp_rate": 0.9837413352370863,
+ "truth_threshold": -16.64
+ },
+ {
+ "f1": 0.7972627795612341,
+ "fn": 4946,
+ "fn_rate": 0.01627182434588648,
+ "fp": 147129,
+ "fp_rate": 0.8462060516825887,
+ "match_probability": 0.000009928351862046044,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.670220825563047,
+ "recall": 0.9837281756541135,
+ "row_count": 477830,
+ "tn": 26740,
+ "tn_rate": 0.1537939483174114,
+ "tp": 299015,
+ "tp_rate": 0.9837281756541135,
+ "truth_threshold": -16.62
+ },
+ {
+ "f1": 0.7972691568301742,
+ "fn": 4946,
+ "fn_rate": 0.01627182434588648,
+ "fp": 147123,
+ "fp_rate": 0.8461715429432504,
+ "match_probability": 0.000010066945093988067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.670229839197737,
+ "recall": 0.9837281756541135,
+ "row_count": 477830,
+ "tn": 26746,
+ "tn_rate": 0.15382845705674963,
+ "tp": 299015,
+ "tp_rate": 0.9837281756541135,
+ "truth_threshold": -16.6
+ },
+ {
+ "f1": 0.7972627430695353,
+ "fn": 4950,
+ "fn_rate": 0.016284983928859294,
+ "fp": 147123,
+ "fp_rate": 0.8461715429432504,
+ "match_probability": 0.000010207472976125722,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702268825061528,
+ "recall": 0.9837150160711408,
+ "row_count": 477830,
+ "tn": 26746,
+ "tn_rate": 0.15382845705674963,
+ "tp": 299011,
+ "tp_rate": 0.9837150160711408,
+ "truth_threshold": -16.580000000000002
+ },
+ {
+ "f1": 0.7973047202060657,
+ "fn": 4951,
+ "fn_rate": 0.0162882738246025,
+ "fp": 147082,
+ "fp_rate": 0.845935733224439,
+ "match_probability": 0.000010349962514066602,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702877433354555,
+ "recall": 0.9837117261753975,
+ "row_count": 477830,
+ "tn": 26787,
+ "tn_rate": 0.1540642667755609,
+ "tp": 299010,
+ "tp_rate": 0.9837117261753975,
+ "truth_threshold": -16.56
+ },
+ {
+ "f1": 0.7972731902820406,
+ "fn": 4970,
+ "fn_rate": 0.01635078184372337,
+ "fp": 147082,
+ "fp_rate": 0.845935733224439,
+ "match_probability": 0.000010494441090371449,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702736995962544,
+ "recall": 0.9836492181562766,
+ "row_count": 477830,
+ "tn": 26787,
+ "tn_rate": 0.1540642667755609,
+ "tp": 298991,
+ "tp_rate": 0.9836492181562766,
+ "truth_threshold": -16.54
+ },
+ {
+ "f1": 0.7972437847826841,
+ "fn": 4989,
+ "fn_rate": 0.016413289862844245,
+ "fp": 147082,
+ "fp_rate": 0.845935733224439,
+ "match_probability": 0.000010640936469815525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6702596546606465,
+ "recall": 0.9835867101371557,
+ "row_count": 477830,
+ "tn": 26787,
+ "tn_rate": 0.1540642667755609,
+ "tp": 298972,
+ "tp_rate": 0.9835867101371557,
+ "truth_threshold": -16.52
+ },
+ {
+ "f1": 0.8036444864978199,
+ "fn": 4994,
+ "fn_rate": 0.016429739341560265,
+ "fp": 141100,
+ "fp_rate": 0.8115305201042164,
+ "match_probability": 0.000010789476804723106,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6793670054787112,
+ "recall": 0.9835702606584398,
+ "row_count": 477830,
+ "tn": 32769,
+ "tn_rate": 0.1884694798957836,
+ "tp": 298967,
+ "tp_rate": 0.9835702606584398,
+ "truth_threshold": -16.5
+ },
+ {
+ "f1": 0.8038373740659979,
+ "fn": 4997,
+ "fn_rate": 0.016439609028789878,
+ "fp": 140917,
+ "fp_rate": 0.8104780035544001,
+ "match_probability": 0.000011092806920501003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6796474501058241,
+ "recall": 0.9835603909712102,
+ "row_count": 477830,
+ "tn": 32952,
+ "tn_rate": 0.18952199644559986,
+ "tp": 298964,
+ "tp_rate": 0.9835603909712102,
+ "truth_threshold": -16.46
+ },
+ {
+ "f1": 0.8038357917605494,
+ "fn": 5000,
+ "fn_rate": 0.01644947871601949,
+ "fp": 140914,
+ "fp_rate": 0.810460749184731,
+ "match_probability": 0.000011247654992825144,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6796499005399261,
+ "recall": 0.9835505212839805,
+ "row_count": 477830,
+ "tn": 32955,
+ "tn_rate": 0.18953925081526896,
+ "tp": 298961,
+ "tp_rate": 0.9835505212839805,
+ "truth_threshold": -16.44
+ },
+ {
+ "f1": 0.8039527328664708,
+ "fn": 5016,
+ "fn_rate": 0.016502117047910752,
+ "fp": 140783,
+ "fp_rate": 0.8097073083758461,
+ "match_probability": 0.000011404664614720203,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6798407197176436,
+ "recall": 0.9834978829520893,
+ "row_count": 477830,
+ "tn": 33086,
+ "tn_rate": 0.19029269162415383,
+ "tp": 298945,
+ "tp_rate": 0.9834978829520893,
+ "truth_threshold": -16.42
+ },
+ {
+ "f1": 0.803949523996546,
+ "fn": 5100,
+ "fn_rate": 0.01677846829033988,
+ "fp": 140660,
+ "fp_rate": 0.8089998792194123,
+ "match_probability": 0.00001156386595891718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6799697852889851,
+ "recall": 0.9832215317096601,
+ "row_count": 477830,
+ "tn": 33209,
+ "tn_rate": 0.19100012078058767,
+ "tp": 298861,
+ "tp_rate": 0.9832215317096601,
+ "truth_threshold": -16.4
+ },
+ {
+ "f1": 0.8062252652535994,
+ "fn": 5107,
+ "fn_rate": 0.016801497560542306,
+ "fp": 138551,
+ "fp_rate": 0.7968700573420219,
+ "match_probability": 0.000011725289619303927,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6832432185274516,
+ "recall": 0.9831985024394577,
+ "row_count": 477830,
+ "tn": 35318,
+ "tn_rate": 0.20312994265797812,
+ "tp": 298854,
+ "tp_rate": 0.9831985024394577,
+ "truth_threshold": -16.38
+ },
+ {
+ "f1": 0.8062215220094906,
+ "fn": 5110,
+ "fn_rate": 0.016811367247771918,
+ "fp": 138551,
+ "fp_rate": 0.7968700573420219,
+ "match_probability": 0.000012223206877850105,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6832410459943027,
+ "recall": 0.9831886327522281,
+ "row_count": 477830,
+ "tn": 35318,
+ "tn_rate": 0.20312994265797812,
+ "tp": 298851,
+ "tp_rate": 0.9831886327522281,
+ "truth_threshold": -16.32
+ },
+ {
+ "f1": 0.8062280469841749,
+ "fn": 5110,
+ "fn_rate": 0.016811367247771918,
+ "fp": 138545,
+ "fp_rate": 0.7968355486026836,
+ "match_probability": 0.000012393834372475679,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6832504183851704,
+ "recall": 0.9831886327522281,
+ "row_count": 477830,
+ "tn": 35324,
+ "tn_rate": 0.20316445139731637,
+ "tp": 298851,
+ "tp_rate": 0.9831886327522281,
+ "truth_threshold": -16.3
+ },
+ {
+ "f1": 0.8062683289402331,
+ "fn": 5112,
+ "fn_rate": 0.016817947039258326,
+ "fp": 138505,
+ "fp_rate": 0.7966054903404287,
+ "match_probability": 0.000012566843678710988,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6833114593670117,
+ "recall": 0.9831820529607417,
+ "row_count": 477830,
+ "tn": 35364,
+ "tn_rate": 0.2033945096595713,
+ "tp": 298849,
+ "tp_rate": 0.9831820529607417,
+ "truth_threshold": -16.28
+ },
+ {
+ "f1": 0.8061813668618298,
+ "fn": 5166,
+ "fn_rate": 0.016995601409391336,
+ "fp": 138505,
+ "fp_rate": 0.7966054903404287,
+ "match_probability": 0.00001274226804373564,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6832723530756918,
+ "recall": 0.9830043985906086,
+ "row_count": 477830,
+ "tn": 35364,
+ "tn_rate": 0.2033945096595713,
+ "tp": 298795,
+ "tp_rate": 0.9830043985906086,
+ "truth_threshold": -16.26
+ },
+ {
+ "f1": 0.8064185295840182,
+ "fn": 5166,
+ "fn_rate": 0.016995601409391336,
+ "fp": 138286,
+ "fp_rate": 0.795345921354583,
+ "match_probability": 0.000012920141178795591,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6836147075713654,
+ "recall": 0.9830043985906086,
+ "row_count": 477830,
+ "tn": 35583,
+ "tn_rate": 0.20465407864541696,
+ "tp": 298795,
+ "tp_rate": 0.9830043985906086,
+ "truth_threshold": -16.240000000000002
+ },
+ {
+ "f1": 0.8066101022317126,
+ "fn": 5166,
+ "fn_rate": 0.016995601409391336,
+ "fp": 138111,
+ "fp_rate": 0.7943394164572178,
+ "match_probability": 0.00001310049726567996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.683888525220528,
+ "recall": 0.9830043985906086,
+ "row_count": 477830,
+ "tn": 35758,
+ "tn_rate": 0.20566058354278222,
+ "tp": 298795,
+ "tp_rate": 0.9830043985906086,
+ "truth_threshold": -16.22
+ },
+ {
+ "f1": 0.8066297000194372,
+ "fn": 5166,
+ "fn_rate": 0.016995601409391336,
+ "fp": 138093,
+ "fp_rate": 0.794235890239203,
+ "match_probability": 0.000013283370963288116,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.683916701763381,
+ "recall": 0.9830043985906086,
+ "row_count": 477830,
+ "tn": 35776,
+ "tn_rate": 0.20576410976079693,
+ "tp": 298795,
+ "tp_rate": 0.9830043985906086,
+ "truth_threshold": -16.2
+ },
+ {
+ "f1": 0.8067832947663163,
+ "fn": 5168,
+ "fn_rate": 0.017002181200877743,
+ "fp": 137948,
+ "fp_rate": 0.793401929038529,
+ "match_probability": 0.000013468797414288652,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841423177581221,
+ "recall": 0.9829978187991223,
+ "row_count": 477830,
+ "tn": 35921,
+ "tn_rate": 0.20659807096147098,
+ "tp": 298793,
+ "tp_rate": 0.9829978187991223,
+ "truth_threshold": -16.18
+ },
+ {
+ "f1": 0.8067827730525179,
+ "fn": 5169,
+ "fn_rate": 0.01700547109662095,
+ "fp": 137948,
+ "fp_rate": 0.793401929038529,
+ "match_probability": 0.000013656812251871,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841415945413747,
+ "recall": 0.982994528903379,
+ "row_count": 477830,
+ "tn": 35921,
+ "tn_rate": 0.20659807096147098,
+ "tp": 298792,
+ "tp_rate": 0.982994528903379,
+ "truth_threshold": -16.16
+ },
+ {
+ "f1": 0.8068073501019347,
+ "fn": 5172,
+ "fn_rate": 0.01701534078385056,
+ "fp": 137921,
+ "fp_rate": 0.7932466397115069,
+ "match_probability": 0.000014236750918251151,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841817224244923,
+ "recall": 0.9829846592161494,
+ "row_count": 477830,
+ "tn": 35948,
+ "tn_rate": 0.20675336028849306,
+ "tp": 298789,
+ "tp_rate": 0.9829846592161494,
+ "truth_threshold": -16.1
+ },
+ {
+ "f1": 0.8067875881325222,
+ "fn": 5189,
+ "fn_rate": 0.017071269011485025,
+ "fp": 137913,
+ "fp_rate": 0.793200628059056,
+ "match_probability": 0.000014435485686095844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841819618260302,
+ "recall": 0.982928730988515,
+ "row_count": 477830,
+ "tn": 35956,
+ "tn_rate": 0.20679937194094405,
+ "tp": 298772,
+ "tp_rate": 0.982928730988515,
+ "truth_threshold": -16.080000000000002
+ },
+ {
+ "f1": 0.8067870663908706,
+ "fn": 5190,
+ "fn_rate": 0.01707455890722823,
+ "fp": 137913,
+ "fp_rate": 0.793200628059056,
+ "match_probability": 0.000014636994607262019,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841812386073225,
+ "recall": 0.9829254410927718,
+ "row_count": 477830,
+ "tn": 35956,
+ "tn_rate": 0.20679937194094405,
+ "tp": 298771,
+ "tp_rate": 0.9829254410927718,
+ "truth_threshold": -16.06
+ },
+ {
+ "f1": 0.8067947374674602,
+ "fn": 5192,
+ "fn_rate": 0.017081138698714637,
+ "fp": 137903,
+ "fp_rate": 0.7931431134934922,
+ "match_probability": 0.000014841316405219397,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6841954602081196,
+ "recall": 0.9829188613012854,
+ "row_count": 477830,
+ "tn": 35966,
+ "tn_rate": 0.20685688650650777,
+ "tp": 298769,
+ "tp_rate": 0.9829188613012854,
+ "truth_threshold": -16.04
+ },
+ {
+ "f1": 0.8068368405133302,
+ "fn": 5199,
+ "fn_rate": 0.017104167968917065,
+ "fp": 137854,
+ "fp_rate": 0.79286129212223,
+ "match_probability": 0.000015048490343933547,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6842671821463254,
+ "recall": 0.9828958320310829,
+ "row_count": 477830,
+ "tn": 36015,
+ "tn_rate": 0.20713870787777006,
+ "tp": 298762,
+ "tp_rate": 0.9828958320310829,
+ "truth_threshold": -16.02
+ },
+ {
+ "f1": 0.8068013946315866,
+ "fn": 5221,
+ "fn_rate": 0.01717654567526755,
+ "fp": 137854,
+ "fp_rate": 0.79286129212223,
+ "match_probability": 0.000015258556235409006,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6842512723491391,
+ "recall": 0.9828234543247325,
+ "row_count": 477830,
+ "tn": 36015,
+ "tn_rate": 0.20713870787777006,
+ "tp": 298740,
+ "tp_rate": 0.9828234543247325,
+ "truth_threshold": -16
+ },
+ {
+ "f1": 0.8067954714861346,
+ "fn": 5224,
+ "fn_rate": 0.01718641536249716,
+ "fp": 137854,
+ "fp_rate": 0.79286129212223,
+ "match_probability": 0.000015471554447337795,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6842491027071104,
+ "recall": 0.9828135846375028,
+ "row_count": 477830,
+ "tn": 36015,
+ "tn_rate": 0.20713870787777006,
+ "tp": 298737,
+ "tp_rate": 0.9828135846375028,
+ "truth_threshold": -15.98
+ },
+ {
+ "f1": 0.8068063661480375,
+ "fn": 5224,
+ "fn_rate": 0.01718641536249716,
+ "fp": 137845,
+ "fp_rate": 0.7928095290132225,
+ "match_probability": 0.000015687525910854657,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6842632082861868,
+ "recall": 0.9828135846375028,
+ "row_count": 477830,
+ "tn": 36024,
+ "tn_rate": 0.2071904709867774,
+ "tp": 298737,
+ "tp_rate": 0.9828135846375028,
+ "truth_threshold": -15.96
+ },
+ {
+ "f1": 0.8069567425351565,
+ "fn": 5224,
+ "fn_rate": 0.01718641536249716,
+ "fp": 137706,
+ "fp_rate": 0.7920100765518867,
+ "match_probability": 0.000015906512128400478,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.684481134993573,
+ "recall": 0.9828135846375028,
+ "row_count": 477830,
+ "tn": 36163,
+ "tn_rate": 0.20798992344811323,
+ "tp": 298737,
+ "tp_rate": 0.9828135846375028,
+ "truth_threshold": -15.94
+ },
+ {
+ "f1": 0.807041241402413,
+ "fn": 5225,
+ "fn_rate": 0.017189705258240366,
+ "fp": 137628,
+ "fp_rate": 0.7915614629404897,
+ "match_probability": 0.00001612855518169533,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6846027628310309,
+ "recall": 0.9828102947417596,
+ "row_count": 477830,
+ "tn": 36241,
+ "tn_rate": 0.20843853705951032,
+ "tp": 298736,
+ "tp_rate": 0.9828102947417596,
+ "truth_threshold": -15.92
+ },
+ {
+ "f1": 0.8070528545338621,
+ "fn": 5232,
+ "fn_rate": 0.017212734528442793,
+ "fp": 137607,
+ "fp_rate": 0.7914406823528058,
+ "match_probability": 0.000016353697739823012,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6846306516079351,
+ "recall": 0.9827872654715573,
+ "row_count": 477830,
+ "tn": 36262,
+ "tn_rate": 0.20855931764719415,
+ "tp": 298729,
+ "tp_rate": 0.9827872654715573,
+ "truth_threshold": -15.9
+ },
+ {
+ "f1": 0.8070437070777478,
+ "fn": 5237,
+ "fn_rate": 0.017229184007158813,
+ "fp": 137607,
+ "fp_rate": 0.7914406823528058,
+ "match_probability": 0.000016581983067428103,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6846270377305302,
+ "recall": 0.9827708159928412,
+ "row_count": 477830,
+ "tn": 36262,
+ "tn_rate": 0.20855931764719415,
+ "tp": 298724,
+ "tp_rate": 0.9827708159928412,
+ "truth_threshold": -15.88
+ },
+ {
+ "f1": 0.806859971520364,
+ "fn": 5351,
+ "fn_rate": 0.017604232121884056,
+ "fp": 137607,
+ "fp_rate": 0.7914406823528058,
+ "match_probability": 0.000016813455033027547,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6845446188479587,
+ "recall": 0.9823957678781159,
+ "row_count": 477830,
+ "tn": 36262,
+ "tn_rate": 0.20855931764719415,
+ "tp": 298610,
+ "tp_rate": 0.9823957678781159,
+ "truth_threshold": -15.860000000000001
+ },
+ {
+ "f1": 0.8069079382922552,
+ "fn": 5351,
+ "fn_rate": 0.017604232121884056,
+ "fp": 137564,
+ "fp_rate": 0.7911933697208818,
+ "match_probability": 0.000017048158117438166,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.6846121043436794,
+ "recall": 0.9823957678781159,
+ "row_count": 477830,
+ "tn": 36305,
+ "tn_rate": 0.2088066302791182,
+ "tp": 298610,
+ "tp_rate": 0.9823957678781159,
+ "truth_threshold": -15.84
+ },
+ {
+ "f1": 0.8414346177039128,
+ "fn": 5351,
+ "fn_rate": 0.017604232121884056,
+ "fp": 107194,
+ "fp_rate": 0.6165216341038368,
+ "match_probability": 0.00001728613742232168,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7358478477294458,
+ "recall": 0.9823957678781159,
+ "row_count": 477830,
+ "tn": 66675,
+ "tn_rate": 0.3834783658961632,
+ "tp": 298610,
+ "tp_rate": 0.9823957678781159,
+ "truth_threshold": -15.82
+ },
+ {
+ "f1": 0.8414393597835889,
+ "fn": 5351,
+ "fn_rate": 0.017604232121884056,
+ "fp": 107189,
+ "fp_rate": 0.6164928768210549,
+ "match_probability": 0.000017527438678849133,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.735856914383722,
+ "recall": 0.9823957678781159,
+ "row_count": 477830,
+ "tn": 66680,
+ "tn_rate": 0.3835071231789451,
+ "tp": 298610,
+ "tp_rate": 0.9823957678781159,
+ "truth_threshold": -15.8
+ },
+ {
+ "f1": 0.8414578818782036,
+ "fn": 5352,
+ "fn_rate": 0.01760752201762726,
+ "fp": 107173,
+ "fp_rate": 0.6164008535161529,
+ "match_probability": 0.000017772108256485995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7358852783021426,
+ "recall": 0.9823924779823727,
+ "row_count": 477830,
+ "tn": 66696,
+ "tn_rate": 0.383599146483847,
+ "tp": 298609,
+ "tp_rate": 0.9823924779823727,
+ "truth_threshold": -15.780000000000001
+ },
+ {
+ "f1": 0.8414485345296433,
+ "fn": 5357,
+ "fn_rate": 0.01762397149634328,
+ "fp": 107173,
+ "fp_rate": 0.6164008535161529,
+ "match_probability": 0.00001802019317189998,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7358820238702538,
+ "recall": 0.9823760285036567,
+ "row_count": 477830,
+ "tn": 66696,
+ "tn_rate": 0.383599146483847,
+ "tp": 298604,
+ "tp_rate": 0.9823760285036567,
+ "truth_threshold": -15.76
+ },
+ {
+ "f1": 0.8414480877396666,
+ "fn": 5358,
+ "fn_rate": 0.017627261392086487,
+ "fp": 107173,
+ "fp_rate": 0.6164008535161529,
+ "match_probability": 0.000018271741097992973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7358813729742518,
+ "recall": 0.9823727386079135,
+ "row_count": 477830,
+ "tn": 66696,
+ "tn_rate": 0.383599146483847,
+ "tp": 298603,
+ "tp_rate": 0.9823727386079135,
+ "truth_threshold": -15.74
+ },
+ {
+ "f1": 0.8415814795085779,
+ "fn": 5362,
+ "fn_rate": 0.0176404209750593,
+ "fp": 107055,
+ "fp_rate": 0.6157221816425009,
+ "match_probability": 0.000018526800373059223,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7360928278779453,
+ "recall": 0.9823595790249408,
+ "row_count": 477830,
+ "tn": 66814,
+ "tn_rate": 0.384277818357499,
+ "tp": 298599,
+ "tp_rate": 0.9823595790249408,
+ "truth_threshold": -15.72
+ },
+ {
+ "f1": 0.8416352853631587,
+ "fn": 5369,
+ "fn_rate": 0.01766345024526173,
+ "fp": 107000,
+ "fp_rate": 0.6154058515319004,
+ "match_probability": 0.00001878542001007107,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361880904948815,
+ "recall": 0.9823365497547383,
+ "row_count": 477830,
+ "tn": 66869,
+ "tn_rate": 0.38459414846809953,
+ "tp": 298592,
+ "tp_rate": 0.9823365497547383,
+ "truth_threshold": -15.700000000000001
+ },
+ {
+ "f1": 0.8413559551436233,
+ "fn": 5580,
+ "fn_rate": 0.01835761824707775,
+ "fp": 106945,
+ "fp_rate": 0.6150895214212999,
+ "match_probability": 0.00001904764970609435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361506540414382,
+ "recall": 0.9816423817529223,
+ "row_count": 477830,
+ "tn": 66924,
+ "tn_rate": 0.38491047857870003,
+ "tp": 298381,
+ "tp_rate": 0.9816423817529223,
+ "truth_threshold": -15.68
+ },
+ {
+ "f1": 0.8413749347921102,
+ "fn": 5580,
+ "fn_rate": 0.01835761824707775,
+ "fp": 106929,
+ "fp_rate": 0.6149974981163979,
+ "match_probability": 0.00001931353985183501,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361797142927635,
+ "recall": 0.9816423817529223,
+ "row_count": 477830,
+ "tn": 66940,
+ "tn_rate": 0.385002501883602,
+ "tp": 298381,
+ "tp_rate": 0.9816423817529223,
+ "truth_threshold": -15.66
+ },
+ {
+ "f1": 0.8413721149914701,
+ "fn": 5581,
+ "fn_rate": 0.018360908142820955,
+ "fp": 106929,
+ "fp_rate": 0.6149974981163979,
+ "match_probability": 0.00001958314154131918,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.736179063381272,
+ "recall": 0.981639091857179,
+ "row_count": 477830,
+ "tn": 66940,
+ "tn_rate": 0.385002501883602,
+ "tp": 298380,
+ "tp_rate": 0.981639091857179,
+ "truth_threshold": -15.64
+ },
+ {
+ "f1": 0.8413633441239834,
+ "fn": 5590,
+ "fn_rate": 0.01839051720450979,
+ "fp": 106925,
+ "fp_rate": 0.6149744922901725,
+ "match_probability": 0.000019856506581707993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361804705696577,
+ "recall": 0.9816094827954902,
+ "row_count": 477830,
+ "tn": 66944,
+ "tn_rate": 0.3850255077098275,
+ "tp": 298371,
+ "tp_rate": 0.9816094827954902,
+ "truth_threshold": -15.620000000000001
+ },
+ {
+ "f1": 0.8413728343259339,
+ "fn": 5590,
+ "fn_rate": 0.01839051720450979,
+ "fp": 106917,
+ "fp_rate": 0.6149284806377215,
+ "match_probability": 0.00002013368750324953,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361950020726002,
+ "recall": 0.9816094827954902,
+ "row_count": 477830,
+ "tn": 66952,
+ "tn_rate": 0.3850715193622785,
+ "tp": 298371,
+ "tp_rate": 0.9816094827954902,
+ "truth_threshold": -15.6
+ },
+ {
+ "f1": 0.8413602127341584,
+ "fn": 5597,
+ "fn_rate": 0.018413546474712217,
+ "fp": 106917,
+ "fp_rate": 0.6149284806377215,
+ "match_probability": 0.000020414737569369415,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7361904456414191,
+ "recall": 0.9815864535252878,
+ "row_count": 477830,
+ "tn": 66952,
+ "tn_rate": 0.3850715193622785,
+ "tp": 298364,
+ "tp_rate": 0.9815864535252878,
+ "truth_threshold": -15.58
+ },
+ {
+ "f1": 0.8413958026654935,
+ "fn": 5597,
+ "fn_rate": 0.018413546474712217,
+ "fp": 106887,
+ "fp_rate": 0.6147559369410304,
+ "match_probability": 0.00002069971078690248,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7362449444911919,
+ "recall": 0.9815864535252878,
+ "row_count": 477830,
+ "tn": 66982,
+ "tn_rate": 0.3852440630589697,
+ "tp": 298364,
+ "tp_rate": 0.9815864535252878,
+ "truth_threshold": -15.56
+ },
+ {
+ "f1": 0.841375751200652,
+ "fn": 5610,
+ "fn_rate": 0.018456315119373866,
+ "fp": 106887,
+ "fp_rate": 0.6147559369410304,
+ "match_probability": 0.000020988661916466824,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7362364832518175,
+ "recall": 0.9815436848806262,
+ "row_count": 477830,
+ "tn": 66982,
+ "tn_rate": 0.3852440630589697,
+ "tp": 298351,
+ "tp_rate": 0.9815436848806262,
+ "truth_threshold": -15.540000000000001
+ },
+ {
+ "f1": 0.8414115802150878,
+ "fn": 5636,
+ "fn_rate": 0.018541852408697167,
+ "fp": 106821,
+ "fp_rate": 0.6143763408083097,
+ "match_probability": 0.000021578720786338814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7363394924298895,
+ "recall": 0.9814581475913028,
+ "row_count": 477830,
+ "tn": 67048,
+ "tn_rate": 0.3856236591916903,
+ "tp": 298325,
+ "tp_rate": 0.9814581475913028,
+ "truth_threshold": -15.5
+ },
+ {
+ "f1": 0.8414017769002962,
+ "fn": 5642,
+ "fn_rate": 0.018561591783156393,
+ "fp": 106821,
+ "fp_rate": 0.6143763408083097,
+ "match_probability": 0.00002187994191220544,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7363355876980797,
+ "recall": 0.9814384082168436,
+ "row_count": 477830,
+ "tn": 67048,
+ "tn_rate": 0.3856236591916903,
+ "tp": 298319,
+ "tp_rate": 0.9814384082168436,
+ "truth_threshold": -15.48
+ },
+ {
+ "f1": 0.8414863248634743,
+ "fn": 5644,
+ "fn_rate": 0.0185681715746428,
+ "fp": 106747,
+ "fp_rate": 0.6139507330231381,
+ "match_probability": 0.00002218536774300117,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7364688049295913,
+ "recall": 0.9814318284253573,
+ "row_count": 477830,
+ "tn": 67122,
+ "tn_rate": 0.38604926697686187,
+ "tp": 298317,
+ "tp_rate": 0.9814318284253573,
+ "truth_threshold": -15.46
+ },
+ {
+ "f1": 0.8415053144675377,
+ "fn": 5644,
+ "fn_rate": 0.0185681715746428,
+ "fp": 106731,
+ "fp_rate": 0.6138587097182362,
+ "match_probability": 0.000022495056969010486,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7364978965455946,
+ "recall": 0.9814318284253573,
+ "row_count": 477830,
+ "tn": 67138,
+ "tn_rate": 0.38614129028176386,
+ "tp": 298317,
+ "tp_rate": 0.9814318284253573,
+ "truth_threshold": -15.44
+ },
+ {
+ "f1": 0.8414959577096885,
+ "fn": 5649,
+ "fn_rate": 0.01858462105335882,
+ "fp": 106731,
+ "fp_rate": 0.6138587097182362,
+ "match_probability": 0.00002280906909965718,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7364946437785618,
+ "recall": 0.9814153789466412,
+ "row_count": 477830,
+ "tn": 67138,
+ "tn_rate": 0.38614129028176386,
+ "tp": 298312,
+ "tp_rate": 0.9814153789466412,
+ "truth_threshold": -15.42
+ },
+ {
+ "f1": 0.8414867388446631,
+ "fn": 5659,
+ "fn_rate": 0.018617520010790856,
+ "fp": 106725,
+ "fp_rate": 0.6138242009788979,
+ "match_probability": 0.000023127464474935175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7364990482116007,
+ "recall": 0.9813824799892091,
+ "row_count": 477830,
+ "tn": 67144,
+ "tn_rate": 0.3861757990211021,
+ "tp": 298302,
+ "tp_rate": 0.9813824799892091,
+ "truth_threshold": -15.4
+ },
+ {
+ "f1": 0.8414494470774092,
+ "fn": 5684,
+ "fn_rate": 0.018699767404370956,
+ "fp": 106722,
+ "fp_rate": 0.6138069466092287,
+ "match_probability": 0.00002345030427699851,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7364882382425636,
+ "recall": 0.981300232595629,
+ "row_count": 477830,
+ "tn": 67147,
+ "tn_rate": 0.3861930533907712,
+ "tp": 298277,
+ "tp_rate": 0.981300232595629,
+ "truth_threshold": -15.38
+ },
+ {
+ "f1": 0.8414595270134934,
+ "fn": 5688,
+ "fn_rate": 0.01871292698734377,
+ "fp": 106708,
+ "fp_rate": 0.6137264262174396,
+ "match_probability": 0.000023777650541913158,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7365110955822619,
+ "recall": 0.9812870730126563,
+ "row_count": 477830,
+ "tn": 67161,
+ "tn_rate": 0.38627357378256044,
+ "tp": 298273,
+ "tp_rate": 0.9812870730126563,
+ "truth_threshold": -15.36
+ },
+ {
+ "f1": 0.8414942418480255,
+ "fn": 5690,
+ "fn_rate": 0.018719506778830178,
+ "fp": 106676,
+ "fp_rate": 0.6135423796076356,
+ "match_probability": 0.00002410956617157259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7365679953179058,
+ "recall": 0.9812804932211698,
+ "row_count": 477830,
+ "tn": 67193,
+ "tn_rate": 0.38645762039236436,
+ "tp": 298271,
+ "tp_rate": 0.9812804932211698,
+ "truth_threshold": -15.34
+ },
+ {
+ "f1": 0.8414933474772325,
+ "fn": 5692,
+ "fn_rate": 0.018726086570316585,
+ "fp": 106674,
+ "fp_rate": 0.6135308766945229,
+ "match_probability": 0.000024446114945779867,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.736570332120817,
+ "recall": 0.9812739134296834,
+ "row_count": 477830,
+ "tn": 67195,
+ "tn_rate": 0.3864691233054771,
+ "tp": 298269,
+ "tp_rate": 0.9812739134296834,
+ "truth_threshold": -15.32
+ },
+ {
+ "f1": 0.8415095191341933,
+ "fn": 5693,
+ "fn_rate": 0.01872937646605979,
+ "fp": 106660,
+ "fp_rate": 0.6134503563027337,
+ "match_probability": 0.000025133371510271085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7365951477793583,
+ "recall": 0.9812706235339402,
+ "row_count": 477830,
+ "tn": 67209,
+ "tn_rate": 0.38654964369726635,
+ "tp": 298268,
+ "tp_rate": 0.9812706235339402,
+ "truth_threshold": -15.280000000000001
+ },
+ {
+ "f1": 0.8416064243429777,
+ "fn": 5694,
+ "fn_rate": 0.018732666361802996,
+ "fp": 106576,
+ "fp_rate": 0.6129672339519984,
+ "match_probability": 0.000025484211360819274,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7367473316816643,
+ "recall": 0.981267333638197,
+ "row_count": 477830,
+ "tn": 67293,
+ "tn_rate": 0.38703276604800163,
+ "tp": 298267,
+ "tp_rate": 0.981267333638197,
+ "truth_threshold": -15.26
+ },
+ {
+ "f1": 0.8416254225523006,
+ "fn": 5694,
+ "fn_rate": 0.018732666361802996,
+ "fp": 106561,
+ "fp_rate": 0.6128809621036527,
+ "match_probability": 0.00002583994850180852,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7367746302133251,
+ "recall": 0.981267333638197,
+ "row_count": 477830,
+ "tn": 67308,
+ "tn_rate": 0.3871190378963473,
+ "tp": 298267,
+ "tp_rate": 0.981267333638197,
+ "truth_threshold": -15.24
+ },
+ {
+ "f1": 0.8416432217666496,
+ "fn": 5702,
+ "fn_rate": 0.018758985527748625,
+ "fp": 106535,
+ "fp_rate": 0.612731424233187,
+ "match_probability": 0.000026200651289799313,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7368167512364314,
+ "recall": 0.9812410144722514,
+ "row_count": 477830,
+ "tn": 67334,
+ "tn_rate": 0.38726857576681295,
+ "tp": 298259,
+ "tp_rate": 0.9812410144722514,
+ "truth_threshold": -15.22
+ },
+ {
+ "f1": 0.841685080300375,
+ "fn": 5704,
+ "fn_rate": 0.018765565319235032,
+ "fp": 106496,
+ "fp_rate": 0.6125071174274885,
+ "match_probability": 0.000026566389035375488,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7368864467959472,
+ "recall": 0.981234434680765,
+ "row_count": 477830,
+ "tn": 67373,
+ "tn_rate": 0.38749288257251147,
+ "tp": 298257,
+ "tp_rate": 0.981234434680765,
+ "truth_threshold": -15.200000000000001
+ },
+ {
+ "f1": 0.8416837173860894,
+ "fn": 5723,
+ "fn_rate": 0.018828073338355907,
+ "fp": 106471,
+ "fp_rate": 0.6123633310135792,
+ "match_probability": 0.00002693723201645637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.736919613845998,
+ "recall": 0.9811719266616441,
+ "row_count": 477830,
+ "tn": 67398,
+ "tn_rate": 0.3876366689864208,
+ "tp": 298238,
+ "tp_rate": 0.9811719266616441,
+ "truth_threshold": -15.18
+ },
+ {
+ "f1": 0.8417189030224177,
+ "fn": 5724,
+ "fn_rate": 0.018831363234099112,
+ "fp": 106440,
+ "fp_rate": 0.6121850358603317,
+ "match_probability": 0.000027694519714661317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7369754149605735,
+ "recall": 0.9811686367659009,
+ "row_count": 477830,
+ "tn": 67429,
+ "tn_rate": 0.38781496413966837,
+ "tp": 298237,
+ "tp_rate": 0.9811686367659009,
+ "truth_threshold": -15.14
+ },
+ {
+ "f1": 0.8416814379099725,
+ "fn": 5760,
+ "fn_rate": 0.018949799480854453,
+ "fp": 106422,
+ "fp_rate": 0.6120815096423169,
+ "match_probability": 0.00002808110994672502,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7369847981948628,
+ "recall": 0.9810502005191456,
+ "row_count": 477830,
+ "tn": 67447,
+ "tn_rate": 0.3879184903576831,
+ "tp": 298201,
+ "tp_rate": 0.9810502005191456,
+ "truth_threshold": -15.120000000000001
+ },
+ {
+ "f1": 0.8416244887128691,
+ "fn": 5813,
+ "fn_rate": 0.01912416395524426,
+ "fp": 106397,
+ "fp_rate": 0.6119377232284076,
+ "match_probability": 0.000028473096472119992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7369958842650385,
+ "recall": 0.9808758360447557,
+ "row_count": 477830,
+ "tn": 67472,
+ "tn_rate": 0.3880622767715924,
+ "tp": 298148,
+ "tp_rate": 0.9808758360447557,
+ "truth_threshold": -15.1
+ },
+ {
+ "f1": 0.8416286271620412,
+ "fn": 5825,
+ "fn_rate": 0.019163642704162705,
+ "fp": 106377,
+ "fp_rate": 0.6118226940972802,
+ "match_probability": 0.000028870554611713878,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7370245208435823,
+ "recall": 0.9808363572958373,
+ "row_count": 477830,
+ "tn": 67492,
+ "tn_rate": 0.38817730590271987,
+ "tp": 298136,
+ "tp_rate": 0.9808363572958373,
+ "truth_threshold": -15.08
+ },
+ {
+ "f1": 0.8416577028297492,
+ "fn": 5845,
+ "fn_rate": 0.01922944061902678,
+ "fp": 106325,
+ "fp_rate": 0.6115236183563487,
+ "match_probability": 0.000029273560737573354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7371062775534627,
+ "recall": 0.9807705593809732,
+ "row_count": 477830,
+ "tn": 67544,
+ "tn_rate": 0.3884763816436513,
+ "tp": 298116,
+ "tp_rate": 0.9807705593809732,
+ "truth_threshold": -15.06
+ },
+ {
+ "f1": 0.8416667607765193,
+ "fn": 5846,
+ "fn_rate": 0.019232730514769987,
+ "fp": 106317,
+ "fp_rate": 0.6114776067038977,
+ "match_probability": 0.000029682192287631416,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737120208094315,
+ "recall": 0.98076726948523,
+ "row_count": 477830,
+ "tn": 67552,
+ "tn_rate": 0.3885223932961022,
+ "tp": 298115,
+ "tp_rate": 0.98076726948523,
+ "truth_threshold": -15.040000000000001
+ },
+ {
+ "f1": 0.8417157716709066,
+ "fn": 5848,
+ "fn_rate": 0.019239310306256394,
+ "fp": 106272,
+ "fp_rate": 0.611218791158861,
+ "match_probability": 0.000030096527780559407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7372009347527727,
+ "recall": 0.9807606896937436,
+ "row_count": 477830,
+ "tn": 67597,
+ "tn_rate": 0.38878120884113904,
+ "tp": 298113,
+ "tp_rate": 0.9807606896937436,
+ "truth_threshold": -15.02
+ },
+ {
+ "f1": 0.8417585520464204,
+ "fn": 5848,
+ "fn_rate": 0.019239310306256394,
+ "fp": 106236,
+ "fp_rate": 0.6110117387228315,
+ "match_probability": 0.000030516646830846227,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7372665692260894,
+ "recall": 0.9807606896937436,
+ "row_count": 477830,
+ "tn": 67633,
+ "tn_rate": 0.38898826127716846,
+ "tp": 298113,
+ "tp_rate": 0.9807606896937436,
+ "truth_threshold": -15
+ },
+ {
+ "f1": 0.8417775669425408,
+ "fn": 5848,
+ "fn_rate": 0.019239310306256394,
+ "fp": 106220,
+ "fp_rate": 0.6109197154179296,
+ "match_probability": 0.00003094263016408827,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737295743854694,
+ "recall": 0.9807606896937436,
+ "row_count": 477830,
+ "tn": 67649,
+ "tn_rate": 0.3890802845820704,
+ "tp": 298113,
+ "tp_rate": 0.9807606896937436,
+ "truth_threshold": -14.98
+ },
+ {
+ "f1": 0.8418980481205641,
+ "fn": 5871,
+ "fn_rate": 0.019314977908350083,
+ "fp": 106087,
+ "fp_rate": 0.610154771695932,
+ "match_probability": 0.00003137455963249214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737523411772565,
+ "recall": 0.9806850220916499,
+ "row_count": 477830,
+ "tn": 67782,
+ "tn_rate": 0.389845228304068,
+ "tp": 298090,
+ "tp_rate": 0.9806850220916499,
+ "truth_threshold": -14.96
+ },
+ {
+ "f1": 0.8418812471226872,
+ "fn": 5882,
+ "fn_rate": 0.01935116676152533,
+ "fp": 106087,
+ "fp_rate": 0.610154771695932,
+ "match_probability": 0.00003181251823059389,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737516268068071,
+ "recall": 0.9806488332384746,
+ "row_count": 477830,
+ "tn": 67782,
+ "tn_rate": 0.389845228304068,
+ "tp": 298079,
+ "tp_rate": 0.9806488332384746,
+ "truth_threshold": -14.94
+ },
+ {
+ "f1": 0.841874705206165,
+ "fn": 5886,
+ "fn_rate": 0.019364326344498143,
+ "fp": 106087,
+ "fp_rate": 0.610154771695932,
+ "match_probability": 0.00003225659011119708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737513670260935,
+ "recall": 0.9806356736555019,
+ "row_count": 477830,
+ "tn": 67782,
+ "tn_rate": 0.389845228304068,
+ "tp": 298075,
+ "tp_rate": 0.9806356736555019,
+ "truth_threshold": -14.92
+ },
+ {
+ "f1": 0.8418387233441604,
+ "fn": 5908,
+ "fn_rate": 0.01943670405084863,
+ "fp": 106087,
+ "fp_rate": 0.610154771695932,
+ "match_probability": 0.00003270686060153373,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7374993814024843,
+ "recall": 0.9805632959491514,
+ "row_count": 477830,
+ "tn": 67782,
+ "tn_rate": 0.389845228304068,
+ "tp": 298053,
+ "tp_rate": 0.9805632959491514,
+ "truth_threshold": -14.9
+ },
+ {
+ "f1": 0.841766752912199,
+ "fn": 5952,
+ "fn_rate": 0.0195814594635496,
+ "fp": 106087,
+ "fp_rate": 0.610154771695932,
+ "match_probability": 0.00003316341621965,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7374707990180551,
+ "recall": 0.9804185405364504,
+ "row_count": 477830,
+ "tn": 67782,
+ "tn_rate": 0.389845228304068,
+ "tp": 298009,
+ "tp_rate": 0.9804185405364504,
+ "truth_threshold": -14.88
+ },
+ {
+ "f1": 0.8417924613576787,
+ "fn": 5953,
+ "fn_rate": 0.019584749359292802,
+ "fp": 106064,
+ "fp_rate": 0.6100224881951354,
+ "match_probability": 0.00003362634469102074,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375121265517036,
+ "recall": 0.9804152506407072,
+ "row_count": 477830,
+ "tn": 67805,
+ "tn_rate": 0.38997751180486456,
+ "tp": 298008,
+ "tp_rate": 0.9804152506407072,
+ "truth_threshold": -14.86
+ },
+ {
+ "f1": 0.8418012225850555,
+ "fn": 5960,
+ "fn_rate": 0.01960777862949523,
+ "fp": 106047,
+ "fp_rate": 0.609924713433677,
+ "match_probability": 0.000034095734965395514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375386092741456,
+ "recall": 0.9803922213705047,
+ "row_count": 477830,
+ "tn": 67822,
+ "tn_rate": 0.3900752865663229,
+ "tp": 298001,
+ "tp_rate": 0.9803922213705047,
+ "truth_threshold": -14.84
+ },
+ {
+ "f1": 0.8417943756267744,
+ "fn": 5970,
+ "fn_rate": 0.01964067758692727,
+ "fp": 106039,
+ "fp_rate": 0.609878701781226,
+ "match_probability": 0.00003457167723387977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375467168279584,
+ "recall": 0.9803593224130728,
+ "row_count": 477830,
+ "tn": 67830,
+ "tn_rate": 0.3901212982187739,
+ "tp": 297991,
+ "tp_rate": 0.9803593224130728,
+ "truth_threshold": -14.82
+ },
+ {
+ "f1": 0.8417469227705094,
+ "fn": 6007,
+ "fn_rate": 0.019762403729425816,
+ "fp": 106027,
+ "fp_rate": 0.6098096843025497,
+ "match_probability": 0.00003505426294625404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375445874929761,
+ "recall": 0.9802375962705742,
+ "row_count": 477830,
+ "tn": 67842,
+ "tn_rate": 0.3901903156974504,
+ "tp": 297954,
+ "tp_rate": 0.9802375962705742,
+ "truth_threshold": -14.8
+ },
+ {
+ "f1": 0.8417689154332306,
+ "fn": 6011,
+ "fn_rate": 0.01977556331239863,
+ "fp": 106004,
+ "fp_rate": 0.609677400801753,
+ "match_probability": 0.000035543584828534594,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375839823346223,
+ "recall": 0.9802244366876014,
+ "row_count": 477830,
+ "tn": 67865,
+ "tn_rate": 0.39032259919824697,
+ "tp": 297950,
+ "tp_rate": 0.9802244366876014,
+ "truth_threshold": -14.780000000000001
+ },
+ {
+ "f1": 0.8417699525078188,
+ "fn": 6014,
+ "fn_rate": 0.019785432999628243,
+ "fp": 105998,
+ "fp_rate": 0.6096428920624148,
+ "match_probability": 0.00003603973690077914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7375929891445617,
+ "recall": 0.9802145670003718,
+ "row_count": 477830,
+ "tn": 67871,
+ "tn_rate": 0.3903571079375852,
+ "tp": 297947,
+ "tp_rate": 0.9802145670003718,
+ "truth_threshold": -14.76
+ },
+ {
+ "f1": 0.8417824338947232,
+ "fn": 6018,
+ "fn_rate": 0.019798592582601058,
+ "fp": 105983,
+ "fp_rate": 0.6095566202140692,
+ "match_probability": 0.0000365428144951405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7376177814748246,
+ "recall": 0.9802014074173989,
+ "row_count": 477830,
+ "tn": 67886,
+ "tn_rate": 0.3904433797859308,
+ "tp": 297943,
+ "tp_rate": 0.9802014074173989,
+ "truth_threshold": -14.74
+ },
+ {
+ "f1": 0.8418561676348922,
+ "fn": 6018,
+ "fn_rate": 0.019798592582601058,
+ "fp": 105921,
+ "fp_rate": 0.609200029907574,
+ "match_probability": 0.000037052914274172446,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377310183626171,
+ "recall": 0.9802014074173989,
+ "row_count": 477830,
+ "tn": 67948,
+ "tn_rate": 0.3907999700924259,
+ "tp": 297943,
+ "tp_rate": 0.9802014074173989,
+ "truth_threshold": -14.72
+ },
+ {
+ "f1": 0.8420515603492379,
+ "fn": 6044,
+ "fn_rate": 0.01988412987192436,
+ "fp": 105720,
+ "fp_rate": 0.6080439871397432,
+ "match_probability": 0.000037570134249390434,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7380814940156626,
+ "recall": 0.9801158701280757,
+ "row_count": 477830,
+ "tn": 68149,
+ "tn_rate": 0.3919560128602569,
+ "tp": 297917,
+ "tp_rate": 0.9801158701280757,
+ "truth_threshold": -14.700000000000001
+ },
+ {
+ "f1": 0.8420658407599925,
+ "fn": 6044,
+ "fn_rate": 0.01988412987192436,
+ "fp": 105708,
+ "fp_rate": 0.6079749696610667,
+ "match_probability": 0.00003809457380009125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7381034375967792,
+ "recall": 0.9801158701280757,
+ "row_count": 477830,
+ "tn": 68161,
+ "tn_rate": 0.3920250303389333,
+ "tp": 297917,
+ "tp_rate": 0.9801158701280757,
+ "truth_threshold": -14.68
+ },
+ {
+ "f1": 0.8421225209741978,
+ "fn": 6045,
+ "fn_rate": 0.01988741976766756,
+ "fp": 105659,
+ "fp_rate": 0.6076931482898044,
+ "match_probability": 0.00003862633369243492,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7381924053769435,
+ "recall": 0.9801125802323324,
+ "row_count": 477830,
+ "tn": 68210,
+ "tn_rate": 0.3923068517101956,
+ "tp": 297916,
+ "tp_rate": 0.9801125802323324,
+ "truth_threshold": -14.66
+ },
+ {
+ "f1": 0.842165371024735,
+ "fn": 6045,
+ "fn_rate": 0.01988741976766756,
+ "fp": 105623,
+ "fp_rate": 0.607486095853775,
+ "match_probability": 0.00003916551609879306,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7382582600442584,
+ "recall": 0.9801125802323324,
+ "row_count": 477830,
+ "tn": 68246,
+ "tn_rate": 0.39251390414622506,
+ "tp": 297916,
+ "tp_rate": 0.9801125802323324,
+ "truth_threshold": -14.64
+ },
+ {
+ "f1": 0.8421132980136944,
+ "fn": 6087,
+ "fn_rate": 0.020025595388882125,
+ "fp": 105610,
+ "fp_rate": 0.6074113269185422,
+ "match_probability": 0.0000397122246173665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7382548006860247,
+ "recall": 0.9799744046111178,
+ "row_count": 477830,
+ "tn": 68259,
+ "tn_rate": 0.3925886730814579,
+ "tp": 297874,
+ "tp_rate": 0.9799744046111178,
+ "truth_threshold": -14.620000000000001
+ },
+ {
+ "f1": 0.8382298294334399,
+ "fn": 8459,
+ "fn_rate": 0.027829228091761773,
+ "fp": 105599,
+ "fp_rate": 0.607348060896422,
+ "match_probability": 0.00004026656429207677,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7367271584962392,
+ "recall": 0.9721707719082382,
+ "row_count": 477830,
+ "tn": 68270,
+ "tn_rate": 0.392651939103578,
+ "tp": 295502,
+ "tp_rate": 0.9721707719082382,
+ "truth_threshold": -14.6
+ },
+ {
+ "f1": 0.8382455563057057,
+ "fn": 8461,
+ "fn_rate": 0.02783580788324818,
+ "fp": 105584,
+ "fp_rate": 0.6072617890480764,
+ "match_probability": 0.00004082864163273459,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7367533982906324,
+ "recall": 0.9721641921167519,
+ "row_count": 477830,
+ "tn": 68285,
+ "tn_rate": 0.39273821095192357,
+ "tp": 295500,
+ "tp_rate": 0.9721641921167519,
+ "truth_threshold": -14.58
+ },
+ {
+ "f1": 0.8384653799662908,
+ "fn": 8464,
+ "fn_rate": 0.027845677570477793,
+ "fp": 105394,
+ "fp_rate": 0.6061690123023655,
+ "match_probability": 0.000041398564635490015,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7371006083948006,
+ "recall": 0.9721543224295222,
+ "row_count": 477830,
+ "tn": 68475,
+ "tn_rate": 0.3938309876976344,
+ "tp": 295497,
+ "tp_rate": 0.9721543224295222,
+ "truth_threshold": -14.56
+ },
+ {
+ "f1": 0.8385315425500217,
+ "fn": 8465,
+ "fn_rate": 0.027848967466220995,
+ "fp": 105338,
+ "fp_rate": 0.6058469307352087,
+ "match_probability": 0.00004197644280356719,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7372029318870156,
+ "recall": 0.972151032533779,
+ "row_count": 477830,
+ "tn": 68531,
+ "tn_rate": 0.3941530692647913,
+ "tp": 295496,
+ "tp_rate": 0.972151032533779,
+ "truth_threshold": -14.540000000000001
+ },
+ {
+ "f1": 0.8385977160241566,
+ "fn": 8466,
+ "fn_rate": 0.0278522573619642,
+ "fp": 105281,
+ "fp_rate": 0.6055190977114955,
+ "match_probability": 0.000042562387168288515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7373071241790926,
+ "recall": 0.9721477426380358,
+ "row_count": 477830,
+ "tn": 68588,
+ "tn_rate": 0.3944809022885046,
+ "tp": 295495,
+ "tp_rate": 0.9721477426380358,
+ "truth_threshold": -14.52
+ },
+ {
+ "f1": 0.8386497947783436,
+ "fn": 8503,
+ "fn_rate": 0.027973983504462743,
+ "fp": 105185,
+ "fp_rate": 0.6049669578820837,
+ "match_probability": 0.00004315651031039153,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7374595337994174,
+ "recall": 0.9720260164955372,
+ "row_count": 477830,
+ "tn": 68684,
+ "tn_rate": 0.39503304211791634,
+ "tp": 295458,
+ "tp_rate": 0.9720260164955372,
+ "truth_threshold": -14.5
+ },
+ {
+ "f1": 0.8388003429538319,
+ "fn": 8507,
+ "fn_rate": 0.027987143087435558,
+ "fp": 105053,
+ "fp_rate": 0.6042077656166425,
+ "match_probability": 0.000043758926381643505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7376999652939898,
+ "recall": 0.9720128569125644,
+ "row_count": 477830,
+ "tn": 68816,
+ "tn_rate": 0.3957922343833576,
+ "tp": 295454,
+ "tp_rate": 0.9720128569125644,
+ "truth_threshold": -14.48
+ },
+ {
+ "f1": 0.8388510002782494,
+ "fn": 8516,
+ "fn_rate": 0.028016752149124396,
+ "fp": 104998,
+ "fp_rate": 0.6038914355060419,
+ "match_probability": 0.000044369751126756925,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377953916037988,
+ "recall": 0.9719832478508756,
+ "row_count": 477830,
+ "tn": 68871,
+ "tn_rate": 0.3961085644939581,
+ "tp": 295445,
+ "tp_rate": 0.9719832478508756,
+ "truth_threshold": -14.46
+ },
+ {
+ "f1": 0.8381329923273657,
+ "fn": 9022,
+ "fn_rate": 0.029681439395185565,
+ "fp": 104900,
+ "fp_rate": 0.6033277927635173,
+ "match_probability": 0.000044989101905610624,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7376444018717534,
+ "recall": 0.9703185606048145,
+ "row_count": 477830,
+ "tn": 68969,
+ "tn_rate": 0.39667220723648267,
+ "tp": 294939,
+ "tp_rate": 0.9703185606048145,
+ "truth_threshold": -14.44
+ },
+ {
+ "f1": 0.8381383796502855,
+ "fn": 9031,
+ "fn_rate": 0.029711048456874403,
+ "fp": 104883,
+ "fp_rate": 0.603230018002059,
+ "match_probability": 0.00004561709771578043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7376698606598585,
+ "recall": 0.9702889515431256,
+ "row_count": 477830,
+ "tn": 68986,
+ "tn_rate": 0.396769981997941,
+ "tp": 294930,
+ "tp_rate": 0.9702889515431256,
+ "truth_threshold": -14.42
+ },
+ {
+ "f1": 0.8381784129889248,
+ "fn": 9032,
+ "fn_rate": 0.029714338352617605,
+ "fp": 104848,
+ "fp_rate": 0.603028717022586,
+ "match_probability": 0.00004625385921538452,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377337865860217,
+ "recall": 0.9702856616473824,
+ "row_count": 477830,
+ "tn": 69021,
+ "tn_rate": 0.396971282977414,
+ "tp": 294929,
+ "tp_rate": 0.9702856616473824,
+ "truth_threshold": -14.4
+ },
+ {
+ "f1": 0.8381501082921672,
+ "fn": 9078,
+ "fn_rate": 0.029865673556804986,
+ "fp": 104808,
+ "fp_rate": 0.602798658760331,
+ "match_probability": 0.000046899508746246485,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377774330670442,
+ "recall": 0.970134326443195,
+ "row_count": 477830,
+ "tn": 69061,
+ "tn_rate": 0.39720134123966894,
+ "tp": 294883,
+ "tp_rate": 0.970134326443195,
+ "truth_threshold": -14.38
+ },
+ {
+ "f1": 0.8380802947095541,
+ "fn": 9121,
+ "fn_rate": 0.03000713907376275,
+ "fp": 104808,
+ "fp_rate": 0.602798658760331,
+ "match_probability": 0.000047554170357381744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377492193129954,
+ "recall": 0.9699928609262373,
+ "row_count": 477830,
+ "tn": 69061,
+ "tn_rate": 0.39720134123966894,
+ "tp": 294840,
+ "tp_rate": 0.9699928609262373,
+ "truth_threshold": -14.36
+ },
+ {
+ "f1": 0.8380741494529609,
+ "fn": 9124,
+ "fn_rate": 0.030017008760992364,
+ "fp": 104808,
+ "fp_rate": 0.602798658760331,
+ "match_probability": 0.00004821796982881093,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377472506849829,
+ "recall": 0.9699829912390077,
+ "row_count": 477830,
+ "tn": 69061,
+ "tn_rate": 0.39720134123966894,
+ "tp": 294837,
+ "tp_rate": 0.9699829912390077,
+ "truth_threshold": -14.34
+ },
+ {
+ "f1": 0.8380736891774351,
+ "fn": 9125,
+ "fn_rate": 0.03002029865673557,
+ "fp": 104808,
+ "fp_rate": 0.602798658760331,
+ "match_probability": 0.000048891034695705744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7377465944690775,
+ "recall": 0.9699797013432644,
+ "row_count": 477830,
+ "tn": 69061,
+ "tn_rate": 0.39720134123966894,
+ "tp": 294836,
+ "tp_rate": 0.9699797013432644,
+ "truth_threshold": -14.32
+ },
+ {
+ "f1": 0.8380708466694333,
+ "fn": 9126,
+ "fn_rate": 0.03002358855247877,
+ "fp": 104808,
+ "fp_rate": 0.602798658760331,
+ "match_probability": 0.000049573494272870864,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.737745938249888,
+ "recall": 0.9699764114475212,
+ "row_count": 477830,
+ "tn": 69061,
+ "tn_rate": 0.39720134123966894,
+ "tp": 294835,
+ "tp_rate": 0.9699764114475212,
+ "truth_threshold": -14.3
+ },
+ {
+ "f1": 0.8381199559950991,
+ "fn": 9128,
+ "fn_rate": 0.03003016834396518,
+ "fp": 104764,
+ "fp_rate": 0.6025455946718506,
+ "match_probability": 0.00005026547967956725,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7378258595535001,
+ "recall": 0.9699698316560348,
+ "row_count": 477830,
+ "tn": 69105,
+ "tn_rate": 0.39745440532814935,
+ "tp": 294833,
+ "tp_rate": 0.9699698316560348,
+ "truth_threshold": -14.280000000000001
+ },
+ {
+ "f1": 0.8381613326017178,
+ "fn": 9152,
+ "fn_rate": 0.030109125841802073,
+ "fp": 104697,
+ "fp_rate": 0.6021602470825737,
+ "match_probability": 0.00005096712386468152,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7379338483026537,
+ "recall": 0.969890874158198,
+ "row_count": 477830,
+ "tn": 69172,
+ "tn_rate": 0.39783975291742635,
+ "tp": 294809,
+ "tp_rate": 0.969890874158198,
+ "truth_threshold": -14.26
+ },
+ {
+ "f1": 0.8381282998268523,
+ "fn": 9172,
+ "fn_rate": 0.030174923756666153,
+ "fp": 104697,
+ "fp_rate": 0.6021602470825737,
+ "match_probability": 0.000051678561632245805,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7379207281356543,
+ "recall": 0.9698250762433338,
+ "row_count": 477830,
+ "tn": 69172,
+ "tn_rate": 0.39783975291742635,
+ "tp": 294789,
+ "tp_rate": 0.9698250762433338,
+ "truth_threshold": -14.24
+ },
+ {
+ "f1": 0.8381245362090975,
+ "fn": 9175,
+ "fn_rate": 0.030184793443895762,
+ "fp": 104695,
+ "fp_rate": 0.602148744169461,
+ "match_probability": 0.000052399929667313805,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7379224543845639,
+ "recall": 0.9698152065561042,
+ "row_count": 477830,
+ "tn": 69174,
+ "tn_rate": 0.3978512558305391,
+ "tp": 294786,
+ "tp_rate": 0.9698152065561042,
+ "truth_threshold": -14.22
+ },
+ {
+ "f1": 0.8381491549327813,
+ "fn": 9194,
+ "fn_rate": 0.030247301463016636,
+ "fp": 104649,
+ "fp_rate": 0.6018841771678678,
+ "match_probability": 0.0000531313665621969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7379949726600837,
+ "recall": 0.9697526985369833,
+ "row_count": 477830,
+ "tn": 69220,
+ "tn_rate": 0.39811582283213226,
+ "tp": 294767,
+ "tp_rate": 0.9697526985369833,
+ "truth_threshold": -14.200000000000001
+ },
+ {
+ "f1": 0.8381744508423971,
+ "fn": 9196,
+ "fn_rate": 0.030253881254503043,
+ "fp": 104625,
+ "fp_rate": 0.6017461422105148,
+ "match_probability": 0.000053873012843066357,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7380380079621423,
+ "recall": 0.969746118745497,
+ "row_count": 477830,
+ "tn": 69244,
+ "tn_rate": 0.3982538577894852,
+ "tp": 294765,
+ "tp_rate": 0.969746118745497,
+ "truth_threshold": -14.18
+ },
+ {
+ "f1": 0.8381873709713193,
+ "fn": 9199,
+ "fn_rate": 0.030263750941732656,
+ "fp": 104609,
+ "fp_rate": 0.6016541189056128,
+ "match_probability": 0.00005462501099692568,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7380656081688455,
+ "recall": 0.9697362490582674,
+ "row_count": 477830,
+ "tn": 69260,
+ "tn_rate": 0.3983458810943872,
+ "tp": 294762,
+ "tp_rate": 0.9697362490582674,
+ "truth_threshold": -14.16
+ },
+ {
+ "f1": 0.8381966108249987,
+ "fn": 9210,
+ "fn_rate": 0.030299939794907898,
+ "fp": 104586,
+ "fp_rate": 0.6015218354048163,
+ "match_probability": 0.00005538750549895966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7381009022454719,
+ "recall": 0.9697000602050921,
+ "row_count": 477830,
+ "tn": 69283,
+ "tn_rate": 0.3984781645951837,
+ "tp": 294751,
+ "tp_rate": 0.9697000602050921,
+ "truth_threshold": -14.14
+ },
+ {
+ "f1": 0.8381862389625901,
+ "fn": 9217,
+ "fn_rate": 0.030322969065110325,
+ "fp": 104586,
+ "fp_rate": 0.6015218354048163,
+ "match_probability": 0.00005616064284026378,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7380963113214635,
+ "recall": 0.9696770309348897,
+ "row_count": 477830,
+ "tn": 69283,
+ "tn_rate": 0.3984781645951837,
+ "tp": 294744,
+ "tp_rate": 0.9696770309348897,
+ "truth_threshold": -14.120000000000001
+ },
+ {
+ "f1": 0.8382301499048697,
+ "fn": 9220,
+ "fn_rate": 0.030332838752339938,
+ "fp": 104544,
+ "fp_rate": 0.6012802742294486,
+ "match_probability": 0.000056944571555960515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7381719824185732,
+ "recall": 0.9696671612476601,
+ "row_count": 477830,
+ "tn": 69325,
+ "tn_rate": 0.39871972577055137,
+ "tp": 294741,
+ "tp_rate": 0.9696671612476601,
+ "truth_threshold": -14.1
+ },
+ {
+ "f1": 0.8382578375411324,
+ "fn": 9222,
+ "fn_rate": 0.030339418543826345,
+ "fp": 104519,
+ "fp_rate": 0.6011364878155393,
+ "match_probability": 0.00005773944225370692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.738216892335282,
+ "recall": 0.9696605814561736,
+ "row_count": 477830,
+ "tn": 69350,
+ "tn_rate": 0.3988635121844607,
+ "tp": 294739,
+ "tp_rate": 0.9696605814561736,
+ "truth_threshold": -14.08
+ },
+ {
+ "f1": 0.8382640698058043,
+ "fn": 9224,
+ "fn_rate": 0.030345998335312752,
+ "fp": 104511,
+ "fp_rate": 0.6010904761630883,
+ "match_probability": 0.000058545407642600166,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7382303731014307,
+ "recall": 0.9696540016646873,
+ "row_count": 477830,
+ "tn": 69358,
+ "tn_rate": 0.3989095238369117,
+ "tp": 294737,
+ "tp_rate": 0.9696540016646873,
+ "truth_threshold": -14.06
+ },
+ {
+ "f1": 0.838313304415843,
+ "fn": 9231,
+ "fn_rate": 0.03036902760551518,
+ "fp": 104460,
+ "fp_rate": 0.6007971518787133,
+ "match_probability": 0.00005936262256248524,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7383200981988527,
+ "recall": 0.9696309723944848,
+ "row_count": 477830,
+ "tn": 69409,
+ "tn_rate": 0.3992028481212867,
+ "tp": 294730,
+ "tp_rate": 0.9696309723944848,
+ "truth_threshold": -14.040000000000001
+ },
+ {
+ "f1": 0.8383026413849208,
+ "fn": 9249,
+ "fn_rate": 0.030428245728892852,
+ "fp": 104443,
+ "fp_rate": 0.600699377117255,
+ "match_probability": 0.0000601912440136712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7383397427064674,
+ "recall": 0.9695717542711072,
+ "row_count": 477830,
+ "tn": 69426,
+ "tn_rate": 0.39930062288274504,
+ "tp": 294712,
+ "tp_rate": 0.9695717542711072,
+ "truth_threshold": -14.02
+ },
+ {
+ "f1": 0.8383169488439832,
+ "fn": 9249,
+ "fn_rate": 0.030428245728892852,
+ "fp": 104431,
+ "fp_rate": 0.6006303596385785,
+ "match_probability": 0.000061031431187061336,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7383619404574301,
+ "recall": 0.9695717542711072,
+ "row_count": 477830,
+ "tn": 69438,
+ "tn_rate": 0.39936964036142153,
+ "tp": 294712,
+ "tp_rate": 0.9695717542711072,
+ "truth_threshold": -14
+ },
+ {
+ "f1": 0.8384801411175601,
+ "fn": 9252,
+ "fn_rate": 0.030438115416122465,
+ "fp": 104291,
+ "fp_rate": 0.5998251557206863,
+ "match_probability": 0.00006188334549470357,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7386190476190476,
+ "recall": 0.9695618845838775,
+ "row_count": 477830,
+ "tn": 69578,
+ "tn_rate": 0.4001748442793137,
+ "tp": 294709,
+ "tp_rate": 0.9695618845838775,
+ "truth_threshold": -13.98
+ },
+ {
+ "f1": 0.8383413290537733,
+ "fn": 9336,
+ "fn_rate": 0.03071446665855159,
+ "fp": 104291,
+ "fp_rate": 0.5998251557206863,
+ "match_probability": 0.00006274715060076599,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7385640084629346,
+ "recall": 0.9692855333414484,
+ "row_count": 477830,
+ "tn": 69578,
+ "tn_rate": 0.4001748442793137,
+ "tp": 294625,
+ "tp_rate": 0.9692855333414484,
+ "truth_threshold": -13.96
+ },
+ {
+ "f1": 0.8385795731091193,
+ "fn": 9342,
+ "fn_rate": 0.030734206033010813,
+ "fp": 104082,
+ "fp_rate": 0.5986231013004043,
+ "match_probability": 0.00006362301245294422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7389472311331048,
+ "recall": 0.9692657939669892,
+ "row_count": 477830,
+ "tn": 69787,
+ "tn_rate": 0.4013768986995957,
+ "tp": 294619,
+ "tp_rate": 0.9692657939669892,
+ "truth_threshold": -13.94
+ },
+ {
+ "f1": 0.8386595384904436,
+ "fn": 9355,
+ "fn_rate": 0.030776974677672465,
+ "fp": 103997,
+ "fp_rate": 0.5981342274931126,
+ "match_probability": 0.00006451109931430596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7390962938061179,
+ "recall": 0.9692230253223275,
+ "row_count": 477830,
+ "tn": 69872,
+ "tn_rate": 0.4018657725068874,
+ "tp": 294606,
+ "tp_rate": 0.9692230253223275,
+ "truth_threshold": -13.92
+ },
+ {
+ "f1": 0.8386825863168443,
+ "fn": 9362,
+ "fn_rate": 0.030800003947874893,
+ "fp": 103968,
+ "fp_rate": 0.5979674352529778,
+ "match_probability": 0.00006541158179557995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7391454887133154,
+ "recall": 0.9691999960521251,
+ "row_count": 477830,
+ "tn": 69901,
+ "tn_rate": 0.4020325647470222,
+ "tp": 294599,
+ "tp_rate": 0.9691999960521251,
+ "truth_threshold": -13.9
+ },
+ {
+ "f1": 0.8386751467598945,
+ "fn": 9373,
+ "fn_rate": 0.030836192801050134,
+ "fp": 103960,
+ "fp_rate": 0.5979214236005268,
+ "match_probability": 0.00006632463288789393,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.739153125846824,
+ "recall": 0.9691638071989499,
+ "row_count": 477830,
+ "tn": 69909,
+ "tn_rate": 0.40207857639947314,
+ "tp": 294588,
+ "tp_rate": 0.9691638071989499,
+ "truth_threshold": -13.88
+ },
+ {
+ "f1": 0.8385957919312131,
+ "fn": 9421,
+ "fn_rate": 0.030994107796723923,
+ "fp": 103960,
+ "fp_rate": 0.5979214236005268,
+ "match_probability": 0.00006725042799596908,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7391217063989962,
+ "recall": 0.969005892203276,
+ "row_count": 477830,
+ "tn": 69909,
+ "tn_rate": 0.40207857639947314,
+ "tp": 294540,
+ "tp_rate": 0.969005892203276,
+ "truth_threshold": -13.86
+ },
+ {
+ "f1": 0.8386079013161267,
+ "fn": 9457,
+ "fn_rate": 0.03111254404347926,
+ "fp": 103900,
+ "fp_rate": 0.5975763362071445,
+ "match_probability": 0.00006818914497177655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7392094456882963,
+ "recall": 0.9688874559565207,
+ "row_count": 477830,
+ "tn": 69969,
+ "tn_rate": 0.40242366379285555,
+ "tp": 294504,
+ "tp_rate": 0.9688874559565207,
+ "truth_threshold": -13.84
+ },
+ {
+ "f1": 0.8402368214565946,
+ "fn": 9479,
+ "fn_rate": 0.031184921749829748,
+ "fp": 102507,
+ "fp_rate": 0.589564557224117,
+ "match_probability": 0.00006914096414866335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7417888153072252,
+ "recall": 0.9688150782501702,
+ "row_count": 477830,
+ "tn": 71362,
+ "tn_rate": 0.410435442775883,
+ "tp": 294482,
+ "tp_rate": 0.9688150782501702,
+ "truth_threshold": -13.82
+ },
+ {
+ "f1": 0.8402176580360556,
+ "fn": 9500,
+ "fn_rate": 0.03125400956043703,
+ "fp": 102495,
+ "fp_rate": 0.5894955397454406,
+ "match_probability": 0.0000701060683759531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7417975795806084,
+ "recall": 0.968745990439563,
+ "row_count": 477830,
+ "tn": 71374,
+ "tn_rate": 0.41050446025455944,
+ "tp": 294461,
+ "tp_rate": 0.968745990439563,
+ "truth_threshold": -13.8
+ },
+ {
+ "f1": 0.8402838814250003,
+ "fn": 9502,
+ "fn_rate": 0.03126058935192344,
+ "fp": 102436,
+ "fp_rate": 0.5891562038086146,
+ "match_probability": 0.0000710846430540288,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7419065495912017,
+ "recall": 0.9687394106480766,
+ "row_count": 477830,
+ "tn": 71433,
+ "tn_rate": 0.41084379619138545,
+ "tp": 294459,
+ "tp_rate": 0.9687394106480766,
+ "truth_threshold": -13.780000000000001
+ },
+ {
+ "f1": 0.8403577666411717,
+ "fn": 9503,
+ "fn_rate": 0.03126387924766664,
+ "fp": 102373,
+ "fp_rate": 0.588793862045563,
+ "match_probability": 0.00007207687616990448,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7420236826256014,
+ "recall": 0.9687361207523334,
+ "row_count": 477830,
+ "tn": 71496,
+ "tn_rate": 0.41120613795443695,
+ "tp": 294458,
+ "tp_rate": 0.9687361207523334,
+ "truth_threshold": -13.76
+ },
+ {
+ "f1": 0.8403512677374796,
+ "fn": 9512,
+ "fn_rate": 0.03129348830935548,
+ "fp": 102366,
+ "fp_rate": 0.5887536018496684,
+ "match_probability": 0.00007308295833329186,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7420309212101357,
+ "recall": 0.9687065116906445,
+ "row_count": 477830,
+ "tn": 71503,
+ "tn_rate": 0.4112463981503316,
+ "tp": 294449,
+ "tp_rate": 0.9687065116906445,
+ "truth_threshold": -13.74
+ },
+ {
+ "f1": 0.8404059777831056,
+ "fn": 9513,
+ "fn_rate": 0.03129677820509868,
+ "fp": 102320,
+ "fp_rate": 0.5884890348480752,
+ "match_probability": 0.00007410308281316996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7421162997015889,
+ "recall": 0.9687032217949013,
+ "row_count": 477830,
+ "tn": 71549,
+ "tn_rate": 0.4115109651519247,
+ "tp": 294448,
+ "tp_rate": 0.9687032217949013,
+ "truth_threshold": -13.72
+ },
+ {
+ "f1": 0.840176886556793,
+ "fn": 9663,
+ "fn_rate": 0.03179026256657926,
+ "fp": 102304,
+ "fp_rate": 0.5883970115431733,
+ "match_probability": 0.00007513744557486346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7420487037382565,
+ "recall": 0.9682097374334208,
+ "row_count": 477830,
+ "tn": 71565,
+ "tn_rate": 0.4116029884568267,
+ "tp": 294298,
+ "tp_rate": 0.9682097374334208,
+ "truth_threshold": -13.700000000000001
+ },
+ {
+ "f1": 0.8402009906784863,
+ "fn": 9668,
+ "fn_rate": 0.03180671204529528,
+ "fp": 102276,
+ "fp_rate": 0.5882359707595949,
+ "match_probability": 0.0000761862453176377,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7420978442591327,
+ "recall": 0.9681932879547047,
+ "row_count": 477830,
+ "tn": 71593,
+ "tn_rate": 0.4117640292404051,
+ "tp": 294293,
+ "tp_rate": 0.9681932879547047,
+ "truth_threshold": -13.68
+ },
+ {
+ "f1": 0.8401721139926849,
+ "fn": 9705,
+ "fn_rate": 0.031928438187793826,
+ "fp": 102250,
+ "fp_rate": 0.5880864328891292,
+ "match_probability": 0.00007724968351281685,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.742122439509112,
+ "recall": 0.9680715618122062,
+ "row_count": 477830,
+ "tn": 71619,
+ "tn_rate": 0.41191356711087085,
+ "tp": 294256,
+ "tp_rate": 0.9680715618122062,
+ "truth_threshold": -13.66
+ },
+ {
+ "f1": 0.8401731438573048,
+ "fn": 9708,
+ "fn_rate": 0.03193830787502344,
+ "fp": 102244,
+ "fp_rate": 0.5880519241497909,
+ "match_probability": 0.00007832796444243376,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7421317185249825,
+ "recall": 0.9680616921249766,
+ "row_count": 477830,
+ "tn": 71625,
+ "tn_rate": 0.41194807585020904,
+ "tp": 294253,
+ "tp_rate": 0.9680616921249766,
+ "truth_threshold": -13.64
+ },
+ {
+ "f1": 0.8401620737212709,
+ "fn": 9727,
+ "fn_rate": 0.032000815894144316,
+ "fp": 102227,
+ "fp_rate": 0.5879541493883326,
+ "match_probability": 0.0000794212952384171,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7421511825879469,
+ "recall": 0.9679991841058557,
+ "row_count": 477830,
+ "tn": 71642,
+ "tn_rate": 0.41204585061166743,
+ "tp": 294234,
+ "tp_rate": 0.9679991841058557,
+ "truth_threshold": -13.620000000000001
+ },
+ {
+ "f1": 0.8402131481328121,
+ "fn": 9736,
+ "fn_rate": 0.03203042495583315,
+ "fp": 102173,
+ "fp_rate": 0.5876435707342884,
+ "match_probability": 0.00008052988592232462,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7422464290939914,
+ "recall": 0.9679695750441668,
+ "row_count": 477830,
+ "tn": 71696,
+ "tn_rate": 0.41235642926571153,
+ "tp": 294225,
+ "tp_rate": 0.9679695750441668,
+ "truth_threshold": -13.6
+ },
+ {
+ "f1": 0.8402432093582483,
+ "fn": 9749,
+ "fn_rate": 0.0320731936004948,
+ "fp": 102130,
+ "fp_rate": 0.5873962581023644,
+ "match_probability": 0.00008165394944562937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7423185027072579,
+ "recall": 0.9679268063995052,
+ "row_count": 477830,
+ "tn": 71739,
+ "tn_rate": 0.4126037418976356,
+ "tp": 294212,
+ "tp_rate": 0.9679268063995052,
+ "truth_threshold": -13.58
+ },
+ {
+ "f1": 0.8402446965283251,
+ "fn": 9751,
+ "fn_rate": 0.03207977339198121,
+ "fp": 102125,
+ "fp_rate": 0.5873675008195826,
+ "match_probability": 0.00008279370173056753,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7423265671717107,
+ "recall": 0.9679202266080188,
+ "row_count": 477830,
+ "tn": 71744,
+ "tn_rate": 0.41263249918041744,
+ "tp": 294210,
+ "tp_rate": 0.9679202266080188,
+ "truth_threshold": -13.56
+ },
+ {
+ "f1": 0.8402338473138118,
+ "fn": 9759,
+ "fn_rate": 0.03210609255792684,
+ "fp": 102123,
+ "fp_rate": 0.5873559979064699,
+ "match_probability": 0.0000839493617115541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7423251119661893,
+ "recall": 0.9678939074420732,
+ "row_count": 477830,
+ "tn": 71746,
+ "tn_rate": 0.4126440020935302,
+ "tp": 294202,
+ "tp_rate": 0.9678939074420732,
+ "truth_threshold": -13.540000000000001
+ },
+ {
+ "f1": 0.8402879136259123,
+ "fn": 9772,
+ "fn_rate": 0.03214886120258849,
+ "fp": 102060,
+ "fp_rate": 0.5869936561434184,
+ "match_probability": 0.0000851211513771759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7424346812231702,
+ "recall": 0.9678511387974115,
+ "row_count": 477830,
+ "tn": 71809,
+ "tn_rate": 0.4130063438565817,
+ "tp": 294189,
+ "tp_rate": 0.9678511387974115,
+ "truth_threshold": -13.52
+ },
+ {
+ "f1": 0.8403133060818744,
+ "fn": 9790,
+ "fn_rate": 0.03220807932596616,
+ "fp": 102015,
+ "fp_rate": 0.5867348405983815,
+ "match_probability": 0.00008630929581276842,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7425073071739031,
+ "recall": 0.9677919206740339,
+ "row_count": 477830,
+ "tn": 71854,
+ "tn_rate": 0.41326515940161845,
+ "tp": 294171,
+ "tp_rate": 0.9677919206740339,
+ "truth_threshold": -13.5
+ },
+ {
+ "f1": 0.8404828571428572,
+ "fn": 9792,
+ "fn_rate": 0.03221465911745257,
+ "fp": 101871,
+ "fp_rate": 0.5859066308542639,
+ "match_probability": 0.00008751402324358653,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7427759822240178,
+ "recall": 0.9677853408825474,
+ "row_count": 477830,
+ "tn": 71998,
+ "tn_rate": 0.41409336914573613,
+ "tp": 294169,
+ "tp_rate": 0.9677853408825474,
+ "truth_threshold": -13.48
+ },
+ {
+ "f1": 0.8405110093892689,
+ "fn": 9804,
+ "fn_rate": 0.03225413786637101,
+ "fp": 101831,
+ "fp_rate": 0.5856765725920089,
+ "match_probability": 0.00008873556507857524,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7428432174712365,
+ "recall": 0.967745862133629,
+ "row_count": 477830,
+ "tn": 72038,
+ "tn_rate": 0.41432342740799105,
+ "tp": 294157,
+ "tp_rate": 0.967745862133629,
+ "truth_threshold": -13.46
+ },
+ {
+ "f1": 0.8405764383812174,
+ "fn": 9808,
+ "fn_rate": 0.03226729744934383,
+ "fp": 101770,
+ "fp_rate": 0.5853257337420702,
+ "match_probability": 0.00008997415595475012,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7429550695463512,
+ "recall": 0.9677327025506561,
+ "row_count": 477830,
+ "tn": 72099,
+ "tn_rate": 0.4146742662579298,
+ "tp": 294153,
+ "tp_rate": 0.9677327025506561,
+ "truth_threshold": -13.44
+ },
+ {
+ "f1": 0.8405995484811248,
+ "fn": 9810,
+ "fn_rate": 0.03227387724083024,
+ "fp": 101748,
+ "fp_rate": 0.58519920169783,
+ "match_probability": 0.0000912300337821952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7429950568200475,
+ "recall": 0.9677261227591698,
+ "row_count": 477830,
+ "tn": 72121,
+ "tn_rate": 0.41480079830217004,
+ "tp": 294151,
+ "tp_rate": 0.9677261227591698,
+ "truth_threshold": -13.42
+ },
+ {
+ "f1": 0.8406803203255844,
+ "fn": 9812,
+ "fn_rate": 0.03228045703231665,
+ "fp": 101678,
+ "fp_rate": 0.5847965997388839,
+ "match_probability": 0.00009250343978968807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7431251531603453,
+ "recall": 0.9677195429676834,
+ "row_count": 477830,
+ "tn": 72191,
+ "tn_rate": 0.41520340026111613,
+ "tp": 294149,
+ "tp_rate": 0.9677195429676834,
+ "truth_threshold": -13.4
+ },
+ {
+ "f1": 0.8407548097398124,
+ "fn": 9812,
+ "fn_rate": 0.03228045703231665,
+ "fp": 101617,
+ "fp_rate": 0.5844457608889452,
+ "match_probability": 0.00009379461857095894,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7432396921413158,
+ "recall": 0.9677195429676834,
+ "row_count": 477830,
+ "tn": 72252,
+ "tn_rate": 0.4155542391110549,
+ "tp": 294149,
+ "tp_rate": 0.9677195429676834,
+ "truth_threshold": -13.38
+ },
+ {
+ "f1": 0.8407965034345352,
+ "fn": 9826,
+ "fn_rate": 0.0323265155727215,
+ "fp": 101563,
+ "fp_rate": 0.584135182234901,
+ "match_probability": 0.00009510381813159443,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7433320360476929,
+ "recall": 0.9676734844272785,
+ "row_count": 477830,
+ "tn": 72306,
+ "tn_rate": 0.41586481776509904,
+ "tp": 294135,
+ "tp_rate": 0.9676734844272785,
+ "truth_threshold": -13.36
+ },
+ {
+ "f1": 0.8407664070808604,
+ "fn": 9871,
+ "fn_rate": 0.032474560881165675,
+ "fp": 101526,
+ "fp_rate": 0.5839223783423152,
+ "match_probability": 0.00009643128993659314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7433723610774085,
+ "recall": 0.9675254391188344,
+ "row_count": 477830,
+ "tn": 72343,
+ "tn_rate": 0.4160776216576848,
+ "tp": 294090,
+ "tp_rate": 0.9675254391188344,
+ "truth_threshold": -13.34
+ },
+ {
+ "f1": 0.8408107010711365,
+ "fn": 9911,
+ "fn_rate": 0.032606156710893834,
+ "fp": 101434,
+ "fp_rate": 0.5833932443391289,
+ "match_probability": 0.00009777728895858458,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7435193332726482,
+ "recall": 0.9673938432891062,
+ "row_count": 477830,
+ "tn": 72435,
+ "tn_rate": 0.41660675566087113,
+ "tp": 294050,
+ "tp_rate": 0.9673938432891062,
+ "truth_threshold": -13.32
+ },
+ {
+ "f1": 0.8400958000217468,
+ "fn": 10366,
+ "fn_rate": 0.034103059274051606,
+ "fp": 101401,
+ "fp_rate": 0.5832034462727685,
+ "match_probability": 0.00009914207372671765,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7432860079595742,
+ "recall": 0.9658969407259484,
+ "row_count": 477830,
+ "tn": 72468,
+ "tn_rate": 0.4167965537272314,
+ "tp": 293595,
+ "tp_rate": 0.9658969407259484,
+ "truth_threshold": -13.3
+ },
+ {
+ "f1": 0.8400972887903283,
+ "fn": 10368,
+ "fn_rate": 0.03410963906553801,
+ "fp": 101396,
+ "fp_rate": 0.5831746889899867,
+ "match_probability": 0.00010052590637623026,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.743294117051361,
+ "recall": 0.965890360934462,
+ "row_count": 477830,
+ "tn": 72473,
+ "tn_rate": 0.4168253110100133,
+ "tp": 293593,
+ "tp_rate": 0.965890360934462,
+ "truth_threshold": -13.280000000000001
+ },
+ {
+ "f1": 0.8554769453121358,
+ "fn": 10375,
+ "fn_rate": 0.03413266833574044,
+ "fp": 88822,
+ "fp_rate": 0.5108558742501539,
+ "match_probability": 0.00010192905269870875,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7677297546076441,
+ "recall": 0.9658673316642595,
+ "row_count": 477830,
+ "tn": 85047,
+ "tn_rate": 0.48914412574984617,
+ "tp": 293586,
+ "tp_rate": 0.9658673316642595,
+ "truth_threshold": -13.26
+ },
+ {
+ "f1": 0.8559832523748155,
+ "fn": 10381,
+ "fn_rate": 0.034152407710199666,
+ "fp": 88407,
+ "fp_rate": 0.5084690197792591,
+ "match_probability": 0.00010335178219304575,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.768560186603209,
+ "recall": 0.9658475922898003,
+ "row_count": 477830,
+ "tn": 85462,
+ "tn_rate": 0.4915309802207409,
+ "tp": 293580,
+ "tp_rate": 0.9658475922898003,
+ "truth_threshold": -13.24
+ },
+ {
+ "f1": 0.8566534676000361,
+ "fn": 10385,
+ "fn_rate": 0.03416556729317248,
+ "fp": 87866,
+ "fp_rate": 0.5053574817822614,
+ "match_probability": 0.00010479436811710874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7696478101520021,
+ "recall": 0.9658344327068276,
+ "row_count": 477830,
+ "tn": 86003,
+ "tn_rate": 0.49464251821773864,
+ "tp": 293576,
+ "tp_rate": 0.9658344327068276,
+ "truth_threshold": -13.22
+ },
+ {
+ "f1": 0.8566459380827178,
+ "fn": 10403,
+ "fn_rate": 0.03422478541655015,
+ "fp": 87848,
+ "fp_rate": 0.5052539555642467,
+ "match_probability": 0.00010625708754012587,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7696732615637929,
+ "recall": 0.9657752145834498,
+ "row_count": 477830,
+ "tn": 86021,
+ "tn_rate": 0.4947460444357534,
+ "tp": 293558,
+ "tp_rate": 0.9657752145834498,
+ "truth_threshold": -13.200000000000001
+ },
+ {
+ "f1": 0.8570260793913543,
+ "fn": 10403,
+ "fn_rate": 0.03422478541655015,
+ "fp": 87543,
+ "fp_rate": 0.5034997613145529,
+ "match_probability": 0.00010774022139580177,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.77028924090989,
+ "recall": 0.9657752145834498,
+ "row_count": 477830,
+ "tn": 86326,
+ "tn_rate": 0.49650023868544707,
+ "tp": 293558,
+ "tp_rate": 0.9657752145834498,
+ "truth_threshold": -13.18
+ },
+ {
+ "f1": 0.8566102893270655,
+ "fn": 10763,
+ "fn_rate": 0.035409147884103556,
+ "fp": 87395,
+ "fp_rate": 0.5026485457442097,
+ "match_probability": 0.00010924405453617098,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7703714992130701,
+ "recall": 0.9645908521158965,
+ "row_count": 477830,
+ "tn": 86474,
+ "tn_rate": 0.4973514542557903,
+ "tp": 293198,
+ "tp_rate": 0.9645908521158965,
+ "truth_threshold": -13.16
+ },
+ {
+ "f1": 0.8566415586085189,
+ "fn": 10772,
+ "fn_rate": 0.03543875694579239,
+ "fp": 87358,
+ "fp_rate": 0.5024357418516239,
+ "match_probability": 0.0001107688757862026,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7704409704977309,
+ "recall": 0.9645612430542077,
+ "row_count": 477830,
+ "tn": 86511,
+ "tn_rate": 0.49756425814837607,
+ "tp": 293189,
+ "tp_rate": 0.9645612430542077,
+ "truth_threshold": -13.14
+ },
+ {
+ "f1": 0.8644874970511913,
+ "fn": 10796,
+ "fn_rate": 0.03551771444362928,
+ "fp": 81114,
+ "fp_rate": 0.46652364711363153,
+ "match_probability": 0.00011231497799916251,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7832793183694516,
+ "recall": 0.9644822855563707,
+ "row_count": 477830,
+ "tn": 92755,
+ "tn_rate": 0.5334763528863685,
+ "tp": 293165,
+ "tp_rate": 0.9644822855563707,
+ "truth_threshold": -13.120000000000001
+ },
+ {
+ "f1": 0.8643985820538984,
+ "fn": 10859,
+ "fn_rate": 0.035724977875451126,
+ "fp": 81101,
+ "fp_rate": 0.4664488781783987,
+ "match_probability": 0.00011388265811274712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7832700432652865,
+ "recall": 0.9642750221245489,
+ "row_count": 477830,
+ "tn": 92768,
+ "tn_rate": 0.5335511218216014,
+ "tp": 293102,
+ "tp_rate": 0.9642750221245489,
+ "truth_threshold": -13.1
+ },
+ {
+ "f1": 0.8644014309856164,
+ "fn": 10871,
+ "fn_rate": 0.03576445662436958,
+ "fp": 81083,
+ "fp_rate": 0.46634535196038396,
+ "match_probability": 0.00011547221720599655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7833007726372561,
+ "recall": 0.9642355433756304,
+ "row_count": 477830,
+ "tn": 92786,
+ "tn_rate": 0.533654648039616,
+ "tp": 293090,
+ "tp_rate": 0.9642355433756304,
+ "truth_threshold": -13.08
+ },
+ {
+ "f1": 0.8644048300230647,
+ "fn": 10888,
+ "fn_rate": 0.03582038485200404,
+ "fp": 81059,
+ "fp_rate": 0.46620731700303103,
+ "match_probability": 0.00011708396055700113,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7833411737033988,
+ "recall": 0.964179615147996,
+ "row_count": 477830,
+ "tn": 92810,
+ "tn_rate": 0.533792682996969,
+ "tp": 293073,
+ "tp_rate": 0.964179615147996,
+ "truth_threshold": -13.06
+ },
+ {
+ "f1": 0.8643982810135767,
+ "fn": 10898,
+ "fn_rate": 0.03585328380943608,
+ "fp": 81050,
+ "fp_rate": 0.4661555538940237,
+ "match_probability": 0.00011871819770140902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.783354227198734,
+ "recall": 0.9641467161905639,
+ "row_count": 477830,
+ "tn": 92819,
+ "tn_rate": 0.5338444461059764,
+ "tp": 293063,
+ "tp_rate": 0.9641467161905639,
+ "truth_threshold": -13.040000000000001
+ },
+ {
+ "f1": 0.8644292292670264,
+ "fn": 10929,
+ "fn_rate": 0.0359552705774754,
+ "fp": 80985,
+ "fp_rate": 0.46578170921785944,
+ "match_probability": 0.00012037524249174837,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7834724090081467,
+ "recall": 0.9640447294225246,
+ "row_count": 477830,
+ "tn": 92884,
+ "tn_rate": 0.5342182907821406,
+ "tp": 293032,
+ "tp_rate": 0.9640447294225246,
+ "truth_threshold": -13.02
+ },
+ {
+ "f1": 0.8644368793991493,
+ "fn": 10929,
+ "fn_rate": 0.0359552705774754,
+ "fp": 80980,
+ "fp_rate": 0.46575295193507754,
+ "match_probability": 0.00012205541315757354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7834828829021528,
+ "recall": 0.9640447294225246,
+ "row_count": 477830,
+ "tn": 92889,
+ "tn_rate": 0.5342470480649224,
+ "tp": 293032,
+ "tp_rate": 0.9640447294225246,
+ "truth_threshold": -13
+ },
+ {
+ "f1": 0.8651773640169835,
+ "fn": 10941,
+ "fn_rate": 0.03599474932639385,
+ "fp": 80383,
+ "fp_rate": 0.46231933237092293,
+ "match_probability": 0.00012375903236644915,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7847285640447452,
+ "recall": 0.9640052506736062,
+ "row_count": 477830,
+ "tn": 93486,
+ "tn_rate": 0.5376806676290771,
+ "tp": 293020,
+ "tp_rate": 0.9640052506736062,
+ "truth_threshold": -12.98
+ },
+ {
+ "f1": 0.8653541144259651,
+ "fn": 10972,
+ "fn_rate": 0.03609673609443317,
+ "fp": 80204,
+ "fp_rate": 0.4612898216473322,
+ "match_probability": 0.00012548642728578072,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7850870729086559,
+ "recall": 0.9639032639055668,
+ "row_count": 477830,
+ "tn": 93665,
+ "tn_rate": 0.5387101783526678,
+ "tp": 292989,
+ "tp_rate": 0.9639032639055668,
+ "truth_threshold": -12.96
+ },
+ {
+ "f1": 0.8653668938955378,
+ "fn": 10972,
+ "fn_rate": 0.03609673609443317,
+ "fp": 80194,
+ "fp_rate": 0.46123230708176843,
+ "match_probability": 0.0001272379296455061,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7851081104980666,
+ "recall": 0.9639032639055668,
+ "row_count": 477830,
+ "tn": 93675,
+ "tn_rate": 0.5387676929182316,
+ "tp": 292989,
+ "tp_rate": 0.9639032639055668,
+ "truth_threshold": -12.94
+ },
+ {
+ "f1": 0.8655373307177803,
+ "fn": 10987,
+ "fn_rate": 0.03614608453058123,
+ "fp": 80041,
+ "fp_rate": 0.4603523342286434,
+ "match_probability": 0.00012901387580165717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7854214977949948,
+ "recall": 0.9638539154694188,
+ "row_count": 477830,
+ "tn": 93828,
+ "tn_rate": 0.5396476657713566,
+ "tp": 292974,
+ "tp_rate": 0.9638539154694188,
+ "truth_threshold": -12.92
+ },
+ {
+ "f1": 0.8655884273444171,
+ "fn": 11000,
+ "fn_rate": 0.036188853175242876,
+ "fp": 79985,
+ "fp_rate": 0.4600302526614865,
+ "match_probability": 0.0001308146068008071,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7855319536876653,
+ "recall": 0.9638111468247571,
+ "row_count": 477830,
+ "tn": 93884,
+ "tn_rate": 0.5399697473385134,
+ "tp": 292961,
+ "tp_rate": 0.9638111468247571,
+ "truth_threshold": -12.9
+ },
+ {
+ "f1": 0.8655854727244255,
+ "fn": 11001,
+ "fn_rate": 0.03619214307098608,
+ "fp": 79985,
+ "fp_rate": 0.4600302526614865,
+ "match_probability": 0.00013264046844541213,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7855313786215126,
+ "recall": 0.9638078569290139,
+ "row_count": 477830,
+ "tn": 93884,
+ "tn_rate": 0.5399697473385134,
+ "tp": 292960,
+ "tp_rate": 0.9638078569290139,
+ "truth_threshold": -12.88
+ },
+ {
+ "f1": 0.8656147504653843,
+ "fn": 11011,
+ "fn_rate": 0.03622504202841812,
+ "fp": 79950,
+ "fp_rate": 0.4598289516820135,
+ "match_probability": 0.00013449181136006226,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7855993563958166,
+ "recall": 0.9637749579715819,
+ "row_count": 477830,
+ "tn": 93919,
+ "tn_rate": 0.5401710483179866,
+ "tp": 292950,
+ "tp_rate": 0.9637749579715819,
+ "truth_threshold": -12.86
+ },
+ {
+ "f1": 0.8656131621092942,
+ "fn": 11015,
+ "fn_rate": 0.036238201611390936,
+ "fp": 79945,
+ "fp_rate": 0.4598001943992316,
+ "match_probability": 0.00013636899105865216,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7856075904218659,
+ "recall": 0.9637617983886091,
+ "row_count": 477830,
+ "tn": 93924,
+ "tn_rate": 0.5401998056007684,
+ "tp": 292946,
+ "tp_rate": 0.9637617983886091,
+ "truth_threshold": -12.84
+ },
+ {
+ "f1": 0.8654820234879693,
+ "fn": 11094,
+ "fn_rate": 0.03649810337510404,
+ "fp": 79945,
+ "fp_rate": 0.4598001943992316,
+ "match_probability": 0.00013827236801248723,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7855621600163085,
+ "recall": 0.9635018966248959,
+ "row_count": 477830,
+ "tn": 93924,
+ "tn_rate": 0.5401998056007684,
+ "tp": 292867,
+ "tp_rate": 0.9635018966248959,
+ "truth_threshold": -12.82
+ },
+ {
+ "f1": 0.8654465069406067,
+ "fn": 11119,
+ "fn_rate": 0.03658035076868414,
+ "fp": 79939,
+ "fp_rate": 0.45976568565989334,
+ "match_probability": 0.00014020230771933477,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7855604228756294,
+ "recall": 0.9634196492313158,
+ "row_count": 477830,
+ "tn": 93930,
+ "tn_rate": 0.5402343143401066,
+ "tp": 292842,
+ "tp_rate": 0.9634196492313158,
+ "truth_threshold": -12.8
+ },
+ {
+ "f1": 0.8655104025347958,
+ "fn": 11132,
+ "fn_rate": 0.03662311941334579,
+ "fp": 79872,
+ "fp_rate": 0.4593803380706164,
+ "match_probability": 0.00014215918077343544,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7856941623446141,
+ "recall": 0.9633768805866542,
+ "row_count": 477830,
+ "tn": 93997,
+ "tn_rate": 0.5406196619293836,
+ "tp": 292829,
+ "tp_rate": 0.9633768805866542,
+ "truth_threshold": -12.780000000000001
+ },
+ {
+ "f1": 0.8655449764852985,
+ "fn": 11148,
+ "fn_rate": 0.036675757745237056,
+ "fp": 79824,
+ "fp_rate": 0.4591042681559105,
+ "match_probability": 0.0001441433629364879,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7857861672351377,
+ "recall": 0.963324242254763,
+ "row_count": 477830,
+ "tn": 94045,
+ "tn_rate": 0.5408957318440896,
+ "tp": 292813,
+ "tp_rate": 0.963324242254763,
+ "truth_threshold": -12.76
+ },
+ {
+ "f1": 0.8655433866891322,
+ "fn": 11152,
+ "fn_rate": 0.03668891732820987,
+ "fp": 79820,
+ "fp_rate": 0.459081262329685,
+ "match_probability": 0.00014615523520961874,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7857923027998358,
+ "recall": 0.9633110826717901,
+ "row_count": 477830,
+ "tn": 94049,
+ "tn_rate": 0.540918737670315,
+ "tp": 292809,
+ "tp_rate": 0.9633110826717901,
+ "truth_threshold": -12.74
+ },
+ {
+ "f1": 0.8655214513549546,
+ "fn": 11175,
+ "fn_rate": 0.03676458493030356,
+ "fp": 79807,
+ "fp_rate": 0.45900649339445215,
+ "match_probability": 0.00014819518390635442,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7858064966330554,
+ "recall": 0.9632354150696965,
+ "row_count": 477830,
+ "tn": 94062,
+ "tn_rate": 0.5409935066055479,
+ "tp": 292786,
+ "tp_rate": 0.9632354150696965,
+ "truth_threshold": -12.72
+ },
+ {
+ "f1": 0.8656401341115112,
+ "fn": 11179,
+ "fn_rate": 0.036777744513276374,
+ "fp": 79709,
+ "fp_rate": 0.4584428506519276,
+ "match_probability": 0.00015026360072660546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7860109371770057,
+ "recall": 0.9632222554867236,
+ "row_count": 477830,
+ "tn": 94160,
+ "tn_rate": 0.5415571493480724,
+ "tp": 292782,
+ "tp_rate": 0.9632222554867236,
+ "truth_threshold": -12.700000000000001
+ },
+ {
+ "f1": 0.865829747593488,
+ "fn": 11185,
+ "fn_rate": 0.0367974838877356,
+ "fp": 79553,
+ "fp_rate": 0.4575456234291334,
+ "match_probability": 0.00015236088283167914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7863368150211237,
+ "recall": 0.9632025161122644,
+ "row_count": 477830,
+ "tn": 94316,
+ "tn_rate": 0.5424543765708666,
+ "tp": 292776,
+ "tp_rate": 0.9632025161122644,
+ "truth_threshold": -12.68
+ },
+ {
+ "f1": 0.8659662386601948,
+ "fn": 11196,
+ "fn_rate": 0.03683367274091084,
+ "fp": 79433,
+ "fp_rate": 0.45685544864236866,
+ "match_probability": 0.0001544874329203339,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7865840224826571,
+ "recall": 0.9631663272590891,
+ "row_count": 477830,
+ "tn": 94436,
+ "tn_rate": 0.5431445513576313,
+ "tp": 292765,
+ "tp_rate": 0.9631663272590891,
+ "truth_threshold": -12.66
+ },
+ {
+ "f1": 0.8660491891540104,
+ "fn": 11200,
+ "fn_rate": 0.03684683232388366,
+ "fp": 79363,
+ "fp_rate": 0.45645284668342256,
+ "match_probability": 0.00015664365930589128,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.78672969225312,
+ "recall": 0.9631531676761164,
+ "row_count": 477830,
+ "tn": 94506,
+ "tn_rate": 0.5435471533165774,
+ "tp": 292761,
+ "tp_rate": 0.9631531676761164,
+ "truth_threshold": -12.64
+ },
+ {
+ "f1": 0.8660434570384723,
+ "fn": 11208,
+ "fn_rate": 0.03687315148982929,
+ "fp": 79357,
+ "fp_rate": 0.4564183379440843,
+ "match_probability": 0.00015882997599441802,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7867377925882132,
+ "recall": 0.9631268485101707,
+ "row_count": 477830,
+ "tn": 94512,
+ "tn_rate": 0.5435816620559156,
+ "tp": 292753,
+ "tp_rate": 0.9631268485101707,
+ "truth_threshold": -12.620000000000001
+ },
+ {
+ "f1": 0.8660450145551795,
+ "fn": 11217,
+ "fn_rate": 0.03690276055151812,
+ "fp": 79344,
+ "fp_rate": 0.4563435690088515,
+ "match_probability": 0.00016104680276399447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7867601212616371,
+ "recall": 0.9630972394484819,
+ "row_count": 477830,
+ "tn": 94525,
+ "tn_rate": 0.5436564309911485,
+ "tp": 292744,
+ "tp_rate": 0.9630972394484819,
+ "truth_threshold": -12.6
+ },
+ {
+ "f1": 0.8660566363722427,
+ "fn": 11220,
+ "fn_rate": 0.03691263023874773,
+ "fp": 79330,
+ "fp_rate": 0.4562630486170623,
+ "match_probability": 0.00016329456524508346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7867880055150764,
+ "recall": 0.9630873697612523,
+ "row_count": 477830,
+ "tn": 94539,
+ "tn_rate": 0.5437369513829378,
+ "tp": 292741,
+ "tp_rate": 0.9630873697612523,
+ "truth_threshold": -12.58
+ },
+ {
+ "f1": 0.8658711273691563,
+ "fn": 11397,
+ "fn_rate": 0.037494941785294826,
+ "fp": 79244,
+ "fp_rate": 0.4557684233532142,
+ "match_probability": 0.00016557369500201663,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7868684912643085,
+ "recall": 0.9625050582147052,
+ "row_count": 477830,
+ "tn": 94625,
+ "tn_rate": 0.5442315766467858,
+ "tp": 292564,
+ "tp_rate": 0.9625050582147052,
+ "truth_threshold": -12.56
+ },
+ {
+ "f1": 0.8658590367044435,
+ "fn": 11421,
+ "fn_rate": 0.03757389928313172,
+ "fp": 79222,
+ "fp_rate": 0.455641891308974,
+ "match_probability": 0.0001678846296156108,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7869012970664027,
+ "recall": 0.9624261007168683,
+ "row_count": 477830,
+ "tn": 94647,
+ "tn_rate": 0.544358108691026,
+ "tp": 292540,
+ "tp_rate": 0.9624261007168683,
+ "truth_threshold": -12.540000000000001
+ },
+ {
+ "f1": 0.8658546692319077,
+ "fn": 11432,
+ "fn_rate": 0.03761008813630696,
+ "fp": 79210,
+ "fp_rate": 0.45557287383029754,
+ "match_probability": 0.00017022781276693265,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.786920393071483,
+ "recall": 0.962389911863693,
+ "row_count": 477830,
+ "tn": 94659,
+ "tn_rate": 0.5444271261697025,
+ "tp": 292529,
+ "tp_rate": 0.962389911863693,
+ "truth_threshold": -12.52
+ },
+ {
+ "f1": 0.8658469443934667,
+ "fn": 11445,
+ "fn_rate": 0.03765285678096861,
+ "fp": 79200,
+ "fp_rate": 0.4555153592647338,
+ "match_probability": 0.00017260369432222522,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.7869341109879585,
+ "recall": 0.9623471432190314,
+ "row_count": 477830,
+ "tn": 94669,
+ "tn_rate": 0.5444846407352663,
+ "tp": 292516,
+ "tp_rate": 0.9623471432190314,
+ "truth_threshold": -12.5
+ },
+ {
+ "f1": 0.8825417801874866,
+ "fn": 11454,
+ "fn_rate": 0.03768246584265745,
+ "fp": 66407,
+ "fp_rate": 0.38193697553905526,
+ "match_probability": 0.00017501273041901525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8149779612943491,
+ "recall": 0.9623175341573426,
+ "row_count": 477830,
+ "tn": 107462,
+ "tn_rate": 0.6180630244609447,
+ "tp": 292507,
+ "tp_rate": 0.9623175341573426,
+ "truth_threshold": -12.48
+ },
+ {
+ "f1": 0.8829135034788776,
+ "fn": 11465,
+ "fn_rate": 0.03771865469583269,
+ "fp": 66113,
+ "fp_rate": 0.38024604731148165,
+ "match_probability": 0.00017745538355341462,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.81564043289488,
+ "recall": 0.9622813453041673,
+ "row_count": 477830,
+ "tn": 107756,
+ "tn_rate": 0.6197539526885184,
+ "tp": 292496,
+ "tp_rate": 0.9622813453041673,
+ "truth_threshold": -12.46
+ },
+ {
+ "f1": 0.8829375201881308,
+ "fn": 11480,
+ "fn_rate": 0.03776800313198075,
+ "fp": 66077,
+ "fp_rate": 0.38003899487545223,
+ "match_probability": 0.00017993212266863398,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.815714612419748,
+ "recall": 0.9622319968680193,
+ "row_count": 477830,
+ "tn": 107792,
+ "tn_rate": 0.6199610051245478,
+ "tp": 292481,
+ "tp_rate": 0.9622319968680193,
+ "truth_threshold": -12.44
+ },
+ {
+ "f1": 0.8828220062379792,
+ "fn": 11573,
+ "fn_rate": 0.03807396343609871,
+ "fp": 66046,
+ "fp_rate": 0.37986069972220465,
+ "match_probability": 0.00018244342324472447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8157373463454918,
+ "recall": 0.9619260365639013,
+ "row_count": 477830,
+ "tn": 107823,
+ "tn_rate": 0.6201393002777954,
+ "tp": 292388,
+ "tp_rate": 0.9619260365639013,
+ "truth_threshold": -12.42
+ },
+ {
+ "f1": 0.8827886947094405,
+ "fn": 11637,
+ "fn_rate": 0.03828451676366376,
+ "fp": 65990,
+ "fp_rate": 0.37953861815504775,
+ "match_probability": 0.00018498976738956673,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8158319239549668,
+ "recall": 0.9617154832363363,
+ "row_count": 477830,
+ "tn": 107879,
+ "tn_rate": 0.6204613818449523,
+ "tp": 292324,
+ "tp_rate": 0.9617154832363363,
+ "truth_threshold": -12.4
+ },
+ {
+ "f1": 0.88282002724343,
+ "fn": 11669,
+ "fn_rate": 0.038389793427446285,
+ "fp": 65926,
+ "fp_rate": 0.3791705249354399,
+ "match_probability": 0.00018757164393112065,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.815961230312268,
+ "recall": 0.9616102065725537,
+ "row_count": 477830,
+ "tn": 107943,
+ "tn_rate": 0.6208294750645601,
+ "tp": 292292,
+ "tp_rate": 0.9616102065725537,
+ "truth_threshold": -12.38
+ },
+ {
+ "f1": 0.8828979325511425,
+ "fn": 11690,
+ "fn_rate": 0.03845888123805356,
+ "fp": 65840,
+ "fp_rate": 0.3786758996715918,
+ "match_probability": 0.00019018954851095674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8161463903649986,
+ "recall": 0.9615411187619465,
+ "row_count": 477830,
+ "tn": 108029,
+ "tn_rate": 0.6213241003284081,
+ "tp": 292271,
+ "tp_rate": 0.9615411187619465,
+ "truth_threshold": -12.36
+ },
+ {
+ "f1": 0.882926210342515,
+ "fn": 11693,
+ "fn_rate": 0.03846875092528318,
+ "fp": 65816,
+ "fp_rate": 0.3785378647142389,
+ "match_probability": 0.0001928439836790836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8161995509433541,
+ "recall": 0.9615312490747169,
+ "row_count": 477830,
+ "tn": 108053,
+ "tn_rate": 0.6214621352857611,
+ "tp": 292268,
+ "tp_rate": 0.9615312490747169,
+ "truth_threshold": -12.34
+ },
+ {
+ "f1": 0.8829253408496999,
+ "fn": 11703,
+ "fn_rate": 0.03850164988271522,
+ "fp": 65803,
+ "fp_rate": 0.37846309577900605,
+ "match_probability": 0.0001955354589900938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8162240512091515,
+ "recall": 0.9614983501172848,
+ "row_count": 477830,
+ "tn": 108066,
+ "tn_rate": 0.621536904220994,
+ "tp": 292258,
+ "tp_rate": 0.9614983501172848,
+ "truth_threshold": -12.32
+ },
+ {
+ "f1": 0.8829322819896981,
+ "fn": 11706,
+ "fn_rate": 0.03851151956994483,
+ "fp": 65794,
+ "fp_rate": 0.37841133266999866,
+ "match_probability": 0.00019826449110064116,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8162430281888792,
+ "recall": 0.9614884804300552,
+ "row_count": 477830,
+ "tn": 108075,
+ "tn_rate": 0.6215886673300013,
+ "tp": 292255,
+ "tp_rate": 0.9614884804300552,
+ "truth_threshold": -12.3
+ },
+ {
+ "f1": 0.8829230857546854,
+ "fn": 11732,
+ "fn_rate": 0.038597056859268127,
+ "fp": 65768,
+ "fp_rate": 0.378261794799533,
+ "match_probability": 0.00020103160386827137,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8162889633153351,
+ "recall": 0.9614029431407318,
+ "row_count": 477830,
+ "tn": 108101,
+ "tn_rate": 0.621738205200467,
+ "tp": 292229,
+ "tp_rate": 0.9614029431407318,
+ "truth_threshold": -12.280000000000001
+ },
+ {
+ "f1": 0.8829377069786555,
+ "fn": 11751,
+ "fn_rate": 0.038659564878389,
+ "fp": 65733,
+ "fp_rate": 0.3780604938200599,
+ "match_probability": 0.00020383732845162376,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8163590292309111,
+ "recall": 0.961340435121611,
+ "row_count": 477830,
+ "tn": 108136,
+ "tn_rate": 0.6219395061799401,
+ "tp": 292210,
+ "tp_rate": 0.961340435121611,
+ "truth_threshold": -12.26
+ },
+ {
+ "f1": 0.8829215669684406,
+ "fn": 11774,
+ "fn_rate": 0.0387352324804827,
+ "fp": 65716,
+ "fp_rate": 0.37796271905860157,
+ "match_probability": 0.0002066822034120213,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8163860040290246,
+ "recall": 0.9612647675195173,
+ "row_count": 477830,
+ "tn": 108153,
+ "tn_rate": 0.6220372809413984,
+ "tp": 292187,
+ "tp_rate": 0.9612647675195173,
+ "truth_threshold": -12.24
+ },
+ {
+ "f1": 0.8829150071618085,
+ "fn": 11785,
+ "fn_rate": 0.038771421333657935,
+ "fp": 65708,
+ "fp_rate": 0.37791670740615063,
+ "match_probability": 0.00020956677481647222,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8163986096053469,
+ "recall": 0.961228578666342,
+ "row_count": 477830,
+ "tn": 108161,
+ "tn_rate": 0.6220832925938494,
+ "tp": 292176,
+ "tp_rate": 0.961228578666342,
+ "truth_threshold": -12.22
+ },
+ {
+ "f1": 0.8828395106501293,
+ "fn": 11840,
+ "fn_rate": 0.038952365599534154,
+ "fp": 65694,
+ "fp_rate": 0.3778361870143614,
+ "match_probability": 0.0002124915963420977,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8164023308134092,
+ "recall": 0.9610476344004658,
+ "row_count": 477830,
+ "tn": 108175,
+ "tn_rate": 0.6221638129856386,
+ "tp": 292121,
+ "tp_rate": 0.9610476344004658,
+ "truth_threshold": -12.200000000000001
+ },
+ {
+ "f1": 0.8827989941851327,
+ "fn": 11864,
+ "fn_rate": 0.03903132309737104,
+ "fp": 65694,
+ "fp_rate": 0.3778361870143614,
+ "match_probability": 0.0002154572293820086,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.816390015400052,
+ "recall": 0.960968676902629,
+ "row_count": 477830,
+ "tn": 108175,
+ "tn_rate": 0.6221638129856386,
+ "tp": 292097,
+ "tp_rate": 0.960968676902629,
+ "truth_threshold": -12.18
+ },
+ {
+ "f1": 0.8828153808024083,
+ "fn": 11878,
+ "fn_rate": 0.039077381637775896,
+ "fp": 65664,
+ "fp_rate": 0.3776636433176702,
+ "match_probability": 0.00021846424315264881,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8164512909961509,
+ "recall": 0.9609226183622241,
+ "row_count": 477830,
+ "tn": 108205,
+ "tn_rate": 0.6223363566823298,
+ "tp": 292083,
+ "tp_rate": 0.9609226183622241,
+ "truth_threshold": -12.16
+ },
+ {
+ "f1": 0.8827476965490556,
+ "fn": 11941,
+ "fn_rate": 0.039284645069597744,
+ "fp": 65636,
+ "fp_rate": 0.37750260253409174,
+ "match_probability": 0.00022151321480262968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8164828774017492,
+ "recall": 0.9607153549304023,
+ "row_count": 477830,
+ "tn": 108233,
+ "tn_rate": 0.6224973974659083,
+ "tp": 292020,
+ "tp_rate": 0.9607153549304023,
+ "truth_threshold": -12.14
+ },
+ {
+ "f1": 0.8827655007708818,
+ "fn": 11951,
+ "fn_rate": 0.039317544027029784,
+ "fp": 65609,
+ "fp_rate": 0.3773473132070697,
+ "match_probability": 0.00022460472952307015,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8165393896856711,
+ "recall": 0.9606824559729702,
+ "row_count": 477830,
+ "tn": 108260,
+ "tn_rate": 0.6226526867929303,
+ "tp": 292010,
+ "tp_rate": 0.9606824559729702,
+ "truth_threshold": -12.120000000000001
+ },
+ {
+ "f1": 0.8827747579977145,
+ "fn": 11955,
+ "fn_rate": 0.0393307036100026,
+ "fp": 65597,
+ "fp_rate": 0.3772782957283932,
+ "match_probability": 0.00022773938065946784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8165647379915717,
+ "recall": 0.9606692963899974,
+ "row_count": 477830,
+ "tn": 108272,
+ "tn_rate": 0.6227217042716068,
+ "tp": 292006,
+ "tp_rate": 0.9606692963899974,
+ "truth_threshold": -12.1
+ },
+ {
+ "f1": 0.8838267965349621,
+ "fn": 11957,
+ "fn_rate": 0.03933728340148901,
+ "fp": 64807,
+ "fp_rate": 0.3727346450488586,
+ "match_probability": 0.00023091776982511915,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8183716309194503,
+ "recall": 0.960662716598511,
+ "row_count": 477830,
+ "tn": 109062,
+ "tn_rate": 0.6272653549511413,
+ "tp": 292004,
+ "tp_rate": 0.960662716598511,
+ "truth_threshold": -12.08
+ },
+ {
+ "f1": 0.8837876700924818,
+ "fn": 12015,
+ "fn_rate": 0.03952809735459483,
+ "fp": 64764,
+ "fp_rate": 0.3724873324169346,
+ "match_probability": 0.000234140507016114,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8184407501892293,
+ "recall": 0.9604719026454052,
+ "row_count": 477830,
+ "tn": 109105,
+ "tn_rate": 0.6275126675830655,
+ "tp": 291946,
+ "tp_rate": 0.9604719026454052,
+ "truth_threshold": -12.06
+ },
+ {
+ "f1": 0.8837868360577811,
+ "fn": 12063,
+ "fn_rate": 0.03968601235026862,
+ "fp": 64703,
+ "fp_rate": 0.37213649356699585,
+ "match_probability": 0.00023740821072792089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8185563136390531,
+ "recall": 0.9603139876497314,
+ "row_count": 477830,
+ "tn": 109166,
+ "tn_rate": 0.6278635064330041,
+ "tp": 291898,
+ "tp_rate": 0.9603139876497314,
+ "truth_threshold": -12.040000000000001
+ },
+ {
+ "f1": 0.8838707919098074,
+ "fn": 12083,
+ "fn_rate": 0.0397518102651327,
+ "fp": 64616,
+ "fp_rate": 0.3716361168465914,
+ "match_probability": 0.00024072150807358944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8187458975466628,
+ "recall": 0.9602481897348673,
+ "row_count": 477830,
+ "tn": 109253,
+ "tn_rate": 0.6283638831534086,
+ "tp": 291878,
+ "tp_rate": 0.9602481897348673,
+ "truth_threshold": -12.02
+ },
+ {
+ "f1": 0.8838660831907451,
+ "fn": 12104,
+ "fn_rate": 0.03982089807573998,
+ "fp": 64593,
+ "fp_rate": 0.37150383334579484,
+ "match_probability": 0.000244081034903588,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8187880488147005,
+ "recall": 0.96017910192426,
+ "row_count": 477830,
+ "tn": 109276,
+ "tn_rate": 0.6284961666542052,
+ "tp": 291857,
+ "tp_rate": 0.96017910192426,
+ "truth_threshold": -12
+ },
+ {
+ "f1": 0.8839555606709515,
+ "fn": 12116,
+ "fn_rate": 0.03986037682465843,
+ "fp": 64510,
+ "fp_rate": 0.37102646245161586,
+ "match_probability": 0.00024748743592730506,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8189726536740048,
+ "recall": 0.9601396231753416,
+ "row_count": 477830,
+ "tn": 109359,
+ "tn_rate": 0.6289735375483841,
+ "tp": 291845,
+ "tp_rate": 0.9601396231753416,
+ "truth_threshold": -11.98
+ },
+ {
+ "f1": 0.8839888287109399,
+ "fn": 12128,
+ "fn_rate": 0.03989985557357687,
+ "fp": 64470,
+ "fp_rate": 0.37079640418936094,
+ "match_probability": 0.00025094136483622993,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8190584979638117,
+ "recall": 0.9601001444264231,
+ "row_count": 477830,
+ "tn": 109399,
+ "tn_rate": 0.629203595810639,
+ "tp": 291833,
+ "tp_rate": 0.9601001444264231,
+ "truth_threshold": -11.96
+ },
+ {
+ "f1": 0.8838193762651055,
+ "fn": 12290,
+ "fn_rate": 0.040432818683975906,
+ "fp": 64393,
+ "fp_rate": 0.37035354203452026,
+ "match_probability": 0.00025444348442884174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8191532982834546,
+ "recall": 0.9595671813160241,
+ "row_count": 477830,
+ "tn": 109476,
+ "tn_rate": 0.6296464579654798,
+ "tp": 291671,
+ "tp_rate": 0.9595671813160241,
+ "truth_threshold": -11.94
+ },
+ {
+ "f1": 0.8838624434827933,
+ "fn": 12297,
+ "fn_rate": 0.04045584795417833,
+ "fp": 64352,
+ "fp_rate": 0.37011773231570894,
+ "match_probability": 0.00025799446673722515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8192440789178015,
+ "recall": 0.9595441520458217,
+ "row_count": 477830,
+ "tn": 109517,
+ "tn_rate": 0.629882267684291,
+ "tp": 291664,
+ "tp_rate": 0.9595441520458217,
+ "truth_threshold": -11.92
+ },
+ {
+ "f1": 0.8838498324130699,
+ "fn": 12310,
+ "fn_rate": 0.040498616598839986,
+ "fp": 64344,
+ "fp_rate": 0.370071720663258,
+ "match_probability": 0.0002615949931554435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8192558884253992,
+ "recall": 0.95950138340116,
+ "row_count": 477830,
+ "tn": 109525,
+ "tn_rate": 0.629928279336742,
+ "tp": 291651,
+ "tp_rate": 0.95950138340116,
+ "truth_threshold": -11.9
+ },
+ {
+ "f1": 0.8838669006422205,
+ "fn": 12330,
+ "fn_rate": 0.04056441451370406,
+ "fp": 64307,
+ "fp_rate": 0.3698589167706722,
+ "match_probability": 0.00026524575456968495,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8193308947063814,
+ "recall": 0.9594355854862959,
+ "row_count": 477830,
+ "tn": 109562,
+ "tn_rate": 0.6301410832293278,
+ "tp": 291631,
+ "tp_rate": 0.9594355854862959,
+ "truth_threshold": -11.88
+ },
+ {
+ "f1": 0.8838835410503856,
+ "fn": 12336,
+ "fn_rate": 0.040584153888163284,
+ "fp": 64287,
+ "fp_rate": 0.3697438876395447,
+ "match_probability": 0.0002689474514902129,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8193738901750994,
+ "recall": 0.9594158461118367,
+ "row_count": 477830,
+ "tn": 109582,
+ "tn_rate": 0.6302561123604553,
+ "tp": 291625,
+ "tp_rate": 0.9594158461118367,
+ "truth_threshold": -11.86
+ },
+ {
+ "f1": 0.8844384188193617,
+ "fn": 12359,
+ "fn_rate": 0.04065982149025697,
+ "fp": 63844,
+ "fp_rate": 0.3671959923850715,
+ "match_probability": 0.00027270079418514036,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8203834056368619,
+ "recall": 0.9593401785097431,
+ "row_count": 477830,
+ "tn": 110025,
+ "tn_rate": 0.6328040076149285,
+ "tp": 291602,
+ "tp_rate": 0.9593401785097431,
+ "truth_threshold": -11.84
+ },
+ {
+ "f1": 0.8845240298131671,
+ "fn": 12375,
+ "fn_rate": 0.04071245982214824,
+ "fp": 63759,
+ "fp_rate": 0.3667071185777798,
+ "match_probability": 0.0002765065028160592,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8205715572190406,
+ "recall": 0.9592875401778518,
+ "row_count": 477830,
+ "tn": 110110,
+ "tn_rate": 0.6332928814222202,
+ "tp": 291586,
+ "tp_rate": 0.9592875401778518,
+ "truth_threshold": -11.82
+ },
+ {
+ "f1": 0.88455797585098,
+ "fn": 12393,
+ "fn_rate": 0.04077167794552591,
+ "fp": 63712,
+ "fp_rate": 0.3664368001196303,
+ "match_probability": 0.00028036530757554303,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8206710200405314,
+ "recall": 0.9592283220544741,
+ "row_count": 477830,
+ "tn": 110157,
+ "tn_rate": 0.6335631998803697,
+ "tp": 291568,
+ "tp_rate": 0.9592283220544741,
+ "truth_threshold": -11.8
+ },
+ {
+ "f1": 0.8846842418283994,
+ "fn": 12408,
+ "fn_rate": 0.04082102638167397,
+ "fp": 63599,
+ "fp_rate": 0.36578688552876015,
+ "match_probability": 0.0002842779488265541,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8209245618777312,
+ "recall": 0.959178973618326,
+ "row_count": 477830,
+ "tn": 110270,
+ "tn_rate": 0.6342131144712398,
+ "tp": 291553,
+ "tp_rate": 0.959178973618326,
+ "truth_threshold": -11.78
+ },
+ {
+ "f1": 0.8846807425973916,
+ "fn": 12418,
+ "fn_rate": 0.040853925339106006,
+ "fp": 63589,
+ "fp_rate": 0.3657293709631964,
+ "match_probability": 0.0002882451772437776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8209426354144375,
+ "recall": 0.959146074660894,
+ "row_count": 477830,
+ "tn": 110280,
+ "tn_rate": 0.6342706290368035,
+ "tp": 291543,
+ "tp_rate": 0.959146074660894,
+ "truth_threshold": -11.76
+ },
+ {
+ "f1": 0.8847824305498648,
+ "fn": 12442,
+ "fn_rate": 0.0409328828369429,
+ "fp": 63483,
+ "fp_rate": 0.3651197165682209,
+ "match_probability": 0.00029226775395691364,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8211756553484205,
+ "recall": 0.9590671171630571,
+ "row_count": 477830,
+ "tn": 110386,
+ "tn_rate": 0.634880283431779,
+ "tp": 291519,
+ "tp_rate": 0.9590671171630571,
+ "truth_threshold": -11.74
+ },
+ {
+ "f1": 0.8849735112406455,
+ "fn": 12464,
+ "fn_rate": 0.041005260543293384,
+ "fp": 63312,
+ "fp_rate": 0.36413621749708114,
+ "match_probability": 0.00029634645069594797,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8215603324605633,
+ "recall": 0.9589947394567067,
+ "row_count": 477830,
+ "tn": 110557,
+ "tn_rate": 0.6358637825029189,
+ "tp": 291497,
+ "tp_rate": 0.9589947394567067,
+ "truth_threshold": -11.72
+ },
+ {
+ "f1": 0.8849091036070094,
+ "fn": 12533,
+ "fn_rate": 0.04123226334957445,
+ "fp": 63274,
+ "fp_rate": 0.36391766214793897,
+ "match_probability": 0.0003004820499384334,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8216136362354878,
+ "recall": 0.9587677366504256,
+ "row_count": 477830,
+ "tn": 110595,
+ "tn_rate": 0.636082337852061,
+ "tp": 291428,
+ "tp_rate": 0.9587677366504256,
+ "truth_threshold": -11.700000000000001
+ },
+ {
+ "f1": 0.8848937029512955,
+ "fn": 12554,
+ "fn_rate": 0.041301351160181736,
+ "fp": 63259,
+ "fp_rate": 0.3638313902995934,
+ "match_probability": 0.00030467534505880815,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8216378226274862,
+ "recall": 0.9586986488398183,
+ "row_count": 477830,
+ "tn": 110610,
+ "tn_rate": 0.6361686097004067,
+ "tp": 291407,
+ "tp_rate": 0.9586986488398183,
+ "truth_threshold": -11.68
+ },
+ {
+ "f1": 0.8848993176497025,
+ "fn": 12561,
+ "fn_rate": 0.04132438043038416,
+ "fp": 63245,
+ "fp_rate": 0.36375086990780414,
+ "match_probability": 0.00030892714047977567,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.821666737159695,
+ "recall": 0.9586756195696159,
+ "row_count": 477830,
+ "tn": 110624,
+ "tn_rate": 0.6362491300921959,
+ "tp": 291400,
+ "tp_rate": 0.9586756195696159,
+ "truth_threshold": -11.66
+ },
+ {
+ "f1": 0.8849166218723712,
+ "fn": 12573,
+ "fn_rate": 0.04136385917930261,
+ "fp": 63218,
+ "fp_rate": 0.36359558058078206,
+ "match_probability": 0.00031323825182578204,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8217232646937728,
+ "recall": 0.9586361408206974,
+ "row_count": 477830,
+ "tn": 110651,
+ "tn_rate": 0.6364044194192179,
+ "tp": 291388,
+ "tp_rate": 0.9586361408206974,
+ "truth_threshold": -11.64
+ },
+ {
+ "f1": 0.8849093907450094,
+ "fn": 12586,
+ "fn_rate": 0.04140662782396426,
+ "fp": 63206,
+ "fp_rate": 0.3635265631021056,
+ "match_probability": 0.00031760950607860996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8217445379194035,
+ "recall": 0.9585933721760358,
+ "row_count": 477830,
+ "tn": 110663,
+ "tn_rate": 0.6364734368978944,
+ "tp": 291375,
+ "tp_rate": 0.9585933721760358,
+ "truth_threshold": -11.620000000000001
+ },
+ {
+ "f1": 0.8850178767250204,
+ "fn": 12614,
+ "fn_rate": 0.04149874490477397,
+ "fp": 63091,
+ "fp_rate": 0.3628651455981227,
+ "match_probability": 0.000322041741735126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8219970770628432,
+ "recall": 0.958501255095226,
+ "row_count": 477830,
+ "tn": 110778,
+ "tn_rate": 0.6371348544018772,
+ "tp": 291347,
+ "tp_rate": 0.958501255095226,
+ "truth_threshold": -11.6
+ },
+ {
+ "f1": 0.8850092501739154,
+ "fn": 12631,
+ "fn_rate": 0.04155467313240843,
+ "fp": 63075,
+ "fp_rate": 0.3627731222932208,
+ "match_probability": 0.0003265358089672047,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8220256486223388,
+ "recall": 0.9584453268675915,
+ "row_count": 477830,
+ "tn": 110794,
+ "tn_rate": 0.6372268777067792,
+ "tp": 291330,
+ "tp_rate": 0.9584453268675915,
+ "truth_threshold": -11.58
+ },
+ {
+ "f1": 0.8850078838716342,
+ "fn": 12658,
+ "fn_rate": 0.04164350031747494,
+ "fp": 63043,
+ "fp_rate": 0.3625890756834168,
+ "match_probability": 0.0003310925697838664,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8220863224080418,
+ "recall": 0.958356499682525,
+ "row_count": 477830,
+ "tn": 110826,
+ "tn_rate": 0.6374109243165832,
+ "tp": 291303,
+ "tp_rate": 0.958356499682525,
+ "truth_threshold": -11.56
+ },
+ {
+ "f1": 0.885070463619624,
+ "fn": 12679,
+ "fn_rate": 0.04171258812808222,
+ "fp": 62969,
+ "fp_rate": 0.3621634678982452,
+ "match_probability": 0.0003357128981956508,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8222475024770572,
+ "recall": 0.9582874118719178,
+ "row_count": 477830,
+ "tn": 110900,
+ "tn_rate": 0.6378365321017547,
+ "tp": 291282,
+ "tp_rate": 0.9582874118719178,
+ "truth_threshold": -11.540000000000001
+ },
+ {
+ "f1": 0.8850209367764049,
+ "fn": 12713,
+ "fn_rate": 0.041824444583351154,
+ "fp": 62964,
+ "fp_rate": 0.3621347106154634,
+ "match_probability": 0.00034039768038126314,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8222420471356137,
+ "recall": 0.9581755554166489,
+ "row_count": 477830,
+ "tn": 110905,
+ "tn_rate": 0.6378652893845367,
+ "tp": 291248,
+ "tp_rate": 0.9581755554166489,
+ "truth_threshold": -11.52
+ },
+ {
+ "f1": 0.8851094868327077,
+ "fn": 12729,
+ "fn_rate": 0.04187708291524241,
+ "fp": 62877,
+ "fp_rate": 0.36163433389505895,
+ "match_probability": 0.0003451478148565189,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8224360295841111,
+ "recall": 0.9581229170847576,
+ "row_count": 477830,
+ "tn": 110992,
+ "tn_rate": 0.638365666104941,
+ "tp": 291232,
+ "tp_rate": 0.9581229170847576,
+ "truth_threshold": -11.5
+ },
+ {
+ "f1": 0.8851341904501383,
+ "fn": 12743,
+ "fn_rate": 0.041923141455647274,
+ "fp": 62841,
+ "fp_rate": 0.3614272814590295,
+ "match_probability": 0.00034996421264562645,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.822512632075445,
+ "recall": 0.9580768585443528,
+ "row_count": 477830,
+ "tn": 111028,
+ "tn_rate": 0.6385727185409705,
+ "tp": 291218,
+ "tp_rate": 0.9580768585443528,
+ "truth_threshold": -11.48
+ },
+ {
+ "f1": 0.8850431430256669,
+ "fn": 12865,
+ "fn_rate": 0.04232450873631815,
+ "fp": 62756,
+ "fp_rate": 0.3609384076517378,
+ "match_probability": 0.00035484779745482883,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8226490171031957,
+ "recall": 0.9576754912636819,
+ "row_count": 477830,
+ "tn": 111113,
+ "tn_rate": 0.6390615923482622,
+ "tp": 291096,
+ "tp_rate": 0.9576754912636819,
+ "truth_threshold": -11.46
+ },
+ {
+ "f1": 0.8850180148679669,
+ "fn": 12883,
+ "fn_rate": 0.04238372685969582,
+ "fp": 62752,
+ "fp_rate": 0.3609154018255123,
+ "match_probability": 0.00035979950584844554,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8226492948591131,
+ "recall": 0.9576162731403042,
+ "row_count": 477830,
+ "tn": 111117,
+ "tn_rate": 0.6390845981744877,
+ "tp": 291078,
+ "tp_rate": 0.9576162731403042,
+ "truth_threshold": -11.44
+ },
+ {
+ "f1": 0.8850400308935723,
+ "fn": 12897,
+ "fn_rate": 0.04242978540010067,
+ "fp": 62718,
+ "fp_rate": 0.3607198523025956,
+ "match_probability": 0.00036482028742734155,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.822721336868467,
+ "recall": 0.9575702145998993,
+ "row_count": 477830,
+ "tn": 111151,
+ "tn_rate": 0.6392801476974044,
+ "tp": 291064,
+ "tp_rate": 0.9575702145998993,
+ "truth_threshold": -11.42
+ },
+ {
+ "f1": 0.8850483830747429,
+ "fn": 12927,
+ "fn_rate": 0.042528482272396785,
+ "fp": 62673,
+ "fp_rate": 0.36046103675755886,
+ "match_probability": 0.00036991110500986284,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8228109706621582,
+ "recall": 0.9574715177276032,
+ "row_count": 477830,
+ "tn": 111196,
+ "tn_rate": 0.6395389632424412,
+ "tp": 291034,
+ "tp_rate": 0.9574715177276032,
+ "truth_threshold": -11.4
+ },
+ {
+ "f1": 0.8851505686052064,
+ "fn": 12935,
+ "fn_rate": 0.04255480143834242,
+ "fp": 62588,
+ "fp_rate": 0.3599721629502672,
+ "match_probability": 0.0003750729348152639,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8230047452872341,
+ "recall": 0.9574451985616576,
+ "row_count": 477830,
+ "tn": 111281,
+ "tn_rate": 0.6400278370497329,
+ "tp": 291026,
+ "tp_rate": 0.9574451985616576,
+ "truth_threshold": -11.38
+ },
+ {
+ "f1": 0.8851574951638217,
+ "fn": 12946,
+ "fn_rate": 0.04259099029151766,
+ "fp": 62568,
+ "fp_rate": 0.3598571338191397,
+ "match_probability": 0.0003803067666496687,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8230457912286507,
+ "recall": 0.9574090097084823,
+ "row_count": 477830,
+ "tn": 111301,
+ "tn_rate": 0.6401428661808602,
+ "tp": 291015,
+ "tp_rate": 0.9574090097084823,
+ "truth_threshold": -11.36
+ },
+ {
+ "f1": 0.8851413637732704,
+ "fn": 13023,
+ "fn_rate": 0.04284431226374436,
+ "fp": 62483,
+ "fp_rate": 0.359368260011848,
+ "match_probability": 0.0003856136040945928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8232051858831252,
+ "recall": 0.9571556877362556,
+ "row_count": 477830,
+ "tn": 111386,
+ "tn_rate": 0.640631739988152,
+ "tp": 290938,
+ "tp_rate": 0.9571556877362556,
+ "truth_threshold": -11.34
+ },
+ {
+ "f1": 0.885192780468807,
+ "fn": 13030,
+ "fn_rate": 0.042867341533946786,
+ "fp": 62437,
+ "fp_rate": 0.35910369301025485,
+ "match_probability": 0.0003909944646980703,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8233088451699079,
+ "recall": 0.9571326584660532,
+ "row_count": 477830,
+ "tn": 111432,
+ "tn_rate": 0.6408963069897452,
+ "tp": 290931,
+ "tp_rate": 0.9571326584660532,
+ "truth_threshold": -11.32
+ },
+ {
+ "f1": 0.8852199631214133,
+ "fn": 13037,
+ "fn_rate": 0.04289037080414922,
+ "fp": 62408,
+ "fp_rate": 0.35893690077012,
+ "match_probability": 0.00039645038016841163,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8233729183883712,
+ "recall": 0.9571096291958507,
+ "row_count": 477830,
+ "tn": 111461,
+ "tn_rate": 0.6410630992298799,
+ "tp": 290924,
+ "tp_rate": 0.9571096291958507,
+ "truth_threshold": -11.3
+ },
+ {
+ "f1": 0.8850565617400991,
+ "fn": 13150,
+ "fn_rate": 0.04326212902313126,
+ "fp": 62387,
+ "fp_rate": 0.3588161201824362,
+ "match_probability": 0.00040198239657063386,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8233653644697875,
+ "recall": 0.9567378709768688,
+ "row_count": 477830,
+ "tn": 111482,
+ "tn_rate": 0.6411838798175638,
+ "tp": 290811,
+ "tp_rate": 0.9567378709768688,
+ "truth_threshold": -11.28
+ },
+ {
+ "f1": 0.8850399069750452,
+ "fn": 13213,
+ "fn_rate": 0.043469392454953105,
+ "fp": 62320,
+ "fp_rate": 0.3584307725931592,
+ "match_probability": 0.0004075915745255968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8234900925600734,
+ "recall": 0.9565306075450469,
+ "row_count": 477830,
+ "tn": 111549,
+ "tn_rate": 0.6415692274068407,
+ "tp": 290748,
+ "tp_rate": 0.9565306075450469,
+ "truth_threshold": -11.26
+ },
+ {
+ "f1": 0.8850389961460483,
+ "fn": 13231,
+ "fn_rate": 0.043528610578330774,
+ "fp": 62297,
+ "fp_rate": 0.3582984890923626,
+ "match_probability": 0.000413278989411887,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8235347438014656,
+ "recall": 0.9564713894216692,
+ "row_count": 477830,
+ "tn": 111572,
+ "tn_rate": 0.6417015109076374,
+ "tp": 290730,
+ "tp_rate": 0.9564713894216692,
+ "truth_threshold": -11.24
+ },
+ {
+ "f1": 0.885006241057022,
+ "fn": 13263,
+ "fn_rate": 0.0436338872421133,
+ "fp": 62282,
+ "fp_rate": 0.35821221724401703,
+ "match_probability": 0.0004190457315704786,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8235537424216669,
+ "recall": 0.9563661127578867,
+ "row_count": 477830,
+ "tn": 111587,
+ "tn_rate": 0.6417877827559829,
+ "tp": 290698,
+ "tp_rate": 0.9563661127578867,
+ "truth_threshold": -11.22
+ },
+ {
+ "f1": 0.8850515919048358,
+ "fn": 13272,
+ "fn_rate": 0.04366349630380213,
+ "fp": 62236,
+ "fp_rate": 0.3579476502424239,
+ "match_probability": 0.00042489290651221616,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8236565842601119,
+ "recall": 0.9563365036961978,
+ "row_count": 477830,
+ "tn": 111633,
+ "tn_rate": 0.6420523497575761,
+ "tp": 290689,
+ "tp_rate": 0.9563365036961978,
+ "truth_threshold": -11.200000000000001
+ },
+ {
+ "f1": 0.8850283173984532,
+ "fn": 13300,
+ "fn_rate": 0.04375561338461184,
+ "fp": 62218,
+ "fp_rate": 0.3578441240244092,
+ "match_probability": 0.00043082163512815456,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8236846057713834,
+ "recall": 0.9562443866153881,
+ "row_count": 477830,
+ "tn": 111651,
+ "tn_rate": 0.6421558759755909,
+ "tp": 290661,
+ "tp_rate": 0.9562443866153881,
+ "truth_threshold": -11.18
+ },
+ {
+ "f1": 0.8850657319743346,
+ "fn": 13324,
+ "fn_rate": 0.043834570882448735,
+ "fp": 62160,
+ "fp_rate": 0.3575105395441395,
+ "match_probability": 0.0004368330539027926,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8238080255784488,
+ "recall": 0.9561654291175513,
+ "row_count": 477830,
+ "tn": 111709,
+ "tn_rate": 0.6424894604558604,
+ "tp": 290637,
+ "tp_rate": 0.9561654291175513,
+ "truth_threshold": -11.16
+ },
+ {
+ "f1": 0.8851000718714597,
+ "fn": 13326,
+ "fn_rate": 0.043841150673935146,
+ "fp": 62132,
+ "fp_rate": 0.3573494987605611,
+ "match_probability": 0.00044292831513024784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8238724143698248,
+ "recall": 0.9561588493260649,
+ "row_count": 477830,
+ "tn": 111737,
+ "tn_rate": 0.6426505012394389,
+ "tp": 290635,
+ "tp_rate": 0.9561588493260649,
+ "truth_threshold": -11.14
+ },
+ {
+ "f1": 0.8850836234492884,
+ "fn": 13373,
+ "fn_rate": 0.04399577577386573,
+ "fp": 62086,
+ "fp_rate": 0.35708493175896794,
+ "match_probability": 0.0004491085871334007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8239564016627253,
+ "recall": 0.9560042242261343,
+ "row_count": 477830,
+ "tn": 111783,
+ "tn_rate": 0.6429150682410321,
+ "tp": 290588,
+ "tp_rate": 0.9560042242261343,
+ "truth_threshold": -11.120000000000001
+ },
+ {
+ "f1": 0.8850329278025185,
+ "fn": 13410,
+ "fn_rate": 0.04411750191636427,
+ "fp": 62077,
+ "fp_rate": 0.3570331686499606,
+ "match_probability": 0.00045537505448605916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8239589595834704,
+ "recall": 0.9558824980836357,
+ "row_count": 477830,
+ "tn": 111792,
+ "tn_rate": 0.6429668313500394,
+ "tp": 290551,
+ "tp_rate": 0.9558824980836357,
+ "truth_threshold": -11.1
+ },
+ {
+ "f1": 0.8850127939563787,
+ "fn": 13429,
+ "fn_rate": 0.04418000993548515,
+ "fp": 62067,
+ "fp_rate": 0.35697565408439685,
+ "match_probability": 0.000461728918238175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8239728416699991,
+ "recall": 0.9558199900645149,
+ "row_count": 477830,
+ "tn": 111802,
+ "tn_rate": 0.6430243459156031,
+ "tp": 290532,
+ "tp_rate": 0.9558199900645149,
+ "truth_threshold": -11.08
+ },
+ {
+ "f1": 0.8850064887193766,
+ "fn": 13447,
+ "fn_rate": 0.044239228058862816,
+ "fp": 62049,
+ "fp_rate": 0.35687212786638217,
+ "match_probability": 0.00046817139614416427,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8240059223457935,
+ "recall": 0.9557607719411372,
+ "row_count": 477830,
+ "tn": 111820,
+ "tn_rate": 0.6431278721336179,
+ "tp": 290514,
+ "tp_rate": 0.9557607719411372,
+ "truth_threshold": -11.06
+ },
+ {
+ "f1": 0.8850436737765401,
+ "fn": 13464,
+ "fn_rate": 0.04429515628649728,
+ "fp": 62000,
+ "fp_rate": 0.3565903064951199,
+ "match_probability": 0.0004747037228943636,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.824111978257971,
+ "recall": 0.9557048437135027,
+ "row_count": 477830,
+ "tn": 111869,
+ "tn_rate": 0.6434096935048801,
+ "tp": 290497,
+ "tp_rate": 0.9557048437135027,
+ "truth_threshold": -11.040000000000001
+ },
+ {
+ "f1": 0.8851039454480638,
+ "fn": 13469,
+ "fn_rate": 0.0443116057652133,
+ "fp": 61949,
+ "fp_rate": 0.35629698221074485,
+ "match_probability": 0.0004813271503496699,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8242287361572576,
+ "recall": 0.9556883942347867,
+ "row_count": 477830,
+ "tn": 111920,
+ "tn_rate": 0.6437030177892551,
+ "tp": 290492,
+ "tp_rate": 0.9556883942347867,
+ "truth_threshold": -11.02
+ },
+ {
+ "f1": 0.8851155761132542,
+ "fn": 13482,
+ "fn_rate": 0.04435437440987495,
+ "fp": 61924,
+ "fp_rate": 0.3561531957968356,
+ "match_probability": 0.0004880429477794046,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8242807240574002,
+ "recall": 0.955645625590125,
+ "row_count": 477830,
+ "tn": 111945,
+ "tn_rate": 0.6438468042031644,
+ "tp": 290479,
+ "tp_rate": 0.955645625590125,
+ "truth_threshold": -11
+ },
+ {
+ "f1": 0.8923439904887422,
+ "fn": 13495,
+ "fn_rate": 0.044397143054536604,
+ "fp": 56592,
+ "fp_rate": 0.32548642943825523,
+ "match_probability": 0.0004948524021024512,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8369379181577719,
+ "recall": 0.9556028569454634,
+ "row_count": 477830,
+ "tn": 117277,
+ "tn_rate": 0.6745135705617448,
+ "tp": 290466,
+ "tp_rate": 0.9556028569454634,
+ "truth_threshold": -10.98
+ },
+ {
+ "f1": 0.8926244221500934,
+ "fn": 13551,
+ "fn_rate": 0.04458137721615602,
+ "fp": 56318,
+ "fp_rate": 0.32391053034180906,
+ "match_probability": 0.000501756818131702,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8375729678595325,
+ "recall": 0.9554186227838439,
+ "row_count": 477830,
+ "tn": 117551,
+ "tn_rate": 0.676089469658191,
+ "tp": 290410,
+ "tp_rate": 0.9554186227838439,
+ "truth_threshold": -10.96
+ },
+ {
+ "f1": 0.8926113431881545,
+ "fn": 13574,
+ "fn_rate": 0.04465704481824971,
+ "fp": 56299,
+ "fp_rate": 0.32380125266723797,
+ "match_probability": 0.0005087575188218651,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8376080949331672,
+ "recall": 0.9553429551817503,
+ "row_count": 477830,
+ "tn": 117570,
+ "tn_rate": 0.676198747332762,
+ "tp": 290387,
+ "tp_rate": 0.9553429551817503,
+ "truth_threshold": -10.94
+ },
+ {
+ "f1": 0.8926780680207697,
+ "fn": 13588,
+ "fn_rate": 0.044703103358654565,
+ "fp": 56233,
+ "fp_rate": 0.3234216565345174,
+ "match_probability": 0.000515855845520672,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8377610312573931,
+ "recall": 0.9552968966413454,
+ "row_count": 477830,
+ "tn": 117636,
+ "tn_rate": 0.6765783434654826,
+ "tp": 290373,
+ "tp_rate": 0.9552968966413454,
+ "truth_threshold": -10.92
+ },
+ {
+ "f1": 0.8926147876432443,
+ "fn": 13655,
+ "fn_rate": 0.04492352637344923,
+ "fp": 56195,
+ "fp_rate": 0.3232031011853752,
+ "match_probability": 0.0005230531582235416,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8378215358685833,
+ "recall": 0.9550764736265508,
+ "row_count": 477830,
+ "tn": 117674,
+ "tn_rate": 0.6767968988146248,
+ "tp": 290306,
+ "tp_rate": 0.9550764736265508,
+ "truth_threshold": -10.9
+ },
+ {
+ "f1": 0.8926088440498996,
+ "fn": 13673,
+ "fn_rate": 0.0449827444968269,
+ "fp": 56178,
+ "fp_rate": 0.32310532642391687,
+ "match_probability": 0.0005303508358317331,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.83785421946165,
+ "recall": 0.9550172555031731,
+ "row_count": 477830,
+ "tn": 117691,
+ "tn_rate": 0.6768946735760831,
+ "tp": 290288,
+ "tp_rate": 0.9550172555031731,
+ "truth_threshold": -10.88
+ },
+ {
+ "f1": 0.8925434820044773,
+ "fn": 13713,
+ "fn_rate": 0.04511434032655505,
+ "fp": 56176,
+ "fp_rate": 0.3230938235108041,
+ "match_probability": 0.0005377502764140461,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8378403343879177,
+ "recall": 0.954885659673445,
+ "row_count": 477830,
+ "tn": 117693,
+ "tn_rate": 0.6769061764891959,
+ "tp": 290248,
+ "tp_rate": 0.954885659673445,
+ "truth_threshold": -10.86
+ },
+ {
+ "f1": 0.8925425917953134,
+ "fn": 13724,
+ "fn_rate": 0.045150529179730295,
+ "fp": 56163,
+ "fp_rate": 0.3230190545755713,
+ "match_probability": 0.0005452528974721083,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8378666281755196,
+ "recall": 0.9548494708202697,
+ "row_count": 477830,
+ "tn": 117706,
+ "tn_rate": 0.6769809454244288,
+ "tp": 290237,
+ "tp_rate": 0.9548494708202697,
+ "truth_threshold": -10.84
+ },
+ {
+ "f1": 0.8925867148911566,
+ "fn": 13740,
+ "fn_rate": 0.04520316751162156,
+ "fp": 56111,
+ "fp_rate": 0.3227199788346399,
+ "match_probability": 0.0005528601362093087,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8379849393067923,
+ "recall": 0.9547968324883784,
+ "row_count": 477830,
+ "tn": 117758,
+ "tn_rate": 0.6772800211653601,
+ "tp": 290221,
+ "tp_rate": 0.9547968324883784,
+ "truth_threshold": -10.82
+ },
+ {
+ "f1": 0.8926547937621113,
+ "fn": 13750,
+ "fn_rate": 0.04523606646905359,
+ "fp": 56048,
+ "fp_rate": 0.3223576370715884,
+ "match_probability": 0.0005605734498034131,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8381327272359708,
+ "recall": 0.9547639335309464,
+ "row_count": 477830,
+ "tn": 117821,
+ "tn_rate": 0.6776423629284116,
+ "tp": 290211,
+ "tp_rate": 0.9547639335309464,
+ "truth_threshold": -10.8
+ },
+ {
+ "f1": 0.8924540609730581,
+ "fn": 13917,
+ "fn_rate": 0.04578547905816865,
+ "fp": 55988,
+ "fp_rate": 0.32201254967820603,
+ "match_probability": 0.0005683943156829212,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8381999352661026,
+ "recall": 0.9542145209418313,
+ "row_count": 477830,
+ "tn": 117881,
+ "tn_rate": 0.677987450321794,
+ "tp": 290044,
+ "tp_rate": 0.9542145209418313,
+ "truth_threshold": -10.78
+ },
+ {
+ "f1": 0.8925214661619426,
+ "fn": 13954,
+ "fn_rate": 0.04590720520066719,
+ "fp": 55892,
+ "fp_rate": 0.3214604098487942,
+ "match_probability": 0.0005763242318072081,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8384152599458223,
+ "recall": 0.9540927947993328,
+ "row_count": 477830,
+ "tn": 117977,
+ "tn_rate": 0.6785395901512058,
+ "tp": 290007,
+ "tp_rate": 0.9540927947993328,
+ "truth_threshold": -10.76
+ },
+ {
+ "f1": 0.8926325509811466,
+ "fn": 13967,
+ "fn_rate": 0.04594997384532884,
+ "fp": 55795,
+ "fp_rate": 0.32090251856282603,
+ "match_probability": 0.0005843647169505126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8386443756163441,
+ "recall": 0.9540500261546712,
+ "row_count": 477830,
+ "tn": 118074,
+ "tn_rate": 0.679097481437174,
+ "tp": 289994,
+ "tp_rate": 0.9540500261546712,
+ "truth_threshold": -10.74
+ },
+ {
+ "f1": 0.8925929460440403,
+ "fn": 14012,
+ "fn_rate": 0.04609801915377302,
+ "fp": 55768,
+ "fp_rate": 0.32074722923580395,
+ "match_probability": 0.0005925173109898081,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8386888697981297,
+ "recall": 0.953901980846227,
+ "row_count": 477830,
+ "tn": 118101,
+ "tn_rate": 0.679252770764196,
+ "tp": 289949,
+ "tp_rate": 0.953901980846227,
+ "truth_threshold": -10.72
+ },
+ {
+ "f1": 0.8927566309281144,
+ "fn": 14024,
+ "fn_rate": 0.04613749790269146,
+ "fp": 55634,
+ "fp_rate": 0.31997653405725,
+ "match_probability": 0.0006007835751966225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8390084816144874,
+ "recall": 0.9538625020973085,
+ "row_count": 477830,
+ "tn": 118235,
+ "tn_rate": 0.68002346594275,
+ "tp": 289937,
+ "tp_rate": 0.9538625020973085,
+ "truth_threshold": -10.700000000000001
+ },
+ {
+ "f1": 0.8928893693160995,
+ "fn": 14030,
+ "fn_rate": 0.04615723727715069,
+ "fp": 55530,
+ "fp_rate": 0.3193783825753872,
+ "match_probability": 0.000609165092532851,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.839258266490284,
+ "recall": 0.9538427627228493,
+ "row_count": 477830,
+ "tn": 118339,
+ "tn_rate": 0.6806216174246128,
+ "tp": 289931,
+ "tp_rate": 0.9538427627228493,
+ "truth_threshold": -10.68
+ },
+ {
+ "f1": 0.8930468759629725,
+ "fn": 14153,
+ "fn_rate": 0.04656189445356477,
+ "fp": 55264,
+ "fp_rate": 0.317848495131392,
+ "match_probability": 0.0006176634679506185,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8398479157972829,
+ "recall": 0.9534381055464353,
+ "row_count": 477830,
+ "tn": 118605,
+ "tn_rate": 0.682151504868608,
+ "tp": 289808,
+ "tp_rate": 0.9534381055464353,
+ "truth_threshold": -10.66
+ },
+ {
+ "f1": 0.893022668162264,
+ "fn": 14168,
+ "fn_rate": 0.04661124288971283,
+ "fp": 55262,
+ "fp_rate": 0.31783699221827927,
+ "match_probability": 0.0006262803286962502,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8398458216806016,
+ "recall": 0.9533887571102871,
+ "row_count": 477830,
+ "tn": 118607,
+ "tn_rate": 0.6821630077817207,
+ "tp": 289793,
+ "tp_rate": 0.9533887571102871,
+ "truth_threshold": -10.64
+ },
+ {
+ "f1": 0.8930292758089369,
+ "fn": 14173,
+ "fn_rate": 0.04662769236842884,
+ "fp": 55252,
+ "fp_rate": 0.3177794776527155,
+ "match_probability": 0.0006350173246183965,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8398678414096916,
+ "recall": 0.9533723076315711,
+ "row_count": 477830,
+ "tn": 118617,
+ "tn_rate": 0.6822205223472845,
+ "tp": 289788,
+ "tp_rate": 0.9533723076315711,
+ "truth_threshold": -10.620000000000001
+ },
+ {
+ "f1": 0.891475787309828,
+ "fn": 15138,
+ "fn_rate": 0.049802441760620604,
+ "fp": 55182,
+ "fp_rate": 0.31737687569376943,
+ "match_probability": 0.0006438761284803746,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.839589540849697,
+ "recall": 0.9501975582393793,
+ "row_count": 477830,
+ "tn": 118687,
+ "tn_rate": 0.6826231243062305,
+ "tp": 288823,
+ "tp_rate": 0.9501975582393793,
+ "truth_threshold": -10.6
+ },
+ {
+ "f1": 0.8915326439265319,
+ "fn": 15149,
+ "fn_rate": 0.04983863061379585,
+ "fp": 55127,
+ "fp_rate": 0.31706054558316893,
+ "match_probability": 0.0006528584362767788,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8397186710434118,
+ "recall": 0.9501613693862041,
+ "row_count": 477830,
+ "tn": 118742,
+ "tn_rate": 0.682939454416831,
+ "tp": 288812,
+ "tp_rate": 0.9501613693862041,
+ "truth_threshold": -10.58
+ },
+ {
+ "f1": 0.8957581773345534,
+ "fn": 15182,
+ "fn_rate": 0.04994719717332158,
+ "fp": 52031,
+ "fp_rate": 0.2992540360846384,
+ "match_probability": 0.0006619659675544257,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8473313576479563,
+ "recall": 0.9500528028266785,
+ "row_count": 477830,
+ "tn": 121838,
+ "tn_rate": 0.7007459639153616,
+ "tp": 288779,
+ "tp_rate": 0.9500528028266785,
+ "truth_threshold": -10.56
+ },
+ {
+ "f1": 0.8957055595367724,
+ "fn": 15233,
+ "fn_rate": 0.050114981856224976,
+ "fp": 52005,
+ "fp_rate": 0.29910449821417273,
+ "match_probability": 0.0006712004657376785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8473731631512064,
+ "recall": 0.949885018143775,
+ "row_count": 477830,
+ "tn": 121864,
+ "tn_rate": 0.7008955017858273,
+ "tp": 288728,
+ "tp_rate": 0.949885018143775,
+ "truth_threshold": -10.540000000000001
+ },
+ {
+ "f1": 0.895650285430628,
+ "fn": 15275,
+ "fn_rate": 0.05025315747743954,
+ "fp": 51994,
+ "fp_rate": 0.29904123219205264,
+ "match_probability": 0.0006805636984582193,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8473817071738875,
+ "recall": 0.9497468425225605,
+ "row_count": 477830,
+ "tn": 121875,
+ "tn_rate": 0.7009587678079474,
+ "tp": 288686,
+ "tp_rate": 0.9497468425225605,
+ "truth_threshold": -10.52
+ },
+ {
+ "f1": 0.8956079246629536,
+ "fn": 15320,
+ "fn_rate": 0.05040120278588372,
+ "fp": 51968,
+ "fp_rate": 0.29889169432158696,
+ "match_probability": 0.000690057457889322,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8474262277273942,
+ "recall": 0.9495987972141163,
+ "row_count": 477830,
+ "tn": 121901,
+ "tn_rate": 0.7011083056784131,
+ "tp": 288641,
+ "tp_rate": 0.9495987972141163,
+ "truth_threshold": -10.5
+ },
+ {
+ "f1": 0.8957775329371053,
+ "fn": 15337,
+ "fn_rate": 0.05045713101351818,
+ "fp": 51825,
+ "fp_rate": 0.29806923603402563,
+ "match_probability": 0.0006996835610846967,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8477745565415085,
+ "recall": 0.9495428689864818,
+ "row_count": 477830,
+ "tn": 122044,
+ "tn_rate": 0.7019307639659744,
+ "tp": 288624,
+ "tp_rate": 0.9495428689864818,
+ "truth_threshold": -10.48
+ },
+ {
+ "f1": 0.8957162234727736,
+ "fn": 15389,
+ "fn_rate": 0.050628205592164785,
+ "fp": 51805,
+ "fp_rate": 0.29795420690289814,
+ "match_probability": 0.000709443850321953,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8478011146464067,
+ "recall": 0.9493717944078353,
+ "row_count": 477830,
+ "tn": 122064,
+ "tn_rate": 0.7020457930971018,
+ "tp": 288572,
+ "tp_rate": 0.9493717944078353,
+ "truth_threshold": -10.46
+ },
+ {
+ "f1": 0.8957102635181489,
+ "fn": 15416,
+ "fn_rate": 0.05071703277723129,
+ "fp": 51777,
+ "fp_rate": 0.2977931661193197,
+ "match_probability": 0.0007193401934507505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8478587925552858,
+ "recall": 0.9492829672227687,
+ "row_count": 477830,
+ "tn": 122092,
+ "tn_rate": 0.7022068338806803,
+ "tp": 288545,
+ "tp_rate": 0.9492829672227687,
+ "truth_threshold": -10.44
+ },
+ {
+ "f1": 0.8958743486712584,
+ "fn": 15459,
+ "fn_rate": 0.05085849829418906,
+ "fp": 51606,
+ "fp_rate": 0.29680966704817996,
+ "match_probability": 0.0007293744842456983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8482658449668928,
+ "recall": 0.9491415017058109,
+ "row_count": 477830,
+ "tn": 122263,
+ "tn_rate": 0.7031903329518201,
+ "tp": 288502,
+ "tp_rate": 0.9491415017058109,
+ "truth_threshold": -10.42
+ },
+ {
+ "f1": 0.895605385623839,
+ "fn": 15671,
+ "fn_rate": 0.051555956191748284,
+ "fp": 51538,
+ "fp_rate": 0.2964185680023466,
+ "match_probability": 0.0007395486427640722,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8483409254093247,
+ "recall": 0.9484440438082518,
+ "row_count": 477830,
+ "tn": 122331,
+ "tn_rate": 0.7035814319976534,
+ "tp": 288290,
+ "tp_rate": 0.9484440438082518,
+ "truth_threshold": -10.4
+ },
+ {
+ "f1": 0.8956330738114915,
+ "fn": 15680,
+ "fn_rate": 0.05158556525343712,
+ "fp": 51506,
+ "fp_rate": 0.29623452139254264,
+ "match_probability": 0.0007498646157084,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8484168022908469,
+ "recall": 0.9484144347465628,
+ "row_count": 477830,
+ "tn": 122363,
+ "tn_rate": 0.7037654786074573,
+ "tp": 288281,
+ "tp_rate": 0.9484144347465628,
+ "truth_threshold": -10.38
+ },
+ {
+ "f1": 0.895629288058069,
+ "fn": 15726,
+ "fn_rate": 0.051736900457624496,
+ "fp": 51453,
+ "fp_rate": 0.2959296941950549,
+ "match_probability": 0.0007603243767939938,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8485286498198347,
+ "recall": 0.9482630995423755,
+ "row_count": 477830,
+ "tn": 122416,
+ "tn_rate": 0.7040703058049451,
+ "tp": 288235,
+ "tp_rate": 0.9482630995423755,
+ "truth_threshold": -10.36
+ },
+ {
+ "f1": 0.8956503093603652,
+ "fn": 15747,
+ "fn_rate": 0.05180598826823178,
+ "fp": 51412,
+ "fp_rate": 0.2956938844762436,
+ "match_probability": 0.0007709299271214838,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8486217191852214,
+ "recall": 0.9481940117317682,
+ "row_count": 477830,
+ "tn": 122457,
+ "tn_rate": 0.7043061155237564,
+ "tp": 288214,
+ "tp_rate": 0.9481940117317682,
+ "truth_threshold": -10.34
+ },
+ {
+ "f1": 0.8956308793869122,
+ "fn": 15764,
+ "fn_rate": 0.051861916495866245,
+ "fp": 51404,
+ "fp_rate": 0.2956478728237926,
+ "match_probability": 0.0007816832955544318,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8486341324083262,
+ "recall": 0.9481380835041338,
+ "row_count": 477830,
+ "tn": 122465,
+ "tn_rate": 0.7043521271762073,
+ "tp": 288197,
+ "tp_rate": 0.9481380835041338,
+ "truth_threshold": -10.32
+ },
+ {
+ "f1": 0.8956630385459338,
+ "fn": 15785,
+ "fn_rate": 0.05193100430647353,
+ "fp": 51356,
+ "fp_rate": 0.2953718029090867,
+ "match_probability": 0.0007925865391020799,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8487447427635687,
+ "recall": 0.9480689956935264,
+ "row_count": 477830,
+ "tn": 122513,
+ "tn_rate": 0.7046281970909133,
+ "tp": 288176,
+ "tp_rate": 0.9480689956935264,
+ "truth_threshold": -10.3
+ },
+ {
+ "f1": 0.895677202972836,
+ "fn": 15810,
+ "fn_rate": 0.05201325170005362,
+ "fp": 51315,
+ "fp_rate": 0.29513599319027545,
+ "match_probability": 0.0008036417433073089,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8488361131895389,
+ "recall": 0.9479867482999463,
+ "row_count": 477830,
+ "tn": 122554,
+ "tn_rate": 0.7048640068097246,
+ "tp": 288151,
+ "tp_rate": 0.9479867482999463,
+ "truth_threshold": -10.28
+ },
+ {
+ "f1": 0.8956223304049391,
+ "fn": 15859,
+ "fn_rate": 0.05217445659147062,
+ "fp": 51293,
+ "fp_rate": 0.2950094611460352,
+ "match_probability": 0.0008148510226398721,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8488693115691156,
+ "recall": 0.9478255434085294,
+ "row_count": 477830,
+ "tn": 122576,
+ "tn_rate": 0.7049905388539648,
+ "tp": 288102,
+ "tp_rate": 0.9478255434085294,
+ "truth_threshold": -10.26
+ },
+ {
+ "f1": 0.8956557965720184,
+ "fn": 15876,
+ "fn_rate": 0.05223038481910508,
+ "fp": 51248,
+ "fp_rate": 0.29475064560099845,
+ "match_probability": 0.0008262165208949831,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8489743113696575,
+ "recall": 0.9477696151808949,
+ "row_count": 477830,
+ "tn": 122621,
+ "tn_rate": 0.7052493543990015,
+ "tp": 288085,
+ "tp_rate": 0.9477696151808949,
+ "truth_threshold": -10.24
+ },
+ {
+ "f1": 0.895669315821549,
+ "fn": 15903,
+ "fn_rate": 0.05231921200417159,
+ "fp": 51206,
+ "fp_rate": 0.2945090844256308,
+ "match_probability": 0.0008377404115973132,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8490673929447274,
+ "recall": 0.9476807879958284,
+ "row_count": 477830,
+ "tn": 122663,
+ "tn_rate": 0.7054909155743692,
+ "tp": 288058,
+ "tp_rate": 0.9476807879958284,
+ "truth_threshold": -10.22
+ },
+ {
+ "f1": 0.8957094703848354,
+ "fn": 15908,
+ "fn_rate": 0.05233566148288761,
+ "fp": 51170,
+ "fp_rate": 0.29430203198960136,
+ "match_probability": 0.0008494248984104829,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8491552754382811,
+ "recall": 0.9476643385171124,
+ "row_count": 477830,
+ "tn": 122699,
+ "tn_rate": 0.7056979680103986,
+ "tp": 288053,
+ "tp_rate": 0.9476643385171124,
+ "truth_threshold": -10.200000000000001
+ },
+ {
+ "f1": 0.8957131528617853,
+ "fn": 15931,
+ "fn_rate": 0.0524113290849813,
+ "fp": 51139,
+ "fp_rate": 0.2941237368363538,
+ "match_probability": 0.0008612722155521146,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8492226589104547,
+ "recall": 0.9475886709150187,
+ "row_count": 477830,
+ "tn": 122730,
+ "tn_rate": 0.7058762631636462,
+ "tp": 288030,
+ "tp_rate": 0.9475886709150187,
+ "truth_threshold": -10.18
+ },
+ {
+ "f1": 0.8957020681076038,
+ "fn": 15948,
+ "fn_rate": 0.05246725731261576,
+ "fp": 51126,
+ "fp_rate": 0.29404896790112095,
+ "match_probability": 0.000873284628214516,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8492476536169535,
+ "recall": 0.9475327426873842,
+ "row_count": 477830,
+ "tn": 122743,
+ "tn_rate": 0.705951032098879,
+ "tp": 288013,
+ "tp_rate": 0.9475327426873842,
+ "truth_threshold": -10.16
+ },
+ {
+ "f1": 0.8956737304083036,
+ "fn": 16001,
+ "fn_rate": 0.05264162178700557,
+ "fp": 51082,
+ "fp_rate": 0.29379590381264054,
+ "match_probability": 0.0008854644329910831,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.849334300765097,
+ "recall": 0.9473583782129944,
+ "row_count": 477830,
+ "tn": 122787,
+ "tn_rate": 0.7062040961873595,
+ "tp": 287960,
+ "tp_rate": 0.9473583782129944,
+ "truth_threshold": -10.14
+ },
+ {
+ "f1": 0.8961420545621489,
+ "fn": 16044,
+ "fn_rate": 0.05278308730396334,
+ "fp": 50693,
+ "fp_rate": 0.2915585872122115,
+ "match_probability": 0.0008978139583084768,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8502908951300907,
+ "recall": 0.9472169126960367,
+ "row_count": 477830,
+ "tn": 123176,
+ "tn_rate": 0.7084414127877885,
+ "tp": 287917,
+ "tp_rate": 0.9472169126960367,
+ "truth_threshold": -10.120000000000001
+ },
+ {
+ "f1": 0.8964068873182427,
+ "fn": 16062,
+ "fn_rate": 0.05284230542734101,
+ "fp": 50481,
+ "fp_rate": 0.2903392784222604,
+ "match_probability": 0.0009103355648646677,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8508156510432059,
+ "recall": 0.947157694572659,
+ "row_count": 477830,
+ "tn": 123388,
+ "tn_rate": 0.7096607215777395,
+ "tp": 287899,
+ "tp_rate": 0.947157694572659,
+ "truth_threshold": -10.1
+ },
+ {
+ "f1": 0.8964498239080274,
+ "fn": 16076,
+ "fn_rate": 0.05288836396774586,
+ "fp": 50433,
+ "fp_rate": 0.2900632085075545,
+ "match_probability": 0.0009230316460729091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8509301899396425,
+ "recall": 0.9471116360322541,
+ "row_count": 477830,
+ "tn": 123436,
+ "tn_rate": 0.7099367914924455,
+ "tp": 287885,
+ "tp_rate": 0.9471116360322541,
+ "truth_threshold": -10.08
+ },
+ {
+ "f1": 0.8965202577494573,
+ "fn": 16100,
+ "fn_rate": 0.05296732146558276,
+ "fp": 50352,
+ "fp_rate": 0.28959734052648833,
+ "match_probability": 0.0009359046285117405,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.851123404481791,
+ "recall": 0.9470326785344172,
+ "row_count": 477830,
+ "tn": 123517,
+ "tn_rate": 0.7104026594735117,
+ "tp": 287861,
+ "tp_rate": 0.9470326785344172,
+ "truth_threshold": -10.06
+ },
+ {
+ "f1": 0.896473644212441,
+ "fn": 16132,
+ "fn_rate": 0.05307259812936528,
+ "fp": 50346,
+ "fp_rate": 0.2895628317871501,
+ "match_probability": 0.0009489569723810712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8511244178310047,
+ "recall": 0.9469274018706347,
+ "row_count": 477830,
+ "tn": 123523,
+ "tn_rate": 0.7104371682128499,
+ "tp": 287829,
+ "tp_rate": 0.9469274018706347,
+ "truth_threshold": -10.040000000000001
+ },
+ {
+ "f1": 0.8964872770089056,
+ "fn": 16159,
+ "fn_rate": 0.053161425314431784,
+ "fp": 50303,
+ "fp_rate": 0.2893155191552261,
+ "match_probability": 0.0009621911719644465,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8512207746114373,
+ "recall": 0.9468385746855682,
+ "row_count": 477830,
+ "tn": 123566,
+ "tn_rate": 0.710684480844774,
+ "tp": 287802,
+ "tp_rate": 0.9468385746855682,
+ "truth_threshold": -10.02
+ },
+ {
+ "f1": 0.8965076753873523,
+ "fn": 16217,
+ "fn_rate": 0.05335223926753761,
+ "fp": 50218,
+ "fp_rate": 0.28882664534793434,
+ "match_probability": 0.000975609756097561,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8514093300430225,
+ "recall": 0.9466477607324624,
+ "row_count": 477830,
+ "tn": 123651,
+ "tn_rate": 0.7111733546520657,
+ "tp": 287744,
+ "tp_rate": 0.9466477607324624,
+ "truth_threshold": -10
+ },
+ {
+ "f1": 0.8965252866506057,
+ "fn": 16301,
+ "fn_rate": 0.05362859050996674,
+ "fp": 50101,
+ "fp_rate": 0.28815372493083874,
+ "match_probability": 0.0009892152886431212,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8516673032114425,
+ "recall": 0.9463714094900333,
+ "row_count": 477830,
+ "tn": 123768,
+ "tn_rate": 0.7118462750691613,
+ "tp": 287660,
+ "tp_rate": 0.9463714094900333,
+ "truth_threshold": -9.98
+ },
+ {
+ "f1": 0.8965234574673665,
+ "fn": 16324,
+ "fn_rate": 0.05370425811206043,
+ "fp": 50074,
+ "fp_rate": 0.28799843560381666,
+ "match_probability": 0.0010030103689721156,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8517252917435322,
+ "recall": 0.9462957418879395,
+ "row_count": 477830,
+ "tn": 123795,
+ "tn_rate": 0.7120015643961833,
+ "tp": 287637,
+ "tp_rate": 0.9462957418879395,
+ "truth_threshold": -9.96
+ },
+ {
+ "f1": 0.896532698248425,
+ "fn": 16356,
+ "fn_rate": 0.05380953477584295,
+ "fp": 50028,
+ "fp_rate": 0.2877338686022235,
+ "match_probability": 0.0010169976324515963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8518272799163589,
+ "recall": 0.9461904652241571,
+ "row_count": 477830,
+ "tn": 123841,
+ "tn_rate": 0.7122661313977765,
+ "tp": 287605,
+ "tp_rate": 0.9461904652241571,
+ "truth_threshold": -9.94
+ },
+ {
+ "f1": 0.9007962362021225,
+ "fn": 16380,
+ "fn_rate": 0.053888492273679846,
+ "fp": 46962,
+ "fp_rate": 0.2700999028003842,
+ "match_probability": 0.0010311797509390394,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8596234265849233,
+ "recall": 0.9461115077263201,
+ "row_count": 477830,
+ "tn": 126907,
+ "tn_rate": 0.7299000971996158,
+ "tp": 287581,
+ "tp_rate": 0.9461115077263201,
+ "truth_threshold": -9.92
+ },
+ {
+ "f1": 0.9008816783847803,
+ "fn": 16432,
+ "fn_rate": 0.05405956685232645,
+ "fp": 46838,
+ "fp_rate": 0.26938672218739396,
+ "match_probability": 0.0010455594332833937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8599203868802843,
+ "recall": 0.9459404331476735,
+ "row_count": 477830,
+ "tn": 127031,
+ "tn_rate": 0.730613277812606,
+ "tp": 287529,
+ "tp_rate": 0.9459404331476735,
+ "truth_threshold": -9.9
+ },
+ {
+ "f1": 0.9008451445708,
+ "fn": 16486,
+ "fn_rate": 0.05423722122245946,
+ "fp": 46799,
+ "fp_rate": 0.26916241538169544,
+ "match_probability": 0.0010601394258328775,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8599980854029927,
+ "recall": 0.9457627787775406,
+ "row_count": 477830,
+ "tn": 127070,
+ "tn_rate": 0.7308375846183046,
+ "tp": 287475,
+ "tp_rate": 0.9457627787775406,
+ "truth_threshold": -9.88
+ },
+ {
+ "f1": 0.9002022482479658,
+ "fn": 16873,
+ "fn_rate": 0.055510410875079366,
+ "fp": 46782,
+ "fp_rate": 0.26906464062023705,
+ "match_probability": 0.00107492251294963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8598795938538952,
+ "recall": 0.9444895891249206,
+ "row_count": 477830,
+ "tn": 127087,
+ "tn_rate": 0.730935359379763,
+ "tp": 287088,
+ "tp_rate": 0.9444895891249206,
+ "truth_threshold": -9.86
+ },
+ {
+ "f1": 0.9001737363347279,
+ "fn": 16919,
+ "fn_rate": 0.05566174607926675,
+ "fp": 46745,
+ "fp_rate": 0.2688518367276513,
+ "match_probability": 0.0010899115175312943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8599556004278177,
+ "recall": 0.9443382539207332,
+ "row_count": 477830,
+ "tn": 127124,
+ "tn_rate": 0.7311481632723488,
+ "tp": 287042,
+ "tp_rate": 0.9443382539207332,
+ "truth_threshold": -9.84
+ },
+ {
+ "f1": 0.9001263944950963,
+ "fn": 16962,
+ "fn_rate": 0.05580321159622451,
+ "fp": 46726,
+ "fp_rate": 0.2687425590530802,
+ "match_probability": 0.0011051093015396422,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8599865158438834,
+ "recall": 0.9441967884037755,
+ "row_count": 477830,
+ "tn": 127143,
+ "tn_rate": 0.7312574409469198,
+ "tp": 286999,
+ "tp_rate": 0.9441967884037755,
+ "truth_threshold": -9.82
+ },
+ {
+ "f1": 0.900108846695546,
+ "fn": 17009,
+ "fn_rate": 0.055957836696155096,
+ "fp": 46681,
+ "fp_rate": 0.26848374350804344,
+ "match_probability": 0.0011205187665362995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8600827855757673,
+ "recall": 0.9440421633038449,
+ "row_count": 477830,
+ "tn": 127188,
+ "tn_rate": 0.7315162564919566,
+ "tp": 286952,
+ "tp_rate": 0.9440421633038449,
+ "truth_threshold": -9.8
+ },
+ {
+ "f1": 0.901032475240063,
+ "fn": 17020,
+ "fn_rate": 0.05599402554933034,
+ "fp": 46014,
+ "fp_rate": 0.2646475219849427,
+ "match_probability": 0.0011361428542256968,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8618011442987791,
+ "recall": 0.9440059744506697,
+ "row_count": 477830,
+ "tn": 127855,
+ "tn_rate": 0.7353524780150573,
+ "tp": 286941,
+ "tp_rate": 0.9440059744506697,
+ "truth_threshold": -9.78
+ },
+ {
+ "f1": 0.9010464101098542,
+ "fn": 17048,
+ "fn_rate": 0.05608614263014005,
+ "fp": 45970,
+ "fp_rate": 0.26439445789646226,
+ "match_probability": 0.0011519845470053095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8619034315360051,
+ "recall": 0.94391385736986,
+ "row_count": 477830,
+ "tn": 127899,
+ "tn_rate": 0.7356055421035377,
+ "tp": 286913,
+ "tp_rate": 0.94391385736986,
+ "truth_threshold": -9.76
+ },
+ {
+ "f1": 0.901097416955626,
+ "fn": 17066,
+ "fn_rate": 0.05614536075351772,
+ "fp": 45913,
+ "fp_rate": 0.264066624872749,
+ "match_probability": 0.0011680468685233154,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8620435806831567,
+ "recall": 0.9438546392464823,
+ "row_count": 477830,
+ "tn": 127956,
+ "tn_rate": 0.735933375127251,
+ "tp": 286895,
+ "tp_rate": 0.9438546392464823,
+ "truth_threshold": -9.74
+ },
+ {
+ "f1": 0.9010880596217713,
+ "fn": 17169,
+ "fn_rate": 0.05648422001506772,
+ "fp": 45794,
+ "fp_rate": 0.26338220154254066,
+ "match_probability": 0.0011843328842437272,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8623092974448714,
+ "recall": 0.9435157799849323,
+ "row_count": 477830,
+ "tn": 128075,
+ "tn_rate": 0.7366177984574593,
+ "tp": 286792,
+ "tp_rate": 0.9435157799849323,
+ "truth_threshold": -9.72
+ },
+ {
+ "f1": 0.9011038387697838,
+ "fn": 17182,
+ "fn_rate": 0.056526988659729376,
+ "fp": 45766,
+ "fp_rate": 0.2632211607589622,
+ "match_probability": 0.0012008457020191263,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8623765204709137,
+ "recall": 0.9434730113402706,
+ "row_count": 477830,
+ "tn": 128103,
+ "tn_rate": 0.7367788392410378,
+ "tp": 286779,
+ "tp_rate": 0.9434730113402706,
+ "truth_threshold": -9.700000000000001
+ },
+ {
+ "f1": 0.9010608479241821,
+ "fn": 17211,
+ "fn_rate": 0.05662239563628228,
+ "fp": 45761,
+ "fp_rate": 0.26319240347618034,
+ "match_probability": 0.0012175884726710806,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8623774852561269,
+ "recall": 0.9433776043637178,
+ "row_count": 477830,
+ "tn": 128108,
+ "tn_rate": 0.7368075965238197,
+ "tp": 286750,
+ "tp_rate": 0.9433776043637178,
+ "truth_threshold": -9.68
+ },
+ {
+ "f1": 0.9010261003472714,
+ "fn": 17259,
+ "fn_rate": 0.05678031063195607,
+ "fp": 45728,
+ "fp_rate": 0.26300260540982,
+ "match_probability": 0.001234564390578344,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8624432211292603,
+ "recall": 0.9432196893680439,
+ "row_count": 477830,
+ "tn": 128141,
+ "tn_rate": 0.73699739459018,
+ "tp": 286702,
+ "tp_rate": 0.9432196893680439,
+ "truth_threshold": -9.66
+ },
+ {
+ "f1": 0.901102907665664,
+ "fn": 17267,
+ "fn_rate": 0.05680662979790171,
+ "fp": 45664,
+ "fp_rate": 0.26263451219021217,
+ "match_probability": 0.001251776694272957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.862605985112439,
+ "recall": 0.9431933702020983,
+ "row_count": 477830,
+ "tn": 128205,
+ "tn_rate": 0.7373654878097878,
+ "tp": 286694,
+ "tp_rate": 0.9431933702020983,
+ "truth_threshold": -9.64
+ },
+ {
+ "f1": 0.9010194170179459,
+ "fn": 17326,
+ "fn_rate": 0.057000733646750734,
+ "fp": 45650,
+ "fp_rate": 0.2625539917984229,
+ "match_probability": 0.0012692286670443176,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8626179334005447,
+ "recall": 0.9429992663532493,
+ "row_count": 477830,
+ "tn": 128219,
+ "tn_rate": 0.737446008201577,
+ "tp": 286635,
+ "tp_rate": 0.9429992663532493,
+ "truth_threshold": -9.620000000000001
+ },
+ {
+ "f1": 0.900939985538684,
+ "fn": 17381,
+ "fn_rate": 0.057181677912626946,
+ "fp": 45640,
+ "fp_rate": 0.26249647723285924,
+ "match_probability": 0.0012869236375513526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8626211546565529,
+ "recall": 0.942818322087373,
+ "row_count": 477830,
+ "tn": 128229,
+ "tn_rate": 0.7375035227671408,
+ "tp": 286580,
+ "tp_rate": 0.942818322087373,
+ "truth_threshold": -9.6
+ },
+ {
+ "f1": 0.9008831694748458,
+ "fn": 17427,
+ "fn_rate": 0.05733301311681433,
+ "fp": 45623,
+ "fp_rate": 0.2623987024714009,
+ "match_probability": 0.0013048649804428731,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8626462787175944,
+ "recall": 0.9426669868831856,
+ "row_count": 477830,
+ "tn": 128246,
+ "tn_rate": 0.7376012975285992,
+ "tp": 286534,
+ "tp_rate": 0.9426669868831856,
+ "truth_threshold": -9.58
+ },
+ {
+ "f1": 0.9007609584302874,
+ "fn": 17501,
+ "fn_rate": 0.05757646540181142,
+ "fp": 45619,
+ "fp_rate": 0.2623756966451754,
+ "match_probability": 0.0013230561169862418,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8626260618708199,
+ "recall": 0.9424235345981886,
+ "row_count": 477830,
+ "tn": 128250,
+ "tn_rate": 0.7376243033548247,
+ "tp": 286460,
+ "tp_rate": 0.9424235345981886,
+ "truth_threshold": -9.56
+ },
+ {
+ "f1": 0.9007012578616352,
+ "fn": 17538,
+ "fn_rate": 0.05769819154430996,
+ "fp": 45617,
+ "fp_rate": 0.26236419373206266,
+ "match_probability": 0.001341500515704429,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.862615949885556,
+ "recall": 0.94230180845569,
+ "row_count": 477830,
+ "tn": 128252,
+ "tn_rate": 0.7376358062679373,
+ "tp": 286423,
+ "tp_rate": 0.94230180845569,
+ "truth_threshold": -9.540000000000001
+ },
+ {
+ "f1": 0.9010514327422826,
+ "fn": 17560,
+ "fn_rate": 0.057770569250660445,
+ "fp": 45342,
+ "fp_rate": 0.2607825431790601,
+ "match_probability": 0.0013602016930215866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8633219088270137,
+ "recall": 0.9422294307493395,
+ "row_count": 477830,
+ "tn": 128527,
+ "tn_rate": 0.7392174568209399,
+ "tp": 286401,
+ "tp_rate": 0.9422294307493395,
+ "truth_threshold": -9.52
+ },
+ {
+ "f1": 0.9010053018265343,
+ "fn": 17608,
+ "fn_rate": 0.05792848424633423,
+ "fp": 45316,
+ "fp_rate": 0.2606330053085944,
+ "match_probability": 0.0013791632139172336,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8633698054385547,
+ "recall": 0.9420715157536658,
+ "row_count": 477830,
+ "tn": 128553,
+ "tn_rate": 0.7393669946914055,
+ "tp": 286353,
+ "tp_rate": 0.9420715157536658,
+ "truth_threshold": -9.5
+ },
+ {
+ "f1": 0.9009516796012009,
+ "fn": 17680,
+ "fn_rate": 0.058165356739844916,
+ "fp": 45266,
+ "fp_rate": 0.26034543248077574,
+ "match_probability": 0.0013983886925891824,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8634703375388708,
+ "recall": 0.9418346432601551,
+ "row_count": 477830,
+ "tn": 128603,
+ "tn_rate": 0.7396545675192242,
+ "tp": 286281,
+ "tp_rate": 0.9418346432601551,
+ "truth_threshold": -9.48
+ },
+ {
+ "f1": 0.9007863060612928,
+ "fn": 17792,
+ "fn_rate": 0.05853382506308375,
+ "fp": 45247,
+ "fp_rate": 0.26023615480620466,
+ "match_probability": 0.0014178817931252896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8634737007265793,
+ "recall": 0.9414661749369162,
+ "row_count": 477830,
+ "tn": 128622,
+ "tn_rate": 0.7397638451937953,
+ "tp": 286169,
+ "tp_rate": 0.9414661749369162,
+ "truth_threshold": -9.46
+ },
+ {
+ "f1": 0.9007898158145743,
+ "fn": 17808,
+ "fn_rate": 0.058586463394975016,
+ "fp": 45224,
+ "fp_rate": 0.2601038713054081,
+ "match_probability": 0.0014376462301841668,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8635270401989275,
+ "recall": 0.941413536605025,
+ "row_count": 477830,
+ "tn": 128645,
+ "tn_rate": 0.7398961286945919,
+ "tp": 286153,
+ "tp_rate": 0.941413536605025,
+ "truth_threshold": -9.44
+ },
+ {
+ "f1": 0.9009002200957842,
+ "fn": 17845,
+ "fn_rate": 0.05870818953747356,
+ "fp": 45102,
+ "fp_rate": 0.2594021936055306,
+ "match_probability": 0.0014576857696849406,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8638298643189681,
+ "recall": 0.9412918104625264,
+ "row_count": 477830,
+ "tn": 128767,
+ "tn_rate": 0.7405978063944694,
+ "tp": 286116,
+ "tp_rate": 0.9412918104625264,
+ "truth_threshold": -9.42
+ },
+ {
+ "f1": 0.9010481955791847,
+ "fn": 17880,
+ "fn_rate": 0.05882333588848569,
+ "fp": 44954,
+ "fp_rate": 0.2585509780351874,
+ "match_probability": 0.0014780042295062135,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8642016705182232,
+ "recall": 0.9411766641115143,
+ "row_count": 477830,
+ "tn": 128915,
+ "tn_rate": 0.7414490219648125,
+ "tp": 286081,
+ "tp_rate": 0.9411766641115143,
+ "truth_threshold": -9.4
+ },
+ {
+ "f1": 0.9010158600160648,
+ "fn": 17920,
+ "fn_rate": 0.05895493171821385,
+ "fp": 44928,
+ "fp_rate": 0.2584014401647217,
+ "match_probability": 0.0014986054801942956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8642531475757548,
+ "recall": 0.9410450682817861,
+ "row_count": 477830,
+ "tn": 128941,
+ "tn_rate": 0.7415985598352783,
+ "tp": 286041,
+ "tp_rate": 0.9410450682817861,
+ "truth_threshold": -9.38
+ },
+ {
+ "f1": 0.9010077526705919,
+ "fn": 17946,
+ "fn_rate": 0.05904046900753715,
+ "fp": 44902,
+ "fp_rate": 0.25825190229425604,
+ "match_probability": 0.0015194934456808581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8643103859880272,
+ "recall": 0.9409595309924629,
+ "row_count": 477830,
+ "tn": 128967,
+ "tn_rate": 0.741748097705744,
+ "tp": 286015,
+ "tp_rate": 0.9409595309924629,
+ "truth_threshold": -9.36
+ },
+ {
+ "f1": 0.9009961502353334,
+ "fn": 17965,
+ "fn_rate": 0.059102977026658024,
+ "fp": 44887,
+ "fp_rate": 0.25816563044591045,
+ "match_probability": 0.0015406721040101049,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8643417763983039,
+ "recall": 0.940897022973342,
+ "row_count": 477830,
+ "tn": 128982,
+ "tn_rate": 0.7418343695540895,
+ "tp": 285996,
+ "tp_rate": 0.940897022973342,
+ "truth_threshold": -9.34
+ },
+ {
+ "f1": 0.9009414937863931,
+ "fn": 18031,
+ "fn_rate": 0.05932011014570948,
+ "fp": 44846,
+ "fp_rate": 0.25792982072709913,
+ "match_probability": 0.0015621454880756095,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8644218443901613,
+ "recall": 0.9406798898542905,
+ "row_count": 477830,
+ "tn": 129023,
+ "tn_rate": 0.7420701792729009,
+ "tp": 285930,
+ "tp_rate": 0.9406798898542905,
+ "truth_threshold": -9.32
+ },
+ {
+ "f1": 0.9009699742852821,
+ "fn": 18058,
+ "fn_rate": 0.059408937330775985,
+ "fp": 44792,
+ "fp_rate": 0.257619242073055,
+ "match_probability": 0.0015839176863668995,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8645519285141898,
+ "recall": 0.940591062669224,
+ "row_count": 477830,
+ "tn": 129077,
+ "tn_rate": 0.742380757926945,
+ "tp": 285903,
+ "tp_rate": 0.940591062669224,
+ "truth_threshold": -9.3
+ },
+ {
+ "f1": 0.9009335543774938,
+ "fn": 18111,
+ "fn_rate": 0.05958330180516579,
+ "fp": 44753,
+ "fp_rate": 0.25739493526735646,
+ "match_probability": 0.0016059928437259468,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8646322023696095,
+ "recall": 0.9404166981948342,
+ "row_count": 477830,
+ "tn": 129116,
+ "tn_rate": 0.7426050647326435,
+ "tp": 285850,
+ "tp_rate": 0.9404166981948342,
+ "truth_threshold": -9.28
+ },
+ {
+ "f1": 0.9005851825227168,
+ "fn": 18326,
+ "fn_rate": 0.06029062938995463,
+ "fp": 44736,
+ "fp_rate": 0.2572971605058981,
+ "match_probability": 0.0016283751621136546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8645885988782308,
+ "recall": 0.9397093706100453,
+ "row_count": 477830,
+ "tn": 129133,
+ "tn_rate": 0.7427028394941019,
+ "tp": 285635,
+ "tp_rate": 0.9397093706100453,
+ "truth_threshold": -9.26
+ },
+ {
+ "f1": 0.9005543677747715,
+ "fn": 18379,
+ "fn_rate": 0.06046499386434444,
+ "fp": 44693,
+ "fp_rate": 0.25704984787397406,
+ "match_probability": 0.001651068901386505,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8646794338051623,
+ "recall": 0.9395350061356555,
+ "row_count": 477830,
+ "tn": 129176,
+ "tn_rate": 0.7429501521260259,
+ "tp": 285582,
+ "tp_rate": 0.9395350061356555,
+ "truth_threshold": -9.24
+ },
+ {
+ "f1": 0.9005011843595154,
+ "fn": 18458,
+ "fn_rate": 0.060724895628057544,
+ "fp": 44635,
+ "fp_rate": 0.25671626339370446,
+ "match_probability": 0.0016740783800834494,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8647989628579563,
+ "recall": 0.9392751043719425,
+ "row_count": 477830,
+ "tn": 129234,
+ "tn_rate": 0.7432837366062955,
+ "tp": 285503,
+ "tp_rate": 0.9392751043719425,
+ "truth_threshold": -9.22
+ },
+ {
+ "f1": 0.9005330893949909,
+ "fn": 18474,
+ "fn_rate": 0.06077753395994881,
+ "fp": 44593,
+ "fp_rate": 0.2564747022183368,
+ "match_probability": 0.0016974079762232014,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8649024478914202,
+ "recall": 0.9392224660400512,
+ "row_count": 477830,
+ "tn": 129276,
+ "tn_rate": 0.7435252977816632,
+ "tp": 285487,
+ "tp_rate": 0.9392224660400512,
+ "truth_threshold": -9.200000000000001
+ },
+ {
+ "f1": 0.9004063629881561,
+ "fn": 18570,
+ "fn_rate": 0.06109336395129639,
+ "fp": 44565,
+ "fp_rate": 0.25631366143475837,
+ "match_probability": 0.0017210621281120474,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8649365369928111,
+ "recall": 0.9389066360487036,
+ "row_count": 477830,
+ "tn": 129304,
+ "tn_rate": 0.7436863385652417,
+ "tp": 285391,
+ "tp_rate": 0.9389066360487036,
+ "truth_threshold": -9.18
+ },
+ {
+ "f1": 0.9005462618459296,
+ "fn": 18595,
+ "fn_rate": 0.06117561134487648,
+ "fp": 44436,
+ "fp_rate": 0.2555717235389863,
+ "match_probability": 0.0017450453351622972,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8652646133134426,
+ "recall": 0.9388243886551235,
+ "row_count": 477830,
+ "tn": 129433,
+ "tn_rate": 0.7444282764610137,
+ "tp": 285366,
+ "tp_rate": 0.9388243886551235,
+ "truth_threshold": -9.16
+ },
+ {
+ "f1": 0.9007595272369119,
+ "fn": 18622,
+ "fn_rate": 0.06126443852994298,
+ "fp": 44253,
+ "fp_rate": 0.25451920698917,
+ "match_probability": 0.001769362158721538,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8657339983980193,
+ "recall": 0.938735561470057,
+ "row_count": 477830,
+ "tn": 129616,
+ "tn_rate": 0.74548079301083,
+ "tp": 285339,
+ "tp_rate": 0.938735561470057,
+ "truth_threshold": -9.14
+ },
+ {
+ "f1": 0.9007293278186468,
+ "fn": 18673,
+ "fn_rate": 0.06143222321284639,
+ "fp": 44212,
+ "fp_rate": 0.2542833972703587,
+ "match_probability": 0.001794017222912777,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8658209408194234,
+ "recall": 0.9385677767871536,
+ "row_count": 477830,
+ "tn": 129657,
+ "tn_rate": 0.7457166027296412,
+ "tp": 285288,
+ "tp_rate": 0.9385677767871536,
+ "truth_threshold": -9.120000000000001
+ },
+ {
+ "f1": 0.9005902061774281,
+ "fn": 18772,
+ "fn_rate": 0.061757922891423574,
+ "fp": 44189,
+ "fp_rate": 0.2541511137695621,
+ "match_probability": 0.0018190152154856484,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8658410701382606,
+ "recall": 0.9382420771085764,
+ "row_count": 477830,
+ "tn": 129680,
+ "tn_rate": 0.7458488862304379,
+ "tp": 285189,
+ "tp_rate": 0.9382420771085764,
+ "truth_threshold": -9.1
+ },
+ {
+ "f1": 0.9006006593989616,
+ "fn": 18784,
+ "fn_rate": 0.06179740164034202,
+ "fp": 44167,
+ "fp_rate": 0.25402458172532194,
+ "match_probability": 0.0018443608886787883,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8658940196268947,
+ "recall": 0.938202598359658,
+ "row_count": 477830,
+ "tn": 129702,
+ "tn_rate": 0.7459754182746781,
+ "tp": 285177,
+ "tp_rate": 0.938202598359658,
+ "truth_threshold": -9.08
+ },
+ {
+ "f1": 0.9006791117849584,
+ "fn": 18815,
+ "fn_rate": 0.061899388408381335,
+ "fp": 44073,
+ "fp_rate": 0.25348394480902287,
+ "match_probability": 0.0018700590600935494,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.866128625626103,
+ "recall": 0.9381006115916186,
+ "row_count": 477830,
+ "tn": 129796,
+ "tn_rate": 0.7465160551909771,
+ "tp": 285146,
+ "tp_rate": 0.9381006115916186,
+ "truth_threshold": -9.06
+ },
+ {
+ "f1": 0.9007111018445685,
+ "fn": 18840,
+ "fn_rate": 0.061981635801961435,
+ "fp": 44021,
+ "fp_rate": 0.2531848690680915,
+ "match_probability": 0.0018961146135791532,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.866255294067606,
+ "recall": 0.9380183641980385,
+ "row_count": 477830,
+ "tn": 129848,
+ "tn_rate": 0.7468151309319085,
+ "tp": 285121,
+ "tp_rate": 0.9380183641980385,
+ "truth_threshold": -9.040000000000001
+ },
+ {
+ "f1": 0.9006334412763605,
+ "fn": 18888,
+ "fn_rate": 0.062139550797635223,
+ "fp": 44017,
+ "fp_rate": 0.253161863241866,
+ "match_probability": 0.001922532500129454,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8662463155975569,
+ "recall": 0.9378604492023648,
+ "row_count": 477830,
+ "tn": 129852,
+ "tn_rate": 0.746838136758134,
+ "tp": 285073,
+ "tp_rate": 0.9378604492023648,
+ "truth_threshold": -9.02
+ },
+ {
+ "f1": 0.9006325394468282,
+ "fn": 18909,
+ "fn_rate": 0.0622086386082425,
+ "fp": 43992,
+ "fp_rate": 0.2530180768279567,
+ "match_probability": 0.001949317738791423,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8663035946560338,
+ "recall": 0.9377913613917574,
+ "row_count": 477830,
+ "tn": 129877,
+ "tn_rate": 0.7469819231720434,
+ "tp": 285052,
+ "tp_rate": 0.9377913613917574,
+ "truth_threshold": -9
+ },
+ {
+ "f1": 0.9004939434256225,
+ "fn": 19015,
+ "fn_rate": 0.06255736755702211,
+ "fp": 43960,
+ "fp_rate": 0.25283403021815276,
+ "match_probability": 0.001976475417585539,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8663447915209816,
+ "recall": 0.9374426324429779,
+ "row_count": 477830,
+ "tn": 129909,
+ "tn_rate": 0.7471659697818472,
+ "tp": 284946,
+ "tp_rate": 0.9374426324429779,
+ "truth_threshold": -8.98
+ },
+ {
+ "f1": 0.9004273180105692,
+ "fn": 19073,
+ "fn_rate": 0.06274818151012794,
+ "fp": 43935,
+ "fp_rate": 0.25269024380424343,
+ "match_probability": 0.0020040106944381785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8663870836285783,
+ "recall": 0.937251818489872,
+ "row_count": 477830,
+ "tn": 129934,
+ "tn_rate": 0.7473097561957566,
+ "tp": 284888,
+ "tp_rate": 0.937251818489872,
+ "truth_threshold": -8.96
+ },
+ {
+ "f1": 0.9003701350629483,
+ "fn": 19110,
+ "fn_rate": 0.06286990765262648,
+ "fp": 43931,
+ "fp_rate": 0.25266723797801793,
+ "match_probability": 0.002031928798126188,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8663825878545662,
+ "recall": 0.9371300923473735,
+ "row_count": 477830,
+ "tn": 129938,
+ "tn_rate": 0.7473327620219821,
+ "tp": 284851,
+ "tp_rate": 0.9371300923473735,
+ "truth_threshold": -8.94
+ },
+ {
+ "f1": 0.900332877063095,
+ "fn": 19156,
+ "fn_rate": 0.06302124285681386,
+ "fp": 43900,
+ "fp_rate": 0.25248894282477036,
+ "match_probability": 0.0020602350292337574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.866445597115955,
+ "recall": 0.9369787571431861,
+ "row_count": 477830,
+ "tn": 129969,
+ "tn_rate": 0.7475110571752296,
+ "tp": 284805,
+ "tp_rate": 0.9369787571431861,
+ "truth_threshold": -8.92
+ },
+ {
+ "f1": 0.8997222503416511,
+ "fn": 19548,
+ "fn_rate": 0.0643108819881498,
+ "fp": 43850,
+ "fp_rate": 0.25220136999695175,
+ "match_probability": 0.0020889347611217834,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.866418085498518,
+ "recall": 0.9356891180118502,
+ "row_count": 477830,
+ "tn": 130019,
+ "tn_rate": 0.7477986300030482,
+ "tp": 284413,
+ "tp_rate": 0.9356891180118502,
+ "truth_threshold": -8.9
+ },
+ {
+ "f1": 0.8995947087503046,
+ "fn": 19627,
+ "fn_rate": 0.0645707837518629,
+ "fp": 43843,
+ "fp_rate": 0.2521611098010571,
+ "match_probability": 0.002118033440909814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.866404409815435,
+ "recall": 0.9354292162481371,
+ "row_count": 477830,
+ "tn": 130026,
+ "tn_rate": 0.7478388901989429,
+ "tp": 284334,
+ "tp_rate": 0.9354292162481371,
+ "truth_threshold": -8.88
+ },
+ {
+ "f1": 0.8995816958720154,
+ "fn": 19659,
+ "fn_rate": 0.06467606041564543,
+ "fp": 43814,
+ "fp_rate": 0.2519943175609223,
+ "match_probability": 0.0021475365904707793,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8664679564544246,
+ "recall": 0.9353239395843546,
+ "row_count": 477830,
+ "tn": 130055,
+ "tn_rate": 0.7480056824390777,
+ "tp": 284302,
+ "tp_rate": 0.9353239395843546,
+ "truth_threshold": -8.86
+ },
+ {
+ "f1": 0.9003246598989595,
+ "fn": 19715,
+ "fn_rate": 0.06486029457726485,
+ "fp": 43223,
+ "fp_rate": 0.2485952067361059,
+ "match_probability": 0.0021774498074386152,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8680088802298843,
+ "recall": 0.9351397054227352,
+ "row_count": 477830,
+ "tn": 130646,
+ "tn_rate": 0.7514047932638941,
+ "tp": 284246,
+ "tp_rate": 0.9351397054227352,
+ "truth_threshold": -8.84
+ },
+ {
+ "f1": 0.9003006027893659,
+ "fn": 19737,
+ "fn_rate": 0.06493267228361534,
+ "fp": 43214,
+ "fp_rate": 0.24854344362709857,
+ "match_probability": 0.002207778766228983,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8680238701677875,
+ "recall": 0.9350673277163847,
+ "row_count": 477830,
+ "tn": 130655,
+ "tn_rate": 0.7514565563729014,
+ "tp": 284224,
+ "tp_rate": 0.9350673277163847,
+ "truth_threshold": -8.82
+ },
+ {
+ "f1": 0.9003640695946439,
+ "fn": 19807,
+ "fn_rate": 0.0651629649856396,
+ "fp": 43083,
+ "fp_rate": 0.2477900028182137,
+ "match_probability": 0.002238529219073188,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8683431274580808,
+ "recall": 0.9348370350143604,
+ "row_count": 477830,
+ "tn": 130786,
+ "tn_rate": 0.7522099971817863,
+ "tp": 284154,
+ "tp_rate": 0.9348370350143604,
+ "truth_threshold": -8.8
+ },
+ {
+ "f1": 0.9003546088053265,
+ "fn": 19846,
+ "fn_rate": 0.06529127091962456,
+ "fp": 43043,
+ "fp_rate": 0.24755994455595878,
+ "match_probability": 0.0022697069970654916,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8684336008900898,
+ "recall": 0.9347087290803754,
+ "row_count": 477830,
+ "tn": 130826,
+ "tn_rate": 0.7524400554440412,
+ "tp": 284115,
+ "tp_rate": 0.9347087290803754,
+ "truth_threshold": -8.78
+ },
+ {
+ "f1": 0.8999302495165024,
+ "fn": 20114,
+ "fn_rate": 0.06617296297880321,
+ "fp": 43012,
+ "fp_rate": 0.24738164940271123,
+ "match_probability": 0.002301318011223944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8684080903386475,
+ "recall": 0.9338270370211968,
+ "row_count": 477830,
+ "tn": 130857,
+ "tn_rate": 0.7526183505972888,
+ "tp": 283847,
+ "tp_rate": 0.9338270370211968,
+ "truth_threshold": -8.76
+ },
+ {
+ "f1": 0.8999080503503599,
+ "fn": 20139,
+ "fn_rate": 0.0662552103723833,
+ "fp": 42998,
+ "fp_rate": 0.24730112901092202,
+ "match_probability": 0.002333368253564943,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8684352242824797,
+ "recall": 0.9337447896276168,
+ "row_count": 477830,
+ "tn": 130871,
+ "tn_rate": 0.752698870989078,
+ "tp": 283822,
+ "tp_rate": 0.9337447896276168,
+ "truth_threshold": -8.74
+ },
+ {
+ "f1": 0.8997897554122919,
+ "fn": 20215,
+ "fn_rate": 0.0665052424488668,
+ "fp": 42988,
+ "fp_rate": 0.24724361444535828,
+ "match_probability": 0.0023658637981916145,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8684312009157296,
+ "recall": 0.9334947575511332,
+ "row_count": 477830,
+ "tn": 130881,
+ "tn_rate": 0.7527563855546417,
+ "tp": 283746,
+ "tp_rate": 0.9334947575511332,
+ "truth_threshold": -8.72
+ },
+ {
+ "f1": 0.899750693047952,
+ "fn": 20293,
+ "fn_rate": 0.0667618543168367,
+ "fp": 42919,
+ "fp_rate": 0.24684676394296856,
+ "match_probability": 0.002398810802396238,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8685832565288881,
+ "recall": 0.9332381456831633,
+ "row_count": 477830,
+ "tn": 130950,
+ "tn_rate": 0.7531532360570314,
+ "tp": 283668,
+ "tp_rate": 0.9332381456831633,
+ "truth_threshold": -8.700000000000001
+ },
+ {
+ "f1": 0.8997354447003293,
+ "fn": 20323,
+ "fn_rate": 0.06686055118913281,
+ "fp": 42893,
+ "fp_rate": 0.24669722607250286,
+ "match_probability": 0.00243221550777684,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8686403434895921,
+ "recall": 0.9331394488108672,
+ "row_count": 477830,
+ "tn": 130976,
+ "tn_rate": 0.7533027739274971,
+ "tp": 283638,
+ "tp_rate": 0.9331394488108672,
+ "truth_threshold": -8.68
+ },
+ {
+ "f1": 0.8997328917481949,
+ "fn": 20340,
+ "fn_rate": 0.06691647941676729,
+ "fp": 42875,
+ "fp_rate": 0.24659369985448815,
+ "match_probability": 0.0024660842413681285,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8686813927276291,
+ "recall": 0.9330835205832327,
+ "row_count": 477830,
+ "tn": 130994,
+ "tn_rate": 0.7534063001455118,
+ "tp": 283621,
+ "tp_rate": 0.9330835205832327,
+ "truth_threshold": -8.66
+ },
+ {
+ "f1": 0.8997960005964524,
+ "fn": 20348,
+ "fn_rate": 0.06694279858271292,
+ "fp": 42821,
+ "fp_rate": 0.24628312120044402,
+ "match_probability": 0.002500423416786966,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8688218751723166,
+ "recall": 0.9330572014172871,
+ "row_count": 477830,
+ "tn": 131048,
+ "tn_rate": 0.753716878799556,
+ "tp": 283613,
+ "tp_rate": 0.9330572014172871,
+ "truth_threshold": -8.64
+ },
+ {
+ "f1": 0.8997096666719551,
+ "fn": 20413,
+ "fn_rate": 0.06715664180602117,
+ "fp": 42801,
+ "fp_rate": 0.24616809206931656,
+ "match_probability": 0.0025352395353924907,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.868848992949266,
+ "recall": 0.9328433581939788,
+ "row_count": 477830,
+ "tn": 131068,
+ "tn_rate": 0.7538319079306834,
+ "tp": 283548,
+ "tp_rate": 0.9328433581939788,
+ "truth_threshold": -8.620000000000001
+ },
+ {
+ "f1": 0.8996829789192088,
+ "fn": 20452,
+ "fn_rate": 0.06728494774000612,
+ "fp": 42772,
+ "fp_rate": 0.24600129982918173,
+ "match_probability": 0.0025705391874611093,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8689105403011514,
+ "recall": 0.9327150522599938,
+ "row_count": 477830,
+ "tn": 131097,
+ "tn_rate": 0.7539987001708183,
+ "tp": 283509,
+ "tp_rate": 0.9327150522599938,
+ "truth_threshold": -8.6
+ },
+ {
+ "f1": 0.8996569223298814,
+ "fn": 20489,
+ "fn_rate": 0.06740667388250467,
+ "fp": 42746,
+ "fp_rate": 0.24585176195871605,
+ "match_probability": 0.0026063290533764843,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8689649252953546,
+ "recall": 0.9325933261174953,
+ "row_count": 477830,
+ "tn": 131123,
+ "tn_rate": 0.754148238041284,
+ "tp": 283472,
+ "tp_rate": 0.9325933261174953,
+ "truth_threshold": -8.58
+ },
+ {
+ "f1": 0.8994345834298976,
+ "fn": 20649,
+ "fn_rate": 0.06793305720141729,
+ "fp": 42705,
+ "fp_rate": 0.24561595223990476,
+ "match_probability": 0.0026426159048347467,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8690098982568394,
+ "recall": 0.9320669427985827,
+ "row_count": 477830,
+ "tn": 131164,
+ "tn_rate": 0.7543840477600953,
+ "tp": 283312,
+ "tp_rate": 0.9320669427985827,
+ "truth_threshold": -8.56
+ },
+ {
+ "f1": 0.8994158359260905,
+ "fn": 20663,
+ "fn_rate": 0.06797911574182214,
+ "fp": 42701,
+ "fp_rate": 0.24559294641367926,
+ "match_probability": 0.0026794066060650402,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8690149356286369,
+ "recall": 0.9320208842581779,
+ "row_count": 477830,
+ "tn": 131168,
+ "tn_rate": 0.7544070535863208,
+ "tp": 283298,
+ "tp_rate": 0.9320208842581779,
+ "truth_threshold": -8.540000000000001
+ },
+ {
+ "f1": 0.8993408351960983,
+ "fn": 20719,
+ "fn_rate": 0.06816334990344156,
+ "fp": 42686,
+ "fp_rate": 0.24550667456533368,
+ "match_probability": 0.0027167081150656154,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8690324243391179,
+ "recall": 0.9318366500965585,
+ "row_count": 477830,
+ "tn": 131183,
+ "tn_rate": 0.7544933254346663,
+ "tp": 283242,
+ "tp_rate": 0.9318366500965585,
+ "truth_threshold": -8.52
+ },
+ {
+ "f1": 0.8993559696657901,
+ "fn": 20761,
+ "fn_rate": 0.06830152552465613,
+ "fp": 42623,
+ "fp_rate": 0.24514433280228218,
+ "match_probability": 0.0027545274848556306,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.869183575131283,
+ "recall": 0.9316984744753439,
+ "row_count": 477830,
+ "tn": 131246,
+ "tn_rate": 0.7548556671977178,
+ "tp": 283200,
+ "tp_rate": 0.9316984744753439,
+ "truth_threshold": -8.5
+ },
+ {
+ "f1": 0.8993054121951451,
+ "fn": 20803,
+ "fn_rate": 0.06843970114587068,
+ "fp": 42607,
+ "fp_rate": 0.24505230949738022,
+ "match_probability": 0.0027928718647428573,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8692093994136878,
+ "recall": 0.9315602988541293,
+ "row_count": 477830,
+ "tn": 131262,
+ "tn_rate": 0.7549476905026198,
+ "tp": 283158,
+ "tp_rate": 0.9315602988541293,
+ "truth_threshold": -8.48
+ },
+ {
+ "f1": 0.8993241054243081,
+ "fn": 20816,
+ "fn_rate": 0.06848246979053234,
+ "fp": 42579,
+ "fp_rate": 0.24489126871380176,
+ "match_probability": 0.0028317485016074407,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8692788986995125,
+ "recall": 0.9315175302094677,
+ "row_count": 477830,
+ "tn": 131290,
+ "tn_rate": 0.7551087312861983,
+ "tp": 283145,
+ "tp_rate": 0.9315175302094677,
+ "truth_threshold": -8.46
+ },
+ {
+ "f1": 0.8992496298978963,
+ "fn": 20897,
+ "fn_rate": 0.06874895134573185,
+ "fp": 42532,
+ "fp_rate": 0.24462095025565225,
+ "match_probability": 0.002871164741201907,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8693718596051548,
+ "recall": 0.9312510486542681,
+ "row_count": 477830,
+ "tn": 131337,
+ "tn_rate": 0.7553790497443478,
+ "tp": 283064,
+ "tp_rate": 0.9312510486542681,
+ "truth_threshold": -8.44
+ },
+ {
+ "f1": 0.9015675918463563,
+ "fn": 20940,
+ "fn_rate": 0.06889041686268962,
+ "fp": 40861,
+ "fp_rate": 0.23501026634995312,
+ "match_probability": 0.002911128029467595,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8738398552559266,
+ "recall": 0.9311095831373104,
+ "row_count": 477830,
+ "tn": 133008,
+ "tn_rate": 0.7649897336500469,
+ "tp": 283021,
+ "tp_rate": 0.9311095831373104,
+ "truth_threshold": -8.42
+ },
+ {
+ "f1": 0.9015463145585532,
+ "fn": 21017,
+ "fn_rate": 0.06914373883491633,
+ "fp": 40781,
+ "fp_rate": 0.23455014982544328,
+ "match_probability": 0.002951645913867726,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8740257934975674,
+ "recall": 0.9308562611650837,
+ "row_count": 477830,
+ "tn": 133088,
+ "tn_rate": 0.7654498501745567,
+ "tp": 282944,
+ "tp_rate": 0.9308562611650837,
+ "truth_threshold": -8.4
+ },
+ {
+ "f1": 0.9015002804262479,
+ "fn": 21063,
+ "fn_rate": 0.0692950740391037,
+ "fp": 40758,
+ "fp_rate": 0.23441786632464673,
+ "match_probability": 0.0029927260447372276,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.874070000247176,
+ "recall": 0.9307049259608963,
+ "row_count": 477830,
+ "tn": 133111,
+ "tn_rate": 0.7655821336753533,
+ "tp": 282898,
+ "tp_rate": 0.9307049259608963,
+ "truth_threshold": -8.38
+ },
+ {
+ "f1": 0.9014042759341654,
+ "fn": 21140,
+ "fn_rate": 0.06954839601133041,
+ "fp": 40731,
+ "fp_rate": 0.23426257699762465,
+ "match_probability": 0.0030343761766495666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8741129710216595,
+ "recall": 0.9304516039886696,
+ "row_count": 477830,
+ "tn": 133138,
+ "tn_rate": 0.7657374230023754,
+ "tp": 282821,
+ "tp_rate": 0.9304516039886696,
+ "truth_threshold": -8.36
+ },
+ {
+ "f1": 0.9013951175666243,
+ "fn": 21160,
+ "fn_rate": 0.06961419392619447,
+ "fp": 40713,
+ "fp_rate": 0.23415905077960994,
+ "match_probability": 0.003076604169800717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.874153823327584,
+ "recall": 0.9303858060738055,
+ "row_count": 477830,
+ "tn": 133156,
+ "tn_rate": 0.76584094922039,
+ "tp": 282801,
+ "tp_rate": 0.9303858060738055,
+ "truth_threshold": -8.34
+ },
+ {
+ "f1": 0.9013935905036944,
+ "fn": 21174,
+ "fn_rate": 0.06966025246659933,
+ "fp": 40696,
+ "fp_rate": 0.2340612760181516,
+ "match_probability": 0.003119417991410515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8741943162391841,
+ "recall": 0.9303397475334007,
+ "row_count": 477830,
+ "tn": 133173,
+ "tn_rate": 0.7659387239818484,
+ "tp": 282787,
+ "tp_rate": 0.9303397475334007,
+ "truth_threshold": -8.32
+ },
+ {
+ "f1": 0.9025279285030322,
+ "fn": 21199,
+ "fn_rate": 0.06974249986017943,
+ "fp": 39878,
+ "fp_rate": 0.22935658455503857,
+ "match_probability": 0.0031628257171415226,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8764009422266303,
+ "recall": 0.9302575001398206,
+ "row_count": 477830,
+ "tn": 133991,
+ "tn_rate": 0.7706434154449614,
+ "tp": 282762,
+ "tp_rate": 0.9302575001398206,
+ "truth_threshold": -8.3
+ },
+ {
+ "f1": 0.9024422943713271,
+ "fn": 21252,
+ "fn_rate": 0.06991686433456924,
+ "fp": 39872,
+ "fp_rate": 0.22932207581570033,
+ "match_probability": 0.0032068355325356353,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8763969359633704,
+ "recall": 0.9300831356654308,
+ "row_count": 477830,
+ "tn": 133997,
+ "tn_rate": 0.7706779241842997,
+ "tp": 282709,
+ "tp_rate": 0.9300831356654308,
+ "truth_threshold": -8.28
+ },
+ {
+ "f1": 0.9024541307103155,
+ "fn": 21288,
+ "fn_rate": 0.07003530058132458,
+ "fp": 39820,
+ "fp_rate": 0.22902300007476895,
+ "match_probability": 0.0032514557344685887,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8765244516935251,
+ "recall": 0.9299646994186754,
+ "row_count": 477830,
+ "tn": 134049,
+ "tn_rate": 0.770976999925231,
+ "tp": 282673,
+ "tp_rate": 0.9299646994186754,
+ "truth_threshold": -8.26
+ },
+ {
+ "f1": 0.90244774670643,
+ "fn": 21327,
+ "fn_rate": 0.07016360651530953,
+ "fp": 39778,
+ "fp_rate": 0.22878143889940128,
+ "match_probability": 0.0032966947326226116,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8766236988697691,
+ "recall": 0.9298363934846905,
+ "row_count": 477830,
+ "tn": 134091,
+ "tn_rate": 0.7712185611005987,
+ "tp": 282634,
+ "tp_rate": 0.9298363934846905,
+ "truth_threshold": -8.24
+ },
+ {
+ "f1": 0.9023776366725863,
+ "fn": 21441,
+ "fn_rate": 0.07053865463003478,
+ "fp": 39687,
+ "fp_rate": 0.22825805635277133,
+ "match_probability": 0.0033425610509773486,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.876827629443184,
+ "recall": 0.9294613453699653,
+ "row_count": 477830,
+ "tn": 134182,
+ "tn_rate": 0.7717419436472287,
+ "tp": 282520,
+ "tp_rate": 0.9294613453699653,
+ "truth_threshold": -8.22
+ },
+ {
+ "f1": 0.902302118741534,
+ "fn": 21526,
+ "fn_rate": 0.07081829576820711,
+ "fp": 39637,
+ "fp_rate": 0.2279704835249527,
+ "match_probability": 0.0033890633293192944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8769312451874115,
+ "recall": 0.9291817042317929,
+ "row_count": 477830,
+ "tn": 134232,
+ "tn_rate": 0.7720295164750473,
+ "tp": 282435,
+ "tp_rate": 0.9291817042317929,
+ "truth_threshold": -8.2
+ },
+ {
+ "f1": 0.9022837206627519,
+ "fn": 21548,
+ "fn_rate": 0.07089067347455759,
+ "fp": 39622,
+ "fp_rate": 0.2278842116766071,
+ "match_probability": 0.0034362103247699053,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8769636840716071,
+ "recall": 0.9291093265254424,
+ "row_count": 477830,
+ "tn": 134247,
+ "tn_rate": 0.7721157883233929,
+ "tp": 282413,
+ "tp_rate": 0.9291093265254424,
+ "truth_threshold": -8.18
+ },
+ {
+ "f1": 0.9021561998734654,
+ "fn": 21624,
+ "fn_rate": 0.07114070555104109,
+ "fp": 39618,
+ "fp_rate": 0.2278612058503816,
+ "match_probability": 0.0034840109133326283,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8769455358668137,
+ "recall": 0.9288592944489589,
+ "row_count": 477830,
+ "tn": 134251,
+ "tn_rate": 0.7721387941496184,
+ "tp": 282337,
+ "tp_rate": 0.9288592944489589,
+ "truth_threshold": -8.16
+ },
+ {
+ "f1": 0.9021805479653439,
+ "fn": 21666,
+ "fn_rate": 0.07127888117225566,
+ "fp": 39551,
+ "fp_rate": 0.2274758582611046,
+ "match_probability": 0.003532474091458984,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8771120349483915,
+ "recall": 0.9287211188277443,
+ "row_count": 477830,
+ "tn": 134318,
+ "tn_rate": 0.7725241417388954,
+ "tp": 282295,
+ "tp_rate": 0.9287211188277443,
+ "truth_threshold": -8.14
+ },
+ {
+ "f1": 0.9021499395868894,
+ "fn": 21727,
+ "fn_rate": 0.07147956481259109,
+ "fp": 39498,
+ "fp_rate": 0.22717103106361686,
+ "match_probability": 0.003581608977633939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.877233225168774,
+ "recall": 0.9285204351874089,
+ "row_count": 477830,
+ "tn": 134371,
+ "tn_rate": 0.7728289689363831,
+ "tp": 282234,
+ "tp_rate": 0.9285204351874089,
+ "truth_threshold": -8.120000000000001
+ },
+ {
+ "f1": 0.9015903173597917,
+ "fn": 22086,
+ "fn_rate": 0.07266063738440129,
+ "fp": 39449,
+ "fp_rate": 0.2268892096923546,
+ "match_probability": 0.0036314248139807737,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8772298365512691,
+ "recall": 0.9273393626155987,
+ "row_count": 477830,
+ "tn": 134420,
+ "tn_rate": 0.7731107903076454,
+ "tp": 281875,
+ "tp_rate": 0.9273393626155987,
+ "truth_threshold": -8.1
+ },
+ {
+ "f1": 0.9015591611111822,
+ "fn": 22130,
+ "fn_rate": 0.07280539279710226,
+ "fp": 39417,
+ "fp_rate": 0.22670516308255065,
+ "match_probability": 0.0036819309678855936,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8773004034266361,
+ "recall": 0.9271946072028977,
+ "row_count": 477830,
+ "tn": 134452,
+ "tn_rate": 0.7732948369174494,
+ "tp": 281831,
+ "tp_rate": 0.9271946072028977,
+ "truth_threshold": -8.08
+ },
+ {
+ "f1": 0.9014790145022122,
+ "fn": 22183,
+ "fn_rate": 0.07297975727149207,
+ "fp": 39408,
+ "fp_rate": 0.2266533999735433,
+ "match_probability": 0.0037331369336417713,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8773047393099326,
+ "recall": 0.9270202427285079,
+ "row_count": 477830,
+ "tn": 134461,
+ "tn_rate": 0.7733466000264567,
+ "tp": 281778,
+ "tp_rate": 0.9270202427285079,
+ "truth_threshold": -8.06
+ },
+ {
+ "f1": 0.9014750111985665,
+ "fn": 22214,
+ "fn_rate": 0.07308174403953138,
+ "fp": 39372,
+ "fp_rate": 0.2264463475375139,
+ "match_probability": 0.0037850523341144294,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8773912474814632,
+ "recall": 0.9269182559604686,
+ "row_count": 477830,
+ "tn": 134497,
+ "tn_rate": 0.7735536524624861,
+ "tp": 281747,
+ "tp_rate": 0.9269182559604686,
+ "truth_threshold": -8.040000000000001
+ },
+ {
+ "f1": 0.9014330150277771,
+ "fn": 22274,
+ "fn_rate": 0.07327913778412362,
+ "fp": 39329,
+ "fp_rate": 0.22619903490558985,
+ "match_probability": 0.0038376869224252233,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8774858574027463,
+ "recall": 0.9267208622158764,
+ "row_count": 477830,
+ "tn": 134540,
+ "tn_rate": 0.7738009650944102,
+ "tp": 281687,
+ "tp_rate": 0.9267208622158764,
+ "truth_threshold": -8.02
+ },
+ {
+ "f1": 0.9013883021621414,
+ "fn": 22306,
+ "fn_rate": 0.07338441444790615,
+ "fp": 39321,
+ "fp_rate": 0.22615302325313885,
+ "match_probability": 0.0038910505836575876,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8774955136832661,
+ "recall": 0.9266155855520939,
+ "row_count": 477830,
+ "tn": 134548,
+ "tn_rate": 0.7738469767468611,
+ "tp": 281655,
+ "tp_rate": 0.9266155855520939,
+ "truth_threshold": -8
+ },
+ {
+ "f1": 0.9013875774210586,
+ "fn": 22354,
+ "fn_rate": 0.07354232944357993,
+ "fp": 39263,
+ "fp_rate": 0.22581943877286922,
+ "match_probability": 0.003945153336582717,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.877635802661514,
+ "recall": 0.92645767055642,
+ "row_count": 477830,
+ "tn": 134606,
+ "tn_rate": 0.7741805612271307,
+ "tp": 281607,
+ "tp_rate": 0.92645767055642,
+ "truth_threshold": -7.98
+ },
+ {
+ "f1": 0.9012990671558176,
+ "fn": 22415,
+ "fn_rate": 0.07374301308391537,
+ "fp": 39250,
+ "fp_rate": 0.22574466983763639,
+ "match_probability": 0.004000005335406395,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8776481003503784,
+ "recall": 0.9262569869160846,
+ "row_count": 477830,
+ "tn": 134619,
+ "tn_rate": 0.7742553301623636,
+ "tp": 281546,
+ "tp_rate": 0.9262569869160846,
+ "truth_threshold": -7.96
+ },
+ {
+ "f1": 0.9012049195813041,
+ "fn": 22512,
+ "fn_rate": 0.07406213297100615,
+ "fp": 39196,
+ "fp_rate": 0.22543409118359226,
+ "match_probability": 0.004055616871536931,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8777588922328432,
+ "recall": 0.9259378670289938,
+ "row_count": 477830,
+ "tn": 134673,
+ "tn_rate": 0.7745659088164077,
+ "tp": 281449,
+ "tp_rate": 0.9259378670289938,
+ "truth_threshold": -7.94
+ },
+ {
+ "f1": 0.9011989854738298,
+ "fn": 22549,
+ "fn_rate": 0.0741838591135047,
+ "fp": 39156,
+ "fp_rate": 0.22520403292133734,
+ "match_probability": 0.004111998375374417,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.877854308602231,
+ "recall": 0.9258161408864953,
+ "row_count": 477830,
+ "tn": 134713,
+ "tn_rate": 0.7747959670786627,
+ "tp": 281412,
+ "tp_rate": 0.9258161408864953,
+ "truth_threshold": -7.92
+ },
+ {
+ "f1": 0.901206455352825,
+ "fn": 22571,
+ "fn_rate": 0.07425623681985517,
+ "fp": 39124,
+ "fp_rate": 0.2250199863115334,
+ "match_probability": 0.00416916041812146,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8779335692044653,
+ "recall": 0.9257437631801448,
+ "row_count": 477830,
+ "tn": 134745,
+ "tn_rate": 0.7749800136884666,
+ "tp": 281390,
+ "tp_rate": 0.9257437631801448,
+ "truth_threshold": -7.9
+ },
+ {
+ "f1": 0.901106644672571,
+ "fn": 22631,
+ "fn_rate": 0.07445363056444741,
+ "fp": 39119,
+ "fp_rate": 0.22499122902875154,
+ "match_probability": 0.004227113713615665,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.877924412308979,
+ "recall": 0.9255463694355526,
+ "row_count": 477830,
+ "tn": 134750,
+ "tn_rate": 0.7750087709712484,
+ "tp": 281330,
+ "tp_rate": 0.9255463694355526,
+ "truth_threshold": -7.88
+ },
+ {
+ "f1": 0.9011212917280708,
+ "fn": 22685,
+ "fn_rate": 0.07463128493458042,
+ "fp": 39044,
+ "fp_rate": 0.22455986978702355,
+ "match_probability": 0.004285869120183992,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8781093906093906,
+ "recall": 0.9253687150654196,
+ "row_count": 477830,
+ "tn": 134825,
+ "tn_rate": 0.7754401302129764,
+ "tp": 281276,
+ "tp_rate": 0.9253687150654196,
+ "truth_threshold": -7.86
+ },
+ {
+ "f1": 0.9010865420662563,
+ "fn": 22740,
+ "fn_rate": 0.07481222920045663,
+ "fp": 39001,
+ "fp_rate": 0.22431255715509954,
+ "match_probability": 0.00434543764251929,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8782063693312764,
+ "recall": 0.9251877707995434,
+ "row_count": 477830,
+ "tn": 134868,
+ "tn_rate": 0.7756874428449004,
+ "tp": 281221,
+ "tp_rate": 0.9251877707995434,
+ "truth_threshold": -7.84
+ },
+ {
+ "f1": 0.9010334385464567,
+ "fn": 22780,
+ "fn_rate": 0.07494382503018479,
+ "fp": 38988,
+ "fp_rate": 0.22423778821986667,
+ "match_probability": 0.004405830433579104,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.878226811465195,
+ "recall": 0.9250561749698152,
+ "row_count": 477830,
+ "tn": 134881,
+ "tn_rate": 0.7757622117801333,
+ "tp": 281181,
+ "tp_rate": 0.9250561749698152,
+ "truth_threshold": -7.82
+ },
+ {
+ "f1": 0.90098962305873,
+ "fn": 22818,
+ "fn_rate": 0.07506884106842654,
+ "fp": 38972,
+ "fp_rate": 0.2241457649149647,
+ "match_probability": 0.00446705879650708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8782562516595599,
+ "recall": 0.9249311589315734,
+ "row_count": 477830,
+ "tn": 134897,
+ "tn_rate": 0.7758542350850353,
+ "tp": 281143,
+ "tp_rate": 0.9249311589315734,
+ "truth_threshold": -7.8
+ },
+ {
+ "f1": 0.9009746763632168,
+ "fn": 22856,
+ "fn_rate": 0.07519385710666829,
+ "fp": 38937,
+ "fp_rate": 0.22394446393549167,
+ "match_probability": 0.004529134186577057,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8783378431580855,
+ "recall": 0.9248061428933317,
+ "row_count": 477830,
+ "tn": 134932,
+ "tn_rate": 0.7760555360645084,
+ "tp": 281105,
+ "tp_rate": 0.9248061428933317,
+ "truth_threshold": -7.78
+ },
+ {
+ "f1": 0.9008901297211013,
+ "fn": 22904,
+ "fn_rate": 0.07535177210234208,
+ "fp": 38936,
+ "fp_rate": 0.2239387124789353,
+ "match_probability": 0.004592068213160174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.8783223383011504,
+ "recall": 0.9246482278976579,
+ "row_count": 477830,
+ "tn": 134933,
+ "tn_rate": 0.7760612875210647,
+ "tp": 281057,
+ "tp_rate": 0.9246482278976579,
+ "truth_threshold": -7.76
+ },
+ {
+ "f1": 0.9127129240212396,
+ "fn": 22923,
+ "fn_rate": 0.07541428012146295,
+ "fp": 30831,
+ "fp_rate": 0.17732315708953292,
+ "match_probability": 0.004655872641715067,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9011411842792968,
+ "recall": 0.9245857198785371,
+ "row_count": 477830,
+ "tn": 143038,
+ "tn_rate": 0.822676842910467,
+ "tp": 281038,
+ "tp_rate": 0.9245857198785371,
+ "truth_threshold": -7.74
+ },
+ {
+ "f1": 0.9125203431619364,
+ "fn": 23048,
+ "fn_rate": 0.07582551708936344,
+ "fp": 30813,
+ "fp_rate": 0.1772196308715182,
+ "match_probability": 0.0047205593958014914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9011535771799594,
+ "recall": 0.9241744829106365,
+ "row_count": 477830,
+ "tn": 143056,
+ "tn_rate": 0.8227803691284817,
+ "tp": 280913,
+ "tp_rate": 0.9241744829106365,
+ "truth_threshold": -7.72
+ },
+ {
+ "f1": 0.9124100398018032,
+ "fn": 23144,
+ "fn_rate": 0.076141347080711,
+ "fp": 30772,
+ "fp_rate": 0.17698382115270692,
+ "match_probability": 0.004786140559117481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9012416998032665,
+ "recall": 0.923858652919289,
+ "row_count": 477830,
+ "tn": 143097,
+ "tn_rate": 0.8230161788472931,
+ "tp": 280817,
+ "tp_rate": 0.923858652919289,
+ "truth_threshold": -7.7
+ },
+ {
+ "f1": 0.9123932943175873,
+ "fn": 23182,
+ "fn_rate": 0.07626636311895275,
+ "fp": 30739,
+ "fp_rate": 0.17679402308634662,
+ "match_probability": 0.0048526283775603,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9013251240698772,
+ "recall": 0.9237336368810473,
+ "row_count": 477830,
+ "tn": 143130,
+ "tn_rate": 0.8232059769136534,
+ "tp": 280779,
+ "tp_rate": 0.9237336368810473,
+ "truth_threshold": -7.68
+ },
+ {
+ "f1": 0.9122963820023141,
+ "fn": 23262,
+ "fn_rate": 0.07652955477840907,
+ "fp": 30708,
+ "fp_rate": 0.17661572793309907,
+ "match_probability": 0.004920035261311362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9013894999149024,
+ "recall": 0.9234704452215909,
+ "row_count": 477830,
+ "tn": 143161,
+ "tn_rate": 0.8233842720669009,
+ "tp": 280699,
+ "tp_rate": 0.9234704452215909,
+ "truth_threshold": -7.66
+ },
+ {
+ "f1": 0.9122961556839125,
+ "fn": 23294,
+ "fn_rate": 0.0766348314421916,
+ "fp": 30671,
+ "fp_rate": 0.17640292404051325,
+ "match_probability": 0.004988373786945367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9014864873545793,
+ "recall": 0.9233651685578084,
+ "row_count": 477830,
+ "tn": 143198,
+ "tn_rate": 0.8235970759594867,
+ "tp": 280667,
+ "tp_rate": 0.9233651685578084,
+ "truth_threshold": -7.640000000000001
+ },
+ {
+ "f1": 0.9122040499201914,
+ "fn": 23357,
+ "fn_rate": 0.07684209487401344,
+ "fp": 30658,
+ "fp_rate": 0.1763281551052804,
+ "match_probability": 0.005057656699563808,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9015041990348966,
+ "recall": 0.9231579051259866,
+ "row_count": 477830,
+ "tn": 143211,
+ "tn_rate": 0.8236718448947196,
+ "tp": 280604,
+ "tp_rate": 0.9231579051259866,
+ "truth_threshold": -7.62
+ },
+ {
+ "f1": 0.9121003452782709,
+ "fn": 23419,
+ "fn_rate": 0.07704606841009208,
+ "fp": 30654,
+ "fp_rate": 0.1763051492790549,
+ "match_probability": 0.005127896914953068,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9014961631897582,
+ "recall": 0.9229539315899079,
+ "row_count": 477830,
+ "tn": 143215,
+ "tn_rate": 0.8236948507209451,
+ "tp": 280542,
+ "tp_rate": 0.9229539315899079,
+ "truth_threshold": -7.6000000000000005
+ },
+ {
+ "f1": 0.9119810363664742,
+ "fn": 23494,
+ "fn_rate": 0.07729281059083237,
+ "fp": 30644,
+ "fp_rate": 0.1762476347134912,
+ "match_probability": 0.005199107521767358,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9015013933933548,
+ "recall": 0.9227071894091676,
+ "row_count": 477830,
+ "tn": 143225,
+ "tn_rate": 0.8237523652865089,
+ "tp": 280467,
+ "tp_rate": 0.9227071894091676,
+ "truth_threshold": -7.58
+ },
+ {
+ "f1": 0.9121875050828712,
+ "fn": 23550,
+ "fn_rate": 0.07747704475245179,
+ "fp": 30439,
+ "fp_rate": 0.17506858611943474,
+ "match_probability": 0.0052713017837366085,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9020781727521312,
+ "recall": 0.9225229552475482,
+ "row_count": 477830,
+ "tn": 143430,
+ "tn_rate": 0.8249314138805652,
+ "tp": 280411,
+ "tp_rate": 0.9225229552475482,
+ "truth_threshold": -7.5600000000000005
+ },
+ {
+ "f1": 0.9121977088830399,
+ "fn": 23587,
+ "fn_rate": 0.07759877089495033,
+ "fp": 30388,
+ "fp_rate": 0.17477526183505973,
+ "match_probability": 0.005344493141899607,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9022145564773042,
+ "recall": 0.9224012291050496,
+ "row_count": 477830,
+ "tn": 143481,
+ "tn_rate": 0.8252247381649402,
+ "tp": 280374,
+ "tp_rate": 0.9224012291050496,
+ "truth_threshold": -7.54
+ },
+ {
+ "f1": 0.912210200927357,
+ "fn": 23616,
+ "fn_rate": 0.07769417787150325,
+ "fp": 30344,
+ "fp_rate": 0.17452219774657932,
+ "match_probability": 0.005418695216862511,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9023332013685711,
+ "recall": 0.9223058221284968,
+ "row_count": 477830,
+ "tn": 143525,
+ "tn_rate": 0.8254778022534207,
+ "tp": 280345,
+ "tp_rate": 0.9223058221284968,
+ "truth_threshold": -7.5200000000000005
+ },
+ {
+ "f1": 0.9121507493531642,
+ "fn": 23689,
+ "fn_rate": 0.07793434026075714,
+ "fp": 30298,
+ "fp_rate": 0.17425763074498618,
+ "match_probability": 0.005493921811082985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9024438934861706,
+ "recall": 0.9220656597392428,
+ "row_count": 477830,
+ "tn": 143571,
+ "tn_rate": 0.8257423692550139,
+ "tp": 280272,
+ "tp_rate": 0.9220656597392428,
+ "truth_threshold": -7.5
+ },
+ {
+ "f1": 0.9120650203269894,
+ "fn": 23750,
+ "fn_rate": 0.07813502390109257,
+ "fp": 30282,
+ "fp_rate": 0.1741656074400842,
+ "match_probability": 0.005570186911180121,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9024712312354868,
+ "recall": 0.9218649760989074,
+ "row_count": 477830,
+ "tn": 143587,
+ "tn_rate": 0.8258343925599158,
+ "tp": 280211,
+ "tp_rate": 0.9218649760989074,
+ "truth_threshold": -7.48
+ },
+ {
+ "f1": 0.9118518470284103,
+ "fn": 23893,
+ "fn_rate": 0.07860547899237073,
+ "fp": 30255,
+ "fp_rate": 0.17401031811306214,
+ "match_probability": 0.00564750469027039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9025048095049352,
+ "recall": 0.9213945210076293,
+ "row_count": 477830,
+ "tn": 143614,
+ "tn_rate": 0.8259896818869379,
+ "tp": 280068,
+ "tp_rate": 0.9213945210076293,
+ "truth_threshold": -7.46
+ },
+ {
+ "f1": 0.9119454458415155,
+ "fn": 23929,
+ "fn_rate": 0.07872391523912607,
+ "fp": 30150,
+ "fp_rate": 0.17340641517464297,
+ "match_probability": 0.005725889510329732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9027990018763178,
+ "recall": 0.921276084760874,
+ "row_count": 477830,
+ "tn": 143719,
+ "tn_rate": 0.826593584825357,
+ "tp": 280032,
+ "tp_rate": 0.921276084760874,
+ "truth_threshold": -7.44
+ },
+ {
+ "f1": 0.9119290324051903,
+ "fn": 24038,
+ "fn_rate": 0.07908251387513529,
+ "fp": 30031,
+ "fp_rate": 0.1727219918444346,
+ "match_probability": 0.005805355924582104,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9031114294379166,
+ "recall": 0.9209174861248647,
+ "row_count": 477830,
+ "tn": 143838,
+ "tn_rate": 0.8272780081555654,
+ "tp": 279923,
+ "tp_rate": 0.9209174861248647,
+ "truth_threshold": -7.42
+ },
+ {
+ "f1": 0.9118627390288643,
+ "fn": 24093,
+ "fn_rate": 0.07926345814101152,
+ "fp": 30009,
+ "fp_rate": 0.1725954598001944,
+ "match_probability": 0.005885918679914525,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9031583499259384,
+ "recall": 0.9207365418589885,
+ "row_count": 477830,
+ "tn": 143860,
+ "tn_rate": 0.8274045401998056,
+ "tp": 279868,
+ "tp_rate": 0.9207365418589885,
+ "truth_threshold": -7.4
+ },
+ {
+ "f1": 0.9117967166533065,
+ "fn": 24147,
+ "fn_rate": 0.07944111251114452,
+ "fp": 29990,
+ "fp_rate": 0.1724861821256233,
+ "match_probability": 0.005967592719318969,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9031968599501621,
+ "recall": 0.9205588874888555,
+ "row_count": 477830,
+ "tn": 143879,
+ "tn_rate": 0.8275138178743767,
+ "tp": 279814,
+ "tp_rate": 0.9205588874888555,
+ "truth_threshold": -7.38
+ },
+ {
+ "f1": 0.9117484112758677,
+ "fn": 24191,
+ "fn_rate": 0.07958586792384549,
+ "fp": 29969,
+ "fp_rate": 0.17236540153793947,
+ "match_probability": 0.006050393184361143,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9032443444319249,
+ "recall": 0.9204141320761545,
+ "row_count": 477830,
+ "tn": 143900,
+ "tn_rate": 0.8276345984620606,
+ "tp": 279770,
+ "tp_rate": 0.9204141320761545,
+ "truth_threshold": -7.36
+ },
+ {
+ "f1": 0.9115573302909298,
+ "fn": 24318,
+ "fn_rate": 0.08000368468323239,
+ "fp": 29946,
+ "fp_rate": 0.17223311803714292,
+ "match_probability": 0.0061343354176764545,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9032717570714722,
+ "recall": 0.9199963153167676,
+ "row_count": 477830,
+ "tn": 143923,
+ "tn_rate": 0.8277668819628571,
+ "tp": 279643,
+ "tp_rate": 0.9199963153167676,
+ "truth_threshold": -7.34
+ },
+ {
+ "f1": 0.9115726325742138,
+ "fn": 24368,
+ "fn_rate": 0.08016817947039258,
+ "fp": 29876,
+ "fp_rate": 0.1718305160781968,
+ "match_probability": 0.006219434965493263,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9034604435339242,
+ "recall": 0.9198318205296074,
+ "row_count": 477830,
+ "tn": 143993,
+ "tn_rate": 0.8281694839218032,
+ "tp": 279593,
+ "tp_rate": 0.9198318205296074,
+ "truth_threshold": -7.32
+ },
+ {
+ "f1": 0.9112962141571216,
+ "fn": 24543,
+ "fn_rate": 0.08074391122545327,
+ "fp": 29853,
+ "fp_rate": 0.17169823257740022,
+ "match_probability": 0.00630570758018367,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9034730058751063,
+ "recall": 0.9192560887745468,
+ "row_count": 477830,
+ "tn": 144016,
+ "tn_rate": 0.8283017674225998,
+ "tp": 279418,
+ "tp_rate": 0.9192560887745468,
+ "truth_threshold": -7.3
+ },
+ {
+ "f1": 0.9110527517698105,
+ "fn": 24696,
+ "fn_rate": 0.08124726527416345,
+ "fp": 29834,
+ "fp_rate": 0.17158895490282913,
+ "match_probability": 0.006393169222841944,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9034807618271169,
+ "recall": 0.9187527347258365,
+ "row_count": 477830,
+ "tn": 144035,
+ "tn_rate": 0.8284110450971709,
+ "tp": 279265,
+ "tp_rate": 0.9187527347258365,
+ "truth_threshold": -7.28
+ },
+ {
+ "f1": 0.9109800223822404,
+ "fn": 24752,
+ "fn_rate": 0.08143149943578289,
+ "fp": 29816,
+ "fp_rate": 0.17148542868481442,
+ "match_probability": 0.006481836065890851,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9035158967721059,
+ "recall": 0.9185685005642171,
+ "row_count": 477830,
+ "tn": 144053,
+ "tn_rate": 0.8285145713151856,
+ "tp": 279209,
+ "tp_rate": 0.9185685005642171,
+ "truth_threshold": -7.26
+ },
+ {
+ "f1": 0.9109143830475954,
+ "fn": 24804,
+ "fn_rate": 0.08160257401442948,
+ "fp": 29798,
+ "fp_rate": 0.1713819024667997,
+ "match_probability": 0.00657172449571595,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9035522972601188,
+ "recall": 0.9183974259855705,
+ "row_count": 477830,
+ "tn": 144071,
+ "tn_rate": 0.8286180975332003,
+ "tp": 279157,
+ "tp_rate": 0.9183974259855705,
+ "truth_threshold": -7.24
+ },
+ {
+ "f1": 0.9120228471346321,
+ "fn": 24851,
+ "fn_rate": 0.08175719911436007,
+ "fp": 28997,
+ "fp_rate": 0.16677498576514502,
+ "match_probability": 0.006662851115328145,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9058865913465127,
+ "recall": 0.9182428008856399,
+ "row_count": 477830,
+ "tn": 144872,
+ "tn_rate": 0.833225014234855,
+ "tp": 279110,
+ "tp_rate": 0.9182428008856399,
+ "truth_threshold": -7.22
+ },
+ {
+ "f1": 0.911998457546584,
+ "fn": 24884,
+ "fn_rate": 0.0818657656738858,
+ "fp": 28975,
+ "fp_rate": 0.1666484537209048,
+ "match_probability": 0.006755232747054526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9059412047316687,
+ "recall": 0.9181342343261142,
+ "row_count": 477830,
+ "tn": 144894,
+ "tn_rate": 0.8333515462790951,
+ "tp": 279077,
+ "tp_rate": 0.9181342343261142,
+ "truth_threshold": -7.2
+ },
+ {
+ "f1": 0.9117507657005384,
+ "fn": 25030,
+ "fn_rate": 0.08234609045239356,
+ "fp": 28967,
+ "fp_rate": 0.16660244206845384,
+ "match_probability": 0.006848886435257802,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9059201423848158,
+ "recall": 0.9176539095476064,
+ "row_count": 477830,
+ "tn": 144902,
+ "tn_rate": 0.8333975579315461,
+ "tp": 278931,
+ "tp_rate": 0.9176539095476064,
+ "truth_threshold": -7.18
+ },
+ {
+ "f1": 0.9117075945394634,
+ "fn": 25066,
+ "fn_rate": 0.0824645266991489,
+ "fp": 28952,
+ "fp_rate": 0.16651617022010826,
+ "match_probability": 0.006943829449084327,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9059532819874808,
+ "recall": 0.9175354733008511,
+ "row_count": 477830,
+ "tn": 144917,
+ "tn_rate": 0.8334838297798918,
+ "tp": 278895,
+ "tp_rate": 0.9175354733008511,
+ "truth_threshold": -7.16
+ },
+ {
+ "f1": 0.9115853558852091,
+ "fn": 25159,
+ "fn_rate": 0.08277048700326686,
+ "fp": 28924,
+ "fp_rate": 0.1663551294365298,
+ "match_probability": 0.007040079285241038,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060072922015039,
+ "recall": 0.9172295129967332,
+ "row_count": 477830,
+ "tn": 144945,
+ "tn_rate": 0.8336448705634703,
+ "tp": 278802,
+ "tp_rate": 0.9172295129967332,
+ "truth_threshold": -7.140000000000001
+ },
+ {
+ "f1": 0.9114453891432309,
+ "fn": 25241,
+ "fn_rate": 0.08304025845420959,
+ "fp": 28920,
+ "fp_rate": 0.1663321236103043,
+ "match_probability": 0.0071376536708013,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9059940189832272,
+ "recall": 0.9169597415457904,
+ "row_count": 477830,
+ "tn": 144949,
+ "tn_rate": 0.8336678763896956,
+ "tp": 278720,
+ "tp_rate": 0.9169597415457904,
+ "truth_threshold": -7.12
+ },
+ {
+ "f1": 0.9113585818942962,
+ "fn": 25304,
+ "fn_rate": 0.08324752188603143,
+ "fp": 28902,
+ "fp_rate": 0.1662285973922896,
+ "match_probability": 0.007236570566039904,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060277865385178,
+ "recall": 0.9167524781139685,
+ "row_count": 477830,
+ "tn": 144967,
+ "tn_rate": 0.8337714026077104,
+ "tp": 278657,
+ "tp_rate": 0.9167524781139685,
+ "truth_threshold": -7.1000000000000005
+ },
+ {
+ "f1": 0.9113411503049927,
+ "fn": 25323,
+ "fn_rate": 0.08331002990515231,
+ "fp": 28892,
+ "fp_rate": 0.16617108282672588,
+ "match_probability": 0.007336848167297341,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060514421357266,
+ "recall": 0.9166899700948477,
+ "row_count": 477830,
+ "tn": 144977,
+ "tn_rate": 0.8338289171732741,
+ "tp": 278638,
+ "tp_rate": 0.9166899700948477,
+ "truth_threshold": -7.08
+ },
+ {
+ "f1": 0.9111043500734445,
+ "fn": 25461,
+ "fn_rate": 0.08376403551771444,
+ "fp": 28886,
+ "fp_rate": 0.16613657408738763,
+ "match_probability": 0.007438504909873419,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060269498285544,
+ "recall": 0.9162359644822855,
+ "row_count": 477830,
+ "tn": 144983,
+ "tn_rate": 0.8338634259126124,
+ "tp": 278500,
+ "tp_rate": 0.9162359644822855,
+ "truth_threshold": -7.0600000000000005
+ },
+ {
+ "f1": 0.9109803741926196,
+ "fn": 25549,
+ "fn_rate": 0.08405354634311639,
+ "fp": 28864,
+ "fp_rate": 0.16601004204314743,
+ "match_probability": 0.0075415594709504815,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060649058175712,
+ "recall": 0.9159464536568837,
+ "row_count": 477830,
+ "tn": 145005,
+ "tn_rate": 0.8339899579568526,
+ "tp": 278412,
+ "tp_rate": 0.9159464536568837,
+ "truth_threshold": -7.04
+ },
+ {
+ "f1": 0.9109474958687152,
+ "fn": 25580,
+ "fn_rate": 0.08415553311115571,
+ "fp": 28849,
+ "fp_rate": 0.16592377019480184,
+ "match_probability": 0.007646030772546182,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9060996647462813,
+ "recall": 0.9158444668888442,
+ "row_count": 477830,
+ "tn": 145020,
+ "tn_rate": 0.8340762298051981,
+ "tp": 278381,
+ "tp_rate": 0.9158444668888442,
+ "truth_threshold": -7.0200000000000005
+ },
+ {
+ "f1": 0.9110973637869295,
+ "fn": 25608,
+ "fn_rate": 0.08424765019196542,
+ "fp": 28715,
+ "fp_rate": 0.16515307501624787,
+ "match_probability": 0.007751937984496124,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.906486511131085,
+ "recall": 0.9157523498080345,
+ "row_count": 477830,
+ "tn": 145154,
+ "tn_rate": 0.8348469249837521,
+ "tp": 278353,
+ "tp_rate": 0.9157523498080345,
+ "truth_threshold": -7
+ },
+ {
+ "f1": 0.9110687010406471,
+ "fn": 25645,
+ "fn_rate": 0.08436937633446397,
+ "fp": 28689,
+ "fp_rate": 0.16500353714578217,
+ "match_probability": 0.007859300527466294,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.906552010553574,
+ "recall": 0.915630623665536,
+ "row_count": 477830,
+ "tn": 145180,
+ "tn_rate": 0.8349964628542178,
+ "tp": 278316,
+ "tp_rate": 0.915630623665536,
+ "truth_threshold": -6.98
+ },
+ {
+ "f1": 0.9109766637856526,
+ "fn": 25705,
+ "fn_rate": 0.08456677007905619,
+ "fp": 28680,
+ "fp_rate": 0.1649517740367748,
+ "match_probability": 0.007968138075995553,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9065603252795371,
+ "recall": 0.9154332299209438,
+ "row_count": 477830,
+ "tn": 145189,
+ "tn_rate": 0.8350482259632251,
+ "tp": 278256,
+ "tp_rate": 0.9154332299209438,
+ "truth_threshold": -6.96
+ },
+ {
+ "f1": 0.9109051261230584,
+ "fn": 25756,
+ "fn_rate": 0.0847345547619596,
+ "fp": 28667,
+ "fp_rate": 0.16487700510154196,
+ "match_probability": 0.008078470561568152,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9065832008133684,
+ "recall": 0.9152654452380404,
+ "row_count": 477830,
+ "tn": 145202,
+ "tn_rate": 0.835122994898458,
+ "tp": 278205,
+ "tp_rate": 0.9152654452380404,
+ "truth_threshold": -6.94
+ },
+ {
+ "f1": 0.9108437522513377,
+ "fn": 25813,
+ "fn_rate": 0.08492207881932222,
+ "fp": 28639,
+ "fp_rate": 0.16471596431796354,
+ "match_probability": 0.008190318175716487,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9066485868045256,
+ "recall": 0.9150779211806778,
+ "row_count": 477830,
+ "tn": 145230,
+ "tn_rate": 0.8352840356820365,
+ "tp": 278148,
+ "tp_rate": 0.9150779211806778,
+ "truth_threshold": -6.92
+ },
+ {
+ "f1": 0.9106461449772849,
+ "fn": 25938,
+ "fn_rate": 0.0853333157872227,
+ "fp": 28622,
+ "fp_rate": 0.16461818955650517,
+ "match_probability": 0.008303701373154063,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9066607966867224,
+ "recall": 0.9146666842127773,
+ "row_count": 477830,
+ "tn": 145247,
+ "tn_rate": 0.8353818104434948,
+ "tp": 278023,
+ "tp_rate": 0.9146666842127773,
+ "truth_threshold": -6.9
+ },
+ {
+ "f1": 0.9104500106482316,
+ "fn": 26078,
+ "fn_rate": 0.08579390119127125,
+ "fp": 28586,
+ "fp_rate": 0.16441113712047575,
+ "match_probability": 0.008418640874938868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9067246605692583,
+ "recall": 0.9142060988087287,
+ "row_count": 477830,
+ "tn": 145283,
+ "tn_rate": 0.8355888628795243,
+ "tp": 277883,
+ "tp_rate": 0.9142060988087287,
+ "truth_threshold": -6.88
+ },
+ {
+ "f1": 0.9104362187385309,
+ "fn": 26125,
+ "fn_rate": 0.08594852629120184,
+ "fp": 28539,
+ "fp_rate": 0.16414081866232624,
+ "match_probability": 0.008535157671667086,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9068494492044064,
+ "recall": 0.9140514737087981,
+ "row_count": 477830,
+ "tn": 145330,
+ "tn_rate": 0.8358591813376738,
+ "tp": 277836,
+ "tp_rate": 0.9140514737087981,
+ "truth_threshold": -6.86
+ },
+ {
+ "f1": 0.9104528977194511,
+ "fn": 26180,
+ "fn_rate": 0.08612947055707805,
+ "fp": 28462,
+ "fp_rate": 0.16369795650748553,
+ "match_probability": 0.008653273026697373,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9070607328167501,
+ "recall": 0.9138705294429219,
+ "row_count": 477830,
+ "tn": 145407,
+ "tn_rate": 0.8363020434925145,
+ "tp": 277781,
+ "tp_rate": 0.9138705294429219,
+ "truth_threshold": -6.84
+ },
+ {
+ "f1": 0.9103947704876114,
+ "fn": 26256,
+ "fn_rate": 0.08637950263356155,
+ "fp": 28410,
+ "fp_rate": 0.16339888076655412,
+ "match_probability": 0.008773008479405596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9071917416657138,
+ "recall": 0.9136204973664385,
+ "row_count": 477830,
+ "tn": 145459,
+ "tn_rate": 0.8366011192334458,
+ "tp": 277705,
+ "tp_rate": 0.9136204973664385,
+ "truth_threshold": -6.82
+ },
+ {
+ "f1": 0.9102668354197953,
+ "fn": 26346,
+ "fn_rate": 0.08667559325044989,
+ "fp": 28388,
+ "fp_rate": 0.16327234872231391,
+ "match_probability": 0.008894385848470222,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9072296676829966,
+ "recall": 0.9133244067495501,
+ "row_count": 477830,
+ "tn": 145481,
+ "tn_rate": 0.8367276512776861,
+ "tp": 277615,
+ "tp_rate": 0.9133244067495501,
+ "truth_threshold": -6.8
+ },
+ {
+ "f1": 0.9102440496100846,
+ "fn": 26393,
+ "fn_rate": 0.08683021835038048,
+ "fp": 28348,
+ "fp_rate": 0.163042290460059,
+ "match_probability": 0.009017427235188254,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9073340394095111,
+ "recall": 0.9131697816496195,
+ "row_count": 477830,
+ "tn": 145521,
+ "tn_rate": 0.836957709539941,
+ "tp": 277568,
+ "tp_rate": 0.9131697816496195,
+ "truth_threshold": -6.78
+ },
+ {
+ "f1": 0.9101855526727523,
+ "fn": 26470,
+ "fn_rate": 0.08708354032260718,
+ "fp": 28294,
+ "fp_rate": 0.16273171180601487,
+ "match_probability": 0.009142155026821896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9074709354611901,
+ "recall": 0.9129164596773929,
+ "row_count": 477830,
+ "tn": 145575,
+ "tn_rate": 0.8372682881939851,
+ "tp": 277491,
+ "tp_rate": 0.9129164596773929,
+ "truth_threshold": -6.76
+ },
+ {
+ "f1": 0.9101099268794347,
+ "fn": 26524,
+ "fn_rate": 0.08726119469274018,
+ "fp": 28281,
+ "fp_rate": 0.16265694287078203,
+ "match_probability": 0.009268591899975812,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.907493179989402,
+ "recall": 0.9127388053072598,
+ "row_count": 477830,
+ "tn": 145588,
+ "tn_rate": 0.837343057129218,
+ "tp": 277437,
+ "tp_rate": 0.9127388053072598,
+ "truth_threshold": -6.74
+ },
+ {
+ "f1": 0.9099717492806074,
+ "fn": 26628,
+ "fn_rate": 0.08760334385003339,
+ "fp": 28248,
+ "fp_rate": 0.16246714480442173,
+ "match_probability": 0.009396760824005125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9075596977560778,
+ "recall": 0.9123966561499666,
+ "row_count": 477830,
+ "tn": 145621,
+ "tn_rate": 0.8375328551955783,
+ "tp": 277333,
+ "tp_rate": 0.9123966561499666,
+ "truth_threshold": -6.72
+ },
+ {
+ "f1": 0.9098975526839097,
+ "fn": 26677,
+ "fn_rate": 0.08776454874145038,
+ "fp": 28239,
+ "fp_rate": 0.16241538169541436,
+ "match_probability": 0.00952668506445404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9075716067202797,
+ "recall": 0.9122354512585497,
+ "row_count": 477830,
+ "tn": 145630,
+ "tn_rate": 0.8375846183045856,
+ "tp": 277284,
+ "tp_rate": 0.9122354512585497,
+ "truth_threshold": -6.7
+ },
+ {
+ "f1": 0.909801875244087,
+ "fn": 26738,
+ "fn_rate": 0.08796523238178582,
+ "fp": 28230,
+ "fp_rate": 0.16236361858640702,
+ "match_probability": 0.009658388186525174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9075798895411078,
+ "recall": 0.9120347676182142,
+ "row_count": 477830,
+ "tn": 145639,
+ "tn_rate": 0.837636381413593,
+ "tp": 277223,
+ "tp_rate": 0.9120347676182142,
+ "truth_threshold": -6.68
+ },
+ {
+ "f1": 0.9095803704506208,
+ "fn": 26901,
+ "fn_rate": 0.08850148538792806,
+ "fp": 28184,
+ "fp_rate": 0.16209905158481386,
+ "match_probability": 0.009791894058579487,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.90766730877593,
+ "recall": 0.911498514612072,
+ "row_count": 477830,
+ "tn": 145685,
+ "tn_rate": 0.8379009484151861,
+ "tp": 277060,
+ "tp_rate": 0.911498514612072,
+ "truth_threshold": -6.66
+ },
+ {
+ "f1": 0.9095448680698506,
+ "fn": 26920,
+ "fn_rate": 0.08856399340704893,
+ "fp": 28184,
+ "fp_rate": 0.16209905158481386,
+ "match_probability": 0.009927226855666866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9076615611434188,
+ "recall": 0.9114360065929511,
+ "row_count": 477830,
+ "tn": 145685,
+ "tn_rate": 0.8379009484151861,
+ "tp": 277041,
+ "tp_rate": 0.9114360065929511,
+ "truth_threshold": -6.640000000000001
+ },
+ {
+ "f1": 0.9094017037878738,
+ "fn": 27050,
+ "fn_rate": 0.08899167985366543,
+ "fp": 28124,
+ "fp_rate": 0.16175396419143148,
+ "match_probability": 0.010064411063087227,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9078007441768977,
+ "recall": 0.9110083201463346,
+ "row_count": 477830,
+ "tn": 145745,
+ "tn_rate": 0.8382460358085685,
+ "tp": 276911,
+ "tp_rate": 0.9110083201463346,
+ "truth_threshold": -6.62
+ },
+ {
+ "f1": 0.9092596181323103,
+ "fn": 27136,
+ "fn_rate": 0.08927461088758097,
+ "fp": 28117,
+ "fp_rate": 0.16171370399553686,
+ "match_probability": 0.010203471479982122,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9077955807989716,
+ "recall": 0.9107253891124191,
+ "row_count": 477830,
+ "tn": 145752,
+ "tn_rate": 0.8382862960044631,
+ "tp": 276825,
+ "tp_rate": 0.9107253891124191,
+ "truth_threshold": -6.6000000000000005
+ },
+ {
+ "f1": 0.9093181945115201,
+ "fn": 27180,
+ "fn_rate": 0.08941936630028194,
+ "fp": 28024,
+ "fp_rate": 0.1611788185357942,
+ "match_probability": 0.010344433222956822,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9080592509965387,
+ "recall": 0.9105806336997181,
+ "row_count": 477830,
+ "tn": 145845,
+ "tn_rate": 0.8388211814642058,
+ "tp": 276781,
+ "tp_rate": 0.9105806336997181,
+ "truth_threshold": -6.58
+ },
+ {
+ "f1": 0.9083698615271799,
+ "fn": 27723,
+ "fn_rate": 0.09120577968884166,
+ "fp": 28007,
+ "fp_rate": 0.16108104377433585,
+ "match_probability": 0.010487321729732655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.907945898864402,
+ "recall": 0.9087942203111583,
+ "row_count": 477830,
+ "tn": 145862,
+ "tn_rate": 0.8389189562256641,
+ "tp": 276238,
+ "tp_rate": 0.9087942203111583,
+ "truth_threshold": -6.5600000000000005
+ },
+ {
+ "f1": 0.9082552211807269,
+ "fn": 27806,
+ "fn_rate": 0.09147884103552759,
+ "fp": 27984,
+ "fp_rate": 0.16094876027353927,
+ "match_probability": 0.010632162762829713,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9079894390393866,
+ "recall": 0.9085211589644724,
+ "row_count": 477830,
+ "tn": 145885,
+ "tn_rate": 0.8390512397264607,
+ "tp": 276155,
+ "tp_rate": 0.9085211589644724,
+ "truth_threshold": -6.54
+ },
+ {
+ "f1": 0.9081725629512672,
+ "fn": 27872,
+ "fn_rate": 0.09169597415457904,
+ "fp": 27961,
+ "fp_rate": 0.1608164767727427,
+ "match_probability": 0.010778982413279539,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9080381516197994,
+ "recall": 0.9083040258454209,
+ "row_count": 477830,
+ "tn": 145908,
+ "tn_rate": 0.8391835232272573,
+ "tp": 276089,
+ "tp_rate": 0.9083040258454209,
+ "truth_threshold": -6.5200000000000005
+ },
+ {
+ "f1": 0.90816736082325,
+ "fn": 27909,
+ "fn_rate": 0.09181770029707759,
+ "fp": 27920,
+ "fp_rate": 0.1605806670539314,
+ "match_probability": 0.010927807104367976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9081494348163647,
+ "recall": 0.9081822997029224,
+ "row_count": 477830,
+ "tn": 145949,
+ "tn_rate": 0.8394193329460686,
+ "tp": 276052,
+ "tp_rate": 0.9081822997029224,
+ "truth_threshold": -6.5
+ },
+ {
+ "f1": 0.9082619826389118,
+ "fn": 27942,
+ "fn_rate": 0.09192626685660331,
+ "fp": 27816,
+ "fp_rate": 0.15998251557206863,
+ "match_probability": 0.011078663595407736,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9084503102012605,
+ "recall": 0.9080737331433967,
+ "row_count": 477830,
+ "tn": 146053,
+ "tn_rate": 0.8400174844279313,
+ "tp": 276019,
+ "tp_rate": 0.9080737331433967,
+ "truth_threshold": -6.48
+ },
+ {
+ "f1": 0.908127766715487,
+ "fn": 28040,
+ "fn_rate": 0.0922486766394373,
+ "fp": 27789,
+ "fp_rate": 0.15982722624504656,
+ "match_probability": 0.011231578985540796,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9085015310658193,
+ "recall": 0.9077513233605627,
+ "row_count": 477830,
+ "tn": 146080,
+ "tn_rate": 0.8401727737549535,
+ "tp": 275921,
+ "tp_rate": 0.9077513233605627,
+ "truth_threshold": -6.46
+ },
+ {
+ "f1": 0.9081381416966202,
+ "fn": 28065,
+ "fn_rate": 0.09233092403301739,
+ "fp": 27752,
+ "fp_rate": 0.15961442235246076,
+ "match_probability": 0.011386580717570208,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9086047001791548,
+ "recall": 0.9076690759669827,
+ "row_count": 477830,
+ "tn": 146117,
+ "tn_rate": 0.8403855776475393,
+ "tp": 275896,
+ "tp_rate": 0.9076690759669827,
+ "truth_threshold": -6.44
+ },
+ {
+ "f1": 0.9078936537986666,
+ "fn": 28211,
+ "fn_rate": 0.09281124881152517,
+ "fp": 27740,
+ "fp_rate": 0.1595454048737843,
+ "match_probability": 0.011543696581821352,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9085966588684965,
+ "recall": 0.9071887511884749,
+ "row_count": 477830,
+ "tn": 146129,
+ "tn_rate": 0.8404545951262157,
+ "tp": 275750,
+ "tp_rate": 0.9071887511884749,
+ "truth_threshold": -6.42
+ },
+ {
+ "f1": 0.9076837449488047,
+ "fn": 28351,
+ "fn_rate": 0.09327183421557371,
+ "fp": 27711,
+ "fp_rate": 0.15937861263364947,
+ "match_probability": 0.011702954720032218,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9086413403621906,
+ "recall": 0.9067281657844263,
+ "row_count": 477830,
+ "tn": 146158,
+ "tn_rate": 0.8406213873663505,
+ "tp": 275610,
+ "tp_rate": 0.9067281657844263,
+ "truth_threshold": -6.4
+ },
+ {
+ "f1": 0.9076038801693045,
+ "fn": 28417,
+ "fn_rate": 0.09348896733462517,
+ "fp": 27686,
+ "fp_rate": 0.15923482621974014,
+ "match_probability": 0.011864383629272682,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9086963690927679,
+ "recall": 0.9065110326653748,
+ "row_count": 477830,
+ "tn": 146183,
+ "tn_rate": 0.8407651737802598,
+ "tp": 275544,
+ "tp_rate": 0.9065110326653748,
+ "truth_threshold": -6.38
+ },
+ {
+ "f1": 0.9075116705815689,
+ "fn": 28494,
+ "fn_rate": 0.09374228930685187,
+ "fp": 27655,
+ "fp_rate": 0.1590565310664926,
+ "match_probability": 0.012028012165892355,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.908766107375908,
+ "recall": 0.9062577106931481,
+ "row_count": 477830,
+ "tn": 146214,
+ "tn_rate": 0.8409434689335075,
+ "tp": 275467,
+ "tp_rate": 0.9062577106931481,
+ "truth_threshold": -6.36
+ },
+ {
+ "f1": 0.9074140584070038,
+ "fn": 28569,
+ "fn_rate": 0.09398903148759216,
+ "fp": 27629,
+ "fp_rate": 0.15890699319602689,
+ "match_probability": 0.012193869549496904,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9088215008200752,
+ "recall": 0.9060109685124078,
+ "row_count": 477830,
+ "tn": 146240,
+ "tn_rate": 0.8410930068039731,
+ "tp": 275392,
+ "tp_rate": 0.9060109685124078,
+ "truth_threshold": -6.34
+ },
+ {
+ "f1": 0.90723487557385,
+ "fn": 28676,
+ "fn_rate": 0.09434105033211497,
+ "fp": 27621,
+ "fp_rate": 0.15886098154357592,
+ "match_probability": 0.012361985366952384,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9088132952136967,
+ "recall": 0.9056589496678851,
+ "row_count": 477830,
+ "tn": 146248,
+ "tn_rate": 0.8411390184564241,
+ "tp": 275285,
+ "tp_rate": 0.9056589496678851,
+ "truth_threshold": -6.32
+ },
+ {
+ "f1": 0.9069691545437464,
+ "fn": 28831,
+ "fn_rate": 0.09485098417231158,
+ "fp": 27611,
+ "fp_rate": 0.15880346697801218,
+ "match_probability": 0.01253238957641751,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9087966281408861,
+ "recall": 0.9051490158276885,
+ "row_count": 477830,
+ "tn": 146258,
+ "tn_rate": 0.8411965330219878,
+ "tp": 275130,
+ "tp_rate": 0.9051490158276885,
+ "truth_threshold": -6.3
+ },
+ {
+ "f1": 0.9072315582894932,
+ "fn": 28902,
+ "fn_rate": 0.09508456677007905,
+ "fp": 27350,
+ "fp_rate": 0.15730233681679887,
+ "match_probability": 0.01270511251140324,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.909559569986343,
+ "recall": 0.904915433229921,
+ "row_count": 477830,
+ "tn": 146519,
+ "tn_rate": 0.8426976631832012,
+ "tp": 275059,
+ "tp_rate": 0.904915433229921,
+ "truth_threshold": -6.28
+ },
+ {
+ "f1": 0.9070296056321301,
+ "fn": 29024,
+ "fn_rate": 0.09548593405074993,
+ "fp": 27339,
+ "fp_rate": 0.15723907079467875,
+ "match_probability": 0.012880184884859674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9095561672114226,
+ "recall": 0.9045140659492501,
+ "row_count": 477830,
+ "tn": 146530,
+ "tn_rate": 0.8427609292053212,
+ "tp": 274937,
+ "tp_rate": 0.9045140659492501,
+ "truth_threshold": -6.26
+ },
+ {
+ "f1": 0.9067553296812092,
+ "fn": 29196,
+ "fn_rate": 0.096051796118581,
+ "fp": 27315,
+ "fp_rate": 0.1571010358373258,
+ "match_probability": 0.013057637793289553,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9095769332627118,
+ "recall": 0.9039482038814189,
+ "row_count": 477830,
+ "tn": 146554,
+ "tn_rate": 0.8428989641626742,
+ "tp": 274765,
+ "tp_rate": 0.9039482038814189,
+ "truth_threshold": -6.24
+ },
+ {
+ "f1": 0.9065901784358641,
+ "fn": 29295,
+ "fn_rate": 0.0963774957971582,
+ "fp": 27306,
+ "fp_rate": 0.15704927272831845,
+ "match_probability": 0.013237502720888259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.90957439762627,
+ "recall": 0.9036225042028418,
+ "row_count": 477830,
+ "tn": 146563,
+ "tn_rate": 0.8429507272716815,
+ "tp": 274666,
+ "tp_rate": 0.9036225042028418,
+ "truth_threshold": -6.22
+ },
+ {
+ "f1": 0.9048066177783362,
+ "fn": 30295,
+ "fn_rate": 0.09966739154036208,
+ "fp": 27290,
+ "fp_rate": 0.1569572494234165,
+ "match_probability": 0.013419811543709683,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9093222929597682,
+ "recall": 0.9003326084596379,
+ "row_count": 477830,
+ "tn": 146579,
+ "tn_rate": 0.8430427505765835,
+ "tp": 273666,
+ "tp_rate": 0.9003326084596379,
+ "truth_threshold": -6.2
+ },
+ {
+ "f1": 0.904633396170255,
+ "fn": 30427,
+ "fn_rate": 0.100101657778465,
+ "fp": 27245,
+ "fp_rate": 0.1566984338783797,
+ "match_probability": 0.013604596533857708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9094185431828685,
+ "recall": 0.899898342221535,
+ "row_count": 477830,
+ "tn": 146624,
+ "tn_rate": 0.8433015661216203,
+ "tp": 273534,
+ "tp_rate": 0.899898342221535,
+ "truth_threshold": -6.18
+ },
+ {
+ "f1": 0.904551167559701,
+ "fn": 30479,
+ "fn_rate": 0.10027273235711161,
+ "fp": 27237,
+ "fp_rate": 0.1566524222259287,
+ "match_probability": 0.013791890363702633,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9094270731147682,
+ "recall": 0.8997272676428884,
+ "row_count": 477830,
+ "tn": 146632,
+ "tn_rate": 0.8433475777740713,
+ "tp": 273482,
+ "tp_rate": 0.8997272676428884,
+ "truth_threshold": -6.16
+ },
+ {
+ "f1": 0.9044960552790426,
+ "fn": 30644,
+ "fn_rate": 0.10081556515474024,
+ "fp": 27074,
+ "fp_rate": 0.15571493480723994,
+ "match_probability": 0.013981726110122288,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9098708017217559,
+ "recall": 0.8991844348452598,
+ "row_count": 477830,
+ "tn": 146795,
+ "tn_rate": 0.84428506519276,
+ "tp": 273317,
+ "tp_rate": 0.8991844348452598,
+ "truth_threshold": -6.140000000000001
+ },
+ {
+ "f1": 0.9044490705040161,
+ "fn": 30679,
+ "fn_rate": 0.10093071150575238,
+ "fp": 27064,
+ "fp_rate": 0.1556574202416762,
+ "match_probability": 0.01417413725876712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9098905928495802,
+ "recall": 0.8990692884942476,
+ "row_count": 477830,
+ "tn": 146805,
+ "tn_rate": 0.8443425797583238,
+ "tp": 273282,
+ "tp_rate": 0.8990692884942476,
+ "truth_threshold": -6.12
+ },
+ {
+ "f1": 0.904331388997398,
+ "fn": 30786,
+ "fn_rate": 0.1012827303502752,
+ "fp": 27013,
+ "fp_rate": 0.1553640959573012,
+ "match_probability": 0.014369157708348785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9100130584833505,
+ "recall": 0.8987172696497248,
+ "row_count": 477830,
+ "tn": 146856,
+ "tn_rate": 0.8446359040426988,
+ "tp": 273175,
+ "tp_rate": 0.8987172696497248,
+ "truth_threshold": -6.1000000000000005
+ },
+ {
+ "f1": 0.9042895548874968,
+ "fn": 30833,
+ "fn_rate": 0.10143735545020578,
+ "fp": 26983,
+ "fp_rate": 0.15519155226061,
+ "match_probability": 0.01456682177495178,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9100899333913118,
+ "recall": 0.8985626445497942,
+ "row_count": 477830,
+ "tn": 146886,
+ "tn_rate": 0.84480844773939,
+ "tp": 273128,
+ "tp_rate": 0.8985626445497942,
+ "truth_threshold": -6.08
+ },
+ {
+ "f1": 0.9040295151135795,
+ "fn": 30992,
+ "fn_rate": 0.1019604488733752,
+ "fp": 26965,
+ "fp_rate": 0.15508802604259528,
+ "match_probability": 0.014767164196367252,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9100968879820227,
+ "recall": 0.8980395511266248,
+ "row_count": 477830,
+ "tn": 146904,
+ "tn_rate": 0.8449119739574047,
+ "tp": 272969,
+ "tp_rate": 0.8980395511266248,
+ "truth_threshold": -6.0600000000000005
+ },
+ {
+ "f1": 0.9037775414674869,
+ "fn": 31144,
+ "fn_rate": 0.1024605130263422,
+ "fp": 26949,
+ "fp_rate": 0.15499600273769332,
+ "match_probability": 0.014970220136448715,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9100998779047658,
+ "recall": 0.8975394869736578,
+ "row_count": 477830,
+ "tn": 146920,
+ "tn_rate": 0.8450039972623067,
+ "tp": 272817,
+ "tp_rate": 0.8975394869736578,
+ "truth_threshold": -6.04
+ },
+ {
+ "f1": 0.9036230011199693,
+ "fn": 31253,
+ "fn_rate": 0.10281911166235141,
+ "fp": 26920,
+ "fp_rate": 0.15482921049755852,
+ "match_probability": 0.015176025189488596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9101552591880598,
+ "recall": 0.8971808883376485,
+ "row_count": 477830,
+ "tn": 146949,
+ "tn_rate": 0.8451707895024415,
+ "tp": 272708,
+ "tp_rate": 0.8971808883376485,
+ "truth_threshold": -6.0200000000000005
+ },
+ {
+ "f1": 0.9035442660436447,
+ "fn": 31312,
+ "fn_rate": 0.10301321551120045,
+ "fp": 26901,
+ "fp_rate": 0.15471993282298743,
+ "match_probability": 0.015384615384615385,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9101952929394092,
+ "recall": 0.8969867844887995,
+ "row_count": 477830,
+ "tn": 146968,
+ "tn_rate": 0.8452800671770125,
+ "tp": 272649,
+ "tp_rate": 0.8969867844887995,
+ "truth_threshold": -6
+ },
+ {
+ "f1": 0.9034882757477836,
+ "fn": 31356,
+ "fn_rate": 0.10315797092390142,
+ "fp": 26885,
+ "fp_rate": 0.15462790951808544,
+ "match_probability": 0.01559602719021019,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9102307255667968,
+ "recall": 0.8968420290760986,
+ "row_count": 477830,
+ "tn": 146984,
+ "tn_rate": 0.8453720904819145,
+ "tp": 272605,
+ "tp_rate": 0.8968420290760986,
+ "truth_threshold": -5.98
+ },
+ {
+ "f1": 0.9032984154345952,
+ "fn": 31472,
+ "fn_rate": 0.10353959883011307,
+ "fp": 26870,
+ "fp_rate": 0.15454163766973986,
+ "match_probability": 0.015810297518342384,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9102415494439786,
+ "recall": 0.8964604011698869,
+ "row_count": 477830,
+ "tn": 146999,
+ "tn_rate": 0.8454583623302602,
+ "tp": 272489,
+ "tp_rate": 0.8964604011698869,
+ "truth_threshold": -5.96
+ },
+ {
+ "f1": 0.9032842056400139,
+ "fn": 31535,
+ "fn_rate": 0.10374686226193491,
+ "fp": 26804,
+ "fp_rate": 0.15416204153701926,
+ "match_probability": 0.016027463729223174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9104234201116198,
+ "recall": 0.896253137738065,
+ "row_count": 477830,
+ "tn": 147065,
+ "tn_rate": 0.8458379584629807,
+ "tp": 272426,
+ "tp_rate": 0.896253137738065,
+ "truth_threshold": -5.94
+ },
+ {
+ "f1": 0.9031568055873369,
+ "fn": 31624,
+ "fn_rate": 0.10403966298308007,
+ "fp": 26781,
+ "fp_rate": 0.15402975803622268,
+ "match_probability": 0.016247563635676584,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9104667723105931,
+ "recall": 0.8959603370169199,
+ "row_count": 477830,
+ "tn": 147088,
+ "tn_rate": 0.8459702419637773,
+ "tp": 272337,
+ "tp_rate": 0.8959603370169199,
+ "truth_threshold": -5.92
+ },
+ {
+ "f1": 0.9030544048238967,
+ "fn": 31691,
+ "fn_rate": 0.10426008599787473,
+ "fp": 26768,
+ "fp_rate": 0.15395498910098981,
+ "match_probability": 0.016470635507626726,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.910486292711963,
+ "recall": 0.8957399140021253,
+ "row_count": 477830,
+ "tn": 147101,
+ "tn_rate": 0.8460450108990102,
+ "tp": 272270,
+ "tp_rate": 0.8957399140021253,
+ "truth_threshold": -5.9
+ },
+ {
+ "f1": 0.9024278531007817,
+ "fn": 32064,
+ "fn_rate": 0.10548721711008978,
+ "fp": 26733,
+ "fp_rate": 0.15375368812151677,
+ "match_probability": 0.016696718076600735,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9104811974684393,
+ "recall": 0.8945127828899102,
+ "row_count": 477830,
+ "tn": 147136,
+ "tn_rate": 0.8462463118784832,
+ "tp": 271897,
+ "tp_rate": 0.8945127828899102,
+ "truth_threshold": -5.88
+ },
+ {
+ "f1": 0.9023616297402706,
+ "fn": 32102,
+ "fn_rate": 0.10561223314833153,
+ "fp": 26730,
+ "fp_rate": 0.15373643375184765,
+ "match_probability": 0.0169258505402461,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9104789526740771,
+ "recall": 0.8943877668516684,
+ "row_count": 477830,
+ "tn": 147139,
+ "tn_rate": 0.8462635662481524,
+ "tp": 271859,
+ "tp_rate": 0.8943877668516684,
+ "truth_threshold": -5.86
+ },
+ {
+ "f1": 0.9022589341443009,
+ "fn": 32197,
+ "fn_rate": 0.1059247732439359,
+ "fp": 26684,
+ "fp_rate": 0.1534718667502545,
+ "match_probability": 0.017158072566861807,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9105907896853053,
+ "recall": 0.8940752267560641,
+ "row_count": 477830,
+ "tn": 147185,
+ "tn_rate": 0.8465281332497455,
+ "tp": 271764,
+ "tp_rate": 0.8940752267560641,
+ "truth_threshold": -5.84
+ },
+ {
+ "f1": 0.9021289737688912,
+ "fn": 32302,
+ "fn_rate": 0.10627021229697231,
+ "fp": 26643,
+ "fp_rate": 0.15323605703144322,
+ "match_probability": 0.017393424299941902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9106844741235393,
+ "recall": 0.8937297877030277,
+ "row_count": 477830,
+ "tn": 147226,
+ "tn_rate": 0.8467639429685568,
+ "tp": 271659,
+ "tp_rate": 0.8937297877030277,
+ "truth_threshold": -5.82
+ },
+ {
+ "f1": 0.9019897638919795,
+ "fn": 32380,
+ "fn_rate": 0.10652682416494222,
+ "fp": 26641,
+ "fp_rate": 0.15322455411833047,
+ "match_probability": 0.017631946362730785,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9106672210635031,
+ "recall": 0.8934731758350578,
+ "row_count": 477830,
+ "tn": 147228,
+ "tn_rate": 0.8467754458816695,
+ "tp": 271581,
+ "tp_rate": 0.8934731758350578,
+ "truth_threshold": -5.8
+ },
+ {
+ "f1": 0.9018548783566522,
+ "fn": 32463,
+ "fn_rate": 0.10679988551162814,
+ "fp": 26630,
+ "fp_rate": 0.15316128809621035,
+ "match_probability": 0.01787367986278876,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9106759512692535,
+ "recall": 0.8932001144883719,
+ "row_count": 477830,
+ "tn": 147239,
+ "tn_rate": 0.8468387119037897,
+ "tp": 271498,
+ "tp_rate": 0.8932001144883719,
+ "truth_threshold": -5.78
+ },
+ {
+ "f1": 0.9017574750830565,
+ "fn": 32532,
+ "fn_rate": 0.1070268883179092,
+ "fp": 26610,
+ "fp_rate": 0.15304625896508292,
+ "match_probability": 0.018118666396567108,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.910716382755277,
+ "recall": 0.8929731116820908,
+ "row_count": 477830,
+ "tn": 147259,
+ "tn_rate": 0.846953741034917,
+ "tp": 271429,
+ "tp_rate": 0.8929731116820908,
+ "truth_threshold": -5.76
+ },
+ {
+ "f1": 0.9029532354468125,
+ "fn": 32638,
+ "fn_rate": 0.10737561726668882,
+ "fp": 25684,
+ "fp_rate": 0.1477204101938816,
+ "match_probability": 0.018366948053991125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9135239236785665,
+ "recall": 0.8926243827333111,
+ "row_count": 477830,
+ "tn": 148185,
+ "tn_rate": 0.8522795898061184,
+ "tp": 271323,
+ "tp_rate": 0.8926243827333111,
+ "truth_threshold": -5.74
+ },
+ {
+ "f1": 0.9025602610201092,
+ "fn": 32868,
+ "fn_rate": 0.10813229328762572,
+ "fp": 25666,
+ "fp_rate": 0.1476168839758669,
+ "match_probability": 0.018618567423050236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9135123113368087,
+ "recall": 0.8918677067123743,
+ "row_count": 477830,
+ "tn": 148203,
+ "tn_rate": 0.8523831160241331,
+ "tp": 271093,
+ "tp_rate": 0.8918677067123743,
+ "truth_threshold": -5.72
+ },
+ {
+ "f1": 0.9024999334061427,
+ "fn": 32915,
+ "fn_rate": 0.1082869183875563,
+ "fp": 25650,
+ "fp_rate": 0.14752486067096493,
+ "match_probability": 0.018873567594393605,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9135478739180845,
+ "recall": 0.8917130816124437,
+ "row_count": 477830,
+ "tn": 148219,
+ "tn_rate": 0.8524751393290351,
+ "tp": 271046,
+ "tp_rate": 0.8917130816124437,
+ "truth_threshold": -5.7
+ },
+ {
+ "f1": 0.902293778122679,
+ "fn": 33050,
+ "fn_rate": 0.10873105431288882,
+ "fp": 25622,
+ "fp_rate": 0.14736381988738648,
+ "match_probability": 0.01913199216593024,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9135947769725461,
+ "recall": 0.8912689456871111,
+ "row_count": 477830,
+ "tn": 148247,
+ "tn_rate": 0.8526361801126136,
+ "tp": 270911,
+ "tp_rate": 0.8912689456871111,
+ "truth_threshold": -5.68
+ },
+ {
+ "f1": 0.9021919451014357,
+ "fn": 33132,
+ "fn_rate": 0.10900082576383155,
+ "fp": 25591,
+ "fp_rate": 0.14718552473413893,
+ "match_probability": 0.019393885247431873,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9136664192699548,
+ "recall": 0.8909991742361685,
+ "row_count": 477830,
+ "tn": 148278,
+ "tn_rate": 0.8528144752658611,
+ "tp": 270829,
+ "tp_rate": 0.8909991742361685,
+ "truth_threshold": -5.66
+ },
+ {
+ "f1": 0.9021412841041223,
+ "fn": 33186,
+ "fn_rate": 0.10917848013396456,
+ "fp": 25559,
+ "fp_rate": 0.14700147812433498,
+ "match_probability": 0.019659291465137646,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9137493503951623,
+ "recall": 0.8908215198660354,
+ "row_count": 477830,
+ "tn": 148310,
+ "tn_rate": 0.852998521875665,
+ "tp": 270775,
+ "tp_rate": 0.8908215198660354,
+ "truth_threshold": -5.64
+ },
+ {
+ "f1": 0.902026576744682,
+ "fn": 33252,
+ "fn_rate": 0.10939561325301601,
+ "fp": 25554,
+ "fp_rate": 0.14697272084155313,
+ "match_probability": 0.019928255966358603,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9137455571569855,
+ "recall": 0.890604386746984,
+ "row_count": 477830,
+ "tn": 148315,
+ "tn_rate": 0.8530272791584469,
+ "tp": 270709,
+ "tp_rate": 0.890604386746984,
+ "truth_threshold": -5.62
+ },
+ {
+ "f1": 0.9017208680667815,
+ "fn": 33424,
+ "fn_rate": 0.10996147532084709,
+ "fp": 25548,
+ "fp_rate": 0.1469382121022149,
+ "match_probability": 0.02020082442408101,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9137139672729115,
+ "recall": 0.8900385246791529,
+ "row_count": 477830,
+ "tn": 148321,
+ "tn_rate": 0.8530617878977851,
+ "tp": 270537,
+ "tp_rate": 0.8900385246791529,
+ "truth_threshold": -5.6000000000000005
+ },
+ {
+ "f1": 0.9016074297791201,
+ "fn": 33495,
+ "fn_rate": 0.11019505791861456,
+ "fp": 25537,
+ "fp_rate": 0.14687494608009477,
+ "match_probability": 0.02047704304156655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.913727225737577,
+ "recall": 0.8898049420813854,
+ "row_count": 477830,
+ "tn": 148332,
+ "tn_rate": 0.8531250539199052,
+ "tp": 270466,
+ "tp_rate": 0.8898049420813854,
+ "truth_threshold": -5.58
+ },
+ {
+ "f1": 0.9014607179890705,
+ "fn": 33594,
+ "fn_rate": 0.11052075759719175,
+ "fp": 25514,
+ "fp_rate": 0.14674266257929822,
+ "match_probability": 0.020756958556947872,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9137693870170778,
+ "recall": 0.8894792424028083,
+ "row_count": 477830,
+ "tn": 148355,
+ "tn_rate": 0.8532573374207018,
+ "tp": 270367,
+ "tp_rate": 0.8894792424028083,
+ "truth_threshold": -5.5600000000000005
+ },
+ {
+ "f1": 0.9014555579638862,
+ "fn": 33628,
+ "fn_rate": 0.11063261405246068,
+ "fp": 25477,
+ "fp_rate": 0.14652985868671242,
+ "match_probability": 0.02104061824781806,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9138737703255468,
+ "recall": 0.8893673859475393,
+ "row_count": 477830,
+ "tn": 148392,
+ "tn_rate": 0.8534701413132876,
+ "tp": 270333,
+ "tp_rate": 0.8893673859475393,
+ "truth_threshold": -5.54
+ },
+ {
+ "f1": 0.9012971159266091,
+ "fn": 33735,
+ "fn_rate": 0.1109846328969835,
+ "fp": 25451,
+ "fp_rate": 0.14638032081624672,
+ "match_probability": 0.021328069935811763,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9139229632335285,
+ "recall": 0.8890153671030165,
+ "row_count": 477830,
+ "tn": 148418,
+ "tn_rate": 0.8536196791837533,
+ "tp": 270226,
+ "tp_rate": 0.8890153671030165,
+ "truth_threshold": -5.5200000000000005
+ },
+ {
+ "f1": 0.9019668070018463,
+ "fn": 33803,
+ "fn_rate": 0.11120834580752136,
+ "fp": 24924,
+ "fp_rate": 0.1433493032110382,
+ "match_probability": 0.021619361991176866,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9155353427182953,
+ "recall": 0.8887916541924786,
+ "row_count": 477830,
+ "tn": 148945,
+ "tn_rate": 0.8566506967889618,
+ "tp": 270158,
+ "tp_rate": 0.8887916541924786,
+ "truth_threshold": -5.5
+ },
+ {
+ "f1": 0.9017218463429132,
+ "fn": 33944,
+ "fn_rate": 0.1116722211073131,
+ "fp": 24915,
+ "fp_rate": 0.14329754010203083,
+ "match_probability": 0.021914543337334162,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.915522900193943,
+ "recall": 0.8883277788926869,
+ "row_count": 477830,
+ "tn": 148954,
+ "tn_rate": 0.8567024598979691,
+ "tp": 270017,
+ "tp_rate": 0.8883277788926869,
+ "truth_threshold": -5.48
+ },
+ {
+ "f1": 0.9015856261503055,
+ "fn": 34047,
+ "fn_rate": 0.1120110803688631,
+ "fp": 24880,
+ "fp_rate": 0.14309623912255778,
+ "match_probability": 0.02221366345542378,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9156020814534895,
+ "recall": 0.8879889196311369,
+ "row_count": 477830,
+ "tn": 148989,
+ "tn_rate": 0.8569037608774422,
+ "tp": 269914,
+ "tp_rate": 0.8879889196311369,
+ "truth_threshold": -5.46
+ },
+ {
+ "f1": 0.9015217572872296,
+ "fn": 34113,
+ "fn_rate": 0.11222821348791456,
+ "fp": 24842,
+ "fp_rate": 0.14287768377341561,
+ "match_probability": 0.02251677238883578,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9157012453764973,
+ "recall": 0.8877717865120854,
+ "row_count": 477830,
+ "tn": 149027,
+ "tn_rate": 0.8571223162265844,
+ "tp": 269848,
+ "tp_rate": 0.8877717865120854,
+ "truth_threshold": -5.44
+ },
+ {
+ "f1": 0.9013829904537238,
+ "fn": 34196,
+ "fn_rate": 0.1125012748346005,
+ "fp": 24832,
+ "fp_rate": 0.1428201692078519,
+ "match_probability": 0.02282392074772345,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.915708578159316,
+ "recall": 0.8874987251653995,
+ "row_count": 477830,
+ "tn": 149037,
+ "tn_rate": 0.8571798307921481,
+ "tp": 269765,
+ "tp_rate": 0.8874987251653995,
+ "truth_threshold": -5.42
+ },
+ {
+ "f1": 0.9013705130818666,
+ "fn": 34243,
+ "fn_rate": 0.11265589993453108,
+ "fp": 24784,
+ "fp_rate": 0.142544099293146,
+ "match_probability": 0.023135159713496674,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9158443745713102,
+ "recall": 0.8873441000654689,
+ "row_count": 477830,
+ "tn": 149085,
+ "tn_rate": 0.857455900706854,
+ "tp": 269718,
+ "tp_rate": 0.8873441000654689,
+ "truth_threshold": -5.4
+ },
+ {
+ "f1": 0.9012921727620945,
+ "fn": 34307,
+ "fn_rate": 0.11286645326209613,
+ "fp": 24758,
+ "fp_rate": 0.14239456142268028,
+ "match_probability": 0.023450541043293725,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9159069603141177,
+ "recall": 0.8871335467379039,
+ "row_count": 477830,
+ "tn": 149111,
+ "tn_rate": 0.8576054385773197,
+ "tp": 269654,
+ "tp_rate": 0.8871335467379039,
+ "truth_threshold": -5.38
+ },
+ {
+ "f1": 0.901193711536983,
+ "fn": 34368,
+ "fn_rate": 0.11306713690243156,
+ "fp": 24749,
+ "fp_rate": 0.14234279831367294,
+ "match_probability": 0.023770117074428793,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9159175381019359,
+ "recall": 0.8869328630975685,
+ "row_count": 477830,
+ "tn": 149120,
+ "tn_rate": 0.8576572016863271,
+ "tp": 269593,
+ "tp_rate": 0.8869328630975685,
+ "truth_threshold": -5.36
+ },
+ {
+ "f1": 0.9010488236257803,
+ "fn": 34460,
+ "fn_rate": 0.11336980731080631,
+ "fp": 24733,
+ "fp_rate": 0.14225077500877098,
+ "match_probability": 0.024093940728813348,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9159410537191487,
+ "recall": 0.8866301926891936,
+ "row_count": 477830,
+ "tn": 149136,
+ "tn_rate": 0.8577492249912291,
+ "tp": 269501,
+ "tp_rate": 0.8866301926891936,
+ "truth_threshold": -5.34
+ },
+ {
+ "f1": 0.9009367235077135,
+ "fn": 34562,
+ "fn_rate": 0.11370537667661312,
+ "fp": 24682,
+ "fp_rate": 0.14195745072439594,
+ "match_probability": 0.024422065517348556,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9160707424145048,
+ "recall": 0.8862946233233869,
+ "row_count": 477830,
+ "tn": 149187,
+ "tn_rate": 0.8580425492756041,
+ "tp": 269399,
+ "tp_rate": 0.8862946233233869,
+ "truth_threshold": -5.32
+ },
+ {
+ "f1": 0.9008027829810008,
+ "fn": 34657,
+ "fn_rate": 0.1140179167722175,
+ "fp": 24655,
+ "fp_rate": 0.1418021613973739,
+ "match_probability": 0.024754545544286844,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9161277593133736,
+ "recall": 0.8859820832277825,
+ "row_count": 477830,
+ "tn": 149214,
+ "tn_rate": 0.8581978386026261,
+ "tp": 269304,
+ "tp_rate": 0.8859820832277825,
+ "truth_threshold": -5.3
+ },
+ {
+ "f1": 0.9007263031470906,
+ "fn": 34724,
+ "fn_rate": 0.11423833978701214,
+ "fp": 24624,
+ "fp_rate": 0.14162386624412632,
+ "match_probability": 0.0250914355115595,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9162052807279633,
+ "recall": 0.8857616602129879,
+ "row_count": 477830,
+ "tn": 149245,
+ "tn_rate": 0.8583761337558736,
+ "tp": 269237,
+ "tp_rate": 0.8857616602129879,
+ "truth_threshold": -5.28
+ },
+ {
+ "f1": 0.9003664842612581,
+ "fn": 34945,
+ "fn_rate": 0.11496540674626021,
+ "fp": 24593,
+ "fp_rate": 0.14144557109087877,
+ "match_probability": 0.02543279072306829,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9162389436291122,
+ "recall": 0.8850345932537398,
+ "row_count": 477830,
+ "tn": 149276,
+ "tn_rate": 0.8585544289091213,
+ "tp": 269016,
+ "tp_rate": 0.8850345932537398,
+ "truth_threshold": -5.26
+ },
+ {
+ "f1": 0.900325052473713,
+ "fn": 35015,
+ "fn_rate": 0.11519569944828448,
+ "fp": 24536,
+ "fp_rate": 0.14111773806716552,
+ "match_probability": 0.025778667088937956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9163969170170573,
+ "recall": 0.8848043005517156,
+ "row_count": 477830,
+ "tn": 149333,
+ "tn_rate": 0.8588822619328345,
+ "tp": 268946,
+ "tp_rate": 0.8848043005517156,
+ "truth_threshold": -5.24
+ },
+ {
+ "f1": 0.9002504285408185,
+ "fn": 35067,
+ "fn_rate": 0.11536677402693109,
+ "fp": 24522,
+ "fp_rate": 0.14103721767537628,
+ "match_probability": 0.02612912112972733,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9164258254491916,
+ "recall": 0.8846332259730689,
+ "row_count": 477830,
+ "tn": 149347,
+ "tn_rate": 0.8589627823246238,
+ "tp": 268894,
+ "tp_rate": 0.8846332259730689,
+ "truth_threshold": -5.22
+ },
+ {
+ "f1": 0.9000622831808623,
+ "fn": 35170,
+ "fn_rate": 0.11570563328848109,
+ "fp": 24520,
+ "fp_rate": 0.14102571476226355,
+ "match_probability": 0.026484209980595738,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9164027261166475,
+ "recall": 0.884294366711519,
+ "row_count": 477830,
+ "tn": 149349,
+ "tn_rate": 0.8589742852377364,
+ "tp": 268791,
+ "tp_rate": 0.884294366711519,
+ "truth_threshold": -5.2
+ },
+ {
+ "f1": 0.9154485174357192,
+ "fn": 35297,
+ "fn_rate": 0.11612345004786798,
+ "fp": 14331,
+ "fp_rate": 0.08242412390938005,
+ "match_probability": 0.026843991395422352,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.949359529320306,
+ "recall": 0.883876549952132,
+ "row_count": 477830,
+ "tn": 159538,
+ "tn_rate": 0.91757587609062,
+ "tp": 268664,
+ "tp_rate": 0.883876549952132,
+ "truth_threshold": -5.18
+ },
+ {
+ "f1": 0.9153844843156298,
+ "fn": 35346,
+ "fn_rate": 0.11628465493928497,
+ "fp": 14315,
+ "fp_rate": 0.08233210060447808,
+ "match_probability": 0.027208523750875003,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9494044463294808,
+ "recall": 0.883715345060715,
+ "row_count": 477830,
+ "tn": 159554,
+ "tn_rate": 0.917667899395522,
+ "tp": 268615,
+ "tp_rate": 0.883715345060715,
+ "truth_threshold": -5.16
+ },
+ {
+ "f1": 0.915198778426133,
+ "fn": 35449,
+ "fn_rate": 0.11662351420083497,
+ "fp": 14311,
+ "fp_rate": 0.08230909477825259,
+ "match_probability": 0.0275778660504259,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9493994477111126,
+ "recall": 0.8833764857991651,
+ "row_count": 477830,
+ "tn": 159558,
+ "tn_rate": 0.9176909052217475,
+ "tp": 268512,
+ "tp_rate": 0.8833764857991651,
+ "truth_threshold": -5.14
+ },
+ {
+ "f1": 0.9150951757615424,
+ "fn": 35516,
+ "fn_rate": 0.11684393721562963,
+ "fp": 14298,
+ "fp_rate": 0.08223432584301975,
+ "match_probability": 0.027952077928310608,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9494311088161334,
+ "recall": 0.8831560627843703,
+ "row_count": 477830,
+ "tn": 159571,
+ "tn_rate": 0.9177656741569803,
+ "tp": 268445,
+ "tp_rate": 0.8831560627843703,
+ "truth_threshold": -5.12
+ },
+ {
+ "f1": 0.9150014830674608,
+ "fn": 35581,
+ "fn_rate": 0.11705778043893789,
+ "fp": 14282,
+ "fp_rate": 0.08214230253811777,
+ "match_probability": 0.028331219653427598,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9494732224352761,
+ "recall": 0.8829422195610621,
+ "row_count": 477830,
+ "tn": 159587,
+ "tn_rate": 0.9178576974618822,
+ "tp": 268380,
+ "tp_rate": 0.8829422195610621,
+ "truth_threshold": -5.1000000000000005
+ },
+ {
+ "f1": 0.9148984052401687,
+ "fn": 35646,
+ "fn_rate": 0.11727162366224614,
+ "fp": 14271,
+ "fp_rate": 0.08207903651599768,
+ "match_probability": 0.02871535213317462,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9494985597304891,
+ "recall": 0.8827283763377538,
+ "row_count": 477830,
+ "tn": 159598,
+ "tn_rate": 0.9179209634840023,
+ "tp": 268315,
+ "tp_rate": 0.8827283763377538,
+ "truth_threshold": -5.08
+ },
+ {
+ "f1": 0.9147601702545634,
+ "fn": 35746,
+ "fn_rate": 0.11760061323656654,
+ "fp": 14241,
+ "fp_rate": 0.0819064928193065,
+ "match_probability": 0.029104536917218708,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.949581527742374,
+ "recall": 0.8823993867634334,
+ "row_count": 477830,
+ "tn": 159628,
+ "tn_rate": 0.9180935071806935,
+ "tp": 268215,
+ "tp_rate": 0.8823993867634334,
+ "truth_threshold": -5.0600000000000005
+ },
+ {
+ "f1": 0.9183632925960432,
+ "fn": 35843,
+ "fn_rate": 0.1179197331236573,
+ "fp": 11826,
+ "fp_rate": 0.06801672523566593,
+ "match_probability": 0.029498836201196473,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.957755836881662,
+ "recall": 0.8820802668763427,
+ "row_count": 477830,
+ "tn": 162043,
+ "tn_rate": 0.9319832747643341,
+ "tp": 268118,
+ "tp_rate": 0.8820802668763427,
+ "truth_threshold": -5.04
+ },
+ {
+ "f1": 0.918295828637396,
+ "fn": 35893,
+ "fn_rate": 0.1180842279108175,
+ "fp": 11809,
+ "fp_rate": 0.0679189504742076,
+ "match_probability": 0.02989831283034073,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9578064649828317,
+ "recall": 0.8819157720891825,
+ "row_count": 477830,
+ "tn": 162060,
+ "tn_rate": 0.9320810495257924,
+ "tp": 268068,
+ "tp_rate": 0.8819157720891825,
+ "truth_threshold": -5.0200000000000005
+ },
+ {
+ "f1": 0.918101705600592,
+ "fn": 36002,
+ "fn_rate": 0.11844282654682674,
+ "fp": 11804,
+ "fp_rate": 0.06789019319142572,
+ "match_probability": 0.030303030303030304,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9578071439039473,
+ "recall": 0.8815571734531733,
+ "row_count": 477830,
+ "tn": 162065,
+ "tn_rate": 0.9321098068085742,
+ "tp": 267959,
+ "tp_rate": 0.8815571734531733,
+ "truth_threshold": -5
+ },
+ {
+ "f1": 0.9180090255862006,
+ "fn": 36052,
+ "fn_rate": 0.11860732133398692,
+ "fp": 11804,
+ "fp_rate": 0.06789019319142572,
+ "match_probability": 0.03071305277425868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9577996017346352,
+ "recall": 0.8813926786660131,
+ "row_count": 477830,
+ "tn": 162065,
+ "tn_rate": 0.9321098068085742,
+ "tp": 267909,
+ "tp_rate": 0.8813926786660131,
+ "truth_threshold": -4.98
+ },
+ {
+ "f1": 0.9178362963953126,
+ "fn": 36174,
+ "fn_rate": 0.1190086886146578,
+ "fp": 11771,
+ "fp_rate": 0.06770039512506543,
+ "match_probability": 0.031128445059018316,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9578942473475988,
+ "recall": 0.8809913113853421,
+ "row_count": 477830,
+ "tn": 162098,
+ "tn_rate": 0.9322996048749346,
+ "tp": 267787,
+ "tp_rate": 0.8809913113853421,
+ "truth_threshold": -4.96
+ },
+ {
+ "f1": 0.9177450150311764,
+ "fn": 36230,
+ "fn_rate": 0.11919292277627722,
+ "fp": 11762,
+ "fp_rate": 0.06764863201605807,
+ "match_probability": 0.03154927263559596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9579166562311042,
+ "recall": 0.8808070772237228,
+ "row_count": 477830,
+ "tn": 162107,
+ "tn_rate": 0.9323513679839419,
+ "tp": 267731,
+ "tp_rate": 0.8808070772237228,
+ "truth_threshold": -4.94
+ },
+ {
+ "f1": 0.9176560126983692,
+ "fn": 36289,
+ "fn_rate": 0.11938702662512625,
+ "fp": 11749,
+ "fp_rate": 0.06757386308082522,
+ "match_probability": 0.03197560164877564,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9579523371543298,
+ "recall": 0.8806129733748738,
+ "row_count": 477830,
+ "tn": 162120,
+ "tn_rate": 0.9324261369191748,
+ "tp": 267672,
+ "tp_rate": 0.8806129733748738,
+ "truth_threshold": -4.92
+ },
+ {
+ "f1": 0.9172094235630233,
+ "fn": 36533,
+ "fn_rate": 0.120189761186468,
+ "fp": 11745,
+ "fp_rate": 0.06755085725459972,
+ "match_probability": 0.03240749891294454,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9579293126484295,
+ "recall": 0.879810238813532,
+ "row_count": 477830,
+ "tn": 162124,
+ "tn_rate": 0.9324491427454003,
+ "tp": 267428,
+ "tp_rate": 0.879810238813532,
+ "truth_threshold": -4.9
+ },
+ {
+ "f1": 0.9169782839891591,
+ "fn": 36671,
+ "fn_rate": 0.12064376679903013,
+ "fp": 11730,
+ "fp_rate": 0.06746458540625414,
+ "match_probability": 0.032845031915098126,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.957960002867178,
+ "recall": 0.8793562332009699,
+ "row_count": 477830,
+ "tn": 162139,
+ "tn_rate": 0.9325354145937459,
+ "tp": 267290,
+ "tp_rate": 0.8793562332009699,
+ "truth_threshold": -4.88
+ },
+ {
+ "f1": 0.9171430924552,
+ "fn": 36700,
+ "fn_rate": 0.12073917377558305,
+ "fp": 11591,
+ "fp_rate": 0.0666651329449183,
+ "match_probability": 0.0332882688177396,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9584331473326352,
+ "recall": 0.8792608262244169,
+ "row_count": 477830,
+ "tn": 162278,
+ "tn_rate": 0.9333348670550817,
+ "tp": 267261,
+ "tp_rate": 0.8792608262244169,
+ "truth_threshold": -4.86
+ },
+ {
+ "f1": 0.9170513555348863,
+ "fn": 36768,
+ "fn_rate": 0.12096288668612092,
+ "fp": 11568,
+ "fp_rate": 0.06653284944412173,
+ "match_probability": 0.03373727846166985,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9585020860163366,
+ "recall": 0.8790371133138791,
+ "row_count": 477830,
+ "tn": 162301,
+ "tn_rate": 0.9334671505558783,
+ "tp": 267193,
+ "tp_rate": 0.8790371133138791,
+ "truth_threshold": -4.84
+ },
+ {
+ "f1": 0.9169018049004868,
+ "fn": 36851,
+ "fn_rate": 0.12123594803280684,
+ "fp": 11565,
+ "fp_rate": 0.06651559507445261,
+ "match_probability": 0.034192130368662726,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.958500044855118,
+ "recall": 0.8787640519671932,
+ "row_count": 477830,
+ "tn": 162304,
+ "tn_rate": 0.9334844049255474,
+ "tp": 267110,
+ "tp_rate": 0.8787640519671932,
+ "truth_threshold": -4.82
+ },
+ {
+ "f1": 0.9168097173775714,
+ "fn": 36920,
+ "fn_rate": 0.12146295083908791,
+ "fp": 11543,
+ "fp_rate": 0.0663890630302124,
+ "match_probability": 0.034652894744021626,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9585654596100278,
+ "recall": 0.8785370491609121,
+ "row_count": 477830,
+ "tn": 162326,
+ "tn_rate": 0.9336109369697876,
+ "tp": 267041,
+ "tp_rate": 0.8785370491609121,
+ "truth_threshold": -4.8
+ },
+ {
+ "f1": 0.9164600262393274,
+ "fn": 37119,
+ "fn_rate": 0.12211764009198549,
+ "fp": 11530,
+ "fp_rate": 0.06631429409497955,
+ "match_probability": 0.03511964247901206,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9585806043711292,
+ "recall": 0.8778823599080146,
+ "row_count": 477830,
+ "tn": 162339,
+ "tn_rate": 0.9336857059050204,
+ "tp": 266842,
+ "tp_rate": 0.8778823599080146,
+ "truth_threshold": -4.78
+ },
+ {
+ "f1": 0.9164339663468969,
+ "fn": 37144,
+ "fn_rate": 0.12219988748556558,
+ "fp": 11516,
+ "fp_rate": 0.06623377370319034,
+ "match_probability": 0.0355924451531659,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9586251001498205,
+ "recall": 0.8778001125144345,
+ "row_count": 477830,
+ "tn": 162353,
+ "tn_rate": 0.9337662262968097,
+ "tp": 266817,
+ "tp_rate": 0.8778001125144345,
+ "truth_threshold": -4.76
+ },
+ {
+ "f1": 0.9162882093069593,
+ "fn": 37235,
+ "fn_rate": 0.12249926799819713,
+ "fp": 11501,
+ "fp_rate": 0.06614750185484473,
+ "match_probability": 0.03607137503645171,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9586632497924357,
+ "recall": 0.8775007320018029,
+ "row_count": 477830,
+ "tn": 162368,
+ "tn_rate": 0.9338524981451553,
+ "tp": 266726,
+ "tp_rate": 0.8775007320018029,
+ "truth_threshold": -4.74
+ },
+ {
+ "f1": 0.9161020326823436,
+ "fn": 37335,
+ "fn_rate": 0.12282825757251753,
+ "fp": 11501,
+ "fp_rate": 0.06614750185484473,
+ "match_probability": 0.036556505091306896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9586483872475524,
+ "recall": 0.8771717424274825,
+ "row_count": 477830,
+ "tn": 162368,
+ "tn_rate": 0.9338524981451553,
+ "tp": 266626,
+ "tp_rate": 0.8771717424274825,
+ "truth_threshold": -4.72
+ },
+ {
+ "f1": 0.9160752641979552,
+ "fn": 37406,
+ "fn_rate": 0.123061840170285,
+ "fp": 11435,
+ "fp_rate": 0.06576790572212413,
+ "match_probability": 0.03704790897452556,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9588654268139142,
+ "recall": 0.876938159829715,
+ "row_count": 477830,
+ "tn": 162434,
+ "tn_rate": 0.9342320942778759,
+ "tp": 266555,
+ "tp_rate": 0.876938159829715,
+ "truth_threshold": -4.7
+ },
+ {
+ "f1": 0.9160147926146909,
+ "fn": 37441,
+ "fn_rate": 0.12317698652129715,
+ "fp": 11432,
+ "fp_rate": 0.065750651352455,
+ "match_probability": 0.037545661038997695,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9588705963619618,
+ "recall": 0.8768230134787028,
+ "row_count": 477830,
+ "tn": 162437,
+ "tn_rate": 0.9342493486475449,
+ "tp": 266520,
+ "tp_rate": 0.8768230134787028,
+ "truth_threshold": -4.68
+ },
+ {
+ "f1": 0.9158714662853371,
+ "fn": 37523,
+ "fn_rate": 0.12344675797223986,
+ "fp": 11425,
+ "fp_rate": 0.0657103911565604,
+ "match_probability": 0.0380498363352935,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9588826148137751,
+ "recall": 0.8765532420277602,
+ "row_count": 477830,
+ "tn": 162444,
+ "tn_rate": 0.9342896088434396,
+ "tp": 266438,
+ "tp_rate": 0.8765532420277602,
+ "truth_threshold": -4.66
+ },
+ {
+ "f1": 0.9157968563059532,
+ "fn": 37585,
+ "fn_rate": 0.1236507315083185,
+ "fp": 11400,
+ "fp_rate": 0.06556660474265108,
+ "match_probability": 0.03856051061308806,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.958959737342319,
+ "recall": 0.8763492684916815,
+ "row_count": 477830,
+ "tn": 162469,
+ "tn_rate": 0.9344333952573489,
+ "tp": 266376,
+ "tp_rate": 0.8763492684916815,
+ "truth_threshold": -4.64
+ },
+ {
+ "f1": 0.9158113778633831,
+ "fn": 37698,
+ "fn_rate": 0.12402248972730054,
+ "fp": 11257,
+ "fp_rate": 0.06474414645508975,
+ "match_probability": 0.03907776032242,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9594371576823292,
+ "recall": 0.8759775102726994,
+ "row_count": 477830,
+ "tn": 162612,
+ "tn_rate": 0.9352558535449103,
+ "tp": 266263,
+ "tp_rate": 0.8759775102726994,
+ "truth_threshold": -4.62
+ },
+ {
+ "f1": 0.9156960544872897,
+ "fn": 37759,
+ "fn_rate": 0.12422317336763598,
+ "fp": 11257,
+ "fp_rate": 0.06474414645508975,
+ "match_probability": 0.039601662614779175,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9594282398480496,
+ "recall": 0.875776826632364,
+ "row_count": 477830,
+ "tn": 162612,
+ "tn_rate": 0.9352558535449103,
+ "tp": 266202,
+ "tp_rate": 0.875776826632364,
+ "truth_threshold": -4.6000000000000005
+ },
+ {
+ "f1": 0.9155255226324989,
+ "fn": 37869,
+ "fn_rate": 0.12458506189938841,
+ "fp": 11235,
+ "fp_rate": 0.06461761441084955,
+ "match_probability": 0.0401322953440168,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.959488257544343,
+ "recall": 0.8754149381006116,
+ "row_count": 477830,
+ "tn": 162634,
+ "tn_rate": 0.9353823855891504,
+ "tp": 266092,
+ "tp_rate": 0.8754149381006116,
+ "truth_threshold": -4.58
+ },
+ {
+ "f1": 0.915386283004649,
+ "fn": 37947,
+ "fn_rate": 0.12484167376735832,
+ "fp": 11231,
+ "fp_rate": 0.06459460858462406,
+ "match_probability": 0.04066973706707255,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9594907031686776,
+ "recall": 0.8751583262326417,
+ "row_count": 477830,
+ "tn": 162638,
+ "tn_rate": 0.9354053914153759,
+ "tp": 266014,
+ "tp_rate": 0.8751583262326417,
+ "truth_threshold": -4.5600000000000005
+ },
+ {
+ "f1": 0.9152329459218547,
+ "fn": 38030,
+ "fn_rate": 0.12511473511404422,
+ "fp": 11230,
+ "fp_rate": 0.06458885712806768,
+ "match_probability": 0.041214067044512546,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9594820339080895,
+ "recall": 0.8748852648859557,
+ "row_count": 477830,
+ "tn": 162639,
+ "tn_rate": 0.9354111428719323,
+ "tp": 265931,
+ "tp_rate": 0.8748852648859557,
+ "truth_threshold": -4.54
+ },
+ {
+ "f1": 0.9151507433044089,
+ "fn": 38085,
+ "fn_rate": 0.12529567937992045,
+ "fp": 11217,
+ "fp_rate": 0.06451408819283483,
+ "match_probability": 0.041765365240871495,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9595190062542179,
+ "recall": 0.8747043206200795,
+ "row_count": 477830,
+ "tn": 162652,
+ "tn_rate": 0.9354859118071651,
+ "tp": 265876,
+ "tp_rate": 0.8747043206200795,
+ "truth_threshold": -4.5200000000000005
+ },
+ {
+ "f1": 0.9150260422942005,
+ "fn": 38156,
+ "fn_rate": 0.12552926197768793,
+ "fp": 11212,
+ "fp_rate": 0.06448533091005297,
+ "match_probability": 0.04232371232479359,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9595259496709588,
+ "recall": 0.8744707380223121,
+ "row_count": 477830,
+ "tn": 162657,
+ "tn_rate": 0.9355146690899471,
+ "tp": 265805,
+ "tp_rate": 0.8744707380223121,
+ "truth_threshold": -4.5
+ },
+ {
+ "f1": 0.9150009295536077,
+ "fn": 38188,
+ "fn_rate": 0.12563453864147045,
+ "fp": 11191,
+ "fp_rate": 0.06436455032236914,
+ "match_probability": 0.04288918966896465,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9595940266605046,
+ "recall": 0.8743654613585295,
+ "row_count": 477830,
+ "tn": 162678,
+ "tn_rate": 0.9356354496776309,
+ "tp": 265773,
+ "tp_rate": 0.8743654613585295,
+ "truth_threshold": -4.48
+ },
+ {
+ "f1": 0.9148813090097722,
+ "fn": 38263,
+ "fn_rate": 0.12588128082221076,
+ "fp": 11177,
+ "fp_rate": 0.06428402993057993,
+ "match_probability": 0.0434618793498302,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9596316027088037,
+ "recall": 0.8741187191777893,
+ "row_count": 477830,
+ "tn": 162692,
+ "tn_rate": 0.9357159700694201,
+ "tp": 265698,
+ "tp_rate": 0.8741187191777893,
+ "truth_threshold": -4.46
+ },
+ {
+ "f1": 0.9148259878367117,
+ "fn": 38312,
+ "fn_rate": 0.12604248571362772,
+ "fp": 11155,
+ "fp_rate": 0.06415749788633972,
+ "match_probability": 0.04404186414709147,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9597007268681088,
+ "recall": 0.8739575142863723,
+ "row_count": 477830,
+ "tn": 162714,
+ "tn_rate": 0.9358425021136603,
+ "tp": 265649,
+ "tp_rate": 0.8739575142863723,
+ "truth_threshold": -4.44
+ },
+ {
+ "f1": 0.9147340757146253,
+ "fn": 38389,
+ "fn_rate": 0.12629580768585444,
+ "fp": 11122,
+ "fp_rate": 0.0639676998199794,
+ "match_probability": 0.04462922754297395,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9598039711739322,
+ "recall": 0.8737041923141455,
+ "row_count": 477830,
+ "tn": 162747,
+ "tn_rate": 0.9360323001800206,
+ "tp": 265572,
+ "tp_rate": 0.8737041923141455,
+ "truth_threshold": -4.42
+ },
+ {
+ "f1": 0.9177388022039558,
+ "fn": 38461,
+ "fn_rate": 0.12653268017936511,
+ "fp": 9135,
+ "fp_rate": 0.05253955564246646,
+ "match_probability": 0.04522405372126023,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9667376699983614,
+ "recall": 0.8734673198206349,
+ "row_count": 477830,
+ "tn": 164734,
+ "tn_rate": 0.9474604443575335,
+ "tp": 265500,
+ "tp_rate": 0.8734673198206349,
+ "truth_threshold": -4.4
+ },
+ {
+ "f1": 0.917671258923787,
+ "fn": 38520,
+ "fn_rate": 0.12672678402821413,
+ "fp": 9109,
+ "fp_rate": 0.05239001777200076,
+ "match_probability": 0.04582642756608153,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9668220724822437,
+ "recall": 0.8732732159717859,
+ "row_count": 477830,
+ "tn": 164760,
+ "tn_rate": 0.9476099822279992,
+ "tp": 265441,
+ "tp_rate": 0.8732732159717859,
+ "truth_threshold": -4.38
+ },
+ {
+ "f1": 0.9174874121617883,
+ "fn": 38653,
+ "fn_rate": 0.12716434016206027,
+ "fp": 9068,
+ "fp_rate": 0.05215420805318947,
+ "match_probability": 0.046436434660459415,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9669504621395457,
+ "recall": 0.8728356598379398,
+ "row_count": 477830,
+ "tn": 164801,
+ "tn_rate": 0.9478457919468105,
+ "tp": 265308,
+ "tp_rate": 0.8728356598379398,
+ "truth_threshold": -4.36
+ },
+ {
+ "f1": 0.9173886427541269,
+ "fn": 38710,
+ "fn_rate": 0.12735186421942288,
+ "fp": 9062,
+ "fp_rate": 0.052119699313851235,
+ "match_probability": 0.047054161284591715,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9669647446530059,
+ "recall": 0.8726481357805771,
+ "row_count": 477830,
+ "tn": 164807,
+ "tn_rate": 0.9478803006861488,
+ "tp": 265251,
+ "tp_rate": 0.8726481357805771,
+ "truth_threshold": -4.34
+ },
+ {
+ "f1": 0.9172677175977335,
+ "fn": 38800,
+ "fn_rate": 0.12764795483631125,
+ "fp": 9033,
+ "fp_rate": 0.05195290707371642,
+ "match_probability": 0.04767969441387431,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9670561719074816,
+ "recall": 0.8723520451636888,
+ "row_count": 477830,
+ "tn": 164836,
+ "tn_rate": 0.9480470929262835,
+ "tp": 265161,
+ "tp_rate": 0.8723520451636888,
+ "truth_threshold": -4.32
+ },
+ {
+ "f1": 0.9171885488101087,
+ "fn": 38877,
+ "fn_rate": 0.12790127680853794,
+ "fp": 8992,
+ "fp_rate": 0.05171709735490513,
+ "match_probability": 0.04831312171665215,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9671915818969921,
+ "recall": 0.8720987231914621,
+ "row_count": 477830,
+ "tn": 164877,
+ "tn_rate": 0.9482829026450948,
+ "tp": 265084,
+ "tp_rate": 0.8720987231914621,
+ "truth_threshold": -4.3
+ },
+ {
+ "f1": 0.9170052395157774,
+ "fn": 38985,
+ "fn_rate": 0.12825658554880395,
+ "fp": 8980,
+ "fp_rate": 0.05164807987622865,
+ "match_probability": 0.04895453155169113,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9672210135934237,
+ "recall": 0.8717434144511961,
+ "row_count": 477830,
+ "tn": 164889,
+ "tn_rate": 0.9483519201237713,
+ "tp": 264976,
+ "tp_rate": 0.8717434144511961,
+ "truth_threshold": -4.28
+ },
+ {
+ "f1": 0.9169527896995708,
+ "fn": 39035,
+ "fn_rate": 0.12842108033596417,
+ "fp": 8953,
+ "fp_rate": 0.05149279054920659,
+ "match_probability": 0.04960401296536411,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9673103815918709,
+ "recall": 0.8715789196640359,
+ "row_count": 477830,
+ "tn": 164916,
+ "tn_rate": 0.9485072094507934,
+ "tp": 264926,
+ "tp_rate": 0.8715789196640359,
+ "truth_threshold": -4.26
+ },
+ {
+ "f1": 0.9168642627445144,
+ "fn": 39089,
+ "fn_rate": 0.12859873470609717,
+ "fp": 8945,
+ "fp_rate": 0.051446778896755606,
+ "match_probability": 0.05026165568854217,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9673321963209005,
+ "recall": 0.8714012652939028,
+ "row_count": 477830,
+ "tn": 164924,
+ "tn_rate": 0.9485532211032444,
+ "tp": 264872,
+ "tp_rate": 0.8714012652939028,
+ "truth_threshold": -4.24
+ },
+ {
+ "f1": 0.9166721489139956,
+ "fn": 39216,
+ "fn_rate": 0.12901655146548405,
+ "fp": 8916,
+ "fp_rate": 0.05127998665662079,
+ "match_probability": 0.05092755013318443,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9674195446190725,
+ "recall": 0.8709834485345159,
+ "row_count": 477830,
+ "tn": 164953,
+ "tn_rate": 0.9487200133433792,
+ "tp": 264745,
+ "tp_rate": 0.8709834485345159,
+ "truth_threshold": -4.22
+ },
+ {
+ "f1": 0.9164704089548931,
+ "fn": 39343,
+ "fn_rate": 0.12943436822487095,
+ "fp": 8893,
+ "fp_rate": 0.05114770315582421,
+ "match_probability": 0.05160178738861727,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9674857683968835,
+ "recall": 0.870565631775129,
+ "row_count": 477830,
+ "tn": 164976,
+ "tn_rate": 0.9488522968441758,
+ "tp": 264618,
+ "tp_rate": 0.870565631775129,
+ "truth_threshold": -4.2
+ },
+ {
+ "f1": 0.9160418543413484,
+ "fn": 39573,
+ "fn_rate": 0.13019104424580785,
+ "fp": 8892,
+ "fp_rate": 0.05114195169926784,
+ "match_probability": 0.052284459217495936,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.967461943793911,
+ "recall": 0.8698089557541921,
+ "row_count": 477830,
+ "tn": 164977,
+ "tn_rate": 0.9488580483007322,
+ "tp": 264388,
+ "tp_rate": 0.8698089557541921,
+ "truth_threshold": -4.18
+ },
+ {
+ "f1": 0.9159089333980179,
+ "fn": 39648,
+ "fn_rate": 0.13043778642654813,
+ "fp": 8886,
+ "fp_rate": 0.051107442959929604,
+ "match_probability": 0.05297565805143919,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9674742586905516,
+ "recall": 0.8695622135734519,
+ "row_count": 477830,
+ "tn": 164983,
+ "tn_rate": 0.9488925570400704,
+ "tp": 264313,
+ "tp_rate": 0.8695622135734519,
+ "truth_threshold": -4.16
+ },
+ {
+ "f1": 0.9157313496987806,
+ "fn": 39778,
+ "fn_rate": 0.13086547287316466,
+ "fp": 8845,
+ "fp_rate": 0.05087163324111831,
+ "match_probability": 0.05367547698633007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9676040552617314,
+ "recall": 0.8691345271268354,
+ "row_count": 477830,
+ "tn": 165024,
+ "tn_rate": 0.9491283667588817,
+ "tp": 264183,
+ "tp_rate": 0.8691345271268354,
+ "truth_threshold": -4.14
+ },
+ {
+ "f1": 0.9156017943935602,
+ "fn": 39852,
+ "fn_rate": 0.13110892515816175,
+ "fp": 8839,
+ "fp_rate": 0.05083712450178007,
+ "match_probability": 0.05438400977727288,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9676165423450621,
+ "recall": 0.8688910748418383,
+ "row_count": 477830,
+ "tn": 165030,
+ "tn_rate": 0.9491628754982199,
+ "tp": 264109,
+ "tp_rate": 0.8688910748418383,
+ "truth_threshold": -4.12
+ },
+ {
+ "f1": 0.9151909270627406,
+ "fn": 40084,
+ "fn_rate": 0.13187218097058503,
+ "fp": 8823,
+ "fp_rate": 0.05074510119687811,
+ "match_probability": 0.05510135083319928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9676457645764577,
+ "recall": 0.8681278190294149,
+ "row_count": 477830,
+ "tn": 165046,
+ "tn_rate": 0.9492548988031219,
+ "tp": 263877,
+ "tp_rate": 0.8681278190294149,
+ "truth_threshold": -4.1
+ },
+ {
+ "f1": 0.9151564131290604,
+ "fn": 40115,
+ "fn_rate": 0.13197416773862436,
+ "fp": 8808,
+ "fp_rate": 0.05065882934853252,
+ "match_probability": 0.05582759521111378,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9676953208095241,
+ "recall": 0.8680258322613756,
+ "row_count": 477830,
+ "tn": 165061,
+ "tn_rate": 0.9493411706514675,
+ "tp": 263846,
+ "tp_rate": 0.8680258322613756,
+ "truth_threshold": -4.08
+ },
+ {
+ "f1": 0.9150295053303868,
+ "fn": 40201,
+ "fn_rate": 0.1322570987725399,
+ "fp": 8785,
+ "fp_rate": 0.050526545847735936,
+ "match_probability": 0.05656283860997083,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9677667908051881,
+ "recall": 0.8677429012274601,
+ "row_count": 477830,
+ "tn": 165084,
+ "tn_rate": 0.949473454152264,
+ "tp": 263760,
+ "tp_rate": 0.8677429012274601,
+ "truth_threshold": -4.0600000000000005
+ },
+ {
+ "f1": 0.9147861933992872,
+ "fn": 40337,
+ "fn_rate": 0.13270452459361562,
+ "fp": 8777,
+ "fp_rate": 0.050480534195284955,
+ "match_probability": 0.05730717736417426,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9677791197535985,
+ "recall": 0.8672954754063844,
+ "row_count": 477830,
+ "tn": 165092,
+ "tn_rate": 0.949519465804715,
+ "tp": 263624,
+ "tp_rate": 0.8672954754063844,
+ "truth_threshold": -4.04
+ },
+ {
+ "f1": 0.9146731265118572,
+ "fn": 40408,
+ "fn_rate": 0.1329381071913831,
+ "fp": 8765,
+ "fp_rate": 0.050411516716608484,
+ "match_probability": 0.0580607084366901,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9678133652567954,
+ "recall": 0.8670618928086169,
+ "row_count": 477830,
+ "tn": 165104,
+ "tn_rate": 0.9495884832833915,
+ "tp": 263553,
+ "tp_rate": 0.8670618928086169,
+ "truth_threshold": -4.0200000000000005
+ },
+ {
+ "f1": 0.9145849169903402,
+ "fn": 40470,
+ "fn_rate": 0.13314208072746175,
+ "fp": 8747,
+ "fp_rate": 0.05030799049859377,
+ "match_probability": 0.058823529411764705,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9678700254924,
+ "recall": 0.8668579192725383,
+ "row_count": 477830,
+ "tn": 165122,
+ "tn_rate": 0.9496920095014062,
+ "tp": 263491,
+ "tp_rate": 0.8668579192725383,
+ "truth_threshold": -4
+ },
+ {
+ "f1": 0.9142976182209569,
+ "fn": 40625,
+ "fn_rate": 0.13365201456765835,
+ "fp": 8743,
+ "fp_rate": 0.05028498467236828,
+ "match_probability": 0.059595738487237926,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9678659506981429,
+ "recall": 0.8663479854323416,
+ "row_count": 477830,
+ "tn": 165126,
+ "tn_rate": 0.9497150153276317,
+ "tp": 263336,
+ "tp_rate": 0.8663479854323416,
+ "truth_threshold": -3.98
+ },
+ {
+ "f1": 0.9142021799292339,
+ "fn": 40679,
+ "fn_rate": 0.13382966893779136,
+ "fp": 8740,
+ "fp_rate": 0.05026773030269916,
+ "match_probability": 0.06037743446644346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9678702457889435,
+ "recall": 0.8661703310622086,
+ "row_count": 477830,
+ "tn": 165129,
+ "tn_rate": 0.9497322696973008,
+ "tp": 263282,
+ "tp_rate": 0.8661703310622086,
+ "truth_threshold": -3.96
+ },
+ {
+ "f1": 0.9141457112792712,
+ "fn": 40730,
+ "fn_rate": 0.13399745362069476,
+ "fp": 8714,
+ "fp_rate": 0.05011819243223346,
+ "match_probability": 0.061168716749686526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9679567559616834,
+ "recall": 0.8660025463793053,
+ "row_count": 477830,
+ "tn": 165155,
+ "tn_rate": 0.9498818075677665,
+ "tp": 263231,
+ "tp_rate": 0.8660025463793053,
+ "truth_threshold": -3.94
+ },
+ {
+ "f1": 0.9138592261677309,
+ "fn": 40892,
+ "fn_rate": 0.13453041673109378,
+ "fp": 8703,
+ "fp_rate": 0.05005492641011336,
+ "match_probability": 0.061969685325289826,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9679768335222172,
+ "recall": 0.8654695832689062,
+ "row_count": 477830,
+ "tn": 165166,
+ "tn_rate": 0.9499450735898867,
+ "tp": 263069,
+ "tp_rate": 0.8654695832689062,
+ "truth_threshold": -3.92
+ },
+ {
+ "f1": 0.913809037404543,
+ "fn": 40943,
+ "fn_rate": 0.1346982014139972,
+ "fp": 8673,
+ "fp_rate": 0.04988238271342217,
+ "match_probability": 0.06278044076019877,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9680777059232731,
+ "recall": 0.8653017985860028,
+ "row_count": 477830,
+ "tn": 165196,
+ "tn_rate": 0.9501176172865778,
+ "tp": 263018,
+ "tp_rate": 0.8653017985860028,
+ "truth_threshold": -3.9
+ },
+ {
+ "f1": 0.9136257649311431,
+ "fn": 41046,
+ "fn_rate": 0.1350370606755472,
+ "fp": 8666,
+ "fp_rate": 0.049842122517527565,
+ "match_probability": 0.06360108419013638,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9680905512535855,
+ "recall": 0.8649629393244528,
+ "row_count": 477830,
+ "tn": 165203,
+ "tn_rate": 0.9501578774824725,
+ "tp": 262915,
+ "tp_rate": 0.8649629393244528,
+ "truth_threshold": -3.88
+ },
+ {
+ "f1": 0.913567503883728,
+ "fn": 41092,
+ "fn_rate": 0.13518839587973458,
+ "fp": 8648,
+ "fp_rate": 0.049738596299512855,
+ "match_probability": 0.06443171730929868,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.968149323983397,
+ "recall": 0.8648116041202655,
+ "row_count": 477830,
+ "tn": 165221,
+ "tn_rate": 0.9502614037004872,
+ "tp": 262869,
+ "tp_rate": 0.8648116041202655,
+ "truth_threshold": -3.86
+ },
+ {
+ "f1": 0.9134674212297339,
+ "fn": 41182,
+ "fn_rate": 0.13548448649662292,
+ "fp": 8605,
+ "fp_rate": 0.049491283667588815,
+ "match_probability": 0.06527244235958121,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9682921616602306,
+ "recall": 0.8645155135033771,
+ "row_count": 477830,
+ "tn": 165264,
+ "tn_rate": 0.9505087163324112,
+ "tp": 262779,
+ "tp_rate": 0.8645155135033771,
+ "truth_threshold": -3.84
+ },
+ {
+ "f1": 0.9134024704405839,
+ "fn": 41229,
+ "fn_rate": 0.1356391115965535,
+ "fp": 8589,
+ "fp_rate": 0.04939926036268685,
+ "match_probability": 0.06612336211932712,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.96834376992566,
+ "recall": 0.8643608884034465,
+ "row_count": 477830,
+ "tn": 165280,
+ "tn_rate": 0.9506007396373132,
+ "tp": 262732,
+ "tp_rate": 0.8643608884034465,
+ "truth_threshold": -3.8200000000000003
+ },
+ {
+ "f1": 0.9132785579922045,
+ "fn": 41303,
+ "fn_rate": 0.1358825638815506,
+ "fp": 8580,
+ "fp_rate": 0.04934749725367949,
+ "match_probability": 0.06698457989158756,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.968367264173899,
+ "recall": 0.8641174361184494,
+ "row_count": 477830,
+ "tn": 165289,
+ "tn_rate": 0.9506525027463205,
+ "tp": 262658,
+ "tp_rate": 0.8641174361184494,
+ "truth_threshold": -3.8000000000000003
+ },
+ {
+ "f1": 0.9129412501260838,
+ "fn": 41484,
+ "fn_rate": 0.1364780350110705,
+ "fp": 8576,
+ "fp_rate": 0.049324491427454,
+ "match_probability": 0.06785619949188462,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9683604313547535,
+ "recall": 0.8635219649889295,
+ "row_count": 477830,
+ "tn": 165293,
+ "tn_rate": 0.950675508572546,
+ "tp": 262477,
+ "tp_rate": 0.8635219649889295,
+ "truth_threshold": -3.7800000000000002
+ },
+ {
+ "f1": 0.9128452015291658,
+ "fn": 41539,
+ "fn_rate": 0.1366589792769467,
+ "fp": 8571,
+ "fp_rate": 0.049295734144672136,
+ "match_probability": 0.0687383252354679,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9683718767643444,
+ "recall": 0.8633410207230533,
+ "row_count": 477830,
+ "tn": 165298,
+ "tn_rate": 0.9507042658553279,
+ "tp": 262422,
+ "tp_rate": 0.8633410207230533,
+ "truth_threshold": -3.7600000000000002
+ },
+ {
+ "f1": 0.9128060938647254,
+ "fn": 41647,
+ "fn_rate": 0.13701428801721274,
+ "fp": 8467,
+ "fp_rate": 0.04869758266280936,
+ "match_probability": 0.06963106192405447,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687311886727651,
+ "recall": 0.8629857119827873,
+ "row_count": 477830,
+ "tn": 165402,
+ "tn_rate": 0.9513024173371907,
+ "tp": 262314,
+ "tp_rate": 0.8629857119827873,
+ "truth_threshold": -3.74
+ },
+ {
+ "f1": 0.9125554294783886,
+ "fn": 41782,
+ "fn_rate": 0.13745842394254526,
+ "fp": 8464,
+ "fp_rate": 0.048680328293140236,
+ "match_probability": 0.07053451483204333,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687263295189604,
+ "recall": 0.8625415760574547,
+ "row_count": 477830,
+ "tn": 165405,
+ "tn_rate": 0.9513196717068597,
+ "tp": 262179,
+ "tp_rate": 0.8625415760574547,
+ "truth_threshold": -3.72
+ },
+ {
+ "f1": 0.9123473380773998,
+ "fn": 41902,
+ "fn_rate": 0.13785321143172974,
+ "fp": 8452,
+ "fp_rate": 0.048611310814463765,
+ "match_probability": 0.07144878969219468,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687554295389097,
+ "recall": 0.8621467885682703,
+ "row_count": 477830,
+ "tn": 165417,
+ "tn_rate": 0.9513886891855362,
+ "tp": 262059,
+ "tp_rate": 0.8621467885682703,
+ "truth_threshold": -3.7
+ },
+ {
+ "f1": 0.9120020338298339,
+ "fn": 42086,
+ "fn_rate": 0.13845855224847925,
+ "fp": 8451,
+ "fp_rate": 0.04860555935790739,
+ "match_probability": 0.07237399268076448,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687377462767177,
+ "recall": 0.8615414477515208,
+ "row_count": 477830,
+ "tn": 165418,
+ "tn_rate": 0.9513944406420927,
+ "tp": 261875,
+ "tp_rate": 0.8615414477515208,
+ "truth_threshold": -3.68
+ },
+ {
+ "f1": 0.9118457396229175,
+ "fn": 42171,
+ "fn_rate": 0.13873819338665158,
+ "fp": 8447,
+ "fp_rate": 0.0485825535316819,
+ "match_probability": 0.07331023040208501,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687422521712423,
+ "recall": 0.8612618066133484,
+ "row_count": 477830,
+ "tn": 165422,
+ "tn_rate": 0.951417446468318,
+ "tp": 261790,
+ "tp_rate": 0.8612618066133484,
+ "truth_threshold": -3.66
+ },
+ {
+ "f1": 0.9117621444620556,
+ "fn": 42226,
+ "fn_rate": 0.13891913765252778,
+ "fp": 8434,
+ "fp_rate": 0.04850778459644905,
+ "match_probability": 0.07425760987258186,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687825028038006,
+ "recall": 0.8610808623474722,
+ "row_count": 477830,
+ "tn": 165435,
+ "tn_rate": 0.951492215403551,
+ "tp": 261735,
+ "tp_rate": 0.8610808623474722,
+ "truth_threshold": -3.64
+ },
+ {
+ "f1": 0.9114190034463653,
+ "fn": 42412,
+ "fn_rate": 0.13953105826076373,
+ "fp": 8428,
+ "fp_rate": 0.048473275857110816,
+ "match_probability": 0.0752162385042182,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9687825259188746,
+ "recall": 0.8604689417392363,
+ "row_count": 477830,
+ "tn": 165441,
+ "tn_rate": 0.9515267241428892,
+ "tp": 261549,
+ "tp_rate": 0.8604689417392363,
+ "truth_threshold": -3.62
+ },
+ {
+ "f1": 0.9113274225251976,
+ "fn": 42472,
+ "fn_rate": 0.13972845200535594,
+ "fp": 8415,
+ "fp_rate": 0.048398506921877964,
+ "match_probability": 0.0761862240873569,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9688222479103681,
+ "recall": 0.860271547994644,
+ "row_count": 477830,
+ "tn": 165454,
+ "tn_rate": 0.951601493078122,
+ "tp": 261489,
+ "tp_rate": 0.860271547994644,
+ "truth_threshold": -3.6
+ },
+ {
+ "f1": 0.9111207185094277,
+ "fn": 42637,
+ "fn_rate": 0.1402712848029846,
+ "fp": 8347,
+ "fp_rate": 0.04800740787604461,
+ "match_probability": 0.07716767477303127,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9690474689529093,
+ "recall": 0.8597287151970154,
+ "row_count": 477830,
+ "tn": 165522,
+ "tn_rate": 0.9519925921239554,
+ "tp": 261324,
+ "tp_rate": 0.8597287151970154,
+ "truth_threshold": -3.58
+ },
+ {
+ "f1": 0.9109888308871477,
+ "fn": 42714,
+ "fn_rate": 0.14052460677521128,
+ "fp": 8338,
+ "fp_rate": 0.04795564476703725,
+ "match_probability": 0.07816069905461534,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9690709794684422,
+ "recall": 0.8594753932247887,
+ "row_count": 477830,
+ "tn": 165531,
+ "tn_rate": 0.9520443552329627,
+ "tp": 261247,
+ "tp_rate": 0.8594753932247887,
+ "truth_threshold": -3.56
+ },
+ {
+ "f1": 0.9105073841612967,
+ "fn": 42985,
+ "fn_rate": 0.14141616852161956,
+ "fp": 8318,
+ "fp_rate": 0.04784061563590979,
+ "match_probability": 0.07916540574888453,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9691118257369269,
+ "recall": 0.8585838314783805,
+ "row_count": 477830,
+ "tn": 165551,
+ "tn_rate": 0.9521593843640902,
+ "tp": 260976,
+ "tp_rate": 0.8585838314783805,
+ "truth_threshold": -3.54
+ },
+ {
+ "f1": 0.9104476570323923,
+ "fn": 43044,
+ "fn_rate": 0.14161027237046858,
+ "fp": 8285,
+ "fp_rate": 0.04765081756954949,
+ "match_probability": 0.08018190397645779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9692238542061352,
+ "recall": 0.8583897276295315,
+ "row_count": 477830,
+ "tn": 165584,
+ "tn_rate": 0.9523491824304505,
+ "tp": 260917,
+ "tp_rate": 0.8583897276295315,
+ "truth_threshold": -3.52
+ },
+ {
+ "f1": 0.9102902374670184,
+ "fn": 43141,
+ "fn_rate": 0.14192939225755935,
+ "fp": 8267,
+ "fp_rate": 0.04754729135153478,
+ "match_probability": 0.08121030314161229,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9692775942353217,
+ "recall": 0.8580706077424406,
+ "row_count": 477830,
+ "tn": 165602,
+ "tn_rate": 0.9524527086484652,
+ "tp": 260820,
+ "tp_rate": 0.8580706077424406,
+ "truth_threshold": -3.5
+ },
+ {
+ "f1": 0.9101888373067123,
+ "fn": 43201,
+ "fn_rate": 0.1421267860021516,
+ "fp": 8260,
+ "fp_rate": 0.047507031155640166,
+ "match_probability": 0.08225071291146206,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9692959631254182,
+ "recall": 0.8578732139978484,
+ "row_count": 477830,
+ "tn": 165609,
+ "tn_rate": 0.9524929688443599,
+ "tp": 260760,
+ "tp_rate": 0.8578732139978484,
+ "truth_threshold": -3.48
+ },
+ {
+ "f1": 0.9096655456491599,
+ "fn": 43481,
+ "fn_rate": 0.14304795681024868,
+ "fp": 8253,
+ "fp_rate": 0.04746677095974555,
+ "match_probability": 0.08330324319449184,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9692892201553215,
+ "recall": 0.8569520431897513,
+ "row_count": 477830,
+ "tn": 165616,
+ "tn_rate": 0.9525332290402544,
+ "tp": 260480,
+ "tp_rate": 0.8569520431897513,
+ "truth_threshold": -3.46
+ },
+ {
+ "f1": 0.9095227450542082,
+ "fn": 43561,
+ "fn_rate": 0.143311148469705,
+ "fp": 8247,
+ "fp_rate": 0.04743226222040732,
+ "match_probability": 0.08436800411843749,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693017230789847,
+ "recall": 0.8566888515302951,
+ "row_count": 477830,
+ "tn": 165622,
+ "tn_rate": 0.9525677377795927,
+ "tp": 260400,
+ "tp_rate": 0.8566888515302951,
+ "truth_threshold": -3.44
+ },
+ {
+ "f1": 0.9093252935442963,
+ "fn": 43673,
+ "fn_rate": 0.14367961679294383,
+ "fp": 8238,
+ "fp_rate": 0.047380499111399965,
+ "match_probability": 0.08544510600750539,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.969321406493226,
+ "recall": 0.8563203832070562,
+ "row_count": 477830,
+ "tn": 165631,
+ "tn_rate": 0.9526195008886,
+ "tp": 260288,
+ "tp_rate": 0.8563203832070562,
+ "truth_threshold": -3.42
+ },
+ {
+ "f1": 0.9092633741405333,
+ "fn": 43708,
+ "fn_rate": 0.14379476314395598,
+ "fp": 8234,
+ "fp_rate": 0.04735749328517447,
+ "match_probability": 0.08653465935892166,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693318484693858,
+ "recall": 0.856205236856044,
+ "row_count": 477830,
+ "tn": 165635,
+ "tn_rate": 0.9526425067148255,
+ "tp": 260253,
+ "tp_rate": 0.856205236856044,
+ "truth_threshold": -3.4
+ },
+ {
+ "f1": 0.9091382406999742,
+ "fn": 43782,
+ "fn_rate": 0.14403821542895306,
+ "fp": 8224,
+ "fp_rate": 0.04729997871961074,
+ "match_probability": 0.08763677481880414,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.969359507904159,
+ "recall": 0.855961784571047,
+ "row_count": 477830,
+ "tn": 165645,
+ "tn_rate": 0.9527000212803892,
+ "tp": 260179,
+ "tp_rate": 0.855961784571047,
+ "truth_threshold": -3.38
+ },
+ {
+ "f1": 0.9085579034220426,
+ "fn": 44088,
+ "fn_rate": 0.14504492352637344,
+ "fp": 8223,
+ "fp_rate": 0.04729422726305437,
+ "match_probability": 0.08875156315734896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693281511100501,
+ "recall": 0.8549550764736266,
+ "row_count": 477830,
+ "tn": 165646,
+ "tn_rate": 0.9527057727369457,
+ "tp": 259873,
+ "tp_rate": 0.8549550764736266,
+ "truth_threshold": -3.36
+ },
+ {
+ "f1": 0.9081844285659325,
+ "fn": 44292,
+ "fn_rate": 0.14571606225798706,
+ "fp": 8213,
+ "fp_rate": 0.04723671269749064,
+ "match_probability": 0.08987913524332442,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693409784905294,
+ "recall": 0.8542839377420129,
+ "row_count": 477830,
+ "tn": 165656,
+ "tn_rate": 0.9527632873025094,
+ "tp": 259669,
+ "tp_rate": 0.8542839377420129,
+ "truth_threshold": -3.34
+ },
+ {
+ "f1": 0.9078733766233766,
+ "fn": 44469,
+ "fn_rate": 0.14629837380453414,
+ "fp": 8195,
+ "fp_rate": 0.047133186479475925,
+ "match_probability": 0.0910196020178644,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693858872489138,
+ "recall": 0.8537016261954659,
+ "row_count": 477830,
+ "tn": 165674,
+ "tn_rate": 0.952866813520524,
+ "tp": 259492,
+ "tp_rate": 0.8537016261954659,
+ "truth_threshold": -3.3200000000000003
+ },
+ {
+ "f1": 0.9076583906356621,
+ "fn": 44584,
+ "fn_rate": 0.14667671181500258,
+ "fp": 8193,
+ "fp_rate": 0.04712168356636318,
+ "match_probability": 0.09217307446755524,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9693799753335576,
+ "recall": 0.8533232881849974,
+ "row_count": 477830,
+ "tn": 165676,
+ "tn_rate": 0.9528783164336369,
+ "tp": 259377,
+ "tp_rate": 0.8533232881849974,
+ "truth_threshold": -3.3000000000000003
+ },
+ {
+ "f1": 0.9075790239941764,
+ "fn": 44633,
+ "fn_rate": 0.14683791670641957,
+ "fp": 8184,
+ "fp_rate": 0.04706992045735583,
+ "match_probability": 0.0933396635968081,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9694069798738001,
+ "recall": 0.8531620832935805,
+ "row_count": 477830,
+ "tn": 165685,
+ "tn_rate": 0.9529300795426442,
+ "tp": 259328,
+ "tp_rate": 0.8531620832935805,
+ "truth_threshold": -3.2800000000000002
+ },
+ {
+ "f1": 0.9070909867577958,
+ "fn": 44894,
+ "fn_rate": 0.1476965794953958,
+ "fp": 8176,
+ "fp_rate": 0.04702390880490484,
+ "match_probability": 0.09451948039951134,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9694061210209435,
+ "recall": 0.8523034205046042,
+ "row_count": 477830,
+ "tn": 165693,
+ "tn_rate": 0.9529760911950952,
+ "tp": 259067,
+ "tp_rate": 0.8523034205046042,
+ "truth_threshold": -3.2600000000000002
+ },
+ {
+ "f1": 0.907007283933324,
+ "fn": 44956,
+ "fn_rate": 0.14790055303147442,
+ "fp": 8154,
+ "fp_rate": 0.04689737676066464,
+ "match_probability": 0.09571263582995625,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9694788496737897,
+ "recall": 0.8520994469685256,
+ "row_count": 477830,
+ "tn": 165715,
+ "tn_rate": 0.9531026232393354,
+ "tp": 259005,
+ "tp_rate": 0.8520994469685256,
+ "truth_threshold": -3.24
+ },
+ {
+ "f1": 0.9067806702908704,
+ "fn": 45086,
+ "fn_rate": 0.14832823947809093,
+ "fp": 8141,
+ "fp_rate": 0.04682260782543179,
+ "match_probability": 0.09691924077303016,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9695111903406537,
+ "recall": 0.8516717605219091,
+ "row_count": 477830,
+ "tn": 165728,
+ "tn_rate": 0.9531773921745682,
+ "tp": 258875,
+ "tp_rate": 0.8516717605219091,
+ "truth_threshold": -3.22
+ },
+ {
+ "f1": 0.9064288142066738,
+ "fn": 45278,
+ "fn_rate": 0.14895989946078608,
+ "fp": 8130,
+ "fp_rate": 0.04675934180331169,
+ "match_probability": 0.09813940601367187,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.969529220840064,
+ "recall": 0.8510401005392139,
+ "row_count": 477830,
+ "tn": 165739,
+ "tn_rate": 0.9532406581966884,
+ "tp": 258683,
+ "tp_rate": 0.8510401005392139,
+ "truth_threshold": -3.2
+ },
+ {
+ "f1": 0.9062016998159993,
+ "fn": 45399,
+ "fn_rate": 0.14935797684571375,
+ "fp": 8128,
+ "fp_rate": 0.04674783889019894,
+ "match_probability": 0.09937324220558363,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9695226667666579,
+ "recall": 0.8506420231542863,
+ "row_count": 477830,
+ "tn": 165741,
+ "tn_rate": 0.953252161109801,
+ "tp": 258562,
+ "tp_rate": 0.8506420231542863,
+ "truth_threshold": -3.18
+ },
+ {
+ "f1": 0.9057720492843668,
+ "fn": 45633,
+ "fn_rate": 0.15012781244962348,
+ "fp": 8116,
+ "fp_rate": 0.04667882141152247,
+ "match_probability": 0.10062085983919537,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9695395655372235,
+ "recall": 0.8498721875503765,
+ "row_count": 477830,
+ "tn": 165753,
+ "tn_rate": 0.9533211785884775,
+ "tp": 258328,
+ "tp_rate": 0.8498721875503765,
+ "truth_threshold": -3.16
+ },
+ {
+ "f1": 0.905689688425999,
+ "fn": 45690,
+ "fn_rate": 0.15031533650698609,
+ "fp": 8099,
+ "fp_rate": 0.04658104665006413,
+ "match_probability": 0.10188236920887628,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.969594924353343,
+ "recall": 0.8496846634930139,
+ "row_count": 477830,
+ "tn": 165770,
+ "tn_rate": 0.9534189533499359,
+ "tp": 258271,
+ "tp_rate": 0.8496846634930139,
+ "truth_threshold": -3.14
+ },
+ {
+ "f1": 0.9055577379031693,
+ "fn": 45772,
+ "fn_rate": 0.15058510795792882,
+ "fp": 8083,
+ "fp_rate": 0.04648902334516216,
+ "match_probability": 0.10315788037939025,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9696438228578296,
+ "recall": 0.8494148920420712,
+ "row_count": 477830,
+ "tn": 165786,
+ "tn_rate": 0.9535109766548379,
+ "tp": 258189,
+ "tp_rate": 0.8494148920420712,
+ "truth_threshold": -3.12
+ },
+ {
+ "f1": 0.9054527597032463,
+ "fn": 45830,
+ "fn_rate": 0.15077592191103464,
+ "fp": 8078,
+ "fp_rate": 0.046460266062380295,
+ "match_probability": 0.10444750315159104,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9696554211164912,
+ "recall": 0.8492240780889654,
+ "row_count": 477830,
+ "tn": 165791,
+ "tn_rate": 0.9535397339376197,
+ "tp": 258131,
+ "tp_rate": 0.8492240780889654,
+ "truth_threshold": -3.1
+ },
+ {
+ "f1": 0.9053773399567792,
+ "fn": 45885,
+ "fn_rate": 0.15095686617691084,
+ "fp": 8060,
+ "fp_rate": 0.046356739844365585,
+ "match_probability": 0.1057513470273544,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9697147323173114,
+ "recall": 0.8490431338230892,
+ "row_count": 477830,
+ "tn": 165809,
+ "tn_rate": 0.9536432601556344,
+ "tp": 258076,
+ "tp_rate": 0.8490431338230892,
+ "truth_threshold": -3.08
+ },
+ {
+ "f1": 0.9052960266643277,
+ "fn": 45929,
+ "fn_rate": 0.15110162158961182,
+ "fp": 8057,
+ "fp_rate": 0.04633948547469647,
+ "match_probability": 0.10706952117374435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9697206573740365,
+ "recall": 0.8488983784103882,
+ "row_count": 477830,
+ "tn": 165812,
+ "tn_rate": 0.9536605145253035,
+ "tp": 258032,
+ "tp_rate": 0.8488983784103882,
+ "truth_threshold": -3.06
+ },
+ {
+ "f1": 0.9046201376211206,
+ "fn": 46289,
+ "fn_rate": 0.15228598405716523,
+ "fp": 8047,
+ "fp_rate": 0.04628197090913274,
+ "match_probability": 0.10840213438641137,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9697161286923404,
+ "recall": 0.8477140159428348,
+ "row_count": 477830,
+ "tn": 165822,
+ "tn_rate": 0.9537180290908672,
+ "tp": 257672,
+ "tp_rate": 0.8477140159428348,
+ "truth_threshold": -3.04
+ },
+ {
+ "f1": 0.9044988992391232,
+ "fn": 46357,
+ "fn_rate": 0.15250969696770308,
+ "fp": 8042,
+ "fp_rate": 0.046253213626350875,
+ "match_probability": 0.10974929505222096,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9697266286712392,
+ "recall": 0.8474903030322969,
+ "row_count": 477830,
+ "tn": 165827,
+ "tn_rate": 0.9537467863736492,
+ "tp": 257604,
+ "tp_rate": 0.8474903030322969,
+ "truth_threshold": -3.02
+ },
+ {
+ "f1": 0.9042198612696462,
+ "fn": 46507,
+ "fn_rate": 0.15300318132918367,
+ "fp": 8035,
+ "fp_rate": 0.04621295343045626,
+ "match_probability": 0.1111111111111111,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9697350926027067,
+ "recall": 0.8469968186708163,
+ "row_count": 477830,
+ "tn": 165834,
+ "tn_rate": 0.9537870465695437,
+ "tp": 257454,
+ "tp_rate": 0.8469968186708163,
+ "truth_threshold": -3
+ },
+ {
+ "f1": 0.9041225814610294,
+ "fn": 46579,
+ "fn_rate": 0.15324005382269437,
+ "fp": 8010,
+ "fp_rate": 0.04606916701654694,
+ "match_probability": 0.11248769001717858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9698182311448725,
+ "recall": 0.8467599461773057,
+ "row_count": 477830,
+ "tn": 165859,
+ "tn_rate": 0.953930832983453,
+ "tp": 257382,
+ "tp_rate": 0.8467599461773057,
+ "truth_threshold": -2.98
+ },
+ {
+ "f1": 0.9040247895557836,
+ "fn": 46643,
+ "fn_rate": 0.1534506071502594,
+ "fp": 7993,
+ "fp_rate": 0.0459713922550886,
+ "match_probability": 0.11387913869899342,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9698730923331487,
+ "recall": 0.8465493928497406,
+ "row_count": 477830,
+ "tn": 165876,
+ "tn_rate": 0.9540286077449114,
+ "tp": 257318,
+ "tp_rate": 0.8465493928497406,
+ "truth_threshold": -2.96
+ },
+ {
+ "f1": 0.9040885034123576,
+ "fn": 46699,
+ "fn_rate": 0.15363484131187882,
+ "fp": 7886,
+ "fp_rate": 0.0453559864035567,
+ "match_probability": 0.11528556351914263,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9702581199933622,
+ "recall": 0.8463651586881211,
+ "row_count": 477830,
+ "tn": 165983,
+ "tn_rate": 0.9546440135964434,
+ "tp": 257262,
+ "tp_rate": 0.8463651586881211,
+ "truth_threshold": -2.94
+ },
+ {
+ "f1": 0.903720812503955,
+ "fn": 46894,
+ "fn_rate": 0.15427637098180358,
+ "fp": 7880,
+ "fp_rate": 0.045321477664218464,
+ "match_probability": 0.1167070702330039,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.970258202583913,
+ "recall": 0.8457236290181964,
+ "row_count": 477830,
+ "tn": 165989,
+ "tn_rate": 0.9546785223357815,
+ "tp": 257067,
+ "tp_rate": 0.8457236290181964,
+ "truth_threshold": -2.92
+ },
+ {
+ "f1": 0.9035727722476362,
+ "fn": 46984,
+ "fn_rate": 0.15457246159869192,
+ "fp": 7865,
+ "fp_rate": 0.04523520581587287,
+ "match_probability": 0.1181437639467516,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9703030486101147,
+ "recall": 0.845427538401308,
+ "row_count": 477830,
+ "tn": 166004,
+ "tn_rate": 0.9547647941841272,
+ "tp": 256977,
+ "tp_rate": 0.845427538401308,
+ "truth_threshold": -2.9
+ },
+ {
+ "f1": 0.903302160525307,
+ "fn": 47126,
+ "fn_rate": 0.1550396267942269,
+ "fp": 7862,
+ "fp_rate": 0.045217951446203754,
+ "match_probability": 0.11959574907459691,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9702981144478403,
+ "recall": 0.8449603732057731,
+ "row_count": 477830,
+ "tn": 166007,
+ "tn_rate": 0.9547820485537962,
+ "tp": 256835,
+ "tp_rate": 0.8449603732057731,
+ "truth_threshold": -2.88
+ },
+ {
+ "f1": 0.9031290123999648,
+ "fn": 47224,
+ "fn_rate": 0.15536203657706088,
+ "fp": 7853,
+ "fp_rate": 0.04516618833719639,
+ "match_probability": 0.12106312929526573,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9703201179182886,
+ "recall": 0.8446379634229392,
+ "row_count": 477830,
+ "tn": 166016,
+ "tn_rate": 0.9548338116628036,
+ "tp": 256737,
+ "tp_rate": 0.8446379634229392,
+ "truth_threshold": -2.86
+ },
+ {
+ "f1": 0.9030156942782743,
+ "fn": 47342,
+ "fn_rate": 0.15575024427475892,
+ "fp": 7781,
+ "fp_rate": 0.044752083465137545,
+ "match_probability": 0.12254600750771812,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.970571104387292,
+ "recall": 0.8442497557252411,
+ "row_count": 477830,
+ "tn": 166088,
+ "tn_rate": 0.9552479165348624,
+ "tp": 256619,
+ "tp_rate": 0.8442497557252411,
+ "truth_threshold": -2.84
+ },
+ {
+ "f1": 0.9029367774630044,
+ "fn": 47387,
+ "fn_rate": 0.15589828958320312,
+ "fp": 7776,
+ "fp_rate": 0.04472332618235568,
+ "match_probability": 0.12404448578611339,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9705844524304899,
+ "recall": 0.8441017104167969,
+ "row_count": 477830,
+ "tn": 166093,
+ "tn_rate": 0.9552766738176444,
+ "tp": 256574,
+ "tp_rate": 0.8441017104167969,
+ "truth_threshold": -2.82
+ },
+ {
+ "f1": 0.9028361455451608,
+ "fn": 47449,
+ "fn_rate": 0.15610226311928174,
+ "fp": 7764,
+ "fp_rate": 0.04465430870367921,
+ "match_probability": 0.12555866533402688,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9706216228488399,
+ "recall": 0.8438977368807182,
+ "row_count": 477830,
+ "tn": 166105,
+ "tn_rate": 0.9553456912963207,
+ "tp": 256512,
+ "tp_rate": 0.8438977368807182,
+ "truth_threshold": -2.8000000000000003
+ },
+ {
+ "f1": 0.902552383903327,
+ "fn": 47628,
+ "fn_rate": 0.15669115445731524,
+ "fp": 7724,
+ "fp_rate": 0.04442425044142429,
+ "match_probability": 0.12708864643792386,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.97074873985541,
+ "recall": 0.8433088455426847,
+ "row_count": 477830,
+ "tn": 166145,
+ "tn_rate": 0.9555757495585757,
+ "tp": 256333,
+ "tp_rate": 0.8433088455426847,
+ "truth_threshold": -2.7800000000000002
+ },
+ {
+ "f1": 0.9023971939413362,
+ "fn": 47719,
+ "fn_rate": 0.1569905349699468,
+ "fp": 7711,
+ "fp_rate": 0.044349481506191446,
+ "match_probability": 0.12863452841989784,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9707864657723155,
+ "recall": 0.8430094650300533,
+ "row_count": 477830,
+ "tn": 166158,
+ "tn_rate": 0.9556505184938086,
+ "tp": 256242,
+ "tp_rate": 0.8430094650300533,
+ "truth_threshold": -2.7600000000000002
+ },
+ {
+ "f1": 0.9021658716682285,
+ "fn": 47874,
+ "fn_rate": 0.1575004688101434,
+ "fp": 7669,
+ "fp_rate": 0.04410792033082378,
+ "match_probability": 0.13019640958968035,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9709238841959993,
+ "recall": 0.8424995311898565,
+ "row_count": 477830,
+ "tn": 166200,
+ "tn_rate": 0.9558920796691762,
+ "tp": 256087,
+ "tp_rate": 0.8424995311898565,
+ "truth_threshold": -2.74
+ },
+ {
+ "f1": 0.9020104664070622,
+ "fn": 48002,
+ "fn_rate": 0.1579215754652735,
+ "fp": 7611,
+ "fp_rate": 0.04377433585055415,
+ "match_probability": 0.13177438719593176,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9711234207231475,
+ "recall": 0.8420784245347265,
+ "row_count": 477830,
+ "tn": 166258,
+ "tn_rate": 0.9562256641494459,
+ "tp": 255959,
+ "tp_rate": 0.8420784245347265,
+ "truth_threshold": -2.72
+ },
+ {
+ "f1": 0.901949795926999,
+ "fn": 48058,
+ "fn_rate": 0.1581058096268929,
+ "fp": 7581,
+ "fp_rate": 0.043601792153862964,
+ "match_probability": 0.13336855737682143,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9712278544427745,
+ "recall": 0.8418941903731071,
+ "row_count": 477830,
+ "tn": 166288,
+ "tn_rate": 0.956398207846137,
+ "tp": 255903,
+ "tp_rate": 0.8418941903731071,
+ "truth_threshold": -2.7
+ },
+ {
+ "f1": 0.901677143673075,
+ "fn": 48212,
+ "fn_rate": 0.15861245357134632,
+ "fp": 7564,
+ "fp_rate": 0.04350401739240463,
+ "match_probability": 0.13497901510990773,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9712737312627937,
+ "recall": 0.8413875464286537,
+ "row_count": 477830,
+ "tn": 166305,
+ "tn_rate": 0.9564959826075954,
+ "tp": 255749,
+ "tp_rate": 0.8413875464286537,
+ "truth_threshold": -2.68
+ },
+ {
+ "f1": 0.9015782458763214,
+ "fn": 48268,
+ "fn_rate": 0.15879668773296574,
+ "fp": 7559,
+ "fp_rate": 0.043475260109622764,
+ "match_probability": 0.13660585416132934,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9712860681020468,
+ "recall": 0.8412033122670343,
+ "row_count": 477830,
+ "tn": 166310,
+ "tn_rate": 0.9565247398903772,
+ "tp": 255693,
+ "tp_rate": 0.8412033122670343,
+ "truth_threshold": -2.66
+ },
+ {
+ "f1": 0.9014705363754981,
+ "fn": 48331,
+ "fn_rate": 0.15900395116478758,
+ "fp": 7550,
+ "fp_rate": 0.04342349700061541,
+ "match_probability": 0.1382491670343198,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9713124097575804,
+ "recall": 0.8409960488352124,
+ "row_count": 477830,
+ "tn": 166319,
+ "tn_rate": 0.9565765029993846,
+ "tp": 255630,
+ "tp_rate": 0.8409960488352124,
+ "truth_threshold": -2.64
+ },
+ {
+ "f1": 0.901073197578426,
+ "fn": 48550,
+ "fn_rate": 0.15972443833254923,
+ "fp": 7533,
+ "fp_rate": 0.043325722239157066,
+ "match_probability": 0.1399090449170576,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9713513143483024,
+ "recall": 0.8402755616674508,
+ "row_count": 477830,
+ "tn": 166336,
+ "tn_rate": 0.9566742777608429,
+ "tp": 255411,
+ "tp_rate": 0.8402755616674508,
+ "truth_threshold": -2.62
+ },
+ {
+ "f1": 0.9009572264777382,
+ "fn": 48609,
+ "fn_rate": 0.15991854218139828,
+ "fp": 7533,
+ "fp_rate": 0.043325722239157066,
+ "match_probability": 0.14158557762986687,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9713448846453773,
+ "recall": 0.8400814578186018,
+ "row_count": 477830,
+ "tn": 166336,
+ "tn_rate": 0.9566742777608429,
+ "tp": 255352,
+ "tp_rate": 0.8400814578186018,
+ "truth_threshold": -2.6
+ },
+ {
+ "f1": 0.9003279683964146,
+ "fn": 48935,
+ "fn_rate": 0.16099104819368273,
+ "fp": 7531,
+ "fp_rate": 0.04331421932604432,
+ "match_probability": 0.14327885357178247,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9713167045631996,
+ "recall": 0.8390089518063173,
+ "row_count": 477830,
+ "tn": 166338,
+ "tn_rate": 0.9566857806739557,
+ "tp": 255026,
+ "tp_rate": 0.8390089518063173,
+ "truth_threshold": -2.58
+ },
+ {
+ "f1": 0.9002047950284241,
+ "fn": 49014,
+ "fn_rate": 0.16125094995739586,
+ "fp": 7512,
+ "fp_rate": 0.04320494165147323,
+ "match_probability": 0.14498895966649594,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9713783867194495,
+ "recall": 0.8387490500426041,
+ "row_count": 477830,
+ "tn": 166357,
+ "tn_rate": 0.9567950583485267,
+ "tp": 254947,
+ "tp_rate": 0.8387490500426041,
+ "truth_threshold": -2.56
+ },
+ {
+ "f1": 0.9000723985096502,
+ "fn": 49101,
+ "fn_rate": 0.16153717088705458,
+ "fp": 7489,
+ "fp_rate": 0.04307265815067666,
+ "match_probability": 0.14671598130769928,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9714540554757213,
+ "recall": 0.8384628291129455,
+ "row_count": 477830,
+ "tn": 166380,
+ "tn_rate": 0.9569273418493234,
+ "tp": 254860,
+ "tp_rate": 0.8384628291129455,
+ "truth_threshold": -2.54
+ },
+ {
+ "f1": 0.8999650326185624,
+ "fn": 49162,
+ "fn_rate": 0.16173785452739003,
+ "fp": 7483,
+ "fp_rate": 0.04303814941133842,
+ "match_probability": 0.14846000230384404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9714696395482725,
+ "recall": 0.83826214547261,
+ "row_count": 477830,
+ "tn": 166386,
+ "tn_rate": 0.9569618505886616,
+ "tp": 254799,
+ "tp_rate": 0.83826214547261,
+ "truth_threshold": -2.52
+ },
+ {
+ "f1": 0.8998728274692667,
+ "fn": 49225,
+ "fn_rate": 0.16194511795921188,
+ "fp": 7463,
+ "fp_rate": 0.04292312028021096,
+ "match_probability": 0.15022110482233483,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9715368861055915,
+ "recall": 0.8380548820407882,
+ "row_count": 477830,
+ "tn": 166406,
+ "tn_rate": 0.957076879719789,
+ "tp": 254736,
+ "tp_rate": 0.8380548820407882,
+ "truth_threshold": -2.5
+ },
+ {
+ "f1": 0.9041257869674987,
+ "fn": 49342,
+ "fn_rate": 0.16233003576116672,
+ "fp": 4659,
+ "fp_rate": 0.026796036096141347,
+ "match_probability": 0.15199936933317765,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.982030870339944,
+ "recall": 0.8376699642388332,
+ "row_count": 477830,
+ "tn": 169210,
+ "tn_rate": 0.9732039639038587,
+ "tp": 254619,
+ "tp_rate": 0.8376699642388332,
+ "truth_threshold": -2.48
+ },
+ {
+ "f1": 0.9038026392909791,
+ "fn": 49527,
+ "fn_rate": 0.16293866647365945,
+ "fp": 4636,
+ "fp_rate": 0.026663752595344772,
+ "match_probability": 0.15379487455210342,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9821052225267303,
+ "recall": 0.8370613335263406,
+ "row_count": 477830,
+ "tn": 169233,
+ "tn_rate": 0.9733362474046552,
+ "tp": 254434,
+ "tp_rate": 0.8370613335263406,
+ "truth_threshold": -2.46
+ },
+ {
+ "f1": 0.9037096510611691,
+ "fn": 49583,
+ "fn_rate": 0.16312290063527887,
+ "fp": 4626,
+ "fp_rate": 0.026606238029781043,
+ "match_probability": 0.15560769738318947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9821392719803556,
+ "recall": 0.8368770993647211,
+ "row_count": 477830,
+ "tn": 169243,
+ "tn_rate": 0.973393761970219,
+ "tp": 254378,
+ "tp_rate": 0.8368770993647211,
+ "truth_threshold": -2.44
+ },
+ {
+ "f1": 0.9034670968704804,
+ "fn": 49710,
+ "fn_rate": 0.16354071739466577,
+ "fp": 4623,
+ "fp_rate": 0.026588983660111924,
+ "match_probability": 0.1574379128610021,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9821418914220817,
+ "recall": 0.8364592826053342,
+ "row_count": 477830,
+ "tn": 169246,
+ "tn_rate": 0.973411016339888,
+ "tp": 254251,
+ "tp_rate": 0.8364592826053342,
+ "truth_threshold": -2.42
+ },
+ {
+ "f1": 0.9029682272761209,
+ "fn": 49975,
+ "fn_rate": 0.1644125397666148,
+ "fp": 4612,
+ "fp_rate": 0.02652571763799182,
+ "match_probability": 0.15928559409228404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9821653686416755,
+ "recall": 0.8355874602333851,
+ "row_count": 477830,
+ "tn": 169257,
+ "tn_rate": 0.9734742823620082,
+ "tp": 253986,
+ "tp_rate": 0.8355874602333851,
+ "truth_threshold": -2.4
+ },
+ {
+ "f1": 0.9027746663679713,
+ "fn": 50080,
+ "fn_rate": 0.1647579788196512,
+ "fp": 4605,
+ "fp_rate": 0.02648545744209721,
+ "match_probability": 0.16115081219721364,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9821847218031151,
+ "recall": 0.8352420211803488,
+ "row_count": 477830,
+ "tn": 169264,
+ "tn_rate": 0.9735145425579028,
+ "tp": 253881,
+ "tp_rate": 0.8352420211803488,
+ "truth_threshold": -2.38
+ },
+ {
+ "f1": 0.9026530104200007,
+ "fn": 50144,
+ "fn_rate": 0.16496853214721627,
+ "fp": 4602,
+ "fp_rate": 0.026468203072428094,
+ "match_probability": 0.16303363625026068,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.982191711909728,
+ "recall": 0.8350314678527837,
+ "row_count": 477830,
+ "tn": 169267,
+ "tn_rate": 0.9735317969275719,
+ "tp": 253817,
+ "tp_rate": 0.8350314678527837,
+ "truth_threshold": -2.36
+ },
+ {
+ "f1": 0.9025282057848535,
+ "fn": 50217,
+ "fn_rate": 0.16520869453647014,
+ "fp": 4592,
+ "fp_rate": 0.026410688506864365,
+ "match_probability": 0.1649341332206679,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.982224699616004,
+ "recall": 0.8347913054635299,
+ "row_count": 477830,
+ "tn": 169277,
+ "tn_rate": 0.9735893114931357,
+ "tp": 253744,
+ "tp_rate": 0.8347913054635299,
+ "truth_threshold": -2.34
+ },
+ {
+ "f1": 0.9023955546701576,
+ "fn": 50294,
+ "fn_rate": 0.16546201650869685,
+ "fp": 4580,
+ "fp_rate": 0.02634167102818789,
+ "match_probability": 0.16685236791258687,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9822650408330009,
+ "recall": 0.8345379834913031,
+ "row_count": 477830,
+ "tn": 169289,
+ "tn_rate": 0.9736583289718121,
+ "tp": 253667,
+ "tp_rate": 0.8345379834913031,
+ "truth_threshold": -2.32
+ },
+ {
+ "f1": 0.9022489779798691,
+ "fn": 50374,
+ "fn_rate": 0.16572520816815314,
+ "fp": 4574,
+ "fp_rate": 0.02630716228884965,
+ "match_probability": 0.1687884029048976,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9822823741773544,
+ "recall": 0.8342747918318468,
+ "row_count": 477830,
+ "tn": 169295,
+ "tn_rate": 0.9736928377111503,
+ "tp": 253587,
+ "tp_rate": 0.8342747918318468,
+ "truth_threshold": -2.3000000000000003
+ },
+ {
+ "f1": 0.9018597284262604,
+ "fn": 50579,
+ "fn_rate": 0.16639963679550995,
+ "fp": 4568,
+ "fp_rate": 0.026272653549511412,
+ "match_probability": 0.17074229849074432,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9822911416941268,
+ "recall": 0.83360036320449,
+ "row_count": 477830,
+ "tn": 169301,
+ "tn_rate": 0.9737273464504886,
+ "tp": 253382,
+ "tp_rate": 0.83360036320449,
+ "truth_threshold": -2.2800000000000002
+ },
+ {
+ "f1": 0.9016148900265588,
+ "fn": 50710,
+ "fn_rate": 0.16683061313786965,
+ "fp": 4561,
+ "fp_rate": 0.026232393353616802,
+ "match_probability": 0.17271411261681832,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9823088141746699,
+ "recall": 0.8331693868621304,
+ "row_count": 477830,
+ "tn": 169308,
+ "tn_rate": 0.9737676066463832,
+ "tp": 253251,
+ "tp_rate": 0.8331693868621304,
+ "truth_threshold": -2.2600000000000002
+ },
+ {
+ "f1": 0.9013250905413249,
+ "fn": 50859,
+ "fn_rate": 0.16732080760360704,
+ "fp": 4560,
+ "fp_rate": 0.02622664189706043,
+ "match_probability": 0.1747039008224231,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9823023961624143,
+ "recall": 0.832679192396393,
+ "row_count": 477830,
+ "tn": 169309,
+ "tn_rate": 0.9737733581029395,
+ "tp": 253102,
+ "tp_rate": 0.832679192396393,
+ "truth_threshold": -2.24
+ },
+ {
+ "f1": 0.9004348290979078,
+ "fn": 51326,
+ "fn_rate": 0.16885718891568327,
+ "fp": 4545,
+ "fp_rate": 0.026140370048714837,
+ "match_probability": 0.17671171617835496,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9823275526868341,
+ "recall": 0.8311428110843168,
+ "row_count": 477830,
+ "tn": 169324,
+ "tn_rate": 0.9738596299512852,
+ "tp": 252635,
+ "tp_rate": 0.8311428110843168,
+ "truth_threshold": -2.22
+ },
+ {
+ "f1": 0.900186101564394,
+ "fn": 51466,
+ "fn_rate": 0.1693177743197318,
+ "fp": 4528,
+ "fp_rate": 0.026042595287256498,
+ "match_probability": 0.17873760922563603,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.982382899584862,
+ "recall": 0.8306822256802682,
+ "row_count": 477830,
+ "tn": 169341,
+ "tn_rate": 0.9739574047127435,
+ "tp": 252495,
+ "tp_rate": 0.8306822256802682,
+ "truth_threshold": -2.2
+ },
+ {
+ "f1": 0.9000852174471135,
+ "fn": 51524,
+ "fn_rate": 0.16950858827283763,
+ "fp": 4521,
+ "fp_rate": 0.026002335091361888,
+ "match_probability": 0.18078162791413613,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9824056849757548,
+ "recall": 0.8304914117271623,
+ "row_count": 477830,
+ "tn": 169348,
+ "tn_rate": 0.9739976649086381,
+ "tp": 252437,
+ "tp_rate": 0.8304914117271623,
+ "truth_threshold": -2.18
+ },
+ {
+ "f1": 0.8998134720939274,
+ "fn": 51665,
+ "fn_rate": 0.16997246357262938,
+ "fp": 4517,
+ "fp_rate": 0.025979329265136394,
+ "match_probability": 0.18284381754112208,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9824113265294202,
+ "recall": 0.8300275364273706,
+ "row_count": 477830,
+ "tn": 169352,
+ "tn_rate": 0.9740206707348636,
+ "tp": 252296,
+ "tp_rate": 0.8300275364273706,
+ "truth_threshold": -2.16
+ },
+ {
+ "f1": 0.8996989327093202,
+ "fn": 51743,
+ "fn_rate": 0.1702290754405993,
+ "fp": 4494,
+ "fp_rate": 0.02584704576433982,
+ "match_probability": 0.18492422068977335,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9824940010595531,
+ "recall": 0.8297709245594007,
+ "row_count": 477830,
+ "tn": 169375,
+ "tn_rate": 0.9741529542356602,
+ "tp": 252218,
+ "tp_rate": 0.8297709245594007,
+ "truth_threshold": -2.14
+ },
+ {
+ "f1": 0.8994862280576567,
+ "fn": 51853,
+ "fn_rate": 0.1705909639723517,
+ "fp": 4492,
+ "fp_rate": 0.025835542851227074,
+ "match_probability": 0.187022877167705,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9824941543257989,
+ "recall": 0.8294090360276483,
+ "row_count": 477830,
+ "tn": 169377,
+ "tn_rate": 0.974164457148773,
+ "tp": 252108,
+ "tp_rate": 0.8294090360276483,
+ "truth_threshold": -2.12
+ },
+ {
+ "f1": 0.8993248595836396,
+ "fn": 51936,
+ "fn_rate": 0.17086402531903763,
+ "fp": 4490,
+ "fp_rate": 0.025824039938114326,
+ "match_probability": 0.18913982394553902,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9824961503225932,
+ "recall": 0.8291359746809623,
+ "row_count": 477830,
+ "tn": 169379,
+ "tn_rate": 0.9741759600618857,
+ "tp": 252025,
+ "tp_rate": 0.8291359746809623,
+ "truth_threshold": -2.1
+ },
+ {
+ "f1": 0.8991662919263081,
+ "fn": 52020,
+ "fn_rate": 0.17114037656146677,
+ "fp": 4486,
+ "fp_rate": 0.025801034111888835,
+ "match_probability": 0.19127509509556725,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9825057423750229,
+ "recall": 0.8288596234385333,
+ "row_count": 477830,
+ "tn": 169383,
+ "tn_rate": 0.9741989658881112,
+ "tp": 251941,
+ "tp_rate": 0.8288596234385333,
+ "truth_threshold": -2.08
+ },
+ {
+ "f1": 0.8990546975960474,
+ "fn": 52116,
+ "fn_rate": 0.17145620655281435,
+ "fp": 4439,
+ "fp_rate": 0.025530715653739308,
+ "match_probability": 0.1934287217305493,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9826793713224392,
+ "recall": 0.8285437934471857,
+ "row_count": 477830,
+ "tn": 169430,
+ "tn_rate": 0.9744692843462607,
+ "tp": 251845,
+ "tp_rate": 0.8285437934471857,
+ "truth_threshold": -2.06
+ },
+ {
+ "f1": 0.899107704177859,
+ "fn": 52254,
+ "fn_rate": 0.17191021216537647,
+ "fp": 4236,
+ "fp_rate": 0.024363169972795612,
+ "match_probability": 0.19560073194269076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.983449439914356,
+ "recall": 0.8280897878346235,
+ "row_count": 477830,
+ "tn": 169633,
+ "tn_rate": 0.9756368300272044,
+ "tp": 251707,
+ "tp_rate": 0.8280897878346235,
+ "truth_threshold": -2.04
+ },
+ {
+ "f1": 0.8989031013291411,
+ "fn": 52376,
+ "fn_rate": 0.17231157944604736,
+ "fp": 4215,
+ "fp_rate": 0.02424238938511178,
+ "match_probability": 0.19779115074284692,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.98352228303362,
+ "recall": 0.8276884205539526,
+ "row_count": 477830,
+ "tn": 169654,
+ "tn_rate": 0.9757576106148882,
+ "tp": 251585,
+ "tp_rate": 0.8276884205539526,
+ "truth_threshold": -2.02
+ },
+ {
+ "f1": 0.8987417315574869,
+ "fn": 52467,
+ "fn_rate": 0.17261095995867892,
+ "fp": 4203,
+ "fp_rate": 0.024173371906435304,
+ "match_probability": 0.2,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9835625760177085,
+ "recall": 0.8273890400413211,
+ "row_count": 477830,
+ "tn": 169666,
+ "tn_rate": 0.9758266280935647,
+ "tp": 251494,
+ "tp_rate": 0.8273890400413211,
+ "truth_threshold": -2
+ },
+ {
+ "f1": 0.8986154198058586,
+ "fn": 52532,
+ "fn_rate": 0.17282480318198717,
+ "fp": 4202,
+ "fp_rate": 0.024167620449878933,
+ "match_probability": 0.20222729838105732,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9835622440157884,
+ "recall": 0.8271751968180129,
+ "row_count": 477830,
+ "tn": 169667,
+ "tn_rate": 0.975832379550121,
+ "tp": 251429,
+ "tp_rate": 0.8271751968180129,
+ "truth_threshold": -1.98
+ },
+ {
+ "f1": 0.8983612535123656,
+ "fn": 52666,
+ "fn_rate": 0.17326564921157647,
+ "fp": 4197,
+ "fp_rate": 0.02413886316709707,
+ "match_probability": 0.2044730612910191,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9835728711662205,
+ "recall": 0.8267343507884235,
+ "row_count": 477830,
+ "tn": 169672,
+ "tn_rate": 0.975861136832903,
+ "tp": 251295,
+ "tp_rate": 0.8267343507884235,
+ "truth_threshold": -1.96
+ },
+ {
+ "f1": 0.8981363616859991,
+ "fn": 52781,
+ "fn_rate": 0.17364398722204494,
+ "fp": 4195,
+ "fp_rate": 0.02412736025398432,
+ "match_probability": 0.2067373008135667,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.98357317670093,
+ "recall": 0.8263560127779551,
+ "row_count": 477830,
+ "tn": 169674,
+ "tn_rate": 0.9758726397460157,
+ "tp": 251180,
+ "tp_rate": 0.8263560127779551,
+ "truth_threshold": -1.94
+ },
+ {
+ "f1": 0.898156195790189,
+ "fn": 52850,
+ "fn_rate": 0.173870990028326,
+ "fp": 4099,
+ "fp_rate": 0.023575220424572524,
+ "match_probability": 0.2090200256521214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9839387171349085,
+ "recall": 0.826129009971674,
+ "row_count": 477830,
+ "tn": 169770,
+ "tn_rate": 0.9764247795754275,
+ "tp": 251111,
+ "tp_rate": 0.826129009971674,
+ "truth_threshold": -1.92
+ },
+ {
+ "f1": 0.897931147974972,
+ "fn": 52965,
+ "fn_rate": 0.17424932803879445,
+ "fp": 4098,
+ "fp_rate": 0.02356946896801615,
+ "match_probability": 0.21132124107142602,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9839353336417164,
+ "recall": 0.8257506719612056,
+ "row_count": 477830,
+ "tn": 169771,
+ "tn_rate": 0.9764305310319839,
+ "tp": 250996,
+ "tp_rate": 0.8257506719612056,
+ "truth_threshold": -1.9000000000000001
+ },
+ {
+ "f1": 0.8978024101213647,
+ "fn": 53036,
+ "fn_rate": 0.17448291063656193,
+ "fp": 4091,
+ "fp_rate": 0.02352920877212154,
+ "match_probability": 0.213640948839702,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9839578693101609,
+ "recall": 0.825517089363438,
+ "row_count": 477830,
+ "tn": 169778,
+ "tn_rate": 0.9764707912278785,
+ "tp": 250925,
+ "tp_rate": 0.825517089363438,
+ "truth_threshold": -1.8800000000000001
+ },
+ {
+ "f1": 0.8976642821612995,
+ "fn": 53115,
+ "fn_rate": 0.17474281240027503,
+ "fp": 4080,
+ "fp_rate": 0.02346594275000144,
+ "match_probability": 0.2159791471714348,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9839953555149338,
+ "recall": 0.825257187599725,
+ "row_count": 477830,
+ "tn": 169789,
+ "tn_rate": 0.9765340572499985,
+ "tp": 250846,
+ "tp_rate": 0.825257187599725,
+ "truth_threshold": -1.86
+ },
+ {
+ "f1": 0.8985604393240947,
+ "fn": 53286,
+ "fn_rate": 0.17530538457236292,
+ "fp": 3313,
+ "fp_rate": 0.019054575571263423,
+ "match_probability": 0.21833583067084317,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9869560766650393,
+ "recall": 0.8246946154276371,
+ "row_count": 477830,
+ "tn": 170556,
+ "tn_rate": 0.9809454244287366,
+ "tp": 250675,
+ "tp_rate": 0.8246946154276371,
+ "truth_threshold": -1.84
+ },
+ {
+ "f1": 0.8984164656028508,
+ "fn": 53363,
+ "fn_rate": 0.1755587065445896,
+ "fp": 3307,
+ "fp_rate": 0.019020066831925184,
+ "match_probability": 0.2207109902760858,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9869754435714145,
+ "recall": 0.8244412934554104,
+ "row_count": 477830,
+ "tn": 170562,
+ "tn_rate": 0.9809799331680749,
+ "tp": 250598,
+ "tp_rate": 0.8244412934554104,
+ "truth_threshold": -1.82
+ },
+ {
+ "f1": 0.8982591390716603,
+ "fn": 53450,
+ "fn_rate": 0.17584492747424835,
+ "fp": 3298,
+ "fp_rate": 0.01896830372291783,
+ "match_probability": 0.22310461320426225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.987005976935412,
+ "recall": 0.8241550725257517,
+ "row_count": 477830,
+ "tn": 170571,
+ "tn_rate": 0.9810316962770822,
+ "tp": 250511,
+ "tp_rate": 0.8241550725257517,
+ "truth_threshold": -1.8
+ },
+ {
+ "f1": 0.89802806191986,
+ "fn": 53580,
+ "fn_rate": 0.17627261392086485,
+ "fp": 3282,
+ "fp_rate": 0.018876280418015864,
+ "match_probability": 0.225516682897264,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9870615738203837,
+ "recall": 0.8237273860791352,
+ "row_count": 477830,
+ "tn": 170587,
+ "tn_rate": 0.9811237195819842,
+ "tp": 250381,
+ "tp_rate": 0.8237273860791352,
+ "truth_threshold": -1.78
+ },
+ {
+ "f1": 0.8978935889341675,
+ "fn": 53657,
+ "fn_rate": 0.17652593589309154,
+ "fp": 3272,
+ "fp_rate": 0.018818765852452134,
+ "match_probability": 0.22794717896853242,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9870965706533741,
+ "recall": 0.8234740641069085,
+ "row_count": 477830,
+ "tn": 170597,
+ "tn_rate": 0.9811812341475479,
+ "tp": 250304,
+ "tp_rate": 0.8234740641069085,
+ "truth_threshold": -1.76
+ },
+ {
+ "f1": 0.8975640740395174,
+ "fn": 53844,
+ "fn_rate": 0.17714114639707068,
+ "fp": 3247,
+ "fp_rate": 0.01867497943854281,
+ "match_probability": 0.2303960771507819,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9871844460933676,
+ "recall": 0.8228588536029293,
+ "row_count": 477830,
+ "tn": 170622,
+ "tn_rate": 0.9813250205614572,
+ "tp": 250117,
+ "tp_rate": 0.8228588536029293,
+ "truth_threshold": -1.74
+ },
+ {
+ "f1": 0.8974936020990141,
+ "fn": 53913,
+ "fn_rate": 0.17736814920335175,
+ "fp": 3206,
+ "fp_rate": 0.018439169719731523,
+ "match_probability": 0.23286334924474508,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9873407725050739,
+ "recall": 0.8226318507966482,
+ "row_count": 477830,
+ "tn": 170663,
+ "tn_rate": 0.9815608302802685,
+ "tp": 250048,
+ "tp_rate": 0.8226318507966482,
+ "truth_threshold": -1.72
+ },
+ {
+ "f1": 0.8979181261338938,
+ "fn": 54021,
+ "fn_rate": 0.17772345794361777,
+ "fp": 2810,
+ "fp_rate": 0.016161592923407853,
+ "match_probability": 0.2353489630689996,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9888822947576656,
+ "recall": 0.8222765420563822,
+ "row_count": 477830,
+ "tn": 171059,
+ "tn_rate": 0.9838384070765921,
+ "tp": 249940,
+ "tp_rate": 0.8222765420563822,
+ "truth_threshold": -1.7
+ },
+ {
+ "f1": 0.897744912038634,
+ "fn": 54115,
+ "fn_rate": 0.17803270814347893,
+ "fp": 2802,
+ "fp_rate": 0.01611558127095687,
+ "match_probability": 0.2378528824109348,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9889094708843925,
+ "recall": 0.8219672918565211,
+ "row_count": 477830,
+ "tn": 171067,
+ "tn_rate": 0.9838844187290431,
+ "tp": 249846,
+ "tp_rate": 0.8219672918565211,
+ "truth_threshold": -1.68
+ },
+ {
+ "f1": 0.8974855697003242,
+ "fn": 54250,
+ "fn_rate": 0.17847684406881145,
+ "fp": 2796,
+ "fp_rate": 0.016081072531618633,
+ "match_probability": 0.24037506697891697,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9889270396464257,
+ "recall": 0.8215231559311885,
+ "row_count": 477830,
+ "tn": 171073,
+ "tn_rate": 0.9839189274683814,
+ "tp": 249711,
+ "tp_rate": 0.8215231559311885,
+ "truth_threshold": -1.6600000000000001
+ },
+ {
+ "f1": 0.897396174058072,
+ "fn": 54300,
+ "fn_rate": 0.17864133885597167,
+ "fp": 2790,
+ "fp_rate": 0.016046563792280394,
+ "match_probability": 0.2429154723557138,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9889483503729437,
+ "recall": 0.8213586611440283,
+ "row_count": 477830,
+ "tn": 171079,
+ "tn_rate": 0.9839534362077196,
+ "tp": 249661,
+ "tp_rate": 0.8213586611440283,
+ "truth_threshold": -1.6400000000000001
+ },
+ {
+ "f1": 0.8971211614587266,
+ "fn": 54442,
+ "fn_rate": 0.1791085040515066,
+ "fp": 2786,
+ "fp_rate": 0.016023557966054904,
+ "match_probability": 0.2454740499532359,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9889578090010107,
+ "recall": 0.8208914959484934,
+ "row_count": 477830,
+ "tn": 171083,
+ "tn_rate": 0.9839764420339451,
+ "tp": 249519,
+ "tp_rate": 0.8208914959484934,
+ "truth_threshold": -1.62
+ },
+ {
+ "f1": 0.8969559667008289,
+ "fn": 54531,
+ "fn_rate": 0.17940130477265176,
+ "fp": 2780,
+ "fp_rate": 0.015989049226716665,
+ "match_probability": 0.2480507469686566,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9889774394353912,
+ "recall": 0.8205986952273483,
+ "row_count": 477830,
+ "tn": 171089,
+ "tn_rate": 0.9840109507732834,
+ "tp": 249430,
+ "tp_rate": 0.8205986952273483,
+ "truth_threshold": -1.6
+ },
+ {
+ "f1": 0.8967427272465687,
+ "fn": 54645,
+ "fn_rate": 0.179776352887377,
+ "fp": 2772,
+ "fp_rate": 0.015943037574265684,
+ "match_probability": 0.25064550634196875,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9890038399289137,
+ "recall": 0.820223647112623,
+ "row_count": 477830,
+ "tn": 171097,
+ "tn_rate": 0.9840569624257344,
+ "tp": 249316,
+ "tp_rate": 0.820223647112623,
+ "truth_threshold": -1.58
+ },
+ {
+ "f1": 0.8966464972048148,
+ "fn": 54713,
+ "fn_rate": 0.18000006579791486,
+ "fp": 2748,
+ "fp_rate": 0.015805002616912735,
+ "match_probability": 0.2532582667150385,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9890950650010317,
+ "recall": 0.8199999342020852,
+ "row_count": 477830,
+ "tn": 171121,
+ "tn_rate": 0.9841949973830872,
+ "tp": 249248,
+ "tp_rate": 0.8199999342020852,
+ "truth_threshold": -1.56
+ },
+ {
+ "f1": 0.8964667362285468,
+ "fn": 54806,
+ "fn_rate": 0.18030602610203283,
+ "fp": 2745,
+ "fp_rate": 0.015787748247243615,
+ "match_probability": 0.2558889623922157,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9891028185788011,
+ "recall": 0.8196939738979672,
+ "row_count": 477830,
+ "tn": 171124,
+ "tn_rate": 0.9842122517527564,
+ "tp": 249155,
+ "tp_rate": 0.8196939738979672,
+ "truth_threshold": -1.54
+ },
+ {
+ "f1": 0.8964321056514151,
+ "fn": 54847,
+ "fn_rate": 0.18044091182750419,
+ "fp": 2715,
+ "fp_rate": 0.015615204550552427,
+ "match_probability": 0.2585375233025599,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9892188747126026,
+ "recall": 0.8195590881724958,
+ "row_count": 477830,
+ "tn": 171154,
+ "tn_rate": 0.9843847954494476,
+ "tp": 249114,
+ "tp_rate": 0.8195590881724958,
+ "truth_threshold": -1.52
+ },
+ {
+ "f1": 0.8961788758350611,
+ "fn": 54981,
+ "fn_rate": 0.1808817578570935,
+ "fp": 2707,
+ "fp_rate": 0.015569192898101445,
+ "match_probability": 0.2612038749637415,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9892445775904198,
+ "recall": 0.8191182421429065,
+ "row_count": 477830,
+ "tn": 171162,
+ "tn_rate": 0.9844308071018986,
+ "tp": 248980,
+ "tp_rate": 0.8191182421429065,
+ "truth_threshold": -1.5
+ },
+ {
+ "f1": 0.8954549711478197,
+ "fn": 55363,
+ "fn_rate": 0.1821384980309974,
+ "fp": 2686,
+ "fp_rate": 0.015448412310417613,
+ "match_probability": 0.2638879384476761,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9893108992215979,
+ "recall": 0.8178615019690026,
+ "row_count": 477830,
+ "tn": 171183,
+ "tn_rate": 0.9845515876895824,
+ "tp": 248598,
+ "tp_rate": 0.8178615019690026,
+ "truth_threshold": -1.48
+ },
+ {
+ "f1": 0.8950641750924251,
+ "fn": 55561,
+ "fn_rate": 0.18278989738815177,
+ "fp": 2683,
+ "fp_rate": 0.015431157940748494,
+ "match_probability": 0.26658963034795197,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9893142904935818,
+ "recall": 0.8172101026118482,
+ "row_count": 477830,
+ "tn": 171186,
+ "tn_rate": 0.9845688420592515,
+ "tp": 248400,
+ "tp_rate": 0.8172101026118482,
+ "truth_threshold": -1.46
+ },
+ {
+ "f1": 0.8949485193687541,
+ "fn": 55628,
+ "fn_rate": 0.18301032040294643,
+ "fp": 2672,
+ "fp_rate": 0.015367891918628392,
+ "match_probability": 0.26930886274910526,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9893547937292085,
+ "recall": 0.8169896795970536,
+ "row_count": 477830,
+ "tn": 171197,
+ "tn_rate": 0.9846321080813716,
+ "tp": 248333,
+ "tp_rate": 0.8169896795970536,
+ "truth_threshold": -1.44
+ },
+ {
+ "f1": 0.8946924474435505,
+ "fn": 55759,
+ "fn_rate": 0.18344129674530615,
+ "fp": 2669,
+ "fp_rate": 0.015350637548959274,
+ "match_probability": 0.2720455431978043,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9893610660458961,
+ "recall": 0.8165587032546938,
+ "row_count": 477830,
+ "tn": 171200,
+ "tn_rate": 0.9846493624510407,
+ "tp": 248202,
+ "tp_rate": 0.8165587032546938,
+ "truth_threshold": -1.42
+ },
+ {
+ "f1": 0.894573850219375,
+ "fn": 55825,
+ "fn_rate": 0.1836584298643576,
+ "fp": 2662,
+ "fp_rate": 0.015310377353064664,
+ "match_probability": 0.2747995746759952,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9893858802701776,
+ "recall": 0.8163415701356423,
+ "row_count": 477830,
+ "tn": 171207,
+ "tn_rate": 0.9846896226469354,
+ "tp": 248136,
+ "tp_rate": 0.8163415701356423,
+ "truth_threshold": -1.4000000000000001
+ },
+ {
+ "f1": 0.8943859282203656,
+ "fn": 55929,
+ "fn_rate": 0.18400057902165082,
+ "fp": 2650,
+ "fp_rate": 0.015241359874388188,
+ "match_probability": 0.27757085557606836,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9894288381295825,
+ "recall": 0.8159994209783492,
+ "row_count": 477830,
+ "tn": 171219,
+ "tn_rate": 0.9847586401256118,
+ "tp": 248032,
+ "tp_rate": 0.8159994209783492,
+ "truth_threshold": -1.3800000000000001
+ },
+ {
+ "f1": 0.8942869508764336,
+ "fn": 56011,
+ "fn_rate": 0.18427035047259352,
+ "fp": 2609,
+ "fp_rate": 0.0150055501555769,
+ "match_probability": 0.2803592796780973,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9895872828355796,
+ "recall": 0.8157296495274065,
+ "row_count": 477830,
+ "tn": 171260,
+ "tn_rate": 0.9849944498444231,
+ "tp": 247950,
+ "tp_rate": 0.8157296495274065,
+ "truth_threshold": -1.36
+ },
+ {
+ "f1": 0.8941741304120421,
+ "fn": 56070,
+ "fn_rate": 0.18446445432144257,
+ "fp": 2607,
+ "fp_rate": 0.014994047242464155,
+ "match_probability": 0.28316473612920606,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9895927312792917,
+ "recall": 0.8155355456785575,
+ "row_count": 477830,
+ "tn": 171262,
+ "tn_rate": 0.9850059527575359,
+ "tp": 247891,
+ "tp_rate": 0.8155355456785575,
+ "truth_threshold": -1.34
+ },
+ {
+ "f1": 0.893929226017809,
+ "fn": 56196,
+ "fn_rate": 0.18487898118508625,
+ "fp": 2602,
+ "fp_rate": 0.01496528995968229,
+ "match_probability": 0.2859871094251169,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9896072565473885,
+ "recall": 0.8151210188149137,
+ "row_count": 477830,
+ "tn": 171267,
+ "tn_rate": 0.9850347100403177,
+ "tp": 247765,
+ "tp_rate": 0.8151210188149137,
+ "truth_threshold": -1.32
+ },
+ {
+ "f1": 0.8937478573104058,
+ "fn": 56299,
+ "fn_rate": 0.18521784044663625,
+ "fp": 2587,
+ "fp_rate": 0.014879018111336696,
+ "match_probability": 0.2888262793939301,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9896622963528325,
+ "recall": 0.8147821595533637,
+ "row_count": 477830,
+ "tn": 171282,
+ "tn_rate": 0.9851209818886633,
+ "tp": 247662,
+ "tp_rate": 0.8147821595533637,
+ "truth_threshold": -1.3
+ },
+ {
+ "f1": 0.8935986658773589,
+ "fn": 56402,
+ "fn_rate": 0.18555669970818625,
+ "fp": 2552,
+ "fp_rate": 0.014677717131863645,
+ "match_probability": 0.29168212118218634,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9897965303405288,
+ "recall": 0.8144433002918138,
+ "row_count": 477830,
+ "tn": 171317,
+ "tn_rate": 0.9853222828681364,
+ "tp": 247559,
+ "tp_rate": 0.8144433002918138,
+ "truth_threshold": -1.28
+ },
+ {
+ "f1": 0.8934971912140598,
+ "fn": 56473,
+ "fn_rate": 0.18579028230595374,
+ "fp": 2528,
+ "fp_rate": 0.014539682174510694,
+ "match_probability": 0.29455450524326093,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9898886471265839,
+ "recall": 0.8142097176940463,
+ "row_count": 477830,
+ "tn": 171341,
+ "tn_rate": 0.9854603178254893,
+ "tp": 247488,
+ "tp_rate": 0.8142097176940463,
+ "truth_threshold": -1.26
+ },
+ {
+ "f1": 0.8933603425988113,
+ "fn": 56552,
+ "fn_rate": 0.18605018406966684,
+ "fp": 2515,
+ "fp_rate": 0.014464913239277847,
+ "match_probability": 0.2974432973281369,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9899369408300123,
+ "recall": 0.8139498159303332,
+ "row_count": 477830,
+ "tn": 171354,
+ "tn_rate": 0.9855350867607221,
+ "tp": 247409,
+ "tp_rate": 0.8139498159303332,
+ "truth_threshold": -1.24
+ },
+ {
+ "f1": 0.8931315079476873,
+ "fn": 56677,
+ "fn_rate": 0.18646142103756733,
+ "fp": 2501,
+ "fp_rate": 0.014384392847488627,
+ "match_probability": 0.300348358478604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.989987389154673,
+ "recall": 0.8135385789624326,
+ "row_count": 477830,
+ "tn": 171368,
+ "tn_rate": 0.9856156071525114,
+ "tp": 247284,
+ "tp_rate": 0.8135385789624326,
+ "truth_threshold": -1.22
+ },
+ {
+ "f1": 0.8929477129377424,
+ "fn": 56777,
+ "fn_rate": 0.1867904106118877,
+ "fp": 2491,
+ "fp_rate": 0.014326878281924898,
+ "match_probability": 0.30326954502292763,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9900230299389206,
+ "recall": 0.8132095893881123,
+ "row_count": 477830,
+ "tn": 171378,
+ "tn_rate": 0.9856731217180751,
+ "tp": 247184,
+ "tp_rate": 0.8132095893881123,
+ "truth_threshold": -1.2
+ },
+ {
+ "f1": 0.892855207102516,
+ "fn": 56866,
+ "fn_rate": 0.18708321133303285,
+ "fp": 2438,
+ "fp_rate": 0.014022051084437133,
+ "match_probability": 0.3062067085740297,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9902297491714522,
+ "recall": 0.8129167886669671,
+ "row_count": 477830,
+ "tn": 171431,
+ "tn_rate": 0.9859779489155629,
+ "tp": 247095,
+ "tp_rate": 0.8129167886669671,
+ "truth_threshold": -1.18
+ },
+ {
+ "f1": 0.8925480925632739,
+ "fn": 57034,
+ "fn_rate": 0.1876359138178911,
+ "fp": 2421,
+ "fp_rate": 0.013924276322978794,
+ "match_probability": 0.309159696030225,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9902906780884547,
+ "recall": 0.8123640861821089,
+ "row_count": 477830,
+ "tn": 171448,
+ "tn_rate": 0.9860757236770212,
+ "tp": 246927,
+ "tp_rate": 0.8123640861821089,
+ "truth_threshold": -1.16
+ },
+ {
+ "f1": 0.8923995719698066,
+ "fn": 57109,
+ "fn_rate": 0.1878826559986314,
+ "fp": 2419,
+ "fp_rate": 0.013912773409866049,
+ "match_probability": 0.3121283495785485,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9902957022678129,
+ "recall": 0.8121173440013686,
+ "row_count": 477830,
+ "tn": 171450,
+ "tn_rate": 0.9860872265901339,
+ "tp": 246852,
+ "tp_rate": 0.8121173440013686,
+ "truth_threshold": -1.1400000000000001
+ },
+ {
+ "f1": 0.8920747539181438,
+ "fn": 57272,
+ "fn_rate": 0.18841890900477365,
+ "fp": 2419,
+ "fp_rate": 0.013912773409866049,
+ "match_probability": 0.3151125067007146,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9902893524093968,
+ "recall": 0.8115810909952264,
+ "row_count": 477830,
+ "tn": 171450,
+ "tn_rate": 0.9860872265901339,
+ "tp": 246689,
+ "tp_rate": 0.8115810909952264,
+ "truth_threshold": -1.12
+ },
+ {
+ "f1": 0.8917927589337713,
+ "fn": 57424,
+ "fn_rate": 0.18891897315774064,
+ "fp": 2405,
+ "fp_rate": 0.013832253018076827,
+ "match_probability": 0.3181120001817404,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9903391151352524,
+ "recall": 0.8110810268422594,
+ "row_count": 477830,
+ "tn": 171464,
+ "tn_rate": 0.9861677469819232,
+ "tp": 246537,
+ "tp_rate": 0.8110810268422594,
+ "truth_threshold": -1.1
+ },
+ {
+ "f1": 0.8916581947373943,
+ "fn": 57504,
+ "fn_rate": 0.18918216481719694,
+ "fp": 2388,
+ "fp_rate": 0.013734478256618488,
+ "match_probability": 0.32112665812126734,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9904036649319857,
+ "recall": 0.810817835182803,
+ "row_count": 477830,
+ "tn": 171481,
+ "tn_rate": 0.9862655217433816,
+ "tp": 246457,
+ "tp_rate": 0.810817835182803,
+ "truth_threshold": -1.08
+ },
+ {
+ "f1": 0.8916610571877329,
+ "fn": 57579,
+ "fn_rate": 0.18942890699793724,
+ "fp": 2294,
+ "fp_rate": 0.013193841340319435,
+ "match_probability": 0.3241563039476125,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.990775145168814,
+ "recall": 0.8105710930020628,
+ "row_count": 477830,
+ "tn": 171575,
+ "tn_rate": 0.9868061586596806,
+ "tp": 246382,
+ "tp_rate": 0.8105710930020628,
+ "truth_threshold": -1.06
+ },
+ {
+ "f1": 0.8915106632497937,
+ "fn": 57658,
+ "fn_rate": 0.18968880876165034,
+ "fp": 2288,
+ "fp_rate": 0.013159332600981198,
+ "match_probability": 0.32720075643457636,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.990796126971612,
+ "recall": 0.8103111912383496,
+ "row_count": 477830,
+ "tn": 171581,
+ "tn_rate": 0.9868406673990188,
+ "tp": 246303,
+ "tp_rate": 0.8103111912383496,
+ "truth_threshold": -1.04
+ },
+ {
+ "f1": 0.8913433830024472,
+ "fn": 57747,
+ "fn_rate": 0.1899816094827955,
+ "fp": 2282,
+ "fp_rate": 0.01312482386164296,
+ "match_probability": 0.33025982972103385,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.990816753589595,
+ "recall": 0.8100183905172045,
+ "row_count": 477830,
+ "tn": 171587,
+ "tn_rate": 0.9868751761383571,
+ "tp": 246214,
+ "tp_rate": 0.8100183905172045,
+ "truth_threshold": -1.02
+ },
+ {
+ "f1": 0.8910571637564547,
+ "fn": 57892,
+ "fn_rate": 0.19045864436556006,
+ "fp": 2278,
+ "fp_rate": 0.013101818035417469,
+ "match_probability": 0.3333333333333333,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9908273504411167,
+ "recall": 0.80954135563444,
+ "row_count": 477830,
+ "tn": 171591,
+ "tn_rate": 0.9868981819645826,
+ "tp": 246069,
+ "tp_rate": 0.80954135563444,
+ "truth_threshold": -1
+ },
+ {
+ "f1": 0.8909588048890901,
+ "fn": 57945,
+ "fn_rate": 0.19063300883994985,
+ "fp": 2274,
+ "fp_rate": 0.013078812209191978,
+ "match_probability": 0.33642107221052214,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9908413548672923,
+ "recall": 0.8093669911600502,
+ "row_count": 477830,
+ "tn": 171595,
+ "tn_rate": 0.9869211877908081,
+ "tp": 246016,
+ "tp_rate": 0.8093669911600502,
+ "truth_threshold": -0.98
+ },
+ {
+ "f1": 0.8907664388250763,
+ "fn": 58048,
+ "fn_rate": 0.19097186810149985,
+ "fp": 2265,
+ "fp_rate": 0.013027049100184622,
+ "match_probability": 0.339522846732419,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9908734859657181,
+ "recall": 0.8090281318985001,
+ "row_count": 477830,
+ "tn": 171604,
+ "tn_rate": 0.9869729508998154,
+ "tp": 245913,
+ "tp_rate": 0.8090281318985001,
+ "truth_threshold": -0.96
+ },
+ {
+ "f1": 0.8905932433656372,
+ "fn": 58135,
+ "fn_rate": 0.1912580890311586,
+ "fp": 2263,
+ "fp_rate": 0.013015546187071876,
+ "match_probability": 0.3426384527505482,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9908782735228083,
+ "recall": 0.8087419109688414,
+ "row_count": 477830,
+ "tn": 171606,
+ "tn_rate": 0.9869844538129281,
+ "tp": 245826,
+ "tp_rate": 0.8087419109688414,
+ "truth_threshold": -0.9400000000000001
+ },
+ {
+ "f1": 0.8904260484531376,
+ "fn": 58223,
+ "fn_rate": 0.19154759985656056,
+ "fp": 2258,
+ "fp_rate": 0.012986788904290012,
+ "match_probability": 0.34576768162194854,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9908950144357167,
+ "recall": 0.8084524001434394,
+ "row_count": 477830,
+ "tn": 171611,
+ "tn_rate": 0.9870132110957099,
+ "tp": 245738,
+ "tp_rate": 0.8084524001434394,
+ "truth_threshold": -0.92
+ },
+ {
+ "f1": 0.8902117265024173,
+ "fn": 58332,
+ "fn_rate": 0.19190619849256976,
+ "fp": 2254,
+ "fp_rate": 0.01296378307806452,
+ "match_probability": 0.34891032024586677,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909070004800652,
+ "recall": 0.8080938015074303,
+ "row_count": 477830,
+ "tn": 171615,
+ "tn_rate": 0.9870362169219354,
+ "tp": 245629,
+ "tp_rate": 0.8080938015074303,
+ "truth_threshold": -0.9
+ },
+ {
+ "f1": 0.8898266985715322,
+ "fn": 58529,
+ "fn_rate": 0.19255430795398093,
+ "fp": 2247,
+ "fp_rate": 0.01292352288216991,
+ "match_probability": 0.3520661511033437,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909277734486978,
+ "recall": 0.807445692046019,
+ "row_count": 477830,
+ "tn": 171622,
+ "tn_rate": 0.9870764771178301,
+ "tp": 245432,
+ "tp_rate": 0.807445692046019,
+ "truth_threshold": -0.88
+ },
+ {
+ "f1": 0.8896491705194453,
+ "fn": 58618,
+ "fn_rate": 0.19284710867512608,
+ "fp": 2246,
+ "fp_rate": 0.012917771425613537,
+ "match_probability": 0.3552349522996959,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909285145947518,
+ "recall": 0.8071528913248739,
+ "row_count": 477830,
+ "tn": 171623,
+ "tn_rate": 0.9870822285743864,
+ "tp": 245343,
+ "tp_rate": 0.8071528913248739,
+ "truth_threshold": -0.86
+ },
+ {
+ "f1": 0.8894792388233459,
+ "fn": 58704,
+ "fn_rate": 0.19313003970904163,
+ "fp": 2244,
+ "fp_rate": 0.01290626851250079,
+ "match_probability": 0.3584164976098956,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.990933369966182,
+ "recall": 0.8068699602909584,
+ "row_count": 477830,
+ "tn": 171625,
+ "tn_rate": 0.9870937314874992,
+ "tp": 245257,
+ "tp_rate": 0.8068699602909584,
+ "truth_threshold": -0.84
+ },
+ {
+ "f1": 0.8893217406444172,
+ "fn": 58783,
+ "fn_rate": 0.19338994147275473,
+ "fp": 2243,
+ "fp_rate": 0.012900517055944418,
+ "match_probability": 0.36161055652684515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909344800966773,
+ "recall": 0.8066100585272453,
+ "row_count": 477830,
+ "tn": 171626,
+ "tn_rate": 0.9870994829440556,
+ "tp": 245178,
+ "tp_rate": 0.8066100585272453,
+ "truth_threshold": -0.8200000000000001
+ },
+ {
+ "f1": 0.8890823864048645,
+ "fn": 58905,
+ "fn_rate": 0.1937913087534256,
+ "fp": 2240,
+ "fp_rate": 0.0128832626862753,
+ "match_probability": 0.36481689431254416,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909420289855072,
+ "recall": 0.8062086912465743,
+ "row_count": 477830,
+ "tn": 171629,
+ "tn_rate": 0.9871167373137247,
+ "tp": 245056,
+ "tp_rate": 0.8062086912465743,
+ "truth_threshold": -0.8
+ },
+ {
+ "f1": 0.8889009844584027,
+ "fn": 58995,
+ "fn_rate": 0.19408739937031397,
+ "fp": 2239,
+ "fp_rate": 0.012877511229718926,
+ "match_probability": 0.36803527205213776,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909427398313141,
+ "recall": 0.8059126006296861,
+ "row_count": 477830,
+ "tn": 171630,
+ "tn_rate": 0.9871224887702811,
+ "tp": 244966,
+ "tp_rate": 0.8059126006296861,
+ "truth_threshold": -0.78
+ },
+ {
+ "f1": 0.8886739449194988,
+ "fn": 59110,
+ "fn_rate": 0.1944657373807824,
+ "fp": 2237,
+ "fp_rate": 0.01286600831660618,
+ "match_probability": 0.37126544671083744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909465453603574,
+ "recall": 0.8055342626192176,
+ "row_count": 477830,
+ "tn": 171632,
+ "tn_rate": 0.9871339916833938,
+ "tp": 244851,
+ "tp_rate": 0.8055342626192176,
+ "truth_threshold": -0.76
+ },
+ {
+ "f1": 0.8885049042740876,
+ "fn": 59201,
+ "fn_rate": 0.19476511789341397,
+ "fp": 2228,
+ "fp_rate": 0.012814245207598824,
+ "match_probability": 0.37450717119369914,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909793188333036,
+ "recall": 0.805234882106586,
+ "row_count": 477830,
+ "tn": 171641,
+ "tn_rate": 0.9871857547924012,
+ "tp": 244760,
+ "tp_rate": 0.805234882106586,
+ "truth_threshold": -0.74
+ },
+ {
+ "f1": 0.888297466768814,
+ "fn": 59307,
+ "fn_rate": 0.19511384684219357,
+ "fp": 2224,
+ "fp_rate": 0.012791239381373333,
+ "match_probability": 0.3777601944082411,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909915018754203,
+ "recall": 0.8048861531578064,
+ "row_count": 477830,
+ "tn": 171645,
+ "tn_rate": 0.9872087606186266,
+ "tp": 244654,
+ "tp_rate": 0.8048861531578064,
+ "truth_threshold": -0.72
+ },
+ {
+ "f1": 0.8881480997305561,
+ "fn": 59381,
+ "fn_rate": 0.19535729912719066,
+ "fp": 2224,
+ "fp_rate": 0.012791239381373333,
+ "match_probability": 0.3810242613298804,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909888008298082,
+ "recall": 0.8046427008728093,
+ "row_count": 477830,
+ "tn": 171645,
+ "tn_rate": 0.9872087606186266,
+ "tp": 244580,
+ "tp_rate": 0.8046427008728093,
+ "truth_threshold": -0.7000000000000001
+ },
+ {
+ "f1": 0.88792640051139,
+ "fn": 59490,
+ "fn_rate": 0.1957158977631999,
+ "fp": 2224,
+ "fp_rate": 0.012791239381373333,
+ "match_probability": 0.38429911307016507,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9909848193112953,
+ "recall": 0.8042841022368001,
+ "row_count": 477830,
+ "tn": 171645,
+ "tn_rate": 0.9872087606186266,
+ "tp": 244471,
+ "tp_rate": 0.8042841022368001,
+ "truth_threshold": -0.68
+ },
+ {
+ "f1": 0.8878128519016311,
+ "fn": 59555,
+ "fn_rate": 0.19592974098650814,
+ "fp": 2213,
+ "fp_rate": 0.012727973359253231,
+ "match_probability": 0.38758448694777375,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910266443380275,
+ "recall": 0.8040702590134918,
+ "row_count": 477830,
+ "tn": 171656,
+ "tn_rate": 0.9872720266407468,
+ "tp": 244406,
+ "tp_rate": 0.8040702590134918,
+ "truth_threshold": -0.66
+ },
+ {
+ "f1": 0.8875505510197408,
+ "fn": 59692,
+ "fn_rate": 0.19638045670332707,
+ "fp": 2205,
+ "fp_rate": 0.012681961706802247,
+ "match_probability": 0.3908801165622518,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910538231213029,
+ "recall": 0.803619543296673,
+ "row_count": 477830,
+ "tn": 171664,
+ "tn_rate": 0.9873180382931978,
+ "tp": 244269,
+ "tp_rate": 0.803619543296673,
+ "truth_threshold": -0.64
+ },
+ {
+ "f1": 0.8874167372257734,
+ "fn": 59759,
+ "fn_rate": 0.19660087971812173,
+ "fp": 2203,
+ "fp_rate": 0.012670458793689502,
+ "match_probability": 0.3941857318704517,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910594346705627,
+ "recall": 0.8033991202818783,
+ "row_count": 477830,
+ "tn": 171666,
+ "tn_rate": 0.9873295412063104,
+ "tp": 244202,
+ "tp_rate": 0.8033991202818783,
+ "truth_threshold": -0.62
+ },
+ {
+ "f1": 0.8870972432243805,
+ "fn": 59917,
+ "fn_rate": 0.19712068324554796,
+ "fp": 2203,
+ "fp_rate": 0.012670458793689502,
+ "match_probability": 0.39750105926563917,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910536981161192,
+ "recall": 0.802879316754452,
+ "row_count": 477830,
+ "tn": 171666,
+ "tn_rate": 0.9873295412063104,
+ "tp": 244044,
+ "tp_rate": 0.802879316754452,
+ "truth_threshold": -0.6
+ },
+ {
+ "f1": 0.886909825992743,
+ "fn": 60020,
+ "fn_rate": 0.19745954250709796,
+ "fp": 2191,
+ "fp_rate": 0.012601441315013027,
+ "match_probability": 0.4008258216592253,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910982724716818,
+ "recall": 0.802540457492902,
+ "row_count": 477830,
+ "tn": 171678,
+ "tn_rate": 0.9873985586849869,
+ "tp": 243941,
+ "tp_rate": 0.802540457492902,
+ "truth_threshold": -0.58
+ },
+ {
+ "f1": 0.8866665454479336,
+ "fn": 60141,
+ "fn_rate": 0.19785761989202563,
+ "fp": 2190,
+ "fp_rate": 0.012595689858456655,
+ "match_probability": 0.4041597385650814,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9910979228486647,
+ "recall": 0.8021423801079743,
+ "row_count": 477830,
+ "tn": 171679,
+ "tn_rate": 0.9874043101415434,
+ "tp": 243820,
+ "tp_rate": 0.8021423801079743,
+ "truth_threshold": -0.56
+ },
+ {
+ "f1": 0.8864534949277445,
+ "fn": 60251,
+ "fn_rate": 0.19821950842377806,
+ "fp": 2184,
+ "fp_rate": 0.012561181119118416,
+ "match_probability": 0.4075025261863895,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911181240697211,
+ "recall": 0.801780491576222,
+ "row_count": 477830,
+ "tn": 171685,
+ "tn_rate": 0.9874388188808816,
+ "tp": 243710,
+ "tp_rate": 0.801780491576222,
+ "truth_threshold": -0.54
+ },
+ {
+ "f1": 0.8863684313910937,
+ "fn": 60293,
+ "fn_rate": 0.19835768404499263,
+ "fp": 2184,
+ "fp_rate": 0.012561181119118416,
+ "match_probability": 0.4108538975049788,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911166067390137,
+ "recall": 0.8016423159550073,
+ "row_count": 477830,
+ "tn": 171685,
+ "tn_rate": 0.9874388188808816,
+ "tp": 243668,
+ "tp_rate": 0.8016423159550073,
+ "truth_threshold": -0.52
+ },
+ {
+ "f1": 0.8861897468174823,
+ "fn": 60382,
+ "fn_rate": 0.19865048476613775,
+ "fp": 2182,
+ "fp_rate": 0.01254967820600567,
+ "match_probability": 0.4142135623730951,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911214553977238,
+ "recall": 0.8013495152338622,
+ "row_count": 477830,
+ "tn": 171687,
+ "tn_rate": 0.9874503217939943,
+ "tp": 243579,
+ "tp_rate": 0.8013495152338622,
+ "truth_threshold": -0.5
+ },
+ {
+ "f1": 0.8860498795584051,
+ "fn": 60455,
+ "fn_rate": 0.19889064715539165,
+ "fp": 2177,
+ "fp_rate": 0.012520920923223806,
+ "match_probability": 0.41758122760754685,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911389880455709,
+ "recall": 0.8011093528446084,
+ "row_count": 477830,
+ "tn": 171692,
+ "tn_rate": 0.9874790790767762,
+ "tp": 243506,
+ "tp_rate": 0.8011093528446084,
+ "truth_threshold": -0.48
+ },
+ {
+ "f1": 0.8858548692921066,
+ "fn": 60552,
+ "fn_rate": 0.19920976704248242,
+ "fp": 2176,
+ "fp_rate": 0.012515169466667433,
+ "match_probability": 0.4209565970861701,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911395239937293,
+ "recall": 0.8007902329575176,
+ "row_count": 477830,
+ "tn": 171693,
+ "tn_rate": 0.9874848305333326,
+ "tp": 243409,
+ "tp_rate": 0.8007902329575176,
+ "truth_threshold": -0.46
+ },
+ {
+ "f1": 0.8857428841814079,
+ "fn": 60612,
+ "fn_rate": 0.19940716078707466,
+ "fp": 2170,
+ "fp_rate": 0.012480660727329196,
+ "match_probability": 0.42433937184654724,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9911615801628387,
+ "recall": 0.8005928392129253,
+ "row_count": 477830,
+ "tn": 171699,
+ "tn_rate": 0.9875193392726708,
+ "tp": 243349,
+ "tp_rate": 0.8005928392129253,
+ "truth_threshold": -0.44
+ },
+ {
+ "f1": 0.885595503327363,
+ "fn": 60695,
+ "fn_rate": 0.19968022213376058,
+ "fp": 2158,
+ "fp_rate": 0.012411643248652722,
+ "match_probability": 0.4277292501869187,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912070539148575,
+ "recall": 0.8003197778662394,
+ "row_count": 477830,
+ "tn": 171711,
+ "tn_rate": 0.9875883567513473,
+ "tp": 243266,
+ "tp_rate": 0.8003197778662394,
+ "truth_threshold": -0.42
+ },
+ {
+ "f1": 0.8854336198767172,
+ "fn": 60774,
+ "fn_rate": 0.19994012389747368,
+ "fp": 2158,
+ "fp_rate": 0.012411643248652722,
+ "match_probability": 0.43112592776921604,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912042226252827,
+ "recall": 0.8000598761025263,
+ "row_count": 477830,
+ "tn": 171711,
+ "tn_rate": 0.9875883567513473,
+ "tp": 243187,
+ "tp_rate": 0.8000598761025263,
+ "truth_threshold": -0.4
+ },
+ {
+ "f1": 0.8852285887005732,
+ "fn": 60879,
+ "fn_rate": 0.2002855629505101,
+ "fp": 2153,
+ "fp_rate": 0.012382885965870857,
+ "match_probability": 0.434529097724148,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912206658918996,
+ "recall": 0.7997144370494899,
+ "row_count": 477830,
+ "tn": 171716,
+ "tn_rate": 0.9876171140341291,
+ "tp": 243082,
+ "tp_rate": 0.7997144370494899,
+ "truth_threshold": -0.38
+ },
+ {
+ "f1": 0.8850694027105482,
+ "fn": 60959,
+ "fn_rate": 0.2005487546099664,
+ "fp": 2152,
+ "fp_rate": 0.012377134509314484,
+ "match_probability": 0.4379384507582655,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912218442285258,
+ "recall": 0.7994512453900335,
+ "row_count": 477830,
+ "tn": 171717,
+ "tn_rate": 0.9876228654906856,
+ "tp": 243002,
+ "tp_rate": 0.7994512453900335,
+ "truth_threshold": -0.36
+ },
+ {
+ "f1": 0.8848866351926328,
+ "fn": 61049,
+ "fn_rate": 0.20084484522685475,
+ "fp": 2151,
+ "fp_rate": 0.012371383052758112,
+ "match_probability": 0.4413536752629294,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912226651922159,
+ "recall": 0.7991551547731452,
+ "row_count": 477830,
+ "tn": 171718,
+ "tn_rate": 0.9876286169472419,
+ "tp": 242912,
+ "tp_rate": 0.7991551547731452,
+ "truth_threshold": -0.34
+ },
+ {
+ "f1": 0.8846159451974931,
+ "fn": 61187,
+ "fn_rate": 0.2012988508394169,
+ "fp": 2145,
+ "fp_rate": 0.012336874313419873,
+ "match_probability": 0.4447744574251037,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912420024579555,
+ "recall": 0.7987011491605831,
+ "row_count": 477830,
+ "tn": 171724,
+ "tn_rate": 0.9876631256865801,
+ "tp": 242774,
+ "tp_rate": 0.7987011491605831,
+ "truth_threshold": -0.32
+ },
+ {
+ "f1": 0.884481244328473,
+ "fn": 61262,
+ "fn_rate": 0.2015455930201572,
+ "fp": 2134,
+ "fp_rate": 0.01227360829129977,
+ "match_probability": 0.44820048133989093,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9912838547091283,
+ "recall": 0.7984544069798428,
+ "row_count": 477830,
+ "tn": 171735,
+ "tn_rate": 0.9877263917087002,
+ "tp": 242699,
+ "tp_rate": 0.7984544069798428,
+ "truth_threshold": -0.3
+ },
+ {
+ "f1": 0.8842969783795015,
+ "fn": 61378,
+ "fn_rate": 0.20192722092636883,
+ "fp": 2103,
+ "fp_rate": 0.012095313138052212,
+ "match_probability": 0.45163142912472937,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9914053112969274,
+ "recall": 0.7980727790736312,
+ "row_count": 477830,
+ "tn": 171766,
+ "tn_rate": 0.9879046868619478,
+ "tp": 242583,
+ "tp_rate": 0.7980727790736312,
+ "truth_threshold": -0.28
+ },
+ {
+ "f1": 0.8841942928392523,
+ "fn": 61438,
+ "fn_rate": 0.20212461467096107,
+ "fp": 2090,
+ "fp_rate": 0.012020544202819365,
+ "match_probability": 0.4550669810351646,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.991455891551144,
+ "recall": 0.7978753853290389,
+ "row_count": 477830,
+ "tn": 171779,
+ "tn_rate": 0.9879794557971806,
+ "tp": 242523,
+ "tp_rate": 0.7978753853290389,
+ "truth_threshold": -0.26
+ },
+ {
+ "f1": 0.884033870861869,
+ "fn": 61543,
+ "fn_rate": 0.20247005372399748,
+ "fp": 2057,
+ "fp_rate": 0.011830746136459059,
+ "match_probability": 0.4585068155821077,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9915860517435321,
+ "recall": 0.7975299462760025,
+ "row_count": 477830,
+ "tn": 171812,
+ "tn_rate": 0.9881692538635409,
+ "tp": 242418,
+ "tp_rate": 0.7975299462760025,
+ "truth_threshold": -0.24
+ },
+ {
+ "f1": 0.8837217785916747,
+ "fn": 61709,
+ "fn_rate": 0.20301617641736933,
+ "fp": 2042,
+ "fp_rate": 0.011744474288113465,
+ "match_probability": 0.46195060965049234,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916412191867177,
+ "recall": 0.7969838235826306,
+ "row_count": 477830,
+ "tn": 171827,
+ "tn_rate": 0.9882555257118866,
+ "tp": 242252,
+ "tp_rate": 0.7969838235826306,
+ "truth_threshold": -0.22
+ },
+ {
+ "f1": 0.8835751629933124,
+ "fn": 61781,
+ "fn_rate": 0.20325304891088,
+ "fp": 2041,
+ "fp_rate": 0.011738722831557092,
+ "match_probability": 0.46539803861923645,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.991642815318912,
+ "recall": 0.79674695108912,
+ "row_count": 477830,
+ "tn": 171828,
+ "tn_rate": 0.9882612771684429,
+ "tp": 242180,
+ "tp_rate": 0.79674695108912,
+ "truth_threshold": -0.2
+ },
+ {
+ "f1": 0.883143237768491,
+ "fn": 61993,
+ "fn_rate": 0.20395050680843924,
+ "fp": 2041,
+ "fp_rate": 0.011738722831557092,
+ "match_probability": 0.4688487764824174,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916355544262712,
+ "recall": 0.7960494931915607,
+ "row_count": 477830,
+ "tn": 171828,
+ "tn_rate": 0.9882612771684429,
+ "tp": 241968,
+ "tp_rate": 0.7960494931915607,
+ "truth_threshold": -0.18
+ },
+ {
+ "f1": 0.882881435752905,
+ "fn": 62123,
+ "fn_rate": 0.20437819325505574,
+ "fp": 2039,
+ "fp_rate": 0.011727219918444345,
+ "match_probability": 0.47230249597156454,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916392279714774,
+ "recall": 0.7956218067449442,
+ "row_count": 477830,
+ "tn": 171830,
+ "tn_rate": 0.9882727800815556,
+ "tp": 241838,
+ "tp_rate": 0.7956218067449442,
+ "truth_threshold": -0.16
+ },
+ {
+ "f1": 0.8825638890714813,
+ "fn": 62285,
+ "fn_rate": 0.2049111563654548,
+ "fp": 2031,
+ "fp_rate": 0.011681208265993363,
+ "match_probability": 0.47575886867897205,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916662221438038,
+ "recall": 0.7950888436345452,
+ "row_count": 477830,
+ "tn": 171838,
+ "tn_rate": 0.9883187917340066,
+ "tp": 241676,
+ "tp_rate": 0.7950888436345452,
+ "truth_threshold": -0.14
+ },
+ {
+ "f1": 0.8823944073516735,
+ "fn": 62372,
+ "fn_rate": 0.20519737729511353,
+ "fp": 2027,
+ "fp_rate": 0.011658202439767871,
+ "match_probability": 0.4792175651819362,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916795284381978,
+ "recall": 0.7948026227048864,
+ "row_count": 477830,
+ "tn": 171842,
+ "tn_rate": 0.9883417975602321,
+ "tp": 241589,
+ "tp_rate": 0.7948026227048864,
+ "truth_threshold": -0.12
+ },
+ {
+ "f1": 0.8821676993219546,
+ "fn": 62487,
+ "fn_rate": 0.20557571530558197,
+ "fp": 2022,
+ "fp_rate": 0.011629445156986006,
+ "match_probability": 0.48267825516781476,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9916959621513289,
+ "recall": 0.7944242846944181,
+ "row_count": 477830,
+ "tn": 171847,
+ "tn_rate": 0.988370554843014,
+ "tp": 241474,
+ "tp_rate": 0.7944242846944181,
+ "truth_threshold": -0.1
+ },
+ {
+ "f1": 0.8819249812727239,
+ "fn": 62609,
+ "fn_rate": 0.20597708258625283,
+ "fp": 2018,
+ "fp_rate": 0.011606439330760516,
+ "match_probability": 0.4861406075598103,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.991708098779636,
+ "recall": 0.7940229174137472,
+ "row_count": 477830,
+ "tn": 171851,
+ "tn_rate": 0.9883935606692394,
+ "tp": 241352,
+ "tp_rate": 0.7940229174137472,
+ "truth_threshold": -0.08
+ },
+ {
+ "f1": 0.8816685916460767,
+ "fn": 62740,
+ "fn_rate": 0.20640805892861255,
+ "fp": 2010,
+ "fp_rate": 0.011560427678309532,
+ "match_probability": 0.48960429064337574,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917362507246198,
+ "recall": 0.7935919410713874,
+ "row_count": 477830,
+ "tn": 171859,
+ "tn_rate": 0.9884395723216904,
+ "tp": 241221,
+ "tp_rate": 0.7935919410713874,
+ "truth_threshold": -0.06
+ },
+ {
+ "f1": 0.8814751449481988,
+ "fn": 62837,
+ "fn_rate": 0.20672717881570332,
+ "fp": 2007,
+ "fp_rate": 0.011543173308640414,
+ "match_probability": 0.49306897219313867,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917451908641843,
+ "recall": 0.7932728211842967,
+ "row_count": 477830,
+ "tn": 171862,
+ "tn_rate": 0.9884568266913596,
+ "tp": 241124,
+ "tp_rate": 0.7932728211842967,
+ "truth_threshold": -0.04
+ },
+ {
+ "f1": 0.8812207019109118,
+ "fn": 62963,
+ "fn_rate": 0.20714170567934703,
+ "fp": 2006,
+ "fp_rate": 0.01153742185208404,
+ "match_probability": 0.4965343196002423,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.991744991851986,
+ "recall": 0.792858294320653,
+ "row_count": 477830,
+ "tn": 171863,
+ "tn_rate": 0.9884625781479159,
+ "tp": 240998,
+ "tp_rate": 0.792858294320653,
+ "truth_threshold": -0.02
+ },
+ {
+ "f1": 0.8808845525125343,
+ "fn": 63141,
+ "fn_rate": 0.2077273071216373,
+ "fp": 2003,
+ "fp_rate": 0.011520167482414922,
+ "match_probability": 0.5,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917531291172595,
+ "recall": 0.7923116394424015,
+ "row_count": 477830,
+ "tn": 171870,
+ "tn_rate": 0.9885028383438106,
+ "tp": 240877,
+ "tp_rate": 0.7924602169357253,
+ "truth_threshold": 0
+ },
+ {
+ "f1": 0.8807299531621919,
+ "fn": 63237,
+ "fn_rate": 0.2080431371129849,
+ "fp": 2003,
+ "fp_rate": 0.011520167482414922,
+ "match_probability": 0.5,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917531291172595,
+ "recall": 0.7920615295579947,
+ "row_count": 477830,
+ "tn": 171867,
+ "tn_rate": 0.9884855839741414,
+ "tp": 240877,
+ "tp_rate": 0.7924602169357253,
+ "truth_threshold": 0
+ },
+ {
+ "f1": 0.8805545290564298,
+ "fn": 63294,
+ "fn_rate": 0.20823066117034753,
+ "fp": 1998,
+ "fp_rate": 0.011491410199633057,
+ "match_probability": 0.5034656803997578,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917664269672182,
+ "recall": 0.7917693388296525,
+ "row_count": 477830,
+ "tn": 171871,
+ "tn_rate": 0.9885085898003669,
+ "tp": 240667,
+ "tp_rate": 0.7917693388296525,
+ "truth_threshold": 0.02
+ },
+ {
+ "f1": 0.8804281401518617,
+ "fn": 63362,
+ "fn_rate": 0.20845437408088538,
+ "fp": 1991,
+ "fp_rate": 0.011451150003738447,
+ "match_probability": 0.5069310278068614,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9917927367162702,
+ "recall": 0.7915456259191146,
+ "row_count": 477830,
+ "tn": 171878,
+ "tn_rate": 0.9885488499962616,
+ "tp": 240599,
+ "tp_rate": 0.7915456259191146,
+ "truth_threshold": 0.04
+ },
+ {
+ "f1": 0.8802589825893135,
+ "fn": 63454,
+ "fn_rate": 0.20875704448926014,
+ "fp": 1978,
+ "fp_rate": 0.011376381068505598,
+ "match_probability": 0.5103957093566241,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9918427943996536,
+ "recall": 0.7912429555107399,
+ "row_count": 477830,
+ "tn": 171891,
+ "tn_rate": 0.9886236189314944,
+ "tp": 240507,
+ "tp_rate": 0.7912429555107399,
+ "truth_threshold": 0.06
+ },
+ {
+ "f1": 0.8799802310043748,
+ "fn": 63590,
+ "fn_rate": 0.20920447031033587,
+ "fp": 1978,
+ "fp_rate": 0.011376381068505598,
+ "match_probability": 0.5138593924401896,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9918382167865352,
+ "recall": 0.7907955296896642,
+ "row_count": 477830,
+ "tn": 171891,
+ "tn_rate": 0.9886236189314944,
+ "tp": 240371,
+ "tp_rate": 0.7907955296896642,
+ "truth_threshold": 0.08
+ },
+ {
+ "f1": 0.8797621314428837,
+ "fn": 63705,
+ "fn_rate": 0.2095828083208043,
+ "fp": 1968,
+ "fp_rate": 0.01131886650294187,
+ "match_probability": 0.5173217448321853,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9918752889887047,
+ "recall": 0.7904171916791957,
+ "row_count": 477830,
+ "tn": 171901,
+ "tn_rate": 0.9886811334970581,
+ "tp": 240256,
+ "tp_rate": 0.7904171916791957,
+ "truth_threshold": 0.1
+ },
+ {
+ "f1": 0.8796176594458992,
+ "fn": 63777,
+ "fn_rate": 0.20981968081431498,
+ "fp": 1965,
+ "fp_rate": 0.011301612133272751,
+ "match_probability": 0.5207824348180637,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9918851616153691,
+ "recall": 0.790180319185685,
+ "row_count": 477830,
+ "tn": 171904,
+ "tn_rate": 0.9886983878667273,
+ "tp": 240184,
+ "tp_rate": 0.790180319185685,
+ "truth_threshold": 0.12
+ },
+ {
+ "f1": 0.8794379240113118,
+ "fn": 63885,
+ "fn_rate": 0.21017498955458103,
+ "fp": 1940,
+ "fp_rate": 0.01115782571936343,
+ "match_probability": 0.5242411313210279,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9919840010577813,
+ "recall": 0.789825010445419,
+ "row_count": 477830,
+ "tn": 171929,
+ "tn_rate": 0.9888421742806366,
+ "tp": 240076,
+ "tp_rate": 0.789825010445419,
+ "truth_threshold": 0.14
+ },
+ {
+ "f1": 0.8792805929356249,
+ "fn": 63964,
+ "fn_rate": 0.21043489131829413,
+ "fp": 1937,
+ "fp_rate": 0.01114057134969431,
+ "match_probability": 0.5276975040284355,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9919936842279299,
+ "recall": 0.7895651086817059,
+ "row_count": 477830,
+ "tn": 171932,
+ "tn_rate": 0.9888594286503057,
+ "tp": 239997,
+ "tp_rate": 0.7895651086817059,
+ "truth_threshold": 0.16
+ },
+ {
+ "f1": 0.8789650180498799,
+ "fn": 64131,
+ "fn_rate": 0.2109843039074092,
+ "fp": 1919,
+ "fp_rate": 0.011037045131679598,
+ "match_probability": 0.5311512235175825,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920620147342906,
+ "recall": 0.7890156960925908,
+ "row_count": 477830,
+ "tn": 171950,
+ "tn_rate": 0.9889629548683204,
+ "tp": 239830,
+ "tp_rate": 0.7890156960925908,
+ "truth_threshold": 0.18
+ },
+ {
+ "f1": 0.8787257830971975,
+ "fn": 64249,
+ "fn_rate": 0.21137251160510723,
+ "fp": 1918,
+ "fp_rate": 0.011031293675123226,
+ "match_probability": 0.5346019613807635,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920622439266648,
+ "recall": 0.7886274883948927,
+ "row_count": 477830,
+ "tn": 171951,
+ "tn_rate": 0.9889687063248768,
+ "tp": 239712,
+ "tp_rate": 0.7886274883948927,
+ "truth_threshold": 0.2
+ },
+ {
+ "f1": 0.878524341328562,
+ "fn": 64347,
+ "fn_rate": 0.21169492138794122,
+ "fp": 1918,
+ "fp_rate": 0.011031293675123226,
+ "match_probability": 0.5380493903495076,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920590232350165,
+ "recall": 0.7883050786120588,
+ "row_count": 477830,
+ "tn": 171951,
+ "tn_rate": 0.9889687063248768,
+ "tp": 239614,
+ "tp_rate": 0.7883050786120588,
+ "truth_threshold": 0.22
+ },
+ {
+ "f1": 0.8782981469868826,
+ "fn": 64457,
+ "fn_rate": 0.21205680991969364,
+ "fp": 1917,
+ "fp_rate": 0.011025542218566851,
+ "match_probability": 0.5414931844178922,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920595142924601,
+ "recall": 0.7879431900803063,
+ "row_count": 477830,
+ "tn": 171952,
+ "tn_rate": 0.9889744577814331,
+ "tp": 239504,
+ "tp_rate": 0.7879431900803063,
+ "truth_threshold": 0.24
+ },
+ {
+ "f1": 0.8779873152587386,
+ "fn": 64612,
+ "fn_rate": 0.21256674375989024,
+ "fp": 1912,
+ "fp_rate": 0.010996784935784987,
+ "match_probability": 0.5449330189648354,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920749727473566,
+ "recall": 0.7874332562401097,
+ "row_count": 477830,
+ "tn": 171957,
+ "tn_rate": 0.989003215064215,
+ "tp": 239349,
+ "tp_rate": 0.7874332562401097,
+ "truth_threshold": 0.26
+ },
+ {
+ "f1": 0.8769322279092652,
+ "fn": 65125,
+ "fn_rate": 0.21425446027615386,
+ "fp": 1912,
+ "fp_rate": 0.010996784935784987,
+ "match_probability": 0.5483685708752706,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9920580856331102,
+ "recall": 0.7857455397238462,
+ "row_count": 477830,
+ "tn": 171957,
+ "tn_rate": 0.989003215064215,
+ "tp": 238836,
+ "tp_rate": 0.7857455397238462,
+ "truth_threshold": 0.28
+ },
+ {
+ "f1": 0.8767457831281055,
+ "fn": 65224,
+ "fn_rate": 0.21458015995473104,
+ "fp": 1900,
+ "fp_rate": 0.010927767457108512,
+ "match_probability": 0.5517995186601091,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.992104289863986,
+ "recall": 0.785419840045269,
+ "row_count": 477830,
+ "tn": 171969,
+ "tn_rate": 0.9890722325428914,
+ "tp": 238737,
+ "tp_rate": 0.785419840045269,
+ "truth_threshold": 0.3
+ },
+ {
+ "f1": 0.8765225312587238,
+ "fn": 65333,
+ "fn_rate": 0.21493875859074027,
+ "fp": 1900,
+ "fp_rate": 0.010927767457108512,
+ "match_probability": 0.5552255425748963,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.992100711767445,
+ "recall": 0.7850612414092597,
+ "row_count": 477830,
+ "tn": 171969,
+ "tn_rate": 0.9890722325428914,
+ "tp": 238628,
+ "tp_rate": 0.7850612414092597,
+ "truth_threshold": 0.32
+ },
+ {
+ "f1": 0.8763395628901127,
+ "fn": 65424,
+ "fn_rate": 0.2152381391033718,
+ "fp": 1896,
+ "fp_rate": 0.010904761630883022,
+ "match_probability": 0.5586463247370707,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921142272483394,
+ "recall": 0.7847618608966281,
+ "row_count": 477830,
+ "tn": 171973,
+ "tn_rate": 0.989095238369117,
+ "tp": 238537,
+ "tp_rate": 0.7847618608966281,
+ "truth_threshold": 0.34
+ },
+ {
+ "f1": 0.8758880496903542,
+ "fn": 65645,
+ "fn_rate": 0.21596520606261987,
+ "fp": 1894,
+ "fp_rate": 0.010893258717770275,
+ "match_probability": 0.5620615492417346,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921152325048915,
+ "recall": 0.7840347939373801,
+ "row_count": 477830,
+ "tn": 171975,
+ "tn_rate": 0.9891067412822298,
+ "tp": 238316,
+ "tp_rate": 0.7840347939373801,
+ "truth_threshold": 0.36
+ },
+ {
+ "f1": 0.8757595250785716,
+ "fn": 65715,
+ "fn_rate": 0.21619549876464414,
+ "fp": 1884,
+ "fp_rate": 0.010835744152206546,
+ "match_probability": 0.5654709022758521,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921542497813685,
+ "recall": 0.7838045012353558,
+ "row_count": 477830,
+ "tn": 171985,
+ "tn_rate": 0.9891642558477934,
+ "tp": 238246,
+ "tp_rate": 0.7838045012353558,
+ "truth_threshold": 0.38
+ },
+ {
+ "f1": 0.8755675655802496,
+ "fn": 65811,
+ "fn_rate": 0.21651132875599172,
+ "fp": 1879,
+ "fp_rate": 0.010806986869424683,
+ "match_probability": 0.5688740722307839,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921717792433414,
+ "recall": 0.7834886712440082,
+ "row_count": 477830,
+ "tn": 171990,
+ "tn_rate": 0.9891930131305753,
+ "tp": 238150,
+ "tp_rate": 0.7834886712440082,
+ "truth_threshold": 0.4
+ },
+ {
+ "f1": 0.8753429090454442,
+ "fn": 65922,
+ "fn_rate": 0.21687650718348736,
+ "fp": 1877,
+ "fp_rate": 0.010795483956311936,
+ "match_probability": 0.5722707498130813,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921764284166125,
+ "recall": 0.7831234928165126,
+ "row_count": 477830,
+ "tn": 171992,
+ "tn_rate": 0.9892045160436881,
+ "tp": 238039,
+ "tp_rate": 0.7831234928165126,
+ "truth_threshold": 0.42
+ },
+ {
+ "f1": 0.8747677511690625,
+ "fn": 66200,
+ "fn_rate": 0.21779109820009804,
+ "fp": 1877,
+ "fp_rate": 0.010795483956311936,
+ "match_probability": 0.5756606281534528,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921673524232384,
+ "recall": 0.782208901799902,
+ "row_count": 477830,
+ "tn": 171992,
+ "tn_rate": 0.9892045160436881,
+ "tp": 237761,
+ "tp_rate": 0.782208901799902,
+ "truth_threshold": 0.44
+ },
+ {
+ "f1": 0.874631116475203,
+ "fn": 66266,
+ "fn_rate": 0.2180082313191495,
+ "fp": 1877,
+ "fp_rate": 0.010795483956311936,
+ "match_probability": 0.57904340291383,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921651945970313,
+ "recall": 0.7819917686808505,
+ "row_count": 477830,
+ "tn": 171992,
+ "tn_rate": 0.9892045160436881,
+ "tp": 237695,
+ "tp_rate": 0.7819917686808505,
+ "truth_threshold": 0.46
+ },
+ {
+ "f1": 0.8743687891056312,
+ "fn": 66395,
+ "fn_rate": 0.2184326278700228,
+ "fp": 1873,
+ "fp_rate": 0.010772478130086444,
+ "match_probability": 0.5824187723924531,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921775483526075,
+ "recall": 0.7815673721299772,
+ "row_count": 477830,
+ "tn": 171996,
+ "tn_rate": 0.9892275218699136,
+ "tp": 237566,
+ "tp_rate": 0.7815673721299772,
+ "truth_threshold": 0.48
+ },
+ {
+ "f1": 0.8741648229884889,
+ "fn": 66495,
+ "fn_rate": 0.2187616174443432,
+ "fp": 1872,
+ "fp_rate": 0.010766726673530071,
+ "match_probability": 0.5857864376269051,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9921784254903108,
+ "recall": 0.7812383825556568,
+ "row_count": 477830,
+ "tn": 171997,
+ "tn_rate": 0.9892332733264699,
+ "tp": 237466,
+ "tp_rate": 0.7812383825556568,
+ "truth_threshold": 0.5
+ },
+ {
+ "f1": 0.8743323190722827,
+ "fn": 66613,
+ "fn_rate": 0.21914982514204126,
+ "fp": 1616,
+ "fp_rate": 0.009294353795098608,
+ "match_probability": 0.5891461024950211,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.993237475100852,
+ "recall": 0.7808501748579587,
+ "row_count": 477830,
+ "tn": 172253,
+ "tn_rate": 0.9907056462049014,
+ "tp": 237348,
+ "tp_rate": 0.7808501748579587,
+ "truth_threshold": 0.52
+ },
+ {
+ "f1": 0.8738787543762668,
+ "fn": 66834,
+ "fn_rate": 0.2198768921012893,
+ "fp": 1612,
+ "fp_rate": 0.009271347968873116,
+ "match_probability": 0.5924974738136106,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.993247856445742,
+ "recall": 0.7801231078987106,
+ "row_count": 477830,
+ "tn": 172257,
+ "tn_rate": 0.9907286520311269,
+ "tp": 237127,
+ "tp_rate": 0.7801231078987106,
+ "truth_threshold": 0.54
+ },
+ {
+ "f1": 0.8736485913649918,
+ "fn": 66948,
+ "fn_rate": 0.22025194021601455,
+ "fp": 1608,
+ "fp_rate": 0.009248342142647626,
+ "match_probability": 0.5958402614349186,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9932612804405312,
+ "recall": 0.7797480597839854,
+ "row_count": 477830,
+ "tn": 172261,
+ "tn_rate": 0.9907516578573524,
+ "tp": 237013,
+ "tp_rate": 0.7797480597839854,
+ "truth_threshold": 0.56
+ },
+ {
+ "f1": 0.8733906528824458,
+ "fn": 67073,
+ "fn_rate": 0.22066317718391504,
+ "fp": 1607,
+ "fp_rate": 0.009242590686091253,
+ "match_probability": 0.5991741783407747,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9932619132476572,
+ "recall": 0.779336822816085,
+ "row_count": 477830,
+ "tn": 172262,
+ "tn_rate": 0.9907574093139088,
+ "tp": 236888,
+ "tp_rate": 0.779336822816085,
+ "truth_threshold": 0.58
+ },
+ {
+ "f1": 0.8732572503180368,
+ "fn": 67138,
+ "fn_rate": 0.2208770204072233,
+ "fp": 1607,
+ "fp_rate": 0.009242590686091253,
+ "match_probability": 0.6024989407343608,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9932600763326762,
+ "recall": 0.7791229795927767,
+ "row_count": 477830,
+ "tn": 172262,
+ "tn_rate": 0.9907574093139088,
+ "tp": 236823,
+ "tp_rate": 0.7791229795927767,
+ "truth_threshold": 0.6
+ },
+ {
+ "f1": 0.8729214925417177,
+ "fn": 67305,
+ "fn_rate": 0.22142643299633835,
+ "fp": 1599,
+ "fp_rate": 0.00919657903364027,
+ "match_probability": 0.6058142681295483,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9932887032800991,
+ "recall": 0.7785735670036616,
+ "row_count": 477830,
+ "tn": 172270,
+ "tn_rate": 0.9908034209663598,
+ "tp": 236656,
+ "tp_rate": 0.7785735670036616,
+ "truth_threshold": 0.62
+ },
+ {
+ "f1": 0.8728260789363005,
+ "fn": 67378,
+ "fn_rate": 0.22166659538559222,
+ "fp": 1564,
+ "fp_rate": 0.008995278054167218,
+ "match_probability": 0.6091198834377483,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9934326277467279,
+ "recall": 0.7783334046144078,
+ "row_count": 477830,
+ "tn": 172305,
+ "tn_rate": 0.9910047219458328,
+ "tp": 236583,
+ "tp_rate": 0.7783334046144078,
+ "truth_threshold": 0.64
+ },
+ {
+ "f1": 0.8725180047323561,
+ "fn": 67595,
+ "fn_rate": 0.22238050276186747,
+ "fp": 1475,
+ "fp_rate": 0.00848339842065003,
+ "match_probability": 0.6124155130522262,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9937983779079301,
+ "recall": 0.7776194972381325,
+ "row_count": 477830,
+ "tn": 172394,
+ "tn_rate": 0.99151660157935,
+ "tp": 236366,
+ "tp_rate": 0.7776194972381325,
+ "truth_threshold": 0.66
+ },
+ {
+ "f1": 0.8722834715442952,
+ "fn": 67710,
+ "fn_rate": 0.22275884077233593,
+ "fp": 1472,
+ "fp_rate": 0.00846614405098091,
+ "match_probability": 0.6157008869298349,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938079193010353,
+ "recall": 0.7772411592276641,
+ "row_count": 477830,
+ "tn": 172397,
+ "tn_rate": 0.9915338559490191,
+ "tp": 236251,
+ "tp_rate": 0.7772411592276641,
+ "truth_threshold": 0.68
+ },
+ {
+ "f1": 0.8720247877420332,
+ "fn": 67835,
+ "fn_rate": 0.22317007774023642,
+ "fp": 1471,
+ "fp_rate": 0.008460392594424538,
+ "match_probability": 0.6189757386701197,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938088443877658,
+ "recall": 0.7768299222597636,
+ "row_count": 477830,
+ "tn": 172398,
+ "tn_rate": 0.9915396074055755,
+ "tp": 236126,
+ "tp_rate": 0.7768299222597636,
+ "truth_threshold": 0.7000000000000001
+ },
+ {
+ "f1": 0.8715014649970996,
+ "fn": 68090,
+ "fn_rate": 0.22400900115475342,
+ "fp": 1466,
+ "fp_rate": 0.008431635311642673,
+ "match_probability": 0.622239805591759,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938231291370498,
+ "recall": 0.7759909988452466,
+ "row_count": 477830,
+ "tn": 172403,
+ "tn_rate": 0.9915683646883573,
+ "tp": 235871,
+ "tp_rate": 0.7759909988452466,
+ "truth_threshold": 0.72
+ },
+ {
+ "f1": 0.8712697116290758,
+ "fn": 68205,
+ "fn_rate": 0.22438733916522186,
+ "fp": 1461,
+ "fp_rate": 0.008402878028860809,
+ "match_probability": 0.6254928288063007,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938410822158614,
+ "recall": 0.7756126608347782,
+ "row_count": 477830,
+ "tn": 172408,
+ "tn_rate": 0.9915971219711391,
+ "tp": 235756,
+ "tp_rate": 0.7756126608347782,
+ "truth_threshold": 0.74
+ },
+ {
+ "f1": 0.8709604678500927,
+ "fn": 68354,
+ "fn_rate": 0.22487753363095925,
+ "fp": 1460,
+ "fp_rate": 0.008397126572304436,
+ "match_probability": 0.6287345532891625,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938414034850908,
+ "recall": 0.7751224663690408,
+ "row_count": 477830,
+ "tn": 172409,
+ "tn_rate": 0.9916028734276956,
+ "tp": 235607,
+ "tp_rate": 0.7751224663690408,
+ "truth_threshold": 0.76
+ },
+ {
+ "f1": 0.8707450545387317,
+ "fn": 68468,
+ "fn_rate": 0.22525258174568447,
+ "fp": 1446,
+ "fp_rate": 0.008316606180515216,
+ "match_probability": 0.6319647279478622,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.993897163404927,
+ "recall": 0.7747474182543155,
+ "row_count": 477830,
+ "tn": 172423,
+ "tn_rate": 0.9916833938194848,
+ "tp": 235493,
+ "tp_rate": 0.7747474182543155,
+ "truth_threshold": 0.78
+ },
+ {
+ "f1": 0.8702683707252113,
+ "fn": 68697,
+ "fn_rate": 0.22600596787087818,
+ "fp": 1445,
+ "fp_rate": 0.008310854723958842,
+ "match_probability": 0.6351831056874558,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938954581363615,
+ "recall": 0.7739940321291219,
+ "row_count": 477830,
+ "tn": 172424,
+ "tn_rate": 0.9916891452760411,
+ "tp": 235264,
+ "tp_rate": 0.7739940321291219,
+ "truth_threshold": 0.8
+ },
+ {
+ "f1": 0.87001291286958,
+ "fn": 68820,
+ "fn_rate": 0.22641062504729226,
+ "fp": 1445,
+ "fp_rate": 0.008310854723958842,
+ "match_probability": 0.6383894434731548,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938922844124335,
+ "recall": 0.7735893749527077,
+ "row_count": 477830,
+ "tn": 172424,
+ "tn_rate": 0.9916891452760411,
+ "tp": 235141,
+ "tp_rate": 0.7735893749527077,
+ "truth_threshold": 0.8200000000000001
+ },
+ {
+ "f1": 0.8697071417732856,
+ "fn": 68967,
+ "fn_rate": 0.2268942397215432,
+ "fp": 1444,
+ "fp_rate": 0.00830510326740247,
+ "match_probability": 0.6415835023901045,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9938926906842386,
+ "recall": 0.7731057602784568,
+ "row_count": 477830,
+ "tn": 172425,
+ "tn_rate": 0.9916948967325975,
+ "tp": 234994,
+ "tp_rate": 0.7731057602784568,
+ "truth_threshold": 0.84
+ },
+ {
+ "f1": 0.8703466980869913,
+ "fn": 69064,
+ "fn_rate": 0.227213359608634,
+ "fp": 920,
+ "fp_rate": 0.00529134003186307,
+ "match_probability": 0.6447650477003041,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9960986697311899,
+ "recall": 0.772786640391366,
+ "row_count": 477830,
+ "tn": 172949,
+ "tn_rate": 0.994708659968137,
+ "tp": 234897,
+ "tp_rate": 0.772786640391366,
+ "truth_threshold": 0.86
+ },
+ {
+ "f1": 0.8701766999214338,
+ "fn": 69156,
+ "fn_rate": 0.22751603001700876,
+ "fp": 907,
+ "fp_rate": 0.005216571096630222,
+ "match_probability": 0.6479338488966562,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9961520838989953,
+ "recall": 0.7724839699829913,
+ "row_count": 477830,
+ "tn": 172962,
+ "tn_rate": 0.9947834289033698,
+ "tp": 234805,
+ "tp_rate": 0.7724839699829913,
+ "truth_threshold": 0.88
+ },
+ {
+ "f1": 0.8698588750783101,
+ "fn": 69307,
+ "fn_rate": 0.22801280427423254,
+ "fp": 907,
+ "fp_rate": 0.005216571096630222,
+ "match_probability": 0.6510896797541332,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9961496172965814,
+ "recall": 0.7719871957257675,
+ "row_count": 477830,
+ "tn": 172962,
+ "tn_rate": 0.9947834289033698,
+ "tp": 234654,
+ "tp_rate": 0.7719871957257675,
+ "truth_threshold": 0.9
+ },
+ {
+ "f1": 0.8696832176543869,
+ "fn": 69397,
+ "fn_rate": 0.2283088948911209,
+ "fp": 899,
+ "fp_rate": 0.0051705594441792384,
+ "match_probability": 0.6542323183780514,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9961819903764073,
+ "recall": 0.7716911051088791,
+ "row_count": 477830,
+ "tn": 172970,
+ "tn_rate": 0.9948294405558208,
+ "tp": 234564,
+ "tp_rate": 0.7716911051088791,
+ "truth_threshold": 0.92
+ },
+ {
+ "f1": 0.869085863944266,
+ "fn": 69685,
+ "fn_rate": 0.22925638486516361,
+ "fp": 896,
+ "fp_rate": 0.00515330507451012,
+ "match_probability": 0.6573615472494517,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9961900226217407,
+ "recall": 0.7707436151348364,
+ "row_count": 477830,
+ "tn": 172973,
+ "tn_rate": 0.9948466949254898,
+ "tp": 234276,
+ "tp_rate": 0.7707436151348364,
+ "truth_threshold": 0.9400000000000001
+ },
+ {
+ "f1": 0.8688912058595446,
+ "fn": 69787,
+ "fn_rate": 0.22959195423097042,
+ "fp": 884,
+ "fp_rate": 0.005084287595833645,
+ "match_probability": 0.660477153267581,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962392260633546,
+ "recall": 0.7704080457690295,
+ "row_count": 477830,
+ "tn": 172985,
+ "tn_rate": 0.9949157124041663,
+ "tp": 234174,
+ "tp_rate": 0.7704080457690295,
+ "truth_threshold": 0.96
+ },
+ {
+ "f1": 0.8686714615481678,
+ "fn": 69894,
+ "fn_rate": 0.22994397307549325,
+ "fp": 881,
+ "fp_rate": 0.005067033226164526,
+ "match_probability": 0.6635789277894779,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962502340943528,
+ "recall": 0.7700560269245068,
+ "row_count": 477830,
+ "tn": 172988,
+ "tn_rate": 0.9949329667738355,
+ "tp": 234067,
+ "tp_rate": 0.7700560269245068,
+ "truth_threshold": 0.98
+ },
+ {
+ "f1": 0.8684325793064537,
+ "fn": 70007,
+ "fn_rate": 0.23031573129447527,
+ "fp": 881,
+ "fp_rate": 0.005067033226164526,
+ "match_probability": 0.6666666666666666,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962484297485469,
+ "recall": 0.7696842687055248,
+ "row_count": 477830,
+ "tn": 172988,
+ "tn_rate": 0.9949329667738355,
+ "tp": 233954,
+ "tp_rate": 0.7696842687055248,
+ "truth_threshold": 1
+ },
+ {
+ "f1": 0.8680917583804898,
+ "fn": 70170,
+ "fn_rate": 0.2308519843006175,
+ "fp": 881,
+ "fp_rate": 0.005067033226164526,
+ "match_probability": 0.6697401702789662,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962458239585464,
+ "recall": 0.7691480156993825,
+ "row_count": 477830,
+ "tn": 172988,
+ "tn_rate": 0.9949329667738355,
+ "tp": 233791,
+ "tp_rate": 0.7691480156993825,
+ "truth_threshold": 1.02
+ },
+ {
+ "f1": 0.8676661231069822,
+ "fn": 70374,
+ "fn_rate": 0.2315231230322311,
+ "fp": 879,
+ "fp_rate": 0.005055530313051781,
+ "match_probability": 0.6727992435654236,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962510555901495,
+ "recall": 0.7684768769677689,
+ "row_count": 477830,
+ "tn": 172990,
+ "tn_rate": 0.9949444696869483,
+ "tp": 233587,
+ "tp_rate": 0.7684768769677689,
+ "truth_threshold": 1.04
+ },
+ {
+ "f1": 0.8675572462368307,
+ "fn": 70425,
+ "fn_rate": 0.2316909077151345,
+ "fp": 879,
+ "fp_rate": 0.005055530313051781,
+ "match_probability": 0.6758436960523875,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962502399590469,
+ "recall": 0.7683090922848655,
+ "row_count": 477830,
+ "tn": 172990,
+ "tn_rate": 0.9949444696869483,
+ "tp": 233536,
+ "tp_rate": 0.7683090922848655,
+ "truth_threshold": 1.06
+ },
+ {
+ "f1": 0.8671321914473757,
+ "fn": 70627,
+ "fn_rate": 0.2323554666552617,
+ "fp": 879,
+ "fp_rate": 0.005055530313051781,
+ "match_probability": 0.6788733418787326,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962470059304992,
+ "recall": 0.7676445333447383,
+ "row_count": 477830,
+ "tn": 172990,
+ "tn_rate": 0.9949444696869483,
+ "tp": 233334,
+ "tp_rate": 0.7676445333447383,
+ "truth_threshold": 1.08
+ },
+ {
+ "f1": 0.8668837444429576,
+ "fn": 70745,
+ "fn_rate": 0.23274367435295976,
+ "fp": 879,
+ "fp_rate": 0.005055530313051781,
+ "match_probability": 0.6818879998182596,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962451141630535,
+ "recall": 0.7672563256470403,
+ "row_count": 477830,
+ "tn": 172990,
+ "tn_rate": 0.9949444696869483,
+ "tp": 233216,
+ "tp_rate": 0.7672563256470403,
+ "truth_threshold": 1.1
+ },
+ {
+ "f1": 0.8665796606766389,
+ "fn": 70897,
+ "fn_rate": 0.23324373850592675,
+ "fp": 869,
+ "fp_rate": 0.004998015747488051,
+ "match_probability": 0.6848874932992853,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962852611645214,
+ "recall": 0.7667562614940733,
+ "row_count": 477830,
+ "tn": 173000,
+ "tn_rate": 0.995001984252512,
+ "tp": 233064,
+ "tp_rate": 0.7667562614940733,
+ "truth_threshold": 1.12
+ },
+ {
+ "f1": 0.8663842795409412,
+ "fn": 70992,
+ "fn_rate": 0.2335562786015311,
+ "fp": 867,
+ "fp_rate": 0.004986512834375305,
+ "match_probability": 0.6878716504214515,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962922732171265,
+ "recall": 0.7664437213984688,
+ "row_count": 477830,
+ "tn": 173002,
+ "tn_rate": 0.9950134871656247,
+ "tp": 232969,
+ "tp_rate": 0.7664437213984688,
+ "truth_threshold": 1.1400000000000001
+ },
+ {
+ "f1": 0.866113907146816,
+ "fn": 71121,
+ "fn_rate": 0.23398067515240442,
+ "fp": 866,
+ "fp_rate": 0.004980761377818933,
+ "match_probability": 0.690840303969775,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962944896579463,
+ "recall": 0.7660193248475956,
+ "row_count": 477830,
+ "tn": 173003,
+ "tn_rate": 0.9950192386221811,
+ "tp": 232840,
+ "tp_rate": 0.7660193248475956,
+ "truth_threshold": 1.16
+ },
+ {
+ "f1": 0.8656999114365879,
+ "fn": 71318,
+ "fn_rate": 0.2346287846138156,
+ "fp": 864,
+ "fp_rate": 0.0049692584647061866,
+ "match_probability": 0.6937932914259702,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9962998967911026,
+ "recall": 0.7653712153861845,
+ "row_count": 477830,
+ "tn": 173005,
+ "tn_rate": 0.9950307415352938,
+ "tp": 232643,
+ "tp_rate": 0.7653712153861845,
+ "truth_threshold": 1.18
+ },
+ {
+ "f1": 0.8655382118904595,
+ "fn": 71403,
+ "fn_rate": 0.23490842575198792,
+ "fp": 854,
+ "fp_rate": 0.004911743899142458,
+ "match_probability": 0.6967304549770723,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9963412335269823,
+ "recall": 0.7650915742480121,
+ "row_count": 477830,
+ "tn": 173015,
+ "tn_rate": 0.9950882561008575,
+ "tp": 232558,
+ "tp_rate": 0.7650915742480121,
+ "truth_threshold": 1.2
+ },
+ {
+ "f1": 0.8651523500327635,
+ "fn": 71588,
+ "fn_rate": 0.23551705646448065,
+ "fp": 851,
+ "fp_rate": 0.0048944895294733394,
+ "match_probability": 0.6996516415213959,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9963511473947793,
+ "recall": 0.7644829435355194,
+ "row_count": 477830,
+ "tn": 173018,
+ "tn_rate": 0.9951055104705266,
+ "tp": 232373,
+ "tp_rate": 0.7644829435355194,
+ "truth_threshold": 1.22
+ },
+ {
+ "f1": 0.8647963174007285,
+ "fn": 71758,
+ "fn_rate": 0.23607633874082531,
+ "fp": 848,
+ "fp_rate": 0.004877235159804221,
+ "match_probability": 0.7025567026718631,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9963613114725961,
+ "recall": 0.7639236612591747,
+ "row_count": 477830,
+ "tn": 173021,
+ "tn_rate": 0.9951227648401958,
+ "tp": 232203,
+ "tp_rate": 0.7639236612591747,
+ "truth_threshold": 1.24
+ },
+ {
+ "f1": 0.8644691646859842,
+ "fn": 71915,
+ "fn_rate": 0.23659285237250832,
+ "fp": 845,
+ "fp_rate": 0.004859980790135101,
+ "match_probability": 0.705445494756739,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9963716931955292,
+ "recall": 0.7634071476274917,
+ "row_count": 477830,
+ "tn": 173024,
+ "tn_rate": 0.995140019209865,
+ "tp": 232046,
+ "tp_rate": 0.7634071476274917,
+ "truth_threshold": 1.26
+ },
+ {
+ "f1": 0.8642322167157283,
+ "fn": 72027,
+ "fn_rate": 0.23696132069574716,
+ "fp": 845,
+ "fp_rate": 0.004859980790135101,
+ "match_probability": 0.7083178788178136,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9963699474608964,
+ "recall": 0.7630386793042528,
+ "row_count": 477830,
+ "tn": 173024,
+ "tn_rate": 0.995140019209865,
+ "tp": 231934,
+ "tp_rate": 0.7630386793042528,
+ "truth_threshold": 1.28
+ },
+ {
+ "f1": 0.8639953486118513,
+ "fn": 72145,
+ "fn_rate": 0.23734952839344522,
+ "fp": 837,
+ "fp_rate": 0.004813969137684119,
+ "match_probability": 0.7111737206060699,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9964023674743072,
+ "recall": 0.7626504716065547,
+ "row_count": 477830,
+ "tn": 173032,
+ "tn_rate": 0.9951860308623158,
+ "tp": 231816,
+ "tp_rate": 0.7626504716065547,
+ "truth_threshold": 1.3
+ },
+ {
+ "f1": 0.8637100772824032,
+ "fn": 72282,
+ "fn_rate": 0.23780024411026415,
+ "fp": 835,
+ "fp_rate": 0.004802466224571373,
+ "match_probability": 0.714012890574883,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9964088183937311,
+ "recall": 0.7621997558897359,
+ "row_count": 477830,
+ "tn": 173034,
+ "tn_rate": 0.9951975337754286,
+ "tp": 231679,
+ "tp_rate": 0.7621997558897359,
+ "truth_threshold": 1.32
+ },
+ {
+ "f1": 0.863561786859572,
+ "fn": 72371,
+ "fn_rate": 0.2380930448314093,
+ "fp": 809,
+ "fp_rate": 0.004652928354105678,
+ "match_probability": 0.7168352638707939,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9965189178955159,
+ "recall": 0.7619069551685907,
+ "row_count": 477830,
+ "tn": 173060,
+ "tn_rate": 0.9953470716458943,
+ "tp": 231590,
+ "tp_rate": 0.7619069551685907,
+ "truth_threshold": 1.34
+ },
+ {
+ "f1": 0.8630732327848304,
+ "fn": 72603,
+ "fn_rate": 0.2388563006438326,
+ "fp": 807,
+ "fp_rate": 0.004641425440992932,
+ "match_probability": 0.7196407203219027,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9965240238623393,
+ "recall": 0.7611436993561674,
+ "row_count": 477830,
+ "tn": 173062,
+ "tn_rate": 0.9953585745590071,
+ "tp": 231358,
+ "tp_rate": 0.7611436993561674,
+ "truth_threshold": 1.36
+ },
+ {
+ "f1": 0.8628463541861003,
+ "fn": 72713,
+ "fn_rate": 0.23921818917558502,
+ "fp": 804,
+ "fp_rate": 0.004624171071323813,
+ "match_probability": 0.7224291444239316,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9965352593384241,
+ "recall": 0.760781810824415,
+ "row_count": 477830,
+ "tn": 173065,
+ "tn_rate": 0.9953758289286762,
+ "tp": 231248,
+ "tp_rate": 0.760781810824415,
+ "truth_threshold": 1.3800000000000001
+ },
+ {
+ "f1": 0.862551971754238,
+ "fn": 72854,
+ "fn_rate": 0.23968206447537677,
+ "fp": 801,
+ "fp_rate": 0.004606916701654694,
+ "match_probability": 0.7252004253240049,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9965460441209445,
+ "recall": 0.7603179355246232,
+ "row_count": 477830,
+ "tn": 173068,
+ "tn_rate": 0.9953930832983453,
+ "tp": 231107,
+ "tp_rate": 0.7603179355246232,
+ "truth_threshold": 1.4000000000000001
+ },
+ {
+ "f1": 0.8622490694522742,
+ "fn": 73005,
+ "fn_rate": 0.24017883873260057,
+ "fp": 789,
+ "fp_rate": 0.004537899222978219,
+ "match_probability": 0.7279544568021957,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9965953958014196,
+ "recall": 0.7598211612673994,
+ "row_count": 477830,
+ "tn": 173080,
+ "tn_rate": 0.9954621007770218,
+ "tp": 230956,
+ "tp_rate": 0.7598211612673994,
+ "truth_threshold": 1.42
+ },
+ {
+ "f1": 0.8619922175500967,
+ "fn": 73135,
+ "fn_rate": 0.24060652517921707,
+ "fp": 778,
+ "fp_rate": 0.004474633200858117,
+ "match_probability": 0.7306911372508947,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9966408179478765,
+ "recall": 0.7593934748207829,
+ "row_count": 477830,
+ "tn": 173091,
+ "tn_rate": 0.9955253667991418,
+ "tp": 230826,
+ "tp_rate": 0.7593934748207829,
+ "truth_threshold": 1.44
+ },
+ {
+ "f1": 0.8616606401099722,
+ "fn": 73291,
+ "fn_rate": 0.2411197489151569,
+ "fp": 778,
+ "fp_rate": 0.004474633200858117,
+ "match_probability": 0.7334103696520481,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9966385538004217,
+ "recall": 0.7588802510848431,
+ "row_count": 477830,
+ "tn": 173091,
+ "tn_rate": 0.9955253667991418,
+ "tp": 230670,
+ "tp_rate": 0.7588802510848431,
+ "truth_threshold": 1.46
+ },
+ {
+ "f1": 0.8613293875431104,
+ "fn": 73446,
+ "fn_rate": 0.2416296827553535,
+ "fp": 778,
+ "fp_rate": 0.004474633200858117,
+ "match_probability": 0.7361120615523239,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9966363011418418,
+ "recall": 0.7583703172446465,
+ "row_count": 477830,
+ "tn": 173091,
+ "tn_rate": 0.9955253667991418,
+ "tp": 230515,
+ "tp_rate": 0.7583703172446465,
+ "truth_threshold": 1.48
+ },
+ {
+ "f1": 0.8611603304549362,
+ "fn": 73592,
+ "fn_rate": 0.24211000753386125,
+ "fp": 690,
+ "fp_rate": 0.003968505023897302,
+ "match_probability": 0.7387961250362586,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9970137497349162,
+ "recall": 0.7578899924661388,
+ "row_count": 477830,
+ "tn": 173179,
+ "tn_rate": 0.9960314949761027,
+ "tp": 230369,
+ "tp_rate": 0.7578899924661388,
+ "truth_threshold": 1.5
+ },
+ {
+ "f1": 0.86088520458718,
+ "fn": 73725,
+ "fn_rate": 0.24254756366770738,
+ "fp": 685,
+ "fp_rate": 0.003939747741115438,
+ "match_probability": 0.74146247669744,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9970336175575196,
+ "recall": 0.7574524363322926,
+ "row_count": 477830,
+ "tn": 173184,
+ "tn_rate": 0.9960602522588846,
+ "tp": 230236,
+ "tp_rate": 0.7574524363322926,
+ "truth_threshold": 1.52
+ },
+ {
+ "f1": 0.8605374876101064,
+ "fn": 73892,
+ "fn_rate": 0.24309697625682242,
+ "fp": 681,
+ "fp_rate": 0.0039167419148899455,
+ "match_probability": 0.7441110376077843,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9970487540628385,
+ "recall": 0.7569030237431775,
+ "row_count": 477830,
+ "tn": 173188,
+ "tn_rate": 0.99608325808511,
+ "tp": 230069,
+ "tp_rate": 0.7569030237431775,
+ "truth_threshold": 1.54
+ },
+ {
+ "f1": 0.8600850146680237,
+ "fn": 74105,
+ "fn_rate": 0.24379772405012484,
+ "fp": 680,
+ "fp_rate": 0.003910990458333573,
+ "match_probability": 0.7467417332849615,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9970503522226464,
+ "recall": 0.7562022759498751,
+ "row_count": 477830,
+ "tn": 173189,
+ "tn_rate": 0.9960890095416665,
+ "tp": 229856,
+ "tp_rate": 0.7562022759498751,
+ "truth_threshold": 1.56
+ },
+ {
+ "f1": 0.8597180736781429,
+ "fn": 74277,
+ "fn_rate": 0.24436358611795592,
+ "fp": 679,
+ "fp_rate": 0.0039052390017772,
+ "match_probability": 0.7493544936580313,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9970524780455194,
+ "recall": 0.7556364138820441,
+ "row_count": 477830,
+ "tn": 173190,
+ "tn_rate": 0.9960947609982228,
+ "tp": 229684,
+ "tp_rate": 0.7556364138820441,
+ "truth_threshold": 1.58
+ },
+ {
+ "f1": 0.8595324737559339,
+ "fn": 74373,
+ "fn_rate": 0.2446794161093035,
+ "fp": 667,
+ "fp_rate": 0.0038362215231007254,
+ "match_probability": 0.7519492530313435,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.9971032116566415,
+ "recall": 0.7553205838906965,
+ "row_count": 477830,
+ "tn": 173202,
+ "tn_rate": 0.9961637784768993,
+ "tp": 229588,
+ "tp_rate": 0.7553205838906965,
+ "truth_threshold": 1.6
+ },
+ {
+ "f1": 0.8592720191731575,
+ "fn": 74501,
+ "fn_rate": 0.2451005227644336,
+ "fp": 660,
+ "fp_rate": 0.003795961327206115,
+ "match_probability": 0.754525950046764,
+ "n": 173869,
+ "n_rate": 0.36387208839964,
+ "p": 303961,
+ "p_rate": 0,
+ "precision": 0.997131931166348,
+ "recall": 0.7548994772355664,
+ "row_count": 477830,
+ "tn": 173209,
+ "tn_rate": 0.9962040386727938,
+ "tp": 229460,
+ "tp_rate": 0.7548994772355664,
+ "truth_threshold": 1.62
+ }
+ ]
+ },
+ "encoding": {
+ "tooltip": [
+ {
+ "field": "truth_threshold",
+ "format": ".4f",
+ "type": "quantitative"
+ },
+ {
+ "field": "match_probability",
+ "format": ".4%",
+ "type": "quantitative"
+ },
+ {
+ "field": "fp_rate",
+ "format": ".4f",
+ "title": "FP_rate",
+ "type": "quantitative"
+ },
+ {
+ "field": "tp_rate",
+ "format": ".4f",
+ "title": "TP_rate",
+ "type": "quantitative"
+ },
+ {
+ "field": "tp",
+ "format": ",.0f",
+ "title": "TP",
+ "type": "quantitative"
+ },
+ {
+ "field": "tn",
+ "format": ",.0f",
+ "title": "TN",
+ "type": "quantitative"
+ },
+ {
+ "field": "fp",
+ "format": ",.0f",
+ "title": "FP",
+ "type": "quantitative"
+ },
+ {
+ "field": "fn",
+ "format": ",.0f",
+ "title": "FN",
+ "type": "quantitative"
+ },
+ {
+ "field": "precision",
+ "format": ".4f",
+ "type": "quantitative"
+ },
+ {
+ "field": "recall",
+ "format": ".4f",
+ "type": "quantitative"
+ },
+ {
+ "field": "f1",
+ "format": ".4f",
+ "title": "F1",
+ "type": "quantitative"
+ }
+ ],
+ "x": {
+ "field": "fp_rate",
+ "sort": [
+ "truth_threshold"
+ ],
+ "title": "False Positive Rate amongst clerically reviewed records",
+ "type": "quantitative"
+ },
+ "y": {
+ "field": "tp_rate",
+ "sort": [
+ "truth_threshold"
+ ],
+ "title": "True Positive Rate amongst clerically reviewed records",
+ "type": "quantitative"
+ }
+ },
+ "height": 400,
+ "mark": {
+ "clip": true,
+ "point": true,
+ "type": "line"
+ },
+ "selection": {
+ "selector076": {
+ "bind": "scales",
+ "encodings": [
+ "x"
+ ],
+ "type": "interval"
+ }
+ },
+ "title": "Receiver operating characteristic curve",
+ "width": 400
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAHQCAYAAAAxsWT9AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TVX7xx+Xa7rmeY4rZI4yhTJFZYq6KFSIBi9RXjJEKNKbkFK9SBGKzOJNSoq4MiURkpAMDa5Zpv6f3/Lft3PPPefstc+z9z533/Osz6dPdc961n72d629fns9ew0Z/v77779JkhAQAkJACAiBKCKQQcQvimpbblUICAEhIAQUARE/aQhCQAgIASEQdQRE/KKuyuWGhYAQEAJCQMRP2oAQEAJCQAhEHQERv3Re5YHmM2XIkMGVuz59+jTh+rlz53blemn1IpcuXaILFy5Q1qxZKUuWLGnVzTTv1/nz5+ny5csUFxdHmTJlsuQvx9bShSSzZwiI+HmmqsJztEGDBrR+/foUxoUKFaIWLVrQhAkTKH/+/OEVrGFliOxff/1FmTNn1rBIH1l27NhBmzZtojp16lDVqlXpjTfeoH/96180cuRIGj58uKs3mStXLjpz5ox6CYlk+u2332jJkiVUqlQpat68eViu3H///bRgwQJas2YNNWrUKGQZ//vf/+iXX36hdu3aqTZuxTYs58TIcwRE/DxXZdYcNsQPYle8eHHCKGTVqlV04sQJJYDoJJxKffv2pYsXL9KUKVMsv6k75ZMb5eKl4umnn6bJkycr0fv888/pgw8+oNatW6t/3EzGC0ikxW/z5s1Uq1YtJUYLFy4MC8Gbb75J27ZtU2xvuummkGW0adOGli1bRlu3bqUaNWqQFduwnBMjzxEQ8fNclVlz2BC/tWvX0u23366MIX4QPqRr166pUcHbb79N06ZNU2/Lt9xyC73wwgtUs2ZNlQdv7P/5z39o37596o373nvvpQceeED9ho599OjRtGvXLipXrhz17t07+be77rqLEG5Cnj59+tD3339Pw4YNU2/+p06dUkIQGxtLK1asUNcdPHgwwc8iRYqoazz33HNKNJ955hn65ptv6IknnlCd2GOPPUadO3dOAeKHH36gAQMG0JdffknZsmWjO+64g1555RU10kAH2K9fP2rcuDH9/vvvSvDLli1LY8aMoVtvvdX0PsANLw5gCSEHD/gP/7Zs2UI33HCD+u3ZZ59V/49r7d27l8qXL08DBw6kvHnz0sSJE6l79+70yCOPKLt169ZRQkICzZ8/X72ItG3bVo0KERoFC5SRmJhIlStXVrwWL16symrVqlWqBrBz504aMmSIyl+9enW68847FW+UZYgf6g/swPPJJ5+kp556SpUzd+5cNTJF3cK2SZMmiiPyWblvRBOuXLlC48ePpzlz5tDZs2eV3127dlXsUF+IQOTMmZO6detGkyZNov3791uqc9Qx2gdsIWgrV66k999/n1avXq3+H23m8ccfp5dfflm1X4x469evr3xavnx5Cts//vhDtUU8C3ny5FHPA2zRXvxTML4ZM2akpk2bKs4oB+nVV19VdYVRPtqbP0M8N8jbsmVLGjRokLIBD7DAfd144430/PPPqzKQGjZsqNpxgQIFrD34ktuUgIifKSJvZzDEb9asWVS3bl01EkNn99Zbb6mO7rPPPlMdOkQLHRPyo1NBQod48OBBatasmfp/CN8XX3yh/hudSYkSJejmm29W/4+HGcKDDgejnI4dOyZ3vAh7vv7660rEIADTp09Xb//33XefEoAZM2aoN3l0+rjGoUOH6KefflJiB98gop988klyRbz33nv00EMPJf8/BC0+Pl5du1q1aqrjhT065AMHDihRwL0iwWcIF/LifiFSx48f17oP44LohNGpQbQwkoHfEGcIG/yCeEBwMdLBKAUdrW/YE500BBQJLxjIi/TRRx8pJug0wRm+YqSO6yDh5aRHjx4pGiTCiRBy3A86yu3bt6v/Rsf60ksvJdcBjCAERggc4osOFdzBAeJrRAQMvv7fhkPdN+oQnTY6fXDHCwGYIGG0BqH5+OOP1W+o13//+9+W63zp0qXJYc8KFSpQsWLFVL2DGUQc9YARJkLO8AXc8IIFn1588cVkW7wYgRVYVKpUifBtGraoC7y8+KZQfFEuhA/JGFnjOUKbnTdvnmrb/gzR7tu3b6/qFu0cba9o0aKqDtBO8JKAFyK8OOXLl482btyo/hsvlxBbSfYREPGzj2WaLCnQNz84iocNnS7eNNGRQATwYELMRo0aRe+++67qQL777jvVafz3v/+lnj17qg565syZqrNERwtRQ0eL0RgECh0bOll0rr7f/CBQGAHguidPnqRHH31UXQMiitFhhw4dVIeEjhedAIQDCR0TOhGUjX+PGzeOypQpk4I13rYhrPAJb8xXr16l2rVrq/vDyACdJMQPHSXuBwkii84ZQozOWec+0NlhxIQRDuwgHrhXXAMjDeO+/cOe/t/8DPGDOIEdhAMvBRglYZQCgYCvGHGgwwMLfEcMJH5G2Q8++CDNnj2bIFAYIZYuXZpee+215DrYsGGDevlB54qRGeoQLwrgitElGGFECoEaMWKEqnuj/nTv2/i+iI66YsWKqgzUAUalGEn6hj3RwVutc9/vdmgj+H9wQvkFCxYkvGRBKDCC9Q97+tpCVJAHAoQXPDAGF7wYgiHaqJFC8cVoWlf8DIaY/GU8b6hTiC1GfmgH+EyAZwRp9+7danIUXjzxIoeXVOMFLk12NB50SsTPg5VmxWVD/BAGw0OHN010tnjTReeLN/Bgb5TojL/99lvV8eIhNcKgxvX9R2TG39F54zr+E14QskPn+tVXX9E999yjsqMTg1gYISD/e0PnhFETOulgEx0guBjJorPHfSKhPIS/0OlAVNFx4H7Q6SOhwxw7dqz6/euvv04xsgx2H8aMTYSKwQ2i65usip8hSBhpgwfEAGExjCYNMUP5/fv3V2HTQOIH0Ycf+N0IZfr6ZNQBZklCgAwuKAsjEHT6xkjfsEP4FVwMW537xkjWCM0F+r7o/80PdWO1zn0FDEKK0bcxaobv4I+XErTzUOKHFyq8KBkvS6Gep1B8Ibb+4oeQMsLL/iM/gyGuhRccRAfAAG1g0aJF6hk7d+4c1atXL6A7eGYRWZBkHwERP/tYpsmSAn3zw7cFfFMyHv7ChQurEBFGYVWqVFFhM4QG8XcIxDvvvKO+y919990qtAkBQ8eDUSBGbxgxIByHDhaihw4B3w39xQ/5MXrDCAThHCM0B0F6+OGHlUDhWkhHjhxRoSSM4BC6gvgFEmDkxajL8AGdOpIhzBixYnSLsiHKKBciYHSOU6dOVeEvnfswOnVMpIA9Rk4It/3666/qO5tV8UM4FvfnK37oEDFqQzgOLx7wFXkwSg0kfghnI9RqsMRLDSbaYFSDFwH/CS++4ofRBTpidKpgiPIxWvMXP537xgsNvpfh+hjZ4zsaOmyMRFE+OnbfkV84de4rfmibhw8fVqO1H3/8UY3YIITGC04o8YOfCBUbYU68zGC0ixCzbygT7SgUXwidseQCfmCkhu+cn376aSrx830hQHvBCA/tB6Jn+IHvfmirGHmirWOGNCImKBuCLt/97O1iRfzs5ZnmSgskfggNYnSBERHEDJ0kwn7ovCFO+GaBMCje5mNiYpT4IJyE8AzEAmEYdHbHjh1T+SEqGEmhE4dI4TsXOlV/8cPbLzotiCsSHnwsBfj555+TQ5nohFEu/EGngE4fo6JQ4rdnz57k2X8QYVwHoT0kdDTogI2QEUZUEGmE3ZDQ4aDT1LkPowMzxAoijkkuGEFDzPH/eJOH72CKSRToTDHqCfTNL5D4ffjhh8lih/LQIRujm0Dih5Gz0SniuxY6XnwvxH+jTkKJH0bVCCNjogfaCUbQqBt8n8MkJn9bs/tGuBWhQLwkQbBx70goE9dCfSJMiTz4byN8rVvnvuIHUTBepPCdDe0EI/9evXqpyVsY1WJEhZc8jJzRJn2XSSDsifaHekLYHSNG4xu470NsxtcoBy8/aFfGN3H/kZ//aBht2hhx43kDe4TrIYgIG+OFAc8c6tB4GURoWpJ9BET87GOZJksyxA8iB7FDQkdthFfwcOMNE9/sDMFAHmMEgNAOBMX3N8ySxMxMJPz30KFDk+8doorRG978jW9Avuv8DKH1n1yA0SS+exmTOzDygUDh38YoLtjIDxdHxwZxNoQVb8/o/DAbD+FSdGy+kxuMt/ouXbqY3oe/COCbHzo7o6NDR4WRI64JIT969Ki6Hu4FnS46fIgfvqVihGp888PEDIyGMPsUgoGwJ8QPnTLqA/WEFxLMiMW1goW+jG+MRiVgAgi+nWIxuL/vEGsIHjp7jN4h0HiZQcKLAerZ/5ut0XGb3TfYY8QF/5HAA6N9jIYg4sa3S3TwGNVarXND/MACPqK9YGRmJNQvJu1gVIUROe4HCS9xGGmijcAWE14wAxn1YLQXCA2iGxgR+qdQfHEPxgxcvATCB1wDbRf+BltqYnzzxLUg5MZ6W7zIYfRqTBYCQ9wjojSS7CUg4mcvT0+XBiFEx43OOnv27CnuBQ8oRlHoHNCp+iaEtDCrErPWOIvm0bliJIalCiVLlkw1U84MrmGPb5gYVRjfMg3xg0hBmOErOkj/3Vas3gdCfBB4/OOf4EtSUpLi6M8y1H3ABuFnhNPQeUI0MJMWHaohloHs4TtEDHVgJTwGYQNzzM6EyOqkUPeN8hCOhD9Y+uK7Ewt+Q0gUfzOYcesc5eG+cc9oM4hUGAkRAPiBSSaB7g0jNdiiHeD+Q+18FIovRmwI90P8rO48E4g3OIExRqR43uwoU6deoy2PiF+01XgU3q+v+GH0lJYTvj9hRGZMw4eQYHSCjhVT42V7tLRce+KblwiI+HmptsTXsAggDIfvWAhF4htQWk9YW4mwHULVEENMQsKsQ4zqJAkBIWAPARE/ezhKKUJACAgBIeAhAiJ+HqoscVUICAEhIATsISDiZw9HKUUICAEhIAQ8REDEz0OVJa4KASEgBISAPQRE/OzhKKUIASEgBISAhwg4Kn7YXd93oa0/F6ydwZou37U5HmInrgoBISAEhIBHCTgiftjZAtPLscUQ9t3DGiXfhAXT2H0BizcxrRubBMumrR5tQeK2EBACQsCDBBwRP2wjhEW62BbI2PnAlw32QsTCXew/iH0csX4Jo0ArO2F4kLW4LASEgBAQAmmEgCPiZ9wbtgsKJH44yw3nVHXq1Ent3I+wJ7ZYwrZakoSAEBACQkAIOE0gIuKHDXzxD/YuRMJO/9jhHke54BBU47Rp4+ZxUCUOH5UkBISAEBAC1gg8N/tbOn3+UiqjST2vHxidHtNTU79Jvi3cZ6CBVUTED7vbY2NbbDWFTWHz5s2rNgEONvEFu9AHO/gyLVQcNsdNy6NW8Y/XSoSf8OMR4Flz21+bIfNUhC1aU5oQP4zucH7b6tWr1ZlnOH4ER3vgJGqcgxYsifjxmi334eFd3dxa/DNnFCqH8BN+oQi0HvwhD5DHrSMmfpj5ibAlEkZ7RngThzni0EYcO4IDOOvUqSPi51Ajk86RB1b4CT8egfCsfzt1gQrmzqaOXTIiS59s+omSzl2k5rfGU96cWbUKDiZ+k55uTvEF82qVkdZfvj7bcoCmLt9G5y5epjJF89DPx04lj3YjIn5mVHFcS5EiRUzPEZORnxnJ0L9L5y38eAR41r7t78rVv+m+4R+p0yqQMhBR3crFaUiXBryLMKzTyvMx+r2vaNMPv6a6k0wZYyihUUWa+9n3KX4rWzwvTfxXc9M7DyZ+y8Z2NLXVyRBJfhA7iB7ED6lpzdLUs3VNissaS0a4N02Knw5Y5BHx0yUVOF8kG6eO5+KfDqXgebzAb9B72+jipStBb+Llx5pSxdIFeCDCtE4L/PBNDp11sJQhA1Ggz3Z33hpPBfOkPHjat4yFa3fTxctXAxbrdfH76WgSTZqfSPg3xK5nqxrU9JYyqe41WP06OuElzLaYykzEj0cyLTzcoe5A/Evf9fvAyAV09mJw4ePdvViHS8DL4ucf5uyXUIfii+YJiELEL9wWomEnnbcGpBBZhF/65tdm8IcUvXMNeXVrZt2kRmkqnC8uaLaFX/5AfwUY+WEN9tIxHcyK1/rdzec3VJgzmLMiflrVGF4mNys/HA/Fv3Co/WMj/Hj82gz5MGDIzrfUpzvUocY1SvMuFKZ1WqhfCNT9wz8KegdF8sXRsT/PpfgdE15mDmlreteBvvnNHnYv5YrLYmqrk8EtfrphTn+fRfx0ajHMPG5VfpjupZgtFm4ZTtoJPx7dtMJvzuqdlLjrCJUslJua3Vqann/3S7p61XzMlysuK80eZt6J8ygFt04r/OZ/sZtmfrIj2VF854vNlJE61C9FHVvUphUbf6RlX++jq39fo7tujaf2d1TURtLh+YXqm2vGDBlo0YsJ2nY6Gd3gZyXMKeKnU2s25XGj8jmuin8ceuSJl4esuQtRTIYMlDEmA2F2oO40eB4Zojmf7qS5n6echahbZoGc2WnGkNa62R3LJ88HD62T/MIJc4r48erTkrWTlW/JkSCZxT8eRaf4Hf79ND375ufqTf7S5asqNJg9SyxN6X835c6hF5IaMnUNfffTiVQ3iNlvT7S9he64+QbezYew/v3Ueer20rKwytcN2YVVuEUjp+rXohtBs0erf+GGOUX87Gp5GuVEa+PUQKOVJRL8MLW83bCP6Nrff6u1ZnlyZaWn2temmuWLpPLZbv/aP/cRXb4SePq5cfHFL3ZQo7hQ6aU562n9d78EzZIze2ZH18+9tWQLHTx+SquO/TPVi/DaPl9/7K7fsICEMIpG/zhhThE/u1ugNE7HiDr9cA+d9gV9f+A3JXRmexy+8mQzqlAyf4p7tdO/sbPX09c7gwuWceGc2bNQ6SK5QzLf9fNvdPWa+Tc1xyouzILz585O7z4b+XCn4b6d9RsmkpBm0eSfHWFOET8nWmGQMqOpcTqB1Ql+l69cUzuJmImdE/eTlsqsXLoAYVq7E+nQ8dN0+vxf2kXbOb1e+6IaGZ1ofxqX1c4SLf7ZFeYU8dNuWvyM0dI4+aQClxCM31ffHab/zN2QQsAwPXtMz8Z0Q+HgoyJMGQ+0tskp/50o985by5hO/ce2TgeOJgW9fNv65enRVjWccE+VefLMRer20tJUo8+YmAy05MUO9PX3v9CRE6fp5pJZqNyNZR3zg1uwPL88gnbwszPMKeLHq09L1nZUvqULWszsNf8uXblGCSOw/2PgkB6E7/G2twSkcPSPs/Tagk0WCf2TfVT3O6hGuZTf/ezk99Kcr2n9d4dD+ofZmoteMJ+OjjDuvyb+j3757bSaLJMpUwxVLJmfyhbPR7UrFqOq8YXC5qBriG+X76/aSWcuXKIKpfJTi1qpD6S2k5+uX1byiX9WaKXOy+U3bfk2WrJ+ryrYd29Onlf/WAfzT7Y3s4Ewt/JtcCFkEWnRv5fnfk3r1GQNTDjJQE1vLUN9218/XPPx8SvoyO9nnMaSqvwn772V7q6TeoRiN78nJ6ykwydOJ18fSxQ6Nq2sZnre26C85fu22z/LDpgYiH88oumV34mT5+jFWevU3pxIiFIgWmF3EvGzm6hPeem1cYaDDIucEZqseEPqTYo7Pr+QLly6EvQ73JAu9ale5RLUdsg8NTklWMoYE0MVb0g5KcXI++eZi/SrpnDiGxS+hmHE8vLjTYNeT+o3nJZg/ubNK9U+a6lfHstw+G3cdYQmzk9URxAVyhNHQx9qEHRvTp53wdfpysiPS5a8sQjayZPmcdTK8sQf6fSZi8k0Ebob/2Qzii+WV4Xlnnh1pQ2krxfxQNPK9GCzKkHLC3aES664zDR7WDvLfoTzcFu+CMNA/GPAk+eXBy8Mfr5hzrqVihM2pca6VKeSjPycIhtG5TvoSsCineocR89aR5t2HQl6O3lyZKF76pajZev3qm9CdqT2t99E3e6uHrIozPB8eOwySjp7UY3sere7hZrXCn/ChVP87OCBMsQ/Hknh5w4/t8Kc/ncj4ser35DW0fbwJJ25SF3HLLGdaLd7qlP7hjfRwLc+o90Hf09RPkT0ibY1bb+mToHRVr86TKzkEX5WaKXOmx74uRnmFPHjtTdL1umhceresHE6sk7+jBljqEOjivTxxn10+lzokV+hvNlp+sB/Fj5jMfi+X/5U+1Ri5uKjLZ2bsm92L9FUv2Yswvld+IVD7R8br/NzO8wp4sdrb5asvd44dW52wJTVtOfwHzpZk/O0qV+OeraqqWY29p6wMuCZblgTNqHHreTkN0lLTgfIHA31y2UUyl748eh6lV+kwpwifrz2Zsnaq40z1E1u33+CsmfJROVL5KO2Q+cFXXMXrIw8ObPSLL+zxj5au5t+SzpPbW8rR8UK5ko2TY/8LDUgZmbhxwMo/OznF8kwp4gfrz4tWaeHh+e9/31LC77cw9oOLCYmhl7q1ZjKl8xvuimzL+D0wM9Sg7E5s/DjARV+9vKLdJhTxI9Xn5asvf7wvDovkdZs+9nSPftnXja2Y9j2XucX9o3bZCj8eCCFnz380kqYU8SPV5+WrCPx8Ez9eDtt+O4wZc8aSx0aV6Lbq5cK6nMo/+Z9/j3N+nSnpfv1zdyoxg30TIe6YdvDMBL8rDgs/lmhlTqv8Ev//E5czOLaonWrNGWpg1ViFvK7/XAHmnH5cItqdH+jigG9DuVfsAXhZrefLXMstWlQjrrcWdUsq+nvbvMzdcgvg/hnlVjK/MIvffMbP/sL+mLncXWTbixat0pTxM8qMQv53Xq4DxxLor6TPgnoGWZNVi5dMOBvFy5coGzZsqX6DYvAffeY1L3lciXy06u9m+lmN83nFj9TR4JkEP/CJXfdTvilT35pNczpT1vEj9f+Qlo7/XCP+/+TANw8thT7XsZmjKG2DcpTQqOKtHrLAXUuXKt65Wwn6TQ/rsPiH4+g8Et//Hxnc+bLkZlGdG/s2N6cPHqytyeXX8TE78yFy/TgqIWm/mMxOI7jCZSOHj1KRYsWDfjbkKlrUv3d7UNHpXM0rd6ItT+eZzLyS4/8/Gdz3lurMFW+yf6XYjvYhYo8yMbWNhB2svPW/Sa3ZExHiglyYHco/2Z98h3N/2JX8gL0rJkz0fyR99lARb8IJ/npexE8p/jHoyj80ge/YGFOr9aviB+vXSprpypfdyuxyU/dRaWLBD/Z3Cn/bEDnKD/xzy4CvHKk/XmfX6hF616tXxE/Xrt0rPP+5bcz9MSrK0y901lf59XGaXrzLmUQfjzQws/b/MwWrXu1fkX8eO3SMfFrPXieOuU8WGrXsAJ1v+dmLe+92ji1bs6FTMKPB1n4eZOf7mxOr9avY+J37do1whT7uLi4oDV/5swZypEjh5pFGCqNGzeOBg0axGtBDlrbXfkPj11Kf56+EMTjDLRsbAdLd2O3f5YurpFZ/NOAFCKL8BN+PAKpra3szenV9ueI+M2YMYMmTpxIxYsXpytXrtDs2bOpYMF/1qDt2bOHRo0aRdgL8uDBg9SrVy/q0qVL0PqLNvELNcllYu87qWyJfJbaulcbp6WbdDCz8OPBFX7e4mcW5vS/G6/Wr+3iB7GLjY2lpKQkyp07N/Xt21dNsx88eHAyM4hd+fLlacCAAbRv3z7133/99Rdlzpw5YCuJJvHbdfA3GvTW5wE5hLsEwauNk9dl2Gct/HgshZ83+OmGOUX8gtTngQMHqFmzZrR//36VY/LkybR9+3aaPn16sgVGfRBICOLGjRupXr16dOTIESpWrFjUi1+oGZ46k1sCAZTOxxudT7heSv2GS+66nfAjshLmFPEL0t527NhBCQkJhNAm0qxZs2jt2rU0bdq0ZItdu3ZR3bp1qX379rRhwwbau3cvGd//1q9fT+vWrUtVOspMz2nWmv204+ApunT5asDbLJArKz3Xkb+PZnpmKPcmBISAdQKLNhxK3puz6g15qHOjeMqWOaP1gtKwRaDDsm0Pe2KSS/bs2QkTXhCmmzBhgkLSv3//FGhOnTpFy5cvp7JlyyqxPHz4cFB06T3s2eWFxXTq3F8hm84jd1en+26/KazmJW+2YWFLNhJ+wo9HgGftVPsLN8wpI78Q9Vm9enWaMmUKVa1alVq0aEEjR46k5s2bU2JiovobJsSgQsePH6/CoRgZzpw5MyrFT2che7jf+gygTj08vEf6H2vxj0dS+Ak/qwQ4YU4RvxC0ly5dmjx7s2XLljRnzhw1CsyVK5cSQIwM77nnHvX/v/zyi/pbsO99uEwkR35nz1+ijzfup8yZMlDLeuUoc2zqcEC4nY+O8OH+3x5wDxXLn9Nq+5aRS9jEUhqGW782Xd60GPHPFFHIDNHGz+psTjO6XuVne9jTAHX+/HlCaDPYhsrIh1BniRIl0sQ6v9VbD9DsVTvpypVrVDm+ED37YD165cONtHb7wRR1/+yDt1H9qiVT/C2cyr946QoljFhg1q4oY0wGWvyitXV96eXNzBSOSxnCqV+XXFOXEf94tKOFn11hzvTSvzgmfrzmmNLa6ZHftOVbacn6fSkuGpc1ls5dvJzqNjCCfaBp5RR/P3nyJOXNm/d6R/TryYB2/gUdOHqKzl4I/p0Pole3Ugl6tvNtbJTR8nCzQQUpQPjxyAq/yPOzM8wp4serT0vWTouf7skJlpxmZM4Sm5E+GnU/o4SUptL58FAKP+HHI8Cz5ra/uZ99T3NW71ROOHHSOtc/Hh1z62D+ReXI78hvp4koAxUvmJNemrOe1n/3izlBnxyhRn7xxfISRo1macdPJ+iDz75Ple21vs2pTNHro0i7klcbp133zy1H+PEICr/I8EPk6sVZ6+i7n04oB9BvPdisCs+ZANZerd+oEr+te4/R8zPWJm8XHZMhA137O/jm0Qg9Xr2W8vcyRfPQa31bpGgC4VZ+/9c/pR+P/JlcVo3yRWhUt8AH0nJabLj+ca5pxVb8s0IrdV7hJ/z8CUDwIHwQQLyMD+3agKrGF+KBCmLt1fYXVeJnJbyJfUfnDGtLT7y6kpLO/UXYe7ty6YI0pmfjVE2AW/mY/IJDZJ1icik6AAAgAElEQVRKXP+c8ssoV/zjERZ+ws+XgG+Ys0qZgjTsoYZa0ahwKXq1/UWN+K36Zj9NXrhZu34/GnUfZYnVEySvVr42DIczCj8eYOEn/EDArTCnP22vtr+oEb97h86nq9euaT0lVheVe7XytWC4kEn48SALP+HnZphTxI/X3ixZ2zHbM1jIE+FNbMXmm6xuIC2dj6XqtD1szLu6ubXUrzmjUDmEn7P83A5zivjx6tOSNVf8fks6T93HLQt4zaVjOtChE6dpy56jVKJgLqpdMfDJEvJwW6oyS5mlc7SES14eeLjSDb9IhTlF/GxugKGK44rfAyMX09mLgReUWx3lBfJTOm9eYxB+wo9HgGftxfYXyTCniB+vvVmy5opfsJCn1W97wZz24sNjqQIcziz8eICFX3Txi3SYM6rFD6e1Z8qkNxOS1yyvWzslfk8l1KZmNcuwXZTOh4dQ+Ak/HgGetVfaX1oJc0aV+G3bto2eeuopWrFiBd155530/fffK0F64okneK1O09op8bMj5Ilb8MrDo4nb9WzCj4dc+KV/fucoh2uL1q3S9Gr701rqUK9ePdXBP/fcc9SnTx+qWbMm7du3j/78809XRoAiflabY8r8Xm2cvLu2z1r48VgKPx6/KR+to5VbjqhC3Fi0btVbr9avqfhdvHiRsmXLRjijb+LEibRz507avHkzlSpVir799luqVq2aVVaW83PE741F39D/Nv2U6pp2fe+TkZ/l6kxl4NWHh3/n9pQg/Hgc0yq/tBrmjKqwZ4UKFahixYq0ZMkS6tWrlzqjD6eznz17luLi4ngtT8OaI37BDowV8dMA71KWtNr5GLcv/vEagvCzzs93Nme2zBnpuYdvd2xvTuvepY/IkunID7c5c+ZMevjhh9UdY7TXoEEDat26Nc2ePZvLTcueI37BZnrmz52N3n22jdb1zTLJw21GKPTvwk/48QjwrNNa+/Ofzdnl9pJU+aZyvJt00Dqt8dMdmWqJHwrDga0ZM2akXLly0datW9V3P7eSmfj9fuo8DXzrc0o6e5EyZ4qhtg0qqOM7nnh1Bf3y25mAbr43uC3ly5XVllvwauXbcvM2FCL8eBCFX/rgFyzMKfXrTP2GFL+SJUvSpUuXgl55//79lCNHDp5nGtZm4td2yLxURxM9fFc1mvnJd/R3gCOLcELD0jEdNa6sl0Uapx6nYLmEn/DjEeBZp4X2F2rRelrwLxRhr/oXUvxatWqlxA8ihxvMmTMnlSlThnbs2EHx8fFq8gsmwzidQonf4ROn6ckJKy25cFftstS73a2WbNJj5dsGgFmQVx8e5m3bZi78eCgjzc9s0Xqk/TOj61X/tMKelStXptq1a9Nbb71FWbJkoTfffJOefPJJOn36tBJEp1Mo8Xv6jVW075eTqVzAhBaM8K75HUaLjHat7zMu6tXKd7redMsXfrqkAucTft7kpzubU+rXmfo1FT/s5hIbG0tt27alBQsWqO9+48ePpwEDBqhvfzVq1OB5pmEdSvwSRiwgHAbrnzJljKF+CXXolQ82pPgpW5ZMNO/5+zSuqp9FGqc+q0A5hZ/w4xHgWUei/VnZmzMS/lkh6lX/TMUPENq0aUPLli1TozyEOU+cOEG1atWijRs3Eo4EcjoFEr8rV6/RwLdWBxz1wZ+ShXPSlH730PYfj9PU5dvowl+XqVrZwtTv/tq2u+vVyrcdRJgFCr8wwf2/mfDzFj+zMKf/3Uj9OlO/WuJ36tQpmj9/Pi1fvpwOHz5M9913H3Xt2pUwIcaN5C9+P/16kp6avCrkpdvdfhN1v7u6G+7J9mZMyvJw8wAKP2/w0w1zivjx6lOXn6n4Iez5+uuvU5UqVahZs2b2eqVZmr/4BVu751uc3d/1QrkqnY9mRQbJJvyEH48Az9qN9mclzKnbefPu2j5rN/hxvA3mn6n44aKY8AIR3LVrl/rm53byFb9uLy2h309dDOkCTpxYNNre73oifs7VulcfHueIWCtZ+Fnj5ba4WA1zuu0fj553N/bXEr/OnTvTnDlzqGHDhmoEiJmUSJj4kjWrPQvFQ1WAr/gF264sUqM+XFc6H97jI/yEH48Az9qp9hdumFPEj1efuvy0xK9w4cJqkot/wrdA7PjidPIVv1Ahz2IFctKkPs0pa2b3zhoU8ePXvlOdD9+z6yWIfzyS0ciPE+bU7bx5tWKftVfrV0v8zp8/r3ZKOXPmDP31119UoEABRc6NTa1xHR3xmzqgJRXJ7/xuM4GajFcr377mzytJ+Ak/HgGetd3tjxvmFPHj1acuPy3xQ+N49tln1YxPJBxoO2zYMLr99tvt9TJIaYb4dRu3jH5POh8wl5sTXHThugJH4yJ2P9wal7SURfyzhCtVZuGXNvjZFeaU/oVXn7r8tMSvQ4cOSvjwb+zlaYjgsWPHKHv27PZ6GqA0Q/zcOJ4onJuRziccav/YCD/hxyPAs7aj/dkZ5tTtvHl3bZ+1Hfzs8yZ1SWHP9sRpDvny5aMXXniBhg4dqkpetGgRtW/fPuQOL9euXaMLFy6EDI0ijAoxNSbQBANgiF+w733Nb42nPvfVcpJfyLK9WvkRA+Z3YeHHqwnhF1l+S9fvVRtpIJUpmofG9mpCcVljeU75WEv98lCGLX7G9mZY1D5t2jS11OGll15SYc+9e/dSuXKpz5maMWOGOvW9ePHiaokEzv0rWLBg8h1AUHv27Kl2jPntt9/o/vvvp0ceeSToHZqJXyRDnnBaGqczjZNXqn3WUr88lumVH8KcE+cn0sZdRxSgNvXLU89W9m/3mF758VqVvnXY4odL9OjRg9555x11NQgWRmwIgX744YepPDDEMikpiXLnzk19+/ZVJ78PHjw4Oe+7775LK1asoHnz5tHXX39N3bp1oz179oj46denpZzy8FjClSqz8BN+/gR+OppEY2ato+Mnz6lRHvYRrlupOA9UEGtpfzysLPFD+HLx4sVK7LC8oVOnTkr88ubNm8qrAwcOqJ1gcAwS0uTJk2n79u00ffr05LxHjx6lm2++mZo0aULr1q2jfv360TPPPCPix6vjoNby8PDACj/h50vAP8w5rGsDKpQ3jgcphLW0Px5alvjh0tjdJU+ePOobHsTrpptuCugRzvpLSEhIHsnNmjWL1q5dq0KmRlq1apXaG7RXr16UmJhImTNnVvuGIq1fv14Jon9q1/5+euadzQGvOaln5L738apFrIWAEPAKgQuXrtKctQdox8/Xj1C7o0phal+vlFfcj2o/cf6sf9Ka7Ym9Pfv06UMrV66kUqVKqe3OBg4cqNbf+SeMEjEDFBNeMJFlwoQJKkv//v2TsyLMCfEcNGiQCqFiofzx48epUKFCASsI16nROIEmL/om4O/yzS90u5Y3R95zL/yEn5thTn/a0v6caX9a4lehQgU1YeWjjz5SI7/evXsTRnRHjhyhYsWKpfKsevXqNGXKFKpatSq1aNGCRo4cSc2bN1ejPPwNv6FC33jjDTp48CDVqVNHlYU9OQMliN+fuW+lXQd/T63eGTLQ0jEdeHSY1tI4eQCFn/DjEeBZm7U/t8OcIn68+tTlZyp+xgSWxx9/XJ3gjoTZm126dKENGzZQ3bp1U3m6dOlS9TtSy5Yt1b6gGAVihAcBxNKJ1q1bq/Ap0vDhw9Xsz2AJ4rfpfFm6dOlqqiwxGTLQEhG/kK3F7OG2t6lZL038s87M10L4OcPPrdmcZt5L/ZoRCv0765sfdnL56quv1GnumO25ZMkSNZPzxx9/pCxZsgS8MrZEw+QYzPQMln799Vc1osRJ8aESxG/DmXi6evVaqmxxWWLpg+fb8+gwraVx8gAKP+HHI8CzDtT+Ihnm1B258O7aPmuvPr+mIz8gwgxOfLvDbE9scI3R3L///W+644477CMYoiSI3/pTZdT+ov6pSc0bqH9C6tGnK479/0W8WvluMgp1LeHHqwnhZy+/SIc5Rfx49anLT0v8UNjPP/+s1uThG1+JEiXoxhtvtNdDE/Fbl1Q6YI52DcpT95b2Lyy1cnPS+VihlTqv8BN+PAI8a6P9pZUwp27nzbtr+6y9+vxqid+yZcuoTZs2ihYWq2MpQo0aNWjSpEn2EQxR0uAXJtHOc0UC5sBWQlXK/LN7jCsO+V3Eq5UfCVaBrin8eDUh/Pj8KFs+1xatW/VW6tcqsZT5Wd/8SpYsqZYhYJ0fZmZiVubo0aODzvbkuZrauu2QD+ja39cP0PVPkV7mAH+kcfJqXPgJPx4BnvWMpRto4YZDqhDszen0onWr3srzYZWYTeKH8/twWruxLAF7e2IRe82aNWnnzp1qzZ/TKdiG1pkyZqRFL9zv9OVNy5fGaYooZAbhJ/x4BMKzTqthTv+7kecjvPo1rFgjPwjc77//TkWKFFGjPkx6wUL2UPtx8txNaR1M/Pq0r0XNa6VeuW/ntXXKksapQyl4HuEn/HgErFv7zubMljkjPd2xnmN7c1r3Tm/kwi3XLnuvPr9a3/y2bdtGI0aMIHz7MxKWOxjfAe2CGKycYOK38IUEis0Y4/TlTcv3auWb3phLGYQfD7Tws8bPfzbnQ3eUolurV7RWiIu5pX55sMMe+WGRO7Y3q1KlCt1yyy30yy+/UNmyZV05xNa45UDilzdnVpo5pC2Pik3W0jh5IIWf8OMR0LMOFuaU9qfHL1gur/LTGvkh7AkRxObW+ObndgokfmlhoovBwauV73Y9preHR/jpEUgLz0eoRetpwb9QJMU/vXZmtX/REr/OnTurLcoaNmyoRoDGyevjx49Xk2GcTiJ+PMLy8Ag/HgGedaTbn9mi9Uj7Z0ZX/DMjFPr3sMOeKLZw4cJqkot/wvZl2K/T6STixyMsD4/w4xHgWUeq/enO5oyUf7pUxT9dUoHzscQP+3QG2loMJzy4kUT8eJTl4RF+PAI860i0Pyt7c0bCPytExT8rtFLnZYkf79J8a3/xQ9g10scY+d6VNE5eHQs/4ccjkNLaLMzpfy1pfzz6XuWn9c2Ph4Zv7S9+mWMz0oJRkV/cbtyZVyufXzP2lCD8eByF33V+umFOET9ee0sv/DwpfvlyZ6f3nm1tbw0ySpPOhwFPtofjwRN+ip+VMGd66bzZDcemArza/4UUv5kzZ6olDsFS165dTc/is4Ov/8ivaP4c9N8BLe0o2pYyvFr5tty8DYUIPx7EaOdnNcwp4sdrb+mFX0jxM5Y0BEMVqdmehfLG0fSBreytQUZp0d75MNBdf2v/6SeKj4/8NnXB7kP849WwU/zCDXOml86bVyv2WTtVv3Z5GNaEl40bN9LVq1fpxRdfpO+++44GDBhAZcqUoVdeeYXOnTtHiYmJaq9Pp5P/yK98iXw0vvedTl9Wu3yvVr72DTqcUfjxAEcjP06YU8SP197SCz/Tb34Ie8bGxtJzzz1Ho0aNUvdtnO+3b98+Vw619Re/htVK0sAHbrO3BhmlRWPnw8CVylT48WhGGz9umDO9dN68VmOftVfbn6n4AZGxkH3MmDGUI0cOmjJlCn3zzTeunefnL34tb7uRHm99i321xyzJq5XPvG3bzIUfD2W08LMrzCnix2tv6YWflvgtWLCAnnzyyRS7vEycOJGeeuopeykGKc1f/J5scwvdXe9GV66tc5Fo6Xx0WISTR/iFQ+0fm2jgZ2eYM7103rxWY5+1V9uflvgBE779rVq1ipKSkqhly5aubGtmVI+/+I3p2YSqxhe0r/aYJXm18pm3bZu58OOhTO/8PttygKYu36bW8Tlx0np658drXebWXuWnJX74tnfXXXepWXmDBw9WJ7g/+OCD1KlTJ3MyNuTwF7+FoxMoNlPkz/Ezbs2rlW9D1dhShPDjYUyv/CB2ED2IH1LTmqWpZ+uaFJc1lgfMzzq98rMVUojCvMpPS/xwjh8EsGDBgtSxY0d1pt+sWbPUKDB37tyOM/YXv7R0nBFu3quV73jFaV5A+GmCCpItPfJDmHPS/ES1eB1i17NVDWp6SxkeqCji5wiodMbPVPz++usvdWwRDrQ9dOiQOs8vISGBatasSVu3bqUaNWo4zlnEj4c4PXaOPCLWrIWfNV7+ua3y8w9z9kuoQ/FF8/CcSIcjF8eAWCzYav1aLJ6dPZh/puKHK2O2Z7Vq1ShPnjyUOXNmiomJUd///vjjj4js8CIjP2vtwauN09pdOpdb+PHY6vJzK8zJFWceDevWuvysl2yPhVf90xK/uXPn0mOPPUZnzpxJpjV69GgaNmyYPfRMSpGRHw+zVxsn767tsxZ+PJY6/NwMc4r48eozvfDTEr9du3apnV3Wrl1LBw4coOrVq9Ntt7m3yFzEj9dYdTof3hV41uJfdPNzO8yZXjpvXquxz9qrz6+W+OEkd6TWrVurZQ6NGzdWIVC3kq/4pbWz/MDAq5XvVv2ZXUf4mREK/btX+UUqzCnix2tv6YWflvhhQfvnn39OX3zxRXLos1GjRrRixQrKli2bvSQDlCbix0Ps1c6Rd9f2WQs/HstA/CIZ5kwvnTevVuyz9urzoSV+ly9fpt27d6stzWbMmEHr169X5CJxqoOM/Kw3Wq82Tut36oyF8ONx9ecX6TCniB+vPtMLPy3xK1mypFrbh2NnEPKsU6cO3XrrrXTzzTdTsGOPrl27RhcuXKC4uDg2aRn58RBK5y38eAR41kb7SythzvTSefNqxT5rr/YvWuLXoEEDNdrLmTMn4b/r1atHtWrVojvvvFOt+/NPGB0iVFq8eHF1GO7s2bPVAnkj/ec//0kePUIkcUpEqDWDvuIXkyEDLRnTwb6as6Ekr1a+DbduSxHCj4fRC/woWz7XFq1bpekFfnLepdVa/Sc/a50fijl9+rT6xjdp0iTCOX/Bwp7GEUjG7i99+/alokWLqm3RAqVBgwZRkSJFqH///kHvzlf8MmaMocUvJIRPwgFLeXh4UIVf+uY393+baEniL8l7czq9aN0qTWl/VomlzO9Vflojv169etGSJUuST3XACPDuu++m9957T+3+4puwFKJZs2a0f/9+9efJkyfT9u3bafr06akI79ixg9q1a6e+J2LxfLDkK37ZssTSvOfb82rLZmuvVr7NGMIuTviFjU4ZplV+aTXM6U87rfIz/BT/nHk+tMQPSx1uuOEGatWqlRK22rVrBz3BHYKG7c/27NmjPMYeoFgfOG3atFR38Oijj6oQao8ePZJ/Q3h13bp1KfKuSyqd/P9xWTPRmK7Ob6nGwy3WQiC6CRz54zzNXnuA8O9smTNSu3qlqE75AtENRe4+YgQChY21xA8hTPyzYcMGNeklf/78QU9wxySX7NmzE77lYTLMhAkT1A37hzWxNVqBAgXo5MmTpmsGfUd+eXJkoVlD740YxEAXljczXnUIv/TFz382Z0K94tSwVhXeTTpoLe2PB9er/LTEDxNS2rRpowjh2x1GZtjQGt//AiXsAIPT3qtWrUotWrSgkSNHUvPmzSkxMVH9DeKIA3IRNl26dKkpeV/xK5g7O73zbGtTGzczeLXy3WQU6lrCj1cTaYVfsDDn8V8Pq5fmtJrSCr9gfMQ/XsthTXjBUodChQqpERqWOWTKlImwt+eRI0eoWLFiqTyDoHXp0kX9HTvCzJkzR40CsUE2BLBixYr09NNPE8KpmPBilnzFr1De7DR9oIifGTPf3+XhsUIrdV7hZ84v1KJ14WfOT14OeYzC4Wc68jOONHrjjTfo4MGDKY40wqG2lStXDnjd8+fPq0XwmOnJTb7iVzhvHE0b2IpbpK328nDzcAo/b/MzW7Qu9evt+jXz3qv1ayp+uHEI3O+//66WJGDUd+LECRW6NCa1mMHh/u4rfsXy56S3B9zDLdJWe69Wvq0QGIUJPwa8CM721J3NKfXrzfrV9dqr9aslftu2baMRI0aoxehGwtIH4zugLqRw8/mKX+nCuWlyv7vCLcoRO69WviMwwihU+IUBzcckEvys7M0ZCf+sEBX/rNBKnder/LTEz7hdzMzENmdly5ZVIz+3kq/4VShVgF55oqlbl9a6jlcrX+vmXMgk/HiQ3eZnFub0vxu3/bNKU/yzSixlfq/yCyp+2My6RIkS6sBarNE7duxYKkJYyJ4jRw4eOQ1rX/GrUqYgje3VRMPKvSxerXz3CIW+kvDj1YRb/HTDnCJ+vPoUfu7wCyp+2KYMyxS6d++udnfBujz/hDCoGyNAX/GrfmMheqFHY3vpMEtzq/MJ103xL1xy1+2EH5GVMKd03rz2Jvzc4acV9pw6daoSwlKlStnrlWZpvuJ3a4WiNOKR2zUt3ckmnSOPs/BL2/yshjml8+bVp/Bzh5+W+GE9HmZ4NmnShLp27Ur33nuv6a4sdrrvK363VS5Og7s0sLN4dlnSefMQCr+0yS/cMKd03rz6FH7u8NMSvzVr1tDHH39MixYtUiEgpE6dOtG7775LWbJksdfTAKX5il+TW8pQ//trO35NKxeQztsKrdR5hV/a48cJc0rnzatP4ecOPy3xM1zBur7XX39d/YMUiZPc2zW8ibrfU91eOszSpPPmARR+aYsfN8wpnTevPoWfO/y0xA/7eb7//vtqmQNSzZo1qVu3bvT4448HPd3BTvd9R34dm1SiLndWtbN4dlnSefMQCr+0wc+uMKd03rz6FH7u8NMSP3zzw3l7OIKoQ4cOam9ON5Ov+HVoXJG6Nq/m5uVNryWdtymikBmEX+T52RnmlM6bV5/Czx1+WuKHHV6qVaumNrLG4bX58uVzZcRnIEghfo0qUtcWIn5WmoeIixVaqfOmd34bdx2hifMTHTtpPb3z47Uuc2vhZ84oVI5g/LTEb9++fXTXXXepyS4IgWJD6wcffFBNenEj+Ypfj3uq070Nb3LjstrXkMapjSpgRuEXOX7Tlm+jJev3KgfqVipO/RLqUFzWWJ5DftZSvzycws8Zflrid8sttxAEsGDBgtSxY0f17Q8ntOOA29y5c/M807D2Fb8n29xCd9e7UcPKvSzSOHmshZ/7/E6cPEcvzlqnFq8jPdqqBrWtX57nSBBrqV8eVuHnDD9T8TOONMIMz0OHDqU40mjr1q3qUFunk6/4PZVQi5rVTFsHY0rj5LUA4ecuP98wZ6E8cTT0oQYUXzQPz4kQ1lK/PLTCzxl+puKHy+IQWnzzw2G2mPgSExNDq1atUluexcbaGyIJdJu+4je0S0OqWzn1Abo8PDxraZzCj0eAZ22l/bkR5vS/Gyv+8UiEZy3+hcfNsPIqPy3xmzt3Lj322GN05syZZEo4yR2bXruRfMVvdPc76OZyRdy4rPY1vFr52jfocEbhxwOsw8/NMKeIH68+hZ87/EzF7+rVq7R9+3bKmTOnmvBy4MABql69Ot122232ehiiNF/xe+uZllS8gPMnSVi5OZ3Ox0p5ducV/3hEvc7P7TCndN689ib83OFnKn7Xrl2jokWLUqVKlQjbnEUi+Yrf1IEtqUheET8r9eD1ztvKvTqR18v8IhHmlM7b3lbo5fZnL4nwSmMtdXjiiSforbfeouHDhysRxDc/pHbt2rmy3s9X/GYNaUt5cmYNj4JDVtI4eWCFn/38IhnmFPHj1afwc4ef6cgPbhinOvi7FIm9PT8Y0d72dUhc1NJ58wgKP3v5RTrMKZ03rz6Fnzv8tMRv7dq1hCUP/glHHGXKlMleTwOU5jvyWza2o+PXs3oB6bytEkuZX/jZxy8thDml8+bVp/Bzh5+W+NnrivXSRPysM/O1EHFJ//xy5C3s2qJ1qzSl/VklJi+HPGJ6/ET8bKAsDzcPovDj8Vvy+Raa+9VBtTenG4vWrXor9WuVmF7nzSvVPmuv1q+Inw1twKuVb8Ot21KE8AsfY1oMc0rYLvz6DGQpzwePJ3u2Z7Nmzejuu++m7Nmz8zwJw1rCnmFA8zGRhyf98UtLsznN6Er7MyMU+nfh5ww/rZGf72zPRx55RG1u3bRpU1e2NsNti/g5U/m8Uu2zlofbGkv/2ZyPNClNDWtVsVaIi7mlfnmwhZ8z/LTE7+TJk4QZn9jPc8GCBXTixAm14wtOcu/RowdVqFCB552JtYgfD688POmHX6Aw5/FfD1N8fNra7N2XuLS/9NP+0lNYVkv8cMO//vqrEr+lS5fSokWLUjDAlmelS5fm1XAIaxE/HlrpfLzPL1SYU+rX+/Ub6g6kfp2pXy3xa968OX366afKA4z4OnfurEKfeNu84YYbaObMmdS1a1eehyJ+jvGTh4eHNtL8zBatR9o/M7rinxmh0L8LP2f4aYlfyZIlqUGDBur0dghhlixZkr354osv6MYbb6QSJUrwPBTxc4yfPDw8tJHkpzObM5L+6ZAV/3QoBc8j/JzhF1L8AP3vv/+mixcvUtasqffTLFOmTPI+n/7uYUPsCxcuUFxcXFDPz507R8iH0WSoJGFPZyqfV6p91vJwp2ZpZTan8OO1ReEXnfxCil+GDBlCUgm2t+eMGTNo4sSJVLx4cbpy5QrNnj2bChYsmFwWxBQTZWCPTbJxGvzIkSODXkvELzobJ++u7bN2u3M0C3P635nb/lklK/5ZJZYyv/Bzhl9I8XvllVcI5/kFS/3791cnu/smiB1Od09KSqLcuXNT37591ZFIgwcPTs727rvv0qZNm2jKlClqZIkJNG3btqWMGTMGvJSInzOVzyvVPmt5uP9hqRPmFPGzr+2hJGl/PJ5e5acV9gyGJlDYEzM/sSB+//79ymzy5MnqMNzp06cnF4OjkTZv3kxbtmxR3wpfeOEFtYA+WBLxi87Gybtr+6zdeLithDlF/OyrWxE/Pks3ng+Ol8H8sz3suWPHDkpISKA9e/Yof2fNmqXWCE6bNi3Z/27dutGXX35JK1asoG3bttG///1vOnToECHMun79elq3bl2Ke12X9M8yikk9a3E4iK0QSHMEvvv5JM1ee4AuXLpK+XJkpkebl6Pi+d3fSSnNgRGHhIBNBAKtg7U97IlJLvz40KIAACAASURBVNgCDRNZIGYTJkxQ7iNEaqSnn35azRgdO3as+hN2kIHoYdZooCQjP14L8OqbGe+u7bN2kl84YU4Z+dlXtzLy47N08vngexc8rK211AEO4Dw/TFBBwne6H3/8kWrXrh1wi7Pq1aur73lVq1alFi1aqMksWCKRmJio/oZdYqZOnUqrV6+mX375herVq6cW0cs3PzuqOnUZXm2cztCwXqoT/DhhThE/63UYysKJ+rXTQ/GPRzOssKdxyQ8//FBNXMG2Zr4p2GxP7ALTpUsXlbVly5Y0Z84cNQrMlSuXEkAMQVEewp4YJUIcO3XqFPQOZeTnTOXzSrXPOtoebquzOc1IRxs/Mx5Wfxd+VomlzO9Vflojv7Jly1KePHlo3759VLduXdq9ezcVKlSINm7cGHRz6/Pnz6uRImZ6BkvYMxSCGGzEZ9iJ+EVn4+TdtX3Wdj7cdoQ5ZeRnX92iJDvr117Prpcm/vGohj3yu3z5slrO8P7776tJKgUKFFAbWpcqVYogXhBFp5OIH4+wPDyR54eDZof893P66WiScubRVjWobf3yPMf+31rql4dR+EUnP62RH7Y3gwA+8cQTNGrUKLrvvvsIa/X27t1L5cqV45HTsBbx04AUIos83JHl991PJ+jFWevUSetxWWNpTK8mFF/UvpdGqd/I1i/v6ubWUr/mjELlCHvkh0I///xzNVsTyxbwDQ+TVFq3bq1OeHAjifjxKMvDEzl+cz/7nuas3qkcqFKmIA17qKESQDuT1C+PpvCLTn5aIz+g2bVrlwpxYonC999/T7fffjuPmAVrET8LsAJklYfbfX4Y5WG0h1Ef0gNNK9ODzZw5cFbq1/365V3RmrXUrzVe/rlZI7/XX3+d+vTpQytXrlTf+ipXrkwDBw6kcePG8bzStBbx0wQVJJs8PO7y8w9zDu3agKrGF+I5EcJa6peHVvhFJz+tkR9OasfG1B999JE6paF3794qBHrkyBEqVqwYj5yGtYifBiTpHHmQbOLnRphT983WMSAWCxZxsQjML7vwc4afqfgZG1Vjhuebb76pvMApDVjHt2HDBrX0wekk4scjLA+P8/zcDHOK+PHqU/gJPxAwFT9kwve9r776Sp28gLP3lixZok5swC4vvgfb2ov0n9JE/HhkRfyc5ed2mFM6b159Cj/hpy1+OKkBe3Ripxfs8oIZn9iM+o477rCXYpDSRPx4mEX8nOMXiTCndN68+hR+wk9b/AxUOqez24v1emkifjyqIn7284tkmFM6b159Cj/hF1L8sLMLztobNmyYOo7o2LFjqYjhzL4cOXLYSzJAaSJ+PMQifvbyi3SYUzpvXn0KP+EXUvww0QUnMnTv3l194/vjjz9SEVu2bJnamNrpJOLHIyziZx+/tBDmlM6bV5/CT/hphT0hgljnV6VKFXVCeySSiB+Puogfn1/hYiVdW7Ru1VupX6vEUuYXftHJT2u2Jxa1QwSxy4vZCQw8jIGtRfx4VOXh5vFbtf5bemf1/uS9OZ1etG7VW6lfq8RE/HjE0gc/LfHr3LmzOpOvYcOGagSIs/mQxo8fT1mzZrWTY8CyRPx4iKVzDJ9fWgxzStgu/PoMZCnPB4+nV/lpiV/hwoVTHWQLXMEOs+WhTG0t4scj6tXGybtrnnVams1pdidSv2aEQv8u/KKTn5b44WDav//+OxUhbHXmRhLx41GWh9saP//ZnN2blaXm9atbK8TF3FK/PNjCLzr5aYnfmTNnaMCAAbRixQp67LHH6K+//qKEhASqVq0aj5qmtYifJqgg2eTh1ucXKMx5/NfDFB8fr1+IyzmlfnnAhV908tMSvw4dOtD8+fMVocGDB1NiYiLt3LmTDh06JNubEZE8PN5/eEKFOaV+vV+/oe5A6jc669dU/IyNrUeOHEnnzp1Tsz3vvvtutd/nt99+68roT0Z+0dk4eXetb222aF06R32WgXIKP+HHI8CzDtb+TMXv6tWrlClTJurRo4ca5eEfHG80ZMgQOnnypDrg1ukk4scjLJ1PcH46szmFn7Q/HgGetbQ/Z/iZih8u+8wzz9Crr76awgMcaYQz/dxIIn48yvLwpOZnZTan8JP2xyPAs5b25ww/LfHDTM8tW7bQwoULCft51qhRg/r27evK1ma4bRE/ZyqfV6p91m4/3GZhTv87c9s/q2TFP6vEUuYXftHJL6T4vf/++4STHIKlBx54gGJjY3nkNKxF/DQghcgiD/c/cHTCnCJ+vPYm/ISfvQR4pYX1zc/YySXYpWWR+3UyIi7ONE5eqSmtrYQ5pfO2k7w8H1ya0r/wCIYlfhs3bgw58qtTp44re33KyM+ZyueVap+10w+31TCniJ99dSsvh3yWTj8fXA+96p/WNz8sd3j33XcJYpc/f3612L1Tp06unOWHihHx4zVPrzZO3l1ftw4nzCniZwf5f8qI5vZnB0nhx6MY1sjPuOQTTzxBb731Fq1cuZJKlSpFOOWhUaNG9Nlnn1FMTAzPMw1rET8NSCGyROPDwwlzivjx2pvwE372EuCVFrb4YaZnkSJF6J577qG3335bid0bb7xB/fr1o71791K5cuV4nmlYi/hpQBLxSybADXNK581rb8JP+NlLgFda2OJnLHJv0qQJrVq1Sn3jGzVqFI0YMYK2bt2qlj04nUT8eISjaeRnR5hTOm9eexN+ws9eArzSwhY/XLZbt27qmx9Szpw5CRtd169fn9atW8fzStNaxE8TVJBs0SB+doY5pfPmtTfhJ/zsJcArjSV+ONII3/sWL15MBw8epLZt21LHjh2pRIkSQb3C+sALFy6QHcceifg5U/m8Uu2z5orzT0eTaMysdXT85DmKyxpLdp+0zvXPPlKBSxL/eISFX3Ty05rtaRXNjBkzaOLEiVS8eHHCTNHZs2er/UCNhCOR8P933XWX+lOFChVo9OjRQS8j4me1BlLmT88P99L1e2nq8m3qhssUzUPDujagQnntPWcyPfPjtSw9a+GnxylYLuHnDD/bxc84BSIpKYly586ttkErWrSoOgrJSD/88AMNHz6c5syZozbNNksifmaEQv+eHh8ehDknzk+kjbuOqJtvU7889WzlzPfn9MiP16KsWQs/a7z8cws/Z/jZLn4HDhygZs2aqT1AkSZPnkzbt2+n6dOnJ9/B8uXL6cEHH1TfDmvVqkXjxo2jxo0by8iPV8dBrdPbw+Mf5uyXUIfqViruED3ZoYQLNr21Py4Pq/bCzyoxvciXlvhNmTJFiVPFihVVqTjKCMsd+vTpo0Z3vmnHjh3qlPc9e/aoP+Pkh7Vr19K0adOSs2F9IGaK/utf/6IPP/yQxo4dSxgNYjs1TKJZv359ijLXJZVO/v9JPWvxSIi1pwms3XmcFm44pO6heP7s9OidN1K+nFk8fU/ivBAQAs4SiI+PT3WBkOK3Zs0a+uSTTwjih0XtlSpVUgUcPnxYhSyPHDlCxYoVS1EoJrlkz55dbYsGMZswYYL6vX///sn5Ll26pJZM4B9jKQXKDDaBRsKevIaRHt4c3Qxz+tNOD/x4LYhnLfyEH48Azzqs2Z4vv/wyDRo0KOCVEa7ctGlTwN+qV6+uBLNq1arUokULwinwzZs3p8TERPU3hDl/++03lefrr7+mrl27JodJAxUo4udM5fNKtc/arHN0O8wp4mdf3aIks/q192rWSxP/rDPztfAqv5AjP8zKxEiuXbt21Lt3b/Utz0gIdwY79WHp0qWEw26RWrZsqUaJyJsrVy4lgDj9HWVhsgv+gTi2atUqaA2I+EVn48RduzGb04yuVx9us/ty63fhxyMt/Jzhp/XN7/Tp02rpwtChQ+n555+n3bt304ABA6hu3bpBvcLaQBx5hJmewdKxY8fU1mlmScTPjFDo37348EQyzCkjP157E37Cz14CvNLCCnsal2zTpg0tW7aMFixYQPfdd5/6M77P4TudG0nEj0fZa+IX6TCndN689ib8hJ+9BHilhS1+xro9bGqNvT0hgBj5YeYnZmhigbrTScSPR9hL4pcWwpzSefPam/ATfvYS4JUWtvhhNiZmdOKb3yuvvELY4Prhhx+m9u3b09GjR7XCljzX5Tw/Lj8viF/hYiVdW7RulacX+AWaym31Pp3KL/x4ZIWfM/y0vvnh+9748eOVBzjIFvt64iijLVu28LzStJaRnyaoINnS+sPz1Tc76b01Pyfvzen0onWrNNM6P/HPao2mzC/8opOflvjhTD+s+cOMTaz3wxKFDh06pNivk4cvtLWIH49uWn6402KYU8J2vPYm/ISfvQR4pYUd9sRlFy1aRFj24J8KFChADRo0oKxZs/K8M7EW8ePhTYvil5Zmc5rRTYv8fH0W/8xqMPTvwi86+WmN/AoXLkwnTpwISKhmzZpqOzInBVDEL301Tv/ZnA80vIHaNrmFd5MOWkvnyIMr/IQfjwDPmjXy69y5M3355Zfq2CEsSsdenFiwfuedd6q/ffrppykWwPNcTW0t4scjmpY6n0BhzrMnj5NM2Ai/jtNS/Qa6C/Ev/LqFpfBzhp/pyM9Y6oC9OV999VXlxUsvvaSOKDp37pya7Yn9O3v06MHzMIS1iB8PbVp4eEKFOdOCf6EIi3/eb39Sv7w6TI/8TMUPN41RHo4feuuttyhLlizqjL5s2bKpExuwdyfCnrfddptjdEX8eGgj3XmbLVqPtH9mdMU/M0Khfxd+wo9HgGfNCnvOnz9fjewggEg5c+ZU5/Nh2zMsfkdIVL75pT4yg1dl9llHsvPRmc0ZSf90KIt/OpSC5xF+wo9HgGfNEj9cGovdN2/erDa6rl+/PsXGxqpJMNikOnPmzDzvTKxl5MfDG4nOx8pszkj4Z4Wo+GeFVuq8wk/48QjwrFnid/z4cZo3b546kd03vf766yr86XQS8eMRdrvzMQtz+t+N2/5ZpSn+WSWWMr/wE348Ajxrlvg1bdqUPv/881Qe4NQGfA90Oon48Qi72fnohDlF/Hj1KfyEn70EeKW52b+E42nY4mectN69e3c12xPhTiPhxHY3kogfj7IbjdNKmFM6b159Cj/hZy8BXmlu9C8cD8MWP1z0nnvuURNaFi5cyPEhbFsRv7DRKUOnG6fVMKd03rz6FH7Cz14CvNKc7l943gXv/7SWOtSuXZu++eYbNcuzYMGCyb7s2LGD4uLiuL6Z2ov4mSIKmcHJxhlOmFM6b159Cj/hZy8BXmlO9i88z65bs0Z+2MT6t99+S+XHxx9/TG6EPkX8eE3AicbJCXNK582rT+En/OwlwCvNif6F51FKa5b4GUVhXR82uPYd/dnpZLCyRPx4lO1unNwwp3TevPoUfsLPXgK80uzuX3jepLZmiR+Mn332WcJidyTs6Tls2DC6/fbb7fYzYHkifjzMdjZOO8Kc0nnz6lP4CT97CfBKs7N/4XkS2Jolfgh7Qvjw7xw5ciSL4LFjxyTs6cKEEm6DsKNx2hnmlM6bW6N6YR17rxJ+aXa0v/Cvbm4p/pkzCpXDq/xMJ7ycPHmS8uXLRy+88AINHTpUMcD5fu3bt6etW7dSjRo1eOQ0rGXkpwEpRBZu40SYc9L8RMK/47LGUs9WNajpLWV4TvlYc/2zzZEgBYl/PMLCT/jxCPCswx75Gac6dO3alaZNm0YZM2ZUpzog7Ll3714qV64czzMNaxE/DUgOid9nWw7Q1OXbCCO/MkXzUL+EOhRfNA/PIT9r6Rx5OIWf8OMR4Fl7tf2ZjvyABZtav/POO4oQljtgg2uEQD/88EMeNU1rET9NUDaOXCB2ED2IH1LTmqWpZ+uaauRnd/Lqw2M3h3DLE37hkrtuJ/yik5+W+GEz68WLFyuxw5ZmnTp1UuKXN29eHjVNaxE/TVA2iZ/TYU5/N6Xzcbd+eVezbi31a52Zr4Xwc4aflvgZb0cQPqSYmBj17ypVqqgwqNNJxI9H2MrD40aYU8SPV5/CT/jZS4BXmpX+hXel8KzD/uaHy+Hw2smTJ6e6smxsfR2JVyvft0LdDHNK5x3eQxzMKj20P3uJWCtN+FnjlV6eX9ORn7GxdXx8PPXq1SvFSA+i6PRZfgAtIz9nG6fbYc708vDwasU+a+m8eSyFX3TyMxU/YKlQoQK1bNlSneoQiSTix6Me6uGORJhTxI9Xn8JP+NlLgFeaV18etMRv6tSpatRXq1YtdbqDkf73v//JInePhj0jGeaUzpvX2Qg/4WcvAV5p6Vb8/v77bypSpAidOHGCChUqlCLMuXv3brXji9NJRn48wv6NM9JhTum8efUp/ISfvQR4paVb8bt27RrlyZOHHn30UUthT9hhiYTZkUd//vmnypMlS5agNSDiZ1/jTAthTum8efUp/ISfvQR4paVb8QOWjh070s6dO2nw4MEpRKpdu3aUKVOmVORmzJhBEydOpOLFixN2iJk9e3bAkyAOHjxIVatWJYRPb7vtNhE/XhsMao3GWbhYSdcWrVu9Da8+PFbv06n8wo9HVvhFJz+tb36FCxdWYU//FGipg7EdWlJSEuXOnVstkyhatKgSTt906dIltVD+wIED9Oabb4r48dpfSOuvvtlJH2044tjenFzXpfPhERR+wo9HgGft1fanJX5r1qxR5/j5p2bNmqUa+UHM8Pf9+/er7FgfuH37dpo+fXoK86effpqaNm2qfh8+fLiIH6/9BbVGmPPtpVvowqWrju3NyXXdqw8P977tshd+PJLCLzr5aYkfvt0hlLlv3z5FCd/zMNll4cKFqSa87NixgxISEmjPnj0q76xZs2jt2rVqU2wjLViwgJYsWUIzZ86ku+66K4X4rV+/ntatW5eiNtYllU7+/0k9a/FqKkqsIXaLNhyixL2/qzuuXb4Ata9XirJldn5HnihBLLcpBISARwhgnbp/0hK/Vq1a0ccff5zKGBtc+8/2hFBmz55dCWSGDBlowoQJyq5///7J9vXq1VNh1Pz589M333xD5cuXV98Fb7311oAoZcKLtRbmP5uzbZ0S9MBdta0V4mJuefPmwRZ+wo9HgGft1fZnKn7GN7xx48bR0qVLqU2bNmqXlzlz5tDmzZuVwPmn6tWr05QpU9RklhYtWtDIkSOpefPmlJiYqP72xx9/0MWLF5UZTox48sknVbkQzUBJxE+/cQaazUkX/qRAbz76pTqb06sPj7NU9EsXfvqsAuUUftHJz1T8MIKD2GHkli1bNtq2bRu98sorVLlyZRX6vOmmm1KRg0h26dJF/R07w0AoIZK5cuVSAlixYsVkG4wqhwwZIt/8eO1PnbcX7Agiebh5cIWf8OMR4FlL+3OGn6n44bIPPfSQ+nY3d+5ceuCBB5I9CRT2NH48f/68Ov4IMz25SUZ+oQmaLVqXh4fXAoWf8OMR4FlL+3OGn5b4YabnqlWr1OzMefPm0ZYtW9TavwYNGvC80rQW8QsOSmfRujw8mg0tSDbhJ/x4BHjW0v6c4aclfrxL861F/FIztLI3pzw8vDYo/IQfjwDPWtqfM/xE/HhclbXbjdMszOl/S277ZxWp+GeVWMr8wk/48QjwrL3a/kT8ePXuuvjphDlF/GyoVJ8ivPpw20sh/NKEX/jsIvFybdVbr9avlvjhZIcPPviAvvjiC2rcuDHFxsaqXVywfZkbScKeFHI2p1kdeLVxmt2XW78LPx5p4Sf8eAR41sHan5b4jRo1ikaMGKE8wB6dxg4sEMOYmBieZxrW0S5+VsOcMvLTaFQWskjnbQFWgKzCT/jxCPCswxY/jPowwsN6PRxki6ULWNv38MMPq+3ObrzxRp5nGtbRLH7hhDlF/DQalYUs0nlbgCXix4Ml/FzjZzryu3z5sjrA9qWXXiKcvYcF740aNVI7t+BIolKlStnurH+B0Sh+VmZzmlWAdN5mhEL/LvyEH48Az1ranzP8TMUPlzX29syZM6fyAovbIYA47cGNFG3ixw1zysjP3lYpnQ+Pp/ATfjwCPOuww564LPbixAkM2OHlhx9+oLp169Jrr70WcGsznpuBraNJ/OwIc4r42dsKpfPm8RR+wo9HgGfNEj9sUo1ZnsaenCdPnqQ33niD+vTp48qMz2gRv4kfbSKIH1LTmqWpZ+uaFJc1llfzEViHaNVh6RytEkuZX/gJPx4BnrVX21/IsCfCmp988ok6oQFhzkqVKilKhw8fVptVHzlyhIoVK8Yjp2Gd3sXvxMlz9OKsdeqkdaR+99empreU0SCjl8WrjVPv7pzPJfx4jIWf8OMR4FmHNfJ7+eWXadCgQQGvXKtWLdq0aRPPK03r9Cx+G3cdoYnzE9U6vkJ54mjoQw0ovmgeTTJ62aTz0eMULJfwE348AjxraX/O8As58sOG1jictl27dtS7d2+1sN1IWP4Q6Cw/npuBrdOr+E1bvo2WrN+rbrpupeLUL6GOLWFOf4ry8PBapfATfjwCPGtpf87w05rtCQGcMWOGWteHhDP+cJbfwoULU53kznMzOsTPP8z5aKsa1LZ+eSfQqTLl4eGhFX7Cj0eAZy3tzxl+WuJnLHXwdyHUeX48d1Nap6eRnxthThn52dn65OWBS1M6bx5B4ecMP1Pxu3LlitrLc9y4cYQT2tu0aaMWumPCy+bNm10JfaYX8XMrzCnix3tYhJ/ws5cArzQRP2f4mYofQpwQu/79+1O2bNlo27Zt9Morr1DlypVV6BNbnTmdvC5+boc5pfO2t0VK58PjKfyEH48Azzqs2Z7GJR966CGaNWuWWuT+wAMPJHsiYc/rKEI93JEIc4r48R4W4Sf87CXAK01eHpzhZzryw2Ux63PVqlXUtGlTmjdvHm3ZsoU6duxIDRo04Hmlae3VkV+kwpzSeWs2LM1s0vloggqSTfgJPx4BnnXYIz+IHjawbtKkCZUuXZp+/PFHOn78OH333XfUo0cPddKD08lr4hfpMKeIn70tUjpvHk/hJ/x4BHjWYYnf6NGjafjw4erK2NQa6/wWLVqU7MmpU6coV65cPM80rL0kfmkhzCnip9GoLGSRztsCrABZhZ/w4xHgWYclfiVLllRXHThwIE2cOFF927rzzjtVuDN//vz02GOPUaZMmXieaVh7RfzSSphTxE+jUVnIIp23BVgifjxYws81fiG/+WEHl2HDhhFGgGPHjqUhQ4bQ2bNnKS4uznYHQxWY1sVv87e7adbaQ8l7czq9aN0qfOm8rRJLmV/4CT8eAZ61tD9n+JmKH4QPAjhhwgR6+umnCSe7u53SsvghzPnqhxvowqWrju3NyeUtDw+PoPATfjwCPGtpf87wMxW/mjVrqvP7tm7dShs3bqQnn3wy2ZPx48dH9YSXtBrmlLAn72ERfsLPXgK80kT8nOFnKn6hLhutE178Z3O2q1eKurepx6shB63l4eHBFX7Cj0eAZy3tzxl+IcXv119/DRnmxFl+bpzskJbCnoFmc9KFPyk+Pp5XQw5ay8PDgyv8hB+PAM9a2p8z/LQWufMuzbdOK+IXLMwpjZNXx8JP+PEI8Kyl/UUnPxE/jXo3W7QuD48GxBBZhJ/w4xHgWUv7i05+In4m9a6zaF0enuh8eHh3bZ+1tD8eS+EXnfy0xA8bWA8YMIBWrFihFrZjr8+EhASqVq1aUGo4DQKH4IZaE3jy5EnKmzevKflIhT11Z3PKw2NahSEzCD/hxyPAs5b2F538tMSvQ4cONH/+fEVo8ODBlJiYSDt37qRDhw5RlixZUpHDqe/YEaZ48eKE8wBnz55NBQsWTM73ww8/UOfOnals2bJ0/vx56tKlC3Xq1CloDbgtfmZhTn9H5eGJzoeHd9f2WUv747EUftHJz1T8jMNsR44cSefOnVNn+9199910++2307fffptq9GfkT0pKoty5c1Pfvn2paNGiSjSN9Oqrr6q/4Xik1atX0zPPPKPKCpbcFD+dMKeIH+9hEX7Cz14CvNJE/KKTn6n4Xb16Ve3fiRMcMMrDPxjFYaszhC3z5MmTgtyBAwfUBtj79+9Xf588eTJt376dpk+fnorwlClT6O2336auXbuqsGqkxU83zCmdN+9hEX7Cz14CvNJE/KKTn6n4AQtGZhit+SaEKnHArX/asWOH+h64Z88e9RPyrF27lqZNm5YqL7ZMW7BgAWXPnl2dF4i0fv16WrduXYq865JKJ///pJ61eDUVwPrPM3/RtE9/pCN/nFe/YtF6oyqFbb+OFCgEhIAQEALuEwi0DltL/LCfJw6wXbhwoRrR1ahRQ4UzIVr+CZNc8HdMeMECeAgcUv/+/ZOzLl68mGrXrk1YJI/wKCa9HDlyRP1/oORk2DOcMKe/j/LmyGvMwk/48QjwrKX9RSc/LfHr1q0btWjRglq1akU5cuQwJVW9enVCSLNq1arKDt8LmzdvribK4G+jRo1S4dMRI0bQrl271Anx2E0G3xPdFL9ww5wifqZNwFIG6Xws4UqVWfgJPx4BnrVX25+W+BUuXJhOnDihCD3yyCNqpmajRo2CnuW3dOlSNYMTqWXLljRnzhw1CsTBtxBAjCR79epF+/bto8yZM9OYMWPUd79gye6Rn9XZnGZNw6uVb3Zfbv0u/HikhZ/w4xHgWXu1/WmJ3+nTp9V3u5UrV6pvdBDCQoUKESa3BAp9AiWWMGDja8zqDJaOHj1KENaYmJiQ9O0UPzvCnDLy4z0swk/42UuAV5pXO2/eXdtn7VV+WuIHTAcPHqTPPvtMLXSHACJ57VQHu8Kc0nnb9+CgJK8+PPZSCL804Rc+O2l/PHZe5qclfg0aNFCzMJEw4sM3wI4dO6qJL24k7sjv3MXL9OKsdfTdT9dDt3aftC6dD68VCD/hxyPAs5b2F538tMQPO7E0btyYHnzwQbW4Hev+3Ewc8YPgQfgggHFZY2lo1wZUNb6Qre7Lw8PDKfyEH48Az1raX3TyCyl+mJCSP39++v333wOe2wdRNPtex8N63Tpc8Zv72fc0Z/VOVUaVMgVp2EMNlQDaneTh4REVkN65KQAAIABJREFUfsKPR4BnLe0vOvkFFb9Lly6p5QiYiYl9Oo3Znr6Y0uo3P/8w5wNNK9ODzarwajiEtTw8PLTCT/jxCPCspf1FJ7+g4odtzcaNG0d33HEHbd68We3r6Z+wJRmWKjidrIz83Ahz+t+vPDy8FiD8hB+PAM9a2l908tP65ocF6/jmV7FiRUUJe3q+8cYb1KdPH7V5tdNJV/zcCnOK+Nlb49L58HgKP+HHI8Cz9mr7Cyl+a9asoU8++UTt1oJF7ZUqVVKUDh8+rBauh9qSjIczpbWZ+Lkd5hTxs7N2ZakDl6ZXOx/ufdtlL/x4JL3KL6T4vfzyyzRo0KCAZGrVqkWbNm3iUdO0DiV+kQhzivhpVpxmNq8+PJq353g24cdDLPyik19I8cOJ7dioul27dtS7d291VJGREO7ElmVupGDiF6kwp4ifvbUunQ+Pp/ATfjwCPGuvtr+g4odTGd577z2qWbMm7d69W4mgf8L+nbGx9i8d8L+Ov/hFOswp4sd7WISf8LOXAK80r3bevLu2z9qr/Dy31GFMz8aOL1q32iy8WvlW79Op/MKPR1b4CT8eAZ61V9tfUPHDyQvY0qxUqVKEDagvX76cilC9evWCHkPEw5nS2nfkZ/zi5KJ1q757tfKt3qdT+YUfj6zwE348Ajxrr7Y/raUOQIOZn1jugBPXsfMLjjXKkycPj5qmtb/4Ob1oXdOt5GxerXyr9+lUfuHHIyv8hB+PAM/aq+1PS/wGDhxI//nPf9RZfHXq1FGk8C0Qp7u7kXzFD2FPu/fm5N6DVyufe9922Qs/HknhJ/x4BHjWXm1/puKH8GeRIkWoQ4cOatLL9OnT1Ro/bHKNcCh+czqZrfNz+vpm5Xu18s3uy63fhR+PtPATfjwCPGuvtj9T8cNyh6xZs9LChQvp8ccfp3LlyqlF79WrV6cffviBKlSowCOnYS3ipwEpRBavNk7eXdtnLfx4LIWf8OMR4FkHa3+m4ofL4uy+efPmKQ+mTp1KY8eOJWx8jZ1e3EgifjzK0vkIPx4BnrW0P+HHI8CzZokfTnR488031aJ2bGaNw2yx6B1n+7mRRPx4lKXzEX48AjxraX/Cj0eAZ80SP1x6x44dKvR5+vRpuu+++6hu3bquLHPAtUX8nKl8Xqn2WUvnyGMp/IQfjwDP2qvtTyvsOW3aNOrZs2cKQgkJCcmhUB46c2sRP3NGoXJ4tXHy7to+a+HHYyn8hB+PAM867JEfvu2VLFlSnejw+uuvU7Zs2Wj06NH07rvv0sGDB9UieKeTiB+PsHQ+wo9HgGct7U/48QjwrMMWv6SkJMqbNy9NmDCB+vXrp7zAQvcWLVqoHWBuu+02nmca1iJ+GpBCZJHOR/jxCPCspf0JPx4BnnXY4ofLYuSHESAmu2TPnp3++9//0rFjx+jnn39WI0Gnk4gfj7B0PsKPR4BnLe1P+PEI8KxZ4vfFF19Qjx49CIUg5cyZk9555x26//77eV5pWov4aYIKkk06H+HHI8CzlvYn/HgEeNYs8cOlsdPLtm3b6OzZsyrUmSlTJp5HFqxF/CzACpBVOh/hxyPAs5b2J/x4BHjWYYkfljVgcftHH32kJrxgbV/ZsmV5noRhLeIXBjQfE+l8hB+PAM9a2p/w4xHgWYclfoMHD6aXXnop+cq1atWiTZs28TwJw1rELwxoIn48aMJP+NlGgFeQvDw4wy/kOj+M8kqXLq1Gfi+//LISwuPHj1OhQoV43li0FvGzCMwvuzw8wo9HgGct7U/48QjwrMMa+WE7s5EjR9Lw4cMJk15wnt/WrVupRo0aPG8sWov4WQQm4scDJvyEn60EeIXJy4Mz/EKO/CB+7dq1o/bt29P333+vRn4Qw/j4eOUNNryOjY3leaZhLeKnASlEFnl4hB+PAM9a2p/w4xHgWYc98gt12VOnTlGuXLkCZrl27Zo6/y8uLi5oESdPnlT2GTNmDHl3In7OVD6vVPuspXPksRR+wo9HgGft1fYXcuQ3f/58gogFS9jgOtCShxkzZtDEiROpePHidOXKFZo9ezYVLFgwuZhDhw6pUSP+BnucCj9s2LCg1xHxi87Gybtr+6y9+nDbR4BXkvATfjwCPOuwRn7hXBJih1AotkXLnTs39e3bl4oWLUqYOWqkF154gS5fvqxCqBcvXlS7xBw5coSKFSsW8JIifuHUxD820vkIPx4BnrW0P+HHI8Czdk38Dhw4QM2aNaP9+/crjydPnkzbt2+n6dOnJ98BwqH4nogT4pcsWUJPP/00/fjjj+pvgZKInzOVzyvVPmvpHHkshZ/w4xHgWXu1/WkdaWQFDc79w3FHe/bsUWazZs2itWvXEo5F8k3YKxQnwo8fP54WL15MTZo0UT+vW7dObZjtm9YllU7+30k9a1lxR/IKASEgBIRAlBMwJmn6YtASP2xt9sEHHyQvd0BYE6M7hDX9E0Z12Pwa3woxksNpEEj9+/dPzopQZ4cOHShz5sxqZIiwaKgkIz9ey/Xqmxnvru2zFn48lsJP+PEI8KxZYc9Ro0bRiBEjlAf4dofRGRLW/sXExKTyrHr16jRlyhSqWrWqOvoI3/aaN29OiYmJ6m/vv/8+LV++nJYuXap1VyJ+WpiCZpLOR/jxCPCspf0JPx4BnnXY4odRH0Z4LVu2VN/oMEq76aab6OGHH6Z9+/bRjTfemMoziFqXLl3U32E3Z84cNQrEsgYIIHaLwWG4vmnv3r1Urly5gHcp4udM5fNKtc9aOkceS+En/HgEeNZebX+mYU/MykR4Egvc//zzT7Umr1GjRmpEF+ok9/PnzxPWAZqFNHWwi/jpUAqex6uNk3fX9lkLPx5L4Sf8eAR41mGP/HDZVq1a0ccff6zO8UM6c+aMEsA1a9bwvNK0FvHTBBUkm3Q+wo9HgGct7U/48QjwrFni98cff9DMmTNp7ty59MMPP1DdunXptddeU+FPN5KIH4+ydD7Cj0eAZy3tT/jxCPCsWeKHbcjw7c8/5cuXj+eVprWInyYoGfnxQAk/4ecIAV6h8vLgDD/Tb364bOHChenEiROpPAi1tyfP3ZTWIn48mvLwCD8eAZ61tD/hxyPAs2aN/LDMAd/5kM6ePavW/JUsWVIdb5QlSxaeZxrWIn4akEJkkc5H+PEI8Kyl/Qk/HgGeNUv8/C+Njau7d++uZn/mzZuX55mGtYifBiQRPx4k4Sf8HCPAK1heHpzhpxX2XLZsmdqAGunq1atqkTpmf2IfT5z07nQS8eMRlodH+PEI8Kyl/Qk/HgGeNWvkF+ibX/369emrr74Kuhk1z92U1iJ+PJrS+Qg/HgGetbQ/4ccjwLNmid/q1auTR37YqQXf+7DMAYvf3UgifjzK0vkIPx4BnrW0P+HHI8CzDlv8cD4fljS0bt1aHUobiSTix6MunY/w4xHgWUv7E348AjzrsMUPl33qqafUovZPP/2UKlasmBzqxNZlwc7g47krYU87+Unnw6Mp/IQfjwDPWtqfM/y0JrzIOr/Q8KVxOtM4eaXaZy31y2Mp/IQfjwDPOqyR37Zt29QCd2xtdu7cuVQeDBs2TNb5EZE83M40Tl6p9llL/fJYCj/hxyPAsw5L/BDSfO655wjn+UUyyTc/Hn3pfIQfjwDPWtqf8OMR4FmL+PH4hbSWh5sHV/gJPx4BnrW0v+jkF/KbH0Z+OMYISxsCpU2bNlFcXByPnIa1jPw0IIXIIg+38OMR4FlL+xN+PAI867BHfriscY6fvwu//vor5ciRg+eZhrWInwYkET8eJOEn/BwjwCtYXh6c4Wc68pNvfubgpXGaMwqVQ/gJPx4BnrW0v+jkJ+LHq3dlLQ8PD6LwE348AjxraX/RyS+k+K1cuZLi4+OpQoUKPDpMawl78gDKwy38eAR41tL+hB+PAM86rG9+vEvaZy3ix2MpnY/w4xHgWUv7E348AjxrET8ev5DW8nDz4Ao/4ccjwLOW9hed/LS2N+Oh4VvLyI/HUB5u4ccjwLOW9if8eAR41jLy4/GTkZ/wc5AAr2gRF+HHI8Cz9mr7k5Efr96VtVcr34Zbt6UI4cfDKPyEH48Az9qr7U/Ej1fvIn7CzwYCvCK82vnw7to+a+HHY+lVfiJ+vHoX8RN+NhDgFeHVzod31/ZZCz8eS6/yE/Hj1buIn/CzgQCvCK92Pry7ts9a+PFYepWfiB+v3kX8hJ8NBHhFeLXz4d21fdbCj8fSq/xE/Hj1/n/tnQeQFUUTx4cPMYCCCRUxIEZURMWcA4KKWTFizgnFjAFFxSygBNMhKoIBI2YxoaCiqIgYUCjMYgZFUAT86jdVc7U89r3ddz2774brqbrijvdmtuc/M/3v7pntUfJT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKX2bkN2/ePDNr1qyS9/3NmTPHzJ492zRs2LAk+vqSe92cnLJe+6sd6uL2h4CsJcVP8ZMhIKud60vugwYNMn369DHNmzc3ENyQIUNM06ZNq3swd+5cM2HCBDNw4EBTv35907t3byU/2fiWrK3KRwau4qf4yRCQ1db5lw1+3j0/yK5BgwZm2rRppkmTJqZLly6mWbNmplu3btU9mDFjhunevbsZO3asadu2rZKfbGwTa+viSYRIjQcZRIqf4pchArKmc/P8pkyZYtq1a2cmT55sJe7bt68ZN26c9fIKS//+/c2kSZOU/GRjm1hbyS8RIlXeMogUP8UvQwRkTedGfuPHjzedOnUyEydOtBIPHjzYjBw50lRVVaUiv1GjRpnRo0fP991R01pU/33LiZvLkNDaioAioAgoAnUKAe6lLSzew54ccuEACwde6tWrV+3Vde3aNRX5xY2IHniRzVP1/BQ/GQKy2jr/FD8ZArLauXl+iNmmTRszYMAA07p1a9OhQwfTo0cP0759ezNmzBj7f+50p4Y9ZYOatrYqn7RIxX9P8VP8ZAjIauv8ywY/754fYg4fPtx07tzZStyxY0czdOhQ6wU2btzYEmCrVq3sZ5Afe4O9evUq2Tv1/LIZfFmr/mrr4pZhqfgpfjIEZLVDnX+ZkB9Qzpw500yfPt2e9JQWJT8ZgqFOTlmv/dVW/GRYKn6KnwwBWe1cw54yUResreQnQ1SVj+InQ0BWW+ef4idDQFZbyU+GX8naurhl4Cp+ip8MAVltnX91E7/Mwp4yOOevrZ6fDE1d3IqfDAFZbZ1/ip8MAVlt9fxk+Knnp/hliICsaSUXxU+GgKx2qPNPPT/ZuNvaoQ6+h657aULxk8Go+Cl+MgRktUOdf0p+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhoqfkp9s3JX8FD8PCMiaCFX5yHrtr7biJ8MyVPyU/GTjruSn+HlAQNZEqMpH1mt/tRU/GZah4qfkJxt3JT/FzwMCsiZCVT6yXvurrfjJsAwVPyU/2bgr+Sl+HhCQNRGq8pH12l9txU+GZaj4KfnJxl3JT/HzgICsiVCVj6zX/morfjIsQ8VPyU827kp+ip8HBGRNhKp8ZL32V1vxk2EZKn5KfrJxV/JT/DwgIGsiVOUj67W/2oqfDMtQ8VPyk427kp/i5wEBWROhKh9Zr/3VVvxkWIaKn5KfbNyV/BQ/DwjImghV+ch67a+24ifDMlT8lPxk467kp/h5QEDWRKjKR9Zrf7UVPxmWoeKn5CcbdyU/xc8DArImQlU+sl77q634ybAMFT8lP9m4K/kpfh4QkDURqvKR9dpfbcVPhmWo+Cn5ycZdyU/x84CArIlQlY+s1/5qK34yLEPFT8lPNu5KfoqfBwRkTYSqfGS99ldb8ZNhGSp+Sn6ycVfyU/w8ICBrIlTlI+u1v9qKnwzLUPFT8pONu5Kf4ucBAVkToSofWa/91Vb8ZFiGip+Sn2zclfwUPw8IyJoIVfnIeu2vtuInwzJU/JT8ZOOu5Kf4eUBA1kSoykfWa3+1FT8ZlqHip+QnG3clP8XPAwKyJkJVPrJe+6ut+MmwDBU/JT/ZuCv5KX4eEJA1EarykfXaX23FT4ZlqPgp+cnGXclP8fOAgKyJUJWPrNf+ait+MixDxU/JTzbuSn6KnwcEZE2EqnxkvfZXW/GTYRkqfkp+snFX8lP8PCAgayJU5SPrtb/aip8My1DxU/KTjbuSn+LnAQFZE6EqH1mv/dVW/GRYhopfZuQ3b948M2vWLNOoUaOiyP71119miSWWMP/73/9Kor93t4eqP3/q2kNkI5VB7VAHPwMoatSk4lcj2KorKX6KnwwBWe1Q518m5Ddo0CDTp08f07x5czNnzhwzZMgQ07Rp02qEf/nlF3P44YebRRZZxHz11Vfm/PPPN8ccc0zREVDyq5uTU9Zrf7VDXdz+EJC1pPgpfjIEZLWLzT/v5AfZNWjQwEybNs00adLEdOnSxTRr1sx069atugfXXXed+fPPP03Pnj3N1KlT7ed4gQ0bNoztpZJfNoMva9VfbVWOMiwVP8VPhoCsdqjzzzv5TZkyxbRr185MnjzZItq3b18zbtw4M3DgwGqETzjhBPudQw891Pz333827Mn3W7ZsqeQnm4extUOdnBlAUaMmFb8awaZhWRlsil/G+Hknv/Hjx5tOnTqZiRMnWtEHDx5sRo4caaqqqqq7cvDBBxt+DjroIPt/K664ohkzZoxp0aKFGTVqlBk9evR83caT/Pfffz1Boc0oAoqAIqAI1BUEVlhhBXPssccu0F3v5MchF8KXHHipV6+e6d27t31o165dqx9+5ZVXmsaNG5uzzz7bzJ071yyzzDI2TFrs4Mv1119vLrzwwlo7ViqfbGgUP8VPhoCsts6/uomfd/IDxjZt2pgBAwaY1q1bmw4dOpgePXqY9u3bW++O/3vppZdMv379zIsvvmiGDRtmevXqZd56662iI6CTs25OTlmv/dXW+SfDUvFT/GQIyGoXm3+ZkN/w4cNN586drcQdO3Y0Q4cOtV4g3p4Lb+65557mk08+sa9DjBgxwmy55ZZKfrIxVvwUv4wQkDWr5Kf4yRCQ1c6V/BB15syZZvr06fYkZ7HyzTffmJVWWsmeDi1VdPFkM/iyVv3V1vGVYan4KX4yBGS1Q51/mXh+MigXrM0hmO222853s97aU/lkUCp+ip8MAVltnX91E78gyE82NFpbEVAEFAFFQBGYHwElP50RioAioAgoAnUOgaDIL02+UDLHLLXUUpkNZBoZyHIze/bsohlrMhPOGPuKSVJO1d9//90ePqpfv36WosS2nVY+Xn+pREkjH3L99ttvNm/tYostlquYaeXLVajIw9LIRzYnvpflOi3W/zTyVQo7nptGPnTckksuaQ8R5l1qi3wzZsyw668YBmnyRgdDfkn5Qt977z1z3HHHmdVXX93mCyWjzGabbeZ1biTJwDuLEyZMsM+GWNw7jl6FKNFYknxff/21OeSQQ2yeVfKqbrrppubSSy/NSzyTJN9nn31mjjjiCLPmmmvaA1OcGCYLUF4lST4nB/OLV3aef/55s8022+QlXiJ+//zzjx3b3Xff3cq07rrrmquuuqrWyPf333+b448/3h6E453eTTbZxL4GlVdJGt8bb7yxOsEGSv6pp54y77//vpUzj5IkH0briSeeaI2Gn3/+2SYJKZUT2bfMSfKR2IR3uBlb1shJJ51Uferflyw//fSTIZHKAQccYCZNmmR4gT1ayskbHQT5pckXynuE5513nn2f8NFHHzV33HGHfY/QV0kjA9ZI9+7dzdixY03btm1zJb808l199dU2Uw4KB0XEjRrfffedWXnllX3BVLSdNPLxviengw877DD7Lui5555rPvzww8xl4wFp5ON7ePRkJyKN32233ZYb+aWRD+OB+cerRRg3eZY08t1zzz3mnXfese8Ak9bw8ccfN/vuu28uEYg08kXxIqkGJ9GjyTmyxDONfOD37LPPmocffti8+eabNmuJy6SVpWxp1wdkt84661g9/MUXX9jfMcgWXXRRb+Kh28kAhmPx448/LkB+5eSNDoL80uQLXXXVVe2E4N8PPvjAWr+A46ukkcE9q3///tYqydPzSyMf4VDCBIsvvrh58sknzTnnnGPlzCN8kkY+hx/KEePlyCOPtAspj5JWPjDbddddbc5aiCYvzy+NfE8//bS9LYWw2Oabb244gr7zzjvnAZ81BpJy+jrDkCjNKqusYjDG9thjj1ojnxMEz2L//fc3n376qVfFXaqjafD74YcfzMYbb2x22WUXmwaSDFkYiHmUNPLh9fHaGpcYvP3222brrbfOzLhGZ8WRXzl5o4MgvzT5QtnDwgrCcyAR8Y477mh4j9BXSSNDJckvrXx4Ltdee625+eabzRNPPGEXUh4lrXzIgtGAhUeaPJ/ee6l+ppEPmTAa7rvvPmtc5Ul+aeR7+eWXbZjujDPOMA899JAdZ7zBPIybNPLhqbz++uvWe8FA5SozQvG1RT43P1CgKG5CtHmVNPixFjAI8bBIFoJHhcGTR0kjH0lLttpqKxuSJGPX559/bg0x9id9l2LkVypvdKEMQZBfmnyhO+ywg1WahBsJO2KFkGnGV0kjQyXJL418hDqZHCwaPJdSCQh84ebaSSMfZLzFFlvYMCy5Xjn0kldYNo18KET2HJZbbjnz7rvv2rAOd1X63luOwz6NfBg27DXzw/4zoU8MQLysrEsa+fCaOSAEKVNIaE8Ia6211spaPHsILCnnMEL8+uuvZvnllzfsry299NKZy1XO+sB4WG+99WyeY0gFgz/O+8lC6LT4sZ8LIbNvzwUHPh2QaL+KkV85eaODID86HZcvlBffP/74Yxviwf1n0l5wwQU2VIa14XuzP0mGSpJfGozuvPNOOzF9GgXlLLQk/C666CKrHC+//HKb+o7w4vfff5/LnlAa/FjIGBAUvILTTjvN7LPPPrmd6k3CD9w4CEHYmC0AvAR3tVg541TT7ybJxw0vd911l93P/fbbb613VZvGl37j3d97770VWSNJ+N100002qsW2CgdKSAmJcZjX/m6SfMiFfESVOPTHbT5ESbIoheRXk7zRwZBfXL7Qjz76yGZ++eOPP+wid/svWGy43csuu6xX3JNkiJIf8nCAI8+SJB+WI5vm0UJoYu21185FzCT5IDxCOmyW451ec801VoHnVZLki8qx1157mYsvvji3PT+enSQfe0Lsu6EM+eFgE3LmVZLk4/ADl1sT9sQLQ748T/MmyQdOeKd4pJW4RSZJPry8vffe2zDOFMLunP7MqyTJByGTsxmPFOMGQsrqMB3kRxSG082UmuSNDob86GBSvlBOTGFJcuglq32EJBnymojFnrMwyMfiRgEVu+IqS4wXBvymTp1qTypWoqTBr5LvmaaRrxK4uWemkQ8dh9JPyomcRT/SyOdC7Vnp4DT9SpM3OijyS9Np/Y4ioAgoAoqAIpCEgJJfEkL6uSKgCCgCisBCh4CS30I3pNohRUARUAQUgSQElPySENLPFQFFQBFQBBY6BJT8Froh1Q4pAoqAIqAIJCGg5JeEkH6eGgFehKWQM7SwcEqM4/c+8/ylFky/6AUB8sLyw2sKoRVe+nd5JvN6Ly40jOqavEp+FRxxUlGRkaawkAGDF77jynPPPWffpSHNFi9YSwrvxpApwhXeISI1FsnBa1J4CZaXwEkz98wzz9ik1LwLx9F23rnkHa9bbrmlJk1X1yHp9YMPPjhfG6Ro4wV+skoUK1F5RALUwso16RuZdCCDchKH8+7bDTfcYHiVgldRyim8i9ukSRP7Hh0v47vfeSE6jwJGvPPIS+yk38q6gC/X6pCEo7YUcm6S+Lkm41db+uBTDiU/n2iW2RYJfkmNxdVC2267bXVtyM1dS1PYpCM/UoGREV9SID/Kqaeeal+cJQMHhRRF7rNy2idlGu9akgn/5JNPtoTE1TAQImmHyOghJWyuZCKrPURKNhgwfOWVV+zLv6Uy10TlqeT7R+Xgmfa7NekbRhfjUo5yhkBIqHzJJZeUna+ROUXyCeYG5Od+zysRBEmqyTZC4m+uo8q6gC+3vOR160Ka/mBQk+yctV6p90DTyJnXd5T88kI65jmO/MjUUHivGQl/UfBkquGOQpLtkv0kSn4ofDLjk18S0oFYsKS5LuaBBx4wt99+u02DxL14pHorDPdAcGussUa19e8ywOCR8hIt6btee+01G8bkrkSXtR3PixRaLOyddtrJ5lQlkwPZWMgviYJBVjIwdOzY0cpCqjLyitIW6aP69etn83jiSTzyyCP258svv7Spm3gm7fI7KeuixZGfS5iLguF+s5YtW9osPyROxkMhzRKe6GWXXWYvno3KQ4o3vpf0rLi2tt9+e3uPGv3Ac2J8GBvyaXITBfk+MSLAg7yVKHuXBxRZGAvaJQUfNy5wJyBhRDxkxhOSwPsmiTEYMJbcwoHiph3unHP3CEJCcX2L4hXtA9lfeM4GG2xgIw6O/LjZg/FkHnEHYJ8+faxBRj/JY0o4G0+NHJx854UXXrB5V7nSiXGkHQw2MvIwx8Cf64roV4cOHWx7jFcc+ZF3lPlE2jPGizYw7DBkogq6UBbmYlVVlf0BH5JkYwwyzzbaaCP7/9zthlzcHEHfSYGI50PS+7j1wbOZG9zjx7jyN94SdWkXz/HMM89c4LmMKeN21lln2fWJIctY0f9C8kvTD9qjxOHLXGeesW6Y4ySSZgwYT4gN2ekzGJJhhT6gB8jjS10MRcgPAxAMWXfoFzLF5JktpoJqt/rRSn4VHAVHfihMripxhfvYUIBMWixjsvVjdUOIXJbrJjeKhgXJJMbDuuKKK+yiZqKjOLnoEiXNImLRF6ZsgvwgOTwpckKefvrpdkGRRgmljRzU4WYAwqx8j8W22mqr2aS1yAFhnnLKKfYZztpF8UE2KH+UNjK6sCcLG9JDCffs2dOGKslwwIifAAAJAUlEQVTDyndZnCgOvF6IAsWJoo8jPxY8Sg+iRnGjlAipuiTJKEOIAowIdSGjk4frapKeBenEtYUHQTo4cEJZoOxI5bT++uubDTfc0GKEhY1R4lI7MZYoGTLj813GHUWNDMjFODMOkBDGC7KDM4QD0UBEJGsnqTGF8UapQTq0i+fu+hZNB0cfGCueyfU35FskHSDpxaLkBwmTWo4xh4SYCyhInkv6O+TkeWTNcGFPjA7wgbwwuhgD8OZvQtM8jww9zN9hw4aZ3XbbLZb89ttvP0tGGH8YgWRnYv5y71+0QMpRWQil833mPH0fMWKE/Rc5WSskRmdskIW5i3Hiwp4Qetz6aN68uTXgIEDmHXOM8SEFG99nPTBGcc+F7Ogzxh79hoRY14Xkl7YfhJXj8KUPrVq1svmM+Z18n+DFc1gDyExhnTGejDNzE/kZIwpji8HKWKIvHnvsMTtGXFvUokWLCmrEfB+t5Jcv3vM9zZEfCoOFQmGRsmiZiExKssyj4FC2kCDehiM/NvEPPPBAe6Ej1i0KlQXBvgqLAOKiPRQCi6VQoRTu+aHkuNkdj4/f8dS4GsdldKd9FhBKgsLf7A9y+zqKOhrqiYbiUETRPT8UAKREv1iYt956q7Xy3XUkfM6t0Sht9oqQxRXn+RUOG3tXhLOw2EmcjAJ3igD5scpdGJbnJj0L4ijWFp4ThM0zUe54FHwXpYR3g5d81FFHWYUDsYEFihnioa9Y2mB3//33W+wcVow1RIJyQplh0BDahYSYK05x4n3iiWDc0FaxsCeEybjffffd1kjhbxIho6BJigx5QhqMJ2QLQeF1v/HGG3YOghmyMA7MleieH0TAPHO5Yfl+o0aN7BjgyVHPtQVBQQxxnh/Kmz4wP6jHfGDcMMQKyS8qC1gwr+g7EQO8bbw0bl1nbDHAUOiQEHOBOeHI79VXX41dH3ibEAlrAAOBaAo/Rx99tO077WCcxT2X8ceAwHB0N5IUI780/cAYisOXZNGQL0Yw85DzARiSGIGMM9gx18hzTLSH70LYGJnMPz7j+dRjLoI3cwnSZ/1WIqVgpVSwkl+lkDfGKjT2/OLCnljEWKxYb1i5JKQuJD8XUoSgsHYpWN+EzFBqLFiX/4/wIcosWpznh5LAi0KhQJYscgiVmwsIH6EAUE4sDhQHCxAvAq+E0CbE67wJt89RivywOJENj4jFymKE7FjEhEwJYbrC96L3gUXDnihbR2RYvSx2Z0SgPMGBxV5IfnjBSc8ijFWsLZQO+KDwCJ3SD5QPHiFEDW6QG0SGUsYK5/46SAwZCcvxOZiBnbPYIT+IjcJenMOddpkreP6EvOiz84I4vMAcccQe3c9k/jCPGF/CbXhuzCU8VEgR8qMeShGlHr34FpwxrDBqnNEUJT9CbHgP5JmEMPCImWuQIOF66tJP9vdKkR/GA/MfXKLzoXBPirnpZOHEKaeGGQMiDK7QJ0KU1KXfhP4ISfOM6IEXDJJi68MdQGM8GTtIwe3HM/eLPZf5xnpye6h4bpB9nOeXph8YDnH4IjvRAeelsX6YP6xJxpm/ncHo1qC79shta7DeXEQIL5c1QuECWoyiulKU/Co40qXIz+3HEbJjEhOrx3plT815flh/WKlYuSgCFqkjD8JukAxKg99RBij8QvKL7vlFP+MZHG7A08OixVJ0e1ooScJUWNgQMGTJgovz/FhQkEjU80MJE46juIMqEBVhTuSnv3gEeId4v9FSuOfHvg5WMqFMPFy8LzxX2kCps9fEaxZ4Hih65IHYkp5FqLdYW5BHEvlx+AcFCHGh3CF3yAjliCVejPwgU77P5xgsGBmQJoYPmOFpgz19xftibNhTc32LKi935xskBAFBSk5Bu7AnXh5hQMYIzwHvi70iZMVzZdwgeUqU/Jh7EA3hb05PulAnxhBy0U9C3pAkBAhBFzvwQh8wKCjOkCpclszjqCwcnmIsIVvqIzfhYELmhIEhCQrhSAzMKPlhiBRbH7SBvBgxzGuMQmdUsk9b7LmQD0YVxMQpT8awmOeXph8YEnH4EoLFS2edYNAQYsfTxKMHY8gPAxTD0J0PIBLBWsD4ZU5AfkQmOA8AwTPezA3mUF3a91Pyq6Xk57wjxCMchaWKQiV84V51YFFDHlipFJQkh0kIIxGKY/+GgvIj/OMIx3W58MBLFApCZBAbyszJgGVJHRYge1sUQrYQFaQU3UdCGaEQKRzKYMFDQFizFJQ4fcKLwUugoCix0nkmyifupnn3qoNb4M4LQA7CX5AGio769BurFnywwJ08hDTTPIswWVxbKB1HfhgHWP08A2WHl+o8Zrx1rG1X2MtjXAmvISfKCWWN4mFs8fwIZeO9o7zxZFDe7PXhfbGnCek5fCB5FG4Ua/oWLeyrYiBRwMQdyIi+6sDcgBzdPEKBE3IrJBxHfngSEBmk5yIOYE3bGA0YWihZDAyiAxgmYFHqVQfmDs9nDyrumqNCWSA87u50z8cQQ5HjmbkQc5R8HPlhTLnDL3HrAyKAXJj7eEWEBDE8uT4No6fYcyEfLtQmRMzcYB5gvMV5flHyK9Ye4xWHL1424+7Ine+xFjFCXATBrQ0MZaIPjAGFfmEwEC3AOCGci7wU+ks7Ib7DWVMVruRXU+RyqEeIigUU3fOKeywWHJZe4clIPB6Ihz2dmhzvRxG7tgvf68LjwsKFaIsVng85ofTSFp5JeI+DDzV9GZlQHAqosH6hPGmeVayttP0htAiGHH5JGkfaxNMnpEW4Dhw4AYk1jlVOgdz4f8ieELUrpbDG08WL4TBDKUxplzlUjgJEkbIPjWHl5hh/442kfReQcYAgIWHmVDnPp1/gUJO7OyXrI+65hKkhQdZbuXO3WD/i8GXMGVOMINZfUuIICA58CnEFd6IQrLVyME8792v795T8avsIqXx1CgEX/o12mpAaXsXCWtxBHjxLPFktikAeCCj55YGyPkMRKAMBwp+EOfFo8PzSelBlPKJWfZVwKZ4xodOaRChqVWdUmGAQUPILZqhUUEVAEVAEFAFfCCj5+UJS21EEFAFFQBEIBgElv2CGSgVVBBQBRUAR8IXA/wEnbzwhUOZURwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
},
- {
- "as": "lead",
- "field": "column_name",
- "op": "lead"
- }
- ]
- },
- {
- "as": "sum",
- "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
- },
- {
- "as": "lead",
- "calculate": "datum.lead === null ? datum.column_name : datum.lead"
- },
- {
- "as": "previous_sum",
- "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
- },
- {
- "as": "top_label",
- "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "bottom_label",
- "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "sum_top",
- "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "sum_bottom",
- "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "center",
- "calculate": "(datum.sum + datum.previous_sum) / 2"
- },
- {
- "as": "text_log2_bayes_factor",
- "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
- },
- {
- "as": "dy",
- "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
- },
- {
- "as": "baseline",
- "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
- },
- {
- "as": "prob",
- "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
- },
- {
- "as": "zero",
- "calculate": "0*datum.sum"
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "width": {
- "step": 75
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAImCAYAAABaeXcJAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TdUXxxelUBFKA0nGkqFJUYQmNNFcpEiD0CAlUaZmDTJGCY2UoUIpqUSUkpJI0p/KGCVTiej/+a7XeR3Xve/uc9+9793z3tqfz/t43t3nnL1/e+9z93evtfcq8M8///wjlkwBU8AUMAVMAVPAFDAFTAFTwBQwBUyBNFGggIFqmrSEFcMUMAVMAVPAFDAFTAFTwBQwBUwBU0AVMFC1jmAKmAKmgClgCpgCpoApYAqYAqaAKZBWChioplVzWGFMAVPAFDAFTAFTwBQwBUwBU8AUMAUMVK0PmAKmgClgCpgCpoApYAqYAqaAKWAKpJUCBqpp1RxWGFPAFDAFTAFTwBQwBUwBU8AUMAVMAQNV6wOmgClgCoRQAf+B7QUKFMisQay/h7CKWuRNmzYJdSpevHhYq5CScv/999+yYcMGKVmypOy1114xn+H1B6+PRP4/JYWzm5oCpoApYAqYAklQwEA1CSLaLUwBU8AUyEkFxo4dK5dffrk+snHjxvLOO+/o77Nnz5bTTjtNfz/hhBPkiy++iFuskSNHChDTunXruHl5Js+eO3eunHjiiXHzJyODB1h//fWX7LPPPlnecv78+XLcccfJRRddJBMmTNgj77p16+TNN9+UcuXKyTnnnJOM4gW+B221YsUKLWOpUqUCX88Fzz33nFx//fV67ffffy+VKlWKeZ8rrrhCXnvtNZk5c6bUq1dPihUrJps3b5YdO3bI3nvv7fz8ZLd9OrSFc+UtoylgCpgCpkCuKGCgmiuy20NNAVPAFEhcAT+ochcP4h599FHp2rWr3rhmzZoCuMVLkZa2rPI3b95cQW/OnDly8sknx7t1Uj6/9dZbZdu2bTJkyJC4YPXll18qoJ933nkyefLkPZ4PYNeuXTsmyCalwHFucuGFF8qkSZNk3rx5cvzxxyf0yGOPPVYWLVokvXr1kttuu00OPPDAuKA6Y8YMqV+/fsKgmuy2T4e2SEh8u8gUMAVMAVMgxxQwUM0xqe1BpoApYAokRwEPVA844AC1jn3yySdSp04dOffcc+Xjjz/Wv3mgCsQ+8sgjamH87bff5JRTThGsbJdddpm0bNlSXnnlFS3UBRdcIC+//LJs375d7r33Xpk6daoCEBbbdu3aqRXSg5WePXvK66+/rvcDvPr27Sv77bffbpW7+OKLZf369YLF9vDDD9f7kN544w0pWLCgXrf//vvL22+/LR988IHcf//9Cl+VK1eWDh06yFVXXaX5mzRpIn/88YfmwQKIZbB79+7y3XffqVWZv2E5puw8D1AFyKpUqaJAeOSRR8rDDz+sVkfqO2vWLEG3Nm3aSP/+/WXBggXy7LPPan0OO+wwadSokfTu3VsKFy6ccH0oz3333afl4vlYMllAGDVqlDzwwAPaPli+n3jiCQXnYcOGyfDhw9XSiqWaPNTjm2++kfbt26v195dffpFPP/1U9fG3GXWgHaI9r3Tp0trWWFRdQPXXX39NuO3XrFkj99xzjz6HNjn11FOlY8eOWh/ahjpeffXVMm3aNClatKgsXbp0j7ZIzuiwu5gCpoApYArkFQUMVPNKS1o9TAFTIN8o4IHqJZdcIuPHj5fHHntMLWu4xgKgfO6BqucmWqFCBYWjF198UXUCFICcgQMH6v+vu+46/T9gCMxVq1ZN94cCT54bsQeq5G/YsKFMnz5dr33ooYcUUvwJEATMXnjhBYVGQJr07rvvKqieffbZCprdunVTd10SllBAB5AbM2aMQpbf9Rd3VeCWRP2+/vrrzEcuXrxYgZayksqWLavWQ+CXtGTJEunUqZO89dZbAsDdfPPNCmVYJ/msc+fOCoLU/amnnlI9E6kPEAmYA5a496Lf559/rq7VWKGxgvIZCwMAMYsMgDnwDNBOmTJFH4tLL/k8V26vTrRvv379NE/btm21Diw+RHseiwSuoMreVQA/0bZv1aqVvPTSS1pe9s2ySIDOa9euFb+ln3KzCEHf8rcFulgyBUwBU8AUMAX8ChioWn8wBUwBUyBkCnigessttyj4YWXDygkIAZ783QNVgOHbb7+VBg0aCAfwXHnllQpPWLbOPPPMTBAEVAC/WrVqKeQBShzSgxUS11usYsAIrr9YUO+66y61RN54440KuQCxP40bN06hGWtsjRo1FMZIWE5JWAABG+Bw0KBBcvfdd8tNN92k9QEiAR6sw35Q5TMssZQDAKYeRxxxhN4vElT//PNPBXeswoDvDz/8oJZHv+vvypUrta4kYB/N2Dt58MEH77GH1bU+gD5aHHTQQVoH6oiF1KtPpOtv1apVFZSxeAPsffr0UcAH3IB5D1SxigK+WCv9+0w3btyY5fNcQTW7bT948GDZsmWLsHiCy/mll16qurJ4MGDAALUos/hBn8Haaq6/IXvpWHFNAVPAFMgFBQxUc0F0e6QpYAqYAtlRwA+qWBmHDh2q7r3AANY7YMwDVaAByyUw5E/vvfeenHXWWbuB6sSJE6VZs2b6g4tuZPIsqljdgA0sYueff766dHqWWu8a70RarKnkBRQLFSok++67r+zatUuBFCjkWn6PTJ41zg+q1A9rIrDjHSbk7df0gyqAh+syCddT9oPyOcAauUf1jjvuyLRQkh9wRU+su/7kWh+siUD8k08+udv10UCVRYFYJ/YC40A+12HpxNLsJT+oYp3O6nmuoJrdtgfIsUpj2fWnrVu36uIJbYcFuUePHvqxgWp23gB2rSlgCpgC+UMBA9X80c5WS1PAFMhDCvhBFbdPYA/XUayLwONRRx2VCarAENYyYAH4AcAAzWig+r///U8qVqyY6eoLUGKpZd8qkIE11n+YUlagitzs98Q9mLLhSguUcR+SB1+eizAWVlxZAW/cRdkjCmT6QRU35xYtWui+TSx4v//+u5QoUULv5wdV/2FKWYEq+yoXLlyo4W9++uknPYCJvapA8qpVq/aASJf6YMHGaspCwejRo/U+nmUUC3GkRfWQQw5RuOPZ1atXV5jGSur9HVCNXDjwgyquwlk9zxVUs9P2LB5ghSZ9+OGHajml/CQ/qPpdqg1U89ALyapiCpgCpkCKFDBQTZGwdltTwBQwBVKlgB9UAUAvPAkuv1gI/aDqgRqn5uKa2aVLFy0WVkwO6fFAEPdbrJS4DwO23Au3TdxYzzjjDHn//fczD1PyTv2NB6pYFbGykQAxrH8c+ETiICHK6rnUAofsVwW8KBufkccPqkAPFksSezwph2fBcwFVbw8r+3Vx9aWuwD3PBshxq8X9mM+xQEdaO13qQ/mpI3tysSJi6ca9mf+zH5VDpoDh22+/XffMUg60B0hxlaadeDYLAp77cFagyoJDVs9zBVU09RY1grY9AEpZWZDAskr9cF8m0eeoH1r4QdU7odlrC3SxZAqYAqaAKWAK+BUwULX+YAqYAqZAyBTwQJXQLRyA5Fnf2MeIayug6h2AhAvvNddco5Y63FrZLwpMsQcSOANKAAkSp+biKoyLL/lJuO5yMi+WVs/197PPPtPneKDq7RmNlBFrJVZCElZSoBMoJHHI0THHHKO/cxgTJ/l6ib2YI0aM0P2lnvXQC8FD3YEeLICAHfDHXlX21FLmyPA0fosqulBuQNxzjY58NrAFaLF/N5H6sA8YC6p30BSHKAFt3Hf58uUK4ViFScAoiwDAsXeSL3+nbXCRBcTr1q2bpUWV/Fk9j/2+rnFUOVk50ban/dCSxEFbWJIBbhY4sJ6yB9kPqljpI9siZMPQimsKmAKmgCmQYgUMVFMssN3eFDAFTIHcVgAowLUV2PQslP4ycQIrgIUbLZ/jfgsIsp+U8CrRrkl2nbCWLlu2TEPElCpVKurtCUnDHlwvjAyuu2XKlNG8lBmLaLyEmy/7Tb1DiciPqy36cPhS+fLltd7ZTcAzkM1PZOKgJ+pbvHhx3bdLIjTM6tWr1ZpL+JagKavnBblXdtoeXakbpx67pGht4XKd5TEFTAFTwBTIHwoYqOaPdrZamgKmgCkQegVw88XN2TsUCWglYVnFamjJFDAFTAFTwBQwBfKOAgaqeactrSamgClgCuR5BdjvicssB0KxL5LDpNjvmQwraJ4XzypoCpgCpoApYAqESAED1RA1lhXVFDAFTAFTwBQwBUwBU8AUMAVMgfyggIFqfmhlq6MpYAqYAqaAKWAKmAKmgClgCpgCIVLAQDVEjWVFNQVMgfArwAEyO3fudDr4J/y1DWcNaB9SZHiasNWGg5G8w5qyU3YOSfLi1WbnPrl9bbL0yO162PNNAVPAFMgvChio5peWtnqaAnlMgfbt2+vpraNHj96tZpxQS0gWYk+mY5o2bZq0adNGfv7553QsnnOZiEm63377aVgYL46r88W5lPHHH38UQutw+FJk8teH+K2HHnqohu8JkghrQ9gbTlfObmIvLsBMfFXX5K+fVx9ObyYsTyKJ8UW8WsL5cHDV0Ucf7Xy6cuTzOFUaaCbebdWqVRMpTsxrCF308ssvy5VXXhnzxORk6JHUQtvNTAFTwBQwBeIqYKAaVyLLYAqYAumoAPEhf/vtN3n11Vf3AFWAgXiQ6ZjyCqju2rVLPv74YznppJMSCqeSG20zadIkPXjphx9+2OPx/vp07tw5IVCtVauW3HvvvVFBOGh977zzTg31MnjwYOdL/fVLBpjNmDFDGjRoINwLTwDiodavXz+hcEUeqH777bcKvMlMvAcIabRy5cqYoXGSoUcyy2z3MgVMAVPAFIivgIFqfI0shylgCqShAi6gOnHiRLnnnnvUennGGWfIoEGD1OX2wgsvlLFjx2qMUKCEcCfPPPOMYJlp2LChvPLKK3tYoUaNGiX9+vWTLVu2yNVXXy333Xef3ov4l926dVMrbuXKlaV169Zy/fXXq2Ljxo2T7t27y++//y5XXHGF9O3bV+GuZcuW0rZtW3nxxReldOnSMmzYMAW+yBTt+sKFC0u0epUtW1bvs2TJElm3bp18+OGHcvnll0vdunW1DKQnn3xSzjvvPMFiSJ2/+uor+eSTT6Rp06YyYMAAjfkZqz5Y97gXuj/++OMaDobf0QrLaq9evWTMmDF6Eu8jjzyiljiuefjhh7VcxHKl3g8++KAUKVJENTr++ONVo0WLFmlZn3rqqT3cbbHqYT1/6623pHbt2nL33XfLOeeco5reeuutqvvBBx8sXbt2lRtuuEG2bdsmp59+utx0001aX/5PHzjzzDPlrLPO0viwl1xyiS5wxKoPZUQH4rSiEXWh7+D+SvvSlmhGuuaaa/Tno48+kgceeEBoh5EjR2oZevToof3swAMPlLvuukstfiQWUtD7iy++0AUV7u2Pt8rn1157real7YDWWDp6fYYYtP76vfDCC5ntQluhA32W8pNi9WfvfqtWrZKzzz5b24a60oa03wcffCDPPfecQiHPnDp1qpx44ony/PPPazvE6j+xQNVrL+49YsQIOeCAA1Q3NORZjFv+Tp+ZN2+ePPTQQzJz5szMvgA4N2rUSKZPn67WbBaCaDf6JpZg+vv999+vAOv102h6+MderPZZsGDBHvfFmwD4po/SnkA47wks4V9++aX2d06mfumll2T+/Plq0ac9iQncuHFjzRsrbnAavnatSKaAKWAK5KgCBqo5Krc9zBQwBZKlABNRLD5Agj8BLEw0q1SpIscee6xa0AAEJqvADZPccuXKyWOPPabAUbx4cYU2IBWLUZMmTdSl2L8/ccqUKXLuuecqXBxzzDHqugsUMaEGlphAA2fLly+XVq1a6SQeK0+NGjX0GgD2tttuU1DApRQAuOiii+S6667TiSrWPMDSn7755puo159wwgkx6wUs9unTR8sFMN14440Kwv3795f33ntPJ/NYE9Fu6NChCki4YQJ11IMyxqoP98F1E5Bgos29DzvsMAVjwsUACEzK33nnHbUqAiDAEgsBQBZaACOAEm1Rr149DTEDrK9fv146deqkGrBQ4E+0EUAEXNMOACbPpN1pL9px69at0qJFC3n33Xf1vgAJ7T9w4EAFasAKgAK2gGHuA9TEqg+Aiz5oidssdbj44ovl6aefViijrCxWkPg/fY770UcATKAFmAdSH330UbVI8nfqV716dQU6ygX4cm8+u+OOOzKrvXr1au239Enuw3WxdPQu4hm0s1c/gMnTAf25B+1NuwCAsfqzdz/yoRd9FhilrJ7rL+2HNr1795Zq1apJhw4d9Cer8eD1n0iLqmfp5D703yFDhmg/ZXwBmYA8CyD0A/oq/YPP+BvtyDihbwN9EyZM0AUJxtv555+vfY3+wbMZh7H08Ic2oi9Gax/alIWtyPti8QZW6d8sWNEHaYelS5cqjLJgQV9koYIFD8b/LbfcIpdeeqkuXG3atEnfY5ZMAVPAFDAF9lTAQNV6hSlgCoRSAWCLfWmAiT8xeQVUsVwwOcdiSGJvHJDJPj4m7kAKE0bvetwmmSAz8QWw/AkLLJPd4cOH65+x8AAgTESZ9AO+RxxxhFqfAMn3339fJ8+AmDcJBeR++uknzQuoYpll4kx5mYQzYfUnrIDRrmcCHKteABnPxmpLOuSQQxSa2GuJtQerLZZNYBT4AypJTPqBEu4bqz5MuNEMSxcA4AEG0AgcsacSqxqLA5QbHYAKAAKwIaEfcIOFG92xjAI3pJNPPlnh17NG8zc0YSGBMmE1wyoHBPN82hIo4B4kIHj//fdX8EdX7xoWIbBWAkjsp/Vcfz0LX7T6AKqetZl7A0/AKOWJBarse/Vcf7HYstABhHtAC1hjWQXyAR4gmnqwoIGLb+S+Tb/rL9rE0tHfZ6K5/tIPsbRu3LhRn48OXbp0idmf/fejP7DIs3btWu3rflDlM69vA2iMK8ZjvP4TC1QZH0AmmqEVWrMowtij/rQ7/RTAZh86iyMsCqEdfdFz/cVqSR4WL4oWLar9HG8JgJt+EU0PvysyYzRa+2CJj3ZfXKOxOHvlRT/6G+OJxSLGjbePm3HCggvPoA6epixMALCWTAFTwBQwBXZXwEDVeoQpYAqEUoF4rr8cslSmTBl1/yQxoWXiihWOSTXAhJUDa1HBggXVDRXwwTLnwYUnDBABkPkTk2gmp8AtlkjcDJmYrlixQmGRiSpwC5D4ExNyoIrJPwmoxH2RPYD+BLxGu56/x6oXLsHUDbdOEuXG0ov1FrdFrH7ogEUQLZg0k4BM3GCBNyzO0erjgSowDiT6QRW3TIAGQK1QoYLev2PHjjphBzy8g63QBWiiroAqUOq5omLJxuKEZc5LCxcuVAtk5N5D7+9Yvzy3SWAcV0tgJvKQJ6AA8AQQIkE1Wn3oM7gwe4BNvSgv+gBNfosqYI4l0A+quH3SRpEJ92YswugOiJKwGgLXWAH9yQ+qWenovyYaqHqQ5J00jQ6UI1Z/9t8vK1BFSyCfxKLNnDlz1KIZazx4/ScWqHrlxAqNnrQxibKiMe3LggHj9pdfftF+BjxGgioa0H5AoD9FHv7l14MFBn+K1j4AeLT7Ms6x1nrl5T70FSymLGrQvt4iFAtjWLUjE2OTfm7JFDAFTAFTYHcFDFStR5gCpkAoFYgHqlhGmZSzB5LkgRoujVgzARHgAusme02xwjLJBTQjIQOIw3LiWf9wDWYf3HHHHSfly5dX90RcIbFYYQFk3yQAikswv5M4NZV7A7j+U39jgSr3i3Y9E+JY9WL/HlDnWX4BVSCC8kWCKqE6vHz8y15I9iXGqk8kaPhBFRdVXGRxr8XShcUWAMSay4Tdg09cZ/kcSy6T+Xbt2mUuCkQDVdoJvbAGY6HFRRpYYfIPqGA9A749oAEMgAFA1X/abVag6oGTvz7e4gblJQH+WNGxIHrPALABbhY5cOP1gyqWN6y7LBxgJSRhRcbKigst/QcL/OzZsxXA+B1rpD/5QRVrciwd/ddkdZiSH8zQPVp/pm7+lBWo+vuZB6pApmv/8Z4TechRLFBl8QgXW6z2HmgDmJGgCqCyr5X+zbimT48fP173hPv7RSxQpQ9Hax8WVaLdlzLgDuxtF6BP8A6gj/MMP6hi1WUxDJgnUUbeU+y93meffUL5HrZCmwKmgCmQSgUMVFOprt3bFDAFUqZAPFDFxRbX07fffluhCFdaIA94IGEZAx4BOPaosY+MfXJ+y4hXeCaYwAj3ApxwUcWKiEUJqycut7h74jIMhOJeCLQyscW1F9dCXFSBKKyuLqCK5Tfa9YBZrHoBPa6gChhRd9x5mfgDfrhIxqoPzyRvNLDDMk250AlXW6ycQDZgx3OwclJvrKns9cSq6QKq6I/rJ3sGgUcWE3gG7pyAG4sN3sFQtB1ghbU3FqiyUMC+YDQixaoPz6Lc1IE8WMCBEdx/0QrLKuAKAAEwHqgCevQN9vyyuEEfxOIGLOG6S9lxv0ZLFhvQ3HPLnjx58m5jhWdRTyyw7HmMpaP/Ig6c8uqHi3csMGPxJlp/jgz1FBRUOVjLtf8EBVXcazmUiLajfzGWnn32WXXxpa4sAAB9WKbpF8Aze3/Z2wvMssDhAqq0ebT2wVoc7b6UgfKwFxYYZuzj9YBLN9sO/KCK9wb9gIO3gFOuYY8rdQKqLZkCpoApYArsroCBqvUIU8AUCKUCWOuwfkQLT4MVE8DBjRdIAi4BSyxOACoJ90KAhAOWsLixRwwrGRPcyEQeQBT3PxKTTCb7gAj7XdmjxzNOPfVUtbBhJeUaJq6eGy5urcABn7mAKtbDaNcD1bHqFQ1UObAF11u/RRlQpC6e+yfWSrThZNRY9WHi7Y+D6Xel9E5VRgMSMIeVFqszE3Pcoj3dADJgxhVUcSnF6g0AA7vs86MtcMcFXvg7Ca2AQqy70UAV6yuggYs3iwgsSMSqD/CLFZeFDBIQjoWMw6M82ODvderUUSDhtF8sqvQD9KOdsWYDKcAxCfdr+qq3MIDlEB0oCwse9J1I6ASOcaHG2h1LR/81ALFXP9ygo4EZOtBvY/Vn//2w/LEPlPaN3KMaaVFFK8aEa//xnuNiUcUtFshnDAHjJPowYMzih7dXnT5BucjDgoHX5xiDWHpj6eFZ5b0y0X+jtQ9QGnlfFkiATdqJ/k9/ZOGKBQPGOtZ1//5zwNmz2NP+LA6wIGXJFDAFTAFTYE8FDFStV5gCpkCeVoDJO5PHihUrZstqgUsf+z8BIayvwK2XgBXc+Di8iHzsoeN3EjCNyydAkkiKdX126oU1mvLgykwoG8DFn7KqT6w6MBnn1GN0Bgi8hPsjlkFcG3Fx9evmqgcWTOobeT1u3JxizCKDa4gP7oWFzYPqrMrA/YFtDtfxl5s+wEKE18aR2uH6SZvzLA6/wg0YyPYn+hKWwMi9qf48aMrCBD+uOrrWL6v+7NousfIl0n9cnwk0lyxZUvsY7cOPN7Zwv8WySgKAOUCKxYVEUqz2iXVf+gOLEljJ2f+dVWLMsUcdV2bCTVkyBUwBU8AUiK6Agar1DFPAFDAF8pkCHqhi/bJkCpgCpoApYAqYAqZAOipgoJqOrWJlMgVMAVMghQqwbxZLDof0WDIFTAFTwBQwBUwBUyAdFTBQTcdWsTKZAqaAKWAKmAKmgClgCpgCpoApkI8VMFDNx41vVTcFTAFTwBQwBUwBU8AUMAVMAVMgHRUwUE3HVrEymQKmgClgCpgCpoApYAqYAqaAKZCPFTBQzceNb1U3BUwBU8AUMAXSTQFO8iXZibjp1jJWHlPAFDAFclYBA9Wc1dueZgqYAqaAKZBmChBahLAmxObs169fzNJdf/31GiOT0C55JRFzlNiqxIBNRrrnnnvkkUce0bA+0cL3xHtGy5YtNT7q/fffL/fee2/U7HfccYe2E6F4CANkyRQwBUwBUyBvKmCgmjfb1WplCpgCpoAp4KiAB6q33HKLDBgwIOZVbdq0kVGjRuUpUL3pppvkmWeekV27diUU4zZSrK5du8qjjz4qq1ev1vi2QRIxSomPWr9+fXn66afl2GOPjXo57TRo0CCNXbz33nsHeYTlNQVMAVPAFAiRArkCqlu2bNEvo8jA7wQJ5+8EN7dkCpgCpoApYAqkSoHFixcL8WQXLVokzZs3V1jzQHXWrFnSqVMn+fzzz6VKlSpy3333ydVXXy0eqGLRe+211+SYY46RwYMHS+XKlVNVzD3uS2ihnj17SuPGjWXixIn67DvvvFPq1Kkjf/75p1pGsUjye5MmTWTgwIFq2aQujz32mLzzzjty6qmnSvfu3YXv3BtvvFF++eUXOe+882Ty5MkyY8YMufvuu+V///ufnHXWWXo/gDGWJliXH3roIRk6dKgcdthhcsABB8gHH3ygoMp3+fDhw/UHN9677rpLdYyVKO+7774rpUuXlgcffFDOOeccufXWW+WTTz6RI488UrBoU14/qGLhfvHFF+Xaa6+V6667TkaPHq1l+fHHH/VZWGYNZnOse9qDTAFTIAcUiMVR3qM3b96s7+K8kHIUVPky/Prrr+Xiiy+WpUuX6peRl/hSqVGjRuaXaF4Q1+pgCpgCpoApkJ4KAKdvvvmmtG3bVkEIYAWAcCk9/PDDtdAdO3aUcePG6ffWihUr1BUViyrfXccff7xC1WWXXabQmlPppZdeklatWunjgLPnn39eywMYjhgxQm644QZp0aKFwil1ad++vVofjz76aL2mT58+CpbsA6VuwDoQ+sILLyjYlStXTuuKGzQQWK9ePZk0aVJMTdauXSsnnniiVKtWTRo2bChDhgzR51CeZ599Vnr06CG9evXSZ7z33nv6L6AcLQGYlAdo7t27twIuf3vyySfl/fffF9yUf/rpJ+nbt6/WCSi96qqrtA2Ac+5NGVq3bi1FihRRqyxuyIC3JVPAFDAFwq5AVhxF3b744gtdsGNhD67iHX7SSSeFuto5Cqrjx4/XLxK+PPly80B1+/btcvnll8uyZcv0iyXWl1iolbbCmwKmgClgCqSFAlu3bpX9999fgWbkyJEybdo0OfvA6+fLAAAgAElEQVTssxVUL7nkEoUdAAm3WL6zgDVcgufNm6eg6n1/nX/++QpP3K9o0aI5UjcPVIFMyvrEE0+oRRXYZn8oExVcmQsWLKgWyU8//VTWr1+vC8FLlixRt9ozzzxT685kxu/6y7W1a9dW4MV6PHfuXFm5cqWuzHNNNE14FjDK4nPFihVVKzQDVBs0aKBl4RnLly9XyydlBJSjpXXr1um8ACsuFlXuOWHCBPn1118VqrHyAqyvv/66gqqXPP09Sytgyt5VnkN9PvvssxxpG3uIKWAKmAKpVCAWR3nP5J3P9wH/knfYsGEyderUVBYp5ffOUVD1aoPLrx9UcaPiSxAXJb7wDFRT3u72AFPAFDAF8q0CWOWANO/wpB9++EEqVaqkoAqwXnjhhQpVWBi//PJLOeGEE9SFlHyA6oYNG+TAAw+UK664Qq2puQGqb7zxhjRr1kwtmB06dJCPP/5Yrae48/7888/atngvAXW4iQF7TFoAPoAV+OTAI1ycvT2quBJjaR47dqxceumleh/qCmTyrGiakIfrve90zz0ajbHOAp6463oJcERfF1D1rN6UkXKgvR9UuTcWBqAVDZicYbUFVAsVKqSPOOigg+S2227Lt33dKm4KmAJ5T4FIjvJqeMQRR8js2bOFf/nuYjsF7+Ywp1wHVYgf9yvcjhDUD6p88bIy608HH3ywrnZbMgVMAVPAFDAFElXgoosuUmsh1jv2VGIZxZW2S5cucvLJJ0v58uV1fyRgB/zg5guQ8Z2FqynuVAARi6z8PacSgNq5c2d1t8UqilsssMakBEsorq6sqPNdSfmw+gLZWDqxpgLnwC1QSp2wKI8ZM0brxX7XmjVrqpswcIf7LZZnvqNjaYKGuJp5muBaDLhjycWNl3LxjO+//173wAKdp59+elS5gGxAFuCmjpSFCRflZU8tVmNgmfZgzoCF+9xzzxX2Y2EVx9rMnmEOdDrqqKP0dxYeuJ8lU8AUMAXSXYHp06cLniX+xLv7tNNO2+1vsUC1WLFi8t133+l5AXig4NXiLVyme91jlS/XQbVu3br6JVuqVKnMgytefvnlmD7VnCbo329CQ1SoUCGs+ie13KaFu5ymlWnlroB7TutX4dGKQ4mAHNIZZ5yhsAqY9u/fXy13WAa9xCFA7ItkPyswiIUVSMIq6R1O5F7z4Dn9/cpz/fXKwN0AMmCMCQ4A7i3wli1bVqhn9erVtV64wvJ9S7nJD9QCqezzJHEwEi63XlgY8nE9k6RYmrB1Bwsp0EviUCcgFWstVlzAn0UAElt8AM199tknqgie6y/PB67R3Pu+BzgBVDyvmIhhRSU8DRZjIJlFBj7DekudSIAu+2ux7FraUwF7X7n3CtPKtHJXwD1nZL+KZJyY8BbhmerlYxGQ7ZUsZLJ1g4VDFiXDnHIdVCF9L7g3kwC+PPnSi7Xfx0A1dnezF6n7UDStTCt3BdxzWr8Kl1aEQ8GKB9BFJr6XOIyCg5WinZ4I8JUsWTJHTpSNBqpYFzmRmJN1OS3fn9gf+tdffymgsVfVS4AoLrnU1x9/FB0I9VK8eHHNunHjRoVerMr+E3Oz0oQDmNAj2nc39+J5fA5cYjWIlli4jqwLLr+UwfUES7QiLA7tWqZMmaSE3HHv1eHKae8r9/YyrUwrdwXccyYDVHl/L1y4UL1R8ERhuwMLhHjW4BHDol+YU66BKl/yuCb5Ey5KuGFltUfVQNVANRkDzr503FU0rUwrdwXcc1q/Skwrz6IKqGK9DFsCVHEzjpaaNm0quK5lJ1m/clfPtDKt3BVwz2n9KnGtglhUPY7iVHrcgzdt2qTnKHgMxTkKfE+wQBjmlCugmh3BDFQNVLPTf7xr7UXqrqJpZVq5K+Ce0/pVYlqtWrVKvvnmG90zykTE0u4KWL9y7xGmlWnlroB7TutXiWvlCqpZPYHFQL4n2N/PXtawJwPVsLegr/z2cnBvTNPKtHJXwD2n9SvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPaf0qca2SAaruTw9HTgPVcLSTUynt5eAkk2YyrUwrdwXcc1q/Mq3cFXDPaf3KtHJXwD1nXu5X7Ntjb3Osg7vcVcrIGUQr79yVwoULB31MWuXfuXOn7nVHQ/9e9XiFDKJVvHvl9c8T3aOa13Xx189ANQ+1tr0c3BvTtDKt3BVwz2n9yrRyV8A9p/Ur08pdAfecealfLViwQE83veaaa/QAGfblead4uysSO2csrTjRev78+Xq+Cqlly5byyiuv6AE23unZyXh+Tt3DXx9+5+wY9pQTk9k15aV+5VrnRPMZqMZXzkA1vkahyWEvB/emMq1MK3cF3HNav0oPrZhYXXLJJVqYpUuXCjG5OQH2rLPO0tNg3377bf2Mk2SbN2+uceYIT8OeHkLV+FOsz/zP8OcnXA2HXHAwkHdgIJNoLBLHHHOMu0C+nOnWrwhFw4EdxEslZIyXDjnkEDnnnHN2qyMnJy9atEj1yImUblrlRJ0TfUZe0mr06NHSokULDc10/PHHa1gOTpEmikQyUiytbrrpJo2jvGvXLvnzzz/11GriFT/99NNy7LHHJuPROXoPf30WL16s8YrRtUaNGs7lyEv9yrnSCWY0UI0vnIFqfI1Ck8NeDu5NZVqZVu4KuOe0fpW7WhFWBasKIVi6d++uhWHPD0HPZ8+erbCEW94XX3whlStX1lAqHOn/2GOP6amJnJB43nnnSdWqVTMrEvkZoU8in+Fl5r7cg7ilX331ldx+++0aHxyYY/LKTyIpXfoV4W2Iq0qdOnTooCFn+J3EggCHOzGp9RKHejz++ONq3SK+aU6kdNEqJ+qa3WckohUg2KlTp8y49/fdd59cffXVWhTgjPi2jDFiFBO3l8WgaH9n8ahnz54yYMAAPb26d+/eGm+X8fPwww9rfGJiQr766qsKmzyTcEszZszQ2LqUvVatWsLzWYRibC9ZskRjHBPr+IYbbtC4vYToIHQSoQ8Ji1SkSBG57rrrFGR5Fp83atRIn8f7AMvoBRdcsIe00bR68803tV+zMMV7g/7OIk7p0qU1HvH1118fs4mGDRumcYK5L/VHN2Jf8u7ivYHO/P/mm2/W8uDKzDtt3Lhxcthhh2nsYOI7P/DAA/o++uijj7Ru6H7kkUeq5ujG2CP0FDE1KQ86ANNem6xfv17fj0899ZS2qb8+6Ey4E+Its4AXq8zEaH755ZelcePGak0+6qijNKZxogtz2e3XYbreQDV+axmoxtcoNDkS+dIJTeWSXFDTyl1Q08q0clfAPWcq+hXWUo7qB0qZcDJBA5TatGmjgFWtWjWNEYolsEKFCmrx4BpCvtxxxx16HRM3zwrDBDTyM4DW/wx/jYcPHy6nnXaaTtAAZCaSAOucOXMUXtMRVCdPnizLli1TrXCZZE8aE97WrVvrxB+gIOwB1mjAgAnxp59+qpNe4vWRsCQNHjxYOnbsKP59ea+99preF72ZAA8ZMkTjvm7evFm1IJQC1i9Agp+rrrpKrVNMphNNqehXiZYl3a8LqhV7FokrTKKtgSbGAm0HnFaqVElj9DJ+aGsWeS666KKof2fBp1WrVgp2WOEZo6NGjdL+0q5dO3nuuecU+Bo2bCj0o2uvvVZGjhyp9yIxtrg/ngqMW6CKa/iXvlaxYsVM11/PHZfPsBICmNyTvtisWTOFaZ45dOhQ9YJg0SXytNRoWuEpwLOASiyP9HPAEmgFvAHNaIky8I5gkQzXWt5RwOd3332XqQPjj3oRE5kTXCdMmKAaoAegCdQzDp999lmt95YtW/TveDXwnvvwww/VQ4S2AYRZVKKcaHjmmWcq9AOWQDBtyQ9l99cHyPVcf7lnrDIDs08++aQ+F6AFutETGLaUtQIGqvF7iIFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZr7DI3HPPPWrhYLUf8Pr999/lyiuvFFxRgVWg7Msvv9SJ2GeffaaTwG+//Vahksk4rnxYaubNm7fbZ0wgSd4zuBeWGSaJWCSYcJcoUUL69eun1zHZw9WYyXA6giqwQXmZVDNR79q1q8IiFqoxY8ZomdFi5syZCgEkrCVApQeqkyZNEsCDibeXmHQDtUyE+ZwJMBPytm3bCsCDpYwJNO2xdu1anWgzcQZegZtEUyr7VaJlStfrgmpFewJK9BNcRAEfFm6wijLWWOxhcQNvBRaGGBN4GUT7O5bDeKAKpNGvGKOAGVZFxuy0adNk3bp1CkQkFkpef/31TNdfgMrbo4plk7GHdZU+R14spwAqllX+ZTEKmPXcXn/99dc9Yk+6uP6yyAVcs0jGc2Ml9q/26NFDw0yxWMa7hGt497AgxHYEwHf58uW6/5VxgoWYz4FW6vD++++rzgBiVqBKXGLugTcEhyIxrtm2MHXqVH23AeVYQVlgY1HK7/rLe8sD1YULF0YtM/dAP8pBebHmAt3owHMtGahmtw8YqGZXwTS6PuiXThoVPceLYlq5S25amVbuCrjnTGW/8iASSyGTLdxUgUgmZaz6Y20BVHG9AyxxW8PdjskfE24AFTjD6oCVx/8ZMOUHVSaN33//vVoSeQauh0yUcXv0DlhJd1BFE+qKyyQH0PAvVhcmsN7eUsDCszT7QZUJMP/nOn9iIoz+QOmGDRvUJRF9gRYsT+jKpJhrWUgAetkPfOmll+pkN9GUyn6VaJnS9bqgWrHgQB948cUX1d0XaKS/A154JrA4A0gBKiz6FCpUSC2r0f7OWMFNnLFBH6PdASi/RZUFDIAHyBw7dqysWbNGatasqXIypuljwHJWoMqBRtyDBRI8HhjfQCwLM7gTA6peGW655RaF31SDKu7GTzzxhI6P8uXL6zN5NpZeyoN1k3HBuGFM4EoLrFJ2FoC2b9+ulmGsv7169dKFJRbiihcvLoApdfMsqvwfyOR9hms+98Fd+JRTTtG2Y7EAaEbXrEAV6260MrN4QbkBVRbteB7eKiwOGKjGH/lmUY2vkYFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZrzxQpTRMlHF7wzURSwVWD/a5YVXBTY6/MdHDvRWoAp6Y0Hkp1mf+Z3h5qRNwB3hh7fDALqygioUEqw8TY9x+vYOm/KCK6yeTZmAiWsJ9+o033si0qPpBlck57cPCAaCMe6O3t9i9J+2eM5X9KtEypet1QbUCCBkz9G3gBjdSIAUQwvqJNZC9k5wQi8WdBR4sctH+DphijcV6jtWefkHygyruo0AX1kQORwOwWATCNZxxyvW4kWNppY8BvkAfeYFl79RfFkmAMPoa7rqMXfZbYq1NFqjihguguVhUsYwCjJQXHfBiADRXrlypFmvGFPXAPRlLMvBPeXEnZm8t7zIWwhgvjD0WxGgPwJaxyT38rr+45QO87DXlvrg8oykLDiyw0WaRFlXqw7vSs6iyeBerzHhaGKgmNsoNVOPrZqAaX6PQ5Aj6pROaiqWgoKaVu6imlWnlroB7zpzsV7iVYkH1EpYJLAz+GIueNSBybxrXZPVZZI2ZaAN2uD0mK+WkVpFlZs8qeiWzPsnSJdp9clOrVNYrFfdORCss4XgheIm9ongm0OcBVMCKhIUO918s5dH+jrs5AMkBR1jfsBoCaH5QBYwAJj7nsCNOmvbcgPkbz8CiivupdzAa4MpCFAcxAcpYczlIiH2jLJqQzj77bLXQYg0EVClnkyZNFGwBvSAWVdzjgXIS9wdUseJiZY6V8EIAtnGh9hJQCjBST/8J2YAl1mOsrwA/bUbCoo3nA67zQCbPxjMCIMUFH+8F9qjSLl7Z0AsrdMGCBdWayv7VKlWq6PjmHckzOJjJqw/719EbIGZBL1aZvT2qZlENPkoNVONrZqAaX6PQ5EjkSyc0lUtyQU0rd0FNK9PKXQH3nNavTCt3BdxzWr9KvVZY9AAk9nIDjP6Eey6LG1jI/Ys+sf6OyzD3wE3YSxzUxb5LgA5LLS6uHJrkJSyMAKH/b3wG5AJcuJ/iReFPeEtQZu/AIXeVMnJm1a+w6PJsXG+9hDWSg9QiE4tjQDQJsAMwcXX3L5qhH672WDEBcC9RB/6OXt7+cD5DJ55XqlQphVAvAarsgWXxADdqrMxem3ANFlyeEbk4F60+3j1jldlfTxuD7r3LQDW+Vgaq8TUKTQ57Obg3lWllWrkr4J7T+lV6aBU0jip7TLGuYNXBDdE/acyPcVQ5SRTXwMiEdQbrCpNyQloAI1lpFy2mbLQewn5GJtK4LGY32Rh0VzBdtfKDqnttUpszqFbANAeQRSbcbrFO5kTyQJVxmJMpqFY5WbZ0e5aBavwWMVCNr1FoctjLwb2pTCvTyl0B95zWr3JXq0TjqHJCJ65wtB974Ly9mNQmP8ZRZb+Zt2fQ36K4BXrugsAle0xjaRctpmys3oHlifviZpjdZGPQXcF01Yp90YAeYWvSJaWrVlnpAyhjkY0VJidV2oZRq1RpEe++BqrxFBIxUI2vUWhy2MvBvalMK9PKXQH3nNavclerROKo4maHxYEDWDjkhPAoHHJCyg9xVL0Ww3KMiyD71TjYhQNe2N+HGyUacegL1lMmvbhXPv/883o6aSztImPKso+NkBvcn/3CaAz48lxcDVkgMFB1Hz/JyGnvK3cVTSvTyl0B95wGqvG1MlCNr1FoctiL1L2pTCvTyl0B95zWr9JDqyBxVDkMhv1aWB84dAWA4lCX/BJH1WsxwJKQNOyXw0pKHFoOyeFEUU5MBU45cIYDVzhhFfdoDnmJ1I6TVElYZf0xZTkohniLnNTq7RMk9iX3AHYBWANV9/GTjJz2vnJX0bQyrdwVcM9poBpfKwPV+BqFJoe9SN2byrQyrdwVcM9p/So9tAoSRxVQwjpYqVIldfnlgBZcD/NLHFWvxQhhAUxySA2gSsiJAQMGqAvwZ599ptZl9qZyUiv77Ah1gUUVK6lfO+9+xKb1x5TlRFUOgsHqzUmt3AcLNvsROaGU0CcGqu7jJxk57X3lrqJpZVq5K+Ce00A1vlYGqvE1Ck0Oe5G6N5VpZVq5K+Ce0/pVemgVJI7q8ccfr6BKuAwS0OUPD5HX46h6LUZ8SSybWEo9199IUOWk0dmzZ6tFFJdgwoXE0o6x4I8p27hxYw39QRxOwn/cfPPNei2WVEKKcDqpgar7+ElGznR9X+FijuU+2h5V+h/9LqeTaeWueLpq5V6DnMtpoBpfawPV+BqFJoe9HNybyrQyrdwVcM9p/So9tXKJo5pVyfNLHFVO9cWVF4tprARY8lO4cOG4jR0ZUxYr9YYNGzSMhpci2ybuTeNksDHormC6aoV1nZ+SJUvuURnc0bt06eJeySTlNK3chUxXrdxrkHM5DVTja22gGl+j0OSwl4N7U5lWppW7Au45rV+ZVu4KuOe0fmVauSvgnjM3+tX8+fPV1ZsFEQ7VIgwSe6AXLFigBW/UqJHGQKVsXuxTFjgItYK3A+GRsLSywLF06VI9iKtly5by5ZdfypIlSzTE1AUXXOAugmNO08pRqDgxZ93vkj9yGqjGb2cD1fgahSZHbrxIQyNOREFNK/eWM61MK3cF3HNavzKt3BVwz2n9Kr21Yr8zbuatW7eWcePGKXwCrfwAmpwwzd7m7777Tity+OGHq6vvo48+qvumsai2b99eBg0aJLiTc0o3ngBFihRRd3QOBEtFyo1+ZVqloiXT654GqvHbw0A1vkahyZEbL9LQiGOgmnBTWb9yl860Mq3cFXDPaf3KtHJXwD1nbvQr4ItDtQh3BKjWrFlT3nzzTalTp45aR9esWbMbqFarVk348YMqp0mPHDlST6FmfzMW2NWrV0vFihX1fqlIppW7qsnWin7BIXfsn89ryUA1fosaqMbXKDQ5kv1yCE3FEyioaeUummllWrkr4J7T+pVp5a6Ae07rV+mtFaD67rvv6uFlWFFvueUWefrpp3XPM0CCSy+uvVhKSZGgStijU045RZYvXy5bt27Vg7+IgUxIqbwIqvlFq+bNm+uCRWRat26dHHzwwcKp4f3793fv3P/mnDJlip4wzr0vvPDCwNen+gID1fgKG6jG1yg0OewL2r2pTCvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPmRv9ClDl1Of69evrHlUveYdq4fqb1WFe7FflBwsb12BlywlLm2mV2n4FRE6aNEnatWsnhQoV0ocVKFBAHnroIXnggQekbt26CYGmB6rEfm7WrJl7JXIop4FqfKFzBVR5uXC8PZ3QS5wEyP4CXDiySp77h5cnN14e8WXNnRymhbvuppVp5a6Ae07rV6nRqnfv3tKrVy/3m1vOfKMA/aJnz56Z9bUx6N70uaEVByDhrktYqDAl08q9tRLRygNVrORFixbNfBh9hX3Hl19+uR68dfbZZ6tFnX3OK1asENzAu3btqqdEs4f59ddf1+vZv/zUU0+p9R6LajRQHTNmjAwZMkT3Qzds2FD69eune6JnzJih96IeZ511lnTr1k3DZ/E89kdPnz5d90Rfd9110qdPH+FUeJ7BMzkYjNjQlJF7E0+6atWqWhb2XkemREE1Gkf5741uBxxwgHujpXHOHAVVAobjnnHxxRfraW0EFmevwhVXXKGmfVbIaMh77703pmQGqrF7UyIvhzTumyktmmnlLq9pZVq5K+CeM0i/atOpjYx6apT7zS1nvlGgV+vW0nPkSAPVBFo8yBhM4PYJX2JxVN2lyytaeaB60UUXZVpUgdMzzjhDwxTh+tujRw8hljPJA0aA9ccff9T4zldddZXcfvvtUrBgQcFFfOzYsWoUiwaqP//8s5QrV04uu+wy/RzgxZoLXPJ3oJR7Pffcc1KvXj15++239XRpYkMDsYsXL1Z34tdee01OO+00KVOmjJarQoUKMnz4cAVYytapUyd59tlnBRdm9lFTHn8KCqrROMp/vy+++EIB+sgjj1RdKP9JJ53k3qHSMGeOgur48eNl1qxZumqxdu1aBVVM+sRaY8V827ZtukqxcuVKXdWIlgxUDVSTMY7S9Qs6GXVL9j1MK3dFTavUaDV9+XThJ7+khuUbCj9eCtSvpk8X4Se/pIYNRfj5NwXSKr9oFKOe6aqVxVF175h5RSsPVLFsApok4PG8887bA1SxrD7zzDMyevRoadGihUycOFFhEgspMIjFc+bMmeqFc/LJJ0cF1VWrVmXCJS7B7IsGRAH/2rVry4gRI/T5c+fOVSZp0KCB7qsGnl999VW14GK55VrgFlClrFhugUn+zwFhWIC98uCGzAFg2QHVaBzlvx/1uPPOO7U+5B02bJhMnTrVvUOlYc4cBVWv/rj8eqBKY/N/NtKzOnHHHXeotdXvFuzXzUDVQDUZ4yhdv6CTUbdk38O0clfUtEqNVgaq/9OVeqdkoOqulZOgeTdTbryvLI6qe3/KT1rFcv1lW2CkRRVX34cfflhPjcYiCqhyuBZWVw7W4uRntgNkBaq0wkcffaQWR9yDgcumTZvKTTfdJBzshDWWk6mxvFKGQw45RA499FBp27atWkz//vtvLdeJJ56o7r2A6T333KN7ajHIAc5YWokL7CW8R6tXr54tUI3GUf4bEm8Y6zL/ElsYMIa3wpxyHVQRjxhYdLonnnhCVyMw9ZPw9abBIxNmdy/lxos2XRvctHBvGdPKtHJXwD2n9avUaGWgaqAas2eZRdV90EXkzI33lcUGdW+u/KRVdkEVaypuuQsXLpQXXnhBwxkBq+wVjeb6i5UTiMSbEysp1lDcc7Gecl4OsAvoAr/8n/tyH7gECypuvXALFsvzzz9fQZVti/fff7/89ttvUqpUKalSpYpaZinbnDlz1Bh32GGHxQXVyB7iQa//736Dn//vlJU9tzyH8Y0lGNgOc8p1UMXdl07CqW0DBw7coxEjxTWLauzulhtfOmHt/KaVe8uZVqaVuwLuOYP0KwNVA1UDVfex5ZozyBh0vWe8fBZHNZ5C/32en7SKB6rsFwUE2aPqWS5xbcXqiUWVvZ9YQjlEiEONsJKy3xU34WjhaQiNdOWVV+oeU1LZsmXl8ccf1zNzHnzwwcyzcjiQCJddrKO4AQO0WF9JuPVieeUAKD+o8hknGAO68+bN07wY4vAYjUxB96h618cC1dNPP123V2LppbzslUWfMKdcB1X8zCdPnuwspIGqgWoyBlxufEEno9y5cQ/Tyl110yo1WhmoGqjmBqju3LlTCJfCQjqHPea1lBvvK4uj6t6LTCt3rcjJWCWuLm66rmn9+vUKmhw+5E+c5IuFtXz58ruNfd4JHFIEGLs8hwNjgWv/Scb+5yQDVIk/jMWXvbWdO3fW53Xp0kX3qhICCitvmFOugSorEpz0y2blUaN2P81xyZIlUrly5ai6GqgaqCZjwOXGF3Qyyp0b9zCt3FU3rVKjlYGqgWqqQJUxW7FiRenbt6/cdddduz3mrbfeUrc+LDdEK4hMgwcPlgMPPFAPYfHyYsnhIJPsJg6BYeLNPsVUpdx4X1kcVffWNK3ctQprzuyAqsdRRFPBPXjTpk3yww8/yKmnnqpy8G765JNPdC9tmFOugGp2BDNQNVDNTv/xrs2NL+hklDs37mFauatuWqVGKwNVA9VUgSoTu0qVKumeNqwQ/vTtt9/qfjdOFq1Ro8YeReDAkmOOOUZP1cS9jhNACWPBoSzZTbjusTUKS0mqUm68ryyOqntrmlbuWoU1Z6KgmlV9OeiJU415P8U6mDZMehmohqm14pQ1N750wiqfaeXecqaVaeWugHvOIP3KQNVANdWgesEFF6irH1aK66+/XvfBEeICV7pHHnlEdu3aJd26ddN9by+99JLuT+vfv7+wh429Z8SAB1RbtWqVeQgk13EqaaxEeL533nlH2FdGyAv26RF3kTiOflCdMWOGxm5kzNSqVUvuu+8+qV+/vsahZ+8eh06S/+abbxbqwSmlnEzKDxEVsBRfffXVexQjyBh0H9l5M6dp5TTMRkoAACAASURBVN6uplXiWkUa49zvlHdzGqjmoba1l4N7Y5pWppW7Au45rV+lRisDVQPVVIMq9ye0BdZRDmTBnQ4Q9Fx/2ZvGwY8k4iMCp4Sq4HRNTgFlnxugyqEs/P3JJ5/U+xAnPtb+VoCY8BjElCd+JAe7XHvttbodygPVb775Ri2+JIDzscce0/th7eU55G3durWGpCCGJJYUDlPp0aOHHuYCxL733nv6r+cS6Glp76vUvK/c75o3c1q/cm/XVFhU3Z8ejpwGquFoJ6dS2svBSSbNZFqZVu4KuOe0fpUarQxUDVRTDapYMoHLzz//XNgfSjxEQlREgipWUi9EXjTXXw6I5KRR7/wN9o1hdY2WPFAFMInRyLPY60p8eU4ZxfUXUGWf2bRp09TiO2jQIL0Vh70AxZx0insycSTZzwpEY6HlUBliQvL3F198MfOkVH857H2VmveV+13zZk7rV+7taqAaXysD1fgahSaHvRzcm8q0Mq3cFXDPaf0qNVoZqBqophpUgU8gFDBkPyphHXDnjQRVQlU0adJEi5PVHtX27dvL008/rcBYvHjxLEF17dq1alXFYku4C07x5HAUQBVLKfEYSR06dFCLL9ZRYiPy/I4dO2poP9x9+RvwSgxH7nfjjTdmPpcTQXEtThRUOSQqP6c1a9boYoKl6AoQEsZL9j3o3ksMVONrZaAaX6PQ5LCXg3tTmVamlbsC7jmtX6VGKwNVA9VUgypgRxzF119/XX+wrAKQkaDqP9UXUCxWrJiG2FuwYMFuhykFAdV27dqpqy+WWNyPx40bl+n6y4nDHNjE/bCQArC4FAOz7JPFRRkrK27DWGNx/eWE4k8//VTjPy5atEjGjBmj4O0BdiJAcVvX22TAowPcB7jlzDcK9Lr1VunZv7+BagItbqAaXzQD1fgahSaHTZLdm8q0Mq3cFXDPaf0qNVoZqBqopgpUGbOEp8HNF+gjccov7rQcdASoTpgwQThJE4unH1Q5JZg9oxywxD5R9qh6Flesn+xddbGo4q4LWOIizDPZS+oPT+O5BPM55cSiOm/ePAVp/wnDACvPBU4pG+BKoty4/xIP1p+CvK/adGojM2fNdB/gIc9ZskhJ4cdLLAzEioW5R1V/+02En3yS6tavLz1HjjRQTaC9DVTji2agGl+j0OQI8qUTmkqlqKCmlbuwppVp5a6Ae84g/cpA1UA1VaDqvy+utgBJkLiDXMOJwLEg5vvvv5cff/xxj+JjwR0wYIAepvTPP//oQUjElo918BKWUq6J/JxYqxz6VKZMmT3KwJ7WvfbaK2Z9bAzGfl81LN9Q+PFSEK1k+nTRn/ySGjYU4effFEir/KJRjHoaqMbvAAaq8TUKTQ57Obg3lWllWrkr4J7T+lVqtDJQNVDNCVB1773uOTngaPHixXtcgNvwiBEjMkHV/Y7JyxnkfWVj0MZgWMdg8kZM8u9koBpfUwPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVzZJTqNJMnFBOdxnxw6RRYtE3n5bZNeu3Ru+XTsR/wFCa9aIPP+8SIUKxIARKVxYZN06kXHjRNavd+800XKG2JrDwU1YSs8555zsaZDg1TYGYwtnFtUAnSrEYzBALVOS1UA1vqwGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVNMEVOvUEeHEW8CUn733zgDVzz7bveF79BD55x+Rv/7K+Pvq1SIvvyzSvbtIwYIiv/8uUqKEyE8/iYwY4d5p8hioZq/i2b/axmCIQfWUU0RY4Bg7ViSKxV4Yqw0aiOy1l8iyZSJTpmSMOxKLSLfeKjJ/vsjEidnvSAaqCWtooBpfOgPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVwaqaQKq114rctRRIkOGiOzcKXLLLRmW0cGD/2t4Duzp1k1kzhyRmTNFtmzJ+KxGjQxr6rx5IhzyU7t2xt8//dS90xioZk+riKttDIYQVMuUETnrLJHy5UUKFBCZMEHk30PAMmsDiHbqlPHfP/8UKVKE4PEir7wigkdExYoZi0wA7pgx2e9TBqoJa2igGl86A9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXBqppAqpFi4rsu6/Ihg0iTZuKYNX57juR0aP/a/hy5USuu+6//zNRfv11kWOOETn++AzAxcqzebPI5MkZ12cn2SQ5YfVsDIYQVGvVyhh7LAjhnTB+vMiCBbtXxPN8mDVL5L33RO69NwNqH3tM5PbbM8ZfoUIGqgmPnORdaKAaX0sD1fgahSZHkC+d0FQqRQU1rdyFNa1MK3cF3HMG6VcGqjkIqoccQjyTPRuScBu475L4vFo1kb//Fhk2LMOq6qVKlUQuukhk7doMV8MTThD59VeRVasyrKp//JEBp0ArsPrEE+6dJlrONAVVTvtdtmzZbvtPn332WY2VGplmz56tIWlyOtkYDCGoekW+4oqMxZ9ooArE7rdfxvg6/PCMhaOtWzNAleR5N5hFNaeH3B7PM1CN3wQGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVHMQVLGIXnPNng25caPIoEEiHTuKlCqVAaHETuTv/sTeU35WrBDZvj1jX6q3l/W880Q++EBkxgyRLl1EsND26bPnYUzu3SgjLEYahsb4888/hR9/qJsnn3xS7rjjjj1q17dvX417mtPJxmCagqrLYlFWoOpVC8tq48YZ/5s0KcPt3kA1p4dZls8zUI3fHAaq8TUKTY4gXzqhqVSKCmpauQtrWplW7gq45wzSrwxUcxBUs2pCDm/B8of7LtYYDkzCWsqhLK1biyxfLvLzzyIAKaDK/+vVy7CucuovMLZpk8jcuSKNGmX83q+fe6eJljMHQXXy5MlqJd2xY4fsv//+QgzTIkWKSOvWrQWr6IJ/XTAbNWqk8Uvp49WrV5e33npL/v77b/n999+lW7duMmrUKP0/96hZs6ZMmDBBLa9r167VmKikli1b6j2JwUqcVsLZNG/eXKZNmyZLly7VeK/kOQSoSTDZGExTUM1qsWjgwIxCxwPVZs0yvBY4nfvVV0WWLv2vsmZRTXDEJP8yA9X4mhqoxtcoNDmCfOmEplIpKqhp5S6saWVauSvgnjNIvzJQTRNQ7dBB5OCDd29kXHlfeknkxhv/O1ipfXuR0qUz8gG1fM7Jo82bixx3XMbfgVwOgoncX+fehTJy5iCojhs3TkqUKCEnnniiDB06VLp27SrPPPOMNG3aVNavXy///POPLFmyRAH2hBNOkO+++07h9Mwzz5QjjzxSHnzwQbWoDhw4UOrVqyf77bef1KhRQ7C0tm3bVl577TW5+eab5euvv5YffvhBdu7cKYcffri6BT/66KPSoUMHGTRokDRu3Fg/3759u7Ro0SKoYpn5bQymKai6tGgkqJYs+d9iEQeUMR5JuNkDqyTCQZEMVF0UzpE8BqrxZTZQja9RaHIE+dIJTaVSVFDTyl1Y08q0clfAPWeQfmWgmiag6t68GW69QC2WVWDVS/wdKyB/9ybQQe4bmTeHQbVatWpSrlw5GTFihNx66636LyAKZNapU0ctnWvWrMkEVaykl112mZQuXVpB9bbbblOr6W+//SazZs3SPavDhw+XK664Qt5//3257rrrZP78+QqiWFJ5Hj+AKp+NHDlSmjRpIps3b1arLc9MNNkYDDGoevvEvT2q7EX1Fos44ZeDziJTr14Zf6leXeTSS+0wpUQHThKvM1CNL6aBanyNQpMjyJdOaCqVooKaVu7CmlamlbsC7jmD9CsD1RCCqntXyF7ONAHVt99+WwoXLqygumXLFnXlBTaBzHfeeUf22Wcfta7eddddalHFZffXX39VC+rgwYPllFNOkcWLF6tLMJbSyy+/XGbOnLkbqN59993y8ssvy9atW/Vel1xyiVQk1EiCycZgiEE1wTZPyWU5OAZTUv5cvKmBanzxDVTjaxSaHEG+dEJTqRQV1LRyF9a0Mq3cFXDPGaRfGagaqMbsWWk0SQZQvb2r+xLG598EeOIW7P0NS+mGDRukFIdSCWdJ7dKfvffeWyEUl+CsEs8BfPnJTrIxaKCanf6TeW0ajcGk1CcHb2KgGl9sA9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXyQbV4oWLS+taraVY4WKy+a/N8vFPH8vcVXN3K3yBAgWkccXGcvyhxwu/f732a5m8ZLL+Hu3v7jWPn7Nh+YbCj5eCaCXTp4v+5Jdkk+SEWzpIv0r2GEy40Dl0oY3BAELbGAwg1u5ZDVTjS2egGl+j0OQI8qUTmkqlqKCmlbuwplXOaoXlhf1nxYoVc39wCHMG6VfJniTfdNJNctj+h8nGvzZKsX2LqbXrwRkPys5//ttLedyhx0nzo5vLXzv/koJSUArtVUgmfjdRdv2zK+rf563+N/RDEtrCJskBREzSJJlQMhx+xCm97AONFu80QKkys65YsUL7F6f2kvidPakNGzbcI86q6/3ZF3vNNdeoBTarhMtxpUqV9IeEWzEnDl9//fX6/9wcg651za18NgYDKJ+kMRjgiXkmq4Fq/KY0UI2vUWhyBPnSCU2lUlRQ08pdWNMqdVoRzmLixIk66WQiO3fuXDnjjDMUVAmBEW8i6l6y9MsZpF8lG1Q71ekkf//ztwycM1CuP+F6KVusrLz09Uuy9Lf/QjjccMINUqZYGXnmi2fkzx1/ym11bpOfN/4sBQsUjPr35758Lmki2yQ5gJRJmiT/8ssv8vrrr+vpuwMGDIga7zRAqTKzfvTRR3p6L+PaA9UnnnhCT/CNjLPqen9OCb7lllukUKFCWV7CKcXeYUxeRsC5bNmyBqpxxLYx6Nobc/bk7QClCkVWA9X4zWSgGl+j0OQIMvELTaVSVFDTyl1Y0yp1Wo0ePVrDS3D6JyEo+vTpIz179tTDVpjI4maaV1OQfpVsUPU0BVKB0R07d8hDMx/aTWoPYJ+f/7wU3buoXHbsZbJl+xb5fdvvCraRf3989uNJayqbJAeQMgaoYj3s16+feiYQLubSSy9Va+abb76phxUBcGeffbY8/vjjUrBgQSlfvrweZnTllVfKK6+8ovtHAUwOLCJEDIkQNCwsbdy4UY466iiNa0peFpa457XXXqtxT4l/SsJqilWT+zCe2aNKGQDVCy64QC2afBYZKxVgXr58ue5BvemmmzQOqz++KlZRDmEiVI2/fhzO5H82C2FcB9ASHufcc89Vay6nFBMTlnoTizWyTtHUT9UYDNDSOZrVxmAAuZO0WBTgiXkmq4Fq/KbMFVDlIAAOC/BPwjhAgMDZvDizShzRzsl3Xgoy2YkvR7hzmBbu7WdamVbuCrjnDNKvyEv8ReIuEnMRV0MgFctO/fr1dYJblFAeUdKYMWNkyJAh6qrIZJgJOZPpCy+8UCfYuC5iObn44ot1otusWTOdpBJ/8eOPP1bXP+7PAS6kGTNm6CmlADLPfPrpp3USzMS8QYMG8tRTT6l19/zzz9fTSQmfQdiN++67T959912ZOnWqPoMy8V4HwIkzyQT86quvlvvvv38P63AQrVI1Se5ct7McsO8B8o/8I/0+6Seb/tqUqXbFkhWlVc1Wu6n/x44/ZPy346P+ve+svu4dJU5OmyQHkDILUO3bt69069ZN+zzzDsLGYNkkvAx9mrEBqJIHyPMsqg8//LB0795dF5CYmxAOhsS4AzaB2ilTpmh4mnnz5umY+eSTTzS+KuOXE3lr1aolBx10UCaMRlpUGYuMX5I/VirvAcYPYAs4M+7ee++93eKrLlu2TP/PuPfXb9u2bbs9e86cOVK8eHEFcuZOnTt3lv79++t7hxOF+ftnn322R504ECoypWoMBmjpHM2anTHYu00bGebFLM3RUufSwzg4zHewF4svhE5ySYxLxlh+Saeffrp8+OGHMRkmknFi6RKNo/x5WTw74IAD8oSsOQqqvMAJZM3kaenSpRpXjIkQFgVexkxqOLq9devWMcU1UI3d74JM/PJE781GJUwrd/FMq9RoxamfvO+ee+45XXzDOsPk+IMPPlDIwwUxmuvvzz//rBNtYjMCn23atJF27dopXOI+jFsfk2besZUrV1ZIJP5imTJltCIVKlRQq8rtt9+u72MsO6RJkybpBPm0007T+zOR5rOOHTvqD2Xk/nz5tWrVSqGUBKCuWrVKPv/8cyFEB5N24Jn3OIuPlOuRRx7ZbYGR64L0q2RPki+tdqms2bJGD1Hi9+qlq+thShyW5E+lipaSeuXqycZtG/Vwo9VbVsuwucMk1t/de0rWObMzSbbDlDJOSMai6rnwAmPMP7AuMm4OPvhgwX22ffv2uiBz55136ueRrr+A3rp163SBhsTeUKCSn++//16YdPI3FnkA1mOOOUbhlGezmMO/jKVorr9+UPXHSsWiC5iymATIYg1mS4A/virWVkCVsXXHHXcobFL+KlWq7PZsxp//3n5QXbRokS6QTZ8+fbc6nXfeeRpmJzIlewwma6yk6j7ZGYO9u3eXXg/t7qGRqnLafcOlQPnjysuyL5clDKrROMqvwBdffKHvCjwoYCrmFyeddFK4RIoobY6C6vjx43WFklVAVuMBVSYwkD+BsFntPOyww3R1JZYlwUDVQDUZIy7IJDkZzwvzPUwr99YLqlWk6y+TTt6PvBOjWTUoCVDoQSeQyCQZ9z0sJ/FAlUnoG2+8oQCMxee3334TwJcJPF9sTGQBWyykTLyBXVwbgVesSdwfuMZSxeQdl0T20jKxBppfeOEFnTQz+QdsWVV/6KGHpHbt2vp3fwqiVbInyd3qd5NCBQvJrJ9nKaQeWPhAGb1gtFpXTz/ydJn540zhZOBTjzhVvlrzlexXaD+pelBVBVtStL9P+980944SJ2d2JskGqrFBlZij9G1calnQoQ/jhguoEv8UKyvxS3GFZSxGgiqWTBZ0cKXlHow7YNiLiXrggQcqmH777bdqpeQQI+Y5nvXV7/obC1QZN8AvrsSMLYD0+eef3y2+KrFUo4EqgOl/NuM7HqjiAeGvEwtk0VKyx2DSBkuKbpSdMbh69eoUlSoctwWQ+D5xSX3e7iND5w51yZon8rQ7qZ083fbphEE1Gkf5hWE+wPuMf8k7bNgwfeeFOeUoqHpC8WL0QJVVw7POOkv3hbB3A9dfgmSzIhotGagaqCZjwAWZJCfjeWG+h2nl3npBtUoEVCkNB7SwUorbLSusuPJhzQQkmRizqoq1FBj1W1TvueceBUcSnzFxBiCZWGElAlSZqOPei7UFy2mPHj2kZs2amaB677336j3Z88cXIe9tvgiZeL/44osKq4ArE27vsBesTLfddlvagOrJZU6WppWbSgEpoOVf9vsyeWH+C9KkUhOpU7aOzFkxR6YtmyZ31L1DiuxdRMv9y9ZfZMjnQ/T032h/d+8l8XNmZ5JsoJp1zFnc3QFAf5xTr0W8A8yy2hvO9Zs2bRKglMT/ORSJ7UxYP7kvn/Ov9wzuG+/go8he4d3L+7tLfFXyRj47q97mva8i6xTtGgPVALGM4w/xPJ0jyPdg7+m9pddHvfK0Hv7K9WrYS3o26JkwqEbjKP/9mQOwT51/v/zyS922AG+FOeU6qDIp4odJD4mVSVYx2QPCvhIssJHJ9qhG73JBXg5h7rTJKLtp5a6iaZU6rTxQxQKJJYP9ZvEsqrjqNWrUSHr37q3vTqykuCcyQWUVFUh89tln5bXXXtPf/aDqQWZWoHr00UfrflmgEwsNrpJ+i2o8UMVd8YEHHlCra9WqVfV33Jqpmz8F6VepmCTvVWAvPUhp1eZV8veuv2M28uEHHC5bd2xV919/ivV3994SO6eBagAV7SCXAGLtnjW3x2DCBc+BC7M1BnOgfOn8iCD9qvdHvaXXdANVrz0xxkWmevXq6XewP/kNfv6/c7ga38F4p9IOnDGB11SYU66DKqdcIiz7pdjHUaJECT0MINahSmZRjd3dgrwcwtxpk1F208pdRdMqdVrxhYJbLK6+X331lbr4AareQQnRnowFEA8UQJSECyMHwlxxxRXq1nvRRRfp3zm8hf2ugCL7WHEXjgWq3rYLLKosBGJN5TAmb88b5WHRkD2v3j2A5LFjx+5hUcUdmfsAyySssbgW4hLpT0H6VSpA1b1Vcz5ntibJ06eLWlXzSzJQTbilbQzGli5bYzDhFskbFwbpV2ZR3d1S73qYUixQZd88cwgOdmNvO4zFVoYwp1wHVQTEmoDrGJMeDjjgIJBYyUDVQDUZAy7IizQZzwvzPUwr99ZLRCvcAgFBFuz8JyXiWQLARiYsnsApB9HhDhi5F4j7cV3JkiXdCx6RExheuXKlwm2iIXLY88ceuVj3CKKVgWoAt0MD1ZhbhxIeEHn0QhuDBqqp6NpB+pVZVLMPqnzXLly4UBe9WSRmq02XLl10rypnXeBVFeaUa6DKvipO3mNvB4dwcAIdv+Oqxv4oA9Xg3SrIyyH43fPWFaaVe3uaVrmjFYt3nAwcmVgp5ZCWsKcg/cpA1UA1Zn83i2rCrwIbgwaqCXeeLC4M0q8MVBMHVY+jOI8C92C2/3DGDzHZSeyjx/CXnUXrVPSPoPfMFVCNVkh8qA899NC4Bw6YRTV2Ewd5OQTtKHktv2nl3qKmlWnlroB7ziD9ykDVQNVA1X1suea0MWig6tpXguQL0q8MVBMD1azag7BYRAfgQKVEPaKCtHeq86YNqLpW1EDVQNW1r2SVL8iLNBnPC/M9TCv31jOtUqOVgao7qPZq3VpenjTJvSHCnrNIERF+/k2JnLAbdglcy3/11VdLz56xTxzN6j42Bt3HoGt75NV8Qb4HDVSTD6p5rV8ZqOahFg3ycshD1U6oKqaVu2ymlWnlroB7ziD9yibJ7pPkXnffLb379nVvCMuZbxRgEaPnyJGZ9bUxGLvp7TClxIdFkH5lhykZqMbraQaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxU3UF16dKl7o2QB3OyjQiXN6c0Z44IP/klnXKKVGrZ0kDVob0NVB1EipElyLvdQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKm9o9fbbb8uxxx67xynB7rX7LyenAg8fPlxD4ABGjRs3DnybIP3KQNUdVAM3RB67IEi/0jA+FsrHqQfYGLQx6NRRRDR+Z4UKFZyyG6gaqMbrKAaq8RQK0edBXg4hqlZKimpauctqWuUNrYi7SnzUZJwYDKg+8cQTmSe2X3rppe4i/ZszSL+ySbL7xC9wQ+SxC4L0KwNV936VqjF4xlFnSN2ydWXN1jXy3LznovbGI4odIa1qtZKd/+yURz9+VPNg8Tz1iFOlYIGC8uPvP8pLC17SmM7JSmZRTVzJIGPQQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKne1mjx5sixbtkw4JIaYaH/99ZcUKVJEWrduLbNnz5YFCxZoARs1aiQVK1aUUaNGaZ7SpUtLs2bNBEAlTuvGjRvl8ssv13hrP/30k17TsmVLmTVrllStWlWqVKmiMa07duwob7zxhixfvlwKFiwoxx13nJQrV04mTZok++yzj7pVNm3a1EDVvVsEzmmT5MCSZV4Q6H1lFlVny1cqQHX/ffaXznU768mkG7dtlH6f9ova8OQ5YN8D5B/5RwCb8geWl9bHtZYdO3fIjl07pGihojLtf9Pk458+TrzjRFxpYzBxKYOMQQNVA9V4Pc1ANZ5CIfo8yMshRNVKSVFNK3dZTavc1WrcuHFSokQJIX7q0KFDpWvXrvLMM88oLK5fv16tCEuWLFE4rVy5sgIpnwGx27dvl23btkmTJk1k8ODBUrduXZkzZ47cfPPNQuw1Yq4BwNWrV5dq1arJY489Jtddd53Cbbt27WTKlCkKq7gMr1y5Uu9FXDbKYBZV934RNKdNkoMq9l/+QO8rA9VcBdW2J7SVQ/c7VArtVSgmqNY/sr6cedSZCqV777W3guqV1a+Uow86Wp7/6nlZs2WN1DmijqzevFoWr1+ceMcxUE2adkHGoIGqgWq8jmegGk+hEH0e5OUQomqlpKimlbusplXuagWoApFYNUeMGCG33nqr/nvmmWcqUNapU0f++OMPWbNmjcaiLly4sDRo0EA+/fRT2bBhgxQtWlT/P2zYMKlRo4YsXrxYYXT+/PkKqsRcO/roo/UZhP+65ppr5L333tM8U6dOlV27dul99tprL83HXte7777bQNW9WwTOaaAaWDKzqLpI1rChCD//piDv9mRbVCuVrCRX17xaJn43US6oeoFs2rZpD4tq4b0Ly12n3SU//PaDHLL/IVJs32IKqrfVuU1KFC4hf+/6W/YuuLes3bpWXlnwisJuspKNwcSVDNKvDFQNVOP1NAPVeAqF6PMgL4cQVSslRTWt3GU1rXJXq6xAFWgETAFV3HuByzFjxqiLbrFixXQP6XPPPaeuwsAmrr8fffSRwinWVv7/66+/yjvvvKOWWayy3bp1k5EjR+r9Nm3aJCeddJJ+BtTiosffWrRooZDM/RctWiS2R9W9j7jktEmyi0rR8wR6X5lFNdcsqnefdrf88fcfMnDOQOnZsGdUUG1Vs5WUL1Fe+s7qK+1rt88E1U51O0nxfYvLqs2rFFbLFS8nC39ZKGMXjU2845hFNWnaBRmDBqoGqvE6noFqPIVC9HmQl0OIqpWSoppW7rKaVumtFUDp7V3dd999tbAAp/c7//fyeDXZunWr7LfffpkVA1xx8eWHaz/88EO1wr766qu6R5UfrsE6u3Pnzsy87srsmTNIv0q2NSc75c6Jaw1UE1c5SL+yw5Ry5zAlXH271++ujcy+0wJSQH9ftmGZPD//+czG71qvq2BV9ef5c8efsmrLKqlYoqI8+cmT8seOP+Te0++VLdu3yOOzH0+84xioJk27IGPQQNVAZo0P2wAAIABJREFUNV7HM1CNp1CIPg/ycghRtVJSVNPKXVbTKv9phesvLsJly5aV5s2bqyU12SlIvzJQdQeKZLdT2O4XpF8ZqLr3q2SOQd4n7Dv1Ur1y9WT7zu0y4dsJwgFLpx95usz8caa+d3D3JZ1c5mTZZ6995N2l7+r/G1dqLP/b8D8F1JqH1JQFaxfI+G/HJ6272mJR4lIGGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusppWeUMri6Pq3o65ndMmyYm3QKD3lbn+5prrr7+Fcf1lf+lTnz4lTSo1kTpl68icFXNkytIpmdlw9/X2qO5VYC91BS5VtJR+zkFLQ+YOkQ1/bki840RcaWMwcSmDjEEDVQPVeD3NQDWeQiH6PMjLIUTVSklRTSt3WU2rvKGVxVF1b8fczmmT5MRbIND7ykA1LUA10dYuWaSkhqZZuXllUmOoUh4bg4m2ikiQMWigaqAar6cZqMZTKESfB3k5hKhaKSmqaeUuq2mVu1pZHFWRZLodurdm7uW0SXLi2gd6XxmohhpUE+8l8a+0MRhfo1g5goxBA1UD1Xg9zUA1nkIh+jzIyyFE1UpJUU0rd1mTqdXnn3+usTo5ZfbUU0+V7t27S/369eWBBx6QiRMn6om0nFDLabJHHnmkPP3003qibKlSpeTPP/+U4sWLS6VKleTll1+Wxo0byyuvvKIxPgmrcswxx8iMGTM0dAplrlWrltx33316f+7BfTkoiDig119/vYZbIWRLlSpV5MUXX5TDDz9cryfe6PTp06Vhw4b6+0EHHeQsVjK18h5qcVQNVFPRr5w7dcgyBtLKQNVANUb/NlBNfOAHGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusiZLK0KcEIeT1KdPH3nooYdk27ZtsnDhQmnXrp2GUeF0Wk6jPeSQQzSuJ6fPVq1aVZYsWSIHHHCAXrNs2TJ58skn9fMzzjhDBg0apNcPGTJEIZZ01113KRDvvffe8u2330rlypUVXm+44QaZMmWKrFixQq+vXr26hlnp2rWrQjPPOO2006RJkyYKucAwUO2akqWV/3kWR9VANRX9yrVPhy1fIK0MVA1UDVSTPsSDjEEDVQPVeB3QQDWeQiH6PMjLIUTVSklRTSt3WZOplQedWDnPPPNMad26tVpOsXBmBaqrV69WuCQ2aOfOnRVUly9frtceccQRUrJkSfnqq6/UWjpt2jRZt26dAiwJSyxWV0K4zJ8/X6/lHuTFCnvggQdq/FHglLii/FBOYonyTOKGArAuKZla+S2qQHW5cuVkxIgRcuutt+q/6GdxVF1aJXx5zJqTeJsFGoMGqgaqBqqJD7YYVwYZgwaqBqrxOqCBajyFQvR5kJdDiKqVkqKaVu6yJlOrn376Sd1tsRJ6VtI1a9ZIp06d5JlnnpHff/9d3XsB0hNPPDHTosrfPvvsMy20B6obN27UfEBl4cKF1W0XN15Shw4dZOrUqTJr1qxMUC1durTCKe68HTt2lHnz5qmlFQht27atVKxYUbp16yYtWrTYbfKGKzGQ65KSqZXL88hjcVRdlQpPPgPVxNsq0Bg0UDVQNVBNfLAlA1Q/6i29pvdKehnS9Ya9GvaSng16ZhYv8n3FNibmHJb+U8BANQ/1hkBf0Hmo3olUxbRyVy1ZWgGhWAXPOecc6d27t7rxssd00aJF8sYbbygk9ujRQzZs2CADBw7UPaKe6y8WUyAzK1B99dVX1ULavn17uemmm6RevXqyefNm+eOPP9TFNx6oYknF1RdQ5frHH39cXYcnTJjgLFaytHJ+YIoyWhzVFAnreFsDVUehomQLNAZTDaqXXSbC4tmOHSKLFom8/bbIrl27l7pCBZFLLhEpXFhk3TqRceNE1q8XOeEEkdNPF8GbY9UqkVGjRHbuTFwYrmzYMOPn3xREKzvQzD3mbPYaKfxXB+lXZlE1i2q8Hm+gGk+hEH0e5OUQomqlpKimlbusydSqf//+Cqi//PKLWjKBykceeUSWLl2qe0P5O26uP//8s9SuXVvef/99tZi6gCpuveeff7689dZbeu+aNWuqRRXLKYcpeaDKXlYsrvwdCyzWUiyqw4cP10OZcA32ygdAsw/WNSVTK9dnhjVfEK1skmyTZNd+HqRfSSpBtU4dkSZNMsCUn733zgDVfz1DtD4FC4p0757x7++/i5QoIfLTTyKvvCKCVeWff9i7ILLffiLffScyerSrDNHzGag662eLRc5S7ZExyBjsbRbV3bwazKK6Z78zUE18LKbdlUFeDmlX+BwukGnlLniyteJQJVyAy5Ytqyfveom/r1+/Xk/4LcjELcG0atUqhVKsoYmknTt3avnY+xr0HsnWKpHyh+WaIFoZqBqouvbrIP0qpaB67bUiRx0lMmRIhiX0llsyLKaDB/9XlRo1Mqyp8+aJvPWWSO3aGZ9hXQUq8SJ5990MmAVaH3rIVQYD1ewpZXFUs6FfkDFoFlWzqMbragaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxUDVRde1aQfpVSUC1aVGTffUU2bBBp2lTklFP2tIo2ayZy/PEZIMui3ebNIpMnixxyiAieHADse++JdOkiUqCASO/eGcCaaDKLqrNyZlF1lmqPjEHGoFlUDVTj9TQD1XgKhejzIC+HEFUrJUU1rdxlNa1MK3cF3HMG6VcGqgaqrj0rSL/KNqgClJdfvmfRfvtN5OWXM/7O59Wqifz9t8iwYRlWVS9hTcWq+scfGRALtAKr/fuLdOuW4RIMmAKppAceyLhPoslA1Vk5A1VnqbIHqtN7S6+P7DAlT0Rz/d2z36UNqHLoCXvFCngv5BhjJLIRA30pJT7uQnGlaeHeTKaVaeWugHvOIP2KA6XYF5tf099//+3sWv3X33/JXzv/yjdSXdzyYhnZb2RmfYP0q3wjUoyKBtIqu3tUy5UTueaaPUuycaMI4bE6dhQpVSpj/+nIkSL83Z9w9T3vPJEPPhCZMSPDcooltk8fkX32EalXL+PfWrUyLK6AanaSgaqzegaqzlJlD1Rtj2pCe1S9mPOxmAmmcg2rl3hL58yVuQ6qnPB5ww03qKDEPuTQE2IrxkoGqrE7RqAv6JzpX2n7FNPKvWlMq9Ro1aZTGxn11Cj3m1vOfKNA13u7ysP3P2ygmkCLB3pfZRdUsyrfOeeInHpqhlvv4sUZltFffxWZP1+EOc7y5SLvvJMBp5s2icydK9KoUcbvnPzbpo3ImjUZ1+IGzO9DhyagiO8SA1Vn/QxUnaXKHqiaRTUQqHLQ49dffy0XX3yxHkLJeRz+9MUXX2hceGLM//jjjxqf/qSTTkq8MdPgylwH1VGjRmnQ+tdee01mz54tbdq0ke9wgYmRDFQNVJMxbgJNZpLxwBDfw7Ryb7wgWo39dKx88nNGyJ38kOoeUVfqlq2bWVUOrCJckaXoCnDYmJeC9Kv8rmcgrVIJqh06iBx88O7NgYvvSy+J3HjjfwcrNW8uctxxGfmAWcJhLVgg0ratyBFHZPx9+3aRAQMImpy95jVQddbPQNVZqj0yBhmDtkc12B7V8ePHazSDfv36ydq1a/cAVcL/3XnnnRoGkLzErSemfJhTroPq6tWr5bjjjtMQEB9//LHcfvvt0rlz55iaGqgaqCZjwAV5kSbjeWG+RzprxSLXscceq6uH2U2cOowrLu8iViqJqRo0BdHK9l3avkvX/hWkX7neM6/mC6RVKkE1iMC4+7LfdcWKjJirXipWTGT//TPiqCYjGag6q2ig6ixV9kDVLKqBLKqe2Lj8RgNVohVg9OPfL7/8Upo0aaL5wpxyHVQh/VatWsmNN94oc+bMkX322Ucmc+qdiIIrKweR6W7ii/2bAn0phbmlHMpuWjiIZP3GXaQQaIUnxgknnCCVKlUKXK/ICwDVJ554Qs4991xZtGiRbkMImoKMQQNVA1XX/hWkX7neM6/mC6RVuoBqTjWGgaqz0gaqzlJlD1Rtj+oeoBopaL169TTOvD/FAtVixYqpV+phhx0mvAsbNGigcenDnHIdVHH1PfroowX4ZPMvIkdbJfBENotq7O4W6As6zL02CWU3rdxFTIVWLEYtW7ZMduzYoYeo/fXXX1KkSBHdn85q4AJc34QtW42kYsWKwhYB8rAfo1mzZrpVgMMENm7cKJdffrksXLhQY5+SWrZsqQtcVatWlSpVqsigQYOkY8eO8sYbb8jy5cs1RiteHLidTpo0SRfHWH1s2rSpgap7twic0yZ+gSXLvCAVYzDx0qT3lYG0MlDdbZKcVcvawpotrLmO/CBj0OKoBnP99dogFqiefvrp6hZ84oknyty5c6VPnz4yceJE16ZLy3y5DqqPP/64Uv/gwYN14+8pp5wiK1eujHkapIGqgWoyRlKQF2kynhfme6RCq3HjxkmJEiX0ZTp06FDp2rWrPPPMMwqL69evF6ybS5YsUTitXLmyAimfAbHbt2+Xbdu2qUsL7426deuqN8bNN9+shwz88MMPCsDVq1eXatWqyWOPPaaHCwC37dq1kylTpiis4jLMu4Z7ffLJJ1oGs6imrqcaqCaubSrGYOKlSe8rA2lloGqgGqM72/sq8XEeZAzaHtXsg+off/yhi/W1a9fWrZMHHXSQdOnSRfeqYgi4//77E2/MNLgy10EV6+kFF1wg7FX9P3vnAR5Vtf3tFToBQhGkCxfpivxBkCqgIF1BqSoqAiqocOkIIk1ERaWIUq4UrwgoRRQRFBsdQZAmSJEPKQKiUkIvCd+zNndiEpKc3z6ZM8lMfuc+eeRm1tlzzrvX2TNvdtNjyJAhZhXgxA6KKkXVH8+NTUPqj/cL5jK8YKWiqhKpvZrTp0+XHj16mP/Wr1/fCGX16tVFG99jx45JgQIFJEuWLGYIyw8//CC6Unh4eLj5/7pQQIUKFWTXrl1GRrdu3WpEVbc+0ZEa+h7aZjz++OPy9ddfmxidbhAdHW3KSZ8+vYnTua46qiMURPWRCo9IidwlZOTKxLeyKBpRVB6r+JhEXYuS11e/btKzZdmWclu+28wWYXtP7JWPf/7Yr2nLL37ucXrxDLq/mtR9phUriipFlaLq9wfa5hmkqLoXVV0BOF++fOYP9Do8ODIy0nz/qamrjYtIrly5zB/h8+TJ4/c6DmSBKS6qvps9cuSIAZ4xY8Yk75+iSlH1xwNi05D64/2CuQwvWCUlqiqNKqYqqjq8V+Xyo48+MkN0dWqAziHVJdd1qLDKpg79XbFihZFT7W3V///333/Ll19+aXpmtVd20KBBMmPGDFOeNua6XLu+po26ipn+7pFHHjGSHKxzVCsXrCzVCleT/Nnzm3QbtjzxTdT71OgjOTLnkGtyTXToVcX8FeXBcg8aJvq/dGHpZNm+ZbL20Fq/pS5F1T1KL55B91eTus+0YkVRpahSVP3+QNs8gxRVd6KaVKXpdyF1Kp3SlNg+q36vdA8LTDWiit4jRZWiiuZKUnE2Dak/3i+Yy0gJViqUvrmrmTNnNvhUOH3/1v/vi/GxPXfunGTLli0GtTbWOsRXf/Tc77//3vTCfvzxx2aOqv7oOdo7GxUVFRObnLqyYeXvOV/aI1o2b1nJnCGzhElYoqJ6d7G7pf6/6suVqCuSIX0GI6pPVnpSiuUsJnN3zJXzV85Lx//rKMfOHpPJG5O5b2MsmBRV95llk1fu3yU0zrRiRVGlqFJU/f7g2zyDFFX/i6rfKzSFC6SopnAF+PPtbRoHf75vMJZFVnithQorHfqrQ4R1f8qWLVt68pdGG1b+FlVfjfat2VeyZ8qeoKhmyZBF+tXqJ/tO7DM9rxGZI4yo/rvavyV31tzy5to35eLVizK4zmA5e/ms+f/+Oiiq7kna5JX7dwmNM61YUVQpqhRVvz/4Ns8gF1OiqDolIEXViVAQvW7TOATRbXlyqWSFY03NrLiP6o31mJSoPnbHY1I8d3EZvWa0PFv12RhR7V2jt/m3zmu9Gn1VhtUbJheuXJDX11yfv+qPg6LqnmJqfgbd35U3Z1qxoqhSVCmqfn8QbZ5BiipF1SkBKapOhILodZvGIYhuy5NLJSsca2pmxX1U7UT1hdoviPaq6jxUHR6shwpp5KVI08M6ZeMUOX/1vPSq3ktOXjwp438YjyeKQyRF1T3K1PwMur8rb860YkVRpahSVP3+INo8gxRViqpTAlJUnQgF0es2jUMQ3ZYnl0pWOFYvWHEfVZFADf2tUqiK1ClWR1YdWGWGO2vPqR53Fb5LMqXPJF/9+pVZWKlm0Zry5/k/TY9qwewFZfOxzfLZrs/wRKGo+o1V/IK8eAY9u9gULtiKFUWVokpR9fsTa/MMUlQpqk4JSFF1IhREr9s0DkF0W55cKlnhWL1gxX1UAyeqjUs2lupFqsv6w+tl6a9LYyq+V41eMUN/VVi7V+suOTLlMK/rgkrvbHjH/NdfB3tU3ZP04hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdR9U5U8Zq9MTJftnxmSPDxc8eTU0yC51JU3SP14hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdRTZ2iimeFfSRF1Z6Z7wwvnkH3V5O6z7RiRVGlqFJU/f5A2zyDFFWKqlMCUlSdCAXR6zaNQxDdlieXSlY41pRgxX1U8foJlkiKqvuaSoln0P3VpuyZVqwoqhRViqrfH1ibZ5CiSlF1SkCKqhOhIHrdpnEIotvy5FLJCscaKqzSyj6qeM0GNpKi6p53qDyD7gngZ1qxoqhSVCmq+MMFRto8gxRViqpTWlFUnQgF0es2jUMQ3ZYnl0pWOFay8oaVV6v+4lcb2EiKqnvefAZxdlasKKoUVYoq/nCBkTbPIEWVouqUVhRVJ0JB9LpN4xBEt+XJpZIVjpWsvGFFUY37AY1TTnuRfAbxOrdhNaxjR/ltyxa88GCPLFBARH/+d5w5c0Zy5Li+0rfTcezsMdGftHJUKldJZoydEXO7NnmVVhgldp82rCiqFFWn54Wi6kQoiF63aRyC6LY8uVSywrGSlTesKKoUVTSz+AyipERsWA3r1k2GT56MF87INEOga9+uMumNSRRVFzVu8wxSVCmqTilGUXUiFESv2zQOQXRbnlwqWeFYbVhNnz4dLzgEI//880/Jly8fdGe7/94tu/7aBcWGQlDZvGXl9X6v84ufi8q0eQZdFB9Sp9iw+u9//xtS9257MzbtlW3ZoRD/xBNPsL1yUZE2zyBFlaLqlGIUVSdCQfS6TeMQRLflyaWSFY7VhlXXfl1lyptT8MIZmWYIdOzZkUPpXNa2zTPo8i1C5jSywquSrMgKJ4BH2uQVRZWi6pRZFFUnQkH0uk3jEES35cmlkhWO1YbVk72elK27t+KFB3lkgewFpGCOgjF3YTPnK8hv3fryb7nlFhk6dCh7KKzJ2Q1ndVF8SJ1i016F1I27uBmywqGRlTesKKoUVafMoqg6EQqi19mQ4pVFVt6w4rxLzrtEM4vPIEqKooqTIiuysiGAx7K98oYVRZWi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rIavGC7Dlg/DCw/yyGH1hsnQuomPLHr99ddlwIABQX6X/r18iqp/eaZoaWxIcfxk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVuxRZY+qU2ZRVJ0IBdHrbEjxyiIrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96wYo8qRdUpsyiqToSC6HU2pHhlkZU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1ixR5Wi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rNijSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW7FGlqDplVqoR1XPnzkl0dLTkyJEjyWuOvyIWG49/cJGFU7qTFU7IHSuKKkUVzTG2VygpyhdOiqzIyoYAHsv2yhtW7FG1F1V1pQsXLki2bNkSrZTIyEiJiIiI87qep67l5Fl4TQcmMsVF9eLFi9K5c2c5ffq0pEuXTipVqiTDhw9P9O4pqoknBhtS/KEhK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesGKPqp2ozpgxQ8aNGyeFCxeWq1evyqxZsyRfvnwxlfPFF1+IxmTNmlUOHDgg48ePN171/vvvy6JFiyR79uyiEqsxuXPnxis1BSNTXFQV3oYNG2TixIly7do1WbhwobRo0ULSp0+fIBaKKkXVH88LP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFXtUcVFVMc2YMaOcOnVKcubMKT169JCCBQvKwIEDYyqnaNGiMn/+fKlWrZqR0Xnz5smSJUskf/788s0330iFChWkcePGpoOwTZs2eKWmYGSKi+qQIUNk48aNsmnTJilSpIiMHDlSmjRpwh5VF0nBhhSHRlbesKKoUlTRzOIziJJiLyFOiqzIyoYAHsv2yhtWFFVcVPfv3y8NGjSQffv2mcqYMGGCbNmyRaZNmxZTOXXq1JFXX31VatWqJaNHj5YpU6aYeB2pOnv2bLntttvkxx9/lK1bt0qePHnwSk3ByBQX1SeffFJWrlxpjH/z5s3Sr18/OXjwoISFhbFH1TIx2JDiwMjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKq4qG7bts30gu7evdtUxsyZM2XFihUyderUmMrR3/Xt21eaNm0qCxYskLJly5pRq7Vr1zZzVitWrCjvvvuuLFu2TKpXr45XagpGprio9u7dWzJnzmz+AqCHdk+vWbNGSpYsKatXrzb/jn8MGDAg5ldsPP6hQxb4k0RW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVG9UVTjk1bJ1B5SXUApPDzcLDyrnXljx441ob169Ypziva8qjvpUOFVq1aZocGlSpWS8+fPm7mr2ruq6wKNGTMGr9QUjExxUVX7f++998zY6cOHD0uNGjXkyJEjnKPqIinYkOLQyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqniPqtaA9ojqmj4617RRo0ZGOlVkd+zYIVWrVpV27dqZn5YtW0qnTp1EhwK3b99eChQoINu3b5dixYrJ008/bRZY6tatG16pKRiZ4qJ66dIlMyFYh/7qXwoUukJN7OBiSolnCxtS/EkiK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo2omqrtzboUMHUxnNmjUz805VQFVWdTXfpUuXSs+ePc3rt956q1npN0OGDGb135deesmsEFy8eHH56KOP4qwWjNdu4CNTXFR9t3zy5Ekzfjqx1X59cRRViqo/HhN+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ55Q0riqqdqGot6BBeHbqrK/4mdOiQ3+PHj0uhQoXivHz58mU5ceKE6V0NpiPViCoKjaJKUUVzJak4fujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeeUNK4qqvajiNREakRTV0KhHcxdsSPHKJCtvWFFUKapoZvEZREmxbcdJkRVZ2RDAY9leecNq+PLhMmzFMLzwII8cVm+YDK07NOYu4udV/M64IL9dv1w+RdUvGFNHIWxI8XogK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKoskfVKbMoqk6Eguh1NqR4ZZGVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVQpqk6ZRVF1IhREr7MhxSuLrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w4qiSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hTVxY8slgb/aiBZXsliLjY8Y7is7rRabst3m1y6eklGrBwhb65984Yb+bj1x9K8dHM5f+W8zN85X55f8rxEXYuSpyo/JaPvGy3ZMmaTvSf2Ss1pNeX0pdM4iAQiOUfVHh9F1Z5Zqj2DDSleNWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hDVzpU6S49qPeSO/HeYiwwbHmb++1n7z+SBMg8YAVVp1aPo2KJyOPJwzM30rN5TxjYaK1ejr5qfLBmySPel3WXm1plycsBJCQsLk3OXz0m2TNlkxYEVUu/9ejgIimqyWPlOpqj6BWPqKIQNKV4PZOUNK4oqRRXNLD6DKCnKF06KrMjKhgAey/bKG1b+ENUZLWZIy7ItJWfmnEYsfaIa+UKkZM+UXSJei5C3Gr4lT9/5tLy+5nV54ZsXYm7muye+k3uK3yMVJlWQy1GXZffzu+WXv36R6Zunyxv3vSFzd8yVxxc+LmcHnZXoa9GSeWRmHARFNVmsKKp+wZe6CmFDitcHWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhpU/RNV3ZUf7HJUC2QvEiGrUkCi5cOWCZH81u3St0lUmNZskC3ctlIc+fijmZvKG55UcmXLI/lP7ZXzj8aZn9vM9n8vxc8dFe2oHfjtQXlv9mvzd/2/JkzVPTNk4jbiRHPprT449qvbMUu0ZbEjxqiErb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96w8lJUo4dEy6lLpyTP63nk4dsfltmtZstX+76Sxh82vuFm5redL63KtTJzWSv/p7K8VOclaX97ezNf9d0f3xWfBGcYkcHMX3V7UFTtyVFU7Zml2jPYkOJVQ1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGHlpaheGnxJwiRMMo3MJEPqDpHh9YabIb2dF3WOuZl0Yenkl+d+kdI3lZbtfKxmAAAgAElEQVQDpw9InRl15ODpg2YRpX41+8nYH8ZK7696y7lB58z81fQj0uMgEoikqNrjo6jaM0u1Z7AhxauGrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w8pLUd3WbZtUuLmCGe5br3g9yZ0ltzT6sJGUyF1CBtcZLK+sfMX8u2/NvmZ+6qe7PpVrck32/L1HFv6yUH565ic5e/msLN6z2PSu6vDgEuNL4CAoqsli5TuZouoXjKmjEDakeD2QlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWHkpqlUKVZE1ndZIpvSZzMWvObRGak+vLeMaj5N/V/u3vL3+bbnv1vukXN5ycW7ur/N/Sb438smSR5dIk5JNzGu6InDDmQ3l+9++x0FQVJPFiqLqF3ypqxA2pHh9kJU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1j5U1QTukId2lutcDUznPf3M7/jN/G/yHzh+cyw4B8O/5Csuam+N+bQX+sqEPao2jNLtWewIcWrhqy8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecPKa1HFrzowkRRVe84UVXtmqfYMNqR41ZCVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVTjfmd4/fXXZcCAATjsNBBJUQ2hSmZDilcmWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZqUqUT1x4oRky5ZNMmfOnOh1x99jiI3HP6jIwindyQon5I4VRZWiiuYY2yuUFOULJ0VWZGVDAI9le+UNK4qqvahGR0fLhQsXjC8ldkRGRkpERMQNL1+9elVOnjwp+fLlwys0hSNTjageOHBAKlSoIF9++aXUrFmTouoiMdiQ4tDIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rCiqdqI6Y8YMGTdunBQuXFhUOmfNmhVHOr/44gvRmKxZs4p61fjx46VSpUoxldenTx/Zvn27LFu2DK/QFI5MFaJ6+fJladu2rezfv18mTZpEUXWZFGxIcXBk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRVXFRVTDNmzCinTp2SnDlzSo8ePaRgwYIycODAmMopWrSozJ8/X6pVq2aEdd68ebJkyRLz+qJFi2Ty5MlGcCmqeD6byN69e0v9+vVlwoQJMmTIEIqqJT9fOBtSHBxZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUUVF1XtzGvQoIHs27fPVIY605YtW2TatGkxlVOnTh159dVXpVatWjJ69GiZMmWKidf87dq1qwwePFhGjhxJUcXTWWTBggXy2WefyQcffCCNGzemqNrAixfLhhSHR1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGFFUcVFddu2bdKmTRvZvXu3qYyZM2fKihUrZOrUqTGVo7/r27evNG3a1PhV2bJlZeXKlXLPPfcYodXe2GHDhlFU8XQWqVGjhhw/flxuuukm+fHHH6V06dJmzHWVKlVk9erVsmbNmhuKGzBgQMzv2Hj8g4cs8MwjK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo3iiq8UnXrl3b9JDqAkrh4eGiiymFhYXJ2LFjTWivXr3inKI9r+pOOsR31apV0q5dO2nUqJFUrVpVTp8+LXv27JGnn37a9LYGw5Hic1QPHTokFy9eNKw6d+4szz77rDzwwAOmMhI6uOpv4mnFhhR/5MjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKp4j6rWQMWKFWXixIlm8VmVz+HDh4uK7I4dO4yIqpTqT8uWLaVTp06iQ4Hbt28vv//+u6lAHSo8ZswYM3e1SJEieKWmYGSKi2rse2/evLkMGjSIc1RdJgQbUhwcWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVF1U5UdUGkDh06mMpo1qyZzJ4926ziq7KqW9IsXbpUevbsaV6/9dZbzQJKGTJkiKm8DRs2mHmqXEwJz2frSPaoJo6MDSmeTmTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFFU7UdVaOH/+vBnCqyv+JnTokF+dUlmoUCG80lJxZKrqUUU4UVQpqkieOMXwQ8eJ0D+v27CiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UcVrIjQiKaqhUY/mLtiQ4pVJVt6woqhSVNHM4jOIkmLbjpMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZlFUnQgF0etsSPHKIitvWFFUKapoZvEZRElRvnBSZEVWNgTwWLZX3rCiqFJUnTKLoupEKIheZ0OKVxZZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUWVouqUWRRVJ0JB9DobUryyyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqhRVp8yiqDoRCqLX2ZDilUVW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVGlqDpllpWoXrt2zZQXFhbmVK5nr7/++usyYMCAmPLZePyDmizwtCMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqhSVJ0yy1FUDxw4IB9++KGsW7dOVq5cacq79957pXbt2nLfffdJxYoVnd7Dr69TVBPHyYYUTzWy8oYVRZWiimYWn0GUFOULJ0VWZGVDAI9le+UNK4oqRdUpsxIV1atXr8qoUaNk6NChpozKlStL4cKFRX+/adMmOX78uPl9x44dZfz48RIREeH0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKgePXpUGjRoIN26dZNWrVpJwYIF45R15swZ+f7772X06NHy8ssvyz333OP0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKhGR0eLzknVn9atW0u9evWkZ8+eCZZ3+fJlyZQpk9N7+eV1iipF1R+JxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq+8YUVRpag6ZZbjHFUtoHnz5mZ+6qFDhyRnzpxOZXr6OkWVouqPBOOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElUd1rt8+XJTVokSJWLK3LZtm2TLls3pPfz6OkWVouqPhOKHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElXtUf37779vKOvbb7+V8PBwp/fw6+sUVYqqPxKKHzo4RRtWFFWKKppZNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqJKUXXKLEhUfYVERkbKpUuXJF++fE7levY6RZWi6o/k4ocOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKoUlSdMgsSVX1AX3jhBZk3b54pT/dPHTx4sNSpU8epfL+/TlGlqPojqfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqhRVp8yCRLVt27ZGUvW/2bNnjxHWY8eOceivE+EAvs6GFIdNVt6woqhSVNHM4jOIkhIhK7LCCeCRzCuywgngkTZ5RVGlqDpllqOonjx5UvLkySMjR46UF1980ZS3cOFCeeihh+Snn36SSpUqOb0H9Lq+T0REhKRPnz7JePaoskcVSiiHIJuG1B/vF8xl2LCiqFJU0Vy3ySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UdXtQy9cuJDkYranT5++YZcW5Dy8lgMX6SiqV69elYwZM8pjjz0mU6dONSL52muvmaG/e/bskVKlSiXrag8ePCjt2rUz814zZMgglStXNmUndqRGUT1//ry59kDtJZsYGzakeCqSlTesKKoUVTSz+AyipNijipMiK7KyIYDHsr3yhhVF1U5UZ8yYIePGjZPChQuL+tmsWbPirBu0YcMGGTVqlOTKlUuOHz8uw4cPl6pVq4rTeXjtBj7SUVT1kjp37izTp083V5cjRw45c+aMGQb88ccfJ/uKtaf2ypUrBubFixcla9as8vvvv0uhQoUSLDsQovqf//xHnnnmmZj31y15VKZ1nq72+sY+fD3OPXr0kPHjxyebR3IKYEOK0yMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqjiourrODx16pTpLVXvKFiwoAwcODCmcp588km56667pFu3bqK+dPjwYRk7dqzpcEzqPLx2Ax8Jiap2MX/66adGTLU7uX379kZUc+fOnewr1rLDwsIkS5Ys8tlnn0nv3r3l119/Nb9L6AiEqE6ZMkW6du0qLVq0kFtvvVW+/PJL2blzp5HpIUOGxLksvf4RI0ZIjRo15IEHHkg2j+QUwIYUp0dW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVHFRXX//v3SoEED2bdvn6mMCRMmyJYtW2TatGkxlfPdd99Jy5Ytjb+oUy1btkzy58/veB5eu4GPhET18ccfly5dusSs8quGrkOBP/roIwMgucfly5fl1VdflbfeessI8b333ptokYEU1UWLFsn9999vFrJQYX3wwQfl2WeflUGDBpl/f/jhhzJnzhzDRsW9b9++smbNGunVq5f8+OOPUrp0aXnppZekQ4cO8s0338Q5T8vWMv15sCHFaZKVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVRxUd22bZu0adNGdu/ebSpj5syZsmLFCjMt03cMGzbMLHiro0B1WPDTTz9tdmpxOg+v3cBHJimq77//vjF2XTSpSJEicvPNN5sr1HHPKqt///23WWgpOYcO91XJ0/md+l7aje07Vq9ebcQv/jFgwICYX3nRePh6VN988025++67jTyrSPfv31+qVKlirleP6tWrm3Hf5cqVM13wY8aMiRmy/Pzzz8v8+fNFE0tZrV27Ns55n3zySZx7TQ5D37lesPDHdaXGMsgKrxUbVv4U1UcqPCIlcpeQkStHmovNmD6jdKrUSW4Ov1muXrsqK35bIWsPrb3hRtqUbyOlbyotV6KvyM4/d8qSvUsk+lq0VCtSTWoUqSHZMmaTQ5GHZOEvC+XM5TM4iAQi6xWvJ/rDZ9Aeo01e2ZceWmeQFV6fZEVWOAE8knnlDSuK6o2iGp907dq1pVatWmYBpfDwcNFFkXTUqQ7p1UM7x3yHdh7qgrc1a9YU7V3t3r27bNy40fE8vHYDH5mkqH7wwQdm3mV8UdXL1O5n7d1M7qHzQRcvXizaw4gcgexRjX09OhlZ5XLdunVGOHVBKRXm2HNUdSXkevXqyeTJk80cV5VsTbC3335bChQoEOc85F5tY9iQ4sTIyhtW/hDVygUrS7XC1SR/9uujNYYtH2b++/DtD0uZvGXkStQVI616jFk3RiIvRcbcTPUi1aVxycZGTPUnQ7oMRlS3/7Fd+tfuL9euXZMzl85Iziw55efjP8v8nfNxEAlEUlTd4+MziLMjK7LCCeCRzCuywgngkTZ5RVHFe1S1BipWrCgTJ06UChUqSKNGjcyURPWMHTt2mEWTmjZtKjoKVqdoao+qDv+dO3duguc1bNgQr9QUjISG/uq8TB3vfOedd/r9UnXir/bcxj6SWk04kKKqQ5FVPG+55RbJmzevuUTffrJLly6Vxo0bxxFVlXedp6rd8Trcd/PmzWYV45dfflnKlCljRNV3nt9BCoc82TC1aUhtyg3FWBtW/hDVlmVbStm8ZSVzhswSJmExojrw7oGSKX0meXXVq9Lo1kZyZ6E7ZfXB1fLN//smBvsT//eE/CvXv2TijxMl6lqUdL+ru/x5/k9Zvn+5tLmtjew4vkPm/zJfhtQdImcvnZW31r2VrCqjqLrHZ5NX7t8lNM4kK7weyYqscAJ4JPPKG1YUVTtR1U499Qs9mjVrJrNnz5bt27cbWY2MjJTly5ebqZna86q7kbz33numdzWh8xJbCwiv6cBEQqKqW8joqlI61lmXRB46dKiZe1m2bNnAXGWsdwmkqPrmqMa+SZ+ofvXVV6J/jYjdo6q9rNrtrlv2qNzrsGD9a4b+pUN/VFR953kBjg0pTpWsvGHlD1H1XVnfmn0le6bsMaI6tO5QM5x31KpRUqVQFWleurn88tcv8vHP/6w+Hp4xXDKnzywnL56UJiWbmOG+u//eLfN2zJM+NftIlgxZ5HLUZRPz7f5vZdWBVTiIBCIpqu7x8RnE2ZEVWeEE8EjmFVnhBPBIm7yiqNqJqtaCbompC9vGnioZu3Z05JhOOSxatGicSnM6D6/hwEZCoqorSKlwrVq1yoApWbKkma+qAps5c+aAXnEgRNW3Pc3nn38uzZs3j3N/iYlqz549zXhx7R3WXmLf0a9fPxk9enRMTyxFNaDpkuib2TSkqeOKU+4qbFh5Kqr1hsrFqxfl9dWvS4WbK0ir8q3k1xO/yofbPrwBTtvb2kr5fOXlavRVmbJpiumJ7VKpi4m7cPWCqNAeOH1AZmyekSywFFX3+Gzyyv27hMaZZIXXI1mRFU4Aj2ReecOKomovqnhNpJ7IqKgoWb9+faIXlC5dOrPuT0KHo6j69u3RHlTdhkUPHb6q46B17mqlSpUCSiIQoprcG9IFog4cOGAWVtJ9ZwN1sCHFSZOVN6y8FNWX6rwkEiby8oqXpW7xunJP8Xtk89HN8tnuz2JuRoeyPF/1ebkp/CY5dfGUzNgyQ05fPC2tyrWSCvkriO/6Bt09yMxz1Q/J5BwUVff0+Azi7MiKrHACeCTziqxwAnikTV5RVNOGqOqwZN37NalDe4JdiaqeFBERYd5Ae1WzZctmhgHrqlK636m/t1hxehSCQVSd7sGr120aB6+uIVjKJSu8pmxYeSmq3ap2k/zZ8pvhvsVzFZesGbLKzG0zJXeW3FKnWB0zjDd31txSs2hNiYqOkl1/7ZJrck3+vvC3nLt8TpqWaip/nf9LthzbIvVL1I/pncVJ3BhJUXVPzyav3L9LaJxJVng9khVZ4QTwSOaVN6woqmlDVC9duiS6k4oeOixZF53t2LGjGaGr23fq3Npkiapuu9KnT584WaqTdXVV4EAfFNXEibMhxbORrLxh5aWoFspRSDpX6izp06U3F3/w9EGZvnm6WeVXV/tdf3i9lMhTQvKF54tzc+evnJc31r4hXat0lZuz3WwWaLp09ZIs3rvYrAacnIOi6p4en0GcHVmRFU4Aj2RekRVOAI+0ySuKatoQ1djZ41toVuW0bt26MnLkSLPuUbJEVd/g6NGjsmTJEvn999/Nare6n6iOKQ70QVGlqPoj52waUn+8XzCXYcPKn6KaEDMd2lskRxE5fel0nG1pUL66mJJuTfPH2T/QU5KMo6i6x2iTV+7fJTTOJCu8HsmKrHACeCTzyhtWFNW0J6q+hZ50ZxVd36d169ZmO88//kj4e5njHFVNTd1kVlew3bt3r8lU3Wz2l19+MfuKZs+eHc9eP0RSVCmqfkgj4YcOTtGGldeiil91YCIpqu452+SV+3cJjTPJCq9HsiIrnAAeybzyhhVFNe2JqmbSbbfdJjt37jTr+Jw5c0Z69Ogh48ePTzDJIFHVlW+/+OKLGwrQwimq+MPrdSQbUpwwWXnDiqIa90MHp5z2IvkM4nVOVmSFE8AjmVdkhRPAI23yiqKaNkVVVwB+9dVXzR6wjz76qHTt2tUsQJvQ4SiqvlV/tSdT9xV94IEHJH369GaT2Y0bN0qgN4xljyp7VPHmkqwCzYqiSlFFc87mywxaZqjGkRVes2RFVjgBPJJ55Q0rimraFFU8m0QcRVWH+aqY9urVS7JmzSo6CVZXbtJuWx3+W7ZsWZv3S3YsRZXylewkEuHQXwuINh/QFFWKKppaNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqKaNkT17NmzCfaYFixYUHbv3p1kcjmKqp79+OOPy8yZM2XOnDny8MMPxxTIob/4gxuISDakOGWy8oYVRZWiimYWn0GUFP+whpMiK7KyIYDHsr3yhhVFNW2I6vnz582iSb5D5VSfqRYtWsinn36afFHV/W+WLVsm9evXl7lz58qmTZukXbt2Urt2bTxz/RTJHlX2qPojlfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVONnj3rlLbfcIiVKlJB169a5E9WLFy9KtWrVRJcPHj16tPTv318aNGiAZ6pHkRRViqo/UosfOjhFG1YUVYoqmlk2eYWWGapxZIXXLFmRFU4Aj2ReecOKopr2RFX3S9X1jT766CPZsGGDccwMGTIkmmCJDv31zU31LR18880337DC77Zt2yRbtmx49vohkqJKUfVDGnGOqgVEmw9oiipFFU0tm7xCywzVOLLCa5asyAongEcyr7xhRVFNO6L622+/yeTJk2XWrFkSEREhHTp0kGeeeUby5MnjrkdVz/rggw/M/qnLly+X0qVLS/78+eMU9uWXX0p4eDievX6IpKhSVP2QRhRVC4g2H9AUVYoqmlo2eYWWGapxZIXXLFmRFU4Aj2ReecOKopp2RLVhw4by9ddfS+XKleXUqVPme/j9999vdpRJ6oAWUxoyZIg8+OCDUqlSJTxTPYqkqFJU/ZFa/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk88obVhTVtCGqul/qHXfcIVOnTpXOnTubZOrdu7eMHTtWLly4IFmyZEk0wSBRxdPT+0iKKkXVH1nGDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNW6KqO8jokF89Bg4cKK+99pqcPn3aDAVO7KCo4s9eqo9kQ4pXEVl5w4qiSlFFM4vPIEqKW67gpMiKrGwI4LFsr7xhRVFNG6Kqq/yWLFlSDh8+LPXq1ZPIyEj56aefpGvXrjJp0qQkk4uiij97qT6SDSleRWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFNW0IaqaPTt37pTx48fLnDlzJGvWrNKxY0fp06eP6GK9SR2QqKr5jhs3Tl588UUZNmyY/PLLL9K3b1+pXr06nrl+iuTQ38RBsiHFk4ysvGFFUaWoopnFZxAlRfnCSZEVWdkQwGPZXnnDiqKadkTVl0FXr16VdOnSmR/kgET1gQcekM8//1wWLFggrVq1MuUWKVJEDh06hLyHX2MoqhRVfyQUP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjqmTNnkpyHqluhaqdoQoejqKr5ZsyYUaZMmSLLli0zsqo9quXKlZNdu3ZJmTJl8Oz1QyRFlaLqhzTi9jQWEG0+oCmqFFU0tWzyCi0zVOPICq9ZsiIrnAAeybzyhhVFNW2Iqq7sq9uc6hzVRo0ayZUrV+S7774zKwGXL19eMmfOLO+//747UY2KipJChQrJc889J2+++abce++98sQTT8hDDz0kR48elQIFCuDZ64dIiipF1Q9pRFG1gGjzAU1RpaiiqWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVM+fPy/ZsmWT6dOny5NPPmmSqWXLlrJ3717ZsWNHksnl2KOqZ+t81LfeessUtGTJEmnXrp2UKlVKNm3ahGeunyIpqhRVf6QSP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjq7t27pWzZsjJ48GDzo52gVatWNQssae9qhgwZEk0wSFSvXbsm33//vYSFhZllhSdOnCht27aVfPny4Znrp0iKKkXVH6nEDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNG6Kq00grVqxoxDT20a1bN+OUSR2QqOokWO1V1d7UZ555RnQ/nDZt2pixxf46zp07Z5YrdloFiqJKUfVHzvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVO1FNTo6WnTOpw6ltTncnmfzHknF/vXXX/Lpp58al1TX04V6dRpp9uzZky+q2ns6b948U9DAgQNl/fr18vPPP8vBgwfNBNjkHHrhjzzyiOn2PXDggPTr18/srZPYQVGlqCYn33zn8kMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCtvWFFU7UR1xowZZrvQwoULi6uLGvEAACAASURBVPZSzpo1K87o1pUrV8pTTz1lei/1UBFs3769OJ2H1677yF9//VUWLlwolStXllq1aokOB/ZdZ1KlOvao+lb9HT58uGivZ/r06aVJkyZSp04d2bp1a7J7VV977TXRHttXXnlFjh07JgULFjTvEx4enuB1U1Qpqu4fk3/O5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKo4qLq87FTp05Jzpw5pUePHsaZtAPRd0ydOtXM+VRZ9c37RM7Da9ddpI7E1emi6nt66Jan999/v/Tu3TtmDaTESnYUVZ3wqjfbuXNn03uqP/pmgwYNkpMnT0quXLncXfX/zurSpYs0aNDAGL/OhdXu4H379kmJEiUSLFffX7fL8R16js6d5SGGH1lgmUBWGCeNsmEVVTRK9CetHOkPpRf9YXtkX+M2eWVfemidQVZ4fZIVWeEE8EjmlTesLte8LFdqXcELD/LITGsySca1iTvMSy+9JAMGDEjwLvfv3298SR1JjwkTJsiWLVtk2rRpMfH9+/eXyZMnGyHUKZrauaeH03leY9WVfW+//Xb5+uuvRe+xYcOGovczc+ZM0SHJSbmLo6jqxffp00fGjBkT5z46dOhg3iC5hw4r1p/WrVubovLnz2+GFhcvXlxWr14ta9asifMWeoOJierdUVFyd3R0ci8paM5flS6drErPL8luKowfOjg1G1YqqdG3pJ1nMN3BdBRVPJXiRNrklcu3CJnTyAqvSrIiK5wAHsm8IiucAB4ZP6+GDBlyw8m1a9c2Q2W3bdtm5FOHzOqhDrZixQrRXlTf8e6775otRe+77z5RadVRsNq76nQefsXuIrVX91//+pe88cYb8ueff8rSpUuN92knqN9W/dWtaD755BNj8pUqVTJdzokNz7W5jREjRkhERIT07NnTLFecO3du0W7txBZVSnLo7/LlIvqTVo569UT0538Hh6bgFU9W3rDi0F8O/UUzi88gSkq47zOOiqzIyoIAHsr2iqxwAnhk/LyK7zixS9IFlNS7fD2QY8eONS/36tUrJkxjdGFaPTZu3Gi2E9U1hZzOw6/YXaTuo1qgQIGYob++Uu6++27RebVJHVCPqi4frN3GOjfVH3Ia+4IWLVok77zzjixbtsws2KQ9t+vWrUv0mimqsdBQVN09McIvfjbgbD6gKaoUVTS3bPIKLTNU48gKr1myIiucAB7JvCIrnAAeaSOqWqouPqTbuVSoUEEaNWokun6Q9rjq0Frdl1T/3b17dyOoo0ePlt9++83EJ3SeDr8N1BEZGWmur0yZMjFvWb58eSPZOpI22aKqhRw/ftyUoyvyKoD69evHGYLr9mbV/ps2bWr21tF/6/jlatWqUVQRoBRVhFKCMfzQwdHZsKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeKStqGrnnk691KNZs2Yye/Zs2b59uxFUlcFvvvlGnnzySdOpWKpUKSOrKoQJnRfINW10xOzmzZvNUOSEDh1Fm9gKwFCPqi6apOOgtddzwYIFRlpz5MghXbt2NeOLYxsyXj1xIw8dOmS6hWPPP02oLPaoxqJCUXWbbhweZkHO5gOaokpRRVPLJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRtqKqJesw2tOnT5sVfxM6VApPnDgRZ9sa5Dz8qu0jVaJ1peKkDp2vm9ABiaqeeOTIESOqauW6D07sQ1du0sWPAnFQVCmq/sgzfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80o2o4qWnnkhdMKls2bLmgp5++mmzB+zgwYPNok+6qJLuLtOpUyf3oqrjmHVIrh7ak/roo4+a4b+6hUyxYsXkgw8+kMceeywgRCiqFFV/JBo/dHCKNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB6ZVkT1r7/+Mj282tHZsmVLA0i3J9X9VI8dO5b87WmKFi1qxj8/8sgjZu8b3cvUdyxfvlxKliwpRYoUwWsmGZEUVYpqMtIn5lR+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATwyrYjqgQMHzMjb+++/X1544QW5dOmStGjRwqwCrL2ric1dVZLQ0F9d5Gjv3r0xm8zqOGLdx0e3lPEtg4xXS/IiKaoU1eRl0PWz+aGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqkpER+LOnTs3Dpy3337brFKc1AGJqtqvCmL8Qyfz6h6ogTwoqhRVf+QbP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAemZZEVans2rXLrEysKw43btxYbr31VkdYkKjq9jS6X8+aNWvMf3Wsse7N88MPP4guKRzIg6JKUfVHvvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrssIJ4JFpRVR1eO9HH310AxgdlVu6dGnZunWrmV6akFM6iqqu1JQpUyaZPHmyGe6rw4BHjBghN998s+iWMoGam+q7O4oqRRVvAhKP5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI9OKqCa2PY26pE4jHTRokJm3qr4Z/3AUVT1BF1LS3tSJEyfKs88+a1b7Vbi6ZU1i+/jg1WQXSVGlqNplTMLR/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk84qscAJ4ZFoRVe1RXbly5Q1gVEwLFy4sus3pPffck+Dqv5Co6mpNEyZMkD59+sjAgQNl1apVRlj1/wf6oKhSVP2Rc/zQwSnasKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeGRaEtX58+cnCkbnrOpiSwkdkKj6Trx8+bL8/PPPUqpUKbOfakocFFWKqj/yjh86OEUbVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj0wroprY0N/YpHRHGWtR9U1u1cWT+vXrJ+PHj5fDhw+bcnSJ4TZt2uC14adIiipF1R+pxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq/ICieAR6YVUdWhvzqFNLFDe1Tr1KljL6r169eX7777zqzItGfPHlNAq1atZMGCBWYxpT/++AOvDT9FUlQpqv5IJX7o4BRtWFFUKapoZtnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPDItiaonq/6q4epGrOPGjZNcuXJJ+/bt5T//+Y+89tprZq7q+fPnRZcWDuRBUaWo+iPf+KGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqp6t+qui+vLLL8vgwYOlTJky0rJlS1FRnDJlinTt2lVOnz4tEREReI34IZKiSlH1QxqZVat19WoezgRsWFFUmVfOGXU9wiav0DJDNY6s8JolK7LCCeCRzCuywgngkWlFVD1b9VdFVTdg1Z9OnTpJjRo15KmnnpIvvvhCJk2aRFHFc9GbyHr1RPTnfwcbUhwzWXnDiqJKUUUzi88gSopSj5MiK7KyIYDHsr0iK5wAHplWRDUhIrqDzPTp02XGjBlJAkty1V8V1aQO9qjiyehJJEXVNVbbDx1djezMmTPQCIKzZ89KtmzZ5MKFC2bz4gwZMri+ztRwog0riipFFc1Zm7xCywzVOLLCa5asyAongEcyr8gKJ4BHpiVRbdu2rXz55ZcxcPQ7tR66i4yO3v33v/+dILgkRVUnvia2XLCWpqv+BvpLOIf+xqpHiireGsSLTOpDR/8A884770i9evWkVq1asnHjRrn33nuNqF65ciXRnN+9e7c89NBDsnPnTvNTvnx5efXVV+WFF16Ar1NHK+hq24MGDYLP8TrQ5gOaokpRRfPRJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRaUVUdfHdAgUKyN133y0FCxY0gA4ePCg//PCDqMDqyN0WLVrYiapuSfPSSy+ZIb9VqlSRhHpXDxw4YBZa0k1aq1evjtdMMiIpqhTVZKRPzKlJfejow1OsWLEYyRwxYoQMHTpUJkyYIM8991yCz4IWPHbsWOndu7e88sorZg63buekglu3bl34kp955hmzYFl0dHSi7wMX5qdAmw9oiipFFU07m7xCywzVOLLCa5asyAongEcyr8gKJ4BHphVRPXHihPTv319GjRpldo3RY9OmTfL++++b79ZJHYn2qOqKvrp40tdff20WnVHTVRvWCbG7du0yvT7btm0zW9d88803UrRoUbxmkhFJUaWoJiN9IFFt2LChyfsiRYpIhw4dzBj648ePm78E6bCF8PDwGy5h6dKl0rFjRxOnvbA65v7JJ5+Uzp07m2dDe0gffPBB+fDDD2XRokWiD+0bb7xhyqtZs6a8+OKL5ndPP/20KaNZs2ayePHiBG9Ve3zvu+8+qVatmum51b2N9b2051aHGw8YMEAWLlxorrNRo0bmj0n6h6fmzZubc/TZ1b9u6R+ivvrqK1m2bJl5vidOnGjkeM6cOTJ58mTRP0Tp/esfq0qVKgVhp6hSVKFE4WJKKCYTxy/JOC6yIiucAB7JvCIrnAAeGeqi+ssvvxgh1e+SvuPIkSPmO+p///tf8z3TaavTJIf+aqGfffaZWThp7dq1ZuijHjqeWHuK9IvvE088IRkzZsRrJZmRFFWKajJTyPGLn4pdr169jFiqAOr/1/2EVd5UPBMa7r53714zvl6FVf861LhxYyN3w4cPl3LlypmhDXroyAPdh/iee+4x/197a/UvTBcvXpT58+dLt27dzKbIH3zwgTz22GMJ3urff/8tefPmNa89++yzsnz5ciOs+sDrc/rwww9Lz549JV26dDJmzBiZN2+eeV8VZn12tVyVUj1UULXR+PHHH2XJkiVGbnXIs0q3bj2lz77+FUyfO+SgqFJUkTyhfKGUrsfxSzLOi6zICieARzKvyAongEeGuqjqFFL9TqoLJ+m9ameNdgT5Dv1OPXXq1CSBOYqq72wdirhnzx7T46JfwPVLcEocFNVY1DlH1XUK2gz91eG8OqxX/1CTPXv2RN9Te011Tuqff/4ply5dMj2ysUVV9x/W3k49dLsnfZ60l7Z+/fpGDHW4MTL01yequgK3DhPWHlAd3689tbVr1xZtGI4ePWoEVhuHYcOGxfTs9uvXT0aPHm3+yKTzYXXOrTYaTZs2NXK8YcMGMz9XrzN9+vRGou+44w7TC4scFFWKKpInlC+UEkXVjhSl3oYX5QunRVZkhRPAI0NdVI8dOxYzJ9VHRafGaeeNjj7UBUedjiRFVYf56pfZWbNmye233y5dunSRQoUKmSGJ2hOkX4QTGgbp9KbJeZ2iSlFNTv74zk0JUdXeVu1p1UPnwep+xNqLqsKqPZ36QGtPrtMcVZ+o6lBfFWMtQxc2U1H97bffpEePHtKqVSsjmDq3Nrao6p7Iurpa69atTc+uLpamQ391iPDMmTONrKq4qqj6RkroH6f0eUcOiipFFckTiipKiaJqR4qiasOL8oXTIiuywgngkaEuqkri5MmTpkNFv/PqlFE99Dunfh/WaWy33XZbksCSFFX94vr444/HFKBzVdevX29EVYdEcnsaPBk9iWSPqmusiKhqL+ebb75pFkfyR4+qzgfV+a+nTp2SW265xfxbe1y113L27Nlm+K4OM1ZR1ZXQdD5pQkdSoqq9qVrWjh07jHTqH3ZUVvWPTDr010lUdeXikSNHml5X7fXVf9epU8dwQA6KKkUVyROKKkqJompHiqJqw4vyhdMiK7LCCeCRaUFUY9PQOas6HU3np+q968JKyZqjqsMBdcivzlPV+Wu69YYu8qL/1XHF/hRVNe6IiAgz3DCpgz2qsehQVPHWIF5kUh86OpKgYsWKRhx1GOy+ffuMqPr2R03sTXVBJJVOHfp7+fJlKVy4cJyhvz5R1fN1RWCN1YWTtDdV55rq0GDfeH6NSWxrKJ+oDhw40JShPaPaQ6o9qrp/qy6CpsOU9S9W+p4611bnzepQZJ+o6rALbSzi96jqnNU+ffrIe++9Z25Te2XfffddM6QYOSiqFFUkTyiqKCWKqh0piqoNL8oXTousyAongEe6EVX1Ml04U7/vJXbo98SbbropzsvIefiVJy9Sv3vqIks6gk+/yyZ1JNmjql9Oda6bLiSj8+emTZtmema0Z1Xh+kNUdQikbm+TL18+s0hN5cqVzZfpxA6KKkU1eY8H9sVPH+jIyEgztD32GHodUeBbVCz2dZQtW9aIoM2hD6rmv54X+w80uuK2zh3V1bXdvJfOj9Ve2/z589tcTpxYvQZdhVhle//+/eaZRw6KKkUVyROKKkoJa6/sSgvtaAoFXr9kRVY4ATySeeWeVXzHiV+S7iihI+/0u5l2qujUTPUn36G+potyqkudO3fOONsDDzxgdqJI6jz8igMfmaSo6tBBXdVXj6ioKLOAUt++feWtt94yv/OHqOrQQv1SrkMgdeVTXWn0999/N3NhEzooqhRVfzwmbhtSnc+pvf/xjzvvvFNKlizpj0uLKSOQ75XUhduwoqhSVNGHwCav0DJDNY6s8JolK7LCCeCRzCuywgngkTY9qiqmunaIdkTkzJnTrEdSsGDBOD2SuqOEju5r0KCBrFy5UnTRTZ0K5nQefsWBj3Rc9Vfnyn3//fdmj0ZdVEUP/f9q7brKqYplcg7tvtZys2TJYoYY6wqrv/76a8x7xS+bokpRTU6++c7lhw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjbURVR7epgOp0ND10SteWLVvMaFffoaPwdCSgjtJTn1LH0i0Gnc7DrzjwkY6iqpekG7PqcML4h+7lqMODVTKdDl3pSVckjX0UL17czIHT+Xy6eqn21H766admj1Y9Vq9ebfaUjH/4tvjQ38ep5OXLRfQnrRyco+q6pvmhg6OzYUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOYVWeEE8MiERDX+2epZupWLepTu8KCLXuqhC96uWLHihn1IdXGi5557Tvbu3WvWLtHRr8h5+FUHNhISVZ3rpou+JHToOGiVSSdZnT59ulnYJfbRpEkTad++vdlPR+cB6l8HtBs7qYM9qrHoUFRdPy380MHR2bCiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTziqxwAnikTY+q9o5qb6muoaIjUXWRTz10W0Pfoeue6PBf3bFFO/XUzZDz8CsOfCQkqo8++qgZ66z7L+qCR9r7qSv06v43+jtdtUm7ld0cuhWHbnej1o8cFFWKKpInTjH80HEi9M/rNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB5pI6paqu5IMXHiRKlQoYLZ2UHX99EeV52HWrVqVXn44YfNf3XYb+wjofN0i8RgOBxF1Td5V419zJgx5p50Gw1dTlhXlCpQoICxet2uxs2h+7G+//77cU7ds2ePlCpVKsHiKKoUVTd5Fv8cfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80lZUtVOvQ4cO5g10u9DZs2fL9u3bjazqThXxR8D69ilN6DzfukP41aZMpKOo6mVp76lO0J08ebJkzpzZrDSliyjp+Gg1eh36W7NmzYDcAUWVouqPROOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCNtRVVL1u0Ddd6p01TJ+Ffh9jz8bryJhER13rx5psfUt6djjhw5zCpTau9Tpkwxw4Kd5qj66/IpqhRVf+RSoD90dHj7gQMHzNyCokWLSsuWLc0q1zqfQA8dXv/xxx+b13XSvM7n1udMGxZdhly3btK/mOl+rboflg7B1+2iOnbsaEY06B+TdMGz1q1bJ7q1k1tuNqwoqhRVNM9s8gotM1TjyAqvWbIiK5wAHsm8IiucAB7pRlTx0kMjEhJVvVXdR3Xjxo1mUq5+kdY9eXSBpVy5cpmFkAJ1UFQpqv7ItUB/6MyfP98IpI480BzWTZjnzp1rNmbWldx0uXFderxdu3Zm6IbOAx88eLAZtVCmTBkjtyq2OuRD43Xpcd0iSvfIeu+998xWUbpK9tmzZ6Vx48b+QBRThg0riipFFU0+m7xCywzVOLLCa5asyAongEcyr8gKJ4BHUlSdWUGiqj2p+oVZx0Lrv3Wl3ieeeMLvPTfOlyvmSz63p/kfKa76i6RMgjGB/tBRUS1fvrz50RzWZ+jbb7+VTp06ydatW42o6vZN3bt3N6u5vf3222Yy/KxZs+Suu+4yfxDSkQ3VqlWTtWvXSv369c0CZDrSQZ9Njd2wYYP541Hz5s1dc0noRBtWFFWKKpp8NnmFlhmqcWSF1yxZkRVOAI9kXpEVTgCPpKg6s4JEVRdO0gWUdCiiDkM8fPiw+cKtX7B1CGIgD4pqLNoUVdepF+gPnfiiqn9s0eHzuliZ7iOsWzSplDqJqq60rYKqQ31PnDgh1atXl02bNlFUXWdC8k6sV7ye6I/vCHReJe/qU/ZsssL5kxVZ4QTwSOYVWeEE8EjmlXtW8R0HLyl0Ix1FVVf2zZ49uxliqIsp6by4cePGmX17fvnlFzNnLpAHRZWi6o98Sy0NqT5f2bJls7olnYuqz6H+kejKlSueD723YcUeVfaooslsk1domaEaR1Z4zZIVWeEE8EjmFVnhBPBI9qg6s3IUVV3MRb9IDxs2TIYOHWpK1CGI2gOkc1bvvPNO53fxYwRFlaLqj3Tihw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjKarOrBxFVYvQ1UZ1C5omTZpIeHi4LFiwwGwou379ejOfLpAHRZWi6o9844cOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAIymqzqwgUdVtNUaNGiVz5swxiylpb+qLL74od9xxh/M7+DmCokpR9UdK8UMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCuywgngkRRVZ1aQqPqK0UVfdPEX7VVNqYOiSlH1R+4F+kOH+6j6o9ZSXxlcTMl9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrJIUVd27UeU0sUO31NCFlgJ5UFQpqv7It0B/6HAfVX/UWuorg6Lqvk4C/Qy6v9KUP5Os8DogK7LCCeCRzCuywgngkRRVZ1ZJiqrux6g9qIkdn3zyScB7VymqFFXntHaOCPSHDvdRda6TYIygqLqvtUA/g+6vNOXPJCu8DsiKrHACeCTziqxwAngkRdWZldXQX+fivI+gqFJU/ZFlgf7Q4T6q/qi11FcGRdV9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrCiqzoxSb0S9eiL687+DDSleVamFFfdRxessNUZSVN3XSmp5Bt3fQeDOJCucNVmRFU4Aj2RekRVOAI+kqDqzoqg6M0q9ERRV13XDDx0cnQ0rrvrLVX/RzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCRF1ZkVRdWZUeqNoKi6rht+6ODobFhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySourMiqLqzCj1RlBUXdcNP3RwdDasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAeSVF1ZkVRdWaUeiMoqq7rhh86ODobVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj6SoOrOiqDozSr0RFFXXdWPzobN69WrX7xMKJx45ckQKFSoE3crmY5tl89HNUGwoBFUqWEm6t+4ecys2eRUK95+ceyArnB5ZkRVOAI9kXpEVTgCPZF65ZxV/ZxO8pNCNpKgGc91SVF3Xnk1D2mtgLxn32jjX78UTQ5dAx54dZcbYGRRVF1Vs8wy6KD6kTiErvDrJiqxwAngk84qscAJ4JHtUnVlRVJ0Zpd4IiqrrurH50Hmy15Py3bffuX6vYDsxZ+ackjNLzpjLvnjxomTJkiXYbiMg19ugQQMZOnQoRdUFbZtn0EXxIXUKWeHVSVZkhRPAI5lXZIUTwCMpqs6sKKrOjFJvBEXVdd3YfOhw3iXnXaKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1Yc+nsjO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqKaykX1xIkTki1bNsmcOXOitRy/EuM8EMuXi+hPWjkoqq5r2qYhpahSVNFEs8krtMxQjSMrvGbJiqxwAngk84qscAJ4JPPKPStEVKOjo+XChQvGlxI7zpw5Izly5IAuRGOzZ88uYWFhUHygg1LN0N8DBw5IhQoV5Msvv5SaNWtSVJFMoKgilBKMsWlIKaoUVTTRbPIKLTNU48gKr1myIiucAB7JvCIrnAAeybxyz8pJVGfMmCHjxo2TwoULy9WrV2XWrFmSL1++mDfctGmTdOrUSYoVKybqVdOmTZMqVarIyJEjjV/5thocPHiw6RQcMWKEpEuXzsQ+/fTT0qFDB/ziAxSZKkT18uXL0rZtW9m/f79MmjSJoopWPkUVJXVDnE1DSlGlqKKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiaqKacaMGeXUqVOSM2dO6dGjhxQsWFAGDhwY84YNGzaUvn37iv53wYIFMmXKFFm2bJk8+uij8sILL0i5cuUkQ4YMJl7FtHTp0iZ+79695t+XLl2STJky4TcQgMhUIaq9e/eW+vXry4QJE2TIkCEUVbTiKaooKYqqBal6xeuJ/vgOfujg8MiKrHACeCTziqxwAngk84qscAJ4JPPKPaukRFU7Nz7STgAAIABJREFU83RLvH379pk3UGfasmWL6TX1HUWLFpW1a9eK/nfz5s3SuHFj+eOPP6RixYpy7NgxM2S4S5cuMmrUKBk9erQRXxXdH374QWrUqCG///57TK8rfhfeRgZMVLdt2ya//fZbnLspXry4sfjPPvtMPvjgAwM0tqiuXr1a1qxZcwOBAQMGJPwlmnNUpUSJEt5mTIiUbtOQskeVPapo2tvkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6Vimr8o3bt2lKrVi1Rj2rTpo3s3r3bhMycOVNWrFghU6dOjTklIiLCvK49rVoPdevWlUOHDkn37t3lmWeekZtuuklatGgh/fr1k9tuu02qV68uDz30kKxbt0727Nkjvvmq+B14HxkwUZ0+fbp89dVXce6oSZMmplv6+PHjBt6PP/5oup51zLWOqU7o4GJKsaiwR9X1E2LTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z5VUj2q2hsaHh4uupiSLnw0duxY80a9evWKecM6deqY3995552yceNGMwf1008/lStXrsQsVKuvq5TqVMvTp0/L4sWL5dZbbzUSrFKb2o6AiWpiN65QLl68aF7u3LmzPPvss/LAAw+YyqCoOqQLRdX182TTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6V02JKOoR34sSJZvHZRo0ayfDhw0V7XHfs2CFVq1aVPn36SN68eaV///5m7qmu5qvTK3VxJR0mXKRIEWndurWZs/rXX3+ZXte33nrLDB/W3lkd3ZrajhQX1dhAmjdvLoMGDeIcVTRLKKooqRvibBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs3IS1UWLFsWszNusWTOZPXu2bN++3chqZGSkmb/q2zklV65cZkhvnjx5zHxUHcGqh64JpHKqW4I2bdpUdLjw4cOHZf369alufqpeb6oSVaRqOfQ3FiWKKpIyCcbYNKQUVYoqmmg2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5SSqWvL58+fNkF2dh5rQoasDHzlyxCyoFHtvVD0vKirqhv1VdWSr9rRyH1W83pKMpKhSVP2RSjYNKUWVoormnE1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI5lX7lkhooqXHhqR7FEN5npkj6rr2rNpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs+KonojO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSD+L6oULFyRjxoxy5coVCQsLkyxZsgQDBVfXaNOQUlQpqmiS2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnhVFlaKKZ08wRPpJVKOioqRJkyby9ddfy9KlS+W5556TW2+9VZYtWwZT2L59uyxatEgef/xxKVq0KHxeSgXaNKT+FtWcWXJKx4odJSJLhJy5dEZWH1wtG49sjIPimSrPSK4sueL87uKVi3Ix6mKCvx+/frzfUNYrXk/0x3fYsPLbRQRpQWSFVxxZkRVOAI9kXpEVTgCPZF6RFU4Aj4yfVxRViiqePcEQ6SdR3bhxo1StWlUee+wx0Yfk448/lly5cknHjh1hCnPmzJFHHnlE1qxZIzVr1oTPS6lAmw8df4uqSmjB7AXl9KXTEpE5Qq5duyavrHxFoq5FxeDofld3UaH1HRnSZZDLUZeN2Cb0+1GrRvkNJUXVPUqbvHL/LqFxJlnh9UhWZIUTwCOZV2SFE8AjmVfuWVFUKap49gRDpB9E9ffff5eGDRvKzp07pXz58jJlyhR59913JW/evDJhwgRp3bq13HTTTaLDgnPmzCmDBw+WESNGyPz586VYsWLy1FNPSf369U2P7J49e6Ry5cpGdEuWLJkgQZXh6Oho89rKlSvNe+v7hIeHy6RJk+Sdd96Rv/76S+rWrSvjxo2TQoUKmWvImjWrXLp0SdatWyddunSR9OnTm2stXbq0zJw508RpeXrty5cvl3r16sXcR0IXYtOQ+ltUe1XvJVevXZUJ6ydIl8pdpEhEEflw24fy64lfE2TW8f86SvFcxWX+zvny8/GfY2IS+31yU5ei6p6gTV65f5fQOJOs8HokK7LCCeCRzCuywgngkcwr96woqhRVPHuCIdIPohoZGSnDhg2TsWPHyvPPPy99+/aVe++9VwoXLmzEr0yZMkZAc+TIIaNGjZJDhw7J6NGjRXtQP/nkE5k3b55s2bLFyOa0adNkwIAB0r9/f8mTJ0+CBCtWrCjbtm2T+++/37z++eefm7Jq1aolt9xyizRq1Mi8pteiP1quDkPWhk+lWIcmHz582Ej17bffLnPnzpUXXnhBXnzxRXONWk7jxo3lpZdeMmV9+eWXCV6HTUPqb1H1XZBKauGIwnIl6ook1iNa4eYK0qp8K9l/ar/8d8t/Y+4lsd/7I20pqu4p2uSV+3cJjTPJCq9HsiIrnAAeybwiK5wAHsm8cs+KokpRxbMnGCL9IKp6mypz2iP66aefSosWLYwYxhbVo0ePGjmMiIiQf//73/L2228bUdSeVO0hvfPOO00vKjL0V0X1xIkTRngPHjxoemX79OkjL7/8spkT+9NPP8mvv/4qs2fPNtK5evVqcz3Zs2eXrVu3ypgxY0y89qyWK1fODFHu1KmTkdO2bduaH5XrGTNmmGtWEVeBjX/YNKReiWqfGn0kR+Ycck2uydh1YyXyUuQN19mnZh/JnjG7vLH2DTl/5XzM64n93h9pS1F1T9Emr9y/S2icSVZ4PZIVWeEE8EjmFVnhBPBI5pV7VhRViiqePcEQGSBR1SG/GzZsMEROnz5thuguXrzYzEfV44cffjA9nqioZs6c2ZSnAqxDdlU8VTCrVatmhg6r/A4ZMkTuuOOOGFG9+eabjZzq0F7taVWhLVWqlJHQzp07G5kdNGiQuYYSJUrE1J728KrkpiZRbV2+tRw7e8wsoqT/vv3m281iSov3LI5zmSXzlJQOd3SQw5GHZepPU2NeS+z3/kpZiqp7kvyAxtmRFVnhBPBI5hVZ4QTwSOYVWeEE8EgupuTMKuyaruQSREf8vzbEqeTly0X0J60cARJVHcarkqiHzik9cOCAmRe6fv166dGjh/znP/8xMqiSqHNMVRwT29pGe1QTEtWyZcuaob1arp7bpk2bOD2qTqKqoqtDffUannnmGXnzzTclQ4YMZnhyQofNh46/e1QH3T1IMqbLKGsOrTGSqqv7ztk+x/Su1ilWR1YdWCU/HvlRHir3kNyR/w5ZsneJbPj9+h8K9Ejs9/5Ke4qqe5I2eeX+XULjTLLC65GsyAongEcyr8gKJ4BHMq/cs2KP6o3sKKp4PqW+SD+Jqg65VclLbOhvbFH97rvv5IknnjDDavVo1qyZmSeqQ3l15eAzZ86YOasqpAkdsUX12LFjUrBgQdOjqj2f2puq5eoCSVevXpWzZ8/K/v37pUKFCuIT1YkTJ5rtc7RHVeNUkFWMp06dalYs1qHBx48fNz2tej863za1iepdhe+SJqWaSJiEmRV/df7pB1s/kMYlG0v1ItVl/eH1svTXpdKtajfJny2/TPxxohw/dzzmNhL7vb8SlKLqniQ/oHF2ZEVWOAE8knlFVjgBPJJ5RVY4ATySParOrCiqzoxSb4SfRNX2BnXfVZ1Hqvul6mq9vuPKlStGLv/4448YkY1dtsqmDudN7FBp01WIdX5sWFiY7WWZeL02nfuq16Y9qokdNh86/u5R1WtKH5beLKR05MwRuRp91dW9enUSRdU9WZu8cv8uoXEmWeH1SFZkhRPAI5lXZIUTwCOZV+5ZsUf1RnYUVTyfUl9kComqEwhd9GjXrl03hKk8ppY9Vm0aUi9E1YlhSr5OUXVP3yav3L9LaJxJVng9khVZ4QTwSOYVWeEE8EjmlXtWFFWKKp49wRCZSkU1GNDZNKQU1f8XZ4GqYKjflLpGm7xKqWtMLe9LVnhNkBVZ4QTwSOYVWeEE8EjmlXtWFNVULKrnzp2T6OjoBLcSiX3ZXEwpFg2KKt4axIu0aUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPChFVdaULFy5ItmzZEn0jXS8moa0ZdXqenud2eh1+Z/6LTPGhvxcvXjSL4ei2J+nSpZNKlSrJ8OHDE71DiipF1R/pb9OQUlQpqmjO2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnpWTqM6YMUPGjRtn1nLRRUdnzZol+fLli3nDTZs2SadOnaRYsWJmh45p06ZJlSpVzCKj27Ztk4ceesisMaNrxly6dMmc27hxY3N+mTJl5OWXX8YvPkCRKS6q77//vtlTU1dz1cV0Fi5cKC1atJD06dMniICiSlH1x7Nh05BSVCmqaM7Z5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeVVKiqmKaMWNGOXXqlOTMmdNsD6k7ZwwcODDmDXULyb59+5qtJBcsWCBTpkwR3dlD/71mzRoZO3asWfBURVXXkhkyZIjMnj07ycVH8bvxJjLFRVUhbdy4UfSvAEWKFJGRI0dKkyZNEr1biipF1R+Pgk1DSlGlqKI5Z5NXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiapu19igQQPZt2+feYMJEyaY7SC119R36KKla9euNTtfbN682fSWqpj6Dh3y6xPVxYsXyyOPPGK2ldTtJfW977nnHvziAxQZMFHVLufffvstzm0VL17c2P3KlStlyZIlBmq/fv3M9iIKc/Xq1eYvAPEP3XPTd8R5IJYvF9GftHJwjqrrmrZpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs9KZTH+Ubt2balVq5YZutumTRvZvXu3CZk5c6asWLFCpk6dGnNKRESEeV17WrUe6tatK4cOHUpQVL/99lv56aef5Pnnn5ePP/5YXn31VdPLmtrmrwZMVKdPny5fffVVHP7ac6rgM2fObADpkT9/fiOnJUuWTLCm2aMaC0sKi6r+NUbHwOvEbv3rTcuWLeWzzz4zf2jQ49FHHzXJr6/rQ6b1r5O7z58/b4Yt6PxkfQDLli0rOu5e9z3VecodO3Y0f8DQB07H0Ldu3VoKFSqEP/lApE1DSlGlqAIpZUJs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPKqkeVV1AKTw83HynVpnU78l69OrVK+YN69SpY35/5513mtGqI0aMkEWLFiUoqpcvXzbTLPUnKirKfAdXqdXRranpCJioJnbT+heB9957T7755hs5fPiw1KhRQ44cOZK65qhWqybSsKHIvHkivv1B27QRKV1a5MoVkZ07RZYsEYmOjnubel6NGiK6Mpf+RWPhQpEzZ0S6dhXJmfOf2GPHRP77X/u8SGFRnT9/vhFI3RtVH64uXbrI3LlzpVu3buYPEDo8QYcqtGvXzvwBQv8YMXjwYPNXIJ20rXKrYtuhQwcTrw/Ld999J0899ZTJiUGDBpledV2lzDfZ2x5SwmfYNKQUVYoqmnc2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5bSYUsWKFc2aPhUqVJBGjRqZxWe1w2fHjh1m+G6fPn0kb9680r9/fzNXNXv27HEWSIo99Hfo0KHy559/mvJ0uPBjjz0WM6wYvwPvI1NcVLXHTCcE69Bf/UuBQm/fvn2idx7QHtXChUUaNBApXlwkLEzkk09Etm0TqV5dRFfJUjHVnwwZrovqhg3/XHfWrCL9+4tcu3ZdTlVMf/5ZZP58kSFDrv/+0qXr8UePah++fW2nAlEtX7686I/Wi9abDiXQFce2bt1qEl6He3fv3t389eftt9+W3r17m1XK7rrrLsmVK5fMmzdPqlWrZh6S+vXrm7/86CrQKrMaqwtt6WplzZs3t+eTxBk2DSlFlaKKJp9NXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCOZV+5ZOYmqfkfWzh09mjVrZhZC2r59u5HVyMhI871bO4/00O/Y69atkzx58sRckH4X1+/Uutrv0aNHzZxX7UnVH/Uvf3/XxkkkHpniouq7tJMnT5qhnomt9uuLC6ioVqwoogs7Zcokki6dyIIFItu3izzxhMi//iUycaJIVJRI9+4if/4p8u67/5C+7TYR7XXdseMfOT17Vmc/iwwaJLJ+vciqVSL6O7dHKhNVnTusk7p1ZTIdUtC2bVsjpU6iet999xlB1fo/ceKEVK9e3SyuRVF1mxjJO69e8XqiP76DHzo4T7IiK5wAHsm8IiucAB7JvCIrnAAeybxyz8pJVLVknT6nW3rqPNSEDv0OriNTddQiMt/02LFjUqBAAfyiAxyZakQVve+Aiqrvotq1EylX7h9RDQ8XyZxZ5OTJ6yKrQ3x1cvOcOf/chvay9ukjkiWLyOXL1+O//VbkwAGRTp3+ibtw4fqQ4D17UAT/xKWwqCZ2wefOnUtyI+KEztOedZ2fqn/VuXLlimTSPw54eNg0pOxRZY8qmoo2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrlnhYgqXnpoRFJU8+cXadv2xto8cUJk1qzrv48vqr5oPa98eZGrV0WmTLneq+o7dNhwly7X/5/KqMqtSqr2oj74oIguF33qlEjlyiJ//329p9X2SKWiansbKRFv05BSVCmqaI7a5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeFUX1RnYU1VtuEXn88RvJnD79jzzGF1Wdr/r88yI33XRdNmfMENH42EerViIVKlzfLkd/dLhvxowib78tkju3yOHD13taX3zx+hzX4cPxzPZFUlTtmf3vDJuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHtiR8YXVV0BWCcr6/xUXQVYF0bSXtGtW0U6dhTR/WJVRJs2FfnrL5EtW0Tq1xe5eFHku+90BvT11zWudu3rvauTJtlfG0XVnhlF1ZEZ56g6Iko0gB/Q/7+9MwGTqrrW9mKQeRZwJDgFh2g0ETUOQa8SMBLHiLMGcIyJCIoSjSFXEPU6gBHFYCCgBHIRjWLE6/QrGCcUIxHFISoiEQWNMokmIv7Pu73Vt2mq6a+ODF1V336eftDudU7Vefc6Z+9vr7XX0dmZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe09ly1yKb66Y0s9+FtGu3ernWrEi4g9/iDjrrK9SgCm0xGto2rf/qmIwFX7vu++rYkznnvvV72mIXY6bO7fw77aRharfo1p4lxXDERaq2XvJkxmdnVmZlU5At7RfmZVOQLe0X5mVTkC3tFCtmZVTf2tm9PUsKKbEq2mImlZu7FlF7BJZRaxmaRtZqPo9qlk6rfYfY6GavY88mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lrUAqHq96jWXvfI+s0sVLOSi/BkRmdnVmalE9At7VdmpRPQLe1XZqUT0C0tVGtmZaFaM6Paa1HLhKrfo1p7XaWQb2ahWgit1W09mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lpsZKFaHRi/R7X2uozyzSxUFUr5bTyZ0dmZlVnpBHRL+5VZ6QR0S/uVWekEdEsL1ZpZWajWzKj2WtRSoVp7gf3fNytk0PHrafx6GtWnC/Er9ZylamdWes+alVnpBHRL+5VZ6QR0S/tVdlau+rsmOwtV3Z9qn6WFauY+KeRBaqFqoao6WiF+pZ6zVO3MSu9ZszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UM3cS4U8SC1ULVRVRyvEr9RzlqqdWek9a1ZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqqZe6mQB6mFqoWq6miF+JV6zlK1Myu9Z83KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kI1cy8V8iC1ULVQVR2tEL9Sz1mqdmal96xZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWH4NoXr55ZfHa6+9VgxXuV6+4/Lly6NZs2bSuRd+sjAWLV8k2ZaCUedvd46xw8dWXIoHHb1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB8msI1d79e8e4G8YVw1X6O25gAj+96Kcx8pqRFqoZuHuA1qGZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe08xWH4NoTroxkEx58M5xXCV6+Q77tJ2l9i53c4V51q0aFG0b99+nZy7FE9y4oknWqhm6FhPZnRoZmVWOgHd0n5lVjoB3dJ+ZVY6Ad3SQrVmVn49Tc2Maq/F1xCq3nfpfZeqY3uAVklFmJVZ6QR0S/uVWekEdEv7lVnpBHRL+1V2Vo6orsnOQlX3p9pnaaEq98lB2xwU/OSaH6QyOosvHZVZmVUBBHRTP6/MSiegW9qvzEonoFvar7KzslC1UNW9pxgsLVTlXrJQlVGtYehBR2dnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjckS1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtRYL1WXLlkWzZs2iTp06a+3hqp242g0xbVoEP+XSLFTlnrZQlVFZqGZHZaFaADtPZnRYZmVWOgHd0n5lVjoB3dJ+lZ2VIlRXrVoVn376aTRt2rTaD0JTNW/efLW/V3fcxx9/HK1bt5Zs9Stbd5YbveovgM4888wE9IMPPohjjz02evXqVe0VWqhWQmOhKt8JFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjzJs3L8aMGROdO3eOfMf985//jJNPPjm23377WLFiRZxyyilxwgknxDXXXBPPPvts1KtXLwnicePGRZs2bfSLWseWG12oAuD++++PO+64I5566qno3bt3vPbaaxaqSkdbqCqUko2FqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ys1iZUEaabbLJJLF68OFq2bBl9+/aNLbbYIi655JKKD+zWrVsMGDAg+Peuu+6KUaNGJY2V77iGDRum40888cR45JFH4sILL4x77703ttlmmyRQGzVqFKeddlrstttucdFFF+kXtY4tN7pQfe+992KPPfaIgw8+OJ544ono169fglVdc0S1EhkLVfl2sFCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VndXahOrcuXOja9eu8eabb6YPGDFiRMyaNStFTXOtQ4cOKejHvy+88EIceuih8cwzz6z1uJEjRyZBe+qpp8Y555wTW265ZSxcuDAaN26cjifievPNN+sXtY4tN5hQffHFF+Ptt99e7euj2t9///0E56yzzooZM2ZEgwYN4r777rNQVTraQlWhlGwsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VntTahio7q2bNnRdbp+PHjY/r06TF69OiKD2zRokX6O5FS+uHAAw+MqVOnrvW44cOHp+hrkyZN4qGHHoozzjgjidwddtghZbteeumlMXToUP2i1rHlBhOqv//97+PBBx9c7ev/8Ic/TJB32mmnGDhwYLD5F8go+fbt26cI65NPPrnGJWObay6mdFB+FjU4yrS3pwU/5dIsVLP3tAcdnZ1ZmZVOQLe0X5mVTkC3tF+ZlU5At7RfZWeFUK3aDjjggNh///1TOi5ikqJIFJ5FYNL69+9fcUiXLl3S7/fcc8+YOXNmDB48OCZNmpT3uG233Tb23nvvFEElnZiCSu+++276f6Kw8+fPT/+S9UpAcWO1DSZUq7vA6667Lql+wsps/N1nn30SqPr16+c9xKm/lbA4oirfNxaqMqo1DD3o6OzMyqx0Arql/cqsdAK6pf3KrHQCuqX9Kjurmoop7b777kGqLvtGu3fvHpdffnkgZF9++eXYa6+90tbJtm3bxsUXX5z2qvI2lSFDhkS+4x599NFgn+qvf/3rmDNnThxyyCEp87VTp04pfRjhiuCdMmVKCihurLbRhSrR08MPPzzYq0obNGhQqgJcXbNQtVDNcrNYqGah9tUxHnR0dmZlVjoB3dJ+ZVY6Ad3SfmVWOgHd0n6VnVVNQpViR1TXFk1GAAAgAElEQVTnpfXo0SMmTpwYs2fPTmJ16dKlaf/qfvvtl/7eqlWrePrpp1PF3nzHvfLKK2nb5d///ve07fLKK69MkVOE7Z133pm2Zp533nlx2WWX6Re0Hiw3ulDNXdOCBQtSiWUqU62tWahaqGa5DyxUs1CzUC2UmgdonZhZmZVOQLe0X5mVTkC3tF+ZlU5At6zqVzUJVc7Mq2SWLFmS9qHma1QHRlNRUIkU4Vyr7jgChZtttlnUrVu3wpatmJyn6vtV9Stbd5a1Rqiql2ShaqGq+kplOwvVLNQsVAul5smMTsyszEonoFvar8xKJ6Bb2q/MSiegW2YRqvrZS8PSQrWY+9F7VOXes1CVUa1h6AFaZ2dWZqUT0C3tV2alE9At7VdmpRPQLe1X2VkpEVX97KVhaaFazP1ooSr3noWqjMpCNTsq7+ctgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQnVNdhaquj/VPksLVblPLFRlVBaq2VFZqBbAzpMZHZZZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/ok08+icaNG0fdunXX2sNVO3G1G2LatAh+yqXVIqG6a/tdo0enHquRn/jixJi/dP5qv0Mw7tdhv6hbp27MWzwv/jD7D/Hll18mm3223ie6bd8tJr88OV798NV12osWqtlxetDR2ZmVWekEdEv7lVnpBHRL+5VZ6QR0S/tVdlaKUF21alV8+umnSUdV15YtWxbNmzdf7c/VHZdPf1Vny3mbNWu2mn7TrzabZZ0vcyoh2/EFHbVo0aJ48cUX45hjjok33ngj2rdvHx9++GGcdNJJUb9+/Zg3b15cdNFF0atXr2rPa6FaCU0tEqqI1L223CtWfL6i4gv+cfYfVxOq27TaJnrt0Ss+/+Lz+HzV59FkkybxyFuPxNzFc6Prdl2Dv9eJOvGnV/4ULy58sSDfqsnYQrUmQtX/3YOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqSaiOHTs2brjhhthqq61i5cqVMWHChGjXrl3FBz7//PPRp0+f6NixY9JUY8aMic6dO0e+4wgW5tNf11xzTTz77LNRr169JIjHjRuXhOmZZ56ZxO8HH3wQxx577Fq1mk6gZssNKlTvuuuuePLJJ2P48OGxcOHCJFSvvvrqQKEPHTo03n///dhiiy0Cdd+kSZO8395CtXYK1dN2Py06tuoY1z55baxctTL9VG0n7HpC7NR2p7ht1m3x/vL343sdvhfvLXsvGtZrGD/85g+jQb0GKdJ61yt3xeyFs2v23gIsLFQLgFXF1IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrNam1BFmG6yySaxePHiaNmyZfTt2zdppksuuaTiA7t16xYDBgwI/kVzjRo1Ku6///68xyE+q+qvV155JXbeeeckUBs1ahSnnXZa7LbbbkkMc5477rgjnnrqqejdu3e89tpr+oV+DcsNKlRz3xM4OaF6xhlnRNeuXeOEE05IKaCk/r755pux3XbbWajW1LG1KKJ63t7nxaZNNk3fmH4kSnr7325f7QrO/9750bpR6yRi69etHws/WRgTZ0+MJZ8tSXbH73p87Nx2ZwvVmvp9A//dg44O3KzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys1qbUJ07d27SS2gk2ogRI2LWrFkpapprHTp0SEKSf1944YU49NBD45lnnsl7HFqsqv6aPXt27LfffkmjsR2T47fffvu47LLLYo899oiDDz44nnjiiejXr19ceOGF+oV+Dct1LlQ/++yzeOihh9b4St27d4+GDRum31cWqscdd1zwQxiZttlmm8WMGTNim222sVCtqWNrkVAlpbdtk7Yxc8HM2HurvVNa77hZ4+LtxW9XXEX/fftHy4YtY8GyBUmsfqPlN+LlRS/H5DmTLVRr6uuN+HcPOjp8szIrnYBuab8yK52Abmm/MiudgG5pv8rOam1Cla2TPXv2rIhkjh8/PqZPnx6jR4+u+MAWLVqkvxNppR8OPPDAmDp1at7jli5dmld/XXHFFUnk7rDDDimCeumll6bznHrqqXHWWWcljdagQYO477779Av9GpbrXKgSkj777LPX+Eq33nprClVXFaqDBw8OwKLOv/jii2jdunUKaxNZRbWTKly1DRw4sOJXLqZ0UH4WNTjFtLenBT/rqm3betu0P3Xh8oWRS7N94b0XYsprUyo+4tTdT43tW28fw54elmwv63JZLP/38rjuqessVNdVR6yH83jQ0aGalVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWCNWq7YADDoj9998/peOyLZJCRwT82EZJ69+/f8UhXbp0Sb/fc889Y+bMmYHGmjRpUt7jSPutTn8RhZ0/f36KxhJJffTRR2OnnXYK9FfuuFxmrH612SzXuVBVvkbliOq9994bN910U4rCTp48OYYNGxZPP/10tafxHtVKaGpRRHXgAQOjUb1G8dCbD6Wqvs0bNo9bn781tmy+ZXTp2CX+Mu8vKd23+w7d462P30oC9dubfTvtRWVPKs2pv8rds+FtPOjozM3KrHQCuqX9yqx0Arql/cqsdAK6pf0qO6uaiintvvvuMXLkyLRvlEzVyy+/PBCyL7/8cuy1114pHbdt27Zx8cUXp72qVOgdMmRI5DuODNiq+osILam+pA8TOETwTpkyJUVP6debb745FWnaZ5994t13302FcNd322hClQrAbM5lheCwww6LOXPmpP9++OGHE4DqmoVq7RSqe2y+R/yo04+SGKWR8kvq76E7HBrf2/p7MeMfM5KIPXevcyv2slL9d+TMkfHxpx+nY4771nGxS7tdvEd1fd/1BZ7fg44OzKzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqBLcO+WUU9IH9OjRIyZOnBjsK0WsksrL/lX2mNJatWqVAn9t2rSJfMchVPPpL4TtnXfemQrcnnfeeWl/KtHTww8/PN5777107kGDBqUqwBuibRShmu/CCDFvvvnmqTLV2pqFau0Uqrlv1aFFh1jyryWx9F9Lq+3GNo3bpD2s7y57t+Idquvb2V31NzthDzo6O7MyK52Abmm/MiudgG5pvzIrnYBuab/KzqomocqZV6xYEUuWLEn7UPM1qgMvWLAgFVQigzXXqjsun/4ivZfzEFWt3DgvQcaatJpOoGbLWiNUa/6qX1lYqNZuoar244a2s1DNTtyDjs7OrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzUoSqfvbSsLRQLeZ+rEV7VGs7RgvV7D3kQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqoxqDUMPOjo7szIrnYBuab8yK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodVaqKt912232NM5TPoWal97VZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/o448/jhYtWkS9evXW2sNVO3G1G2LatAh+yqVZqMo9baEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOytFqK5atSo+/fTTpKOqa8uWLYvmzZuv9ufqjvvkk0+icePGUbdu3Qr7lStXBlqtVatWa3zERx99lD67YcOG+oV+Dcs6X3755Zdf4/iCDl20aFG8+OKLccwxx8Qbb7wR7du3j3feeSeOP/74aNeuXdSvXz+++93vxmWXXVbteS1UK6GxUJX9z0JVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlY1CdWxY8fGDTfcEFtttVUgJidMmJD0U649//zz0adPn+jYsWPMmzcvxowZE507d458xxEsPOmkk5L2wvaiiy6KXr16xbBhw2LUqFGxzz77xNKlS4PvtOOOO6aPwG633XaLBx54IPbbbz/9Qr+G5QYVqnfddVc8+eSTMXz48Fi4cGESqldccUV8/vnncfnll8dnn32WVP27774bW265Zd7LslC1UM3i7xaqWah9dYwHHZ2dWZmVTkC3tF+ZlU5At7RfmZVOQLe0X2VntTahijDdZJNNYvHixdGyZcvo27dvbLHFFnHJJZdUfGC3bt1iwIABwb9oLgTn/fffn/c4hCqR16FDh8b777+fzkV2a+vWrVM0lagpGg29NmLEiPj3v/8dxx13XMydOzduueWW0hSqOZLAyQlVwtf8f6NGjWLKlClxwQUXpGhr5bTgyl1uoWqhqj8C/s/SQjULNQvVQql5gNaJmZVZ6QR0S/uVWekEdEv7lVnpBHTLqn61NqGKQOzatWu8+eab6QMQj7NmzUpR01zr0KFDPPXUU8G/L7zwQhx66KHxzDPP5D0OncX5TjjhhCC5ltRfzo1Q5WfFihVxyCGHxPnnn59s0Gf8P587aNCg4hWqREUfeuihNXqpe/fuFfnMlYUqhqj0q666Kq6//vq455574uCDD662ly1ULVT1R4CFahZWVY/xAK1TNCuz0gnolvYrs9IJ6Jb2K7PSCeiW9qvsrNYmVNk62bNnz3jttdfSB4wfPz6mT58eo0ePrvhAav3wd6Kj9MOBBx4YU6dOzXscab1ESI899th0/GabbRYzZsyIbbbZJv76179G7969Y9ddd01CmHMQTLz99tuT+C1qoUpI+uyzz16jl2699dYUqqZVFqoIW0A1aNAgqXTg5toTTzyRUoWrtoEDB1b8ysWUDsrPoob7ZNrb04KfcmmOqGbvaQ86OjuzMiudgG5pvzIrnYBuab8yK52Abmm/ys4KoVq1HXDAAbH//vunAkpNmjQJiiKho9hGSevfv3/FIV26dEm/33PPPWPmzJkxePDgmDRpUt7jSPtF2Pbr1y+++OKLFEVFwz322GNp7+qNN96YagjR9t1336DO0KabbhrPPfdcdOrUKe2PZf/r+m4bdI9q7mIqC1UE7H333Rf33nuvdK2OqFbC5GJKks9gZKEqo1rD0IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqqZjS7rvvHiNHjkwFjchUpb4PQvbll1+OvfbaKy688MJo27ZtXHzxxWmvarNmzWLIkCGR7zgChTfddFPKgp08eXIqokTaMEHFRx55JPbee++KC5k/f36qI0Q7/fTT49xzz40jjjgiCeD13TaaUEWZU6mK0PK4ceNWu87XX389vvnNb+a9dgtVC9UsN4WFahZqXx3jQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWdUkVAnqnXLKKekDevToERMnTozZs2cnsUoqL3tMc9V4ebXM008/HW3atEnBwKrHITwPO+ywmDNnTorWPvzwwyliWlV//eQnP1lNp/3oRz+KSy+9tHj3qOrdk83SQtVCNYvnWKhmoWahWig1D9A6MbMyK52Abmm/MiudgG5pvzIrnYBuWUgxpdxZKXK0ZMmS1bZKVv5EqgMvWLAgFVSqXJi2uuOIlm6++eapMnBtbBslovp1QFioWqhm8R8L1SzULFQLpebJjE7MrMxKJ6Bb2q/MSiegW9qvzEonoFtmEar62UvD0kK1mPvRe1Tl3rNQlVGtYegBWmdnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZ1ZT6q5+5dCwtVIu5Ly1U5d6zUJVRWahmR+X9vAWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykK1xIXq5b17x/LXX9c9pNgtO3SI4Od/2+LFi6NVq1bSVc1fMj/mL50v2ZaCUactOsXY4WMrLsUPUr1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/cqsdAK6ZVW/slAtdaF6+unxn7//ve4htiwbAn3694kxw8ZYqGbocQ/QOjSzMiudgG5pvzIrnYBuab8yK52Abmm/ys7KQrXEhep1112ne0cJWn700UfRpk2bEryydXNJAwYMsFDNgNKDjg7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzslAtcaGqu0ZpWvrhoPerWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhWkuE6vLly6Np06ZRp06d1b7RRx99lH7fsGHDanu5aif6hvg/VGaR/eGgH1l+lvYrvc/Nyqx0Arql/cqsdAK6pf3KrHQCuqX9KjsrRaiuWrUqPv3006SXqmvLli2L5s2br/bn6o775JNPonHjxlG3bt0K+7XZ8req5/7ss8+iXr16sckmm+gXL1rW+fLLL78Ubb+22aJFi+LFF1+MY445Jt54441o3759xTnnzZsXu+22WzzwwAOx3377WahmoO2Hgw7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjoKvGjBkTnTt3jnzHESw86aSTon79+sn2oosuil69euW1RZiefvrpsWTJkiRov/Od78Tll18eiNzZs2fHxRdfHP3794+jjz5av3jRcoMK1bvuuiuefPLJGD58eCxcuLBCqP773/+O4447LubOnRu33HKLharYeVXN/HDQwZmVWekEdEv7lVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWaxOqCFMilosXL46WLVtG3759Y4sttohLLrmk4gO7desWAwYMCP5Fc40aNSruv//+vMchVIm8Dh06NN5///10LoQo5676Gfzt2WefjZEjRwbxzbvvvjuOPPLIeOmll+K2226LKVOmxHXXXVf8QjVHEjiVheoFF1wQhxxySIwYMSIGDRpkoar7+GqWfjjo4MzKrHQCuqX9yqx0Arql/cqsdAK6pf3KrHQCuqX9KjurtQlVgnldu3aNN998M30AmmnWrFkpapprHTp0iKeeeir494UXXohDDz00nnnmmbzHocU43wknnJDEJ5HSadOmpYhs1c8ggjtz5swgYrv11lvHFVdcET/84Q8rPvfYY4+Nk08+uTiEKnnKDz300Bq91L1794q9p5WFKoofJX777bcnoJWF6hNPPJEisJUbOdmEmt1MwARMwARMwARMwARMwARMoBQI5NM4BxxwQOy///5p62TPnj3jtddeS5c6fvz4mD59eowePbri0lu0aJH+TgSUBYMDDzwwpk6dmve4pUuXpmxWRCZts802S9HR888/f43P+OKLL+Lxxx9P0VkEMGnC77zzTkWtoaISqoSLzz777DX85dZbb03hZFplobrvvvsGe1c33XTTeO6556JTp04p55qcaqXVlM+tnKNUbMxC70mzMiudgG5pvzIrnYBuab8yK52Abmm/MiudgG5pv1o/rCig1KRJk6CYETqKbZQ09obmWpcuXdLv99xzzxQBHTx4cEyaNCnvcaT9Imz79esXCNHWrVvHe++9F82aNVvjM+bPn5+CjVdddVWFqCWQuMMOO6T/LyqhqnRPZaHKxROFpbFR99xzz40jjjgiQVWab4j/o2QWisd8ZWNWZqUT0LwDGrUAACAASURBVC3tV2alE9At7VdmpRPQLe1XZqUT0C3tV+uP1e677572iVJ8lkxVChoRcX355Zdjr732igsvvDDatm2bihuxVxXROWTIkMh3HNrrpptuSlmwkydPjmHDhsXTTz+d15btmr/73e/ikUceiX/84x9BkHHBggWp0m/JClWiqJUrVXGhP/rRj+LSSy9d6x7Vqt3vG8JCVX8kmJVZZSGgH+PnkVnpBHRL+5VZ6QR0S/uVWekEdEv71fpjde+998Ypp5ySPqBHjx4xceLEVHUXsUoqL3tLc29OadWqVRKebdq0iXzHIVQPO+ywmDNnTnrdzcMPPxz77LNPXluK3lK8idRfAokIZPa25hoRVb7XUUcdpV+8aLlBq/6K36kgM98QFl8FOcz/GttvdGpmZVY6Ad3SfmVWOgHd0n5lVjoB3dJ+ZVY6Ad0yi1+tWLEiVedlH2q+RnVgop0UVCKDNdeqO47M1s0333y1d6BWZ/vxxx+ndOFcJFW/0uyWRS9UKbjESoJbhFnoXmBWZqUT0C3tV2alE9At7VdmpRPQLe1XZqUT0C3tV2alE6jZsuiFas2XaAsTMAETMAETMAETMAETMAETMIFiImChWky95e9qAiZgAiZgAiaQCPAahkcffTR23XXX+P73v28qJmACJmACJUbAQrXEOtSXYwKFEmCvw7x582KXXXaJ+vXrF3q47U3ABExgvREYN25cer9f7uXy7J1q3LhxKvzBmwKocjl27Ng455xz4qc//el6+x4+sQmYwFcEvvzyy/jTn/6U3uvZq1ev2HbbbY3GBNYbAQvV9YbWJzaB2k+ASnC8g+ub3/xm/P3vf0/7nKvboF/7r8bf0ARMoNQI/M///E+MGjUq7rnnnvjrX/+a3gzwwAMPpPf2nXHGGbHTTjvFtddemypVvv322xu0yEepsfb1mEBNBEaPHp3mCRTp2XTTTeOxxx6L5557LurWrVvTof67CWQiYKGaCZsPqk0EqG72ySefJLHltnYC77zzTrz//vvpfVsMNEQqGHSoDkep8a222ipuvvlmYzSBgggQlb/gggvivvvuS2mYRMHwKTcTUAjwSoVXX301vW6havv8889j6623jpdeeil+9rOfRe/evVN0ldfZvfLKK7Hzzjun1yKQDcJL7ss1urN8+fL41a9+Ff/85z9TdDn3igqFf7nZEJX//e9/n17JAavmzZuXG4Jqr3f8+PHpXjrxxBOTDfOrKVOmROvWreOYY45Jr0MZOHBg+j3idI899khzBhc1tQutLwIWquuLrM+7QQjcddddMXjw4PRgZWJ85513On21CnlEBC+D5t9+/fqlv5588skpMrHJJpukgfqpp55Kg9AOO+yQ/uZmAjUR4L1qDRo0SGa/+MUvgpL411xzTYpu/b//9//SS8TdTEAhgMAkOppL3cV/iKIiIG688cYkwBAVv/3tb1O6IS+7nzRpUvK3Z555Jj766KMkzNiv2rFjR+UjS8oG4YXIJxUaQYHI+Nvf/laWop2FDeYDlV/LUbmzzz///Jg7d256XyTvmPzWt74VvCKknNsXX3wRF198cVx99dXxxhtvpNRetgKxEASnQYMGpQVtnvF/+MMfko/xzk7uz5tuuinNL2655ZZyRuhrX48ELFTXI1yfet0SYDBmLxIvGz7ttNOC6OChhx4aL7zwQrCazOSFh2bPnj3X7QcX6dmIUpCSM2TIkGjUqFFKm/vHP/4Rq1atSoMzkdXDDz88dt9997juuuvSSvz222+fBqByaxRlOffcc1PUBiYjR46sEGHlxmJt14vvMAHkZd/Dhg1Lq+mICu7DQw45JN56663kc8cdd1zaO4jfuZlATQRYJGvXrl1aNPvggw/ioosuSlF5ol4NGzZM2R5kgfD3CRMmpOc8YwCRHVKCGRt+/etfJ7FbDu29995L4xyiHUZEnC+55JK44YYb4o9//GNMnjw5fvOb36Soc7m1bt26xX/+53+mhQuEFQse7GfmWYUY4zmPmMWPFi5cmDKx4Nm0adNyQ7Xa9f7Hf/xHyob5+c9/nhY8brvttiRKEf2//OUv41//+lcSr3fffXdcddVVybdY1GYe0alTp8SSveNuJrCuCViormuiPt86JZDbtE+aCRNi9iMx6JACtuOOO1ZMYBYtWpT+m7937dp1nX6HYjkZAwkTFFgwoZs1a1bsv//+iReTPCLOCLFvfOMbcdhhh8VPfvKTlK7TpUuXOP7444PoNAM5g1Spt8WLF6dJHqvFTISJ6DDR7d69e5oAMskhSuj2FQEEKL5DimXLli2TPzEhPvLII9N9hzhlxf3WW2+NvffeO/0OX4KrmwmsjQDRUPyJRY1p06bFgw8+GO3btw+iPJdddlnaO88iGpNoRCm/x++OPvrotMDG8UyQS2WSzDYWIn5cb+XGIhGployJjHNEuRjrEGIIfRZque9IjWbBkQgXfMqhzZ8/P0XYBwwYkMY/Fi622WabFImfMWNG4oC4wscQVwhZnlc02LGwBrtybPgTIpN7sE2bNmnPKZkKREs/++yztGALR9pZZ52V5gr8fsSIEWmvOO3ZZ5+N7373u85mK0cH2gDXbKG6ASD7I7IRYNM+6YP16tVLgw/i4vnnn08DzNlnnx1PPvlkEl2s/DFp+fOf/xzsr7jjjjuyfWARH0VaXOfOndMqJ/+NsEe0ksrLivuBBx6Y0uqIpLJi+t///d9ptZQ9he+++25Kn2O1lP1epdpYXWdAbdWqVYqash8X38LHGIwRXjBhoohYR5SVa8OHEPLs90M04DesrCMkiHZtueWWKeUe/2FSwyLH9773vbjiiiuCSD6+B2sWAUqpUR27WbNmqYiI27ojgLDYfPPNUzEkJstsS3j99ddj+PDh8eMf/zhF8PFHJsgsKJFBw7aFUvMviHKdLJaR5UHjWU1Ei0gz+wO5z4g+57IbsEGss3jL85u94oyP/DdCvxwa/sAziWdTnz590rUT6eOVRYx/ZA0xfyBllS0LRKARsIhZIoS/+93v4v777y8HVOkaWdRGuI8ZMyaNfSwO4VMsZiP6ec4xp2IuddRRR6U0ckT+QQcdFFdeeWWaT/A3bxMqG5fZqBdqobpR8fvDKxOoGhHkQcjqMAMyk19W7BiQWVVmHxJVHllpZ4CmAiTClhW+73znOyUPtmp5+I8//jiuv/76NPCweswKKAKU/yfNCVGBwGd/DmIfMYbAYAJY6m3ZsmVpICbCgC8htpj8MQFGgJFOfuqpp6YJIGnSLH4gYlllLsfGogXRdhY+Hn/88bSIwb0IQ+4vUu2539jLhG+1bds2TWQQEbBkMsjKeymKOe6rFi1apAkxHFjo+Pa3v12OblLtNZNSidDK7V9W4bCQxjP+zDPPTBFBhAPRU/ZbEmGk+i8CBCFb6g1hxXjGIhGprNyHCHfuO7ZvcG/95S9/SQLskUceSfclz3JEGpk0PNtytRtKmVUuysyC2UknnZQiozznuX5Sw2FIqu8RRxyRMJCFxfjHghrPKVLHeW6xF7PU5w0s1OZeP8c9yvyJhVnmAXPmzEmp0AhPsopgx9jI/IHnHOKU5x7ZVxROcoXfUr6rat+1WajWvj4py2+ULyLIIMNgwkoo6YakqZLuxMDNIIzYogjC7NmzU3oYaa5UsS31lq88PEUhYMBAjbhnUkOElAgrXIiwsreQ1CgGnVLfO8gCBhEJJr5MZth/xAoy6bzspWQvGxNgRD1prURP4ca+Llbg8SNSm8qhUWQL/yENmvuN1C5YsGrOpIX7jf9HJMCVSBYTPrIXSPNFvCHy81VsLTV+FA0hVZDIAvcY++RzKaildq1Zrwc+CCaePYVUg0Z4sc+SBTUmz4gJFgGYQBMBY1GgVBuLaWQG8Vxm0QyxhW/17ds3Faph0YxnE5FDUn2pIzB06NA0/vFcyz2/SpVP1esiWspr1SiehcDknZ48w4i24z9kdPB8YmEWoUr2FRFU/JJFD/ak8lMOlWrxHfyEeQMZMqT2Mmei1geZMPAiik8klaKKMMT/WByBFcXMPvzww9QFLEq6mcCGJmChuqGJ+/MSAaIx7GFjNZPCGIjRfBFBCrLkNu2zujd9+vS4/fbbk/Di4Vlq0QxEFavDuRXgfO5CkZF85eFJC2OfCS/gZuLCSjurnwzgCDRSe8qh4SdMdBFTLGawR5c9u+zrIi2OaCoRQiY3DM6sHJNazsAMe3wKhrnV51JlRpYCExbSCikoQqQBcc/vEe+kX7IXkL1f3K+8EuS8885LgpSiLUx0iJyWWuP+2m677VL0gEZaKlxIE0TIs++WhQx8hQkzfkWhMtLsy72RVsnkl72k+E0h1aB59sF86tSpaWES7vhYKTcyYxjjyEj4wQ9+kIQCfgY3/IoxjvERkUV6Kgtr+CLPdWo2kB3CcSwOlHIjY4ioJ89mUu957vDcRoiy8MiiI89sMmFgyLvASSXnuYU/wg2ujAvlsG+e5zfjGUKcZzvPbdLoKRJIZgzPLuZVLEYi+EmRJlpPyjhvBmCugA+S0VAOGQylfO+UwrVZqJZCLxbZNey7777pGzNoICJIO0E8MABXjQjykM1t2kfMzpw5s+SLJSGwSOMikpVvkMjttalaHp6VZcQ+0QcGoYMPPjilSLMns5QbkQeiW0xyifYxQcGnSCVn4sLiBhNCBl5EO+KViQyDOSvE+CGTHNLsSr0REWWVnNRV0pyZoDCh4V/uPar3sn+X1EsmeaSLwRBbVuOJ7hCRL+VGNIb97iyI8bwhYkq0mb3MvP4KX2P/LX+nMbkj1bVci7jlfAGBT3SdZxYRGrZpMPlVq0Fzj1b3SpFS9jee1eyvpBAZ9xvpvLyGh4gpAgNRwTONKD6/43nOQuTaFjNLhReLZiwCsdeWsYy9kyyo8V5PMoaIJrNoTSMySESeqDN1GFhMo2ggz7NyaDyviRLzLM9VM2YBlmq+ROYR8ywG4T/cn9yXLIJwDGnALDIRPfWCWzl4S3Fdo4VqcfVXrf+2iCj2NPBwrK4hGFgpJhWFlF+iE4hUJsNVI4I8OBm8y2XTPgMMewPZ38UeLURrvsagk688POyZKLIaX8qNSTCiicE5F91jxZyCSExkiDYQ0WH1nMkvK8lMBkkBYyAmjY5JDAsh5dBIkSN1kr1sRGOYFJPiCwvEF4scCDHSLYk0E1Hk9TOID6IXpCbyLwsBpdx4DrHIQYSKtFX2vfHs4X4jQ4EUaCoc8zoGFkiY9LGfi4IjpR7VqtrvPMPJSCAlnOcVLLj3WNBAVJFmmSt+V101aMQp0UIWB/At3uNY7I1IMEKT7A2l5dJUEQs0Ui9ZNOM5TmSaxUdYIlZZJGIhstRbLiJIZI9xjn23CHhSWNniwrOJiCrp0jzj8T1SWvHFXCE8nm+lvvBBHQoyEBjHeL4THeWeo8GN/d5kfbCwRqYRDW6kRTNXYysVUVWyako9e6HU75lSvj4L1VLu3Y1wbaxuIpKISPAAzNdYzSNKwWopjT0kDDBUcCzViCBiG1GVT0Ay0LAyjGhHRDDgsNqZ2w+YjyHHlGN5eIQmKWBEnPEbuDFZZqKMUCU6iNhgpRhGTPSIFOaqG5M6xn7KcmiwIBpKdBQO7L1FiDLhQyDQWBzKFdvKRU+JOrPKTrYDk71SrgRd2Q/YC5mrmAoXJnPXXntt2hOY8xkKinBf8vxCsBJFJerKRJB01XJpLGDAiIU07jdEAhEvfIjnF4WPuDerqwZNpIeINM9EMiEQ+qRVF3PLLdIi0lkAYgxkQQ0WpMvzyqt8LVfxmMwPXklDBJBiZvzLFg/GhHJo+SKCFI5CmHOv4WtUheYZzmISEVXuOxYd2ULEYhqZWaW+ZSPnC2zboP4EW6hY7CC9mQUNUnthgzDF91g0QfBzv3J/8nvmXoUWOysHH/Q11k4CFqq1s1+K9lsxOUagsm+GyXF1q3Ss6jHZIYKK+CC1h8kO+0tKKSKICGCygViiOnFutZMUHCbBRGyY2BABZKDlhwkNEWkGIPYF5muct5zKwzPYkurGNbNqzESF9yYyaWEyyOSEtEOiMhT4Yd8X+5eoQkvaE37IfstSbkxCmOwyaSNtnOgDaXBEqfgdURqiEfyNbAbuPSaHuWJbCAyi0ET0Ebfl1uBC6iD3HhNe9gTuscceFZE+UsaJNL/66qvpOYXYQsRjU2rFyXgVSuU97WRqcM0wImLKMzq3L5eoDJkgVIdmMsx9SvSZMYAJMSn4VatBw5CFSc5VKq3yIi3jIPtHiTpTzZhnOddMVke+RnE3BAT+hahlwbbUsxfgUNmvWBzLFxHkmYa/MUfgeUWBPLa9kElDNgjs2LpR6o0xj2tm7sB+U3yExW2e8yx2MB7yfljGAVLEWSQi9R4fJLKKPzG3IAOk2BeFSr2vfX2rE7BQtUdIBJjwIgh4dUfVVjkimKuiyqre2t5nyoOWSBgpPER32B9Riu/E4x1tDCiIcFaDmbQxoWGPIC/UZgJH6hJ7jmBM8QIELBM9uBJ1qMyFAYmUYCaJpb5XkIgWL2FngCXSxTveiPARJYQjK8KICtKWiGyRCsweS/YxUViK1Xj2D5bKoIzIrC5VGb9hgYiIPZM4olSwQISSHoaQz72Ch0UOGHEP0hD15VRsq7oHHotJFN1ibzfCnokf4oLf41/cc0TtuWdLuTEhJpqXqwzKM4jnFX5CdJnsBCI2+ByvqSCiCjcyPFhYIz2a6DTHIFZLcdGDvaPsg8xtzWDfN9E9nldcM898FtHITiAaz/OL/fAUKMvXELUIMQRuubz6o6pfIUipX1E1IshCL4uPjJEwRvhT8KecGum71FXg2YPwZPzjGcXiIuKUxr2JEOWZT7YRcw/+ZUsCC+Rk1OTSy8uJna+1+AlYqBZ/H67XK+AByQDKBIRBFyFauSALDz4iCpUjggzQrBznXt6e7wuy/6scKsoRhcgVqCHSwCon+7UQTwy6uagWAwkTGV7RwMSPaA4pmkzy2FdIoQiOZbWUyCCT6VJLccInmLCxZ5nJHSKU1+kQYSD1i1XznBjNVZ8lKs8x/EtDfCFOS22/DRMUXhlA1CrfRJbJCwV/mOiy4MGqO9G+yq90ghn+SEoiQiQX3V+vD5AiOjnp4ogw0uWI3LAPlUUj0jB5vpGCWA6vsyC1HiHK9RPxykWauQ/xLaqu8mxioYzfYcO9SeVahD3jBFkipRQtrerGPKdZFEIokE5P6iXiNPfOZhZpEV1Emxk7uddY8MCvqu6bZCsMi5f4WW4PfRHdNvJXZeGV93aSTcXiIkV/yGCo7Ffsz60aESS6j/hiHoIQK8WFj6oQeQbxzOd9uTBi0YgUcBapcw2fos5CLruIRRP8i/kD4yV7VHOv60PUcs+y15cFODcTKCYCFqrF1Fsb4buSikNEj/1GDM4MMojVXEEW3rPI3qSqEUEGIibOrK5XjgiSLke6DkKiVNJ1YAOXfFUYiQqSeskP4pJVUQQ8ooEJDNzgymoy0UJWRxFp/D33MnOiqywYIFCJwpZigwn7cmHA9VL86KWXXkqr6xRIorE/EMGOWM29/oJ9YaT8luI7TysXJuO9wYhRIleIiKqNyR33KhMZfIyIKfcg6b5EtvBNoj5EWkmFLrVFjnVxT5DZgf/hX/DEp2BdDsVrKmfF4DdkgNBggOBCjHF/5jI+8Cee/aRdEhnjHiyV53llX+Ke4/6pGkVnHCNymouyU8CHZzdCPrdIyzjH/mUWJmkICVgxLiJMEbMIB1LtSdHE79ijWorvAkd4cW+xEEQBJIqT4TNV/YqtMDCoGhEkQs/zsBSKbZEOz4JOde+dpqgd2S8EAViExX+IhlLMjuNY6MAfebbznGf+wXyKYxDzbiZQagQsVEutR9fx9fDqDlJK2ONAlUsGEaIKlQuysIpXNSJIKiGRVvZKkKbDBJrIIPueWFmmymgpNPZmUY2RVd/qXobN5ISJH4MLEzuEKOmrRP8YlHIig9ROBqNyqx6KH/C6ASLG+BsRe0QpopxU81xknokeRWwYjMuhyEjlPW8IBviQzkXhmXyNaA5pv/gWER7EPBM8JolEq5kMW6DW/NRB0HMvl+qiUFUC7L0lC6ZyVgwpzkQMea6R3ZGLNCOmEBG5omVEbsgKqa46ec20a7cFixdwyN1PLCiSIUMaNNfNnkF+l9sLztWwOIsYZWERLiwyIiSIisGVvai8F5RxkAXOUmuMidRjYAGWrQpku+BD3FOI/lyrnMFQ2a+IMFeNCDIGsOiLuC32xlYf5gGkMOdrzJ3Y5gJDGgtFBAcY93784x+nxW0WuZk/MJfAl8iyKadibsXuA/7+hRGwUC2MV9lZU12VlWImLKSUELUhZRWhmivIUl1EkNV3UqOwQ3CUSroq18XgQVVUBgiEAaKc13rkE6uIBAYehAcDMIMtwpW0HtLsOL7cGxEKBmBWiIlIkM7EwgaTHBiRKk1BDSaApRi5ydf/lQuTcQ+RrssklwhMvoZvsUeONDle78ACCcVZ3EygMgEWL4jQE6HieU6qfL6sGCqIIkrxOyJd3JMIMl4ZVl00qBRJE8UjgwgOCAyigew5ZYGRrA9Ea+WCZKRA5xZpEaqkTpfLokdOqBMVJtJHOjSRQfyFmgG5zBc45haxy8GvKAZIDQG2Y7AQzYI92TH5FuwpjsR4CDsa2VX4HnMuFkGIyPI7hGypv36nFJ8nvqbCCVioFs6s7I7g4chDlmpxTGgQaIiIXEGWcosIcr25gitEmlltJyLBqmd1jXcxsmeEVXSEFivMrDwj4D3YfEWNoj+5SCoDMQVsSK8j2srAzv+XUyNCSnpgrjAZ0RuyGihAVl1DoBLByb2Lt5x4+VrzE8gVPeI5Q9YGGTHsI2WvKdEdFjRYSKuaFYMg4/lGxVrEGFVZWTAqtQrHNfkNEXYWfBDpTZs2TRFUhCpZQkQMud8Qo6SxsjeXllukrencpfh3BBULjIgwxkoWGImY8kxifzzPeOYTuSJv5eBX+AZp4MwDiJhyD5HWW7myds4XWNBmQZbsGdixKE5WDNWO3UygHAlYqJZjrxd4zaSE8aAlCshKPHsnSVEt14IspKYygWOFmOgyK5xMUBDu1VVszL3Oorq0zQK7pCTNKRZEejSp1ER7WInnRe7l3CrveaMgBpM//K7qqyuwYxJISli5Mytnf6l87Qgontm5CqncTyyOsd+NtHAa76CkkjjiNd8+eZ5vRIHKKSKYz3/Y203xKDiRaomAIC2YvboUQWJfOFHEcij0U9P9xV5U9jMzR4AR75RlEQSxyv54qrXn9qbWdK5S+TsLGSzww4D0b8a4tRWbpKgW2Qw0iimRKeNmAuVKwEK1XHu+gOtmVZT0VCYtvEYGMVHqr0apCQ+v+CB1l9QvoqJMYGDChKZqI/UX++r2sNb0WeX0dyY0iLDddtvNkeb/7fjcnjf+ZY8u0Ryiy7n3piI6iJaRUkYlTdLt3cqbAAKB5xKVd8l+Yd8f0Rz2+SEkXn/99VT9k/fFUtAH4UAacDnvk1+bx+SqbpN6T4YHafnUFyD6xThQiq9Wy3oHkdVBxJR0aRZoiQbyXC/3/fHMEdhKhYhnfyoRUha88zXuX2daZfVAH1dqBCxUS61H19P1kMpD6g7FlNy+IkA6HKvopMaxh5A9ghSeoiFMqV5LFIMJIaujrCy7mUChBCrveWOCQ8SU6D3igtRoMhtK7XU8hTKy/ZoE2AvPXrfcM4mFDibJVKrlndjsCUe8sn+OBRC36gnkoqjca1RbJbOIvfRu+QnwGi2q+5JSztjnLI9IcwQipSx6UNeDSClV7HONd6OyzYMK3KT7lkstBt9DJlATAQvVmgj57yZQDQHeH0gFSFZJ2XtK6iovdGcAYiJIGiY/5banyw6z7gmU8563dU+zPM5ImiGpqRTBI5qFuKIyKMKB6tqkkFMJGvHqVjMBOPJuWUe6amZlizUJMCcg7ZfXFlHjgu1CiFLemjBx4sSUgk8dCxYfSY92MwET+IqAhao9wQS+BgFeYE5Rksp7T3lFCAUj3EzABExgYxKgWBKvV2HyyyudKODCnlM3EzCBDU+AdGjSxnk3au51MkSfqQ5NoTI3EzCBNQlYqNorTMAETMAETKAECTAxpngS+1LZw+ztByXYyb4kEzABEyhhAhaqJdy5vjQTMAETMIHyJUDlX9JVeQ+2C/6Urx/4yk3ABEygWAlYqBZrz/l7m4AJmIAJmEANBNg/T8E3iuG5mYAJmIAJmEAxEbBQLabe8nc1ARMwARMwARMwARMwARMwgTIgYKFaBp3sSzQBEzABEzABEzABEzABEzCBYiJgoVpMveXvagImYAImYAImYAImYAImYAJlQMBCtQw62ZdoAiZgAiZgAiZgAiZgAiZgAsVEwEK1mHrL39UETMAETEAisGrVqqDqbfv27aN+/frSMTYyARMwARMwAROoPQQsVGtPX/ibmIAJmIAJrAMCw4cPjwsuuKDiTL169QreKdqkSZNqz7506dJo2bJlOu76669fB9/CpzABEzABEzABE/g6BCxUvw49H2sCJmACJlCrCNx9991xzDHHxNZbbx0I1D/96U8xZ86cOP3002P06NHVftclS5ZEq1aton///jFs2LBadU3+MiZgAiZgAiZQjgQsVMux133NJmACJlCiBPbee+947rnnYubMmbHnnnvGF198Ed26dYvFixfHjBkzUjrwueeeG9OmTYvGjRtHnz59YvDgwbFixYoKoTpgwIA46qijktDF9s9//nMMGTIkfvvb38aHH34Yl112WRx00EExderUaN26dQwcODCuvfbamDt3bvziF7+In/3sZ/Gb3/wmJkyYEN27d4+JEyfGt771rfiv//qv2HnnnUuUvC/LBEzABEzABNYtAQvVdcvTZzMBEzABE9hIBNiXWq9evWjevHkSpnXr1l3jm5x88slJOCIuX3311ZgyZUrccccdSczmIqp9+/aNv/jKbQAAAx5JREFUbbfdNglSBOq4ceOid+/eMX369FiwYEGceOKJ0alTp9hnn31i/Pjx6TPOOuusuOeee2LRokXx0UcfxRVXXJEis7vsskscfPDBcdNNN8U555wTt9xyy0ai4481ARMwARMwgeIiYKFaXP3lb2sCJmACJlANgc8//zwaNGgQ2223Xbz55ptrWC1fvjyJ2OOOOy4mTZoUn376adq3euSRR8Ztt91WkFAlytqjR48khomaPvDAAymaStSUz2ZPLEL17bffjo4dO0aHDh2iTZs28be//c39ZwImYAImYAImIBCwUBUg2cQETMAETKA4CGy//fbx1ltvpR+iojT2py5btixuvPHG2GKLLSr2q65cuTKJR1KEiYbmIqr9+vVL4pKo69VXX51E589//vPVIqoPPvhgisLWqVMnjj766LQX9pe//GVceeWV6bOJoCJU2fvaokWL2HHHHaNRo0YWqsXhRv6WJmACJmACtYCAhWot6AR/BRMwARMwgXVDICcqSc1FXD722GNBgSUqASNADzvssHjiiSdi5MiRqcjSVVddFaNGjYrjjz++QqgSFSUyyzkQq0OHDk3is3Lqr4Xquukvn8UETMAETMAEqiNgoWrfMAETMAETKBkCREnZV0qBpFzr2bNn3H777SmiSZElUnbZS0r7wQ9+EJMnT06R0cqvp0GgXnPNNcnm+9//fvzlL3+Jxx9/PO1RPeGEEyInVImWdu3aNUVUf/WrX6W9qRRVGjFihCOqJeNVvhATMAETMIGNQcBCdWNQ92eagAmYgAmsVwKfffZZEoxt27aNdu3arfZZVAKeN29eNG3aNDbbbLNqvwd7WhGw2LmZgAmYgAmYgAlsWAIWqhuWtz/NBEzABEzABEzABEzABEzABEygBgIWqnYREzABEzABEzABEzABEzABEzCBWkXAQrVWdYe/jAmYgAmYgAmYgAmYgAmYgAmYgIWqfcAETMAETMAETMAETMAETMAETKBWEbBQrVXd4S9jAiZgAiZgAiZgAiZgAiZgAiZgoWofMAETMAETMAETMAETMAETMAETqFUE/j/IS5E3izlewwAAAABJRU5ErkJggg==",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "linker.roc_chart_from_labels_column(\"cluster\",match_weight_round_to_nearest=0.02)"
]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "records = linker.prediction_errors_from_labels_column(\n",
- " \"cluster\",\n",
- " threshold=0.999,\n",
- " include_false_negatives=False,\n",
- " include_false_positives=True,\n",
- ").as_record_dict()\n",
- "linker.waterfall_chart(records)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "7830d1ae-0c70-43e7-94e6-696a4332f818",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.vegalite.v4+json": {
- "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
- "config": {
- "view": {
- "continuousHeight": 300,
- "continuousWidth": 400
- }
- },
- "data": {
- "values": [
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "francis",
- "value_r": "francis"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.2343746323933125,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.23 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.3037803185309872,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "francis",
- "value_r": "francis"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "hall",
- "value_r": "None"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 0,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1800-01-01",
- "value_r": "1800-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.3330751950470222,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.00 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.5860801780265656,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1800-01-01",
- "value_r": "1800-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "hu12 8rh",
- "value_r": "hu6 8rf"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 0,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "kingston upon hull, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "land surveyor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.13644541400215313,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.8736041891542885,
- "m_probability": null,
- "record_number": 0,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "edmonds",
- "value_r": "beesley"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 1,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "yo25 9dz",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "east riding of yorkshire",
- "value_r": "kirkburn"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 1,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "editor",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 1,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "edmonds",
- "value_r": "beesley"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 2,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "east riding of yorkshire",
- "value_r": "kirkburn"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 2,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 2,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "beesley",
- "value_r": "edmonds"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 3,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "yo25 9jl"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "kirkburn",
- "value_r": "east riding of yorkshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 3,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "editor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 3,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "beesley",
- "value_r": "edmonds"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 4,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "yo25 9dz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "kirkburn",
- "value_r": "east riding of yorkshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 4,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "editor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 4,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 5,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "beesley",
- "value_r": "edmonds"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 5,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "yo25 9du"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "kirkburn",
- "value_r": "east riding of yorkshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 5,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 5,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 6,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "beesley",
- "value_r": "edmonds"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 6,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 2.825396482123016,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 1.4984533321851021,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1788-01-01",
- "value_r": "1788-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "kirkburn",
- "value_r": "east riding of yorkshire"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 6,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "editor"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.08178339092164329,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.6120483083188657,
- "m_probability": null,
- "record_number": 6,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 7,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 7,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-01-03",
- "value_r": "1855-01-03"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 6.828041498463956,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.771471826591518,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-01-03",
- "value_r": "1855-01-03"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "sk11 7js",
- "value_r": "sk17 7hp"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "ireland",
- "value_r": "glaslough"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 7,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.07351497308336684,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.7658180705314352,
- "m_probability": null,
- "record_number": 7,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 8,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "james",
- "value_r": "james"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4527666635814206,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.21 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.143160355923113,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "james",
- "value_r": "james"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 8,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "montrose",
- "value_r": "graham"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 8,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 8,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1612-10-25",
- "value_r": "1612-10-25"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 13.656082996927912,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 13.66 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.771471826591518,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1612-10-25",
- "value_r": "1612-10-25"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "dd10 0su"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 8,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "angus",
- "value_r": "montrose"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 8,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "military officer",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.13092885152686268,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.9331450497947706,
- "m_probability": null,
- "record_number": 8,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 9,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "killigrew",
- "value_r": "None"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 9,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1606-05-01",
- "value_r": "1606-05-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 8.193649798156747,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.034506232425312,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1606-05-01",
- "value_r": "1606-05-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 9,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "e4 8bu",
- "value_r": "tw13 6db"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 9,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 9,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "hanworth",
- "value_r": "hounslow"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 9,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "castellan",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.0868217120961546,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.5258003174226147,
- "m_probability": null,
- "record_number": 9,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 10,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "killigrew"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 10,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1606-05-01",
- "value_r": "1606-05-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 8.193649798156747,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.034506232425312,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1606-05-01",
- "value_r": "1606-05-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "tw13 6db",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "hounslow",
- "value_r": "hanworth"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 10,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.5119506572397606,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.9659233276033713,
- "m_probability": null,
- "record_number": 10,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 11,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "hughes",
- "value_r": "None"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 11,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "ng24 3wz",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "newark and sherwood",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "minister",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 11,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 12,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "hughes"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 12,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ng24 3wz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "balderton"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "minister"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 12,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 13,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "hughes"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 13,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ng24 3wz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "newark and sherwood"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "minister"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 13,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 14,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "hughes"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 14,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ng24 3wz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "newark and sherwood"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "minister"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 14,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 15,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "hughes"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 15,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ng24 3wz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "newark and sherwood"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "minister"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 15,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 16,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "hughes"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 16,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ng24 3wz"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "balderton"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "minister"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06935061799702474,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.8499474510287257,
- "m_probability": null,
- "record_number": 16,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 17,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4385527024735812,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1891778678878713,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 17,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "ernest",
- "value_r": "dudeney"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 17,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 17,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "tn20 6pj",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "mayfield and five ashes"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.6137377823657361,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.7043056948014667,
- "m_probability": null,
- "record_number": 17,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 18,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4385527024735812,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1891778678878713,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 18,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "ernest",
- "value_r": "dudeney"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 18,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 18,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "tn20 6pj",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "mayfield and five ashes"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "mathematician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.6137377823657361,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.7043056948014667,
- "m_probability": null,
- "record_number": 18,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 19,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.4385527024735812,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1891778678878713,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "henry",
- "value_r": "henry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 19,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "ernest",
- "value_r": "dudeney"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 19,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 19,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 10.242062247695934,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.3564343273126744,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-04-10",
- "value_r": "1857-04-10"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "tn20 6pj",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "mayfield and five ashes"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "mathematician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.6137377823657361,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.7043056948014667,
- "m_probability": null,
- "record_number": 19,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 20,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 20,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "baronet",
- "value_r": "strickland"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 20,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 20,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "sw1p 3jx",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "westminster",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 20,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.7679904380631085,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.38083974623886313,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.22998460945033555,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.120390775511631,
- "m_probability": null,
- "record_number": 20,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 21,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 21,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "strickland",
- "value_r": "baronet"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 21,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 21,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sw1p 3jx"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "westminster"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 21,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.7679904380631085,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.38083974623886313,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.22998460945033555,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.120390775511631,
- "m_probability": null,
- "record_number": 21,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 22,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 22,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "strickland",
- "value_r": "baronet"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 22,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 22,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "westminster"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 22,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.7679904380631085,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.38083974623886313,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.22998460945033555,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.120390775511631,
- "m_probability": null,
- "record_number": 22,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 23,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 23,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "strickland",
- "value_r": "baronet"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 23,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 23,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sw1p 3jx"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 23,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.7679904380631085,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.38083974623886313,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.22998460945033555,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.120390775511631,
- "m_probability": null,
- "record_number": 23,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 24,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 24,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "strickland",
- "value_r": "baronet"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 24,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 24,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sw1p 3jx"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "westminster"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 21.98341326393178,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 4.458343499220055,
- "m_probability": 0.8992633138155923,
- "record_number": 24,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.040906446283799566,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 0.7679904380631085,
- "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.38083974623886313,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": "\"occupation_l\" = \"occupation_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.22998460945033555,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.120390775511631,
- "m_probability": null,
- "record_number": 24,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 25,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.45384297102258087,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.1397348813239896,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "sir",
- "value_r": "sir"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 25,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "strickland",
- "value_r": "baronet"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 25,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 25,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "sw1p 3jx"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "westminster"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.013622218339665128,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -6.1978945284928235,
- "m_probability": null,
- "record_number": 25,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 26,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "ethel",
- "value_r": "ethel"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 9.091267133817414,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 9.09 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 3.184481390158643,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "ethel",
- "value_r": "ethel"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 26,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "tweedie",
- "value_r": "alec-tweedie"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 26,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 26,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1862-01-01",
- "value_r": "1862-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.13747734560665684,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 7.27 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.862734193149487,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1862-01-01",
- "value_r": "1862-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "se1 8tx",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 162.73433041528628,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 7.346374823669453,
- "m_probability": 0.8458306903800119,
- "record_number": 26,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.005197616804158735,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 0.09770937601995389,
- "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 1,
- "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -3.3553591824585562,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "london",
- "value_r": "london"
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "record_number": 26,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9590935537162004,
- "value_l": "biographer",
- "value_r": "writer"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.10073668618440759,
- "record_number": 26,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9590935537162004,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.2852143181647854,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -1.8098816859427886,
- "m_probability": null,
- "record_number": 26,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 27,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 27,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "white",
- "value_r": "wight"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 27,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 27,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.23410427994733563,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.0947767845196545,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 27,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "ng6 9en",
- "value_r": "ng6 7al"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 27,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bulwell"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.0011356176325734825,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -9.782307129792507,
- "m_probability": null,
- "record_number": 27,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 28,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.20933838794974308,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2560912012273384,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "john",
- "value_r": "john"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "whyte",
- "value_r": "wight"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 28,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.23410427994733563,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.0947767845196545,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "ng6 9en",
- "value_r": "ng6 7al"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "nottingham",
- "value_r": "bulwell"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 28,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "cricketer",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.00017599212603783306,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -12.472201496029411,
- "m_probability": null,
- "record_number": 28,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 29,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 29,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "pease",
- "value_r": "r."
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 29,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 29,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 29,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "ba5 3bt",
- "value_r": "bs3 5bq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 29,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.07460671274371347,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.74455074687633,
- "m_probability": null,
- "record_number": 29,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 30,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 30,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "pease",
- "value_r": "r."
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 30,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 30,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bs3 5bq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 30,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bristol",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 30,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06817713934473707,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.874568123293993,
- "m_probability": null,
- "record_number": 30,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 31,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 31,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "r.",
- "value_r": "pease"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 31,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 31,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "bs3 5bq",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 31,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bristol, city of",
- "value_r": "bristol"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 31,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06817713934473707,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.874568123293993,
- "m_probability": null,
- "record_number": 31,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 32,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 32,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "peace",
- "value_r": "r."
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 32,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 32,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bs3 5bq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 32,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bristol",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 32,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.06817713934473707,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -3.874568123293993,
- "m_probability": null,
- "record_number": 32,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 33,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "pease"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 33,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bs3 5bq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 33,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bristol",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 33,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.9764152216839562,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.034433308907189736,
- "m_probability": null,
- "record_number": 33,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 34,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6287045328545522,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.6695459301434913,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "edward",
- "value_r": "edward"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "r."
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 34,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 5.121031123847967,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.3564343273126744,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1857-12-23",
- "value_r": "1857-12-23"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bs3 5bq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 34,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bristol",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 34,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.9764152216839562,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.034433308907189736,
- "m_probability": null,
- "record_number": 34,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 35,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 35,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "moore",
- "value_r": "muir"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 35,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 35,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1437482420729254,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.79838378173943,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "so30 2eq",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "eastleigh",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "head teacher",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.026848940041691617,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.218991056006492,
- "m_probability": null,
- "record_number": 35,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 36,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 36,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "moore",
- "value_r": "muir"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 36,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 36,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1437482420729254,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.79838378173943,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "so31 1by",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "eastleigh",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.026848940041691617,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.218991056006492,
- "m_probability": null,
- "record_number": 36,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 37,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 37,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "muir",
- "value_r": "moore"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 37,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 37,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1437482420729254,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.79838378173943,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "so30 2eq"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "eastleigh"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "head teacher"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.026848940041691617,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.218991056006492,
- "m_probability": null,
- "record_number": 37,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 38,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.366944700311449,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.4509548799592081,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "mary",
- "value_r": "mary"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 38,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "muir",
- "value_r": "moore"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 38,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 38,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1437482420729254,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.79838378173943,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1860-01-01",
- "value_r": "1860-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "eastleigh"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "head teacher"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.026848940041691617,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.218991056006492,
- "m_probability": null,
- "record_number": 38,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 39,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "arthur",
- "value_r": "arthur"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.7106077288219567,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.41 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.4928747148694078,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "arthur",
- "value_r": "arthur"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "finlay"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 39,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1854-01-01",
- "value_r": "1854-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.2402829852831891,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.16 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.0571936017114982,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1854-01-01",
- "value_r": "1854-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "tf11 9bx",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "shropshire",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "rugby union player",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.33413530765043736,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -1.5814956564203728,
- "m_probability": null,
- "record_number": 39,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 40,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 40,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "swan",
- "value_r": "stallybrass"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 40,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 40,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 6.828041498463956,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.771471826591518,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "dl12 9bf",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 40,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "united kingdom",
- "value_r": "county durham"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 40,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "publisher"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.029788668557820374,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.069092547823968,
- "m_probability": null,
- "record_number": 40,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 41,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 41,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "stallybrass",
- "value_r": "sonnendchein"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 41,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 41,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 6.828041498463956,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.771471826591518,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ca17 4ee"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 41,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "county durham",
- "value_r": "united kingdom"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 41,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "publisher",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.029788668557820374,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -5.069092547823968,
- "m_probability": null,
- "record_number": 41,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 42,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 9.930908563690332,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 3.311925713762501,
- "m_probability": 0.020267294367821084,
- "record_number": 42,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
- "term_frequency_adjustment": false,
- "u_probability": 0.0020408298231566584,
- "value_l": "wonnenschein",
- "value_r": "sonnendchein"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 1,
- "label_for_charts": "Levenshtein_distance <= 2",
- "log2_bayes_factor": 0,
- "m_probability": 0.020267294367821084,
- "record_number": 42,
- "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
- "term_frequency_adjustment": true,
- "u_probability": 0.0020408298231566584,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 42,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 6.828041498463956,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 2.771471826591518,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-05-05",
- "value_r": "1855-05-05"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 42,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "dl1w 0bf",
- "value_r": "ca17 4ee"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 42,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 42,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "eggleston",
- "value_r": "united kingdom"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 42,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "publisher",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.7185154034749656,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -0.47690900949390674,
- "m_probability": null,
- "record_number": 42,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 43,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "arabella",
- "value_r": "arabella"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 33.691166437088064,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 33.69 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.07429847240822,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "arabella",
- "value_r": "arabella"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "fisher",
- "value_r": "buckley"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 43,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1840-01-01",
- "value_r": "1840-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.671610639193176,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 1.49 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.574303010250212,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1840-01-01",
- "value_r": "1840-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "bn2 1ej",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "brighton and hove",
- "value_r": "brighton"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 43,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.47914656850958903,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -1.0614610583051676,
- "m_probability": null,
- "record_number": 43,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 44,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.2060251185001788,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.2791078539523104,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "william",
- "value_r": "william"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "charlton"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 44,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.23410427994733563,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.0947767845196545,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1855-01-01",
- "value_r": "1855-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "chorley",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 0.10503322203979278,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.2510823699365705,
- "m_probability": 0.10073668618440759,
- "record_number": 44,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9590935537162004,
- "value_l": "trade unionist",
- "value_r": "politician"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.10073668618440759,
- "record_number": 44,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9590935537162004,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.009913468665482506,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -6.656394348248003,
- "m_probability": null,
- "record_number": 44,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 45,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "harry",
- "value_r": "harry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.1501000590973836,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.20175938159047846,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "harry",
- "value_r": "harry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 45,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "bell",
- "value_r": "purvis"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 45,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 45,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 45,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "bs4 1na",
- "value_r": "bs2 0sp"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 45,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "bristol, city of",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "anthropologist",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.005854342005837653,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -7.416277255397598,
- "m_probability": null,
- "record_number": 45,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 46,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "harry",
- "value_r": "harry"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 1.1501000590973836,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 0.20175938159047846,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "harry",
- "value_r": "harry"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 46,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "purvis",
- "value_r": "bell"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 46,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 46,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.21966889539294226,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.1865974929425636,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1851-01-01",
- "value_r": "1851-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "bs2 0sp",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "bristol, city of"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "anthropologist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.034520561334653414,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -4.856400265578355,
- "m_probability": null,
- "record_number": 46,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 47,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "bernie",
- "value_r": "bernie"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 30.144727864763002,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 30.14 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 4.913833800214974,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "bernie",
- "value_r": "bernie"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "moor",
- "value_r": "None"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 47,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.1692902850858832,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.56242890996192,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1850-01-01",
- "value_r": "1850-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 47,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "al9 5bz",
- "value_r": "kt24 6es"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 47,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 47,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "hatfield",
- "value_r": "welwyn hatfield"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 47,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "ceramicist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.2624666807604501,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -1.9297938056425616,
- "m_probability": null,
- "record_number": 47,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 48,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "robert",
- "value_r": "robert"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 0.6479070468670781,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.54 times less likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -0.626141245732872,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "robert",
- "value_r": "robert"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 48,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "angel",
- "value_r": "marshall"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 48,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 48,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1849-01-01",
- "value_r": "1849-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.3939254710652282,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.54 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -1.344005390828418,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1849-01-01",
- "value_r": "1849-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "bh23 4fp",
- "value_r": "None"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 0.1549748092929906,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.689894366236906,
- "m_probability": 0.15416930961998804,
- "record_number": 48,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9948023831958412,
- "value_l": "bournemouth, christchurch and poole",
- "value_r": "highcliffe and walkford"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.15416930961998804,
- "record_number": 48,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9948023831958412,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "None",
- "value_r": "watercolorist"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.0054045748297124495,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -7.531603157024466,
- "m_probability": null,
- "record_number": 48,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 0,
- "bayes_factor": 0.00013584539607096294,
- "bayes_factor_description": null,
- "column_name": "Prior",
- "comparison_vector_value": null,
- "label_for_charts": "Starting match weight (prior)",
- "log2_bayes_factor": -12.845746707461347,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 1,
- "bayes_factor": 48.72386745735117,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
- "column_name": "first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 5.606556746606498,
- "m_probability": 0.5524853353802543,
- "record_number": 49,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.011339110875462712,
- "value_l": "herminie",
- "value_r": "herminie"
- },
- {
- "bar_sort_order": 2,
- "bayes_factor": 63.638869936721896,
- "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 63.64 times more likely to be a match",
- "column_name": "tf_first_name",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": 5.991836312216247,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"first_name_l\" = \"first_name_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "herminie",
- "value_r": "herminie"
- },
- {
- "bar_sort_order": 3,
- "bayes_factor": 0.06982392104370992,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -3.840134814386803,
- "m_probability": 0.06961049788217637,
- "record_number": 49,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9969434091018756,
- "value_l": "kavanagh",
- "value_r": "templeton"
- },
- {
- "bar_sort_order": 4,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
- "column_name": "tf_surname",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.06961049788217637,
- "record_number": 49,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9969434091018756,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 5,
- "bayes_factor": 295.6533104693185,
- "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
- "column_name": "dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Exact match",
- "log2_bayes_factor": 8.207762621015382,
- "m_probability": 0.61837388325496,
- "record_number": 49,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": false,
- "u_probability": 0.002091550682362922,
- "value_l": "1861-01-01",
- "value_r": "1861-01-01"
- },
- {
- "bar_sort_order": 6,
- "bayes_factor": 0.16387299596313493,
- "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.10 times less likely to be a match",
- "column_name": "tf_dob",
- "comparison_vector_value": 3,
- "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
- "log2_bayes_factor": -2.609349957349413,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"dob_l\" = \"dob_r\"",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "1861-01-01",
- "value_r": "1861-01-01"
- },
- {
- "bar_sort_order": 7,
- "bayes_factor": 0.1695900002634309,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": -2.559876989819243,
- "m_probability": 0.16947053958156647,
- "record_number": 49,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": false,
- "u_probability": 0.9992955912395844,
- "value_l": "gu12 4nb",
- "value_r": "gu11 3he"
- },
- {
- "bar_sort_order": 8,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
- "column_name": "tf_postcode_fake",
- "comparison_vector_value": 0,
- "label_for_charts": "All other comparisons",
- "log2_bayes_factor": 0,
- "m_probability": 0.16947053958156647,
- "record_number": 49,
- "sql_condition": "ELSE",
- "term_frequency_adjustment": true,
- "u_probability": 0.9992955912395844,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 9,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "aldershot",
- "value_r": "None"
- },
- {
- "bar_sort_order": 10,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_birth_place",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 11,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": false,
- "u_probability": null,
- "value_l": "writer",
- "value_r": "None"
- },
- {
- "bar_sort_order": 12,
- "bayes_factor": 1,
- "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
- "column_name": "tf_occupation",
- "comparison_vector_value": -1,
- "label_for_charts": "Null",
- "log2_bayes_factor": 0,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
- "term_frequency_adjustment": true,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- },
- {
- "bar_sort_order": 13,
- "bayes_factor": 0.24165943221163722,
- "bayes_factor_description": null,
- "column_name": "Final score",
- "comparison_vector_value": null,
- "label_for_charts": "Final score",
- "log2_bayes_factor": -2.0489527891786787,
- "m_probability": null,
- "record_number": 49,
- "sql_condition": null,
- "term_frequency_adjustment": null,
- "u_probability": null,
- "value_l": "",
- "value_r": ""
- }
- ]
- },
- "height": 450,
- "layer": [
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "3a7de8fb-a7e3-4322-b718-3e3cf9803e9c",
+ "metadata": {},
+ "outputs": [
{
- "layer": [
- {
- "encoding": {
- "color": {
- "value": "black"
- },
- "size": {
- "value": 0.5
- },
- "y": {
- "field": "zero",
- "type": "quantitative"
- }
- },
- "mark": "rule"
- },
- {
- "encoding": {
- "color": {
- "condition": {
- "test": "(datum.log2_bayes_factor < 0)",
- "value": "red"
- },
- "value": "green"
- },
- "opacity": {
- "condition": {
- "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
- "value": 1
- },
- "value": 0.5
- },
- "tooltip": [
- {
- "field": "column_name",
- "title": "Comparison column",
- "type": "nominal"
- },
- {
- "field": "value_l",
- "title": "Value (L)",
- "type": "nominal"
- },
- {
- "field": "value_r",
- "title": "Value (R)",
- "type": "nominal"
- },
- {
- "field": "label_for_charts",
- "title": "Label",
- "type": "ordinal"
- },
- {
- "field": "sql_condition",
- "title": "SQL condition",
- "type": "nominal"
- },
- {
- "field": "comparison_vector_value",
- "title": "Comparison vector value",
- "type": "nominal"
- },
- {
- "field": "bayes_factor",
- "format": ",.4f",
- "title": "Bayes factor = m/u",
- "type": "quantitative"
- },
- {
- "field": "log2_bayes_factor",
- "format": ",.4f",
- "title": "Match weight = log2(m/u)",
- "type": "quantitative"
- },
- {
- "field": "prob",
- "format": ".4f",
- "title": "Adjusted match score",
- "type": "quantitative"
- },
- {
- "field": "bayes_factor_description",
- "title": "Match weight description",
- "type": "nominal"
- }
- ],
- "x": {
- "axis": {
- "grid": true,
- "labelAlign": "center",
- "labelAngle": -20,
- "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
- "labelPadding": 10,
- "tickBand": "extent",
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "grid": false,
- "orient": "left",
- "title": "log2(Bayes factor)"
- },
- "field": "previous_sum",
- "type": "quantitative"
- },
- "y2": {
- "field": "sum"
- }
- },
- "mark": {
- "type": "bar",
- "width": 60
- }
- },
- {
- "encoding": {
- "color": {
- "value": "white"
- },
- "text": {
- "condition": {
- "field": "log2_bayes_factor",
- "format": ".2f",
- "test": "abs(datum.log2_bayes_factor) > 1",
- "type": "nominal"
- },
- "value": ""
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "axis": {
- "orient": "left"
- },
- "field": "center",
- "type": "quantitative"
- }
- },
- "mark": {
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "black"
- },
- "text": {
- "field": "column_name",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -25,
- "fontWeight": "bold",
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
- },
- "text": {
- "field": "value_l",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -13,
- "fontSize": 8,
- "type": "text"
- }
- },
- {
- "encoding": {
- "color": {
- "value": "grey"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
+ "config": {
+ "view": {
+ "continuousHeight": 300,
+ "continuousWidth": 400
+ }
+ },
+ "data": {
+ "values": [
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 0,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 0,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 1,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 1,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 1,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 2,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 2,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 2,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 3,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 3,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 3,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 4,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 4,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 4,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 5,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 5,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 5,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 5,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 5,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 6,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 6,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 6,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 6,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 6,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 7,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 7,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 7,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 7,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "me17 4nw",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "maidstone",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 7,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1175.0185002272876,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.198467756325595,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 8,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 8,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 8,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 8,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 8,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 44707.80551426446,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 15.448239112381744,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 9,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 13.63690070072612,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 13.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.769443890879799,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norman",
+ "value_r": "norman"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 9,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 2.640131796652814,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 2.64 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4006099514137826,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "macdougall",
+ "value_r": "macdougall"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 9,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 9,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "dn32 0sd"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "north east lincolnshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 9,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.43356375526865354,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.31 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.205683938471788,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "painter",
+ "value_r": "painter"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 44707.80551426446,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 15.448239112381744,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 7.778809222513577,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 2.9595493248441493,
+ "m_probability": 0.07354167451568606,
+ "record_number": 10,
+ "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.009454104402360242,
+ "value_l": "william",
+ "value_r": "willie"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 7.78 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.07354167451568606,
+ "record_number": 10,
+ "sql_condition": "levenshtein_distance(\"first_name_l\", \"first_name_r\") <= 2",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.009454104402360242,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 10,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.1169788370454212,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.1596018519099875,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 10,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 3.7243862718894305,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.897002708675377,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "l37 5aa",
+ "value_r": "sw1p 4lg"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 10,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "wales",
+ "value_r": "wales"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.8006442152248647,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.8485131509070939,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "wales",
+ "value_r": "wales"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9590935537162004,
+ "value_l": "association football player",
+ "value_r": "association football manager"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.10073668618440759,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9590935537162004,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 8410.342139625365,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 13.037948776355417,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 0.2943290699918006,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -1.7644980549473468,
+ "m_probability": 0.28724905116399735,
+ "record_number": 11,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9759452274693747,
+ "value_l": "william",
+ "value_r": "will"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 3.40 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.28724905116399735,
+ "record_number": 11,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9759452274693747,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 11,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.1169788370454212,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.1596018519099875,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 11,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 3.7243862718894305,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.897002708675377,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sw1p 4lg"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 11,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "association football player",
+ "value_r": "association football player"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1.490609683099434,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.49 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.5759025366451791,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "association football player",
+ "value_r": "association football player"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1997.8309788652232,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 10.964218817608423,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 12,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 333.4770408553619,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 8.381443628293102,
+ "m_probability": 0.1284849300847964,
+ "record_number": 12,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0003852886836084281,
+ "value_l": "bevan",
+ "value_r": "brvan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 333.48 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.1284849300847964,
+ "record_number": 12,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.0003852886836084281,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 12,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-81",
+ "value_r": "1852-01-81"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 16.387299596313493,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 4.034506232425312,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-81",
+ "value_r": "1852-01-81"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 12,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "ol3 7ne",
+ "value_r": "ch42 0ns"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 12,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 64921.415925324545,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 15.986406844718264,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 13,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "ed",
+ "value_r": "ed"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 6.225541624244533,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 6.23 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.638199357601547,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "ed",
+ "value_r": "ed"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 13,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "thomas",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 13,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 13,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.8677289824782918,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.204683578355832,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 13,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 3.6012884304497295,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.8485131509070938,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 6486.8228086590925,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 12.663296315961755,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 14,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 14,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 14,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-07",
+ "value_r": "1852-01-07"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 16.387299596313493,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 16.39 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 4.034506232425312,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-07",
+ "value_r": "1852-01-07"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "m9 6ns",
+ "value_r": "ch6 5nz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "wales",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9590935537162004,
+ "value_l": "artist",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.10073668618440759,
+ "record_number": 14,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9590935537162004,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 2782.8094472485195,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.442326408235818,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 15,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 15,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 15,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.38109999061194166,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3917585222767863,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ch42 0ns"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 15,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "wales",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 15,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3633.189784025681,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.827021013289533,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 16,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 16,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 16,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.38109999061194166,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3917585222767863,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ch42 0ns"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 16,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "wales",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 16,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3633.189784025681,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.827021013289533,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 17,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 17,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 17,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.38109999061194166,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3917585222767863,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 17,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "wales",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 17,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3633.189784025681,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.827021013289533,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 18,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 18,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 18,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.38109999061194166,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.62 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.3917585222767863,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1852-01-01",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 18,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "wales",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 18,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3633.189784025681,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.827021013289533,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 19,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 19,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 19,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1852-01-81",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 19,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "ol3 7ne",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3303.4930368139717,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.689776588431448,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 20,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 35.79686433940606,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 35.80 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.16176131365856,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "irwin",
+ "value_r": "irwin"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 20,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7083280430044135,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4975104345670039,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bevan",
+ "value_r": "bevan"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 20,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1852-01-81",
+ "value_r": "1852-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 20,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "ol3 7ne",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "wirral"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "visual artist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 3303.4930368139717,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 11.689776588431448,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 21,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 21,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "barlow",
+ "value_r": "barlow"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.708320574304762,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.7725787288007404,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "barlow",
+ "value_r": "barlow"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 0.0037043486234159474,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -8.076564404852965,
+ "m_probability": 0.0033233936977775237,
+ "record_number": 21,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.8971600774208104,
+ "value_l": "1544-01-01",
+ "value_r": "1498-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 269.95 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.0033233936977775237,
+ "record_number": 21,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.8971600774208104,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 21,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "cm3 4bs",
+ "value_r": "cm3 4bs"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.337450159852669,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.5672536577405403,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cm3 4bs",
+ "value_r": "cm3 4bs"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 21,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "chelmsford",
+ "value_r": "chelmsford"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 2.140388406776726,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.0978726198438111,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "chelmsford",
+ "value_r": "chelmsford"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "scientist",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 5575.084648618187,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 12.444777994845623,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 22,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 22,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "barlow",
+ "value_r": "barlow"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.708320574304762,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.71 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.7725787288007404,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "barlow",
+ "value_r": "barlow"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "1498-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 22,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "cm3 4bs",
+ "value_r": "cm3 4bs"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.337450159852669,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 2.96 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.5672536577405403,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cm3 4bs",
+ "value_r": "cm3 4bs"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 22,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "chelmsford",
+ "value_r": "chelmsford"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 2.140388406776726,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 2.14 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.0978726198438111,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "chelmsford",
+ "value_r": "chelmsford"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "scientist",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 1505010.7901229756,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 20.52134239969859,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 23,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 23,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.93609665087873,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.9531509744425611,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 23,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 23,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 23,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.8677289824782918,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.204683578355832,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 23,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 3.6012884304497295,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.8485131509070938,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 357545718.6376666,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 28.41355248724083,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 24,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 24,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.93609665087873,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.9531509744425611,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 24,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 24,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 24,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.8677289824782918,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.204683578355832,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 24,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 3.6012884304497295,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.8485131509070938,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 357545718.6376666,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 28.41355248724083,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 25,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 25,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.93609665087873,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.9531509744425611,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 25,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 25,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 25,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.8677289824782918,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.204683578355832,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 25,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 3.6012884304497295,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.8485131509070938,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 357545718.6376666,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 28.41355248724083,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 26,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 26,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.93609665087873,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.94 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.9531509744425611,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "dyer",
+ "value_r": "dyer"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 26,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1850-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 26,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 26,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.8677289824782918,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.15 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.204683578355832,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "gl2 8jb",
+ "value_r": "gl2 8jb"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 26,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 3.6012884304497295,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 3.60 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.8485131509070938,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "tewkesbury",
+ "value_r": "tewkesbury"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 357545718.6376666,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 28.41355248724083,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 27,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 27,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 27,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 27,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 27,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 27,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 27,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 28,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 28,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 28,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 28,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 28,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 28,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 28,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 29,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 29,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 29,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 29,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 29,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 29,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 9498277.481511904,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 23.179234472851824,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 30,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 30,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 30,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 30,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 30,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 30,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 9498277.481511904,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 23.179234472851824,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 31,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 31,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 31,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 31,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 31,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 31,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 31,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 32,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 32,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 32,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 32,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 32,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 32,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 32,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 33,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 33,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 33,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 33,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 33,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 33,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 33,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 34,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 34,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 34,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 34,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 34,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 34,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 34,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 656549519.3217664,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 29.290328587560083,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 35,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 35,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 0.4683030453214949,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": -1.094485675137949,
+ "m_probability": 0.03711726145166532,
+ "record_number": 35,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.07925906487792309,
+ "value_l": "1680-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.03711726145166532,
+ "record_number": 35,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.07925906487792309,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 35,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 35,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 35,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 19365395.160392523,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 24.206977604778523,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 36,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 36,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 0.4683030453214949,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": -1.094485675137949,
+ "m_probability": 0.03711726145166532,
+ "record_number": 36,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.07925906487792309,
+ "value_l": "1680-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 2.14 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.03711726145166532,
+ "record_number": 36,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 2",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.07925906487792309,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 36,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 36,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 36,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 19365395.160392523,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 24.206977604778523,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 37,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 37,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 37,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 37,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 37,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 37,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "oswestry",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 37,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 6777.620508935834,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 12.726563144676158,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 38,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 38,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 38,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 38,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 38,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.5061752397790036,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.98 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.982291157019384,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sy10 8ra",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 38,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "oswestry",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 38,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 6777.620508935834,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 12.726563144676158,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 39,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 39,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 39,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 39,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 39,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 39,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 292565.96219926194,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 18.158402407198313,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 40,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 40,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.7260362440795238,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.38 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4618865248362826,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "cartwright",
+ "value_r": "cartwright"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 15.876987624378211,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 3.9888653076436063,
+ "m_probability": 0.3411854615955972,
+ "record_number": 40,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.02148930701890366,
+ "value_l": "1600-01-01",
+ "value_r": "1606-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 1` then comparison is 15.88 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Levenshtein_distance <= 1",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.3411854615955972,
+ "record_number": 40,
+ "sql_condition": "levenshtein_distance(\"dob_l\", \"dob_r\") <= 1",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.02148930701890366,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sy10 8ra"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 40,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.3345951242254879,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.33 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4164021382693085,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "shropshire"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 40,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 3.144325592920995,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 3.14 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.6527506154881986,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "actor",
+ "value_r": "actor"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 292565.96219926194,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 18.158402407198313,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 41,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4385527024735812,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1891778678878713,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 41,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "norfolk",
+ "value_r": "norfolk"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.9075453050994048,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.13995842994892027,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norfolk",
+ "value_r": "norfolk"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "1655-01-11"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 41,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "ec1m 3ln",
+ "value_r": "ec1m 3ln"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.674900319705338,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.5672536577405403,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "ec1m 3ln",
+ "value_r": "ec1m 3ln"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 41,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "camden",
+ "value_r": "camden"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.71122624175026,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.49161953935785924,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "camden",
+ "value_r": "camden"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 41,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 11437060.827131525,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 23.447213010477377,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 42,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4385527024735812,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1891778678878713,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 42,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "norfolk",
+ "value_r": "norfolk"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 0.9075453050994048,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.10 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.13995842994892027,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "norfolk",
+ "value_r": "norfolk"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "1655-01-11"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"dob_l\" IS NULL OR \"dob_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 4433.459980200162,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 4,433.46 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 12.114217337381147,
+ "m_probability": 0.687813956434951,
+ "record_number": 42,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.00015514157328739382,
+ "value_l": "ec1m 3ln",
+ "value_r": "ec1m 3ln"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 0.674900319705338,
+ "bayes_factor_description": "Term frequency adjustment on postcode_fake makes comparison 1.48 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 2,
+ "label_for_charts": "Term freq adjustment on postcode_fake with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.5672536577405403,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"postcode_fake_l\" = \"postcode_fake_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "ec1m 3ln",
+ "value_r": "ec1m 3ln"
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 42,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "camden",
+ "value_r": "camden"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.71122624175026,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.49161953935785924,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "camden",
+ "value_r": "camden"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 42,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.4599747087910215,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 2.17 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1203735565543766,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "politician",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 11437060.827131525,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 23.447213010477377,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 43,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1239.7644819625823,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 1,239.76 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 10.275850362551136,
+ "m_probability": 0.7816372776652062,
+ "record_number": 43,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0006304723913592461,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1.1169788370454212,
+ "bayes_factor_description": "Term frequency adjustment on surname makes comparison 1.12 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on surname with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.1596018519099875,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"surname_l\" = \"surname_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "owen",
+ "value_r": "owen"
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 43,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 3.7243862718894305,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.72 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.897002708675377,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-11-20",
+ "value_r": "1860-11-20"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "l37 5aa",
+ "value_r": "sw1p 4lg"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 43,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "wales",
+ "value_r": "wales"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1.8006442152248647,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 1.80 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.8485131509070939,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "wales",
+ "value_r": "wales"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9590935537162004,
+ "value_l": "association football player",
+ "value_r": "association football manager"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.10073668618440759,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9590935537162004,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 10853.316525050908,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": 13.405848344165456,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ }
+ ]
+ },
+ "height": 450,
+ "layer": [
+ {
+ "layer": [
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "size": {
+ "value": 0.5
+ },
+ "y": {
+ "field": "zero",
+ "type": "quantitative"
+ }
+ },
+ "mark": "rule"
+ },
+ {
+ "encoding": {
+ "color": {
+ "condition": {
+ "test": "(datum.log2_bayes_factor < 0)",
+ "value": "red"
+ },
+ "value": "green"
+ },
+ "opacity": {
+ "condition": {
+ "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
+ "value": 1
+ },
+ "value": 0.5
+ },
+ "tooltip": [
+ {
+ "field": "column_name",
+ "title": "Comparison column",
+ "type": "nominal"
+ },
+ {
+ "field": "value_l",
+ "title": "Value (L)",
+ "type": "nominal"
+ },
+ {
+ "field": "value_r",
+ "title": "Value (R)",
+ "type": "nominal"
+ },
+ {
+ "field": "label_for_charts",
+ "title": "Label",
+ "type": "ordinal"
+ },
+ {
+ "field": "sql_condition",
+ "title": "SQL condition",
+ "type": "nominal"
+ },
+ {
+ "field": "comparison_vector_value",
+ "title": "Comparison vector value",
+ "type": "nominal"
+ },
+ {
+ "field": "bayes_factor",
+ "format": ",.4f",
+ "title": "Bayes factor = m/u",
+ "type": "quantitative"
+ },
+ {
+ "field": "log2_bayes_factor",
+ "format": ",.4f",
+ "title": "Match weight = log2(m/u)",
+ "type": "quantitative"
+ },
+ {
+ "field": "prob",
+ "format": ".4f",
+ "title": "Adjusted match score",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor_description",
+ "title": "Match weight description",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "axis": {
+ "grid": true,
+ "labelAlign": "center",
+ "labelAngle": -20,
+ "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
+ "labelPadding": 10,
+ "tickBand": "extent",
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "grid": false,
+ "orient": "left",
+ "title": "log2(Bayes factor)"
+ },
+ "field": "previous_sum",
+ "type": "quantitative"
+ },
+ "y2": {
+ "field": "sum"
+ }
+ },
+ "mark": {
+ "type": "bar",
+ "width": 60
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "white"
+ },
+ "text": {
+ "condition": {
+ "field": "log2_bayes_factor",
+ "format": ".2f",
+ "test": "abs(datum.log2_bayes_factor) > 1",
+ "type": "nominal"
+ },
+ "value": ""
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "orient": "left"
+ },
+ "field": "center",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "text": {
+ "field": "column_name",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -25,
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_l",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -13,
+ "fontSize": 8,
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_r",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -5,
+ "fontSize": 8,
+ "type": "text"
+ }
+ }
+ ]
+ },
+ {
+ "encoding": {
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "x2": {
+ "field": "lead"
+ },
+ "y": {
+ "axis": {
+ "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
+ "orient": "right",
+ "title": "Probability"
+ },
+ "field": "sum",
+ "scale": {
+ "zero": false
+ },
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "color": "black",
+ "strokeWidth": 2,
+ "type": "rule",
+ "x2Offset": 30,
+ "xOffset": -30
+ }
+ }
+ ],
+ "params": [
+ {
+ "bind": {
+ "input": "range",
+ "max": 43,
+ "min": 0,
+ "step": 1
+ },
+ "description": "Filter by the interation number",
+ "name": "record_number",
+ "value": 0
+ }
+ ],
+ "resolve": {
+ "axis": {
+ "y": "independent"
+ }
+ },
+ "title": {
+ "subtitle": "How each comparison contributes to the final match score",
+ "text": "Match weights waterfall chart"
+ },
+ "transform": [
+ {
+ "filter": "(datum.record_number == record_number)"
+ },
+ {
+ "filter": "(datum.bayes_factor !== 1.0)"
+ },
+ {
+ "frame": [
+ null,
+ 0
+ ],
+ "window": [
+ {
+ "as": "sum",
+ "field": "log2_bayes_factor",
+ "op": "sum"
+ },
+ {
+ "as": "lead",
+ "field": "column_name",
+ "op": "lead"
+ }
+ ]
+ },
+ {
+ "as": "sum",
+ "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
+ },
+ {
+ "as": "lead",
+ "calculate": "datum.lead === null ? datum.column_name : datum.lead"
+ },
+ {
+ "as": "previous_sum",
+ "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
+ },
+ {
+ "as": "top_label",
+ "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "bottom_label",
+ "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "sum_top",
+ "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "sum_bottom",
+ "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "center",
+ "calculate": "(datum.sum + datum.previous_sum) / 2"
+ },
+ {
+ "as": "text_log2_bayes_factor",
+ "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
+ },
+ {
+ "as": "dy",
+ "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
+ },
+ {
+ "as": "baseline",
+ "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
+ },
+ {
+ "as": "prob",
+ "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
+ },
+ {
+ "as": "zero",
+ "calculate": "0*datum.sum"
+ }
+ ],
+ "width": {
+ "step": 75
+ }
},
- "text": {
- "field": "value_r",
- "type": "nominal"
- },
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "y": {
- "field": "sum_top",
- "type": "quantitative"
- }
- },
- "mark": {
- "baseline": "bottom",
- "dy": -5,
- "fontSize": 8,
- "type": "text"
- }
- }
- ]
- },
- {
- "encoding": {
- "x": {
- "axis": {
- "labelAngle": 0,
- "title": "Column"
- },
- "field": "column_name",
- "sort": {
- "field": "bar_sort_order",
- "order": "ascending"
- },
- "type": "nominal"
- },
- "x2": {
- "field": "lead"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAImCAYAAABaeXcJAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQm8TdUXxxelUBFKA0nGkqFJUYQmNNFcpEiD0CAlUaZmDTJGCY2UoUIpqUSUkpJI0p/KGCVTiej/+a7XeR3Xve/uc9+9793z3tqfz/t43t3nnL1/e+9z93evtfcq8M8///wjlkwBU8AUMAVMAVPAFDAFTAFTwBQwBUyBNFGggIFqmrSEFcMUMAVMAVPAFDAFTAFTwBQwBUwBU0AVMFC1jmAKmAKmgClgCpgCpoApYAqYAqaAKZBWChioplVzWGFMAVPAFDAFTAFTwBQwBUwBU8AUMAUMVK0PmAKmgClgCpgCpoApYAqYAqaAKWAKpJUCBqpp1RxWGFPAFDAFTAFTwBQwBUwBU8AUMAVMAQNV6wOmgClgCoRQAf+B7QUKFMisQay/h7CKWuRNmzYJdSpevHhYq5CScv/999+yYcMGKVmypOy1114xn+H1B6+PRP4/JYWzm5oCpoApYAqYAklQwEA1CSLaLUwBU8AUyEkFxo4dK5dffrk+snHjxvLOO+/o77Nnz5bTTjtNfz/hhBPkiy++iFuskSNHChDTunXruHl5Js+eO3eunHjiiXHzJyODB1h//fWX7LPPPlnecv78+XLcccfJRRddJBMmTNgj77p16+TNN9+UcuXKyTnnnJOM4gW+B221YsUKLWOpUqUCX88Fzz33nFx//fV67ffffy+VKlWKeZ8rrrhCXnvtNZk5c6bUq1dPihUrJps3b5YdO3bI3nvv7fz8ZLd9OrSFc+UtoylgCpgCpkCuKGCgmiuy20NNAVPAFEhcAT+ochcP4h599FHp2rWr3rhmzZoCuMVLkZa2rPI3b95cQW/OnDly8sknx7t1Uj6/9dZbZdu2bTJkyJC4YPXll18qoJ933nkyefLkPZ4PYNeuXTsmyCalwHFucuGFF8qkSZNk3rx5cvzxxyf0yGOPPVYWLVokvXr1kttuu00OPPDAuKA6Y8YMqV+/fsKgmuy2T4e2SEh8u8gUMAVMAVMgxxQwUM0xqe1BpoApYAokRwEPVA844AC1jn3yySdSp04dOffcc+Xjjz/Wv3mgCsQ+8sgjamH87bff5JRTThGsbJdddpm0bNlSXnnlFS3UBRdcIC+//LJs375d7r33Xpk6daoCEBbbdu3aqRXSg5WePXvK66+/rvcDvPr27Sv77bffbpW7+OKLZf369YLF9vDDD9f7kN544w0pWLCgXrf//vvL22+/LR988IHcf//9Cl+VK1eWDh06yFVXXaX5mzRpIn/88YfmwQKIZbB79+7y3XffqVWZv2E5puw8D1AFyKpUqaJAeOSRR8rDDz+sVkfqO2vWLEG3Nm3aSP/+/WXBggXy7LPPan0OO+wwadSokfTu3VsKFy6ccH0oz3333afl4vlYMllAGDVqlDzwwAPaPli+n3jiCQXnYcOGyfDhw9XSiqWaPNTjm2++kfbt26v195dffpFPP/1U9fG3GXWgHaI9r3Tp0trWWFRdQPXXX39NuO3XrFkj99xzjz6HNjn11FOlY8eOWh/ahjpeffXVMm3aNClatKgsXbp0j7ZIzuiwu5gCpoApYArkFQUMVPNKS1o9TAFTIN8o4IHqJZdcIuPHj5fHHntMLWu4xgKgfO6BqucmWqFCBYWjF198UXUCFICcgQMH6v+vu+46/T9gCMxVq1ZN94cCT54bsQeq5G/YsKFMnz5dr33ooYcUUvwJEATMXnjhBYVGQJr07rvvKqieffbZCprdunVTd10SllBAB5AbM2aMQpbf9Rd3VeCWRP2+/vrrzEcuXrxYgZayksqWLavWQ+CXtGTJEunUqZO89dZbAsDdfPPNCmVYJ/msc+fOCoLU/amnnlI9E6kPEAmYA5a496Lf559/rq7VWKGxgvIZCwMAMYsMgDnwDNBOmTJFH4tLL/k8V26vTrRvv379NE/btm21Diw+RHseiwSuoMreVQA/0bZv1aqVvPTSS1pe9s2ySIDOa9euFb+ln3KzCEHf8rcFulgyBUwBU8AUMAX8ChioWn8wBUwBUyBkCnigessttyj4YWXDygkIAZ783QNVgOHbb7+VBg0aCAfwXHnllQpPWLbOPPPMTBAEVAC/WrVqKeQBShzSgxUS11usYsAIrr9YUO+66y61RN54440KuQCxP40bN06hGWtsjRo1FMZIWE5JWAABG+Bw0KBBcvfdd8tNN92k9QEiAR6sw35Q5TMssZQDAKYeRxxxhN4vElT//PNPBXeswoDvDz/8oJZHv+vvypUrta4kYB/N2Dt58MEH77GH1bU+gD5aHHTQQVoH6oiF1KtPpOtv1apVFZSxeAPsffr0UcAH3IB5D1SxigK+WCv9+0w3btyY5fNcQTW7bT948GDZsmWLsHiCy/mll16qurJ4MGDAALUos/hBn8Haaq6/IXvpWHFNAVPAFMgFBQxUc0F0e6QpYAqYAtlRwA+qWBmHDh2q7r3AANY7YMwDVaAByyUw5E/vvfeenHXWWbuB6sSJE6VZs2b6g4tuZPIsqljdgA0sYueff766dHqWWu8a70RarKnkBRQLFSok++67r+zatUuBFCjkWn6PTJ41zg+q1A9rIrDjHSbk7df0gyqAh+syCddT9oPyOcAauUf1jjvuyLRQkh9wRU+su/7kWh+siUD8k08+udv10UCVRYFYJ/YC40A+12HpxNLsJT+oYp3O6nmuoJrdtgfIsUpj2fWnrVu36uIJbYcFuUePHvqxgWp23gB2rSlgCpgC+UMBA9X80c5WS1PAFMhDCvhBFbdPYA/XUayLwONRRx2VCarAENYyYAH4AcAAzWig+r///U8qVqyY6eoLUGKpZd8qkIE11n+YUlagitzs98Q9mLLhSguUcR+SB1+eizAWVlxZAW/cRdkjCmT6QRU35xYtWui+TSx4v//+u5QoUULv5wdV/2FKWYEq+yoXLlyo4W9++uknPYCJvapA8qpVq/aASJf6YMHGaspCwejRo/U+nmUUC3GkRfWQQw5RuOPZ1atXV5jGSur9HVCNXDjwgyquwlk9zxVUs9P2LB5ghSZ9+OGHajml/CQ/qPpdqg1U89ALyapiCpgCpkCKFDBQTZGwdltTwBQwBVKlgB9UAUAvPAkuv1gI/aDqgRqn5uKa2aVLFy0WVkwO6fFAEPdbrJS4DwO23Au3TdxYzzjjDHn//fczD1PyTv2NB6pYFbGykQAxrH8c+ETiICHK6rnUAofsVwW8KBufkccPqkAPFksSezwph2fBcwFVbw8r+3Vx9aWuwD3PBshxq8X9mM+xQEdaO13qQ/mpI3tysSJi6ca9mf+zH5VDpoDh22+/XffMUg60B0hxlaadeDYLAp77cFagyoJDVs9zBVU09RY1grY9AEpZWZDAskr9cF8m0eeoH1r4QdU7odlrC3SxZAqYAqaAKWAK+BUwULX+YAqYAqZAyBTwQJXQLRyA5Fnf2MeIayug6h2AhAvvNddco5Y63FrZLwpMsQcSOANKAAkSp+biKoyLL/lJuO5yMi+WVs/197PPPtPneKDq7RmNlBFrJVZCElZSoBMoJHHI0THHHKO/cxgTJ/l6ib2YI0aM0P2lnvXQC8FD3YEeLICAHfDHXlX21FLmyPA0fosqulBuQNxzjY58NrAFaLF/N5H6sA8YC6p30BSHKAFt3Hf58uUK4ViFScAoiwDAsXeSL3+nbXCRBcTr1q2bpUWV/Fk9j/2+rnFUOVk50ban/dCSxEFbWJIBbhY4sJ6yB9kPqljpI9siZMPQimsKmAKmgCmQYgUMVFMssN3eFDAFTIHcVgAowLUV2PQslP4ycQIrgIUbLZ/jfgsIsp+U8CrRrkl2nbCWLlu2TEPElCpVKurtCUnDHlwvjAyuu2XKlNG8lBmLaLyEmy/7Tb1DiciPqy36cPhS+fLltd7ZTcAzkM1PZOKgJ+pbvHhx3bdLIjTM6tWr1ZpL+JagKavnBblXdtoeXakbpx67pGht4XKd5TEFTAFTwBTIHwoYqOaPdrZamgKmgCkQegVw88XN2TsUCWglYVnFamjJFDAFTAFTwBQwBfKOAgaqeactrSamgClgCuR5BdjvicssB0KxL5LDpNjvmQwraJ4XzypoCpgCpoApYAqESAED1RA1lhXVFDAFTAFTwBQwBUwBU8AUMAVMgfyggIFqfmhlq6MpYAqYAqaAKWAKmAKmgClgCpgCIVLAQDVEjWVFNQVMgfArwAEyO3fudDr4J/y1DWcNaB9SZHiasNWGg5G8w5qyU3YOSfLi1WbnPrl9bbL0yO162PNNAVPAFMgvChio5peWtnqaAnlMgfbt2+vpraNHj96tZpxQS0gWYk+mY5o2bZq0adNGfv7553QsnnOZiEm63377aVgYL46r88W5lPHHH38UQutw+FJk8teH+K2HHnqohu8JkghrQ9gbTlfObmIvLsBMfFXX5K+fVx9ObyYsTyKJ8UW8WsL5cHDV0Ucf7Xy6cuTzOFUaaCbebdWqVRMpTsxrCF308ssvy5VXXhnzxORk6JHUQtvNTAFTwBQwBeIqYKAaVyLLYAqYAumoAPEhf/vtN3n11Vf3AFWAgXiQ6ZjyCqju2rVLPv74YznppJMSCqeSG20zadIkPXjphx9+2OPx/vp07tw5IVCtVauW3HvvvVFBOGh977zzTg31MnjwYOdL/fVLBpjNmDFDGjRoINwLTwDiodavXz+hcEUeqH777bcKvMlMvAcIabRy5cqYoXGSoUcyy2z3MgVMAVPAFIivgIFqfI0shylgCqShAi6gOnHiRLnnnnvUennGGWfIoEGD1OX2wgsvlLFjx2qMUKCEcCfPPPOMYJlp2LChvPLKK3tYoUaNGiX9+vWTLVu2yNVXXy333Xef3ov4l926dVMrbuXKlaV169Zy/fXXq2Ljxo2T7t27y++//y5XXHGF9O3bV+GuZcuW0rZtW3nxxReldOnSMmzYMAW+yBTt+sKFC0u0epUtW1bvs2TJElm3bp18+OGHcvnll0vdunW1DKQnn3xSzjvvPMFiSJ2/+uor+eSTT6Rp06YyYMAAjfkZqz5Y97gXuj/++OMaDobf0QrLaq9evWTMmDF6Eu8jjzyiljiuefjhh7VcxHKl3g8++KAUKVJENTr++ONVo0WLFmlZn3rqqT3cbbHqYT1/6623pHbt2nL33XfLOeeco5reeuutqvvBBx8sXbt2lRtuuEG2bdsmp59+utx0001aX/5PHzjzzDPlrLPO0viwl1xyiS5wxKoPZUQH4rSiEXWh7+D+SvvSlmhGuuaaa/Tno48+kgceeEBoh5EjR2oZevToof3swAMPlLvuukstfiQWUtD7iy++0AUV7u2Pt8rn1157real7YDWWDp6fYYYtP76vfDCC5ntQluhA32W8pNi9WfvfqtWrZKzzz5b24a60oa03wcffCDPPfecQiHPnDp1qpx44ony/PPPazvE6j+xQNVrL+49YsQIOeCAA1Q3NORZjFv+Tp+ZN2+ePPTQQzJz5szMvgA4N2rUSKZPn67WbBaCaDf6JpZg+vv999+vAOv102h6+MderPZZsGDBHvfFmwD4po/SnkA47wks4V9++aX2d06mfumll2T+/Plq0ac9iQncuHFjzRsrbnAavnatSKaAKWAK5KgCBqo5Krc9zBQwBZKlABNRLD5Agj8BLEw0q1SpIscee6xa0AAEJqvADZPccuXKyWOPPabAUbx4cYU2IBWLUZMmTdSl2L8/ccqUKXLuuecqXBxzzDHqugsUMaEGlphAA2fLly+XVq1a6SQeK0+NGjX0GgD2tttuU1DApRQAuOiii+S6667TiSrWPMDSn7755puo159wwgkx6wUs9unTR8sFMN14440Kwv3795f33ntPJ/NYE9Fu6NChCki4YQJ11IMyxqoP98F1E5Bgos29DzvsMAVjwsUACEzK33nnHbUqAiDAEgsBQBZaACOAEm1Rr149DTEDrK9fv146deqkGrBQ4E+0EUAEXNMOACbPpN1pL9px69at0qJFC3n33Xf1vgAJ7T9w4EAFasAKgAK2gGHuA9TEqg+Aiz5oidssdbj44ovl6aefViijrCxWkPg/fY770UcATKAFmAdSH330UbVI8nfqV716dQU6ygX4cm8+u+OOOzKrvXr1au239Enuw3WxdPQu4hm0s1c/gMnTAf25B+1NuwCAsfqzdz/yoRd9FhilrJ7rL+2HNr1795Zq1apJhw4d9Cer8eD1n0iLqmfp5D703yFDhmg/ZXwBmYA8CyD0A/oq/YPP+BvtyDihbwN9EyZM0AUJxtv555+vfY3+wbMZh7H08Ic2oi9Gax/alIWtyPti8QZW6d8sWNEHaYelS5cqjLJgQV9koYIFD8b/LbfcIpdeeqkuXG3atEnfY5ZMAVPAFDAF9lTAQNV6hSlgCoRSAWCLfWmAiT8xeQVUsVwwOcdiSGJvHJDJPj4m7kAKE0bvetwmmSAz8QWw/AkLLJPd4cOH65+x8AAgTESZ9AO+RxxxhFqfAMn3339fJ8+AmDcJBeR++uknzQuoYpll4kx5mYQzYfUnrIDRrmcCHKteABnPxmpLOuSQQxSa2GuJtQerLZZNYBT4AypJTPqBEu4bqz5MuNEMSxcA4AEG0AgcsacSqxqLA5QbHYAKAAKwIaEfcIOFG92xjAI3pJNPPlnh17NG8zc0YSGBMmE1wyoHBPN82hIo4B4kIHj//fdX8EdX7xoWIbBWAkjsp/Vcfz0LX7T6AKqetZl7A0/AKOWJBarse/Vcf7HYstABhHtAC1hjWQXyAR4gmnqwoIGLb+S+Tb/rL9rE0tHfZ6K5/tIPsbRu3LhRn48OXbp0idmf/fejP7DIs3btWu3rflDlM69vA2iMK8ZjvP4TC1QZH0AmmqEVWrMowtij/rQ7/RTAZh86iyMsCqEdfdFz/cVqSR4WL4oWLar9HG8JgJt+EU0PvysyYzRa+2CJj3ZfXKOxOHvlRT/6G+OJxSLGjbePm3HCggvPoA6epixMALCWTAFTwBQwBXZXwEDVeoQpYAqEUoF4rr8cslSmTBl1/yQxoWXiihWOSTXAhJUDa1HBggXVDRXwwTLnwYUnDBABkPkTk2gmp8AtlkjcDJmYrlixQmGRiSpwC5D4ExNyoIrJPwmoxH2RPYD+BLxGu56/x6oXLsHUDbdOEuXG0ov1FrdFrH7ogEUQLZg0k4BM3GCBNyzO0erjgSowDiT6QRW3TIAGQK1QoYLev2PHjjphBzy8g63QBWiiroAqUOq5omLJxuKEZc5LCxcuVAtk5N5D7+9Yvzy3SWAcV0tgJvKQJ6AA8AQQIkE1Wn3oM7gwe4BNvSgv+gBNfosqYI4l0A+quH3SRpEJ92YswugOiJKwGgLXWAH9yQ+qWenovyYaqHqQ5J00jQ6UI1Z/9t8vK1BFSyCfxKLNnDlz1KIZazx4/ScWqHrlxAqNnrQxibKiMe3LggHj9pdfftF+BjxGgioa0H5AoD9FHv7l14MFBn+K1j4AeLT7Ms6x1nrl5T70FSymLGrQvt4iFAtjWLUjE2OTfm7JFDAFTAFTYHcFDFStR5gCpkAoFYgHqlhGmZSzB5LkgRoujVgzARHgAusme02xwjLJBTQjIQOIw3LiWf9wDWYf3HHHHSfly5dX90RcIbFYYQFk3yQAikswv5M4NZV7A7j+U39jgSr3i3Y9E+JY9WL/HlDnWX4BVSCC8kWCKqE6vHz8y15I9iXGqk8kaPhBFRdVXGRxr8XShcUWAMSay4Tdg09cZ/kcSy6T+Xbt2mUuCkQDVdoJvbAGY6HFRRpYYfIPqGA9A749oAEMgAFA1X/abVag6oGTvz7e4gblJQH+WNGxIHrPALABbhY5cOP1gyqWN6y7LBxgJSRhRcbKigst/QcL/OzZsxXA+B1rpD/5QRVrciwd/ddkdZiSH8zQPVp/pm7+lBWo+vuZB6pApmv/8Z4TechRLFBl8QgXW6z2HmgDmJGgCqCyr5X+zbimT48fP173hPv7RSxQpQ9Hax8WVaLdlzLgDuxtF6BP8A6gj/MMP6hi1WUxDJgnUUbeU+y93meffUL5HrZCmwKmgCmQSgUMVFOprt3bFDAFUqZAPFDFxRbX07fffluhCFdaIA94IGEZAx4BOPaosY+MfXJ+y4hXeCaYwAj3ApxwUcWKiEUJqycut7h74jIMhOJeCLQyscW1F9dCXFSBKKyuLqCK5Tfa9YBZrHoBPa6gChhRd9x5mfgDfrhIxqoPzyRvNLDDMk250AlXW6ycQDZgx3OwclJvrKns9cSq6QKq6I/rJ3sGgUcWE3gG7pyAG4sN3sFQtB1ghbU3FqiyUMC+YDQixaoPz6Lc1IE8WMCBEdx/0QrLKuAKAAEwHqgCevQN9vyyuEEfxOIGLOG6S9lxv0ZLFhvQ3HPLnjx58m5jhWdRTyyw7HmMpaP/Ig6c8uqHi3csMGPxJlp/jgz1FBRUOVjLtf8EBVXcazmUiLajfzGWnn32WXXxpa4sAAB9WKbpF8Aze3/Z2wvMssDhAqq0ebT2wVoc7b6UgfKwFxYYZuzj9YBLN9sO/KCK9wb9gIO3gFOuYY8rdQKqLZkCpoApYArsroCBqvUIU8AUCKUCWOuwfkQLT4MVE8DBjRdIAi4BSyxOACoJ90KAhAOWsLixRwwrGRPcyEQeQBT3PxKTTCb7gAj7XdmjxzNOPfVUtbBhJeUaJq6eGy5urcABn7mAKtbDaNcD1bHqFQ1UObAF11u/RRlQpC6e+yfWSrThZNRY9WHi7Y+D6Xel9E5VRgMSMIeVFqszE3Pcoj3dADJgxhVUcSnF6g0AA7vs86MtcMcFXvg7Ca2AQqy70UAV6yuggYs3iwgsSMSqD/CLFZeFDBIQjoWMw6M82ODvderUUSDhtF8sqvQD9KOdsWYDKcAxCfdr+qq3MIDlEB0oCwse9J1I6ASOcaHG2h1LR/81ALFXP9ygo4EZOtBvY/Vn//2w/LEPlPaN3KMaaVFFK8aEa//xnuNiUcUtFshnDAHjJPowYMzih7dXnT5BucjDgoHX5xiDWHpj6eFZ5b0y0X+jtQ9QGnlfFkiATdqJ/k9/ZOGKBQPGOtZ1//5zwNmz2NP+LA6wIGXJFDAFTAFTYE8FDFStV5gCpkCeVoDJO5PHihUrZstqgUsf+z8BIayvwK2XgBXc+Di8iHzsoeN3EjCNyydAkkiKdX126oU1mvLgykwoG8DFn7KqT6w6MBnn1GN0Bgi8hPsjlkFcG3Fx9evmqgcWTOobeT1u3JxizCKDa4gP7oWFzYPqrMrA/YFtDtfxl5s+wEKE18aR2uH6SZvzLA6/wg0YyPYn+hKWwMi9qf48aMrCBD+uOrrWL6v+7NousfIl0n9cnwk0lyxZUvsY7cOPN7Zwv8WySgKAOUCKxYVEUqz2iXVf+gOLEljJ2f+dVWLMsUcdV2bCTVkyBUwBU8AUiK6Agar1DFPAFDAF8pkCHqhi/bJkCpgCpoApYAqYAqZAOipgoJqOrWJlMgVMAVMghQqwbxZLDof0WDIFTAFTwBQwBUwBUyAdFTBQTcdWsTKZAqaAKWAKmAKmgClgCpgCpoApkI8VMFDNx41vVTcFTAFTwBQwBUwBU8AUMAVMAVMgHRUwUE3HVrEymQKmgClgCpgCpoApYAqYAqaAKZCPFTBQzceNb1U3BUwBU8AUMAXSTQFO8iXZibjp1jJWHlPAFDAFclYBA9Wc1dueZgqYAqaAKZBmChBahLAmxObs169fzNJdf/31GiOT0C55JRFzlNiqxIBNRrrnnnvkkUce0bA+0cL3xHtGy5YtNT7q/fffL/fee2/U7HfccYe2E6F4CANkyRQwBUwBUyBvKmCgmjfb1WplCpgCpoAp4KiAB6q33HKLDBgwIOZVbdq0kVGjRuUpUL3pppvkmWeekV27diUU4zZSrK5du8qjjz4qq1ev1vi2QRIxSomPWr9+fXn66afl2GOPjXo57TRo0CCNXbz33nsHeYTlNQVMAVPAFAiRArkCqlu2bNEvo8jA7wQJ5+8EN7dkCpgCpoApYAqkSoHFixcL8WQXLVokzZs3V1jzQHXWrFnSqVMn+fzzz6VKlSpy3333ydVXXy0eqGLRe+211+SYY46RwYMHS+XKlVNVzD3uS2ihnj17SuPGjWXixIn67DvvvFPq1Kkjf/75p1pGsUjye5MmTWTgwIFq2aQujz32mLzzzjty6qmnSvfu3YXv3BtvvFF++eUXOe+882Ty5MkyY8YMufvuu+V///ufnHXWWXo/gDGWJliXH3roIRk6dKgcdthhcsABB8gHH3ygoMp3+fDhw/UHN9677rpLdYyVKO+7774rpUuXlgcffFDOOeccufXWW+WTTz6RI488UrBoU14/qGLhfvHFF+Xaa6+V6667TkaPHq1l+fHHH/VZWGYNZnOse9qDTAFTIAcUiMVR3qM3b96s7+K8kHIUVPky/Prrr+Xiiy+WpUuX6peRl/hSqVGjRuaXaF4Q1+pgCpgCpoApkJ4KAKdvvvmmtG3bVkEIYAWAcCk9/PDDtdAdO3aUcePG6ffWihUr1BUViyrfXccff7xC1WWXXabQmlPppZdeklatWunjgLPnn39eywMYjhgxQm644QZp0aKFwil1ad++vVofjz76aL2mT58+CpbsA6VuwDoQ+sILLyjYlStXTuuKGzQQWK9ePZk0aVJMTdauXSsnnniiVKtWTRo2bChDhgzR51CeZ599Vnr06CG9evXSZ7z33nv6L6AcLQGYlAdo7t27twIuf3vyySfl/fffF9yUf/rpJ+nbt6/WCSi96qqrtA2Ac+5NGVq3bi1FihRRqyxuyIC3JVPAFDAFwq5AVhxF3b744gtdsGNhD67iHX7SSSeFuto5Cqrjx4/XLxK+PPly80B1+/btcvnll8uyZcv0iyXWl1iolbbCmwKmgClgCqSFAlu3bpX9999fgWbkyJEybdo0OfvA6+fLAAAgAElEQVTssxVUL7nkEoUdAAm3WL6zgDVcgufNm6eg6n1/nX/++QpP3K9o0aI5UjcPVIFMyvrEE0+oRRXYZn8oExVcmQsWLKgWyU8//VTWr1+vC8FLlixRt9ozzzxT685kxu/6y7W1a9dW4MV6PHfuXFm5cqWuzHNNNE14FjDK4nPFihVVKzQDVBs0aKBl4RnLly9XyydlBJSjpXXr1um8ACsuFlXuOWHCBPn1118VqrHyAqyvv/66gqqXPP09Sytgyt5VnkN9PvvssxxpG3uIKWAKmAKpVCAWR3nP5J3P9wH/knfYsGEyderUVBYp5ffOUVD1aoPLrx9UcaPiSxAXJb7wDFRT3u72AFPAFDAF8q0CWOWANO/wpB9++EEqVaqkoAqwXnjhhQpVWBi//PJLOeGEE9SFlHyA6oYNG+TAAw+UK664Qq2puQGqb7zxhjRr1kwtmB06dJCPP/5Yrae48/7888/atngvAXW4iQF7TFoAPoAV+OTAI1ycvT2quBJjaR47dqxceumleh/qCmTyrGiakIfrve90zz0ajbHOAp6463oJcERfF1D1rN6UkXKgvR9UuTcWBqAVDZicYbUFVAsVKqSPOOigg+S2227Lt33dKm4KmAJ5T4FIjvJqeMQRR8js2bOFf/nuYjsF7+Ywp1wHVYgf9yvcjhDUD6p88bIy608HH3ywrnZbMgVMAVPAFDAFElXgoosuUmsh1jv2VGIZxZW2S5cucvLJJ0v58uV1fyRgB/zg5guQ8Z2FqynuVAARi6z8PacSgNq5c2d1t8UqilsssMakBEsorq6sqPNdSfmw+gLZWDqxpgLnwC1QSp2wKI8ZM0brxX7XmjVrqpswcIf7LZZnvqNjaYKGuJp5muBaDLhjycWNl3LxjO+//173wAKdp59+elS5gGxAFuCmjpSFCRflZU8tVmNgmfZgzoCF+9xzzxX2Y2EVx9rMnmEOdDrqqKP0dxYeuJ8lU8AUMAXSXYHp06cLniX+xLv7tNNO2+1vsUC1WLFi8t133+l5AXig4NXiLVyme91jlS/XQbVu3br6JVuqVKnMgytefvnlmD7VnCbo329CQ1SoUCGs+ie13KaFu5ymlWnlroB7TutX4dGKQ4mAHNIZZ5yhsAqY9u/fXy13WAa9xCFA7ItkPyswiIUVSMIq6R1O5F7z4Dn9/cpz/fXKwN0AMmCMCQ4A7i3wli1bVqhn9erVtV64wvJ9S7nJD9QCqezzJHEwEi63XlgY8nE9k6RYmrB1Bwsp0EviUCcgFWstVlzAn0UAElt8AM199tknqgie6y/PB67R3Pu+BzgBVDyvmIhhRSU8DRZjIJlFBj7DekudSIAu+2ux7FraUwF7X7n3CtPKtHJXwD1nZL+KZJyY8BbhmerlYxGQ7ZUsZLJ1g4VDFiXDnHIdVCF9L7g3kwC+PPnSi7Xfx0A1dnezF6n7UDStTCt3BdxzWr8Kl1aEQ8GKB9BFJr6XOIyCg5WinZ4I8JUsWTJHTpSNBqpYFzmRmJN1OS3fn9gf+tdffymgsVfVS4AoLrnU1x9/FB0I9VK8eHHNunHjRoVerMr+E3Oz0oQDmNAj2nc39+J5fA5cYjWIlli4jqwLLr+UwfUES7QiLA7tWqZMmaSE3HHv1eHKae8r9/YyrUwrdwXccyYDVHl/L1y4UL1R8ERhuwMLhHjW4BHDol+YU66BKl/yuCb5Ey5KuGFltUfVQNVANRkDzr503FU0rUwrdwXcc1q/Skwrz6IKqGK9DFsCVHEzjpaaNm0quK5lJ1m/clfPtDKt3BVwz2n9KnGtglhUPY7iVHrcgzdt2qTnKHgMxTkKfE+wQBjmlCugmh3BDFQNVLPTf7xr7UXqrqJpZVq5K+Ce0/pVYlqtWrVKvvnmG90zykTE0u4KWL9y7xGmlWnlroB7TutXiWvlCqpZPYHFQL4n2N/PXtawJwPVsLegr/z2cnBvTNPKtHJXwD2n9SvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPaf0qca2SAaruTw9HTgPVcLSTUynt5eAkk2YyrUwrdwXcc1q/Mq3cFXDPaf3KtHJXwD1nXu5X7Ntjb3Osg7vcVcrIGUQr79yVwoULB31MWuXfuXOn7nVHQ/9e9XiFDKJVvHvl9c8T3aOa13Xx189ANQ+1tr0c3BvTtDKt3BVwz2n9yrRyV8A9p/Ur08pdAfecealfLViwQE83veaaa/QAGfblead4uysSO2csrTjRev78+Xq+Cqlly5byyiuv6AE23unZyXh+Tt3DXx9+5+wY9pQTk9k15aV+5VrnRPMZqMZXzkA1vkahyWEvB/emMq1MK3cF3HNav0oPrZhYXXLJJVqYpUuXCjG5OQH2rLPO0tNg3377bf2Mk2SbN2+uceYIT8OeHkLV+FOsz/zP8OcnXA2HXHAwkHdgIJNoLBLHHHOMu0C+nOnWrwhFw4EdxEslZIyXDjnkEDnnnHN2qyMnJy9atEj1yImUblrlRJ0TfUZe0mr06NHSokULDc10/PHHa1gOTpEmikQyUiytbrrpJo2jvGvXLvnzzz/11GriFT/99NNy7LHHJuPROXoPf30WL16s8YrRtUaNGs7lyEv9yrnSCWY0UI0vnIFqfI1Ck8NeDu5NZVqZVu4KuOe0fpW7WhFWBasKIVi6d++uhWHPD0HPZ8+erbCEW94XX3whlStX1lAqHOn/2GOP6amJnJB43nnnSdWqVTMrEvkZoU8in+Fl5r7cg7ilX331ldx+++0aHxyYY/LKTyIpXfoV4W2Iq0qdOnTooCFn+J3EggCHOzGp9RKHejz++ONq3SK+aU6kdNEqJ+qa3WckohUg2KlTp8y49/fdd59cffXVWhTgjPi2jDFiFBO3l8WgaH9n8ahnz54yYMAAPb26d+/eGm+X8fPwww9rfGJiQr766qsKmzyTcEszZszQ2LqUvVatWsLzWYRibC9ZskRjHBPr+IYbbtC4vYToIHQSoQ8Ji1SkSBG57rrrFGR5Fp83atRIn8f7AMvoBRdcsIe00bR68803tV+zMMV7g/7OIk7p0qU1HvH1118fs4mGDRumcYK5L/VHN2Jf8u7ivYHO/P/mm2/W8uDKzDtt3Lhxcthhh2nsYOI7P/DAA/o++uijj7Ru6H7kkUeq5ujG2CP0FDE1KQ86ANNem6xfv17fj0899ZS2qb8+6Ey4E+Its4AXq8zEaH755ZelcePGak0+6qijNKZxogtz2e3XYbreQDV+axmoxtcoNDkS+dIJTeWSXFDTyl1Q08q0clfAPWcq+hXWUo7qB0qZcDJBA5TatGmjgFWtWjWNEYolsEKFCmrx4BpCvtxxxx16HRM3zwrDBDTyM4DW/wx/jYcPHy6nnXaaTtAAZCaSAOucOXMUXtMRVCdPnizLli1TrXCZZE8aE97WrVvrxB+gIOwB1mjAgAnxp59+qpNe4vWRsCQNHjxYOnbsKP59ea+99preF72ZAA8ZMkTjvm7evFm1IJQC1i9Agp+rrrpKrVNMphNNqehXiZYl3a8LqhV7FokrTKKtgSbGAm0HnFaqVElj9DJ+aGsWeS666KKof2fBp1WrVgp2WOEZo6NGjdL+0q5dO3nuuecU+Bo2bCj0o2uvvVZGjhyp9yIxtrg/ngqMW6CKa/iXvlaxYsVM11/PHZfPsBICmNyTvtisWTOFaZ45dOhQ9YJg0SXytNRoWuEpwLOASiyP9HPAEmgFvAHNaIky8I5gkQzXWt5RwOd3332XqQPjj3oRE5kTXCdMmKAaoAegCdQzDp999lmt95YtW/TveDXwnvvwww/VQ4S2AYRZVKKcaHjmmWcq9AOWQDBtyQ9l99cHyPVcf7lnrDIDs08++aQ+F6AFutETGLaUtQIGqvF7iIFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZr7DI3HPPPWrhYLUf8Pr999/lyiuvFFxRgVWg7Msvv9SJ2GeffaaTwG+//Vahksk4rnxYaubNm7fbZ0wgSd4zuBeWGSaJWCSYcJcoUUL69eun1zHZw9WYyXA6giqwQXmZVDNR79q1q8IiFqoxY8ZomdFi5syZCgEkrCVApQeqkyZNEsCDibeXmHQDtUyE+ZwJMBPytm3bCsCDpYwJNO2xdu1anWgzcQZegZtEUyr7VaJlStfrgmpFewJK9BNcRAEfFm6wijLWWOxhcQNvBRaGGBN4GUT7O5bDeKAKpNGvGKOAGVZFxuy0adNk3bp1CkQkFkpef/31TNdfgMrbo4plk7GHdZU+R14spwAqllX+ZTEKmPXcXn/99dc9Yk+6uP6yyAVcs0jGc2Ml9q/26NFDw0yxWMa7hGt497AgxHYEwHf58uW6/5VxgoWYz4FW6vD++++rzgBiVqBKXGLugTcEhyIxrtm2MHXqVH23AeVYQVlgY1HK7/rLe8sD1YULF0YtM/dAP8pBebHmAt3owHMtGahmtw8YqGZXwTS6PuiXThoVPceLYlq5S25amVbuCrjnTGW/8iASSyGTLdxUgUgmZaz6Y20BVHG9AyxxW8PdjskfE24AFTjD6oCVx/8ZMOUHVSaN33//vVoSeQauh0yUcXv0DlhJd1BFE+qKyyQH0PAvVhcmsN7eUsDCszT7QZUJMP/nOn9iIoz+QOmGDRvUJRF9gRYsT+jKpJhrWUgAetkPfOmll+pkN9GUyn6VaJnS9bqgWrHgQB948cUX1d0XaKS/A154JrA4A0gBKiz6FCpUSC2r0f7OWMFNnLFBH6PdASi/RZUFDIAHyBw7dqysWbNGatasqXIypuljwHJWoMqBRtyDBRI8HhjfQCwLM7gTA6peGW655RaF31SDKu7GTzzxhI6P8uXL6zN5NpZeyoN1k3HBuGFM4EoLrFJ2FoC2b9+ulmGsv7169dKFJRbiihcvLoApdfMsqvwfyOR9hms+98Fd+JRTTtG2Y7EAaEbXrEAV6260MrN4QbkBVRbteB7eKiwOGKjGH/lmUY2vkYFqfI1CkyPol05oKpaCgppW7qKaVqaVuwLuOVPZrzxQpTRMlHF7wzURSwVWD/a5YVXBTY6/MdHDvRWoAp6Y0Hkp1mf+Z3h5qRNwB3hh7fDALqygioUEqw8TY9x+vYOm/KCK6yeTZmAiWsJ9+o033si0qPpBlck57cPCAaCMe6O3t9i9J+2eM5X9KtEypet1QbUCCBkz9G3gBjdSIAUQwvqJNZC9k5wQi8WdBR4sctH+DphijcV6jtWefkHygyruo0AX1kQORwOwWATCNZxxyvW4kWNppY8BvkAfeYFl79RfFkmAMPoa7rqMXfZbYq1NFqjihguguVhUsYwCjJQXHfBiADRXrlypFmvGFPXAPRlLMvBPeXEnZm8t7zIWwhgvjD0WxGgPwJaxyT38rr+45QO87DXlvrg8oykLDiyw0WaRFlXqw7vSs6iyeBerzHhaGKgmNsoNVOPrZqAaX6PQ5Aj6pROaiqWgoKaVu6imlWnlroB7zpzsV7iVYkH1EpYJLAz+GIueNSBybxrXZPVZZI2ZaAN2uD0mK+WkVpFlZs8qeiWzPsnSJdp9clOrVNYrFfdORCss4XgheIm9ongm0OcBVMCKhIUO918s5dH+jrs5AMkBR1jfsBoCaH5QBYwAJj7nsCNOmvbcgPkbz8CiivupdzAa4MpCFAcxAcpYczlIiH2jLJqQzj77bLXQYg0EVClnkyZNFGwBvSAWVdzjgXIS9wdUseJiZY6V8EIAtnGh9hJQCjBST/8J2YAl1mOsrwA/bUbCoo3nA67zQCbPxjMCIMUFH+8F9qjSLl7Z0AsrdMGCBdWayv7VKlWq6PjmHckzOJjJqw/719EbIGZBL1aZvT2qZlENPkoNVONrZqAaX6PQ5EjkSyc0lUtyQU0rd0FNK9PKXQH3nNavTCt3BdxzWr9KvVZY9AAk9nIDjP6Eey6LG1jI/Ys+sf6OyzD3wE3YSxzUxb5LgA5LLS6uHJrkJSyMAKH/b3wG5AJcuJ/iReFPeEtQZu/AIXeVMnJm1a+w6PJsXG+9hDWSg9QiE4tjQDQJsAMwcXX3L5qhH672WDEBcC9RB/6OXt7+cD5DJ55XqlQphVAvAarsgWXxADdqrMxem3ANFlyeEbk4F60+3j1jldlfTxuD7r3LQDW+Vgaq8TUKTQ57Obg3lWllWrkr4J7T+lV6aBU0jip7TLGuYNXBDdE/acyPcVQ5SRTXwMiEdQbrCpNyQloAI1lpFy2mbLQewn5GJtK4LGY32Rh0VzBdtfKDqnttUpszqFbANAeQRSbcbrFO5kTyQJVxmJMpqFY5WbZ0e5aBavwWMVCNr1FoctjLwb2pTCvTyl0B95zWr3JXq0TjqHJCJ65wtB974Ly9mNQmP8ZRZb+Zt2fQ36K4BXrugsAle0xjaRctpmys3oHlifviZpjdZGPQXcF01Yp90YAeYWvSJaWrVlnpAyhjkY0VJidV2oZRq1RpEe++BqrxFBIxUI2vUWhy2MvBvalMK9PKXQH3nNavclerROKo4maHxYEDWDjkhPAoHHJCyg9xVL0Ww3KMiyD71TjYhQNe2N+HGyUacegL1lMmvbhXPv/883o6aSztImPKso+NkBvcn/3CaAz48lxcDVkgMFB1Hz/JyGnvK3cVTSvTyl0B95wGqvG1MlCNr1FoctiL1L2pTCvTyl0B95zWr9JDqyBxVDkMhv1aWB84dAWA4lCX/BJH1WsxwJKQNOyXw0pKHFoOyeFEUU5MBU45cIYDVzhhFfdoDnmJ1I6TVElYZf0xZTkohniLnNTq7RMk9iX3AHYBWANV9/GTjJz2vnJX0bQyrdwVcM9poBpfKwPV+BqFJoe9SN2byrQyrdwVcM9p/So9tAoSRxVQwjpYqVIldfnlgBZcD/NLHFWvxQhhAUxySA2gSsiJAQMGqAvwZ599ptZl9qZyUiv77Ah1gUUVK6lfO+9+xKb1x5TlRFUOgsHqzUmt3AcLNvsROaGU0CcGqu7jJxk57X3lrqJpZVq5K+Ce00A1vlYGqvE1Ck0Oe5G6N5VpZVq5K+Ce0/pVemgVJI7q8ccfr6BKuAwS0OUPD5HX46h6LUZ8SSybWEo9199IUOWk0dmzZ6tFFJdgwoXE0o6x4I8p27hxYw39QRxOwn/cfPPNei2WVEKKcDqpgar7+ElGznR9X+FijuU+2h5V+h/9LqeTaeWueLpq5V6DnMtpoBpfawPV+BqFJoe9HNybyrQyrdwVcM9p/So9tXKJo5pVyfNLHFVO9cWVF4tprARY8lO4cOG4jR0ZUxYr9YYNGzSMhpci2ybuTeNksDHormC6aoV1nZ+SJUvuURnc0bt06eJeySTlNK3chUxXrdxrkHM5DVTja22gGl+j0OSwl4N7U5lWppW7Au45rV+ZVu4KuOe0fmVauSvgnjM3+tX8+fPV1ZsFEQ7VIgwSe6AXLFigBW/UqJHGQKVsXuxTFjgItYK3A+GRsLSywLF06VI9iKtly5by5ZdfypIlSzTE1AUXXOAugmNO08pRqDgxZ93vkj9yGqjGb2cD1fgahSZHbrxIQyNOREFNK/eWM61MK3cF3HNavzKt3BVwz2n9Kr21Yr8zbuatW7eWcePGKXwCrfwAmpwwzd7m7777Tity+OGHq6vvo48+qvumsai2b99eBg0aJLiTc0o3ngBFihRRd3QOBEtFyo1+ZVqloiXT654GqvHbw0A1vkahyZEbL9LQiGOgmnBTWb9yl860Mq3cFXDPaf3KtHJXwD1nbvQr4ItDtQh3BKjWrFlT3nzzTalTp45aR9esWbMbqFarVk348YMqp0mPHDlST6FmfzMW2NWrV0vFihX1fqlIppW7qsnWin7BIXfsn89ryUA1fosaqMbXKDQ5kv1yCE3FEyioaeUummllWrkr4J7T+pVp5a6Ae07rV+mtFaD67rvv6uFlWFFvueUWefrpp3XPM0CCSy+uvVhKSZGgStijU045RZYvXy5bt27Vg7+IgUxIqbwIqvlFq+bNm+uCRWRat26dHHzwwcKp4f3793fv3P/mnDJlip4wzr0vvPDCwNen+gID1fgKG6jG1yg0OewL2r2pTCvTyl0B95zWr0wrdwXcc1q/Mq3cFXDPmRv9ClDl1Of69evrHlUveYdq4fqb1WFe7FflBwsb12BlywlLm2mV2n4FRE6aNEnatWsnhQoV0ocVKFBAHnroIXnggQekbt26CYGmB6rEfm7WrJl7JXIop4FqfKFzBVR5uXC8PZ3QS5wEyP4CXDiySp77h5cnN14e8WXNnRymhbvuppVp5a6Ae07rV6nRqnfv3tKrVy/3m1vOfKMA/aJnz56Z9bUx6N70uaEVByDhrktYqDAl08q9tRLRygNVrORFixbNfBh9hX3Hl19+uR68dfbZZ6tFnX3OK1asENzAu3btqqdEs4f59ddf1+vZv/zUU0+p9R6LajRQHTNmjAwZMkT3Qzds2FD69eune6JnzJih96IeZ511lnTr1k3DZ/E89kdPnz5d90Rfd9110qdPH+FUeJ7BMzkYjNjQlJF7E0+6atWqWhb2XkemREE1Gkf5741uBxxwgHujpXHOHAVVAobjnnHxxRfraW0EFmevwhVXXKGmfVbIaMh77703pmQGqrF7UyIvhzTumyktmmnlLq9pZVq5K+CeM0i/atOpjYx6apT7zS1nvlGgV+vW0nPkSAPVBFo8yBhM4PYJX2JxVN2lyytaeaB60UUXZVpUgdMzzjhDwxTh+tujRw8hljPJA0aA9ccff9T4zldddZXcfvvtUrBgQcFFfOzYsWoUiwaqP//8s5QrV04uu+wy/RzgxZoLXPJ3oJR7Pffcc1KvXj15++239XRpYkMDsYsXL1Z34tdee01OO+00KVOmjJarQoUKMnz4cAVYytapUyd59tlnBRdm9lFTHn8KCqrROMp/vy+++EIB+sgjj1RdKP9JJ53k3qHSMGeOgur48eNl1qxZumqxdu1aBVVM+sRaY8V827ZtukqxcuVKXdWIlgxUDVSTMY7S9Qs6GXVL9j1MK3dFTavUaDV9+XThJ7+khuUbCj9eCtSvpk8X4Se/pIYNRfj5NwXSKr9oFKOe6aqVxVF175h5RSsPVLFsApok4PG8887bA1SxrD7zzDMyevRoadGihUycOFFhEgspMIjFc+bMmeqFc/LJJ0cF1VWrVmXCJS7B7IsGRAH/2rVry4gRI/T5c+fOVSZp0KCB7qsGnl999VW14GK55VrgFlClrFhugUn+zwFhWIC98uCGzAFg2QHVaBzlvx/1uPPOO7U+5B02bJhMnTrVvUOlYc4cBVWv/rj8eqBKY/N/NtKzOnHHHXeotdXvFuzXzUDVQDUZ4yhdv6CTUbdk38O0clfUtEqNVgaq/9OVeqdkoOqulZOgeTdTbryvLI6qe3/KT1rFcv1lW2CkRRVX34cfflhPjcYiCqhyuBZWVw7W4uRntgNkBaq0wkcffaQWR9yDgcumTZvKTTfdJBzshDWWk6mxvFKGQw45RA499FBp27atWkz//vtvLdeJJ56o7r2A6T333KN7ajHIAc5YWokL7CW8R6tXr54tUI3GUf4bEm8Y6zL/ElsYMIa3wpxyHVQRjxhYdLonnnhCVyMw9ZPw9abBIxNmdy/lxos2XRvctHBvGdPKtHJXwD2n9avUaGWgaqAas2eZRdV90EXkzI33lcUGdW+u/KRVdkEVaypuuQsXLpQXXnhBwxkBq+wVjeb6i5UTiMSbEysp1lDcc7Gecl4OsAvoAr/8n/tyH7gECypuvXALFsvzzz9fQZVti/fff7/89ttvUqpUKalSpYpaZinbnDlz1Bh32GGHxQXVyB7iQa//736Dn//vlJU9tzyH8Y0lGNgOc8p1UMXdl07CqW0DBw7coxEjxTWLauzulhtfOmHt/KaVe8uZVqaVuwLuOYP0KwNVA1UDVfex5ZozyBh0vWe8fBZHNZ5C/32en7SKB6rsFwUE2aPqWS5xbcXqiUWVvZ9YQjlEiEONsJKy3xU34WjhaQiNdOWVV+oeU1LZsmXl8ccf1zNzHnzwwcyzcjiQCJddrKO4AQO0WF9JuPVieeUAKD+o8hknGAO68+bN07wY4vAYjUxB96h618cC1dNPP123V2LppbzslUWfMKdcB1X8zCdPnuwspIGqgWoyBlxufEEno9y5cQ/Tyl110yo1WhmoGqjmBqju3LlTCJfCQjqHPea1lBvvK4uj6t6LTCt3rcjJWCWuLm66rmn9+vUKmhw+5E+c5IuFtXz58ruNfd4JHFIEGLs8hwNjgWv/Scb+5yQDVIk/jMWXvbWdO3fW53Xp0kX3qhICCitvmFOugSorEpz0y2blUaN2P81xyZIlUrly5ai6GqgaqCZjwOXGF3Qyyp0b9zCt3FU3rVKjlYGqgWqqQJUxW7FiRenbt6/cdddduz3mrbfeUrc+LDdEK4hMgwcPlgMPPFAPYfHyYsnhIJPsJg6BYeLNPsVUpdx4X1kcVffWNK3ctQprzuyAqsdRRFPBPXjTpk3yww8/yKmnnqpy8G765JNPdC9tmFOugGp2BDNQNVDNTv/xrs2NL+hklDs37mFauatuWqVGKwNVA9VUgSoTu0qVKumeNqwQ/vTtt9/qfjdOFq1Ro8YeReDAkmOOOUZP1cS9jhNACWPBoSzZTbjusTUKS0mqUm68ryyOqntrmlbuWoU1Z6KgmlV9OeiJU415P8U6mDZMehmohqm14pQ1N750wiqfaeXecqaVaeWugHvOIP3KQNVANdWgesEFF6irH1aK66+/XvfBEeICV7pHHnlEdu3aJd26ddN9by+99JLuT+vfv7+wh429Z8SAB1RbtWqVeQgk13EqaaxEeL533nlH2FdGyAv26RF3kTiOflCdMWOGxm5kzNSqVUvuu+8+qV+/vsahZ+8eh06S/+abbxbqwSmlnEzKDxEVsBRfffXVexQjyBh0H9l5M6dp5TTMRkoAACAASURBVN6uplXiWkUa49zvlHdzGqjmoba1l4N7Y5pWppW7Au45rV+lRisDVQPVVIMq9ye0BdZRDmTBnQ4Q9Fx/2ZvGwY8k4iMCp4Sq4HRNTgFlnxugyqEs/P3JJ5/U+xAnPtb+VoCY8BjElCd+JAe7XHvttbodygPVb775Ri2+JIDzscce0/th7eU55G3durWGpCCGJJYUDlPp0aOHHuYCxL733nv6r+cS6Glp76vUvK/c75o3c1q/cm/XVFhU3Z8ejpwGquFoJ6dS2svBSSbNZFqZVu4KuOe0fpUarQxUDVRTDapYMoHLzz//XNgfSjxEQlREgipWUi9EXjTXXw6I5KRR7/wN9o1hdY2WPFAFMInRyLPY60p8eU4ZxfUXUGWf2bRp09TiO2jQIL0Vh70AxZx0insycSTZzwpEY6HlUBliQvL3F198MfOkVH857H2VmveV+13zZk7rV+7taqAaXysD1fgahSaHvRzcm8q0Mq3cFXDPaf0qNVoZqBqophpUgU8gFDBkPyphHXDnjQRVQlU0adJEi5PVHtX27dvL008/rcBYvHjxLEF17dq1alXFYku4C07x5HAUQBVLKfEYSR06dFCLL9ZRYiPy/I4dO2poP9x9+RvwSgxH7nfjjTdmPpcTQXEtThRUOSQqP6c1a9boYoKl6AoQEsZL9j3o3ksMVONrZaAaX6PQ5LCXg3tTmVamlbsC7jmtX6VGKwNVA9VUgypgRxzF119/XX+wrAKQkaDqP9UXUCxWrJiG2FuwYMFuhykFAdV27dqpqy+WWNyPx40bl+n6y4nDHNjE/bCQArC4FAOz7JPFRRkrK27DWGNx/eWE4k8//VTjPy5atEjGjBmj4O0BdiJAcVvX22TAowPcB7jlzDcK9Lr1VunZv7+BagItbqAaXzQD1fgahSaHTZLdm8q0Mq3cFXDPaf0qNVoZqBqopgpUGbOEp8HNF+gjccov7rQcdASoTpgwQThJE4unH1Q5JZg9oxywxD5R9qh6Flesn+xddbGo4q4LWOIizDPZS+oPT+O5BPM55cSiOm/ePAVp/wnDACvPBU4pG+BKoty4/xIP1p+CvK/adGojM2fNdB/gIc9ZskhJ4cdLLAzEioW5R1V/+02En3yS6tavLz1HjjRQTaC9DVTji2agGl+j0OQI8qUTmkqlqKCmlbuwppVp5a6Ae84g/cpA1UA1VaDqvy+utgBJkLiDXMOJwLEg5vvvv5cff/xxj+JjwR0wYIAepvTPP//oQUjElo918BKWUq6J/JxYqxz6VKZMmT3KwJ7WvfbaK2Z9bAzGfl81LN9Q+PFSEK1k+nTRn/ySGjYU4effFEir/KJRjHoaqMbvAAaq8TUKTQ57Obg3lWllWrkr4J7T+lVqtDJQNVDNCVB1773uOTngaPHixXtcgNvwiBEjMkHV/Y7JyxnkfWVj0MZgWMdg8kZM8u9koBpfUwPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVzZJTqNJMnFBOdxnxw6RRYtE3n5bZNeu3Ru+XTsR/wFCa9aIPP+8SIUKxIARKVxYZN06kXHjRNavd+800XKG2JrDwU1YSs8555zsaZDg1TYGYwtnFtUAnSrEYzBALVOS1UA1vqwGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVNMEVOvUEeHEW8CUn733zgDVzz7bveF79BD55x+Rv/7K+Pvq1SIvvyzSvbtIwYIiv/8uUqKEyE8/iYwY4d5p8hioZq/i2b/axmCIQfWUU0RY4Bg7ViSKxV4Yqw0aiOy1l8iyZSJTpmSMOxKLSLfeKjJ/vsjEidnvSAaqCWtooBpfOgPV+BqFJkeQL53QVCpFBTWt3IU1rUwrdwXccwbpVwaqaQKq114rctRRIkOGiOzcKXLLLRmW0cGD/2t4Duzp1k1kzhyRmTNFtmzJ+KxGjQxr6rx5IhzyU7t2xt8//dS90xioZk+riKttDIYQVMuUETnrLJHy5UUKFBCZMEHk30PAMmsDiHbqlPHfP/8UKVKE4PEir7wigkdExYoZi0wA7pgx2e9TBqoJa2igGl86A9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXBqppAqpFi4rsu6/Ihg0iTZuKYNX57juR0aP/a/hy5USuu+6//zNRfv11kWOOETn++AzAxcqzebPI5MkZ12cn2SQ5YfVsDIYQVGvVyhh7LAjhnTB+vMiCBbtXxPN8mDVL5L33RO69NwNqH3tM5PbbM8ZfoUIGqgmPnORdaKAaX0sD1fgahSZHkC+d0FQqRQU1rdyFNa1MK3cF3HMG6VcGqjkIqoccQjyTPRuScBu475L4vFo1kb//Fhk2LMOq6qVKlUQuukhk7doMV8MTThD59VeRVasyrKp//JEBp0ArsPrEE+6dJlrONAVVTvtdtmzZbvtPn332WY2VGplmz56tIWlyOtkYDCGoekW+4oqMxZ9ooArE7rdfxvg6/PCMhaOtWzNAleR5N5hFNaeH3B7PM1CN3wQGqvE1Ck2OIF86oalUigpqWrkLa1qZVu4KuOcM0q8MVHMQVLGIXnPNng25caPIoEEiHTuKlCqVAaHETuTv/sTeU35WrBDZvj1jX6q3l/W880Q++EBkxgyRLl1EsND26bPnYUzu3SgjLEYahsb4888/hR9/qJsnn3xS7rjjjj1q17dvX417mtPJxmCagqrLYlFWoOpVC8tq48YZ/5s0KcPt3kA1p4dZls8zUI3fHAaq8TUKTY4gXzqhqVSKCmpauQtrWplW7gq45wzSrwxUcxBUs2pCDm/B8of7LtYYDkzCWsqhLK1biyxfLvLzzyIAKaDK/+vVy7CucuovMLZpk8jcuSKNGmX83q+fe6eJljMHQXXy5MlqJd2xY4fsv//+QgzTIkWKSOvWrQWr6IJ/XTAbNWqk8Uvp49WrV5e33npL/v77b/n999+lW7duMmrUKP0/96hZs6ZMmDBBLa9r167VmKikli1b6j2JwUqcVsLZNG/eXKZNmyZLly7VeK/kOQSoSTDZGExTUM1qsWjgwIxCxwPVZs0yvBY4nfvVV0WWLv2vsmZRTXDEJP8yA9X4mhqoxtcoNDmCfOmEplIpKqhp5S6saWVauSvgnjNIvzJQTRNQ7dBB5OCDd29kXHlfeknkxhv/O1ipfXuR0qUz8gG1fM7Jo82bixx3XMbfgVwOgoncX+fehTJy5iCojhs3TkqUKCEnnniiDB06VLp27SrPPPOMNG3aVNavXy///POPLFmyRAH2hBNOkO+++07h9Mwzz5QjjzxSHnzwQbWoDhw4UOrVqyf77bef1KhRQ7C0tm3bVl577TW5+eab5euvv5YffvhBdu7cKYcffri6BT/66KPSoUMHGTRokDRu3Fg/3759u7Ro0SKoYpn5bQymKai6tGgkqJYs+d9iEQeUMR5JuNkDqyTCQZEMVF0UzpE8BqrxZTZQja9RaHIE+dIJTaVSVFDTyl1Y08q0clfAPWeQfmWgmiag6t68GW69QC2WVWDVS/wdKyB/9ybQQe4bmTeHQbVatWpSrlw5GTFihNx66636LyAKZNapU0ctnWvWrMkEVaykl112mZQuXVpB9bbbblOr6W+//SazZs3SPavDhw+XK664Qt5//3257rrrZP78+QqiWFJ5Hj+AKp+NHDlSmjRpIps3b1arLc9MNNkYDDGoevvEvT2q7EX1Fos44ZeDziJTr14Zf6leXeTSS+0wpUQHThKvM1CNL6aBanyNQpMjyJdOaCqVooKaVu7CmlamlbsC7jmD9CsD1RCCqntXyF7ONAHVt99+WwoXLqygumXLFnXlBTaBzHfeeUf22Wcfta7eddddalHFZffXX39VC+rgwYPllFNOkcWLF6tLMJbSyy+/XGbOnLkbqN59993y8ssvy9atW/Vel1xyiVQk1EiCycZgiEE1wTZPyWU5OAZTUv5cvKmBanzxDVTjaxSaHEG+dEJTqRQV1LRyF9a0Mq3cFXDPGaRfGagaqMbsWWk0SQZQvb2r+xLG598EeOIW7P0NS+mGDRukFIdSCWdJ7dKfvffeWyEUl+CsEs8BfPnJTrIxaKCanf6TeW0ajcGk1CcHb2KgGl9sA9X4GoUmR5AvndBUKkUFNa3chTWtTCt3BdxzBulXyQbV4oWLS+taraVY4WKy+a/N8vFPH8vcVXN3K3yBAgWkccXGcvyhxwu/f732a5m8ZLL+Hu3v7jWPn7Nh+YbCj5eCaCXTp4v+5Jdkk+SEWzpIv0r2GEy40Dl0oY3BAELbGAwg1u5ZDVTjS2egGl+j0OQI8qUTmkqlqKCmlbuwplXOaoXlhf1nxYoVc39wCHMG6VfJniTfdNJNctj+h8nGvzZKsX2LqbXrwRkPys5//ttLedyhx0nzo5vLXzv/koJSUArtVUgmfjdRdv2zK+rf563+N/RDEtrCJskBREzSJJlQMhx+xCm97AONFu80QKkys65YsUL7F6f2kvidPakNGzbcI86q6/3ZF3vNNdeoBTarhMtxpUqV9IeEWzEnDl9//fX6/9wcg651za18NgYDKJ+kMRjgiXkmq4Fq/KY0UI2vUWhyBPnSCU2lUlRQ08pdWNMqdVoRzmLixIk66WQiO3fuXDnjjDMUVAmBEW8i6l6y9MsZpF8lG1Q71ekkf//ztwycM1CuP+F6KVusrLz09Uuy9Lf/QjjccMINUqZYGXnmi2fkzx1/ym11bpOfN/4sBQsUjPr35758Lmki2yQ5gJRJmiT/8ssv8vrrr+vpuwMGDIga7zRAqTKzfvTRR3p6L+PaA9UnnnhCT/CNjLPqen9OCb7lllukUKFCWV7CKcXeYUxeRsC5bNmyBqpxxLYx6Nobc/bk7QClCkVWA9X4zWSgGl+j0OQIMvELTaVSVFDTyl1Y0yp1Wo0ePVrDS3D6JyEo+vTpIz179tTDVpjI4maaV1OQfpVsUPU0BVKB0R07d8hDMx/aTWoPYJ+f/7wU3buoXHbsZbJl+xb5fdvvCraRf3989uNJayqbJAeQMgaoYj3s16+feiYQLubSSy9Va+abb76phxUBcGeffbY8/vjjUrBgQSlfvrweZnTllVfKK6+8ovtHAUwOLCJEDIkQNCwsbdy4UY466iiNa0peFpa457XXXqtxT4l/SsJqilWT+zCe2aNKGQDVCy64QC2afBYZKxVgXr58ue5BvemmmzQOqz++KlZRDmEiVI2/fhzO5H82C2FcB9ASHufcc89Vay6nFBMTlnoTizWyTtHUT9UYDNDSOZrVxmAAuZO0WBTgiXkmq4Fq/KbMFVDlIAAOC/BPwjhAgMDZvDizShzRzsl3Xgoy2YkvR7hzmBbu7WdamVbuCrjnDNKvyEv8ReIuEnMRV0MgFctO/fr1dYJblFAeUdKYMWNkyJAh6qrIZJgJOZPpCy+8UCfYuC5iObn44ot1otusWTOdpBJ/8eOPP1bXP+7PAS6kGTNm6CmlADLPfPrpp3USzMS8QYMG8tRTT6l19/zzz9fTSQmfQdiN++67T959912ZOnWqPoMy8V4HwIkzyQT86quvlvvvv38P63AQrVI1Se5ct7McsO8B8o/8I/0+6Seb/tqUqXbFkhWlVc1Wu6n/x44/ZPy346P+ve+svu4dJU5OmyQHkDILUO3bt69069ZN+zzzDsLGYNkkvAx9mrEBqJIHyPMsqg8//LB0795dF5CYmxAOhsS4AzaB2ilTpmh4mnnz5umY+eSTTzS+KuOXE3lr1aolBx10UCaMRlpUGYuMX5I/VirvAcYPYAs4M+7ee++93eKrLlu2TP/PuPfXb9u2bbs9e86cOVK8eHEFcuZOnTt3lv79++t7hxOF+ftnn322R504ECoypWoMBmjpHM2anTHYu00bGebFLM3RUufSwzg4zHewF4svhE5ySYxLxlh+Saeffrp8+OGHMRkmknFi6RKNo/x5WTw74IAD8oSsOQqqvMAJZM3kaenSpRpXjIkQFgVexkxqOLq9devWMcU1UI3d74JM/PJE781GJUwrd/FMq9RoxamfvO+ee+45XXzDOsPk+IMPPlDIwwUxmuvvzz//rBNtYjMCn23atJF27dopXOI+jFsfk2besZUrV1ZIJP5imTJltCIVKlRQq8rtt9+u72MsO6RJkybpBPm0007T+zOR5rOOHTvqD2Xk/nz5tWrVSqGUBKCuWrVKPv/8cyFEB5N24Jn3OIuPlOuRRx7ZbYGR64L0q2RPki+tdqms2bJGD1Hi9+qlq+thShyW5E+lipaSeuXqycZtG/Vwo9VbVsuwucMk1t/de0rWObMzSbbDlDJOSMai6rnwAmPMP7AuMm4OPvhgwX22ffv2uiBz55136ueRrr+A3rp163SBhsTeUKCSn++//16YdPI3FnkA1mOOOUbhlGezmMO/jKVorr9+UPXHSsWiC5iymATIYg1mS4A/virWVkCVsXXHHXcobFL+KlWq7PZsxp//3n5QXbRokS6QTZ8+fbc6nXfeeRpmJzIlewwma6yk6j7ZGYO9u3eXXg/t7qGRqnLafcOlQPnjysuyL5clDKrROMqvwBdffKHvCjwoYCrmFyeddFK4RIoobY6C6vjx43WFklVAVuMBVSYwkD+BsFntPOyww3R1JZYlwUDVQDUZIy7IJDkZzwvzPUwr99YLqlWk6y+TTt6PvBOjWTUoCVDoQSeQyCQZ9z0sJ/FAlUnoG2+8oQCMxee3334TwJcJPF9sTGQBWyykTLyBXVwbgVesSdwfuMZSxeQdl0T20jKxBppfeOEFnTQz+QdsWVV/6KGHpHbt2vp3fwqiVbInyd3qd5NCBQvJrJ9nKaQeWPhAGb1gtFpXTz/ydJn540zhZOBTjzhVvlrzlexXaD+pelBVBVtStL9P+980944SJ2d2JskGqrFBlZij9G1calnQoQ/jhguoEv8UKyvxS3GFZSxGgiqWTBZ0cKXlHow7YNiLiXrggQcqmH777bdqpeQQI+Y5nvXV7/obC1QZN8AvrsSMLYD0+eef3y2+KrFUo4EqgOl/NuM7HqjiAeGvEwtk0VKyx2DSBkuKbpSdMbh69eoUlSoctwWQ+D5xSX3e7iND5w51yZon8rQ7qZ083fbphEE1Gkf5hWE+wPuMf8k7bNgwfeeFOeUoqHpC8WL0QJVVw7POOkv3hbB3A9dfgmSzIhotGagaqCZjwAWZJCfjeWG+h2nl3npBtUoEVCkNB7SwUorbLSusuPJhzQQkmRizqoq1FBj1W1TvueceBUcSnzFxBiCZWGElAlSZqOPei7UFy2mPHj2kZs2amaB677336j3Z88cXIe9tvgiZeL/44osKq4ArE27vsBesTLfddlvagOrJZU6WppWbSgEpoOVf9vsyeWH+C9KkUhOpU7aOzFkxR6YtmyZ31L1DiuxdRMv9y9ZfZMjnQ/T032h/d+8l8XNmZ5JsoJp1zFnc3QFAf5xTr0W8A8yy2hvO9Zs2bRKglMT/ORSJ7UxYP7kvn/Ov9wzuG+/go8he4d3L+7tLfFXyRj47q97mva8i6xTtGgPVALGM4w/xPJ0jyPdg7+m9pddHvfK0Hv7K9WrYS3o26JkwqEbjKP/9mQOwT51/v/zyS922AG+FOeU6qDIp4odJD4mVSVYx2QPCvhIssJHJ9qhG73JBXg5h7rTJKLtp5a6iaZU6rTxQxQKJJYP9ZvEsqrjqNWrUSHr37q3vTqykuCcyQWUVFUh89tln5bXXXtPf/aDqQWZWoHr00UfrflmgEwsNrpJ+i2o8UMVd8YEHHlCra9WqVfV33Jqpmz8F6VepmCTvVWAvPUhp1eZV8veuv2M28uEHHC5bd2xV919/ivV3994SO6eBagAV7SCXAGLtnjW3x2DCBc+BC7M1BnOgfOn8iCD9qvdHvaXXdANVrz0xxkWmevXq6XewP/kNfv6/c7ga38F4p9IOnDGB11SYU66DKqdcIiz7pdjHUaJECT0MINahSmZRjd3dgrwcwtxpk1F208pdRdMqdVrxhYJbLK6+X331lbr4AareQQnRnowFEA8UQJSECyMHwlxxxRXq1nvRRRfp3zm8hf2ugCL7WHEXjgWq3rYLLKosBGJN5TAmb88b5WHRkD2v3j2A5LFjx+5hUcUdmfsAyySssbgW4hLpT0H6VSpA1b1Vcz5ntibJ06eLWlXzSzJQTbilbQzGli5bYzDhFskbFwbpV2ZR3d1S73qYUixQZd88cwgOdmNvO4zFVoYwp1wHVQTEmoDrGJMeDjjgIJBYyUDVQDUZAy7IizQZzwvzPUwr99ZLRCvcAgFBFuz8JyXiWQLARiYsnsApB9HhDhi5F4j7cV3JkiXdCx6RExheuXKlwm2iIXLY88ceuVj3CKKVgWoAt0MD1ZhbhxIeEHn0QhuDBqqp6NpB+pVZVLMPqnzXLly4UBe9WSRmq02XLl10rypnXeBVFeaUa6DKvipO3mNvB4dwcAIdv+Oqxv4oA9Xg3SrIyyH43fPWFaaVe3uaVrmjFYt3nAwcmVgp5ZCWsKcg/cpA1UA1Zn83i2rCrwIbgwaqCXeeLC4M0q8MVBMHVY+jOI8C92C2/3DGDzHZSeyjx/CXnUXrVPSPoPfMFVCNVkh8qA899NC4Bw6YRTV2Ewd5OQTtKHktv2nl3qKmlWnlroB7ziD9ykDVQNVA1X1suea0MWig6tpXguQL0q8MVBMD1azag7BYRAfgQKVEPaKCtHeq86YNqLpW1EDVQNW1r2SVL8iLNBnPC/M9TCv31jOtUqOVgao7qPZq3VpenjTJvSHCnrNIERF+/k2JnLAbdglcy3/11VdLz56xTxzN6j42Bt3HoGt75NV8Qb4HDVSTD6p5rV8ZqOahFg3ycshD1U6oKqaVu2ymlWnlroB7ziD9yibJ7pPkXnffLb379nVvCMuZbxRgEaPnyJGZ9bUxGLvp7TClxIdFkH5lhykZqMbraQaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxU3UF16dKl7o2QB3OyjQiXN6c0Z44IP/klnXKKVGrZ0kDVob0NVB1EipElyLvdQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKm9o9fbbb8uxxx67xynB7rX7LyenAg8fPlxD4ABGjRs3DnybIP3KQNUdVAM3RB67IEi/0jA+FsrHqQfYGLQx6NRRRDR+Z4UKFZyyG6gaqMbrKAaq8RQK0edBXg4hqlZKimpauctqWuUNrYi7SnzUZJwYDKg+8cQTmSe2X3rppe4i/ZszSL+ySbL7xC9wQ+SxC4L0KwNV936VqjF4xlFnSN2ydWXN1jXy3LznovbGI4odIa1qtZKd/+yURz9+VPNg8Tz1iFOlYIGC8uPvP8pLC17SmM7JSmZRTVzJIGPQQNVANV5PM1CNp1CIPg/ycghRtVJSVNPKXVbTKne1mjx5sixbtkw4JIaYaH/99ZcUKVJEWrduLbNnz5YFCxZoARs1aiQVK1aUUaNGaZ7SpUtLs2bNBEAlTuvGjRvl8ssv13hrP/30k17TsmVLmTVrllStWlWqVKmiMa07duwob7zxhixfvlwKFiwoxx13nJQrV04mTZok++yzj7pVNm3a1EDVvVsEzmmT5MCSZV4Q6H1lFlVny1cqQHX/ffaXznU768mkG7dtlH6f9ova8OQ5YN8D5B/5RwCb8geWl9bHtZYdO3fIjl07pGihojLtf9Pk458+TrzjRFxpYzBxKYOMQQNVA9V4Pc1ANZ5CIfo8yMshRNVKSVFNK3dZTavc1WrcuHFSokQJIX7q0KFDpWvXrvLMM88oLK5fv16tCEuWLFE4rVy5sgIpnwGx27dvl23btkmTJk1k8ODBUrduXZkzZ47cfPPNQuw1Yq4BwNWrV5dq1arJY489Jtddd53Cbbt27WTKlCkKq7gMr1y5Uu9FXDbKYBZV934RNKdNkoMq9l/+QO8rA9VcBdW2J7SVQ/c7VArtVSgmqNY/sr6cedSZCqV777W3guqV1a+Uow86Wp7/6nlZs2WN1DmijqzevFoWr1+ceMcxUE2adkHGoIGqgWq8jmegGk+hEH0e5OUQomqlpKimlbusplXuagWoApFYNUeMGCG33nqr/nvmmWcqUNapU0f++OMPWbNmjcaiLly4sDRo0EA+/fRT2bBhgxQtWlT/P2zYMKlRo4YsXrxYYXT+/PkKqsRcO/roo/UZhP+65ppr5L333tM8U6dOlV27dul99tprL83HXte7777bQNW9WwTOaaAaWDKzqLpI1rChCD//piDv9mRbVCuVrCRX17xaJn43US6oeoFs2rZpD4tq4b0Ly12n3SU//PaDHLL/IVJs32IKqrfVuU1KFC4hf+/6W/YuuLes3bpWXlnwisJuspKNwcSVDNKvDFQNVOP1NAPVeAqF6PMgL4cQVSslRTWt3GU1rXJXq6xAFWgETAFV3HuByzFjxqiLbrFixXQP6XPPPaeuwsAmrr8fffSRwinWVv7/66+/yjvvvKOWWayy3bp1k5EjR+r9Nm3aJCeddJJ+BtTiosffWrRooZDM/RctWiS2R9W9j7jktEmyi0rR8wR6X5lFNdcsqnefdrf88fcfMnDOQOnZsGdUUG1Vs5WUL1Fe+s7qK+1rt88E1U51O0nxfYvLqs2rFFbLFS8nC39ZKGMXjU2845hFNWnaBRmDBqoGqvE6noFqPIVC9HmQl0OIqpWSoppW7rKaVumtFUDp7V3dd999tbAAp/c7//fyeDXZunWr7LfffpkVA1xx8eWHaz/88EO1wr766qu6R5UfrsE6u3Pnzsy87srsmTNIv0q2NSc75c6Jaw1UE1c5SL+yw5Ry5zAlXH271++ujcy+0wJSQH9ftmGZPD//+czG71qvq2BV9ef5c8efsmrLKqlYoqI8+cmT8seOP+Te0++VLdu3yOOzH0+84xioJk27IGPQQNVAZo0P2wAAIABJREFUNV7HM1CNp1CIPg/ycghRtVJSVNPKXVbTKv9phesvLsJly5aV5s2bqyU12SlIvzJQdQeKZLdT2O4XpF8ZqLr3q2SOQd4n7Dv1Ur1y9WT7zu0y4dsJwgFLpx95usz8caa+d3D3JZ1c5mTZZ6995N2l7+r/G1dqLP/b8D8F1JqH1JQFaxfI+G/HJ6272mJR4lIGGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusppWeUMri6Pq3o65ndMmyYm3QKD3lbn+5prrr7+Fcf1lf+lTnz4lTSo1kTpl68icFXNkytIpmdlw9/X2qO5VYC91BS5VtJR+zkFLQ+YOkQ1/bki840RcaWMwcSmDjEEDVQPVeD3NQDWeQiH6PMjLIUTVSklRTSt3WU2rvKGVxVF1b8fczmmT5MRbIND7ykA1LUA10dYuWaSkhqZZuXllUmOoUh4bg4m2ikiQMWigaqAar6cZqMZTKESfB3k5hKhaKSmqaeUuq2mVu1pZHFWRZLodurdm7uW0SXLi2gd6XxmohhpUE+8l8a+0MRhfo1g5goxBA1UD1Xg9zUA1nkIh+jzIyyFE1UpJUU0rd1mTqdXnn3+usTo5ZfbUU0+V7t27S/369eWBBx6QiRMn6om0nFDLabJHHnmkPP3003qibKlSpeTPP/+U4sWLS6VKleTll1+Wxo0byyuvvKIxPgmrcswxx8iMGTM0dAplrlWrltx33316f+7BfTkoiDig119/vYZbIWRLlSpV5MUXX5TDDz9cryfe6PTp06Vhw4b6+0EHHeQsVjK18h5qcVQNVFPRr5w7dcgyBtLKQNVANUb/NlBNfOAHGYMGqgaq8XqagWo8hUL0eZCXQ4iqlZKimlbusiZLK0KcEIeT1KdPH3nooYdk27ZtsnDhQmnXrp2GUeF0Wk6jPeSQQzSuJ6fPVq1aVZYsWSIHHHCAXrNs2TJ58skn9fMzzjhDBg0apNcPGTJEIZZ01113KRDvvffe8u2330rlypUVXm+44QaZMmWKrFixQq+vXr26hlnp2rWrQjPPOO2006RJkyYKucAwUO2akqWV/3kWR9VANRX9yrVPhy1fIK0MVA1UDVSTPsSDjEEDVQPVeB3QQDWeQiH6PMjLIUTVSklRTSt3WZOplQedWDnPPPNMad26tVpOsXBmBaqrV69WuCQ2aOfOnRVUly9frtceccQRUrJkSfnqq6/UWjpt2jRZt26dAiwJSyxWV0K4zJ8/X6/lHuTFCnvggQdq/FHglLii/FBOYonyTOKGArAuKZla+S2qQHW5cuVkxIgRcuutt+q/6GdxVF1aJXx5zJqTeJsFGoMGqgaqBqqJD7YYVwYZgwaqBqrxOqCBajyFQvR5kJdDiKqVkqKaVu6yJlOrn376Sd1tsRJ6VtI1a9ZIp06d5JlnnpHff/9d3XsB0hNPPDHTosrfPvvsMy20B6obN27UfEBl4cKF1W0XN15Shw4dZOrUqTJr1qxMUC1durTCKe68HTt2lHnz5qmlFQht27atVKxYUbp16yYtWrTYbfKGKzGQ65KSqZXL88hjcVRdlQpPPgPVxNsq0Bg0UDVQNVBNfLAlA1Q/6i29pvdKehnS9Ya9GvaSng16ZhYv8n3FNibmHJb+U8BANQ/1hkBf0Hmo3olUxbRyVy1ZWgGhWAXPOecc6d27t7rxssd00aJF8sYbbygk9ujRQzZs2CADBw7UPaKe6y8WUyAzK1B99dVX1ULavn17uemmm6RevXqyefNm+eOPP9TFNx6oYknF1RdQ5frHH39cXYcnTJjgLFaytHJ+YIoyWhzVFAnreFsDVUehomQLNAZTDaqXXSbC4tmOHSKLFom8/bbIrl27l7pCBZFLLhEpXFhk3TqRceNE1q8XOeEEkdNPF8GbY9UqkVGjRHbuTFwYrmzYMOPn3xREKzvQzD3mbPYaKfxXB+lXZlE1i2q8Hm+gGk+hEH0e5OUQomqlpKimlbusydSqf//+Cqi//PKLWjKBykceeUSWLl2qe0P5O26uP//8s9SuXVvef/99tZi6gCpuveeff7689dZbeu+aNWuqRRXLKYcpeaDKXlYsrvwdCyzWUiyqw4cP10OZcA32ygdAsw/WNSVTK9dnhjVfEK1skmyTZNd+HqRfSSpBtU4dkSZNMsCUn733zgDVfz1DtD4FC4p0757x7++/i5QoIfLTTyKvvCKCVeWff9i7ILLffiLffScyerSrDNHzGag662eLRc5S7ZExyBjsbRbV3bwazKK6Z78zUE18LKbdlUFeDmlX+BwukGnlLniyteJQJVyAy5Ytqyfveom/r1+/Xk/4LcjELcG0atUqhVKsoYmknTt3avnY+xr0HsnWKpHyh+WaIFoZqBqouvbrIP0qpaB67bUiRx0lMmRIhiX0llsyLKaDB/9XlRo1Mqyp8+aJvPWWSO3aGZ9hXQUq8SJ5990MmAVaH3rIVQYD1ewpZXFUs6FfkDFoFlWzqMbragaq8RQK0edBXg4hqlZKimpauctqWplW7gq45wzSrwxUDVRde1aQfpVSUC1aVGTffUU2bBBp2lTklFP2tIo2ayZy/PEZIMui3ebNIpMnixxyiAieHADse++JdOkiUqCASO/eGcCaaDKLqrNyZlF1lmqPjEHGoFlUDVTj9TQD1XgKhejzIC+HEFUrJUU1rdxlNa1MK3cF3HMG6VcGqgaqrj0rSL/KNqgClJdfvmfRfvtN5OWXM/7O59Wqifz9t8iwYRlWVS9hTcWq+scfGRALtAKr/fuLdOuW4RIMmAKppAceyLhPoslA1Vk5A1VnqbIHqtN7S6+P7DAlT0Rz/d2z36UNqHLoCXvFCngv5BhjJLIRA30pJT7uQnGlaeHeTKaVaeWugHvOIP2KA6XYF5tf099//+3sWv3X33/JXzv/yjdSXdzyYhnZb2RmfYP0q3wjUoyKBtIqu3tUy5UTueaaPUuycaMI4bE6dhQpVSpj/+nIkSL83Z9w9T3vPJEPPhCZMSPDcooltk8fkX32EalXL+PfWrUyLK6AanaSgaqzegaqzlJlD1Rtj2pCe1S9mPOxmAmmcg2rl3hL58yVuQ6qnPB5ww03qKDEPuTQE2IrxkoGqrE7RqAv6JzpX2n7FNPKvWlMq9Ro1aZTGxn11Cj3m1vOfKNA13u7ysP3P2ygmkCLB3pfZRdUsyrfOeeInHpqhlvv4sUZltFffxWZP1+EOc7y5SLvvJMBp5s2icydK9KoUcbvnPzbpo3ImjUZ1+IGzO9DhyagiO8SA1Vn/QxUnaXKHqiaRTUQqHLQ49dffy0XX3yxHkLJeRz+9MUXX2hceGLM//jjjxqf/qSTTkq8MdPgylwH1VGjRmnQ+tdee01mz54tbdq0ke9wgYmRDFQNVJMxbgJNZpLxwBDfw7Ryb7wgWo39dKx88nNGyJ38kOoeUVfqlq2bWVUOrCJckaXoCnDYmJeC9Kv8rmcgrVIJqh06iBx88O7NgYvvSy+J3HjjfwcrNW8uctxxGfmAWcJhLVgg0ratyBFHZPx9+3aRAQMImpy95jVQddbPQNVZqj0yBhmDtkc12B7V8ePHazSDfv36ydq1a/cAVcL/3XnnnRoGkLzErSemfJhTroPq6tWr5bjjjtMQEB9//LHcfvvt0rlz55iaGqgaqCZjwAV5kSbjeWG+RzprxSLXscceq6uH2U2cOowrLu8iViqJqRo0BdHK9l3avkvX/hWkX7neM6/mC6RVKkE1iMC4+7LfdcWKjJirXipWTGT//TPiqCYjGag6q2ig6ixV9kDVLKqBLKqe2Lj8RgNVohVg9OPfL7/8Upo0aaL5wpxyHVQh/VatWsmNN94oc+bMkX322Ucmc+qdiIIrKweR6W7ii/2bAn0phbmlHMpuWjiIZP3GXaQQaIUnxgknnCCVKlUKXK/ICwDVJ554Qs4991xZtGiRbkMImoKMQQNVA1XX/hWkX7neM6/mC6RVuoBqTjWGgaqz0gaqzlJlD1Rtj+oeoBopaL169TTOvD/FAtVixYqpV+phhx0mvAsbNGigcenDnHIdVHH1PfroowX4ZPMvIkdbJfBENotq7O4W6As6zL02CWU3rdxFTIVWLEYtW7ZMduzYoYeo/fXXX1KkSBHdn85q4AJc34QtW42kYsWKwhYB8rAfo1mzZrpVgMMENm7cKJdffrksXLhQY5+SWrZsqQtcVatWlSpVqsigQYOkY8eO8sYbb8jy5cs1RiteHLidTpo0SRfHWH1s2rSpgap7twic0yZ+gSXLvCAVYzDx0qT3lYG0MlDdbZKcVcvawpotrLmO/CBj0OKoBnP99dogFqiefvrp6hZ84oknyty5c6VPnz4yceJE16ZLy3y5DqqPP/64Uv/gwYN14+8pp5wiK1eujHkapIGqgWoyRlKQF2kynhfme6RCq3HjxkmJEiX0ZTp06FDp2rWrPPPMMwqL69evF6ybS5YsUTitXLmyAimfAbHbt2+Xbdu2qUsL7426deuqN8bNN9+shwz88MMPCsDVq1eXatWqyWOPPaaHCwC37dq1kylTpiis4jLMu4Z7ffLJJ1oGs6imrqcaqCaubSrGYOKlSe8rA2lloGqgGqM72/sq8XEeZAzaHtXsg+off/yhi/W1a9fWrZMHHXSQdOnSRfeqYgi4//77E2/MNLgy10EV6+kFF1wg7FX9P3vnAR5Vtf3tFToBQhGkCxfpivxBkCqgIF1BqSoqAiqocOkIIk1ERaWIUq4UrwgoRRQRFBsdQZAmSJEPKQKiUkIvCd+zNndiEpKc3z6ZM8lMfuc+eeRm1tlzzrvX2TNvdtNjyJAhZhXgxA6KKkXVH8+NTUPqj/cL5jK8YKWiqhKpvZrTp0+XHj16mP/Wr1/fCGX16tVFG99jx45JgQIFJEuWLGYIyw8//CC6Unh4eLj5/7pQQIUKFWTXrl1GRrdu3WpEVbc+0ZEa+h7aZjz++OPy9ddfmxidbhAdHW3KSZ8+vYnTua46qiMURPWRCo9IidwlZOTKxLeyKBpRVB6r+JhEXYuS11e/btKzZdmWclu+28wWYXtP7JWPf/7Yr2nLL37ucXrxDLq/mtR9phUriipFlaLq9wfa5hmkqLoXVV0BOF++fOYP9Do8ODIy0nz/qamrjYtIrly5zB/h8+TJ4/c6DmSBKS6qvps9cuSIAZ4xY8Yk75+iSlH1xwNi05D64/2CuQwvWCUlqiqNKqYqqjq8V+Xyo48+MkN0dWqAziHVJdd1qLDKpg79XbFihZFT7W3V///333/Ll19+aXpmtVd20KBBMmPGDFOeNua6XLu+po26ipn+7pFHHjGSHKxzVCsXrCzVCleT/Nnzm3QbtjzxTdT71OgjOTLnkGtyTXToVcX8FeXBcg8aJvq/dGHpZNm+ZbL20Fq/pS5F1T1KL55B91eTus+0YkVRpahSVP3+QNs8gxRVd6KaVKXpdyF1Kp3SlNg+q36vdA8LTDWiit4jRZWiiuZKUnE2Dak/3i+Yy0gJViqUvrmrmTNnNvhUOH3/1v/vi/GxPXfunGTLli0GtTbWOsRXf/Tc77//3vTCfvzxx2aOqv7oOdo7GxUVFRObnLqyYeXvOV/aI1o2b1nJnCGzhElYoqJ6d7G7pf6/6suVqCuSIX0GI6pPVnpSiuUsJnN3zJXzV85Lx//rKMfOHpPJG5O5b2MsmBRV95llk1fu3yU0zrRiRVGlqFJU/f7g2zyDFFX/i6rfKzSFC6SopnAF+PPtbRoHf75vMJZFVnithQorHfqrQ4R1f8qWLVt68pdGG1b+FlVfjfat2VeyZ8qeoKhmyZBF+tXqJ/tO7DM9rxGZI4yo/rvavyV31tzy5to35eLVizK4zmA5e/ms+f/+Oiiq7kna5JX7dwmNM61YUVQpqhRVvz/4Ns8gF1OiqDolIEXViVAQvW7TOATRbXlyqWSFY03NrLiP6o31mJSoPnbHY1I8d3EZvWa0PFv12RhR7V2jt/m3zmu9Gn1VhtUbJheuXJDX11yfv+qPg6LqnmJqfgbd35U3Z1qxoqhSVCmqfn8QbZ5BiipF1SkBKapOhILodZvGIYhuy5NLJSsca2pmxX1U7UT1hdoviPaq6jxUHR6shwpp5KVI08M6ZeMUOX/1vPSq3ktOXjwp438YjyeKQyRF1T3K1PwMur8rb860YkVRpahSVP3+INo8gxRViqpTAlJUnQgF0es2jUMQ3ZYnl0pWOFYvWHEfVZFADf2tUqiK1ClWR1YdWGWGO2vPqR53Fb5LMqXPJF/9+pVZWKlm0Zry5/k/TY9qwewFZfOxzfLZrs/wRKGo+o1V/IK8eAY9u9gULtiKFUWVokpR9fsTa/MMUlQpqk4JSFF1IhREr9s0DkF0W55cKlnhWL1gxX1UAyeqjUs2lupFqsv6w+tl6a9LYyq+V41eMUN/VVi7V+suOTLlMK/rgkrvbHjH/NdfB3tU3ZP04hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdR9U5U8Zq9MTJftnxmSPDxc8eTU0yC51JU3SP14hl0fzWp+0wrVhRViipF1e8PtM0zSFGlqDolIEXViVAQvW7TOATRbXlyqWSFY/WCFfdRTZ2iimeFfSRF1Z6Z7wwvnkH3V5O6z7RiRVGlqFJU/f5A2zyDFFWKqlMCUlSdCAXR6zaNQxDdlieXSlY41pRgxX1U8foJlkiKqvuaSoln0P3VpuyZVqwoqhRViqrfH1ibZ5CiSlF1SkCKqhOhIHrdpnEIotvy5FLJCscaKqzSyj6qeM0GNpKi6p53qDyD7gngZ1qxoqhSVCmq+MMFRto8gxRViqpTWlFUnQgF0es2jUMQ3ZYnl0pWOFay8oaVV6v+4lcb2EiKqnvefAZxdlasKKoUVYoq/nCBkTbPIEWVouqUVhRVJ0JB9LpN4xBEt+XJpZIVjpWsvGFFUY37AY1TTnuRfAbxOrdhNaxjR/ltyxa88GCPLFBARH/+d5w5c0Zy5Li+0rfTcezsMdGftHJUKldJZoydEXO7NnmVVhgldp82rCiqFFWn54Wi6kQoiF63aRyC6LY8uVSywrGSlTesKKoUVTSz+AyipERsWA3r1k2GT56MF87INEOga9+uMumNSRRVFzVu8wxSVCmqTilGUXUiFESv2zQOQXRbnlwqWeFYbVhNnz4dLzgEI//880/Jly8fdGe7/94tu/7aBcWGQlDZvGXl9X6v84ufi8q0eQZdFB9Sp9iw+u9//xtS9257MzbtlW3ZoRD/xBNPsL1yUZE2zyBFlaLqlGIUVSdCQfS6TeMQRLflyaWSFY7VhlXXfl1lyptT8MIZmWYIdOzZkUPpXNa2zTPo8i1C5jSywquSrMgKJ4BH2uQVRZWi6pRZFFUnQkH0uk3jEES35cmlkhWO1YbVk72elK27t+KFB3lkgewFpGCOgjF3YTPnK8hv3fryb7nlFhk6dCh7KKzJ2Q1ndVF8SJ1i016F1I27uBmywqGRlTesKKoUVafMoqg6EQqi19mQ4pVFVt6w4rxLzrtEM4vPIEqKooqTIiuysiGAx7K98oYVRZWi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rIavGC7Dlg/DCw/yyGH1hsnQuomPLHr99ddlwIABQX6X/r18iqp/eaZoaWxIcfxk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVuxRZY+qU2ZRVJ0IBdHrbEjxyiIrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96wYo8qRdUpsyiqToSC6HU2pHhlkZU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1ixR5Wi6pRZFFUnQkH0OhtSvLLIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rNijSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW7FGlqDplVqoR1XPnzkl0dLTkyJEjyWuOvyIWG49/cJGFU7qTFU7IHSuKKkUVzTG2VygpyhdOiqzIyoYAHsv2yhtW7FG1F1V1pQsXLki2bNkSrZTIyEiJiIiI87qep67l5Fl4TQcmMsVF9eLFi9K5c2c5ffq0pEuXTipVqiTDhw9P9O4pqoknBhtS/KEhK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesGKPqp2ozpgxQ8aNGyeFCxeWq1evyqxZsyRfvnwxlfPFF1+IxmTNmlUOHDgg48ePN171/vvvy6JFiyR79uyiEqsxuXPnxis1BSNTXFQV3oYNG2TixIly7do1WbhwobRo0ULSp0+fIBaKKkXVH88LP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFXtUcVFVMc2YMaOcOnVKcubMKT169JCCBQvKwIEDYyqnaNGiMn/+fKlWrZqR0Xnz5smSJUskf/788s0330iFChWkcePGpoOwTZs2eKWmYGSKi+qQIUNk48aNsmnTJilSpIiMHDlSmjRpwh5VF0nBhhSHRlbesKKoUlTRzOIziJJiLyFOiqzIyoYAHsv2yhtWFFVcVPfv3y8NGjSQffv2mcqYMGGCbNmyRaZNmxZTOXXq1JFXX31VatWqJaNHj5YpU6aYeB2pOnv2bLntttvkxx9/lK1bt0qePHnwSk3ByBQX1SeffFJWrlxpjH/z5s3Sr18/OXjwoISFhbFH1TIx2JDiwMjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKq4qG7bts30gu7evdtUxsyZM2XFihUyderUmMrR3/Xt21eaNm0qCxYskLJly5pRq7Vr1zZzVitWrCjvvvuuLFu2TKpXr45XagpGprio9u7dWzJnzmz+AqCHdk+vWbNGSpYsKatXrzb/jn8MGDAg5ldsPP6hQxb4k0RW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVG9UVTjk1bJ1B5SXUApPDzcLDyrnXljx441ob169Ypziva8qjvpUOFVq1aZocGlSpWS8+fPm7mr2ruq6wKNGTMGr9QUjExxUVX7f++998zY6cOHD0uNGjXkyJEjnKPqIinYkOLQyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqniPqtaA9ojqmj4617RRo0ZGOlVkd+zYIVWrVpV27dqZn5YtW0qnTp1EhwK3b99eChQoINu3b5dixYrJ008/bRZY6tatG16pKRiZ4qJ66dIlMyFYh/7qXwoUukJN7OBiSolnCxtS/EkiK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo2omqrtzboUMHUxnNmjUz805VQFVWdTXfpUuXSs+ePc3rt956q1npN0OGDGb135deesmsEFy8eHH56KOP4qwWjNdu4CNTXFR9t3zy5Ekzfjqx1X59cRRViqo/HhN+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ55Q0riqqdqGot6BBeHbqrK/4mdOiQ3+PHj0uhQoXivHz58mU5ceKE6V0NpiPViCoKjaJKUUVzJak4fujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeeUNK4qqvajiNREakRTV0KhHcxdsSPHKJCtvWFFUKapoZvEZREmxbcdJkRVZ2RDAY9leecNq+PLhMmzFMLzwII8cVm+YDK07NOYu4udV/M64IL9dv1w+RdUvGFNHIWxI8XogK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKoskfVKbMoqk6Eguh1NqR4ZZGVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVQpqk6ZRVF1IhREr7MhxSuLrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w4qiSlF1yiyKqhOhIHqdDSleWWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hTVxY8slgb/aiBZXsliLjY8Y7is7rRabst3m1y6eklGrBwhb65984Yb+bj1x9K8dHM5f+W8zN85X55f8rxEXYuSpyo/JaPvGy3ZMmaTvSf2Ss1pNeX0pdM4iAQiOUfVHh9F1Z5Zqj2DDSleNWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtW/hDVzpU6S49qPeSO/HeYiwwbHmb++1n7z+SBMg8YAVVp1aPo2KJyOPJwzM30rN5TxjYaK1ejr5qfLBmySPel3WXm1plycsBJCQsLk3OXz0m2TNlkxYEVUu/9ejgIimqyWPlOpqj6BWPqKIQNKV4PZOUNK4oqRRXNLD6DKCnKF06KrMjKhgAey/bKG1b+ENUZLWZIy7ItJWfmnEYsfaIa+UKkZM+UXSJei5C3Gr4lT9/5tLy+5nV54ZsXYm7muye+k3uK3yMVJlWQy1GXZffzu+WXv36R6Zunyxv3vSFzd8yVxxc+LmcHnZXoa9GSeWRmHARFNVmsKKp+wZe6CmFDitcHWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhpU/RNV3ZUf7HJUC2QvEiGrUkCi5cOWCZH81u3St0lUmNZskC3ctlIc+fijmZvKG55UcmXLI/lP7ZXzj8aZn9vM9n8vxc8dFe2oHfjtQXlv9mvzd/2/JkzVPTNk4jbiRHPprT449qvbMUu0ZbEjxqiErb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96w8lJUo4dEy6lLpyTP63nk4dsfltmtZstX+76Sxh82vuFm5redL63KtTJzWSv/p7K8VOclaX97ezNf9d0f3xWfBGcYkcHMX3V7UFTtyVFU7Zml2jPYkOJVQ1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGHlpaheGnxJwiRMMo3MJEPqDpHh9YabIb2dF3WOuZl0Yenkl+d+kdI3lZbtfKxmAAAgAElEQVQDpw9InRl15ODpg2YRpX41+8nYH8ZK7696y7lB58z81fQj0uMgEoikqNrjo6jaM0u1Z7AhxauGrLxhRVGlqKKZxWcQJUX5wkmRFVnZEMBj2V55w8pLUd3WbZtUuLmCGe5br3g9yZ0ltzT6sJGUyF1CBtcZLK+sfMX8u2/NvmZ+6qe7PpVrck32/L1HFv6yUH565ic5e/msLN6z2PSu6vDgEuNL4CAoqsli5TuZouoXjKmjEDakeD2QlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWHkpqlUKVZE1ndZIpvSZzMWvObRGak+vLeMaj5N/V/u3vL3+bbnv1vukXN5ycW7ur/N/Sb438smSR5dIk5JNzGu6InDDmQ3l+9++x0FQVJPFiqLqF3ypqxA2pHh9kJU3rCiqFFU0s/gMoqQoXzgpsiIrGwJ4LNsrb1j5U1QTukId2lutcDUznPf3M7/jN/G/yHzh+cyw4B8O/5Csuam+N+bQX+sqEPao2jNLtWewIcWrhqy8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecPKa1HFrzowkRRVe84UVXtmqfYMNqR41ZCVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVTjfmd4/fXXZcCAATjsNBBJUQ2hSmZDilcmWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZqUqUT1x4oRky5ZNMmfOnOh1x99jiI3HP6jIwindyQon5I4VRZWiiuYY2yuUFOULJ0VWZGVDAI9le+UNK4qqvahGR0fLhQsXjC8ldkRGRkpERMQNL1+9elVOnjwp+fLlwys0hSNTjageOHBAKlSoIF9++aXUrFmTouoiMdiQ4tDIyhtWFFWKKppZfAZRUpQvnBRZkZUNATyW7ZU3rCiqdqI6Y8YMGTdunBQuXFhUOmfNmhVHOr/44gvRmKxZs4p61fjx46VSpUoxldenTx/Zvn27LFu2DK/QFI5MFaJ6+fJladu2rezfv18mTZpEUXWZFGxIcXBk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRVXFRVTDNmzCinTp2SnDlzSo8ePaRgwYIycODAmMopWrSozJ8/X6pVq2aEdd68ebJkyRLz+qJFi2Ty5MlGcCmqeD6byN69e0v9+vVlwoQJMmTIEIqqJT9fOBtSHBxZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUUVF1XtzGvQoIHs27fPVIY605YtW2TatGkxlVOnTh159dVXpVatWjJ69GiZMmWKidf87dq1qwwePFhGjhxJUcXTWWTBggXy2WefyQcffCCNGzemqNrAixfLhhSHR1besKKoUlTRzOIziJKifOGkyIqsbAjgsWyvvGFFUcVFddu2bdKmTRvZvXu3qYyZM2fKihUrZOrUqTGVo7/r27evNG3a1PhV2bJlZeXKlXLPPfcYodXe2GHDhlFU8XQWqVGjhhw/flxuuukm+fHHH6V06dJmzHWVKlVk9erVsmbNmhuKGzBgQMzv2Hj8g4cs8MwjK29YUVQpqmhm8RlESVG+cFJkRVY2BPBYtlfesKKo3iiq8UnXrl3b9JDqAkrh4eGiiymFhYXJ2LFjTWivXr3inKI9r+pOOsR31apV0q5dO2nUqJFUrVpVTp8+LXv27JGnn37a9LYGw5Hic1QPHTokFy9eNKw6d+4szz77rDzwwAOmMhI6uOpv4mnFhhR/5MjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKp4j6rWQMWKFWXixIlm8VmVz+HDh4uK7I4dO4yIqpTqT8uWLaVTp06iQ4Hbt28vv//+u6lAHSo8ZswYM3e1SJEieKWmYGSKi2rse2/evLkMGjSIc1RdJgQbUhwcWXnDiqJKUUUzi88gSoryhZMiK7KyIYDHsr3yhhVF1U5UdUGkDh06mMpo1qyZzJ4926ziq7KqW9IsXbpUevbsaV6/9dZbzQJKGTJkiKm8DRs2mHmqXEwJz2frSPaoJo6MDSmeTmTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFFU7UdVaOH/+vBnCqyv+JnTokF+dUlmoUCG80lJxZKrqUUU4UVQpqkieOMXwQ8eJ0D+v27CiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UcVrIjQiKaqhUY/mLtiQ4pVJVt6woqhSVNHM4jOIkmLbjpMiK7KyIYDHsr3yhhVFlaLqlFkUVSdCQfQ6G1K8ssjKG1YUVYoqmll8BlFSlC+cFFmRlQ0BPJbtlTesKKoUVafMoqg6EQqi19mQ4pVFVt6woqhSVNHM4jOIkqJ84aTIiqxsCOCxbK+8YUVRpag6ZRZF1YlQEL3OhhSvLLLyhhVFlaKKZhafQZQU5QsnRVZkZUMAj2V75Q0riipF1SmzKKpOhILodTakeGWRlTesKKoUVTSz+AyipChfOCmyIisbAngs2ytvWFFUKapOmUVRdSIURK+zIcUri6y8YUVRpaiimcVnECVF+cJJkRVZ2RDAY9leecOKokpRdcosiqoToSB6nQ0pXllk5Q0riipFFc0sPoMoKcoXToqsyMqGAB7L9sobVhRViqpTZlFUnQgF0etsSPHKIitvWFFUKapoZvEZRElRvnBSZEVWNgTwWLZX3rCiqFJUnTKLoupEKIheZ0OKVxZZecOKokpRRTOLzyBKivKFkyIrsrIhgMeyvfKGFUWVouqUWRRVJ0JB9DobUryyyMobVhRViiqaWXwGUVKUL5wUWZGVDQE8lu2VN6woqhRVp8yiqDoRCqLX2ZDilUVW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVGlqDpllpWoXrt2zZQXFhbmVK5nr7/++usyYMCAmPLZePyDmizwtCMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqhSVJ0yy1FUDxw4IB9++KGsW7dOVq5cacq79957pXbt2nLfffdJxYoVnd7Dr69TVBPHyYYUTzWy8oYVRZWiimYWn0GUFOULJ0VWZGVDAI9le+UNK4oqRdUpsxIV1atXr8qoUaNk6NChpozKlStL4cKFRX+/adMmOX78uPl9x44dZfz48RIREeH0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKgePXpUGjRoIN26dZNWrVpJwYIF45R15swZ+f7772X06NHy8ssvyz333OP0Xn55naJKUfVHIvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVCmqTpmVqKhGR0eLzknVn9atW0u9evWkZ8+eCZZ3+fJlyZQpk9N7+eV1iipF1R+JxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq+8YUVRpag6ZZbjHFUtoHnz5mZ+6qFDhyRnzpxOZXr6OkWVouqPBOOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElUd1rt8+XJTVokSJWLK3LZtm2TLls3pPfz6OkWVouqPhOKHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lX3rCiqFJUnTILElXtUf37779vKOvbb7+V8PBwp/fw6+sUVYqqPxKKHzo4RRtWFFWKKppZNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqJKUXXKLEhUfYVERkbKpUuXJF++fE7levY6RZWi6o/k4ocOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKoUlSdMgsSVX1AX3jhBZk3b54pT/dPHTx4sNSpU8epfL+/TlGlqPojqfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqhRVp8yCRLVt27ZGUvW/2bNnjxHWY8eOceivE+EAvs6GFIdNVt6woqhSVNHM4jOIkhIhK7LCCeCRzCuywgngkTZ5RVGlqDpllqOonjx5UvLkySMjR46UF1980ZS3cOFCeeihh+Snn36SSpUqOb0H9Lq+T0REhKRPnz7JePaoskcVSiiHIJuG1B/vF8xl2LCiqFJU0Vy3ySu0zFCNIyu8ZsmKrHACeCTzyhtWFFV7UdXtQy9cuJDkYranT5++YZcW5Dy8lgMX6SiqV69elYwZM8pjjz0mU6dONSL52muvmaG/e/bskVKlSiXrag8ePCjt2rUz814zZMgglStXNmUndqRGUT1//ry59kDtJZsYGzakeCqSlTesKKoUVTSz+AyipNijipMiK7KyIYDHsr3yhhVF1U5UZ8yYIePGjZPChQuL+tmsWbPirBu0YcMGGTVqlOTKlUuOHz8uw4cPl6pVq4rTeXjtBj7SUVT1kjp37izTp083V5cjRw45c+aMGQb88ccfJ/uKtaf2ypUrBubFixcla9as8vvvv0uhQoUSLDsQovqf//xHnnnmmZj31y15VKZ1nq72+sY+fD3OPXr0kPHjxyebR3IKYEOK0yMrb1hRVCmqaGbxGURJUb5wUmRFVjYE8Fi2V96woqjiourrODx16pTpLVXvKFiwoAwcODCmcp588km56667pFu3bqK+dPjwYRk7dqzpcEzqPLx2Ax8Jiap2MX/66adGTLU7uX379kZUc+fOnewr1rLDwsIkS5Ys8tlnn0nv3r3l119/Nb9L6AiEqE6ZMkW6du0qLVq0kFtvvVW+/PJL2blzp5HpIUOGxLksvf4RI0ZIjRo15IEHHkg2j+QUwIYUp0dW3rCiqFJU0cziM4iSonzhpMiKrGwI4LFsr7xhRVHFRXX//v3SoEED2bdvn6mMCRMmyJYtW2TatGkxlfPdd99Jy5Ytjb+oUy1btkzy58/veB5eu4GPhET18ccfly5dusSs8quGrkOBP/roIwMgucfly5fl1VdflbfeessI8b333ptokYEU1UWLFsn9999vFrJQYX3wwQfl2WeflUGDBpl/f/jhhzJnzhzDRsW9b9++smbNGunVq5f8+OOPUrp0aXnppZekQ4cO8s0338Q5T8vWMv15sCHFaZKVN6woqhRVNLP4DKKkKF84KbIiKxsCeCzbK29YUVRxUd22bZu0adNGdu/ebSpj5syZsmLFCjMt03cMGzbMLHiro0B1WPDTTz9tdmpxOg+v3cBHJimq77//vjF2XTSpSJEicvPNN5sr1HHPKqt///23WWgpOYcO91XJ0/md+l7aje07Vq9ebcQv/jFgwICYX3nRePh6VN988025++67jTyrSPfv31+qVKlirleP6tWrm3Hf5cqVM13wY8aMiRmy/Pzzz8v8+fNFE0tZrV27Ns55n3zySZx7TQ5D37lesPDHdaXGMsgKrxUbVv4U1UcqPCIlcpeQkStHmovNmD6jdKrUSW4Ov1muXrsqK35bIWsPrb3hRtqUbyOlbyotV6KvyM4/d8qSvUsk+lq0VCtSTWoUqSHZMmaTQ5GHZOEvC+XM5TM4iAQi6xWvJ/rDZ9Aeo01e2ZceWmeQFV6fZEVWOAE8knnlDSuK6o2iGp907dq1pVatWmYBpfDwcNFFkXTUqQ7p1UM7x3yHdh7qgrc1a9YU7V3t3r27bNy40fE8vHYDH5mkqH7wwQdm3mV8UdXL1O5n7d1M7qHzQRcvXizaw4gcgexRjX09OhlZ5XLdunVGOHVBKRXm2HNUdSXkevXqyeTJk80cV5VsTbC3335bChQoEOc85F5tY9iQ4sTIyhtW/hDVygUrS7XC1SR/9uujNYYtH2b++/DtD0uZvGXkStQVI616jFk3RiIvRcbcTPUi1aVxycZGTPUnQ7oMRlS3/7Fd+tfuL9euXZMzl85Iziw55efjP8v8nfNxEAlEUlTd4+MziLMjK7LCCeCRzCuywgngkTZ5RVHFe1S1BipWrCgTJ06UChUqSKNGjcyURPWMHTt2mEWTmjZtKjoKVqdoao+qDv+dO3duguc1bNgQr9QUjISG/uq8TB3vfOedd/r9UnXir/bcxj6SWk04kKKqQ5FVPG+55RbJmzevuUTffrJLly6Vxo0bxxFVlXedp6rd8Trcd/PmzWYV45dfflnKlCljRNV3nt9BCoc82TC1aUhtyg3FWBtW/hDVlmVbStm8ZSVzhswSJmExojrw7oGSKX0meXXVq9Lo1kZyZ6E7ZfXB1fLN//smBvsT//eE/CvXv2TijxMl6lqUdL+ru/x5/k9Zvn+5tLmtjew4vkPm/zJfhtQdImcvnZW31r2VrCqjqLrHZ5NX7t8lNM4kK7weyYqscAJ4JPPKG1YUVTtR1U499Qs9mjVrJrNnz5bt27cbWY2MjJTly5ebqZna86q7kbz33numdzWh8xJbCwiv6cBEQqKqW8joqlI61lmXRB46dKiZe1m2bNnAXGWsdwmkqPrmqMa+SZ+ofvXVV6J/jYjdo6q9rNrtrlv2qNzrsGD9a4b+pUN/VFR953kBjg0pTpWsvGHlD1H1XVnfmn0le6bsMaI6tO5QM5x31KpRUqVQFWleurn88tcv8vHP/6w+Hp4xXDKnzywnL56UJiWbmOG+u//eLfN2zJM+NftIlgxZ5HLUZRPz7f5vZdWBVTiIBCIpqu7x8RnE2ZEVWeEE8EjmFVnhBPBIm7yiqNqJqtaCbompC9vGnioZu3Z05JhOOSxatGicSnM6D6/hwEZCoqorSKlwrVq1yoApWbKkma+qAps5c+aAXnEgRNW3Pc3nn38uzZs3j3N/iYlqz549zXhx7R3WXmLf0a9fPxk9enRMTyxFNaDpkuib2TSkqeOKU+4qbFh5Kqr1hsrFqxfl9dWvS4WbK0ir8q3k1xO/yofbPrwBTtvb2kr5fOXlavRVmbJpiumJ7VKpi4m7cPWCqNAeOH1AZmyekSywFFX3+Gzyyv27hMaZZIXXI1mRFU4Aj2ReecOKomovqnhNpJ7IqKgoWb9+faIXlC5dOrPuT0KHo6j69u3RHlTdhkUPHb6q46B17mqlSpUCSiIQoprcG9IFog4cOGAWVtJ9ZwN1sCHFSZOVN6y8FNWX6rwkEiby8oqXpW7xunJP8Xtk89HN8tnuz2JuRoeyPF/1ebkp/CY5dfGUzNgyQ05fPC2tyrWSCvkriO/6Bt09yMxz1Q/J5BwUVff0+Azi7MiKrHACeCTziqxwAnikTV5RVNOGqOqwZN37NalDe4JdiaqeFBERYd5Ae1WzZctmhgHrqlK636m/t1hxehSCQVSd7sGr120aB6+uIVjKJSu8pmxYeSmq3ap2k/zZ8pvhvsVzFZesGbLKzG0zJXeW3FKnWB0zjDd31txSs2hNiYqOkl1/7ZJrck3+vvC3nLt8TpqWaip/nf9LthzbIvVL1I/pncVJ3BhJUXVPzyav3L9LaJxJVng9khVZ4QTwSOaVN6woqmlDVC9duiS6k4oeOixZF53t2LGjGaGr23fq3Npkiapuu9KnT584WaqTdXVV4EAfFNXEibMhxbORrLxh5aWoFspRSDpX6izp06U3F3/w9EGZvnm6WeVXV/tdf3i9lMhTQvKF54tzc+evnJc31r4hXat0lZuz3WwWaLp09ZIs3rvYrAacnIOi6p4en0GcHVmRFU4Aj2RekRVOAI+0ySuKatoQ1djZ41toVuW0bt26MnLkSLPuUbJEVd/g6NGjsmTJEvn999/Nare6n6iOKQ70QVGlqPoj52waUn+8XzCXYcPKn6KaEDMd2lskRxE5fel0nG1pUL66mJJuTfPH2T/QU5KMo6i6x2iTV+7fJTTOJCu8HsmKrHACeCTzyhtWFNW0J6q+hZ50ZxVd36d169ZmO88//kj4e5njHFVNTd1kVlew3bt3r8lU3Wz2l19+MfuKZs+eHc9eP0RSVCmqfkgj4YcOTtGGldeiil91YCIpqu452+SV+3cJjTPJCq9HsiIrnAAeybzyhhVFNe2JqmbSbbfdJjt37jTr+Jw5c0Z69Ogh48ePTzDJIFHVlW+/+OKLGwrQwimq+MPrdSQbUpwwWXnDiqIa90MHp5z2IvkM4nVOVmSFE8AjmVdkhRPAI23yiqKaNkVVVwB+9dVXzR6wjz76qHTt2tUsQJvQ4SiqvlV/tSdT9xV94IEHJH369GaT2Y0bN0qgN4xljyp7VPHmkqwCzYqiSlFFc87mywxaZqjGkRVes2RFVjgBPJJ55Q0rimraFFU8m0QcRVWH+aqY9urVS7JmzSo6CVZXbtJuWx3+W7ZsWZv3S3YsRZXylewkEuHQXwuINh/QFFWKKppaNnmFlhmqcWSF1yxZkRVOAI9kXnnDiqKaNkT17NmzCfaYFixYUHbv3p1kcjmKqp79+OOPy8yZM2XOnDny8MMPxxTIob/4gxuISDakOGWy8oYVRZWiimYWn0GUFP+whpMiK7KyIYDHsr3yhhVFNW2I6vnz582iSb5D5VSfqRYtWsinn36afFHV/W+WLVsm9evXl7lz58qmTZukXbt2Urt2bTxz/RTJHlX2qPojlfihg1O0YUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVONnj3rlLbfcIiVKlJB169a5E9WLFy9KtWrVRJcPHj16tPTv318aNGiAZ6pHkRRViqo/UosfOjhFG1YUVYoqmlk2eYWWGapxZIXXLFmRFU4Aj2ReecOKopr2RFX3S9X1jT766CPZsGGDccwMGTIkmmCJDv31zU31LR18880337DC77Zt2yRbtmx49vohkqJKUfVDGnGOqgVEmw9oiipFFU0tm7xCywzVOLLCa5asyAongEcyr7xhRVFNO6L622+/yeTJk2XWrFkSEREhHTp0kGeeeUby5MnjrkdVz/rggw/M/qnLly+X0qVLS/78+eMU9uWXX0p4eDievX6IpKhSVP2QRhRVC4g2H9AUVYoqmlo2eYWWGapxZIXXLFmRFU4Aj2ReecOKopp2RLVhw4by9ddfS+XKleXUqVPme/j9999vdpRJ6oAWUxoyZIg8+OCDUqlSJTxTPYqkqFJU/ZFa/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk88obVhTVtCGqul/qHXfcIVOnTpXOnTubZOrdu7eMHTtWLly4IFmyZEk0wSBRxdPT+0iKKkXVH1nGDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNW6KqO8jokF89Bg4cKK+99pqcPn3aDAVO7KCo4s9eqo9kQ4pXEVl5w4qiSlFFM4vPIEqKW67gpMiKrGwI4LFsr7xhRVFNG6Kqq/yWLFlSDh8+LPXq1ZPIyEj56aefpGvXrjJp0qQkk4uiij97qT6SDSleRWTlDSuKKkUVzSw+gygpyhdOiqzIyoYAHsv2yhtWFNW0IaqaPTt37pTx48fLnDlzJGvWrNKxY0fp06eP6GK9SR2QqKr5jhs3Tl588UUZNmyY/PLLL9K3b1+pXr06nrl+iuTQ38RBsiHFk4ysvGFFUaWoopnFZxAlRfnCSZEVWdkQwGPZXnnDiqKadkTVl0FXr16VdOnSmR/kgET1gQcekM8//1wWLFggrVq1MuUWKVJEDh06hLyHX2MoqhRVfyQUP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjqmTNnkpyHqluhaqdoQoejqKr5ZsyYUaZMmSLLli0zsqo9quXKlZNdu3ZJmTJl8Oz1QyRFlaLqhzTi9jQWEG0+oCmqFFU0tWzyCi0zVOPICq9ZsiIrnAAeybzyhhVFNW2Iqq7sq9uc6hzVRo0ayZUrV+S7774zKwGXL19eMmfOLO+//747UY2KipJChQrJc889J2+++abce++98sQTT8hDDz0kR48elQIFCuDZ64dIiipF1Q9pRFG1gGjzAU1RpaiiqWWTV2iZoRpHVnjNkhVZ4QTwSOaVN6woqmlDVM+fPy/ZsmWT6dOny5NPPmmSqWXLlrJ3717ZsWNHksnl2KOqZ+t81LfeessUtGTJEmnXrp2UKlVKNm3ahGeunyIpqhRVf6QSP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvPKGFUU1bYjq7t27pWzZsjJ48GDzo52gVatWNQssae9qhgwZEk0wSFSvXbsm33//vYSFhZllhSdOnCht27aVfPny4Znrp0iKKkXVH6nEDx2cog0riipFFc0sm7xCywzVOLLCa5asyAongEcyr7xhRVFNG6Kq00grVqxoxDT20a1bN+OUSR2QqOokWO1V1d7UZ555RnQ/nDZt2pixxf46zp07Z5YrdloFiqJKUfVHzvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrb1hRVO1FNTo6WnTOpw6ltTncnmfzHknF/vXXX/Lpp58al1TX04V6dRpp9uzZky+q2ns6b948U9DAgQNl/fr18vPPP8vBgwfNBNjkHHrhjzzyiOn2PXDggPTr18/srZPYQVGlqCYn33zn8kMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCtvWFFU7UR1xowZZrvQwoULi6uLGvEAACAASURBVPZSzpo1K87o1pUrV8pTTz1lei/1UBFs3769OJ2H1677yF9//VUWLlwolStXllq1aokOB/ZdZ1KlOvao+lb9HT58uGivZ/r06aVJkyZSp04d2bp1a7J7VV977TXRHttXXnlFjh07JgULFjTvEx4enuB1U1Qpqu4fk3/O5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVfesKKo4qLq87FTp05Jzpw5pUePHsaZtAPRd0ydOtXM+VRZ9c37RM7Da9ddpI7E1emi6nt66Jan999/v/Tu3TtmDaTESnYUVZ3wqjfbuXNn03uqP/pmgwYNkpMnT0quXLncXfX/zurSpYs0aNDAGL/OhdXu4H379kmJEiUSLFffX7fL8R16js6d5SGGH1lgmUBWGCeNsmEVVTRK9CetHOkPpRf9YXtkX+M2eWVfemidQVZ4fZIVWeEE8EjmlTesLte8LFdqXcELD/LITGsySca1iTvMSy+9JAMGDEjwLvfv3298SR1JjwkTJsiWLVtk2rRpMfH9+/eXyZMnGyHUKZrauaeH03leY9WVfW+//Xb5+uuvRe+xYcOGovczc+ZM0SHJSbmLo6jqxffp00fGjBkT5z46dOhg3iC5hw4r1p/WrVubovLnz2+GFhcvXlxWr14ta9asifMWeoOJierdUVFyd3R0ci8paM5flS6drErPL8luKowfOjg1G1YqqdG3pJ1nMN3BdBRVPJXiRNrklcu3CJnTyAqvSrIiK5wAHsm8IiucAB4ZP6+GDBlyw8m1a9c2Q2W3bdtm5FOHzOqhDrZixQrRXlTf8e6775otRe+77z5RadVRsNq76nQefsXuIrVX91//+pe88cYb8ueff8rSpUuN92knqN9W/dWtaD755BNj8pUqVTJdzokNz7W5jREjRkhERIT07NnTLFecO3du0W7txBZVSnLo7/LlIvqTVo569UT0538Hh6bgFU9W3rDi0F8O/UUzi88gSkq47zOOiqzIyoIAHsr2iqxwAnhk/LyK7zixS9IFlNS7fD2QY8eONS/36tUrJkxjdGFaPTZu3Gi2E9U1hZzOw6/YXaTuo1qgQIGYob++Uu6++27RebVJHVCPqi4frN3GOjfVH3Ia+4IWLVok77zzjixbtsws2KQ9t+vWrUv0mimqsdBQVN09McIvfjbgbD6gKaoUVTS3bPIKLTNU48gKr1myIiucAB7JvCIrnAAeaSOqWqouPqTbuVSoUEEaNWokun6Q9rjq0Frdl1T/3b17dyOoo0ePlt9++83EJ3SeDr8N1BEZGWmur0yZMjFvWb58eSPZOpI22aKqhRw/ftyUoyvyKoD69evHGYLr9mbV/ps2bWr21tF/6/jlatWqUVQRoBRVhFKCMfzQwdHZsKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeKStqGrnnk691KNZs2Yye/Zs2b59uxFUlcFvvvlGnnzySdOpWKpUKSOrKoQJnRfINW10xOzmzZvNUOSEDh1Fm9gKwFCPqi6apOOgtddzwYIFRlpz5MghXbt2NeOLYxsyXj1xIw8dOmS6hWPPP02oLPaoxqJCUXWbbhweZkHO5gOaokpRRVPLJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRtqKqJesw2tOnT5sVfxM6VApPnDgRZ9sa5Dz8qu0jVaJ1peKkDp2vm9ABiaqeeOTIESOqauW6D07sQ1du0sWPAnFQVCmq/sgzfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80o2o4qWnnkhdMKls2bLmgp5++mmzB+zgwYPNok+6qJLuLtOpUyf3oqrjmHVIrh7ak/roo4+a4b+6hUyxYsXkgw8+kMceeywgRCiqFFV/JBo/dHCKNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB6ZVkT1r7/+Mj282tHZsmVLA0i3J9X9VI8dO5b87WmKFi1qxj8/8sgjZu8b3cvUdyxfvlxKliwpRYoUwWsmGZEUVYpqMtIn5lR+6OAUbVhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATwyrYjqgQMHzMjb+++/X1544QW5dOmStGjRwqwCrL2ric1dVZLQ0F9d5Gjv3r0xm8zqOGLdx0e3lPEtg4xXS/IiKaoU1eRl0PWz+aGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqkpER+LOnTs3Dpy3337brFKc1AGJqtqvCmL8Qyfz6h6ogTwoqhRVf+QbP3RwijasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAemZZEVans2rXLrEysKw43btxYbr31VkdYkKjq9jS6X8+aNWvMf3Wsse7N88MPP4guKRzIg6JKUfVHvvFDB6dow4qiSlFFM8smr9AyQzWOrPCaJSuywgngkcwrssIJ4JFpRVR1eO9HH310AxgdlVu6dGnZunWrmV6akFM6iqqu1JQpUyaZPHmyGe6rw4BHjBghN998s+iWMoGam+q7O4oqRRVvAhKP5IcOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI9OKqCa2PY26pE4jHTRokJm3qr4Z/3AUVT1BF1LS3tSJEyfKs88+a1b7Vbi6ZU1i+/jg1WQXSVGlqNplTMLR/NDBKdqwoqhSVNHMsskrtMxQjSMrvGbJiqxwAngk84qscAJ4ZFoRVe1RXbly5Q1gVEwLFy4sus3pPffck+Dqv5Co6mpNEyZMkD59+sjAgQNl1apVRlj1/wf6oKhSVP2Rc/zQwSnasKKoUlTRzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeGRaEtX58+cnCkbnrOpiSwkdkKj6Trx8+bL8/PPPUqpUKbOfakocFFWKqj/yjh86OEUbVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj0wroprY0N/YpHRHGWtR9U1u1cWT+vXrJ+PHj5fDhw+bcnSJ4TZt2uC14adIiipF1R+pxA8dnKINK4oqRRXNLJu8QssM1TiywmuWrMgKJ4BHMq/ICieAR6YVUdWhvzqFNLFDe1Tr1KljL6r169eX7777zqzItGfPHlNAq1atZMGCBWYxpT/++AOvDT9FUlQpqv5IJX7o4BRtWFFUKapoZtnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPDItiaonq/6q4epGrOPGjZNcuXJJ+/bt5T//+Y+89tprZq7q+fPnRZcWDuRBUaWo+iPf+KGDU7RhRVGlqKKZZZNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwyLQiqp6t+qui+vLLL8vgwYOlTJky0rJlS1FRnDJlinTt2lVOnz4tEREReI34IZKiSlH1QxqZVat19WoezgRsWFFUmVfOGXU9wiav0DJDNY6s8JolK7LCCeCRzCuywgngkWlFVD1b9VdFVTdg1Z9OnTpJjRo15KmnnpIvvvhCJk2aRFHFc9GbyHr1RPTnfwcbUhwzWXnDiqJKUUUzi88gSopSj5MiK7KyIYDHsr0iK5wAHplWRDUhIrqDzPTp02XGjBlJAkty1V8V1aQO9qjiyehJJEXVNVbbDx1djezMmTPQCIKzZ89KtmzZ5MKFC2bz4gwZMri+ztRwog0riipFFc1Zm7xCywzVOLLCa5asyAongEcyr8gKJ4BHpiVRbdu2rXz55ZcxcPQ7tR66i4yO3v33v/+dILgkRVUnvia2XLCWpqv+BvpLOIf+xqpHiireGsSLTOpDR/8A884770i9evWkVq1asnHjRrn33nuNqF65ciXRnN+9e7c89NBDsnPnTvNTvnx5efXVV+WFF16Ar1NHK+hq24MGDYLP8TrQ5gOaokpRRfPRJq/QMkM1jqzwmiUrssIJ4JHMK7LCCeCRaUVUdfHdAgUKyN133y0FCxY0gA4ePCg//PCDqMDqyN0WLVrYiapuSfPSSy+ZIb9VqlSRhHpXDxw4YBZa0k1aq1evjtdMMiIpqhTVZKRPzKlJfejow1OsWLEYyRwxYoQMHTpUJkyYIM8991yCz4IWPHbsWOndu7e88sorZg63buekglu3bl34kp955hmzYFl0dHSi7wMX5qdAmw9oiipFFU07m7xCywzVOLLCa5asyAongEcyr8gKJ4BHphVRPXHihPTv319GjRpldo3RY9OmTfL++++b79ZJHYn2qOqKvrp40tdff20WnVHTVRvWCbG7du0yvT7btm0zW9d88803UrRoUbxmkhFJUaWoJiN9IFFt2LChyfsiRYpIhw4dzBj648ePm78E6bCF8PDwGy5h6dKl0rFjRxOnvbA65v7JJ5+Uzp07m2dDe0gffPBB+fDDD2XRokWiD+0bb7xhyqtZs6a8+OKL5ndPP/20KaNZs2ayePHiBG9Ve3zvu+8+qVatmum51b2N9b2051aHGw8YMEAWLlxorrNRo0bmj0n6h6fmzZubc/TZ1b9u6R+ivvrqK1m2bJl5vidOnGjkeM6cOTJ58mTRP0Tp/esfq0qVKgVhp6hSVKFE4WJKKCYTxy/JOC6yIiucAB7JvCIrnAAeGeqi+ssvvxgh1e+SvuPIkSPmO+p///tf8z3TaavTJIf+aqGfffaZWThp7dq1ZuijHjqeWHuK9IvvE088IRkzZsRrJZmRFFWKajJTyPGLn4pdr169jFiqAOr/1/2EVd5UPBMa7r53714zvl6FVf861LhxYyN3w4cPl3LlypmhDXroyAPdh/iee+4x/197a/UvTBcvXpT58+dLt27dzKbIH3zwgTz22GMJ3urff/8tefPmNa89++yzsnz5ciOs+sDrc/rwww9Lz549JV26dDJmzBiZN2+eeV8VZn12tVyVUj1UULXR+PHHH2XJkiVGbnXIs0q3bj2lz77+FUyfO+SgqFJUkTyhfKGUrsfxSzLOi6zICieARzKvyAongEeGuqjqFFL9TqoLJ+m9ameNdgT5Dv1OPXXq1CSBOYqq72wdirhnzx7T46JfwPVLcEocFNVY1DlH1XUK2gz91eG8OqxX/1CTPXv2RN9Te011Tuqff/4ply5dMj2ysUVV9x/W3k49dLsnfZ60l7Z+/fpGDHW4MTL01yequgK3DhPWHlAd3689tbVr1xZtGI4ePWoEVhuHYcOGxfTs9uvXT0aPHm3+yKTzYXXOrTYaTZs2NXK8YcMGMz9XrzN9+vRGou+44w7TC4scFFWKKpInlC+UEkXVjhSl3oYX5QunRVZkhRPAI0NdVI8dOxYzJ9VHRafGaeeNjj7UBUedjiRFVYf56pfZWbNmye233y5dunSRQoUKmSGJ2hOkX4QTGgbp9KbJeZ2iSlFNTv74zk0JUdXeVu1p1UPnwep+xNqLqsKqPZ36QGtPrtMcVZ+o6lBfFWMtQxc2U1H97bffpEePHtKqVSsjmDq3Nrao6p7Iurpa69atTc+uLpamQ391iPDMmTONrKq4qqj6RkroH6f0eUcOiipFFckTiipKiaJqR4qiasOL8oXTIiuywgngkaEuqkri5MmTpkNFv/PqlFE99Dunfh/WaWy33XZbksCSFFX94vr444/HFKBzVdevX29EVYdEcnsaPBk9iWSPqmusiKhqL+ebb75pFkfyR4+qzgfV+a+nTp2SW265xfxbe1y113L27Nlm+K4OM1ZR1ZXQdD5pQkdSoqq9qVrWjh07jHTqH3ZUVvWPTDr010lUdeXikSNHml5X7fXVf9epU8dwQA6KKkUVyROKKkqJompHiqJqw4vyhdMiK7LCCeCRaUFUY9PQOas6HU3np+q968JKyZqjqsMBdcivzlPV+Wu69YYu8qL/1XHF/hRVNe6IiAgz3DCpgz2qsehQVPHWIF5kUh86OpKgYsWKRhx1GOy+ffuMqPr2R03sTXVBJJVOHfp7+fJlKVy4cJyhvz5R1fN1RWCN1YWTtDdV55rq0GDfeH6NSWxrKJ+oDhw40JShPaPaQ6o9qrp/qy6CpsOU9S9W+p4611bnzepQZJ+o6rALbSzi96jqnNU+ffrIe++9Z25Te2XfffddM6QYOSiqFFUkTyiqKCWKqh0piqoNL8oXTousyAongEe6EVX1Ml04U7/vJXbo98SbbropzsvIefiVJy9Sv3vqIks6gk+/yyZ1JNmjql9Oda6bLiSj8+emTZtmema0Z1Xh+kNUdQikbm+TL18+s0hN5cqVzZfpxA6KKkU1eY8H9sVPH+jIyEgztD32GHodUeBbVCz2dZQtW9aIoM2hD6rmv54X+w80uuK2zh3V1bXdvJfOj9Ve2/z589tcTpxYvQZdhVhle//+/eaZRw6KKkUVyROKKkoJa6/sSgvtaAoFXr9kRVY4ATySeeWeVXzHiV+S7iihI+/0u5l2qujUTPUn36G+potyqkudO3fOONsDDzxgdqJI6jz8igMfmaSo6tBBXdVXj6ioKLOAUt++feWtt94yv/OHqOrQQv1SrkMgdeVTXWn0999/N3NhEzooqhRVfzwmbhtSnc+pvf/xjzvvvFNKlizpj0uLKSOQ75XUhduwoqhSVNGHwCav0DJDNY6s8JolK7LCCeCRzCuywgngkTY9qiqmunaIdkTkzJnTrEdSsGDBOD2SuqOEju5r0KCBrFy5UnTRTZ0K5nQefsWBj3Rc9Vfnyn3//fdmj0ZdVEUP/f9q7brKqYplcg7tvtZys2TJYoYY6wqrv/76a8x7xS+bokpRTU6++c7lhw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjbURVR7epgOp0ND10SteWLVvMaFffoaPwdCSgjtJTn1LH0i0Gnc7DrzjwkY6iqpekG7PqcML4h+7lqMODVTKdDl3pSVckjX0UL17czIHT+Xy6eqn21H766admj1Y9Vq9ebfaUjH/4tvjQ38ep5OXLRfQnrRyco+q6pvmhg6OzYUVRpaiimWWTV2iZoRpHVnjNkhVZ4QTwSOYVWeEE8MiERDX+2epZupWLepTu8KCLXuqhC96uWLHihn1IdXGi5557Tvbu3WvWLtHRr8h5+FUHNhISVZ3rpou+JHToOGiVSSdZnT59ulnYJfbRpEkTad++vdlPR+cB6l8HtBs7qYM9qrHoUFRdPy380MHR2bCiqFJU0cyyySu0zFCNIyu8ZsmKrHACeCTziqxwAnikTY+q9o5qb6muoaIjUXWRTz10W0Pfoeue6PBf3bFFO/XUzZDz8CsOfCQkqo8++qgZ66z7L+qCR9r7qSv06v43+jtdtUm7ld0cuhWHbnej1o8cFFWKKpInTjH80HEi9M/rNqwoqhRVNLNs8gotM1TjyAqvWbIiK5wAHsm8IiucAB5pI6paqu5IMXHiRKlQoYLZ2UHX99EeV52HWrVqVXn44YfNf3XYb+wjofN0i8RgOBxF1Td5V419zJgx5p50Gw1dTlhXlCpQoICxet2uxs2h+7G+//77cU7ds2ePlCpVKsHiKKoUVTd5Fv8cfujgFG1YUVQpqmhm2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE80lZUtVOvQ4cO5g10u9DZs2fL9u3bjazqThXxR8D69ilN6DzfukP41aZMpKOo6mVp76lO0J08ebJkzpzZrDSliyjp+Gg1eh36W7NmzYDcAUWVouqPROOHDk7RhhVFlaKKZpZNXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCNtRVVL1u0Ddd6p01TJ+Ffh9jz8bryJhER13rx5psfUt6djjhw5zCpTau9Tpkwxw4Kd5qj66/IpqhRVf+RSoD90dHj7gQMHzNyCokWLSsuWLc0q1zqfQA8dXv/xxx+b13XSvM7n1udMGxZdhly3btK/mOl+rboflg7B1+2iOnbsaEY06B+TdMGz1q1bJ7q1k1tuNqwoqhRVNM9s8gotM1TjyAqvWbIiK5wAHsm8IiucAB7pRlTx0kMjEhJVvVXdR3Xjxo1mUq5+kdY9eXSBpVy5cpmFkAJ1UFQpqv7ItUB/6MyfP98IpI480BzWTZjnzp1rNmbWldx0uXFderxdu3Zm6IbOAx88eLAZtVCmTBkjtyq2OuRD43Xpcd0iSvfIeu+998xWUbpK9tmzZ6Vx48b+QBRThg0riipFFU0+m7xCywzVOLLCa5asyAongEcyr8gKJ4BHUlSdWUGiqj2p+oVZx0Lrv3Wl3ieeeMLvPTfOlyvmSz63p/kfKa76i6RMgjGB/tBRUS1fvrz50RzWZ+jbb7+VTp06ydatW42o6vZN3bt3N6u5vf3222Yy/KxZs+Suu+4yfxDSkQ3VqlWTtWvXSv369c0CZDrSQZ9Njd2wYYP541Hz5s1dc0noRBtWFFWKKpp8NnmFlhmqcWSF1yxZkRVOAI9kXpEVTgCPpKg6s4JEVRdO0gWUdCiiDkM8fPiw+cKtX7B1CGIgD4pqLNoUVdepF+gPnfiiqn9s0eHzuliZ7iOsWzSplDqJqq60rYKqQ31PnDgh1atXl02bNlFUXWdC8k6sV7ye6I/vCHReJe/qU/ZsssL5kxVZ4QTwSOYVWeEE8EjmlXtW8R0HLyl0Ix1FVVf2zZ49uxliqIsp6by4cePGmX17fvnlFzNnLpAHRZWi6o98Sy0NqT5f2bJls7olnYuqz6H+kejKlSueD723YcUeVfaooslsk1domaEaR1Z4zZIVWeEE8EjmFVnhBPBI9qg6s3IUVV3MRb9IDxs2TIYOHWpK1CGI2gOkc1bvvPNO53fxYwRFlaLqj3Tihw5O0YYVRZWiimaWTV6hZYZqHFnhNUtWZIUTwCOZV2SFE8AjKarOrBxFVYvQ1UZ1C5omTZpIeHi4LFiwwGwou379ejOfLpAHRZWi6o9844cOTtGGFUWVoopmlk1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAIymqzqwgUdVtNUaNGiVz5swxiylpb+qLL74od9xxh/M7+DmCokpR9UdK8UMHp2jDiqJKUUUzyyav0DJDNY6s8JolK7LCCeCRzCuywgngkRRVZ1aQqPqK0UVfdPEX7VVNqYOiSlH1R+4F+kOH+6j6o9ZSXxlcTMl9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrJIUVd27UeU0sUO31NCFlgJ5UFQpqv7It0B/6HAfVX/UWuorg6Lqvk4C/Qy6v9KUP5Os8DogK7LCCeCRzCuywgngkRRVZ1ZJiqrux6g9qIkdn3zyScB7VymqFFXntHaOCPSHDvdRda6TYIygqLqvtUA/g+6vNOXPJCu8DsiKrHACeCTziqxwAngkRdWZldXQX+fivI+gqFJU/ZFlgf7Q4T6q/qi11FcGRdV9nQT6GXR/pSl/JlnhdUBWZIUTwCOZV2SFE8AjKarOrCiqzoxSb0S9eiL687+DDSleVamFFfdRxessNUZSVN3XSmp5Bt3fQeDOJCucNVmRFU4Aj2RekRVOAI+kqDqzoqg6M0q9ERRV13XDDx0cnQ0rrvrLVX/RzLLJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCRF1ZkVRdWZUeqNoKi6rht+6ODobFhRVCmqaGbZ5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySourMiqLqzCj1RlBUXdcNP3RwdDasKKoUVTSzbPIKLTNU48gKr1myIiucAB7JvCIrnAAeSVF1ZkVRdWaUeiMoqq7rhh86ODobVhRViiqaWTZ5hZYZqnFkhdcsWZEVTgCPZF6RFU4Aj6SoOrOiqDozSr0RFFXXdWPzobN69WrX7xMKJx45ckQKFSoE3crmY5tl89HNUGwoBFUqWEm6t+4ecys2eRUK95+ceyArnB5ZkRVOAI9kXpEVTgCPZF65ZxV/ZxO8pNCNpKgGc91SVF3Xnk1D2mtgLxn32jjX78UTQ5dAx54dZcbYGRRVF1Vs8wy6KD6kTiErvDrJiqxwAngk84qscAJ4JHtUnVlRVJ0Zpd4IiqrrurH50Hmy15Py3bffuX6vYDsxZ+ackjNLzpjLvnjxomTJkiXYbiMg19ugQQMZOnQoRdUFbZtn0EXxIXUKWeHVSVZkhRPAI5lXZIUTwCMpqs6sKKrOjFJvBEXVdd3YfOhw3iXnXaKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1Yc+nsjO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqKaykX1xIkTki1bNsmcOXOitRy/EuM8EMuXi+hPWjkoqq5r2qYhpahSVNFEs8krtMxQjSMrvGbJiqxwAngk84qscAJ4JPPKPStEVKOjo+XChQvGlxI7zpw5Izly5IAuRGOzZ88uYWFhUHygg1LN0N8DBw5IhQoV5Msvv5SaNWtSVJFMoKgilBKMsWlIKaoUVTTRbPIKLTNU48gKr1myIiucAB7JvCIrnAAeybxyz8pJVGfMmCHjxo2TwoULy9WrV2XWrFmSL1++mDfctGmTdOrUSYoVKybqVdOmTZMqVarIyJEjjV/5thocPHiw6RQcMWKEpEuXzsQ+/fTT0qFDB/ziAxSZKkT18uXL0rZtW9m/f79MmjSJoopWPkUVJXVDnE1DSlGlqKKJZpNXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiaqKacaMGeXUqVOSM2dO6dGjhxQsWFAGDhwY84YNGzaUvn37iv53wYIFMmXKFFm2bJk8+uij8sILL0i5cuUkQ4YMJl7FtHTp0iZ+79695t+XLl2STJky4TcQgMhUIaq9e/eW+vXry4QJE2TIkCEUVbTiKaooKYqqBal6xeuJ/vgOfujg8MiKrHACeCTziqxwAngk84qscAJ4JPPKPaukRFU7Nz7STgAAIABJREFU83RLvH379pk3UGfasmWL6TX1HUWLFpW1a9eK/nfz5s3SuHFj+eOPP6RixYpy7NgxM2S4S5cuMmrUKBk9erQRXxXdH374QWrUqCG///57TK8rfhfeRgZMVLdt2ya//fZbnLspXry4sfjPPvtMPvjgAwM0tqiuXr1a1qxZcwOBAQMGJPwlmnNUpUSJEt5mTIiUbtOQskeVPapo2tvkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6Vimr8o3bt2lKrVi1Rj2rTpo3s3r3bhMycOVNWrFghU6dOjTklIiLCvK49rVoPdevWlUOHDkn37t3lmWeekZtuuklatGgh/fr1k9tuu02qV68uDz30kKxbt0727Nkjvvmq+B14HxkwUZ0+fbp89dVXce6oSZMmplv6+PHjBt6PP/5oup51zLWOqU7o4GJKsaiwR9X1E2LTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z5VUj2q2hsaHh4uupiSLnw0duxY80a9evWKecM6deqY3995552yceNGMwf1008/lStXrsQsVKuvq5TqVMvTp0/L4sWL5dZbbzUSrFKb2o6AiWpiN65QLl68aF7u3LmzPPvss/LAAw+YyqCoOqQLRdX182TTkFJUKapootnkFVpmqMaRFV6zZEVWOAE8knlFVjgBPJJ55Z6V02JKOoR34sSJZvHZRo0ayfDhw0V7XHfs2CFVq1aVPn36SN68eaV///5m7qmu5qvTK3VxJR0mXKRIEWndurWZs/rXX3+ZXte33nrLDB/W3lkd3ZrajhQX1dhAmjdvLoMGDeIcVTRLKKooqRvibBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs3IS1UWLFsWszNusWTOZPXu2bN++3chqZGSkmb/q2zklV65cZkhvnjx5zHxUHcGqh64JpHKqW4I2bdpUdLjw4cOHZf369alufqpeb6oSVaRqOfQ3FiWKKpIyCcbYNKQUVYoqmmg2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5SSqWvL58+fNkF2dh5rQoasDHzlyxCyoFHtvVD0vKirqhv1VdWSr9rRyH1W83pKMpKhSVP2RSjYNKUWVoormnE1eoWWGahxZ4TVLVmSFE8AjmVdkhRPAI5lX7lkhooqXHhqR7FEN5npkj6rr2rNpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs+KonojO4oqnk+pL5Ki6rpObBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSIqq61qyaUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPiqJKUcWzJxgiKaqua8mmIaWoUlTRRLPJK7TMUI0jK7xmyYqscAJ4JPOKrHACeCTzyj0riipFFc+eYIikqLquJZuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHuCIZKi6rqWbBpSiipFFU00m7xCywzVOLLCa5asyAongEcyr8gKJ4BHMq/cs6KoUlTx7AmGSD+L6oULFyRjxoxy5coVCQsLkyxZsgQDBVfXaNOQUlQpqmiS2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnhVFlaKKZ08wRPpJVKOioqRJkyby9ddfy9KlS+W5556TW2+9VZYtWwZT2L59uyxatEgef/xxKVq0KHxeSgXaNKT+FtWcWXJKx4odJSJLhJy5dEZWH1wtG49sjIPimSrPSK4sueL87uKVi3Ix6mKCvx+/frzfUNYrXk/0x3fYsPLbRQRpQWSFVxxZkRVOAI9kXpEVTgCPZF6RFU4Aj4yfVxRViiqePcEQ6SdR3bhxo1StWlUee+wx0Yfk448/lly5cknHjh1hCnPmzJFHHnlE1qxZIzVr1oTPS6lAmw8df4uqSmjB7AXl9KXTEpE5Qq5duyavrHxFoq5FxeDofld3UaH1HRnSZZDLUZeN2Cb0+1GrRvkNJUXVPUqbvHL/LqFxJlnh9UhWZIUTwCOZV2SFE8AjmVfuWVFUKap49gRDpB9E9ffff5eGDRvKzp07pXz58jJlyhR59913JW/evDJhwgRp3bq13HTTTaLDgnPmzCmDBw+WESNGyPz586VYsWLy1FNPSf369U2P7J49e6Ry5cpGdEuWLJkgQZXh6Oho89rKlSvNe+v7hIeHy6RJk+Sdd96Rv/76S+rWrSvjxo2TQoUKmWvImjWrXLp0SdatWyddunSR9OnTm2stXbq0zJw508RpeXrty5cvl3r16sXcR0IXYtOQ+ltUe1XvJVevXZUJ6ydIl8pdpEhEEflw24fy64lfE2TW8f86SvFcxWX+zvny8/GfY2IS+31yU5ei6p6gTV65f5fQOJOs8HokK7LCCeCRzCuywgngkcwr96woqhRVPHuCIdIPohoZGSnDhg2TsWPHyvPPPy99+/aVe++9VwoXLmzEr0yZMkZAc+TIIaNGjZJDhw7J6NGjRXtQP/nkE5k3b55s2bLFyOa0adNkwIAB0r9/f8mTJ0+CBCtWrCjbtm2T+++/37z++eefm7Jq1aolt9xyizRq1Mi8pteiP1quDkPWhk+lWIcmHz582Ej17bffLnPnzpUXXnhBXnzxRXONWk7jxo3lpZdeMmV9+eWXCV6HTUPqb1H1XZBKauGIwnIl6ook1iNa4eYK0qp8K9l/ar/8d8t/Y+4lsd/7I20pqu4p2uSV+3cJjTPJCq9HsiIrnAAeybwiK5wAHsm8cs+KokpRxbMnGCL9IKp6mypz2iP66aefSosWLYwYxhbVo0ePGjmMiIiQf//73/L2228bUdSeVO0hvfPOO00vKjL0V0X1xIkTRngPHjxoemX79OkjL7/8spkT+9NPP8mvv/4qs2fPNtK5evVqcz3Zs2eXrVu3ypgxY0y89qyWK1fODFHu1KmTkdO2bduaH5XrGTNmmGtWEVeBjX/YNKReiWqfGn0kR+Ycck2uydh1YyXyUuQN19mnZh/JnjG7vLH2DTl/5XzM64n93h9pS1F1T9Emr9y/S2icSVZ4PZIVWeEE8EjmFVnhBPBI5pV7VhRViiqePcEQGSBR1SG/GzZsMEROnz5thuguXrzYzEfV44cffjA9nqioZs6c2ZSnAqxDdlU8VTCrVatmhg6r/A4ZMkTuuOOOGFG9+eabjZzq0F7taVWhLVWqlJHQzp07G5kdNGiQuYYSJUrE1J728KrkpiZRbV2+tRw7e8wsoqT/vv3m281iSov3LI5zmSXzlJQOd3SQw5GHZepPU2NeS+z3/kpZiqp7kvyAxtmRFVnhBPBI5hVZ4QTwSOYVWeEE8EgupuTMKuyaruQSREf8vzbEqeTly0X0J60cARJVHcarkqiHzik9cOCAmRe6fv166dGjh/znP/8xMqiSqHNMVRwT29pGe1QTEtWyZcuaob1arp7bpk2bOD2qTqKqoqtDffUannnmGXnzzTclQ4YMZnhyQofNh46/e1QH3T1IMqbLKGsOrTGSqqv7ztk+x/Su1ilWR1YdWCU/HvlRHir3kNyR/w5ZsneJbPj9+h8K9Ejs9/5Ke4qqe5I2eeX+XULjTLLC65GsyAongEcyr8gKJ4BHMq/cs2KP6o3sKKp4PqW+SD+Jqg65VclLbOhvbFH97rvv5IknnjDDavVo1qyZmSeqQ3l15eAzZ86YOasqpAkdsUX12LFjUrBgQdOjqj2f2puq5eoCSVevXpWzZ8/K/v37pUKFCuIT1YkTJ5rtc7RHVeNUkFWMp06dalYs1qHBx48fNz2tej863za1iepdhe+SJqWaSJiEmRV/df7pB1s/kMYlG0v1ItVl/eH1svTXpdKtajfJny2/TPxxohw/dzzmNhL7vb8SlKLqniQ/oHF2ZEVWOAE8knlFVjgBPJJ5RVY4ATySParOrCiqzoxSb4SfRNX2BnXfVZ1Hqvul6mq9vuPKlStGLv/4448YkY1dtsqmDudN7FBp01WIdX5sWFiY7WWZeL02nfuq16Y9qokdNh86/u5R1WtKH5beLKR05MwRuRp91dW9enUSRdU9WZu8cv8uoXEmWeH1SFZkhRPAI5lXZIUTwCOZV+5ZsUf1RnYUVTyfUl9kComqEwhd9GjXrl03hKk8ppY9Vm0aUi9E1YlhSr5OUXVP3yav3L9LaJxJVng9khVZ4QTwSOYVWeEE8EjmlXtWFFWKKp49wRCZSkU1GNDZNKQU1f8XZ4GqYKjflLpGm7xKqWtMLe9LVnhNkBVZ4QTwSOYVWeEE8EjmlXtWFNVULKrnzp2T6OjoBLcSiX3ZXEwpFg2KKt4axIu0aUgpqhRVNNFs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPChFVdaULFy5ItmzZEn0jXS8moa0ZdXqenud2eh1+Z/6LTPGhvxcvXjSL4ei2J+nSpZNKlSrJ8OHDE71DiipF1R/pb9OQUlQpqmjO2eQVWmaoxpEVXrNkRVY4ATySeUVWOAE8knnlnpWTqM6YMUPGjRtn1nLRRUdnzZol+fLli3nDTZs2SadOnaRYsWJmh45p06ZJlSpVzCKj27Ztk4ceesisMaNrxly6dMmc27hxY3N+mTJl5OWXX8YvPkCRKS6q77//vtlTU1dz1cV0Fi5cKC1atJD06dMniICiSlH1x7Nh05BSVCmqaM7Z5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeVVKiqmKaMWNGOXXqlOTMmdNsD6k7ZwwcODDmDXULyb59+5qtJBcsWCBTpkwR3dlD/71mzRoZO3asWfBURVXXkhkyZIjMnj07ycVH8bvxJjLFRVUhbdy4UfSvAEWKFJGRI0dKkyZNEr1biipF1R+Pgk1DSlGlqKI5Z5NXaJmhGkdWeM2SFVnhBPBI5hVZ4QTwSOaVe1ZJiapu19igQQPZt2+feYMJEyaY7SC119R36KKla9euNTtfbN682fSWqpj6Dh3y6xPVxYsXyyOPPGK2ldTtJfW977nnHvziAxQZMFHVLufffvstzm0VL17c2P3KlStlyZIlBmq/fv3M9iIKc/Xq1eYvAPEP3XPTd8R5IJYvF9GftHJwjqrrmrZpSCmqFFU00WzyCi0zVOPICq9ZsiIrnAAeybwiK5wAHsm8cs9KZTH+Ubt2balVq5YZutumTRvZvXu3CZk5c6asWLFCpk6dGnNKRESEeV17WrUe6tatK4cOHUpQVL/99lv56aef5Pnnn5ePP/5YXn31VdPLmtrmrwZMVKdPny5fffVVHP7ac6rgM2fObADpkT9/fiOnJUuWTLCm2aMaC0sKi6r+NUbHwOvEbv3rTcuWLeWzzz4zf2jQ49FHHzXJr6/rQ6b1r5O7z58/b4Yt6PxkfQDLli0rOu5e9z3VecodO3Y0f8DQB07H0Ldu3VoKFSqEP/lApE1DSlGlqAIpZUJs8gotM1TjyAqvWbIiK5wAHsm8IiucAB7JvHLPKqkeVV1AKTw83HynVpnU78l69OrVK+YN69SpY35/5513mtGqI0aMkEWLFiUoqpcvXzbTLPUnKirKfAdXqdXRranpCJioJnbT+heB9957T7755hs5fPiw1KhRQ44cOZK65qhWqybSsKHIvHkivv1B27QRKV1a5MoVkZ07RZYsEYmOjnubel6NGiK6Mpf+RWPhQpEzZ0S6dhXJmfOf2GPHRP77X/u8SGFRnT9/vhFI3RtVH64uXbrI3LlzpVu3buYPEDo8QYcqtGvXzvwBQv8YMXjwYPNXIJ20rXKrYtuhQwcTrw/Ld999J0899ZTJiUGDBpledV2lzDfZ2x5SwmfYNKQUVYoqmnc2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrln5bSYUsWKFc2aPhUqVJBGjRqZxWe1w2fHjh1m+G6fPn0kb9680r9/fzNXNXv27HEWSIo99Hfo0KHy559/mvJ0uPBjjz0WM6wYvwPvI1NcVLXHTCcE69Bf/UuBQm/fvn2idx7QHtXChUUaNBApXlwkLEzkk09Etm0TqV5dRFfJUjHVnwwZrovqhg3/XHfWrCL9+4tcu3ZdTlVMf/5ZZP58kSFDrv/+0qXr8UePah++fW2nAlEtX7686I/Wi9abDiXQFce2bt1qEl6He3fv3t389eftt9+W3r17m1XK7rrrLsmVK5fMmzdPqlWrZh6S+vXrm7/86CrQKrMaqwtt6WplzZs3t+eTxBk2DSlFlaKKJp9NXqFlhmocWeE1S1ZkhRPAI5lXZIUTwCOZV+5ZOYmqfkfWzh09mjVrZhZC2r59u5HVyMhI871bO4/00O/Y69atkzx58sRckH4X1+/Uutrv0aNHzZxX7UnVH/Uvf3/XxkkkHpniouq7tJMnT5qhnomt9uuLC6ioVqwoogs7Zcokki6dyIIFItu3izzxhMi//iUycaJIVJRI9+4if/4p8u67/5C+7TYR7XXdseMfOT17Vmc/iwwaJLJ+vciqVSL6O7dHKhNVnTusk7p1ZTIdUtC2bVsjpU6iet999xlB1fo/ceKEVK9e3SyuRVF1mxjJO69e8XqiP76DHzo4T7IiK5wAHsm8IiucAB7JvCIrnAAeybxyz8pJVLVknT6nW3rqPNSEDv0OriNTddQiMt/02LFjUqBAAfyiAxyZakQVve+Aiqrvotq1EylX7h9RDQ8XyZxZ5OTJ6yKrQ3x1cvOcOf/chvay9ukjkiWLyOXL1+O//VbkwAGRTp3+ibtw4fqQ4D17UAT/xKWwqCZ2wefOnUtyI+KEztOedZ2fqn/VuXLlimTSPw54eNg0pOxRZY8qmoo2eYWWGapxZIXXLFmRFU4Aj2RekRVOAI9kXrlnhYgqXnpoRFJU8+cXadv2xto8cUJk1qzrv48vqr5oPa98eZGrV0WmTLneq+o7dNhwly7X/5/KqMqtSqr2oj74oIguF33qlEjlyiJ//329p9X2SKWiansbKRFv05BSVCmqaI7a5BVaZqjGkRVes2RFVjgBPJJ5RVY4ATySeeWeFUX1RnYU1VtuEXn88RvJnD79jzzGF1Wdr/r88yI33XRdNmfMENH42EerViIVKlzfLkd/dLhvxowib78tkju3yOHD13taX3zx+hzX4cPxzPZFUlTtmf3vDJuGlKJKUUUTzSav0DJDNY6s8JolK7LCCeCRzCuywgngkcwr96woqhRVPHtiR8YXVV0BWCcr6/xUXQVYF0bSXtGtW0U6dhTR/WJVRJs2FfnrL5EtW0Tq1xe5eFHku+90BvT11zWudu3rvauTJtlfG0XVnhlF1ZEZ56g6Iko0gB/Q/7+9MwGTqrrW9mKQeRZwJDgFh2g0ETUOQa8SMBLHiLMGcIyJCIoSjSFXEPU6gBHFYCCgBHIRjWLE6/QrGCcUIxHFISoiEQWNMokmIv7Pu73Vt2mq6a+ODF1V336eftDudU7Vefc6Z+9vr7XX0dmZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe09ly1yKb66Y0s9+FtGu3ernWrEi4g9/iDjrrK9SgCm0xGto2rf/qmIwFX7vu++rYkznnvvV72mIXY6bO7fw77aRharfo1p4lxXDERaq2XvJkxmdnVmZlU5At7RfmZVOQLe0X5mVTkC3tFCtmZVTf2tm9PUsKKbEq2mImlZu7FlF7BJZRaxmaRtZqPo9qlk6rfYfY6GavY88mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lrUAqHq96jWXvfI+s0sVLOSi/BkRmdnVmalE9At7VdmpRPQLe1XZqUT0C0tVGtmZaFaM6Paa1HLhKrfo1p7XaWQb2ahWgit1W09mdHZmZVZ6QR0S/uVWekEdEv7lVnpBHRLC9WaWVmo1syo9lpsZKFaHRi/R7X2uozyzSxUFUr5bTyZ0dmZlVnpBHRL+5VZ6QR0S/uVWekEdEsL1ZpZWajWzKj2WtRSoVp7gf3fNytk0PHrafx6GtWnC/Er9ZylamdWes+alVnpBHRL+5VZ6QR0S/tVdlau+rsmOwtV3Z9qn6WFauY+KeRBaqFqoao6WiF+pZ6zVO3MSu9ZszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UM3cS4U8SC1ULVRVRyvEr9RzlqqdWek9a1ZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqqZe6mQB6mFqoWq6miF+JV6zlK1Myu9Z83KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kI1cy8V8iC1ULVQVR2tEL9Sz1mqdmal96xZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWH4NoXr55ZfHa6+9VgxXuV6+4/Lly6NZs2bSuRd+sjAWLV8k2ZaCUedvd46xw8dWXIoHHb1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB8msI1d79e8e4G8YVw1X6O25gAj+96Kcx8pqRFqoZuHuA1qGZlVnpBHRL+5VZ6QR0S/uVWekEdMuqfmWhaqGqe08xWH4NoTroxkEx58M5xXCV6+Q77tJ2l9i53c4V51q0aFG0b99+nZy7FE9y4oknWqhm6FhPZnRoZmVWOgHd0n5lVjoB3dJ+ZVY6Ad3SQrVmVn49Tc2Maq/F1xCq3nfpfZeqY3uAVklFmJVZ6QR0S/uVWekEdEv7lVnpBHRL+1V2Vo6orsnOQlX3p9pnaaEq98lB2xwU/OSaH6QyOosvHZVZmVUBBHRTP6/MSiegW9qvzEonoFvar7KzslC1UNW9pxgsLVTlXrJQlVGtYehBR2dnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjckS1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtRYL1WXLlkWzZs2iTp06a+3hqp242g0xbVoEP+XSLFTlnrZQlVFZqGZHZaFaADtPZnRYZmVWOgHd0n5lVjoB3dJ+lZ2VIlRXrVoVn376aTRt2rTaD0JTNW/efLW/V3fcxx9/HK1bt5Zs9Stbd5YbveovgM4888wE9IMPPohjjz02evXqVe0VWqhWQmOhKt8JFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjzJs3L8aMGROdO3eOfMf985//jJNPPjm23377WLFiRZxyyilxwgknxDXXXBPPPvts1KtXLwnicePGRZs2bfSLWseWG12oAuD++++PO+64I5566qno3bt3vPbaaxaqSkdbqCqUko2FqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ys1iZUEaabbLJJLF68OFq2bBl9+/aNLbbYIi655JKKD+zWrVsMGDAg+Peuu+6KUaNGJY2V77iGDRum40888cR45JFH4sILL4x77703ttlmmyRQGzVqFKeddlrstttucdFFF+kXtY4tN7pQfe+992KPPfaIgw8+OJ544ono169fglVdc0S1EhkLVfl2sFCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VndXahOrcuXOja9eu8eabb6YPGDFiRMyaNStFTXOtQ4cOKejHvy+88EIceuih8cwzz6z1uJEjRyZBe+qpp8Y555wTW265ZSxcuDAaN26cjifievPNN+sXtY4tN5hQffHFF+Ptt99e7euj2t9///0E56yzzooZM2ZEgwYN4r777rNQVTraQlWhlGwsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VntTahio7q2bNnRdbp+PHjY/r06TF69OiKD2zRokX6O5FS+uHAAw+MqVOnrvW44cOHp+hrkyZN4qGHHoozzjgjidwddtghZbteeumlMXToUP2i1rHlBhOqv//97+PBBx9c7ev/8Ic/TJB32mmnGDhwYLD5F8go+fbt26cI65NPPrnGJWObay6mdFB+FjU4yrS3pwU/5dIsVLP3tAcdnZ1ZmZVOQLe0X5mVTkC3tF+ZlU5At7RfZWeFUK3aDjjggNh///1TOi5ikqJIFJ5FYNL69+9fcUiXLl3S7/fcc8+YOXNmDB48OCZNmpT3uG233Tb23nvvFEElnZiCSu+++276f6Kw8+fPT/+S9UpAcWO1DSZUq7vA6667Lql+wsps/N1nn30SqPr16+c9xKm/lbA4oirfNxaqMqo1DD3o6OzMyqx0Arql/cqsdAK6pf3KrHQCuqX9Kjurmoop7b777kGqLvtGu3fvHpdffnkgZF9++eXYa6+90tbJtm3bxsUXX5z2qvI2lSFDhkS+4x599NFgn+qvf/3rmDNnThxyyCEp87VTp04pfRjhiuCdMmVKCihurLbRhSrR08MPPzzYq0obNGhQqgJcXbNQtVDNcrNYqGah9tUxHnR0dmZlVjoB3dJ+ZVY6Ad3SfmVWOgHd0n6VnVVNQpViR1TXFk1GAAAgAElEQVTnpfXo0SMmTpwYs2fPTmJ16dKlaf/qfvvtl/7eqlWrePrpp1PF3nzHvfLKK2nb5d///ve07fLKK69MkVOE7Z133pm2Zp533nlx2WWX6Re0Hiw3ulDNXdOCBQtSiWUqU62tWahaqGa5DyxUs1CzUC2UmgdonZhZmZVOQLe0X5mVTkC3tF+ZlU5At6zqVzUJVc7Mq2SWLFmS9qHma1QHRlNRUIkU4Vyr7jgChZtttlnUrVu3wpatmJyn6vtV9Stbd5a1Rqiql2ShaqGq+kplOwvVLNQsVAul5smMTsyszEonoFvar8xKJ6Bb2q/MSiegW2YRqvrZS8PSQrWY+9F7VOXes1CVUa1h6AFaZ2dWZqUT0C3tV2alE9At7VdmpRPQLe1X2VkpEVX97KVhaaFazP1ooSr3noWqjMpCNTsq7+ctgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQnVNdhaquj/VPksLVblPLFRlVBaq2VFZqBbAzpMZHZZZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/ok08+icaNG0fdunXX2sNVO3G1G2LatAh+yqXVIqG6a/tdo0enHquRn/jixJi/dP5qv0Mw7tdhv6hbp27MWzwv/jD7D/Hll18mm3223ie6bd8tJr88OV798NV12osWqtlxetDR2ZmVWekEdEv7lVnpBHRL+5VZ6QR0S/tVdlaKUF21alV8+umnSUdV15YtWxbNmzdf7c/VHZdPf1Vny3mbNWu2mn7TrzabZZ0vcyoh2/EFHbVo0aJ48cUX45hjjok33ngj2rdvHx9++GGcdNJJUb9+/Zg3b15cdNFF0atXr2rPa6FaCU0tEqqI1L223CtWfL6i4gv+cfYfVxOq27TaJnrt0Ss+/+Lz+HzV59FkkybxyFuPxNzFc6Prdl2Dv9eJOvGnV/4ULy58sSDfqsnYQrUmQtX/3YOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqSaiOHTs2brjhhthqq61i5cqVMWHChGjXrl3FBz7//PPRp0+f6NixY9JUY8aMic6dO0e+4wgW5tNf11xzTTz77LNRr169JIjHjRuXhOmZZ56ZxO8HH3wQxx577Fq1mk6gZssNKlTvuuuuePLJJ2P48OGxcOHCJFSvvvrqQKEPHTo03n///dhiiy0Cdd+kSZO8395CtXYK1dN2Py06tuoY1z55baxctTL9VG0n7HpC7NR2p7ht1m3x/vL343sdvhfvLXsvGtZrGD/85g+jQb0GKdJ61yt3xeyFs2v23gIsLFQLgFXF1IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrNam1BFmG6yySaxePHiaNmyZfTt2zdppksuuaTiA7t16xYDBgwI/kVzjRo1Ku6///68xyE+q+qvV155JXbeeeckUBs1ahSnnXZa7LbbbkkMc5477rgjnnrqqejdu3e89tpr+oV+DcsNKlRz3xM4OaF6xhlnRNeuXeOEE05IKaCk/r755pux3XbbWajW1LG1KKJ63t7nxaZNNk3fmH4kSnr7325f7QrO/9750bpR6yRi69etHws/WRgTZ0+MJZ8tSXbH73p87Nx2ZwvVmvp9A//dg44O3KzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys1qbUJ07d27SS2gk2ogRI2LWrFkpapprHTp0SEKSf1944YU49NBD45lnnsl7HFqsqv6aPXt27LfffkmjsR2T47fffvu47LLLYo899oiDDz44nnjiiejXr19ceOGF+oV+Dct1LlQ/++yzeOihh9b4St27d4+GDRum31cWqscdd1zwQxiZttlmm8WMGTNim222sVCtqWNrkVAlpbdtk7Yxc8HM2HurvVNa77hZ4+LtxW9XXEX/fftHy4YtY8GyBUmsfqPlN+LlRS/H5DmTLVRr6uuN+HcPOjp8szIrnYBuab8yK52Abmm/MiudgG5pv8rOam1Cla2TPXv2rIhkjh8/PqZPnx6jR4+u+MAWLVqkvxNppR8OPPDAmDp1at7jli5dmld/XXHFFUnk7rDDDimCeumll6bznHrqqXHWWWcljdagQYO477779Av9GpbrXKgSkj777LPX+Eq33nprClVXFaqDBw8OwKLOv/jii2jdunUKaxNZRbWTKly1DRw4sOJXLqZ0UH4WNTjFtLenBT/rqm3betu0P3Xh8oWRS7N94b0XYsprUyo+4tTdT43tW28fw54elmwv63JZLP/38rjuqessVNdVR6yH83jQ0aGalVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWCNWq7YADDoj9998/peOyLZJCRwT82EZJ69+/f8UhXbp0Sb/fc889Y+bMmYHGmjRpUt7jSPutTn8RhZ0/f36KxhJJffTRR2OnnXYK9FfuuFxmrH612SzXuVBVvkbliOq9994bN910U4rCTp48OYYNGxZPP/10tafxHtVKaGpRRHXgAQOjUb1G8dCbD6Wqvs0bNo9bn781tmy+ZXTp2CX+Mu8vKd23+w7d462P30oC9dubfTvtRWVPKs2pv8rds+FtPOjozM3KrHQCuqX9yqx0Arql/cqsdAK6pf0qO6uaiintvvvuMXLkyLRvlEzVyy+/PBCyL7/8cuy1114pHbdt27Zx8cUXp72qVOgdMmRI5DuODNiq+osILam+pA8TOETwTpkyJUVP6debb745FWnaZ5994t13302FcNd322hClQrAbM5lheCwww6LOXPmpP9++OGHE4DqmoVq7RSqe2y+R/yo04+SGKWR8kvq76E7HBrf2/p7MeMfM5KIPXevcyv2slL9d+TMkfHxpx+nY4771nGxS7tdvEd1fd/1BZ7fg44OzKzMSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqBLcO+WUU9IH9OjRIyZOnBjsK0WsksrL/lX2mNJatWqVAn9t2rSJfMchVPPpL4TtnXfemQrcnnfeeWl/KtHTww8/PN5777107kGDBqUqwBuibRShmu/CCDFvvvnmqTLV2pqFau0Uqrlv1aFFh1jyryWx9F9Lq+3GNo3bpD2s7y57t+Idquvb2V31NzthDzo6O7MyK52Abmm/MiudgG5pvzIrnYBuab/KzqomocqZV6xYEUuWLEn7UPM1qgMvWLAgFVQigzXXqjsun/4ivZfzEFWt3DgvQcaatJpOoGbLWiNUa/6qX1lYqNZuoar244a2s1DNTtyDjs7OrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzUoSqfvbSsLRQLeZ+rEV7VGs7RgvV7D3kQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqoxqDUMPOjo7szIrnYBuab8yK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodVaqKt912232NM5TPoWal97VZmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08xWFqoyr1koSqjslDNjspCtQB2nszosMzKrHQCuqX9yqx0Arql/So7KwtVC1Xde4rB0kJV7iULVRmVhWp2VBaqBbDzZEaHZVZmpRPQLe1XZqUT0C3tV9lZWahaqOreUwyWFqpyL1moyqgsVLOjslAtgJ0nMzosszIrnYBuab8yK52Abmm/ys7KQtVCVfeeYrC0UJV7yUJVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlYWqhaquvcUg6WFqtxLFqoyKgvV7KgsVAtg58mMDsuszEonoFvar8xKJ6Bb2q+ys7JQtVDVvacYLC1U5V6yUJVRWahmR2WhWgA7T2Z0WGZlVjoB3dJ+ZVY6Ad3SfpWdlYWqharuPcVgaaEq95KFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykLVQlX3nmKwtFCVe8lCVUZloZodlYVqAew8mdFhmZVZ6QR0S/uVWekEdEv7VXZWFqoWqrr3FIOlharcSxaqMioL1eyoLFQLYOfJjA7LrMxKJ6Bb2q/MSiegW9qvsrOyULVQ1b2nGCwtVOVeslCVUVmoZkdloVoAO09mdFhmZVY6Ad3SfmVWOgHd0n6VnZWFqoWq7j3FYGmhKveShaqMykI1OyoL1QLYeTKjwzIrs9IJ6Jb2K7PSCeiW9qvsrCxULVR17ykGSwtVuZcsVGVUFqrZUVmoFsDOkxkdllmZlU5At7RfmZVOQLe0X2VnZaFqoap7TzFYWqjKvWShKqOyUM2OykK1AHaezOiwzMqsdAK6pf3KrHQCuqX9KjsrC1ULVd17isHSQlXuJQtVGZWFanZUFqoFsPNkRodlVmalE9At7VdmpRPQLe1X2VlZqFqo6t5TDJYWqnIvWajKqCxUs6OyUC2AnSczOiyzMiudgG5pvzIrnYBuab/KzspCtZYI1eXLl0fTpk2jTp06Fd/o448/jhYtWkS9evXW2sNVO3G1G2LatAh+yqVZqMo9baEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOytFqK5atSo+/fTTpKOqa8uWLYvmzZuv9ufqjvvkk0+icePGUbdu3Qr7lStXBlqtVatWa3zERx99lD67YcOG+oV+Dcs6X3755Zdf4/iCDl20aFG8+OKLccwxx8Qbb7wR7du3j3feeSeOP/74aNeuXdSvXz+++93vxmWXXVbteS1UK6GxUJX9z0JVRmWhmh2VhWoB7DyZ0WGZlVnpBHRL+5VZ6QR0S/tVdlY1CdWxY8fGDTfcEFtttVUgJidMmJD0U649//zz0adPn+jYsWPMmzcvxowZE507d458xxEsPOmkk5L2wvaiiy6KXr16xbBhw2LUqFGxzz77xNKlS4PvtOOOO6aPwG633XaLBx54IPbbbz/9Qr+G5QYVqnfddVc8+eSTMXz48Fi4cGESqldccUV8/vnncfnll8dnn32WVP27774bW265Zd7LslC1UM3i7xaqWah9dYwHHZ2dWZmVTkC3tF+ZlU5At7RfmZVOQLe0X2VntTahijDdZJNNYvHixdGyZcvo27dvbLHFFnHJJZdUfGC3bt1iwIABwb9oLgTn/fffn/c4hCqR16FDh8b777+fzkV2a+vWrVM0lagpGg29NmLEiPj3v/8dxx13XMydOzduueWW0hSqOZLAyQlVwtf8f6NGjWLKlClxwQUXpGhr5bTgyl1uoWqhqj8C/s/SQjULNQvVQql5gNaJmZVZ6QR0S/uVWekEdEv7lVnpBHTLqn61NqGKQOzatWu8+eab6QMQj7NmzUpR01zr0KFDPPXUU8G/L7zwQhx66KHxzDPP5D0OncX5TjjhhCC5ltRfzo1Q5WfFihVxyCGHxPnnn59s0Gf8P587aNCg4hWqREUfeuihNXqpe/fuFfnMlYUqhqj0q666Kq6//vq455574uCDD662ly1ULVT1R4CFahZWVY/xAK1TNCuz0gnolvYrs9IJ6Jb2K7PSCeiW9qvsrNYmVNk62bNnz3jttdfSB4wfPz6mT58eo0ePrvhAav3wd6Kj9MOBBx4YU6dOzXscab1ESI899th0/GabbRYzZsyIbbbZJv76179G7969Y9ddd01CmHMQTLz99tuT+C1qoUpI+uyzz16jl2699dYUqqZVFqoIW0A1aNAgqXTg5toTTzyRUoWrtoEDB1b8ysWUDsrPoob7ZNrb04KfcmmOqGbvaQ86OjuzMiudgG5pvzIrnYBuab8yK52Abmm/ys4KoVq1HXDAAbH//vunAkpNmjQJiiKho9hGSevfv3/FIV26dEm/33PPPWPmzJkxePDgmDRpUt7jSPtF2Pbr1y+++OKLFEVFwz322GNp7+qNN96YagjR9t1336DO0KabbhrPPfdcdOrUKe2PZf/r+m4bdI9q7mIqC1UE7H333Rf33nuvdK2OqFbC5GJKks9gZKEqo1rD0IOOzs6szEonoFvar8xKJ6Bb2q/MSiegW9qvsrOqqZjS7rvvHiNHjkwFjchUpb4PQvbll1+OvfbaKy688MJo27ZtXHzxxWmvarNmzWLIkCGR7zgChTfddFPKgp08eXIqokTaMEHFRx55JPbee++KC5k/f36qI0Q7/fTT49xzz40jjjgiCeD13TaaUEWZU6mK0PK4ceNWu87XX389vvnNb+a9dgtVC9UsN4WFahZqXx3jQUdnZ1ZmpRPQLe1XZqUT0C3tV2alE9At7VfZWdUkVAnqnXLKKekDevToERMnTozZs2cnsUoqL3tMc9V4ebXM008/HW3atEnBwKrHITwPO+ywmDNnTorWPvzwwyliWlV//eQnP1lNp/3oRz+KSy+9tHj3qOrdk83SQtVCNYvnWKhmoWahWig1D9A6MbMyK52Abmm/MiudgG5pvzIrnYBuWUgxpdxZKXK0ZMmS1bZKVv5EqgMvWLAgFVSqXJi2uuOIlm6++eapMnBtbBslovp1QFioWqhm8R8L1SzULFQLpebJjE7MrMxKJ6Bb2q/MSiegW9qvzEonoFtmEar62UvD0kK1mPvRe1Tl3rNQlVGtYegBWmdnVmalE9At7VdmpRPQLe1XZqUT0C3tV9lZ1ZT6q5+5dCwtVIu5Ly1U5d6zUJVRWahmR+X9vAWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmorsnOQlX3p9pnaaEq94mFqozKQjU7KgvVAth5MqPDMiuz0gnolvYrs9IJ6Jb2q+ysLFQtVHXvKQZLC1W5lyxUZVQWqtlRWagWwM6TGR2WWZmVTkC3tF+ZlU5At7RfZWdloWqhqntPMVhaqMq9ZKEqo7JQzY7KQrUAdp7M6LDMyqx0Arql/cqsdAK6pf0qOysLVQtV3XuKwdJCVe4lC1UZlYVqdlQWqgWw82RGh2VWZqUT0C3tV2alE9At7VfZWVmoWqjq3lMMlhaqci9ZqMqoLFSzo7JQLYCdJzM6LLMyK52Abmm/MiudgG5pv8rOykK1xIXq5b17x/LXX9c9pNgtO3SI4Od/2+LFi6NVq1bSVc1fMj/mL50v2ZaCUactOsXY4WMrLsUPUr1XzcqsdAK6pf3KrHQCuqX9yqx0Arql/cqsdAK6ZVW/slAtdaF6+unxn7//ve4htiwbAn3694kxw8ZYqGbocQ/QOjSzMiudgG5pvzIrnYBuab8yK52Abmm/ys7KQrXEhep1112ne0cJWn700UfRpk2bEryydXNJAwYMsFDNgNKDjg7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar7KzslAtcaGqu0ZpWvrhoPerWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhaqGqe08RWvrhoHeaWZmVTkC3tF+ZlU5At7RfmZVOQLe0X5mVTkC3tF9lZ2WhWkuE6vLly6Np06ZRp06d1b7RRx99lH7fsGHDanu5aif6hvg/VGaR/eGgH1l+lvYrvc/Nyqx0Arql/cqsdAK6pf3KrHQCuqX9KjsrRaiuWrUqPv3006SXqmvLli2L5s2br/bn6o775JNPonHjxlG3bt0K+7XZ8req5/7ss8+iXr16sckmm+gXL1rW+fLLL78Ubb+22aJFi+LFF1+MY445Jt54441o3759xTnnzZsXu+22WzzwwAOx3377WahmoO2Hgw7NrMxKJ6Bb2q/MSiegW9qvzEonoFvar8xKJ6Bb2q+ys6pJqI4dOzZuuOGG2GqrrWLlypUxYcKEaNeuXcUHPv/889GnT5/o2LFjoKvGjBkTnTt3jnzHESw86aSTon79+sn2oosuil69euW1RZiefvrpsWTJkiRov/Od78Tll18eiNzZs2fHxRdfHP3794+jjz5av3jRcoMK1bvuuiuefPLJGD58eCxcuLBCqP773/+O4447LubOnRu33HKLharYeVXN/HDQwZmVWekEdEv7lVnpBHRL+5VZ6QR0S/uVWekEdEv7VXZWaxOqCFMilosXL46WLVtG3759Y4sttohLLrmk4gO7desWAwYMCP5Fc40aNSruv//+vMchVIm8Dh06NN5///10LoQo5676Gfzt2WefjZEjRwbxzbvvvjuOPPLIeOmll+K2226LKVOmxHXXXVf8QjVHEjiVheoFF1wQhxxySIwYMSIGDRpkoar7+GqWfjjo4MzKrHQCuqX9yqx0Arql/cqsdAK6pf3KrHQCuqX9KjurtQlVgnldu3aNN998M30AmmnWrFkpapprHTp0iKeeeir494UXXohDDz00nnnmmbzHocU43wknnJDEJ5HSadOmpYhs1c8ggjtz5swgYrv11lvHFVdcET/84Q8rPvfYY4+Nk08+uTiEKnnKDz300Bq91L1794q9p5WFKoofJX777bcnoJWF6hNPPJEisJUbOdmEmt1MwARMwARMwARMwARMwARMoBQI5NM4BxxwQOy///5p62TPnj3jtddeS5c6fvz4mD59eowePbri0lu0aJH+TgSUBYMDDzwwpk6dmve4pUuXpmxWRCZts802S9HR888/f43P+OKLL+Lxxx9P0VkEMGnC77zzTkWtoaISqoSLzz777DX85dZbb03hZFplobrvvvsGe1c33XTTeO6556JTp04p55qcaqXVlM+tnKNUbMxC70mzMiudgG5pvzIrnYBuab8yK52Abmm/MiudgG5pv1o/rCig1KRJk6CYETqKbZQ09obmWpcuXdLv99xzzxQBHTx4cEyaNCnvcaT9Imz79esXCNHWrVvHe++9F82aNVvjM+bPn5+CjVdddVWFqCWQuMMOO6T/LyqhqnRPZaHKxROFpbFR99xzz40jjjgiQVWab4j/o2QWisd8ZWNWZqUT0LwDGrUAACAASURBVC3tV2alE9At7VdmpRPQLe1XZqUT0C3tV+uP1e677572iVJ8lkxVChoRcX355Zdjr732igsvvDDatm2bihuxVxXROWTIkMh3HNrrpptuSlmwkydPjmHDhsXTTz+d15btmr/73e/ikUceiX/84x9BkHHBggWp0m/JClWiqJUrVXGhP/rRj+LSSy9d6x7Vqt3vG8JCVX8kmJVZZSGgH+PnkVnpBHRL+5VZ6QR0S/uVWekEdEv71fpjde+998Ypp5ySPqBHjx4xceLEVHUXsUoqL3tLc29OadWqVRKebdq0iXzHIVQPO+ywmDNnTnrdzcMPPxz77LNPXluK3lK8idRfAokIZPa25hoRVb7XUUcdpV+8aLlBq/6K36kgM98QFl8FOcz/GttvdGpmZVY6Ad3SfmVWOgHd0n5lVjoB3dJ+ZVY6Ad0yi1+tWLEiVedlH2q+RnVgop0UVCKDNdeqO47M1s0333y1d6BWZ/vxxx+ndOFcJFW/0uyWRS9UKbjESoJbhFnoXmBWZqUT0C3tV2alE9At7VdmpRPQLe1XZqUT0C3tV2alE6jZsuiFas2XaAsTMAETMAETMAETMAETMAETMIFiImChWky95e9qAiZgAiZgAiaQCPAahkcffTR23XXX+P73v28qJmACJmACJUbAQrXEOtSXYwKFEmCvw7x582KXXXaJ+vXrF3q47U3ABExgvREYN25cer9f7uXy7J1q3LhxKvzBmwKocjl27Ng455xz4qc//el6+x4+sQmYwFcEvvzyy/jTn/6U3uvZq1ev2HbbbY3GBNYbAQvV9YbWJzaB2k+ASnC8g+ub3/xm/P3vf0/7nKvboF/7r8bf0ARMoNQI/M///E+MGjUq7rnnnvjrX/+a3gzwwAMPpPf2nXHGGbHTTjvFtddemypVvv322xu0yEepsfb1mEBNBEaPHp3mCRTp2XTTTeOxxx6L5557LurWrVvTof67CWQiYKGaCZsPqk0EqG72ySefJLHltnYC77zzTrz//vvpfVsMNEQqGHSoDkep8a222ipuvvlmYzSBgggQlb/gggvivvvuS2mYRMHwKTcTUAjwSoVXX301vW6havv8889j6623jpdeeil+9rOfRe/evVN0ldfZvfLKK7Hzzjun1yKQDcJL7ss1urN8+fL41a9+Ff/85z9TdDn3igqFf7nZEJX//e9/n17JAavmzZuXG4Jqr3f8+PHpXjrxxBOTDfOrKVOmROvWreOYY45Jr0MZOHBg+j3idI899khzBhc1tQutLwIWquuLrM+7QQjcddddMXjw4PRgZWJ85513On21CnlEBC+D5t9+/fqlv5588skpMrHJJpukgfqpp55Kg9AOO+yQ/uZmAjUR4L1qDRo0SGa/+MUvgpL411xzTYpu/b//9//SS8TdTEAhgMAkOppL3cV/iKIiIG688cYkwBAVv/3tb1O6IS+7nzRpUvK3Z555Jj766KMkzNiv2rFjR+UjS8oG4YXIJxUaQYHI+Nvf/laWop2FDeYDlV/LUbmzzz///Jg7d256XyTvmPzWt74VvCKknNsXX3wRF198cVx99dXxxhtvpNRetgKxEASnQYMGpQVtnvF/+MMfko/xzk7uz5tuuinNL2655ZZyRuhrX48ELFTXI1yfet0SYDBmLxIvGz7ttNOC6OChhx4aL7zwQrCazOSFh2bPnj3X7QcX6dmIUpCSM2TIkGjUqFFKm/vHP/4Rq1atSoMzkdXDDz88dt9997juuuvSSvz222+fBqByaxRlOffcc1PUBiYjR46sEGHlxmJt14vvMAHkZd/Dhg1Lq+mICu7DQw45JN56663kc8cdd1zaO4jfuZlATQRYJGvXrl1aNPvggw/ioosuSlF5ol4NGzZM2R5kgfD3CRMmpOc8YwCRHVKCGRt+/etfJ7FbDu29995L4xyiHUZEnC+55JK44YYb4o9//GNMnjw5fvOb36Soc7m1bt26xX/+53+mhQuEFQse7GfmWYUY4zmPmMWPFi5cmDKx4Nm0adNyQ7Xa9f7Hf/xHyob5+c9/nhY8brvttiRKEf2//OUv41//+lcSr3fffXdcddVVybdY1GYe0alTp8SSveNuJrCuCViormuiPt86JZDbtE+aCRNi9iMx6JACtuOOO1ZMYBYtWpT+m7937dp1nX6HYjkZAwkTFFgwoZs1a1bsv//+iReTPCLOCLFvfOMbcdhhh8VPfvKTlK7TpUuXOP7444PoNAM5g1Spt8WLF6dJHqvFTISJ6DDR7d69e5oAMskhSuj2FQEEKL5DimXLli2TPzEhPvLII9N9hzhlxf3WW2+NvffeO/0OX4KrmwmsjQDRUPyJRY1p06bFgw8+GO3btw+iPJdddlnaO88iGpNoRCm/x++OPvrotMDG8UyQS2WSzDYWIn5cb+XGIhGployJjHNEuRjrEGIIfRZque9IjWbBkQgXfMqhzZ8/P0XYBwwYkMY/Fi622WabFImfMWNG4oC4wscQVwhZnlc02LGwBrtybPgTIpN7sE2bNmnPKZkKREs/++yztGALR9pZZ52V5gr8fsSIEWmvOO3ZZ5+N7373u85mK0cH2gDXbKG6ASD7I7IRYNM+6YP16tVLgw/i4vnnn08DzNlnnx1PPvlkEl2s/DFp+fOf/xzsr7jjjjuyfWARH0VaXOfOndMqJ/+NsEe0ksrLivuBBx6Y0uqIpLJi+t///d9ptZQ9he+++25Kn2O1lP1epdpYXWdAbdWqVYqash8X38LHGIwRXjBhoohYR5SVa8OHEPLs90M04DesrCMkiHZtueWWKeUe/2FSwyLH9773vbjiiiuCSD6+B2sWAUqpUR27WbNmqYiI27ojgLDYfPPNUzEkJstsS3j99ddj+PDh8eMf/zhF8PFHJsgsKJFBw7aFUvMviHKdLJaR5UHjWU1Ei0gz+wO5z4g+57IbsEGss3jL85u94oyP/DdCvxwa/sAziWdTnz590rUT6eOVRYx/ZA0xfyBllS0LRKARsIhZIoS/+93v4v777y8HVOkaWdRGuI8ZMyaNfSwO4VMsZiP6ec4xp2IuddRRR6U0ckT+QQcdFFdeeWWaT/A3bxMqG5fZqBdqobpR8fvDKxOoGhHkQcjqMAMyk19W7BiQWVVmHxJVHllpZ4CmAiTClhW+73znOyUPtmp5+I8//jiuv/76NPCweswKKAKU/yfNCVGBwGd/DmIfMYbAYAJY6m3ZsmVpICbCgC8htpj8MQFGgJFOfuqpp6YJIGnSLH4gYlllLsfGogXRdhY+Hn/88bSIwb0IQ+4vUu2539jLhG+1bds2TWQQEbBkMsjKeymKOe6rFi1apAkxHFjo+Pa3v12OblLtNZNSidDK7V9W4bCQxjP+zDPPTBFBhAPRU/ZbEmGk+i8CBCFb6g1hxXjGIhGprNyHCHfuO7ZvcG/95S9/SQLskUceSfclz3JEGpk0PNtytRtKmVUuysyC2UknnZQiozznuX5Sw2FIqu8RRxyRMJCFxfjHghrPKVLHeW6xF7PU5w0s1OZeP8c9yvyJhVnmAXPmzEmp0AhPsopgx9jI/IHnHOKU5x7ZVxROcoXfUr6rat+1WajWvj4py2+ULyLIIMNgwkoo6YakqZLuxMDNIIzYogjC7NmzU3oYaa5UsS31lq88PEUhYMBAjbhnUkOElAgrXIiwsreQ1CgGnVLfO8gCBhEJJr5MZth/xAoy6bzspWQvGxNgRD1prURP4ca+Llbg8SNSm8qhUWQL/yENmvuN1C5YsGrOpIX7jf9HJMCVSBYTPrIXSPNFvCHy81VsLTV+FA0hVZDIAvcY++RzKaildq1Zrwc+CCaePYVUg0Z4sc+SBTUmz4gJFgGYQBMBY1GgVBuLaWQG8Vxm0QyxhW/17ds3Faph0YxnE5FDUn2pIzB06NA0/vFcyz2/SpVP1esiWspr1SiehcDknZ48w4i24z9kdPB8YmEWoUr2FRFU/JJFD/ak8lMOlWrxHfyEeQMZMqT2Mmei1geZMPAiik8klaKKMMT/WByBFcXMPvzww9QFLEq6mcCGJmChuqGJ+/MSAaIx7GFjNZPCGIjRfBFBCrLkNu2zujd9+vS4/fbbk/Di4Vlq0QxEFavDuRXgfO5CkZF85eFJC2OfCS/gZuLCSjurnwzgCDRSe8qh4SdMdBFTLGawR5c9u+zrIi2OaCoRQiY3DM6sHJNazsAMe3wKhrnV51JlRpYCExbSCikoQqQBcc/vEe+kX7IXkL1f3K+8EuS8885LgpSiLUx0iJyWWuP+2m677VL0gEZaKlxIE0TIs++WhQx8hQkzfkWhMtLsy72RVsnkl72k+E0h1aB59sF86tSpaWES7vhYKTcyYxjjyEj4wQ9+kIQCfgY3/IoxjvERkUV6Kgtr+CLPdWo2kB3CcSwOlHIjY4ioJ89mUu957vDcRoiy8MiiI89sMmFgyLvASSXnuYU/wg2ujAvlsG+e5zfjGUKcZzvPbdLoKRJIZgzPLuZVLEYi+EmRJlpPyjhvBmCugA+S0VAOGQylfO+UwrVZqJZCLxbZNey7777pGzNoICJIO0E8MABXjQjykM1t2kfMzpw5s+SLJSGwSOMikpVvkMjttalaHp6VZcQ+0QcGoYMPPjilSLMns5QbkQeiW0xyifYxQcGnSCVn4sLiBhNCBl5EO+KViQyDOSvE+CGTHNLsSr0REWWVnNRV0pyZoDCh4V/uPar3sn+X1EsmeaSLwRBbVuOJ7hCRL+VGNIb97iyI8bwhYkq0mb3MvP4KX2P/LX+nMbkj1bVci7jlfAGBT3SdZxYRGrZpMPlVq0Fzj1b3SpFS9jee1eyvpBAZ9xvpvLyGh4gpAgNRwTONKD6/43nOQuTaFjNLhReLZiwCsdeWsYy9kyyo8V5PMoaIJrNoTSMySESeqDN1GFhMo2ggz7NyaDyviRLzLM9VM2YBlmq+ROYR8ywG4T/cn9yXLIJwDGnALDIRPfWCWzl4S3Fdo4VqcfVXrf+2iCj2NPBwrK4hGFgpJhWFlF+iE4hUJsNVI4I8OBm8y2XTPgMMewPZ38UeLURrvsagk688POyZKLIaX8qNSTCiicE5F91jxZyCSExkiDYQ0WH1nMkvK8lMBkkBYyAmjY5JDAsh5dBIkSN1kr1sRGOYFJPiCwvEF4scCDHSLYk0E1Hk9TOID6IXpCbyLwsBpdx4DrHIQYSKtFX2vfHs4X4jQ4EUaCoc8zoGFkiY9LGfi4IjpR7VqtrvPMPJSCAlnOcVLLj3WNBAVJFmmSt+V101aMQp0UIWB/At3uNY7I1IMEKT7A2l5dJUEQs0Ui9ZNOM5TmSaxUdYIlZZJGIhstRbLiJIZI9xjn23CHhSWNniwrOJiCrp0jzj8T1SWvHFXCE8nm+lvvBBHQoyEBjHeL4THeWeo8GN/d5kfbCwRqYRDW6kRTNXYysVUVWyako9e6HU75lSvj4L1VLu3Y1wbaxuIpKISPAAzNdYzSNKwWopjT0kDDBUcCzViCBiG1GVT0Ay0LAyjGhHRDDgsNqZ2w+YjyHHlGN5eIQmKWBEnPEbuDFZZqKMUCU6iNhgpRhGTPSIFOaqG5M6xn7KcmiwIBpKdBQO7L1FiDLhQyDQWBzKFdvKRU+JOrPKTrYDk71SrgRd2Q/YC5mrmAoXJnPXXntt2hOY8xkKinBf8vxCsBJFJerKRJB01XJpLGDAiIU07jdEAhEvfIjnF4WPuDerqwZNpIeINM9EMiEQ+qRVF3PLLdIi0lkAYgxkQQ0WpMvzyqt8LVfxmMwPXklDBJBiZvzLFg/GhHJo+SKCFI5CmHOv4WtUheYZzmISEVXuOxYd2ULEYhqZWaW+ZSPnC2zboP4EW6hY7CC9mQUNUnthgzDF91g0QfBzv3J/8nvmXoUWOysHH/Q11k4CFqq1s1+K9lsxOUagsm+GyXF1q3Ss6jHZIYKK+CC1h8kO+0tKKSKICGCygViiOnFutZMUHCbBRGyY2BABZKDlhwkNEWkGIPYF5muct5zKwzPYkurGNbNqzESF9yYyaWEyyOSEtEOiMhT4Yd8X+5eoQkvaE37IfstSbkxCmOwyaSNtnOgDaXBEqfgdURqiEfyNbAbuPSaHuWJbCAyi0ET0Ebfl1uBC6iD3HhNe9gTuscceFZE+UsaJNL/66qvpOYXYQsRjU2rFyXgVSuU97WRqcM0wImLKMzq3L5eoDJkgVIdmMsx9SvSZMYAJMSn4VatBw5CFSc5VKq3yIi3jIPtHiTpTzZhnOddMVke+RnE3BAT+hahlwbbUsxfgUNmvWBzLFxHkmYa/MUfgeUWBPLa9kElDNgjs2LpR6o0xj2tm7sB+U3yExW2e8yx2MB7yfljGAVLEWSQi9R4fJLKKPzG3IAOk2BeFSr2vfX2rE7BQtUdIBJjwIgh4dUfVVjkimKuiyqre2t5nyoOWSBgpPER32B9Riu/E4x1tDCiIcFaDmbQxoWGPIC/UZgJH6hJ7jmBM8QIELBM9uBJ1qMyFAYmUYCaJpb5XkIgWL2FngCXSxTveiPARJYQjK8KICtKWiGyRCsweS/YxUViK1Xj2D5bKoIzIrC5VGb9hgYiIPZM4olSwQISSHoaQz72Ch0UOGHEP0hD15VRsq7oHHotJFN1ibzfCnokf4oLf41/cc0TtuWdLuTEhJpqXqwzKM4jnFX5CdJnsBCI2+ByvqSCiCjcyPFhYIz2a6DTHIFZLcdGDvaPsg8xtzWDfN9E9nldcM898FtHITiAaz/OL/fAUKMvXELUIMQRuubz6o6pfIUipX1E1IshCL4uPjJEwRvhT8KecGum71FXg2YPwZPzjGcXiIuKUxr2JEOWZT7YRcw/+ZUsCC+Rk1OTSy8uJna+1+AlYqBZ/H67XK+AByQDKBIRBFyFauSALDz4iCpUjggzQrBznXt6e7wuy/6scKsoRhcgVqCHSwCon+7UQTwy6uagWAwkTGV7RwMSPaA4pmkzy2FdIoQiOZbWUyCCT6VJLccInmLCxZ5nJHSKU1+kQYSD1i1XznBjNVZ8lKs8x/EtDfCFOS22/DRMUXhlA1CrfRJbJCwV/mOiy4MGqO9G+yq90ghn+SEoiQiQX3V+vD5AiOjnp4ogw0uWI3LAPlUUj0jB5vpGCWA6vsyC1HiHK9RPxykWauQ/xLaqu8mxioYzfYcO9SeVahD3jBFkipRQtrerGPKdZFEIokE5P6iXiNPfOZhZpEV1Emxk7uddY8MCvqu6bZCsMi5f4WW4PfRHdNvJXZeGV93aSTcXiIkV/yGCo7Ffsz60aESS6j/hiHoIQK8WFj6oQeQbxzOd9uTBi0YgUcBapcw2fos5CLruIRRP8i/kD4yV7VHOv60PUcs+y15cFODcTKCYCFqrF1Fsb4buSikNEj/1GDM4MMojVXEEW3rPI3qSqEUEGIibOrK5XjgiSLke6DkKiVNJ1YAOXfFUYiQqSeskP4pJVUQQ8ooEJDNzgymoy0UJWRxFp/D33MnOiqywYIFCJwpZigwn7cmHA9VL86KWXXkqr6xRIorE/EMGOWM29/oJ9YaT8luI7TysXJuO9wYhRIleIiKqNyR33KhMZfIyIKfcg6b5EtvBNoj5EWkmFLrVFjnVxT5DZgf/hX/DEp2BdDsVrKmfF4DdkgNBggOBCjHF/5jI+8Cee/aRdEhnjHiyV53llX+Ke4/6pGkVnHCNymouyU8CHZzdCPrdIyzjH/mUWJmkICVgxLiJMEbMIB1LtSdHE79ijWorvAkd4cW+xEEQBJIqT4TNV/YqtMDCoGhEkQs/zsBSKbZEOz4JOde+dpqgd2S8EAViExX+IhlLMjuNY6MAfebbznGf+wXyKYxDzbiZQagQsVEutR9fx9fDqDlJK2ONAlUsGEaIKlQuysIpXNSJIKiGRVvZKkKbDBJrIIPueWFmmymgpNPZmUY2RVd/qXobN5ISJH4MLEzuEKOmrRP8YlHIig9ROBqNyqx6KH/C6ASLG+BsRe0QpopxU81xknokeRWwYjMuhyEjlPW8IBviQzkXhmXyNaA5pv/gWER7EPBM8JolEq5kMW6DW/NRB0HMvl+qiUFUC7L0lC6ZyVgwpzkQMea6R3ZGLNCOmEBG5omVEbsgKqa46ec20a7cFixdwyN1PLCiSIUMaNNfNnkF+l9sLztWwOIsYZWERLiwyIiSIisGVvai8F5RxkAXOUmuMidRjYAGWrQpku+BD3FOI/lyrnMFQ2a+IMFeNCDIGsOiLuC32xlYf5gGkMOdrzJ3Y5gJDGgtFBAcY93784x+nxW0WuZk/MJfAl8iyKadibsXuA/7+hRGwUC2MV9lZU12VlWImLKSUELUhZRWhmivIUl1EkNV3UqOwQ3CUSroq18XgQVVUBgiEAaKc13rkE6uIBAYehAcDMIMtwpW0HtLsOL7cGxEKBmBWiIlIkM7EwgaTHBiRKk1BDSaApRi5ydf/lQuTcQ+RrssklwhMvoZvsUeONDle78ACCcVZ3EygMgEWL4jQE6HieU6qfL6sGCqIIkrxOyJd3JMIMl4ZVl00qBRJE8UjgwgOCAyigew5ZYGRrA9Ea+WCZKRA5xZpEaqkTpfLokdOqBMVJtJHOjSRQfyFmgG5zBc45haxy8GvKAZIDQG2Y7AQzYI92TH5FuwpjsR4CDsa2VX4HnMuFkGIyPI7hGypv36nFJ8nvqbCCVioFs6s7I7g4chDlmpxTGgQaIiIXEGWcosIcr25gitEmlltJyLBqmd1jXcxsmeEVXSEFivMrDwj4D3YfEWNoj+5SCoDMQVsSK8j2srAzv+XUyNCSnpgrjAZ0RuyGihAVl1DoBLByb2Lt5x4+VrzE8gVPeI5Q9YGGTHsI2WvKdEdFjRYSKuaFYMg4/lGxVrEGFVZWTAqtQrHNfkNEXYWfBDpTZs2TRFUhCpZQkQMud8Qo6SxsjeXllukrencpfh3BBULjIgwxkoWGImY8kxifzzPeOYTuSJv5eBX+AZp4MwDiJhyD5HWW7myds4XWNBmQZbsGdixKE5WDNWO3UygHAlYqJZjrxd4zaSE8aAlCshKPHsnSVEt14IspKYygWOFmOgyK5xMUBDu1VVszL3Oorq0zQK7pCTNKRZEejSp1ER7WInnRe7l3CrveaMgBpM//K7qqyuwYxJISli5Mytnf6l87Qgontm5CqncTyyOsd+NtHAa76CkkjjiNd8+eZ5vRIHKKSKYz3/Y203xKDiRaomAIC2YvboUQWJfOFHEcij0U9P9xV5U9jMzR4AR75RlEQSxyv54qrXn9qbWdK5S+TsLGSzww4D0b8a4tRWbpKgW2Qw0iimRKeNmAuVKwEK1XHu+gOtmVZT0VCYtvEYGMVHqr0apCQ+v+CB1l9QvoqJMYGDChKZqI/UX++r2sNb0WeX0dyY0iLDddtvNkeb/7fjcnjf+ZY8u0Ryiy7n3piI6iJaRUkYlTdLt3cqbAAKB5xKVd8l+Yd8f0Rz2+SEkXn/99VT9k/fFUtAH4UAacDnvk1+bx+SqbpN6T4YHafnUFyD6xThQiq9Wy3oHkdVBxJR0aRZoiQbyXC/3/fHMEdhKhYhnfyoRUha88zXuX2daZfVAH1dqBCxUS61H19P1kMpD6g7FlNy+IkA6HKvopMaxh5A9ghSeoiFMqV5LFIMJIaujrCy7mUChBCrveWOCQ8SU6D3igtRoMhtK7XU8hTKy/ZoE2AvPXrfcM4mFDibJVKrlndjsCUe8sn+OBRC36gnkoqjca1RbJbOIvfRu+QnwGi2q+5JSztjnLI9IcwQipSx6UNeDSClV7HONd6OyzYMK3KT7lkstBt9DJlATAQvVmgj57yZQDQHeH0gFSFZJ2XtK6iovdGcAYiJIGiY/5banyw6z7gmU8563dU+zPM5ImiGpqRTBI5qFuKIyKMKB6tqkkFMJGvHqVjMBOPJuWUe6amZlizUJMCcg7ZfXFlHjgu1CiFLemjBx4sSUgk8dCxYfSY92MwET+IqAhao9wQS+BgFeYE5Rksp7T3lFCAUj3EzABExgYxKgWBKvV2HyyyudKODCnlM3EzCBDU+AdGjSxnk3au51MkSfqQ5NoTI3EzCBNQlYqNorTMAETMAETKAECTAxpngS+1LZw+ztByXYyb4kEzABEyhhAhaqJdy5vjQTMAETMIHyJUDlX9JVeQ+2C/6Urx/4yk3ABEygWAlYqBZrz/l7m4AJmIAJmEANBNg/T8E3iuG5mYAJmIAJmEAxEbBQLabe8nc1ARMwARMwARMwARMwARMwgTIgYKFaBp3sSzQBEzABEzABEzABEzABEzCBYiJgoVpMveXvagImYAImYAImYAImYAImYAJlQMBCtQw62ZdoAiZgAiZgAiZgAiZgAiZgAsVEwEK1mHrL39UETMAETEAisGrVqqDqbfv27aN+/frSMTYyARMwARMwAROoPQQsVGtPX/ibmIAJmIAJrAMCw4cPjwsuuKDiTL169QreKdqkSZNqz7506dJo2bJlOu76669fB9/CpzABEzABEzABE/g6BCxUvw49H2sCJmACJlCrCNx9991xzDHHxNZbbx0I1D/96U8xZ86cOP3002P06NHVftclS5ZEq1aton///jFs2LBadU3+MiZgAiZgAiZQjgQsVMux133NJmACJlCiBPbee+947rnnYubMmbHnnnvGF198Ed26dYvFixfHjBkzUjrwueeeG9OmTYvGjRtHnz59YvDgwbFixYoKoTpgwIA46qijktDF9s9//nMMGTIkfvvb38aHH34Yl112WRx00EExderUaN26dQwcODCuvfbamDt3bvziF7+In/3sZ/Gb3/wmJkyYEN27d4+JEyfGt771rfiv//qv2HnnnUuUvC/LBEzABEzABNYtAQvVdcvTZzMBEzABE9hIBNiXWq9evWjevHkSpnXr1l3jm5x88slJOCIuX3311ZgyZUrccccdSczmIqp9+/aNv/jKbQAAAx5JREFUbbfdNglSBOq4ceOid+/eMX369FiwYEGceOKJ0alTp9hnn31i/Pjx6TPOOuusuOeee2LRokXx0UcfxRVXXJEis7vsskscfPDBcdNNN8U555wTt9xyy0ai4481ARMwARMwgeIiYKFaXP3lb2sCJmACJlANgc8//zwaNGgQ2223Xbz55ptrWC1fvjyJ2OOOOy4mTZoUn376adq3euSRR8Ztt91WkFAlytqjR48khomaPvDAAymaStSUz2ZPLEL17bffjo4dO0aHDh2iTZs28be//c39ZwImYAImYAImIBCwUBUg2cQETMAETKA4CGy//fbx1ltvpR+iojT2py5btixuvPHG2GKLLSr2q65cuTKJR1KEiYbmIqr9+vVL4pKo69VXX51E589//vPVIqoPPvhgisLWqVMnjj766LQX9pe//GVceeWV6bOJoCJU2fvaokWL2HHHHaNRo0YWqsXhRv6WJmACJmACtYCAhWot6AR/BRMwARMwgXVDICcqSc1FXD722GNBgSUqASNADzvssHjiiSdi5MiRqcjSVVddFaNGjYrjjz++QqgSFSUyyzkQq0OHDk3is3Lqr4Xquukvn8UETMAETMAEqiNgoWrfMAETMAETKBkCREnZV0qBpFzr2bNn3H777SmiSZElUnbZS0r7wQ9+EJMnT06R0cqvp0GgXnPNNcnm+9//fvzlL3+Jxx9/PO1RPeGEEyInVImWdu3aNUVUf/WrX6W9qRRVGjFihCOqJeNVvhATMAETMIGNQcBCdWNQ92eagAmYgAmsVwKfffZZEoxt27aNdu3arfZZVAKeN29eNG3aNDbbbLNqvwd7WhGw2LmZgAmYgAmYgAlsWAIWqhuWtz/NBEzABEzABEzABEzABEzABEygBgIWqnYREzABEzABEzABEzABEzABEzCBWkXAQrVWdYe/jAmYgAmYgAmYgAmYgAmYgAmYgIWqfcAETMAETMAETMAETMAETMAETKBWEbBQrVXd4S9jAiZgAiZgAiZgAiZgAiZgAiZgoWofMAETMAETMAETMAETMAETMAETqFUE/j/IS5E3izlewwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
},
- "y": {
- "axis": {
- "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
- "orient": "right",
- "title": "Probability"
- },
- "field": "sum",
- "scale": {
- "zero": false
- },
- "type": "quantitative"
- }
- },
- "mark": {
- "color": "black",
- "strokeWidth": 2,
- "type": "rule",
- "x2Offset": 30,
- "xOffset": -30
- }
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "params": [
- {
- "bind": {
- "input": "range",
- "max": 49,
- "min": 0,
- "step": 1
- },
- "description": "Filter by the interation number",
- "name": "record_number",
- "value": 0
- }
- ],
- "resolve": {
- "axis": {
- "y": "independent"
- }
- },
- "title": {
- "subtitle": "How each comparison contributes to the final match score",
- "text": "Match weights waterfall chart"
- },
- "transform": [
- {
- "filter": "(datum.record_number == record_number)"
- },
- {
- "filter": "(datum.bayes_factor !== 1.0)"
- },
+ ],
+ "source": [
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
+ " \"cluster\",\n",
+ " threshold=0.999,\n",
+ " include_false_negatives=False,\n",
+ " include_false_positives=True,\n",
+ ").as_record_dict()\n",
+ "linker.visualisations.waterfall_chart(records)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "7830d1ae-0c70-43e7-94e6-696a4332f818",
+ "metadata": {},
+ "outputs": [
{
- "frame": [
- null,
- 0
- ],
- "window": [
- {
- "as": "sum",
- "field": "log2_bayes_factor",
- "op": "sum"
+ "data": {
+ "application/vnd.vegalite.v4+json": {
+ "$schema": "https://vega.github.io/schema/vega-lite/v5.2.0.json",
+ "config": {
+ "view": {
+ "continuousHeight": 300,
+ "continuousWidth": 400
+ }
+ },
+ "data": {
+ "values": [
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "francis",
+ "value_r": "francis"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.2343746323933125,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.23 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.3037803185309872,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "francis",
+ "value_r": "francis"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "hall",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 0,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1800-01-01",
+ "value_r": "1800-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.3330751950470222,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 3.00 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.5860801780265656,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1800-01-01",
+ "value_r": "1800-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "hu12 8rh",
+ "value_r": "hu6 8rf"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 0,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "kingston upon hull, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "land surveyor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.13644541400215313,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.8736041891542885,
+ "m_probability": null,
+ "record_number": 0,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "edmonds",
+ "value_r": "beesley"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 1,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "yo25 9dz",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "east riding of yorkshire",
+ "value_r": "kirkburn"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 1,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "editor",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 1,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "edmonds",
+ "value_r": "beesley"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 2,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "east riding of yorkshire",
+ "value_r": "kirkburn"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 2,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 2,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "beesley",
+ "value_r": "edmonds"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 3,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "yo25 9jl"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "kirkburn",
+ "value_r": "east riding of yorkshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 3,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "editor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 3,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "beesley",
+ "value_r": "edmonds"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 4,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "yo25 9dz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "kirkburn",
+ "value_r": "east riding of yorkshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 4,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "editor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 4,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 5,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "beesley",
+ "value_r": "edmonds"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 5,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "yo25 9du"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "kirkburn",
+ "value_r": "east riding of yorkshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 5,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 5,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 6,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "beesley",
+ "value_r": "edmonds"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 6,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 2.825396482123016,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 1.4984533321851021,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1788-01-01",
+ "value_r": "1788-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "kirkburn",
+ "value_r": "east riding of yorkshire"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 6,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "editor"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.08178339092164329,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.6120483083188657,
+ "m_probability": null,
+ "record_number": 6,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 7,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 7,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-01-03",
+ "value_r": "1855-01-03"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 6.828041498463956,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.771471826591518,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-01-03",
+ "value_r": "1855-01-03"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "sk11 7js",
+ "value_r": "sk17 7hp"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "ireland",
+ "value_r": "glaslough"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 7,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.07351497308336684,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.7658180705314352,
+ "m_probability": null,
+ "record_number": 7,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 8,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "james",
+ "value_r": "james"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4527666635814206,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.21 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.143160355923113,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "james",
+ "value_r": "james"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 8,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "montrose",
+ "value_r": "graham"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 8,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 8,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1612-10-25",
+ "value_r": "1612-10-25"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 13.656082996927912,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 13.66 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.771471826591518,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1612-10-25",
+ "value_r": "1612-10-25"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "dd10 0su"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 8,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "angus",
+ "value_r": "montrose"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 8,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "military officer",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.13092885152686268,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.9331450497947706,
+ "m_probability": null,
+ "record_number": 8,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 9,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "killigrew",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 9,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1606-05-01",
+ "value_r": "1606-05-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 8.193649798156747,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.034506232425312,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1606-05-01",
+ "value_r": "1606-05-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 9,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "e4 8bu",
+ "value_r": "tw13 6db"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 9,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 9,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "hanworth",
+ "value_r": "hounslow"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 9,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "castellan",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.0868217120961546,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.5258003174226147,
+ "m_probability": null,
+ "record_number": 9,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 10,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "killigrew"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 10,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1606-05-01",
+ "value_r": "1606-05-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 8.193649798156747,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 8.19 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.034506232425312,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1606-05-01",
+ "value_r": "1606-05-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "tw13 6db",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "hounslow",
+ "value_r": "hanworth"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 10,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.5119506572397606,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.9659233276033713,
+ "m_probability": null,
+ "record_number": 10,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 11,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "hughes",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 11,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "ng24 3wz",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "newark and sherwood",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "minister",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 11,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 12,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "hughes"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 12,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ng24 3wz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "balderton"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "minister"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 12,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 13,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "hughes"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 13,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ng24 3wz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "newark and sherwood"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "minister"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 13,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 14,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "hughes"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 14,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ng24 3wz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "newark and sherwood"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "minister"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 14,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 15,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "hughes"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 15,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ng24 3wz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "newark and sherwood"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "minister"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 15,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 16,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "hughes"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 16,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ng24 3wz"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "balderton"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "minister"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06935061799702474,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.8499474510287257,
+ "m_probability": null,
+ "record_number": 16,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 17,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4385527024735812,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1891778678878713,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 17,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "ernest",
+ "value_r": "dudeney"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 17,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 17,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "tn20 6pj",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "mayfield and five ashes"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.6137377823657361,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.7043056948014667,
+ "m_probability": null,
+ "record_number": 17,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 18,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4385527024735812,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1891778678878713,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 18,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "ernest",
+ "value_r": "dudeney"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 18,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 18,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "tn20 6pj",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "mayfield and five ashes"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "mathematician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.6137377823657361,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.7043056948014667,
+ "m_probability": null,
+ "record_number": 18,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 19,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.4385527024735812,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.28 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1891778678878713,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "henry",
+ "value_r": "henry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 19,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "ernest",
+ "value_r": "dudeney"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 19,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 19,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 10.242062247695934,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 10.24 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.3564343273126744,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-04-10",
+ "value_r": "1857-04-10"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "tn20 6pj",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "mayfield and five ashes"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "mathematician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.6137377823657361,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.7043056948014667,
+ "m_probability": null,
+ "record_number": 19,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 20,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 20,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "baronet",
+ "value_r": "strickland"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 20,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 20,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "sw1p 3jx",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "westminster",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 20,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.7679904380631085,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.38083974623886313,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.22998460945033555,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.120390775511631,
+ "m_probability": null,
+ "record_number": 20,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 21,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 21,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "strickland",
+ "value_r": "baronet"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 21,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 21,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sw1p 3jx"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "westminster"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 21,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.7679904380631085,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.38083974623886313,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.22998460945033555,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.120390775511631,
+ "m_probability": null,
+ "record_number": 21,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 22,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 22,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "strickland",
+ "value_r": "baronet"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 22,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 22,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "westminster"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 22,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.7679904380631085,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.38083974623886313,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.22998460945033555,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.120390775511631,
+ "m_probability": null,
+ "record_number": 22,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 23,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 23,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "strickland",
+ "value_r": "baronet"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 23,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 23,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sw1p 3jx"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 23,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.7679904380631085,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.38083974623886313,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.22998460945033555,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.120390775511631,
+ "m_probability": null,
+ "record_number": 23,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 24,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 24,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "strickland",
+ "value_r": "baronet"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 24,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 24,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sw1p 3jx"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "westminster"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 21.98341326393178,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 21.98 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 4.458343499220055,
+ "m_probability": 0.8992633138155923,
+ "record_number": 24,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.040906446283799566,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 0.7679904380631085,
+ "bayes_factor_description": "Term frequency adjustment on occupation makes comparison 1.30 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on occupation with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.38083974623886313,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": "\"occupation_l\" = \"occupation_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.22998460945033555,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.120390775511631,
+ "m_probability": null,
+ "record_number": 24,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 25,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.45384297102258087,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 2.20 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.1397348813239896,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "sir",
+ "value_r": "sir"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 25,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "strickland",
+ "value_r": "baronet"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 25,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 25,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "sw1p 3jx"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "westminster"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.013622218339665128,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -6.1978945284928235,
+ "m_probability": null,
+ "record_number": 25,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 26,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "ethel",
+ "value_r": "ethel"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 9.091267133817414,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 9.09 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 3.184481390158643,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "ethel",
+ "value_r": "ethel"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 26,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "tweedie",
+ "value_r": "alec-tweedie"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 26,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 26,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1862-01-01",
+ "value_r": "1862-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.13747734560665684,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 7.27 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.862734193149487,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1862-01-01",
+ "value_r": "1862-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "se1 8tx",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 162.73433041528628,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 162.73 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 7.346374823669453,
+ "m_probability": 0.8458306903800119,
+ "record_number": 26,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.005197616804158735,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 0.09770937601995389,
+ "bayes_factor_description": "Term frequency adjustment on birth_place makes comparison 10.23 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Term freq adjustment on birth_place with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -3.3553591824585562,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": "\"birth_place_l\" = \"birth_place_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "london",
+ "value_r": "london"
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "record_number": 26,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9590935537162004,
+ "value_l": "biographer",
+ "value_r": "writer"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.10073668618440759,
+ "record_number": 26,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9590935537162004,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.2852143181647854,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -1.8098816859427886,
+ "m_probability": null,
+ "record_number": 26,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 27,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 27,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "white",
+ "value_r": "wight"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 27,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 27,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.23410427994733563,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.0947767845196545,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 27,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "ng6 9en",
+ "value_r": "ng6 7al"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 27,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bulwell"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.0011356176325734825,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -9.782307129792507,
+ "m_probability": null,
+ "record_number": 27,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 28,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.20933838794974308,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.78 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2560912012273384,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "john",
+ "value_r": "john"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "whyte",
+ "value_r": "wight"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 28,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.23410427994733563,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.0947767845196545,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "ng6 9en",
+ "value_r": "ng6 7al"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "nottingham",
+ "value_r": "bulwell"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 28,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "cricketer",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.00017599212603783306,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -12.472201496029411,
+ "m_probability": null,
+ "record_number": 28,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 29,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 29,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "pease",
+ "value_r": "r."
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 29,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 29,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 29,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "ba5 3bt",
+ "value_r": "bs3 5bq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 29,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.07460671274371347,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.74455074687633,
+ "m_probability": null,
+ "record_number": 29,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 30,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 30,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "pease",
+ "value_r": "r."
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 30,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 30,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bs3 5bq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 30,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bristol",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 30,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06817713934473707,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.874568123293993,
+ "m_probability": null,
+ "record_number": 30,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 31,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 31,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "r.",
+ "value_r": "pease"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 31,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 31,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "bs3 5bq",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 31,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bristol, city of",
+ "value_r": "bristol"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 31,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06817713934473707,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.874568123293993,
+ "m_probability": null,
+ "record_number": 31,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 32,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 32,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "peace",
+ "value_r": "r."
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 32,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 32,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bs3 5bq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 32,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bristol",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 32,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.06817713934473707,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -3.874568123293993,
+ "m_probability": null,
+ "record_number": 32,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 33,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "pease"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 33,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bs3 5bq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 33,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bristol",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 33,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.9764152216839562,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.034433308907189736,
+ "m_probability": null,
+ "record_number": 33,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 34,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6287045328545522,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.59 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.6695459301434913,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "edward",
+ "value_r": "edward"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "r."
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 34,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 5.121031123847967,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.12 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.3564343273126744,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1857-12-23",
+ "value_r": "1857-12-23"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bs3 5bq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 34,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bristol",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 34,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.9764152216839562,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.034433308907189736,
+ "m_probability": null,
+ "record_number": 34,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 35,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 35,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "moore",
+ "value_r": "muir"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 35,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 35,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1437482420729254,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.79838378173943,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "so30 2eq",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "eastleigh",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "head teacher",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.026848940041691617,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.218991056006492,
+ "m_probability": null,
+ "record_number": 35,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 36,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 36,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "moore",
+ "value_r": "muir"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 36,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 36,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1437482420729254,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.79838378173943,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "so31 1by",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "eastleigh",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.026848940041691617,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.218991056006492,
+ "m_probability": null,
+ "record_number": 36,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 37,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 37,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "muir",
+ "value_r": "moore"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 37,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 37,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1437482420729254,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.79838378173943,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "so30 2eq"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "eastleigh"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "head teacher"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.026848940041691617,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.218991056006492,
+ "m_probability": null,
+ "record_number": 37,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 38,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.366944700311449,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.37 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.4509548799592081,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "mary",
+ "value_r": "mary"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 38,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "muir",
+ "value_r": "moore"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 38,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 38,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1437482420729254,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.96 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.79838378173943,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1860-01-01",
+ "value_r": "1860-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "eastleigh"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "head teacher"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.026848940041691617,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.218991056006492,
+ "m_probability": null,
+ "record_number": 38,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 39,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "arthur",
+ "value_r": "arthur"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.7106077288219567,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.41 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.4928747148694078,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "arthur",
+ "value_r": "arthur"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "finlay"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 39,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1854-01-01",
+ "value_r": "1854-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.2402829852831891,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.16 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.0571936017114982,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1854-01-01",
+ "value_r": "1854-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "tf11 9bx",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "shropshire",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "rugby union player",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.33413530765043736,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -1.5814956564203728,
+ "m_probability": null,
+ "record_number": 39,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 40,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 40,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "swan",
+ "value_r": "stallybrass"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 40,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 40,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 6.828041498463956,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.771471826591518,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "dl12 9bf",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 40,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "united kingdom",
+ "value_r": "county durham"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 40,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "publisher"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.029788668557820374,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.069092547823968,
+ "m_probability": null,
+ "record_number": 40,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 41,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 41,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "stallybrass",
+ "value_r": "sonnendchein"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 41,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 41,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 6.828041498463956,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.771471826591518,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ca17 4ee"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 41,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "county durham",
+ "value_r": "united kingdom"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 41,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "publisher",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.029788668557820374,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -5.069092547823968,
+ "m_probability": null,
+ "record_number": 41,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 42,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 9.930908563690332,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 3.311925713762501,
+ "m_probability": 0.020267294367821084,
+ "record_number": 42,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.0020408298231566584,
+ "value_l": "wonnenschein",
+ "value_r": "sonnendchein"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `levenshtein_distance <= 2` then comparison is 9.93 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 1,
+ "label_for_charts": "Levenshtein_distance <= 2",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.020267294367821084,
+ "record_number": 42,
+ "sql_condition": "levenshtein_distance(\"surname_l\", \"surname_r\") <= 2",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.0020408298231566584,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 42,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 6.828041498463956,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.83 times more likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 2.771471826591518,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-05-05",
+ "value_r": "1855-05-05"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 42,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "dl1w 0bf",
+ "value_r": "ca17 4ee"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 42,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 42,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "eggleston",
+ "value_r": "united kingdom"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 42,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "publisher",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.7185154034749656,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -0.47690900949390674,
+ "m_probability": null,
+ "record_number": 42,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 43,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "arabella",
+ "value_r": "arabella"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 33.691166437088064,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 33.69 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.07429847240822,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "arabella",
+ "value_r": "arabella"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "fisher",
+ "value_r": "buckley"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 43,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1840-01-01",
+ "value_r": "1840-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.671610639193176,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 1.49 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.574303010250212,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1840-01-01",
+ "value_r": "1840-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "bn2 1ej",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "brighton and hove",
+ "value_r": "brighton"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 43,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.47914656850958903,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -1.0614610583051676,
+ "m_probability": null,
+ "record_number": 43,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 44,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.2060251185001788,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 4.85 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.2791078539523104,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "william",
+ "value_r": "william"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "charlton"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 44,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.23410427994733563,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.27 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.0947767845196545,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1855-01-01",
+ "value_r": "1855-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "chorley",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 0.10503322203979278,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.2510823699365705,
+ "m_probability": 0.10073668618440759,
+ "record_number": 44,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9590935537162004,
+ "value_l": "trade unionist",
+ "value_r": "politician"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 9.52 times less likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.10073668618440759,
+ "record_number": 44,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9590935537162004,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.009913468665482506,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -6.656394348248003,
+ "m_probability": null,
+ "record_number": 44,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 45,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "harry",
+ "value_r": "harry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.1501000590973836,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.20175938159047846,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "harry",
+ "value_r": "harry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 45,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "bell",
+ "value_r": "purvis"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 45,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 45,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 45,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "bs4 1na",
+ "value_r": "bs2 0sp"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 45,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "bristol, city of",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "anthropologist",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.005854342005837653,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -7.416277255397598,
+ "m_probability": null,
+ "record_number": 45,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 46,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "harry",
+ "value_r": "harry"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 1.1501000590973836,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.15 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 0.20175938159047846,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "harry",
+ "value_r": "harry"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 46,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "purvis",
+ "value_r": "bell"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 46,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 46,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.21966889539294226,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 4.55 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.1865974929425636,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1851-01-01",
+ "value_r": "1851-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "bs2 0sp",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "bristol, city of"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "anthropologist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.034520561334653414,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -4.856400265578355,
+ "m_probability": null,
+ "record_number": 46,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 47,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "bernie",
+ "value_r": "bernie"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 30.144727864763002,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 30.14 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 4.913833800214974,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "bernie",
+ "value_r": "bernie"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "moor",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"surname_l\" IS NULL OR \"surname_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 47,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.1692902850858832,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 5.91 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.56242890996192,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1850-01-01",
+ "value_r": "1850-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 47,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "al9 5bz",
+ "value_r": "kt24 6es"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 47,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 47,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "hatfield",
+ "value_r": "welwyn hatfield"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 47,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "ceramicist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.2624666807604501,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -1.9297938056425616,
+ "m_probability": null,
+ "record_number": 47,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 48,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "robert",
+ "value_r": "robert"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 0.6479070468670781,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 1.54 times less likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -0.626141245732872,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "robert",
+ "value_r": "robert"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 48,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "angel",
+ "value_r": "marshall"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 48,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 48,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1849-01-01",
+ "value_r": "1849-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.3939254710652282,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 2.54 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -1.344005390828418,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1849-01-01",
+ "value_r": "1849-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "bh23 4fp",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"postcode_fake_l\" IS NULL OR \"postcode_fake_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 0.1549748092929906,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.689894366236906,
+ "m_probability": 0.15416930961998804,
+ "record_number": 48,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9948023831958412,
+ "value_l": "bournemouth, christchurch and poole",
+ "value_r": "highcliffe and walkford"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 6.45 times less likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.15416930961998804,
+ "record_number": 48,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9948023831958412,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "None",
+ "value_r": "watercolorist"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.0054045748297124495,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -7.531603157024466,
+ "m_probability": null,
+ "record_number": 48,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 0,
+ "bayes_factor": 0.00013584539607096294,
+ "bayes_factor_description": null,
+ "column_name": "Prior",
+ "comparison_vector_value": null,
+ "label_for_charts": "Starting match weight (prior)",
+ "log2_bayes_factor": -12.845746707461347,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 1,
+ "bayes_factor": 48.72386745735117,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 48.72 times more likely to be a match",
+ "column_name": "first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 5.606556746606498,
+ "m_probability": 0.5524853353802543,
+ "record_number": 49,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.011339110875462712,
+ "value_l": "herminie",
+ "value_r": "herminie"
+ },
+ {
+ "bar_sort_order": 2,
+ "bayes_factor": 63.638869936721896,
+ "bayes_factor_description": "Term frequency adjustment on first_name makes comparison 63.64 times more likely to be a match",
+ "column_name": "tf_first_name",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on first_name with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": 5.991836312216247,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"first_name_l\" = \"first_name_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "herminie",
+ "value_r": "herminie"
+ },
+ {
+ "bar_sort_order": 3,
+ "bayes_factor": 0.06982392104370992,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -3.840134814386803,
+ "m_probability": 0.06961049788217637,
+ "record_number": 49,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9969434091018756,
+ "value_l": "kavanagh",
+ "value_r": "templeton"
+ },
+ {
+ "bar_sort_order": 4,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 14.32 times less likely to be a match",
+ "column_name": "tf_surname",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.06961049788217637,
+ "record_number": 49,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9969434091018756,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 5,
+ "bayes_factor": 295.6533104693185,
+ "bayes_factor_description": "If comparison level is `exact match` then comparison is 295.65 times more likely to be a match",
+ "column_name": "dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Exact match",
+ "log2_bayes_factor": 8.207762621015382,
+ "m_probability": 0.61837388325496,
+ "record_number": 49,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.002091550682362922,
+ "value_l": "1861-01-01",
+ "value_r": "1861-01-01"
+ },
+ {
+ "bar_sort_order": 6,
+ "bayes_factor": 0.16387299596313493,
+ "bayes_factor_description": "Term frequency adjustment on dob makes comparison 6.10 times less likely to be a match",
+ "column_name": "tf_dob",
+ "comparison_vector_value": 3,
+ "label_for_charts": "Term freq adjustment on dob with weight {cl.tf_adjustment_weight}",
+ "log2_bayes_factor": -2.609349957349413,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"dob_l\" = \"dob_r\"",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "1861-01-01",
+ "value_r": "1861-01-01"
+ },
+ {
+ "bar_sort_order": 7,
+ "bayes_factor": 0.1695900002634309,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": -2.559876989819243,
+ "m_probability": 0.16947053958156647,
+ "record_number": 49,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": false,
+ "u_probability": 0.9992955912395844,
+ "value_l": "gu12 4nb",
+ "value_r": "gu11 3he"
+ },
+ {
+ "bar_sort_order": 8,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `all other comparisons` then comparison is 5.90 times less likely to be a match",
+ "column_name": "tf_postcode_fake",
+ "comparison_vector_value": 0,
+ "label_for_charts": "All other comparisons",
+ "log2_bayes_factor": 0,
+ "m_probability": 0.16947053958156647,
+ "record_number": 49,
+ "sql_condition": "ELSE",
+ "term_frequency_adjustment": true,
+ "u_probability": 0.9992955912395844,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 9,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "aldershot",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 10,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_birth_place",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"birth_place_l\" IS NULL OR \"birth_place_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 11,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": false,
+ "u_probability": null,
+ "value_l": "writer",
+ "value_r": "None"
+ },
+ {
+ "bar_sort_order": 12,
+ "bayes_factor": 1,
+ "bayes_factor_description": "If comparison level is `null` then comparison is 1.00 times more likely to be a match",
+ "column_name": "tf_occupation",
+ "comparison_vector_value": -1,
+ "label_for_charts": "Null",
+ "log2_bayes_factor": 0,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": "\"occupation_l\" IS NULL OR \"occupation_r\" IS NULL",
+ "term_frequency_adjustment": true,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ },
+ {
+ "bar_sort_order": 13,
+ "bayes_factor": 0.24165943221163722,
+ "bayes_factor_description": null,
+ "column_name": "Final score",
+ "comparison_vector_value": null,
+ "label_for_charts": "Final score",
+ "log2_bayes_factor": -2.0489527891786787,
+ "m_probability": null,
+ "record_number": 49,
+ "sql_condition": null,
+ "term_frequency_adjustment": null,
+ "u_probability": null,
+ "value_l": "",
+ "value_r": ""
+ }
+ ]
+ },
+ "height": 450,
+ "layer": [
+ {
+ "layer": [
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "size": {
+ "value": 0.5
+ },
+ "y": {
+ "field": "zero",
+ "type": "quantitative"
+ }
+ },
+ "mark": "rule"
+ },
+ {
+ "encoding": {
+ "color": {
+ "condition": {
+ "test": "(datum.log2_bayes_factor < 0)",
+ "value": "red"
+ },
+ "value": "green"
+ },
+ "opacity": {
+ "condition": {
+ "test": "datum.column_name == 'Prior match weight' || datum.column_name == 'Final score'",
+ "value": 1
+ },
+ "value": 0.5
+ },
+ "tooltip": [
+ {
+ "field": "column_name",
+ "title": "Comparison column",
+ "type": "nominal"
+ },
+ {
+ "field": "value_l",
+ "title": "Value (L)",
+ "type": "nominal"
+ },
+ {
+ "field": "value_r",
+ "title": "Value (R)",
+ "type": "nominal"
+ },
+ {
+ "field": "label_for_charts",
+ "title": "Label",
+ "type": "ordinal"
+ },
+ {
+ "field": "sql_condition",
+ "title": "SQL condition",
+ "type": "nominal"
+ },
+ {
+ "field": "comparison_vector_value",
+ "title": "Comparison vector value",
+ "type": "nominal"
+ },
+ {
+ "field": "bayes_factor",
+ "format": ",.4f",
+ "title": "Bayes factor = m/u",
+ "type": "quantitative"
+ },
+ {
+ "field": "log2_bayes_factor",
+ "format": ",.4f",
+ "title": "Match weight = log2(m/u)",
+ "type": "quantitative"
+ },
+ {
+ "field": "prob",
+ "format": ".4f",
+ "title": "Adjusted match score",
+ "type": "quantitative"
+ },
+ {
+ "field": "bayes_factor_description",
+ "title": "Match weight description",
+ "type": "nominal"
+ }
+ ],
+ "x": {
+ "axis": {
+ "grid": true,
+ "labelAlign": "center",
+ "labelAngle": -20,
+ "labelExpr": "datum.value == 'Prior' || datum.value == 'Final score' ? '' : datum.value",
+ "labelPadding": 10,
+ "tickBand": "extent",
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "grid": false,
+ "orient": "left",
+ "title": "log2(Bayes factor)"
+ },
+ "field": "previous_sum",
+ "type": "quantitative"
+ },
+ "y2": {
+ "field": "sum"
+ }
+ },
+ "mark": {
+ "type": "bar",
+ "width": 60
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "white"
+ },
+ "text": {
+ "condition": {
+ "field": "log2_bayes_factor",
+ "format": ".2f",
+ "test": "abs(datum.log2_bayes_factor) > 1",
+ "type": "nominal"
+ },
+ "value": ""
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "axis": {
+ "orient": "left"
+ },
+ "field": "center",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "black"
+ },
+ "text": {
+ "field": "column_name",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -25,
+ "fontWeight": "bold",
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_l",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -13,
+ "fontSize": 8,
+ "type": "text"
+ }
+ },
+ {
+ "encoding": {
+ "color": {
+ "value": "grey"
+ },
+ "text": {
+ "field": "value_r",
+ "type": "nominal"
+ },
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "y": {
+ "field": "sum_top",
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "baseline": "bottom",
+ "dy": -5,
+ "fontSize": 8,
+ "type": "text"
+ }
+ }
+ ]
+ },
+ {
+ "encoding": {
+ "x": {
+ "axis": {
+ "labelAngle": 0,
+ "title": "Column"
+ },
+ "field": "column_name",
+ "sort": {
+ "field": "bar_sort_order",
+ "order": "ascending"
+ },
+ "type": "nominal"
+ },
+ "x2": {
+ "field": "lead"
+ },
+ "y": {
+ "axis": {
+ "labelExpr": "format(1 / (1 + pow(2, -1*datum.value)), '.2r')",
+ "orient": "right",
+ "title": "Probability"
+ },
+ "field": "sum",
+ "scale": {
+ "zero": false
+ },
+ "type": "quantitative"
+ }
+ },
+ "mark": {
+ "color": "black",
+ "strokeWidth": 2,
+ "type": "rule",
+ "x2Offset": 30,
+ "xOffset": -30
+ }
+ }
+ ],
+ "params": [
+ {
+ "bind": {
+ "input": "range",
+ "max": 49,
+ "min": 0,
+ "step": 1
+ },
+ "description": "Filter by the interation number",
+ "name": "record_number",
+ "value": 0
+ }
+ ],
+ "resolve": {
+ "axis": {
+ "y": "independent"
+ }
+ },
+ "title": {
+ "subtitle": "How each comparison contributes to the final match score",
+ "text": "Match weights waterfall chart"
+ },
+ "transform": [
+ {
+ "filter": "(datum.record_number == record_number)"
+ },
+ {
+ "filter": "(datum.bayes_factor !== 1.0)"
+ },
+ {
+ "frame": [
+ null,
+ 0
+ ],
+ "window": [
+ {
+ "as": "sum",
+ "field": "log2_bayes_factor",
+ "op": "sum"
+ },
+ {
+ "as": "lead",
+ "field": "column_name",
+ "op": "lead"
+ }
+ ]
+ },
+ {
+ "as": "sum",
+ "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
+ },
+ {
+ "as": "lead",
+ "calculate": "datum.lead === null ? datum.column_name : datum.lead"
+ },
+ {
+ "as": "previous_sum",
+ "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
+ },
+ {
+ "as": "top_label",
+ "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "bottom_label",
+ "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
+ },
+ {
+ "as": "sum_top",
+ "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "sum_bottom",
+ "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
+ },
+ {
+ "as": "center",
+ "calculate": "(datum.sum + datum.previous_sum) / 2"
+ },
+ {
+ "as": "text_log2_bayes_factor",
+ "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
+ },
+ {
+ "as": "dy",
+ "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
+ },
+ {
+ "as": "baseline",
+ "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
+ },
+ {
+ "as": "prob",
+ "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
+ },
+ {
+ "as": "zero",
+ "calculate": "0*datum.sum"
+ }
+ ],
+ "width": {
+ "step": 75
+ }
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAIuCAYAAAAhXgWXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeUVEXahj+iCiomRMCAeQ2IYVFXWCMLImbFiIphzbKCimJCEHNAF8WEoCKYVkV+dM0LghhRFkRBZcEAZgWUIBL+89R4x56he27VnZ6Z7stb58xhmK6qW/XWd6ue/irVWr58+XJTkAJSQApIASkgBaSAFEi9ArUEfqlvY1VQCkgBKSAFpIAUkAJOAYGfDEEKSAEpIAWkgBSQAiuJAgK/laShVU0pIAWkgBSQAlJACgj8ZANSQApIASkgBaSAFFhJFBD4rSQNrWrWnAKZ+6dq1apVWpBcf6+5klbuyfPmzTPq1KhRo8pllLLUS5YssZ9++snWWWcdq1OnTs7aRfYQ2Uj5/6dMFlVHCkiBGlJA4FdDwuuxK4cCTzzxhB111FGush06dLDnn3/e/T5+/Hhr06aN+33nnXe2CRMmxAoyZMgQAwq6du0aG5dn8ux3333Xdtlll9j4+YgQAcuvv/5q9evXrzDL//73v7bjjjvaYYcdZk899dQKcb/77jt75plnbOONN7b27dvno3jBedBWX375pSvjuuuuG5yeBPfff7+ddtppLu0nn3xiW2yxRc58jj76aHv88cdt7Nix1rZtW1tzzTXt559/tt9++83q1q3r/fx8t30htIV35RVRCkiBWAUEfrESKYIUSK5AJviRSwRFN9xwg11yySUu4x122MEAobhQ3hNUUfxDDz3UgdNbb71lu+66a1zWefm8W7dutmjRIhs4cGAsqLz//vsOeDt16mSjRo1a4fkAa+vWrXOCYV4KHJPJwQcfbP/3f/9n7733nu20006JHrnddtvZhx9+aFdddZX94x//sLXWWisW/F577TX761//mhj88t32hdAWicRXIikgBbIqIPCTYUiBKlQgAr811ljDeW/eeOMN23333e2AAw6wcePGub9F4AcUXn/99c4D9uOPP9puu+1meIE6d+5sxx9/vA0fPtyV9KCDDrJhw4bZ4sWL7fLLL7cXX3zRAQUexTPPPNN5yaLBv3fv3vb000+7/ACZG2+80Ro2bFimxocffrh9//33hkexWbNmLh/CiBEjrHbt2i7d6quvbs8995y9+uqrdvXVVzuY2XLLLe2cc86xY4891sXff//9bcGCBS4OHio8V5dddplNmzbNeT35G55Nys7zAD8AZ6uttnKAtckmm9h1113nvGLU9/XXXzd0O/nkk+3222+3yZMn23333efq07RpU9tnn32sT58+tuqqqyauD+W54oorXLl4Pp42gPyBBx6wfv36ufbBM3vLLbc4EL3nnnts0KBBzhOIJ5U41OODDz6ws88+23knv/32W3vzzTedPpltRh1oh2zPW3/99V1b4/HzAb8ffvghcdt//fXX1qtXL/cc2mSPPfawc88919WHtqGOXbp0sZdfftkaNGhgn3766QptUYWvjLKWAlKgihUQ+FWxwMp+5VYgAr8jjjjCnnzySbvpppuc54epUICOzyPwi6YFN9tsMwcbQ4cOdeIx8AINAwYMcP8/5ZRT3P8BLeBo2223NdbXASPRtHEEfsTfe++9bfTo0S7ttdde6wb9zABYAToPPfSQgzDAlPDCCy848Pvb3/7mwO3SSy9107MEPHWAA2D06KOPOmjJnOplehJYJFC/SZMmlT5y6tSpDhApK2HDDTd03i1gkvDxxx9b9+7d7dlnnzWA6KyzznKQg/eMzy644AIHVtT9tttuc3omqQ9QBugCakznot8777zjptLxkuKl4zNAG8AE2gFdYBRA/Pe//+0eyxQu8aKp+6hOtG///v1dnFNPPdXVAZjP9jyg2xf8WPsHMCdt+xNOOMEefvhhV17WHQLd6PzNN99YpieacgP12FZmW6CLghSQAsWrgMCveNtOJS8CBSLwO++88xxI4QXCCwdYAHL8PQI/BuCPPvrI9tprL2NDwDHHHONgBM/LfvvtVwpWDPyAVKtWrRw0AR5sGsBLxlQrXhsGd6Z68fBddNFFzlN2+umnO2gEMDPDv/71LweheAtbtmzp4IaAZ4+AhwpQALbuuOMOu/jii+2MM85w9QHKAAi8l5ngx2d4CikHQEk9NtpoI5dfefBbuHChA2G8loDk9OnTnWcsc6p31qxZrq4E4BnNWHvWuHHjFdYA+tYHcEaL9dZbz9WBOuLBi+pTfqp36623duCJRxYA7tu3rwNmQAg4jsAPrx0giTctc53e3LlzK3yeL/hVtu3vvPNO++WXX4wvIywxOPLII52uwPg///lP5/HkywQ2gzdQU71F0NGoiFIgQAGBX4BYiioFQhXIBD+8YHfffbebzmVwxbsE3ETgxyCMZw24yAwvvfSStWvXrgz4jRw50g455BD3w5Rs+RB5/PAKMXjjsTnwwAPdFF7kSYzSRDtO8fYRF/CqV6+erbLKKrZs2TIHeEAWafm9fIi8RZngR/3wdgEP0eaGaL1bJvgBTExVE5hqZD0dnwOA5df49ejRo9SDRnxAED3xPmYG3/rg7QKKb7311jLps4EfkJ1rRy5wCzSTDk8cntAoZIIf3tOKnucLfpVtewAXrymex8wwf/5892WEtsPDeeWVV7qPBX6hb73iS4HCVkDgV9jto9IVuQKZ4Mc0H/DEVCHeL2Bs0003LQU/4AJvDoMvMAHQAG7ZwO9///ufbb755qVTuwAankTW/TFo4y3M3NxREfghMevlmA6mbEydAjnkQ4hgJpoSxgPI1CUgy/Qga+yAtkzwY1r7uOOOc+ve8DDNmTPH1l57bZdfJvhlbu6oCPxYlzZlyhR3XMznn3/uNoSw1g/onD179gpQ5lMfPKx49QDvRx55xOUTee7wYJb3+DVp0sTBEs/efvvtHZzixYv+DviVB/FM8GNquKLn+YJfZdoeGMdLSvjPf/7jPHuUn5AJfplT6AK/Iu+EVHwpUE4BgZ9MQgpUoQKZ4AdQRcd5MMWLBysT/CLwYVcsU3E9e/Z0JcPLxqaBCKyYbsWLxnQxoEheTNMxbbnvvvvaK6+8Urq5I9rVGwd+eL3wAhEAG7xTbEAhsLGBskZTqMAW6/0AGcrGZ8TJBD8gAo8agTVylCPyMPmAX7QGkPWOTO1SV2CZZwO4TKMy3czneEjLe+N86kP5qSNrGvFy4YllOpv/s56PTS/A5fnnn+/WHFIOtAfwmBqnnXg2gB1NF1cEfgB8Rc/zBT80jb4khLY9QEdZAXw8f9SP6WoCNkf90CIT/KId2FFboIuCFJACxauAwK94204lLwIFIvDjqBM2ZETeIdaBMZUJ+EUbMpiyPfHEE50niWlM1tsBJ6whA3YY5BmYCeyKZWqYKV3iE5iqZectnsBoqvftt992z4nAL1pzV146vGl4sQh48YA4IIvApottttnG/c7mEHbqRoG1bIMHD3br8yLvVnRkDXUHIvBQAUrAFGv9WJNImcsf55Lp8UMXyg3YRlPh5Z8NvAAurH9MUh/WUeLhiza+sKkDCCLfmTNnOqjFa0kA7oBqYDPaqcvfaRumRAHbv/zlLxV6/Ihf0fNYL+l7jh87p5O2Pe2HlgQ2/uDpBGD5woB3jzWcmeCHF7l8WxTBq6ciSgEpkEMBgZ9MQwoUkAIMskxlAm+Zt3xERWSHJcDCtCmfM90KWLEej+NIsqXJd/Xw5s2YMcMdqZLrYGOOcGENY3TsClO1zZs3d0XxPZCYaV3W60WbJEjL1Cr6sBmkRYsWrt6VDcAo0MpP+cDGE+rLbSSseyRwlMpXX33lvI0cdxIaKnpeSF6VaXt0pW7savYJ2drCJ53iSAEpUHgKCPwKr01UIilQ9Aowrcu0drRJAwgk4PnDq6UgBaSAFJACNaOAwK9mdNdTpUDqFWC9HFOkbFBhXRmbW1gvlw8vXerFUwWlgBSQAlWkgMCvioRVtlJACkgBKSAFpIAUKDQFBH6F1iIqjxSQAlJACkgBKSAFqkgBgV8VCatsi18BFrQvXbrUbS5QKEwFaB9CrsOVC7PUK5aKjRrR5pHKlJlNG9F5iZXJp6bT5kuPmq6Hni8FClEBgV8htkrKysQhvgxIHJKbGdiByhEmnH1WiIGr0ji0+IsvvijE4nmXiTPxGjZs6I5Ric4R9E5cQxE/++wz4ygaNoOUD5n14fzADTbYwB13ExI4BoZjYtg9XdnAWkYANPOu3rg8M+sX1Yfd2RxjkyTwfnFeIsffsJHmT3/6k/fu6fLPY9c4EMp5i1xTl8/AUT9cKcgB47l2ROdDj3yWWXlJgbQpIPBLW4sWYH04n4y7Vx977LEVwI8BmPPICjGkBfy41YObKP785z8nOn6kJtqGWzXYCML1ceVDZn04dDoJ+HEA8uWXX54VLEPre+GFF7qjUbihxDdk1i8foMM1cdzxTF54qjmPjxtXkhzvE4Ef90YDkPkM9AMcAcTdy7mOksmHHvkss/KSAmlTQOCXthYtwPr4gB/3j/bq1ct51zgol4OKmWLliisOAuaMOgZ5jge59957Dc8Bh89ymG55LwmH8HI1FTcRcEUaV4yRF+evceMEXsYtt9zSOLA3ukeWWyk42JarxbhB4cYbb3SwdPzxx7vrybjflgON77nnHgdQ5UO29Fxllq1eHM5MPhyayx24XJ3FHb0cABwdjszNE1xnhkeLOk+cONEdgNyxY0f75z//6c6cy1UfvE/khe4333yzOz6F39EKzx+HDj/66KNupy23VeApIs11113nysVZgtT7mmuusdVWW81ptNNOO7mbOzjMmbJywG/56VW8Tnh3OSyaA385CJgbR9CUA6zRnevCONT573//uy1atMj23HNPdygy9eX/2AAHMnM3MR6wI444wn1hyFUfyogOnBOIRtQF22G6k/alLdGMwOHY/IwZM8b69evnDskeMmSIKwOHMGNnHETNfbp4pAh8MUHvCRMmuC8o5J153h+fn3TSSS4ubQcE5tIxshnOQMys30MPPVTaLrQVOmCzlJ+Qy56j/KKr5mgb6kob0n4c8sxtLkAWz+ROZA7JfvDBB1075LKfXOAXtRd5c2g3B12jGxryLN5b/o7NcOcyh0SPHTu21BYA0egqPbytfLGi3bBNPJXY+9VXX+2AMLLTbHpkvnu52mfy5Mkr5Iu3G5jFRmlPoJZ+Ak8tt5NgS+w850YTDkfH40x7ciZlhw4dXNxc51YWYLerIkmBnAoI/GQcVa4AHTseCQbdzAAA0HFz48R2223nPDwMuHT+wAKDxsYbb+yuymIA5xBdIAjow6Ox//77uynkTACJruFisOa2CaZqgQwGKOCDAQnY4WYGbrFgUMQLwS0ZpAEIuVqNgRdPEjctcDvFKaec4jp+vE2AWmb44IMPsqbnZopc9QK++vbt68oFgJx++ukOLLndg6u9uE0Cbxfa3X333Q44mHYDkqgHZcxVH/Jhqo6BmYGLvDlIObpejAGXQe755593Xi8GdOADsAZa0ILBHfCgLdq2beuOZAF+uTGE68vQAPDODLQRgAGs0g4AG8+k3Wkv2pHDkLkNg1sxyJcBnvbnfmIGeUAFIAFegEvyARJy1QdgRB+05AsAdeBKsbvuustBDmUF/gn8H5sjP65OA9iAAOAY6Lvhhhucx4y/Uz9uMgGQKBcgSd58xhV1UeAgZ+wWmyQf0uXSMUrDM2jnqH4ASKQD+pMH7U27AFSUNZs9R/kRD72wWeCOskZTvbQf2nDvMvfynnPOOe6novchsp/yHr/IE0c+2C9X1mGnvF9AG2DMFwrsAFvFPviMv9GOvCfYNhD11FNPOcDnfTvwwAOdrWEfPJu65tIj8yggbDFb+9CmfFEsny8eWeAP++YLIDZIO3z66acO7vgCgC0C/nyB4P3ntpwjjzzSfRHk8HT6MQUpUOwKCPyKvQWLoPzAC+t6GOgzA4MB4Mc3awY7PFoE1hYBbayDYiBk0KcDjtIzTcaAw0ACsGQGPIQMHoMGDXJ/xgPBgE7HziAKSHLnK94RwIxrqhiMAJuoUweMuB2CuIAfnkMGIsrLoMYAkBnwUmVLz4CSq14ADs/Gq0jgKjcGLNaq4Y3Aq4jnDbgDpoA0AoMogzz55qoPAxia4YlhQI0GbCAM2GBNGl4foJRyowODNAMyoEBAP2ABDyy647kDFgjcmwtMRt5S/oYmgDllwquD1wio5Pm0ZXTfMHGBytVXX92BNLpGaYB6vGkAB+sRo6neyAOVrT6AX+QNJW9gBLijPLnAj3WD0VQvHkW+OAC1ESACqnj+gGYAAiilHnxBYEq3/Lq3zKletMmlY6bNZJvqxQ7xBHI7Cc9HB+5rzmXPmflhD3xp4ro9bD0T/Pgssm2Ah/eK9zHOfnKBH+8H0IZmaIXWfMng3aP+tDt2CrAy1cxZjnzJQjtsMZrqxatGHL4MsN4PO8ebD8BiF9n0yJx65h3N1j54irPly1Q4HtGovOiHvfE+8eWL9yZaB8t7whcYnkEdIk0BfYBQQQoUswICv2JuvSIpe9xUL5s+uM6LQZzAAMFAgJeIQQoA4Vs43ozatWu7acfoHtVosI6kYFAGcDIDgxKdPbCIp4xpJTp6rs4Cvuj4GVwZ4DMDAxyQwmBKANKYrmINVWYABrOl5++56sUUMHVjGo9AufFE4l1kmgqvFDrgsUILBiEC0Ma0JzCERzRbfSLwi+7YzQQ/puEABICPK8fI/9xzz3UDIAN5tNEGXYAQ6gr4AXnR1COeVjwieI6iEN31W37tVvR3vDPRNBlwy9QacFB+0wmDLCDHgFse/LLVB5thyjoCVupFedEHCMn0+AG6eKoywY9pvugqucw2ZTobjyW6A3YEvFrAKl6qzJAJfhXpGAd+EXREO8nRgXLksmdf8ENLoJnAlyDuFcbjlut9iOwnF/hF5cRLip60MYGyojHtC4Dz3nKDC3YGjJUHP+CX9gOqMkP5zUiZegDsmSFb+wC02fLlPcebGJWXfLAVPHp8SaB9oy91mfdiZz6PdzO607pMQfQfKVBECgj8iqixirWoceCH545BjjVkhAh8mMLC28bAzmCN9421engJGTQAt/KDNlDEN/vIO8VUMOuIdtxxR3e3K9NRTH3hUcFDxbozgI4pYH4nsCuSvAHGzF29ucCP/LKlZ4DJVS/WPwFJkWcS8GNQpnzlwY+jLaJ4/MtaMtZ15apP+YE7E/yYkmRKlOlUPDF4FAEqvI0MgBHMMVXK53gaGRzPPPPMUo9YNvCjndALbyUeRKbEGfwZTBn48e4AsxEgMNAyuAJ+mbtZKwK/CEQy6xN9WaC8BEAaLy8erugZACsAy5cGpm0zwQ/PEN5HQBwvFgEvJ15ApkyxHzzE48ePd0DD73jLcoEf3s5cOsaBX6RDJuigezZ7pm6+4JdpZxH4AW2+9hM9p/ymi1zgx5cxplTxKkfgCrCVBz+Aj3WB0d3N2PSTTz7p1tRm2kUu8MOGs7UPX1Ky5UsZmP6NlodgE/QB2DjPyAQ/vI58uQSOCZSRfoq1q9wTrSAFilkBgV8xt16RlD0O/JhSZarxueeec5DB1CnQxGBMwHMDjAFErPFhHQ7rjDK/uUdS0GEzuJMXIMKUJF4uPB545ZhiZXqPKWKgjukkIJCBgqlcppKY1gRK8Ar6gB+eyWzpAZ1c9QIifMEP0KDuTN8ykAJSTInlqg/PJG42UMJzSrnQialVvHBAK6DEc/DCUW+8fayVw+vmA37oz1Qfa66AMeCcZzB9BwgB79FGFdqO6UemgHOBH+DNuko0IuSqD8+i3NSBOHhoGdyZ7kUrPH+AIEABEETgBzhhG6yZ5MsCNohHCPhgqpayM92OlsA7mkfT8KNGjSrz5vEs6omHkDVjuXTMTMQGmKh+TOnnAh2+DGWz5/JHI1U01ZsN/Njo42s/oeDHdCqbJHgu9sW7dN9997kpXeoKUANReE6xC2CUtZOsjQQO+cLgA360ebb2wZuZLV/KQHlYSwhc8u7jlWcKn2UmmeDH7AJ2wEYgYI80rBGkTjrXs0gGHhUzpwICPxlHlSuAN4lv59mOc8HLBjCw4B/oANYANTx6AB+B6SQGeDZ84BFijQ1eHAaM8oE4gB3TPQQ6bQZPBnbWC7LGiWfssccezgOEF480DATRtCvTmAy2fOYDfni3sqUHUnPVKxv4sYCcqdZMjyfgRV2i6T68aWjDzsdc9WEgyzyHLXPqLNo1jQYE4AgvIl5RBjqmwSPdABzgwBf8mELEKwtQAo+sk6ItmH4FBvg7Aa2ALLyP2cAP7yADN1P6QDmAn6s+wCReRr4YEIBaPDhsZokGb/6+++67uwGe3bx4/LAD9KOd8bYy6AObBKbbsdUItPFsoQNl4QsEtlMe4oBNpszxxubSMTMNgBnVj2nvbKCDDthtLnvOzA/PFOvoaN/ya/zKgx9a8U742k8I+DENCjTzDgG3BGwY0OTLRLTWF5ugXMQBwCOb4x3EE5lLj8hrHJUJ+83WPkBe+Xz5wgG80U7YP/bIF0EAnHcd72/m+l1ANPIo0/7ANl/wFKRAsSsg8Cv2FkxR+RkM6Yw5VLcy36qZwmH9HGCBdzDzLDMGf6Zt2ExBPNYg8TsBOGWKjwE+SciVvjL1wltKeZi65ugXQCAzVFSfXHVgcGNXMzozwEaB6S48V0xlMaWZ9Aw46ls+PdP27FIG2n2PxMBbhwcogtSK2oT8gVcW+2eWGxsA7KM2Lq8dU320Oc9iMw7TvkBrZsCW8FSVX9uXGQdNAX1+fHX0rV9F9pzETitrP77PBELXWWcdZ2O0Dz/Ru5V5wwhfTNjQAqwnCbnaJ1e+2AOQjxc31yHSUTl451jjy9Q1xzMpSIE0KCDwS0Mrqg6pVSACP7wzClJACkgBKSAFKquAwK+yCiq9FKhCBVh3iKeBTQMKUkAKSAEpIAUqq4DAr7IKKr0UkAJSQApIASkgBYpEAYFfkTSUiikFpIAUkAJSQApIgcoqIPCrrIJKLwWkgBSQAlJACkiBIlFA4FckDaViSgEpIAVyKcAO4eh4HKkkBaSAFKhIAYGf7EMKSIGiUYCjODgAmLPhuD4tV+CwZs5oK3+9XtFUtIKCcs4jh5tzTy7H5tx9993G7m8OM+YgZ5/ApiHOreOwY84tzBXIv2XLlu5AdAUpIAXSoYDALx3tqFpIgZVCgQj8uA2Ce1dzBQ7e5jDgNIIfBwlzMDiHIHOYNFf0cbsIEMchyT6Bg5M5dJqDnDkgOlfg/EMOmuZQbAUpIAXSoYDALx3tqFpIgdQqMHXqVOfR4k5h7jLmuroI/ICf7t27u5s7OKybWyO4KzYCvx49erjbObgejlsbKjqEuRgE5D5fbkHhJhducfnrX//qrokjcEMOdcwVuPGF6+U4SJnr6NAF8MPzx00m3K7BgdncxTxgwAB36DU/3KKCbtyQAlgC3D6HaheDniqjFFgZFRD4rYytrjpLgSJSANh75pln3FVv3KkKAAJ+TPVydR2Ba7iAGK6c41aGyy+/3Hn8uGoLj9ULL7zgrmoDdoo5cOMF9y0zjX3xxRc7j9/f//53d9sKU75cPZctcFtNdGMKOpKeW3LQjDzJAy8ioIeuEUTyf263adOmjbs5BuDkLl1AXEEKSIHiVEDgV5ztplJLgZVCgfnz57tr1LibmXtyX375ZXcfMODHFCXr2gCeM844w019cq8wHqn33nvPgR/XbQF/TGsyvUl+cdd0Fbqw5ad6t9tuO3ct2ttvv52z6GPGjHFaPfjgg25tIHdF9+3b14HfHXfc4bx5TKNzf3X79u3tzTfftO+//96tIeSaPe4T5to6tOTeY+5BVpACUqA4FRD4FWe7qdRSYKVQ4PPPP3f370abObjvl3tTAT8A8OCDD7ahQ4e66V3ghOnPq6++2t0LDPjhzeJ+2KOPPtp5+1ZW8ItgMdrM8dBDD9lJJ53kwA8A5M5n7tYlHH744fb000/bL7/84u6z5e5iwHDZsmVOy1122cV7E8lKYaSqpBQoMgUEfkXWYCquFFjZFNh1113ts88+s1tuucVYpwbAAX433HCDm5pk/dmVV17pPIJMCU+ZMsVuuukmB36nnHKK8wLy70EHHeR2wxZ7iCAOTx3TtoBYnMcPAF5nnXWct+4f//iHcfcz0+KA34wZM9z08bXXXuu8e2h1zDHHGM+JpnrRft68edanTx+79dZb3bpKBSkgBYpTAYFfcbabSi0FVhoFoqNHqPC+++5rr776qnXr1s1tagDu2MgRBQDmxhtvdEA0ePBg5wFk2pfNCOxMZU1csYdp06ZZ69at3Ro9dvOyNm/NNdd06x8rCnj2mOIlsClk7Nix9uSTT7rfOdKFqXICHj4033777R34sX5w7ty57nk77LCDm+bl7wpSQAoUpwICv+JsN5VaCqxUCixYsMBNRwIl5QO7VPEIstEj225TNifg7apbt25qNGOzBlOxAF+dOnVcvTjEefTo0Vnr+Je//MV5BdGQI26ijR6Zkb/66it3CPTGG2/s1vplBqZ50RGPoIIUkALFrYDAr7jbT6WXAlJACpSCHx68bIEjYIBEBSkgBaSAwE82IAWkgBSQAlJACkiBlUSBggE/Fh9nTlusJPqrmlJACkgBKSAFpEANKsBSBg4vZzlErsA610aNGpX52CddDVYr56NrHPw4roGjFho3buzW4LAYm8NXFaSAFJACUkAKSAEpUJUKcBrAbbfdZs2bN3frZIcNG+Z4JAqcj8mOd44yYp0rO9vZXBWXrirLXNm8axz8+vXrZyxURkwWaa+22mo2a9as0hP5K1tBpZcCUkAKSAEpIAWkQHkFAL169eq5w8vx5nFaQNOmTa1Xr16lUTk1gCOluK2GI6S4GYjbbeLSFbLaNQ5+uFdr1aplq666qjuDi7s1P/30U/c3BSkgBdKtAJsRuIGDwHs/btw4982bO2HpAziChW/ZbE7gWziHDHOcCzdKcLRLZsj1WeYzMuOXz5vPJk+e7GYeuNu30IK0KrQWUXmKXQHOsKSv4cBh51wfAAAgAElEQVR3AndUc0QSVxpGgf6GayMPOeQQxyjRcUZx6QpZmxoHP8ThKiAOFOWQ0BEjRpR26AwC0dlSkYh0/lw9pCAFpEDxKsANGpw7B9RxDh3hsccec+fEcQAz37A5WoR7eVu0aOE6Zm6UeOKJJ4wryvj7brvt5gAwCuU/4wiX8s+I4n7yyScr5M35eJz517JlS3eGXaEEaVUoLaFyFKMCHHHEPdOZgUPduX+aQ8y5w5t3n8AtQFxvOGjQoNLoV111let3WJLGNPDpp5/ubg2KS1fIWtU4+DG9e9RRR7lDQqFt3KwVBVytXE4ehf/973/uWiEFM2nhbwXSqma14jw5Ot3x48fbpZde6pZ73Hzzze4wZg4P3nbbbZ33jc4Z7xvvPVeMDR8+3M0KkI67ZLmyjQBAPvzww2U+o3PPfEZmjenYM/Pm4Ge+6b/11lsO+jjUOEmoCruSVklaIl1pqsKu0qXQH7Upr1V5ZsisNzOO3N3NJg1mGJjCJWTeTMNh5VxhyOHveP+4Nejdd9+NTVfI+tY4+N177702atQo76uUBH65zUmdg/+rJq0KQys8/aynYa0NN3Gwxpf1NlwZhvcfEFx77bVdhwzI4ekDAD/66CMHaRzaTKfN9DDeuszPunbt6ioZPYNdeXgA2bn3zjvvlMmbdHgIn3vuOXcIdCGBX9RS0srfZtMWU/2Vf4uGgB+5tmrVygYOHOg8/R06dHD7DehrmHlgE8cBBxxgJ554ouuT8Pgx3cu1kdnStW/f3r+gNRizxsGPjp1rlzLDxx9/7O7fzBYEfgK/fLwv6kj9VaxKrSKYYa0N0HXOOec4KGO9H0DHLn88fuyqY+E1nrrzzz/fXnnlFQeLAB/xuG2CfiTzMzrxTPDj2z1TvKwn5hmZeeN1JBQD+Ekrf9tNS8yqfAfTolFUj1Dw4/7uLl26uOSdOnVyswrMNgB/3E/NVPEJJ5zgPHys/73vvvuc9y9bumLZm1Dj4BdqdAI/gV+ozWSLr47UX8Wq1CoCP0rDt26uH2P5B4uply5d6jphvIB8EWRalxkCOmM+O+OMM9wRC1HI9VnmMzIHh/J5Fwv4SSt/201LzKp8B9OiUVLwIx1XQjIjkGupGdccsps3c02xT7pC1VbgV6gtk6Bc6hz8RZNWhakV98+uvvrqpYVj7R+bvzIPVqWD5rD3bN+uK/qsfI2z5e2vSvaY1WlX0qqyrVU86avTropHFb93sKI1fsVe16TlF/glVa4A06lz8G8UaSWt/BXwjym7klb+CvjHlF0l10rgt6J2Aj9/eyr4mOoc/JtIWhWGVmk7m64q7Upa+dts2mJWpV2lXSuBn8AvbTZepj7qHPybV1rVrFZMybI4misbL7vsMlcYOui99trLHdXCgc2su2EXLsercNQKGzduuukmt+iav7MQe+utty6tSPnPNthggxWeEUWeMGHCCnmz4eOll15yO3oLaVevtPK31bTGVH/l37Khmzv8c05PTHn80tOWOscvoC3VkfqLVRVa6Ww6f/2llb9WaY1ZFe/gyqKVPH7y+KXV1l291Dn4N6+0KgytdDadfztIK3+t0hZT/ZV/i8rjF6+VPH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpTK51N598u0spfq2KPqf7KvwUFfvFaCfziNSqaGOoc/JtKWkkrfwX8Y8qupJW/Av4xZVfJtdLmjhW1E/j521PBx1Tn4N9E0kpa+SvgH1N2Ja38FfCPKbtKrpXAT+Dnbz1FGFOdg3+jSStp5a+Af0zZlbTyV8A/puwquVYCP4Gfv/UUYUx1Dv6NJq2klb8C/jFlV9LKXwH/mLKr5FoJ/AR+/tZThDHVOfg3mrSSVv4K+MeUXUkrfwX8Y8qukmsl8BP4+VtPEcZU5+DfaNKqarS66qqr7Ndff/XPPGUx58yZY2uttVbKapWf6qy66qrWu3fv0sz0DvrrKq2SayXwE/j5W09ATO4UrVu3rtWvXz8gVf6jqnPw11RaVY1WXc/vag/e/qB/5oq50ihw1cknW+/BgwV+CVo83/1VoYxZCaSITaLjXGIlMu3qzaLRvffea2eccUbpJ5tttpkdffTRdskll9iaa65ZJsVPP/1k66yzjnXr1s1uv/32eMWrMEa+O4cqLGqNZy2t/JsgRKszLjnD/vfT//wzL/KYm629mfEThR9++MHWXXddv1r973/cs+gXNw2xNtvMLr7nHoFfgrYMeQej7A899FB75plnVnjad999Z40bN048Zv373/+2Aw44wOV98MEHJ6hN1SYR+MXrK/DLotE999xjZ555ph1yyCG2+eab2/PPP28ffvih9enTx6688soyKRYuXGh9+/a1v/zlLzX+EiTpHOJNJJ0xpJV/u4ZoNXrmaONnZQl7t9jb+IlCiFY2erS5n5Ul7LOP2V57JdNqZdEoRz2D7Or3PICy//u//3NjWb169dxfa9WqZddee63169cv8ZgVgd+IESPcGFloQeAX3yICvwrAb+TIkXbQQQcZhgQAHnbYYXb22WfbpZde6n5/+OGH7ZFHHrHTTjvNjjrqKLvwwgvt9ddft+7du9s777xjW221lV1xxRXWpUsXe/nll8ukI2/yzGdI0jnk8/nFlJe08m+tEK0Efv8zZgi8gsDPXysvQdMbKeQdjFSIwG/+/PnWoEGDUnF+/vln22+//dyY9fe//93+9re/2W677eacG19++aWdfPLJbnYLp8bFF19sTz/9tEvfoUMHu+222+yFF15wHr9s4Pfoo4/awIEDbdq0abb33ntb//79rVmzZvbaa6+5vKhHu3bt3Fi43Xbbuecxpo4ePdpWW201O+WUU5wjZe7cue4ZPHPcuHFujKWM5D1s2DDbeuutXVl23nnnFRpd4Bf/HhQM+C1ZssQWL15cxkCzFb/8Qs0kL0ScLJHH7+abb7a//vWvzsC5J7Nnz5725z//2b0whN13392GDBli22yzjXOb33rrrc7ICeeee67961//skmTJjnjHj9+fJl0Tz31lDVt2jSuKEGfV4UWQQUoosjSyr+xQrQS+An8clqWPH7+L125mCHvYHnww0kRefwYu/bdd9/S5UnMYK233nouSQRgAOBnn33mxqxjjz3Wzj//fKtdu7Yb35544glr2LBhVvD74osvbOONN7bOnTu7zwFIvI3AGn9nHCSv+++/39q2bWvPPfecHX/88TZ8+HAHhVOnTnXTx48//ri1adPGmjdv7srFF6lBgwY5IKRsOFbuu+8+Y8r6q6++cuXJDEnAb9myZQ50y+eVmS/LOFjqFWmZuDELIGGNg9/SpUvtgw8+cMZQp04d9w2holCd4JdZjtatWxuw9sYbbziAu/76652xZq7xO/zww923nLvvvtutEcT7h4H/85//tA022KBMuqpo+ySdQ1WUoxjylFb+rRSilcBP4Cfw83+3fGOGvIPlwY8xCXAjAGOdOnVaAfzw/LG2nRms4447zpiRYuzCgwdc4ZEbO3assWt/1113zQp+s2fPLoU1poDbt2/vwO6TTz4xxs/Bgwe757/77rs2a9Ys22uvvWzttdd24+Jjjz3mwAvPImmBRcCPsuJ4+fbbb93/cbbgoYzKw7Tz/vvvXynww3mD95D8cUDhUWQNZBSAYOqx0UYbuXKcd955ztOIsycKH330kbVq1cpBazGEGgc/LhrnWwfGsMsuuxQU+N1yyy0O5Pi2En0r4hsPhhoZXCb44cLGvT506FA3vfv+++87A7n66qudazozXVUYR5LOoSrKUQx5Siv/VgrRSuAn8BP4+b9bvjFD3sHy4Fd+qjdzzIo8fkztMqvFLBUeO8Bv5syZDm6OOOII22GHHdxRPBWBH88dM2aMc+IwHQwkdezY0TlB2GjC2HnkkUcankHK0KRJE+cQOfXUU51HD+hioyQcAHwBYr169XJrEiMnCp7AffAc/x7YdLn99tsnBj+eiQePY5gaNWrk6stMHM+NQteuXV09eBZeP2bxMssAGDLuA6OAbDGEGge/SKQ777zTPv3004ICv2iNX2ZDRuCHYfONJvMlwguIMW+55ZYOZvkmget6ypQp7gfwi9JVhXEk6RyqohzFkKe08m+lEK0EfgI/gZ//u+UbM+QdzBf44e1jGpax66GHHjJm24A/1tplW+MH+ABEbIJkrMNbx3Qs3j2mSIFHwBG44v/kSz6s4cPDxzQu8MlSqwMPPNCB3+WXX+4cJz/++KPbLc+6eTyHlO2tt95y42v5JVMhU70zZsxwaw6nT5/uZBswYIBNnDjRwWsU2LiJt49NnjiCbrzxRvvTn/5UBj7xOuLNLJZQ0OCHQUD65QNTrFFI8kLENU50nAs7ojBAH/Bj7QLT1A888EAZA7joooucoZQHxrgyJPm8KrRIUo5iSCOt/FspRCuBn8BP4Of/bvnGDHkHfcGPMQuwYjYr8qw9+eSTziuH04P1bnjq2AzCJgucFqwXZFo423Euy5cvt2OOOaZ0unPDDTc01snjKbvmmmvcswhrrLGGmzHDe8dMH4CId5DANC5jJV7KTPDjM8ZjwPG9995zcZmR69GjxwoSZgO/8pGYxub5eO/wcLIZhcBsHV5LPJBRwJnDtPRNN93kwBDvYPQ5z+Iz/i2mtX8FDX7ZXorqWOPn+zLmirdo0SK3OJaNHhh5dYUknUN1la3QniOt/FskRCuBn8BP4JddAcYFAjeYhIaQdzA074ricwsPoAP8+Ibvv//egdsmm2xSJgk7dfEAtmjRwl14EAXW+TNeApo+z/n8888drGbuVM58UIjHL1pXyOYOjrqJ9hiwgSQK7D4GYJnuxTO4xx572DfffOM+BpipC17JYgoCv2JqrZiy1lTnUIwSSiv/VgvRSuAn8CsE8Hv22Wftv//9rzs2JB+BAZ6lPF9//bUXnJR/ZrR7FUCIPF/l4+C9AjxYd8ZGx4pgJh91SmseIeCHBmzKYKq5ZcuWzrPJVDUeQaai2ZTCGkSAlLWGHOGG5xPPIIG1+6xH5LSPYgoFBX7QNFvGKwrF4PGrKQMIGaBrqoyF8lxp5d8SIVoJ/AR+hQB+bChgyU7kyfG39uwx2fzA2MMOVzYkhASuR8ObxdFgd911lzu/Lltgt+gdd9xhv/32WxmPGHFD3sGQsqUxbij4Ma3NZkwC086sa5w8ebKDv3nz5jntOeoGEGT6Gkjcaaed3PQ0QIhXtKavaw1tx4IBP9+CC/xyK6XOwdeK1JH6KxWmlcBP4JcE/FjzxcYBPC4MxGyQ40B8ju9gOg7PHQMyv7OQnrVWDLoclM/aKxbeMwV32WWXuY0Ap59+uhuYGchHjRqV8wDhXAfus14NDw9Hc7F5gCU7r776qgO/VVZZxa3x4odpW9ZxR+CQre6UFy/R+uuv79a6sSmQDQ4cDcZ0KIcTU95M8GNzAV6lk046yR1qzHWgHCfGlCjPwnOYOV0a8j6nPW4o+KEHcM5UdEVn6zKFHZ3uUewaCvyKvQUzyi/w829MaVU1Wgn8BH5JwI8ptBNOOMElBXYefPBBB0qAFrs42VDA+XLAHtOheGDwjkW7KzncF1BjHR1Hkpx11lluYyC7UQGlbAcIs1kg14H7rOHiWJFtt93W7eTEy0OgPBwezKkNbDTgGS+99JL7F/DMFoBHygOEMo0IMPI3ZrdeeeUVY1qadWtsAqROnKXHwclsOgB2yZsycKwIt1vgNYzOkfV/i1eemEnAb+VRp6SmAr8Utbhgxr8xpVXVaCXwE/hVBvyANs6NY8cmHj+8YqyvmzBhgttkwEHEeMzefPNNwwPDuqyPP/7YTaNyDRlwhBctc6qXtNkOEMaLR5psB+7zLOCOI8a4WpNpPwAM8GMXJ5/zDM66wzMX7YrNVnc2NACxeC3x+JEn3jvOhKO+9EUAIFejAX5RiM7fizyBnGbB2j8Al/q8/fbb/i/xShRT4Bff2AK/eI2KJoZgxr+ppFXVaCXwE/hVBvyi+1/xsJ1zzjnujDe8e0zfcvAvgRuSgCQO/weeOPcNgAIAgTk2YLArM1rjx9RxtgOEgTZuich24D7PIj2eP6CNM9o4qgvPHN5D/sb0bBQAMQ7x9QE/ysL5c5SRc2DJNxP8yJtpaiAQDQBdvIqAX3RkCFOO//jHP/xf4pUopsAvvrEFfvEaFU0MwYx/U0mrqtFK4Cfwqwz4cbYaQMPOV7xrAB/XabGODk8XGytY88Z5cUx5AmGAEVOofM7UKAcBkwZwwzPIdG22A4Q5Qy7XgfuspeOsOp6Ft48ycZ4dZeIsO/JlXSLP4jBhpprLXx0W6VDe40dZNt10U+PMPLyGrB18+eWX3dVkwB515rBj1pxxvhwQ3K9fPzcVzC5Sfgce87Vj2b8nKI6YAr/4dhL4xWtUNDEEM/5NJa2qRiuBn8CvMuDHFZfRAb3c5oS3D3ACtqLD/NlZCXRxVRebHgA+PGR4+4jP+jdgjHVyBDZq5DpAONeB+4sXL3YePDZlENhkAuzhTcTL2LNnT7c2j8AtFXgNc+3sjMAvuoUCgIsuIeDAYrx5bFYB8gA/jnPBo8kaP9Y78hneRepEAApZnwj0KqyogMAv3ioEfvEaFU0MwYx/U0mrqtFK4Fdg4Lfbbmbt25s98YTZ1KkrNvqZZ5o1avTH37/+2uzBB8123tlszz25ZsFs9myzBx4wW7rU32iyxeSO1b32Kv0k8x2MNnewpo9rudg5yxEomQFvG0dnADys9YsCYMcULECYef4dOzU5GoU7WAm5DhCu6MD9L7/80t0fm+2wYICO5/E5sMaVZdkCV36VrwtTvOzK9T3gH63wduIN5EYLDhtWyK6AwC/eMgR+8RoVTQzBjH9TSauq0UrgVyDg17y5Wbt2Zi1amAEJTz1lNmnSio1+5ZW4xMx+/bXks6++KoFErsXk7wsXmgFgXGn1yCP+RlMJ8MO7VmwB8GPqNlvgxgemdysT1F/5qyfwi9dK4BevUdHEUOfg31TSqmq0EvgVCPi1amXWsaNZ/fpmeMeAksmTyzY6n3GzxVtvmY0da/bLLyWf7713yc8bb5gx1XnZZSUQeO21/kYTCH6zZ8+2Dz74wHbddVdba621KvecFKZWf+XfqAK/eK0EfvEaFU0MdQ7+TSWtqkYrgV+BgF/UvEcfbbbNNtnBjzVip5zyhyHg3Xv6aTNupth3X7P33jN76SWznj1LvIZ9+pQAYNJQwVRv0ixXlnTqr/xbWuAXr5XAL16joomhzsG/qaRV1Wgl8KtG8GvShJ0FKzbkjz+aDRtW8veKwG+LLcwOO8yMC+fnzClZ1/fDD2Z33VXiCcRTCOhF68n69TNbssTfcMrHFPgl1k79lb90Ar94rQR+8RoVTQx1Dv5NJa2qRiuBXzWCHx67E09csSHnzjUbMCAe/NZe24yfL780W7y4ZEq3bt0Sz96qq5q1bVsyVcy0cZ06ZoBfZYLAL7F66q/8pRP4xWsl8IvXqGhiqHPwbyppVTVaCfyqEfx8mrC8x2+ddcy6djWbOdOMA5E7dSoBP/4P6OH9GzXK7OSTzdjhy05gpn35/e67fZ6YO04NgR8HPHPlW+ZO4GyFnDx5sttpu80229iyZcvcIcvz5s1zN3W0YJPM74HjXDh3j7icIZi5M9f3WaFCqr/yV0zgF6+VwC9eo6KJoc7Bv6mkVdVoJfArMPBjKnjbbf9Y49esmRk3Tnz3ndmdd5qdfbbZ+uuXGAPHtTz8sNmMGWannmq20UYlf8cb+M9//rH5w990ysasIfC7+eabrUePHhWC3zvvvOPO0+PqN344VJnzBHfbbTd77bXX7DK8ob+HIUOGWOPGjd3RKuzW5TDlKPg8K4l86q/8VRP4xWsl8IvXqGhiqHPwbyppVTVaCfwKDPx8mrlBA7PGjUs8f5ln9XEEyeqrl5zjl49QQ+B30003OUDjDEBu4Vh11VWNmzk4ZuWRRx6xfffd12bNmmVvvfWWOxQa8AMCt9tuO2vWrJndcMMN7uq01dHCzB0azcHLHBrN1W4cPzNq1CiXL9fIZT6LA6nzEdRf+aso8IvXSuAXr1HRxFDn4N9U0qpqtBL4FSH4+ZtC5WLWEPjhhTv66KNttdVWs8cee8y4Fo73nzt/77//fgeAAN5zzz3npm0BPwIHND/11FPOu0fcKAwbNsxBH7d77LTTTu7g6LFjx7rr18o/C2DMR1B/5a+iwC9eK4FfvEZFE0Odg39TSauq0UrgJ/DLaVk1CH5M9XLX7kMPPWR77rmnffLJJ3bkkUe6O325cq08+HEHL+v4jjjiCHdTRmbgrlymfufPn29cK3fQQQe5O3vJL5rqjZ513nnn+b9oFcRUf+Uvo8AvXiuBX7xGRRNDnYN/U0mrqtFK4CfwK3TwO+GEE4x1elx7xtTsKaecsgL4DRw40IEd07eEE088sfTqtxEjRhhXuZGee3PXXXddgZ9/d1LlMQV+8RIL/OI1KpoYghn/ppJWVaOVwE/gV2jgl6s8TNXW57iaBIH7fbmnt169eglShydRf+WvmcAvXiuBX7xGRRNDnYN/U0mrqtFK4CfwKxbw838Daj6m+iv/NhD4xWtVMOCHW53Ft3FnLbHD6mIuEP896IX4o5GlRbzBy278NUqilcBP4FfI4Pf888/bFlts4X4qCmzW+Oijj9wZfltvvXVp1E8//dTGjRvn1v21a9fOTfdGYcKECfb6669bt27dwl+ymBTq2/0lTQJ+nNu4cOFCa9iwof+DzNx5j0nSBT2kCiLXOPh9//33dtxxx7nDMNlif9FFF1lXDhjNEQR+ua1AnYP/GyKtqkYrgZ/Ar5DB71//+pdtu+227idXmDFjhj3++ONudy8AmOloYPwBBsePH+92A3PYcxTYOMK5f5mg6P+WVRxT/ZW/kqHgx3pPNvkA80uWLDF2bbOTOwqc48gB4K24wcbM7fA+5phj3DrRitL5l7j6Y9Y4+F1//fVut9U111xjX3/9tTVt2tQtqm3A2VJZgsBP4JeP10Qdqb+KIVoJ/AR+hQ5+n3/+uVubt8kmm9j+++/vjnQ566yz3Dl+DPx8vt5661mTJk3cLBTeQTx7v/32m9u1e/LJJ9u///1vB48//fSTffzxx25zCN5A4IHNI/kOIe9gvp9dbPmFgB/tjS3MmTPHbd7BWwuD9OrVq7TagwYNcm0P/OGgIvikK2Tdahz8TjvtNOcyh6CXL1/upnqnT59um222WVbddt11V9txxx1LP+NKHQ7MVDB3vZC08LMEaeWnE7FCtJq9ymz7qv5X/pkXecxmi5tZ01+bJuqPtp4927b6auXRalqzZvZx02Ra5ctM1llnHVu6dKnNnTvXDfA4GwA8/uUMPwAP2COwgQMHxFe/txGfEZdxio0dXN3G5+THOwIs8i+bRvIdQt7BfD+72PIrr9Xmm29exmubWR+8u/AHzEEYMGCATZw40X0ZiELPnj3t7rvvdg6qzp07uwO9CXHpClm3Ggc/zlDihzOQCLxYfPPibkTWUrBmIjNcccUVpdTN33kJo3UWey5bZhsvX17Ieue1bJ/XqmWv1a5dmmemFnl9UAozk1b+jRqi1bKNl9nSjZb6Z17kMet8Ucdqf57sHaS/+mvmTRlFrkVc8V+rU8fG1nB/dcghh9i0adNs6tSp9o9//MPuuusud/AyA/4BBxxQevMGQDBlyhTnCXz44YfdoI+HkBs78ABxI8emm27qbgOJ4h577LFuapijXvIdQt7By377zf66bFm+i1Cw+WFX1/7uiSvPBPy/d+/eK5SdG1w4yHvSpEkO5rAJwtChQ23MmDGujaPAWY14dGl7IBDox/sXl65gBTOzGge/vn37Oi/V+eef7745rb322s7tmmuTR4VTvaNHm/GzsoS99zbj5/eg6QD/hpdWVaOVpno11ZvTsmroAOfM8mSu8YvGknvvvdd59zjTj+vXWLf3xBNP2CqrrGJ4CBngo8D5fgz8xOeOXu7zxaPEeX4PPvigu/5to+iOY/9XLDZmUH911VVmffrE5pmaCNQ3A+5CpnrZmIHXlk0aOJD69+/vZOnevXupPMSJvMDvvvuuuwXmgw8+iE1XyPrWOPiNHDnS7rjjDnvxxRfdy3brrbfaG2+8kVMzgV+GNAK/xO9WUEea+CnpSBiilcBP4FfI4JerbNnO9Msc8DPTAYjRvb3V9YaHvIMm8CuzVKw8M5RvMzZtAPQtW7a0Dh06WJ8+fdydznh8W7du7X7nBhaA78Ybb7SZM2e6+NnStW/fvrpMolLPqXHw4+XCxc6VN/zO5djsjMoVBH4Cv0pZvLyjwfKFDDoCP4FfMYJf8EtRzQlC3kGBX9l3MA78cD516dLFtWinTp1s+PDhNnnyZAd8rBfk6j429OAZ3HLLLR38sbEnW7rM432q2USCHlfj4BeV9osvvrANNtgg9iR0gZ/AL8jCc0QO6kjz8cAiziNEK4GfwE/gl/+XPeQdFPiFgR+ttWDBgtINP9laj2VoP/74Y5ljXnzS5d8S8pNjwYCfb3UEfgI/X1upKF5QR5qPBxZxHiFaCfwEfgK//L/sIe+gwC8c/PLfYoWdo8CvsNun4tJpjV/i1gvqSBM/JR0JQ7QS+An8BH75f+9D3kGBn8AvzgIFfnEKFfLnAr/ErRPUkSZ+SjoShmgl8BP4Cfzy/96HvIMCP4FfnAUK/OIUKuTPBX6JWyeoI038lHQkDNFK4OcPfld17Wp3PP54OozEpxb16pnx83tg3RRHoyisqAC7SDPPnwt5BwV+Ar+4d0rgF6dQIX8u8EvcOkEdaeKnpCNhiFYCvwDwu+wy63PttekwEtUirwrwpaD3kCGleYa8gwI/gV+cMQr84hQq5M8FfolbJ6gjTfyUdCQM0Urg5w9+XPm1Mj0+SkYAACAASURBVIfPPvvM3YbhFbjBqdwtTl7pijVSmza27sEHC/x82q8SBzj7ZJ/GOAK/Ym5VgV/i1guBmcQPSUnCEK0Efv7glxLzSFyNELtyNzLpViY/rXWAc9ABzn6ipiuWwK+Y21Pgl7j1ggadxE9JR8IQrQR+Aj9fqw+xK4FfgF0J/AR+MS+hwM+3lyrEeAK/xK0SNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfwEfon7pcJPKPBL3EZBg07ip6QjYYhWAr+AATod5pG4FiF2JfALsCuBn8BP4Je4Xyr8hAK/xG0UNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfyKBfyWLFliixcvtgYNGlRY5BtuuMEuvvji0jhlOg9d5F3G4BP3yCtBwqBBZyXQo6Iqhmgl8AsYoGVX/v2V+nZ/rQR+weC3bNkyW7hwoTVs2DDrW8nnP//8szVq1KjM5zAL7BLHLYX2qtf4Xb1Lly61Dz74wO6//36rU6eO9e/fX+DnayXy+PkqtUK8EJhJ/JCUJAzRSuAn8PM1+xC7kscvwK4EfkHgN2TIELvtttusefPmDuKGDRtmjRs3LjXjp556yq644grbeeed7YcffjCcTy1btrRLLrnEXn31Vdt2221tzpw5Ll0ucPR9J6orXo2D3y+//GJXXnmlvfvuu7bLLrsI/EJaXuAXolaZuEGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfN/gBevXq1XPghjevW7du1rRpU+vVq1epXR911FF29dVX29Zbb229e/c2mKVv3762zz772Ntvv+3itW3b1nr27GkHH3xw4vehOhPWOPhFlb3zzjvt008/FfiFtL7AL0QtgV9CtUIGaIFfwACdsD3SkizErgR+AXYl8PMGvxkzZli7du1s+vTp7rUaMGCATZw40c1AZoaffvrJYJQbb7zRnn/+edtjjz3cx8xW4jF8+OGHberUqbb22msXxetZbeA3adIkmzlzZhlRWrRoYTvssIP7WzbwGzdunL3++usrCKk1fr9LIvBL/JIFDTqJn5KOhCFaCfwCBuh0mEfiWoTYlcAvwK4EfiuAX3kjxUPXpk0bg0s6d+5s06ZNc1GGDh1qY8aMsUGDBq0AfkDf448/bqeddlqpR5D0d911l5vmHTFihO27776J34fqTFht4Dd48GB74YUXytStY8eO1rVr15zgl00Ibe7IUEXgl/hdCRp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfy8PX5s6GBjBps3atWqVTrj2L17d2fX7EG477777PTTT7fatWvbiy++aGeddZa99tprbnnaIYcc4uKxBvD77793EFgModrAL04MTfXGKZTlc4FfAtFKkgQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+3uCH8bZq1coGDhzoNmx06NDB+vTp49bsTZkyxVq3bu32Hlx33XXWvn17u/vuu238+PF2++2325/+9Cd7//33bYMNNrATTjjB9tprLweIxRAKCvyYZ7/11lsr1E0eP3n88vFiBQ06+XhgEecRopXAL2CALmKbyEfRQ+xK4BdgVwK/IPAbOXKkdenSxZl0p06dbPjw4TZ58mQHf/PmzbOnn37aLrzwQnfc3Prrr2/33nuvg0E2eNx8881uUwjwyDSx1vjlo2fIkofAT+CXD9MKGnTy8cAiziNEK4FfwABdxDaRj6KH2JXAL8CuBH5B4IctL1iwwObOnet29GYLTAV//fXX1qxZszIfM1W8aNGiogG+qPAF4/Hz7UgEfgI/X1upKF7QoJOPBxZxHiFaCfwCBugitol8FD3ErgR+AXYl8AsGv3zYczHlIfArptYqX1at8UvcekGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwC/mrRT4Je62CiChwC9xIwQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+Aj+BX+J+qfATCvwSt1HQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7Kqqwe+xx8wOPJCFcWb/+pfZuedy7klZO+jWzaxHDzOuPhs/3uzEE8169zY76qgV7WXXXc0+/TSxHRn1Je/fQ3m7Kr88LPmD0pNSHr9ibkuBX+LWCxp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdVSX4nX++Wf/+ZkuWlPysuqrZeeeZ3XHHH3bA7RU//FACg7Nnm228sRmwSPwjjvgjHmkJm21mNmNGYjsS+IVLJ/AL16xwUgj8ErdF0KCT+CnpSBiilcAvYIBOh3kkrkWIXQn8AuyqKsHv1VfN9tnHrGVLs8WLzbjx4qOPzLbd9g876NzZ7PHHS36OPbYE+L76yqx58z/iXHih2U03mQ0fbnb88YltyCWUxy9YP4FfsGQFlEDgl7gxggadxE9JR8IQrQR+AQN0OswjcS1C7ErgF2BXVQl+661ntsYaJR662283Y0r3//7P7OCDy3ry8PSttZbZL7+UxL/sMrNrry2J06RJiSdw3jyzddc1W7YssQ0J/JJJJ/BLplthpBL4JW6HoEEn8VPSkTBEK4FfwACdDvNIXIsQu6py8MNLtdVWZr/9Zvbhh2bPPbcikJx5plmjRn/U9+uvzR58sGSqkilMpi6/+65k3dv33yfWxSWsTN9eWfDbYQezJ55YsfzTp5sdcEDJ36kjdf71V7Oddy7RLAqs2XvjjZL//fRTCdyNHWu2554lfyPvI48sWe+X7TmhysnjF6qYCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqUvDbfXez/fcvAT1+6tYtAb+33y5blSuvNFu+vAR2CExfDhtW4s2qXdtszhwz1rd9/rnZ4MG+MmSPV5m+vbLg16aN2csvr1gu6rXNNiVTu0DyZ5+VwBx/zwxoctxxJVOwffqUeP0aNCjRCDieP99s0SKzhg0rp1GUWuAXrKPAL1iyAkpQmc6hgKpRE0UJGnRqooAF9MwQrQR+Aj9f0w2xqyoFv5NOMtt0U7OBA0s2JLBZAc/dnXf+UZX69c0uvdTsrbdKvFfADIG1bni+3nvP7NlnzVq3Lvn7m2/6ylB44FdRyVmXx/o81veNGFECwh9/bPbQQ+ba6D//KdFowICS9X8PPFAyxQsUr7OO2UEHmY0cafbKK2bt2lVOI4FfYv0EfomlK4CEAr/EjRA06CR+SjoShmgl8BP4+Vp9iF1VKfjhjVpllZJpyY4dzXbbrQRaHnnkj6qwM/WUU/74/8KFZk8/XeIB22mnEmCsU8fs55/NRo0qSV+ZUJm+vbIev4rKzZQudc4MTGvjMX333RJv4Pbbm02cWPJvrVola/nOOqtkI8fNN5tdcEHJxo6ePSuj0B9p5fEL1lHgFyxZASWoTOdQQNWoiaIEDTo1UcACemaIVgI/gZ+v6YbYVaXBjw0F2c6Q+/HHkulaAp+zO5VdqPfcU+L1i8IWW5gddpjZN9+UeK9Y18aRJWxSwOvHmXbAHhAI/N1yi68M2eNVpm+vSvALqRXrITfZxGzSpJBU4XEFfsGaCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqNPjhseMQ4fJh7tySM+g4hJhNCEDdkCFm/D0zsHaPny+/LJnmZF1ftBawUyczjjl57bUSLxYexL59K7dbtTJ9e6GAn68hVDaewC9YQYFfsGQFlKAynUMBVaMmihI06NREAQvomSFaCfwEfr6mG2JXlQa/igrVvr3ZHnuUTNdOnVqybg1v3n//a9a1q9nMmWZffGEG4AF+/L9t2xLvH7t6gT2mM5nq5Iw7fueQ48qEyvTtAj9d2RZjewK/yrycNZ22Mp1DTZe9hp8fNOjUcFlr+vEhWgn8BH6+9hpiV1UKfuecU3K1WGZg6vbhh81OP/2PjR5nn222/volsYBEPuc8u0MPNdtxx5K/A41PPWU2ebKvDNnjVaZvF/gJ/AR+lXv/Cjp1ZTqHgq5Y1RcuaNCp+uIU9BNCtBL4Cfx8jTnErqoU/HwLTDymcYFEPH+Z99Pyd9YR8nfOAqxsqEzfLvAT+An8KvsGFnD6ynQOBVyt6iha0KBTHQUq4GeEaCXwE/j5mnKIXRUM+PlWrrLxKtO3C/wEfgK/yr6BBZy+Mp1DAVerOooWNOhUR4EK+BkhWgn8BH6+phxiVwK/ALsS+An8BH6+3VARxhP4JW60oEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gVyzg99NPP9maa65pdTgEs4Jwww032MUXX1wao0znwcnh/KwsQeCXuKWDBp3ET0lHwhCtBH4BA3Q6zCNxLULsSuAXYFcCv2DwW7ZsmS1cuNAaVnCN3A8//GDrcuRPRvBJl/gFqcKENb6r9/PPP7ejjz7aGjdubHXr1rWdd97ZLr/88pxVFvhlSCPwS/xqBA06iZ+SjoQhWgn8AgbodJhH4lqE2JXAL8CuBH5B4DdkyBC77bbbrHnz5rZkyRIbNmyY45EovPrqq3bWWWc5Npk/f76ddtppdvDBB1tcusQvRjUkrHHw69evn/3222/Wp08fW7Roka222mo2a9Ysa9asWdbqC/wEfvl4L4IGnXw8sIjzCNFK4BcwQBexTeSj6CF2JfALsCuBnzf4AXr16tWzOXPmWKNGjaxbt27WtGlT69WrV6mJ77PPPnbZZZdZu3bt7LXXXrO///3vNmXKlNh0+XhHqiqPGgc/3Ku1atWyVVdd1Z555hnr0aOHffrpp+5v2YLAT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5g9+MGTMc0E2fPt2Z9IABA2zixIl2//33l5r4zz//bA0aNHDL0OATmKVnz56x6fLxjlRVHtUGfpMmTbKZnHieEVq0aGE77LCDLV682K677jq75ZZbbMSIEbbvvvvmrK/AT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5gx9c0rlzZ5vGPctmNnToUBszZowNGjSojIl/8803ds4559gnn3xiI0eOtLlz53qly8d7UhV5VBv4DR482F544YUydejYsaMdc8wxdtRRR1n9+vUdbeNmjcK4cePs9ddfX6He2tzxuyRa45f4nQgadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8VgC/8kbatm1ba9OmjfPe4c1jkwazjP1/v2qve/fupUnYh8B074knnug2ljI76ZMu8YtRDQmrDfxy1eXee++1UaNGOYr2CfL4yePnYydxcYIGnbjMUv55iFYCv4ABOuV2E1e9ELsS+AXYlcDP2+OHjbZq1coGDhxoLVu2tA4dOrj9BoAh6/hat25txx57rPuXad7MkC1de+59LoJQ4+B38skn2wMPPFBGqo8//ti23HLLrPIJ/AR++XivggadfDywiPMI0UrgFzBAF7FN5KPoIXYl8AuwK4FfEPjhdOrSpYsz6U6dOtnw4cNt8uTJDv7mzZtnTZo0sW+//bbU5Ndff31j6jdbulx7E/LxvuQzjxoHv9DKCPwEfqE2ky1+0KCTjwcWcR4hWgn8AgboIraJfBQ9xK4EfgF2JfALAj9secGCBW7dXuZSMx8bT5rOJ++qjCPwq0p1qzpvrfFLrHDQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7ErgFwx+iY24SBMK/Iq04VyxBX6JWy9o0En8lHQkDNFK4BcwQKfDPBLXIsSuBH4BdiXwE/jFvJUCv8TdVgEkFPglboSgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMESrfIPfGvXXsEO3OdQ2XnNjm//bfHvjyzfsrS/fWkHYztt2tq3W3cp+W/abffjdh/bcJ8/ZsuXLXLzdNtzN2m/e3p6Y8oRN/X5qXhtl7xZ7Gz9RCNEqrwUpwsyCtBo92hz8rSyhMn27wE/gJ/BLcU9Rmc4hxbL4VC1o0PHJMMVxQrTKN/gdtd1Rtm3jbW3uorm2xiprWC2rZdeNu84WL11cqvjuG+5u+2+xvwM9furWruvAb9bPs6zdZu2sxVotXLqnPnrKJn0zKa8tJfBLLmeIXcnjJ49fTksDdHv3zvnl64YbbrCLL744uaGmMGWt5cuXLy+mepVvxDKdh74VlvmmU0ztWt1lDRp0qrtwBfa8EK3yDX4X7HGBrV5/des7pq8dsc0Rtv3629vjUx53Xr0onLTjSbbpWpvawHcG2tLlS+28Xc+z7xZ8Z+M+G2cdt+xo9evUt9q1atuTHz1pk7+ZnFd1BX7J5QyxK4GfwE/gl/xdK59S4Jc/Las/J3n8EmseNOgkfko6EoZolW/w22OjPdw07a9Lf3UAt+i3RXbLG7fYkmVLSsVtUK+BrVJnFftp0U/WcYuObmp32g/T7JHJj7g4R29/tG2z3jYCvwIzxxC7EvgJ/AR++XuBBX7507L6cxL4JdY8aNBJ/JR0JAzRKt/g13XHrm6qdsFvC2y1uqs5Qe977z6b/fPsFcSNpoWBwnsm3GPfzf9O4FfAJhhiVwI/gZ/AL38vc8GA308//WRrr712bM001ZshkcAv1l5yRQgadBI/JR0JQ7TKN/j13ru3LVm6xK4Ze43tucmetu+m+7p1eqzXi0KtWrXs3Nbn2roN1rU5i+bYkIlD3JrAKMjjV5h2GGJXV3XtagMef7wwK1IVpapb16xevdKcly1bZrVr1/Z60sJ582zRkj884l6JijjSXi1a2H9mzCitQXm78lnjh74LFy60hg0b5lRi0aJFVqdOHauX0S7Z/lYMUtY4+E2dOtWOP/5423zzzW3BggXWpUsXO+aYY3JqJ/AT+OXjxQoZdPLxvGLOI0SrfIPfJW0vsVXqrmKvznjVWjVpZes1WM+e/fhZW27LHQiO/Wysrb3a2saU8NJlS92uXT77YeEP9p8Z/5HHr4ANL8SurrrsMutz7bUFXBsVraYU2KdtW3t17NjE4DdkyBC77bbbrHnz5rZkyRIbNmyYNW7cuDS/+fPn2+TJk61nz57WvXt3O+ywwyzb32qq/kmeW+Pgd+utt1rTpk3t2GOPtZdfftkuuOAC++9//yvw82lNefx8VMoaJ2TQSfyQlCQM0Srf4LdLs12sw+Yd3Po+gG7WvFk26L1Bbhcvu3k52mWzdTazxg3+6KiRnanhG1+/0bVANAWszR2FZZAhdvXjjz8WVuGruTQzZ860Fi1aeD2V2bOVLeA4ikKIxw/Qw4M3Z84ca9SokXXr1s3xSK9evUrzg0cefPBBe+aZZ+zmm2924Jftb8WkeY2DXyTWwIED7Z577rETTjjBLrzwQoGfjxUJ/HxUEvglVqkkYcgAnW/wi4rebI1m9u38b8ts6qhktfKSXLt6k8sYYlfJn5KOlNLKvx1DwG/GjBnWrl07mz59unvAgAEDbOLEiXb//fev8MAjjzzSzU4CflHI9jf/ktZczGoDv0mTJhnfWjID32B22GEH96f+/fvbk08+aQ0aNLAXX3xR4OdjEwI/H5UEfolVKhzwq2QVqiy5wC+5tIIZf+2kVXKtKlrjB5d07tzZpk2b5h4wdOhQGzNmjA0aNEjg5y957piDBw+2F154oUyEjh072lprrWW77rqrNWvWzLlb2eAxa9Ys9/9x48bZ66+/vkKmmYcx6hw/3RqQxD7VkfqrFqJVVXn8/EtbvTEFfsn1DrGr5E9JR0pp5d+O2Tx+5VO3bdvW2rRp4zZ04GxicwebxHBAEVjLVz7I4+ffBrExL7nkEltllVWsd+/e9uGHH9p+++1ns2fPdrtnsgVt7shQRR6/WPvKFUEdqb90IVoJ/AKO3fBvglTGDLGrVAoQUClp5S9WyFQvubZq1cpYatayZUvr0KGD9enTxwDDKVOmWOvWrUsfLPDzb4PYmMDe6aefbp988onVr1/frr32WrfOL1cQ+An8Yo3KI4I6Ug+Rfo8SopXAT+Dna1khduWbZ1rjSSv/lg0Fv5EjR7rTRAidOnWy4cOHu128wN+8efPKgB/xDj300Ar/5l/SmotZbWv84qr41VdfWZMmTWLPKhL4CfzibMnnc3WkPiqVxAnRSuAn8PO1rBC78s0zrfGklX/LhoIfOXOU3Ny5c92O3pUhFAz4+Yot8BP4+dpKRfHUkfqrGKKVwE/g52tZIXblm2da40kr/5ZNAn7+uacjpsCvmNtRa/wSt546Un/pQrQS+An8fC0rxK5880xrPGnl37ICv3itBH7xGhVuDIFf4rZRR+ovXYhWAj+Bn69lhdiVb55pjSet/FtW4BevlcAvXqPCjSHwS9w26kj9pQvRSuAn8PO1rBC78s0zrfGklX/LCvzitRL4xWtUuDEEfonbRh2pv3QhWgn8BH6+lhViV755pjWetPJvWYFfvFYCv3iNCjeGwC9x26gj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LSvwi9dK4BevUeHGEPglbht1pP7ShWgl8BP4+VpWiF355pnWeNLKv2UFfvFaCfziNSrcGAK/xG2jjtRfuhCtBH4CP1/LCrEr3zzTGk9a+beswC9eK4FfvEaFG0Pgl7ht1JH6SxeilcBP4OdrWSF25ZtnWuNJK/+WFfjFayXwi9eocGMI/BK3jTpSf+lCtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK0EfvEaFW4MgV/itlFH6i9diFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VwC9eo8KNIfBL3DbqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1EvjFa1S4MQR+idtGHam/dCFaCfwEfr6WFWJXvnmmNZ608m9ZgV+8VgK/eI0KN4bAL3HbqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tK/CL10rgF69R4cYQ+CVuG3Wk/tKFaCXwE/j5WlaIXfnmmdZ40sq/ZQV+8VoJ/OI1KtwYAr/EbaOO1F+6EK0EfgI/X8sKsSvfPNMaT1r5t6zAL14rgV+8RoUbQ+CXuG3UkfpLF6KVwE/g52tZIXblm2da40kr/5YV+MVrJfCL16hwYwj8EreNOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yAr94rQR+8RoVbgyBX+K2UUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr1VBgd+PP/5oDRs2tFVWWSVnyW+44Qa7+OKLSz8v08ijR5vxs7IEgV/illZH6i9diFYCP4Gfr2WF2JVvnmmNJ638WzYJ+C1btswWLlzo+CNX+Pnnn22NNdbwKghxV199datVq5ZX/OqOVDDg99lnn1nLli3t+eeftz322EPg52MJAj8flbLGUUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbNhT8hgwZYrfddps1b97clixZYsOGDbPGjRuXPnDChAl2yimn2CabbGJwyv33329//vOfrV+/fo5XmjVr5uJefvnlzmnVt29fq127tot7+umnW5cuXfwLX00xCwL8Fi9ebEcddZTNmDHD7rrrLoGfb+ML/HyVWiGeOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yIeAH6NWrV8/mzJljjRo1sm7dulnTpk2tV69epQ9s3769XXjhhca/Tz75pN1zzz324osv2vHHH2+XXHKJbbPNNla3bl0XH9DbaqutXPxPPvnE/f7rr79a/fr1/StQDTELAvx69Ohh++23nw0YMMCuvPJKgZ9vwwv8fJUS+CVWyixk0BH4Cfx8TS3ErnzzTGs8aeXfsiHgh7OpXbt2Nn36dPcAGGTixInOqxeFjTbayMaPH2/8+/7779v+++9v33zzjbVq1cq+/vprN0V82mmn2bXXXms33nijPLx/pgAAIABJREFUA0nA8c0337S//OUvNmvWrFKvoH8tqjZmtYHfpEmTbObMmWVq06JFC0fFzzzzjD300ENOUIFfQIML/ALEKhtVHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEPCDSzp37mzTpk1zDxg6dKiNGTPGBg0aVPrANddc032OJ5C899prL/viiy/svPPOszPOOMPWXXddO+SQQ+yiiy6y7bbbznbffXc7/PDD7Y033rCPP/7YovV+/jWo+pjVBn6DBw+2F154oUyNOnbs6Nym3377rRPvnXfeca5R5tiZQx83bpy9/vrrK6igzR2/SyLwS/yGqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tmw38yqdu27attWnTxnnrGjRoYGzuYCNG//79XdTu3buXJtlzzz3d33fZZRd799133Rq+ESNG2G+//Va6EZXPgTyWqs2dO9dGjRplm2++uYNKILHQQrWBX66KI8qiRYvcx6eeeqqdffbZdvDBB7vGyBa0qzdDFYFf4vdJHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEI8fuTJlO3DgQLe5tEOHDtanTx8DDKdMmWKtW7e2Cy64wNZbbz3r2bOnW7vHbl2Wp7HZg2nhDTfc0I488ki35u/77793XsFbbrnFTRfjPWQ2s9BCjYNfpiAHHnigXXrppVrj52slAj9fpVaIp47UX7oQrQR+Aj9fywqxK9880xpPWvm3bCj4jRw5snTnbadOnWz48OE2efJkB3/z5s1z6/+ik0bWWmstN4W7zjrruPV8zFgS2KMA7HEk3QEHHGBMD3/55Zf21ltvFdz6PspbUODn07Ty+Mnj52MncXHUkcYp9MfnIVoJ/AR+vpYVYle+eaY1nrTyb9lQ8CPnBQsWuCla1vFlC+z+nT17ttvgkXk2H+mWLl26wvl+zGTiCdQ5fv7tVmFMgZ/ALx+mpI7UX8UQrQR+Aj9fywqxK9880xpPWvm3bBLw8889HTHl8SvmdtRUb+LWU0fqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr5XAL16jwo0h8EvcNupI/aUL0UrgJ/DztawQu/LNM63xpJV/ywr84rUS+MVrVLgxBH6J20Ydqb90IVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWQeC3fPlyl2NNLljUGr+MRhX4xVt4jhjqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/Lhp++OGH3Rbm1157zeW47777uq3Of/vb39wZONUZBH4Cv3zYmzpSfxVDtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK1ygh/bl7l7rnfv3i6XnXfe2Zo3b278fcKECe62DULXrl3t9ttvd+fWVEcQ+An88mFn6kj9VQzRSuAn8PO1rBC78s0zrfGklX/LCvzitcoJfl999ZW7vPiss86yI444YoXzbbh/7j//+Y87xPDqq6+2ffbZJ/5peYgh8BP45cGM3Onqm222WT6ySn0eIVoJ/GRXvi9EiF355pnWeNLKv2UFfvFa5QQ/7q5jTR8/XEey99572/nnn581x8WLF1v9+vXjn5aHGAI/gV8ezEjgFyBiyKAj8BP4+ZpWiF355pnWeNLKv2UFfvFaxa7xIwuuUmN9H6dRN2rUKD7XKowh8BP45cO81JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WFfjFa+UFfkzjjh492uWWOT02adIka9iwYfxT8hhD4Cfwy4c5qSP1VzFEK4GfwM/XskLsyjfPtMaTVv4tK/CL18oL/PD4/fDDDyvk9sorr1iDBg3in5LHGAI/gV8+zEkdqb+KIVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWXuAXZTNv3jz79ddfrXHjxvE5V1EMgZ/ALx+mpY7UX8UQrQR+Aj9fywqxK9880xpPWvm3rMAvXisv8EPISy65xJ544gmXI+f3XX755bbnnnvGPyHPMQR+Ar98mJQ6Un8VQ7QS+An8fC0rxK5880xrPGnl37ICv3itvMDvqKOOctDHv6uvvnopAH799dea6o3XuOpi6OaOxNqqI/WXLkQrgZ/Az9eyQuzKN8+0xpNW/i0r8IvXKhb8fvrpJ1tnnXWsX79+dtlll7kcn376aTv88MPtvffes5122in+KXmMIY+fPH75MCd1pP4qhmgl8BP4+VpWiF355pnWeNLKv2UFfvFaxYIfN3XUq1fPTjjhBBs0aJDVqVPHrr/+ejfV+/HHH9uWW24Z/5Q8xhD4CfzyYU7qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/sjj11FNt8ODBLrc11ljDuLWDad/HHnss/gl5jiHwE/jlw6TUkfqrGKKVwE/g52tZIXblm2da40kr/5YV+MVr5QV+CxcutBEjRjjQmzt3rh1zzDEO/NZee+34J+Q5hsBP4JcPk1JH6q9iiFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VF/ideOKJdtppp5Xu4v3yyy/d1O+jjz5qTZo0iX9KHmMI/AR++TAndaT+KoZoJfAT+PlaVohd+eaZ1njSyr9lk4AfV9Ti4KroQgpmOpnxzAxcV8tyuPLnGc+fP99WW201q127tn/BqzFmheD3wAMP2IABA9wmjg033NDWX399V7Rvv/3WgD8OdWbjR2VCdC7g/vvv77LZeuut7eqrr86ZpcBP4FcZe4vSqiP1VzFEK4GfwM/XskLsyjfPtMaTVv4tGwp+Q4YMsdtuu82aN2/uIG7YsGFlziqeMGGCnXLKKbbJJpvYZ599Zvfff7/9+c9/dkfcvfrqq7btttvanDlzXDrg8bjjjrO6deu6uBdddJF17drVv/DVFLNC8HvooYfs9ttvXwH8KFu7du0MCKtsmDp1ql155ZU2fPhwJ1ZcEPgJ/OJsxOdzdaQ+KpXECdFK4Cfw87WsELvyzTOt8aSVf8uGgF+0eRVwa9SokXXr1s2aNm1qvXr1Kn1g+/bt7cILLzT+ffLJJ+2ee+5xJ5twle3bb7/t4rVt29Z69uxpH374odsDcc011xjH3ZEX3r/qvuEsTi2vqV7A7JBDDrFddtklLr/gz0eNGuUIGbFat27tYBJBcwWBn8Av2MiyJFBH6q9iiFYCP4Gfr2WF2JVvnmmNJ638WzYE/GbMmOGcWNOnT3cPYIZz4sSJzqsXhY022sjGjx9v/Pv+++8bs5PffPON+/iDDz4wPIYPP/yw4cTCw0d+7INYvny5m+ol780228y/AtUQ0wv8Pv/8c0fAp59+unOH9u7d26644gr705/+5F3ESZMm2cyZM8vEb9GihX333XfOo3juuee6zSPXXXedE7BWrVpZ8xb4Cfy8ja6CiOpI/VUM0UrgJ/DztawQu/LNM63xpJV/y4aAH1zSuXNnmzZtmnvA0KFDbcyYMe7ouiisueaa7nO8d+S911572RdffOE+Jv1dd93lpnnZAHv33Xe7ja9HHnmk+5w9EG+99ZbBOoUUvMDv0EMPtWeeecbGjh3rKr/FFlu49X4A4SqrrOJVH46DeeGFF8rE7dixo/P2cTYgP0uXLnXTvYjKmsJx48bZ66+/vkL+F198cenfyjTy6NFm/KwsQTd3JG5pdaT+0oVoJfAT+PlaVohd+eaZ1njSyr9ls4Ff+dRMzbZp08atyWMals0dOJv69+/vonbv3r00CVfT8ndmPN99913r27evgz1+ZyaUgCPs+++/d3wEKJ5//vmOZzj5hGnkqtjkQf5AZa7AM3ffffesH8eCXzQHTsWoMOHf//63HXDAAXm5uQPvIV6/gQMHOncqu4Ujt2u2Esvjl6GKwM+/NygXUx2pv3QhWgn8BH6+lhViV755pjWetPJv2RCPH7m2atXK8UfLli2tQ4cO1qdPH7dmb8qUKW752QUXXGDrrbeeW8PHWj+ure3Ro4eb8WTqd4MNNnDcgieQ3++44w578cUX3dW2t956q73xxhv+hQ+IOW/ePLcusaLAdHO2EAt+JIJgeQBeP7Y7M+3L4sZPP/3UNt9884Cirhj1q6++cnPiePr4QfQDDzwwZ54CP4FfpQzu98TqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uGgt/IkSOtS5cu7gGdOnVyG00nT57s4A+4whG1xx57uM/XWmstB3KcZoIj7Oabb3ZsBDwyTbzqqqs6pxibPPAmvvTSS7bbbrv5Fz4gJiei8HwCp6wwzcwOYmZkX375ZRs9erRbZ5gY/KBWqDczQLjs+s1XYAcMtBwXBH4Cvzgb8flcHamPSiVxQrQS+An8fC0rxK5880xrPGnl37Kh4EfOCxYscJdTMFWbLTDzOXv2bLfBI3P/AXC3aNGiFS6zYLkaPMN1t9UR8DzuvPPODvbwPPbr189NP1cK/Cg4nrnnnnvOZs2a5Xa1cI5NVcxbx4kk8BP4xdmIz+fqSH1UEvjFqbR3i72NnyjIruIU++NzaSWt/BXwj5kE/PxzL8yYePyA0ltuucWtL2RzCfsjot3H5UvtNdUL1bJl+ZNPPnHpWQj50Ucf2VNPPeXmu6szCPwEfvmwNw06/iqGaCWPnzx+vpYVYle+eaY1nrTyb9mVEfxQZ7vttnNTzNwuwvF4nEnIOczZghf4sebu2WefXSE9mQv8/A0y7zG1uSOxpOpI/aUL0UrgJ/DztawQu/LNM63xpJV/y66s4McOX47DY33i8ccfb2eeeaY1a9YsGfhFu3rxtLEI8uCDD3ZHr7AAku3Muc7b82+msJjy+MnjF2Yx2WOrI/VXMUQrgZ/Az9eyQuzKN8+0xpNW/i27soKfv0JmsR4/pnUBPc614dJhFhGykwS3ItO9IYc4hxQsV1yBn8AvH3akjtRfxRCtBH4CP1/LCrEr3zzTGk9a+bfsygJ+v/zyS1aPHhtUogOpc6kWC34kPPHEE91W5UceecSOPfbY0rw01etvjFUSU1O9iWVVR+ovXYhWAj+Bn69lhdiVb55pjSet/Ft2ZQE/diJHN4SgDrBH3TlUmltEKgpe4Md5MRxIuN9++9njjz9uEyZMsKOPPtqdc1PdQR4/efzyYXPqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuLOBXXhE4beONN3b3AscdGp0T/DibhoMH2R584403ulOrOWi5poPAT+CXDxtUR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQQ/zutjv8Wjjz5qb7/9tmM2LsTIFXKCX7S2L9oazN285XfwckExN3lUZxD4CfzyYW/qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuTOA3c+ZMd2PHsGHD3A1r3EByxhlnuJtFEk/1cjMH5/dxGvRWW21lTZo0KZPX888/7y44rs4g8BP45cPe1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXZnAr3379u5aOG7tmDNnjlvjd9BBB7kTWBKDX5TwyiuvtMMOO8x22mknf/WrKKbAT+CXD9NSR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQE/zuvbYYcdbNCgQXbqqac6gXr06GH9+/d39wRzb3Cu4LW5w1/yqo8p8BP45cPK1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXdnAjxNXmOIl9OrVy66//np37zBTvwI/f7spnpg6ziVxW6kj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LbuygB+7eLfYYgvjnt69997b5s2bZ++99567seOuu+6qUDB5/Pzt6f/bOw8wqYrsbx9yjpIRQVHEgLiSg+ACEnVdERARcEBFFhVBkiCiZP8qQQkCgiAIfoioILArIoKSBmFBchQQiSo5SfyeX7G37ZnpcG5Nz0yHXz3PPOhM3dt936q+9+1Tp6rCrybFz7pNeCPVo3PDiuJH8dP2LDf9SnvOaK1HVvqWjRXxAxHszYv9eLHGMjbYiIuLk27dugkm4wYqKvGDSY4cOVJeffVVeeONN8yOHd27d5eqVavqWyNENTnU6wWS4mfdq9zeSDFdHguWBwqfO28GK6pjtjvyLDJnzhxwWr31BaTigW5YUfwoftqu6aZfac8ZrfXISt+ysSR+DhVsrZs+fXrzoykq8cP+vF999ZXMnj1bHnvsMXPeG2+8Ufbv3695jZDWofhR/ELRoQLdSJEfMXr0aBM+r1GjhtmTuk6dOkb8Ll265FfksHJ606ZNzbcw/Nx5551m0+xXXnlF/Zbnz58vP/30k/Tp00d9TEpXdPPQofhR/LT90U2/0p4zWuuRlb5lY0X8ggUisBQfgna+SlDxg0lmypRJxo8fb3bvgPwh4nfHHXfItm3b5Pbbb9e3SAhqUvwofiHoRmbaO1Y491V++eUXKVmypEfaBgwYIK+//rqMGjVKnn/+ebNQpq+C2VSYVTV48GCTZ4EQPISxdu3a6reMNZgmTJggWEfT3+uoTxaiim4eOhQ/ip+227npV9pzRms9stK3bKyIH0aUsMwecvwaNGhgghKLFy82M30RdMiSJYtMmTLFTvyuXLliNgLGA++dd94xD7KnnnrKRDYOHTokRYoU0bdICGpS/Ch+IehGAcXPWRsJUW3Mlvrwww/l6NGjcv/994u/tSv//e9/m/wK1EOUEOtftmvXzkyzL1GihIngYUmkjz/+2KyxdOzYMXn77bfN+apXr27SKPC7Dh06mHM0adJE5s2b5/NSEZF88MEHzc46iCzig4/XQmQRN4NevXrJF198YdbYxA0BaRq///67PPTQQ+YYRBSPHDkir732mnz99dfmCx32dxw7dqyRTeSLYFHQffv2metv37693HbbbSrsFD+Kn6qjiAT8DGrPESv1KH76lo4V8cNevUgpwvMJ93+Uf/7zn7Jz507ZvHlzQGBBI344Gvl82LoNZcGCBWafXjwIsGdvaheKH8UvFH0u0I0UotS1a1cjavhA4f/xTQoyBJHztRUOPmwvvfSSQAARGWzYsKH5jPTv399Ex1u0aGHeNvJiETX/+9//bv4f0cQhQ4YItkj87LPP5F//+pcsX75csHh6mzZtfF7qH3/8IQUKFDB/69Spk1lgHQIIUVuxYoU88cQT0qVLF5PvMXz4cJk1a5Z5XQgowv84LyQPBcJ38OBB+fHHH81nG7KIIW5ILJKFMTsM2zXic6cpFD+Kn6afoA5lRkuKrPSkkrJK7AxuzhXOdZFaVLZsWenbt6/5QZCuUqVK5lkQKCUJ16QSPyS2f/fddyYagIcCHhp4kBUsWDDVuVD8KH6h6HRuhnqdRTGRU5F420Lv94KoHnL6fvvtN8FUe0QMvcUP6yshGoeCFIkdO3aYKGLdunWNaGF4WTPU64jfs88+a4aFEaFr1aqViSTWrFnT7NeIaDyE8IcffjATspzIY48ePcw+joj+IZ8QNwis/N64cWMjm9jnEfmNeJ8ZMmQwUoqhA0QJNYXiR/HT9BOKn5bS9XqUZD2vWIn4IQ2vfPnyRvS8C4IHzhd7f9RU4ocHHqJ+iAjgwYSHWvPmzc0DIVTl7NmzJq8JEYlAheJH8QtFn0sL8UM0EJFAFOQRIm8WUT4IIPr94cOHTaQxWI6fI34Y2oVo4hz4PEL8sHdj586dzSQsfD6Rm+gtfvhmOHDgQGnWrJmJPOJLHYZ6MSSMhUAhfxBBiB9ye823w3TpTGRSUyh+FD9NP6HMaClR/NyRsov4wT2QJoOhU38FHuTLT5xVHNIiJxspPF9++aVxM4zwYCIu0vACBSjMPf0a7vxBCqJ7GC5CwcrQ8fHxsmnTJvPwQgJhcgqGuBCNQN4S3ji2hUOUxF+h+FH8ktPfnGM14ocoHPJaMVkDEzeSG/FDPh3yB7Gn4k033WT+G30dUbUZM2aYb24YVob4rVq1yuTj+SqBxA/RPpwLOR6QOHxeIH/PPPOMGeoNJn4YPhg0aJCJCiIqif+uVauW4aApFD+Kn6afUPy0lCh+7ki5Fz/kY+O+W7x4cUEUbfr06QlGM5HShjxnjMggnWbSpElSsWJFk4u9YcMGI1q7du0ya+chKIaRUOcLPu6h+KKdUgWvi3xu7NWL3HLcvxEFDFaCip8zqxcPKETlMPzTqFEj8zDA8E9yo36YdYLhJYQm4aC4COQd4XV8FYofxS9Yp9b8PZD4eYfQMey5e/duI37ONzt/58cEDUgchnovXrxobiTeQ72O+OF4zPhFXdw88C0SuXoYCoa4IUcPxd93Mkf88CUM50DkDhE8RPzwjRUJvpBURPHwmshVRN4hhp4d8XO+zCWO+OGzhwVAP/jgA/Me8PkeM2aMGULWFIofxU/TTyh+WkoUP3ek3Imf4zf4Mp4nTx4zWlK0aFET4HIKvqBjxBP/4l7rvcIJ8rHxbMBkOYgfVjrp16+f+fLtKxfc7bUEqu9IJu71KFhy7+GHHzYrSzhzMvwdH1T8kDCIC0BUDtE9/MBokc90/PhxyZs3b7KuBZCwThqsGg8mRBgglv4KxS/lxA+hbgzvIe8LYetAmzwnq9HD4OBgOTMI/WMNJEx2wCLMTkG02/mgeV8GkmzRf90USBei5jjO+4sOZmuhDXATsXkt3BBwIytcuLCbt5OgLt4DZhlDXvfs2eN36ZvEL0Dxo/hpO12wz6D2PLFQj6z0rewmxw/3tnr16pkv9yj4grx+/XoT1XMKRkowaQ7/rlu3zkTzIHpOwbPSET+sxIB8a9y3MdECvuJM5NNfga4mRnXuvvtuk5qDFRogprgepOwEWw4sqPjhLSACgNmB3gXLPOAFtAUhUeQfeZdSpUoZW/7+++/NGDWgIvkcD0PAXLZsmZnhmLg4CfL4fYJGXrJEBD+xUkK0cwfkHrKNDoQ8NCzdU7p0aZP7pS0bN240Eae2bduaD0i4F9sbKZjgC0/iUqFCBbNvYihLar5WoPfthhXFj+Kn/Qy46Vfac0ZrPbLSt6wv8Ut8NEYwMDQKL0F+NIZIUeA0S5culYkTJ3oOwW5N+DsigTg31mX13rzCW/y+/fZbs1/uCy+8IDNnzjQ52PgCnxL5f4hW3nzzzWZZMIwy4dmNkR8E6UI2qxcRuc8//9yYMfLwEBJFNERbsNYMhp28C2QD4BFFBCAURCkge/4eooz4eREMkfgh4opvJ1jmA3zRYRHJRY6btjgzS9F2WJcu3AtvpPoWcsOK4kfx0/YsN/1Ke85orUdW+pZ1E/HDKBc8xomQIRCFgkl2TkFaG36PL/d4VmKiG4IcTvEWP6T4YPQGP85oKSTR7WiQ5moxKoN1lBOPCmGlCATTAhVVxA/TgxEOhai5kT3Nm4dhI59o0aJFZiHaatWqmXXFmOOnoBcC8Ttw4IAJETtbjCF/ATldWCcOYW98g7jhhhvMjCfkQCBHDB0fM0mR7IolRbAcCfoGZqciyRTi6E/cIZf4kKGgc+K18TroV1gzDjl1mKmEb1VIuMXi4XgPWFMOQ5grV640ExXQP/BesXI5+hDq4Xx471jGBMsOOdfhiyRvpIr+9b8qblhR/Ch+2p7lpl9pzxmt9chK37JuxA9nxWQIzDEoV66cyYtGXjYighhKRUAEI554HmI9U+T6Ycas94QNb/HDRDpE33A+DA/jeecMI+uvQFcTqUh4f967p2HHDkhrsDQflfjhJEhCR0EUCAs442HvLPege5u+a+Fhjuihs3gsoLds2dLvKRnx80ITAvFD58FyH/hGg/A0OjZ2Z0FuF0TKWW8OExAwkQDfXjDjExE+RIAx2xs5EZA35EVgGB4fkPz58/tsQ3zIEOVFEioKElJxLoTdMdMVHzz8De8FPzgvhp3xYYZkIpyNLwjo4Mhv+PTTT82OFZhYgfeI8yAHAzkPOBd2xqD4JecT6m4NMYofxU/b2ygzWlLuPoP6s0ZnTbfih+gdUtdQsGMSJmYgdQnyh+cjxM0ZxcJIGIIP3s83iB/8CHMfsH4qgmSYF4Ef+AzWTE2Jgogi0uP8BcmwSoq/Gb4q8UNOE8a9nb16nZmI2I8U48mh2K8Xr4GxdH8X4YCj+IVW/HA2yBEidlgPCLM6IVre4ofODNlC+2B3ivfee8+IF+Qf32gQAkeUD0mtwYZ60RExaQAC6eyJi29U+AaF/oX8CExRx4cPEoc8T7wffMvCLHLkmqI+PnzYEQMfREy1h+xhpip+0B8xRR/vGR9cX2sv8aGjvxW5YUXxo/hpe5abfqU9Z7TWIyt9y7oVP5wZw6ZYUg55fL4K8ukwEon8dU2+HtZkTentbPFswyhcoOJvZQiV+OHEuGg8mGHHWHLFu2AmCSZqpEah+KW++KFzYckdFHw4MCSL2UvOxBusOYcPm1b8kNOJ80EoMUQLkYOwYd06DBVDJjHbG0uJOOKHqfKQPQzfIhIIQcSWaJA6fPmAHGKmOd7DLbfc4oGECKSvxSzT6kaKXFlwQ5TbtuAmhGWQMOSdGsUNK4ofxU/bJ930K+05o7UeWelb1kb89GcPn5qYwIHVJFCwxzueC0jFwj7uSI9CxBFBEV9FJX7OpvU4AR60Tz75pBnuxQMWeV6B9hUNNSaKX+qLH8LakC4U9AUsYom8OixtAoHBgsOQK0gXcvQgYv6WgkHEz5f4oQNjKBfnxbGYaeUd8QsmfhBHDO3iPWB3GSw4jI6P4WhfJa1upPisQHCTGyVHNDMlEoaTy4riR/HT3vPT6jOofX/hVI+s9K0RK+KHXHgMLyMQh7VbURAMQPoUIo6BIpMq8UN4E+PdeKjiwe+9WwcS6ZHIn1oPoTQRP+ygUL++CHYv2bbteg9s3lykTBmRS5dEsFfeggUi/5u04OmiOK5aNRFsA7N/vwgipVhssWNHEe8Q7eHDIh99pO/ZTs0Q5PjhVM6WXf6Ger3Fb/HixfLUU0+ZYVQU5EQgzw5Dt0g0xQwj5Pz5yy3wFj90ToTWEfFDZA7RPpwXEzbw7QULJiOajKRbR/yQNIvlZhDxQz0IJ0QT0+/RNzAU7KQi4HqQr5hcmXHfML6PQDoDJqRgGB0fWEyE1XL6AAAgAElEQVSGwXR8MMMPZoSBLXIrIdeYBIPPHj7U+HBjOSSsKYjrRcQP3+qQY4n0CHwG/V1rct+/m4cOxY/ip+1vbvqV9pzRWo+s9C0bK+KHZwRGWpETjzx3zJdAqhaeJXh+BkqbU4kfZnTu3LnTMzsF48ZY16ZLly5mtmVqllQVv+LFRerVE8Ewdrp0IogebdggUrWqCPZchejhJ2PG6+L3v+FQwwNcevbE9gvXZQ+it2mTyGefifTrd/33f/55Hd2hQ1hAyD3GEImf2xdGUiny8CAl3rO8EXqGrGExS0cMvc8NeQu00wv6FWYZQ4w0eRS+3jfeG3IH8d4CrZyeVjfSjz76yAgalgVAziTyJCF64IioKvIlkVaBIXAkFKO/IxKKCTAQXqwJhbxGbCuEvEzkZ2KBUFwrBDklihtWFD+Kn7YPuulX2nNGaz2y0rdsrIgfiGDkFYEX74Ic/BdffDEgMJX4wSbxAEpckO+Fh1dqllQVP+x5h11EsHND+vQis2eLbNwo8tRTIjffLDJ2rMiVKyKA/NtvImPG/IXirruuRwU3b/5L9s6cwdLgIn36iMTHi/zwgwh+Z1vSSPyCvV1MwoCgJC6QsXBZ4y+tbqTe4oe8RET8EMVEJB1RTExYgfhh8gx+0N8xyx2LayOMjy9cyLmE+CHlwpkog5nSWPw8JYobVhQ/ip+2D7rpV9pzRms9stK3bCyJH6jgWYvl8BAswSRHPFeCFZX4YTkX5E8hKR3/YmwZw05I6seU4dQsqSp+zoU9/rjIHXf8JX5YuDpLFhHs4AAxxJAuVv7+5JO/UCAK2K2bSNasIhcvXq//7bci+/aJeCdcnj9/fQh4xw73GMNU/NxfSOofkVY30sTih+FqfEPDZwx78CKahy9T3uKHYXAsgI6hYERVEQHEJBcMAWM4G5FU/N5fIm9y6bphRfGj+Gn7m5t+pT1ntNYjK33Lxor4YTgXe7snLhiFxXMFARik5/lytKDihwcK8orGjRtnog0Y9sUCvnjYpNSK1IGaOOTih/1MW7RI+pLHjolMn37994nFz6mN4+68U+TyZZHx469H/ZyCYWJn1iXkDrII6UOU79FHRbDX34kTIvfdJ/LHH9cjgW4Lxc8tMU/9cLqRIpcPn6scOXKYPA3vHFrvC/T1N/wOQuhryRprOIkOdMOK4kfx0/Y7N/1Ke85orUdW+paNFfHzt5wL3AxpeFjlAs8H773mHYpBxQ8VMbED0T4MSXXq1MnM5gVcDEn5W/dG30zuaoZc/G66SaRt26Rv4uTJv2Qssfgh3++FF0RuuOG6vE2ejHVOEp7jscdEkHPl7B+M4d1MmUTee08kXz4RTI5AJPDVV6/nCPbv7w4EalP83DP73xG8kerRuWFF8aP4aXuWm36lPWe01iMrfcvGivgh4udrazaIHvLkMTES+d++8uVV4ofZI9hBAbMve/fuLT/88IMRQPx/apeQi5/mAhKLH2b4Yj9a5Pchlw0TNRC1++knbG0isnfvdbFr3Fjk999F1q8XqVtX5MIFkcWLMRX2+t9Rr2bN69G/99/XvJOEdSh+7pmlsfhxHT/rJgvLAx8o9YDgxyl8QOubiazISk9AXzOWxA9bp/orED5M/vBVVOLnHIghpU2bNnkWztU3Rehqpon4OUO6zuSO558XKVgw4UWdOyfy8cdYSfH6kC8mfmDZlkKFrs8IxgzeefOuTw7p1On671Egjzhuzx73kMJE/KJdZtw3jP8juI5fKGmm/bkofvZtQPHTsyMre1aJnUF/pvCumWI7dzjJgZjMgRmD7777rmeZDkwhxiK7qV3SRPySc5GY3IGlXBDV8y7I+YM8IvIH+bMpYSJ+0S4zNk3j6xiu4xcqkuFzHoqffVtQZvTsyMqeVbSKH4Z6nd2zfNFBxK9WrVo+wQWM+GGNMSzYixkiWGwW5bHHHpPZs2ebyR1Yry21S8SJX0oCCgPxiwWZCWUTch2/UNJM+3NR/OzbgDKjZ0dW9qyiWfxSZFYvjBELAY4cOdIsM4H1xLA915tvvmly/bCxcVQv4Kzva2lTMwzEDxce7TITysblOn6hpJn256L42bcBZUbPjqzsWUWr+KXYrF6I38CBA83Gv9hbFOuGASK2nerYsaNE/QLO+r6WNjXDUPyicVHiUDYu1/ELJc20PxfFz74NKDN6dmRlzypaxS/FZvVC/LAAIH6wOGy1atXM4rHz58+X999/n+Kn74spUzNMxS/aFiVOmcb766xcxy+lCafc+Sl+9mwpM3p2ZGXPKlrFzxcRrLiCxf4nY4m5ACVgjl+w/VIZ8dN3xhSpGSbi5+vaoklmUqTtIuikbh46XMeP6/hpu7abfqU9Z7TWIyt9y8bKci4g0qJFC7Nfu1NOnz5t/hML+mO09qWXXvIJLqD4IXHwGtao81Mwqxebw6dm4eQOL9phLH6p2SdsXos3Uj01N6wofhQ/bc9y06+054zWemSlb9lYET9Mri1SpIjcf//9no00fvnlF7OVLoQQI7WPPPKIO/HDEi6vvfaaGeKtWLGiz9WfsbAzJn5gkcCqVavqWyYZNSl+4Sd+XMcvGR06Ag5189Ch+FH8tF3aTb/SnjNa65GVvmVjRfyOHTsmPXv2lCFDhphVVlDwLJ4yZYrZcCNQ8Rvxw4xdTOb45ptvzBZtMEfYJRIKt23bZjYA3rBhg1nqZdGiRVKiRAl9yySjJsUv/MSP6/glo0NHwKFuHjoUP4qftku76Vfac0ZrPbLSt2y0i9/WrVuN4LVu3doDBdvnfvHFF2aFDQTkgi21F3Tnjjlz5piJHCtWrBDv8eM6derIQw89JE899ZRkwh60qVQofuElflzHL5U6fhq+jJuHDsWP4qftqm76lfac0VqPrPQtayN+3jnp/l4J/oPcOe+iOc6pj7pnz55Ncg79lV2viRS8J554wmydi2v9+OOPTYDOKU8//bRMnDjRLuKX+Ci8aSzijAkft912m6RPn97t+/VZ/+233/asPo3X+Oqrr+S///2v/O1vf/NZn+IXXuKHdxPt6/j1799f1q1bF5L+Hoknwc0qR44cqrf++7nfBT+xUqpVqiaTR/w1g44PaH3LkxVZ6Qnoa7oVP8yARcpa8eLFzYjm9OnTpaDXlqyIriHlrWTJkiaaNmnSJJP+5us4DLM6u2l4+wxGSOfOnSs5c+YUrL+HY/Ply6e/KK+ahw8f9uT0Ob/G8nrI66tRo4Zkzpw56HkDRvwAAUu3AMTdd98tzzzzjBQrVkzmzZsnAwYMkCVLlkh2bD0WotKrVy8znNy1a1e/Z6T4hbf4ReM6fu26tpMpI6eEqJfzNNFE4IWeL8io//srn4Yyo29dsiIrPQF9TTfiB8fBiOWJEyckT5480rlzZyNV2KDCKfXr15fu3bsL/sWuZVjHeMGCBUGP8/aZwoULm5S4cuXKScOGDQVRueRseYuRtk8++cS8F6TcoTRo0MCc+8EHH5S77rorILCA4jdt2jRp27at5wTI9YuPjzfi165du5Cu44c3/+ijjwrGrwMZK8Uv/MUv2tbxG/zBYNl0dJP+zhPhNe8udLfgxynIF8GNi8U3Ae+Zc5QZfS8hK7LSE9DXdCN+e/bskXr16snu3bvNC2BSxPr1601UzymYv4BUN/yLkR/IFWbOBjousc9g1GjGjBlGyH788UczRyJ//vz6iwpQE840a9YsM/KGa9dspxtQ/Bo3biwIVyLPD4bbtGlTadKkifkXxupmHT+A2Lt3b4K3X6pUKbnnnnvM7xBNxALROK9Tli1b5nMTYpi0UxI08pIlIviJlRLGy7lE0zp+zFtj3pr2lkKZ0ZIS85BCMIElOAGyCs7IpxOImN3GEpeaNWuaYVF4CSJv27dvN1UQ7Fq6dGmCHLncuXObvyMSiHaoXbu2GQkNdFxin8Hr4Tzly5eXMWPGyMKFC0O+EgqW3sOwNPL9vCOWvsgFFD+82UOHDsnixYvN+DYsGBeEDysAuBE/rCb99ddfJ3gPjRo1kri4OPnjjz+kQIECgvAl9gQOVBjx86ITxuKn/5imTU03N1KKHx/Q2l7qpl9pzxmt9chK37JkZc8q0M4d58+fN+lqCFRg/sKIESPMC3mnm9WqVcv8vkKFCrJmzRqT5jZz5ky/xyX2mV27dpl5EVgpJVu2bILoH9xp+PDh+osKcc2A4odlOjBrF+XKlStmQgfGuocNG2Z+50b8Ar1vjJsjTInkx2CF4kfxC9ZHNH93cyOl+FH8NH0Kddz0K+05o7UeWelblqzsWQXbsg1RuLFjx5r8O+TJQcwQ9Nq8ebNUqlRJunXrZgJTWDMP/oMJGtgVw9dxTh6gt89A+DB3YePGjSaA1qFDBzN59V//+pf+okJcM+hyLhjL/u677+SVV17xLOKM/0cUsE+fPsZgk1tefvllk0PkPYTr75wUP4pfcvub2wc0xY/ip+1zfEBrSVGS9aTIKjmsgokfAk7OmnhIZUMuHiQN8ocZuMj/q169unkLGJFcuXKlyc/zdRyihr585t133zUbYmC2MFLcsCSL98xhN9cXirpBxQ8vgoUB//zzzySvBwsGnKxZs4bivajOQfGj+Kk6SpBKbh7QFD+Kn7bPuelX2nNGaz2y0rcsWdmzCiZ+ODOichjBRB6fr4LZv1gkGRM8IHdOCXac97kuXrwo2G0D0b+0LirxQzTu6NGjPt/rfffdZyZgpJb8UfxCI347d+5M676Xpq+/f/9+9W4z8QfiZfWvq9P0/abmi1e+sbK0fuCvVeH50NHTJyuy0hPQ12S/smelET/92aOjpkr8nnzySfn+++/NuHbGjBll6NChZoYK1ovB7zCLBFObU6NQ/EIjfq/0fUX+b3DS2U6p0YZ8jfAmENcljosSWzYRH9B6cGRFVnoC+ppulnPRnzW6agYVP2eBQ8xycWahvPnmm2a6MFb0R9gSM168l2FJSUQUv9CIHxYlnvtZ8Mk0KdmWqXnu7BmzS7ZMf+WjXrp0KVW3GkzNa03ua+GL3uuvv+45DR/QeqJkRVZ6Avqa7Ff2rBjxS8ouqPjhEET3sE/duHHjJEuWLGZ1a0zqwJo3mAWDoV4n+VHfPHY1KX6hET/mrTFvTfsJ5ENHS4pJ+HpSZEVWbgjo6zLiF5yVSvywKjQiepA/FGxUjDX9MOMFW4ZgGJg5fsFhh7xGMtbxo/hR/LT9keKnJUWZ0ZMiK7JyQ0Bfl+IXnJVK/HAarOOHxQux4CFWvMb+dpjwgenNmk2Bg78VXQ1G/Bjx0/WUhLUeKPWA4McplBk9RbIiKz0BfU32K7LSE9DXpPgFZ6USP0T6MKyL9W3w3y1btjQLOxcrViz4K4S4BsWP4mfTpSh+NtSuH8MHtJ4dWZGVnoC+JvuVPSvm+CVlpxI/TOTAhA4M8ebJk0d+/fVXufPOO81Gw5jlm5qF4kfxs+lvFD8bahQ/t9T4gNYTIyuy0hPQ12TELziroOKHmbvYouTZZ581kzuwbdvIkSPNXnZbt26VsmXLBn+VENag+FH8bLoTxc+GGsXPLTXKjJ4YWZGVnoC+JsUvOKug4oeVqXPkyCFvvPGGZ4kHTPZo0aKFyfnDxsWpWSh+FD+b/kbxs6FG8XNLjTKjJ0ZWZKUnoK9J8QvOKqj44RTYlg1LtjRq1EiyZ88us2fPNpsXx8fHJ9i+JPjLJb8GxY/iZ9OLKH421Ch+bqlRZvTEyIqs9AT0NSl+wVmpxG/fvn0yZMgQ+eSTT8zkDkT7Xn31VbnnnnuCv0KIa1D8KH42XYriZ0ON4ueWGmVGT4ysyEpPQF+T4heclUr8nNNgk2Hs5IGoX1oVih/Fz6bvUfxsqFH83FKjzOiJkRVZ6Qnoa1L8grMKKH4lSpQQyJ6/snv3bjPxIzULxY/iZ9PfKH421Ch+bqlRZvTEyIqs9AT0NSl+wVkFFL+HHnrIRPj8lc8//zzVo38UP4pf8G6dtAbFz4Yaxc8tNcqMnhhZkZWegL4mxS84K1dDvcFPl/I1KH4UP5teRvGzoUbxc0uNMqMnRlZkpSegr0nxC86K4hecUfjW4F696rah+KlRJanIB7SeHVmRlZ6Avib7lT0r7tyRlB3FT9+fwq8mxU/dJhQ/NSqKnz0qbm/ngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0ril8Yix/WB8QM4XTp0gVsYeb4eeGh+KnvBhQ/NSqKnz0qip8LdpQZPSyysmelEb+rV6/K+fPnzS5l/gocJVeuXAn+7O+448ePS758+VR19VcWupppPtQLQNgHGEB/++03adasmcTFxfm9Qoofxc+m+1P8bKhdP4YPHT07siIrPQF9TfYre1bBxG/y5MkycuRIKV68uFnFZPr06VKwYEHPC65du1bat28vJUuWFGxmMWnSJKlYsaL4Ou6PP/6QJ598UkqXLi3Y7rZ169bSsmVLeeutt2T16tWSIUMGI5hTpkyR/Pnz6y8qxDXTXPwAYMGCBfLpp5/KihUrpF27drJ9+3aKn6ahGfHTUDJ1KH5qVIz42aOiJLtgR5nRwyIre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frSvXt3wb/Yrnb8+PHGWXwdlyVLFnP8E088IYsWLZJu3brJ3LlzpVSpUkb4smbNKm3btpVy5cpJjx499BcV4pppLn6HDh2Se++9V+rUqSPLli2TLl26GFj+CiN+jPjZfAYofjbUGPFzS40PaD0xsiIrPQF9TTfLuezZs0fq1asn2IwCZdSoUbJ+/XoT1XMKNrJAUAr/rlu3Tho2bCirVq0KeNzYsWONILZp00Y6duwoxYoVkyNHjki2bNnM8YgIjhkzRn9RIa6ZauK3YcMG2bt3b4K3Dws+fPiwgdOhQweJj4+XzJkzy7x580w9iODy5cuTXHKvXr08v0vQyEuWiOAnVgojfuqWpvipUSWpyAe0nh1ZkZWegL4m+5U9KwSLEpeaNWtKjRo1BF7SvHlzzyjjtGnTZOnSpTJx4kTPIblz5zZ/RyQP7VC7dm2ZP39+wONGjBhhooPY3nbhwoXyzDPPGGm89dZbzehmnz59ZPDgwfqLCnHNVBO/Dz/8UL7++usEb79Ro0YGctmyZQUyh+RJQIYZFypUyOelMuLnhYXip/44UPzUqCh+9qg41OuCHWVGD4us7FkFGurF8CvkDJM0MLEUwobStWtXzwvWqlXL/L5ChQqyZs0aGTBggMycOdPncTfffLNUrlzZRPgwfIwJHgcOHDD/jyjh/v37zb8Y5UTAK61Kqomfvwt85513zM0SYU8kTlapUsWAypgxI8UvWK+g+AUj5Pk7xU+NiuJnj4ri54IdZUYPi6zsWQWb3FG+fHnB0Czy7ho0aCD9+/cXRAQ3b94slSpVMqlnBQoUkJ49e5pcP6w+MnDgQPF13OLFiwV5fq+//rps2bJF6tata0Y6y5QpY4aLIYIQyDlz5piAV1qVNBc/RPcefvhhQa4fSr9+/cwsX3+FET9G/Gw+LBQ/G2rXj+FDR8+OrMhKT0Bfk/3KnlUw8cPkC8y+RWnSpInMmDFDNm7caOTv1KlTJv+vevXq5u958+aVlStXmhm5vo7bunWrSVvbuXOnSVsbMmSIiexBFD/77DOT2vbiiy9K37599ReUAjXTXPycazp48KCZQo2ZMoEKxY/iZ/M5oPjZUKP4uaXGB7SeGFmRlZ6AvqabyR3OWbH0ysmTJ00en6+C2b9wFEzw8F5r2N9xCGQVLlxY0qdP7zkdUtlwnsTr++mvLHQ1w0b8tJdE8aP4afuKdz2Knw01ip9bapQZPTGyIis9AX1NG/HTnz06alL8IrkdmeOnbj2KnxpVkop8QOvZkRVZ6Qnoa7Jf2bMKNtSrP3P01KT4RXJbUvzUrUfxU6Oi+NmjYj6kC3aUGT0ssrJnRfFLyo7ip+9P4VeT4qduE4qfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS+Mxe/06dOSM2dOSZcuXcAWTtyICT4QS5aI4CdWCsVP3dIUPzUqip89KoqfC3aUGT0ssrJnpRG/q1evyvnz5yVHjhx+XwiOkitXrgR/93fc5cuX5eLFi5I9e3ZPfc1r6K8yeTXTXbt27VryTpG8o7dv3y4DBgyQ9OnTy759+6RDhw7SunVrvyel+HmhofipOx/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICYZs+fboULFjQ84Jr166V9u3bS8mSJY2jTJo0SSpWrCi+jsufP79s2rTJ1MmQIYOMGDHCnOett96S1atXm99BMKdMmSKom1YlzcUPolemTBnp3r277Ny50/z3n3/+KZkzZ/bJhOJH8bP5sFD8bKhdP4YPHT07siIrPQF9TfYre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frGT/Dv7NmzZfz48bJgwQKfx7344ovSr18/WbNmjVSoUMGIH2SxVKlSRviyZs0qbdu2lXLlykmPHj30FxXimmkufoj2ATxAr1q1SqpVqyYHDhyQYsWKUfyCNTYjfsEIef5O8VOjYsTPHhUl2QU7yoweFlnZswokfnv27JF69erJ7t27zQuMGjVK1q9fbyJ2TilRooSsWLFC8O+6deukYcOGxlUCHTdmzBjZtWuXEb8zZ84Ynzly5Ihky5bNHF+6dGlBnbQqqSZ+GzZskL179ya4TlhwxowZpWrVqtK0aVNZuXKl7NixQ5x8v2XLlsny5cuTsOnVq5fnd8zxe8A3iyA9asneJYKfWCkUP/uW5kNHz46syEpPQF+T/cqeFcQvcalZs6bUqFFD4CXNmzcXpJyhTJs2TZYuXSoTJ070HJI7d27zd0QC0Q61a9eW+fPnBzzOW/xwomeeecZI46233iqffvqp9OnTRwYPHqy/qBDXTDXx+/DDD+Xrr79O8PYbNWokcXFxcvLkSZk3b56xYDTC/v37/V4mh3q90DDip/44UPzUqJJU5ENHz46syEpPQF+T/cqeVaCIH4ZfMQEDEy8wsdTJyevatavnBWvVqmV+j6FbDOFilHLmzJkBj0ssfjgZooRwG/x77733Sps2bfQXFeKaqSZ+/t43AKFTDxs2zIRXYdtTp06l+GkamuKnoWTqUPzUqCh+9qg41OuCHWVGD4us7FkFm9xRvnx5GTt2rMm7a9CggfTv318QEdy8ebNUqlRJunXrJgUKFJCePXuaXD+sPjJw4EDxdRzyAFG8xQ+zexHUwnBxvnz5jEDOmTNHypYtq7+oENdMc/FD4mPjxo0F4dRff/1V4uPj/eb34doZ8WPEz+YzQPGzoXb9GD509OzIiqz0BPQ12a/sWQUTv7lz53pWEmnSpInMmDFDNm7caOTv1KlTJv+vevXq5g3kzZvXpKRhRq6v45zl6CB+OG748OHmOIjiZ599JocPHxZMAOnbt6/+glKgZpqLn3NNCIHeeOONXMfPTSMz4qemRfFTo2LEzx4VJdkFO8qMHhZZ2bMKJn4487lz50zKGfL4fBXM/j148KCZ4OG91nCw47zPhbkLOA+ifmldwkb8tCAY8fMiRfHTdhsO9apJJa3Ih44eHlmRlZ6Avib7lT0rjfjpzx4dNSl+kdyOFD916zHip0bFiJ89Kkb8XLCjzOhhkZU9K4pfUnYUP31/Cr+aFD91m1D81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUP6AJZGoAACAASURBVDUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS9MxO/MmTOSI0cOSZcunecdnT17VrJlyybp06cP2MKJGzHBB2LJEhH8xEqh+KlbmuKnRkXxs0dF8XPBjjKjh0VW9qw04nf16lU5f/688RJ/5fTp05IrV64Ef/Z3nC+f8VcX582ZM2cCH9JfrV3NdNeuXbtmd6j7o44ePSobNmyQpk2byq5du6RQoULy+++/S6tWrSRjxoyyb98+6dGjh8TFxfk9OcXPC00Yid/dhe6WJmWaJGi3GRtmyP5T+xP8DgJWvUR1SZ8uvew7sU8+3vixOF2wyo1VpH7p+jJr8yzZ9vs29x0swBEUP3ucfOjo2ZEVWekJ6GuyX9mzCiZ+kydPlpEjR0rx4sXl8uXLMn36dClYsKDnBdeuXSvt27eXkiVLGkeZNGmSVKxYUXwdh2CWL5956623ZPXq1ZIhQwYjmFOmTDGi9+yzzxqZ/O2336RZs2YB3UdPIHjNVBW/2bNny/Lly2XEiBFy5MgRI35vvvmmwHgHDx4shw8flqJFiwpsOXv27D7fPcUvPMUP0lepWCU5d+mc5w1+svGTBOJXKm8pibs3Ti5duSSXrl6S7Jmyy6KfF8meE3uk3i31BH9PJ+nk862fy4YjG4L3Xhc1KH4uYCWqyoeOnh1ZkZWegL4m+5U9q0DiB9HLlCmTnDhxQvLkySOdO3c2DtK7d2/PC9avX1+6d+8u+BcOM378eFmwYIHP4yBziX1m69atcscddxjhy5o1q7Rt21bKlStn5BLn+fTTT2XFihXSrl072b59u/5Ck1EzVcXPeZ+A44jfM888I/Xq1ZOWLVuayA+Genfv3i233HILxS9Yw4ZRxK9t+bZSMm9JeXv523L56mXzk7i0vLullC1QVj5a/5EcPnNYqpaoKodOH5IsGbJIo9saSeYMmU0kcPbW2bLxyMZgV+/q7xQ/V7gSVOZDR8+OrMhKT0Bfk/3KnlUg8duzZ4/xDzgHyqhRo2T9+vUmqueUEiVKGDHDv+vWrZOGDRvKqlWrfB4Ht0nsMxs3bpTq1asb50E6G44vXbq09O3bV+69916pU6eOLFu2TLp06SLdunXTX2gyaoZc/C5cuCALFy5M8pYaNGggWbJkMb/3Fr8WLVoIfhDmRClcuLDEx8dLqVKlKH7BGjaMxO/Fyi/KDdlvMO8YAo8o3tSfpia4gpeqviT5suYzUpgxfUY5cvaIzNg4Q05eOGnqPX7343JHgTsofsHaPZX/zoeOHjhZkZWegL4m+5U9q0Dih9Sz5s2beyJt06ZNk6VLl8rEiRM9L5g7d27zd0QC0Q61a9eW+fPn+zzu1KlTPn1m0KBBRhpvvfVWE+Hr06ePOU+bNm2kQ4cOxnkyZ84s8+bN019oMmqGXPwQMn3uueeSvKUJEyaYUGpi8RswYIAALGz3ypUrki9fPhN2ReQPFoyh4cSlV69enl9xcscDvlkE6RRL9i4R/ISqYAi3QPYCsubgGqlcvLIZxp2yforsPbHX8xJdq3WVPFnyyMHTB4383ZTnJtl8dLPM2jKL4heqhkiB8/Cho4dKVmSlJ6CvyX5lzwril7jUrFlTatSoYYZfkVaGiRcISCENDaVr166eQ2rVqmV+X6FCBVmzZo3AWWbOnOnzOAzz+vMZRAn3799vooWI9C1evFjKli0r8BnnOGckVH+1djVDLn6at+Ed8Zs7d66MHj3aRAlnzZolw4cPl5UrV/o9DXP8vNCEUcTv5nw3m/y+I2eOiDOsuu7QOpmzfY7nDbcp30ZK5ystw1cON3X71uorZy6ekXdWvEPx03xw0qgOHzp68GRFVnoC+prsV/asgk3uKF++vIwdO9bk3WFksn///gIx3Lx5s1SqVMkMvxYoUEB69uxpcv0wA3fgwIHi6ziMeCb2GUQQMbSL4WIEtiCQc+bMMdE9tOuYMWPMpJEqVarIgQMHzETXlC5pJn6Y4YvkRhh348aNZcuWLea/v/nmGwPAX6H4haf49arZS7JmyCoLdy80s3ZzZcklE9ZOkGK5ikmtkrXkh30/mOHdBrc2kJ+P/2yE757C95hcPuT0oXCoN6U/7nbn50NHz42syEpPQF+T/cqeVTDxQ/CpdevW5gWaNGkiM2bMEOTlQf4wdIv8P+TooeTNm9cEpvLnzy++joP4+fIZiOJnn31mJrC++OKLJr8P0b2HH35YDh06ZM7dr18/M8s3NUqaiJ+vC0MItEiRImamTKBC8QtP8bu3yL3yUJmHjNyhYIgXQ70Nb20oVW+sKvG/xhsp7FSpkycXELN7x64ZK8fPHzfHtLirhdxZ8E7m+KXGJ9/Fa/Cho4dFVmSlJ6CvyX5lzyqY+OHM586dk5MnT5o8Pl8Fs38PHjxoJnh4rz/s7zhfPoPhXJwHUT/vgvMiCBbMffQEgtcMG/EL/lav16D4haf4Oe+qRO4ScvLPk3Lqz1N+mzR/tvwmB/DA6QOeNfy07W9bj7N6bckJFyV2gY4PaD0ssiIrPQF9zcT9SiN++rNHR02KXyS3Yxjl+IU7RoqffQvxAa1nR1ZkpSegr8l+Zc+K4peUHcVP35/CrybFT90mFD81qiQV+dDRsyMrstIT0Ndkv7JnRfGj+Ol7TyTUpPipW4nip0ZF8bNHxWFxF+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhQ/ip++90RCTYqfupUofmpUFD97VBQ/F+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhS/MBG/y5cvy8WLFyV79uyed+Trd76aOnEjJvhALFkigp9YKRQ/dUtT/NSoKH72qCh+LthRZvSwyMqelUb8rl69KufPn5ccOXL4faHTp09Lrly5Evzd33Fnz56VbNmySfr06RPUh+ccP35cChYs6Pk9zpszZ05Jly6d/iKTWTPdtWvXriXzHOrDr1y5Ips2bZJJkyZJhgwZZMSIEeLrd4FOSPHzokPxU/c9ip8aFcXPHhXFzwU7yoweFlnZswomfpMnT5aRI0dK8eLFBWI2ffr0BGK2du1aad++vZQsWVL27dtn/KVixYri6zjIW6tWrSRjxoymbo8ePSQuLs7z5rt16yYbN26UhQsXyvbt22XAgAFGDlG3Q4cO0rp1a/2FJqNmqorfmTNnpF+/frJmzRqpUKGCET9fv6P4KVuU4qcEJULxU6Oi+Nmjovi5YEeZ0cMiK3tWgcQPopcpUyY5ceKE5MmTRzp37ixFixaV3r17e16wfv360r17d8G/s2fPlvHjx8uCBQt8HgfxQwRv8ODBcvjwYXMuRP8wujl37lwZN26ckUuIH0SvTJky5tw7d+40//3nn39K5syZ9RdrWTNVxc95j2PGjJFdu3YZ8Qv0O1/XxIgfI342fZ3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH579uyRevXqye7du80LjBo1StavX2+iek4pUaKErFixQvDvunXrpGHDhrJq1Sqfx0H8cL6WLVsKBlMRzXPO3bFjR+nbt68MGjTIiB+ifZBOSCbOV61aNTlw4IAUK1ZMf7GWNVNE/A4ePGiiet4FY9h16tQxv6L4WbZW4sMY8VODpPipUSWpyIeOnh1ZkZWegL4m+5U9q0Dit2HDBmnevLkZdkWZNm2aLF26VCZOnOh5wdy5c5u/I3qHdqhdu7bMnz/f53GnTp2SFi1aSLNmzczxhQsXlu+//94M90ImEVl84403jPht2bJFqlatKk2bNpWVK1fKjh07TLQQrpTSJUXED/bqHc3DRdx4440ybNgwV+K3bNkyWb58eRIGvXr18vyOkzse8M0iSM9ZsneJ4CdWCsXPvqX50NGzIyuy0hPQ12S/smcF8UtcatasKTVq1DATOjAMi0kaiNY53tK1a1fPIbVq1TK/R3oaAlqI1M2cOdPncRA3iGKXLl3M/IV8+fLJrFmzTJSwUqVKcvLkSSN4GObFkDH+f968eVK6dGkjkvv379dfaDJqpoj4BXs/jPgFI6T8OyN+SlDM8VOD8lGRDx09PbIiKz0BfU32K3tWwSZ3lC9fXsaOHSvlypWTBg0aSP/+/QViuHnzZiNrmJBRoEAB6dmzp8nHQ0Ru4MCB4uu4CxcuyOjRo01ED8I3fPhw+fbbb80QLgqGkfE7/G3OnDkmgoiAGKKBiDROnTpVf6HJqJlm4odxbwBwCmQw8e98XRdz/LyoUPzUXZ8RPzWqJBX50NGzIyuy0hPQ12S/smcVTPww6cKZTdukSROZMWOGmXkL+cPQLbykevXq5g3kzZvXDMvmz5/fTNZIfBzEr3HjxmYYF9HEb775RqpUqeJ586tXrzZ5fhBDzORFXUQIf/31V4mPj0+V/D68mTQRP30TJq1J8aP42fQfip8NtevH8KGjZ0dWZKUnoK/JfmXPKpj44cznzp0zw67I4/NVMBMXcxcwwcN7vT1/x2HItkiRImbyRrCCukiFi9p1/IIB0Pyd4kfx0/STxHUofjbUKH5uqfEBrSdGVmSlJ6CvmbhfacRPf/boqMmIXyS3I4d61a1H8VOjSlKRD2g9O7IiKz0BfU32K3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFxWNwFO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+IWJ+J05c0Zy5Mgh6dKl87yj48ePS+7cuSVDhgwBWzhxIyb4QCxZIoKfWCkUP3VLU/zUqCh+9qgofi7YUWb0sMjKnpVG/K5evSrnz583XuKvnD59WnLlypXgz/6OO3v2rGTLlk3Sp0/vqX/58mWB++TNmzfJSxw7dsy8dpYsWfQXmoya6a5du3YtGce7OvTo0aOyYcMGadq0qezatUsKFSokv/zyizz++ONSsGBByZgxo9x3333St29fv+el+Hmhofip+x/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICOZs+fbrxEaesXbtW2rdvLyVLlpR9+/bJpEmTpGLFiuLrOASzWrVqZVwGdXv06CFxcXEyfPhwGT9+vFSpUkVOnToleE+33367eQnUK1eunPznP/+R6tWr6y80GTVTVfxmz54ty5cvlxEjRsiRI0eM+A0aNEguXbok/fv3lwsXLhhLPnDggBQrVsznZVH8KH42/Z3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH4QvUyZMsmJEyckT5480rlzZylatKj07t3b84L169eX7t27C/6Fw0DgFixY4PM4iB8ig4MHD5bDhw+bc2E0M1++fCbah6genAf+M2rUKLl48aK0aNFC9uzZI++//350ip9DEnAc8UN4Ff+fNWtWmTNnjrz88ssmGug9DOzd5BQ/ip/+FvBXTYqfDTWKn1tqfEDriZEVWekJ6Gsm7leBxA/CVa9ePdm9e7d5AcjY+vXrTVTPKSVKlJAVK1YI/l23bp00bNhQVq1a5fM4eAvO17JlS8FgKoZ6cW6IH37OnTsndevWlZdeesnUge/g//G6/fr1i1zxQ9Ru4cKFSVqpQYMGnvFrb/FDRVjv0KFDZdiwYfLll19KnTp1/LYyxY/ip78FUPxsWCU+hg9oPUWyIis9AX1N9it7VoHED6lnzZs3l+3bt5sXmDZtmixdulQmTpzoeUHMPcDfEb1DO9SuXVvmz5/v8zgM4yKC16xZM3N84cKFJT4+XkqVKiX//e9/pV27dnL33XcbscQ5EOyaOnWqkcmIFj+ETJ977rkkrTRhwgQTSkXxFj+IIkBlzpzZWC/gOmXZsmVmaDhx6dWrl+dXnNzxgG8WQT4nS/YuEfzESmHEz76l+dDRsyMrstIT0Ndkv7JnBfFLXGrWrCk1atQwEzqyZ88umKQBL0EaGkrXrl09h9SqVcv8vkKFCrJmzRoZMGCAzJw50+dxGOaFKHbp0kWuXLlionxwou+++87k/r333ntmTgNKtWrVBPMebrjhBvnxxx+lTJkyJr8Q+YMpXVI1x8+5GG/xgxDOmzdP5s6dq7pWRvy8MHFyh6rPoBLFT40qSUU+dPTsyIqs9AT0Ndmv7FkFm9xRvnx5GTt2rJlggZFJzDeAGG7evFkqVaok3bp1kwIFCkjPnj1Nrl/OnDll4MCB4us4BLJGjx5tRj1nzZplJnVgmBhBr0WLFknlypU9F7J//34zrwHl6aeflk6dOsk//vEPI5QpXdJM/GC6mDmD0OeUKVMSXOeOHTvktttu83ntFD+Kn82HguJnQ+36MXzo6NmRFVnpCehrsl/Zswomfgg6tW7d2rxAkyZNZMaMGbJx40Yjfxi6RY6eM9sWS7GsXLlS8ufPb4JViY+DyDVu3Fi2bNlioonffPONiegl9pmnnnoqgfc89NBD0qdPn8jN8dM3j11Nih/Fz6bnUPxsqFH83FLjA1pPjKzISk9AX9PN5A7nrJh0cfLkyQSpZt6viNm/Bw8eNBM8vCee+jsO0bwiRYqYmb/hWNIk4pccEBQ/ip9N/6H42VCj+LmlRpnREyMrstIT0Ne0ET/92aOjJsUvktuROX7q1qP4qVElqcgHtJ4dWZGVnoC+JvuVPatgQ736M0dPTYpfJLclxU/dehQ/NSqKnz0q5kO6YEeZ0cMiK3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4kfx0/eeSKhJ8VO3EsVPjYriZ4+K4ueCHWVGD4us7FlR/Ch++t4TCTUpfupWovipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4hfl4vdWx44iu3fre0ik1yxdWuSWWzxXcezYMcmfP7/qqn4+/rPsPh47rErnKy3jho7zsOGNVNVNTCWyIis9AX1N9iuy0hPQ10zcryh+YSJ+Z86ckRw5cki6dOk87+j48eOSL1++oK2buBG9G7l/u3byxpQpQc/BCrFHIK5LnEweMZniZ9H0fEDroZEVWekJ6GuyX9mz0ojf1atX5fz588ZL/JXTp09Lrly5EvzZ33Fnz56VbNmySfr06RPU9+c+uXPnlgwZMugvMpk10127du1aMs+hPvzo0aOyYcMGadq0qezatUsKFSok27ZtkyeffFJKly4t586dk9atW0vLli39njOg+PXvb84Rq+XEiROSN2/eWL38gNedPXt2ef311yl+Fr2DDx09NLIiKz0BfU32K3tWwcRv8uTJMnLkSClevLhcvnxZpk+fLgULFvS84Nq1a6V9+/ZSsmRJ2bdvn0yaNEkqVqwovo5DMKtVq1aSMWNGU7dHjx4SFxcnvtznl19+kccff9y8Furfd9990rdvX/2FJqNmqorf7NmzZfny5TJixAg5cuSIEb/hw4dL0aJF5YknnpBFixZJt27d5KeffrISv2RwiIpDeXPQNyNZkZWegL4m+xVZ6Qnoa7Jf2bMKJH4QvUyZMgmCJnny5JHOnTsbH+ndu7fnBevXry/du3cX/AuHGT9+vCxYsMDncRA/RAYHDx4shw8fNudC9O/f//53EvcZNGiQXLp0Sfr37y8XLlwwEcIDBw5IsWLF9BdrWTNVxc95j4DjiJ/zu7Fjxxqgbdq0MZD9lUARP0sGUXMYbw76piQrstIT0NdkvyIrPQF9TfYre1aBxG/Pnj1Sr1492f2/uQGjRo2S9evXm6ieU0qUKCErVqwQ/Ltu3Tpp2LChrFq1yudxcBucD6OWGEzFUC/Ofcv/cvG93QdDy/j/rFmzypw5c+Tll182I6HeKXD6q3ZXM+TiB3NduHBhknfRoEEDyZIli/m9L/FDFBA2jSE5X8c7J6T4+W9g3hz0nZ+syEpPQF+T/Yqs9AT0Ndmv7FkFEj+knjVv3ly2b99uXmDatGmydOlSmThxoucFkX+HvyN6h3aoXbu2zJ8/3+dxp06dkhYtWkizZs3M8YULF5b4+HgpVaqUT/e5ePGiDB06VIYNGyZffvml1KlTR3+hyagZcvFDyPS5555L8pYmTJhgQqmJxQ8XW7lyZRPexLGY4OGEO5ctW2bCo4lLr169PL/iB+IvOmSh/ySQFVnpCehrsl+RlZ6Avib7lT0riF/iUrNmTalRo4aZ0IFgEyZpICCFABRK165dPYfUqlXL/L5ChQqyZs0aGTBggMycOdPncRjmhSh26dJFrly5YnwGXuNM8vAOeiFIBknMnDmzINIIsUytEnLx07xx74t/5ZVXTCQQifdbtmyRunXrysGDB/3OcGHEzz9h3hw0ve96HbIiKz0BfU32K7LSE9DXZL+yZxVsckf58uUFqWblypUTjEwi5w5iuHnzZqlUqZKZd1CgQAHp2bOnSUPLmTOnDBw4UHwdB5kbPXq0GbWcNWuWmcOwcuVKz5v3dh8Ew+bNmydz587VX1yIaqaZ+GGWC2azQPY6dOggO3fuNOY7ZMgQk+fnr1D8KH6h6Pu8keopkhVZ6Qnoa7JfkZWegL5m4n4VTPwgXlhNBKVJkyYyY8YM2bhxo5E/DN0iR6969erm71g1AyKH9XJ9HQfxa9y4sfEaRBO/+eYbqVKlSgLxc9ynXbt2MiXR8nM7duyQ2267TX+xljXTRPx8vddDhw6Z8fDE694krkvxo/hZ9vUEh/Gho6dIVmSlJ6CvyX5FVnoC+ppuxQ9nxjJwJ0+e9Dvcitm/GInEBA/vyRf+jtu/f78UKVLEzPwNxxI24qeFQ/Gj+Gn7SqB6fOjoKZIVWekJ6GuyX5GVnoC+po346c8eHTUpftHRjuYqeCPVNyZZkZWegL4m+xVZ6Qnoa7Jf2bMKNtSrP3P01KT4RU9bUvxctCVvpHpYZEVWegL6muxXZKUnoK/JiF9wVhS/4IwipgZvpPqmIiuy0hPQ12S/Iis9AX1N9it7Voz4JWVH8dP3p7CvyZuDvonIiqz0BPQ12a/ISk9AX5P9yp4VxY/ip+89EViTNwd9o5EVWekJ6GuyX5GVnoC+JvuVPSuKH8VP33sisCZvDvpGIyuy0hPQ12S/Iis9AX1N9it7VhQ/ip++90RgTd4c9I1GVmSlJ6CvyX5FVnoC+prsV/asKH4UP33vicCavDnoG42syEpPQF+T/Yqs9AT0Ndmv7FlR/Ch++t4TgTV5c9A3GlmRlZ6Avib7FVnpCehrsl/Zs6L4Ufz0vScCa/LmoG80siIrPQF9pB02ZwAAGxpJREFUTfYrstIT0Ndkv7JnRfGj+Ol7TwTW5M1B32hkRVZ6Avqa7FdkpSegr8l+Zc+K4kfx0/eeCKzJm4O+0ciKrPQE9DXZr8hKT0Bfk/3KnhXFj+Kn7z0RWJM3B32jkRVZ6Qnoa7JfkZWegL4m+5U9K4ofxU/feyKwJm8O+kYjK7LSE9DXZL8iKz0BfU32K3tWFD+Kn773RGBN3hz0jUZWZKUnoK/JfkVWegL6muxX9qwofhQ/fe+JwJq8OegbjazISk9AX5P9iqz0BPQ12a/sWVH8KH763hOBNXlz0DcaWZGVnoC+JvsVWekJ6GuyX9mzovhR/PS9JwJr8uagbzSyIis9AX1N9iuy0hPQ12S/smdF8aP46XtPBNbkzUHfaGRFVnoC+prsV2SlJ6CvyX5lz4riFybid+bMGcmRI4ekS5cuwTs6duyY+X2WLFn8tnLiRuQH4i9UZGF/c9AfGXs12a/0bU5WZKUnoK/JfmXPSiN+V69elfPnzxv/8FdOnz4tuXLlSvBnf8edPXtWsmXLJunTp/fUD1QXf0t87gsXLkiGDBkkU6ZM+otX1kx37dq1a8q6ya529OhR2bBhgzRt2lR27dolhQoV8pxz3759Uq5cOfnPf/4j1atXp/hZ0ObNQQ+NrMhKT0Bfk/2KrPQE9DXZr+xZBRO/yZMny8iRI6V48eJy+fJlmT59uhQsWNDzgmvXrpX27dtLyZIlBZ4yadIkqVixovg6DsGsVq1aScaMGU3dHj16SFxcnM+6EL2nn35aTp48aQTxb3/7m/Tv318gjRs3bpSePXtK165d5dFHH9VfvLJmqorf7NmzZfny5TJixAg5cuSIR/wuXrwoLVq0kD179sj7779P8VM2XuJqvDnowZEVWekJ6GuyX5GVnoC+JvuVPatA4gfRQ0TtxIkTkidPHuncubMULVpUevfu7XnB+vXrS/fu3QX/wmHGjx8vCxYs8HkcxA+RwcGDB8vhw4fNuSB2OHfi18DfVq9eLWPHjhXE37744gt55JFHZNOmTfLRRx/JnDlz5J133ol88XNIAo63+L388stSt25dGTVqlPTr14/ip+/jCWry5qAHR1ZkpSegr8l+RVZ6Avqa7Ff2rAKJH4JN9erVk927d5sXgIOsX7/eRPWcUqJECVmxYoXg33Xr1knDhg1l1apVPo+D2+B8LVu2NDKHSN6SJUtMxDDxayDCuGbNGkFE8cYbb5RBgwZJo0aNPK/brFkzefLJJyND/DAuvXDhwiSt1KBBA0/unrf4waBhtlOnTjVAvcVv2bJlJkLoXbJnzy7nzp3T9wLWJAESIAESIAESiEkCvpyhZs2aUqNGDZN61rx5c9m+fbthM23aNFm6dKlMnDjRwyp37tzm74jQQcBr164t8+fP93ncqVOnzOglpA2lcOHCJnr30ksvJXmNK1euyPfff2+ihxBKDAv/8ssvnrkPESV+CGc+99xzSTrYhAkTTLgTxVv8qlWrJsj9u+GGG+THH3+UMmXKmDF2jKFrSrDxe805oqUOWehbkqzISk9AX5P9iqz0BPQ12a9ShhUmdEAMMbkCXoI0NBTk1jmlVq1a5vcVKlQwEboBAwbIzJkzfR6HYV6IYpcuXQRily9fPjl06JDkzJkzyWvs37/fBMOGDh3qkUQEum699Vbz/xElfprm8RY/XDyihChIdOzUqZP84x//MFA1hR+IvyiRhabHXK9DVmSlJ6CvyX5FVnoC+prsVynHqnz58ibPDpNLMTKJCRaICG7evFkqVaok3bp1kwIFCpjJFsj1g8QNHDhQfB0Hlxk9erQZ9Zw1a5YMHz5cVq5c6bMu0t0++OADWbRokfz666+CINjBgwfNTN6oFT9E+bxnzuBCH3roIenTp0/AHL/Ezc8PBMVPf0sgK7KyIaA/hvcjstIT0Ndkv0o5VnPnzpXWrVubF2jSpInMmDHDzKqF/GHoFrl5zkojefPmNSKXP39+8XUcxK9x48ayZcsWszzMN998I1WqVPFZF5NaMZkEQ70IdEE4kRvoFET88L7++c9/6i9eWTNVZ/Uq35OravxAUGZcdZj/VWa/0VMjK7LSE9DXZL8iKz0BfU2bfoV5A5h9izw+XwWzfxGNwwQP7/WH/R2HkcwiRYokWIPPX93jx4+b4WEn0qe/UvuaES9+mAACM2cRIQt9LyArstIT0NdkvyIrPQF9TfYrstITCF4z4sUv+CWyBgmQAAmQAAmQAAmQAAhQ/NgPSIAESIAESCBMCGDpkMWLF8vdd98t999/f5i8K76NaCJA8Yum1uS1kIAFAeS2YHuhO++802w1xEICJJCyBKZMmWLWeHMW7EX+F/Z2xWQArG6BmaTYEqxjx47yr3/9K2XfDM8ecwQofjHX5LxgEviLAGamYc2q2267TXbu3GnyRP0lOJMbCZBAaAj8+9//Nlt/ffnll/Lf//7XrGaBfeoxk/OZZ56RsmXLyttvv21mg+7duzdVE/9Dc4U8SzgToPiFc+vwvakIYLYVNraGvLAEJoCV4bGHJNanwuw0RB0ge5ithqUEsI3QmDFjiJEESCCZBLAMyLZt28wSIYnLpUuXzDZd2Jf1+eefl3bt2pnoH5Y027p1q9xxxx1mKQ9E4LFw8M0335zMd8PDSeAvAhQ/9oaIJoAt/7CSOm6QkJfPPvuMw5WJWhRDuViMFP9iRXkU7AGJKAM2KMdwEvaibNq0qVk1Hn9jIQESSB4BCBuid85Q7bfffmuifLly5ZL33ntPXnvtNbPW27hx48zWYVhAGDtCvPXWW2Yv2GPHjpn145DvV7JkyeS9GR5NAl4EKH7sDhFDAHkwyHvBYpdt27Y1+xpif2fsc3jmzBlz48Sq6dh7kUXMwqPYBhGrzGfNmtUMKWGFeGxPdNddd5nI38MPP2xWlX/nnXfkjz/+kNKlS5tFS1lIAFEpfDFgsSOAL1LYpABfrH777TezFyty+z788EOzVRci7Ii84+/YphT3LtzXevXqZYaAcb97/fXXjTyykEAoCVD8QkmT5wo5gWvXrsnnn39uFs/EN2bkviABGsMjt99+u+fmiZ1gcCPF3+vVqxfy9xEJJ/zzzz/NNkFggYfJ+vXrzUbk4IUHDCKiGFq66aabzOryTz31lFkDE3tRPv7444LoKbYlQnI5S2wTmDdvnukP+KKFggVsOfFH3ycQrcNnDl+4lixZIl9//bUUKlTI7N/at29fk0+LL1qYuQvJw+8feeQRefTRR82XMByPyR74YSGBUBOg+IWaKM8XMgITJ040ex5iRXPIzIkTJ2Tt2rUmJ+25554TbGgNifnoo4/MDfOrr76SadOmyaeffhqy9xApJ8KQUcWKFU2OEP4bogwJxNAtIgy1a9c2Q06I9L3wwgvy//7f/5OPP/5Y8IA/cOCAGVrCrF7kFkVDwSxl7Kl5ww03RMPlpPo1YLN55HvOmTPHfInARvP4F8OQLDoCiNhh9wZMzsAWX0it2LFjh4wYMUIee+wxs0UXhnixzRciexi1QIQV0UAWEkhJAhS/lKTLc7sikDhiBYFD0jOGJjFsed9995lvwunTpzc5L5jxhm/NiP5hNhxEETPj/va3v7l63Uis7ERC8eCIi4sTbPszbNgwmTRpkokYIH8IQof/x5Ad8iAhzC+99JKRZ0yGwUMcD59oLLh+bIOE4TWkAuDLwz333BONl2p9TfjihMk9+HKAgqgT9hjFfqSIDmPYEdEo1CtWrJj5YoChSmcJEusXjsADMRSLFJLMmTO7evf4soX71rPPPmvSKLAvKzg/8cQTsmfPHsHsXnzZghiykEBqEaD4pRZpvk5AAr4iVhC5fPnymUhfnjx5zLBkv379pH79+kZkIC/YlxEbamPoBMOaeJBFewEXSBxm5SKi9d1335mNw8GgRYsWRpYRWcCDGhFAcEEEEPW7d+8uQ4YMMUNQ0VwwmQU5Vg888IBhgXxQZxgtmq/bzbVh9jYio/gCgC8OGP7H5w1fDLB5PIYq27RpI0eOHDGnnTBhgskLxWcw1gr6Uvv27c3nCZOkXn75ZRMtx1AtZBii7Kv88MMP0rt3b/N5BedBgwaZLyAQSczqTc39WWOtzXi9/glQ/Ng70oTArl27TD4ZhjmQ1Ay58xWxwkKmuNlipimiV0uXLpWpU6cakfn999+jLoqD6CYeKP/4xz/8tgseNEgABwNEP++9916zBMuMGTPMwxoRQCwFsWjRIvN7SOErr7xiEs2jqYDDLbfcYnIUUTC0hl0PSpUqZQQGsyrxRQA8ISzI/8QEFyfCFU0s3F6LE0XHlylEht99910jyJh1irQKMEKkFLNK4+PjDVMM+yJfDUOVsVQuXrxo8h0R/cSsW3yWkPMIkcNae8g9RkqKrwLO6J/z5883X17RRzE5jYUE0pIAxS8t6cfoa1erVs1cOW6cmHiA4SXknOGhnThihbX5Ro0aZYZwIYdr1qyJ+skbmLSCIVhENn0NAYEDxAazb7E0BMQZES4McUOeEUmALNepU8cMiWPoLhoLchiR14kvAugXiOhVqVLFPISxrA9EZvXq1ebvKMgLxXBdLEz+wXCiv2iSwwp9A8O4mHiALwn4YoChcRRE+jCbFEOT+BsW+UYe2uDBg80kqlgp+HKBtAF8DpFWgVQTpJXUrVtXfv75ZzNrHvcsfEH1FUVHSgYi7SwkEE4EKH7h1BpR8F4gJYgU/P3vf/d7NfjGjGgdhiwxxIuoDKQPy44kjlhhvSt8u46VteUwrIZJGsglwkMXEuirIEfIiYQimlWmTBkzJAf2eEghuhXNBf0FXxgwBIeht1atWpk+Ai4QFQx346EMLhjmhfwiZ+2f//ynOSZaC/JksUQPeCDy66sgmgwBhty9+uqrsn//fiMzQ4cOFQxNYvauM7SJCR4QQMgeIqj4MhHNBfcl8EDeHT6D6DcY+sYCykgbwHCvM8EMQ9+VK1c2bDB6AT4okD1ESfHFBJM13nzzzWhGxmuLQAIUvwhstHB+yxh+hHQgEoOZpL4KvjkjOoMJGyidOnUyN1rMZovWiBXkFcPbvoQMw0B46EKCMTSLSA0iCpi44m8dNRzjRELBEJEtJJHHwpIbyI9CjhUiePiygJncGHLDMGXVqlVNn8LEDvBDP4MAIsqHSBc4Ycgt2gqivxAV9CGIP3L2/EV6Ib+I7CH3E9KMek7eGiJaOB7pAWCVI0cOM7kKKQXRXhDdQ3/Cly18sUDuLKKi+OziM4mJGPicYtgX/Qz5eriHQfDACkPkiC7jc47hXXBGZJ6FBMKNAMUv3Fokwt/P999/b4TvwQcfNDkx/vJZsKwIbrSI8GG4CWtb4UaLHSSiKWKFGbXIx8NwEGYfI1qAgocpZAWRGUQSkCeEJTTwg7wqREwRRfA3gxLnxaznWImEen8sMASOhHkwQorABx98YPIcnegKJv0g9w/bZaE/4YGMLxaoE62TWhDpRCQPi5ij/2C/ZXyuChQokOSOgn6FoWB8ycISIkgXgLAgCujkqmFhdLczWMP91oVFlL3zXBEdR/9Af0JED/cdJwcUE1gQQccyR5BBsEUkGfc1yB4iq1jjEGLXoUMHM8kK/Q1fXrm9Wrj3BL4/ih/7gIoAHhCIBmDdvMTFO2KFpUSQ+4K8oUDr6SFBHEMqw4cPN0MjSKCOxvWrvvjiC/OAhdRiPS88MBAVRcQFD1w8PDBEhMkYYIwHMoQQDxlwxQPZmwuSwzEEjAcUZufGYoFEY005DDtichAWucVDF79HZA9sMBnBWXw4Fhhh0W2s14g+gWgfIniIgPoq6GfIhYTw4IsImN1///0B0zMinSHSAjAEjhUA8GUUnyt8BpGbB06YAIRZ8Pj8IbqJiB/6GKLq+PKF1AFEmnEM5A9Ls7CQQKQSoPhFasul0vtG/hiicbj5YfjH2doLa1DhJoi19BBJ8Y5YYbkCrPvlLFzq663iwYSbbLSvX4WIAqIneOggaoBhIuQGIVKA4SFEPDE0hAcwojPIscJDB1EsbKWGBwwmtmA5CByLYSes8A/piYVhXV99B5NZ8KDG0BvYIY8PsoydSNAPMbkFs1VjqeBLAqJ+EGBENSG++Oz6i7gjCoroHmbvOsPj0cxr69atRuzQVxDpc6LGTZo0MV+4sNg3Pm8QZ/wOdZAj+dNPPxmmuPchMs9oXjT3kti5Nopf7LS11ZViNh8iTk7iN4ZoIX/IRYPANGjQwOTBJI5YIWkcUQV8U/aOWOGBgxmXeCD5Sz63eqNpeBDYgIuvJViQf4bkbvxA1jAEByF+8cUXjUyDG2QPy9Rg27Q33njDPIjxdye3CtE/PMQhfIgSxnpBhBisMJMZIoyoDB7qEL5YLugz+KLQpUsXE/3EDyZtJC7IsUV/gvxEc/EeicD9CFF3FPQXrCyAHD3k0jpRdnx+cT/DZBZEBDGbN1ruUdHczrw29wQofu6ZxdQRWHIFQyFYeR6zI7FgKaIp+HaMBzCKr4gVZu4iEojlH/AgwvAkIlfIscEDKVp210AeELZlQv6Qr3wq8MFDBA8dDD3ioQKxw2xJDHcj6gJ5gWBjAWbkC0XzrNNQfngQdQZzyvB1qshHw4QXRKkQicesefyLgvQCpF5g/2bMGocQot9Ga0GeJ0YevEciEAXF5Cp8VhFRd6LG+AKBCWbIT0a0HZOBEIn3N6M+WpnxumKHAMUvdtra6kqxnhyiULhZ4qYIQcEQJcQPDxbcIP1FrJy1xFAPuYHRMjyJ60LEAGsQIh8IEgfJ/fzzz33KH4a1sbI/Hr54qCCSABFEQjiGoHA8CwkklwC+iKEfIsIO4UNkD1G9kSNHmrw/fOFCZDoaC/LvsJsPlpPCPQoC7GskAsuxQPKcJW+Q+4ehXiwbhSFeFhKIBQIUv1ho5WReI4ZrMVMX66DhZgrhQfQO2z0hahVrEStcrzOxAJFQLOeA6AKGwP0VzL7Funt4+GL4CBEHRAshxFzgNZkdlId7CGAIF8vYRKvgORfqTMLAZweRcoxCIA8PuXqYLIUoO75sJc6dRR4kPrOY2YyJHYcOHTL5ttE625sfDRLwRYDix34RlACGS5APgygVvlUj9wxDkvjW7CxPEvQkUVQBD1Y8PH799VcT/cTyDkj8hgj7W+/MWVYEa3uxkAAJ2BGA2OI+hPQRFEQ28QUKM5qxfBQKtp/D7HfIoK/cWXxmsbwPUwTs2oBHRT4Bil/kt2GKXwEiXBiOxA0Ty64gVy1WlxJxYGMdPQzVbtq0yUTt8JABE2ffWO9GwVAv6vvLAUzxBuQLkEAUEMBQNj5rmFmLEQcMZSOSjglUmOyDLfqwtA/WdkQuI76sMnc2ChqelxByAhS/kCONzhNisWUkhWNyB8t1AhgqwnZzGDZCHiPy95y10yB6mI2LiAQeRsgrwtIZLCRAAvYEkB+LlQGczxnSUDAzF2s3Yp1RzJKHDI4bN87s2sJCAiSQlADFj72CBCwJYK0vrNGHCTDI3Xv//felT58+ZlcJPISwXAt+mD9kCZiHkUAiApiBi2VXMNEM61gi9QRb8OGLFVYgQPoFZixDBllIgAR8E6D4sWeQQDIIfPzxxyah3Dt3D/umYq9YFhIggdATwOQNLMuCHTSwHeKSJUtMzh4LCZCAjgDFT8eJtUiABEiABMKAABaPx2QO5PVhzUumUIRBo/AtRBQBil9ENRffLAmQAAnENgHM7MXWa1hbNBr3947t1uXVpwYBil9qUOZrkAAJkAAJhIwAcmoxqQoTzlhIgATcEaD4uePF2iRAAiRAAiRAAiQQsQQofhHbdHzjJEACJEACJEACJOCOAMXPHS/WJgESIAESIAESIIGIJUDxi9im4xsnARIgARIgARIgAXcEKH7ueLE2CZBAiAlg72fM1CxUqJBZlJeFBEiABEgg5QhQ/FKOLc9MAiQQhMCIESPk5Zdf9tSKi4sTrNOWPXt2v0digWzs1oDjhg0bRsYkQAIkQAIuCFD8XMBiVRIggdAR+OKLL8wCvDfeeKNA+D7//HPZsmWLPP3002bvY3/l5MmTkjdvXunatasMHz48dG+IZyIBEiCBGCBA8YuBRuYlkkA4EqhcubL8+OOPsmbNGsE2XFeuXJH69evLiRMnJD4+3gz/Yg9WbMmVLVs2ad++vdmb9dy5cx7x6969u9kuD+KIul999ZUMHDhQxo0bJ7///rv07dtXHnjgAZk/f77ky5fPbPH19ttvy549e+SVV16R559/Xt59912ZPn26NGjQQGbMmCF33XWX/N///R+3AQvHTsP3RAIkkGwCFL9kI+QJSIAE3BJAXl+GDBkkV65cRvTSp0+f5BRPPvmkETHI2rZt22TOnDny6aefGjl0In6dO3eWm2++2QgehG/KlCnSrl07Wbp0qRw8eFCeeOIJs8tDlSpVZNq0aeY1OnToIF9++aUcPXpUjh07JoMGDTKRwzvvvFPq1Kkjo0ePlo4dO8r777/v9rJYnwRIgATCngDFL+ybiG+QBKKPwKVLlyRz5sxyyy23yO7du5Nc4JkzZ4wUYoeGmTNnyvnz503e3yOPPCIfffSRK/FDFLBJkyZGLhHV+89//mOifYjq4bWRUwjx27t3r5QsWVJKlCgh+fPnl59++in6wPOKSIAEYp4AxS/muwABkEDaEChdurT8/PPP5gdROxTk950+fVree+89KVq0qCff7/Lly0bGMCSMaJ0T8evSpYuRNUQF33zzTSNxL7zwQoKI39dff22ihOnSpZNHH33U5BK++uqrMmTIEPPaiPBB/JA7mDt3brn99tsla9asFL+06RZ8VRIggRQmQPFLYcA8PQmQgG8CjqRhKBay9t133wkmfGCmL4SucePGsmzZMhk7dqyZ9DF06FAZP368PP744x7xQ9QOkUOcA/I3ePBgI3PeQ70UP/ZAEiABEviLAMWPvYEESCBNCCCKh7w8TNhwSvPmzWXq1Kkm4oZJHxiiRS4eyoMPPiizZs0ykTvv5VwgfG+99Zapc//998sPP/wg33//vcnxa9mypTjih2hevXr1TMTvtddeM7l9mOQxatQoRvzSpAfwRUmABNKCAMUvLajzNUmABDwELly4YASsQIECUrBgwQRkMNN33759kiNHDilcuLBfasgJhBCiHgsJkAAJkIB/AhQ/9g4SIAESIAESIAESiBECFL8YaWheJgmQAAmQAAmQAAlQ/NgHSIAESIAESIAESCBGCFD8YqSheZkkQAIkQAIkQAIkQPFjHyABEiABEiABEiCBGCFA8YuRhuZlkgAJkAAJkAAJkMD/BzVXvkBuM/j+AAAAAElFTkSuQmCC",
+ "text/plain": [
+ "\n",
+ "\n",
+ "If you see this message, it means the renderer has not been properly enabled\n",
+ "for the frontend that you are using. For more information, see\n",
+ "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ]
},
- {
- "as": "lead",
- "field": "column_name",
- "op": "lead"
- }
- ]
- },
- {
- "as": "sum",
- "calculate": "datum.column_name === \"Final score\" ? datum.sum - datum.log2_bayes_factor : datum.sum"
- },
- {
- "as": "lead",
- "calculate": "datum.lead === null ? datum.column_name : datum.lead"
- },
- {
- "as": "previous_sum",
- "calculate": "datum.column_name === \"Final score\" || datum.column_name === \"Prior match weight\" ? 0 : datum.sum - datum.log2_bayes_factor"
- },
- {
- "as": "top_label",
- "calculate": "datum.sum > datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "bottom_label",
- "calculate": "datum.sum < datum.previous_sum ? datum.column_name : \"\""
- },
- {
- "as": "sum_top",
- "calculate": "datum.sum > datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "sum_bottom",
- "calculate": "datum.sum < datum.previous_sum ? datum.sum : datum.previous_sum"
- },
- {
- "as": "center",
- "calculate": "(datum.sum + datum.previous_sum) / 2"
- },
- {
- "as": "text_log2_bayes_factor",
- "calculate": "(datum.log2_bayes_factor > 0 ? \"+\" : \"\") + datum.log2_bayes_factor"
- },
- {
- "as": "dy",
- "calculate": "datum.sum < datum.previous_sum ? 4 : -4"
- },
- {
- "as": "baseline",
- "calculate": "datum.sum < datum.previous_sum ? \"top\" : \"bottom\""
- },
- {
- "as": "prob",
- "calculate": "1. / (1 + pow(2, -1.*datum.sum))"
- },
- {
- "as": "zero",
- "calculate": "0*datum.sum"
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
}
- ],
- "width": {
- "step": 75
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAIuCAYAAAAhXgWXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeUVEXahj+iCiomRMCAeQ2IYVFXWCMLImbFiIphzbKCimJCEHNAF8WEoCKYVkV+dM0LghhRFkRBZcEAZgWUIBL+89R4x56he27VnZ6Z7stb58xhmK6qW/XWd6ue/irVWr58+XJTkAJSQApIASkgBaSAFEi9ArUEfqlvY1VQCkgBKSAFpIAUkAJOAYGfDEEKSAEpIAWkgBSQAiuJAgK/laShVU0pIAWkgBSQAlJACgj8ZANSQApIASkgBaSAFFhJFBD4rSQNrWrWnAKZ+6dq1apVWpBcf6+5klbuyfPmzTPq1KhRo8pllLLUS5YssZ9++snWWWcdq1OnTs7aRfYQ2Uj5/6dMFlVHCkiBGlJA4FdDwuuxK4cCTzzxhB111FGush06dLDnn3/e/T5+/Hhr06aN+33nnXe2CRMmxAoyZMgQAwq6du0aG5dn8ux3333Xdtlll9j4+YgQAcuvv/5q9evXrzDL//73v7bjjjvaYYcdZk899dQKcb/77jt75plnbOONN7b27dvno3jBedBWX375pSvjuuuuG5yeBPfff7+ddtppLu0nn3xiW2yxRc58jj76aHv88cdt7Nix1rZtW1tzzTXt559/tt9++83q1q3r/fx8t30htIV35RVRCkiBWAUEfrESKYIUSK5AJviRSwRFN9xwg11yySUu4x122MEAobhQ3hNUUfxDDz3UgdNbb71lu+66a1zWefm8W7dutmjRIhs4cGAsqLz//vsOeDt16mSjRo1a4fkAa+vWrXOCYV4KHJPJwQcfbP/3f/9n7733nu20006JHrnddtvZhx9+aFdddZX94x//sLXWWisW/F577TX761//mhj88t32hdAWicRXIikgBbIqIPCTYUiBKlQgAr811ljDeW/eeOMN23333e2AAw6wcePGub9F4AcUXn/99c4D9uOPP9puu+1meIE6d+5sxx9/vA0fPtyV9KCDDrJhw4bZ4sWL7fLLL7cXX3zRAQUexTPPPNN5yaLBv3fv3vb000+7/ACZG2+80Ro2bFimxocffrh9//33hkexWbNmLh/CiBEjrHbt2i7d6quvbs8995y9+uqrdvXVVzuY2XLLLe2cc86xY4891sXff//9bcGCBS4OHio8V5dddplNmzbNeT35G55Nys7zAD8AZ6uttnKAtckmm9h1113nvGLU9/XXXzd0O/nkk+3222+3yZMn23333efq07RpU9tnn32sT58+tuqqqyauD+W54oorXLl4Pp42gPyBBx6wfv36ufbBM3vLLbc4EL3nnnts0KBBzhOIJ5U41OODDz6ws88+23knv/32W3vzzTedPpltRh1oh2zPW3/99V1b4/HzAb8ffvghcdt//fXX1qtXL/cc2mSPPfawc88919WHtqGOXbp0sZdfftkaNGhgn3766QptUYWvjLKWAlKgihUQ+FWxwMp+5VYgAr8jjjjCnnzySbvpppuc54epUICOzyPwi6YFN9tsMwcbQ4cOdeIx8AINAwYMcP8/5ZRT3P8BLeBo2223NdbXASPRtHEEfsTfe++9bfTo0S7ttdde6wb9zABYAToPPfSQgzDAlPDCCy848Pvb3/7mwO3SSy9107MEPHWAA2D06KOPOmjJnOplehJYJFC/SZMmlT5y6tSpDhApK2HDDTd03i1gkvDxxx9b9+7d7dlnnzWA6KyzznKQg/eMzy644AIHVtT9tttuc3omqQ9QBugCakznot8777zjptLxkuKl4zNAG8AE2gFdYBRA/Pe//+0eyxQu8aKp+6hOtG///v1dnFNPPdXVAZjP9jyg2xf8WPsHMCdt+xNOOMEefvhhV17WHQLd6PzNN99YpieacgP12FZmW6CLghSQAsWrgMCveNtOJS8CBSLwO++88xxI4QXCCwdYAHL8PQI/BuCPPvrI9tprL2NDwDHHHONgBM/LfvvtVwpWDPyAVKtWrRw0AR5sGsBLxlQrXhsGd6Z68fBddNFFzlN2+umnO2gEMDPDv/71LweheAtbtmzp4IaAZ4+AhwpQALbuuOMOu/jii+2MM85w9QHKAAi8l5ngx2d4CikHQEk9NtpoI5dfefBbuHChA2G8loDk9OnTnWcsc6p31qxZrq4E4BnNWHvWuHHjFdYA+tYHcEaL9dZbz9WBOuLBi+pTfqp36623duCJRxYA7tu3rwNmQAg4jsAPrx0giTctc53e3LlzK3yeL/hVtu3vvPNO++WXX4wvIywxOPLII52uwPg///lP5/HkywQ2gzdQU71F0NGoiFIgQAGBX4BYiioFQhXIBD+8YHfffbebzmVwxbsE3ETgxyCMZw24yAwvvfSStWvXrgz4jRw50g455BD3w5Rs+RB5/PAKMXjjsTnwwAPdFF7kSYzSRDtO8fYRF/CqV6+erbLKKrZs2TIHeEAWafm9fIi8RZngR/3wdgEP0eaGaL1bJvgBTExVE5hqZD0dnwOA5df49ejRo9SDRnxAED3xPmYG3/rg7QKKb7311jLps4EfkJ1rRy5wCzSTDk8cntAoZIIf3tOKnucLfpVtewAXrymex8wwf/5892WEtsPDeeWVV7qPBX6hb73iS4HCVkDgV9jto9IVuQKZ4Mc0H/DEVCHeL2Bs0003LQU/4AJvDoMvMAHQAG7ZwO9///ufbb755qVTuwAankTW/TFo4y3M3NxREfghMevlmA6mbEydAjnkQ4hgJpoSxgPI1CUgy/Qga+yAtkzwY1r7uOOOc+ve8DDNmTPH1l57bZdfJvhlbu6oCPxYlzZlyhR3XMznn3/uNoSw1g/onD179gpQ5lMfPKx49QDvRx55xOUTee7wYJb3+DVp0sTBEs/efvvtHZzixYv+DviVB/FM8GNquKLn+YJfZdoeGMdLSvjPf/7jPHuUn5AJfplT6AK/Iu+EVHwpUE4BgZ9MQgpUoQKZ4AdQRcd5MMWLBysT/CLwYVcsU3E9e/Z0JcPLxqaBCKyYbsWLxnQxoEheTNMxbbnvvvvaK6+8Urq5I9rVGwd+eL3wAhEAG7xTbEAhsLGBskZTqMAW6/0AGcrGZ8TJBD8gAo8agTVylCPyMPmAX7QGkPWOTO1SV2CZZwO4TKMy3czneEjLe+N86kP5qSNrGvFy4YllOpv/s56PTS/A5fnnn+/WHFIOtAfwmBqnnXg2gB1NF1cEfgB8Rc/zBT80jb4khLY9QEdZAXw8f9SP6WoCNkf90CIT/KId2FFboIuCFJACxauAwK94204lLwIFIvDjqBM2ZETeIdaBMZUJ+EUbMpiyPfHEE50niWlM1tsBJ6whA3YY5BmYCeyKZWqYKV3iE5iqZectnsBoqvftt992z4nAL1pzV146vGl4sQh48YA4IIvApottttnG/c7mEHbqRoG1bIMHD3br8yLvVnRkDXUHIvBQAUrAFGv9WJNImcsf55Lp8UMXyg3YRlPh5Z8NvAAurH9MUh/WUeLhiza+sKkDCCLfmTNnOqjFa0kA7oBqYDPaqcvfaRumRAHbv/zlLxV6/Ihf0fNYL+l7jh87p5O2Pe2HlgQ2/uDpBGD5woB3jzWcmeCHF7l8WxTBq6ciSgEpkEMBgZ9MQwoUkAIMskxlAm+Zt3xERWSHJcDCtCmfM90KWLEej+NIsqXJd/Xw5s2YMcMdqZLrYGOOcGENY3TsClO1zZs3d0XxPZCYaV3W60WbJEjL1Cr6sBmkRYsWrt6VDcAo0MpP+cDGE+rLbSSseyRwlMpXX33lvI0cdxIaKnpeSF6VaXt0pW7savYJ2drCJ53iSAEpUHgKCPwKr01UIilQ9Aowrcu0drRJAwgk4PnDq6UgBaSAFJACNaOAwK9mdNdTpUDqFWC9HFOkbFBhXRmbW1gvlw8vXerFUwWlgBSQAlWkgMCvioRVtlJACkgBKSAFpIAUKDQFBH6F1iIqjxSQAlJACkgBKSAFqkgBgV8VCatsi18BFrQvXbrUbS5QKEwFaB9CrsOVC7PUK5aKjRrR5pHKlJlNG9F5iZXJp6bT5kuPmq6Hni8FClEBgV8htkrKysQhvgxIHJKbGdiByhEmnH1WiIGr0ji0+IsvvijE4nmXiTPxGjZs6I5Ric4R9E5cQxE/++wz4ygaNoOUD5n14fzADTbYwB13ExI4BoZjYtg9XdnAWkYANPOu3rg8M+sX1Yfd2RxjkyTwfnFeIsffsJHmT3/6k/fu6fLPY9c4EMp5i1xTl8/AUT9cKcgB47l2ROdDj3yWWXlJgbQpIPBLW4sWYH04n4y7Vx977LEVwI8BmPPICjGkBfy41YObKP785z8nOn6kJtqGWzXYCML1ceVDZn04dDoJ+HEA8uWXX54VLEPre+GFF7qjUbihxDdk1i8foMM1cdzxTF54qjmPjxtXkhzvE4Ef90YDkPkM9AMcAcTdy7mOksmHHvkss/KSAmlTQOCXthYtwPr4gB/3j/bq1ct51zgol4OKmWLliisOAuaMOgZ5jge59957Dc8Bh89ymG55LwmH8HI1FTcRcEUaV4yRF+evceMEXsYtt9zSOLA3ukeWWyk42JarxbhB4cYbb3SwdPzxx7vrybjflgON77nnHgdQ5UO29Fxllq1eHM5MPhyayx24XJ3FHb0cABwdjszNE1xnhkeLOk+cONEdgNyxY0f75z//6c6cy1UfvE/khe4333yzOz6F39EKzx+HDj/66KNupy23VeApIs11113nysVZgtT7mmuusdVWW81ptNNOO7mbOzjMmbJywG/56VW8Tnh3OSyaA385CJgbR9CUA6zRnevCONT573//uy1atMj23HNPdygy9eX/2AAHMnM3MR6wI444wn1hyFUfyogOnBOIRtQF22G6k/alLdGMwOHY/IwZM8b69evnDskeMmSIKwOHMGNnHETNfbp4pAh8MUHvCRMmuC8o5J153h+fn3TSSS4ubQcE5tIxshnOQMys30MPPVTaLrQVOmCzlJ+Qy56j/KKr5mgb6kob0n4c8sxtLkAWz+ROZA7JfvDBB1075LKfXOAXtRd5c2g3B12jGxryLN5b/o7NcOcyh0SPHTu21BYA0egqPbytfLGi3bBNPJXY+9VXX+2AMLLTbHpkvnu52mfy5Mkr5Iu3G5jFRmlPoJZ+Ak8tt5NgS+w850YTDkfH40x7ciZlhw4dXNxc51YWYLerIkmBnAoI/GQcVa4AHTseCQbdzAAA0HFz48R2223nPDwMuHT+wAKDxsYbb+yuymIA5xBdIAjow6Ox//77uynkTACJruFisOa2CaZqgQwGKOCDAQnY4WYGbrFgUMQLwS0ZpAEIuVqNgRdPEjctcDvFKaec4jp+vE2AWmb44IMPsqbnZopc9QK++vbt68oFgJx++ukOLLndg6u9uE0Cbxfa3X333Q44mHYDkqgHZcxVH/Jhqo6BmYGLvDlIObpejAGXQe755593Xi8GdOADsAZa0ILBHfCgLdq2beuOZAF+uTGE68vQAPDODLQRgAGs0g4AG8+k3Wkv2pHDkLkNg1sxyJcBnvbnfmIGeUAFIAFegEvyARJy1QdgRB+05AsAdeBKsbvuustBDmUF/gn8H5sjP65OA9iAAOAY6Lvhhhucx4y/Uz9uMgGQKBcgSd58xhV1UeAgZ+wWmyQf0uXSMUrDM2jnqH4ASKQD+pMH7U27AFSUNZs9R/kRD72wWeCOskZTvbQf2nDvMvfynnPOOe6novchsp/yHr/IE0c+2C9X1mGnvF9AG2DMFwrsAFvFPviMv9GOvCfYNhD11FNPOcDnfTvwwAOdrWEfPJu65tIj8yggbDFb+9CmfFEsny8eWeAP++YLIDZIO3z66acO7vgCgC0C/nyB4P3ntpwjjzzSfRHk8HT6MQUpUOwKCPyKvQWLoPzAC+t6GOgzA4MB4Mc3awY7PFoE1hYBbayDYiBk0KcDjtIzTcaAw0ACsGQGPIQMHoMGDXJ/xgPBgE7HziAKSHLnK94RwIxrqhiMAJuoUweMuB2CuIAfnkMGIsrLoMYAkBnwUmVLz4CSq14ADs/Gq0jgKjcGLNaq4Y3Aq4jnDbgDpoA0AoMogzz55qoPAxia4YlhQI0GbCAM2GBNGl4foJRyowODNAMyoEBAP2ABDyy647kDFgjcmwtMRt5S/oYmgDllwquD1wio5Pm0ZXTfMHGBytVXX92BNLpGaYB6vGkAB+sRo6neyAOVrT6AX+QNJW9gBLijPLnAj3WD0VQvHkW+OAC1ESACqnj+gGYAAiilHnxBYEq3/Lq3zKletMmlY6bNZJvqxQ7xBHI7Cc9HB+5rzmXPmflhD3xp4ro9bD0T/Pgssm2Ah/eK9zHOfnKBH+8H0IZmaIXWfMng3aP+tDt2CrAy1cxZjnzJQjtsMZrqxatGHL4MsN4PO8ebD8BiF9n0yJx65h3N1j54irPly1Q4HtGovOiHvfE+8eWL9yZaB8t7whcYnkEdIk0BfYBQQQoUswICv2JuvSIpe9xUL5s+uM6LQZzAAMFAgJeIQQoA4Vs43ozatWu7acfoHtVosI6kYFAGcDIDgxKdPbCIp4xpJTp6rs4Cvuj4GVwZ4DMDAxyQwmBKANKYrmINVWYABrOl5++56sUUMHVjGo9AufFE4l1kmgqvFDrgsUILBiEC0Ma0JzCERzRbfSLwi+7YzQQ/puEABICPK8fI/9xzz3UDIAN5tNEGXYAQ6gr4AXnR1COeVjwieI6iEN31W37tVvR3vDPRNBlwy9QacFB+0wmDLCDHgFse/LLVB5thyjoCVupFedEHCMn0+AG6eKoywY9pvugqucw2ZTobjyW6A3YEvFrAKl6qzJAJfhXpGAd+EXREO8nRgXLksmdf8ENLoJnAlyDuFcbjlut9iOwnF/hF5cRLip60MYGyojHtC4Dz3nKDC3YGjJUHP+CX9gOqMkP5zUiZegDsmSFb+wC02fLlPcebGJWXfLAVPHp8SaB9oy91mfdiZz6PdzO607pMQfQfKVBECgj8iqixirWoceCH545BjjVkhAh8mMLC28bAzmCN9421engJGTQAt/KDNlDEN/vIO8VUMOuIdtxxR3e3K9NRTH3hUcFDxbozgI4pYH4nsCuSvAHGzF29ucCP/LKlZ4DJVS/WPwFJkWcS8GNQpnzlwY+jLaJ4/MtaMtZ15apP+YE7E/yYkmRKlOlUPDF4FAEqvI0MgBHMMVXK53gaGRzPPPPMUo9YNvCjndALbyUeRKbEGfwZTBn48e4AsxEgMNAyuAJ+mbtZKwK/CEQy6xN9WaC8BEAaLy8erugZACsAy5cGpm0zwQ/PEN5HQBwvFgEvJ15ApkyxHzzE48ePd0DD73jLcoEf3s5cOsaBX6RDJuigezZ7pm6+4JdpZxH4AW2+9hM9p/ymi1zgx5cxplTxKkfgCrCVBz+Aj3WB0d3N2PSTTz7p1tRm2kUu8MOGs7UPX1Ky5UsZmP6NlodgE/QB2DjPyAQ/vI58uQSOCZSRfoq1q9wTrSAFilkBgV8xt16RlD0O/JhSZarxueeec5DB1CnQxGBMwHMDjAFErPFhHQ7rjDK/uUdS0GEzuJMXIMKUJF4uPB545ZhiZXqPKWKgjukkIJCBgqlcppKY1gRK8Ar6gB+eyWzpAZ1c9QIifMEP0KDuTN8ykAJSTInlqg/PJG42UMJzSrnQialVvHBAK6DEc/DCUW+8fayVw+vmA37oz1Qfa66AMeCcZzB9BwgB79FGFdqO6UemgHOBH+DNuko0IuSqD8+i3NSBOHhoGdyZ7kUrPH+AIEABEETgBzhhG6yZ5MsCNohHCPhgqpayM92OlsA7mkfT8KNGjSrz5vEs6omHkDVjuXTMTMQGmKh+TOnnAh2+DGWz5/JHI1U01ZsN/Njo42s/oeDHdCqbJHgu9sW7dN9997kpXeoKUANReE6xC2CUtZOsjQQO+cLgA360ebb2wZuZLV/KQHlYSwhc8u7jlWcKn2UmmeDH7AJ2wEYgYI80rBGkTjrXs0gGHhUzpwICPxlHlSuAN4lv59mOc8HLBjCw4B/oANYANTx6AB+B6SQGeDZ84BFijQ1eHAaM8oE4gB3TPQQ6bQZPBnbWC7LGiWfssccezgOEF480DATRtCvTmAy2fOYDfni3sqUHUnPVKxv4sYCcqdZMjyfgRV2i6T68aWjDzsdc9WEgyzyHLXPqLNo1jQYE4AgvIl5RBjqmwSPdABzgwBf8mELEKwtQAo+sk6ItmH4FBvg7Aa2ALLyP2cAP7yADN1P6QDmAn6s+wCReRr4YEIBaPDhsZokGb/6+++67uwGe3bx4/LAD9KOd8bYy6AObBKbbsdUItPFsoQNl4QsEtlMe4oBNpszxxubSMTMNgBnVj2nvbKCDDthtLnvOzA/PFOvoaN/ya/zKgx9a8U742k8I+DENCjTzDgG3BGwY0OTLRLTWF5ugXMQBwCOb4x3EE5lLj8hrHJUJ+83WPkBe+Xz5wgG80U7YP/bIF0EAnHcd72/m+l1ANPIo0/7ANl/wFKRAsSsg8Cv2FkxR+RkM6Yw5VLcy36qZwmH9HGCBdzDzLDMGf6Zt2ExBPNYg8TsBOGWKjwE+SciVvjL1wltKeZi65ugXQCAzVFSfXHVgcGNXMzozwEaB6S48V0xlMaWZ9Aw46ls+PdP27FIG2n2PxMBbhwcogtSK2oT8gVcW+2eWGxsA7KM2Lq8dU320Oc9iMw7TvkBrZsCW8FSVX9uXGQdNAX1+fHX0rV9F9pzETitrP77PBELXWWcdZ2O0Dz/Ru5V5wwhfTNjQAqwnCbnaJ1e+2AOQjxc31yHSUTl451jjy9Q1xzMpSIE0KCDwS0Mrqg6pVSACP7wzClJACkgBKSAFKquAwK+yCiq9FKhCBVh3iKeBTQMKUkAKSAEpIAUqq4DAr7IKKr0UkAJSQApIASkgBYpEAYFfkTSUiikFpIAUkAJSQApIgcoqIPCrrIJKLwWkgBSQAlJACkiBIlFA4FckDaViSgEpIAVyKcAO4eh4HKkkBaSAFKhIAYGf7EMKSIGiUYCjODgAmLPhuD4tV+CwZs5oK3+9XtFUtIKCcs4jh5tzTy7H5tx9993G7m8OM+YgZ5/ApiHOreOwY84tzBXIv2XLlu5AdAUpIAXSoYDALx3tqFpIgZVCgQj8uA2Ce1dzBQ7e5jDgNIIfBwlzMDiHIHOYNFf0cbsIEMchyT6Bg5M5dJqDnDkgOlfg/EMOmuZQbAUpIAXSoYDALx3tqFpIgdQqMHXqVOfR4k5h7jLmuroI/ICf7t27u5s7OKybWyO4KzYCvx49erjbObgejlsbKjqEuRgE5D5fbkHhJhducfnrX//qrokjcEMOdcwVuPGF6+U4SJnr6NAF8MPzx00m3K7BgdncxTxgwAB36DU/3KKCbtyQAlgC3D6HaheDniqjFFgZFRD4rYytrjpLgSJSANh75pln3FVv3KkKAAJ+TPVydR2Ba7iAGK6c41aGyy+/3Hn8uGoLj9ULL7zgrmoDdoo5cOMF9y0zjX3xxRc7j9/f//53d9sKU75cPZctcFtNdGMKOpKeW3LQjDzJAy8ioIeuEUTyf263adOmjbs5BuDkLl1AXEEKSIHiVEDgV5ztplJLgZVCgfnz57tr1LibmXtyX375ZXcfMODHFCXr2gCeM844w019cq8wHqn33nvPgR/XbQF/TGsyvUl+cdd0Fbqw5ad6t9tuO3ct2ttvv52z6GPGjHFaPfjgg25tIHdF9+3b14HfHXfc4bx5TKNzf3X79u3tzTfftO+//96tIeSaPe4T5to6tOTeY+5BVpACUqA4FRD4FWe7qdRSYKVQ4PPPP3f370abObjvl3tTAT8A8OCDD7ahQ4e66V3ghOnPq6++2t0LDPjhzeJ+2KOPPtp5+1ZW8ItgMdrM8dBDD9lJJ53kwA8A5M5n7tYlHH744fb000/bL7/84u6z5e5iwHDZsmVOy1122cV7E8lKYaSqpBQoMgUEfkXWYCquFFjZFNh1113ts88+s1tuucVYpwbAAX433HCDm5pk/dmVV17pPIJMCU+ZMsVuuukmB36nnHKK8wLy70EHHeR2wxZ7iCAOTx3TtoBYnMcPAF5nnXWct+4f//iHcfcz0+KA34wZM9z08bXXXuu8e2h1zDHHGM+JpnrRft68edanTx+79dZb3bpKBSkgBYpTAYFfcbabSi0FVhoFoqNHqPC+++5rr776qnXr1s1tagDu2MgRBQDmxhtvdEA0ePBg5wFk2pfNCOxMZU1csYdp06ZZ69at3Ro9dvOyNm/NNdd06x8rCnj2mOIlsClk7Nix9uSTT7rfOdKFqXICHj4033777R34sX5w7ty57nk77LCDm+bl7wpSQAoUpwICv+JsN5VaCqxUCixYsMBNRwIl5QO7VPEIstEj225TNifg7apbt25qNGOzBlOxAF+dOnVcvTjEefTo0Vnr+Je//MV5BdGQI26ijR6Zkb/66it3CPTGG2/s1vplBqZ50RGPoIIUkALFrYDAr7jbT6WXAlJACpSCHx68bIEjYIBEBSkgBaSAwE82IAWkgBSQAlJACkiBlUSBggE/Fh9nTlusJPqrmlJACkgBKSAFpEANKsBSBg4vZzlErsA610aNGpX52CddDVYr56NrHPw4roGjFho3buzW4LAYm8NXFaSAFJACUkAKSAEpUJUKcBrAbbfdZs2bN3frZIcNG+Z4JAqcj8mOd44yYp0rO9vZXBWXrirLXNm8axz8+vXrZyxURkwWaa+22mo2a9as0hP5K1tBpZcCUkAKSAEpIAWkQHkFAL169eq5w8vx5nFaQNOmTa1Xr16lUTk1gCOluK2GI6S4GYjbbeLSFbLaNQ5+uFdr1aplq666qjuDi7s1P/30U/c3BSkgBdKtAJsRuIGDwHs/btw4982bO2HpAziChW/ZbE7gWziHDHOcCzdKcLRLZsj1WeYzMuOXz5vPJk+e7GYeuNu30IK0KrQWUXmKXQHOsKSv4cBh51wfAAAgAElEQVR3AndUc0QSVxpGgf6GayMPOeQQxyjRcUZx6QpZmxoHP8ThKiAOFOWQ0BEjRpR26AwC0dlSkYh0/lw9pCAFpEDxKsANGpw7B9RxDh3hsccec+fEcQAz37A5WoR7eVu0aOE6Zm6UeOKJJ4wryvj7brvt5gAwCuU/4wiX8s+I4n7yyScr5M35eJz517JlS3eGXaEEaVUoLaFyFKMCHHHEPdOZgUPduX+aQ8y5w5t3n8AtQFxvOGjQoNLoV111let3WJLGNPDpp5/ubg2KS1fIWtU4+DG9e9RRR7lDQqFt3KwVBVytXE4ehf/973/uWiEFM2nhbwXSqma14jw5Ot3x48fbpZde6pZ73Hzzze4wZg4P3nbbbZ33jc4Z7xvvPVeMDR8+3M0KkI67ZLmyjQBAPvzww2U+o3PPfEZmjenYM/Pm4Ge+6b/11lsO+jjUOEmoCruSVklaIl1pqsKu0qXQH7Upr1V5ZsisNzOO3N3NJg1mGJjCJWTeTMNh5VxhyOHveP+4Nejdd9+NTVfI+tY4+N177702atQo76uUBH65zUmdg/+rJq0KQys8/aynYa0NN3Gwxpf1NlwZhvcfEFx77bVdhwzI4ekDAD/66CMHaRzaTKfN9DDeuszPunbt6ioZPYNdeXgA2bn3zjvvlMmbdHgIn3vuOXcIdCGBX9RS0srfZtMWU/2Vf4uGgB+5tmrVygYOHOg8/R06dHD7DehrmHlgE8cBBxxgJ554ouuT8Pgx3cu1kdnStW/f3r+gNRizxsGPjp1rlzLDxx9/7O7fzBYEfgK/fLwv6kj9VaxKrSKYYa0N0HXOOec4KGO9H0DHLn88fuyqY+E1nrrzzz/fXnnlFQeLAB/xuG2CfiTzMzrxTPDj2z1TvKwn5hmZeeN1JBQD+Ekrf9tNS8yqfAfTolFUj1Dw4/7uLl26uOSdOnVyswrMNgB/3E/NVPEJJ5zgPHys/73vvvuc9y9bumLZm1Dj4BdqdAI/gV+ozWSLr47UX8Wq1CoCP0rDt26uH2P5B4uply5d6jphvIB8EWRalxkCOmM+O+OMM9wRC1HI9VnmMzIHh/J5Fwv4SSt/201LzKp8B9OiUVLwIx1XQjIjkGupGdccsps3c02xT7pC1VbgV6gtk6Bc6hz8RZNWhakV98+uvvrqpYVj7R+bvzIPVqWD5rD3bN+uK/qsfI2z5e2vSvaY1WlX0qqyrVU86avTropHFb93sKI1fsVe16TlF/glVa4A06lz8G8UaSWt/BXwjym7klb+CvjHlF0l10rgt6J2Aj9/eyr4mOoc/JtIWhWGVmk7m64q7Upa+dts2mJWpV2lXSuBn8AvbTZepj7qHPybV1rVrFZMybI4misbL7vsMlcYOui99trLHdXCgc2su2EXLsercNQKGzduuukmt+iav7MQe+utty6tSPnPNthggxWeEUWeMGHCCnmz4eOll15yO3oLaVevtPK31bTGVH/l37Khmzv8c05PTHn80tOWOscvoC3VkfqLVRVa6Ww6f/2llb9WaY1ZFe/gyqKVPH7y+KXV1l291Dn4N6+0KgytdDadfztIK3+t0hZT/ZV/i8rjF6+VPH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpDK53j598O0spfq7TFVH/l36ICv3itBH7xGhVNDHUO/k0lrQpTK51N598u0spfq2KPqf7KvwUFfvFaCfziNSqaGOoc/JtKWkkrfwX8Y8qupJW/Av4xZVfJtdLmjhW1E/j521PBx1Tn4N9E0kpa+SvgH1N2Ja38FfCPKbtKrpXAT+Dnbz1FGFOdg3+jSStp5a+Af0zZlbTyV8A/puwquVYCP4Gfv/UUYUx1Dv6NJq2klb8C/jFlV9LKXwH/mLKr5FoJ/AR+/tZThDHVOfg3mrSSVv4K+MeUXUkrfwX8Y8qukmsl8BP4+VtPEcZU5+DfaNKqarS66qqr7Ndff/XPPGUx58yZY2uttVbKapWf6qy66qrWu3fv0sz0DvrrKq2SayXwE/j5W09ATO4UrVu3rtWvXz8gVf6jqnPw11RaVY1WXc/vag/e/qB/5oq50ihw1cknW+/BgwV+CVo83/1VoYxZCaSITaLjXGIlMu3qzaLRvffea2eccUbpJ5tttpkdffTRdskll9iaa65ZJsVPP/1k66yzjnXr1s1uv/32eMWrMEa+O4cqLGqNZy2t/JsgRKszLjnD/vfT//wzL/KYm629mfEThR9++MHWXXddv1r973/cs+gXNw2xNtvMLr7nHoFfgrYMeQej7A899FB75plnVnjad999Z40bN048Zv373/+2Aw44wOV98MEHJ6hN1SYR+MXrK/DLotE999xjZ555ph1yyCG2+eab2/PPP28ffvih9enTx6688soyKRYuXGh9+/a1v/zlLzX+EiTpHOJNJJ0xpJV/u4ZoNXrmaONnZQl7t9jb+IlCiFY2erS5n5Ul7LOP2V57JdNqZdEoRz2D7Or3PICy//u//3NjWb169dxfa9WqZddee63169cv8ZgVgd+IESPcGFloQeAX3yICvwrAb+TIkXbQQQcZhgQAHnbYYXb22WfbpZde6n5/+OGH7ZFHHrHTTjvNjjrqKLvwwgvt9ddft+7du9s777xjW221lV1xxRXWpUsXe/nll8ukI2/yzGdI0jnk8/nFlJe08m+tEK0Efv8zZgi8gsDPXysvQdMbKeQdjFSIwG/+/PnWoEGDUnF+/vln22+//dyY9fe//93+9re/2W677eacG19++aWdfPLJbnYLp8bFF19sTz/9tEvfoUMHu+222+yFF15wHr9s4Pfoo4/awIEDbdq0abb33ntb//79rVmzZvbaa6+5vKhHu3bt3Fi43Xbbuecxpo4ePdpWW201O+WUU5wjZe7cue4ZPHPcuHFujKWM5D1s2DDbeuutXVl23nnnFRpd4Bf/HhQM+C1ZssQWL15cxkCzFb/8Qs0kL0ScLJHH7+abb7a//vWvzsC5J7Nnz5725z//2b0whN13392GDBli22yzjXOb33rrrc7ICeeee67961//skmTJjnjHj9+fJl0Tz31lDVt2jSuKEGfV4UWQQUoosjSyr+xQrQS+An8clqWPH7+L125mCHvYHnww0kRefwYu/bdd9/S5UnMYK233nouSQRgAOBnn33mxqxjjz3Wzj//fKtdu7Yb35544glr2LBhVvD74osvbOONN7bOnTu7zwFIvI3AGn9nHCSv+++/39q2bWvPPfecHX/88TZ8+HAHhVOnTnXTx48//ri1adPGmjdv7srFF6lBgwY5IKRsOFbuu+8+Y8r6q6++cuXJDEnAb9myZQ50y+eVmS/LOFjqFWmZuDELIGGNg9/SpUvtgw8+cMZQp04d9w2holCd4JdZjtatWxuw9sYbbziAu/76652xZq7xO/zww923nLvvvtutEcT7h4H/85//tA022KBMuqpo+ySdQ1WUoxjylFb+rRSilcBP4Cfw83+3fGOGvIPlwY8xCXAjAGOdOnVaAfzw/LG2nRms4447zpiRYuzCgwdc4ZEbO3assWt/1113zQp+s2fPLoU1poDbt2/vwO6TTz4xxs/Bgwe757/77rs2a9Ys22uvvWzttdd24+Jjjz3mwAvPImmBRcCPsuJ4+fbbb93/cbbgoYzKw7Tz/vvvXynww3mD95D8cUDhUWQNZBSAYOqx0UYbuXKcd955ztOIsycKH330kbVq1cpBazGEGgc/LhrnWwfGsMsuuxQU+N1yyy0O5Pi2En0r4hsPhhoZXCb44cLGvT506FA3vfv+++87A7n66qudazozXVUYR5LOoSrKUQx5Siv/VgrRSuAn8BP4+b9bvjFD3sHy4Fd+qjdzzIo8fkztMqvFLBUeO8Bv5syZDm6OOOII22GHHdxRPBWBH88dM2aMc+IwHQwkdezY0TlB2GjC2HnkkUcankHK0KRJE+cQOfXUU51HD+hioyQcAHwBYr169XJrEiMnCp7AffAc/x7YdLn99tsnBj+eiQePY5gaNWrk6stMHM+NQteuXV09eBZeP2bxMssAGDLuA6OAbDGEGge/SKQ777zTPv3004ICv2iNX2ZDRuCHYfONJvMlwguIMW+55ZYOZvkmget6ypQp7gfwi9JVhXEk6RyqohzFkKe08m+lEK0EfgI/gZ//u+UbM+QdzBf44e1jGpax66GHHjJm24A/1tplW+MH+ABEbIJkrMNbx3Qs3j2mSIFHwBG44v/kSz6s4cPDxzQu8MlSqwMPPNCB3+WXX+4cJz/++KPbLc+6eTyHlO2tt95y42v5JVMhU70zZsxwaw6nT5/uZBswYIBNnDjRwWsU2LiJt49NnjiCbrzxRvvTn/5UBj7xOuLNLJZQ0OCHQUD65QNTrFFI8kLENU50nAs7ojBAH/Bj7QLT1A888EAZA7joooucoZQHxrgyJPm8KrRIUo5iSCOt/FspRCuBn8BP4Of/bvnGDHkHfcGPMQuwYjYr8qw9+eSTziuH04P1bnjq2AzCJgucFqwXZFo423Euy5cvt2OOOaZ0unPDDTc01snjKbvmmmvcswhrrLGGmzHDe8dMH4CId5DANC5jJV7KTPDjM8ZjwPG9995zcZmR69GjxwoSZgO/8pGYxub5eO/wcLIZhcBsHV5LPJBRwJnDtPRNN93kwBDvYPQ5z+Iz/i2mtX8FDX7ZXorqWOPn+zLmirdo0SK3OJaNHhh5dYUknUN1la3QniOt/FskRCuBn8BP4JddAcYFAjeYhIaQdzA074ricwsPoAP8+Ibvv//egdsmm2xSJgk7dfEAtmjRwl14EAXW+TNeApo+z/n8888drGbuVM58UIjHL1pXyOYOjrqJ9hiwgSQK7D4GYJnuxTO4xx572DfffOM+BpipC17JYgoCv2JqrZiy1lTnUIwSSiv/VgvRSuAn8CsE8Hv22Wftv//9rzs2JB+BAZ6lPF9//bUXnJR/ZrR7FUCIPF/l4+C9AjxYd8ZGx4pgJh91SmseIeCHBmzKYKq5ZcuWzrPJVDUeQaai2ZTCGkSAlLWGHOGG5xPPIIG1+6xH5LSPYgoFBX7QNFvGKwrF4PGrKQMIGaBrqoyF8lxp5d8SIVoJ/AR+hQB+bChgyU7kyfG39uwx2fzA2MMOVzYkhASuR8ObxdFgd911lzu/Lltgt+gdd9xhv/32WxmPGHFD3sGQsqUxbij4Ma3NZkwC086sa5w8ebKDv3nz5jntOeoGEGT6Gkjcaaed3PQ0QIhXtKavaw1tx4IBP9+CC/xyK6XOwdeK1JH6KxWmlcBP4JcE/FjzxcYBPC4MxGyQ40B8ju9gOg7PHQMyv7OQnrVWDLoclM/aKxbeMwV32WWXuY0Ap59+uhuYGchHjRqV8wDhXAfus14NDw9Hc7F5gCU7r776qgO/VVZZxa3x4odpW9ZxR+CQre6UFy/R+uuv79a6sSmQDQ4cDcZ0KIcTU95M8GNzAV6lk046yR1qzHWgHCfGlCjPwnOYOV0a8j6nPW4o+KEHcM5UdEVn6zKFHZ3uUewaCvyKvQUzyi/w829MaVU1Wgn8BH5JwI8ptBNOOMElBXYefPBBB0qAFrs42VDA+XLAHtOheGDwjkW7KzncF1BjHR1Hkpx11lluYyC7UQGlbAcIs1kg14H7rOHiWJFtt93W7eTEy0OgPBwezKkNbDTgGS+99JL7F/DMFoBHygOEMo0IMPI3ZrdeeeUVY1qadWtsAqROnKXHwclsOgB2yZsycKwIt1vgNYzOkfV/i1eemEnAb+VRp6SmAr8Utbhgxr8xpVXVaCXwE/hVBvyANs6NY8cmHj+8YqyvmzBhgttkwEHEeMzefPNNwwPDuqyPP/7YTaNyDRlwhBctc6qXtNkOEMaLR5psB+7zLOCOI8a4WpNpPwAM8GMXJ5/zDM66wzMX7YrNVnc2NACxeC3x+JEn3jvOhKO+9EUAIFejAX5RiM7fizyBnGbB2j8Al/q8/fbb/i/xShRT4Bff2AK/eI2KJoZgxr+ppFXVaCXwE/hVBvyi+1/xsJ1zzjnujDe8e0zfcvAvgRuSgCQO/weeOPcNgAIAgTk2YLArM1rjx9RxtgOEgTZuich24D7PIj2eP6CNM9o4qgvPHN5D/sb0bBQAMQ7x9QE/ysL5c5SRc2DJNxP8yJtpaiAQDQBdvIqAX3RkCFOO//jHP/xf4pUopsAvvrEFfvEaFU0MwYx/U0mrqtFK4Cfwqwz4cbYaQMPOV7xrAB/XabGODk8XGytY88Z5cUx5AmGAEVOofM7UKAcBkwZwwzPIdG22A4Q5Qy7XgfuspeOsOp6Ft48ycZ4dZeIsO/JlXSLP4jBhpprLXx0W6VDe40dZNt10U+PMPLyGrB18+eWX3dVkwB515rBj1pxxvhwQ3K9fPzcVzC5Sfgce87Vj2b8nKI6YAr/4dhL4xWtUNDEEM/5NJa2qRiuBn8CvMuDHFZfRAb3c5oS3D3ACtqLD/NlZCXRxVRebHgA+PGR4+4jP+jdgjHVyBDZq5DpAONeB+4sXL3YePDZlENhkAuzhTcTL2LNnT7c2j8AtFXgNc+3sjMAvuoUCgIsuIeDAYrx5bFYB8gA/jnPBo8kaP9Y78hneRepEAApZnwj0KqyogMAv3ioEfvEaFU0MwYx/U0mrqtFK4Fdg4Lfbbmbt25s98YTZ1KkrNvqZZ5o1avTH37/+2uzBB8123tlszz25ZsFs9myzBx4wW7rU32iyxeSO1b32Kv0k8x2MNnewpo9rudg5yxEomQFvG0dnADys9YsCYMcULECYef4dOzU5GoU7WAm5DhCu6MD9L7/80t0fm+2wYICO5/E5sMaVZdkCV36VrwtTvOzK9T3gH63wduIN5EYLDhtWyK6AwC/eMgR+8RoVTQzBjH9TSauq0UrgVyDg17y5Wbt2Zi1amAEJTz1lNmnSio1+5ZW4xMx+/bXks6++KoFErsXk7wsXmgFgXGn1yCP+RlMJ8MO7VmwB8GPqNlvgxgemdysT1F/5qyfwi9dK4BevUdHEUOfg31TSqmq0EvgVCPi1amXWsaNZ/fpmeMeAksmTyzY6n3GzxVtvmY0da/bLLyWf7713yc8bb5gx1XnZZSUQeO21/kYTCH6zZ8+2Dz74wHbddVdba621KvecFKZWf+XfqAK/eK0EfvEaFU0MdQ7+TSWtqkYrgV+BgF/UvEcfbbbNNtnBjzVip5zyhyHg3Xv6aTNupth3X7P33jN76SWznj1LvIZ9+pQAYNJQwVRv0ixXlnTqr/xbWuAXr5XAL16joomhzsG/qaRV1Wgl8KtG8GvShJ0FKzbkjz+aDRtW8veKwG+LLcwOO8yMC+fnzClZ1/fDD2Z33VXiCcRTCOhF68n69TNbssTfcMrHFPgl1k79lb90Ar94rQR+8RoVTQx1Dv5NJa2qRiuBXzWCHx67E09csSHnzjUbMCAe/NZe24yfL780W7y4ZEq3bt0Sz96qq5q1bVsyVcy0cZ06ZoBfZYLAL7F66q/8pRP4xWsl8IvXqGhiqHPwbyppVTVaCfyqEfx8mrC8x2+ddcy6djWbOdOMA5E7dSoBP/4P6OH9GzXK7OSTzdjhy05gpn35/e67fZ6YO04NgR8HPHPlW+ZO4GyFnDx5sttpu80229iyZcvcIcvz5s1zN3W0YJPM74HjXDh3j7icIZi5M9f3WaFCqr/yV0zgF6+VwC9eo6KJoc7Bv6mkVdVoJfArMPBjKnjbbf9Y49esmRk3Tnz3ndmdd5qdfbbZ+uuXGAPHtTz8sNmMGWannmq20UYlf8cb+M9//rH5w990ysasIfC7+eabrUePHhWC3zvvvOPO0+PqN344VJnzBHfbbTd77bXX7DK8ob+HIUOGWOPGjd3RKuzW5TDlKPg8K4l86q/8VRP4xWsl8IvXqGhiqHPwbyppVTVaCfwKDPx8mrlBA7PGjUs8f5ln9XEEyeqrl5zjl49QQ+B30003OUDjDEBu4Vh11VWNmzk4ZuWRRx6xfffd12bNmmVvvfWWOxQa8AMCt9tuO2vWrJndcMMN7uq01dHCzB0azcHLHBrN1W4cPzNq1CiXL9fIZT6LA6nzEdRf+aso8IvXSuAXr1HRxFDn4N9U0qpqtBL4FSH4+ZtC5WLWEPjhhTv66KNttdVWs8cee8y4Fo73nzt/77//fgeAAN5zzz3npm0BPwIHND/11FPOu0fcKAwbNsxBH7d77LTTTu7g6LFjx7rr18o/C2DMR1B/5a+iwC9eK4FfvEZFE0Odg39TSauq0UrgJ/DLaVk1CH5M9XLX7kMPPWR77rmnffLJJ3bkkUe6O325cq08+HEHL+v4jjjiCHdTRmbgrlymfufPn29cK3fQQQe5O3vJL5rqjZ513nnn+b9oFcRUf+Uvo8AvXiuBX7xGRRNDnYN/U0mrqtFK4CfwK3TwO+GEE4x1elx7xtTsKaecsgL4DRw40IEd07eEE088sfTqtxEjRhhXuZGee3PXXXddgZ9/d1LlMQV+8RIL/OI1KpoYghn/ppJWVaOVwE/gV2jgl6s8TNXW57iaBIH7fbmnt169eglShydRf+WvmcAvXiuBX7xGRRNDnYN/U0mrqtFK4CfwKxbw838Daj6m+iv/NhD4xWtVMOCHW53Ft3FnLbHD6mIuEP896IX4o5GlRbzBy278NUqilcBP4FfI4Pf888/bFlts4X4qCmzW+Oijj9wZfltvvXVp1E8//dTGjRvn1v21a9fOTfdGYcKECfb6669bt27dwl+ymBTq2/0lTQJ+nNu4cOFCa9iwof+DzNx5j0nSBT2kCiLXOPh9//33dtxxx7nDMNlif9FFF1lXDhjNEQR+ua1AnYP/GyKtqkYrgZ/Ar5DB71//+pdtu+227idXmDFjhj3++ONudy8AmOloYPwBBsePH+92A3PYcxTYOMK5f5mg6P+WVRxT/ZW/kqHgx3pPNvkA80uWLDF2bbOTOwqc48gB4K24wcbM7fA+5phj3DrRitL5l7j6Y9Y4+F1//fVut9U111xjX3/9tTVt2tQtqm3A2VJZgsBP4JeP10Qdqb+KIVoJ/AR+hQ5+n3/+uVubt8kmm9j+++/vjnQ566yz3Dl+DPx8vt5661mTJk3cLBTeQTx7v/32m9u1e/LJJ9u///1vB48//fSTffzxx25zCN5A4IHNI/kOIe9gvp9dbPmFgB/tjS3MmTPHbd7BWwuD9OrVq7TagwYNcm0P/OGgIvikK2Tdahz8TjvtNOcyh6CXL1/upnqnT59um222WVbddt11V9txxx1LP+NKHQ7MVDB3vZC08LMEaeWnE7FCtJq9ymz7qv5X/pkXecxmi5tZ01+bJuqPtp4927b6auXRalqzZvZx02Ra5ctM1llnHVu6dKnNnTvXDfA4GwA8/uUMPwAP2COwgQMHxFe/txGfEZdxio0dXN3G5+THOwIs8i+bRvIdQt7BfD+72PIrr9Xmm29exmubWR+8u/AHzEEYMGCATZw40X0ZiELPnj3t7rvvdg6qzp07uwO9CXHpClm3Ggc/zlDihzOQCLxYfPPibkTWUrBmIjNcccUVpdTN33kJo3UWey5bZhsvX17Ieue1bJ/XqmWv1a5dmmemFnl9UAozk1b+jRqi1bKNl9nSjZb6Z17kMet8Ucdqf57sHaS/+mvmTRlFrkVc8V+rU8fG1nB/dcghh9i0adNs6tSp9o9//MPuuusud/AyA/4BBxxQevMGQDBlyhTnCXz44YfdoI+HkBs78ABxI8emm27qbgOJ4h577LFuapijXvIdQt7By377zf66bFm+i1Cw+WFX1/7uiSvPBPy/d+/eK5SdG1w4yHvSpEkO5rAJwtChQ23MmDGujaPAWY14dGl7IBDox/sXl65gBTOzGge/vn37Oi/V+eef7745rb322s7tmmuTR4VTvaNHm/GzsoS99zbj5/eg6QD/hpdWVaOVpno11ZvTsmroAOfM8mSu8YvGknvvvdd59zjTj+vXWLf3xBNP2CqrrGJ4CBngo8D5fgz8xOeOXu7zxaPEeX4PPvigu/5to+iOY/9XLDZmUH911VVmffrE5pmaCNQ3A+5CpnrZmIHXlk0aOJD69+/vZOnevXupPMSJvMDvvvuuuwXmgw8+iE1XyPrWOPiNHDnS7rjjDnvxxRfdy3brrbfaG2+8kVMzgV+GNAK/xO9WUEea+CnpSBiilcBP4FfI4JerbNnO9Msc8DPTAYjRvb3V9YaHvIMm8CuzVKw8M5RvMzZtAPQtW7a0Dh06WJ8+fdydznh8W7du7X7nBhaA78Ybb7SZM2e6+NnStW/fvrpMolLPqXHw4+XCxc6VN/zO5djsjMoVBH4Cv0pZvLyjwfKFDDoCP4FfMYJf8EtRzQlC3kGBX9l3MA78cD516dLFtWinTp1s+PDhNnnyZAd8rBfk6j429OAZ3HLLLR38sbEnW7rM432q2USCHlfj4BeV9osvvrANNtgg9iR0gZ/AL8jCc0QO6kjz8cAiziNEK4GfwE/gl/+XPeQdFPiFgR+ttWDBgtINP9laj2VoP/74Y5ljXnzS5d8S8pNjwYCfb3UEfgI/X1upKF5QR5qPBxZxHiFaCfwEfgK//L/sIe+gwC8c/PLfYoWdo8CvsNun4tJpjV/i1gvqSBM/JR0JQ7QS+An8BH75f+9D3kGBn8AvzgIFfnEKFfLnAr/ErRPUkSZ+SjoShmgl8BP4Cfzy/96HvIMCP4FfnAUK/OIUKuTPBX6JWyeoI038lHQkDNFK4OcPfld17Wp3PP54OozEpxb16pnx83tg3RRHoyisqAC7SDPPnwt5BwV+Ar+4d0rgF6dQIX8u8EvcOkEdaeKnpCNhiFYCvwDwu+wy63PttekwEtUirwrwpaD3kCGleYa8gwI/gV+cMQr84hQq5M8FfolbJ6gjTfyUdCQM0Urg5w9+XPm1Mj0+SkYAACAASURBVIfPPvvM3YbhFbjBqdwtTl7pijVSmza27sEHC/x82q8SBzj7ZJ/GOAK/Ym5VgV/i1guBmcQPSUnCEK0Efv7glxLzSFyNELtyNzLpViY/rXWAc9ABzn6ipiuWwK+Y21Pgl7j1ggadxE9JR8IQrQR+Aj9fqw+xK4FfgF0J/AR+MS+hwM+3lyrEeAK/xK0SNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfwEfon7pcJPKPBL3EZBg07ip6QjYYhWAr+AATod5pG4FiF2JfALsCuBn8BP4Je4Xyr8hAK/xG0UNOgkfko6EoZoJfALGKDTYR6JaxFiVwK/ALsS+An8BH6J+6XCTyjwS9xGQYNO4qekI2GIVgK/gAE6HeaRuBYhdiXwC7ArgZ/AT+CXuF8q/IQCv8RtFDToJH5KOhKGaCXwCxig02EeiWsRYlcCvwC7EvgJ/AR+ifulwk8o8EvcRkGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwE/gl7hfKvyEAr/EbRQ06CR+SjoShmgl8AsYoNNhHolrEWJXAr8AuxL4CfyKBfyWLFliixcvtgYNGlRY5BtuuMEuvvji0jhlOg9d5F3G4BP3yCtBwqBBZyXQo6Iqhmgl8AsYoGVX/v2V+nZ/rQR+weC3bNkyW7hwoTVs2DDrW8nnP//8szVq1KjM5zAL7BLHLYX2qtf4Xb1Lly61Dz74wO6//36rU6eO9e/fX+DnayXy+PkqtUK8EJhJ/JCUJAzRSuAn8PM1+xC7kscvwK4EfkHgN2TIELvtttusefPmDuKGDRtmjRs3LjXjp556yq644grbeeed7YcffjCcTy1btrRLLrnEXn31Vdt2221tzpw5Ll0ucPR9J6orXo2D3y+//GJXXnmlvfvuu7bLLrsI/EJaXuAXolaZuEGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfN/gBevXq1XPghjevW7du1rRpU+vVq1epXR911FF29dVX29Zbb229e/c2mKVv3762zz772Ntvv+3itW3b1nr27GkHH3xw4vehOhPWOPhFlb3zzjvt008/FfiFtL7AL0QtgV9CtUIGaIFfwACdsD3SkizErgR+AXYl8PMGvxkzZli7du1s+vTp7rUaMGCATZw40c1AZoaffvrJYJQbb7zRnn/+edtjjz3cx8xW4jF8+OGHberUqbb22msXxetZbeA3adIkmzlzZhlRWrRoYTvssIP7WzbwGzdunL3++usrCKk1fr9LIvBL/JIFDTqJn5KOhCFaCfwCBuh0mEfiWoTYlcAvwK4EfiuAX3kjxUPXpk0bg0s6d+5s06ZNc1GGDh1qY8aMsUGDBq0AfkDf448/bqeddlqpR5D0d911l5vmHTFihO27776J34fqTFht4Dd48GB74YUXytStY8eO1rVr15zgl00Ibe7IUEXgl/hdCRp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfy8PX5s6GBjBps3atWqVTrj2L17d2fX7EG477777PTTT7fatWvbiy++aGeddZa99tprbnnaIYcc4uKxBvD77793EFgModrAL04MTfXGKZTlc4FfAtFKkgQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+3uCH8bZq1coGDhzoNmx06NDB+vTp49bsTZkyxVq3bu32Hlx33XXWvn17u/vuu238+PF2++2325/+9Cd7//33bYMNNrATTjjB9tprLweIxRAKCvyYZ7/11lsr1E0eP3n88vFiBQ06+XhgEecRopXAL2CALmKbyEfRQ+xK4BdgVwK/IPAbOXKkdenSxZl0p06dbPjw4TZ58mQHf/PmzbOnn37aLrzwQnfc3Prrr2/33nuvg0E2eNx8881uUwjwyDSx1vjlo2fIkofAT+CXD9MKGnTy8cAiziNEK4FfwABdxDaRj6KH2JXAL8CuBH5B4IctL1iwwObOnet29GYLTAV//fXX1qxZszIfM1W8aNGiogG+qPAF4/Hz7UgEfgI/X1upKF7QoJOPBxZxHiFaCfwCBugitol8FD3ErgR+AXYl8AsGv3zYczHlIfArptYqX1at8UvcekGDTuKnpCNhiFYCv4ABOh3mkbgWIXYl8AuwK4GfwC/mrRT4Je62CiChwC9xIwQNOomfko6EIVoJ/AIG6HSYR+JahNiVwC/ArgR+Aj+BX+J+qfATCvwSt1HQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7Kqqwe+xx8wOPJCFcWb/+pfZuedy7klZO+jWzaxHDzOuPhs/3uzEE8169zY76qgV7WXXXc0+/TSxHRn1Je/fQ3m7Kr88LPmD0pNSHr9ibkuBX+LWCxp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdVSX4nX++Wf/+ZkuWlPysuqrZeeeZ3XHHH3bA7RU//FACg7Nnm228sRmwSPwjjvgjHmkJm21mNmNGYjsS+IVLJ/AL16xwUgj8ErdF0KCT+CnpSBiilcAvYIBOh3kkrkWIXQn8AuyqKsHv1VfN9tnHrGVLs8WLzbjx4qOPzLbd9g876NzZ7PHHS36OPbYE+L76yqx58z/iXHih2U03mQ0fbnb88YltyCWUxy9YP4FfsGQFlEDgl7gxggadxE9JR8IQrQR+AQN0OswjcS1C7ErgF2BXVQl+661ntsYaJR662283Y0r3//7P7OCDy3ry8PSttZbZL7+UxL/sMrNrry2J06RJiSdw3jyzddc1W7YssQ0J/JJJJ/BLplthpBL4JW6HoEEn8VPSkTBEK4FfwACdDvNIXIsQu6py8MNLtdVWZr/9Zvbhh2bPPbcikJx5plmjRn/U9+uvzR58sGSqkilMpi6/+65k3dv33yfWxSWsTN9eWfDbYQezJ55YsfzTp5sdcEDJ36kjdf71V7Oddy7RLAqs2XvjjZL//fRTCdyNHWu2554lfyPvI48sWe+X7TmhysnjF6qYCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqUvDbfXez/fcvAT1+6tYtAb+33y5blSuvNFu+vAR2CExfDhtW4s2qXdtszhwz1rd9/rnZ4MG+MmSPV5m+vbLg16aN2csvr1gu6rXNNiVTu0DyZ5+VwBx/zwxoctxxJVOwffqUeP0aNCjRCDieP99s0SKzhg0rp1GUWuAXrKPAL1iyAkpQmc6hgKpRE0UJGnRqooAF9MwQrQR+Aj9f0w2xqyoFv5NOMtt0U7OBA0s2JLBZAc/dnXf+UZX69c0uvdTsrbdKvFfADIG1bni+3nvP7NlnzVq3Lvn7m2/6ylB44FdRyVmXx/o81veNGFECwh9/bPbQQ+ba6D//KdFowICS9X8PPFAyxQsUr7OO2UEHmY0cafbKK2bt2lVOI4FfYv0EfomlK4CEAr/EjRA06CR+SjoShmgl8BP4+Vp9iF1VKfjhjVpllZJpyY4dzXbbrQRaHnnkj6qwM/WUU/74/8KFZk8/XeIB22mnEmCsU8fs55/NRo0qSV+ZUJm+vbIev4rKzZQudc4MTGvjMX333RJv4Pbbm02cWPJvrVola/nOOqtkI8fNN5tdcEHJxo6ePSuj0B9p5fEL1lHgFyxZASWoTOdQQNWoiaIEDTo1UcACemaIVgI/gZ+v6YbYVaXBjw0F2c6Q+/HHkulaAp+zO5VdqPfcU+L1i8IWW5gddpjZN9+UeK9Y18aRJWxSwOvHmXbAHhAI/N1yi68M2eNVpm+vSvALqRXrITfZxGzSpJBU4XEFfsGaCfyCJSugBJXpHAqoGjVRlKBBpyYKWEDPDNFK4Cfw8zXdELuqNPjhseMQ4fJh7tySM+g4hJhNCEDdkCFm/D0zsHaPny+/LJnmZF1ftBawUyczjjl57bUSLxYexL59K7dbtTJ9e6GAn68hVDaewC9YQYFfsGQFlKAynUMBVaMmihI06NREAQvomSFaCfwEfr6mG2JXlQa/igrVvr3ZHnuUTNdOnVqybg1v3n//a9a1q9nMmWZffGEG4AF+/L9t2xLvH7t6gT2mM5nq5Iw7fueQ48qEyvTtAj9d2RZjewK/yrycNZ22Mp1DTZe9hp8fNOjUcFlr+vEhWgn8BH6+9hpiV1UKfuecU3K1WGZg6vbhh81OP/2PjR5nn222/volsYBEPuc8u0MPNdtxx5K/A41PPWU2ebKvDNnjVaZvF/gJ/AR+lXv/Cjp1ZTqHgq5Y1RcuaNCp+uIU9BNCtBL4Cfx8jTnErqoU/HwLTDymcYFEPH+Z99Pyd9YR8nfOAqxsqEzfLvAT+An8KvsGFnD6ynQOBVyt6iha0KBTHQUq4GeEaCXwE/j5mnKIXRUM+PlWrrLxKtO3C/wEfgK/yr6BBZy+Mp1DAVerOooWNOhUR4EK+BkhWgn8BH6+phxiVwK/ALsS+An8BH6+3VARxhP4JW60oEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gVyzg99NPP9maa65pdTgEs4Jwww032MUXX1wao0znwcnh/KwsQeCXuKWDBp3ET0lHwhCtBH4BA3Q6zCNxLULsSuAXYFcCv2DwW7ZsmS1cuNAaVnCN3A8//GDrcuRPRvBJl/gFqcKENb6r9/PPP7ejjz7aGjdubHXr1rWdd97ZLr/88pxVFvhlSCPwS/xqBA06iZ+SjoQhWgn8AgbodJhH4lqE2JXAL8CuBH5B4DdkyBC77bbbrHnz5rZkyRIbNmyY45EovPrqq3bWWWc5Npk/f76ddtppdvDBB1tcusQvRjUkrHHw69evn/3222/Wp08fW7Roka222mo2a9Ysa9asWdbqC/wEfvl4L4IGnXw8sIjzCNFK4BcwQBexTeSj6CF2JfALsCuBnzf4AXr16tWzOXPmWKNGjaxbt27WtGlT69WrV6mJ77PPPnbZZZdZu3bt7LXXXrO///3vNmXKlNh0+XhHqiqPGgc/3Ku1atWyVVdd1Z555hnr0aOHffrpp+5v2YLAT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5g9+MGTMc0E2fPt2Z9IABA2zixIl2//33l5r4zz//bA0aNHDL0OATmKVnz56x6fLxjlRVHtUGfpMmTbKZnHieEVq0aGE77LCDLV682K677jq75ZZbbMSIEbbvvvvmrK/AT+CXj5chaNDJxwOLOI8QrQR+AQN0EdtEPooeYlcCvwC7Evh5gx9c0rlzZ5vGPctmNnToUBszZowNGjSojIl/8803ds4559gnn3xiI0eOtLlz53qly8d7UhV5VBv4DR482F544YUydejYsaMdc8wxdtRRR1n9+vUdbeNmjcK4cePs9ddfX6He2tzxuyRa45f4nQgadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8VgC/8kbatm1ba9OmjfPe4c1jkwazjP1/v2qve/fupUnYh8B074knnug2ljI76ZMu8YtRDQmrDfxy1eXee++1UaNGOYr2CfL4yePnYydxcYIGnbjMUv55iFYCv4ABOuV2E1e9ELsS+AXYlcDP2+OHjbZq1coGDhxoLVu2tA4dOrj9BoAh6/hat25txx57rPuXad7MkC1de+59LoJQ4+B38skn2wMPPFBGqo8//ti23HLLrPIJ/AR++XivggadfDywiPMI0UrgFzBAF7FN5KPoIXYl8AuwK4FfEPjhdOrSpYsz6U6dOtnw4cNt8uTJDv7mzZtnTZo0sW+//bbU5Ndff31j6jdbulx7E/LxvuQzjxoHv9DKCPwEfqE2ky1+0KCTjwcWcR4hWgn8AgboIraJfBQ9xK4EfgF2JfALAj9secGCBW7dXuZSMx8bT5rOJ++qjCPwq0p1qzpvrfFLrHDQoJP4KelIGKKVwC9ggE6HeSSuRYhdCfwC7ErgFwx+iY24SBMK/Iq04VyxBX6JWy9o0En8lHQkDNFK4BcwQKfDPBLXIsSuBH4BdiXwE/jFvJUCv8TdVgEkFPglboSgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMEQrgV/AAJ0O80hcixC7EvgF2JXAT+An8EvcLxV+QoFf4jYKGnQSPyUdCUO0EvgFDNDpMI/EtQixK4FfgF0J/AR+Ar/E/VLhJxT4JW6joEEn8VPSkTBEK4FfwACdDvNIXIsQuxL4BdiVwE/gJ/BL3C8VfkKBX+I2Chp0Ej8lHQlDtBL4BQzQ6TCPxLUIsSuBX4BdCfwEfgK/xP1S4ScU+CVuo6BBJ/FT0pEwRCuBX8AAnQ7zSFyLELsS+AXYlcBP4CfwS9wvFX5CgV/iNgoadBI/JR0JQ7QS+AUM0Okwj8S1CLErgV+AXQn8BH4Cv8T9UuEnFPglbqOgQSfxU9KRMESrfIPfGvXXsEO3OdQ2XnNjm//bfHvjyzfsrS/fWkHYztt2tq3W3cp+W/abffjdh/bcJ8/ZsuXLXLzdNtzN2m/e3p6Y8oRN/X5qXhtl7xZ7Gz9RCNEqrwUpwsyCtBo92hz8rSyhMn27wE/gJ/BLcU9Rmc4hxbL4VC1o0PHJMMVxQrTKN/gdtd1Rtm3jbW3uorm2xiprWC2rZdeNu84WL11cqvjuG+5u+2+xvwM9furWruvAb9bPs6zdZu2sxVotXLqnPnrKJn0zKa8tJfBLLmeIXcnjJ49fTksDdHv3zvnl64YbbrCLL744uaGmMGWt5cuXLy+mepVvxDKdh74VlvmmU0ztWt1lDRp0qrtwBfa8EK3yDX4X7HGBrV5/des7pq8dsc0Rtv3629vjUx53Xr0onLTjSbbpWpvawHcG2tLlS+28Xc+z7xZ8Z+M+G2cdt+xo9evUt9q1atuTHz1pk7+ZnFd1BX7J5QyxK4GfwE/gl/xdK59S4Jc/Las/J3n8EmseNOgkfko6EoZolW/w22OjPdw07a9Lf3UAt+i3RXbLG7fYkmVLSsVtUK+BrVJnFftp0U/WcYuObmp32g/T7JHJj7g4R29/tG2z3jYCvwIzxxC7EvgJ/AR++XuBBX7507L6cxL4JdY8aNBJ/JR0JAzRKt/g13XHrm6qdsFvC2y1uqs5Qe977z6b/fPsFcSNpoWBwnsm3GPfzf9O4FfAJhhiVwI/gZ/AL38vc8GA308//WRrr712bM001ZshkcAv1l5yRQgadBI/JR0JQ7TKN/j13ru3LVm6xK4Ze43tucmetu+m+7p1eqzXi0KtWrXs3Nbn2roN1rU5i+bYkIlD3JrAKMjjV5h2GGJXV3XtagMef7wwK1IVpapb16xevdKcly1bZrVr1/Z60sJ582zRkj884l6JijjSXi1a2H9mzCitQXm78lnjh74LFy60hg0b5lRi0aJFVqdOHauX0S7Z/lYMUtY4+E2dOtWOP/5423zzzW3BggXWpUsXO+aYY3JqJ/AT+OXjxQoZdPLxvGLOI0SrfIPfJW0vsVXqrmKvznjVWjVpZes1WM+e/fhZW27LHQiO/Wysrb3a2saU8NJlS92uXT77YeEP9p8Z/5HHr4ANL8SurrrsMutz7bUFXBsVraYU2KdtW3t17NjE4DdkyBC77bbbrHnz5rZkyRIbNmyYNW7cuDS/+fPn2+TJk61nz57WvXt3O+ywwyzb32qq/kmeW+Pgd+utt1rTpk3t2GOPtZdfftkuuOAC++9//yvw82lNefx8VMoaJ2TQSfyQlCQM0Srf4LdLs12sw+Yd3Po+gG7WvFk26L1Bbhcvu3k52mWzdTazxg3+6KiRnanhG1+/0bVANAWszR2FZZAhdvXjjz8WVuGruTQzZ860Fi1aeD2V2bOVLeA4ikKIxw/Qw4M3Z84ca9SokXXr1s3xSK9evUrzg0cefPBBe+aZZ+zmm2924Jftb8WkeY2DXyTWwIED7Z577rETTjjBLrzwQoGfjxUJ/HxUEvglVqkkYcgAnW/wi4rebI1m9u38b8ts6qhktfKSXLt6k8sYYlfJn5KOlNLKvx1DwG/GjBnWrl07mz59unvAgAEDbOLEiXb//fev8MAjjzzSzU4CflHI9jf/ktZczGoDv0mTJhnfWjID32B22GEH96f+/fvbk08+aQ0aNLAXX3xR4OdjEwI/H5UEfolVKhzwq2QVqiy5wC+5tIIZf+2kVXKtKlrjB5d07tzZpk2b5h4wdOhQGzNmjA0aNEjg5y957piDBw+2F154oUyEjh072lprrWW77rqrNWvWzLlb2eAxa9Ys9/9x48bZ66+/vkKmmYcx6hw/3RqQxD7VkfqrFqJVVXn8/EtbvTEFfsn1DrGr5E9JR0pp5d+O2Tx+5VO3bdvW2rRp4zZ04GxicwebxHBAEVjLVz7I4+ffBrExL7nkEltllVWsd+/e9uGHH9p+++1ns2fPdrtnsgVt7shQRR6/WPvKFUEdqb90IVoJ/AKO3fBvglTGDLGrVAoQUClp5S9WyFQvubZq1cpYatayZUvr0KGD9enTxwDDKVOmWOvWrUsfLPDzb4PYmMDe6aefbp988onVr1/frr32WrfOL1cQ+An8Yo3KI4I6Ug+Rfo8SopXAT+Dna1khduWbZ1rjSSv/lg0Fv5EjR7rTRAidOnWy4cOHu128wN+8efPKgB/xDj300Ar/5l/SmotZbWv84qr41VdfWZMmTWLPKhL4CfzibMnnc3WkPiqVxAnRSuAn8PO1rBC78s0zrfGklX/LhoIfOXOU3Ny5c92O3pUhFAz4+Yot8BP4+dpKRfHUkfqrGKKVwE/g52tZIXblm2da40kr/5ZNAn7+uacjpsCvmNtRa/wSt546Un/pQrQS+An8fC0rxK5880xrPGnl37ICv3itBH7xGhVuDIFf4rZRR+ovXYhWAj+Bn69lhdiVb55pjSet/FtW4BevlcAvXqPCjSHwS9w26kj9pQvRSuAn8PO1rBC78s0zrfGklX/LCvzitRL4xWtUuDEEfonbRh2pv3QhWgn8BH6+lhViV755pjWetPJvWYFfvFYCv3iNCjeGwC9x26gj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LSvwi9dK4BevUeHGEPglbht1pP7ShWgl8BP4+VpWiF355pnWeNLKv2UFfvFaCfziNSrcGAK/xG2jjtRfuhCtBH4CP1/LCrEr3zzTGk9a+beswC9eK4FfvEaFG0Pgl7ht1JH6SxeilcBP4OdrWSF25ZtnWuNJK/+WFfjFayXwi9eocGMI/BK3jTpSf+lCtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK0EfvEaFW4MgV/itlFH6i9diFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VwC9eo8KNIfBL3DbqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1EvjFa1S4MQR+idtGHam/dCFaCfwEfr6WFWJXvnmmNZ608m9ZgV+8VgK/eI0KN4bAL3HbqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tK/CL10rgF69R4cYQ+CVuG3Wk/tKFaCXwE/j5WlaIXfnmmdZ40sq/ZQV+8VoJ/OI1KtwYAr/EbaOO1F+6EK0EfgI/X8sKsSvfPNMaT1r5t6zAL14rgV+8RoUbQ+CXuG3UkfpLF6KVwE/g52tZIXblm2da40kr/5YV+MVrJfCL16hwYwj8EreNOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yAr94rQR+8RoVbgyBX+K2UUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr1VBgd+PP/5oDRs2tFVWWSVnyW+44Qa7+OKLSz8v08ijR5vxs7IEgV/illZH6i9diFYCP4Gfr2WF2JVvnmmNJ638WzYJ+C1btswWLlzo+CNX+Pnnn22NNdbwKghxV199datVq5ZX/OqOVDDg99lnn1nLli3t+eeftz322EPg52MJAj8flbLGUUfqL12IVgI/gZ+vZYXYlW+eaY0nrfxbNhT8hgwZYrfddps1b97clixZYsOGDbPGjRuXPnDChAl2yimn2CabbGJwyv33329//vOfrV+/fo5XmjVr5uJefvnlzmnVt29fq127tot7+umnW5cuXfwLX00xCwL8Fi9ebEcddZTNmDHD7rrrLoGfb+ML/HyVWiGeOlJ/6UK0EvgJ/HwtK8SufPNMazxp5d+yIeAH6NWrV8/mzJljjRo1sm7dulnTpk2tV69epQ9s3769XXjhhca/Tz75pN1zzz324osv2vHHH2+XXHKJbbPNNla3bl0XH9DbaqutXPxPPvnE/f7rr79a/fr1/StQDTELAvx69Ohh++23nw0YMMCuvPJKgZ9vwwv8fJUS+CVWyixk0BH4Cfx8TS3ErnzzTGs8aeXfsiHgh7OpXbt2Nn36dPcAGGTixInOqxeFjTbayMaPH2/8+/7779v+++9v33zzjbVq1cq+/vprN0V82mmn2bXXXms33nijPLx/pgAAIABJREFUA0nA8c0337S//OUvNmvWrFKvoH8tqjZmtYHfpEmTbObMmWVq06JFC0fFzzzzjD300ENOUIFfQIML/ALEKhtVHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEPCDSzp37mzTpk1zDxg6dKiNGTPGBg0aVPrANddc032OJ5C899prL/viiy/svPPOszPOOMPWXXddO+SQQ+yiiy6y7bbbznbffXc7/PDD7Y033rCPP/7YovV+/jWo+pjVBn6DBw+2F154oUyNOnbs6Nym3377rRPvnXfeca5R5tiZQx83bpy9/vrrK6igzR2/SyLwS/yGqCP1ly5EK4GfwM/XskLsyjfPtMaTVv4tmw38yqdu27attWnTxnnrGjRoYGzuYCNG//79XdTu3buXJtlzzz3d33fZZRd799133Rq+ESNG2G+//Va6EZXPgTyWqs2dO9dGjRplm2++uYNKILHQQrWBX66KI8qiRYvcx6eeeqqdffbZdvDBB7vGyBa0qzdDFYFf4vdJHam/dCFaCfwEfr6WFWJXvnmmNZ608m/ZEI8fuTJlO3DgQLe5tEOHDtanTx8DDKdMmWKtW7e2Cy64wNZbbz3r2bOnW7vHbl2Wp7HZg2nhDTfc0I488ki35u/77793XsFbbrnFTRfjPWQ2s9BCjYNfpiAHHnigXXrppVrj52slAj9fpVaIp47UX7oQrQR+Aj9fywqxK9880xpPWvm3bCj4jRw5snTnbadOnWz48OE2efJkB3/z5s1z6/+ik0bWWmstN4W7zjrruPV8zFgS2KMA7HEk3QEHHGBMD3/55Zf21ltvFdz6PspbUODn07Ty+Mnj52MncXHUkcYp9MfnIVoJ/AR+vpYVYle+eaY1nrTyb9lQ8CPnBQsWuCla1vFlC+z+nT17ttvgkXk2H+mWLl26wvl+zGTiCdQ5fv7tVmFMgZ/ALx+mpI7UX8UQrQR+Aj9fywqxK9880xpPWvm3bBLw8889HTHl8SvmdtRUb+LWU0fqL12IVgI/gZ+vZYXYlW+eaY0nrfxbVuAXr5XAL16jwo0h8EvcNupI/aUL0UrgJ/DztawQu/LNM63xpJV/ywr84rUS+MVrVLgxBH6J20Ydqb90IVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWQeC3fPlyl2NNLljUGr+MRhX4xVt4jhjqSP2lC9FK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/Lhp++OGH3Rbm1157zeW47777uq3Of/vb39wZONUZBH4Cv3zYmzpSfxVDtBL4Cfx8LSvErnzzTGs8aeXfsgK/eK1ygh/bl7l7rnfv3i6XnXfe2Zo3b278fcKECe62DULXrl3t9ttvd+fWVEcQ+An88mFn6kj9VQzRSuAn8PO1rBC78s0zrfGklX/LCvzitcoJfl999ZW7vPiss86yI444YoXzbbh/7j//+Y87xPDqq6+2ffbZJ/5peYgh8BP45cGM3Onqm222WT6ySn0eIVoJ/GRXvi9EiF355pnWeNLKv2UFfvFa5QQ/7q5jTR8/XEey99572/nnn581x8WLF1v9+vXjn5aHGAI/gV8ezEjgFyBiyKAj8BP4+ZpWiF355pnWeNLKv2UFfvFaxa7xIwuuUmN9H6dRN2rUKD7XKowh8BP45cO81JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WFfjFa+UFfkzjjh492uWWOT02adIka9iwYfxT8hhD4Cfwy4c5qSP1VzFEK4GfwM/XskLsyjfPtMaTVv4tK/CL18oL/PD4/fDDDyvk9sorr1iDBg3in5LHGAI/gV8+zEkdqb+KIVoJ/AR+vpYVYle+eaY1nrTyb1mBX7xWXuAXZTNv3jz79ddfrXHjxvE5V1EMgZ/ALx+mpY7UX8UQrQR+Aj9fywqxK9880xpPWvm3rMAvXisv8EPISy65xJ544gmXI+f3XX755bbnnnvGPyHPMQR+Ar98mJQ6Un8VQ7QS+An8fC0rxK5880xrPGnl37ICv3itvMDvqKOOctDHv6uvvnopAH799dea6o3XuOpi6OaOxNqqI/WXLkQrgZ/Az9eyQuzKN8+0xpNW/i0r8IvXKhb8fvrpJ1tnnXWsX79+dtlll7kcn376aTv88MPtvffes5122in+KXmMIY+fPH75MCd1pP4qhmgl8BP4+VpWiF355pnWeNLKv2UFfvFaxYIfN3XUq1fPTjjhBBs0aJDVqVPHrr/+ejfV+/HHH9uWW24Z/5Q8xhD4CfzyYU7qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8sK/OK1igU/sjj11FNt8ODBLrc11ljDuLWDad/HHnss/gl5jiHwE/jlw6TUkfqrGKKVwE/g52tZIXblm2da40kr/5YV+MVr5QV+CxcutBEjRjjQmzt3rh1zzDEO/NZee+34J+Q5hsBP4JcPk1JH6q9iiFYCP4Gfr2WF2JVvnmmNJ638W1bgF6+VF/ideOKJdtppp5Xu4v3yyy/d1O+jjz5qTZo0iX9KHmMI/AR++TAndaT+KoZoJfAT+PlaVohd+eaZ1njSyr9lk4AfV9Ti4KroQgpmOpnxzAxcV8tyuPLnGc+fP99WW201q127tn/BqzFmheD3wAMP2IABA9wmjg033NDWX399V7Rvv/3WgD8OdWbjR2VCdC7g/vvv77LZeuut7eqrr86ZpcBP4FcZe4vSqiP1VzFEK4GfwM/XskLsyjfPtMaTVv4tGwp+Q4YMsdtuu82aN2/uIG7YsGFlziqeMGGCnXLKKbbJJpvYZ599Zvfff7/9+c9/dkfcvfrqq7btttvanDlzXDrg8bjjjrO6deu6uBdddJF17drVv/DVFLNC8HvooYfs9ttvXwH8KFu7du0MCKtsmDp1ql155ZU2fPhwJ1ZcEPgJ/OJsxOdzdaQ+KpXECdFK4Cfw87WsELvyzTOt8aSVf8uGgF+0eRVwa9SokXXr1s2aNm1qvXr1Kn1g+/bt7cILLzT+ffLJJ+2ee+5xJ5twle3bb7/t4rVt29Z69uxpH374odsDcc011xjH3ZEX3r/qvuEsTi2vqV7A7JBDDrFddtklLr/gz0eNGuUIGbFat27tYBJBcwWBn8Av2MiyJFBH6q9iiFYCP4Gfr2WF2JVvnmmNJ638WzYE/GbMmOGcWNOnT3cPYIZz4sSJzqsXhY022sjGjx9v/Pv+++8bs5PffPON+/iDDz4wPIYPP/yw4cTCw0d+7INYvny5m+ol780228y/AtUQ0wv8Pv/8c0fAp59+unOH9u7d26644gr705/+5F3ESZMm2cyZM8vEb9GihX333XfOo3juuee6zSPXXXedE7BWrVpZ8xb4Cfy8ja6CiOpI/VUM0UrgJ/DztawQu/LNM63xpJV/y4aAH1zSuXNnmzZtmnvA0KFDbcyYMe7ouiisueaa7nO8d+S911572RdffOE+Jv1dd93lpnnZAHv33Xe7ja9HHnmk+5w9EG+99ZbBOoUUvMDv0EMPtWeeecbGjh3rKr/FFlu49X4A4SqrrOJVH46DeeGFF8rE7dixo/P2cTYgP0uXLnXTvYjKmsJx48bZ66+/vkL+F198cenfyjTy6NFm/KwsQTd3JG5pdaT+0oVoJfAT+PlaVohd+eaZ1njSyr9ls4Ff+dRMzbZp08atyWMals0dOJv69+/vonbv3r00CVfT8ndmPN99913r27evgz1+ZyaUgCPs+++/d3wEKJ5//vmOZzj5hGnkqtjkQf5AZa7AM3ffffesH8eCXzQHTsWoMOHf//63HXDAAXm5uQPvIV6/gQMHOncqu4Ujt2u2Esvjl6GKwM+/NygXUx2pv3QhWgn8BH6+lhViV755pjWetPJv2RCPH7m2atXK8UfLli2tQ4cO1qdPH7dmb8qUKW752QUXXGDrrbeeW8PHWj+ure3Ro4eb8WTqd4MNNnDcgieQ3++44w578cUX3dW2t956q73xxhv+hQ+IOW/ePLcusaLAdHO2EAt+JIJgeQBeP7Y7M+3L4sZPP/3UNt9884Cirhj1q6++cnPiePr4QfQDDzwwZ54CP4FfpQzu98TqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uGgt/IkSOtS5cu7gGdOnVyG00nT57s4A+4whG1xx57uM/XWmstB3KcZoIj7Oabb3ZsBDwyTbzqqqs6pxibPPAmvvTSS7bbbrv5Fz4gJiei8HwCp6wwzcwOYmZkX375ZRs9erRbZ5gY/KBWqDczQLjs+s1XYAcMtBwXBH4Cvzgb8flcHamPSiVxQrQS+An8fC0rxK5880xrPGnl37Kh4EfOCxYscJdTMFWbLTDzOXv2bLfBI3P/AXC3aNGiFS6zYLkaPMN1t9UR8DzuvPPODvbwPPbr189NP1cK/Cg4nrnnnnvOZs2a5Xa1cI5NVcxbx4kk8BP4xdmIz+fqSH1UEvjFqbR3i72NnyjIruIU++NzaSWt/BXwj5kE/PxzL8yYePyA0ltuucWtL2RzCfsjot3H5UvtNdUL1bJl+ZNPPnHpWQj50Ucf2VNPPeXmu6szCPwEfvmwNw06/iqGaCWPnzx+vpYVYle+eaY1nrTyb9mVEfxQZ7vttnNTzNwuwvF4nEnIOczZghf4sebu2WefXSE9mQv8/A0y7zG1uSOxpOpI/aUL0UrgJ/DztawQu/LNM63xpJV/y66s4McOX47DY33i8ccfb2eeeaY1a9YsGfhFu3rxtLEI8uCDD3ZHr7AAku3Muc7b82+msJjy+MnjF2Yx2WOrI/VXMUQrgZ/Az9eyQuzKN8+0xpNW/i27soKfv0JmsR4/pnUBPc614dJhFhGykwS3ItO9IYc4hxQsV1yBn8AvH3akjtRfxRCtBH4CP1/LCrEr3zzTGk9a+bfsygJ+v/zyS1aPHhtUogOpc6kWC34kPPHEE91W5UceecSOPfbY0rw01etvjFUSU1O9iWVVR+ovXYhWAj+Bn69lhdiVb55pjSet/Ft2ZQE/diJHN4SgDrBH3TlUmltEKgpe4Md5MRxIuN9++9njjz9uEyZMsKOPPtqdc1PdQR4/efzyYXPqSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuLOBXXhE4beONN3b3AscdGp0T/DibhoMH2R584403ulOrOWi5poPAT+CXDxtUR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQQ/zutjv8Wjjz5qb7/9tmM2LsTIFXKCX7S2L9oazN285XfwckExN3lUZxD4CfzyYW/qSP1VDNFK4Cfw87WsELvyzTOt8aSVf8uuTOA3c+ZMd2PHsGHD3A1r3EByxhlnuJtFEk/1cjMH5/dxGvRWW21lTZo0KZPX888/7y44rs4g8BP45cPe1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXZnAr3379u5aOG7tmDNnjlvjd9BBB7kTWBKDX5TwyiuvtMMOO8x22mknf/WrKKbAT+CXD9NSR+qvYohWAj+Bn69lhdiVb55pjSet/Ft2ZQE/zuvbYYcdbNCgQXbqqac6gXr06GH9+/d39wRzb3Cu4LW5w1/yqo8p8BP45cPK1JH6qxiilcBP4OdrWSF25ZtnWuNJK/+WXdnAjxNXmOIl9OrVy66//np37zBTvwI/f7spnpg6ziVxW6kj9ZcuRCuBn8DP17JC7Mo3z7TGk1b+LbuygB+7eLfYYgvjnt69997b5s2bZ++99567seOuu+6qUDB5/Pzt6f/bOw8wqYrsbx9yjpIRQVHEgLiSg+ACEnVdERARcEBFFhVBkiCiZP8qQQkCgiAIfoioILArIoKSBmFBchQQiSo5SfyeX7G37ZnpcG5Nz0yHXz3PPOhM3dt936q+9+1Tp6rCrybFz7pNeCPVo3PDiuJH8dP2LDf9SnvOaK1HVvqWjRXxAxHszYv9eLHGMjbYiIuLk27dugkm4wYqKvGDSY4cOVJeffVVeeONN8yOHd27d5eqVavqWyNENTnU6wWS4mfdq9zeSDFdHguWBwqfO28GK6pjtjvyLDJnzhxwWr31BaTigW5YUfwoftqu6aZfac8ZrfXISt+ysSR+DhVsrZs+fXrzoykq8cP+vF999ZXMnj1bHnvsMXPeG2+8Ufbv3695jZDWofhR/ELRoQLdSJEfMXr0aBM+r1GjhtmTuk6dOkb8Ll265FfksHJ606ZNzbcw/Nx5551m0+xXXnlF/Zbnz58vP/30k/Tp00d9TEpXdPPQofhR/LT90U2/0p4zWuuRlb5lY0X8ggUisBQfgna+SlDxg0lmypRJxo8fb3bvgPwh4nfHHXfItm3b5Pbbb9e3SAhqUvwofiHoRmbaO1Y491V++eUXKVmypEfaBgwYIK+//rqMGjVKnn/+ebNQpq+C2VSYVTV48GCTZ4EQPISxdu3a6reMNZgmTJggWEfT3+uoTxaiim4eOhQ/ip+227npV9pzRms9stK3bKyIH0aUsMwecvwaNGhgghKLFy82M30RdMiSJYtMmTLFTvyuXLliNgLGA++dd94xD7KnnnrKRDYOHTokRYoU0bdICGpS/Ch+IehGAcXPWRsJUW3Mlvrwww/l6NGjcv/994u/tSv//e9/m/wK1EOUEOtftmvXzkyzL1GihIngYUmkjz/+2KyxdOzYMXn77bfN+apXr27SKPC7Dh06mHM0adJE5s2b5/NSEZF88MEHzc46iCzig4/XQmQRN4NevXrJF198YdbYxA0BaRq///67PPTQQ+YYRBSPHDkir732mnz99dfmCx32dxw7dqyRTeSLYFHQffv2metv37693HbbbSrsFD+Kn6qjiAT8DGrPESv1KH76lo4V8cNevUgpwvMJ93+Uf/7zn7Jz507ZvHlzQGBBI344Gvl82LoNZcGCBWafXjwIsGdvaheKH8UvFH0u0I0UotS1a1cjavhA4f/xTQoyBJHztRUOPmwvvfSSQAARGWzYsKH5jPTv399Ex1u0aGHeNvJiETX/+9//bv4f0cQhQ4YItkj87LPP5F//+pcsX75csHh6mzZtfF7qH3/8IQUKFDB/69Spk1lgHQIIUVuxYoU88cQT0qVLF5PvMXz4cJk1a5Z5XQgowv84LyQPBcJ38OBB+fHHH81nG7KIIW5ILJKFMTsM2zXic6cpFD+Kn6afoA5lRkuKrPSkkrJK7AxuzhXOdZFaVLZsWenbt6/5QZCuUqVK5lkQKCUJ16QSPyS2f/fddyYagIcCHhp4kBUsWDDVuVD8KH6h6HRuhnqdRTGRU5F420Lv94KoHnL6fvvtN8FUe0QMvcUP6yshGoeCFIkdO3aYKGLdunWNaGF4WTPU64jfs88+a4aFEaFr1aqViSTWrFnT7NeIaDyE8IcffjATspzIY48ePcw+joj+IZ8QNwis/N64cWMjm9jnEfmNeJ8ZMmQwUoqhA0QJNYXiR/HT9BOKn5bS9XqUZD2vWIn4IQ2vfPnyRvS8C4IHzhd7f9RU4ocHHqJ+iAjgwYSHWvPmzc0DIVTl7NmzJq8JEYlAheJH8QtFn0sL8UM0EJFAFOQRIm8WUT4IIPr94cOHTaQxWI6fI34Y2oVo4hz4PEL8sHdj586dzSQsfD6Rm+gtfvhmOHDgQGnWrJmJPOJLHYZ6MSSMhUAhfxBBiB9ye823w3TpTGRSUyh+FD9NP6HMaClR/NyRsov4wT2QJoOhU38FHuTLT5xVHNIiJxspPF9++aVxM4zwYCIu0vACBSjMPf0a7vxBCqJ7GC5CwcrQ8fHxsmnTJvPwQgJhcgqGuBCNQN4S3ji2hUOUxF+h+FH8ktPfnGM14ocoHPJaMVkDEzeSG/FDPh3yB7Gn4k033WT+G30dUbUZM2aYb24YVob4rVq1yuTj+SqBxA/RPpwLOR6QOHxeIH/PPPOMGeoNJn4YPhg0aJCJCiIqif+uVauW4aApFD+Kn6afUPy0lCh+7ki5Fz/kY+O+W7x4cUEUbfr06QlGM5HShjxnjMggnWbSpElSsWJFk4u9YcMGI1q7du0ya+chKIaRUOcLPu6h+KKdUgWvi3xu7NWL3HLcvxEFDFaCip8zqxcPKETlMPzTqFEj8zDA8E9yo36YdYLhJYQm4aC4COQd4XV8FYofxS9Yp9b8PZD4eYfQMey5e/duI37ONzt/58cEDUgchnovXrxobiTeQ72O+OF4zPhFXdw88C0SuXoYCoa4IUcPxd93Mkf88CUM50DkDhE8RPzwjRUJvpBURPHwmshVRN4hhp4d8XO+zCWO+OGzhwVAP/jgA/Me8PkeM2aMGULWFIofxU/TTyh+WkoUP3ek3Imf4zf4Mp4nTx4zWlK0aFET4HIKvqBjxBP/4l7rvcIJ8rHxbMBkOYgfVjrp16+f+fLtKxfc7bUEqu9IJu71KFhy7+GHHzYrSzhzMvwdH1T8kDCIC0BUDtE9/MBokc90/PhxyZs3b7KuBZCwThqsGg8mRBgglv4KxS/lxA+hbgzvIe8LYetAmzwnq9HD4OBgOTMI/WMNJEx2wCLMTkG02/mgeV8GkmzRf90USBei5jjO+4sOZmuhDXATsXkt3BBwIytcuLCbt5OgLt4DZhlDXvfs2eN36ZvEL0Dxo/hpO12wz6D2PLFQj6z0rewmxw/3tnr16pkv9yj4grx+/XoT1XMKRkowaQ7/rlu3zkTzIHpOwbPSET+sxIB8a9y3MdECvuJM5NNfga4mRnXuvvtuk5qDFRogprgepOwEWw4sqPjhLSACgNmB3gXLPOAFtAUhUeQfeZdSpUoZW/7+++/NGDWgIvkcD0PAXLZsmZnhmLg4CfL4fYJGXrJEBD+xUkK0cwfkHrKNDoQ8NCzdU7p0aZP7pS0bN240Eae2bduaD0i4F9sbKZjgC0/iUqFCBbNvYihLar5WoPfthhXFj+Kn/Qy46Vfac0ZrPbLSt6wv8Ut8NEYwMDQKL0F+NIZIUeA0S5culYkTJ3oOwW5N+DsigTg31mX13rzCW/y+/fZbs1/uCy+8IDNnzjQ52PgCnxL5f4hW3nzzzWZZMIwy4dmNkR8E6UI2qxcRuc8//9yYMfLwEBJFNERbsNYMhp28C2QD4BFFBCAURCkge/4eooz4eREMkfgh4opvJ1jmA3zRYRHJRY6btjgzS9F2WJcu3AtvpPoWcsOK4kfx0/YsN/1Ke85orUdW+pZ1E/HDKBc8xomQIRCFgkl2TkFaG36PL/d4VmKiG4IcTvEWP6T4YPQGP85oKSTR7WiQ5moxKoN1lBOPCmGlCATTAhVVxA/TgxEOhai5kT3Nm4dhI59o0aJFZiHaatWqmXXFmOOnoBcC8Ttw4IAJETtbjCF/ATldWCcOYW98g7jhhhvMjCfkQCBHDB0fM0mR7IolRbAcCfoGZqciyRTi6E/cIZf4kKGgc+K18TroV1gzDjl1mKmEb1VIuMXi4XgPWFMOQ5grV640ExXQP/BesXI5+hDq4Xx471jGBMsOOdfhiyRvpIr+9b8qblhR/Ch+2p7lpl9pzxmt9chK37JuxA9nxWQIzDEoV66cyYtGXjYighhKRUAEI554HmI9U+T6Ycas94QNb/HDRDpE33A+DA/jeecMI+uvQFcTqUh4f967p2HHDkhrsDQflfjhJEhCR0EUCAs442HvLPege5u+a+Fhjuihs3gsoLds2dLvKRnx80ITAvFD58FyH/hGg/A0OjZ2Z0FuF0TKWW8OExAwkQDfXjDjExE+RIAx2xs5EZA35EVgGB4fkPz58/tsQ3zIEOVFEioKElJxLoTdMdMVHzz8De8FPzgvhp3xYYZkIpyNLwjo4Mhv+PTTT82OFZhYgfeI8yAHAzkPOBd2xqD4JecT6m4NMYofxU/b2ygzWlLuPoP6s0ZnTbfih+gdUtdQsGMSJmYgdQnyh+cjxM0ZxcJIGIIP3s83iB/8CHMfsH4qgmSYF4Ef+AzWTE2Jgogi0uP8BcmwSoq/Gb4q8UNOE8a9nb16nZmI2I8U48mh2K8Xr4GxdH8X4YCj+IVW/HA2yBEidlgPCLM6IVre4ofODNlC+2B3ivfee8+IF+Qf32gQAkeUD0mtwYZ60RExaQAC6eyJi29U+AaF/oX8CExRx4cPEoc8T7wffMvCLHLkmqI+PnzYEQMfREy1h+xhpip+0B8xRR/vGR9cX2sv8aGjvxW5YUXxo/hpe5abfqU9Z7TWIyt9y7oVP5wZw6ZYUg55fL4K8ukwEon8dU2+HtZkTentbPFswyhcoOJvZQiV+OHEuGg8mGHHWHLFu2AmCSZqpEah+KW++KFzYckdFHw4MCSL2UvOxBusOYcPm1b8kNOJ80EoMUQLkYOwYd06DBVDJjHbG0uJOOKHqfKQPQzfIhIIQcSWaJA6fPmAHGKmOd7DLbfc4oGECKSvxSzT6kaKXFlwQ5TbtuAmhGWQMOSdGsUNK4ofxU/bJ930K+05o7UeWelb1kb89GcPn5qYwIHVJFCwxzueC0jFwj7uSI9CxBFBEV9FJX7OpvU4AR60Tz75pBnuxQMWeV6B9hUNNSaKX+qLH8LakC4U9AUsYom8OixtAoHBgsOQK0gXcvQgYv6WgkHEz5f4oQNjKBfnxbGYaeUd8QsmfhBHDO3iPWB3GSw4jI6P4WhfJa1upPisQHCTGyVHNDMlEoaTy4riR/HT3vPT6jOofX/hVI+s9K0RK+KHXHgMLyMQh7VbURAMQPoUIo6BIpMq8UN4E+PdeKjiwe+9WwcS6ZHIn1oPoTQRP+ygUL++CHYv2bbteg9s3lykTBmRS5dEsFfeggUi/5u04OmiOK5aNRFsA7N/vwgipVhssWNHEe8Q7eHDIh99pO/ZTs0Q5PjhVM6WXf6Ger3Fb/HixfLUU0+ZYVQU5EQgzw5Dt0g0xQwj5Pz5yy3wFj90ToTWEfFDZA7RPpwXEzbw7QULJiOajKRbR/yQNIvlZhDxQz0IJ0QT0+/RNzAU7KQi4HqQr5hcmXHfML6PQDoDJqRgGB0fWEyE1XL6AAAgAElEQVSGwXR8MMMPZoSBLXIrIdeYBIPPHj7U+HBjOSSsKYjrRcQP3+qQY4n0CHwG/V1rct+/m4cOxY/ip+1vbvqV9pzRWo+s9C0bK+KHZwRGWpETjzx3zJdAqhaeJXh+BkqbU4kfZnTu3LnTMzsF48ZY16ZLly5mtmVqllQVv+LFRerVE8Ewdrp0IogebdggUrWqCPZchejhJ2PG6+L3v+FQwwNcevbE9gvXZQ+it2mTyGefifTrd/33f/55Hd2hQ1hAyD3GEImf2xdGUiny8CAl3rO8EXqGrGExS0cMvc8NeQu00wv6FWYZQ4w0eRS+3jfeG3IH8d4CrZyeVjfSjz76yAgalgVAziTyJCF64IioKvIlkVaBIXAkFKO/IxKKCTAQXqwJhbxGbCuEvEzkZ2KBUFwrBDklihtWFD+Kn7YPuulX2nNGaz2y0rdsrIgfiGDkFYEX74Ic/BdffDEgMJX4wSbxAEpckO+Fh1dqllQVP+x5h11EsHND+vQis2eLbNwo8tRTIjffLDJ2rMiVKyKA/NtvImPG/IXirruuRwU3b/5L9s6cwdLgIn36iMTHi/zwgwh+Z1vSSPyCvV1MwoCgJC6QsXBZ4y+tbqTe4oe8RET8EMVEJB1RTExYgfhh8gx+0N8xyx2LayOMjy9cyLmE+CHlwpkog5nSWPw8JYobVhQ/ip+2D7rpV9pzRms9stK3bCyJH6jgWYvl8BAswSRHPFeCFZX4YTkX5E8hKR3/YmwZw05I6seU4dQsqSp+zoU9/rjIHXf8JX5YuDpLFhHs4AAxxJAuVv7+5JO/UCAK2K2bSNasIhcvXq//7bci+/aJeCdcnj9/fQh4xw73GMNU/NxfSOofkVY30sTih+FqfEPDZwx78CKahy9T3uKHYXAsgI6hYERVEQHEJBcMAWM4G5FU/N5fIm9y6bphRfGj+Gn7m5t+pT1ntNYjK33Lxor4YTgXe7snLhiFxXMFARik5/lytKDihwcK8orGjRtnog0Y9sUCvnjYpNSK1IGaOOTih/1MW7RI+pLHjolMn37994nFz6mN4+68U+TyZZHx469H/ZyCYWJn1iXkDrII6UOU79FHRbDX34kTIvfdJ/LHH9cjgW4Lxc8tMU/9cLqRIpcPn6scOXKYPA3vHFrvC/T1N/wOQuhryRprOIkOdMOK4kfx0/Y7N/1Ke85orUdW+paNFfHzt5wL3AxpeFjlAs8H773mHYpBxQ8VMbED0T4MSXXq1MnM5gVcDEn5W/dG30zuaoZc/G66SaRt26Rv4uTJv2Qssfgh3++FF0RuuOG6vE2ejHVOEp7jscdEkHPl7B+M4d1MmUTee08kXz4RTI5AJPDVV6/nCPbv7w4EalP83DP73xG8kerRuWFF8aP4aXuWm36lPWe01iMrfcvGivgh4udrazaIHvLkMTES+d++8uVV4ofZI9hBAbMve/fuLT/88IMRQPx/apeQi5/mAhKLH2b4Yj9a5Pchlw0TNRC1++knbG0isnfvdbFr3Fjk999F1q8XqVtX5MIFkcWLMRX2+t9Rr2bN69G/99/XvJOEdSh+7pmlsfhxHT/rJgvLAx8o9YDgxyl8QOubiazISk9AXzOWxA9bp/orED5M/vBVVOLnHIghpU2bNnkWztU3Rehqpon4OUO6zuSO558XKVgw4UWdOyfy8cdYSfH6kC8mfmDZlkKFrs8IxgzeefOuTw7p1On671Egjzhuzx73kMJE/KJdZtw3jP8juI5fKGmm/bkofvZtQPHTsyMre1aJnUF/pvCumWI7dzjJgZjMgRmD7777rmeZDkwhxiK7qV3SRPySc5GY3IGlXBDV8y7I+YM8IvIH+bMpYSJ+0S4zNk3j6xiu4xcqkuFzHoqffVtQZvTsyMqeVbSKH4Z6nd2zfNFBxK9WrVo+wQWM+GGNMSzYixkiWGwW5bHHHpPZs2ebyR1Yry21S8SJX0oCCgPxiwWZCWUTch2/UNJM+3NR/OzbgDKjZ0dW9qyiWfxSZFYvjBELAY4cOdIsM4H1xLA915tvvmly/bCxcVQv4Kzva2lTMwzEDxce7TITysblOn6hpJn256L42bcBZUbPjqzsWUWr+KXYrF6I38CBA83Gv9hbFOuGASK2nerYsaNE/QLO+r6WNjXDUPyicVHiUDYu1/ELJc20PxfFz74NKDN6dmRlzypaxS/FZvVC/LAAIH6wOGy1atXM4rHz58+X999/n+Kn74spUzNMxS/aFiVOmcb766xcxy+lCafc+Sl+9mwpM3p2ZGXPKlrFzxcRrLiCxf4nY4m5ACVgjl+w/VIZ8dN3xhSpGSbi5+vaoklmUqTtIuikbh46XMeP6/hpu7abfqU9Z7TWIyt9y8bKci4g0qJFC7Nfu1NOnz5t/hML+mO09qWXXvIJLqD4IXHwGtao81Mwqxebw6dm4eQOL9phLH6p2SdsXos3Uj01N6wofhQ/bc9y06+054zWemSlb9lYET9Mri1SpIjcf//9no00fvnlF7OVLoQQI7WPPPKIO/HDEi6vvfaaGeKtWLGiz9WfsbAzJn5gkcCqVavqWyYZNSl+4Sd+XMcvGR06Ag5189Ch+FH8tF3aTb/SnjNa65GVvmVjRfyOHTsmPXv2lCFDhphVVlDwLJ4yZYrZcCNQ8Rvxw4xdTOb45ptvzBZtMEfYJRIKt23bZjYA3rBhg1nqZdGiRVKiRAl9yySjJsUv/MSP6/glo0NHwKFuHjoUP4qftku76Vfac0ZrPbLSt2y0i9/WrVuN4LVu3doDBdvnfvHFF2aFDQTkgi21F3Tnjjlz5piJHCtWrBDv8eM6derIQw89JE899ZRkwh60qVQofuElflzHL5U6fhq+jJuHDsWP4qftqm76lfac0VqPrPQtayN+3jnp/l4J/oPcOe+iOc6pj7pnz55Ncg79lV2viRS8J554wmydi2v9+OOPTYDOKU8//bRMnDjRLuKX+Ci8aSzijAkft912m6RPn97t+/VZ/+233/asPo3X+Oqrr+S///2v/O1vf/NZn+IXXuKHdxPt6/j1799f1q1bF5L+Hoknwc0qR44cqrf++7nfBT+xUqpVqiaTR/w1g44PaH3LkxVZ6Qnoa7oVP8yARcpa8eLFzYjm9OnTpaDXlqyIriHlrWTJkiaaNmnSJJP+5us4DLM6u2l4+wxGSOfOnSs5c+YUrL+HY/Ply6e/KK+ahw8f9uT0Ob/G8nrI66tRo4Zkzpw56HkDRvwAAUu3AMTdd98tzzzzjBQrVkzmzZsnAwYMkCVLlkh2bD0WotKrVy8znNy1a1e/Z6T4hbf4ReM6fu26tpMpI6eEqJfzNNFE4IWeL8io//srn4Yyo29dsiIrPQF9TTfiB8fBiOWJEyckT5480rlzZyNV2KDCKfXr15fu3bsL/sWuZVjHeMGCBUGP8/aZwoULm5S4cuXKScOGDQVRueRseYuRtk8++cS8F6TcoTRo0MCc+8EHH5S77rorILCA4jdt2jRp27at5wTI9YuPjzfi165du5Cu44c3/+ijjwrGrwMZK8Uv/MUv2tbxG/zBYNl0dJP+zhPhNe8udLfgxynIF8GNi8U3Ae+Zc5QZfS8hK7LSE9DXdCN+e/bskXr16snu3bvNC2BSxPr1601UzymYv4BUN/yLkR/IFWbOBjousc9g1GjGjBlGyH788UczRyJ//vz6iwpQE840a9YsM/KGa9dspxtQ/Bo3biwIVyLPD4bbtGlTadKkifkXxupmHT+A2Lt3b4K3X6pUKbnnnnvM7xBNxALROK9Tli1b5nMTYpi0UxI08pIlIviJlRLGy7lE0zp+zFtj3pr2lkKZ0ZIS85BCMIElOAGyCs7IpxOImN3GEpeaNWuaYVF4CSJv27dvN1UQ7Fq6dGmCHLncuXObvyMSiHaoXbu2GQkNdFxin8Hr4Tzly5eXMWPGyMKFC0O+EgqW3sOwNPL9vCOWvsgFFD+82UOHDsnixYvN+DYsGBeEDysAuBE/rCb99ddfJ3gPjRo1kri4OPnjjz+kQIECgvAl9gQOVBjx86ITxuKn/5imTU03N1KKHx/Q2l7qpl9pzxmt9chK37JkZc8q0M4d58+fN+lqCFRg/sKIESPMC3mnm9WqVcv8vkKFCrJmzRqT5jZz5ky/xyX2mV27dpl5EVgpJVu2bILoH9xp+PDh+osKcc2A4odlOjBrF+XKlStmQgfGuocNG2Z+50b8Ar1vjJsjTInkx2CF4kfxC9ZHNH93cyOl+FH8NH0Kddz0K+05o7UeWelblqzsWQXbsg1RuLFjx5r8O+TJQcwQ9Nq8ebNUqlRJunXrZgJTWDMP/oMJGtgVw9dxTh6gt89A+DB3YePGjSaA1qFDBzN59V//+pf+okJcM+hyLhjL/u677+SVV17xLOKM/0cUsE+fPsZgk1tefvllk0PkPYTr75wUP4pfcvub2wc0xY/ip+1zfEBrSVGS9aTIKjmsgokfAk7OmnhIZUMuHiQN8ocZuMj/q169unkLGJFcuXKlyc/zdRyihr585t133zUbYmC2MFLcsCSL98xhN9cXirpBxQ8vgoUB//zzzySvBwsGnKxZs4bivajOQfGj+Kk6SpBKbh7QFD+Kn7bPuelX2nNGaz2y0rcsWdmzCiZ+ODOichjBRB6fr4LZv1gkGRM8IHdOCXac97kuXrwo2G0D0b+0LirxQzTu6NGjPt/rfffdZyZgpJb8UfxCI347d+5M676Xpq+/f/9+9W4z8QfiZfWvq9P0/abmi1e+sbK0fuCvVeH50NHTJyuy0hPQ12S/smelET/92aOjpkr8nnzySfn+++/NuHbGjBll6NChZoYK1ovB7zCLBFObU6NQ/EIjfq/0fUX+b3DS2U6p0YZ8jfAmENcljosSWzYRH9B6cGRFVnoC+ppulnPRnzW6agYVP2eBQ8xycWahvPnmm2a6MFb0R9gSM168l2FJSUQUv9CIHxYlnvtZ8Mk0KdmWqXnu7BmzS7ZMf+WjXrp0KVW3GkzNa03ua+GL3uuvv+45DR/QeqJkRVZ6Avqa7Ff2rBjxS8ouqPjhEET3sE/duHHjJEuWLGZ1a0zqwJo3mAWDoV4n+VHfPHY1KX6hET/mrTFvTfsJ5ENHS4pJ+HpSZEVWbgjo6zLiF5yVSvywKjQiepA/FGxUjDX9MOMFW4ZgGJg5fsFhh7xGMtbxo/hR/LT9keKnJUWZ0ZMiK7JyQ0Bfl+IXnJVK/HAarOOHxQux4CFWvMb+dpjwgenNmk2Bg78VXQ1G/Bjx0/WUhLUeKPWA4McplBk9RbIiKz0BfU32K7LSE9DXpPgFZ6USP0T6MKyL9W3w3y1btjQLOxcrViz4K4S4BsWP4mfTpSh+NtSuH8MHtJ4dWZGVnoC+JvuVPSvm+CVlpxI/TOTAhA4M8ebJk0d+/fVXufPOO81Gw5jlm5qF4kfxs+lvFD8bahQ/t9T4gNYTIyuy0hPQ12TELziroOKHmbvYouTZZ581kzuwbdvIkSPNXnZbt26VsmXLBn+VENag+FH8bLoTxc+GGsXPLTXKjJ4YWZGVnoC+JsUvOKug4oeVqXPkyCFvvPGGZ4kHTPZo0aKFyfnDxsWpWSh+FD+b/kbxs6FG8XNLjTKjJ0ZWZKUnoK9J8QvOKqj44RTYlg1LtjRq1EiyZ88us2fPNpsXx8fHJ9i+JPjLJb8GxY/iZ9OLKH421Ch+bqlRZvTEyIqs9AT0NSl+wVmpxG/fvn0yZMgQ+eSTT8zkDkT7Xn31VbnnnnuCv0KIa1D8KH42XYriZ0ON4ueWGmVGT4ysyEpPQF+T4heclUr8nNNgk2Hs5IGoX1oVih/Fz6bvUfxsqFH83FKjzOiJkRVZ6Qnoa1L8grMKKH4lSpQQyJ6/snv3bjPxIzULxY/iZ9PfKH421Ch+bqlRZvTEyIqs9AT0NSl+wVkFFL+HHnrIRPj8lc8//zzVo38UP4pf8G6dtAbFz4Yaxc8tNcqMnhhZkZWegL4mxS84K1dDvcFPl/I1KH4UP5teRvGzoUbxc0uNMqMnRlZkpSegr0nxC86K4hecUfjW4F696rah+KlRJanIB7SeHVmRlZ6Avib7lT0r7tyRlB3FT9+fwq8mxU/dJhQ/NSqKnz0qbm/ngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0ril8Yix/WB8QM4XTp0gVsYeb4eeGh+KnvBhQ/NSqKnz0qip8LdpQZPSyysmelEb+rV6/K+fPnzS5l/gocJVeuXAn+7O+448ePS758+VR19VcWupppPtQLQNgHGEB/++03adasmcTFxfm9Qoofxc+m+1P8bKhdP4YPHT07siIrPQF9TfYre1bBxG/y5MkycuRIKV68uFnFZPr06VKwYEHPC65du1bat28vJUuWFGxmMWnSJKlYsaL4Ou6PP/6QJ598UkqXLi3Y7rZ169bSsmVLeeutt2T16tWSIUMGI5hTpkyR/Pnz6y8qxDXTXPwAYMGCBfLpp5/KihUrpF27drJ9+3aKn6ahGfHTUDJ1KH5qVIz42aOiJLtgR5nRwyIre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frSvXt3wb/Yrnb8+PHGWXwdlyVLFnP8E088IYsWLZJu3brJ3LlzpVSpUkb4smbNKm3btpVy5cpJjx499BcV4pppLn6HDh2Se++9V+rUqSPLli2TLl26GFj+CiN+jPjZfAYofjbUGPFzS40PaD0xsiIrPQF9TTfLuezZs0fq1asn2IwCZdSoUbJ+/XoT1XMKNrJAUAr/rlu3Tho2bCirVq0KeNzYsWONILZp00Y6duwoxYoVkyNHjki2bNnM8YgIjhkzRn9RIa6ZauK3YcMG2bt3b4K3Dws+fPiwgdOhQweJj4+XzJkzy7x580w9iODy5cuTXHKvXr08v0vQyEuWiOAnVgojfuqWpvipUSWpyAe0nh1ZkZWegL4m+5U9KwSLEpeaNWtKjRo1BF7SvHlzzyjjtGnTZOnSpTJx4kTPIblz5zZ/RyQP7VC7dm2ZP39+wONGjBhhooPY3nbhwoXyzDPPGGm89dZbzehmnz59ZPDgwfqLCnHNVBO/Dz/8UL7++usEb79Ro0YGctmyZQUyh+RJQIYZFypUyOelMuLnhYXip/44UPzUqCh+9qg41OuCHWVGD4us7FkFGurF8CvkDJM0MLEUwobStWtXzwvWqlXL/L5ChQqyZs0aGTBggMycOdPncTfffLNUrlzZRPgwfIwJHgcOHDD/jyjh/v37zb8Y5UTAK61Kqomfvwt85513zM0SYU8kTlapUsWAypgxI8UvWK+g+AUj5Pk7xU+NiuJnj4ri54IdZUYPi6zsWQWb3FG+fHnB0Czy7ho0aCD9+/cXRAQ3b94slSpVMqlnBQoUkJ49e5pcP6w+MnDgQPF13OLFiwV5fq+//rps2bJF6tata0Y6y5QpY4aLIYIQyDlz5piAV1qVNBc/RPcefvhhQa4fSr9+/cwsX3+FET9G/Gw+LBQ/G2rXj+FDR8+OrMhKT0Bfk/3KnlUw8cPkC8y+RWnSpInMmDFDNm7caOTv1KlTJv+vevXq5u958+aVlStXmhm5vo7bunWrSVvbuXOnSVsbMmSIiexBFD/77DOT2vbiiy9K37599ReUAjXTXPycazp48KCZQo2ZMoEKxY/iZ/M5oPjZUKP4uaXGB7SeGFmRlZ6AvqabyR3OWbH0ysmTJ00en6+C2b9wFEzw8F5r2N9xCGQVLlxY0qdP7zkdUtlwnsTr++mvLHQ1w0b8tJdE8aP4afuKdz2Knw01ip9bapQZPTGyIis9AX1NG/HTnz06alL8IrkdmeOnbj2KnxpVkop8QOvZkRVZ6Qnoa7Jf2bMKNtSrP3P01KT4RXJbUvzUrUfxU6Oi+NmjYj6kC3aUGT0ssrJnRfFLyo7ip+9P4VeT4qduE4qfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS+Mxe/06dOSM2dOSZcuXcAWTtyICT4QS5aI4CdWCsVP3dIUPzUqip89KoqfC3aUGT0ssrJnpRG/q1evyvnz5yVHjhx+XwiOkitXrgR/93fc5cuX5eLFi5I9e3ZPfc1r6K8yeTXTXbt27VryTpG8o7dv3y4DBgyQ9OnTy759+6RDhw7SunVrvyel+HmhofipOx/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICYZs+fboULFjQ84Jr166V9u3bS8mSJY2jTJo0SSpWrCi+jsufP79s2rTJ1MmQIYOMGDHCnOett96S1atXm99BMKdMmSKom1YlzcUPolemTBnp3r277Ny50/z3n3/+KZkzZ/bJhOJH8bP5sFD8bKhdP4YPHT07siIrPQF9TfYre1aBxA+ilylTJjlx4oTkyZNHOnfuLEWLFpXevXt7XrB+/frGT/Dv7NmzZfz48bJgwQKfx7344ovSr18/WbNmjVSoUMGIH2SxVKlSRviyZs0qbdu2lXLlykmPHj30FxXimmkufoj2ATxAr1q1SqpVqyYHDhyQYsWKUfyCNTYjfsEIef5O8VOjYsTPHhUl2QU7yoweFlnZswokfnv27JF69erJ7t27zQuMGjVK1q9fbyJ2TilRooSsWLFC8O+6deukYcOGxlUCHTdmzBjZtWuXEb8zZ84Ynzly5Ihky5bNHF+6dGlBnbQqqSZ+GzZskL179ya4TlhwxowZpWrVqtK0aVNZuXKl7NixQ5x8v2XLlsny5cuTsOnVq5fnd8zxe8A3iyA9asneJYKfWCkUP/uW5kNHz46syEpPQF+T/cqeFcQvcalZs6bUqFFD4CXNmzcXpJyhTJs2TZYuXSoTJ070HJI7d27zd0QC0Q61a9eW+fPnBzzOW/xwomeeecZI46233iqffvqp9OnTRwYPHqy/qBDXTDXx+/DDD+Xrr79O8PYbNWokcXFxcvLkSZk3b56xYDTC/v37/V4mh3q90DDip/44UPzUqJJU5ENHz46syEpPQF+T/cqeVaCIH4ZfMQEDEy8wsdTJyevatavnBWvVqmV+j6FbDOFilHLmzJkBj0ssfjgZooRwG/x77733Sps2bfQXFeKaqSZ+/t43AKFTDxs2zIRXYdtTp06l+GkamuKnoWTqUPzUqCh+9qg41OuCHWVGD4us7FkFm9xRvnx5GTt2rMm7a9CggfTv318QEdy8ebNUqlRJunXrJgUKFJCePXuaXD+sPjJw4EDxdRzyAFG8xQ+zexHUwnBxvnz5jEDOmTNHypYtq7+oENdMc/FD4mPjxo0F4dRff/1V4uPj/eb34doZ8WPEz+YzQPGzoXb9GD509OzIiqz0BPQ12a/sWQUTv7lz53pWEmnSpInMmDFDNm7caOTv1KlTJv+vevXq5g3kzZvXpKRhRq6v45zl6CB+OG748OHmOIjiZ599JocPHxZMAOnbt6/+glKgZpqLn3NNCIHeeOONXMfPTSMz4qemRfFTo2LEzx4VJdkFO8qMHhZZ2bMKJn4487lz50zKGfL4fBXM/j148KCZ4OG91nCw47zPhbkLOA+ifmldwkb8tCAY8fMiRfHTdhsO9apJJa3Ih44eHlmRlZ6Avib7lT0rjfjpzx4dNSl+kdyOFD916zHip0bFiJ89Kkb8XLCjzOhhkZU9K4pfUnYUP31/Cr+aFD91m1D81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUP6AJZGoAACAASURBVDUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxS9MxO/MmTOSI0cOSZcunecdnT17VrJlyybp06cP2MKJGzHBB2LJEhH8xEqh+KlbmuKnRkXxs0dF8XPBjjKjh0VW9qw04nf16lU5f/688RJ/5fTp05IrV64Ef/Z3nC+f8VcX582ZM2cCH9JfrV3NdNeuXbtmd6j7o44ePSobNmyQpk2byq5du6RQoULy+++/S6tWrSRjxoyyb98+6dGjh8TFxfk9OcXPC00Yid/dhe6WJmWaJGi3GRtmyP5T+xP8DgJWvUR1SZ8uvew7sU8+3vixOF2wyo1VpH7p+jJr8yzZ9vs29x0swBEUP3ucfOjo2ZEVWekJ6GuyX9mzCiZ+kydPlpEjR0rx4sXl8uXLMn36dClYsKDnBdeuXSvt27eXkiVLGkeZNGmSVKxYUXwdh2CWL5956623ZPXq1ZIhQwYjmFOmTDGi9+yzzxqZ/O2336RZs2YB3UdPIHjNVBW/2bNny/Lly2XEiBFy5MgRI35vvvmmwHgHDx4shw8flqJFiwpsOXv27D7fPcUvPMUP0lepWCU5d+mc5w1+svGTBOJXKm8pibs3Ti5duSSXrl6S7Jmyy6KfF8meE3uk3i31BH9PJ+nk862fy4YjG4L3Xhc1KH4uYCWqyoeOnh1ZkZWegL4m+5U9q0DiB9HLlCmTnDhxQvLkySOdO3c2DtK7d2/PC9avX1+6d+8u+BcOM378eFmwYIHP4yBziX1m69atcscddxjhy5o1q7Rt21bKlStn5BLn+fTTT2XFihXSrl072b59u/5Ck1EzVcXPeZ+A44jfM888I/Xq1ZOWLVuayA+Genfv3i233HILxS9Yw4ZRxK9t+bZSMm9JeXv523L56mXzk7i0vLullC1QVj5a/5EcPnNYqpaoKodOH5IsGbJIo9saSeYMmU0kcPbW2bLxyMZgV+/q7xQ/V7gSVOZDR8+OrMhKT0Bfk/3KnlUg8duzZ4/xDzgHyqhRo2T9+vUmqueUEiVKGDHDv+vWrZOGDRvKqlWrfB4Ht0nsMxs3bpTq1asb50E6G44vXbq09O3bV+69916pU6eOLFu2TLp06SLdunXTX2gyaoZc/C5cuCALFy5M8pYaNGggWbJkMb/3Fr8WLVoIfhDmRClcuLDEx8dLqVKlKH7BGjaMxO/Fyi/KDdlvMO8YAo8o3tSfpia4gpeqviT5suYzUpgxfUY5cvaIzNg4Q05eOGnqPX7343JHgTsofsHaPZX/zoeOHjhZkZWegL4m+5U9q0Dih9Sz5s2beyJt06ZNk6VLl8rEiRM9L5g7d27zd0QC0Q61a9eW+fPn+zzu1KlTPn1m0KBBRhpvvfVWE+Hr06ePOU+bNm2kQ4cOxnkyZ84s8+bN019oMmqGXPwQMn3uueeSvKUJEyaYUGpi8RswYIAALGz3ypUrki9fPhN2ReQPFoyh4cSlV69enl9xcscDvlkE6RRL9i4R/ISqYAi3QPYCsubgGqlcvLIZxp2yforsPbHX8xJdq3WVPFnyyMHTB4383ZTnJtl8dLPM2jKL4heqhkiB8/Cho4dKVmSlJ6CvyX5lzwril7jUrFlTatSoYYZfkVaGiRcISCENDaVr166eQ2rVqmV+X6FCBVmzZo3AWWbOnOnzOAzz+vMZRAn3799vooWI9C1evFjKli0r8BnnOGckVH+1djVDLn6at+Ed8Zs7d66MHj3aRAlnzZolw4cPl5UrV/o9DXP8vNCEUcTv5nw3m/y+I2eOiDOsuu7QOpmzfY7nDbcp30ZK5ystw1cON3X71uorZy6ekXdWvEPx03xw0qgOHzp68GRFVnoC+prsV/asgk3uKF++vIwdO9bk3WFksn///gIx3Lx5s1SqVMkMvxYoUEB69uxpcv0wA3fgwIHi6ziMeCb2GUQQMbSL4WIEtiCQc+bMMdE9tOuYMWPMpJEqVarIgQMHzETXlC5pJn6Y4YvkRhh348aNZcuWLea/v/nmGwPAX6H4haf49arZS7JmyCoLdy80s3ZzZcklE9ZOkGK5ikmtkrXkh30/mOHdBrc2kJ+P/2yE757C95hcPuT0oXCoN6U/7nbn50NHz42syEpPQF+T/cqeVTDxQ/CpdevW5gWaNGkiM2bMEOTlQf4wdIv8P+TooeTNm9cEpvLnzy++joP4+fIZiOJnn31mJrC++OKLJr8P0b2HH35YDh06ZM7dr18/M8s3NUqaiJ+vC0MItEiRImamTKBC8QtP8bu3yL3yUJmHjNyhYIgXQ70Nb20oVW+sKvG/xhsp7FSpkycXELN7x64ZK8fPHzfHtLirhdxZ8E7m+KXGJ9/Fa/Cho4dFVmSlJ6CvyX5lzyqY+OHM586dk5MnT5o8Pl8Fs38PHjxoJnh4rz/s7zhfPoPhXJwHUT/vgvMiCBbMffQEgtcMG/EL/lav16D4haf4Oe+qRO4ScvLPk3Lqz1N+mzR/tvwmB/DA6QOeNfy07W9bj7N6bckJFyV2gY4PaD0ssiIrPQF9zcT9SiN++rNHR02KXyS3Yxjl+IU7RoqffQvxAa1nR1ZkpSegr8l+Zc+K4peUHcVP35/CrybFT90mFD81qiQV+dDRsyMrstIT0Ndkv7JnRfGj+Ol7TyTUpPipW4nip0ZF8bNHxWFxF+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhQ/ip++90RCTYqfupUofmpUFD97VBQ/F+woM3pYZGXPiuJH8dP3nkioSfFTtxLFT42K4mePiuLngh1lRg+LrOxZUfwofvreEwk1KX7qVqL4qVFR/OxRUfxcsKPM6GGRlT0rih/FT997IqEmxU/dShQ/NSqKnz0qip8LdpQZPSyysmdF8aP46XtPJNSk+KlbieKnRkXxs0dF8XPBjjKjh0VW9qwofhQ/fe+JhJoUP3UrUfzUqCh+9qgofi7YUWb0sMjKnhXFj+Kn7z2RUJPip24lip8aFcXPHhXFzwU7yoweFlnZs6L4Ufz0vScSalL81K1E8VOjovjZo6L4uWBHmdHDIit7VhS/MBG/y5cvy8WLFyV79uyed+Trd76aOnEjJvhALFkigp9YKRQ/dUtT/NSoKH72qCh+LthRZvSwyMqelUb8rl69KufPn5ccOXL4faHTp09Lrly5Evzd33Fnz56VbNmySfr06RPUh+ccP35cChYs6Pk9zpszZ05Jly6d/iKTWTPdtWvXriXzHOrDr1y5Ips2bZJJkyZJhgwZZMSIEeLrd4FOSPHzokPxU/c9ip8aFcXPHhXFzwU7yoweFlnZswomfpMnT5aRI0dK8eLFBWI2ffr0BGK2du1aad++vZQsWVL27dtn/KVixYri6zjIW6tWrSRjxoymbo8ePSQuLs7z5rt16yYbN26UhQsXyvbt22XAgAFGDlG3Q4cO0rp1a/2FJqNmqorfmTNnpF+/frJmzRqpUKGCET9fv6P4KVuU4qcEJULxU6Oi+Nmjovi5YEeZ0cMiK3tWgcQPopcpUyY5ceKE5MmTRzp37ixFixaV3r17e16wfv360r17d8G/s2fPlvHjx8uCBQt8HgfxQwRv8ODBcvjwYXMuRP8wujl37lwZN26ckUuIH0SvTJky5tw7d+40//3nn39K5syZ9RdrWTNVxc95j2PGjJFdu3YZ8Qv0O1/XxIgfI342fZ3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH579uyRevXqye7du80LjBo1StavX2+iek4pUaKErFixQvDvunXrpGHDhrJq1Sqfx0H8cL6WLVsKBlMRzXPO3bFjR+nbt68MGjTIiB+ifZBOSCbOV61aNTlw4IAUK1ZMf7GWNVNE/A4ePGiiet4FY9h16tQxv6L4WbZW4sMY8VODpPipUSWpyIeOnh1ZkZWegL4m+5U9q0Dit2HDBmnevLkZdkWZNm2aLF26VCZOnOh5wdy5c5u/I3qHdqhdu7bMnz/f53GnTp2SFi1aSLNmzczxhQsXlu+//94M90ImEVl84403jPht2bJFqlatKk2bNpWVK1fKjh07TLQQrpTSJUXED/bqHc3DRdx4440ybNgwV+K3bNkyWb58eRIGvXr18vyOkzse8M0iSM9ZsneJ4CdWCsXPvqX50NGzIyuy0hPQ12S/smcF8UtcatasKTVq1DATOjAMi0kaiNY53tK1a1fPIbVq1TK/R3oaAlqI1M2cOdPncRA3iGKXLl3M/IV8+fLJrFmzTJSwUqVKcvLkSSN4GObFkDH+f968eVK6dGkjkvv379dfaDJqpoj4BXs/jPgFI6T8OyN+SlDM8VOD8lGRDx09PbIiKz0BfU32K3tWwSZ3lC9fXsaOHSvlypWTBg0aSP/+/QViuHnzZiNrmJBRoEAB6dmzp8nHQ0Ru4MCB4uu4CxcuyOjRo01ED8I3fPhw+fbbb80QLgqGkfE7/G3OnDkmgoiAGKKBiDROnTpVf6HJqJlm4odxbwBwCmQw8e98XRdz/LyoUPzUXZ8RPzWqJBX50NGzIyuy0hPQ12S/smcVTPww6cKZTdukSROZMWOGmXkL+cPQLbykevXq5g3kzZvXDMvmz5/fTNZIfBzEr3HjxmYYF9HEb775RqpUqeJ586tXrzZ5fhBDzORFXUQIf/31V4mPj0+V/D68mTQRP30TJq1J8aP42fQfip8NtevH8KGjZ0dWZKUnoK/JfmXPKpj44cznzp0zw67I4/NVMBMXcxcwwcN7vT1/x2HItkiRImbyRrCCukiFi9p1/IIB0Pyd4kfx0/STxHUofjbUKH5uqfEBrSdGVmSlJ6CvmbhfacRPf/boqMmIXyS3I4d61a1H8VOjSlKRD2g9O7IiKz0BfU32K3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFxWNwFO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+FH89L0nEmpS/NStRPFTo6L42aOi+LlgR5nRwyIre1YUP4qfvvdEQk2Kn7qVKH5qVBQ/e1QUPxfsKDN6WGRlz4riR/HT955IqEnxU7cSxU+NiuJnj4ri54IdZUYPi6zsWVH8KH763hMJNSl+6lai+KlRUfzsUVH8XLCjzOhhkZU9K4ofxU/feyKhJsVP3UoUPzUqip89KoqfC3aUGT0ssrJnRfGj+Ol7TyTUpPipW4nip0ZF8bNHRfFzwY4yo4dFVvasKH4UP33viYSaFD91K1H81KgofvaoKH4u2FFm9LDIyp4VxY/ip+89kVCT4qduJYqfGhXFzx4Vxc8FO8qMHhZZ2bOi+IWJ+J05c0Zy5Mgh6dKl87yj48ePS+7cuSVDhgwBWzhxIyb4QCxZIoKfWCkUP3VLU/zUqCh+9qgofi7YUWb0sMjKnpVG/K5evSrnz583XuKvnD59WnLlypXgz/6OO3v2rGTLlk3Sp0/vqX/58mWB++TNmzfJSxw7dsy8dpYsWfQXmoya6a5du3YtGce7OvTo0aOyYcMGadq0qezatUsKFSokv/zyizz++ONSsGBByZgxo9x3333St29fv+el+Hmhofip+x/FT42K4mePiuLngh1lRg+LrOxZBRO/yZMny8iRI6V48eICOZs+fbrxEaesXbtW2rdvLyVLlpR9+/bJpEmTpGLFiuLrOASzWrVqZVwGdXv06CFxcXEyfPhwGT9+vFSpUkVOnToleE+33367eQnUK1eunPznP/+R6tWr6y80GTVTVfxmz54ty5cvlxEjRsiRI0eM+A0aNEguXbok/fv3lwsXLhhLPnDggBQrVsznZVH8KH42/Z3iZ0Pt+jF86OjZkRVZ6Qnoa7Jf2bMKJH4QvUyZMsmJEyckT5480rlzZylatKj07t3b84L169eX7t27C/6Fw0DgFixY4PM4iB8ig4MHD5bDhw+bc2E0M1++fCbah6genAf+M2rUKLl48aK0aNFC9uzZI++//350ip9DEnAc8UN4Ff+fNWtWmTNnjrz88ssmGug9DOzd5BQ/ip/+FvBXTYqfDTWKn1tqfEDriZEVWekJ6Gsm7leBxA/CVa9ePdm9e7d5AcjY+vXrTVTPKSVKlJAVK1YI/l23bp00bNhQVq1a5fM4eAvO17JlS8FgKoZ6cW6IH37OnTsndevWlZdeesnUge/g//G6/fr1i1zxQ9Ru4cKFSVqpQYMGnvFrb/FDRVjv0KFDZdiwYfLll19KnTp1/LYyxY/ip78FUPxsWCU+hg9oPUWyIis9AX1N9it7VoHED6lnzZs3l+3bt5sXmDZtmixdulQmTpzoeUHMPcDfEb1DO9SuXVvmz5/v8zgM4yKC16xZM3N84cKFJT4+XkqVKiX//e9/pV27dnL33XcbscQ5EOyaOnWqkcmIFj+ETJ977rkkrTRhwgQTSkXxFj+IIkBlzpzZWC/gOmXZsmVmaDhx6dWrl+dXnNzxgG8WQT4nS/YuEfzESmHEz76l+dDRsyMrstIT0Ndkv7JnBfFLXGrWrCk1atQwEzqyZ88umKQBL0EaGkrXrl09h9SqVcv8vkKFCrJmzRoZMGCAzJw50+dxGOaFKHbp0kWuXLlionxwou+++87k/r333ntmTgNKtWrVBPMebrjhBvnxxx+lTJkyJr8Q+YMpXVI1x8+5GG/xgxDOmzdP5s6dq7pWRvy8MHFyh6rPoBLFT40qSUU+dPTsyIqs9AT0Ndmv7FkFm9xRvnx5GTt2rJlggZFJzDeAGG7evFkqVaok3bp1kwIFCkjPnj1Nrl/OnDll4MCB4us4BLJGjx5tRj1nzZplJnVgmBhBr0WLFknlypU9F7J//34zrwHl6aeflk6dOsk//vEPI5QpXdJM/GC6mDmD0OeUKVMSXOeOHTvktttu83ntFD+Kn82HguJnQ+36MXzo6NmRFVnpCehrsl/Zswomfgg6tW7d2rxAkyZNZMaMGbJx40Yjfxi6RY6eM9sWS7GsXLlS8ufPb4JViY+DyDVu3Fi2bNlioonffPONiegl9pmnnnoqgfc89NBD0qdPn8jN8dM3j11Nih/Fz6bnUPxsqFH83FLjA1pPjKzISk9AX9PN5A7nrJh0cfLkyQSpZt6viNm/Bw8eNBM8vCee+jsO0bwiRYqYmb/hWNIk4pccEBQ/ip9N/6H42VCj+LmlRpnREyMrstIT0Ne0ET/92aOjJsUvktuROX7q1qP4qVElqcgHtJ4dWZGVnoC+JvuVPatgQ736M0dPTYpfJLclxU/dehQ/NSqKnz0q5kO6YEeZ0cMiK3tWFL+k7Ch++v4UfjUpfuo2ofipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4kfx0/eeSKhJ8VO3EsVPjYriZ4+K4ueCHWVGD4us7FlR/Ch++t4TCTUpfupWovipUVH87FFR/Fywo8zoYZGVPSuKH8VP33sioSbFT91KFD81KoqfPSqKnwt2lBk9LLKyZ0Xxo/jpe08k1KT4qVuJ4qdGRfGzR0Xxc8GOMqOHRVb2rCh+FD9974mEmhQ/dStR/NSoKH72qCh+LthRZvSwyMqeFcWP4qfvPZFQk+KnbiWKnxoVxc8eFcXPBTvKjB4WWdmzovhR/PS9JxJqUvzUrUTxU6Oi+Nmjovi5YEeZ0cMiK3tWFD+Kn773REJNip+6lSh+alQUP3tUFD8X7CgzelhkZc+K4hfl4vdWx44iu3fre0ik1yxdWuSWWzxXcezYMcmfP7/qqn4+/rPsPh47rErnKy3jho7zsOGNVNVNTCWyIis9AX1N9iuy0hPQ10zcryh+YSJ+Z86ckRw5cki6dOk87+j48eOSL1++oK2buBG9G7l/u3byxpQpQc/BCrFHIK5LnEweMZniZ9H0fEDroZEVWekJ6GuyX9mz0ojf1atX5fz588ZL/JXTp09Lrly5EvzZ33Fnz56VbNmySfr06RPU9+c+uXPnlgwZMugvMpk10127du1aMs+hPvzo0aOyYcMGadq0qezatUsKFSok27ZtkyeffFJKly4t586dk9atW0vLli39njOg+PXvb84Rq+XEiROSN2/eWL38gNedPXt2ef311yl+Fr2DDx09NLIiKz0BfU32K3tWwcRv8uTJMnLkSClevLhcvnxZpk+fLgULFvS84Nq1a6V9+/ZSsmRJ2bdvn0yaNEkqVqwovo5DMKtVq1aSMWNGU7dHjx4SFxcnvtznl19+kccff9y8Furfd9990rdvX/2FJqNmqorf7NmzZfny5TJixAg5cuSIEb/hw4dL0aJF5YknnpBFixZJt27d5KeffrISv2RwiIpDeXPQNyNZkZWegL4m+xVZ6Qnoa7Jf2bMKJH4QvUyZMgmCJnny5JHOnTsbH+ndu7fnBevXry/du3cX/AuHGT9+vCxYsMDncRA/RAYHDx4shw8fNudC9O/f//53EvcZNGiQXLp0Sfr37y8XLlwwEcIDBw5IsWLF9BdrWTNVxc95j4DjiJ/zu7Fjxxqgbdq0MZD9lUARP0sGUXMYbw76piQrstIT0NdkvyIrPQF9TfYre1aBxG/Pnj1Sr1492f2/uQGjRo2S9evXm6ieU0qUKCErVqwQ/Ltu3Tpp2LChrFq1yudxcBucD6OWGEzFUC/Ofcv/cvG93QdDy/j/rFmzypw5c+Tll182I6HeKXD6q3ZXM+TiB3NduHBhknfRoEEDyZIli/m9L/FDFBA2jSE5X8c7J6T4+W9g3hz0nZ+syEpPQF+T/Yqs9AT0Ndmv7FkFEj+knjVv3ly2b99uXmDatGmydOlSmThxoucFkX+HvyN6h3aoXbu2zJ8/3+dxp06dkhYtWkizZs3M8YULF5b4+HgpVaqUT/e5ePGiDB06VIYNGyZffvml1KlTR3+hyagZcvFDyPS5555L8pYmTJhgQqmJxQ8XW7lyZRPexLGY4OGEO5ctW2bCo4lLr169PL/iB+IvOmSh/ySQFVnpCehrsl+RlZ6Avib7lT0riF/iUrNmTalRo4aZ0IFgEyZpICCFABRK165dPYfUqlXL/L5ChQqyZs0aGTBggMycOdPncRjmhSh26dJFrly5YnwGXuNM8vAOeiFIBknMnDmzINIIsUytEnLx07xx74t/5ZVXTCQQifdbtmyRunXrysGDB/3OcGHEzz9h3hw0ve96HbIiKz0BfU32K7LSE9DXZL+yZxVsckf58uUFqWblypUTjEwi5w5iuHnzZqlUqZKZd1CgQAHp2bOnSUPLmTOnDBw4UHwdB5kbPXq0GbWcNWuWmcOwcuVKz5v3dh8Ew+bNmydz587VX1yIaqaZ+GGWC2azQPY6dOggO3fuNOY7ZMgQk+fnr1D8KH6h6Pu8keopkhVZ6Qnoa7JfkZWegL5m4n4VTPwgXlhNBKVJkyYyY8YM2bhxo5E/DN0iR6969erm71g1AyKH9XJ9HQfxa9y4sfEaRBO/+eYbqVKlSgLxc9ynXbt2MiXR8nM7duyQ2267TX+xljXTRPx8vddDhw6Z8fDE694krkvxo/hZ9vUEh/Gho6dIVmSlJ6CvyX5FVnoC+ppuxQ9nxjJwJ0+e9Dvcitm/GInEBA/vyRf+jtu/f78UKVLEzPwNxxI24qeFQ/Gj+Gn7SqB6fOjoKZIVWekJ6GuyX5GVnoC+po346c8eHTUpftHRjuYqeCPVNyZZkZWegL4m+xVZ6Qnoa7Jf2bMKNtSrP3P01KT4RU9bUvxctCVvpHpYZEVWegL6muxXZKUnoK/JiF9wVhS/4IwipgZvpPqmIiuy0hPQ12S/Iis9AX1N9it7Voz4JWVH8dP3p7CvyZuDvonIiqz0BPQ12a/ISk9AX5P9yp4VxY/ip+89EViTNwd9o5EVWekJ6GuyX5GVnoC+JvuVPSuKH8VP33sisCZvDvpGIyuy0hPQ12S/Iis9AX1N9it7VhQ/ip++90RgTd4c9I1GVmSlJ6CvyX5FVnoC+prsV/asKH4UP33vicCavDnoG42syEpPQF+T/Yqs9AT0Ndmv7FlR/Ch++t4TgTV5c9A3GlmRlZ6Avib7FVnpCehrsl/Zs6L4Ufz0vScCa/LmoG80siIrPQF9pB02ZwAAGxpJREFUTfYrstIT0Ndkv7JnRfGj+Ol7TwTW5M1B32hkRVZ6Avqa7FdkpSegr8l+Zc+K4kfx0/eeCKzJm4O+0ciKrPQE9DXZr8hKT0Bfk/3KnhXFj+Kn7z0RWJM3B32jkRVZ6Qnoa7JfkZWegL4m+5U9K4ofxU/feyKwJm8O+kYjK7LSE9DXZL8iKz0BfU32K3tWFD+Kn773RGBN3hz0jUZWZKUnoK/JfkVWegL6muxX9qwofhQ/fe+JwJq8OegbjazISk9AX5P9iqz0BPQ12a/sWVH8KH763hOBNXlz0DcaWZGVnoC+JvsVWekJ6GuyX9mzovhR/PS9JwJr8uagbzSyIis9AX1N9iuy0hPQ12S/smdF8aP46XtPBNbkzUHfaGRFVnoC+prsV2SlJ6CvyX5lz4riFybid+bMGcmRI4ekS5cuwTs6duyY+X2WLFn8tnLiRuQH4i9UZGF/c9AfGXs12a/0bU5WZKUnoK/JfmXPSiN+V69elfPnzxv/8FdOnz4tuXLlSvBnf8edPXtWsmXLJunTp/fUD1QXf0t87gsXLkiGDBkkU6ZM+otX1kx37dq1a8q6ya529OhR2bBhgzRt2lR27dolhQoV8pxz3759Uq5cOfnPf/4j1atXp/hZ0ObNQQ+NrMhKT0Bfk/2KrPQE9DXZr+xZBRO/yZMny8iRI6V48eJy+fJlmT59uhQsWNDzgmvXrpX27dtLyZIlBZ4yadIkqVixovg6DsGsVq1aScaMGU3dHj16SFxcnM+6EL2nn35aTp48aQTxb3/7m/Tv318gjRs3bpSePXtK165d5dFHH9VfvLJmqorf7NmzZfny5TJixAg5cuSIR/wuXrwoLVq0kD179sj7779P8VM2XuJqvDnowZEVWekJ6GuyX5GVnoC+JvuVPatA4gfRQ0TtxIkTkidPHuncubMULVpUevfu7XnB+vXrS/fu3QX/wmHGjx8vCxYs8HkcxA+RwcGDB8vhw4fNuSB2OHfi18DfVq9eLWPHjhXE37744gt55JFHZNOmTfLRRx/JnDlz5J133ol88XNIAo63+L388stSt25dGTVqlPTr14/ip+/jCWry5qAHR1ZkpSegr8l+RVZ6Avqa7Ff2rAKJH4JN9erVk927d5sXgIOsX7/eRPWcUqJECVmxYoXg33Xr1knDhg1l1apVPo+D2+B8LVu2NDKHSN6SJUtMxDDxayDCuGbNGkFE8cYbb5RBgwZJo0aNPK/brFkzefLJJyND/DAuvXDhwiSt1KBBA0/unrf4waBhtlOnTjVAvcVv2bJlJkLoXbJnzy7nzp3T9wLWJAESIAESIAESiEkCvpyhZs2aUqNGDZN61rx5c9m+fbthM23aNFm6dKlMnDjRwyp37tzm74jQQcBr164t8+fP93ncqVOnzOglpA2lcOHCJnr30ksvJXmNK1euyPfff2+ihxBKDAv/8ssvnrkPESV+CGc+99xzSTrYhAkTTLgTxVv8qlWrJsj9u+GGG+THH3+UMmXKmDF2jKFrSrDxe805oqUOWehbkqzISk9AX5P9iqz0BPQ12a9ShhUmdEAMMbkCXoI0NBTk1jmlVq1a5vcVKlQwEboBAwbIzJkzfR6HYV6IYpcuXQRily9fPjl06JDkzJkzyWvs37/fBMOGDh3qkUQEum699Vbz/xElfprm8RY/XDyihChIdOzUqZP84x//MFA1hR+IvyiRhabHXK9DVmSlJ6CvyX5FVnoC+prsVynHqnz58ibPDpNLMTKJCRaICG7evFkqVaok3bp1kwIFCpjJFsj1g8QNHDhQfB0Hlxk9erQZ9Zw1a5YMHz5cVq5c6bMu0t0++OADWbRokfz666+CINjBgwfNTN6oFT9E+bxnzuBCH3roIenTp0/AHL/Ezc8PBMVPf0sgK7KyIaA/hvcjstIT0Ndkv0o5VnPnzpXWrVubF2jSpInMmDHDzKqF/GHoFrl5zkojefPmNSKXP39+8XUcxK9x48ayZcsWszzMN998I1WqVPFZF5NaMZkEQ70IdEE4kRvoFET88L7++c9/6i9eWTNVZ/Uq35OravxAUGZcdZj/VWa/0VMjK7LSE9DXZL8iKz0BfU2bfoV5A5h9izw+XwWzfxGNwwQP7/WH/R2HkcwiRYokWIPPX93jx4+b4WEn0qe/UvuaES9+mAACM2cRIQt9LyArstIT0NdkvyIrPQF9TfYrstITCF4z4sUv+CWyBgmQAAmQAAmQAAmQAAhQ/NgPSIAESIAESCBMCGDpkMWLF8vdd98t999/f5i8K76NaCJA8Yum1uS1kIAFAeS2YHuhO++802w1xEICJJCyBKZMmWLWeHMW7EX+F/Z2xWQArG6BmaTYEqxjx47yr3/9K2XfDM8ecwQofjHX5LxgEviLAGamYc2q2267TXbu3GnyRP0lOJMbCZBAaAj8+9//Nlt/ffnll/Lf//7XrGaBfeoxk/OZZ56RsmXLyttvv21mg+7duzdVE/9Dc4U8SzgToPiFc+vwvakIYLYVNraGvLAEJoCV4bGHJNanwuw0RB0ge5ithqUEsI3QmDFjiJEESCCZBLAMyLZt28wSIYnLpUuXzDZd2Jf1+eefl3bt2pnoH5Y027p1q9xxxx1mKQ9E4LFw8M0335zMd8PDSeAvAhQ/9oaIJoAt/7CSOm6QkJfPPvuMw5WJWhRDuViMFP9iRXkU7AGJKAM2KMdwEvaibNq0qVk1Hn9jIQESSB4BCBuid85Q7bfffmuifLly5ZL33ntPXnvtNbPW27hx48zWYVhAGDtCvPXWW2Yv2GPHjpn145DvV7JkyeS9GR5NAl4EKH7sDhFDAHkwyHvBYpdt27Y1+xpif2fsc3jmzBlz48Sq6dh7kUXMwqPYBhGrzGfNmtUMKWGFeGxPdNddd5nI38MPP2xWlX/nnXfkjz/+kNKlS5tFS1lIAFEpfDFgsSOAL1LYpABfrH777TezFyty+z788EOzVRci7Ii84+/YphT3LtzXevXqZYaAcb97/fXXjTyykEAoCVD8QkmT5wo5gWvXrsnnn39uFs/EN2bkviABGsMjt99+u+fmiZ1gcCPF3+vVqxfy9xEJJ/zzzz/NNkFggYfJ+vXrzUbk4IUHDCKiGFq66aabzOryTz31lFkDE3tRPv7444LoKbYlQnI5S2wTmDdvnukP+KKFggVsOfFH3ycQrcNnDl+4lixZIl9//bUUKlTI7N/at29fk0+LL1qYuQvJw+8feeQRefTRR82XMByPyR74YSGBUBOg+IWaKM8XMgITJ040ex5iRXPIzIkTJ2Tt2rUmJ+25554TbGgNifnoo4/MDfOrr76SadOmyaeffhqy9xApJ8KQUcWKFU2OEP4bogwJxNAtIgy1a9c2Q06I9L3wwgvy//7f/5OPP/5Y8IA/cOCAGVrCrF7kFkVDwSxl7Kl5ww03RMPlpPo1YLN55HvOmTPHfInARvP4F8OQLDoCiNhh9wZMzsAWX0it2LFjh4wYMUIee+wxs0UXhnixzRciexi1QIQV0UAWEkhJAhS/lKTLc7sikDhiBYFD0jOGJjFsed9995lvwunTpzc5L5jxhm/NiP5hNhxEETPj/va3v7l63Uis7ERC8eCIi4sTbPszbNgwmTRpkokYIH8IQof/x5Ad8iAhzC+99JKRZ0yGwUMcD59oLLh+bIOE4TWkAuDLwz333BONl2p9TfjihMk9+HKAgqgT9hjFfqSIDmPYEdEo1CtWrJj5YoChSmcJEusXjsADMRSLFJLMmTO7evf4soX71rPPPmvSKLAvKzg/8cQTsmfPHsHsXnzZghiykEBqEaD4pRZpvk5AAr4iVhC5fPnymUhfnjx5zLBkv379pH79+kZkIC/YlxEbamPoBMOaeJBFewEXSBxm5SKi9d1335mNw8GgRYsWRpYRWcCDGhFAcEEEEPW7d+8uQ4YMMUNQ0VwwmQU5Vg888IBhgXxQZxgtmq/bzbVh9jYio/gCgC8OGP7H5w1fDLB5PIYq27RpI0eOHDGnnTBhgskLxWcw1gr6Uvv27c3nCZOkXn75ZRMtx1AtZBii7Kv88MMP0rt3b/N5BedBgwaZLyAQSczqTc39WWOtzXi9/glQ/Ng70oTArl27TD4ZhjmQ1Ay58xWxwkKmuNlipimiV0uXLpWpU6cakfn999+jLoqD6CYeKP/4xz/8tgseNEgABwNEP++9916zBMuMGTPMwxoRQCwFsWjRIvN7SOErr7xiEs2jqYDDLbfcYnIUUTC0hl0PSpUqZQQGsyrxRQA8ISzI/8QEFyfCFU0s3F6LE0XHlylEht99910jyJh1irQKMEKkFLNK4+PjDVMM+yJfDUOVsVQuXrxo8h0R/cSsW3yWkPMIkcNae8g9RkqKrwLO6J/z5883X17RRzE5jYUE0pIAxS8t6cfoa1erVs1cOW6cmHiA4SXknOGhnThihbX5Ro0aZYZwIYdr1qyJ+skbmLSCIVhENn0NAYEDxAazb7E0BMQZES4McUOeEUmALNepU8cMiWPoLhoLchiR14kvAugXiOhVqVLFPISxrA9EZvXq1ebvKMgLxXBdLEz+wXCiv2iSwwp9A8O4mHiALwn4YoChcRRE+jCbFEOT+BsW+UYe2uDBg80kqlgp+HKBtAF8DpFWgVQTpJXUrVtXfv75ZzNrHvcsfEH1FUVHSgYi7SwkEE4EKH7h1BpR8F4gJYgU/P3vf/d7NfjGjGgdhiwxxIuoDKQPy44kjlhhvSt8u46VteUwrIZJGsglwkMXEuirIEfIiYQimlWmTBkzJAf2eEghuhXNBf0FXxgwBIeht1atWpk+Ai4QFQx346EMLhjmhfwiZ+2f//ynOSZaC/JksUQPeCDy66sgmgwBhty9+uqrsn//fiMzQ4cOFQxNYvauM7SJCR4QQMgeIqj4MhHNBfcl8EDeHT6D6DcY+sYCykgbwHCvM8EMQ9+VK1c2bDB6AT4okD1ESfHFBJM13nzzzWhGxmuLQAIUvwhstHB+yxh+hHQgEoOZpL4KvjkjOoMJGyidOnUyN1rMZovWiBXkFcPbvoQMw0B46EKCMTSLSA0iCpi44m8dNRzjRELBEJEtJJHHwpIbyI9CjhUiePiygJncGHLDMGXVqlVNn8LEDvBDP4MAIsqHSBc4Ycgt2gqivxAV9CGIP3L2/EV6Ib+I7CH3E9KMek7eGiJaOB7pAWCVI0cOM7kKKQXRXhDdQ3/Cly18sUDuLKKi+OziM4mJGPicYtgX/Qz5eriHQfDACkPkiC7jc47hXXBGZJ6FBMKNAMUv3Fokwt/P999/b4TvwQcfNDkx/vJZsKwIbrSI8GG4CWtb4UaLHSSiKWKFGbXIx8NwEGYfI1qAgocpZAWRGUQSkCeEJTTwg7wqREwRRfA3gxLnxaznWImEen8sMASOhHkwQorABx98YPIcnegKJv0g9w/bZaE/4YGMLxaoE62TWhDpRCQPi5ij/2C/ZXyuChQokOSOgn6FoWB8ycISIkgXgLAgCujkqmFhdLczWMP91oVFlL3zXBEdR/9Af0JED/cdJwcUE1gQQccyR5BBsEUkGfc1yB4iq1jjEGLXoUMHM8kK/Q1fXrm9Wrj3BL4/ih/7gIoAHhCIBmDdvMTFO2KFpUSQ+4K8oUDr6SFBHEMqw4cPN0MjSKCOxvWrvvjiC/OAhdRiPS88MBAVRcQFD1w8PDBEhMkYYIwHMoQQDxlwxQPZmwuSwzEEjAcUZufGYoFEY005DDtichAWucVDF79HZA9sMBnBWXw4Fhhh0W2s14g+gWgfIniIgPoq6GfIhYTw4IsImN1///0B0zMinSHSAjAEjhUA8GUUnyt8BpGbB06YAIRZ8Pj8IbqJiB/6GKLq+PKF1AFEmnEM5A9Ls7CQQKQSoPhFasul0vtG/hiicbj5YfjH2doLa1DhJoi19BBJ8Y5YYbkCrPvlLFzq663iwYSbbLSvX4WIAqIneOggaoBhIuQGIVKA4SFEPDE0hAcwojPIscJDB1EsbKWGBwwmtmA5CByLYSes8A/piYVhXV99B5NZ8KDG0BvYIY8PsoydSNAPMbkFs1VjqeBLAqJ+EGBENSG++Oz6i7gjCoroHmbvOsPj0cxr69atRuzQVxDpc6LGTZo0MV+4sNg3Pm8QZ/wOdZAj+dNPPxmmuPchMs9oXjT3kti5Nopf7LS11ZViNh8iTk7iN4ZoIX/IRYPANGjQwOTBJI5YIWkcUQV8U/aOWOGBgxmXeCD5Sz63eqNpeBDYgIuvJViQf4bkbvxA1jAEByF+8cUXjUyDG2QPy9Rg27Q33njDPIjxdye3CtE/PMQhfIgSxnpBhBisMJMZIoyoDB7qEL5YLugz+KLQpUsXE/3EDyZtJC7IsUV/gvxEc/EeicD9CFF3FPQXrCyAHD3k0jpRdnx+cT/DZBZEBDGbN1ruUdHczrw29wQofu6ZxdQRWHIFQyFYeR6zI7FgKaIp+HaMBzCKr4gVZu4iEojlH/AgwvAkIlfIscEDKVp210AeELZlQv6Qr3wq8MFDBA8dDD3ioQKxw2xJDHcj6gJ5gWBjAWbkC0XzrNNQfngQdQZzyvB1qshHw4QXRKkQicesefyLgvQCpF5g/2bMGocQot9Ga0GeJ0YevEciEAXF5Cp8VhFRd6LG+AKBCWbIT0a0HZOBEIn3N6M+WpnxumKHAMUvdtra6kqxnhyiULhZ4qYIQcEQJcQPDxbcIP1FrJy1xFAPuYHRMjyJ60LEAGsQIh8IEgfJ/fzzz33KH4a1sbI/Hr54qCCSABFEQjiGoHA8CwkklwC+iKEfIsIO4UNkD1G9kSNHmrw/fOFCZDoaC/LvsJsPlpPCPQoC7GskAsuxQPKcJW+Q+4ehXiwbhSFeFhKIBQIUv1ho5WReI4ZrMVMX66DhZgrhQfQO2z0hahVrEStcrzOxAJFQLOeA6AKGwP0VzL7Funt4+GL4CBEHRAshxFzgNZkdlId7CGAIF8vYRKvgORfqTMLAZweRcoxCIA8PuXqYLIUoO75sJc6dRR4kPrOY2YyJHYcOHTL5ttE625sfDRLwRYDix34RlACGS5APgygVvlUj9wxDkvjW7CxPEvQkUVQBD1Y8PH799VcT/cTyDkj8hgj7W+/MWVYEa3uxkAAJ2BGA2OI+hPQRFEQ28QUKM5qxfBQKtp/D7HfIoK/cWXxmsbwPUwTs2oBHRT4Bil/kt2GKXwEiXBiOxA0Ty64gVy1WlxJxYGMdPQzVbtq0yUTt8JABE2ffWO9GwVAv6vvLAUzxBuQLkEAUEMBQNj5rmFmLEQcMZSOSjglUmOyDLfqwtA/WdkQuI76sMnc2ChqelxByAhS/kCONzhNisWUkhWNyB8t1AhgqwnZzGDZCHiPy95y10yB6mI2LiAQeRsgrwtIZLCRAAvYEkB+LlQGczxnSUDAzF2s3Yp1RzJKHDI4bN87s2sJCAiSQlADFj72CBCwJYK0vrNGHCTDI3Xv//felT58+ZlcJPISwXAt+mD9kCZiHkUAiApiBi2VXMNEM61gi9QRb8OGLFVYgQPoFZixDBllIgAR8E6D4sWeQQDIIfPzxxyah3Dt3D/umYq9YFhIggdATwOQNLMuCHTSwHeKSJUtMzh4LCZCAjgDFT8eJtUiABEiABMKAABaPx2QO5PVhzUumUIRBo/AtRBQBil9ENRffLAmQAAnENgHM7MXWa1hbNBr3947t1uXVpwYBil9qUOZrkAAJkAAJhIwAcmoxqQoTzlhIgATcEaD4uePF2iRAAiRAAiRAAiQQsQQofhHbdHzjJEACJEACJEACJOCOAMXPHS/WJgESIAESIAESIIGIJUDxi9im4xsnARIgARIgARIgAXcEKH7ueLE2CZBAiAlg72fM1CxUqJBZlJeFBEiABEgg5QhQ/FKOLc9MAiQQhMCIESPk5Zdf9tSKi4sTrNOWPXt2v0digWzs1oDjhg0bRsYkQAIkQAIuCFD8XMBiVRIggdAR+OKLL8wCvDfeeKNA+D7//HPZsmWLPP3002bvY3/l5MmTkjdvXunatasMHz48dG+IZyIBEiCBGCBA8YuBRuYlkkA4EqhcubL8+OOPsmbNGsE2XFeuXJH69evLiRMnJD4+3gz/Yg9WbMmVLVs2ad++vdmb9dy5cx7x6969u9kuD+KIul999ZUMHDhQxo0bJ7///rv07dtXHnjgAZk/f77ky5fPbPH19ttvy549e+SVV16R559/Xt59912ZPn26NGjQQGbMmCF33XWX/N///R+3AQvHTsP3RAIkkGwCFL9kI+QJSIAE3BJAXl+GDBkkV65cRvTSp0+f5BRPPvmkETHI2rZt22TOnDny6aefGjl0In6dO3eWm2++2QgehG/KlCnSrl07Wbp0qRw8eFCeeOIJs8tDlSpVZNq0aeY1OnToIF9++aUcPXpUjh07JoMGDTKRwzvvvFPq1Kkjo0ePlo4dO8r777/v9rJYnwRIgATCngDFL+ybiG+QBKKPwKVLlyRz5sxyyy23yO7du5Nc4JkzZ4wUYoeGmTNnyvnz503e3yOPPCIfffSRK/FDFLBJkyZGLhHV+89//mOifYjq4bWRUwjx27t3r5QsWVJKlCgh+fPnl59++in6wPOKSIAEYp4AxS/muwABkEDaEChdurT8/PPP5gdROxTk950+fVree+89KVq0qCff7/Lly0bGMCSMaJ0T8evSpYuRNUQF33zzTSNxL7zwQoKI39dff22ihOnSpZNHH33U5BK++uqrMmTIEPPaiPBB/JA7mDt3brn99tsla9asFL+06RZ8VRIggRQmQPFLYcA8PQmQgG8CjqRhKBay9t133wkmfGCmL4SucePGsmzZMhk7dqyZ9DF06FAZP368PP744x7xQ9QOkUOcA/I3ePBgI3PeQ70UP/ZAEiABEviLAMWPvYEESCBNCCCKh7w8TNhwSvPmzWXq1Kkm4oZJHxiiRS4eyoMPPiizZs0ykTvv5VwgfG+99Zapc//998sPP/wg33//vcnxa9mypTjih2hevXr1TMTvtddeM7l9mOQxatQoRvzSpAfwRUmABNKCAMUvLajzNUmABDwELly4YASsQIECUrBgwQRkMNN33759kiNHDilcuLBfasgJhBCiHgsJkAAJkIB/AhQ/9g4SIAESIAESIAESiBECFL8YaWheJgmQAAmQAAmQAAlQ/NgHSIAESIAESIAESCBGCFD8YqSheZkkQAIkQAIkQAIkQPFjHyABEiABEiABEiCBGCFA8YuRhuZlkgAJkAAJkAAJkMD/BzVXvkBuM/j+AAAAAElFTkSuQmCC",
- "text/plain": [
- "\n",
- "\n",
- "If you see this message, it means the renderer has not been properly enabled\n",
- "for the frontend that you are using. For more information, see\n",
- "https://altair-viz.github.io/user_guide/troubleshooting.html\n"
+ ],
+ "source": [
+ "# Some of the false negatives will be because they weren't detected by the blocking rules\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
+ " \"cluster\",\n",
+ " threshold=0.5,\n",
+ " include_false_negatives=True,\n",
+ " include_false_positives=False,\n",
+ ").as_record_dict(limit=50)\n",
+ "\n",
+ "linker.visualisations.waterfall_chart(records)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "21701784-228a-40a6-abfc-6b91dea426fc",
+ "metadata": {},
+ "source": [
+ "**And finally, clean up all tables except `df_predict`**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "0c876741-3052-4595-a377-1eca2acffb69",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "linker.drop_tables_in_current_splink_run(tables_to_exclude=df_predict)"
]
- },
- "execution_count": 22,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "# Some of the false negatives will be because they weren't detected by the blocking rules\n",
- "records = linker.prediction_errors_from_labels_column(\n",
- " \"cluster\",\n",
- " threshold=0.5,\n",
- " include_false_negatives=True,\n",
- " include_false_positives=False,\n",
- ").as_record_dict(limit=50)\n",
- "\n",
- "linker.waterfall_chart(records)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "21701784-228a-40a6-abfc-6b91dea426fc",
- "metadata": {},
- "source": [
- "**And finally, clean up all tables except `df_predict`**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "id": "0c876741-3052-4595-a377-1eca2acffb69",
- "metadata": {},
- "outputs": [],
- "source": [
- "linker.drop_tables_in_current_splink_run(tables_to_exclude=df_predict)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "athena_dev",
- "language": "python",
- "name": "athena_dev"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "athena_dev",
+ "language": "python",
+ "name": "athena_dev"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.4"
+ }
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
\ No newline at end of file
diff --git a/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb b/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb
index 59f2b6a9eb..2575f82b77 100644
--- a/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb
+++ b/docs/demos/examples/duckdb/accuracy_analysis_from_labels_column.ipynb
@@ -23,48 +23,115 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:53.238834Z",
- "iopub.status.busy": "2024-03-27T15:10:53.238466Z",
- "iopub.status.idle": "2024-03-27T15:10:53.243675Z",
- "shell.execute_reply": "2024-03-27T15:10:53.243004Z"
+ "iopub.execute_input": "2024-06-07T09:09:16.264709Z",
+ "iopub.status.busy": "2024-06-07T09:09:16.264397Z",
+ "iopub.status.idle": "2024-06-07T09:09:16.269613Z",
+ "shell.execute_reply": "2024-06-07T09:09:16.268968Z"
}
},
+ "outputs": [],
"source": [
"# Uncomment and run this cell if you're running in Google Colab.\n",
"# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:53.247564Z",
- "iopub.status.busy": "2024-03-27T15:10:53.247269Z",
- "iopub.status.idle": "2024-03-27T15:10:55.196205Z",
- "shell.execute_reply": "2024-03-27T15:10:55.195428Z"
+ "iopub.execute_input": "2024-06-07T09:09:16.273849Z",
+ "iopub.status.busy": "2024-06-07T09:09:16.273306Z",
+ "iopub.status.idle": "2024-06-07T09:09:17.467426Z",
+ "shell.execute_reply": "2024-06-07T09:09:17.466787Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " city | \n",
+ " email | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Robert | \n",
+ " Alan | \n",
+ " 1971-06-24 | \n",
+ " NaN | \n",
+ " robert255@smith.net | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Robert | \n",
+ " Allen | \n",
+ " 1971-05-24 | \n",
+ " NaN | \n",
+ " roberta25@smith.net | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id first_name surname dob city email cluster\n",
+ "0 0 Robert Alan 1971-06-24 NaN robert255@smith.net 0\n",
+ "1 1 Robert Allen 1971-05-24 NaN roberta25@smith.net 0"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import splink_datasets\n",
"\n",
"df = splink_datasets.fake_1000\n",
"df.head(2)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:55.242600Z",
- "iopub.status.busy": "2024-03-27T15:10:55.242267Z",
- "iopub.status.idle": "2024-03-27T15:10:55.601924Z",
- "shell.execute_reply": "2024-03-27T15:10:55.601113Z"
+ "iopub.execute_input": "2024-06-07T09:09:17.501913Z",
+ "iopub.status.busy": "2024-06-07T09:09:17.501641Z",
+ "iopub.status.idle": "2024-06-07T09:09:17.581434Z",
+ "shell.execute_reply": "2024-06-07T09:09:17.580667Z"
}
},
+ "outputs": [],
"source": [
"from splink import SettingsCreator, Linker, block_on, DuckDBAPI\n",
"import splink.comparison_template_library as ctl\n",
@@ -90,20 +157,29 @@
" ],\n",
" retain_intermediate_calculation_columns=True,\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:55.606354Z",
- "iopub.status.busy": "2024-03-27T15:10:55.606011Z",
- "iopub.status.idle": "2024-03-27T15:10:55.966147Z",
- "shell.execute_reply": "2024-03-27T15:10:55.965434Z"
+ "iopub.execute_input": "2024-06-07T09:09:17.585114Z",
+ "iopub.status.busy": "2024-06-07T09:09:17.584837Z",
+ "iopub.status.idle": "2024-06-07T09:09:17.847471Z",
+ "shell.execute_reply": "2024-06-07T09:09:17.846845Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.00333.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 300.13 are expected to match. With 499,500 total possible comparisons, we expect a total of around 1,664.29 matching pairs\n"
+ ]
+ }
+ ],
"source": [
"db_api = DuckDBAPI()\n",
"linker = Linker(df, settings, database_api=db_api)\n",
@@ -114,138 +190,1127 @@
" \"l.email = r.email\",\n",
"]\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
- ],
- "outputs": []
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
+ ]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:55.970182Z",
- "iopub.status.busy": "2024-03-27T15:10:55.969667Z",
- "iopub.status.idle": "2024-03-27T15:10:57.008471Z",
- "shell.execute_reply": "2024-03-27T15:10:57.007360Z"
+ "iopub.execute_input": "2024-06-07T09:09:17.850459Z",
+ "iopub.status.busy": "2024-06-07T09:09:17.850216Z",
+ "iopub.status.idle": "2024-06-07T09:09:18.931010Z",
+ "shell.execute_reply": "2024-06-07T09:09:18.930397Z"
}
},
- "source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=5)"
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - dob (no m values are trained).\n",
+ " - city (no m values are trained).\n",
+ " - email (no m values are trained).\n"
+ ]
+ }
],
- "outputs": []
+ "source": [
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=5)"
+ ]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:57.012299Z",
- "iopub.status.busy": "2024-03-27T15:10:57.012041Z",
- "iopub.status.idle": "2024-03-27T15:10:58.591902Z",
- "shell.execute_reply": "2024-03-27T15:10:58.591381Z"
+ "iopub.execute_input": "2024-06-07T09:09:18.934824Z",
+ "iopub.status.busy": "2024-06-07T09:09:18.934551Z",
+ "iopub.status.idle": "2024-06-07T09:09:20.495494Z",
+ "shell.execute_reply": "2024-06-07T09:09:20.494833Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"dob\" = r.\"dob\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ " - city\n",
+ " - email\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - dob\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.417 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.121 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.0354 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.0127 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.00539 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.0025 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was 0.0012 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.000599 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was 0.000313 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 0.000186 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was 0.000147 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 12: Largest change in params was 0.000158 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 13: Largest change in params was 0.000184 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 14: Largest change in params was 0.000195 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 15: Largest change in params was 0.000179 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 16: Largest change in params was 0.000144 in the m_probability of first_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 17: Largest change in params was 0.000105 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 18: Largest change in params was 7.27e-05 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 18 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - dob (no m values are trained).\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"email\" = r.\"email\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ " - dob\n",
+ " - city\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - email\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.466 in the m_probability of dob, level `Exact match on dob`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.0884 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.0193 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.00688 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.00294 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.00138 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was 0.000681 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.000346 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was 0.000178 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 9.26e-05 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 10 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
+ }
+ ],
"source": [
- "session_dob = linker.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n",
- "session_email = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n",
+ "session_email = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"email\")\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:58.594711Z",
- "iopub.status.busy": "2024-03-27T15:10:58.594499Z",
- "iopub.status.idle": "2024-03-27T15:10:58.945354Z",
- "shell.execute_reply": "2024-03-27T15:10:58.944711Z"
+ "iopub.execute_input": "2024-06-07T09:09:20.498372Z",
+ "iopub.status.busy": "2024-06-07T09:09:20.498155Z",
+ "iopub.status.idle": "2024-06-07T09:09:20.768827Z",
+ "shell.execute_reply": "2024-06-07T09:09:20.768326Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " truth_threshold | \n",
+ " match_probability | \n",
+ " total_clerical_labels | \n",
+ " p | \n",
+ " n | \n",
+ " tp | \n",
+ " tn | \n",
+ " fp | \n",
+ " fn | \n",
+ " P_rate | \n",
+ " ... | \n",
+ " precision | \n",
+ " recall | \n",
+ " specificity | \n",
+ " npv | \n",
+ " accuracy | \n",
+ " f1 | \n",
+ " f2 | \n",
+ " f0_5 | \n",
+ " p4 | \n",
+ " phi | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -19.3 | \n",
+ " 0.000002 | \n",
+ " 499500.0 | \n",
+ " 2031.0 | \n",
+ " 497469.0 | \n",
+ " 1027.0 | \n",
+ " 495147.0 | \n",
+ " 2322.0 | \n",
+ " 1004.0 | \n",
+ " 0.004066 | \n",
+ " ... | \n",
+ " 0.306659 | \n",
+ " 0.505662 | \n",
+ " 0.995332 | \n",
+ " 0.997976 | \n",
+ " 0.993341 | \n",
+ " 0.381784 | \n",
+ " 0.447573 | \n",
+ " 0.332858 | \n",
+ " 0.552084 | \n",
+ " 0.390667 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -19.2 | \n",
+ " 0.000002 | \n",
+ " 499500.0 | \n",
+ " 2031.0 | \n",
+ " 497469.0 | \n",
+ " 1027.0 | \n",
+ " 495383.0 | \n",
+ " 2086.0 | \n",
+ " 1004.0 | \n",
+ " 0.004066 | \n",
+ " ... | \n",
+ " 0.329907 | \n",
+ " 0.505662 | \n",
+ " 0.995807 | \n",
+ " 0.997977 | \n",
+ " 0.993814 | \n",
+ " 0.399300 | \n",
+ " 0.456973 | \n",
+ " 0.354554 | \n",
+ " 0.570207 | \n",
+ " 0.405492 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -18.0 | \n",
+ " 0.000004 | \n",
+ " 499500.0 | \n",
+ " 2031.0 | \n",
+ " 497469.0 | \n",
+ " 1027.0 | \n",
+ " 495584.0 | \n",
+ " 1885.0 | \n",
+ " 1004.0 | \n",
+ " 0.004066 | \n",
+ " ... | \n",
+ " 0.352679 | \n",
+ " 0.505662 | \n",
+ " 0.996211 | \n",
+ " 0.997978 | \n",
+ " 0.994216 | \n",
+ " 0.415537 | \n",
+ " 0.465295 | \n",
+ " 0.375393 | \n",
+ " 0.586607 | \n",
+ " 0.419506 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -17.1 | \n",
+ " 0.000007 | \n",
+ " 499500.0 | \n",
+ " 2031.0 | \n",
+ " 497469.0 | \n",
+ " 1027.0 | \n",
+ " 495836.0 | \n",
+ " 1633.0 | \n",
+ " 1004.0 | \n",
+ " 0.004066 | \n",
+ " ... | \n",
+ " 0.386090 | \n",
+ " 0.505662 | \n",
+ " 0.996717 | \n",
+ " 0.997979 | \n",
+ " 0.994721 | \n",
+ " 0.437860 | \n",
+ " 0.476168 | \n",
+ " 0.405256 | \n",
+ " 0.608551 | \n",
+ " 0.439259 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -17.0 | \n",
+ " 0.000008 | \n",
+ " 499500.0 | \n",
+ " 2031.0 | \n",
+ " 497469.0 | \n",
+ " 1027.0 | \n",
+ " 495957.0 | \n",
+ " 1512.0 | \n",
+ " 1004.0 | \n",
+ " 0.004066 | \n",
+ " ... | \n",
+ " 0.404490 | \n",
+ " 0.505662 | \n",
+ " 0.996961 | \n",
+ " 0.997980 | \n",
+ " 0.994963 | \n",
+ " 0.449453 | \n",
+ " 0.481572 | \n",
+ " 0.421351 | \n",
+ " 0.619682 | \n",
+ " 0.449767 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 25 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " truth_threshold match_probability total_clerical_labels p \\\n",
+ "0 -19.3 0.000002 499500.0 2031.0 \n",
+ "1 -19.2 0.000002 499500.0 2031.0 \n",
+ "2 -18.0 0.000004 499500.0 2031.0 \n",
+ "3 -17.1 0.000007 499500.0 2031.0 \n",
+ "4 -17.0 0.000008 499500.0 2031.0 \n",
+ "\n",
+ " n tp tn fp fn P_rate ... precision \\\n",
+ "0 497469.0 1027.0 495147.0 2322.0 1004.0 0.004066 ... 0.306659 \n",
+ "1 497469.0 1027.0 495383.0 2086.0 1004.0 0.004066 ... 0.329907 \n",
+ "2 497469.0 1027.0 495584.0 1885.0 1004.0 0.004066 ... 0.352679 \n",
+ "3 497469.0 1027.0 495836.0 1633.0 1004.0 0.004066 ... 0.386090 \n",
+ "4 497469.0 1027.0 495957.0 1512.0 1004.0 0.004066 ... 0.404490 \n",
+ "\n",
+ " recall specificity npv accuracy f1 f2 f0_5 \\\n",
+ "0 0.505662 0.995332 0.997976 0.993341 0.381784 0.447573 0.332858 \n",
+ "1 0.505662 0.995807 0.997977 0.993814 0.399300 0.456973 0.354554 \n",
+ "2 0.505662 0.996211 0.997978 0.994216 0.415537 0.465295 0.375393 \n",
+ "3 0.505662 0.996717 0.997979 0.994721 0.437860 0.476168 0.405256 \n",
+ "4 0.505662 0.996961 0.997980 0.994963 0.449453 0.481572 0.421351 \n",
+ "\n",
+ " p4 phi \n",
+ "0 0.552084 0.390667 \n",
+ "1 0.570207 0.405492 \n",
+ "2 0.586607 0.419506 \n",
+ "3 0.608551 0.439259 \n",
+ "4 0.619682 0.449767 \n",
+ "\n",
+ "[5 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.accuracy_analysis_from_labels_column(\n",
+ "linker.evaluation.accuracy_analysis_from_labels_column(\n",
" \"cluster\", output_type=\"table\"\n",
").as_pandas_dataframe(limit=5)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:10:58.948920Z",
- "iopub.status.busy": "2024-03-27T15:10:58.948640Z",
- "iopub.status.idle": "2024-03-27T15:11:01.154581Z",
- "shell.execute_reply": "2024-03-27T15:11:01.153881Z"
+ "iopub.execute_input": "2024-06-07T09:09:20.771736Z",
+ "iopub.status.busy": "2024-06-07T09:09:20.771453Z",
+ "iopub.status.idle": "2024-06-07T09:09:21.322647Z",
+ "shell.execute_reply": "2024-06-07T09:09:21.322088Z"
}
},
- "source": [
- "linker.accuracy_analysis_from_labels_column(\"cluster\", output_type=\"roc\")"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker.evaluation.accuracy_analysis_from_labels_column(\"cluster\", output_type=\"roc\")"
+ ]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:11:01.168311Z",
- "iopub.status.busy": "2024-03-27T15:11:01.167847Z",
- "iopub.status.idle": "2024-03-27T15:11:03.812090Z",
- "shell.execute_reply": "2024-03-27T15:11:03.811329Z"
+ "iopub.execute_input": "2024-06-07T09:09:21.327370Z",
+ "iopub.status.busy": "2024-06-07T09:09:21.327111Z",
+ "iopub.status.idle": "2024-06-07T09:09:22.635682Z",
+ "shell.execute_reply": "2024-06-07T09:09:22.635098Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.accuracy_analysis_from_labels_column(\n",
+ "linker.evaluation.accuracy_analysis_from_labels_column(\n",
" \"cluster\",\n",
" output_type=\"threshold_selection\",\n",
" threshold_actual=0.5,\n",
" add_metrics=[\"f1\"],\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:11:03.822254Z",
- "iopub.status.busy": "2024-03-27T15:11:03.821939Z",
- "iopub.status.idle": "2024-03-27T15:11:04.205976Z",
- "shell.execute_reply": "2024-03-27T15:11:04.205179Z"
+ "iopub.execute_input": "2024-06-07T09:09:22.638822Z",
+ "iopub.status.busy": "2024-06-07T09:09:22.638569Z",
+ "iopub.status.idle": "2024-06-07T09:09:22.853941Z",
+ "shell.execute_reply": "2024-06-07T09:09:22.853250Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " clerical_match_score | \n",
+ " found_by_blocking_rules | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " unique_id_l | \n",
+ " unique_id_r | \n",
+ " first_name_l | \n",
+ " first_name_r | \n",
+ " gamma_first_name | \n",
+ " bf_first_name | \n",
+ " ... | \n",
+ " tf_city_r | \n",
+ " bf_city | \n",
+ " bf_tf_adj_city | \n",
+ " email_l | \n",
+ " email_r | \n",
+ " gamma_email | \n",
+ " bf_email | \n",
+ " cluster_l | \n",
+ " cluster_r | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -24.165914 | \n",
+ " 5.312940e-08 | \n",
+ " 417 | \n",
+ " 418 | \n",
+ " Florence | \n",
+ " Brown | \n",
+ " 0 | \n",
+ " 0.213986 | \n",
+ " ... | \n",
+ " 0.00123 | \n",
+ " 0.427845 | \n",
+ " 1.0 | \n",
+ " fb@reose.cem | \n",
+ " f@b@reese.com | \n",
+ " 0 | \n",
+ " 0.001023 | \n",
+ " 108 | \n",
+ " 108 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -21.941506 | \n",
+ " 2.482839e-07 | \n",
+ " 796 | \n",
+ " 797 | \n",
+ " Taylor | \n",
+ " None | \n",
+ " -1 | \n",
+ " 1.000000 | \n",
+ " ... | \n",
+ " 0.00738 | \n",
+ " 0.427845 | \n",
+ " 1.0 | \n",
+ " jt40o@combs.net | \n",
+ " jt40@cotbs.nm | \n",
+ " 0 | \n",
+ " 0.001023 | \n",
+ " 201 | \n",
+ " 201 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -19.517277 | \n",
+ " 1.332642e-06 | \n",
+ " 452 | \n",
+ " 454 | \n",
+ " None | \n",
+ " Davies | \n",
+ " -1 | \n",
+ " 1.000000 | \n",
+ " ... | \n",
+ " 0.01599 | \n",
+ " 0.427845 | \n",
+ " 1.0 | \n",
+ " rd@lewis.com | \n",
+ " idlewrs.cocm | \n",
+ " 0 | \n",
+ " 0.001023 | \n",
+ " 115 | \n",
+ " 115 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -17.978364 | \n",
+ " 3.872323e-06 | \n",
+ " 717 | \n",
+ " 718 | \n",
+ " Mia | \n",
+ " Jones | \n",
+ " 0 | \n",
+ " 0.213986 | \n",
+ " ... | \n",
+ " 0.00615 | \n",
+ " 0.427845 | \n",
+ " 1.0 | \n",
+ " mia.j63@martinez.biz | \n",
+ " None | \n",
+ " -1 | \n",
+ " 1.000000 | \n",
+ " 182 | \n",
+ " 182 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1.0 | \n",
+ " True | \n",
+ " -15.518690 | \n",
+ " 2.130097e-05 | \n",
+ " 594 | \n",
+ " 595 | \n",
+ " Grace | \n",
+ " Grace | \n",
+ " 3 | \n",
+ " 85.794621 | \n",
+ " ... | \n",
+ " 0.00123 | \n",
+ " 0.427845 | \n",
+ " 1.0 | \n",
+ " gk@frey-robinson.org | \n",
+ " rgk@frey-robinon.org | \n",
+ " 0 | \n",
+ " 0.001023 | \n",
+ " 146 | \n",
+ " 146 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 32 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " clerical_match_score found_by_blocking_rules match_weight \\\n",
+ "0 1.0 False -24.165914 \n",
+ "1 1.0 False -21.941506 \n",
+ "2 1.0 False -19.517277 \n",
+ "3 1.0 False -17.978364 \n",
+ "4 1.0 True -15.518690 \n",
+ "\n",
+ " match_probability unique_id_l unique_id_r first_name_l first_name_r \\\n",
+ "0 5.312940e-08 417 418 Florence Brown \n",
+ "1 2.482839e-07 796 797 Taylor None \n",
+ "2 1.332642e-06 452 454 None Davies \n",
+ "3 3.872323e-06 717 718 Mia Jones \n",
+ "4 2.130097e-05 594 595 Grace Grace \n",
+ "\n",
+ " gamma_first_name bf_first_name ... tf_city_r bf_city bf_tf_adj_city \\\n",
+ "0 0 0.213986 ... 0.00123 0.427845 1.0 \n",
+ "1 -1 1.000000 ... 0.00738 0.427845 1.0 \n",
+ "2 -1 1.000000 ... 0.01599 0.427845 1.0 \n",
+ "3 0 0.213986 ... 0.00615 0.427845 1.0 \n",
+ "4 3 85.794621 ... 0.00123 0.427845 1.0 \n",
+ "\n",
+ " email_l email_r gamma_email bf_email \\\n",
+ "0 fb@reose.cem f@b@reese.com 0 0.001023 \n",
+ "1 jt40o@combs.net jt40@cotbs.nm 0 0.001023 \n",
+ "2 rd@lewis.com idlewrs.cocm 0 0.001023 \n",
+ "3 mia.j63@martinez.biz None -1 1.000000 \n",
+ "4 gk@frey-robinson.org rgk@frey-robinon.org 0 0.001023 \n",
+ "\n",
+ " cluster_l cluster_r match_key \n",
+ "0 108 108 2 \n",
+ "1 201 201 2 \n",
+ "2 115 115 2 \n",
+ "3 182 182 2 \n",
+ "4 146 146 0 \n",
+ "\n",
+ "[5 rows x 32 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"# Plot some false positives\n",
- "linker.prediction_errors_from_labels_column(\n",
+ "linker.evaluation.prediction_errors_from_labels_column(\n",
" \"cluster\", include_false_negatives=True, include_false_positives=True\n",
").as_pandas_dataframe(limit=5)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:11:04.209998Z",
- "iopub.status.busy": "2024-03-27T15:11:04.209676Z",
- "iopub.status.idle": "2024-03-27T15:11:05.510086Z",
- "shell.execute_reply": "2024-03-27T15:11:05.509348Z"
+ "iopub.execute_input": "2024-06-07T09:09:22.857193Z",
+ "iopub.status.busy": "2024-06-07T09:09:22.856931Z",
+ "iopub.status.idle": "2024-06-07T09:09:23.602967Z",
+ "shell.execute_reply": "2024-06-07T09:09:23.602410Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "records = linker.prediction_errors_from_labels_column(\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"cluster\", include_false_negatives=True, include_false_positives=True\n",
").as_record_dict(limit=5)\n",
"\n",
- "linker.waterfall_chart(records)"
- ],
- "outputs": []
+ "linker.visualisations.waterfall_chart(records)"
+ ]
}
],
"metadata": {
diff --git a/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb
index 639f273d0d..3e30041105 100644
--- a/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb
+++ b/docs/demos/examples/duckdb/deduplicate_50k_synthetic.ipynb
@@ -24,10 +24,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:03.040913Z",
- "iopub.status.busy": "2024-05-15T16:07:03.040529Z",
- "iopub.status.idle": "2024-05-15T16:07:03.045834Z",
- "shell.execute_reply": "2024-05-15T16:07:03.045063Z"
+ "iopub.execute_input": "2024-06-07T09:09:25.613571Z",
+ "iopub.status.busy": "2024-06-07T09:09:25.613270Z",
+ "iopub.status.idle": "2024-06-07T09:09:25.618664Z",
+ "shell.execute_reply": "2024-06-07T09:09:25.617985Z"
}
},
"outputs": [],
@@ -41,13 +41,228 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:03.049635Z",
- "iopub.status.busy": "2024-05-15T16:07:03.049337Z",
- "iopub.status.idle": "2024-05-15T16:07:04.275040Z",
- "shell.execute_reply": "2024-05-15T16:07:04.274317Z"
+ "iopub.execute_input": "2024-06-07T09:09:25.622132Z",
+ "iopub.status.busy": "2024-06-07T09:09:25.621861Z",
+ "iopub.status.idle": "2024-06-07T09:09:28.057830Z",
+ "shell.execute_reply": "2024-06-07T09:09:28.057112Z"
}
},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/historical_figures_with_errors_50k.parquet\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " download progress: 0 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 2 %\t(..........)\r",
+ " download progress: 2 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 5 %\t(..........)\r",
+ " download progress: 5 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 7 %\t(..........)\r",
+ " download progress: 7 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 9 %\t(..........)\r",
+ " download progress: 9 %\t(..........)\r",
+ " download progress: 10 %\t(..........)\r",
+ " download progress: 10 %\t(=.........)\r",
+ " download progress: 11 %\t(=.........)\r",
+ " download progress: 11 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 14 %\t(=.........)\r",
+ " download progress: 14 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 16 %\t(=.........)\r",
+ " download progress: 16 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 18 %\t(=.........)\r",
+ " download progress: 18 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 20 %\t(=.........)\r",
+ " download progress: 20 %\t(==........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 23 %\t(==........)\r",
+ " download progress: 23 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 25 %\t(==........)\r",
+ " download progress: 25 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 27 %\t(==........)\r",
+ " download progress: 27 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 29 %\t(==........)\r",
+ " download progress: 29 %\t(==........)\r",
+ " download progress: 30 %\t(==........)\r",
+ " download progress: 30 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 32 %\t(===.......)\r",
+ " download progress: 32 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 34 %\t(===.......)\r",
+ " download progress: 34 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 36 %\t(===.......)\r",
+ " download progress: 36 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 39 %\t(===.......)\r",
+ " download progress: 39 %\t(===.......)\r",
+ " download progress: 40 %\t(===.......)\r",
+ " download progress: 40 %\t(====......)\r",
+ " download progress: 41 %\t(====......)\r",
+ " download progress: 41 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 43 %\t(====......)\r",
+ " download progress: 43 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 45 %\t(====......)\r",
+ " download progress: 45 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 47 %\t(====......)\r",
+ " download progress: 47 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 50 %\t(====......)\r",
+ " download progress: 50 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 52 %\t(=====.....)\r",
+ " download progress: 52 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 54 %\t(=====.....)\r",
+ " download progress: 54 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 59 %\t(=====.....)\r",
+ " download progress: 59 %\t(=====.....)\r",
+ " download progress: 60 %\t(=====.....)\r",
+ " download progress: 60 %\t(======....)\r",
+ " download progress: 61 %\t(======....)\r",
+ " download progress: 61 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 63 %\t(======....)\r",
+ " download progress: 63 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 66 %\t(======....)\r",
+ " download progress: 66 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 68 %\t(======....)\r",
+ " download progress: 68 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 70 %\t(======....)\r",
+ " download progress: 70 %\t(=======...)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 75 %\t(=======...)\r",
+ " download progress: 75 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 77 %\t(=======...)\r",
+ " download progress: 77 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 79 %\t(=======...)\r",
+ " download progress: 79 %\t(=======...)\r",
+ " download progress: 80 %\t(=======...)\r",
+ " download progress: 80 %\t(========..)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 82 %\t(========..)\r",
+ " download progress: 82 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 84 %\t(========..)\r",
+ " download progress: 84 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 86 %\t(========..)\r",
+ " download progress: 86 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 88 %\t(========..)\r",
+ " download progress: 88 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 90 %\t(========..)\r",
+ " download progress: 90 %\t(=========.)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 93 %\t(=========.)\r",
+ " download progress: 93 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 95 %\t(=========.)\r",
+ " download progress: 95 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 97 %\t(=========.)\r",
+ " download progress: 97 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 100 %\t(=========.)\r",
+ " download progress: 100 %\t(==========)\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -197,10 +412,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:04.316719Z",
- "iopub.status.busy": "2024-05-15T16:07:04.315783Z",
- "iopub.status.idle": "2024-05-15T16:07:05.112833Z",
- "shell.execute_reply": "2024-05-15T16:07:05.112087Z"
+ "iopub.execute_input": "2024-06-07T09:09:28.061677Z",
+ "iopub.status.busy": "2024-06-07T09:09:28.061319Z",
+ "iopub.status.idle": "2024-06-07T09:09:28.892623Z",
+ "shell.execute_reply": "2024-06-07T09:09:28.891638Z"
}
},
"outputs": [
@@ -209,23 +424,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -296,10 +511,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:05.117580Z",
- "iopub.status.busy": "2024-05-15T16:07:05.117224Z",
- "iopub.status.idle": "2024-05-15T16:07:05.620193Z",
- "shell.execute_reply": "2024-05-15T16:07:05.619557Z"
+ "iopub.execute_input": "2024-06-07T09:09:28.898009Z",
+ "iopub.status.busy": "2024-06-07T09:09:28.897643Z",
+ "iopub.status.idle": "2024-06-07T09:09:29.356811Z",
+ "shell.execute_reply": "2024-06-07T09:09:29.356107Z"
}
},
"outputs": [
@@ -308,23 +523,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -882,7 +1090,7 @@
}
],
"source": [
- "linker.match_weights_chart()"
+ "linker.visualisations.match_weights_chart()"
]
},
{
@@ -890,10 +1098,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:26.367083Z",
- "iopub.status.busy": "2024-05-15T16:07:26.366860Z",
- "iopub.status.idle": "2024-05-15T16:07:28.387226Z",
- "shell.execute_reply": "2024-05-15T16:07:28.386186Z"
+ "iopub.execute_input": "2024-06-07T09:09:50.110966Z",
+ "iopub.status.busy": "2024-06-07T09:09:50.110700Z",
+ "iopub.status.idle": "2024-06-07T09:09:52.080683Z",
+ "shell.execute_reply": "2024-06-07T09:09:52.080017Z"
}
},
"outputs": [
@@ -902,23 +1110,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -977,7 +1185,7 @@
}
],
"source": [
- "linker.unlinkables_chart()"
+ "linker.evaluation.unlinkables_chart()"
]
},
{
@@ -985,10 +1193,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:28.393039Z",
- "iopub.status.busy": "2024-05-15T16:07:28.392726Z",
- "iopub.status.idle": "2024-05-15T16:07:30.731337Z",
- "shell.execute_reply": "2024-05-15T16:07:30.730612Z"
+ "iopub.execute_input": "2024-06-07T09:09:52.085817Z",
+ "iopub.status.busy": "2024-06-07T09:09:52.085551Z",
+ "iopub.status.idle": "2024-06-07T09:09:54.516650Z",
+ "shell.execute_reply": "2024-06-07T09:09:54.515921Z"
}
},
"outputs": [
@@ -1039,121 +1247,121 @@
" \n",
" \n",
" 0 | \n",
- " -15.840427 | \n",
+ " -15.829333 | \n",
" 0.000017 | \n",
- " Q5971253-3 | \n",
- " Q75867928-4 | \n",
+ " Q7528564-9 | \n",
+ " Q75867928-1 | \n",
" sir | \n",
" sir | \n",
" 3 | \n",
" 0.024985 | \n",
" 0.024985 | \n",
- " 44.906565 | \n",
+ " 38.34881 | \n",
" ... | \n",
- " 0.156756 | \n",
+ " 0.157016 | \n",
" 1.0 | \n",
- " naval officer | \n",
+ " historian | \n",
" military officer | \n",
" 0 | \n",
- " 0.009451 | \n",
+ " 0.012456 | \n",
" 0.010756 | \n",
- " 0.104989 | \n",
+ " 0.105028 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
- " -15.840427 | \n",
+ " -15.829333 | \n",
" 0.000017 | \n",
- " Q5971253-3 | \n",
- " Q75867928-7 | \n",
+ " Q7528564-9 | \n",
+ " Q75867928-2 | \n",
" sir | \n",
" sir | \n",
" 3 | \n",
" 0.024985 | \n",
" 0.024985 | \n",
- " 44.906565 | \n",
+ " 38.34881 | \n",
" ... | \n",
- " 0.156756 | \n",
+ " 0.157016 | \n",
" 1.0 | \n",
- " naval officer | \n",
+ " historian | \n",
" military officer | \n",
" 0 | \n",
- " 0.009451 | \n",
+ " 0.012456 | \n",
" 0.010756 | \n",
- " 0.104989 | \n",
+ " 0.105028 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
- " -15.840427 | \n",
+ " -15.829333 | \n",
" 0.000017 | \n",
- " Q5971253-2 | \n",
- " Q75867928-4 | \n",
+ " Q7528564-9 | \n",
+ " Q75867928-3 | \n",
" sir | \n",
" sir | \n",
" 3 | \n",
" 0.024985 | \n",
" 0.024985 | \n",
- " 44.906565 | \n",
+ " 38.34881 | \n",
" ... | \n",
- " 0.156756 | \n",
+ " 0.157016 | \n",
" 1.0 | \n",
- " naval officer | \n",
+ " historian | \n",
" military officer | \n",
" 0 | \n",
- " 0.009451 | \n",
+ " 0.012456 | \n",
" 0.010756 | \n",
- " 0.104989 | \n",
+ " 0.105028 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
- " -15.840427 | \n",
+ " -15.829333 | \n",
" 0.000017 | \n",
- " Q5971253-2 | \n",
- " Q75867928-7 | \n",
+ " Q7528564-9 | \n",
+ " Q75867928-4 | \n",
" sir | \n",
" sir | \n",
" 3 | \n",
" 0.024985 | \n",
" 0.024985 | \n",
- " 44.906565 | \n",
+ " 38.34881 | \n",
" ... | \n",
- " 0.156756 | \n",
+ " 0.157016 | \n",
" 1.0 | \n",
- " naval officer | \n",
+ " historian | \n",
" military officer | \n",
" 0 | \n",
- " 0.009451 | \n",
+ " 0.012456 | \n",
" 0.010756 | \n",
- " 0.104989 | \n",
+ " 0.105028 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
- " -15.840427 | \n",
+ " -15.829333 | \n",
" 0.000017 | \n",
- " Q5971253-1 | \n",
- " Q75867928-4 | \n",
+ " Q7528564-9 | \n",
+ " Q75867928-6 | \n",
" sir | \n",
" sir | \n",
" 3 | \n",
" 0.024985 | \n",
" 0.024985 | \n",
- " 44.906565 | \n",
+ " 38.34881 | \n",
" ... | \n",
- " 0.156756 | \n",
+ " 0.157016 | \n",
" 1.0 | \n",
- " naval officer | \n",
+ " historian | \n",
" military officer | \n",
" 0 | \n",
- " 0.009451 | \n",
+ " 0.012456 | \n",
" 0.010756 | \n",
- " 0.104989 | \n",
+ " 0.105028 | \n",
" 1.0 | \n",
" 0 | \n",
"
\n",
@@ -1164,11 +1372,11 @@
],
"text/plain": [
" match_weight match_probability unique_id_l unique_id_r first_name_l \\\n",
- "0 -15.840427 0.000017 Q5971253-3 Q75867928-4 sir \n",
- "1 -15.840427 0.000017 Q5971253-3 Q75867928-7 sir \n",
- "2 -15.840427 0.000017 Q5971253-2 Q75867928-4 sir \n",
- "3 -15.840427 0.000017 Q5971253-2 Q75867928-7 sir \n",
- "4 -15.840427 0.000017 Q5971253-1 Q75867928-4 sir \n",
+ "0 -15.829333 0.000017 Q7528564-9 Q75867928-1 sir \n",
+ "1 -15.829333 0.000017 Q7528564-9 Q75867928-2 sir \n",
+ "2 -15.829333 0.000017 Q7528564-9 Q75867928-3 sir \n",
+ "3 -15.829333 0.000017 Q7528564-9 Q75867928-4 sir \n",
+ "4 -15.829333 0.000017 Q7528564-9 Q75867928-6 sir \n",
"\n",
" first_name_r gamma_first_name tf_first_name_l tf_first_name_r \\\n",
"0 sir 3 0.024985 0.024985 \n",
@@ -1177,26 +1385,26 @@
"3 sir 3 0.024985 0.024985 \n",
"4 sir 3 0.024985 0.024985 \n",
"\n",
- " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n",
- "0 44.906565 ... 0.156756 1.0 naval officer \n",
- "1 44.906565 ... 0.156756 1.0 naval officer \n",
- "2 44.906565 ... 0.156756 1.0 naval officer \n",
- "3 44.906565 ... 0.156756 1.0 naval officer \n",
- "4 44.906565 ... 0.156756 1.0 naval officer \n",
+ " bf_first_name ... bf_birth_place bf_tf_adj_birth_place occupation_l \\\n",
+ "0 38.34881 ... 0.157016 1.0 historian \n",
+ "1 38.34881 ... 0.157016 1.0 historian \n",
+ "2 38.34881 ... 0.157016 1.0 historian \n",
+ "3 38.34881 ... 0.157016 1.0 historian \n",
+ "4 38.34881 ... 0.157016 1.0 historian \n",
"\n",
" occupation_r gamma_occupation tf_occupation_l tf_occupation_r \\\n",
- "0 military officer 0 0.009451 0.010756 \n",
- "1 military officer 0 0.009451 0.010756 \n",
- "2 military officer 0 0.009451 0.010756 \n",
- "3 military officer 0 0.009451 0.010756 \n",
- "4 military officer 0 0.009451 0.010756 \n",
+ "0 military officer 0 0.012456 0.010756 \n",
+ "1 military officer 0 0.012456 0.010756 \n",
+ "2 military officer 0 0.012456 0.010756 \n",
+ "3 military officer 0 0.012456 0.010756 \n",
+ "4 military officer 0 0.012456 0.010756 \n",
"\n",
" bf_occupation bf_tf_adj_occupation match_key \n",
- "0 0.104989 1.0 0 \n",
- "1 0.104989 1.0 0 \n",
- "2 0.104989 1.0 0 \n",
- "3 0.104989 1.0 0 \n",
- "4 0.104989 1.0 0 \n",
+ "0 0.105028 1.0 0 \n",
+ "1 0.105028 1.0 0 \n",
+ "2 0.105028 1.0 0 \n",
+ "3 0.105028 1.0 0 \n",
+ "4 0.105028 1.0 0 \n",
"\n",
"[5 rows x 41 columns]"
]
@@ -1207,7 +1415,7 @@
}
],
"source": [
- "df_predict = linker.predict()\n",
+ "df_predict = linker.inference.predict()\n",
"df_e = df_predict.as_pandas_dataframe(limit=5)\n",
"df_e"
]
@@ -1225,10 +1433,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:30.735380Z",
- "iopub.status.busy": "2024-05-15T16:07:30.735079Z",
- "iopub.status.idle": "2024-05-15T16:07:31.361460Z",
- "shell.execute_reply": "2024-05-15T16:07:31.360879Z"
+ "iopub.execute_input": "2024-06-07T09:09:54.520577Z",
+ "iopub.status.busy": "2024-06-07T09:09:54.520273Z",
+ "iopub.status.idle": "2024-06-07T09:09:55.151653Z",
+ "shell.execute_reply": "2024-06-07T09:09:55.150935Z"
}
},
"outputs": [
@@ -1237,23 +1445,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -1314,7 +1522,7 @@
"source": [
"\n",
"records_to_plot = df_e.to_dict(orient=\"records\")\n",
- "linker.waterfall_chart(records_to_plot, filter_nulls=False)"
+ "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)"
]
},
{
@@ -1322,10 +1530,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:31.364481Z",
- "iopub.status.busy": "2024-05-15T16:07:31.364255Z",
- "iopub.status.idle": "2024-05-15T16:07:31.746356Z",
- "shell.execute_reply": "2024-05-15T16:07:31.745671Z"
+ "iopub.execute_input": "2024-06-07T09:09:55.155050Z",
+ "iopub.status.busy": "2024-06-07T09:09:55.154811Z",
+ "iopub.status.idle": "2024-06-07T09:09:55.525689Z",
+ "shell.execute_reply": "2024-06-07T09:09:55.524936Z"
}
},
"outputs": [
@@ -1333,21 +1541,21 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Completed iteration 1, root rows count 625\n"
+ "Completed iteration 1, root rows count 623\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Completed iteration 2, root rows count 93\n"
+ "Completed iteration 2, root rows count 100\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Completed iteration 3, root rows count 19\n"
+ "Completed iteration 3, root rows count 22\n"
]
},
{
@@ -1366,7 +1574,7 @@
}
],
"source": [
- "clusters = linker.cluster_pairwise_predictions_at_threshold(\n",
+ "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n",
" df_predict, threshold_match_probability=0.95\n",
")"
]
@@ -1376,10 +1584,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:31.749625Z",
- "iopub.status.busy": "2024-05-15T16:07:31.749370Z",
- "iopub.status.idle": "2024-05-15T16:07:31.898014Z",
- "shell.execute_reply": "2024-05-15T16:07:31.897301Z"
+ "iopub.execute_input": "2024-06-07T09:09:55.528997Z",
+ "iopub.status.busy": "2024-06-07T09:09:55.528732Z",
+ "iopub.status.idle": "2024-06-07T09:09:55.705059Z",
+ "shell.execute_reply": "2024-06-07T09:09:55.704305Z"
}
},
"outputs": [
@@ -1398,7 +1606,7 @@
" "
],
"text/plain": [
- ""
+ ""
]
},
"execution_count": 15,
@@ -1409,7 +1617,7 @@
"source": [
"from IPython.display import IFrame\n",
"\n",
- "linker.cluster_studio_dashboard(\n",
+ "linker.visualisations.cluster_studio_dashboard(\n",
" df_predict,\n",
" clusters,\n",
" \"dashboards/50k_cluster.html\",\n",
@@ -1426,10 +1634,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:31.901400Z",
- "iopub.status.busy": "2024-05-15T16:07:31.901154Z",
- "iopub.status.idle": "2024-05-15T16:07:44.228710Z",
- "shell.execute_reply": "2024-05-15T16:07:44.227315Z"
+ "iopub.execute_input": "2024-06-07T09:09:55.708587Z",
+ "iopub.status.busy": "2024-06-07T09:09:55.708313Z",
+ "iopub.status.idle": "2024-06-07T09:10:07.358895Z",
+ "shell.execute_reply": "2024-06-07T09:10:07.358097Z"
}
},
"outputs": [
@@ -1438,23 +1646,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -1513,7 +1721,7 @@
}
],
"source": [
- "linker.accuracy_analysis_from_labels_column(\n",
+ "linker.evaluation.accuracy_analysis_from_labels_column(\n",
" \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n",
")"
]
@@ -1523,10 +1731,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:44.268428Z",
- "iopub.status.busy": "2024-05-15T16:07:44.268099Z",
- "iopub.status.idle": "2024-05-15T16:07:47.826572Z",
- "shell.execute_reply": "2024-05-15T16:07:47.826055Z"
+ "iopub.execute_input": "2024-06-07T09:10:07.391167Z",
+ "iopub.status.busy": "2024-06-07T09:10:07.390901Z",
+ "iopub.status.idle": "2024-06-07T09:10:10.809464Z",
+ "shell.execute_reply": "2024-06-07T09:10:10.808740Z"
}
},
"outputs": [
@@ -1535,23 +1743,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -1610,13 +1818,13 @@
}
],
"source": [
- "records = linker.prediction_errors_from_labels_column(\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"cluster\",\n",
" threshold=0.999,\n",
" include_false_negatives=False,\n",
" include_false_positives=True,\n",
").as_record_dict()\n",
- "linker.waterfall_chart(records)"
+ "linker.visualisations.waterfall_chart(records)"
]
},
{
@@ -1624,10 +1832,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T16:07:47.834324Z",
- "iopub.status.busy": "2024-05-15T16:07:47.834092Z",
- "iopub.status.idle": "2024-05-15T16:07:51.080047Z",
- "shell.execute_reply": "2024-05-15T16:07:51.079464Z"
+ "iopub.execute_input": "2024-06-07T09:10:10.819376Z",
+ "iopub.status.busy": "2024-06-07T09:10:10.818967Z",
+ "iopub.status.idle": "2024-06-07T09:10:13.601958Z",
+ "shell.execute_reply": "2024-06-07T09:10:13.601341Z"
}
},
"outputs": [
@@ -1636,23 +1844,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
@@ -1712,14 +1920,14 @@
],
"source": [
"# Some of the false negatives will be because they weren't detected by the blocking rules\n",
- "records = linker.prediction_errors_from_labels_column(\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"cluster\",\n",
" threshold=0.5,\n",
" include_false_negatives=True,\n",
" include_false_positives=False,\n",
").as_record_dict(limit=50)\n",
"\n",
- "linker.waterfall_chart(records)"
+ "linker.visualisations.waterfall_chart(records)"
]
}
],
diff --git a/docs/demos/examples/duckdb/deterministic_dedupe.ipynb b/docs/demos/examples/duckdb/deterministic_dedupe.ipynb
index c84fdac562..0065baeda9 100644
--- a/docs/demos/examples/duckdb/deterministic_dedupe.ipynb
+++ b/docs/demos/examples/duckdb/deterministic_dedupe.ipynb
@@ -28,29 +28,167 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:50.508953Z",
- "iopub.status.busy": "2024-05-15T15:43:50.508620Z",
- "iopub.status.idle": "2024-05-15T15:43:50.514416Z",
- "shell.execute_reply": "2024-05-15T15:43:50.513604Z"
+ "iopub.execute_input": "2024-06-07T09:10:59.567669Z",
+ "iopub.status.busy": "2024-06-07T09:10:59.567311Z",
+ "iopub.status.idle": "2024-06-07T09:10:59.591784Z",
+ "shell.execute_reply": "2024-06-07T09:10:59.590923Z"
}
},
+ "outputs": [],
"source": [
"# Uncomment and run this cell if you're running in Google Colab.\n",
"# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:50.519532Z",
- "iopub.status.busy": "2024-05-15T15:43:50.519159Z",
- "iopub.status.idle": "2024-05-15T15:43:53.171104Z",
- "shell.execute_reply": "2024-05-15T15:43:53.170070Z"
+ "iopub.execute_input": "2024-06-07T09:10:59.595969Z",
+ "iopub.status.busy": "2024-06-07T09:10:59.595667Z",
+ "iopub.status.idle": "2024-06-07T09:11:01.007136Z",
+ "shell.execute_reply": "2024-06-07T09:11:01.006553Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id | \n",
+ " cluster | \n",
+ " full_name | \n",
+ " first_and_surname | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " birth_place | \n",
+ " postcode_fake | \n",
+ " gender | \n",
+ " occupation | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Q2296770-1 | \n",
+ " Q2296770 | \n",
+ " thomas clifford, 1st baron clifford of chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Q2296770-2 | \n",
+ " Q2296770 | \n",
+ " thomas of chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Q2296770-3 | \n",
+ " Q2296770 | \n",
+ " tom 1st baron clifford of chudleigh | \n",
+ " tom chudleigh | \n",
+ " tom | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Q2296770-4 | \n",
+ " Q2296770 | \n",
+ " thomas 1st chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8hu | \n",
+ " None | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Q2296770-5 | \n",
+ " Q2296770 | \n",
+ " thomas clifford, 1st baron chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " None | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id cluster full_name \\\n",
+ "0 Q2296770-1 Q2296770 thomas clifford, 1st baron clifford of chudleigh \n",
+ "1 Q2296770-2 Q2296770 thomas of chudleigh \n",
+ "2 Q2296770-3 Q2296770 tom 1st baron clifford of chudleigh \n",
+ "3 Q2296770-4 Q2296770 thomas 1st chudleigh \n",
+ "4 Q2296770-5 Q2296770 thomas clifford, 1st baron chudleigh \n",
+ "\n",
+ " first_and_surname first_name surname dob birth_place \\\n",
+ "0 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "1 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "2 tom chudleigh tom chudleigh 1630-08-01 devon \n",
+ "3 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "4 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "\n",
+ " postcode_fake gender occupation \n",
+ "0 tq13 8df male politician \n",
+ "1 tq13 8df male politician \n",
+ "2 tq13 8df male politician \n",
+ "3 tq13 8hu None politician \n",
+ "4 tq13 8df None politician "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"import pandas as pd\n",
"\n",
@@ -59,8 +197,7 @@
"pd.options.display.max_rows = 1000\n",
"df = splink_datasets.historical_50k\n",
"df.head()"
- ],
- "outputs": []
+ ]
},
{
"attachments": {},
@@ -85,12 +222,92 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:53.273619Z",
- "iopub.status.busy": "2024-05-15T15:43:53.271060Z",
- "iopub.status.idle": "2024-05-15T15:43:54.139302Z",
- "shell.execute_reply": "2024-05-15T15:43:54.138451Z"
+ "iopub.execute_input": "2024-06-07T09:11:01.050336Z",
+ "iopub.status.busy": "2024-06-07T09:11:01.049679Z",
+ "iopub.status.idle": "2024-06-07T09:11:01.602823Z",
+ "shell.execute_reply": "2024-06-07T09:11:01.601902Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import DuckDBAPI, block_on\n",
"from splink.blocking_analysis import (\n",
@@ -108,20 +325,20 @@
" db_api=db_api,\n",
" link_type=\"dedupe_only\",\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:54.144031Z",
- "iopub.status.busy": "2024-05-15T15:43:54.143555Z",
- "iopub.status.idle": "2024-05-15T15:43:54.254120Z",
- "shell.execute_reply": "2024-05-15T15:43:54.252360Z"
+ "iopub.execute_input": "2024-06-07T09:11:01.606853Z",
+ "iopub.status.busy": "2024-06-07T09:11:01.606539Z",
+ "iopub.status.idle": "2024-06-07T09:11:01.691839Z",
+ "shell.execute_reply": "2024-06-07T09:11:01.690988Z"
}
},
+ "outputs": [],
"source": [
"from splink import Linker, SettingsCreator\n",
"\n",
@@ -136,8 +353,7 @@
")\n",
"\n",
"linker = Linker(df, settings, database_api=db_api)\n"
- ],
- "outputs": []
+ ]
},
{
"attachments": {},
@@ -152,17 +368,166 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:54.259538Z",
- "iopub.status.busy": "2024-05-15T15:43:54.258905Z",
- "iopub.status.idle": "2024-05-15T15:43:54.922593Z",
- "shell.execute_reply": "2024-05-15T15:43:54.921796Z"
+ "iopub.execute_input": "2024-06-07T09:11:01.695906Z",
+ "iopub.status.busy": "2024-06-07T09:11:01.695600Z",
+ "iopub.status.idle": "2024-06-07T09:11:01.995020Z",
+ "shell.execute_reply": "2024-06-07T09:11:01.994289Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id_l | \n",
+ " unique_id_r | \n",
+ " occupation_l | \n",
+ " occupation_r | \n",
+ " first_name_l | \n",
+ " first_name_r | \n",
+ " dob_l | \n",
+ " dob_r | \n",
+ " surname_l | \n",
+ " surname_r | \n",
+ " postcode_fake_l | \n",
+ " postcode_fake_r | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Q55455287-12 | \n",
+ " Q55455287-2 | \n",
+ " None | \n",
+ " writer | \n",
+ " jaido | \n",
+ " jaido | \n",
+ " 1836-01-01 | \n",
+ " 1836-01-01 | \n",
+ " morata | \n",
+ " morata | \n",
+ " ta4 2ug | \n",
+ " ta4 2uu | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Q55455287-12 | \n",
+ " Q55455287-3 | \n",
+ " None | \n",
+ " writer | \n",
+ " jaido | \n",
+ " jaido | \n",
+ " 1836-01-01 | \n",
+ " 1836-01-01 | \n",
+ " morata | \n",
+ " morata | \n",
+ " ta4 2ug | \n",
+ " ta4 2uu | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Q55455287-12 | \n",
+ " Q55455287-4 | \n",
+ " None | \n",
+ " writer | \n",
+ " jaido | \n",
+ " jaido | \n",
+ " 1836-01-01 | \n",
+ " 1836-01-01 | \n",
+ " morata | \n",
+ " morata | \n",
+ " ta4 2ug | \n",
+ " ta4 2sz | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Q55455287-12 | \n",
+ " Q55455287-5 | \n",
+ " None | \n",
+ " None | \n",
+ " jaido | \n",
+ " jaido | \n",
+ " 1836-01-01 | \n",
+ " 1836-01-01 | \n",
+ " morata | \n",
+ " morata | \n",
+ " ta4 2ug | \n",
+ " ta4 2ug | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Q55455287-12 | \n",
+ " Q55455287-6 | \n",
+ " None | \n",
+ " writer | \n",
+ " jaido | \n",
+ " jaido | \n",
+ " 1836-01-01 | \n",
+ " 1836-01-01 | \n",
+ " morata | \n",
+ " morata | \n",
+ " ta4 2ug | \n",
+ " None | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id_l unique_id_r occupation_l occupation_r first_name_l \\\n",
+ "0 Q55455287-12 Q55455287-2 None writer jaido \n",
+ "1 Q55455287-12 Q55455287-3 None writer jaido \n",
+ "2 Q55455287-12 Q55455287-4 None writer jaido \n",
+ "3 Q55455287-12 Q55455287-5 None None jaido \n",
+ "4 Q55455287-12 Q55455287-6 None writer jaido \n",
+ "\n",
+ " first_name_r dob_l dob_r surname_l surname_r postcode_fake_l \\\n",
+ "0 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n",
+ "1 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n",
+ "2 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n",
+ "3 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n",
+ "4 jaido 1836-01-01 1836-01-01 morata morata ta4 2ug \n",
+ "\n",
+ " postcode_fake_r match_key \n",
+ "0 ta4 2uu 0 \n",
+ "1 ta4 2uu 0 \n",
+ "2 ta4 2sz 0 \n",
+ "3 ta4 2ug 0 \n",
+ "4 None 0 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "df_predict = linker.deterministic_link()\n",
+ "df_predict = linker.inference.deterministic_link()\n",
"df_predict.as_pandas_dataframe().head()"
- ],
- "outputs": []
+ ]
},
{
"attachments": {},
@@ -179,34 +544,205 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:54.928175Z",
- "iopub.status.busy": "2024-05-15T15:43:54.927807Z",
- "iopub.status.idle": "2024-05-15T15:43:55.547697Z",
- "shell.execute_reply": "2024-05-15T15:43:55.543024Z"
+ "iopub.execute_input": "2024-06-07T09:11:01.998965Z",
+ "iopub.status.busy": "2024-06-07T09:11:01.998665Z",
+ "iopub.status.idle": "2024-06-07T09:11:02.348788Z",
+ "shell.execute_reply": "2024-06-07T09:11:02.348039Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 1, root rows count 94\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 2, root rows count 10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 3, root rows count 0\n"
+ ]
+ }
+ ],
"source": [
- "clusters = linker.cluster_pairwise_predictions_at_threshold(\n",
+ "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n",
" df_predict, threshold_match_probability=1\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:55.555934Z",
- "iopub.status.busy": "2024-05-15T15:43:55.554006Z",
- "iopub.status.idle": "2024-05-15T15:43:55.592918Z",
- "shell.execute_reply": "2024-05-15T15:43:55.589688Z"
+ "iopub.execute_input": "2024-06-07T09:11:02.352872Z",
+ "iopub.status.busy": "2024-06-07T09:11:02.352366Z",
+ "iopub.status.idle": "2024-06-07T09:11:02.367858Z",
+ "shell.execute_reply": "2024-06-07T09:11:02.367179Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " cluster_id | \n",
+ " unique_id | \n",
+ " cluster | \n",
+ " full_name | \n",
+ " first_and_surname | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " birth_place | \n",
+ " postcode_fake | \n",
+ " gender | \n",
+ " occupation | \n",
+ " __splink_salt | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Q16025107-1 | \n",
+ " Q5497940-9 | \n",
+ " Q5497940 | \n",
+ " frederick hall | \n",
+ " frederick hall | \n",
+ " frederick | \n",
+ " hall | \n",
+ " 1855-01-01 | \n",
+ " bristol, city of | \n",
+ " bs11 9pn | \n",
+ " None | \n",
+ " None | \n",
+ " 0.002739 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Q1149445-1 | \n",
+ " Q1149445-9 | \n",
+ " Q1149445 | \n",
+ " earl egerton | \n",
+ " earl egerton | \n",
+ " earl | \n",
+ " egerton | \n",
+ " 1800-01-01 | \n",
+ " westminster | \n",
+ " w1d 2hf | \n",
+ " None | \n",
+ " None | \n",
+ " 0.991459 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Q20664532-1 | \n",
+ " Q21466387-2 | \n",
+ " Q21466387 | \n",
+ " harry brooker | \n",
+ " harry brooker | \n",
+ " harry | \n",
+ " brooker | \n",
+ " 1848-01-01 | \n",
+ " plymouth | \n",
+ " pl4 9hx | \n",
+ " male | \n",
+ " painter | \n",
+ " 0.506127 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Q1124636-1 | \n",
+ " Q1124636-12 | \n",
+ " Q1124636 | \n",
+ " tom stapleton | \n",
+ " tom stapleton | \n",
+ " tom | \n",
+ " stapleton | \n",
+ " 1535-01-01 | \n",
+ " None | \n",
+ " bn6 9na | \n",
+ " male | \n",
+ " theologian | \n",
+ " 0.612694 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Q18508292-1 | \n",
+ " Q21466711-4 | \n",
+ " Q21466711 | \n",
+ " harry s0ence | \n",
+ " harry s0ence | \n",
+ " harry | \n",
+ " s0ence | \n",
+ " 1860-01-01 | \n",
+ " london | \n",
+ " se1 7pb | \n",
+ " male | \n",
+ " painter | \n",
+ " 0.488917 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " cluster_id unique_id cluster full_name first_and_surname \\\n",
+ "0 Q16025107-1 Q5497940-9 Q5497940 frederick hall frederick hall \n",
+ "1 Q1149445-1 Q1149445-9 Q1149445 earl egerton earl egerton \n",
+ "2 Q20664532-1 Q21466387-2 Q21466387 harry brooker harry brooker \n",
+ "3 Q1124636-1 Q1124636-12 Q1124636 tom stapleton tom stapleton \n",
+ "4 Q18508292-1 Q21466711-4 Q21466711 harry s0ence harry s0ence \n",
+ "\n",
+ " first_name surname dob birth_place postcode_fake gender \\\n",
+ "0 frederick hall 1855-01-01 bristol, city of bs11 9pn None \n",
+ "1 earl egerton 1800-01-01 westminster w1d 2hf None \n",
+ "2 harry brooker 1848-01-01 plymouth pl4 9hx male \n",
+ "3 tom stapleton 1535-01-01 None bn6 9na male \n",
+ "4 harry s0ence 1860-01-01 london se1 7pb male \n",
+ "\n",
+ " occupation __splink_salt \n",
+ "0 None 0.002739 \n",
+ "1 None 0.991459 \n",
+ "2 painter 0.506127 \n",
+ "3 theologian 0.612694 \n",
+ "4 painter 0.488917 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"clusters.as_pandas_dataframe(limit=5)"
- ],
- "outputs": []
+ ]
},
{
"attachments": {},
@@ -221,14 +757,38 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:43:55.600959Z",
- "iopub.status.busy": "2024-05-15T15:43:55.600358Z",
- "iopub.status.idle": "2024-05-15T15:43:55.761150Z",
- "shell.execute_reply": "2024-05-15T15:43:55.759988Z"
+ "iopub.execute_input": "2024-06-07T09:11:02.371850Z",
+ "iopub.status.busy": "2024-06-07T09:11:02.371545Z",
+ "iopub.status.idle": "2024-06-07T09:11:02.462645Z",
+ "shell.execute_reply": "2024-06-07T09:11:02.461886Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.cluster_studio_dashboard(\n",
+ "linker.visualisations.cluster_studio_dashboard(\n",
" df_predict,\n",
" clusters,\n",
" \"dashboards/50k_deterministic_cluster.html\",\n",
@@ -239,8 +799,7 @@
"from IPython.display import IFrame\n",
"\n",
"IFrame(src=\"./dashboards/50k_deterministic_cluster.html\", width=\"100%\", height=1200)"
- ],
- "outputs": []
+ ]
}
],
"metadata": {
diff --git a/docs/demos/examples/duckdb/febrl3.ipynb b/docs/demos/examples/duckdb/febrl3.ipynb
index 16353c6acc..9a102d4519 100644
--- a/docs/demos/examples/duckdb/febrl3.ipynb
+++ b/docs/demos/examples/duckdb/febrl3.ipynb
@@ -23,10 +23,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:53.970752Z",
- "iopub.status.busy": "2024-05-15T15:50:53.970419Z",
- "iopub.status.idle": "2024-05-15T15:50:53.975673Z",
- "shell.execute_reply": "2024-05-15T15:50:53.974958Z"
+ "iopub.execute_input": "2024-06-07T09:11:24.420657Z",
+ "iopub.status.busy": "2024-06-07T09:11:24.420336Z",
+ "iopub.status.idle": "2024-06-07T09:11:24.443364Z",
+ "shell.execute_reply": "2024-06-07T09:11:24.442120Z"
}
},
"outputs": [],
@@ -40,13 +40,176 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:53.979321Z",
- "iopub.status.busy": "2024-05-15T15:50:53.979040Z",
- "iopub.status.idle": "2024-05-15T15:50:55.403280Z",
- "shell.execute_reply": "2024-05-15T15:50:55.402512Z"
+ "iopub.execute_input": "2024-06-07T09:11:24.447798Z",
+ "iopub.status.busy": "2024-06-07T09:11:24.447495Z",
+ "iopub.status.idle": "2024-06-07T09:11:26.149918Z",
+ "shell.execute_reply": "2024-06-07T09:11:26.149230Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/febrl/dataset3.csv\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " download progress: 0 %\t(..........)\r",
+ " download progress: 2 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 5 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 10 %\t(..........)\r",
+ " download progress: 11 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 14 %\t(=.........)\r",
+ " download progress: 16 %\t(=.........)\r",
+ " download progress: 18 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 25 %\t(==........)\r",
+ " download progress: 27 %\t(==........)\r",
+ " download progress: 29 %\t(==........)\r",
+ " download progress: 30 %\t(===.......)\r",
+ " download progress: 32 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 40 %\t(===.......)\r",
+ " download progress: 41 %\t(====......)\r",
+ " download progress: 43 %\t(====......)\r",
+ " download progress: 45 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 54 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 59 %\t(=====.....)\r",
+ " download progress: 61 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 70 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 75 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 80 %\t(=======...)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 84 %\t(========..)\r",
+ " download progress: 86 %\t(========..)\r",
+ " download progress: 88 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 97 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 100 %\t(==========)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rec_id | \n",
+ " given_name | \n",
+ " surname | \n",
+ " street_number | \n",
+ " address_1 | \n",
+ " address_2 | \n",
+ " suburb | \n",
+ " postcode | \n",
+ " state | \n",
+ " date_of_birth | \n",
+ " soc_sec_id | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " rec-1496-org | \n",
+ " mitchell | \n",
+ " green | \n",
+ " 7 | \n",
+ " wallaby place | \n",
+ " delmar | \n",
+ " cleveland | \n",
+ " 2119 | \n",
+ " sa | \n",
+ " 19560409 | \n",
+ " 1804974 | \n",
+ " rec-1496 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " rec-552-dup-3 | \n",
+ " harley | \n",
+ " mccarthy | \n",
+ " 177 | \n",
+ " pridhamstreet | \n",
+ " milton | \n",
+ " marsden | \n",
+ " 3165 | \n",
+ " nsw | \n",
+ " 19080419 | \n",
+ " 6089216 | \n",
+ " rec-552 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rec_id given_name surname street_number address_1 \\\n",
+ "0 rec-1496-org mitchell green 7 wallaby place \n",
+ "1 rec-552-dup-3 harley mccarthy 177 pridhamstreet \n",
+ "\n",
+ " address_2 suburb postcode state date_of_birth soc_sec_id cluster \n",
+ "0 delmar cleveland 2119 sa 19560409 1804974 rec-1496 \n",
+ "1 milton marsden 3165 nsw 19080419 6089216 rec-552 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.datasets import splink_datasets\n",
"\n",
@@ -66,10 +229,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:55.445888Z",
- "iopub.status.busy": "2024-05-15T15:50:55.445564Z",
- "iopub.status.idle": "2024-05-15T15:50:55.453559Z",
- "shell.execute_reply": "2024-05-15T15:50:55.452728Z"
+ "iopub.execute_input": "2024-06-07T09:11:26.153666Z",
+ "iopub.status.busy": "2024-06-07T09:11:26.153378Z",
+ "iopub.status.idle": "2024-06-07T09:11:26.160666Z",
+ "shell.execute_reply": "2024-06-07T09:11:26.159911Z"
}
},
"outputs": [],
@@ -83,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:55.457023Z",
- "iopub.status.busy": "2024-05-15T15:50:55.456741Z",
- "iopub.status.idle": "2024-05-15T15:50:55.464209Z",
- "shell.execute_reply": "2024-05-15T15:50:55.463386Z"
+ "iopub.execute_input": "2024-06-07T09:11:26.164000Z",
+ "iopub.status.busy": "2024-06-07T09:11:26.163726Z",
+ "iopub.status.idle": "2024-06-07T09:11:26.170794Z",
+ "shell.execute_reply": "2024-06-07T09:11:26.170146Z"
}
},
"outputs": [],
@@ -100,10 +263,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:55.467779Z",
- "iopub.status.busy": "2024-05-15T15:50:55.467486Z",
- "iopub.status.idle": "2024-05-15T15:50:55.617978Z",
- "shell.execute_reply": "2024-05-15T15:50:55.617331Z"
+ "iopub.execute_input": "2024-06-07T09:11:26.174301Z",
+ "iopub.status.busy": "2024-06-07T09:11:26.174024Z",
+ "iopub.status.idle": "2024-06-07T09:11:26.331196Z",
+ "shell.execute_reply": "2024-06-07T09:11:26.330465Z"
}
},
"outputs": [],
@@ -131,13 +294,92 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:55.621604Z",
- "iopub.status.busy": "2024-05-15T15:50:55.621314Z",
- "iopub.status.idle": "2024-05-15T15:50:55.930689Z",
- "shell.execute_reply": "2024-05-15T15:50:55.929809Z"
+ "iopub.execute_input": "2024-06-07T09:11:26.334644Z",
+ "iopub.status.busy": "2024-06-07T09:11:26.334398Z",
+ "iopub.status.idle": "2024-06-07T09:11:26.630134Z",
+ "shell.execute_reply": "2024-06-07T09:11:26.629629Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import completeness_chart\n",
"\n",
@@ -149,13 +391,92 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:55.933815Z",
- "iopub.status.busy": "2024-05-15T15:50:55.933588Z",
- "iopub.status.idle": "2024-05-15T15:50:56.393881Z",
- "shell.execute_reply": "2024-05-15T15:50:56.393363Z"
+ "iopub.execute_input": "2024-06-07T09:11:26.633200Z",
+ "iopub.status.busy": "2024-06-07T09:11:26.632979Z",
+ "iopub.status.idle": "2024-06-07T09:11:27.047469Z",
+ "shell.execute_reply": "2024-06-07T09:11:27.046951Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import profile_columns\n",
"\n",
@@ -167,13 +488,92 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:56.397337Z",
- "iopub.status.busy": "2024-05-15T15:50:56.396993Z",
- "iopub.status.idle": "2024-05-15T15:50:56.749566Z",
- "shell.execute_reply": "2024-05-15T15:50:56.748922Z"
+ "iopub.execute_input": "2024-06-07T09:11:27.050491Z",
+ "iopub.status.busy": "2024-06-07T09:11:27.050266Z",
+ "iopub.status.idle": "2024-06-07T09:11:27.428593Z",
+ "shell.execute_reply": "2024-06-07T09:11:27.428055Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import DuckDBAPI, block_on\n",
"from splink.blocking_analysis import (\n",
@@ -203,10 +603,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:56.752854Z",
- "iopub.status.busy": "2024-05-15T15:50:56.752596Z",
- "iopub.status.idle": "2024-05-15T15:50:56.907514Z",
- "shell.execute_reply": "2024-05-15T15:50:56.906772Z"
+ "iopub.execute_input": "2024-06-07T09:11:27.431702Z",
+ "iopub.status.busy": "2024-06-07T09:11:27.431466Z",
+ "iopub.status.idle": "2024-06-07T09:11:27.591229Z",
+ "shell.execute_reply": "2024-06-07T09:11:27.590491Z"
}
},
"outputs": [],
@@ -245,13 +645,22 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:56.910709Z",
- "iopub.status.busy": "2024-05-15T15:50:56.910470Z",
- "iopub.status.idle": "2024-05-15T15:50:57.119744Z",
- "shell.execute_reply": "2024-05-15T15:50:57.119133Z"
+ "iopub.execute_input": "2024-06-07T09:11:27.594493Z",
+ "iopub.status.busy": "2024-06-07T09:11:27.594264Z",
+ "iopub.status.idle": "2024-06-07T09:11:27.787352Z",
+ "shell.execute_reply": "2024-06-07T09:11:27.786769Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.000528.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 1,893.56 are expected to match. With 12,497,500 total possible comparisons, we expect a total of around 6,600.00 matching pairs\n"
+ ]
+ }
+ ],
"source": [
"from splink import block_on\n",
"\n",
@@ -261,7 +670,7 @@
" \"l.given_name = r.surname and l.surname = r.given_name and l.date_of_birth = r.date_of_birth\",\n",
"]\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.9)"
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.9)"
]
},
{
@@ -269,15 +678,73 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:50:57.122905Z",
- "iopub.status.busy": "2024-05-15T15:50:57.122623Z",
- "iopub.status.idle": "2024-05-15T15:51:01.161828Z",
- "shell.execute_reply": "2024-05-15T15:51:01.161251Z"
+ "iopub.execute_input": "2024-06-07T09:11:27.790368Z",
+ "iopub.status.busy": "2024-06-07T09:11:27.790145Z",
+ "iopub.status.idle": "2024-06-07T09:11:35.433199Z",
+ "shell.execute_reply": "2024-06-07T09:11:35.431006Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - given_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n",
+ " - soc_sec_id (no m values are trained).\n",
+ " - street_number (no m values are trained).\n",
+ " - postcode (no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)"
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)"
]
},
{
@@ -285,16 +752,96 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:01.165539Z",
- "iopub.status.busy": "2024-05-15T15:51:01.165298Z",
- "iopub.status.idle": "2024-05-15T15:51:01.704281Z",
- "shell.execute_reply": "2024-05-15T15:51:01.703690Z"
+ "iopub.execute_input": "2024-06-07T09:11:35.446472Z",
+ "iopub.status.busy": "2024-06-07T09:11:35.440198Z",
+ "iopub.status.idle": "2024-06-07T09:11:36.895235Z",
+ "shell.execute_reply": "2024-06-07T09:11:36.894603Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"date_of_birth\" = r.\"date_of_birth\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - given_name\n",
+ " - surname\n",
+ " - soc_sec_id\n",
+ " - street_number\n",
+ " - postcode\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - date_of_birth\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.376 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.0158 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was -0.000688 in the m_probability of postcode, level `Exact match on postcode`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 3.65e-05 in the m_probability of postcode, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 4 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
"em_blocking_rule_1 = block_on(\"date_of_birth\")\n",
- "session_dob = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" em_blocking_rule_1\n",
")"
]
@@ -304,16 +851,137 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:01.707325Z",
- "iopub.status.busy": "2024-05-15T15:51:01.707114Z",
- "iopub.status.idle": "2024-05-15T15:51:02.290513Z",
- "shell.execute_reply": "2024-05-15T15:51:02.290020Z"
+ "iopub.execute_input": "2024-06-07T09:11:36.898638Z",
+ "iopub.status.busy": "2024-06-07T09:11:36.898156Z",
+ "iopub.status.idle": "2024-06-07T09:11:37.517318Z",
+ "shell.execute_reply": "2024-06-07T09:11:37.516459Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"postcode\" = r.\"postcode\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - given_name\n",
+ " - surname\n",
+ " - date_of_birth\n",
+ " - soc_sec_id\n",
+ " - street_number\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - postcode\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was 0.0627 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was -0.00188 in the m_probability of date_of_birth, level `Exact match on date_of_birth`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 5.26e-05 in the m_probability of soc_sec_id, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 3 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - date_of_birth (some u values are not trained, some m values are not trained).\n"
+ ]
+ }
+ ],
"source": [
"em_blocking_rule_2 = block_on(\"postcode\")\n",
- "session_postcode = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "session_postcode = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" em_blocking_rule_2\n",
")"
]
@@ -323,15 +991,94 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:02.294783Z",
- "iopub.status.busy": "2024-05-15T15:51:02.294498Z",
- "iopub.status.idle": "2024-05-15T15:51:02.665651Z",
- "shell.execute_reply": "2024-05-15T15:51:02.665073Z"
+ "iopub.execute_input": "2024-06-07T09:11:37.523135Z",
+ "iopub.status.busy": "2024-06-07T09:11:37.522810Z",
+ "iopub.status.idle": "2024-06-07T09:11:37.957335Z",
+ "shell.execute_reply": "2024-06-07T09:11:37.956712Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.match_weights_chart()"
+ "linker.visualisations.match_weights_chart()"
]
},
{
@@ -339,15 +1086,29 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:02.668752Z",
- "iopub.status.busy": "2024-05-15T15:51:02.668512Z",
- "iopub.status.idle": "2024-05-15T15:51:09.240685Z",
- "shell.execute_reply": "2024-05-15T15:51:09.240109Z"
+ "iopub.execute_input": "2024-06-07T09:11:37.960629Z",
+ "iopub.status.busy": "2024-06-07T09:11:37.960358Z",
+ "iopub.status.idle": "2024-06-07T09:11:44.496784Z",
+ "shell.execute_reply": "2024-06-07T09:11:44.496254Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ }
+ ],
"source": [
- "results = linker.predict(threshold_match_probability=0.2)"
+ "results = linker.inference.predict(threshold_match_probability=0.2)"
]
},
{
@@ -355,15 +1116,107 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:09.243955Z",
- "iopub.status.busy": "2024-05-15T15:51:09.243667Z",
- "iopub.status.idle": "2024-05-15T15:51:11.811265Z",
- "shell.execute_reply": "2024-05-15T15:51:11.810638Z"
+ "iopub.execute_input": "2024-06-07T09:11:44.499943Z",
+ "iopub.status.busy": "2024-06-07T09:11:44.499693Z",
+ "iopub.status.idle": "2024-06-07T09:11:47.310831Z",
+ "shell.execute_reply": "2024-06-07T09:11:47.310208Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.accuracy_analysis_from_labels_column(\n",
+ "linker.evaluation.accuracy_analysis_from_labels_column(\n",
" \"cluster\", match_weight_round_to_nearest=0.1, output_type=\"roc\"\n",
")"
]
@@ -373,15 +1226,242 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:11.820946Z",
- "iopub.status.busy": "2024-05-15T15:51:11.820644Z",
- "iopub.status.idle": "2024-05-15T15:51:12.084284Z",
- "shell.execute_reply": "2024-05-15T15:51:12.083443Z"
+ "iopub.execute_input": "2024-06-07T09:11:47.319625Z",
+ "iopub.status.busy": "2024-06-07T09:11:47.319347Z",
+ "iopub.status.idle": "2024-06-07T09:11:47.588558Z",
+ "shell.execute_reply": "2024-06-07T09:11:47.587940Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " clerical_match_score | \n",
+ " found_by_blocking_rules | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " rec_id_l | \n",
+ " rec_id_r | \n",
+ " given_name_l | \n",
+ " given_name_r | \n",
+ " gamma_given_name | \n",
+ " tf_given_name_l | \n",
+ " ... | \n",
+ " postcode_l | \n",
+ " postcode_r | \n",
+ " gamma_postcode | \n",
+ " tf_postcode_l | \n",
+ " tf_postcode_r | \n",
+ " bf_postcode | \n",
+ " bf_tf_adj_postcode | \n",
+ " cluster_l | \n",
+ " cluster_r | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -27.448215 | \n",
+ " 5.460897e-09 | \n",
+ " rec-993-dup-1 | \n",
+ " rec-993-dup-3 | \n",
+ " westbrook | \n",
+ " jake | \n",
+ " 0 | \n",
+ " 0.0004 | \n",
+ " ... | \n",
+ " 2704 | \n",
+ " 2074 | \n",
+ " 0 | \n",
+ " 0.0002 | \n",
+ " 0.0014 | \n",
+ " 0.230037 | \n",
+ " 1.0 | \n",
+ " rec-993 | \n",
+ " rec-993 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -27.448215 | \n",
+ " 5.460897e-09 | \n",
+ " rec-829-dup-0 | \n",
+ " rec-829-dup-2 | \n",
+ " wilde | \n",
+ " kyra | \n",
+ " 0 | \n",
+ " 0.0002 | \n",
+ " ... | \n",
+ " 3859 | \n",
+ " 3595 | \n",
+ " 0 | \n",
+ " 0.0004 | \n",
+ " 0.0006 | \n",
+ " 0.230037 | \n",
+ " 1.0 | \n",
+ " rec-829 | \n",
+ " rec-829 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.0 | \n",
+ " False | \n",
+ " -19.362199 | \n",
+ " 1.483873e-06 | \n",
+ " rec-829-dup-0 | \n",
+ " rec-829-dup-1 | \n",
+ " wilde | \n",
+ " kyra | \n",
+ " 0 | \n",
+ " 0.0002 | \n",
+ " ... | \n",
+ " 3859 | \n",
+ " 3889 | \n",
+ " 0 | \n",
+ " 0.0004 | \n",
+ " 0.0002 | \n",
+ " 0.230037 | \n",
+ " 1.0 | \n",
+ " rec-829 | \n",
+ " rec-829 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1.0 | \n",
+ " True | \n",
+ " -15.233122 | \n",
+ " 2.596344e-05 | \n",
+ " rec-721-dup-0 | \n",
+ " rec-721-dup-1 | \n",
+ " mikhaili | \n",
+ " elly | \n",
+ " 0 | \n",
+ " 0.0008 | \n",
+ " ... | \n",
+ " 4806 | \n",
+ " 4860 | \n",
+ " 0 | \n",
+ " 0.0008 | \n",
+ " 0.0014 | \n",
+ " 0.230037 | \n",
+ " 1.0 | \n",
+ " rec-721 | \n",
+ " rec-721 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1.0 | \n",
+ " True | \n",
+ " -12.600328 | \n",
+ " 1.610102e-04 | \n",
+ " rec-401-dup-1 | \n",
+ " rec-401-dup-3 | \n",
+ " whitbe | \n",
+ " alexa-ose | \n",
+ " 0 | \n",
+ " 0.0002 | \n",
+ " ... | \n",
+ " 3040 | \n",
+ " 3041 | \n",
+ " 0 | \n",
+ " 0.0020 | \n",
+ " 0.0004 | \n",
+ " 0.230037 | \n",
+ " 1.0 | \n",
+ " rec-401 | \n",
+ " rec-401 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 45 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " clerical_match_score found_by_blocking_rules match_weight \\\n",
+ "0 1.0 False -27.448215 \n",
+ "1 1.0 False -27.448215 \n",
+ "2 1.0 False -19.362199 \n",
+ "3 1.0 True -15.233122 \n",
+ "4 1.0 True -12.600328 \n",
+ "\n",
+ " match_probability rec_id_l rec_id_r given_name_l given_name_r \\\n",
+ "0 5.460897e-09 rec-993-dup-1 rec-993-dup-3 westbrook jake \n",
+ "1 5.460897e-09 rec-829-dup-0 rec-829-dup-2 wilde kyra \n",
+ "2 1.483873e-06 rec-829-dup-0 rec-829-dup-1 wilde kyra \n",
+ "3 2.596344e-05 rec-721-dup-0 rec-721-dup-1 mikhaili elly \n",
+ "4 1.610102e-04 rec-401-dup-1 rec-401-dup-3 whitbe alexa-ose \n",
+ "\n",
+ " gamma_given_name tf_given_name_l ... postcode_l postcode_r \\\n",
+ "0 0 0.0004 ... 2704 2074 \n",
+ "1 0 0.0002 ... 3859 3595 \n",
+ "2 0 0.0002 ... 3859 3889 \n",
+ "3 0 0.0008 ... 4806 4860 \n",
+ "4 0 0.0002 ... 3040 3041 \n",
+ "\n",
+ " gamma_postcode tf_postcode_l tf_postcode_r bf_postcode \\\n",
+ "0 0 0.0002 0.0014 0.230037 \n",
+ "1 0 0.0004 0.0006 0.230037 \n",
+ "2 0 0.0004 0.0002 0.230037 \n",
+ "3 0 0.0008 0.0014 0.230037 \n",
+ "4 0 0.0020 0.0004 0.230037 \n",
+ "\n",
+ " bf_tf_adj_postcode cluster_l cluster_r match_key \n",
+ "0 1.0 rec-993 rec-993 5 \n",
+ "1 1.0 rec-829 rec-829 5 \n",
+ "2 1.0 rec-829 rec-829 5 \n",
+ "3 1.0 rec-721 rec-721 2 \n",
+ "4 1.0 rec-401 rec-401 0 \n",
+ "\n",
+ "[5 rows x 45 columns]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "pred_errors_df = linker.prediction_errors_from_labels_column(\n",
+ "pred_errors_df = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"cluster\"\n",
").as_pandas_dataframe()\n",
"len(pred_errors_df)\n",
@@ -393,18 +1473,110 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:51:12.087291Z",
- "iopub.status.busy": "2024-05-15T15:51:12.087021Z",
- "iopub.status.idle": "2024-05-15T15:51:13.092062Z",
- "shell.execute_reply": "2024-05-15T15:51:13.091503Z"
+ "iopub.execute_input": "2024-06-07T09:11:47.591674Z",
+ "iopub.status.busy": "2024-06-07T09:11:47.591437Z",
+ "iopub.status.idle": "2024-06-07T09:11:48.630581Z",
+ "shell.execute_reply": "2024-06-07T09:11:48.629955Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "records = linker.prediction_errors_from_labels_column(\"cluster\").as_record_dict(\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\"cluster\").as_record_dict(\n",
" limit=10\n",
")\n",
- "linker.waterfall_chart(records)"
+ "linker.visualisations.waterfall_chart(records)"
]
}
],
diff --git a/docs/demos/examples/duckdb/febrl4.ipynb b/docs/demos/examples/duckdb/febrl4.ipynb
index 1a162201ff..a7cf929e46 100644
--- a/docs/demos/examples/duckdb/febrl4.ipynb
+++ b/docs/demos/examples/duckdb/febrl4.ipynb
@@ -30,17 +30,17 @@
"id": "9c2be649",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:42.115992Z",
- "iopub.status.busy": "2024-05-15T15:56:42.115623Z",
- "iopub.status.idle": "2024-05-15T15:56:42.138818Z",
- "shell.execute_reply": "2024-05-15T15:56:42.137554Z"
+ "iopub.execute_input": "2024-06-07T09:16:39.973571Z",
+ "iopub.status.busy": "2024-06-07T09:16:39.973235Z",
+ "iopub.status.idle": "2024-06-07T09:16:39.993885Z",
+ "shell.execute_reply": "2024-06-07T09:16:39.992799Z"
}
},
+ "outputs": [],
"source": [
"# Uncomment and run this cell if you're running in Google Colab.\n",
"# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -64,12 +64,184 @@
"id": "832113c9-13b2-43b7-86d0-6051a9db79e8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:42.144735Z",
- "iopub.status.busy": "2024-05-15T15:56:42.144299Z",
- "iopub.status.idle": "2024-05-15T15:56:44.123585Z",
- "shell.execute_reply": "2024-05-15T15:56:44.122726Z"
+ "iopub.execute_input": "2024-06-07T09:16:39.999281Z",
+ "iopub.status.busy": "2024-06-07T09:16:39.998928Z",
+ "iopub.status.idle": "2024-06-07T09:16:41.957056Z",
+ "shell.execute_reply": "2024-06-07T09:16:41.956423Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rec_id | \n",
+ " given_name | \n",
+ " surname | \n",
+ " street_number | \n",
+ " address_1 | \n",
+ " address_2 | \n",
+ " suburb | \n",
+ " postcode | \n",
+ " state | \n",
+ " date_of_birth | \n",
+ " soc_sec_id | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " rec-1070-org | \n",
+ " michaela | \n",
+ " neumann | \n",
+ " 8 | \n",
+ " stanley street | \n",
+ " miami | \n",
+ " winston hills | \n",
+ " 4223 | \n",
+ " nsw | \n",
+ " 19151111 | \n",
+ " 5304218 | \n",
+ " rec-1070 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " rec-1016-org | \n",
+ " courtney | \n",
+ " painter | \n",
+ " 12 | \n",
+ " pinkerton circuit | \n",
+ " bega flats | \n",
+ " richlands | \n",
+ " 4560 | \n",
+ " vic | \n",
+ " 19161214 | \n",
+ " 4066625 | \n",
+ " rec-1016 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rec_id given_name surname street_number address_1 \\\n",
+ "0 rec-1070-org michaela neumann 8 stanley street \n",
+ "1 rec-1016-org courtney painter 12 pinkerton circuit \n",
+ "\n",
+ " address_2 suburb postcode state date_of_birth soc_sec_id \\\n",
+ "0 miami winston hills 4223 nsw 19151111 5304218 \n",
+ "1 bega flats richlands 4560 vic 19161214 4066625 \n",
+ "\n",
+ " cluster \n",
+ "0 rec-1070 \n",
+ "1 rec-1016 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rec_id | \n",
+ " given_name | \n",
+ " surname | \n",
+ " street_number | \n",
+ " address_1 | \n",
+ " address_2 | \n",
+ " suburb | \n",
+ " postcode | \n",
+ " state | \n",
+ " date_of_birth | \n",
+ " soc_sec_id | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " rec-561-dup-0 | \n",
+ " elton | \n",
+ " | \n",
+ " 3 | \n",
+ " light setreet | \n",
+ " pinehill | \n",
+ " windermere | \n",
+ " 3212 | \n",
+ " vic | \n",
+ " 19651013 | \n",
+ " 1551941 | \n",
+ " rec-561 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " rec-2642-dup-0 | \n",
+ " mitchell | \n",
+ " maxon | \n",
+ " 47 | \n",
+ " edkins street | \n",
+ " lochaoair | \n",
+ " north ryde | \n",
+ " 3355 | \n",
+ " nsw | \n",
+ " 19390212 | \n",
+ " 8859999 | \n",
+ " rec-2642 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rec_id given_name surname street_number address_1 \\\n",
+ "0 rec-561-dup-0 elton 3 light setreet \n",
+ "1 rec-2642-dup-0 mitchell maxon 47 edkins street \n",
+ "\n",
+ " address_2 suburb postcode state date_of_birth soc_sec_id cluster \n",
+ "0 pinehill windermere 3212 vic 19651013 1551941 rec-561 \n",
+ "1 lochaoair north ryde 3355 nsw 19390212 8859999 rec-2642 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"from splink import splink_datasets\n",
"\n",
@@ -90,8 +262,7 @@
"\n",
"display(dfs[0].head(2))\n",
"display(dfs[1].head(2))"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -107,12 +278,13 @@
"id": "3233c3e1-3e6b-4abc-8bed-c26e8b463c2a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:44.128064Z",
- "iopub.status.busy": "2024-05-15T15:56:44.127470Z",
- "iopub.status.idle": "2024-05-15T15:56:44.412449Z",
- "shell.execute_reply": "2024-05-15T15:56:44.410927Z"
+ "iopub.execute_input": "2024-06-07T09:16:41.960684Z",
+ "iopub.status.busy": "2024-06-07T09:16:41.960330Z",
+ "iopub.status.idle": "2024-06-07T09:16:42.175342Z",
+ "shell.execute_reply": "2024-06-07T09:16:42.174611Z"
}
},
+ "outputs": [],
"source": [
"from splink import DuckDBAPI, Linker, SettingsCreator\n",
"\n",
@@ -127,8 +299,7 @@
")\n",
"\n",
"linker = Linker(dfs, basic_settings, database_api=DuckDBAPI())"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -144,18 +315,97 @@
"id": "319ffdbc-7853-40a9-b331-e635d96b6fdc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:44.418048Z",
- "iopub.status.busy": "2024-05-15T15:56:44.417174Z",
- "iopub.status.idle": "2024-05-15T15:56:45.018140Z",
- "shell.execute_reply": "2024-05-15T15:56:45.017233Z"
+ "iopub.execute_input": "2024-06-07T09:16:42.178669Z",
+ "iopub.status.busy": "2024-06-07T09:16:42.178397Z",
+ "iopub.status.idle": "2024-06-07T09:16:42.558301Z",
+ "shell.execute_reply": "2024-06-07T09:16:42.557736Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import completeness_chart\n",
"\n",
"completeness_chart(dfs, db_api=DuckDBAPI())"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -163,18 +413,97 @@
"id": "dff8dfca-57c8-42bf-878c-da9dd23d2682",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:45.022368Z",
- "iopub.status.busy": "2024-05-15T15:56:45.021805Z",
- "iopub.status.idle": "2024-05-15T15:56:45.760354Z",
- "shell.execute_reply": "2024-05-15T15:56:45.759671Z"
+ "iopub.execute_input": "2024-06-07T09:16:42.561536Z",
+ "iopub.status.busy": "2024-06-07T09:16:42.561314Z",
+ "iopub.status.idle": "2024-06-07T09:16:43.066015Z",
+ "shell.execute_reply": "2024-06-07T09:16:43.065469Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import profile_columns\n",
"\n",
"profile_columns(dfs, db_api=DuckDBAPI(), column_expressions=[\"given_name\", \"surname\"])"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -192,12 +521,92 @@
"id": "e745280e-fe2f-4563-bd7e-6e4c70d0c9de",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:45.764541Z",
- "iopub.status.busy": "2024-05-15T15:56:45.764220Z",
- "iopub.status.idle": "2024-05-15T15:56:46.595508Z",
- "shell.execute_reply": "2024-05-15T15:56:46.594573Z"
+ "iopub.execute_input": "2024-06-07T09:16:43.069224Z",
+ "iopub.status.busy": "2024-06-07T09:16:43.068982Z",
+ "iopub.status.idle": "2024-06-07T09:16:43.684745Z",
+ "shell.execute_reply": "2024-06-07T09:16:43.684041Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import DuckDBAPI, block_on\n",
"from splink.blocking_analysis import (\n",
@@ -225,8 +634,7 @@
" unique_id_column_name=\"rec_id\",\n",
" source_dataset_column_name=\"source_dataset\",\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -253,12 +661,13 @@
"id": "f6360b69-2d52-4f1a-9199-2edf2339ec63",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:46.600071Z",
- "iopub.status.busy": "2024-05-15T15:56:46.599766Z",
- "iopub.status.idle": "2024-05-15T15:56:47.112399Z",
- "shell.execute_reply": "2024-05-15T15:56:47.111220Z"
+ "iopub.execute_input": "2024-06-07T09:16:43.687914Z",
+ "iopub.status.busy": "2024-06-07T09:16:43.687640Z",
+ "iopub.status.idle": "2024-06-07T09:16:44.021204Z",
+ "shell.execute_reply": "2024-06-07T09:16:44.020435Z"
}
},
+ "outputs": [],
"source": [
"import splink.comparison_level_library as cll\n",
"import splink.comparison_library as cl\n",
@@ -307,8 +716,7 @@
"\n",
"linker_simple = Linker(dfs, simple_model_settings, database_api=DuckDBAPI())\n",
"linker_detailed = Linker(dfs, detailed_model_settings, database_api=DuckDBAPI())"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -342,23 +750,32 @@
"id": "7ad48419-4eda-4fe5-b00f-2ec9f798e0e8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:47.118143Z",
- "iopub.status.busy": "2024-05-15T15:56:47.117804Z",
- "iopub.status.idle": "2024-05-15T15:56:47.491169Z",
- "shell.execute_reply": "2024-05-15T15:56:47.489974Z"
+ "iopub.execute_input": "2024-06-07T09:16:44.024887Z",
+ "iopub.status.busy": "2024-06-07T09:16:44.024650Z",
+ "iopub.status.idle": "2024-06-07T09:16:44.225016Z",
+ "shell.execute_reply": "2024-06-07T09:16:44.224395Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.000239.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n"
+ ]
+ }
+ ],
"source": [
"deterministic_rules = [\n",
" block_on(\"soc_sec_id\"),\n",
" block_on(\"given_name\", \"surname\", \"date_of_birth\"),\n",
"]\n",
"\n",
- "linker_detailed.estimate_probability_two_random_records_match(\n",
+ "linker_detailed.training.estimate_probability_two_random_records_match(\n",
" deterministic_rules, recall=0.8\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -382,18 +799,76 @@
"id": "e40ee288-0c42-4cda-aaf1-3ffb2ea02383",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:47.497349Z",
- "iopub.status.busy": "2024-05-15T15:56:47.496965Z",
- "iopub.status.idle": "2024-05-15T15:56:59.095072Z",
- "shell.execute_reply": "2024-05-15T15:56:59.094337Z"
+ "iopub.execute_input": "2024-06-07T09:16:44.228813Z",
+ "iopub.status.busy": "2024-06-07T09:16:44.228526Z",
+ "iopub.status.idle": "2024-06-07T09:16:50.708588Z",
+ "shell.execute_reply": "2024-06-07T09:16:50.707955Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - given_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n",
+ " - soc_sec_id (no m values are trained).\n",
+ " - street_number (no m values are trained).\n",
+ " - postcode (no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
"# We generally recommend setting max pairs higher (e.g. 1e7 or more)\n",
"# But this will run faster for the purpose of this demo\n",
- "linker_detailed.estimate_u_using_random_sampling(max_pairs=1e6)"
- ],
- "outputs": []
+ "linker_detailed.training.estimate_u_using_random_sampling(max_pairs=1e6)"
+ ]
},
{
"cell_type": "markdown",
@@ -411,21 +886,214 @@
"id": "9ee0f49b-084c-45aa-8c6b-ec5da11c2cc4",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:56:59.100504Z",
- "iopub.status.busy": "2024-05-15T15:56:59.100174Z",
- "iopub.status.idle": "2024-05-15T15:57:01.059609Z",
- "shell.execute_reply": "2024-05-15T15:57:01.058521Z"
+ "iopub.execute_input": "2024-06-07T09:16:50.712950Z",
+ "iopub.status.busy": "2024-06-07T09:16:50.712681Z",
+ "iopub.status.idle": "2024-06-07T09:16:52.276811Z",
+ "shell.execute_reply": "2024-06-07T09:16:52.276216Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"date_of_birth\" = r.\"date_of_birth\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - given_name\n",
+ " - surname\n",
+ " - soc_sec_id\n",
+ " - street_number\n",
+ " - postcode\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - date_of_birth\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.316 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.00365 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 8.84e-05 in the m_probability of soc_sec_id, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 3 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"postcode\" = r.\"postcode\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - given_name\n",
+ " - surname\n",
+ " - date_of_birth\n",
+ " - soc_sec_id\n",
+ " - street_number\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - postcode\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was 0.0374 in the m_probability of date_of_birth, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.000489 in the m_probability of date_of_birth, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 9.4e-06 in the m_probability of soc_sec_id, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 3 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - date_of_birth (some u values are not trained, some m values are not trained).\n"
+ ]
+ }
+ ],
"source": [
- "session_dob = linker_detailed.estimate_parameters_using_expectation_maximisation(\n",
+ "session_dob = linker_detailed.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"date_of_birth\"), estimate_without_term_frequencies=True\n",
")\n",
- "session_pc = linker_detailed.estimate_parameters_using_expectation_maximisation(\n",
+ "session_pc = linker_detailed.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"postcode\"), estimate_without_term_frequencies=True\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -441,16 +1109,95 @@
"id": "31ef6844-6be8-4f01-9ff7-5dfebcf12ae1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:01.065654Z",
- "iopub.status.busy": "2024-05-15T15:57:01.065325Z",
- "iopub.status.idle": "2024-05-15T15:57:01.389061Z",
- "shell.execute_reply": "2024-05-15T15:57:01.388339Z"
+ "iopub.execute_input": "2024-06-07T09:16:52.281563Z",
+ "iopub.status.busy": "2024-06-07T09:16:52.281303Z",
+ "iopub.status.idle": "2024-06-07T09:16:52.513958Z",
+ "shell.execute_reply": "2024-06-07T09:16:52.513314Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"session_dob.m_u_values_interactive_history_chart()"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -466,16 +1213,95 @@
"id": "8d260a60-a4fa-4c0d-9853-8b8256a24257",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:01.393145Z",
- "iopub.status.busy": "2024-05-15T15:57:01.392842Z",
- "iopub.status.idle": "2024-05-15T15:57:01.561233Z",
- "shell.execute_reply": "2024-05-15T15:57:01.560475Z"
+ "iopub.execute_input": "2024-06-07T09:16:52.517168Z",
+ "iopub.status.busy": "2024-06-07T09:16:52.516948Z",
+ "iopub.status.idle": "2024-06-07T09:16:52.637604Z",
+ "shell.execute_reply": "2024-06-07T09:16:52.636662Z"
}
},
- "source": [
- "linker_detailed.parameter_estimate_comparisons_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_detailed.visualisations.parameter_estimate_comparisons_chart()"
+ ]
},
{
"cell_type": "markdown",
@@ -491,26 +1317,577 @@
"id": "71f2f166-05cd-4038-a289-a053a1f0b5c5",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:01.565611Z",
- "iopub.status.busy": "2024-05-15T15:57:01.565220Z",
- "iopub.status.idle": "2024-05-15T15:57:04.177024Z",
- "shell.execute_reply": "2024-05-15T15:57:04.176371Z"
+ "iopub.execute_input": "2024-06-07T09:16:52.640970Z",
+ "iopub.status.busy": "2024-06-07T09:16:52.640725Z",
+ "iopub.status.idle": "2024-06-07T09:16:54.701590Z",
+ "shell.execute_reply": "2024-06-07T09:16:54.701058Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.000239.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - given_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - street_number (no m values are trained).\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"given_name\" = r.\"given_name\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - surname\n",
+ " - street_number\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - given_name\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.0816 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.0263 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was -0.0249 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.0229 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was -0.02 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was -0.0165 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was -0.0132 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.0102 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was -0.00772 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 0.00577 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was -0.00428 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 12: Largest change in params was 0.00316 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 13: Largest change in params was -0.00233 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 14: Largest change in params was -0.00172 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 15: Largest change in params was 0.00127 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 16: Largest change in params was 0.000936 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 17: Largest change in params was -0.000691 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 18: Largest change in params was -0.000511 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 19: Largest change in params was 0.000378 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 20: Largest change in params was -0.00028 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 21: Largest change in params was 0.000208 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 22: Largest change in params was -0.000154 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 23: Largest change in params was 0.000114 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 24: Largest change in params was -8.48e-05 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 24 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - given_name (no m values are trained).\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"street_number\" = r.\"street_number\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - given_name\n",
+ " - surname\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - street_number\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was 0.0445 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.0288 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was -0.0278 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.0269 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was -0.0245 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.0209 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was -0.0169 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.0132 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was -0.00995 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 0.00738 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was -0.00541 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 12: Largest change in params was -0.00396 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 13: Largest change in params was -0.0029 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 14: Largest change in params was 0.00213 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 15: Largest change in params was -0.00158 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 16: Largest change in params was 0.00118 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 17: Largest change in params was -0.000894 in the m_probability of given_name, level `Exact match on given_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 18: Largest change in params was 0.000683 in the m_probability of given_name, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 19: Largest change in params was -0.000561 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 20: Largest change in params was 0.000469 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 21: Largest change in params was -0.000389 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 22: Largest change in params was -0.000321 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 23: Largest change in params was 0.000264 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 24: Largest change in params was 0.000217 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 25: Largest change in params was 0.000177 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 25 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker_simple.estimate_probability_two_random_records_match(\n",
+ "linker_simple.training.estimate_probability_two_random_records_match(\n",
" deterministic_rules, recall=0.8\n",
")\n",
- "linker_simple.estimate_u_using_random_sampling(max_pairs=1e7)\n",
- "session_ssid = linker_simple.estimate_parameters_using_expectation_maximisation(\n",
+ "linker_simple.training.estimate_u_using_random_sampling(max_pairs=1e7)\n",
+ "session_ssid = linker_simple.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"given_name\"), estimate_without_term_frequencies=True\n",
")\n",
- "session_pc = linker_simple.estimate_parameters_using_expectation_maximisation(\n",
+ "session_pc = linker_simple.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"street_number\"), estimate_without_term_frequencies=True\n",
")\n",
- "linker_simple.parameter_estimate_comparisons_chart()"
- ],
- "outputs": []
+ "linker_simple.visualisations.parameter_estimate_comparisons_chart()"
+ ]
},
{
"cell_type": "code",
@@ -518,12 +1895,13 @@
"id": "3a87cb78-0e97-40a3-b757-6c99bb19d7b1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:04.180496Z",
- "iopub.status.busy": "2024-05-15T15:57:04.180247Z",
- "iopub.status.idle": "2024-05-15T15:57:04.183145Z",
- "shell.execute_reply": "2024-05-15T15:57:04.182523Z"
+ "iopub.execute_input": "2024-06-07T09:16:54.704569Z",
+ "iopub.status.busy": "2024-06-07T09:16:54.704327Z",
+ "iopub.status.idle": "2024-06-07T09:16:54.707573Z",
+ "shell.execute_reply": "2024-06-07T09:16:54.707000Z"
}
},
+ "outputs": [],
"source": [
"# import json\n",
"# we can have a look at the full settings if we wish, including the values of our estimated parameters:\n",
@@ -531,8 +1909,7 @@
"# we can also get a handy summary of of the model in an easily readable format if we wish:\n",
"# print(linker_detailed._settings_obj.human_readable_description)\n",
"# (we suppress output here for brevity)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -550,16 +1927,95 @@
"id": "b17b131c-c83e-4c32-bfad-c12021d2c3b7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:04.186220Z",
- "iopub.status.busy": "2024-05-15T15:57:04.185782Z",
- "iopub.status.idle": "2024-05-15T15:57:04.541188Z",
- "shell.execute_reply": "2024-05-15T15:57:04.540169Z"
+ "iopub.execute_input": "2024-06-07T09:16:54.710434Z",
+ "iopub.status.busy": "2024-06-07T09:16:54.710226Z",
+ "iopub.status.idle": "2024-06-07T09:16:54.974408Z",
+ "shell.execute_reply": "2024-06-07T09:16:54.973855Z"
}
},
- "source": [
- "linker_simple.match_weights_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_simple.visualisations.match_weights_chart()"
+ ]
},
{
"cell_type": "code",
@@ -567,16 +2023,95 @@
"id": "c095ff2b-405b-427c-849f-1468f6ca98e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:04.545921Z",
- "iopub.status.busy": "2024-05-15T15:57:04.545071Z",
- "iopub.status.idle": "2024-05-15T15:57:04.888788Z",
- "shell.execute_reply": "2024-05-15T15:57:04.887944Z"
+ "iopub.execute_input": "2024-06-07T09:16:54.977562Z",
+ "iopub.status.busy": "2024-06-07T09:16:54.977352Z",
+ "iopub.status.idle": "2024-06-07T09:16:55.252915Z",
+ "shell.execute_reply": "2024-06-07T09:16:55.251950Z"
}
},
- "source": [
- "linker_detailed.match_weights_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_detailed.visualisations.match_weights_chart()"
+ ]
},
{
"cell_type": "markdown",
@@ -594,17 +2129,96 @@
"id": "26e5dbe5-a621-44ab-bdb4-0bcd53b220b6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:04.893722Z",
- "iopub.status.busy": "2024-05-15T15:57:04.893207Z",
- "iopub.status.idle": "2024-05-15T15:57:05.067224Z",
- "shell.execute_reply": "2024-05-15T15:57:05.066686Z"
+ "iopub.execute_input": "2024-06-07T09:16:55.256437Z",
+ "iopub.status.busy": "2024-06-07T09:16:55.256148Z",
+ "iopub.status.idle": "2024-06-07T09:16:55.408274Z",
+ "shell.execute_reply": "2024-06-07T09:16:55.407631Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"# linker_simple.m_u_parameters_chart()\n",
- "linker_detailed.m_u_parameters_chart()"
- ],
- "outputs": []
+ "linker_detailed.visualisations.m_u_parameters_chart()"
+ ]
},
{
"cell_type": "markdown",
@@ -622,16 +2236,95 @@
"id": "149962d6-a2ad-412f-aa05-8697beb12ed0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:05.070283Z",
- "iopub.status.busy": "2024-05-15T15:57:05.070040Z",
- "iopub.status.idle": "2024-05-15T15:57:06.960773Z",
- "shell.execute_reply": "2024-05-15T15:57:06.959848Z"
+ "iopub.execute_input": "2024-06-07T09:16:55.411718Z",
+ "iopub.status.busy": "2024-06-07T09:16:55.411484Z",
+ "iopub.status.idle": "2024-06-07T09:16:57.179378Z",
+ "shell.execute_reply": "2024-06-07T09:16:57.178861Z"
}
},
- "source": [
- "linker_simple.unlinkables_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_simple.evaluation.unlinkables_chart()"
+ ]
},
{
"cell_type": "code",
@@ -639,16 +2332,95 @@
"id": "cac493dd-ea43-4550-8fd4-f758ae90ed75",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:06.965159Z",
- "iopub.status.busy": "2024-05-15T15:57:06.964863Z",
- "iopub.status.idle": "2024-05-15T15:57:07.337075Z",
- "shell.execute_reply": "2024-05-15T15:57:07.336337Z"
+ "iopub.execute_input": "2024-06-07T09:16:57.182832Z",
+ "iopub.status.busy": "2024-06-07T09:16:57.182595Z",
+ "iopub.status.idle": "2024-06-07T09:16:57.517285Z",
+ "shell.execute_reply": "2024-06-07T09:16:57.516677Z"
}
},
- "source": [
- "linker_detailed.unlinkables_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_detailed.evaluation.unlinkables_chart()"
+ ]
},
{
"cell_type": "markdown",
@@ -676,18 +2448,252 @@
"id": "03348477-c3c1-42e7-a8af-8f678acc9d58",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:07.340733Z",
- "iopub.status.busy": "2024-05-15T15:57:07.340494Z",
- "iopub.status.idle": "2024-05-15T15:57:12.239689Z",
- "shell.execute_reply": "2024-05-15T15:57:12.238900Z"
+ "iopub.execute_input": "2024-06-07T09:16:57.520557Z",
+ "iopub.status.busy": "2024-06-07T09:16:57.520288Z",
+ "iopub.status.idle": "2024-06-07T09:17:01.939499Z",
+ "shell.execute_reply": "2024-06-07T09:17:01.938793Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " source_dataset_l | \n",
+ " source_dataset_r | \n",
+ " rec_id_l | \n",
+ " rec_id_r | \n",
+ " given_name_l | \n",
+ " given_name_r | \n",
+ " gamma_given_name | \n",
+ " tf_given_name_l | \n",
+ " ... | \n",
+ " gamma_postcode | \n",
+ " tf_postcode_l | \n",
+ " tf_postcode_r | \n",
+ " bf_postcode | \n",
+ " bf_tf_adj_postcode | \n",
+ " address_1_l | \n",
+ " address_1_r | \n",
+ " state_l | \n",
+ " state_r | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -1.825003 | \n",
+ " 0.220115 | \n",
+ " __splink__input_table_0 | \n",
+ " __splink__input_table_1 | \n",
+ " rec-760-org | \n",
+ " rec-3951-dup-0 | \n",
+ " lachlan | \n",
+ " lachlan | \n",
+ " 3 | \n",
+ " 0.0113 | \n",
+ " ... | \n",
+ " 3 | \n",
+ " 0.0007 | \n",
+ " 0.0007 | \n",
+ " 718.824003 | \n",
+ " 1.672690 | \n",
+ " bushby close | \n",
+ " templestoew avenue | \n",
+ " nsw | \n",
+ " vic | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -1.637366 | \n",
+ " 0.243251 | \n",
+ " __splink__input_table_0 | \n",
+ " __splink__input_table_1 | \n",
+ " rec-4980-org | \n",
+ " rec-4980-dup-0 | \n",
+ " isabella | \n",
+ " ctercteko | \n",
+ " 0 | \n",
+ " 0.0069 | \n",
+ " ... | \n",
+ " 3 | \n",
+ " 0.0004 | \n",
+ " 0.0004 | \n",
+ " 718.824003 | \n",
+ " 2.927207 | \n",
+ " sturt avenue | \n",
+ " sturta venue | \n",
+ " vic | \n",
+ " vic | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -1.091445 | \n",
+ " 0.319400 | \n",
+ " __splink__input_table_0 | \n",
+ " __splink__input_table_1 | \n",
+ " rec-585-org | \n",
+ " rec-585-dup-0 | \n",
+ " danny | \n",
+ " stephenson | \n",
+ " 0 | \n",
+ " 0.0001 | \n",
+ " ... | \n",
+ " 2 | \n",
+ " 0.0016 | \n",
+ " 0.0012 | \n",
+ " 11.395608 | \n",
+ " 1.000000 | \n",
+ " o'shanassy street | \n",
+ " o'shanassy street | \n",
+ " tas | \n",
+ " tas | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -0.942148 | \n",
+ " 0.342303 | \n",
+ " __splink__input_table_0 | \n",
+ " __splink__input_table_1 | \n",
+ " rec-1250-org | \n",
+ " rec-1250-dup-0 | \n",
+ " luke | \n",
+ " gazzola | \n",
+ " 0 | \n",
+ " 0.0055 | \n",
+ " ... | \n",
+ " 2 | \n",
+ " 0.0015 | \n",
+ " 0.0002 | \n",
+ " 11.395608 | \n",
+ " 1.000000 | \n",
+ " newman morris circuit | \n",
+ " newman morr is circuit | \n",
+ " nsw | \n",
+ " nsw | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -0.186499 | \n",
+ " 0.467727 | \n",
+ " __splink__input_table_0 | \n",
+ " __splink__input_table_1 | \n",
+ " rec-4763-org | \n",
+ " rec-4763-dup-0 | \n",
+ " max | \n",
+ " alisha | \n",
+ " 0 | \n",
+ " 0.0021 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 0.0004 | \n",
+ " 0.0016 | \n",
+ " 0.044469 | \n",
+ " 1.000000 | \n",
+ " duffy street | \n",
+ " duffy s treet | \n",
+ " nsw | \n",
+ " nsw | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 47 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " match_weight match_probability source_dataset_l \\\n",
+ "0 -1.825003 0.220115 __splink__input_table_0 \n",
+ "1 -1.637366 0.243251 __splink__input_table_0 \n",
+ "2 -1.091445 0.319400 __splink__input_table_0 \n",
+ "3 -0.942148 0.342303 __splink__input_table_0 \n",
+ "4 -0.186499 0.467727 __splink__input_table_0 \n",
+ "\n",
+ " source_dataset_r rec_id_l rec_id_r given_name_l \\\n",
+ "0 __splink__input_table_1 rec-760-org rec-3951-dup-0 lachlan \n",
+ "1 __splink__input_table_1 rec-4980-org rec-4980-dup-0 isabella \n",
+ "2 __splink__input_table_1 rec-585-org rec-585-dup-0 danny \n",
+ "3 __splink__input_table_1 rec-1250-org rec-1250-dup-0 luke \n",
+ "4 __splink__input_table_1 rec-4763-org rec-4763-dup-0 max \n",
+ "\n",
+ " given_name_r gamma_given_name tf_given_name_l ... gamma_postcode \\\n",
+ "0 lachlan 3 0.0113 ... 3 \n",
+ "1 ctercteko 0 0.0069 ... 3 \n",
+ "2 stephenson 0 0.0001 ... 2 \n",
+ "3 gazzola 0 0.0055 ... 2 \n",
+ "4 alisha 0 0.0021 ... 1 \n",
+ "\n",
+ " tf_postcode_l tf_postcode_r bf_postcode bf_tf_adj_postcode \\\n",
+ "0 0.0007 0.0007 718.824003 1.672690 \n",
+ "1 0.0004 0.0004 718.824003 2.927207 \n",
+ "2 0.0016 0.0012 11.395608 1.000000 \n",
+ "3 0.0015 0.0002 11.395608 1.000000 \n",
+ "4 0.0004 0.0016 0.044469 1.000000 \n",
+ "\n",
+ " address_1_l address_1_r state_l state_r \\\n",
+ "0 bushby close templestoew avenue nsw vic \n",
+ "1 sturt avenue sturta venue vic vic \n",
+ "2 o'shanassy street o'shanassy street tas tas \n",
+ "3 newman morris circuit newman morr is circuit nsw nsw \n",
+ "4 duffy street duffy s treet nsw nsw \n",
+ "\n",
+ " match_key \n",
+ "0 0 \n",
+ "1 2 \n",
+ "2 1 \n",
+ "3 1 \n",
+ "4 2 \n",
+ "\n",
+ "[5 rows x 47 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "predictions = linker_detailed.predict(threshold_match_probability=0.2)\n",
+ "predictions = linker_detailed.inference.predict(threshold_match_probability=0.2)\n",
"df_predictions = predictions.as_pandas_dataframe()\n",
"df_predictions.head(5)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -703,18 +2709,110 @@
"id": "ce8d409c-7ef5-4485-9ec0-8b539fdecb1f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:12.244377Z",
- "iopub.status.busy": "2024-05-15T15:57:12.243938Z",
- "iopub.status.idle": "2024-05-15T15:57:15.174716Z",
- "shell.execute_reply": "2024-05-15T15:57:15.173769Z"
+ "iopub.execute_input": "2024-06-07T09:17:01.942896Z",
+ "iopub.status.busy": "2024-06-07T09:17:01.942661Z",
+ "iopub.status.idle": "2024-06-07T09:17:04.159161Z",
+ "shell.execute_reply": "2024-06-07T09:17:04.158614Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker_detailed.accuracy_analysis_from_labels_column(\n",
+ "linker_detailed.evaluation.accuracy_analysis_from_labels_column(\n",
" \"cluster\", output_type=\"precision_recall\"\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -730,20 +2828,40 @@
"id": "ade53248-212f-4776-8d7d-4632b1749425",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:15.183049Z",
- "iopub.status.busy": "2024-05-15T15:57:15.182695Z",
- "iopub.status.idle": "2024-05-15T15:57:15.493444Z",
- "shell.execute_reply": "2024-05-15T15:57:15.492713Z"
+ "iopub.execute_input": "2024-06-07T09:17:04.165374Z",
+ "iopub.status.busy": "2024-06-07T09:17:04.165099Z",
+ "iopub.status.idle": "2024-06-07T09:17:04.301694Z",
+ "shell.execute_reply": "2024-06-07T09:17:04.301045Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 1, root rows count 0\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "2 4958\n",
+ "1 84\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "clusters = linker_detailed.cluster_pairwise_predictions_at_threshold(\n",
+ "clusters = linker_detailed.clustering.cluster_pairwise_predictions_at_threshold(\n",
" predictions, threshold_match_probability=0.99\n",
")\n",
"df_clusters = clusters.as_pandas_dataframe().sort_values(\"cluster_id\")\n",
"df_clusters.groupby(\"cluster_id\").size().value_counts()"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -763,12 +2881,13 @@
"id": "ef77a8b1-1119-4cb0-b299-343a4022d65e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:15.500107Z",
- "iopub.status.busy": "2024-05-15T15:57:15.499499Z",
- "iopub.status.idle": "2024-05-15T15:57:15.523366Z",
- "shell.execute_reply": "2024-05-15T15:57:15.522625Z"
+ "iopub.execute_input": "2024-06-07T09:17:04.305169Z",
+ "iopub.status.busy": "2024-06-07T09:17:04.304886Z",
+ "iopub.status.idle": "2024-06-07T09:17:04.322035Z",
+ "shell.execute_reply": "2024-06-07T09:17:04.321351Z"
}
},
+ "outputs": [],
"source": [
"df_predictions[\"cluster_l\"] = df_predictions[\"rec_id_l\"].apply(\n",
" lambda x: \"-\".join(x.split(\"-\")[:2])\n",
@@ -779,8 +2898,7 @@
"df_true_links = df_predictions[\n",
" df_predictions[\"cluster_l\"] == df_predictions[\"cluster_r\"]\n",
"].sort_values(\"match_probability\")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -788,19 +2906,98 @@
"id": "bc531ca3-fe0d-480d-b059-a7125474fb22",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:15.527453Z",
- "iopub.status.busy": "2024-05-15T15:57:15.527121Z",
- "iopub.status.idle": "2024-05-15T15:57:16.507088Z",
- "shell.execute_reply": "2024-05-15T15:57:16.506251Z"
+ "iopub.execute_input": "2024-06-07T09:17:04.325739Z",
+ "iopub.status.busy": "2024-06-07T09:17:04.325483Z",
+ "iopub.status.idle": "2024-06-07T09:17:04.966790Z",
+ "shell.execute_reply": "2024-06-07T09:17:04.966182Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"records_to_view = 3\n",
- "linker_detailed.waterfall_chart(\n",
+ "linker_detailed.visualisations.waterfall_chart(\n",
" df_true_links.head(records_to_view).to_dict(orient=\"records\")\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -808,21 +3005,100 @@
"id": "aacd9042-5672-4bc4-aa98-940d1f5fd28a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:16.510992Z",
- "iopub.status.busy": "2024-05-15T15:57:16.510681Z",
- "iopub.status.idle": "2024-05-15T15:57:17.322254Z",
- "shell.execute_reply": "2024-05-15T15:57:17.321456Z"
+ "iopub.execute_input": "2024-06-07T09:17:04.969789Z",
+ "iopub.status.busy": "2024-06-07T09:17:04.969553Z",
+ "iopub.status.idle": "2024-06-07T09:17:05.445307Z",
+ "shell.execute_reply": "2024-06-07T09:17:05.444530Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"df_non_links = df_predictions[\n",
" df_predictions[\"cluster_l\"] != df_predictions[\"cluster_r\"]\n",
"].sort_values(\"match_probability\", ascending=False)\n",
- "linker_detailed.waterfall_chart(\n",
+ "linker_detailed.visualisations.waterfall_chart(\n",
" df_non_links.head(records_to_view).to_dict(orient=\"records\")\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -848,12 +3124,13 @@
"id": "2a7229da-9f79-4151-a6b1-018d17205f5f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:17.327035Z",
- "iopub.status.busy": "2024-05-15T15:57:17.326665Z",
- "iopub.status.idle": "2024-05-15T15:57:17.342204Z",
- "shell.execute_reply": "2024-05-15T15:57:17.341227Z"
+ "iopub.execute_input": "2024-06-07T09:17:05.448836Z",
+ "iopub.status.busy": "2024-06-07T09:17:05.448543Z",
+ "iopub.status.idle": "2024-06-07T09:17:05.460100Z",
+ "shell.execute_reply": "2024-06-07T09:17:05.459191Z"
}
},
+ "outputs": [],
"source": [
"# we need to append a full name column to our source data frames\n",
"# so that we can use it for term frequency adjustments\n",
@@ -945,8 +3222,7 @@
" ],\n",
" \"retain_intermediate_calculation_columns\": True,\n",
"}"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -954,25 +3230,83 @@
"id": "1581eeeb-246b-46de-be88-ba4dc821fce7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:57:17.346493Z",
- "iopub.status.busy": "2024-05-15T15:57:17.346091Z",
- "iopub.status.idle": "2024-05-15T15:58:52.238122Z",
- "shell.execute_reply": "2024-05-15T15:58:52.237374Z"
+ "iopub.execute_input": "2024-06-07T09:17:05.463764Z",
+ "iopub.status.busy": "2024-06-07T09:17:05.463499Z",
+ "iopub.status.idle": "2024-06-07T09:18:25.606071Z",
+ "shell.execute_reply": "2024-06-07T09:18:25.605371Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.000239.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 4,185.85 are expected to match. With 25,000,000 total possible comparisons, we expect a total of around 5,972.50 matching pairs\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "u probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - Full name (no m values are trained).\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n",
+ " - Social security ID (no m values are trained).\n",
+ " - Street number (no m values are trained).\n",
+ " - Postcode (no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
"# train\n",
"linker_advanced = Linker(dfs, extended_model_settings, database_api=DuckDBAPI())\n",
- "linker_advanced.estimate_probability_two_random_records_match(\n",
+ "linker_advanced.training.estimate_probability_two_random_records_match(\n",
" deterministic_rules, recall=0.8\n",
")\n",
"# We recommend increasing target rows to 1e8 improve accuracy for u\n",
"# values in full name comparison, as we have subdivided the data more finely\n",
"\n",
"# Here, 1e7 for speed\n",
- "linker_advanced.estimate_u_using_random_sampling(max_pairs=1e7)"
- ],
- "outputs": []
+ "linker_advanced.training.estimate_u_using_random_sampling(max_pairs=1e7)"
+ ]
},
{
"cell_type": "code",
@@ -980,18 +3314,107 @@
"id": "265f0651",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:58:52.244579Z",
- "iopub.status.busy": "2024-05-15T15:58:52.244307Z",
- "iopub.status.idle": "2024-05-15T15:58:53.189566Z",
- "shell.execute_reply": "2024-05-15T15:58:53.188815Z"
+ "iopub.execute_input": "2024-06-07T09:18:25.610698Z",
+ "iopub.status.busy": "2024-06-07T09:18:25.610416Z",
+ "iopub.status.idle": "2024-06-07T09:18:26.522700Z",
+ "shell.execute_reply": "2024-06-07T09:18:26.522017Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.date_of_birth = r.date_of_birth\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - Full name\n",
+ " - Social security ID\n",
+ " - Street number\n",
+ " - Postcode\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - date_of_birth\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level single name cross-matches on comparison Full name not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.465 in the m_probability of Full name, level `Exact match on full_name`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.00249 in the m_probability of Social security ID, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 4.89e-05 in the m_probability of Social security ID, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 3 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for Full name - single name cross-matches (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - Full name (some m values are not trained).\n",
+ " - date_of_birth (some u values are not trained, no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
- "session_dob = linker_advanced.estimate_parameters_using_expectation_maximisation(\n",
+ "session_dob = linker_advanced.training.estimate_parameters_using_expectation_maximisation(\n",
" \"l.date_of_birth = r.date_of_birth\", estimate_without_term_frequencies=True\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -999,18 +3422,155 @@
"id": "ebcb15c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:58:53.193304Z",
- "iopub.status.busy": "2024-05-15T15:58:53.193012Z",
- "iopub.status.idle": "2024-05-15T15:58:54.287492Z",
- "shell.execute_reply": "2024-05-15T15:58:54.286732Z"
+ "iopub.execute_input": "2024-06-07T09:18:26.526171Z",
+ "iopub.status.busy": "2024-06-07T09:18:26.525914Z",
+ "iopub.status.idle": "2024-06-07T09:18:27.518982Z",
+ "shell.execute_reply": "2024-06-07T09:18:27.518364Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.postcode = r.postcode\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - Full name\n",
+ " - date_of_birth\n",
+ " - Social security ID\n",
+ " - Street number\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - Postcode\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level single name cross-matches on comparison Full name not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 month' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 1 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:\n",
+ "Level Abs difference of 'transformed date_of_birth <= 10 year' on comparison date_of_birth not observed in dataset, unable to train m value\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was 0.0375 in the m_probability of date_of_birth, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.000645 in the m_probability of date_of_birth, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 1.72e-05 in the m_probability of Social security ID, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 3 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for Full name - single name cross-matches (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 month' (comparison vector value: 3). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 1 year' (comparison vector value: 2). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "m probability not trained for date_of_birth - Abs difference of 'transformed date_of_birth <= 10 year' (comparison vector value: 1). This usually means the comparison level was never observed in the training data.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - Full name (some m values are not trained).\n",
+ " - date_of_birth (some u values are not trained, some m values are not trained).\n"
+ ]
+ }
+ ],
"source": [
- "session_pc = linker_advanced.estimate_parameters_using_expectation_maximisation(\n",
+ "session_pc = linker_advanced.training.estimate_parameters_using_expectation_maximisation(\n",
" \"l.postcode = r.postcode\", estimate_without_term_frequencies=True\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
@@ -1018,16 +3578,95 @@
"id": "d9d21e85-b89b-435a-8b75-142166ac3f31",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:58:54.292571Z",
- "iopub.status.busy": "2024-05-15T15:58:54.292308Z",
- "iopub.status.idle": "2024-05-15T15:58:54.443712Z",
- "shell.execute_reply": "2024-05-15T15:58:54.443023Z"
+ "iopub.execute_input": "2024-06-07T09:18:27.523341Z",
+ "iopub.status.busy": "2024-06-07T09:18:27.523109Z",
+ "iopub.status.idle": "2024-06-07T09:18:27.711081Z",
+ "shell.execute_reply": "2024-06-07T09:18:27.710381Z"
}
},
- "source": [
- "linker_advanced.parameter_estimate_comparisons_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_advanced.visualisations.parameter_estimate_comparisons_chart()"
+ ]
},
{
"cell_type": "code",
@@ -1035,16 +3674,95 @@
"id": "4a857c18-b0d5-48dc-b7f1-1f6389db5089",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:58:54.447134Z",
- "iopub.status.busy": "2024-05-15T15:58:54.446857Z",
- "iopub.status.idle": "2024-05-15T15:58:54.770678Z",
- "shell.execute_reply": "2024-05-15T15:58:54.770024Z"
+ "iopub.execute_input": "2024-06-07T09:18:27.746299Z",
+ "iopub.status.busy": "2024-06-07T09:18:27.744495Z",
+ "iopub.status.idle": "2024-06-07T09:18:28.388134Z",
+ "shell.execute_reply": "2024-06-07T09:18:28.387392Z"
}
},
- "source": [
- "linker_advanced.match_weights_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker_advanced.visualisations.match_weights_chart()"
+ ]
},
{
"cell_type": "code",
@@ -1052,22 +3770,57 @@
"id": "e1ee24d9-1def-4b8d-bb85-1c63b595e75e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T15:58:54.773893Z",
- "iopub.status.busy": "2024-05-15T15:58:54.773655Z",
- "iopub.status.idle": "2024-05-15T15:58:56.607253Z",
- "shell.execute_reply": "2024-05-15T15:58:56.606584Z"
+ "iopub.execute_input": "2024-06-07T09:18:28.392069Z",
+ "iopub.status.busy": "2024-06-07T09:18:28.391745Z",
+ "iopub.status.idle": "2024-06-07T09:18:30.289569Z",
+ "shell.execute_reply": "2024-06-07T09:18:30.288893Z"
}
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'Full name':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " m values not fully trained\n",
+ "Comparison: 'date_of_birth':\n",
+ " u values not fully trained\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 1, root rows count 0\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "2 4960\n",
+ "1 80\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "predictions_adv = linker_advanced.predict()\n",
+ "predictions_adv = linker_advanced.inference.predict()\n",
"df_predictions_adv = predictions_adv.as_pandas_dataframe()\n",
- "clusters_adv = linker_advanced.cluster_pairwise_predictions_at_threshold(\n",
+ "clusters_adv = linker_advanced.clustering.cluster_pairwise_predictions_at_threshold(\n",
" predictions_adv, threshold_match_probability=0.99\n",
")\n",
"df_clusters_adv = clusters_adv.as_pandas_dataframe().sort_values(\"cluster_id\")\n",
"df_clusters_adv.groupby(\"cluster_id\").size().value_counts()"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
diff --git a/docs/demos/examples/duckdb/link_only.ipynb b/docs/demos/examples/duckdb/link_only.ipynb
index 1e6bb2dd85..dba266abe1 100644
--- a/docs/demos/examples/duckdb/link_only.ipynb
+++ b/docs/demos/examples/duckdb/link_only.ipynb
@@ -26,10 +26,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:43.284619Z",
- "iopub.status.busy": "2024-03-27T15:14:43.284336Z",
- "iopub.status.idle": "2024-03-27T15:14:43.289588Z",
- "shell.execute_reply": "2024-03-27T15:14:43.288971Z"
+ "iopub.execute_input": "2024-06-07T09:18:42.926356Z",
+ "iopub.status.busy": "2024-06-07T09:18:42.925982Z",
+ "iopub.status.idle": "2024-06-07T09:18:42.943456Z",
+ "shell.execute_reply": "2024-06-07T09:18:42.942569Z"
}
},
"outputs": [],
@@ -43,13 +43,83 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:43.293314Z",
- "iopub.status.busy": "2024-03-27T15:14:43.293026Z",
- "iopub.status.idle": "2024-03-27T15:14:45.144216Z",
- "shell.execute_reply": "2024-03-27T15:14:45.143259Z"
+ "iopub.execute_input": "2024-06-07T09:18:42.947959Z",
+ "iopub.status.busy": "2024-06-07T09:18:42.947640Z",
+ "iopub.status.idle": "2024-06-07T09:18:44.652788Z",
+ "shell.execute_reply": "2024-06-07T09:18:44.652024Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " city | \n",
+ " email | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 930 | \n",
+ " 930 | \n",
+ " Luke | \n",
+ " Robinnso | \n",
+ " 1981-10-18 | \n",
+ " Coventry | \n",
+ " lrobinson@wolf.org | \n",
+ " 233 | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 385 | \n",
+ " Lottie | \n",
+ " Davis | \n",
+ " 1972-06-12 | \n",
+ " NaN | \n",
+ " lottie.d7@morgan-pierce.com | \n",
+ " 100 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id first_name surname dob city \\\n",
+ "930 930 Luke Robinnso 1981-10-18 Coventry \n",
+ "385 385 Lottie Davis 1972-06-12 NaN \n",
+ "\n",
+ " email cluster \n",
+ "930 lrobinson@wolf.org 233 \n",
+ "385 lottie.d7@morgan-pierce.com 100 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import splink_datasets\n",
"\n",
@@ -67,10 +137,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:45.149667Z",
- "iopub.status.busy": "2024-03-27T15:14:45.149322Z",
- "iopub.status.idle": "2024-03-27T15:14:45.584636Z",
- "shell.execute_reply": "2024-03-27T15:14:45.583909Z"
+ "iopub.execute_input": "2024-06-07T09:18:44.695716Z",
+ "iopub.status.busy": "2024-06-07T09:18:44.695390Z",
+ "iopub.status.idle": "2024-06-07T09:18:44.942598Z",
+ "shell.execute_reply": "2024-06-07T09:18:44.942052Z"
}
},
"outputs": [],
@@ -115,13 +185,92 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:45.588957Z",
- "iopub.status.busy": "2024-03-27T15:14:45.588354Z",
- "iopub.status.idle": "2024-03-27T15:14:46.120692Z",
- "shell.execute_reply": "2024-03-27T15:14:46.119623Z"
+ "iopub.execute_input": "2024-06-07T09:18:44.946395Z",
+ "iopub.status.busy": "2024-06-07T09:18:44.946113Z",
+ "iopub.status.idle": "2024-06-07T09:18:45.188705Z",
+ "shell.execute_reply": "2024-06-07T09:18:45.188192Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import completeness_chart\n",
"\n",
@@ -138,13 +287,22 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:46.124880Z",
- "iopub.status.busy": "2024-03-27T15:14:46.124449Z",
- "iopub.status.idle": "2024-03-27T15:14:46.333422Z",
- "shell.execute_reply": "2024-03-27T15:14:46.332477Z"
+ "iopub.execute_input": "2024-06-07T09:18:45.192584Z",
+ "iopub.status.busy": "2024-06-07T09:18:45.192253Z",
+ "iopub.status.idle": "2024-06-07T09:18:45.341533Z",
+ "shell.execute_reply": "2024-06-07T09:18:45.340965Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Probability two random records match is estimated to be 0.00346.\n",
+ "This means that amongst all possible pairwise record comparisons, one in 288.78 are expected to match. With 250,000 total possible comparisons, we expect a total of around 865.71 matching pairs\n"
+ ]
+ }
+ ],
"source": [
"\n",
"deterministic_rules = [\n",
@@ -155,7 +313,7 @@
"]\n",
"\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
]
},
{
@@ -163,15 +321,51 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:46.337604Z",
- "iopub.status.busy": "2024-03-27T15:14:46.337231Z",
- "iopub.status.idle": "2024-03-27T15:14:47.729876Z",
- "shell.execute_reply": "2024-03-27T15:14:47.728440Z"
+ "iopub.execute_input": "2024-06-07T09:18:45.344512Z",
+ "iopub.status.busy": "2024-06-07T09:18:45.344289Z",
+ "iopub.status.idle": "2024-06-07T09:18:46.142225Z",
+ "shell.execute_reply": "2024-06-07T09:18:46.141712Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - dob (no m values are trained).\n",
+ " - city (no m values are trained).\n",
+ " - email (no m values are trained).\n"
+ ]
+ }
+ ],
"source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)"
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)"
]
},
{
@@ -179,19 +373,350 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:47.735185Z",
- "iopub.status.busy": "2024-03-27T15:14:47.734598Z",
- "iopub.status.idle": "2024-03-27T15:14:49.944190Z",
- "shell.execute_reply": "2024-03-27T15:14:49.943452Z"
+ "iopub.execute_input": "2024-06-07T09:18:46.145662Z",
+ "iopub.status.busy": "2024-06-07T09:18:46.145393Z",
+ "iopub.status.idle": "2024-06-07T09:18:47.814138Z",
+ "shell.execute_reply": "2024-06-07T09:18:47.813573Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"dob\" = r.\"dob\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ " - city\n",
+ " - email\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - dob\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.387 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.113 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.0347 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.0122 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.00504 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.00226 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was 0.00105 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.000497 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was 0.000237 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 0.000114 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was 5.46e-05 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 11 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - dob (no m values are trained).\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"email\" = r.\"email\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ " - dob\n",
+ " - city\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - email\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.453 in the m_probability of dob, level `Exact match on dob`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was 0.0816 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.0173 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.00584 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.00237 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.00106 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was 0.000497 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.000238 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was 0.000115 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 5.6e-05 in probability_two_random_records_match\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 10 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"first_name\" = r.\"first_name\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - surname\n",
+ " - dob\n",
+ " - city\n",
+ " - email\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - first_name\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was 0.182 in the m_probability of surname, level `Exact match on surname`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was -0.0082 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was -0.00119 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was -0.000228 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was -4.89e-05 in the m_probability of surname, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 5 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
+ }
+ ],
"source": [
- "session_dob = linker.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n",
- "session_email = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "session_dob = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"dob\"))\n",
+ "session_email = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"email\")\n",
")\n",
- "session_first_name = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "session_first_name = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" block_on(\"first_name\")\n",
")"
]
@@ -201,15 +726,15 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:49.948346Z",
- "iopub.status.busy": "2024-03-27T15:14:49.948058Z",
- "iopub.status.idle": "2024-03-27T15:14:50.272696Z",
- "shell.execute_reply": "2024-03-27T15:14:50.271981Z"
+ "iopub.execute_input": "2024-06-07T09:18:47.817058Z",
+ "iopub.status.busy": "2024-06-07T09:18:47.816828Z",
+ "iopub.status.idle": "2024-06-07T09:18:48.064527Z",
+ "shell.execute_reply": "2024-06-07T09:18:48.063844Z"
}
},
"outputs": [],
"source": [
- "results = linker.predict(threshold_match_probability=0.9)"
+ "results = linker.inference.predict(threshold_match_probability=0.9)"
]
},
{
@@ -217,13 +742,227 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:50.276802Z",
- "iopub.status.busy": "2024-03-27T15:14:50.276415Z",
- "iopub.status.idle": "2024-03-27T15:14:50.299341Z",
- "shell.execute_reply": "2024-03-27T15:14:50.298407Z"
+ "iopub.execute_input": "2024-06-07T09:18:48.067845Z",
+ "iopub.status.busy": "2024-06-07T09:18:48.067582Z",
+ "iopub.status.idle": "2024-06-07T09:18:48.084784Z",
+ "shell.execute_reply": "2024-06-07T09:18:48.084179Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " source_dataset_l | \n",
+ " source_dataset_r | \n",
+ " unique_id_l | \n",
+ " unique_id_r | \n",
+ " first_name_l | \n",
+ " first_name_r | \n",
+ " gamma_first_name | \n",
+ " surname_l | \n",
+ " ... | \n",
+ " dob_l | \n",
+ " dob_r | \n",
+ " gamma_dob | \n",
+ " city_l | \n",
+ " city_r | \n",
+ " gamma_city | \n",
+ " email_l | \n",
+ " email_r | \n",
+ " gamma_email | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 3.20162 | \n",
+ " 0.90196 | \n",
+ " df_left | \n",
+ " df_right | \n",
+ " 445 | \n",
+ " 444 | \n",
+ " Jacob | \n",
+ " Jacob | \n",
+ " 3 | \n",
+ " Campbell | \n",
+ " ... | \n",
+ " 1988-06-05 | \n",
+ " 1997-05-04 | \n",
+ " 1 | \n",
+ " Lonon | \n",
+ " London | \n",
+ " 0 | \n",
+ " j.c65@ortiz.com | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 3.20162 | \n",
+ " 0.90196 | \n",
+ " df_left | \n",
+ " df_right | \n",
+ " 774 | \n",
+ " 778 | \n",
+ " Armstrong | \n",
+ " Armstrong | \n",
+ " 3 | \n",
+ " Eva | \n",
+ " ... | \n",
+ " 2027-04-21 | \n",
+ " 2017-04-23 | \n",
+ " 1 | \n",
+ " Peterborouhg | \n",
+ " Peterbotrough | \n",
+ " 0 | \n",
+ " e.armstrong16odonnell.info | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3.20162 | \n",
+ " 0.90196 | \n",
+ " df_left | \n",
+ " df_right | \n",
+ " 239 | \n",
+ " 242 | \n",
+ " Freya | \n",
+ " Freya | \n",
+ " 3 | \n",
+ " Shah | \n",
+ " ... | \n",
+ " 1972-01-17 | \n",
+ " 1970-12-17 | \n",
+ " 1 | \n",
+ " London | \n",
+ " Lonnod | \n",
+ " 0 | \n",
+ " f.s@flynn.com | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3.20162 | \n",
+ " 0.90196 | \n",
+ " df_left | \n",
+ " df_right | \n",
+ " 833 | \n",
+ " 834 | \n",
+ " Mason | \n",
+ " Mason | \n",
+ " 3 | \n",
+ " Smith | \n",
+ " ... | \n",
+ " 1983-03-16 | \n",
+ " 1993-03-13 | \n",
+ " 1 | \n",
+ " Kingston-uponH-ull | \n",
+ " Kingston-upon-Hull | \n",
+ " 0 | \n",
+ " masons52@reed.com | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 3.20162 | \n",
+ " 0.90196 | \n",
+ " df_left | \n",
+ " df_right | \n",
+ " 439 | \n",
+ " 444 | \n",
+ " Jacob | \n",
+ " Jacob | \n",
+ " 3 | \n",
+ " Campbell | \n",
+ " ... | \n",
+ " 1987-06-06 | \n",
+ " 1997-05-04 | \n",
+ " 1 | \n",
+ " Lonnod | \n",
+ " London | \n",
+ " 0 | \n",
+ " None | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " match_weight match_probability source_dataset_l source_dataset_r \\\n",
+ "0 3.20162 0.90196 df_left df_right \n",
+ "1 3.20162 0.90196 df_left df_right \n",
+ "2 3.20162 0.90196 df_left df_right \n",
+ "3 3.20162 0.90196 df_left df_right \n",
+ "4 3.20162 0.90196 df_left df_right \n",
+ "\n",
+ " unique_id_l unique_id_r first_name_l first_name_r gamma_first_name \\\n",
+ "0 445 444 Jacob Jacob 3 \n",
+ "1 774 778 Armstrong Armstrong 3 \n",
+ "2 239 242 Freya Freya 3 \n",
+ "3 833 834 Mason Mason 3 \n",
+ "4 439 444 Jacob Jacob 3 \n",
+ "\n",
+ " surname_l ... dob_l dob_r gamma_dob city_l \\\n",
+ "0 Campbell ... 1988-06-05 1997-05-04 1 Lonon \n",
+ "1 Eva ... 2027-04-21 2017-04-23 1 Peterborouhg \n",
+ "2 Shah ... 1972-01-17 1970-12-17 1 London \n",
+ "3 Smith ... 1983-03-16 1993-03-13 1 Kingston-uponH-ull \n",
+ "4 Campbell ... 1987-06-06 1997-05-04 1 Lonnod \n",
+ "\n",
+ " city_r gamma_city email_l email_r \\\n",
+ "0 London 0 j.c65@ortiz.com None \n",
+ "1 Peterbotrough 0 e.armstrong16odonnell.info None \n",
+ "2 Lonnod 0 f.s@flynn.com None \n",
+ "3 Kingston-upon-Hull 0 masons52@reed.com None \n",
+ "4 London 0 None None \n",
+ "\n",
+ " gamma_email match_key \n",
+ "0 -1 0 \n",
+ "1 -1 0 \n",
+ "2 -1 0 \n",
+ "3 -1 0 \n",
+ "4 -1 0 \n",
+ "\n",
+ "[5 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"results.as_pandas_dataframe(limit=5)"
]
diff --git a/docs/demos/examples/duckdb/pairwise_labels.ipynb b/docs/demos/examples/duckdb/pairwise_labels.ipynb
index f4f9d1f513..f99d3a566c 100644
--- a/docs/demos/examples/duckdb/pairwise_labels.ipynb
+++ b/docs/demos/examples/duckdb/pairwise_labels.ipynb
@@ -35,10 +35,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:53.117258Z",
- "iopub.status.busy": "2024-03-27T15:14:53.116906Z",
- "iopub.status.idle": "2024-03-27T15:14:53.122096Z",
- "shell.execute_reply": "2024-03-27T15:14:53.121308Z"
+ "iopub.execute_input": "2024-06-07T09:20:22.461384Z",
+ "iopub.status.busy": "2024-06-07T09:20:22.461075Z",
+ "iopub.status.idle": "2024-06-07T09:20:22.466162Z",
+ "shell.execute_reply": "2024-06-07T09:20:22.465529Z"
}
},
"outputs": [],
@@ -52,13 +52,170 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:53.126249Z",
- "iopub.status.busy": "2024-03-27T15:14:53.125905Z",
- "iopub.status.idle": "2024-03-27T15:14:54.649822Z",
- "shell.execute_reply": "2024-03-27T15:14:54.649099Z"
+ "iopub.execute_input": "2024-06-07T09:20:22.470034Z",
+ "iopub.status.busy": "2024-06-07T09:20:22.469740Z",
+ "iopub.status.idle": "2024-06-07T09:20:24.546756Z",
+ "shell.execute_reply": "2024-06-07T09:20:24.546033Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id_l | \n",
+ " source_dataset_l | \n",
+ " unique_id_r | \n",
+ " source_dataset_r | \n",
+ " clerical_match_score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " fake_1000 | \n",
+ " 1 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " fake_1000 | \n",
+ " 2 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " fake_1000 | \n",
+ " 3 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 1 | \n",
+ " fake_1000 | \n",
+ " 2 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 1 | \n",
+ " fake_1000 | \n",
+ " 3 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 3171 | \n",
+ " 994 | \n",
+ " fake_1000 | \n",
+ " 996 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3172 | \n",
+ " 995 | \n",
+ " fake_1000 | \n",
+ " 996 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3173 | \n",
+ " 997 | \n",
+ " fake_1000 | \n",
+ " 998 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3174 | \n",
+ " 997 | \n",
+ " fake_1000 | \n",
+ " 999 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3175 | \n",
+ " 998 | \n",
+ " fake_1000 | \n",
+ " 999 | \n",
+ " fake_1000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2031 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id_l source_dataset_l unique_id_r source_dataset_r \\\n",
+ "0 0 fake_1000 1 fake_1000 \n",
+ "1 0 fake_1000 2 fake_1000 \n",
+ "2 0 fake_1000 3 fake_1000 \n",
+ "49 1 fake_1000 2 fake_1000 \n",
+ "50 1 fake_1000 3 fake_1000 \n",
+ "... ... ... ... ... \n",
+ "3171 994 fake_1000 996 fake_1000 \n",
+ "3172 995 fake_1000 996 fake_1000 \n",
+ "3173 997 fake_1000 998 fake_1000 \n",
+ "3174 997 fake_1000 999 fake_1000 \n",
+ "3175 998 fake_1000 999 fake_1000 \n",
+ "\n",
+ " clerical_match_score \n",
+ "0 1.0 \n",
+ "1 1.0 \n",
+ "2 1.0 \n",
+ "49 1.0 \n",
+ "50 1.0 \n",
+ "... ... \n",
+ "3171 1.0 \n",
+ "3172 1.0 \n",
+ "3173 1.0 \n",
+ "3174 1.0 \n",
+ "3175 1.0 \n",
+ "\n",
+ "[2031 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.datasets import splink_dataset_labels\n",
"\n",
@@ -82,13 +239,79 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:54.653768Z",
- "iopub.status.busy": "2024-03-27T15:14:54.653468Z",
- "iopub.status.idle": "2024-03-27T15:14:54.668003Z",
- "shell.execute_reply": "2024-03-27T15:14:54.667271Z"
+ "iopub.execute_input": "2024-06-07T09:20:24.588843Z",
+ "iopub.status.busy": "2024-06-07T09:20:24.588530Z",
+ "iopub.status.idle": "2024-06-07T09:20:24.602952Z",
+ "shell.execute_reply": "2024-06-07T09:20:24.602047Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " city | \n",
+ " email | \n",
+ " cluster | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Robert | \n",
+ " Alan | \n",
+ " 1971-06-24 | \n",
+ " NaN | \n",
+ " robert255@smith.net | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Robert | \n",
+ " Allen | \n",
+ " 1971-05-24 | \n",
+ " NaN | \n",
+ " roberta25@smith.net | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id first_name surname dob city email cluster\n",
+ "0 0 Robert Alan 1971-06-24 NaN robert255@smith.net 0\n",
+ "1 1 Robert Allen 1971-05-24 NaN roberta25@smith.net 0"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import splink_datasets\n",
"\n",
@@ -101,10 +324,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:54.671717Z",
- "iopub.status.busy": "2024-03-27T15:14:54.671406Z",
- "iopub.status.idle": "2024-03-27T15:14:54.912700Z",
- "shell.execute_reply": "2024-03-27T15:14:54.911624Z"
+ "iopub.execute_input": "2024-06-07T09:20:24.607247Z",
+ "iopub.status.busy": "2024-06-07T09:20:24.606935Z",
+ "iopub.status.idle": "2024-06-07T09:20:24.711369Z",
+ "shell.execute_reply": "2024-06-07T09:20:24.710531Z"
}
},
"outputs": [],
@@ -142,10 +365,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:54.917049Z",
- "iopub.status.busy": "2024-03-27T15:14:54.916681Z",
- "iopub.status.idle": "2024-03-27T15:14:55.221629Z",
- "shell.execute_reply": "2024-03-27T15:14:55.220884Z"
+ "iopub.execute_input": "2024-06-07T09:20:24.715481Z",
+ "iopub.status.busy": "2024-06-07T09:20:24.715162Z",
+ "iopub.status.idle": "2024-06-07T09:20:25.100461Z",
+ "shell.execute_reply": "2024-06-07T09:20:25.099741Z"
}
},
"outputs": [],
@@ -158,7 +381,7 @@
" \"l.email = r.email\",\n",
"]\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
]
},
{
@@ -166,15 +389,23 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:55.224831Z",
- "iopub.status.busy": "2024-03-27T15:14:55.224593Z",
- "iopub.status.idle": "2024-03-27T15:14:57.430946Z",
- "shell.execute_reply": "2024-03-27T15:14:57.430131Z"
+ "iopub.execute_input": "2024-06-07T09:20:25.104541Z",
+ "iopub.status.busy": "2024-06-07T09:20:25.104116Z",
+ "iopub.status.idle": "2024-06-07T09:20:26.866642Z",
+ "shell.execute_reply": "2024-06-07T09:20:26.866007Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ }
+ ],
"source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)"
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)"
]
},
{
@@ -182,21 +413,21 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:57.434534Z",
- "iopub.status.busy": "2024-03-27T15:14:57.434260Z",
- "iopub.status.idle": "2024-03-27T15:14:57.657154Z",
- "shell.execute_reply": "2024-03-27T15:14:57.656336Z"
+ "iopub.execute_input": "2024-06-07T09:20:26.871363Z",
+ "iopub.status.busy": "2024-06-07T09:20:26.871016Z",
+ "iopub.status.idle": "2024-06-07T09:20:27.051023Z",
+ "shell.execute_reply": "2024-06-07T09:20:27.050407Z"
}
},
"outputs": [],
"source": [
"# Register the pairwise labels table with the database, and then use it to estimate the m values\n",
- "labels_df = linker.register_labels_table(pairwise_labels, overwrite=True)\n",
- "linker.estimate_m_from_pairwise_labels(labels_df)\n",
+ "labels_df = linker.table_management.register_labels_table(pairwise_labels, overwrite=True)\n",
+ "linker.training.estimate_m_from_pairwise_labels(labels_df)\n",
"\n",
"\n",
"# If the labels table already existing in the dataset you could run\n",
- "# linker.estimate_m_from_pairwise_labels(\"labels_tablename_here\")"
+ "# linker.training.estimate_m_from_pairwise_labels(\"labels_tablename_here\")"
]
},
{
@@ -204,16 +435,27 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:57.662065Z",
- "iopub.status.busy": "2024-03-27T15:14:57.661552Z",
- "iopub.status.idle": "2024-03-27T15:14:58.144518Z",
- "shell.execute_reply": "2024-03-27T15:14:58.143799Z"
+ "iopub.execute_input": "2024-06-07T09:20:27.054211Z",
+ "iopub.status.busy": "2024-06-07T09:20:27.053972Z",
+ "iopub.status.idle": "2024-06-07T09:20:27.489093Z",
+ "shell.execute_reply": "2024-06-07T09:20:27.488564Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"training_blocking_rule = block_on(\"first_name\")\n",
- "linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)"
+ "linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)"
]
},
{
@@ -221,15 +463,94 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:58.149118Z",
- "iopub.status.busy": "2024-03-27T15:14:58.148820Z",
- "iopub.status.idle": "2024-03-27T15:14:58.295802Z",
- "shell.execute_reply": "2024-03-27T15:14:58.294855Z"
+ "iopub.execute_input": "2024-06-07T09:20:27.492742Z",
+ "iopub.status.busy": "2024-06-07T09:20:27.492510Z",
+ "iopub.status.idle": "2024-06-07T09:20:27.624619Z",
+ "shell.execute_reply": "2024-06-07T09:20:27.624114Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.parameter_estimate_comparisons_chart()"
+ "linker.visualisations.parameter_estimate_comparisons_chart()"
]
},
{
@@ -237,30 +558,95 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:14:58.299160Z",
- "iopub.status.busy": "2024-03-27T15:14:58.298915Z",
- "iopub.status.idle": "2024-03-27T15:14:58.605413Z",
- "shell.execute_reply": "2024-03-27T15:14:58.604766Z"
+ "iopub.execute_input": "2024-06-07T09:20:27.628602Z",
+ "iopub.status.busy": "2024-06-07T09:20:27.628256Z",
+ "iopub.status.idle": "2024-06-07T09:20:27.933374Z",
+ "shell.execute_reply": "2024-06-07T09:20:27.932702Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.match_weights_chart()"
+ "linker.visualisations.match_weights_chart()"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
diff --git a/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb b/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb
index 4c1b054a3e..12bc1af90b 100644
--- a/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb
+++ b/docs/demos/examples/duckdb/quick_and_dirty_persons.ipynb
@@ -26,48 +26,186 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:01.166130Z",
- "iopub.status.busy": "2024-03-27T15:15:01.165782Z",
- "iopub.status.idle": "2024-03-27T15:15:01.171295Z",
- "shell.execute_reply": "2024-03-27T15:15:01.170553Z"
+ "iopub.execute_input": "2024-06-07T09:20:37.624889Z",
+ "iopub.status.busy": "2024-06-07T09:20:37.624517Z",
+ "iopub.status.idle": "2024-06-07T09:20:37.644289Z",
+ "shell.execute_reply": "2024-06-07T09:20:37.643404Z"
}
},
+ "outputs": [],
"source": [
"# Uncomment and run this cell if you're running in Google Colab.\n",
"# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:01.174969Z",
- "iopub.status.busy": "2024-03-27T15:15:01.174678Z",
- "iopub.status.idle": "2024-03-27T15:15:02.750516Z",
- "shell.execute_reply": "2024-03-27T15:15:02.749785Z"
+ "iopub.execute_input": "2024-06-07T09:20:37.648712Z",
+ "iopub.status.busy": "2024-06-07T09:20:37.648404Z",
+ "iopub.status.idle": "2024-06-07T09:20:39.278642Z",
+ "shell.execute_reply": "2024-06-07T09:20:39.277984Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unique_id | \n",
+ " cluster | \n",
+ " full_name | \n",
+ " first_and_surname | \n",
+ " first_name | \n",
+ " surname | \n",
+ " dob | \n",
+ " birth_place | \n",
+ " postcode_fake | \n",
+ " gender | \n",
+ " occupation | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Q2296770-1 | \n",
+ " Q2296770 | \n",
+ " thomas clifford, 1st baron clifford of chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Q2296770-2 | \n",
+ " Q2296770 | \n",
+ " thomas of chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Q2296770-3 | \n",
+ " Q2296770 | \n",
+ " tom 1st baron clifford of chudleigh | \n",
+ " tom chudleigh | \n",
+ " tom | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " male | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Q2296770-4 | \n",
+ " Q2296770 | \n",
+ " thomas 1st chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8hu | \n",
+ " None | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Q2296770-5 | \n",
+ " Q2296770 | \n",
+ " thomas clifford, 1st baron chudleigh | \n",
+ " thomas chudleigh | \n",
+ " thomas | \n",
+ " chudleigh | \n",
+ " 1630-08-01 | \n",
+ " devon | \n",
+ " tq13 8df | \n",
+ " None | \n",
+ " politician | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unique_id cluster full_name \\\n",
+ "0 Q2296770-1 Q2296770 thomas clifford, 1st baron clifford of chudleigh \n",
+ "1 Q2296770-2 Q2296770 thomas of chudleigh \n",
+ "2 Q2296770-3 Q2296770 tom 1st baron clifford of chudleigh \n",
+ "3 Q2296770-4 Q2296770 thomas 1st chudleigh \n",
+ "4 Q2296770-5 Q2296770 thomas clifford, 1st baron chudleigh \n",
+ "\n",
+ " first_and_surname first_name surname dob birth_place \\\n",
+ "0 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "1 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "2 tom chudleigh tom chudleigh 1630-08-01 devon \n",
+ "3 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "4 thomas chudleigh thomas chudleigh 1630-08-01 devon \n",
+ "\n",
+ " postcode_fake gender occupation \n",
+ "0 tq13 8df male politician \n",
+ "1 tq13 8df male politician \n",
+ "2 tq13 8df male politician \n",
+ "3 tq13 8hu None politician \n",
+ "4 tq13 8df None politician "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.datasets import splink_datasets\n",
"\n",
"df = splink_datasets.historical_50k\n",
"df.head(5)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:02.754599Z",
- "iopub.status.busy": "2024-03-27T15:15:02.754204Z",
- "iopub.status.idle": "2024-03-27T15:15:02.762053Z",
- "shell.execute_reply": "2024-03-27T15:15:02.761258Z"
+ "iopub.execute_input": "2024-06-07T09:20:39.330739Z",
+ "iopub.status.busy": "2024-06-07T09:20:39.330384Z",
+ "iopub.status.idle": "2024-06-07T09:20:39.345331Z",
+ "shell.execute_reply": "2024-06-07T09:20:39.344598Z"
}
},
+ "outputs": [],
"source": [
"from splink import block_on, SettingsCreator\n",
"import splink.comparison_library as cl\n",
@@ -99,20 +237,20 @@
" cl.ExactMatch(\"occupation\").configure(term_frequency_adjustments=True),\n",
" ],\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:02.766456Z",
- "iopub.status.busy": "2024-03-27T15:15:02.766123Z",
- "iopub.status.idle": "2024-03-27T15:15:03.425993Z",
- "shell.execute_reply": "2024-03-27T15:15:03.424984Z"
+ "iopub.execute_input": "2024-06-07T09:20:39.349123Z",
+ "iopub.status.busy": "2024-06-07T09:20:39.348832Z",
+ "iopub.status.idle": "2024-06-07T09:20:39.807802Z",
+ "shell.execute_reply": "2024-06-07T09:20:39.807089Z"
}
},
+ "outputs": [],
"source": [
"from splink import Linker, DuckDBAPI\n",
"\n",
@@ -123,57 +261,281 @@
" \"l.postcode_fake = r.postcode_fake and l.dob = r.dob\",\n",
"]\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)"
- ],
- "outputs": []
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)"
+ ]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:03.430749Z",
- "iopub.status.busy": "2024-03-27T15:15:03.430387Z",
- "iopub.status.idle": "2024-03-27T15:15:07.041399Z",
- "shell.execute_reply": "2024-03-27T15:15:07.040743Z"
+ "iopub.execute_input": "2024-06-07T09:20:39.811242Z",
+ "iopub.status.busy": "2024-06-07T09:20:39.810994Z",
+ "iopub.status.idle": "2024-06-07T09:20:42.328241Z",
+ "shell.execute_reply": "2024-06-07T09:20:42.327675Z"
}
},
+ "outputs": [],
"source": [
- "linker.estimate_u_using_random_sampling(max_pairs=2e6)"
- ],
- "outputs": []
+ "linker.training.estimate_u_using_random_sampling(max_pairs=2e6)"
+ ]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:07.045995Z",
- "iopub.status.busy": "2024-03-27T15:15:07.045404Z",
- "iopub.status.idle": "2024-03-27T15:15:09.400752Z",
- "shell.execute_reply": "2024-03-27T15:15:09.400029Z"
+ "iopub.execute_input": "2024-06-07T09:20:42.331754Z",
+ "iopub.status.busy": "2024-06-07T09:20:42.331463Z",
+ "iopub.status.idle": "2024-06-07T09:20:44.521913Z",
+ "shell.execute_reply": "2024-06-07T09:20:44.521209Z"
}
},
- "source": [
- "results = linker.predict(threshold_match_probability=0.9)"
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- WARNING --\n",
+ "You have called predict(), but there are some parameter estimates which have neither been estimated or specified in your settings dictionary. To produce predictions the following untrained trained parameters will use default values.\n",
+ "Comparison: 'full_name':\n",
+ " m values not fully trained\n",
+ "Comparison: 'dob':\n",
+ " m values not fully trained\n",
+ "Comparison: 'postcode_fake':\n",
+ " m values not fully trained\n",
+ "Comparison: 'birth_place':\n",
+ " m values not fully trained\n",
+ "Comparison: 'occupation':\n",
+ " m values not fully trained\n"
+ ]
+ }
],
- "outputs": []
+ "source": [
+ "results = linker.inference.predict(threshold_match_probability=0.9)"
+ ]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:15:09.404703Z",
- "iopub.status.busy": "2024-03-27T15:15:09.404377Z",
- "iopub.status.idle": "2024-03-27T15:15:09.428537Z",
- "shell.execute_reply": "2024-03-27T15:15:09.427244Z"
+ "iopub.execute_input": "2024-06-07T09:20:44.525778Z",
+ "iopub.status.busy": "2024-06-07T09:20:44.525492Z",
+ "iopub.status.idle": "2024-06-07T09:20:44.543212Z",
+ "shell.execute_reply": "2024-06-07T09:20:44.542595Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " match_weight | \n",
+ " match_probability | \n",
+ " unique_id_l | \n",
+ " unique_id_r | \n",
+ " full_name_l | \n",
+ " full_name_r | \n",
+ " gamma_full_name | \n",
+ " dob_l | \n",
+ " dob_r | \n",
+ " gamma_dob | \n",
+ " postcode_fake_l | \n",
+ " postcode_fake_r | \n",
+ " gamma_postcode_fake | \n",
+ " birth_place_l | \n",
+ " birth_place_r | \n",
+ " gamma_birth_place | \n",
+ " occupation_l | \n",
+ " occupation_r | \n",
+ " gamma_occupation | \n",
+ " match_key | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 3.172246 | \n",
+ " 0.900145 | \n",
+ " Q16198727-6 | \n",
+ " Q16198727-8 | \n",
+ " henry jupp | \n",
+ " jupp | \n",
+ " 0 | \n",
+ " 1802-08-06 | \n",
+ " 1802-08-06 | \n",
+ " 5 | \n",
+ " None | \n",
+ " e4 9re | \n",
+ " -1 | \n",
+ " waltham forest | \n",
+ " waltham forest | \n",
+ " 2 | \n",
+ " cricketer | \n",
+ " cricketer | \n",
+ " 1 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 3.172423 | \n",
+ " 0.900156 | \n",
+ " Q16220644-12 | \n",
+ " Q16220644-7 | \n",
+ " 1st bt. | \n",
+ " 1st bt. | \n",
+ " 3 | \n",
+ " 1840-11-21 | \n",
+ " 1810-11-21 | \n",
+ " 4 | \n",
+ " None | \n",
+ " None | \n",
+ " -1 | \n",
+ " liverpool | \n",
+ " liverpool | \n",
+ " 2 | \n",
+ " None | \n",
+ " physician | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3.173256 | \n",
+ " 0.900208 | \n",
+ " Q6180874-12 | \n",
+ " Q6180874-19 | \n",
+ " richard slater | \n",
+ " slater | \n",
+ " 0 | \n",
+ " 1854-01-01 | \n",
+ " 1854-01-01 | \n",
+ " 5 | \n",
+ " al5 2ay | \n",
+ " al3 7rq | \n",
+ " 0 | \n",
+ " st albans | \n",
+ " st albans | \n",
+ " 2 | \n",
+ " hymnwriter | \n",
+ " hymnwriter | \n",
+ " 1 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3.174182 | \n",
+ " 0.900265 | \n",
+ " Q7519167-10 | \n",
+ " Q7519167-8 | \n",
+ " simeon langton | \n",
+ " simeon langton | \n",
+ " 3 | \n",
+ " 1150-01-81 | \n",
+ " 1152-01-01 | \n",
+ " 0 | \n",
+ " None | \n",
+ " None | \n",
+ " -1 | \n",
+ " wealden | \n",
+ " wealden | \n",
+ " 2 | \n",
+ " priest | \n",
+ " None | \n",
+ " -1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 3.178567 | \n",
+ " 0.900538 | \n",
+ " Q15980561-12 | \n",
+ " Q15980561-8 | \n",
+ " harry rosling | \n",
+ " henry rosling | \n",
+ " 1 | \n",
+ " 1828-01-11 | \n",
+ " 1858-01-01 | \n",
+ " 0 | \n",
+ " tn27 0sy | \n",
+ " tn27 0sy | \n",
+ " 2 | \n",
+ " ashford | \n",
+ " ashford | \n",
+ " 2 | \n",
+ " photographer | \n",
+ " None | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " match_weight match_probability unique_id_l unique_id_r full_name_l \\\n",
+ "0 3.172246 0.900145 Q16198727-6 Q16198727-8 henry jupp \n",
+ "1 3.172423 0.900156 Q16220644-12 Q16220644-7 1st bt. \n",
+ "2 3.173256 0.900208 Q6180874-12 Q6180874-19 richard slater \n",
+ "3 3.174182 0.900265 Q7519167-10 Q7519167-8 simeon langton \n",
+ "4 3.178567 0.900538 Q15980561-12 Q15980561-8 harry rosling \n",
+ "\n",
+ " full_name_r gamma_full_name dob_l dob_r gamma_dob \\\n",
+ "0 jupp 0 1802-08-06 1802-08-06 5 \n",
+ "1 1st bt. 3 1840-11-21 1810-11-21 4 \n",
+ "2 slater 0 1854-01-01 1854-01-01 5 \n",
+ "3 simeon langton 3 1150-01-81 1152-01-01 0 \n",
+ "4 henry rosling 1 1828-01-11 1858-01-01 0 \n",
+ "\n",
+ " postcode_fake_l postcode_fake_r gamma_postcode_fake birth_place_l \\\n",
+ "0 None e4 9re -1 waltham forest \n",
+ "1 None None -1 liverpool \n",
+ "2 al5 2ay al3 7rq 0 st albans \n",
+ "3 None None -1 wealden \n",
+ "4 tn27 0sy tn27 0sy 2 ashford \n",
+ "\n",
+ " birth_place_r gamma_birth_place occupation_l occupation_r \\\n",
+ "0 waltham forest 2 cricketer cricketer \n",
+ "1 liverpool 2 None physician \n",
+ "2 st albans 2 hymnwriter hymnwriter \n",
+ "3 wealden 2 priest None \n",
+ "4 ashford 2 photographer None \n",
+ "\n",
+ " gamma_occupation match_key \n",
+ "0 1 2 \n",
+ "1 -1 0 \n",
+ "2 1 2 \n",
+ "3 -1 0 \n",
+ "4 -1 3 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"results.as_pandas_dataframe(limit=5)"
- ],
- "outputs": []
+ ]
}
],
"metadata": {
diff --git a/docs/demos/examples/duckdb/real_time_record_linkage.ipynb b/docs/demos/examples/duckdb/real_time_record_linkage.ipynb
index 516b5a045b..63bbe23d56 100644
--- a/docs/demos/examples/duckdb/real_time_record_linkage.ipynb
+++ b/docs/demos/examples/duckdb/real_time_record_linkage.ipynb
@@ -1,2488 +1,2488 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Real time linkage\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically:\n",
- "\n",
- "- the `linker.compare_two_records` function, that allows you to interactively explore the results of a linkage model; and\n",
- "- the `linker.find_matches_to_new_records` that allows you to incrementally find matches to a small number of new records\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- " \n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:11.870063Z",
- "iopub.status.busy": "2024-03-27T15:15:11.869757Z",
- "iopub.status.idle": "2024-03-27T15:15:11.890661Z",
- "shell.execute_reply": "2024-03-27T15:15:11.889929Z"
- }
- },
- "source": [
- "# Uncomment and run this cell if you're running in Google Colab.\n",
- "# !pip install ipywidgets\n",
- "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
- "# !jupyter nbextension enable --py widgetsnbextension"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step 1: Load a pre-trained linkage model\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:11.894528Z",
- "iopub.status.busy": "2024-03-27T15:15:11.894247Z",
- "iopub.status.idle": "2024-03-27T15:15:13.841789Z",
- "shell.execute_reply": "2024-03-27T15:15:13.841226Z"
- }
- },
- "source": [
- "import urllib.request\n",
- "import json\n",
- "from pathlib import Path\n",
- "from splink import Linker, DuckDBAPI, block_on, SettingsCreator, splink_datasets\n",
- "\n",
- "df = splink_datasets.fake_1000\n",
- "\n",
- "url = \"https://raw.githubusercontent.com/moj-analytical-services/splink_demos/master/demo_settings/real_time_settings.json\"\n",
- "\n",
- "with urllib.request.urlopen(url) as u:\n",
- " settings = json.loads(u.read().decode())\n",
- "\n",
- "\n",
- "linker = Linker(df, settings, database_api=DuckDBAPI())"
- ],
- "outputs": []
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:13.845679Z",
- "iopub.status.busy": "2024-03-27T15:15:13.845274Z",
- "iopub.status.idle": "2024-03-27T15:15:14.721033Z",
- "shell.execute_reply": "2024-03-27T15:15:14.720417Z"
- }
- },
- "source": [
- "linker.waterfall_chart(linker.predict().as_record_dict(limit=2))"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step Comparing two records\n",
- "\n",
- "It's now possible to compute a match weight for any two records using `linker.compare_two_records()`\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:14.724585Z",
- "iopub.status.busy": "2024-03-27T15:15:14.724327Z",
- "iopub.status.idle": "2024-03-27T15:15:14.962647Z",
- "shell.execute_reply": "2024-03-27T15:15:14.961740Z"
- }
- },
- "source": [
- "record_1 = {\n",
- " \"unique_id\": 1,\n",
- " \"first_name\": \"Lucas\",\n",
- " \"surname\": \"Smith\",\n",
- " \"dob\": \"1984-01-02\",\n",
- " \"city\": \"London\",\n",
- " \"email\": \"lucas.smith@hotmail.com\",\n",
- "}\n",
- "\n",
- "record_2 = {\n",
- " \"unique_id\": 2,\n",
- " \"first_name\": \"Lucas\",\n",
- " \"surname\": \"Smith\",\n",
- " \"dob\": \"1983-02-12\",\n",
- " \"city\": \"Machester\",\n",
- " \"email\": \"lucas.smith@hotmail.com\",\n",
- "}\n",
- "\n",
- "linker._settings_obj._retain_intermediate_calculation_columns = True\n",
- "\n",
- "\n",
- "\n",
- "# To `compare_two_records` the linker needs to compute term frequency tables\n",
- "# If you have precomputed tables, you can linker.register_term_frequency_lookup()\n",
- "linker.compute_tf_table(\"first_name\")\n",
- "linker.compute_tf_table(\"surname\")\n",
- "linker.compute_tf_table(\"dob\")\n",
- "linker.compute_tf_table(\"city\")\n",
- "linker.compute_tf_table(\"email\")\n",
- "\n",
- "\n",
- "df_two = linker.compare_two_records(record_1, record_2)\n",
- "df_two.as_pandas_dataframe()"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step 3: Interactive comparisons\n",
- "\n",
- "One interesting applicatin of `compare_two_records` is to create a simple interface that allows the user to input two records interactively, and get real time feedback.\n",
- "\n",
- "In the following cell we use `ipywidets` for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:14.968237Z",
- "iopub.status.busy": "2024-03-27T15:15:14.967899Z",
- "iopub.status.idle": "2024-03-27T15:15:15.926984Z",
- "shell.execute_reply": "2024-03-27T15:15:15.925656Z"
- }
- },
- "source": [
- "import ipywidgets as widgets\n",
- "from IPython.display import display\n",
- "\n",
- "\n",
- "fields = [\"unique_id\", \"first_name\", \"surname\", \"dob\", \"email\", \"city\"]\n",
- "\n",
- "left_text_boxes = []\n",
- "right_text_boxes = []\n",
- "\n",
- "inputs_to_interactive_output = {}\n",
- "\n",
- "for f in fields:\n",
- " wl = widgets.Text(description=f, value=str(record_1[f]))\n",
- " left_text_boxes.append(wl)\n",
- " inputs_to_interactive_output[f\"{f}_l\"] = wl\n",
- " wr = widgets.Text(description=f, value=str(record_2[f]))\n",
- " right_text_boxes.append(wr)\n",
- " inputs_to_interactive_output[f\"{f}_r\"] = wr\n",
- "\n",
- "b1 = widgets.VBox(left_text_boxes)\n",
- "b2 = widgets.VBox(right_text_boxes)\n",
- "ui = widgets.HBox([b1, b2])\n",
- "\n",
- "\n",
- "def myfn(**kwargs):\n",
- " my_args = dict(kwargs)\n",
- "\n",
- " record_left = {}\n",
- " record_right = {}\n",
- "\n",
- " for key, value in my_args.items():\n",
- " if value == \"\":\n",
- " value = None\n",
- " if key.endswith(\"_l\"):\n",
- " record_left[key[:-2]] = value\n",
- " elif key.endswith(\"_r\"):\n",
- " record_right[key[:-2]] = value\n",
- "\n",
- " # Assuming 'linker' is defined earlier in your code\n",
- " linker._settings_obj._retain_intermediate_calculation_columns = True\n",
- "\n",
- " df_two = linker.compare_two_records(record_left, record_right)\n",
- "\n",
- " recs = df_two.as_pandas_dataframe().to_dict(orient=\"records\")\n",
- " from splink.charts import waterfall_chart\n",
- "\n",
- " display(linker.waterfall_chart(recs, filter_nulls=False))\n",
- "\n",
- "\n",
- "out = widgets.interactive_output(myfn, inputs_to_interactive_output)\n",
- "\n",
- "display(ui, out)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Finding matching records interactively\n",
- "\n",
- "It is also possible to search the records in the input dataset rapidly using the `linker.find_matches_to_new_records()` function\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:15.937800Z",
- "iopub.status.busy": "2024-03-27T15:15:15.935943Z",
- "iopub.status.idle": "2024-03-27T15:15:16.477834Z",
- "shell.execute_reply": "2024-03-27T15:15:16.474896Z"
- }
- },
- "source": [
- "record = {\n",
- " \"unique_id\": 123987,\n",
- " \"first_name\": \"Robert\",\n",
- " \"surname\": \"Alan\",\n",
- " \"dob\": \"1971-05-24\",\n",
- " \"city\": \"London\",\n",
- " \"email\": \"robert255@smith.net\",\n",
- "}\n",
- "\n",
- "\n",
- "df_inc = linker.find_matches_to_new_records(\n",
- " [record], blocking_rules=[]\n",
- ").as_pandas_dataframe()\n",
- "df_inc.sort_values(\"match_weight\", ascending=False)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Interactive interface for finding records\n",
- "\n",
- "Again, we can use `ipywidgets` to build an interactive interface for the `linker.find_matches_to_new_records` function\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:16.486337Z",
- "iopub.status.busy": "2024-03-27T15:15:16.484941Z",
- "iopub.status.idle": "2024-03-27T15:15:17.549243Z",
- "shell.execute_reply": "2024-03-27T15:15:17.548423Z"
- }
- },
- "source": [
- "@widgets.interact(\n",
- " first_name=\"Robert\",\n",
- " surname=\"Alan\",\n",
- " dob=\"1971-05-24\",\n",
- " city=\"London\",\n",
- " email=\"robert255@smith.net\",\n",
- ")\n",
- "def interactive_link(first_name, surname, dob, city, email):\n",
- "\n",
- " record = {\n",
- " \"unique_id\": 123987,\n",
- " \"first_name\": first_name,\n",
- " \"surname\": surname,\n",
- " \"dob\": dob,\n",
- " \"city\": city,\n",
- " \"email\": email,\n",
- " \"group\": 0,\n",
- " }\n",
- "\n",
- " for key in record.keys():\n",
- " if type(record[key]) == str:\n",
- " if record[key].strip() == \"\":\n",
- " record[key] = None\n",
- "\n",
- " df_inc = linker.find_matches_to_new_records(\n",
- " [record], blocking_rules=[f\"(true)\"]\n",
- " ).as_pandas_dataframe()\n",
- " df_inc = df_inc.sort_values(\"match_weight\", ascending=False)\n",
- " recs = df_inc.to_dict(orient=\"records\")\n",
- "\n",
- " display(linker.waterfall_chart(recs, filter_nulls=False))"
- ],
- "outputs": []
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-27T15:15:17.555875Z",
- "iopub.status.busy": "2024-03-27T15:15:17.555576Z",
- "iopub.status.idle": "2024-03-27T15:15:17.884897Z",
- "shell.execute_reply": "2024-03-27T15:15:17.884033Z"
- }
- },
- "source": [
- "linker.match_weights_chart()"
- ],
- "outputs": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": ".venv",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.8"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "state": {
- "04ba5b27fff046cdbcff86aeb938daf6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "first_name",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_5d4a7365a34746fe9ed2319c19ad0d58",
- "placeholder": "​",
- "style": "IPY_MODEL_2fe5902f30274f95a26e4c0897b2a011",
- "tabbable": null,
- "tooltip": null,
- "value": "Lucas"
- }
- },
- "086fdaefbddf4915be8385c98d46c358": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "unique_id",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_658f48614d3d4c63bbdc946d44b9f734",
- "placeholder": "​",
- "style": "IPY_MODEL_80683606961c4187965cc00e4944fbe1",
- "tabbable": null,
- "tooltip": null,
- "value": "2"
- }
- },
- "0908dba9a7fa4e22b818b1bb31bd415a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "11bbe083b862406d814c35e47d773ade": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "1b024ddb36284e4b85b5054092f531bc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "1fa9c4a8c62846f591a1fb4e4d91d3ed": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "dob",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_cb0b167a052745fd9204729f961b7ad6",
- "placeholder": "​",
- "style": "IPY_MODEL_ca1c754b37a640a69908cb2b34cb7b3c",
- "tabbable": null,
- "tooltip": null,
- "value": "1984-01-02"
- }
- },
- "2191036959a444558a7e6663f51f60d4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "21ae049d073b458b902a65f9d4b1e0f1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_968249064f3446ee806ef5e750085fe4",
- "IPY_MODEL_272d325448674ae4882758a7af3d6354"
- ],
- "layout": "IPY_MODEL_ecb562219597492fae7b4bf881ea113f",
- "tabbable": null,
- "tooltip": null
- }
- },
- "23d4adc30abf4b8c845e3a22a7929ada": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "24f94cd7e9f84e2098d97f75d6f01a8d": {
- "model_module": "@jupyter-widgets/output",
- "model_module_version": "1.0.0",
- "model_name": "OutputModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/output",
- "_model_module_version": "1.0.0",
- "_model_name": "OutputModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/output",
- "_view_module_version": "1.0.0",
- "_view_name": "OutputView",
- "layout": "IPY_MODEL_f3de223015854925895cbd794a7ee8c2",
- "msg_id": "",
- "outputs": [
- {
- "data": {
- "text/html": "\n\n\n",
- "text/plain": "alt.LayerChart(...)"
- },
- "metadata": {},
- "output_type": "display_data"
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Real time linkage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically:\n",
+ "\n",
+ "- the `linker.compare_two_records` function, that allows you to interactively explore the results of a linkage model; and\n",
+ "- the `linker.find_matches_to_new_records` that allows you to incrementally find matches to a small number of new records\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:11.870063Z",
+ "iopub.status.busy": "2024-03-27T15:15:11.869757Z",
+ "iopub.status.idle": "2024-03-27T15:15:11.890661Z",
+ "shell.execute_reply": "2024-03-27T15:15:11.889929Z"
}
- ],
- "tabbable": null,
- "tooltip": null
- }
- },
- "250e8abe119446478ca7513778aed39a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "272d325448674ae4882758a7af3d6354": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "VBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "VBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "VBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_086fdaefbddf4915be8385c98d46c358",
- "IPY_MODEL_04ba5b27fff046cdbcff86aeb938daf6",
- "IPY_MODEL_3ce34f18f65c440f94f803b75b882788",
- "IPY_MODEL_4c51a67113a44ddfaff9108a85c37ec9",
- "IPY_MODEL_42f888b0586648a3b2cfc3394f083e26",
- "IPY_MODEL_c651dbf1a60b4f219d31355ec3d9d1cd"
- ],
- "layout": "IPY_MODEL_ffdf7e9a14d04f6b9a448df89e8ffbec",
- "tabbable": null,
- "tooltip": null
- }
- },
- "27e26efe54ab4971bbc5da3a355071b4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2a595765a0184d0db511726d83d67110": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2fe5902f30274f95a26e4c0897b2a011": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "329729744d0c4e839c0503ab0259b18c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "email",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_c71b8b6aa86343a7b0093f15313677f7",
- "placeholder": "​",
- "style": "IPY_MODEL_8456ddacbc5542c2a9d668d042a6abe6",
- "tabbable": null,
- "tooltip": null,
- "value": "lucas.smith@hotmail.com"
- }
- },
- "3b9b6f02a8f7491585ed99976548eb03": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "VBoxModel",
- "state": {
- "_dom_classes": [
- "widget-interact"
- ],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "VBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "VBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_73f2384489da4b748209c462724a3961",
- "IPY_MODEL_d27918510cb3494c930c545563fed3ca",
- "IPY_MODEL_b571fbb3f6a14611974779e927914d23",
- "IPY_MODEL_cc0ddc91bbfb4c6d891c202e279d4c74",
- "IPY_MODEL_b50d412867114f2eb000fc969b677c9c",
- "IPY_MODEL_24f94cd7e9f84e2098d97f75d6f01a8d"
- ],
- "layout": "IPY_MODEL_43db6d5bd49c46da8203977961927fed",
- "tabbable": null,
- "tooltip": null
- }
- },
- "3ce34f18f65c440f94f803b75b882788": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "surname",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_de296f36c45e4161a6c3d091dfea2892",
- "placeholder": "​",
- "style": "IPY_MODEL_a2c309f444944797824589147aede89d",
- "tabbable": null,
- "tooltip": null,
- "value": "Smith"
- }
- },
- "3e98708a97934bb095b2be73187fcec0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "42f888b0586648a3b2cfc3394f083e26": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "email",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_2191036959a444558a7e6663f51f60d4",
- "placeholder": "​",
- "style": "IPY_MODEL_0908dba9a7fa4e22b818b1bb31bd415a",
- "tabbable": null,
- "tooltip": null,
- "value": "lucas.smith@hotmail.com"
- }
- },
- "43db6d5bd49c46da8203977961927fed": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "440256de4ff2405e95431f2fd9490436": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4baf8bf6cf784f5ca98feee93978b3af": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4c51a67113a44ddfaff9108a85c37ec9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "dob",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_27e26efe54ab4971bbc5da3a355071b4",
- "placeholder": "​",
- "style": "IPY_MODEL_7c52d046223c4607b35759a148cc8515",
- "tabbable": null,
- "tooltip": null,
- "value": "1983-02-12"
- }
- },
- "4ccb8090b4a549829a1ac4a82a39ceac": {
- "model_module": "@jupyter-widgets/output",
- "model_module_version": "1.0.0",
- "model_name": "OutputModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/output",
- "_model_module_version": "1.0.0",
- "_model_name": "OutputModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/output",
- "_view_module_version": "1.0.0",
- "_view_name": "OutputView",
- "layout": "IPY_MODEL_2a595765a0184d0db511726d83d67110",
- "msg_id": "",
- "outputs": [
- {
- "data": {
- "text/html": "\n\n\n",
- "text/plain": "alt.LayerChart(...)"
- },
- "metadata": {},
- "output_type": "display_data"
+ },
+ "outputs": [],
+ "source": [
+ "# Uncomment and run this cell if you're running in Google Colab.\n",
+ "# !pip install ipywidgets\n",
+ "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
+ "# !jupyter nbextension enable --py widgetsnbextension"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 1: Load a pre-trained linkage model\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:11.894528Z",
+ "iopub.status.busy": "2024-03-27T15:15:11.894247Z",
+ "iopub.status.idle": "2024-03-27T15:15:13.841789Z",
+ "shell.execute_reply": "2024-03-27T15:15:13.841226Z"
}
- ],
- "tabbable": null,
- "tooltip": null
- }
- },
- "4f0444bd007f4fb1a2e35bd299cf1989": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "4f4d5437f9574de4a3b98769f2f94d13": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5831fd1d9a4a4699a1ac8b3f35c67bc3": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5d4a7365a34746fe9ed2319c19ad0d58": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "658f48614d3d4c63bbdc946d44b9f734": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "68972985dae04505b33533980fc0b970": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "71ef6ceee3034d95a7a718dda4457629": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "first_name",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_4baf8bf6cf784f5ca98feee93978b3af",
- "placeholder": "​",
- "style": "IPY_MODEL_9fc84fac4de14d3abe25a8eeb06fadea",
- "tabbable": null,
- "tooltip": null,
- "value": "Lucas"
- }
- },
- "73f2384489da4b748209c462724a3961": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "first_name",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_773e45ebabda4dc0aafd521d3aa3e6a8",
- "placeholder": "​",
- "style": "IPY_MODEL_c8a47b61ac8e41c3b0c85fbbf31a4c24",
- "tabbable": null,
- "tooltip": null,
- "value": "Robert"
- }
- },
- "773e45ebabda4dc0aafd521d3aa3e6a8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7c52d046223c4607b35759a148cc8515": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "80683606961c4187965cc00e4944fbe1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "8456ddacbc5542c2a9d668d042a6abe6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "968249064f3446ee806ef5e750085fe4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "VBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "VBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "VBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7d7652b464b413283dd5a057dd68aaf",
- "IPY_MODEL_71ef6ceee3034d95a7a718dda4457629",
- "IPY_MODEL_c1d56f96db3a492b88776c47754d6cf1",
- "IPY_MODEL_1fa9c4a8c62846f591a1fb4e4d91d3ed",
- "IPY_MODEL_329729744d0c4e839c0503ab0259b18c",
- "IPY_MODEL_e9b46eb9fbcb4aa8a569749fa50fcff3"
- ],
- "layout": "IPY_MODEL_e3c8bdbb08184f979824e4993cec1f63",
- "tabbable": null,
- "tooltip": null
- }
- },
- "9fc84fac4de14d3abe25a8eeb06fadea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "a2c309f444944797824589147aede89d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "aa3e943234ac46ca8d4530ab22443b0e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "ab457eac76f942508d6f75ff109bbd61": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b50d412867114f2eb000fc969b677c9c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "email",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_440256de4ff2405e95431f2fd9490436",
- "placeholder": "​",
- "style": "IPY_MODEL_aa3e943234ac46ca8d4530ab22443b0e",
- "tabbable": null,
- "tooltip": null,
- "value": "robert255@smith.net"
- }
- },
- "b571fbb3f6a14611974779e927914d23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "dob",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_3e98708a97934bb095b2be73187fcec0",
- "placeholder": "​",
- "style": "IPY_MODEL_fdd25b8bb828465e83f7a3c452ccbfc1",
- "tabbable": null,
- "tooltip": null,
- "value": "1971-05-24"
- }
- },
- "b7e0ec811eba4e59804eca1852402423": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c1d56f96db3a492b88776c47754d6cf1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "surname",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_68972985dae04505b33533980fc0b970",
- "placeholder": "​",
- "style": "IPY_MODEL_11bbe083b862406d814c35e47d773ade",
- "tabbable": null,
- "tooltip": null,
- "value": "Smith"
- }
- },
- "c2e6efd78b2148f3a026c6179fdbf683": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c651dbf1a60b4f219d31355ec3d9d1cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "city",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_5831fd1d9a4a4699a1ac8b3f35c67bc3",
- "placeholder": "​",
- "style": "IPY_MODEL_b7e0ec811eba4e59804eca1852402423",
- "tabbable": null,
- "tooltip": null,
- "value": "Machester"
- }
- },
- "c71b8b6aa86343a7b0093f15313677f7": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "c8a47b61ac8e41c3b0c85fbbf31a4c24": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "ca1c754b37a640a69908cb2b34cb7b3c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "cb0b167a052745fd9204729f961b7ad6": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "cc0ddc91bbfb4c6d891c202e279d4c74": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "city",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_e460aba5b4c34695a30ea7008b5b7cfd",
- "placeholder": "​",
- "style": "IPY_MODEL_ab457eac76f942508d6f75ff109bbd61",
- "tabbable": null,
- "tooltip": null,
- "value": "London"
- }
- },
- "d27918510cb3494c930c545563fed3ca": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "surname",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_23d4adc30abf4b8c845e3a22a7929ada",
- "placeholder": "​",
- "style": "IPY_MODEL_c2e6efd78b2148f3a026c6179fdbf683",
- "tabbable": null,
- "tooltip": null,
- "value": "Alan"
- }
- },
- "de296f36c45e4161a6c3d091dfea2892": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e3c8bdbb08184f979824e4993cec1f63": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e460aba5b4c34695a30ea7008b5b7cfd": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e7d7652b464b413283dd5a057dd68aaf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "unique_id",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_4f4d5437f9574de4a3b98769f2f94d13",
- "placeholder": "​",
- "style": "IPY_MODEL_1b024ddb36284e4b85b5054092f531bc",
- "tabbable": null,
- "tooltip": null,
- "value": "1"
- }
- },
- "e9b46eb9fbcb4aa8a569749fa50fcff3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "TextView",
- "continuous_update": true,
- "description": "city",
- "description_allow_html": false,
- "disabled": false,
- "layout": "IPY_MODEL_250e8abe119446478ca7513778aed39a",
- "placeholder": "​",
- "style": "IPY_MODEL_4f0444bd007f4fb1a2e35bd299cf1989",
- "tabbable": null,
- "tooltip": null,
- "value": "London"
- }
- },
- "ecb562219597492fae7b4bf881ea113f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f3de223015854925895cbd794a7ee8c2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fdd25b8bb828465e83f7a3c452ccbfc1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "TextStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "TextStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "ffdf7e9a14d04f6b9a448df89e8ffbec": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- }
+ },
+ "outputs": [],
+ "source": [
+ "import urllib.request\n",
+ "import json\n",
+ "from pathlib import Path\n",
+ "from splink import Linker, DuckDBAPI, block_on, SettingsCreator, splink_datasets\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "url = \"https://raw.githubusercontent.com/moj-analytical-services/splink_demos/master/demo_settings/real_time_settings.json\"\n",
+ "\n",
+ "with urllib.request.urlopen(url) as u:\n",
+ " settings = json.loads(u.read().decode())\n",
+ "\n",
+ "\n",
+ "linker = Linker(df, settings, database_api=DuckDBAPI())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:13.845679Z",
+ "iopub.status.busy": "2024-03-27T15:15:13.845274Z",
+ "iopub.status.idle": "2024-03-27T15:15:14.721033Z",
+ "shell.execute_reply": "2024-03-27T15:15:14.720417Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.visualisations.waterfall_chart(linker.inference.predict().as_record_dict(limit=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step Comparing two records\n",
+ "\n",
+ "It's now possible to compute a match weight for any two records using `linker.compare_two_records()`\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:14.724585Z",
+ "iopub.status.busy": "2024-03-27T15:15:14.724327Z",
+ "iopub.status.idle": "2024-03-27T15:15:14.962647Z",
+ "shell.execute_reply": "2024-03-27T15:15:14.961740Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "record_1 = {\n",
+ " \"unique_id\": 1,\n",
+ " \"first_name\": \"Lucas\",\n",
+ " \"surname\": \"Smith\",\n",
+ " \"dob\": \"1984-01-02\",\n",
+ " \"city\": \"London\",\n",
+ " \"email\": \"lucas.smith@hotmail.com\",\n",
+ "}\n",
+ "\n",
+ "record_2 = {\n",
+ " \"unique_id\": 2,\n",
+ " \"first_name\": \"Lucas\",\n",
+ " \"surname\": \"Smith\",\n",
+ " \"dob\": \"1983-02-12\",\n",
+ " \"city\": \"Machester\",\n",
+ " \"email\": \"lucas.smith@hotmail.com\",\n",
+ "}\n",
+ "\n",
+ "linker._settings_obj._retain_intermediate_calculation_columns = True\n",
+ "\n",
+ "\n",
+ "\n",
+ "# To `compare_two_records` the linker needs to compute term frequency tables\n",
+ "# If you have precomputed tables, you can linker.register_term_frequency_lookup()\n",
+ "linker.table_management.compute_tf_table(\"first_name\")\n",
+ "linker.table_management.compute_tf_table(\"surname\")\n",
+ "linker.table_management.compute_tf_table(\"dob\")\n",
+ "linker.table_management.compute_tf_table(\"city\")\n",
+ "linker.table_management.compute_tf_table(\"email\")\n",
+ "\n",
+ "\n",
+ "df_two = linker.inference.compare_two_records(record_1, record_2)\n",
+ "df_two.as_pandas_dataframe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 3: Interactive comparisons\n",
+ "\n",
+ "One interesting applicatin of `compare_two_records` is to create a simple interface that allows the user to input two records interactively, and get real time feedback.\n",
+ "\n",
+ "In the following cell we use `ipywidets` for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:14.968237Z",
+ "iopub.status.busy": "2024-03-27T15:15:14.967899Z",
+ "iopub.status.idle": "2024-03-27T15:15:15.926984Z",
+ "shell.execute_reply": "2024-03-27T15:15:15.925656Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import ipywidgets as widgets\n",
+ "from IPython.display import display\n",
+ "\n",
+ "\n",
+ "fields = [\"unique_id\", \"first_name\", \"surname\", \"dob\", \"email\", \"city\"]\n",
+ "\n",
+ "left_text_boxes = []\n",
+ "right_text_boxes = []\n",
+ "\n",
+ "inputs_to_interactive_output = {}\n",
+ "\n",
+ "for f in fields:\n",
+ " wl = widgets.Text(description=f, value=str(record_1[f]))\n",
+ " left_text_boxes.append(wl)\n",
+ " inputs_to_interactive_output[f\"{f}_l\"] = wl\n",
+ " wr = widgets.Text(description=f, value=str(record_2[f]))\n",
+ " right_text_boxes.append(wr)\n",
+ " inputs_to_interactive_output[f\"{f}_r\"] = wr\n",
+ "\n",
+ "b1 = widgets.VBox(left_text_boxes)\n",
+ "b2 = widgets.VBox(right_text_boxes)\n",
+ "ui = widgets.HBox([b1, b2])\n",
+ "\n",
+ "\n",
+ "def myfn(**kwargs):\n",
+ " my_args = dict(kwargs)\n",
+ "\n",
+ " record_left = {}\n",
+ " record_right = {}\n",
+ "\n",
+ " for key, value in my_args.items():\n",
+ " if value == \"\":\n",
+ " value = None\n",
+ " if key.endswith(\"_l\"):\n",
+ " record_left[key[:-2]] = value\n",
+ " elif key.endswith(\"_r\"):\n",
+ " record_right[key[:-2]] = value\n",
+ "\n",
+ " # Assuming 'linker' is defined earlier in your code\n",
+ " linker._settings_obj._retain_intermediate_calculation_columns = True\n",
+ "\n",
+ " df_two = linker.inference.compare_two_records(record_left, record_right)\n",
+ "\n",
+ " recs = df_two.as_pandas_dataframe().to_dict(orient=\"records\")\n",
+ " from splink.charts import waterfall_chart\n",
+ "\n",
+ " display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))\n",
+ "\n",
+ "\n",
+ "out = widgets.interactive_output(myfn, inputs_to_interactive_output)\n",
+ "\n",
+ "display(ui, out)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Finding matching records interactively\n",
+ "\n",
+ "It is also possible to search the records in the input dataset rapidly using the `linker.find_matches_to_new_records()` function\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:15.937800Z",
+ "iopub.status.busy": "2024-03-27T15:15:15.935943Z",
+ "iopub.status.idle": "2024-03-27T15:15:16.477834Z",
+ "shell.execute_reply": "2024-03-27T15:15:16.474896Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "record = {\n",
+ " \"unique_id\": 123987,\n",
+ " \"first_name\": \"Robert\",\n",
+ " \"surname\": \"Alan\",\n",
+ " \"dob\": \"1971-05-24\",\n",
+ " \"city\": \"London\",\n",
+ " \"email\": \"robert255@smith.net\",\n",
+ "}\n",
+ "\n",
+ "\n",
+ "df_inc = linker.inference.find_matches_to_new_records(\n",
+ " [record], blocking_rules=[]\n",
+ ").as_pandas_dataframe()\n",
+ "df_inc.sort_values(\"match_weight\", ascending=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interactive interface for finding records\n",
+ "\n",
+ "Again, we can use `ipywidgets` to build an interactive interface for the `linker.find_matches_to_new_records` function\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:16.486337Z",
+ "iopub.status.busy": "2024-03-27T15:15:16.484941Z",
+ "iopub.status.idle": "2024-03-27T15:15:17.549243Z",
+ "shell.execute_reply": "2024-03-27T15:15:17.548423Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "@widgets.interact(\n",
+ " first_name=\"Robert\",\n",
+ " surname=\"Alan\",\n",
+ " dob=\"1971-05-24\",\n",
+ " city=\"London\",\n",
+ " email=\"robert255@smith.net\",\n",
+ ")\n",
+ "def interactive_link(first_name, surname, dob, city, email):\n",
+ "\n",
+ " record = {\n",
+ " \"unique_id\": 123987,\n",
+ " \"first_name\": first_name,\n",
+ " \"surname\": surname,\n",
+ " \"dob\": dob,\n",
+ " \"city\": city,\n",
+ " \"email\": email,\n",
+ " \"group\": 0,\n",
+ " }\n",
+ "\n",
+ " for key in record.keys():\n",
+ " if type(record[key]) == str:\n",
+ " if record[key].strip() == \"\":\n",
+ " record[key] = None\n",
+ "\n",
+ " df_inc = linker.inference.find_matches_to_new_records(\n",
+ " [record], blocking_rules=[f\"(true)\"]\n",
+ " ).as_pandas_dataframe()\n",
+ " df_inc = df_inc.sort_values(\"match_weight\", ascending=False)\n",
+ " recs = df_inc.to_dict(orient=\"records\")\n",
+ "\n",
+ " display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))"
+ ]
},
- "version_major": 2,
- "version_minor": 0
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-27T15:15:17.555875Z",
+ "iopub.status.busy": "2024-03-27T15:15:17.555576Z",
+ "iopub.status.idle": "2024-03-27T15:15:17.884897Z",
+ "shell.execute_reply": "2024-03-27T15:15:17.884033Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.visualisations.match_weights_chart()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {
+ "04ba5b27fff046cdbcff86aeb938daf6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "first_name",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_5d4a7365a34746fe9ed2319c19ad0d58",
+ "placeholder": "​",
+ "style": "IPY_MODEL_2fe5902f30274f95a26e4c0897b2a011",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Lucas"
+ }
+ },
+ "086fdaefbddf4915be8385c98d46c358": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "unique_id",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_658f48614d3d4c63bbdc946d44b9f734",
+ "placeholder": "​",
+ "style": "IPY_MODEL_80683606961c4187965cc00e4944fbe1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "2"
+ }
+ },
+ "0908dba9a7fa4e22b818b1bb31bd415a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "11bbe083b862406d814c35e47d773ade": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "1b024ddb36284e4b85b5054092f531bc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "1fa9c4a8c62846f591a1fb4e4d91d3ed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "dob",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_cb0b167a052745fd9204729f961b7ad6",
+ "placeholder": "​",
+ "style": "IPY_MODEL_ca1c754b37a640a69908cb2b34cb7b3c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "1984-01-02"
+ }
+ },
+ "2191036959a444558a7e6663f51f60d4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "21ae049d073b458b902a65f9d4b1e0f1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_968249064f3446ee806ef5e750085fe4",
+ "IPY_MODEL_272d325448674ae4882758a7af3d6354"
+ ],
+ "layout": "IPY_MODEL_ecb562219597492fae7b4bf881ea113f",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "23d4adc30abf4b8c845e3a22a7929ada": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "24f94cd7e9f84e2098d97f75d6f01a8d": {
+ "model_module": "@jupyter-widgets/output",
+ "model_module_version": "1.0.0",
+ "model_name": "OutputModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/output",
+ "_model_module_version": "1.0.0",
+ "_model_name": "OutputModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/output",
+ "_view_module_version": "1.0.0",
+ "_view_name": "OutputView",
+ "layout": "IPY_MODEL_f3de223015854925895cbd794a7ee8c2",
+ "msg_id": "",
+ "outputs": [
+ {
+ "data": {
+ "text/html": "\n\n\n",
+ "text/plain": "alt.LayerChart(...)"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "250e8abe119446478ca7513778aed39a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "272d325448674ae4882758a7af3d6354": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_086fdaefbddf4915be8385c98d46c358",
+ "IPY_MODEL_04ba5b27fff046cdbcff86aeb938daf6",
+ "IPY_MODEL_3ce34f18f65c440f94f803b75b882788",
+ "IPY_MODEL_4c51a67113a44ddfaff9108a85c37ec9",
+ "IPY_MODEL_42f888b0586648a3b2cfc3394f083e26",
+ "IPY_MODEL_c651dbf1a60b4f219d31355ec3d9d1cd"
+ ],
+ "layout": "IPY_MODEL_ffdf7e9a14d04f6b9a448df89e8ffbec",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "27e26efe54ab4971bbc5da3a355071b4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2a595765a0184d0db511726d83d67110": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2fe5902f30274f95a26e4c0897b2a011": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "329729744d0c4e839c0503ab0259b18c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "email",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_c71b8b6aa86343a7b0093f15313677f7",
+ "placeholder": "​",
+ "style": "IPY_MODEL_8456ddacbc5542c2a9d668d042a6abe6",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "lucas.smith@hotmail.com"
+ }
+ },
+ "3b9b6f02a8f7491585ed99976548eb03": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [
+ "widget-interact"
+ ],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_73f2384489da4b748209c462724a3961",
+ "IPY_MODEL_d27918510cb3494c930c545563fed3ca",
+ "IPY_MODEL_b571fbb3f6a14611974779e927914d23",
+ "IPY_MODEL_cc0ddc91bbfb4c6d891c202e279d4c74",
+ "IPY_MODEL_b50d412867114f2eb000fc969b677c9c",
+ "IPY_MODEL_24f94cd7e9f84e2098d97f75d6f01a8d"
+ ],
+ "layout": "IPY_MODEL_43db6d5bd49c46da8203977961927fed",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "3ce34f18f65c440f94f803b75b882788": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "surname",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_de296f36c45e4161a6c3d091dfea2892",
+ "placeholder": "​",
+ "style": "IPY_MODEL_a2c309f444944797824589147aede89d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Smith"
+ }
+ },
+ "3e98708a97934bb095b2be73187fcec0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "42f888b0586648a3b2cfc3394f083e26": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "email",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_2191036959a444558a7e6663f51f60d4",
+ "placeholder": "​",
+ "style": "IPY_MODEL_0908dba9a7fa4e22b818b1bb31bd415a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "lucas.smith@hotmail.com"
+ }
+ },
+ "43db6d5bd49c46da8203977961927fed": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "440256de4ff2405e95431f2fd9490436": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4baf8bf6cf784f5ca98feee93978b3af": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4c51a67113a44ddfaff9108a85c37ec9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "dob",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_27e26efe54ab4971bbc5da3a355071b4",
+ "placeholder": "​",
+ "style": "IPY_MODEL_7c52d046223c4607b35759a148cc8515",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "1983-02-12"
+ }
+ },
+ "4ccb8090b4a549829a1ac4a82a39ceac": {
+ "model_module": "@jupyter-widgets/output",
+ "model_module_version": "1.0.0",
+ "model_name": "OutputModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/output",
+ "_model_module_version": "1.0.0",
+ "_model_name": "OutputModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/output",
+ "_view_module_version": "1.0.0",
+ "_view_name": "OutputView",
+ "layout": "IPY_MODEL_2a595765a0184d0db511726d83d67110",
+ "msg_id": "",
+ "outputs": [
+ {
+ "data": {
+ "text/html": "\n\n\n",
+ "text/plain": "alt.LayerChart(...)"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "4f0444bd007f4fb1a2e35bd299cf1989": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "4f4d5437f9574de4a3b98769f2f94d13": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5831fd1d9a4a4699a1ac8b3f35c67bc3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5d4a7365a34746fe9ed2319c19ad0d58": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "658f48614d3d4c63bbdc946d44b9f734": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "68972985dae04505b33533980fc0b970": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "71ef6ceee3034d95a7a718dda4457629": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "first_name",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_4baf8bf6cf784f5ca98feee93978b3af",
+ "placeholder": "​",
+ "style": "IPY_MODEL_9fc84fac4de14d3abe25a8eeb06fadea",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Lucas"
+ }
+ },
+ "73f2384489da4b748209c462724a3961": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "first_name",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_773e45ebabda4dc0aafd521d3aa3e6a8",
+ "placeholder": "​",
+ "style": "IPY_MODEL_c8a47b61ac8e41c3b0c85fbbf31a4c24",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Robert"
+ }
+ },
+ "773e45ebabda4dc0aafd521d3aa3e6a8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7c52d046223c4607b35759a148cc8515": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "80683606961c4187965cc00e4944fbe1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8456ddacbc5542c2a9d668d042a6abe6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "968249064f3446ee806ef5e750085fe4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e7d7652b464b413283dd5a057dd68aaf",
+ "IPY_MODEL_71ef6ceee3034d95a7a718dda4457629",
+ "IPY_MODEL_c1d56f96db3a492b88776c47754d6cf1",
+ "IPY_MODEL_1fa9c4a8c62846f591a1fb4e4d91d3ed",
+ "IPY_MODEL_329729744d0c4e839c0503ab0259b18c",
+ "IPY_MODEL_e9b46eb9fbcb4aa8a569749fa50fcff3"
+ ],
+ "layout": "IPY_MODEL_e3c8bdbb08184f979824e4993cec1f63",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "9fc84fac4de14d3abe25a8eeb06fadea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "a2c309f444944797824589147aede89d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "aa3e943234ac46ca8d4530ab22443b0e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ab457eac76f942508d6f75ff109bbd61": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b50d412867114f2eb000fc969b677c9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "email",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_440256de4ff2405e95431f2fd9490436",
+ "placeholder": "​",
+ "style": "IPY_MODEL_aa3e943234ac46ca8d4530ab22443b0e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "robert255@smith.net"
+ }
+ },
+ "b571fbb3f6a14611974779e927914d23": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "dob",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_3e98708a97934bb095b2be73187fcec0",
+ "placeholder": "​",
+ "style": "IPY_MODEL_fdd25b8bb828465e83f7a3c452ccbfc1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "1971-05-24"
+ }
+ },
+ "b7e0ec811eba4e59804eca1852402423": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c1d56f96db3a492b88776c47754d6cf1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "surname",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_68972985dae04505b33533980fc0b970",
+ "placeholder": "​",
+ "style": "IPY_MODEL_11bbe083b862406d814c35e47d773ade",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Smith"
+ }
+ },
+ "c2e6efd78b2148f3a026c6179fdbf683": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c651dbf1a60b4f219d31355ec3d9d1cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "city",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_5831fd1d9a4a4699a1ac8b3f35c67bc3",
+ "placeholder": "​",
+ "style": "IPY_MODEL_b7e0ec811eba4e59804eca1852402423",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Machester"
+ }
+ },
+ "c71b8b6aa86343a7b0093f15313677f7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c8a47b61ac8e41c3b0c85fbbf31a4c24": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ca1c754b37a640a69908cb2b34cb7b3c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "cb0b167a052745fd9204729f961b7ad6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cc0ddc91bbfb4c6d891c202e279d4c74": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "city",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_e460aba5b4c34695a30ea7008b5b7cfd",
+ "placeholder": "​",
+ "style": "IPY_MODEL_ab457eac76f942508d6f75ff109bbd61",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "London"
+ }
+ },
+ "d27918510cb3494c930c545563fed3ca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "surname",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_23d4adc30abf4b8c845e3a22a7929ada",
+ "placeholder": "​",
+ "style": "IPY_MODEL_c2e6efd78b2148f3a026c6179fdbf683",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Alan"
+ }
+ },
+ "de296f36c45e4161a6c3d091dfea2892": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e3c8bdbb08184f979824e4993cec1f63": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e460aba5b4c34695a30ea7008b5b7cfd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e7d7652b464b413283dd5a057dd68aaf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "unique_id",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_4f4d5437f9574de4a3b98769f2f94d13",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1b024ddb36284e4b85b5054092f531bc",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "1"
+ }
+ },
+ "e9b46eb9fbcb4aa8a569749fa50fcff3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "TextView",
+ "continuous_update": true,
+ "description": "city",
+ "description_allow_html": false,
+ "disabled": false,
+ "layout": "IPY_MODEL_250e8abe119446478ca7513778aed39a",
+ "placeholder": "​",
+ "style": "IPY_MODEL_4f0444bd007f4fb1a2e35bd299cf1989",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "London"
+ }
+ },
+ "ecb562219597492fae7b4bf881ea113f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f3de223015854925895cbd794a7ee8c2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fdd25b8bb828465e83f7a3c452ccbfc1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "TextStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "TextStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ffdf7e9a14d04f6b9a448df89e8ffbec": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ },
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
}
diff --git a/docs/demos/examples/duckdb/transactions.ipynb b/docs/demos/examples/duckdb/transactions.ipynb
index 243d162827..472e477116 100644
--- a/docs/demos/examples/duckdb/transactions.ipynb
+++ b/docs/demos/examples/duckdb/transactions.ipynb
@@ -32,29 +32,483 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:14.252200Z",
- "iopub.status.busy": "2024-05-16T12:13:14.251497Z",
- "iopub.status.idle": "2024-05-16T12:13:14.257616Z",
- "shell.execute_reply": "2024-05-16T12:13:14.256908Z"
+ "iopub.execute_input": "2024-06-07T09:22:27.648457Z",
+ "iopub.status.busy": "2024-06-07T09:22:27.648128Z",
+ "iopub.status.idle": "2024-06-07T09:22:27.653498Z",
+ "shell.execute_reply": "2024-06-07T09:22:27.652626Z"
}
},
+ "outputs": [],
"source": [
"# Uncomment and run this cell if you're running in Google Colab.\n",
"# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:14.261383Z",
- "iopub.status.busy": "2024-05-16T12:13:14.261079Z",
- "iopub.status.idle": "2024-05-16T12:13:16.084252Z",
- "shell.execute_reply": "2024-05-16T12:13:16.083429Z"
+ "iopub.execute_input": "2024-06-07T09:22:27.657230Z",
+ "iopub.status.busy": "2024-06-07T09:22:27.656926Z",
+ "iopub.status.idle": "2024-06-07T09:22:31.983888Z",
+ "shell.execute_reply": "2024-06-07T09:22:31.983040Z"
}
},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/transactions_origin.parquet\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " download progress: 0 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 2 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 5 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 7 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 9 %\t(..........)\r",
+ " download progress: 10 %\t(..........)\r",
+ " download progress: 10 %\t(=.........)\r",
+ " download progress: 11 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 14 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 16 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 18 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 20 %\t(=.........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 23 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 25 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 27 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 29 %\t(==........)\r",
+ " download progress: 30 %\t(==........)\r",
+ " download progress: 30 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 32 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 34 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 36 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 39 %\t(===.......)\r",
+ " download progress: 39 %\t(===.......)\r",
+ " download progress: 40 %\t(===.......)\r",
+ " download progress: 40 %\t(====......)\r",
+ " download progress: 41 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 43 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 45 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 47 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 50 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 52 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 54 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 59 %\t(=====.....)\r",
+ " download progress: 60 %\t(=====.....)\r",
+ " download progress: 60 %\t(======....)\r",
+ " download progress: 61 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 63 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 66 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 68 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 70 %\t(======....)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 75 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 77 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 79 %\t(=======...)\r",
+ " download progress: 80 %\t(=======...)\r",
+ " download progress: 80 %\t(========..)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 82 %\t(========..)\r",
+ " download progress: 82 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 84 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 86 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 88 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 90 %\t(========..)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 93 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 95 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 97 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 100 %\t(=========.)\r",
+ " download progress: 100 %\t(==========)\n",
+ "downloading: https://raw.githubusercontent.com/moj-analytical-services/splink_datasets/master/data/transactions_destination.parquet\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " download progress: 0 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 1 %\t(..........)\r",
+ " download progress: 2 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 3 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 4 %\t(..........)\r",
+ " download progress: 5 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 6 %\t(..........)\r",
+ " download progress: 7 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 8 %\t(..........)\r",
+ " download progress: 9 %\t(..........)\r",
+ " download progress: 10 %\t(..........)\r",
+ " download progress: 10 %\t(=.........)\r",
+ " download progress: 11 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 12 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 13 %\t(=.........)\r",
+ " download progress: 14 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 15 %\t(=.........)\r",
+ " download progress: 16 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 17 %\t(=.........)\r",
+ " download progress: 18 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 19 %\t(=.........)\r",
+ " download progress: 20 %\t(=.........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 21 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 22 %\t(==........)\r",
+ " download progress: 23 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 24 %\t(==........)\r",
+ " download progress: 25 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 26 %\t(==........)\r",
+ " download progress: 27 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 28 %\t(==........)\r",
+ " download progress: 29 %\t(==........)\r",
+ " download progress: 30 %\t(==........)\r",
+ " download progress: 30 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 31 %\t(===.......)\r",
+ " download progress: 32 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 33 %\t(===.......)\r",
+ " download progress: 34 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 35 %\t(===.......)\r",
+ " download progress: 36 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 37 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 38 %\t(===.......)\r",
+ " download progress: 39 %\t(===.......)\r",
+ " download progress: 40 %\t(===.......)\r",
+ " download progress: 40 %\t(====......)\r",
+ " download progress: 41 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 42 %\t(====......)\r",
+ " download progress: 43 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 44 %\t(====......)\r",
+ " download progress: 45 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 46 %\t(====......)\r",
+ " download progress: 47 %\t(====......)\r",
+ " download progress: 47 %\t(====......)\r",
+ " download progress: 48 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 49 %\t(====......)\r",
+ " download progress: 50 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 51 %\t(=====.....)\r",
+ " download progress: 52 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 53 %\t(=====.....)\r",
+ " download progress: 54 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 55 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 56 %\t(=====.....)\r",
+ " download progress: 57 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 58 %\t(=====.....)\r",
+ " download progress: 59 %\t(=====.....)\r",
+ " download progress: 60 %\t(=====.....)\r",
+ " download progress: 60 %\t(======....)\r",
+ " download progress: 61 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 62 %\t(======....)\r",
+ " download progress: 63 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 64 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 65 %\t(======....)\r",
+ " download progress: 66 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 67 %\t(======....)\r",
+ " download progress: 68 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 69 %\t(======....)\r",
+ " download progress: 70 %\t(======....)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 71 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 72 %\t(=======...)\r",
+ " download progress: 73 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 74 %\t(=======...)\r",
+ " download progress: 75 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 76 %\t(=======...)\r",
+ " download progress: 77 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 78 %\t(=======...)\r",
+ " download progress: 79 %\t(=======...)\r",
+ " download progress: 80 %\t(=======...)\r",
+ " download progress: 80 %\t(========..)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 81 %\t(========..)\r",
+ " download progress: 82 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 83 %\t(========..)\r",
+ " download progress: 84 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 85 %\t(========..)\r",
+ " download progress: 86 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 87 %\t(========..)\r",
+ " download progress: 88 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 89 %\t(========..)\r",
+ " download progress: 90 %\t(========..)\r",
+ " download progress: 90 %\t(=========.)\r",
+ " download progress: 91 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 92 %\t(=========.)\r",
+ " download progress: 93 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 94 %\t(=========.)\r",
+ " download progress: 95 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 96 %\t(=========.)\r",
+ " download progress: 97 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 98 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 99 %\t(=========.)\r",
+ " download progress: 100 %\t(==========)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ground_truth | \n",
+ " memo | \n",
+ " transaction_date | \n",
+ " amount | \n",
+ " unique_id | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " MATTHIAS C paym | \n",
+ " 2022-03-28 | \n",
+ " 36.36 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " M CORVINUS dona | \n",
+ " 2022-02-14 | \n",
+ " 221.91 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ground_truth memo transaction_date amount unique_id\n",
+ "0 0 MATTHIAS C paym 2022-03-28 36.36 0\n",
+ "1 1 M CORVINUS dona 2022-02-14 221.91 1"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ground_truth | \n",
+ " memo | \n",
+ " transaction_date | \n",
+ " amount | \n",
+ " unique_id | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " MATTHIAS C payment BGC | \n",
+ " 2022-03-29 | \n",
+ " 36.36 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " M CORVINUS BGC | \n",
+ " 2022-02-16 | \n",
+ " 221.91 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ground_truth memo transaction_date amount unique_id\n",
+ "0 0 MATTHIAS C payment BGC 2022-03-29 36.36 0\n",
+ "1 1 M CORVINUS BGC 2022-02-16 221.91 1"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"from splink import DuckDBAPI, Linker, SettingsCreator, block_on, splink_datasets\n",
"\n",
@@ -63,8 +517,7 @@
"\n",
"display(df_origin.head(2))\n",
"display(df_destination.head(2))"
- ],
- "outputs": []
+ ]
},
{
"attachments": {},
@@ -83,12 +536,92 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:16.143823Z",
- "iopub.status.busy": "2024-05-16T12:13:16.143431Z",
- "iopub.status.idle": "2024-05-16T12:13:16.849535Z",
- "shell.execute_reply": "2024-05-16T12:13:16.848871Z"
+ "iopub.execute_input": "2024-06-07T09:22:31.987843Z",
+ "iopub.status.busy": "2024-06-07T09:22:31.987459Z",
+ "iopub.status.idle": "2024-06-07T09:22:32.720064Z",
+ "shell.execute_reply": "2024-06-07T09:22:32.719389Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink.exploratory import profile_columns\n",
"\n",
@@ -102,20 +635,99 @@
" \"amount\",\n",
" ],\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:16.852855Z",
- "iopub.status.busy": "2024-05-16T12:13:16.852594Z",
- "iopub.status.idle": "2024-05-16T12:13:18.407824Z",
- "shell.execute_reply": "2024-05-16T12:13:18.407265Z"
+ "iopub.execute_input": "2024-06-07T09:22:32.724189Z",
+ "iopub.status.busy": "2024-06-07T09:22:32.723901Z",
+ "iopub.status.idle": "2024-06-07T09:22:33.500975Z",
+ "shell.execute_reply": "2024-06-07T09:22:33.500399Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from splink import DuckDBAPI, block_on\n",
"from splink.blocking_analysis import (\n",
@@ -167,20 +779,20 @@
" db_api=db_api,\n",
" link_type=\"link_only\"\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:18.411066Z",
- "iopub.status.busy": "2024-05-16T12:13:18.410832Z",
- "iopub.status.idle": "2024-05-16T12:13:18.418094Z",
- "shell.execute_reply": "2024-05-16T12:13:18.416984Z"
+ "iopub.execute_input": "2024-06-07T09:22:33.504001Z",
+ "iopub.status.busy": "2024-06-07T09:22:33.503779Z",
+ "iopub.status.idle": "2024-06-07T09:22:33.511675Z",
+ "shell.execute_reply": "2024-06-07T09:22:33.511212Z"
}
},
+ "outputs": [],
"source": [
"# Full settings for linking model\n",
"import splink.comparison_level_library as cll\n",
@@ -248,20 +860,20 @@
" ],\n",
" retain_intermediate_calculation_columns=True,\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:18.421517Z",
- "iopub.status.busy": "2024-05-16T12:13:18.421286Z",
- "iopub.status.idle": "2024-05-16T12:13:18.552970Z",
- "shell.execute_reply": "2024-05-16T12:13:18.552184Z"
+ "iopub.execute_input": "2024-06-07T09:22:33.514381Z",
+ "iopub.status.busy": "2024-06-07T09:22:33.514150Z",
+ "iopub.status.idle": "2024-06-07T09:22:33.621746Z",
+ "shell.execute_reply": "2024-06-07T09:22:33.621038Z"
}
},
+ "outputs": [],
"source": [
"linker = Linker(\n",
" [df_origin, df_destination],\n",
@@ -269,102 +881,646 @@
" input_table_aliases=[\"__ori\", \"_dest\"],\n",
" database_api=db_api,\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:18.556284Z",
- "iopub.status.busy": "2024-05-16T12:13:18.556053Z",
- "iopub.status.idle": "2024-05-16T12:13:20.529952Z",
- "shell.execute_reply": "2024-05-16T12:13:20.529065Z"
+ "iopub.execute_input": "2024-06-07T09:22:33.625044Z",
+ "iopub.status.busy": "2024-06-07T09:22:33.624807Z",
+ "iopub.status.idle": "2024-06-07T09:22:35.145751Z",
+ "shell.execute_reply": "2024-06-07T09:22:35.145280Z"
}
},
- "source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)"
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "----- Estimating u probabilities using random sampling -----\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Estimated u probabilities using random sampling\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - amount (no m values are trained).\n",
+ " - memo (no m values are trained).\n",
+ " - transaction_date (no m values are trained).\n"
+ ]
+ }
],
- "outputs": []
+ "source": [
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)"
+ ]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:20.532832Z",
- "iopub.status.busy": "2024-05-16T12:13:20.532606Z",
- "iopub.status.idle": "2024-05-16T12:13:21.867808Z",
- "shell.execute_reply": "2024-05-16T12:13:21.867084Z"
+ "iopub.execute_input": "2024-06-07T09:22:35.148614Z",
+ "iopub.status.busy": "2024-06-07T09:22:35.148331Z",
+ "iopub.status.idle": "2024-06-07T09:22:36.323460Z",
+ "shell.execute_reply": "2024-06-07T09:22:36.322736Z"
}
},
- "source": [
- "linker.estimate_parameters_using_expectation_maximisation(block_on(\"memo\"))"
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"memo\" = r.\"memo\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - amount\n",
+ " - transaction_date\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - memo\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.596 in the m_probability of amount, level `Exact match on amount`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was -0.167 in the m_probability of transaction_date, level `1 day`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.00961 in the m_probability of amount, level `Percentage difference of 'amount' within 10.00%`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was 0.00211 in the m_probability of transaction_date, level `<=30 days`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.000367 in the m_probability of transaction_date, level `<=30 days`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was -0.000315 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was -0.000282 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was -0.000254 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was -0.00023 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was -0.000209 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was -0.00019 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 12: Largest change in params was -0.000174 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 13: Largest change in params was -0.000159 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 14: Largest change in params was -0.000147 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 15: Largest change in params was -0.000135 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 16: Largest change in params was -0.000125 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 17: Largest change in params was -0.000116 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 18: Largest change in params was -0.000108 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 19: Largest change in params was -0.0001 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 20: Largest change in params was -9.33e-05 in the m_probability of amount, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 20 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - memo (no m values are trained).\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"memo\"))"
+ ]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:21.871283Z",
- "iopub.status.busy": "2024-05-16T12:13:21.871004Z",
- "iopub.status.idle": "2024-05-16T12:13:23.094606Z",
- "shell.execute_reply": "2024-05-16T12:13:23.093838Z"
+ "iopub.execute_input": "2024-06-07T09:22:36.326561Z",
+ "iopub.status.busy": "2024-06-07T09:22:36.326344Z",
+ "iopub.status.idle": "2024-06-07T09:22:37.563023Z",
+ "shell.execute_reply": "2024-06-07T09:22:37.562461Z"
}
},
- "source": [
- "session = linker.estimate_parameters_using_expectation_maximisation(block_on(\"amount\"))"
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "l.\"amount\" = r.\"amount\"\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - memo\n",
+ " - transaction_date\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - amount\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 1: Largest change in params was -0.378 in the m_probability of memo, level `Exact match on memo`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 2: Largest change in params was -0.104 in the m_probability of memo, level `Exact match on memo`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 3: Largest change in params was 0.0215 in the m_probability of memo, level `Levenshtein distance of memo <= 10`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 4: Largest change in params was -0.00538 in the m_probability of memo, level `Exact match on memo`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 5: Largest change in params was 0.00474 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 6: Largest change in params was 0.00502 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 7: Largest change in params was 0.00499 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 8: Largest change in params was 0.00466 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 9: Largest change in params was 0.00413 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 10: Largest change in params was 0.00348 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 11: Largest change in params was 0.00283 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 12: Largest change in params was 0.00223 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 13: Largest change in params was 0.00171 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 14: Largest change in params was 0.00129 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 15: Largest change in params was 0.000959 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 16: Largest change in params was 0.000706 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 17: Largest change in params was 0.000516 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 18: Largest change in params was 0.000375 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 19: Largest change in params was 0.000272 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 20: Largest change in params was 0.000196 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 21: Largest change in params was 0.000141 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 22: Largest change in params was 0.000102 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Iteration 23: Largest change in params was 7.32e-05 in the m_probability of memo, level `All other comparisons`\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "EM converged after 23 iterations\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n"
+ ]
+ }
],
- "outputs": []
+ "source": [
+ "session = linker.training.estimate_parameters_using_expectation_maximisation(block_on(\"amount\"))"
+ ]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:23.097922Z",
- "iopub.status.busy": "2024-05-16T12:13:23.097670Z",
- "iopub.status.idle": "2024-05-16T12:13:23.382589Z",
- "shell.execute_reply": "2024-05-16T12:13:23.382014Z"
+ "iopub.execute_input": "2024-06-07T09:22:37.565956Z",
+ "iopub.status.busy": "2024-06-07T09:22:37.565738Z",
+ "iopub.status.idle": "2024-06-07T09:22:37.832159Z",
+ "shell.execute_reply": "2024-06-07T09:22:37.831506Z"
}
},
- "source": [
- "linker.match_weights_chart()"
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.VConcatChart(...)"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "outputs": []
+ "source": [
+ "linker.visualisations.match_weights_chart()"
+ ]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:23.385651Z",
- "iopub.status.busy": "2024-05-16T12:13:23.385430Z",
- "iopub.status.idle": "2024-05-16T12:13:47.966948Z",
- "shell.execute_reply": "2024-05-16T12:13:47.966113Z"
+ "iopub.execute_input": "2024-06-07T09:22:37.835082Z",
+ "iopub.status.busy": "2024-06-07T09:22:37.834871Z",
+ "iopub.status.idle": "2024-06-07T09:22:58.616771Z",
+ "shell.execute_reply": "2024-06-07T09:22:58.615862Z"
}
},
+ "outputs": [],
"source": [
- "df_predict = linker.predict(threshold_match_probability=0.001)"
- ],
- "outputs": []
+ "df_predict = linker.inference.predict(threshold_match_probability=0.001)"
+ ]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:47.970901Z",
- "iopub.status.busy": "2024-05-16T12:13:47.970603Z",
- "iopub.status.idle": "2024-05-16T12:13:48.365220Z",
- "shell.execute_reply": "2024-05-16T12:13:48.364442Z"
+ "iopub.execute_input": "2024-06-07T09:22:58.620828Z",
+ "iopub.status.busy": "2024-06-07T09:22:58.620523Z",
+ "iopub.status.idle": "2024-06-07T09:22:59.018555Z",
+ "shell.execute_reply": "2024-06-07T09:22:59.017917Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.comparison_viewer_dashboard(\n",
+ "linker.visualisations.comparison_viewer_dashboard(\n",
" df_predict, \"dashboards/comparison_viewer_transactions.html\", overwrite=True\n",
")\n",
"from IPython.display import IFrame\n",
@@ -372,46 +1528,203 @@
"IFrame(\n",
" src=\"./dashboards/comparison_viewer_transactions.html\", width=\"100%\", height=1200\n",
")"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:48.369330Z",
- "iopub.status.busy": "2024-05-16T12:13:48.369001Z",
- "iopub.status.idle": "2024-05-16T12:13:54.043730Z",
- "shell.execute_reply": "2024-05-16T12:13:54.043073Z"
+ "iopub.execute_input": "2024-06-07T09:22:59.022067Z",
+ "iopub.status.busy": "2024-06-07T09:22:59.021794Z",
+ "iopub.status.idle": "2024-06-07T09:23:04.254280Z",
+ "shell.execute_reply": "2024-06-07T09:23:04.253648Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "pred_errors = linker.prediction_errors_from_labels_column(\n",
+ "pred_errors = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"ground_truth\", include_false_positives=True, include_false_negatives=False\n",
")\n",
- "linker.waterfall_chart(pred_errors.as_record_dict(limit=5))"
- ],
- "outputs": []
+ "linker.visualisations.waterfall_chart(pred_errors.as_record_dict(limit=5))"
+ ]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-16T12:13:54.047308Z",
- "iopub.status.busy": "2024-05-16T12:13:54.047030Z",
- "iopub.status.idle": "2024-05-16T12:13:54.884355Z",
- "shell.execute_reply": "2024-05-16T12:13:54.883814Z"
+ "iopub.execute_input": "2024-06-07T09:23:04.257242Z",
+ "iopub.status.busy": "2024-06-07T09:23:04.257017Z",
+ "iopub.status.idle": "2024-06-07T09:23:05.029715Z",
+ "shell.execute_reply": "2024-06-07T09:23:05.029153Z"
}
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "pred_errors = linker.prediction_errors_from_labels_column(\n",
+ "pred_errors = linker.evaluation.prediction_errors_from_labels_column(\n",
" \"ground_truth\", include_false_positives=False, include_false_negatives=True\n",
")\n",
- "linker.waterfall_chart(pred_errors.as_record_dict(limit=5))"
- ],
- "outputs": []
+ "linker.visualisations.waterfall_chart(pred_errors.as_record_dict(limit=5))"
+ ]
}
],
"metadata": {
diff --git a/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb b/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb
index 1c4b5a0c45..2809cb8a5b 100644
--- a/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb
+++ b/docs/demos/examples/spark/deduplicate_1k_synthetic.ipynb
@@ -1,275 +1,275 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Linking in Spark\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- " \n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:29:57.518197Z",
- "iopub.status.busy": "2024-03-13T12:29:57.517750Z",
- "iopub.status.idle": "2024-03-13T12:29:57.523242Z",
- "shell.execute_reply": "2024-03-13T12:29:57.522525Z"
- }
- },
- "outputs": [],
- "source": [
- "# Uncomment and run this cell if you're running in Google Colab.\n",
- "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
- "# !pip install pyspark"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:29:57.527366Z",
- "iopub.status.busy": "2024-03-13T12:29:57.527045Z",
- "iopub.status.idle": "2024-03-13T12:30:42.348824Z",
- "shell.execute_reply": "2024-03-13T12:30:42.347900Z"
- }
- },
- "outputs": [],
- "source": [
- "from pyspark import SparkConf, SparkContext\n",
- "from pyspark.sql import SparkSession\n",
- "\n",
- "from splink.backends.spark import similarity_jar_location\n",
- "\n",
- "conf = SparkConf()\n",
- "# This parallelism setting is only suitable for a small toy example\n",
- "conf.set(\"spark.driver.memory\", \"12g\")\n",
- "conf.set(\"spark.default.parallelism\", \"16\")\n",
- "\n",
- "\n",
- "# Add custom similarity functions, which are bundled with Splink\n",
- "# documented here: https://github.com/moj-analytical-services/splink_scalaudfs\n",
- "path = similarity_jar_location()\n",
- "conf.set(\"spark.jars\", path)\n",
- "\n",
- "sc = SparkContext.getOrCreate(conf=conf)\n",
- "\n",
- "spark = SparkSession(sc)\n",
- "spark.sparkContext.setCheckpointDir(\"./tmp_checkpoints\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:30:42.353970Z",
- "iopub.status.busy": "2024-03-13T12:30:42.353260Z",
- "iopub.status.idle": "2024-03-13T12:30:42.358982Z",
- "shell.execute_reply": "2024-03-13T12:30:42.358209Z"
- }
- },
- "outputs": [],
- "source": [
- "# Disable warnings for pyspark - you don't need to include this\n",
- "import warnings\n",
- "\n",
- "spark.sparkContext.setLogLevel(\"ERROR\")\n",
- "warnings.simplefilter(\"ignore\", UserWarning)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:30:42.363648Z",
- "iopub.status.busy": "2024-03-13T12:30:42.363227Z",
- "iopub.status.idle": "2024-03-13T12:30:45.734688Z",
- "shell.execute_reply": "2024-03-13T12:30:45.733419Z"
- }
- },
- "outputs": [],
- "source": [
- "from splink import splink_datasets\n",
- "\n",
- "pandas_df = splink_datasets.fake_1000\n",
- "\n",
- "df = spark.createDataFrame(pandas_df)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:30:45.740685Z",
- "iopub.status.busy": "2024-03-13T12:30:45.740314Z",
- "iopub.status.idle": "2024-03-13T12:30:45.773778Z",
- "shell.execute_reply": "2024-03-13T12:30:45.772855Z"
- }
- },
- "outputs": [],
- "source": [
- "import splink.comparison_library as cl\n",
- "import splink.comparison_template_library as ctl\n",
- "from splink import Linker, SettingsCreator, SparkAPI, block_on\n",
- "\n",
- "settings = SettingsCreator(\n",
- " link_type=\"dedupe_only\",\n",
- " comparisons=[\n",
- " ctl.NameComparison(\"first_name\"),\n",
- " ctl.NameComparison(\"surname\"),\n",
- " # ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
- " # TOD=Fix date comparison\n",
- " ctl.DateComparison(\n",
- " \"dob\",\n",
- " input_is_string=True,\n",
- " datetime_metrics=[\"month\", \"year\", \"year\"],\n",
- " datetime_thresholds=[1, 1, 10],\n",
- " datetime_format=\"%Y%m%d\",\n",
- " ),\n",
- " cl.ExactMatch(\"city\").configure(term_frequency_adjustments=True),\n",
- " ctl.EmailComparison(\"email\", include_username_fuzzy_level=False),\n",
- " ],\n",
- " blocking_rules_to_generate_predictions=[\n",
- " block_on(\"first_name\"),\n",
- " \"l.surname = r.surname\", # alternatively, you can write BRs in their SQL form\n",
- " ],\n",
- " retain_intermediate_calculation_columns=True,\n",
- " em_convergence=0.01,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:30:45.779194Z",
- "iopub.status.busy": "2024-03-13T12:30:45.778688Z",
- "iopub.status.idle": "2024-03-13T12:30:57.746806Z",
- "shell.execute_reply": "2024-03-13T12:30:57.744480Z"
- }
- },
- "outputs": [],
- "source": [
- "linker = Linker(df, settings, database_api=SparkAPI(spark_session=spark))\n",
- "deterministic_rules = [\n",
- " \"l.first_name = r.first_name and levenshtein(r.dob, l.dob) <= 1\",\n",
- " \"l.surname = r.surname and levenshtein(r.dob, l.dob) <= 1\",\n",
- " \"l.first_name = r.first_name and levenshtein(r.surname, l.surname) <= 2\",\n",
- " \"l.email = r.email\",\n",
- "]\n",
- "\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:30:57.757986Z",
- "iopub.status.busy": "2024-03-13T12:30:57.757315Z",
- "iopub.status.idle": "2024-03-13T12:31:17.080600Z",
- "shell.execute_reply": "2024-03-13T12:31:17.079503Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.estimate_u_using_random_sampling(max_pairs=5e5)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:31:17.085610Z",
- "iopub.status.busy": "2024-03-13T12:31:17.085246Z",
- "iopub.status.idle": "2024-03-13T12:31:36.217869Z",
- "shell.execute_reply": "2024-03-13T12:31:36.217063Z"
- }
- },
- "outputs": [],
- "source": [
- "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
- "training_session_fname_sname = (\n",
- " linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n",
- ")\n",
- "\n",
- "training_blocking_rule = \"l.dob = r.dob\"\n",
- "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n",
- " training_blocking_rule\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:31:36.223120Z",
- "iopub.status.busy": "2024-03-13T12:31:36.222561Z",
- "iopub.status.idle": "2024-03-13T12:31:44.599133Z",
- "shell.execute_reply": "2024-03-13T12:31:44.597894Z"
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Linking in Spark\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:29:57.518197Z",
+ "iopub.status.busy": "2024-03-13T12:29:57.517750Z",
+ "iopub.status.idle": "2024-03-13T12:29:57.523242Z",
+ "shell.execute_reply": "2024-03-13T12:29:57.522525Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Uncomment and run this cell if you're running in Google Colab.\n",
+ "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
+ "# !pip install pyspark"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:29:57.527366Z",
+ "iopub.status.busy": "2024-03-13T12:29:57.527045Z",
+ "iopub.status.idle": "2024-03-13T12:30:42.348824Z",
+ "shell.execute_reply": "2024-03-13T12:30:42.347900Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from pyspark import SparkConf, SparkContext\n",
+ "from pyspark.sql import SparkSession\n",
+ "\n",
+ "from splink.backends.spark import similarity_jar_location\n",
+ "\n",
+ "conf = SparkConf()\n",
+ "# This parallelism setting is only suitable for a small toy example\n",
+ "conf.set(\"spark.driver.memory\", \"12g\")\n",
+ "conf.set(\"spark.default.parallelism\", \"16\")\n",
+ "\n",
+ "\n",
+ "# Add custom similarity functions, which are bundled with Splink\n",
+ "# documented here: https://github.com/moj-analytical-services/splink_scalaudfs\n",
+ "path = similarity_jar_location()\n",
+ "conf.set(\"spark.jars\", path)\n",
+ "\n",
+ "sc = SparkContext.getOrCreate(conf=conf)\n",
+ "\n",
+ "spark = SparkSession(sc)\n",
+ "spark.sparkContext.setCheckpointDir(\"./tmp_checkpoints\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:30:42.353970Z",
+ "iopub.status.busy": "2024-03-13T12:30:42.353260Z",
+ "iopub.status.idle": "2024-03-13T12:30:42.358982Z",
+ "shell.execute_reply": "2024-03-13T12:30:42.358209Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Disable warnings for pyspark - you don't need to include this\n",
+ "import warnings\n",
+ "\n",
+ "spark.sparkContext.setLogLevel(\"ERROR\")\n",
+ "warnings.simplefilter(\"ignore\", UserWarning)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:30:42.363648Z",
+ "iopub.status.busy": "2024-03-13T12:30:42.363227Z",
+ "iopub.status.idle": "2024-03-13T12:30:45.734688Z",
+ "shell.execute_reply": "2024-03-13T12:30:45.733419Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from splink import splink_datasets\n",
+ "\n",
+ "pandas_df = splink_datasets.fake_1000\n",
+ "\n",
+ "df = spark.createDataFrame(pandas_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:30:45.740685Z",
+ "iopub.status.busy": "2024-03-13T12:30:45.740314Z",
+ "iopub.status.idle": "2024-03-13T12:30:45.773778Z",
+ "shell.execute_reply": "2024-03-13T12:30:45.772855Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import splink.comparison_library as cl\n",
+ "import splink.comparison_template_library as ctl\n",
+ "from splink import Linker, SettingsCreator, SparkAPI, block_on\n",
+ "\n",
+ "settings = SettingsCreator(\n",
+ " link_type=\"dedupe_only\",\n",
+ " comparisons=[\n",
+ " ctl.NameComparison(\"first_name\"),\n",
+ " ctl.NameComparison(\"surname\"),\n",
+ " # ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " # TOD=Fix date comparison\n",
+ " ctl.DateComparison(\n",
+ " \"dob\",\n",
+ " input_is_string=True,\n",
+ " datetime_metrics=[\"month\", \"year\", \"year\"],\n",
+ " datetime_thresholds=[1, 1, 10],\n",
+ " datetime_format=\"%Y%m%d\",\n",
+ " ),\n",
+ " cl.ExactMatch(\"city\").configure(term_frequency_adjustments=True),\n",
+ " ctl.EmailComparison(\"email\", include_username_fuzzy_level=False),\n",
+ " ],\n",
+ " blocking_rules_to_generate_predictions=[\n",
+ " block_on(\"first_name\"),\n",
+ " \"l.surname = r.surname\", # alternatively, you can write BRs in their SQL form\n",
+ " ],\n",
+ " retain_intermediate_calculation_columns=True,\n",
+ " em_convergence=0.01,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:30:45.779194Z",
+ "iopub.status.busy": "2024-03-13T12:30:45.778688Z",
+ "iopub.status.idle": "2024-03-13T12:30:57.746806Z",
+ "shell.execute_reply": "2024-03-13T12:30:57.744480Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker = Linker(df, settings, database_api=SparkAPI(spark_session=spark))\n",
+ "deterministic_rules = [\n",
+ " \"l.first_name = r.first_name and levenshtein(r.dob, l.dob) <= 1\",\n",
+ " \"l.surname = r.surname and levenshtein(r.dob, l.dob) <= 1\",\n",
+ " \"l.first_name = r.first_name and levenshtein(r.surname, l.surname) <= 2\",\n",
+ " \"l.email = r.email\",\n",
+ "]\n",
+ "\n",
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.6)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:30:57.757986Z",
+ "iopub.status.busy": "2024-03-13T12:30:57.757315Z",
+ "iopub.status.idle": "2024-03-13T12:31:17.080600Z",
+ "shell.execute_reply": "2024-03-13T12:31:17.079503Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.training.estimate_u_using_random_sampling(max_pairs=5e5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:31:17.085610Z",
+ "iopub.status.busy": "2024-03-13T12:31:17.085246Z",
+ "iopub.status.idle": "2024-03-13T12:31:36.217869Z",
+ "shell.execute_reply": "2024-03-13T12:31:36.217063Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
+ "training_session_fname_sname = (\n",
+ " linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n",
+ ")\n",
+ "\n",
+ "training_blocking_rule = \"l.dob = r.dob\"\n",
+ "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n",
+ " training_blocking_rule\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:31:36.223120Z",
+ "iopub.status.busy": "2024-03-13T12:31:36.222561Z",
+ "iopub.status.idle": "2024-03-13T12:31:44.599133Z",
+ "shell.execute_reply": "2024-03-13T12:31:44.597894Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "results = linker.inference.predict(threshold_match_probability=0.9)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-03-13T12:31:44.605970Z",
+ "iopub.status.busy": "2024-03-13T12:31:44.605505Z",
+ "iopub.status.idle": "2024-03-13T12:31:44.750590Z",
+ "shell.execute_reply": "2024-03-13T12:31:44.749429Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "results.as_pandas_dataframe(limit=5)"
+ ]
}
- },
- "outputs": [],
- "source": [
- "results = linker.predict(threshold_match_probability=0.9)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-13T12:31:44.605970Z",
- "iopub.status.busy": "2024-03-13T12:31:44.605505Z",
- "iopub.status.idle": "2024-03-13T12:31:44.750590Z",
- "shell.execute_reply": "2024-03-13T12:31:44.749429Z"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
},
- "tags": []
- },
- "outputs": [],
- "source": [
- "results.as_pandas_dataframe(limit=5)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
+ }
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb b/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb
index ce68a7b9a6..3eea1b0b3e 100644
--- a/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb
+++ b/docs/demos/examples/sqlite/deduplicate_50k_synthetic.ipynb
@@ -1,461 +1,461 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Linking a dataset of real historical persons\n",
- "\n",
- "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced.\n",
- "\n",
- "Note, as explained in the [backends topic guide](https://moj-analytical-services.github.io/splink/topic_guides/backends.html#sqlite), SQLite does not natively support string fuzzy matching functions such as `damareau-levenshtein` and `jaro-winkler` (as used in this example). Instead, these have been imported as python User Defined Functions (UDFs). One drawback of python UDFs is that they are considerably slower than native-SQL comparisons. As such, if you are hitting issues with large run times, consider switching to DuckDB (or some other backend).\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- " \n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:30.610213Z",
- "iopub.status.busy": "2024-05-15T18:41:30.609846Z",
- "iopub.status.idle": "2024-05-15T18:41:30.615335Z",
- "shell.execute_reply": "2024-05-15T18:41:30.614566Z"
- }
- },
- "outputs": [],
- "source": [
- "# Uncomment and run this cell if you're running in Google Colab.\n",
- "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
- "# !pip install rapidfuzz"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:30.619046Z",
- "iopub.status.busy": "2024-05-15T18:41:30.618760Z",
- "iopub.status.idle": "2024-05-15T18:41:31.933775Z",
- "shell.execute_reply": "2024-05-15T18:41:31.932989Z"
- }
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "from splink import splink_datasets\n",
- "\n",
- "pd.options.display.max_rows = 1000\n",
- "# reduce size of dataset to make things run faster\n",
- "df = splink_datasets.historical_50k.sample(5000)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:31.938051Z",
- "iopub.status.busy": "2024-05-15T18:41:31.937677Z",
- "iopub.status.idle": "2024-05-15T18:41:32.856954Z",
- "shell.execute_reply": "2024-05-15T18:41:32.856284Z"
- }
- },
- "outputs": [],
- "source": [
- "from splink.backends.sqlite import SQLiteAPI\n",
- "from splink.exploratory import profile_columns\n",
- "\n",
- "db_api = SQLiteAPI()\n",
- "profile_columns(\n",
- " df, db_api, column_expressions=[\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"]\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:32.900620Z",
- "iopub.status.busy": "2024-05-15T18:41:32.900280Z",
- "iopub.status.idle": "2024-05-15T18:41:33.193607Z",
- "shell.execute_reply": "2024-05-15T18:41:33.192963Z"
- }
- },
- "outputs": [],
- "source": [
- "from splink import block_on\n",
- "from splink.blocking_analysis import (\n",
- " cumulative_comparisons_to_be_scored_from_blocking_rules_chart,\n",
- ")\n",
- "\n",
- "blocking_rules = [block_on(\"first_name\", \"surname\"),\n",
- " block_on(\"surname\", \"dob\"),\n",
- " block_on(\"first_name\", \"dob\"),\n",
- " block_on(\"postcode_fake\", \"first_name\")]\n",
- "\n",
- "db_api = SQLiteAPI()\n",
- "\n",
- "cumulative_comparisons_to_be_scored_from_blocking_rules_chart(\n",
- " table_or_tables=df,\n",
- " blocking_rules=blocking_rules,\n",
- " db_api=db_api,\n",
- " link_type=\"dedupe_only\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:33.197015Z",
- "iopub.status.busy": "2024-05-15T18:41:33.196743Z",
- "iopub.status.idle": "2024-05-15T18:41:33.330331Z",
- "shell.execute_reply": "2024-05-15T18:41:33.329671Z"
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Linking a dataset of real historical persons\n",
+ "\n",
+ "In this example, we deduplicate a more realistic dataset. The data is based on historical persons scraped from wikidata. Duplicate records are introduced with a variety of errors introduced.\n",
+ "\n",
+ "Note, as explained in the [backends topic guide](https://moj-analytical-services.github.io/splink/topic_guides/backends.html#sqlite), SQLite does not natively support string fuzzy matching functions such as `damareau-levenshtein` and `jaro-winkler` (as used in this example). Instead, these have been imported as python User Defined Functions (UDFs). One drawback of python UDFs is that they are considerably slower than native-SQL comparisons. As such, if you are hitting issues with large run times, consider switching to DuckDB (or some other backend).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:30.610213Z",
+ "iopub.status.busy": "2024-05-15T18:41:30.609846Z",
+ "iopub.status.idle": "2024-05-15T18:41:30.615335Z",
+ "shell.execute_reply": "2024-05-15T18:41:30.614566Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Uncomment and run this cell if you're running in Google Colab.\n",
+ "# !pip install git+https://github.com/moj-analytical-services/splink.git@splink4_dev\n",
+ "# !pip install rapidfuzz"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:30.619046Z",
+ "iopub.status.busy": "2024-05-15T18:41:30.618760Z",
+ "iopub.status.idle": "2024-05-15T18:41:31.933775Z",
+ "shell.execute_reply": "2024-05-15T18:41:31.932989Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "from splink import splink_datasets\n",
+ "\n",
+ "pd.options.display.max_rows = 1000\n",
+ "# reduce size of dataset to make things run faster\n",
+ "df = splink_datasets.historical_50k.sample(5000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:31.938051Z",
+ "iopub.status.busy": "2024-05-15T18:41:31.937677Z",
+ "iopub.status.idle": "2024-05-15T18:41:32.856954Z",
+ "shell.execute_reply": "2024-05-15T18:41:32.856284Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from splink.backends.sqlite import SQLiteAPI\n",
+ "from splink.exploratory import profile_columns\n",
+ "\n",
+ "db_api = SQLiteAPI()\n",
+ "profile_columns(\n",
+ " df, db_api, column_expressions=[\"first_name\", \"postcode_fake\", \"substr(dob, 1,4)\"]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:32.900620Z",
+ "iopub.status.busy": "2024-05-15T18:41:32.900280Z",
+ "iopub.status.idle": "2024-05-15T18:41:33.193607Z",
+ "shell.execute_reply": "2024-05-15T18:41:33.192963Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "from splink import block_on\n",
+ "from splink.blocking_analysis import (\n",
+ " cumulative_comparisons_to_be_scored_from_blocking_rules_chart,\n",
+ ")\n",
+ "\n",
+ "blocking_rules = [block_on(\"first_name\", \"surname\"),\n",
+ " block_on(\"surname\", \"dob\"),\n",
+ " block_on(\"first_name\", \"dob\"),\n",
+ " block_on(\"postcode_fake\", \"first_name\")]\n",
+ "\n",
+ "db_api = SQLiteAPI()\n",
+ "\n",
+ "cumulative_comparisons_to_be_scored_from_blocking_rules_chart(\n",
+ " table_or_tables=df,\n",
+ " blocking_rules=blocking_rules,\n",
+ " db_api=db_api,\n",
+ " link_type=\"dedupe_only\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:33.197015Z",
+ "iopub.status.busy": "2024-05-15T18:41:33.196743Z",
+ "iopub.status.idle": "2024-05-15T18:41:33.330331Z",
+ "shell.execute_reply": "2024-05-15T18:41:33.329671Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import splink.comparison_library as cl\n",
+ "import splink.comparison_template_library as ctl\n",
+ "from splink import Linker\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on(\"first_name\", \"surname\"),\n",
+ " block_on(\"surname\", \"dob\"),\n",
+ " block_on(\"first_name\", \"dob\"),\n",
+ " block_on(\"postcode_fake\", \"first_name\"),\n",
+ "\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " ctl.NameComparison(\"first_name\", fuzzy_thresholds=[0.9]).configure(\n",
+ " term_frequency_adjustments=True\n",
+ " ),\n",
+ " ctl.NameComparison(\"surname\", fuzzy_thresholds=[0.9]).configure(\n",
+ " term_frequency_adjustments=True\n",
+ " ),\n",
+ " cl.DamerauLevenshteinAtThresholds(\"dob\", [1, 2]).configure(\n",
+ " term_frequency_adjustments=True\n",
+ " ),\n",
+ " cl.DamerauLevenshteinAtThresholds(\"postcode_fake\", [1, 2]),\n",
+ " cl.ExactMatch(\"birth_place\").configure(term_frequency_adjustments=True),\n",
+ " cl.ExactMatch(\n",
+ " \"occupation\",\n",
+ " ).configure(term_frequency_adjustments=True),\n",
+ " ],\n",
+ " \"retain_matching_columns\": True,\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ " \"max_iterations\": 10,\n",
+ " \"em_convergence\": 0.01,\n",
+ "}\n",
+ "\n",
+ "linker = Linker(df, settings, database_api=db_api)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:33.334300Z",
+ "iopub.status.busy": "2024-05-15T18:41:33.333988Z",
+ "iopub.status.idle": "2024-05-15T18:41:33.488238Z",
+ "shell.execute_reply": "2024-05-15T18:41:33.487555Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.training.estimate_probability_two_random_records_match(\n",
+ " [\n",
+ " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n",
+ " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n",
+ " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n",
+ " ],\n",
+ " recall=0.6,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:33.491551Z",
+ "iopub.status.busy": "2024-05-15T18:41:33.491328Z",
+ "iopub.status.idle": "2024-05-15T18:41:41.469753Z",
+ "shell.execute_reply": "2024-05-15T18:41:41.469157Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:41.473301Z",
+ "iopub.status.busy": "2024-05-15T18:41:41.473009Z",
+ "iopub.status.idle": "2024-05-15T18:41:41.683463Z",
+ "shell.execute_reply": "2024-05-15T18:41:41.682843Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
+ "training_session_names = linker.training.estimate_parameters_using_expectation_maximisation(\n",
+ " training_blocking_rule, estimate_without_term_frequencies=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:41.686951Z",
+ "iopub.status.busy": "2024-05-15T18:41:41.686683Z",
+ "iopub.status.idle": "2024-05-15T18:41:41.926273Z",
+ "shell.execute_reply": "2024-05-15T18:41:41.925689Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "training_blocking_rule = \"l.dob = r.dob\"\n",
+ "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n",
+ " training_blocking_rule, estimate_without_term_frequencies=True\n",
+ ")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The final match weights can be viewed in the match weights chart:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:41.929306Z",
+ "iopub.status.busy": "2024-05-15T18:41:41.929078Z",
+ "iopub.status.idle": "2024-05-15T18:41:42.230106Z",
+ "shell.execute_reply": "2024-05-15T18:41:42.229484Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.visualisations.match_weights_chart()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:42.233172Z",
+ "iopub.status.busy": "2024-05-15T18:41:42.232933Z",
+ "iopub.status.idle": "2024-05-15T18:41:42.813828Z",
+ "shell.execute_reply": "2024-05-15T18:41:42.813043Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.evaluation.unlinkables_chart()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:42.817975Z",
+ "iopub.status.busy": "2024-05-15T18:41:42.817397Z",
+ "iopub.status.idle": "2024-05-15T18:41:43.292311Z",
+ "shell.execute_reply": "2024-05-15T18:41:43.291620Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "df_predict = linker.inference.predict()\n",
+ "df_e = df_predict.as_pandas_dataframe(limit=5)\n",
+ "df_e"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can also view rows in this dataset as a waterfall chart as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:43.296030Z",
+ "iopub.status.busy": "2024-05-15T18:41:43.295753Z",
+ "iopub.status.idle": "2024-05-15T18:41:43.969119Z",
+ "shell.execute_reply": "2024-05-15T18:41:43.968521Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "\n",
+ "records_to_plot = df_e.to_dict(orient=\"records\")\n",
+ "linker.visualisations.waterfall_chart(records_to_plot, filter_nulls=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:43.972219Z",
+ "iopub.status.busy": "2024-05-15T18:41:43.971787Z",
+ "iopub.status.idle": "2024-05-15T18:41:44.116709Z",
+ "shell.execute_reply": "2024-05-15T18:41:44.115993Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n",
+ " df_predict, threshold_match_probability=0.95\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:44.120162Z",
+ "iopub.status.busy": "2024-05-15T18:41:44.119922Z",
+ "iopub.status.idle": "2024-05-15T18:41:44.180152Z",
+ "shell.execute_reply": "2024-05-15T18:41:44.179445Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.visualisations.cluster_studio_dashboard(\n",
+ " df_predict,\n",
+ " clusters,\n",
+ " \"dashboards/50k_cluster.html\",\n",
+ " sampling_method=\"by_cluster_size\",\n",
+ " overwrite=True,\n",
+ ")\n",
+ "\n",
+ "from IPython.display import IFrame\n",
+ "\n",
+ "IFrame(src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:44.184020Z",
+ "iopub.status.busy": "2024-05-15T18:41:44.183710Z",
+ "iopub.status.idle": "2024-05-15T18:41:46.543532Z",
+ "shell.execute_reply": "2024-05-15T18:41:46.542614Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "linker.evaluation.accuracy_analysis_from_labels_column(\n",
+ " \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:46.557696Z",
+ "iopub.status.busy": "2024-05-15T18:41:46.557395Z",
+ "iopub.status.idle": "2024-05-15T18:41:47.295019Z",
+ "shell.execute_reply": "2024-05-15T18:41:47.294474Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
+ " \"cluster\",\n",
+ " threshold=0.999,\n",
+ " include_false_negatives=False,\n",
+ " include_false_positives=True,\n",
+ ").as_record_dict()\n",
+ "linker.visualisations.waterfall_chart(records)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-05-15T18:41:47.298555Z",
+ "iopub.status.busy": "2024-05-15T18:41:47.298310Z",
+ "iopub.status.idle": "2024-05-15T18:41:50.039196Z",
+ "shell.execute_reply": "2024-05-15T18:41:50.038400Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Some of the false negatives will be because they weren't detected by the blocking rules\n",
+ "records = linker.evaluation.prediction_errors_from_labels_column(\n",
+ " \"cluster\",\n",
+ " threshold=0.5,\n",
+ " include_false_negatives=True,\n",
+ " include_false_positives=False,\n",
+ ").as_record_dict(limit=50)\n",
+ "\n",
+ "linker.visualisations.waterfall_chart(records)"
+ ]
}
- },
- "outputs": [],
- "source": [
- "import splink.comparison_library as cl\n",
- "import splink.comparison_template_library as ctl\n",
- "from splink import Linker\n",
- "\n",
- "settings = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on(\"first_name\", \"surname\"),\n",
- " block_on(\"surname\", \"dob\"),\n",
- " block_on(\"first_name\", \"dob\"),\n",
- " block_on(\"postcode_fake\", \"first_name\"),\n",
- "\n",
- " ],\n",
- " \"comparisons\": [\n",
- " ctl.NameComparison(\"first_name\", fuzzy_thresholds=[0.9]).configure(\n",
- " term_frequency_adjustments=True\n",
- " ),\n",
- " ctl.NameComparison(\"surname\", fuzzy_thresholds=[0.9]).configure(\n",
- " term_frequency_adjustments=True\n",
- " ),\n",
- " cl.DamerauLevenshteinAtThresholds(\"dob\", [1, 2]).configure(\n",
- " term_frequency_adjustments=True\n",
- " ),\n",
- " cl.DamerauLevenshteinAtThresholds(\"postcode_fake\", [1, 2]),\n",
- " cl.ExactMatch(\"birth_place\").configure(term_frequency_adjustments=True),\n",
- " cl.ExactMatch(\n",
- " \"occupation\",\n",
- " ).configure(term_frequency_adjustments=True),\n",
- " ],\n",
- " \"retain_matching_columns\": True,\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- " \"max_iterations\": 10,\n",
- " \"em_convergence\": 0.01,\n",
- "}\n",
- "\n",
- "linker = Linker(df, settings, database_api=db_api)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:33.334300Z",
- "iopub.status.busy": "2024-05-15T18:41:33.333988Z",
- "iopub.status.idle": "2024-05-15T18:41:33.488238Z",
- "shell.execute_reply": "2024-05-15T18:41:33.487555Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.estimate_probability_two_random_records_match(\n",
- " [\n",
- " \"l.first_name = r.first_name and l.surname = r.surname and l.dob = r.dob\",\n",
- " \"substr(l.first_name,1,2) = substr(r.first_name,1,2) and l.surname = r.surname and substr(l.postcode_fake,1,2) = substr(r.postcode_fake,1,2)\",\n",
- " \"l.dob = r.dob and l.postcode_fake = r.postcode_fake\",\n",
- " ],\n",
- " recall=0.6,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:33.491551Z",
- "iopub.status.busy": "2024-05-15T18:41:33.491328Z",
- "iopub.status.idle": "2024-05-15T18:41:41.469753Z",
- "shell.execute_reply": "2024-05-15T18:41:41.469157Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:41.473301Z",
- "iopub.status.busy": "2024-05-15T18:41:41.473009Z",
- "iopub.status.idle": "2024-05-15T18:41:41.683463Z",
- "shell.execute_reply": "2024-05-15T18:41:41.682843Z"
- }
- },
- "outputs": [],
- "source": [
- "training_blocking_rule = \"l.first_name = r.first_name and l.surname = r.surname\"\n",
- "training_session_names = linker.estimate_parameters_using_expectation_maximisation(\n",
- " training_blocking_rule, estimate_without_term_frequencies=True\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:41.686951Z",
- "iopub.status.busy": "2024-05-15T18:41:41.686683Z",
- "iopub.status.idle": "2024-05-15T18:41:41.926273Z",
- "shell.execute_reply": "2024-05-15T18:41:41.925689Z"
- }
- },
- "outputs": [],
- "source": [
- "training_blocking_rule = \"l.dob = r.dob\"\n",
- "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n",
- " training_blocking_rule, estimate_without_term_frequencies=True\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The final match weights can be viewed in the match weights chart:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:41.929306Z",
- "iopub.status.busy": "2024-05-15T18:41:41.929078Z",
- "iopub.status.idle": "2024-05-15T18:41:42.230106Z",
- "shell.execute_reply": "2024-05-15T18:41:42.229484Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.match_weights_chart()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:42.233172Z",
- "iopub.status.busy": "2024-05-15T18:41:42.232933Z",
- "iopub.status.idle": "2024-05-15T18:41:42.813828Z",
- "shell.execute_reply": "2024-05-15T18:41:42.813043Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.unlinkables_chart()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:42.817975Z",
- "iopub.status.busy": "2024-05-15T18:41:42.817397Z",
- "iopub.status.idle": "2024-05-15T18:41:43.292311Z",
- "shell.execute_reply": "2024-05-15T18:41:43.291620Z"
- }
- },
- "outputs": [],
- "source": [
- "df_predict = linker.predict()\n",
- "df_e = df_predict.as_pandas_dataframe(limit=5)\n",
- "df_e"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "You can also view rows in this dataset as a waterfall chart as follows:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:43.296030Z",
- "iopub.status.busy": "2024-05-15T18:41:43.295753Z",
- "iopub.status.idle": "2024-05-15T18:41:43.969119Z",
- "shell.execute_reply": "2024-05-15T18:41:43.968521Z"
- }
- },
- "outputs": [],
- "source": [
- "\n",
- "records_to_plot = df_e.to_dict(orient=\"records\")\n",
- "linker.waterfall_chart(records_to_plot, filter_nulls=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:43.972219Z",
- "iopub.status.busy": "2024-05-15T18:41:43.971787Z",
- "iopub.status.idle": "2024-05-15T18:41:44.116709Z",
- "shell.execute_reply": "2024-05-15T18:41:44.115993Z"
- }
- },
- "outputs": [],
- "source": [
- "clusters = linker.cluster_pairwise_predictions_at_threshold(\n",
- " df_predict, threshold_match_probability=0.95\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:44.120162Z",
- "iopub.status.busy": "2024-05-15T18:41:44.119922Z",
- "iopub.status.idle": "2024-05-15T18:41:44.180152Z",
- "shell.execute_reply": "2024-05-15T18:41:44.179445Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.cluster_studio_dashboard(\n",
- " df_predict,\n",
- " clusters,\n",
- " \"dashboards/50k_cluster.html\",\n",
- " sampling_method=\"by_cluster_size\",\n",
- " overwrite=True,\n",
- ")\n",
- "\n",
- "from IPython.display import IFrame\n",
- "\n",
- "IFrame(src=\"./dashboards/50k_cluster.html\", width=\"100%\", height=1200)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:44.184020Z",
- "iopub.status.busy": "2024-05-15T18:41:44.183710Z",
- "iopub.status.idle": "2024-05-15T18:41:46.543532Z",
- "shell.execute_reply": "2024-05-15T18:41:46.542614Z"
- }
- },
- "outputs": [],
- "source": [
- "linker.accuracy_analysis_from_labels_column(\n",
- " \"cluster\", output_type=\"roc\", match_weight_round_to_nearest=0.02\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:46.557696Z",
- "iopub.status.busy": "2024-05-15T18:41:46.557395Z",
- "iopub.status.idle": "2024-05-15T18:41:47.295019Z",
- "shell.execute_reply": "2024-05-15T18:41:47.294474Z"
- }
- },
- "outputs": [],
- "source": [
- "records = linker.prediction_errors_from_labels_column(\n",
- " \"cluster\",\n",
- " threshold=0.999,\n",
- " include_false_negatives=False,\n",
- " include_false_positives=True,\n",
- ").as_record_dict()\n",
- "linker.waterfall_chart(records)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-05-15T18:41:47.298555Z",
- "iopub.status.busy": "2024-05-15T18:41:47.298310Z",
- "iopub.status.idle": "2024-05-15T18:41:50.039196Z",
- "shell.execute_reply": "2024-05-15T18:41:50.038400Z"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
}
- },
- "outputs": [],
- "source": [
- "# Some of the false negatives will be because they weren't detected by the blocking rules\n",
- "records = linker.prediction_errors_from_labels_column(\n",
- " \"cluster\",\n",
- " threshold=0.5,\n",
- " include_false_negatives=True,\n",
- " include_false_positives=False,\n",
- ").as_record_dict(limit=50)\n",
- "\n",
- "linker.waterfall_chart(records)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/docs/demos/tutorials/02_Exploratory_analysis.ipynb b/docs/demos/tutorials/02_Exploratory_analysis.ipynb
index 96ca8b46ca..8639b0d256 100644
--- a/docs/demos/tutorials/02_Exploratory_analysis.ipynb
+++ b/docs/demos/tutorials/02_Exploratory_analysis.ipynb
@@ -38,10 +38,10 @@
"id": "09c3966a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:43:17.689119Z",
- "iopub.status.busy": "2024-05-20T18:43:17.688731Z",
- "iopub.status.idle": "2024-05-20T18:43:17.695621Z",
- "shell.execute_reply": "2024-05-20T18:43:17.694607Z"
+ "iopub.execute_input": "2024-06-07T09:02:36.670538Z",
+ "iopub.status.busy": "2024-06-07T09:02:36.670013Z",
+ "iopub.status.idle": "2024-06-07T09:02:36.690046Z",
+ "shell.execute_reply": "2024-06-07T09:02:36.689361Z"
}
},
"outputs": [],
@@ -56,10 +56,10 @@
"id": "ffceed65",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:43:17.700435Z",
- "iopub.status.busy": "2024-05-20T18:43:17.700005Z",
- "iopub.status.idle": "2024-05-20T18:43:21.396008Z",
- "shell.execute_reply": "2024-05-20T18:43:21.394398Z"
+ "iopub.execute_input": "2024-06-07T09:02:36.693770Z",
+ "iopub.status.busy": "2024-06-07T09:02:36.693489Z",
+ "iopub.status.idle": "2024-06-07T09:02:38.568880Z",
+ "shell.execute_reply": "2024-06-07T09:02:38.568146Z"
}
},
"outputs": [
@@ -171,7 +171,7 @@
"source": [
"### Instantiate the linker\n",
"\n",
- "Most of Splink's core functionality can be accessed as methods on a linker object. For example, to make predictions, you would call `linker.predict()`.\n",
+ "Most of Splink's core functionality can be accessed as methods on a linker object. For example, to make predictions, you would call `linker.inference.predict()`.\n",
"\n",
"We therefore begin by instantiating the linker, passing in the data we wish to deduplicate.\n"
]
@@ -182,10 +182,10 @@
"id": "8a1aa029",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:43:21.401790Z",
- "iopub.status.busy": "2024-05-20T18:43:21.401303Z",
- "iopub.status.idle": "2024-05-20T18:43:21.520430Z",
- "shell.execute_reply": "2024-05-20T18:43:21.519221Z"
+ "iopub.execute_input": "2024-06-07T09:02:38.572909Z",
+ "iopub.status.busy": "2024-06-07T09:02:38.572612Z",
+ "iopub.status.idle": "2024-06-07T09:02:38.646815Z",
+ "shell.execute_reply": "2024-06-07T09:02:38.646283Z"
}
},
"outputs": [],
@@ -220,10 +220,10 @@
"id": "6dae307c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:43:21.526661Z",
- "iopub.status.busy": "2024-05-20T18:43:21.526244Z",
- "iopub.status.idle": "2024-05-20T18:43:21.827456Z",
- "shell.execute_reply": "2024-05-20T18:43:21.826651Z"
+ "iopub.execute_input": "2024-06-07T09:02:38.650279Z",
+ "iopub.status.busy": "2024-06-07T09:02:38.650040Z",
+ "iopub.status.idle": "2024-06-07T09:02:38.861459Z",
+ "shell.execute_reply": "2024-06-07T09:02:38.860952Z"
}
},
"outputs": [
@@ -232,23 +232,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
diff --git a/docs/demos/tutorials/03_Blocking.ipynb b/docs/demos/tutorials/03_Blocking.ipynb
index d7854f0950..2ec90b9bd2 100644
--- a/docs/demos/tutorials/03_Blocking.ipynb
+++ b/docs/demos/tutorials/03_Blocking.ipynb
@@ -124,10 +124,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:45:37.145082Z",
- "iopub.status.busy": "2024-05-20T18:45:37.144746Z",
- "iopub.status.idle": "2024-05-20T18:45:37.161836Z",
- "shell.execute_reply": "2024-05-20T18:45:37.160951Z"
+ "iopub.execute_input": "2024-06-07T09:02:41.813986Z",
+ "iopub.status.busy": "2024-06-07T09:02:41.813675Z",
+ "iopub.status.idle": "2024-06-07T09:02:41.818787Z",
+ "shell.execute_reply": "2024-06-07T09:02:41.818177Z"
}
},
"outputs": [],
@@ -141,10 +141,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:45:37.167030Z",
- "iopub.status.busy": "2024-05-20T18:45:37.166460Z",
- "iopub.status.idle": "2024-05-20T18:45:39.143681Z",
- "shell.execute_reply": "2024-05-20T18:45:39.143036Z"
+ "iopub.execute_input": "2024-06-07T09:02:41.821999Z",
+ "iopub.status.busy": "2024-06-07T09:02:41.821754Z",
+ "iopub.status.idle": "2024-06-07T09:02:43.323143Z",
+ "shell.execute_reply": "2024-06-07T09:02:43.322444Z"
},
"tags": []
},
@@ -171,10 +171,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:45:39.147367Z",
- "iopub.status.busy": "2024-05-20T18:45:39.146950Z",
- "iopub.status.idle": "2024-05-20T18:45:39.458766Z",
- "shell.execute_reply": "2024-05-20T18:45:39.457589Z"
+ "iopub.execute_input": "2024-06-07T09:02:43.327040Z",
+ "iopub.status.busy": "2024-06-07T09:02:43.326745Z",
+ "iopub.status.idle": "2024-06-07T09:02:43.595484Z",
+ "shell.execute_reply": "2024-06-07T09:02:43.594829Z"
},
"tags": []
},
@@ -247,10 +247,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T18:45:39.504502Z",
- "iopub.status.busy": "2024-05-20T18:45:39.504167Z",
- "iopub.status.idle": "2024-05-20T18:45:39.756687Z",
- "shell.execute_reply": "2024-05-20T18:45:39.756039Z"
+ "iopub.execute_input": "2024-06-07T09:02:43.600028Z",
+ "iopub.status.busy": "2024-06-07T09:02:43.599628Z",
+ "iopub.status.idle": "2024-06-07T09:02:43.828432Z",
+ "shell.execute_reply": "2024-06-07T09:02:43.827890Z"
},
"tags": []
},
@@ -260,23 +260,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
],
"text/plain": [
diff --git a/docs/demos/tutorials/04_Estimating_model_parameters.ipynb b/docs/demos/tutorials/04_Estimating_model_parameters.ipynb
index 7d09bf5da9..49a92fa897 100644
--- a/docs/demos/tutorials/04_Estimating_model_parameters.ipynb
+++ b/docs/demos/tutorials/04_Estimating_model_parameters.ipynb
@@ -106,10 +106,10 @@
"id": "9ceef6f1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:05.342047Z",
- "iopub.status.busy": "2024-05-20T19:07:05.341702Z",
- "iopub.status.idle": "2024-05-20T19:07:05.361927Z",
- "shell.execute_reply": "2024-05-20T19:07:05.360830Z"
+ "iopub.execute_input": "2024-06-07T09:02:46.239817Z",
+ "iopub.status.busy": "2024-06-07T09:02:46.239448Z",
+ "iopub.status.idle": "2024-06-07T09:02:46.244716Z",
+ "shell.execute_reply": "2024-06-07T09:02:46.244029Z"
}
},
"outputs": [],
@@ -124,10 +124,10 @@
"id": "aa6a9e30",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:05.367071Z",
- "iopub.status.busy": "2024-05-20T19:07:05.366710Z",
- "iopub.status.idle": "2024-05-20T19:07:07.120254Z",
- "shell.execute_reply": "2024-05-20T19:07:07.119460Z"
+ "iopub.execute_input": "2024-06-07T09:02:46.248398Z",
+ "iopub.status.busy": "2024-06-07T09:02:46.248108Z",
+ "iopub.status.idle": "2024-06-07T09:02:47.649177Z",
+ "shell.execute_reply": "2024-06-07T09:02:47.648453Z"
},
"tags": []
},
@@ -157,10 +157,10 @@
"id": "4b7159fb",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.124601Z",
- "iopub.status.busy": "2024-05-20T19:07:07.124275Z",
- "iopub.status.idle": "2024-05-20T19:07:07.140860Z",
- "shell.execute_reply": "2024-05-20T19:07:07.139974Z"
+ "iopub.execute_input": "2024-06-07T09:02:47.653241Z",
+ "iopub.status.busy": "2024-06-07T09:02:47.652946Z",
+ "iopub.status.idle": "2024-06-07T09:02:47.667819Z",
+ "shell.execute_reply": "2024-06-07T09:02:47.667228Z"
},
"tags": []
},
@@ -200,10 +200,10 @@
"id": "bd6143e7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.144985Z",
- "iopub.status.busy": "2024-05-20T19:07:07.144681Z",
- "iopub.status.idle": "2024-05-20T19:07:07.175908Z",
- "shell.execute_reply": "2024-05-20T19:07:07.175137Z"
+ "iopub.execute_input": "2024-06-07T09:02:47.671318Z",
+ "iopub.status.busy": "2024-06-07T09:02:47.671046Z",
+ "iopub.status.idle": "2024-06-07T09:02:47.707750Z",
+ "shell.execute_reply": "2024-06-07T09:02:47.707104Z"
},
"tags": []
},
@@ -246,10 +246,10 @@
"id": "0fa0611a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.179680Z",
- "iopub.status.busy": "2024-05-20T19:07:07.179398Z",
- "iopub.status.idle": "2024-05-20T19:07:07.297459Z",
- "shell.execute_reply": "2024-05-20T19:07:07.296785Z"
+ "iopub.execute_input": "2024-06-07T09:02:47.711774Z",
+ "iopub.status.busy": "2024-06-07T09:02:47.711447Z",
+ "iopub.status.idle": "2024-06-07T09:02:47.834384Z",
+ "shell.execute_reply": "2024-06-07T09:02:47.833818Z"
},
"tags": []
},
@@ -332,10 +332,10 @@
"id": "cbf92120",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.301055Z",
- "iopub.status.busy": "2024-05-20T19:07:07.300814Z",
- "iopub.status.idle": "2024-05-20T19:07:07.441083Z",
- "shell.execute_reply": "2024-05-20T19:07:07.440589Z"
+ "iopub.execute_input": "2024-06-07T09:02:47.837910Z",
+ "iopub.status.busy": "2024-06-07T09:02:47.837638Z",
+ "iopub.status.idle": "2024-06-07T09:02:47.986455Z",
+ "shell.execute_reply": "2024-06-07T09:02:47.985936Z"
},
"tags": []
},
@@ -357,7 +357,7 @@
" \"l.email = r.email\",\n",
"]\n",
"\n",
- "linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
+ "linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)"
]
},
{
@@ -386,10 +386,10 @@
"id": "b8d49e7a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.444298Z",
- "iopub.status.busy": "2024-05-20T19:07:07.444048Z",
- "iopub.status.idle": "2024-05-20T19:07:07.830875Z",
- "shell.execute_reply": "2024-05-20T19:07:07.830279Z"
+ "iopub.execute_input": "2024-06-07T09:02:47.989645Z",
+ "iopub.status.busy": "2024-06-07T09:02:47.989414Z",
+ "iopub.status.idle": "2024-06-07T09:02:48.397955Z",
+ "shell.execute_reply": "2024-06-07T09:02:48.396948Z"
}
},
"outputs": [
@@ -430,7 +430,7 @@
}
],
"source": [
- "linker.estimate_u_using_random_sampling(max_pairs=1e6)"
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)"
]
},
{
@@ -481,10 +481,10 @@
"id": "098f0a40",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:07.833995Z",
- "iopub.status.busy": "2024-05-20T19:07:07.833766Z",
- "iopub.status.idle": "2024-05-20T19:07:08.412952Z",
- "shell.execute_reply": "2024-05-20T19:07:08.412392Z"
+ "iopub.execute_input": "2024-06-07T09:02:48.401693Z",
+ "iopub.status.busy": "2024-06-07T09:02:48.401466Z",
+ "iopub.status.idle": "2024-06-07T09:02:48.931826Z",
+ "shell.execute_reply": "2024-06-07T09:02:48.931336Z"
}
},
"outputs": [
@@ -627,7 +627,7 @@
"source": [
"training_blocking_rule = block_on(\"first_name\", \"surname\")\n",
"training_session_fname_sname = (\n",
- " linker.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n",
+ " linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)\n",
")"
]
},
@@ -647,10 +647,10 @@
"id": "ac8d3264",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:08.415856Z",
- "iopub.status.busy": "2024-05-20T19:07:08.415632Z",
- "iopub.status.idle": "2024-05-20T19:07:09.376153Z",
- "shell.execute_reply": "2024-05-20T19:07:09.375519Z"
+ "iopub.execute_input": "2024-06-07T09:02:48.934774Z",
+ "iopub.status.busy": "2024-06-07T09:02:48.934564Z",
+ "iopub.status.idle": "2024-06-07T09:02:49.904132Z",
+ "shell.execute_reply": "2024-06-07T09:02:49.903556Z"
}
},
"outputs": [
@@ -832,7 +832,7 @@
],
"source": [
"training_blocking_rule = block_on(\"dob\")\n",
- "training_session_dob = linker.estimate_parameters_using_expectation_maximisation(\n",
+ "training_session_dob = linker.training.estimate_parameters_using_expectation_maximisation(\n",
" training_blocking_rule\n",
")"
]
@@ -863,10 +863,10 @@
"id": "3a1e15cc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-20T19:07:09.379360Z",
- "iopub.status.busy": "2024-05-20T19:07:09.379104Z",
- "iopub.status.idle": "2024-05-20T19:07:09.667771Z",
- "shell.execute_reply": "2024-05-20T19:07:09.667214Z"
+ "iopub.execute_input": "2024-06-07T09:02:49.907368Z",
+ "iopub.status.busy": "2024-06-07T09:02:49.907142Z",
+ "iopub.status.idle": "2024-06-07T09:02:50.194366Z",
+ "shell.execute_reply": "2024-06-07T09:02:50.193774Z"
}
},
"outputs": [
@@ -875,23 +875,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"records_to_view = df_predictions.as_record_dict(limit=5)\n",
- "linker.waterfall_chart(records_to_view, filter_nulls=False)"
- ],
- "outputs": []
+ "linker.visualisations.waterfall_chart(records_to_view, filter_nulls=False)"
+ ]
},
{
"cell_type": "markdown",
@@ -138,22 +229,45 @@
"id": "da85169c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:09:23.291425Z",
- "iopub.status.busy": "2024-03-27T15:09:23.291204Z",
- "iopub.status.idle": "2024-03-27T15:09:23.402967Z",
- "shell.execute_reply": "2024-03-27T15:09:23.402274Z"
+ "iopub.execute_input": "2024-06-07T09:03:00.084660Z",
+ "iopub.status.busy": "2024-06-07T09:03:00.084445Z",
+ "iopub.status.idle": "2024-06-07T09:03:00.178870Z",
+ "shell.execute_reply": "2024-06-07T09:03:00.178202Z"
},
"tags": []
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "linker.comparison_viewer_dashboard(df_predictions, \"scv.html\", overwrite=True)\n",
+ "linker.visualisations.comparison_viewer_dashboard(df_predictions, \"scv.html\", overwrite=True)\n",
"\n",
"# You can view the scv.html file in your browser, or inline in a notbook as follows\n",
"from IPython.display import IFrame\n",
"\n",
"IFrame(src=\"./scv.html\", width=\"100%\", height=1200)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -173,19 +287,64 @@
"id": "e2153d91",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-03-27T15:09:23.406978Z",
- "iopub.status.busy": "2024-03-27T15:09:23.406680Z",
- "iopub.status.idle": "2024-03-27T15:09:23.546021Z",
- "shell.execute_reply": "2024-03-27T15:09:23.545342Z"
+ "iopub.execute_input": "2024-06-07T09:03:00.182711Z",
+ "iopub.status.busy": "2024-06-07T09:03:00.182424Z",
+ "iopub.status.idle": "2024-06-07T09:03:00.304287Z",
+ "shell.execute_reply": "2024-06-07T09:03:00.303577Z"
},
"tags": []
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 1, root rows count 11\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 2, root rows count 1\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Completed iteration 3, root rows count 0\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "df_clusters = linker.cluster_pairwise_predictions_at_threshold(\n",
+ "df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(\n",
" df_predictions, threshold_match_probability=0.5\n",
")\n",
"\n",
- "linker.cluster_studio_dashboard(\n",
+ "linker.visualisations.cluster_studio_dashboard(\n",
" df_predictions,\n",
" df_clusters,\n",
" \"cluster_studio.html\",\n",
@@ -197,8 +356,7 @@
"from IPython.display import IFrame\n",
"\n",
"IFrame(src=\"./cluster_studio.html\", width=\"100%\", height=1200)"
- ],
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
diff --git a/docs/demos/tutorials/07_Evaluation.ipynb b/docs/demos/tutorials/07_Evaluation.ipynb
index c76e54771d..5ff268f28e 100644
--- a/docs/demos/tutorials/07_Evaluation.ipynb
+++ b/docs/demos/tutorials/07_Evaluation.ipynb
@@ -25,10 +25,10 @@
"id": "e08e61e5",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-21T07:21:55.640839Z",
- "iopub.status.busy": "2024-05-21T07:21:55.640514Z",
- "iopub.status.idle": "2024-05-21T07:21:55.645741Z",
- "shell.execute_reply": "2024-05-21T07:21:55.645048Z"
+ "iopub.execute_input": "2024-06-07T09:03:02.636698Z",
+ "iopub.status.busy": "2024-06-07T09:03:02.636146Z",
+ "iopub.status.idle": "2024-06-07T09:03:02.641116Z",
+ "shell.execute_reply": "2024-06-07T09:03:02.640495Z"
}
},
"outputs": [],
@@ -43,10 +43,10 @@
"id": "fb29d421",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-21T07:21:55.649770Z",
- "iopub.status.busy": "2024-05-21T07:21:55.649454Z",
- "iopub.status.idle": "2024-05-21T07:21:56.892270Z",
- "shell.execute_reply": "2024-05-21T07:21:56.891356Z"
+ "iopub.execute_input": "2024-06-07T09:03:02.644758Z",
+ "iopub.status.busy": "2024-06-07T09:03:02.644471Z",
+ "iopub.status.idle": "2024-06-07T09:03:04.108590Z",
+ "shell.execute_reply": "2024-06-07T09:03:04.107484Z"
}
},
"outputs": [],
@@ -68,10 +68,10 @@
"id": "f88cc1c1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-21T07:21:56.896214Z",
- "iopub.status.busy": "2024-05-21T07:21:56.895903Z",
- "iopub.status.idle": "2024-05-21T07:21:57.351010Z",
- "shell.execute_reply": "2024-05-21T07:21:57.349962Z"
+ "iopub.execute_input": "2024-06-07T09:03:04.112617Z",
+ "iopub.status.busy": "2024-06-07T09:03:04.112305Z",
+ "iopub.status.idle": "2024-06-07T09:03:04.739121Z",
+ "shell.execute_reply": "2024-06-07T09:03:04.738560Z"
}
},
"outputs": [],
@@ -94,7 +94,7 @@
"\n",
"\n",
"linker = Linker(df, \"../demo_settings/saved_model_from_demo.json\", database_api=DuckDBAPI())\n",
- "df_predictions = linker.predict(threshold_match_probability=0.1)\n",
+ "df_predictions = linker.inference.predict(threshold_match_probability=0.1)\n",
"\n",
"\n"
]
@@ -117,10 +117,10 @@
"id": "bbfdc70c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-21T07:21:57.356084Z",
- "iopub.status.busy": "2024-05-21T07:21:57.355734Z",
- "iopub.status.idle": "2024-05-21T07:21:57.384328Z",
- "shell.execute_reply": "2024-05-21T07:21:57.383470Z"
+ "iopub.execute_input": "2024-06-07T09:03:04.742455Z",
+ "iopub.status.busy": "2024-06-07T09:03:04.742207Z",
+ "iopub.status.idle": "2024-06-07T09:03:04.766096Z",
+ "shell.execute_reply": "2024-06-07T09:03:04.765427Z"
}
},
"outputs": [
@@ -222,7 +222,7 @@
"from splink.datasets import splink_dataset_labels\n",
"\n",
"df_labels = splink_dataset_labels.fake_1000_labels\n",
- "labels_table = linker.register_labels_table(df_labels)\n",
+ "labels_table = linker.table_management.register_labels_table(df_labels)\n",
"df_labels.head(5)"
]
},
@@ -242,10 +242,10 @@
"id": "e83d9645",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-21T07:21:57.388865Z",
- "iopub.status.busy": "2024-05-21T07:21:57.388508Z",
- "iopub.status.idle": "2024-05-21T07:21:59.126981Z",
- "shell.execute_reply": "2024-05-21T07:21:59.126236Z"
+ "iopub.execute_input": "2024-06-07T09:03:04.769834Z",
+ "iopub.status.busy": "2024-06-07T09:03:04.769551Z",
+ "iopub.status.idle": "2024-06-07T09:03:06.065158Z",
+ "shell.execute_reply": "2024-06-07T09:03:06.064618Z"
}
},
"outputs": [
@@ -254,23 +254,23 @@
"text/html": [
"\n",
"\n",
- "\n",
+ "\n",
""
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "dff4221dc36c464c978c1877320e69a8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "import splink.duckdb.comparison_library as cl\n",
+ "import splink.duckdb.comparison_template_library as ctl\n",
+ "\n",
+ "import logging\n",
+ "logging.getLogger(\"splink\").setLevel(logging.WARNING)\n",
+ "from splink.datasets import splink_datasets\n",
+ "\n",
+ "df = splink_datasets.fake_1000\n",
+ "\n",
+ "settings = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"comparisons\": [\n",
+ " ctl.name_comparison(\"first_name\", ),\n",
+ " ctl.name_comparison(\"surname\"),\n",
+ " ctl.date_comparison(\"dob\", cast_strings_to_date=True),\n",
+ " cl.exact_match(\"city\", term_frequency_adjustments=True),\n",
+ " cl.levenshtein_at_thresholds(\"email\", 2),\n",
+ " ],\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " \"l.first_name = r.first_name\",\n",
+ " \"l.surname = r.surname\",\n",
+ " ],\n",
+ " \"retain_matching_columns\": True,\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ "}\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings, set_up_basic_logging=False)\n",
+ "linker.training.estimate_u_using_random_sampling(max_pairs=1e6)\n",
+ "for rule in [\"l.first_name = r.first_name\", \"l.email = r.email\"]:\n",
+ " linker.training.estimate_parameters_using_expectation_maximisation(rule)"
]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "import altair as alt\n",
- "\n",
- "df = pd.DataFrame(records)\n",
- "\n",
- "# Need a unique name for each comparison level - easier to create in pandas than altair\n",
- "df[\"cl_id\"] = df[\"comparison_name\"] + \"_\" + \\\n",
- " df[\"comparison_vector_value\"].astype(\"str\")\n",
- "\n",
- "# Simple start - bar chart with x, y and color encodings\n",
- "alt.Chart(df).mark_bar().encode(\n",
- " y=\"cl_id\",\n",
- " x=\"log2_bayes_factor\",\n",
- " color=\"comparison_name\"\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Sort bars, edit axes/titles\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Generate data for chart"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Take linker object and extract complete settings dict\n",
+ "records = linker._settings_obj._parameters_as_detailed_records\n",
+ "\n",
+ "cols_to_keep = [\n",
+ " \"comparison_name\",\n",
+ " \"sql_condition\",\n",
+ " \"label_for_charts\",\n",
+ " \"m_probability\",\n",
+ " \"u_probability\",\n",
+ " \"bayes_factor\",\n",
+ " \"log2_bayes_factor\",\n",
+ " \"comparison_vector_value\"\n",
+ "]\n",
+ "\n",
+ "# Keep useful information for a match weights chart\n",
+ "records = [{k: r[k] for k in cols_to_keep}\n",
+ " for r in records \n",
+ " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "??? note \"records\"\n",
+ " ```py \n",
+ " [\n",
+ " {'comparison_name': 'first_name',\n",
+ " 'sql_condition': '\"first_name_l\" = \"first_name_r\"',\n",
+ " 'label_for_charts': 'Exact match first_name',\n",
+ " 'm_probability': 0.5018941916173814,\n",
+ " 'u_probability': 0.0057935713975033705,\n",
+ " 'bayes_factor': 86.62949969575988,\n",
+ " 'log2_bayes_factor': 6.436786480320881,\n",
+ " 'comparison_vector_value': 4},\n",
+ " {'comparison_name': 'first_name',\n",
+ " 'sql_condition': 'damerau_levenshtein(\"first_name_l\", \"first_name_r\") <= 1',\n",
+ " 'label_for_charts': 'Damerau_levenshtein <= 1',\n",
+ " 'm_probability': 0.19595791797531015,\n",
+ " 'u_probability': 0.00236614327345483,\n",
+ " 'bayes_factor': 82.81743551783742,\n",
+ " 'log2_bayes_factor': 6.371862624533329,\n",
+ " 'comparison_vector_value': 3},\n",
+ " {'comparison_name': 'first_name',\n",
+ " 'sql_condition': 'jaro_winkler_similarity(\"first_name_l\", \"first_name_r\") >= 0.9',\n",
+ " 'label_for_charts': 'Jaro_winkler_similarity >= 0.9',\n",
+ " 'm_probability': 0.045985303626033085,\n",
+ " 'u_probability': 0.001296159366708712,\n",
+ " 'bayes_factor': 35.47812468678278,\n",
+ " 'log2_bayes_factor': 5.148857848140163,\n",
+ " 'comparison_vector_value': 2},\n",
+ " {'comparison_name': 'first_name',\n",
+ " 'sql_condition': 'jaro_winkler_similarity(\"first_name_l\", \"first_name_r\") >= 0.8',\n",
+ " 'label_for_charts': 'Jaro_winkler_similarity >= 0.8',\n",
+ " 'm_probability': 0.06396730257493154,\n",
+ " 'u_probability': 0.005677583982137938,\n",
+ " 'bayes_factor': 11.266641370022352,\n",
+ " 'log2_bayes_factor': 3.493985601438375,\n",
+ " 'comparison_vector_value': 1},\n",
+ " {'comparison_name': 'first_name',\n",
+ " 'sql_condition': 'ELSE',\n",
+ " 'label_for_charts': 'All other comparisons',\n",
+ " 'm_probability': 0.19219528420634394,\n",
+ " 'u_probability': 0.9848665419801952,\n",
+ " 'bayes_factor': 0.19514855669673956,\n",
+ " 'log2_bayes_factor': -2.357355302129234,\n",
+ " 'comparison_vector_value': 0},\n",
+ " {'comparison_name': 'surname',\n",
+ " 'sql_condition': '\"surname_l\" = \"surname_r\"',\n",
+ " 'label_for_charts': 'Exact match surname',\n",
+ " 'm_probability': 0.5527050424941531,\n",
+ " 'u_probability': 0.004889975550122249,\n",
+ " 'bayes_factor': 113.02818119005431,\n",
+ " 'log2_bayes_factor': 6.820538712806792,\n",
+ " 'comparison_vector_value': 4},\n",
+ " {'comparison_name': 'surname',\n",
+ " 'sql_condition': 'damerau_levenshtein(\"surname_l\", \"surname_r\") <= 1',\n",
+ " 'label_for_charts': 'Damerau_levenshtein <= 1',\n",
+ " 'm_probability': 0.22212752320956386,\n",
+ " 'u_probability': 0.0027554624131641246,\n",
+ " 'bayes_factor': 80.61351958508214,\n",
+ " 'log2_bayes_factor': 6.332949906378981,\n",
+ " 'comparison_vector_value': 3},\n",
+ " {'comparison_name': 'surname',\n",
+ " 'sql_condition': 'jaro_winkler_similarity(\"surname_l\", \"surname_r\") >= 0.9',\n",
+ " 'label_for_charts': 'Jaro_winkler_similarity >= 0.9',\n",
+ " 'm_probability': 0.0490149338194711,\n",
+ " 'u_probability': 0.0010090425738347498,\n",
+ " 'bayes_factor': 48.57568460485815,\n",
+ " 'log2_bayes_factor': 5.602162423566203,\n",
+ " 'comparison_vector_value': 2},\n",
+ " {'comparison_name': 'surname',\n",
+ " 'sql_condition': 'jaro_winkler_similarity(\"surname_l\", \"surname_r\") >= 0.8',\n",
+ " 'label_for_charts': 'Jaro_winkler_similarity >= 0.8',\n",
+ " 'm_probability': 0.05001678986356945,\n",
+ " 'u_probability': 0.003710768991942586,\n",
+ " 'bayes_factor': 13.478820689774516,\n",
+ " 'log2_bayes_factor': 3.752622370380284,\n",
+ " 'comparison_vector_value': 1},\n",
+ " {'comparison_name': 'surname',\n",
+ " 'sql_condition': 'ELSE',\n",
+ " 'label_for_charts': 'All other comparisons',\n",
+ " 'm_probability': 0.1261357106132424,\n",
+ " 'u_probability': 0.9876347504709363,\n",
+ " 'bayes_factor': 0.1277149376863226,\n",
+ " 'log2_bayes_factor': -2.969000820703079,\n",
+ " 'comparison_vector_value': 0},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': '\"dob_l\" = \"dob_r\"',\n",
+ " 'label_for_charts': 'Exact match',\n",
+ " 'm_probability': 0.41383785481447766,\n",
+ " 'u_probability': 0.0017477477477477479,\n",
+ " 'bayes_factor': 236.78351486807742,\n",
+ " 'log2_bayes_factor': 7.887424832202931,\n",
+ " 'comparison_vector_value': 5},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': 'damerau_levenshtein(\"dob_l\", \"dob_r\") <= 1',\n",
+ " 'label_for_charts': 'Damerau_levenshtein <= 1',\n",
+ " 'm_probability': 0.10806341031654734,\n",
+ " 'u_probability': 0.0016436436436436436,\n",
+ " 'bayes_factor': 65.74625268345359,\n",
+ " 'log2_bayes_factor': 6.038836762842662,\n",
+ " 'comparison_vector_value': 4},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': '\\n abs(date_diff(\\'month\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 1\\n ',\n",
+ " 'label_for_charts': 'Within 1 month',\n",
+ " 'm_probability': 0.11300938544779224,\n",
+ " 'u_probability': 0.003833833833833834,\n",
+ " 'bayes_factor': 29.476860590690453,\n",
+ " 'log2_bayes_factor': 4.881510974428093,\n",
+ " 'comparison_vector_value': 3},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': '\\n abs(date_diff(\\'year\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 1\\n ',\n",
+ " 'label_for_charts': 'Within 1 year',\n",
+ " 'm_probability': 0.17200656922328977,\n",
+ " 'u_probability': 0.05062662662662663,\n",
+ " 'bayes_factor': 3.397551460259144,\n",
+ " 'log2_bayes_factor': 1.7644954026183992,\n",
+ " 'comparison_vector_value': 2},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': '\\n abs(date_diff(\\'year\\',\\n strptime(\"dob_l\", \\'%Y-%m-%d\\'),\\n strptime(\"dob_r\", \\'%Y-%m-%d\\'))\\n ) <= 10\\n ',\n",
+ " 'label_for_charts': 'Within 10 years',\n",
+ " 'm_probability': 0.19035523041792068,\n",
+ " 'u_probability': 0.3037037037037037,\n",
+ " 'bayes_factor': 0.6267794172297388,\n",
+ " 'log2_bayes_factor': -0.6739702908716182,\n",
+ " 'comparison_vector_value': 1},\n",
+ " {'comparison_name': 'dob',\n",
+ " 'sql_condition': 'ELSE',\n",
+ " 'label_for_charts': 'All other comparisons',\n",
+ " 'm_probability': 0.002727549779972325,\n",
+ " 'u_probability': 0.6384444444444445,\n",
+ " 'bayes_factor': 0.004272180302776005,\n",
+ " 'log2_bayes_factor': -7.870811748958801,\n",
+ " 'comparison_vector_value': 0},\n",
+ " {'comparison_name': 'city',\n",
+ " 'sql_condition': '\"city_l\" = \"city_r\"',\n",
+ " 'label_for_charts': 'Exact match',\n",
+ " 'm_probability': 0.6013808934279701,\n",
+ " 'u_probability': 0.0551475711801453,\n",
+ " 'bayes_factor': 10.904938885948333,\n",
+ " 'log2_bayes_factor': 3.4469097796586596,\n",
+ " 'comparison_vector_value': 1},\n",
+ " {'comparison_name': 'city',\n",
+ " 'sql_condition': 'ELSE',\n",
+ " 'label_for_charts': 'All other comparisons',\n",
+ " 'm_probability': 0.3986191065720299,\n",
+ " 'u_probability': 0.9448524288198547,\n",
+ " 'bayes_factor': 0.42188504195296994,\n",
+ " 'log2_bayes_factor': -1.2450781575619725,\n",
+ " 'comparison_vector_value': 0},\n",
+ " {'comparison_name': 'email',\n",
+ " 'sql_condition': '\"email_l\" = \"email_r\"',\n",
+ " 'label_for_charts': 'Exact match',\n",
+ " 'm_probability': 0.5914840252879943,\n",
+ " 'u_probability': 0.0021938713143283602,\n",
+ " 'bayes_factor': 269.6074384240141,\n",
+ " 'log2_bayes_factor': 8.07471649055784,\n",
+ " 'comparison_vector_value': 2},\n",
+ " {'comparison_name': 'email',\n",
+ " 'sql_condition': 'levenshtein(\"email_l\", \"email_r\") <= 2',\n",
+ " 'label_for_charts': 'Levenshtein <= 2',\n",
+ " 'm_probability': 0.3019669634613132,\n",
+ " 'u_probability': 0.0013542812658830492,\n",
+ " 'bayes_factor': 222.9721189153553,\n",
+ " 'log2_bayes_factor': 7.800719512398763,\n",
+ " 'comparison_vector_value': 1},\n",
+ " {'comparison_name': 'email',\n",
+ " 'sql_condition': 'ELSE',\n",
+ " 'label_for_charts': 'All other comparisons',\n",
+ " 'm_probability': 0.10654901125069259,\n",
+ " 'u_probability': 0.9964518474197885,\n",
+ " 'bayes_factor': 0.10692840956298139,\n",
+ " 'log2_bayes_factor': -3.225282884575804,\n",
+ " 'comparison_vector_value': 0}\n",
+ " ]\n",
+ " ```"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create a chart template\n",
+ "\n",
+ "### Build prototype chart in Altair"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "import pandas as pd\n",
+ "import altair as alt\n",
+ "\n",
+ "df = pd.DataFrame(records)\n",
+ "\n",
+ "# Need a unique name for each comparison level - easier to create in pandas than altair\n",
+ "df[\"cl_id\"] = df[\"comparison_name\"] + \"_\" + \\\n",
+ " df[\"comparison_vector_value\"].astype(\"str\")\n",
+ "\n",
+ "# Simple start - bar chart with x, y and color encodings\n",
+ "alt.Chart(df).mark_bar().encode(\n",
+ " y=\"cl_id\",\n",
+ " x=\"log2_bayes_factor\",\n",
+ " color=\"comparison_name\"\n",
+ ")"
]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "alt.Chart(df).mark_bar().encode(\n",
- " y=alt.Y(\"cl_id\", \n",
- " sort=\"-x\", \n",
- " title=\"Comparison level\"\n",
- " ),\n",
- " x=alt.X(\"log2_bayes_factor\", \n",
- " title=\"Comparison level match weight = log2(m/u)\", \n",
- " scale=alt.Scale(domain=[-10,10])\n",
- " ),\n",
- " color=\"comparison_name\"\n",
- ").properties(\n",
- " title=\"New Chart - WOO!\"\n",
- ").configure_view(\n",
- " step=15\n",
- ")\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### Add tooltip"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Sort bars, edit axes/titles\n"
+ ]
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.Chart(...)"
+ "source": [
+ "alt.Chart(df).mark_bar().encode(\n",
+ " y=alt.Y(\"cl_id\", \n",
+ " sort=\"-x\", \n",
+ " title=\"Comparison level\"\n",
+ " ),\n",
+ " x=alt.X(\"log2_bayes_factor\", \n",
+ " title=\"Comparison level match weight = log2(m/u)\", \n",
+ " scale=alt.Scale(domain=[-10,10])\n",
+ " ),\n",
+ " color=\"comparison_name\"\n",
+ ").properties(\n",
+ " title=\"New Chart - WOO!\"\n",
+ ").configure_view(\n",
+ " step=15\n",
+ ")\n"
]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "alt.Chart(df).mark_bar().encode(\n",
- " y=alt.Y(\"cl_id\",\n",
- " sort=\"-x\",\n",
- " title=\"Comparison level\"\n",
- " ),\n",
- " x=alt.X(\"log2_bayes_factor\",\n",
- " title=\"Comparison level match weight = log2(m/u)\",\n",
- " scale=alt.Scale(domain=[-10, 10])\n",
- " ),\n",
- " color=\"comparison_name\",\n",
- " tooltip=[\n",
- " \"comparison_name\", \n",
- " \"label_for_charts\", \n",
- " \"sql_condition\",\n",
- " \"m_probability\",\n",
- " \"u_probability\",\n",
- " \"bayes_factor\",\n",
- " \"log2_bayes_factor\"\n",
- " ]\n",
- ").properties(\n",
- " title=\"New Chart - WOO!\"\n",
- ").configure_view(\n",
- " step=15\n",
- ")\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "####Â Add text layer\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Add tooltip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.LayerChart(...)"
+ "source": [
+ "alt.Chart(df).mark_bar().encode(\n",
+ " y=alt.Y(\"cl_id\",\n",
+ " sort=\"-x\",\n",
+ " title=\"Comparison level\"\n",
+ " ),\n",
+ " x=alt.X(\"log2_bayes_factor\",\n",
+ " title=\"Comparison level match weight = log2(m/u)\",\n",
+ " scale=alt.Scale(domain=[-10, 10])\n",
+ " ),\n",
+ " color=\"comparison_name\",\n",
+ " tooltip=[\n",
+ " \"comparison_name\", \n",
+ " \"label_for_charts\", \n",
+ " \"sql_condition\",\n",
+ " \"m_probability\",\n",
+ " \"u_probability\",\n",
+ " \"bayes_factor\",\n",
+ " \"log2_bayes_factor\"\n",
+ " ]\n",
+ ").properties(\n",
+ " title=\"New Chart - WOO!\"\n",
+ ").configure_view(\n",
+ " step=15\n",
+ ")\n"
]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Create base chart with shared data and encodings (mark type not specified)\n",
- "base = alt.Chart(df).encode(\n",
- " y=alt.Y(\"cl_id\",\n",
- " sort=\"-x\",\n",
- " title=\"Comparison level\"\n",
- " ),\n",
- " x=alt.X(\"log2_bayes_factor\",\n",
- " title=\"Comparison level match weight = log2(m/u)\",\n",
- " scale=alt.Scale(domain=[-10, 10])\n",
- " ),\n",
- " tooltip=[\n",
- " \"comparison_name\",\n",
- " \"label_for_charts\",\n",
- " \"sql_condition\",\n",
- " \"m_probability\",\n",
- " \"u_probability\",\n",
- " \"bayes_factor\",\n",
- " \"log2_bayes_factor\"\n",
- " ]\n",
- ")\n",
- "\n",
- "# Build bar chart from base (color legend made redundant by text labels)\n",
- "bar = base.mark_bar().encode(\n",
- " color=alt.Color(\"comparison_name\", legend=None)\n",
- ")\n",
- "\n",
- "# Build text layer from base\n",
- "text = base.mark_text(dx=0, align=\"right\").encode(\n",
- " text=\"comparison_name\"\n",
- ")\n",
- "\n",
- "# Final layered chart\n",
- "chart = bar + text\n",
- "\n",
- "# Add global config\n",
- "chart.resolve_axis(\n",
- " y=\"shared\", \n",
- " x=\"shared\"\n",
- ").properties(\n",
- " title=\"New Chart - WOO!\"\n",
- ").configure_view(\n",
- " step=15\n",
- ")\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Sometimes things go wrong in Altair and it's not clear why or how to fix it. If the docs and Stack Overflow don't have a solution, the answer is usually that Altair is making decisions under the hood about the Vega-Lite schema that are out of your control.\n",
- "\n",
- "In this example, the sorting of the y-axis is broken when layering charts. If we show `bar` and `text` side-by-side, you can see they work as expected, but the sorting is broken in the layering process."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "####Â Add text layer\n"
+ ]
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- ""
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.LayerChart(...)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- "alt.HConcatChart(...)"
+ "source": [
+ "# Create base chart with shared data and encodings (mark type not specified)\n",
+ "base = alt.Chart(df).encode(\n",
+ " y=alt.Y(\"cl_id\",\n",
+ " sort=\"-x\",\n",
+ " title=\"Comparison level\"\n",
+ " ),\n",
+ " x=alt.X(\"log2_bayes_factor\",\n",
+ " title=\"Comparison level match weight = log2(m/u)\",\n",
+ " scale=alt.Scale(domain=[-10, 10])\n",
+ " ),\n",
+ " tooltip=[\n",
+ " \"comparison_name\",\n",
+ " \"label_for_charts\",\n",
+ " \"sql_condition\",\n",
+ " \"m_probability\",\n",
+ " \"u_probability\",\n",
+ " \"bayes_factor\",\n",
+ " \"log2_bayes_factor\"\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Build bar chart from base (color legend made redundant by text labels)\n",
+ "bar = base.mark_bar().encode(\n",
+ " color=alt.Color(\"comparison_name\", legend=None)\n",
+ ")\n",
+ "\n",
+ "# Build text layer from base\n",
+ "text = base.mark_text(dx=0, align=\"right\").encode(\n",
+ " text=\"comparison_name\"\n",
+ ")\n",
+ "\n",
+ "# Final layered chart\n",
+ "chart = bar + text\n",
+ "\n",
+ "# Add global config\n",
+ "chart.resolve_axis(\n",
+ " y=\"shared\", \n",
+ " x=\"shared\"\n",
+ ").properties(\n",
+ " title=\"New Chart - WOO!\"\n",
+ ").configure_view(\n",
+ " step=15\n",
+ ")\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Sometimes things go wrong in Altair and it's not clear why or how to fix it. If the docs and Stack Overflow don't have a solution, the answer is usually that Altair is making decisions under the hood about the Vega-Lite schema that are out of your control.\n",
+ "\n",
+ "In this example, the sorting of the y-axis is broken when layering charts. If we show `bar` and `text` side-by-side, you can see they work as expected, but the sorting is broken in the layering process."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.HConcatChart(...)"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "bar | text"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once we get to this stage (or whenever you're comfortable), we can switch to Vega-Lite by exporting the JSON from our `chart` object, or opening the chart in the Vega-Lite editor.\n",
+ "\n",
+ "```py\n",
+ "chart.to_json()\n",
+ "```"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "??? note \"Chart JSON\"\n",
+ " ```json\n",
+ " {\n",
+ " \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.8.0.json\",\n",
+ " \"config\": {\n",
+ " \"view\": {\n",
+ " \"continuousHeight\": 300,\n",
+ " \"continuousWidth\": 300\n",
+ " }\n",
+ " },\n",
+ " \"data\": {\n",
+ " \"name\": \"data-3901c03d78701611834aa82ab7374cce\"\n",
+ " },\n",
+ " \"datasets\": {\n",
+ " \"data-3901c03d78701611834aa82ab7374cce\": [\n",
+ " {\n",
+ " \"bayes_factor\": 86.62949969575988,\n",
+ " \"cl_id\": \"first_name_4\",\n",
+ " \"comparison_name\": \"first_name\",\n",
+ " \"comparison_vector_value\": 4,\n",
+ " \"label_for_charts\": \"Exact match first_name\",\n",
+ " \"log2_bayes_factor\": 6.436786480320881,\n",
+ " \"m_probability\": 0.5018941916173814,\n",
+ " \"sql_condition\": \"\\\"first_name_l\\\" = \\\"first_name_r\\\"\",\n",
+ " \"u_probability\": 0.0057935713975033705\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 82.81743551783742,\n",
+ " \"cl_id\": \"first_name_3\",\n",
+ " \"comparison_name\": \"first_name\",\n",
+ " \"comparison_vector_value\": 3,\n",
+ " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
+ " \"log2_bayes_factor\": 6.371862624533329,\n",
+ " \"m_probability\": 0.19595791797531015,\n",
+ " \"sql_condition\": \"damerau_levenshtein(\\\"first_name_l\\\", \\\"first_name_r\\\") <= 1\",\n",
+ " \"u_probability\": 0.00236614327345483\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 35.47812468678278,\n",
+ " \"cl_id\": \"first_name_2\",\n",
+ " \"comparison_name\": \"first_name\",\n",
+ " \"comparison_vector_value\": 2,\n",
+ " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n",
+ " \"log2_bayes_factor\": 5.148857848140163,\n",
+ " \"m_probability\": 0.045985303626033085,\n",
+ " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.9\",\n",
+ " \"u_probability\": 0.001296159366708712\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 11.266641370022352,\n",
+ " \"cl_id\": \"first_name_1\",\n",
+ " \"comparison_name\": \"first_name\",\n",
+ " \"comparison_vector_value\": 1,\n",
+ " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n",
+ " \"log2_bayes_factor\": 3.493985601438375,\n",
+ " \"m_probability\": 0.06396730257493154,\n",
+ " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.8\",\n",
+ " \"u_probability\": 0.005677583982137938\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.19514855669673956,\n",
+ " \"cl_id\": \"first_name_0\",\n",
+ " \"comparison_name\": \"first_name\",\n",
+ " \"comparison_vector_value\": 0,\n",
+ " \"label_for_charts\": \"All other comparisons\",\n",
+ " \"log2_bayes_factor\": -2.357355302129234,\n",
+ " \"m_probability\": 0.19219528420634394,\n",
+ " \"sql_condition\": \"ELSE\",\n",
+ " \"u_probability\": 0.9848665419801952\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 113.02818119005431,\n",
+ " \"cl_id\": \"surname_4\",\n",
+ " \"comparison_name\": \"surname\",\n",
+ " \"comparison_vector_value\": 4,\n",
+ " \"label_for_charts\": \"Exact match surname\",\n",
+ " \"log2_bayes_factor\": 6.820538712806792,\n",
+ " \"m_probability\": 0.5527050424941531,\n",
+ " \"sql_condition\": \"\\\"surname_l\\\" = \\\"surname_r\\\"\",\n",
+ " \"u_probability\": 0.004889975550122249\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 80.61351958508214,\n",
+ " \"cl_id\": \"surname_3\",\n",
+ " \"comparison_name\": \"surname\",\n",
+ " \"comparison_vector_value\": 3,\n",
+ " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
+ " \"log2_bayes_factor\": 6.332949906378981,\n",
+ " \"m_probability\": 0.22212752320956386,\n",
+ " \"sql_condition\": \"damerau_levenshtein(\\\"surname_l\\\", \\\"surname_r\\\") <= 1\",\n",
+ " \"u_probability\": 0.0027554624131641246\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 48.57568460485815,\n",
+ " \"cl_id\": \"surname_2\",\n",
+ " \"comparison_name\": \"surname\",\n",
+ " \"comparison_vector_value\": 2,\n",
+ " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n",
+ " \"log2_bayes_factor\": 5.602162423566203,\n",
+ " \"m_probability\": 0.0490149338194711,\n",
+ " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.9\",\n",
+ " \"u_probability\": 0.0010090425738347498\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 13.478820689774516,\n",
+ " \"cl_id\": \"surname_1\",\n",
+ " \"comparison_name\": \"surname\",\n",
+ " \"comparison_vector_value\": 1,\n",
+ " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n",
+ " \"log2_bayes_factor\": 3.752622370380284,\n",
+ " \"m_probability\": 0.05001678986356945,\n",
+ " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.8\",\n",
+ " \"u_probability\": 0.003710768991942586\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.1277149376863226,\n",
+ " \"cl_id\": \"surname_0\",\n",
+ " \"comparison_name\": \"surname\",\n",
+ " \"comparison_vector_value\": 0,\n",
+ " \"label_for_charts\": \"All other comparisons\",\n",
+ " \"log2_bayes_factor\": -2.969000820703079,\n",
+ " \"m_probability\": 0.1261357106132424,\n",
+ " \"sql_condition\": \"ELSE\",\n",
+ " \"u_probability\": 0.9876347504709363\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 236.78351486807742,\n",
+ " \"cl_id\": \"dob_5\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 5,\n",
+ " \"label_for_charts\": \"Exact match\",\n",
+ " \"log2_bayes_factor\": 7.887424832202931,\n",
+ " \"m_probability\": 0.41383785481447766,\n",
+ " \"sql_condition\": \"\\\"dob_l\\\" = \\\"dob_r\\\"\",\n",
+ " \"u_probability\": 0.0017477477477477479\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 65.74625268345359,\n",
+ " \"cl_id\": \"dob_4\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 4,\n",
+ " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
+ " \"log2_bayes_factor\": 6.038836762842662,\n",
+ " \"m_probability\": 0.10806341031654734,\n",
+ " \"sql_condition\": \"damerau_levenshtein(\\\"dob_l\\\", \\\"dob_r\\\") <= 1\",\n",
+ " \"u_probability\": 0.0016436436436436436\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 29.476860590690453,\n",
+ " \"cl_id\": \"dob_3\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 3,\n",
+ " \"label_for_charts\": \"Within 1 month\",\n",
+ " \"log2_bayes_factor\": 4.881510974428093,\n",
+ " \"m_probability\": 0.11300938544779224,\n",
+ " \"sql_condition\": \"\\n abs(date_diff('month',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n",
+ " \"u_probability\": 0.003833833833833834\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 3.397551460259144,\n",
+ " \"cl_id\": \"dob_2\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 2,\n",
+ " \"label_for_charts\": \"Within 1 year\",\n",
+ " \"log2_bayes_factor\": 1.7644954026183992,\n",
+ " \"m_probability\": 0.17200656922328977,\n",
+ " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n",
+ " \"u_probability\": 0.05062662662662663\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.6267794172297388,\n",
+ " \"cl_id\": \"dob_1\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 1,\n",
+ " \"label_for_charts\": \"Within 10 years\",\n",
+ " \"log2_bayes_factor\": -0.6739702908716182,\n",
+ " \"m_probability\": 0.19035523041792068,\n",
+ " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 10\\n \",\n",
+ " \"u_probability\": 0.3037037037037037\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.004272180302776005,\n",
+ " \"cl_id\": \"dob_0\",\n",
+ " \"comparison_name\": \"dob\",\n",
+ " \"comparison_vector_value\": 0,\n",
+ " \"label_for_charts\": \"All other comparisons\",\n",
+ " \"log2_bayes_factor\": -7.870811748958801,\n",
+ " \"m_probability\": 0.002727549779972325,\n",
+ " \"sql_condition\": \"ELSE\",\n",
+ " \"u_probability\": 0.6384444444444445\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 10.904938885948333,\n",
+ " \"cl_id\": \"city_1\",\n",
+ " \"comparison_name\": \"city\",\n",
+ " \"comparison_vector_value\": 1,\n",
+ " \"label_for_charts\": \"Exact match\",\n",
+ " \"log2_bayes_factor\": 3.4469097796586596,\n",
+ " \"m_probability\": 0.6013808934279701,\n",
+ " \"sql_condition\": \"\\\"city_l\\\" = \\\"city_r\\\"\",\n",
+ " \"u_probability\": 0.0551475711801453\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.42188504195296994,\n",
+ " \"cl_id\": \"city_0\",\n",
+ " \"comparison_name\": \"city\",\n",
+ " \"comparison_vector_value\": 0,\n",
+ " \"label_for_charts\": \"All other comparisons\",\n",
+ " \"log2_bayes_factor\": -1.2450781575619725,\n",
+ " \"m_probability\": 0.3986191065720299,\n",
+ " \"sql_condition\": \"ELSE\",\n",
+ " \"u_probability\": 0.9448524288198547\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 269.6074384240141,\n",
+ " \"cl_id\": \"email_2\",\n",
+ " \"comparison_name\": \"email\",\n",
+ " \"comparison_vector_value\": 2,\n",
+ " \"label_for_charts\": \"Exact match\",\n",
+ " \"log2_bayes_factor\": 8.07471649055784,\n",
+ " \"m_probability\": 0.5914840252879943,\n",
+ " \"sql_condition\": \"\\\"email_l\\\" = \\\"email_r\\\"\",\n",
+ " \"u_probability\": 0.0021938713143283602\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 222.9721189153553,\n",
+ " \"cl_id\": \"email_1\",\n",
+ " \"comparison_name\": \"email\",\n",
+ " \"comparison_vector_value\": 1,\n",
+ " \"label_for_charts\": \"Levenshtein <= 2\",\n",
+ " \"log2_bayes_factor\": 7.800719512398763,\n",
+ " \"m_probability\": 0.3019669634613132,\n",
+ " \"sql_condition\": \"levenshtein(\\\"email_l\\\", \\\"email_r\\\") <= 2\",\n",
+ " \"u_probability\": 0.0013542812658830492\n",
+ " },\n",
+ " {\n",
+ " \"bayes_factor\": 0.10692840956298139,\n",
+ " \"cl_id\": \"email_0\",\n",
+ " \"comparison_name\": \"email\",\n",
+ " \"comparison_vector_value\": 0,\n",
+ " \"label_for_charts\": \"All other comparisons\",\n",
+ " \"log2_bayes_factor\": -3.225282884575804,\n",
+ " \"m_probability\": 0.10654901125069259,\n",
+ " \"sql_condition\": \"ELSE\",\n",
+ " \"u_probability\": 0.9964518474197885\n",
+ " }\n",
+ " ]\n",
+ " },\n",
+ " \"layer\": [\n",
+ " {\n",
+ " \"encoding\": {\n",
+ " \"color\": {\n",
+ " \"field\": \"comparison_name\",\n",
+ " \"legend\": null,\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " \"tooltip\": [\n",
+ " {\n",
+ " \"field\": \"comparison_name\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"label_for_charts\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"sql_condition\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"m_probability\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"u_probability\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"bayes_factor\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"log2_bayes_factor\",\n",
+ " \"type\": \"quantitative\"\n",
+ " }\n",
+ " ],\n",
+ " \"x\": {\n",
+ " \"field\": \"log2_bayes_factor\",\n",
+ " \"scale\": {\n",
+ " \"domain\": [\n",
+ " -10,\n",
+ " 10\n",
+ " ]\n",
+ " },\n",
+ " \"title\": \"Comparison level match weight = log2(m/u)\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " \"y\": {\n",
+ " \"field\": \"cl_id\",\n",
+ " \"sort\": \"-x\",\n",
+ " \"title\": \"Comparison level\",\n",
+ " \"type\": \"nominal\"\n",
+ " }\n",
+ " },\n",
+ " \"mark\": {\n",
+ " \"type\": \"bar\"\n",
+ " }\n",
+ " },\n",
+ " {\n",
+ " \"encoding\": {\n",
+ " \"text\": {\n",
+ " \"field\": \"comparison_name\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " \"tooltip\": [\n",
+ " {\n",
+ " \"field\": \"comparison_name\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"label_for_charts\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"sql_condition\",\n",
+ " \"type\": \"nominal\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"m_probability\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"u_probability\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"bayes_factor\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " {\n",
+ " \"field\": \"log2_bayes_factor\",\n",
+ " \"type\": \"quantitative\"\n",
+ " }\n",
+ " ],\n",
+ " \"x\": {\n",
+ " \"field\": \"log2_bayes_factor\",\n",
+ " \"scale\": {\n",
+ " \"domain\": [\n",
+ " -10,\n",
+ " 10\n",
+ " ]\n",
+ " },\n",
+ " \"title\": \"Comparison level match weight = log2(m/u)\",\n",
+ " \"type\": \"quantitative\"\n",
+ " },\n",
+ " \"y\": {\n",
+ " \"field\": \"cl_id\",\n",
+ " \"sort\": \"-x\",\n",
+ " \"title\": \"Comparison level\",\n",
+ " \"type\": \"nominal\"\n",
+ " }\n",
+ " },\n",
+ " \"mark\": {\n",
+ " \"align\": \"right\",\n",
+ " \"dx\": 0,\n",
+ " \"type\": \"text\"\n",
+ " }\n",
+ " }\n",
+ " ]\n",
+ " }\n",
+ " ```\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Edit in Vega-Lite\n",
+ "\n",
+ "Opening the JSON from the above chart in [Vega-Lite editor](https://vega.github.io/editor/#/url/vega-lite/N4IgJAzgxgFgpgWwIYgFwhgF0wBwqgegIDc4BzJAOjIEtMYBXAI0poHsDp5kTykBaADZ04JAKyUAHJQAMlAFYQ2AOxAAaEFBUAzGmTShiNOAHcDmlZhrKGbBhAAScPVjQBmGTI1blVm3YgAdRoAE3p3TwBfSI0QpEwUVFBlJAQ4NBA4hP4kADYoSQAWJABOKG0ARiQZKAB2JAAmKBCPKCgqmTgmiorJMRAYzPikCDhMCHMsgTyC4rLK6rrG5tb26q723v7UAG1QJiQATzgIAH1tJChMNgAnNElcylyGksKSktySsVqxEslJbyCU6hDK6G4QTCnFJpU6FdQWBA4JA3GhKZRQ1LpdBgiEYtLwrSI5GolSnUhXW5kpCCBhYwoaQRIJhwIHaSmwZHjDIAUQAHpdMAACZCYWCCnGQ6HpBlsMgNU4HY5nC4Uu6oR6FNy5WoPQqSGRuBoyf4VDQIU44G5sA5MGjCTCHNByMQyXqvColCq5Cq1NySCr0kAQACOQJ8ITo7FU6AAOiAJXi4KdBHHBQBeQVxhNS043OPwhgWq02u10R2oOSeb4lNzfCpuEo-A1uWoyMQxfZHE7nAW3e4NKQ+zViMQ+yQtwoNQHAkKgmjgyWY05uAlsIkotGJucLrfeNdIjek8nXG5UmlYtwMpks87smCciboAAimJuSELgjgpGUECwzmUgoADwZhU8KCLK8qKt2Konmgjwtr0zzPIUYhuGhLxmkW1pMqWDpOpQHq-NWPqNqhFSumIGghmGKgRlYKgZHEaRvh+X5wD+f7WAAFFm864jmKbqJm8Z8YuMJ5iAACUQEgQWWElva5aVjIDRat6moNL6KF6m4HYgFByq9mqtaUIUOoVA0hS5A8OqaQCmhAiC2KiYmpwNKu64kuiUrbvxmIeQeXlknAqpnrSaBTiAjLMqyd4PhkABSyJsKcJjWAA1p+p4QDQCB2sSDqCgAfBmcglGBEEKl2hmqmgEgBv83xFP6hSurkl4gOalrYbain4TIKF-KhBpIc2xqUUGoanOGkYMeg8jJalGVZacOV5YyKIOjxIk7gJcZqMJ2ZLhJ0klYKZVyd1Cllv1rovN6vxqa2ki1BZekGT2tWoD0lANLk-2FPWrYqapYiRVAjmzs5u1LqBe6eZuPnQ35+Lw4Fm7HpSxDUuF31XjFt6nhyNxcugSVWktyiZXA2W5flm2HMVpVSBVcpVUqn2wagbimTWQ25K6mrjj8mFXThfUVrI7UfL6KnfG8bgVGIgbUdNtGzdGIALRTaVUyta302W21HTCgkHbxMPiXGp3M5Il3FuLN2S1W2o-OOfwNEDNaSO91Wc32kuEQ1I7-TLDZiLk05OTtKNJjIAXEoj-nI2J0oIujR4hSeYVYl4UXXrFRP3iTj4gAAgoIgiCmw9A04KhIZz+rOQX7MEB-wA61r6I4eJ7LyqYGXUO71TtyB6ntfA0RRGu1mqvFRU0zfRmvcgAMgAyty9s9bhSmUH8er-crHr6oRDS+xzbdqj0PMqf6-oelWmqmg5M4ZBADA3DmcJo4npJI0GT+Plf6HnRJjU82NzxoEDNFG8bIi7xXQHyAUwp4hig-l-fyMo2YfSvnBKQRpUIvQsvqbUJRIpDx3hLZ0YNWwuknG8QGZEF40WUHRKMGQ4wYL2iAdMwluHHXzBoQsYsR54WdgNf47wfgjjug0SyJQL7QSMvcOQ3payET6MaT2gYIZv3QAImEK4QFBQAYYtODc-5gKzljHGF58ZwLiiXDIL5mLvmTGxDimB-wyUFHDKKlVcEqPVJQdCrx3gyHajqP4L9KHXXEXIeRfcfiqSNF8dqDwWFqzYRrRir53Gfm-L+bx3EuFAKXGbfh5SrZSV8f4kRw9d63U0iOKyll6xekBpZXISiapcz1JQb4EcigCz1GIf0E09HR3MW5BOoCtwGOqRY-cVjgqhUgbjSKsDC7TWLqTEA5MUq62prTdaBVGZnQutglul9gkSAFp7ZCoN-pGg6nEx2CTZBvEFjWP0HozI9CyUvDh81FrHP1nTDaRsymYNNvtKpsKkwnSZudfe294l708ORGQJQBoNG+H6NwZk3g+zUJ2W5X16ymR1JIGekhGy1BQl6KOUNAGItOP4yx8yzFLLmUFcBOc0Av22YTXZiCDlguWjTVakLzkorkHba57NlFfR5ik54qlWx+jvoPeSHzMUujatEh4tZPgoSBerZeGRtZHKlacw2W0YU8PNmynMyLLks2EXqsRmKDSvRkLUay7x-n4oeL0-2aox6aVegrQNJr5GR1ftMpZpx44mKTviRZiK+UYxsRAuxToHE7OJvsiuVca7wBuPXFZoCJhKqCV9Du+9PieG0QGg0AaSii0adQgif16x1kifWSylkLU5KtUgjeW8vWiKaZLP4gaiVNjMjirUukyX6VbsE1SjwdQaMPvqWojLwaQ0YtaU4-R03-2Tpka0ObM7rILagCaIr4FiucUg-kVxUGihgM3ZVfSA61CkC9Bh455EqRrLE71c65CA0JTqZWLUzKBsTarYFc0QBxhCOewSfDsPnokui-Vt0hxHpQxR8jtRFEbobVzXIEhGXPDBtZIlqFfgsrPUwWE97vI3pw0wXjazs4bLpEW0VJbS6uJpgUzxxSfHAT8f+ujAdHgGn+FqQNU9JwvO7VQ0eBFjSRKJeRRWDGzJErHewzDTEZOsSKZxZQ20BPJnhQR7jyLFP1Jg72rFuRNT+a1AF4LWpw14NQC8al1kBa-EibilCHUpmspc8Y9OqyAECaEwK0T7hxNvskxkYI9BrB+OFJYP99at1fUKCBpW5FGyFEnPqGsemMX4Rvp4b2ysUPkNHZNVh1nNYxgAoKUbY3xuCiZBALiWQkwRm0NoLiAByBA5WltqAhDcHAVg0jOdw-tYbE2jtjaWwAUgAJr8FOwgK7IQluSQ25gLbO24B7Y8wdkbx2Jtncu9d2793JLSS84d47xGfW3UJZD8cUOiVheCTzBsMiAwPN+AGXRp70Aufclevjmbb2CZx8J2xUCIt5acfsorMASsVEFMcZEymqtcwqJQQNjWvitX7e7chrWSOB1qEaSJEdeuGnpUeqzuTYyfa+5Npg03ZunHm4tpbdObjrc29t3Kr33OufUCD6XJ2LtXZu6du7D31cvbe7mD7+vxs-aN-9wHQOQJ64m2D2DsgXRIS939L367yUqq5mov6R73T85eL6f4nHMfns5TW0x-G72E+y0+4VBcJN7NLpT6nMhadwGRHWgJODGftzUb6RskHjSvW9LSnn4PA64trGDDwgNqN0vFxOrDUuvtTZm-EObNAFvLZV2rp7Gvdva7Ni7-Xdu-sm-u4957mvLcSTUFP6XM-jem8B3UmQa-Rtu97R4FsfqT-H5bHDr6ylJz896B26NAs2xR-x6moTGXE9pfmcnknedX3k9LmW6uWuKtLlLyAvcCIvClLmfgYDF6Y0HoRlelcZU+Wvd3TwTSFpN4EPRsVJCadDS1EFEANeTeA-AzDJRrcgig8g9sWjYva+MqAab2RqV4aHRLDHTQMsDlV-G9KAG6JPPNQVPGfOAmfLDPHkL9IUEUWABnSAgOHmRrFtBlD4cZBjD4FA3tAWesfUelIlTScvF+PA8dAguMHgh0HXfDdg0wojGdHtAzNsUcMyOsW-AMVCC-QPUyT2RqAaM+D4d4dHfRCww4F-QnABEwx0Pgx9b-MnBBD9cuSuQAytatBGFQMAwJWgtAfgZnSyF0cyIZb0bAiad5OvOQBsB4D0ciBjfnSDLtfrbJQbHkKdEgz5V4MZEdE0IaMyVwgOP6EoJ4ANIWBhQWF+JLDIRAJAO0WZYIm9UYu0LLfgnLUnIQxxaI-ZZBb9SQirQvG5APAOaQPoqvb5EcHUXVWdXtVHPUDnMGF6XwjqAwuo2MEAaYoEPDDMOMR4q3EARo31CeP0V6RWDSccB5TotUJJfeG-N0JWRvVg-wt42PJI3HLEB45AGY8IkTFPKI99fZVeOTRzXxbHTYgDCNNAGAzwV6L4CyEoxdNQgzDwD0UOWedRYddvAgwpdieTUpREsYp4tzDk8YzzDMPEhpfTT5LFWsJrCyBjDTBg8+GgmQyNQzT4bTHFCOF4f0BsJ-N4tND-ePPHR42YiI3GH-NPEQ8VAAitOuEAtEFIiA7YtUfgHmeRS4qeIoIZfUY4mwz5co5WXFHofFOLfFao24iXQgho6woUved4fzUcIoRlD0GldsAAXUGEZGODVD2AeOUC0AjGUH0CSAsHAjVFAF0BZFZQtOvVRiinIHYihhsErg0AdBwAROUDXGsGpAGDrLYDYEECsBwDQDTKLMEBLLjwzTTnrMbObJSEEDbMLOMAHIyF-2WIL1HIyCbLygnKnJEmLPfkXnwIYjrMOAbOXPHNbL0n7NZUKKaT3IPPQGDAYCQF8DoHiBoFIHXNPIyEFLa0vIRJvLvKsASCsGfJPJnNZRUzuE-IyG-PvL-KfPSEAs3PQHAK2MA1ApACXOvNvMgsfIAvjI0F5HMFfPgtSNlPhGgGpCxFABwyROjB2AyK8HIkTLrLoE-AyAAGEhyVBBQWSq51jBQTBnAyAsA+EEKuIEACAGBJJ4RUKQAILfzMKYKNByxpy4Kk1ZwqJbhMAMh+BcKGLMAmL0BWK4SOK2JJywL0AVyWzJzogzRkR0pzBJKDg7hLLQB2JMzrAczQBvFeR1Lcz8KtThyJL9yxzVzjz2zOzuzezFLZz0BSz4T-KryQAzK1zYLIrFji1RCTL4qjyLKN0fLAyrV0qErgqIqzyfNeCUKArwL0KZL-y5Kiq3ySq8J0rpKHzqqXygKMgQLYqvzKrmroLWqlKEKCS8FGruqoKsKcK8K2qCLrSkLiKoBSLJg1wxiqKaK1A6LBhfzdKQB9LG5DLSAuK0EYAeK+KBKMwhKRKxLOqKqfyeqAL5KJqlLhjVKSYNKtKULGKETtqrFdqWRLrTLMqBhBhkAbgbLczqQ9BNYUR+L1LYhcKKx0qPL1LohEygA), it is now behaving as intended, with both bar and text layers sorted by match weight.\n",
+ "\n",
+ "If the chart is working as intended, there is only one step required before saving the JSON file - removing data from the template schema.\n",
+ "\n",
+ "The data appears as follows with a dictionary of all included `datasets` by name, and then each chart referencing the `data` it uses by name:\n",
+ "\n",
+ "```\n",
+ "\"data\": {\"name\": \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\"},\n",
+ "\"datasets\": {\n",
+ " \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\": [\n",
+ "\n",
+ " ...\n",
+ "\n",
+ " ]\n",
+ "},\n",
+ "```\n",
+ "\n",
+ "Where only one dataset is required, this is equivalent to:\n",
+ "```\n",
+ "\"data\": {\"values\": [...]}\n",
+ "```\n",
+ "\n",
+ "After removing the data references, the template can be saved in Splink as `splink/files/chart_defs/my_new_chart.json`"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Combine the chart dataset and template\n",
+ "\n",
+ "Putting all of the above together, Splink needs definitions for the methods that generate the chart and the data behind it (these can be separate or performed by the same function if relatively simple).\n",
+ "\n",
+ "### Chart definition\n",
+ "\n",
+ "In [`splink/charts.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/charts.py) we can add a new function to populate the chart definition with the provided data:\n",
+ "\n",
+ "```python\n",
+ "def my_new_chart(records, as_dict=False):\n",
+ " chart_path = \"my_new_chart.json\"\n",
+ " chart = load_chart_definition(chart_path)\n",
+ "\n",
+ " chart[\"data\"][\"values\"] = records\n",
+ " return altair_or_json(chart, as_dict=as_dict)\n",
+ "```\n",
+ "\n",
+ ">**Note** - only the data is being added to a fixed chart definition here. Other elements of the chart spec can be changed by editing the `chart` dictionary in the same way. \n",
+ ">\n",
+ "> For example, if you wanted to add a `color_scheme` argument to replace the default scheme (\"tableau10\"), this function could include the line: `chart[\"layer\"][0][\"encoding\"][\"color\"][\"scale\"][\"scheme\"] = color_scheme`\n",
+ "\n",
+ "### Chart method\n",
+ "\n",
+ "Then we can add a method to the linker in [`splink/linker.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/linker.py) so the chart can be generated by `linker.my_new_chart()`:\n",
+ "\n",
+ "```python\n",
+ "from .charts import my_new_chart\n",
+ "\n",
+ "...\n",
+ "\n",
+ "class Linker:\n",
+ "\n",
+ " ...\n",
+ "\n",
+ " def my_new_chart(self):\n",
+ " \n",
+ " # Take linker object and extract complete settings dict\n",
+ " records = self._settings_obj._parameters_as_detailed_records\n",
+ "\n",
+ " cols_to_keep = [\n",
+ " \"comparison_name\",\n",
+ " \"sql_condition\",\n",
+ " \"label_for_charts\",\n",
+ " \"m_probability\",\n",
+ " \"u_probability\",\n",
+ " \"bayes_factor\",\n",
+ " \"log2_bayes_factor\",\n",
+ " \"comparison_vector_value\"\n",
+ " ]\n",
+ "\n",
+ " # Keep useful information for a match weights chart\n",
+ " records = [{k: r[k] for k in cols_to_keep}\n",
+ " for r in records \n",
+ " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n",
+ "\n",
+ " return my_new_chart(records)\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "## Previous new chart PRs\n",
+ "\n",
+ "Real-life Splink chart additions, for reference:\n",
+ "\n",
+ "- [Term frequency adjustment chart](https://github.com/moj-analytical-services/splink/pull/1226)\n",
+ "- [Completeness (multi-dataset) chart](https://github.com/moj-analytical-services/splink/pull/669)\n",
+ "- [Cumulative blocking rule chart](https://github.com/moj-analytical-services/splink/pull/660)\n",
+ "- [Unlinkables chart](https://github.com/moj-analytical-services/splink/pull/277)\n",
+ "- [Missingness chart](https://github.com/moj-analytical-services/splink/pull/277)\n",
+ "- [Waterfall chart](https://github.com/moj-analytical-services/splink/pull/181)"
]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "bar | text"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Once we get to this stage (or whenever you're comfortable), we can switch to Vega-Lite by exporting the JSON from our `chart` object, or opening the chart in the Vega-Lite editor.\n",
- "\n",
- "```py\n",
- "chart.to_json()\n",
- "```"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "??? note \"Chart JSON\"\n",
- " ```json\n",
- " {\n",
- " \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.8.0.json\",\n",
- " \"config\": {\n",
- " \"view\": {\n",
- " \"continuousHeight\": 300,\n",
- " \"continuousWidth\": 300\n",
- " }\n",
- " },\n",
- " \"data\": {\n",
- " \"name\": \"data-3901c03d78701611834aa82ab7374cce\"\n",
- " },\n",
- " \"datasets\": {\n",
- " \"data-3901c03d78701611834aa82ab7374cce\": [\n",
- " {\n",
- " \"bayes_factor\": 86.62949969575988,\n",
- " \"cl_id\": \"first_name_4\",\n",
- " \"comparison_name\": \"first_name\",\n",
- " \"comparison_vector_value\": 4,\n",
- " \"label_for_charts\": \"Exact match first_name\",\n",
- " \"log2_bayes_factor\": 6.436786480320881,\n",
- " \"m_probability\": 0.5018941916173814,\n",
- " \"sql_condition\": \"\\\"first_name_l\\\" = \\\"first_name_r\\\"\",\n",
- " \"u_probability\": 0.0057935713975033705\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 82.81743551783742,\n",
- " \"cl_id\": \"first_name_3\",\n",
- " \"comparison_name\": \"first_name\",\n",
- " \"comparison_vector_value\": 3,\n",
- " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
- " \"log2_bayes_factor\": 6.371862624533329,\n",
- " \"m_probability\": 0.19595791797531015,\n",
- " \"sql_condition\": \"damerau_levenshtein(\\\"first_name_l\\\", \\\"first_name_r\\\") <= 1\",\n",
- " \"u_probability\": 0.00236614327345483\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 35.47812468678278,\n",
- " \"cl_id\": \"first_name_2\",\n",
- " \"comparison_name\": \"first_name\",\n",
- " \"comparison_vector_value\": 2,\n",
- " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n",
- " \"log2_bayes_factor\": 5.148857848140163,\n",
- " \"m_probability\": 0.045985303626033085,\n",
- " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.9\",\n",
- " \"u_probability\": 0.001296159366708712\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 11.266641370022352,\n",
- " \"cl_id\": \"first_name_1\",\n",
- " \"comparison_name\": \"first_name\",\n",
- " \"comparison_vector_value\": 1,\n",
- " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n",
- " \"log2_bayes_factor\": 3.493985601438375,\n",
- " \"m_probability\": 0.06396730257493154,\n",
- " \"sql_condition\": \"jaro_winkler_similarity(\\\"first_name_l\\\", \\\"first_name_r\\\") >= 0.8\",\n",
- " \"u_probability\": 0.005677583982137938\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.19514855669673956,\n",
- " \"cl_id\": \"first_name_0\",\n",
- " \"comparison_name\": \"first_name\",\n",
- " \"comparison_vector_value\": 0,\n",
- " \"label_for_charts\": \"All other comparisons\",\n",
- " \"log2_bayes_factor\": -2.357355302129234,\n",
- " \"m_probability\": 0.19219528420634394,\n",
- " \"sql_condition\": \"ELSE\",\n",
- " \"u_probability\": 0.9848665419801952\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 113.02818119005431,\n",
- " \"cl_id\": \"surname_4\",\n",
- " \"comparison_name\": \"surname\",\n",
- " \"comparison_vector_value\": 4,\n",
- " \"label_for_charts\": \"Exact match surname\",\n",
- " \"log2_bayes_factor\": 6.820538712806792,\n",
- " \"m_probability\": 0.5527050424941531,\n",
- " \"sql_condition\": \"\\\"surname_l\\\" = \\\"surname_r\\\"\",\n",
- " \"u_probability\": 0.004889975550122249\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 80.61351958508214,\n",
- " \"cl_id\": \"surname_3\",\n",
- " \"comparison_name\": \"surname\",\n",
- " \"comparison_vector_value\": 3,\n",
- " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
- " \"log2_bayes_factor\": 6.332949906378981,\n",
- " \"m_probability\": 0.22212752320956386,\n",
- " \"sql_condition\": \"damerau_levenshtein(\\\"surname_l\\\", \\\"surname_r\\\") <= 1\",\n",
- " \"u_probability\": 0.0027554624131641246\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 48.57568460485815,\n",
- " \"cl_id\": \"surname_2\",\n",
- " \"comparison_name\": \"surname\",\n",
- " \"comparison_vector_value\": 2,\n",
- " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.9\",\n",
- " \"log2_bayes_factor\": 5.602162423566203,\n",
- " \"m_probability\": 0.0490149338194711,\n",
- " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.9\",\n",
- " \"u_probability\": 0.0010090425738347498\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 13.478820689774516,\n",
- " \"cl_id\": \"surname_1\",\n",
- " \"comparison_name\": \"surname\",\n",
- " \"comparison_vector_value\": 1,\n",
- " \"label_for_charts\": \"Jaro_winkler_similarity >= 0.8\",\n",
- " \"log2_bayes_factor\": 3.752622370380284,\n",
- " \"m_probability\": 0.05001678986356945,\n",
- " \"sql_condition\": \"jaro_winkler_similarity(\\\"surname_l\\\", \\\"surname_r\\\") >= 0.8\",\n",
- " \"u_probability\": 0.003710768991942586\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.1277149376863226,\n",
- " \"cl_id\": \"surname_0\",\n",
- " \"comparison_name\": \"surname\",\n",
- " \"comparison_vector_value\": 0,\n",
- " \"label_for_charts\": \"All other comparisons\",\n",
- " \"log2_bayes_factor\": -2.969000820703079,\n",
- " \"m_probability\": 0.1261357106132424,\n",
- " \"sql_condition\": \"ELSE\",\n",
- " \"u_probability\": 0.9876347504709363\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 236.78351486807742,\n",
- " \"cl_id\": \"dob_5\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 5,\n",
- " \"label_for_charts\": \"Exact match\",\n",
- " \"log2_bayes_factor\": 7.887424832202931,\n",
- " \"m_probability\": 0.41383785481447766,\n",
- " \"sql_condition\": \"\\\"dob_l\\\" = \\\"dob_r\\\"\",\n",
- " \"u_probability\": 0.0017477477477477479\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 65.74625268345359,\n",
- " \"cl_id\": \"dob_4\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 4,\n",
- " \"label_for_charts\": \"Damerau_levenshtein <= 1\",\n",
- " \"log2_bayes_factor\": 6.038836762842662,\n",
- " \"m_probability\": 0.10806341031654734,\n",
- " \"sql_condition\": \"damerau_levenshtein(\\\"dob_l\\\", \\\"dob_r\\\") <= 1\",\n",
- " \"u_probability\": 0.0016436436436436436\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 29.476860590690453,\n",
- " \"cl_id\": \"dob_3\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 3,\n",
- " \"label_for_charts\": \"Within 1 month\",\n",
- " \"log2_bayes_factor\": 4.881510974428093,\n",
- " \"m_probability\": 0.11300938544779224,\n",
- " \"sql_condition\": \"\\n abs(date_diff('month',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n",
- " \"u_probability\": 0.003833833833833834\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 3.397551460259144,\n",
- " \"cl_id\": \"dob_2\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 2,\n",
- " \"label_for_charts\": \"Within 1 year\",\n",
- " \"log2_bayes_factor\": 1.7644954026183992,\n",
- " \"m_probability\": 0.17200656922328977,\n",
- " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 1\\n \",\n",
- " \"u_probability\": 0.05062662662662663\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.6267794172297388,\n",
- " \"cl_id\": \"dob_1\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 1,\n",
- " \"label_for_charts\": \"Within 10 years\",\n",
- " \"log2_bayes_factor\": -0.6739702908716182,\n",
- " \"m_probability\": 0.19035523041792068,\n",
- " \"sql_condition\": \"\\n abs(date_diff('year',\\n strptime(\\\"dob_l\\\", '%Y-%m-%d'),\\n strptime(\\\"dob_r\\\", '%Y-%m-%d'))\\n ) <= 10\\n \",\n",
- " \"u_probability\": 0.3037037037037037\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.004272180302776005,\n",
- " \"cl_id\": \"dob_0\",\n",
- " \"comparison_name\": \"dob\",\n",
- " \"comparison_vector_value\": 0,\n",
- " \"label_for_charts\": \"All other comparisons\",\n",
- " \"log2_bayes_factor\": -7.870811748958801,\n",
- " \"m_probability\": 0.002727549779972325,\n",
- " \"sql_condition\": \"ELSE\",\n",
- " \"u_probability\": 0.6384444444444445\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 10.904938885948333,\n",
- " \"cl_id\": \"city_1\",\n",
- " \"comparison_name\": \"city\",\n",
- " \"comparison_vector_value\": 1,\n",
- " \"label_for_charts\": \"Exact match\",\n",
- " \"log2_bayes_factor\": 3.4469097796586596,\n",
- " \"m_probability\": 0.6013808934279701,\n",
- " \"sql_condition\": \"\\\"city_l\\\" = \\\"city_r\\\"\",\n",
- " \"u_probability\": 0.0551475711801453\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.42188504195296994,\n",
- " \"cl_id\": \"city_0\",\n",
- " \"comparison_name\": \"city\",\n",
- " \"comparison_vector_value\": 0,\n",
- " \"label_for_charts\": \"All other comparisons\",\n",
- " \"log2_bayes_factor\": -1.2450781575619725,\n",
- " \"m_probability\": 0.3986191065720299,\n",
- " \"sql_condition\": \"ELSE\",\n",
- " \"u_probability\": 0.9448524288198547\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 269.6074384240141,\n",
- " \"cl_id\": \"email_2\",\n",
- " \"comparison_name\": \"email\",\n",
- " \"comparison_vector_value\": 2,\n",
- " \"label_for_charts\": \"Exact match\",\n",
- " \"log2_bayes_factor\": 8.07471649055784,\n",
- " \"m_probability\": 0.5914840252879943,\n",
- " \"sql_condition\": \"\\\"email_l\\\" = \\\"email_r\\\"\",\n",
- " \"u_probability\": 0.0021938713143283602\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 222.9721189153553,\n",
- " \"cl_id\": \"email_1\",\n",
- " \"comparison_name\": \"email\",\n",
- " \"comparison_vector_value\": 1,\n",
- " \"label_for_charts\": \"Levenshtein <= 2\",\n",
- " \"log2_bayes_factor\": 7.800719512398763,\n",
- " \"m_probability\": 0.3019669634613132,\n",
- " \"sql_condition\": \"levenshtein(\\\"email_l\\\", \\\"email_r\\\") <= 2\",\n",
- " \"u_probability\": 0.0013542812658830492\n",
- " },\n",
- " {\n",
- " \"bayes_factor\": 0.10692840956298139,\n",
- " \"cl_id\": \"email_0\",\n",
- " \"comparison_name\": \"email\",\n",
- " \"comparison_vector_value\": 0,\n",
- " \"label_for_charts\": \"All other comparisons\",\n",
- " \"log2_bayes_factor\": -3.225282884575804,\n",
- " \"m_probability\": 0.10654901125069259,\n",
- " \"sql_condition\": \"ELSE\",\n",
- " \"u_probability\": 0.9964518474197885\n",
- " }\n",
- " ]\n",
- " },\n",
- " \"layer\": [\n",
- " {\n",
- " \"encoding\": {\n",
- " \"color\": {\n",
- " \"field\": \"comparison_name\",\n",
- " \"legend\": null,\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " \"tooltip\": [\n",
- " {\n",
- " \"field\": \"comparison_name\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"label_for_charts\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"sql_condition\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"m_probability\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"u_probability\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"bayes_factor\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"log2_bayes_factor\",\n",
- " \"type\": \"quantitative\"\n",
- " }\n",
- " ],\n",
- " \"x\": {\n",
- " \"field\": \"log2_bayes_factor\",\n",
- " \"scale\": {\n",
- " \"domain\": [\n",
- " -10,\n",
- " 10\n",
- " ]\n",
- " },\n",
- " \"title\": \"Comparison level match weight = log2(m/u)\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " \"y\": {\n",
- " \"field\": \"cl_id\",\n",
- " \"sort\": \"-x\",\n",
- " \"title\": \"Comparison level\",\n",
- " \"type\": \"nominal\"\n",
- " }\n",
- " },\n",
- " \"mark\": {\n",
- " \"type\": \"bar\"\n",
- " }\n",
- " },\n",
- " {\n",
- " \"encoding\": {\n",
- " \"text\": {\n",
- " \"field\": \"comparison_name\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " \"tooltip\": [\n",
- " {\n",
- " \"field\": \"comparison_name\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"label_for_charts\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"sql_condition\",\n",
- " \"type\": \"nominal\"\n",
- " },\n",
- " {\n",
- " \"field\": \"m_probability\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"u_probability\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"bayes_factor\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " {\n",
- " \"field\": \"log2_bayes_factor\",\n",
- " \"type\": \"quantitative\"\n",
- " }\n",
- " ],\n",
- " \"x\": {\n",
- " \"field\": \"log2_bayes_factor\",\n",
- " \"scale\": {\n",
- " \"domain\": [\n",
- " -10,\n",
- " 10\n",
- " ]\n",
- " },\n",
- " \"title\": \"Comparison level match weight = log2(m/u)\",\n",
- " \"type\": \"quantitative\"\n",
- " },\n",
- " \"y\": {\n",
- " \"field\": \"cl_id\",\n",
- " \"sort\": \"-x\",\n",
- " \"title\": \"Comparison level\",\n",
- " \"type\": \"nominal\"\n",
- " }\n",
- " },\n",
- " \"mark\": {\n",
- " \"align\": \"right\",\n",
- " \"dx\": 0,\n",
- " \"type\": \"text\"\n",
- " }\n",
- " }\n",
- " ]\n",
- " }\n",
- " ```\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Edit in Vega-Lite\n",
- "\n",
- "Opening the JSON from the above chart in [Vega-Lite editor](https://vega.github.io/editor/#/url/vega-lite/N4IgJAzgxgFgpgWwIYgFwhgF0wBwqgegIDc4BzJAOjIEtMYBXAI0poHsDp5kTykBaADZ04JAKyUAHJQAMlAFYQ2AOxAAaEFBUAzGmTShiNOAHcDmlZhrKGbBhAAScPVjQBmGTI1blVm3YgAdRoAE3p3TwBfSI0QpEwUVFBlJAQ4NBA4hP4kADYoSQAWJABOKG0ARiQZKAB2JAAmKBCPKCgqmTgmiorJMRAYzPikCDhMCHMsgTyC4rLK6rrG5tb26q723v7UAG1QJiQATzgIAH1tJChMNgAnNElcylyGksKSktySsVqxEslJbyCU6hDK6G4QTCnFJpU6FdQWBA4JA3GhKZRQ1LpdBgiEYtLwrSI5GolSnUhXW5kpCCBhYwoaQRIJhwIHaSmwZHjDIAUQAHpdMAACZCYWCCnGQ6HpBlsMgNU4HY5nC4Uu6oR6FNy5WoPQqSGRuBoyf4VDQIU44G5sA5MGjCTCHNByMQyXqvColCq5Cq1NySCr0kAQACOQJ8ITo7FU6AAOiAJXi4KdBHHBQBeQVxhNS043OPwhgWq02u10R2oOSeb4lNzfCpuEo-A1uWoyMQxfZHE7nAW3e4NKQ+zViMQ+yQtwoNQHAkKgmjgyWY05uAlsIkotGJucLrfeNdIjek8nXG5UmlYtwMpks87smCciboAAimJuSELgjgpGUECwzmUgoADwZhU8KCLK8qKt2Konmgjwtr0zzPIUYhuGhLxmkW1pMqWDpOpQHq-NWPqNqhFSumIGghmGKgRlYKgZHEaRvh+X5wD+f7WAAFFm864jmKbqJm8Z8YuMJ5iAACUQEgQWWElva5aVjIDRat6moNL6KF6m4HYgFByq9mqtaUIUOoVA0hS5A8OqaQCmhAiC2KiYmpwNKu64kuiUrbvxmIeQeXlknAqpnrSaBTiAjLMqyd4PhkABSyJsKcJjWAA1p+p4QDQCB2sSDqCgAfBmcglGBEEKl2hmqmgEgBv83xFP6hSurkl4gOalrYbain4TIKF-KhBpIc2xqUUGoanOGkYMeg8jJalGVZacOV5YyKIOjxIk7gJcZqMJ2ZLhJ0klYKZVyd1Cllv1rovN6vxqa2ki1BZekGT2tWoD0lANLk-2FPWrYqapYiRVAjmzs5u1LqBe6eZuPnQ35+Lw4Fm7HpSxDUuF31XjFt6nhyNxcugSVWktyiZXA2W5flm2HMVpVSBVcpVUqn2wagbimTWQ25K6mrjj8mFXThfUVrI7UfL6KnfG8bgVGIgbUdNtGzdGIALRTaVUyta302W21HTCgkHbxMPiXGp3M5Il3FuLN2S1W2o-OOfwNEDNaSO91Wc32kuEQ1I7-TLDZiLk05OTtKNJjIAXEoj-nI2J0oIujR4hSeYVYl4UXXrFRP3iTj4gAAgoIgiCmw9A04KhIZz+rOQX7MEB-wA61r6I4eJ7LyqYGXUO71TtyB6ntfA0RRGu1mqvFRU0zfRmvcgAMgAyty9s9bhSmUH8er-crHr6oRDS+xzbdqj0PMqf6-oelWmqmg5M4ZBADA3DmcJo4npJI0GT+Plf6HnRJjU82NzxoEDNFG8bIi7xXQHyAUwp4hig-l-fyMo2YfSvnBKQRpUIvQsvqbUJRIpDx3hLZ0YNWwuknG8QGZEF40WUHRKMGQ4wYL2iAdMwluHHXzBoQsYsR54WdgNf47wfgjjug0SyJQL7QSMvcOQ3payET6MaT2gYIZv3QAImEK4QFBQAYYtODc-5gKzljHGF58ZwLiiXDIL5mLvmTGxDimB-wyUFHDKKlVcEqPVJQdCrx3gyHajqP4L9KHXXEXIeRfcfiqSNF8dqDwWFqzYRrRir53Gfm-L+bx3EuFAKXGbfh5SrZSV8f4kRw9d63U0iOKyll6xekBpZXISiapcz1JQb4EcigCz1GIf0E09HR3MW5BOoCtwGOqRY-cVjgqhUgbjSKsDC7TWLqTEA5MUq62prTdaBVGZnQutglul9gkSAFp7ZCoN-pGg6nEx2CTZBvEFjWP0HozI9CyUvDh81FrHP1nTDaRsymYNNvtKpsKkwnSZudfe294l708ORGQJQBoNG+H6NwZk3g+zUJ2W5X16ymR1JIGekhGy1BQl6KOUNAGItOP4yx8yzFLLmUFcBOc0Av22YTXZiCDlguWjTVakLzkorkHba57NlFfR5ik54qlWx+jvoPeSHzMUujatEh4tZPgoSBerZeGRtZHKlacw2W0YU8PNmynMyLLks2EXqsRmKDSvRkLUay7x-n4oeL0-2aox6aVegrQNJr5GR1ftMpZpx44mKTviRZiK+UYxsRAuxToHE7OJvsiuVca7wBuPXFZoCJhKqCV9Du+9PieG0QGg0AaSii0adQgif16x1kifWSylkLU5KtUgjeW8vWiKaZLP4gaiVNjMjirUukyX6VbsE1SjwdQaMPvqWojLwaQ0YtaU4-R03-2Tpka0ObM7rILagCaIr4FiucUg-kVxUGihgM3ZVfSA61CkC9Bh455EqRrLE71c65CA0JTqZWLUzKBsTarYFc0QBxhCOewSfDsPnokui-Vt0hxHpQxR8jtRFEbobVzXIEhGXPDBtZIlqFfgsrPUwWE97vI3pw0wXjazs4bLpEW0VJbS6uJpgUzxxSfHAT8f+ujAdHgGn+FqQNU9JwvO7VQ0eBFjSRKJeRRWDGzJErHewzDTEZOsSKZxZQ20BPJnhQR7jyLFP1Jg72rFuRNT+a1AF4LWpw14NQC8al1kBa-EibilCHUpmspc8Y9OqyAECaEwK0T7hxNvskxkYI9BrB+OFJYP99at1fUKCBpW5FGyFEnPqGsemMX4Rvp4b2ysUPkNHZNVh1nNYxgAoKUbY3xuCiZBALiWQkwRm0NoLiAByBA5WltqAhDcHAVg0jOdw-tYbE2jtjaWwAUgAJr8FOwgK7IQluSQ25gLbO24B7Y8wdkbx2Jtncu9d2793JLSS84d47xGfW3UJZD8cUOiVheCTzBsMiAwPN+AGXRp70Aufclevjmbb2CZx8J2xUCIt5acfsorMASsVEFMcZEymqtcwqJQQNjWvitX7e7chrWSOB1qEaSJEdeuGnpUeqzuTYyfa+5Npg03ZunHm4tpbdObjrc29t3Kr33OufUCD6XJ2LtXZu6du7D31cvbe7mD7+vxs-aN-9wHQOQJ64m2D2DsgXRIS939L367yUqq5mov6R73T85eL6f4nHMfns5TW0x-G72E+y0+4VBcJN7NLpT6nMhadwGRHWgJODGftzUb6RskHjSvW9LSnn4PA64trGDDwgNqN0vFxOrDUuvtTZm-EObNAFvLZV2rp7Gvdva7Ni7-Xdu-sm-u4957mvLcSTUFP6XM-jem8B3UmQa-Rtu97R4FsfqT-H5bHDr6ylJz896B26NAs2xR-x6moTGXE9pfmcnknedX3k9LmW6uWuKtLlLyAvcCIvClLmfgYDF6Y0HoRlelcZU+Wvd3TwTSFpN4EPRsVJCadDS1EFEANeTeA-AzDJRrcgig8g9sWjYva+MqAab2RqV4aHRLDHTQMsDlV-G9KAG6JPPNQVPGfOAmfLDPHkL9IUEUWABnSAgOHmRrFtBlD4cZBjD4FA3tAWesfUelIlTScvF+PA8dAguMHgh0HXfDdg0wojGdHtAzNsUcMyOsW-AMVCC-QPUyT2RqAaM+D4d4dHfRCww4F-QnABEwx0Pgx9b-MnBBD9cuSuQAytatBGFQMAwJWgtAfgZnSyF0cyIZb0bAiad5OvOQBsB4D0ciBjfnSDLtfrbJQbHkKdEgz5V4MZEdE0IaMyVwgOP6EoJ4ANIWBhQWF+JLDIRAJAO0WZYIm9UYu0LLfgnLUnIQxxaI-ZZBb9SQirQvG5APAOaQPoqvb5EcHUXVWdXtVHPUDnMGF6XwjqAwuo2MEAaYoEPDDMOMR4q3EARo31CeP0V6RWDSccB5TotUJJfeG-N0JWRvVg-wt42PJI3HLEB45AGY8IkTFPKI99fZVeOTRzXxbHTYgDCNNAGAzwV6L4CyEoxdNQgzDwD0UOWedRYddvAgwpdieTUpREsYp4tzDk8YzzDMPEhpfTT5LFWsJrCyBjDTBg8+GgmQyNQzT4bTHFCOF4f0BsJ-N4tND-ePPHR42YiI3GH-NPEQ8VAAitOuEAtEFIiA7YtUfgHmeRS4qeIoIZfUY4mwz5co5WXFHofFOLfFao24iXQgho6woUved4fzUcIoRlD0GldsAAXUGEZGODVD2AeOUC0AjGUH0CSAsHAjVFAF0BZFZQtOvVRiinIHYihhsErg0AdBwAROUDXGsGpAGDrLYDYEECsBwDQDTKLMEBLLjwzTTnrMbObJSEEDbMLOMAHIyF-2WIL1HIyCbLygnKnJEmLPfkXnwIYjrMOAbOXPHNbL0n7NZUKKaT3IPPQGDAYCQF8DoHiBoFIHXNPIyEFLa0vIRJvLvKsASCsGfJPJnNZRUzuE-IyG-PvL-KfPSEAs3PQHAK2MA1ApACXOvNvMgsfIAvjI0F5HMFfPgtSNlPhGgGpCxFABwyROjB2AyK8HIkTLrLoE-AyAAGEhyVBBQWSq51jBQTBnAyAsA+EEKuIEACAGBJJ4RUKQAILfzMKYKNByxpy4Kk1ZwqJbhMAMh+BcKGLMAmL0BWK4SOK2JJywL0AVyWzJzogzRkR0pzBJKDg7hLLQB2JMzrAczQBvFeR1Lcz8KtThyJL9yxzVzjz2zOzuzezFLZz0BSz4T-KryQAzK1zYLIrFji1RCTL4qjyLKN0fLAyrV0qErgqIqzyfNeCUKArwL0KZL-y5Kiq3ySq8J0rpKHzqqXygKMgQLYqvzKrmroLWqlKEKCS8FGruqoKsKcK8K2qCLrSkLiKoBSLJg1wxiqKaK1A6LBhfzdKQB9LG5DLSAuK0EYAeK+KBKMwhKRKxLOqKqfyeqAL5KJqlLhjVKSYNKtKULGKETtqrFdqWRLrTLMqBhBhkAbgbLczqQ9BNYUR+L1LYhcKKx0qPL1LohEygA), it is now behaving as intended, with both bar and text layers sorted by match weight.\n",
- "\n",
- "If the chart is working as intended, there is only one step required before saving the JSON file - removing data from the template schema.\n",
- "\n",
- "The data appears as follows with a dictionary of all included `datasets` by name, and then each chart referencing the `data` it uses by name:\n",
- "\n",
- "```\n",
- "\"data\": {\"name\": \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\"},\n",
- "\"datasets\": {\n",
- " \"data-a6c84a9cf1a0c7a2cd30cc1a0e2c1185\": [\n",
- "\n",
- " ...\n",
- "\n",
- " ]\n",
- "},\n",
- "```\n",
- "\n",
- "Where only one dataset is required, this is equivalent to:\n",
- "```\n",
- "\"data\": {\"values\": [...]}\n",
- "```\n",
- "\n",
- "After removing the data references, the template can be saved in Splink as `splink/files/chart_defs/my_new_chart.json`"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Combine the chart dataset and template\n",
- "\n",
- "Putting all of the above together, Splink needs definitions for the methods that generate the chart and the data behind it (these can be separate or performed by the same function if relatively simple).\n",
- "\n",
- "### Chart definition\n",
- "\n",
- "In [`splink/charts.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/charts.py) we can add a new function to populate the chart definition with the provided data:\n",
- "\n",
- "```python\n",
- "def my_new_chart(records, as_dict=False):\n",
- " chart_path = \"my_new_chart.json\"\n",
- " chart = load_chart_definition(chart_path)\n",
- "\n",
- " chart[\"data\"][\"values\"] = records\n",
- " return altair_or_json(chart, as_dict=as_dict)\n",
- "```\n",
- "\n",
- ">**Note** - only the data is being added to a fixed chart definition here. Other elements of the chart spec can be changed by editing the `chart` dictionary in the same way. \n",
- ">\n",
- "> For example, if you wanted to add a `color_scheme` argument to replace the default scheme (\"tableau10\"), this function could include the line: `chart[\"layer\"][0][\"encoding\"][\"color\"][\"scale\"][\"scheme\"] = color_scheme`\n",
- "\n",
- "### Chart method\n",
- "\n",
- "Then we can add a method to the linker in [`splink/linker.py`](https://github.com/moj-analytical-services/splink/blob/master/splink/linker.py) so the chart can be generated by `linker.my_new_chart()`:\n",
- "\n",
- "```python\n",
- "from .charts import my_new_chart\n",
- "\n",
- "...\n",
- "\n",
- "class Linker:\n",
- "\n",
- " ...\n",
- "\n",
- " def my_new_chart(self):\n",
- " \n",
- " # Take linker object and extract complete settings dict\n",
- " records = self._settings_obj._parameters_as_detailed_records\n",
- "\n",
- " cols_to_keep = [\n",
- " \"comparison_name\",\n",
- " \"sql_condition\",\n",
- " \"label_for_charts\",\n",
- " \"m_probability\",\n",
- " \"u_probability\",\n",
- " \"bayes_factor\",\n",
- " \"log2_bayes_factor\",\n",
- " \"comparison_vector_value\"\n",
- " ]\n",
- "\n",
- " # Keep useful information for a match weights chart\n",
- " records = [{k: r[k] for k in cols_to_keep}\n",
- " for r in records \n",
- " if r[\"comparison_vector_value\"] != -1 and r[\"comparison_sort_order\"] != -1]\n",
- "\n",
- " return my_new_chart(records)\n",
- "\n",
- "```\n",
- "\n",
- "\n",
- "## Previous new chart PRs\n",
- "\n",
- "Real-life Splink chart additions, for reference:\n",
- "\n",
- "- [Term frequency adjustment chart](https://github.com/moj-analytical-services/splink/pull/1226)\n",
- "- [Completeness (multi-dataset) chart](https://github.com/moj-analytical-services/splink/pull/669)\n",
- "- [Cumulative blocking rule chart](https://github.com/moj-analytical-services/splink/pull/660)\n",
- "- [Unlinkables chart](https://github.com/moj-analytical-services/splink/pull/277)\n",
- "- [Missingness chart](https://github.com/moj-analytical-services/splink/pull/277)\n",
- "- [Waterfall chart](https://github.com/moj-analytical-services/splink/pull/181)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "orig_nbformat": 4
},
- "orig_nbformat": 4
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb b/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb
index 549e04bf26..6a5042413c 100644
--- a/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb
+++ b/docs/topic_guides/evaluation/clusters/how_to_compute_metrics.ipynb
@@ -1,378 +1,378 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# How to compute graph metrics with Splink"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Introduction to the `compute_graph_metrics()` method"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "To enable users to calculate a variety of graph metrics for their linked data, Splink provides the `compute_graph_metrics()` method.\n",
- "\n",
- "The method is called on the `linker` like so:\n",
- "\n",
- "```\n",
- "linker.computer_graph_metrics(df_predict, df_clustered, threshold_match_probability=0.95)\n",
- "```\n",
- "with arguments\n",
- "\n",
- " Args:\n",
- " df_predict (SplinkDataFrame): The results of `linker.predict()`\n",
- " df_clustered (SplinkDataFrame): The outputs of\n",
- " `linker.cluster_pairwise_predictions_at_threshold()`\n",
- " threshold_match_probability (float): Filter the pairwise match predictions\n",
- " to include only pairwise comparisons with a match_probability at or\n",
- " above this threshold.\n",
- "\n",
- "!!! warning\n",
- "\n",
- " `threshold_match_probability` should be the same as the clustering threshold passed to `cluster_pairwise_predictions_at_threshold()`. If this information is available to Splink then it will be passed automatically, otherwise the user will have to provide it themselves and take care to ensure that threshold values align.\n",
- "\n",
- "The method generates tables containing graph metrics (for nodes, edges and clusters), and returns a data class of [Splink dataframes](../../../SplinkDataFrame.md). The individual Splink dataframes containing node, edge and cluster metrics can be accessed as follows:\n",
- "\n",
- "```\n",
- "compute_graph_metrics.nodes for node metrics\n",
- "compute_graph_metrics.edges for edge metrics\n",
- "compute_graph_metrics.clusters for cluster metrics\n",
- "```\n",
- "\n",
- "The metrics computed by `compute_graph_metrics()` include all those mentioned in the [Graph metrics](./graph_metrics.md) chapter, namely:\n",
- "\n",
- "* Node degree\n",
- "* 'Is bridge'\n",
- "* Cluster size\n",
- "* Cluster density\n",
- "* Cluster centrality\n",
- "\n",
- "All of these metrics are calculated by default. If you are unable to install the `igraph` package required for 'is bridge', this metric won't be calculated, however all other metrics will still be generated.\n",
- "\n",
- "This topic guide is a work in progress and we welcome any feedback."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Full code example"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This code snippet computes graph metrics for a simple Splink dedupe model. A pandas dataframe of cluster metrics is displayed as the final output."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# How to compute graph metrics with Splink"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Introduction to the `compute_graph_metrics()` method"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To enable users to calculate a variety of graph metrics for their linked data, Splink provides the `compute_graph_metrics()` method.\n",
+ "\n",
+ "The method is called on the `linker` like so:\n",
+ "\n",
+ "```\n",
+ "linker.computer_graph_metrics(df_predict, df_clustered, threshold_match_probability=0.95)\n",
+ "```\n",
+ "with arguments\n",
+ "\n",
+ " Args:\n",
+ " df_predict (SplinkDataFrame): The results of `linker.inference.predict()`\n",
+ " df_clustered (SplinkDataFrame): The outputs of\n",
+ " `linker.clustering.cluster_pairwise_predictions_at_threshold()`\n",
+ " threshold_match_probability (float): Filter the pairwise match predictions\n",
+ " to include only pairwise comparisons with a match_probability at or\n",
+ " above this threshold.\n",
+ "\n",
+ "!!! warning\n",
+ "\n",
+ " `threshold_match_probability` should be the same as the clustering threshold passed to `cluster_pairwise_predictions_at_threshold()`. If this information is available to Splink then it will be passed automatically, otherwise the user will have to provide it themselves and take care to ensure that threshold values align.\n",
+ "\n",
+ "The method generates tables containing graph metrics (for nodes, edges and clusters), and returns a data class of [Splink dataframes](../../../SplinkDataFrame.md). The individual Splink dataframes containing node, edge and cluster metrics can be accessed as follows:\n",
+ "\n",
+ "```\n",
+ "compute_graph_metrics.nodes for node metrics\n",
+ "compute_graph_metrics.edges for edge metrics\n",
+ "compute_graph_metrics.clusters for cluster metrics\n",
+ "```\n",
+ "\n",
+ "The metrics computed by `compute_graph_metrics()` include all those mentioned in the [Graph metrics](./graph_metrics.md) chapter, namely:\n",
+ "\n",
+ "* Node degree\n",
+ "* 'Is bridge'\n",
+ "* Cluster size\n",
+ "* Cluster density\n",
+ "* Cluster centrality\n",
+ "\n",
+ "All of these metrics are calculated by default. If you are unable to install the `igraph` package required for 'is bridge', this metric won't be calculated, however all other metrics will still be generated.\n",
+ "\n",
+ "This topic guide is a work in progress and we welcome any feedback."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Full code example"
+ ]
+ },
{
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/var/folders/nd/c3xr518x3txg5kcqp1h7zwc80000gp/T/ipykernel_13654/2355919473.py:39: SplinkDeprecated: target_rows is deprecated; use max_pairs\n",
- " linker.estimate_u_using_random_sampling(target_rows=1e6)\n",
- "----- Estimating u probabilities using random sampling -----\n",
- "\n",
- "Estimated u probabilities using random sampling\n",
- "\n",
- "Your model is not yet fully trained. Missing estimates for:\n",
- " - first_name (no m values are trained).\n",
- " - surname (no m values are trained).\n",
- " - postcode_fake (no m values are trained).\n",
- "\n",
- "----- Starting EM training session -----\n",
- "\n",
- "Estimating the m probabilities of the model by blocking on:\n",
- "(l.\"first_name\" = r.\"first_name\") AND (l.\"surname\" = r.\"surname\")\n",
- "\n",
- "Parameter estimates will be made for the following comparison(s):\n",
- " - postcode_fake\n",
- "\n",
- "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
- " - first_name\n",
- " - surname\n",
- "\n",
- "Iteration 1: Largest change in params was -0.352 in probability_two_random_records_match\n",
- "Iteration 2: Largest change in params was 0.108 in the m_probability of postcode_fake, level `All other comparisons`\n",
- "Iteration 3: Largest change in params was 0.019 in the m_probability of postcode_fake, level `All other comparisons`\n",
- "Iteration 4: Largest change in params was 0.00276 in the m_probability of postcode_fake, level `All other comparisons`\n",
- "Iteration 5: Largest change in params was 0.000388 in the m_probability of postcode_fake, level `All other comparisons`\n",
- "Iteration 6: Largest change in params was 5.44e-05 in the m_probability of postcode_fake, level `All other comparisons`\n",
- "\n",
- "EM converged after 6 iterations\n",
- "\n",
- "Your model is not yet fully trained. Missing estimates for:\n",
- " - first_name (no m values are trained).\n",
- " - surname (no m values are trained).\n",
- "\n",
- "----- Starting EM training session -----\n",
- "\n",
- "Estimating the m probabilities of the model by blocking on:\n",
- "(l.\"dob\" = r.\"dob\") AND (SUBSTR(l.\"postcode_fake\", 1, 3) = SUBSTR(r.\"postcode_fake\", 1, 3))\n",
- "\n",
- "Parameter estimates will be made for the following comparison(s):\n",
- " - first_name\n",
- " - surname\n",
- "\n",
- "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
- " - postcode_fake\n",
- "\n",
- "Iteration 1: Largest change in params was 0.508 in probability_two_random_records_match\n",
- "Iteration 2: Largest change in params was 0.0868 in probability_two_random_records_match\n",
- "Iteration 3: Largest change in params was 0.0212 in probability_two_random_records_match\n",
- "Iteration 4: Largest change in params was 0.00704 in probability_two_random_records_match\n",
- "Iteration 5: Largest change in params was 0.00306 in probability_two_random_records_match\n",
- "Iteration 6: Largest change in params was 0.00149 in probability_two_random_records_match\n",
- "Iteration 7: Largest change in params was 0.000761 in probability_two_random_records_match\n",
- "Iteration 8: Largest change in params was 0.000395 in probability_two_random_records_match\n",
- "Iteration 9: Largest change in params was 0.000206 in probability_two_random_records_match\n",
- "Iteration 10: Largest change in params was 0.000108 in probability_two_random_records_match\n",
- "Iteration 11: Largest change in params was 5.66e-05 in probability_two_random_records_match\n",
- "\n",
- "EM converged after 11 iterations\n",
- "\n",
- "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n",
- "Completed iteration 1, root rows count 316\n",
- "Completed iteration 2, root rows count 63\n",
- "Completed iteration 3, root rows count 12\n",
- "Completed iteration 4, root rows count 0\n"
- ]
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This code snippet computes graph metrics for a simple Splink dedupe model. A pandas dataframe of cluster metrics is displayed as the final output."
+ ]
},
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " cluster_id | \n",
- " n_nodes | \n",
- " n_edges | \n",
- " density | \n",
- " cluster_centralisation | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " Q98761652-1 | \n",
- " 5 | \n",
- " 8.0 | \n",
- " 0.800000 | \n",
- " 0.333333 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " Q10307857-1 | \n",
- " 11 | \n",
- " 35.0 | \n",
- " 0.636364 | \n",
- " 0.200000 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " Q18910925-1 | \n",
- " 20 | \n",
- " 172.0 | \n",
- " 0.905263 | \n",
- " 0.105263 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " Q13530025-1 | \n",
- " 11 | \n",
- " 32.0 | \n",
- " 0.581818 | \n",
- " 0.266667 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " Q15966633-11 | \n",
- " 3 | \n",
- " 3.0 | \n",
- " 1.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 21530 | \n",
- " Q5006750-7 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 21531 | \n",
- " Q5166888-13 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 21532 | \n",
- " Q5546247-8 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 21533 | \n",
- " Q6698372-5 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 21534 | \n",
- " Q7794499-6 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
21535 rows × 5 columns
\n",
- "
"
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/var/folders/nd/c3xr518x3txg5kcqp1h7zwc80000gp/T/ipykernel_13654/2355919473.py:39: SplinkDeprecated: target_rows is deprecated; use max_pairs\n",
+ " linker.training.estimate_u_using_random_sampling(target_rows=1e6)\n",
+ "----- Estimating u probabilities using random sampling -----\n",
+ "\n",
+ "Estimated u probabilities using random sampling\n",
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ " - postcode_fake (no m values are trained).\n",
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n",
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "(l.\"first_name\" = r.\"first_name\") AND (l.\"surname\" = r.\"surname\")\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - postcode_fake\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - first_name\n",
+ " - surname\n",
+ "\n",
+ "Iteration 1: Largest change in params was -0.352 in probability_two_random_records_match\n",
+ "Iteration 2: Largest change in params was 0.108 in the m_probability of postcode_fake, level `All other comparisons`\n",
+ "Iteration 3: Largest change in params was 0.019 in the m_probability of postcode_fake, level `All other comparisons`\n",
+ "Iteration 4: Largest change in params was 0.00276 in the m_probability of postcode_fake, level `All other comparisons`\n",
+ "Iteration 5: Largest change in params was 0.000388 in the m_probability of postcode_fake, level `All other comparisons`\n",
+ "Iteration 6: Largest change in params was 5.44e-05 in the m_probability of postcode_fake, level `All other comparisons`\n",
+ "\n",
+ "EM converged after 6 iterations\n",
+ "\n",
+ "Your model is not yet fully trained. Missing estimates for:\n",
+ " - first_name (no m values are trained).\n",
+ " - surname (no m values are trained).\n",
+ "\n",
+ "----- Starting EM training session -----\n",
+ "\n",
+ "Estimating the m probabilities of the model by blocking on:\n",
+ "(l.\"dob\" = r.\"dob\") AND (SUBSTR(l.\"postcode_fake\", 1, 3) = SUBSTR(r.\"postcode_fake\", 1, 3))\n",
+ "\n",
+ "Parameter estimates will be made for the following comparison(s):\n",
+ " - first_name\n",
+ " - surname\n",
+ "\n",
+ "Parameter estimates cannot be made for the following comparison(s) since they are used in the blocking rules: \n",
+ " - postcode_fake\n",
+ "\n",
+ "Iteration 1: Largest change in params was 0.508 in probability_two_random_records_match\n",
+ "Iteration 2: Largest change in params was 0.0868 in probability_two_random_records_match\n",
+ "Iteration 3: Largest change in params was 0.0212 in probability_two_random_records_match\n",
+ "Iteration 4: Largest change in params was 0.00704 in probability_two_random_records_match\n",
+ "Iteration 5: Largest change in params was 0.00306 in probability_two_random_records_match\n",
+ "Iteration 6: Largest change in params was 0.00149 in probability_two_random_records_match\n",
+ "Iteration 7: Largest change in params was 0.000761 in probability_two_random_records_match\n",
+ "Iteration 8: Largest change in params was 0.000395 in probability_two_random_records_match\n",
+ "Iteration 9: Largest change in params was 0.000206 in probability_two_random_records_match\n",
+ "Iteration 10: Largest change in params was 0.000108 in probability_two_random_records_match\n",
+ "Iteration 11: Largest change in params was 5.66e-05 in probability_two_random_records_match\n",
+ "\n",
+ "EM converged after 11 iterations\n",
+ "\n",
+ "Your model is fully trained. All comparisons have at least one estimate for their m and u values\n",
+ "Completed iteration 1, root rows count 316\n",
+ "Completed iteration 2, root rows count 63\n",
+ "Completed iteration 3, root rows count 12\n",
+ "Completed iteration 4, root rows count 0\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " cluster_id | \n",
+ " n_nodes | \n",
+ " n_edges | \n",
+ " density | \n",
+ " cluster_centralisation | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Q98761652-1 | \n",
+ " 5 | \n",
+ " 8.0 | \n",
+ " 0.800000 | \n",
+ " 0.333333 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Q10307857-1 | \n",
+ " 11 | \n",
+ " 35.0 | \n",
+ " 0.636364 | \n",
+ " 0.200000 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Q18910925-1 | \n",
+ " 20 | \n",
+ " 172.0 | \n",
+ " 0.905263 | \n",
+ " 0.105263 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Q13530025-1 | \n",
+ " 11 | \n",
+ " 32.0 | \n",
+ " 0.581818 | \n",
+ " 0.266667 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Q15966633-11 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 21530 | \n",
+ " Q5006750-7 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 21531 | \n",
+ " Q5166888-13 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 21532 | \n",
+ " Q5546247-8 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 21533 | \n",
+ " Q6698372-5 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 21534 | \n",
+ " Q7794499-6 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
21535 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " cluster_id n_nodes n_edges density cluster_centralisation\n",
+ "0 Q98761652-1 5 8.0 0.800000 0.333333\n",
+ "1 Q10307857-1 11 35.0 0.636364 0.200000\n",
+ "2 Q18910925-1 20 172.0 0.905263 0.105263\n",
+ "3 Q13530025-1 11 32.0 0.581818 0.266667\n",
+ "4 Q15966633-11 3 3.0 1.000000 0.000000\n",
+ "... ... ... ... ... ...\n",
+ "21530 Q5006750-7 1 0.0 NaN NaN\n",
+ "21531 Q5166888-13 1 0.0 NaN NaN\n",
+ "21532 Q5546247-8 1 0.0 NaN NaN\n",
+ "21533 Q6698372-5 1 0.0 NaN NaN\n",
+ "21534 Q7794499-6 1 0.0 NaN NaN\n",
+ "\n",
+ "[21535 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
],
- "text/plain": [
- " cluster_id n_nodes n_edges density cluster_centralisation\n",
- "0 Q98761652-1 5 8.0 0.800000 0.333333\n",
- "1 Q10307857-1 11 35.0 0.636364 0.200000\n",
- "2 Q18910925-1 20 172.0 0.905263 0.105263\n",
- "3 Q13530025-1 11 32.0 0.581818 0.266667\n",
- "4 Q15966633-11 3 3.0 1.000000 0.000000\n",
- "... ... ... ... ... ...\n",
- "21530 Q5006750-7 1 0.0 NaN NaN\n",
- "21531 Q5166888-13 1 0.0 NaN NaN\n",
- "21532 Q5546247-8 1 0.0 NaN NaN\n",
- "21533 Q6698372-5 1 0.0 NaN NaN\n",
- "21534 Q7794499-6 1 0.0 NaN NaN\n",
- "\n",
- "[21535 rows x 5 columns]"
+ "source": [
+ "import splink.duckdb.comparison_library as cl\n",
+ "from splink.datasets import splink_datasets\n",
+ "from splink.duckdb.blocking_rule_library import block_on\n",
+ "from splink.duckdb.linker import DuckDBLinker\n",
+ "\n",
+ "import ssl\n",
+ "\n",
+ "ssl._create_default_https_context = ssl._create_unverified_context\n",
+ "\n",
+ "df = splink_datasets.historical_50k\n",
+ "\n",
+ "settings_dict = {\n",
+ " \"link_type\": \"dedupe_only\",\n",
+ " \"blocking_rules_to_generate_predictions\": [\n",
+ " block_on([\"postcode_fake\", \"first_name\"]),\n",
+ " block_on([\"first_name\", \"surname\"]),\n",
+ " block_on([\"dob\", \"substr(postcode_fake,1,2)\"]),\n",
+ " block_on([\"postcode_fake\", \"substr(dob,1,3)\"]),\n",
+ " block_on([\"postcode_fake\", \"substr(dob,4,5)\"]),\n",
+ " ],\n",
+ " \"comparisons\": [\n",
+ " cl.exact_match(\n",
+ " \"first_name\",\n",
+ " term_frequency_adjustments=True,\n",
+ " ),\n",
+ " cl.jaro_winkler_at_thresholds(\n",
+ " \"surname\", distance_threshold_or_thresholds=[0.9, 0.8]\n",
+ " ),\n",
+ " cl.levenshtein_at_thresholds(\n",
+ " \"postcode_fake\", distance_threshold_or_thresholds=[1, 2]\n",
+ " ),\n",
+ " ],\n",
+ " \"retain_intermediate_calculation_columns\": True,\n",
+ "}\n",
+ "\n",
+ "\n",
+ "linker = DuckDBLinker(df, settings_dict)\n",
+ "\n",
+ "linker.training.estimate_u_using_random_sampling(target_rows=1e6)\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(\n",
+ " block_on([\"first_name\", \"surname\"])\n",
+ ")\n",
+ "\n",
+ "linker.training.estimate_parameters_using_expectation_maximisation(\n",
+ " block_on([\"dob\", \"substr(postcode_fake, 1,3)\"])\n",
+ ")\n",
+ "\n",
+ "df_predict = linker.inference.predict()\n",
+ "df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, 0.95)\n",
+ "\n",
+ "graph_metrics = linker.compute_graph_metrics(df_predict, df_clustered)\n",
+ "\n",
+ "graph_metrics.clusters.as_pandas_dataframe()"
]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
}
- ],
- "source": [
- "import splink.duckdb.comparison_library as cl\n",
- "from splink.datasets import splink_datasets\n",
- "from splink.duckdb.blocking_rule_library import block_on\n",
- "from splink.duckdb.linker import DuckDBLinker\n",
- "\n",
- "import ssl\n",
- "\n",
- "ssl._create_default_https_context = ssl._create_unverified_context\n",
- "\n",
- "df = splink_datasets.historical_50k\n",
- "\n",
- "settings_dict = {\n",
- " \"link_type\": \"dedupe_only\",\n",
- " \"blocking_rules_to_generate_predictions\": [\n",
- " block_on([\"postcode_fake\", \"first_name\"]),\n",
- " block_on([\"first_name\", \"surname\"]),\n",
- " block_on([\"dob\", \"substr(postcode_fake,1,2)\"]),\n",
- " block_on([\"postcode_fake\", \"substr(dob,1,3)\"]),\n",
- " block_on([\"postcode_fake\", \"substr(dob,4,5)\"]),\n",
- " ],\n",
- " \"comparisons\": [\n",
- " cl.exact_match(\n",
- " \"first_name\",\n",
- " term_frequency_adjustments=True,\n",
- " ),\n",
- " cl.jaro_winkler_at_thresholds(\n",
- " \"surname\", distance_threshold_or_thresholds=[0.9, 0.8]\n",
- " ),\n",
- " cl.levenshtein_at_thresholds(\n",
- " \"postcode_fake\", distance_threshold_or_thresholds=[1, 2]\n",
- " ),\n",
- " ],\n",
- " \"retain_intermediate_calculation_columns\": True,\n",
- "}\n",
- "\n",
- "\n",
- "linker = DuckDBLinker(df, settings_dict)\n",
- "\n",
- "linker.estimate_u_using_random_sampling(target_rows=1e6)\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(\n",
- " block_on([\"first_name\", \"surname\"])\n",
- ")\n",
- "\n",
- "linker.estimate_parameters_using_expectation_maximisation(\n",
- " block_on([\"dob\", \"substr(postcode_fake, 1,3)\"])\n",
- ")\n",
- "\n",
- "df_predict = linker.predict()\n",
- "df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.95)\n",
- "\n",
- "graph_metrics = linker.compute_graph_metrics(df_predict, df_clustered)\n",
- "\n",
- "graph_metrics.clusters.as_pandas_dataframe()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "splink-bxsLLt4m",
- "language": "python",
- "name": "python3"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "splink-bxsLLt4m",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.6"
+ }
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/splink/internals/accuracy.py b/splink/internals/accuracy.py
index ab43e2f4e7..96d36d7f4f 100644
--- a/splink/internals/accuracy.py
+++ b/splink/internals/accuracy.py
@@ -1,7 +1,7 @@
from __future__ import annotations
from copy import deepcopy
-from typing import TYPE_CHECKING
+from typing import TYPE_CHECKING, Optional
from splink.internals.block_from_labels import block_from_labels
from splink.internals.blocking import BlockingRule
@@ -307,8 +307,11 @@ def _select_found_by_blocking_rules(linker: "Linker") -> str:
def truth_space_table_from_labels_table(
- linker, labels_tablename, threshold_actual=0.5, match_weight_round_to_nearest=None
-):
+ linker: Linker,
+ labels_tablename: str,
+ threshold_actual: float = 0.5,
+ match_weight_round_to_nearest: Optional[float] = None,
+) -> SplinkDataFrame:
pipeline = CTEPipeline()
nodes_with_tf = compute_df_concat_with_tf(linker, pipeline)
@@ -323,7 +326,7 @@ def truth_space_table_from_labels_table(
)
pipeline.enqueue_list_of_sqls(sqls)
- df_truth_space_table = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_truth_space_table = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_truth_space_table
@@ -356,7 +359,7 @@ def truth_space_table_from_labels_column(
"""
pipeline.enqueue_sql(sql, "__splink__cartesian_product")
- cartesian_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ cartesian_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
row_count_df = cartesian_count.as_record_dict()
cartesian_count.drop_table_from_database_and_remove_from_cache()
@@ -393,7 +396,7 @@ def truth_space_table_from_labels_column(
)
pipeline.enqueue_list_of_sqls(sqls)
- df_truth_space_table = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_truth_space_table = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_truth_space_table
@@ -439,12 +442,12 @@ def predictions_from_sample_of_pairwise_labels_sql(linker, labels_tablename):
def prediction_errors_from_labels_table(
- linker,
- labels_tablename,
- include_false_positives=True,
- include_false_negatives=True,
- threshold=0.5,
-):
+ linker: Linker,
+ labels_tablename: str,
+ include_false_positives: bool = True,
+ include_false_negatives: bool = True,
+ threshold: float = 0.5,
+) -> SplinkDataFrame:
pipeline = CTEPipeline()
nodes_with_tf = compute_df_concat_with_tf(linker, pipeline)
pipeline = CTEPipeline([nodes_with_tf])
@@ -486,7 +489,7 @@ def prediction_errors_from_labels_table(
pipeline.enqueue_sql(sql, "__splink__labels_with_fp_fn_status")
- return linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ return linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
def _predict_from_label_column_sql(linker, label_colname):
@@ -509,18 +512,18 @@ def _predict_from_label_column_sql(linker, label_colname):
settings._additional_column_names_to_retain.append(label_colname)
# Now we want to create predictions
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
return df_predict
def prediction_errors_from_label_column(
- linker,
- label_colname,
- include_false_positives=True,
- include_false_negatives=True,
- threshold=0.5,
-):
+ linker: Linker,
+ label_colname: str,
+ include_false_positives: bool = True,
+ include_false_negatives: bool = True,
+ threshold: float = 0.5,
+) -> SplinkDataFrame:
df_predict = _predict_from_label_column_sql(
linker,
label_colname,
@@ -577,6 +580,6 @@ def prediction_errors_from_label_column(
pipeline.enqueue_sql(sql, "__splink__predictions_from_label_column_fp_fn_only")
- predictions = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ predictions = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return predictions
diff --git a/splink/internals/cluster_studio.py b/splink/internals/cluster_studio.py
index b53b114b69..76d4da678f 100644
--- a/splink/internals/cluster_studio.py
+++ b/splink/internals/cluster_studio.py
@@ -63,7 +63,7 @@ def df_clusters_as_records(
sql = _clusters_sql(df_clustered_nodes, cluster_ids)
pipeline = CTEPipeline()
pipeline.enqueue_sql(sql, "__splink__scs_clusters")
- df_clusters = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_clusters = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_clusters.as_record_dict()
@@ -107,7 +107,7 @@ def create_df_nodes(
pipeline = CTEPipeline()
sql = _nodes_sql(df_clustered_nodes, cluster_ids)
pipeline.enqueue_sql(sql, "__splink__scs_nodes")
- df_nodes = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_nodes = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_nodes
@@ -151,7 +151,7 @@ def df_edges_as_records(
sql = _edges_sql(linker, df_predicted_edges, df_nodes)
pipeline = CTEPipeline()
pipeline.enqueue_sql(sql, "__splink__scs_edges")
- df_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_edges.as_record_dict()
@@ -168,7 +168,7 @@ def _get_random_cluster_ids(
"""
pipeline = CTEPipeline()
pipeline.enqueue_sql(sql, "__splink__cluster_count")
- df_cluster_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_cluster_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
cluster_count = df_cluster_count.as_record_dict()[0]["count"]
df_cluster_count.drop_table_from_database_and_remove_from_cache()
@@ -192,7 +192,7 @@ def _get_random_cluster_ids(
"""
pipeline = CTEPipeline()
pipeline.enqueue_sql(sql, "__splink__df_concat_with_tf_sample")
- df_sample = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_sample = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return [r["cluster_id"] for r in df_sample.as_record_dict()]
@@ -234,7 +234,7 @@ def _get_cluster_id_of_each_size(
"""
pipeline.enqueue_sql(sql, "__splink__cluster_count_row_numbered")
- df_cluster_sample_with_size = linker.db_api.sql_pipeline_to_splink_dataframe(
+ df_cluster_sample_with_size = linker._db_api.sql_pipeline_to_splink_dataframe(
pipeline
)
@@ -285,7 +285,7 @@ def _get_lowest_density_clusters(
"""
pipeline.enqueue_sql(sql, "__splink__lowest_density_clusters")
- df_lowest_density_clusters = linker.db_api.sql_pipeline_to_splink_dataframe(
+ df_lowest_density_clusters = linker._db_api.sql_pipeline_to_splink_dataframe(
pipeline
)
diff --git a/splink/internals/connected_components.py b/splink/internals/connected_components.py
index 69a3bae3a0..50319418ce 100644
--- a/splink/internals/connected_components.py
+++ b/splink/internals/connected_components.py
@@ -355,7 +355,7 @@ def _cc_create_unique_id_cols(
"""
pipeline = CTEPipeline()
pipeline.enqueue_sql(sql, "__splink__df_connected_components_df")
- return linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ return linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
def _exit_query(
@@ -453,7 +453,7 @@ def solve_connected_components(
pipeline.enqueue_sql(sql, "nodes")
sql = _cc_generate_neighbours_representation()
pipeline.enqueue_sql(sql, "__splink__df_neighbours")
- neighbours = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ neighbours = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
# Create our initial representatives table
pipeline = CTEPipeline([neighbours])
@@ -465,7 +465,7 @@ def solve_connected_components(
# Execute if we have no batching, otherwise add it to our batched process
pipeline.enqueue_sql(sql, "__splink__df_representatives")
- representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
prev_representatives_table = representatives
# Loop while our representative table still has unsettled nodes
@@ -500,7 +500,7 @@ def solve_connected_components(
repr_name,
)
- representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
pipeline = CTEPipeline()
# Update table reference
@@ -512,7 +512,7 @@ def solve_connected_components(
pipeline.enqueue_sql(sql, "__splink__df_root_rows")
- root_rows_df = linker.db_api.sql_pipeline_to_splink_dataframe(
+ root_rows_df = linker._db_api.sql_pipeline_to_splink_dataframe(
pipeline, use_cache=False
)
@@ -540,6 +540,6 @@ def solve_connected_components(
)
pipeline = CTEPipeline([representatives])
pipeline.enqueue_sql(exit_query, "__splink__df_representatives")
- representatives = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ representatives = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return representatives
diff --git a/splink/internals/edge_metrics.py b/splink/internals/edge_metrics.py
index da9ee248c9..34f97707b4 100644
--- a/splink/internals/edge_metrics.py
+++ b/splink/internals/edge_metrics.py
@@ -68,7 +68,7 @@ def compute_basic_edge_metrics(
)
pipeline.enqueue_sql(**sql_info)
- df_truncated_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_truncated_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_truncated_edges
@@ -96,13 +96,13 @@ def compute_igraph_metrics(
# this is how igraph deals with nodes
sql_infos = _node_mapping_table_sql(df_node_metrics)
pipeline.enqueue_list_of_sqls(sql_infos)
- df_node_mappings = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_node_mappings = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
# we keep only edges at or above relevant threshold
pipeline = CTEPipeline()
sql_info = _truncated_edges_sql(df_predict, threshold_match_probability)
pipeline.enqueue_sql(**sql_info)
- df_truncated_edges = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_truncated_edges = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
# we map the truncated edges to the integer encoding for nodes above,
# keeping only the list of endpoints
@@ -114,7 +114,7 @@ def compute_igraph_metrics(
composite_uid_edges_r,
)
pipeline.enqueue_sql(**sql_info)
- edges_for_igraph = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ edges_for_igraph = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
# we will need to manually register a table, so we use the hash from this table
igraph_edges_hash = edges_for_igraph.physical_name[-9:]
# NB: for large data we may have to revise this and process in chunks
@@ -124,7 +124,7 @@ def compute_igraph_metrics(
igraph_df = ig.Graph.DataFrame(df_edges_for_igraph, directed=False)
bridges_indices = igraph_df.bridges()
df_bridges_pd = df_edges_for_igraph.iloc[bridges_indices, :]
- df_bridges = linker.register_table(
+ df_bridges = linker.table_management.register_table(
df_bridges_pd, f"__splink__bridges_{igraph_edges_hash}"
)
# map our bridge edges back to the original node labelling
@@ -139,5 +139,5 @@ def compute_igraph_metrics(
composite_uid_edges_r,
)
pipeline.enqueue_sql(**sql_info)
- df_edge_metrics = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_edge_metrics = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_edge_metrics
diff --git a/splink/internals/estimate_u.py b/splink/internals/estimate_u.py
index 50b3391131..4d24235ac2 100644
--- a/splink/internals/estimate_u.py
+++ b/splink/internals/estimate_u.py
@@ -74,7 +74,7 @@ def estimate_u_values(linker: Linker, max_pairs: float, seed: int = None) -> Non
settings_obj._retain_matching_columns = False
settings_obj._retain_intermediate_calculation_columns = False
- db_api = training_linker.db_api
+ db_api = training_linker._db_api
for cc in settings_obj.comparisons:
for cl in cc.comparison_levels:
@@ -211,6 +211,7 @@ def estimate_u_values(linker: Linker, max_pairs: float, seed: int = None) -> Non
]
m_u_records_lookup = m_u_records_to_lookup_dict(m_u_records)
+
for c in original_settings_obj.comparisons:
for cl in c._comparison_levels_excluding_null:
append_u_probability_to_comparison_level_trained_probabilities(
diff --git a/splink/internals/find_brs_with_comparison_counts_below_threshold.py b/splink/internals/find_brs_with_comparison_counts_below_threshold.py
index b49bf76aee..f7594705de 100644
--- a/splink/internals/find_brs_with_comparison_counts_below_threshold.py
+++ b/splink/internals/find_brs_with_comparison_counts_below_threshold.py
@@ -158,13 +158,13 @@ def _search_tree_for_blocking_rules_below_threshold_count(
if len(current_combination) == len(all_columns):
return results # All fields included, meaning we're at a leaf so exit recursion
- br = _generate_blocking_rule(linker.db_api, current_combination)
+ br = _generate_blocking_rule(linker._db_api, current_combination)
comparison_count = _count_comparisons_generated_from_blocking_rule(
splink_df_dict=linker._input_tables_dict,
blocking_rule=br,
link_type=linker._settings_obj._link_type,
- db_api=linker.db_api,
+ db_api=linker._db_api,
compute_post_filter_count=False,
source_dataset_input_column=linker._settings_obj.column_info_settings.source_dataset_input_column,
unique_id_input_column=linker._settings_obj.column_info_settings.unique_id_input_column,
diff --git a/splink/internals/labelling_tool.py b/splink/internals/labelling_tool.py
index 9113e1a270..e0f46b5d70 100644
--- a/splink/internals/labelling_tool.py
+++ b/splink/internals/labelling_tool.py
@@ -50,9 +50,9 @@ def generate_labelling_tool_comparisons(
"""
pipeline.enqueue_sql(sql, "__splink__df_labelling_tool_record")
- splink_df = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ splink_df = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
- matches = linker.find_matches_to_new_records(
+ matches = linker.inference.find_matches_to_new_records(
splink_df.physical_name, match_weight_threshold=match_weight_threshold
)
diff --git a/splink/internals/linker.py b/splink/internals/linker.py
index 79bc2fd3bb..cfb50a0088 100644
--- a/splink/internals/linker.py
+++ b/splink/internals/linker.py
@@ -1,88 +1,37 @@
from __future__ import annotations
-import json
import logging
-import os
from copy import copy, deepcopy
from pathlib import Path
from statistics import median
-from typing import Any, Dict, List, Literal, Optional, Sequence, Union
+from typing import Any, Dict, List, Optional, Sequence
-from splink.internals.accuracy import (
- prediction_errors_from_label_column,
- prediction_errors_from_labels_table,
- truth_space_table_from_labels_column,
- truth_space_table_from_labels_table,
-)
from splink.internals.blocking import (
BlockingRule,
- SaltedBlockingRule,
block_using_rules_sqls,
- blocking_rule_to_obj,
- materialise_exploded_id_tables,
-)
-from splink.internals.blocking_analysis import (
- _cumulative_comparisons_to_be_scored_from_blocking_rules,
)
-from splink.internals.blocking_rule_creator import BlockingRuleCreator
-from splink.internals.blocking_rule_creator_utils import to_blocking_rule_creator
from splink.internals.cache_dict_with_logging import CacheDictWithLogging
-from splink.internals.charts import (
- ChartReturnType,
- accuracy_chart,
- match_weights_histogram,
- parameter_estimate_comparisons,
- precision_recall_chart,
- roc_chart,
- threshold_selection_tool,
- unlinkables_chart,
- waterfall_chart,
-)
-from splink.internals.cluster_studio import (
- SamplingMethods,
- render_splink_cluster_studio_html,
-)
-from splink.internals.comparison import Comparison
-from splink.internals.comparison_level import ComparisonLevel
-from splink.internals.comparison_vector_distribution import (
- comparison_vector_distribution_sql,
-)
from splink.internals.comparison_vector_values import (
compute_comparison_vector_values_sql,
)
-from splink.internals.connected_components import (
- _cc_create_unique_id_cols,
- solve_connected_components,
-)
from splink.internals.database_api import AcceptableInputTableType, DatabaseAPISubClass
from splink.internals.dialects import SplinkDialect
-from splink.internals.edge_metrics import compute_edge_metrics
from splink.internals.em_training_session import EMTrainingSession
-from splink.internals.estimate_u import estimate_u_values
from splink.internals.exceptions import SplinkException
from splink.internals.find_brs_with_comparison_counts_below_threshold import (
find_blocking_rules_below_threshold_comparison_count,
)
-from splink.internals.find_matches_to_new_records import (
- add_unique_id_and_source_dataset_cols_if_needed,
-)
-from splink.internals.graph_metrics import (
- GraphMetricsResults,
- _node_degree_sql,
- _size_density_centralisation_sql,
-)
from splink.internals.input_column import InputColumn
-from splink.internals.labelling_tool import (
- generate_labelling_tool_comparisons,
- render_labelling_tool_html,
-)
-from splink.internals.m_from_labels import estimate_m_from_pairwise_labels
-from splink.internals.m_training import estimate_m_values_from_label_column
-from splink.internals.match_weights_histogram import histogram_data
+from splink.internals.linker_components.clustering import LinkerClustering
+from splink.internals.linker_components.evaluation import LinkerEvalution
+from splink.internals.linker_components.inference import LinkerInference
+from splink.internals.linker_components.misc import LinkerMisc
+from splink.internals.linker_components.table_management import LinkerTableManagement
+from splink.internals.linker_components.training import LinkerTraining
+from splink.internals.linker_components.visualisations import LinkerVisualisations
from splink.internals.misc import (
ascii_uid,
bayes_factor_to_prob,
- ensure_is_iterable,
ensure_is_list,
prob_to_bayes_factor,
)
@@ -90,7 +39,6 @@
from splink.internals.pipeline import CTEPipeline
from splink.internals.predict import (
predict_from_comparison_vectors_sqls,
- predict_from_comparison_vectors_sqls_using_settings,
)
from splink.internals.settings_creator import SettingsCreator
from splink.internals.settings_validation.log_invalid_columns import (
@@ -100,27 +48,12 @@
from splink.internals.settings_validation.valid_types import (
_validate_dialect,
)
-from splink.internals.splink_comparison_viewer import (
- comparison_viewer_table_sqls,
- render_splink_comparison_viewer_html,
-)
from splink.internals.splink_dataframe import SplinkDataFrame
-from splink.internals.term_frequencies import (
- _join_new_table_to_df_concat_with_tf_sql,
- colname_to_tf_tablename,
- term_frequencies_for_single_column_sql,
- tf_adjustment_chart,
-)
from splink.internals.unique_id_concat import (
_composite_unique_id_from_edges_sql,
- _composite_unique_id_from_nodes_sql,
)
-from splink.internals.unlinkables import unlinkables_data
from splink.internals.vertically_concatenate import (
compute_df_concat_with_tf,
- enqueue_df_concat,
- enqueue_df_concat_with_tf,
- split_df_concat_with_tf_into_two_tables_sqls,
)
logger = logging.getLogger(__name__)
@@ -200,11 +133,11 @@ def __init__(
splink_logger = logging.getLogger("splink")
splink_logger.setLevel(logging.INFO)
- self.db_api = database_api
+ self._db_api = database_api
# TODO: temp hack for compat
self._intermediate_table_cache: CacheDictWithLogging = (
- self.db_api._intermediate_table_cache
+ self._db_api._intermediate_table_cache
)
# Turn into a creator
@@ -237,7 +170,15 @@ def __init__(
self._validate_settings(validate_settings)
self._em_training_sessions: list[EMTrainingSession] = []
- self.debug_mode = False
+ self._debug_mode = False
+
+ self.clustering: "LinkerClustering" = LinkerClustering(self)
+ self.evaluation: "LinkerEvalution" = LinkerEvalution(self)
+ self.inference: "LinkerInference" = LinkerInference(self)
+ self.misc: "LinkerMisc" = LinkerMisc(self)
+ self.table_management: "LinkerTableManagement" = LinkerTableManagement(self)
+ self.training: "LinkerTraining" = LinkerTraining(self)
+ self.visualisations: "LinkerVisualisations" = LinkerVisualisations(self)
def _input_columns(
self,
@@ -333,21 +274,21 @@ def _two_dataset_link_only(self):
# convenience wrappers:
@property
- def debug_mode(self) -> bool:
- return self.db_api.debug_mode
+ def _debug_mode(self) -> bool:
+ return self._db_api.debug_mode
- @debug_mode.setter
- def debug_mode(self, value: bool) -> None:
- self.db_api.debug_mode = value
+ @_debug_mode.setter
+ def _debug_mode(self, value: bool) -> None:
+ self._db_api.debug_mode = value
# TODO: rename these!
@property
def _sql_dialect(self) -> str:
- return self.db_api.sql_dialect.name
+ return self._db_api.sql_dialect.name
@property
def _sql_dialect_object(self) -> SplinkDialect:
- return self.db_api.sql_dialect
+ return self._db_api.sql_dialect
@property
def _infinity_expression(self):
@@ -374,7 +315,7 @@ def _register_input_tables(
input_table_aliases = ensure_is_list(input_aliases)
overwrite = False
- return self.db_api.register_multiple_tables(
+ return self._db_api.register_multiple_tables(
input_tables, input_table_aliases, overwrite
)
@@ -413,80 +354,7 @@ def _table_to_splink_dataframe(
templated_name (str): The purpose of the table to Splink
physical_name (str): The name of the table in the underlying databse
"""
- return self.db_api.table_to_splink_dataframe(templated_name, physical_name)
-
- def register_table(
- self,
- input_table: AcceptableInputTableType,
- table_name: str,
- overwrite: bool = False,
- ) -> SplinkDataFrame:
- """
- Register a table to your backend database, to be used in one of the
- splink methods, or simply to allow querying.
-
- Tables can be of type: dictionary, record level dictionary,
- pandas dataframe, pyarrow table and in the spark case, a spark df.
-
- Examples:
- ```py
- test_dict = {"a": [666,777,888],"b": [4,5,6]}
- linker.register_table(test_dict, "test_dict")
- linker.query_sql("select * from test_dict")
- ```
-
- Args:
- input: The data you wish to register. This can be either a dictionary,
- pandas dataframe, pyarrow table or a spark dataframe.
- table_name (str): The name you wish to assign to the table.
- overwrite (bool): Overwrite the table in the underlying database if it
- exists
-
- Returns:
- SplinkDataFrame: An abstraction representing the table created by the sql
- pipeline
- """
-
- return self.db_api.register_table(input_table, table_name, overwrite)
-
- def query_sql(self, sql, output_type="pandas"):
- """
- Run a SQL query against your backend database and return
- the resulting output.
-
- Examples:
- ```py
- linker = Linker(df, settings, db_api)
- df_predict = linker.predict()
- linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
- ```
-
- Args:
- sql (str): The SQL to be queried.
- output_type (str): One of splink_df/splinkdf or pandas.
- This determines the type of table that your results are output in.
- """
-
- output_tablename_templated = "__splink__df_sql_query"
-
- pipeline = CTEPipeline()
- pipeline.enqueue_sql(sql, output_tablename_templated)
- splink_dataframe = self.db_api.sql_pipeline_to_splink_dataframe(
- pipeline, use_cache=False
- )
-
- if output_type in ("splink_df", "splinkdf"):
- return splink_dataframe
- elif output_type == "pandas":
- out = splink_dataframe.as_pandas_dataframe()
- # If pandas, drop the table to cleanup the db
- splink_dataframe.drop_table_from_database_and_remove_from_cache()
- return out
- else:
- raise ValueError(
- f"output_type '{output_type}' is not supported.",
- "Must be one of 'splink_df'/'splinkdf' or 'pandas'",
- )
+ return self._db_api.table_to_splink_dataframe(templated_name, physical_name)
def __deepcopy__(self, memo):
"""When we do EM training, we need a copy of the linker which is independent
@@ -495,8 +363,18 @@ def __deepcopy__(self, memo):
"""
new_linker = copy(self)
new_linker._em_training_sessions = []
+
new_settings = deepcopy(self._settings_obj)
new_linker._settings_obj = new_settings
+
+ new_linker.clustering = LinkerClustering(new_linker)
+ new_linker.evaluation = LinkerEvalution(new_linker)
+ new_linker.inference = LinkerInference(new_linker)
+ new_linker.misc = LinkerMisc(new_linker)
+ new_linker.table_management = LinkerTableManagement(new_linker)
+ new_linker.training = LinkerTraining(new_linker)
+ new_linker.visualisations = LinkerVisualisations(new_linker)
+
return new_linker
def _predict_warning(self):
@@ -616,9 +494,6 @@ def _populate_m_u_from_trained_values(self):
if cl._has_estimated_m_values:
cl.m_probability = cl._trained_m_median
- def delete_tables_created_by_splink_from_db(self):
- self.db_api.delete_tables_created_by_splink_from_db()
-
def _raise_error_if_necessary_waterfall_columns_not_computed(self):
ricc = self._settings_obj._retain_intermediate_calculation_columns
rmc = self._settings_obj._retain_matching_columns
@@ -643,1094 +518,69 @@ def _raise_error_if_necessary_accuracy_columns_not_computed(self):
"Please re-run your linkage with it set to True."
)
- def compute_tf_table(self, column_name: str) -> SplinkDataFrame:
- """Compute a term frequency table for a given column and persist to the database
-
- This method is useful if you want to pre-compute term frequency tables e.g.
- so that real time linkage executes faster, or so that you can estimate
- various models without having to recompute term frequency tables each time
-
- Examples:
-
- Real time linkage
- ```py
- linker = Linker(df, db_api)
- linker.load_settings("saved_settings.json")
- linker.compute_tf_table("surname")
- linker.compare_two_records(record_left, record_right)
- ```
- Pre-computed term frequency tables
- ```py
- linker = Linker(df, db_api)
- df_first_name_tf = linker.compute_tf_table("first_name")
- df_first_name_tf.write.parquet("folder/first_name_tf")
- >>>
- # On subsequent data linking job, read this table rather than recompute
- df_first_name_tf = pd.read_parquet("folder/first_name_tf")
- df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name")
- ```
-
-
- Args:
- column_name (str): The column name in the input table
-
- Returns:
- SplinkDataFrame: The resultant table as a splink data frame
- """
-
- input_col = InputColumn(
- column_name,
- column_info_settings=self._settings_obj.column_info_settings,
- sql_dialect=self._settings_obj._sql_dialect,
- )
- tf_tablename = colname_to_tf_tablename(input_col)
- cache = self._intermediate_table_cache
-
- if tf_tablename in cache:
- tf_df = cache.get_with_logging(tf_tablename)
- else:
- pipeline = CTEPipeline()
- pipeline = enqueue_df_concat(self, pipeline)
- sql = term_frequencies_for_single_column_sql(input_col)
- pipeline.enqueue_sql(sql, tf_tablename)
- tf_df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
- self._intermediate_table_cache[tf_tablename] = tf_df
-
- return tf_df
-
- def deterministic_link(self) -> SplinkDataFrame:
- """Uses the blocking rules specified by
- `blocking_rules_to_generate_predictions` in the settings dictionary to
- generate pairwise record comparisons.
-
- For deterministic linkage, this should be a list of blocking rules which
- are strict enough to generate only true links.
-
- Deterministic linkage, however, is likely to result in missed links
- (false negatives).
-
- Examples:
-
- ```py
- from splink.linker import Linker
- from splink.duckdb.database_api import DuckDBAPI
-
- db_api = DuckDBAPI()
-
- settings = {
- "link_type": "dedupe_only",
- "blocking_rules_to_generate_predictions": [
- "l.first_name = r.first_name",
- "l.surname = r.surname",
- ],
- "comparisons": []
- }
- >>>
- linker = Linker(df, settings, db_api)
- df = linker.deterministic_link()
- ```
-
-
- Returns:
- SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This
- represents a table materialised in the database. Methods on the
- SplinkDataFrame allow you to access the underlying data.
- """
- pipeline = CTEPipeline()
- # Allows clustering during a deterministic linkage.
- # This is used in `cluster_pairwise_predictions_at_threshold`
- # to set the cluster threshold to 1
-
- df_concat_with_tf = compute_df_concat_with_tf(self, pipeline)
- pipeline = CTEPipeline([df_concat_with_tf])
- link_type = self._settings_obj._link_type
-
- blocking_input_tablename_l = "__splink__df_concat_with_tf"
- blocking_input_tablename_r = "__splink__df_concat_with_tf"
-
- link_type = self._settings_obj._link_type
- if (
- len(self._input_tables_dict) == 2
- and self._settings_obj._link_type == "link_only"
- ):
- sqls = split_df_concat_with_tf_into_two_tables_sqls(
- "__splink__df_concat_with_tf",
- self._settings_obj.column_info_settings.source_dataset_column_name,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- blocking_input_tablename_l = "__splink__df_concat_with_tf_left"
- blocking_input_tablename_r = "__splink__df_concat_with_tf_right"
- link_type = "two_dataset_link_only"
-
- exploding_br_with_id_tables = materialise_exploded_id_tables(
- link_type=link_type,
- blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions,
- db_api=self.db_api,
- splink_df_dict=self._input_tables_dict,
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
- )
-
- columns_to_select = self._settings_obj._columns_to_select_for_blocking
- sql_select_expr = ", ".join(columns_to_select)
-
- sqls = block_using_rules_sqls(
- input_tablename_l=blocking_input_tablename_l,
- input_tablename_r=blocking_input_tablename_r,
- blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions,
- link_type=link_type,
- columns_to_select_sql=sql_select_expr,
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- deterministic_link_df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
- deterministic_link_df.metadata["is_deterministic_link"] = True
-
- [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables]
-
- return deterministic_link_df
-
- def estimate_u_using_random_sampling(
- self, max_pairs: float = 1e6, seed: int = None
- ) -> None:
- """Estimate the u parameters of the linkage model using random sampling.
-
- The u parameters represent the proportion of record comparisons that fall
- into each comparison level amongst truly non-matching records.
-
- This procedure takes a sample of the data and generates the cartesian
- product of pairwise record comparisons amongst the sampled records.
- The validity of the u values rests on the assumption that the resultant
- pairwise comparisons are non-matches (or at least, they are very unlikely to be
- matches). For large datasets, this is typically true.
-
- The results of estimate_u_using_random_sampling, and therefore an entire splink
- model, can be made reproducible by setting the seed parameter. Setting the seed
- will have performance implications as additional processing is required.
-
- Args:
- max_pairs (int): The maximum number of pairwise record comparisons to
- sample. Larger will give more accurate estimates
- but lead to longer runtimes. In our experience at least 1e9 (one billion)
- gives best results but can take a long time to compute. 1e7 (ten million)
- is often adequate whilst testing different model specifications, before
- the final model is estimated.
- seed (int): Seed for random sampling. Assign to get reproducible u
- probabilities. Note, seed for random sampling is only supported for
- DuckDB and Spark, for Athena and SQLite set to None.
-
- Examples:
- ```py
- linker.estimate_u_using_random_sampling(1e8)
- ```
-
- Returns:
- None: Updates the estimated u parameters within the linker object
- and returns nothing.
- """
- if max_pairs == 1e6:
- # keep default value small so as not to take too long, but warn users
- logger.warning(
- "You are using the default value for `max_pairs`, "
- "which may be too small and thus lead to inaccurate estimates for your "
- "model's u-parameters. Consider increasing to 1e8 or 1e9, which will "
- "result in more accurate estimates, but with a longer run time."
- )
- estimate_u_values(self, max_pairs, seed)
- self._populate_m_u_from_trained_values()
-
- self._settings_obj._columns_without_estimated_parameters_message()
-
- def estimate_m_from_label_column(self, label_colname: str) -> None:
- """Estimate the m parameters of the linkage model from a label (ground truth)
- column in the input dataframe(s).
-
- The m parameters represent the proportion of record comparisons that fall
- into each comparison level amongst truly matching records.
-
- The ground truth column is used to generate pairwise record comparisons
- which are then assumed to be matches.
-
- For example, if the entity being matched is persons, and your input dataset(s)
- contain social security number, this could be used to estimate the m values
- for the model.
-
- Note that this column does not need to be fully populated. A common case is
- where a unique identifier such as social security number is only partially
- populated.
-
- Args:
- label_colname (str): The name of the column containing the ground truth
- label in the input data.
-
- Examples:
- ```py
- linker.estimate_m_from_label_column("social_security_number")
- ```
-
- Returns:
- Updates the estimated m parameters within the linker object
- and returns nothing.
- """
-
- # Ensure this has been run on the main linker so that it can be used by
- # training linker when it checks the cache
- pipeline = CTEPipeline()
- compute_df_concat_with_tf(self, pipeline)
-
- estimate_m_values_from_label_column(
- self,
- self._input_tables_dict,
- label_colname,
- )
- self._populate_m_u_from_trained_values()
-
- self._settings_obj._columns_without_estimated_parameters_message()
-
- def estimate_parameters_using_expectation_maximisation(
- self,
- blocking_rule: Union[str, BlockingRuleCreator],
- comparisons_to_deactivate: list[Comparison] = None,
- comparison_levels_to_reverse_blocking_rule: list[ComparisonLevel] = None,
- estimate_without_term_frequencies: bool = False,
- fix_probability_two_random_records_match: bool = False,
- fix_m_probabilities: bool = False,
- fix_u_probabilities: bool = True,
- populate_probability_two_random_records_match_from_trained_values: bool = False,
- ) -> EMTrainingSession:
- """Estimate the parameters of the linkage model using expectation maximisation.
-
- By default, the m probabilities are estimated, but not the u probabilities,
- because good estimates for the u probabilities can be obtained from
- `linker.estimate_u_using_random_sampling()`. You can change this by setting
- `fix_u_probabilities` to False.
-
- The blocking rule provided is used to generate pairwise record comparisons.
- Usually, this should be a blocking rule that results in a dataframe where
- matches are between about 1% and 99% of the comparisons.
-
- By default, m parameters are estimated for all comparisons except those which
- are included in the blocking rule.
-
- For example, if the blocking rule is `l.first_name = r.first_name`, then
- parameter esimates will be made for all comparison except those which use
- `first_name` in their sql_condition
-
- By default, the probability two random records match is estimated for the
- blocked data, and then the m and u parameters for the columns specified in the
- blocking rules are used to estiamte the global probability two random records
- match.
-
- To control which comparisons should have their parameter estimated, and the
- process of 'reversing out' the global probability two random records match, the
- user may specify `comparisons_to_deactivate` and
- `comparison_levels_to_reverse_blocking_rule`. This is useful, for example
- if you block on the dmetaphone of a column but match on the original column.
-
- Examples:
- Default behaviour
- ```py
- br_training = "l.first_name = r.first_name and l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(br_training)
- ```
- Specify which comparisons to deactivate
- ```py
- br_training = "l.dmeta_first_name = r.dmeta_first_name"
- settings_obj = linker._settings_obj
- comp = settings_obj._get_comparison_by_output_column_name("first_name")
- dmeta_level = comp._get_comparison_level_by_comparison_vector_value(1)
- linker.estimate_parameters_using_expectation_maximisation(
- br_training,
- comparisons_to_deactivate=["first_name"],
- comparison_levels_to_reverse_blocking_rule=[dmeta_level],
- )
- ```
-
- Args:
- blocking_rule (BlockingRuleCreator | str): The blocking rule used to
- generate pairwise record comparisons.
- comparisons_to_deactivate (list, optional): By default, splink will
- analyse the blocking rule provided and estimate the m parameters for
- all comaprisons except those included in the blocking rule. If
- comparisons_to_deactivate are provided, spink will instead
- estimate m parameters for all comparison except those specified
- in the comparisons_to_deactivate list. This list can either contain
- the output_column_name of the Comparison as a string, or Comparison
- objects. Defaults to None.
- comparison_levels_to_reverse_blocking_rule (list, optional): By default,
- splink will analyse the blocking rule provided and adjust the
- global probability two random records match to account for the matches
- specified in the blocking rule. If provided, this argument will overrule
- this default behaviour. The user must provide a list of ComparisonLevel
- objects. Defaults to None.
- estimate_without_term_frequencies (bool, optional): If True, the iterations
- of the EM algorithm ignore any term frequency adjustments and only
- depend on the comparison vectors. This allows the EM algorithm to run
- much faster, but the estimation of the parameters will change slightly.
- fix_probability_two_random_records_match (bool, optional): If True, do not
- update the probability two random records match after each iteration.
- Defaults to False.
- fix_m_probabilities (bool, optional): If True, do not update the m
- probabilities after each iteration. Defaults to False.
- fix_u_probabilities (bool, optional): If True, do not update the u
- probabilities after each iteration. Defaults to True.
- populate_probability_two_random_records_match_from_trained_values
- (bool, optional): If True, derive this parameter from
- the blocked value. Defaults to False.
-
- Examples:
- ```py
- blocking_rule = "l.first_name = r.first_name and l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
- ```
- or using pre-built rules
- ```py
- from splink.duckdb.blocking_rule_library import block_on
- blocking_rule = block_on(["first_name", "surname"])
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
- ```
+ def _self_link(self) -> SplinkDataFrame:
+ """Use the linkage model to compare and score all records in our input df with
+ themselves.
Returns:
- EMTrainingSession: An object containing information about the training
- session such as how parameters changed during the iteration history
-
+ SplinkDataFrame: Scored pairwise comparisons of the input records to
+ themselves.
"""
- # Ensure this has been run on the main linker so that it's in the cache
- # to be used by the training linkers
- pipeline = CTEPipeline()
- compute_df_concat_with_tf(self, pipeline)
-
- blocking_rule_obj = to_blocking_rule_creator(blocking_rule).get_blocking_rule(
- self._sql_dialect
- )
-
- if type(blocking_rule_obj) not in (BlockingRule, SaltedBlockingRule):
- # TODO: seems a mismatch between message and type re: SaltedBlockingRule
- raise TypeError(
- "EM blocking rules must be plain blocking rules, not "
- "salted or exploding blocking rules"
- )
- if comparisons_to_deactivate:
- # If user provided a string, convert to Comparison object
- comparisons_to_deactivate = [
- (
- self._settings_obj._get_comparison_by_output_column_name(n)
- if isinstance(n, str)
- else n
- )
- for n in comparisons_to_deactivate
- ]
- if comparison_levels_to_reverse_blocking_rule is None:
- logger.warning(
- "\nWARNING: \n"
- "You have provided comparisons_to_deactivate but not "
- "comparison_levels_to_reverse_blocking_rule.\n"
- "If comparisons_to_deactivate is provided, then "
- "you usually need to provide corresponding "
- "comparison_levels_to_reverse_blocking_rule "
- "because each comparison to deactivate is effectively treated "
- "as an exact match."
- )
+ # Block on uid i.e. create pairwise record comparisons where the uid matches
+ settings = self._settings_obj
+ uid_cols = settings.column_info_settings.unique_id_input_columns
+ uid_l = _composite_unique_id_from_edges_sql(uid_cols, None, "l")
+ uid_r = _composite_unique_id_from_edges_sql(uid_cols, None, "r")
- em_training_session = EMTrainingSession(
- self,
- db_api=self.db_api,
- blocking_rule_for_training=blocking_rule_obj,
- core_model_settings=self._settings_obj.core_model_settings,
- training_settings=self._settings_obj.training_settings,
- unique_id_input_columns=self._settings_obj.column_info_settings.unique_id_input_columns,
- fix_u_probabilities=fix_u_probabilities,
- fix_m_probabilities=fix_m_probabilities,
- fix_probability_two_random_records_match=fix_probability_two_random_records_match, # noqa 501
- comparisons_to_deactivate=comparisons_to_deactivate,
- comparison_levels_to_reverse_blocking_rule=comparison_levels_to_reverse_blocking_rule, # noqa 501
- estimate_without_term_frequencies=estimate_without_term_frequencies,
+ blocking_rule = BlockingRule(
+ f"{uid_l} = {uid_r}", sqlglot_dialect=self._sql_dialect
)
- core_model_settings = em_training_session._train()
- # overwrite with the newly trained values in our linker settings
- self._settings_obj.core_model_settings = core_model_settings
- self._em_training_sessions.append(em_training_session)
-
- self._populate_m_u_from_trained_values()
-
- if populate_probability_two_random_records_match_from_trained_values:
- self._populate_probability_two_random_records_match_from_trained_values()
-
- self._settings_obj._columns_without_estimated_parameters_message()
-
- return em_training_session
-
- def predict(
- self,
- threshold_match_probability: float = None,
- threshold_match_weight: float = None,
- materialise_after_computing_term_frequencies: bool = True,
- ) -> SplinkDataFrame:
- """Create a dataframe of scored pairwise comparisons using the parameters
- of the linkage model.
-
- Uses the blocking rules specified in the
- `blocking_rules_to_generate_predictions` of the settings dictionary to
- generate the pairwise comparisons.
-
- Args:
- threshold_match_probability (float, optional): If specified,
- filter the results to include only pairwise comparisons with a
- match_probability above this threshold. Defaults to None.
- threshold_match_weight (float, optional): If specified,
- filter the results to include only pairwise comparisons with a
- match_weight above this threshold. Defaults to None.
- materialise_after_computing_term_frequencies (bool): If true, Splink
- will materialise the table containing the input nodes (rows)
- joined to any term frequencies which have been asked
- for in the settings object. If False, this will be
- computed as part of one possibly gigantic CTE
- pipeline. Defaults to True
-
- Examples:
- ```py
- linker = DuckDBLinker(df)
- linker.load_settings("saved_settings.json")
- df = linker.predict(threshold_match_probability=0.95)
- df.as_pandas_dataframe(limit=5)
- ```
- Returns:
- SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This
- represents a table materialised in the database. Methods on the
- SplinkDataFrame allow you to access the underlying data.
-
- """
-
pipeline = CTEPipeline()
+ nodes_with_tf = compute_df_concat_with_tf(self, pipeline)
- # If materialise_after_computing_term_frequencies=False and the user only
- # calls predict, it runs as a single pipeline with no materialisation
- # of anything.
-
- # In duckdb, calls to random() in a CTE pipeline cause problems:
- # https://gist.github.com/RobinL/d329e7004998503ce91b68479aa41139
- if (
- materialise_after_computing_term_frequencies
- or self._sql_dialect == "duckdb"
- ):
- df_concat_with_tf = compute_df_concat_with_tf(self, pipeline)
- pipeline = CTEPipeline([df_concat_with_tf])
- else:
- pipeline = enqueue_df_concat_with_tf(self, pipeline)
-
- blocking_input_tablename_l = "__splink__df_concat_with_tf"
- blocking_input_tablename_r = "__splink__df_concat_with_tf"
-
- link_type = self._settings_obj._link_type
- if (
- len(self._input_tables_dict) == 2
- and self._settings_obj._link_type == "link_only"
- ):
- sqls = split_df_concat_with_tf_into_two_tables_sqls(
- "__splink__df_concat_with_tf",
- self._settings_obj.column_info_settings.source_dataset_column_name,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- blocking_input_tablename_l = "__splink__df_concat_with_tf_left"
- blocking_input_tablename_r = "__splink__df_concat_with_tf_right"
- link_type = "two_dataset_link_only"
-
- # If exploded blocking rules exist, we need to materialise
- # the tables of ID pairs
-
- exploding_br_with_id_tables = materialise_exploded_id_tables(
- link_type=link_type,
- blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions,
- db_api=self.db_api,
- splink_df_dict=self._input_tables_dict,
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
- )
-
- columns_to_select = self._settings_obj._columns_to_select_for_blocking
- sql_select_expr = ", ".join(columns_to_select)
+ pipeline = CTEPipeline([nodes_with_tf])
sqls = block_using_rules_sqls(
- input_tablename_l=blocking_input_tablename_l,
- input_tablename_r=blocking_input_tablename_r,
- blocking_rules=self._settings_obj._blocking_rules_to_generate_predictions,
- link_type=link_type,
- columns_to_select_sql=sql_select_expr,
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
+ input_tablename_l="__splink__df_concat_with_tf",
+ input_tablename_r="__splink__df_concat_with_tf",
+ blocking_rules=[blocking_rule],
+ link_type="self_link",
+ columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking),
+ source_dataset_input_column=settings.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=settings.column_info_settings.unique_id_input_column,
)
-
pipeline.enqueue_list_of_sqls(sqls)
- repartition_after_blocking = getattr(self, "repartition_after_blocking", False)
-
- # repartition after blocking only exists on the SparkLinker
- if repartition_after_blocking:
- pipeline = pipeline.break_lineage(self.db_api)
-
sql = compute_comparison_vector_values_sql(
self._settings_obj._columns_to_select_for_comparison_vector_values
)
+
pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
- sqls = predict_from_comparison_vectors_sqls_using_settings(
- self._settings_obj,
- threshold_match_probability,
- threshold_match_weight,
+ sql_infos = predict_from_comparison_vectors_sqls(
+ unique_id_input_columns=uid_cols,
+ core_model_settings=self._settings_obj.core_model_settings,
+ sql_dialect=self._sql_dialect,
sql_infinity_expression=self._infinity_expression,
)
- pipeline.enqueue_list_of_sqls(sqls)
-
- predictions = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
- self._predict_warning()
+ for sql_info in sql_infos:
+ output_table_name = sql_info["output_table_name"]
+ output_table_name = output_table_name.replace("predict", "self_link")
+ pipeline.enqueue_sql(sql_info["sql"], output_table_name)
- [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables]
+ predictions = self._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return predictions
- def find_matches_to_new_records(
- self,
- records_or_tablename: AcceptableInputTableType | str,
- blocking_rules: list[BlockingRuleCreator | dict[str, Any] | str]
- | BlockingRuleCreator
- | dict[str, Any]
- | str = [],
- match_weight_threshold: float = -4,
- ) -> SplinkDataFrame:
- """Given one or more records, find records in the input dataset(s) which match
- and return in order of the Splink prediction score.
-
- This effectively provides a way of searching the input datasets
- for given record(s)
-
- Args:
- records_or_tablename (List[dict]): Input search record(s) as list of dict,
- or a table registered to the database.
- blocking_rules (list, optional): Blocking rules to select
- which records to find and score. If [], do not use a blocking
- rule - meaning the input records will be compared to all records
- provided to the linker when it was instantiated. Defaults to [].
- match_weight_threshold (int, optional): Return matches with a match weight
- above this threshold. Defaults to -4.
-
- Examples:
- ```py
- linker = DuckDBLinker(df)
- linker.load_settings("saved_settings.json")
- # Pre-compute tf tables for any tables with
- # term frequency adjustments
- linker.compute_tf_table("first_name")
- record = {'unique_id': 1,
- 'first_name': "John",
- 'surname': "Smith",
- 'dob': "1971-05-24",
- 'city': "London",
- 'email': "john@smith.net"
- }
- df = linker.find_matches_to_new_records([record], blocking_rules=[])
- ```
-
- Returns:
- SplinkDataFrame: The pairwise comparisons.
- """
-
- original_blocking_rules = (
- self._settings_obj._blocking_rules_to_generate_predictions
- )
- original_link_type = self._settings_obj._link_type
-
- blocking_rule_list = ensure_is_list(blocking_rules)
-
- if not isinstance(records_or_tablename, str):
- uid = ascii_uid(8)
- new_records_tablename = f"__splink__df_new_records_{uid}"
- self.register_table(
- records_or_tablename, new_records_tablename, overwrite=True
- )
-
- else:
- new_records_tablename = records_or_tablename
-
- new_records_df = self.db_api.table_to_splink_dataframe(
- "__splink__df_new_records", new_records_tablename
- )
-
- pipeline = CTEPipeline()
- nodes_with_tf = compute_df_concat_with_tf(self, pipeline)
-
- pipeline = CTEPipeline([nodes_with_tf, new_records_df])
- if len(blocking_rule_list) == 0:
- blocking_rule_list = [BlockingRule("1=1")]
- blocking_rule_list = [blocking_rule_to_obj(br) for br in blocking_rule_list]
- for n, br in enumerate(blocking_rule_list):
- br.add_preceding_rules(blocking_rule_list[:n])
-
- self._settings_obj._blocking_rules_to_generate_predictions = blocking_rule_list
-
- for tf_col in self._settings_obj._term_frequency_columns:
- tf_table_name = colname_to_tf_tablename(tf_col)
- if tf_table_name in self._intermediate_table_cache:
- tf_table = self._intermediate_table_cache.get_with_logging(
- tf_table_name
- )
- pipeline.append_input_dataframe(tf_table)
-
- sql = _join_new_table_to_df_concat_with_tf_sql(self, "__splink__df_new_records")
- pipeline.enqueue_sql(sql, "__splink__df_new_records_with_tf_before_uid_fix")
-
- pipeline = add_unique_id_and_source_dataset_cols_if_needed(
- self, new_records_df, pipeline
- )
- settings = self._settings_obj
- sqls = block_using_rules_sqls(
- input_tablename_l="__splink__df_concat_with_tf",
- input_tablename_r="__splink__df_new_records_with_tf",
- blocking_rules=blocking_rule_list,
- link_type="two_dataset_link_only",
- columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking),
- source_dataset_input_column=settings.column_info_settings.source_dataset_input_column,
- unique_id_input_column=settings.column_info_settings.unique_id_input_column,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- sql = compute_comparison_vector_values_sql(
- self._settings_obj._columns_to_select_for_comparison_vector_values
- )
- pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
-
- sqls = predict_from_comparison_vectors_sqls_using_settings(
- self._settings_obj,
- sql_infinity_expression=self._infinity_expression,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- sql = f"""
- select * from __splink__df_predict
- where match_weight > {match_weight_threshold}
- """
-
- pipeline.enqueue_sql(sql, "__splink__find_matches_predictions")
-
- predictions = self.db_api.sql_pipeline_to_splink_dataframe(
- pipeline, use_cache=False
- )
-
- self._settings_obj._blocking_rules_to_generate_predictions = (
- original_blocking_rules
- )
- self._settings_obj._link_type = original_link_type
-
- return predictions
-
- def compare_two_records(
- self, record_1: dict[str, Any], record_2: dict[str, Any]
- ) -> SplinkDataFrame:
- """Use the linkage model to compare and score a pairwise record comparison
- based on the two input records provided
-
- Args:
- record_1 (dict): dictionary representing the first record. Columns names
- and data types must be the same as the columns in the settings object
- record_2 (dict): dictionary representing the second record. Columns names
- and data types must be the same as the columns in the settings object
-
- Examples:
- ```py
- linker = DuckDBLinker(df)
- linker.load_settings("saved_settings.json")
- linker.compare_two_records(record_left, record_right)
- ```
-
- Returns:
- SplinkDataFrame: Pairwise comparison with scored prediction
- """
-
- cache = self._intermediate_table_cache
-
- uid = ascii_uid(8)
- df_records_left = self.register_table(
- [record_1], f"__splink__compare_two_records_left_{uid}", overwrite=True
- )
- df_records_left.templated_name = "__splink__compare_two_records_left"
-
- df_records_right = self.register_table(
- [record_2], f"__splink__compare_two_records_right_{uid}", overwrite=True
- )
- df_records_right.templated_name = "__splink__compare_two_records_right"
-
- pipeline = CTEPipeline([df_records_left, df_records_right])
-
- if "__splink__df_concat_with_tf" in cache:
- nodes_with_tf = cache.get_with_logging("__splink__df_concat_with_tf")
- pipeline.append_input_dataframe(nodes_with_tf)
-
- for tf_col in self._settings_obj._term_frequency_columns:
- tf_table_name = colname_to_tf_tablename(tf_col)
- if tf_table_name in cache:
- tf_table = cache.get_with_logging(tf_table_name)
- pipeline.append_input_dataframe(tf_table)
- else:
- if "__splink__df_concat_with_tf" not in cache:
- logger.warning(
- f"No term frequencies found for column {tf_col.name}.\n"
- "To apply term frequency adjustments, you need to register"
- " a lookup using `linker.register_term_frequency_lookup`."
- )
-
- sql_join_tf = _join_new_table_to_df_concat_with_tf_sql(
- self, "__splink__compare_two_records_left"
- )
-
- pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_left_with_tf")
-
- sql_join_tf = _join_new_table_to_df_concat_with_tf_sql(
- self, "__splink__compare_two_records_right"
- )
-
- pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_right_with_tf")
-
- sqls = block_using_rules_sqls(
- input_tablename_l="__splink__compare_two_records_left_with_tf",
- input_tablename_r="__splink__compare_two_records_right_with_tf",
- blocking_rules=[BlockingRule("1=1")],
- link_type=self._settings_obj._link_type,
- columns_to_select_sql=", ".join(
- self._settings_obj._columns_to_select_for_blocking
- ),
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- sql = compute_comparison_vector_values_sql(
- self._settings_obj._columns_to_select_for_comparison_vector_values
- )
- pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
-
- sqls = predict_from_comparison_vectors_sqls_using_settings(
- self._settings_obj,
- sql_infinity_expression=self._infinity_expression,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- predictions = self.db_api.sql_pipeline_to_splink_dataframe(
- pipeline, use_cache=False
- )
-
- return predictions
-
- def _self_link(self) -> SplinkDataFrame:
- """Use the linkage model to compare and score all records in our input df with
- themselves.
-
- Returns:
- SplinkDataFrame: Scored pairwise comparisons of the input records to
- themselves.
- """
-
- # Block on uid i.e. create pairwise record comparisons where the uid matches
- settings = self._settings_obj
- uid_cols = settings.column_info_settings.unique_id_input_columns
- uid_l = _composite_unique_id_from_edges_sql(uid_cols, None, "l")
- uid_r = _composite_unique_id_from_edges_sql(uid_cols, None, "r")
-
- blocking_rule = BlockingRule(
- f"{uid_l} = {uid_r}", sqlglot_dialect=self._sql_dialect
- )
-
- pipeline = CTEPipeline()
- nodes_with_tf = compute_df_concat_with_tf(self, pipeline)
-
- pipeline = CTEPipeline([nodes_with_tf])
-
- sqls = block_using_rules_sqls(
- input_tablename_l="__splink__df_concat_with_tf",
- input_tablename_r="__splink__df_concat_with_tf",
- blocking_rules=[blocking_rule],
- link_type="self_link",
- columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking),
- source_dataset_input_column=settings.column_info_settings.source_dataset_input_column,
- unique_id_input_column=settings.column_info_settings.unique_id_input_column,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- sql = compute_comparison_vector_values_sql(
- self._settings_obj._columns_to_select_for_comparison_vector_values
- )
-
- pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
-
- sql_infos = predict_from_comparison_vectors_sqls(
- unique_id_input_columns=uid_cols,
- core_model_settings=self._settings_obj.core_model_settings,
- sql_dialect=self._sql_dialect,
- sql_infinity_expression=self._infinity_expression,
- )
- for sql_info in sql_infos:
- output_table_name = sql_info["output_table_name"]
- output_table_name = output_table_name.replace("predict", "self_link")
- pipeline.enqueue_sql(sql_info["sql"], output_table_name)
-
- predictions = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
-
- return predictions
-
- def cluster_pairwise_predictions_at_threshold(
- self,
- df_predict: SplinkDataFrame,
- threshold_match_probability: Optional[float] = None,
- pairwise_formatting: bool = False,
- filter_pairwise_format_for_clusters: bool = True,
- ) -> SplinkDataFrame:
- """Clusters the pairwise match predictions that result from `linker.predict()`
- into groups of connected record using the connected components graph clustering
- algorithm
-
- Records with an estimated `match_probability` at or above
- `threshold_match_probability` are considered to be a match (i.e. they represent
- the same entity).
-
- Args:
- df_predict (SplinkDataFrame): The results of `linker.predict()`
- threshold_match_probability (float): Filter the pairwise match predictions
- to include only pairwise comparisons with a match_probability at or
- above this threshold. This dataframe is then fed into the clustering
- algorithm.
- pairwise_formatting (bool): Whether to output the pairwise match predictions
- from linker.predict() with cluster IDs.
- If this is set to false, the output will be a list of all IDs, clustered
- into groups based on the desired match threshold.
- filter_pairwise_format_for_clusters (bool): If pairwise formatting has been
- selected, whether to output all columns found within linker.predict(),
- or just return clusters.
-
- Returns:
- SplinkDataFrame: A SplinkDataFrame containing a list of all IDs, clustered
- into groups based on the desired match threshold.
-
- """
-
- # Feeding in df_predict forces materiailisation, if it exists in your database
- pipeline = CTEPipeline()
- nodes_with_tf = compute_df_concat_with_tf(self, pipeline)
-
- edges_table = _cc_create_unique_id_cols(
- self,
- nodes_with_tf.physical_name,
- df_predict,
- threshold_match_probability,
- )
-
- cc = solve_connected_components(
- self,
- edges_table,
- df_predict,
- nodes_with_tf,
- pairwise_formatting,
- filter_pairwise_format_for_clusters,
- )
- cc.metadata["threshold_match_probability"] = threshold_match_probability
-
- return cc
-
- def _compute_metrics_nodes(
- self,
- df_predict: SplinkDataFrame,
- df_clustered: SplinkDataFrame,
- threshold_match_probability: float,
- ) -> SplinkDataFrame:
- """
- Internal function for computing node-level metrics.
-
- Accepts outputs of `linker.predict()` and
- `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold
- and produces a table of node metrics.
-
- Node metrics produced:
- * node_degree (absolute number of neighbouring nodes)
-
- Output table has a single row per input node, along with the cluster id (as
- assigned in `linker.cluster_pairwise_at_threshold()`) and the metric
- node_degree:
- |-------------------------------------------------|
- | composite_unique_id | cluster_id | node_degree |
- |---------------------|-------------|-------------|
- | s1-__-10001 | s1-__-10001 | 6 |
- | s1-__-10002 | s1-__-10001 | 4 |
- | s1-__-10003 | s1-__-10003 | 2 |
- ...
- """
- uid_cols = self._settings_obj.column_info_settings.unique_id_input_columns
- # need composite unique ids
- composite_uid_edges_l = _composite_unique_id_from_edges_sql(uid_cols, "l")
- composite_uid_edges_r = _composite_unique_id_from_edges_sql(uid_cols, "r")
- composite_uid_clusters = _composite_unique_id_from_nodes_sql(uid_cols)
-
- pipeline = CTEPipeline()
- sqls = _node_degree_sql(
- df_predict,
- df_clustered,
- composite_uid_edges_l,
- composite_uid_edges_r,
- composite_uid_clusters,
- threshold_match_probability,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- df_node_metrics = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
-
- df_node_metrics.metadata["threshold_match_probability"] = (
- threshold_match_probability
- )
- return df_node_metrics
-
- def _compute_metrics_edges(
- self,
- df_node_metrics: SplinkDataFrame,
- df_predict: SplinkDataFrame,
- df_clustered: SplinkDataFrame,
- threshold_match_probability: float,
- ) -> SplinkDataFrame:
- """
- Internal function for computing edge-level metrics.
-
- Accepts outputs of `linker._compute_node_metrics()`, `linker.predict()` and
- `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold
- and produces a table of edge metrics.
-
- Uses `igraph` under-the-hood for calculations
-
- Edge metrics produced:
- * is_bridge (is the edge a bridge?)
-
- Output table has a single row per edge, and the metric is_bridge:
- |-------------------------------------------------------------|
- | composite_unique_id_l | composite_unique_id_r | is_bridge |
- |-----------------------|-------------------------|-----------|
- | s1-__-10001 | s1-__-10003 | True |
- | s1-__-10001 | s1-__-10005 | False |
- | s1-__-10005 | s1-__-10009 | False |
- | s1-__-10021 | s1-__-10024 | True |
- ...
- """
- df_edge_metrics = compute_edge_metrics(
- self, df_node_metrics, df_predict, df_clustered, threshold_match_probability
- )
- df_edge_metrics.metadata["threshold_match_probability"] = (
- threshold_match_probability
- )
- return df_edge_metrics
-
- def _compute_metrics_clusters(
- self,
- df_node_metrics: SplinkDataFrame,
- ) -> SplinkDataFrame:
- """
- Internal function for computing cluster-level metrics.
-
- Accepts output of `linker._compute_node_metrics()` (which has the relevant
- information from `linker.predict() and
- `linker.cluster_pairwise_at_threshold()`), produces a table of cluster metrics.
-
- Cluster metrics produced:
- * n_nodes (aka cluster size, number of nodes in cluster)
- * n_edges (number of edges in cluster)
- * density (number of edges normalised wrt maximum possible number)
- * cluster_centralisation (average absolute deviation from maximum node_degree
- normalised wrt maximum possible value)
-
- Output table has a single row per cluster, along with the cluster metrics
- listed above
- |--------------------------------------------------------------------|
- | cluster_id | n_nodes | n_edges | density | cluster_centralisation |
- |-------------|---------|---------|---------|------------------------|
- | s1-__-10006 | 4 | 4 | 0.66667 | 0.6666 |
- | s1-__-10008 | 6 | 5 | 0.33333 | 0.4 |
- | s1-__-10013 | 11 | 19 | 0.34545 | 0.3111 |
- ...
- """
- pipeline = CTEPipeline()
- sqls = _size_density_centralisation_sql(
- df_node_metrics,
- )
- pipeline.enqueue_list_of_sqls(sqls)
-
- df_cluster_metrics = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
- df_cluster_metrics.metadata["threshold_match_probability"] = (
- df_node_metrics.metadata["threshold_match_probability"]
- )
- return df_cluster_metrics
-
- def compute_graph_metrics(
- self,
- df_predict: SplinkDataFrame,
- df_clustered: SplinkDataFrame,
- *,
- threshold_match_probability: float = None,
- ) -> GraphMetricsResults:
- """
- Generates tables containing graph metrics (for nodes, edges and clusters),
- and returns a data class of Splink dataframes
-
- Args:
- df_predict (SplinkDataFrame): The results of `linker.predict()`
- df_clustered (SplinkDataFrame): The outputs of
- `linker.cluster_pairwise_predictions_at_threshold()`
- threshold_match_probability (float, optional): Filter the pairwise match
- predictions to include only pairwise comparisons with a
- match_probability at or above this threshold. If not provided, the value
- will be taken from metadata on `df_clustered`. If no such metadata is
- available, this value _must_ be provided.
-
- Returns:
- GraphMetricsResult: A data class containing SplinkDataFrames
- of cluster IDs and selected node, edge or cluster metrics.
- attribute "nodes" for nodes metrics table
- attribute "edges" for edge metrics table
- attribute "clusters" for cluster metrics table
-
- """
- if threshold_match_probability is None:
- threshold_match_probability = df_clustered.metadata.get(
- "threshold_match_probability", None
- )
- # we may not have metadata if clusters have been manually registered, or
- # read in from a format that does not include it
- if threshold_match_probability is None:
- raise TypeError(
- "As `df_clustered` has no threshold metadata associated to it, "
- "to compute graph metrics you must provide "
- "`threshold_match_probability` manually"
- )
- df_node_metrics = self._compute_metrics_nodes(
- df_predict, df_clustered, threshold_match_probability
- )
- df_edge_metrics = self._compute_metrics_edges(
- df_node_metrics,
- df_predict,
- df_clustered,
- threshold_match_probability,
- )
- # don't need edges as information is baked into node metrics
- df_cluster_metrics = self._compute_metrics_clusters(df_node_metrics)
-
- return GraphMetricsResults(
- nodes=df_node_metrics, edges=df_edge_metrics, clusters=df_cluster_metrics
- )
-
- def _get_labels_tablename_from_input(
- self, labels_splinkdataframe_or_table_name: str | SplinkDataFrame
- ) -> str:
- if isinstance(labels_splinkdataframe_or_table_name, SplinkDataFrame):
- labels_tablename = labels_splinkdataframe_or_table_name.physical_name
- elif isinstance(labels_splinkdataframe_or_table_name, str):
- labels_tablename = labels_splinkdataframe_or_table_name
+ def _get_labels_tablename_from_input(
+ self, labels_splinkdataframe_or_table_name: str | SplinkDataFrame
+ ) -> str:
+ if isinstance(labels_splinkdataframe_or_table_name, SplinkDataFrame):
+ labels_tablename = labels_splinkdataframe_or_table_name.physical_name
+ elif isinstance(labels_splinkdataframe_or_table_name, str):
+ labels_tablename = labels_splinkdataframe_or_table_name
else:
raise ValueError(
"The 'labels_splinkdataframe_or_table_name' argument"
@@ -1739,932 +589,6 @@ def _get_labels_tablename_from_input(
)
return labels_tablename
- def estimate_m_from_pairwise_labels(self, labels_splinkdataframe_or_table_name):
- """Estimate the m parameters of the linkage model from a dataframe of pairwise
- labels.
-
- The table of labels should be in the following format, and should
- be registered with your database:
- |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|
- |----------------|-----------|----------------|-----------|
- |df_1 |1 |df_2 |2 |
- |df_1 |1 |df_2 |3 |
-
- Note that `source_dataset` and `unique_id` should correspond to the
- values specified in the settings dict, and the `input_table_aliases`
- passed to the `linker` object. Note that at the moment, this method does
- not respect values in a `clerical_match_score` column. If provided, these
- are ignored and it is assumed that every row in the table of labels is a score
- of 1, i.e. a perfect match.
-
- Args:
- labels_splinkdataframe_or_table_name (str): Name of table containing labels
- in the database or SplinkDataframe
-
- Examples:
- ```py
- pairwise_labels = pd.read_csv("./data/pairwise_labels_to_estimate_m.csv")
- linker.register_table(pairwise_labels, "labels", overwrite=True)
- linker.estimate_m_from_pairwise_labels("labels")
- ```
- """
- labels_tablename = self._get_labels_tablename_from_input(
- labels_splinkdataframe_or_table_name
- )
- estimate_m_from_pairwise_labels(self, labels_tablename)
-
- def prediction_errors_from_labels_table(
- self,
- labels_splinkdataframe_or_table_name,
- include_false_positives=True,
- include_false_negatives=True,
- threshold=0.5,
- ):
- """Generate a dataframe containing false positives and false negatives
- based on the comparison between the clerical_match_score in the labels
- table compared with the splink predicted match probability
-
- Args:
- labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table
- containing labels in the database
- include_false_positives (bool, optional): Defaults to True.
- include_false_negatives (bool, optional): Defaults to True.
- threshold (float, optional): Threshold above which a score is considered
- to be a match. Defaults to 0.5.
-
- Returns:
- SplinkDataFrame: Table containing false positives and negatives
- """
- labels_tablename = self._get_labels_tablename_from_input(
- labels_splinkdataframe_or_table_name
- )
- return prediction_errors_from_labels_table(
- self,
- labels_tablename,
- include_false_positives,
- include_false_negatives,
- threshold,
- )
-
- def accuracy_analysis_from_labels_column(
- self,
- labels_column_name: str,
- *,
- threshold_actual: float = 0.5,
- match_weight_round_to_nearest: float = 0.1,
- output_type: Literal[
- "threshold_selection", "roc", "precision_recall", "table", "accuracy"
- ] = "threshold_selection",
- add_metrics: List[
- Literal[
- "specificity",
- "npv",
- "accuracy",
- "f1",
- "f2",
- "f0_5",
- "p4",
- "phi",
- ]
- ] = [],
- positives_not_captured_by_blocking_rules_scored_as_zero: bool = True,
- ) -> Union[ChartReturnType, SplinkDataFrame]:
- """Generate an accuracy chart or table from ground truth data, where the ground
- truth is in a column in the input dataset called `labels_column_name`
-
- Args:
- labels_column_name (str): Column name containing labels in the input table
- threshold_actual (float, optional): Where the `clerical_match_score`
- provided by the user is a probability rather than binary, this value
- is used as the threshold to classify `clerical_match_score`s as binary
- matches or non matches. Defaults to 0.5.
- match_weight_round_to_nearest (float, optional): When provided, thresholds
- are rounded. When large numbers of labels are provided, this is
- sometimes necessary to reduce the size of the ROC table, and therefore
- the number of points plotted on the chart. Defaults to None.
- add_metrics (list(str), optional): Precision and recall metrics are always
- included. Where provided, `add_metrics` specifies additional metrics
- to show, with the following options:
-
- - `"specificity"`: specificity, selectivity, true negative rate (TNR)
- - `"npv"`: negative predictive value (NPV)
- - `"accuracy"`: overall accuracy (TP+TN)/(P+N)
- - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2
- (emphasis on recall) and \u03b2=0.5 (emphasis on precision)
- - `"p4"` - an extended F1 score with specificity and NPV included
- - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC)
- Examples:
- ```py
- linker.accuracy_analysis_from_labels_column("ground_truth", add_metrics=["f1"])
- ```
-
- Returns:
- altair.Chart: An altair chart
- """ # noqa: E501
-
- allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"]
-
- if not isinstance(add_metrics, list):
- raise Exception(
- "add_metrics must be a list containing one or more of the following:",
- allowed,
- )
-
- if not all(metric in allowed for metric in add_metrics):
- raise ValueError(
- "Invalid metric. " f"Allowed metrics are: {', '.join(allowed)}."
- )
-
- df_truth_space = truth_space_table_from_labels_column(
- self,
- labels_column_name,
- threshold_actual=threshold_actual,
- match_weight_round_to_nearest=match_weight_round_to_nearest,
- positives_not_captured_by_blocking_rules_scored_as_zero=positives_not_captured_by_blocking_rules_scored_as_zero,
- )
- recs = df_truth_space.as_record_dict()
-
- if output_type == "threshold_selection":
- return threshold_selection_tool(recs, add_metrics=add_metrics)
- elif output_type == "accuracy":
- return accuracy_chart(recs, add_metrics=add_metrics)
- elif output_type == "roc":
- return roc_chart(recs)
- elif output_type == "precision_recall":
- return precision_recall_chart(recs)
- elif output_type == "table":
- return df_truth_space
- else:
- raise ValueError(
- "Invalid chart_type. Allowed chart types are: "
- "'threshold_selection', 'roc', 'precision_recall', 'accuracy."
- )
-
- def accuracy_analysis_from_labels_table(
- self,
- labels_splinkdataframe_or_table_name: str | SplinkDataFrame,
- *,
- threshold_actual: float = 0.5,
- match_weight_round_to_nearest: float = 0.1,
- output_type: Literal[
- "threshold_selection", "roc", "precision_recall", "table", "accuracy"
- ] = "threshold_selection",
- add_metrics: List[
- Literal[
- "specificity",
- "npv",
- "accuracy",
- "f1",
- "f2",
- "f0_5",
- "p4",
- "phi",
- ]
- ] = [],
- ) -> Union[ChartReturnType, SplinkDataFrame]:
- """Generate an accuracy chart or table from labelled (ground truth) data.
-
- The table of labels should be in the following format, and should be registered
- as a table with your database using
- `labels_table = linker.register_labels_table(my_df)`
-
- |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|clerical_match_score|
- |----------------|-----------|----------------|-----------|--------------------|
- |df_1 |1 |df_2 |2 |0.99 |
- |df_1 |1 |df_2 |3 |0.2 |
-
- Note that `source_dataset` and `unique_id` should correspond to the values
- specified in the settings dict, and the `input_table_aliases` passed to the
- `linker` object.
-
- For `dedupe_only` links, the `source_dataset` columns can be ommitted.
-
- Args:
- labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table
- containing labels in the database
- threshold_actual (float, optional): Where the `clerical_match_score`
- provided by the user is a probability rather than binary, this value
- is used as the threshold to classify `clerical_match_score`s as binary
- matches or non matches. Defaults to 0.5.
- match_weight_round_to_nearest (float, optional): When provided, thresholds
- are rounded. When large numbers of labels are provided, this is
- sometimes necessary to reduce the size of the ROC table, and therefore
- the number of points plotted on the chart. Defaults to None.
- add_metrics (list(str), optional): Precision and recall metrics are always
- included. Where provided, `add_metrics` specifies additional metrics
- to show, with the following options:
-
- - `"specificity"`: specificity, selectivity, true negative rate (TNR)
- - `"npv"`: negative predictive value (NPV)
- - `"accuracy"`: overall accuracy (TP+TN)/(P+N)
- - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2
- (emphasis on recall) and \u03b2=0.5 (emphasis on precision)
- - `"p4"` - an extended F1 score with specificity and NPV included
- - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC)
- Examples:
- ```py
- linker.accuracy_analysis_from_labels_table("ground_truth", add_metrics=["f1"])
- ```
-
- Returns:
- altair.Chart: An altair chart
- """ # noqa: E501
-
- allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"]
-
- if not isinstance(add_metrics, list):
- raise Exception(
- "add_metrics must be a list containing one or more of the following:",
- allowed,
- )
-
- if not all(metric in allowed for metric in add_metrics):
- raise ValueError(
- f"Invalid metric. Allowed metrics are: {', '.join(allowed)}."
- )
-
- labels_tablename = self._get_labels_tablename_from_input(
- labels_splinkdataframe_or_table_name
- )
- self._raise_error_if_necessary_accuracy_columns_not_computed()
- df_truth_space = truth_space_table_from_labels_table(
- self,
- labels_tablename,
- threshold_actual=threshold_actual,
- match_weight_round_to_nearest=match_weight_round_to_nearest,
- )
- recs = df_truth_space.as_record_dict()
-
- if output_type == "threshold_selection":
- return threshold_selection_tool(recs, add_metrics=add_metrics)
- elif output_type == "accuracy":
- return accuracy_chart(recs, add_metrics=add_metrics)
- elif output_type == "roc":
- return roc_chart(recs)
- elif output_type == "precision_recall":
- return precision_recall_chart(recs)
- elif output_type == "table":
- return df_truth_space
- else:
- raise ValueError(
- "Invalid chart_type. Allowed chart types are: "
- "'threshold_selection', 'roc', 'precision_recall', 'accuracy."
- )
-
- def prediction_errors_from_labels_column(
- self,
- label_colname,
- include_false_positives=True,
- include_false_negatives=True,
- threshold=0.5,
- ):
- """Generate a dataframe containing false positives and false negatives
- based on the comparison between the splink match probability and the
- labels column. A label column is a column in the input dataset that contains
- the 'ground truth' cluster to which the record belongs
-
- Args:
- label_colname (str): Name of labels column in input data
- include_false_positives (bool, optional): Defaults to True.
- include_false_negatives (bool, optional): Defaults to True.
- threshold (float, optional): Threshold above which a score is considered
- to be a match. Defaults to 0.5.
-
- Returns:
- SplinkDataFrame: Table containing false positives and negatives
- """
- return prediction_errors_from_label_column(
- self,
- label_colname,
- include_false_positives,
- include_false_negatives,
- threshold,
- )
-
- def match_weights_histogram(
- self,
- df_predict: SplinkDataFrame,
- target_bins: int = 30,
- width: int = 600,
- height: int = 250,
- ) -> ChartReturnType:
- """Generate a histogram that shows the distribution of match weights in
- `df_predict`
-
- Args:
- df_predict (SplinkDataFrame): Output of `linker.predict()`
- target_bins (int, optional): Target number of bins in histogram. Defaults to
- 30.
- width (int, optional): Width of output. Defaults to 600.
- height (int, optional): Height of output chart. Defaults to 250.
-
-
- Returns:
- altair.Chart: An altair chart
-
- """
- df = histogram_data(self, df_predict, target_bins)
- recs = df.as_record_dict()
- return match_weights_histogram(recs, width=width, height=height)
-
- def waterfall_chart(
- self,
- records: list[dict[str, Any]],
- filter_nulls: bool = True,
- remove_sensitive_data: bool = False,
- ) -> ChartReturnType:
- """Visualise how the final match weight is computed for the provided pairwise
- record comparisons.
-
- Records must be provided as a list of dictionaries. This would usually be
- obtained from `df.as_record_dict(limit=n)` where `df` is a SplinkDataFrame.
-
- Examples:
- ```py
- df = linker.predict(threshold_match_weight=2)
- records = df.as_record_dict(limit=10)
- linker.waterfall_chart(records)
- ```
-
- Args:
- records (List[dict]): Usually be obtained from `df.as_record_dict(limit=n)`
- where `df` is a SplinkDataFrame.
- filter_nulls (bool, optional): Whether the visualiation shows null
- comparisons, which have no effect on final match weight. Defaults to
- True.
- remove_sensitive_data (bool, optional): When True, The waterfall chart will
- contain match weights only, and all of the (potentially sensitive) data
- from the input tables will be removed prior to the chart being created.
-
-
- Returns:
- altair.Chart: An altair chart
-
- """
- self._raise_error_if_necessary_waterfall_columns_not_computed()
-
- return waterfall_chart(
- records, self._settings_obj, filter_nulls, remove_sensitive_data
- )
-
- def unlinkables_chart(
- self,
- x_col: str = "match_weight",
- name_of_data_in_title: str | None = None,
- as_dict: bool = False,
- ) -> ChartReturnType:
- """Generate an interactive chart displaying the proportion of records that
- are "unlinkable" for a given splink score threshold and model parameters.
-
- Unlinkable records are those that, even when compared with themselves, do not
- contain enough information to confirm a match.
-
- Args:
- x_col (str, optional): Column to use for the x-axis.
- Defaults to "match_weight".
- name_of_data_in_title (str, optional): Name of the source dataset to use for
- the title of the output chart.
- as_dict (bool, optional): If True, return a dict version of the chart.
-
- Examples:
- For the simplest code pipeline, load a pre-trained model
- and run this against the test data.
- ```py
- from splink.datasets import splink_datasets
- df = splink_datasets.fake_1000
- linker = DuckDBLinker(df)
- linker.load_settings("saved_settings.json")
- linker.unlinkables_chart()
- ```
- For more complex code pipelines, you can run an entire pipeline
- that estimates your m and u values, before `unlinkables_chart().
-
- Returns:
- altair.Chart: An altair chart
- """
-
- # Link our initial df on itself and calculate the % of unlinkable entries
- records = unlinkables_data(self)
- return unlinkables_chart(records, x_col, name_of_data_in_title, as_dict)
-
- def comparison_viewer_dashboard(
- self,
- df_predict: SplinkDataFrame,
- out_path: str,
- overwrite: bool = False,
- num_example_rows: int = 2,
- return_html_as_string: bool = False,
- ) -> str | None:
- """Generate an interactive html visualization of the linker's predictions and
- save to `out_path`. For more information see
- [this video](https://www.youtube.com/watch?v=DNvCMqjipis)
-
-
- Args:
- df_predict (SplinkDataFrame): The outputs of `linker.predict()`
- out_path (str): The path (including filename) to save the html file to.
- overwrite (bool, optional): Overwrite the html file if it already exists?
- Defaults to False.
- num_example_rows (int, optional): Number of example rows per comparison
- vector. Defaults to 2.
- return_html_as_string: If True, return the html as a string
-
- Examples:
- ```py
- df_predictions = linker.predict()
- linker.comparison_viewer_dashboard(df_predictions, "scv.html", True, 2)
- ```
-
- Optionally, in Jupyter, you can display the results inline
- Otherwise you can just load the html file in your browser
- ```py
- from IPython.display import IFrame
- IFrame(src="./scv.html", width="100%", height=1200)
- ```
-
- """
- self._raise_error_if_necessary_waterfall_columns_not_computed()
- pipeline = CTEPipeline([df_predict])
- sql = comparison_vector_distribution_sql(self)
- pipeline.enqueue_sql(sql, "__splink__df_comparison_vector_distribution")
-
- sqls = comparison_viewer_table_sqls(self, num_example_rows)
- pipeline.enqueue_list_of_sqls(sqls)
-
- df = self.db_api.sql_pipeline_to_splink_dataframe(pipeline)
-
- rendered = render_splink_comparison_viewer_html(
- df.as_record_dict(),
- self._settings_obj._as_completed_dict(),
- out_path,
- overwrite,
- )
- if return_html_as_string:
- return rendered
- return None
-
- def parameter_estimate_comparisons_chart(
- self, include_m: bool = True, include_u: bool = False
- ) -> ChartReturnType:
- """Show a chart that shows how parameter estimates have differed across
- the different estimation methods you have used.
-
- For example, if you have run two EM estimation sessions, blocking on
- different variables, and both result in parameter estimates for
- first_name, this chart will enable easy comparison of the different
- estimates
-
- Args:
- include_m (bool, optional): Show different estimates of m values. Defaults
- to True.
- include_u (bool, optional): Show different estimates of u values. Defaults
- to False.
-
- """
- records = self._settings_obj._parameter_estimates_as_records
-
- to_retain = []
- if include_m:
- to_retain.append("m")
- if include_u:
- to_retain.append("u")
-
- records = [r for r in records if r["m_or_u"] in to_retain]
-
- return parameter_estimate_comparisons(records)
-
- def match_weights_chart(self):
- """Display a chart of the (partial) match weights of the linkage model
-
- Examples:
- ```py
- linker.match_weights_chart()
- ```
- To view offline (if you don't have an internet connection):
- ```py
- from splink.charts import save_offline_chart
- c = linker.match_weights_chart()
- save_offline_chart(c.to_dict(), "test_chart.html")
- ```
- View resultant html file in Jupyter (or just load it in your browser)
- ```py
- from IPython.display import IFrame
- IFrame(src="./test_chart.html", width=1000, height=500)
- ```
-
- Returns:
- altair.Chart: An altair chart
- """
- return self._settings_obj.match_weights_chart()
-
- def tf_adjustment_chart(
- self,
- output_column_name: str,
- n_most_freq: int = 10,
- n_least_freq: int = 10,
- vals_to_include: str | list[str] | None = None,
- as_dict: bool = False,
- ) -> ChartReturnType:
- """Display a chart showing the impact of term frequency adjustments on a
- specific comparison level.
- Each value
-
- Args:
- output_column_name (str): Name of an output column for which term frequency
- adjustment has been applied.
- n_most_freq (int, optional): Number of most frequent values to show. If this
- or `n_least_freq` set to None, all values will be shown.
- Default to 10.
- n_least_freq (int, optional): Number of least frequent values to show. If
- this or `n_most_freq` set to None, all values will be shown.
- Default to 10.
- vals_to_include (list, optional): Specific values for which to show term
- sfrequency adjustments.
- Defaults to None.
-
- Returns:
- altair.Chart: An altair chart
- """
-
- # Comparisons with TF adjustments
- tf_comparisons = [
- c.output_column_name
- for c in self._settings_obj.comparisons
- if any([cl._has_tf_adjustments for cl in c.comparison_levels])
- ]
- if output_column_name not in tf_comparisons:
- raise ValueError(
- f"{output_column_name} is not a valid comparison column, or does not"
- f" have term frequency adjustment activated"
- )
-
- vals_to_include = (
- [] if vals_to_include is None else ensure_is_list(vals_to_include)
- )
-
- return tf_adjustment_chart(
- self,
- output_column_name,
- n_most_freq,
- n_least_freq,
- vals_to_include,
- as_dict,
- )
-
- def m_u_parameters_chart(self):
- """Display a chart of the m and u parameters of the linkage model
-
- Examples:
- ```py
- linker.m_u_parameters_chart()
- ```
- To view offline (if you don't have an internet connection):
- ```py
- from splink.charts import save_offline_chart
- c = linker.match_weights_chart()
- save_offline_chart(c.to_dict(), "test_chart.html")
- ```
- View resultant html file in Jupyter (or just load it in your browser)
- ```py
- from IPython.display import IFrame
- IFrame(src="./test_chart.html", width=1000, height=500)
- ```
-
- Returns:
- altair.Chart: An altair chart
- """
-
- return self._settings_obj.m_u_parameters_chart()
-
- def cluster_studio_dashboard(
- self,
- df_predict: SplinkDataFrame,
- df_clustered: SplinkDataFrame,
- out_path: str,
- sampling_method: SamplingMethods = "random",
- sample_size: int = 10,
- cluster_ids: list[str] = None,
- cluster_names: list[str] = None,
- overwrite: bool = False,
- return_html_as_string: bool = False,
- _df_cluster_metrics: SplinkDataFrame = None,
- ) -> str | None:
- """Generate an interactive html visualization of the predicted cluster and
- save to `out_path`.
-
- Args:
- df_predict (SplinkDataFrame): The outputs of `linker.predict()`
- df_clustered (SplinkDataFrame): The outputs of
- `linker.cluster_pairwise_predictions_at_threshold()`
- out_path (str): The path (including filename) to save the html file to.
- sampling_method (str, optional): `random`, `by_cluster_size` or
- `lowest_density_clusters`. Defaults to `random`.
- sample_size (int, optional): Number of clusters to show in the dahboard.
- Defaults to 10.
- cluster_ids (list): The IDs of the clusters that will be displayed in the
- dashboard. If provided, ignore the `sampling_method` and `sample_size`
- arguments. Defaults to None.
- overwrite (bool, optional): Overwrite the html file if it already exists?
- Defaults to False.
- cluster_names (list, optional): If provided, the dashboard will display
- these names in the selection box. Ony works in conjunction with
- `cluster_ids`. Defaults to None.
- return_html_as_string: If True, return the html as a string
-
- Examples:
- ```py
- df_p = linker.predict()
- df_c = linker.cluster_pairwise_predictions_at_threshold(df_p, 0.5)
- linker.cluster_studio_dashboard(
- df_p, df_c, [0, 4, 7], "cluster_studio.html"
- )
- ```
- Optionally, in Jupyter, you can display the results inline
- Otherwise you can just load the html file in your browser
- ```py
- from IPython.display import IFrame
- IFrame(src="./cluster_studio.html", width="100%", height=1200)
- ```
- """
- self._raise_error_if_necessary_waterfall_columns_not_computed()
-
- rendered = render_splink_cluster_studio_html(
- self,
- df_predict,
- df_clustered,
- out_path,
- sampling_method=sampling_method,
- sample_size=sample_size,
- cluster_ids=cluster_ids,
- overwrite=overwrite,
- cluster_names=cluster_names,
- _df_cluster_metrics=_df_cluster_metrics,
- )
-
- if return_html_as_string:
- return rendered
- return None
-
- def save_model_to_json(
- self, out_path: str | None = None, overwrite: bool = False
- ) -> dict[str, Any]:
- """Save the configuration and parameters of the linkage model to a `.json` file.
-
- The model can later be loaded back in using `linker.load_model()`.
- The settings dict is also returned in case you want to save it a different way.
-
- Examples:
- ```py
- linker.save_model_to_json("my_settings.json", overwrite=True)
- ```
- Args:
- out_path (str, optional): File path for json file. If None, don't save to
- file. Defaults to None.
- overwrite (bool, optional): Overwrite if already exists? Defaults to False.
-
- Returns:
- dict: The settings as a dictionary.
- """
- model_dict = self._settings_obj.as_dict()
- if out_path:
- if os.path.isfile(out_path) and not overwrite:
- raise ValueError(
- f"The path {out_path} already exists. Please provide a different "
- "path or set overwrite=True"
- )
- with open(out_path, "w", encoding="utf-8") as f:
- json.dump(model_dict, f, indent=4)
- return model_dict
-
- def estimate_probability_two_random_records_match(
- self,
- deterministic_matching_rules: List[Union[str, BlockingRuleCreator]],
- recall: float,
- max_rows_limit: int = int(1e9),
- ) -> None:
- """Estimate the model parameter `probability_two_random_records_match` using
- a direct estimation approach.
-
- See [here](https://github.com/moj-analytical-services/splink/issues/462)
- for discussion of methodology
-
- Args:
- deterministic_matching_rules (list): A list of deterministic matching
- rules that should be designed to admit very few (none if possible)
- false positives
- recall (float): A guess at the recall the deterministic matching rules
- will attain. i.e. what proportion of true matches will be recovered
- by these deterministic rules
- """
-
- if (recall > 1) or (recall <= 0):
- raise ValueError(
- f"Estimated recall must be greater than 0 "
- f"and no more than 1. Supplied value {recall}."
- ) from None
-
- deterministic_matching_rules = ensure_is_iterable(deterministic_matching_rules)
- blocking_rules: List[BlockingRule] = []
- for br in deterministic_matching_rules:
- blocking_rules.append(
- to_blocking_rule_creator(br).get_blocking_rule(
- self.db_api.sql_dialect.name
- )
- )
-
- pd_df = _cumulative_comparisons_to_be_scored_from_blocking_rules(
- splink_df_dict=self._input_tables_dict,
- blocking_rules=blocking_rules,
- link_type=self._settings_obj._link_type,
- db_api=self.db_api,
- max_rows_limit=max_rows_limit,
- unique_id_input_column=self._settings_obj.column_info_settings.unique_id_input_column,
- source_dataset_input_column=self._settings_obj.column_info_settings.source_dataset_input_column,
- )
-
- records = pd_df.to_dict(orient="records")
-
- summary_record = records[-1]
- num_observed_matches = summary_record["cumulative_rows"]
- num_total_comparisons = summary_record["cartesian"]
-
- if num_observed_matches > num_total_comparisons * recall:
- raise ValueError(
- f"Deterministic matching rules led to more "
- f"observed matches than is consistent with supplied recall. "
- f"With these rules, recall must be at least "
- f"{num_observed_matches/num_total_comparisons:,.2f}."
- )
-
- num_expected_matches = num_observed_matches / recall
- prob = num_expected_matches / num_total_comparisons
-
- # warn about boundary values, as these will usually be in error
- if num_observed_matches == 0:
- logger.warning(
- f"WARNING: Deterministic matching rules led to no observed matches! "
- f"This means that no possible record pairs are matches, "
- f"and no records are linked to one another.\n"
- f"If this is truly the case then you do not need "
- f"to run the linkage model.\n"
- f"However this is usually in error; "
- f"expected rules to have recall of {100*recall:,.0f}%. "
- f"Consider revising rules as they may have an error."
- )
- if prob == 1:
- logger.warning(
- "WARNING: Probability two random records match is estimated to be 1.\n"
- "This means that all possible record pairs are matches, "
- "and all records are linked to one another.\n"
- "If this is truly the case then you do not need "
- "to run the linkage model.\n"
- "However, it is more likely that this estimate is faulty. "
- "Perhaps your deterministic matching rules include "
- "too many false positives?"
- )
-
- self._settings_obj._probability_two_random_records_match = prob
-
- reciprocal_prob = "Infinity" if prob == 0 else f"{1/prob:,.2f}"
- logger.info(
- f"Probability two random records match is estimated to be {prob:.3g}.\n"
- f"This means that amongst all possible pairwise record comparisons, one in "
- f"{reciprocal_prob} are expected to match. "
- f"With {num_total_comparisons:,.0f} total"
- " possible comparisons, we expect a total of around "
- f"{num_expected_matches:,.2f} matching pairs"
- )
-
- def invalidate_cache(self):
- """Invalidate the Splink cache. Any previously-computed tables
- will be recomputed.
- This is useful, for example, if the input data tables have changed.
- """
-
- # Nothing to delete
- if len(self._intermediate_table_cache) == 0:
- return
-
- # Before Splink executes a SQL command, it checks the cache to see
- # whether a table already exists with the name of the output table
-
- # This function has the effect of changing the names of the output tables
- # to include a different unique id
-
- # As a result, any previously cached tables will not be found
- self._cache_uid = ascii_uid(8)
-
- # Drop any existing splink tables from the database
- # Note, this is not actually necessary, it's just good housekeeping
- self.delete_tables_created_by_splink_from_db()
-
- # As a result, any previously cached tables will not be found
- self._intermediate_table_cache.invalidate_cache()
-
- def register_table_input_nodes_concat_with_tf(self, input_data, overwrite=False):
- """Register a pre-computed version of the input_nodes_concat_with_tf table that
- you want to re-use e.g. that you created in a previous run
-
- This method allowed you to register this table in the Splink cache
- so it will be used rather than Splink computing this table anew.
-
- Args:
- input_data: The data you wish to register. This can be either a dictionary,
- pandas dataframe, pyarrow table or a spark dataframe.
- overwrite (bool): Overwrite the table in the underlying database if it
- exists
- """
-
- table_name_physical = "__splink__df_concat_with_tf_" + self._cache_uid
- splink_dataframe = self.register_table(
- input_data, table_name_physical, overwrite=overwrite
- )
- splink_dataframe.templated_name = "__splink__df_concat_with_tf"
-
- self._intermediate_table_cache["__splink__df_concat_with_tf"] = splink_dataframe
- return splink_dataframe
-
- def register_table_predict(self, input_data, overwrite=False):
- table_name_physical = "__splink__df_predict_" + self._cache_uid
- splink_dataframe = self.register_table(
- input_data, table_name_physical, overwrite=overwrite
- )
- self._intermediate_table_cache["__splink__df_predict"] = splink_dataframe
- splink_dataframe.templated_name = "__splink__df_predict"
- return splink_dataframe
-
- def register_term_frequency_lookup(self, input_data, col_name, overwrite=False):
- input_col = InputColumn(
- col_name,
- column_info_settings=self._settings_obj.column_info_settings,
- sql_dialect=self._settings_obj._sql_dialect,
- )
- table_name_templated = colname_to_tf_tablename(input_col)
- table_name_physical = f"{table_name_templated}_{self._cache_uid}"
- splink_dataframe = self.register_table(
- input_data, table_name_physical, overwrite=overwrite
- )
- self._intermediate_table_cache[table_name_templated] = splink_dataframe
- splink_dataframe.templated_name = table_name_templated
- return splink_dataframe
-
- def register_labels_table(self, input_data, overwrite=False):
- table_name_physical = "__splink__df_labels_" + ascii_uid(8)
- splink_dataframe = self.register_table(
- input_data, table_name_physical, overwrite=overwrite
- )
- splink_dataframe.templated_name = "__splink__df_labels"
- return splink_dataframe
-
- def labelling_tool_for_specific_record(
- self,
- unique_id,
- source_dataset=None,
- out_path="labelling_tool.html",
- overwrite=False,
- match_weight_threshold=-4,
- view_in_jupyter=False,
- show_splink_predictions_in_interface=True,
- ):
- """Create a standalone, offline labelling dashboard for a specific record
- as identified by its unique id
-
- Args:
- unique_id (str): The unique id of the record for which to create the
- labelling tool
- source_dataset (str, optional): If there are multiple datasets, to
- identify the record you must also specify the source_dataset. Defaults
- to None.
- out_path (str, optional): The output path for the labelling tool. Defaults
- to "labelling_tool.html".
- overwrite (bool, optional): If true, overwrite files at the output
- path if they exist. Defaults to False.
- match_weight_threshold (int, optional): Include possible matches in the
- output which score above this threshold. Defaults to -4.
- view_in_jupyter (bool, optional): If you're viewing in the Jupyter
- html viewer, set this to True to extract your labels. Defaults to False.
- show_splink_predictions_in_interface (bool, optional): Whether to
- show information about the Splink model's predictions that could
- potentially bias the decision of the clerical labeller. Defaults to
- True.
- """
-
- df_comparisons = generate_labelling_tool_comparisons(
- self,
- unique_id,
- source_dataset,
- match_weight_threshold=match_weight_threshold,
- )
-
- render_labelling_tool_html(
- self,
- df_comparisons,
- show_splink_predictions_in_interface=show_splink_predictions_in_interface,
- out_path=out_path,
- view_in_jupyter=view_in_jupyter,
- overwrite=overwrite,
- )
-
def _find_blocking_rules_below_threshold(
self, max_comparisons_per_rule, blocking_expressions=None
):
diff --git a/splink/internals/linker_components/clustering.py b/splink/internals/linker_components/clustering.py
new file mode 100644
index 0000000000..f4802030fd
--- /dev/null
+++ b/splink/internals/linker_components/clustering.py
@@ -0,0 +1,284 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Optional
+
+from splink.internals.connected_components import (
+ _cc_create_unique_id_cols,
+ solve_connected_components,
+)
+from splink.internals.edge_metrics import compute_edge_metrics
+from splink.internals.graph_metrics import (
+ GraphMetricsResults,
+ _node_degree_sql,
+ _size_density_centralisation_sql,
+)
+from splink.internals.pipeline import CTEPipeline
+from splink.internals.splink_dataframe import SplinkDataFrame
+from splink.internals.unique_id_concat import (
+ _composite_unique_id_from_edges_sql,
+ _composite_unique_id_from_nodes_sql,
+)
+from splink.internals.vertically_concatenate import (
+ compute_df_concat_with_tf,
+)
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+
+class LinkerClustering:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def cluster_pairwise_predictions_at_threshold(
+ self,
+ df_predict: SplinkDataFrame,
+ threshold_match_probability: Optional[float] = None,
+ pairwise_formatting: bool = False,
+ filter_pairwise_format_for_clusters: bool = True,
+ ) -> SplinkDataFrame:
+ """Clusters the pairwise match predictions that result from `linker.predict()`
+ into groups of connected record using the connected components graph clustering
+ algorithm
+
+ Records with an estimated `match_probability` at or above
+ `threshold_match_probability` are considered to be a match (i.e. they represent
+ the same entity).
+
+ Args:
+ df_predict (SplinkDataFrame): The results of `linker.predict()`
+ threshold_match_probability (float): Filter the pairwise match predictions
+ to include only pairwise comparisons with a match_probability at or
+ above this threshold. This dataframe is then fed into the clustering
+ algorithm.
+ pairwise_formatting (bool): Whether to output the pairwise match predictions
+ from linker.predict() with cluster IDs.
+ If this is set to false, the output will be a list of all IDs, clustered
+ into groups based on the desired match threshold.
+ filter_pairwise_format_for_clusters (bool): If pairwise formatting has been
+ selected, whether to output all columns found within linker.predict(),
+ or just return clusters.
+
+ Returns:
+ SplinkDataFrame: A SplinkDataFrame containing a list of all IDs, clustered
+ into groups based on the desired match threshold.
+
+ """
+
+ # Feeding in df_predict forces materiailisation, if it exists in your database
+ pipeline = CTEPipeline()
+ nodes_with_tf = compute_df_concat_with_tf(self._linker, pipeline)
+
+ edges_table = _cc_create_unique_id_cols(
+ self._linker,
+ nodes_with_tf.physical_name,
+ df_predict,
+ threshold_match_probability,
+ )
+
+ cc = solve_connected_components(
+ self._linker,
+ edges_table,
+ df_predict,
+ nodes_with_tf,
+ pairwise_formatting,
+ filter_pairwise_format_for_clusters,
+ )
+ cc.metadata["threshold_match_probability"] = threshold_match_probability
+
+ return cc
+
+ def _compute_metrics_nodes(
+ self,
+ df_predict: SplinkDataFrame,
+ df_clustered: SplinkDataFrame,
+ threshold_match_probability: float,
+ ) -> SplinkDataFrame:
+ """
+ Internal function for computing node-level metrics.
+
+ Accepts outputs of `linker.predict()` and
+ `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold
+ and produces a table of node metrics.
+
+ Node metrics produced:
+ * node_degree (absolute number of neighbouring nodes)
+
+ Output table has a single row per input node, along with the cluster id (as
+ assigned in `linker.cluster_pairwise_at_threshold()`) and the metric
+ node_degree:
+ |-------------------------------------------------|
+ | composite_unique_id | cluster_id | node_degree |
+ |---------------------|-------------|-------------|
+ | s1-__-10001 | s1-__-10001 | 6 |
+ | s1-__-10002 | s1-__-10001 | 4 |
+ | s1-__-10003 | s1-__-10003 | 2 |
+ ...
+ """
+ uid_cols = (
+ self._linker._settings_obj.column_info_settings.unique_id_input_columns
+ )
+ # need composite unique ids
+ composite_uid_edges_l = _composite_unique_id_from_edges_sql(uid_cols, "l")
+ composite_uid_edges_r = _composite_unique_id_from_edges_sql(uid_cols, "r")
+ composite_uid_clusters = _composite_unique_id_from_nodes_sql(uid_cols)
+
+ pipeline = CTEPipeline()
+ sqls = _node_degree_sql(
+ df_predict,
+ df_clustered,
+ composite_uid_edges_l,
+ composite_uid_edges_r,
+ composite_uid_clusters,
+ threshold_match_probability,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ df_node_metrics = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline
+ )
+
+ df_node_metrics.metadata["threshold_match_probability"] = (
+ threshold_match_probability
+ )
+ return df_node_metrics
+
+ def _compute_metrics_edges(
+ self,
+ df_node_metrics: SplinkDataFrame,
+ df_predict: SplinkDataFrame,
+ df_clustered: SplinkDataFrame,
+ threshold_match_probability: float,
+ ) -> SplinkDataFrame:
+ """
+ Internal function for computing edge-level metrics.
+
+ Accepts outputs of `linker._compute_node_metrics()`, `linker.predict()` and
+ `linker.cluster_pairwise_at_threshold()`, along with the clustering threshold
+ and produces a table of edge metrics.
+
+ Uses `igraph` under-the-hood for calculations
+
+ Edge metrics produced:
+ * is_bridge (is the edge a bridge?)
+
+ Output table has a single row per edge, and the metric is_bridge:
+ |-------------------------------------------------------------|
+ | composite_unique_id_l | composite_unique_id_r | is_bridge |
+ |-----------------------|-------------------------|-----------|
+ | s1-__-10001 | s1-__-10003 | True |
+ | s1-__-10001 | s1-__-10005 | False |
+ | s1-__-10005 | s1-__-10009 | False |
+ | s1-__-10021 | s1-__-10024 | True |
+ ...
+ """
+ df_edge_metrics = compute_edge_metrics(
+ self._linker,
+ df_node_metrics,
+ df_predict,
+ df_clustered,
+ threshold_match_probability,
+ )
+ df_edge_metrics.metadata["threshold_match_probability"] = (
+ threshold_match_probability
+ )
+ return df_edge_metrics
+
+ def _compute_metrics_clusters(
+ self,
+ df_node_metrics: SplinkDataFrame,
+ ) -> SplinkDataFrame:
+ """
+ Internal function for computing cluster-level metrics.
+
+ Accepts output of `linker._compute_node_metrics()` (which has the relevant
+ information from `linker.predict() and
+ `linker.cluster_pairwise_at_threshold()`), produces a table of cluster metrics.
+
+ Cluster metrics produced:
+ * n_nodes (aka cluster size, number of nodes in cluster)
+ * n_edges (number of edges in cluster)
+ * density (number of edges normalised wrt maximum possible number)
+ * cluster_centralisation (average absolute deviation from maximum node_degree
+ normalised wrt maximum possible value)
+
+ Output table has a single row per cluster, along with the cluster metrics
+ listed above
+ |--------------------------------------------------------------------|
+ | cluster_id | n_nodes | n_edges | density | cluster_centralisation |
+ |-------------|---------|---------|---------|------------------------|
+ | s1-__-10006 | 4 | 4 | 0.66667 | 0.6666 |
+ | s1-__-10008 | 6 | 5 | 0.33333 | 0.4 |
+ | s1-__-10013 | 11 | 19 | 0.34545 | 0.3111 |
+ ...
+ """
+ pipeline = CTEPipeline()
+ sqls = _size_density_centralisation_sql(
+ df_node_metrics,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ df_cluster_metrics = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline
+ )
+ df_cluster_metrics.metadata["threshold_match_probability"] = (
+ df_node_metrics.metadata["threshold_match_probability"]
+ )
+ return df_cluster_metrics
+
+ def compute_graph_metrics(
+ self,
+ df_predict: SplinkDataFrame,
+ df_clustered: SplinkDataFrame,
+ *,
+ threshold_match_probability: float = None,
+ ) -> GraphMetricsResults:
+ """
+ Generates tables containing graph metrics (for nodes, edges and clusters),
+ and returns a data class of Splink dataframes
+
+ Args:
+ df_predict (SplinkDataFrame): The results of `linker.predict()`
+ df_clustered (SplinkDataFrame): The outputs of
+ `linker.cluster_pairwise_predictions_at_threshold()`
+ threshold_match_probability (float, optional): Filter the pairwise match
+ predictions to include only pairwise comparisons with a
+ match_probability at or above this threshold. If not provided, the value
+ will be taken from metadata on `df_clustered`. If no such metadata is
+ available, this value _must_ be provided.
+
+ Returns:
+ GraphMetricsResult: A data class containing SplinkDataFrames
+ of cluster IDs and selected node, edge or cluster metrics.
+ attribute "nodes" for nodes metrics table
+ attribute "edges" for edge metrics table
+ attribute "clusters" for cluster metrics table
+
+ """
+ if threshold_match_probability is None:
+ threshold_match_probability = df_clustered.metadata.get(
+ "threshold_match_probability", None
+ )
+ # we may not have metadata if clusters have been manually registered, or
+ # read in from a format that does not include it
+ if threshold_match_probability is None:
+ raise TypeError(
+ "As `df_clustered` has no threshold metadata associated to it, "
+ "to compute graph metrics you must provide "
+ "`threshold_match_probability` manually"
+ )
+ df_node_metrics = self._compute_metrics_nodes(
+ df_predict, df_clustered, threshold_match_probability
+ )
+ df_edge_metrics = self._compute_metrics_edges(
+ df_node_metrics,
+ df_predict,
+ df_clustered,
+ threshold_match_probability,
+ )
+ # don't need edges as information is baked into node metrics
+ df_cluster_metrics = self._compute_metrics_clusters(df_node_metrics)
+
+ return GraphMetricsResults(
+ nodes=df_node_metrics, edges=df_edge_metrics, clusters=df_cluster_metrics
+ )
diff --git a/splink/internals/linker_components/evaluation.py b/splink/internals/linker_components/evaluation.py
new file mode 100644
index 0000000000..2018a30ffa
--- /dev/null
+++ b/splink/internals/linker_components/evaluation.py
@@ -0,0 +1,389 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, List, Literal, Union
+
+from splink.internals.accuracy import (
+ prediction_errors_from_label_column,
+ prediction_errors_from_labels_table,
+ truth_space_table_from_labels_column,
+ truth_space_table_from_labels_table,
+)
+from splink.internals.charts import (
+ ChartReturnType,
+ accuracy_chart,
+ precision_recall_chart,
+ roc_chart,
+ threshold_selection_tool,
+ unlinkables_chart,
+)
+from splink.internals.labelling_tool import (
+ generate_labelling_tool_comparisons,
+ render_labelling_tool_html,
+)
+from splink.internals.splink_dataframe import SplinkDataFrame
+from splink.internals.unlinkables import unlinkables_data
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+
+class LinkerEvalution:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def prediction_errors_from_labels_table(
+ self,
+ labels_splinkdataframe_or_table_name,
+ include_false_positives=True,
+ include_false_negatives=True,
+ threshold=0.5,
+ ):
+ """Generate a dataframe containing false positives and false negatives
+ based on the comparison between the clerical_match_score in the labels
+ table compared with the splink predicted match probability
+
+ Args:
+ labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table
+ containing labels in the database
+ include_false_positives (bool, optional): Defaults to True.
+ include_false_negatives (bool, optional): Defaults to True.
+ threshold (float, optional): Threshold above which a score is considered
+ to be a match. Defaults to 0.5.
+
+ Returns:
+ SplinkDataFrame: Table containing false positives and negatives
+ """
+ labels_tablename = self._linker._get_labels_tablename_from_input(
+ labels_splinkdataframe_or_table_name
+ )
+ return prediction_errors_from_labels_table(
+ self._linker,
+ labels_tablename,
+ include_false_positives,
+ include_false_negatives,
+ threshold,
+ )
+
+ def accuracy_analysis_from_labels_column(
+ self,
+ labels_column_name: str,
+ *,
+ threshold_actual: float = 0.5,
+ match_weight_round_to_nearest: float = 0.1,
+ output_type: Literal[
+ "threshold_selection", "roc", "precision_recall", "table", "accuracy"
+ ] = "threshold_selection",
+ add_metrics: List[
+ Literal[
+ "specificity",
+ "npv",
+ "accuracy",
+ "f1",
+ "f2",
+ "f0_5",
+ "p4",
+ "phi",
+ ]
+ ] = [],
+ positives_not_captured_by_blocking_rules_scored_as_zero: bool = True,
+ ) -> Union[ChartReturnType, SplinkDataFrame]:
+ """Generate an accuracy chart or table from ground truth data, where the ground
+ truth is in a column in the input dataset called `labels_column_name`
+
+ Args:
+ labels_column_name (str): Column name containing labels in the input table
+ threshold_actual (float, optional): Where the `clerical_match_score`
+ provided by the user is a probability rather than binary, this value
+ is used as the threshold to classify `clerical_match_score`s as binary
+ matches or non matches. Defaults to 0.5.
+ match_weight_round_to_nearest (float, optional): When provided, thresholds
+ are rounded. When large numbers of labels are provided, this is
+ sometimes necessary to reduce the size of the ROC table, and therefore
+ the number of points plotted on the chart. Defaults to None.
+ add_metrics (list(str), optional): Precision and recall metrics are always
+ included. Where provided, `add_metrics` specifies additional metrics
+ to show, with the following options:
+
+ - `"specificity"`: specificity, selectivity, true negative rate (TNR)
+ - `"npv"`: negative predictive value (NPV)
+ - `"accuracy"`: overall accuracy (TP+TN)/(P+N)
+ - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2
+ (emphasis on recall) and \u03b2=0.5 (emphasis on precision)
+ - `"p4"` - an extended F1 score with specificity and NPV included
+ - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC)
+ Examples:
+ ```py
+ linker.evaluation.accuracy_analysis_from_labels_column("ground_truth", add_metrics=["f1"])
+ ```
+
+ Returns:
+ altair.Chart: An altair chart
+ """ # noqa: E501
+
+ allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"]
+
+ if not isinstance(add_metrics, list):
+ raise Exception(
+ "add_metrics must be a list containing one or more of the following:",
+ allowed,
+ )
+
+ if not all(metric in allowed for metric in add_metrics):
+ raise ValueError(
+ "Invalid metric. " f"Allowed metrics are: {', '.join(allowed)}."
+ )
+
+ df_truth_space = truth_space_table_from_labels_column(
+ self._linker,
+ labels_column_name,
+ threshold_actual=threshold_actual,
+ match_weight_round_to_nearest=match_weight_round_to_nearest,
+ positives_not_captured_by_blocking_rules_scored_as_zero=positives_not_captured_by_blocking_rules_scored_as_zero,
+ )
+ recs = df_truth_space.as_record_dict()
+
+ if output_type == "threshold_selection":
+ return threshold_selection_tool(recs, add_metrics=add_metrics)
+ elif output_type == "accuracy":
+ return accuracy_chart(recs, add_metrics=add_metrics)
+ elif output_type == "roc":
+ return roc_chart(recs)
+ elif output_type == "precision_recall":
+ return precision_recall_chart(recs)
+ elif output_type == "table":
+ return df_truth_space
+ else:
+ raise ValueError(
+ "Invalid chart_type. Allowed chart types are: "
+ "'threshold_selection', 'roc', 'precision_recall', 'accuracy."
+ )
+
+ def accuracy_analysis_from_labels_table(
+ self,
+ labels_splinkdataframe_or_table_name: str | SplinkDataFrame,
+ *,
+ threshold_actual: float = 0.5,
+ match_weight_round_to_nearest: float = 0.1,
+ output_type: Literal[
+ "threshold_selection", "roc", "precision_recall", "table", "accuracy"
+ ] = "threshold_selection",
+ add_metrics: List[
+ Literal[
+ "specificity",
+ "npv",
+ "accuracy",
+ "f1",
+ "f2",
+ "f0_5",
+ "p4",
+ "phi",
+ ]
+ ] = [],
+ ) -> Union[ChartReturnType, SplinkDataFrame]:
+ """Generate an accuracy chart or table from labelled (ground truth) data.
+
+ The table of labels should be in the following format, and should be registered
+ as a table with your database using
+ `labels_table = linker.register_labels_table(my_df)`
+
+ |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|clerical_match_score|
+ |----------------|-----------|----------------|-----------|--------------------|
+ |df_1 |1 |df_2 |2 |0.99 |
+ |df_1 |1 |df_2 |3 |0.2 |
+
+ Note that `source_dataset` and `unique_id` should correspond to the values
+ specified in the settings dict, and the `input_table_aliases` passed to the
+ `linker` object.
+
+ For `dedupe_only` links, the `source_dataset` columns can be ommitted.
+
+ Args:
+ labels_splinkdataframe_or_table_name (str | SplinkDataFrame): Name of table
+ containing labels in the database
+ threshold_actual (float, optional): Where the `clerical_match_score`
+ provided by the user is a probability rather than binary, this value
+ is used as the threshold to classify `clerical_match_score`s as binary
+ matches or non matches. Defaults to 0.5.
+ match_weight_round_to_nearest (float, optional): When provided, thresholds
+ are rounded. When large numbers of labels are provided, this is
+ sometimes necessary to reduce the size of the ROC table, and therefore
+ the number of points plotted on the chart. Defaults to None.
+ add_metrics (list(str), optional): Precision and recall metrics are always
+ included. Where provided, `add_metrics` specifies additional metrics
+ to show, with the following options:
+
+ - `"specificity"`: specificity, selectivity, true negative rate (TNR)
+ - `"npv"`: negative predictive value (NPV)
+ - `"accuracy"`: overall accuracy (TP+TN)/(P+N)
+ - `"f1"`/`"f2"`/`"f0_5"`: F-scores for \u03b2=1 (balanced), \u03b2=2
+ (emphasis on recall) and \u03b2=0.5 (emphasis on precision)
+ - `"p4"` - an extended F1 score with specificity and NPV included
+ - `"phi"` - \u03c6 coefficient or Matthews correlation coefficient (MCC)
+ Examples:
+ ```py
+ linker.accuracy_analysis_from_labels_table("ground_truth", add_metrics=["f1"])
+ ```
+
+ Returns:
+ altair.Chart: An altair chart
+ """ # noqa: E501
+
+ allowed = ["specificity", "npv", "accuracy", "f1", "f2", "f0_5", "p4", "phi"]
+
+ if not isinstance(add_metrics, list):
+ raise Exception(
+ "add_metrics must be a list containing one or more of the following:",
+ allowed,
+ )
+
+ if not all(metric in allowed for metric in add_metrics):
+ raise ValueError(
+ f"Invalid metric. Allowed metrics are: {', '.join(allowed)}."
+ )
+
+ labels_tablename = self._linker._get_labels_tablename_from_input(
+ labels_splinkdataframe_or_table_name
+ )
+ self._linker._raise_error_if_necessary_accuracy_columns_not_computed()
+ df_truth_space = truth_space_table_from_labels_table(
+ self._linker,
+ labels_tablename,
+ threshold_actual=threshold_actual,
+ match_weight_round_to_nearest=match_weight_round_to_nearest,
+ )
+ recs = df_truth_space.as_record_dict()
+
+ if output_type == "threshold_selection":
+ return threshold_selection_tool(recs, add_metrics=add_metrics)
+ elif output_type == "accuracy":
+ return accuracy_chart(recs, add_metrics=add_metrics)
+ elif output_type == "roc":
+ return roc_chart(recs)
+ elif output_type == "precision_recall":
+ return precision_recall_chart(recs)
+ elif output_type == "table":
+ return df_truth_space
+ else:
+ raise ValueError(
+ "Invalid chart_type. Allowed chart types are: "
+ "'threshold_selection', 'roc', 'precision_recall', 'accuracy."
+ )
+
+ def prediction_errors_from_labels_column(
+ self,
+ label_colname,
+ include_false_positives=True,
+ include_false_negatives=True,
+ threshold=0.5,
+ ):
+ """Generate a dataframe containing false positives and false negatives
+ based on the comparison between the splink match probability and the
+ labels column. A label column is a column in the input dataset that contains
+ the 'ground truth' cluster to which the record belongs
+
+ Args:
+ label_colname (str): Name of labels column in input data
+ include_false_positives (bool, optional): Defaults to True.
+ include_false_negatives (bool, optional): Defaults to True.
+ threshold (float, optional): Threshold above which a score is considered
+ to be a match. Defaults to 0.5.
+
+ Returns:
+ SplinkDataFrame: Table containing false positives and negatives
+ """
+ return prediction_errors_from_label_column(
+ self._linker,
+ label_colname,
+ include_false_positives,
+ include_false_negatives,
+ threshold,
+ )
+
+ def unlinkables_chart(
+ self,
+ x_col: str = "match_weight",
+ name_of_data_in_title: str | None = None,
+ as_dict: bool = False,
+ ) -> ChartReturnType:
+ """Generate an interactive chart displaying the proportion of records that
+ are "unlinkable" for a given splink score threshold and model parameters.
+
+ Unlinkable records are those that, even when compared with themselves, do not
+ contain enough information to confirm a match.
+
+ Args:
+ x_col (str, optional): Column to use for the x-axis.
+ Defaults to "match_weight".
+ name_of_data_in_title (str, optional): Name of the source dataset to use for
+ the title of the output chart.
+ as_dict (bool, optional): If True, return a dict version of the chart.
+
+ Examples:
+ For the simplest code pipeline, load a pre-trained model
+ and run this against the test data.
+ ```py
+ from splink.datasets import splink_datasets
+ df = splink_datasets.fake_1000
+ linker = DuckDBLinker(df)
+ linker.load_settings("saved_settings.json")
+ linker.unlinkables_chart()
+ ```
+ For more complex code pipelines, you can run an entire pipeline
+ that estimates your m and u values, before `unlinkables_chart().
+
+ Returns:
+ altair.Chart: An altair chart
+ """
+
+ # Link our initial df on itself and calculate the % of unlinkable entries
+ records = unlinkables_data(self._linker)
+ return unlinkables_chart(records, x_col, name_of_data_in_title, as_dict)
+
+ def labelling_tool_for_specific_record(
+ self,
+ unique_id,
+ source_dataset=None,
+ out_path="labelling_tool.html",
+ overwrite=False,
+ match_weight_threshold=-4,
+ view_in_jupyter=False,
+ show_splink_predictions_in_interface=True,
+ ):
+ """Create a standalone, offline labelling dashboard for a specific record
+ as identified by its unique id
+
+ Args:
+ unique_id (str): The unique id of the record for which to create the
+ labelling tool
+ source_dataset (str, optional): If there are multiple datasets, to
+ identify the record you must also specify the source_dataset. Defaults
+ to None.
+ out_path (str, optional): The output path for the labelling tool. Defaults
+ to "labelling_tool.html".
+ overwrite (bool, optional): If true, overwrite files at the output
+ path if they exist. Defaults to False.
+ match_weight_threshold (int, optional): Include possible matches in the
+ output which score above this threshold. Defaults to -4.
+ view_in_jupyter (bool, optional): If you're viewing in the Jupyter
+ html viewer, set this to True to extract your labels. Defaults to False.
+ show_splink_predictions_in_interface (bool, optional): Whether to
+ show information about the Splink model's predictions that could
+ potentially bias the decision of the clerical labeller. Defaults to
+ True.
+ """
+
+ df_comparisons = generate_labelling_tool_comparisons(
+ self._linker,
+ unique_id,
+ source_dataset,
+ match_weight_threshold=match_weight_threshold,
+ )
+
+ render_labelling_tool_html(
+ self._linker,
+ df_comparisons,
+ show_splink_predictions_in_interface=show_splink_predictions_in_interface,
+ out_path=out_path,
+ view_in_jupyter=view_in_jupyter,
+ overwrite=overwrite,
+ )
diff --git a/splink/internals/linker_components/inference.py b/splink/internals/linker_components/inference.py
new file mode 100644
index 0000000000..16c2ca7899
--- /dev/null
+++ b/splink/internals/linker_components/inference.py
@@ -0,0 +1,513 @@
+from __future__ import annotations
+
+import logging
+from typing import TYPE_CHECKING, Any
+
+from splink.internals.blocking import (
+ BlockingRule,
+ block_using_rules_sqls,
+ blocking_rule_to_obj,
+ materialise_exploded_id_tables,
+)
+from splink.internals.blocking_rule_creator import BlockingRuleCreator
+from splink.internals.comparison_vector_values import (
+ compute_comparison_vector_values_sql,
+)
+from splink.internals.database_api import AcceptableInputTableType
+from splink.internals.find_matches_to_new_records import (
+ add_unique_id_and_source_dataset_cols_if_needed,
+)
+from splink.internals.misc import (
+ ascii_uid,
+ ensure_is_list,
+)
+from splink.internals.pipeline import CTEPipeline
+from splink.internals.predict import (
+ predict_from_comparison_vectors_sqls_using_settings,
+)
+from splink.internals.splink_dataframe import SplinkDataFrame
+from splink.internals.term_frequencies import (
+ _join_new_table_to_df_concat_with_tf_sql,
+ colname_to_tf_tablename,
+)
+from splink.internals.vertically_concatenate import (
+ compute_df_concat_with_tf,
+ enqueue_df_concat_with_tf,
+ split_df_concat_with_tf_into_two_tables_sqls,
+)
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+logger = logging.getLogger(__name__)
+
+
+class LinkerInference:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def deterministic_link(self) -> SplinkDataFrame:
+ """Uses the blocking rules specified by
+ `blocking_rules_to_generate_predictions` in the settings dictionary to
+ generate pairwise record comparisons.
+
+ For deterministic linkage, this should be a list of blocking rules which
+ are strict enough to generate only true links.
+
+ Deterministic linkage, however, is likely to result in missed links
+ (false negatives).
+
+ Examples:
+
+ ```py
+ from splink.linker import Linker
+ from splink.duckdb.database_api import DuckDBAPI
+
+ db_api = DuckDBAPI()
+
+ settings = {
+ "link_type": "dedupe_only",
+ "blocking_rules_to_generate_predictions": [
+ "l.first_name = r.first_name",
+ "l.surname = r.surname",
+ ],
+ "comparisons": []
+ }
+ >>>
+ linker = Linker(df, settings, db_api)
+ df = linker.deterministic_link()
+ ```
+
+
+ Returns:
+ SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This
+ represents a table materialised in the database. Methods on the
+ SplinkDataFrame allow you to access the underlying data.
+ """
+ pipeline = CTEPipeline()
+ # Allows clustering during a deterministic linkage.
+ # This is used in `cluster_pairwise_predictions_at_threshold`
+ # to set the cluster threshold to 1
+
+ df_concat_with_tf = compute_df_concat_with_tf(self._linker, pipeline)
+ pipeline = CTEPipeline([df_concat_with_tf])
+ link_type = self._linker._settings_obj._link_type
+
+ blocking_input_tablename_l = "__splink__df_concat_with_tf"
+ blocking_input_tablename_r = "__splink__df_concat_with_tf"
+
+ link_type = self._linker._settings_obj._link_type
+ if (
+ len(self._linker._input_tables_dict) == 2
+ and self._linker._settings_obj._link_type == "link_only"
+ ):
+ sqls = split_df_concat_with_tf_into_two_tables_sqls(
+ "__splink__df_concat_with_tf",
+ self._linker._settings_obj.column_info_settings.source_dataset_column_name,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ blocking_input_tablename_l = "__splink__df_concat_with_tf_left"
+ blocking_input_tablename_r = "__splink__df_concat_with_tf_right"
+ link_type = "two_dataset_link_only"
+
+ exploding_br_with_id_tables = materialise_exploded_id_tables(
+ link_type=link_type,
+ blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions,
+ db_api=self._linker._db_api,
+ splink_df_dict=self._linker._input_tables_dict,
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ )
+
+ columns_to_select = self._linker._settings_obj._columns_to_select_for_blocking
+ sql_select_expr = ", ".join(columns_to_select)
+
+ sqls = block_using_rules_sqls(
+ input_tablename_l=blocking_input_tablename_l,
+ input_tablename_r=blocking_input_tablename_r,
+ blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions,
+ link_type=link_type,
+ columns_to_select_sql=sql_select_expr,
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ deterministic_link_df = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline
+ )
+ deterministic_link_df.metadata["is_deterministic_link"] = True
+
+ [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables]
+
+ return deterministic_link_df
+
+ def predict(
+ self,
+ threshold_match_probability: float = None,
+ threshold_match_weight: float = None,
+ materialise_after_computing_term_frequencies: bool = True,
+ ) -> SplinkDataFrame:
+ """Create a dataframe of scored pairwise comparisons using the parameters
+ of the linkage model.
+
+ Uses the blocking rules specified in the
+ `blocking_rules_to_generate_predictions` of the settings dictionary to
+ generate the pairwise comparisons.
+
+ Args:
+ threshold_match_probability (float, optional): If specified,
+ filter the results to include only pairwise comparisons with a
+ match_probability above this threshold. Defaults to None.
+ threshold_match_weight (float, optional): If specified,
+ filter the results to include only pairwise comparisons with a
+ match_weight above this threshold. Defaults to None.
+ materialise_after_computing_term_frequencies (bool): If true, Splink
+ will materialise the table containing the input nodes (rows)
+ joined to any term frequencies which have been asked
+ for in the settings object. If False, this will be
+ computed as part of one possibly gigantic CTE
+ pipeline. Defaults to True
+
+ Examples:
+ ```py
+ linker = DuckDBLinker(df)
+ linker.load_settings("saved_settings.json")
+ df = linker.predict(threshold_match_probability=0.95)
+ df.as_pandas_dataframe(limit=5)
+ ```
+ Returns:
+ SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This
+ represents a table materialised in the database. Methods on the
+ SplinkDataFrame allow you to access the underlying data.
+
+ """
+
+ pipeline = CTEPipeline()
+
+ # If materialise_after_computing_term_frequencies=False and the user only
+ # calls predict, it runs as a single pipeline with no materialisation
+ # of anything.
+
+ # In duckdb, calls to random() in a CTE pipeline cause problems:
+ # https://gist.github.com/RobinL/d329e7004998503ce91b68479aa41139
+ if (
+ materialise_after_computing_term_frequencies
+ or self._linker._sql_dialect == "duckdb"
+ ):
+ df_concat_with_tf = compute_df_concat_with_tf(self._linker, pipeline)
+ pipeline = CTEPipeline([df_concat_with_tf])
+ else:
+ pipeline = enqueue_df_concat_with_tf(self._linker, pipeline)
+
+ blocking_input_tablename_l = "__splink__df_concat_with_tf"
+ blocking_input_tablename_r = "__splink__df_concat_with_tf"
+
+ link_type = self._linker._settings_obj._link_type
+ if (
+ len(self._linker._input_tables_dict) == 2
+ and self._linker._settings_obj._link_type == "link_only"
+ ):
+ sqls = split_df_concat_with_tf_into_two_tables_sqls(
+ "__splink__df_concat_with_tf",
+ self._linker._settings_obj.column_info_settings.source_dataset_column_name,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ blocking_input_tablename_l = "__splink__df_concat_with_tf_left"
+ blocking_input_tablename_r = "__splink__df_concat_with_tf_right"
+ link_type = "two_dataset_link_only"
+
+ # If exploded blocking rules exist, we need to materialise
+ # the tables of ID pairs
+
+ exploding_br_with_id_tables = materialise_exploded_id_tables(
+ link_type=link_type,
+ blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions,
+ db_api=self._linker._db_api,
+ splink_df_dict=self._linker._input_tables_dict,
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ )
+
+ columns_to_select = self._linker._settings_obj._columns_to_select_for_blocking
+ sql_select_expr = ", ".join(columns_to_select)
+
+ sqls = block_using_rules_sqls(
+ input_tablename_l=blocking_input_tablename_l,
+ input_tablename_r=blocking_input_tablename_r,
+ blocking_rules=self._linker._settings_obj._blocking_rules_to_generate_predictions,
+ link_type=link_type,
+ columns_to_select_sql=sql_select_expr,
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ )
+
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ repartition_after_blocking = getattr(
+ self._linker, "repartition_after_blocking", False
+ )
+
+ # repartition after blocking only exists on the SparkLinker
+ if repartition_after_blocking:
+ pipeline = pipeline.break_lineage(self._linker._db_api)
+
+ sql = compute_comparison_vector_values_sql(
+ self._linker._settings_obj._columns_to_select_for_comparison_vector_values
+ )
+ pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
+
+ sqls = predict_from_comparison_vectors_sqls_using_settings(
+ self._linker._settings_obj,
+ threshold_match_probability,
+ threshold_match_weight,
+ sql_infinity_expression=self._linker._infinity_expression,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self._linker._predict_warning()
+
+ [b.drop_materialised_id_pairs_dataframe() for b in exploding_br_with_id_tables]
+
+ return predictions
+
+ def find_matches_to_new_records(
+ self,
+ records_or_tablename: AcceptableInputTableType | str,
+ blocking_rules: list[BlockingRuleCreator | dict[str, Any] | str]
+ | BlockingRuleCreator
+ | dict[str, Any]
+ | str = [],
+ match_weight_threshold: float = -4,
+ ) -> SplinkDataFrame:
+ """Given one or more records, find records in the input dataset(s) which match
+ and return in order of the Splink prediction score.
+
+ This effectively provides a way of searching the input datasets
+ for given record(s)
+
+ Args:
+ records_or_tablename (List[dict]): Input search record(s) as list of dict,
+ or a table registered to the database.
+ blocking_rules (list, optional): Blocking rules to select
+ which records to find and score. If [], do not use a blocking
+ rule - meaning the input records will be compared to all records
+ provided to the linker when it was instantiated. Defaults to [].
+ match_weight_threshold (int, optional): Return matches with a match weight
+ above this threshold. Defaults to -4.
+
+ Examples:
+ ```py
+ linker = DuckDBLinker(df)
+ linker.load_settings("saved_settings.json")
+ # Pre-compute tf tables for any tables with
+ # term frequency adjustments
+ linker.table_management.compute_tf_table("first_name")
+ record = {'unique_id': 1,
+ 'first_name': "John",
+ 'surname': "Smith",
+ 'dob': "1971-05-24",
+ 'city': "London",
+ 'email': "john@smith.net"
+ }
+ df = linker.inference.find_matches_to_new_records(
+ [record], blocking_rules=[]
+ )
+ ```
+
+ Returns:
+ SplinkDataFrame: The pairwise comparisons.
+ """
+
+ original_blocking_rules = (
+ self._linker._settings_obj._blocking_rules_to_generate_predictions
+ )
+ original_link_type = self._linker._settings_obj._link_type
+
+ blocking_rule_list = ensure_is_list(blocking_rules)
+
+ if not isinstance(records_or_tablename, str):
+ uid = ascii_uid(8)
+ new_records_tablename = f"__splink__df_new_records_{uid}"
+ self._linker.table_management.register_table(
+ records_or_tablename, new_records_tablename, overwrite=True
+ )
+
+ else:
+ new_records_tablename = records_or_tablename
+
+ new_records_df = self._linker._db_api.table_to_splink_dataframe(
+ "__splink__df_new_records", new_records_tablename
+ )
+
+ pipeline = CTEPipeline()
+ nodes_with_tf = compute_df_concat_with_tf(self._linker, pipeline)
+
+ pipeline = CTEPipeline([nodes_with_tf, new_records_df])
+ if len(blocking_rule_list) == 0:
+ blocking_rule_list = [BlockingRule("1=1")]
+ blocking_rule_list = [blocking_rule_to_obj(br) for br in blocking_rule_list]
+ for n, br in enumerate(blocking_rule_list):
+ br.add_preceding_rules(blocking_rule_list[:n])
+
+ self._linker._settings_obj._blocking_rules_to_generate_predictions = (
+ blocking_rule_list
+ )
+
+ for tf_col in self._linker._settings_obj._term_frequency_columns:
+ tf_table_name = colname_to_tf_tablename(tf_col)
+ if tf_table_name in self._linker._intermediate_table_cache:
+ tf_table = self._linker._intermediate_table_cache.get_with_logging(
+ tf_table_name
+ )
+ pipeline.append_input_dataframe(tf_table)
+
+ sql = _join_new_table_to_df_concat_with_tf_sql(
+ self._linker, "__splink__df_new_records"
+ )
+ pipeline.enqueue_sql(sql, "__splink__df_new_records_with_tf_before_uid_fix")
+
+ pipeline = add_unique_id_and_source_dataset_cols_if_needed(
+ self._linker, new_records_df, pipeline
+ )
+ settings = self._linker._settings_obj
+ sqls = block_using_rules_sqls(
+ input_tablename_l="__splink__df_concat_with_tf",
+ input_tablename_r="__splink__df_new_records_with_tf",
+ blocking_rules=blocking_rule_list,
+ link_type="two_dataset_link_only",
+ columns_to_select_sql=", ".join(settings._columns_to_select_for_blocking),
+ source_dataset_input_column=settings.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=settings.column_info_settings.unique_id_input_column,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ sql = compute_comparison_vector_values_sql(
+ self._linker._settings_obj._columns_to_select_for_comparison_vector_values
+ )
+ pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
+
+ sqls = predict_from_comparison_vectors_sqls_using_settings(
+ self._linker._settings_obj,
+ sql_infinity_expression=self._linker._infinity_expression,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ sql = f"""
+ select * from __splink__df_predict
+ where match_weight > {match_weight_threshold}
+ """
+
+ pipeline.enqueue_sql(sql, "__splink__find_matches_predictions")
+
+ predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline, use_cache=False
+ )
+
+ self._linker._settings_obj._blocking_rules_to_generate_predictions = (
+ original_blocking_rules
+ )
+ self._linker._settings_obj._link_type = original_link_type
+
+ return predictions
+
+ def compare_two_records(
+ self, record_1: dict[str, Any], record_2: dict[str, Any]
+ ) -> SplinkDataFrame:
+ """Use the linkage model to compare and score a pairwise record comparison
+ based on the two input records provided
+
+ Args:
+ record_1 (dict): dictionary representing the first record. Columns names
+ and data types must be the same as the columns in the settings object
+ record_2 (dict): dictionary representing the second record. Columns names
+ and data types must be the same as the columns in the settings object
+
+ Examples:
+ ```py
+ linker = DuckDBLinker(df)
+ linker.load_settings("saved_settings.json")
+ linker.compare_two_records(record_left, record_right)
+ ```
+
+ Returns:
+ SplinkDataFrame: Pairwise comparison with scored prediction
+ """
+
+ cache = self._linker._intermediate_table_cache
+
+ uid = ascii_uid(8)
+ df_records_left = self._linker.table_management.register_table(
+ [record_1], f"__splink__compare_two_records_left_{uid}", overwrite=True
+ )
+ df_records_left.templated_name = "__splink__compare_two_records_left"
+
+ df_records_right = self._linker.table_management.register_table(
+ [record_2], f"__splink__compare_two_records_right_{uid}", overwrite=True
+ )
+ df_records_right.templated_name = "__splink__compare_two_records_right"
+
+ pipeline = CTEPipeline([df_records_left, df_records_right])
+
+ if "__splink__df_concat_with_tf" in cache:
+ nodes_with_tf = cache.get_with_logging("__splink__df_concat_with_tf")
+ pipeline.append_input_dataframe(nodes_with_tf)
+
+ for tf_col in self._linker._settings_obj._term_frequency_columns:
+ tf_table_name = colname_to_tf_tablename(tf_col)
+ if tf_table_name in cache:
+ tf_table = cache.get_with_logging(tf_table_name)
+ pipeline.append_input_dataframe(tf_table)
+ else:
+ if "__splink__df_concat_with_tf" not in cache:
+ logger.warning(
+ f"No term frequencies found for column {tf_col.name}.\n"
+ "To apply term frequency adjustments, you need to register"
+ " a lookup using "
+ "`linker.table_management.register_term_frequency_lookup`."
+ )
+
+ sql_join_tf = _join_new_table_to_df_concat_with_tf_sql(
+ self._linker, "__splink__compare_two_records_left"
+ )
+
+ pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_left_with_tf")
+
+ sql_join_tf = _join_new_table_to_df_concat_with_tf_sql(
+ self._linker, "__splink__compare_two_records_right"
+ )
+
+ pipeline.enqueue_sql(sql_join_tf, "__splink__compare_two_records_right_with_tf")
+
+ sqls = block_using_rules_sqls(
+ input_tablename_l="__splink__compare_two_records_left_with_tf",
+ input_tablename_r="__splink__compare_two_records_right_with_tf",
+ blocking_rules=[BlockingRule("1=1")],
+ link_type=self._linker._settings_obj._link_type,
+ columns_to_select_sql=", ".join(
+ self._linker._settings_obj._columns_to_select_for_blocking
+ ),
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ sql = compute_comparison_vector_values_sql(
+ self._linker._settings_obj._columns_to_select_for_comparison_vector_values
+ )
+ pipeline.enqueue_sql(sql, "__splink__df_comparison_vectors")
+
+ sqls = predict_from_comparison_vectors_sqls_using_settings(
+ self._linker._settings_obj,
+ sql_infinity_expression=self._linker._infinity_expression,
+ )
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ predictions = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline, use_cache=False
+ )
+
+ return predictions
diff --git a/splink/internals/linker_components/misc.py b/splink/internals/linker_components/misc.py
new file mode 100644
index 0000000000..7cda97c9c3
--- /dev/null
+++ b/splink/internals/linker_components/misc.py
@@ -0,0 +1,85 @@
+from __future__ import annotations
+
+import json
+import os
+from typing import TYPE_CHECKING, Any
+
+from splink.internals.pipeline import CTEPipeline
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+
+class LinkerMisc:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def save_model_to_json(
+ self, out_path: str | None = None, overwrite: bool = False
+ ) -> dict[str, Any]:
+ """Save the configuration and parameters of the linkage model to a `.json` file.
+
+ The model can later be loaded back in using `linker.load_model()`.
+ The settings dict is also returned in case you want to save it a different way.
+
+ Examples:
+ ```py
+ linker.save_model_to_json("my_settings.json", overwrite=True)
+ ```
+ Args:
+ out_path (str, optional): File path for json file. If None, don't save to
+ file. Defaults to None.
+ overwrite (bool, optional): Overwrite if already exists? Defaults to False.
+
+ Returns:
+ dict: The settings as a dictionary.
+ """
+ model_dict = self._linker._settings_obj.as_dict()
+ if out_path:
+ if os.path.isfile(out_path) and not overwrite:
+ raise ValueError(
+ f"The path {out_path} already exists. Please provide a different "
+ "path or set overwrite=True"
+ )
+ with open(out_path, "w", encoding="utf-8") as f:
+ json.dump(model_dict, f, indent=4)
+ return model_dict
+
+ def query_sql(self, sql, output_type="pandas"):
+ """
+ Run a SQL query against your backend database and return
+ the resulting output.
+
+ Examples:
+ ```py
+ linker = Linker(df, settings, db_api)
+ df_predict = linker.predict()
+ linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
+ ```
+
+ Args:
+ sql (str): The SQL to be queried.
+ output_type (str): One of splink_df/splinkdf or pandas.
+ This determines the type of table that your results are output in.
+ """
+
+ output_tablename_templated = "__splink__df_sql_query"
+
+ pipeline = CTEPipeline()
+ pipeline.enqueue_sql(sql, output_tablename_templated)
+ splink_dataframe = self._linker._db_api.sql_pipeline_to_splink_dataframe(
+ pipeline, use_cache=False
+ )
+
+ if output_type in ("splink_df", "splinkdf"):
+ return splink_dataframe
+ elif output_type == "pandas":
+ out = splink_dataframe.as_pandas_dataframe()
+ # If pandas, drop the table to cleanup the db
+ splink_dataframe.drop_table_from_database_and_remove_from_cache()
+ return out
+ else:
+ raise ValueError(
+ f"output_type '{output_type}' is not supported.",
+ "Must be one of 'splink_df'/'splinkdf' or 'pandas'",
+ )
diff --git a/splink/internals/linker_components/table_management.py b/splink/internals/linker_components/table_management.py
new file mode 100644
index 0000000000..5e5dcdb553
--- /dev/null
+++ b/splink/internals/linker_components/table_management.py
@@ -0,0 +1,206 @@
+from __future__ import annotations
+
+import logging
+from typing import TYPE_CHECKING
+
+from splink.internals.database_api import AcceptableInputTableType
+from splink.internals.input_column import InputColumn
+from splink.internals.misc import (
+ ascii_uid,
+)
+from splink.internals.pipeline import CTEPipeline
+from splink.internals.splink_dataframe import SplinkDataFrame
+from splink.internals.term_frequencies import (
+ colname_to_tf_tablename,
+ term_frequencies_for_single_column_sql,
+)
+from splink.internals.vertically_concatenate import (
+ enqueue_df_concat,
+)
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+logger = logging.getLogger(__name__)
+
+
+class LinkerTableManagement:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def compute_tf_table(self, column_name: str) -> SplinkDataFrame:
+ """Compute a term frequency table for a given column and persist to the database
+
+ This method is useful if you want to pre-compute term frequency tables e.g.
+ so that real time linkage executes faster, or so that you can estimate
+ various models without having to recompute term frequency tables each time
+
+ Examples:
+
+ Real time linkage
+ ```py
+ linker = Linker(df, db_api)
+ linker.load_settings("saved_settings.json")
+ linker.table_management.compute_tf_table("surname")
+ linker.compare_two_records(record_left, record_right)
+ ```
+ Pre-computed term frequency tables
+ ```py
+ linker = Linker(df, db_api)
+ df_first_name_tf = linker.table_management.compute_tf_table("first_name")
+ df_first_name_tf.write.parquet("folder/first_name_tf")
+ >>>
+ # On subsequent data linking job, read this table rather than recompute
+ df_first_name_tf = pd.read_parquet("folder/first_name_tf")
+ df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name")
+ ```
+
+
+ Args:
+ column_name (str): The column name in the input table
+
+ Returns:
+ SplinkDataFrame: The resultant table as a splink data frame
+ """
+
+ input_col = InputColumn(
+ column_name,
+ column_info_settings=self._linker._settings_obj.column_info_settings,
+ sql_dialect=self._linker._settings_obj._sql_dialect,
+ )
+ tf_tablename = colname_to_tf_tablename(input_col)
+ cache = self._linker._intermediate_table_cache
+
+ if tf_tablename in cache:
+ tf_df = cache.get_with_logging(tf_tablename)
+ else:
+ pipeline = CTEPipeline()
+ pipeline = enqueue_df_concat(self._linker, pipeline)
+ sql = term_frequencies_for_single_column_sql(input_col)
+ pipeline.enqueue_sql(sql, tf_tablename)
+ tf_df = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self._linker._intermediate_table_cache[tf_tablename] = tf_df
+
+ return tf_df
+
+ def invalidate_cache(self):
+ """Invalidate the Splink cache. Any previously-computed tables
+ will be recomputed.
+ This is useful, for example, if the input data tables have changed.
+ """
+
+ # Nothing to delete
+ if len(self._linker._intermediate_table_cache) == 0:
+ return
+
+ # Before Splink executes a SQL command, it checks the cache to see
+ # whether a table already exists with the name of the output table
+
+ # This function has the effect of changing the names of the output tables
+ # to include a different unique id
+
+ # As a result, any previously cached tables will not be found
+ self._linker._cache_uid = ascii_uid(8)
+
+ # Drop any existing splink tables from the database
+ # Note, this is not actually necessary, it's just good housekeeping
+ self.delete_tables_created_by_splink_from_db()
+
+ # As a result, any previously cached tables will not be found
+ self._linker._intermediate_table_cache.invalidate_cache()
+
+ def register_table_input_nodes_concat_with_tf(self, input_data, overwrite=False):
+ """Register a pre-computed version of the input_nodes_concat_with_tf table that
+ you want to re-use e.g. that you created in a previous run
+
+ This method allowed you to register this table in the Splink cache
+ so it will be used rather than Splink computing this table anew.
+
+ Args:
+ input_data: The data you wish to register. This can be either a dictionary,
+ pandas dataframe, pyarrow table or a spark dataframe.
+ overwrite (bool): Overwrite the table in the underlying database if it
+ exists
+ """
+
+ table_name_physical = "__splink__df_concat_with_tf_" + self._linker._cache_uid
+ splink_dataframe = self.register_table(
+ input_data, table_name_physical, overwrite=overwrite
+ )
+ splink_dataframe.templated_name = "__splink__df_concat_with_tf"
+
+ self._linker._intermediate_table_cache["__splink__df_concat_with_tf"] = (
+ splink_dataframe
+ )
+ return splink_dataframe
+
+ def register_table_predict(self, input_data, overwrite=False):
+ table_name_physical = "__splink__df_predict_" + self._linker._cache_uid
+ splink_dataframe = self.register_table(
+ input_data, table_name_physical, overwrite=overwrite
+ )
+ self._linker._intermediate_table_cache["__splink__df_predict"] = (
+ splink_dataframe
+ )
+ splink_dataframe.templated_name = "__splink__df_predict"
+ return splink_dataframe
+
+ def register_term_frequency_lookup(self, input_data, col_name, overwrite=False):
+ input_col = InputColumn(
+ col_name,
+ column_info_settings=self._linker._settings_obj.column_info_settings,
+ sql_dialect=self._linker._settings_obj._sql_dialect,
+ )
+ table_name_templated = colname_to_tf_tablename(input_col)
+ table_name_physical = f"{table_name_templated}_{self._linker._cache_uid}"
+ splink_dataframe = self.register_table(
+ input_data, table_name_physical, overwrite=overwrite
+ )
+ self._linker._intermediate_table_cache[table_name_templated] = splink_dataframe
+ splink_dataframe.templated_name = table_name_templated
+ return splink_dataframe
+
+ def register_labels_table(self, input_data, overwrite=False):
+ table_name_physical = "__splink__df_labels_" + ascii_uid(8)
+ splink_dataframe = self.register_table(
+ input_data, table_name_physical, overwrite=overwrite
+ )
+ splink_dataframe.templated_name = "__splink__df_labels"
+ return splink_dataframe
+
+ def delete_tables_created_by_splink_from_db(self):
+ self._linker._db_api.delete_tables_created_by_splink_from_db()
+
+ def register_table(
+ self,
+ input_table: AcceptableInputTableType,
+ table_name: str,
+ overwrite: bool = False,
+ ) -> SplinkDataFrame:
+ """
+ Register a table to your backend database, to be used in one of the
+ splink methods, or simply to allow querying.
+
+ Tables can be of type: dictionary, record level dictionary,
+ pandas dataframe, pyarrow table and in the spark case, a spark df.
+
+ Examples:
+ ```py
+ test_dict = {"a": [666,777,888],"b": [4,5,6]}
+ linker.table_management.register_table(test_dict, "test_dict")
+ linker.query_sql("select * from test_dict")
+ ```
+
+ Args:
+ input: The data you wish to register. This can be either a dictionary,
+ pandas dataframe, pyarrow table or a spark dataframe.
+ table_name (str): The name you wish to assign to the table.
+ overwrite (bool): Overwrite the table in the underlying database if it
+ exists
+
+ Returns:
+ SplinkDataFrame: An abstraction representing the table created by the sql
+ pipeline
+ """
+
+ return self._linker._db_api.register_table(input_table, table_name, overwrite)
diff --git a/splink/internals/linker_components/training.py b/splink/internals/linker_components/training.py
new file mode 100644
index 0000000000..069450d52c
--- /dev/null
+++ b/splink/internals/linker_components/training.py
@@ -0,0 +1,444 @@
+from __future__ import annotations
+
+import logging
+from typing import TYPE_CHECKING, List, Union
+
+from splink.internals.blocking import (
+ BlockingRule,
+ SaltedBlockingRule,
+)
+from splink.internals.blocking_analysis import (
+ _cumulative_comparisons_to_be_scored_from_blocking_rules,
+)
+from splink.internals.blocking_rule_creator import BlockingRuleCreator
+from splink.internals.blocking_rule_creator_utils import to_blocking_rule_creator
+from splink.internals.comparison import Comparison
+from splink.internals.comparison_level import ComparisonLevel
+from splink.internals.em_training_session import EMTrainingSession
+from splink.internals.estimate_u import estimate_u_values
+from splink.internals.m_from_labels import estimate_m_from_pairwise_labels
+from splink.internals.m_training import estimate_m_values_from_label_column
+from splink.internals.misc import (
+ ensure_is_iterable,
+)
+from splink.internals.pipeline import CTEPipeline
+from splink.internals.vertically_concatenate import (
+ compute_df_concat_with_tf,
+)
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+logger = logging.getLogger(__name__)
+
+
+class LinkerTraining:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def estimate_probability_two_random_records_match(
+ self,
+ deterministic_matching_rules: List[Union[str, BlockingRuleCreator]],
+ recall: float,
+ max_rows_limit: int = int(1e9),
+ ) -> None:
+ """Estimate the model parameter `probability_two_random_records_match` using
+ a direct estimation approach.
+
+ See [here](https://github.com/moj-analytical-services/splink/issues/462)
+ for discussion of methodology
+
+ Args:
+ deterministic_matching_rules (list): A list of deterministic matching
+ rules that should be designed to admit very few (none if possible)
+ false positives
+ recall (float): A guess at the recall the deterministic matching rules
+ will attain. i.e. what proportion of true matches will be recovered
+ by these deterministic rules
+ """
+
+ if (recall > 1) or (recall <= 0):
+ raise ValueError(
+ f"Estimated recall must be greater than 0 "
+ f"and no more than 1. Supplied value {recall}."
+ ) from None
+
+ deterministic_matching_rules = ensure_is_iterable(deterministic_matching_rules)
+ blocking_rules: List[BlockingRule] = []
+ for br in deterministic_matching_rules:
+ blocking_rules.append(
+ to_blocking_rule_creator(br).get_blocking_rule(
+ self._linker._db_api.sql_dialect.name
+ )
+ )
+
+ pd_df = _cumulative_comparisons_to_be_scored_from_blocking_rules(
+ splink_df_dict=self._linker._input_tables_dict,
+ blocking_rules=blocking_rules,
+ link_type=self._linker._settings_obj._link_type,
+ db_api=self._linker._db_api,
+ max_rows_limit=max_rows_limit,
+ unique_id_input_column=self._linker._settings_obj.column_info_settings.unique_id_input_column,
+ source_dataset_input_column=self._linker._settings_obj.column_info_settings.source_dataset_input_column,
+ )
+
+ records = pd_df.to_dict(orient="records")
+
+ summary_record = records[-1]
+ num_observed_matches = summary_record["cumulative_rows"]
+ num_total_comparisons = summary_record["cartesian"]
+
+ if num_observed_matches > num_total_comparisons * recall:
+ raise ValueError(
+ f"Deterministic matching rules led to more "
+ f"observed matches than is consistent with supplied recall. "
+ f"With these rules, recall must be at least "
+ f"{num_observed_matches/num_total_comparisons:,.2f}."
+ )
+
+ num_expected_matches = num_observed_matches / recall
+ prob = num_expected_matches / num_total_comparisons
+
+ # warn about boundary values, as these will usually be in error
+ if num_observed_matches == 0:
+ logger.warning(
+ f"WARNING: Deterministic matching rules led to no observed matches! "
+ f"This means that no possible record pairs are matches, "
+ f"and no records are linked to one another.\n"
+ f"If this is truly the case then you do not need "
+ f"to run the linkage model.\n"
+ f"However this is usually in error; "
+ f"expected rules to have recall of {100*recall:,.0f}%. "
+ f"Consider revising rules as they may have an error."
+ )
+ if prob == 1:
+ logger.warning(
+ "WARNING: Probability two random records match is estimated to be 1.\n"
+ "This means that all possible record pairs are matches, "
+ "and all records are linked to one another.\n"
+ "If this is truly the case then you do not need "
+ "to run the linkage model.\n"
+ "However, it is more likely that this estimate is faulty. "
+ "Perhaps your deterministic matching rules include "
+ "too many false positives?"
+ )
+
+ self._linker._settings_obj._probability_two_random_records_match = prob
+
+ reciprocal_prob = "Infinity" if prob == 0 else f"{1/prob:,.2f}"
+ logger.info(
+ f"Probability two random records match is estimated to be {prob:.3g}.\n"
+ f"This means that amongst all possible pairwise record comparisons, one in "
+ f"{reciprocal_prob} are expected to match. "
+ f"With {num_total_comparisons:,.0f} total"
+ " possible comparisons, we expect a total of around "
+ f"{num_expected_matches:,.2f} matching pairs"
+ )
+
+ def estimate_u_using_random_sampling(
+ self, max_pairs: float = 1e6, seed: int = None
+ ) -> None:
+ """Estimate the u parameters of the linkage model using random sampling.
+
+ The u parameters represent the proportion of record comparisons that fall
+ into each comparison level amongst truly non-matching records.
+
+ This procedure takes a sample of the data and generates the cartesian
+ product of pairwise record comparisons amongst the sampled records.
+ The validity of the u values rests on the assumption that the resultant
+ pairwise comparisons are non-matches (or at least, they are very unlikely to be
+ matches). For large datasets, this is typically true.
+
+ The results of estimate_u_using_random_sampling, and therefore an entire splink
+ model, can be made reproducible by setting the seed parameter. Setting the seed
+ will have performance implications as additional processing is required.
+
+ Args:
+ max_pairs (int): The maximum number of pairwise record comparisons to
+ sample. Larger will give more accurate estimates
+ but lead to longer runtimes. In our experience at least 1e9 (one billion)
+ gives best results but can take a long time to compute. 1e7 (ten million)
+ is often adequate whilst testing different model specifications, before
+ the final model is estimated.
+ seed (int): Seed for random sampling. Assign to get reproducible u
+ probabilities. Note, seed for random sampling is only supported for
+ DuckDB and Spark, for Athena and SQLite set to None.
+
+ Examples:
+ ```py
+ linker.estimate_u_using_random_sampling(1e8)
+ ```
+
+ Returns:
+ None: Updates the estimated u parameters within the linker object
+ and returns nothing.
+ """
+ if max_pairs == 1e6:
+ # keep default value small so as not to take too long, but warn users
+ logger.warning(
+ "You are using the default value for `max_pairs`, "
+ "which may be too small and thus lead to inaccurate estimates for your "
+ "model's u-parameters. Consider increasing to 1e8 or 1e9, which will "
+ "result in more accurate estimates, but with a longer run time."
+ )
+
+ estimate_u_values(self._linker, max_pairs, seed)
+ self._linker._populate_m_u_from_trained_values()
+
+ self._linker._settings_obj._columns_without_estimated_parameters_message()
+
+ def estimate_parameters_using_expectation_maximisation(
+ self,
+ blocking_rule: Union[str, BlockingRuleCreator],
+ comparisons_to_deactivate: list[Comparison] = None,
+ comparison_levels_to_reverse_blocking_rule: list[ComparisonLevel] = None,
+ estimate_without_term_frequencies: bool = False,
+ fix_probability_two_random_records_match: bool = False,
+ fix_m_probabilities: bool = False,
+ fix_u_probabilities: bool = True,
+ populate_probability_two_random_records_match_from_trained_values: bool = False,
+ ) -> EMTrainingSession:
+ """Estimate the parameters of the linkage model using expectation maximisation.
+
+ By default, the m probabilities are estimated, but not the u probabilities,
+ because good estimates for the u probabilities can be obtained from
+ `linker.estimate_u_using_random_sampling()`. You can change this by setting
+ `fix_u_probabilities` to False.
+
+ The blocking rule provided is used to generate pairwise record comparisons.
+ Usually, this should be a blocking rule that results in a dataframe where
+ matches are between about 1% and 99% of the comparisons.
+
+ By default, m parameters are estimated for all comparisons except those which
+ are included in the blocking rule.
+
+ For example, if the blocking rule is `l.first_name = r.first_name`, then
+ parameter esimates will be made for all comparison except those which use
+ `first_name` in their sql_condition
+
+ By default, the probability two random records match is estimated for the
+ blocked data, and then the m and u parameters for the columns specified in the
+ blocking rules are used to estiamte the global probability two random records
+ match.
+
+ To control which comparisons should have their parameter estimated, and the
+ process of 'reversing out' the global probability two random records match, the
+ user may specify `comparisons_to_deactivate` and
+ `comparison_levels_to_reverse_blocking_rule`. This is useful, for example
+ if you block on the dmetaphone of a column but match on the original column.
+
+ Examples:
+ Default behaviour
+ ```py
+ br_training = "l.first_name = r.first_name and l.dob = r.dob"
+ linker.training.estimate_parameters_using_expectation_maximisation(br_training)
+ ```
+ Specify which comparisons to deactivate
+ ```py
+ br_training = "l.dmeta_first_name = r.dmeta_first_name"
+ settings_obj = linker._settings_obj
+ comp = settings_obj._get_comparison_by_output_column_name("first_name")
+ dmeta_level = comp._get_comparison_level_by_comparison_vector_value(1)
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ br_training,
+ comparisons_to_deactivate=["first_name"],
+ comparison_levels_to_reverse_blocking_rule=[dmeta_level],
+ )
+ ```
+
+ Args:
+ blocking_rule (BlockingRuleCreator | str): The blocking rule used to
+ generate pairwise record comparisons.
+ comparisons_to_deactivate (list, optional): By default, splink will
+ analyse the blocking rule provided and estimate the m parameters for
+ all comaprisons except those included in the blocking rule. If
+ comparisons_to_deactivate are provided, spink will instead
+ estimate m parameters for all comparison except those specified
+ in the comparisons_to_deactivate list. This list can either contain
+ the output_column_name of the Comparison as a string, or Comparison
+ objects. Defaults to None.
+ comparison_levels_to_reverse_blocking_rule (list, optional): By default,
+ splink will analyse the blocking rule provided and adjust the
+ global probability two random records match to account for the matches
+ specified in the blocking rule. If provided, this argument will overrule
+ this default behaviour. The user must provide a list of ComparisonLevel
+ objects. Defaults to None.
+ estimate_without_term_frequencies (bool, optional): If True, the iterations
+ of the EM algorithm ignore any term frequency adjustments and only
+ depend on the comparison vectors. This allows the EM algorithm to run
+ much faster, but the estimation of the parameters will change slightly.
+ fix_probability_two_random_records_match (bool, optional): If True, do not
+ update the probability two random records match after each iteration.
+ Defaults to False.
+ fix_m_probabilities (bool, optional): If True, do not update the m
+ probabilities after each iteration. Defaults to False.
+ fix_u_probabilities (bool, optional): If True, do not update the u
+ probabilities after each iteration. Defaults to True.
+ populate_probability_two_random_records_match_from_trained_values
+ (bool, optional): If True, derive this parameter from
+ the blocked value. Defaults to False.
+
+ Examples:
+ ```py
+ blocking_rule = "l.first_name = r.first_name and l.dob = r.dob"
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ ```
+ or using pre-built rules
+ ```py
+ from splink.duckdb.blocking_rule_library import block_on
+ blocking_rule = block_on(["first_name", "surname"])
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ ```
+
+ Returns:
+ EMTrainingSession: An object containing information about the training
+ session such as how parameters changed during the iteration history
+
+ """
+ # Ensure this has been run on the main linker so that it's in the cache
+ # to be used by the training linkers
+ pipeline = CTEPipeline()
+ compute_df_concat_with_tf(self._linker, pipeline)
+
+ blocking_rule_obj = to_blocking_rule_creator(blocking_rule).get_blocking_rule(
+ self._linker._sql_dialect
+ )
+
+ if type(blocking_rule_obj) not in (BlockingRule, SaltedBlockingRule):
+ # TODO: seems a mismatch between message and type re: SaltedBlockingRule
+ raise TypeError(
+ "EM blocking rules must be plain blocking rules, not "
+ "salted or exploding blocking rules"
+ )
+
+ if comparisons_to_deactivate:
+ # If user provided a string, convert to Comparison object
+ comparisons_to_deactivate = [
+ (
+ self._linker._settings_obj._get_comparison_by_output_column_name(n)
+ if isinstance(n, str)
+ else n
+ )
+ for n in comparisons_to_deactivate
+ ]
+ if comparison_levels_to_reverse_blocking_rule is None:
+ logger.warning(
+ "\nWARNING: \n"
+ "You have provided comparisons_to_deactivate but not "
+ "comparison_levels_to_reverse_blocking_rule.\n"
+ "If comparisons_to_deactivate is provided, then "
+ "you usually need to provide corresponding "
+ "comparison_levels_to_reverse_blocking_rule "
+ "because each comparison to deactivate is effectively treated "
+ "as an exact match."
+ )
+
+ em_training_session = EMTrainingSession(
+ self._linker,
+ db_api=self._linker._db_api,
+ blocking_rule_for_training=blocking_rule_obj,
+ core_model_settings=self._linker._settings_obj.core_model_settings,
+ training_settings=self._linker._settings_obj.training_settings,
+ unique_id_input_columns=self._linker._settings_obj.column_info_settings.unique_id_input_columns,
+ fix_u_probabilities=fix_u_probabilities,
+ fix_m_probabilities=fix_m_probabilities,
+ fix_probability_two_random_records_match=fix_probability_two_random_records_match, # noqa 501
+ comparisons_to_deactivate=comparisons_to_deactivate,
+ comparison_levels_to_reverse_blocking_rule=comparison_levels_to_reverse_blocking_rule, # noqa 501
+ estimate_without_term_frequencies=estimate_without_term_frequencies,
+ )
+
+ core_model_settings = em_training_session._train()
+ # overwrite with the newly trained values in our linker settings
+ self._linker._settings_obj.core_model_settings = core_model_settings
+ self._linker._em_training_sessions.append(em_training_session)
+
+ self._linker._populate_m_u_from_trained_values()
+
+ if populate_probability_two_random_records_match_from_trained_values:
+ self._linker._populate_probability_two_random_records_match_from_trained_values()
+
+ self._linker._settings_obj._columns_without_estimated_parameters_message()
+
+ return em_training_session
+
+ def estimate_m_from_pairwise_labels(self, labels_splinkdataframe_or_table_name):
+ """Estimate the m parameters of the linkage model from a dataframe of pairwise
+ labels.
+
+ The table of labels should be in the following format, and should
+ be registered with your database:
+ |source_dataset_l|unique_id_l|source_dataset_r|unique_id_r|
+ |----------------|-----------|----------------|-----------|
+ |df_1 |1 |df_2 |2 |
+ |df_1 |1 |df_2 |3 |
+
+ Note that `source_dataset` and `unique_id` should correspond to the
+ values specified in the settings dict, and the `input_table_aliases`
+ passed to the `linker` object. Note that at the moment, this method does
+ not respect values in a `clerical_match_score` column. If provided, these
+ are ignored and it is assumed that every row in the table of labels is a score
+ of 1, i.e. a perfect match.
+
+ Args:
+ labels_splinkdataframe_or_table_name (str): Name of table containing labels
+ in the database or SplinkDataframe
+
+ Examples:
+ ```py
+ pairwise_labels = pd.read_csv("./data/pairwise_labels_to_estimate_m.csv")
+ linker.table_management.register_table(
+ pairwise_labels, "labels", overwrite=True
+ )
+ linker.estimate_m_from_pairwise_labels("labels")
+ ```
+ """
+ labels_tablename = self._linker._get_labels_tablename_from_input(
+ labels_splinkdataframe_or_table_name
+ )
+ estimate_m_from_pairwise_labels(self._linker, labels_tablename)
+
+ def estimate_m_from_label_column(self, label_colname: str) -> None:
+ """Estimate the m parameters of the linkage model from a label (ground truth)
+ column in the input dataframe(s).
+
+ The m parameters represent the proportion of record comparisons that fall
+ into each comparison level amongst truly matching records.
+
+ The ground truth column is used to generate pairwise record comparisons
+ which are then assumed to be matches.
+
+ For example, if the entity being matched is persons, and your input dataset(s)
+ contain social security number, this could be used to estimate the m values
+ for the model.
+
+ Note that this column does not need to be fully populated. A common case is
+ where a unique identifier such as social security number is only partially
+ populated.
+
+ Args:
+ label_colname (str): The name of the column containing the ground truth
+ label in the input data.
+
+ Examples:
+ ```py
+ linker.training.estimate_m_from_label_column("social_security_number")
+ ```
+
+ Returns:
+ Updates the estimated m parameters within the linker object
+ and returns nothing.
+ """
+
+ # Ensure this has been run on the main linker so that it can be used by
+ # training linker when it checks the cache
+ pipeline = CTEPipeline()
+ compute_df_concat_with_tf(self._linker, pipeline)
+
+ estimate_m_values_from_label_column(
+ self._linker,
+ label_colname,
+ )
+ self._linker._populate_m_u_from_trained_values()
+
+ self._linker._settings_obj._columns_without_estimated_parameters_message()
diff --git a/splink/internals/linker_components/visualisations.py b/splink/internals/linker_components/visualisations.py
new file mode 100644
index 0000000000..1ea2604f6d
--- /dev/null
+++ b/splink/internals/linker_components/visualisations.py
@@ -0,0 +1,360 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any
+
+from splink.internals.charts import (
+ ChartReturnType,
+ match_weights_histogram,
+ parameter_estimate_comparisons,
+ waterfall_chart,
+)
+from splink.internals.cluster_studio import (
+ SamplingMethods,
+ render_splink_cluster_studio_html,
+)
+from splink.internals.comparison_vector_distribution import (
+ comparison_vector_distribution_sql,
+)
+from splink.internals.match_weights_histogram import histogram_data
+from splink.internals.misc import ensure_is_list
+from splink.internals.pipeline import CTEPipeline
+from splink.internals.splink_comparison_viewer import (
+ comparison_viewer_table_sqls,
+ render_splink_comparison_viewer_html,
+)
+from splink.internals.splink_dataframe import SplinkDataFrame
+from splink.internals.term_frequencies import (
+ tf_adjustment_chart,
+)
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
+
+
+class LinkerVisualisations:
+ def __init__(self, linker: Linker):
+ self._linker = linker
+
+ def match_weights_chart(self):
+ """Display a chart of the (partial) match weights of the linkage model
+
+ Examples:
+ ```py
+ linker.match_weights_chart()
+ ```
+ To view offline (if you don't have an internet connection):
+ ```py
+ from splink.charts import save_offline_chart
+ c = linker.match_weights_chart()
+ save_offline_chart(c.to_dict(), "test_chart.html")
+ ```
+ View resultant html file in Jupyter (or just load it in your browser)
+ ```py
+ from IPython.display import IFrame
+ IFrame(src="./test_chart.html", width=1000, height=500)
+ ```
+
+ Returns:
+ altair.Chart: An altair chart
+ """
+ return self._linker._settings_obj.match_weights_chart()
+
+ def m_u_parameters_chart(self):
+ """Display a chart of the m and u parameters of the linkage model
+
+ Examples:
+ ```py
+ linker.m_u_parameters_chart()
+ ```
+ To view offline (if you don't have an internet connection):
+ ```py
+ from splink.charts import save_offline_chart
+ c = linker.match_weights_chart()
+ save_offline_chart(c.to_dict(), "test_chart.html")
+ ```
+ View resultant html file in Jupyter (or just load it in your browser)
+ ```py
+ from IPython.display import IFrame
+ IFrame(src="./test_chart.html", width=1000, height=500)
+ ```
+
+ Returns:
+ altair.Chart: An altair chart
+ """
+
+ return self._linker._settings_obj.m_u_parameters_chart()
+
+ def match_weights_histogram(
+ self,
+ df_predict: SplinkDataFrame,
+ target_bins: int = 30,
+ width: int = 600,
+ height: int = 250,
+ ) -> ChartReturnType:
+ """Generate a histogram that shows the distribution of match weights in
+ `df_predict`
+
+ Args:
+ df_predict (SplinkDataFrame): Output of `linker.predict()`
+ target_bins (int, optional): Target number of bins in histogram. Defaults to
+ 30.
+ width (int, optional): Width of output. Defaults to 600.
+ height (int, optional): Height of output chart. Defaults to 250.
+
+
+ Returns:
+ altair.Chart: An altair chart
+
+ """
+ df = histogram_data(self._linker, df_predict, target_bins)
+ recs = df.as_record_dict()
+ return match_weights_histogram(recs, width=width, height=height)
+
+ def parameter_estimate_comparisons_chart(
+ self, include_m: bool = True, include_u: bool = False
+ ) -> ChartReturnType:
+ """Show a chart that shows how parameter estimates have differed across
+ the different estimation methods you have used.
+
+ For example, if you have run two EM estimation sessions, blocking on
+ different variables, and both result in parameter estimates for
+ first_name, this chart will enable easy comparison of the different
+ estimates
+
+ Args:
+ include_m (bool, optional): Show different estimates of m values. Defaults
+ to True.
+ include_u (bool, optional): Show different estimates of u values. Defaults
+ to False.
+
+ """
+ records = self._linker._settings_obj._parameter_estimates_as_records
+
+ to_retain = []
+ if include_m:
+ to_retain.append("m")
+ if include_u:
+ to_retain.append("u")
+
+ records = [r for r in records if r["m_or_u"] in to_retain]
+
+ return parameter_estimate_comparisons(records)
+
+ def tf_adjustment_chart(
+ self,
+ output_column_name: str,
+ n_most_freq: int = 10,
+ n_least_freq: int = 10,
+ vals_to_include: str | list[str] | None = None,
+ as_dict: bool = False,
+ ) -> ChartReturnType:
+ """Display a chart showing the impact of term frequency adjustments on a
+ specific comparison level.
+ Each value
+
+ Args:
+ output_column_name (str): Name of an output column for which term frequency
+ adjustment has been applied.
+ n_most_freq (int, optional): Number of most frequent values to show. If this
+ or `n_least_freq` set to None, all values will be shown.
+ Default to 10.
+ n_least_freq (int, optional): Number of least frequent values to show. If
+ this or `n_most_freq` set to None, all values will be shown.
+ Default to 10.
+ vals_to_include (list, optional): Specific values for which to show term
+ sfrequency adjustments.
+ Defaults to None.
+
+ Returns:
+ altair.Chart: An altair chart
+ """
+
+ # Comparisons with TF adjustments
+ tf_comparisons = [
+ c.output_column_name
+ for c in self._linker._settings_obj.comparisons
+ if any([cl._has_tf_adjustments for cl in c.comparison_levels])
+ ]
+ if output_column_name not in tf_comparisons:
+ raise ValueError(
+ f"{output_column_name} is not a valid comparison column, or does not"
+ f" have term frequency adjustment activated"
+ )
+
+ vals_to_include = (
+ [] if vals_to_include is None else ensure_is_list(vals_to_include)
+ )
+
+ return tf_adjustment_chart(
+ self._linker,
+ output_column_name,
+ n_most_freq,
+ n_least_freq,
+ vals_to_include,
+ as_dict,
+ )
+
+ def waterfall_chart(
+ self,
+ records: list[dict[str, Any]],
+ filter_nulls: bool = True,
+ remove_sensitive_data: bool = False,
+ ) -> ChartReturnType:
+ """Visualise how the final match weight is computed for the provided pairwise
+ record comparisons.
+
+ Records must be provided as a list of dictionaries. This would usually be
+ obtained from `df.as_record_dict(limit=n)` where `df` is a SplinkDataFrame.
+
+ Examples:
+ ```py
+ df = linker.predict(threshold_match_weight=2)
+ records = df.as_record_dict(limit=10)
+ linker.waterfall_chart(records)
+ ```
+
+ Args:
+ records (List[dict]): Usually be obtained from `df.as_record_dict(limit=n)`
+ where `df` is a SplinkDataFrame.
+ filter_nulls (bool, optional): Whether the visualiation shows null
+ comparisons, which have no effect on final match weight. Defaults to
+ True.
+ remove_sensitive_data (bool, optional): When True, The waterfall chart will
+ contain match weights only, and all of the (potentially sensitive) data
+ from the input tables will be removed prior to the chart being created.
+
+
+ Returns:
+ altair.Chart: An altair chart
+
+ """
+ self._linker._raise_error_if_necessary_waterfall_columns_not_computed()
+
+ return waterfall_chart(
+ records, self._linker._settings_obj, filter_nulls, remove_sensitive_data
+ )
+
+ def comparison_viewer_dashboard(
+ self,
+ df_predict: SplinkDataFrame,
+ out_path: str,
+ overwrite: bool = False,
+ num_example_rows: int = 2,
+ return_html_as_string: bool = False,
+ ) -> str | None:
+ """Generate an interactive html visualization of the linker's predictions and
+ save to `out_path`. For more information see
+ [this video](https://www.youtube.com/watch?v=DNvCMqjipis)
+
+
+ Args:
+ df_predict (SplinkDataFrame): The outputs of `linker.predict()`
+ out_path (str): The path (including filename) to save the html file to.
+ overwrite (bool, optional): Overwrite the html file if it already exists?
+ Defaults to False.
+ num_example_rows (int, optional): Number of example rows per comparison
+ vector. Defaults to 2.
+ return_html_as_string: If True, return the html as a string
+
+ Examples:
+ ```py
+ df_predictions = linker.predict()
+ linker.comparison_viewer_dashboard(df_predictions, "scv.html", True, 2)
+ ```
+
+ Optionally, in Jupyter, you can display the results inline
+ Otherwise you can just load the html file in your browser
+ ```py
+ from IPython.display import IFrame
+ IFrame(src="./scv.html", width="100%", height=1200)
+ ```
+
+ """
+ self._linker._raise_error_if_necessary_waterfall_columns_not_computed()
+ pipeline = CTEPipeline([df_predict])
+ sql = comparison_vector_distribution_sql(self._linker)
+ pipeline.enqueue_sql(sql, "__splink__df_comparison_vector_distribution")
+
+ sqls = comparison_viewer_table_sqls(self._linker, num_example_rows)
+ pipeline.enqueue_list_of_sqls(sqls)
+
+ df = self._linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
+
+ rendered = render_splink_comparison_viewer_html(
+ df.as_record_dict(),
+ self._linker._settings_obj._as_completed_dict(),
+ out_path,
+ overwrite,
+ )
+ if return_html_as_string:
+ return rendered
+ return None
+
+ def cluster_studio_dashboard(
+ self,
+ df_predict: SplinkDataFrame,
+ df_clustered: SplinkDataFrame,
+ out_path: str,
+ sampling_method: SamplingMethods = "random",
+ sample_size: int = 10,
+ cluster_ids: list[str] = None,
+ cluster_names: list[str] = None,
+ overwrite: bool = False,
+ return_html_as_string: bool = False,
+ _df_cluster_metrics: SplinkDataFrame = None,
+ ) -> str | None:
+ """Generate an interactive html visualization of the predicted cluster and
+ save to `out_path`.
+
+ Args:
+ df_predict (SplinkDataFrame): The outputs of `linker.predict()`
+ df_clustered (SplinkDataFrame): The outputs of
+ `linker.cluster_pairwise_predictions_at_threshold()`
+ out_path (str): The path (including filename) to save the html file to.
+ sampling_method (str, optional): `random`, `by_cluster_size` or
+ `lowest_density_clusters`. Defaults to `random`.
+ sample_size (int, optional): Number of clusters to show in the dahboard.
+ Defaults to 10.
+ cluster_ids (list): The IDs of the clusters that will be displayed in the
+ dashboard. If provided, ignore the `sampling_method` and `sample_size`
+ arguments. Defaults to None.
+ overwrite (bool, optional): Overwrite the html file if it already exists?
+ Defaults to False.
+ cluster_names (list, optional): If provided, the dashboard will display
+ these names in the selection box. Ony works in conjunction with
+ `cluster_ids`. Defaults to None.
+ return_html_as_string: If True, return the html as a string
+
+ Examples:
+ ```py
+ df_p = linker.predict()
+ df_c = linker.cluster_pairwise_predictions_at_threshold(df_p, 0.5)
+ linker.cluster_studio_dashboard(
+ df_p, df_c, [0, 4, 7], "cluster_studio.html"
+ )
+ ```
+ Optionally, in Jupyter, you can display the results inline
+ Otherwise you can just load the html file in your browser
+ ```py
+ from IPython.display import IFrame
+ IFrame(src="./cluster_studio.html", width="100%", height=1200)
+ ```
+ """
+ self._linker._raise_error_if_necessary_waterfall_columns_not_computed()
+
+ rendered = render_splink_cluster_studio_html(
+ self._linker,
+ df_predict,
+ df_clustered,
+ out_path,
+ sampling_method=sampling_method,
+ sample_size=sample_size,
+ cluster_ids=cluster_ids,
+ overwrite=overwrite,
+ cluster_names=cluster_names,
+ _df_cluster_metrics=_df_cluster_metrics,
+ )
+
+ if return_html_as_string:
+ return rendered
+ return None
diff --git a/splink/internals/m_from_labels.py b/splink/internals/m_from_labels.py
index 1454974ac0..aadd816d85 100644
--- a/splink/internals/m_from_labels.py
+++ b/splink/internals/m_from_labels.py
@@ -1,4 +1,5 @@
import logging
+from typing import TYPE_CHECKING
from splink.internals.block_from_labels import block_from_labels
from splink.internals.comparison_vector_values import (
@@ -16,10 +17,12 @@
m_u_records_to_lookup_dict,
)
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
logger = logging.getLogger(__name__)
-def estimate_m_from_pairwise_labels(linker, table_name):
+def estimate_m_from_pairwise_labels(linker: "Linker", table_name: str) -> None:
pipeline = CTEPipeline()
nodes_with_tf = compute_df_concat_with_tf(linker, pipeline)
pipeline = CTEPipeline([nodes_with_tf])
@@ -45,7 +48,7 @@ def estimate_m_from_pairwise_labels(linker, table_name):
)
pipeline.enqueue_sql(sql, "__splink__m_u_counts")
- df_params = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_params = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
param_records = df_params.as_pandas_dataframe()
param_records = compute_proportions_for_new_parameters(param_records)
diff --git a/splink/internals/m_training.py b/splink/internals/m_training.py
index e1ce5a41f4..1c07a62a88 100644
--- a/splink/internals/m_training.py
+++ b/splink/internals/m_training.py
@@ -1,5 +1,6 @@
import logging
from copy import deepcopy
+from typing import TYPE_CHECKING
from splink.internals.blocking import BlockingRule, block_using_rules_sqls
from splink.internals.comparison_vector_values import (
@@ -17,10 +18,12 @@
m_u_records_to_lookup_dict,
)
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
logger = logging.getLogger(__name__)
-def estimate_m_values_from_label_column(linker, df_dict, label_colname):
+def estimate_m_values_from_label_column(linker: "Linker", label_colname: str) -> None:
msg = f" Estimating m probabilities using from column {label_colname} "
logger.info(f"{msg:-^70}")
@@ -68,7 +71,7 @@ def estimate_m_values_from_label_column(linker, df_dict, label_colname):
)
pipeline.enqueue_sql(sql, "__splink__m_u_counts")
- df_params = training_linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_params = training_linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
param_records = df_params.as_pandas_dataframe()
param_records = compute_proportions_for_new_parameters(param_records)
diff --git a/splink/internals/match_weights_histogram.py b/splink/internals/match_weights_histogram.py
index 43993f790e..6198ffebbc 100644
--- a/splink/internals/match_weights_histogram.py
+++ b/splink/internals/match_weights_histogram.py
@@ -1,6 +1,11 @@
from math import floor
+from typing import TYPE_CHECKING
from splink.internals.pipeline import CTEPipeline
+from splink.internals.splink_dataframe import SplinkDataFrame
+
+if TYPE_CHECKING:
+ from splink.internals.linker import Linker
def _bins(min, max, num_bins):
@@ -58,7 +63,9 @@ def _hist_sql(bin_width):
return sqls
-def histogram_data(linker, df_predict, num_bins=100):
+def histogram_data(
+ linker: "Linker", df_predict: SplinkDataFrame, num_bins: int = 100
+) -> SplinkDataFrame:
sql = """
select min(match_weight) as min_weight, max(match_weight) as max_weight from
__splink__df_predict
@@ -66,7 +73,7 @@ def histogram_data(linker, df_predict, num_bins=100):
pipeline = CTEPipeline([df_predict])
pipeline.enqueue_sql(sql, "__splink__df_min_max")
- df_min_max = linker.db_api.sql_pipeline_to_splink_dataframe(
+ df_min_max = linker._db_api.sql_pipeline_to_splink_dataframe(
pipeline
).as_record_dict()
@@ -79,6 +86,6 @@ def histogram_data(linker, df_predict, num_bins=100):
sqls = _hist_sql(binwidth)
pipeline.enqueue_list_of_sqls(sqls)
- df_hist = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_hist = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
return df_hist
diff --git a/splink/internals/optimise_cost_of_brs.py b/splink/internals/optimise_cost_of_brs.py
index 0e842fd6fd..65e89a4651 100644
--- a/splink/internals/optimise_cost_of_brs.py
+++ b/splink/internals/optimise_cost_of_brs.py
@@ -113,9 +113,8 @@ def get_em_training_string(br_rows):
training_statements = []
for block_on_str in block_on_strings:
- statement = (
- f"linker.estimate_parameters_using_expectation_maximisation({block_on_str})"
- )
+ m_name = "linker.training.estimate_parameters_using_expectation_maximisation"
+ statement = f"{m_name}({block_on_str})"
training_statements.append(statement)
return " \n".join(training_statements)
diff --git a/splink/internals/term_frequencies.py b/splink/internals/term_frequencies.py
index 50987f9b45..973c0e7965 100644
--- a/splink/internals/term_frequencies.py
+++ b/splink/internals/term_frequencies.py
@@ -84,7 +84,7 @@ def _join_new_table_to_df_concat_with_tf_sql(linker: Linker, new_tablename: str)
Joins any required tf columns onto new_tablename
This is needed e.g. when using linker.compare_two_records
- or linker.find_matches_to_new_records in which the user provides
+ or linker.inference.find_matches_to_new_records in which the user provides
new records which need tf adjustments computed
"""
@@ -241,7 +241,7 @@ def tf_adjustment_chart(
dict(
cl,
**{
- "df_tf": linker.compute_tf_table(
+ "df_tf": linker.table_management.compute_tf_table(
cl["tf_adjustment_column"]
).as_pandas_dataframe()
},
diff --git a/splink/internals/unlinkables.py b/splink/internals/unlinkables.py
index 48c1d6975c..f2c500a693 100644
--- a/splink/internals/unlinkables.py
+++ b/splink/internals/unlinkables.py
@@ -51,7 +51,7 @@ def unlinkables_data(linker: Linker) -> dict[str, Any]:
where match_probability < 1
"""
pipeline.enqueue_sql(sql, "__splink__df_unlinkables_proportions_cumulative")
- data = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline, use_cache=False)
+ data = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline, use_cache=False)
unlinkables_dict = data.as_record_dict()
data.drop_table_from_database_and_remove_from_cache()
diff --git a/splink/internals/vertically_concatenate.py b/splink/internals/vertically_concatenate.py
index 7577c35e22..c2fcfd0d34 100644
--- a/splink/internals/vertically_concatenate.py
+++ b/splink/internals/vertically_concatenate.py
@@ -106,7 +106,7 @@ def enqueue_df_concat_with_tf(linker: Linker, pipeline: CTEPipeline) -> CTEPipel
def compute_df_concat_with_tf(linker: Linker, pipeline: CTEPipeline) -> SplinkDataFrame:
cache = linker._intermediate_table_cache
- db_api = linker.db_api
+ db_api = linker._db_api
if "__splink__df_concat_with_tf" in cache:
return cache.get_with_logging("__splink__df_concat_with_tf")
@@ -158,7 +158,7 @@ def enqueue_df_concat(linker: Linker, pipeline: CTEPipeline) -> CTEPipeline:
def compute_df_concat(linker: Linker, pipeline: CTEPipeline) -> SplinkDataFrame:
cache = linker._intermediate_table_cache
- db_api = linker.db_api
+ db_api = linker._db_api
if "__splink__df_concat" in cache:
return cache.get_with_logging("__splink__df_concat")
diff --git a/tests/cc_testing_utils.py b/tests/cc_testing_utils.py
index 30009ea623..beab85a622 100644
--- a/tests/cc_testing_utils.py
+++ b/tests/cc_testing_utils.py
@@ -42,10 +42,10 @@ def register_cc_df(G):
)
# re-register under our required name to run the CC function
- linker.register_table(df_concat, table_name, overwrite=True)
+ linker.table_management.register_table(df_concat, table_name, overwrite=True)
df_nodes = pd.DataFrame({"unique_id": G.nodes})
- linker.register_table_input_nodes_concat_with_tf(df_nodes)
+ linker.table_management.register_table_input_nodes_concat_with_tf(df_nodes)
# add our prediction df to our list of created tables
predict_df = DuckDBDataFrame(table_name, table_name, db_api)
diff --git a/tests/helpers.py b/tests/helpers.py
index d5f3d7bd20..38dedf172b 100644
--- a/tests/helpers.py
+++ b/tests/helpers.py
@@ -15,7 +15,7 @@
class TestHelper(ABC):
@property
- def Linker(self):
+ def Linker(self) -> Linker:
return Linker
@property
diff --git a/tests/linker_utils.py b/tests/linker_utils.py
index 2aa21497a8..8d0fa7ad00 100644
--- a/tests/linker_utils.py
+++ b/tests/linker_utils.py
@@ -12,22 +12,26 @@ def _test_table_registration(
# Standard pandas df...
a = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- linker.register_table(a, "__splink__df_pd")
- pd_df = linker.query_sql("select * from __splink__df_pd", output_type="splinkdf")
+ linker.table_management.register_table(a, "__splink__df_pd")
+ pd_df = linker.misc.query_sql(
+ "select * from __splink__df_pd", output_type="splinkdf"
+ )
assert sum(pd_df.as_pandas_dataframe().a) == sum(a.a)
# Standard dictionary
test_dict = {"a": [666, 777, 888], "b": [4, 5, 6]}
- t_dict = linker.register_table(test_dict, "__splink__df_test_dict")
+ t_dict = linker.table_management.register_table(test_dict, "__splink__df_test_dict")
test_dict_df = pd.DataFrame(test_dict)
assert sum(t_dict.as_pandas_dataframe().b) == sum(test_dict_df.b)
# Duplicate table name (check for error)
with pytest.raises(ValueError):
- linker.register_table(test_dict, "__splink__df_pd")
+ linker.table_management.register_table(test_dict, "__splink__df_pd")
# Test overwriting works
- linker.register_table(test_dict_df, "__splink__df_pd", overwrite=True)
- out = linker.query_sql("select * from __splink__df_pd", output_type="pandas")
+ linker.table_management.register_table(
+ test_dict_df, "__splink__df_pd", overwrite=True
+ )
+ out = linker.misc.query_sql("select * from __splink__df_pd", output_type="pandas")
assert sum(out.a) == sum(test_dict_df.a)
# Record level dictionary
@@ -37,20 +41,22 @@ def _test_table_registration(
{"a": 3, "b": 44, "c": 555},
]
- linker.register_table(b, "__splink__df_record_df")
- record_df = linker.query_sql(
+ linker.table_management.register_table(b, "__splink__df_record_df")
+ record_df = linker.misc.query_sql(
"select * from __splink__df_record_df", output_type="pandas"
)
assert sum(record_df.b) == sum(record["b"] for record in b)
with pytest.raises(ValueError):
- linker.query_sql("select * from __splink__df_test_dict", output_type="testing")
- df = linker.query_sql(
+ linker.misc.query_sql(
+ "select * from __splink__df_test_dict", output_type="testing"
+ )
+ df = linker.misc.query_sql(
"select * from __splink__df_test_dict", output_type="splinkdf"
).as_pandas_dataframe()
assert sum(df.b) == sum(test_dict_df.b)
- r_dict = linker.query_sql(
+ r_dict = linker.misc.query_sql(
"select * from __splink__df_record_df", output_type="splinkdf"
).as_record_dict()
assert sum(pd.DataFrame.from_records(r_dict).a) == sum(record["a"] for record in b)
@@ -58,7 +64,7 @@ def _test_table_registration(
# Test registration on additional data types for specific linkers
if additional_tables_to_register:
for table in additional_tables_to_register:
- linker.register_table(table, "test_table", overwrite=True)
+ linker.table_management.register_table(table, "test_table", overwrite=True)
def register_roc_data(linker):
@@ -83,7 +89,7 @@ def register_roc_data(linker):
axis=1,
)
- linker.register_table(df_labels, "labels")
+ linker.table_management.register_table(df_labels, "labels")
def _test_write_functionality(linker, read_csv_func):
@@ -93,18 +99,18 @@ def _test_write_functionality(linker, read_csv_func):
shutil.rmtree(root)
parquet_f = f"{root}/tmp_files/test.parquet"
- linker.predict().to_parquet(parquet_f)
+ linker.inference.predict().to_parquet(parquet_f)
assert len(pd.read_parquet(parquet_f)) == 3167
# Duplicate table name (check for error)
with pytest.raises(FileExistsError):
- linker.predict().to_parquet(parquet_f)
+ linker.inference.predict().to_parquet(parquet_f)
csv_f = f"{root}/tmp_files/test.csv"
- linker.predict().to_csv(csv_f)
+ linker.inference.predict().to_csv(csv_f)
assert len(read_csv_func(csv_f)) == 3167
# Duplicate table name (check for error)
with pytest.raises(FileExistsError):
- linker.predict().to_csv(csv_f)
+ linker.inference.predict().to_csv(csv_f)
# delete the folder and its contents
shutil.rmtree(root)
diff --git a/tests/test_accuracy.py b/tests/test_accuracy.py
index 61f22f9950..e9fb9025c0 100644
--- a/tests/test_accuracy.py
+++ b/tests/test_accuracy.py
@@ -56,12 +56,12 @@ def test_scored_labels_table():
concat_with_tf = compute_df_concat_with_tf(linker, pipeline)
pipeline = CTEPipeline([concat_with_tf])
- linker.register_table(df_labels, "labels")
+ linker.table_management.register_table(df_labels, "labels")
sqls = predictions_from_sample_of_pairwise_labels_sql(linker, "labels")
pipeline.enqueue_list_of_sqls(sqls)
- df_scores_labels = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_scores_labels = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
df_scores_labels = df_scores_labels.as_pandas_dataframe()
df_scores_labels.sort_values(["unique_id_l", "unique_id_r"], inplace=True)
@@ -69,7 +69,7 @@ def test_scored_labels_table():
assert len(df_scores_labels) == 6
# Check predictions are the same as the labels
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
f1 = df_predict["unique_id_l"] == 1
f2 = df_predict["unique_id_r"] == 2
@@ -139,12 +139,14 @@ def test_truth_space_table():
]
labels_with_predictions = pd.DataFrame(labels_with_predictions)
- linker.register_table(labels_with_predictions, "__splink__labels_with_predictions")
+ linker.table_management.register_table(
+ labels_with_predictions, "__splink__labels_with_predictions"
+ )
pipeline = CTEPipeline()
sqls = truth_space_table_from_labels_with_predictions_sqls(0.5)
pipeline.enqueue_list_of_sqls(sqls)
- df_roc = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ df_roc = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
df_roc = df_roc.as_pandas_dataframe()
@@ -195,9 +197,9 @@ def test_roc_chart_dedupe_only():
linker = Linker(df, settings_dict, database_api=db_api)
- labels_sdf = linker.register_table(df_labels, "labels")
+ labels_sdf = linker.table_management.register_table(df_labels, "labels")
- linker.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc")
+ linker.evaluation.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc")
def test_roc_chart_link_and_dedupe():
@@ -228,9 +230,9 @@ def test_roc_chart_link_and_dedupe():
df, settings_dict, input_table_aliases="fake_data_1", database_api=db_api
)
- labels_sdf = linker.register_table(df_labels, "labels")
+ labels_sdf = linker.table_management.register_table(df_labels, "labels")
- linker.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc")
+ linker.evaluation.accuracy_analysis_from_labels_table(labels_sdf, output_type="roc")
def test_prediction_errors_from_labels_table():
@@ -290,12 +292,14 @@ def test_prediction_errors_from_labels_table():
linker = Linker(df, settings, database_api=db_api)
- linker.register_table(df_labels, "labels")
+ linker.table_management.register_table(df_labels, "labels")
pipeline = CTEPipeline()
compute_df_concat_with_tf(linker, pipeline)
- df_res = linker.prediction_errors_from_labels_table("labels").as_pandas_dataframe()
+ df_res = linker.evaluation.prediction_errors_from_labels_table(
+ "labels"
+ ).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
records = list(df_res.to_records(index=False))
records = [tuple(p) for p in records]
@@ -309,12 +313,12 @@ def test_prediction_errors_from_labels_table():
linker = Linker(df, settings, database_api=db_api)
- linker.register_table(df_labels, "labels")
+ linker.table_management.register_table(df_labels, "labels")
pipeline = CTEPipeline()
compute_df_concat_with_tf(linker, pipeline)
- df_res = linker.prediction_errors_from_labels_table(
+ df_res = linker.evaluation.prediction_errors_from_labels_table(
"labels", include_false_negatives=False
).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
@@ -329,12 +333,12 @@ def test_prediction_errors_from_labels_table():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.register_table(df_labels, "labels")
+ linker.table_management.register_table(df_labels, "labels")
pipeline = CTEPipeline()
compute_df_concat_with_tf(linker, pipeline)
- df_res = linker.prediction_errors_from_labels_table(
+ df_res = linker.evaluation.prediction_errors_from_labels_table(
"labels", include_false_positives=False
).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
@@ -393,7 +397,7 @@ def test_prediction_errors_from_labels_column():
linker = Linker(df, settings, database_api=db_api)
- df_res = linker.prediction_errors_from_labels_column(
+ df_res = linker.evaluation.prediction_errors_from_labels_column(
"cluster"
).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
@@ -410,7 +414,7 @@ def test_prediction_errors_from_labels_column():
linker = Linker(df, settings, database_api=db_api)
- df_res = linker.prediction_errors_from_labels_column(
+ df_res = linker.evaluation.prediction_errors_from_labels_column(
"cluster", include_false_positives=False
).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
@@ -427,7 +431,7 @@ def test_prediction_errors_from_labels_column():
linker = Linker(df, settings, database_api=db_api)
- df_res = linker.prediction_errors_from_labels_column(
+ df_res = linker.evaluation.prediction_errors_from_labels_column(
"cluster", include_false_negatives=False
).as_pandas_dataframe()
df_res = df_res[["unique_id_l", "unique_id_r"]]
@@ -489,7 +493,7 @@ def test_truth_space_table_from_labels_column_dedupe_only():
linker = Linker(df, settings, database_api=db_api)
- tt = linker.accuracy_analysis_from_labels_column(
+ tt = linker.evaluation.accuracy_analysis_from_labels_column(
"cluster", output_type="table"
).as_record_dict()
# Truth threshold -3.17, meaning all comparisons get classified as positive
@@ -560,7 +564,7 @@ def test_truth_space_table_from_labels_column_link_only():
linker = Linker([df_left, df_right], settings, database_api=db_api)
- tt = linker.accuracy_analysis_from_labels_column(
+ tt = linker.evaluation.accuracy_analysis_from_labels_column(
"ground_truth", output_type="table"
).as_record_dict()
# Truth threshold -3.17, meaning all comparisons get classified as positive
@@ -609,7 +613,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked():
)
linker_for_predictions = Linker(df, settings, database_api=DuckDBAPI())
- df_predictions_raw = linker_for_predictions.predict()
+ df_predictions_raw = linker_for_predictions.inference.predict()
# Score all of the positive labels even if not captured by the blocking rules
# but not score any negative pairwise comaprisons not captured by the blocking rules
@@ -630,7 +634,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked():
match_key
from {df_predictions_raw.physical_name}
"""
- df_predictions = linker_for_predictions.query_sql(sql)
+ df_predictions = linker_for_predictions.misc.query_sql(sql)
settings = SettingsCreator(
link_type="dedupe_only",
@@ -644,11 +648,13 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_inc_unblocked():
)
linker_for_splink_answer = Linker(df, settings, database_api=DuckDBAPI())
- df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_column(
- "cluster",
- output_type="table",
- positives_not_captured_by_blocking_rules_scored_as_zero=False,
- ).as_pandas_dataframe()
+ df_from_splink = (
+ linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_column(
+ "cluster",
+ output_type="table",
+ positives_not_captured_by_blocking_rules_scored_as_zero=False,
+ ).as_pandas_dataframe()
+ )
for _, splink_row in df_from_splink.iterrows():
threshold = splink_row["truth_threshold"]
@@ -683,7 +689,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked():
)
linker_for_predictions = Linker([df_1, df_2], settings, database_api=DuckDBAPI())
- df_predictions_raw = linker_for_predictions.predict()
+ df_predictions_raw = linker_for_predictions.inference.predict()
# When match_key = 1, the record is not really recovered by the blocking rules
# so its score must be zero. Want
@@ -698,7 +704,7 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked():
match_key
from {df_predictions_raw.physical_name}
"""
- df_predictions = linker_for_predictions.query_sql(sql)
+ df_predictions = linker_for_predictions.misc.query_sql(sql)
settings = SettingsCreator(
link_type="link_only",
@@ -713,11 +719,13 @@ def test_truth_space_table_from_column_vs_pandas_implementaiton_ex_unblocked():
)
linker_for_splink_answer = Linker([df_1, df_2], settings, database_api=DuckDBAPI())
- df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_column(
- "cluster",
- output_type="table",
- positives_not_captured_by_blocking_rules_scored_as_zero=True,
- ).as_pandas_dataframe()
+ df_from_splink = (
+ linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_column(
+ "cluster",
+ output_type="table",
+ positives_not_captured_by_blocking_rules_scored_as_zero=True,
+ ).as_pandas_dataframe()
+ )
for _, splink_row in df_from_splink.iterrows():
threshold = splink_row["truth_threshold"]
@@ -759,13 +767,17 @@ def test_truth_space_table_from_table_vs_pandas_cartesian():
)
linker_for_predictions = Linker(df_first_50, settings, database_api=DuckDBAPI())
- df_predictions = linker_for_predictions.predict().as_pandas_dataframe()
+ df_predictions = linker_for_predictions.inference.predict().as_pandas_dataframe()
linker_for_splink_answer = Linker(df, settings, database_api=DuckDBAPI())
- labels_input = linker_for_splink_answer.register_labels_table(labels_table)
- df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_table(
- labels_input, output_type="table"
- ).as_pandas_dataframe()
+ labels_input = linker_for_splink_answer.table_management.register_labels_table(
+ labels_table
+ )
+ df_from_splink = (
+ linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_table(
+ labels_input, output_type="table"
+ ).as_pandas_dataframe()
+ )
for _, splink_row in df_from_splink.iterrows():
threshold = splink_row["truth_threshold"]
@@ -816,7 +828,7 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking():
linker_for_predictions = Linker(
[df_1_first_50, df_2_first_50], settings, database_api=DuckDBAPI()
)
- df_predictions_raw = linker_for_predictions.predict()
+ df_predictions_raw = linker_for_predictions.inference.predict()
df_predictions_raw.as_pandas_dataframe()
sql = f"""
select
@@ -830,7 +842,7 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking():
cluster_r,
from {df_predictions_raw.physical_name}
"""
- df_predictions = linker_for_predictions.query_sql(sql)
+ df_predictions = linker_for_predictions.misc.query_sql(sql)
settings = SettingsCreator(
link_type="link_only",
@@ -844,10 +856,14 @@ def test_truth_space_table_from_table_vs_pandas_with_blocking():
)
linker_for_splink_answer = Linker([df_1, df_2], settings, database_api=DuckDBAPI())
- labels_input = linker_for_splink_answer.register_labels_table(labels_table)
- df_from_splink = linker_for_splink_answer.accuracy_analysis_from_labels_table(
- labels_input, output_type="table"
- ).as_pandas_dataframe()
+ labels_input = linker_for_splink_answer.table_management.register_labels_table(
+ labels_table
+ )
+ df_from_splink = (
+ linker_for_splink_answer.evaluation.accuracy_analysis_from_labels_table(
+ labels_input, output_type="table"
+ ).as_pandas_dataframe()
+ )
for _, splink_row in df_from_splink.iterrows():
threshold = splink_row["truth_threshold"]
diff --git a/tests/test_array_based_blocking.py b/tests/test_array_based_blocking.py
index 3d0c728b03..d22fa1d28b 100644
--- a/tests/test_array_based_blocking.py
+++ b/tests/test_array_based_blocking.py
@@ -38,7 +38,7 @@ def test_simple_example_link_only(test_helpers, dialect):
## the additional pairs returned by the second blocking rule are (1,4),(3,5)
linker = helper.Linker([data_l, data_r], settings, **helper.extra_linker_args())
linker.debug_mode = False
- returned_triples = linker.predict().as_pandas_dataframe()[
+ returned_triples = linker.inference.predict().as_pandas_dataframe()[
["unique_id_l", "unique_id_r", "match_key"]
]
returned_triples = {
@@ -110,7 +110,7 @@ def test_array_based_blocking_with_random_data_dedupe(test_helpers, dialect):
}
linker = helper.Linker(input_data, settings, **helper.extra_linker_args())
linker.debug_mode = False
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
## check that there are no duplicates in the output
assert (
df_predict.drop_duplicates(["unique_id_l", "unique_id_r"]).shape[0]
@@ -159,7 +159,7 @@ def test_array_based_blocking_with_random_data_link_only(test_helpers, dialect):
[input_data_l, input_data_r], settings, **helper.extra_linker_args()
)
linker.debug_mode = False
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
## check that we get no within-dataset links
within_dataset_links = df_predict[
@@ -232,7 +232,7 @@ def test_link_only_unique_id_ambiguity(test_helpers, dialect):
input_table_aliases=["a_", "b_", "c_"],
**helper.extra_linker_args(),
)
- returned_triples = linker.predict().as_pandas_dataframe()[
+ returned_triples = linker.inference.predict().as_pandas_dataframe()[
[
"source_dataset_l",
"unique_id_l",
diff --git a/tests/test_blocking.py b/tests/test_blocking.py
index c497493d7f..aac6fa2c69 100644
--- a/tests/test_blocking.py
+++ b/tests/test_blocking.py
@@ -65,11 +65,11 @@ def test_simple_end_to_end(test_helpers, dialect):
linker = Linker(df, settings, **helper.extra_linker_args())
- linker.estimate_u_using_random_sampling(max_pairs=1e3)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e3)
blocking_rule = block_on("first_name", "surname")
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- linker.estimate_parameters_using_expectation_maximisation(block_on("dob"))
+ linker.training.estimate_parameters_using_expectation_maximisation(block_on("dob"))
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_caching.py b/tests/test_caching.py
index a9a5933076..ded0f702c0 100644
--- a/tests/test_caching.py
+++ b/tests/test_caching.py
@@ -38,7 +38,7 @@ def test_cache_id(tmp_path):
prior = linker._settings_obj._cache_uid
path = os.path.join(tmp_path, "model.json")
- linker.save_model_to_json(path, overwrite=True)
+ linker.misc.save_model_to_json(path, overwrite=True)
db_api = DuckDBAPI()
@@ -83,7 +83,7 @@ def test_cache_access_df_concat(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
@@ -115,16 +115,16 @@ def test_cache_access_compute_tf_table(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("first_name")
mockexecute_sql_pipeline.assert_called()
# reset the call counter on the mock
mockexecute_sql_pipeline.reset_mock()
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("first_name")
mockexecute_sql_pipeline.assert_not_called()
@@ -135,7 +135,7 @@ def test_invalidate_cache(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
@@ -151,14 +151,14 @@ def test_invalidate_cache(debug_mode):
mockexecute_sql_pipeline.assert_not_called()
# create this:
- linker.compute_tf_table("surname")
+ linker.table_management.compute_tf_table("surname")
mockexecute_sql_pipeline.assert_called()
mockexecute_sql_pipeline.reset_mock()
# then check the cache
- linker.compute_tf_table("surname")
+ linker.table_management.compute_tf_table("surname")
mockexecute_sql_pipeline.assert_not_called()
- linker.invalidate_cache()
+ linker.table_management.invalidate_cache()
# now we _SHOULD_ compute afresh:
pipeline = CTEPipeline()
@@ -170,11 +170,11 @@ def test_invalidate_cache(debug_mode):
compute_df_concat_with_tf(linker, pipeline)
mockexecute_sql_pipeline.assert_not_called()
# and should compute this again:
- linker.compute_tf_table("surname")
+ linker.table_management.compute_tf_table("surname")
mockexecute_sql_pipeline.assert_called()
mockexecute_sql_pipeline.reset_mock()
# then check the cache
- linker.compute_tf_table("surname")
+ linker.table_management.compute_tf_table("surname")
mockexecute_sql_pipeline.assert_not_called()
@@ -185,7 +185,7 @@ def test_cache_invalidates_with_new_linker(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
@@ -202,7 +202,7 @@ def test_cache_invalidates_with_new_linker(debug_mode):
db_api = DuckDBAPI()
new_linker = Linker(df, settings, database_api=db_api)
- new_linker.debug_mode = debug_mode
+ new_linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
@@ -233,14 +233,14 @@ def test_cache_register_compute_concat_with_tf_table(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
# can actually register frame, as that part not cached
# don't need function so use any frame
- linker.register_table_input_nodes_concat_with_tf(df)
+ linker.table_management.register_table_input_nodes_concat_with_tf(df)
# now this should be cached, as I have manually registered
pipeline = CTEPipeline()
compute_df_concat_with_tf(linker, pipeline)
@@ -254,14 +254,14 @@ def test_cache_register_compute_tf_table(debug_mode):
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = debug_mode
+ linker._debug_mode = debug_mode
with patch.object(
db_api, "_sql_to_splink_dataframe", new=make_mock_execute(db_api)
) as mockexecute_sql_pipeline:
# can actually register frame, as that part not cached
# don't need function so use any frame
- linker.register_term_frequency_lookup(df, "first_name")
+ linker.table_management.register_term_frequency_lookup(df, "first_name")
# now this should be cached, as I have manually registered
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("first_name")
mockexecute_sql_pipeline.assert_not_called()
diff --git a/tests/test_caching_tables.py b/tests/test_caching_tables.py
index f7b8b35db3..66a5cba21d 100644
--- a/tests/test_caching_tables.py
+++ b/tests/test_caching_tables.py
@@ -32,11 +32,11 @@ def test_cache_tracking_works():
cache = linker._intermediate_table_cache
assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False
- linker.predict()
+ linker.inference.predict()
assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is True
- linker.predict()
+ linker.inference.predict()
assert (
cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True
)
@@ -48,18 +48,18 @@ def test_cache_tracking_works():
assert (
cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is False
)
- linker.predict()
+ linker.inference.predict()
assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False
assert (
cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True
)
- linker.invalidate_cache()
+ linker.table_management.invalidate_cache()
cache.reset_executed_queries_tracker()
cache.reset_queries_retrieved_from_cache_tracker()
- linker.predict()
+ linker.inference.predict()
# Triggers adding to queries retrieved from cache
- linker.predict()
+ linker.inference.predict()
assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is True
assert (
cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True
@@ -95,8 +95,10 @@ def test_cache_used_when_registering_nodes_table():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.register_table_input_nodes_concat_with_tf(splink__df_concat_with_tf)
- linker.predict()
+ linker.table_management.register_table_input_nodes_concat_with_tf(
+ splink__df_concat_with_tf
+ )
+ linker.inference.predict()
assert cache.is_in_executed_queries("__splink__df_concat_with_tf") is False
assert (
cache.is_in_queries_retrieved_from_cache("__splink__df_concat_with_tf") is True
@@ -147,7 +149,7 @@ def test_cache_used_when_registering_tf_tables():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.predict()
+ linker.inference.predict()
assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name")
assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname")
@@ -157,8 +159,8 @@ def test_cache_used_when_registering_tf_tables():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.register_term_frequency_lookup(surname_tf_table, "surname")
- linker.predict()
+ linker.table_management.register_term_frequency_lookup(surname_tf_table, "surname")
+ linker.inference.predict()
assert not cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name")
assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname")
@@ -168,9 +170,11 @@ def test_cache_used_when_registering_tf_tables():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.register_term_frequency_lookup(surname_tf_table, "surname")
- linker.register_term_frequency_lookup(first_name_tf_table, "first_name")
- linker.predict()
+ linker.table_management.register_term_frequency_lookup(surname_tf_table, "surname")
+ linker.table_management.register_term_frequency_lookup(
+ first_name_tf_table, "first_name"
+ )
+ linker.inference.predict()
assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_first_name")
assert cache.is_in_queries_retrieved_from_cache("__splink__df_tf_surname")
@@ -195,9 +199,9 @@ def test_cache_invalidation():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.compute_tf_table("name")
+ linker.table_management.compute_tf_table("name")
len_before = len(cache.executed_queries)
- linker.compute_tf_table("name")
+ linker.table_management.compute_tf_table("name")
len_after = len(cache.executed_queries)
# If cache not invalidated, cache should be used
@@ -209,10 +213,10 @@ def test_cache_invalidation():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- linker.compute_tf_table("name")
+ linker.table_management.compute_tf_table("name")
len_before = len(cache.executed_queries)
- linker.invalidate_cache()
- linker.compute_tf_table("name")
+ linker.table_management.invalidate_cache()
+ linker.table_management.compute_tf_table("name")
len_after = len(cache.executed_queries)
# If cache is invalidated, an additional query should have been executed
assert len_before + 1 == len_after
@@ -243,11 +247,11 @@ def test_table_deletions():
table_names_before = set(get_duckdb_table_names_as_list(db_api._con))
- linker.compute_tf_table("name")
- linker.estimate_u_using_random_sampling(max_pairs=1e4)
+ linker.table_management.compute_tf_table("name")
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e4)
# # The database should be empty except for the original non-splink table
- linker.delete_tables_created_by_splink_from_db()
+ linker.table_management.delete_tables_created_by_splink_from_db()
table_names_after = set(get_duckdb_table_names_as_list(db_api._con))
assert table_names_before == table_names_after
@@ -290,18 +294,20 @@ def test_table_deletions_with_preregistered():
db_api = DuckDBAPI(connection=con)
linker = Linker("my_data_table", settings, database_api=db_api)
- linker.register_table_input_nodes_concat_with_tf("my_nodes_with_tf_table")
+ linker.table_management.register_table_input_nodes_concat_with_tf(
+ "my_nodes_with_tf_table"
+ )
table_names_before = set(get_duckdb_table_names_as_list(db_api._con))
- linker.compute_tf_table("name")
- linker.estimate_u_using_random_sampling(max_pairs=1e4)
+ linker.table_management.compute_tf_table("name")
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e4)
# Note we shouldn't have executed a __splink__df_concat_with_tf query
cache = linker._intermediate_table_cache
assert not cache.is_in_executed_queries("__splink__df_concat_with_tf")
- linker.delete_tables_created_by_splink_from_db()
+ linker.table_management.delete_tables_created_by_splink_from_db()
table_names_after = set(get_duckdb_table_names_as_list(db_api._con))
@@ -327,7 +333,7 @@ def test_single_deletion():
linker = Linker(df, settings, database_api=db_api)
cache = linker._intermediate_table_cache
- tf_table = linker.compute_tf_table("name")
+ tf_table = linker.table_management.compute_tf_table("name")
table_name = tf_table.physical_name
# Check it is in the cache and database
assert table_name in get_duckdb_table_names_as_list(db_api._con)
diff --git a/tests/test_charts.py b/tests/test_charts.py
index e919480065..8bc79b2a92 100644
--- a/tests/test_charts.py
+++ b/tests/test_charts.py
@@ -132,11 +132,11 @@ def test_m_u_charts():
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.true_match_id = r.true_match_id"], recall=1.0
)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.surname = r.surname",
fix_u_probabilities=False,
fix_probability_two_random_records_match=True,
@@ -144,7 +144,7 @@ def test_m_u_charts():
assert linker._settings_obj.comparisons[1].comparison_levels[1].u_probability == 0.0
- linker.match_weights_chart()
+ linker.visualisations.match_weights_chart()
def test_parameter_estimate_charts():
@@ -160,16 +160,16 @@ def test_parameter_estimate_charts():
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.true_match_id = r.true_match_id"], recall=1.0
)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.surname = r.surname",
fix_u_probabilities=False,
fix_probability_two_random_records_match=True,
)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.first_name = r.first_name",
fix_u_probabilities=False,
fix_probability_two_random_records_match=True,
@@ -183,7 +183,7 @@ def test_parameter_estimate_charts():
]
assert 1.0 in exact_gender_m_estimates
- linker.parameter_estimate_comparisons_chart()
+ linker.visualisations.parameter_estimate_comparisons_chart()
settings = {
"link_type": "dedupe_only",
@@ -196,9 +196,9 @@ def test_parameter_estimate_charts():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_u_using_random_sampling(1e6)
+ linker.training.estimate_u_using_random_sampling(1e6)
- linker.parameter_estimate_comparisons_chart()
+ linker.visualisations.parameter_estimate_comparisons_chart()
def test_tf_adjustment_chart():
@@ -215,8 +215,8 @@ def test_tf_adjustment_chart():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.tf_adjustment_chart("gender")
- linker.tf_adjustment_chart("first_name")
+ linker.visualisations.tf_adjustment_chart("gender")
+ linker.visualisations.tf_adjustment_chart("first_name")
with pytest.raises(ValueError):
- linker.tf_adjustment_chart("surname")
+ linker.visualisations.tf_adjustment_chart("surname")
diff --git a/tests/test_cluster_studio.py b/tests/test_cluster_studio.py
index e906b4b8de..b115345ce3 100644
--- a/tests/test_cluster_studio.py
+++ b/tests/test_cluster_studio.py
@@ -34,7 +34,7 @@ def test_density_sample():
)
# Convert to Splink dataframe
- df_cluster_metrics = linker.register_table(
+ df_cluster_metrics = linker.table_management.register_table(
pd_metrics, "df_cluster_metrics", overwrite=True
)
result = _get_lowest_density_clusters(
diff --git a/tests/test_columns_selected.py b/tests/test_columns_selected.py
index 88297dbc4a..d0a612f10f 100644
--- a/tests/test_columns_selected.py
+++ b/tests/test_columns_selected.py
@@ -64,7 +64,7 @@ def test_regression(tmp_path):
linker = Linker(df.copy(), settings_dict, database_api=db_api)
- linker.predict()
+ linker.inference.predict()
def test_discussion_example(tmp_path):
@@ -125,4 +125,4 @@ def test_discussion_example(tmp_path):
linker = Linker(df.copy(), settings_dict, database_api=db_api)
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_compare_splink2.py b/tests/test_compare_splink2.py
index 15a2c1437c..eea7e40469 100644
--- a/tests/test_compare_splink2.py
+++ b/tests/test_compare_splink2.py
@@ -19,7 +19,7 @@ def test_splink_2_predict():
expected_record = pd.read_csv("tests/datasets/splink2_479_vs_481.csv")
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
f1 = df_e["unique_id_l"] == 479
f2 = df_e["unique_id_r"] == 481
@@ -37,7 +37,7 @@ def test_splink_2_predict_spark(df_spark, spark_api):
settings_dict = get_settings_dict()
linker = Linker(df_spark, settings_dict, spark_api)
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
f1 = df_e["unique_id_l"] == "479"
f2 = df_e["unique_id_r"] == "481"
actual_record = df_e[f1 & f2]
@@ -64,7 +64,7 @@ def test_splink_2_predict_sqlite():
db_api = SQLiteAPI(con)
linker = Linker("fake_data_1", settings_dict, database_api=db_api)
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
f1 = df_e["unique_id_l"] == 479
f2 = df_e["unique_id_r"] == 481
@@ -76,7 +76,7 @@ def test_splink_2_predict_sqlite():
assert expected_match_weight == pytest.approx(actual_match_weight)
- linker.estimate_parameters_using_expectation_maximisation("l.dob=r.dob")
+ linker.training.estimate_parameters_using_expectation_maximisation("l.dob=r.dob")
def test_splink_2_em_fixed_u():
@@ -91,8 +91,10 @@ def test_splink_2_em_fixed_u():
"tests/datasets/splink2_proportion_of_matches_history_fixed_u.csv"
)
- training_session = linker.estimate_parameters_using_expectation_maximisation(
- "l.surname = r.surname"
+ training_session = (
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.surname = r.surname"
+ )
)
actual_prop_history = pd.DataFrame(training_session._lambda_history_records)
@@ -137,8 +139,10 @@ def test_splink_2_em_no_fix():
"tests/datasets/splink2_proportion_of_matches_history_no_fix.csv"
)
- training_session = linker.estimate_parameters_using_expectation_maximisation(
- "l.surname = r.surname", fix_u_probabilities=False
+ training_session = (
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.surname = r.surname", fix_u_probabilities=False
+ )
)
actual_prop_history = pd.DataFrame(training_session._lambda_history_records)
@@ -188,14 +192,16 @@ def test_lambda():
linker = Linker(df, settings_dict, database_api=db_api)
- ma = linker.predict().as_pandas_dataframe()
+ ma = linker.inference.predict().as_pandas_dataframe()
f1 = ma["unique_id_l"] == 924
f2 = ma["unique_id_r"] == 925
ma[f1 & f2]
# actual_record
ma["match_probability"].mean()
- training_session = linker.estimate_parameters_using_expectation_maximisation(
- "l.dob = r.dob", fix_u_probabilities=False
+ training_session = (
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.dob = r.dob", fix_u_probabilities=False
+ )
)
pd.DataFrame(training_session._lambda_history_records)
@@ -229,10 +235,12 @@ def test_lambda():
linker._settings_obj._probability_two_random_records_match = glo
- training_session = linker.estimate_parameters_using_expectation_maximisation(
- "l.first_name = r.first_name and l.surname = r.surname",
- fix_u_probabilities=False,
- populate_probability_two_random_records_match_from_trained_values=True,
+ training_session = (
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.first_name = r.first_name and l.surname = r.surname",
+ fix_u_probabilities=False,
+ populate_probability_two_random_records_match_from_trained_values=True,
+ )
)
# linker._settings_obj.match_weights_chart()
diff --git a/tests/test_comparison_level_composition.py b/tests/test_comparison_level_composition.py
index acddee31af..10dfcce978 100644
--- a/tests/test_comparison_level_composition.py
+++ b/tests/test_comparison_level_composition.py
@@ -190,7 +190,7 @@ def test_composition_outputs(test_helpers, dialect):
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- pred = linker.predict()
+ pred = linker.inference.predict()
out = pred.as_pandas_dataframe().sort_values(by=["unique_id_l", "unique_id_r"])
# Check individual IDs are assigned to the correct gamma values
diff --git a/tests/test_comparison_level_lib.py b/tests/test_comparison_level_lib.py
index 60c2a4c09e..b991e28ed4 100644
--- a/tests/test_comparison_level_lib.py
+++ b/tests/test_comparison_level_lib.py
@@ -39,7 +39,7 @@ def test_column_reversal(test_helpers, dialect):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0])
assert row["gamma_full_name"] == 1
@@ -85,7 +85,7 @@ def test_perc_difference(test_helpers, dialect):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0]) # 16.66%
assert row["gamma_amount"] == 3
@@ -168,7 +168,7 @@ def gamma_lev_from_distance(dist):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
for id_r, lev_dist in id_distance_from_1.items():
expected_gamma_lev = gamma_lev_from_distance(lev_dist)
@@ -248,7 +248,7 @@ def gamma_lev_from_distance(dist):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
for id_r, lev_dist in id_distance_from_1.items():
expected_gamma_lev = gamma_lev_from_distance(lev_dist)
diff --git a/tests/test_comparison_lib.py b/tests/test_comparison_lib.py
index c91c21d7ed..3ae143d606 100644
--- a/tests/test_comparison_lib.py
+++ b/tests/test_comparison_lib.py
@@ -33,7 +33,7 @@ def test_distance_function_comparison():
linker = Linker(df, settings, database_api=db_api)
- df_pred = linker.predict().as_pandas_dataframe()
+ df_pred = linker.inference.predict().as_pandas_dataframe()
expected_gamma_counts = {
"forename": {
@@ -85,7 +85,7 @@ def test_set_to_lowercase():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0])
assert row["gamma_forename"] == 1
diff --git a/tests/test_comparison_template_lib.py b/tests/test_comparison_template_lib.py
index 69e297b78b..623a5c9ffa 100644
--- a/tests/test_comparison_template_lib.py
+++ b/tests/test_comparison_template_lib.py
@@ -68,7 +68,7 @@ def test_name_comparison_levels(dialect, test_helpers):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_output = linker.predict().as_pandas_dataframe()
+ linker_output = linker.inference.predict().as_pandas_dataframe()
# # Dict key: {gamma_level value: size}
size_gamma_lookup = {0: 6, 1: 6, 2: 0, 3: 2, 4: 1}
@@ -161,7 +161,7 @@ def test_forename_surname_comparison_levels(dialect, test_helpers):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_output = linker.predict().as_pandas_dataframe()
+ linker_output = linker.inference.predict().as_pandas_dataframe()
# # Dict key: {gamma_level value: size}
size_gamma_lookup = {0: 8, 1: 3, 2: 3, 3: 2, 4: 2, 5: 2, 6: 1}
@@ -273,7 +273,7 @@ def test_postcode_comparison_levels(dialect, test_helpers, test_gamma_assert):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_output = linker.predict().as_pandas_dataframe()
+ linker_output = linker.inference.predict().as_pandas_dataframe()
# Check individual IDs are assigned to the correct gamma values
# Dict key: {gamma_level: tuple of ID pairs}
@@ -326,7 +326,7 @@ def test_email_comparison_levels(dialect, test_helpers, test_gamma_assert):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_output = linker.predict().as_pandas_dataframe()
+ linker_output = linker.inference.predict().as_pandas_dataframe()
# Check individual IDs are assigned to the correct gamma values
# Dict key: {gamma_level: tuple of ID pairs}
diff --git a/tests/test_compound_comparison_levels.py b/tests/test_compound_comparison_levels.py
index e487e91126..60772e5e2f 100644
--- a/tests/test_compound_comparison_levels.py
+++ b/tests/test_compound_comparison_levels.py
@@ -129,7 +129,9 @@ def col_is_null(col):
"surname",
}
- linker.estimate_parameters_using_expectation_maximisation("l.city = r.city")
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.city = r.city"
+ )
def test_complex_compound_comparison_level():
@@ -218,4 +220,4 @@ def test_complex_compound_comparison_level():
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_parameters_using_expectation_maximisation("1=1")
+ linker.training.estimate_parameters_using_expectation_maximisation("1=1")
diff --git a/tests/test_correctness_of_convergence.py b/tests/test_correctness_of_convergence.py
index db165d8cf6..57839ebffc 100644
--- a/tests/test_correctness_of_convergence.py
+++ b/tests/test_correctness_of_convergence.py
@@ -105,7 +105,7 @@ def test_splink_converges_to_known_params():
linker._populate_probability_two_random_records_match_from_trained_values()
- linker.match_weights_chart()
+ linker.visualisations.match_weights_chart()
cv = DuckDBDataFrame(
"__splink__df_comparison_vectors",
@@ -120,7 +120,7 @@ def test_splink_converges_to_known_params():
)
pipeline.enqueue_list_of_sqls(sqls)
- predictions = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ predictions = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
predictions_df = predictions.as_pandas_dataframe()
from pandas.testing import assert_series_equal
diff --git a/tests/test_disable_tf_exact_match_detection.py b/tests/test_disable_tf_exact_match_detection.py
index 5b4ab37f9c..7222c9bbee 100644
--- a/tests/test_disable_tf_exact_match_detection.py
+++ b/tests/test_disable_tf_exact_match_detection.py
@@ -150,16 +150,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
{"surname": "Taylor", "tf_surname": 0.4},
{"surname": "Kirk", "tf_surname": 0.2},
]
- linker.register_term_frequency_lookup(tf_lookup, "surname")
+ linker.table_management.register_term_frequency_lookup(tf_lookup, "surname")
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
sql = f"""
select * from {df_predict.physical_name}
where unique_id_l = 835
and unique_id_r = 836
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Exact match, normal tf adjustement, Kirk
assert res["bf_surname"] == pytest.approx(8.0)
@@ -172,7 +172,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
where unique_id_l = 147
and unique_id_r = 975
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Levenshtein match, normal tf adustments, Taylor
# Splink makes the tf adjustment based on on the exact match level
# Lev match level has bf of 0.9/0.3
@@ -192,16 +192,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
{"surname": "Taylor", "tf_surname": 0.4},
{"surname": "Kirk", "tf_surname": 0.2},
]
- linker.register_term_frequency_lookup(tf_lookup, "surname")
+ linker.table_management.register_term_frequency_lookup(tf_lookup, "surname")
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
sql = f"""
select * from {df_predict.physical_name}
where unique_id_l = 835
and unique_id_r = 836
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Exact match, normal tf adjustement, Kirk
assert res["bf_surname"] == pytest.approx(8.0)
# Overall BF should be m/u = 0.8/0.2 = 4
@@ -212,7 +212,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
where unique_id_l = 147
and unique_id_r = 975
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Levenshtein match, tf exact match detection disabled, Taylor
# Splink makes the tf adjustment based on on the exact match level
# Lev match level has bf of 0.9/0.3
@@ -231,7 +231,10 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
)
linker_base = Linker(df, settings_disabled_with_min_tf, DuckDBAPI())
- linkers = [linker_base, Linker(df, linker_base.save_model_to_json(), DuckDBAPI())]
+ linkers = [
+ linker_base,
+ Linker(df, linker_base.misc.save_model_to_json(), DuckDBAPI()),
+ ]
# This ensures we're checking that serialisation and deserialisation
# works on the disable_tf_exact_match_detection and tf_minimum_u_value settings
@@ -240,16 +243,16 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
{"surname": "Taylor", "tf_surname": 0.001},
{"surname": "Kirk", "tf_surname": 0.2},
]
- linker.register_term_frequency_lookup(tf_lookup, "surname")
+ linker.table_management.register_term_frequency_lookup(tf_lookup, "surname")
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
sql = f"""
select * from {df_predict.physical_name}
where unique_id_l = 835
and unique_id_r = 836
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Exact match, normal tf adjustement, Kirk
assert res["bf_surname"] == pytest.approx(8.0)
# Overall BF should be m/u = 0.8/0.2 = 4
@@ -260,7 +263,7 @@ def get_settings(disable_tf_exact_match_detection, tf_minimum_u_value=None):
where unique_id_l = 147
and unique_id_r = 975
"""
- res = linker.query_sql(sql).to_dict(orient="records")[0]
+ res = linker.misc.query_sql(sql).to_dict(orient="records")[0]
# Levenshtein match, tf exact match detection disabled, Taylor
# Splink makes the tf adjustment based on on the exact match level
# Lev match level has bf of 0.9/0.3
diff --git a/tests/test_estimate_prob_two_rr_match.py b/tests/test_estimate_prob_two_rr_match.py
index 46c7537a46..4faa104b88 100644
--- a/tests/test_estimate_prob_two_rr_match.py
+++ b/tests/test_estimate_prob_two_rr_match.py
@@ -34,7 +34,7 @@ def test_prob_rr_match_dedupe(test_helpers, dialect):
# Test dedupe only
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=1.0
)
@@ -44,7 +44,7 @@ def test_prob_rr_match_dedupe(test_helpers, dialect):
# Test recall works
deterministic_rules = ["l.first_name = r.first_name and l.surname = r.surname"]
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=0.9
)
@@ -87,7 +87,7 @@ def test_prob_rr_match_link_only(test_helpers, dialect):
# Test dedupe only
linker = helper.Linker([df_1, df_2], settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=1.0
)
@@ -127,7 +127,7 @@ def test_prob_rr_match_link_and_dedupe(test_helpers, dialect):
# Test dedupe only
linker = helper.Linker([df_1, df_2], settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=1.0
)
@@ -196,7 +196,7 @@ def test_prob_rr_match_link_only_multitable(test_helpers, dialect):
deterministic_rules = ["l.first_name = r.first_name", "l.surname = r.surname"]
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=1.0
)
@@ -207,7 +207,7 @@ def test_prob_rr_match_link_only_multitable(test_helpers, dialect):
# if we define all record pairs to be a match, then the probability should be 1
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.city = r.city"], recall=1.0
)
prob = linker._settings_obj._probability_two_random_records_match
@@ -274,7 +274,7 @@ def test_prob_rr_match_link_and_dedupe_multitable(test_helpers, dialect):
deterministic_rules = ["l.first_name = r.first_name", "l.surname = r.surname"]
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
deterministic_rules, recall=1.0
)
@@ -285,7 +285,7 @@ def test_prob_rr_match_link_and_dedupe_multitable(test_helpers, dialect):
assert pytest.approx(prob) == 10 / 171
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.city = r.city"], recall=1.0
)
prob = linker._settings_obj._probability_two_random_records_match
@@ -352,7 +352,7 @@ def check_range(p):
with pytest.raises(ValueError):
# all comparisons matches using this rule, so we must have perfect recall
# using recall = 80% is inconsistent, so should get an error
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name"], recall=0.8
)
check_range(linker._settings_obj._probability_two_random_records_match)
@@ -360,10 +360,10 @@ def check_range(p):
# matching on city gives 6 matches out of 15, so recall must be at least 6/15
recall_min_city = 6 / 15
with pytest.raises(ValueError):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.city = r.city"], recall=(recall_min_city - 1e-6)
)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.city = r.city"], recall=recall_min_city
)
check_range(linker._settings_obj._probability_two_random_records_match)
@@ -372,7 +372,7 @@ def check_range(p):
# this gives a linkage model that always predicts match_probability as 0,
# so should give a warning at this stage
with caplog.at_level(logging.WARNING):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.surname = r.surname"], recall=0.7
)
assert "WARNING:" in caplog.text
@@ -381,7 +381,7 @@ def check_range(p):
# this gives prob as 1, so again should get a warning
# as we have a trivial linkage model
with caplog.at_level(logging.WARNING):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name"], recall=1.0
)
assert "WARNING:" in caplog.text
@@ -389,14 +389,14 @@ def check_range(p):
# check we get errors if we pass bogus values for recall
with pytest.raises(ValueError):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name"], recall=0.0
)
with pytest.raises(ValueError):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name"], recall=1.2
)
with pytest.raises(ValueError):
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name"], recall=-0.4
)
diff --git a/tests/test_expectation_maximisation.py b/tests/test_expectation_maximisation.py
index c3c31c7c26..e2e4a393a7 100644
--- a/tests/test_expectation_maximisation.py
+++ b/tests/test_expectation_maximisation.py
@@ -30,12 +30,14 @@ def test_clear_error_when_empty_block():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
- linker.estimate_parameters_using_expectation_maximisation("l.name = r.name")
+ linker._debug_mode = True
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.name = r.name"
+ )
# No record pairs for which surname matches, so we should get a nice handled error
with pytest.raises(EMTrainingException):
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.surname = r.surname"
)
@@ -63,7 +65,7 @@ def test_em_manual_deactivate():
db_api = DuckDBAPI()
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.name = r.name", comparisons_to_deactivate=["name"]
)
@@ -88,11 +90,11 @@ def test_estimate_without_term_frequencies():
linker_1 = Linker(df, settings, database_api=db_api)
- session_fast = linker_0.estimate_parameters_using_expectation_maximisation(
+ session_fast = linker_0.training.estimate_parameters_using_expectation_maximisation(
blocking_rule="l.email = r.email",
estimate_without_term_frequencies=True,
)
- session_slow = linker_1.estimate_parameters_using_expectation_maximisation(
+ session_slow = linker_1.training.estimate_parameters_using_expectation_maximisation(
blocking_rule="l.email = r.email",
estimate_without_term_frequencies=False,
)
diff --git a/tests/test_find_new_matches.py b/tests/test_find_new_matches.py
index 97423e29f5..09646540d1 100644
--- a/tests/test_find_new_matches.py
+++ b/tests/test_find_new_matches.py
@@ -60,10 +60,10 @@ def test_tf_tables_init_works(test_helpers, dialect):
# 1. Does nothing if term frequencies are not used
# 2. Should use the cache and not break if tf adj is requested for fn
# 3. Use both the cache and also create surname in our final example
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("first_name")
# Running without _df_concat_with_tf
- linker.__deepcopy__(None).find_matches_to_new_records(
+ linker.__deepcopy__(None).inference.find_matches_to_new_records(
[record], blocking_rules=[], match_weight_threshold=-10000
)
@@ -71,7 +71,7 @@ def test_tf_tables_init_works(test_helpers, dialect):
pipeline = CTEPipeline()
compute_df_concat_with_tf(linker, pipeline)
- linker.find_matches_to_new_records(
+ linker.inference.find_matches_to_new_records(
[record], blocking_rules=[], match_weight_threshold=-10000
)
@@ -86,25 +86,29 @@ def test_matches_work(test_helpers, dialect):
linker = Linker(df, get_settings_dict(), **helper.extra_linker_args())
# Train our model to get more reasonable outputs...
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.visualisations.match_weights_chart().save("mwc.html")
blocking_rule = block_on("first_name", "surname")
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ # linker.visualisations.match_weights_chart().save("mwc.html")
brs = ["l.surname = r.surname"]
- matches = linker.find_matches_to_new_records(
+ matches = linker.inference.find_matches_to_new_records(
[record], blocking_rules=brs, match_weight_threshold=-10000
)
matches = matches.as_pandas_dataframe()
assert len(matches) == 10
- matches = linker.find_matches_to_new_records(
- [record], blocking_rules=brs, match_weight_threshold=0
+ # linker.visualisations.match_weights_chart().save("mwc.html")
+
+ matches = linker.inference.find_matches_to_new_records(
+ [record], blocking_rules=brs, match_weight_threshold=0.1
)
matches = matches.as_pandas_dataframe()
diff --git a/tests/test_full_example_athena.py b/tests/test_full_example_athena.py
index 37e798cff9..141aee7612 100644
--- a/tests/test_full_example_athena.py
+++ b/tests/test_full_example_athena.py
@@ -119,33 +119,36 @@
# ["surname", "city"],
# ]
# )
-# linker.compute_tf_table("city")
-# linker.compute_tf_table("first_name")
+# linker.table_management.compute_tf_table("city")
+# linker.table_management.compute_tf_table("first_name")
-# linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=None)
+# linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=None)
# blocking_rule = "l.first_name = r.first_name and l.surname = r.surname"
-# linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+# linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
# blocking_rule = "l.dob = r.dob"
-# linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+# linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
-# df_predict = linker.predict()
+# df_predict = linker.inference.predict()
-# linker.comparison_viewer_dashboard(df_predict, "test_scv_athena.html", True, 2)
+# linker.visualisations.comparison_viewer_dashboard(
+# df_predict, "test_scv_athena.html", True, 2
+# )
# df_predict.as_pandas_dataframe()
-# df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1)
+# df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(
+# df_predict, 0.1)
-# linker.cluster_studio_dashboard(
+# linker.visualisations.cluster_studio_dashboard(
# df_predict,
# df_clusters,
# sampling_method="by_cluster_size",
# out_path=os.path.join(tmp_path, "test_cluster_studio.html"),
# )
-# linker.unlinkables_chart(source_dataset="Testing")
+# linker.evaluation.unlinkables_chart(source_dataset="Testing")
# _test_table_registration(linker)
@@ -183,7 +186,7 @@
# ]
# )
-# predict = linker.predict()
+# predict = linker.inference.predict()
# return linker, path, predict
@@ -277,7 +280,7 @@
# input_table_aliases=table_aliases,
# )
-# df_predict = linker.predict()
+# df_predict = linker.inference.predict()
# df_predict.as_pandas_dataframe()
# linker.drop_all_tables_created_by_splink(delete_s3_folders=True)
diff --git a/tests/test_full_example_deterministic_link.py b/tests/test_full_example_deterministic_link.py
index 2d85a3e0ab..7ee4e056f2 100644
--- a/tests/test_full_example_deterministic_link.py
+++ b/tests/test_full_example_deterministic_link.py
@@ -40,11 +40,11 @@ def test_deterministic_link_full_example(dialect, tmp_path, test_helpers):
linker = Linker(df, settings, **helper.extra_linker_args())
- df_predict = linker.deterministic_link()
+ df_predict = linker.inference.deterministic_link()
- clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict)
+ clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict)
- linker.cluster_studio_dashboard(
+ linker.visualisations.cluster_studio_dashboard(
df_predict,
clusters,
out_path=os.path.join(tmp_path, "test_cluster_studio.html"),
diff --git a/tests/test_full_example_duckdb.py b/tests/test_full_example_duckdb.py
index fa186ed0ff..5388a90ae7 100644
--- a/tests/test_full_example_duckdb.py
+++ b/tests/test_full_example_duckdb.py
@@ -69,44 +69,46 @@ def test_full_example_duckdb(tmp_path):
)
completeness_chart(df, db_api)
- linker.compute_tf_table("city")
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("city")
+ linker.table_management.compute_tf_table("first_name")
- linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)
+ linker.training.estimate_probability_two_random_records_match(
["l.email = r.email"], recall=0.3
)
blocking_rule = 'l.first_name = r.first_name and l."SUR name" = r."SUR name"'
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
- linker.comparison_viewer_dashboard(
+ linker.visualisations.comparison_viewer_dashboard(
df_predict, os.path.join(tmp_path, "test_scv_duckdb.html"), True, 2
)
df_e = df_predict.as_pandas_dataframe(limit=5)
records = df_e.to_dict(orient="records")
- linker.waterfall_chart(records)
+ linker.visualisations.waterfall_chart(records)
register_roc_data(linker)
- linker.accuracy_analysis_from_labels_table("labels")
+ linker.evaluation.accuracy_analysis_from_labels_table("labels")
- df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1)
+ df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.1
+ )
- linker.cluster_studio_dashboard(
+ linker.visualisations.cluster_studio_dashboard(
df_predict,
df_clusters,
sampling_method="by_cluster_size",
out_path=os.path.join(tmp_path, "test_cluster_studio.html"),
)
- linker.unlinkables_chart(name_of_data_in_title="Testing")
+ linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing")
_test_table_registration(linker)
@@ -120,13 +122,13 @@ def test_full_example_duckdb(tmp_path):
"cluster": 10000,
}
- linker.find_matches_to_new_records(
+ linker.inference.find_matches_to_new_records(
[record], blocking_rules=[], match_weight_threshold=-10000
)
# Test saving and loading
path = os.path.join(tmp_path, "model.json")
- linker.save_model_to_json(path)
+ linker.misc.save_model_to_json(path)
db_api = DuckDBAPI()
linker_2 = Linker(df, settings=simple_settings, database_api=db_api)
@@ -181,7 +183,7 @@ def test_link_only(input, source_l, source_r):
db_api = DuckDBAPI()
linker = Linker(input, settings, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == 7257
assert set(df_predict.source_dataset_l.values) == source_l
@@ -227,7 +229,7 @@ def test_duckdb_load_from_file(df):
database_api=db_api,
)
- assert len(linker.predict().as_pandas_dataframe()) == 3167
+ assert len(linker.inference.predict().as_pandas_dataframe()) == 3167
settings["link_type"] = "link_only"
@@ -239,7 +241,7 @@ def test_duckdb_load_from_file(df):
input_table_aliases=["testing1", "testing2"],
)
- assert len(linker.predict().as_pandas_dataframe()) == 7257
+ assert len(linker.inference.predict().as_pandas_dataframe()) == 7257
@mark_with_dialects_including("duckdb")
@@ -269,7 +271,7 @@ def test_duckdb_arrow_array():
},
database_api=db_api,
)
- df = linker.deterministic_link().as_pandas_dataframe()
+ df = linker.inference.deterministic_link().as_pandas_dataframe()
assert len(df) == 2
@@ -314,11 +316,11 @@ def test_small_example_duckdb(tmp_path):
db_api = DuckDBAPI()
linker = Linker(df, settings_dict, database_api=db_api)
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
blocking_rule = "l.full_name = r.full_name"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_full_example_postgres.py b/tests/test_full_example_postgres.py
index 1a9f1a3599..0a61d13073 100644
--- a/tests/test_full_example_postgres.py
+++ b/tests/test_full_example_postgres.py
@@ -60,44 +60,46 @@ def test_full_example_postgres(tmp_path, pg_engine):
completeness_chart(df, db_api=db_api)
- linker.compute_tf_table("city")
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("city")
+ linker.table_management.compute_tf_table("first_name")
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.training.estimate_probability_two_random_records_match(
["l.email = r.email"], recall=0.3
)
blocking_rule = 'l.first_name = r.first_name and l."surname" = r."surname"'
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
- linker.comparison_viewer_dashboard(
+ linker.visualisations.comparison_viewer_dashboard(
df_predict, os.path.join(tmp_path, "test_scv_postgres.html"), True, 2
)
df_e = df_predict.as_pandas_dataframe(limit=5)
records = df_e.to_dict(orient="records")
- linker.waterfall_chart(records)
+ linker.visualisations.waterfall_chart(records)
register_roc_data(linker)
- linker.accuracy_analysis_from_labels_table("labels")
+ linker.evaluation.accuracy_analysis_from_labels_table("labels")
- df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1)
+ df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.1
+ )
- linker.cluster_studio_dashboard(
+ linker.visualisations.cluster_studio_dashboard(
df_predict,
df_clusters,
sampling_method="by_cluster_size",
out_path=os.path.join(tmp_path, "test_cluster_studio.html"),
)
- linker.unlinkables_chart(name_of_data_in_title="Testing")
+ linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing")
_test_table_registration(linker)
@@ -111,13 +113,13 @@ def test_full_example_postgres(tmp_path, pg_engine):
"cluster": 10000,
}
- linker.find_matches_to_new_records(
+ linker.inference.find_matches_to_new_records(
[record], blocking_rules=[], match_weight_threshold=-10000
)
# Test saving and loading
path = os.path.join(tmp_path, "model.json")
- linker.save_model_to_json(path)
+ linker.misc.save_model_to_json(path)
Linker(df, path, database_api=db_api)
@@ -137,4 +139,4 @@ def test_postgres_use_existing_table(tmp_path, pg_engine):
database_api=db_api,
settings=settings_dict,
)
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_full_example_spark.py b/tests/test_full_example_spark.py
index a8aa5c3b98..571c707bf6 100644
--- a/tests/test_full_example_spark.py
+++ b/tests/test_full_example_spark.py
@@ -25,7 +25,7 @@ def test_full_example_spark(spark, df_spark, tmp_path, spark_api):
# Test that writing to files works as expected
def spark_csv_read(x):
- return linker.db_api.spark.read.csv(x, header=True).toPandas()
+ return linker._db_api.spark.read.csv(x, header=True).toPandas()
_test_write_functionality(linker, spark_csv_read)
@@ -81,29 +81,31 @@ def spark_csv_read(x):
),
)
- linker.compute_tf_table("city")
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("city")
+ linker.table_management.compute_tf_table("first_name")
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.email = r.email"], recall=0.3
)
- linker.estimate_u_using_random_sampling(max_pairs=1e5, seed=1)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e5, seed=1)
blocking_rule = "l.first_name = r.first_name and l.surname = r.surname"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
- linker.comparison_viewer_dashboard(
+ linker.visualisations.comparison_viewer_dashboard(
df_predict, os.path.join(tmp_path, "test_scv_spark.html"), True, 2
)
- df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.2)
+ df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.2
+ )
- linker.cluster_studio_dashboard(
+ linker.visualisations.cluster_studio_dashboard(
df_predict,
df_clusters,
cluster_ids=[0, 4],
@@ -111,7 +113,7 @@ def spark_csv_read(x):
out_path=os.path.join(tmp_path, "test_cluster_studio.html"),
)
- linker.unlinkables_chart(name_of_data_in_title="Testing")
+ linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing")
# Test that writing to files works as expected
# spark_csv_read = lambda x: linker.spark.read.csv(x, header=True).toPandas()
# _test_write_functionality(linker, spark_csv_read)
@@ -125,7 +127,7 @@ def spark_csv_read(x):
)
register_roc_data(linker)
- linker.accuracy_analysis_from_labels_table("labels")
+ linker.evaluation.accuracy_analysis_from_labels_table("labels")
record = {
"unique_id": 1,
@@ -137,7 +139,7 @@ def spark_csv_read(x):
"cluster": 10000,
}
- linker.find_matches_to_new_records(
+ linker.inference.find_matches_to_new_records(
[record], blocking_rules=[], match_weight_threshold=-10000
)
@@ -156,7 +158,7 @@ def spark_csv_read(x):
# Test saving and loading
path = os.path.join(tmp_path, "model.json")
- linker.save_model_to_json(path)
+ linker.misc.save_model_to_json(path)
Linker(df_spark, settings=path, database_api=spark_api)
@@ -178,7 +180,7 @@ def test_link_only(spark, df_spark, spark_api):
num_partitions_on_repartition=2,
),
)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == 7257
assert set(df_predict.source_dataset_l.values) == {"my_left_ds"}
@@ -204,4 +206,4 @@ def test_spark_load_from_file(df, spark, spark_api):
spark_api,
)
- assert len(linker.predict().as_pandas_dataframe()) == 3167
+ assert len(linker.inference.predict().as_pandas_dataframe()) == 3167
diff --git a/tests/test_full_example_sqlite.py b/tests/test_full_example_sqlite.py
index 20a21d59b8..50968cf92a 100644
--- a/tests/test_full_example_sqlite.py
+++ b/tests/test_full_example_sqlite.py
@@ -33,36 +33,36 @@ def test_full_example_sqlite(tmp_path):
profile_columns(df, db_api, ["first_name", "surname", "first_name || surname"])
- linker.compute_tf_table("city")
- linker.compute_tf_table("first_name")
+ linker.table_management.compute_tf_table("city")
+ linker.table_management.compute_tf_table("first_name")
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.email = r.email"], recall=0.3
)
- linker.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6, seed=1)
blocking_rule = "l.first_name = r.first_name and l.surname = r.surname"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.dob = r.dob"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
- linker.comparison_viewer_dashboard(
+ linker.visualisations.comparison_viewer_dashboard(
df_predict, os.path.join(tmp_path, "test_scv_sqlite.html"), True, 2
)
- linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.5)
+ linker.clustering.cluster_pairwise_predictions_at_threshold(df_predict, 0.5)
- linker.unlinkables_chart(name_of_data_in_title="Testing")
+ linker.evaluation.unlinkables_chart(name_of_data_in_title="Testing")
_test_table_registration(linker)
register_roc_data(linker)
- linker.accuracy_analysis_from_labels_table("labels")
+ linker.evaluation.accuracy_analysis_from_labels_table("labels")
@mark_with_dialects_including("sqlite")
@@ -84,7 +84,7 @@ def test_small_link_example_sqlite():
input_table_aliases=["fake_data_1", "fake_data_2"],
)
- linker.predict()
+ linker.inference.predict()
@mark_with_dialects_including("sqlite")
@@ -96,4 +96,4 @@ def test_default_conn_sqlite(tmp_path):
db_api = SQLiteAPI()
linker = Linker(df, settings_dict, db_api)
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_graph_metrics.py b/tests/test_graph_metrics.py
index 0f92a48bfe..ba9c94e2de 100644
--- a/tests/test_graph_metrics.py
+++ b/tests/test_graph_metrics.py
@@ -39,10 +39,12 @@ def test_size_density_dedupe():
linker = Linker(df_1, settings, database_api=db_api)
- df_predict = linker.predict()
- df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9)
+ df_predict = linker.inference.predict()
+ df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.9
+ )
- df_result = linker.compute_graph_metrics(
+ df_result = linker.clustering.compute_graph_metrics(
df_predict, df_clustered
).clusters.as_pandas_dataframe()
# not testing this here - it's not relevant for small clusters anyhow
@@ -76,11 +78,13 @@ def test_size_density_link():
database_api=db_api,
)
- df_predict = linker.predict()
- df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9)
+ df_predict = linker.inference.predict()
+ df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.9
+ )
df_result = (
- linker.compute_graph_metrics(
+ linker.clustering.compute_graph_metrics(
df_predict, df_clustered, threshold_match_probability=0.99
)
.clusters.as_pandas_dataframe()
@@ -230,10 +234,14 @@ def test_metrics(dialect, test_helpers):
{"link_type": "dedupe_only"},
**helper.extra_linker_args(),
)
- df_predict = linker.register_table(helper.convert_frame(df_e), "predict")
- df_clustered = linker.register_table(helper.convert_frame(df_c), "clusters")
+ df_predict = linker.table_management.register_table(
+ helper.convert_frame(df_e), "predict"
+ )
+ df_clustered = linker.table_management.register_table(
+ helper.convert_frame(df_c), "clusters"
+ )
- cm = linker.compute_graph_metrics(
+ cm = linker.clustering.compute_graph_metrics(
df_predict, df_clustered, threshold_match_probability=0.95
)
df_cm = cm.clusters.as_pandas_dataframe()
@@ -342,11 +350,15 @@ def test_is_bridge(dialect, test_helpers):
{"link_type": "dedupe_only"},
**helper.extra_linker_args(),
)
- df_predict = linker.register_table(helper.convert_frame(df_e), "br_predict")
- df_clustered = linker.register_table(helper.convert_frame(df_c), "br_clusters")
+ df_predict = linker.table_management.register_table(
+ helper.convert_frame(df_e), "br_predict"
+ )
+ df_clustered = linker.table_management.register_table(
+ helper.convert_frame(df_c), "br_clusters"
+ )
# linker.debug_mode = True
- cm = linker.compute_graph_metrics(
+ cm = linker.clustering.compute_graph_metrics(
df_predict, df_clustered, threshold_match_probability=0.95
)
df_em = cm.edges.as_pandas_dataframe()
@@ -392,12 +404,14 @@ def test_edges_without_igraph():
}
linker = Linker(df_1, settings, DuckDBAPI())
- df_predict = linker.predict()
- df_clustered = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.9)
+ df_predict = linker.inference.predict()
+ df_clustered = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.9
+ )
# pretend we don't have igraph installed
with patch("builtins.__import__", side_effect=mock_no_igraph_installed):
- graph_metrics = linker.compute_graph_metrics(
+ graph_metrics = linker.clustering.compute_graph_metrics(
df_predict, df_clustered, threshold_match_probability=0.9
)
df_edge_metrics = graph_metrics.edges.as_pandas_dataframe()
@@ -428,12 +442,12 @@ def test_no_threshold_provided():
settings = {"link_type": "dedupe_only"}
linker = Linker(df_1, settings, DuckDBAPI())
- df_predict = linker.register_table(df_e, "predict")
- df_clustered = linker.register_table(df_c, "clusters")
+ df_predict = linker.table_management.register_table(df_e, "predict")
+ df_clustered = linker.table_management.register_table(df_c, "clusters")
with raises(TypeError):
# no threshold_match_probability, no metadata
- _ = linker.compute_graph_metrics(df_predict, df_clustered)
+ _ = linker.clustering.compute_graph_metrics(df_predict, df_clustered)
def test_override_metadata_threshold():
@@ -450,12 +464,12 @@ def test_override_metadata_threshold():
settings = {"link_type": "dedupe_only"}
linker = Linker(df_1, settings, DuckDBAPI())
# linker.debug_mode = True
- df_predict = linker.register_table(df_e, "predict")
- df_clustered = linker.register_table(df_c, "clusters")
+ df_predict = linker.table_management.register_table(df_e, "predict")
+ df_clustered = linker.table_management.register_table(df_c, "clusters")
df_clustered.metadata["threshold_match_probability"] = 0.95
- gm_results_95 = linker.compute_graph_metrics(df_predict, df_clustered)
- gm_results_9 = linker.compute_graph_metrics(
+ gm_results_95 = linker.clustering.compute_graph_metrics(df_predict, df_clustered)
+ gm_results_9 = linker.clustering.compute_graph_metrics(
df_predict, df_clustered, threshold_match_probability=0.9
)
df_expected_95 = pd.DataFrame(
diff --git a/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py b/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py
index d9d92b7cfa..c90ad586a1 100644
--- a/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py
+++ b/tests/test_join_type_for_estimate_u_and_predict_are_efficient.py
@@ -122,7 +122,7 @@ def test_dedupe_only():
)
logging.getLogger("splink").setLevel(1)
- linker.estimate_u_using_random_sampling(max_pairs=1000)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1000)
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -133,7 +133,7 @@ def test_dedupe_only():
handler.log_list.clear()
- linker.predict()
+ linker.inference.predict()
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -177,7 +177,7 @@ def test_link_and_dedupe():
handler.log_list.clear()
logging.getLogger("splink").setLevel(1)
- linker.estimate_u_using_random_sampling(max_pairs=1000)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1000)
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -188,7 +188,7 @@ def test_link_and_dedupe():
log_list.clear()
- linker.predict()
+ linker.inference.predict()
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -233,7 +233,7 @@ def test_link_only_two():
log_list.clear()
logging.getLogger("splink").setLevel(1)
- linker.estimate_u_using_random_sampling(max_pairs=1000)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1000)
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -244,7 +244,7 @@ def test_link_only_two():
log_list.clear()
- linker.predict()
+ linker.inference.predict()
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -290,7 +290,7 @@ def test_link_only_three():
log_list.clear()
logging.getLogger("splink").setLevel(1)
- linker.estimate_u_using_random_sampling(max_pairs=1000)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1000)
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
@@ -301,7 +301,7 @@ def test_link_only_three():
log_list.clear()
- linker.predict()
+ linker.inference.predict()
all_log_messages = "\n".join(log_list)
all_log_messages = re.sub(r"\s+", " ", all_log_messages)
diff --git a/tests/test_km_distance_level.py b/tests/test_km_distance_level.py
index fbfae2cc90..2ad2734007 100644
--- a/tests/test_km_distance_level.py
+++ b/tests/test_km_distance_level.py
@@ -125,9 +125,9 @@ def test_km_distance_levels(dialect, test_helpers):
df = helper.convert_frame(df)
linker = helper.Linker(df, settings_cl, **helper.extra_linker_args())
- cl_df_e = linker.predict().as_pandas_dataframe()
+ cl_df_e = linker.inference.predict().as_pandas_dataframe()
linker = helper.Linker(df, settings_cll, **helper.extra_linker_args())
- cll_df_e = linker.predict().as_pandas_dataframe()
+ cll_df_e = linker.inference.predict().as_pandas_dataframe()
linker_outputs = {
"cl": cl_df_e,
@@ -227,7 +227,7 @@ def test_haversine_level():
db_api = DuckDBAPI()
linker = Linker(df, settings, input_table_aliases="test", database_api=db_api)
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
row = dict(df_e.query("id_l == 1 and id_r == 2").iloc[0])
assert row["gamma_lat_long"] == 3
diff --git a/tests/test_linker_variants.py b/tests/test_linker_variants.py
index c5ec84b900..dfb7b85797 100644
--- a/tests/test_linker_variants.py
+++ b/tests/test_linker_variants.py
@@ -70,7 +70,7 @@ def test_dedupe_only_join_condition():
linker = Linker(df.copy(), s, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == (6 * 5) / 2
@@ -95,7 +95,7 @@ def test_link_only_two_join_condition():
linker = Linker([sds_d_only, sds_b_only], s, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == 4
@@ -124,7 +124,7 @@ def test_link_only_three_join_condition():
linker = Linker([sds_d_only, sds_b_only, sds_c_only], s, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == 12
@@ -153,7 +153,7 @@ def test_link_and_dedupe_two_join_condition():
linker = Linker([sds_d_only, sds_b_only], s, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == (4 * 3) / 2
@@ -182,7 +182,7 @@ def test_link_and_dedupe_three_join_condition():
linker = Linker([sds_d_only, sds_b_only, sds_c_only], s, database_api=db_api)
- df_predict = linker.predict().as_pandas_dataframe()
+ df_predict = linker.inference.predict().as_pandas_dataframe()
assert len(df_predict) == (6 * 5) / 2
diff --git a/tests/test_m_train.py b/tests/test_m_train.py
index 7e4b407dd2..ac331373ba 100644
--- a/tests/test_m_train.py
+++ b/tests/test_m_train.py
@@ -26,7 +26,7 @@ def test_m_train():
linker = Linker(df, settings, database_api=db_api)
- linker.estimate_m_from_label_column("cluster")
+ linker.training.estimate_m_from_label_column("cluster")
cc_name = linker._settings_obj.comparisons[0]
cl_exact = cc_name._get_comparison_level_by_comparison_vector_value(2)
@@ -57,8 +57,8 @@ def test_m_train():
linker_pairwise = Linker(df, settings, database_api=db_api)
- linker_pairwise.register_table(df_labels, "labels")
- linker_pairwise.estimate_m_from_pairwise_labels("labels")
+ linker_pairwise.table_management.register_table(df_labels, "labels")
+ linker_pairwise.training.estimate_m_from_pairwise_labels("labels")
cc_name = linker_pairwise._settings_obj.comparisons[0]
cl_exact = cc_name._get_comparison_level_by_comparison_vector_value(2)
diff --git a/tests/test_new_comparison_levels.py b/tests/test_new_comparison_levels.py
index a6dc045fd4..6564d4410d 100644
--- a/tests/test_new_comparison_levels.py
+++ b/tests/test_new_comparison_levels.py
@@ -76,7 +76,7 @@ def test_cll_creators_run_predict(dialect, test_helpers):
df = helper.load_frame_from_csv("./tests/datasets/fake_1000_from_splink_demos.csv")
linker = helper.Linker(df, cll_settings, **helper.extra_linker_args())
- linker.predict()
+ linker.inference.predict()
@mark_with_dialects_excluding()
@@ -172,7 +172,7 @@ def test_cl_creators_run_predict(dialect, test_helpers):
linker = helper.Linker(df, cl_settings, **helper.extra_linker_args())
- linker.predict()
+ linker.inference.predict()
@mark_with_dialects_excluding("sqlite")
@@ -201,7 +201,7 @@ def test_regex_fall_through(dialect, test_helpers):
}
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
# only entry should be in Else level
assert df_e["gamma_name"][0] == 0
@@ -231,7 +231,7 @@ def test_null_pattern_match(dialect, test_helpers):
}
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- df_e = linker.predict().as_pandas_dataframe()
+ df_e = linker.inference.predict().as_pandas_dataframe()
# only entry should be in Null level
assert df_e["gamma_name"][0] == -1
@@ -285,7 +285,7 @@ def test_ctl_creators_run_predict(dialect, test_helpers):
df = helper.load_frame_from_csv("./tests/datasets/fake_1000_from_splink_demos.csv")
linker = helper.Linker(df, ctl_settings, **helper.extra_linker_args())
- linker.predict()
+ linker.inference.predict()
def test_custom_dialect_no_string_lookup():
diff --git a/tests/test_new_db_api.py b/tests/test_new_db_api.py
index 356c3e3a2a..c88a2bc2ef 100644
--- a/tests/test_new_db_api.py
+++ b/tests/test_new_db_api.py
@@ -69,7 +69,7 @@ def test_run_predict(dialect, test_helpers):
cl_settings,
db_api,
)
- linker.predict()
+ linker.inference.predict()
@mark_with_dialects_excluding()
@@ -83,25 +83,27 @@ def test_full_run(dialect, test_helpers, tmp_path):
cl_settings,
db_api,
)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name AND l.surname = r.surname"],
0.6,
)
- linker.estimate_u_using_random_sampling(500)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_u_using_random_sampling(500)
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.first_name = r.first_name"
)
- linker.estimate_parameters_using_expectation_maximisation("l.surname = r.surname")
- df_e = linker.predict()
- df_c = linker.cluster_pairwise_predictions_at_threshold(df_e, 0.99)
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.surname = r.surname"
+ )
+ df_e = linker.inference.predict()
+ df_c = linker.clustering.cluster_pairwise_predictions_at_threshold(df_e, 0.99)
- linker.comparison_viewer_dashboard(
+ linker.visualisations.comparison_viewer_dashboard(
df_e,
os.path.join(tmp_path, "test_cvd_duckdb.html"),
overwrite=True,
num_example_rows=2,
)
- linker.cluster_studio_dashboard(
+ linker.visualisations.cluster_studio_dashboard(
df_e,
df_c,
os.path.join(tmp_path, "test_csd_duckdb.html"),
@@ -126,18 +128,20 @@ def test_charts(dialect, test_helpers, tmp_path):
linker = Linker(df, cl_settings, db_api)
- linker.estimate_probability_two_random_records_match(
+ linker.training.estimate_probability_two_random_records_match(
["l.first_name = r.first_name AND l.surname = r.surname"],
0.6,
)
- linker.estimate_u_using_random_sampling(500)
- linker.estimate_parameters_using_expectation_maximisation(
+ linker.training.estimate_u_using_random_sampling(500)
+ linker.training.estimate_parameters_using_expectation_maximisation(
"l.first_name = r.first_name"
)
- linker.estimate_parameters_using_expectation_maximisation("l.surname = r.surname")
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.surname = r.surname"
+ )
- linker.match_weights_chart()
- linker.m_u_parameters_chart()
+ linker.visualisations.match_weights_chart()
+ linker.visualisations.m_u_parameters_chart()
@mark_with_dialects_excluding()
diff --git a/tests/test_regex_param.py b/tests/test_regex_param.py
index a9d02642b4..774fe5a5fd 100644
--- a/tests/test_regex_param.py
+++ b/tests/test_regex_param.py
@@ -131,7 +131,7 @@ def test_regex(dialect, test_helpers, level_set, record_pairs_gamma):
df = helper.convert_frame(df_pandas)
linker = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_output = linker.predict().as_pandas_dataframe()
+ linker_output = linker.inference.predict().as_pandas_dataframe()
for gamma, id_pairs in record_pairs_gamma.items():
for left, right in id_pairs:
diff --git a/tests/test_salting_len.py b/tests/test_salting_len.py
index 5a13966a68..fde8a4f850 100644
--- a/tests/test_salting_len.py
+++ b/tests/test_salting_len.py
@@ -39,7 +39,7 @@ def generate_linker_output(
linker = Linker(df, settings, spark_api)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
df_predict = df_predict.as_pandas_dataframe()
return df_predict.sort_values(by=["unique_id_l", "unique_id_r"], ignore_index=True)
diff --git a/tests/test_settings_options.py b/tests/test_settings_options.py
index d6f35f5ac9..4953cc21e5 100644
--- a/tests/test_settings_options.py
+++ b/tests/test_settings_options.py
@@ -4,6 +4,7 @@
import splink.internals.comparison_library as cl
from splink import block_on
+from splink.internals.linker import Linker
from .decorator import mark_with_dialects_excluding
@@ -56,14 +57,20 @@ def test_model_heavily_customised_settings(test_helpers, dialect, tmp_path):
"term_frequency_adjustment_column_prefix": "term_freq__",
"comparison_vector_value_column_prefix": "cvv__",
}
- linker = helper.Linker([df_l, df_r], settings, **helper.extra_linker_args())
+ linker = Linker([df_l, df_r], settings, **helper.extra_linker_args())
# run through a few common operations to check functioning
- linker.estimate_probability_two_random_records_match(["l.dob = r.dob"], 0.5)
- linker.estimate_u_using_random_sampling(2e4)
- linker.estimate_parameters_using_expectation_maximisation("l.dob = r.dob")
- df_predict = linker.predict(0.1)
- df_clusters = linker.cluster_pairwise_predictions_at_threshold(df_predict, 0.1)
- linker.comparison_viewer_dashboard(df_predict, os.path.join(tmp_path, "csv.html"))
- linker.cluster_studio_dashboard(
+ linker.training.estimate_probability_two_random_records_match(
+ ["l.dob = r.dob"], 0.5
+ )
+ linker.training.estimate_u_using_random_sampling(2e4)
+ linker.training.estimate_parameters_using_expectation_maximisation("l.dob = r.dob")
+ df_predict = linker.inference.predict(0.1)
+ df_clusters = linker.clustering.cluster_pairwise_predictions_at_threshold(
+ df_predict, 0.1
+ )
+ linker.visualisations.comparison_viewer_dashboard(
+ df_predict, os.path.join(tmp_path, "csv.html")
+ )
+ linker.visualisations.cluster_studio_dashboard(
df_predict, df_clusters, os.path.join(tmp_path, "csd.html")
)
diff --git a/tests/test_spark_udfs.py b/tests/test_spark_udfs.py
index 955952106b..a65a82457a 100644
--- a/tests/test_spark_udfs.py
+++ b/tests/test_spark_udfs.py
@@ -65,13 +65,13 @@ def test_udf_registration(spark_api):
settings,
spark_api,
)
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
blocking_rule = "l.first_name = r.first_name"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
blocking_rule = "l.surname = r.surname"
- linker.estimate_parameters_using_expectation_maximisation(blocking_rule)
+ linker.training.estimate_parameters_using_expectation_maximisation(blocking_rule)
- linker.predict()
+ linker.inference.predict()
@mark_with_dialects_including("spark")
@@ -105,7 +105,7 @@ def test_damerau_levenshtein(spark_api):
where l.id < r.id
"""
- udf_out = linker.query_sql(sql)
+ udf_out = linker.misc.query_sql(sql)
# Set accuracy level
decimals = 4
@@ -192,7 +192,7 @@ def test_jaro(spark_api):
where l.id < r.id
"""
- udf_out = linker.query_sql(sql)
+ udf_out = linker.misc.query_sql(sql)
# Set accuracy level
decimals = 4
@@ -274,7 +274,7 @@ def test_jaro_winkler(spark_api):
where l.id < r.id
"""
- udf_out = linker.query_sql(sql)
+ udf_out = linker.misc.query_sql(sql)
# Set accuracy level
decimals = 4
diff --git a/tests/test_splink_datasets.py b/tests/test_splink_datasets.py
index 60fd5b108e..5bc920d33e 100644
--- a/tests/test_splink_datasets.py
+++ b/tests/test_splink_datasets.py
@@ -16,4 +16,4 @@ def test_datasets_basic_link(test_helpers):
},
**helper.extra_linker_args(),
)
- linker.predict()
+ linker.inference.predict()
diff --git a/tests/test_term_frequencies.py b/tests/test_term_frequencies.py
index e458e6afa8..29cd2f574f 100644
--- a/tests/test_term_frequencies.py
+++ b/tests/test_term_frequencies.py
@@ -82,7 +82,7 @@ def test_tf_basic():
db_api = DuckDBAPI(connection=":memory:")
linker = Linker(data, settings, database_api=db_api)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
results = filter_results(df_predict)
bf_no_adj = results["London"]["bf_city"]
@@ -119,7 +119,7 @@ def test_tf_clamp():
db_api = DuckDBAPI(connection=":memory:")
linker = Linker(data, settings, database_api=db_api)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
results = filter_results(df_predict)
bf_no_adj = results["London"]["bf_city"]
@@ -157,7 +157,7 @@ def test_weight():
db_api = DuckDBAPI(connection=":memory:")
linker = Linker(data, settings, database_api=db_api)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
results = filter_results(df_predict)
bf_no_adj = results["London"]["bf_city"]
@@ -208,7 +208,7 @@ def test_weightand_clamp():
db_api = DuckDBAPI(connection=":memory:")
linker = Linker(data, settings, database_api=db_api)
- df_predict = linker.predict()
+ df_predict = linker.inference.predict()
results = filter_results(df_predict)
bf_no_adj = results["London"]["bf_city"]
diff --git a/tests/test_train_vs_predict.py b/tests/test_train_vs_predict.py
index 08f3cbb0aa..779a20750a 100644
--- a/tests/test_train_vs_predict.py
+++ b/tests/test_train_vs_predict.py
@@ -22,14 +22,16 @@ def test_train_vs_predict(test_helpers, dialect):
settings_dict["blocking_rules_to_generate_predictions"] = ["l.surname = r.surname"]
linker = helper.Linker(df, settings_dict, **helper.extra_linker_args())
- training_session = linker.estimate_parameters_using_expectation_maximisation(
- "l.surname = r.surname", fix_u_probabilities=False
+ training_session = (
+ linker.training.estimate_parameters_using_expectation_maximisation(
+ "l.surname = r.surname", fix_u_probabilities=False
+ )
)
expected = training_session.core_model_settings.probability_two_random_records_match
# We expect the probability_two_random_records_match to be the same as for a predict
- df = linker.predict().as_pandas_dataframe()
+ df = linker.inference.predict().as_pandas_dataframe()
actual = df["match_probability"].mean()
# Will not be exactly equal because expected represents the
diff --git a/tests/test_u_train.py b/tests/test_u_train.py
index b1d87fa79d..e9fc85d6d1 100644
--- a/tests/test_u_train.py
+++ b/tests/test_u_train.py
@@ -30,8 +30,8 @@ def test_u_train(test_helpers, dialect):
df_linker = helper.convert_frame(df)
linker = helper.Linker(df_linker, settings, **helper.extra_linker_args())
- linker.debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker._debug_mode = True
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
cc_name = linker._settings_obj.comparisons[0]
denom = (6 * 5) / 2 # n(n-1) / 2
@@ -79,8 +79,8 @@ def test_u_train_link_only(test_helpers, dialect):
df_r = helper.convert_frame(df_r)
linker = helper.Linker([df_l, df_r], settings, **helper.extra_linker_args())
- linker.debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker._debug_mode = True
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
cc_name = linker._settings_obj.comparisons[0]
check_blocking_sql = """
@@ -90,7 +90,7 @@ def test_u_train_link_only(test_helpers, dialect):
pipeline = CTEPipeline()
pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count")
- self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
result = self_table_count.as_record_dict()
self_table_count.drop_table_from_database_and_remove_from_cache()
@@ -141,9 +141,9 @@ def test_u_train_link_only_sample(test_helpers, dialect):
input_table_aliases=["_a", "_b"],
**helper.extra_linker_args(),
)
- linker.debug_mode = True
+ linker._debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=max_pairs)
+ linker.training.estimate_u_using_random_sampling(max_pairs=max_pairs)
# count how many pairs we _actually_ generated in random sampling
check_blocking_sql = """
@@ -152,7 +152,7 @@ def test_u_train_link_only_sample(test_helpers, dialect):
pipeline = CTEPipeline()
pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count")
- self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
result = self_table_count.as_record_dict()
self_table_count.drop_table_from_database_and_remove_from_cache()
@@ -266,8 +266,8 @@ def test_u_train_multilink(test_helpers, dialect):
}
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker._debug_mode = True
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
cc_name = linker._settings_obj.comparisons[0]
check_blocking_sql = """
@@ -277,7 +277,7 @@ def test_u_train_multilink(test_helpers, dialect):
pipeline = CTEPipeline()
pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count")
- self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
result = self_table_count.as_record_dict()
self_table_count.drop_table_from_database_and_remove_from_cache()
@@ -298,8 +298,8 @@ def test_u_train_multilink(test_helpers, dialect):
# also check the numbers on a link + dedupe with same inputs
settings["link_type"] = "link_and_dedupe"
linker = helper.Linker(dfs, settings, **helper.extra_linker_args())
- linker.debug_mode = True
- linker.estimate_u_using_random_sampling(max_pairs=1e6)
+ linker._debug_mode = True
+ linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
cc_name = linker._settings_obj.comparisons[0]
check_blocking_sql = """
@@ -309,7 +309,7 @@ def test_u_train_multilink(test_helpers, dialect):
pipeline = CTEPipeline()
pipeline.enqueue_sql(check_blocking_sql, "__splink__df_blocked_same_table_count")
- self_table_count = linker.db_api.sql_pipeline_to_splink_dataframe(pipeline)
+ self_table_count = linker._db_api.sql_pipeline_to_splink_dataframe(pipeline)
result = self_table_count.as_record_dict()
self_table_count.drop_table_from_database_and_remove_from_cache()
@@ -343,9 +343,9 @@ def test_seed_u_outputs(test_helpers, dialect):
linker_2 = helper.Linker(df, settings, **helper.extra_linker_args())
linker_3 = helper.Linker(df, settings, **helper.extra_linker_args())
- linker_1.estimate_u_using_random_sampling(max_pairs=1e3, seed=1)
- linker_2.estimate_u_using_random_sampling(max_pairs=1e3, seed=1)
- linker_3.estimate_u_using_random_sampling(max_pairs=1e3, seed=2)
+ linker_1.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=1)
+ linker_2.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=1)
+ linker_3.training.estimate_u_using_random_sampling(max_pairs=1e3, seed=2)
assert (
linker_1._settings_obj._parameter_estimates_as_records